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General Preface

The history of crystal growth is long as those of the universe and the earth. Meteorites

contain pyrites and olivine crystals which indicate these crystals were grown when the

planets were born. Crystals naturally produced are used as gems from the early time of

the human history. In Exodus, it is written that breast-piece was decorated by ruby,

emerald, sapphire, amethyst, and other gems.

There are a lot of crystals around us. As examples, we can find snowflakes falling down

from the sky, ice crystals in a lake in winter, salt and sugar crystals in the pots of our

kitchen. But, it was after the invention of point contact and junction transistors,

respectively in 1947 and 1948, that the industry paid a great interest on the crystal growth.

Without the growth of high purity and highly perfect single-crystal semiconductor, at that

time of Ge, the invention of the transistors will never happen.

It is well known that the modern information society will be not realized without

electronic and optical devices. One finds large-scale integrated circuits of Si in every

computer from laptop to super computers. For high speed and mass transmission of

information, compound semiconductor devices are indispensable.

These devices are fabricated almost all by using single crystals of semiconductors and

oxides. When we look into the history of the devices, we always see that an invention of

crystal growth technique makes it possible to bring out new device. As we saw, the

invention of transistor was possible only after the growth of high-quality Ge single crystal.

The growth of large-diameter dislocation-free Si crystal has enabled the production of

large-scale integrated circuit. Due to the invention of liquid-phase epitaxy, it became

possible to realize light-emitting diode (LED) and laser diode (LD) in real use. Drastic

technological improvement in highly lattice mismatch heteroepitaxy made it possible to

realize bluew ultraviolet LED and LD and it can be said that the success in the growth of

high-quality nitride semiconductor gave the blue light all over the world. Hence, we

should understand that new technology of crystal growth has always created new elec-

tronic and optical devices.

It is extremely good news for the community of crystal growth that 2014 Nobel Prize in

Physics was awarded to Professors Isamu Akasaki, Hiroshi Amano and Shuji Nakamura

for the invention of efficient blue light-emitting diodes which has enabled bright and

energy-saving white light sources. This invention is basing on the growth of nitride

semiconductors employing a low-temperature buffer layer on sapphire substrate in

heteroepitaxy. We are happy that Professor Hiroshi Amano, one of the winners, is con-

tributing to this Handbook as an author of Chapter 16 in Vol. IIIA.

ix



The first edition of the Handbook of Crystal Growth was edited by D.T.J. Hurle. This

Handbook was composed of three volumes and published in 1993–1994. The present

second edition of the Handbook also consists of three volumes. Each volume was edited

by separate editors. Volume I is edited by T. Nishinaga and the volume covers the basic

aspects of crystal growth. In Volume IA, fundamentals and kinetics of crystal growth are

described and in IB, advanced problems of transport and stability are discussed. Volume II

is edited by P. Rudolph and this volume covers bulk crystal growth. Volume IIB

presents basic technologies of bulk growth and IIB does growth mechanism and

dynamics. Volume III was edited by T. F. Kuech and the volume covers thin film growth

and epitaxy. Volume IIIA discusses basic techniques and IIIB does growth mechanisms

and dynamics.

Present Handbook project was created in March, 2011 and six advisors were

appointed. They are T. F. Kuech, G. B. Stringfellow, J. B. Mullin, J. J. Derby, R. Fornari, and

K. H. Ploog. I am very much grateful for their important and valuable suggestions.

Finally, all editors would like to express their sincere thanks to Shannon Stanton,

Elsevier, for her strong and well cared support to this work.

Tatau Nishinaga

(Editor in Chief)
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Preface to Volume I

Crystal growth has three faces. One is the face of science, the second is that of art, and the

final one is of technology. For a long time in the human history, people have wondered

how snowflakes grow in such beautiful shapes and tried to understand the mechanism.

The curiosity is the driving force for the growth science. Crystal growth is an important

tool to obtain useful crystals for human life and industry use. The growth of ruby is one of

the examples. People have developed the art of the growth and the art was improved by

many workers and finally Verneuil has arrived at an elegant growth method called as

Verneuil method.

For a long time, science and art of crystal growth have been developed separately such

as in school and in small factory in town. However, after the crystal growth has been

employed to fabricate advanced electronic and optoelectronic devices, the art based on

science is strongly required. For the control of the accurate structure and dimension of

such devices, the growth should be carried out with deep understandings of growth

science.

A half century ago, nobody thought that the real-time observation of 2D nucleation is

possible in molecular beam epitaxy (MBE) during the growth of quantum well laser by

reflection high-energy electron diffraction (RHEED). It was only in recent years that

growth spirals were found on the surface of GaN grown by metal organic chemical vapor

deposition (MOCVD) to be used for the fabrication of blue light-emitting diode (LED) and

laser diode (LD). It was shown that the relationship between growth rate and surface

supersaturation of GaNMOCVD is explained very well by classical Burton–Cabrera–Frank

(BCF) theory. In this experiment, a mask epitaxy using photolithography was employed.

In the history of crystal growth, there has been no age when the art and the science of

crystal growth are so closely combined like today. However, there is still strong con-

tribution of art required in the crystal growth technology. For instance, to grow the

advanced devises by MBE, one should be very skillful to manipulate the machine, how-

ever, with advanced knowledge of growth science. This is what is different from the old art

of crystal growth.

The purpose of the Volume I is to show the recent advances in the growth science and

to give scientific bases for the technologies to be developed in the following Volumes II

and III, which are devoted to the bulk crystal growth and thin film growth and epitaxy,

respectively.

Volume Ia describes thermodynamics and kinetics and Volume IIb does the transport

and stability. The first chapter of Volume Ia gives a historical introduction of the crystal

growth especially for the beginners. This chapter is followed by those of phase equilibria,

xi



defect thermodynamics, and stoichiometry. Then, Chapter 5 discusses the equilibrium

shape of crystal and Chapter 6 does rough–smooth transition of step and surface. Both

chapters aim at giving the true picture of the crystal surface. Chapters 7 and 8 will cover

the most fundamental and basic aspects of crystal growth, nucleation and growth

kinetics, respectively. Chapter 9 is devoted to explain the structure of melt and liquid

alloys. To understand the growth from themelt, one should have the knowledge about the

atomistic structure of the melt. Next three chapters discuss the simulation of crystal

growth employing classical and quantum mechanically calculated potentials. The final

chapter presents the colloid crystal growth, which provides the experimental modeling

for the crystal growth.

The first chapter of Volume Ib gives a general introduction to morphological stability

that is followed by Chapter 15, in which themodern theory of morphological stability, i.e.,

phase-field model, is explained and applied to solidification to understand micro-

structure formation processes. The next two chapters describe the experiments related to

the morphological stability. In Chapter 16, the detailed theoretical and experimental

studies of dendritic growth are presented. On the other hand, in Chapter 17, grain growth

in the melt is discussed and it is demonstrated that the dendritic growth is often observed

in grain growth. Nanocrystal growth is one of the rapidly expanding fields. Growth of

nanocrystals from vapor is discussed as an example in Chapters 18. Crystal growth of

protein and other biological molecules are studied very extensively to facilitate the

advancement of life science. Chapters 19 and 20 are devoted to this subject. The following

two chapters discuss the problems which one encounters in producing medicine.

Chapter 21 describes the fundamental growth process of pharmaceutical crystallization,

which is exactly the same as ordinary crystal growth. Chapter 22 discusses the growth of

chiral molecules. Selective growth of one type is especially important for pharmacy

production.

Chapters 23–25 describe in situ observation of crystal growth in vacuum, solution, and

melt. Chapters 24 and 25 are devoted some parts to the growth in space. The final chapter

describes the growth of quasicrystal which shows symmetries forbidden in ordinary

crystallography. It is possible to grow single-grained quasicrystals and their properties

were studied in detail.

The present editor wishes to acknowledge deeply all authors of Volume I for their

excellent articles. The mails of the request were sent in the autumn of 2012 and the

deadline was the end of October 2013. But, the most of authors only could send their

manuscript by March of 2014 and some did in the beginning of July, 2014. I would like to

thank all authors for sacrificing many hours of their important official and private time.

Tatau Nishinaga

Editor of the Volume I

July, 2014
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1.1 Introduction
Most scientists and engineers are aware that the basic tools they use in their daily

research activities were developed by groups of researchers working in series or parallel

over decades, in some cases centuries. It was often in an incremental way, one study

building on another. As time went on, these earlier ideas became more refined and

practical, providing future workers with a more through understanding of the physics

and chemistry involved in different materials systems and leading to innovative new

processes for making materials and devices that have affected everyone’s lives. They

helped define the world we live in and used their newly gained knowledge to stoke the

technological revolution.

The crystal growth field (a branch of materials science, physics, chemistry and

crystallography) has a rich historical background that goes back at least several

millennia. It basically deals with understanding the underlying mechanisms involved in

the crystallization process and the technology to produce a single crystal from some

medium in a controlled fashion. One of the earliest written accounts documenting work

on methods for preparing crystals was given by the Roman Pliny the Elder in 77–79 AD

[1]. His collected work was a summary of knowledge going back to even more ancient

times. It is probable that even prehistoric man engaged in the recrystallization of

materials like salt. Among other topics, Pliny discussed the preparation of Vitriol (iron,
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copper and zinc sulfate hydrates). The process involved evaporating mine or spring

waters obtained from the Mediterranean region. About 1500 years later, in medieval

times, Pliny’s work was referred to by both Biringuccio [3] and Agricola [2]. They

concentrated on preparing crystals of these compounds for medicines, dyes, fluxes and

acids. The various methods employed generally began with the purification of mineral

deposits, followed by recrystallization of the remaining solutions by evaporation.

The field of crystal growth encompasses a wide spectrum of scientific disciplines and

includes (1) experimental and theoretical studies of crystallization processes, (2) the

growth of crystals under controlled conditions for both scientific purposes and industrial

applications and (3) crystal characterization. It also covers almost all classes of materials,

i.e., inorganic and organic compounds, elemental materials as well as biological mac-

romolecules. Many methods have been developed over the years for producing single

crystals, the size range for which varies from the nanometer to meter scale. These crystals

have in common an atomic ordering that persists throughout their bulk and without the

presence of grain boundaries. The two principal scientific pillars upon which the field of

crystal growth depends are thermodynamics and kinetics. The thermodynamic proper-

ties of a system describe how solid, liquid and gaseous phases behave with respect to

state variables such as temperature, pressure and composition. They provide a road map,

so to speak, which crystal growers use to plan growth strategies. For the preparation of

crystals of a size, purity and composition required for a specific application, one needs to

know what material phases will exist under various conditions of temperature, T, and

pressure, P, etc., and how these phases will form under dynamic solidification processing

conditions. Kinetic factors, on the other hand, influence our ability to produce a crystal

at a desired growth rate and with a degree of perfection and uniformity suited to the

intended application. We will explore below how interface stability and segregation

behavior are influenced both by thermodynamic and kinetic factors.

In the beginning, crystal growth was not the well-defined field it is today. Work was

carried out by chemists, physicists, etc., and research results were reported in various

conferences and journals of these societies. The first conference to concentrate on the

topic was at a Faraday Society meeting in 1949, held in Bristol, England. In spite of the

growing importance of crystals for solid-state electronic applications in the early 1950s,

it was almost a decade later before a second meeting concerning issues in crystal growth

arose. That conference, held in Cooperstown, New York in 1958 [4], gathered together

some of the most eminent crystal growth researchers to discuss a wide range of topics of

interest to the crystal growth community. Conferences were also started in the Soviet

Union (Moscow) as early as 1956. However, the major consolidation of the field into a

viable entity was the formation in 1966 of the International Organization of Crystal

Growth (IOCG) and under their aegis, the subsequent International Conferences on

Crystal Growth (ICCG). These conferences have been held every three years since 1966.

The local organizers of the first ICCG conference held in Boston, Massachusetts

immediately founded the American Association for Crystal Growth (AACG) under the

joint chairmanship of Doctor Robert (Bob) Laudise and Doctor Kenneth (Ken) Jackson.
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The AACG held their own national conferences soon afterward and other national groups

formed around the world. The Journal of Crystal was established in 1967 under the

leadership of Professor Michael Schieber, along with Sir Charles Frank and Dr Nicholas

Cabrera as co-editors. Although papers on crystal growth topics are published elsewhere

as well, the Journal of Crystal Growth has remained the major venue for papers on crystal

growth theory, practice and characterization and has published related proceedings of

conferences focused on various aspects of the field.

Many of the topics discussed in this introductory history are covered in much more

detail in various chapters in this comprehensive, updated version of the Handbook of

Crystal Growth. This treatment is designed to focus mainly on their historical context.

1.2 Evolution of Crystal Growth Theories
Although crystals can be grown by purely empirical means, control of their rate of

growth, perfection, dimensions, composition and physical properties is greatly facili-

tated by having a good grasp of the fundamentals underlying crystal growth processes.

Over the past century, a sound theoretical foundation has been built up through the

efforts of many different scientists and engineers working in materials-related fields such

as chemistry, physics and crystallography. The approach is generally two-fold: first to

understand the nature of material systems (crystal structure and morphology, phase

equilibrium, etc.), and second, to determine the factors that affect the crystallization

process (nucleation, growth kinetics, segregation behavior, interface stability, heat and

mass transport, etc.). Although remarkable progress has been made, the complex nature

of the field and its changing emphasis on newer materials and structures keeps providing

a constant source of challenges to our understanding of crystallization processes.

1.2.1 Early Developments (Before the Nineteenth Century)

The earliest scientific studies important to the field of crystal growth were made by

natural scientists trying to understand the morphologies of mineral crystals. One of these

early pioneers was the Swiss naturalist Conrad Gesner (1516–1565) who in 1564, after

studying different crystals, reported that one crystal differs from another by its angles

and form [5]. Later in the sixteenth century, Andreus Caesalpinus (1519–1603) wrote in

“De Metallicis” [6] that the shape of crystals grown from water solution (e.g., salt, sugar

and alum) were a characteristic of the material. Ichiro Sunagawa [7] proposed, however,

that the science of crystal growth started with the treatise of N. Steno. Nicolas Steno, also

known as Niels Stensen, (1638–1686) was a well-known Danish scientist specializing in

the fields of geology and anatomy. He was also one of the founders of crystallography. In

his treatise, published in 1669 [8], he observed that, although quartz crystals differ in

appearance from one to another, the angles between corresponding faces are always the

same. In addition, he noted that they grew by an inorganic hydrothermal process rather

than through the action of bacteria [7]. Years later, Steno’s law of constant interfacial
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angles in crystals was confirmed, first by the Italian Domenico Guglielmini (1665–1710)

[9] who asserted, like Casealpinus, that every salt has it own particular shape. A century

later, the Frenchman Jean Baptiste Romé de l’Isle (1736–1790) [10], concluded from his

study of many hundreds of different crystals that every crystalline substance with a

specific composition had a similar and particular crystal shape (1772) See Figure 1.1(A)).

He found six different fundamental forms from which all others could be derived.

Although the above work, and that of other researchers not mentioned, set the stage for

our improved understanding of the nature of crystals, it was not until much later that

attention turned seriously to the question of how crystals grew and which mechanisms

were involved. Figure 1.1(B) shows the internal structure of a lithium niobate crystal

revealed by partial melting.

1.2.2 The Nineteenth Century

French physicist Auguste Bravais (1811–1853), building on l’Isle’s previous work,

determined in 1848 that there are 14 unique “Bravais” lattices comprising three-

dimensional crystalline systems [11]. This work provided the basis for understanding

symmetry, crystal morphology and crystalline anisotropy. The morphology of a crystal is

influenced by (1) external factors, e.g., the surrounding nutrient phase and (2) internal

features, e.g., cell dimensions, atom sizes, positions, and bond energies.

Contemporary quantitative crystal growth science originated with the thermody-

namic studies of the American scientist J. Willard Gibbs (1839–1903). Gibbs studied

how various phases behaved in heterogeneous systems under the influence of state

variables such as temperature and pressure. His seminal work, On the Equilibrium of

(A) (B)

FIGURE 1.1 (A) Naturally occurring crystals of quartz (SiO2) interspersed with pyrite (FeS2) crystals. Their different
morphologies reflect their internal crystal structures, trigonal and cubic respectfully. (B) The bottom side of a
c-axis Czochralski grown lithium niobate crystal that was rapidly heated to cause it to separate from the melt
surface. The resulting dendritic-like structure reveals the internal three-fold symmetry along the axis of this
rhombohedral crystal.
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Heterogeneous Substances (1876 and 1878) [12], included both the first and second laws

of thermodynamics and thermodynamic reaction tendencies in any thermodynamic

system. His graphical representations, the earliest phase diagrams, have been

expanded through the years to include numerous chemical systems of both academic

and industrial interest. These were derived largely by experimental studies but also in

recent years by numerical simulations. These “phase diagrams” are vital data sources

for the crystal grower, enabling him or her to select the most appropriate growth

method and produce a crystal with the desired composition and properties.

To form a crystal, a nutrient phase (i.e., liquid, gas or solid) must be in a metastable

state. In other words, the free energy (at constant volume) or the Gibbs potential (at

constant pressure) of this phases must exceed that of the crystal. This excess is the

driving force for crystallization. This metastability is accomplished by either super-

cooling a melt or supersaturating a solution or vapor phase. During crystallization, latent

heat is evolved. Among other remarkable contributions made by Gibbs was that

nucleation phenomena resulted from heterophase fluctuations in metastable homoge-

neous phases. Nucleation can be either homogeneous (from within the pure matrix

phase) or heterogeneous (on a foreign substance such as particles or substrates within

the matrix phase or the container walls). The maximal amount of supercooling or su-

persaturation required depends on the thermodynamic properties of the material sys-

tem, various external forces such as mechanical vibrations, and of course, the nature of

the crystal surface, etc. In practice, the initial nucleation stage is often bypassed by using

oriented seed crystals.

1.2.3 The Twentieth Century

In the opinion of K. Jackson [13], our modern understanding of crystal growth processes

began with the research work of Harold Wilson (1874–1964) [14] and Martin Knudsen

(1871–1949) [15]. Wilson’s work in 1900 concerned the velocity of solidification and

viscosity of supercooled liquids, whereas Knudsen’s work involved kinetic molecular

theory that much later played an important role in molecular beam epitaxy. One of the

most important early growth theories was proposed in 1921 by the German physical

chemist Max Volmer (1885–1965) and his student Immanuel Estermann (1900–1973) [16].

Their adsorption-layer theory (i.e., layer-by-layer growth) was deduced from measuring

the tangential growth rate of plate-like mercury crystals from the vapor state at low

temperatures. The proposed adsorption-layer lies between the crystal and nutrient phase,

with the crystallizing species losing only part of their latent heat, while maintaining some

surface mobility in the layer parallel to the crystal surface. The species are incorporated

into the crystal lattice at the edges of the incomplete atomic layers (steps on the growing

crystal face). Volmer was also the first to consider the role of ad-atoms (or molecules) and

holes on the crystal surface under equilibrium and nonequilibrium conditions.

Walther Kossel (1888–1956) [17], a German physicist known for his theory of chemical

bonding, proposed in 1928 an atomistic view of crystal growth (kinetic theory), as
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opposed to a “continuum” thermodynamic interpretation. It was similar to that inde-

pendently proposed by Iwan N. Stranski (1897–1979), [18] a Bulgarian physical chemist,

and was based on earlier diffusion theories concerning mass transport of the crystallizing

species to the growth interface with the distinction that what went on in the interface

region (how the species found an appropriate lattice site) was not a negligible effect.

Their work is often linked together as the Kossel–Stranski model. They both concluded

from early work on the rock salt structure that no other planes but the cubic ones are

possible and that other planes (110, 111, etc.) are not present on the surface as complete

planes but are made up of alternating (001) and (100) faces several atoms thick (kinetic

roughening). This work led to what is commonly referred to as the TLK (terrace-ledge-

kink) model where Kossel [19] suggested that incorporation of an atom required that the

steps spread laterally across the surface. Somewhat later came the work of Stranski’s

younger colleague Rostislav Kaishev (1908–2002) linking the equilibrium crystal shape,

i.e., the facets making this shape, with the average work required to detach a molecule

from that facet, and thereby accounting for different structural positions on that facet

and its edge. Stranski and Kaishev founded the famous Bulgarian school of nucleation

and crystal growth (see Ref. [20]). Much of their work was on low-temperature aqueous

solution growth and the crystallization of metals at room temperature in electrolyte

solutions. An extensive discussion of Kossel and Stranski’s work, together with other

contemporaries, is given in Buckley’s book Crystal Growth [21] and numerous other

more recent publications.

The goal of scientific studies is the development of effective models that can explain

observable physical phenomena and direct practical crystal growing via generalized

predictive relationships. These activities were both based on scientific inquisitiveness

and to provide guidelines for practitioners to produce material for the benefit of

mankind. Basic studies on nucleation and crystal growth have greatly expanded over the

years. Older theories and concepts have been refined and new concepts proposed and

tested. Basic understanding has greatly benefited from important advances in crystal

characterization technologies. They have provided direct evidence of crystal perfection

and growth behavior down to the atomic scale. Two examples are the transmission

electron microscope and in situ atomic force microscopy. The former technology makes

possible the imaging of atomic structures of real crystals, allowing a study of their

perfection and the nature of their imperfection. Atomic force microscopy can be used, to

great effect, both to study the formation and kinetics of growth layers during solution

growth (particularly biological macromolecules) and how they change upon post-growth

heat treatments (surface reconstruction). Reflected beam electron microscopy has also

been very useful.

The discovery of crystalline imperfections such as edge and screw dislocations,

stacking faults, point defects and inclusions in an otherwise uniform crystal lattice, has

had a strong impact on our understanding of crystal properties, on the one hand, and

crystal growth mechanisms on the other. They are also of great technological importance

for the influence they have on the electronic and mechanical properties of a material.
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In 1934, Sir Geoffrey Taylor (1886–1975), a noted British physicist and mathematician,

proposed that the plastic deformation of ductile materials could be explained in terms of

the theory of dislocations developed by Vito Volterra in 1905. Some years later, the

subject of dislocations occupied the thoughts of Sir Charles Frank (1911–1998), an

eminent British crystallographer who spent much of his career at Bristol University. His

fundamental contributions to the field of crystal growth include the laws governing

dislocation branching, the existence and properties of dislocation networks, and in 1950,

the Frank-Read mechanism for the generation of dislocations. In a well-documented

account, the idea for this latter mechanism occurred to both Sir Charles and to W.T.

Read (an American working at the General Electric Co.) independently and at the same

time. Frank had shown the year before [22] that two-dimensional nucleation theory

failed significantly to explain observed high crystal growth rates at low supersaturation.

This discrepancy could, however, be readily reconciled if the growth face contained a

screw dislocation outcrop. That this dislocation should lead to continuous step gener-

ation in the form of a “growth spiral” step on the growth face was immediately validated

by experimentally observed growth spirals formed on actual crystals (i.e., Refs [23,24]).

Some of the important work on crystal symmetry in modern times was done by

Donnay and Harker in 1937 [25] and later by Hartman and Perdok [26]. Hartman and

Perdok’s theory [26] classified different types of faces, with only one type forming crystal

facets. For ionic crystals, they defined the energy released during growth of a layer as

E(hkl) and were able to generate growth forms by assuming that E(hkl) was proportional

to the growth rate. These calculated forms were similar to natural or manmade crystals

such as zircon, garnets, etc. Many researchers before and since have also observed

variations from predicted or expected crystal morphologies due to impurity adsorption

on a growth face. That led to methods to alter the morphologies for a specific applica-

tion, one example being the purposeful poisoning of a fast-growing needle axis to make a

more equiaxed crystal. Other notable contributions to our understanding of growth

shapes include those of Sunagawa (1960) [7] and Bennema (1980) [27].

A major effort to control the purity and dopant uniformity in Si and Ge electronic

devices was begun at Bell Laboratories in the early 1950s. The research team of Burton,

Prim and Slichter came up with a relationship that described how impurities and dop-

ants are distributed along an as-grown boule (the now well-known BPS equation). Their

work was first reported in 1952, but not openly published until 1953 [28]. Measuring

solute concentrations, solid–liquid distribution coefficients, diffusion coefficients and

solute distributions in actual crystals, they derived equations describing what the

concentration of a dopant or impurity would be in an as-grown crystal as a function of its

initial melt concentration and growth rate R.

Ke ¼ Ko=Ki þ ð1� KoÞexpð�RdD=DÞ (1.1)

where Ke is the effective segregation coefficient, Ko is the interface or equilibrium

segregation coefficient, R the growth rate, dD is the diffusion boundary layer thickness and
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D is the solute diffusion coefficient. Figure 1.2 shows a sketch and notes from Burton’s

laboratory notebook illustrating the features of the now famous segregation relationship.

This research was part of a larger effort amongst various semiconductor scientists and

engineers at Bell Laboratories [29,30]. Since then, BPS segregation theory has become a

particularly valuable tool for crystal growth practitioners, allowing them to control the

compositional uniformity in single- and multi-component material systems via control

of growth velocity, melt composition, fluid convection, etc. While BPS theory is useful for

well-behaved systems, it does not work in all cases. A critical analysis of the limitations of

the BPS theory and later modifications by various scientists was given by Carruthers [31]

(from the standpoint of the mother liquor hydrodynamics) and by Chernov [32] (from

the standpoint of equilibrium and nonequilibrium processes at the growing interface).

See also Handbook chapter “Segregation and Component Distribution” for a description

of the limitations of BPS segregation theory.

As mentioned in the introduction, the Faraday Society in 1949 convened one of its

meetings for the sole purpose of presenting and discussing papers on crystal growth.

This was the first scientific conference devoted to this topic as a separate subject.

Subsequently, the proceedings of this conference, entitled Crystal Growth, were pub-

lished in the Discussions of the Faraday Society. During that meeting, Burton and

Cabrera [33] presented their research on the influence of surface structure on the rate of

FIGURE 1.2 One of the diagrams in J.A. Burton’s laboratory notebook (1951) explaining the concept of the
BPS theory. The plot shows the variation of solute concentration in the solid and melt during unidirectional
solification. The x¼ 0 position is the growth interface while x¼ l defines the width of the solute boundary
layer [29].
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growth of a perfect crystal. They considered two types of surface structures, one ordered

(atomically flat) and the other disordered (stepped, containing terraces, ledges and kinks

with ledge heights of atomic dimensions). Burton and Cabrera made use of the analogy

between the existence of these two surface structure types and two possible states in

two-dimensional systems-ordered and disordered phases, transferring from one to

another as the temperature/binding energy ratio changes. This concept followed the

1945 suggestion by Yakov I. Frenkel that the step should be disordered and possess a kink

configuration at nearly each atomic site. As a result, these steps should grow much faster

than a step-free terrace. Indeed, only at the kink configuration can an atom join the

crystal lattice, and thereby reduce its Gibbs potential to that of any of the bulk atoms in

the crystal. In the simple cubic system, for example, only the (110) and (111) faces are

flat, all others are stepped [17]. The growth proceeds by the attachment of atoms at

Kossel–Stranski kinks along the step ledges [34], but not on the terraces, which do not

participate in the growth phenomena. Therefore, on the flat, ordered surface of a perfect

crystal, growth will not proceed until a small island or cluster nucleates on the surface,

thus producing a step loop that is kinked by thermal fluctuations. The stability of such a

cluster is given by the Gibbs–Thomson relationship that describes the cluster’s solubility.

If the cluster reaches the critical size, it may expand, generating a new lattice layer. Thus

the nucleation frequency (very low at low supersaturations) determines the ordered face

propagation rate. If one considers a nonperfect lattice, where the surface contains

defects, such as screw dislocations [22], twins, etc., growth can proceed without the

necessity for surface nucleation due to the defect providing growth steps.

Burton and Cabrera also examined the kinetics of vapor phase growth on these

surfaces, considering the diffusion of the adsorbed atoms across the close-packed crystal

surfaces (terraces), where secondary nucleation is required. This was a refinement of the

earlier two-dimenstional nucleation model proposed by Becker and Döring in which

surface diffusion [35] was not taken into account. Combining their results with Frank’s

theory concerning the presence of spiral dislocations that can act as growth steps on

otherwise atomically flat surfaces, they published together a seminal paper from which

the well-known BCF theory derives [36]. In this theory, developed for vapor growth but

later extended to solution growth, the boundary between the crystal and nutrient phase

was considered to be sharp (interface of zero thickness), i.e., as proposed by Kossel-

Stranski, rather than by Gibbs’s finite layer thickness model. In this case, atoms or

molecules belonged to only one or the other phase. The BCF theory of layer-by-layer

growth of the crystal lattice on smooth surfaces was quantitatively confirmed in

numerous studies of growth from solutions, including electrocrystallization.

In the ensuing years, interface structure and surface kinetics models have been

refined to include more complex interfaces, including material systems such as bio-

logical macromolecules [37]. These and other crystals with large lattice spacings grown

from room-temperature solutions have made it possible for in situ atomic force mi-

croscopy to capture spiral dislocation sources generating new layers during solution

growth, as well as the important phenomena of step bunching, low kink density at steps,
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etc. Nevertheless, this theory provided the crystal growth field with a more sound

theoretical foundation together with a better understanding of experimental results. It

formed an important base from which future studies could be built upon.

The roughening concept was employed in 1958 by Jackson [38] to consider the

problem of why many melt-grown crystals of nonmetals had specific faceted, euhe-

dral shapes, whereas metal crystals did not. He derived an elegantly simple theory for

the solid–liquid interface structure that could successfully explain and predict

experimental results. Jackson used a two-layer Bragg-Williams statistical model

(rather than the BCF Onsager model) taking into account nearest neighbor bonds into

the solid and lateral bonds within the solid–melt interface. The free energy for adding

atoms to a singular (or atomically smooth) interface is calculated until a complete

monolayer is formed. Starting with the change in excess free energy associated with

randomly adding atoms to such a surface, Jackson found the following relationship

for solid–liquid transitions.

a ¼ ðL=KTeÞðh=vÞ (1.2)

where L is the change in internal energy associated with the transfer of one atom from

the bulk liquid to the bulk solid (latent heat), h is the maximum number of adatom

nearest neighbors on the surface, n is the total number of nearest neighbors of an atom

in the crystal, and Te is the equilibrium temperature for the phase change. This so-called

Jackson “a factor” consists of two terms: the first is essentially the entropy of melting

divided by the gas constant and is a materials parameter, and the second depends on the

crystal structure and specific surface under consideration. The crystallographic term is

maximum for close-packed planes, and always <1. It has values of 2/3 for a (100) simple

cubic, structure and 1/2 for (111) fcc and (110) bcc structures. Materials with a< 2 grow

with nonsingular interfaces, whereas materials with a> 2 exhibit facets on the growing

interface. The former are often metals, with simple centro-symmetric crystal structures,

whereas the latter are materials with more complex crystal structures. Using transparent

systems having different values of a, Jackson and Hunt [39] were able to demonstrate

experimentally the efficacy of their model. Figure 1.3 shows the crystalline morphologies

observed for high and low a factor materials. A comparison of the BCF and Jackson

models was given by Woodruff [40]. In 2004, Chernov [37] discussed how interface

growth kinetics has advanced during the past 50 years.

In the years following, interface structure and surface kinetics models were refined to

include more realistic interfaces where each interfacial atom cannot be ascribed to one

or the other phase. Instead, this disordered interface is viewed as a layer several atomic

spacings thick, where all atoms move randomly and, on average over time, realizes

continuous transition between the fully ordered crystal bulk and the disordered melt.

This approach allowed for the prediction of a kinetic coefficient linearly connecting

the supercooling DT at the rough crystal–melt interface to its growth rate V for simple

liquids, like metals.

V ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
DT

�
Te: (1.3)
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Here m is the mass of the atom while the numerical coefficient A is determined by the

structure of the liquid and is close to unity. All in all, the BCF theory and its further

development provided the crystal growth field with a more stable theoretical foundation

together with a better understanding of experimental results. It formed an important

base from which future studies could be built upon.

In 1953, research to elucidate and quantify the nature of interface instabilities

during crystal growth began with the work of Canadian metallurgists Rutter and

Chalmers [41]. They postulated that the cellular (honeycomb-like) substructure that

formed in solidifying metals containing a small concentration of impurities (as

revealed by rapid melt decanting) was due to some type of instability at the growth

interface. This led to the idea that a boundary layer containing rejected impurities

develops at a growing solid–liquid interface, depressing the melting point of the liquid

in that region so that it became supercooled, but at a higher temperature than the

interface. The now well-known term “constitutional supercooling” was derived from

Chalmers studies.1 Shortly thereafter, William Tiller, observed banding in lead crystals

arising from unintentional variations in the translation rate (hence growth rate). The

structural banding was also found to be associated with the boundary layer compo-

sition. Professor Chalmers charged his group to develop a mathematical expression

for what was happening at the interface to cause these interesting interfacial in-

stabilities. Their discovery was published later the same year [42]. Their simple

(A) (B)

FIGURE 1.3 Comparison of crystal morphologies for (A) a transparent metal analog with an a-factor less than 2.
This material grows with a dendritic structure and (B) a benzyl crystal with an a-factor greater than two showing
well-developed facets.

1G.P. Ivantsov working independently in Russia in the late 1940s postulated the same concept, calling it

“concentrational” supercooling (Dokl. Akad.Nauk. SSSR 81 (1951) 179).
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relationship for constitutional supercooling provides one of the most useful tools in

the crystal grower’s arsenal. The relationship, Eqn (1.4) below, shows how the ratio of

temperature gradient in the liquid (G) to the growth velocity (R) must remain above

some critical value to achieve stable growth. That value depends upon the material

properties of the growth system, i.e., the initial melt concentration Co (far away from

the interface), the slope of the liquidus curve (m), the segregation coefficient (ko) and

the diffusion coefficient. To maintain stable growth and avoid constitutional super-

cooling one requires that

G=R > mCoð1=ko � 1Þ=D (1.4)

For the crystal grower this means that to produce a crystal without second phases

and cellular structure one must either decrease the growth rate for a given temper-

ature gradient or increase the temperature gradient. Faster growth rates are typically

very desirable, and so many efforts were undertaken to build special furnaces,

sometimes incorporating baffling, localized cooling, etc., to achieve steep thermal

gradients.

The early roughening transitions models were two-dimensional models based on

the Onsager (BCF) or Bragg-Williams (Jackson) models. It was found that computer

modeling was needed to study the problem in more complex three-dimensional systems.

Leamy and Gilmer [43] were the first to produce simulated computer images both above

and below the surface roughening transition. They also determined the free energy (F) of

a growth step for various values of Jackson’s a-factor [44]. They showed that F for the

step goes to zero at the roughening transition and therefore does not require an energy

barrier for new layer formation.

Molecular dynamic simulations have provided detailed information about the pro-

cess of crystal growth at the atomic level. Its use in morphological stability problems was

taken up by numerous groups over the ensuing years which, coupled with experimental

work, has led to a significantly greater understanding of the crystallization process (see

Figure 1.4).

Modern concepts of interfacial and morphological stability are largely based on the

1963 work of Mullins and Sekerka [45]. Whereas previous researchers knew that various

perturbations during growth such as mechanical vibrations, temperature fluctuations,

etc., could lead to interface instabilities such as cells and dendrites, they were unable to

explain the dynamic mechanisms that were responsible. Mullins and Sekerka developed

a mathematical theory of linear morphological interface stability. This was based on

small perturbations (sinusoidal ripples) on the growth plane in an unstirred melt that

either decay or grow with time. Their analysis led to a more refined relationship that

considered the destabilizing effect of the diffusion field and the influence of surface free

energy on the boundary conditions. Their results extend the constitutional supercooling

criterion described in Eqn (1.3), with several extra terms affecting interface stability [42].

Linear stability theory proves that constitutional supercooling is the correct criterion in

the limit of disturbances with small wavenumbers (long wavelengths). The important
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crystal growth/materials parameters affecting interface stability are the temperature

gradient normal to the growing interface, the slope of the liquidus from the phase dia-

gram, the growth velocity, latent heat, mass and interfacial energy densities and the

thermal conductivities of the liquid and solid. It was also found that stability depends on

whether the thermal conductivity of the melt is greater or less than that of the solid.

Other researchers expanded on this research to include molecular attachment kinetic

effects, interface energy anisotropy, nonlinear effects, etc., among them V. Voronkov [46]

whose independent investigation on mosaic and cellular structures actually predated

that of Mullins & Sekerka. John Cahn [47] was the first to treat anisotropic surface

tension and interface attachment kinetics (for a spherical geometry). Coriell and Serkeka

[48] studied the same types of anisotropies for a planar interface. Chernov [49] treated

the case of strong anisotropies and Hurle [50] analyzed the influence of melt convection.

Historically, understanding crystal morphology has provided much of the impetus

driving theoretical crystal growth studies. Aside from the regular crystalline forms found

in nature (e.g., quartz) or produced during solution or vapor growth in the laboratory,

other more complex crystalline morphologies such as dendrites and multiphase eutectic

systems have stimulated researchers to uncover the underlying mechanisms involved in

their creation.

FIGURE 1.4 Monte Carlo simulations of equilibrium surface structures (microstates) for a simple cubic crystal as
a function of temperature (as KT/ 3) [44]. The surface orientation is the (20,1,0) and at the lowest temperature,
KT/ 3¼ 0.428, the step edge is clearly rough. As the temperature increases, the roughness increases. At a critical
value, the thermal roughening transition, the steps become indistinguishable.
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Dendrites are “tree-like” branched crystal structures that grow in various media

under unstable growth conditions. The earliest humans were sure to have noticed and

pondered the reason behind the large variety and symmetry of the beautiful snowflake.

Snowflakes form when microscopic supercooled cloud droplets freeze and their

morphology is dependent on the ambient conditions during their growth. Dendrites also

can form during the crystallization of metals, inorganic and organic compounds and

even biological macromolecules from melts and solutions. They are common in metals

and alloys grown from the melt in shallow temperature gradients.

Dendrites typically contain a stem terminating in a tip and side branches along the

stem (see Fig 1.3a). Growth proceeds by steady-state propagation of the tip and a time-

dependent crystallization of secondary and tertiary side branches. In 1947, G.P. Ivantsov

[357] was the first to identify these self-reproducing crystal shapes—like paraboloids, the

basis of the dendrite tip. In pure materials, growth is controlled by diffusion of latent

heat away from the advancing growth interface, and in impure systems and alloys it is

driven by solute buildup at the interface and where chemical diffusion dominates over

thermal transport. In 1960, Temkin [51], and shortly afterward Bolling and Tiller [52],

described the role of thermodynamic and kinetic driving forces in the dendritic growth

of pure materials. From that time onward, theoretical and experimental dendritic

growth studies have proceeded, relying on newer mathematical and computational

approaches. Hamilton and Seidensticker [53] examined the role of twin planes in the

rapid dendritic propagation of germanium crystals on the basis of re-entrant corner

nucleation. In 2004, Glicksman and Lupulescu [54] reviewed 40 years of progress toward

understanding the mechanisms involved in the dendritic growth of pure materials

including low gravity experiments. An update on this subject is provided in the

Handbook chapter “Dendritic Growth.”

Growth of polyphase alloys or compounds by unidirectional solidification has also

been the subject of much interest to crystal growth researchers. These structures can be

produced from eutectic (L/ aþ b), monotectic (L1/ aþ L2) and peritectic (Lþ a/ b)

three-phase melt systems. A eutectic crystal can contain four types of structures within a

matrix phase (1) parallel lamellar, (2) parallel rods, (3) globular particles of regular shape

and (4) irregularly shaped particles. Researchers were interested in the relationship

between growth velocity on lamellar spacing and interface undercooling. R. Vogel [55], in

1912, was the first to postulate that growth occurred by both phases growing simulta-

neously. Eutectic growth theory, however, remained largely qualitative until 1957 when

Tiller [56] introduced his diffusion model of eutectic growth. This development was

based on the earlier theory on eutectoid growth by Clarence Zener (1905–1993). Tiller’s

work was used as a basis for Jackson and Hunt’s model of 1966 [57], a well-known model

and one often used as the basis for later papers. Readers interested in this topic are

directed to Glicksman’s book [58] that provides, among other crystal growth topics, an

excellent review on progress in eutectic solidification.

The transport of heat and mass during crystal growth is of great importance in the

design of a growth process and in understanding the resulting features found in the
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crystals produced. In melt growth, the dominant factor is often heat transport, whereas

in solution and vapor growth, mass transport normally dominates. As to which

transport mechanism dominates, it is a matter of degree and an important consider-

ation is what happens in the boundary layer near the interface. As a crystal grows,

latent heat is evolved and the allowable growth speed depends on its removal.

Therefore, the geometry of the system, the thermal properties of the crystal, the

ambient atmosphere and the growth rate all comprise important factors. In addition,

the growing crystal needs fresh nutrient to sustain its growth and the rates at which

various species reach the interface will partly determine the maximum allowable

growth rate and crystal perfection. The concentration of dopant and/or impurity

species are often different in the interface region than in the bulk medium, thus

influencing mass transport. Instabilities in heat and mass flow can lead to defects such

as striations and interface breakdown. The degree and nature of melt convection

will strongly affect both the growth process itself and the crystal produced. Many

processes, for example Czochralski growth, use forced convection (crystal rotation) to

enhance the growth rate and improve thermal and crystal homogeneity, whereas in

other methods, for example, vertical and horizontal Bridgman growth, natural buoyant

convection occurs from thermally and solutally induced density gradients. In

Czochralski growth, the crystal is rotated and sometimes the crucible as well. W. Wilcox

[59] and J. Carruthers and K. Nassau [60] studied the fluid dynamic behavior of such

systems, as did many other researchers. The effect of fluid flow and flow instabilities

are also important in other melt growth processes such as unidirectional solidification,

vapor deposition and solution growth. See also Handbook chapter “Segregation and

Component Distribution.”

Defects, inhomogeneities, segregation, and interface effects during crystal growth

have all been the subject of numerous studies. Some useful reviews have been provided

by D. Hurle and P. Rudolph [61] and C. Wang et al. [62].

1.3 Crystal Growth Methods
Crystal growth technology is mainly an applications-driven field. In the last 60 years or

so, the major applications have been in the fields of electronic and optical materials.

Crystals, however, can be prepared from all types of materials including elements, alloys

and inorganic, organic and biological compounds. The compounds can vary from simple

binary mixtures to multicomponent systems having numerous components and com-

plex molecular or crystal structures. As a result, crystal growth methods vary widely

depending on the thermodynamic and kinetic properties of the system of interest. The

starting point for developing a viable crystal growth process begins with a thorough

knowledge of the phase relations of the system under investigation. For example, we

need to know whether the compound melts congruently, has a phase transformation

below its melting temperature, has a high vapor pressure, etc. The most appropriate

strategy for producing a crystal depends on the size required, purity and an ability to
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control its defect structure (either by elimination, neutralization or incorporation).

Crystal dimension requirements (size and shape) are a very important issue in deter-

mining the methodology. Single crystals can be grown in bulk, thin film, particulate and

fiber form and from the nanometer scale up to meter dimensions. During the last

decade, nanoscale wires, whiskers and quantum dots have been found to have unique

properties, and this has opened up the possibility for new and improved devices for

advanced applications. Classical single crystal growth methods and newer techniques

have been used to create a variety of desired nanostructures.

The number of crystal growth methods available to the crystal grower is quite large

and varied. The simplest approach to categorizing them is by the nutrient phase from

which the crystal is grown. Single crystals can be grown from (1) a liquid phase (melt or

solution), (2) from a vapor phase (condensation, sublimation or reaction) or (3) from

within a strained solid. Each method has certain advantages and disadvantages that

depend on both the properties of the material system involved and the application

requirements. Melt growth methods are generally preferred to other methods wherever

possible, while solid-state growth methods are the least useful from a commercial point

of view.

The growth of a crystal from any nutrient phase requires either a seed crystal or the

creation of a solid interface within the growth medium by homogeneous or hetero-

geneous nucleation. Homogeneous nucleation requires additional energy in the form

of supercooling in melt growth or supersaturation in solution and vapor growth

methods. Wherever possible, however, the use of a seed crystal or a compatible sub-

strate (as in thin film growth) is desirable. We will explore some of the strategies that

have been employed by growers to prepare very high quality, high performance

materials.

The theoretical studies mentioned above range from fundamental questions about

the mechanisms involved in various crystallization environments to computer simula-

tions of actual growth systems. Issues such as growth rate anisotropy, component

segregation, interface faceting, stability and morphology, fluid dynamics, thermal sta-

bility and gradient effects, etc., have been extensively studied. During the last decade in

particular, computer modeling has helped growers design and modify growth systems in

a more systematic way to create thermal and fluid flow environments to enhance

interface shape, stability and growth rates.

1.3.1 Melt Growth

When a material melts under nearly congruent conditions and has no low-temperature

destructive phase transformations, it is usually desirable to prepare a single crystal of it

directly from its melt. Often seed crystals are used to control the orientation and to take

advantage of growth rate and thermal anisotropies (heat and expansion). The most

useful methods include the Czochralski, Bridgman–Stockbarger, Kyropoulos, Verneuil

(flame fusion), and float zone methods. There are innumerable variations to these
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general techniques such as the heat exchanger method (an inverted Kyropoulos

configuration) and the pedestal growth and micro pull-down techniques to name a few.

The discussion of melt growth will begin with the oldest technique for growing large

crystals from a melt: Verneuil’s flame fusion method.

1.3.1.1 The Nineteenth Century and the Verneuil Process
Alchemists were not only trying to transmute base metals into gold, they were also

attempting to grow gemstones in the laboratory. From the beginning of the nineteenth

century, various researchers were attempting to grow crystals of diamond, emerald, ruby

and sapphire by various techniques, particularly by melting various oxide mixtures.

These early methods, however, only produced small crystallites. A really viable com-

mercial process did not appear until the work of Auguste Victor Louis Verneuil

(1856–1913) on the growth of large ruby crystals was made public in 1902. Actually, he

developed the now well-know flame fusion process a decade earlier and spent the next

decade improving the method before making it public knowledge. A very thorough

description of the life and work of Verneuil was given by K. and J. Nassau [63]. Verneuil

(see Figure 1.5(A) below) was a French “renaissance” man and well-beloved teacher,

actively interested in music performance and art and whose accomplishments spanned

many different areas of chemistry. He became interested in chemistry working in his

father’s photography shop (his father changed careers after meeting Mr Deguerre (Louis

Jacques Maude, 1787–1851), the inventor of photography. In 1873, at age 17, Verneuil

went to study in the chemical laboratory of the distinguished Professor Edmund Frémy

(A) (B)

FIGURE 1.5 (A) A photograph of Dr. A.V.L Verneuil, and (B) a schematic diagram of Verneuil’s crystal growth
apparatus [63].
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(1817–1894). He eventually earned his doctoral degree in 1886. In his earlier years in the

Frémy laboratory, he participated in research on ruby crystal growth by a melting

technique using porous alumina crucibles. He also became friends with Henri Moisson

(1852–1902) who worked on diamond crystallization in Frémy’s laboratory.

In 1886, an unknown group from Geneva started selling larger synthetic ruby crystals

than were available elsewhere. It is now believed that these so-called “Geneva Rubies”

were actually grown by an early version of the flame fusion process [63]. Verneuil was

intrigued by these samples, and it stimulated him to develop the method for which he

became famous. The mysterious group from Geneva ceased operation in 1905, not long

after the Verneuil Process had gone into commercial production. Such groups have

appeared from time to time trying to pass off synthetic crystals for natural stones that

garner much greater value.

The flame fusion method was first developed to produce large, high-quality ruby for

the gemstone market and also for watch bearings. The process, which is still in use

today, involves passing a powder of the compound through a vertically aligned oxy-

hydrogen flame. Molten droplets descend by gravity onto a rotating alumina

pedestal containing the growing crystal and the crystal grows upward on the pedestal.

The basic apparatus used by Verneuil is shown in Figure 1.5(B). Temperature gradients

are steep, boules are prone to cracking and the early powder delivery systems were

often unreliable. Important processing refinements were made by Verneuil over his

lifetime to improve the process reliability and crystal quality. The first problem he

solved was the severe cracking problem. He accomplished this by reducing the contact

area of the boule with the pedestal. While preventing cracking, the boules after growth

were still highly strained. This strain was relieved naturally when the boules split in

half or were split by hand. Powder delivery was done by mechanical tapping mecha-

nism mounted on a hopper containing the charge powder. For ruby growth, the

powder Verneuil used was a mixture of ammonium and chrome alums. The chromium

oxide concentration in the boules was w2.5%. The oxygen content in the ambient gas

phase was critical for achieving the appropriate oxidation state in the crystal. A flame

rich in hydrogen and carbon was necessary to prevent introduction of gas bubbles in

the molten ruby melts.

In 1909, Verneuil worked with L. Heller & Son of New York and Paris on developing

his process for making blue sapphire. Instead of chromium additions, the sapphire was

doped with a mixture of iron and titanium oxides, two impurities found in natural

minerals. He suggested that the titanium in the crystal gave the deep blue color by

converting the ferrous ions created by the flame back to ferric ions. Another pioneer of

the flame fusion growth method was Leon Merker (1917–2007). He also worked with the

Heller Co. starting during the early days of World War II, after he escaped fascism in

Europe and came to the U.S. to study at the University of Michigan. Based on a friend’s

recommendation, he met Mr Heller from France. After some fruitful discussions, Heller

assigned Merker the task of setting up the Verneuil Process for ruby and sapphire in New

Jersey. The venture was successful and the General Synthetics Corporation was formed
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in 1941 to provide ruby to the military and for the gem industry [64]. Merker also worked

on barium, calcium and strontium titanates; the latter two with greater success.

Since Verneuil dedicated much of his career to the successful development of a

commercial process for growing sizable crystals with controllable properties, he might

be considered the father of the commercial crystal growth industry.

1.3.1.2 The Twentieth Century
Even while Verneuil was improving on his method, other researchers at the turn of the

century were beginning to produce crystals in the laboratory to study both their solid-

ification behavior and physical properties.

One of the earliest was Gustav Tammann (1861–1938). He was born in Russia of Baltic

and German parents and spent most of his life in Germany. Among other notable

achievements, he established the first Institute of Inorganic Chemistry in Germany at

Göttingen University in 1903. Tammann’s interests led him to study the solidification of

metal alloys and their nucleation behavior. He made important contributions to the fields

of heterogeneous equilibria, crystallization and metallurgy. One of his important contri-

butions to crystal growth involved the solidification of metal alloys in long narrow tubes

tapered to a point to both confine nucleation and supercooling to a small volume and

thereby promoting the propagation of a single crystal along the tube [65]. He was prob-

ably one of the first to understand the relationship between grain selection and growth

rate anisotropy and the concept of confining the melt to control the number of grains that

form. His method would be classified today as the gradient freeze method. He also grew

crystals of a number of organic compounds and studied their crystallization behavior.

Within the same time period, Obreimov and Schubnikov from Saint Petersburg,

Russia, [66] published a paper describing the growth of metal crystals using a modifi-

cation of Tammann’s method, i.e., in a long glass tube with an imposed temperature

gradient along its length. They also briefly discuss the easy to operate Czochralski pro-

cess (to be discussed below) but rejected it in favor of the Tammann’s method because

the free-standing Czochralski crystals were not of uniform shape and some of the low-

melting metals could deform during growth without being supported. In their experi-

ments, they used a vertical cylindrical tube tapered at the bottom like Tammann.

Nucleation was achieved by cooling the tapered tip with cold air and then, after crys-

tallization in this region was accomplished, slowly cooled the furnace to propagate the

crystal up the length of the tube. Both these methods distinguish themselves from the

Bridgman and Stockbarger methods (also to be discussed later) in that growth is not

achieved by moving either the ampoule or furnace to solidify the melt.

1.3.1.3 The Czochralski Crystal Pulling Method

1.3.1.3.1 The Invention

Following Verneuil’s pioneering work, a number of other researchers began to growmetal

and alkali halide crystals for property studies. In 1918, Jan Czochralski, a well-known

young Polish metallurgist (head of AEG’s metals laboratory in Berlin), published a

20 HANDBOOK OF CRYSTAL GROWTH



paper [67] that would describe a technique that quickly became one of the most powerful

methods for growing crystals in use today. In a story related by Tomaszewski [68],

Czochralski, while working late at night in his laboratory, discovered by accident the

crystal pulling method for which he because famous. His studies concerned the crystal-

lization rate of metals and while working on his experimental notes, instead of dipping his

pen tip into the ink well, dipped it instead into a crucible of molten tin on his desk. When

he pulled it out he found a long filament of solidified tin on the end. He subsequently

found it to be a single crystal. He then realized the value of studying crystallization

rates using such a device. His early apparatus (see Figure 1.6(A)) consisted of a

clock-motor-driven lifting mechanism. Replacing the pen tip, a short tapered glass rod

with a hook on the end was held on a silk thread connected to the pull mechanism. The

rod could be raised or lowered in a continuous fashion. By dipping this rod into the

surface of the melt, he was able to solidify metal onto it and pull out crystals of tin, lead

and zinc in a continuous and controlled fashion. Czochralski later modified the glass rod,

incorporating a capillary at the bottom to draw up the molten metal. This had the effect of

restricting nucleation to the limited volume of melt in the capillary. With this apparatus

he produced 1 mm thick single crystal wires at maximum crystallization velocities of up

to 140 mm/min and in lengths up to 19 cm. Czochralski’s life and research accom-

plishments can be found in Tomaszewski’s monograph [68].

FIGURE 1.6 (A) Czochralski’s original experimental setup [67], and (B) a photograph of a five-inch diameter com-
mercial single crystal silicon boule growing by Czochrakski’s method. (From the front cover of the AACG
Newsletter 13 (1983)—photo courtesy of the Siltec Corp).
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Czochralski’s pulling method was almost immediately put to use by von Wartenberg

[69] to grow zinc single crystal wires onto oriented seed crystals. Somewhat later, Von

Gomperz [70] pulled single crystal fibers of metals through a hole in a mica plate floating

on the surface of the melt. He also used a capillary for seeding. His work was the fore-

runner of the edge-defined film-fed growth (EFG) and the laser heated pedestal fiber

growth methods. In 1928 E.P.T. Tyndall [71] wrote a paper on the Factors Governing the

Growth of Zinc Crystals by the Czochralski-Gomperz Method. In 1937, Henry Walther of

Bell Laboratories published the first paper on the use of Czochralski’s method for the

growth of nonmetals [72]. He rejected other methods such as the Kyropoulos method

because he was intent on growing long, uniform, cylindrical bars of NaCl single crystals

for property measurements. He therefore was attracted to the pulling methods that

Czochralski and von Gomperz used to grow low-melting metals. He used a quartz cru-

cible to hold the melt and dipped a platinum rod or closed tube into its surface,

sometimes with an oriented seed attached. In the beginning, he used Kyropoulos’s

method of pulling the tube up slightly after the first melt solidified on the rod to reduce

melt contact with the crystalline solid that formed. He placed an air-cooled coil con-

taining small holes above the melt to cool the growing crystal and pulled up at rate of

5 cm/hr while rotating the crystal at 10 rpm. He was the first to apply rotation to the

Czochralski method and produced the first bulk crystals of a high melting point com-

pound by this method. Walther successfully produced NaCl boules 2 cm in diameter and

30 cm long. It is rather amazing that this paper, although published in a prominent

journal and referenced twice a few years after its publication, was only found very

recently (by Reinhard Uecker [73]). Strangely, even many Bell Laboratories researchers

from that period to the present time seem to have been unaware of Walther’s work, and

it was not mentioned in the rather extensive review of engineering and science research

in the Bell system during the period 1925–1980 [30]. In 1940 Evans [74] used Walther’s

method to grow single crystals of NaCl, KCl and KBr.

1.3.1.3.2 Semiconductors

Bardeen and Brattain discovered the transistor in 1947 using large-grained Ge samples

produced by unidirectional solidification [30]. Shortly afterward, it was demonstrated

that single crystals were better, and this led to a dramatic expansion of the crystal growth

field in general, and the Czochralski method in particular. This versatile technique has

been applied to a wide variety of materials of commercial importance—particularly

semiconductors and optical materials.

According to [30] (p. 422), “A single crystal growth technique, first used by

J. Czochralski in 1917, was adapted and improved in 1950 by G.K. Teal and J. B. Little for

the growth of single crystals of germanium” [75]. They dipped an oriented Ge seed

crystal into the melt surface and, while rotating, pulled modest sized crystals (by today’s

standards) of 2.5 cm diameter and 10 cm in length. The minority carrier lifetimes were

significantly better than in polycrystalline materials, and therefore the semiconductor

researchers shifted their efforts to producing bigger and better crystals with control of
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the dopant concentrations and uniformity. In addition, the single crystal technique

allowed for the creation, during growth, of n-p-n junctions by perturbing the growth

conditions [76]. While this junction technique was eventually superseded, it was an

important step in transistor technology. The importance of homogeneity in semi-

conductor devices led many researchers to study the thermodynamic and kinetic aspects

of impurity and dopant incorporation. One such seminal study, as mentioned earlier,

was that of Burton, Prim and Slichter [28,29]. Shortly after the germanium research

activities began, the focus shifted to silicon whose properties were deemed to be su-

perior. In 1952, Teal and Buehler [77] reported on the Czochralski growth of silicon

crystals—a much higher melting compound (1414 �C compared with 938 �C for Ge) and

more difficult to grow due to its reactivity. Over the years, crystal sizes have constantly

increased (see Figure 1.6(B) above), and today commercial systems are available to grow

Si boules 12 in in diameter and 6 ft long from which substrates can be cut for the

preparation of integrated circuits. In situ recharging to grow longer crystals and con-

trolling melt flows using magnetic fields were added over the years to boost production

rates and quality. One of the most important factors in producing high quality crystals

was not only to control impurities and other point defects but their complex interactions

with each other, as well as with dislocations. Removal of one defect can lead to the

redistribution of other defects to lower the overall energy of the system.

It was recognized early on that purity of the starting material was critical to

semiconductor performance. In 1951, William Pfann [78] invented the zone refining

method for ultrapurifying Ge. This very important method, in wide use today, has been

successfully adapted to the purification of all classes of materials. Shortly afterward,

Theuerer [30] invented the crucible-free float zone process to grow O2-free silicon.

Oxygen incorporation during Czochralski growth was due to the use of SiO2 crucibles.

Theuerer’s method is still in commercial use today to produce O2-free Si for special

device applications. It also has been used with other materials for which melt-crucible

interactions are problematic. With the use of optical heating systems (such as lasers

or xenon lamps), its simplicity makes it very useful for growing crystals of numerous

materials for physical property studies. Pfann [79] also invented the zone leveling

crystal growth method that is a combination of horizontal Bridgman growth coupled

with zone refining. In this case a seed and a dopant are placed at one end of a hori-

zontal tube and by moving a molten zone along the tube, the dopant could be uni-

formly distributed along the boule. This method was used early on to produce

transistors and diodes.

It became apparent that dislocations were affecting the electrical properties of Si

single crystals and the need for zero-dislocation material arose. In 1959, William Dash

[80] developed a method for doing this during Czochralski growth. Since dislocations

propagate mainly from the seed, he used high-quality seeds together with careful control

of the initial growth conditions. He was able to produce dislocation-free crystals by

“necking” down the growing boule to a very small diameter before widening it back out

to the desired size.
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Important advances in both purification and control of crystalline perfection has led

to the improved performance of Si devices.

When compound semiconductor materials such as GaAs, InP and their alloys became

important to the electro-optic field, special Czochralski techniques had to be developed

because they have high vapor pressures at elevated temperatures. In 1962, Metz et al.

[81] were the first to report the use of molten B2O3 as a melt encapsulant for the

Czochralski growth of PbTe. Both Pb and Te are volatile at the compounds melting

temperature, and they successfully sought to cap the melt to prevent losses. In 1965,

Mullins et al. [82] demonstrated that molten B2O3 was also a useful encapsulant for the

growth of GaAs and InAs. They were able to adapt a commercial low-pressure

Czochralski system for the growth of these compounds. This method is now known as

the liquid encapsulation Czochralski (LEC) method. A few years later, Mullins et al. [83]

extended their work to include the growth of GaP and InP in high-pressure furnace

systems. One problem with group V elements was that when the crystal emerges from

the encapsulating layer, it starts to lose P or As from its surface. In 1983, Azuma [84]

came up with an innovative approach to inhibit these losses. He used a pressure

balancing system to control the partial pressure of P in the InP growth chamber. In the

upper chamber was extra P4, maintained at a pressure such as to prevent evaporative

losses at the crystal surface.

1.3.1.3.3 Oxide Growth

Following the success of the Czochralski method for growing elemental Si and Ge single

crystal boules at Bell Laboratories, they and other laboratories started to use this method

extensively for growing bulk single crystals of oxide compounds for laser, nonlinear

optical, scintillator and numerous other applications.

The laser was predicted by Arthur L. Schawlow and Charles H. Townes in 1958 [30, 358,

359] but not actually demonstrated until the work of Maiman in 1960 [85] with a single

crystal ruby rod prepared at the Union Carbide company. In the same year, Nassau and

Van Uitert [86] were the first to use the Czochralski’s method to grow a high-quality

oxide crystal. They prepared laser crystals of Nd:CaWO4. During the following decade,

the Czochralski method was vigorously pursued in many research and industrial labo-

ratories around the World. A wide variety of important optical materials were grown,

including LiNbO3 [87,88], LiTaO3 [89], Bi12Ge(or Si)O20 and SrxBa1–xNb2O6 [90], YAG

(Y3Al5O12) [91], Nd:YAG [92], Sapphire [93,94], and Gd3Ga5O12 (GGG) [95]. Many of these

materials are still commercially important. A concise history of oxide crystal growth by

the Czochralski method was given by C. D. Brandle [96].

Many improvements to the method were made over the succeeding decades.

Compositional variations along the length and diameter were of major importance and

stimulated the construction and analysis of related phase diagrams. It was found, for

example, that the stoichiometric composition was not always the congruent composi-

tion [97] and to get uniformity one needed to shift the composition to the off-

stoichiometric congruent composition to achieve homogeneity. Another problem often
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encountered was that the shape of the phase field boundary of the compound might be

curved instead of straight leading to precipitation of a second phase.

During the 1960s, very little was known about how the growth interface shape could

influence crystal quality. This was very important in Si growth where zero-dislocation

crystals rely on a particular interface shape. Cockayne et al. [98] were the first to show

that interface shape could be modified and controlled by crystal rotation. Nominally,

crystals growers find that a slightly convex interface toward the melt is most desirable.

Another factor of major importance in melt and solution growth is fluid convection. It

affects mass and heat transport and therefore interface shape, boundary layer and

growth rate instabilities, etc. In Czochralski growth natural convection and crystal

rotation can interact to modify both the interface shape and the composition in the melt

near the growth interface (boundary layer). Various researchers have achieved significant

improvements in crystal quality by controlling these parameters.

The application of computer modeling to help solve crystal growth problems was

begun in the 1980s by Robert Brown and his group at MIT. One example is a paper written

by Derby and Brown [99] on the dynamics of Czochralski growth. One of the major tasks

of computer simulations is to model the flow regimes in a system in which the thermal

configurations are adjustable. In recent years, facilitated by the dramatic increase in

computing power, almost all types of crystal growth processes (Bridgman, float zone, etc.)

have been modeled. Simulations performed have been very successful in helping design

and guide refinements to laboratory and commercial crystal growth process.

During Czochralski growth, the melt level in the crucible drops as the crystal grows.

This changes a number of factors including the thermal gradients and convection pat-

terns. Often the temperature has to be changed during growth or some other parameters

modified. Whiffin and Brice [100] have shown that melt height can affect thermal

oscillations in the melt. These thermal fluctuations can lead to growth rate variations

and crystalline imperfections such as striations. A striation is a compositional variation

parallel to the growth interface, usually caused by poor temperature control and/or melt

oscillations. In the 1960s most growth was carried out manually, i.e., the temperature

was changed or the crucible position altered by analog temperature and motor con-

trollers. With commercialization came the need for automated diameter control systems.

These were based on either crucible or crystal weighing or by controlling the meniscus

position optically.

1.3.1.4 Bridgman–Stockbarger/Gradient Freeze Methods
Little did Percy Bridgman (1882–1961) or Donald Stockbarger (1895–1952) know at the

time of their respective discoveries that their names would become historically inter-

twined in describing one of the most popular techniques for growing crystals. Their

versatile method(s) made possible the growth of many different types of materials

including metals and their alloys, semiconductors, and both inorganic and organic

compounds. It was also a method that allowed the preparation of some of the largest

manmade crystals ever produced.
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Percy Williams Bridgman was a Noble Prize-winning American physicist working at

Harvard University, only a few miles away from MIT where Donald C. Stockbarger

worked as an Associate Professor of Physics. His prize (1946) was for his work in the field

of high pressure physics. The crystal growth method he developed and published in 1925

[101] departed from the work of Tammann [65] and Obreimov and L. Schubnikov [66] in

that the vertical tube containing the melt was not stationary during growth. Growth was

initiated in a capillary tube at the bottom end of a larger cylindrical ampoule and

propagated upward along the tube by lowering it down through a single zone vertical

tube furnace and out the bottom. The capillary was used for seed selection and was

further enhanced by reducing the capillary diameter at the juncture between the

capillary and the larger bore container. His first experiments were done using bismuth

melts. Not long afterward, various other researchers used his method or variants of his

method to grow other metal crystals, such as copper, and zinc.

In the late 1920s Stockbarger started his work on the growth of large, high-optical-

quality crystals of LiF and later CaF. At first, he tried Bridgman’s method [101] for CaF

but it required more careful atmosphere control to prevent hydrolysis, better starting

material purity and temperature stability to produce useful crystals. This led

Stockbarger to modify Bridgman’s method [102,103]. He used a so-called vertical

“elevator furnace” that had two graphite heaters separated by a Mo baffle through

which a covered crucible containing the melt could be passed from the upper higher

temperature region into a lower temperature section by a motorized translation device.

The use of a two-zone furnace led to better control of the thermal gradient at the

growth interface. The crucible, support rod and pedestal were graphite. The V-shaped

crucible bottom rested in the pedestal. There was no capillary region below the tapered

region for seed selectivity, and the included angle was much larger than those used in

the Bridgman and other earlier methods. So it is speculated that seed selection was

controlled by the locally steep gradient at the tip created by the thermally conducting

graphite support rod coupled with the baffle, thereby limiting the volume of super-

cooled melt that can form.

The Bridgman–Stockbarger method (shown in Figure 1.7 below) has been widely

used to grow crystals of varying sizes from its development in the 1920s until the

present day. It has also been used extensively in a horizontal configuration. While

initially used for metals and then shortly afterward for inorganic optical materials, it

has since been used to grow hundreds of other compounds including semiconductors

(GaAs, CdTe, HgCdTe, and chalcopyrite compounds such as CdGeAs2, ZnGeP2), organic

materials, oxides such as Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMNT) and halides such as Tl:CsI

and Tl:NaI, and Eu:SrI2 etc. Process improvements include the use of the accelerated

crucible rotation technique to improve melt homogeneity and interface boundary

conditions [104], vibroconvective mixing [105], baffles in the melt near the interface,

growth under high pressure, etc.

The gradient freeze (GF) method of Tammann [65] differs from the Bridgman–

Stockbarger approach in that there are no moving parts. Neither the ampoule nor furnace
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is translated with respect to the fixed thermal gradient in the furnace. Instead, a tem-

perature gradient is maintained across the melt-containing crucible such that when the

temperature of the furnace is lowered, the cool end of the melt solidifies first, and the rest

of the melt solidifies layer by layer as the freezing point moves across the melt. This

method is simple to implement and was used for the growth of a number of materials. Its

big disadvantage was that as the furnace temperature decreased, so did the gradient across

the remaining melt. Under constant cooling conditions this change in gradient could lead

to changes in growth velocity and thereby variable crystal properties along its length due to

component segregation and perhaps interface breakdown. One method used to solve this

problem was by continuously changing the furnace-cooling rate to maintain constant

freezing rate in themelt. In 1986, Gault et al. [106] successfully applied the vertical gradient

freeze method (VGF) to the growth of large diameter GaP, InP, and GaAs crystals.

Attempts to grow some important III–V compounds by the vertical Bridgman and

gradient freeze methods were complicated by the fact that these compounds expand on

cooling and can aggressively stick to the walls of many crucible materials [107]. These

methods both exist in horizontal versions that are applicable to certain important

commercial crystals. While many different types of crystals have been grown by the

horizontal Bridgman and gradient freeze techniques, their sizes are limited compared

their vertical counterparts, and the boules have noncircular cross-sections.

FIGURE 1.7 (A) Drawing of a Bridgman apparatus showing a tapered crucible being lowered through a stationary
furnace having a steep gradient at the growth interface. In Bridgman’s experiments the crucible is lowered out of
the furnace. (B) A schematic diagram of Stockbarger’s growth apparatus. Note the platinum baffle that separates
the two furnace zones for gradient control and the crucible pedestal.

Chapter 1 • Crystal Growth through the Ages: A Historical Perspective 27



1.3.1.5 Nacken–Kyropoulos Methods
During the early decades of the twentieth century, many new developments in crystal

growth technology came out of Germany. During the 1920s in particular, a burst of

activity in the field led to numerous growth techniques being developed, many of which

are being used today in either their original or modified form.

One of the most important crystal growth pioneers of this period was the German

mineralogist Richard Nacken (1884–1971). A few years before Czochralski’s discovery, he

reported on a process for growing crystals from the surface of a melt using a cooled

copper rod with a rounded end and a seed attached [108]. Nacken’s apparatus is illus-

trated in Figure 1.8(B) below. The general idea was to locally supercool the melt adjacent

to the rod and initiate growth under controlled conditions. After growth started, the

furnace temperature could be lowered to keep the seed growing. No pulling was

involved. As the crystal grows, the melt level drops due to the higher density of the

crystal. The method was later used by J. M. Adams and W. Lewis [109] to grow very large

ice crystals. Nacken also developed a viable hydrothermal process for growing quartz

crystals. His unpublished work was found in secret WW II German reports. E. Buehler

and A.C. Walker at Bell Laboratories [110] based their successful hydrothermal quartz

growth technology on Nacken’s process.

About 10 years later, Spyro Kyropoulos (1887–1967), a student of Tammann and pro-

fessor of Applied Physics at the Gottingen University (later he taught at the California

(A) (B)

FIGURE 1.8 (A) A drawing of Nacken’s apparatus illustrating the growth of a faceted crystal using a seeded cold
“finger” inserted into the melt’s surface. (B) A schematic diagram of Kyropoulous’s experimental setup where,
unlike Nacken, a cold rod is place in the melt surface without a seed. The inset shows how seed selection can be
accomplished using a rounded seed rod.
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Institute of Technology) took up Nacken’s melt growth method to grow crack-free alkali

halide crystals for precision optics. The advantage of Nacken’s method is that the crystal is

grown within the melt rather than being confined to a container that can induce strain in

the crystal during cooling. Instead of a using a seed, Kyropoulos [111], using an air-cooled

platinum tube, nucleated a few crystallites on the end of his tube and then lifted it up

slightly so that the melt stayed in contact with only one grain. Kyropoulous’s apparatus is

shown in Figure 1.8(B) above. This seeding method had to be carefully controlled so that

the tube did not break free from the melt surface. After the seeding stage, the furnace is

slowly cooled to allow the crystallite with the fastest growing direction of heat flow to grow

to cm-size crystals before being pulled out of the melt. The thermal gradients in the melt

are generally quite small. As mentioned before, the melt level drops in systems where the

density of the solid is greater than the melt density. Kyropoulos used this process for

growing many alkali halide crystals [112]. The method is attractive because of its general

simplicity, reliability and low operating costs. Two other advantages of the method are

(1) the ability to see what was going on and to make adjustments to enhance the crystal

quality and (2) its use of lower thermal gradients than in the Czochralski method. On the

other hand, the lower gradients lead to faceting at the interface and thus chemical in-

homogeneities in the crystals. Several years later, Korth [113] took up this method but

used a seed attached to the cooled rod as did Nacken many years earlier. He grew crystals

as large as 6� 8 cm. A few years later, Katherine Chamberlain in the United States used

this method to grow very large KBr crystals up to five inches in diameter and weighing up

to seven pounds [114]. Typically Kyropoulos’s method does not involve continuous

pulling or rotation as in the Czochralski method. Growth rates are of the order of mm’s/hr

with cooling rates below 1 �C/hr. The crystal diameters usually are up to 90% of the

crucible diameter. Bliss [115] gave a detailed review of Kyropoulos’s life and method.

The Kyropoulos method has been in commercial use for over 75 years. From its

inception until the present time, the method has been used to grow large alkali halide

crystals for windows, prisms and scintillators (e.g., Tl:NaI and Tl:CsI) compounds. Due to

the development of GaN-based light emitting diodes, there has sprung up a very large

industry around the growth of large sapphire crystals for use as substrates. The

Kyropoulos method is one of the most widely used methods today for this applications.

Up to 12 inch-long crystals have been produced. It is also used in the commercial pro-

duction of Ti:Sapphire laser crystals. A variety of other materials have been grown by the

Kyropoulos method in laboratory settings, including organic materials, semiconductors

such as Si, ZnSe, and InP and other types of laser crystals. For the growth of InP crystals

[116], liquid encapsulation together with magnetic fields has been applied to the

Kyropoulos configuration to improve crystalline perfection. This has been called the

MLEK method. Over the years, furnaces have become much more complex. Heat shields

are now used to control thermal profiles. Numerical analysis has helped to define the

optimal conditions for growth of specific materials through proper baffling and posi-

tioning of the crucible in the heater. Other improved capabilities include the ability to

weigh the crystal or crucible during growth to control the rate of mass increase with time.
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1.3.1.6 Stöber/Heat Exchanger Methods
In 1925, F. Stöber [117] reported on the growth of large crystals of anisotropic materials

such as sodium nitrate, zinc and bismuth by removing the latent heat of crystallization

from the bottom of a stationary bowl-shaped crucible containing a melt (growth from

the bottom upward). A heater plate was placed above the surface of the melt and a water-

cooled plate at the bottom creating an axial temperature gradient. The radial heat flow,

present in most other growth systems, was minimal. Stöber’s method, along with one of

Tammann’s techniques, were perhaps the first gradient freeze methods (i.e., moving the

gradient along the melt rather than by moving the crucible or furnace). Stöber also found

that crystal singularity was enhanced when the thermal conductivity in one crystallo-

graphic orientation was significantly greater than in other directions. One attractive

feature of Stöber’s method was that you could produce very large crystals in near-net

shape, i.e., in the exact shape of the container. In addition the method is very simple

to implement since there are no moving parts, and lower thermal gradients employed

help reduce stresses in the final boule. He grew crystals of NaNO3 up to 10 pounds by his

method. He also grew ice crystals by inverting the cooler and immersing it into the liquid

surface.

In 1970, Frederick Schmid and Dennis Viechnicki [118] from the Army Research

Laboratory at the Watertown Arsenal, reported on a new method to produce large-

diameter sapphire crystals from the melt. This work was stimulated by the need by

the military for very large transparent armor plates. They called their new technique the

heat exchanger method (HEM). The method is similar to the Stöber process in that the

crystal grows upward from the bottom filling the crucible and taking its shape. Neither

the furnace, crucible nor crystal moves during growth. A He-cooled cold finger (similar

to the water-cooled bottom plate used by Stöber) extracts heat from the crucible bottom

in a controlled manner and independent of the heat input. A furnace that surrounds the

crucible replaced the upper pancake heater. In addition, the technique allows for a

small-diameter seed to be centered over the cold spot created by the He heat extraction

tube. Heat can be removed from the crucible bottom by increasing the He flow rate.

Since then (1975), a He recirculation system was developed along with the technology to

grow large-diameter, flat-bottom crystals free of light scatter from the small seed

centered over the heat exchanger. High-quality sapphire crystals have been grown

commercially up to 44 cm in diameter and weighing 160 kg [119]. In situ annealing in

shallow gradients is used to relieve stresses. The crystals produced are competitive with

commercial Kyropoulos sapphire. The method has also being used to produce single

crystal ingots of spinel, ruby, Ti:sapphire, Nd:Y3Al5O12 and silicon. Commercial growth

systems are available.

1.3.1.7 Kapitza’s Method
Pyotr Kaptiza (1894–1984) was an important Russian physicist who spent many years in

England before returning to Stalinist Russia. He was awarded a Nobel Prize for his work

in low-temperature physics. He used the Bridgman method to prepare metal single
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crystals for his experiments, but when it came to preparing Bi rods of a specific orien-

tation, he found that its expansion on cooling was sufficient to cause enough strain to

prevent the seeded orientation from propagating down the rod. To solve this problem,

he developed a method in which the crystal was not completely constrained [120].

He placed a bismuth rod on a copper plate and covered it with loose-fitting glass plates

to reduce drafts and then melted the rod. At one end, an oriented seed was attached and

by unidirectionally solidifying the rod by cooling he was able to produce an oriented

Bi single crystal at rates up to 5 cm per hour. This method was taken up and modified by

others, and today it might be considered the forerunner of the horizontal Bridgman

method which is widely used today for growing materials like GaAs for LED’s [121] and

ZnGeP2 and CdGeAs2 [122] for nonlinear optical applications.

1.3.1.8 Zone Melting
Zone melting methods have played an important part in (1) purification of materials for

crystal growth and other materials processing (zone refining), (2) for producing crystals

with uniform composition (zone leveling) and (3) for growing crystals without crucibles

(the float zone method). There are a number of variants to all these methods including

different methods of heating, horizontal and vertical arrangements, traveling mecha-

nisms, etc. The first reported use of zone melting was by Kapitza in 1928 [120]. In his

experiments, he passed a short resistance heater along a Bi filled tube to produce a single

crystal. In 1937, Andrade and Roscoe [123] used zone melting (also a traveling heater) to

grow lead and cadmium single crystals having low strain. By far the most important and

extensive work on zone melting for purification (zone refining) and zone leveling was

that of William Pfann [78]. In 1952, Pfann conceived of the zone refining method when

asked by the transistor researchers at Bell Labatories (where he had worked since the late

1930s) to develop a method to produce higher purity Si and Ge for use in growing

crystals with better electronic properties. Toward this end, it was used with great success

in the early days of semiconductor processing. This very versatile method was found

applicable to numerous other materials, including inorganic and organic compounds,

metals and semiconductors. Many papers on its adaptation to different materials and

operational improvements have been published since then, and it has become an

important tool for both research laboratories and industry. Pfann’s book on zone melting

[124] is the seminal publication on the method, comprehensively covering both the

theory and practice involved.

The method consists of moving a molten zone through a bar of material. Two solid

interfaces are created. As the zone moves (by moving the heater or furnace), material

from one interface dissolves in the zone and is recrystallized at the other interface.

Purification occurs for those impurities whose solubility in the liquid is different than

that in the solid (segregation coefficients, K, greater or less than one). Materials with

K< 1 will be rejected at the growth interface and will build up in the last to freeze region.

Those with K> 1 will tend to congregate at the start of the ingot. It is also a very useful

method for growing crystals from materials that melt incongruently.
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Various types of heaters have been used with the zone melting method, including

resistance, RF, electron beam, plasmas, lasers and xenon lamps. Refining can be done

with one zone moved through the ingot many times (passes) or by moving multiple

zones simultaneously. The ends of a sample can be removed and the sample zone

refined again as many times as needed. More passes are needed when K for a particularly

detrimental impurity is close to 1. Volatile species can complicate the process but

techniques to control or minimize melt losses have been developed.

Zone leveling is a way to produce material with uniform composition along its length.

It has many of the features of zone refining. Once the zone has reached a steady-state

composition, the species of interest will transfer from one interface to the other. The

composition will be the same on both the melting interface and the solidifying interface.

In both zone methods, crystal growth can be carried out during the purification or

leveling procedures.

The floating zone technique is a very important variant of the zone melting method.

It allows for crucible-free growth and eliminates possible contamination from the

crucible material and also stresses due to differential expansion between the crystal

and container. The method was invented and patented by H. Theuerer [125], a close

colleague of Pfann, to grow ultra pure Si. For better uniformity, the rods can be rotated

during growth. As mentioned before, the method is used commercially today for

growing low or oxygen-free silicon. In recent years, automated commercial optical

lamp heated float zone systems have become available and have permitted researchers

from a variety of disciplines to grow crystals of a wide variety of materials for physical

property studies [126].

The pedestal growth method is essentially a floating zone process. However, because

the pull rate of the crystal (smaller diameter) is different from the push rate of the source

rod (larger diameter) it has some characteristics of the Czochralski method.

Parenthetically, one might classify the Verneuil method as a pedestal growth method

since the crystal is grown on a pedestal and the molten zone is fed by molten powder

rather than a solid rod. The first use of a pedestal growth technique was in 1958 by

F. Horn [127] at the General Electric Corp. His method was a hybrid technique between

the Czochralski and float zone methods. The charge in the crucible was only melted near

the top surface and the crystal, of smaller diameter, pulled from this melt. As the crystal

grew he changed the heater position to melt some more of the solid below. He grew

boules of Sb-doped Ge having a more uniform composition than achievable by the

Czochralski technique where the entire charge was melted. Dash [128], and Poplawski

and Thomas [129] used this method to grow dislocation-free crystals of Si and Ge.

Two techniques that have been found particularly useful for producing small-

diameter crystals for property studies are the laser-heated pedestal fiber growth

(LHPG) [130] and micro pull-down (m-PD) [131,132] methods. The LHPG method is a

zone melting method in which, rather than a zone traversing a bar of material of uniform

diameter, a fiber is grown from a source rod of larger diameter. The pedestal configu-

ration was first used by Horn [127] and Poplawsky [129]. The source rod forms a pedestal
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whose upper surface is melted with a small spatially fixed laser beam. A seed crystal is

lowered into the melt and is withdrawn at a rate faster than the rate at which the source

rod is pushed upward to maintain constant melt volume. It is a crucible-less method,

minimizing contamination; the growth rates are much faster than bulk growth (mm/min)

because the temperature gradients at the interface are very large (>1000
�
C/cm).

These high-growth velocities can lead to greater dopant incorporation and to the growth

of metastable phases. The method is useful for incongruently as well as congruently

melting compounds, although it is limited to systems where the vapor pressures are

modest and dissociation is not a problem. The small diameter fibers were often found to

have better crystalline perfection than bulk materials. The LHPG method has been used

to grow fibers of a vast array of materials including oxides, halides, borides, carbides, and

metals. Haggerty [133] was the first to use the pedestal method with laser heating. He

grew LaB6 single crystal fibers. A few years later, it was used to grow single crystal Nd:YAG

fiber lasers [134]. One of the big advances in LHPG growth was the replacement of in-

dividual laser beams (two or four) with reflaxicon optics [135] giving a circular beam and

a much more uniformly heated molten zone. An interesting discovery came about during

the growth of LiNbO3 fibers. Lithium niobate is a ferroelectric material whose as-grown

bulk crystals contain numerous parallel and antiparallel domains. To be useful in

nonlinear and other device applications, these have to be aligned after growth in an

electric field at elevated temperatures. During the growth of LiNbO3 fibers using a two-

beam laser system, however, the small diameters and steep gradients led to single

domain fibers when grown along the c-axis and a bi-domain fiber of opposing 180�

domains when grown along the a-axis [136]. The axial gradients were responsible for the

single domain c-axis fibers and the radial gradient a-axis fibers. These observations later

led to a method to produce fibers with periodically poled domain structures by period-

ically shuttering one of the laser beams during growth [137]. Later, other periodically

poled structures for quasiphase matching applications were produced by other methods.

In 1980, Mimura et al. [131] published a paper on the growth of KRS-5 fiber crystals

using an inverted pulling system (modified floating zone technique). They had a crucible

filled with melt on the top with a feed rod continuously feeding the melt as the fiber

grew. At the bottom of the crucible was a long heated capillary tube with a shaper at the

end. The growth interface was below the shaper. The growing crystal was pulled

downward. This method was taken up by D. Yoon et al. [132] and called the micro-pull

down method. It has been used successfully for many materials, and growth systems are

available commercially. This method was reviewed by V. Chani [138].

1.3.1.9 Shaped Growth
Shaped growth generally means a method for producing a crystal with a predetermined

cross-sectional configuration. The quest to develop such methods is associated with a

need to reduce product cost and/or improve crystal quality. Notable savings can be

achieved in device fabrication, such as cutting and polishing, reducing the loss of

expensive material and reducing mechanical damage. In addition, the method usually
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allows significantly higher than normal growth velocities, thereby increasing production

rates. In a very real sense, shaped growth is a hybrid method that borrows from other

more established methods. For example, some are simple modifications of the crystal

pulling or directional freezing methods.

One might consider the Bridgman–Stockbarger method to be one of the first shaped

growth processes because the crystal retains the shape of the ampoule used. It is not

quite so obvious since almost all Bridgman crystals are grown from cylindrical ampoules.

One of several recent exceptions being a paper by Feigelson and Route [139] on the

growth of square cross-section crystals of AgGaSe2 in vacuum-formed quartz crucibles.

Using oriented seeds, they grew crystals not only aligned along the c-axis, but also so

that the flat crystal side faces would to be normal to the [110] planes in which light

propagates during type 1 phase-matched nonlinear interactions. A comprehensive re-

view of the various shaped crystal growth methods is given in Ref. [140] and elsewhere.

Perhaps the earliest attempt at shaped crystal growth is attributed to the 1921 work of

von Gomperz [70] at the Institute of Fiber Chemistry in Berlin-Dahlem. He worked in

Michael Polyani’s group. Polyani [141], reminiscing some 40 years later, recalled “Some

metallurgists, interested in my work on the hardening of single crystals, told me of a

method invented by Czochralski for producing metal crystals in the form of wires. It

consisted in pulling out a thread from a pool of molten metal, so that the thread

continued to solidify at the rate at which you were pulling it out. Erwin von Gomperz,

who was doing his thesis with me, was put to growing single crystals of tin and zinc in

this way. Unfortunately, the metal tended to come out in lumps, and the project was

saved only by the intervention of HermannMark who covered the liquid metal by a sheet

of mica with a hole in the middle, through which the thread came out as a smooth

cylindrical wire. But for this ingenious intervention, our subsequent investigations of the

plastic flow of metals might not have come about” [142].

In 1938, Stepanov at the Ioffe Institute in St. Petersberg began his extensive studies on

shaping crystals during growth using wetted and nonwetted dies [143,144]. These dies

have one or more capillaries or slots to transport melt from the crucible to the growth

interface. The shape and height of the melt column is dependent on capillary properties

such as surface tension, density, melt viscosity, impurities and wetting angle. Over many

years, Stepanov’s group produced a wide variety of shaped crystals including single and

multibore tubes, rectangular bars, sheets, discs, etc. Shaped crystals of a number of

different types of materials were grown, including oxides, metals and compound

semiconductors.

Shaped growth in the United States began in the late 1960s with the preparation of

sapphire filaments (later sapphire tubes for Na-vapor lights) by the edge-defined film-

fed growth method (EFG) and single crystal superalloy turbine blades by directional

solidification in complex molds [145,146]. The EFG process is in effect one of Stepanov’s

techniques, but it specifically focused on the advantages of wetted dies. It was discov-

ered independently by LaBelle [147] who made a significant observation during his early

attempts to pull sapphire fibers from a die placed in the melt surface. He noticed that the
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melt wet the die and instead of being the diameter of the capillary within the die was the

shape of the outer rim of the die. This was recognized by Mlavsky [148] as being of

significant benefit and thus began extensive work on the EFG method. A sketch of the

EFG method is shown in Figure 1.9. In a relatively short time after its discovery, it

became a commercially viable technology. This was due to the early recognition that

concurrent with experimental work, theoretical studies were needed to thoroughly un-

derstand the mechanisms involved in the process and ways to maintain better shape

stability and rapid growth rates [149,150]. In 1980, an entire volume of the Journal of

Crystal Growth was devoted to the subject of shaped growth methods. The EFG method

has been successfully used in the commercial production of sapphire single fibers, tubes

and ribbons and other materials. Today, the EFG method has gained an increasingly

greater market share in the production of sapphire ribbons for GaN substrates used in

lighting applications. Automated commercial EFG equipment can now be readily

obtained, permitting companies to produce such wafers themselves.

The Stepanov and EFG methods are a meniscus-controlled process like Czochralski

growth, and like it, growth is driven by crystal pulling. However, instead of pulling

directly off the melt surface, the crystal is pulled from a suitable die face located above

the melt surface. It can either float on the surface, like in von Gomperz’s early experi-

ments [70], held in a fixed position with respect to the crucible or moved during growth.

The die position leaves the growth interface some distance above the hot melt surface

and the thermal gradients are much steeper permitting enhanced growth velocities. The

die material is chosen on the basis of its wettability with the melt and its reactivity. For

sapphire, Mo dies have been used. In commercial systems the die can be moved during

growth to maintain constant conditions and be equipped with an automatic monitoring

system based on crystal weighing.

During the 1970s, the oil energy crisis led to serious efforts to produce silicon solar

cells at a much lower cost than using cut wafers from Czochralski boules. This led to a

robust effort to produce Si sheet at high growth rates. One of the most promising

methods at the time was the EFG process. Extensive efforts went into adapting it to

produce low-cost Si solar cells, but with limited success. Other innovative Si shaped

crystal growth methods were studied during this time period, including the dendritic

web process [151] in which a silicon dendrite is used a seed. It grows out laterally

FIGURE 1.9 Illustration of the EFG shaped growth process. (A) the sequential steps involved in seeding and
growing a crystal from a cylindrical die. (B) a die used to grow a hollow tubular crystal [148].
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forming a thin sheet of silicon bounded by two new dendrites that define the width of the

sheet. Some other methods include the ribbon against drop (RAD) method [152], where

silicon is deposited as aligned grains on a carbon substrate, and the silicon on ceramic

process [153], which is similar to the RAD process except that the substrate is a ceramic

material. Two other methods of note are the ribbon to ribbon (RTR) [154] and horizontal

ribbon (HRG) [155] growth methods. The former is a laser heated float-zone technique

using a poly ribbon as the source and the latter involves pulling a ribbon (cooled from

the top) horizontally from a free melt surface. The growth rates achievable in these

processes are in the 5–10 cm/min range except for the HRG method where controlled

cooling of the upper surface permitted growth rates of 10–40 cm/min. These methods

are reviewed in Ref. [140].

The unidirectional casting method used for making single crystal jet engine turbine

blades, as mentioned above, has had an important influence on aircraft performance.

These blades, made from nickel-based superalloys, were found to have superior creep

resistance if they have aligned grains [140] or better yet be one single crystal [156]. The

method is like a Bridgman technique with the mold having the shape of the blade and

extending down below is a zig-zag-shaped capillary tube mounted on a hollow pedestal

that sits on a chill plate (see Figure 1.10). Growth is upward, initiated first from the melt

in the pedestal by cooling the chill plate. This produces elongated grains along the

mold’s vertical axis, one of which will be in line with the capillary to provide seed se-

lection. If by chance more than one grain makes it into the capillary from the pedestal,

the crooked capillary will aid in seed selection.

FIGURE 1.10 Schematic diagrams showing various methods for making jet engine turbine blades. (A) original
casting method (polycrystalline), (B) single crystal growth by unidirectional solidification and (C) unidirectional
growth with grain selection [146].
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1.3.1.10 Skull Melting
The skull melting method is a quasi-crucible-less crystal growth method that was

developed in the late 1960s in Russia, especially for growing large, high-purity oxide

crystals for laser and gemstone production [157]. Since the 1970s it has become an

important method for manufacturing cubic zirconia gemstones in a variety of colors

(J.F. Wenckus et al. at the Arthur D. Little Company [158]). The method is adaptable to

Czochralski and Bridgman growth methods using seed crystals and also in centrifugal

casting.

In skull melting, a relatively large powder charge is contained within a water-cooled

cylindrical Cu crucible surrounded by an RF heating coil. The RF field generates a

magnetic field that in turn generates eddy currents due to ohmic losses in the material

within the crucible. The process works for materials whose electrical conductivity in-

creases with temperature, even through the melting stage. Due to the cold crucible wall,

a skin (skull) of unmelted materials surrounds the melt and keeps it from coming into

direct contact with the crucible, thus preventing contamination. Temperatures of over

3000
�
C can be achieved and a wide selection of gas atmospheres are possible. Unless

coupled with seeding, it is impossible to grow one single crystal due to the seeding effect

of grains in the skull. For the gem industry, large slabs of crystals are retrieved from

large-grained poly masses. The nature of the heat flow encourages the grains to grow

along the vertical direction.

Cubic zirconia (ZrO2) is used in the gem industry as a substitute for diamond since its

optical properties, hardness, and fracture toughness are similar. Pure zirconia, however,

undergoes a number of destructive phase transformations upon cooling. In order to

grow single crystals from the melt, therefore, its composition has to be modified

(stabilized) by doping to allow the high temperature cubic phase to persist to room

temperature. The most common stabilizer is yttrium (YCZ), but CaO and MgO are also

used. Concentrations of dopants vary from 10 to 40 mol%. These stabilizers work by

creating many vacancies on the oxygen sublattice that prevent the cubic phase from

transforming to phases of lower symmetry. Partially stabilized zirconia (PSZ) can be

produced by reducing the dopant concentrations to less than 6 mol%. In these materials,

part of the material transforms into the tetragonal phase creating a composite structure

with excellent mechanical properties, making them attractive for applications such as

drilling, threading, medical instruments such as scalpels, etc. [157]. The wide range of

colors possible in zirconia gemstones are created using rare earth or transition metal

element dopants.

Recently a Ukrainian group [159] developed a technique for growing large Tl:NaI

scintillator crystals by a method similar to skull melting. Since the melting temperatures

are quite low (w661 �C), they did not need RF heating and reconfigured the system from

horizontal heating to vertical resistance heating. Basically, they hold a heater plate about

1 cm over the charge, which is held in a rectangular aluminum tray sitting on the bottom

of water-cooled vacuum chamber. Since the heater is smaller in area than the container,

only the center part of the charge is melted leaving a skull 5–10 mm thick surrounding
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the melt and keeping it out of contact with the aluminum. Growth is achieved by slow

cooling from the bottom up by lowering the temperature of the upper heater. It is not

clear what the grain structure of the resulting slab is like, since seeding is not used and

the plates produced are quite large. However, the scintillator properties are in line with

those of single crystals produced by other methods and in a more cost-effective manner.

1.3.2 Solution Growth

1.3.2.1 Introduction
Solution growth methods involve dissolving material in a liquid (or gel) medium and

then recrystallizing it under controlled conditions to produce a crystal of a desired size,

shape and perfection for a specific application. The control of crystal shape and size

can extend from very large crystals for optical applications down to fine powders for

pharmaceutical, agricultural, or specialty chemical uses. The solvent media may be a

low-temperature solvent like water or a high-temperature flux like PbO. Pressure-

enhanced solution growth (the hybrid hydrothermal growth method) has also been a

commercial success for the preparation of large crystals of quartz. The most common

solvent used is water, and an impressive number of inorganic salts have been converted

into single crystals using this technique, some weighing over 50 pounds. Other solvents

include organic liquids (for the growth of organic crystals) and liquid ammonia.

Growing crystals from water solutions was undoubtedly the earliest effort by early

man to replicate what he observed in nature. Natural salt ponds drying up in the

hot summer months and then redissolving during winter rains assuredly piqued his

interest and led him to experiment. Since salt became such an important commercial

product, it is not surprising that this material and method became one of the first

industrial crystal growth activities. Sugar was another material of early commercial

interest. Through trial and error, a rudimentary understanding of saturation and su-

persaturation began to develop and, along with techniques such as seeding and solu-

tion homogenization (via stirring), better control of nucleation, crystal size and purity

was achieved. Later, the role of additives to enhance growth behavior and tailor crystal

properties was incorporated into the growth procedures. The eventual use of solubility

diagrams greatly aided crystal growers in choosing appropriate growth conditions, i.e.,

temperature and composition regions. In these early days, as today, control of purity

and size were of great commercial significance. Several basic methodologies are

employed in solution growth: (1) controlled evaporation, (2) temperature programing,

(3) mass transport in a concentration gradient at constant T and (4) changing the

composition of the solution (salting out method).

1.3.2.2 Aqueous Solution Growth
Like all other crystal growth methods, a variety of modifications have been made over

the years to facilitate the growth of a specific type of material, and to achieve an

appropriate dimension and degree of crystalline perfection (purity, homogeneity, strain,
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etc.) required for the application intended. Materials vary so widely in their thermody-

namic and kinetic properties that even the growth of related materials of similar

composition and structure can require changes in growth procedure or even in overall

methodology.

In 1901, G. Wulff [160] published his famous theorem on the influence of surface

energy on equilibrium shape of a crystal (morphology). It established a relationship

between the crystal habit and the structure of crystals. It was derived from studies on the

growth rates on different faces of crystals grown in water solutions. He used a rotating

cylindrical crystallizer, in which a seed crystal was placed along the axis of the cylinder at

its center-point. This allowed the crystal to grow out of contact with the vessel walls and

be exposed to nutrient equally on all faces. Other early pioneers advancing the devel-

opment of water solution methods during the first half of the twentieth century included

Kruger and Finke [161], and Valeton [162]. Kruger and Finke were the first to investigate

growth under constant temperature and supersaturation conditions. Their apparatus,

shown in Figure 1.11, had in common two vertical chambers connected by upper and

lower tubes through which solution passed in a specific way. One chamber contained

source material and the other a stirring paddle (growth chamber) to move nutrient and

depleted solution from one to the other. After equilibration of the growth chamber in a

slightly undersaturated state, a seed crystal was added. Valeton’s apparatus had a more

precise way to control temperature in each bath. These methods utilized mass trans-

ported from the source chamber to the growth chamber to control the growth process.

Crystals of potash alum and potassium sulfate were grown in these early experiments. In

1916, Nacken [163] developed a similar but more sophisticated apparatus using a vertical

configuration for solute transport. Some 30 years later, Walker and Kohman [164] at Bell

Laboratories developed a large-scale commercial crystallizer similar to these earlier

methods known as the constant temperature process. Together with Holden’s contri-

butions on seed mounting [165], this apparatus was capable of growing four large EDP

(ethylene diamine tartrate) piezoelectric crystals at a time. These crystals were used to

replace natural quartz in telephone circuits. Crystals weighing up to 40 pounds could be

FIGURE 1.11 The aqueous solution crystallizer used by Kruger and Finke [161]. The nutrient was contained in a
porous bag in heated beaker G1. The stirrer in beaker G2 recirculates saturated from G1 through a water-cooled
tube K, where is becomes supersaturated, into beaker G2 where the crystals grow. Large potassium sulfate crystals
2 cm in size were produced in this reactor.
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grown by this method. The method involved several large chambers with solution in one

chamber saturated at one temperature being continuously fed the into the crystallizer

chamber being held at a slightly lower temperature, thereby providing the supersatu-

ration conditions necessary for growth.

In 1919, R.W. Moore [166] working at the General Electric Company needed large

Rochelle salt crystals for electrical property studies. Since suitable material was not

available commercially, he was forced to develop his own method. At first he started with

the method of Kruger and Finke [161]. This proved unsuccessful. After thoroughly

studying the available literature he came up with a new and simple approach based on

the temperature lowering method. First, a saturated solution was formed 10–15 �C above

room temperature, the solution decanted to separate it from the excess salt and then

filtered. After heating the saturated solution 7–8� above its saturation point, it was

poured into a vessel containing small seeds suspended on silk threads or metal wires,

covered with a glass plate and then placed in water bath at 0.5
�
C above the saturation

temperature. From that point onward, the temperature was lowered to cause the seeds

to grow. No means of stirring the solution was provided in these early experiments.

Moore’s temperature lowering method was eventually modified to supply some fluid

movement and distribute nutrient more uniformly to all the faces. The so-called rocking

tank method was applied in 1947 by Walker [167] to the growth of large ammonium

dihydrogen phosphate (ADP) crystals needed for submarine detection. The tanks were

large rectangular trays that were gently rocked to replace depleted solution at the growth

interfaces with fresh supersaturated material. Like EDP, crystals as large as 6� 6� 20 in

were produced by this method. Many crystals could be grown in each tray and for

production (Western Electric Co.) rooms were filled with many rocking trays.

Evaporation was inhibited and the room temperature had to be carefully controlled. One

famous name associated with water solution growth was Alan Holden [165]. Aside from

his research at Bell Laboratories, he also wrote a very popular book on the subject [168].

Numerous amateurs have used it to initiate crystal growth experiments. In 1949, he

introduced the “rotary crystallizer” originally to grow EDP and then later for ADP crys-

tals. It consisted of a large, one-foot-diameter cylindrical vessel holding the solution. It

was heated from the bottom by two concentric heaters, an inner one to keep the bottom

center somewhat under saturated. In this way, errant crystallites that have fallen to the

bottom would dissolve. The outer heater controlled the overall solution temperature.

The important feature introduced by Holden was the rotating seed holder (called a

“spider”). The seed crystals were mounted on spokes emanating from the rotation shaft.

Several sets of spokes holding the seeds were used along the vertical axis. The seeds were

rotated first in one direction for a selected period of time and then in the other direction.

The system was sealed and some water condensed on the upper lid forming droplets.

When large enough, the droplets fell to the solution surface keeping it under saturated

and thus preventing the nucleation of spurious grains.

Most of the growth methods mentioned above have inherently slow growth rates

(0.5–1 mm/day) due to low solution supersaturation. The higher supersaturation
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needed to yield increased growth rates were hard to achieve and control. In 1983,

Loiacono et al. [169], using a three-stage crystallizer (modeled after Walker and

Kohman’s growth system from 1948 [164]), and under conditions of constant temper-

ature and supersaturation were able to achieve 5 mm/day growth rates for large po-

tassium dihydrogen phosphate (KDP) crystals. KDP is an important nonlinear optical

material for modulating lasers. It has been grown commercially for many decades using

aqueous methods similar to the ones described above. The need for even larger crystals

of KDP for electro-optic switch and frequency converter plates in inertial confinement

fusion research led to a big advance in solution growth methodology. It started in 1982

in Rashkovich’s group at Moscow University. There they developed a rapid growth

process for KDP from water solutions [170]. Over the next several decades, that work

was taken up by Zaitseva and colleagues at the Lawrence Livermore National

Laboratories in California [171]. They demonstrated that the standard Holden [165]

crystallizer with temperature reduction could be used to grow large high-optical-quality

KDP and deuterated KDP (DKDP) crystals up to 50 cm on a side at rates 10–100 times

faster than older methods and without spontaneous nucleation and macroscopic

defects. From their research on growing large crystals under fast growth conditions,

they were able to develop a more thorough understanding of the mechanisms involved

in solution growth. In addition to the influence of temperature, supersaturation and

dislocations on growth rates, they realized the importance of impurities, mass transport

(via high solution velocities) and in having a highly stable growth system. It was found

imperative to control secondary nucleation. The most important feature of their rapid

growth process was using highly supersaturated solutions (70–76 �C) coupled with

elaborate techniques for preventing spontaneous nucleation. Toward that end a

continuous filtration system and a seed protector were important modifications to the

growth system.

1.3.2.3 Growth of Biological Macromolecules
Determining the crystal structure of complex biological molecules such as DNA, pro-

teins, enzymes, etc., is important to both our understanding of animal and plant biology

and functionality and our ability to develop pharmaceutical products to combat various

illnesses that afflict these species. During the past century, protein crystallographers

have slowly worked out the structures of a myriad of important species using X-ray

diffraction methods. To accomplish this, researchers needed small, high-quality single

crystals of controlled composition.

The first recorded protein crystallization experiments were done by German scientist

F.L. Hunfeld in 1840. He prepared acicular crystals of earthworm hemoglobin by

pressing blood between glass slides and allowing it to slowly evaporate. Since then, many

techniques have been developed to prepare such crystals and the quality and size of the

crystals produced were essential to the success of the structural detail obtained. The

working out of the structures of myoglobin (1950) and hemoglobin (1955) using heavy

metals covalently bonded to the protein led to the Nobel Prize for their researchers.
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Another Nobel Prize winner who grew crystals in order to study their crystal struc-

tures was crystallographer Dorothy Crowfoot Hodgkin (1910–1994) [172]. As a child,

Hodgkin was influenced by books that described how to grow crystals and on the

interaction of X-rays with crystals. She won her prize in 1962 for her part in unraveling

the crystal structure of the Vitamin B-12 molecule [173]. She also, together with Kathleen

Lonsdale, grew crystals of penicillin and potassium and rubidium benzyl-penicillin. One

of her major accomplishments was deciphering the structure of insulin.

While the crystal growth of biological macromolecules was primarily the domain of

protein crystallographers and biologists during most of the century, in the 1980s the

effort expanded to include experts more familiar with the theoretical and practical

aspects of crystal growth (albeit small molecule materials). This came about in two

ways. First, NASA had received requests from the crystallography community to fund

protein crystal growth experiments in the low gravity environment of outer space. It

was believed that the quality and size might be enhanced under these conditions. At

the same time, NASA had been funding a variety of small molecule crystal growth

experiments in low gravity with some promising results. NASA decided to try to engage

some of the small molecule crystal growth community in the protein growth field.

Several such programs were funded, one of which was my group at Stanford University.

I immediately realized that we did not know enough about biological species to carry

out his program successfully, and so when I found out that protein crystal growers did

not have their own forum to discuss growth problems of mutual interest, I decided to

bring them to Stanford basically to teach us about the field. Together with Alex

McPherson [174], and with support from the American Association of Crystal Growth

and NASA, we organized the first international conference on protein crystal growth at

Stanford University in 1985. It not only brought together protein crystal growers for the

first time, it also included well-known scientists and engineers from the small molecule

crystal community. A total of 140 attendees were present. It was a somewhat conten-

tious meeting at first, but as it proceeded, both sides, who spoke quite a different

scientific language, came to understand more clearly the relevant issues, i.e., the

physics behind the growth process and the influence of various processing parameters

on the size and quality of the crystals produced. This international conference series

has been held regularly every since.

Crystals of proteins and other biological species can be grown by a number of

techniques including dialysis, sequential extraction, interface diffusion, vapor diffusion

(plates, hanging or sitting drops), via pH and temperature changes, evaporation and in

thermal (concentration) gradients. McPherson’s original book, Preparation and Analysis

of Protein Crystals [175], gives a comprehensive review of growth methods (see also

Ref. [176]). Purification of starting materials and the composition of the growth solu-

tions, like in most small molecule systems, are critically important to produce suitable

crystals for X-ray structural analysis. Most of the growths are done in small batches. To

establish the correct crystallizing conditions, a matrix approach is often used. Here,

small samples with a systematically varied concentration of protein, salting agent,
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solvent, etc., are placed within many cells and crystallized under the same conditions.

Regions in the matrix that contain crystals are then regrown on a more refined

compositional scale to enhance the results. In effect, this is the combinatorial chemistry

approach and one that lends itself to automation using robotics to meter out the desired

quantities into each cell. This latter approach was pioneered by Ward et al. [177] during

the mid-1980s and is in wide use today.

One final comment worthy of mentioning again (see Scientific Study section) is that

the large size of the growth units in biological macromolecules gave crystal growth

scientists a unique opportunity to dynamically study the morphology and kinetics of

step and ledge movement (including step bunching) during growth using the relatively

new atomic force microscopy technique. The first such in situ studies were carried out in

1995 by Land et al. [178] and Malkin et al. [179].

1.3.2.4 Growth from Gels
In 1896, the German chemist Raphael E. Liesegang slowly put a drop of silver nitrate-

water solution onto a thin gel layer containing potassium dichromate, and in doing so

discovered the precipitation ring phenomena named after him [180]. This initial dis-

covery stimulated a strong interest in understanding how the process worked. A gel is a

semisolid containing small pores of angstrom dimensions in which a variety of salts can

be dissolved. Early efforts on growing crystals in gels include the work of Hatschek [181]

in 1911 and Dreaper [182] in 1913. The former grew small crystals of gypsum by letting

sulfate ions diffuse in a gelatin containing a dilute solution of calcium chloride and the

latter lead chloride crystals in a test-tube-shaped vessel. The idea for growing crystals in

a gel media was stimulated by the research work of Fisher and Simons [183] in 1926.

They were intrigued by some earlier work with gold and copper crystals produced by the

reduction of their metal salts in a silica gel and the coincident occurrence of gold in

quartz veins. From their early experiments, they predicted that this method would be

“far-reaching” and this enthusiasm caught the attention of later researchers and became

an area of vigorous research, particularly from the early 1960s onward. The work by

Heinz Henisch’s group at Pennsylvania State University stimulated researchers around

the world and was summarized in his book Crystals in Gels [184].

The gel growth method has been used to prepare an impressively wide range of

inorganic and organic crystals, including proteins. Gels provide a medium where mass

transport is by the slow diffusion of suitable ions to a region where they can react during

crystallization. It is a convection-free method and the crystals, when nucleated under

carefully controlled conditions, are suspended from one another. These factors, plus the

near room-temperature growth conditions purportedly result in higher crystal quality.

Crystal dimensions can vary from micron to centimeter sizes depending on the system

under study, but typically they only reach mm sizes. Like other solution growth crystals,

they exhibit growth rate anisotropy and faceting. Typical gels used are silica hydrogel

(sodium metasilicate), agar (derived from seaweed) and gelatin; however, many other gel

compositions have been used as well. Crystals can be grown within gels by a number of
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techniques, including (1) chemical reaction, (2) complex dilution, (3) chemical reduction

and (4) solubility reduction. An extensive list of crystals grown is given in Ref. [185].

During the last decade or so, interest in gel growth has diminished along with the

number of publications.

1.3.2.5 Nonaqueous Solution Growth
Organic crystals are useful for a number of applications including semiconductors and

scintillator devices. Organic materials, like other substances, vary widely with respect to

their thermodynamic and physical properties. Therefore it is not surprising that a suit-

able crystal growth method will depend on the specific properties of the material in

question. They can be grown by a variety of common crystal growth techniques

including vapor, melt and solution methods. Organic materials that melt without

dissociation are prime candidates for melt growth methods. Others have been grown in

solution or by vapor phase techniques. Solution growth methods usually involve organic

solvents such as ethyl alcohol, acetone, hexane, and carbon tetrachloride. The tech-

niques used are similar to water solvent methods and include solvent evaporation, slow

cooling or heating, vapor diffusion and liquid–liquid diffusion and are nicely summa-

rized in Ref. [186]. One of the recent examples of solution growth using organic solvents

is the work at the Lawrence Livermore Laboratories on the growth of large, high-quality

crystals of trans-stilbene (C14H12) for fast neutron detectors [187]. The solvents used

were toluene or anisole, the latter preferred due to its lower evaporation rate. Melt

growth techniques did not yield large, high-quality crystals. Building crystallization

systems to withstand the organic solvents and by using the temperature reduction

method together with rotation, very high-quality crystals in dimensions up to four inches

have been produced.

1.3.2.6 High Temperature Solution (Flux) Growth

1.3.2.6.1 Bulk Crystals

As with other solution growth methods, the high temperature flux growth method also

relies on the careful control of the supersaturation and melt composition. Like the low

temperature processes, there are three general methods for controlling supersaturation:

(1) slow cooling, (2) evaporation and (3) transport in a concentration gradient. In its early

incarnations, the method was unseeded and crystals grew on the surface of the melt

where supersaturation is usually greatest (due to volatility) or on the crucible walls where

heterogeneous nucleation is favored. Later, the use of seeds or cooled probes helps

facilitate growth. Generally solvents are classified as common ion or noncommon ion

fluxes. An example of the former is the growth of (Ba,Sr)TiO3 from excess TiO2 melt [188],

and the latter, the growth of Ye3Fe5O12 from BaO–B2O3 based fluxes [189]. The BaO–B2O3

flux, while used early on, was not nearly as successful as PbO–B2O3 or PbO–PbF2–B2O3

fluxes that form ionic solutions. The 1975 book Crystal Growth from High Temperature

Solutions by Elwell and Scheel [190] still remains the most thorough, encyclopedic

treatment on the history, theory and methodology of flux growth.
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Crystal growth from high-temperature solutions probably began during the nine-

teenth century. One of the earliest documented studies (1823) was by Friedrich Wöhler

(1800–1882), a famous German chemist who used a flux-reaction technique to grow

sodium tungsten bronze (NaxWO3, where x is �1) crystals by passing H2 gas over a

Na2WO4 flux [191]. He is also famous for his synthesis of urea and the codiscovery of Be,

Si and silicon nitride. By mid-century, early experiments were of a similar nature and a

variety of materials were produced including CdS (using a CdCl2 solvent and H2S

reactant), alkaline earth and transition metal oxides, silicates and sapphire [190]. Later in

the century, more traditional flux methods were used to grow a variety of binary, ternary

and higher order compounds using chemically compatible solvents. Some examples

include Doelter [192], who in 1886 grew Ag2S by dissolving and recrystallizing it from

AgCl or SbCl3 melts. AlB12 crystals were grown from B2O3 melts by Wöhler and Deville in

1857 [193], and ruby was grown by Fremy and Feil in 1877 [194] using PbO as the flux

(which from the 1950s onward became a popular flux for growing oxide crystals for

optical applications). The results varied from laboratory to laboratory, and generally the

crystal sizes were on the small side. Over 100 flux-grown compounds and their solvent

phases are listed in Ref. [190]. In this time period this was probably the most important

method used for preparing crystals of non water-soluble materials.

Solvent requirements include (1) a suitable melting temperature and solubility in the

temperature range of interest, (2) a temperature coefficient of solubility, (3) low vola-

tilization (an issue with PbO and halide fluxes), (4) compatibility with available crucible

materials (reactivity and wettability) and (5) a relatively low viscosity. In the 1950s, the

flux growth method again became an important adjunct to other developing crystal

growth methods such as the Czochralski and Bridgman methods. It was particularly

important for compounds that melt incongruently, have high vapor pressures at their

melting temperatures, are refractory with excessive melting temperatures or have

destructive phase transformations, etc.

After World War II, the flux growth method gained interest commensurate with device

researchers’ interests in finding new and better materials for optical, electronic and

magnetic applications. The use of this method was very extensive during the 1950s

through about 1980 and took place in many laboratories around the world. As a result, it

is only possible to cite a few illustrative examples in this brief historical review to give a

sense of what growth activities were like during this period. In 1964, Edward Giess [195]

successfully prepared Cr:Al2O3 (ruby) using a PbF2 flux. Lead fluoride is quite volatile,

and so it was often combined with PbO with some added B2O3 to stabilize it. At about the

same time, Stanley Austerman [196] used the flux growth method to grow BeO crystals.

BeO substrates were of interest because of its very high thermal conductivity and

therefore its ability to remove heat from electronic devices. This would permit higher

power operation. Austerman grew BeO from a Li2MoO4-based flux. Later, Newkirk and

Smith [197] grew BeO from PbO-based fluxes. In Russia, V.A. Timofeeva’s group was very

active during this time period, studying the flux growth of many different oxide com-

pounds including Al2O3, Cr2O3, Fe2O3, rare earth oxides and the garnets Y3Fe5O12, (YIG)
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and Y3Al5O12 (YAG). In the latter case, she investigated how growth defects formed as a

function of the flux growth conditions and solvent composition [198].

Single crystal garnets (A3B5O12) were of great interest for laser, microwave and

ultrasonic applications. In 1958, Nielsen and Dearborn at Bell Laboratories were the first

to report on the flux growth of Y3Fe5O12 (YIG) [199]. Major improvements in size and

quality were achieved by adding impurities such as CaO to a PbF2–PbO–B2O3 flux. Van

Uitert et al. [200] worked on the growth of large, optical-quality Y3Al5O12 (YAG) crystals in

very large platinum crucibles. Remeika, whose extensive crystal growth activities also

included the flux growth of YIG, found that pure YIG crystals contained small amounts of

Fe4þ, which resulted in reduced optical quality [201]. By adding small additions of

tetravalent ions such as Si, Sn and Ge to the flux, the problem was eliminated. Some

examples of flux grown crystals are shown in Figure 1.12.

Flux growth methods vary from simply slow cooling a melt without seeding (self-

nucleation) to more complicated seeded growth techniques. The bottom cooling method

helps control nucleation in unseeded melts. A small supersaturated region is created in

the melt to limit the volume in which nucleation can take place. This can also be used to

prevent a seed from dissolving before it starts to grow (like in the heat exchanger method).

In 1955 and 1956, Reisman and Holtzberg were the first to prepare single crystals of

potassium niobate KNbO3 (KN) and potassium tantalate KTaO3 (KT). These compounds

were of interest for ferroelectric and piezoelectric applications [203]. A K2O flux was found

suitable for this purpose. KN in particular became a very important material for efficient

direct diode doubling and other NLO frequency conversion processes, such as generating

blue light from a Ti:Sapphire laser via critical phase matching. Over the years, large-scale

(A) (B)

FIGURE 1.12 (A) A photograph of a large (3.5� 3� 2.5 cm), flux-grown crystal of GdAlO3. It contained large
inclusion-free regions. A PbO–PbF2–B2O3 flux containing some other minor additives was used. The large size and
quality is attributed to ACRT stirring method [202]. (B) Photograph of some highly facetted acicular crystals of
CdGeAs2 grown from a Bi flux (author). Some are solid, others contain a core of solidified Bi solvent. Strong
growth rate anisotropy is evident.
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crystal growth methods capable of producing 100 gm crystals were developed [204,205].

While the K2O flux was still used, top seeding was added later to control nucleation and

growth conditions. This seeding technique, now known as the top-seeded solution growth

method (TSSG), became a very important flux growth method. The first description of this

method was in a 1958 paper by Miller [206]. He used a seed crystal mounted on a rod that

rotated in a reciprocating fashion. Without pulling, he grew KN crystals up to 15 gm from a

charge containing K2CO3 and Nb2O5. He also used an electrical circuit between the cru-

cible and seed to determine the exact moment when the seed touched the melt. The

method was used later by Linares for YIG growth [207] and at MIT by Belruss et al. [208]

for the growth of SrTiO3 and BaTiO3 crystals frommelts containing excess TiO2 and GeO2.

More recently, the method has been used for growing beta barium borate crystals

(b-BaB2O4, BBO) from melts containing some Na2O [209] or other solvents to lower the hε

viscosity and to permit growth at temperatures below the a–b phase transformation

temperature. BBO and other similar compounds like LiB3O5 (LBO) and CsLiB6O10 (CLBO)

are very useful for optical applications in the visible and ultraviolet regions.

As seen with aqueous solution growth, stirring during growth is very beneficial to the

enhancement of crystal quality and growth rates. In addition to top seeding with rotation

that provides some fluid flow, other methods have been devised. One useful approach is

the accelerated crucible rotation technique (ACRT). It was first used by Nelson and

Remeika [210] in 1964 for pregrowth stirring. Scheel and Schultz-Dubois first demon-

strated its usefulness during growth in 1971 [104]. The method is very helpful with

growth from volatile melts that need to be grown in sealed crucibles. No moving parts,

like stirring rods, need to be placed in the melt. The method relies on acceleration and

deceleration of the crucible, thereby decoupling the fluids movement from the crucible’s

trajectory in a periodic fashion. Two major flow mechanisms, spiral shearing distortion

and Ekman-layer flow, are operative during acceleration and deceleration. It has been

found to limit nucleation and to help produce large, inclusion-free crystals. It was first

applied to the growth of GdAlO3 crystals from a PbO–PbF2–B2O3 flux and yielded the

largest such crystal to date [202].

One other method worth mentioning was that devised by Tolksdorf [211] at the

Phillips Central Laboratories in Hamburg. In the past, one of the problems with growing

YIG crystals from the volatile PbO–PbF2 flux was that it redissolves below 950 �C. To
prevent this, Nielsen [212] poured off the flux at 1040 �C outside the furnace.

Unfortunately, the crystals cracked due to thermal shock. An improvement on this

method was by Grodkiewicz, Dearborn and Van Uitert [213]. They punctured the bottom

of their large platinum crucibles draining off the melt. This was expensive, as the flux

material could not be reused. In Tolksdorf’s method he used a sealed crucible that could

be rotated on it axis. It was half filled with a PbO/PbF2/YIG melt and, after the crystals

were grown by slow cooling, the crucible was spun 180� separating the crystals from the

melt. In a similar way, he could mount a seed on the empty side, and when the melt was

saturated, could rotate the seed into the melt, slow cool to initiate growth onto the seed,

and when done, rotate the crucible back to its original position to remove the flux from
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the crystal. Toldsdorf’s method and apparatus was later used to grow KTiOPO4 (KTP)

crystals (an important nonlinear optical material) using the flux method.

1.3.2.6.2 Thin Film Liquid Phase Epitaxy

In addition to bulk crystal growth, high-temperature solutions have also been used to

grow thin films of semiconductors, oxides (magnetic and electro-optic) and various

other compounds. The method is known as liquid phase epitaxy (LPE). The LPE method

involves the crystallization of a single crystal or crystallographically oriented layer on a

substrate in contact with a liquid phase. The substrate (usually a single crystal wafer)

may be either of the same base composition (homoepitaxy) or a different composition

(heteroepitaxy). The field of epitaxial growth extends well beyond the LPE method to

include numerous vapor phase depositions techniques to be discussed later. While these

other methods are very important, the LPE has certain advantages including (1) greater

crystalline perfection due to the near equilibrium growth conditions and use of a near

perfect substrate template, (2) better stoichiometry control, (3) higher growth rates due

to higher solutes concentrations and (4) lower cost compared to other methods. A

comprehensive review of LPE field is given in Ref. [214].

Epitaxial deposits have been found in various natural mineral formations. One

example is rutile crystals growing on hematite facets [215]. In 1836, Moritz Frankenheim

(1801–1869), a German physicist, was the first of many researchers to observe epitaxial

growth in the laboratory when he produced oriented crystals of sodium nitrate on a

cleaved surface of calcite crystals [216]. In 1906 Baker did some experiments on the

orientation of crystals growing from droplets crystallizing on cleaved surfaces [217]. In

1928, Royer followed this line of research [218] and using X-ray diffraction analysis, was

the first to describe the requirements for lattice matching between the film and substrate

to achieve epitaxy (an orientation relationship between the layer and the substrate).

In the 1960s, attention turned to thin film semiconductor devices. At the RCA

Laboratories, H. Nelson [219] was the first to develop an effective LPEmethod for growing

epilayers of GaAs on GaAs substrates (homoepitaxy). He used a horizontal graphite boat

systemwith a GaAsþ Snmelt at one end.When the substrate, located at the other endwas

at 640 �C, the boat was tilted and the melt flowed over the substrate. After cooling for a

period of time the melt was poured back off, leaving the substrate covered by a single

crystal layer ofGaAs.Other LPE techniques involveddipping substrates (either vertically or

horizontally) into an appropriate solution and then, after deposition, withdrawing them

back out. Substrate rotationhas also beenused to achieve better uniformity. By using these

various methods p-n junctions could be produced using doped layers. These epilayers

were used in a number of important device applications including GaAs [220] and

AlxGa(1–x)As [221] lasers and the extensive commercial production of light emitting diodes

(LED’s). The LPE method has also been used to prepare thin film structures from silicon,

germanium and their solid solutions, II–VI compounds such as ZnSe, CdTe, Hg1–x CdxTe

(MCT), SiC, the III–V nitrides (AlN and GaN) and many other alloy compositions [214]. As

with any flux growth method, the solvents have to be tailored to the specific film
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composition to be grown and the substrate and its orientation carefully chosen. The

requirement for high-quality substrates for both LPE and vapor phase epitaxy have kept

the bulk crystal growth industry very active.

In addition to semiconductor research, various applications for magnetic garnet

crystals (e.g., Y3Fe5O12 and Ca2xBi3–2xFe5–x VxO12) were developing during this same time

period. LPE became an important method for the preparation of various types of mi-

crowave, magneto-optic and bubble memory thin film devices. One of the first attempts

to use the LPE method for YIG film deposition on garnet substrates was in 1965 by

Linares et al. [222]. In 1968 Linares [223] grew high quality YIG films on GGG using the

tilting boat method and a lead borate flux. Magnetic bubble memory thin film devices

became an important research activity during the 1970s [224]. These thin film structures

were once expected to replace Si-based memory chips and various groups extensively

studied both their preparation and properties. Magnetic garnet single crystal LPE films

were typically grown from PbO-B2O3 fluxes. The substrates used were nonmagnetic

Gd3Ga5O12 (GGG). It is a very good lattice match with YIG. Various techniques such as

substrate dipping and rotation during growth were studied. Withdrawal after growth

could be problematic due to cracking and film pealing. The process gave high growth

rates and crystalline perfection, film thickness uniformity, and compositional homoge-

neity. Over time, ever more complex film compositions evolved to enhance their prop-

erties [225,226]. The technology reached its zenith with the growth of bismuth-doped

rare earth iron garnet thick films up to one-half mm thick from Bi2O3–PbO–B2O3 fluxes

onto large lattice parameter-matched Ca–Mg–Zr substituted GGG substrates.

In 1986, Bednorz and Müller discovered Hi–Tc superconductivity while working at the

IBM research laboratories near Zurich [227]. The ceramic material they produced was an

oxygen-deficient Ba-doped Lanthanum cuprate (La2–xBaxCuO4), a perovskite-like com-

pound that exhibited zero electrical resistance at 35 K, twice the highest transition

temperature achieved to date. This set off a whirlwind of research activities to find other

cuprates with even higher Tc’s including YBa2Cu3O7x (92 K) followed by

Bi2Sr2Can�1CunO4þ2nþx (n¼ 1, 2 and 3) with a Tc between 85 and 110 K. Thallium- and

mercury-based cuprates had even high Tc’s, the latter a record at 134 K. At this point a

great effort was made to grow single crystals of these compounds for physical property

studies and to enhance their properties. Due to the complex nature of the phase equi-

libria in these systems, crystal growth was very complicated, making difficult the prep-

aration of large, high-quality single crystals. All manner of bulk and film deposition

methods were tried with varying success. In Scheel et al. [228], the LPE method was used

to prepare very flat, high quality epitaxial layers of YBa2Cu3O7–x on NdGaO3 substrates.

Step heights were between 1.2 and 7.2 nm and did not exhibit the spiral islands found

using vapor phase deposition techniques.

1.3.2.7 Hydrothermal Growth
Hydrothermal growth is a solution growth method operated at modest temperatures and

elevated pressures. Byrappa and Yoshimura [229] authored an exhaustive treatise on the
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history and technology behind the hydrothermal growth process. The subject has also

been discussed to a lesser extent in numerous other books and journal articles, for

example [230]. The process involves the controlled growth of crystals in an autoclave (see

Figure 1.13(A)) onto seeds immersed in a water solution containing the nutrient and

usually a mineralizing agent. The driving force for growth is the solubility difference

generated by a temperature gradient. The method has several advantages. Growth takes

place below the material’s melting temperature and often below a destructive phase

transformation (e.g., a-quartz, the low-temperature polymorph of SiO2). Since the

growth process takes place in a sealed system, the atmosphere can be modified to suit

the material being grown (i.e., maintaining an oxidizing or reducing environment). In

addition, the method generally produces less stress on the crystal and can lead to an

increased crystalline perfection. Another attractive feature of hydrothermal growth is

that the growth rates are relatively fast compared to other solution growth methods.

High-pressure vessels can be made of various materials depending on the temperature

and pressures required.

Hydrothermal growth’s principal use has been for the commercial growth of large,

highly perfect (dislocation-free) a-quartz crystals for piezoelectric applications. A rack of

crystals produced from one large-scale commercial autoclave is shown in Figure 1.13(B).

Piezoelectric materials such as quartz generate an electrical polarization when subjected

(A) (B)
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seeds
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FIGURE 1.13 (A) A schematic diagram of a hydrothermal quartz autoclave. (B) The commercial harvesting of
quartz crystals at AT&T’s factory in Massachusetts [30].
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to a mechanical stress. The hydrothermal method has also been used to successfully

grow a variety of crystals of many different classes of compounds from simple binary

compounds, such as ZnO, ZnS and GaN, to more complex compounds, such as the

phosphates (AlPO4, and KTiOPO4), calcite, hydroxyapatite, zeolites, silicates, metal bo-

rates, vanadates, tungstates, and rare earth garnets (e.g., YIG and YAG).

Geologists trying to understand how crystals grew in nature (in an aqueous media

under high pressures and temperatures) were the first to carry out hydrothermal phase

equilibria studies. Experiments have been traced back to the twelfth century. Their main

interest was in phase relationships rather than the growth of large crystals. One of the

first published papers on hydrothermal crystallization was by Karl Emil von Schafhäutl

in 1845. He prepared microcrystals of quartz. A short time later, in 1848, Robert Bunsen

prepared some of the alkaline earth carbonates. The first attempt to grow large crystals

hydrothermally was by Henri De Sénarmont in 1851 [231]. He introduced the use of seed

plates. It was one of his many studies on the hydrothermal crystallization of minerals.

Fifty years later, Giorgi Spezia (1905) published one of the seminal papers on the seeded

growth of a-quartz [232]. These early research efforts in Europe eventually formed the

basis of the commercial quartz crystal industry.

The modern synthetic quartz crystal growth industry arose during World War II.

Supplies of natural Brazilian quartz were not getting to the U.S. due to German sub-

marine attacks on allied shipping. Ironically, one of the applications for quartz crystals

was for submarine detection. Piezoelectric materials are needed in single crystal form to

take advantage of their anisotropic properties. In oscillators for example, the frequency

depends on crystal orientation and devices require precisely oriented parts. Quartz is

also used for watches and clocks for precision time management and in signal pro-

cessing applications.

Major developments in the hydrothermal growth technology were centered on the

growth of quartz crystals at the Bell Telephone Laboratories and the Western Electric

Company during the 1950s. Walker and Buehler [233] developed a hydrothermal growth

method capable of producing very large crystals. They used a welded steel autoclave that

was capable of temperatures of 450
�
C and pressures up to 3000 atm. Improvements in

autoclave designs were based on some early high pressure studies by Bridgman. Over the

following years, improvements were made by the Western Electric Company that led to

its successful commercialization. It was in large part due to the efforts of Laudise and

Sullivan [234]. Systematic kinetic studies by Laudise [235] led to significant improve-

ments in crystal growth rates. An effort to improve the resonance of quartz oscillators

was undertaken by Bell Laboratory scientists and other researchers. Lithium and nitrite

ions added to the growth solutions led to improved mechanical Q values [30].

Important hydrothermal growth parameters include (1) operating temperature,

(2) temperature gradient, (3) pressure, (4) percent fill, (5) impurity and mineralizer

concentration, and (6) seed orientation and surface area. Using quartz as an example,

the autoclave is placed in a two-zone furnace with the upper section, containing the

oriented seed plates, being cooler than the bottom in which the nutrient, SiO2, is placed.
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A perforated metal disc serves as a baffle between the two zones. The vessel is then filled

with solvent to a desired level. The nutrient dissolves in the hot region of the furnace and

the upper becomes supersaturated and deposits crystal layers on the seed plates.

Convective currents generated by the temperature gradients help move saturated solu-

tions to the seed chamber. For commercial quartz production (see Figure 1.13(B) above),

a typical set of conditions might include a hot zone temperature of 400 �C, a seed zone

temperature of 360 �C, a fill factor of 80% and a solution containing 1.0 M NaOH, a baffle

opening of 5% and a pressure of 21 kpsi (144 MPa) [230].

An important more recent application of hydrothermal growth has been in the

preparation of ZnO crystals. ZnO is a transparent, wide bandgap semiconductor (n- or

p-type when doped) with a range of useful properties. It is piezoelectric, ferroelectric,

exhibits room temperature ferromagnetism, has a large magneto-optic response, etc. It is

useful for chemical sensors, catalysis and optoelectronic applications. When doped, its

conductivity can vary from insulating to metallic. Bulk crystals, thin films and various

nanostructures can be produced using this method. Nanostructures, in the form of

platelets, rods, columns, and complex bilayer (column-to-rod), have recently been

prepared using hydrothermal methods [236–239].

1.3.2.8 Electrochemical Crystal Growth
Another useful solution growth technology is electrodeposition. It can be carried out in

both aqueous and molten salts solutions, and both bulk and thin film single crystals can

be grown in this way. The process involves introducing an anode and cathode into either

type of solution (of appropriate composition) and applying a suitable voltage across the

cell. The driving force for crystallization is the passage of current between the electrodes.

The electrode can be a single crystal substrate (wafer or seed), a wire or a more complex

structure. Electrodeposition has recently become an attractive method for use in pre-

paring nano-, bio- and micro-structures. It can be used to make functional materials

with the aid of three-dimensional masks and scaled up from the deposition of a few

atoms to thick deposits.

The first use of electrolysis in chemical processing is attributed to the famous English

chemist Sir Humphry Davy (1778–1829). Davy, who was responsible for the discovery of

several alkali and alkaline earth metals, separated K from KOH in 1807, the first metal

isolated by electrolysis. It has been used since then for the synthesis of a variety of

materials. The Hall process, developed in the 1930s for separating Al metal from bauxite

(dissolved in a molten salt), is one of its most important industrial applications of

electrodeposition. It has also been used to produce many refractory compounds such as

borides, phosphides, silicides and carbides. The application of this technology to crystal

growth had a late start, surprising since Kunnmann [240] observed that “materials

electrochemically precipitated from fused melts can almost always be obtained in the

form of reasonably large crystal when sufficiently low current densities are employed.”

The potential advantages of electrocrystallization for crystal growth include

(1) growth can be accurately controlled solely by electrochemical parameters (current
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density and electric potential), (2) the process is isothermal (thermal gradients and

temperature ramps are unnecessary, (3) its insensitivity to temperature fluctuations,

(4) low growth temperatures minimize thermal decomposition and stresses, as well as

vapor losses, (5) purification can be achieved electrochemically and (6) growth features

can be studied quantitatively by varying electrochemical parameters [241]. On the other

hand, the material to be grown and substrate have to be electrically conducting, and the

growth rates are typically slow due to the generally low solute concentrations in the

solution. An interesting hybrid method, developed by DeMattei et al. [242], combined

molten salt electrodeposition with the Czochralski pulling technique. They demon-

strated the method by growing long [110] oriented crystals of sodium tungsten bronze

from [110] oriented seed crystals.

Silicon was first electrodeposited in 1854 by Claire-Deville [243]. He used a NaAlCl4–Si

molten salt solution. This work was followed a decade later by Ullik [244] who used a

K2SiF6–KF flux. Cohen and Huggins [245], using a similar flux, were the first to produce

coherent epitaxial layers of Si on Si substrates. Metal substrates yielded polycrystalline

films. Other semiconductors electrodeposited from molten salt fluxes include the III–V

compounds GaP, GaAs and InP. A review of molten salt electrochemical crystal growth

was given by Feigelson in 1980 [246].

In the 1990s, an active research area developed around the growth of heteroepitaxial

thin films of chalcogenide semiconductors using the low temperature aqueous solution

electrodeposition method [247]. Large-scale solar cells were made from electrodeposited

polycrystalline CdTe films [248]. Epitaxial films of CdTe can be electroplated from so-

lutions containing cadmium sulfate and TeO2 onto an InP substrate [249]. In addition,

epitaxial films of PbS [250], CdS [251], ZnSe [252] and other related compounds have

been electrodeposited. Schlesinger et al. [253] presented a comprehensive review on the

subject of semiconductor electrodeposition.

As mentioned above, ZnO is an important and versatile material of great interest to

the research and industrial communities. The electrodeposition of ZnO was first

demonstrated by Izaki et al. [254] and later Peulon et al. [255]. The growth of oriented

rods and flat, disc-shaped crystals were described in Refs. [256–258]. Xu et al. [259]

electrodeposited well-defined nano- and micro-structures onto to indium-doped tin

oxide substrates using low molecular weight salts in the solutions to control crystal

shape. They produced hexagonally shaped tapered ZnO rods and platelets and rhom-

bohedral rods by using amine and other inorganic ions in their solutions.

1.3.3 Vapor Growth

1.3.3.1 Introduction
Vapor phase crystal growth methods have been used extensively for the preparation of

both bulk crystals and single crystal thin films. The latter, called vapor-phase epitaxy, are

usually deposited on single crystal substrates and have found their greatest utility in the

preparation of films and patterned nanostructures for electronic and electro-optic devices.
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Important film deposition techniques include OMVPE, MBE, sputtering, etc. In most of

these techniques the crystalline lattice of the film needs to be tailored to the substrate

upon which it is deposited. Their properties depend not only on their composition, but

also on lattice matching between the film and substrate and the crystalline defects that

might arise from any misorientation. The substrates are typically thin, crystallographically

oriented wafers cut from bulk crystals usually grown by melt growth techniques. The

process can be homoepitaxial (growth on a substrate of the same material) or hetero-

epitaxial (growth on a different substrate material). Some common examples being Si

integrated circuits, GaAs LED devices and more recently GaN on sapphire for lighting

applications. Artificial epitaxy, to be discussed later, involves the creation of a geometric

pattern (containing some orientational relationship with the film lattice) on a substrate by

etching or deposition. The base substrate can be an amorphous material like glass.

Vapor growth technology does not have as long a history as other crystal growth

methods. Most research and development work began mainly from 1960 onward.

However, it has been traced back a bit further to the German chemist Robert Bunsen

(1811–1899) [260]. In 1852, Bunsen observed that Fe2O3 crystals formed together with

HCl in volcanic gases through a reaction between ferric chloride and water vapor, i.e., a

chemical vapor deposition (CVD) process [261]. Not long afterward, in 1861, French

chemist Henri Claire-Deville (1818–1881) became the first person to put a CVD process

to use preparing artificial oxide minerals of magnesium, titanium and tin [262].

The first commercial CVD process was inaugurated in 1880 for the fabrication of

filaments for the new incandescent lamp industry [263]. In 1914, F.C. Brown, studied the

crystal habits of Se crystals deposited by sublimation of its vapor in a closed tube under

either vacuum or atmospheric pressure [264]. He held the Se at 270
�
C for up to a week

and the crystals formed along the tube where the temperature was lower. The largest

crystals always formed at the higher condensation temperatures (w210 �C). During the

1920s, Fritz Koref and immediately afterward Anton Eduard Van Arkel used WCl4 to

deposit W on single crystal tungsten wires. Koref [265] used a hydrogen reduction

method to dissociate WCl4 gas near the wire, which was heated to between 110 and

1000 �C. This led to a W deposit containing oriented grains. In Van Arkel’s process [266],

H2 was not needed as the process was operated at much higher temperatures

(1600–1700 �C). In 1921, research began on growing metal crystals by sublimation. Gross

[267] and Gross and Volmer [268] grew leaflet crystals of Zn and Cd by directing vapors

onto cool glass plates. This work led Volmer to his adsorption-layer theory discussed

earlier. In 1932 Straumanis [269] grew Mg, Zn, and Cd crystals by a similar technique.

The metals were held at temperatures somewhat below their melting points.

Three basic techniques have been used to grow crystals from the vapor phase:

(1) direct sublimation or evaporation of material followed by condensation, (2) chemical

transport reaction and (3) chemical vapor deposition. Chemical thermodynamics (shifts

in vapor–solid equilibrium) and mass transport are some basic differentiating features

between these methods. The process relies on mass transport of species from the source

through the gas phase to its incorporation onto the crystal surface. The sublimation and
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chemical vapor deposition methods have been operated in either an open system, using

an inert carrier gas, or in a closed growth chamber containing vacuum or higher gas

pressures. The chemical vapor deposition method, most often used in thin film epitaxy,

involves the decomposition of molecular species (precursors). The chemical transport

reaction method, a reversible process, converts nonvolatile species into volatile ones

prior to crystallization in closed systems.

Crystals can usually be grown by vapor growth techniques at lower temperatures than

from melts of the same composition. Vapor phase methods are especially useful when a

compound is difficult to grow because of a high vapor pressure, dissociation prior to

melting, etc., or where a thin film is required. While these methods are used more

extensively to grow epitaxial thin films, bulk crystals of a wide variety of elements and

compounds (inorganic and organic) have also been prepared in useful sizes. Seeds are

often used but many studies have involved heterogeneous nucleation on the walls of an

ampoule. Vapor grown bulk crystals have been particularly useful for the preparation of

small crystals for physical property studies, and in a few cases larger crystals, such as SiC

and CdS, have found commercial markets. Crystals prepared by vapor techniques

include halides, chalcogenides, oxides, pnictides and organic compounds. Growth rates

vary for different materials systems and process details, but generally tend to be slower

than melt growth methods. Comprehensive reviews of vapor growth theory and methods

have been given by Kaldis [270], Faktor and Garrett [271], and Wilke [272].

1.3.3.2 Bulk Growth

1.3.3.2.1 Physical Vapor Transport

A volatile compound that congruently sublimes (or evaporates from the liquid state) can

form crystals when it condenses in a cooler region of a furnace. In its simplest form, a

closed glass ampoule containing the source at one end is placed in a temperature

gradient. The source sublimes at a selected temperature and condenses at the cooler end

either as self-nucleated crystallites or on a seed crystal. When no seed is used, many

nuclei usually form and some may outgrow the others due their temperature of depo-

sition or their orientation with respect to the heat flow in the system. In 1954, Pizzarello

[273] made an important modification to the method that helped improve crystal size

and quality. It involved translating the ampoule in the furnace gradient and has some

similarities to zone melting with the source and crystal separated by the gas phase rather

than the melt. The amount of vaporization at the source end is balanced by amount

deposited on the crystal [274]. This “zonal sublimation method” has been used to grow

doped crystals of Cd and Zn chalcogenides (see Ref. [275]). Both vertical and horizontal

methods have evolved. By controlling the nutrient flux toward the growth interface,

seeded growth is possible. This was demonstrated both by Fochs in 1960 with CdS [276]

and by Prior in 1961 with PbSe [277].

Some refractory materials such as SiC and ZnO require high temperatures to

achieve useful vapor pressures. SiC and ZnO are important wide bandgap, high-

temperature/high-voltage semiconductors. Large crystals are sought-after for the
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fabrication of substrates. Since melt growth would require pressures of 100,000 atm

and 3200 �C, other growth methods were sought. Various novel growth chambers

and heating methods were developed for the vapor growth of these crystals. One of

the earliest was by Frisch [278] in 1935. He grew ZnO needles by sublimation of a

ZnO pellet heated to very high temperatures. In 1955, Jan Anthony Lely [279]

developed a sublimation process for growing SiC single crystals that forms the basis

of all commercial processes today. In his method, silicon carbide was placed in a

graphite crucible and heated to 2500
�
C in an argon atmosphere. Large hexagonal

platelets of 6H–SiC formed. The crystals were of different sizes up to 2� 2 cm2 and

were of very high quality. In 1978, Tairov and Tsverkov [280] modified the process

to include seeding. They placed the source at the bottom of the reactor and the seed

at the top. Growth rates of 0.5–1 mm/h were achieved. Further modifications have

been made since then, and now crystals greater than 50 cm in diameter can be

produced. The formation of defects in these crystals, in particular micro-pipes has

been a challenging problem [281]. Much effort has gone into their reduction or

elimination.

Large crystals of organic compounds such as urea have also been grown by subli-

mation techniques [282]. However, the formation of gaseous byproducts such as

ammonia during growth were problematic. To remove these unwanted species, which

either slowed down or stopped the growth process, a vacuum pumped effusion hole was

incorporated into the ampoule. Large cm-size high-optical-quality boules of urea were

grown on [001] seeds at rates of 2.5 mm/day (by comparison growth from methanol

solutions was 0.3 mm/day). The reactor used for the PVT growth of large urea crystals is

shown in Figure 1.14.

1.3.3.2.2 Chemical Transport Reaction

When a material is nonvolatile under convenient processing conditions, it can often be

chemically converted into a volatile species. Crystal growth can then proceed in a

reversible process. This method is called the chemical transport reaction method (CRT).

For example, ZnSe crystals can be grown in a sealed ampoule in the presence of a small

amount of I2 vapor (the transport medium). The ZnSe charge at the hotter end will react

to form ZnI2 (v)þ Se (v). These gaseous species will then be transported to the cooler end

reforming ZnSe on the growing crystal and thereby releasing I2. The freed iodine can

then react with more ZnSe source material and return to the growth zone. In this case,

for deposition at the cold end, the required conditions are that the enthalpy (DH) and

entropy (DS) are <0. For materials where DH and DS are >0 deposition takes place in the

hot zone.

The chemical transport method is based upon the pioneering work of Van Arkel

and de Boer [283]. In 1925, they prepared the refractory metals titanium, hafnium and

thorium using this iodine transport technique with deposition taking place on a heated

wire. By 1963, the field had expanded to encompass many different materials using a

variety of transporting agents. Harold Schafer’s book entitled Chemical Transport
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Reactions [284] has been an invaluable reference source for workers in the field

since 1964.

Some important process requirements include (1) a chemical reaction that produces

only one stable phase, (2) a free energy close to zero to facilitate reversibility, (3) a non-

zero DHo and (4) the ability to control nucleation and the growth kinetics via crystalli-

zation zone temperature, temperature gradients, etc. Dopants have been added by

incorporating volatile species of the desired element(s) into the growth ampoule. The

choice of transporting agent is based on the thermodynamic propensity for the volatile

species to form and dissociate in a useful temperature range. Sometimes additional

species such as CO are added to the ampoule to facilitate the desired reaction. Sagal

showed in 1966 that the growth of Y2O3 crystals solely by halogen transport was not

favored due to relatively high values of DGo (near 60 kcal/mol for the Cl2 gas and higher

for Br2 and I2) [285]. However, by adding CO to Br the DGo value could be shifted closer

to zero. The reaction therefore would be:

Y2O3ðsÞ þ 3COðgÞ þ 3Br2ðgÞ#2YBr3ðgÞ þ 3CO2ðgÞ (1.5)

During the 1950s and 1960s, considerable research work was in progress using the

CTR method. Metals such as iron, cobalt, copper and nickel crystals were produced, as

well as classical semiconductors such as silicon, gallium arsenide and gallium phos-

phide. In addition, various oxide crystals such as alumina, beryllia and silica were grown.
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FIGURE 1.14 An example of a physical vapor transport bulk crystal growth apparatus. This growth system was
used for growing urea crystals [282].
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1.3.3.2.3 Chemical Vapor Deposition

The same basic chemical transport process can be use in open systems; however, the

process is not reversible. This method is typically known as chemical vapor deposition

(CVD). Its most important application by far is the growth of epitaxial thin films to be

discussed later. Bulk crystals or thin oriented films are grown by reacting and/or

decomposing one or more volatile precursors in the vapor state and depositing them

onto the crystal or substrate. These sources can be in many forms; gases, liquids, so-

lutions and aerosols. Any unwanted reaction byproducts can exit the system in the gas

stream. Very pure crystals can be produced by this method depending on the type of

precursor used. Perhaps the earliest example of this technique was reported by Lorenz in

1891 [286]. He reacted Cd vapor with H2S gas to form fairly large crystals of CdS. In 1947,

Frerichs [287] modified the technique by using a slow stream of H2 gas to drive the H2S

over Cd metal that was heated to 800–1000 �C. His open tube system produced crystals

up to 2 cm2. An extensive discussion of bulk crystal growth from the vapor phase is given

by Schönherr [288]. He provides many useful and practical details including the various

methods used, ampoule designs and furnace systems, etc. Bulk growths can be grown in

vertical or horizontal configurations or any angle inbetween. Translating the growth

chamber or ampoule in a temperature gradient is an often-used procedure. The reactors

can be operated at pressures ranging from atmospheric to ultra-high vacuum. Materials

produced by the CVD method include refractory metals (such as tungsten), semi-

conductors (such as silicon and III-V compounds), oxides (such as SiO2), silicon carbide,

nitride and oxynitride, and various carbon structures, including diamond as discussed

later. Since the late 1990s, it has found use in the preparation of nanocrystals, one

important example being carbon nanotubes and fibers. The nanotubes can be produced

by a number of methods including the catalytic decomposition method [289], a CVD

technique using metal catalysts together with hydrocarbon precursors. Depending on

the details of the process, i.e., the metal catalysts used, etc., aligned single- or multi-

walled nanotubes can be produced.

1.3.3.3 Vapor Phase Epitaxy

1.3.3.3.1 Organometallic Vapor Phase Epitaxy

Organometallic vapor phase epitaxy (OMVPE aka MOCVD) is a subset of the more

general Chemical Vapor Deposition (CVD) method. It uses at least one organometallic

precursor (OM) but may also be combined with other types of volatile species to produce

films of many different II-VI and III-V semiconductor compounds and their solid solu-

tions. Like other methods, there are lots of variations in technique. One of the earliest

recorded descriptions of the OMVPE process was in Scott et al.’s little known 1957

United Kingdom patent [290]. In it, he describes the deposition of InSb in a cold wall

reactor by the pyrolysis of a Group III alkyl (i.e., triethylindium) and a Group V hydride

(i.e., stibine-SbH3). The second, in a 1965 U.S. patent, described the pyrolysis of a Group

III alkyl (i.e., triethylindium or trimethylgallium) and a Group V reactant such as arsine

to produce a III–V semiconductor [291]. However, the first published work in the
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scientific literature was in 1969 in a paper by Harold Manasevit and W. Simpson [292].

They grew single crystal Ga-group V compounds on insulating, GaAs, GaP or Ge single

crystal substrates. Either trimethylgallium or triethylgalllium in the presence of arsine,

phosphine and arsine-phosphine or arsine-stibine gas phases was used in these exper-

iments. In 2004, Manasevit, now considered one of the founders of OMVPE technology,

published his recollections on how the OMVPE field developed [293]. A schematic

drawing of his apparatus is shown in Figure 1.15. Along with his colleagues at the

Autonetics Division of North American Rockwell, Manasevit published numerous other

papers on this topic. In 1975, Seki et al. [294] produced the first important device quality

(i.e., very high mobility) GaAs layers. This advancement was due to the enhanced purity

and crystalline perfection of the films. Other major technological advancements fol-

lowed soon afterward.

One of the important virtues of the OMVPE method is that it is can be used to grow

epitaxial semiconductor alloy films. In 1977, Dupuis and Dapkus [295] grew low oxygen

and carbon films of AlGaAs by the OMVPE method. This material had excellent minority

carrier lifetimes making them useful for light-emitting diode devices. In 1978, Gerald

Stringfellow, from the Hewlet-Packard Laboratories, both proposed [296] and demon-

strated [297] that with OMVPE one could grow very bright LEDs from AlInP and AlGaInP

epitaxial films.

In the 1960s, Isamu Akasaki’s group at Nagoya University started working on

GaN-based LED’s devices. In 1989, his work culminated in the invention of a bright

gallium nitride p-n junction by using the low temperature OMVPE method with an AlN

buffer layer on sapphire [298]. A major step was in creating p-type GaN using magne-

sium as the dopant and n-type with silicon. In 1994, Nakamura et al. [299] grew the first

very bright InGaN/AlGaN double-heterostructure blue-light-emitting diodes also on

FIGURE 1.15 Schematic drawing of Manasevit’s MOCVD deposition system [293].
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sapphire substrates using a two-flow OMVPE method. The work of Nakamura’s group at

the Nichea Chemical Company, as summarized in Ref. [300], was a pivotal step in the

development of the nowmultibillion dollar industry centered on the fabrication of highly

efficient GaN-based/sapphire epitaxial films for optoelectronic devices. OMVPE devel-

opment since then has been continuous with emphasis not only on improving the

quality and properties of the epilayers, but also the quality and cost of the sapphire

substrates. In an example of a more recent work (2002), Liu et al. [301] grew GaN single

crystal epitaxial layers on sapphire in a three-step process using the low-pressure

OMVPE method together with an AlN buffer layer and via atomic layer epitaxy (to be

discussed later).

Stringfellow reviewed the development and status of the OMVPE method several

times (e.g., Refs [297,302]). In the latter, he commented “One reason that OMVPE is so

widely used today is that it is the most versatile technique for the growth of materials and

structures for a wide range of devices.”

1.3.3.3.2 Molecular Beam Epitaxy (MBE)

Molecular beam epitaxy (MBE) is a process in which a thin single crystal layer is

deposited on a single crystal substrate using atomic or molecular beams generated in

Knudsen cells contained in an ultra-high vacuum chamber. The source beams can be

created in a number of ways, including (1) melting and evaporation of solids or liquids

contained in crucibles (2) solid sublimation from a crucible, (3) ion beam bombardment,

and (4) cracking various chemical species, etc. Its greatest use is for making multilayer

semiconductor device structures. Details of the MBE method, as well as other bulk and

thin film growth techniques used to prepare compound semiconductors, are given in

Ref. [303].

One of the earliest published studies on the use of the MBE method for single crystal

film growth was that of Joyce and Bradley [304]. In the mid-1960s they grew homo-

epitaxial layers of Si from SiH4. The growth rates were very low comparative to other Si

film methods and therefore not competitive in a market that needed 10 um-thick films. A

few years later, J. Davey and T. Pankey [305] from the Naval Research Laboratory, and

J. Arthur [306] and A. Cho et al. [307] from Bell Laboratories expanded the MBE method

for the deposition of GaAs. Arthur focused on surface kinetic studies, Davey and Pankey

grew large-area GaAs epitaxial films on GaAs and Ge substrates using the three tem-

perature technique, while Cho focused on device applications. The MBE technique is a

powerful method both for film deposition and in situ analysis. It has yielded, in addition

to device structures, a wealth of data on the surface atomistic phenomena such as

surface reconstruction. It has also been applied to other semiconductor material systems

such as the nitrides and has facilitated the construction of novel structures such as

periodically poled GaAs for IR nonlinear applications and quantum dots. Today, it is a

very important research tool and is used extensively in commercial optoelectronic device

processing. A historical review of the MBE method was given by Joyce and Joyce in

Ref. [308].
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1.3.3.3.3 Sputtering

In 1852, Sir William Robert Grove (1811–1896), a noted Welsh judge, physical scientist

and inventor of the fuel cell, was the first to discover the deposition process now known

as sputtering [309]. He was able to deposit material from the tip of a wire in a chamber at

a pressure of 0.5 Torr onto a polished silver surface when the latter was the positive

electrode in an electrical circuit. An interesting factoid is that the first commercial

application of the sputtering method may be attributable to Thomas Edison who early in

the development of his wax phonograph cylinders using a sputtering methodology for

plating them.

The sputtering method, as used to prepare thin films, became popular and of com-

mercial importance from the mid-1960s onward. It has the advantage of not requiring

high temperatures to deposit materials, even very refractory ones. The films have

compositions similar to the target material and large areas can be deposited. While this

physical vapor deposition method is more often used to deposit polycrystalline and

amorphous films, single crystal films have been produced by carefully controlling the

processing parameters. The method is used for fabricating integrated circuits, antire-

flection coatings, solar cells and optical waveguides, etc. Typical materials sputtered

include metals, semiconductors, oxides, and nitrides, etc.

The simplest sputtering process involves just a temperature-controlled cathode and

anode, a source of energetic particles, i.e., ions or atoms, and a vacuum chamber. A DC

potential of several thousand volts is usually maintained across the electrodes. Radio

frequency sputtering, where the sign of the electrodes is varied at a high rate, has also

been found beneficial. The material to be deposited is ejected from the target (at the

cathode) by bombarding it with ions or atoms, and the ejected material is transported in

the plasma formed to the substrate (at the anode). In addition to the ions released

from the target, electrons are also produced and they play an important role in main-

taining the plasma. However at the same time they can cause excessive heating of

the substrate. The transport mechanism within the gap between the two electrodes is

complicated and depends to a great extent on the background gas pressure. For efficient

ejection, the sputtering gas should have a similar atomic weight as the target elements.

Nonreactive gases such as argon, krypton and neon are often used to eject atoms

from the target, but reactive sputtering, using oxygen or nitrogen gas, has been employed

to deposit oxide and nitride films (e.g., ZnO and TaN). In the latter process a chemical

reaction takes place between the gas and the sputtered ions near the cathode before

being transported to the substrate. Higher substrate temperatures encourage the

deposition of single crystal films. Williams has given an extensive overview of the

sputtering field and sputtered ion emission [310].

Conventional sputtering has some disadvantages including low deposition rates, low

ionization efficiencies and substrate heating. One major improvement to this technology

was the introduction of magnetron sputtering [311]. In this process a magnetic field is

incorporated into the sputtering apparatus with the magnetic field positioned parallel to

the target and confining the secondary electron movement close to the target. This
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maximizes the probability of electron–atom interactions, increasing ionization effi-

ciency. The result is higher sputtering and deposition rates. It also permits the use of

lower operating pressures and voltages. The magnetron was originally conceived by P.M.

Penning in 1936 [312]. In 1980, Naoe et al. [313] were the first to use it in a sputtering

application. Over the years magnetron sputtering configurations have been modified,

and these developments have led to improved film quality and device performance [311].

1.3.3.3.4 Atomic Layer Deposition

In 1977, Dr Tuomo Suntola from Helsinki University in Finland patented a novel

technique to prepare highly oriented compound thin films [314]. The method was

called atomic layer epitaxy (ALE). More recently, the nomenclature atomic layer

deposition (ALD) has been favored. The ALD technique provides precise control of

the film thickness and composition and with the proper substrate composition,

orientation and temperature, can produce single crystal thin films. It involves the

periodic (alternating) pulse deposition of a film’s components in a vacuum chamber. In

between pulses there is an equilibration period during which the excess components

can desorb from the surface and exit the growth chamber. This leaves just one atomic

layer on the substrate surface. The next atomic species is then deposited, and a

controlled chemical reaction at the surface between these two layers creates the

desired film composition or composite structure. By way of example, to produce an

epitaxial ZnS film by this technique, a single Zn atomic layer is first deposited on the

substrate surface. This layer is then exposed to S2(g) or H2S(g), either of which react

with the Zn layer to form the compound ZnS. Following equilibration, another Zn layer

is deposited and then reacted again with the sulfur-containing gas. The thickness is

determined by the number of cycles employed.

Historically, the idea for a sequential layering film deposition process was first

mentioned in the 1952 thesis of Professor V. B. Aleskovskii as molecular layering. And

years later, (during the 1970s) his group in Russia worked on the developing this concept

further [315]. The efficacy and implementation of the method into a commercially viable

process derived from the work of Suntola’s group during the years prior to their patent

application. For a definitive review of all aspects of the methodology, see Suntola [316].

The ALD technique can produce atomically flat films with almost perfect stoichi-

ometry and surface conformity through the self-limiting reaction mechanism. It can be

used with many of the chemical vapor deposition methods described above that nor-

mally deposit the requisite phases simultaneously. It can be used to produce layered

films with abrupt interfaces (e.g., TiO2/Al2O3 films [317]), and M. Ritala and M. Leskela

[318] reviewed the method’s features and its potential role in nanotechnology. One of the

drawbacks of the ALD method is the slow deposition rates. This has been somewhat

overcome by increasing the substrate areas during deposition. The use of bias sputtering

has given the best stoichiometry to date. Besides oxides and chalcogenides, as

mentioned above, the method has also been used for the preparation of various semi-

conductors, nitrides, and metal films.
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1.3.3.4 The VLS Method
Another interesting and useful growth method is the vapor-liquid-solid (VLS) technique.

This hybrid method combines chemical vapor deposition with solution growth.

Deposition takes place at localized positions on a single crystal substrate to yield a

nanostructure, particularly whiskers, rods and nanowires. It starts with a single crystal

substrate patterned with an array of small dots made from a solid metal solvent phase

(the “catalyst”). The patterning can be done using lithography or by converting a solvent

film deposited on the substrate surface to droplets. The growth procedure is simple.

When the substrate is heated, the solvent phase melts. The liquid phase rapidly super-

saturates by adsorption of nutrient species from the gas phase. Growth subsequently

takes place at the substrate–liquid interface and not on the bare substrate surface. The

solvent region rises up, as a mass is deposited below it, thus propagating the growth

feature. The molten zone remains on the fiber tip during growth. As an example, silicon

nanowires have been produced from a Au–Si alloy droplet and with a gas phase con-

taining SiCl4 and H2 (see Figure 1.16 below). The VLS method has been used in

conjunction with CVD, MBE, laser ablation and carbothermic reduction.

The VLS method was first described in 1964 in the pioneering work of Bell

Laboratories scientists R. Wagner and W. Ellis [319] (see Figure 1.16). The VLS

Vapor
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Silicon
crystal

Silicon substrate

Au - Si liquid
alloy

Vapor

(A)

(C)
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FIGURE 1.16 Original schematic diagram of the VLS process for Si whisker growth on a silicon substrate, (A) Au–Si
alloy catalyst droplet on substrate surface before growth. (B) A growing whisker. A photograph of an actual Si
whisker (0.5 mm diameter) grown on a {111} Si substrate is shown in (C). It has 12 side facets alternating between
the {211} and {110} [318].
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mechanism they proposed explained the growth of silicon whiskers on silicon substrates

in the absence of the axial screw dislocation growth model described by Frank [22]. Some

advantages to the VLS growth process include a lower reaction energy than with regular

vapor growth techniques, the structures only grow where the solvent is located, and

anisotropic-shaped columns can be produced. Important process parameters include (1)

the wettability of the liquid droplet and its reactivity with the substrate, (2) the substrate

orientation and surface roughness, (3) the processing temperature, etc. It is also very

important and obvious that the solvent phase has to have a low equilibrium vapor

pressure.

Some of the popular semiconductor materials grown by VLS include Si, Ge, GaAs,

GaN, SiC and ZnO. Gold is most often used as the solvent phase, but other materials such

as Ni, Pt have been successfully used. The substrates may be of the same or similar

composition as the growth pillars (homoepitaxy) or on different material (heteroepitaxy).

One example of the latter is the growth of densely aligned GaN wires grown on sapphire,

LiAlO2 or MgO substrates [320]. Schmidt et al. discussed various aspects of the growth of

silicon nanowires and their electrical properties, including use of the VLS method [321].

The VLS method has been easily adapted to the growth of nanostructures. This has

become a very important active area of research and should lead to exciting new com-

mercial applications in the foreseeable future. One of the leading groups in this area is

Lars Samuelson’s group at Lund University. They have reviewed the fundamental

mechanisms involved in the VLS processing of nanowires and the prognosis for further

development of this technology [322]. Many new and unique structures have been

created using the VLS process. One example being a decade old study that showed that

certain material systems can phase separate into cored nanofibers. In a one-step VLS

process, Choi et al. [323] grew GaN cored nanowires with a thick AlGaN skin. Other

techniques have also been used to coat the nanowires. An excellent review of the VLS

method was given by Choi [324].

1.3.3.5 Artificial Epitaxy (Graphoepitaxy)
Up to now, we have discussed the epitaxial growth of single crystal thin films on sub-

strates made from materials of related composition and/or structure. The usefulness of

high-quality single crystal or highly oriented films is well-known and crystalline

perfection of the film depends on various attributes of the substrate and its quality.

However, it would be highly desirable to be able to grow oriented films on inexpensive

amorphous substrates or on substrate layers important to device function. In the early

1970s, Prof. N.N. Sheftal from the Russian Institute of Crystallography first described the

concept of growing films on an artificial lattice. The paper, which described the tech-

nique as “artificial epitaxy,” was translated into English three years later [325]. In 1982,

the technique was renamed “graphoepitaxy” [326], and this more catchy term has gained

favor in much of the subsequent literature.

Graphoepitaxy involves inscribing a micro-relief pattern onto a flat amorphous sub-

strate surface. The surface patterns consist of only four symmetries, two-, three- four- and
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six-fold (i.e., arrays of stripes, triangles, squares and hexagons). The walls of the relief

pattern simulate the kinks and ledges associated with a crystal growth surface as described

by the Kossel-Stranski model. Rather than atoms or molecules, however, the growth units

that attach to these relatively large steps are microcrystallites of nanometer or micron

sizes. The pattern chosen is determined by the crystal structure of the material to be

deposited. For example, the three-fold relief would be used for the growth of the diamond

lattices of Si and Ge. The reliefs can be achieved by a number of techniques including

photolithography and etching, etc.

Graphoepitaxy can be accomplished using a variety of gas phase, melt or solution

growth techniques, including the VLS method mentioned above. Like other methods

described in this chapter many different materials have been prepared by graphoepitaxy,

including very large-molecule biological materials [327]. By way of illustration,

Figure 1.17 shows two crystals of catalase (an enzyme) that were deposited from an

aqueous solution onto a silicon substrate that contained a striated micro-relief [327]. The

pattern used here had a 5 mm periodicity and a groove depth of 1–2 mm. The crystals are

clearly aligned with the micro-relief. Deposited on an unpatterned substrate, the crystals

would have no orientational relationship with one another.

Graphoepitaxy has also been used to prepare oriented single crystal nanowires of

semiconductor oxides such as ZnO, SnO2, In2O3. The method has been exhaustively

covered in a book by Givargizov [328]. Since this book was written, the technique has

become very popular, particularly in the semiconductor field. For example, so-called

nano-graphoepitaxy has been used to prepare semiconductors for three-dimensional

integration devices [329].

1.3.4 Synthetic Diamond Crystals

Diamond, while highly sought after as a gemstone, also has a unique combination of

properties that make it very useful in industrial applications. Diamond not only has the

highest known hardness, it also has a very high thermal conductivity and electron

mobility, low thermal expansion coefficient and excellent optical transmission over a

FIGURE 1.17 Two catalase crystals grown from solution onto an oriented Si substrate having an etched micro-
relief pattern. The crystals, which are aligned with the pattern, grew by artificial or graphoepitaxy [327].

Chapter 1 • Crystal Growth through the Ages: A Historical Perspective 65



broad spectral range. In addition to its major commercial market, i.e., cutting tools and

polishing powders, diamond has a myriad of other uses. Diamond-based devices include

high-power electronic devices, high-frequency field effect transistors, LED’s, ultraviolet

and high-energy particle detectors, substrates and optical windows. The two principal

methods used to grow synthetic diamonds are (1) crystallization of bulk crystals from

solution at high pressures and temperatures (HPHT) and (2) deposition at low pressures

and relatively low temperatures using the chemical vapor deposition (CVD) method.

Both were developed during the early 1950s within a few years of each other and are still

in use today to manufacture synthetic diamond products.

The earliest known reference to diamond can be found in the Old Testament [330].

It was not until near the end of eighteenth century that it was realized that diamond,

while transparent and colorless, was made up solely of carbon atoms like graphite. The

discovery came from the French chemist Antoine Lavoiser (1743–1794), who shortly

before his death, decomposed a diamond by heating it in oxygen and found CO2 as the

only byproduct. Thereafter, a number of credible researchers tried to synthesize dia-

mond, one of the first being Scottish chemist James Hannay (1855–1931). His attempts

in 1879 [331], later questioned, were followed in 1895 by the French Noble Prize-

winning chemist Henri Moissan (1852–1907). He tried to synthesize diamond in the

laboratory [332] starting with charcoal and iron heated to temperatures as high as

3500
�
C using an electric arc furnace. The heated mixture was then quenched in water

to hopefully create the high pressures under which diamond formed in nature. Other

researchers who tried to duplicate these studies either failed or had their various

claims discredited. Sir Charles Algernon Parsons (1882–1922), the inventor of the

steam turbine, spent considerable time and energy over many years trying to duplicate

the work of Hannay and Moissan. He also tried to develop his own method to produce

diamond. In 1928, as reported by Desch [333], Parsons concluded that synthetic di-

amonds had not been produced. Kathleen Lonsdale used X-ray diffraction methods to

study some of Hannay’s “diamonds” held at the British Museum. She concluded in a

1962 paper [334] that they were natural diamonds and doubted that “. neither

Hannay, Moisson or Parsons ever, in fact, made diamonds by their respective

methods.” Percy Bridgman, who as mentioned before won a Nobel Prize for his high

pressure work, spent the better part of 50 years (from 1905 to 1955) trying to synthesize

diamond. His efforts were apparently unsuccessful as well [330]. In addition to the

researchers mentioned above, the nineteenth century was littered with numerous

unsuccessful attempts to synthesize diamonds by various means. One particularly

engaging and well-researched book on the history and growth of diamond crystals is

The Diamond Makers by Robert Hazen [335].

In 1941, the General Electric Research Laboratories, in conjunction with the

Norton and Carborundum companies, set about to develop a process to synthesize

industrial diamonds. The effort was suspended during WW II but started up again in

1951. While GE put together a large staff charged with designing a furnace that could

go to both high pressures and high temperatures, it was not until H. Tracy Hall, came
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up with the “Belt” press (see Figure 1.18(A)) that a breakthrough was imminent. This

device exceeded the original specifications of 35,000 atm and 1000
�
C to achieve

250,000 atm and 1800 �C [336]. The growth chamber consisted of a graphite tube

surrounded by a pyrophyllite container. Inside were placed Ni, Fe, or Co to act as a

solvent-catalyst in which the graphite dissolved. The bottom was in contact with a Ta

disc. However, even with this capability, diamond was not readily produced. It was

FIGURE 1.18 Early diamond crystal growth
(A) Schematic of the belt high-pressure, high-
temperature apparatus built at the General
Electric Corp., and (B) the first synthetic
diamonds produced using this apparatus [330].
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not until the end of 1954, after much experimentation and frustration, that the first

small, micron-sized faceted diamond crystals were produced (see Figure 1.18(B)). The

addition of FeS to the container did the trick. These were not gem-quality stones but

appropriate for abrasive applications. Hall’s personal reminiscences, given in

Ref. [330], describe how the process was invented and the subsequent events that led

to his other important invention—the tetrahedral anvil press shown in Figure 1.19.

Oddly, just before the GE success, the Swedish company ASEA, also managed to

produce small diamonds in a top-secret project that only went public in 1980 [337].

The first successful preparation of gem-quality diamonds by HPHT was in 1970, again

accomplished by GE. The process was similar to that described above with the addition

of thin diamond seeds. The first crystals were 5 mm (1 carat) in size and took a week to

grow. Longer growth times were required to produce larger crystals. These early crystals

were yellow or brown in color due to nitrogen contamination and contained inclusions.

By adding nitrogen getters such as Al and Ti, clear colorless crystals could be produced.

On the other hand, other dopants have been used to modify the color of synthetic di-

amonds (e.g., boron gives it a blue color). A variety of colored stones have been

produced.

The inherent technological difficulty in preparing diamonds or other materials at high

pressures and temperatures and the high cost of equipment led many researchers,

FIGURE 1.19 The original tetrahedral press for
producing synthetic diamond [330].
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particularly in the U.S. and the Soviet Union, to try to find a low-pressure method. Not

many scientists, however, thought this would be possible. Nevertheless, in 1952–1953,

William Eversole, at the Union Carbide Corporation, became the first person ever to

prepare synthetic diamonds [338] by the chemical vapor deposition technique. It

involved slowly depositing carbon atoms on clean diamond particle surfaces (i.e., sub-

strates) in a vacuum at temperatures in the 800
�
C range. Carbon monoxide (CO) or

methane (CH4) was used as the source of carbon. Due to the propensity for graphite

formation under these conditions, the residual graphite had to be removed after a period

of time. This involved removing the crystals from the deposition chamber and cleaning

them in an autoclave at 1000 �C and 50 atm of H2 gas. Numerous such cycles were

required. While he accomplished this feat about two years before General Electric and

just a few months before ASEA in Sweden [337], his work (described in a patent only) was

not published until 1962. In 1968, John Angus [339] independently verified Eversole’s

work, as did Deryagin and Fedoseev in 1970 [340]. While Angus also deposited diamond

on single-crystal diamonds, Deryagin and Fedoseev made epitaxial films on other sub-

strate materials such as Si and metals. From this point onward this very versatile method

was aggressively pursued and refined by a number of groups in the USSR (Russia), the

U.S. and Japan for the growth of both bulk crystals and homoepitaxial films on diamond

substrates and by heteroepitaxial growth on suitably oriented materials like Si. A useful

review of diamond growth by the chemical vapor deposition method was written by

Garcia et al. [341].

One of the initial problems with the commercialization of CVD bulk diamond was

the slow growth rates. In 1969, the former USSR scientists Spitsyn and Dervagin, who

had been working on this problem since 1956, were finally able to increase the growth

rates reported by Eversole by an order of magnitude. The improvement over their

own previous work was due to the use of methane at higher pressures (13–40 Pa),

together with an increased deposition temperature (950–1050 �C). Just a year later, a

significant breakthrough was made independently by J. Angus (USA) and V. Varnin

(USSR) [342]. They found that the use of atomic hydrogen in the growth chamber

would remove the graphite co-deposits that form along with diamond due to a large

difference in etching rates. A decade later, a group of researchers at Japan’s National

Institute for Research in Inorganic Materials made a series of important process

improvements. They developed the microwave plasma, hot filament, and RF-Plasma

CVD methods, new ways to dissociate the carbon-containing gases into reactive

species [343–345]. Growth rates up to several mm/hr were achieved. This in turn led to

the development of a variety of other processes and process refinements by this and

other groups, leading the commercial success of the CVD method for a variety of

diamond products including gemstones and coatings for various types of electronic

and optical devices.

Two other methods have been employed for growing small-size diamonds. One is the

explosive detonation method in which a carbon-based explosive is detonated inside a

metal tube containing graphite [346]. The procedure, an HPHT process, produces
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nanoscale diamonds. The diamonds are prevented from reconverting to the more stable

graphite form due to the quenching effect of a surrounding water-filled chamber.

However, they have to be separated from the remaining carbon by dissolution in acid.

The second method is the ultrasonic cavitation technique [347]. This more recent pro-

cess is carried out at room temperature and atmospheric pressure. It involves the

application of ultrasonic energy to a suspension of graphite particles in an organic liquid

and results in micron-sized diamond crystals.

1.3.5 Solid State Recrystallization

The next to last topic to be covered in this chapter is the growth of sizable single crystals

from the solid phase. This technology has a much smaller impact on the crystal growth

field than the other methods described above. First, it is mainly limited to metals, and

second, there are various processing difficulties associated with controlling nucleation

and growth over extended length scales. The mechanisms involved are related to

ceramic and powder metallurgy processing, where control of crystallite (grain) size and

morphology in polycrystalline structures is a major concern. There are a myriad of

important industrial applications for these polycrystalline materials (piezoelectric ele-

ments, magnets, etc.) and all aspects from theory to sample preparation are covered in

various books on ceramics and powder metallurgy. The use of solid-state methods for

crystal growth is covered in the book by R. Laudise [285].

At the heart of solid-state crystal growth (recrystallization) is grain growth. As

mentioned before, the method is mainly used with metals such as aluminum, tungsten

and iron. The material from which the crystal is grown contains grains of varying sizes

and morphologies, plus grain boundaries and dislocations. Single crystals can be

formed by controlling the growth of preexisting grains or by nucleating new grains with

lower free energies. Wilhelm Ostwald’s pioneering work in 1896–1897 explained how

crystallites behave at elevated temperatures [348]. He showed that smaller particles

adjacent to larger ones would decrease in diameter while the larger grains increased in

size (an effect now known as Ostwald ripening). When the more energetic surface

atoms on the smaller crystallites redeposit on the larger grains, the total energy of the

system decreases. The driving force for grain growth can also be related to orientation

differences between grains.

The principal method used to grow large metal crystals involves strain annealing

techniques. A suitable polycrystalline sample, a bar, rod, plate, etc., is strained by

one of a number of techniques such as rolling, drawing and extrusion. It then may

be fabricated into a suitable shape to facilitate growth. The amount of strain induced

is usually between 1 and 10% and the amount is critical in controlling the nucleation

of strain-free grains. Growth is most often done in a temperature gradient and

nucleation control is similar to other growth methods. In some respects, it is related

to the Bridgman–Stockbarger method where the sample can be a rod with a tapered
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end that is translated through the gradient. The gradients, however, are reversed

from melt growth. The polycrystalline charge is heated until the tapered end reaches

the recrystallization temperature and strain free grains are created in a localized

region at the tip. Further movement propagates the strain-free grain(s) along the

axis of the sample consuming the strained grains. If nucleation creates several

strain-free grains, the sample can be notched somewhere along the length to permit

only one grain to propagate through into the main part of the charge. Seeds can also

be used. Suppressing nucleation ahead of the growth front has been a concern, and

generally slow translation rates and sharp gradients minimize this problem (e.g.,

Ref. [348]).

The concept for strain-annealed crystal growth can be traced to Robert Anderson in

1918 [349]. This led, in 1921, to Carpenter and Elam’s demonstration of the growth of

large aluminum crystals by the strain-anneal method [350]. Over the ensuing years,

various other metals have been grown by this method. One technique used to prevent

random nucleation ahead of the growth interface during the strain-annealed growth of

alpha iron crystals was the incorporation of pulsed heating [351]. Large, 25cm-long

oriented single crystal rods and strips could be produced in a few hours using this

method.

The solid-state recrystallization method has also been applied to semiconductor

fabrication (e.g., Si and Ge). One technique of note is the solid phase epitaxial

growth method. In 1968, L. Kulper at IBM, patented a process for the growth of

aluminum-doped silicon films by the migration of silicon through an aluminum thin

film during a heat treatment process [352]. The solid-state growth process provided

doped layers with a maximum amount of aluminum in silicon. Later Mayer et al.

[353], from the California Institute of Technology, patented a similar but more

general process for doping with other species. In this process, a single crystal sub-

strate is coated with a thin metal film having such properties that it will permit the

migration of material through it to form an epitaxial layer without acting as an active

dopant itself. Upon this film a dopant layer is deposited followed by an amorphous

or polycrystalline layer of the material that will make up the doped epilayer. This

sandwich structure is first heated to a temperature that permits the metal layer to

dissolve some of the dopant, amorphous film and part of the substrate. After a time,

the temperature is raised to allow the transport and epitaxial deposition of the doped

layer onto the substrate. For the solid-state epitaxial growth of silicon, for example,

the substrate and amorphous or polycrystalline layers would be silicon, the dopant

layer might be phosphorous, aluminum, or boron, and the metal film palladium,

vanadium, or nickel. A review of this technology is included in the book by Mayer

and Lau [354].

Another application for solid-state crystal growth was in the preparation of

piezoelectric single crystals, such as lead magnesium niobium-titanate (PMNT) [355].

The principal motivations were its potential cost advantage and enhanced
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manufacturing throughput over conventional crystal growth methodologies. Two

techniques were explored, conventional grain growth and templated growth in which

seed crystals were embedded into a powdered matrix and processed at elevated

temperatures. An example of the templated growth of BiScO3-PbTiO3 is shown in

Figure 1.20.

1.4 Epilogue
Crystal growth is a field that has had a major impact on modern society. The devices

we have come to rely on today were made possible through the contributions of

numerous scientists and engineers from a variety of disciplines. These devices are

based on single crystals prepared in various ways and in forms and compositions

reflecting the application intended. The foundations upon which our understanding

of a crystal’s structure, thermochemistry, growth mechanisms and methods is based

on work from earlier centuries and dramatically expanded on all fronts (theory,

growth and characterization) just after World War II. The book by Buckley in 1950

was the first comprehensive treatment (in English) of the prior art and science of

crystal growth. Today, there are well over 100 books covering the topic, from surveys

of the entire field to various specialized topics. This historical review of the crystal

growth field is not comprehensive but was designed to highlight the major

achievements. While I have tried to be as inclusive as possible, I apologize in

advance if I have left out any major contributors to this field or important theories

and growth methods. As a final comment, I must mention that a selection of some

pioneering crystal growth papers were collected and reprinted in their original lan-

guages by D. Hurle [356].
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FIGURE 1.20 An example of template growth. Shown is a micrograph of a polished and thermally etched (1080 �C
for 30 min) sample of BiScO3–PbTiO3 (BS–PT) that was heat-treated with an embedded barium titanate (BT) seed
crystal (5 mm2� 100 mm thick). A 5% excess of PbO was used in the mixture to enhance diffusion. An overgrowth
of a BS–PT crystal onto the surrounding BT seed can be clearly seen [355].

72 HANDBOOK OF CRYSTAL GROWTH



References
[1] Pliny the Elder (Gaius Plinius Secundus). Volume 9 (Books 33–35), [H. Rackham, Trans.]. Naturalis

Historia circa AD 77–79. Loeb Classical Library/Harvard University Press; 1958. p. 430.

[2] Agricola G. De Re Metallica [L. Hoover and H. Hoover, Trans.]. Dover Publications; 1950.

[3] Biringuccio V. The Pirotechnia [C. Smith and M. Gnudi, Trans.]. Dover Publications; 1990. p. 477.

[4] Doremus RH, Roberts BW, Turnbull D. Proc. int. conf. on crystal growth: growth and perfection of
crystals. New York: Wiley; 1958.

[5] Gessner C. De omni rerum fossilium; 1565.

[6] Caesalpinus A. De metallicis libri tres. Rome; 1596.

[7] Sunagawa I. In: Feigelson RS, editor. 50 years progress in crystal growth. Amsterdam: Elsevier;
2004. p. 35.

[8] Steno N. De solido intra solidum naturaliter contento; 1669.

[9] Guglielmini D. Philosophical reflections deducted from figures of salts from Doctor Domenico
Guglielmini expressed in a speech recited in academy philosophical experimental affirmations.
Archdeacon Marsigli; the evening of March 21, 1688. Bologna.
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[191] Wöhler F. Ann Chim Phys 1823;29(2):43.

[192] Doelter C. Z Krist 1886;11(29):40.
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[284] Schäfer H. Chemical transport reactions. New York: Academic Press; 1963.

[285] Laudise RA. The growth of single crystals. New Jersey: Prentice-Hall; 1970. 234.

[286] Lorenz R. Chem Ber 1891;24:1509.

[287] Frerichs R. (1996) 1701. Phys Rev 72 (1947) 594.

[288] Schönherr H. The growth of large crystals from the vapor state. In: Crystals, growth, properties and
applications. Berlin: Springer-Verlag; 1980. p. 51.

[289] WZ Li, SS Xie, LX Qian, BH Chang, BS Zhou, WY Zhou, et al. Science;274.

[290] Scott TR, King G, Wilson JM. UK Patent 778,383 (1957).

[291] Miederer W, Ziegler G, Dotzer R. US Patent 3,226,270 (1965).

[292] Manasevit HM, Simpson WJ. J Electrochem Soc 1969;12:1725.

[293] Manasevit HM. In: Feigelson Robert S, editor. 50 years progress in crystal growth. Amsterdam:
Elsevier; 2004. p. 217.

[294] Seki Y, Tanno K, Iida K, Ichiki E. J Electrochem Soc 1975;122:1108.

[295] Dupuis RD, Dapkis PD. Appl Phys Lett 1978;32:40.

[296] Stringfellow GB. Annu Rev Mater Sci 1978;8:73.

[297] Stringfellow GB. Organometallic vapor phase epitaxy: theory and practice. 2nd ed. Boston:
Academic Press; 1999.

Chapter 1 • Crystal Growth through the Ages: A Historical Perspective 81

http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1265
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1270
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1275
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1280
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1285
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1290
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1295
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1300
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1305
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1305
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1310
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1315
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1320
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1325
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1330
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1335
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1340
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1345
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1350
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1355
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1360
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1365
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1370
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1375
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1380
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1385
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1390
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1390
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1400
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1405
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1405
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1405
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1410
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1415
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1420
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1425
http://refhub.elsevier.com/B978-0-444-56369-9.00001-0/ref1425


[298] Akasaki I, Amano H. Jpn J Appl Phys 2006;45:9001.

[299] Nakamura S, Mukai T, Senoh M. Appl Phys Lett 1994;64:1687.

[300] Nakamura S, Fasol G. The blue laser diode. Berlin: Springer; 1997.

[301] Liu BL, Lachab M, Jia A, Yoshikawa A, Takahashi K. J Cryst Growth 2002;234:637.

[302] Stringfellow GB. J Cryst Growth 2004;264(4):620–30.

[303] Holloway PH, McGuire GE. Handbook of compound semiconductors; growth, processing, char-
acterization and devices. Noyes Publications; 1995.

[304] Joyce BA, Bradley RR. Phils Mag 1966;14:289.

[305] Davey JE, Pankey T. J Appl Phys 1968;39:1941.

[306] Arthur JR. J Appl Phys 1968;39:4032.

[307] Cho AY, Panish MB, Hayashi J. In: Proceedings of the symposium on GaAs and related com-
pounds. Inst. of physics, vol. 2. Germany: Aachen; 1970. p. 118.

[308] Joyce BA, Joyce TB. In: Feigelson Robert S, editor. 50 years progress in crystal growth. Amsterdam:
Elsevier; 2004. p. 203.

[309] Grove WR. Trans R Soc 1852;142:87.

[310] Williams P. Surf Sci 1979;90:588.

[311] Kelly PJ, Arnell RD. Vacuum 2000;56:159.

[312] Penning PM. Physica 1936;3:873.

[313] Naoe M, Yamanaka S, Hoshi Y. IEEE Trans Magn 1980;Mag-16:646.

[314] Suntola T. US Patent 4058430 (1977).

[315] Aleskovskii VB. J Appl Chem USSR 1974;47:2207.

[316] Suntola T. Mater Sci Rep 1989;4:261.

[317] Triani G, Evans PJ, Mitchell DRG, Attard DJ, Finnie KS, James M, et al. Proc SPIE 2005;5870:9.

[318] Ritala M, Leskela M. Nanotechnology 1999;10:19.

[319] Wagner RS, Ellis WC. Appl Phys Lett 1964;4:89.

[320] Kuykendall T, Pauzauskie PJ, Zhang Y, Goldberger J, Sirbuly D, Denlinger J, et al. Nat Mater 2004;
3:524.

[321] Schmidt V, Wittemann JV, Senz S, Gösele U. Adv Mater 2009;21:2681.
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2.1 Introduction
In this chapter, phase diagrams will be introduced as basic tools for the development and

understanding of crystal growth processes. The focus will be on reading diagrams that can

be found in the literature, or that can be calculatedwith commercial or freeware computer

programs such as described later in Section 2.1.4.3. If nothing else is written explicitly,

equilibrium phase diagrams are presented. The crystal growth process itself, however, is a

nonequilibrium process, where some nutrient phase (e.g., a melt, a solution, or a gas) is

transformed to the desired solid (crystal) phase. The relevance of equilibrium phase dia-

grams for the description of crystal growth is given if the growth process is performed not

too far from equilibrium conditions. This condition is typically fulfilled for most slow

growth processes from the melt or from melt solutions such as Czochralski, Bridgman,

Verneuil, top seeded solution growth (TSSG), micro-pulling-down (m-PD), heat exchanger

method (HEM), or vertical gradient freeze (VGF) technique. Also, growth processes from

hot gas phases with sufficient density (not too far below ambient pressure 1 bar, such as

chemical vapor transport (CVD) or physical vapor transport (PVT) can usually be

described well by equilibrium phase diagrams. For further reading and for refereed col-

lections of phase diagrams, some web sites prove to be helpful, e.g., [1–3].

2.1.1 Basic Terms

2.1.1.1 Components and Concentrations
A component is a substance that, under the given conditions, cannot be further divided

into parts. A chemical element can always be chosen as component; but often it is more

convenient to choose compounds instead, because a smaller number of components

makes the description easier. It must be possible to create all compounds that may be

found in equilibrium by chemical reactions between the components! If two or three

compounds instead of elements are chosen to set up a phase diagram, the system is

sometimes called pseudobinary or pseudoternary, respectively.

It is not always straightforward to decide whether a chemical compound can be used

as component for the description of a specific system. For instance, vanadium(V) oxide

V2O5 and molybdenum(VI) oxide MoO3 are reacting upon heating to an intermediate

phase [4]. This intermediate phase was initially described as V2MoO8, and binary phase

diagrams similar to Figure 2.1 left, with V2O5 and MoO3 as components, were published.
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Further studies showed that 1
9 of the V5þ ions are reduced to V4þ during the reaction, and

the compound should rather be written as V9Mo6O40 ¼ 4 V2O5 $
1
2 V2O4 $ 6MoO3 [5].

Consequently, three components are required to give an appropriate description of the

system, such as shown in the right panel of Figure 2.1. Of course, a description in terms

of the chemical elements V–Mo–O would be valid too.

The share of the i-th component in the system is called its concentration. If not

mentioned explicitly, concentrations xi are given in molar fractions, or atomic fractions,

xi ¼ niPC
i¼1ni

(2.1)

where C is the number of components and ni is the number of moles of component i. It

is obvious that
P

ixi ¼ 1, and hence in two-component systems only one concentration x

is necessary. Mol-% or At-% values can be obtained by multiplying xi with 100%.

For a specific chemical composition, the xi depend on the choice of the components

Yi (i ¼ 1.C). In dielectric systems (e.g., oxides, halides) often compounds AmBn

(A: cation, B: anion) are chosen as components. Then it may be useful to scale them in

such a way that all components bear the same number of cations (often one). The

benefit of such scaling is that the resulting phase boundaries are often more symmetrical

around invariant compositions. An example is given in Figure 2.1 for the system

V2O5–MoO3 where the right component is written as VO2.5.

In systems with many intermediate compounds, the choice of components is

ambiguous. Figure 2.2 demonstrates this for a system of the chemical elements (or basic

T
)

C°(

MoO3 ½ V O2 5

Oo
M

V
8

2

½ V O2 5 ½ V O2 4

MoO3

V Mo O
9 406

FIGURE 2.1 Left: Simplified binary phase diagram V2O5–MoO3 under the incorrect assumption that the
intermediate phase is V2MoO8 [6], entry 4467. Right: Correct phase triangle demonstrating that intermediate
V9Mo6O40 is ternary.

BA Am1Bn1 Ao1Bp1

Am 2 Bn2 Ao2Bp2

x

x

FIGURE 2.2 A specific composition x ¼ x0 ¼ x00 can be expressed in terms of basic components (e.g., elements)
A, B. Alternative descriptions are in terms of compounds Am1Bn1, Ao1Bp1 (x0) or Am2Bn2, Ao2Bp2 (x00), respectively.
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compounds such as simple oxides) A and B, with four intermediate compounds; the

stoichiometry is expressed by indices. If a composition x is given in terms of Am1Bn1 and

Ao1Bp1 (below the concentration axis), the amounts of the basic compounds can be

calculated by

½A� ¼ ð1� x0Þ m1

m1þ n1
þ x0 o1

o1þ p1

½B� ¼ ð1� x0Þ n1

m1þ n1
þ x0 p1

o1þ p1

(2.2)

from the concentration x0 and the stoichiometric indices of the components. The con-

centration with respect to the basic components is then easily expressed by

x ¼ ½B�
½A� þ ½B� (2.3)

as a molar fraction. Rescaling of concentration data to Am2Bn2, Ao2Bp2 (x00, above the

concentration axis) is given by

x00 ¼ x � n2
m2þn2

p2

o2þp2
� n2

m2þn2

(2.4)

where the molar fraction x with respect to the basic components is given by Eqn (2.3).

For the general case of component transformation in a multicomponent system (C > 2),

the reader is referred to the literature, e.g., Ref. [7].

2.1.1.2 Phases and Phase Rule
A phase is a homogeneous part of a system, on scales that are large compared to atoms.

This means that all physical quantities, and composition, are no function of the position

r!, except differential fluctuations or gradients. Usually systems contain only one gas

phase. Liquids (melts) of similar substances are often forming one liquid phase (molten

slag, molten alloy, solution in a liquid). Dissimilar, nonmixing liquids form several

phases (water and oil, molten slag and metal). Each solid compound is often forming a

separate phase, with a specific crystal structure. Only if the components of a solid phase

have identical crystal structure and are otherwise similar, they may intermix each other

in arbitrary ratio. Such mixtures are one phase, called mixed crystal, or solid solution

(Ge1�xSix, Ag1�xAux, K1�xRbxCl; 0 � x � 1). More details on phase miscibility will be given

in Section 2.1.4.1.

For a given system with C components, Gibbs phase rule

P þ F ¼ C þ 2 (2.5)

limits the number P of coexisting phases and the number F of degrees of freedom that

the system has in equilibrium. This means that in a one-component system, never more

than three phases may exist at the same time. This is, e.g., demonstrated in Figure 2.3,

where never more than three phase fields are touching each other in one point. Such

triple points “Ti” describe conditions where P ¼ 3 phases are in equilibrium.
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Often, experiments are performed under isobar conditions p ¼ 1 bar, which con-

sumes 1 degree of freedom. Then Eqn (2.5) simplifies to

P þ F ¼ C þ 1 (2.6)

which means that, e.g., in two-component systems, never more than three phases may

coexist under isobar conditions. In the left panel of Figure 2.1, this is the case in the two

“eutectic points” on both sides of V2MoO8 where the liquid phase (stable at high T) is in

equilibrium with solid V2O5 þ V2MoO8 or V2MoO8 þ MoO3, respectively. Both eutectic

points are invariant, because any deviation would result in the disappearance of at least

one phase. In phase fields where only one phase is stable (e.g., within the liquid phase

field of Figure 2.1), one obtains from Eqn (2.6) F ¼ C � P þ 1 ¼ 2 � 1 þ 1 ¼ 2. Indeed, one

can move somewhat up or down (freedom of T) and left or right (freedom of x) without

leaving the phase field.

2.1.1.3 System
If a specific volume V contains a limited amount of matter with mass m, and is char-

acterized by some intensive properties, such as pressure p or temperature T, it may set

up a system. Intensive properties do not change if two identical systems are united.

Often, closed systems are considered, with no exchange of matter or energy with the

surroundings. Then, in equilibrium T is constant for all parts of the system. However, p

may be a function of the position r! as a result of surface tension, e.g., in epitaxial layers.

In contrast V and m are extensive properties. Their value depends on the system size.

Crystal growth is a dynamic process and matter is transported from a reservoir to a

seed, where crystallization takes place as a result of supersaturation. Figure 2.4
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FIGURE 2.3 Phase diagram of sulfur in coordinates T� log[p]. Ti are the invariant triple points where three phases
are in equilibrium.
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demonstrates this for sublimation growth (physical vapor transport (PVT)) from the hot

part of an ampoule (T1) to the cold part (T2). Under such conditions, it is not possible to

define overall intensive conditions p, T for the whole ampoule. It may be useful, how-

ever, to consider separately system S1 where the solid feed is at p, T1 in equilibrium with

the surrounding gas, and system S2 where at p, T2 gas is in equilibrium with the seed.

Then, the growth process can be divided to three parts: (1) equilibration in S1, (2)

transport of gas under cooling, (3) equilibration in S2.

2.1.2 Thermodynamic Functions and Potentials

2.1.2.1 Specific Heat Capacity
The specific heat capacity c is the basic thermodynamic quantity that can be measured.

Typically, lattice vibrations (phonons) are the major contributors to the internal energy

U of a substance, and U is a function of T. If an amount of heat energy Q is transferred to

1 mol of a sample, its temperature increases under isochor (volume V ¼ const.) or isobar

(pressure p ¼ const.) conditions by

DTV ¼ DQ

cV
(2.7)

DTp ¼ DQ

cp
(2.8)

where cV or cp is the specific heat capacity of the material under the given conditions.

Especially for technical purposes, the amount of substance is often given by the mass

m ¼ nM (n, number of mol; M, molar mass). The difference

cp � cV ¼ T

n

�
vV

vT

�
p

�
vp

vT

�
V

(2.9)

T
em

pe
ra

tu
re

Position

T1

T2

S2

S1

FIGURE 2.4 Crystal growth by sublimation
in an ampoule. Feedstock is transported
from a hot reservoir (temperature T1) to
the colder end (T2).
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is usually small, (but> 0) for condensed phases with small thermal expansion vV/vT

(solids, liquids). For ideal gases, one has cp � cV ¼ R (gas constant).

Dulong and Petit found that, for many solid chemical elements, the specific heat

capacity approaches 25 J/(mol K) at room temperature (ref. Eqn (2.10) and Figure 2.5).

For very low temperature cp(T) follows a T 3 law (see Figure 2.6) and vanishes at absolute

zero (Eqn (2.11)). Neumann and Kopp found that cp(T) of a chemical compound AmBn is

nearly the sum of the cp(T) of its composing chemical elements (Eqn (2.12)).

lim
T/298K

cpz25 J=mol $K ðDulong�PetitÞ (2.10)

lim
T/0

cp ¼ 0 (2.11)

cðAmBnÞ
p ðT ÞzmcðAÞp ðT Þ þ ncðBÞp ðT Þ ðNeumann�KoppÞ (2.12)

For most substances, the function cp(T) rises monotonously with T; the slope is steep at

low T and becomes flatter near room temperature. Anomalies arise near phase transi-

tions (see Section 2.1.3). Distant from phase transitions, the functions cp(T) are usually

smoothly rising, which can be expressed, e.g., by polynoms

cp ¼ Aþ BT þ CT 2 þDT 3 þ E
�
T 2 (2.13)

and data for many substances are compiled in commercial databases, on the web (e.g.,

http://webbook.nist.gov), or in printed reference books [9].

2.1.2.2 Enthalpy
The internal energy U that was mentioned in Section 2.1.2.1 describes the potential and

vibrational energy that is contained in the material itself. In a real system, the material

has a certain volume V and is exposed to a pressure p. It should be noted that for systems

0050 1000
5

10

15

20

25

30

C
(graphite)

Au

Ni

Dulong–petit

T (°C)

c p
)

Klo
m/J(

FIGURE 2.5 cp(T) functions for three
chemical elements compared to the
Dulong–Petit law (Eqn (2.10)).
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where surface energy can be neglected (phases sufficiently large and phase boundaries

with low curvature), p is constant over the whole system, such as T. The quantity

H ¼ U þ pV (2.14)

is called enthalpy and is the sum of the internal energy and the amount of work

(“volume work”) that must be performed to create the phase volume V against the

system pressure p. Such as U itself, H is a thermodynamic potential (¼state function)

because it depends only on the current status of the system, and not on how this status

was reached.

It is usually difficult, if not impossible, to measure the total amount of bH stored inside

a phase, because the energy balance of all contributions to U is often unknown.

Contrarily, the enthalpy change of a system from an initial state i to a final state f

DH ¼ Hf �Hi ¼ Q (2.15)

can usually be measured because it equals the heat Q added to the system provided that

p ¼ const., and no other work except volume expansion work is done by the system.

To circumvent the problem of absolute H measurements, it is useful to determine

“standard conditions” and a set of basic substances where the H values are determined

at these standard conditions. For this purpose, the U.S. National Bureau of Standards

defined T0 ¼ 25 �C ¼ 298.15 K and p0 ¼ 1 � 105 Pa ¼ 1 bar as “standard ambient

temperature and pressure” [10]. Under these conditions Hi ¼ H0 ¼ 0 (Eqn (2.15)) is

defined for every chemical element in the phase state that is stable under these condi-

tions (Figure 2.7). The function H(T) is usually smooth, except at first-order phase

transitions (cf. Section 2.1.3) where it jumps by an amount that is called heat of fusion

(DHf), heat of vaporization (DHv), or in general heat of transition (DHt). Some first-order

T (K)
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FIGURE 2.6 Measured cp(T) data for lithium below room temperature [8]. bH ¼ H� Hð0 KÞ is the “real” enthalpy
that starts from 0 at absolute zero. The entropy S(T) was calculated with (Eqn (2.21)).
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transitions for bromine and sulfur are shown in Figure 2.7. In contrast to this, Figure 2.6

shows “absolute” bH ðTÞ data for Li metal below room temperature.

For other temperatures, the enthalpy can be calculated by

HðTÞ ¼ H0 þ
ZT
T0

cpðT ÞdT (2.16)

from experimental cp(T) data. If one starts with bH ð0 KÞ ¼ 0, then Eqn (2.16) represents

the area under the cp(T) curve in Figure 2.6. cp(T) rises with T 3 only for low T(50 K and

quickly approaches the Dulong–Petit value 25 J/(mol K) (Eqn (2.10)) and is slowly

changing then; consequently, H(T) is an almost a linear function for high T.

As mentioned above, H is a thermodynamic potential. Hence, the enthalpy produced

or consumed during a chemical reaction does not depend on the path of the reaction

(Figure 2.8). Hess’s Law can be used also for changes in entropy S and in Gibbs free

energy G, which are state functions, such as H. With Hess’s Law, the dependence of
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FIGURE 2.7 H(T) functions for four chemical elements at 1 bar. Bromine vaporizes at 59 �C. Sulfur undergoes a
monoclinic % orthorhombic phase transition at 95 �C, melts at 115 �C, and vaporizes at 469 �C. Silver and argon
show no transformations in this T range.
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FIGURE 2.8 Hess’s Law: the reaction enthalpy does not depend on the path of the reaction: DrH1 ¼ DrH2 þ DrH3.
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reaction enthalpies on T can be calculated, and also transition enthalpies under

nonequilibrium conditions.

2.1.2.3 Entropy
The term entropy describes another thermodynamic potential that can be defined either

statistically or from a thermodynamic viewpoint. The statistical interpretation is related

to the Shannon entropy [11], which is used in information theory, and corresponds to the

average information density in a system of symbols (or atoms). In the statistical inter-

pretation, entropy S is a measure of “uncertainty” of a given state, that is, a measure of

the number of equivalent arrangements of elements setting up the system. This is shown

in Figure 2.9(A) for the case of a planar lattice where all possible sites are occupied by

atoms. Another equivalent possibility for the atoms does not exist, and the probability for

this state is P ¼ 1. This is not so in Figure 2.9(B) where two atoms are missing. There are

48 options for selecting the first missing atom, and 47 options remain for the second

missing atom, but it is indistinguishable which atom was missing first. This means

48 � 47/2 ¼ 1128 equivalent microstates exist that result in the same macrostate “plane

lattice” with 48 sites. If Pi is the probability of the i-th microstate, then

S ¼ �kB

X
i

PilnPi (2.17)

is the entropy of the corresponding macrostate.

For the arrangement from Figure 2.9, this is demonstrated in Figure 2.10. The system

has N atom sites that are either “faulty” (number f) or occupied (number N � f). The

number of possible arrangements of faulty sites (¼number of microstates) is

1

P
¼ U ¼ N !

ðN � f Þ!f ! (2.18)

and grows drastically with f until a maximum value that is obtained for f ¼ N/2.

In closed systems in equilibrium, P is often identical for all microstates and Eqn (2.17)

simplifies to

S ¼ kB ln U (2.19)

(A) (B)

FIGURE 2.9 Statistical interpretation of entropy. (A) One option is possible to distribute 6 � 8 ¼ 48 ¼ n atoms on
n lattice sites. (B) This figure shows one of 48 � 47/2 ¼ 1128 equivalent options to arrange f ¼ 2 faults (e.g.,
unoccupied sites or vacancies) on 48 lattice sites.
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where S( f ) is shown by the box plot in Figure 2.10. If in a real system with f > 0 and at

T > 0 all faulty sites are initially ordered (U(t ¼ 0) ¼ 1), this ordering will drop with time t.

It will be shown in Section 2.1.2.4 that the growth of S is the driving force for increasing

the “uncertainty” of the system.

The thermodynamic interpretation of S does not depend on the atomistic nature of

matter, but can be related to it. Figure 2.11(A) shows an ideal lattice where the atoms are

connected by chemical bonds. One can assume that this solid is formed because the

creation of every bond reduces the internal energy of the material (compared with sole

atoms) by a certain amount E. In Figure 2.11(B), some vacancies are introduced that

increase the disorder, or the “uncertainty,” of the system, and increase its entropy S. If

for this purpose n bonds had to be broken, the energy Q ¼ n$E was used. Assuming that

this process is performed under equilibrium conditions, it is reversible, and the relation

DS ¼ Qrev

T
(2.20)

describes the entropy change of the system.
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FIGURE 2.11 Thermodynamic interpretation of entropy: In (A) all atoms occupy lattice sites and form ideal bonds.
In (B) faults (here vacancies) are introduced and some bonds are “dangling.” For this process, a certain amount of
energy Q was used.
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In analogy to Eqn (2.16), the entropy can be derived from the specific heat capacity by

SðTÞ ¼ S0 þ
ZT
T0

cp
�
T
�

T
dT (2.21)

and one has S0(0 K) ¼ 0. Figure 2.6 shows, together with H(T), the function S(T) for Li

metal down to absolute zero.

2.1.2.4 Gibbs Free Energy
The enthalpy H introduced in Section 2.1.2.2 is a measure for the amount of energy that

is added (or extracted) from a system. This process is, however, usually not reversible:

Even if lattice vibrations are considered undamped (contribution U in Eqn (2.14)) and if

volume work can be restored (contribution pV), the entropy S of the system is increased

upon heating. Once the disorder of a system became larger, it is in general an irreversible

process.

It is useful to define the “free energy” (or Gibbs energy)

G ¼ H � TS ¼ U þ pV � TS (2.22)

which is the amount of energy that can reversibly be added or extracted from the system.

Such as H and S, G is a thermodynamic potential. This means that for a given state xi, T, p

of a system, G does not depend on how this state was reached.

At elevated T (room temperature or beyond), H changes only weakly (see, e.g.,

Figure 2.7), and the same holds for S. From Eqn (2.22) it is obvious that G(T) is a function

that drops nearly linearly for most phases and systems. Figure 2.12 demonstrates this for

the three aggregation states of zinc metal. The solid phase develops most stable binding

forces between atoms, this way reducing H and resulting in the most negative

Gsol[0 �C] ¼ �11.42 kJ/mol. The energy gain by binding is less significant in the liquid
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FIGURE 2.12 G as a function of T for the
solid, liquid, and gaseous phases of zinc.
Tf, fusion point; Tboil, boiling point.
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(Gliq[0 �C] ¼ �7.38 kJ/mol) or even smaller in the gas with much weaker attractive forces

between atoms (Ggas[0 �C] ¼ þ86.42 kJ/mol). On the other hand, the degree of disorder,

and consequently the slope �S of the G functions becomes larger from solid over liquid

to gas. The result is that, in this order, these phases have the lowest G, and become stable

one after the other with larger T.

For all curves in Figure 2.12, p ¼ 1 bar was assumed. The influence of p on S and H is

usually small for condensed phases (solids, liquids). Contrary gases show high

compressibility, which leads to a high dependency of atomic interactions on pressure.

For lower p, Ggas(T) shifts to bottom left (Eqn (2.14)), leading to an intersection with

Gliq(T) at lower T—this means Tboil drops with p. If for sufficient small p the intersection

is below Tf, the liquid phase is never stable and the substance undergoes sublimation,

which is a first-order phase transition from the solid to the gas, and vice versa.

Many chemical elements can react with each other under the formation of com-

pounds. The stability of compounds depends on the binding forces between compo-

nents, hence on the lattice energy. Typically, compounds with prevalent ionic bonding

consist of electropositive cations (often metals) and electronegative anions, and are

named, for instance,

• pnictides (compounds with negative N, P, As ions)

• oxides (oxygen) or chalcogenides (compounds with negative S, Se, Te ions)

• halides (compounds with negative F, Cl, Br, I ions).

These anion-forming elements are gases or at least volatile already at moderate

temperatures T. The partial molar Gibbs energy (¼ chemical potential) of an ideal gas

can be written as

mi ¼ m0
i þ RT ln pi (2.23)

where m0
i is the Gibbs energy at standard pressure (1 bar) and pi is the partial pressure of

this gas. As a consequence of Eqn (2.23), functions G(logpi) are linear for T ¼ const. For

different phases, the slopes G(logpi) are different, and the resulting intersections are the

limits of stability ranges for these phases. This is demonstrated in Figure 2.13 for the

system Fe–O2.

From Eqn (2.23) it is obvious that for T ¼ const. the mi are linear functions of the

logarithmic vapor pressures pi. Figure 2.14 shows this for equilibria between iron, oxy-

gen, and sulfur. Only if both pi are low, metallic iron is stable. If the oxygen pressure

becomes larger, oxides FeO, Fe3O4, Fe2O3 appear in the same order as in Figure 2.13. If

only the sulfur pressure becomes larger, the sulfides FeS or FeS2 are formed. In an in-

termediate region where oxygen and sulfur have significant pi, iron(II) sulfate FeSO4 or

iron(III) sulfate Fe2(SO4)3 are formed. Phase diagrams of this type are valuable, e.g., for

predictions, whether interfaces between a substrate and an epitaxial layer are stable.

Under the given conditions, FeS2 (“pyrite”) can exist in equilibrium with FeSO4 as well as

Fe2(SO4)3. This means that from the thermodynamic point of view, epitaxial growth of

both sulfates on a pyrite substrate might be feasible. FeS (“pyrrhotite”), in contrast,
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cannot exist in equilibrium with both sulfates. This means that epitaxy of both sulfates

on pyrrhotite, if possible at all, can create only a metastable layer.

2.1.3 Phase Transitions

If water ice is heated under ambient pressure with constant heat flux per time unit

dQ=dt ¼ _Q from low temperatures T � 0 �C it first increases its temperature until the

melting point (fusion point) Tf ¼ 0 �C is reached. Then T remains constant for some

holding time tholdf ¼ DHf= _Q. The heat of fusion DHf ¼ 6 kJ/mol is a thermodynamic

property of the substance water. During tholdf the solid (ice) and the liquid (water) are in
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equilibrium; just their mass ratio drops from unity to zero. Upon further heating, the

water temperature rises again until Tv ¼ 100 �C where water vaporizes. A second holding

time tholdv ¼ DHv= _Q appears where liquid water continuously evaporates, and the heat of

vaporization DHv ¼ 40.87 kJ/mol is another thermodynamic property of water. The

chemical substance water (H2O) remains unchanged during the whole process, but the

physical properties are changing abruptly at Tf and Tv. Melting and vaporization are

phase transitions.

At phase transitions, some structural properties of a substance are changing. Usually,

these are the positions of atoms, but in some cases only minor changes (electric or mag-

netic polarization, electronic spins) undergo variations. For the above-mentioned pro-

cesses of melting and evaporation, the structural changes are very obvious; in other cases,

the changes are smaller. Equation (2.15) showed that the heat Q ¼ _Q $ t increases the

enthalpyH of the system. In Figure 2.7 the chemical elements Ar andAg show smoothH(T)

functions, and the slopes vH/vT ¼ cp are the specific heat capacities. Bromine melts at

�8 �C and is liquid until Tv ¼ 59 �C where a step with height DHv ¼ 29.5 kJ/mol follows.

Sulfur shows steps in theH(T) functionsnot only atTv andTf, but additionally a smaller step

DHt¼ 400 J/mol atTt¼ 95 �C. At this temperature, the crystal structure of the solid changes

from a-S (low T) to b-S (high T). DHt for this transition is small, because structural simi-

larities are significant (see also Section 2.2.1.1).

Phase transitions can be classified from the thermodynamic as well as from the

structural point of view; both schemes are, of course, related to each other. Paul

Ehrenfest proposed a classification of phase transitions based on the discontinuity in

derivatives of the Gibbs free energy. This classification says that a phase transition is of

n-th order if the n-th derivative of G with respect to a system variable such as p or T is

discontinuous. Figure 2.12 shows G(T) for the three phases of zinc. The system will al-

ways minimize G, hence the lowermost curve is valid for the system. This is replotted in

Figure 2.15 for Zn and for Ni (see also Figure 2.5). Only G(T) for Zn shows significant

bends at Tf and especially at Tv, consequently the first derivative G
0(T) has discontinuities

there (arrows from top) and both transitions are of first order. G(T) for Ni is much

smoother, and only G0(T) has a small (but hard to recognize) bend near 354 �C. In the

second derivative G00(T) a discontinuity appears, which resembles the shape of the Greek

letter l—the transition is of second order. The l shape is typical for transitions from a

ferromagnetic or ferroelectric state where the material has low crystal symmetry to a

paramagnetic (paraelectric) state with high symmetry.

Melting and vaporization are always first-order transitions (sometimes called tran-

sitions of the first kind), and like all first-order transitions characterized by a “latent heat”

DHt that must be added to the system at Tt without changing the temperature. Second-

order transitions bear no latent heat, and the introduction of heat into the system always

increases its temperature. Experimentally, the discrimination between first- and second-

order transitions is not straightforward, if DHt is very small (below a few 10 J/mol). The

ferro-/paraelectric transition of BaTiO3 is sometimes described as second order, but

bears nevertheless a small DHt z 200 J/mol [3].
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A thermodynamic approach for second-order transitions was introduced by Lew

Landau [12], where an order parameter Q results in an excess Gibbs energy term

G ¼ H � TS ¼ 1

2
AðT � TcÞQ2 þ 1

4
BQ4 þ 1

6
CQ6 (2.24)

(A, Tc, B, C—constants), which describes the behavior of measurable physical quantities

M such as specific heat capacity, polarization, or atomic positions near second-order

phase transitions by expressions of the type

MfjTc � T j�a
(2.25)

where Tc is the transition (Curie) temperature and az1
2 is the “critical exponent”. For a

comprehensive introduction to Landau theory, the reader is referred to Salje [13].

From the structural point of view, second-order transitions often proceed by smooth,

continuous shifts of atoms (“displacement type”). Typically, the crystal structure in the

high T phase has a high symmetry, and after the shift, at lower T, the crystal symmetry is

lowered. Other second-order transitions are of the “order‒disorder” type. The b/b0 brass
phase in Figure 2.16 is an example. At high T z 800 �C, b-brass has a wide homogeneity

range from ca. 44% to ca. 64% Cu, which includes the 1:1 composition CuZn. Under

these conditions, Cu and Zn atoms form a body-centered cubic structure (structural type

a-Fe, space group Im3m) where both atom types are distributed statistically across the

corners and centers of cube unit cells. It should be noted that corners and centers of the

cubic unit cells are symmetrically equivalent.
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If the temperature becomes lower, it is energetically more favorable if every atom has

more opposite type atoms as neighbors. This is reached by placing one atom type

preferably on the corner positions, and the other type on the center positions. Ordering

does not happen suddenly and is not complete; just the initially fully random distri-

bution gets partially lost if T drops. The totally ordered case with different atom types at

the corners or centers, respectively, is shown in the insert of the phase diagram. It

corresponds to the CsCl structure type with Pm3m space group. The ordered case is

called the b0-brass phase.

The phasewidth of b/b0 brass becomes smaller for lowerT and degenerates to one point

x¼ 0.53 at 530 �C, which implies that ordering cannot be perfect resulting from a slight Cu

excess. The right panel of Figure 2.16 shows the cp(T) function of the Cu0.53Zn0.47 alloy,

which is calculated [3] between 300 and 800 �C. The broad anomaly around 450 �C results

from this “continuous” phase transition [14]. The anomaly results from the change of

ordering mentioned above, and this change of ordering is reflected by a minor change of

slope for the S(T) function, which becomes obvious in the second derivative S00.
Both panels of Figure 2.16 are calculated for equilibrium conditions. It should be

noted that the redistribution of atoms on lattice sites is a diffusion process, and diffusion

is time dependent. Correspondingly, the width of the transition depends not only on

thermodynamic, but also on kinetic parameters. Generally, second-order and higher

order transitions are characterized by a certain transition range from the low T to the

high T phase. Often, only the upper limit is characterized by a critical temperature Tc

(see Figures 2.15 and 2.17). Besides, the transition proceeds in a smooth way, usually

without mechanical disintegration of samples such as crystals during growth.

Ferroelectric lithium niobate LiNbO3 is a good example: This material is grown on

an industrial scale, and it grows from the melt in a paraelectric R3c phase [15]. The Li:Nb

ratio is not fixed, and the formula should rather be written as (1� x) Nb2O5$xLi2O

¼ LixNb1�xO2.5�2x. Figure 2.18 shows the dependence Tc(x) of the Curie temperature
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where the second-order transition to the ferroelectric R3c phase occurs. Similar to the

b/b0 transition of brass (Figure 2.16 right), the para-/ferroelectric transition of lithium

niobate is accompanied by a cp anomaly that can be observed, e.g., by differential

scanning calorimetry (DSC) [16].

Only briefly “glass transitions” shall be mentioned here, because the glass state is

metastable, hence, cannot be found in (equilibrium) phase diagrams. Nevertheless, x � T

regions where glass states are easily formed are sometimes marked. Often, glass for-

mation is connected with immiscibility of two liquid phases below some critical tem-

perature Tm, which usually depends on x. If at least one of these liquids contains a

“network builder” such as SiO2, B2O3, or P2O5, a glass can be formed that initially
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(at high T) has a rubberlike behavior. Upon further cooling, at the glass transition

Tg < Tm, the glass becomes more brittle. Such behavior can be observed, e.g., in binary

systems B2O3–A2O (A ¼ Li, Na, K, Rb, Cs) [19]. The softening of glass if heated above Tg

can be measured by thermomechanical analysis (TMA); in addition, it is connected with

a cp anomaly, shifting a DSC curve to the endothermal direction [20].

2.1.4 Calculation of Phase Diagrams

2.1.4.1 Miscibility
If in one specific phase f several components show miscibility, this mixing increases

disorder hence the entropy S (Eqn (2.19)). Increasing S, however, reduces the Gibbs free

energy G (Eqn (2.22)) and makes the mixed phase thermodynamically more stable,

compared to the unmixed (or “mechanically mixed”) state (Figure 2.19). If mixing does

not occur, one has the simple case of a pure substance with fixed stoichiometry. Then cp
and the derived thermodynamic potentials H, S, G are only functions of T, and data for

many substances can be found in the literature.

f is a mixed phase if it has a variable composition x1, x2,.xC�1 (C—number of

components). Assuming that the mixture is ideal, one has

Gf ¼
XC
i

xim
0
i|fflfflfflfflffl{zfflfflfflfflffl}

G0

þRT
XC
i

xi ln xi|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Gid

(2.26)

where the first expression G0 results from the weighed contributions of the pure com-

ponents (dashed line in Figure 2.19), and the second expression Gid from the ideal en-

tropy of mixing. Often, especially if T is very high and chemical interaction forces

between components are weak, Eqn (2.26) gives a realistic approximation for real sys-

tems too. If energetic (Hex) or entropic (Sex) excess contributions must be taken into

account, a term (Gex) must be added to Eqn (2.26).
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Often this Gex is described by the subregular solution model (Redlich–Kister [21]),

which is expressed by

Gex ¼ xAxB
XN
j¼0

Lj ðxA � xBÞj (2.27)

where xA and xB are the molar fractions of components A and B, respectively. (Only the

binary case is described here, xA þ xB ¼ 1.) Lj terms represent the interaction coefficients

between the basis compounds, and they are often given as a linear function of tem-

perature, e.g., Lj ¼ L
ð0Þ
j þ L

ð1Þ
j T . Other models, e.g., the “two-sublattice ionic solution”

[22], take into account that anions and cations are intermixing only on separate sub-

lattices, and an anion usually cannot jump to a cation site and vice versa.

The Gex of a specific phase can be determined experimentally, e.g., by measuring phase

diagrams, electrical potential differences, orbyvaporpressuremeasurements. Suchdataare

available not only in the original literature, but also from databases. Often, the theoretical

estimation is possible if interatomic potentials between the constituents (atoms, ions) are

known.Then the total energyof apurephase (e.g., a stoichiometric crystal) canbecompared

to the total energy of the distorted phase (themixed crystal). The difference is the energy of

mixing. It should be noted that the determination of Gex is often elaborate.

The topology of phase diagrams depends substantially on the extent to which the

components can mix in the different phases. The following rules of thumb for gases,

liquids, and solids can be given.

Gases: Unless under extreme conditions [23], gases are mixing in arbitrary ratio.

Moreover, ideal mixing (Gex ¼ 0) can be assumed if the pressure does not

approach the critical pressure and if the temperature is not too low. Both re-

quirements are fulfilled for most crystal growth processes, except hydrothermal

growth or high-pressure synthesis.

Liquids: Liquids (melts) of different components are miscible if chemically similar.

Certainly, this statement is not very definite: It simply means that, if all compo-

nents belong to one group of substances such as metals, oxides, halides, hydrocar-

bons, alcohols, sugars, there is a good chance that mixing is possible for all

compositions. For technical applications, and especially for crystal growth, many

relevant systems fulfill this condition and just one liquid phase is formed.

Nevertheless, exceptions exist, and Figure 2.20 shows that, e.g., below ca. 1900 �C
CaO–SiO2 melts with ca. 85% SiO2 decompose under formation of two liquids with

different SiO2 concentration. In a closer look, phase transition or demixing phe-

nomena in melts seem not uncommon, especially under conditions close to the

crystallization of solid phases: Crystal growth of HgTe was observed from demixed

melts [24], melts of CdTe undergo a structural transition under formation of associ-

ates near Tf [25], and even if CaCO3 crystallizes from aqueous Ca(HCO3)2 solutions,

separation of the liquid was observed in theory and experiment [26,27].

Solids: The condition of chemical similarity for complete miscibility is valid also for

crystalline materials. Yet another precondition makes the formation of mixed crystals
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(¼solid solutions) less probable compared to liquids: If two components A and B form

a solid solution, their atoms must be able to substitute each other in the correspond-

ing crystals in a complete chain of constitutions. This is possible only if A and B

belong to the same crystal structure type. The left panel of Figure 2.21 demonstrates

this for silicon and germanium. Both crystallize in the diamond structure type (space

group Fd3m), and the lattice constants of their cubic unit cells are aSi
0 ¼ 0:543 nm or

aGe
0 ¼ 0:566 nm, respectively. The similarities are so significant that Si and Ge can

replace each other, and a continuous row of solid solutions is formed. The lens-

shaped binary phase diagram shown there is typical for such “mixed crystal” systems

(see Section 2.2.2.1). The right panel of Figure 2.21 shows the binary system lead–tin,

both elements follow immediately after Si and Ge in the fourth group of the periodic

table, and are similar from the chemical point of view. However, at ambient tempera-

ture, Sn crystallizes in a tetragonal structure (space group I41/amd, lattice constants

aSn
0 ¼ 0:582 nm, cSn0 ¼ 0:317 nm). The lead structure instead is a face-centered cubic

lattice (space group Fm3m, aPb
0 ¼ 0:495 nm). The large Pb atoms can replace only ca.

2% of Sn in its structure; on the other side, the small tin atoms can substitute ca. 20%

of Pb. A continuous solubility range cannot exist because continuous transformation

between both structures is impossible. Hence, a eutectic system is formed (see

Section 2.2.2.2).

As a result of the Gid term in Eqn (2.26), the slope of the Gf(x) functions becomes

infinite near the pure components at x ¼ 0 or x ¼ 1. This means that Gf(x) drops
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considerably for every phase if minor amounts of arbitrary impurities are added. In other

words, a minor “rim” solubility always exists. Minor impurity concentrations in the order

of parts per million (ppm) or even less may be important, e.g., for doping semiconductors,

but are irrelevant for many other applications. All solid phases in Figure 2.20 have a

negligible phase width and are represented by vertical lines. Such phases with fixed

stoichiometry are called “line compounds” or “daltonides.” The opposite is either a mixed

crystal spanning all concentrations 0 < x < 1 of a phase diagram (Figure 2.21 left), or a

“berthollide” phase where the composition is a variable within certain limits. Lithium

niobate (Figure 2.18) is an example where the concentrations of Li and Nb can shift by a

few percent, consequently LixNb1�xO2.5�2x shows a finite phase width (¼“homogeneity

range”). In the Cu-Zn system (Figure 2.16(left)), all solid phases are berthollides.

2.1.4.2 Analytical Expressions
Often, for practical purposes, binary phase diagrams with two components A, B are used.

Then one has xB ¼ 1 � xA ¼ x and one concentration value x describes the composition

completely. x and temperature T are often used as coordinates for A–B phase diagrams,

and some types of such diagrams will be presented in Section 2.2.2. It was stated in

Section 2.1.4.1 that the topology of phase diagrams is determined by the mutual

miscibility of A and B in different phases fi. For the three limit cases in Figure 2.22, the

shape of phase boundaries can be given analytically.

There and in the following, fixed chemical compositions will be described by Latin

letters or combinations of them: A, B, AB, AB2, AmBn. Phases will be described by f0,
f00,.. If necessary, the chemical composition of a phase can be denoted in brackets.

A(f0) means pure A in the phase state f0. A1�xBx(f
00) means a mixture with molar con-

centration x of B in the phase state f00.
For all diagrams in Figure 2.22, phase fields are separated by lines. Component A

undergoes a first-order transition f0 4 f00 at TA, and B an analog transition at TB. Often
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900

1000

1100

1200

1300

1400

Ge Si

T
)

C°(

0.2 0.4 0.6 0.8
0

100

200

300

400

Sn Pb

T
)

C°(

+

FIGURE 2.21 Left: Phase diagram Si–Ge with formation of a solid solution for 0 < x < 1 because both end
members have identical (diamond) crystal structure and can replace each other (inserts). Right: Phase diagram
Pb–Sn with limited mutual solubility at the rims, resulting from different crystal structures of both end members.
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f00 is the liquid (melt), and then the lower phase boundary where only melt(s) ap-

pear(s) is named liquidus. The maximum temperature at which all phases remain solid

is marked by the solidus line, and is below the liquidus. The shape of these phase

boundaries, however, depends only on the corresponding transition temperatures TA,

TB and on the enthalpy changes at these temperatures (¼heat of transition) QA, QB.

This means that diagrams such as shown in Figure 2.22 can be valid for melting

transitions (f00 ¼ liquid) as well as for other first-order transitions, e.g., between

liquids and gas, or between different solid phases. The following cases can be

distinguished:

Figure 2.22 Left: No mixing at all, such with water and mercury. Then TA ¼ �39 �C
is the melting point of Hg, and TB ¼ 0 �C is the melting point of H2O. At low T we

have a mixture of pure solid Hg with pure solid H2O. At high T both components

are liquid, but immiscible. Consequently, pure water and pure Hg form separate

phases. At intermediate T, solid pure H2O (ice) floats on pure liquid Hg. For the

liquidus and solidus, one has

T sol ¼ TA (2.28)

T liq ¼ TB (2.29)

if B melts higher, or vice versa.

Figure 2.22 Middle: Mixing only in the high T phase f00, which is often the liquid.

The resulting Gid (Eqn (2.26)) lowers G for this phase, and makes it more stable.

The left panel of Figure 2.1 is an example if one considers only the part between

V2O5 and V2MoO8, or only the part between V2MoO8 and MoO3. Assuming ideal

and unlimited mixing of the components in phase f00 and no solubility of B in A(f0)
or A in B(f000), respectively, the bent phase lines (liquidus of A or B, respectively)

can be described analytically by the expressions

xliq ¼ 1� exp

�
�QA

R

�
1

T
� 1

TA

�	
(2.30)

BA

TA

TB

A(φ ) + B(φ )

A(φ ) + φ B(φ ) + φ

φ

BA

TA

TB

A(φ ) + B(φ )

A(φ ) + B(φ )

A(φ ) + B(φ )

BA

TA

TB

φ

φ +φ

φ

FIGURE 2.22 Three basic topologies of binary phase diagrams where both components undergo a transition from
a low T phase f0 to a high T phase f00. Left: No mixing in f0 and f00. Middle: no mixing in f0, but mixing in f00.
Right: mixing in f0 and f00.
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xliq0 ¼ exp

�
�QB

R

�
1

T
� 1

TB

�	
(2.31)

where Eqn (2.30) describes the A-rich and Eqn (2.31) describes the B-rich side.

Both branches meet at the eutectic point and the third phase boundary (eutectic

line) is a horizontal through that point, representing the solidus. This is a eutectic

system (see Section 2.2.2.2). Figure 2.23 shows a calculated eutectic phase diagram

for two different sets QA, QB. It should be noted that a change of one Qi influences

only the slope on the side of the corresponding component i. Consequently, for

the case QA ¼ 10 kJ/mol, QB ¼ 20 kJ/mol one had to elongate in Figure 2.23 the B

liquidus (solid line) until it meets the dashed A liquidus, resulting in xeut z 0.32

and Teut z 760 K.

Figure 2.22 Right: If complete mixing of A and B is possible in phases f00 and f0,
both phases are stabilized by the Gibbs free energy of mixing. One-phase fields

appear at very low and very high T. Both one-phase fields are separated by a two-

phase field f0 þ f00. Assuming again ideal behavior in both phases, solidus and liq-

uidus can be expressed analytically

xsol ¼
exp

�
� QA

R



1
T
� 1

TA

�	
� 1

exp

�
� QA

R



1
T
� 1

TA

�	
� exp

�
� QB

R



1
T
� 1

TB

�	 (2.32)

xliq ¼ exp

�
�QB

R

�
1

T
� 1

TB

�	
� xsol

ðTA, T, TBÞ (2.33)

if heat Q and temperature T of the phase transformation are known for both pure

substances. The two-phase lens is symmetrical for QA ¼ QB, and it becomes

xA 0.2 0.4 0.6 0.8 B
600
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T
)
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20 kJ/mol
10 kJ/mol

xeut

Teut

FIGURE 2.23 Calculated hypothetical
eutectic phase diagram with TA ¼ 1000 K,
TB ¼ 1200 K. The solid and dashed lines
were calculated with Eqns (2.30) and
(2.31), and QA ¼ QB ¼ 20 or
QA ¼ QB ¼ 10 kJ/mol, respectively.
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broader for large Q values. Even for ideal mixing, the lens can bend upward or

downward if QA and QB are significantly different. However, both liquidus and soli-

dus are for ideal mixtures monotonous rising or falling, respectively. Local minima

may occur only if excess Gibbs free energy of mixing occurs.

2.1.4.3 Minimization of the Gibbs Energy
In Section 2.1.2.4, the Gibbs free energy G was introduced, which has a minimum for

every system in thermodynamic equilibrium. The contributions of several phases

f0(i ¼ 1.P) are additive

G ¼
XP
i¼1

Gfi
(2.34)

and each phase may consist of several constituents. The number Cf of constituents of a

phase f may be unity—then one has a pure phase. For pure phases, Gf is basically a

function of T, and sometimes other intensive quantities such as p, but not on concen-

tration. Instead, G(T) is given by Eqn (2.22), with H(T) from Eqn (2.16) and S(T) from Eqn

(2.21). Alternatively, formation enthalpy DHf, entropy S0 (at standard conditions) and

coefficients for the cp(T) function (2.13) are a sufficient dataset for the description of

pure phases.

Mixed phases bear additional contributions Gid, and possibly Gex, to Gf that depend

on the concentrations of species present in this phase. Usually, the number of species is

much larger than the component number of the system, as already single-phase

chemical elements may form several species: gaseous oxygen exists as O, O2, and O3.

For the whole system, the mass balance for all elementary components must be fulfilled;

this means that the number of atoms of one chemical element that are present in all

phases may not change.

Knowing the G(T, x, p,.) functions for all possible phases that can be formed from

a given starting composition, and taking into account the mass balance for all

chemical elements that are present, numerical minimization of G (Eqn (2.34)) allows to

calculate the equilibrium state of the system for the given conditions T, p,. [28]. The

task of numerical minimization of G is not straightforward, as equation systems

with many unknowns (the concentrations of all species in the stable phases) have to

be solved. For doing this, commercial software packages such as FactSage [3] or

Thermo-Calc [29] as well as some free software, are available. The journal

Calphad (CALculation of PHAse Diagrams) is a forum for work devoted to such

calculation efforts, and an overview of available software can be found there [30].

Commercial software packages are often integrated with databases for

thermodynamic data at least for pure substances, and partially also for mixture phases.

Free data collections can be found in the literature (e.g., [8–10] or on the internet

[31,32]). Many phase diagrams for real systems in this chapter where calculated with

FactSage.
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2.2 Equilibria Between Condensed Phases
2.2.1 One Component

2.2.1.1 Pressure–Temperature Diagrams
For systems with only one component (C ¼ 1), Gibbs phase rule (Eqn (2.5)) gives a sum

F þ P ¼ 3 degrees of freedom þ phases. The concentration is fixed to be unity, and often

pressure and temperature are used for constructing phase diagrams. Figure 2.3 shows

this for sulfur as an example, where the four different phase fields are separated by lines

(phase boundaries). Under ambient conditions, sulfur is a soft but brittle yellow solid,

with orthorhombic crystal structure (a-S). It melts at 115 �C to a dark liquid, but if cooled

quickly (e.g., by pouring into water), an almost rubberlike solid with monoclinic crystal

structure is obtained (b-S), which transforms slowly back to a-S under ambient condi-

tions. A detailed investigation reveals that at 1 bar b-S is stable for 95 � T (
�
C) � 115.

F þ P ¼ 3 can be obtained in three ways, as follows, which can be seen from

Figure 2.3:

F ¼ 0: No degree of freedom means a fixed point with as much as three coexisting

phases. This is the case in the three “triple points” T1 (a þ b þ liq; 117 �C,
283 bar), T2 (b þ liq þ gas; 115 �C, 3.8 � 10�5 bar), T3 (a þ b þ gas; 95 �C,
7.6 � 10�6 bar).

F ¼ 1: One degree of freedom does exist along lines separating phase fields in the

diagram. Along these lines, the neighboring phases are coexisting. The slope of the

lines is given by the Clausius‒Clapeyron equation

dp

dT
¼ DH

DVm $T
(2.35)

where DH is the enthalpy difference between the two neighboring phases. For

melting events this is, e.g., the heat of fusion DHf, and first-order phase trans-

formations (see Section 2.1.3) are characterized by the heat of transition DHt. Both

sulfur structures are characterized by S8 rings and differ mainly in the arrangement

of these rings. The corresponding phase transition does not rearrange too many

bonds, hence DHt ¼ 0.4 kJ/mol is small for the a % b transition of S. In other

cases, where the crystal structure undergoes a complete rearrangement, the

enthalpy of solid-state transitions may approach the heat of fusion. BaCl2 un-

dergoes, at 37 K below its melting point, a strong structural transition from ortho-

rhombic to cubic [33] with DHt ¼ 16.9 kJ/mol, and DHf (at 962
�C) is 16.0 kJ/mol.

Generally, one can assume that a few kJ/mol to several 10 kJ/mol are typical values

for DH to be entered in Eqn (2.35). DVm is the difference between molar volumes

in both phases, which are inverse proportional to the mass density 9. This is for

most solids and liquids in the range 1 � 9 � 20 g/cm3: Under ambient conditions

extreme values are lithium (0.535 g/cm3) and osmium or iridium with 9 z 22.6 g/

cm3. For most transitions between condensed phases, 9 does not change much,
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and DVm is small. Consequently, the slope dp/dT is large, which is shown by the

almost perpendicular phase boundaries a/b and b/liquid in Figure 2.3. For transi-

tions between condensed phases and gases, however, the molar volume changes

remarkably. The large DVm results in significantly smaller slopes of the phase

boundaries. If the volume of the condensed phase is neglected in comparison to

the volume of the gas phase Vg, DVm in (Eqn (2.35)) can be replaced by the volume

of an ideal gas V ¼ RT/p. This gives

d ln p

dT
¼ DH

R $T 2
(2.36)

which corresponds to the parabolic behavior of the gas phase boundary in

Figure 2.3.

F ¼ 2: Two degrees of freedom are available inside the four phase fields of

Figure 2.3, and always only one phase is stable there. Two degrees of freedom

means that two independent parameters (here p and T) can be changed within the

limits of the corresponding phase field independently.

2.2.1.2 Other Fields
T and p are typical intensive parameters that are used as axes, but generally the Gibbs free

energy may depend on other fields requiring more terms to be added to Eqn (2.22), e.g.,

G ¼ H � TS � Vm E
!

$ D
!� Vm

2 s! : 2
ε
! (2.37)

where Wel ¼ E
!

$ D
!

is the electric work density of a polarized crystal (E
!
; D
!
—electric field

or displacement, respectively) and Welast ¼ 2 s! : 2
ε
! is the elastic energy stored in a

deformed solid (2 s!—elastic stress, 2
ε
!—strain). Notations such as 2

ε
! express that the

corresponding physical property is described by a second rank tensor, a construct having

in general 3 � 3 components [34].

Such alternative contributions to G can be significant, especially for epitaxial layers.

Strontium titanate SrTiO3 is an example: The substance crystallizes at high T in a cubic

perovskite paraelectric phase, which has no permanent moments. If cooled below the

Curie temperature TC, it lowers crystal symmetry and becomes in a second-order

transition (see Section 2.1.3) ferroelectric. TC depends on the G(T,ε) functions of the

paraelectric and ferroelectric phases, and ε can be manipulated by growing titanate

layers on substrates that are almost, but not perfectly, lattice matched. Distorted

perovskite substrates such as REScO3 allow “strain engineering” to manipulate the

ferroelectric properties of SrTiO3 layers [35].

Gibbs phase rule (Eqn (2.5)) in its classical form relies on the expression

G ¼ H � TS ¼ U þ pV � TS. This means that pressure p and temperature T are inde-

pendent variables. If under isobar conditions p ¼ const., the number of independent

variables is reduced, the phase rule has to be altered to Eqn (2.6), with 1 instead of 2 as

integer constant. Contrarily, a larger number of independent variables such as shown in

Eqn (2.37) can increase the integer in Eqn (2.5) from two to larger values. This is
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demonstrated in Figure 2.24 for the one-component system SrTiO3, which can be grown

on several substrates, causing strain within the thin single crystalline SrTiO3 layer. Only

for small ε or high T the material remains in its normal paraelectric cubic phase. For

large ε, the material lowers its symmetry completely and becomes ferroelectric. In the

intermediate region, paraelectric and ferroelectric states coexist: a phenomenon that is

not found in typical one-component phase diagrams with p, T as coordinates

(Figure 2.3). For vanadium(IV) oxide VO2 a triple point between two isolating monoclinic

and a metallic rutile type phase was found in coordinates strain ε (or stress s f ε,

respectively) versus temperature at T ¼ (65.0 � 0.1) �C, ε ¼ 0 [36].

2.2.2 Two Components

The pressure dependence of phase transitions can be described by the

Clausius–Clapeyron Eqn (2.35). Many phase transitions are influenced only to a small

extent by the total pressure p of the system. This is the case, e.g., for the melting of solids

and for transitions between different crystal structures of one chemical compound

where jDVj is usually small. Besides, the variation of x and T can, under usual experi-

mental conditions, be more easily performed than variations of p, which require ex-

periments within pressure cells or sealed ampules. For both reasons, the phase

composition of the system depends nearly exclusively on T and on the composition xi of

all components i. As
P
i

xi ¼ 1, one concentration value x is sufficient in the case of bi-

nary systems with only two components.

The topology of the binary phase diagram in the x � T plane (often called A–B

phase diagram) depends on the miscibility of A and B in the different fi. Some typical

(limit) cases will be presented in the next sections. One should note that transients

between these limit cases can be found often, if a limited but non-negligible miscibility

Paraelectric

Ferroelectric

0 0.8-0.8
In-plane strain, (%)

FIGURE 2.24 Phase diagram of SrTiO3 with ε ¼
(ajj � a0)/a0 as abscissa. ajj, a0 is the lattice constant
of SrTiO3 in stressed (¼epitaxially grown) or free-
standing state, respectively. After Ref. [37], reprin-
ted by permission from Macmillan Publishers Ltd.
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between A and B occurs in one or more phases. The same syntax that was introduced in

Section 2.1.4.2 will be used for the description of phases with fixed or variable

composition x.

2.2.2.1 Total Miscibility in 2 Phases
This case of total mixing in a high T and low T phase was already described analytically

Eqns (2.32) and (2.33). Pure A undergoes at TA a first-order phase transition, such as

melting, from f0 to f00, and pure B undergoes at TB an analog first-order transition from

f0 to f00. If the necessary but not sufficient conditions

1. identical space symmetry groups (requiring at least identical point symmetry

groups, which again requires at least identical crystal system)

2. similar lattice parameters a, b, c (should not be different by more than z15%)

3. similar nature of chemical bonds (ionic, covalent, van der Waals, or metallic)

are fulfilled for both phases, each of them can adopt any composition 0 � x � 1

(complete miscibility). Accordingly, for low T, only one phase f0 is stable for all x. This

means that this combination of system variables corresponds to a one-phase room (or

one-phase field) in the diagram. For high T, only f00 is stable, resulting in another one-

phase field. For intermediate T both phases f0 and f00 may exist in equilibrium that is

represented by a two-phase field that typically has the shape of a lens. The two-phase

field f0þ f00 spreads from the composition A to the composition B in the binary phase

diagram (Figure 2.25). It should be noted that the first-order transition happening at one

point on the T scale for the pure substances A and B is spread over a T range which is

spanned by the lines limiting the two-phase field for intermediate compositions. This T

range becomes broader for larger heats of transformation (Figure 2.26).

Often, f00 is simply the melt (liquidus). In this case, the first condition for miscibility is

usually fulfilled, as liquids (except “liquid crystals”) are isotrope. Isotropy is described by

the limit point symmetry group (Curie group) NNm, which is the highest symmetry

group at all. Condition 2 does not apply to liquids; hence, only condition 3 decides

Te
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φ
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φ + φ

FIGURE 2.25 Binary phase diagram with
ideal mixing both (low T and high T)
phases f0 and f00.
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whether or not the phases f00 of both components A or B can mix. In such cases where f00

is the melt, the lower boundary line of the two-phase field A1�xBx(sol) þ melt is called

solidus and the upper boundary line is called liquidus. Like melting, evaporation is a

first-order transition and liquid–vapor equilibria are similar to solid–liquid equilibria.

This is demonstrated in the left panel of Figure 2.27. Similar topologies with subsequent

one-phase fields can also be observed for systems with first-order transitions between

different solid phases. The zirconium–hafnium system is an example in which both

components undergo transitions (h.c.p)% (b.c.c)%melt. The abbreviations in brackets

stand for the identical hexagonal closed packed or body centered cubic crystal structures

of both metals, respectively. For zirconium and hafnium, the solid-state transition ap-

pears at 865 or 1950 �C and melting at 1860 or 2230 �C, and complete miscibility is

1000
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T
)

K(

xA 0.2 0.4 0.6 0.8 B

40–40 kJ/mol
50–10 kJ/mol
20–60 kJ/mol

FIGURE 2.26 Calculated hypothetical mixed crystal phase diagram with TA ¼ 1000 K, TB ¼ 1200 K. The three sets
of solidus and liquidus lines were calculated with Eqns (2.32) and (2.33) for the QA � QB pairs given in the legend.
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FIGURE 2.27 Left: Binary phase diagram Si–Ge for an extended T range (compare to Figure 2.20) where one-phase
fields “mixed crystal,” “melt,” “gas,” are separated by two-phase fields. Right: The binary phase diagram
NaCl–KCl shows an azeotropic point where liquidus and solidus are coincident.
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observed in all phases [38]. Consequently, a narrow two-phase field appears between

h.c.p. and b.c.c., and a broader one (DHf z 5DHtfor both metals) between b.c.c. and

melt.

If Gex is small for both phases with total miscibility, the phase boundaries (e.g., liq-

uidus and solidus; see Figure 2.26) are monotonous rising or falling. The right panel of

Figure 2.27 shows in contrast the case NaCl–KCl, where the melt extends for interme-

diate x below the Tf of the components, forming a local minimum. If such minimum

occurs, both phase boundaries must meet there in one common “azeotropic” point,

where f0 and f00 have identical composition xaz. This is remarkable because xaz is the

only composition, except the pure components, for which crystal growth from the melt is

possible without segregation (cf. Section 2.2.2.3). The system CaF2 (Tf ¼ 1418 �C)–SrF2
(Tf ¼ 1477 �C) has an azeotropic point at xaz z0.418, Taz ¼ 1374 �C, where homogeneous

single crystals with 30 mm diameter and 50 mm length could be grown by the

Czochralski method [39]. Principally azeotropic points could also be common maxima of

liquidus and solidus, but this case is not very realistic: It requires a relative stabilization

of the solid with respect to the liquid (negative Gex). This, however, results rather in the

formation of an intermediate compound. In the system Cu–Au, where both components

have face-centered cubic structures, solid solutions exist for all concentrations with an

azeotrope near 60% gold. Below ca. 400 �C, the interaction between Cu and Au atoms

becomes so strong that their distribution on lattice sites is partially ordered. Depending

on the Cu/Au ratio, compounds with approximate compositions Cu3Au, CuAu, or CuAu3

are formed, and all of them show some flexibility of composition around the ideal values

25, 50, or 75% Au.

Other examples for intermediate compounds are SrxBa1�xNb2O6 (SBN) with a

liquidus/solidus maximum at x ¼ 0.61 [40–42] or CaxBa1�xNb2O6 (CBN) with a liquidus/

solidus maximum at x ¼ 0.281 (see Figure 2.28) [43]. Sometimes, SBN and CBN are called

mixed crystals, but this denomination might cause errors because it suggests mixing

from the end members EANb2O6 (EA ¼ Ca, Sr, Ba), which is wrong. Instead, both systems

are pseudobinary with an intermediate congruently melting compound, and eutectics on

both sides of this compound (see Section 2.2.2.4). It is just remarkable that the homo-

geneity width of these compound is rather large: from ca. 0.2 to 0.8 for SBN, and from ca.

0.15 to 0.4 for CBN.

The Gibbs energy gain from mixing becomes smaller for low T as the second term of

Eqn (2.26) vanishes. Consequently, mixed phases do not exist in equilibrium at very low

T. Of course, demixing of solid solutions (in contrast to liquid solutions) requires

diffusion steps that need time, and are consequently often hindered kinetically. Not

always demixing results in the formation of intermediate compounds, like in the Cu–Au

system above mentioned. No intermediate compounds exist between antimony and

bismuth. Both are crystallizing in identical structures belonging to the rhombohedral R3c

space group with lattice constants aSb0;rh ¼ 0:45067 nm and aBi0;rh ¼ 0:47458 nm [44]. This

difference of ca. 5% is rather small, and allows the formation of solid solutions Sb1�xBix
for 0 � x � 1 at sufficiently high temperature. The binary phase diagram in Figure 2.29
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shows, however, that near x ¼ 0.5, such mixed crystals become unstable at T(170 �C.
Then the initially homogeneous solid solution (one phase) becomes unstable and de-

composes under conservation of the crystal structure to volume elements, which are

enriched in Sb or Bi, respectively (two phases). It should be mentioned that such

FIGURE 2.28 Pseudobinary phase diagram CaNb2O6–BaNb2O6 with congruently melting intermediate (Ca,Ba)Nb2O6

(“CBN”). The CBN phase field is single phase, in contrast to the neighboring fields. Reprinted with permission
from Elsevier [43].
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FIGURE 2.29 Phase diagram bismuth–antimony with complete miscibility at high T in the rhombohedral A7
structure. Below the miscibility gap, decomposition to a Sb-rich and a Bi-rich phase occurs, both with identical A7
crystal structure like that above the gap.
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miscibility gaps, even if theoretically expected for all mixed crystal systems, are practi-

cally not observed very often for kinetic reasons.

2.2.2.2 Eutectics and Eutectoids
A eutectic phase diagram is formed if the components are immiscible in their solid

phases, but exhibit complete miscibility in their molten (liquid) phases. This case was

described analytically by Eqns (2.30) and (2.31). If a melt with composition xeut in the

hypothetical phase diagram Figure 2.23 is cooled, then it crystallizes completely at xeut
under formation of the solid phases A and B. In other words, a eutectic reaction

liquid/ A (sol) þ B (sol) takes place, where one phase decomposes and forms two other

different phases. The crystallization of two phases at the same time close together results

typically in a fine-grained, interpenetrated structure. Such eutectic solids sometimes

show metamaterial properties that might differ considerably from the properties of its

constituents [45]. If in Figure 2.23 the initial composition of the cooling melt deviates

from xeut, the crystallization of a solid phase starts already at another Tliq > Teut and

continues until Teut. The first crystallizing phase left from the eutectic composition is

solid A, and right from xeut solid B. All phase fields are labeled correspondingly in

Figure 2.30.

It is not a requirement that the high T phase is liquid. Figure 2.30 shows the more

general case where, during heating, the component A undergoes at TA the trans-

formation f0 / f000, and B at TB a transformation f00 / f000. This means that at low T, A

and B show a different phase state, and are therefore immiscible, but have identical

phase states f000 with unlimited miscibility at high T. If f000 is a solid phase, then the

composition xeut undergoes at Teut a eutectoid reaction.

Figure 2.31 shows as an example of high technical relevance the iron-rich part of the

Fe–C system. It should be noted that this system is drawn here for true equilibrium.

Under the technical conditions of iron and steel metallurgy, often cementite phase Fe3C

appears [46], which is not an equilibrium phase in the Fe–C system (but see Figure 2.32
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for Fe–Mn–C). Nevertheless, the appearance of Fe3C results only in minor amendments

to the phase diagram part that is shown in Figure 2.31: the rightmost liquidus becomes

flatter—it is then the liquidus of Fe3C instead of C, and the lowest stability limit of g-Fe

drops from 738 �C by ca. 12 K. Pure Fe has below 911 �C a body-centered cubic structure
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FIGURE 2.31 The iron-rich part (xC � 0.2) of the iron–carbon phase diagram. Pure iron undergoes transitions
a-Fe / g-Fe / d-Fe / melt. The maximum solubility of carbon in the solid phases is (in this order) 0.001, 0.09,
0.004. Single-phase g-Fe with xFe ¼ 0.03 is stable down to 738 �C, where it undergoes eutectoid decomposition to
a-Fe and graphite.
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(such as tungsten) and is comparably hard. This structure can dissolve only minor

amounts of carbon. For 911 < T (�C) < 1395, g-Fe is stable, which has a face-centered

cubic structure (such as copper) and can dissolve large amounts (9% C. Dissolved

carbon stabilizes g-Fe down to the eutectoid temperature Teutectoid ¼ 738 �C at

xeutectoid ¼ 0.03. If such Fe0.97C0.03 is cooled from the g phase field below Teutectoid, it

decomposes to the a-Fe phase and graphite. This transformation from one phase to two

phases has analogy with a eutectic, but proceeds only with solid phases. It is therefore

called a eutectoid.

2.2.2.3 Segregation and Lever Rule
Many solidification and crystal growth processes are performed by cooling melts or melt

solutions. Such crystallization is often accompanied by segregation. This means that a

solid (e.g., the just-formed part of the crystal) and a liquid (e.g., the rest of the melt) of

different composition are in equilibrium. During heating, the same observation is often

called incongruent melting, as melting solid and created liquid have no identical

composition. The appearance of segregation is very different in systems with or without

mixed crystals. The left panel of Figure 2.33 shows the case of a simple mixed crystal

system. If a melt with composition x0 is cooled, the first solid is formed at the temper-

ature T 0 where the liquidus touches x0. The system is in equilibrium, and consequently

every part of it is at T 0 now (isothermal conditions). The composition of the solid phase is

shown by the solidus, and this curve gives at T 0 the composition x0solsx0. The dashed

horizontal line at T 0 connecting x0 (liquid) and x0sol, which are in equilibrium, is called the

tie-line. During further slow cooling, the system reaches T 00, and now a melt x00liq is in

equilibrium with a solid x00sol. Reaching such state, however, is an extremely time-

consuming process, as all solid material that was crystallized before with x > x00sol had
to be transformed by solid-state diffusion to the new composition. Practically, this

seldom happens, even during geological times: The mineral olivine is a crystal mixed

between forsterite Mg2SiO4 and fayalite Fe2SiO4, and shows locally different Fe/Mg ratio

in artificial as well as natural crystals [47]. Theoretically, under perfect equilibrium, the
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crystallization process is finished at T 000 when the two-phase field is left. As material may

not disappear, the resulting crystal had the initial composition x0 then.

Practically, the initially crystallized part will often be too far from the residual melt to

reach equilibration. Depending on the geometrical conditions, the first fraction crys-

tallized with x0sol may then be surrounded by subsequently crystallized material with

smaller B-composition (“gradient crystal”). In crystal-pulling processes, such as

Czochralski, the B-rich material crystallizes first close to the seed, and is closer to the tail

followed by material with lower B concentration. In systems such as shown in

Figure 2.33 left, the higher melting component will always be enriched in the first

crystallized fractions. Often, a segregation coefficient

k0 ¼ xsol
xliq

zconst: (2.38)

is defined that approximates the solidus and liquidus to be linear near the pure com-

ponents. This case was discussed first by Gulliver [48], and results in a dependence on

the position given by

xsol



g
�
¼ keffx0ð1� gÞkeff�1 (2.39)

where 0 < g < 1 is the crystallized part of the melt with initial composition x0. The

effective distribution coefficient keff depends on k0 (for crystallization that is not too

quick, one often has keff z k0) and several parameters of the crystallization process itself

[49].

Segregation appears always in mixed crystal systems, except at azeotropic points (see

Figure 2.27 right) and often significantly impedes crystal growth, because large volumes

with constant composition cannot then be easily grown. If the concentration, hence the

properties of the mixed crystal, depend too strongly on position, even a stable crystal

growth process may become impractical.

Also in systems where the solid phase has a fixed composition, such as the eutectic

system in Figure 2.33 right, segregation can occur. If a melt x0 is cooled, at T 0 the pure

solid B (x ¼ 1) crystallizes. The crystallization of B (sol) continues until Teut is reached

where the whole system becomes solid. Such behavior may be beneficial if for some

reason (too high volatility, phase transition, or another destructive process below TB,

technical restrictions for very high TB) the crystal B (sol) cannot be grown from a pure B

melt. This is the basis for melt solution growth processes, such as TSSG [50].

For one-phase fields, a point (x, T) gives the composition and temperature of this

phase at this specific point. From the tie-line constructions mentioned above, it is clear

that this is not the case for two-phase fields. There, the tie-line crossing this point

connects two phases with different compositions that are in equilibrium at this T. Not

only can both compositions, but also the shares of both phases, be read directly from the

phase diagram, following the lever rule. According to this rule, the quantities of both

equilibrium phases are indirectly proportional to the “levers” that are spanned from the

given composition to the corresponding phase boundaries. For instance, in Figure 2.33
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right, one has at T00 solid B (x ¼ 1) in equilibrium with a melt composition x00liq. The
quantities are

melt :
1� x0
1� x00

liq

(2.40)

BðsolÞ : x0 � x00
liq

1� x00
liq

: (2.41)

With further lowering of T, x00liq finally approaches xeut, and this gives the maximum yield

(expressed as share of the starting material) that can be reached with crystal growth

processes from melt solution with

Ymax ¼ x0 � xeut
xsol � xeut

(2.42)

where xsol is the composition of the phase which has to be grown (in Figure 2.33 right

x ¼ 1), and x0 is the initial composition of the melt.

2.2.2.4 Intermediate Compounds
Sometimes the components of a thermodynamic system can interact so strongly that

intermediate compounds are formed. This is usually the case if one component easily

creates cations (such as most metals), and the other easily creates anions (such as

halogens, oxygen, or sulfur). Then simple salts, oxides, or sulfides are built. Also, how-

ever, systems set up from comparably similar components can form intermediate

compounds if a sufficiently large Gibbs free energy reduction can be reached; see, e.g.,

the CaO–SiO2 system in Figure 2.20.

Figure 2.34 shows two similar pseudobinary systems LiF–AF (A ¼ Cs, Rb), and both of

them contain an intermediate compound LiAF2. It should be noted that for A ¼ K, Na the
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FIGURE 2.34 Both systems LiF–CsF (left) and LiF–RbF (right) contain an intermediate 1:1 compound. LiCsF2 has a larger
formation enthalpy, and melts congruently. This is the precondition for constructing independent partial systems.
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systems form simple eutectics (for Na with some rim solubility on the NaF side), but no

intermediate compounds. Obviously the larger radius difference between the A ions, in

octahedral coordination Li (90), Na (116), K (152), Rb (166) Cs (181 pm), makes the Gibbs

energy gain upon compound formation stronger.

From the lever rule introduced in Section 2.2.2.3, it is obvious that every melt

composition from the left half of the LiF–CsF system (Figure 2.34 left, 0 � xLiF � 0.5)

forms during crystallization only CsF and/or LiCsF2. Otherwise, frommelts 0.5 � xLiF � 1,

only LiCsF2 and/or LiF are crystallizing. This means that both halves of the LiF–CsF

system are independent, and consequently form subsystems. But this is not so for the

LiF–RbF system shown in the right panel of Figure 2.34: The intermediate LiRbF2 at

xLiF ¼ 0.5 undergoes at Tper peritectic decomposition (see Section 2.2.2.5) and the lever

rule shows that from melts xper < x � 1, LiF (sol) crystallizes first. But xper is <0.5, in the

left half of the system! This means that some compositions in the left half of the system

have LiF from the right half as first crystallizing solid. In other words, it is impossible to

define independent partial systems with peritectically melting compounds as (rim)

components. Otherwise, congruently melting intermediate compounds in binary sys-

tems, such as LiCsF2 in the LiF–CsF system, can be used as rim components for partial

systems.

This is sometimes helpful if a complete system is on the one side sophisticated and

difficult to measure, but on the other side in some regions not really interesting for a

specific purpose. The CaO–SiO2 system in Figure 2.20 is a good example: For CaO-rich

compositions, the liquidus goes up beyond 2500 �C, which is considerably higher than

the T limit of typical devices for thermal analysis such as differential thermal analysis

(DTA). The binary phase diagram shows the congruently melting phases C2S ¼ Ca2SiO4

at 33% SiO2 (belite) and CS ¼ CaSiO3 at 50% SiO2 (wollastonite). Consequently, C2S and

CS may be used as end members of a partial system, and it becomes clear that CaO–SiO2

mixtures between 33.33% and 50% SiO2 may contain in equilibrium only C2S, CS, and

the intermediate C3S2 (Ca3Si2O7, rankinite). For some of them, high- and low T phases

(a,a0,b) do exist, but phases with different chemical composition such as “free chalk”

CaO or alite C3S are not permitted in this concentration range.

2.2.2.5 Peritectics and Peritectoids
Every compound AxBy disintegrates at some specific temperature TAxBy. Often, a liquid

phase is the result, and then the composition of this liquid phase is the same as of the

initial solid: AxBy (sol) / (xA þ yB) (liq). This process is called congruent melting and is

shown by LiCsF2 (sol) in Figure 2.34. The behavior of LiRbF2 in the right panel of the

figure is different, because at its disintegration temperature Tper not only a liquid, but

additionally solid LiF is formed. One can formulate the peritectic reaction

LiRbF2 (sol) / [xperLiF þ (1 � xper)RbF] (liq) þ LiF (sol) with xper z 0.47. Peritectic

decomposition (¼ peritectic melting) is one form of incongruent melting, because the

melting compound is not in equilibrium with a liquid of the same composition. But not

every incongruent melting requires a peritectic reaction—instead it was shown in
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Section 2.2.2.3 that already in simple mixed crystal systems the liquid and solid

phase in equilibrium have different composition, hence the solid shows incongruent

melting.

Figure 2.35 shows the typical case where an intermediate compound (here assumed

to have the composition AB2) undergoes peritectic melting and solid B is the higher

melting neighbor phase that is formed. At Tper, three phases are in equilibrium, which is

the maximum for a two-component system (Eqn (2.6)), and there is no degree of

freedom left. The point where B liquidus, AB2 liquidus, and peritectic line meet is called

the peritectic point and has the peritectic composition xper. Solid AB2 crystallizes only

from melts with initial composition xeut < x0 < xper. If one sets for the left diagram in

Figure 2.35 x0 as close as possible to xper (but not beyond it!), one obtains with Eqn (2.42)

the maximum yield Ymax ¼ 54.5% for the growth of AB crystals from the melt

(x0 ¼ xper ¼ 0.5, xeut ¼ 0.3, xsol ¼ 0.6667).

Also, compounds showing peritectic melting may have a finite phase width, and an

example A1�dB2 is given in the right panel of Figure 2.35. The left and right phase

boundaries of A1�dB2 are the solidus of this phase and are limiting a one-phase field. The

upper limit of this field must be a point on the peritectic line; if both phase boundaries

met not in one point, the composition of A1�dB2 would be left as a degree of freedom,

which infringes the phase rule. Not only can intermediate compounds melt peritecti-

cally, but also rim compounds if a solid solution is formed that melts higher compared to

the pure component. The system ZnO–MgO is an example where doping by (7% Mg

increases the melting temperature of ZnO by ca. 45 �K [51].

In a peritectic reaction, a low T solid phase b is in equilibrium with another solid

phase and a liquid: b (sol) % a (sol) þ liq. A peritectoid reaction is an analog with the

difference that a third solid phase replaces the liquid. Examples are MoNi4 (sol), which

decomposes peritectoid to MoNi3 (sol) þ Ni:Mo (f.c.c.), and subsequently MoNi3,

which decomposes to MoNi(d) þ Ni:Mo (f.c.c.), or FeAlO3 in the FeO–Fe2O3–Al2O3

system [52].
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2.2.2.6 Syntectics and Monotectics
Both phenomena are related to demixing in the liquid phase. An example was given in

Figure 2.20 where in the CaO–SiO2 system SiO2-rich melts are single phase only above ca.

1900 �C. The maximum of the “two melts” phase field near 89% SiO2 is a critical point,

and below it, more silicatelike melt is in equilibrium with another more oxidelike melt.

Such behavior is called monotectic. The system iodine–lead even has two regions with

immiscibility of liquid phases: For xI(0:1 and T > 368 �C, a monotectic miscibility gap

occurs. Besides the intermediate phase PbI2 (xI ¼ 0.6667) is at 406� in a syntectic

equilibrium with two immiscible melts of slightly different composition (xI z 0.53 or

z0.7, respectively) [53].

2.2.3 Three and More Components

In the previous sections, thermodynamic systems with either one or two components

were considered. With the Gibbs phase rule (Eqn (2.6)), one has in the easiest case of

constant pressure (often p ¼ 1 bar) for fields with only one phase (P ¼ 1) F ¼ C, hence

two degrees of freedom in two-component systems, which can be well represented in 2D

drawings. For systems with three or more components, this is not so straightforward,

and three options remain:

1. 3D diagrams can be constructed for systems with C ¼ 3, and drawn in a suitable

perspective. Although such procedure is instructive, a severe drawback appears,

because quantitative data are hard to read from perspective representations.

2. The number of degrees of freedom is reduced by keeping some quantities constant

(e.g., T, or some xi), or by defining dependencies between several of these parame-

ters (e.g., xi/xj ¼ const.). For quantitative representations, this method is preferred

and will be used almost exclusively in this section.

3. Projections onto the surface of a specific phase (often the liquid) are performed.

2.2.3.1 x – y Diagrams
If xA, xB, xC are the corresponding molar fractions of a ternary system, one has

xA þ xB þ xC ¼ 1 and thus two independent concentrations. It is a reasonable option to

set p ¼ const., T ¼ const. and choose, e.g., xA/xB and xC/xB as coordinates. This type of

plot can be useful if one of the components may be distinguished, e.g., the main

component of an alloy. In Figure 2.32, this is shown for iron and the two important steel

additives carbon and manganese. The left panel shows an isothermal section through the

ternary system near the Fe-rich corner, and the right panel is a projection of the same

concentration range on the boundaries of one specific phase (here: face-centered cubic

iron, g-Fe). This means that the viewer looks from inside the g-Fe phase field, which is

not shown in the diagram, down to the boundaries of neighboring phases, which are

differently shaded. For pure Fe, the f.c.c. phase is stable >912 �C and it transforms to

a-Fe for lower T. By adding C (Figure 2.31) and/or Mn, the transition temperature can be
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lowered. For C concentrations that are too high, free carbon separates as graphite, and

for C þ Mn concentrations that are too high, an iron–manganese carbide, cementite, is

formed. The phase rule (Eqn (2.6)) says for C ¼ 3 (Fe, C, Mn) under isobar conditions

P þ F ¼ 4. Consequently, up to four phases can exist in equilibrium at nonvariant points

(F ¼ 0). “1” in the right panel of Figure 2.32 is such point where g-Fe, a-Fe, graphite, and

cementite are in equilibrium. Analogous diagrams can be constructed for C > 3 if for

every additional component beyond three, one restriction (constant concentration, or

constant concentration ratio) is implemented.

Such x – y diagrams with two concentration ratios (or concentrations) as Cartesian

axes are often appropriate for the presentation of systems where one component is

clearly prevailing, such as alloys with a main component, or semiconductor systems with

their dopants. For other systems with equivalent weighed components, Cartesian dia-

grams are not so well suited. The example LiCl–NaCl–KCl is shown in Figure 2.36. These

substances exhibit unlimited solubility in the liquid phase and form solid solutions

(halite structure). In the solid phase, however, the miscibility is unlimited only for the

partial systems KCl–NaCl and LiCl–NaCl. Both partial systems have an azeotrope point,

whereas KCl–LiCl is eutectic (insert). Along the abscissa of Figure 2.36, right, the

composition shifts from pure NaCl (KCl/NaCl ¼ 0) to KCl/NaCl ¼ 5, which corresponds

to xKCl ¼ 5
6. The isotherms show there is a common minimum near KCl/NaCl ¼ 1, which

corresponds with the azeotrope point in Figure 2.27 right. The liquidus minimum of the

ternary system appears at the composition xLiCl ¼ 0.51, xNaCl ¼ 0.12, xKCl ¼ 0.37, close to

the binary eutectic KCl–LiCl. This composition is located inside the 360 �C isotherm

close to the top rim of the ternary x – y diagram (Figure 2.36). From the construction of

both axes in this diagram, it is obvious that the limit system KCl–LiCl can never be

reached, which is a severe drawback of this diagram type. A concentration triangle of this

system, such as shown in Figure 2.37 can solve this problem.
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FIGURE 2.36 Left: The binary system NaCl–LiCl shows complete miscibility with an azeoptrope, such as NaCl–KCl
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2.2.3.2 Concentration Triangles
The example Figure 2.36 right demonstrates a disadvantage of Cartesian presentations

for ternary systems: The component on the bottom left corner of the diagram is always

distinguished. This is reasonable if the other components are only minor additives to the

main component, as in Figure 2.32. If, however, all components are be treated similarly,

the “concentration triangle” (Gibbs triangle) is suitable for three-component systems of

components A, B, C.

This construction is shown in Figure 2.37 and consists of a regular triangle where the

pure components “A,” “B,” “C” are represented by the corners. The concentration tri-

angle relies on Viviani’s theorem that in a regular triangle, for every point Q the sum of

the distances of this point from the three sides equals the height of the triangle

hA þ hB þ hC ¼ h (2.43)

and is therefore constant. If h ¼ 1.0 (100%) is chosen, hA, hB, hC can represent the

concentration of one component, that add up to unity. The following holds:

• All compositions where the concentration of one component is constant are repre-

sented by lines parallel to the triangle side opposite to the corner of this compo-

nent. For example, in Figure 2.37, left, a horizontal line through Q represents all

compositions xA ¼ 0.6, xB ¼ 0.0.4, xC ¼ 0.4 � xB.

• All compositions where the ratio between two components is constant are repre-

sented by straight lines that start from the corner of the third component. For

example, in Figure 2.37, left, a line from the top corner “A” through Q to the bot-

tom line represents all compositions xA ¼ 1.0, xB/xC ¼ 3.

For another system in Figure 2.38, right, the four regions of primary crystallization are

distinguished by different shadings. From NaCl-rich compositions, NaCl crystallizes first
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FIGURE 2.37 Left: Gibbs triangle A–B–C with one intermediate composition xA ¼ 0.6, xB ¼ 0.3, xC ¼ 0.1. For every
composition one has xA þ xB þ xB ¼ h (Eqn (2.43)). Right: The system NaCl–LiCl–KCl (see Figure 2.36) right as
Gibbs triangle in polythermal projection. The eutectic point is marked by a circle, 20 K isotherms.
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(top); and from CaCl2-rich compositions, CaCl2 crystallizes (bottom left). Solid SrCl2 un-

dergoes a solid-state phase transition s/s2 atTtz 727 �C.Only frommeltswithT80%SrCl2
does the high Tphase s2 crystallize, because the liquidus temperature is>Tt there (bottom

right corner); for smaller SrCl2 concentrations, the low T “s” phase crystallizes first.

The thick black line between the s2 and s field is the intersection of the Tt-isotherm

with the liquidus surface. Most regions of primary crystallization are separated by three

“eutectic valleys” represented by black lines. The eutectic valleys meet in the ternary

eutectic point, where NaCl(s), CaCl2(s), SrCl2(s), and liq are in equilibrium.

If a molten sample of an arbitrary composition inside one of the primary crystalli-

zation fields is cooled, first the corresponding pure component phase crystallizes. The

melt is depleted from this component, and its composition shifts to the opposite di-

rection until it touches one of the eutectic valleys. There, the parallel crystallization of a

second (pure component) phase starts, together with the previous one. This way, the

melt composition moves downward (to lower T) along the valley, until it reaches the

ternary eutectic point. There, the rest of the melt crystallizes isothermally. The crystal-

lization path for a NaCl-rich melt (blue circle) is shown in the polythermal projection. In

the left panel of Figure 2.38, the same system is shown in an isothermal section ca. 25 K

above the eutectic temperature, where only in a small region around the eutectic

composition a single phase field for the liquid remains.

2.2.3.3 Isopleth Sections
If T is requested as coordinate for systems with three or more components, instructive

sections can be used where either one concentration is kept constant, or where the ratio

of two concentrations is kept constant. Both cases are demonstrated in Figure 2.39 for

the same system that is shown in Figure 2.38.
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FIGURE 2.38 The ternary system NaCl–CaCl2–SrCl2 under the (somewhat simplifying) assumption that no mixing
occurs in the solid phases. The melt shows complete mixing. NaCl: Tf ¼ 801 �C, CaCl2: Tf ¼ 772 �C, SrCl2:
Tf ¼ 874 �C, Tt ¼ 727 �C. Left: isothermal section at 460 �C, “liq” field shaded. Right: Projection on the liquidus
surface with 10 K isotherms and crystallization path for a NaCl-rich melt.
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Figure 2.38, right, was a projection on the liquidus surface of the ternary system. The

left panel of Figure 2.39 is a section through this concentration triangle perpendicular to

the projection plane and parallel to the left side of the triangle, at xSr ¼ 0.4. This section

starts (from bottom) in the CaCl2 field, crosses the SrCl2 field, and terminates in the NaCl

field. If the crystallization starts, e.g., inside the NaCl field, later the eutectic valley with

SrCl2 is reached and this phase crystallizes parallel until the ternary eutectic point.

There, all three component phases are crystallizing.

The right panel of Figure 2.39 is a section through Figure 2.38 perpendicular to the

projection plane and from the SrCl2 corner to a point Na0.6Ca0.4Cl1.4, which is a small

distance above the middle of the NaCl/CaCl2 side of Figure 2.38. Starting from SrCl2,

high T SrCl2 crystallizes first. Subsequently, with lower liquidus temperature, low T SrCl2
crystallizes first, and in the end NaCl crystallizes first.

It is very important to note that horizontal lines (T ¼ const.) in such isopleth sections

through ternary systems are in general not connecting phases which are in equilibrium!

Practically, this means that the composition of all coexisting phases does not remain on

such sections. Hence, the isothermal lines are not tie-lines, and the lever rule (Section

2.2.2.3) cannot be used.

2.2.3.4 Reciprocal Salt Pairs
Pairs of compounds with well-defined and interchangeable cations C1, C2, and anions

A1, A2 are called reciprocal salt pairs. In such systems, C1 and C2 or A1 and A2 can

replace each other in arbitrary ratio, but the relation (C1 þ C2)/(A1 þ A2) must be

constant for maintaining charge neutrality. The presentation is typically done as square

diagrams with the possible compounds C1A1, C1A2, C2A1, and C2A2 at the corners. An

example is given in Figure 2.40 and shows that the mutual substitution

NaClþ LiF%NaFþ LiCl (2.44)

leads to the presence of four compounds in the system if only two are supplied.

Nevertheless, the system can be considered to be ternary, due to the dependency
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FIGURE 2.39 Sections through the ternary system NaCl–CaCl2–SrCl2. Left panel: for a constant SrCl2 concentration
xSr ¼ 0.4. Right panel: for a constant concentration ratio NaCl/CaCl2 ¼ 1.5.
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Eqn (2.44), and according to the phase rule (Eqn (2.6)) four phases are in equilibrium at the

(invariant) eutectic point.

In Figure 2.40, all rim systems except NaCl–LiCl are eutectic, which somewhat con-

tradicts “Phase Diagrams for Ceramists” No. 3622, [6] where another eutectic and the

compound LiNaCl2 were claimed to exist in the upper rim system. The more recent

Figure 2.36 [54], however, shows that this system forms solid solutions over the whole

concentration range instead. Eutectic valleys connect the eutectic points at the rims and

run to the ternary eutectic. NaCl–LiF (dashed line) can be treated as a pseudobinary

system and the eutectic composition near 59% NaCl (Figure 2.40 right) is a saddle point

in the liquidus projection of the left panel. This is necessary because otherwise

the pseudobinary eutectic composition (NaCl)0.59(LiF)0.41 would, upon crystallization,

leave the pseudobinary dashed line in the reciprocal salt pair diagram. It should be noted

that the other pair NaF and LiCl (dotted line) cannot set up a pseudobinary system,

because the melting point of LiCl is too low compared to the liquidus in the middle of

the system (ca. 695 �C).

2.3 Equilibria Including Gas Phase
The transformations solid–gas (sublimation) as well as liquid–gas (evaporation, boiling)

are first-order transitions, and consequently the gas phase can be shown in phase dia-

grams without further precautions. This is demonstrated in Figure 2.3 for sulfur (one

component) or in Figure 2.27, left, for Si–Ge (two components). But very often the gas

phase is not shown because evaporation plays no role in a specific process. In other

cases, the gas phase must be taken into account, namely if at least one main species in

the system has a significant volatility, if chemical or physical gas phase transport is

performed, or if the gas phase equilibria determine the valency of species in the

condensed phases. These cases will be considered in the following subsections.
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FIGURE 2.40 Left: The reciprocal salt pair (Li,Na)(F,Cl) in polythermal projection with 20 K isotherms. At
Teut ¼ 608 �C (red dot) rocksalt(ss), NaF:Li(ss), LiF(s) and the melt are in equilibrium. Right: The eutectic of the
NaCl–LiF subsystem corresponds with the saddle point in the left panel, on the dashed line.
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2.3.1 Volatile Species

If a chemical element such as iodine, the heavier chalcogens (Figure 2.3), the heavier

pnictogens, or even some metals such as Zn or Hg are heated, their vapor pressure

quickly approaches ambient pressure and volatility becomes significant. Also, some

compounds that are academically or technically interesting (e.g., NH4Cl, AlN, SiC) can be

transferred completely to the gas phase, and recrystallized at a colder seed. This process

is called sublimation or physical vapor transport (PVT). For some other compounds, the

sublimation temperature is so high that PVT is not straightforward (ZnO), or the fu-

gacities of constituents are so different that only the more volatile component evaporates

sufficiently (GaN). Then, transport agents may be added to create an intermediate state

where the desired compound can be transported from the feed to the seed.

Figure 2.41 demonstrates the CVT growth of ZnO crystals where the chemical

transport is described by the equilibrium

ZnOþ C%Znþ CO (2.45)

which is shifted to the product side upon heating. The calculated diagram shows that

mixtures of ZnO and carbon (graphite) are stable only below ca. 900 �C. For intermediate

compositions, a gas phase is formed consisting mainly of Zn(g) þ CO(g), which reacts at

low T back to ZnO(s) (Eqn (2.45)). From the diagram, it is obvious that if thermal gra-

dients are too large, this can lead the process to the “C þ ZnO” phase field, which means

that graphite inclusions may occur [56].

The left panel of Figure 2.42 shows the binary diagram gallium–arsenic with the in-

termediate 1:1 compound gallium arsenide. GaAs forms eutectics with both of its com-

ponents; the eutectic to the Ga side is degenerate, as themelting temperature of gallium is

low (30 �C). Gallium arsenide is a basicmaterial in the semiconductor industry, mainly for

solid-state lighting and high-frequency devices. Unfortunately, this x–T diagram does not

0

500

1000

1500

C ZnO

C + ZnO

C + gas ZnO + gas
gas

FIGURE 2.41 Phase diagram for the system ZnO–C for a system pressure p ¼ 1 bar. The arrow shows the
conditions under which chemical vapor transport can be performed. Reprinted with permission from Elsevier [55].
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express the high volatility,mainly of arsenic, which results in the decomposition of GaAs to

arsenic gas and gallium liquid before melting under ambient pressure.

The GaAs liquidus spans almost the complete phase diagram, consequently GaAs(s)

can be grown from a wide range of GaxAs1–x compositions. The liquidus temperature at

which crystallization starts will depend on x. Besides, the chemical composition can be

varied slightly if the melt has an excess of one component [57]. For the control of crystal

growth, it is desirable to know the equilibrium vapor pressure (zfugacity f) of both

components along the GaAs liquidus. The right panel of Figure 2.42 shows this for

several species occurring in the gas phase in a plot log (fugacity) versus 1/T. The curves

there have two branches, and the upper and lower branches for the Asi (i ¼ 1.4) curves

show fAsi(1/T) on the As-rich or Ga-rich side the GaAs liquidus, respectively. Vice versa

for fGa(1/T), where the higher values are reached on the Ga-rich side. All curves have an

apex at the melting point Tf of GaAs.

2.3.2 Ellingham Type Diagrams

Some chemical elements, especially many transition metals, tend to form oxides, sul-

fides, and other compounds in multiple valency states. Then, chemical equilibria of the

kind

2MeOm=2 þ 1

2
O2%2MeOðmþ1Þ=2 (2.46)

describe the transition from valency state m to the higher state m þ 1. The Gibbs free

energy balance DG0 ¼ DH0 � TDS0 of this reaction determines which valency (here,

oxidation) state is stable. If the metal oxides show no significant volatility, the chemical

equilibrium (Eqn (2.46)) is determined by T and the chemical potential of oxygen (Eqn

(2.23)). For the case T ¼ const. and two different volatiles V1, V2 in the system linear

predominance diagrams were already constructed above from plots log pV2 versus

log pV1 (Figure 2.14). Plots RT ln pO2
versus T for redox reactions of the type (Eqn (2.46))
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FIGURE 2.42 Left: The phase diagram Ga–As with the intermediate compound GaAs considering condensed
phases only. Right: Fugacities of gas species along the GaAs liquidus.
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are also straight lines. Such Ellingham diagrams can be used as predominance

phase diagrams showing the stability fields of several oxides under the given conditions

T, pO2
[28].

Figure 2.43 shows the system iron–oxygen in two representations. In the right panel

(Ellingham type), the phase boundaries are often almost straight lines. The “slag” phase

covers a wide composition range of iron oxides where the melting temperature depends

on the oxygen partial pressure, hence on the composition of condensed phases. Vertical

lines at the bottom describe the phase transitions of metallic iron up to its melting (cf.

Figure 2.31).

For practical purposes, often the simpler diagram type from the left panel is useful, as

the important experimental parameter pO2
is plotted directly. Then, phase boundaries

between neighboring FeOx are bend lines. Obviously, oxidation states with lower valency

become more stable if T rises and if pO2
drops, and this behavior is typical as oxidation

reactions (Eqn (2.46)) are mainly exothermic. Phase boundaries with negative slope

occur only in scarce cases (e.g., Re2O7, CrO2).

Predominance diagrams such as shown in Figure 2.43 can easily be computed for

systems with more than one metallic component. If mixed oxides

Me0Ox þMe00Oy%Me0Me00Oxþy (2.47)

are formed, these compounds appear with separate phase fields in the diagrams. In cases

where G(T) for Me0Me00Oxþy are unknown, the calculation of stability fields for the simple

oxides Me0Ox, Me00Oy often gives a good approximation, because energetic contributions

of reactions between oxides (Eqn (2.47)) are typically small compared to the formation

enthalpies (Eqn (2.46)).

For narrow phase fields, such as Fe1–xO in the left panel of Figure 2.43, often no

constant pO2
can be found that lies totally inside this predominance field. For every

process where temperature gradients occur—which is always the case for crystal

growth—every specific pO2
¼ const: then crosses several phase fields, which means that

different oxides are stable at different T. Fortunately, several gaseous oxides of
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nonmetals, such as H2O (as humidity in carrier gases), or CO2 and CO, decompose upon

heating, e.g., by

CO2%COþ 1

2
O2%CþO2 (2.48)

similarly to metal oxides, and under suitable conditions may result in a “self-adjusting

oxygen partial pressure” pO2
ðTÞ that runs for all T through the stability field of a desired

oxide. Table 2.1 shows that pO2
changes over several orders of magnitude upon heating,

and often the right choice of such “reactive atmosphere” allows to keep pO2
ðTÞ over the

whole T range of interest inside the stability field of the desired oxide [58].

A similar approach of reactive atmospheres is feasible not only for oxides but also for

other anions where a suitable carrier can be found. For sulfides, e.g., H2S can be used to

adjust the sulfur (S2) partial pressure from 1.4 mbar (500 �C) to 270 mbar (2000 �C) under
ambient total pressure. Then, a predominance diagram for the corresponding Me–S

phases must be created in analogy to Figure 2.43, left, with T and logðpS2Þ as coordinates.
A suitable growth atmosphere should give a pS2ðT Þ that runs completely through the

stability field of the desired sulfide.
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3.1 Introduction
Intrinsic point defects, namely vacancies and self-interstitials, in crystalline silicon have

been the subject of an enormous number of studies over the last several decades. The

driving force for this intense research effort stems from the fact that intrinsic point

defects are responsible for a staggering range of fundamentally interesting phenomena

and play important roles in the formation of almost all known microstructural features

found in dislocation-free, single-crystal silicon. This material, most commonly in the

form of thin wafers sliced from melt-grown ingots, underpins much of the (silicon-

based) microelectronics and photovoltaics industries.

To this day, almost all single-crystal silicon is still grown by the venerable Czochralski

(CZ) technique in which a seed of single-crystal is dipped into a highly pure silicon melt

contained in a rotating, quartz-lined crucible and then slowly pulled away from the melt

under tightly controlled thermal conditions to produce a cylindrical ingot [1]. Currently,

silicon boules 300 mm in diameter are routinely grown weighing well over 250 kg, and

next-generation 450 mm ingots remain under development. While dislocations and grain

boundaries are completely suppressed in the CZ growth process, the formation of a

range of point defect–impurity complexes and intrinsic point defect aggregates remains

technologically relevant in spite of decades of research. With that said, current emphasis

is principally on process optimization because while much of the basic mechanisms are

well understood, established defect microstructure reduction measures usually come at

a cost of reduced throughput and increased process expense.

Unlike impurities and intentionally introduced dopants, intrinsic point defect gen-

eration in growing crystals is a consequence of fundamental thermodynamic forces that

cannot be avoided. Simply put, the minimum free energy state of any crystal at finite

temperature does not correspond to crystalline perfection, but rather is one that includes

a (temperature-dependent) distribution of point defects and small defect clusters.

Fortunately, intrinsic point defects and very small clusters comprised of them are not

directly associated with deleterious effects such as reduced charge carrier lifetimes;

rather, it is how they interact with each other and with other species that ultimately leads

to reduced material quality. The aim for most silicon crystal growers, therefore, is not to

circumvent point defect formation altogether, but rather to cleverly design process

conditions so that point defects do not subsequently lead to undesirable microstructure

in the form of large aggregates. This target is not a static one: the very definition of

“large” is continuously evolving due to improvements in detection techniques and

increased sensitivity to ever-smaller defects as CMOS scaling continues and feature

lengths decrease. Nonetheless, for this endeavor to be successful, a quantitatively ac-

curate mechanistic picture of intrinsic defect thermodynamics must be available.

The goal of this chapter is to provide a (highly selective and necessarily incomplete)

overview of intrinsic point defect and defect cluster thermodynamics that is relevant to

the formation of vacancy and self-interstitial microdefects during silicon crystal growth

and wafer annealing. The present emphasis is on predictions from molecular
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simulations based on empirical interaction potentials. When appropriate, comparisons

are made with results from more accurate quantum mechanical methods. Note that this

chapter does not seek to provide a comprehensive quantitative summary of point defect

and cluster formation energies and entropies, although whenever appropriate, literature

references to such studies will be provided. The remainder of the chapter is structured as

follows. In Section 3.2, the basic theoretical elements for describing point defect and

cluster thermodynamics are briefly described. In Section 3.3, approaches for estimating

ground state point defect formation energies are summarized; these include atomistic

simulations based on quantum mechanical and empirical potential descriptions. In

Section 3.4, analysis of ground-state defect cluster thermodynamics is presented. A more

general theoretical framework for finite temperature defect thermodynamics then is

presented in Section 3.5 and applied to single point defects and clusters in Section 3.6.

Finally, conclusions and outlook are presented in Section 3.7.

3.2 Theoretical Infrastructure for Analysis of Point
Defect and Cluster Thermodynamics

3.2.1 Point Defects

The materially open system equilibrium concentration of a particular point defect

species is one of the most essential properties underlying any quantitative analysis of

defect formation and evolution. This is because the equilibrium concentration directly

dictates the extent of any point defect supersaturation (or undersaturation) present,

which in turn dictates the extent of clustering. Here, “open system” denotes that the

crystal domain is connected to a sink/source for point defects that allows an uncon-

strained equilibrium to be established everywhere in the domain—the crystal surface

typically serves this purpose.

Consider the free energy of a crystal domain with N distinct lattice sites containing

one type of point defect species,

G ¼ G0 þ nG f � kBT ln
N !

ðN � nÞ!n! ; (3.1)

where n is the number of point defects, Gf is the free energy of formation of a single

point defect, and G0 is the perfect crystal (reference) free energy. The last term in

Eqn (3.1) represents the contribution of translational entropy to the total free energy,

where it is assumed that each lattice site can accommodate a single point defect and no

proximity effects are present, i.e., point defects do not interact with each other. The

equilibrium concentration of point defects is obtained by minimizing Eqn (3.1) with

respect to n, i.e.,

CeqðT Þ ¼ gCs exp

�
� G f

kBT

�
¼ gCs exp

�
S f

kB

�
exp

�
� Hf

kBT

�
; (3.2)
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where, Cs is the density of lattice sites (w5� 1022/cm3 for Si), g is a configurational

degeneracy factor, and Hf, Sf represent the formation enthalpy and entropy, respectively,

of a single point defect. The configurational degeneracy factor is usually taken to be the

symmetry of the point defect structure and therefore is a number that is O(1) in

magnitude; it is often ignored in analyses of point defect thermodynamics. We will re-

turn to the issue of defect degeneracy in Section 3.4 and show that the entropy arising

from configurational degeneracy can in fact be quite significant. The remaining entropic

term in Eqn (3.2) then corresponds to the vibrational entropy of formation. The con-

ventional approach for calculating the equilibrium concentration of a point defect

species using atomistic simulations is to first find the lowest energy configuration and

then compute its formation energy and vibrational entropy, usually under the

assumption that these are constants, i.e., that the equilibrium concentration is an

Arrhenius function of temperature.

3.2.2 Point Defect Clusters

The thermodynamics of defect clusters can be formulated in a similar manner as for

point defects. The total free energy of a system containing a distribution of a single point

defect species and its aggregates is given by

GðTÞ ¼ G0 þ
X
i

niG
f
i ðTÞ � kBT ln U; (3.3)

here G
f
i ðTÞ is the formation free energy of a cluster of size i, ni is the number of such

aggregates, and U is the number of ways that a distribution of clusters can be distributed

across lattice sites. For an open system (i.e., one with accessible surfaces) in which each

cluster size can reach equilibrium independently of the others and assuming that the

cluster site density is equal to lattice site density, U is the same as for the point defect

case (Eqn (3.1)) and the cluster equilibrium concentrations are given by

C
eq
i ðT Þ ¼ giCs exp

 
� Gi

f

kT

!
; ci: (3.4)

In many situations the crystal cannot be assumed to be materially open and the cluster

size distribution is established via a constrained free energy minimization subject to a

fixed total number of point defects. Such a situation is typical in crystal growth where the

nearest surface is much further away than the point defect diffusion distance. Now, U is

given by [2]

U ¼
Y
i

ðiÞni ðN=iÞ!
ðN=i � niÞ!ðniÞ! (3.5)

which represents the number of ways of distributing {ni} clusters over the N lattice sites.

The closed system equilibrium cluster concentration at each size is now obtained by

minimizing the augmented free energy function

140 HANDBOOK OF CRYSTAL GROWTH



bG ¼ G0 þ
X
i

niG
f
i � kBT

X
i

�
ni ln i þN

i
ln

N

i
�
�
N

i
� ni

�
ln

�
N

i
� ni

�
� ni ln ni

�
;

þ l

�P
i

i $ni � ntot

! (3.6)

with respect to the number of each cluster size [3], i.e.,

v bG
vni

¼ G
f
i � kBT ln

N � i $ni

ni

þ il ¼ 0; ci: (3.7)

The last term in Eqns (3.6) and (3.7) represents the constraint of a fixed total number of

point defects and l is a Lagrange multiplier. An immediate implication of Eqn (3.7) is

that the equilibrium concentrations of all cluster sizes are coupled to each other. Under

the physically reasonable assumption that clusters exist in dilute concentrations,

i $ni � N , the closed system cluster equilibrium concentrations are given by solving Eqn

(3.7) for each size

C
_eq

i ðT Þ ¼ giCs exp

0@� G
_f

i

kBT

1A ¼ giCs

�
C

Ceq

�n

exp

 
� G

f
i

kBT

!
; ci (3.8)

where

G
_f

i ðTÞ ¼ �ikBT ln

�
C

CeqðTÞ
�
þ G

f
i ðT Þ; ci (3.9)

and C and C eq represent the actual and equilibrium concentrations of point defects,

respectively. Note that the assumption of diluteness effectively decouples the equilib-

rium concentration of each cluster size from other sizes—the concentration is only a

function of the extent of point defect local supersaturation, C/Ceq. Finally, applying

Eqn (3.7) to the monomer point defect species gives an expression for the equilibrium

monomer point defect concentration in the presence of a cluster of size i, i.e.,

Ceqji ¼ Ceq exp

 
vG

f
i =vi

kBT

!
; ci: (3.10)

The enhancement of the point defect equilibrium concentration in the vicinity of a

cluster as specified in Eqn (3.10) is a statement of the Gibbs–Thompson effect [4]; alter-

natively, this equilibrium concentration can be thought of as the cluster “vapor pressure” in

which the vapor phase consists of a monomer point defect “fluid” surrounding a cluster.

All equilibrium concentrations defined above, whether for point defects or for clus-

ters, require the estimation of free energies of formation. There are two principal ap-

proaches for carrying out this task. The first is to directly compute free energies using

atomistic calculations based either on quantummechanical or empirical descriptions for

the interatomic interactions. The second is to measure experimentally some property or

phenomenon and extract the free energies using a model. Both approaches have
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inherent limitations and advantages. Atomistic scale calculations are the most direct

path for free energy estimation: the system is completely defined and the free energy can

be unambiguously accessed. On the other hand, empirical atomistic calculations, which

are computationally very efficient, are completely dependent on the specification of a

good interatomic potential function. The issue of accuracy is mostly (but not completely)

resolved with quantum mechanical calculations, but the immense computational re-

quirements of these methods limit the system sizes that can be considered and also

largely preclude the use of statistical sampling approaches commonly employed for free

energy estimation. In the following section, we describe the salient features of each

approach for computing point defect thermodynamic properties.

3.3 Theoretical Estimation of Ground State Point
Defect Formation Properties

3.3.1 Empirical Potential Atomistic Simulations

Empirical potentials are constructed beginning with an ansatz for the functional form of

the interaction energy between pair, triplet, and higher-order (many-body) interaction

functions. The resulting potential function is usually characterized by several parameters

that are regressed to a number of material properties that are either experimentally

measured or computed using more accurate quantum mechanical calculations. The

challenge for accurate modeling of covalently bonded materials such as silicon is the

directionality of the bonds, leading to structures (such as the diamond lattice) that

typically require many-body interaction terms to stabilize. Arguably, silicon has served

as the prototypical system for the development of potential models for covalently

bonded materials and there exists a large number of potentials and parameterizations in

the literature.

In an excellent early review, Balamane et al. [5] defined two main types of empirical

formalisms, “cluster potentials” in which pair and triplet interactions terms were

separately defined, and “cluster functionals” or bond-order formulations, in the which

the pair interaction is modified by many-body (usually three) environment terms. The

Stillinger–Weber (SW) potential [6] was the first “comprehensive” model to address both

solid and liquid phases, interfaces and surfaces, and defects. The potential was repre-

sented by separate two- and three-body terms with the tetrahedral angle built explicitly

into the latter. Similar cluster potentials include the Pearson, Takai, Halicioglu, Tiller

(PTHT) [7] and Biswas–Hamann (BH) [8] potentials, although these are less popular than

the SW. The Tersoff model [9,10] followed soon after with similar capabilities as the SW

potential but was based on a bond-order formulation. The SW and Tersoff potentials

have since been applied in countless studies, being reparameterized several times

[11–14] and extended to Group IV alloy systems [10,12,15,16] and continue to be popular

to this day. Another popular class of potentials is the modified embedded-atom model

(MEAM) [17–20], in which the embedded-atom model for metals was extended to

142 HANDBOOK OF CRYSTAL GROWTH



include directionality for covalent materials such as silicon. The MEAM potential

framework is attractive because parameters have been generated for a wide range of

materials and compounds making it quite versatile. The Lenosky potential (LP) is a

derivative of the MEAM class of potentials that was specifically optimized for silicon [21].

Finally, the so-called environment-dependent interatomic potential (EDIP) [22,23] rep-

resents another formulation in the bond-order class of potentials.

The most common metrics for potential validation include crystal phase stability

order, elastic constants, surface energetics and reconstructions, point defect thermo-

dynamics and structure, dislocation and stacking-fault energetics, and amorphous/

liquid phase structure [14,16] and melting characteristics [11]. Finally, although isolated

clusters have also been considered in potential evaluation, the energetics of such

structures are generally quite poorly reproduced unless the potential parameters are

specifically tuned using these highly undercoordinated structures [20]. There is no single

clear winner among silicon potentials and each has been shown to have strengths and

weaknesses, some of which may be traced to the database that was used to establish the

parameters. Even different parameterizations of the same potential function have been

shown to provide rather different results.

Before proceeding with a comparative analysis of point defect formation energies,

which we focus on here, it is important to note that empirical potentials cannot account

for different point defect charge states. As mentioned previously, the lowest energy

configuration for a given point defect is not necessarily the electrically neutral one,

making a comparison between DFT and empirical potential results somewhat ambig-

uous. Here, we take the point of view that an empirical potential is a coarse-grained

representation of atomic bonding in which the electronic states have been somehow

(not formally) “averaged out.” In this view, comparisons between empirical potential

and DFT predictions for point defect formation energies should be made on the basis of

the lowest energy charge state at zero temperature, and a Boltzmann-weighted average

of the different charge states at finite temperatures. In other words, there is nothing in

the empirical potential formulation to necessarily suggest that the “equivalent” config-

uration in the DFT case is the neutral state.

A representative list of empirical potential predictions for the single vacancy forma-

tion energies at zero temperature is provided in Table 3.1. Apart from some outliers,

there is general consensus in the range of E
f
Vw3� 4 eV, in good agreement with the DFT

range 3.2–3.6 eV (see Section 3.2). In all cases, the basic ground state configuration is a

missing atom with some localized relaxation of the surrounding atoms. Note that few of

these studies report the precise configurational details of the relaxed vacancy such as

inward/outward relaxation, symmetry, and bond angles and lengths of neighboring

atoms. This is largely due to the fact that such high-resolution information is not likely to

be meaningfully reproduced by most empirical potentials. Again, the notion that an

empirical potential function represents some kind of a coarse-grained representation of

the full bonding environment can be invoked to suggest that empirical potentials may be

good at describing certain, but not all, features of a point defect configuration.
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The assessment of self-interstitial formation energies is more nuanced, where several

distinct configurations may exist in a relatively narrow energy range. The most reported

configurations include the tetrahedral, hexagonal bond-centered, and some form of the

<110>-dumbbell configuration. Shown in Table 3.2 are formation energies for the re-

ported lowest-energy configurations found for several empirical potentials. It should be

noted that, unlike the vacancy case, significant “scatter” exists in the reported self-

interstitial formation energy values for a given configuration and with a given poten-

tial model. In addition, the lowest-energy configuration is not always the same across

potentials, with the tetrahedral and <110>-dumbbell geometries most often being

reported as the ground state configurations. These observations are likely to be at

Table 3.1 Zero-Temperature Vacancy Formation Energies
Predicted by Selected Empirical Potentials for Silicon

Potential Model Vacancy Formation Energy (eV) Ref.

SW 2.59, 2.82 [5,24]
SW-Pizzagalli 3.27 [13]
BH 2.12 [5,8]
Tersoff (T3) 3.70 [5]
Tersoff-ARK 3.70 [11]
MEAM-Baskes 3.19 [25]
MEAM-Timonova 3.14 [20]
MEAM-Lenosky 3.30 [21]
EDIP 3.22 [21]
Bond-order 2.76 [26]

Table 3.2 Selected Zero-Temperature Formation Energies
for Ground State Configurations of Self-Interstitials, as
Predicted by Selected Empirical Potentials for Silicon

Potential Model
Self-interstitial
Formation Energy (eV)

Lowest Energy
Configuration Ref.

SW 3.61 <110>-dumbbell [24]
SW-Pizzagalli 5.92 <110>-dumbbell [13]
BH 1.56 Tetrahedral [5,8]
Tersoff (T3) 3.45 Tetrahedral [5,27]
Tersoff-ARK 2.20 Tetrahedral [11]
MEAM-Baskes 4.81 Tetrahedral [25]
MEAM-Timonova 3.84 Tetrahedral [20]
MEAM-Lenosky 3.00 Tetrahedral distorted [21]
EDIP 3.35 <110>-dumbbell [21]
Bond-order 2.64 Tetrahedral [26]
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least partially due to the presence of multiple closely spaced local minima that corre-

spond to different interstitial configurations and even different relaxations of a single

configuration. In fact, as we will show in Section 3.5, the notion of a “rough energy

landscape” with multiple local minima is a generic feature that introduces a significant

amount of configurational entropy at elevated temperature, necessitating a somewhat

different approach for thinking about finite temperature point defect and cluster

thermodynamics.

Comparison of the self-interstitial formation energy predictions in Table 3.2 to the

results of DFT calculations, whose consensus gives a range of about 3.3–3.8 eV for the

<110>-dumbbell, highlights the limitations of using (currently available) empirical

potentials for quantitative estimation of point defect parameters—it is not yet possible to

do this without strict a posteriori validation of the results against more accurate ap-

proaches. More importantly, the potentials that appear to provide the best agreement

with specific DFT calculations were fitted to the DFT results, and the quantitative ac-

curacy of the potential for any other properties therefore is in question (until explicitly

tested). Nonetheless, the most commonly employed potentials such as SW, Tersoff and

EDIP all appear to provide good estimates in the range of 3.3–3.9 eV.

3.3.2 Quantum Mechanical Estimates for Point Defect
Thermodynamics

Atomistic simulations that explicitly consider electronic interactions between ions,

frequently referred to as ab initio or first-principles calculations, are indisputably the

gold standard for theoretically estimating silicon defect thermodynamic and transport

properties. The vast majority of quantummechanical atomistic simulations are based on

the application of density function theory (DFT), in which the many-electron problem is

reduced to that of a single electron moving in an effective potential specified either

through the local density approximation (LDA) or generalized gradient approximation

(GGA) [28]. More accurate treatments of the many-electron problem are available (e.g.,

quantum Monte Carlo and Hartree-Fock), but these are currently very infrequently

applied to defects in silicon because of their extreme computational intensity [29].

Not only are DFT calculations obviously important in their own right, but they are

also crucial for (1) parameterizing empirical potentials for silicon, and (2) validating the

predictions of these empirical potentials by providing reference calculations. On the

other hand, despite the relative efficiency of DFT, such calculations still remain much

more computationally intensive than corresponding empirical potential simulations.

This is particularly true when considering larger defects such as clusters and when free

energies at finite temperature are required. The computational expense of DFT has led to

continued interest in simplified quantum mechanical approximations, such as the tight-

binding method [30], in addition to empirical potential development. Although tight-

binding simulations have in some instances been shown to be demonstrably better

than some empirical potentials [31], it is difficult to unequivocally make the case that
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their added computational expense necessarily improves accuracy relative to empirical

potentials.

A detailed treatise of quantum mechanical models is well beyond the scope of this

chapter. Instead, the aim here is to provide a brief discussion of the principal outcomes

and outstanding issues related to such calculations, specifically in the context of point

defect formation thermodynamics in silicon. The history of silicon point defect forma-

tion energy calculations with electronic DFT dates back over three decades. Arguably,

the formation energy and relaxation structure of the neutral single vacancy have served

as the principal benchmarks during this period [32–43]. The reason for this stems from

the deceptive simplicity of the calculation; indeed, definitive convergence criteria for the

calculation have only recently emerged [41–43]. Remarkably, the numerous reported

DFT calculations of the neutral vacancy formation energy have ranged from over 4 eV to

just below 3 eV. Even the qualitative nature of the surrounding atomic relaxation (inward

vs. outward, symmetry) has been the subject of debate. The reasons for the long-

standing challenge associated with this particular calculation are in fact quite straight-

forward. First, several choices and parameter selections must be made when performing

any DFT simulation, some of which are constrained by computational expense. These

choices include (i) supercell size, (ii) exchange-correlation functional, (iii) basis set type

(plane waves or orbitals) and energy cutoff, and (iv) Brillouin zone integration mesh. As

shown recently in refs. [41,43], the particular combination of these parameters and

functionals can lead to errors that interact in nonlinear ways and make it difficult to

perform convergence tests without a complete (and very expensive) parametric analysis.

For example, it appears that a system size of about 256 atoms is required to sufficiently

isolate the neutral vacancy and allow it to relax into the D2d symmetry via the expected

Jahn-Teller distortion [43]. This is not surprising given the long-ranged elastic relaxation

fields around vacancies found in both DFT and empirical potential simulations [44,45].

In addition, electrostatic and wave–function interactions across the periodic boundaries

are likely to play roles in the slow convergence with respect to system size. One example

of the nonlinear coupling among the various parametric selections was observed in

Ref. [43] in which a sparser sampling of the Brillouin zone was more likely to exhibit the

correct relaxed vacancy symmetry when the system size was small.

The long history of convergence notwithstanding, there is little doubt that the state-

of-the-art DFT calculations have now reached the point where they can be reliably used

to compute a variety of point defect and small cluster thermodynamics. For the neutral

vacancy formation energy, the range between 3.2 and 3.6 eV almost certainly includes

the “correct” value. The neutral self-interstitial is much less well studied but the <110>-

split dumbbell configuration is well established as the ground state with the formation

energy range 3.3–3.8 eV [36,46–48].

Note that the neutral charge state is simply used here as a basis for discussion—it is

not necessarily the charge state with the lowest formation energy. In fact, under extrinsic

conditions corresponding to finite doping levels, charged states are usually lower in

formation energy and may even possess different structures than the neutral
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configuration. This poses some ambiguity in the comparison of defect structures and

energies between DFT and empirical potential calculations. While it is customary to

compare to the neutral defect structure when validating empirical potential predictions,

one may also consider the structures predicted by empirical potentials as coarse-grained

entities that represent some kind of “average” over the various charge states. In other

words, given the complete absence of explicit charge consideration in most empirical

potentials for silicon, the use of the neutral configuration as a reference is not necessarily

meaningful—one could just as well use the lowest energy configuration, irrespective of

its charge, as a basis for validation.

3.4 Ground State Point Defect Cluster
Thermodynamics

There are far fewer atomistic simulation studies of point defect cluster thermodynamics

due to the larger simulation cells and longer relaxation times required. The principal

difficulty in computing cluster thermodynamics is the identification of the ground state

configuration. For quantum mechanical calculations, in particular, a good initial guess

for the cluster structure is required before static relaxation can be applied. Nonetheless,

certain features of small vacancy and self-interstitial clusters are now well established.

For example, both types of clusters exhibit magic sizes that are particularly stable relative

to neighboring sizes [49–51]. In addition, both cluster species are characterized by

overall decreasing trends in their per-point defect formation energies. The latter trend is

a consequence of the ability of larger clusters to achieve reconstructions that are not

possible for very small ones.

3.4.1 Vacancy Clusters

Vacancy cluster ground state configurations are relatively straightforward to derive on

the basis of broken-bond minimization. Using this approach, Chadi and Chang [52] were

able to predict magic sizes for clusters up to size 12. The 6-vacancy hexagonal ring

structure and 10-vacancy “adamantine cage” configuration were found to be the key

building blocks for all cluster sizes, see Figure 3.1. These conclusions were subsequently

supported by quantum mechanical (LDA-DFT) [53], tight-binding [50], and empirical

potential (EDIP) atomistic calculations [51].

FIGURE 3.1 Ground state configurations of
vacancy clusters generated on the basis of
closed ring and adamantine cage
configurations. From left: (A) 6-vacancy ring,
(B) 10-vacancy adamantine cage, and (C)
14-vacancy cluster comprised entirely of closed
rings and cages. All three configurations
correspond to specially stable “magic” sizes.
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Shown in Figure 3.2 are zero-temperature binding energies for vacancy clusters up to

size seven for the three different interaction models. Overall, the agreement between the

three representations is very good, clearly showing the special stability of the 6-vacancy

hexagonal ring configuration. The agreement across calculations also demonstrates the

validity of using empirical potentials such as EDIP for defect thermodynamic property

estimation. More recently, divacancy and hexavacancy formation energies computed

with GGA-DFT and several empirical potentials (SW, EDIP and Tersoff) were compared

and once again shown to be quite consistent across the various potentials [49].

Calculations for larger cluster sizes with tight-binding and EDIP potentials also show

similar special stability for sizes 10, 14, and 18—all sizes that correspond to completed

hexavacancy rings and/or adamantine cages [45,51,54]. Interestingly, the hexavacancy

ring and adamantine cage building blocks naturally lead to octahedral cluster shapes

bounded by (111) planes at larger cluster sizes—the octahedral geometry being the most

common experimentally observed one for large vacancy aggregates present in CZ-grown

silicon crystals [1]. The formation energies for vacancy clusters that follow the octahedral

motif have been calculated using the EDIP potential for sizes as large as 1000 [45,51,54].

The overall vacancy cluster energetics were found to be described very well by a power-

law function that scales as n2/3, where n is the number of vacancies in the cluster. In

other words, vacancy clusters, as expected, are energetically defined by their surfaces.

Deviation from this power-law scaling was only observed for very small clusters, which

are unable to arrange into closed rings and cages. Approximating the cluster surface area

by assuming a spherical shape, the EDIP potential was found to predict a zero-

temperature effective surface energy of 1.24 J/m2. This value is in excellent agreement

with several experimental measurements of the Si(111) surface energy at cryogenic

temperatures [55,56].

FIGURE 3.2 Binding energies as a function of size for vacancy clusters computed using LDA-DFT (squares), tight-
binding (circles), and the empirical EDIP potential (triangles). Binding energies, Eb

n , are defined according to the
relationship Eb

n ¼ Ef
nþ1 � ðEf

n þ Ef
1Þ, where Ef

n is the formation energy of a cluster of size n.
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Finite temperature formation free energies (including vibrational entropy) for va-

cancy clusters computed with the EDIP potential suggest that the overall trends

observed with the zero-temperature calculations are preserved with increasing tem-

perature [57]. Near the melting temperature, the effective surface free energy including

vibrational entropy is reduced to about 0.9 J/m2. Unfortunately, the validity of this es-

timate is more difficult to verify against experimental measurements, although one in-

direct experimental measurement places the melting temperature (111) surface energy

right around 0.89 J/m2 [58]. The issue of effective void surface energies at finite tem-

perature is revisited more comprehensively in Section 3.6, where the influence of

configurational entropy is also included.

3.4.2 Small Compact Self-Interstitial Clusters

The analysis of self-interstitial clusters is complicated by bonding reconstructions

associated with the presence of multiple self-interstitials in close proximity. While va-

cancy clusters are characterized by the octahedral morphology across all sizes, no single

morphological motif describes self-interstitial clusters. Nonetheless, several broad fea-

tures of self-interstitial clusters are now well established both experimentally and by

various types of calculations. Small clusters containing up to about 15 self-interstitials

are compact and three-dimensional and exhibit magic sizes, particularly at sizes that

are integer multiples of four (i.e., 4, 8, and 12) [46,50,59]. Evidence for special stability of

these sizes has been demonstrated not only theoretically but also experimentally.

Cowern et al. [60], in particular, used inverse modeling of boron diffusion profiles to

extract effective formation free energies for interstitial clusters as a function of size and

found that the best agreement was obtained when 4- and 8-interstitial clusters were

assumed to be particularly stable relative to adjacent sizes. Larger interstitial clusters are

observed experimentally in several types of planar structures including {113}-oriented

rod-like defects, {111} partial and perfect dislocation loops, and possibly also

{100}-oriented plate-like structures; example studies include refs. [61–72]. These

structures are most commonly observed in ion-implanted samples. Evidence for the

{100} planar defects is not as well established as for the other types of planar defects. The

transitions between small compact clusters and the various larger planar structures are

still not fully understood, and the dependence of these transitions on temperature and

other variables (e.g., local stress) even less so.

Here, we summarize a selection of theoretical estimates for the ground state for-

mation thermodynamics of self-interstitial clusters and defer discussion of finite tem-

perature thermodynamics to Section 3.5. A large number of computational studies of

interstitial clusters have focused specifically on the 4-interstitial (I4) cluster, which is the

smallest magic cluster size. The ground state structure predicted by most of these studies

consists of 5- and 7-membered bond rings with no dangling bonds; see Figure 3.3 (taken

from Ref. [73]). We henceforth refer to this structure as the Humble/Arai configuration

after refs. [74,75]. Various estimates for the formation energy of this cluster are
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summarized in Table 3.3. With few exceptions, the formation energy estimates are

remarkably consistent across the various studies, and the per-interstitial formation en-

ergy is tightly clustered in the range 1.8–2.4 eV/atom. It is notable, however, that not all

studies show the I4 to be a magic size. For example, the tight-binding calculations in

Ref. [50] and the LDA-DFT results in Ref. [48] both indicate that the per-interstitial

formation energy varies monotonically with size and that I4 is no more stable than

adjacent sizes. Moreover, the tight-binding results generally lead to systematically higher

formation energies than the DFT predictions.

Shown in Figure 3.4 are formation energies per interstitial for a range, 2 � nI � 9, of

small compact self-interstitial clusters computed using the EDIP empirical potential and

two different sets of DFT calculations [46,48,77]. Overall the agreement between the

three sets of calculations is quite good. The EDIP formation energies are higher than

both of the DFT results although the difference in the two sets of DFT predictions is of

similar magnitude as the difference between the EDIP results and those in Ref. [46].

FIGURE 3.3 Schematic representation of the
4-interstitial cluster (right) relative to the perfect
silicon lattice (left). The four [001]
split–interstitial pairs are represented by atoms
labeled “c” and the reconstructed bonds which
link the interstitial pairs are shaded. Taken from
Ref. [73].

Table 3.3 Ground State 4-Interstitial (I4)
Formation Energies Predicted by Various
Interaction Models

Model I4 Formation Energy (eV) Ref.

LDA-DFT 8.7 [73]
LDA-DFT 5.96 [76]
LDA-DFT
GGA-DFT

7.28
7.40

[46]
[46]

Tight-binding 9.41 [50]
Tight-binding 9.84 [75]
Empirical SW 8.40 [75]
Empirical EDIP 8.75 [77]
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While the special stability of the 4-interstitial cluster (Humble/Arai configuration) is

found in all three studies, the picture is somewhat murkier for the 8-interstitial cluster.

The interpretation of the formation energy calculations is complicated by the fact that

two different morphologies for nI � 5 can be identified. The first, which is denoted as

“compact” is based on the Humble/Arai motif; thus a 5-interstitial cluster is a Humble/

Arai 4-mer plus an additional interstitial and so on. The second structural motif,

“elongated”, refers to [110]-aligned configurations that serve as the building blocks for

the {113}-oriented planar configurations (see next section).

The relative stability of compact and elongated configurations in the size range

nI< 12 is not conclusive: Refs [77] and [46] seem to indicate that the elongated structures

are more stable but ref. [48] finds the opposite trend. In either case, the difference is not

large and the 8-interstitial cluster is only weakly favored over neighboring sizes, if at all. A

possible explanation for this apparent discrepancy with the experimental inference in

Ref. [60] is provided in Figure 3.5. Here, cluster formation free energies that include

vibrational entropy are estimated using the EDIP potential. Interestingly, the vibrational

entropies are such that the free energies of compact and elongated configurations

become almost identical. Moreover, for the compact 8-interstitial cluster, which is

comprised of two Humble/Arai 4-interstitial cluster, a rather large configurational en-

tropy for the compact structure also is suggested due to the large number of (almost

degenerate) ways that the two 4-interstitial clusters can be placed [77]. With these

entropic factors included, strong “magicness” at size eight emerges. These results sug-

gest that the consideration of entropic contributions might be necessary to fully un-

derstand cluster thermodynamics and that conclusions based on ground state

configurations may be misleading or at least incomplete. In Sections 3.5 and 3.6, the

calculation of entropic contributions is generalized and further evidence is provided for

the importance of entropy in defect thermodynamic analysis.

FIGURE 3.4 Formation energies per interstitial as a function of cluster size, nI. Squares—EDIP results for compact
(open) and elongated (filled) [77]; circles—DFT [46]; diamonds—DFT [48].
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3.4.3 Large Planar Self-Interstitial Clusters

Formation energy estimates have also been computed for the various types of planar

defects found in ion-implanted silicon wafers. The most intensively studied is the {113}-

oriented family of planar structures, which are characterized according to how densely

interstitial chains are packed along the [332] direction. Briefly, the notation /I/ repre-

sents a sequence of adjacent self-interstitial chains (highest density packing) while /IO/

and /IIO/ represent sequences along the defect (in the [332] direction) in which some

chains are missing—a missing chain is denoted by “O”; see Ref. [62] for more notational

details. A summary of per-interstitial formation energies for the {113} family of planar is

shown in Table 3.4 assuming infinitely long interstitial chains (in the [110] direction). It

is notable that the lowest energy configuration on a per-interstitial basis is not the

densest (/I/) but rather one that consists of about 66–75% occupancy of interstitial

chains along the [332] direction, i.e., /IIO/ or /IIIO/.

It has been suggested that {113}-oriented defects grow and eventually transform into

{111}-oriented dislocation loops, namely Frank partial loops (FDLs) and perfect dislo-

cation loops (PDLs). There is also some direct experimental evidence for such a trans-

formation [66]. The transformation size has been estimated to be approximately 20 nm,

or when clusters contain on the order of 500 self-interstitials [67]. The formation energies

for large {111}-oriented planar defects can be estimated on the basis of continuum

mechanical arguments because of the relatively simple structures. For small loop sizes,

FDLs have lower per-interstitial formation energy than PDLs but the trend is reversed

when the loop radius is greater than about 40 nm [79]. The limiting FDL formation

energy is 0.027 eV/atom (the stacking-fault energy), while PDL formation energies tend

FIGURE 3.5 EDIP-predicted formation free energies as a function of interstitial cluster size at 1100 K (EDIP melting
temperature is 1520 K). Open squares—compact structures; filled squares—elongated structures. Single diamond
symbol shows free energy including estimated configurational entropy for 8-interstitial compact cluster. Adapted
from Ref. [77].
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to zero (on a per-interstitial basis) in the limit of large loop size. These very small en-

ergies suggest that if sufficient self-interstitials are present to allow growth and coars-

ening to produce large cluster sizes, dislocation loops will be the predominant

structures. Claverie et al. [67,70,79–81] have summarized comprehensively self-

interstitial cluster morphologies as a function of annealing history in a series of papers.

3.5 Inherent Structure Theory and Potential
Energy Landscapes

As described in the previous section, the “conventional” strategy for computing point

defect (or cluster) free energies is to locate the ground state (minimum energy)

configuration, compute its formation energy and vibrational entropy, and if possible

estimate a degeneracy factor based on symmetry considerations. These elements are

then combined in Eqn (3.2) or (3.4) to provide the “open-system” equilibrium concen-

tration for that particular defect. The implicit assumption in this picture is that no other

configurations of the defect are energetically close to the ground state and thus do not

contribute in any way to the stability of the defect. In this section, a framework is

described for including the contributions of higher-energy configurations into the defect

free energy. It will be shown that the configurational entropy contribution from higher

formation energy configurations can be significant at the high temperatures associated

with silicon crystal growth and wafer annealing. As a result, defect free energies based on

ground state analyses can overestimate the true free energy and, in some cases, lead to

qualitatively incorrect predictions for defect thermodynamics.

In the following, the notion of the Inherent Structure Landscape (ISL) is used to

develop a quantitative theory for describing high-temperature defect thermodynamics.

While ISL theory has since been applied successfully to a variety of systems, including

Table 3.4 Ground State Formation Energies for {113}-Oriented
Planar Self-Interstitial Clusters

Model Configuration Formation Energy (eV/atom) Ref.

LDA-DFT
SW

/IIO/
/IIO/

0.68
0.88

[75]

LDA-DFT /IO/ 0.49 [76]
LDA-DFT /I/

/IO/
/IIO/
/IIIO/

0.63
0.72
0.46
0.48

[68]

Tight-binding /IO/ 1.35 [78]
LDA-DFT /I/

/IO/
/IIIO/

0.71
0.76
0.55

[48]
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atomic clusters [82–84], glasses [85–87] and polymers [83,88], it has not received much

attention in the arena of crystal defect thermodynamic analysis since the early work of

Stillinger and Weber [89]. Inherent structures, as first introduced by Stillinger and

Weber [89,90], correspond to local minima in the 3N-dimensional potential energy (or

enthalpy) landscape defined by the three-dimensional coordinates of an N-atom sys-

tem [91]. Shown in Figure 3.1 is a schematic one-dimensional projection of a potential

energy landscape for some hypothetical material. On the left is a “superbasin” that

contains all micro-configurations that are macroscopically noncrystalline, including

the liquid phase (higher energy) and amorphous solid phase (lower energies). On the

right is the crystal superbasin that includes the perfect crystal ground state and higher-

energy levels that correspond to configurations that include defects. In all cases,

“inherent structures” correspond to mechanically stable configurations and are rep-

resented by local minima in Figure 3.6. In turn, each local minimum is surrounded by a

basin that defines the region of phase space from which a local minimum is always

reached upon downhill energy minimization (e.g., steepest descent or conjugate-

gradient) [82].

Under certain conditions, the total phase space of the system is well approximated by

the collection of basins surrounding inherent structures, i.e., the system spends most of

its time in the vicinity of one or more of the inherent structures and very little time in

transition between them. Under these conditions, the partition function that describes

the system becomes much simpler to approximate and enables a direct route for esti-

mating various thermodynamic properties. In the following section, a summary of the

FIGURE 3.6 One-dimensional schematic representation of the potential energy landscape for a model atomic
material showing two “superbasins” corresponding to liquid/glass/amorphous solid and crystal macro-states.
Within each superbasin, many local minima correspond to distinct inherent structures—the global minimum corre-
sponds to the perfect crystal configuration. Insets show example configurations in which large red spheres quali-
tatively correspond to disordered (i.e., noncrystalline) atoms and small green ones denote atoms in crystalline
positions. Taken from Ref. [92].
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ISL framework is provided in a form that is appropriate for the analysis of defect ther-

modynamics in crystalline materials.

3.5.1 Inherent Structure Landscape (ISL) Theory for Defects in Crystals

Consider the constant particle-volume-temperature (NVT) statistical ensemble, in which

the Helmholtz free energy is related to the classical canonical partition function, Z, by

the relation

bF ¼ �ln ZðN ; b;V Þ; (3.11)

where b ¼ 1/kT, V is the system volume, and

Z ¼ 1

N !

1

L3N

Z
exp

��bE
�
rN
		
drN : (3.12)

In the above equation, L is the thermal de Broglie wavelength and EðrN Þ represents

the potential energy of the N-atom system. Within the ISL approximation, the partition

function is rewritten in terms of an integral over inherent structure basins so that [90]

Z ¼ 1

L3N

Z
gðEaÞexpð�bEaÞexpð�bFvibðb;EaÞÞdEa; (3.13)

where Ea is the (local ground state) potential energy of inherent structure a and g(Ea) is

the configurational density-of-states (DOS), or degeneracy function, for the distribution

of basins within the landscape. In other words, g(Ea) is the number of basins present that

possess minimum potential energy Ea. Note that the configurational degeneracy func-

tion is a property of the potential energy landscape and is independent of temperature.

The vibrational free energy, Fvib¼�TSvib, of each basin is a measure of the basin size

where the vibrational entropy of a basin, Svibh klnNvib, can be regarded as representing

the number of vibrational states contained in that basin.

We now define a combined vibrational and configurational degeneracy in a single

function, i.e.,

G0ðb;EaÞh gðEaÞexpð�bFvibðb;EaÞÞ: (3.14)

Noting that the perfect crystal has unit configurational degeneracy, i.e., g(EP)¼ 1 where

EP is the perfect crystal energy, the combined DOS function may be expressed in terms of

formation energies, i.e.,

G00ðb;DEaÞh G0ðb;EaÞ
G0ðb;EPÞ ¼ gðEaÞexpð�bDFvibðEaÞÞ; (3.15)

where DEah Ea � EP is the formation energy of basin a and

DFvibðEaÞhFvibðb;EaÞ � Fvib

�
b;EP

	
; (3.16)

is the formation vibrational free energy. Note that all reference perfect crystal properties

are scaled to refer to the same number of atoms as in the defective crystal. Within the
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harmonic approximation [93], the combined DOS function in Eqn (3.15) can be further

simplified into the form [92,94]

G00ðb;DEaÞ ¼ GðDEaÞUPðbÞ; (3.17)

where

UPðbÞ ¼ G0�b;EP
	
exp

��bEP
	
; (3.18)

is a temperature-dependent constant defined only on the perfect crystal configuration.

The DOS distribution, G(DEa), is now independent of temperature and will be used as the

basis for computing defect thermodynamic properties in the following sections. Using

Eqns (3.17) and (3.18), the partition function in Eqn (3.13) can be written entirely in

terms of formation energy as

Z ¼ UPðbÞ
L3N

Z
GðDEaÞexpð�bDEaÞdDEa: (3.19)

Finally, the formation (Helmholz) free energy for a defect is given by

DG ¼ �kBT ln

Z
GðDEaÞexpð�bDEaÞdðDEaÞ: (3.20)

The above formalism readily can be extended to the isobaric-isothermal (NPT) ensemble

which is characterized by an enthalpy landscape [95,96]. The key result is that

the isothermal-isobaric partition function can be written in an analogous form to

Eqn (3.13), i.e.,

Y ðN ;P;T Þf
Z

gðHaÞexpð�bHaÞexp
��b ~Fvibðb;HaÞ

	
dHa (3.21)

where P is the pressure, Ha is the enthalpy of inherent structure a, and ~Fvibðb;HaÞ is the
vibrational free energy of basin a within the NPT ensemble. Similar considerations used

to derive Eqn (3.19) can be applied to give

Yw

Z
GðDHaÞexpð�bDHaÞdDHa: (3.22)

In Eqn (3.22), the formation enthalpy is calculated as DHa¼DEaþ PDVa, where

DVah Va� VP is the formation volume of a particular configuration that corresponds to

basin a relative to the volume of the perfect crystal, VP.

3.5.2 Sampling Inherent Structures with Molecular
Dynamics Simulation

In order to apply ISL theory to defect thermodynamics, the potential energy landscape

(PEL) must be appropriately sampled. Standard molecular dynamics (MD) is used to

perform all PEL sampling described in this chapter, although any suitable variant of the

Monte Carlo method is equally applicable. For example, prior studies have employed a

number of highly efficient methods, notable examples being the basin hopping
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technique [82] and the minima hopping method [97]. Although certainly not the most

efficient approach, the principal advantage of direct MD sampling is that it automatically

accounts for all configurational and vibrational degrees of freedom.

The procedure for locating potential energy basins for the various defect configura-

tions is as follows. First, the defect is inserted into the simulation cell and a short MD

simulation is used to relax the structure before data is collected. Next, the probability

distribution of the inherent structure minimum energies is accumulated by periodically

taking snapshots of the MD trajectory and quenching them using conjugate-gradient

energy minimization (or any other quenching method). Here, minimization was per-

formed every 200 MD time steps. The result from each quench gives the local inherent

structure formation energy, DEa, of the current basin. A formation energy (or enthalpy)

histogram is then collected into energy/enthalpy bins (width is typically 0.1–1.0 eV). The

result of this procedure is a temperature-dependent probability distribution of basin

energies, which is related to the configurational-vibrational density-of-states distribution

by [87,88,98]

PðDE; bsimÞ ¼ GðDEÞexpð�bsimDEÞ (3.23)

where bsim is the temperature at which the simulation is performed. Note that in Eqn

(3.23) and in all subsequent discussion, the subscript “a” is omitted for notational

brevity.

In the following sections, all MD simulations for PEL sampling were carried out in

either the constant atom-volume-temperature (NVT) or the constant atom-pressure-

temperature (NPT) ensembles using the EDIP empirical potential unless otherwise

stated. It should be noted here that there is recent evidence [99] that potential energy

landscapes predicted by empirical potentials such as EDIP tend to be significantly

rougher than landscapes generated by more accurate representations such as DFT and

tight-binding potentials. While such discrepancies, which are not yet fully characterized,

can alter the quantitative estimates of entropic contributions obtained from inherent

structure theory, that the qualitative conclusions generated on the basis of empirical

potentials are useful for understanding the mechanisms of high-temperature micro-

structural evolution.

The LAMMPS software [100] was used for all MD simulations and conjugate-

gradient energy minimizations. In the case of NVT simulations, the system volume

was chosen using short NPT simulations to provide the desired value of the hydrostatic

pressure. MD time steps of 1.0 fs were used to integrate the particle trajectories.

Generally, O(105) inherent structures are needed to produce a converged probability

distribution at a specified temperature. The exact number of inherent state visits

required for convergence depends on the least visited states within the distribution; the

105 estimate is sufficient to converge distributions down to probabilities in the

10–3–10�4 range (with increasing error at lower probabilities). Convergence was

checked by comparing distributions as the number of inherent structure samples

increased.
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3.6 High Temperature Defect Thermodynamics
In this section, the ISL framework outlined in Section 3.5 is used to compute point defect

and cluster thermodynamics at finite temperature. The single vacancy is considered first

to illustrate the key features of the theoretical framework followed by vacancy and self-

interstitial cluster analyses.

3.6.1 The Single Vacancy

The inherent structure probability distribution for the single vacancy near the melting

temperature (1600 K) was computed using the EDIP potential according to the method

outlined in Section 3.5.2. Shown in Figure 3.7(A–F) are example mechanically stable

structures with increasing formation energy. Several configurations (e.g., (a), (b), and (d))

FIGURE 3.7 (A–F) Example inherent structures of the single vacancy including the ground state (A), the split
vacancy (C) and several other higher energy configurations. Red spheres denote silicon atoms that are within a
threshold distance of their perfect lattice positions, while green spheres correspond to atoms that are displaced
by more than 3% of a bond length. (G) Probability density distribution (PDF) for the EDIP vacancy; (H)
Corresponding density-of-states (DOS) distribution.
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are qualitatively similar but, in fact, correspond to completely distinct relaxations of the

atoms surrounding the vacant site. Higher energy configurations (e.g., (e) and (f))

correspond to increasingly disordered structures.

The plots in (g) and (h) show the PDF and DOS for the vacancy. The PDF is

normalized to unit probability, while the DOS, computed from the PDF using Eqn (3.23),

is shifted so that G(DE)¼ 1 for the ground state configuration. While the probability of

observing the ground state is highest, the system quenches to other configurations

approximately 20% of the time at the temperature considered here. Note that there is no

fundamental limit on the formation energies that can be accessed in these simulations;

the range of energies accessed is limited by the extent of sampling. In other words, larger

inherent structure samples would show progressively higher energy (and rarer) config-

urations. More frequent access to even higher energy configurations can be achieved

simply by increasing the simulation temperature. In fact, as with almost all simulations

of crystalline systems with periodic boundary conditions, significant superheating is

possible and much higher energy inherent structures can be found. While such con-

figurations do not play much of a role at temperatures below the melting point, they are

important in the context of melting [88,92,94,101].

Most significantly, application of Eqn (3.20) at the melting temperature of EDIP sil-

icon results in a formation free energy that is about 20% lower than that obtained by only

considering the ground state configuration. In other words, at or near the melting point

of EDIP silicon the (open system) equilibrium concentration of single vacancies is

actually about a factor of two higher than would be expected based only on the ground

state. This result starkly demonstrates the potential impact of configurational entropy at

high temperature and suggests that it must be considered when high-temperature

properties are required. As will be shown in the following sections, this is even more

the case for point defect clusters.

3.6.2 Vacancy Clusters

The extension of the preceding analysis to vacancy clusters is straightforward. In this

case, several vacancies are placed in close proximity, the system allowed to equilibrate at

some temperature, and periodic quenches applied to isolate inherent structures. The

only additional consideration here is that any configurations that correspond to

“broken” clusters, in which not all vacancies are connected to each other in a single

cluster, are discarded because these are not relevant to the PDF or DOS distributions for

the single cluster. Here, the atomic energy is used to identify atoms that are near va-

cancies, and then the Stillinger criterion [102] is used to assess whether or not they are

connected.

Shown in Figure 3.8 are PDFs (A) and DOS distributions (B) for several vacancy

cluster sizes at 1600 K. Most significantly, the PDFs (A) for clusters larger than size three

become peaked at formation energies that are substantially higher than the ground state

configuration. In fact, at the temperature considered here, the ground state
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configurations are never observed. Simply, the enormous configurational and vibrational

degeneracy present at higher energy levels overwhelms the energetic favorability of the

ground state at elevated temperature. This phenomenon becomes progressively more

pronounced for larger clusters, whereby the difference between the energies of the

ground state and the most likely states increases with cluster size.

The PDFs in Figure 3.8, which have been normalized to unit area, are known only to

within a multiplicative constant, which is required for computing cluster free energies of

formation using Eqn (3.20). The process by which these constants are obtained is as

follows. First, the PDFs are converted to the corresponding DOS distributions as shown

in Figure 3.8(B). The DOS curves are formed using simulations at multiple temperatures

in order to properly sample low energy states and in particular the ground states (shown

by the large solid circles). Recall that the ground state configurations for vacancy clusters

are derived from hexagonal rings and adamantine cages as shown in Figure 3.1. Once the
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FIGURE 3.8 (A) Probability distribution function for EDIP vacancy clusters at 1600 K. (B) Selected corresponding
anchored density-of-states functions—thick lines; exponential fits—thin short lines; density-of-states for hexagonal
ring configurations (see Section 3.4) used to anchor the distributions—solid circles. Adapted from Ref. [98].
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DOS distributions are obtained, the degeneracy for the bin containing the ground state

(and only the ground state) is calculated. To do this, the vibrational spectrum for the

ground state configuration is computed using the quasi-harmonic approximation (QHA)

[103,104] or some equivalent approach. The configurational degeneracy of the ground

state then is estimated using symmetry arguments (see configurations in Figure 3.1) and

the product of the two contributions (vibrational and configurational) is used to obtain

G(DEGS), where “GS” represents the ground state. The rest of the DOS is then shifted

accordingly for each cluster size.

The impact of configurational and vibrational entropy on vacancy cluster free en-

ergies is shown as a function of temperature and size in Figure 3.9. Shown in

Figure 3.9(A) are cluster free energies as a function of size and temperature expressed as

effective surface energies, i.e., s¼DG(n,T)/2.224n2/3, where the numeric factor repre-

sents the surface area of a sphere with volume equal to n vacancies. The top surface in

Figure 3.9(A) represents the free energy for the ground state configuration and includes

the vibrational entropy which leads to the linear decrease of the free energy with
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temperature. The lower surface was obtained using Eqn (3.20) and the data shown in

Figure 3.8, i.e., including both vibrational and configurational entropy. While the

agreement between the two curves is excellent at low temperature, they diverge signif-

icantly at higher temperature due to the rapid increase in configurational entropy.

A more transparent view of the difference between the two results is shown in

Figure 3.9(B) in which the normalized difference between the two free energies is plotted

on a line plot. Several important points are highlighted. The largest difference is

apparent in the lower right corner, corresponding to small clusters at high temperature.

These clusters are significantly different in morphology from the expected compact

octahedral structures observed experimentally (which are large and have cooled to low

temperature). Instead of assuming the compact hexagonal ring and adamantine cage

constructs depicted in Figure 3.1, these clusters tend to be in loosely bound, extended

configurations with capture radii that are significantly larger than those of the compact

configurations. Given that this small size-high temperature regime is crucial in the initial

stages of void nucleation during silicon crystal growth, the omission of configurational

entropy in any nucleation-growth model for voids is likely to cause large errors.

In the opposite corner, i.e., larger clusters at low temperature, the agreement between

the ground state and ISL analyses is perfect because configurational entropy does not

play a role. Recall from Section 3.4.1 that in this region, where void formation energies

are well described by the (111) surface energy, the EDIP predictions are in excellent

agreement with experimental measurements. Finally, in the top right corner of

Figure 3.9(B), corresponding to larger clusters at high temperature, a moderate but

persistent error between the ground state and ISL analysis exists. This size–temperature

regime corresponds to surface melting of voids, in which the overall void shape may be

compact, but configurational entropy is sufficient to lead to a melted surface layer at the

void–matrix interface. In fact, this feature is directly connected to the phenomenon of

defect-induced melting, which is beyond the scope of the present discussion.

In summary, the ISL picture for vacancy cluster thermodynamics shows surprisingly

rich behavior. At high temperatures, configurational entropy drives small clusters into

mobile, loosely bound structures that have lower free energy than corresponding

compact configurations. These effects play major roles in the nucleation and early

growth phase of small vacancy clusters. As the crystal cools, the impact of configura-

tional entropy gradually decays, leading to the well-known compact octahedral struc-

tures observed experimentally. The action of configurational entropy is therefore

somewhat insidious—although it materially impacts the final distribution of voids in

silicon crystals, it is hard (or even impossible) to observe it directly in action. However,

there is some indirect evidence for the validity of this overall picture. In ref. [57], the

ISL-based free energy function obtained in Figure 3.9 was employed in a continuum

model for void nucleation and growth during CZ growth of silicon crystals [1,58,105,106].

While these models have been quite successful at predicting void size distributions as a

function of crystal growth conditions, they have relied on some degree of empirical

parameter fitting in order to attain quantitative agreement with experimental
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measurements of void size, void density, and the nucleation temperature at which voids

suddenly nucleate during crystal cooling. A long-standing issue in particular was the fact

that the (111) surface model for octahedral voids, while intuitively appealing, gave free

energies that were too high and resulted in insufficient void formation. The ISL free

energy picture resolves this issue with no empirical parameter fitting. At high temper-

atures where nucleation and growth take place, the free energy is much lower than the

octahedral model would predict, and at low temperatures it naturally becomes consis-

tent with it.

In concluding this section, it should be noted once again that the above results are

strictly only valid for the EDIP potential. As mentioned earlier, there is some evidence

that PEL roughness is somewhat overpredicted by empirical potentials as compared to

DFT calculations [99]. If this is indeed the case, the results presented here are likely to

overestimate the impact of configurational entropy. On the other hand, similar calcu-

lations with multiple empirical potentials (data not shown) seem to show that the

presence of a noisy PEL with many closely spaced, mechanically stable inherent struc-

tures is fairly ubiquitous, with only quantitative deviations across the various potential

models. Clearly, further work aimed at analyzing the nature of empirical potential and

DFT PELs is required before more formal conclusions regarding this issue can be made.

3.6.3 Self-Interstitial Clusters

The ISL-based analysis of self-interstitial clusters is essentially identical to that for va-

cancy clusters. Given the higher degree of morphological complexity associated with

self-interstitial clusters as mentioned earlier in Sections 3.4.2 and 3.4.3, only a few of the

major features are described here and the reader is referred to refs. [92,107,108] for more

details. Shown in Figure 3.10 are PDFs for several interstitial cluster sizes computed
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FIGURE 3.10 Probability distribution functions for EDIP self-interstitial clusters at 1100 K. Adapted from Ref. [108].
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using the EDIP potential at 1100 K. Most of the distributions are qualitatively similar to

the vacancy cluster PDFs, except for a striking feature in the 4-intersitial case. Here, a

sharp peak is observed in the probability distribution at 8.75 eV formation energy that

corresponds to the Humble/Arai configuration discussed in Section 3.4.2. Note that the

peak does not correspond to the lowest energy configuration, i.e., the EDIP potential

predicts slightly lower formation energy configurations, although these are observed

quite rarely. Thus, while the Humble/Arai configuration, which is the known ground

state configuration for the 4-interstitial cluster, is not predicted to be the absolute EDIP

ground state, it is by far the most favored configuration. Other cluster sizes do not appear

to exhibit similar special configurations.

The special favorability of the Humble/Arai configuration arises from a single unusual

feature—it possesses very high vibrational entropy relative to energetically neighboring

configurations [108]. Shown in Figure 3.11 are vibrational entropies computed using the

QHA for large numbers of inherent structures for two vacancy clusters (left) and two

interstitial clusters (right). Qualitatively, all clusters exhibit the same behavior in which

the vibrational entropy increases roughly linearly with increasing inherent structure

energy, although the dispersion is larger for the interstitial clusters. The vibrational

entropy of formation corresponding to the Humble/Arai configuration is denoted by

the large shaded sphere in Figure 3.11(C) and is notably higher (by about 5–6 kB) than the

surrounding values. This anomalous vibrational entropy readily accounts for the

approximately O(102) increase in probability for the Humble/Arai configuration. Thus,

although some configurations are predicted by the EDIP potential to be slightly more
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energetically favorable than the Humble/Arai structure, it is entropically stabilized at

finite temperature. In the language of potential energy landscapes, the basin that cor-

responds to the Humble/Arai configuration is particularly “wide” rather than being

exceptionally “deep”.

The fact that the source of the stability is entropic leads to fundamentally different

temperature dependence. Recall that for the vacancy cluster case, the ground state and

other low energy/low entropy configurations become progressively less important as the

system temperature rises. This is because as the temperature increases, the higher

configurational entropy associated with higher energy configurations begins to domi-

nate the free energy shifting the system toward sampling higher energy configurations.

Here, however, due to the fact that the Humble/Arai configuration is vibrationally sta-

bilized, it remains important even at elevated temperature.

3.6.3.1 Landscape Roughness and the Effect of Pressure
The prior discussion of small interstitial clusters in Section 3.4.2 suggests that similar

entropic effects should be observed for the 8-interstitial cluster whose ground state is

essentially two interacting Humble/Arai clusters in close proximity. However, no

anomalous peak is obviously apparent in Figure 3.10 in the PDF for 8-interstitial case;

this was also found to be the case at all temperatures at which ISL sampling was per-

formed [108]. While temperature appears to have a simple and predictable influence on

the PDFs shown in Figure 3.10—they shift to the right and become wider with increasing

temperature—the impact of hydrostatic pressure was found to be much more subtle and

provides insight into the complex interplay between energy and configurational and

vibrational entropies in these systems.

PDFs at 1100 K are shown in Figure 3.12 for the 4- and 8-interstitial clusters at

different applied hydrostatic pressures. The base-case zero pressure PDFs are denoted
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by the filled square symbols and correspond to the PDFs shown previously in

Figure 3.10. The open circles show the PDFs computed under 3 GPa of applied tension,

which corresponds to about 1% tensile strain. The 4-interstitial PDF is modified in two

important ways—first the dominance of the Humble/Arai peak increases, and second,

the inherent structures previously found to the left of the peak are no longer me-

chanically stable and disappear so that the Humble/Arai configuration becomes the

lowest energy configuration. The change in 8-interstitial PDF is even more striking.

Whereas the zero pressure distribution was the usual smoothly rounded distribution,

the PDF under tension now exhibits sharp peaks near the minimum energy, much like

the 4-interstitial case. In fact, these spikes correspond to the well-known “compact” and

“elongated” configurations identified in refs. [46,48]. Once again, their probabilities are

enhanced by their high vibrational entropies relative to neighboring configurations.

Finally, the 4-interstitial PDF obtained under compression is shown by the open dia-

mond symbols. Here, the peak corresponding to the Humble/Arai configuration is no

longer visible.

It is tempting to interpret the trends in Figure 3.12 by considering the effect of hy-

drostatic pressure on the Humble/Arai configuration. However, as shown in ref. [108]

applied pressure (compressive or tensile) does not alter the formation energy or vibra-

tional entropy of the Humble/Arai configuration. Instead, the behavior in Figure 3.12

arises from a collective phenomenon across the entire PEL of the system. In Figure 3.13,

the DOS distributions for the 4-interstitial cluster at each of the three applied pressures

are plotted so that they are equal at the energy bin that contains the Humble/Arai

configuration. The effect of hydrostatic pressure is immediately evident. Simply put,

compression tends to increase the density of states while tension reduces it. Given that
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the vibrational entropy of a given configuration is unaltered by hydrostatic pressure (at

least at the levels applied here), the effect on the DOS is largely configurational. Thus,

when compression is applied, the Humble/Arai configuration does not become altered;

it simply loses its dominance over other configurations because the total number of

alternative configurations is now much greater. The opposite effect is present under

tension—as inherent structures are lost, the dominance of the Humble/Arai configura-

tion becomes even stronger. Thus, whether the Humble/Arai configuration is dominant

or not, depends on a competition between its high vibrational entropy and the collective

configurational entropy of all other configurations.

A very simple, yet conceptually appealing, interpretation of the effect of hydrostatic

pressure is that compression acts to roughen the potential energy landscape, while

tension acts to smooth it, much like pushing and pulling on a sheet of paper. Subsequent

analysis with other potentials such as Tersoff has shown that this is not unique to EDIP,

and appears to be a common feature of empirical potentials (or at least bond-order type

potentials). One possible explanation for this behavior is that as the system is com-

pressed, the number of neighbors within interaction range of a given atom increases,

leading to increased landscape roughness.

Finally, it is interesting to note that while the EDIP potential predicted the existence

of apparently spurious stable configurations with formation energies below that of the

Humble/Arai configuration, these minima in the PEL quickly disappear under the

application of tension. Consider a situation in which the EDIP potential is being tested

using the 4-interstitial cluster. Preforming the defect in the Humble/Arai configuration

would show that, indeed, this is a stable structure with a predicted formation energy that

is in good agreement with DFT values. On the other hand, a global minimization over the

PEL, with no initial knowledge of the Humble/Arai configuration, would identify a

ground state that looks nothing like the Humble/Arai configuration with slightly lower

formation energy. In this case, the potential would be considered as invalid when

compared to DFT. The present analysis shows that the potential is largely in excellent

agreement with DFT results but appears to predict some spurious local minima some of

which lie at lower energy than the Humble/Arai configuration. The collective impact of

these spurious minima on the overall configurational entropy predicted by EDIP is an

open question. Answering it may help identify new ways to think about empirical po-

tential design and validation.

3.7 Conclusions
The aim of this chapter was to provide evidence, through several vignettes, for the utility

of atomistic simulations of intrinsic defect physics in silicon. The identification of the

energetic ground state and the subsequent calculation of its structure and formation

thermodynamics has been the subject of many studies, yet the ability to do this with

complete quantitative confidence remains elusive. In the second portion of the chapter,
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an example application of atomistic simulation to the study of entropic effects at

elevated temperature was used to demonstrate the potential for such simulations to

provide mechanistic information that is generally very difficult to come by with exper-

imental measurements.

Overall, it is safe to say that atomistic calculations are, as a collective tool kit,

extremely powerful and versatile tools for studying the thermodynamics of point defect

and defect clusters in crystalline silicon. Indeed, there are now countless examples of

successful studies in the literature and there is little doubt that they have greatly

increased our understanding of defect physics, thermodynamics and transport in silicon.

However, numerous challenges remain and these must be clearly identified when

deciding on how to apply this tool kit to a particular situation. First and foremost, it is

important to state at the outset that the notion of employing atomistic calculations in a

“plug-and-play” fashion to compute defect properties on demand has not yet been

realized. Ironically, the temptation to treat simulations in this manner has been exac-

erbated by the increased availability of sophisticated, user-friendly and very powerful

open-source codes. However, in both empirical potential and electronic structure cal-

culations, there are many parameters that need to be carefully specified (and are

problem specific) and many validation steps that need to be undertaken each time. This

is especially true when the properties being computed are not well studied. In the case of

empirical potential calculations, it is clear that the choice of potential is crucial—while

there is no one single potential that works best for everything, some are clearly better for

particular aspects. Even for so-called ab initio calculations, the proper choice of model

parameters such as sampling points for integration, system size, and exchange-

correlation functional can make surprisingly large impacts on the computed property.

This can lead to an overestimate of the accuracy of the results.

On the whole, and particularly for silicon, it can therefore be argued that much of the

success achieved with atomistic simulation of defect physics in silicon has not been

related to the calculation of quantitative estimates for specific thermophysical prop-

erties. Instead the success has stemmed in large part from an improved mechanistic

understanding of processes that are otherwise extremely difficult to probe experi-

mentally. As mentioned above, part of the reason for this is the large scatter in the

predicted properties with respect to a number of model parameters and choices.

Moreover, coupled with this is the fact that many observable defect-related phenomena

in silicon crystal growth and wafer annealing arise from a highly sensitive balance

between self-interstitials and vacancies requiring tremendous (and presently unat-

tainable) accuracy to predict without some amount of parametric regression. As a

result, the most successful applications of this tool kit have been to establish a semi-

quantitative picture, which is then further refined by detailed comparisons to experi-

mental measurements. Given the tremendous progress in the quality and scope of

atomistic simulations over the last few decades, there is no doubt that the role of such

calculations will only grow.
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4.1 General Overview of Conventional Stoichiometry
and Related Point Defects

4.1.1 Brief Overview of Stoichiometry and Point Defects in Oxide
Compounds

A conventional stoichiometric compound is characterized as one that has an exact and

fixed composition with a small integer ratio among its atomic components. This concept

is related to Dalton’s so-called law of multiple proportions [1]. The atoms in such a

compound are located precisely at the appropriate crystal lattice points, and neither

impurities nor defects are allowed to exist. Nonstoichiometry represents a deviation

from the well-defined stoichiometry, by the introduction of point defects such as

impurities and vacancies, when forming a solid solution. As such, the definition of a

nonstoichiometric oxide material often refers to a structure that may be formed within a

certain range of anion-to-cation ratios. Stoichiometric materials are used in electronic,

optic, and optoelectronic devices [2,3] because of their excellent uniformity and high

efficiency, which are attributed to the perfect ordering of the atoms in the crystal lattice.

For an ideal stoichiometric structure, defects should be avoided. On the other hand,

because their compositional variation enables the optimization of piezoelectric, ferro-

electric, ferromagnetic, and other physical properties, nonstoichiometric materials with

certain ranges of solid solutions often attract more attention than stoichiometric ma-

terials from the viewpoint of potential applications, given their greater ability to meet the

requirements for different devices. Therefore, point defects, such as impurities or

vacancies, are often intentionally added to a host material for such a purpose.

Semiconducting materials, in which only a small amount of dopant in the range of

1014–1018 /cm3 is sufficient to cause drastic changes in the electronic properties, are

typical examples [4–7]. Color change in the oxides [8] is another. However, it is difficult

to experimentally show the exactness of a stoichiometric composition; it is also chal-

lenging to precisely determine the solid solution range in nonstoichiometric materials.

When discussing the characteristics of point defects, it is vital to have an under-

standing of the structure of the host material. Conventionally, the bonding state between

the constituent elements, that is, the major components (the cations and anions) and

any impurities and vacancies, forms the basis for discussing the generation, morphology,

and mode of distribution of defects. Pauling [9] introduced the theoretical concepts of

bond ionicity and bond strength parameters for a stable coordination polyhedron based

on his second principle, the electrostatic valence rule. Since then, many modifications to

the second principle have been suggested, including those of Brown and Shannon [10]

and Brown [11,12]. The result has been the development of a concept proposing a bond-

valence model in which static bond energy is a function of bond length, i.e., the distance

between an oxygen ion and an associated cation. However, this concept is largely

restricted to ionic compounds, and the parameters evaluated to date are not necessarily

effective when applied to oxides, since the bonding state of many oxides represents a
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mixture of ionic and covalent characteristics. As an example, MgO represents a typical

ionic compound while SiO2 is covalent. The degree of ionicity of the oxide is important

and dominates its ionization behavior in the melt, as will be discussed in Section 4.4.3.

The defect structure is uncertain for many oxide compounds, due to an inadequate

understanding of issues related to the crystal structure, including the coordination sites

for metal cations, ionic-covalent bonding states, oxygen-to-oxygen interactions, degree

of oxidation, effect of the size ratio of metal to oxygen on crystal deformation, defect

interactions, population of point defects and their configurations associated with

ordering and disordering, solid solution ranges, and so on. For instance, the balance

between ionic and covalent bonding depends on the individual oxide, which leads to

variable energy states associated with defect generation and makes it difficult to predict

bond length, lattice size, and the mode of deformation associated with defects and

defect interactions. The oxide object of a defect study can vary from simple cubic to

more complex perovskite and other crystal types. Many oxides show significant

deviations from stoichiometry; depending on the oxygen pressure, the transition metals

form numerous nonstoichiometric oxide phases with ions of differing valences,

resulting in varying metal ion-to-oxygen ratios. Among these are the Magnéli phases,

such as VnO2n�1 and TinO2n�1 [13,14]. The general form of two-element cubic com-

pounds can be addressed as Ma/bO crystals, where a/b is the ratio of metal (M) to

oxygen (O) per mole of O atoms. The transition metal monoxides, such as NiO and CoO,

are representative examples of Ma/bO. For these materials, the ratio of metal to oxygen

varies; NbO and VO have ratios both greater and less than one (NbO1.9975 to NbO2.003

and VO0.8 to VO1.27), while CoO and CdO have ratios less than or equal to one (Co0.99O to

Co1.00O) and equal to or greater than one (Cd1.00O to Cd1.0005O) [15]. The a/b ratio

affects the physical properties of oxides, which are dominated by conventional factors,

such as the ionic size, electronegativity, ionic-covalent character, attractive and repul-

sive interactions, and various oxidation states of the metal. The molar volume is one

characteristic of oxide structures that is indicative of their crystalline properties and

changes with the a/b ratio [16].

LiNbO3 is a ferroelectric material with a more complex ilmenite structure belonging

to the perovskite family, and it has a wide compositional range as a solid solution [17].

However, its composition deviates from stoichiometric only toward the Nb-rich side,

since Li does not replace Nb at the Nb site. This behavior cannot be simply explained in

terms of the ionic radius or electronegativity of the elements but is rather related to the

inhibition of oxygen deficiency formation as a means of charge compensation due to the

replacement of Nb5þ by Liþ. In extreme cases, the stoichiometric composition of some

semiconducting materials, such as SnTe, does not belong to its solid solution range [18].

The oxidation of such materials is thought to be governed by the growth atmosphere,

although the ease or difficulty of oxidation may also depend on the structure and the

composition of the oxides. Coloring due to the presence of impurities or oxygen

vacancies that act as color centers is also often observed in oxide crystals when they are

grown or annealed in an insufficient oxygen atmosphere.
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A simple consideration of the presence of interstitial impurities and/or oxygen

vacancies may not be sufficient to confirm defect structures in oxides, since point defects

in nonstoichiometric materials are not necessarily randomly distributed but rather may

be ordered at high concentrations in cases where this ordering reduces the free energy of

the structure. These point defects may also interact with one another [19], and one

consequence of this interaction may be the formation of clusters. As an example, vacancy

clustering has been proposed for Fe vacancies in a Fe1�xO phase [20] (Figure 4.1).

Interactions between defects can also form a superlattice; a 13:4 Koch–Cohn cluster is an

example of one such superlattice [21]. On the other hand, vacancies, interstitials, and

clusters, including their origins and formation mechanisms, have been well studied

during Si crystal growth on both a theoretical and experimental basis [22–26].

Regarding analytical studies of point defects, thermodynamics and statistical ther-

modynamics are useful for understanding the generation and distribution of point

defects from the energetic point of view, not only with regard to the random distribution

of defects at low defect densities but also as a means of understanding the ordering and

clustering of highly populous defects by taking into account the interactions between

defects [27,28].

It is thus important to be aware of and to consider the quantity of impurities or

vacancies. In this chapter, point defects will be discussed in association with the solid

solution. Impurities or vacancies replacing the host elements at lattice points are often

10�4 to 10�2 mol or more in quantity if vacancies are required for charge compensation

due to valence differences between the host element and the impurity. A thermally

(A) 

Basic unit

(B) 

Edge-shared

(C) 

Corner shared

(6 : 2 cluster) (13:4 “Koch-Cohen” cluster)

Cation vacancy

(4 : 1 cluster)

Interstitial Fe3+ O2–

FIGURE 4.1 Vacancy clustering and cluster association of iron-deficient Fe1-xO. (A) The basic unit: a so-called 4:1
cluster consisting of four vacancies and one interstitial Fe3þ ion. (B) Two basic units combined to form an edge-
shared 6:2 cluster complex. (C) Four basic units combined to form a corner-shared 13:4 cluster complex represent-
ing a superlattice known as a Koch–Cohen cluster [21].
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activated vacancy is one of the intrinsic vacancies and can become enriched, depending

on the band gap of the material, near the melting temperature of the material. However,

the amount of vacancies of this type or of color-causing impurity centers is much smaller

than the quantity of defects replacing the host element, by at least two orders of

magnitude at high temperatures. For this reason, intrinsic point defects are disregarded

in the following discussion.

4.1.2 Crystal Sites in Oxide Crystals

An oxide crystal consists of an oxygen framework that provides space for a metal cation

based on its coordination number. For descriptive purposes, the space is often referred

to as a crystal site, as in tetrahedral (4-coordination), octahedral (6-coordination), and

decahedral (8-coordination) sites. Each of the constituent cations of the crystal is located

in its specific site depending on its radius, valence, and electronegativity, such that

attractive and repulsive forces between oxygen atoms and cations are in equilibrium.

Each site in a conventional stoichiometric compound is completely filled with a specific

element without any foreign elements or vacancies, so that a simple atomic ratio may be

used to describe the relative quantities of the constituent elements; this is the law of

multiple proportions [1]. Stoichiometric compositions of this type are readily described

and understood without any uncertainties. The conventional stoichiometric compound

LiNbO3 (s-LN), for example, contains three crystal sites: the Li, Nb, and O sites, each of

which is completely filled with Li, O, and Nb, without any foreign elements or vacancies.

In contrast, conventional congruent-melting LiNbO3 (c-LN) has completely filled Nb and

O sites, while the Li site is occupied not only by Li but also by Nb (antisite Nb) as well as

by vacancies necessary for charge compensation. Therefore, the components of this

material consist of Li, Nb, and vacancies.

There are always issues concerning the extent to which an oxide crystal changes its

oxygen content when it is grown or annealed in a different oxygen atmosphere. In cubic

crystals, such as FeO, NiO, ZnO, and VO5, and tetragonal crystals, such as TiO2, the

metal-to-oxygen ratio varies readily, concomitant with a change in the metal ion

oxidation states. The oxygen quantity varies significantly, and this variation is explicitly

reflected in the chemical formula of the substance. Although many questions remain

unanswered regarding the oxygen deficiency mechanism associated with the defect

structures, the formation energies of metal oxides available in the Ellingham diagram

provide a good indication of whether these oxides easily lose oxygen upon exposure to a

reduction atmosphere. The oxidation states of iron, nickel, and copper change readily

according to the oxygen atmosphere because the transition energies between different

oxidation states are small for these metal oxides. In contrast, once oxidized, lithium,

magnesium, aluminum, and titanium cannot be reduced because they have elevated

oxidation energies. LiNbO3 alone barely loses 0.01–0.1 mol of oxygen when annealed

under reducing atmosphere. However, when doped with Fe3þ ions and annealed under

reducing atmosphere, LiNbO3 easily loses oxygen in an amount equivalent to the oxygen
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loss obtained for the reduction of Fe2O3 to FeO contained in LiNbO3. The reverse

process (oxidation) is also the case. Metal oxides containing elements that evaporate

readily exhibit more complex defect structures because mass conservation rules do not

hold. These materials include PbTiO3, PZNT (Pb(Zn1/3Nb2/3)O3–PbTiO3), PMNT

(Pb(Mg1/3Nb2/3)O3–PbTiO3) [29–31], and La3Ga5SiO14 [32,33].

It is also well known that some of oxides exhibit a color change from colorless

to yellow, orange, or even black when they are grown or annealed in an oxygen-poor

atmosphere. However, the amount of oxygen that must be lost to yield a color center

is often on the order of ppm or less, whereas the quantity of point defects associated

with forming a solid solution will range from 0.01 to 0.1 mol. This chapter focuses

on oxides with relatively complex structures, such as garnet, langasite, and perovskites

involving ilmenite, such as LiNbO3 or LiTaO3, in which oxygen is assumed to form

a rather stable framework and the oxygen sites are fully saturated with oxygen,

although they may still contain a small quantity of oxygen deficiencies that act as color

centers.

4.1.3 Partitioning Behavior of Ionic Solutes in an Oxide Melt

Typically, defect structures have been reviewed and discussed in association only with

the solid state. Many excellent articles and books have been published concerning point

defects in oxides [15,34–38], however, almost all of these regard defects only as a solid

state issue; few publications have discussed defects in relation to crystallization from the

melt, with the exception of some works regarding Si [22–26]. Since impurities or even

vacancies are partitioned from the melt into the crystal during crystallization, it is

imperative to discuss defects by relating their formation, characteristics, and thermo-

dynamic stability to the coexistence of solid and liquid during crystallization.

Solute partitioning behavior is generally investigated using an equilibrium phase

diagram. However, most oxide phase diagrams are pseudo-phase diagrams where the

stoichiometry of oxygen to metal always holds and the oxygen is not considered an

independent component. For this reason, conventional oxide phase diagrams do not

take into account the ionization of neutral species that actually occurs in the oxide melt.

Ionic species, which represent one of the major sources of point defects, are present in

the melt [39] and are partitioned into the solid during crystallization [40–43]. Point

defects, therefore, should be discussed in association with crystallization, and the oxygen

in the melt should be considered as an independent component in the phase diagram.

As will be discussed in detail in Section 4.3.1, the oxygen ions and metal ionic species

behave independently, which has been experimentally demonstrated by the observation

of crystallization electromotive force (c-EMF) generated by the segregation of ionic

species at the solid–liquid interface, even in the case of c-LiNbO3. Therefore, although

the LiNbO3 congruent point in the pseudo-binary diagram of Li2O–Nb2O5 is invariant, it

is not invariant in the ternary diagram of Li–Nb–O, and thus a variety of population ratios

among the ionic species are allowed.
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Ifwe simplyassume thatLiNbO3 isdissociated intoLi2OandNb2O5and then ionized into

further species, such as Liþ, OLi–, Nb5þ, Nb2O
2þ
4 , and O2� [39], in the ternary diagram of

Li-Nb-O, all of these species canbe regardedascomponents rather than just Li2OandNb2O5

that are valid in the pseudo-binary diagram of Li2O–Nb2O5. The number of components

therefore increases from two to five. However, even this is not entirely correct since we also

have ongoing chemical reactions such as those shown in Eqns (4.1) and (4.2) following:

OL�%O2� þ Liþ (4.1)

Nb2O
2þ
4 %2Nb5þ þ 4O2� (4.2)

Accordingly, we can write the chemical potential relationships

mOL� ¼ mO2� þ mLiþ (4.3)

and

mNb2O
2þ
4 ¼ 2mNb5þ þ 4mO2�

: (4.4)

Equations (4.3) and (4.4) represent constraints that reduce the number of independent

components to three species: Liþ, Nb5þ, and O2�. The above chemical species are

hypothetical so that the general forms of the Li-bearing species and Nb-bearing species

may be written as

Lið1Þ; Lið2Þ; . ; LiðkÞ (4.5)

and

Nbð1Þ;Nbð2Þ; . ;NbðlÞ: (4.6)

The oxygen ion, O2�, is also a constituent chemical species. It therefore appears that

the number of components is k þ l þ 1, however, the independent components are only

Liþ, Nb5þ, and O2� since other components are complexes of Li and O or Nb and O

so that constraints are in effect similar to those presented in Eqns (4.3) and (4.4),

meaning that

mLiðiÞ ¼ mmLiþ þ nmO2�
(4.7)

and

mNbðjÞ ¼ smNb5þ þ tmO2�
: (4.8)

Since there are three components instead of two, one more degree of freedom

is available in the melt, which enables the population ratio to vary among the ionic

species even for a congruent-melting composition. This population ratio will in turn

depend on the growth conditions, such as growth velocity and temperature gradient.

Although it initially seems strange that the ratio between ionic species changes

with growth velocity while the congruent melt composition does not, this occurs

because the congruent composition is defined on the basis of the Li2O–Nb2O5 pseudo-

binary associated with LiNbO3, and this is invariant regardless of the growth velocity.

In contrast, the presence of ionic species requires the oxygen ion to be considered as an
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independent component, which adds one more degree of freedom to the ternary

system and enables population change among the ionic species with growth velocity.

However, when these ionic species are partitioned into the solid, this one degree of

freedom in the melt phase must be consumed in such a way that the partition coefficient

for each ionic species is determined. Otherwise, the solid composition cannot be fixed in

the pseudo-phase diagram. It should be noted that the physical phenomenon with a

higher degree of freedom does not surpass the one governed by the lower degree of

freedom. Thus, the same number of constraints as that for the melt species is required to

solve the partition coefficient for each species. The constraint that consumes the one

degree of freedom must then be determined. Because the composition of the solid phase

is determined in the pseudo-phase diagram, a stoichiometric ratio between the metal

and oxygen atoms in the solid is required, which is the last constraint necessary to

achieve zero degrees of freedom.

4.2 Extended Concept of Stoichiometry in Oxide
Crystals

Nonstoichiometric compounds often demonstrate interesting physical properties that

may be induced by tuning their chemical compositions. Examples include variation of

the Curie temperature and dielectric constant of ferroelectric materials used in ceramic

capacitors such as (Ba,Sr)TiO3 with the addition of small amounts of Y, Nd, and Sm

[44,45] and the large piezoelectric constant associated with the Curie temperature of

PZNT or PMNT [29–31] at compositions near the polymorph phase boundary (MPB),

which enable applications in ultrasonic sensors and other piezoelectric applications.

Due to its ordered configuration of constituent elements on the lattice points, the

stoichiometric compound will exhibit certain superior physical properties to the

nonstoichiometric compound. Stoichiometric LiNbO3 (s-LN) or LiTaO3 (s-LT) crystals

[2,3], for instance, show a higher conversion efficiency for secondary harmonic gen-

eration (SHG) in nonlinear optical applications and much lower coercive electric fields

associated with poling compared to c-LN and congruent LiTaO3 (c-LT) crystals.

However, these stoichiometric compositions are rigid, and only a small number of

stoichiometric crystals are available that correspond to the law of multiple proportions

[1]. Thus, it would be beneficial from both scientific and technological perspectives if

stoichiometric compounds could be obtained over a wider compositional range. In this

chapter, by considering the essential concept of stoichiometry, we redefined stoichi-

ometry in such a way that a material in which the activities of all the constituent ele-

ments can be unity is stoichiometric [46,47]. The constituent elements in this definition

include not only the primary constituent atoms but also the impurities and vacancies

that replace these primary atoms. This revised concept of stoichiometry expands the

current definition of stoichiometric composition from a single point to a range

described by a line.
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4.2.1 The Thermodynamic Definition of Stoichiometry Associated with
the Activity of Constituent Elements

The application of thermodynamic principles throughout a broad spectrum of scientific

and engineering disciplines may be considered to fall into two categories. One approach

is related to solving practical problems regarding the conversion efficiency between

different kinds of energy and is concerned with the reaction constant, the activity of

elements during the chemical reaction process and so on. The other involves analytical

considerations and is more conceptual in nature. Our development of an extended

stoichiometry will use the latter approach.

One of the thermodynamic principles used for this purpose is activity, a term that is

associated with the standard-state chemical potential. The chemical potential of

component j (termed mj) in a nonstoichiometric material is given by Eqn (4.9):

mj ¼ m
j
0 þ RT ln aj; (4.9)

where m
j
0 is the standard-state chemical potential and aj is the activity for j that indicates

mixing with another solute. It should be noted that the chemical potential, mj, has a

definite value, while the activity, aj, is variable. Once m
j
0 is chosen, aj is determined

accordingly using the relationship

ln aj ¼ mj � m
j
0

RT
: (4.10)

The value of the standard-state chemical potential, m
j
0, is essentially chosen based on

one’s preference, although in most cases it represents the chemical potential of a pure

substance at 1 atm and 298.15 K. This is because the energy of formation of pure sub-

stances is typically readily available, which is helpful for many thermodynamic calcu-

lations associated with practical applications.

The essence of “stoichiometry” may be elucidated by comparing it with “non-

stoichiometry” from a thermodynamic perspective. A nonstoichiometric composition is

derivative from a stoichiometric composition by the addition of impurities, which im-

plies that the activity of the chemical species or element j is not unity,

ajs1: (4.11)

In contrast, the chemical potential of the stoichiometric composition has no mixing

term, and thus

mj ¼ m
j
0; (4.12)

which is equivalent to saying that the activity of species j is unity,

aj ¼ 1: (4.13)

We should note here that the statement aj ¼ 1 also implies that the mole fraction is unity

(xj ¼ 1), which means that the standard-state composition about j reflects the bulk

composition, j of the material itself regardless of the quantity of j in the material. It

should be noted again that the standard-state composition does not have to be purely j.
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In order for the material to be stoichiometric, Eqn (4.13) must be valid for any

component, j. That is, the activity of all constituent components in the stoichiometric

material is unity. Conversely, if the activity of all constituent components is unity, the

material can be considered to be stoichiometric [46,47]. Following, we will demonstrate

the validity of an extended stoichiometry concept by comparing this concept with the

conventional understanding of stoichiometry.

4.2.2 Conventional Stoichiometric Compositions and the Law
of Multiple Proportions

The composition of a conventional stoichiometric crystal is represented by a small

integer that gives the ratio of constituent elements, representing the so-called law

of multiple proportions [1]. Here we use two kinds of stoichiometric crystals

to demonstrate different types of compositions: (1) Li2B4O7, which is a line-

compound, and (2) s-LN, which belongs to a solid solution with a wide composi-

tional range.

Li2B4O7 has a very limited solid solution range, therefore it can be considered as a line

compound (Figure 4.2(A)). This solid solution range is determined by investigating the

limits of the compositional shift from the stoichiometric composition [48], using XRD or

DTA to determine whether or not the secondary phase is present in the residual melt

after normal freezing under vigorous mixing of the melt. The solid solution was found to

vary around the stoichiometric composition by a margin of �0.3mol% Li2O [48].

However, the observation of zero c-EMF, which will be explained in Section 4.3.1,

revealed that Li2B4O7 is a line compound with almost zero solid solution range. It should

be noted here that there may still be some limited compositional variation in this
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material due to the presence of thermally activated vacancies. However, this small

amount of compositional variation is neglected in the present discussion. The most

important feature of this line-compound stoichiometric crystal is that it is coincident

with the congruent point.

The phase diagram of the pseudo-binary system of Li2O–Nb2O5 is presented [17] in

Figure 4.2(B), in which conventional stoichiometric LiNbO3 (s-LN) and conventional

congruent-melting LiNbO3 (c-LN) are indicated. In contrast to the stoichiometric line-

compound Li2B4O7, s-LN is separate from c-LN and is located at the far end of Li2O

composition in the LiNbO3 solid solution. Although both Li2B4O7 and s-LN are stoi-

chiometric, Li2B4O7 is coincident with the congruent point while s-LN is not, which

reflects the different equilibrium partitioning of their constituent elements. This will be

discussed in detail in Section 4.3.2.

4.2.2.1 Activities of the Constituent Elements in a Conventional Stoichiometric
Crystal

In the following discussion, we will demonstrate that the activities of all constituent

elements in a conventional stoichiometric compound are unity [46]. The composition of

a conventional stoichiometric compound is represented by a small integer ratio between

constituent elements, and as such the line-compound Li2B4O7 may be employed as a

conventional stoichiometric material.

In both the Li2B4O7 melt and the solid at its crystallization temperature, the most

likely possibility would be for Li2B4O7 to dissociate into Li2O and B2O3 [46], as shown by

Eqn (4.14), which is analogous to the dissociation of LiNbO3 [39], since the Li2B4O7

crystal consists of firm B-O frameworks with Li in the pore spaces.

Li2B4O7%Li2Oþ 2B2O3 (4.14)

Subsequently, each species would be expected to ionize. For instance, Li2O may ionize at

high temperature, as shown in Eqn (4.15):

Li2O%Liþ þOLi� (4.15)

In the following discussion, the chemical species j are differentiated in two ways: j is

the net chemical species that normally appears as a component in the pseudo-binary

phase diagram, while j is the actual chemical species existing in the solid or melt and

that forms the net chemical species j. Li2O and B2O3 are thus the net species while

Li2O, Liþ, OLi–, and others represent the proposed real chemical species, j, that form

Li2O. Thus, Li2B4O7 may be decomposed into several chemical species as indicated

by Eqn (4.16):

n Li2B4O7%a Li2Oþ b Liþ þ c OLi� þ d B2O3 (4.16)

At this time, we do not take into account the further decomposition of B2O3. The

chemical potential of Li2B4O7 is written as Eqn (4.17):

n mLi2B4O7 ¼ a mLi2O þ b mLiþ þ c mOLi� þ d mB2O3 ; (4.17)
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and

n mLi2B4O7 ¼ n mLi2O þ 2n mB2O3 : (4.18)

Equation (4.19) then describes B2O3:

2n mB2O3 ¼ d mB2O3 (4.19)

The relationship between the net chemical species and the real chemical species for the

Li2O component can then be written for both the solid and liquid assuming that all

chemical species in the melt are partitioned into the solid so that the discussion can be

made based on the equilibrium partitioning of each chemical species. Equations (4.17),

(4.18), and (4.19) yield Eqn (4.20):

n m
Li2O
b ¼ a m

Li2O
b þ b mLiþ

b þ c mOLi�
b ; (4.20)

where b is either the solid (S) or liquid (L) phase. This describes the relationship in

chemical potential between the net Li2O and Li-bearing species, and a similar rela-

tionship can be made between the net B2O3 and B-bearing species. Thus, hereon we will

deal exclusively with Li2O.

The above chemical species are hypothetical, and it is not clear that they actually

exist. Thus, Eqn (4.21) is hereafter used for the general discussion instead of

Eqn (4.20):

n m
Li2O
b ¼ m1 m

Lið1Þ
b þm2 m

Lið2Þ
b þm3 m

Lið3Þ
b þ/þmk m

LiðkÞ
b ; (4.21)

where Li(i) are the chemical species containing Li and for whichmi � 0. It is important to

note that the Li-bearing species in Eqn (4.21) are assumed to be common to both the

solid and liquid states since all the chemical species in the melt are partitioned into the

solid during growth. Specifically, the chemical potential of the net Li2O in the solid at a

given temperature T may be written as

n m
Li2O
SðT Þ ¼ m1 m

Lið1Þ
SðT Þ þm2 m

Lið2Þ
SðT Þ þm3 m

Lið3Þ
SðT Þ þ/þmk m

LiðkÞ
SðT Þ ; (4.22)

and this equation may be rewritten as Eqn (4.23) by breaking down the chemical po-

tential into the standard-state chemical potential and the mixing term as

n m
Li2O

SðT ;0Þ þ n RT ln a
Li2O

SðT Þ �
�
m1 m

Lið1Þ
SðT ;0Þ þm2 m

Lið2Þ
SðT ;0Þ þm3 m

Lið3Þ
SðT ;0Þ þ/þmk m

LiðkÞ
SðT ;0Þ

�
¼ DmLi�

SðT ;0Þ þ n RT ln a
Li2O

SðT Þ ¼ RT
�
m1 ln a

Lið1Þ
SðT Þ þm2 ln a

Lið2Þ
SðTÞ þm3 ln a

Lið3Þ
SðT Þ þ/þmk ln a

LiðkÞ
SðT Þ

� (4.23)

where m
j
SðT ;0Þ is the standard-state chemical potential of the solid about j at a temperature

T, and DmLi�
SðT ;0Þ is the difference in standard-state chemical potentials between Li2O and

the dissolved species, Li(i), which is written as

DmLi�
SðT ;0Þ ¼ n m

Li2O
SðT ;0Þ �

�
m1 m

Lið1Þ
SðT ;0Þ þm2 m

Lið2Þ
SðT ;0Þ þm3 m

Lið3Þ
SðT ;0Þ þ/þmk m

LiðkÞ
SðT ;0Þ

�
: (4.24)

Here, the standard-state chemical potential is defined for mLi2O
SðT ;0Þ and m

LiðiÞ
SðT ;0Þð1 � i � kÞ,

individually: mLi2O
SðT ;0Þ is defined as the chemical potential of the solid for the exact Li2O
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concentration in the stoichiometric composition of Li2B4O7 at a temperature T. The

activity, aLi2O
SðT Þ, is then written as

ln aLi2O
SðT Þ ¼

�
m
Li2O
SðT Þ � m

Li2O
SðT ;0Þ

�
RT

: (4.25)

The term m
LiðiÞ
SðT ;0Þ can be defined at a given temperature T in such a way that the DmLi�

SðT ;0Þ
term in Eqn (4.24) becomes zero. This is allowed because the Li, B, and O sites are fully

occupied by their own specific elements in stoichiometric Li2B4O7, which provides one

degree of freedom to define m
LiðiÞ
SðT ;0Þ. This freedom associated with the crystal sites and its

usage is discussed in more detail in Section 4.2.3.1. Thus m
LiðiÞ
SðT ;0Þ is defined as in Eqn (4.26):

n m
Li2O
SðT ;0Þ ¼ m1 m

Lið1Þ
SðT ;0Þ þm2 m

Lið2Þ
SðT ;0Þ þm3 m

Lið3Þ
SðT ;0Þ þ/þmk m

LiðkÞ
SðT ;0Þ; (4.26)

where the appropriate value can be assigned to each m
LiðiÞ
SðT ;0Þ term such that the equation

is satisfied at temperature T, even though m
LiðiÞ
SðT ;0Þ is not individually specified. Combining

Eqn (4.26) with Eqn (4.23) gives

n ln aLi2O
SðT Þ ¼ m1 ln a

Lið1Þ
SðTÞ þm2 ln a

Lið2Þ
SðT Þ þm3 ln a

Lið3Þ
SðT Þ þ/þmk ln a

LiðkÞ
SðT Þ ; (4.27)

and thus �
aLi2O
SðT Þ

�n

¼
�
a
Lið1Þ
SðT Þ

�m1
�
a
Lið2Þ
SðT Þ

�m2
�
a
Lið3Þ
SðT Þ

�m3

/
�
a
LiðkÞ
SðT Þ

�mk

: (4.28)

Li2B4O7 is peculiar in that the solid solution range of Li2B4O7 is sufficiently small such

that the composition of the solid Li2B4O7 coexisting with the liquid can be assumed to be

nearly constant and equal to the stoichiometric composition at any given temperature,

T, which is coincident with the congruent composition. Thus, Eqns (4.29) and (4.30) hold

true at any temperature. As such, the chemical potential for the bulk Li2O, mLi2O
SðT Þ, is

assigned to the standard-state chemical potential, mLi2O
SðTÞ, as in Eqn (4.29):

m
Li2O
SðTÞ ¼ m

Li2O
SðT ;0Þ (4.29)

Combining this equation with Eqn (4.25), Eqn (4.30) is obtained:

aLi2O
SðT Þ ¼ XLi2O

SðT Þ ¼ 1; (4.30)

where XLi2O
SðTÞ is the net concentration of Li2O in the solid Li2B4O7 at a temperature, T.

Combining with Eqn (4.28), the product of a
LiðiÞ
SðTÞ is unity as shown by Eqn (4.31):�

a
Lið1Þ
SðT Þ

�m1
�
a
Lið2Þ
SðT Þ

�m2
�
a
Lið3Þ
SðT Þ

�m3

/
�
a
LiðkÞ
SðT Þ

�mk ¼ 1: (4.31)

Equation (4.31) holds at any temperature, T, and thus we can write Eqns (4.32)

and (4.33):

a
Lið1Þ
SðT Þ ¼ a

Lið2Þ
SðT Þ ¼ a

Lið3Þ
SðT Þ ¼ / ¼ a

LiðkÞ
SðT Þ ¼ 1 (4.32)
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X
Lið1Þ
SðT Þ ¼ X

Lið2Þ
SðT Þ ¼ X

Lið3Þ
SðT Þ ¼ / ¼ X

LiðkÞ
SðT Þ ¼ 1 (4.33)

As in Eqn (4.25), a
LiðiÞ
SðTÞ is defined as

ln a
LiðiÞ
SðT Þ ¼

�
m
LiðiÞ
SðT Þ � m

LiðiÞ
SðT ;0Þ

�
RT

: (4.34)

The value of m
LiðiÞ
SðT ;0Þ in Eqn (4.34) is determined in order to satisfy Eqn (4.26), and a

LiðiÞ
SðT Þ ¼ 1

leads to m
LiðiÞ
SðTÞ ¼ m

LiðiÞ
SðT ;0Þ for any temperature. This same process also applies to the

B-bearing species. Overall, then, the activity of all constituent elements in the stoi-

chiometric compound Li2B4O7 is unity [46],

aLi
Li site ¼ aB

B site ¼ aO
O site ¼ 1: (4.35)

4.2.3 Extended Stoichiometric Compositions Including Impurities
and Vacancies

In the previous section, we demonstrated that a material in which the activity of each

constituent element can be unity represents a stoichiometric material, by assigning

each chemical potential, mj, to the standard-state chemical potential, m
j
0. In other

words, if we are allowed to assign mj to m
j
0 for any component, j, such that m

j
0 ¼ mj, the

material can be considered stoichiometric. Stoichiometric materials by this definition

may include impurities and vacancies and so may be more stable in terms of entropy

than conventional stoichiometric substances. This raises an important objection—if an

assignment such as this is possible in any material, then every material could poten-

tially be considered stoichiometric, which is certainly not the case. The question is how

we can know whether or not mj can be assigned to m
j
0. To make such an assignment, we

require a degree of freedom, since the standard-state chemical potential, m
j
0, can have

any value if one degree of freedom is present in the crystal site where the element j is

present.

4.2.3.1 Degrees of Freedom in a Crystal Site
It is important to determine the element occupancy of each crystal site. These elements

include constituent cations, impurity ions, antisite defects, and vacancies. The possible

element occupancy at a site is examined by considering the associated degrees of

freedom, and we can explain the degrees of freedom of a crystal site by employing

LiNbO3 as an example. Here the vacancy is a defect that forms in order to compensate

for the charge imbalance due to the difference between the valences of the impurity ions

and that of the host ion present in a site. The quantity of vacancies will be on the order of

10�4 to 10�2 mol or more depending on the population of impurity ions or antisite de-

fects. In the following discussion, we assume that the oxygen sites are saturated with

oxygen and that no oxygen vacancies are present even when LiNbO3 is exposed to an
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oxygen-reduced atmosphere during the growth or annealing processes. Such a reduced

atmosphere is known to generate a color center in the crystal, with a concurrent change

from colorless to yellow or orange, but the accompanying extent of oxygen deficiency is

much less than the degree of oxygen vacancy required for the charge compensation, by

at least two orders of magnitude. Thus, the possible presence of elements at each cation

site will be discussed, assuming that oxygen saturation is maintained.

The degrees of freedom are obtained by subtracting the number of constraints from

the number of parameters. In this case, the number of parameters at a site is the number

of elements, based on the following three constraints:

1. Mass conservation holds at each site. That is, the sum of the mole fractions of each

constituent element, j (where j ¼ 1 to C), is unity, as in Eqn (4.36):

X 1 þ X2 þ/þ XC ¼ 1 (4.36)

2. If an element is present at multiple sites in a crystal, its chemical potentials at

those sites are equal, thus

m
j
site 1 ¼ m

j
site 2 ¼ /: (4.37)

3. The vacancy population is calculated in such a way that overall charge neutrality is

maintained in the bulk crystal.

These three constraints are necessary conditions, although additional restrictions

may be added to decrease the degree of freedom at a given site.

4.2.3.2 Activity of the Constituent Elements in an Extended Stoichiometric Crystal
Based on our newly defined “stoichiometry,” referring to a material in which the activity

of all the constituent elements can be unity, we extend the stoichiometric composition

from a single point to a linear series. Introducing impurities and vacancies is necessary

in this case, which is not allowed in a conventional stoichiometric compound. As an

example, we may consider MgO-doped LiNbO3 in the pseudo-ternary system of

Li2O–Nb2O5–MgO, shown in Figure 4.3. The isoconcentration line at 50mol% Nb2O5 is

termed line A, and the MgO-doped LiNbO3 on line A is termed 50Nb-LN. The conven-

tional stoichiometric compound LiNbO3 (s-LN), the conventional congruent-melting

LiNbO3 (c-LN) on the pseudo-binary line of Li2O–Nb2O5, and c-LN doped with 5mol%

MgO (5MgO:LN) are also indicated.

The site structures of these crystals are presented in Figure 4.3(B). All the sites of

conventional s-LN are filled with Li, Nb, and O, without any excess atoms or de-

ficiencies. Thus, it is readily understood that the activity of each site as well as the

activity of the element at each site is unity. The site structures of c-LN and 50Nb-LN are

similar in that both have fully occupied Nb and O sites, and their Li sites are occupied

with vacancies or cations other than Li, such as antisite Nb in c-LN and Mg in 50Nb-LN.

Although the elements present in their Li sites are much the same, c-LN is not
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stoichiometric while 50Nb-LN is [47], a phenomenon that will be discussed subse-

quently. In 5MgO:LN, the Mg is located at both Li and Nb sites, but no antisite Nb is

present at the Li sites.

Whether a crystal is stoichiometric or not is determined by examining the possibility

of each of the constituent elements in the crystal having an activity of unity. This

question directly applies to the activities of the elements at Li sites in c-LN and

50Nb-LN.

Firstly, we can examine the degrees of freedom associated with the Li sites in c-LN.

These sites have three parameters: Li, Nb, and vacancies. The constraints on the Li site

include conservation of mass, the exchange of equilibrium Nb between Li and Nb sites,

and the vacancy population required for charge compensation. Since the overall number

of constraints is three, zero degrees of freedom are available for assigning mj to the

standard-state chemical potential, m
j
0. Therefore, the activity of the elements at the Li

sites cannot be unity, and it has been proven on a thermodynamic basis that c-LN is not

stoichiometric.

The degrees of freedom of the Li sites in 50Nb-LN can subsequently be examined

using a similar process. Here the number of parameters is three while the number of

constraints is two, since we are only concerned with conservation of mass and the

vacancy population. As a consequence, the Li sites have one degree of freedom, which

allows unrestricted choice of the standard-state chemical potential, m0. It should be

noted that, in the 50Nb-LN crystal, each element, including Mg and vacancies, belongs
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FIGURE 4.3 (A) Composition diagram of various LiNbO3 compositions in the pseudo-ternary system of Li2O–Nb2O5-
MgO. The isoconcentration line of 50mol% Nb2O5 line is termed line A and represents an O-to-Nb ratio of exactly
3.0. Legend: s-LN ¼ stoichiometric LiNbO3 on the Li2O–Nb2O5 line, c-LN ¼ congruent LiNbO3 on the Li2O–Nb2O5

line, 50Nb-LN ¼ MgO-doped LiNbO3 on line A, 5MgO:LN ¼ c-LN doped with 5mol% MgO. (B) Crystal site struc-
tures for each of the various LiNbO3 crystals.
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only to one specific site. However, m
j
0 ¼ mj must be valid for all three of the elements

that may be present at the Li sites (j ¼ Li, Mg, and vacancy) in order for the activities

of these elements to be unity. Thus, it appears that three degrees of freedom are

required, and hence the challenge is to use one degree of freedom to assign m to m0 for

each of the three elements. To address this, one can consider the chemical potentials

and activities of the crystal sites as well as the constituent elements in 50Nb-LN. The

Nb site is fully occupied by Nb and Nb does not enter into any other site, which is also

the case for the O sites and O atoms. Hence, the activity of the Nb and O sites is unity,

and simultaneously the activity of Nb at the Nb sites and O at the O sites is unity.

Since the Li sites preserve the overall charge neutrality with regard to the Nb and O

sites, the Li site must also be neutral and the activity of the Li site must be unity. Thus,

aLi site ¼ aNb site ¼ aO site ¼ 1; (4.38)

and

aNb
Nb site ¼ aO

O site ¼ 1: (4.39)

The chemical potential of the Li sites in 50Nb-LN is calculated by summing that of each

element, as follows:

mLi site ¼ pmLi
Li site þ qm

Mg
Li site þ rmVa

Li site (4.40)

where Va denotes a vacancy and p, q, and r are real numbers. By differentiating the

chemical potential into the standard-state chemical potential and the mixing term, Eqn

(4.40) may be rewritten as:

mLi site
0 þ RT ln aLi site ¼ p

�
mLi
0 þ ln aLi

Li site

�þ q
�
m
Mg
0 þ ln a

Mg
Li site

�
þ r
�
mVa
0 þ ln aVa

Li site

�
(4.41)

One degree of freedom allows the standard-state chemical relationship between the Li

site and its constituent elements, which is shown in Eqn (4.42):

mLi site
0 ¼ pmLi

0 þ qm
Mg
0 þ rmVa

0 (4.42)

Subsequently, the activity relationship between the Li site and its constituent elements is

obtained by combining with Eqn (4.41) to give Eqn (4.43):

aLi site ¼
�
aLi
Li site

�p�
a
Mg
Li site

�q�
aVa
Li site

�r ¼ 1 (4.43)

Equation (4.43) is valid for any combination of p, q, and r that lies on the iso-

concentration line of 50mol% Nb2O5 (line A in Figure 4.3). Therefore, the activity of all

three elements is unity [47], expressed as

aLi
Li site ¼ a

Mg
Li site ¼ aVa

Li site ¼ 1: (4.44)

Combining this equation with Eqn (4.39), the activity of all elements in 50Nb-LN can

be shown to equal unity, and so it is proven on a thermodynamic basis that 50Nb-

LN, a Mg-doped LN on the isoconcentration line of 50mol% Nb2O5, is

stoichiometric.
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4.3 Growth Characteristics of Stoichiometric Crystals
A line-compound stoichiometric crystal is always congruent, but the conventional

stoichiometric oxide crystal accompanying the solid solution is often not congruent.

Although both types of crystals have an activity equal to unity for each of their con-

stituent elements, the partitioning of constituent elements from the liquid to the solid

during growth differs between the two. This indicates that there is a close relationship

between the partitioning behavior of an ionic species, stoichiometry, and the congru-

ency of the growing crystal.

Most oxide melts are electrically conductive [39,49,50], therefore they are considered

to contain ionic constituent species in addition to neutral species, as illustrated in

Figure 4.4. The existence of ionic species in the oxide melt is easily demonstrated when

one considers that molten salts are used as electrolyte solutions in electrochemical

studies. The populations of these ionic species are dependent on the composition and

temperature of the oxide melt. We have seen that pseudo-oxide phase diagrams, in

which the stoichiometry between the metal and oxygen holds, only address the oxide

components of the material and do not provide any information concerning ionic spe-

cies. It is generally believed that the partition coefficients are unity at the congruent

composition since the solidus line coincides with the liquidus line at that point, meaning

that the solid and liquid compositions are the same. However, this is true only for the

oxide components appearing in the pseudo-phase diagram; it is not true when one

considers that oxygen ions represent one of the ionic species present in the melt. As an

example, the pseudo-binary diagram of Li2O–Nb2O5 is not sufficient to explain the

partitioning of ionic species in the LiNbO3 melt. In this case, oxygen should be treated as

an independent component, and the ternary Li-Nb-O diagram should be used instead of

the pseudo-binary Li2O–Nb2O5 diagram. Each of the constituent species, including ionic

species, has its own equilibrium partition coefficient, and it can be shown that the

equilibrium partition coefficient of any element in the exact line-compound melt is

unity, meaning that there is no segregation of ionic species near the interface during

growth. This arises from the fact that the line compound is both stoichiometric and
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congruent. In contrast, even a congruent crystal that is not consistent with the stoi-

chiometric point grows in such a manner that the ionic solutes have nonunity partition

coefficients. Consequently, the ionic species in the solute boundary layer undergo

segregation, resulting in the accumulation or depletion of these species and generating a

c-EMF at the interface, which in turn produces an interface electric field that compli-

cates the growth process.

In this section, c-LN is employed as an example of a congruent crystal that generates a

nonzero c-EMF during growth, which demonstrates that the partition coefficients of the

ionic species present in the congruentmelt are nonunity [51–53], even though the partition

coefficients of the net Li2O or Nb2O5 are unity. However, an extended stoichiometric

crystal including both impurities and vacancies could coincide with the congruent point at

a certain composition, in which case no segregation will occur even if the material is not a

line compound. This process will be discussed further in Section 4.3.2.

4.3.1 Crystallization Electromotive Force

Each ionic species, j, is partitioned based on its own equilibrium partitioning coeffi-

cient, k
j
0, and is accumulated or depleted at the growth interface due to solute segre-

gation depending on the value of k
j
0, the diffusivity, Dj, and the growth rate, which

results in the differential segregation of ions of opposing valences to generate a net

charge in the liquid boundary layer as well as a charge of the opposite sign in the

crystal, thus producing the c-EMF [40,47,51–53], DfEMF. This process is illustrated in

Figure 4.5. D’yakov et al. [54] first measured the c-EMF generated by c-LN, and
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FIGURE 4.5 Schematic illustration of the segregation of ionic species in the liquid boundary layer (above) and the
generation of crystallization electromotive force (c-EMF), DfEMF (below) during the growth of the LiNbO3 crystal.
The horizontal axis shows the distance from the growth interface; the vertical axis shows the net concentrations
of anions and cations (above) and electric potential (below) [47].
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Aleksandrovskii et al. [55] reported similar measurements using the Czochralski

method but did not investigate its origin. The c-EMF is useful not only in terms of

growth equilibrium, as discussed herein, but also since it allows the study of growth

dynamics. DfEMF is easily measured using a micro-pulling down (m-PD) system, as

shown in Figure 4.6 [47]. The furnace in this apparatus consists of a small platinum (Pt)

crucible with a capillary nozzle attached to its base. A sintered material is charged into

the Pt crucible and is melted by sending an electric current through the crucible, such

that the crucible serves as a resistance heater. Two thermocouples (TC1, TC2) are set in

the liquid and solid phases; TC1 is fixed in the liquid, while TC2 is mobile. During the

pulling down (crystal growth stages: 1, 2, and 3), halt and pulling up (crystal melting

stages: 4, 5, and 6) of TC2, T1 and T2 (the temperatures of TC1 and TC2, respectively) and

the potential difference, Df, between TC1 and TC2 are measured. During pulling down

and pulling up, the rate of movement of TC2 is constant. When a c-oriented crystal is

used to seed the crystal nucleation, the resulting crystal has the same (c-) orientation as

the seed crystal. During all stages, T1 is kept nearly constant and only T2 and Df vary.

Figure 4.7 depicts an example of a Df� T2 curve acquired during the crystal growth

process, showing the halt and melting of c-LN [47]. The Df term may be represented by

Eqn (4.45) [47,51,54]:

Df ¼ aLðT1 � TiÞ þ aSðTi � T2Þ þ DfEMF; (4.45)

where aL and aS are the Seebeck coefficients of the liquid and solid phase, and corre-

spond to the slopes of the Df�T2 curve in the liquid (stages 1–2 and 5–6 in Figure 4.6)

and solid regions (stage 2–3 and 4–5 in Figure 4.6), respectively. The value of aL is

0.27mV/K, while aS is �0.85mV/K [47], both of which are nearly constant for all com-

positions. Ti is the temperature at the solid/liquid interface, and DfEMF is the c-EMF that

is obtained from the extent of hysteresis generated in the solid region during the
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FIGURE 4.6 The micro-pulling-down (m-PD) system for the measurement of crystallization electromotive force
(c-EMF). TC1 is fixed, while TC2 is mobile. Df is measured by the difference in electric potentials measured at T1 and
T2 during the pulling down (growth stage 1–3), halt and pulling up (melting stage 4–6) processes. After Ref. [47].
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solidification and melting process. It should be noted that, in Eqn (4.45), both aL and aS

are fixed values specific to the material being examined, whereas DfEMF is completely

growth-system dependent. The value of this term is normally in the range of several mV

and can be measured with reasonable accuracy.

The generation of a c-EMF during the growth of LiNbO3 from melts with various

compositions demonstrates that the EMF has a nonzero value at the conventional

stoichiometric point and even at the congruent point (Figure 4.8) [52]. This EMF arises

during growth as the result of the segregation of ionic solutes in the liquid boundary

layer in a congruent melt in which the equilibrium partition coefficients are not unity,

even though the coefficients of the net Li2O and Nb2O5 are unity, based on interpre-

tation of the conventional pseudo-phase diagram. In contrast, Figure 4.9 shows that the

c-EMF observed during the growth of Li2B4O7 is zero at the stoichiometric-congruent

point but nonzero during growth from the off-stoichiometric melt [52]. The
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FIGURE 4.7 The Df� T2 curve obtained during the
growth, halt and melting processes of c-LN [47].
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obtain the Seebeck coefficient of the liquid (aL)
and the solid (aS), while DfEMF is obtained from
the hysteresis potential (Dfhys) in the solid region.
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zero-EMF exhibited by the stoichiometric-congruent composition will always occur

during growth at various growth rates, although different growth rates normally result

in varying degrees of segregation of the ionic species at the interface if their partition

coefficients are not unity. Therefore, no segregation of ionic species occurs at the

stoichiometric-congruent point, leading to the conclusion that every ionic species in

the Li2B4O7 melt has an equilibrium partition coefficient of unity [46]. On this basis, we

may conclude that the value of c-EMF will be zero during growth when the crystal is

simultaneously stoichiometric and congruent. The opposite is equally true; the crystal

is stoichiometric and congruent if no segregation of any constituent species occurs

(c-EMF ¼ 0) or if, in other words, the equilibrium partition coefficient of any constit-

uent species is unity. These statements will be proven on a thermodynamic basis in the

following sections.

4.3.2 Activities of Constituent Elements in the Melt and Solid States
for an Oxide Crystal that is Both Stoichiometric and Congruent

In the previous section, it was demonstrated on an experimental basis that a crystal

presents zero c-EMF when it is simultaneously stoichiometric and congruent. The

thermodynamic requirement for the coincidence of stoichiometry and congruency in

the solid can be analyzed only when one sees that the activities of the constituent species

in both the melt and the solid are unity.

The activity of a chemical species, i, in liquid Li2B4O7, a
LiðiÞ
LðTÞ, coexisting with

the stoichiometric solid has been discussed [46]. It should be noted again that

all the species in the liquid are assumed to be identical to those in the solid since

they are partitioned from the liquid into the solid during growth. The chemical
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potentials of both phases in equilibrium about the net Li2O are therefore equal

and we may write

m
Li2O
LðT Þ ¼ m

Li2O
SðT Þ : (4.46)

Since aLi2O
SðTÞ ¼ 1 at any temperature, T, it is also true that

aLi2O
LðT Þ ¼ exp

2
4DmLi2O

ðT ;0Þ
RT

3
5; (4.47)

where DmLi2O
ðT ;0Þ ¼ mLi2O

SðT ;0Þ � mLi2O
LðT ;0Þ and mLi2O

LðT ;0Þ is the standard-state chemical potential of the

liquid phase associated with Li2O. Similar to the mLi2O
SðT ;0Þ term, mLi2O

LðT ;0Þ is defined as

the chemical potential of the liquid associated with the exact Li2O concentration in the

stoichiometric composition of Li2B4O7 at a temperature, T. Concerning the equilibrium

at the congruent point, aLi2O
LðT Þ ¼ 1 in Eqn (4.47), and thus DmLi2O

ðT ;0Þ ¼ 0 and mLi2O
SðT ;0Þ ¼ mLi2O

LðT ;0Þ.

Furthermore, mLi2O
LðTÞ is transitioned into a linear coupling of the chemical potential of the

real liquid chemical species, m
LiðiÞ
LðTÞ, in the same manner as Eqn (4.22) regarding mLi2O

SðTÞ and

m
LiðiÞ
SðTÞ, such that the relationship shown in Eqn (4.48) holds.

p m
Li2O
LðT Þ ¼ q1 m

Lið1Þ
LðTÞ þ q2 m

Lið2Þ
LðT Þ þ q3 m

Lið3Þ
LðT Þ þ/þ qk m

LiðkÞ
LðT Þ (4.48)

Based on the above relationship between the chemical potentials, the appropriate

standard-state chemical potential, m
LiðiÞ
LðT ;0Þ, may be chosen to satisfy Eqn (4.49):

n m
Li2O
LðT ;0Þ ¼ m1 m

Lið1Þ
LðT ;0Þ þm2 m

Lið2Þ
LðT ;0Þ þm3 m

Lið3Þ
LðT ;0Þ þ/þmk m

LiðkÞ
LðT ;0Þ: (4.49)

It should be noted that m
LiðiÞ
LðT ;0Þ is represented in the molar free energy diagram by the

intersection of the molar free energy curve of the Li(i) species in the liquid with the

principal axis ðXLiðiÞ
L ¼ 1Þ. The axis in this diagram is the same as that associated with

the Li(i) species in the solid, where X
LiðiÞ
S ¼ 1, and m

LiðiÞ
LðT ;0Þ does not necessarily have to

equal to m
LiðiÞ
SðT ;0Þ. Combining Eqn (4.49) with Eqn (4.26) and taking into account the

equivalency mLi2O
SðT ;0Þ ¼ mLi2O

LðT ;0Þ at the congruent point, Eqn (4.50) is obtained:

m1

�
m
Lið1Þ
SðT ;0Þ � m

Lið1Þ
LðT ;0Þ

�
þm2

�
m
Lið2Þ
SðT ;0Þ � m

Lið2Þ
LðT ;0Þ

�
þm3

�
m
Lið3Þ
SðT ;0Þ � m

Lið3Þ
LðT ;0Þ

�
þ/þmk

�
m
LiðkÞ
SðT ;0Þ � m

LiðkÞ
LðT ;0Þ

�
¼ m1 Dm

Lið1Þ
ðT ;0Þ þm2 Dm

Lið2Þ
ðT ;0Þ þm3 Dm

Lið3Þ
ðT ;0Þ þ/þmk Dm

LiðkÞ
ðT ;0Þ ¼ 0;

(4.50)

where Dm
LiðiÞ
ðT ;0Þ ¼ m

LiðiÞ
SðT ;0Þ � m

LiðiÞ
LðT ;0Þ. At this point, we can discuss the sign of Dm

LiðiÞ
ðT ;0Þ, which

determines whether or not the liquid can coexist with the solid. The molar free energy of

Li(i) in the solid is actually represented by a point on the principal axis (Figure 4.10) [46]
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at which m
LiðiÞ
SðTÞ ¼ m

LiðiÞ
SðT ;0Þ, since Li2B4O7 is a line compound, and, as discussed previously,

the activity of any species in the solid, a
LiðiÞ
SðT Þ, is unity at any temperature. When

drawing a common tangent to the molar free energy curve between the solid and

the liquid, Eqn (4.51) should always hold since the tangent point on the solid molar

free energy curve always lies on the principal axis corresponding to m
LiðiÞ
SðT ;0Þ, while

the tangent point on the liquid molar free energy curve moves away from the axis,

such that

m
LiðiÞ
SðT ;0Þ � m

LiðiÞ
LðT ;0Þ: (4.51)

This is illustrated in Figure 4.10 and leads to Eqn (4.52):

Dm
LiðiÞ
ðT ;0Þ � 0: (4.52)

Combining Eqn (4.50) with mi � 0 and Dm
LiðiÞ
ðT ;0Þ � 0, the value of the Dm

LiðiÞ
ðT ;0Þ term at the

congruent point is zero, as in Eqn (4.53):

Dm
LiðiÞ
ðT ;0Þ ¼ 0: (4.53)

At the liquidus temperature, T, the chemical potentials of all real chemical species, Li(i),

will be identical in either the solid or the liquid, such that

m
LiðiÞ
SðTÞ ¼ m

LiðiÞ
LðT Þ: (4.54)

Then, since a
LiðiÞ
SðTÞ ¼ 1,

X (T )
Li( i) = 1

S (T ,0)
Li ( i)

Li(i)

L(T ,0)
Li( i)

G

μ

μ

FIGURE 4.10 Relationship between the standard-state chemical potentials of the liquid, mLiðiÞ
LðT ;0Þ, and solid, mLiðiÞ

SðT ;0Þ,
about Li-bearing chemical species, Li(i) [46]. Due to the limited solid solution range, the molar free energy of the
solid Li(i) is represented by a dot on the principal axis corresponding to m

LiðiÞ
SðT ;0Þ. m

LiðiÞ
LðT ;0Þ should be greater than or

equal to m
LiðiÞ
SðT ;0Þ in order to draw a common tangent between the molar free energies, G, of the liquid and solid.

Note that both free energy curves have a common principal axis at XLiðiÞ
ðTÞ ¼ 1.
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ln a
LiðiÞ
LðTÞ ¼

Dm
LiðiÞ
ðT ;0Þ

RT
: (4.55)

At the congruent point, Dm
LiðiÞ
ðT ;0Þ ¼ 0 (from Eqn (4.53)), and so

a
LiðiÞ
LðT Þ ¼ X

LiðiÞ
L ¼ 1: (4.56)

Finally, the equilibrium partition coefficient of Li(i), k
LiðiÞ
0 , is given by

k
LiðiÞ
0 ¼ X

LiðiÞ
S

X
LiðiÞ
L

¼ 1

1
¼ 1: (4.57)

The equilibrium partition coefficient, k
LiðiÞ
0 , for each of the Li-bearing species is found to

be unity in the composition associated with a material that is simultaneously stoichio-

metric and congruent, such as Li2B4O7 [46]. The partition coefficients of the B-bearing

chemical species can be discussed in a similar manner, and all of these species can be

shown to also have coefficients of unity at the congruent point. Therefore, no segregation

of any constituent species, including ionic species, takes place and a c-EMF value of zero

will be apparent.

In contrast, in the case of a material for which the stoichiometric composition is

located somewhere other than the congruent point, such as holds true for LiNbO3, the

constituent species do not necessarily have partition coefficients equal to unity.

Although the activity of the bulk liquid in equilibrium with the stoichiometric solid could

be unity, i.e., aLi2O
LðT Þ ¼ 1, the principal axis (X ¼ 1) cannot be common to the solid and the

liquid since the equilibrium compositions are different between these two phases, such

that aLi2O
SðTÞ ¼ 1 and aLi2O

LðT Þ ¼ 1 do not both hold true in the same coordination system. As

a result, Eqns (4.48) to (4.57) cannot be used to analyze a stoichiometric crystal with

a composition that differs from the congruent point. Thus, Eqn (4.53) is not valid,

meaning that

Dm
LiðiÞ
ðT ;0Þs0; (4.58)

and

ln

 
a
LiðiÞ
LðT Þ

a
LiðiÞ
SðT Þ

!
¼ Dm

LiðiÞ
ðT ;0Þ

RT
s0:

Therefore, Eqn (4.59), below, can be written

a
LiðiÞ
LðT Þ

a
LiðiÞ
SðT Þ

¼ a
LiðiÞ
LðTÞs1: (4.59)

The partition coefficients, k
LiðiÞ
0 , for the constituent melt species of a stoichiometric

crystal that is not congruent will not equal unity and so segregation will occur, which in

turn leads to a nonzero value of c-EMF. This is demonstrated on an experimental basis in

Figure 4.8.
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4.4 Oxide Crystals Having a Stoichiometric
Composition Coincident with the Congruent Point

As discussed in the previous section, when a compound has a stoichiometric structure

at the congruent point, the equilibrium partitioning coefficients of all chemical species

become unity and segregation does not occur. With regard to conventional c-LN or

c-LT, the segregation of ionic species is observed during growth because these

materials are not stoichiometric. A unique relationship between the unity of the

partitioning coefficients of ionic species and the coincidence of stoichiometry and

congruency is quite beneficial in terms of developing LN or LT crystals that are superior

to conventional LN and LT. The congruent compositions are found on the

stoichiometric line of 50mol% Nb2O5 (line A in Figure 4.3) in the Li2O–Nb2O5–MgO

system and on the stoichiometric line of 50mol% Ta2O5 (line B in Figure 4.11) in

the Li2O-Ta2O5-MgO system. Using Kröger–Vink notation, these materials may be

written as ðLi�LiÞ0:906ðMg $
LiÞ0:047ðV0

LiÞ0:047ðNb�
NbÞðO�

o Þ3, termed cs-MgO:LN [47], and

ðLi�LiÞ0:816ðMg $
LiÞ0:092ðV0

LiÞ0:092ðTa�TaÞðO�
o Þ3, termed cs-MgO:LT [56], respectively. These

compounds show no segregation of ionic species during growth, which demonstrates

that the equilibrium partition coefficients, k0, are unity for all constituent chemical

species in the melt, and thus cs-MgO:LN and cs-MgO:LT are congruent and stoichio-

metric simultaneously. Therefore, the conventional congruent materials LiNbO3

and LiTaO3, both of which are nonstoichiometric, are converted to congruent,
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mol % Li2O
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%
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c-LT
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line B
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line of 50 mol% Ta2O5
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FIGURE 4.11 Composition diagram of various LiTaO3 compositions in the pseudo-ternary Li2O-Ta2O5-MgO system.
The isoconcentration line of 50mol% Ta2O5 is termed line B and represents a ratio of O to Ta of exactly 3.0.
Legend: s-LT ¼ stoichiometric LiTaO3 on the Li2O-Ta2O5 line; c-LT ¼ congruent LiTaO3 on the Li2O-Ta2O5 line; 50Ta-
LT ¼ MgO-doped LiTaO3 on line B; 5MgO:LT ¼ c-LT doped with 5mol% MgO.
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stoichiometric crystals based on our extended concept of stoichiometry. Both mate-

rials, however, contain impurities and vacancies that are not allowed under the con-

ventional definition of stoichiometry.

4.4.1 MgO-Doped LiNbO3

In a conventional stoichiometric crystal, each element occupies only its own unique site

in the crystal lattice, and no defects arising from nonstoichiometry are allowed. Thus, a

conventional stoichiometric crystal usually shows good optical properties. However, the

stoichiometric composition often does not coincide with the congruent composition. In

such a case, growth of the stoichiometric compound is difficult due to the compositional

deviation caused by the segregation of constituent species in the melt during growth.

LiNbO3 (LN) is one such compound. As shown in Figure 4.2(B) [17], the stoichiometric

composition (s-LN; Li2O ¼ 50mol%) does not coincide with the congruent composition

(c-LN; Li2O ¼ 48.38mol% [57]). Although it can easily be grown from the melt, the op-

tical properties of c-LN, such as conversion efficiency of SHG, photoconductivity, and

transparency in the short-wavelength region, are inferior to those of s-LN [2], and so

impurity doping of c-LN is performed to improve its optical properties. MgO is

considered to be an effective impurity for LN, because MgO-doped s-LN exhibits high

photoconductivity and has a high threshold for optical damage [2]. However, these

crystals are no longer congruent nor are they stoichiometric. In the following section, the

growth and characterization of cs-MgO:LN, a crystal that is simultaneously congruent

and stoichiometric, is described.

First, the distribution of the melting temperatures of sintered materials with various

compositions was determined for the Li2O–Nb2O5–MgO ternary system via DTA. The

composition possessing the highest melting temperature is the congruent point of the

MgO-doped LN. Next, this composition was confirmed to be the exact ternary

congruent composition by confirming that c-EMF was not generated. Such a compo-

sition is found on the 50mol% Nb2O5 stoichiometric line, where the congruent

point meets the stoichiometric composition. The compound cs-MgO:LN

(Li2O:Nb2O5:MgO ¼ 45.3:50:4.7) is such a compound and is expected to be easily

grown and to exhibit superior optical properties compared to those of conventional

c-LN, MgO-doped c-LN, and s-LN.

4.4.1.1 Distribution of the Melting Temperatures of MgO-Doped LiNbO3
The ternary phase diagram for the MgO-Li2O–Nb2O5 system is illustrated in Figure 4.12.

The isoconcentration line for 50mol% Nb2O5 is also drawn as a stoichiometric line on

this diagram (line A). Every LN crystal on this line (50Nb-LN) could potentially be

stoichiometric. The melting temperatures of sintered versions of this material with

various compositions were measured by high-temperature DTA around line A. The

distribution of melting points is plotted in Figure 4.12, which represents the solidus

surface of the Mg-doped LN in this region. The congruent composition, which
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corresponds to the highest melting point, was found at the composition

Li2O:Nb2O5:MgO ¼ 45.3:50:4.7 on line A [58]. This represents a new LN composition,

termed cs-MgO:LN, equal to the congruent point coincident with the stoichiometric

composition. Although several studies concerning Mg-doped LN have been reported

[59–61], none of these has discussed this unique composition. In the pseudo-binary

system of Li2O–Nb2O5, c-LN does not coincide with s-LN, and the ionic species segre-

gate during growth. Although 5MgO:LN exhibits improved optical properties [62], it is

neither congruent nor stoichiometric, and thus segregation of bulk components as well

as ionic species occurs during growth, yielding an inhomogeneous compositional dis-

tribution in the crystal.

4.4.1.2 Crystallization Electromotive Force
The c-EMF measurement methods are described in detail in Section 4.3.1. The c-EMF is

represented as a hysteresis gap on the potential curve in Figure 4.7 during the melting

and solidification processes and has a magnitude of several mV. The value of c-EMF is

also growth-rate dependent and not specific to the material itself. Furthermore, because

a high temperature gradient is present in the melt near the interface in a m-PD mea-

surement system, an intrinsic interface electric field is generated due to a thermoelectric

process (via the Seebeck effect), and this in turn influences the distribution of ionic

species in the solute boundary layer. Thus, an extrapolation of c-EMF toward the zero

temperature gradient is drawn in Figure 4.13 for the compositions c-LN, s-LN, c-LN

doped with 6mol% MgO (6MgO:LN), and cs-MgO:LN. In the case of each of these

compositions, the amplitude of c-EMF ðDfEMFÞ decreases with decreasing temperature

gradient. The exact value of DfEMF can be obtained at 0 �C/cm where no electric field
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FIGURE 4.12 Distribution of the melting
temperatures of sintered compounds with
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Ref. [58].
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exists, and cs-MgO:LN is the only composition that attains zero c-EMF at 0 �C/cm [47].

These data also confirm that no segregation occurs during growth at any growth rate,

demonstrating that the partition coefficients of all the solute components, including the

ionic species, are unity and thus assuring the true congruency of cs-MgO:LN [47]. In the

previous section, it was shown on a thermodynamic basis that partition coefficients

equal to unity of the solute components leads to activity values equal to unity in both the

solid and liquid states, and this in turn results in cs-MgO:LN simultaneously having a

stoichiometric structure. The converse is also true—based on thermodynamic argu-

ments, in a compound that has a stoichiometric structure at the congruent composition,

the equilibrium partition coefficient of all chemical species, including ionic species,

becomes unity. In other words, the activities of all constituent elements both in the melt

and the solid will be unity in the case of a compound that exhibits the simultaneous

occurrence of stoichiometry and congruency, as described in Section 4.3.2.

In contrast, the conventional congruent material LiNbO3 (c-LN) requires the partition

coefficient to equal unity only for the bulk Li2O and Nb2O5 components, and its crys-

tallization EMF has a nonzero value, suggesting that the ionic species in the c-LN melt

have nonunity partition coefficients. The values obtained for activity, aj (j ¼ O, Nb, Li,

Mg, and vacancy) and equilibrium partition coefficient, k
j
0, are summarized in Table 4.1

for the growth of s-LN (stoichiometric), c-LN (congruent), and cs-MgO:LN (stoichio-

metric and congruent) crystals.

4.4.1.3 Bulk Crystal Growth of cs-MgO:LiNbO3 and Its Nonlinear Optical
Characterization

Only cs-MgO:LN has no segregation of ionic species [47] and therefore is truly

congruent, easy to grow, and is expected to have a higher compositional homogeneity

Δφ

Temperature gradient / �/cmTemperature gradient /˚C/cm

s-LN

c-LN

6MgO:LN

cs-MgO:LN

FIGURE 4.13 Temperature gradient dependence of DfEMF for s-LN, c-LN, 6MgO:LN, and cs-MgO:LN. For each
composition, DfEMF decreases as the temperature gradient decreases. The DfEMF value of cs-MgO:LN becomes
0mV at 0 �C/cm, while the values of the other materials become nonzero. Modified from Ref. [47].
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than the conventional crystals of c-LN and MgO-doped c-LN. It is also expected to

exhibit a SHG conversion efficiency as high as that of s-LN because of its stoichiometric

structure. Bulk crystals of cs-MgO:LN were therefore grown, and its superiority in both

compositional homogeneity and nonlinear optical properties were demonstrated by

comparing its SHG properties with those of c-LN, s-LN, and 5MgO:LN.

A bulk single crystal of cs-MgO:LN was grown at a rate of 2mm/h via the Czochralski

method along the Z-axis in an air atmosphere. The resulting crystal was colorless and

inclusion-free, as shown in Figure 4.14 [58]. The crystal was about 22mm in diameter

and 40mm long, and its solidified melt fraction, g, was 0.25 after the completion of

growth. The Czochralski technique was also used to grow c-LN, 5MgO:LN, and s-LN,

Table 4.1 Activity, aj, and Equilibrium Partition Coefficient, kj
0, Crystallization

Electromotive Force (c-EMF), DfEMF, Values Associated with the Growth of s-LN
(Stoichiometric), c-LN (Congruent) and cs-MgO:LN (Stoichiometric and Congruent)
Crystals

Activity, aj ( j[ Li, Nb,
Mg, O, Vacancy)

Equilibrium Partition
Coefficient, kj

0 ( j[ Li, Nb,
Mg, O, Vacancy) c-EMF, DfEMF

s-LN ajS ¼ 1; ajLs1 kj0s1 DfEMFs0
c-LN ajSs1; ajLs1 kj0s1* DfEMFs0
cs-MgO:LN ajS ¼ 1; ajL ¼ 1 kj0 ¼ 1 DfEMF ¼ 0

*kj0 is unity for the bulk component Li2O and Nb2O5 in the pseudo-binary system of Li2O–Nb2O5.

10 mm

FIGURE 4.14 A cs-MgO:LN single bulk crystal grown along the Z-axis by the Czochralski method [58].
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although the s-LN was produced using the double-crucible method [63]. The SHG

properties of these bulk single crystals were measured. In preparation, all crystals were

poled and subsequently sliced into 5 � 5 � 5mm blocks (the solidified melt fraction

value was g ¼ 0.13 in the case of cs-MgO:LN) along the x½1210	; y½1010	; z½0001	 di-

rections and the x-planes were polished to a mirror finish to form the incident plane. An

optical parametric oscillator (OPO) pumped by the third harmonic wave of a Q-switched

Nd:YAG laser (1064 nm) was used to evaluate the SHG properties associated with

noncritical phase matching, using d31 of the LN crystal in the infrared region from 800 to

1200 nm.

Since the phase-matching wavelength is sensitive to the crystal composition [64], its

distribution in a crystal test plate was used to evaluate the compositional homogeneity

of the crystal. Figure 4.15 shows the in-plane distribution of the noncritical phase-

matching wavelength for a 4 � 4mm area on each crystal. It should be noted that the

vertical direction in each test plate in Figure 4.15 was parallel to the growth axis, while

the horizontal direction was parallel to the radial direction. The phase-matching

wavelength of the cs-MgO:LN was almost constant over the whole test plate

(Dg ¼ 0.024 w 0.025) [58]. This homogeneity was surprisingly sustained during growth

even with possible variations in the growth rate due to the changing crystal diameter,
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FIGURE 4.15 The in-plane distribution (4 � 4mm) of the noncritical phase-matching wavelength [58]. Solid circles
indicate the measured points: (A) cs-MgO:LN, (B) c-LN, (C) 5MgO:LN, and (D) s-LN.
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which was attributed to the complete unity of the partition coefficients of all the melt

species. To confirm the compositional homogeneity over the entire length of the cs-

MgO:LN crystal, its Curie temperature was measured via differential scanning calo-

rimetry (DSC) at the top and the base. The Curie temperature difference between the top

and bottom portions was 0.8 �C, which corresponds to a 0.02mol% Li2O variation [65]

when neglecting the effect of MgO incorporation. This variation was sufficiently small as

to demonstrate the congruency of cs-MgO:LN. The c-LN crystal was slightly less ho-

mogeneous than the cs-MgO:LN, but was much more homogeneous than both the s-LN

and 5MgO:LN materials. These results are consistent with the partitioning behavior of

the solute components, since both c-LN and cs-MgO:LN have congruent-melting

crystals and bulk components, such as Li2O, Nb2O5, and/or MgO, which are not

segregated but rather partitioned into the crystal with partition coefficients of unity. In

the case of cs-MgO:LN, neither the bulk components nor the ionic species are segre-

gated, so its composition would be expected to be more homogeneous than that of c-LN.

In contrast, the phase-matching wavelengths of s-LN and 5MgO:LN varied drastically

within the test plate since these compounds were not congruent. The maximum

compositional deviations of s-LN and c-LN within the measured areas were estimated to

be 0.0092mol% Li2O and 0.0042mol% Li2O, respectively. The observed variation in the

phase-matching wavelength in s-LN might reflect the compositional variation along the

growth axis during growth. This indicates the difficultly of growing homogeneous s-LN

using the double-crucible method [63].

The SHG conversion efficiency was measured at the center of each test plate (z: 0 mm,

y: 0 mm in Figure 4.15) at a constant value of the fundamental beam power. As shown in

Figure 4.16, the conversion efficiency of cs-MgO:LN is slightly lower than those obtained

with 5MgO:LN and s-LN [58], however, these values are almost equal in magnitude,

while the value measured for the c-LN sample is considerably lower. These experiments

demonstrated that cs-MgO:LN has been generated, based on our extended concept of

stoichiometry, and that this material, due to its congruent state, is superior to

（Power of the fundamental beam: 30 mW）
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FIGURE 4.16 Plots of the secondary harmonic generation conversion efficiency obtained from cs-MgO:LN, c-LN,
5MgO:LN, and s-LN.
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conventional LiNbO3 crystals having a highly homogeneous composition. This sub-

stance also exhibits a high conversion efficiency of secondary harmonic generation due

to its stoichiometric structure.

4.4.2 MgO-Doped LiTaO3

Lithium tantalate (LT), like lithium niobate (LN), is an oxide material whose congruent

composition differs from its stoichiometric composition in the binary Li2O–Ta2O5 sys-

tem. By employing our extended concept of stoichiometry, a new lithium tantalate

incorporating MgO doping, cs-MgO:LT (Li2O:Ta2O5:MgO ¼ 40.8:50.0:9.2), has been

developed [56]. As in the case of cs-MgO:LN, this material is stoichiometric and

congruent. Because of this coincidence, cs-MgO:LT does not exhibit any c-EMF and does

not show any segregation during growth, even in the case of ionic species. A bulk crystal

was grown from a cs-MgO:LT melt via the Czochralski method and showed excellent

compositional homogeneity, as demonstrated by the constant distribution of the Curie

temperature throughout the crystal.

4.4.2.1 Distribution of Melting Temperatures of MgO-Doped LiTaO3
The ternary phase diagram for the system of MgO–Li2O–Ta2O5 is illustrated in

Figure 4.17. The isoconcentration line of 50mol% Ta2O5 is also drawn as a stoichiometric

line (line B). Every LT crystal on this line (50Ta-LT) could potentially be stoichiometric.

The melting temperatures of sintered materials with various compositions were

measured by high-temperature DTA around line B. The distribution of melting points is
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FIGURE 4.17 Distribution of the melting temperatures of sintered compounds with various compositions around
the isoconcentration line of 50mol% Ta2O5 (line B) in the pseudo-ternary system of Li2O-Ta2O5-MgO. Isothermal
contours showing the solidus plane around cs-MgO:LT are also drawn. The highest melting temperature corre-
sponding to the congruent point is found on line B. This is the cs-MgO:LT composition at which the congruent
point is coincident with the stoichiometric composition: Li2O:Ta2O5:MgO ¼ 40.8:50.0:9.2. After Ref. [56].
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plotted in Figure 4.17, which represents the solidus surface of the Mg-doped LT in this

region. The congruent composition, which corresponds to the highest melting point, was

found at the composition corresponding to Li2O:Ta2O5:MgO ¼ 40.8:50.0:9.2 on line B

[56]. This represents a new LT composition, cs-MgO:LT, that exists at the congruent

point coincident with the stoichiometric composition.

Since cs-MgO:LT has a composition that lies well within the solid solution range in

the Li2O-Ta2O5-MgO ternary system, it can be grown without any compositional con-

straints, similar to the case of cs-MgO:LN. In contrast, conventional s-LT has a

composition located near the solubility limit of Li2O so that the practical upper limit for

the Li2O content in this material is 49.8mol% [66,67]. Thus cs-MgO:LT is more tolerant

than s-LT from a compositional perspective, which offers a significant advantage with

regard to crystal growth.

4.4.2.2 Crystallization Electromotive Force
Measurement of c-EMF was carried out for cs-MgO:LT and for conventional c-LT

using the same m-PD technique as was applied in the case of LN. The furnace

apparatus used during these measurements was composed of Pt containing 20% Rh

rather than pure Pt because of the high melting temperature of LT. Growth via the m-

PD technique is accompanied by a large temperature gradient near the interface that

leads to an intrinsic electric field due to the Seebeck effect, as is observed during LN

growth. An intrinsic electric field such as this significantly affects the segregation of

ionic species at the interface [40,68], and thus the DfEMF values obtained for cs-

MgO:LT and c-LT were corrected by extrapolation to the temperature gradient at

0 �C/cm. Following this correction, it was found that the DfEMF of c-LT was nonzero,

while that of cs-MgO:LT was zero [56]. These results demonstrate experimental veri-

fication that the partition coefficient, k0, of the ionic species in the cs-MgO:LT melt is

unity. Consequently, the activity of all constituent elements both in the melt and in

the solid state of cs-MgO:LT is unity, meaning that cs-MgO:LT is both stoichiometric

and congruent.

4.4.2.3 Bulk Crystal Growth and Curie Temperature of cs-MgO:LiTaO3
A bulk single crystal was grown along the Z-axis from the cs-MgO:LT melt under an

atmosphere composed of 99 vol% Ar/1 vol% O2 via the CZ method. The resulting crystal

is shown in Figure 4.18 [56]. Since the cs-MgO:LT composition is congruent, a homo-

geneous compositional distribution was expected in this material. The Curie tempera-

tures of this crystal were measured via DSC at the top, middle, and bottom of the sample

along its central axis. Figure 4.19 summarizes the distribution of the Curie temperature

over the cs-MgO:LT crystal as well as the temperature of the residual melt. The

maximum difference in Curie temperature over the cs-MgO:LT crystal was 0.4 �C [56],

corresponding to a 0.03mol% Li2O difference [69] when neglecting the effect of MgO

doping. This result demonstrates the superior homogeneity of the cs-MgO:LT crystal and

shows that the cs-MgO:LT is congruent. It should be noted that growth from the melt of
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10 mm

FIGURE 4.18 A cs-MgO:LT single bulk crystal grown along the Z-axis by the Czochralski method [56].

FIGURE 4.19 Distribution of the Curie temperatures of as-grown cs-MgO:LT along the growth axis, the seed crys-
tal, and the residual melt [56].
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the cs-MgO:LT composition does not accompany segregation of any ionic melt species.

This material thus represents a true congruent state, whereas conventional c-LT in the

Li2O–Ta2O5 binary system does not since its DfEMFvalue is not zero, meaning that

segregation of ionic species takes place. Therefore, cs-MgO:LT contains essentially no

uncoupled ionic species in the crystal and is expected to have superior nonlinear optical

properties as compared to conventional LT crystals.

4.4.3 Thermodynamic Requirements for Impurity Doping

MgO is a suitable doping oxide for the preparation of high quality LN and LT crystals

exhibiting the concurrent occurrence of stoichiometry and congruency in the ternary

system. It is natural to inquire as to whether any other oxides produce a similar effect

when added to LN or LT such that the resulting crystals become simultaneously stoi-

chiometric and congruent and whether there are any specific requirements for an oxide

to behave as an effective dopant. Figure 4.20 illustrates the ternary Li2O–Nb2O5–ZnO

diagram, in which the distribution of melting points is drawn around the stoichiometric

line of 50mol% Nb2O5 (line C). The highest melting point that corresponds to the

congruent point does not lie on the stoichiometric line C, and thus it is not possible to

make LN simultaneously congruent and stoichiometric by adding ZnO. We may then ask

ourselves, what is the difference between MgO and ZnO that renders MgO effective but

ZnO ineffective?

In order to develop an LN or LT composition, the crystals must have a zero c-EMF

value. In other words, the activity of every constituent element in both the solid and
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4 
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47 46 48 49 50 
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FIGURE 4.20 Distribution of the melting temperatures of sintered compounds with various compositions around
the isoconcentration line of 50mol% Nb2O5 (line C) in the pseudo-ternary Li2O–Nb2O5–ZnO system. Isothermal
contours showing the solidus plane around line C are also drawn. The highest melting temperature corresponding
to the congruent point is located apart from line C.

210 HANDBOOK OF CRYSTAL GROWTH



liquid states is required to be unity. Suppose that a divalent oxide, AO, is doped into LN

and subsequently ionized in the melt according to the following equation:

AO%A2þ þO2� (4.60)

The congruent point is assumed to form at a certain composition in the ternary diagram

of Li2O–Nb2O5–AO. At the congruent melt composition, the partition coefficients of the

three bulk components will be unity, such that

kAO
0 ¼ kLi2O

0 ¼ kNb2O5
0 ¼ 1; (4.61)

where the bar over a species indicates a bulk component. Accordingly, the activities of

these three bulk components in both the solid and liquid are unity, meaning that

aAO
b ¼ aLi2O

b ¼ aNb2O5
b ¼ 1; (4.62)

where b indicates solid (S) or liquid (L) phases. Because the value of c-EMF is zero, one

degree of freedom is available to establish the appropriate relationship between the

standard-state chemical potentials of AO, A2þ, and O2� in both the solid and liquid, as

follows:

aAO
b ¼ aA2þ

b aO2�
b ¼ 1 (4.63)

Likewise,

aLi2O
b ¼

�
aLiþ
b

�2
aO2�
b ¼ 1; (4.64)

and

aNb2O5
b ¼

�
aNb5þ
b

�2�
aO2�
b

�5
¼ 1: (4.65)

At this point, we also wish to determine the thermodynamic criteria that produce ac-

tivities of unity for the species A2þ, O2�, Liþ, and Nb5þ. If AO is completely ionized, the

partitioned AO in the solid is attributed only to A2þ in the melt. Thus,

kA2þ
0 ¼ 1; (4.66)

and so

aA2þ
b ¼ 1: (4.67)

Inserting Eqn (4.67) into Eqn (4.63) leads to aO2�
b ¼ 1, and combining this with Eqns

(4.64) and (4.65) gives

aLiþ
b ¼ aNb5þ

b ¼ 1: (4.68)

Thus, the activity of every constituent element in the AO-doped LN is unity in both the

liquid and solid states. This composition is found on the stoichiometric line of 50mol%

Nb2O5 and can be termed cs-AO:LN, since it is both congruent and stoichiometric. This

scenario occurs in the case of MgO doping, which is understandable when one

considers that MgO is an almost completely ionic oxide. In contrast, if AO is only

partially ionized, both AO and A2þ will be partitioned into the crystal. As a result, even
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if aAO
b ¼ 1 (Eqn (4.63)) is true, neither aA2þ

b nor aO2�
b will necessarily equal unity, and

so the congruent point will not lie on the stoichiometric line for this material. In

general, then, a dopant that is only partially ionized in the melt will not generate

a compound LN in which stoichiometry and congruency are coincident. In contrast,

when the oxide dopant AO is completely ionized, the congruent point can appear

on the stoichiometric line.

4.5 Summary
An extended concept of a stoichiometric oxide has been developed. The chemical po-

tential of this new stoichiometric compound has no mixing term, and thus the activities

of all its constituent elements will equal unity. The opposite is equally true—when the

activities of all the constituent elements can be unity, the material is stoichiometric. In

this definition, the term constituent element is expanded to potentially include both

impurities and vacancies, neither of which is allowed in the conventional definition of

stoichiometry. An activity of unity for a species is possible only when one degree of

freedom is available at the crystal site, so as to assign the chemical potential of each

species, j, to the standard-state chemical potential, such that m
j
0 ¼ mj. Based on this

extended understanding of stoichiometry, new LiNbO3 and LiTaO3 crystals have been

developed by doping with MgO. These materials are simultaneously stoichiometric and

congruent and are therefore easy to grow and exhibit excellent nonlinear optical prop-

erties. Thermodynamic arguments demonstrate that the concurrent occurrence of

stoichiometry and congruency requires activity values of unity for all the constituent

elements of the substance, not only in the solid but also in the liquid state at equilibrium.

This means that the partition coefficients of all the chemical species in the melt must

also be unity such that no segregation occurs; this has been demonstrated experimen-

tally by the observation of zero c-EMF. It is very important that the stoichiometry of an

oxide crystal and its relevant point defects are discussed in association with solute

partitioning during crystal growth. This is because the point defects are partitioned with

other elements from the liquid to the solid state as the crystal is formed, and the asso-

ciated partitioning is related to the activity of the constituent elements in terms of their

respective equilibrium partition coefficients, which in turn determines the stoichiometry

or nonstoichiometry of the material.
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5.1 Introduction
The notion of equilibrium crystal shape (ECS) is arguably the platonic ideal of crystal

growth and underpins much of our thinking about crystals. Accordingly, it has been the

subject of several special reviews and tutorials [1–4,215] and is a prominent part of most

volumes and extended review articles and texts about crystals and their growth [5–9]. In

actual situations, there are many complications that thwart observation of such

behavior, including kinetic barriers, impurities, and other bulk defects like dislocations.

Furthermore, the notion of a well-defined equilibrium shape requires that there is no

contact of the crystal with a wall or surface, since that would alter its shape. By the same

token, the crystal cannot then be supported, so gravity is neglected. For discussions of

the effect of gravity or contact with walls, see, e.g., Ref. [7].

Gibbs [10] is generally credited with being the first to recognize that the equilibrium

shape of a substance is that which, for a fixed volume, minimizes the (orientation-

dependent) surface free energy integrated over the entire surface; the bulk free energy is

irrelevant since the volume is conserved, while edge or corner energies are ignored as

being higher order effects that play no role in the thermodynamic limit. Herring [11,12]

Surveys the early history in detail: The formulation of the problem was also carried out

independently by Ref. [13]. The solution of this ECS problem, the celebrated Wulff

construction, was stated by Ref. [14]; but his proof was incorrect. Correct proofs were

subsequently given by Ref. [15–17], who presented a critical review. However, these

proofs, while convincing of the theorem, were not general (and evidently applied only to

T ¼ 0, since they assumed the ECS to be a polyhedron and, compared the sum over the

facets of the surface free energy of each facet times its area with a similar sum over a

similar polyhedron with the same facet planes but slightly different areas (and the same

volume)). Dinghas [18] showed that the Brunn–Minkowski inequality could be used to

prove directly that any shape differing from that resulting from the Wulff construction

has a higher surface free energy. Although Dinghas again considered only a special class

of polyhedral shapes, Herring [11,12] completed the proof by noting that Dinghas’

method is easily extended to arbitrary shapes, since the inequality is true for convex

bodies in general. In their seminal paper on crystal growth, Burton, Cabrera, and Frank

[19] present a novel proof of the theorem in two dimensions (2D).

Since equilibrium implies minimum Helmholtz free energy for a given volume and

number, and since the bulk free energy is ipso facto independent of shape, the goal is to

determine the shape that minimizes the integrated surface free energy of the crystal. The

prescription takes the following form: One begins by creating a polar plot of the surface

free energy as a function of orientation angle (of the surface normal) and draws a

perpendicular plane (or line in 2D) through the tip of each ray. (There are many fine

reviews of this subject in Refs [20–23].) Since the surface free energy in three dimensions

(3D) is frequently denoted by g, this is often called a g plot. The shape is then the formed

by the interior envelope of these planes or lines, often referred to as a pedal. At zero
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temperature, when the free energy is just the energy, this shape is a polyhedron in 3D

and a polygon in 2D, each reflecting the symmetry of the underlying lattice. At finite

temperature, the shapes becomemore complex. In 2D, the sharp corners are rounded. In

3D, the behavior is richer, with two possible modes of evolution with rising temperature.

For what Wortis terms type-A crystals, all sharp boundaries smooth together, while in

type-B, first the corners smooth, then above a temperature denoted T0, the edges also

smooth. The smooth regions correspond to thermodynamic rough phases, with

height–height correlation functions that diverge for large lateral separation l—like la,

with a (typically 0 < a < 1) called the roughening exponent—in contrast to facets, where

they attain some finite value as l / N [5]. The faceted regions in turn correspond to

“frozen” regions. Pursuing the correspondence, sharp and smooth edges correspond to

first-order and second-order phase transitions, respectively.

The aim of this chapter is primarily to explore physical ideas regarding ECS and

the underlying Wulff constructions. This topic has also attracted considerable interest

in the mathematics community. Readers interested in more formal and sophisticated

approaches are referred to two books, Refs [24,25] and to many articles, including

[26–36]. Particular attention is devoted to the origin of sharp edges on the ECS, the

impact of reconstructed or adsorbed surface phases coexisting with unadorned phases,

and the role and nature of possible attractive stepestep interactions.

5.2 From Surface Free Energies to Equilibrium
Crystal Shape

5.2.1 General Considerations

To examine this process more closely, we examine the free energy expansion for a vicinal

surface, that is, a surface misoriented by some angle q from a facet direction. Cf.

Figure 5.1. Unfortunately, this polar angle is denoted by f in much of the literature on

vicinal surfaces, with q used for in-plane misorientation; most reviews of ECS use q for

the polar angle, as we shall here. The term vicinal implies that the surface is in the vi-

cinity of the orientation. It is generally assumed that the surface orientation itself is

rough (while the facet direction is below its roughening temperature and so is smooth).

We consider the projected surface free energy fp(q,T) [37] (with the projection being onto

the low-index reference, facet direction of terraces):

fpðq;T Þ ¼ f0ðT Þ þ bðT Þ jtan qj
h

þ gðTÞ��tan q
��3 þ cðtan qÞ4: (5.1)

The first term is the surface free energy per area of the terrace (facet) orientation; it is

often denoted s. The average density of steps (the inverse of their mean separation h‘i) is
tan q/h, where h is the step height. In the second term, b(T) is the line tension or free

energy per length of step formation. (Since 2D is a dimension smaller than 3D, one uses

b rather than g. Skirting over the difference in units resulting from the dimensional
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difference, many use g in both cases.) While step free energy per length and line tension

are equivalent for these systems, where the surface is at constant (zero) charge, they are

inequivalent in electrochemical systems, where it is the electrode potential conjugate to

the surface charge that is held fixed [39]. The third term is associated with interactions

between steps, in this case assumed to be proportional to ‘�2 (so that this term, which

also includes the ‘�1 density of steps, goes like ‘�3). The final term is the leading

correction.

The ‘�2 interaction is due to a combination (not a simple sum) of two repulsive

potential energies: the entropic repulsion due to the forbidden crossing of steps and the

elastic repulsions due to dipolar strains near each step. An explicit form for g(T) is given

in Eqn (5.27) below. The ‘�2 of the entropic interaction can be understood from viewing

the step as performing a random walk in the direction between steps (the x direction in

“Maryland notation”1 as a function of the y direction (which is timelike in the fermion

transcription to be discussed later), cf. Figure 5.1, so the distance (y) it must go until it

touches a neighboring step satisfies ‘2 f y. To get a crude understanding of the origin of

the elastic repulsion, one can imagine that since a step is unstable relative to a flat

surface, it will try to relax toward a flatter shape, pushing atoms away from the location

of the step by a distance decaying with distance from the step. When two steps are close

FIGURE 5.1 Portion of a (3,2,16) surface, vicinal to an fcc (001), to illustrate a misoriented, vicinal surface. The
vicinal surface and terrace normals are bn ¼ ð3;�2; 16Þ= ffiffiffiffiffiffiffiffi

269
p

and bn ¼ ð0; 0;1Þ, respectively. The polar angle q [with
respect to the (001) direction], denoted f in the original figure (consistent with most of the literature on vicinal
surfaces), is across ð16= ffiffiffiffiffiffiffiffi

269
p Þ, while azimuthal angle 4 (denoted q in most of the literature on vicinal surfaces),

indicating how much bn is rotated around bn0 away from the vertical border on which q0 is marked, is clearly
arctan(1/5); tan q0 ¼ tan q0cos f. Since h is a1=

ffiffiffi
2

p
, where a1 is the nearest-neighbor spacing, the mean distance ‘

(in a terrace plane) between steps is a1=ð
ffiffiffi
2

p
tan qÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffi
2=13

p
a1 ¼ 3:138a1. While the average distance from one

step to the next along a principal, (110) direction looks like 3.5a1, it is in fact a1=ð
ffiffiffi
2

p
tan q0Þ ¼ 3:2a1. The “pro-

jected area” of this surface segment, used to compute the surface free energy fp, is the size of a (001) layer:
20a1 � 17a1 ¼ 340a21; the width is 20a1. In “Maryland notation” (see text), z is in the bn0 direction, while the
normal to the vicinal, bn, lies in the x–z plane and y runs along the mean direction of the edges of the steps. In
most discussions, f ¼ 0, so that this direction would be that of the upper and lower edges of the depicted sur-
face. Adapted from Ref. [38].

1This term was coined by a speaker at a workshop in Traverse City in August 1996—see Ref. [43] for the

proceedings—and then used by several other speakers.
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to each other, such relaxation will be frustrated because atoms on the terrace this pair of

steps are pushed in opposite directions, so they relax less than if the steps are widely

separated, leading to a repulsive interaction. Analyzed in more detail [7,40,41], this

repulsion is dipolar and so proportional to ‘�2. However, attempts to reconcile the

prefactor with the elastic constants of the surface have met with limited success. The

quartic term in Eqn (5.1) is due to the leading (‘�3) correction to the elastic repulsion

[42], a dipole-quadrupole repulsion. It generally has no significant consequences but is

included to show the leading correction to the critical behavior near a smooth edge on

the ECS, to be discussed below.

The absence of a quadratic term in Eqn (5.1) reflects that there is no ‘�1 interaction

between steps. In fact, there are some rare geometries, notably vicinals to (110) surfaces

of fcc crystals (Au in particular) that exhibit what amounts to ‘�1 repulsions, which lead

to more subtle behavior [44]. Details about this fascinating idiosyncratic surface are

beyond the scope of this chapter; readers should see the thorough, readable discussion

by van Albada et al. [45].

As temperature increases, b(T) decreases due to increasing entropy associated with

step-edge excitations (via the formation of kinks). Eventually, b(T) vanishes at a tem-

perature TR associated with the roughening transition. At and above this TR of the facet

orientation, there is a profusion of steps, and the idea of a vicinal surface becomes

meaningless. For rough surfaces, the projected surface free energy fp(q,T) is quadratic in

tan q. To avoid the singularity at q ¼ 0 in the free energy expansion that thwarts attempts

to proceed analytically, some treatments, notably Bonzel and Preuss [46], approximate

fp(q,T) as quadratic in a small region near q ¼ 0. It is important to recognize that the

vicinal orientation is thermodynamically rough, even though the underlying facet

orientation is smooth. The two regions correspond to incommensurate and commen-

surate phases, respectively. Thus, in a rough region, the mean spacing h‘i between steps

is not in general simply related to (i.e., an integer multiple plus some simple fraction) the

atomic spacing.

Details of the roughening process have been reviewed by Weeks [216] and by van

Beijeren and Nolden [9]; the chapter by Akutsu in this Handbook provides an up-to-date

account. However, for use later, we note that much of our understanding of this process

is rooted in the mapping between the restricted body-centered (cubic) solid-on-solid

(BCSOS) model and the exactly solvable [47,48] symmetric 6-vertex model [49], which

has a transition in the same universality class as roughening. This BCSOS model is based

on the BCC crystal structure, involving square net layers with ABAB stacking, so that sites

in each layer are lateral displaced to lie over the centers of squares in the preceding (or

following) layer. Being an SOS model means that for each column of sites along the

vertical direction, there is a unique upper occupied site, with no vacancies below it or

floating atoms above it. Viewed from above, the surface is a square network with one pair

of diagonally opposed corners on A layers and the other pair on B layers. The restriction

is that neighboring sites must be on adjacent layers (so that their separation is the

distance from a corner to the center of the BCC lattice). There are then six possible
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configurations: two in which the two B corners are both either above or below the A

corners and four in which one pair of catercorners are on the same layer and the other pair

are on different layers (one above and one below the first pair). In the symmetric model,

there are three energies, �e for the first pair, and �d/2 for the others, the sign depending

on whether the catercorner pair on the same lattice is on A or B [50]. The case d ¼ 0

corresponds to the F-model, which has an infinite-order phase transition and an essential

singularity at the critical point, in the class of the Kosterlitz-Thouless [51] transition [52].

(In the “ice” model, e also is 0.) For the asymmetric 6-vertex model, each of the six

configurations can have a different energy; this model can also be solved exactly [53,54].

5.2.2 More Formal Treatment

To proceed more formally, we largely follow [1]. The shape of a crystal is given by the

length RðbhÞ of a radial vector to the crystal surface for any direction bh. The shape of the

crystal is defined as the thermodynamic limit of this crystal for increasing volume V,

specifically.

r
�bh;T�h lim

V/N

�
R
�bh��aV 1=3

�
; (5.2)

where a is an arbitrary dimensionless variable. This function rðbh;TÞ corresponds to a

free energy. In particular, since both independent variables are fieldlike (and so intrin-

sically intensive), this is a Gibbs-like free energy. Like the Gibbs free energy, rðbh;TÞ is
continuous and convex in bh.

The Wulff construction then amounts to a Legendre transformation2 to rðbh;TÞ from
the orientation cm-dependent interfacial free energy fiðcm;TÞ (or in perhaps the more

common but less explicit notation, gðcm;TÞ, which is fpðq;TÞ=cosðqÞ. For liquids, of

course,fiðcm;TÞ is spherically symmetric, as is the equilibrium shape. Herring [12]

mentions rigorous proofs of this problem by Schwarz in 1884 and by Minkowski in 1901.

For crystals, fiðcm;TÞ is not spherically symmetric but does have the symmetry of the

crystal lattice. For a system with cubic symmetry, one can write

fi

�cm;T
�
¼ g0ðTÞ

h
1þ aðT Þ

�
m4

x þm4
y þm4

z

�i
; (5.3)

where g0(T) and a(T) are constants. As illustrated in Figure 5.2, for a ¼ 1/4 the

asymmetry leads to minor distortions, which are rather inconsequential. However, for

2As exposited clearly in Ref. [55], one considers a [convex] function y ¼ y(x) and denotes its derivative

as p ¼ vy/vx. If one then tries to consider p instead of x as the independent variable, there is information

lost: one cannot reconstruct y(x) uniquely from y(p). Indeed, y ¼ y(p) is a first-order differential equation,

whose integration gives y ¼ y(x) only to within an undetermined integration constant. Thus, y ¼ y(p)

corresponds to a family of displaced curves, only one of which is the original y ¼ y(x). The key concept is

that the locus of points satisfying y ¼ y(x) can be equally well represented by a family of lines tangent to

y(x) at all x, each with a y-intercept j determined by the slope p at (x,y(x)). That is, j ¼ j(p) contains all

the information of y ¼ y(x). Recognizing that p ¼ (y � j)/(x � 0), one finds the transform j ¼ y � px.

Readers should recall that this is the form of the relationship between thermodynamic functions,

particularly the Helmholtz and the Gibbs free energies.
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FIGURE 5.2 g-plots (plots of fiðcmÞ, 1/g-plots and x-plots for Eqn (5.3) for positive values of a). For a ¼ 1/4, all
orientations appear on the ECS. For a ¼ 1.0, the 1/g-plot has concave regions, and the x-plot has ears and flaps
that must be truncated to give the ECS essentially an octahedron with curved faces. From Ref. [8], which shows in
a subsequent figure that the g- and 1/g-plots for a ¼ �0.2 and �0.5 resemble the 1/g- and g-plots, respectively,
for a ¼ 1/4 and 1.

Chapter 5 • Equilibrium Shape of Crystals 221



a ¼ 1, the enclosed region is no longer convex, leading to an instability to be discussed

shortly.

One considers the change in the interfacial free energy associated with changes in

shape. The constraint of constant volume is incorporated by subtracting from the change

in the integral of fiðcm;TÞ the corresponding change in volume, multiplied by a Lagrange

multiplier l. Herring [11,12] showed that this constrained minimization problem has a

unique and rather simple solution that is physically meaningful in the limit that it is

satisfactory to neglect edge, corner, and kink energies in fiðcm;TÞ, that is, in the limit of

large volume. In this case l f V�1/3; by choosing the proportionality constant as

essentially the inverse of a, we can write the result as

r
�bh;T� ¼ minbm

0BB@fi

�cm;T
�

cm $ bh
1CCA (5.4)

The Wulff construction is illustrated in Figure 5.3. The interfacial free energy fiðcmÞ, at
some assumed T is displayed as a polar plot. The crystal shape is then the interior en-

velope of the family of perpendicular planes (lines in 2D) passing through the ends of the

radial vectors cmfiðcmÞ. Based on Eqn (5.4) one can, at least in principle, determine cmðbhÞ
or bhðcmÞ, which thus amounts to the equation of state of the equilibrium crystal shape.

One can also write the inverse of Eqn (5.4):

1

fi

�cm;T
� ¼ minbm

0BB@1=fi

�bh;T�
cm $ bh

1CCA (5.5)

FIGURE 5.3 Schematic of the Wulff construction. The interfacial free energy per unit area ficm is plotted in polar
form (the “Wulff plot” or “g-plot”). One draws a radius vector in each direction cm and constructs a
perpendicular plane where this vector hits the Wulff plot. The interior envelope of the family of “Wulff planes”
thus formed, expressed algebraically in Eqn (5.4), is the crystal shape, up to an arbitrary overall scale factor that
may be chosen as unity. From Ref. [1].
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Thus, a Wulff construction using the inverse of the crystal shape function yields the

inverse free energy.

To be more explicit, consider the ECS in Cartesian coordinates z(x,y), i.e.,bhfðx; y; zðx; yÞÞ, assuming (without dire consequences [1]) that z(x,y) is single-valued.

Then, for any displacement to be tangent to bh, dz � px dx � py dy ¼ 0

bh ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ p2
y

q �
� pxz;�pyz; 1

�
; (5.6)

where px is shorthand for vz/vx.

Then the total free energy and volume are

FiðTÞ ¼
ZZ

fp
	
px;py



dx dy

V ¼
ZZ

zðx; yÞdx dy

(5.7)

where fp, which incorporates the line-segment length, is fph½1þ p2
x þ p2

y �1=2 fi.
Minimizing Fi subject to the constraint of fixed V leads to the Euler–Lagrange equation

v

vx

fp
	
vxz;py



px

þ v

vy

fp
	
px;py



py

¼ �2l (5.8)

(Actually, one should work with macroscopic lengths, then divide by the V1/3 times

the proportionality constant. Note that this leaves px and py unchanged [1].) On the

right-hand side, 2l can be identified as the chemical potential m, so that the constancy

of the left-hand side is a reflection of equilibrium. Equation (5.8) is strictly valid only if

the derivatives of fp exist, so one must be careful near high-symmetry orientations

below their roughening temperature, for which facets occur. To show that this highly

nonlinear second-order partial differential equation with unspecified boundary con-

ditions is equivalent to Eqn (5.4), we first note that the first integral of Eqn (5.8) is

simply

z � xpx � ypy ¼ fp
	
px;py



(5.9)

The right-hand side is just a function of derivatives, consistent with this being a Legendre

transformation. Then, differentiating yields

x ¼ �vfp

.
v
	
px



; y ¼ �vfp

.
v
	
py



(5.10)

Hence, one can show that

zðx; yÞ ¼ min
px ;py

	
fp
	
px;py


þ xpx þ ypy



(5.11)
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5.3 Applications of Formal Results
5.3.1 Cusps and Facets

The distinguishing feature of Wulff plots of faceted crystals compared to liquids is the

existence of (pointed) cusps in fiðcm;TÞ, which underpin these facets. The simplest way

to see why the cusp arises is to examine a square lattice with nearest-neighbor bonds

having bond energy e1, often called a 2D Kossel [56,57] crystal; note also [210]. In this

model, the energy to cleave the crystal is the Manhattan distance between the ends of

the cut; i.e., as illustrated in Figure 5.4, the energy of severing the bonds between (0,0)

and (X,Y) is just þe1 ðjX j þ jY jÞ. The interfacial area, i.e., length, is 2(X2 þ Y2) since the

cleavage creates two surfaces. At T ¼ 0, entropy plays no role, so that

fiðqÞ ¼ e1

2
ðjsin qj þ jcosqjÞwe1

2
ð1þ jqj þ.Þ (5.12)

At finite T fluctuations and attendant entropy do contribute, and the argument needs

more care. Recalling Eqn (5.1), we see that if there is a linear cusp at q ¼ 0, then

fi
	
q;T


 ¼ fi
	
0;T


þ B
	
T

jqj; (5.13)

where B ¼ b(T)/h, since the difference between fi(q) and fp(q) only appears at order q2.

Comparing Eqns (5.12) and (5.13), we see that for the Kossel square fi(0,0) ¼ e1/2 and

B(0) ¼ e1/2. Further discussion of the 2D fi(q) is deferred to Section 5.4.3 below.

To see how a cusp in fiðcm;TÞ leads to a facet in the ECS, consider Figure 5.5: the

Wulff plane for q a 0 intersects the horizontal q ¼ 0 plane at a distance fi(0) þ d(q)

from the vertical axis. The crystal will have a horizontal axis if and only if d(q) does not

FIGURE 5.4 Kossel crystal at T ¼ 0. The energy to cleave the crystal along the depicted slanted. Interface
(tan q ¼ Y/Z) is e1 (jXj þ jYj). From Ref. [1].
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vanish as q / 0. From Figure 5.5, it is clear that q z sin q z Bq/d(q) for q near 0, so that

d(0) ¼ B > 0. For a weaker dependence on q, e.g., Bjqjz with z > 1, d(0) ¼ 0, and there is no

facet. Likewise, at the roughening temperature, b vanishes and the facet disappears.

5.3.2 Sharp Edges and Forbidden Regions

When there is a sharp edge (or corner) on the ECS rðbh;T Þ, Wulff planes with a range of

orientations cm will not be part of the inner envelope determining this ECS; they will lie

completely outside it. There is no portion of the ECS whose surface tangent has these

orientations. As in the analogous problems with forbidden values of the “density” vari-

able, the free energy fiðcm;TÞ is actually not properly defined for forbidden values of cm;

those unphysical values should actually be removed from the Wulff plot. Figure 5.6

depicts several possible ECSs and their associated Wulff plots. It is worth emphasizing

that, in the extreme case of the fully faceted ECS at T ¼ 0, the Wulff plot is simply a set of

discrete points in the facet directions.

Now if we denote by cmþ and cm�, the limiting orientations of the tangent planes

approaching the edge from either side, then all intermediate values do not occur as

stable orientations. These missing, not stable, “forbidden” orientations are just like the

forbidden densities at liquid–gas transitions, forbidden magnetizations in ferromagnets

at T < Tc [58], and miscibility gaps in binary alloys. Herring [11,12] first presented an

elegant way to determine these missing orientations using a spherical construction. For

any orientationcm, this tangent sphere (often called a Herring sphere) passes through the

origin and is tangent to the Wulff plot at fiðcmÞ. From geometry, he invoked the theorem

that an angle inscribed in a semicircle is a right angle. Thence, if the orientation cm
appears on the ECS, it appears at an orientation that points outward along the radius of

that sphere. Herring then observes that only if such a sphere lies completely inside the

plot of fiðcmÞ does that orientation appear on the ECS. If some part were inside, its Wulff

FIGURE 5.5 Wulff plot with a linear cusp at q ¼ 0. If d(q) / 0 as q / 0, then there is no facet corresponding to
q ¼ 0, and the q ¼ 0 Wulff plane (dotted line) is tangent to the crystal shape at just a single point. Since d(q) ¼ B,
a cusp in the Wulff plot leads to a facet of the corresponding orientation on the equilibrium crystal shape.
From Ref. [1].
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plane would clip off the orientation of the point of tangency, so that orientation would be

forbidden.

The origin of a hill-and-valley structure from the constituent free energies

[59,221,222] is illustrated schematically in Figure 5.7. It arises when they satisfy the

inequality

fi

�cm ¼ n1

�
A1 þ fiðn2ÞA2 < fiðnÞA; (5.14)

where A1 and A2 are the areas of strips of orientation n1 and n2, respectively, while A is

the area of the sum of these areas projected onto the plane bounded by the dashed lines

in the figure. This behavior, again, is consistent with the identification of the misori-

entation as a density (or magnetizationlike) variable rather than a fieldlike one.

The details of the lever rule for coexistence regimes were elucidated by Wortis [1]: As

depicted in Figure 5.8, which denotes as P and Q the two orientations bounding the

region that is not stable, the lever rule interpolations lie on segments of a spherical

surface. Let the edge on the ECS be at R. Then an interface created at a forbiddencm will

FIGURE 5.6 Some possible Wulff plots and corresponding equilibrium crystal shapes. Faceted and curved surfaces
may appear, joined at sharp or smooth edges in a variety of combinations. From Ref. [4]; the equilibrium crystal
shape are also in Ref. [12].
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evolve toward a hill-and-valley structure with orientations P and Q with a free energy per

area of h
fi

�cm�i
avr

¼ xfi
	
P

þ yfi

	
Q



d
: (5.15)

It can then be shown that cm½fiðcmÞ�avr lies on the depicted circle, so that the Wulff plane

passes through the edge at R.

5.3.3 Experiments on Lead Going beyond Wulff Plots

To determine the limits of forbidden regions, it is more direct and straightforward to

carry out a polar plot of 1=fiðcmÞ [20] rather than fiðcmÞ, as discussed in Sekerka’s review

chapter [8]. Then a sphere passing through the origin becomes a corresponding plane; in

particular, a Herring sphere for some point becomes a plane tangent to the plot of

1=fiðcmÞ. If the Herring sphere is inside the Wulff plot, then its associated plane lies

outside the plot of 1=fiðcmÞ. If, on the other hand, if some part of the Wulff plot is inside a

FIGURE 5.8 Equilibrium crystal shape (ECS) analogue of the Maxwell double-tangent construction. O is the center
of the crystal. Points P and Q are on the (stable) Wulff plot, but the region between them is unstable; hence, the
ECS follows PRQ and has an edge at R. An interface at the intermediate orientation cm breaks up into the orien-
tations P and Q with relative proportions x:y; thus, the average free energy per unit area is given by Eqn (5.15),
which in turn shows that fiðcmÞavr lies on the circle. From Ref. [1].

FIGURE 5.7 Illustration of how orientational phase separation occurs when a “hill-and-valley” structure has a
lower total surface free energy per area than a flat surface as in Eqn (5.14). The sketch of the free energy versus
r h tan q shows that this situation reflects a region with negative convexity which is accordingly not stable. The
dashed line is the tie bar of a Maxwell or double-tangent construction. The misorientations are the coexisting
slatlike planes, with orientations n1 and n2, in the hill-and-valley structure. From Ref. [59].
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Herring sphere, the corresponding part of the 1=fiðcmÞ plot will be outside the plane.

Thus, if the plot of 1=fiðcmÞ is convex, all its tangent planes will lie outside, and all ori-

entations will appear on the ECS. If it is not convex, it can be made so by adding tangent

planes. The orientations associated with such tangent planes are forbidden, so their

contact curve with the 1=fiðcmÞ plot gives the bounding stable orientations into which

forbidden orientations phase separate.

Summarizing the discussion in Ref. [8], the convexity of 1=fiðcmÞ can indeed be

determined analytically since the curvature 1=fiðcmÞ is proportional (with a positive-

definite proportionality constant) to the stiffness, i.e., in 2D, gþ v2g=vq2 ¼ ~g, or pref-

erably bþ v2b=vq2 ¼ ~b as in Eqn (5.1) to emphasize that the stiffness and (step) free

energy per length have different units in 2D from 3D. Hence, 1=fiðcmÞ is not convex where

the stiffness is negative. The very complicated generalization of this criterion to 3D is

made tractable via the x-vector formalism of Refs [30,61], where x ¼ Vðr fiðcmÞÞ, where r is

the distance from the origin of the g plot. Thus.

fi
	cm
 ¼ x $cm; cm $dx ¼ 0; (5.16)

which is discussed well by Refs [8,62]. To elucidate the process, we consider just the 2D

case [60].

The solid curve in Figure 5.10 is the x plot and the dashed curve is the 1/g-plot for

fiðcmÞhgf1þ 0:2cos4q. For this case, the 1/g-plot is not convex and the x plot forms

“ears.” The equilibrium shape is given by the interior envelope of the x plot; in this case it

exhibits four corners.

n

FIGURE 5.9 Graphical constructions for an anisotropic fiðcmÞ for various values of an anisotropy parameter a,
where f if 1 þ acos2 qsin2 q. In the left column fi(q) is plotted from top to bottom for a ¼ 1/2,1,2. Anisotropy
increases with positive a, so 1/a corresponds in some sense to a temperature in conventional plots. In the center
panel, n1

2 is cos2 q. The shape resulting from the gradient construction with the ears removed is the Wulff
equilibrium crystal shape. From Ref. [60].
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Pursuing this analogy, we see that if one cleaves a crystal at some orientation cm that

is not on the ECS, i.e., between cmþ and cm�, then this orientation will break up into

segments with orientationscmþ andcm� such that the net orientation is stillcm, providing

another example of the lever rule associated with Maxwell double-tangent constructions

for the analogous problems. The time to evolve to this equilibrium state depends

strongly on the size of energy barriers to mass transport in the crystalline material; it

could be exceedingly long. To achieve rapid equilibration, many nice experiments were

performed on solid hcp 4He bathed in superfluid 4He, for which equilibration occurs in

seconds [63–66], and many more (see Ref. [67] for a comprehensive recent review).

Longer but manageable equilibration times are found for Si and for Au, Pb, and other soft

transition metals.

5.4 Some Physical Implications of Wulff Constructions
5.4.1 Thermal Faceting and Reconstruction

A particularly dramatic example is the case of surfaces vicinal to Si (111) by a few de-

grees. In one misorientation direction, the vicinal surface is stable above the recon-

struction temperature of the (111) facet, but below that temperature, fi(111) decreases

significantly so that the original orientation is no longer stable and phase separates into

reconstructed (111) terraces and more highly misoriented segments [68,69]. The

FIGURE 5.10 The solid curve is the x plot, while the dashed curve is the 1/g-plot for fið bmÞhgf1þ 0:2 cos 4 q. For
this case (but not for small values of a), the 1/g-plot is not convex, and the x plot forms “ears.” These ears are
then removed, so that the equilibrium shape is given by the interior envelope of the x plot, in this case having
four corners. From Ref. [62].
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correspondence to other systems with phase separation at first-order transitions is even

more robust. Within the coexistence regime, one can in mean field determine a spinodal

curve. Between it and the coexistence boundary, one observes phase separation by

nucleation and growth, as for metastable systems; inside the spinodal, one observes

much more rapid separation with a characteristic most-unstable length [70]. This system

is discussed further below.

Wortis [1] describes “thermal faceting” experiments in which metal crystals, typically

late-transition or noble metal elements like Cu, Ag, and Fe, are cut at a high Miller index

direction and polished. They are then annealed at high temperatures. If the initial plane

is in a forbidden direction, optical striations, due to hill-and-valley formation, appear

once these structures have reached optical wavelengths. While the characteristic size of

this pattern continues to grow as in spinodal decomposition, the coarsening process is

eventually slowed and halted by kinetic limitations.

There are more recent examples of such phenomena. After sputtering and annealing

above 800 K, Au(4,5,5) at 300 K forms a hill-and-valley structure of two Au(111) vicinal

surfaces, one that is reconstructed and the other not, as seen in Figure 5.11. This seems

to be an equilibrium phenomenon: It is reversible and independent of cooling rate [77].

Furthermore, while it has been long known that adsorbed gases can induce faceting on

bcc (111) metals [72], ultrathin metal films have also been found to produce faceting of

W(111), W(211), and Mo(111) [73,74].

FIGURE 5.11 Morphology of the faceted Au(4,5,5) surface measured at room temperature. (A) 3D plot of a large-
scale (scan area: 1.4 � 1.4 mm) scanning tunneling microscopy (STM) image. Phases A and B form the hill-and-
valley morphology. (B) STM image zoomed in on a boundary between the two phases. All steps single-height, i.e.,
2.35Å high. Phase B has smaller terraces, 13Å wide, while phase A terraces are about 30Å wide. This particular
surface has (2,3,3) orientation. From Ref. [71].
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5.4.2 Types A and B

The above analysis indicates that at T ¼ 0, the ECS of a crystal is a polyhedron having the

point symmetry of the crystal lattice, a result believed to be general for finite-range in-

teractions [75]. All boundaries between facets are sharp edges, with associated forbidden

nonfacet orientation; indeed, the Wulff plot is just a set of discrete points in the sym-

metry directions. At finite temperature, two possibilities have been delineated (with

cautions [1], labeled nonmnemonically) A and B. In type A, there are smooth curves

between facet planes rather than edges and corners. Smooth here means, of course, that

not only is the ECS continuous, but so is its slope, so that there are no forbidden ori-

entations anywhere. This situation corresponds to continuous phase transitions. In type

B, in contrast, corners round at finite T but edges stay sharp until some temperature T0.

For T0 < T < T1, there are some rounded edges and some sharp edges, while above T1 all

edges are rounded.

Rottman and Wortis [4] present a comprehensive catalog of the orientation phase

diagrams, Wulff plots, and ECSs for the cases of nonexistent, weakly attractive, and

weakly repulsive next-nearest-neighbor (NNN) bonds in 3D. Figures 5.12 and 5.13 show

the orientation phase diagrams and the Wulff plots with associated ECSs, respectively,

for weakly attractive NNN bonds. As indicated in the caption, it is easy to describe what

then happens when e2 ¼ 0 and only {100} facets occur. Likewise, Figures 5.14 and 5.15

show the orientation phase diagrams and the Wulff plots with associated ECSs,

respectively, for weakly repulsive NNN bonds.

FIGURE 5.12 Interfacial phase diagrams for simple-cubic nearest-neighbor Kossel crystal with nearest-neighbor as
well as (weak) next nearest-neighbor (NNN) attractions. The angular variables q and f (not to be confused with 4,
cf. Section 5.2.1) interfacial orientation (cm) and equilibrium crystal shape (bh), respectively, in an equatorial sec-
tion of the full 3D phase diagram. (A) The T–q phase diagram (b) shows the locus of cusps in the Wulff plot along
the symmetry directions below the respective roughening temperatures. For no NNN interaction (ε2 ¼ 0), there
are only cusps at vertical lines at 0 and p/2. (B) The T � bh phase diagram gives the faceted areas of the crystal
shape. The NNN attraction leads to additional (111) (not seen in the equatorial plane) and (110) facets at low
enough temperature. Thus, for e2 ¼ 0 the two bases of the (100) and (010) phases meet and touch each other at
(and only at) f ¼ p/4 (at T ¼ 0), with no intervening (110) phase. Each type of facet disappears at its own rough-
ening temperature. Above the phase boundaries enclosing those regions, the crystal surfaces are smoothly curved
(i.e., thermodynamically “rough”). This behavior is consistent with the observed phase diagram of hcp 4He. From
Ref. [4].
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FIGURE 5.13 Representative Wulff plots and equilibrium crystal shapes for the crystal with weak next nearest-
neighbor attractions whose phase diagram is shown in Figure 5.12. At low enough temperature there are (100),
(110), and (111) facets. For weak attraction, the (110) and (111) facets roughen away below the (100) roughening
temperature. For e2 ¼ 0, TR2 ¼ 0, so that the configurations in the second row do not occur; in the first row, the
octagon becomes a square and the perspective shape is a cube. Facets are separated at T > 0 by curved surfaces,
and all transitions are second order. Spherical symmetry obtains as T approaches melting at Tc. From Ref. [4].

FIGURE 5.14 Interfacial phase diagram with (weak) next nearest-neighbor (NNN) repulsion rather than attraction
as in Figure 5.12. The NNN repulsion stabilizes the (100) facets. Curved surfaces first appear at the cube corners
and then reach the equatorial plane at T3. The transition at the equator remains first order until a higher temper-
ature Tt. The dotted boundaries are first order. A forbidden (coexistence) region appears in the T � bh phase dia-
gram. From Ref. [4].
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5.4.3 2D Studies

Exploring the details is far more transparent in 2D than in 3D. The 2D case is physically

relevant in that it describes the shape of islands of atoms of some species at low frac-

tional coverage on an extended flat surface of the same or another material. An entire

book is devoted to 2D crystals [76]. The 2D perspective can also be applied to cylindrical

surfaces in 3D, as shown by Ref. [7]. Formal proof is also more feasible, if still arduous, in

2D: An entire book is devoted to this task [25]; see also Refs [34,35].

For the 2D nearest-neighbor Kossel crystal described above [1] notes that at T ¼ 0 a

whole class of Wulff planes pass through a corner. At finite T, thermal fluctuations lift

this degeneracy and the corner rounds, leading to type A behavior. To gain further

insight, we now include a next nearest-neighbor (NNN) interaction e2, so that

fiðqÞ ¼ e1 þ e2

2
ðjcos qj þ jsin qjÞ þ e2

2
ðjcos qj � jsin qjÞ (5.17)

For favorable NNN bonds, i.e., e2 > 0, one finds new {11} facets but still type A behavior

with sharp edges, while for unfavorable NNN bonds, i.e., e2 < 0, there are no new facets

but for finite T, the edges are no longer degenerate so that type B behavior obtains. Again

recalling that fi(q) ¼ fp(q) jcosqj, we can identify f0 ¼ e2 þ e1/2 and b/h ¼ e1/2, as noted in

other treatments, e.g., Ref. [77]. That work, however, finds that such a model cannot

adequately account for the orientation-dependent stiffness of islands on Cu(001).

FIGURE 5.15 Representative Wulff plots and
equilibrium crystal shapes for the crystal with
weak next nearest-neighbor repulsions whose
phase diagram is shown in Figure 5.14. Curved
surfaces appear first at the cube corners.
Junctions between facets and curved surfaces may
be either first or second order (sharp or smooth),
depending on orientation and temperature. From
Ref. [4].
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Attempts to resolve this quandary using 3-site non-pairwise (trio) interactions [78,79] did

not prove entirely satisfactory. In contrast, on the hexagonal Cu(111) surface, only NN

interactions are needed to account adequately for the experimental data [79,80]. In fact,

for the NN model on a hexagonal grid, [81] found an exact and simple, albeit implicit,

expression for the ECS. However, on such (111) surfaces (and basal planes of hcp

crystals), lateral pair interactions alone cannot break the symmetry to produce a dif-

ference in energies between the two kinds of step edges, viz. {100} and {111} microfacets

(A and B steps, respectively, with no relation to types A and B!). The simplest viable

explanation is an orientation-dependent trio interaction; calculations of such energies

support this idea [79,80].

Strictly speaking, of course, there should be no 2D facet (straight edge) and accom-

panying sharp edges (corners) at T > 0 (see Refs [82–85] and references therein) since

that would imply 1D long-range order, which should not occur for short-range in-

teractions. Measurements of islands at low temperatures show edges that appear to be

facets and satisfy Wulff corollaries such as that the ratio of the distances of two unlike

facets from the center equals the ratio of their fi [86]. Thus, this issue is often just

mentioned in passing [87] or even ignored. On the other hand, sophisticated approxi-

mations for fi(q) for the 2D Ising model, including NNN bonds, have been developed,

e.g., Ref. [88], allowing numerical tests of the degree to which the ECS deviates from a

polygon near corners of the latter. One can also gauge the length scale at which de-

viations from a straight edge come into play by using that the probability per atom along

the edge for a kink to occur is essentially the Boltzmann factor associated with the energy

to create the kink [89].

Especially for heteroepitaxial island systems (when the island consists of a different

species from the substrate), strain plays an important if not dominant role. Such systems

havebeen investigated, e.g., by Liu [90],whopoints out that for suchsystems the shapedoes

not simply scale with l, presumably implying the involvement of some new length scale[s].

A dramatic manifestation of strain effects is the island shape transition of Cu on Ni(001),

which changes from compact to ramified as island size increases [91]. For small islands,

additional quantum-size and other effects lead to favored island sizes (magic numbers).

5.5 Vicinal Surfaces–Entrée to Rough Regions
Near Facets

In the rough regions, the ECS is a vicinal surface of gradually evolving orientation. To the

extent that a local region has a particular orientation, it can be approximated as an

infinite vicinal surface. The direction perpendicular to the terraces (which are densely

packed facets) is typically called bz. In “Maryland notation” (cf. Section 5.2.1) the normal

to the vicinal surface lies in the x–z plane, and the distance ‘ between steps is measured

along bx, while the steps run along the by direction. In the simplest and usual approxi-

mation, the repulsions between adjacent steps arise from two sources: an entropic or
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steric interaction due to the physical condition that the steps cannot cross, since over-

hangs cannot occur in nature. The second comes from elastic dipole moments due to

local atomic relaxation around each step, leading to frustrated lateral relaxation of atoms

on the terrace plane between two steps. Both interactions are f1/‘2.

The details of the distribution P
n ð‘Þ of spacings between steps have been reviewed in

many works [60,92,93,97]. The average step separation h‘i is the only characteristic

length in the bx direction. N.B., h‘i need not be a multiple of, or even simply related to,

the substrate lattice spacing. Therefore, we consider PðsÞ ¼ h‘i�1P
nð‘Þ, where s h ‘/h‘i, a

dimensionless length. For a “perfect” cleaved crystal, P(s) is just a spike d(s � 1). For

straight steps placed randomly at any position with probability 1/h‘i, P(s) is a Poisson

distribution exp(�s). Actual steps do meander, as one can study most simply in a terrace

step kink (TSK) model. In this model, the only excitations are kinks (with energy e) along

the step. (This is a good approximation at low temperature T since adatoms or vacancies

on the terrace cost several e1 (4e1 in the case of a simple-cubic lattice). The entropic

repulsion due to steps meandering dramatically decreases the probability of finding

adjacent steps at ‘ � h‘i. To preserve the mean of one, P(s) must also be smaller than

exp(�s) for large s.

If there is an additional energetic repulsion A/‘2, the magnitude of the step

meandering will decrease, narrowing P(s). As A / N, the width approaches

0 (P(s) / d(s � 1), the result for perfect crystals). We emphasize that the energetic and

entropic interactions do not simply add. In particular, there is no negative (attractive)

value of A at which the two cancel each other (cf. Eqn (5.30) below.) Thus, for strong

repulsions, steps rarely come close, so the entropic interaction plays a smaller role, while

for A < 0, the entropic contribution increases, as illustrated in Figure 5.16 and explicated

below. We emphasize that the potentials of both interactions decay as ‘�2 (cf. Eqn (5.27)

s

FIGURE 5.16 Illustration of how entropic repulsion and energetic interactions combine, plotted versus the
dimensionless energetic interaction strength ~AhA~b=ðkBTÞ2. The dashed straight line is just ~A. The solid curve
above it is the combined entropic and energetic interactions, labeled ~Aeff for reasons explained below. The
difference between the two curves at any value of the abscissa is the dimensionless entropic repulsion for that ~A.
The decreasing curve, scaled on the right ordinate, is the ratio of this entropic repulsion to the total
dimensionless repulsion ~Aeff. It falls monotonically with ~A, passing through unity at ~A ¼ 0. See the discussion
accompanying Eqn (5.26) for more information and explicit expressions for the curves. From Ref. [92].
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below), in contrast to some claims in the literature (in papers analyzing ECS exponents)

that entropic interactions are short range while energetic ones are long range.

Investigation of the interaction between steps has been reviewed well in several

places [60,94–97]. The earliest studies seeking to extract A from terrace-width distribu-

tions (TWDs) used the mean-fieldlike Gruber–Mullins [96] approximation, in which a

single active step fluctuates between two fixed straight steps 2h‘i apart. Then the energy

associating with the fluctuations x(y,t) is

DE ¼ �bð0ÞLy þ
ZLy
0

bðqðyÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
vx

vy

�2
s

dy; (5.18)

where Ly is the size of the system along the mean step direction (i.e., the step length with

no kinks). We expand b(q) as the Taylor series bð0Þ þ b0ð0Þqþ 1 =

2b00ð0Þq2 and recognize

that the length of the line segment has increased from dy to dy/cos qz dy(1 þ 1/2 q
2). For

close-packed steps, for which b0(0) ¼ 0, it is well known that (using qztan q ¼ vx/vy)

DEz
~b
	
0



2

ZLy
0

�
vx

vy

�2

dy; ~bð0Þhbð0Þ þ b00ð0Þ; (5.19)

where ~b is the step stiffness [97]. N.B., the stiffness ~bðqÞ has the same definition for steps

with arbitrary in-plane orientation—for which b0ðqÞs0—because to create such steps,

one must apply a “torque” [98] which exactly cancels b0ðqÞ. (See Refs [88,99] for a more

formal proof.)

Since x(y) is taken to be a single-valued function that is defined over the whole

domain of y, the 2D configuration of the step can be viewed as the worldline of a particle

in 1D by recognizing y as a timelike variable. Since the steps cannot cross, these particles

can be described as spinless fermions in 1D, as pointed out first by de Gennes [100] in a

study of polymers in 2D [220]. Thus, this problem can be mapped into the Schrödinger

equation in 1D: vx/vy in Eqn (5.19) becomes vx/vt, with the form of a velocity, with the

stiffness playing the role of an inertial mass. This correspondence also applies to domain

walls of adatoms on densely covered crystal surfaces, since these walls have many of the

same properties as steps. Indeed, there is a close correspondence between the phase

transition at smooth edges of the ECS and the commensurate-incommensurate phase

transitions of such overlayer systems, with the rough region of the ECS corresponding to

the incommensurate regions and the local slope related to the incommensurability

[101–105]. Jayaprakash et al. [37] provide the details of the mapping from a TSK model to

the fermion picture, complete with fermion creation and annihilation operators.

In the Gruber–Mullins [96] approximation, a step with no energetic interactions be-

comes a particle in a 1D infinite-barrier well of width 2h‘i, with well-known groundstate

properties:

j0ð‘Þfsin

�
p‘

2h‘i
�
; PðsÞ ¼ sin2

�ps
2

�
; E0 ¼ ðpkBT Þ2

8~bh‘i2 (5.20)
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Thus, it is the kinetic energy of the ground state in the quantum model that corresponds

to the entropic repulsion (per length) of the step. In the exact solution for the free energy

expansion of the ECS [106], the numerical coefficient in the corresponding term is 1/6

rather than 1/8. Note that P(s) peaks at s ¼ 1 and vanishes for s � 2.

Suppose, next, that there is an energetic repulsion U(‘) ¼ A/‘2 between steps. In the

1D Schrödinger equation, the prefactor of �v2j(‘)/v‘2 is ðkBTÞ2=2~b, with the thermal

energy kBT replacing Z. (Like the repulsions, this term has units ‘�2.) Hence, A only

enters the problem in the dimensionless combination ~AhA~b=ðkBTÞ2 [107]. In the

Gruber–Mullins picture, the potential (per length) experienced by the single active par-

ticle is ðwith ‘
n

h‘� h‘iÞ

~U
�
‘
n
�
¼

~A�
‘
n � h‘i

�2 þ ~A�
‘
n þ h‘i

�2 ¼ 2 ~A

h‘i2 þ
6 ~A‘

n2

h‘i4 þO

 
~A‘

n4

h‘i6
!

(5.21)

The first term is just a constant shift in the energy. For ~A sufficiently large, the particle

is confined to a region
���‘n���� h‘i, so that we can neglect the fixed walls and the quartic

term, reducing the problem to the familiar simple harmonic oscillator, with the solution:

j0ð‘Þfe�‘
n2

4w2

; PGðsÞh 1

sG

ffiffiffiffiffiffi
2p

p exp

"
� ðs � 1Þ2

2s2
G

#
(5.22)

where sG ¼ ð48 ~AÞ�1=4 and w ¼ sGh‘i.
For ~A of 0 or 2, the TWD can be computed exactly (See below). For these cases, Eqns

(5.20) and (5.22), respectively, provide serviceable approximations. It is Eqn (5.22) that is

prescribed for analyzing TWDs in the most-cited resource on vicinal surfaces [58].

Indeed, it formed the basis of initial successful analyses of experimental scanning

tunneling microscopy (STM) data [108]. However, it has some notable shortcomings.

Perhaps most obviously, it is useless for small but not vanishing ~A, for which the TWD is

highly skewed, not resembling a Gaussian, and the peak, correspondingly, is significantly

below the mean spacing. For large values of ~A, it significantly underestimates the vari-

ance or, equivalently, the value of ~A one extracts from the experimental TWD width

[109]: in the Gruber–Mullins approximation the TWD variance is the same as that of the

active step, since the neighboring step is straight. For large ~A, the fluctuations of

the individual steps on an actual vicinal surface become relatively independent, so the

variance of the TWD is the sum of the variance of each, i.e., twice the step variance.

Given the great (quartic) sensitivity of ~A to the TWD width, this is problematic. As ex-

perimentalists acquired more high-quality TWD data, other approximation schemes

were proposed, all producing Gaussian distributions with widths f ~A
�1=4

, but with pro-

portionality constants notably larger than 48�1/4 ¼ 0.38.

For the “free-fermion” ð ~A ¼ 0Þ case, [110] developed a sequence of analytic approx-

imants to the exact but formidable expression [111,112] for P(s). They, as well as a

slightly earlier paper [113], draw the analogy between the TWD of vicinal surfaces and
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the distribution of spacings between interacting (spinless) fermions on a ring, the

Calogero–Sutherland model [113,114], which, in turn for three particular values of the

interaction—in one case repulsive ð ~A ¼ 2Þ, in another attractive ð ~A ¼ �1=4Þ, and lastly

the free-fermion case ð ~A ¼ 0Þ—could be solved exactly by connecting to random matrix

theory [92,111,115]; Figure 5.5 of Ref. [117] depicts the three resulting TWDs.

These three cases can be well described by the Wigner surmise, for which there are

many excellent reviews [111,117,118]. Explicitly, for 9 ¼ 1, 2, and 4:

P9

	
s

 ¼ a9s

9exp
	�b9s

2


; (5.23)

where the subscript of P refers to the exponent of s. In random matrix literature, the

exponent of s, viz. 1, 2, or 4, is called b, due to an analogy with inverse temperature in one

justification. However, to avoid possible confusion with the step free energy per length b

or the stiffness ~b for vicinal surfaces, I have sometimes named it instead by the Greek

symbol that looked most similar, 9, and do so in this chapter. The constants b9, which

fixes its mean at unity, and a9, which normalizes P(s), are

b9 ¼

2664G
�

9þ2
2

�
G

�
9þ1
2

�
3775

2

a9 ¼
2

�
G

�
9þ2
2

��9þ1

�
G

�
9þ1
2

��9þ2
¼ 2bð9þ1Þ=2

9

G

�
9þ1
2

� (5.24)

Specifically, b9 ¼ p/4, 4/p, and 64/9p, respectively, while a9 ¼ p/2, 32/p2, and (64/9p)3,

respectively.

As seen most clearly by explicit plots, e.g., Figure 4.2(a) of Haake’s text [118], P1(s),

P2(s), and P4(s) are excellent approximations of the exact results for orthogonal, unitary,

and symplectic ensembles, respectively, and these simple expressions are routinely used

when confronting experimental data in a broad range of physical problems [118,119].

(The agreement is particularly outstanding for P2(s) and P4(s), which are the germane

cases for vicinal surfaces, significantly better than any other approximation [120].)

Thus, the Calogero–Sutherland model provides a connection between random matrix

theory, notably the Wigner surmise, and the distribution of spacings between fermions

in 1D interacting with dimensionless strength ~A. Specifically:

~A ¼ 9

2

�9
2
� 1
�

5 9 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~A

p
: (5.25)

For an arbitrary system, there is no reason that ~A should take on one of the three special

values. Therefore, we have used Eqn (5.28) for arbitrary 9 or ~A, even though there is no

symmetry-based justification of distribution based on the Wigner surmise of Eqn (5.26),

and refer hereafter to this formula, Eqns (5.26, 7.27), as the generalized Wigner distri-

bution (GWD). Arguably the most convincing argument is a comparison of the predicted

variance with numerical data generated from Monte Carlo simulations. See Ref. [92] for

further discussion.

There are several alternative approximations that lead to a description of the TWD as

a Gaussian [109]; in particular, focus on the limit of large 9, neglecting the entropic
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interaction in that limit. The variance s2f ~A
�1=2

, the proportionality constant is 1.8 times

that in the Gruber–Mullins case. This approximation is improved, especially for re-

pulsions that are not extremely strong, by including the entropic interaction in an

average way. This is done by replacing ~A by

~Aeff ¼
�9
2

�2
¼ ~Aþ 9

2
: (5.26)

Physically, ~Aeff gives the full strength of the inverse-square repulsion between steps, i.e.,

the modification due to the inclusion of entropic interactions. Thus, in Eqn (5.1)

gðTÞ ¼ ðpkBT Þ2
6h3~b

~Aeff ¼ ðpkBT Þ2
24h3~b

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~A

p i2
: (5.27)

From Eqn (5.29) it is obvious that the contribution of the entropic interaction, viz. the

difference between the total and the energetic interaction, as discussed in conjunction

with Figure 5.16, is 9/2. Remarkably, the ratio of the entropic interaction to the total

interaction is (9/2)/(9/2)2 ¼ 2/9; this is the fractional contribution that is plotted in

Figure 5.16.

5.6 Critical Behavior of Rough Regions Near Facets
5.6.1 Theory

Assuming (cf. Figure 5.17) bz the direction normal to the facet and (x0,z0) denote the facet

edge, zw z0 � (x� x0)
w for x� x0. We show that the critical exponent w3 has the value 3/2

for the generic smooth edge described by Eqn (5.1) (with the notation of Eqn (5.13)):

fpðpÞ ¼ f0 þ Bpþ gp3 þ cp4: (5.28)

FIGURE 5.17 Critical behavior of the crystal shape near a smooth (second-order) edge, represented by the dot at
(x0,z0). The temperature is lower than the roughening temperature of the facet orientation, so that the region to
the left of the dot is flat. The curved region to the right of the dot correspond to a broad range of rough
orientations. In the thermodynamic limit, the shape of the smoothly curved region near the edge is described by
the power law z w z0 � (x � x0)

w. Away from the edge there are “corrections to scaling”, i.e., higher order terms
(cf. Eqn (5.33)). For an actual crystal of any finite size, there is “finite-size rounding” near the edge, which
smooths the singular behavior. Adapted from Ref. [120].

3The conventional designation of this exponent is l or q. However, these Greek letters are the Lagrange

multiplier of the ECS and the polar angle, respectively. Hence, we choose w for this exponent.
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Then we perform a Legendre transformation [55] as in Refs [125,126]; explicitly:

fpðpÞ � ~f ðhÞ
p

¼
�
dfp
dp

hh

�
¼ Bþ 3gp2 þ 4cp3 (5.29)

Hence:

~f ðhÞ ¼ f0 � 2gp3ðhÞ � 3cp4ðhÞ (5.30)

But from Eqn (5.29):

p ¼
�
h� B

3g

�1=2
"
1� 2c

3g

�
h� B

3g

�1=2

þ.

#
(5.31)

Inserting this into Eqn (5.30) gives

~f ðhÞ ¼ f0 � 2g

�
h� B

3g

�3=2

þ c

�
h� B

3g

�2

þO

�
h� B

3g

�5=2

(5.32)

for h � B and ~f ðhÞ ¼ f0 for h � B. (See Refs [9,120,122].) Note that this result is true not

just for the free-fermion case but even when steps interact. Jayaprakash et al. [37] further

show that the same w obtains when the step–step interaction decreases with a power law

in ‘ that is greater than 2. We identify ~f ðhÞ with rðbhÞ, i.e., the magnetic-fieldlike variable

discussed corresponds to the so-called Andreev field h. Writing z0 ¼ f0/l and x0 ¼ B/l, we

find the shape profile

zðxÞ
z0

¼ 1� 2

�
f0
g

�1=2�
x � x0
z0

�3=2

þ cf0

g2

�
x � x0
z0

�2

þO

�
x � x0
z0

�5=2
(5.33)

Note that the edge position depends only on the step free energy B, not on the step

repulsion strength; conversely, the coefficient of the leading (x � x0)
3/2 term is inde-

pendent of the step free energy but varies as the inverse root of the total step repulsion

strength, i.e., as g�1/2.

If, instead of Eqn (5.31), one adopts the phenomenological Landau theory of

continuous phase transitions [121] and performs an analytic expansion of fp(p) in p [123,

124] (and truncate after a quadratic term f2p
2), then a similar procedure leads w ¼ 2,

which is often referred to as the “mean-field” value. This same value can be produced by

quenched impurities, as shown explicitly for the equivalent commensurate-

incommensurate transition by [125].

There are some other noteworthy results for the smooth edge. As the facet roughening

temperature is approached from below, the facet radius shrinks like exp[�p2TR/4

{2ln2(TR � T)}1/2] [122], in striking contrast to predictions by mean field theory. The

previous discussion implicitly assumes that the path along x for which w ¼ 3/2 in Eqn

(5.36) is normal to the facet edge. By mapping the crystal surface onto the asymmetric

6-vertex model, using its exact solution [53,54], and employing the Bethe ansatz to
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expand the free energy close to the facet edge [127], find that w ¼ 3/2 holds for any

direction of approach along the rounded surface toward the edge, except along the

tangential direction (the contour that is tangent to the facet edge at the point of contact

x0). In that special direction, they find the new critical exponent wy ¼ 3 (where the

subscript y indicates the direction perpendicular to the edge normal, x [128]). Also,

Akutsu and Akutsu [128] confirmed that this exact result was universally true for the

Gruber–Mullins–Prokrovsky–Talapov free-energy expansion. (The Prokrovsky-Talapov

argument was for the equivalent commensurate-incommensurate transition.) They

also present numerical confirmation using their transfer-matrix method based on the

product-wave-function renormalization group (PWFRG) [129,130]. Observing wy exper-

imentally will clearly be difficult, perhaps impossible; the nature and breadth of cross-

over to this unique behavior has not, to the best of my knowledge, been published. A

third result is that there is a jump (for T < TR) in the curvature of the rounded part near

the facet edge that has a universal value [106,131], distinct from the universal curvature

jump of the ECS at TR [122].

5.6.2 Experiment on Leads

Noteworthy initial experimental tests of w ¼ 3/2 include direct measurements of the

shape of equilibrated crystals of 4He [132] and Pb [133]. As in most measurements of

critical phenomena, but even harder here, is the identification of the critical point, in this

case the value of x0 at which rounding begins. Furthermore, as is evident from Eqn

(5.36), there are corrections to scaling, so that the “pure” exponent 3/2 is seen only near

the edge and a larger effective exponent will be found farther from the edge. For crystals

as large as a few mm at temperatures in the range 0.7–1.1 K, 4He w ¼ 1.55 � 0.06 was

found, agreeing excellently with the Prokrovsky–Talapov exponent. The early measure-

ments near the close-packed (111) facets of Pb crystallites, at least two orders of

magnitude smaller, were at least consistent with 3/2, stated conservatively as

w ¼ 1.60 � 0.15 after extensive analysis. Sáenz and Garcı́a [134] proposed that in Eqn

(5.31) there can be a quadratic term, say f2p
2 (but neglect the possibility of a quartic

term). Carrying out the Legendre transformation then yields an expression with both

x � B and ðx � Bþ f 22 =3gÞ3=2 terms, which they claim will lead to effective values of w

between 3/2 and 2. This approach provided a competing model for experimentalists to

consider but in the end seems to have produced little fruit.

As seen in Figure 5.18, STM allows detailed measurement of micron-size crystal

height contours and profiles at fixed azimuthal angles. By using STM to locate the initial

step down from the facet, first done by Surnev et al. [135] for supported Pb crystallites, x0
can be located independently and precisely. However, from the 1984 Heyraud–Métois

experiment [133] it took almost two decades until the Bonzel group could fully confirm

the w ¼ 3/2 behavior for the smooth edges of Pb(111) in a painstaking study [137]. There

were a number of noteworthy challenges. While the close-packed 2D network of spheres

has six-fold symmetry, the top layer of a (111) facet of an fcc crystal (or of an (0001) facet
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of an hcp crystal) has only three-fold symmetry due to the symmetry-breaking role of the

second layer. There are two dense straight step edges, called A and B, with {100} and

{111} microfacets, respectively. In contrast to noble metals, for Pb there is a sizable (of

order 10%) difference between their energies. Even more significant—when a large range

of polar angles is used in the fitting—is the presence of small (compared to {111}) {112}

facets for equilibration below 325 K. Due to the high atomic mobility of Pb that can lead

to the formation of surface irregularities, Bonzel’s group [135] worked close to room

temperature. One then finds strong (three-fold) variation of w with azimuthal angle, with

w oscillating between 1.4 and 1.7. With a higher annealing temperature of 383 K, [137]

report the azimuthal averaged value w ¼ 1.487 (but still with sizable oscillations of about

�0.1); in a slightly earlier short report [137], they give a value w ¼ 1.47 for annealing at

FIGURE 5.18 (A) Micron-size lead crystal (supported on Ru) imaged with a variable-temperature scanning
tunneling microscopy at T ¼ 95 	C. Annealing at T ¼ 95 	C for 20 h allowed it to obtain its stable, regular shape.
Lines marked A and B indicate location of profiles. Profile A crosses a (0 0 1)-side facet, while profile B a (1 1 1)-
side facet. (B) 770 � 770 nm section of the top part of a Pb crystal. The insert shows a 5.3 � 5.3 nm area of the
top facet, confirming its ð11 �1Þ-orientation. Both the main image and the insert were obtained at T ¼ 110 	C.
From Ref. [141].
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room temperature. Their attention shifted to deducing the strength of step–step re-

pulsions by measuring g [138,139]. In the most recent review of the ECS of Pb [140], the

authors rather tersely report that the Prokrovsky–Talapov value of 3/2 for w characterizes

the shape near the (111) facet and that imaging at elevated temperature is essential to get

this result; most of their article relates to comparison of measured and theoretically

calculated strengths of the step–step interactions.

Few other systems have been investigated in such detail. Using scanning electron

microscopy (SEM) [142] the researchers considered In, which has a tetragonal structure,

near a (111) facet. They analyzed the resulting photographs from two different crystals,

viewed along two directions. For polar angles 0	 � q < w5	 they find w z 2 while for

5	 � q � 15	 determine wz 1.61, concluding that in this window w ¼ 1.60 � 0.10; the two

ranges have notably different values of x0. This group [143] also studied Si, equilibrated at

900	 C, near a (111) facet. Many profiles weremeasured along a high-symmetry h111i zone
of samples with various diameters of the order a few mm, over the range 3	 � q � 17	. The
results are consistent with w ¼ 3/2, with an uncertainty estimated at 6%. Finally, [144]

studied large (several mm) spherical cuprous selenide (Cu2�x Se) single crystals near a

(111) facet. Study in this context ofmetal chalcogenide superionic conductors began some

dozen years ago because, other than 4He, they are the only materials having sub-cm size

crystals with an ECS form that can be grown on a practical time scale (viz. over several

days) because their high ionic and electronic conductivity enable fast bulk atomic trans-

port. For 14.0	 � q� 17.1	 [144] find w¼ 1.499� 0.003. (They also report that farther from

the facet w z 2.5, consistent with the Andreev mean field scenario.)

5.6.3 Summary of Highlights of Novel Approach to Behavior Near
Smooth Edges

Digressing somewhat, we note that Ferrari, Prähofer, and Spohn [145] found novel static

scaling behavior of the equilibrium fluctuations of an atomic ledge bordering a crys-

talline facet surrounded by rough regions of the ECS in their examination of a 3D Ising

corner (Figure 5.19). This boundary edge might be viewed as a “shoreline” since it is the

edge of an islandlike region—the crystal facet—surrounded by a “sea” of steps [146].

Spohn and coworkers assume that there are no interactions between steps other than

entropic, and accordingly the step configurations can be mapped to the worldlines of

free spinless fermions, as in treatments of vicinal surfaces [37]. However, there is a key

new feature that the step number operator is weighted by the step number, along with a

Lagrange multiplier l�1 associated with volume conservation of the crystallite. The

asymmetry of this term leads to the novel behavior found by the researchers. They then

derive an exact result for the step density and find that, near the shoreline:

lim
l/N

l1=3rl
	
l1=3x


 ¼ �xðAiðxÞÞ2 þ ðAi0ðxÞÞ2; (5.34)

where rl is the step density (for the particular value of l).
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The presence of the Airy function Ai results from the asymmetric potential implicit in

HF and preordains exponents involving 1/3. The variance of the wandering of the

shoreline, the top fermionic worldline in Figure 5.20 and denoted by b, is given by

Var
�
bl

	
t

� bl

	
0

�
yl2=3g

	
l�2=3t



(5.35)

where t is the fermionic “time” along the step; g(s)w 2jsj for small s (diffusivemeandering)

andw1.6264� 2/s2 for large s. 1.202. is Apery’s constant andN is the number of atoms in

the crystal. They find:

Var ½b‘ð‘sþ xÞ � b‘ð‘sÞ�yðA‘Þ2=3g
�
A1=3‘�2=3x

�
; (5.36)

where A ¼ ð1=2Þb00N. This leads to their central result that the width w w ‘1/3, in contrast

to the ‘1/2 scaling of an isolated step or the boundary of a single-layer island and to the

ln ‘ scaling of a step on a vicinal surface, i.e., in a step train. Furthermore, the

FIGURE 5.20 Snapshot of computed configurations of the top steps (those near a facet at the flattened side
portion of a cylinder) for a terrace-step-kink (TSK) model with volume constraint. From Ref. [145].

FIGURE 5.19 Simple-cubic crystal corner viewed from the {111} direction. From Ref. [145].
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fluctuations are non-Gaussian. The authors also show that near the shoreline, the de-

viation of the equilibrium crystal shape from the facet plane takes on the

Pokrovsky–Talapov [101,104] form with w ¼ 3/2.

From this seminal work, we could derive the dynamic exponents associated with this

novel scaling and measure them with STM, as reviewed in Ref. [150].

5.7 Sharp Edges and First-Order Transitions—
Examples and Issues

5.7.1 Sharp Edges Induced by Facet Reconstruction

Si near the (111) plane offers an easily understood entry into sharp edges [68,69]. As Si is

cooled from high temperatures, the (111) plane in the “(1 � 1)” phase reconstructs into a

(7 � 7) pattern [150] around 850 	C, to be denoted T7 to distinguish it clearly from the

other subscripted temperatures. (The notation “(1 � 1)” is intended to convey the idea

that this phase differs considerably from a perfect (111) cleavage plane but has no

superlattice periodicity.) For comparison, the melting temperature of Si isw1420 	C, and
the TR is estimated to be somewhat higher. As shown in Figure 5.21, above T7, surfaces of

FIGURE 5.21 Summary of experimental results for vicinal Si (111) surface: B denotes the temperature at which
faceting begins for surfaces misoriented toward the (110) direction, � the faceting temperatures for surfaces
misoriented toward the [112], and , the temperatures at which the step structure of surfaces misoriented
toward the [112] direction change. The dashed line displays a fit of the [110] data to Eqn (5.43). The dotted lines
show how a four sample phase separates into the states denoted by C as it is further cooled. From Ref. [69].
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all orientations are allowed and are unreconstructed. At T7, a surface in the (111) di-

rection reconstructs but all other orientations are allowed and are unreconstructed.

Below T7, surfaces misoriented toward [1 12] remain stable during cooling (although the

step structure changes). On the other hand, on surfaces misoriented toward [110] and

[112], the temperature at which the (7 � 7) occurs decreases with increasing misorien-

tation angle cm. Furthermore, just as the (7 � 7) appears, the surface begins to separate

into two phases, one a perfectly oriented (7 � 7) plane cm ¼ 0 and the second an un-

reconstructed phase with a misorientation greater than that at higher temperature. As

the temperature further decreases, the misorientation of the unreconstructed phase

increases. Figure 5.21 depicts this scenario with solid circles and dotted lines for a 4	

misoriented sample at 840 	C. This behavior translates into the formation of a sharp edge

on the ECS between a flat (7 � 7) line and a rounded “(1 � 1)” curve.

To explain this behavior, one coplots the ECS for the two phases, as in Figure 5.22

[69]. The free energy to create a step is greater in the (7 � 7) than in the “(1 � 1)” phase.

In the top panels (A), the step energy for the (7 � 7) is taken as infinite, i.e., much larger

than that of the “(1 � 1)” phase, so its ECS never rounds. At T7 (Tc in the figure), the free

energies per area f0 of the two facets are equal, call them f7 and f1, with associated

FIGURE 5.22 Wulff plots illustrating the effect of a reconstructive transition on the equilibrium crystal shape
(ECS), and corresponding temperature-[mis]orientation phase diagrams. The solid curves represent the ECS with
an unreconstructed [“(1 � 1)”] facet, while the dashed curves give the ECS with a reconstructed facet. As temper-
ature decreases, the free energy of the reconstructed facet, relative to that of the unreconstructed facet, de-
creases. Below the transition temperature Tc (called T7 in the text), the two shapes intersect, giving a “net” ECS
that is the inner envelope of the two. The phase diagram shows regions where all orientations tan q (or cm) are
allowed for the unreconstructed crystal [“(1 � 1)”], regions of phase separation (labeled “coex.”), and regions
where the reconstruction (labeled “rec.”) is allowed for ranges of orientation. The relative size of the recon-
structed and unreconstructed facets depends on the free energy to create a step on the reconstructed (111) face,
compared to its unreconstructed counterpart: (A) the behavior for extremely large energy to create steps on the
(7 � 7) terrace and (A) a smaller such energy. Solid circles mark the sharp edge at the temperature at which the
crystal shapes cross. Crosses show the intersection of the facet and the curved part (i.e., the smooth edge) of
the crystal shape for the reconstructed phase. From Ref. [69].
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energies u7 and u1 and entropies s7 and s1 for the (7 � 7) and “(1 � 1)” phases,

respectively, near T7. Then T7 ¼ (u1 � u7)/(s1 � s7) and, assuming the internal energies

and entropies are insensitive to temperature:

f1 � f7 ¼
	
T7 � T


	
s1 � s7



: (5.37)

Since s1 > s7 because the (7 � 7) phase is so highly ordered, we find that f1 � f7 > 0 below

T7, as illustrated in Figure 5.22. Making connection to thermodynamics, we identify

L

T7

¼ ðs1 � s7ÞT7 ¼
�
vf7
vT

�
T7

�
�
vf1
vT

�
T7

(5.38)

where L is the latent heat of the first-order reconstruction transition.

Corresponding to the minimum of a free energy as discussed earlier, the ECS of the

system will be the inner envelope of the dashed and solid traces: a flat (7 � 7) facet along

the dashed line out to the point of intersection, the sharp edge, beyond which it is

“(1 � 1)” with continuously varying orientation. If one tries to construct a surface with a

smaller misorientation, it will phase separate into flat (7 � 7) regions and vicinal unre-

constructed regions with the orientation at the curved (rough) side of the sharp edge. Cf.

Figure 5.23.

Using the leading term in Eqn (5.35) or (5.36), we can estimate the slope of the

coexisting vicinal region and its dependence on temperature4: First we locate the sharp

edge (recognizing f0 as f1 and z0 as z1) by noting

z7 ¼ z1 � 2ðl=gÞ1=2ðx � x0Þ3=2
ðT7 � T ÞDsz	f1 � f7



T
¼ l3=2g�1=2ðx � x0Þ3=2

(5.39)

Since the slope m there is �3l(l/g)1/2(x � x0)
1/2, the temperature dependence of the

slope is

m ¼ �3

�
L

2g

�1=3�
1� T

T7

�1=3

(5.40)

If the step free energy of the reconstructed phase were only modestly greater than that of

the “(1 � 1)”, then, as shown in the second panel in Figure 5.22, the previous high-T

behavior obtains only down to the temperature T1 at which the “(1 � 1)” curve intersects

the (7 � 7) curve at its [smooth] edge. For T < T1 the sharp edge associated with the

interior of the curves is between a misoriented “(1 � 1)” phase and a differently

misoriented (7 � 7) phase, so that it is these two which coexist. All orientations with

smaller misorientation angles than this (7 � 7) plane are also allowed, so that the

forbidden or coexistence regime has the depicted slivered crescent shape. Some other,

but physically improbable, scenarios are also discussed by Bartelt et al. [69]. Phaneuf and

Williams [68] show (their Figure 3) the LEED-beam splitting for a surface misoriented

by 6.4	 is f(T7 � T)1/3 once the surface is cooled below the temperature (which is <T7)

when this orientation becomes unstable to phase separation; however, by changing the

4There are some minor differences in prefactors from Ref. [69].
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range of fitting, they could also obtain agreement with (T7 � T )1/2, i.e., w ¼ 2. With high-

resolution LEED, [151] conclude that the exponent bhðw� 1Þ=w ¼ 0:33� 0:05 (i.e., that

w ¼ 3/2. The result does depend somewhat on what thermal range is used in the fit, but

they can decisively rule out the mean-field value w ¼ 2. Williams et al. [152] give a more

general discussion of vicinal Si, with treatment of azimuthal in addition to polar mis-

orientations. In contrast, synchrotron X-ray scattering experiments by Noh et al.

[153,154] report the much larger w ¼ 2:3þ0:8
�0:3. However, subsequent synchrotron X-ray

scattering experiments by [155] obtain a decent fit of data with w ¼ 3/2 and a best fit

with w ¼ 1.75 (i.e., b ¼ 0:43� 0:07). (They also report that above 1159 K, the surface exists

as a single, logarithmically rough phase.) The origin of the curious value of w in the Noh

et al. experiments is not clear. It would be possible to attribute the behavior to impu-

rities, but there is no evidence to support this excuse, and indeed for the analogous

behavior near the reconstructing (331) facet of Si (but perhaps a different sample), Noh

FIGURE 5.23 Microscopic view of what happens to a misoriented surface in Figure 5.22 as temperature decreases.
(A) At high temperature, the Si(lll) vicinal surface is a single, uniform phase. Initial terrace widths t are typically a
few nm, as determined by the net angle of miscut a0 (i.e., q0), and the step-height h, which is one interplanar
spacing (w0.31 nm). (B) Below the (7 � 7) reconstruction temperature (w850

	
C), the steps cluster to form a new

surface of misorientation angle a(T) (i.e., q). A facet of (111) orientation with (7 � 7) reconstruction forms simulta-
neously. The width of the (111) facet, ‘, is larger than the experimentally resolvable width of 500 Å. (C) Well
below the transition, the step separation reaches a minimum distance, tmin w 1 nm. No further narrowing occurs,
perhaps because surface diffusion is too slow T � 600

	
C. From Ref. [3].
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et al. [156] found w ¼ 1.47 � 0.1. It is worth noting that extracting information from X-ray

scattering from vicinal surfaces requires great sophistication (cf. the extensive discussion

in Ref. [157]) and attention to the size of the coherence length relative to the size of the

scattering region [158], as for other diffraction experiments.

Similar effects to reconstruction (viz. the change in f0) could be caused by adsorption

of impurities on the facet [159]. Some examples are given in a review by Somorjai and

Van Hove [160]. In small crystals of dilute Pb-Bi-Ni alloys, cosegregation of Bi-Ni to the

surface has a similar effect of reversibly changing the crystal structure to form {112} and

{110} facets [161]. There is no attempt to scrutinize the ECS to extract an estimate of w.

Meltzman et al. [162] considered the ECS of Ni on a sapphire support, noting that, unlike

most fcc crystals, it exhibits a faceted shape even with few or no impurities, viz. with

{111}, {100}, and {110} facets; {135} and {138} emerged at low oxygen pressure and

additionally {012} and {013} at higher pressure.

The phase diagram of Pt(001), shown in Figure 5.24 and studied [163] using syn-

chrotron X-ray scattering, at first seems similar to that of Si near (111) [223,224,225],

albeit with more intricate magic phases with azimuthal rotations at lower temperatures,

stabilized by near commensurability of the period of their reconstruction and the sep-

aration of their constituent steps. In the temperature-misorientation (surface slope)

phase diagram, shown in Figure 5.24, the (001) facet undergoes a hexagonal recon-

struction at T6 ¼ 1820 K (well below the bulk melting temperature of 2045 K). For

samples misoriented from the (100) direction (which are stable at high temperature),

there is coexistence between flat reconstructed Pt(001) and a rough phase more highly

FIGURE 5.24 Orientational phase diagram of vicinal Pt (001) misoriented toward the [110] direction. Single-phase
regions are hatched, and two-phase coexistence regions are unhatched. Solid lines are boundaries between two
phases. Dashed lines mark triple points. Open circles show misorientation angles measured for a sample miscut by
1.4	 toward the [110] direction, while solid circles show tilt angles measured for a sample miscut by 3.0	. From
Ref. [163].
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misoriented than it was at high temperature, with a misorientation that increases as

temperature decreases. However, they find b ¼ 0:49� 0:05, or w ¼ 1.96, consistent with

mean field and inconsistent with b ¼ 1=3 or w ¼ 3/2 of Prokrovsky–Talapov. The source

of this mean-field exponent is that in this case the (001) orientation is rough above T6.

Hence, in Eqn (5.31) B vanishes, leaving the expansion appropriate to rough orientations.

Proceeding as before, Eqn (5.35) becomes

fpðpÞ ¼ f0 þDp20~f ðhÞ ¼ f0 � h2
.
4D; (5.41)

where the result for ~f ðhÞ is reached by proceeding as before to reach the modification of

Eqn (5.35). Thus, there is no smooth edge take-off point (no shoreline) in the equivalent

of Figure 5.22, and one finds the reported exponent w near 2.

The effect of reactive and nonreactive gases metal catalysts has long been of interest

[211]. Various groups investigated adsorbate-induced faceting. Walko and Robinson

[164] considered the oxygen-induced faceting of Cu(115) into O/Cu(104) facets, using

Wulff constructions to explain their observations. The researchers found three temper-

ature regimes with qualitatively different faceting processes. Szczepkowicz et al. [165]

studied the formation of {211} facets by depositing oxygen and paladium on tungsten,

both on (111) facets and on soherical crystals. While the shape of the facets is different

for flat and curved surfaces, the distance between parallel facet edges is comparable,

although the area of a typical facet on a curved surface is an order of magnitude greater.

There is considerable information about facet sizes, width of the facet-size distribution,

and surface rms roughness.

For 2D structures on surfaces, edge decoration can change the shape of the islands. A

well-documented example is Pt on Pt(111). As little as 10�3ml of COproduces a 60	 rotation
of the triangular islandsby changing thebalanceof the edge free energies of the twodifferent

kinds of steps forming the island periphery [166]. Stasevich et al. [167] showed how deco-

ration of single-layer Ag islands onAg(111) by a single-strand “necklace” of C60 dramatically

changes the shape from hexagonal to circular. With lattice-gas modeling combined with

STM measurements, they could estimate the strength of C60-Ag and C60-C60 attractions.

Generalizations to decoration on systems with other symmetries is also discussed [167].

5.8 Gold–Prototype or Anomaly of Attractive
Step–Step Interaction?

Much as 4He and Pb are the prototypical materials with smooth edges, Au is perhaps the

prime example of a surface with sharp edges, around (1111) and (100) facets (cf. e.g.,

Ref. [1]). Care must be taken to ensure that the surface is not contaminated by atoms

(typically C) from the supporting substrate [168]. (See similar comments by Handwerker

et al. [169] for ceramics, which have a rich set of ECS possibilities.) To describe these

systems phenomenologically, the projected free energy expansion in Eqn (5.1) requires a

negative term to generate a region with negative curvature, as in Figure 5.7, so that the
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two orientations joined by the Maxwell double-tangent construction correspond to the

two sides of the sharp edge. Thus, for sharp edges around facets, the more-left minimum

must be in the high-symmetry facet direction.

In a mean field-based approach, Wang and Wynblatt [168] included a negative

quadratic term, with questionable physical basis. Emundts et al. [170] instead took the

step–step interaction to be attractive (g < 0) in Eqn (5.1). Then, proceeding as above,

they find

x0 ¼ 1

l

�
B� 4

27
jg j
�g
c

�2�
; pc ¼ 2jg j

3c
; (5.42)

where pc is the tangent of the facet contact angle. Note that both the shift in the facet

edge from B and the contact slope increase with jgj/c. Emundts et al. [170] obtain esti-

mates of the key energy parameters in the expansion for the sharp edges of both the

(111) and (100) facets. They also investigate whether it is the lowering of the facet free

energy f0 that brings about the sharp edges, in the manner of the case of Si(111) dis-

cussed above. After reporting the presence of standard step–step repulsions (leading to

narrowing of the TWD) in experiments on flame-annealed gold, Shimoni et al. [171] then

attribute to some effective long-range attraction—with undetermined dependence on

‘—the (nonequilibrium) movement of single steps toward step bunches whose steps are

oriented along the high-symmetry h110i.
Is it possible to find a generic long-range attractive A‘�2 step–step interaction (A < 0)

for metals and elemental semiconductors (where there is no electrostatic attraction

between oppositely charged atoms)? Several theoretical attempts have only been able to

find such attractions when there is significant alternation between “even” and “odd”

layered steps. Redfield and Zangwill consider whether surface relaxation can produce

such an attraction, pointing out a flaw in an earlier analysis assuming a rigid relaxation

by noting that for large step separations, the relaxation must return to its value for the

terrace orientation. Since atomic displacements fall off inversely with distance from a

step, the contribution to the step interaction can at most go like ‘�2 and tend to mitigate

the combined entropic and elastic repulsion. They argue that this nonlinear effect is

likely to be small, at least for metals. It is conceivable that on an elastically highly

anisotropic surface, the elastic interaction might not be repulsive in special directions,

although I am not aware of any concrete examples.

By observing that the elastic field mediating the interaction between steps is that of a

dipole applied on a stepped rather than on a flat surface, Kukta et al. [172] deduce a

correction to the ‘�2 behavior of the Marchenko–Parshin [41] formula that scales as

‘�3 ln ‘. Using what was then a state-of-the-art semiempirical potential, the embedded

atom method (EAM) [228], the authors find that this can lead to attractive interactions at

intermediate values of ‘. However, their “roughness correction” term exists only when

the two steps have unlike orientations (i.e., one up and one down, such as on opposite

ends of a monolayer island or pit). For the like-oriented steps of a vicinal surface or near

a facet edge, the correction term vanishes. The oft-cited paper then invokes three-step
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interactions, which are said to have the same size as the correction term, as a way to

achieve attractive interactions. Although the authors discuss how this idea relates to the

interaction between an isolated step and a step bunch, they do not provide the explicit

form of the threefold interaction; their promise that it will be “presented elsewhere” has

not, to the best of my searching, ever been fulfilled. Prévot and Croset [173] revisited

elastic interactions between steps on vicinals and found that with a buried-dipole model

(rather than the surface-dipole picture of Marchenko and Parshin), they could achieve

“remarkable agreement” with molecular dynamics simulations for vicinals to Cu and Pt

(001) and (111), for which data is fit by EMD
2 ‘�2 þ EMD

3 ‘�3. The tabulated values of EMD
2

indeed agree well with their computed results for their improved elastic model, which

includes the strong dependence of the interaction energy on the force direction. While

there is barely any discussion of E3, plots of the interaction are always repulsive. Hecquet

[174] finds that surface stress modifies the step–step interaction compared to the

Marchenko–Parshin result, enhancing the prefactor of ‘�2 nearly threefold for Au(001);

again, there is no mention of attractive interactions over any range of step separations.

In pursuit of a strictly attractive ‘�2 step interaction to explain the results of Shimoni

et al. [171], Wang et al. [175] developed a model based on the SSH model [176] of pol-

yacetylene (the original model extended to include electron–electron interaction),

focusing on the dimerized atom rows of the (2 � 1) reconstruction of Si(001). The model

produces an attractive correction term to the formula derived by Alerhand et al. [177] for

interactions between steps on Si(001), where there is ABAB alternation of (2 � 1 and

1 � 2) reconstructions on neighboring terraces joined at single-height steps. For this type

of surface, the correction has little significance, being dwarfed by the logarithmic

repulsion. It also does not occur for vicinals to high-symmetry facets of metals. However,

for surfaces such as Au(110) with its missing row morphology [178] or adsorbed systems

with atomic rows, the row can undergo a Peierls [179] distortion that leads to an anal-

ogous dimerization and an ‘�2 attraction. There have been no tests of these unsung

predictions by electronic structure computation.

Returning to gold, applications of the glue potential (a semiempirical potential rather

similar to EAM), Ercolessi et al. [180] were able to account for reconstructions of various

gold facets, supporting that the sharp edges on the ECS are due to the model used for

Si(111) rather than attractive step interactions. Studies by this group found no real ev-

idence for attractive step interactions [181].

In an authoritative review a decade ago, Bonzel [2]— the expert in the field who has

devoted the most sustained interest in ECS experiments on elemental systems—

concluded that it was not possible to decide whether the surface reconstruction model or

attractive interactions was more likely to prove correct. In my view, mindful of Ockham’s

razor, the former seems far more plausible, particularly if the assumed attractive inter-

action has the ‘�2 form.

The phase diagram of surfaces vicinal to Si(113) presents an intriguing variant of that

vicinal to Si(111). There is again a coexistence regime between the (113) orientation and

progressively more highly misoriented vicinals as temperature is reduced below a
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threshold temperature Tt, associated with a first-order transition. However, for higher

temperatures T > Tt there is a continuous transition, in contrast to the behavior on (111)

surfaces for T > T7. Thus, Song and Mochrie [182] identify the point along (113) at which

coexistence vanishes, i.e., Tt, as a tricritical point, the first such point seen in a misori-

entation phase diagram. To explain this behavior, Song and Mochrie invoke a mean-field

Landau theory argument in which the cubic term in p is proportional to (T � Tt), so

negative for T < Tt, with a positive quartic term. Of course, this produces the observed

generic behavior, but the exponent b is measured as 0.42 � 0.10 rather than the mean-

field value 1. Furthermore, the shape of the phase diagram differs from the mean-field

prediction and the amplitude of the surface stiffness below Tt is larger than above it,

the opposite of what happens in mean field. Thus, it is not clear in detail what the in-

teractions actually are, let alone how an attractive interaction might arise physically.

5.9 Well-Established Attractive Step–Step Interactions
Other Than ‘�2

For neutral crystals, there are two ways to easily obtain interactions that are attractive for

some values of ‘. In neither case are the interactions monotonic long range. The first is

short-range local effects due to chemical properties of proximate steps, while the other is

the indirect Friedel-like interaction.

5.9.1 Atomic-Range Attractions

At very small step separations, the long-range ‘�2 monotonic behavior is expected to break

down and depend strongly on the local geometry and chemistry. Interactions between

atoms near step edges are typically direct, thus stronger than interactions mediated by

substrate elastic fields or indirect electronic effects (see below). We saw earlier that a ‘�3

higher order term arises at intermediate separations [42], and further such terms should

also appear with decreasing ‘. On TaC(910) [vicinal to (001) and miscut toward the [010]

direction], Zuo et al. [183] explained step bunching using a weak ‘�3[�0.5] attraction in

addition to the ‘�2 repulsion. (The double-height steps are electrically neutral.) Density-

functional theory (DFT) studies were subsequently performed for this system by Shenoy

and Ciobanu [184]. Similarly, Yamamoto et al. [185] used an attractive ‘�3 dipole-

quadrupole interaction to explain anomalous decay of multilayer holes on SrTiO3(001).

More interesting than such generic effects are attractions that occur at very short step

separations for special situations. A good example is Ciobanu et al. [186], who find an

attraction at the shortest separation due to the cancellation of force monopoles of two

adjacent steps on vicinal Si(113) at that value of ‘.

As alluded to above, most of our understanding of the role of ‘�2 step interactions

comes from the mapping of classical step configurations in 2D to the worldlines of

spinless fermions in 1D. Unlike fermions, however, steps can touch (thereby forming

double-height steps), just not cross. Such behavior is even more likely for vicinal fcc or
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bcc (001) surfaces, where the shortest possible “terrace,” some fraction of a lateral

nearest-neighbor spacing, amounts to touching fermions when successive layers of the

crystal are described with simple-cubic rather than layer-by-layer laterally offset co-

ordinates. Sathiyanarayanan et al. [187] investigated some systematics of step touching,

adopting a model in which touching steps on a vicinal cost an energy et. Note that et ¼N

recoups the standard fermion model. For simplicity, the short study concentrates on the

“free-fermion” case ~A ¼ 0, i.e., 9 ¼ 2 (cf. Eqn (5.28)). Even for et ¼ 0, there is an effective

attraction, i.e., 9 < 2, since the possibility of touching broadens the TWD. This broad-

ening is even more pronounced for et < 0. In other words, such short-range effects can

appear, for a particular system, to contribute a long-range attraction. Closer examination

shows that this attraction is a finite-size effect that fades away for large values of h‘i. In
our limited study, we found that fits of simulated data to the GWD expression could be

well described by the following finite-size scaling form, with the indicated three fitting

parameters:

9eff ¼ 2� ð0:9� 0:1Þh‘i�0:29�0:07
exp

h
� ð3:3� 0:2Þet

.
kBT

i
: (5.43)

While Eqn (5.43) suggests that making the step touching more attractive (decreasing et)

could decrease beff without limit, instabilities begin to develop, as expected since Lässig

[188] showed that for ~A < �1=4, i.e., A < �ðkBTÞ2=4~b, a vicinal surface becomes unstable

(to collapse to step bunches). Correspondingly, the lowest value tabulated in

Sathiyanarayanan et al. [187] is et/kBT ¼ �0.2.

To distinguish true long-range (‘�2) attractions on vicinal surfaces requires mea-

surements of several different vicinalities (i.e., values of h‘i). Likewise, in analyses of ECS

data, consideration of crystallites of different sizes would seem necessary. Wortis [1]

noted the importance of size dependence in other contexts.

Along this theme, an instructive specific case is the “sticky-step” or, more formally,

the p-RSOS (restricted solid-on-solid with point-contact attractions between steps)

model explored in detail by Akutsu [189] using the product wavefunction renormaliza-

tion group (PWFRG) method, calculating essentially the ECS (see Figure 5.25) and related

properties. Steps are zig-zag rather than straight as in the preceding Sathiyanarayanan

model, so her “stickiness” parameter eint is similar but not identical to et. She finds that in

some temperature regimes, nonuniversal non-Prokrovsky–Talapov values of w occur.

Specifically, let Tf,111(eint/e,f0) and Tf,001(eint/e,f0) be the highest temperature at which a

first-order phase transition (sharp edge) occurs for the (111) and (001) facets,

respectively, where f0 indicates the position along the ECS. Note Tf,111(et/

e,f0) ¼ (0.3610 � 0.0005)e/kB > Tf,111(eint/e,f0) ¼ (0.3585 � 0.0007)e/kB. For kBT/e ¼ 0.37,

so T > Tf,111(�0.5,p/4), Akutsu recovers Prokrovsky–Talapov values for w and wt, but for

kBT/e ¼ 0.36 (shown in Figure 5.26), so Tf,111(�0.5,p/4) > T > Tf,001(�0.5,p/4), the values

are very different: w ¼ 1.98 � 0.03 and wt ¼ 3.96 � 0.08, more like mean field. For f0 ¼ 0

(tilting toward the h100i direction), only standard Prokrovsky–Talapov exponents are

found. Upon closer examination with Monte Carlo simulations, Akutsu finds large step

bunches for T < Tf,100 but step droplets for Tf,001 < T < Tf,111. The details are beyond the
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scope of this review, but eventually Akutsu deduces an expansion of the projected free

energy that includes either a quadratic term or a term after the linear term that has the

form jpjz, with z > 1.

5.9.2 Attractions at Periodic Ranges of Separation via Oscillatory
Friedel-Type Interactions

Oscillatory (in sign) interactions, mediated by substrate conduction electrons, between

steps ipso facto lead to attractive interactions between steps. As reviewed by Einstein

[94], such interactions have been known for many decades to account for the ordered

patterns of adsorbates on metal surfaces [190]. While at short range, all electrons

FIGURE 5.25 Perspective views of essentially the equilibrium crystal shape (actually the Andreev surface free
energy divided by kBT) around the (001) facet calculated by the transfer-matrix method with the product-wave-
function renormalization group algorithm at kBT/e1 ¼ 0.3. (A) Restricted solid-on-solid with point-contact attrac-
tions between steps (p-RSOS) model (eint/e1 ¼ �0.5). (B) For comparison, the original unsticky RSOS model
(eint ¼ 0). From Ref. [189].

FIGURE 5.26 Profiles in the diagonal direction of the surface in Figure 5.25, still at kBT/e1 ¼ 0.3. Broken lines
represent metastable lines. (A) kBT/e1 ¼ 0.36, eint/e1 ¼ �0.5, on a very fine length scale. The edge of the (111)
facet is denoted by Xq. (B) The original RSOS model (eint ¼ 0) on a much coarser scale. On this scale (and on an
intermediate scale not included here), the profiles are flat until the edge. On the intermediate scale, the region
beyond Xq is starts deviating rather smoothly for kBT/e1 ¼ 0.35 but looks straight for kBT/e1 ¼ 0.36 and 0.37. See
text and source. From Ref. [189].
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contribute, asymptotically the interaction is dominated by the electron(s) at the Fermi

surface or, from another perspective, the nonanalyticity in the response function at the

nesting vector. The interaction energy has the form

E
asymp
pair f‘�ncos

�
2kF‘þ F

�
(5.47)

This, or its analogue for interacting local magnetic species, is called the RKKY [191,192]

interaction. (The community studying magnetism now labels as RKKY any interaction

mediated by substrate electrons, not just the asymptotic limit written down in the

RKKY papers.) The phase factor F is the nonperturbative result is the scattering phase

shifts at the two atoms that are interacting; it is absent in the perturbational approach

to this problem used in the RKKY papers. The exponent n indicates the decay envelope.

For interacting bulk entities, n ¼ 3, the standard RKKY results. On metal surfaces, the

leading term in the propagator is canceled by the image charge, leading to n ¼ 5, with

very rapid decay [94,190]. Such effects are insignificant for adatom interactions but can

be more potent when a whole step participates. Redfield and Zangwill [193] show that a

line of localized perturbations will generate an interaction with n reduced by subtracting

1/2 and F augmented by p/4. They used this result, with n ¼ 9/2, to account for Frohn

et al.’s [194] remarkable experimental results on vicinal Cu(001): from their observed

bimodal TWD, Frohn et al. deduced that the step–step interaction is attractive for inter-

mediate distances three to five atoms. Indeed, it was their striking observation that led to

several of the previously discussed theory papers that claimed to find long-range step

attractions.

When there are metallic surface states (i.e., surface states for which their 2D band

dispersion relation crosses the Fermi energy EF) of Shockley nature (lying in a 2D band gap

containing EF), the indirect interaction has a much slower decay, with n¼ 2 [94,195–199].

Furthermore, the Fermi wavevector typically is much smaller than that of bulk states, so

the period of the oscillation in real space ismuch larger. Perhaps themost familiarmetallic

surface onmetals is that at the center of the surface Brillouin zone (G) of the (111) surfaces

of noble metals, which exist inside the necks of the Fermi surface, discussed in textbooks,

e.g. [200]. This is the state that produces the famous wave structure in Eigler’s group’s

dramatic STM images [201] of atoms on metal surfaces. However, there is a less well-

known metallic surface state on Cu(001), discovered relatively late (compared to other

surface states) by Kevan [202]; it is centered at the zone-edge center X rather than G, and

may provide a better explanation of the Frohn et al. results in the Redfield–Zangwill

framework. For surface-statemediated interactions between steps, their formula indicates

n ¼ 3/2, comparable to the entropic and elastic repulsions.

The effect of surface-state mediated interactions on TWDs was elucidated by Pai et al.

[203] in combined experimental and theoretical examination of vicinal Ag(110), which

has a metallic surface state centered at Y , the middle of the shorter edge of the rectan-

gular surface Brillouin zone [204]. In essence, the surface state introduces a second length

scale, the Fermi wavelength lF, in addition to h‘i, with the major consequence that the

TWD is no longer a function of the single scaled dimensionless variable s but depends
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also on h‘i. With a suitable model potential, Pai et al. [203] could then account for the

different TWDs at a few different misorientations (i.e., mean step spacings). Indeed, to

establish convincingly that this Friedel-like effect is significant, one must measure several

different values of h‘i. While this paper has been cited with regard to other modifications

of TWDs (cf. e.g., Refs [205,206]), I have found no other investigations of Friedel-like

effects on TWDs for several misorientations of the same substance.

Patrone and Einstein [207] discuss other issues related to possible anisotropic surface

state dispersion as well as showing the insensitivity to the point in the surface Brillouin

zone about which the state is centered.

5.10 Conclusions
An aspect of ECS studies on which there has been substantial progress since the 1980s,

but which has received little attention in this chapter, is comparing and reconciling the

values of the characteristic energies (surface free energy per area, step free energy per

length, and step–step repulsion strength) that are extracted from experimental mea-

surements with ever-improving calculations (using density functional theory) of these

energies. Bonzel’s review [2], as well as Nowicki and Bonzel [140], Bonzel et al. [139],

Barreteau et al. [226], Yu et al. [227], contain extensive coverage of this issue for the soft

metals to which his group has devoted exhaustive attention. Williams [59] review most

results for silicon. Such efforts to find absolute energies has also taken place in studies of

island shapes, e.g., of TiN(001) [208] and (111) [209].

There are several significant advances in generic understanding of ECS since the

1980s. The Prokrovsky–Talapov (w ¼ 3/2) critical phenomena near the edge of the

smoothly curved region near a facet has proved to be far more robust and general than

originally realized, while novel behavior is predicted in a very special direction. Even

though invoked in many accounts of sharp edges, long-range attractive ‘�2 do not have

an apparent physical basis, except perhaps in idiosyncratic cases. The likely cause is a

reconstruction or adsorption that changes the surface free energy of the facet orienta-

tion. On the other hand, hill-and-valley structures are widely seen, and the possibility of

azimuthal in addition to polar misorientation can lead to astonishingly rich phase dia-

grams. Of course, nonequilibrium considerations open up a whole new universe of

behavior. Furthermore, at the nanoscale, cluster shape is very sensitive to the particulars

of a system, with the addition or removal of a single atom leading to a substantial change

in shape, rather like biological systems, in contrast to the macroscale phenomena that

have been treated in this chapter.
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6.1 Introduction: Universal Features
During the years 1970–2000, much progress was made in understanding roughening and

faceting transitions [1–39]. Roughening transitions are particularly notable because they

are a typical example of the Kosterlitz–Thouless (KT) transition [40–43]. The KT transi-

tion was first presented as a magnetic phase transition of the two-dimensional (2D) XY

model [40]. Later, 2D crystals [40,41], a 2D Coulomb gas [42], and a superfluid film [43] of

helium (4He) were also shown to exhibit KT transitions.

Van Beijeren provided the correct understanding of the roughening transition by his

exact calculation of the body-centered cubic solid-on-solid (BCSOS) model [1]. The
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solid-on-solid (SOS) model, Figure 6.1(A), is a model for studying surface roughness

when it is inhibited by an overhanging structure (the overhang structure is shown in

the dotted square of Figure 6.1(B)).1 Van Beijeren showed by exact calculations that the

step internal energy estep reduces to zero at the roughening transition temperature TR as

estepfexpð�C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p Þ. This also means that the step tension decreases to zero at TR

as gstepfexpð�C 0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p Þ. It had not been known previously if the step tension

became zero at TR. His exact calculation showed us, for the first time, the close

connection between surface roughening and the KT transition. Soon after, Knops [10]

and Jose et al. [11] showed that any 2D SOS models in 3D can be mapped to the XY

model. In Figure 6.2, we show this observed singular property of the step tension on

Si(001) [32].

Without the long-range order in 2D, the KT phase transition has special character-

istics. When the number of dimensions is less than or equal to two, thermal fluctuations

destroy the long-range order [47]. In the XY model, the KT transition occurs at the

temperature TKT, where the entropy of forming a special spin configuration called a

“vortex” exceeds the excitation energy of the vortex [43]. For T< TKT, the 2D XY model

forms a quasi-long-range order for the pairs of þ1 and �1 vortices; for T> TKT, the

proliferation of the vortex monomers destroys the quasi-long-range order. The corre-

lation length xKT, which characterizes the size of the coherent domain, is infinite for

T< TKT, and xKTfexpðA= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � TKT

p Þ for T> TKT. Thus, the critical exponents are infinite,

and xKT depends on temperature differently than does a typical phase transition, such as

that in the 2D Ising model.2

The KT transition, however, is such a subtle phase transition that it is difficult to

directly detect the singularity. Fortunately, in the roughening transition, the universal

quantities specific to the KT transition are measurable as geometrical quantities on an

equilibrium crystal shape (ECS) [48–58], which is the shape of a crystal droplet with the

least surface free energy. The shape change accompanied by the roughening transition is

(A) (B)
h

x
y

y

x

FIGURE 6.1 Microscopic diagram of a crystal
surface. (A) Perspective view of a solid-on-solid
model; (B) top view of a step. The pattern
inside the broken rectangle shows the
overhanging structure.

1From several numerical studies of a 2D interface in the 3D Ising model, the roughening transition

temperature TR is estimated to be almost half of the transition temperature Tc of the 3D Ising model.

Hence, up to around TR, the frequency at which the overhang structure forms is thought to be sufficiently

low. As a step, however, an overhang such as the one shown within the broken line in Figure 6.1(B)

frequently appears near Tc in the 2D Ising model.
2The correlation lengths of the 2D and 3D Ising models diverge only at the temperature of the phase

transition.
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called the faceting transition [18] (Figure 6.3). A facet is a plane with a low Miller index

that appears on the ECS (Figure 6.3(A)). The facet appears at T< TR, where TR represents

that of the facet plane. The shape of the facet represents the 2D ECS with respect to the

step tension [24,33]. The area of the facet shrinks as the temperature increases. At TR, the

area of the facet becomes zero (Figure 6.3(B)). For T> TR, the facet disappears

(Figure 6.3(C)).

The exact study of the vicinal surface in the BCSOS model [18] again leads to correct

understanding of the faceting transition. When the temperature rises to just above TR,

the Gaussian curvature3 KG [59] at the topmost point in Figure 6.3(B) jumps from 0 to

DKG ¼ ½la2
z=ðkBTRÞ�2K 2

R , where az represents the height of a single step, l represents the

Lagrange multiplier relating to the volume of the crystal droplet, T represents the tem-

perature, and kB represents the Boltzmann constant. It is surprising that the universal

quantity KR¼ 2/p appears in the expression of the Gaussian curvature jump, where

KR is proportional to the inverse of the KT transition temperature of the XY

FIGURE 6.2 Step tension g and step stiffness ~g of an Si(001) surface [32]. (A) Step tension; (B) step stiffness. Open
squares: values of the SA step calculated by the PWFRG method [44] (see Appendix A). Open circles: values of the
SB step calculated by the PWFRG method. Thick and thin solid curves: one-dimensional (1D) interface in a two-
dimensional (2D) next-nearest-neighbor Ising model for the SB step and SA steps, respectively [31]. Solid circles:
low-energy electron microscopy (LEEM) [45] results for the SA step. Solid squares: LEEM results for the SB step [46].
From Ref. [32].

T < TR T = TR T > TR

(A) (B) (C)

FIGURE 6.3 Faceting transition on an equilibrium crystal shape.

3The Gaussian curvature is defined as KG¼ k1k2, where k1 and k2 are the principal values of the

curvature.
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model: KR¼ J/(kBTKT), where J is the coupling constant of the XY model [18]. This

relation is a result of the duality relationship between the XY model and the SOS model,

which Knops [10] and Jose et al. [11] pointed out.

The vicinal surface for T< TR, where TR represents the roughening transition tem-

perature of the terrace plane, is also interesting because the system can be mapped to a

1D system of free fermions [13–33]. For T< TR, the vicinal surface is described by a

regular train of steps with a zigzag structure (Figure 6.4). This image of the vicinal surface

is called the terrace-step-kink (TSK) or the terrace-ledge-kink (TLK) picture [60–63]. The

free energy of the vicinal surface f (r) can be obtained by the ground-state energy of the

1D free fermion (FF), as follows [13–33]:

f
�
r
� ¼ f

�
0
�þ grþ Br3 þ/ (6.1)

where r represents the step density, g represents the step tension, and B represents the

step interaction coefficient. This correspondence of the surface steps to quantum par-

ticles provides another universal type of surface; in the field of surface studies, a surface

for which the energy is described in Eqn (6.1) is said to be of the Gruber-Mullins-

Pokrovsky-Talapov (GMPT) type [13]. In addition, for T< TR, the vicinal surface near a

facet edge has another universal quantity reminiscent of the KT transition: the universal

Gaussian curvature jump at the facet edge [25,26]. The Gaussian curvature jump can be

expressed exactly in the 1D FF system, independent of the orientation of the vicinal

surface: DK 0
G ¼ ½la2

z=ðkBTÞ�2ðKR=2Þ2. We will discuss this in detail in Section5. We add

here that these singularities on the ECS are observed in systems of 4He [64–72], Pb

[73–76], Ag2S [77], Si [78–82], and other materials [83–85].

This chapter gives an overview of the universal features of the roughening and

smoothing phenomena of surfaces and steps. As background, we mention the treatment

of a surface by Burton, Cabrera, and Frank (BCF) [87] for vapor growth, the treatment of

the surface for melt growth by Jackson [88,89], and the “drumhead wandering” [90–92]

that is caused by capillary waves. We begin with surfaces at temperatures higher than TR

and then consider those at lower temperatures. This also means that we begin with

models at macroscopic scales and proceed to those at microscopic scales. We do this

~ 4 nm~20 nm~ 100 nm~ 1 μm

Equilibrium 
crystal shape
(ECS)

Vicinal surface A step STM image

Thermodynamics Terrace-step-kink
(TSK) picture

Solid-on-solid  (SOS) models FIGURE 6.4 Models in various scales.
From Ref. [86].
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because surfaces and their interfaces are so complex that many models in various scales

need to be considered (Figure 6.4). We begin with an explanation of the surface ther-

modynamic quantities, including definitions of surface, interface, and surface roughness

(Section 3). Next, we show the critical phenomena when the surface is near the tem-

perature TR (Section 4), after which we mention several topics concerning roughening

transitions. We then discuss the vicinal surface when T< TR (Section 5). Finally, we

mention the smoothing of steps and the formation of macrosteps, which is due to an

anomalous polar-angle dependence of the surface tension (Section 6).

6.2 Background
6.2.1 Rough Surface in Crystal Growth—Viewpoint of BCF

Before we proceed further, we briefly review the classical but important work of Burton,

Cabrera and Frank [87], and Jackson [88].

BCF discussed the importance of the roughening transition of a surface4 [87], and

they showed that the growth mechanisms are very different on a rough surface than they

are on a smooth surface.

The growth rate of a rough surface is proportional to the driving force Dm of the

crystal growth (Dm is the difference between the chemical potentials of the bulk crystal

phase and the ambient phase5). A smooth surface, however, does not grow linearly

with Dm. Hence, BCF had to introduce the 2D nucleation process, a surface with a

regular train of steps (a vicinal surface), and a surface with screw dislocations [87,93] in

order to explain a realistic growth rate of a crystal (for example, see Figure 6.5). To see

this, let us consider a curved step on a surface that is near equilibrium. As mentioned in

Appendix D.12 in BCF [87], the normal velocity of a step vn on a surface is described as

follows:

vn ¼ n

�
Dm

U
� ~g

R

�
; ~g ¼ gþ v2g

vf2
; (6.2)

where n represents a kinetic coefficient, Dm represents the driving force,6 U represents a

unit volume, R represents the radius of curvature, ~g represents the step stiffness, g

represents the step tension, and f represents the tilt angle of the mean tangential line of

a step, relative to the y-axis (Figure 6.5(B)). Equation (6.2) is known as the Gibbs-

Thomson equation for a curved step.

4BCF studied the roughening transition by adopting a two-dimensional (2D) Ising model by means of

the Bethe approximation. The limits of this approximation method misled them to thinking that the step

tension had a finite value at the temperature of the roughening transition.
5For vapor growth, Dm¼ kBTln a¼ kBTln P/P0, in the BCF notation, where kB represents the Boltzmann

constant, T represents the temperature, P represents the pressure in the ambient phase, and P0 represents

the equilibrium pressure at some temperature T0. For other cases, please see Appendix B [94].
6Dm/U¼ kTln a in equation D.12 of BCF, and it expresses the case of vn¼ 0.
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As a natural extension of Eqn (6.2), the normal velocity of a surface vn is described as

follows [95,96]:

vn ¼ n

"
Dm

U
� f1
R1

� f2
R2

#
; (6.3)

where R1 and R2 represent the radii of curvature in the principal direction, and f1 and f2
represent the surface stiffness tensors in the principal direction. It should be noted that

the surface of the crystal whose growth behavior is expressed by Eqn (6.3) is implicitly

assumed to be rough. For a smooth surface, the value of f1� f2 diverges [23], so Eqn (6.3)

cannot be applied to describe the growth velocity. On a smooth surface, crystal growth

occurs under conditions that are far from equilibrium. Hence, the growth process of a

smooth surface depends on the microscopic details of the surface.

6.2.2 Entropy Effect—Jackson’s Argument

In 1958, Jackson [88] pointed out the relationship between the surface roughness and the

entropy of melting, and introduced the parameter a, which is called Jackson’s parameter.

Jackson’s parameter indicates the relative degree to which the surface energy contributes

to the free energy, compared to the contribution of the surface entropy. In this sub-

section, we discuss the surface entropy of roughness.

According to the calculations on the two-level (Jackson) model [55,88,94], in which

the interface is considered in the “atomic” scale,7 the interface between the liquid and

the crystal is described by a 2D lattice. The free energy of the interface between the liquid

and the crystal G(C,T) is given by a mean-field approximation, as follows:

GðC;TmÞ=ðNkBTmÞzaCð1� CÞ þ C ln C þ ð1� CÞlnð1� CÞ; (6.4)

y
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x
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0.1

0
0.20.10
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Δ μ/k  TB

A
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y 
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(A) (B)

FIGURE 6.5 (A) Example of crystal growth at a surface at a normal velocity vn. Solid line: a rough surface. Broken
line: a smooth surface with a screw dislocation. (B) Schematic illustration of a screw step on a surface (perspective
view) [87].

7What was meant by the “atomic” scale in 1958 is equivalent to a scale that is more than a unit cell of

a crystal.
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where Tm represents the melting temperature, N represents the total number of lattice

points in the 2D lattice, kB represents the Boltzmann constant, C represents the con-

centration of the “solid-like atom,” and a¼ z0feff/(2kBTm) represents Jackson’s a. Here, z0

represents the number of nearest-neighbor (nn) sites for a 2D lattice on a surface, feff

represents the effective bond energy. Since the bond energy is approximately measured

by the heat of melting per molecule Dh, Jackson’s a can be rewritten using the entropy of

melting, as follows:

a ¼ z0

z

Dh

kBTm

¼ z0

z

Ds

kB

; (6.5)

where z represents the number of nn sites in a 3D lattice and Ds represents the entropy of

melting per molecule. Using the roughening transition temperature TR, Jackson’s a can

be rewritten as follows: az2TR=Tm [97]. Therefore, a can be used to estimate the

roughening transition temperature of a specific surface.

The original idea of introducing a in Eqn (6.4) was to consider the relative contri-

butions of the energy and the entropy to the interface free energy (Figure 6.6). The first

term on the right-hand side (r.h.s.) of Eqn (6.4) represents the energy cost due to

interface roughness, and the second and the third terms on the r.h.s. represent the

contributions of the interface entropy. Hence, for large a, energy wins and the interface

is smooth, while for small a, entropy wins and the interface becomes rough. Usually, the

entropy does not depend on the substance,8 but the bond energy strongly depends on

the substance. Therefore, for each substance, Jackson’s a parameter gives us information

about whether the roughening transition will be observable.9

The anisotropy of interface entropy due to the interface roughness is sometimes

ignored, and we note that there is also anisotropy due to the structure of the crystal

lattice. As shown in C, the ground-state structure of the interface is generally degen-

erated except for the several interfaces that have a low Miller index. When there is an in-

plane bond network that connects all of the atoms, the interface will have a unique

structure [51].

6.2.3 “Drumhead Wandering” due to Capillary Waves

In Figure 6.7, we show an intuitive picture of phase coexistence for a bulk crystal and

a bulk ambient phase. The two phases are separated by a narrow interface region of

width w.

8We recall Trouton’s rule for the vaporization of a liquid. This rule states that the entropy of

vaporization is almost constant, irrespective of the substance.
9If the loss of the long-range periodicity of a crystal has a dominant contribution to the increase of

entropy, as in metals, the melting of entropy will be small and so a is small (2–3). The interface is rough

near the melting temperature. On the other hand, in the case of orientational molecules, for example, the

entropy of melting is large because disordering of the molecular orientation occurs together with the

disordering of the periodicity of the crystal. In this case, a becomes large (w10). Then, the surfaces at

several azimuths become facets at the melting temperature.
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If we try to consider the interface/surface precisely, we find that the definition of an

interface (surface) is not trivial. At a crystal-melt interface, for example, the location of

the interface is rather ambiguous when we consider the model at a microscopic scale.

The liquid phase is generally distinguished from the crystal phase by the lack of a

2w

ρa

ρc

h

(A) (B)

2w

x

y

h

L

L

FIGURE 6.7 Schematic illustration of crystal-vapor coexistence, showing the diffuse interfacial region. (A) Shaded
area: crystal; w: width of interface. (B) Density profile. rc: density of crystal; ra: density of the ambient phase
(vapor phase).

FIGURE 6.6 Snapshots of a computer simulation of the roughening transition on a solid-on-solid model [89]. From
Ref. [55].
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long-range periodic structure. This means that we cannot tell the difference between

“liquid” and “crystal” by observing only a single atom. The same situation occurs in the

magnetic domain walls of the XY model and the Heisenberg model. The microscopic

parameters at the interface or in the domain wall change continuously, as shown in

Figure 6.7. In this case, the interface (or the crystal surface) is unstable against the long-

wavelength distortions that are excited by thermal fluctuations with infinitesimal energy

costs [90–92]. That is, the interface is rough.

In this subsection, using the drumhead model (Figure 6.8), we explain how the long-

wavelength distortions called “capillary wave” destabilize the continuous interface/

surface.

The work functional against the surface tension for the instantaneous distortion of

the surface dividing phase 1 from phase 2 is given by Buff, Lovett, and Stillinger in the

following equation [90–92]:

HDH ¼
Z

g0

ffiffiffi
g

p
dxdy þ 1

2
m2

0

Z
zðx; yÞ2dxdy; (6.6)

where z(x,y) represents the instantaneous “dividing surface” between phases 1 and 2

(the surface of the drumhead),
ffiffiffi
g

p
dxdy represents a small surface area dA, g0 repre-

sents the surface tension, and m0 represents the force necessary to stabilize the surface

(e.g., gravity for a liquid–gas interface). Here, g represents a geometrical factor and is

defined by g ¼ 1þ p2
x þ p2

y , where px¼ vz/vx and py¼ vz/vy. This work functional is also

called the “drumhead” Hamiltonian [92]. The thermodynamic equations and the cor-

relations follow from ZDH ¼ R Dz½expf � bHDHg� with b¼ 1/kBT, where
R
Dz describes

the integral of all possible surface distortions. The surface area term in Eqn (6.6) can be

expanded as

ffiffiffi
g

p ¼ 1þ 1

2

�
p2
x þ p2

y

�
þO

��
p2
x þ p2

y

�2�
þ/: (6.7)

The Hamiltonian of Eqn (6.6) is usually approximated by the term that has lowest

order with respect to
ffiffiffi
g

p
: 1þ ð1=2Þðp2

x þ p2
yÞ.

(A) (B)

z(x,y)
L0

z

x y

FIGURE 6.8 (A) A drum with a drumhead. (B) Surface height of the drumhead.
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The local strength of the fluctuations from the mean shape of the surface hzðx; yÞi ¼ 0

is measured by the variance, where <$> represents the thermal average. This becomesD
zðx; yÞ2

E
¼ kBT

ð2pÞ2
Z

dqxdqy

g0

�
q2
x þ q2

y

�
þm2

0

; (6.8)

where qx and qy are the wave numbers introduced by the Fourier decomposition (similar

to the argument in Appendix E). In the thermodynamic limit (L/N), this integral

becomes D
zðx; yÞ2

E
¼ kBT

4pg0

ln
g0L

2 þm2
0

g0k
2
0 þm2

0

; (6.9)

where L ¼ 2p=a represents the upper cutoff, a is the lattice spacing, and k0¼ 2p/L

represents the low-wavenumber (infrared) cutoff for the integral. Therefore, for m2
0 ¼ 0,

the variance diverges logarithmically in the thermodynamic limit L/N, as follows:D
zðx; yÞ2

E
¼ kBT

4pg0

ln L: (6.10)

The long-wavelength fluctuations, the capillary waves, destabilize the surface. This

surface instability is referred to as “drumhead wandering” [92].

It is important to note that the drumhead wandering depends on the dimensionality of

the space. Extending the above argument to a general (d� 1)-dimensional interface in a d-

dimensional space, the variance of the interface fluctuations Eqn (6.8) becomes as follows:

	
z2

 ¼ kBT

ð2pÞd�1

Z
dd�1q

g0q
2 þm2

0

f

ZL
k0

qd�2dq

g0q
2 þm2

0

: (6.11)

In the thermodynamic limit (L/N), hz2i becomes ðm2
0Þ

1
2 ðd�3Þ. Hence, for d< 3, hz2i

obeys a power law, and for d¼ 3, hz2i becomes w� lnm2
0. While for d> 3, there is no

divergence around k0¼ 0. As for the surface with m0/ 0,10 for d¼ 2, the 1D surface

(a step) is always rough; for d¼ 3, the surface is marginal; and for d> 3 (if it exists), the

surface is always smooth [4,5].

6.3 Rough Surface
6.3.1 Definition of an Interface

6.3.1.1 Existence of a Roughening Transition Temperature
Rigorously speaking, at equilibrium, the crystal surface is an interface between the

crystal phase and the ambient phase. However, we will use the terms surface and

interface interchangeably. We begin this section with the definition of an interface.

10As a candidate of m0 on a surface, we may consider the potential to form a lattice structure. Such an

effect can be taken into consideration by the discrete Gaussian model [98]. In the case of metals, a

quantum effect with respect to the electrons may be a candidate for the case of m0.
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When a crystal is surrounded by a vapor phase, the microscopic separation between

the crystal phase and the vapor phase is relatively clear.11 The discrete order parameter,

therefore, can be used to describe the configuration of the interface.12 In this case, the

surface of the crystal can be described as the interface in a 3D Ising model. For the

interface in a 3D Ising model, it has been rigorously proven that the interface causes a

roughening transition at a temperature less than the transition temperature of the bulk

3D Ising model Tc,3D [4,5]. In addition, the roughening transition temperature TR is near

the transition temperature of the 2D Ising model Tc,2D, but has been rigorously proven

to be higher than Tc,2D [4]. Since the existence of the roughening transition is guar-

anteed by these rigorous results for the interface in a 3D Ising model, several solid-on-

solid (SOS) models, which are specialized for surfaces, will be used to study surface

roughness.

A coarse-grained rough surface of a crystal is diffuse, and it will have a surface profile

that appears similar to that shown in Figure 6.7. In the following subsubsections, we will

give a brief overview of how to assign tension to a coarse-grained interface when using

the Ising model. To simplify this, we will use the 2D Ising model.

6.3.1.2 Ising Model and the Equivalent Lattice Gas Model
The 2D and the 3D Ising models are often adopted for the microscopic study of surface

roughness. The Hamiltonian of the Ising model is written as follows13:

HIsing ¼ �J
X
hi;ji

sisj �H
XN
i¼1

si; (6.12)

where s¼ {�1} represents the Ising spin, J represents the coupling constant between

spins, H represents an external magnetic field, and N represents the total number of

lattice points. The summation of hi; ji is taken over all the nearest-neighbor (nn) pairs.

The equivalent Hamiltonian of the lattice gas model is written as follows:

HLG ¼ �bfX
hi;ji

CiCj � ðm2D � mambientÞ
XN
i¼1

Ci; (6.13)

where bf represents the bond energy between nn atoms, C¼ {0,1} indicates the presence

of lattice gas (C¼ 1 when it is present and C¼ 0 otherwise), m2D represents the chemical

potential of the atoms in the 2D lattice, and mambient represents the chemical potential of

the atoms in the ambient phase. m2D is approximately written by m2D ¼ �bf=2þ mcrystal,

where mcrystal represents the chemical potential of the atoms in the bulk crystal. The Ising

11Even in the case of a crystal-vapor interface, the location of the phase separation sometimes becomes

ambiguous for multicomponent crystals, such as can be seen in stones.
12The crystal-melt interface can be described by the discrete order parameter when another parameter,

such as one for dielectric polarization, accompanies the crystal-melt transition. It is possible to identify

melt or crystal at the microscopic scale by observing the dielectric polarization parameter.
13Figure 6.13(A) shows a side view of a 2D lattice gas model that is equivalent to the 2D Ising model.

276 HANDBOOK OF CRYSTAL GROWTH



Hamiltonian (6.12) is translated into the lattice gas Hamiltonian by substituting

s¼ 2C� 1, as follows:

HIsing ¼ HLG þ DE

DE ¼
�
2H � zJ

�
N =2; 4J ¼ bf; 2H ¼ mcrystal � mambient;

(6.14)

where z represents the number of nn sites.14

In the case of J¼ 0, the Ising model (the lattice gas model) reduces to a two-level

model with independent elements (Jackson’s model).

6.3.1.3 Definition of Interface Tension
The partition function of the Ising system is obtained as ZIsing ¼

P
si
exp½�bHIsing�,

where b¼ 1/kBT. The summation {si} is taken over all possible spin configurations. The

free energy (density) of the system is obtained as f ðT Þ ¼ �ðkBT=N Þln ZIsing. The exact

form of f(T) was given by Onsager for the 2D Ising model with H¼ 0 [99].

The free energy of an interface is generally defined as the excess free energy due to the

coexistence of the two phases. We will consider an example of this for a 1D interface in a

2D Ising model. For a temperature T< Tc,2D, where Tc,2D represents the Curie temper-

ature of the 2D Ising model, a finite magnetized spin configuration will be self-organized.

A phase separation line, such as the one between end points O and P in Figure 6.9, can be

formed by applying a special boundary condition called an antiphase boundary condi-

tion (Figure 6.9). We denote the partition function of the Ising model system with a

uniform boundary condition by Zþþ, and the partition function with the antiphase

boundary condition by Zþ�(q). The 1D interface free energy per length (in the horizontal

direction) is defined as follows [4]:

f1DðqÞ ¼ lim
Nx/N

�kBT

Nxa
ln

Zþ�ðqÞ
Zþþ

; (6.15)

FIGURE 6.9 A 1D interface as a phase separation
line under an antiphase boundary condition in the
2D Ising model [4,6–8,38,39]. In the lattice gas
model that is equivalent to this 2D Ising model,
the phase separation line corresponds to a step on
the surface. From Ref. [39].

14This zJð¼ zbf=4Þ relates to the “half crystal site.”
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where Nx is the number of lattice points in the horizontal direction. The interface tension

of a 1D interface is given by

g1DðqÞ ¼ f1DðqÞjcos qj ¼ f1DðqÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
x

q
; (6.16)

where px¼ tan q [6,94].

In the case of the 1D interface, we can go further by using the imaginary-path-weight

random walk (IPW) method (Appendix D) [100]. In Figure 6.2, the calculated step

quantities for Si(001) are shown [31]. The Ising values were calculated by the IPW

method. As seen from Figure 6.2, the Ising model provides good approximations for the

step tensions and step stiffness at low temperatures. Figure 6.10 shows the step tension

and step stiffness for the Si(111) surface, as calculated by using the honeycomb Ising

model with a staggered magnetic field [39]. The calculated values were obtained by the

IPW method.

The random walk picture of the interface that connects O and P locates the 1D

interface at the line connecting O and P in the limit of L/N. The existence of the limit

is guaranteed by the central limit theorem. Similarly, a 2D interface in the 3D Ising

model can be introduced under the antiphase boundary condition. The idea of the phase

separation line can be easily extended to that of a phase separation surface in the 3D

(A)

(B) (D)

(C)

FIGURE 6.10 Step quantities for a double layer of a (111) surface of a diamond structure [39]. The microscopic
coupling constants were chosen to reproduce the experimental observations [81,101] on Si(111), which are
denoted by open squares and an open circle. (A) The equilibrium shape of an island at 900 �C; (B) a polar graph
of the step stiffness at 900 �C; (C) temperature dependence of the step tension; (D) temperature dependence of
the step stiffness. In (C) and (D), the thick lines correspond to the f211g step and the thin lines to the f101g step.
From Ref. [39].
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Ising model. Therefore, the location of the interface as a mathematical plane h(x,y) is

determined by the boundary condition in the Ising model.15

6.3.2 Definition of Surface Roughness

6.3.2.1 Surface Width—Variance of Surface Height
The variance of the surface height is defined as the squared surface width, as follows:

W 2
surf ¼

D
½hðxÞ � hhðxÞi�2

E
; (6.17)

where h$i represents the thermal average. Examples of the squared surface width in the

limit as L/N are listed in Table 6.1, where az represents the unit height of a step and

d is the number of space dimensions.16 When T< TR, the squared surface width becomes

a certain finite value in the limit of L/N. Let the finite value be denoted by w2. Hence,

we have

w2 ¼ lim
L/N

D
½hðxÞ � hhðxÞi�2

E
: (6.18)

Table 6.1 Surface Width and Surface Roughness (d¼ 3)

Squared Surface
Width W2

surf

Squared Surface
Roughness w2

surf Remarks

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p ln L
kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p T> TR (Section 3.2.1, Section 3.3, Appendix E)

a2z
2p

KR ln L
a2z
2p

KR T¼ TR, KR ¼ 2
p
ðSection 3:2:1; Section 4:2Þ

w2 0 T< TR smooth surface (Section 3.2.1) w2: a finite value of the
variance of the surface height

a2z
2p

�
KR

2

�
ln L

a2z
2p

�
KR

2

�
T< TR for vicinal surface with small slope limit (Section 5.2)

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p ln L
kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p T< TR for vicinal surface with large slope (Section 3.3)

a2z
2p~lðgÞ

�
KR

2

�
ln L

a2z
2p~lðgÞ

�
KR

2

�
T< TR for vicinal surface with small slope and with elastic
step–step repulsion (Section 5.3)

15For more general cases, the location of the interface within the area w in Figure 6.7 is ambiguous. For

simplicity, however, we will consider that the interface is located at the Gibbs’ dividing surface, and we

will denote it by h(x,y). In the case of multicomponent materials, the interface may have multiple dividing

surfaces.
16This is done in accordance with the customary notation of the statistical mechanics of an

interface [92].
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When T� TR, the surface width diverges logarithmically as the limit of L/N, as follows

(Appendix E, Eqn (E.6)) [23]:

W 2
surf ¼

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞp ln L; (6.19)

where (fij) (i,j¼ x,y) represents the surface stiffness tensor, which will be explained

in the following subsection (Section 3.3). This divergence is caused by the “drumhead

wandering” explained in Section 2.3. Though the surface is well defined in the micro-

scopic scale, a rough surface behaves like the liquid–vapor interface in macroscopic

scale. That is, long-wavelength distortions of the surface, called capillary waves, desta-

bilize the surface.

Keeping in mind Eqn (6.19), a nondivergent measure of the surface roughness wsurf

can be defined as follows:

wsurf ¼
h
W 2

surf

.
ln L

i1=2
ðL/NÞ; (6.20)

which we call a scaled surface width. The scaled surface width is suitable for defining the

“surface roughness.” Hence, the squared surface roughness is expressed as follows:

w2
surf ¼

8>>>><>>>>:

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�q T > TR

a2
zKR


2p T ¼ TR

0 T < TR

; ðd ¼ 3Þ; (6.21)

where we use the universal relationship
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p
¼ kBT=ðKRa

2
zÞ at TR (Section 4.2) with

the universal value KR¼ 2/p.

6.3.2.2 Height–Height Correlation Function of a Surface
There is another quantity that may be suitable for defining the surface roughness. The

height–height correlation function is defined as follows:

GðrÞ ¼
D
½hðx þ rÞ � hðxÞ�2

E
: (6.22)

Similarly, after some calculations, in the limit of r¼ jrj/N, we obtain [22]

GðrÞ ¼

8>>>><>>>>:

kBT

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�q ln r T > TR

�
a2
zKR


p
�
ln r T ¼ TR

2w2 T < TR

; ðd ¼ 3Þ: (6.23)

where w2 represents a finite value calculated by Eqn (6.18). Hence, we can also define the

surface roughness as [G(r)/ln r]1/2, which is the value multiplied by
ffiffiffi
2

p
of the value

defined by Eqn (6.20).
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6.3.2.3 Thin Film-Like Surface in the Macroscopic Scale
It should be noted that the macroscopic appearance of a rough surface looks like a

continuous thin surface. The surface width Wsurf, the square root of the variance of the

surface height, diverges at the rough surface. The ratio of the volume of the surface

region (wL2�Wsurf) and the bulk (wL3) becomes Wsurf/L and converges to zero in the

limit as L/N. Therefore, in the thermodynamic limit, a rough surface looks like a thin

elastic film.

6.3.3 Relationship between Energy and Shape

In this subsection, we show how the thermodynamic quantities on the surface relate to

the geometry of the equilibrium crystal shape, which is the shape of a crystal droplet that

has the least surface free energy (Figure 6.11(A)). The final relationship we would like to

present in this subsection is the following [23]:

w2
surf ¼

1

2p

kBTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞp ¼ 1

2p

kBT

l
g

ffiffiffiffiffiffi
KG

p
; g ¼ 1þ jp��2; (6.24)

where g is the geometrical constant17 and KG is the Gaussian curvature [59] of the

surface.

The quantities defined on crystal surfaces are anisotropic; this is because of the

structure of the crystal lattice. The ECS can be obtained by using the polar graph of the

surface tension and the Wulff construction method [49–55]. Andreev and Landau [56,57]

proposed another method in which the ECS may be obtained analytically [56,57]; in their

method, the ECS and the surface gradient p are described by z(x,y) and p¼(vz(x,y)/

vx,vz(x,y)/vy), respectively. Andreev introduced the Andreev free energy f(h) [57] as the

Legendre transformed thermodynamic potential of a surface with respect to the surface

gradient p, as follows: f(h)¼ f(p)� p,h, where f ðpÞ ¼ gsurfðnÞ ffiffiffi
g

p
represents the surface

free energy per projected xy area, gsurf (n) represents the surface tension, n represents

the surface normal unit vector (see Eqn (F.1)). Hereafter, we will call f(p) the vicinal

surface free energy. Here, h is the Andreev field, the thermodynamic force conjugate to

the surface gradient, which causes the surface to tilt.

z = z (x, y)

z

x

y

f  (     ,      )~ ηx ηy

ηx

ηy

f~

pe

F
~

p

(A) (B) (C)

FIGURE 6.11 (A) An equilibrium crystal shape; (B) Andreev free energy [57]; (C) Extended free energy for the
Hamiltonian of the capillary wave.

17More precisely, g¼ det(gmn), where gab¼ dabþ papb (a, b¼ {x,y}), px¼ vz(x)/vx, and py¼ vz(x)/vy [59].
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For the least free energy condition on the crystal droplet, the thermodynamic

equations for the ECS [57] are obtained as follows:

~f
�
hx; hy

� ¼ lzðx; yÞ; hx ¼ �lx; hy ¼ �ly

pe;a ¼ �v~f
�
hx; hy

�
vha

; ha ¼
vf
�
px;py

�
vpa

; ða ¼ x; yÞ;
(6.25)

where pe (pe,x, pe,y) is the surface gradient in equilibrium

It is interesting that the shape of the Andreev free energy as a function of h is similar

to the ECS (Figure 6.11(A) and (B)). Therefore, determining a thermodynamic quantity

on a surface can be transformed to the problem of determining the geometry of the ECS.

Next, let us consider the fluctuations around the ECS. The Gaussian-type capillary-

wave Hamiltonian is obtained from the extended free energy with respect to the slope

fluctuations around the equilibrium surface slope (Appendix F) [23,102]:

HCW ¼ 1

2

ZL
0

dx

ZL
0

dy
h
f xx
�
pe

�
Dp2

x þ f yy
�
pe

�
Dp2

y þ
�
f xy
�
pe

�þ f yx
�
pe

��
DpxDpy

i
; (6.26)

where (fij) represents the surface stiffness tensor and is defined as follows:

�
f ij
� ¼ � f xx

�
pe

�
f xy
�
pe

�
f yx
�
pe

�
f yy
�
pe

� ! ¼

0BBBB@
v2f
�
p
�

vp2
x

v2f
�
p
�

vpyvpx

v2f
�
p
�

vpxvpy

v2f
�
p
�

vp2
y

1CCCCA
�������
p¼pe

: (6.27)

Using this capillary-wave Hamiltonian, we can determine the thermal average

explicitly (Appendix E), and then we obtain

W 2
surf ¼

kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞp ln L: (6.28)

Further, from the definition of the Gaussian curvature and Eqn (6.25), we can obtain

an expression for the Gaussian curvature KG, as follows:

KG ¼ 1

g2
det

�
v2z

vxmvxn

�
¼ l2

g2

1

detðf ij�;
ðm; n ¼ 1 or 2; x1 ¼ x; x2 ¼ y

�
:

(6.29)

From Eqns (6.20), (6.28), and (6.29), we obtain the final equation, Eqn (6.24).

Equation (6.24) connects the quantities of the surface roughness (the scaled surface

width), the surface stiffness tensor, and the Gaussian curvature of the surface.

6.3.4 Roughness of a Single Step

In this subsection, we consider the roughness of a single step on a surface when T< TR.

As shown in Figure 6.9 [6] for the Ising model, we will consider a step for which the

mean running direction is OP. We assign the height of the step h(x) in the vertical
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direction. Similar to Eqn (6.17), we define the width of the step as the variance of the

height of the step, as follows:

W 2
step ¼

D
½hðxÞ � hhðxÞi�2

E
: (6.30)

We can then obtain, for T< TR:

W 2
step ¼ ðkBT=~gÞL; ~g ¼ gþ v2g

vf2
(6.31)

for an isolated step, where ~g represents the step stiffness, and f represents tilt angle

of the step. Hence, it is natural to define the step roughness as wstep ¼ Wstep=
ffiffiffi
L

p
. In

Figure 6.12, examples are shown of wstep for a 1D interface in the 2D Ising model [6].

The 1D interface in the 2D Ising model is considered to be an approximate model of a

step on a (001) surface of a cubic Kossel crystal (Figure 6.2). As seen from Figure 6.12,

the roughness of a step is strongly anisotropic at low temperatures. This is because of

the degeneracy of the ground states with respect to the configuration of a step.

We can obtain a relationship similar to Eqn (6.24) between the step stiffness, the step

roughness, and the curvature of the 2D ECS [6,7]:

w2
step ¼ kBT

~g
¼ kBT

l
k; (6.32)

where k represents the curvature at a point of the 2D ECS.

(A) (B) (C)

0 1
[10]

0 1
[10]

0 1
[10]

(D) (E)

0 1
[10]

2 0 1 2
[10]

3

FIGURE 6.12 Polar graphs of wstepðfÞ
ffiffiffiffiffiffiffiffiffiffi
cosf

p ¼ WstepðfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosf=L

p
for the 2D square-lattice Ising model. The

temperatures are chosen as (A) T/Tc¼ 0.1; (B) T/Tc¼ 0.3; (C) T/Tc¼ 0.5; (D) T/Tc¼ 0.7; and (E) T/Tc¼ 0.9. From
Ref. [6].
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It should be noted that the variance of a step in the vicinal surface is different from

Eqn (6.31) but becomes as follows [103–105]:

W 2
step;vicinal ¼

8>>><>>>:
kBT

2pa2
zr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�q ln L ðL/NÞ

1

2p2r2
ln L ðr/0;L/NÞ

; (6.33)

where r represents the step density on a vicinal surface. Since a single step collides with

the adjacent steps, the step width here diverges more weakly than for an isolated step. In

this case, the squared “roughness of a step” w2
step;vicinal should be defined as

w2
step;vicinal ¼ W 2

step;vicinal=ln L. We will return to this below in Section 5.3.

6.4 Roughening Transition and Faceting Transition as
Critical Phenomena

6.4.1 Microscopic Models for Studying Surface Roughness

In this subsection, we will demonstrate some typical microscopic models for studying

the surface roughness of the (001) surface of a crystal (Figure 6.13). The known rough-

ening transition temperatures TR are listed in Table 6.2. Since the transition temperature

Tc of the 2D Ising model gives a lower bound for TR, Tc for several lattice structures are

also given in Table 6.2.

(A)

(C) (D)

(B)

FIGURE 6.13 Side view of surfaces. (A) 2D lattice gas model equivalent to the 2D Ising model, (B) BCSOS model,
(C) ASOS model, (D) RSOS model.
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6.4.1.1 BCSOS Model
In Figure 6.13(B), the BCSOS model [1] is shown. The BCSOS model is a microscopic

model of the (001) surface of the body-centered cubic crystal. This model is usually

described by the 6-vertex model (Figure 6.14). The Hamiltonian is as follows:

HBCSOS ¼ 31=2
X
ðn;mÞ

X
d

½jhAðn;mÞ � hBfðn;mÞ þ dgj� þ 32

X
hi;ji

���hA;i � hA;jj þ jhB;i � hB;j

���; (6.34)

where ε1 represents half of the nn bond energy, and ε2 represents half of next nn (nnn)

bond energy. Since the crystal structure of the model is body-centered cubic (BCC), the

lattice points can be divided into two cubic lattices, the A-sublattice and B-sublattice. We

will distinguish the sites in the A- and B-sublattices by adding an A or B to the variables.

The summation (n,m) is taken over all A-sublattice points, and the summation hi; ji is

taken over all pairs of the nn sublattice points.

FIGURE 6.14 Mapping of the body-centered cubic solid-on-solid model to a 6-vertex model [1]. From Ref. [1].

Table 6.2 Phase Transition Temperatures

Model TR or Tc Hamiltonian Remarks

2D Ising model kBTc=J ¼ 2=lnð1þ
ffiffiffi
2

p
Þ

z2:269
Equation (6.12) Exact. Square lattice.

kBTc/J¼ 2/cos h�1(2)
z1:519

Equation (6.12) Exact. Honeycomb lattice [106].

kBTc/J¼ 4/ln(3)
z3:641

Equation (6.12) Exact. Triangular lattice [106].

kBTc=J ¼ 4=lnð3þ 2
ffiffiffi
3

p
Þ

z2:143
Equation (6.12) Exact. Kagome lattice [106].

kBTc /J¼ 4/ln(3)
z2:405

Equation (6.12) Exact. Diced lattice [106].

3D Ising model TR> Tc,2D Equation (6.12)
BCSOS model kBTR= 3¼ 1=ln 2

z1:443
Equation (6.34) Exact [1].

ASOS model kBTR=εz1:21 Equation (6.37) Square lattice [2].
RSOS model kBTR=εz1:580 Equation (6.38) Square lattice [3,107].
Discrete Gaussian model kBT=Jz1:44 Equation (G.1) Square lattice [2].
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In the BCSOS model, ε1 is set to infinity in order to avoid the overhang structure.

Hence, the height difference between the nn sites, jDhj ¼ jhA,i� hB,jj, is fixed to be 1/2.

The partition function of the BCSOS model ZBCSOS is defined as

ZBCSOS ¼
X

fhAðm;nÞg

X
fhBðm;nÞg

exp½ � bHBCSOS�; (6.35)

where b¼ 1/kBT, and the summation with respect to {hA(m,n)} and {hB(m,n)} means the

summation over all possible surface configurations. This partition function is usually

calculated for the equivalent 6-vertex model (Figure 6.14), and it was obtained exactly by

van Beijeren [1]. The surface tension gsurf(0) and the surface free energy per area fsurf(0)

for the (001) surface are calculated as follows:

gsurfð0Þ ¼ fsurfð0Þ ¼ lim
N/N

kBT

N a2
ln ZBCSOS; (6.36)

where a represents the lattice constant of a cubic lattice. As mentioned in Section 1, the

exact calculations for the BCSOS model greatly contributed to the understanding of

roughening and faceting transitions.

6.4.1.2 ASOS Model and RSOS Model
Figure 6.13(C) shows a side view of the absolute SOS (ASOS) model [89]. A perspective

view of the ASOS model was already shown in Figure 6.1(A). This ASOS model is a natural

model and is based on the Kossel crystal [108]. The height variable h(x,y) takes an

integer. The Hamiltonian of the ASOS model is given by

HASOS ¼ 3
X
m;n

½jhðmþ 1;nÞ � hðm;nÞj þ jhðm;nþ 1Þ � hðm;nÞj�; (6.37)

where 3represents the microscopic energy cost required to make the nearest-neighbor

(nn) height difference Dh. The summation of (m,n) covers all lattice points on the

square lattice. Since 3is half of the lateral bond energy, 3corresponds to 2J in the 2D

Ising model.

Figure 6.13(D) shows a side view of the restricted SOS (RSOS) model [109], where

“restricted” means that the nn height difference is restricted to {0,�1}. The Hamiltonian

of the RSOS model is similar to that of the ASOS model, as follows:

HRSOS ¼ 3
X
m;n

½jhðmþ 1;nÞ � hðm;nÞj þ jhðm;nþ 1Þ � hðm;nÞj�: (6.38)

The RSOS restriction is implicitly assumed.

The partition function of the ASOS model ZASOS and the RSOS model ZRSOS are

defined in a way similar to Eqn (6.35). The exact solutions for these models, however,

have not yet been obtained.

6.4.2 Summary of KT-Type Critical Phenomena of Surfaces

According to Knops’ correspondence [10,11] that was based on the duality arguments,

T �
KT is related to the roughening transition temperature TR; the quasi-long-range ordered

286 HANDBOOK OF CRYSTAL GROWTH



phase for T � < T �
KT in the XY model corresponds to the rough phase for T> TR in

the surface model, and the phase for T � > T �
KT in the XY model corresponds to

the smooth phase for T< TR. The transition temperature of the XY model is given

by the zero of the free energy for a single vortex creation as follows:

kBT
�
KT=J ¼ 1=KR ¼ p=2 [11,40].18 The surface structure corresponding to the vortex in the

XY model is not easily seen.

The features of the roughening transition are listed below [18,22,25,26]:

1. Correlation length

xðT Þ ¼

8><>:
N T � TR

x0 exp

�
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TR � T
p

�
T < TR

; (6.39)

where TR (Table 6.2), x0, and A are nonuniversal constants.

2. Surface tension: The singular part of the surface tension becomes

gsurf;singzB exp

 
� CffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijT � TRj
p !

; (6.40)

where B and C are nonuniversal constants. In Figure 6.15(A), we show the surface

tension of the (001) surface for the RSOS model. We also show the surface entropy

and the surface internal energy in Figure 6.15(B) and (C), respectively. The sin-

gularity around TR, however, is too subtle to be discerned. The steep increase of

the surface entropy occurs near at Tc,Ising
19 of the 2D Ising model. This increase of

the surface entropy results from the increase of the kink density on the surface.

0 0.5 1 1.5 2
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RSOS model
(001)

γ 
   

  (
0)

/ε
su

rf
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FIGURE 6.15 Thermodynamic quantities of the (001) surface of a cubic lattice: RSOS model and PWFRG
calculations (Appendix A). kBTR=ε ¼ 1:580: (A) Surface free energy per unit cell area. (B) Surface entropy per unit
cell area. (C) Surface internal energy per unit cell area [110]. From Ref. [110].

18J represents the coupling constant of the XY model.
19kBTc;Ising= 3¼ 1=lnð1þ ffiffiffi

2
p Þw1:135.
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3. Height–height correlation function:

GðrÞ ¼

8>>>><>>>>:

kBT

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ij�q ln r T > TR

�
a2
zKR


p
�
ln r T ¼ TR

2w2 T < TR

ðd ¼ 3Þ; (6.41)

where w2 represents a finite value calculated by Eqn (6.18).

4. Step free energies: Near TR, the step free energy behaves as follows:

fstepðT Þ ¼

8><>:
0 T � TR

fstep;0 exp

�
� Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TR � T
p

�
T < TR

(6.42)

where fstep,0 and A are nonuniversal constants. For the BCSOS model,

A ¼ p2=ð4 ffiffiffi
2

p
ln 2Þz2:52 [18]. Since the 2D ECS obtained by the step tension coincides

with the facet shape of the ECS [24], a decrease in the step tension leads to a faceting

transition (Figure 6.3).

In Figure 6.16, we show the step tension gstep and the step stiffness ~gstep. As ex-

pected, the behavior of step tension at high temperature is well described by Eqn

(6.42). Unexpectedly the value of A for the BCSOS model could fit the data for the

RSOS model, though the value of A is thought to be nonuniversal.

We also show the step entropy and the step internal energy for the RSOS model

in Figure 6.17. Both the step internal energy and the step entropy reduce to zero in

the manner of Eqn (6.42). Here, a step entropy of zero does not mean a smooth

surface. From Eqn (6.32), a step stiffness of zero causes a divergence in the step
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FIGURE 6.16 Thermodynamic quantities of a step on a (001) surface [110]. (A) Step tension. (B) Step stiffness.
Open squares: f¼ 0,(01) step. Open triangles: f¼ p/4,(11) step. Dotted line: 1D interface for the 2D nn
Ising model f¼ 0,Broken line: 1D interface for the 2D nn Ising model f¼ p/4. Solid line: (A) gstep= 3¼ 6 �
expð�2:52=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ; (B) ~gstep= 3¼ 8 expð�2:52=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ. kBTR=ε is assumed to be 1.580. From
Ref. [110].
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roughness (the scaled step width) wstep at TR. Hence, the steps dissolve into the

bulk, as will be discussed in the following Section 4.3.2 for the 2D Ising model.

Since the step free energy is defined as the excess part of the free energy from

the bulk (Section 3.1.3), the step free energy decreases to zero as the temperature

increases to TR.

5. Surface free energy: Just above TR, the vicinal surface free energy density and the

Andreev free energy become as follows (Figure 6.18(A)) [18]:

f ðpÞ ¼ f ð0Þ þ kBTR

2KRa2
z

jpj2 þO

�
jpj3

�
; (6.43)

~f ðhÞ ¼ f ð0Þ � a2
zKR

2kBTR

jhj2 þO

�
jhj3
�
; (6.44)

where KR¼ 2/p and f(0)¼ gsurf(0). Hence, we have,
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FIGURE 6.18 Profile of surface tension: RSOS model and PWFRG calculations (A) kBT=ε ¼ 1:7 (T> TR).
(B) kBT=ε ¼ 0:6 (T< TR).
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FIGURE 6.17 Thermodynamic quantities of a step on the (001) surface [110]. (A) Step entropy. (B) Internal energy
of a step. Open squares: f¼ 0 ((01) step). Open triangles: f¼ p/4 ((11) step). Dotted line: 1D interface for the 2D
nn Ising model f¼ 0. Broken line: 1D interface for the 2D nn Ising model f¼ p/4. Solid line: (A)
sstep=kB ¼ 38 expð�2:52=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ; (B) ustep= 3¼ 52 expð�2:52=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:580� kBT= 3

p Þ. kBTR=ε is assumed to be
1.580. From Ref. [110].
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jhj ¼ kBT

KRa2
z

jpj: (6.45)

Using this equation, we can determine TR numerically [3].

6. Universal curvature jump: The faceting transition on the ECS (Figure 6.3) accom-

panies a jump in the Gaussian curvature at the faceted surface as follows:

KG ¼

8><>:
�

la2
z

kBTR

�2

K 2
R T ¼ TR

0 T < TR

: (6.46)

The Gaussian curvature is expressed as KG¼ k1k2, where k1 and k2 are the prin-

cipal values of the curvature at that point on the surface.

7. Universal jump in the surface stiffness tensor: The faceting transition also accom-

panies a jump in the determinant of the surface stiffness tensor at the faceted sur-

face as follows:

det
�
f ij
� ¼

8><>:
�
kBTR

a2
z

�2�
1

KR

�2

T ¼ TR

N T < TR

: (6.47)

6.4.3 Diffuseness for Atomically Rough Surfaces

6.4.3.1 New Picture of Roughening
Since the step tension becomes zero at T� TR(Eqn (6.42)), surface roughening is said to

occur as a result of the step proliferation without any excess cost of free energy

(Figure 6.19). According to this picture, some finite structures of the excited states, such

as the adatoms and islands that form on the surface, do not significantly contribute to

the free energy of the surface (i.e., they are irrelevant).

As shown in Figure 6.6, however, a surface simulated by Monte Carlo calculations

with an ASOS model at high temperature is slightly different from the picture in

Figure 6.19. The surface appears rough in the small scale. Hence, the terms surface

diffuseness or atomically rough surface have been used in order to describe the roughness

in the small scale. This difference is considered to be important in dynamic phenomena

such as crystal growth, but it seems that the problem has not yet been clarified

(A) (B)

FIGURE 6.19 Proliferation of steps. (A) T< TR. (B) T> TR.
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sufficiently. However, the following two approaches may help us to connect an atomi-

cally rough structure and the rough phase with drumhead wandering.

One approach is to study the intrinsic interface width [4,111,112], and the other

approach is to study the preroughening phenomena [113]. We will discuss them briefly

in the following subsubsections.

6.4.3.2 Intrinsic Width of a Step
To understand the microscopic structure of a phase separation line (1D interface) in the

2D Ising model, Bricmont, Lebowitz, and Pfister [111] presented the notion of “de-

formations.” They decomposed a 1D interface into a bone-line and “blobs.” In

Figure 6.20(A), the blobs are shown. The blobs are replaced by kinks of size D

(Figure 6.20(B)). The kinks are deformations in the phase separation line. Then, dn,

which is n-th moment of jDj, is defined as follows [112]:

dn ¼ lim
Nx/N

1

Nx

X
i

< jDijn > ; (6.48)

where Nx represents the number of lattice points in the direction of the bone-line. Based

on the results of a Monte Carlo study [112], d1 is kept finite for T	 Tc and d2 coincides

with w2
step ¼ kBT=~g. Since ~gfTc � T , d2 and w2

step diverge as [(Tc� T)/Tc]
�1. Therefore,

due to the effect of the local structures of the small domains of flipped spins (Figure 6.9),

both Wstep and wstep diverge at Tc.

For a surface step, we expect a similar divergence. In this case, however,

~gfexp½�A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR � T

p �, and then from Eqn (6.32), w2
step diverges as exp½A= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TR � T
p �.

Therefore, when T¼ TR, steps roughen the surface, and, at the same time, the steps

dissolve into the surface. The excited structures such as adatoms and islands contribute

to the values of the step tension and step stiffness.

6.4.3.3 Preroughening Phenomena
Den Neijs and Rommels [113] predicted preroughening phenomena on surfaces where a

short-range step–step repulsion exists.

When the temperature is near Tc for the 2D Ising model, the relatively large blobs are

excited. Due to repulsion, the steps are kept apart from other steps. As a result, when the

temperature is in the region Tc< T< TR, the surface seems to be rough, but the steps are

confined to two levels on the surface. This phase was named the “disordered flat phase”

i

Di

i

Di

(A) (B) FIGURE 6.20 Schematic diagram of
deformations. (A) An example of a
1D interface (phase separation line)
in a 2D Ising model. The
configurations in the dotted squares
are “blobs” [4,111,112]. A blob at the
site i is replaced by a kink, which is
called a deformation with size Di. (B)
1D converted interface with kinks.
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(DFP) by den Neijs and Rommels. The DFP seems to be a candidate for the atomically

rough phase.20

6.4.4 Changes in the Roughening Temperature on Complex Surfaces

6.4.4.1 Inverse Roughening
In 1994, Luijten et al. [114] predicted the “inverse roughening” phenomena on the (001)

surface of a CsCl-type crystal structure. The model that Luijten et al. adopted is the

staggered BCSOS model, which has a uniform field (stoichiometric chemical potential)

that favors the Cs component on the surface of the BCSOS model. In the inverse

roughening phenomena, the surface is rough when the temperature is zero; as the

temperature increases, it becomes smooth; with further increases, the step tension be-

gins to decrease; finally, at sufficiently high temperature, a second transition occurs and

the surface again becomes rough [33,114].

Using this type of model with different statistical weights for the vertices, the disor-

dered flat phase [115–117] and the reconstructed rough phase [116,117] can also be

studied. Details of these models are not discussed in this article.

6.4.4.2 Surface Modified by Langmuir Adsorption
Adsorbed materials on a surface are empirically known to change the thermodynamic

behavior of that surface [94]. Using a lattice model named the “decorated” RSOS model

(Figure 6.21), Akutsu et al. [107] showed the change of surface tension in a case of

Langmuir adsorption. They also showed that Langmuir-type adsorbed materials with

coverage less than one changes the roughening transition temperature. In this subsec-

tion, we explain how the roughening transition temperature is changed by a small

amount of adsorbed materials.

x

y

h

x

y

h(m,n)

h(m,n+1)

h(m+1,n)

σ  (m,n)xσ  (m,n)
y

(A) (B)

FIGURE 6.21 A “decorated” RSOS model for the Langmuir adsorption; the coverage is less than 1 [107].
(A) Perspective view. (B) Adsorption site. From Ref. [107].

20The DFP can be translated to an S¼ 1/2 quantum spin system as the resonating valence bond (RVB)

state relating to the Haldane gap.
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The Hamiltonian of the decorated RSOS model consists of an RSOS model (HRSOS), a

lattice gas model for adsorption (HL), and their coupling parts, as follows:

H ¼ HRSOS þHL þHint; (6.49)

where

HRSOS þHint ¼
X
m;n

f 3
�
1� asyðm;nÞ�$ jhðmþ 1;nÞ � hðm;nÞj

þ 3½1� asxðm;nÞ� $ jhðm;nþ 1Þ � hðm;nÞjg
HL ¼ �H

X
m;n

�
sxðm;nÞ þ syðm;nÞ�:

(6.50)

HL is expressed by the Ising spin variables s¼�1.21 The spin variables are put on the

bridge site, as shown in Figure 6.21(B), because we consider that an adsorbed material

on the RSOS ledge changes the microscopic ledge energy. The parameter a in Hint de-

scribes the coupling between the RSOS model and the lattice gas model of the adsorbed

materials. For a> 0, the adsorbed materials favor the edge of the step, while for a< 0, the

adsorbed materials favor the terrace sites.

The partition function is calculated as Z ¼Pfhig
P

fsigexp½�bH�, where b¼ 1/kBT.

After taking the partial sum with respect to {si}, we obtain the exact RSOS Hamiltonian

with the effective ledge energy ε
eff , as follows:

3
effðT ;HÞ ¼ 3� kBT ln

�
coshðba 3þ bHÞ

cosh bH

�
: (6.51)

The mean coverage of the materials of adsorption at the step ledge Cy is given by the

following equation:

My ¼ 2Cy � 1ztanh bH þ �tanh b
�
H þ 3a

�� tanh bH
�
px; (6.52)

where My represents the mean magnetization of hsyi. Equation (6.51) says that the

effective ledge energy depends on the temperature and the chemical potential of the

adsorbed materials in the ambient phase.

Since the roughening temperature is given by kBTR=ε
eff ¼ 1=zRz1:580 for the RSOS

model, where zR¼ 0.6330, we have

H

kBTR

¼ 1

2
ln

exp½zR � ð1þ aÞ 3=ðkBTRÞ� � 1

1� exp½zR � ð1� aÞ 3=ðkBTRÞ� ; (6.53)

which allows us to draw the critical line in the H� T plane, as shown in Figure 6.22. In

the case of az1, there is a region of H where the inverse roughening occurs. We can see

the region of H where the inverse roughening occurs in Figure 6.22(B) and (C).

21To obtain the expression for the lattice gas variables, replace s with 2C� 1 as in section 3.1.2. H¼ m/

2¼ (kBT/2)ln(P/Pe) where P represents the vapor pressure of the adsorbed materials and Pe represents the

vapor pressure of the adsorbed materials with the coverage being 50%.
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6.5 Vicinal Surface
6.5.1 Rough or Smooth? The Terrace-Step-Kink Picture

As mentioned in Section 1, studying the vicinal surface by using the BCSOS model [18]

gave us a correct understanding of the faceting transition. In addition, the vicinal surface

for T< TR is itself interesting because the system can be mapped to a 1D free fermion

(FF) system by using a terrace-step-kink (TSK) picture of the vicinal surface. This

characteristic of the 1D FF, as in Eqn (6.1), is the GMPT [13] type of universal character.

A vicinal surface is a slightly tilted surface from a plane with a low Miller index.

Figure 6.23 shows a typical vicinal surface for which the temperature T is lower than TR

of the terrace surface. As mentioned in the previous section, the excited structures such

as adatoms and islands contribute to changes in the step tension and the step interaction

coefficients of the step.22 Hence, in the mesoscopic scale, a vicinal surface is well

described by terraces, steps, and kinks in a step. This is called the TSK picture.

Since the terrace is smooth, a vicinal surface seems to be a smooth surface. In fact, as

mentioned in the work of BCF [87], the growth rate of a surface that has a regular train of

steps is different from that of a surface with T> TR. The linear dependence on the driving

force Dm concerning the growth rate, however, is similar to a rough surface. The vicinal

surface grows in the “step flow growth” mode, and the growth rate of a vicinal surface is

proportional to Dm. According to the definition of the surface roughness in Section 3.2.1,

FIGURE 6.22 Change of the roughening transition temperature. (A) a¼ 0.1. (B) a¼ 1.0. (C) a¼ 1.1. (D) a¼ 2.0.
From Ref. [107].

22Recall that islands and negative islands on a terrace are irrelevant.
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the vicinal surface is rough, because the variance of the surface height diverges loga-

rithmically as the area L2 increases (Eqn (6.28)).

Therefore, we can say that a vicinal surface has characteristics of both a rough surface

and a smooth surface. Statically, a vicinal surface has the characteristics of a rough

surface; dynamically, it has the characteristics of a smooth surface.

6.5.2 1D Free-Fermion Universal Features—Gruber-Mullins-Pokrovsky-
Talapov Behavior

In the TSK picture (Figures 6.4 and 6.23), the steps can be regarded as linear excitations

buried in a 2D planar lattice. Since overhang structures are inhibited in SOS models, the

linear excitations are impenetrable by adjacent excitations. Due to the impenetrability,

the vicinal surface can be exactly described by a 1D spinless free fermion (FF) at tem-

perature T¼ 0 [26]. The zigzag structure of a step corresponds to the quantum zero-point

oscillations. Hence, as previously shown in Eqn (6.1), the free energy of the vicinal

surface f(r) can be obtained by the ground-state energy of the 1D FF, as follows:

f
�
r
� ¼ f

�
0
�þ gsteprþ Br3 þ/; (6.54)

where r represents the step density, f(0)¼ gsurf(0) represents the surface tension of the

terrace plane, gstep represents the step tension, and B represents the step interaction

coefficient. In the case of the 1D FF [25,26],

B ¼ p2

6
kBTw

2
step: (6.55)

Recalling Eqn (6.32), we have the following relationship:

bB ¼ p2

6b~g
; (6.56)

where b¼ 1/kBT and ~g ¼ gstep þ v2gstep=vf
2 represents the step stiffness. Substituting

Eqn (6.56) into Eqn (6.54) with jpj ¼ raz, we have

f ðpÞ ¼ gsurfð0Þ þ gstep

jpj
az

þ p2

6

ðkBT Þ2
~g

�jpj
az

�3

þ/: (6.57)

h

x
y

y
x

Tim
e

(A) (B)

FIGURE 6.23 (A) A perspective view of a vicinal surface. (B) A terrace-step-kink picture of a vicinal surface. Solid
line: steps on the vicinal surface shown in (A) (top view). Dotted rectangles: islands or negative islands on the
surface.
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The surface tension for the RSOS model is calculated from f(p) as

gsurfðpÞ ¼ f ðpÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q
at kBT=ε ¼ 0:6, and it is shown in Figure 6.18(B).

In addition, applying Eqn (6.57) to the stiffness tensor (Eqn (6.27)), we have another

universal jump of det(f ij) at the facet edge, as follows [25,26]:

det
�
f ij
� ¼

8>><>>:
�

2

KR

�2�
kBT

a2
z

�2

¼ p2

�
kBT

a2
z

�2

; ðjpj/0Þ

N; ðjpj ¼ 0Þ
(6.58)

for small jpj, where KR¼ 2/p. Similarly, for the surface roughness and the Gaussian

curvature on the ECS, we have a jump, as follows:

wsurf ¼
8<:

ffiffiffiffiffiffiffiffiffiffi
KRa

2
z

4p

r
¼ azffiffiffi

2
p

p
; ðjpj/0Þ

0; ðjpj ¼ 0Þ
(6.59)

KG ¼

8><>:
�
la2

z

kBT

�2�
KR

2

�2

; ðjpj/0Þ

0; ðjpj ¼ 0Þ
(6.60)

Therefore, det(f ij), the Gaussian curvature, and the surface roughness are constant

near a facet edge.

6.5.3 Logarithmic Behavior on the Width of a Single Step

6.5.3.1 Height–Height Correlation Function of a Single Step
As mentioned in Section 3.4, we have shown that the variance W 2

step of the “height” of a

step on a surface is proportional to L, where L is the linear size of the system. In this

subsubsection, we will show that the variance of the “height” of a single step on a vicinal

surface is not proportional to L because the step collides with adjacent steps on the

vicinal surface.

We now consider the height–height correlation function D2(r) for a single step on a

vicinal surface, as follows [103–105]:

D2ðrÞ ¼
D
ðxðy þ rÞ � xðyÞÞ2

E
; (6.61)

where, without loss of generality, the y-axis can be chosen to lie along the mean running

direction of the steps. Here we introduce the probability Q(x,y) that two points (0,0) and

(x,y) lie in the same terrace:

Qðx; yÞ ¼ Chdðhð0; 0Þ � hðx; yÞÞi; (6.62)

where C is a normalization factor. Using the capillary wave Hamiltonian (Eqn (6.26)), we

obtain

Qðx; yÞfexp

� �p2x2

2Gðx; yÞ
�
; (6.63)
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where G(x,y) represents the height–height correlation function of the surface (Eqn

(6.22)). Equation (6.63) shows that Q(x,y) is identical to the probability that a step passes

the two points (0,0) and (x,y). Using the probability in Eqn (6.63), Eqn (6.61) then be-

comes the following:

D2ðrÞ ¼
Z

Qðx; yÞx2dx ¼ 1

p2
Gð0; rÞ ðr/NÞ: (6.64)

Since Gð0; yÞ ¼ ½kBT=ðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

p
Þ�ln r (Eqn (6.23)), we have the relation

D2ðrÞ ¼
h
kBT

.�
pr2a2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

q �i
ln r

¼ 1

pr2
ln r ðr/0Þ:

(6.65)

The Eqn (6.65) on D2(r) is also derived exactly in the limit r/ 0 for the TSK model on

a lattice [103,104]. The variance of the height of a single step on the vicinal surface

W 2
step;vicinal becomes exactly [104].

W 2
step;vicinal ¼

h
kBT

.�
2pr2a2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf ijÞ

q �i
ln L

¼ 1

2pr2
ln L ðr/0Þ:

(6.66)

6.5.3.2 Elastic Step–Step Repulsion
On a crystal surface, elastic repulsion such as g0/(xi� xi þ 1)

2 [118,119] sometimes exists.

Here, g0 represents the coupling constant, and xi represents the location of the i-th step

(Figure 6.23(B)). By adding this term to the capillary wave Hamiltonian, we have the

surface free energy for this system, as follows [103,120]:

felasticðpÞ ¼ f ð0Þ þ gðfÞ p
az

þ p2

6

ðkBTÞ2
~gðfÞ

~l
2ðgÞp

3

a3
z

; (6.67)

where

g ¼ 2b2~gðfÞg0; ~lðgÞ ¼
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g

p i.
2: (6.68)

Here, we used the exact result of Sutherland [121]. Therefore, we have this new

relationship around the facet edge:

det
�
f ij
� ¼ �kBTp~l

�
g
��2

; Gð0; rÞ ¼ 1

p2~l
�
g
� ln r; D2ðrÞ ¼ 1

p2r2~l
�
g
� ln r: (6.69)

The jump of the Gaussian curvature at the facet edge DKG(g) becomes

DKGðgÞ ¼ DKGð0Þ=~l2ðgÞ ¼ 1

~l
2�
g
�� la2

z

kBT

�2�
KR

2

�2

: (6.70)
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6.6 Step Faceting
6.6.1 Stability of a Macrostep

In this section, we discuss the faceting of a macrostep.

Since faceted steps [122] are often observed on real surfaces, it seems natural to

consider the roughening transition of an isolated step. Empirically, some impurities or

materials of adsorption are known to induce faceted steps, and surface reconstructions

are also known to do so [94,123]. As mentioned in Section 2.3, however, the drumhead

wandering of a 1D surface (a step) activated by thermal fluctuations destabilizes a

smooth surface. Hence, a step on a 2D surface is always rough when T< TR, due to

drumhead wandering. This seems to be contradicted by the observation of faceted steps

in equilibrium.

Cabrera [62,63] presented the special polar angular dependence of the surface tension

and its profile for the ECS23 (Figure 6.24). Cabrera and Coleman [62] discussed the

stability of a macrostep by assuming the surface free energy shown in Figure 6.24. If the

surface free energy has the Type-II slope dependence, as shown on the left-hand side of

Figure 6.24, a macrostep stabilizes as the two surfaces coexist under equilibrium.

The profile of the Type-II ECS, Figure 6.24, is called a first-order shape transition

[20,34–36]. Rottman and Wortis [34] showed the first-order shape transition on the ECS

for the 3D cubic Ising models with the negative second nearest-neighbor interaction

using mean field approximation. Jayaprakash and Saam [20] showed the first-order

shape transition on the ECS for the fcc lattice models with the negative second-

nearest-neighbor interaction, using the mean-field approximation. Jayaprakash et al.

[35] studied the vicinal surface between the (100) surface and the (110) surface by using a

TSK model. Assuming an attractive step–step interaction, such as g0/(xi� xj)
2, they ob-

tained the first-order shape transition between the (100) surface and the (110) surface

using the mean-field approximation. In the 1980s, the phase transition on the ECS

attracted attention, but not much attention was paid to the stability of macrosteps.

Recently, various microscopic models that show an ECS similar to Type II in

Figure 6.24 have been presented; these include the p-RSOS model [86,96,124,125], the

RSOS-I model [126–128], and a modified RSOS-I model [129]. The p-RSOS model

(Figure 6.25), explained in the following subsection, is the RSOS model with a point-

contact type of step–step attraction. This type of step–step attraction works at the

meeting point of adjacent steps. It was introduced to describe the energy gain that arises

from the formation of a bonding state between steps due to the overlapping of orbitals.

The RSOS-I model (the RSOS model coupled with the Ising system; see Appendix G.2) is

used to study the effects of adsorption on the surface thermodynamic quantities. The

23In Figure 6.24, b(p) represents a vicinal surface free energy f(p) of this article. Later, the shape shown

as type II in Figure 6.24 was called a “first-order shape transition” [22,36,57] because the surface slope

jumps at the facet edge. The surface slope is given by the first derivative of the vicinal surface free energy

with respect to h (Eqn (6.25)), and at the facet edge, it converges to p1 from the left but converges to

0 from the right.

298 HANDBOOK OF CRYSTAL GROWTH



modified RSOS-I model is the RSOS-I model in which a relaxation of stress at the step

edge is taken into consideration.

The faceted steps are obtained in these models at low temperatures, where the two

surfaces coexist at equilibrium. The key quantity for these phenomena was found to be

the microscopic step–step attraction [86,96,124–128]. This attractive step–step interac-

tion causes a discontinuity in the surface tension [96] at low temperatures. The tem-

perature dependence of the phenomena is understood to be due to the competition

II

P0 0

II

r0=2β'1/∆P r0=2β1/∆P 

Z

0 r

I

P

I

β

β1

β'1
β1

FIGURE 6.24 Top figure: the vicinal surface free energy denoted by b as a function of p¼ px. Type I (right-hand
side of the figure): the case of v2b/vp2> 0. Type II (left-hand side of the figure): the case of v2b/vp2< 0. Bottom
figure: The profile of the ECS. Type I (right-hand side) and Type II (left-hand side). From Ref. [63].

FIGURE 6.25 An example of a vicinal surface on the p-RSOS model. (A) Perspective view. (B) Top view. From
Ref. [86].
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between the attractive energy between the steps and the entropy of the step wandering.

These phenomena can also be understood as 1D Bose gas condensation at T¼ 0 [86].

6.6.2 Discontinuous Surface Tension

6.6.2.1 p-RSOS Model
One of the microscopic models showing step faceting is the RSOS model with the point-

contact type of step–step attraction (p-RSOS model) [86,96,124,125]. The Hamiltonian of

the p-RSOS model is written as follows:

Hp�RSOS ¼
X
i;j

3½jhði þ 1; jÞ � hði; jÞj þ jhði; j þ 1Þ � hði; jÞj�

þP
i;j

3int½dðjhði þ 1; j þ 1Þ � hði; jÞj; 2Þ

þdðjhði þ 1; j � 1Þ � hði; jÞj; 2Þ�;

(6.71)

where 3 is the microscopic ledge energy, εint is the microscopic step–step interaction

energy, and d(a,b) is the Kronecker delta. The summation with respect to (i,j) is per-

formed over all of the sites on the square lattice. The RSOS restriction is required

implicitly. In the case of εint < 0, the interaction between the steps becomes attractive.

For a vicinal surface, we add the terms of the Andreev field [57] h¼(hx,hy) to the

Hamiltonian in Eqn (6.71) as an external field. The model Hamiltonian given in Eqn

(6.71) for the vicinal surface then becomes

Hvicinal ¼ Hp�RSOS � hx

X
i;j

½hði þ 1; jÞ � hði; jÞ� � hy

X
i;j

½hði; j þ 1Þ � hði; jÞ�: (6.72)

The partition function Z for the p-RSOS model is given by Z ¼Pfhði;jÞgexp½�bHvicinal�:
The Andreev surface free energy ~f ðhÞ is the thermodynamic potential calculated from the

partition function Z by using the expression b~f ðhÞ ¼ �limN/Nð1=N ÞlnZ; where N is

the number of points on the square lattice.

6.6.2.2 Discontinuity in Surface Tension
In Figure 6.26, we show the Andreev free energy calculated by the PWFRG method

(Appendix A) [86,96,124,125]. The model is found to have two transition temperatures

Tf,1 and Tf,2,
24 where for T< Tf,1, the surface tension of the (111) surface becomes

discontinuous, and when T< Tf,2, the surface tension of the (001) surface becomes

discontinuous. The shape of the equilibrium (001) facet is shown in Figure 6.27. As seen

from this figure, the (001) facet directly contacts the (111) facet at T< Tf,2.

From the Legendre transformation of f ðpÞ ¼ ~f ðhÞ þ p $h, we obtain the vicinal sur-

face free energy and the surface tension gsurfðpÞ ¼ f ðpÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

���p���2r
. In Figure 6.28, we

show the vicinal surface free energy and the surface tension calculated by the PWFRG

24kBTf ;1=ε ¼ 0:3610� 0:0005 and kBTf ;2=ε ¼ 0:3585� 0:0007.
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method. For Tf,2< T< Tf,1, we have obtained a non-GMPT form for the vicinal surface

free energy, as follows [86]:

feff ðpÞ ¼ f ð0Þ þ gstepðfÞ
����paz

����þ Aeff ðfÞ
����paz

����2 þ Beff ðfÞ
����paz

����3 þO

�����paz

����4�: (6.73)

Here, the quadratic term with respect to jpj has reappeared.

It should be noted that the metastable lines in Figure 6.26 converge to points when

T< Tf,2. This means that there are no Gaussian-type capillary wave fluctuations

(Figure 6.11(C)) with respect to the surface slope. This lack of slope fluctuations

FIGURE 6.26 Profile of the reduced equilibrium crystal shape calculated by the PWFRG method. X¼ hx/kBT¼�lx/
kBT, Y¼ hy/kBT¼�ly/kBT, and Z ¼ ~fðhÞ=kBT ¼ lzðx; yÞ=kBT . εint=ε ¼ �0:5. Broken lines represent metastable lines.
(A) From right to left, kBT=ε ¼ 0:35, 0.36, and 0.37. (B) kBT=ε ¼ 0:36. The edge of the (111) facet is denoted by Xq.
(C) Original RSOS model ð 3int ¼ 0Þ; kBT=ε ¼ 0:3. From Ref. [96].

FIGURE 6.27 Equilibrium facet shape (EFS) for X> 0 and Y> 0. Filled circles: (Xc,Yc) values calculated by the
PWFRG method [44] (Appendix A) for kBT=ε ¼ 0:3. Open squares: (Yc,Xc) values. Solid lines: EFS of the 2D square
nn Ising model for kBT=ε ¼ 0:3. Dash-dotted lines: EFS of the 2D Ising model for kBT=ε ¼ 0:361. EFS of 2D Ising
model is calculated by coshðXcÞ þ coshðYcÞ ¼ ½cosh2ð 3=ðkBTÞÞ�=½sinhð 3=ðkBTÞÞ�. Dashed lines: Y¼�Xþ 5.0. Dotted
lines: Y¼�Xþ 4.1551 ðY ¼ �X þ ð2 3þ 3intÞ=kBTÞ. (A) εint=ε ¼ �0:5; (B) εint ¼ 0. From Ref. [86].
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stabilizes the flat plane of the side surface of the macrostep. This faceted macrostep

formation was confirmed by a Monte Carlo calculation [86].

In addition to the above properties, the movements of a macrostep are inhibited near

equilibrium [96]. When a macrostep is faceted (T< Tf,2), the kink density at the side

surface of the macrostep is extremely small because the side surface is flat and smooth.

The macrostep moves by way of 2D nucleation, and thus there is intermittent motion of

the macrostep near equilibrium. When the driving force is large enough to frequently

create new 2D nuclei, kinetic roughening occurs on the side surfaces of the macrosteps.

Hence, the macrostep dissolves into a homogeneous vicinal surface.

In the temperature region Tf,2< T<Tf,1, the steps merge locally, forming “step

droplets” with a finite lifetime [86,96]. Due to the discontinuity in the surface tension

around the (111) surface, the kink density decreases on the merged steps. The move-

ments of the vicinal surface with step droplets, therefore, become smaller than what

would be expected for the vicinal surface with regular train of steps.

6.7 Summary
Roughening and faceting transitions of surfaces and steps have been reviewed from the

point of view of statistical mechanics. We paid attention to the crystal surfaces expressed

by the distinct border in the microscopic scale between the crystal phase and the

ambient phase such as in the case of vapor growth or solution growth. The definition of

the surface free energy (or the interface free energy) was introduced. We have also shown

how to define and calculate the surface free energy and step tension.

FIGURE 6.28 The surface tilted toward the (110) direction, as calculated by the PWFRG (DMRG) method. (A)–(D)
Slope dependence of the vicinal surface free energy ½fðpx ;pyÞ � fð0;0Þ�= 3; and (E)–(H) surface tension gsurfðp;pÞ= 3.
For (A)–(C) and (E)–(G), εint=ε ¼ �0:5; and for (D) and (H), εint ¼ 0, the original RSOS model. Temperatures: kBT=ε ¼
0:35 for (A), (D), (E), and (H); kBT=ε ¼ 0:36 for (B) and (F); kBT=ε ¼ 0:37 for (C) and (G). Closed squares: (A) and
(B), (0,0) and ½fð1; 1Þ � fð0; 0Þ�= 3; (E) and (F), gsurfð0; 0Þ= 3and gsurfð1;1Þ= 3. Broken lines: (B) and (F), the curves for
the metastable states. From Ref. [96].
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The microscopic surface shape is well described by the SOS model. Analysis of the

statistical mechanics of the SOS model shows that the roughening transition is the

Kosterlitz–Thouless type phase transition. In the rough phase, the variance of the surface

heights becomes large and diverges logarithmically with the linear size of the surface due

to the drumhead wandering. The surface size dependence of the variance is attributed to

the lower cutoff of the wave number of the drumhead wandering. The universal features

associated with the KT transition were reviewed concerning the roughening and faceting

transitions. We have presented a brief description of other systems that have complex

phase diagrams for the roughening transition temperature.

Universal features on the vicinal surface have been also discussed for temperatures

lower than the roughening temperature of the terrace surface. The logarithmic behavior

with respect to the length of the step has been explained for the variance of a single step

height.

Finally, we discussed the faceting of a macrostep and its stability.

Appendix A. Transfer Matrix Method
PWFRG is an acronym for the product wave-function renormalization group method

[44]. The PWFRG method is a transfer matrix [130] version of the White’s density matrix

renormalization group (DMRG) method [131,132] for 1D quantum spin systems. The 1D

quantum system can be mapped to a 2D classical system through the transfer matrix

with the Suzuki–Trotter formula [133].

In order to apply the PWFRG method to the RSOS systems, we construct the transfer

matrix bT ðt1; t2;/; tN ; s
0
1; s

0
2;/; s0N Þ (Figure A.29(C)) by using the 19-vertex model [32,113]

(Figure A.29(B)). The partition function Z is then rewritten by bT as follows:

Z ¼ Tr

� bT �t1; t2;/; tN ; s
0
1; s

0
2/; s0N

�M�
; (A.1)

where N is the number of the linked vertices, and M is the linear size of the system in the

vertical-direction in Figure A.29(D). Then the transfer matrix is expressed by use of the

statistical weight denoted by V(s,t;s0,t0) as follows:bT �t1; t2;/; tN ; s
0
1; s

0
2;/; s0N

� ¼ X
fq1g;fq2g;/

V
�
s1; t1; s

0
1;q1

�
V
�
q1; t2; s

0
2;q2

�
/V

�
qN�1; tN ; s

0
N ; t

0
N

�
: (A.2)

In the limit of M,N/N, only the largest eigenvalue of the transfer matrix LðNÞ
contributes to the partition function. The Andreev surface free energy, therefore, is

obtained from the partition function (Eqn (A.1)) as

b~f ðhÞ ¼ � lim
M ;N/N

1

NM
ln LðNÞM ; (A.3)

The transfer matrix is diagonalized efficiently by the PWFRG method. In the PWFRG

calculation, the number of the so-called “retained bases” m are set from 7 to 37. The

iteration number for the diagonalization is set to be 1500 – 1� 105.
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Appendix B. Driving Force for Crystal Growth
The driving force for crystal growth Dm is defined as the difference of the bulk chemical

potential between the crystal phase and the ambient phase. Examples of the driving

force are shown in Table B.3 [94].

Appendix C. Example of the Anisotropy of the
Entropy of a Step
Let us consider a step on the (001) surface of cubic lattice (Figure C.30). The ground-state

structure of a (010) step is uniquely determined. In Figure C.30(A), the step has six

broken bonds, and eight in (B). Hence, the structure in (A) is the ground state, and the

structure in (B) is in an excited state. On the other hand, (C), (D), and (E) also have eight

broken bonds. There are 67 other structures with the same number of broken bonds.

These 70 structures are all in the ground state, but they are degenerated. Hence, the

ground-state structure of the (110) step cannot be determined uniquely. Since the en-

tropy S is given by S¼ kBln W, where W represents the degeneracy, the entropy of a step

depends on the azimuth of the step.

Appendix D. IPW Method
In this section, we explain how to derive the 1D interface tension from a rough phase

separation line in the 2D Ising model [100]. The 1D interface as the phase separation line

is made by an antiphase boundary condition, as shown in Figure 6.9. We regard the

s'1

t1 t2 t3 t4 tN

s'2 s'3 s'4 s'N

s1 t'N

(A)

(C)

(B) (D)

x

y

N

M

1
2

1 2 ...

...h1

h2 h3

h4

s

s’

t

t’

FIGURE A.29 (A) Top view of the (001) surface of a cubic lattice. (B) Quadruplet of squares surrounding a vertex.
In the figure, s¼ h2� h1, t¼ h3� h2, s0 ¼ h4� h1, t0 ¼ h2� h1 with s, s0, t, and T0 being {0,�1}. (C) The transfer
matrix assembled by the vertices. (D) Products of the transfer matrices.
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phase separation line as a random walk connecting the ends O and P. The main idea for

obtaining g1D(q,T) is to use the “duality” between the interface tension and the corre-

lation length [134]. The asymptotic form of the correlation function becomes

GðRÞwexp½ � jRj=xðq;T �Þ�; ðjRj/NÞ; (D.1)

where T* represents the temperature in the world of x(q,T*). From the duality relation, we

have g1D(q,T)/kBT¼ 1/x(q,T*), and

GðR þ r; bjR;aÞwexp½ � g1Dðq;T Þjrj=kBT �; ðjrj/NÞ; (D.2)

We will only give a brief review of the derivation of the final equations, Eqns

(D.6)–(D.8) [100].

Let us label each elementary path by a pair (R,a), where R represents the starting

position of the path and a represents its direction, such as {/,),[,Y}. We denote the

weighted sum over all possible N-step walks by GN ðR;ajR0;a0Þ, where the random walk

Table B.3 Equation of Driving Force

Vapor growth Dm¼ kBTln P/P0
a

Solution growth Dm¼ kBTln C/C0
b

Melt growth Dm ¼ mliquid � mcrystalz ¼ DsmeltingðTm � TÞc
Electrocrystallization of metals Dm¼ zehd

akB represents the Boltzmann constant, T represents the temperature, P represents the pressure in the ambient phase, and P0 rep-

resents the equilibrium pressure at some temperature T0.
bC and C0 are the real and the equilibrium concentrations of the solute,

respectively.cTm represents the melting temperature, and Dsmelting represents the entropy of melting.dz represents the valence of

the neutralizing ions, e represents the elementary electric charge, and h¼ E� E0 represents the over-voltage given by the differ-

ence of the equilibrium potential E0.

(B) (D)

(010)

(A)
(110)

(C) (E)

FIGURE C.30 Microscopic configuration of a step on a cubic lattice with both ends being fixed. Black solid line:
the edge of a step. Gray line: a broken bond. (A) and (B): (010) steps. (C), (D), and (E): (110) steps.
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starts at R0 with direction a0 and ends at R with direction a. Using the connectivity

matrix A(R,ajR0,b), GN satisfies the following recursion relation:

GNþ1ðR;ajR0;a0Þ ¼
X
R0 ;b

AðR;ajR0; bÞGN ðR0; bjR0;a0Þ: (D.3)

Writing in matrix form, Eqn (D.3) becomes GNþ1 ¼ AGN . Let us introduce G as

G ¼PN
N¼0GN . Then with initial condition G0 ¼ 1, we have G ¼ ½1� A��1. Then, evaluating

Zþþ and Zþ�(q) by Vdovichenko’s method [135], we have

Zþ�ðqÞ
Zþþ fGðR þ r; bjR;aÞ: (D.4)

From Eqns (D.2)–(D.4),

g1Dðq;TÞ ¼ �kBT lim
jrj/N

1

jrj ln
24 Zp

�p

Zp
�p

dk2 eikr

DðkÞ

35; (D.5)

where D(k) represents D(k)¼ det[1�A(k)] and A(k) represents the matrix of the Fourier

components of A(R,ajR0,b).
We estimate the right-hand side of Eqn (D.5) by the saddle-point method, and

denote the saddle-point k*¼ (iu1,iu2). Then, we have a set of equations as follows

[39,86,100]:

g1Dðq;T Þ ¼ kBT ðu1 cos qþ u2 sin qÞ (D.6)

DðuÞ ¼ 0 (D.7)

½vDðuÞ=vu2�=½vDðuÞ=vu1� ¼ tan q: (D.8)

From the thermodynamics of ECS, we have –h¼ lx¼ kBTu2 and ~f ðhÞ ¼ ly ¼ kBTu1.

It should be noted that D(k) also appears in the bulk free energy of the 2D Ising

model.

Appendix E. Calculation of Surface Width
In this section, we derive an explicit equation for the variance of the surface height,

Eqn (E.6) [23].

The variance of the surface height,

W 2 ¼
D
½hðxÞ � hhðxÞi�2

E
; (E.1)

can also be written as

W 2 ¼
X
k

hhðkÞhð � kÞi (E.2)
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where

hðxÞ ¼P
k

hðkÞexpðikxÞ; k ¼ ðk1; k2Þ;
k1 ¼ ð2pmÞ=L; k2 ¼ ð2pm0Þ=L: ðm;m0 ¼ �1;�2;�3;/Þ

(E.3)

Using Eqn (6.26) for the thermal average, we obtain the following equation:

W 2 ¼ kBT

L2

X
k

"X
a;b

f abkakb

#�1

; (E.4)

where fab represents fxx(pe), f
yy(pe), f

xy(pe), and fyx(pe), and they are the components of the

surface stiffness tensor defined by Eqn (6.27). Applying a continuous approximation to

the r.h.s. of the above summation with respect to k, we have

W 2 ¼ kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf abÞp ZL

k0

dq
1

q
; (E.5)

where L ¼ 2p=a represents the upper cutoff, and k0¼ 2p/L represents the lower cutoff.

In this way, we have in the limit of L/N,

W 2 ¼ kBT

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðf abÞp ln L: (E.6)

Appendix F. Derivation of the Capillary Wave
Hamiltonian
In this section, we derive Eqn (6.26).

The total surface free energy F of a crystal droplet surrounded by rough surfaces is

described as follows:

F ¼
Z

gsurfðnÞdA ¼
Z

f ðpÞdxdy; f ðpÞ ¼ gsurfðnÞ
ffiffiffi
g

p
(F.1)

where gsurf(n) represents the surface tension, n represents the surface normal unit

vector, dA represents a small surface area, and f(p) represents the surface free energy per

projected xy area. For an inclined surface of area L2, a generalized free energy ~Fðp;hÞ [23]
is considered from Eqn (F.1) as follows:

~F
�
p;h

� ¼ L2
�
f
�
p
�� p ,h

�
; (F.2)

where h and p are assumed to be independent variables. The equilibrium orientation of

the surface is obtained by minimizing ~Fðp;hÞ with respect to p. After some calculations,

we have the following equation near the equilibrium surface slope pe, Figure 6.11(C):

~Fðp;hÞ ¼ L2 ~f ðhÞ þ 1

2
L2
h
f xx
�
pe

�
Dp2

x þ f yy
�
pe

�
Dp2

y þ
�
f xy
�
pe

�þ f yx
�
pe

��
DpxDpy

i
; (F.3)
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where ~f ðhÞ represents the Andreev free energy [57]; and fxx(pe), f
yy(pe), f

xy(pe), and fyx(pe)

are the components of the surface stiffness tensor defined by Eqn (6.27).

Hence, the capillary wave Hamiltonian of the inclined crystal surface becomes

Gaussian (Figure 6.11(C)) as follows:

HCW ¼ 1

2

ZL
0

dx

ZL
0

dy
h
f xx
�
pe

�
Dp2

x þ f yy
�
pe

�
Dp2

y þ
�
f xy
�
pe

�þ f yx
�
pe

��
DpxDpy

i
: (F.4)

Appendix G. Other Microscopic Models
Appendix G.1. Discrete Gaussian Model

The discrete Gaussian (DG) model introduced by Chui and Weeks [42] is one of the SOS

models, and the Hamiltonian of the DG model is given as follows:

HDG ¼ J

2

X
j;d

�
hj � hjþd

�2
; (G.1)

where {hj} represents the surface height at a site j and J represents the energy cost to

create the height difference on the surface between i and iþ d as the nn lattice sites. The

summation with respect to i runs over all lattice points, and the summation with respect

to d runs over all the nn sites around i. Note that {hj} in the DG model is a continuous

variable.

Since the DG model is a Gaussian-type model, it is easy to analyze theoretically. The

model, therefore, contributes to establishing an essential connection between the

roughening transition on the surface and the XY model in two dimensions.

Appendix G.2. RSOS-I Model

The image of the RSOS model and the materials of adsorption for the RSOS-I model are

similar to Figure 6.21. The Hamiltonian for the RSOS-I model [126,128] is written as

follows:

HRSOS�I ¼ HRSOS þHIsing þHint

¼ P
m;n

�
3
�
1� asy

�
m;n

��jhðmþ 1;nÞ � hðm;nÞj þ 3ð1� asxðm;nÞÞjhðm;nþ 1Þ � hðm;nÞj�
�J
P
m;n

½sxðm;nÞsyðm;nÞ þ sxðm;nÞsyðm� 1;nÞ

þsx

�
m;n� 1

�
sy

�
m;n

�þ sx

�
m;n� 1

�
sy

�
m� 1;n

��
�H

P
m;n

�
sxðm;nÞ þ syðm;nÞ�:

(G.2)

In the case of J¼ 0, the model reduces to the decorated RSOS model in Section 4.4.2

(Eqn (6.50)).
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15453.

[102] Barabasi A-L, Stanley HE. Fractal concepts in surface growth. Cambridge; 1994.

[103] Yamamoto T, Akutsu Y, Akutsu N. J Phys Soc Jpn 1994;63:915. Akutsu Y, Akutsu N, Yamamoto T.
J Phys Soc Jpn 1994;63:2032.

[104] Yamamoto T, Phys J. Soc Jpn 1996;65:3810.

[105] Yamamoto T, Akutsu N, Akutsu Y. Advances in the understanding of crystal growth mechanisms,
part I. In: Nishinaga T, Nishioka K, Harada J, Sasaki A, Takei H, editors. Crystal growth theory and
simulations. Amsterdam, New York: Elsevier Science; 1997. p. 19.

[106] Syoji I. In: Domb C, Green MS, editors. Phase transitions and critical phenomena, vol. 1. London:
Academic Press; 1972. p. 270.

[107] Akutsu N, Akutsu Y, Yamamoto T. Phys Rev B 2001;64:85415–21.

[108] Kossel W. Nach Ges Wiss Gottingen 1927:135. Naturewissenschaften 1930;18:901.

[109] Sogo K, Akutsu Y, Abe T. Prog Theor Phys 1983;70:739. Truong TT, den Nijs M. J Phys A 1986;19:
L645.

[110] http://noriko-akutsu.com/data/.

[111] Bricmont J, Lebowitz J, Pfister Ch. J Stat Phys 1981;26:313.

[112] Akutsu Y, Akutsu N. J Phys A 1987;20:5981.

[113] den Nijs M, Rommelse K. Phys Rev B 1989;40:4709.

[114] Luijten E, van Beijeren H, Blöte HWJ. Phys Rev Lett 1994;73:456.
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7.1 Introduction
Any phase transformation starts with a new phase appearing inside the supersaturated

old (mother) phase. Because the thermodynamic stability of the system requires con-

tinuity of the thermodynamic functions during the entire course of phase trans-

formation, the change in system thermodynamic potential occurring infinitely close to

the transition point has to be infinitely small. Two possibilities correspond to this

postulate: either an infinitely small amount of the new phase would appear, with

properties distinctly different from the properties of the old phase, or an “infinitesimal”

new property would appear simultaneously in the entire phase volume. The first case is

denoted as a first-order phase transition because first derivatives of the thermodynamic

potential are changed, whereas the second case is denoted as a second-order phase

transition because second derivatives of the thermodynamic potential are changed.

Nucleation is a first-order phase transition. It is a widespread phenomenon in both nature

and technology. Rain, fog, ice and snow, salt crystallization by evaporation of sea water, and

gas bubble formation in mineral water—just to mention some—begin with the nucleation of

a new phase. Nucleation predetermines some basic properties of the new phases created in

chemical technology processes (e.g., during evaporation, condensation, and crystallization),

metallurgy, deposition of epitaxial layers in electronics, purification (including pharmaceu-

tical substances) by crystallization, formation of nanocrystals, etc. Even in some processes of

biological matter crystallization, such as in protein crystallization, nucleation plays a central

role. The questions to be answered here are: Why is nucleation required for new phase

formation in so many phenomena and processes? Why is it ubiquitous?

Qualitative consideration of the simplest case of a first-order phase transition, namely

the transition from single molecules randomly scattered in vapor to a new condensed

liquid phase, comes in evidence to nucleation inevitability. Vapor condensation starts

with the formation of a sequence of molecule clusters: pairs, triplets, etc. (Figure 7.1).

However, because they have a highly convex shape, such clusters tend to dissolve

into the ambient mother phase rather than continue to grow. According to the

Young–Laplace equation, the smaller the droplet is (i.e., the higher its surface curvature),

the higher the droplet vapor pressure is. Although evaporation of a single molecule from

a large (flat) liquid surface does not change its curvedness, the same process with very

small droplets results in a noticeable curvature increase, and thus in vapor pressure

augmentation and further droplet evaporation. In 1878, J.W. Gibbs [1] assumed that

repeated density fluctuations in the mother phase were the only reason to oppose such a

course of events. He stipulated that a series of density fluctuations were responsible for

the formation of an entire set of differently sized undercritical molecule clusters

(Figure 7.1(b)) and the critical nucleus itself.
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As is very well known, fluctuations are not limited to metastable system conditions

only. Under equilibrium conditions, there already exist locally different and temporally

fluctuating numbers of variously sized molecule clusters (Figure 7.1(a)). Gibbs’ notion

suggests that the probability of sufficiently large fluctuations leading to a stable new

phase is infinitesimal in view of the processes occurring near equilibrium. This sug-

gestion is attributed to the large barrier to phase transition arising from the energy cost

for creating an interface between the new born cluster and the original phase. Moreover,

the larger the critical nucleus is, the larger density fluctuation that is needed for its

formation; also, the larger the fluctuation, the less probable (and rarer) is its appearance.

Therefore, the prerequisite for the occurrence of a noticeable nucleation process is the

establishment of sufficiently high supersaturation, when small fluctuations are required

for critical nuclei appearance. Conversely, a limit on metastability is set when, due to a

supersaturation increase, fluctuations leading to the new phase become comparable in

number to the equilibrium thermodynamic fluctuations in the original phase [2]. This

means that the system needs to be brought sufficiently deep into the metastable region

to reduce the phase transition barrier until it becomes of the same order as the thermal

energy, kBT (where kB is the Boltzmann constant and T is the absolute temperature).

7.2 Classical (Capillary) Nucleation Theory
and Nucleation in Vapors

Despite nucleation inevitability, even direct observation of critical nuclei has proven elusive.1

That is why theoretical explanations of nucleation processes have been developed. As already

(a) (b)

FIGURE 7.1 Snapshots of the dynamic process of new phase formation. (a) The initial state of the vapor phase.
Although some very small molecule clusters (e.g., pairs) may appear randomly, they exist only temporarily, decay,
and new pairs are born. (b) The start of the transition to the new phase formation.

1The protein crystal nuclei make no exception. Although formed by huge protein molecules, being still

nanosized particles they remain invisible by optical microscopy. In addition, the critical nuclei are not

labeled; it is impossible to distinguish them in the whole assembly of undercritical, critical, and

supercritical molecule clusters. In addition, the number of the critical nuclei changes dynamically because

of the constant growth/decay of differently sized clusters.
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mentioned, Gibbs [1] has given a thermodynamic description of the condensation of su-

persaturated vapors into liquid droplets. His ideas represent the cornerstone of the classical

nucleation theory (CNT), also called the capillary theory or fluctuation theory. Unfortunately,

the significance of Gibbs’ ideas on nucleation was largely ignored until 1926, when Volmer

and Weber [3] acknowledged their importance.

Evidently, when the phase transition is thermodynamically favored, the molecules in

the bulk of sufficiently large clusters of the new phase have to be of a lower free energy

than the same molecules residing in the parent phase. However, when a nucleus of a

new phase with distinctly different properties is formed within the original phase, the

two have to be separated by an interface region with intermediate structure and prop-

erties; the interfacial width is determined by the structures of the two phases and

the interactions between the molecules within these phases. In addition, the smaller the

cluster of the new phase, the larger is the percentage of building units that reside in

the interfacial region. In his fundamental work, Gibbs [1] introduced the notion of a

dividing surface between the old and new phase, and he assumed it was sharp.

Interface matter bonding is less strong than the one in the bulk of the new phase

cluster, which is why molecules in the interface region possess more energy compared to

the one they would have in the macroscopic new phase. Therefore, the interface, appearing

between small clusters and parent phase, is associated with definite interface energy. That

is why the creation of small clusters of the new phase requires work to be done; a free

energy cost has to be paid, which is the key barrier to nucleation (establishment of suffi-

ciently high supersaturation being condicio sine qua non for creation of small clusters).

7.2.1 Nucleation Driving Force

The thermodynamic supersaturation, which is the nucleation driving force, is generally

given as the difference in the chemical potentials of the parent and new phases, Dm> 0.

Respectively, equilibrium is characterized by Dm¼ 0 and undersaturation (overheating,

undervoltage) by Dm< 0. The thermodynamic supersaturation for vapor condensation is

expressed as

Dm ¼ kBT ln ðp�pNÞ (7.1)

where p is the actual vapor pressure and pN is the equilibrium pressure (where the

infinitely large condensed phase stands in equilibrium). An analogous expression holds

true for the bubble formation driving force (see Section 7.3). For the vapor deposition of

thin films, Dm is expressed by replacing the actual and equilibrium vapor pressures

through the corresponding impingement rates of vapor atoms on the substrate.

In the case of crystallization from solutions,

Dm ¼ kBT ln ða=aNÞzkBT ln ðc=cNÞ (7.2)

where a and aN are the corresponding solute activities. Because the activity coefficients

are usually taken as equal to 1, Dm is expressed in this case by the concentration ratio

c/cN, with c being the actual concentration and cN, being the equilibrium concentration.
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For crystallization from melts, Dm is expressed as

DmzQMDT=TM (7.3)

where Qn is the molar heat of fusion and the undercooling DT¼ Tn� T, with Tn being the

melting temperature and T being the actual temperature.

Most nucleation processes do not involve chemical transformations; rather, they are

purely physical events. However, a few exceptions do exist, such as crystallization of

chemical reaction products and electrochemical nucleation. In the case of electro-

crystallization of metals, the nucleation driving force is

Dm ¼ zFh (7.4)

where z denotes the number of exchanged charges (e.g., the valence of the neutralizing

ions); F¼ 96,500 C/mol, which is the so-called Faraday equivalent; and h¼ e� eo is

the overpotential (overvoltage), which is given by the difference between the electrical

potential e that is applied on the electrochemical system and the equilibrium potential eo
of the deposited ion in the solution [4].

7.2.2 Thermodynamics of Homogeneous Nucleation, Energy Barriers
for Homogeneous Nucleation, and the Critical Nucleus Size

The spontaneous formation of nuclei in the bulk of a supersaturated system where the

probability of the process is equal throughout the whole system, commonly known as

homogeneous nucleation, usually marks the beginning of any consideration regarding

the process. The reason is that the basic physics of nucleation is best illustrated with the

help of this (simplest) theory.

The formationofmolecule clustersof thenewphase inan isothermal and isobaric system

consisting of N molecules is to be considered for a one-component system. Gibbs [1] has

defined the change in free energy (or thermodynamic potential, DG), required for the new

phase formation as a sumof two terms: (1) the free energy gain resulting from the transfer of

nmolecules (atoms, ions) from the supersaturated phase to the new phase cluster, and (2)

the free energy penalty F imposed due to the formation of the new interface.

If we denote the starting thermodynamic potential by Gstart, and the final thermo-

dynamic potential by Gfin, we can write Gstart¼Nmmother, and Gfin¼ (N� n)mmotherþ
nmnewþF, where mmother and mnew are the chemical potentials of the mother and the

new phase. Thus,

DG ¼ Gfin � Gstart ¼ �nDmþ F (7.5)

where Dm¼ mmother� mnew> 0. The first term in Eqn (7.5) is negative because the new

phase is more stable than the old one. This term decreases the system thermodynamic

potential and indicates a tendency toward a spontaneous phase transition.

Consideration of droplet nucleation in the vapor phase, with droplets assumed to be

of spherical shape, is an important basis to analyze other cases. So, n depends on the

third power of droplet radius r, and the second term in the sum is proportional to the
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interface area (i.e., it depends on droplet radius in power 2). Initially, with very small

cluster sizes, the surface-to-volume ratio is large and the second term prevails. That is

why the smallest liquid clusters tend to evaporate. Rising cluster size leads to the volume

term increasing faster than the surface term. Thus, the competition between these two

terms determines the energy barrier for nucleus formation as the maximum in total free

energy change, DG*¼max, which is reached at the critical cluster size (Figure 7.2).

In large and/or open systems, the critical nucleus stands in an unstable equilibrium

with the surrounding parent phase.2 The equilibrium is unstable because even an

infinitesimal increase in the critical nucleus size leads to a decrease in thermodynamic

potential (Figure 7.2), and nucleus growth becomes favorable. With further growth,

droplet vapor pressure decreases continuously. Because the external pressure remains

unchanged in such systems, the growth process becomes irreversible. On the contrary, if

the critical nucleus radius decreases, its vapor pressure will augment and the droplet will

evaporate. A mechanical analog of unstable equilibrium is depicted in Figure 7.3.

r*

ΔG*

~ r3

ΔG

0
r

~ r2

FIGURE 7.2 Plot of the free energy (Gibbs’ thermodynamic potential), DG, versus droplet radius, r. DG*¼max
determines the radius of the critical nucleus r*.

FIGURE 7.3 Mechanical analog of unstable equilibrium. Even an extremely small push exerted on the ball causes it
to roll down, either to the right (which corresponds to growth) or to the left (which corresponds to dissolution).

2Stable equilibrium is achievable only in sufficiently small closed systems, when any droplet

evaporation increases appreciably the vapor pressure and leads to back condensation. Vice versa, if the

droplet grows above the critical size, the vapor pressure will decrease below the equilibrium value, which

inevitably leads to some droplet back evaporation.
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A unified consideration of liquid droplet and crystal nucleation is presented here. For

homogeneous crystal nucleation, the total surface free energy (of various shapes) is

F¼S(Shkl ghkl), where Shkl denotes the surface area of the crystal face with Miller indices

hkl and ghkl are the corresponding specific interface energies. Basically, F also includes

the binding energy of crystal edges and apexes. However, edge energy is negligibly small

as compared to surface free energy (see Section 7.7), whereas apex number is constant; it

changes only with the change in crystal shape. Then, we have for crystals of any shape

DG ¼ �nDmþ S
�
Shklghkl

�
(7.6)

From the postulate that the critical crystal nucleus is determined by the maximum of

the total free energy, d(DG)/dn¼ 0, with Dm and ghkl being independent on n, one obtains

Dm ¼ S
�
ghkl

�
dShkl

�
dn

��
; (7.7)

which is a general expression of the Gibbs–Thomson equation for crystals, in which edge

and apex energies are neglected.

For combinations of crystallographically equivalent faces, Eqn (7.6) simplifies to

DG ¼ �nDmþ Sg; (7.8)

where S is the total surface of the new phase and g is the specific interphase energy. The

graphical plot of Eqn (7.8) for spherical crystals is the same one as the presented in

Figure 7.2.

It should be emphasized here that Eqns (7.5), (7.6), and (7.8), which also hold true for

the energy barrier for nucleus formation, are meaningful for n[1 only; otherwise, these

equations would assign nonphysical, nonzero work for formation of the monomer, n¼ 1.

Again from the condition for a maximum of the thermodynamic potential, we have

dS�=dn ¼ Dm=g (7.9)

The two simplest cases are usually considered as examples. Firstly, the same

Gibbs–Thomson equation is obtained for liquid droplets and spherical crystals:

r� ¼ 2Ug=Dm (7.10)

where r* is the critical nucleus radius and U is the volume of a crystal building block

(CBB).

Secondly, a convenient model is the so-called Kossel crystal, which is a crystal built by

tiny cubic building blocks that are held together by equal forces in a cubic primitive lattice.

With an edge length d of a building block in the crystal lattice, the surface S* of the critical

nucleus constituted of n* molecules is S*¼ 6d2n*2/3, and U¼ d3. Then, Eqn (7.9) yields

n� ¼ 64U2g3
�
Dm3 (7.11)

The radius r�3 of the sphere inscribed in the crystal nucleus is r�3 ¼ ðn�UÞ1=3=2 ¼ r�.
Combining Eqns (7.8) and (7.9), one obtains the energy barrier DG�

homo for homo-

geneous crystal nucleation:

DG�
homo ¼ g½S� � n�ðdS=dnÞ� (7.12)
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Using Eqn (7.10), DG�
homo is calculated as

DG�
homo ¼ KU2g3

�
Dm2 (7.13)

with a coefficient K¼ 16p/3 for a sphere and K¼ 32 for the Kossel crystal. (Consideration

of fully completed crystals is an implicit assumption in the latter case.) Comparing

Eqns (7.13) and (7.11), one sees that for the Kossel crystal

DG�
homo ¼ n�Dm=2 (7.14)

Gibbs found that the energy barrier for nucleus formation DG�
homo amounts to one

third of the surface free energy. Now, substituting Dm from Eqn (7.10) in Eqn (7.8), and

with n*¼ 4pr*3/3U, one obtains the energy for reversible isothermal-isobaric formation

of a spherical nucleus:

DG�
homo ¼ 4pr�2g=3 ¼ S�g=3 (7.15)

Two other expressions can be obtained by substituting Dm from Eqn (7.10) in Eqn

(7.8):

1. For spheres,

DG
�
r
� ¼ DG�

h
3ðr=r�Þ2 � 2ðr=r�Þ3

i
; (7.16)

2. For the Kossel crystal, substituting nU¼ 4pr3/3

DG
�
n
� ¼ DG�

h
3ðn=n�Þ2=3 � 2ðn=n�Þ

i
(7.17)

Equation (7.17) will be used for deriving expressions for the nucleation rate in the

next subsection.

7.2.3 Rate of Homogeneous Nucleation: Steady-State Nucleation Rate

One of nucleation theory’s main purposes is to provide expressions for the nucleation

rate, J, which is the number of nuclei that appear in unit volume, 1 cm3 per unit time,

t¼ 1 s. Using a statistical-thermodynamic approach, Volmer [5] further developed the

Gibbs thermodynamic nucleation theory. He introduced and popularized the notion

of two- and three-dimensional nuclei. By treating the nucleation barrier as activation

energy, Volmer derived expressions for the rates of both kinds of nuclei formation. On

the basis of Boltzmann’s relationship between entropy and probability, taken in the form

used by Einstein, Volmer wrote [5]

J ¼ A expð � DG�=kBT Þ (7.18)

where A is a pre-exponential factor. Although A remained unknown in Volmer’s

statistical-thermodynamic derivation, Eqn (7.18) shows why the nucleation rate J is

extremely sensitive to Dm and g (compare Eqn (7.13)).

The pre-exponential factor A is revealed by the kinetic derivation of Eqn (7.18). After

Volmer and Weber [3] formulated the core kinetic ideas, Frakas [6] looked into the details

of the process mechanism. Using the chain reaction idea of Leo Szilard, he attempted to

derive the nucleation rate. This basic notion is the root of theoretical considerations

made later by Kaischew and Stranski [7], Becker and Döring [8], and Volmer [5].
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For the sake of simplicity, steady-state liquid droplet formation from supersaturated

vapors is examined further. Evidently, no steady-state process can be realized in a closed

supersaturated system because irreversible growth of supercritical nuclei exhausts the

monomers. To overcome this obstacle, a feasible physical model has been developed [5,8].

According to this model, all droplets that become larger than the critical size are removed

from the system and an equivalent amount of vapors is added immediately, so that the

number N of the molecules in the vapor phase is maintained constant. This secures

constant supersaturation at all times. The assumption is valid in some practical cases

because the number of molecules involved in forming the nuclei is sufficiently small, and

the single-molecule depletion has a negligible effect in the earliest stages of nucleation.

The model excludes the possibility for molecule clusters to coalesce and produce

larger size aggregates and/or disintegrate in smaller clusters. The clusters can grow or

decay by attachment/detachment of single molecules only. In other words, the classical

kinetic model describes cluster formation through a succession of steps, each leading to

a cluster of slightly (merely by one molecule) larger size. Then, a stationary flux of rising

size clusters will flow throughout the system:

1%
vþ
1

v�
2

2%
vþ
2

v�
3

3.
�
n� 1

�
%
vn�1

þ

vn�
n %

vn
þ

vnþ1
�

�
nþ 1

�
where nþ and n� are the corresponding probabilities (rate constants) for attachment and

detachment of single molecules. Taking into account the birth and decay processes of

clusters of size n, one obtains the time dependence of the concentration cn of clusters

constituted by n¼ 2, 3. molecules:

dcn=dt ¼
�
vþn�1cn�1 þ v�nþ1cnþ1

�� �
vþn cn þ v�n cn

�
(7.19)

Evidently, the net flux Jn of clusters through the size n is

Jn ¼ vþ
n�1cn�1 � v�n cn (7.20)

Thus,

dcn=dt ¼ Jn � Jnþ1 (7.21)

Considering the steady-state process, dcn/dt¼ 0, Jn¼ Jnþ1¼ Jst, where Jst denotes the

steady-state rate (that is frequency) of formation of clusters, which is independent on the

cluster size, and thus, includes the formation of critically sized nuclei as well. Therefore,

the rate of nucleation J is defined by the flux J* through the critical size, and the steady

state is characterized by

Jst ¼ vþ1 c1 � v�2 c2;

Jst ¼ vþ2 c2 � v�3 c3;

..:

Jst ¼ vþn cn � v�nþ1cnþ1

..:

Jst ¼ vþL�1cL�1:

(7.22)
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To totally exclude any probability of cluster evaporation, the chain is cut off at some

upper limit L[n�, where all supercritical nuclei leave the system, cL¼ 0. Becker and

Döring [8] multiplied each equation of this system by an appropriate rate constant ratio:

the first equation is multiplied by 1=vþ1 , the second one by v�2 =v
þ
1 v

þ
2 , and the n-th by

v�2 v
�
3 .v�n =v

þ
1 v

þ
2 .vþn . Then, they summed up the equation system. In doing so, Becker and

Döring got rid of the intermediate terms on the right-hand side of the equation. Because

cL¼ 0, the right-hand site of the sum becomes equal to c1 (molecules per cm3), and

Jst ¼ c1

,"XL�1

n¼1

�
v�2 v

�
3 .v�n

��
vþn

�
vþ1 v

þ
2 .vþn�1

�#
(7.23)

It is well known that the probability vþn�1 for the attachment of a molecule from the

vapor phase to the surface of a liquid droplet of size (n� 1) is determined by the number

of collisions per 1 cm2, times the surface area Sn�1:

vþn�1 ¼ pSn�1

�ð2pmkBT Þ1=2 (7.24)

where m is the atomic (molecular) mass.

Taking into account the fact that the molecules have a nonzero size, Volmer scruti-

nizes the crossing of a molecule through the spherical intermolecular-interaction

boundary that surrounds the droplet [5]. Evidently, a molecule is finally detached

from the droplet only after its mass center crosses the said boundary; just then, the liquid

surface of a cluster consisting of n molecules shrinks to Sn�1:

v�n ¼ pnSn�1

�ð2pmkBTÞ1=2 (7.25)

Using the Gibbs–Thomson equation,

p
�
pN ¼ expð2yg=kBTrÞ (7.26)

where y is the specific volume of a liquid molecule, we have for the critical nucleus,

n*¼ n� 1,

v�n
�
vþ
n�1 ¼ pn

�
p ¼ expfð2yg=kBTÞ½ð1=rnÞ � ð1=r�Þ�g (7.27)

Keeping in mind that ny¼ 4pr3/3, we obtain

�
v�2 v

�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

� ¼ exp

(
ð2g=kBT Þ

�
4py2

�
3
�1=3 Xn

1

h�
1
�
n1=3

�� ð1=n�1=3Þ
i)

(7.28)

In the framework of the CNT, n�[1, and the sum in the right-hand side of this

equation can be replaced by an integral. Then, integrating from 0 to n, we obtain�
v�2 v

�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

� ¼ exp
n
ðg=kBT Þ

�
4py2n�2�3�1=3h3ðn=n�Þ2=3 � 2ðn=n�Þ

io
(7.29)

The comparison with Eqns (7.15) and (7.17) leads to�
v�2 v

�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

� ¼ exp½DGðnÞ=kBT � (7.30)

Let us now note that the equilibrium distribution of heterophase fluctuations can be

calculated considering the metastable equilibrium in a slightly supersaturated system,
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where no critical nuclei can arise, J¼ 0. Evidently, the condition for (both steady-state

process and) equilibrium is a time-independent cluster-size distribution. However, the

concentration of clusters of category n is constant only provided the appearance and

disappearance rates are equal. Thus, the equilibrium concentration Cn of clusters in the

absence of molecular flux in the system is

vþn�1Cn�1 ¼ v�n Cn (7.31)

Equation (7.31) represents the so-called detailed balance, according to which at

equilibrium, each elementary process should be equilibrated by its reverse process.

Rewriting Eqn (7.31) as Cn=Cn�1 ¼ vþn�1=v
�
n and multiplying the ratios Cn/Cn� 1 from

n¼ 2 to n gives

Cn=C1 ¼
Yn
i¼2

�
vþi�1

�
v�i

� ¼ 1
���

v�2 v
�
3 .v�n

�
=
�
vþ1 v

þ
2 .vþn�1

��
(7.32)

Thus, Eqns (7.30) and (7.32) tell us that the metastable equilibrium concentration of

droplets consisting of n molecules is

Cn ¼ C1 exp½ � DGðnÞ=kBT � (7.33)

where C1 is the number of single atoms when the system is in equilibrium.

Bearing in mind that the nucleation rate Jst can be roughly estimated from the

number density of critical clusters multiplied by the attachment probability (frequency)

n*þ of a molecule to the critical cluster, we can write (with C1yc1)

Jst ¼ Cn
�v�þ ¼ c1v

�þ exp½ � DG�=kBT � (7.34)

The next step is to specify the expression. With this end in view, we replace the sum in

the denominator of Eqn (7.23) with an integral:"XL�1

n¼1

�
v�2 v

�
3 .v�n

�
=vþn

�
vþ1 v

þ
2 .vþn�1

�#
z

ZL
1

�
1
�
vþ
n

�
exp

n
ðDG�=kBT Þ

h
3ðn=n�Þ2=3 � 2ðn=n�Þ

io
dn (7.35)

The function (DG*/kBT)[3(n/n*)
2/3� 2(n/n*)] possesses a sharp maximum in the

vicinity of n* and can be expanded in Taylor series. Thus, following the known procedure

(e.g., [9,10]) and after some approximations (including the assumption that vþn is con-

stant, equal to the attachment probability to the nucleus, and thus it can be placed in

front of the integral), the integration from �N to þN (instead from 1 to n) yields

Jst ¼ c1v
�þZ expð � DG�=kBT Þ (7.36)

where

Z ¼ �
1=n��ðDG�=3pkBT Þ1=2 (7.37)

In the literature, Z is known as the Zeldovich factor, which accounts for the difference

between the equilibrium and the actual steady-state numbers of critical nuclei.

Zeldovich [11] assumed that only variation by kBT in both sides around the maximum

DG* are of interest. The width of the energy barrier maximum is of special interest
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because, evidently, only the near-critical clusters contribute the most to the nucleation

rate. (For a more rigorous treatment of the problem, see Ref. [12].) In fact, Z is not a large

correction; its value is on the order of 10�2 for water (see Table 1.1 in Toshew’s work [9]).

To conclude, it should be noted that vapor droplet formation is one of the oldest

nucleation study topics. The literature on it is extensive and there is not space to review

it all here. I will note only that condensation of water droplets is of considerable practical

interest as well in view of its technological importance; for instance, to prevent energy

efficiency losses, it is essential to calculate the onset of water droplet nucleation in steam

turbines [13].

7.2.4 Non-Steady-State Nucleation Rate

Basically, steady-state nucleation can occur only for a short period of time in sufficiently

large systems and under the condition that concentration and/or temperature are

altered by supercritical nuclei growth in nuclei nearest proximity only, while remaining

unchanged in the bulk. Following that short period of time, supersaturation and

nucleation rate constantly drop until they finally approach zero—the reason being the

growth of supercritical nuclei. Zeldovich [11], Frenkel [14], Turnbull and Fisher [15],

Kashchiev [12] and many others have explored the transition periods of the non-steady-

state nucleation process, dcn/dts 0. For such a process, Zeldovich and Frenkel regarded

the number n of molecules constituting clusters as a continuous variable and replaced

the discrete cluster concentration dependence, expressed by Eqn (7.21), with a new

differential equation to satisfy the continuity condition:

dcðn; tÞ=dt ¼ �dJðn; tÞ=dn (7.38)

where c(n, t) and J(n, t) are the size- and time-dependent cluster concentration and rate

of cluster formation, respectively.

Correspondingly, Eqn (7.20) is replaced in this case by

J
�
n; t

� ¼ vþ
n�1c

�
n� 1; t

�� v�n c
�
n; t

�
(7.39)

Again for J¼ 0, the detailed balance equation is changed for the non-steady-state

case:

vþn�1C
�
n� 1

� ¼ v�n C
�
n
�

(7.40)

where C(n) denotes the equilibrium concentration of clusters of size n [14].

Thus, we can replace the detachment probability v�n to obtain

J
�
n; t

� ¼ vþ
n�1C

�
n� 1

�½cðn� 1; tÞ=Cðn� 1Þ � cðn; tÞ=CðnÞ� (7.41)

Using the approximation vþn�1Cðn� 1Þyvþn CðnÞ, we can write for the continuous case

J
�
n; t

�
y� vþn C

�
n
�
v ½cðn; tÞ=CðnÞ�=v n (7.42)

Combining Eqns (7.38) and (7.42), we obtain the partial differential equation that

describes the non-steady-state nucleation process:

v cðn; tÞ=v t ¼ v
�
vþn CðnÞv ½cðn; tÞ=CðnÞ�=v n

��
v n (7.43)
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Many authors attempted to solve this equation, but most of them made more or less

physically acceptable assumptions and approximations. Perhaps one of the most

rigorous solutions was given by Kashchiev [12]. Conducting a profound mathematical

examination of the non-steady-state nucleation problem, he concluded that only within

the critical region introduced by Zeldovich (of kBT in both sides around the maximum

DG*) does the non-steady-state distribution c(n, t) differ essentially from the steady-state

distribution, Cn. Thus, he wrote:

J
�
n; t

� ¼ Jst

"
1þ 2

XN
i¼1

ð�1Þί exp�� ί 2t
�
sN
�#

(7.44)

where the parameter sN is called induction time or nonstationary time lag. It charac-

terizes the ability of the system to reorganize itself until producing a steady flow of

nuclei

sN ¼ 8kBT
�
p2lv�þ (7.45)

where l¼�[d2DG(n)/dn2]n¼n*> 0. After t> 5sN, the sum in Eqn (7.44) can be neglected

and the steady-state nucleation rate is achieved [12].

7.2.5 Induction Time for Nucleation

The nucleation process cannot become stationary immediately after setting the condi-

tions rendering a steady state. The reason is that when supersaturation is established in

the system, cluster size distribution changes first from the equilibrium distribution to

that corresponding to the metastable state. The larger the cluster, the longer it takes for

the cluster to emerge; hence, an equilibrium distribution of clusters smaller than the

critical size has to be attained before the appearance of the first critical nucleus.

Furthermore, any supersaturation change provokes an entirely new set of stationary

populations of subcritical and critical clusters; the inherited cluster size distribution has

to accommodate the new steady state.

Keeping in mind that the total number of nuclei C�
nðtÞ ¼

Z t

0

Jdt and substituting J(n, t)

from Eqn (7.44), Kashchiev [12] showed that the integral renders

C�
n

�
t
� ¼ Jst

(
t � �

p2sN
�
6
�� 2sN

XN
i¼1

h
ð�1Þί

.
ί 2
i
exp

�� ί2t
�
sN
�)

(7.46)

Again, the sum in the above equation can be neglected after t> 5sN [12], and C�
n

augments further linearly with time:

C�
n

�
t
� ¼ Jst

�
t � �

p2sN
�
6
��

(7.47)

When sN is smaller than the observation time t, that can be neglected:

C�
n

�
t
� ¼ Jstt (7.48)
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Induction time sN depends mainly on the attachment probability n*þ to the clusters of

critical size (Eqn (7.45))—that is, on the mechanism of molecule supply from the mother

phase. Therefore, the system type strongly influences sN; induction time can be a small

fractionof a second in vapor condensation, but can takemanyyears in aprocess such as glass

crystallization. Moreover, sN is inversely proportional to the square of supersaturation or

undercooling [9]; that is, thehigher the supersaturation, theshorter is the induction time.This

is confirmed experimentally (see the intersections of the curves in Figure 7.4 with the x-axis).

Induction time determination is of special interest because sN represents the inverse

of the frequency of critical nuclei formation, sNw 1/J. The temptation to measure sN
might be so irresistible that some authors tend to use the time for observing the first new

phase particles as a substitute for the true nucleation induction time. However, the time

for observing the first new phase particles is longer than the authentic induction time for

nucleation. Induction time per se includes only the time needed to achieve a stationary

size distribution of undercritical clusters and the time required for forming nuclei of

critical size. In contrast, the time for observing the first new phase particles includes

additionally the time for their growth to visible sizes. However loosely defined, the latter

depends on the growth rate and on the resolution capability of the observation method

used. Only by capturing nuclei at their birth by means of, for instance, laser light scat-

tering, can one render reliable data. Another possibility to directly measure the super-

saturation dependence of sN has been proposed [16,17]. Nucleation in some other

systems will be considered in the following sections.

7.3 Nucleation in some other systems, Nucleation of
Gas Bubbles from Superheated Liquids and Boiling

Although evaporation is taking place from any free liquid surface, boiling is a common

property of liquids. Therefore, nucleation of gas bubbles is of considerable technological

interest. It appears also in aerated waters (including carbonated beverages) and magma.

FIGURE 7.4 Number densities C�
nðtÞ of nucleated insulin crystals versus nucleation time t (Nanev, unpublished work).

Because the nucleation rate J cannot be determined directly, the figure plots experimentally determined number
densities of critical nuclei formed per the corresponding nucleation time. The numbers for the curves give
concentration ratios, ln(c/cN)¼Dm/kBT. The measurements plotted were carried out by separation of crystal
nucleation and growth stages (e.g., [16]).
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If bubbles of nitrogen form in divers’ blood while surfacing too fast, they suffer

decompression sickness and may die.

Liquids can be superheated easily. This fact points unequivocally to the existence of

a barrier to the formation of a new vapor phase inside the liquids. Although hetero-

geneous bubble nucleation occurs more easily than the homogeneous one, the basic

principles of the homogeneous process are discussed here because they represent a

general scientific platform for the phenomenon. For the impact of preexisting gas

cavities in surfaces (Figure 7.5), of container walls, of suspended particles, or in the

form of metastable microbubbles—called heterogeneous nucleation—interested readers

may refer to Ref. [18].

In contrast to a liquid droplet, a gas bubble in a bulk liquid is compressible.

Therefore, the thermodynamically derived Gibbs–Thomson equation for the vapor

pressure of bubbles is expressed again with the liquid molecule volume y:

kBT ln
�
pb

�
pN

� ¼ �2yg=rb; (7.49)

where pb is the gas pressure inside the bubble and rb is bubble radius. The significant

difference with respect to droplet formation is constituted in the negative sign of

equation’s right-hand side.

It is seen that pb is lower than the equilibrium pressure pN of the plane vapor–liquid

interface. The evident equilibrium condition refers to pb withstanding the sum of

FIGURE 7.5 Homogeneous (1), heterogeneous (2), and nucleation at preexisting gas microcavities (3) are depicted.
A finite nucleation energy barrier must be overcome for each nucleus, but significantly less dissolved gas
supersaturation is required for the third kind of bubble formation; increasing the supersaturation, a point is
reached at which the radius of curvature of each meniscus equals the critical radius, r*. Due to the smaller
volumes of the heterogeneous nuclei, the nucleation threshold for heterogeneous nucleation is significantly lower
than the one in the homogeneous case; this is most pronounced with preexisting gas cavities. Courtesy of
Elsevier; license Nr 3377621150350.
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external (usually barometric) pressure pex, capillary pressure 2g/rb, and hydrostatic

liquid pressure h

ˇ

2g:

p�
b ¼ pex þ 2g=rb þ bhdgzpex þ 2g=rb (7.50)

where h

ˇ

is the height of the liquid column above the bubble, d is liquid density, and g is

the gravity acceleration of Earth.

According to Eqn (7.49), p�
b < pN. Hence, gas bubble formation inside the liquid may

proceed merely under the condition pex< pN, but still positive: pex> 0.3 Therefore, the

bubble nucleus stands in equilibrium with a supersaturated liquid, with the equilibrium

being also unstable. With bubble formation driving force Dm ¼ ðp�
b � pexÞy, we obtain the

expression

DG�
homo ¼ 16pg3 y2

�
3Dm2 (7.51)

which is analogous to Eqn (7.13).

Noting that CNT describes fairly well the gas bubble formation during boiling, Hirth

and Pound [20] supposed that the contradictions appearing in the case of droplet for-

mation in vapors may be attributed to the incomplete molecule accommodation on the

surface of the arising cluster of the new liquid phase.

7.3.1 Crystal Nucleation in Melts

Crystal nucleation in melts is important from a technological point of view because the

nucleation rate predetermines grain size and, hence, the important mechanical prop-

erties of cast metal wares. The liquid-to-solid transition involves the appearance of new

periodic structure and density changes. Once periodic order appears, the molecules

become differently packed (in most cases, more closely) than in the liquid.

It is convenient to use Eqn (7.36) as a basis for the calculation of nucleation rates of

melt crystallization. Evidently, the attachment probability n*þ of a molecule from the

melt to the (spherical) critical crystal nucleus does not depend on molecule transport,

but only on molecule rearrangement in the crystal lattice

v�þ ¼ c14pr
�2z exp½ � DEre=kBT � (7.52)

where z is the product of a frequency factor times the molecule’s mean free path in the

melt, DEre is usually identified with the activation energy for viscous flow, and

Jst ¼ c214pr
�2zZ exp½ � DEre=kBT �exp½ � DG�=kBT � (7.53)

In this case, temperature plays a more significant role than in vapor condensation.

When T decreases, it causes simultaneous augmentation of undercooling (Eqn (7.3)) and

melt viscosity, and vice versa. The difficulties in the comparison of theoretical and exper-

imental results stem from the presence of impurity particles and from the temperature

history of the crystallizing system (memory effects [2] and presence of athermal nuclei [9]).

3Bubble formation under negative external pressure exerted on the liquid is called cavitation. This is a

mechanical rupture of a liquid; similar to solids, liquid cavitation occurs abruptly (for more details, see

Ref. [19]).
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7.3.2 Crystal Nucleation in Solutions

Crystal nucleation in solutions is another case of new phase formation for which it is

convenient to use Eqn (7.36). In this case, the attachment probability n*þ of a molecule

from the solution to the spherical critical crystal nucleus depends on both molecule

transport and rearrangement in the crystal lattice. Being a relatively slow process,

diffusion is usually the rate-limiting stage in the process. However, before attachments

to the nucleus, the species (ions or molecules) also have to become free of their im-

mediate solvent surroundings

v�þ ¼ 4pr�2c2 exp½ � DEdis=kBT � (7.54)

where DEdis is the dissolvation energy and 2 is the product of vibration frequency times

the molecule’s mean free path in the solution. Thus,

Jst ¼ c24pr�22Z exp½ � DEdis=kBT �exp½ � DG�=kBT � (7.55)

7.4 Earlier Corrections of the CNT
Operating with lucid and easily understandable ideas, and being relatively simple and

easy to use, CNT properly explains the origins of the nucleation barrier and nucleation

rate. However, the difficulties with CNT arise mainly because it assumes that data derived

from property measurements on macroscopic phases, such as surface tension, structure,

and density, can be applied to microscopic clusters containing a limited number of

molecules; CNT treats such clusters as small phases cut out of large macroscopic phases.

Capillarity—that is, the assumption of the interface between the arising small cluster of

the new phase and the parent phase being sharp—is another drawback of CNT. The

interface is described simply by a surface with a specific (per unit area) free energy, g.

However, g is usually not available from direct measurements; for nanosizes, it is

experimentally quantifiable only to a very limited extent (e.g., [21,22]). Besides, the

g-value for a curved boundary is relatively independent on the position chosen for

the dividing surface, only when its radius of curvature is much larger than the width of the

interface transition region. In contrast, the size of the smallest critical clusters is similar to

the thickness of the molecularly diffuse interface, so that the dividing surface cannot be

sharp. The interfacial width increases toward much larger values near the thermody-

namic critical point, which finally brings about spinodal transformation in the unstable

regions of the free energy; then, the work of formation for the fluctuation vanishes [2].

Tolman was the first to realize the extent by which the surface tension of a small

liquid droplet, gR, deviates from its planar value, gN. Using thermodynamic consider-

ations to account for this circumstance, he introduced a curvature correction dT [23]:

gR ¼ gN=ð1þ 2dT=ReÞ (7.56)

where dT is the difference in the radii of the equimolecular dividing surface [1] and the

so-called surface of tension [24]; Re is the equimolar radius of the liquid droplet. dT is also
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known as the Tolman length. Tolman’s correction represents the first term of the

expansion in power series of the surface energy, Eqn (7.56), in terms of surface curvature:

gRzgNð1� 2dT=ReÞ (7.57)

Equations (7.56) and (7.57) show that the surface energy starts to deviate appreciably

from its planar value when the droplet radius is on the order of dT. It should be noted

here that, according to Eqns (7.13) and (7.18), a variation of only 10% in g can alter the

nucleation rate by many orders of magnitude. Due to this tremendous effect, the issue is

still of enormous interest; using the keyword Tolman length, many dozens of papers

devoted to the topic can be found online. Despite the large number of works concerned

with Tolman’s correction, there is hardly a generally accepted view on the problem; the

topic is still debated [25] and a plethora of experimental techniques have been employed

to perform nucleation rate measurements (e.g., see the first 12 references listed in

Ref. [26]). Basically, they show that although CNT is valid near equilibrium where the

critical fluctuation and the work required for it are large, a different behavior is observed

moving further away from equilibrium.

Mutaftschiev [19] also studied the surface energy size dependence and the limits of

capillary approximation applicability. Taking into account the corrections needed for

this dependence in view of the discrete (atomic) constitution of extremely small clusters,

he added a constant in the classical expression for the thermodynamic potential of the

new condensed phase [19]. It is remarkable that, being a constant, this correction term

does not change the derivation of the Thomson–Gibbs equation (Section 7.2.2).

Another disadvantage of CNT is its intrinsic feature to allow for a miscalculation of

the degree of freedom of nucleating clusters. Because for homogeneous nucleation the

nucleus can form around any one of the molecules present, it can appear anywhere in

the homogeneous system with the same probability. Moreover, a free cluster is not static

but translates and rotates freely in the entire volume of the parent phase, thus

contributing to a higher system disorder. It has higher entropy than the one ascribed by

CNT and, therefore, lower free energy than a small phase cut out of a large condensed

phase. Thus, classical thermodynamics overestimates the cluster’s excess free energy.

With this in mind, Lothe and Pound [27] introduced the so-called Lothe and Pound

(correcting) factor, G. In the case of a homogeneous water droplet nucleation from

vapors, the calculations yield Gz 1017, but it turns out that it affects only the pre-

exponential factor in the nucleation rate equation [28].

A typical assumption used in the kinetic models of CNT is that cluster–cluster in-

teractions can be neglected because of their rarity. An alternative to this assumption is

the so-called chemical approach presented by Frenkel [14]. He considered the molecule

clusters as polymer molecules that obey chemical reaction laws. His approach allows

aggregation of clusters of any size, but not only attachment/detachment of single

molecules to/from the clusters. Mutaftschiev [29] discussed the merits and in-

consistencies of the chemical approach. With this approach, it becomes clear why the

critical nucleus plays the role of an “activated complex” in the theory of the chemical
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reactions; the critical nucleus is the “molecule” of maximum energy and minimum

concentration.

However, CNT is not an anachronism. Firstly, a quite surprising validity of the

capillary approximation has been noticed by Bonissent and Mutaftschiev, even for

particles of only a few atoms [30]. In the authors’ opinion, this seems to be due to a kind

of compensation effect between energy and entropy (for closer look at the topic, see

Ref. [30]). As far as the cluster coagulation effect on the nucleation rate is concerned, it

should be noted that it is not only too infrequent to be concurrent with single molecule

attachment, but at least for one case—namely, the diffusion controlled aggregation of

protein crystalline clusters—it is highly improbable (see Section 7.12.4 and Ref. [31]).

7.4.1 Some Recent Nucleation Theories

Due to space limitations, only some novel ideas will be mentioned here in addition to the

corrections mentioned above. For instance, contrary to the CNT assumption that crystal

embryo structure and properties are the same as that of the bulk macroscopic crystal

phase, some authors assumed that the embryo’s structure differs significantly (e.g.,

Ref. [32]). A fractal structure of the heterogeneous nucleus has been suggested as well

[33]. However, polyhedral nuclei of apoferritin crystals have been observed by atomic

force microscopy [34]; the authors have shown that crystals of near-nucleus size exhibit

the same fcc structure as the bulk apoferritin crystals.

Numerous investigations have been carried out to solve specific nucleation problems,

the recent methods of choice being predominantly molecular dynamic and Monte Carlo

computer simulations (e.g., [26,35]), just to mention a few. McGraw and Laaksonen [36]

considered a diffusive liquid droplet of changing density. Using the Gibbs surface

dividing method [24] and density functional theory, the authors found a temperature-

dependent correction to the nucleation barrier DG*, which, however, is independent

of the nucleus size (the latter is assumed to be the same as the one found in CNT). The

surface energy gd correction introduced by the authors [36,37] is considered to be an

alternative to the Tolman correction (Eqn (7.56)):

gd ¼ gN þ f ðT Þ=S� (7.58)

where f is an arbitrary function.

Walton and Rhodin pointed out that although the CNT is capable of describing the

nucleation phenomenon at low supersaturations, an atomistic approach is more com-

mon at high supersaturations [38–40]. They developed a statistical nucleation theory for

vapor deposition of thin films, according to which, at high impingement rates of atoms

on the substrate, even a single atom can be a critical nucleus. Moreover, point defects on

the crystal surface can trap adatoms, which then appear as supercritical centers of

irreversible growth [41].

Milchev and Stoyanov [42,43] (see also Ref. [44]) have adopted the atomistic approach

for the case of electrochemical nucleation, where high overvoltages are applied as well.

Scrutinizing the discrete character of the cluster size alteration for single-digit molecule
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numbers, they pointed out that the n* versus Dm relationship is not continuous, but a

stepwise one (Figure 7.6). It was shown, too, that a supersaturation interval, not a fixed

supersaturation, corresponds to each critical nucleus; the smaller the nuclei, the wider

the intervals and vice versa. Also, the supersaturation dependence of the steady-state

nucleation rate is altered for extremely small nuclei. A broken line is observed in the

atomistic case with high Dm, while according to CNT lnJst should change smoothly

(Figure 7.7).

Using numerical simulations, ten Wolde and Frenkel [45] have shown that density

fluctuations in a protein solution located near the liquid–liquid boundary may induce

the formation of a high-density protein drops surrounded by low-concentration

solution. On this basis arises the so-called two-stage nucleation mechanism of pro-

tein crystal nucleation. The first step in this mechanism consists of the separation of

dense protein liquid drops from the bulk of the solution of the nucleating substance.

The second step is crystal nuclei formation inside the high-concentrated regions,

0

n*

Δμ

FIGURE 7.6 Critical nucleus size n* versus Dm. The
smooth line is the plot of the Gibbs–Thomson
equation. Courtesy of Elsevier; license Nr
3375810205283.

  lnJst

Δ μ

FIGURE 7.7 Schematic representation of the lnJst
vs. Dm relationship. The slope of each straight
line section of the curve gives the number of
atoms in the critical nuclei. Courtesy of Elsevier;
license Nr 3375800275481.
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which proceeds at a reduced energy barrier. Because of the slow ordering kinetics of

the crystalline phase, this step determines the nucleation process rate [46]. Based also

on experimental observations, the two-step nucleation mechanism remarkably re-

sembles Ostwald’s rule of stages (e.g., [19]). The topic is considered in full detail by

Vekilov in Chapter 19 of Volume 1B.

7.5 Molecular-Kinetic Approach to Crystal Nucleation
A significant advancement in CNT has been marked by the molecular-kinetic approach

to crystal nucleation, equilibrium, growth, and dissolution developed by Stranski and

Kaischew [47–49]. First, Kossel [50] and Stranski [51] recognized, simultaneously and

independently from each other, the importance of the unique position on the crystal

surface known nowadays as a kink (kink site). Kossel called it a repeatable step because

no change in surface geometry and energy takes place if an individual CBB is added

to/or detached from the kink on an “infinitely” large crystal face. For the same posi-

tion, Stranski used the notion of half-crystal position (Figure 7.8). This position on the

crystal face determines the thermodynamic equilibrium with the ambience of a suf-

ficiently large crystal (i.e., its chemical potential) because, evidently, under equilibrium

the statistical probabilities for its occupation or nonoccupation are equal. Thus, with a

sufficiently large crystal—so large that the energy contributions of the particles situ-

ated at the ends of its faces can be ignored—any crystal can be grown or dissolved

reversibly by repetitively attaching/detaching CBB at the kink site; this proceeds with

the same attachment or detachment energy, respectively, which is measured as the

work of separation 41/2. Indeed, 41/2 depends on crystal lattice structure. For instance,

1/2

FIGURE 7.8 Schematic presentation of a half-crystal position (1/2) on a face of “infinitely” large crystal. CBB in
this position is as follows (see the arrows): (1) at the end of a half CBB row (starting backwards); (2) connected to
the ledge of a half-crystal lattice plane (situated on the left); and (3) standing on the half of the “infinite” crystal
(beneath). To complete the crystal, one has to add the three missing crystal half-parts. Then, the atom (ion,
molecule) under consideration would stand in crystal bulk. Hence, CBB in the half-crystal position is bound exactly
two times less strongly than the atom (ion, molecule) standing in the crystal bulk and has an equal number of
saturated and dangling bonds.
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CBB at the kink site in the Kossel crystal is connected to three first-nearest neighbors

(Figure 7.8). Taking into account only this kind of interaction, its bond energy is

41/2¼ 3j, where j denotes the energy of a single bond between two CBBs.

Kaischew [52] revealed the quantitative relationship between chemical potential,

vapor pressure of the “infinitely” large crystal face, pN, and 41/2 for monoatomic vapors

and for temperatures for which crystal energy is negligible:

mc
N ¼ mo þ kBT ln pN ¼ �41=2 þ kBT ln

h
ð2pmÞ3=2ðkBTÞ5=2

�
Z3
i

(7.59)

where mc
N is the chemical potential of an “infinitely” large crystal, mo is the standard

chemical potential, and h– is Planck’s constant. Thus, at T¼ 0, mc
N ¼ �41=2.

The situation with small crystals is completely different. The smaller the crystal, the

greater are the deviations in the work of separation at the beginning and the end of the

crystal face as compared with the work of separation from the half-crystal position.

Taking into account this fact (and the principle of detailed balance), Stranski and

Kaischew [47–49] suggested that, under equilibrium conditions, the probability of

attachment of a whole new lattice plane on a crystal face should be equal to the prob-

ability of its detachment. Consequently, they calculated the energetic parameter that

determines the equilibrium of small crystals with the surrounding media as the mean

value of the work of separation (MWS), 4, averaged per building block of the corre-

sponding crystal face. In doing so, Stranski and Kaischew divided the total work of

separation involved in disintegrating the uppermost lattice layer of any face belonging to

the crystal equilibrium form by the total number of blocks in that layer. Being equal for

every face of the crystal, MWS determines its equilibrium shape (see Section 7.6).

Figure 7.9 depicts the procedure for calculating MWS with a (100) face of a Kossel

crystal. CBBs are removed successively, one by one (n3� 1)2 CBB (namely all white cubes

in Figure 7.9(a)), starting with the atom situated on the right-hand front crystal apex.

Detaching each of them from its three neighboring cubic CBB, a separation work

amounting 3j is performed per each single cube. Then, the two rows of 2(n3� 1) dashed

cubes in Figure 7.9(b) are separated, performing work 2j for each. Finally, the last

remaining cube (the black one at the left-behind crystal apex in Figure 7.9(c)) is

n3 δn3 δ n3 δ

(a) (b) (c)

FIGURE 7.9 Three stages of detachment from a Kossel crystal of a whole (100) lattice plane, constituted of n2
3

building blocks.
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separated, performing work j. Now, dividing the sum of those three works by the total

number of n2
3 particles, we obtain the MWS for that crystal plane:

4 ¼
h
3jðn3 � 1Þ2 þ 2j2

�
n3 � 1

�þ j
i.

n2
3 ¼ 3j� ð2j=n3Þ ¼ 41=2 � ð2j=n3Þ (7.60)

It is seen that the smaller the crystal, the lower the MWS. In contrast, 4 approaches

41/2 with a crystal size increase.

Keeping in mind the analogy with Eqn (7.58), Kaischew [52] has shown that in the

case of finite size crystals, MWS appears instead of 41/2. Thus, MWS determines the

vapor pressure, p, of such crystals (see also [10]):

mc
f ¼ mo þ kBT ln p ¼ �4þ kBT ln

h
ð2pmÞ3=2ðkBT Þ5=2

�
Z3
i

(7.61)

The supersaturation is

Dm ¼ mc
f � mc

N ¼ kBT lnðp�pNÞ ¼ 41=2 � 4 ¼ 2j=n3 (7.62)

Stranski and Kaischew [47–49] conceived the concept of MWS to establish a link

between the molecular kinetic theory of crystal nucleation and growth and the

thermodynamic-statistical treatment of the problems, given by Gibbs [1] and Volmer [5].

To demonstrate this link, the specific surface energy g, limited to energetic interaction

between first-nearest neighbors in the Kossel crystal, is defined as

g ¼ j
�
2d2 (7.63)

Thus, j¼ 2gd2, and

Dm ¼ 4d2g
�
n3 (7.64)

Keeping in mind that the diameter of the sphere inscribed in the Kossel crystal is

2r� ¼ n�
3d, and U¼ d3, Eqn (7.64) represents the Gibbs–Thomson equation (compare Eqn

(7.10)).

The molecular-kinetic approach also enables the calculation of the energy barrier for

crystal nucleation, DG�
homo. Stranski [53] has defined the free energy F as the difference

between the total binding energy of a cluster as if all its building blocks are in the bulk of

the infinitely large crystal, expressed by the term n3
341=2, and the energy of the bonds in

the real small cluster, U:

F ¼ n3
341=2 �U ; (7.65)

where U ¼ Pn
i¼14i is the disintegration energy of the entire crystalline cluster into n ¼ n3

3

individual building blocks. Evidently, this difference gives the number of unsaturated

dangling bonds on the outside of the cluster, multiplied by the energy necessary to break a

bond. Note that Stranski’s relationship is universal, in the sense that it applies equally well

to large and one-digit molecule crystal clusters. Replacing Eqn (7.65) with Eqn (7.5) and

using the Gibbs–Thomson equation presented in the form of Eqn (7.62), Dm¼ 41/2� 4,

one obtains the energy barrier for crystal (including nucleus) formation:

DG�
homo ¼ n3

�34�
Xn
i¼1

4i: (7.66)
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Taking into account only the first-nearest neighbor interactions in a Kossel crystal,

one can see that the separation work of a CBB situated on the eight cube vertices is

3j¼ 41/2 (Figure 7.9(a)); that is, the cubic shape is stable [54]. The total binding energy of

a Kossel crystal possessing n3 CBB in the edge isXn
i¼1

4i ¼ 3n2
3

�
n3 � 1

�
j (7.67)

Using Eqns (7.66) and (7.60), Kaishew [54] obtained

DG�
homo ¼ n3

3½3j� ð2j=n3Þ� � 3n2
3

�
n3 � 1

�
j ¼ n2

3j (7.68)

Replacing n3 from Eqn (7.62), n3¼ 2j/Dm, yields

DG�
homo ¼ 4j3

�
Dm2 (7.69)

Thus, one finally obtains [54]:

DG�
homo ¼ 32U2g3

�
Dm2 (7.70)

Generally, applying the MWS method, Stranski and Kaischew arrived at the same

conclusions for crystal nucleation that have already been known from CNT, and they

have been able to develop further kinetic notions for the process. Moreover, operating

with interaction energies in the crystal lattice only (thus avoiding the use of macroscopic

surface tension values for small clusters), the MWS approach overcomes one of the

deficiencies of CNT. Indeed, the absolute values of the intralattice interactions are

known merely for limited crystal types (e.g., for ionic crystals [55]), but Stranski and

Kaischew required to have their relative strength only. Hence, they considered the

problems of crystal nucleation from a more realistic standpoint than CNT.

Perhaps the single shortcoming of the Stranski–Kaischew’s theory is that it is limited

to complete and highly symmetrical crystals. Excluded from the considerations remain

vicinal surfaces on crystals. However, these limitations are not of principle importance.

Firstly, the incomplete clusters would have an increased number of dangling bonds,

which would be attractive sites for subsequent attachments until a complete shape

would be attained. Secondly, even using the simplest models, such as the Kossel crystal,

Stranski–Kaischew’s considerations reveal the general features and trends of the

nucleation phenomenon (and crystal growth and evaporation as well). This is shown

here taking into account only the first-nearest neighbor interactions, but the same

results have been obtained using first-, second- and third-neighbor interactions.

Although rarely used nowadays, as seen from the brief introduction provided here (see

also Ref. [56]), the MWS approach is not obsolete. Based on this approach, a consideration

of protein crystals equilibrium shapes is presented in Section 7.12.2 (see also Ref. [57]).

Another example for an MWS application is the calculation of the energy barrier for

protein crystal nucleation (Section 7.12.3). As seen in the next three sections, the predictive

and explanatory power of the MWS approach should not be underestimated. However, the

original works of Stranski and Kaischew are not very accessible (they are in Bulgarian and

German). Therefore, the brief introduction provided above may be useful to the reader.
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7.6 Equilibrium Shape of Crystals
Gibbs [1] showed thermodynamically that, at a constant crystal volume, the equilibrium

crystal shape is established under a minimum in the total surface free energy,

F¼ S(Shkl ghkl)¼minimum. His idea has been elaborated further in a geometric con-

struction, now known as the Gibbs–Curie–Wulff theorem. According to this theorem, the

equilibrium shape of a crystal can be depicted by putting crystal faces at distances hi

from a central crystal (so-called Wullf’s) point, with hi being strictly proportional to the

specific surface free energies gi of the corresponding crystal face. Then, the innermost

body obtained is the equilibrium crystal shape. Wullf’s theorem is expressed as

gi=hi ¼ const; or g1:g2:g3. ¼ h1:h2:h3. (7.71)

The derivation is simple (e.g., see Ref. [10]) but lengthy and is omitted here.

Chapter 5 (this volume) by Einstein is devoted to a thorough consideration of the issue.

Therefore, it will not be reviewed here in any detail, but the underlying physical ideas of

Stranski and Kaischew’s determination of the equilibrium shapes of crystals will be dis-

cussed; the reason is their simplicity [58]. The principle is that no CBB whose bonding with

the crystal is looser than the MWS can belong to the equilibrium shape because the vapor

pressure of such crystals would be higher than the equilibrium pressure. From this

standpoint, Stranski and Kaischew started with an arbitrary crystal shape and successively

removed all CBB—the separation work of which is smaller than MWS. In doing so, they

revealed the equilibrium shape faces. However, depending on the starting crystal shape,

some nonequilibrium faces may still remain. Therefore, the areas of all faces have been

varied until the same MWS is reached for all of them. Due to the disappearance of all

nonequilibrium faces, this procedure leads to the true equilibrium crystal shape (see also

Ref. [59]). In addition, Stranski and Kaischew showed [58] that, with an increase in the

supersaturation, the equilibrium shape becomes simpler because some faces disappear

from it; due to the diminishing nucleus size, the latter shrinks to a CBB size.

The equilibrium shapes of crystals nucleated on a foreign substrate are considered in

Section 7.8.

7.7 Two-Dimensional Crystal Nucleation
Although he did not systematically consider nucleation kinetic problems, Gibbs noticed

that the growth of a face on a crystal must be a periodic process, which is accomplished

by a successive formation and spreading of crystal layers. Moreover, he pointed out that

the formation of every new lattice layer is associated with surmounting an energetic

barrier (although it is not high). In 1927, Brandes reconsidered the possibility of two-

dimensional (2D) nuclei formation and found that the energy cost, DG�
2 was precisely

half of the total edge energy:

DG�
2 ¼ ð1=2ÞS�cili

�
(7.72)

where ci is the specific edge energy of the i-th edge and li is its length.
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There are several different ways to obtain this result [5,8]. To demonstrate how fruitful

the MWS method can be, we use it here. In analogy with deriving the MWS method for

three-dimensional (3D) crystals, Stranski and Kaischew [48] suggested that, under

equilibrium conditions, the probability for evaporation of all CBB that form the edge of a

2D crystalline cluster has to be equal to the probability for their deposition. Using as a

model a 2D crystalline cluster of length l2¼ n2d, formed onto (100) face of the Kossel

crystal (Figure 7.10) and denoting the corresponding MWS as 42, Stranski and Kaischew

determined it to be

42 ¼ 3j� j=n2 ¼ 41=2 � j=n2 (7.73)

Analogically to Eqn (7.62) for the 2D case,

Dm ¼ kBT lnðp�pNÞ ¼ 41=2 � 42 ¼ j=n2 (7.74)

Stranski and Kaischew [60] realized that the condition for a simultaneous equi-

librium between the 3D-nucleus, 2D-nucleus, and vapor phase is the equality of the

two MWS, 4¼ 42, or for the Kossel crystal n2¼ n3/2 (compare Eqns (7.62) and (7.74)).

From this standpoint, the work for the formation of a 2D nucleus upon a completed

(100) face of a Kossel crystal is calculated by a conceivable separation of the process

in three stages (Figure 7.11), with the first step being the attachment of a single atom

from the vapor phase (Figure 7.11(a)). From an energy perspective, it is the most

difficult step because the required separation work, equal to j, is substantially lower

than 42, and the single atom should be removed. Therefore, a free energy fluctuation

amounting 42� j¼ 2j� j/n2 is required for the deposition of the first CBB on the

n3 δ

n2 δ

FIGURE 7.10 2D crystal on the (100) face of the Kossel crystal. n2 is the number of CBBs in the edge row of the 2D
crystalline cluster; n3 is the number of CBBs in the Kossel crystal edge.

n3 δn3 δn3 δ

(a) (b) (c)

FIGURE 7.11 Formation of a 2D nucleus upon a completed (100) face of a Kossel crystal.
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completed (100) face of a Kossel crystal (Figure 7.11(a)). The next step is the forma-

tion of two edge rows of the arising 2D nucleus (Figure 7.11(b)). It requires binding

energy of 2j per CBB, so that the necessary energy fluctuation is 42� 2j¼ j� j/n2.

Multiplying by the number 2(n2� 1) of such particles, one obtains the total energy

fluctuation as 2(n2� 1)(j� j/n2). Finally, the attachment of (n2� 1)2 CBB that com-

plete the 2D nucleus (Figure 7.11(c)) requires binding energy of 3j per CBB, and the

necessary energy fluctuation is 42� 3j¼�j/n2. Thus, the total energy fluctuation for

this stage is minus (n2� 1)2(j/n2). Summing all that up, Stranski and Kaischew show

that the total energy fluctuation needed for the formation of the complete 2D nucleus

is DG�
2 ¼ n2j. Using the definition for the specific edge energy c as c¼ j/2d and with

l2¼ n2d, the authors [60] obtained:

DG�
2 ¼ 2cl2 (7.75)

This is Brandes’ Eqn (7.72) for the Kossel crystal. Note that exactly the same result is

obtained considering the formation of the 2D nucleus in an alternative way, such as

dissolving its surrounding crystal lattice plain [60]. It should be emphasized that

combining c¼ j/2d with g¼ j/2d2, from Eqn (7.62) yields c¼ dg. Because d is on the

order of 10�7 cm, we see that c � g.

Burton, Cabrera, and Frank [61] have pointed out that in calculating DG�
2 Volmer [5]

and Becker and Döring [8] neglected the conformational entropy. This is equivalent to an

assumption that the nucleus shapes are independent of temperature, and that all shapes

are like the nucleus shape at T¼ 0 K. A more rigorous treatment of the problem [61]

shows that the inclusion of the conformational entropy rendered only a small correction

of DG�
2 (multiplication by a factor of 0.8), and that the equilibrium nucleus shape de-

pends on the temperature only, but not on the supersaturation. The shape is completely

polygonized at T¼ 0 K and becomes increasingly rounded with temperature increase

[61]. As a matter of fact, this circumstance was already known to Gibbs, who noticed that

the apexes of a crystal at equilibrium with the surrounding media should be slightly

rounded on a molecular scale.

Before the knowledge that real crystals are imperfect, Volmer suggested that 2D

nucleation is a mandatory requirement for the growth process [5]. Frank’s idea that the

self-perpetuating steps originating from screw-dislocation emergence points make the

nucleation mechanism unnecessary for crystal growth [62] sparked a new era in modern

crystal growth theory, in which the interest in 2D nucleation declined significantly.

However, the physical reality of 2D nucleation has been proven by experiments per-

formed with free of screw-dislocation emergence points silver (100) and (111) crystal

faces [63] and the (0001) face of cadmium crystals [64]; such faces grow by means of the

so-called capillary technique for electrocrystallization.

Volmer also considered the formation of negative 2D nuclei (Lochkeime in German),

which have to appear on sufficiently large close-packed crystal faces under considerable

undersaturation. His suggestion has been confirmed experimentally with perfect faces of

p-toluidine crystals; local undersaturation has been evoked using a directed sharp
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air-blow, and the evaporation depressions created on the crystal faces were attributed to

negative 2D nucleation [65]. However, even easier than on a perfect crystal faces, 2D

nuclei arise also on emergence points of edge dislocations. The reason is that, due to the

accumulated dislocation strain energy Ed, the chemical potential increases locally on

such places. To elucidate the problem, Cabrera [66] described the change in the ther-

modynamic potential as

DG ¼ �pr2eCDm
�
Uþ 2preCg

0 � hEd (7.76)

where re is the radius of the empty disc that arises on the emergence point of

the dislocation, C is the hollow depth, and g0 is the energy of hollow periphery, which

is usually set as g0 z g. With the elastic strain energy, Eel and dislocation core

energy, Ecore, the total edge dislocation energy per unit length is Ed ¼ Eel þ Ecore ¼
�Gb2

B lnðre=roÞ=4pð1� xÞ þ Ecore, where �G is the shear modulus (modulus of rigidity), bB
is the Burgers vector of the dislocation, ro is the radius of the so-called core of the

dislocation, and xz 0.3, being Poisson’s cross-contraction ratio. From the condition

for a maximum of DG and keeping in mind that Ecore is a constant, two equilibrium

radii arise [66]:

r�min; max ¼
h
1H

�
1� 4rF

�
r��
2

�1=2i
r��
2

�
2 (7.77)

where rF ¼ �Gb2
B=8p

2g0ð1� xÞ is Frank’s hollow core radius and r��
2 is the radius of the

negative 2D nucleus on the perfect crystal face. Because r�min rises and r�max diminishes

with an undersaturation increase (the latter diminishing r��
2 ), a critical undersaturation

can be reached when r�min ¼ r�max, and r��
2 ¼ 4rF. The energy barrier for nucleation dis-

appears and a spontaneous formation of hollow disks on the edge dislocation emergence

points proceeds with further undersaturation augmentation.

7.8 Heterogeneous (Substrate) Nucleation, the
Equilibrium Shape of Crystals on Supports, and
Energy Barriers for Heterogeneous Nucleation

Homogeneous nucleation occurs very rarely. Much more frequent is heterogeneous

nucleation, occurring on foreign surfaces of different origins, such as impurity parti-

cles, container walls, etc. (Ions also activate nucleation, the most famous example

being droplet formation in the so-called Wilson camera [5].) The reason for the highly

predominating heterogeneous nucleation is that DG�
heter can be very much less than

DG�
homo.

Again, Gibbs [1] laid the foundations of the theory describing how liquid droplets

nucleate on interfaces between two bulk liquids and on a solid support. The theory has

been further developed by Volmer [5]. The expression for the heterogeneous nucleation

work is

DG�
heter ¼ DG�

homo

�
0:5� 0:5 cos b� 0:25 sin2

b cos b
�

(7.78)
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where DG�
homo is given for spherical drops from Eqn (7.13) and b is the wetting angle. For

b¼ 0, meaning complete wetting, DG�
heter ¼ 0 and vapor condensation requires only a

relatively small barrier for 2D liquid nucleation. For b¼p, meaning complete non-

wetting, DG�
heter ¼ DG�

homo—that is, the substrate has no effect on droplet nucleus for-

mation. For any b value between 0 and p, nucleation of liquid droplets proceeds

heterogeneously in an easier manner than in a bulk vapor phase.

Due to its enormous practical significance, theoretical consideration of heteroge-

neous crystal nucleation has been provided by many authors (e.g., [67–69], just to

mention some). Using the MWS method (Section 7.5) and the Kossel crystal model,

Kaishew calculated equilibrium crystal shapes and energy barriers for crystal nucleation

on foreign substrates [54,70]. Later, his significant contribution was called the

Wulf–Kaischew theorem [68]. Here, Kaischew’s work is presented in brief because his

original papers [54,70] are in Bulgarian and are not accessible to the general scientific

audience.

Because any molecule on a nucleus surface has to occupy an equilibrium position, at

a given supersaturation the kind and size of nucleus faces contacting the ambient phase

only have to remain the same (Figure 7.12). As for the four faces in Figure 7.13(a) con-

tacting with the support, each built by n’n3 CBB (with n’ being the number of CBBs in

the normal to the support crystal edges) Kaischew calculated the MWS, 40, as

j 0 ¼ ½n0n3jþ n0ðn3 � 1Þjþ n3ðn0 � 1Þjþ n3j
0�=n0n3 ¼ 3j� ½ðj� j0Þ=n0 þ j=n3� (7.79)

where j0 is the detachment energy of a single CBB from the support. Because under

equilibrium the MWS of these faces must be equal to the MWS of the topmost crystal face

contacting with the vapor phase only, it follows according to Eqns (7.62) and (7.79) that

Dm ¼ 2j=n3 ¼ ðj� j0Þ=n0 þ j=n3 (7.80)

h10 h11

(10)
(11)

h10 h11

(10)
(11)

h'10

h10

(10)
(11)

h''10

h11

(a)

(b)
(c)

FIGURE 7.12 Three combined crystal
shapes: a homogeneous nucleus (a)
and heterogeneously formed nuclei
(b) and (c). Wullf’s points are shown
by small circles, while the support is
represented by the straight line. From
Ref. [54].

Chapter 7 • Theory of Nucleation 343



Thus, the equilibrium crystal shape (Figure 7.13(a)) is determined by

n0=n3 ¼ 1� j0=j: (7.81)

To calculate the energy barrier DG�
heter, Kaischew used Eqn (7.63), which relates j with

g; analogically, he expressed j0 by the specific adhesion energy, u¼ j0/d2 (this expres-

sion reflects the fact that only one crystal surface is appearing by detachment of a CBB

from the support). In the case under consideration,Xn
i¼1

4i ¼ 2n3n
0�n3 � 1

�
jþ n2

3

�
n0 � 1

�
jþ n2

3j
0; (7.82)

Again, Eqn (7.66)] is used to establish the energy barrier for heterogeneous crystal

nucleation, DG�
heter. With Eqn (7.60), Kaischew obtained

DG�
heter ¼ n2

3n
0½3j� ð2j=n3Þ� �

Xn
i¼1

4i ¼ n2
3

�
j� j0� ¼ n2

3jð1� j0=jÞ ¼ DG�
homoð1� j0=jÞ

¼ DG�
homoð1� u=2gÞ: (7.83)

In a similar manner, he considered nucleation in concave edges (Figure 7.13(b)),

where the crystal reclines on two support plains, and in concave vertices (Figure 7.13(c)),

where the crystal sits on three support plains [54]. In doing so, Kaishew showed that in

the former case

DG�
heter ¼ DG�

homoð1� u=2gÞ2; (7.84)

In the second case,

DG�
heter ¼ DG�

homoð1� u=2gÞ3; (7.85)

It is seen that the equilibrium crystal shapes (Figure 7.13(a)), energy barriers, and thus

rates of crystal nucleation on substrates depend on the differing nucleation activity of

n' δ

n3 δ(a)

(b)(c)

FIGURE 7.13 3D models of Kossel-crystals
nucleated on (a) one substrate, (b) two equal
substrates, and (c) three equal substrates.
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foreign surfaces, expressed by the corresponding specific adhesion energies, u.

Furthermore, Kaischew also calculated thermodynamically the ratio DG�
heter=DG

�
homo (for

the same supersaturation) [70]:

DG�
heter

�
DG�

homo ¼ V �
heter

�
V �
homo: (7.86)

The physical explanation of this result is simple: depending on the substrate nucle-

ation activity, the nucleus volume is decreased (see Figure 7.12), and the nucleation

energy barrier is proportionally decreased.

Kaishew considered only the simplest case of nucleation on structureless (or

isomorphous) substrate. Clearly, on a lattice-mismatched substrate, the deposited

crystal as well as some part of the underlying substrate are strained. In such cases, the

elastic strain energy arising due to the misfit with the support has to be added to the

change in thermodynamic potential. In doing so, Mueller and Kern [68] concluded that,

owing to the strain, the equilibrium crystal shape changes; some facets decrease while

some others increase in size.

7.8.1 Saturation Density of Nuclei during Mass Crystallization
in Solutions and Melts

Particularly active sites for nucleation are present on the substrates themselves as well.

Assuming equal activity of the sites, the rate dÑ/dt at which they are consumed has been

calculated by Robins and Rhodin [41]. Evidently, this rate depends on the number

(Ña� Ñ*) of the still unoccupied active sites:

d ~N
��
dt ¼ J 0stð ~N a � ~N

�Þ (7.87)

where J 0st ðs�1Þ is the nucleation frequency per active site and Ña and Ñ* denote the

density of the active sites and nuclei numbers, respectively. Taking into account the

initial condition that for t¼ 0, Ñ*¼ 0, the integration from Ña to Ña� Ñ* yields

~N
� ¼ ~N a

�
1� exp

��J 0stt
��

(7.88)

As seen, at t/N, Ñ*/ Ña¼ const. Due to the exponential dependence, the ratio

Ñ*/Ña¼ 0.98 to 0.99 is attained at t > 4=J 0st to 5=J 0st, 1=J
0
st being the time constant of the

process.

However, the active sites on the support can possess different activity in respect to

the nucleation phenomenon [63]. Even when the substratum is a single crystal, its

surface is not homogeneous; there are always emergence points of (both edge and

screw) dislocations, tilt and twist boundaries, foreign inclusions embedded in the

crystal lattice, point defects, and surface steps, which, due to the locally increased

chemical potential or/and relief change, can become the preferred nucleation sites.

Evidently, any different kind of site can become active in the nucleation process,

provided the system’s supersaturation rises higher than some characteristic threshold.

Correspondingly, these kinds of sites can be classified with respect to the said critical

supersaturation. In such a case, the maximal nuclei density does not exceed the
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number of corresponding kind of active sites. However, with the increase in the

system’s supersaturation, less active sites will be involved in the nucleation process.

The limit to this stepwise activation process is set by the critical supersaturation that

is sufficient for homogeneous nucleation. This issue has been quantitatively looked

into by Kaischew and Mutaftschiev [71].

Similar to CNT, matter and heat transport in the mother phase are neglected by

Stranski and Kaischew’s theory. However, they are of importance in condensed systems.

As already noted (Section 7.2.4), depending on the matter and heat transport in the

parent phase, nuclei growth may substantially change the concentration and/or tem-

perature in their immediate surroundings. The so-called excluded nucleation zones

appear when supersaturation falls below the critical nucleation limit (e.g., see Ref. [10]).

Then, the exhaustion of the active particles/centers and/or the overlap of the excluded

nucleation zones sets the upper limit of the nuclei number.

7.9 Nucleation Theorem
Gibbs [1] was the first to notice that the thermodynamic nucleation theory proposed by

him leads to a simple relationship between the critical work and critical size; the

relationship between DG*, n*, and Dm is given by Eqn (7.14) (see also Ref. [72]). Perhaps

the famous nucleation theorem, given by Kashchiev and Oxtoby [73–76], was a result of

this argument. This nucleation theorem is very valuable for experimenters because it

reveals how the critical nucleus size is related to the supersaturation dependence of

nucleation rate. Using experimental data for the nucleation rate Jst, the number of

molecules n* constituting critically sized nuclei4 can be calculated by means of the

following equation:

n�zkBTdðln JstÞ=dðDmÞ þ a1 (7.89)

where a1 is a small correction taking values between 0 and 1 [74].

It should be emphasized that nucleation theorem validity is not restricted by nu-

cleus shape or size [73,74]. Moreover, nucleus size can be established without

knowing the molecular mechanism details of its formation. An in-depth theoretical

analysis [74] has shown that Eqn (7.89) provides a high degree of certainty; it “can be

used to give n* with an accuracy of 1–2 molecules” [73]. A statistical mechanical–

kinetic derivation of the nucleation theorem, which takes into account the kinetic

prefactor in the rate expression as well as the exponential term, has been proposed by

Ford [77]. The nucleation theorem has also been checked thoroughly by Schmelzer

[78], who expanded its application.

Kashchiev [75] gave strict phenomenological and thermodynamic proof of the

nucleation theorem and provided some generalizations. Although oversimplified, a

4In concentrated systems, this is the excess number of molecules in the critical nucleus, which is given

by the difference between the number of molecules in the nucleus and the number of molecules there

would be in the same volume without the nucleus.
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simple derivation of Eqn (7.89) is presented here, starting from the logarithmic form of

Volmer’s equation (Eqn (7.18)) for the nucleation rate:

ln J ¼ ln A� DG�=kBT (7.90)

Then, replacing the DG* value from Eqn (7.8), Eqn (7.90) is derived with respect to Dm,

under the assumption that A and g are constants. In doing so, an equivalent form of Eqn

(7.89) is obtained:

n�zkBTdðln JÞ=dðDmÞ � ½dn�=dðlnDmÞ � gðdS�=dðDmÞÞ� (7.91)

Then, with Eqn (7.10) for spherical crystals, one obtains

n�zkBTdðln JÞ=dðDmÞ (7.92)

Using Eqn (7.9) and with dS*/d(Dm)¼ (dS*/dn*)[dn*/d(Dm)], Eqn (7.92) is yielded for

the Kossel crystal as well.

7.10 Probabilistic Features of the Nucleation Process
Both molecule attachment and detachment are random processes, which means that

any cluster smaller than the critically sized one performs a random size-walk forth and

back on the time axis, until it eventually reaches the critical size [9]. Therefore, the

nucleation rate itself is a random quantity as well. Thus, the formal probability laws

govern the statistical distribution of the nucleation rates, whereas the kinetic nucleation

theory predicts their average values only. This fact is reflected in the inherent data scatter

of the measured nucleation rates.

The probabilistic features of the nucleation process have been discussed thoroughly

by Toshev and co-workers [9,79]. Following these authors, only the simplest case of

steady-state nucleation will be considered here because it is more lucid than the

nonsteady case and renders a clear result.

Toshev [9] considered nucleation as a sequence of independent random events

occurring during a fixed time interval. Using the Poisson expression, he calculated the

probability PM of finding M events within the time interval from 0 to t:

PM ¼ �
�N

M
exp

�� �N
���

M ! (7.93)

where �N is the average number of expected nucleation events, which should appear in

the chosen time interval.

Following the calculus of probability, Toshev [9] derivates Poisson’s formula to obtain

a relationship between the probability and nucleation rate d �N/dt:

dP�M ¼ �
d �N

�
dt
���

�N
M�1��ðM � 1Þ!�exp�� �N

�
dt (7.94)

Integrating Eqn (7.94), he obtained the probability of formation of minimumM nuclei

before time t is elapsed. Introducing the total number of nuclei according to Eqn (7.48),

he considered �N and J¼ d �N/dt as representative for the whole system and assumed that

the supersaturation remains constant. To obtain an expression for appearance of at least
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one nucleus, M¼ 1, Toshev assumed as a limiting case the rate equation for steady-state

nucleation and reached

dP�1 ¼ Jst expð � JsttÞdt (7.95)

This formula expresses the probability of occurrence of the first nucleus within the

time interval between t and tþ dt. By integrating, the probability P�1 (that at least one

nucleus has arisen before the time t is elapsed) was obtained:

P�1 ¼ 1� expð � JsttÞ (7.96)

According to the theorem for average values of a function, the mean expectation time

T1 for the appearance of at least one nucleus is

T1 ¼
ZN
0

tdP�1 ¼ 1=Jst (7.97)

It is seen that the mean expectation time T1 needed to form at least one nucleus is

reciprocal to the steady-state nucleation rate. Although the time of first nucleus for-

mation in the system is also a random quantity, Toshev and co-workers had shown that

it yields valuable information concerning the kinetics of the process [79].

Some novel applications of the nucleation theory will be considered in the following

sections.

7.11 Use of Burst Nucleation for Producing
Equally-Sized Nanoparticles

A detailed understanding of the mechanisms responsible for formation of metallic

particles with carefully tailored properties is indispensable to many contemporary

technology areas, such as photovoltaics, catalysis, electronics, and medicine. In this

respect, burst nucleation of metal colloids and nanoparticles in solutions, followed by

diffusional growth and aggregation, or their combinations, represents an interesting

development [80]. Burst nucleation is initiated by chemically generating (or introducing)

monomers. By burst nucleation and further growth, molecule clusters reach sizes up to a

couple of tens of nanometers. In many cases, nanocrystals of ZnS, CdS, Fe2O3, Au, Ag

(and other metals) can begin to aggregate, becoming “monomers” for the formation of

(crystalline) colloids. A modification of CNT has been used to explain the burst nucle-

ation [80].

7.12 Nucleation of Protein Crystals
Protein crystal nucleation is a special case of spontaneous highly precise self-assembly

of biological macromolecules into stable clusters, formed as a result of selective and

appropriately directed interactions. It is a mandatory requirement that biological

macromolecules have to be arranged in a geometry that is appropriate for creating
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crystallographically symmetrical molecular structures. On the basis of reliable statistic

data, Wukovitz and Yeates [81] revealed a tendency for proteins to crystallize in a small

number of preferred space groups, where it is the easiest to achieve connectivity. The

specificity of protein crystal nucleation will be considered in the following section.

7.12.1 Bond Selection Mechanism

It is known that only the structure of the protein molecule surface dictates a molecule’s

ability to bind to partners during protein crystallization. Evidence comes from the

entirely analogous crystallization behavior of apo- and holoferritin, observed to occur

due to the same molecule surface structure, regardless of the dramatically different

molecule core. Recall that apoferritin is an empty shell, while a mineral core is present in

the holoferritin. Nevertheless, when forming under the same conditions, the crystals of

both proteins have exactly the same shape; the crystals differ only in their color: apo-

ferritin crystals are yellowish, whereas holoferritin is reddish-brown [82]. Taking that

into account and the experimental observations that protein crystal nucleation is rather

slow, a bond selection mechanism (BSM) has been suggested [83,84]. It represents an

attempt to describe the most important features of the extremely complex molecular-

kinetic mechanism of protein crystal nucleation.

As is well known, there is a fundamental difference between small inorganic and large

protein molecules. Small molecules possess spherical interaction fields with constant

interaction potential. In supersaturated media, every hit between them, independently

of molecules’ spatial orientation, has the potential to contribute to a crystal bond for-

mation. In contrast, the surface of the protein molecule is highly patchy and heteroge-

neous. The rationale behind BSM rests on the concept that patch–patch recognition is

mandatory for the formation of lattice contacts in protein crystals.

Although it is impossible to observe the elementary acts of protein crystal bond

formation, knowledge about lattice contacts (e.g., see Protein Data Bank, (PDB) data in

Refs [85–88]), resulting in protein crystallization, lay a sound basis to suggest a mech-

anism of protein crystal bonding. It has been evidenced by PDB-structure statistics [85]

that protein lattice contacts are not random; they occur through strict selection of

amino-acid residues situated on the protein molecule surface. Only two (arginine and

glutamine) predominate in crystal lattice contacts, of the 20 proteinogenic amino-acid

residues that the vast multitude of living organisms rely on. In contrast, the least likely

residues to be found in the crystal lattice contacts are lysine and glutamate residues [85].

Such a bond selection imposes severe steric restriction to protein molecule associa-

tion, leading to crystal nucleus formation. In addition, it should be emphasized that only

amino-acid residues situated in proper positions on the molecule surface are able to

participate in producing crystal lattices. Even though potentially active, some residues

that are out of crystallographically symmetrical positions (if, for instance, they are sit-

uated too close) can remain unused. Therefore, over their surface, protein molecules

exhibit a highly limited number of discrete patches, which are the authentic bonding
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sites under the actual crystallization conditions. Because such a patch occupies only a

small fraction of the total surface of the protein molecule [82], BSM dramatically de-

creases the chance for a crystalline lattice bond formation and postpones the nucleation

process significantly.

Indeed, the steric restriction effect is somewhat mitigated by rotational diffusion,

which involves multiple collisions. The latter increases the chance for fine-tuning of the

proper spatial positioning of crystallization patches on the two meeting protein mole-

cules [89]. However, the rotational diffusion is highly effective only for protein pair

formation. Its impact decreases strongly with larger complexes, following the order of

pair[trimer[.n-mer./0. The reason is that random rotation slows down very fast

with larger complexes; for spheres, it is inversely proportional to their volume [89,90].

Therefore, it is highly improbable that the rotational diffusion may effectively assist a

reasonably frequent formation of critical clusters constituted of large number of protein

molecules (see also Section 7.12.4).

The reasons for BSM and its impact on protein crystal nucleation are considered in

full detail in a review paper [91].

7.12.2 Shape of the Protein Crystal Nucleus

Crystal nucleation kinetics is studied intensively with globular proteins, but the

experimental determination of the shape of the crystal nucleus still remains a chal-

lenge. The evident reason is the principal impossibility to see the critical nuclei directly.

As already mentioned (see Section 7.4.1), the shape of the critical crystal nucleus has

been deduced from the observed nearly critical apoferritin crystallites [34]. Surprisingly,

the crystallites had a raft-like form. This observation is rather puzzling [92,93] because

the apoferritin molecule is quite symmetrical in shape, almost spherical, and crystal-

lizes in fcc lattice. Using the classical approach of the MWS method, the observation of

Yau and Vekilov has been explained on the basis of the hypothesis for different crystal

lattice bond strengths [57].

A Kossel-like crystal nucleus model was considered for globular proteins [83,84], in

which spheres replaced the cubic building blocks of the said crystal (Figure 7.14).

Keeping in mind the nature of the lattice binding forces between the huge biomolecules,

FIGURE 7.14 Cubic primitive lattice model
of a 3D crystal, formed due to six sticky
patches (not to scale): A, B, C, E, F, and
the patch just behind C that is not seen.
l, l1 and l2 are the numbers of molecules
in the corresponding rows.
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only the first-nearest neighbors were taken into account. A diametrical opposition of the

sticky patches was assumed because it simplified substantially the quantitative

consideration of the nucleus shape (Figure 7.14).

The crystal model shown in Figure 7.14 is constructed from three rows of molecules. The

bond strength of the most stable contact between two molecules, the one in the horizontal

front row in Figure 7.14, is denoted as j1, j1¼max. Then, a second type of weaker bond of

strength j2 is added horizontally at the back. And finally, a third type of bond j3 is

necessary to construct the three-dimensional cluster; those are the weakest bonds. Using

this model, it is easy to calculate the corresponding MWS, 4, for the three types of faces:

41 ¼ j1 þ j2 þ j3 � j1=l � j2=l1 � for the top ðor bottomÞ face in Figure 5:14: (7.98)

42 ¼ j1 þ j2 þ j3 � j1=l � j3=l2 � for the front ðor backÞ face in Figure 5:14: (7.99)

43 ¼ j1 þ j2 þ j3 � j2=l1 � j3=l2 � for the side� faces in Figure 5:14: (7.100)

At equilibrium, all three MWSs have to be equal. Hence:

l=l1 ¼ j1=j2; l1=l2 ¼ j2=j3 and l=l2 ¼ j1=j3 (7.101)

Because j1> j2> j3, the three-dimensional crystal is a parallelepiped, but not cube.

It is worth showing here that this result obeys the Gibbs–Curie–Wulff law. According

to Eqn (7.101) we have: l/l1> 1, l/l2> 1 and l1/l2> 1, and hence:

ll2 > l1l2; ll1 > l1l2; and ll1 > ll2 (7.102)

Thus, the smallest are the left- and right-hand side faces in Figure 7.14, which are

situated normally to the strongest connecting force; the largest (top and bottom) faces

are normal to the weakest bonding force. Keeping in mind Eqn (7.63) for the specific

surface free energy gi, one sees that the equilibrium crystal face with the largest specific

surface free energy g1z j1/2s is the smallest in size, and the one possessing the lowest

energy g3z j3/2s (having the weakest dangling bonds) is the largest in size. Thus, the

model obeys the Gibbs–Curie–Wulff law.

Closely packed 3D-crystal nuclei models built of spherical protein molecules,

including those similar to the raft-like apoferritin crystal shapes of Yau and Vekilov, have

been considered as well [57]. It should be noted that the formation of nonequilibrium

shaped clusters is feasible but its energy cost is higher [94].

7.12.3 Energy Barrier for Protein Crystal Nucleation

Applying the MWS method to calculate the energy barrier for homogeneous protein

crystal nucleation [84], using Eqn (7.66), gives

DG�
homo ¼ ll1l24�

Xn�

1

4i (7.103)

The total binding energy of the crystal, built of n*¼ ll1l2 individual molecules, isXn�

1

4i ¼
�
l � 1

�
l1l2j1 þ

�
l1 � 1

�
ll2j2 þ

�
l2 � 1

�
ll1j3; (7.104)
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and thus,

DG�
homo ¼ ll1j3

� ¼ ll2j2 ¼ l1l2j1

�
(7.105)

From Eqn (7.62), l, l1, and l2 are expressed by j1, j2, and j3 and the supersaturation

Dm: l¼ 2j1/Dm, l1¼ 2j2/Dm and l2¼ 2j3/Dm. Then, an analog to Eqn (7.13) is obtained

expressing j1, j2, and j3 by the corresponding surface free energies g1, g2, g3, according

to Eqn (7.63):

DG�
homo ¼ 32g1g2g3U

2
�ðDmÞ2 (7.106)

The numerical estimation, performed by means of Eqn (7.106) and with gz 1 erg/

cm2 [95], Uz 3� 10�20 cm3, and Dmz 3kBT, yields DG�
homo ¼ 2� 10�12erg. In view

of Eqn (7.83), and taking into account the experimental data obtained for

heterogeneous insulin crystal nucleation, DG�
heter ¼ ð3:8� 6:8Þ � 10�13erg [84], the result

is encouraging.

7.12.4 Protein Cluster–Cluster Aggregation on Diffusional Encounter

Despite the unusually high supersaturations applied in protein crystal nucleation

studies, the nucleation kinetics is rather slow [84,31]. One possible explanation of this

observation may be that successive series of multiple coalescences of critical and/or

near-critical clusters could reduce the observed crystal yield. Because there is no

technique to track the destiny of the individual undercritically, critically, and super-

critically sized clusters, it is particularly difficult to give any confident statement

regarding the intermediate processes that may occur before and after the onset of

crystal nucleation. In addition to the complexity of the issue is the fact that, while

coalescence of clusters equal or larger than the critical size would diminish the crystal

nucleation rate, coalescence of smaller sized clusters would augment it.

Firstly, due to the patchy and highly inhomogeneous surface of the protein molecules

constituting the clusters, it is reasonable to expect that BSM should affect protein

molecule clusters as well. In other words, when such clusters meet, their proper spatial

orientation provides an inevitable coalesce condition. Because crystalline protein clus-

ters are polyhedrons in shape [34], the simplest model is coalescence of two clusters with

a Kossel-like lattice that consists of eight molecules each (i.e., two dice; Figure 7.15).

Evidently, the facets on the two dice that correspond to the strongest intermolecular

binding are most prone to bind together [31].

The probability for a proper meeting of two such dice in space is equal to the

probability for the simultaneous appearance of just the same number on both dice

by crap-shooting—that is, w0.028. This probability is about 3 times smaller than that

one for formation of protein molecule dimmers, which has been estimated to be

0.09–0.13 [84].

Note that the dice-meeting probability also includes partial coincidence, when

merely one or two molecules on each dice become associated. Such a construction

would hardly have sufficient stability; complete stability could only be achieved by
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bonding of all eight molecules on both preferred dice faces. Thus, an additional spatial

adjustment is required, which may be provided by rotational diffusion. However,

because of the Brownian motion, the dice also may be separated in the meantime, which

additionally decreases the coalescence probability.

Coalescence of clusters larger than eight molecules has also been discussed [31].

Obviously, the attachment of a ninth (and also tenth and eleventh) protein molecule to

the dice in Figure 7.15 will create bulges. Bulges appear also on clusters consisting of

13–15 protein molecules, etc. However, flat faces bind together much stronger

than bulges do, thus reducing coalescence probability even further. As already

mentioned (see Section 7.12.2), in complete parallelepiped clusters, the side faces

normal to the strongest connecting forces are of the smallest area (this holds true also for

completed clusters consisting of 12, 60, etc. molecules), which decreases their coales-

cence probability.

Only coalescence of equally sized protein clusters has been considered so far. Indeed,

differently sized clusters coalesce as well, but their coalescence does not change the

general trend [31]. The reason is that smaller clusters rotate diffusionally and accom-

modate faster than larger particles. This is especially pronounced with clusters of highly

differing sizes. In such a case, only the smaller cluster rolls about the larger one, like a

ball on a floor. The larger cluster is almost immovable.

A general conclusion can be drawn that, due to the spatial adjustment via rotational

diffusion, coalescence of critical and/or supercritically sized crystalline clusters of

protein molecules is less probable than that for clusters smaller than the critical nu-

cleus size. Moreover, due to the decreasing effect of the rotational diffusion, any suc-

cessive (multiple) cluster coalescence resulting in a large-scale conglomeration is

improbable.

FIGURE 7.15 Accidental meeting in
space of two clusters (two dice)
that consist of eight protein
molecules each.
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The protein cluster coalescence problem has been given some quantitative consid-

erations as well [31]. Using Smoluchowski’s approach to rapid coagulation of spherical

colloids, the dynamic process of the single coalescence of clusters composed of n protein

molecules, which are consumed to produce larger size of clusters, is described by the

rate equation for second-order bimolecular reactions written for every category of

equally sized clusters:

dZn=dt ¼ �knZ
2
n; (7.107)

where kn is the coalescence rate constant and Zn is the concentration of clusters in the

category n. Our implicit assumption is based on the predominating process of

monomer attachment/detachment to/from the clusters; thus, no cluster size is missing.

In other words, a quasi-equilibrium cluster distribution (Szillard chain) is established

sufficiently fast.

Coalescence balance is estimated by integrating Eqn (7.107) from Zo
n at t¼ 0 to Zn:

Zo
n

�
Zn ¼ 1þ Zo

nknt ¼ Rn; (7.108)

Note that Zo
nknt is dimensionless, likely Rn; Z

o
nkn has the meaning of reciprocal half-

life time, and larger Rn means a faster coagulation for the particles in the category n.

It has been suggested [31] that the cluster coalescence rate constant kn represents

the coalescence probability. Whether the change in kn is monotonous or not is rather

uncertain; that is why the following logical scheme has been applied: denoting j¼ n*/2

for even n* numbers and j¼ (n* þ 1)/2 for odd n* numbers, it follows from the qual-

itative consideration presented above that the coalescence probability Pj for clusters in

the category j, is much larger than the coalescence probability Pn* for the clusters in the

category n*. Respectively, Pjþ1 > Pn*þ1, Pjþ2 > Pn*þ2, . , Pn*�1 > Pn*þj�1. Thus, the rate

constants kn<n* have to be systematically larger than the rate constants kn�n*. In

addition, it is logical to assume that the initial concentrations of the clusters Zo
n<n� , for

every cluster category n¼ 2, 3, ., n*� 1, is at least equal to Zo
n�n� ; for instance, the

critical nuclei are of minimum concentration (Section 7.4). Finally, summing up the

system of equations of the type of Eqn (7.108) for the different cluster categories and

for the same time t, and knowing that kn<n�Zo
n<n� > kn�n�Zo

n�n� , we see that the coa-

lescence probability for clusters in the range from j to n* � 1, which may produce

critical and supercritical nuclei, should be larger as compared with the coalescence of

clusters of critical and supercritical size. Taking into account the rotational diffusion

effect as well, the general conclusion is that being too slow, cluster coalescence does

not play any role in the process of bulk protein crystal nucleation.

7.13 Concluding Remarks
The study of nucleation is the subject of a huge number of papers. The literature also

comprises more than 70 books and reviews. (For an extended list of books and reviews,

see the preface of Kashchiev’s book [75].) A number of excellent books (e.g., [2]) and
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papers have been published subsequently (e.g., [46,80,96–99]), and the scientific and

technological interest in the topic is not declining. Due to the large body of literature on

the subject, this chapter is not intended to be exhaustive. I outlined some of the basic

physics that is believed to underlie this phenomenon. With the intention of making the

topic more comprehensible to a broader readership, heavy mathematics was omitted. In

addition, the limited space permits consideration of nucleation in a one-component

system only. (Readers interested in nucleation in multicomponent systems may refer

to Ref. [2].) In view of the author’s background and preferences, the chapter focuses on

some cases that seem underestimated in contemporary literature, such as the almost

forgotten but fruitful MWS method.

7.14 Perspectives
In a constant quest to improve the nucleation theory, many corrections have been

suggested, some of which were mentioned in Sections 7.4 and 7.4.1. Except for the most

basic notions of CNT, such as the necessity of fluctuative nucleus formation under a

sufficiently high driving force, almost all remaining postulates have been questioned in

recent decades. Nevertheless, CNT remains the essence of nucleation theory. Although it

is particularly difficult to give any confident statement as to how the theory will develop

in the coming years, it is possible to predict that improvement will most likely be

centered on explanations of specific cases, such as nanoparticle and protein crystal

nucleation.

Frequently Used Abbreviations
BSM bond selection mechanism
CBB crystal building block
CNT classical nucleation theory
MWS mean work of separation
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[36] McGraw R, Laaksonen A. J Chem Phys 1997;106:5284.

[37] McGraw R, Laaksonen A. Phys Rev Lett 1996;76:2754.

[38] Walton D. J Chem Phys 1962;37:2182.

[39] Walton D. Phil Mag 1962;7:1671.

[40] Walton D, Rhodin TN, Rollins R. J Chem Phys 1963;38:2695.

[41] Robins JL, Rhodin TN. Surf Sci 1964;2:346.

[42] Milchev A. Contemp Phys 1991;32:321.

356 HANDBOOK OF CRYSTAL GROWTH

http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0045
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0045
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0050
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0050
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0055
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0060
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0065
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0070
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0075
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0080
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0085
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0090
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0095
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0095
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0105
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0110
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0115
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0120
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0120
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0125
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0130
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0135
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0145
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0145
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0150
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0155
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0160
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0165
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0170
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0175
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0180
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0185
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0190
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0195
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0200
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0205
http://refhub.elsevier.com/B978-0-444-56369-9.00007-1/ref0210


[43] Stoyanov S. Current topics in mat. sci.. Amsterdam: North-Holland; 1974.

[44] Milchev A, Malinovski J. Surf Sci 1985;156:36.

[45] ten Wolde PR, Frenkel D. Science 1997;277:1975.

[46] Vekilov PG. Cryst Growth Des 2010;10:5007–19 [and the references therein].

[47] Stranski I, Kaischew R. Z Phys Chem A 1934;170:295.

[48] Stranski I, Kaischew R. Z Phys Chem B 1934;26:100.

[49] Stranski I, Kaischew R. Z Phys Chem B 1934;26:114.

[50] [a] Kossel W. Göttinger Nachrichten 1927:135;
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8.1 Introduction: Purpose of This Chapter
We know that the ground state of many identical particles (e.g., atoms and molecules) is

a state of a crystal in which particles form a periodic array. Figure 8.1 shows an example:

a tiny 1-mm crystal of Pb shows a perfect array of atoms [1]. If a Pb atom were as large as

FIGURE 8.1 A 750 nm � 750 nm scanning tunneling microscope image of a Pb crystal acquired at a temperature
of 383 K. The inset shows the atomically resolved (111) surface zooming into the top facet. Reprinted from
Ref. [1], with permission from AIP.
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a golf ball, the size of the facet would be several tens of meters. It is not evident at all,

however, that the particles can really form such a structure spontaneously. Merely by

reducing temperature or increasing pressure, atoms or molecules in a liquid/gas

aggregate and organize themselves to form a crystal. The purpose of this chapter is to

explain the basic mechanism of this self-organization of atoms for beginners who have

some basic knowledge of physics.1

The present chapter is not intended to give a comprehensive view of growth mech-

anisms but rather to explain the simple typical pathways of crystal growth on such a level

that beginners can understand the physical mechanism. As a result, topics are limited

and a comprehensive biography is not supplied.

8.2 Crystal Growth as a Process of Phase Transition
Crystallization is the process of the phase transition from a liquid or a gas to a solid.

Crystal growth is a synonym of crystallization, and the word suggests that the crystal is

becoming larger and larger. The birth of a crystal is called nucleation, which is explained

in Chapter 7 of this book. This chapter discusses how small crystals grow.

8.2.1 Equilibrium and Transition to Solid Phase

The mother phase is the uniform isotropic phase and the solid phase has a periodic

atomic structure and therefore is anisotropic (no spherical symmetry). Because of the

difference in symmetry, the two phases can be distinguished clearly. In Figure 8.2, a

FIGURE 8.2 A typical form of the phase diagram of simple material. Continuous transition from the gas to the
liquid is realized along the dashed curve.

1There are already many textbooks available in bookstores. Some of the books the author noted and

consulted to write the present chapter are Refs [3–9].

Chapter 8 • Growth Kinetics: Basics of Crystal Growth Mechanisms 361



typical phase diagram is shown. In contrast to the solid–liquid (or gas) transition, a

continuous transition between the gas and the liquid is possible, as indicated

by the dashed curve in Figure 8.2, because there is not any change in symmetry. Liquid

and gas can be distinguished clearly only when they exists at the same time with an

interface.

If one changes the temperature T and/or pressure P of the system, the state of matter

may change so as to lower the Gibbs free energy G(T, P). The most important quantity is

the chemical potential m(T, P), which is the Gibbs free energy per particle2: m ¼ G/N.

Figure 8.3 shows chemical potentials of solid and liquid (or gas). Figure 8.3(A) corre-

sponds to the change of m along a horizontal cut in Figure 8.2, and Figure 8.3(B) is along a

vertical cut. If one decreases the temperature or increases the pressure beyond the

coexisting point, the chemical potential mL of the liquid becomes higher than that of the

solid, mS. Their difference, Dm ¼ mL � mS is the driving force of solidification. Note that we

have assumed the entropy in solid sS, which is the down slope in Figure 8.3(A), is smaller

than that in liquid sL. Otherwise, the solid phase appears at the high-temperature side.3

Also, we have assumed the atomic volume in solid vS, which is the slope in Figure 8.3(B),

is smaller than that in liquid vS. A well-known counterexample is water (H2O): ordinary

ice melts when pressure is applied. For simplicity, we always assume the standard

behavior, as in Figure 8.3. Similarly, if the mother phase is a gas, Dm ¼ mG � mS is the

corresponding driving force.

(A) (B)

FIGURE 8.3 Change of chemical potentials of the solid and the liquid (gas) as a function of temperature T (A) and
pressure P (B).

2Unless explicitly mentioned, we always deal with the simplest case—that is, one-component simple

atoms/molecules.
3This case is rare but is seen in He [6].
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8.2.2 Linear Kinetics

If a solid and a liquid are in equilibrium, temperature T, pressure P, and chemical po-

tential m are equal in both phases. When these quantities are shifted from equilibrium,

the pressure balance is related to mechanical equilibrium and restored at once. An

imbalance of temperature produces heat flow, and an imbalance of chemical potential

produces mass flow. When the shift is not too large, the corresponding response is

proportional to the amount of shift. Such a linear response relationship usually holds

true. In crystal growth, however, nonlinear behavior sometimes controls the system.

8.2.3 Transport and Chemical Potential

The process of crystallization is like constructing a brick building. Bricks that make

up the building are transported from other places by various ways to the construction

site. There, bricks are piled up one by one, and the building becomes larger and larger.

Waste from construction is in turn transported by trucks from the site and discarded

somewhere in the environment. Crystallization processes are categorized into two types:

transport of materials and waste (transport processes) from/to remote places and

assembling at the construction site (kinetics at the interface). In both processes, free

energy is consumed. In crystallization at given temperature and pressure, chemical

potential is consumed in such processes.

If convection is neglected, transport is controlled by diffusion, and the local mass

current j at the position r is determined by

jðrÞ ¼ �DmVmðrÞ
¼ �DVnðrÞ; (8.1)

where Dm and D are the diffusion coefficients and n(r) is the local number density of

atoms. In a dilute system, chemical potential is proportional to density n and the second

line holds.4 Material is transported to the interface by the gradient of chemical potential.

At the interface, with consumption of chemical potential Dm, transformation from liquid

(gas) to solid—crystallization—occurs. Such process is called interface kinetics (surface

kinetics), and it consists of several atomic processes. Macroscopically, the speed of

liquid–solid transformation is measured by the velocity of the solid surface V and can be

written as

V ¼ KDm; (8.2)

where Dm is the difference of the chemical potential of the liquid at the interface and that

of the solid. The proportionality coefficient K is called the kinetic coefficient. The pro-

portionality is expected, except for a singular surface called a facet. A distinction between

the facet and nonsingular faces is essential to understand the crystal growth mechanism,

as explained in detail in Chapters 5 and 6 of this book.

4Because m ¼ kBT lnn þ const., for a small change dm ¼ (kBT/n)dn f dn, and D ¼ DmkBT/n.
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8.3 Growth from Various Mother Phases
Crystallization occurs not only from the liquid phase but also from various other phases:

from the vapor (from a gas, pure or mixture), from the solution (from a liquid mixture),

and from other solid or amorphous phases. This section explains the characteristic

features of several basic cases.

8.3.1 Growth from the Vapor

Growth of a solid directly from a gas is called vapor growth. It is the reverse process of

evaporation (sublimation, more specifically). Growth of snow crystals in the sky and

growth of frost on the window glass are examples from everyday life. Because obser-

vation of the surface is relatively easy, one can see what is happening there to find the

growth mechanism better than in other cases. In a dilute gas, each elementary process

contains only a few atoms (molecules), which also helps our understanding. As a result,

we have relatively good control of the system.

Features of the vapor growth include the following:

1. Because the crystal grows from a dilute phase, the growth velocity is low. It is

convenient for the surface manipulation (e.g., of semiconductor crystals) to make a

device but is inefficient for making a big bulk crystal.

2. Unless the crystal is very large, the growth environment can be regarded as uni-

form, and local difference of the growth conditions is usually negligible.

3. The difference of density in solid and in gas is large, and the anisotropy of the sur-

face is strong. As a consequence, large facets appear on the surface of the crystal.

4. Because most of the surface of a crystal consists of facets, where immediate solidi-

fication is usually difficult, various surface processes limit the growth velocity and

the growth velocity is slow. These surface processes are very important and will be

explained in the following sections.

Let us estimate the maximum growth velocity expected for growth from the vapor. If

all atoms (or molecules) coming onto the crystal surface are taken into the crystal and

solidify, the incoming flux will give the growth rate when evaporation is absent. At finite

temperatures, evaporation occurs, and the evaporating flux should be subtracted from

the incoming flux to obtain the net flux of solidification. If we denote the incoming

current (flux density: number of atoms per unit area per unit time) by jin, the outgoing

current by jout and atomic volume in the solid by vS, the growth velocity, which is the

advancing velocity of the surface, is given by

V ¼ vS
�
jin � jout

�
: (8.3)

For a classical ideal gas, which in an equilibrium state takes the Maxwell–Boltzmann

distribution function,

f ðpÞd3p ¼ nG

ð2pmkBT Þ3=2
e�p2=2mkBTd3p; (8.4)
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where nG is the number density of the gas, jin is easily calculated. The number of atoms

incident to a unit surface area in the x� y plane within a time Dt from the above5 is

expressed as

jinðT ;PÞ ¼
Z0
�N

dpz

ZN
�N

dpy

ZN
�N

dpx

�
�pz

m

�
f ðpÞ

¼ nGkBTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
(8.5)

because atoms of the velocity vz ¼ pz/m (<0) within the distance jvzjDt collide with the

surface irrespective of the velocity vx and vy. The rate of evaporation, in contrast, must be

a function of temperature T and is independent of the atmosphere. Calculating the

evaporation current jout(T) is difficult, but we know that under the equilibrium vapor

pressure Peq(T), with which the solid neither grows nor sublimates, the two currents must

balance: jout(T) ¼ jin(T, Peq(T)). Therefore, we can write the growth velocity (Eqn (8.3)) as

Vmax ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p vS
�
P � PeqðT Þ

�
: (8.6)

Because we have assumed that all incoming atoms solidify, this equation, called the

Hertz-Knudsen formula, gives the maximum growth velocity from the vapor [10,11]. The

sticking coefficient—that is, the ratio of atoms captured by the solid surface to all

incoming atoms—is less than unity (only at a very rough surface is it close to unity), and

the growth is considerably slower.

If supersaturation is not too high, we can obtain a linear relation, as in Eqn (8.2).

From the relationship between chemical potential and pressure for an ideal gas:

m ¼ kBT ln P þ ðfunction of TÞ: (8.7)

Dm is related to the pressure difference as

Dm ¼ kBT ln

�
P

Peq

�
z kBT

P � Peq

Peq

¼ �P � Peq

�
vG; (8.8)

where vG is the volume per atom in gas. Equation (8.6) can be rewritten as

Vmax ¼ vS

vG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p Dm ¼ nG

nS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p Dm: (8.9)

Therefore, the maximum value of the kinetic coefficient is

K vapor
max z

vS
vG

1

mvtherm
: (8.10)

8.3.2 Growth from the Melt

When a crystal grows from a liquid phase of the same material, it is called melt growth.

This is the reverse process of melting.

5The space z � 0 is assumed to be the solid.
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Features of melt growth include the following:

1. Because the density difference between the two phases is small, the

interfacial free energy and its anisotropy is usually small, and the interface tends

to be rough.

2. There is no need for material transport, and a rough interface brings about rapid

growth.

3. The velocity of growth is limited by transport of the latent heat. The transport of

heat is carried out by heat conduction in the material and/or convection in the

liquid. As a result, nonuniformity of the system is usually relevant, and stability of

the growth form should be always taken care of.

8.3.2.1 Sharp Interface Picture
One can estimate the growth velocity from the melt as in the vapor growth. When

the interface is rough, the growth velocity is determined by the balance of the

solidifying current jsol and the melting current jmel. For a rough surface, kink

sites, where solidification and melting take place, are everywhere, and the solidifying

current is

jsol zNkinkn0WSe
�Eb=kBT ; (8.11)

where Nkink w a�2 (a: lattice constant) is the number of kinks in a unit area, n0 is a

characteristic frequency of molecular motion (such as the Debye frequency), WS is the

number of possible molecular configurations in a solid, and Eb is the height of the energy

barrier to enter a kink site of the crystal. The energy barrier Eb is about the same

magnitude as the energy barrier Ed for atomic diffusion in the liquid. WS is related to the

configuration entropy asWS ¼ esS=kB and is unity for an isotropic molecule, such as a rare

gas atom. For molecules whose orientation in solid is limited, the difference of the

number of allowed molecular orientations in liquid, WL ¼ esL=kB , and in solid may be

significant. The current of the inverse process is

jmel zNkinkn0WLe
�ðEbþDhÞ=kBT ; (8.12)

where Dh ¼ hL � hS is the difference of enthalpy (note that the two processes occur
under a given pressure).

At the equilibrium temperature Tm, the two currents jsol and jmel must be equal and,

from Eqns (8.11) and (8.12), we have hL � TmsL ¼ hS � TmsS—that is, mL ¼ mS. If tem-

perature deviates from Tm, the net solidifying current is

jsol � jmel zNkinkn0WSe
�Eb=kBT

�
1� eDs=kBe�Dh=kBT

�
¼ Nkinkne

�Ds=kBe�Eb=kBT
�
1� e�Dm=kBT

�
;

(8.13)
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where n ¼ n0WL and Ds ¼ sL � sS. In the last line, we take the motion in liquid as the

standard and write the equation in a form that emphasizes reduction of the growth rate

by the difference of configurational entropy Ds. If supersaturation is not too large, the

growth velocity is written as

V z vSðjsol � jmelÞ
z vSNkinkne

�Ds=kBe�Eb=kBT
Dm

kBT
;

(8.14)

and is proportional to the driving force Dm. The temperature dependence of the kinetic

coefficient

Kmelt z
vSNkinkn

kBT
e�Ds=kBe�Eb=kBT (8.15)

z
an

kBT
e�Ds=kBe�Eb=kBT (8.16)

is controlled by the energy barrier Eb. Note that, in the last line, we have assumed that

Nkink z a�2: kinks cover the rough surface. Otherwise, a reduction factor Nkinka
2 is

necessary.

In terms of supercooling dT ¼ Tm � T, the linear relation is written as

V ¼ KDm ¼ KTdT ; (8.17)

KT ¼ ane�Eb=kBTe�Ds=kB
Ds

kBT
; (8.18)

where we have used Dm ¼ (sL � sS)dT ¼ DsdT. The entropy gap is related to the latent

heat per molecule, l, as Ds ¼ l/Tm. Because the diffusion coefficient is given by

Dza2ne�Eb=kBT , the first three factors of Eqn (8.18) are simply D/a, and

KmeltzðD=kBTaÞe�Ds=kB . The equation for the growth velocity from the melt is called the

Wilson-Frenkel formula [12,13]. With the Einstein–Stokes relation6 D ¼ kBT/(3pha), the

diffusion coefficient is related to the viscosity h, which is easily measured. Thus, the

kinetic coefficient KT is essentially determined by the viscosity of the liquid, but reduced

by a factor e�Ds=kB if the entropy gap is not negligible. By lowering the temperature, the

growth velocity first increases linearly with dT. When the temperature becomes too low,

however, the viscosity increases exponentially ðhfeEb=kBT Þ and solidification stops: in

extreme cases, amorphous material may appear instead of crystal.

For metals, the values of kinetic coefficients are estimated as KT z 1–50 cm/s K

(KT z 1015–17 s/g cm) [3]. In real systems, because the transport of latent heat is the rate-

limiting process, the apparent kinetic coefficient is much smaller if one uses the values of

Dm or dT measured far7 from the interface.

6We put the molecular radius as a/2, half the lattice constant.
7Macroscopically close sometimes means microscopically far.
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It is known from molecular dynamics simulations that the activation type behavior of

the kinetic coefficient (Eqn (8.18)) is not true for simple materials, such as molecules

with van der Waals interactions [14]. It seems that crystallization proceeds without an

energy barrier and ane�Eb=kBT is replaced by avtherm/lmf, where vtherm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p
is the

thermal velocity and lmf(wa) is the mean free path of an atom. To understand such

behavior, the image of melt growth must be modified.

8.3.2.2 Diffuse Interface Picture
The kinetic coefficient given above is derived with the assumption that the incorporation

of an individual atom to the solid is the elementary process of crystallization. In this

viewpoint, each atom belongs to the solid or to the liquid, and the boundary between solid

and liquid is sharply defined, although it may be very rough. In reality, as indicated by

many molecular dynamics simulations, it is not always possible to divide liquid and solid

sharply at a rough interface, and collective motion in the liquid is significant. The periodic

arrangement of atoms in the solid penetrates into the liquid phase with rather slow decay.

Then, growth of crystal is nothing but advancement of such an order to the region pre-

viously considered as liquid. In this process, many atoms shift their average positions only

slightly, and the crystalline order grows simultaneously in several atomic layers. Therefore,

the growth velocity can be much faster than that in the growth of single atoms.

Historically, a continuum model of a diffuse interface was introduced by van der

Waals [15] and has been studied in the context of a first-order phase transition as the

Ginzburg-Landau model [16]. The important conclusion derived from the continuum

model is that the kinetic coefficient is essentially given by the interface width divided by

the relaxation time of the local order. (A modern continuum model is the phase field

model. Various versions of it are used in many other fields, and the models in crystal

growth are explained in Chapter 15 in Volume IB.) Cahn studied the growth of a periodic

structure in a diffuse interface with the use of a lattice model [17]. More recently, an

estimation of the real kinetic coefficient based on a picture of the diffuse interface was

given by Mikheev and Chernov [18]. In this picture, the relevant quantity to describe the

system is the order parameter h, which changes continuously at the interface. The local

number density may be represented as follows (Figure 8.4):

nðr; tÞ ¼ nC þ
X
G

hG

�
z � Rt

�
eiG $ r ; (8.19)

where G is the reciprocal lattice vector and R is the velocity of the interface. With a

detailed theoretical analysis, the following formula for the kinetic coefficient is proposed

[19,20]:

K z
n2
LS
�
G1

�
kBTsG1

" X
jGj¼G1

Z �
dhG

dz

�2

dz

#�1

; (8.20)

where S(G1) is the structure factor of the liquid for the smallest G (G1 is assumed to be

approximately equal to the wave number at the peak of S(k) in the liquid). The relaxation

time of the density fluctuation, sG1
, is determined from the half-width of the peak S(k,u).
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The last factor with n2
L roughly corresponds to the interface width, which is larger than

the atomic distance and contributes to the increase in K as expected from the simple

continuum theory [16]. The Eqn (8.20) can be estimated with measurable quantities,8

and gives a good values of K for simple metals [19]. It provides the correct hierarchy of K

for different faces. The order of magnitude of the estimated values K w (mvtherm)
�1

agrees reasonably with the experimental data. The analysis also suggests that the growth

is limited by formation of the lateral order in the interface plane.

8.3.3 Growth from a Solution

Although the major pathways of crystal growth are from the melt and from the vapor,

growth from a solution is also very important. A crystal, simple substance or compound,

can grow from a liquid phase with additional components, which is called solution

growth.9 Many kinds of crystals, such as salt and quartz, are grown from solutions. Salt

(NaCl) crystals are easily produced from seawater at room temperature despite that the

melting temperature is 800 �C. The melting temperature of quartz (SiO2) is very high as

1610 �C, but industrial quartz is produced from an alkaline solution under high pressure

at approximately 350 �C (hydrothermal synthesis).

Solution growth is similar to vapor growth in the respect that growth occurs with an

excess of solute concentration c. Solidification proceeds via incorporation of an atom,

which exists at the probability ca3 z cvS in an atomic volume of the solution, into a kink

site by passing over an energy barrier. In solution growth, it is sometimes necessary for

an atom (or a molecule) to break bonds with solvent molecules in solidification, which is

FIGURE 8.4 Diffuse interface between solid (left) and liquid (right) propagating during growth [18,19]. (A) Atoms
are ordered in the crystal and disordered in the melt. (B) Profile of the number density is assumed to have the
form n(z) ¼ nC þ hG(z � Rt)eiG,r, with nL z nS h nC. Reprinted from Ref. [19], with permission from Elsevier.

8The interface width is identified as the half width of the peak of S(k) in the liquid.
9Sometimes, it is called flux growth when inorganic compounds are used as solvents.
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called desolvation. Therefore, by a similar argument that led to Eqn (8.14), we obtain the

growth velocity from the solution

V z vSðjsol � jmelÞ
z v2SNkinkne

�Ds=kBe�ðEbþEdesÞ=kBT ðc � ceqÞ;
(8.21)

where Edes is the extra energy barrier for desolvation. In a dilute solution, the chemical

potential msol is related to the concentration as msol ¼ kBT ln c þ (function of T), and

chemical potential mS in the solid is the equilibrium value meq. Then,

Dm ¼ msol � mS ¼ msol � meq ¼ kBT ln(c/ceq), and we obtain

V zNkinknv
2
Sceqe

�Ds=kBe�ðEbþEdesÞ=kBT�eDm=kBT � 1
�

zNkinknv
2
S

ceq
kBT

e�Ds=kBe�ðEbþEdesÞ=kBTDm:
(8.22)

The linear relation in the last line, with the kinetic coefficient

K zNkinknv
2
S

ceq
kBT

e�Ds=kBe�ðEbþEdesÞ=kBT (8.23)

is valid for small supersaturation. Compared with the melt growth in Eqn (8.16), there is

an extra factor vSceqe
�Edes=kBT , which is very small for a dilute solution and for a high

desolvation energy barrier. Solution growth is much slower than melt growth.

8.4 Normal Growth and Lateral Growth
Except for faceted faces, the surface of a crystal is rough and there are kinks every-

where.10 The surface can grow in the direction normal to the local surface orientation, on

a microscopic scale, by incorporating surrounding atoms or molecules. The growth is

called normal growth or adhesive growth. On the other hand, if the surface is faceted, an

atom or a molecule needs to find a kink site to crystallize stably. Kinks are present along

a step on the faceted surface, and steps on the facet move forward along the surface so

that the surface advances. Because the crystal grows by the lateral motion of steps, the

growth is called lateral growth or layer growth.

8.4.1 Adhesive Growth on Rough Faces

For adhesive growth to occur, the surface must be rough—that is, temperature must be

higher than the roughening temperature of the face. As we have seen in Eqn (8.3), the

normal growth velocity V of the surface is proportional to the supersaturation Dm near

10Meanings of rough and smooth faceted faces are explained in Chapters 5 and 6 and depicted

schematically in Figure 8.5.
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the kink sites. Because kinks are everywhere, Dm is practically the same all over the

surface. Such a linear relationship between the growth velocity and the supersaturation,

V ¼ KDm, is characteristic for rough surfaces. Thus, the kinetic coefficient K is a well-

defined quantity for rough surfaces.

The linearity does not hold for a facet because supersaturation is not uniform on the

surface and the local supersaturation at the growth site differs depending on the

configuration of kinks (or steps). To understand the growth of a faceted surface, we

should consider the generation mechanism of steps and the motion of steps, of which

kinks are present at the edge.

8.4.2 Growth via Two-Dimensional Nucleation on a Facet

On a facet of a perfect crystal at very low temperatures, there are no steps, so the facet

cannot grow at all. At finite temperatures, there are small two-dimensional (2D) islands

or holes that are thermally excited, as shown in Figure 8.5(A). For a 2D island of typical

radius R, the step edge costs energy typically 2pRb, where b is the step free energy per

unit length.11 Near equilibrium, Dm z 0, as a result of thermal fluctuation, islands whose

energy is of the order of kBT or smaller may be created. Thus, the typical size of the

thermally created islands is x w kBT/(2pb), which is the correlation length of the height.

If such a thermally excited island grows, the energy will increase. Most islands tend to

lower their energy and disappear soon.

If the environment becomes supersaturated, the free energy of a circular 2D island is

given by (Figure 8.6):

G2ðRÞ ¼ �pR2

U2

Dmþ 2pRb; (8.24)

FIGURE 8.5 Smooth (A) and rough (B) faces. The height difference of A and B is within the lattice constant az in
(A). The height difference is expected to increase logarithmically with the distance between A and B in (B).

11Roughly speaking, the free energy density of a step, b, vanishes above the roughening transition

temperature, and the formation of an island does not require any extra free energy on a rough surface.
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where U2 ¼ 1/(aznS) ¼ vS/az is the atomic area and az is the atomic height. The first term

is the free energy gain by the solidification of pR2/U2 atoms. In a supersaturated state,

Dm > 0, G2 increases with the size and takes a maximum value

G2ðR2cÞ ¼ p
U2b

2

Dm
hG2c (8.25)

at the radius

R2c ¼ U2b

Dm
; (8.26)

and decreases beyond this point. The 2D island of the size R2c is at unstable equilibrium

with the environment, called the critical 2D nucleus. R2c is called the radius of a critical

nucleus, and G2c is its free energy. According to the nucleation theory described in

Chapter 7, if an island larger than the critical radius appears as a result of thermal

fluctuation, it most likely grows forever. This growth of an island is nucleation of the new

layer of the crystal.

The frequency of the appearance of a critical nucleus by thermal fluctuation [20] is

determined by the critical free energy G2c. From the nucleation theory, the steady-state

nucleation rate per unit area per unit time is given by the product of three quantities

[4,5,21]:

jnuc zZwþ
c n

eq
c : (8.27)

The last factor, n
eq
c , is the equilibrium density of critical islands expressed as

neq
c zn1e

�G2c=kBT w
e�G2c=kBT

U2

; (8.28)

where n1 is the density of atoms on the surface and is wU�1
2 for melt growth. This

quantity is controlled by the critical free energy G2c and the most sensitive factor to Dm in

jnuc. The second factor, wþ
c , is the attachment rate of atoms to the critical island; it is

proportional to the edge length 2pRc ¼ 2pU2b/Dm and to the incoming current jin. Its

FIGURE 8.6 Free energy of a circular two-dimensional nucleus as a function of the radius.
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explicit expression depends on systems we consider. For surface diffusion with diffusion

length xs, it is the number of impinging atoms onto a zone near the step edge of the

width 2xs (assuming Rc a xs):

wþ
c z 4pxsRc f ¼ 4pxsU2b

Dm
f ; (8.29)

where f is the impingement rate of atoms onto the surface per unit area. For simple melt

growth,

wþ
c z

an0e
�Eb=kBT

U2

2pRc ¼ 2pan0e
�Eb=kBT

b

Dm
: (8.30)

The first factor Z is the Zeldovich factor, which appears as a result of stochastic nature

of nucleation (see Chapter 7), representing broadness of the peak of the free energy

(Eqn (8.24)):

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDmÞ3
4p2U2kBTb

2

s
: (8.31)

From Eqns (8.28), (8.30), and (8.31), the nucleation rate (Eqn (8.27)) is estimated as

[21,22]

jnuc w
n

U2

�
Dm

kBT

�1=2

e�pU2b
2=ðDmkBTÞ; (8.32)

where U�1
2 ¼ a�2 is the number of sites where nucleation is possible, and n ¼ n0e

�Eb=kBT is

a typical frequency of the atomic attachment to the island edge per site.

8.4.2.1 Single-Nucleation versus Multinucleation
When supersaturation is weak, G2c is large so that e�G2c=kBT is extremely small: the

nucleation rate is practically zero. If supersaturation is increased, nucleation may occur

within the observation period, and the facet starts to grow. For a very small facet, the

nucleated supercritical 2D island spreads to cover the whole facet, which means that the

growth stops until a new supercritical island is born on the new layer. Such intermittent

growth is called single-nucleation growth (Figure 8.7(A)). The growth velocity of a facet of

the size Rf is the lattice constant times the nucleation rate:

V zpaR2
f jnuc ¼ an

pR2
f

U2

�
Dm

kBT

�1=2

e�pU2b
2=DmkBT : (8.33)

For a large facet, many nucleation events occur before a single island covers the whole

facet. Many islands coalesce to form a new atomic layer. The growth is continuous and

called multinucleation growth (Figure 8.7(B)).
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8.4.2.2 Growth of a 2D Circular Island
To find the growth velocity in multinucleation growth, we need to know the growth of a

2D island under constant supersaturation. For a circular island bound by an isotropic

step, the effective driving force of the step edge is

Dmeff ¼ Dm� U2
~b

R
; (8.34)

where the second term is the retraction force due to the step stiffness12 ~b. Because the

step is always rough at a finite temperature, the velocity is proportional to the driving

force:

Vst ¼ Kst

 
Dm� U2

~b

R

!

¼ KstDm

�
1� R2c

R

�
;

(8.35)

where Kst is the kinetic coefficient of the step. The second line is expressed in terms of

the critical radius R2c, and it is valid if the crystal anisotropy in the plane can be

neglected.13 The island is then circular, and the radius at time t is obtained by integrating

Eqn (8.35) as

KstDm

R2c

t ¼ R

R2c

þ ln

				 RR2c

� 1

				þ const: (8.36)

If the initial radius is smaller than the critical radius R < R2c, the island will disappear.

When R � R2c, it shrinks as

RðtÞzR2c



2KstDm

R2c

ðt0 � tÞ
�1=2

¼ �2KstU2
~b
�
t0 � t

�1=2
; (8.37)

where t0 is the time it vanishes. If the initial radius is larger than the critical radius

R > R2c, the island expands. When the island becomes much larger than the

critical radius, R [ R2c, the step stiffness may be neglected and move at a constant

FIGURE 8.7 (A) Single-nucleation growth. (B) Multinucleation growth.

12The stiffness of a step, ~bðfÞ, is the most important quantity to characterize the step when crystal

anisotropy is relevant. It is the sum of b(f), which is now a function of the azimuthal angle f, and its

second derivative b00ðfÞ: ~b ¼ bþ b00.
13For an isotropic step, the stiffness is constant and the same as the free energy density: ~b ¼ b.
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speed: R(t) ¼ KstDm t. Except for a very early stage, the radius of an island created by 2D

nucleation grows at a constant speed:

Vst ¼ KstDm: (8.38)

8.4.2.3 Change of Coverage by Nucleation and Spread
To estimate the velocity of multinucleation growth, let us first consider the change of

coverage of a new layer on a flat facet by nucleation and spread of 2D islands [16,23,24].

For simplicity, we consider the growth of a single layer. We assume that nucleation

occurs randomly at constant probability and circular islands spread at the constant step

velocity Vst. At time t, an arbitrary point P located at x is still on the initial facet surface

with a probability p—that is, the ratio p of the facet area is not covered by the new layer.

The point P is covered by the new layer if there was a nucleation event at the location x0

and the time t0 that satisfies the following:

Vstðt � t 0Þ > jx � x0j:
If we denote t � t 0 ¼ t and x0 � x ¼ x, the probability p is given by the product of

probabilities that nucleation does not occur at the point satisfying the condition

Vstt > jxj. That is,
p ¼

Y
0<jxj<Vstt; 0<t<t

�
1� jnucd

2x dt
�
: (8.39)

Because the second term in the bracket is infinitesimal, this equation can be witten as

p ¼ exp
h
ln
Y

ð1� jnucd
2x dt

�i
¼ exp

�
�
X

jnucd
2x dt

�
¼ exp

0B@� jnuc

Z t

0

dt

ZVstt

0

2px dx

1CA
¼ exp

�
� p

3
jnucV

2
stt

3
�
:

Therefore, the coverage of the new layer Q2D changes as

Q2DðtÞ ¼ 1� p ¼ 1� exp
�
� p

3
jnucV

2
stt

3
�
: (8.40)

As shown in Figure 8.8, it initially increases as

Q2DðtÞzp

3
jnucV

2
stt

3; (8.41)

and approaches unity at about j
1=3
nucV

2=3
st tz1:5. A similar calculation in one and three

spatial dimensions gives the following results for the advancement of a straight step and

volume occupation of a new phase:

Q1DðtÞ ¼ 1� exp

�
� 1

2
jnucVkt

2

�
; (8.42)
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Q3DðtÞ ¼ 1� exp
�
� p

3
jnucV

3t4
�
; (8.43)

where Vk is the velocity of a kink and V is the velocity of the interface.

8.4.2.4 Velocity of Multinucleation Growth
Because one atomic layer is covered in a period swðjnucV 2

stÞ�1=3, the velocity of a facet

growing by multinucleation growth is

V ¼ a

s
zaj1=3nucV

2=3
st

¼ a

�
n

U2

�1=3�
Dm

kBT

�1=6

e�G2c=3kBT ðKstDmÞ2=3

w ðDmÞ5=6e�pU2b
2=ð3kBTDmÞ:

(8.44)

Note that the energy of a critical nucleus in the exponential factor is divided by three

compared with Eqn (8.32). In the case of step growth limited by surface diffusion, the

step velocity is proportional to c � ceq ¼ ceqðeDm=kBT � 1ÞzDm=kBT , and the prefactor

becomes proportional to (Dm/kBT)
5/6. The result is consistent with the Monte Carlo

simulation [25], which demonstrates the sharp contrast of the Dm dependence of growth

velocity below and above the roughening transition. In the experiment, the growth ve-

locity of a 4He crystal below the roughening transition temperature was measured with

changing14 Dm [26]. The data were analyzed with a simpler formula15:

VwVste
�G2c=3kBT ¼ KstDme

�pU2b
2=ð3kBTDmÞ. The plots ln(V/Dm) versus (Dm)�1 at various

temperatures show clear linear dependence, and from their slopes the step free energy

density b(T) was determined. The result showed a singular temperature dependence and

supported the theory of roughening transition (see Chapter 6) [6].
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FIGURE 8.8 Coverage of the new phase, in
one, two, and three dimensions (thin line
to thick line). The reduced time is t
multiplied by (jnucVk)

1/2, ðjnucV2
stÞ1=3 and

( jnucV
3)1/4, respectively.

14Although this is a melt growth experiment, the temperature is fixed and Dm is varied by the change of

pressure.
15The present system is a quantum system, and the pre-exponential factor is different from Eqn (8.44).
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In real growth of a macroscopic facet, there are steps originating from dislocations

exposed on the facet, and the growth proceeds via spiral growth, which is explained in

the following section. The 2D nucleation growth becomes important only under high

supersaturation.

8.4.3 Spiral Growth with Screw Dislocations

If a crystal is perfect without any defect, its facets cannot grow under weak supersatu-

ration because the free energy of a critical 2D island is much larger than the thermal

energy, dG2c [ kBT, and nucleation never occurs during the observation period. In real

crystals, however, facets certainly grow under weak supersaturation. This puzzle was

solved by Frank’s proposal that facets grow with the help of screw dislocations that al-

ways exist in a macroscopic crystal [27–29].

A screw dislocation is a topological defect of a crystal lattice. If one moves around the

dislocation, the lattice plane shifts by one layer (or more layers), like a spiral staircase.

The Burgers vector of a screw dislocation is parallel to the dislocation line. If the screw

dislocation is exposed on a facet, a step emerges at the end of the dislocation and

stretches to an edge of the facet (Figure 8.9(B)) When the chemical potential of the

environment is changed, the step advances or recedes according to the sign of Dm, as

shown in Figure 8.9(A) and (C). Because the end of the step is pinned at the dislocation,16

the shape of the step becomes spiral. Such growth helped by a dislocation is called spiral

growth. The advantage of spiral growth is that the step does not disappear, and the

growth continues without the creation of a new step.

8.4.3.1 Velocity of Spiral Growth
The velocity of a step is proportional to supersaturation, Vst ¼ KstDmeff, and growth is

possible under small supersaturation. If the distance between steps is l (Figure 8.9(C)),

the growth velocity V perpendicular to the facet is Vst(az/l). Because, far apart from the

dislocation, the curvature of the step is very small, the step velocity is VN
st ¼ KstDm, and

the growth velocity is given by

V ¼ az

l
KstDm: (8.45)

(A) (B) (C)

FIGURE 8.9 Spiral step with a dislocation: (A) in melting, Dm < 0; (B) in equilibrium, Dm ¼ 0; (C) in growth, Dm > 0.

16Dislocations may be moved with elastic stress, but not with Dm.
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The shape of the spiral step is similar to an Archimedean spiral, whose expression in the

polar coordinates is rðfÞ ¼ Af. In the polar coordinates, the curvature of the

Archimedean spiral is

1

R
¼ r2 þ 2ðr 0Þ2 � rr00�

r2 þ ðr 0Þ2
�3=2 ¼ A2f2 þ 2A2�

A2f2 þ A2
�3=2 : (8.46)

Near the origin (dislocation), where f/0, the curvature is R�1 ¼ 2/A. Because the step

advances little at the center of the spiral, the curvature there must be Rc, which means

A ¼ 2R2c. Thus, with one rotation, the distance from the center increases by

2pA ¼ 4pR2c ¼ l. For a more accurate calculation, one must solve Eqn (8.35) with

Eqn (8.46) numerically. The result is l z 19R2c [30], and the growth velocity is

V z
az

19R2c

KstDm ¼ Kst

az

19U2
~b
ðDmÞ2: (8.47)

Because the step distance is inversely proportional to Dm, the growth velocity is pro-

portional to (Dm)2, which is the characteristic feature of spiral growth.

Here, we have assumed that the step is isotropic. If a step is anisotropic, the spiral

is also anisotropic and the coefficient differs from 1/19. For example, if the equilib-

rium shape of the 2D island is square, the coefficient becomes (4L2c)
�1 instead of

(19R2c)
�1, where L2c ¼ 2~b=Dm is the side length of the square critical island. This

relationship is derived by assuming the straight step can grow only when the length

exceeds L2c [5].

8.4.3.2 Growth of a Facet with Many Dislocations
It is important to note that the growth velocity of a facet does not depend on the number

of dislocations as long as they are nonzero [28]. Figure 8.10(A) shows spiral growth with a

pair of screw dislocations of the opposite sign. If the Burgers vector of the dislocation is

opposite, the spiral winds in the opposite direction. The two spirals originating from the

opposite dislocations collide and merge to form concentric circles asymptotically. The

distance of successive steps is the same as the original spiral, and the growth velocity

remains the same as that with a single step. For two dislocations of the same sign (the

same Burgers vector), a similar recombination of steps occur if the centers of the spirals

FIGURE 8.10 (A) Spiral growth with a pair of screw dislocations. (B) A step pinned by a pair of screw dislocations.
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are not too close. If their distance d is smaller than the period of the spiral l, they operate

additively, and the efficiency as a step source can be twice as that of a single dislocation,

at the best.17 Therefore, the growth velocity of the whole facet is not much larger than

that with a single dislocation.

Although we find the growth velocity is proportional to (Dm)2, there is a small

threshold value of supersaturation for spiral growth to work. If there is a pair of dislo-

cations of the opposite sign as shown in Figure 8.10(B), the distance d should be larger

than 2R2c for the pair to operate as a step source. Otherwise, the advancement of the step

is blocked. Therefore, for growth of a facet, supersaturation should be stronger than the

threshold value

Dmth ¼ 2U2
~b

d
; (8.48)

where d is the narrowest channel for the step on the facet.18 For a small facet, growth is

sensitive to the configuration of dislocations: their number and location, the magnitude

of Burgers vector, etc. [31].

8.4.3.3 Change of Growth Mode and Kinetic Roughening
In thermal equilibrium, only small islands of the size xwkBT=~b appear temporarily as

fluctuations, and the position of a facet is locked at a single atomic layer: the surface is

atomically smooth (Figure 8.5(A)). Under weak supersaturation, the 2D nucleation rate is

so low that the facet never grows without dislocations. A facet under weak supersatu-

ration is thermodynamically in a metastable equilibrium state. With screw dislocations,

the facet grows above the threshold supersaturation Dmth. If Dm [ Dmth, the growth

velocity is proportional to (Dm)2. By increasing supersaturation, 2D nucleation growth

occurs in parallel to the spiral growth and eventually dominates the growth (Figure 8.11).

The successive nucleation of islands blurs the flat facet. Under high supersaturation, the

free energy of the critical nucleus, as in Eqn (8.25), becomes small and comparable to the

thermal energy kBT. The condition dG2c w kBT is equivalent to the condition R2c w x,

which means that the critical radius is of the same order of the characteristic length of

step fluctuation. There, so many steps appear on the facet and distinction between steps

originating from dislocations versus 2D nucleation is no longer possible. The facet is

atomically rough and its growth velocity becomes as fast as rough faces. The gradual

crossover phenomenon, with increasing supersaturation, from a facet to a rough face is

called kinetic roughening.19

17In fact, a dislocation with a large Burgers vector works very efficiently as a step source.
18Like dislocations, impurities may pin down steps on a facet. As a result, scattered impurities on a

facet can retard the motion of steps and the growth. If the concentration of impurities on a facet becomes

too high, they may completely block the growth of the facet and hysteresis may be observed in the

relationship between the supersaturation and the growth velocity [32,33].
19The concept of kinetic roughening has been used in a wider field of study than crystal growth. Some

of the reviews describing crystal growth are Refs [34–36].
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8.4.3.4 Formation of Mounds
We estimated the characteristic time s necessary to cover one layer by considering a

single layer system. In reality, nucleation occurs on a new layer before the new layer

covers the whole surface: growth proceeds on many layers simultaneously. During

growth from a vapor, transport along the surface–surface diffusion is important.20 On a

growing 2D island, nucleation of the new layer is likely to occur near the center of the

island because atoms landing near the step edge are consumed by the step growth and

the density of atoms near the center is higher. By successive nucleation in the central

area of new layers, a nearly concentric multilayer island is formed when supersaturation

is sufficiently high. Such a multilayer island is called a mound. Note that in growth at low

temperatures, evaporation is weak and nonuniformity of the height can be produced

only when the transport of material along the surface occurs. Thus, surface diffusion is

necessary for the formation of mounds. Mounds are formed by several ways; detailed

explanations are given in Refs [34,37,38].

8.5 Growth of Vicinal Faces
A face slightly tilted from a facet consists of an array of parallel steps and terraces bound

by the steps. Such a face is called a vicinal face. A vicinal face grows by layer growth—

that is, lateral advancement of parallel steps. Unlike the growth of a facet, the average

distance l of parallel steps is determined by external conditions, such as the tilt angle in

cutting the crystal.21

The growth velocity in the normal direction to the terrace is

Vz ¼ az

l
Vst ¼ aznstVst; (8.49)

FIGURE 8.11 Change of growth mode by increasing supersaturation.

20The role of surface diffusion in vapor growth is explained in Section 8.5.2.
21If a cone formed by a spiral step is large, its side face can be regarded as a vicinal face.
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where l is the distance between steps and Vst ¼ KstDmeff is the velocity of a step. The

growth velocity in the direction normal to the face is

V ¼ Vz cos q ¼ Vst sin q: (8.50)

The tilt angle q (or the slope p) and the step density nst are related as aznst ¼ tanq (¼p). If

q is very small, the distance between steps is very large and each step can move inde-

pendently. If the distance of neighboring steps becomes shorter, the steps compete each

other for obtaining material or evacuating heat via overlapping diffusion fields. Here, we

consider two typical cases in which the step velocity changes with the distance l

depending on the transport mechanism.

8.5.1 A Model of Solution Growth: Bulk Diffusion

In solution growth, flow of the solution (either artificial or natural) makes the solute

concentration and the temperature uniform. Because of the viscosity of the liquid,

however, the solution near the crystal surface is usually stagnant and diffusion in the

bulk liquid is important. A simple model representing this situation is shown in

Figure 8.12 [29]. At a distance l0 from the surface, the solute is regarded as static and

uniform with the bulk concentration cN. This hypothetical layer of the thickness l0 is

called the diffusion boundary layer. Diffusion of the solute to the equidistant parallel

steps conveys the material for growth of the crystal. A growing step is a sink of the solute,

and the diffusion flow brings up the advancement of the step. Approximating the step of

the height a with a half cylinder with the radius a/p, the step velocity is related to the

diffusion flow as

aVst

vS
¼ D

vc

vr

				
r¼a=p

a: (8.51)

Solving the diffusion equation V2c ¼ 0 with the boundary conditions (Eqn (8.51)) and

c(x, y ¼ l0) ¼ cN, the step velocity is calculated as [3,29]:

Vst ¼ vS
dcN

1
Kst

þ a
pD

ln



l
a
sinh

�
plD
l

�� ; (8.52)

FIGURE 8.12 Contours of the solute concentration and flow-lines to the steps of the solute [29].
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where dcN h cN � ceq, and the kinetic coefficient of the step is defined as22

Kst ¼ Vst

ySdcst
; (8.53)

where dcst ¼ c(rstep) � ceq is the supersaturation at the step position. The structure within

the boundary layer is difficult to observe, and the experimentally observable kinetic

coefficient of the step, Keff
st ¼ Vst=ðvSdcNÞ, is related to Kst as

1

Keff
st

¼ 1

Kst

þ a

pD
ln



l

a
sinh

�
plD

l

��
: (8.54)

The first term represents the resistance of attachment and detachment at the step, and

the second term represents the growth resistance of bulk diffusion. If the step distance is

larger than the thickness of the boundary layer, the second term becomes independent

of the step distance. Then, the growth velocity of the vicinal face is proportional to the

slope of the face, p ¼ a/l, and KwKeff
st ðp/0Þp. On the other hand, if the step distance is

small, the diffusion field interferes strongly and the growth velocity becomes insensitive

to the slope p. If the step distance is close to the lattice constant lw a, the second term of

Eqn (8.54) is lD/D, which means the growth resistance of the diffusion is proportional to

the thickness of the boundary layer: the face we consider is no longer a vicinal face but

practically a rough face.

The kinetic coefficient defined by Eqn (8.53) is intrinsic to the step and does not

depend on the surrounding conditions. Its magnitude can be estimated with the use of

Eqn (8.23). Nkinka
2 in the surface kinetic coefficient is replaced by the corresponding kink

density a/lkink (lkink is the average kink distance along the step) for a step, and

kBT=ðvSc0eqÞ is multiplied to convert K to K:

Kstep z
a

lkink
ane�Ds=kBe�ðEbþEdesÞ=kBT : (8.55)

For simple molecules Ds z 0, and Edes ¼ 0 if desolvation is not necessary at the step.

Then we obtain

Kstep z
a

lkink
ane�Eb=kBT : (8.56)

To some extent, a similar argument will apply to melt growth if the concentration field of

solute is replaced by a temperature field that evacuates the latent heat.

8.5.2 Vapor Growth and Surface Diffusion

In vapor growth, atoms landing on the surface migrate on a flat terrace and crystallize at

a kink position along the step. It is important to make a proper model of the surface to

understand the growth of a vicinal face.

22Here, K is defined in terms of the concentration c and the current j, and not in terms of the chemical

potential m and the velocity V. Because Dm ¼ kBT lnðc=c0eqÞzkBTðdc=c0eqÞ, they are related as K ¼ ðvSc0eq=kBTÞK.
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8.5.2.1 The BCF Model
The classical model of vapor growth is the BCF model studied by Burton, Cabrera, and

Frank [28]. Atoms enter from a uniform gas environment onto the crystal surface at a

constant rate: f atoms per unit area per unit time. Those atoms adsorbed on the surface

are called adatoms. An adatom migrates on the crystal surface and evaporates into the

gas with a lifetime s. Therefore, the number density c of adatoms at the position x (x is a

two-dimensional vector) obeys the diffusion equation

vcðxÞ
vt

¼ DsV
2cðxÞ � cðxÞ

s
þ f : (8.57)

If adatoms are uniformly distributed, then the balance of evaporation and impingement,

the last two terms, determines the adatom density as cN ¼ fs. In the model, atoms

(molecules) consisting of the crystal and atoms migrating on the surface are distin-

guished. Adatoms cannot solidify without steps, where kink sites are found.

If there is a step on the surface, the adatoms join the crystal there or the solid atoms

“melt” from the step onto the surface. Exchange of atoms between the solid and the

adatom layer occurs at the step. If the exchange is very fast, the adatom density at the

step becomes the equilibrium density:

cst h c
�
xstep

� ¼ ceq: (8.58)

The equilibrium density at the step is given by

ceq ¼ c0eq exp

�
� fstU2

kBT

�
z c0eq

�
1� fstU2

kBT

�
; (8.59)

where c0eq is the equilibrium density for a straight step. The exponential factor represents

the Boltzmann factor for the extra work necessary if a force fst is acting on the step23

when an atom of the area U2 solidifies. If cN > cst, adatoms flow into the step and the step

becomes a sink of adatoms: solidification occurs. If cN < cst, adatoms flow out from the

step and the step becomes a source of adatoms: melting occurs.

As for the force fst acting on the step, two origins are well known. One is the capillary

force due to the step stiffness: �~b=R corresponding to the second term in Eqn (8.34).24

The other is a force due to elastic stress, which drives the step to the direction of lower

elastic energy [7]. If there are two parallel steps of the same sign (both up or both down

steps) at a distance d, a repulsive force proportional to d�3 arises to make them move

apart [39].

The simple BCF model assumes fast step kinetics—that is, the adatom density takes

the equilibrium value ceq at the step. Then, Eqn (8.58) is the boundary condition for the

diffusion Eqn (8.57). Usually the density of adatoms is low, ceqU2 � 1, and the movement

of steps is slower than relaxation of the adatom density. Under such conditions, one may

use the static approximation of Eqn (8.57), in which the left-hand side is neglected and

23fst is defined as positive in the direction of the outward normal of the step.
24As the driving force of solidification, the extra work dm ¼ fstU2 is written as dm ¼ (vm/vc)dc ¼ (kBT/c)dc

because m ¼ kBT ln c for an adatom. Then, the shift dc corresponds to fstU2c/kBT as in Eqn (8.59).
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the solution with a given boundary condition at each instance is used. The diffusion

equation is cast into the form �
V2 � 1

x2
s

�
ðcðxÞ � cNÞ ¼ 0; (8.60)

where

xs ¼
ffiffiffiffiffiffiffiffi
Dss

p
is the surface diffusion length. It represents the characteristic length scale that an atom

entering on a large facet can move within the lifetime s.

8.5.2.2 Asymmetric Kinetics at the Step
In general, solidification at the step proceeds at a finite rate as on a rough surface.

Supersaturation at the step is finite, and the solidification current is

js ¼ Kstdcst; (8.61)

from Eqn (8.53). Adatoms may come to the step either from the upper or from the lower

side of the step. We may write the solidification current separately for each side of the

step (Figure 8.13(A)):

js� ¼ K�
stdc

�
st; jsþ ¼ Kþ

stdc
þ
st ; (8.62)

where js� ( jsþ) indicates the solidification current on the left (right) side terrace of the step,

and c�st ¼ cðxstep � 0Þ is the adatom density on each side of the step. The corresponding

kinetic coefficients for the upper terraceK�
st and for the lower terraceKþ

st may be different

(A)

(B)

(C)

FIGURE 8.13 (A) Transport processes around the step and their resistances. (B, C) Paths of solidification current
from far on the terrace, cN, to the solid, ceq.
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because there is an extra energy barrier for hopping over the step edge:Kþ
st is usually larger

than K�
st. The extra energy barrier is called the Ehrlich-Schwoebel barrier (ES barrier) and

may have significant influence on themorphology of stepped surfaces in growth [40,41]. In

addition, if the kink density along the step is very low, adatomsmay pass through the step

without solidification or melting. Such a step is permeable (or transparent).

Figure 8.13(A) and (B) shows schematically the general boundary condition at the step

for the diffusion equations, Eqns (8.57) or (8.60). The adatomdensity at the step site (in the

solid), ceq, is related to that at the upper side of the step, cþst , and that at the lower side of the

step, c�st, by the resistance ðK�
stÞ�1. The latter two sites are connected by the resistanceP�1

(P: permeability of the step), and also with the environment away from the step, cN, by the

resistance of the surface diffusion on the terrace xs/Ds. Like an electric circuit, the current

between these positions are related to satisfy the conservation law:

j� ¼ js� þ jp; jþ ¼ �jsþ þ jp; (8.63)

where j�, and jþ are the diffusion current on both terraces, and jp is the current that

passes through the step. The step velocity is given by the solidification current from both

terraces as

Vst ¼ U2

�
js� þ jsþ

� ¼ U2

�
j� � jþ

�
; (8.64)

which is also expressed by the difference of the diffusion currents. These currents are

proportional to the differences of the corresponding adatom densities (Eqn (8.62);

equivalently, proportional to the chemical potentials) and [42]

jp ¼ Pðcðxst�Þ � cðxstþÞÞ: (8.65)

8.5.2.3 A Simple Example of Growth Kinetics
As an example for the growth of a vicinal face, let us consider the simple BCF model—

that is, the case with Kstþ ¼ Kst�, P ¼ N (Figure 8.13(C)). Because c(xstþ) ¼ c(xst�) ¼ cst,

the solution of the diffusion Eqn (8.60) for an array of equidistant steps at y ¼ 0

and y ¼ l is Figure 8.14

cðyÞ ¼ e�y=xs þ eðy�lÞ=xs

1þ e�l=xs
ðcst � cNÞ þ cN (8.66)

for 0 < y < l. From the density profile in Eqn (8.66), the diffusion current that flows into

the step at the origin is

j� � jþ ¼ �2Ds

vc

vy

				
y¼0

¼ 2
Ds

xs
ðcN � cstÞtanh

�
l

2xs

�
; (8.67)

which should be the same as the solidification current js� þ jsþ obtained from Eqn (8.62).

This condition determines the density at the step cst. With cst so determined, the velocity

of the step is easily calculated as

Vst ¼ U2

dcN
1

Kst
þ 1

2Ds
xs

tanh

�
l

2xs

� ; (8.68)
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where the kinetic coefficient is Kst ¼ 2Kstþ ¼ 2Kst�. This equation corresponds to the

step velocity in Eqn (8.52) in solution growth.

If the step distance l is much larger than the diffusion length (l [ xs), the step

incorporates adatoms within distance xs of its both sides. From Eqn (8.68) with

tanh(l/xs) / 1, the effective kinetic coefficient, defined by Keff
st ¼ Vst=ðU2dcNÞ,

1

Keff
st

¼ 1

Kst

þ xs
2Ds

(8.69)

is constant. If the step distance is small, l � xs, the territory for a step decreases by a

factor l/xs; the second term increases as

1

Keff
st

¼ 1

Kst

þ x2
s

Dsl
¼ 1

Kst

þ s
l
: (8.70)

If the exchange of atoms at the step is fast (relatively to the diffusion), we may put

Kst/N in Eqn (8.68), and the growth velocity of the surface becomes

Vz ¼ az

l
U2

2Ds

xs
tanh

�
l

2xs

�
dcN: (8.71)

FIGURE 8.14 Adatom density on a terrace of the width l in a growing vicinal face.
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For a vicinal face with a very small tilt, nstxs ¼ xs/l� 1, the velocity is proportional to the

step density nst:

Vz ¼ nstazU2

2Ds

xs
dcN: (8.72)

With a large tilt, nstxs ¼ xs/l [ 1, since x2s ¼ Ds, it becomes

Vz ¼ azU2

dcN
s

¼ azU2

�
f � f 0eq

�
¼ vSdf : (8.73)

The growth velocity is given by the impingement rate that exceeds the evaporation rate.

When steps are closely distributed, atoms entering onto the terrace always reach the

step, and the growth rate is given by the balance of impingement and evaporation as on

the rough surface (Eqn (8.6)).

For general cases, the static diffusion equation,25 Eqn (8.60), is solved with the

boundary conditions for a given configuration of steps. Then, the solution c(x) de-

termines the diffusion currents at the step

j� ¼ �Dsbn $Vcðxst�Þ; (8.74)

where bn is the unit normal vector of the step pointing downward. The difference of the

diffusion current gives the local step velocity from Eqn (8.64), and that determines the

change of the step configuration. Thus, the time evolution of the step-adatom system

can be calculated (in principle, numerically).

8.5.3 Growth of Vicinal Faces and Morphology of the Stepped Surface

In equilibrium, a vicinal face consists of equidistant parallel steps, whose configuration

is stabilized by the stiffness of each step and by repulsion between the steps. For a

face with a small tilt p ¼
�
vz
vx;

vz
vy

�
, the free energy per unit projected area f(p) can be

written as26

f ðpÞ ¼ að0; 0Þ þ b

az

				p				þ f

a3
z

				p3

				þ/: (8.75)

where a(0, 0) is the surface free energy per unit area without steps, and isotropy in the

xy-plane has been assumed (therefore, ~b ¼ b). The second term is the free energy of

noninteracting steps, and the third term is the interaction energy, which is proportional

25The full time-dependent diffusion in Eqn (8.57) is seldom used because of the difficulty of solving it.
26Note the relationship between a(p) and f(p): aðpÞ ¼ f ðpÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
.
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to the repulsion energy27 fl�2 times the step density p ¼ az/l. The surface stiffness of the

two orthogonal directions are calculated from Eqn (8.75) as follows [4]:

~atðpÞz b

az

1

p
; (8.76)

~ajjðpÞz 6
f

a3
z

p: (8.77)

Equation (8.76) represents stiffness of the surface against deformation, such as

Figure 8.15(B), and is determined by the stiffness of each step. Equation (8.77) represents

stiffness against deformation, such as Figure 8.15(C), and is determined by the step

repulsion. By approaching the facet, a vicinal surface becomes stiffer in one direction

and softer in the orthogonal direction because the number density of steps decreases:

the surface deformation becomes more difficult and the step repulsion becomes weaker.

When a vicinal surface is growing or sublimating, surface diffusion tends to produce

deformation of the surface against the stabilizing effect of the surface stiffness. If the

destabilizing effect wins, the vicinal face becomes unstable and sinusoidal deformation

develops [45–47].

8.5.3.1 Wandering of Steps
If step kinetics is not symmetric (i.e., kinetic coefficients for the upper and the lower

terraces differ), a step may become unstable. If Kstþ > Kst�, the step incorporates more

atoms from the lower terrace than from the upper terrace during growth. If a small bump

is formed along the straight step as a result of fluctuation, the bump has an advantage for

further growth because it has moved into an area of higher adatom density. The bump

grows faster when the step stiffness is not strong enough to pull it back. The initially

straight step becomes wavy, and the instability is called step wandering (or meandering).

This is a kind of two-dimensional Mullin-Sekerka instability (see Chapter 14 of Volume

IB) [48]. The stability of the step is characterized by the amplification rate of sinusoidal

step fluctuation of wave number q, dyqðtÞ ¼ dy0e
�iqxþuqt . It is given by28 [49,50]

(A) (B) (C) (D)

FIGURE 8.15 Deformation of a vicinal face: (A) ideal vicinal face, (B) in-phase wandering of steps, (C) bunching of
steps, and (D) wandering with a phase shift. Reprinted from Ref. [43], with permission from Elsevier.

27Two types of repulsive interactions exist rather generally: the elastic repulsion originated from elastic

deformation near the steps [40] mentioned before, and an entropic repulsion due to thermal wandering

fluctuation of steps with the coefficient f ¼ (p2/6)((kBT)
2/b) [44].

28The growth rate of fluctuation, uq, given here is the formula for l / N.
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uq ¼ �DsU2

"
cN � c0eq

x2
s

�Lq

 
cN � c0eq

xs
� Gq2

!#
¼ V 0

st

�
Lq � x�1

s

��DsU2GLqq
2;

(8.78)

where V 0
st is the velocity of the straight step, G ¼ U2c

0
eq
~b=kBT and Lqh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ x�2

s

p
. The

coefficient of q2 in the series expansion of Eqn (8.78) becomes positive when V 0
st �

2DsU2G=x
2
s ,
29 and long wavelength fluctuations grow. When evaporation is negligible,

xs / N Lq / q, and the amplification rate becomes

uq ¼ V 0
stq�DsU2Gq

3: (8.79)

Now, the step is always unstable under growth ðV 0
st > 0Þ. The fastest-growing mode is

given by the largest uq in Eqn (8.79), with the wave number

qmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 0
st

3DsU2G

s
: (8.80)

The characteristic wavelength lmax ¼ 2p/qmax is inversely proportional to the square root

of the step velocity. Once the instability sets in, the pattern of the step is controlled by

the nonlinearity of the system. The time evolution of the destabilized step with evapo-

ration is found to be chaotic [49,50]: bumps of the wavy pattern of the wavelength lmax

arise, move, and annihilate randomly. In a vicinal face, the motion of neighboring steps

is correlated, and in-phase step wandering (Figure 8.15(B)) is observed [51]. Troughs

perpendicular to the steps appear.

The cause of the wandering instability is the front and back asymmetry in step

kinetics resulting from the step edge energy barrier. Other such asymmetry may

induce a similar instability. When an Si(111) surface is heated by direct electric cur-

rent perpendicular to the step, wandering instability is observed [46]. The current

produces drift of adatoms in the same direction as the current. Theoretically, the drift

of adatoms modifies the effective diffusion length in the upper terrace and that in the

lower terrace differently, and the instability may occur when the drift direction is

opposite to the step motion [52]. Also, in the growth of Si(111), wandering instability

is seen near the structural phase transition from the low-temperature 7 � 7 surface

structure to the high-temperature 1 � 1 structure [53]. The phase transition starts at

the step; near the transition temperature, the structures of the upper terrace and the

lower terrace of a step are different, which makes strong asymmetry to induce step

wandering.

29In terms of the impingement rate, this condition is f � fchf 0eqð1þ ð2~bU2Þ=ðxskBTÞÞ.
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8.5.3.2 Bunching of Steps
In equilibrium, the distance between parallel steps is kept equal by the step repulsion. If

an ES barrier is present (supposeKstþ > Kst�), equidistant steps become unstable during

sublimation. When a step recedes slightly faster than other steps by fluctuation, its lower

side terrace is wider than that of other steps, so it recedes even faster. If this effect is

stronger than the step repulsion that stabilizes the equidistant steps, the steps tend to

bunch and the vicinal face deforms like Figure 8.15(C). The instability is called step

bunching. If the step repulsion is short-range or very weak, pairing of steps will occur

[54]. With the existence of the power law repulsive interaction, bunching instability

occurs at a long wavelength; that is, a density wave of steps is seen (Figure 8.16(A)).

Bunching of steps occurs with various causes. In Figure 8.17, several examples are

shown. The velocity of a step is, in many cases, a function of the widths of its upper and

lower terraces, and the relationship determines the stability of the vicinal face [8]. If the

contribution of the lower terrace to the step velocity is dominant, the face is unstable

during growth. The impurity effect shown in Figure 8.17(A), in addition to the ES barrier

effect (Figures 8.17(B) and (C)), is an example. A considerable amount of impurities exist

in many systems, and they accumulate on terraces during growth to reduce the velocity

of steps. The density of impurities on the lower terrace is proportional to the exposure

time of the surface, which is proportional to the width of the terrace. Thus, impurity

accumulation causes instability of equidistant steps as shown in Figure 8.17(A) and the

formation of step bunches [56,57]. An external field may play a similar role to induce step

bunching. In Si(111) vicinal faces, direct electric current perpendicular to the steps for

heating the crystal induces step bunching [46,58,59] (Figure 8.17(D)). In solution growth,

(A) (B)

FIGURE 8.16 Evolution of step bunching (A) in sublimation and (B) with drift of adatoms. (A) Step bunching
develops as a density wave of steps. [32]. (B) Hierarchical pairing results in large bunches. Reprinted from
Ref. [53], with permission from AIP; and Ref. [55], with permission from Elsevier.
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like the drift of adatoms, external flow of solution induces step bunching in growth, as

shown in Figures 8.17(E) and (F) [60,61]. In this case, the velocity of a step is not locally

determined but is influenced by more distant conditions: growth/dissolution of a part of

the vicinal face is correlated with growth/dissolution of an upstream area.

8.6 Crystal Growth in a Diffusion Field
As discussed in the previous section, the growth of a vicinal face is possible through the

transport of atoms from the environment by bulk and/or surface diffusion followed by

incorporation of atoms at the steps. The series of transport processes is a general feature

of crystal growth. The flow of matter is controlled by the difference (or spatial gradient)

of chemical potential. The difference of chemical potential between the solid and the

environment, dmN, is consumed by each step of the transport: several processes work in

series (or sometimes in parallel) as resistances in an electric circuit (as in Figures 8.13(B)

and (C)). The diffusion current at the interface must be the same as the solidification

current. These conditions give relationships that determine the growth velocity.

Also, in general, heat released in solidification needs to be evacuated to the envi-

ronment. Heat transport should work in parallel with the transport of matter. Usually in

melt growth, heat transport is the rate-limiting process; in solution growth, material

transport is the rate-limiting process. We may neglect the faster process—material

transport in melt growth and heat transport in solution growth, respectively.

8.6.1 Melt Growth and Solution Growth

For simplicity, we neglect convection in the following discussion. Then, we can

formulate the two problems—evacuation of the latent heat by heat diffusion (synonym

of heat conduction) in melt growth and supply of matter by diffusion in solution

growth—in a similar way.

8.6.1.1 Evacuation of Latent Heat in Melt Growth
In growth from the melt, the growth velocity is proportional to supercooling at the

interface:

V ¼ KT ðTm � TiÞ; (8.81)

where Tm is the melting temperature (the equilibrium temperature), Ti is the tempera-

ture at the interface,30 and KT is a kinetic coefficient. Because the latent heat (L per unit

volume of a solid) should be evacuated from the interface by heat diffusion,

LV ¼ �kT bn $VT (8.82)

must hold. Here, k is heat conductivity in the melt, and we have assumed that the heat is

evacuated into the bulk liquid phase. In general, heat goes to both phases depending on

30Here, we assume a solid is the low-temperature phase.
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boundary conditions. The simple model here is called a one-sided model. The heat

diffusion is described by the diffusion equation

vT

vt
¼ DTV

2T ; (8.83)

where the thermal diffusion coefficient (diffusivity) DT is related to the thermal con-

ductivity kT and the heat capacity per unit volume cP as DT ¼ kT/cP.

It is convenient to use a dimensionless supercooling, in which temperature increase

from the far environment is measured by the temperature increase by the latent heat,

L/cP,

u ¼ T � TN
L=cP

: (8.84)

With the dimensionless supercooling u, Eqns (8.83) and (8.82) are cast into the simple

forms

vu

vt
¼ DTV

2u; (8.85)

V ¼ �DT bn $Vu: (8.86)

The other expression of the growth velocity, Eqn (8.81), with the Gibbs–Thomson effect,

is written as

V ¼ ~KT

�
D� ui � dTk

�
; (8.87)

where ~KT ¼ KL=cP, and

D ¼ u0
m ¼

�
T 0
m � TN

�
cP

L
(8.88)

is the value of u for a flat equilibrium interface (i.e., the dimensionless supercooling of

the environment). In Eqn (8.87), k ¼ 1/R1 þ 1/R2 is the curvature of the interface and dT
is the capillary length, which expresses the strength of the surface stiffness ~a

dT ¼ ~acPT
0
m

L2
: (8.89)

The capillary length is a length scale at which temperature increase by the latent heat,

L/cP, and the change of the equilibrium temperature due to the Gibbs–Thomson effect,

ða=dÞðT 0
m=LÞ, become comparable.

FIGURE 8.17 Various causes of step bunching. (A) Accumulation of impurities on terraces decreases the velocity of
steps. The step behind the wider terrace moves slower, and the step behind the narrower terrace moves faster: a
step pair is formed. (B) With Schwoebel barrier in growth, the retarded step has a wide lower terrace and moves
faster to recover the delay. (C) With Schwoebel barrier in sublimation, the advanced step has a wide lower
terrace and moves faster to amplify the advantage. (D) With step-down drift in sublimation, the advanced step
has a wide lower terrace and moves faster to amplify the advantage. (E) With step-down flow in growth, the
diluted part of solution moves to the lower area and hiders growth of the lower steps: the slope becomes
steeper. (F) With step-down flow in dissolution, the concentrated part of solution moves to the lower area and
decelerates dissolution of the lower steps: the slope becomes gentler.

=
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8.6.1.2 Supply of Matter in Solution Growth
Equations (8.81)–(8.83) have their counterparts in solution growth:

V ¼ vSK
�
ci � ceq

�
; (8.90)

V ¼ vSDbn $Vc; (8.91)

vc

vt
¼ DV2c: (8.92)

Equation (8.90) is derived from the relationship between the solidification current and

the interface velocity, ðcS � ciÞV ¼ Kðci � ceqÞ; by neglecting the solute density ci
compared to the solid density, cS ¼ v�1

S because we assume that the solution is dilute. In

a dilute solution, vm=vc ¼ kBT=c
0
eq is also valid. By defining a new dimensionless variable

u ¼ cN � c

cS � c0eq
(8.93)

as in Eqn (8.84). Equations (8.90)–(8.92) turn into the same forms as Eqns (8.85)–(8.87),

except for the diffusion and kinetic coefficients. The dimensionless supercooling and the

capillary length are now defined by

D ¼ cN � c0eq

cS � c0eq
z vS

�
cN � c0eq

�
;

dc ¼
c0eq~a

kBT
�
cS � c0eq

�2 z v2Sc
0
eq~a

kBT
:

(8.94)

Therefore, the two problems are treated in the same way.31

8.6.2 Growth of a Planar Interface in a Diffusion Field

For a simple example of growth in a diffusion field, we consider a planar solid in a so-

lution, which is initially uniform, and the solute concentration is cN. The interface is

parallel to the xy-plane and growing in the z-direction. The diffusion equation and the

solidifying current j ¼ (cS � ci)V are

vc

vt
¼ D

v2c

vz2
; (8.95)

ðcS � ciÞV ¼ K
�
ci � c0eq

�
; (8.96)

ðcS � ciÞV ¼ D
vc

vz

				
z¼z

: (8.97)

where z ¼ z is the position of the interface. We may put cS � cizcS ¼ v�1
S .

31The length U2G ¼ U2
2c

0
eq
~b=kBT , which appeared in Eqn (8.78), is the two-dimensional analogue of dc.
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When the solid grows at a constant speed V, the diffusion equation in the reference

frame moving with the interface is written as

1

D

vc

vt
¼ v2c

vz02
þ 1

lD

vc

vz0
¼ 0; (8.98)

where z0 ¼ z � Vt is the new coordinate of the moving system, and lD ¼ D/V is the

diffusion length, which characterizes the spatial change of the diffusion field.32 Because

the system is steady in the moving frame of reference, the time derivative is put at zero.

The solution of Eqn (8.98), with the boundary conditions c ¼ ci at z
0 ¼ 0 and c ¼ cN at

z0 ¼ N, is

c
�
z0
� ¼ �ci � cN

�
e�z0=lD þ cN: (8.99)

From the solution (8.99), the velocity in Eqns (8.96) and (8.97) is written as

V ¼ ci � c0eq
cS � ci

K ¼ � 1

cS � ci
D
ci � cN

lD
¼ cN � ci

cS � ci
V ; (8.100)

which requires cN ¼ cS. Steady growth is possible only if this condition is satisfied. In

melt growth, the corresponding condition is D ¼ 1.

These conditions are the result of the conservation laws (mass and energy) in one

dimension. Because the solute density in a solution is always lower than that in a solid,

the condition cN ¼ cS is never satisfied, so that steady growth is not possible. In reality,

when a planar solid is placed in a supersaturated solution, it grows fast at the beginning

with a short lD ¼ D/V, and the solute concentration near the solid decreases to make lD
longer and longer. A simple solution of the time-dependent one-dimensional diffusion

equation shows that the growth velocity decreases in time as V ¼ D=lDw1=
ffiffi
t

p
: the

growth speed approaches zero [4].

In melt growth, fine tuning of the liquid temperature to realize D ¼ 1 is in principle

not forbidden. If this condition is satisfied, the above solution with any value of lD is

allowed, and the growth velocity is not determined. This is not physical: nature must

choose one particular growth speed.33 Problems related to the growth velocity and the

growth form in a diffusion field will be explained in the first three chapters in Volume IB.

8.7 Various Simulation Models of Crystal Growth
With our understanding of the kinetics of crystal growth, various models have been

developed for calculating the time evolution of crystal growth. They will be explained in

some detail in chapters 10, 11, 12, and 15. Here, we give only a short overview.

8.7.1 Atomistic Model and Simulation

In principle, the properties of matter can be understood with the use of quantum me-

chanics. Because the crystal growth process is repetition of simple elementary processes,

32In many studies, the diffusion length is defined as lD ¼ 2D/V.
33The planar interface is not stable, in fact.
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we only need to understand the elementary process in terms of quantum mechanics.

Such microscopic theory based on quantum mechanics is called an ab initio calculation.

What we need in practice is the energies of various atomic configurations and charac-

teristic frequencies of the change of states. Although it is a formidable task to know these

parameters in a system consisting of many ions and electrons, density functional theory

calculation with various approximation methods makes it possible. These calculations

can predict the pathways for an atom to be incorporated in a crystal and the values of

various parameters in each process.

With information on possible pathways, energy parameters, and frequency parame-

ters, atomistic models are constructed and numerical simulation is performed. The

standard method is solving Newton’s equation of motion for atoms or molecules

interacting with potentials calculated by the quantum mechanical calculation, or with

simpler semiempirical potentials. This is called molecular dynamics simulation (MD

simulation). Increasing the efficiency and capacity of a computer enables one to follow

the time evolution of a fairly large system: we may watch a small region, say tens of

nanometers in size, of a growing crystal. MD simulation is generally very useful for

growth from the melt because the collective motion of atoms/molecules at the interface

is complicated and we have no other way to know their behavior. The limitation of this

method is, of course, that the manageable system size is still not so large.

For growth from a solution or from a gas, the important stable atomic configuration is

limited by the substrate crystal, and the evolution of the system can be approximated by

the change of configurations on the lattice sites. Instead of tracing all orbits of atoms, the

transition between the possible atomic configurations on the lattice is traced. The

transition occurs stochastically according to the Boltzmann factor e�DE=kBT , where DE is

the difference of energy in the transition state34 and that in the initial state (i.e., the

energy barrier from the beginning configuration to the ending configuration). The sto-

chastic dynamics is believed to represent time evolution of many microscopically

equivalent systems.35 Such simulation is called a Monte Carlo simulation, named after

the famous town where probability plays a major role in the economy.

8.7.2 Continuum Models

Macroscopic behavior of crystals may be more adequately described by models of large

length scales. The basic model is the thermodynamic description of crystal growth in

terms of a continuum solid phase and an environmental phase with a sharp interface.

Each phase is characterized by thermodynamic quantities, such as density r, heat ca-

pacity cP, thermal conductivity k, etc., which may not be uniform and may be anisotropic

reflecting the anisotropy of the crystal. The interface is regarded as sharp and

34The transition state is the state of maximum energy in the path between the initial and the final

configurations.
35The Boltzmann factor, under certain conditions, assures that the system represents the equilibrium

system mathematically accurately in the long run.
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characterized by the anisotropic surface tension a, or the stiffness ~a, and the kinetic

coefficient K. For studying smooth interface (facets) or vicinal faces, the interface itself

may be further divided by flat terrace and dividing sharp continuum steps. Such models

may be called sharp interface models. This is the traditional description of the system, and

it has a solid physical basis. Quantummechanics and statistical mechanics can supply the

values of physical parameters. Phenomenological equations, such as the diffusion

equation and various kinetic equations, determine the time evolution of the system.

The sharp interface model is manifestly physical, and useful to understand the

changes in crystal morphology. It is, however, computationally not simple because of the

existence of the singular interface. The surface may merge or break up: these processes

bring up mathematical problems. To avoid difficulties, the interface is treated as a region

of smoothly changing phase fields. The phase field is nothing but a local order parameter

representing the solid order. The model is called the phase field model and contains at

least two fields36: one is the phase field and the other is a field representing a conserved

quantity such as energy (heat) or density. The two fields are coupled in a physically

consistent way, as explained in Eqn (8.6). The model is flexible to include more degrees

of freedom of the system, such as elastic stress, composition of the material, crystal

orientation, etc. Thanks to the fast development of computation capacity, phase field

models are now standard tools in materials science. The phase field theory is explained

in Chapter 15 of Volume IB.
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9.1 Introduction: Structure of the Liquid State
In the study of the nucleation and growth of crystals from the melt, it is mandatory to

determine as accurately as possible the structure of the liquid phase down to the atomic

level.

The liquid state is complicated because it is halfway between the perfect crystal and

the ideal gas [20]. Table 9.1 compares the structure and dynamics of gas, liquid, amor-

phous, and crystalline states of matter. A crystal is simple to describe because of its

numerous symmetry properties that reduce drastically the number of independent pa-

rameters. At the opposite, the (perfect) gas phase of pointlike atoms is simplified by the

Table 9.1 Comparison of the Structure and Dynamics of the
Different States of Matter

Gas Liquid Amorphous Crystal

Random positions Dynamic SRO Static SRO LRO
Ballistic motion Diffusion No diffusion Collective modes

SRO, short range order; LRO, long range order.
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fact that it is completely random. The liquid has a density close to that of the crystal with,

generally, a fairly similar short range order (SRO) but without long range order (LRO).

Schematically, from the structural point of view, the liquid resembles a crystal at short

distances (a few shells of neighbors) and a gas at long distances. Due to its partial

randomness, the liquid has to be described in a statistical way, by its correlation func-

tions. The most important one is the distribution of interatomic separations r, the pair

correlation function g(r) (Figure 9.1).

The most widely used technique for the structural analysis of liquids is the scattering

of neutrons and X-rays. If the diffraction techniques enable complete solution of the

structure of crystals, this is no longer valid for disordered systems. Indeed, the diffraction

pattern of liquids contains a limited amount of information on a structure that requires,

in principle, many parameters to be described, in contrast with crystalline materials,

which show a rich collection of sharp diffraction peaks (see Figure 9.6). The scattered

intensity I(q) of liquid, amorphous or glassy materials, gives, by Fourier transformation,

the pair correlation function g(r). B. Warren [79] conducted pioneering work on X-ray

scattering of glasses that can be considered as frozen liquids. As the pair correlation

function is far from being a complete description of the structure, the diffraction analysis

has to be complemented by measurements of density, electrical conductivity, thermal

properties, inelastic neutron and X-ray scattering spectra, and X-ray absorption fine

structure (EXAFS) technique. Large-scale facilities (neutron sources and synchrotrons)

contributed a great deal to the study of liquids and disordered materials in general, in

particular under extreme conditions of temperature and pressure. The pioneering work

of J. Enderby and P. Egelstaff by neutron scattering of the structural and chemical

analysis of liquid alloys is a landmark in this field [21]. In addition, computer simulations

of the structure of liquids (Monte Carlo simulation, ab initio molecular dynamics,

reverse Monte Carlo analysis) bring a wealth of relevant information and enhance our

understanding of the liquid phases. We review the different approaches of the study of

liquids and amorphous structures, from the simplest metallic structures to the more

complex semiconducting alloys and even up to supramolecular liquid structures.

1

shell Second coordination
shell

rr1 r20 r3

g r( )

FIGURE 9.1 Pair correlation function g(r).
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9.1.1 The Liquid State

Due to the randomness of a liquid, its description is statistical by nature and is expressed

in term of the correlation functions [38]. The simplest (2- body) correlation function is

the pair correlation function g(r), which plays a crucial role because it allows computing

the average interatomic distance and the number of nearest neighbors, and it is directly

related to scattering experiments.

In principle, the liquid structure should be described by a full set of N-body corre-

lation functions but the higher (triplet.) correlation functions gð r!1; r
!

2; r
!

3.Þ are

functions of many variables and they cannot be measured experimentally. One can have

access to them only by computer simulation (see Section 7).

9.1.2 Pair Correlation Function

By definition, the number dN(r) of atoms contained between two concentric shells of

radii r and r þ dr centered on an atom at the origin is

dN
�
r
� ¼ 4pr0g

�
r
�
r2dr (9.1)

where r0 is the average density.

The pair correlation function characterizes the probability of having an atom at

distance r from a reference atom located at the origin. Figure 9.1 shows the pair cor-

relation function g(r).

By construction, g(r) is dimensionless and approaches 1 for large r values in a

liquid. For a perfect gas with total disorder, g(r) is equal to 1 everywhere; the departure

from unity is a measure of the order that is less and less present when r increases.

Below some cutoff value (roughly the diameter of the atom), the steric hindrance

imposes that g(r) ¼ 0.

The position r1 of the first maximum of g(r) gives the average distance of the first

nearest neighbors and its width characterizes the dispersion of nearest neighbors’

distances. For a crystal at T¼0, it is a d-peak.

The radial distribution function RDF(r) ¼ 4pr0r
2g(r) is a useful function that allows

counting the number of neighbors by integration. The average number of neighbors

around an atom, its coordination number N , is obtained by integrating Eqn (9.1) from

0 to R ¼ rmin, the first minimum of g(r).

N ¼ 4pr0

Zrmin

0

gðrÞr2dr (9.2)

The coordination number is not an integer number in a noncrystalline structure; e.g.,

a coordination number of, say, 5.1 may be a weighted average of atoms with local

coordinations 4, 5, 6 and 7. The dispersion of coordination numbers around their mean

is of great interest but unfortunately scattering experiments do not give access to this

value that can be obtained by computer simulation (Section 7).
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The coordination number is subject to some arbitrariness. Indeed, the minimum rmin

after the first peak may be ill-defined in some liquid structures and, in addition, alter-

native definitions of the coordination number have been suggested (e.g., fitting the first

peak by various bell-shaped functions). A fluctuation of about 1 on the coordination

numbers may occur depending on the calculation technique. However, the evolution of

the coordination numbers with temperature and composition is more accurate than its

absolute value provided that one keeps the same definition.

9.2 Scattering: of Neutrons and X-rays
The main technique of structural analysis of condensed matter, whether crystalline or

disordered, is the coherent scattering (diffraction) of quanta (particles/waves) [45,2,68]

with a wavelength of the order of magnitude of the interatomic separation (i.e., Å). The

most used analyzing beams are the photons (X-rays), neutrons, and electrons. Due to

their charge neutrality, the photons and neutrons penetrate deeply inside the materials

(order of magnitude of mm) and are then qualified for the analysis of bulk materials [2].

At the opposite, the electrons have a very small mean free path in the material (as small

as �10 Å at 100 eV) due to their charge; as a consequence, they are restricted to the

analysis of surfaces or very thin films. In the following, we will concentrate on the

structural analysis with neutrons and X-rays. For the study of liquids, the neutrons are

especially interesting, as their long mean free path is compatible with a complex sample

environment (sample holder, furnace, high pressure cell). Neutrons, and to some extent

X-rays, weakly perturb the structure. As a consequence, the analysis is fairly simple: a

first-order perturbation (Fermi golden rule or kinematical approximation) is valid and

leads to the well-established Fourier transform formalism. As a rule of thumb, under

normal conditions less than 10% of the neutrons are scattered, hence multiple scattering

is marginal.1 This is true also for X-rays to a lesser extent.

9.2.1 Scattering: Generalities

The interference pattern is a fingerprint of the structure. Figure 9.2 shows a schematic

view of the scattering setup with the triplet: source, sample, and detector, with some

additional optics. The production and characteristics of the beams are postponed in

Section 5.

Assuming that the source and the detector are at long distances from the sample, a

plane wave falls on the sample and on the detector; the relevant parameter is the sample

size to distance ratio.

Neutrons are chargeless massive particles that are scattered by the pointlike nuclei via

strong nuclear interactions. X-rays are massless particles scattered by the extended

1One calibrates the thickness of the sample such that at most 10% of the neutrons are scattered,

leaving 90% of the beam unperturbed. The probability of a double scattering is then of the order of 1%.

This “waste” of the incoming particles is necessary to get clean and easy-to-interpret diffraction patterns.
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electron clouds via electromagnetic interactions. We do not consider here the magnetic

scattering of neutrons by the electrons.

The strength of the interaction is given by a single parameter, the scattering length bi
(possibly complex if the material is absorbing) that has the dimension of a length [16],17.

The scattering length of the neutrons for the various isotopes is experimentally measured

and tabulated [16]. In Figure 9.3, the values of the bi for neutrons look randomly

Sample

Detector

2θ

Source

Monochromator

Collimator

Collimator

k 0

k f
q= k 0 -k f

FIGURE 9.2 Diffraction setup (schematic), k
!

0 is a the incident wave vector and q[
��� k!0 L k

!
f

���[ 4p
l
sinðqÞ.

S
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FIGURE 9.3 Coherent scattering lengths for X-rays and neutrons (b) as a function of atomic number. Note the
dependence on q[ 4p

l
sinðqÞ only for X-rays. Figure after Ref. [4].
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distributed around a mean value of about 6$10�12 cm as a consequence of the

complexity of the neutron–nucleus strong interaction.2

The orders of magnitude of the scattering lengths of X-rays and neutrons are com-

parable, by chance.

In the X-ray community, the analogous of the scattering length is called the atomic

form factor f(q); it is q-dependent because of the spatial extension of the diffracting

electron cloud. Its value at q ¼ 0 is Zrc, where Z is the number of electrons of the element

and rc is the classical radius of the electron (rc ¼ e2/mc2 ¼ 0.282$10�12 cm). The values of

f(q) are tabulated [64].

For the sake of homogeneity, we try to give a unified description of the X-ray and

neutron scattering formalism, keeping the same notation bi for X-rays and neutrons, as

far as possible, except when a specific distinction has to be done (Table 9.2).

Table 9.3 shows the scattering lengths of selected isotopes and atoms.

Table 9.2 Labeling of the Scattering Lengths and Intensities
for Neutrons and X-rays

Neutrons X-rays

Scattering length bi Form factor fi(q)
Scattered intensity FN (q) Scattered intensity Ix (q)

Table 9.3 Scattering Lengths of Some Elements and Isotopes

Atomic
Number

bcoh

(10L12 cm)
binc

(10L12 cm)
fX(q[ 0)
(10L12 cm)

fX(q[ 2pÅL1)
(10L12 cm)

1H 1 �0.374 2.52 0.28 0.02
2D 1 0.667 0.403 0.28 0.02
C 6 0.665 0.009 1.69 0.48
N 7 0.936 0.197 1.97 0.562
O 8 0.580 0 2.25 0.68
Si 14 0.415 0.020 3.95 1.72
23Na 11 0.363 0.222 3.08 1.19
natCl 17 0.958 0.649 4.80 2.0
35Cl 17 1.171 0.611 4.80 2.0
37Cl 17 0.309 0.009 4.80 2.0
natNi 28 1.030 0.648 7.90 3.6
58Ni 28 1.440 0 7.90 3.6
60Ni 28 0.280 0 7.90 3.6
Zr 40 0.716 0.014 11.29 5.6

2The same holds also for inelastic scattering.
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9.2.2 Master Equation

The double differential scattering cross section d2s
dUdE (see Figure 9.2) is the intensity

(number of quanta, neutrons, or photons) scattered per second in a solid angle dU in an

energy domain between E and E þ dE. Usually, the energy is converted in frequency

according to Planck’s relation E ¼ h– u.

Following van Hove [78], the double differential scattering cross section for a

collection of N atoms centered at positions ri(t) at time t writes

d2s

dUdu
¼ 1

2p

kf

k0

ZN
�N

dte�iut <
XN
i;j

bibje
� iq
!

$ r!ið0Þe iq
!

$ r!jðtÞ > (9.3)

where k
!

0 and k
!

f are the incident and diffracted wave vectors and q
!¼ k

!
f � k

!
0

(Figure 9.2). The horizontal bar is the configurational average, and < > is the thermal

average. It has the dimension of an area (in cm2 or in fm2 or in barn [10�24 cm2]).

9.2.3 Coherent and Incoherent Scattering

In the double sum of Eqn (9.3), we consider separately the cases where the two sites are

either distinct (i s j) or identical (i ¼ j). Assuming the absence of correlation between

the bi values of distinct scatterers, we have

bibj ¼ b
2

isj ðdistinctÞ (9.4)

bibj ¼ b2 i ¼ j ðselfÞ
¼P

a

cajbaj2 (9.5)

where ca is the concentration in element a. The upper term is called distinct and the

second term (i ¼ j) is called self.

The coherent and incoherent scattering lengths are defined as

bcoh ¼ b ¼
X
a

caba (9.6)

Sample

Absorption

Single scattering

Multiple scattering

Inelastic scattering
2θ

FIGURE 9.4 Possible scattering events (schematic).
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binc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � b

2

q
(9.7)

and the coherent and incoherent cross sections are

scoh ¼ 4pb
2

(9.8)

sinc ¼ 4pðb2 � b
2Þ (9.9)

The double differential scattering cross section Eqn (9.3) is a sum of two terms:

d2s

dUdu
¼ d2s

dUdudistinct

þ d2s

dUduself

¼ 1

2p

kf

k0

2
4 ZN

�N

dte�iutb
2XN

isj

< e�i q!$ r!ið0Þei q!$ r!j

�
t
�
>

þ
ZN
�N

dte�iutb2
XN
i

< e�i q!$ r!ið0Þei q!$ r!iðtÞ >
3
5 (9.10)

The first term d2s
dUdudistinct

is sensitive to the structure as it is related to the interferences

between two different scattering sites, whereas the second term ds
dUduself

is structure

insensitive, as it involves a single site (i ¼ j).

The two terms of Eqn (9.10) are usually rearranged in a coherent and an incoherent

contribution. In the coherent term d2s
dUducoh

the sum is performed on all the sites, without

exclusion, and in the remaining part, the incoherent term d2s
dUduinc

, the variance of the

scattering lengths occurs (Eqn (9.7)). The double differential scattering cross section

writes

d2s

dUdu
¼ d2s

dUducoh

þ d2s

dUduinc

¼ 1

2p

kf

k0

ZN
�N

dte�iut

"
b
2XN

i;j

< e�i q!$ r!ið0Þei q!$ r!j

�
t
�
>

þ
�
b2 � b

2
�XN

i

< e�i q!$ r!ið0Þei q!$ r!iðtÞ >
#

(9.11)

or in a more compact form

d2s

dUdu
¼ N

kf

k0

h
b2
cohS

�
q
!
;u
�þ b2

incSs
�
q
!
;u
�i

(9.12)

where Ssð q!;uÞis the self (incoherent) dynamic structure factor and Sð q!;uÞ is the full

(coherent) dynamic structure factor Sð q!;uÞ that contains the structural and dynamical

information on the system. Its properties are developed in many textbooks

[2,13,68,73,32,7]. See Figure 9.5 for a schematic view of coherent and incoherent con-

tributions to the neutron scattering cross section ds
dU ðqÞ of a liquid.
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9.2.4 Scattering by Liquid and Amorphous Structures

Equations (9.3)–(9.12) are valid for any structure, crystalline or disordered. In a liquid,

the atoms diffuse and vibrate, whereas in a solid, whether crystalline or amorphous, they

only vibrate along their equilibrium positions. As a consequence of the diffusive motion,

there is no coherent elastic scattering in a liquid except at q
!¼ 0 [73]. Indeed, because of

the spectral (sometimes called Heisenberg) inequality, a strict conservation of the energy

(or frequency Du¼ 0) requires an infinite time of measurement as DuDt � 1
2. During this

time interval, the atoms diffuse, and at t ¼N the memory of their original positions is

completely lost. The time averaged density is a constant in space and its Fourier

transform gives a delta peak dð q!Þ2. In conclusion, in a liquid, there is no elastic scat-

tering, except in the uninteresting case of forward scattering ð q!¼ 0Þ.
However, in a short time period, an atom of a liquid vibrates in the cage of its

neighbors. The scattering spectrum is then an average of the instantaneous snapshots of

the configurations of the liquid. Consequently, the scattered intensity shows damped

oscillations, contrary to a gas (Figure 9.6).

The case of amorphous structures is different: the atoms undergo a thermal motion

about their time-independent mean positions. It is then possible to measure the elastic

part of the spectrum that differs from the static approximation by the Debye-Waller

factor, as in crystals.

9.2.5 Static Approximation

In most scattering experiments, especially in diffuse scattering setups, there is no energy

filtering; all the energies are collected by the detector with an efficiency ε(E) that will be

0         q

σ
ΩN

d

d

1

=q
r

7.6
1

1

b2

Incoherent

b S q( )
2 b

2

b S(0)
2

−b b2 2

FIGURE 9.5 Coherent and incoherent contributions to the neutron scattering cross section ds
dU ðqÞ of a liquid.

2The same holds also for inelastic scattering.
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assumed to be equal to 1 (or to a constant) for simplicity. Integrating Eqn (9.12) over all

the energy exchanges corresponds to taking snapshots (Dt ¼ 0) of the structure. It is

called the static approximation. The u- (or E-) independent measured differential

scattering cross section is given by

ds

dU
ð q!Þ ¼

ZN
�N

d2s

dUdE
ð q!;EÞεðEÞdE ¼ ds

dUcoh

ð q!Þ þ ds

dUinc

ð q!Þ (9.13)

In practice, for X-rays, the incident energy (several kiloelectron volts) exceeds the

maximum energy transfers between the wave/particle and all the excitations of

the sample (several millielectron volts). For thermal neutrons, whose energies are of

the same order of magnitude as the vibrations (i.e., kBT), the integration cannot be

done upon the energies of all the possible excitations and, to get a reliable value of ds
dU,

an inelastic correction is needed (Placzek correction), particularly important for light

atoms [62,14].

The static approximation (Dt ¼ 0) of the structure is different from an elastic

scattering (Du ¼ 0) that corresponds to an average over an infinite time.
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FIGURE 9.6 Structure factor S(q) of a polycrystal, an amorphous sample, a liquid, and a gas for comparison.
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Combining (Eqn 9.3) and (Eqn 9.13), with the assumption that kf¼k0, the differential

scattering cross section is given by

1

N

ds

dU
ðqÞ ¼ b2

cohSðqÞ þ b2
inc

¼ b
2½SðqÞ � 1� þ b2

(9.14)

where S(q) is the static structure factor.

In noncrystalline materials (liquids, glasses), the system is isotropic in the average

and the scattering pattern depends only on the modulus q ¼ j q!j, related to the scattering

angle 2q (Figure 9.2) by

q ¼ 4p

l
sin q (9.15)

For isotropic liquids, the limiting values of S(q) have simple expressions.

The limit value of S(q) for q / 0 is the second derivative of the free energy G with

respect to the volume V and is related to the isothermal compressibility kT and to the

density r0.

lim
q/0

SðqÞ ¼ r0kTkBT

lim
q/N

SðqÞ ¼ 1
(9.16)

This is valid for homogeneous liquids and obviously for gases (for which S(q) ¼ 1

everywhere). If the structure is inhomogeneous, one observes an increase of S(q) at low q

values, the small angle scattering (SAS).

9.2.6 Diffraction by a Crystal, Scherrer Broadening and SAS

The elastic scattering of a monochromatic wave by a perfect crystal is well known and

abundantly documented [45,2,63,13,68]. The diffraction pattern, described by Sð q!; 0Þ,
gives the Bragg peaks when the Laue conditions are fulfilled [45,2]. Some additional

remarks are worth being done in relation to the scattering by liquids.

1. For a perfect crystal (of infinite volume, by definition), with an infinite volume of

coherence of the beam (see Section 2.7), the peak widths are zero ðD q
!¼ 0Þ as a

consequence of the LRO extending to infinity. If the crystal has a finite extension

(microcrystallites, defective crystals, etc.), the diffraction peaks have a nonzero

width Dq given by Scherrer’s formula that can be simply obtained by dimensional

analysis:

Dq ¼ a
2p

D
(9.17)

where D is the size of the crystal or the extent of the translational order and a is a

dimensionless parameter close to unity. For a sphere of diameter D, a ¼ 0.91.

This equation has a wider range of applications than expected.

412 HANDBOOK OF CRYSTAL GROWTH



2. Equation (9.17) can be adapted to liquids. In this case, D is the extent of the SRO,

usually a few shells of neighbors. The widths of the diffraction peaks are large and,

when q increases, they merge and give a constant asymptotic value.

3. In any case, crystalline or disordered, a coherent scattering exists at q ¼ 0 (or q ¼ 0)

as all the beams are in phase. The analysis of the shape and the width of the cen-

tral peak led to important developments: the small angle scattering, SAS3 [68,76,75]

(cf. Section 9). Both SAS and Scherrer’s broadening are driven by the same for-

mula: the SAS is the Scherrer’s broadening of the central peak. It gives information

on the size of the diffracting object, provided it has some contrast (i.e., difference

in scattering lengths) with respect to the surrounding medium.

9.2.7 Coherence Volume

A monochromatic plane wave is an idealization. An actual beam deviates from the

ideal case in two ways: it is not perfectly monochromatic and it has some angular

divergence.

The longitudinal coherence length depends on the departure from mono-

chromaticity (dispersion Dl around the average wavelength l).

From the spectral (or Heisenberg) equality, the longitudinal coherence length LL is

given by [2,28]

LL ¼ 1

2

l2

Dl
(9.18)

The longitudinal coherence length is the wavelength l multiplied by an enhancement

factor l
2Dl. The better the monochromatization, the longer the longitudinal coherence.

Typically for a liquid diffractometer, Dl
l
y :01. The longitudinal correlation length is then

50$l, about 100 Å, far larger than the extent of the local order in a liquid or an amorphous

material. Typical values are given in Table 9.4.

The lateral or transverse coherence lengths originate from the beam divergence. The

beam is not perfectly collimated; the source is not a point, as it has some spatial

extension Dx in the x direction (Figure 9.7) and an angular divergence Dx/R where R is

Table 9.4 Orders of Magnitude of the Coherence Parameters. R is
the Diameter of the Source, D the Source-Sample Distance

l(Å) Dl(Å) LL(Å) R(m) D(m) Lt,x(Å)

X-rays 1 0.01 50 0.001 10 5000
Neutrons 1 0.01 50 0.05 5 50
SAS 10 0.1 1000 0.05 10 1000

SAS, small angle scattering.

3SAXS for X-rays and SANS for neutrons.
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the source-sample distance and similarly for the y direction. The lateral or transverse

coherence length Lt,x (Lt,y) writes [2]

Lt;x ¼ l

2

R

Dx

(9.19)

The enhancement factor is now half the inverse of the angular opening of the source

seen from the sample R
2D. This value is of the order of 2� (35mrad) for neutrons and

considerably smaller for X-rays (cf. Table 9.4).

The ellipsoid-like coherence volume (Figure 9.7) is proportional to the product of the

three coherence lengths

VcohyLLLt;xLt;y (9.20)

Inside the coherence volume, the amplitudes of the waves add and give rise to in-

terferences (Eqn (9.3)) that are the cornerstone of the structural analysis. Outside the

coherence volume, the partial intensities add and give an average picture.

In practice, the quality of monochromatization and collimation results from a

compromise between intensity and resolution. Due to their low brilliance, neutrons

cannot be as monochromatic and as well collimated as the X-rays, but for liquids, this is

not important because the diffraction spectra have no sharp peaks. The intensity is

favored with respect to the resolution. There is no need to have a sharp

monochromatization.

In the study of mesoscopic liquids (e.g., liquid of micelles, Section 9) in the SAS

regime, Dl
l
may be as large as about 10–20% in order to enhance still further the intensity

of the incoming beam. The coherence volume should be decreased, but it is compen-

sated by a larger wavelength, e.g., 10–20 Å (Table 9.4). More details can be found in [56].

In the extreme case of a single coherence volume of the sample, which can be

achieved in modern X-ray sources (synchrotrons, free electron lasers), one has

diffraction-limited speckle scattering [42]. Ultrafast pulses of coherent hard X-rays open

new opportunities for studies of atomic-scale dynamics in liquid and amorphous ma-

terials on times scales down to the femtosecond range [5].

9.2.8 Neutrons and X-rays [7, 28, 33, 37, 48, 72]

We particularize Eqn (9.13). We assume that the very first corrections have been done:

subtraction of the parasitic signals from the ambient background, from the sample

FIGURE 9.7 Coherence volume (schematic).
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environment (container, furnace if any), correction for absorption of the different con-

stituents [58], including the sample itself, correction of multiple scattering [10, 71], and

normalization to the (multi)detector sensitivity. Finally, the remaining signal is the signal

of the sample itself.

As shown in Section 2.3, the scattered intensity is the sum of a self term (incoherent)

and a distinct term that contains the structural information. Additional terms are specific

to each type of radiation. In summary, we have, for the neutron case:

1

N

ds

dU
ðqÞjN¼

 X
a

caba

!2�
SN ðqÞ � 1

�þX
a

caðbaÞ2 þ PðqÞ (9.21)

where P(q) is the inelastic (Placzek [62]) correction, which is moderate, as most neutrons

are elastically scattered. This is still more true for the X-ray photons because their en-

ergies (10 keV) are six orders of magnitude larger than the energies of the excitations

(e.g., up to several tens of meV for the phonons). For the X-ray case

1

N

ds

dU
ðqÞjX¼

 X
a

cafaðqÞ
!2

ðSX ðqÞ � 1Þ þ
X
a

cað faðqÞÞ2 þ CX ðqÞ (9.22)

where CX(q) is the Compton scattering.

Figure 9.8 shows the scattered intensities in a neutron and an X-ray experiment. In

brief, in the neutron case, the intensity oscillates around a constant. To obtain S(q), one

subtracts the incoherent contribution and makes correction due to inelasticity. In the

X-ray case, one divides by the atomic form factor that is decreasing a function of q

because it is the Fourier transform of the charge density. Note that in the case of

magnetic neutron scattering by the electron spins, an magnetic structure factor is pre-

sent, analogous to the atomic form factor.

For the X-rays, in a monoatomic system, binc ¼ 0. For the neutrons, the bi are

dependent on the isotope and the nuclear spin. The latter plays an important role. For

FIGURE 9.8 Scattered intensities of a liquid in a neutron (left) and X-ray (right) scattering experiment,
respectively.
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instance, in normal hydrogen (1H), the up and down spin gives different scattering

lengths, so that binc is large, whereas for deuterium (D) binc ¼ 0. Hence, one deuteriates

the sample to lower the incoherent scattering, in addition the contrast is modified.

Let us finally remark that the structure factors SN(q) and SX(q) are not identical

because the neutrons are scattered by the pointlike nuclei while the X-rays are scattered

by the diffuse electron cloud. Even after division by the X-ray form factor
P

acafaðqÞ, the
X-ray structure factor is slightly different because the chemical bond rearranges the

electron cloud (covalency effect). A deconvolution of the electron cloud effects is

possible.

Table 9.5 shows the advantages and disadvantages of the X-ray and neutron scat-

tering techniques. In short, the main differences between neutrons and X-rays are as

follows.

1. The scattering length bi is constant for the neutrons (neglecting the magnetic

scattering) while the X-ray form factor fi(q) is strongly q-dependent.

2. The correction factors are

a. for neutrons: absorption, inelastic correction (Placzek), multiple scattering

b. for X-rays: absorption, Compton scattering, multiple scattering. Ideally, the

correction terms should not exceed 10% of the scattered intensity.

9.3 Case Studies
9.3.1 Monoatomic Liquids

For a monoatomic liquid, with identical scattering lengths, the static coherent structure

factor S(q) simplifies and writes in term of the interatomic separations rij ¼
�� r!ij

�� [15]
SðqÞ ¼ 1þ 1

N

X
i;jsi

sin
�
qrij
�

qrij
(9.23)

This formula was the sole formula in P. Debye’s Nobel speech (1936). It is also a

valuable first approximation for an alloy for which the scattering lengths of the elements

are assumed to be identical.

Table 9.5 Advantages and Disadvantages of the X-ray and Neutron Scattering
Techniques

X-rays Neutrons

Advantages Availability (lab.) Isotopes
High flux (synchrotron) Nuclear scattering
Sensitivity to heavy element Sensitivity to hydrogen
Single sample (anomalous scatt.) Relatively easy data treatment

Disadvantages q-dependent form factor Low flux
Strong sample environment scattering Cost and availability of isotopes
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9.3.1.1 First Characterization of S(q)
A first look at S(q) allows to characterize the gross features of the structure prior to

performing a full analysis using the Fourier transform.

1. The position of the first main peak of S(q), q1 gives a fair approximation of the

nearest-neighbor distance

r1 ¼ 7:6

q1

(9.24)

The numerator is 20% larger than the expected 2p. Indeed, the interatomic separation

of spheres is twice the radius r1 ¼ 2R, whereas the (repetitive) distance between the

successive shells of neighbors is slightly smaller because the shells interpenetrate

(Figure 9.1).

For an FCC structure, r1q1 ¼ 2p
ffiffiffiffiffiffiffi
1:5

p
x7:695.

2. The ratio of the positions of the two first peaks q2/q1 is correlated to the type of

structure and coordination number. For “normal” liquids (metals, rare gases, and

transition metals), for which the atoms are linked by fairly isotropic forces, the

ratio q2/q1 falls in the range [1.80, 1.86] (Figure 9.9 and Table 9.6).

For liquid rare earth metals, q2/q1 is in the range [1.86, 1.90], due to the bonding by

d and f electrons.

For liquid covalent structures, generally liquid semiconductors, q2/q1 has higher

values, in the range [1.96, 2.07] (Figure 9.10 and Table 9.6). This corresponds to directional

bonds driven by the p orbitals. The coordination numbers (around 6–7) are smaller than in

the compact structures and themaximum S(q1) is smaller than in compact liquids. Liquid

Si (Figure 9.10) and Ge are relevant examples, with metallic conductivities.

3. The latter have the peculiarity that their melting entropy is high and their densities

increase at the melting. We classify them as “anomalous” liquids. The local

FIGURE 9.9 Structure factor S(q) of liquid Al.
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structure of the liquid is very different from that of the solid. The coordination

number is higher and the interatomic distances are larger.

4. The coherence length (Table 9.7) of the local order is estimated from the width of

the diffraction peak: Lord is equal to 2p divided by the width of the first diffraction

peak. It amounts to about three shells for normal liquids and less than two for

anomalous liquids.

5. In covalently bonded liquids, the ratio S(q2)/S(q1) characterizes the type of environ-

ment of an atom: It is greater than one for a tetrahedral liquid and smaller than

one for an octahedral liquid [74].

6. For large q values, the structure factor is asymptotically a sine function damped

by an exponential S(q) y A sin(qr1þ4)e�ar where r1 is the nearest-neighbor

distance [43].

Table 9.6 Positions of the Two First Diffraction Peaks of
Selected Liquids and Nearest-Neighbor Separations

q1 (ÅL1) q2 (ÅL1) q2/q1 r1 (Å) q1r1

Na 2.03 3.75 1.85 3.81 7.73
Al 2.68 4.96 1.85 2.82 7.56
Fe 2.98 5.46 1.83 2.58 7.69
Ni 3.10 5.70 1.84 2.53 7.84
Si 2.72 5.62 2.07 2.50 6.80
Ge 2.56 5.11 2.00 2.82 7.22
Sn 2.15 4.38 2.04 – –

FIGURE 9.10 Structure factor S(q) of liquid Si.
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9.3.1.2 Pair Correlation Function
The pair correlation is directly related to the structure factor S(q) by Fourier trans-

formation [38,73]: r(g(r)�1) is proportional to the sine Fourier transform of q(S(q)�1).

gðrÞ ¼ 1þ 1

2p2r0r

ZN
0

½SðqÞ � 1�q sinðqrÞdq (9.25)

Equation (9.25) needs some warnings.

In practice, S(q) is not measured up to infinity but up to a maximum value qmax ¼ 4p
l
.

Usually, S(q) shows oscillations up to possibly 20 Å, implying that the wavelength should

be as low as l ¼ 0.5 Å. This is easily achieved by X-ray synchrotrons, but for neutrons it

requires a hot source. Indeed, thermal neutrons (l x 1.7 Å) give only qmaxx7 Å.

The truncation of the S(q) spectrum has two effects: it broadens the peaks of g(r) and

it produces spurious oscillations. The broadening of the peaks is negligible with respect

to the natural width in liquids, but it may be of some relevance in amorphous sub-

stances. The oscillations of the Fourier transform, with a period 2p/qmax, is a more

difficult issue as the oscillations are enhanced at short distances because of the r factor

in the denominator of Eqn (9.25) [44]. There are different ways to circumvent this arti-

fact. The most popular technique consists of hiding the low r part of the function g(r)!

The apodization technique is a gentle damping of the oscillations of S(q) [47] at large q.

The price to pay is an extra broadening of the peaks of g(r).

As g(r) and its successive derivatives vanish at the origin by steric hindrance, a set of

sum-rules on the even moments of S(q)�1 are deduced [21]. They can be used for

normalization, coherence, or fine tuning corrections of the data.

ZN
0

q2
�
S
�
q
�� 1

	
dq ¼ �2p2r0

ZN
0

q2n
�
S
�
q
�� 1

	
dq ¼ 0 ðn � 2Þ

(9.26)

Table 9.7 Estimated Values of the Correlation Length of the Local Order
in Liquid Elements. The Width is Arbitrarily Measured at S(q) ¼ 1

q1 (Å�1) Dq1 (Å�1) Lord (Å) Nb Shells

Na 2.03 0.53 11.9 3.1
Al 2.68 0.78 8.1 3.5
Fe 2.98 0.90 6.9 2.7
Ni 3.10 0.78 8.1 3.2
Si 2.72 1.63 3.85 1.5
Ge 2.56 1.30 4.83 1.7
Sn 2.15 0.95 6.6 1.9
Crystal – 0 N N
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9.3.2 Polyatomic Liquids

In the case of polyatomic systems, not only the position matters but also the chemical

nature of the elements. In direct space, the structure is described by the partial (i.e.,

element sensitive) pair correlation functions gab(r) where a and b designate the

chemical element. They are the Fourier transforms of the partial structure factors Sab(q)

similarly to (Eqn (9.25)).

9.3.2.1 Partial Structure Factors
The partial structure factors Sab(q) are named according to Faber and Ziman [22], but the

original definition is due to Fournet [29]. For an n-component system, there are

n(n þ 1)/2 partial structure factors.

For a system with n components, the measured diffracted intensity is decomposed

into a distinct and a self contribution. The former is a linear combination of the Sab(q).

The case is complicated by the fact that the different partial contributions to scattering

are weighted by the scattering lengths of the various elements,

1

N

ds

dU
ðqÞ ¼

Xn
ab¼1

cacbbab
�
b

h
SabðqÞ � 1

i
þ
X
a

cab2
a (9.27)

where the partial structure factors Sab(q) result from the interference of the b atoms

around an a-type atom and b2
a ¼ b2

coh;a þ b2
inc;a.

Let us remark that the Fourier transform of the coherent part of (Eqn (9.27)) gives a

weighted average of the pair correlation functions, sometimes called the total pair cor-

relation function GT(r); the weighting factor includes the scattering lengths so that GT(r)

has the dimension of an area

GT ðrÞ ¼
X
a;b

cacbbab
�
b

�
gabðrÞ � 1

�
(9.28)

A variant of the partial structure factors, better adapted to computer simulation, is the

Ashcroft-Langreth definition [3]

SAL
abðqÞ ¼ dab þ ffiffiffiffiffiffiffiffiffi

cacb
p ½SabðqÞ � 1� (9.29)

Alternatively, in the Bhatia-Thornton [5] formalism, three sets of partial structure

factors are defined for a binary alloy SNN(q), SCC(q), and SNC(q), N for number and C for

concentration. They are, respectively, the distribution of the atomic number density, of

concentration, and their cross correlation. SNN(q) is a concentration weighted combi-

nation of the partial structure factors

SNN

�
q
� ¼ c21S11

�
q
�þ 2c1c2S12

�
q
�þ c22S22

�
q
�

(9.30)

SNN(q) is the structure factor of the alloy if both chemical species have identical coherent

scattering lengths. SNN(q) characterizes the geometric structure, independent of the

chemical order. The latter is described by SCC(q) and SNC(q) defined as

SCCðqÞ ¼ c1c2½1þ c1c2ðS11ðqÞ � 2S12ðqÞ þ S22ðqÞÞ� (9.31)
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SNCðqÞ ¼ c1c2½c1ðS11ðqÞ � S12ðqÞÞ � c2ðS22ðqÞ � S12ðqÞÞ� (9.32)

SNN(q) and SCC(q) are positive and SCC(q)SNN(q) � SNC(q)
2.

SCC(q) is equal to c1c2 if the three Sab(q) are identical.

If SCC(q) is greater than c1c2 in average, homoatomic correlations are preferred.

If SCC(q) is smaller than c1c2, then heteropolar correlations are favored; SCC plays the

same role as the Warren–Cowley parameter in substitutional alloys [18].

In addition, in the case of a zero alloy, b ¼ 0, the signal measures directly SCC(q).

In the following, we will restrict ourselves to binary alloys.

When a single experiment is performed, one gets a single S(q), which is a linear

combination of the partials S11, S12 ¼ S21, and S22. To obtain the individual Sab, one needs

three independent equations for the three unknown functions.

Information at the partial structure factor level is important to reveal details of the

local and intermediate-range orders.

Three independent experiments can be done in one of the following ways:

1. Neutron diffraction with isotopic substitution (NDIS) [28, 6]

The NDIS technique consists of measuring the coherent scattered intensity F(q) of

three samples with the same chemical composition but different isotopic compositions.

Their structures are the same as the cohesive properties are insensitive to the nature of

the isotopes. Three sets of isotopes are used with the scattering lengths ðbð1Þ
a ;b

ð1Þ
b Þ,

ðbð2Þ
a ;b

ð2Þ
b Þ, and ðbð3Þ

a ;b
ð3Þ
b Þ. Usually, one set is made of natural isotopes and is labeled nat.

We then have three sets of equations.

0
B@

F1ðqÞ
F2ðqÞ
F3ðqÞ

1
CA ¼

0
BBBB@

c2ab
ð1Þ2
a 2cacbb

ð1Þ
a b

ð1Þ
b c2bb

ð1Þ2
b
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ð2Þ2
a 2cacbb

ð2Þ
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ð2Þ
b c2bb

ð2Þ2
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ð3Þ2
a 2cacbb

ð3Þ
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ð3Þ
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1
CCCCA

0
BBB@

SaaðqÞ � 1

SabðqÞ � 1

SbbðqÞ � 1

1
CCCA (9.33)

The NDIS technique can only be performed if isotopes with sufficient contrast exist

and are affordable. In any case, the huge cost of the isotopes (in grams) restricts the

technique to selected fundamental studies. In compact matrix notation, Eqn (9.33) can

be written as

F
!�

q
� ¼ A

�
S
!�

q
�� 1

�
(9.34)

The system can be inverted if the determinant of A is not too small, i.e., if the contrast

is sufficient. Very often, the relative differences between the Sab(q) values may be as

small as 1%, and the system (Eqn (9.33) or Eqn (9.34)) is poorly conditioned. The error

bars on the Sab(q) functions are then large and the partial pair correlation functions

gab(r) are inaccurate.

An interesting illustration of this method, in relation to crystal growth, is the study of

the structure of liquids in the undercooled regime. Indeed, to prevent crystallization,

different containerless techniques have been developed: electromagnetic levitation [40]
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and aerodynamic levitation [41]. The local order of undercooled liquid Ni36Zr64 has been

studied by neutron scattering with isotopic substitution. Three compositions have been

analyzed: natNi36Zr64,
58Ni36Zr64, and 60Ni36Zr64. From the partial structure factors

(Figure 9.11), it is shown that the melt exhibits a pronounced chemical short range: the

Ni-Zr nearest neighbors are preferred as shown by the heteroatomic pair correlation

function gNiZr [40] (see Section 9.3.2.2). By contrast to some other metallic melts, no

indications for the existence of an icosahedral SRO is found in the undercooled liquid.

This may result from the comparatively larger difference of the atomic radii of Ni and Zr.

2. Anomalous X-ray Scattering

With X-rays, it is possible to do three independent experiments on the same sample

by varying the wavelength, as the scattering lengths f(q) are significantly wavelength

dependent in the vicinity of an absorption edge [2]. See Figure 9.12.

f
�
q;E0

� ¼ re
�
Zfmod

�
q
�þ f 0

�
E0

�þ if 00
�
E0

�	
(9.35)

FIGURE 9.11 Partial structure factors and pair correlation functions of undercooled liquid Ni36Zr64 at 1375 K [40].
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FIGURE 9.12 Scattering lengths as a function of the wavelength l in the vicinity of an absorption edge (l0).
Three measurements should be done: below the edge (l2), at the edge and above the edge (l1).
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where Z is the atomic number, re the classical radius of the electron, and fmod(q) a

modulation factor that goes from 1 at q ¼ 0 to 0 at q ¼ N. The additional contributions

f 0 þ if 00 are the so-called anomalous terms that involve inner electrons of small radii and,

consequently, their q-dependence can be neglected. The real part contributes to the

scattering and the imaginary part represents the absorption.

0
B@

F1ðqÞ
F2ðqÞ
F3ðqÞ

1
CA ¼

0
BBB@

c2af
2
a1ðqÞ 2cacbfa1ðqÞfb1ðqÞ c2bf

2
b1ðqÞ

c2af
2
a2ðqÞ 2cacbfa2ðqÞfb2ðqÞ c2bf

2
b2ðqÞ

c2af
2
a3ðqÞ 2cacbfa3ðqÞfb3ðqÞ c2bf

2
b3ðqÞ

1
CCCA
0
BBB@

SaaðqÞ � 1

SabðqÞ � 1

SbbðqÞ � 1

1
CCCA (9.36)

This technique is interesting and far less expensive than NDIS. However, the data

reduction has to be done with great care because the electronic processes are markedly

different before and after an absorption edge. Typical K-edges are given in Table 9.8.

3. Combination of neutron and X-ray scattering

In principle, it is possible to perform three independent experiments combining

X-rays with or without anomalous effects, and neutron scattering possibly with isotopic

substitution [31]. As the neutron scattering length—due to strong nuclear interactions

and the X-ray scattering length, purely electromagnetic—are totally independent, the

matrix A can be inverted. The X-rays are more sensitive to the heavy elements. Despite its

benefits, the combined method suffers from several difficulties. Some contributions are

specific to X-rays (Compton) and some are specific to neutrons (inelasticity). The two

techniques differ on many aspects: absorption, inelasticity, size of the beam, and this

adds difficulty in the data reduction. There is no automatic canceling out by subtraction.

The data treatment is therefore difficult. In addition, the diffraction process itself is

different. As X-rays are diffracted by the electron clouds that may have a sizable de-

parture from sphericity when the atoms are linked by a covalent or a metallic bond [69],

the X-ray-neutron mixed method needs some special care in the case of covalent liquids.

As we will see further on, the combination scattering data with computer simulation is of

great help.

Table 9.8 K-edge of Selected Elements
(Groups IV and V and Transition Metals)

Element K-Edge (keV)

Si 1.84
Ge 11.10
As 11.87
Sn 29.20
Pb 88.00
Fe 7.11
Ni 8.33
Pd 24.35
Pt 78.39
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9.3.2.2 Partial Pair Correlation Functions
From the partial structure factors Sab(q), the partial pair correlation functions gab(r) can

be obtained by Fourier transformation, the same way as for the pure elements.

gabðrÞ ¼ 1þ 1

2p2rr

ZN
0

½SabðqÞ � 1�q sinðqrÞdq (9.37)

Special care has to be taken regarding the continuation, normalization, etc., of the

S(q).

Let us consider liquid NaCl that is a physically and historically important case. In

ionic liquid alloys, there are two conflicting effects: the electrostatic energy favors the

charge alternation whereas the entropic term favors a random distribution of ions as we

are at high temperature in the liquid state.

Using neutron scattering with isotopic substitution on the Cl atoms, Enderby et al.

[19] performed three independent experiments with three samples Na37Cl, Na35Cl, and

NanatCl measured at 875 �C just above the melting point. Figure 9.13 shows, after data

reduction, the homoatomic SNaNa(q) and SClCl(q) structure factors and the cross function

SNaCl(q). As the A matrix (Eqn (9.33)) has a determinant as small as 0.03 after normali-

zation, the partials are subject to large error bars, in particular SNaCl(q). The partial pair

correlation functions gNaNa(r), gClCl(r), and gNaCi(r) are shown in Figure 9.13. We observe

that the homoatomic pair correlation functions gNaNa(r) and gClCl(r) are nearly identical

FIGURE 9.13 Partial structure factors Sab(q) (left) and pair correlation functions gab(r) (right) of liquid NaCl at
875 �C. The homoatomic pair correlation functions are in phase (dotted lines) and in phase opposition with the
heteroatomic pair correlation function (full line).
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with their maxima and minima in phase, whereas the heteroatomic pair correlation

function gNaCl(r) is in phase opposition. Table 9.9 shows the positions of the maxima and

minima of the gab(r). The liquid shows an alternation of Naþ and Cl� shells of ions like in

crystalline NaCl. In conclusion, the ionic forces dominate the structure at the melting

temperature. At higher temperatures or in less ionic systems, the balance between

enthalpic and entropic terms may be different, and the conclusions are altered. This is

the case, e.g., for liquid CuCl [59]. See, e.g., the review papers [54,55].

9.3.3 Normal and Anomalous Melting

Is there a qualitative difference between the SRO of a crystal and a liquid? In a large ma-

jority of cases, the chemical bond and the local structure of the liquid are similar to the

crystal, and we define this as the normal melting. The liquid is, to a first approximation,

similar to a high temperature crystal with 5–10 % of vacancies and, of course, no LRO. In

some rare cases,mainly in group IV semiconductors and III-V compounds, qualitative and

quantitative variations of the chemical bond and the local structure are observed. The

melting is anomalous. In the normal melting, one observes a volume expansion, whereas

in anomalous melting a contraction occurs. Let us recall the Clausius-Clapeyron formula:

dp

dT
¼ Lf

T ðVL � VSÞ (9.38)

As the heat of fusion Lf is positive, the slope
dp

dT
is defined by the variation of volume at

melting. For most systems, VL� VS is positive (normal meting) but there are important ex-

ceptions such as water, silicon, and germanium. See Figure 9.14. As we will see, their liquid

structure is different from the crystalline structure, which has some consequences on the

crystallization and amorphization. This difference can be characterized at the level of the

structure factor S(q).

9.3.3.1 Liquid Metals and Rare Gases
In this case, the bonding is mainly isotropic and described by a pair potential V(r), giving

rise to compact structures with a high coordination number, e.g., 12 in FCC or HCP

structures. The structure is mainly the result of steric hindrance: it is not possible to put

more than 12 spheres in close contact with a central sphere. The liquid structure at short

distances shows only small quantitative differences with respect to the crystal. The ratio

q2/q1 is in the range [1.80,1.86], and it has some similarities with the scattering of a

Table 9.9 Maxima and Minima of the Pair Correlation
Functions of Liquid NaCl at 875 �C from [19]

Pair Corr. Function 1st Max (Å) 1st Min (Å) 2nd Max (Å)

gNaNa(r) 3.8 5.8 7.7
gclcl (r) 3.7 6.0 7.7
gNaCl (r) 2.6 3.8 5.7
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compact FCC structure. The q1 peak is a broadening of the (111) and (200) Bragg peak,

whereas the q2 peak comes from the (220), (113), and (222) peaks. The interatomic

distance is marginally the same and the number of nearest neighbors N is lower than in a

crystal by 5–10 %. Of course, N is subject to uncertainties and, in addition, the com-

parison is difficult with semicompact structures (e.g., BCC) because there are two types

of nearest neighbors. The main difference with the crystal is the dispersion of the

interatomic separations shown in the first peak of g(r).

The entropy of melting is the sum of two contributions due, respectively, to the

disorder and to the volume variation at melting DSmelting¼ Sdisorderþ Svolume. The

configurational entropy of the disorder is equal to Rln2 x 1.4 cal/kB/mole/K [66], a value

a little smaller than those observed in Table 9.10 for metals; the remaining entropy is due

to the volume expansion.

Table 9.10 Physical Parameters of Selected Elements and Binary Alloys

Crystal Structure ZC Tm$K Zl DV/V% Dr/r% q2/q1

Smelt

cal/K/mole

Li BCC 8(þ6) 454 9.5 5 – 1.83 2.3
Na BCC 8(þ6) 371 10.4 2.5 2.7 1.85 1.7
Mg HCP 12 923 10.9 4.1 0.6 1.82 2.3
Al FCC 12 933 11.5 4.1 �1.4 1.85 2.7
Fe BCC 8(þ6) 1811 10.6 3.6 4 1.83 2.0
Cu FCC 12 1358 11.3 4.2 0.82 1.82 2.3
Si Diamond 4 1687 6.4 �10 6 2.07 7.1
Ge Diamond 4 1212 6.8 �4.8 15 2.00 7.0
As Trigonal 3(þ3) 1090 3.5 10 0.0 1.53 –

Sb Trigonal 3(þ3) 904 6.3 1 – 1.96 5.3
Bi Trigonal 3(þ3) 544 8.8 �3.3 – 1.95 –

GaAs Blende 4 1511 5.5 �11 – 2.1 4.7
InSb Blende 4 800 6.3 �3.7 – 2.1 7.1
ZnTe Blende 4 1512 3.7 8.0 – 1.7 3.9
CdTe Blende 4 1314 3.7 0.7 – 1.72 3.8
HgTe Blende 4 943 6.3 �3.3 – 2.11 4.5
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FIGURE 9.14 Normal (left) and anomalous (right) melting.
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9.3.3.2 Liquid Semiconductors
The case of covalent structures, mainly semiconductors, is totally different from the

previous section. The most remarkable examples are Si and Ge. Their four-coordinated

diamond structure is related to the directionality of the sp3 chemical bond, and their

packing fraction is as low as h ¼ 0.34. When melting, their interatomic separation in-

creases by a value of the order of 10%, their coordination number increases by more than

50%, and their liquid density is higher than the solid. Indeed, the expected decrease of

the density on the basis of the increased interatomic separations is more than

compensated by the denser packing of the structure. The liquid structure is about six-

coordinated with some similarities with the simple cubic or the b-Sn structure. The

ratio q2/q1 is higher than 2. The entropy of melting is three to four times higher than for

metals. This seems contradictory at the first sight. Indeed, a decrease of the volume

would give a higher order and a decrease in entropy. The increase of the interatomic

distances and the loss of angular rigidity dramatically increases the entropy.

The III-V compounds are isoelectronic to Si and Ge. They have a four-coordinated

zincblende crystalline structure. These compounds behave like Si or Ge (see Table

9.10); their coordination number increases also by about 50%, their ratio q2/q1 is above 2,

and their density increases upon melting. They undergo a transition from an sp3-type

bonding to a p bonding mechanism in the liquid.

By contrast, the II-VI compounds (ZnTe, CdTe) behave differently because of their

higher ionicity. They melt by keeping their four-coordinated structure with a slight

dilation. However, HgTe, which is less ionic, behaves the same way as silicon or GaAs.

In summary, the great majority of elements and compounds melt normally: The

liquid keeps approximately the local order of the crystal with a decrease of both the

coordination number and the density. The exceptions are the sp3-bonded semi-

conductors, for which the open structure (diamond, zincblende, or wurtzite) shrinks

upon melting into a denser structure.

9.4 X-ray Absorption: EXAFS
The absorption spectroscopy of X-rays (XAS) is an interesting alternative technique to

analyze the local structure, particularly in noncrystalline materials [67,2,23,24]. It is a

combination of photoemission and scattering of the photoelectron by the surrounding

atoms. This X-ray technique has been developed almost exclusively on synchrotrons. A

beam of X-rays of energy E is shined on the sample; the absorption coefficient m(E) is

recorded as a function of the photon energy E. In condensed matter, above an ionization

edge, usually a K- (or L-)edge, oscillations of the absorption coefficient are observed (see

Figure 9.15). In the close vicinity of the absorption edge E0, the structure is due to

electronic transitions, it is called X-ray absorption near edge structure (XANES). About

100 eV above E0, the domain of EXAFS oscillations starts. The XANES spectrum is sen-

sitive to local site symmetry, charge state, and orbital occupancy. As the mean free path

of the photoelectron is very small in condensed matter, EXAFS is sensitive to the local
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environment (one or two shells of neighbors); consequently, the technique is well

adapted to the study of noncrystalline materials [24]. The EXAFS spectroscopy exploits

the interference of photoelectrons interacting with the potential of the surrounding

atoms. From the interference pattern, it is possible to determine the distance and

coordination number of the nearest neighbors of the photoabsorbing atomic species.

The EXAFS spectroscopy is therefore an ideal element-selective local structural probe for

investigating the average environment of specific elements in a liquid. However, the

analysis of the X-ray absorption signal remains a challenging theoretical and numerical

problem.

The EXAFS oscillations (Figure 9.15) originate from interferences of the photoelectron

wave function along its various paths in the material. The simplest path (back and forth)

is represented in Figure 9.16; its length is twice the interatomic separation 2R. A

photoelectron is emitted by an atom a, backscattered on a neighboring atom b with a

backscattering amplitude Aab(k), which is element and energy (or k) dependent, and

FIGURE 9.15 Left: Absorption spectrum of crystalline arsenic. Right, the EXAFS function x(k) versus the
photoelectron wave vector k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � E1sÞ
p

=Z and a fit to Eqn (9.40).

FIGURE 9.16 An EXAFS path (back and forth). An electron is photoemitted by the green atom a, backscattered
on a neighboring red atom b and reabsorbed by atom a. The total length of the path of the electron is 2Rab,
twice the interatomic separation Rab.
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comes back to the emitting atom a. k is the modulus of the wave vector of the photo-

electron, k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE � E1sÞ

p
=Z. Longer paths also occur with a smaller amplitude but they

will be neglected here for the sake of simplicity. The EXAFS equation is rather complex,

and we present a compact version at the level of pair path. The EXAFS function c(k) is the

normalized difference between the absorption coefficient m(E) in the condensed phase

and the gaseous (or atomic) phase m0(E), generally a calculated or interpolated value.

cðkÞ ¼ mðEÞ � m0ðEÞ
m0ðEÞ

jE ¼ EðkÞ (9.39)

For a photoemitting atom of a type and its neighbors b, c(k) writes, to a first

approximation:

caðkÞ ¼
X

neighbours b

AabðkÞsin½2kRab þ fabðkÞ
	

(9.40)

It looks like a Fourier sum (transform), with two differences: the wave number is

q ¼ 2k and a k-dependent phase shift fab(k) appears. In most cases, f(k) has roughly a

linear dependence in k:f(k)w�2ka, where a is a length of about 0.3–0.4 Å. Accurate

calculations of the backscattered amplitude and the phase sift can be obtained by using

various data reduction softwares [67]. From Eqn (9.40), the interatomic separations can

be obtained with a good accuracy; they are related to the frequency of c(k), but the

coordination numbers, related to the amplitude of the signal, have larger standard de-

viations (of the order of units). Fortunately, the evolution of the structural parameters

with external parameters (pressure, temperature) are safer as a cancellation of the errors

takes place. The configurational average of Eqn (9.40), gives [24]

caðkÞ ¼
X
b

4prb

ZN
0

r2gab
�
r
�
Aab

�
k; r
�
sin
�
2kr þ fab

�
k; r
�	
dr (9.41)

where rb is the atomic density of element b. By back Fourier transformation, the partial

pair correlation functions gab(r) are determined.

In summary, the EXAFS directly probes the interatomic distances; it is a local element

sensitive technique of structural and chemical analysis that is well adapted to the study

of noncrystalline materials. However, the analysis of the EXAFS spectra is difficult and

needs some experience.

Using hard X-rays of synchrotrons, the EXAFS technique has been widely developed

and applied to the investigations of liquid metals, semiconductors, molecular fluids, and

solutions, e.g., the nucleation and crystal growth of Ni particles on an SiO2 support has

been successfully investigated by EXAFS [80].

In addition, thanks to the high brilliance of the synchrotrons, it is possible to focus

the beam down to several tens of mm or less. This allows to perform EXAFS experi-

ments under extreme pressures with a diamond anvil cell and to heat with a laser.

Nearly six million times the atmospheric pressure (560 GPa) and 5000 K are now

reachable by dynamic compression. This is of considerable interest for earth science
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and for our understanding of the chemical bond under extreme conditions. We are

now on the way to reproducing the thermodynamic conditions of the center of the

earth [61]. In particular, the results provide first-hand information on the melting line

of iron.

9.5 Production of Beams
Table 9.11 shows the different wavelengths of the quanta used in structural analysis.

9.5.1 X-ray Sources

The X-rays used in structural analysis have a wavelength of the order of the interatomic

distances, more widely between 0.1 Å and 10 Å.

The relation between wavelength and energy of the photon is given by

l
�
�A
�
¼ 12:4

EðkeVÞ (9.42)

A photon energy of 12.4 keV gives a wavelength of 1 Å, which is a relevant value for

structural analysis.

X-rays are produced by accelerating electric charges (usually electrons) either in an

X-ray tube in a lab (since Röntgen in 1896) or by using third-generation synchrotrons

dedicated to structural analysis and spectroscopy [2].

In laboratory experiments, the CuKa or MoKa characteristic radiations are used with

photons energies of 8.04 and 17.44 keV, respectively.

The brilliance (number of photons/s/mm2/steradian2/0.1%bandwidth) of synchro-

trons is an ever-increasing function (Figure 9.17); roughly, it doubles every year. This

opens many new possibilities (coherent beams, fast measurements and kinetics, small

sample down to the nanometer range). A new field of research opens up every time

another order of magnitude is gained! Hard X-rays allow using complex environments

(high pressure cells, laser heating) that are interesting for studying liquids under extreme

conditions. This is of great importance, e.g., in earth sciences.

Most synchrotrons produced many documents, including videos, that explain their

operations (e.g., http://www.aps.anl.gov/video/APS_Producing_Xrays/).

Table 9.11 Energies and Wavelengths of X-ray and Neutron
Beams

Beam Energy Range E Wavelengths l (Å)

X-rays 1–100 keV 0.12–12
Hot neutrons 100–700meV 0.35–0.9
Thermal neutrons 10–100meV 0.9–3
Cold neutrons 0.2–10meV 3–20
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In the study of the structure of liquids, X-rays were the pioneers, then the neutrons

took the advantage in the 1970s. More recently, synchrotron X-rays allow new oppor-

tunities because of their huge brilliance.

9.5.2 Neutron Sources

Neutrons are the most abundant elementary particles on earth in mass, but the pro-

duction of free neutrons is not easy. Unlike X-rays, neutrons are produced almost only in

large-scale facilities, national or international. There are two main production tools:

fission reactors and spallation sources. Once produced, free neutrons have a lifetime of

about a quarter of an hour (886 s), enough to perform scattering experiments. There are

many neutron sources for research worldwide. A list is given in http://www.ncnr.nist.

gov/nsources.html. The sources of neutrons are fully incoherent and their brilliance is

orders of magnitude smaller than the synchrotron sources. At the Laue-Langevin

Institute (ILL), the brightest steady-state source in the world, the unperturbed flux is

1.5$1015 n s–1 cm–2.

The relation between energy E, wave vector k and wavelength l is

EðmeVÞ ¼ 2:073k2
�
�A

�2
�
¼ 81:82

l2
�
�A

2
� (9.43)

FIGURE 9.17 Left: Schematic view of a synchrotron (Soleil, Paris). Starting from the center: linear accelerator,
booster, storage ring, and experimental setups. Right: brilliance of X-ray sources in photons/s/mm2/steradian2/0.1%
bandwidth along the years.
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The neutrons are massive particles and their de Broglie associated wavelength

depends on their velocity, hence on their temperature. The average wavelength, in the

Maxwellian distribution, follows the relation

l
�
�A
�
¼ 0:28ffiffiffiffiffiffiffiffiffiffiffiffiffi

EðeVÞp ¼ 30:8ffiffiffiffiffiffiffiffiffiffiffi
T ðKÞp (9.44)

where l is the average wavelength of the Maxwellian spectrum. Usually, neutrons are

thermalized either in heavy water at room temperature (thermal neutrons) or in liquid

hydrogen or deuterium at 20 K (cold neutrons) or heated on a block of graphite at 2000 K

(hot neutrons). Table (9.11) shows the different wavelengths.

For the study of liquids and amorphous materials, the k-range should extend up to

about 10 Å-1, i.e., an energy of the order of 200meV. Because neutrons penetrate deeply

into matter, it is rather straightforward to use them even in complex and bulky sample

environments. This is the case of high-temperature liquids that require a sample holder,

a furnace, and possibly a vacuum vessel.

9.5.2.1 Fission Reactors
Neutrons are produced by fission of 235U. The excited nucleus decays in a cascade of

fission products, producing an average of 2.5 neutrons of about 2MeV per 235U nucleus.

Using a moderator (e.g., D2O), the fast neutrons are slowed down to meV energies in

order to sustain the nuclear chain reaction and to get neutrons with suitable wave-

lengths. The production of neutrons is at a constant rate. A schematic of neutron pro-

duction in a fission reactor, slowed by D2O, is shown in Figure 9.18.

9.5.2.2 Spallation Sources
For different reasons (brilliance, safety), the new trend is to produce neutrons by spall-

ation. High-energy protons generated in a linear accelerator hit a target of heavy metal:

mercury, lead, uranium, or tungsten. The excited nucleus emits a wealth of particles,

among others, 20 high-energy neutrons that are moderated. Unlike the reactors, the

spallation source produces pulsed neutrons, because the protons are generated in

FIGURE 9.18 Neutrons are produced in the core of a steady-state reactor by the fission of 235U. The fast neutrons
are slowed down by a moderator (here D2O).
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bunches. Thanks to their time structure, the neutron energies are simply measured by a

time of flight method. Spallation sources are operated in the United Kingdom (ISIS), the

United States (SNS), Japan (J-SNS), and Switzerland (SINQ). Currently, in Lund, Sweden, a

European spallation source (ESS) is being built, which will be around 30 times brighter

than today’s leading facilities. The ESS investment cost is estimated at approximately

V1900million (2013), with V140million annual operations cost.

All these facilities are well documented, and a virtual tour of their operations can be

found at http://www.ill.eu/about/movies/presentation-movie/.

9.6 Experimental Setups
9.6.1 Diffractometer

A liquid diffractometer is similar to a 2-axis powder diffractometer optimized to collect

the maximum intensity at the expense of the angular or q resolution. Typically, it spans

about 150� with an angular resolution of 0.1�–0.2�. In a steady-state reactor, wavelengths

of 0.7 Å and 0.5 Å (qmax ¼ 18 Å–1 and 25 Å–1) are available from a hot source (Table 9.11)

with a reasonable flux at the sample (5$107 n cm�2 s�1). For special purposes, a wave-

length of 0.35 Å (qmax ¼ 36 Å–1) can be obtained at the expense of the flux.

D4c at ILL [27] (Figure 9.19) is equipped with nine 3He-gas one-dimensional position-

sensitive detectors. Typical counting statistics of 0.1% per 0.125� cell can be obtained in

about three hours for a sample of average dimensions and scattering cross section.

9.6.2 Sample Environment

The sample environment is fairly complex for liquids, as one needs a sample holder, a

furnace, most of the time, and possibly a pressure cell. All these materials diffract and

absorb, and their contribution has to be subtracted.

FIGURE 9.19 The D4c diffractometer at the Laue-
Langevin Institute ILL, (Grenoble) devoted to
liquid and amorphous diffuse scattering. The 2q
range is [1.5�,140�] with a resolution of 0.125�.
The flux at the sample is 5$10 n cm�2 s�1.
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Still more complex sample environments are required if one needs high pressures. It

opens new fields of research. For example, the complexity of the phase behavior above

100 GPa suggests extraordinary liquid and solid states of sodium [36,65] and has im-

plications for other seemingly simple metals.

At the opposite, one may require the absence of container in order to avoid interfacial

interactions and to get undercoled liquids, this is achieved e. g. bylectromagnetic levi-

tation [40].

9.7 Computer Simulations of Liquids
The use of computers to explore the structure and thermodynamic properties of liquids

is almost as old as computers themselves [52,53]. First in two dimensions with hard

sphere interactions, then in three dimensions with soft potentials, and now using ab

initio quantum mechanical calculations, computer simulations contributed consider-

ably to our understanding of liquids. Indeed, a system of interacting particles has no

exact analytical solution: Many approximations (Percus-Yevick, hypernetted chain [38])

of such complicated systems needed to be tested by “computer experiments” to bridge

the gap between scattering experiments and approximate theories. The ever-increasing

computational power and memory of computers allowed considering more and more

realistic descriptions at the atomic level. In addition, because of their time evolution,

liquids demand huge computer resources. Some issues (large fluctuations, slow pro-

cesses) are even now beyond the capabilities of existing computers. Crystal nucleation

(and growth) remains still a difficult problem with current computers.

Many textbooks [1,30,46], review papers, and software packages have been published;

here, we just recall some elementary facts. In this handbook, the field is covered in the

chapters written by G. Gilmer, T. Ito, and W. Miller.

As we have seen, scattering experiments give access only to the pair correlation

function. It is difficult, if not impossible, to go beyond experimentally.

Here, computers come into play. The strategy is in principle obvious. One generates

atomic configurations at a given temperature, above the melting point for liquids or

below for amorphous structures. The pair correlation function and the structure factor

are computed and compared to the experimental results. If the agreement is fair, the

structure is analyzed in detail, and higher order correlations (above the pair) are

computed. If the agreement is unsatisfactory, other energetic models are tried up to

satisfaction. The generation of configurations can be made either by a direct approach

(Monte Carlo and molecular dynamics) or by the inverse approach (reverse Monte Carlo,

RMC) and (empirical potential Monte Carlo, EPMC).

9.7.1 Direct Techniques: Monte Carlo and Molecular Dynamics

The interaction potential can be either an empirical isotropic 2-body potential, or a

3-body potential including angular forces or even higher order potentials. The so-called ab
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initio methods involve interaction energies that are computed by solving the Schrödinger

equation, with some assumption and hypothesis. The atoms are moved either randomly

(Monte Carlo technique) or the equations of motion are solved (molecular dynamics).

As these methods are developed in detail in various chapters of this handbook, we

limit ourselves to a short list of references [1,12,30,46] and some comments.

9.7.2 Inverse Techniques: RMC and EPSR

9.7.2.1 Reverse Monte Carlo
The idea is to generate atomic configurations that agree with the diffraction data to finely

analyze the local orders. Earlier attempts were made in the study of substitutional

disordered alloys [70,35]. An initial structure is guessed, in general not in agreement with

experimental structure factor S(q). Atoms are moved and exchanged, and the result is

compared again with the experimental data. The move is accepted or rejected according

to the Metropolis recipe [53] based on c2 test. If c2 is improved, the move is accepted; if

not, it is accepted with some probability linked to the Boltzmann factor. For liquids, the

technique has been developed by McGreevy et al. [49–51] and is widely used in various

fields: atomic and molecular liquids, aqueous solutions, amorphous structures. X-ray,

neutrons, and/or EXAFS data can be simultaneously handled. The technique is relatively

simple, easy to use, and the software is freely available.4 It can be used to determine the

partial structure factors by combining neutron and an X-ray measurement without

recourse to the cost-effective isotopic substitution.

In addition, RMC can be used to Fourier transform S(q): by construction a clean g(r) is

obtained without spurious cutoff oscillations in the small r domain. Some discussion

arose concerning the uniqueness of the solution and the relevance of the solution in the

absence of interaction energy or static hindrance.

Indeed, the number of data points (hundredths) is far smaller than the number of

coordinates (thousands of atoms). More recent versions include constraints (distance of

closest approach, condition on the valence angles) and bonded and nonbonded

potentials.

9.7.2.2 Empirical Potential Monte Carlo
This technique, previously called empirical potential structure refinement (EPSR), has

been developed by Soper [71]. It has some similarities to RMC but it includes an extra

loop so as to allow a refinement of the interatomic potentials. One begins with a

structure obtained via Monte Carlo simulation at the experimental density and tem-

perature with realistic trial reference potential U
ref
ab ðrÞ that is generally a linear combi-

nation of a Lennard-Jones potential and an electrostatic term. The partial pair

correlation functions are computed and compared to the data and the starting potentials

refined. This procedure is continued until convergence of simulation with data occurs. It

is straightforward to use with molecular systems. This technique has been applied

4http://www.szfki.hu/nphys/rmcþþ/downloads.html
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successfully to water, whether liquid or amorphous [26], ionic liquids, or organic

molecules (e.g., butanol) in water [11–13].

9.8 Characterizations Beyond g(r)
The scattering experiments give information at the level of the pair with, in favorable

cases, a possible access to the partial pair correlation functions gab(r); with the help of

computer simulations, one can go far beyond that description as all the positions of the

atoms are known. As an example, we consider a system that requires an analysis above

the pair. Many covalent elements or alloys have a low coordination due to a quantum

mechanical symmetry breaking mechanism (Peierls distortion) that leads to the octet

rule [34]. For instance, As has a coordination 3 and Te has a coordination 2. The Peierls

distortion or spontaneous symmetry breaking mechanism is well known in crystals [60].

9.8.1 Distribution of first, second.neighbors

We show in Figure 9.20 the temperature evolution of liquid As2Te3. To analyze in great

detail the structural evolution of the liquid with temperature or pressure, it is interesting

to decompose the first peak of g(r) into its series of nearest neighbors (not in the

common sense). This is done as follows. An atom is chosen and its distance to its (single)

first neighbor is determined. The process is repeated for all the atoms at any time step in

the course of the simulation. One has, in such a way, the distribution of the (very) first

neighbors. The same can be done for the second, third.neighbors. The first peak of g(r)

FIGURE 9.20 Distribution of first, second...neighbors in liquid As2Te3 as a function of the temperature. The
evolution of the maxima of the different curves is shown in the right panel. We see the continuous evolution of
the Peierls distorted structure (3 short and 3 long neighbors for the As atoms, 2 and 4 neighbors for Te) to a
nondistorted structure (six neighbors continuously distributed).
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is decomposed into subpeaks (Figure 9.20). The position and width of the subpeaks are

determined.

We show that the Peierls distortion may survive in liquids. Indeed, in the right panel

of Figure 9.20, just above the melting point, the As atoms are 3 (þ3) coordinated and the

Te atoms are 2 (þ4) coordinated. For As, we observe one bundle of three short nearest

neighbors and a complementary bundle of three longer nearest neighbors. When the

temperature increases, the distribution of neighbor changes and the two bundles of

three atoms merge into a continuous distribution of the six distances. The same holds for

Te atoms. This occurs when kB T exceeds the Peierls distortion energy. In addition, a

negative thermal expansion of liquid As2Te3 is observed in this temperature range [57].

9.8.2 3-Body Correlations

In the crystal of As2Te3, one observes an alternation of short and long bonds nearly

aligned. Is this effect, attributed to the periodicity, still present in a liquid? To analyze

FIGURE 9.21 Probability density of the occurrence of a pair of distances (r1, r2) nearly aligned. At “low”

temperature, a clear symmetry breaking is observed (alternation of short and long bonds) while at higher
temperatures, the two-peak structure vanishes (As) or is strongly reduced (Te).
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this effect, the correlation of the distance of two successive bonds is analyzed. Based on a

density functional theory (DFT) calculation, Figure 9.21 shows the probability of having

a pair of distances (r1,r2) nearly aligned in As2Te3 alloys. We see that at low temperatures

the distortion exists, but at higher temperatures it disappears [57], in agreement with

Figure 9.20. In conclusion, if the thermal energy kBT is lower than the Peierls energy (the

energy gained in the symmetry breaking process), then the system is still distorted in the

liquid phase.

9.8.3 Angular Distributions

In computer simulations, from the atomic coordinates, it is possible to compute any

correlation function. The limitation comes from the number of parameters and the

possibility to represent a picture. The 3-body correlation function gð r!1; r
!

2; r
!

3Þ con-

tains, in principle, nine variables! The distribution of valence angles is easy to obtain in

simulated structures: one selects an atom and two of its neighbors. The distance cutoff is

a crucial parameter. Whether the central atom in an octahedral (qw 90�) or in a tetra-

hedral (qw 120�) environment is an interesting issue, in particular in covalent amor-

phous structures like liquid Sb2Te3. The broad peaks at 90 and around 170 indicate the

presence of an octahedral-like geometry similar to that of the crystalline phase, in

agreement wit the criterion S(q2)/S(q1) of Ref. [74] (Figure 9.22).

9.9 Supramolecular Liquid Structures
Up to now, we discussed the structure of liquids at the atomic level, with the Å as a unit.

During the last decades, soft condensed matter grew fantastically with particular

emphasis on complex systems such as polymers, colloids, and liquid crystals. In this

field, one finds similar issues and problematics to the atomic liquids but at different

(larger) length scales [8,39]. For instance, in the semidiluted solution of identical

spherical micelles schematized in Figure 9.23, the total coherent scattered intensity I(q)

FIGURE 9.22 Angle distribution functions of
l-Sb2Te3.
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is the product of the scattered intensity Imic(q) of a single micelle by the structure factor

S(q) of the center of the micelles (Eqn (9.45)). Two reference lengths are present: the

diameter D of the micelles and the intermicellar spacing R. Typical values are tens or

hundredths of Å, consequently the structures in the q domain are scaled to 2p/D and 2p/

R, respectively. We are in the so-called small angle scattering regime (SAXS), in fact it is a

small q regime [68].

IðqÞ ¼ SðqÞImicðqÞ (9.45)

We illustrate this in Figure 9.23 by a 10% solution in toluene of the diblock copolymer

polystyrene-b-polyacrylate of Cs. This gives rise to an inverted micelle. The core is made

of polyacrylate of Cs and the hair is polystyrene, which shows nearly no contrast with

toluene.

The structure factor S(q) of the supramolecular liquid is similar to the structure factor

of an atomic liquid, and the form factor of a single micelle Imic(q) is analogous to the

atomic form factor of an atom in X-ray scattering. Of course, the r and q scales differ by

orders of magnitude. The wavelength has to be adapted to this new length scale and, for

neutron scattering, one has to use long wavelength neutrons thermalized in a cold

source (Table 9.5 and Eqn (9.44)). The diameter D of the core of the micelle is deter-

mined by the first minimum occurring at qmin ¼ 9
D while the fast oscillations are related

to the intermicellar separations R. Here, Dy 110 Å and R ¼ 2p
q2�q1

y600�A.

In addition, SAS allows to determine the degree of crystallinity, e.g., in semicrystalline

polymers [68].

Furthermore, SAXS is an interesting tool for following the changes induced by the

crystallizing agents in different physicochemical conditions, mainly in protein

R

D

q

q

1

2

9

D

FIGURE 9.23 Diffraction pattern of a semidilute (10%) solution of inverted micelles of PS-PAACs.
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crystallization. Furthermore, the coupling of SAXS and numerical simulations charac-

terizes the interaction potential of biological molecules [25,77].

9.10 Quasielastic and Inelastic Scattering
The total scattering (static approximation) gives an average of snapshots of the structure.

In favorable cases, the partial pair correlation functions are determined and the study is

complemented by computer simulations. Inelastic scattering adds interesting informa-

tion on the dynamics of the liquid in two energy regimes:

• Quasielastic scattering

• Inelastic scattering

9.10.1 Quasielastic Scattering

Quasielastic scattering involves very small energy transfers (tens of meV) that are related to

the diffusion of atoms in the liquid state.With a time of flight spectrometer, it is possible to

measure energy changes even very close to the elastic peak. Diffusion is described by the

self incoherent structure factor Ss(q,u) [9,10]. At short length and time scales, a free ballistic

motion of the atom is observed; at intermediate length and time scales, the motion of the

atoms is governed by Fick’s law and a diffusion coefficient D can be measured from the

quasielastic signal. Finally, the long-time behavior is governed by the confinement effects.

9.10.2 Inelastic Scattering

The true inelastic scattering corresponds to vibrations (of the order of tens of meV). In a

liquid, an atom vibrates in the cage of its neighbors. By contrast to the crystal where

extended eigenmodes, the phonons, are described by dispersion relations u(q), the

liquid shows localized modes with a finite lifetime. However, a density of vibrational

modes g(u) can be defined and measured. It gives information on the strength of

the interaction potential as uw
ffiffiffiffiffiffiffiffiffiffi
k=m

p
where k is a force constant and m a mass. The

inelastic signal in liquids is mostly due to the self incoherent contribution SS(q, u).

The coherent inelastic scattering exists in principle in liquids but it is strongly damped

except in quantum liquids due to the superfluid LRO. The distribution of vibrational

modes can be measured by neutron or X-ray inelastic techniques.

9.11 Conclusions
The study of the structure of liquids at the atomic level is a difficult issue because of the

disorder inherent to liquids and because of the poverty of the information content of the

scattering signal. However, by a combination of different techniques, and the crucial

help of computer simulations, it is possible to gather important information on the local
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structure of liquids, its spatial extent, and its variations as a function of the external

parameters such as the temperature or the pressure.
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10.1 Introduction
In the last several decades, atomistic simulations have contributed enormously to our

understanding of crystal growth mechanisms. In most cases, elucidating these mecha-

nisms involves simulating the motion of a large number of atoms. Heavy computational
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power is required to bridge the gap between the atomistic length scale and mesoscopic

regions that are large enough to accommodate the basic crystal growth mechanisms. An

example is growth on a facet, requiring the nucleation of two-dimensional (2D) clusters.

The computational cell must contain the critical nucleus and a region surrounding it

sufficiently large so that boundary effects are negligible. On one hand, the size of the

critical nucleus depends on the driving force, and increases without limit as the driving

force approaches zero. But deposition rates close to equilibrium can often be obtained

by extrapolation from data obtained using higher driving forces. On the other hand,

extremely high driving forces are often employed in magnetron sputtering chambers

used in industrial manufacturing. In this case, the critical nuclei are small, but

morphological instabilities often produce mounding and columnar growth structures

that can reach sizes of several microns. A limiting factor with atomistic simulations is the

efficiency of computers. During the last three decades, the efficiency of computers

measured in computations per kilowatt hour has increased by a factor of 104 [1–3].

Simulations that were impossible several years ago are now common at many univer-

sities and laboratories.

In this chapter, we discuss physical vapor deposition (PVD) of crystals and films

under a variety of conditions, using Monte Carlo (MC) simulations. We treat a small

number of specific materials, but the mechanisms involved are often similar to crys-

tallization phenomena observed in a large number of materials. Atomistic models of

thin-film deposition and crystal growth have the advantage that the crystal lattice

structure and atomic interactions are implicit in the models. For this reason, important

phenomena such as faceting, grain-boundary grooves at growing surfaces, and poly-

crystalline microstructures are natural consequences of the simulations and do not

require artificial constraints. Results of these models have played a central role in the

understanding of the surface roughening transition and its effect on crystal growth

kinetics. In addition, the influence of dewetting of films deposited on a foreign substrate,

the formation of pinholes, have been successfully investigated using these simulations.

In this chapter, we review some of these applications and discuss MC modeling of

sputter deposition of thin films based on materials parameters derived from first prin-

ciples and molecular dynamics (MD) methods. Our models of deposition are large

enough to exhibit clustered, columnar, and polycrystalline film structures. Applications

to device fabrication are discussed based on simulations of film deposition onto sub-

strates with topologies that include vias and trenches and their extension to the length

scale of real devices.

The morphology of a thin film is influenced by the structure and properties of the

substrate, the conditions that prevail during deposition, and transport properties such

as diffusion rates on different crystallographic orientations. One of the most effective

models that can match these diverse properties is based on MC simulations of kinetic

lattice models. This approach has been used to study crystal growth and surface

roughening on close-packed surfaces [4–6], the formation of 2D and 3D islands during

the initial stages of film growth by PVD [7–14], the columnar microstructure formed at
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low-temperature PVD [15], and the trapping of defects, impurities, and of concen-

trations of the different species in a growing alloy [16,17]. Complex crystals, such as

urea growth from solution, have also been modeled using MD and MC simulations

[18,19]. This type of model has the advantage of fast computation because of the

simplicity of the MC events, but at the same time it can include accurate rates

for atomic diffusion and other mechanisms based on more detailed simulations by

MD or first principles methods (details of our implementation of the model are given

in the bibliography [20]). The MD simulations can be used to obtain rates for pro-

cesses that control and limit the growth process: diffusion rates, defect production,

sputtering yields, and other information needed to match real materials. The book

“Kinetic Processes” by K. A. Jackson has excellent discussions of MC modeling of the

kinetics of crystal growth, together with experiments [21], and “Physics of Crystal

Growth” by Pimpinelli and Villain treats theoretical aspects of crystal growth phe-

nomena [22].

Most of the models developed to simulate the evolution of surfaces in three di-

mensions are based on continuum equations. Level set continuum models are treated in

a book by J. A. Sethian [23]. Models have been developed specifically for the morphology

of step coverage for various amounts of surface diffusion and angular distributions

(EVOLVE [24,25]). The thickness of barrier layer films can be assessed by the use of these

models, and this can be crucial for applications involving features with high aspect

ratios; other continuum models are the level set method [26], SPEEDIE [27], and the

grain-growth model [28]. These models allow fast exploration of conditions and are able

to treat structure development on macroscopic length scales. Discrete atomistic and

cluster models have also been applied to study issues related to metallization [29,30].

Although the continuum models incorporate 3D features, complete simulations with

microstructure development during growth including micro-voids and grain boundaries

are dependent on data from atomistic modeling or detailed data from experiments. This

is a difficult task because of the large number of parameters controlling mass transport,

interface properties affecting wetting, and surface faceting. Atomistic models have the

advantage that most of these parameters are implicit in the interatomic potential, and

are not dependent on other simulations or experiments. An example of modifying a level

set model to treat bread loafing correctly is discussed below in the section on deposition

on substrates containing vias and trenches. Bread loafing is the formation of a bulge

overhanging the edges of trenches and vias; it is a universal result of low-pressure vapor

deposition of thin films since it is caused by the finite size of atoms. Bread loafing can

lead to void formation inside vias during the metallization step of silicon device fabri-

cation. Also, stochastic effects of deposition and random nucleation events have not

been included in most continuum models. For studies on this level of complexity, it

seems appropriate to also apply atomistic models. After obtaining a detailed under-

standing of the atomistic processes and some values for macroscopic parameters, the

most important atomistic effects can often be included in the continuum models. Some

processes are implicit in an atomistic model: for example, nucleation, statistical
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fluctuations in the deposition of atoms, and diffusion. The MC models require detailed

energies for a number of atomic configurations, but recent improvements in first prin-

ciples methods have enabled the development of good interatomic potentials for a large

number of materials.

We discuss the application of MC models to faceting during growth, nucleation, and

growth during deposition of metal layers, and molecular crystals. In particular, we

describe the general aspects of our Monte Carlo model in Section 10.2. Section 10.3

treats some of the consequences of faceting during deposition. Sections 10.4 and 10.5

show the effect of materials properties and processing conditions on the nucleation and

growth of films, respectively. Section 10.6 is concerned with the important issue of

texture and the influence of deposition conditions on grain orientation. Section 10.7 has

a brief discussion of step coverage results. Finally, Section 10.8 describes some results for

habit evolution of a molecular crystal.

This is a brief description of the method and a set of applications to crystal and film

growth. We suggest that the reader goes to the references for more detail of the examples

shown here.

10.2 Monte Carlo Model Description
MC models of film deposition and crystal growth are based on the repetition of several

basic events. In the general case, the simulation proceeds by selecting one of three

events: (1) insertion of a sputtered particle (atom or molecule), (2) selecting a surface

particle for a diffusion jump, or (3) evaporation. This type of model has the advantage of

fast computation because of the simplicity of the MC events, while including accurate

diffusion rates and other mechanisms based on more detailed data (i.e., MD or first

principles calculations). Here, we describe a basic form of the model; modifications of

more complex systems are described below.

Deposition of particles on a substrate is accomplished by randomly selecting

launching points in a plane above all occupied sites. Then, the particles are moved along

the chosen trajectories in small increments until they reach a lattice site that has at least

one occupied neighboring site. In cases where the site at the point of contact corre-

sponds to an unstable position, the particle is moved to a stable site. Equilibrium

deposition rate rþ per surface site corresponds to zero driving force and is given by

rþ ¼ v exp
���

Eg � Ek

��
kBT

�
; (10.1)

where Eg is the internal energy of a particle in the gas phase relative to that in the crystal,

Ek is the energy of a particle at a kink site, kB is the Boltzmann constant, T is the tem-

perature, and v is an effective vibrational frequency. Note that the difference in free

energy between a particle at a kink site and a particle in the gas phase, (Ek� Eg), is the

cohesive energy.

For the materials and temperatures we treat in this chapter, the deposition rate is

typically many orders of magnitude larger than that of Eqn (10.1), and evaporation
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events can be neglected. Starting from an initial configuration, all particles are assigned

to different lists based on their evaporation and surface diffusion rates. These lists are

used to calculate a set of probabilities for picking a particle to execute an evaporation or

diffusion event. The evaporation rate r�i and diffusion rate rdi depend on the number of

nearest neighbors and are given by

r�i ¼ v exp
���

Eg � Ei

��
kBT

�
(10.2)

and

rdi/j ¼ v exp
���

Ei � Ej

��
kBT

�
; (10.3)

where Ei and Ej are the energies of the particles with i and j nearest neighbors,

respectively. Now, the total event rate for the system is

R ¼
X
i

�
Nir

�
i þNir

d
i/j

�
; (10.4)

where Ni is the number of surface particles in each of the i energy lists. Normalizing the

weighted individual rates, r�i and rdi/j, by the total event rate, R, we obtain that an

evaporation event is chosen with probability

P�
i ¼ Nir

�
i

R
(10.5)

and a diffusion event (assuming a vacant neighboring site where the atom would have

equal or lower potential energy) with probability

Pd
i/j ¼

Nir
d
i/j

R
: (10.6)

The elapsed time Dt, for an event attempted in a system with this set of Ni particles, is

R�1, and the sum of these values for each event gives the elapsed time. The product of

the elapsed time and the deposition rate determines the insertion of new atoms in the

vapor.

A random number is used to select an event based on the above probabilities. After an

event is chosen, a particle in that energy category is chosen, with a second random

number, to perform the corresponding evaporation/diffusion event. When a diffusion

event is chosen, a third random number is used to select a vacant nearest neighbor site.

Finally, the corresponding energy categories are updated. Since surface diffusion events

are chosen in a way that satisfies the condition for microscopic reversibility [4], a system

evolving under surface diffusion alone will approach the equilibrium structure for the

simulated temperature. Kinetic effects resulting from the deposition process become less

pronounced for systems with a large surface diffusion mobility. The relative probabilities

for selecting these events depend on the conditions being simulated. In particular, they

depend on the ratio of the impingement frequency of sputtered particles to the hop

frequency at the surface. A full description and variations of the MC model can be found

elsewhere [20,31].

Chapter 10 • Monte Carlo Simulations of Crystal Growth 449



10.3 Deposition on a Spherical Crystal Seed
The early work using MC models has shown that close-packed surfaces in equilibrium

tend to be atomically flat at low temperatures [32], provided that there are bond chains

parallel to the surface orientation along two different directions [33]. This has conse-

quences for the kinetics of crystal growth on these faces at low temperatures, since the

generation of new layers on atomically flat surfaces requires the nucleation of stable 2D

clusters of atoms. As is typical of nucleation processes, the growth rate on the surface

drops exponentially as the driving force is reduced to small values. These results were

observed in the MC simulations of the (001) face of a simple cubic Ising model [32,34].

Because of the very low growth rate on the facet of a perfect crystal, deposition on

different crystallographic orientations can be highly anisotropic. At higher temperatures,

in equilibrium, the free energies of steps in the surface may drop to zero and the surfaces

roughen. If this is the case for all close-packed orientations, the growth rate becomes

nearly isotropic. This surface roughening transition has large consequences for crystal

morphology, and for the morphological stability of surfaces during growth. As the

temperature is increased the equilibrium density of steps increases until, at the transi-

tion temperature, the 2D islands percolate and form a connected structure across the

entire surface. In this situation, the growth rate is linear in the chemical potential driving

force, since nucleation is not required.

10.3.1 Faceting during Deposition of Metals

The influence of crystallographic anisotropies on the growth of crystals is most clearly

observed in the case of full three-dimensional (3D) systems in which all crystallographic

orientations are accessible for deposition. For example, the fcc (111) and (001) orien-

tations of Al crystals are atomically flat right up to the melting point, and only the (110)

face exhibits a roughening transition [35]. Therefore, we can expect some degree of

faceting during growth on both the (111) and (001) faces at all temperatures.

The growth of an Al crystal with the initial shape of a sphere is shown in Figure 10.1.

Starting from a spherical crystal seed that is 4 nm, as shown in Figure 10.1(A), we inject

atoms onto the crystal seed along the radial direction. The temperature was maintained

at 200 K throughout the simulation. The initial sphere grows out to form an octahedron

bounded by (111) faces. After the crystal reaches a critical size, the (001) faces appear, as

shown in Figure 10.1(B). The surface is covered with 111 and 100 facets, with 111 being

dominant. Near equilibrium, the 100 and 111 facets are comparable in size. However, the

high adatom potential energy on the 111 surface causes it to become the dominant facet

during growth. For the small initial sphere, the diffusion rate is sufficient for adatoms to

diffuse to neighboring faces and to congregate on the faces with the lower adatom po-

tential energies. As a result, these faces can nucleate new layers and grow rapidly until

they disappear from the growth form, as shown in Figure 10.1(C). Because of the small

size of the initial sphere (4 nm initial diameter), there is little kinetic roughening induced
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by the deposition at the start. We found that 111 facets smaller than about 12 nm in

diameter are not able to nucleate new layers because the adatoms diffuse too quickly to

the edges where they attach in sites of low potential energy, such as step edges. As the

crystal grows larger, the 111 facets reach the critical size, and multiple clusters can form.

The steps from these clusters act as sinks for the adatoms impinging on the 111 face, so

that fewer adatoms from these facets can reach neighboring 100 orientations. This effect

slows the growth of 100 relative to 111 to the point that 100 facets remain on the growth

form. This can be seen in Figure 10.1(D).

10.3.2 Effect of Deposition Rate

The effect of high deposition rates on the morphology of the crystal formed by depo-

sition on a small spherical seed is shown in Figure 10.2. With increasing deposition rate,

the facets shrink and eventually disappear. At the higher rates, there are not enough

diffusion hops to move more than a few angstroms from the impinging point. Atoms that

stick where they land tend to maintain the spherical shape. However, because of the

small numbers involved, the fluctuations produce a rough surface, and as time goes on, a

shadowing instability. A higher region on the surface intercepts more of the subsequent

FIGURE 10.2 Comparison of deposited films on a spherical crystal seed as in Figure 10.1. (A) with deposition rates
of 10 mm/min; (B) 100 mm/min, and (C) at 1000 mm/min.

FIGURE 10.1 Simulation of deposition on a spherical seed of 4 nm diameter at 200 K with a deposition rate of
1 mm/min. All particles are injected from a shell surrounding the crystal with velocities toward the crystal along
the radial direction. Snapshots are taken at the start, (A); after deposition of 2� 103, (B); after 5� 104, (C); and
after 5� 105 atoms (D).
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flux of atoms and grows faster than its surroundings, which are being shadowed. This

instability is an undesirable surface roughening mechanism.

Clearly, the (111) facet will have a relatively small growth rate if most atoms arriving

on it have time to escape to sites with lower energies. If the facet is sufficiently large,

however, then there is time for other atoms to arrive and interact with others to form

clusters. In this case, each atom is more likely to stick on the same facet close to the

point where it arrived, and the growth would be less sensitive to crystallographic

orientation. The transition from highly anisotropic growth (Figure 10.1) to growth rates

that are more nearly independent of orientation (Figure 10.2) occurs at a critical facet

radius Rc. A similar situation arises in the theory of kinetic roughening on “infinite”

surfaces [22]. Rapid deposition onto close-packed orientations that are atomically flat in

equilibrium will lead to some degree of kinetic roughening. This is a result of the

nucleation and growth of the 2D islands. The average radius of atomically flat regions

will have a magnitude approximately equal to Rc, since the flat regions larger than this

value are likely to nucleate new 2D clusters and, thus, have their size reduced. This

radius also gives a measure of the step spacing on a kinetically roughened surface. More

information on how to calculate Rc can be found in Ref. [36].

10.4 Nucleation of Films on Foreign Substrates
The early stages of thin film growth usually involve the nucleation of islands on a foreign

substrate. Our purpose is to explore the influence of materials properties and processing

conditions on cluster morphology. The initial islands have an important role in deter-

mining the initial orientations and density of the grains in the polycrystalline film [37].

For this purpose, we model the substrate as a single crystal, but with reduced interaction

energies with the deposited material (the reduction being 0.15 eV per bond). In addition

to having a reduced film/substrate bond energy, there is, in most cases, strain due to

lattice mismatch that weakens the bonding compared to simple film/substrate bond

energies. Furthermore, we explore the effect of temperature and inhibited diffusion at

steps on cluster morphology. The latter was achieved by including different values of the

Ehrlich-Schwoebel barrier (fES), which assigns an extra activation energy for diffusion

hops over a step edge for an adatom on the upper terrace [38,39]. A large fES inhibits

adatoms from hopping into surface vacancy clusters and grooves, thereby slowing sur-

face smoothening processes.

10.4.1 Effect of Wetting

As a result of the difference in the interfacial energy between the film and the substrate,

there is a tendency for the deposited material to cluster and form islands on top of the

substrate. This effect is called dewetting and is present in most film/substrate systems

[40]. We will treat a system with weaker film/substrate interactions and define the

wetting parameter, w, as the ratio of the film/substrate interfacial energy to the film/film
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bonding energy (w¼ [0,1]; 0 for homoepitaxy). Perfect wetting would require matching

of both the substrate surface lattice spacing and interatomic forces to the film.

A comparison of clusters for different values of the wetting parameter is shown in

Figure 10.3. All three cases were produced by deposition of two monolayers of Be atoms

with fES¼ 0 at a temperature of 20 �C. For the case of w¼ 0 (Figure 10.3(A)) (perfect

wetting), the clusters are thin and flat; as w increases (Figure 10.3(B) and (C)), they tend

to be taller and, for the same amount of deposited atoms, cover less area. The voids

between the 3D clusters resulting from strong dewetting may initiate pinholes in the film

that traverse the entire thickness. This is most likely to happen when the growth con-

ditions are favorable for morphological instabilities. For example, a flux of atoms at

grazing incidence, together with low mobility of atoms on the surface, will deposit

preferentially on the tallest clusters. This is an unstable process since the taller clusters

will intercept the most material and will grow faster shadowing more of the surrounding

surface. A similar situation occurs if there is a significant barrier to cross over the steps,

fES; the lower surface regions are surrounded by steps going down, and the barrier

impedes the filling in of this region by surface diffusion. This is called Schwoebel

instability and is shown below. Figure 10.3(A) shows a simulation of deposition with

perfect wetting. A large region of the deposited crystal is fully dense, whereas in

Figure 10.3(B) and (C), the deposited material has void regions starting at the interface

with the substrate and extending a few layers, clearly a consequence of dewetting. The

effect of dewetting can be quantified by plotting the number of grains per layer vs. layer

height. This is shown in Figure 10.4 for the films shown in Figure 10.3. Height¼ 1

correspond to the first layer above the substrate. Here we can see that the number of 3D

clusters that nucleate and expand into grains during the early stages of deposition have a

strong dependency on the wetting parameter w.

10.4.2 Effect of Temperature

At higher deposition temperatures, the increased atom mobility reduces the number of

grains, as shown in Figure 10.5. This is a result of increased ripening during deposition.

The area of the substrate left bare increases with temperature because of the diffusion of

atoms from the substrate to the clusters, where a stronger bonding is favored. As can be

seen from Figure 10.6, the number of grains in all layers decreased a large amount in

changing temperature from 61 �C to 145 �C.

FIGURE 10.3 Comparison of cluster morphology during deposition of two monolayers (ML) of Be atoms at
different values of the wetting parameter. (A) w¼ 0, (B) w¼ 0.2, and (C) w¼ 0.4. Other values are T¼ 20 �C and
fES¼ 0.
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10.4.3 Effect of Inhibited Diffusion over Steps

Figure 10.7 shows the resulting morphologies after deposition of two monolayers (ML) of

Be atoms at a temperature of 60 �C and the same wetting parameter w¼ 0.8 but with

different values of fES. The effect of fES on the surface morphology is evident. Most of the

islands that have coalesced in the fES¼ 0 case have formed a flat surface, without steps

or grooves at the grain boundaries (Figure 10.7(A)). As the magnitude of fES increases,

more grain boundaries have developed grooves, resulting in a more disordered config-

uration (Figure 10.7(C)). The increase in the number of grains (see Figure 10.8) and

surface roughness with increasing fES occurs because of a reduction in the flux of

FIGURE 10.4 Plot of the number of grains per layer vs. layer height for the films shown in Figure 10.3.

FIGURE 10.5 Comparison of cluster morphology during deposition of two monolayers (ML) of Be atoms at
different temperatures. (A) T¼ 61 �C, (B) T¼ 102 �C, and (C) T¼ 145 �C. Other values are w¼ 0.1 and fES¼ 0.1.

FIGURE 10.6 Plot of the number of grains per layer vs. layer height for the films shown in Figure 10.5.
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adatoms from the upper terraces. This produces a greater probability to nucleate new

layers on top of an island, and bias it to grow vertically instead of in the lateral directions.

10.5 Film Growth
The growth of uniform thin films on foreign substrates is impeded by several morpho-

logical instabilities. Hill-and-valley structures are formed and enhanced during sputter

deposition where surface height perturbations have an opportunity to grow to large

amplitudes [41]. While surface roughness can be partially controlled by changing growth

conditions (such as deposition rate, substrate temperature, and angular distribution of

impinging particles), the diffusion of particles over step edges plays a very important role

in determining both surface roughness and the density of the films. During the initial

stages of growth, each nucleation event creates an island with a random crystalline

orientation. When two islands coalesce, grain boundaries are formed with reduced

bonding between two atoms belonging to different grains.

10.5.1 Effect of Wetting

As more atoms are deposited, and the clusters continue to grow vertically, some will

attach to the lateral walls of the clusters and will be stabilized by the strong film/film

bonds. Eventually, the clusters may coalesce completely with their neighbors, resulting

FIGURE 10.8 Plot of the number of grains per layer versus layer height for the films shown in Figure 10.2.

FIGURE 10.7 Comparison of cluster morphology during deposition of two monolayers (ML) of Be atoms at
different values of the Ehrlich-Schwoebel barrier. (A) fES¼ 0, (B) fES¼ 0.05 eV, and (C) fES¼ 0.20 eV. Other values
are w¼ 0.2 and T¼ 61 �C.
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in full density above this point. This depends on the degree of wetting, the Ehrlich-

Schwoebel barrier (fES), and the presence of grain boundaries. In Figure 10.9(A) the

film had a weak fES barrier, but perfect wetting (w¼ 0). In this case, the region of the film

close to the substrate has full density, without pinholes. The combination of fES and

grain boundaries has caused grooves to form after the deposition of several nanometers

of material. The presence of a finite fES inhibits atoms diffusing on the surface from

filling the grooves. The formation of grooves is delayed until, (1) the deposited film is

thick enough to have formed steps, and (2) sufficient flux has crossed the steps to affect

the growth on the downward sides of the steps. The grooves are located preferentially

along grain boundaries since the bonds crossing the boundaries are weaker as a result of

the grain boundary energy.

The effect of dewetting, Figure 10.9(B) and (C), is to reduce the thickness of the region

without pinholes and grooves, but the diameter of the columns is not sensitive to the

degree of wetting. The magnitude of fES is the primary factor controlling the column

diameters in this case. The grooves form closer together as fES increases, since the

downward flux across the step is reduced (Figure 10.10).

FIGURE 10.9 Simulated surfaces after deposition of 50 monolayers (ML) of Be atoms at different values of the
wetting parameter. (A) w¼ 0, (B) w¼ 0.2, and (C) w¼ 0.4. Other values are T¼ 60 �C and fES¼ 0.05 eV.

FIGURE 10.10 (A) Number of grains versus height and (B) Porosity for each crystalline layer after deposition of 50
monolayers (ML) of Be atoms for different values of the Ehrlich-Schwoebel barrier. In all three cases the substrate
temperature is 200 �C and the wetting parameter is w¼ 0.9.
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10.5.2 Effect of Temperature

The effect of temperature in the film growth is illustrated in Figure 10.11. The growth

conditions, including the temperatures, are the same as in Figure 10.5 (showing the

nucleation of the first two layers) except that the dewetting parameter has been

increased from w¼ 0.1 in Figure 10.5 to w¼ 0.3. The stronger dewetting is sufficient to

produce pinholes extending through the entire film at all three temperatures. The effects

of the higher temperatures are similar to those in Figure 10.5, in that it increases the

diameters of the columnar-shaped grains. However, higher temperatures increase the

densities of the films, whereas the densities in Figure 10.5 are reduced. This seems to be

a transient effect during the initial growth, where high mobility causes atoms to diffuse

to the higher levels and thereby to increase the height of the clusters at the expense of

their girth.

The tops of the columnar grains become flat, with only a few steps at the higher

temperatures. Again, this is very similar to the clusters in Figure 10.5. At the lowest

temperature, the nucleation of a 2D island on top of the surface requires only a few

atoms, and the density of the 2D islands is high, producing a rough top to the columnar

grains. The larger diffusion coefficient of adatoms and the large critical nucleus greatly

decreases the density of stable 2D islands.

The number of grains in 2D horizontal layers is given in Figure 10.12, as a function of

the height of the layer. The values for the lowest temperature (61 �C) deposition are

much higher than those for the two higher temperatures.

10.5.3 Effect of Inhibited Diffusion over Steps

Further growth of a film beyond the first few monolayers shows that fES also has a strong

effect on the morphology in this regime. Figure 10.13 shows three different films ob-

tained after deposition of 50 ML of Be atoms at a temperature of 200 �C, a wetting

parameter w¼ 0.9, and fES¼ 0, 0.05, and 0.15 eV in (A), (B), and (C), respectively. In the

case where fES¼ 0, a smooth surface forms, with only a few steps surrounding two-

dimensional islands (Figure 10.13(A)), as expected for layer-by-layer growth. On the

FIGURE 10.11 Simulated surfaces after deposition of 50 monolayers (ML) of Be atoms at different temperatures.
(A) T¼ 61 �C, (B) T¼ 102 �C, and (C) T¼ 145 �C. Other values are w¼ 0.3 and fES¼ 0.10 eV.
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other hand, the fES¼ 0.05 eV case shows deep grooves, even with a relatively small

barrier (Figure 10.13(B)). Note that the grooves developed during deposition may not

extend all the way down to the substrate. This can be seen in the plot of porosity vs.

height of Figure 10.13(C). We defined porosity as the number of vacancies at each layer

of the film normalized to full coverage. In the simulations shown in Figure 10.13(A) and

(B), we use an almost perfect wetting between the film and the substrate (w¼ 0.1). This

results in a fully dense film (0 porosity) close to the substrate since the Ehrlich-

Schwoebel instability requires some time to develop and to produce the grooves that

cause the reduction in film density. Approximately a 25% reduction in density is pro-

duced with fES¼ 0.15 eV, after the initial transient. Even the film with fES¼ 0.05 eV

shows some signs of reaching a steady-state reduction of several percent in density.

Further growth would be required to confirm this. Increasing of Figure 10.13(B) from

0.05 to 0.10 eV, and strengthening dewetting, from w¼ 0.1 to 0.3, as in Figure 10.11(C),

results in pinholes that penetrate through the film to the substrate, as shown in

Figure 10.14. Methods to control these pinholes are important for controlling the

magnitude of stress in the film [42].

FIGURE 10.12 (A) Number of grains vs. height and (B) porosity for each crystalline layer after deposition of 50
monolayers (ML) of Be atoms for different temperatures, from configurations in Figure 10.11. In all three cases,
the Ehrlich-Schwoebel barrier is fES¼ 0.10 eV and the wetting parameter is w¼ 0.9.

FIGURE 10.13 Resulting surfaces after deposition of 50 monolayers (ML) of Be atoms at different values of the
Ehrlich-Schwoebel barrier. (A) fES¼ 0 and (B) fES¼ 0.05 eV, (C) fES¼ 0.15 (top view). Other values are T¼ 145 �C
and w¼ 0.1.
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10.5.4 Strategy to Grow a Smooth Film

Temperature has a well-known effect on thin film morphologies, i.e., a low-density

irregular columnar microstructure is formed at low temperature where the impinging

atoms do not have sufficient mobility to diffuse more than a few Ångstroms from the

point where they contact the surface. This effect is crucial for the processing of metallic

interconnects in the silicon device manufacturing industry. Pore formation will create

nonuniform film thickness and regions likely to fail during device operation.

Our MC simulations show that the uniformity of a nonwetting film may be improved

by depositing the film at two temperatures. When a few monolayers are deposited with a

low substrate temperature, as shown in Figure 10.15(A), surface diffusion rates are small,

and atoms stick close to the point where they impinge. A dense array of small 3D islands

are formed and coalesce. Once percolation occurs, the 3D islands form single, connected

layers, with low density and containing Ångstrom-sized pores, extending through the

film. As shown in Figure 10.15(B), increasing the temperature does not improve things,

since the extra mobility causes dewetting of the film from the substrate. As the initial

atoms are deposited on the substrate, they diffuse and cluster together to form small

islands that grow vertically because of the stronger bonding of the Al atoms with other Al

atoms than those between the Al atoms and the substrate. This causes them to grow into

large 3D islands, with bare substrate between them.

Our method will take advantage of the low temperature deposition to prevent the

deposited atoms fromforming 3D islands and yet providemobility tofill the small pores that

format the low temperature;we can deposit a few layers at 175 K, and thenoncepercolation

occurs, increase the substrate temperature to 250 K so that the atoms in the film aremobile.

Then the deposition is continued until the desired thickness is obtained. The initial uniform

film is metastable against dewetting, since the small holes in the percolated film will fill

in because of the negative curvature of the holes, and it provides a perfect wetting surface

for the high-temperature deposition. The simulation can provide information on the

optimum values of the parameters (e.g., the temperatures) for formation of a smooth film.

FIGURE 10.14 (A) Number of grains versus height and (B) porosity for each crystalline layer after deposition of 50
monolayers (ML) of Be atoms for different values of the Ehrlich-Schwoebel barrier from configurations in
Figure 10.13. In all three cases, the substrate temperature is 200 �C and the wetting parameter is w¼ 0.9.
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10.6 Texture Development
One of the most important aspects of the growth of polycrystalline films is the tendency

for the grains to develop a preferred orientation. This occurs even in the case of amor-

phous substrates and is, therefore, not likely to result from atomic alignment or “tem-

plate” effects at the substrate–film interface. In most cases, a particular crystal axis of the

grains is aligned within a few degrees of the normal to the plane of the substrate. In-

plane crystal axes are generally rotated in random directions; although in some cases,

there are more low-angle grain boundaries than would be present for random in-plane

orientations.

A number of mechanisms have been proposed to explain the appearance of texture,

but most apply to growth at relatively high temperatures. In that case, high atomic

mobility is thought to permit the expansion of grains oriented in such a way as to

minimize either strain energy or surface energy [43,44]. Texture in refractory materials is

thought to be a result of competitive growth; crystallites oriented with a fast-growing

surface parallel to the substrate will incorporate a disproportionately large fraction of

(A)

(B)

(C)

FIGURE 10.15 Control of substrate temperature during deposition is used to obtain uniform Al film on a plastic
substrate. (A) Deposition on substrate at 175 K, (B) deposition on substrate at 250 K, and (C) initial deposition
with substrate at 175 K, and continued deposition at substrate temperature of 250 K.
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the deposited atoms and eventually encompass the grains with slower growing surface

orientations. Some materials such as TiN can exhibit different textures if the conditions

are changed. At room temperature, TiN grows with the fast-growing (111) face parallel to

the substrate, but at 800 V, the texture is that of the slow-growing (001). This change also

occurs at room temperature if a beam of low-energy ions is directed toward the surface,

thus increasing the mobility of the surface atoms [45]. This change is thought to be a

result of the high mobility since the surface energy is reduced.

We first consider the deposition of Al at 100 K. At this temperature, only adatoms on

(111) faces have high mobility because of their small activation energy (0.08 eV) for

diffusion. Some configurations generated by themodel during the initial growth of the film

are shown in Figure 10.16. Crystallites with (001) faces parallel to the substrate normal

have much higher 2D nucleation rates than those with (111) parallel. This is result of a

higher adatom potential energy on the (111) faces, resulting in lower adatom concentra-

tions. Rapid 2D nucleation causes faster vertical growth rates on the (001) surfaces. These

crystals grow higher, and because of their height, they intercept more flux than do the

(111) oriented crystals, resulting in even faster growth. As the film grows thicker, the (001)

crystals dominate, although the region near the substrate has both orientations present.

Figure 10.17 shows the film during growth at a temperature of 300 K, where the

mobility is much higher. In this case, the crystallites with the larger lateral growth rate

dominate. The density of clusters is lower because of Ostwald ripening; at the higher

mobility, small clusters will dissolve and supply larger, more stable clusters. Adatoms on

the (111) face can diffuse even farther and stick preferentially at the edges of the cluster.

As a result, the (111) grains spread laterally over larger distances. The (001) grains are

FIGURE 10.16 Simulated growth of Al deposited at 1 mm/min at a temperature of 100 K onto a flat substrate and
with a cosine angular distribution for the impinging Al atoms. Clusters with (001) and (111) are permitted to
nucleate and grow simultaneously using the multilattice model. The substrate is dark grey, the (111) clusters an
intermediate shade, and the (001) clusters are light grey. Configurations (A), (B), and (C) correspond to the film at
different times during the deposition.

FIGURE 10.17 Simulated growth of Al deposited at 1 mm/min at a temperature of 300 K onto a flat substrate. The
angular distribution is cosine, and the cluster orientations are indicated as in Figure 10.16.
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again higher and intercept more flux, but in this case, the higher mobility allows sig-

nificant atomic exchange between (001) and (111) grains. Because of the higher radius of

curvature of the (001) crystals (smaller cross-sections), they have a higher chemical

potential and lose material in the exchange. This loss of material is greater than the gain

resulting from the height advantage of the (001) crystals, and as a result, the (111)

crystals eventually cover the entire surface of the film.

The flux to the (001)-oriented crystals, relative to those at other orientations, can be

altered by changing the angular distributions of the impinging atoms. Atoms arriving at

oblique angles to the substrate are most likely to strike one of the higher crystals;

whereas, atoms arriving at normal incidence should impinge on (001) and (111) crystals

with equal probability. Thus, the use of a collimator would be expected to reduce the

growth rates of (001) crystals more than the (111). To test this conjecture, we examine

the result of collimated growth under low mobility conditions. This is shown in

Figure 10.18. Only the angular distribution is changed from the simulation shown in

Figure 10.16. It is apparent that the amount of material with (111) texture is considerably

thicker than in the uncollimated case. The angular distribution of the impinging atoms

clearly has a large effect on the film structure, and at a somewhat higher temperature, it

can make the difference between depositing films of (111) and (001) texture. Film texture

has a strong effect on the density of thin films of refractory materials, and methods to

control texture have important technological applications.

10.7 Physical Vapor Deposition and Step Coverage
Thin films of metal are a crucial part of current on-chip interconnection technology. The

films serve as diffusion barrier layers—e.g., Ta and Ti and seed layers of Cu, among

others. These layers are typically deposited over substrate topography for integrated

circuit fabrication using low-pressure magnetron sputtering. The step coverage on

trenches and vias is usually the region of minimum film thickness inside a feature, and

this thickness is a key quantity that indicates the future integrity of the layer. Both

surface tracking and atomistic models have been applied to treating this important step

in the fabrication of devices [9,46–48].

Although continuum models are used extensively in the software employed in the

fabrication of electronic devices, these models have serious shortcomings. The surface

FIGURE 10.18 Simulated growth of Al deposited at 1 mm/min at a temperature of 100 K onto a flat substrate. The
angular distribution is cosine as modified by a 1:1 collimator. Cluster orientations are indicated as in Figure 10.16.
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evolution resulting from the deposition of discrete particles is intrinsically different from

that produced by continuum processes. The atomistic effects have major consequences,

even when observed at macroscopic length scales. The MC model represents the physics

of the deposition process a great deal more faithfully than the continuum model. Monte

Carlo codes can fairly easily be used to simulate the kinetics of surface impingement and

are, by their nature, stochastic.

An interplay between continuum and atomistic simulation approaches led to the

development of a continuum model that mimics a key mechanism that is represented in

the atomistic model, but absent in the usual continuum model. It turns out that the

effect is quite pronounced in certain cases, namely collimated and low-energy ionized

PVD. In these regimes of deposition, the film can exhibit a “catastrophic” shadowing

instability at the upper corners of the feature profiles, leading to exceedingly low film

coverage at these locations. The usual continuum model almost completely fails to

capture this phenomenon, thereby undermining confidence in its predictions of mini-

mum step coverage under these deposition conditions. The MC model, on the other

hand, does reproduce the behavior observed in experiments.

Films simulated by the MC model of deposition onto a via and a trench are shown in

Figure 10.19. The thickness of the deposit in the bottom of the via is greater than that of

the trench. This results from the fact that the via walls shadow the center more effec-

tively. Trajectories of atoms arriving at large angles of incidence are all blocked and

cannot reach the bottom of the via, whereas some large angle trajectories arriving at the

trench can reach the bottom. The high temperature of 390 �C redistributes the sputtered

material by surface diffusion, and for this reason, the overhang produced by the bread

loafing effect is not as large as that typically observed during manufacturing. Note that

the thinnest film on the sidewalls is at the bottom, a characteristic of high surface

diffusion. (The name “bread loafing” is derived from the shape of baked bread rising out

of the pan and bulging out over the edges.)

An experiment showing more pronounced bread loafing was performed, with

deposition at room temperature of a Ta layer on a substrate containing vias, and is

shown in Figure 10.20. The mobility of Ta at room temperature is extremely low, and as a

result, the thickness increases with depth, just the opposite of Figure 10.19. The over-

hang expands with the amount of material deposited, blocking a region on the sidewalls

that increases with further deposition. This gives rise to the taper of the sidewall film,

which decreases in thickness with height. At the corner, the sidewall thickness is

FIGURE 10.19 Configurations generated
by the MC model with a substrate
containing a 0.025 mm (A) via and a (B)
trench. Here the temperature during
deposition was held at 390 �C, and the
deposition rate was scaled to correspond
to 0.25 mm/min for a 1 mm trench
(the actual deposition rate was
1.6� 104 mm/min).
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essentially zero, since that region is blocked with the initial film deposition. The sputter

gas was Ar at a pressure 1 mTorr, and no electrical bias was applied to the substrate. A

scanning electron micrograph of one deposition is shown in Figure 10.20(B). A corre-

sponding simulation is shown in Figure 10.20(C). The throw distance is 10 cm while the

target diameter is 6.35 cm. Hence, at low pressure where there is negligible scattering,

the flux at the substrate is confined to a cone of angles less than 18�—a moderately

collimated beam. The agreement of the standard level set model with the experiment is

poor, with only a slight bulge where the experiment shows a large overhang. The side-

walls have uniform thickness in the level set model; whereas, the experiment shows a

taper with the thick region at the bottom of the via.

In Figure 10.20(B), we see three important features of the film morphology. First, the

sidewalls exhibit a highly columnar microstructure. This is a consequence of the high

angles of incidence of the largely collimated flux of Ta, together with the extremely low

surface mobility of Ta. Second, the film appears to be fully dense on those parts of the via

that are approximately normal to the incident flux, namely on the bottom of the via and

on the field. The film in these places is very smooth, which is a consequence of the

almost-normal incidence, but also perhaps because of the energy of the impinging atoms.

The energy of the sputtered Ta is 25 eV on average. Third, the minimum step coverage

occurs at the upper end of the sidewall rather than the more usual location at the bottom

of the sidewall in less collimated deposition. Immediately above this “pinched” region,

the film bulges sideways, forming an almost semicircular overhang. The overhang

shadows the wall from the collimated beam and causes the pinch at the upper sidewall.

The drastic difference between the experiment and continuum model can be un-

derstood by the crucial difference between the behavior of particles of an atomic flux and

FIGURE 10.20 (A) Sketch of Ta deposition experiment. (B) Cross-sectional scanning electron micrograph of an axis
symmetry contact via with Ta barrier layer. Dark areas indicate SiO2 substrate and light areas indicate Ta. Via
depth 460 nm, width at top 430 nm, width at bottom of via is 415 nm, scale bar is 500 nm wide. (C) Numerical
simulations using continuum model. Solid line: ballistic deposition with cosine angular distribution from target.
Dashed line: simulation utilizing angular distribution obtained from gas scattering code, mean free path is 5 cm.

464 HANDBOOK OF CRYSTAL GROWTH



that assumed in the continuummodel. This difference affects the shape of thin films in a

number of different applications. Figure 10.21 shows a schematic comparison of

atomistic with continuum models.

Each segment of the film surface is assumed to receive a flux from the source(s) that

are visible from the source, corrected for the orientation of the segment relative to the

direction of the source. The collimated flux, therefore, has no interaction with the

vertical walls, in the schematic Figure 10.21(A). (Numerical errors cause a small amount

of material to attach to the walls in Figure 10.20(C).) But the particles in Figure 10.21(B)

will not simply slide down the vertical walls if they come within an atomic interaction

range of the walls. Some of the particles will stick on the wall just because they are

within several Ångstroms of the wall. Also, particles that impinge near the edge of the

trench will diffuse over the corner and find stable sites on the vertical walls, as illus-

trated in Figure 10.21(C). Although the deposition of a single layer of particles will not

cause significant overhanging material, the second layer will, on the average, extend

farther out over the via by a distance proportional to the atomic diameter. A film will

extend out in Angstrom-sized increments as each layer is deposited and will extend out

a distance proportional to the film thickness. This overhang is essentially zero for the

continuum model, no matter what film thickness is deposited, but it may be significant

for particles.

Although the discussion has assumed that the film thickness is only a fraction of the

diameter of the via or the trench width, there are applications where the deposited

material is expected to fill the via, and therefore, a layer is deposited that is at least as

thick as the via diameter or trench width. In this case, the overhangs of the bread loafing

effect can coalesce from both sides of the trench (or via) and seal off a void. Again, the

continuum models are unable to predict the occurrence of void creation, although they

may have a deleterious effect on the long-term performance of the device.

Other applications where continuummodeling yields erroneous results are illustrated

in Figure 10.22. A shadowing instability can produce low-density porous material; one

example where low diffusion coefficients and the flux of atoms impinge at a glancing

angle is the deposition on the sidewalls of the via of collimated Ta, mentioned above,

Figure 10.22(B). Again, there is a large difference between the morphology predicted by a

FIGURE 10.21 Schematics showing: (A) a film deposited on a trench simulated by a continuum model, compared
to (B) a typical MC simulation of a film resulting from a collimated beam of atoms, and (C) a diagram from MD
simulations indicating how atoms extend over the edge. As the film grows thicker, it extends farther at the
overhang. This angle is independent of the atomic size.
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continuum model and an atomistic model. In most cases, the continuum models pre-

dictions are more favorable to the application than the real atomic flux. Finally, depo-

sition of piezoelectric films onto a substrate containing an electrode leaves a gap

between the electrode with a film on top and the film on the substrate, as shown in

Figure 10.22(C).

We have developed a continuum model that incorporates finite atomic length scales.

The model incorporates effects of atomic interactions, which lead to the capture of

impinging atoms that pass near a point on the film. The effect of this capture process

results in bread loafing at corners and convex regions of a surface with large curvature.

The model employs the same calculation for the flux and its interaction with the surface

of the substrate or film, but includes a calculation of the distance between the atoms flux

from all sources. But, instead of requiring that the flux impinge on a surface, it can also

contribute to surface regions in close proximity to the path of the flux. The results for

deposition onto a via are shown in Figure 10.23. This model does not take into account

the details of the atomic displacements on collision with a surface, but it does detect

situations where impinging particles would come within the capture radius of the film,

causing them to stick.

10.8 Size and Habit Evolution of Molecular Crystals
The size and shape distribution of crystallites controls important materials properties,

such as chemical, mechanical, thermal, and optical properties that can be quite different

from the bulk. It is, therefore, not surprising that many studies exist in the literature,

both experimental and theoretical, of how crystallites grow and change shape and how

such evolution is affected by external factors like stress, temperature, solvent, additives,

and so on [49,50]. General theories for predicting crystal morphology based on consid-

erations of geometry [51,52], surface free energy [53], and attachment energy [54–56]

have been around for several decades. Using empirical interatomic potentials, such

theories have been used to predict the “average” morphology of crystallites belonging to

FIGURE 10.22 Atomic size affects the morphology of the deposited film on a macroscopic length scale; each layer
of atoms deposited extends in the same direction, so the displacement accumulates. Here a is the incident angle
of the atoms in the beam, and b is the average angle of the columns. (A) A schematic of columns formed by
atomic beams (experiment or MC atomistic simulation) and (B) schematic of columns simulated using level set
continuum model. (C) Typical piezoelectric film deposited onto an electrode in a filter arrangement in a cell
phone. The material deposited on top of the electrode is not connected to the film on the substrate.
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a wide variety of materials types: metallic, semiconductors, ionic, organic, etc. However,

such approaches yield morphologies where kinetics are included only in a very

approximate way. Real systems typically consist of a distribution of crystallite shapes and

sizes. For an understanding of how such a distribution depends on various external

factors, it is desirable to create a simulation method that takes important kinetic pro-

cesses into account, such as the ratio between diffusion and incorporation of molecules.

A typical PETN (Pentaerythritol Tetranitrate) crystal is shown in Figure 10.24(A).

Although this crystal was grown from solution, it exhibits the primary facets that are

observed during growth from the vapor. This crystal was grown by slow recrystallization

from acetone, yielding colorless crystals at 4 �C, and had an average aspect ratio of 5:2 for

the length:width. Figure 10.24(B) shows the predicted growth morphology or crystal

“habit” of a PETN crystal obtained by a standard Wulff construction, but using the so-

called attachment energies instead of surface free energies [54]. A Wulff construction

based on the surface free energies yields the equilibrium morphology, which for the

PETN crystal looks very similar to the growth morphology of Figure 10.24(B) and,

therefore, is not shown. In the computed morphology, the crystal habit matches the

experimentally grown crystal of Figure 10.24(A), where four {110} facets are shown along

the length (long axis), while the end caps are facetted by eight planes belonging to the

{101} family. However, most of the experimental particles deviate from the nice sym-

metry of Figure 10.24(B).

These solution-grown crystals are compressed to 50% of their theoretical maximum

density, and the resulting powder is stored for several years. At room temperature, the

powder is stable, showing no rearrangement over a period of several days. The rate of

recrystallization and the aspect ratio of the crystallites are strongly dependent on the

temperature at which the PETN is kept. The change in aspect ratio may result by

changing the supersaturation of the environment where the PETN powder is maintained.

Although the particle size distribution can be measured experimentally, there is little

FIGURE 10.23 Cross-sectional views of sputter deposition into axisymmetric contact vias corresponding to the
modified level set model. Capture distances are 5, 20, and 120 Å.

Chapter 10 • Monte Carlo Simulations of Crystal Growth 467



information on the mechanism associated with the change in surface area. The resulting

morphology during aging also appears to be dominated by the two families of facets

shown in Figure 10.24(B). Figure 10.24(C) is a SEM micrograph of PETN crystallites

resulting from subliming PETN powder followed by aging at 80 �C for 90 days at ambient

pressure. These crystallites in Figure 10.24(C) show a clear propensity for elongation

along the (001) axis, with aspect ratio in excess of 100:3 for some of the crystallites.

Although crystallites are elongated along the crystal (001) axis, the ratios of surface area

of the {110} to the {101} facets vary significantly from crystallite to crystallite, and the

areas of the end {101} faces are typically unequal within the same crystallite.

For this study, we substitute the entire PETNmolecule, C(CH2ONO2)4, by a single unit

whose interaction depends on its local environment, i.e., number and type of neighbors.

This allows us to substitute the complexity of the 29 atoms that form a PETNmolecule by

an equivalent unit that is packed on a body center tetragonal lattice [31], and to study the

unit–unit interaction on a lattice in a manner similar to the crystal graph theory of

Hartman-Perdok [54]. Starting from a given initial configuration, each MC step consists

of choosing a particle at random and moving it to a randomly chosen unoccupied site

FIGURE 10.24 (A) Microscope image of a typical PETN crystal grown from solution. (B) Hartman-Perdok (HP)
growth morphology of PETN as computed by the COMPASS force field via the attachment energy method. Two
types of facets are prominent, four elongated faces of the {110} family and eight end faces of the {101} family.
(C) Microscope image of typical PETN crystallites illustrating a variety of aspect ratios after aging.
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within a given cutoff radius. Next, we calculate the change of energy, DE, due to this

move. The new configuration is accepted with probability 1 if the resulting energy

change DE is less than zero, and accepted with a probability exp(–DE/kBT) otherwise.

This local random walk can be interpreted as the result of a few successive neighboring

hops. Such a procedure ensures that all possible configurations can be sampled. Also,

since all attempted atomic displacement steps obey detail balance, it implies that the

system approaches an equilibrium configuration as the simulation time approaches

infinity. A more accurate simulation of the kinetics of the morphology evolution would

involve neighboring diffusional steps weighted by factors determined by the activation

barriers and changes in energy. This would require the calculation of a large number of

possible diffusion pathways, the corresponding transition states, and hopping rates.

The influence of crystallographic anisotropy on the growth and evolution of PETN

crystals is most clearly observed in the case of a full three-dimensional system in which

all crystallographic orientations are accessible for diffusive transport. As a first step in

our analysis of size and habit evolution, we decided to study the evolution of the shape of

a PETN crystal starting from an arbitrary initial shape. Figure 10.25(A) displays the

specific example of a spherical crystallite of diameter 16 nm, which was equilibrated for

2 � 106 MC steps. The reason for choosing a sphere was to eliminate any directional bias

or artificial anisotropy that might influence the resulting crystallite shape. The resulting

configuration, Figure 10.25(B) shows the presence of 101 and 110 facets, also present in

the Hartman-Perdok–predicted morphology. In addition, four small 100 faces are also

present. Note the comparable surface energies (obtained by COMPASS calculations)

between these three faces: 0.21, 0.27, and 0.27 kcal/(molÅ2) for the 101, 110, and 100

surface, respectively. Thus, the appearance of these facets in the equilibrated structure

gave us confidence not only in the accuracy of the intermolecular lattice potential, but

also its ability to mimic realistic crystallite shapes when used with the MC procedure

described above.

The morphology in Figure 10.25(B) results from the “local rearrangement” of a fixed

number of particles (the ones that formed the initial spherical crystallite) driven by the

tendency of the system energy to reach a local minimum. However, the experimentally

observed morphologies are a result of growth through particle addition and diffusion,

FIGURE 10.25 Resulting equilibrium
configuration obtained from a spherical
PETN crystal of 16 nm in diameter that
was annealed for 2� 106 MC steps.
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whose rates strongly depend on experimental conditions. To this end, we have studied

the change in morphology during growth in a similar way as described in Ref. [20]. Thus,

we start from an initial spherical seed and add particles to the surface of the growing

crystallite along a randomly selected radial direction. Following each particle addition,

we perform a predefined number of MC steps, aimed at representing surface diffusion.

Thus, the above number of MC steps between two successive particle addition events

represents, on average, the ratio of the diffusion hop rate to the crystallite growth rate.

Figure 10.26 shows the evolution of an initial spherical seed of 5 nm in diameter at

300 K. We performed 17 MC steps per insertion and particles were allowed to move

within a cutoff radius of 5 nm. After insertion of only 200 particles, as shown in

Figure 10.26(A), the surface of the crystal is bounded by 101 and 110 facets of approx-

imately the same size. As more material is added to the crystal, 110 facets become

dominant as shown in Figure 10.26(B). This is a result of the difference in adatom po-

tential energy between these two faces. The 101 faces have a lower adatom potential

energy (�28.7 kcal/mol) than the 110 faces (�18.7 kcal/mol), thus making the nucleation

of a new layer easier and leading to a faster growth, as shown in Figure 10.26(C). As the

crystal grows larger, the 110 facets can nucleate stable, two-dimensional islands that

allow these faces to grow through the motion of monatomic steps, as shown in

Figure 10.26(D).

Controlling the ratio between the sizes of the 101 and 110 facets can be achieved by

varying experimental conditions such as deposition rate and growth temperature.

Experimental data suggest that at lower temperatures crystallites tend to be more round

with a 110/101 aspect ratio being close to unity, while elevated temperatures tend to

yield needle-like crystals [31]. Temperature clearly affects all the important kinetic

processes, i.e., adsorption, desorption, and diffusion rates on each surface. Although we

FIGURE 10.26 Snapshots of the simulation of deposition on a spherical PETN seed of 5 nm in diameter at 300 K.
(A) after deposition of 2� 102 molecules, (B) 2� 103 molecules, (C) 1.5� 104 molecules, and (D) 3� 104 molecules.
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eventually plan on computing and implementing the important rates into our MC, as a

first approximation, we decided to incorporate the temperature effects simply by varying

the number of MC steps between insertions of new particles. Figure 10.27(A)–(D) show

the resulting configurations following 3.5� 104 particle insertions, respectively, at the

rates of 10, 25, 50, and 100 MC diffusion steps between insertions. This variation can be

interpreted either as an increase in surface diffusivity (e.g., by increasing the growth

temperature) or as a decrease in growth rate. Therefore, the progressively needle-like

evolution in going from Figure 10.27(A)–(D) is a clear manifestation of what is seen

experimentally [31]. It is apparent that the results shown in Figure 10.27 have little

relationship to the equilibrium shape of the crystal shown in Figure 10.25(B). To explain

the long needle-like shapes based on equilibrium morphologies would require large

ratios between the surface free energies—ratios corresponding to the aspect ratios of the

crystal shapes. The wide variation in morphologies observed in real crystals of PETN is

direct evidence of the predominance of kinetics in this system, even though these

crystals are not formed under highly nonequilibrium conditions.

The change in the morphology from the rounded shapes at low temperatures (few

diffusion hops) to the anisotropic shapes at high temperatures can also be understood in

terms of the surface diffusion occurring between molecule additions. If a molecule

makes only a few diffusion hops before another molecule arrives in its vicinity, then

FIGURE 10.27 Comparison of the final configurations obtained after deposition of 3.5� 104 particles on a
spherical seed with (A) 10 MC steps, (B) 25 MC steps, (C) 50 MC steps, and (D) 100 MC steps between particle
insertion.
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nucleation is favored by the high probability of the association of the two molecules into

a small cluster. The high nucleation probability means that molecules are likely to stick

close to the point where they originate, and the various crystal faces will advance at

approximately the same rate. At high temperatures, where the molecules execute a large

number of diffusion hops between molecule additions, they diffuse over larger distances

as a mobile unit before joining a surface cluster or encountering another molecule to

form a new cluster. Some of the molecules will be able to diffuse across the surface of the

crystallite to another facet. The exchange of molecules between facets will result in

higher concentrations of mobile species on the facets where the potential energy is

lower, and this will in turn result in a disparity in growth rates on the facets. Thus, the

higher diffusion rates at high temperature result in large variations in the growth rates as

a consequence of different rates of the nucleation of clusters on the faces. Equilibrium

forms based on Wulf plots, where the anisotropies in surface free energies cause only a

relatively small variation in the facet sizes, cannot explain this kinetic effect.
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11.1 Introduction
The development of advanced techniques for crystal growth has played an important

role in the progress of modern technology. During the last several decades, improve-

ments in bulk- and thin film-growth techniques have provided scientists and engineers
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with opportunities to fabricate substantially improved devices and to prepare novel

device structures, particularly in the field of semiconductor technology. In particular,

crystal growth processes during molecular beam epitaxy (MBE) and metal-organic

vapor-phase epitaxy (MOVPE) have been paid much attention for semiconductor crys-

tal growth; these thin film-growth techniques realize highly nonequilibrium conditions

where the growth is governed by the diffusive kinetics of the source atoms within the

crystalline surfaces, in contrast with bulk-growth processes that proceed near thermo-

dynamic equilibrium conditions. Furthermore, these growth techniques have made it

possible to create artificial materials with physical properties on the atomic scale, such

as various nanostructures including quantum dots and nanowires. Thus, a fundamental

understanding of the growth processes in these techniques not only leads to better

growth techniques, but it also gives guiding principles for the fabrication of the novel

materials that are not found in nature.

As a physical process, the growth of thin films is controlled by various growth

processes that involve adsorption of atoms or molecules onto a surface, their subse-

quent diffusion across the surface, dissociation of molecules, and desorption at the

gas–solid interface in the growth front. It is well known that reconstructed structures

appear on the growth front (surfaces) of semiconductor materials [1]. Therefore, we

have to understand the atomic structures on the surfaces to control the interface mass

transfer. To this end, so far a lot of theoretical work has been carried out to investigate

the surface structures of semiconductors using ab initio calculation, which is a

promising tool for clarifying the complicated growth processes because of its ability to

calculate electronic structures and total energy [2–4]. Kaxiras et al. [2] studied the

lowest-energy geometry for GaAs(111) with different stoichiometries. Qian et al. [3]

discussed the relationship between the stoichiometry and the surface reconstruction

on GaAs(001) by means of chemical potentials. Northrup [4] classified the stable

structures on Si(001)H using H chemical potential. All of these approaches discussed

the static structural stability on the surfaces at 0 K, although the methodologies are

different.

Generally, vapor-phase epitaxy, such as MBE and MOVPE, is performed under finite

temperatures and gas pressures. This implies that it is indispensable to consider the

ambient conditions to predict the reconstructed structures on the growth surfaces. We

[5,6] proposed an ab initio-based chemical potential approach that incorporates the free

energy of gas phase. Therefore, the theoretical approach is useful to analyze the influ-

ence of temperatures and gas pressure on the stability of reconstructed surfaces. By the

application of this method, growth kinetics and processes can be investigated. In this

article, we discuss the feasibility of the chemical potential approach to the actual growth

system, such as MBE growth and MOVPE growth for GaAs, GaN, lattice-mismatched

InAs, and InGaN. Surface-phase diagram calculations as functions of temperature and

gas pressure are performed for GaAs(001), GaAs(111), InAs(001), InAs(111), GaN(0001),

GaN(000-1), GaN(1-100), GaN(11-20), GaN(1-101), GaN(11-22), In0.25Ga0.75N(0001),

In0.25Ga0.75N(1-100), and In0.25Ga0.75N(2-201). Furthermore, kinetic growth processes on
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these surfaces are also investigated using kinetic Monte Carlo (kMC) simulations on the

basis of the results of adsorption, desorption, and migration energies obtained by the ab

inito calculations. Comparative studies between GaAs and lattice-mismatched InAs on

GaAs and among polar, nonpolar, and semipolar surfaces of GaN and In0.25Ga0.75N are

shown to check the versatility of the chemical potential approach to adatom behavior on

various semiconductor surfaces.

11.2 Computational Methods
11.2.1 Chemical Potential

To investigate the reconstructed structures on semiconductor surfaces under a certain

growth condition, we carried out a step-by-step theoretical approach. First, the relative

stability among various surface reconstructions was discussed to select the candidate

surfaces. Then, the p–T surface phase diagram was calculated, in which p is the partial

pressure of source gas and T is the growth temperature. The relative stability among

various surfaces was studied using the surface formation energy according to the con-

ventional thermodynamic formalism [7]. The surface formation energy, Ef, is estimated

by the following equation:

Ef ¼ Etot � Eref �
X
i

Nimi; (11.1)

where Etot and Eref are the total energy of the surface under consideration and of the

reference surface, respectively; mi is the chemical potential of the ith species; and Ni is

the number of excess or deficit ith atoms with respect to the reference. In the present

article, we considered the surface stability of prototypical semiconductors, such as GaAs,

InAs, GaN, and InGaN. In these cases, the surface is assumed to be in equilibrium with

bulk semiconductor expressed as

mIII þ mV ¼ mbulk
III-V ; (11.2)

where mIII, mV and mbulk
III-V are the chemical potential of a group-III element, group-V

element, and bulk semiconductor, respectively. The allowable range for mIII is

mbulk
III � DHf < mIII < mbulk

III ; (11.3)

where mbulk
III is the chemical potential of a group-III element in the condensed phase and

DHf

� ¼ mbulk
III þ mbulk

V � mbulk
III-V

�
is the heat of formation. The allowable range for mV is given

in the same manner. Moreover, Eqn (11.1) is applicable to the discussion of hydrogen

coverage. In the case of MOVPE growth, there are hydrogen atoms around the growth

surface. This implies that a number of dangling bonds on the growth surface would be

terminated by hydrogen. To examine the hydrogen coverage on the surface, Eqn (11.1) is

modified as

Ef ¼ Etot � Eref �
X
i

Nimi �NHmH; (11.4)
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where NH and mH are the number and the chemical potential of hydrogen, respectively.

Using these equations, we can discuss the relative stability of surface reconstructions as

functions of mi and/or mH.

By the theoretical analyses described above, we can select the candidate structures

appearing on the growth surface. Next, we investigate the stability of these surface

structures under certain growth conditions, such as gas pressure and growth temper-

ature. To study the issues, we proposed an ab initio-based chemical potential approach

that incorporates free energy of gas phase [5]. The concept of this theoretical approach

is shown in Figure 11.1. An impinging atom (molecule) can adsorb on the surface if

the free energy of an atom (molecule) in the gas phase is larger than the adsorption

energy of it. On the other hand, the desorption of an impinging atom (molecule) occurs

if the free energy of it in the gas phase is smaller than the adsorption energy. Here, the

free energy of an atom (molecule), which called a chemical potential, mgas, can be

computed by using quantum statistical mechanics [8]. The adsorption energy, Ead, can

be obtained by ab initio calculations. By comparing mgas with Ead, we can discuss the

adsorption–desorption behavior, as shown in Figure 11.1.

The chemical potential mgas for the ideal gas is given by

mgas ¼ �kBT lnðgkBT=p� ztranszrotzvibrÞ; (11.5)

ztrans ¼
�
2pmkBT

�
h2

�3=2
; (11.6)

zrot ¼ ð1=psÞ
n
8p3ðIAIB/Þ1=nkBT

�
h2

on=2

; (11.7)

zvibr ¼
Y3N�3�n

i
f1� expð � hni=kBT Þg�1

; (11.8)

Adsorption

μgas

μgas

Ead

E

μgas E ad< 

μgas E ad> 

Desorption

FIGURE 11.1 Concept of the theoretical approach for discussing the adsorption–desorption behavior of adatoms
impinging on the surface. If the chemical potential, mgas is larger than adsorption energy, Ead, net adsorption
would occur. If mgas< Ead, net desorption would occur.
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where ztrans, zrot, and zvibr are the partition functions for the translational motion, the

rotational motion, and the vibrational motion, respectively. Here, kB is Boltzmann’s

constant, T is the temperature, g is the degree of degeneracy of the electron energy level

(see Table 11.1), p is the partial pressure of the particle,m is the mass of one particle, h is

Planck’s constant, s is the symmetric factor, II is the moment of inertia, n is the degree of

freedom of the rotation, N is the number of atoms in the particle, i is the degree of

freedom for the vibration, and n is the frequency. II is written as

II ¼ mIr
2; (11.9)

where mI is the reduced mass and r is the radius of gyration.

The adsorption energies of adatoms (molecules) were obtained by ab initio calcu-

lations. In the total energy calculations for the compound semiconductor surfaces with

various atomic arrangements, we used the ab initio pseudopotential method based on

the local-density functional formalism [9] within the generalized gradient approxi-

mation [10]. The detailed procedure in the total energy calculations has been reported

elsewhere [11–30]. Using these chemical potentials m and adsorption energies Ead, the

adsorption–desorption behavior or the relative stability of reconstructions on the

compound semiconductor surfaces is clarified as functions of p and T.

Equations (11.5)–(11.9) are applicable for an ideal gas. Here, we discuss the pressure

range in the application of this approach. Under the low-pressure conditions seen in

MBE, atoms (or molecules) in the gas phase have almost no interaction with each

other. In such cases, we can consider an ideal gas approximation. On the other hand,

atoms (or molecules) in a real gas would interact with each other. For instance, the

pressure dependence of the chemical potential for the real gas might resemble that

shown in Figure 11.2. To adapt Eqns (11.5)–(11.9) to this case, the true pressure, p,

should be replaced by an effective pressure, f, called the fugacity [31]. The fugacity is

represented as.

f ¼ gp; (11.10)

Table 11.1 Degeneracy of the Electron Energy
Levels of the Various Elements

Element g

I H, Li, Na, K, Rb, Cs, Cu, Ag, Au 2
II Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg 1
III B, Al, Ga, In, Tl 2
IV C, Si, Ge, Sn, Pb 3
V N, P, As, Sb, Bi 4
VI O, S, Se, Te, Po 3
VII F, Cl, Br, I 2
0 He, Ne, Ar, Kr, Xe, Rn 1
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where g is the dimensionless fugacity coefficient. Figure 11.3 shows the fugacity coef-

ficient of H2, N2, and NH3 at 800 K (527 �C) as a function of pressure [31]. These mole-

cules are typically used in the III-nitride MOVPE. In Figure 11.3, the fugacity coefficient

of these gases are within 1.00� 0.01 at p< 25 atm. That is, the deviations from the ideal

systems are within 1% at p< 25 atm in case of T¼ 800 K, which is a conventional MOVPE

growth temperature of In-related semiconductors. This implies that the theoretical

approach is applicable to investigate the surface structures in the conventional MOVPE

performed at p¼ 1 atm. When we discuss the stability of surface structures in a

Pressure

C
he

m
ic

al
 p

ot
en

tia
l

Real gas

Ideal gas

f < p:

Attraction
dominant

f  > p:
Repulsion
dominant

FIGURE 11.2 The chemical potential of a real gas. As p/0, the chemical potential coincides with the value for an
ideal gas. If attractive forces are dominant, the chemical potential is less than that of the ideal gas. At high
pressures, when repulsive forces are dominant, the chemical potential is greater than that of an ideal gas.
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FIGURE 11.3 Fugacity coefficient of N2, H2, and NH3 at 800 K (523 �C) as a function of pressure, p. The fugacity
coefficient is almost unity at p¼ 1 atm, which is a typical total pressure of MOVPE.
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high-pressure growth performed at p> 25 atm, the fugacity coefficients should be

incorporated in the approach. In this article, we studied the stability of the various

surfaces in the MBE or conventional MOVPE. Therefore, we considered the ideal gas

approximation in the following analyses.

11.2.2 Monte Carlo Simulations

We employ two Monte Carlo simulation methods in the present study. One of those is an

electron-counting Monte Carlo (ECMC) simulation based on the Metropolis Monte Carlo

(MMC) simulation [5,32,33]. The ECMC simulations were carried out to investigate the

transition process among the surface reconstructions. For example, we found that Ga

atoms can replace the topmost As atoms on the c(4� 4) surface to form Ga–As dimers. We

performed ECMC simulations to study the stability of disordered dimer arrangements for

the c(4� 4) surface with Ga–As dimers, which would appear in the transition process.

In the ECMC simulation, we employ the energy of various disordered dimer arrangements

in the c(4� 4) surface unit cell obtained by the ab initio calculations to equilibrate the

surface. The dimer arrangements are recorded for a lattice size of 100� 100 surface unit

cell of c(4� 4). Periodic boundary conditions are imposed on the x–y plane.

Another simulation method used in this study is kMC simulation. The kMC simula-

tion is used for investigating the surface lifetime s and diffusion length L of one adatom

while staying on the surface [32]. In the simulation procedure, specific lattice sites for an

adatom on the surface are assumed—that is, a discrete lattice-gas model is employed.

The site-correlated adsorption probability Pad(x) is written, assuming the local–thermal

equilibrium approximation, by

Pad

�
x
� ¼ expð � DmðxÞ=kBT Þ

f1þ expð � DmðxÞ=kBT Þg ; (11.11)

where Dm(x) is the difference of chemical potentials between the cases of an atom on the

site x, mad(x), and in the gas phase, mgas. That is, DmðxÞ ¼ madðxÞ � mgas. Here, the chemical

potential of an atom on the surface mad(x) corresponds to minus desorption energy

Ede(x). The chemical potential of the atom in the gas phase mgas is given by Eqn (11.5).

The diffusion probability Pdiffðx/x0Þ is assumed to be in the Arrhenius form of

Pdiff

�
x/x0� ¼ nlattice exp

�
� DEðx/x0Þ

kBT

�
; (11.12)

where the diffusion prefactor nlattice is 2kBT/h [34] and DEðx/x0Þ is the local activation

energy involving the adatom hopping from site x to x0. The desorption probability Pde(x)

is written by

Pde

�
x
� ¼ nlattice exp

	
�
�
EdeðxÞ � DmðxÞ

kBT

�

; (11.13)

This equation implies that the difference Dm(x) [¼ mad(x)� mgas] of chemical potentials

between the cases of an atom on the surface and in the gas phase influences the acti-

vation energy for desorption of the atom. That is, the adatom easily desorbs if mgas is
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lower than mad(x), while the atom prefers to stay on the surface if mgas is higher than

mad(x). More precisely, the probability exp{�Ede(x)/kBT)} for surmounting the activation

energy of Ede(x) is reduced (or enhanced) by a weighting function of exp{Dm(x)/kBT},

which corresponds to the local–thermal equilibrium desorption probability. On the basis

of the above-mentioned stochastic differential equation, we carried out the kMC

random-walk simulations and estimated the s and L of one adatom on the surface. The

diffusion coefficient D is also computed by D¼ L2/(2s).

11.3 GaAs
Atomic structure of the reconstructions during and after MBE growth on the compound

semiconductor surfaces has been the subject of a number of experimental investigations.

GaAs(001) surfaces have attracted much attention in general technological fields as well

as in the field of surface science; these surfaces are the most popular for epitaxial growth

and reveal a large variety of surface superstructures depending on the substrate tem-

perature and As pressure, as shown in Figure 11.4 [1]. In particular, GaAs(001)-c(4� 4)

and -(2� 4) surfaces have been intensively studied because of their technological

importance for thin film fabrications and scientific interest in surface phase transition

between c(4� 4) and (2� 4) when the substrate temperature and As pressure are

changed [35–40]. GaAs(111)B surfaces have also received considerable attention due to

their advantages in fabricating nanostructures such as nanodots and nanowires [41–44].

As for the structural and physical properties of the GaAs(111)B surface, experimental and

theoretical studies [45–55] have found that GaAs(111)B surfaces take various surface

reconstructions, such as (2� 2) and (O19� O19)R 23.4�, depending on temperature and

As pressure. The scanning tunneling microscopy (STM) observations have shown that

the change from the (O19� O19)R 23.4� to the (2� 2) reconstruction occurs below 560 �C
in MBE [54]. From theoretical viewpoints, surface energy calculations for various surface
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FIGURE 11.4 Surface-phase diagram of GaAs(001).
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structures have revealed that the stable surface reconstruction depends on the chemical

potential of As. The (2� 2) surface with As trimer is stable over a wide range of As

chemical potential [47,50]. Therefore, these results indicate that the GaAs(111)B-(2� 2)

surface with As trimer appears in the growth condition of the MBE (w500 �C) [51,54].
In this section, the adsorption–desorption behavior of Ga and As atoms on these GaAs

surfaces such as (001)-c(4� 4), (001)-(2� 4), and (111)B-(2� 2) are investigated as

functions of growth conditions, such as temperature and pressure, of Ga, As2, and As4
using chemical potential approach. On the basis of the calculated adsorption energy and

chemical potential of Ga, As2, and As4, phase diagrams of these surfaces are shown to

identify the stable surface structures at certain growth conditions. Furthermore, growth

processes on these surfaces are discussed in terms of the self-surfactant effect, where Ga

adatoms act as self-surfactant atoms to maintain layer-by-layer growth without antisite

defect formation on the compound semiconductor surfaces. Phase transitions between

the GaAs(001)-c(4� 4) and -(2� 4) surfaces are also successfully clarified by investi-

gating relative stability between the GaAs(001)-c(4� 4) surfaces with various surface

dimers predicted by the surface phase diagram calculations and -(2� 4) surfaces with Ga

deposition predicted by ECMC simulations.

11.3.1 Surface Structures of GaAs

Figure 11.5 shows various GaAs(001) surface structures, including c(4� 4)a, c(4� 4)b,

and (2� 4)b2 surfaces, which are considered in this section. It was believed for a long

time that the c(4� 4) surface was composed of three As–As dimers per surface unit cell,

as shown in Figure 11.5(B). However, Ohtake et al. [35] proposed the new structure

model of the c(4� 4) surface with three Ga–As dimers per surface unit cell, as shown in

c(4x4)βc(4x4)α

(2x4) 2
[110]-

[1
10

]

Ga

As

(A) (B)

(C)

FIGURE 11.5 Schematic of the GaAs(001) surfaces: (A) c(4� 4)a with Ga–As dimer, (B) c(4� 4)b with As–As dimer,
and (C) (2� 4)b2.
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Figure 11.5(A). Using the chemical potential and adsorption energy, the change in the

stable structure of the c(4� 4) surfaces is clarified by considering adsorption or

desorption of surface dimers as functions of temperature and As pressure. Figure 11.6

shows the surface phase diagram of the c(4� 4) with different dimer constituents under

As2 and As4 [56,57]. Under As2, the c(4� 4) surface with As dimers is stable at low

temperatures less than w400 K, whereas the surface with Ga–As dimers is stabilized at

relative high temperatures in the range of w400–700 K. This is because the desorption

energy of the As dimer (1.78 eV) is smaller than that of the Ga–As dimer (4.31 eV). These

results agree with the previous reported STM measurements, which imply that the

c(4� 4)a surface with the Ga–As dimer is stable in the temperature range of 473–723 K

[35]. On the other hand, it should be noted that the c(4� 4)b surface with As dimer does
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FIGURE 11.6 Calculated surface phase diagrams of the GaAs(001)-c(4� 4) as functions of temperature and (A) As2
pressure and (B) As4 pressure. Blue and orange circles denote Ga and As atoms, respectively. Inserted bar indicates the
temperature range of the c(4� 4) surface with various surface dimers observed by experiments.
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not appear even at low temperatures under As4, as shown in Figure 11.6(B). This is

because the desorption energy of the As dimer becomes almost zero (0.12 eV) in contrast

with the still large value of Ga–As dimer (3.48 eV) under As4. This is also consistent with

experimental results [37,58]. If we increase the temperatures, more various combinations

of As, Ga–As, and Ga dimers appear in the surface unit, as seen in Figure 11.7.

Co-existence of two Ga–As and one Ga dimers in the c(4� 4) unit cell denoted by c(4� 4)

g is found within the temperature range of approximately 700–710 K. The surface with

one Ga–As and two Ga dimers denoted by c(4� 4)d appears beyond w710 K because of

large desorption energy of Ga dimers (6.40 eV). The temperature range around 710 K is

almost the same with phase transition temperature between c(4� 4) and (2� 4)b2. This

suggests that these c(4� 4) surfaces with different dimers are candidates for the phase

transition state.

Sasaki and Yoshida investigated the surface reaction of trimethylgallium (TMG) on

the c(4� 4) and (2� 4) surfaces using quadrupole mass spectroscopy (QMS) and

reflection high-energy electron diffraction (RHEED) measurements at 738 K [40]. The

QMS intensity variation for the surface of c(4� 4) with a 0.46 monolayer (ML) of Ga is

identical to that for the surface of (2� 4) with 0.018 ML of Ga. These results suggest that

predepositing Ga has a crucial role for the phase transition between c(4� 4) and (2� 4)

surfaces. Our previous studies also clarified that preexisting of Ga on the c(4� 4) is

closely related to the phase transition from the c(4� 4) to (2� 4) surfaces using ECMC

simulation, ab initio calculations, and STM [59–61]. On the grounds of these aspects, we

discuss the phase transition from c(4� 4) to (2� 4) under the existence of excess Ga on

the surfaces. Figure 11.8 shows the schematic of ECMC simulation results for resultant

(2� 4) surface structure (type 1 and 2) via deposition of a 0.5 ML of Ga from three kinds

of c(4� 4) initial surfaces. This figure implies that a type 2 structure similar to (2� 4)b2
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FIGURE 11.7 Calculated surface-phase diagram of the GaAs(001)-c(4� 4) with various surface dimers as
functions of temperature and As pressure. Blue and orange circles denote Ga and As atoms, respectively.
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appears when phase transition is initiated from the c(4� 4) with Ga–As dimers (process

I), whereas the c(4� 4) with two Ga dimers in the surface unit favors the type 1 structure

(process III). In case of process II, the c(4� 4) with two Ga–As and one Ga dimers in the

surface unit might lead its structure to both type 1 and 2 structures because of very small

energy difference between them (0.001 eV/atom). That is, the phase transition from

c(4� 4) to (2� 4) would proceed by process I or II. This seems to be reasonable because

the stable temperature range of these two initial surfaces around 700 K agree with phase

transition temperatures observed experimentally. Moreover, this finding is qualitatively

consistent with STM analyses, where the c(4� 4) with Ga–As dimers initiates the phase

transition from the c(4� 4) to (2� 4) with As-dimers [37].

11.3.2 Growth on GaAs Surfaces

To clarify the growth processes of semiconductors, we have to understand each

elementary process that progresses on the growth surfaces. In this section, we discuss

the migration and adsorption–desorption behavior of adsorbate on the GaAs(001)-

c(4� 4). Figure 11.9 shows the calculated migration potentials for Ga and As adatoms

on the c(4� 4)a surface with Ga–As dimers. The results suggest that Ga and As ada-

toms prefers the lattice sites E and L, respectively. In general, adatoms on the com-

pound semiconductor surfaces prefer the lattice site to lower strain energy and

suppress the number of electrons remaining in the surface dangling bonds [62]. The

(2 x 4)
Type 2

Initial
c(4 x 4)

0.5 ML deposition

(2 x 4)
Type 1

E –0.05 eV 0.001 eV 0.02 eV

Ga

Process I Process II Process III

FIGURE 11.8 Schematic of the simulated results for the surface phase transition from three kinds of c(4� 4) to
(2� 4) surfaces (type 1 and 2) appearing via a 0.5 ML of Ga deposition. Blue and orange circles denote Ga and As,
respectively. The relative energy differences between type 1 and 2 structures obtained by ab initio calculations
are also shown.
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lattice sites E and L do not suppress the number of electrons in the dangling bonds

but lower the strain energies because of the formation of interatomic bonds with As

atoms at the regular fcc sublattice sites in the second layer. Moreover, these prefer-

able lattice sites for adatoms can be simply interpreted by the coordination number.

Ga adatom at the E site is stabilized by forming Ga–As bonds with an ideal coordi-

nation number of 4 for GaAs, whereas As adatoms at the L site with As–As bonds have

the coordination number 2, which is close to ideal coordination number 3 for As.

Figure 11.10 shows the adsorption–desorption transition curve for the Ga adatom

(Figure 11.10(A)) and As adatom (Figure 11.10(B)) on the c(4� 4)a surface, with Ga–As

dimers as functions of temperature and pressures. The calculated results reveal that

Ga adatoms can adsorb even at high temperatures, while desorption of As adatoms

occurs even at low temperatures. This is because the desorption energy of the Ga

adatom (w3 eV) is much larger than that of the As adatom (w0.4 eV). The difference

in desorption energy between Ga and As adatoms is due to the fact that the Ga

adatom at the preferable E site forms strong Ga–As bonds in contrast with the for-

mation of weak As–As bonds for As adatom at the L site. Thus, these results reveal that

Ga atoms can adsorb and migrate on the surfaces while desorption of As adatoms

proceeds without sufficient migration. Therefore, Ga adatoms play a crucial role for

the epitaxial growth of GaAs on the c(4� 4) surfaces.

Figure 11.11(A) depicts the structure of the GaAs(111)B-(2� 2) surfaces with excess

As-trimer on the ideal (111) surface. To fabricate GaAs thin films, a monolayer of Ga and
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FIGURE 11.9 Calculated migration potentials for Ga (blue diamond) and As (orange diamond) adatoms on the
GaAs(001)-c(4� 4) surface with Ga–As dimers.

Chapter 11 • Ab initio-Based Approach to Crystal Growth 489



10–11 10–9 10–7 10–5 10–3

10–8 10–6 10–4 10–2

Ga pressure (Torr)

0

400

600

800

1000

Te
m

pe
ra

tu
re

 (
K

)

Desorption

200

Adsorption

Ga

As2 pressure (Torr)

0

400

600

800

1000
Te

m
pe

ra
tu

re
 (

K
)

Desorption

200
Adsorption

As

(B)

(A)
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FIGURE 11.11 Schematic of the GaAs(111)B-(2� 2) surfaces (A) with As-trimer, (B) Ga þ As-trimer with one Ga
adatom, and (C) 2Ga þ As-trimer with two Ga adatoms.
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As has to be alternatively incorporated on the surface with excess As-trimer. Therefore,

clarifying how layer-by-layer growth is maintained on the (2� 2) surface by controlling

the excess As-trimer is one of fundamental problems in GaAs MBE growth. To this end,

we also employ the GaAs(111)B-(2� 2) surfaces with Ga þ As-trimer with one Ga adatom

(Figure 11.11(B)), and 2Ga þ As-trimer with two Ga adatoms (Figure 11.11(C)) in this

section. The surface structures with Ga adatoms are obtained due to the relaxation to

form Ga–As bonds between the Ga adatom and top As atoms. The additional Ga adatom

forms two Ga–As bonds between top As atoms constituting the neighboring As trimer.

Because the Ga–As bond is basically the most energetically favorable configuration

among Ga–Ga, Ga–As and As–As bonds, the stable positions of Ga adatoms can be un-

derstood by stable Ga–As bond formation. Using these stable structures, the phase di-

agrams of the (2� 2) surfaces under As2 flux are calculated as shown in Figure 11.12.
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FIGURE 11.12 Calculated surface phase diagrams of GaAs(111)B-(2� 2) surfaces: (A) without Ga adatom and (B)
with one Ga adatom as functions of temperature and As2 pressure. In the shaded regions, the As trimer is stable
on the surface. Inserted bars with Expt. denote the temperature range of GaAs(111)B-(2� 2) surface.
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Figure 11.12(A) indicates that the (2� 2) surface with As trimer is stable at temperatures

less than w800 K, whereas that without As trimer is stabilized beyond w800 K. In

contrast, the (2� 2) surface without As trimer is stable beyond w560 K for the Ga þ As-

trimer surface with one Ga adatom (Figure 11.12(B)). Similar results were obtained for

the 2Ga þ As-trimer with two Ga adatoms [12]. The low transition temperatures from the

(2� 2) surfaces with As trimer to those without As trimer in the Ga adsorbed cases

suggest that the As-trimer desorption is promoted by Ga adatoms. This is because the

desorption energy of As trimer with Ga adatoms (3.6–3.8 eV) is much lower than that

without Ga adatom (5.4 eV). The decrease in the desorption energy clearly manifests a

self-surfactant effect, where Ga adatoms induce As rearrangement during GaAs epitaxial

growth, as clarified in GaAs(001) [63] and GaAs(111)A surfaces [64]. Moreover, it should

be noted that the difference in the transition temperature for the As-trimer desorption

between the (2� 2) surfaces with one and two Ga adatoms is less than 20 K. This reflects

the small energy difference in Ede (within 0.2 eV), implying that the growth can be

promoted even if one Ga atom is adsorbed on the (2� 2) surface unit. Consequently, Ga

deposition during MBE growth promotes As-trimer desorption to realize layer-by-layer

growth of GaAs on the GaAs(111)B-(2� 2) surface, as schematically shown in

Figure 11.13.

(A) (B) (C)

FIGURE 11.13 Schematic of the (2� 2) surface: (A) with As-trimer, (B) with As-trimer and Ga adatom, and (C)
with Ga adatom without As-trimer. Change in surface structure from (A) to (C) shows the self-surfactant
effect.
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11.4 InAs on GaAs
InAs/GaAs heteroepitaxial systems grown by MBE are crucial for fabricating low-

dimensional semiconductor nanostructures, including quantum dots (QDs). Due to

the 7% lattice mismatch between InAs and GaAs, many shapes of self-assembled QDs

can be fabricated depending on growth orientations. The InAs on the GaAs(001) pro-

duces a three-dimensional island shape on the InAs with Stranski-Krastanov growth

mode [65], whereas the InAs stacking-fault tetrahedrons (SFT) as a QD is also fabricated

on the GaAs(111)A [66]. Because of the successful fabrication of the InAs QDs on the

GaAs(001), there have been some experimental studies for investigating microscopic

growth processes of the InAs on the GaAs(001) using STM and in situ scanning tunneling

microscopy [67–70].

Many studies have been also done for surface structures and In adatom diffusion on

the InAs/GaAs(001) from theoretical viewpoints [71–79]. For the InAs/GaAs(111),

Yamaguchi et al. reported experimental measurements using STM on the mechanisms of

strain relaxation in InAs/GaAs(111)A heteroepitaxy to propose a possible model for the

resulting semicoherent interface structure [80]. Ohtake et al. studied strain-relaxation

processes in the InAs/GaAs(111)A using a rocking-curve analysis of RHEED [81].

Zepeda-Ruiz et al. theoretically analyzed the strain relaxation at the semicoherent

interface structure consisting of a network of interacting misfit dislocations [82]. Joe et al.

have also investigated the SFT formation in InAs/GaAs(111) using empirical interatomic

potentials to clarify the contribution of strain relaxation stabilizing it [83]. These previous

studies have mainly focused on the strain relaxation at the InAs/GaAs(111) interface

without incorporating surface-related phenomena. From the viewpoint of surface phe-

nomena, Taguchi and Kanisawa have studied the surface structures and adsorption–

desorption behavior on the InAs(111)A surface using ab initio calculations [84].

In this section, we systematically investigate adsorption–desorption behavior on the

InAs heteroepitaxially grown on GaAs(001) and GaAs(111)A. Using these results, a

surface-phase diagram of the InAs wetting layer (WL) is obtained to compare the fully

relaxed InAs surface. The contribution of the heterointerface to the structural change is

discussed as functions of temperature and gas pressure. On the basis of the calculated

results, distinctive features in the InAs wetting layers are clarified.

11.4.1 Surface Structures of the InAs Wetting Layer

To clarify the effect of the lattice constraint and the heterostructures, we consider the

InAs(001) surface without lattice constraints (hereafter InAs(001)), the InAs(001) surface

with an in-plane lattice parameter of bulk GaAs (hereafter InAs(001)-S), and a GaAs(001)

surface covered with approximately two layers of InAs (hereafter InAs-W), as shown in

Figure 11.14. Figure 11.15(A) shows the calculated surface-phase diagrams of InAs(001),

InAs(001)-S, and InAs(001)-W as functions of temperature T and gas pressure of As2
molecule pAs2 . The phase boundary between (2� 4)a2 and (2� 4)b2 structures on
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FIGURE 11.14 Top views of InAs(001)-(2� 4) surface structures, such as (A) (2� 4)a2 and (B) (2� 4)b2 considered
in this study. Computational models, such as InAs(001), InAs(001)-S, and InAs(001)-W used in this study, are also
schematically shown in this figure.

10–8 10–6 10–4 10–2

10–8 10–6 10–4 10–2

800

700

600

500

400
(2

Te
m

pe
ra

tu
re

 (K
)

2

Expt.

(2 )

(2 )

(2 )

2

(A)

800

700

600

500

As4 pressure (Torr)

As2 pressure (Torr)

400
(2

Te
m

pe
ra

tu
re

 (K
)

2

Expt.

2

(B)

(2 )

FIGURE 11.15 Calculated surface phase diagrams of InAs(001)-(2� 4) surfaces as functions of temperature and
(A) As2 pressure and (B) As4 pressure. The solid, dashed, and dotted lines show the boundaries of the stable
surface structure regions for InAs(001)-W, InAs(001), and InAs(001)-S, respectively. Experimental growth conditions
are also shown as Expt. in this figure.
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InAs(001) is in the range of 530–710 K (dashed line in Figure 11.15(A)). The stable

temperature range of these structures is consistent with the temperature range of the

MBE growth (613 K) at which both (2� 4)a2 and (2� 4)b2 structures are observed [69].

We also find that the phase boundary on InAs(001)-S (dotted line in Figure 11.15(A)) is

identical to that on InAs(001), indicating that the lattice constraint has little effect on the

relative stability between (2� 4)a2 and (2� 4)b2 structures. This is because the strain

induced by in-plane lattice constraint is effectively released by the relaxation along the

[001] direction in these structures. In contrast, the phase boundary on InAs-W

(560–750 K, solid line in Figure 11.15(A)) is slightly higher than those on InAs(001) and

InAs(001)-S. The higher phase boundary implies that the entity of InAs/GaAs interface

affects the relative stability between (2� 4)a2 and (2� 4)b2 structures. Figure 11.15(B)

shows the calculated surface phase diagram for the InAs(001)-W surfaces as functions of

temperature T and gas-pressure of As4 molecule pAs4 . Here, we employ the WL surface

structure with In1/3Ga2/3As at the interface [70,85–87]. The phase boundary between the

(2� 4)a2 and (2� 4)b2 ranges from 470 to 600 K, which is lower than that under As2,

because the As4 molecule is more stable than As2 in the gas phase. The stable temper-

ature range of these structures is consistent with experimental conditions during MBE

growth [86,88]. This reveals that (2� 4)a2 is stable at conventional growth conditions,

such as T of w700–750 K and pAs4 of w10�7–10�6 Torr.

Figure 11.16 shows the top view of the InAs(111)A-(2� 2) surface structures with In-

vacancy (VIn) (Figure 11.16(A)) and As-trimer (TAs) (Figure 11.16(B)), and the three

computational models considered in this study. Here, the in-plane lattice parameters

GaAs(111)

InAs(111)A-W

GaAs(111)

InAs(111)A

GaAs(111)

InAs(111)A-S
In-vacancy (VIn)

As-trimer (TAs)

In As

(A)

(B))

FIGURE 11.16 Top views of InAs(111)A-(2� 2)
surface structures with (A) In-vacancy (VIn) and (B)
As-Trimer (TAs) considered in this study. A (2� 2)
unit cell is represented by dashed line.
Computational models, such as InAs(111)A,
InAs(111)A-S, and InAs(111)A-W used in this study,
are also schematically shown in this figure.
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ffiffiffi
2

p
aða is the lattice constantÞ of InAs without lattice constraint (hereafter InAs(111)A)

and with lattice constraint from the GaAs substrate (hereafter InAs(111)A-S) are those in

bulk InAs and GaAs, respectively. Furthermore, we also employ the InAs(111)A-(2� 2)

surface with one atomic double layer grown on the GaAs(111) substrate (hereafter InAs-

W), consisting of two atomic double layers of GaAs. These models correspond to the InAs

surfaces at the initial growth stage of InAs (InAs(111)A-W), at coherent growth with a

large film thickness that is enough for neglecting the contribution of the InAs/GaAs

interface (InAs(111)A-S), and after relaxing the lattice constraint due to misfit dislocation

formation at the interface (InAs(111)A), as schematically shown in Figure 11.16.

Figure 11.17 shows the calculated surface-phase diagrams for the (2� 2) surfaces of

InAs(111)A (Figure 11.17(A)), InAs(111)A-S (Figure 11.17(B)), and InAs(111)A-W

(Figure 11.17(C)) as functions of temperature and As4 pressure. Here, we assume that

the gas pressure of the In atom is pIn w10�7 Torr. The stable temperature ranges for VIn

are consistent with the MBE growth temperature range of 723–773 K (shaded area), at

which VIn is observed experimentally [80,89,90].

Figure 11.17(A) indicates that the transition temperature of 500–590 K between VIn

and TAs on the InAs(111)A is larger than that on the InAs(111)A-S by w30 K, as shown in

Figure 11.17(B) for the InAs(111)A-S. The enlargement of VIn stable region on the

InAs(111)A-S is due to the fact that the In-vacancy allows large displacements of atoms

near the surface to relieve the compressive strain in the InAs(111)A-S. On the other hand,

an As-adatom surface in InAs(111)A-W newly appears between stable regions of VIn and

TAs, as shown in Figure 11.17(C), where the As adatom stably resides in the interstitial

site bonding with three substrate In atoms. Figure 11.18 shows the calculated difference

in charge density between the InAs(111)A and the InAs(111)A-W. Here, Figure 11.18(A)

and (B) denote the results for the In-vacancy and As-adatom surfaces, respectively.

Figure 11.18(A) reveals that the large decrease in the charge density (red-colored region)

is found at surface As atoms on the In-vacancy surface (arrow). This is because the

electronegativity of In on the surface is smaller than that of Ga at the interface [91,92].

This results in breaking the electron counting model to destabilize the In-vacancy sur-

face. The As-adatom surface makes up this deficiency in charge density as shown in

Figure 11.18(B), where the charge density around the As adatom is transferred to the

substrate In atom to strengthen the interatomic bond between the In and As atoms.

Consequently, the As-adatom surface appears as a stable phase between VIn and TAs in

the InAs(111)A-W.

11.4.2 Growth on InAs Wetting Layer Surfaces

On the (2� 4)a2 WL surface (InAs(001)-W), the adsorption–desorption boundary of In is

shown in Figure 11.19 as functions of T and pIn. It is compared with boundaries on the

fully relaxed InAs(001) and fully strained InAs(001)-S surfaces without interface structure

of InAs/GaAs. The calculated lifetime s and diffusion length L of an In adatom were

estimated to be small, such as s¼ 1.59� 10�3 s and L¼ 6.18� 102 nm on the (2� 4)a2
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WL surface. This elucidates that In adsorption does not occur on the InAs(001)-W and

InAs(001)-S surfaces but is allowed on the InAs(001) surface. Similar results were

obtained in InAs(001)-(1� 3) and -(2� 3) WL surfaces, where In atoms do not adsorb at
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FIGURE 11.17 Calculated surface-phase diagrams of (A) InAs(111)A, (B) InAs(111)A-S, and (C) InAs(111)A-W as
functions of temperature and As4 pressure. The solid lines show the boundaries of the stable surface structure re-
gions. The shaded area denotes the temperature range of the conventional molecular beam epitaxy growth.
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equilibrium under growth conditions. This is because the adsorption energies for In

atom are fairly large, such as �1.97 eV on the (1� 3) surfaces, �1.68 eV on the (2� 3) WL

surfaces, and greater than �2.38 eV on the (2� 4)a2 surfaces. Considering the fact that In

atoms can easily adsorb on the GaAs(001)-c(4� 4) substrate surface, these results sug-

gest that In adsorption proceeds InAs growth on the initial GaAs(001) and the final

InAs(001) surfaces, while the growth process on the InAs(001) WL surfaces is more

complex. RHEED and STM observations for InAs on GaAs(001) have clarified that the

surface changes its structure from the initial GaAs(001)-c(4� 4)a surface to the final

In As

In-vacancy As-adatom

(A) (B)

FIGURE 11.18 Decrease (in red color) and increase (in blue color) in charge density on the (A) In-vacancy and the
(B) As-adatom surfaces in the InAs-S. The large decrease around surface As atoms are indicated by white arrows.
Schematic of the top views of the In-vacancy and As-adatom surfaces are also shown in this figure.
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InAs(001)-(2� 4)a2 surface via InAs(001)-(1� 3)/(2� 3), with an increase of InAs

coverage [70]. On the basis of these results, the surface structural change is schematically

shown in Figure 11.20, as obtained by counting the number of deposited In and As atoms

on the initial GaAs(001)-c(4� 4)a. This suggests that the (2� 3) surface with

In0.375Ga0.625As at the interface reasonably appears after 0.63 ML of InAs deposition on

the GaAs(001)-c(4� 4)a. This is consistent with experimental findings where 2/3 ML of

InAs deposition creates the (2� 3) surface with In1/3Ga2/3As [70,85–87]. Further depo-

sition with 0.71 ML of InAs realizes the (2� 4)a2 surface, which is also consistent with

the RHEED observations where the (2� 4) surface appears supplying w1.3–1.4 ML of

InAs on the GaAs(001)-c(4� 4)a [70]. Here, it should be noted that the desorption of

0.19 ML of As is indispensable to realize the (2� 4) surface during the structural change

from the (2� 3) to the (2� 4) surface.

Figure 11.21(A) shows the calculated surface-phase diagram for the InAs(001)-(2� 3)

and (n� 3) WL surfaces (n¼ 4, 6, and 8) as functions of temperature and As4 pressure.

Here, the (2� 3) surface is fully covered by As-dimers on the surface, while one As-dimer

is missing every n As-dimer on the (n� 3) surfaces to approach satisfying the electron

counting model at n¼ 8. This implies that the (2� 3) surface is unstable at growth

conditions because the desorption energy of the As-dimer on the (2� 3) surface is very

small (e.g., 1.12 eV); therefore, it can easily desorb from the WL surface to change its

structure from (2� 3) to (8� 3), even at low temperatures. Instead of the (2� 3) surface,

the (6� 3) surface was found to be preferable for InAs(001) WL surface at growth con-

ditions. This is consistent with STM observations where the trench dimer row has high

stability and is missing one or two top As-dimers locally, which forms either a (4� 3) or a

(6� 3) surface unit cell [71].

The adsorption–desorption boundary of In on the (6� 3) WL surface is shown in

Figure 11.21(B) as functions of T and pIn, which is compared with boundaries on the

(2� 3) and the (4� 3) WL surfaces. This indicates that In adsorption does not occur on

the (2� 3) WL surface but is allowed on the (4� 3) and the (6� 3) WL surfaces at growth

conditions. This is because the adsorption energy for the In atom is very large, such

as �1.68 eV on the (2� 3) WL surface in contrast with �3.87 eV on the (4� 3)
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GaAs(001)-
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As 
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InAs(001)-

(2 3)

AsIn

FIGURE 11.20 Schematic of InAs wetting layer formation process on GaAs(001). The initial GaAs(001)-c(4�4)a
surface changes its structure to the final InAs(001)-(2�4)a2 via InAs(001)-(2� 3) with increase of InAs coverage.
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WL, �3.66 eV on the (6� 3) WL, and �3.33 eV on the (8� 3) WL surfaces. This is because

the stable adsorption site of In on the (2� 3) WL surface is around the center position

between upper As-dimer and lower As-dimer, which is quite different from the missing

As-dimer site on the (n� 3) WL surface as shown in Figure 11.21(B). Therefore, it was

concluded that In atoms impinging on the InAs(001)-(2� 3) WL surfaces tend to desorb,

and the growth on the (2� 3) WL proceeds with the aid of As desorption on the basis of

the self-surfactant effect [63].

Figure 11.22 summarizes the adsorption energy differences for In atom on the

(2� 2) In-vacancy surface of the InAs(111)A, the InAs(111)A-S, and the InAs(111)A-W.

The stable lattice site for In adatom on the InAs(111)A is V site, consistent with the

previous ab initio calculations [84]. On the other hand, In adatom favors interstitial

sites (C and D sites) on the InAs(111)A-S. This can be interpreted by considering the

In atomic position on the surfaces. For the InAs(111)A, the In adadtom is located

1.44 Å above the V site, while the positions at the C and D sites are 2.19 and 1.88 Å
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higher than the substrate, respectively. Due to the close distance between the In

adatom and surface As atoms at the V site in the InAs(111)A, its adsorption energy

(�1.76 eV) is lower than those at the C and D sites (�1.38 eV). For the InAs(111)A-S,

the height of the In adatom drastically increases at the V site (2.24 Å) and then the

adsorption energy (�1.21 eV) becomes higher than that for the InAs(111)A. These

changes are caused by large displacements of surface As atoms around the V site. In

contrast with the results for the InAs(111)A-S, the V site is also favored for In adatom

on the InAs(111)A-W, similarly to the InAs(111)A. Our calculated charge density in the

InAs(111)A-W implies that the charge density around In adatom decreases due to its

smaller electronegativity [91,92]. The decrease in charge density induces electrostatic

interaction between In adatom and surface atoms to stabilize the In adatom at the

V site. Therefore, the lattice constraint in the InAs(111)A-S and the charge redistri-

bution in the InAs(111)A-W crucially contribute to the stable adsorption for In atom

on the InAs(111)A-(2� 2) surface.

Figure 11.23 shows the calculated adsorption–desorption transition curve for an In

atom without and with simultaneous As adsorption on the (2� 2) In-vacancy surface of

the InAs(111)A, the InAs(111)A-S, and the InAs(111)A-W as functions of temperature and

In pressure. These figures reveal that In adsorption on the In-vacancy surface does not

occur without simultaneous As adsorption under conventional growth temperatures in
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FIGURE 11.22 Energy difference (in eV/(2� 2)) for the In atom in the InAs(111)A (open circles), the InAs(111)A-S
(open triangles), and the InAs(111)A-W (open squares). The origin of energy is set to the total energy of the most
stable sites in each system. Adsorption sites considered in this study are indicated by letters A, B, C, D, E, and V
shown in this figure.
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the range of 723–773 K. The calculated lifetime s of In without simultaneous As

adsorption was estimated to be very small, such as s¼ 4.35� 10�14 s on the InAs(111)

A-(2� 2) WL surface. After As adsorption, In adsorption energies on the In-vacancy

surface dramatically decrease such as �1.76 eV without As to �4.17 eV with As in the

InAs(111)A, �1.29 to �3.80 eV in the InAs(111)A-S, and �1.46 to �3.27 eV in the

InAs(111)A-W. These findings thus imply that In adsorption is promoted only when As

atoms are adsorbed on the InAs(111)A-(2� 2) surface and the InAs growth proceeds with

the adsorption of As atoms. This reveals that the self-surfactant effect is crucial for the

growth processes similar to the GaAs growth [12,63]. Considering the fact that the

computational models considered in this study correspond to individual growth stage,

these distinctive features in the calculated results suggest that adsorption–desorption

behavior on the InAs(111)A-(2� 2) surface strongly depends on film thickness of InAs

heteroepitaxially grown on GaAs.

11.5 GaN
III-nitride semiconductors, such as GaN, have a wurtzite structure, as shown in

Figure 11.24. Generally, blue light-emitting diodes (LEDs) and laser diodes (LDs) using

III-nitrides are fabricated on the (0001)-polar surface. Recently, III-nitrides growth on

nonpolar and semipolar surfaces has attracted increasing attention. This is because

there are large internal piezoelectric fields in the III-nitride layers grown on the (0001)

heterosubstrates. The large internal piezoelectric fields separate electrons and holes

to opposite interfaces of the layer. This spatial separation of electrons and holes in

the III-nitride layer affects the quantum efficiency of optical devices. To avoid the

problem, III-nitride should be grown on the surfaces with nonpolar (11-20), semipolar

(1-101), and semipolar (11-22) orientations, where the piezoelectric field is negligible
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[93]. Since the demonstration of InGaN/GaN LEDs on semipolar (11-22) bulk GaN

[94,95], the (11-22) plane has been the most promising among the semipolar orien-

tations. Unlike the conventional GaN growth along the [0001] direction, lower tem-

peratures (870–975 �C) are found to be required to obtain atomically flat (11-22)

surfaces in MOVPE [7] and hydride vapor-phase epitaxy [95]. It has been also shown

that one Ga monolayer can be stabilized on a GaN(11-22) surface under Ga-rich

conditions in plasma-assisted MBE, and this surface is necessary to optimize the

surface morphology [96]. Despite these experimental studies, little is known about the

incorporation behavior on semipolar surfaces in nitride semiconductors. To clarify

the growth processes on various semipolar surfaces, investigations not only for

adsorption–desorption behavior but also for the reconstructions on the semipolar

surfaces are necessary from theoretical viewpoints, taking growth conditions into

account.

In this section, we present a review of our recent achievements for clarifying the

reconstruction, adsorption–desorption behavior, and growth processes of various GaN

surfaces, including polar, nonpolar, and semipolar surfaces using the chemical potential

approach. Surface-phase diagrams as functions of temperature and pressure are shown

for various GaN surfaces, exemplified by those with the polar (0001), polar (000-1),

nonpolar (1-100), nonpolar (11-20), semipolar (1-101), and semipolar (11-22) orienta-

tions shown in Figure 11.24. Furthermore, the growth processes on the polar (0001) and

semipolar (11-22) orientations are systematically discussed on the basis of the surface-

phase diagrams. Comparative studies among polar, nonpolar, and semipolar surfaces

are shown to check the versatility of our approach to incorporation behavior on various

surfaces with different polarities.
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FIGURE 11.24 Schematic of wurtzite structure and various planes such as (A) (0001) and (000-1), (B) (1-100) and
(11-20), (C) (1-101), and (D) (11-22) considered in this study.
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11.5.1 Surface Structure of GaN

Many researchers have fabricated LED and LD devices on GaN(0001) surfaces. In the

case of MBE, the (2� 2) and pseudo-(1� 1) surfaces have been observed on the

GaN(0001) by STM [97,98]. There have been several theoretical studies based on ab initio

calculations for the atomic arrangements on the surfaces. Northrup et al. [99] have

proposed that pseudo-(1� 1) is the most stable structure under Ga-rich conditions

among various surface structures. Ishii [100] has investigated the favorable adsorption

behavior on the (2� 2) surface.

Figure 11.25(A) shows a calculated surface-phase diagram of GaN(0001) as a function

of temperature and Ga pressure [13,14,25]. The pseudo-(1� 1) surface is stable in the

temperature range less than 684 K at 10�8 Torr and less than 973 K at 10�2 Torr. These

temperature ranges are consistent with experimental results [101]. This surface-phase

diagram also reveals that the (2� 2) with Ga adatom is stable in the temperature

range between 767 and 1017 K at 10�8 Torr and between 1078 and 1420 K at 10�2 Torr.

These are consistent with experimental stable temperature ranges for the (2� 2) surface

with Ga adatom [102,103]. On the other hand, it has been clarified by STM observations

that Ga atoms deposit onto the GaN(000-1)-(1� 1) surface and form (3� 3), (6� 6), and

c(6� 12) structures [104]. On the basis of ab initio calculations, the (1� 1) surface is

determined to consist of a monolayer of Ga atoms bonded in atop sites above the

topmost N atoms of an N-terminated bilayer. The (3� 3) surface consists of Ga adatoms
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bonded on top of this adlayer. Figure 11.25(B) shows the surface phase diagram for

GaN(000-1) as functions of temperature and Ga pressure. The (2� 2) surface with Ga

adatom is stabilized in the temperature range less than 850 K at 10�8 Torr and less than

1190 K at 10�2 Torr. The (1� 1) surface with a monolayer of Ga atoms is also observed

beyond 850 K at 10�8 Torr and 1190 K at 10�2 Torr. The surface phase diagram suggests

that both surfaces can appear in the typical temperature (w1070 K) for MBE of GaN.

Because the homoepitaxial growth of GaN on GaN(000-1) have been performed under

Ga-rich conditions, the calculated result is consistent with the experimental stable

temperature range for the (1� 1) surface [105].

Previous ab initio calculations have clarified that the ideal surface is most stable over

a large range of chemical potentials, and the surfaces with Ga adlayers are stabilized for

Ga-rich conditions [106,107]. The reconstructions on nonpolar (1-100) and (11-20)

surfaces are very simple, as shown in Figure 11.26(A) and (B), respectively [23,25]. The

ideal surface appears beyond the temperature range between 725 and 1030 K and be-

tween 770 and 1080 K on (1-100) and (11-20) surfaces, respectively, whereas the Ga

adlayer surfaces are stable only at lower temperatures. For the ideal surfaces, the N atom

relaxes outward, whereas the Ga atom relaxes inward, accompanied by a charge transfer

from the Ga dangling bond to the N dangling bond. As a result of this charge transfer, the

ideal surface satisfies the EC rule [108] to be stabilized without any adsorption or

desorption in the surface. That is, the ideal surface itself is stable because the number of

dangling bond of cation and anion on the surface unit cell is the same in case of
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nonpolar GaN surfaces. Therefore, the MBE growth proceeds on the ideal GaN(1-100)

and (11-20) surfaces regardless of Ga vapor pressure at the conventional growth

temperatures.

The surface-phase diagram of the semipolar GaN(1-101) surface is shown in

Figure 11.27(A) [22]. With increasing temperatures, the metallic reconstruction with a

Ga bilayer, which is stabilized at low temperatures, changes its structure to that with Ga

dimers by way of that with Ga monolayer. The stabilization of metallic reconstruction

under Ga-rich conditions is similar to that found in the GaN(0001) surface. Therefore,

many types of reconstructions could appear around a typical MBE growth temperature

(w1100 K), depending on Ga vapor pressure. This suggests that the growth kinetics on

the GaN(1-101) surface depends on the growth temperatures owing to temperature-

dependent surface reconstructions. Figure 11.27(B) shows the surface phase diagram

of a semipolar GaN(11-22) surface [19]. This implies that the metallic reconstructions

with a Ga adlayer and a Ga monolayer emerge only at low temperatures and high

Ga-rich conditions. On the other hand, the Ga adatom surface is favored over the wide

temperature range. The calculated surface-phase diagram agrees with the results

obtained by experiments where the Ga monolayer surface is formed under high Ga

fluxes close to the onset of Ga accumulation (droplet) in the plasma-assisted MBE

(T w 1000 K) [96]. The calculated phase diagram thus suggests that the growth kinetics

on the GaN(11-22) surface depends on growth temperatures similar to that on the

GaN(1-101) surface.
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11.5.2 Growth on GaN Surfaces

Ishii [100] has investigated the favorable adsorption behavior on the GaN(0001)-(2� 2)

surface using ab initio calculations. The calculated results imply that an N-rich condition

is not suitable for the MBE growth of GaN, because N atoms impinging on the

GaN(0001)-(2� 2) surface tend to reside in a lattice site that is different from the original

wurtzite lattice site. On the other hand, a Ga-rich condition is helpful for the epitaxial

growth to fabricate a high-quality GaN crystal. This is because a preadsorbed Ga atom on

the GaN(0001)-(2� 2) surface changes the stable lattice site for a subsequent N adatom

to the wurtzite lattice site. Therefore, a surface-phase diagram as a function of Ga

pressure shown in Figure 11.25(A) is useful for interpreting the growth process of GaN on

the polar (0001) surface. On the basis of Figure 11.25(A), we discuss the growth process

on the (0001) surface observed by the STM, where Xie et al. clarified that the pseudo-

(1� 1)-like normal and the (2� 2)-like ghost islands coexist during the submonolayer

deposition of GaN at w673–773 K by MBE [101] as schematically shown in Figure 11.28.

It should be noted that the deposition temperature range of submonolayer GaN

corresponds to the stable region of the pseudo-(1� 1), (1� 1), and the (2� 2)-Ga. The

calculated surface phase-diagram of the GaN(0001) reveals that the pseudo-(1� 1)

consisting of two monolayers of excess Ga on the GaN(0001) appears below 700–950 K.

The pseudo-(1� 1) surface changes its structure to the (2� 2)-Ga with submonolayer of

Ga adatoms at higher temperatures, such as w800–1000 K via the newly found (1� 1)

with two adlayers of Ga. These results are consistent with the stable temperature range of
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both the pseudo-(1� 1) and (2� 2)-Ga obtained experimentally [102,103]. The (1� 1)

and (2� 2) surfaces with another coverage of Ga do not appear as stable structures of

GaN(0001). It is clear that the deposition temperature range of GaN includes the stable

regions of the pseudo-(1� 1), (1� 1), and the (2� 2)-Ga. These results suggest that Ga

adsorption or desorption during GaN MBE growth can easily change the pseudo-(1� 1)

to the (2� 2)-Ga or (1� 1), and vice versa depending on Ga BEP. This is consistent with

their STM observations, where a ghost island with submonolayer Ga coexists with a

normal island on the terrace and can be easily converted by STM.

To elucidate migration behavior, the potential-energy surface (PES) of Ga and N on

the semipolar GaN(11-22) surface was calculated by fixing the adatom laterally at various

positions and allowing relaxation along vertical direction. First, we investigated the

growth kinetics of Ga and N on the c(2� 2) surface, which appeared under typical

c-plane growth conditions. The PES of N (not shown here) demonstrates that the N

adatom prefers the site close to the topmost N atom, resulting in the formation of strong

N–N bonds that desorb as an N2 molecule. The stabilization of the N-desorbed surface

thus suggests that the adsorption of Ga attached to the outermost N is necessary to

proceed with GaN growth on the c(2� 2) surface. Our calculations for an additional Ga

atom on the c(2� 2) surface show that the Ga easily desorbs from the surface under

typical c-plane growth conditions. Figure 11.29(A) shows the PES of Ga on c(2� 2)

surface. The most stable Ga adsorption site indicated by the cross is close to the

Ga-lattice site above the topmost N atom.

Figure 11.30(A) shows the adsorption–desorption boundary for Ga adsorption on the

c(2� 2) surface with a Ga adatom as functions of temperature and Ga pressure. It is

found that the transition temperature varies from 770 to 1100 K depending on the Ga

pressure. This implies that most of the additional Ga desorbs from the surface under the

MBE growth conditions at w1000 K [96]. However, due to the small energy difference

between the adsorption energy Ead and vapor phase chemical potential mGa, some of

them are likely to be eventually adsorbed. That is, the adsorbed Ga would not be entirely

eliminated, even in the MBE conditions. In Figure 11.30(A), the dashed line shows the

adsorption–desorption transition conditions for the Ga adatom at a saddle point in

Figure 11.29(A). The high migration energy barrier results in low adsorption energy at the

saddle point, leading to notably low desorption temperatures compared to those at

the stable sites. This suggests that even though Ga atoms eventually adsorbed at the

stable sites, they desorb during their surface migration. The desorption propensity of

additional Ga atoms on the c(2� 2) surface also provides a possible explanation for

inhibiting the formation of the atomically flat (11-22) surface [109].

To verify the growth process under the low-temperature/high Ga vapor pressure

condition, we now focus on the kinetics of Ga and N adatoms on the (1� 1) surface with

a Ga monolayer. Figure 11.29(B) and (C) show the PES for Ga and N adatom on the

(1� 1) surface with Ga monolayer. The stable adsorption site for Ga is located at the

Ga-lattice site above the Ga monolayer, as indicated by the cross in Figure 11.29(B). On

the other hand, the N adatom is stabilized at the N-lattice site between the Ga monolayer
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and outermost Ga atom of the substrate, as shown in Figure 11.29(C), resulting in the

formation of four Ga–N bonds. The adsorption–desorption transition boundaries for Ga

and N adatoms on the (1� 1) surface with a Ga monolayer are shown in Figure 11.30 (B)

and (C), respectively. Due to the smaller adsorption energy (�5.82 eV) of the N adatom

on the (1� 1) with Ga monolayer, the desorption temperature of N at the stable site

exceeds 1500 K, although the Ga desorption temperature appears in the range between

700 and 1000 K (Ead¼�2.73 eV at the stable adsorption site). In the latter case, the

desorption temperature of N from the saddle point appears to be in the range of

1200–1500 K depending on N pressure. This implies that the N adatom diffuses on the

(1� 1) with a Ga monolayer surface without desorption. Because these desorption

temperatures are higher than that in the MBE growth (w1000 K), it is thus concluded

(A) (B)

(C)

FIGURE 11.29 Contour plots of the PES for (A) additional Ga atom on the GaN(11-22)-c(2� 2) with Ga adatom, (B)
Ga adatom, and (C) N adatom on the (1� 1) surface with Ga monolayer. Large and small circles represent Ga and
N atoms, respectively. Crosses represent stable adsorption sites of the PES in the dashed rectangles denoting the
c(2� 2) and (1� 1) surface unit cells.
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that both Ga and N adatoms can be incorporated into the surface and the formation

of GaN layers proceeds under high Ga-pressure conditions, consistent with the experi-

mental results by MBE [109]. Furthermore, considering that the (1� 1) with Ga mono-

layer also appears under low-temperature conditions [19], the crystal growth on

GaN(11-22) surface can be realized for low temperatures. This reasonably agrees with

the experimental results in the MOVPE [109–112].

11.6 InGaN on GaN
The fabrication of green LDs with emission wavelengths of approximately 500 nm

[113–117] has received considerable attention due to their application for light sources in

full-color laser projectors. To achieve the green lasing, there is an increasing interest in
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FIGURE 11.30 Calculated surface phase diagrams for (A) Ga adsorption on the c(2� 2) surface with Ga adatom, (B)
Ga adsorption on the (1� 1) surface with Ga monolayer, and (C) N adsorption on the (1� 1) surface, as functions
of temperature and vapor pressure. The typical temperature for (0001) growth is attached by horizontal line.
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crystal growth of InxGa1 � xN alloy system with an In incorporation of approximately 25%

in InGaN/GaN quantum wells. High-quality In0.25Ga0.75N epitaxial layers can be grown

on polar (0001) and semipolar (20-21) orientations, whereas the incorporation efficiency

of In on a nonpolar (1-101) surface is lower than that on a polar (0001) surface [116,117].

During InGaN growth, it is well known that abrupt InN/GaN interfaces are rarely

obtained due to a large lattice mismatch between InN and GaN. Using the method of

droplet elimination by radical beam irradiation (DERI), a metal-rich condition, and

subsequent N irradiation, InN/InGaN heterostructures can be successfully achieved

using surface segregation of In during InGaN growth [118]. Despite the importance of

these phenomena, the effects of surface orientation on the stability and kinetics of In

atoms on the InGaN surfaces cannot be taken into account in the previous theoretical

studies. Thermodynamic analyses by Koukitsu et al. clarified that the solid composition

of InGaN alloy grown by MOVPE deviates from that of vapor phase [119] in addition to

some first-principle calculations for the structures of InGaN surfaces. However, these

theoretical investigations cannot be directly related to growth conditions [120,121].

In this section, we systematically investigate the adsorption–desorption behavior of

In, Ga, and N on GaN with various orientations, such as polar (0001), semipolar (20-21),

and nonpolar (10-10). Using these results, a surface-phase diagram of the In0.25Ga0.75N

wetting layer is obtained. The adsorption of In and Ga adatoms on these reconstructed

surfaces will clarify the orientation dependence of In incorporation at growth conditions.

Moreover, the formation of InN/GaN(0001) heterostructures in the DERI method is

discussed, taking into account N incorporation on the metallic surfaces as functions of

temperature and N pressure in conjunction with In surface segregation.

11.6.1 Surface Structure of the InGaN Wetting Layer

The calculated surface phase diagrams of In0.25Ga0.75N surfaces are shown in

Figure 11.31. Here, the adsorption of hydrogen is not taken into account because the

amount of incorporated In is known to be reduced by the presence of H2 molecules

[122]. Our calculations correspond to the growth conditions in which the chemical po-

tential of hydrogen is maintained at low values. The surface phase diagrams clearly show

that the stable reconstructions are notably altered by growth conditions. At high tem-

peratures, cations of the topmost layer consist of only Ga atoms, regardless of the

orientation. The stabilization of these structures is due to a strong Ga–N bond (2.3 eV) in

comparison to the In–N bond (2.0 eV); In atoms easily desorb from the surfaces. The

stabilization of such reconstructions implies that the amount of incorporated In is

reduced for high temperatures, consistent with published experiments [122–124]. At low

temperatures, the surfaces are covered by In adtoms, such as an In biliayer and In

adlayers. Another striking feature of these reconstructions is the orientation dependence

of In composition at the topmost layer.

For (0001) and (20-21) orientations, respectively shown in Figure 11.31(A) and (C), the

surfaces incorporating an In atom at the topmost layer are stabilized below 1010 and
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1040 K, respectively. Because there are four cation-lattice sites at the topmost layer, the

incorporation of an In atom results in surfaces with In concentration of 25%. In contrast,

the surfaces corresponding to 25% In concentration do not appear, and a surface with In

concentration of 50% is stabilized below 950 K for the (10-10) orientation, as shown in

Figure 11.31(B). This implies that the surfaces with In concentrations of 25% can be

stabilized for (0001) and (20-21) orientations, whereas such types of surfaces are

unavailable for (10-10) orientation under growth conditions of the MOVPE. From the

viewpoint of structural stability, these calculated results reasonably agree with the

experiments, in which the InN molar fraction in InGaN films on the (10-10) is lower than

that on the (0001) [123]. The analysis of reconstructed surfaces provides a clue for the

stabilization of the surfaces with In concentration of 25%. Our calculations reveal that

the energy deficits for substituting an In atom at the topmost layer by a Ga atom for

(10-10) orientation (1.1–1.2 eV) are much higher than those for (0001) and (20-21) ori-

entations (0.4–0.5 eV). Because the large energy deficits result in low adsorption energy,
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FIGURE 11.31 Calculated surface phase diagrams of In0.25Ga0.75N surfaces on (A) polar (0001), (B) nonpolar (1-100),
and (C) semipolar (2-201) orientations under N-rich limit as functions of temperature and pressure. Schematic top
views of stabilized surfaces under growth conditions are also shown. The adsorption sites of In and Ga adatoms are
indicated by crosses. Experimental growth conditions are also shown as inserted bars with Expt. in these figures.
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the surfaces with In at the topmost layer become unstable only for the (10-10) orien-

tation as shown in Figure 11.31(B). Accordingly, In–N and Ga–N bond lengths in the

(10-10) surfaces with an In atom at the topmost layer are 0.12 Å shorter than bulk ones.

Although we are currently unable to figure out why such structural differences occur

depending on the orientation, the formation of strained bonds might cause the desta-

bilization of (10-10) surfaces with In at the topmost layer [125].

11.6.2 Growth on InGaN Wetting Layer Surfaces

To address the growth processes of InGaN films, we now consider the adsorption of In

and Ga adatoms on the reconstructed surfaces. Figure 11.32 shows the estimated InN

molar fraction using Pi in Eqn (11.11) for various orientations. Here, we assume the

values of In and Ga pressures in mgas as pIn¼ 1� 10�2 and pGa¼ 3� 10�2 Torr, respec-

tively. The stable adsorption sites are explored and determined, as shown in Figure 11.32.

It should be noted that the InN molar fraction on (20-21) surface is close to 0.5, as

estimated from the In adlayer on InGaN(20-21) in Figure 11.31(C). The stable adsorption

site on the surface with In at the topmost layer is located between In–Ga dimer and

Ga–Ga dimer rows, which corresponds to the stable adsorption site of a Ga adatom on

the ideal GaN(0001) surface (T4 site). Owing to this adsorption site, the adsorption-

energy difference between In and Ga adatoms is small (less than 0.01 eV).

Furthermore, most of Ga and In adatoms adsorb on the surfaces at temperatures less

than 1030 K. Both pGa and pIn are almost unity, leading to the estimated InN molar

fraction close to 0.5.

At high temperatures, in contrast, the adsorption energy of an In adatom on the

surface without In at the topmost layer (Ga adatom on GaN(20-21) in Figure 11.31(C))

becomes small (�2.80 eV) compared with that of Ga adatom (�2.87 eV), because the

adsorption site is located above the topmost N atom. The lower adsorption energy of the

In atom results in low pIn, and then the estimated InN molar fraction at high temper-

atures becomes lower than that at low temperatures. Because both In and Ga adatoms

are attached to the topmost N adatom in the (0001) surfaces with an N adatom (N

adatom on InGaN(0001) and N adatom on GaN(0001) shown in Figure 11.31(A)), the

energy difference of �0.4 eV between the adsorption energy of In adatom and that of Ga

adatom is also apparent. However, the adsorption energies (�2.5 eV) are still low enough

for the adsorption less than 950 K. Therefore, the InN molar fraction takes a higher value,

especially at low temperatures. In contrast, the values of adsorption energy (�2.02 and

�2.38 eV for In and Ga adatoms, respectively) and their differences are quite large for

(1-100) orientation (GaN(1-100) in Figure 11.32). The adsorption of the In adatom is

inhibited due to higher adsorption energy, leading to the small values in the InN molar

fraction. Although the adsorption processes of one-monolayer InGaN film should be

verified to obtain the InN molar fraction quantitatively, the estimated molar fraction

manifests the orientation dependence of adsorption behavior, which is qualitatively

consistent with the experiments [123].
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Under the metal-rich condition employed in the DERI method, our ab initio calcu-

lations reveal that the (0001)-pseudo-(1� 1) surface, analogous to droplets consisting of

In topmost and Ga subsurface layers, is more stable than that with the topmost Ga and

subsurface In layers, even under Ga-rich conditions. Figure 11.33 shows the calculated

adsorption–desorption boundaries for various N supplies on the pseudo-(1� 1) surface
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as functions of temperature and N pressure. This suggests that N atoms can be incor-

porated on the pseudo-(1� 1) surface by 2.3 ML at growth conditions. Moreover, excess

In atoms in the topmost layer desorb with adsorption of the N atoms that are prefer-

entially incorporated between the topmost In and subsurface Ga layers to form an InN

layer on GaN at growth conditions, as schematically shown in Figure 11.33. The results

for the In composition in each layer, varying the amount of N deposition obtained by the

MMC simulation using ab initio data, are shown in Figure 11.34 for 1.7 and 2.3 ML

depositions of N to elucidate the formation of InN/GaN heterostructures. The results for

1.0 and 2.0 ML depositions of N also investigated are similar to those for 1.7 and 2.3 ML

depositions, respectively. This implies that the smaller the N deposition, the larger the

surface composition of In. This is because the strained In-N interatomic bonds are

effectively relaxed at the surface with small amounts of N deposition such as 1.7 ML,

whereas N covering the surface induces the substitution between the topmost In and

subsurface Ga to decrease strain in both Ga–N and In–N bonds [126]. Considering the

fact that small amounts of N deposition correspond to metal-rich conditions and

accumulation of excess metal on the surface, these calculated results are qualitatively

consistent with experimental findings—not only in the DERI method [118] but also by

Mosely et al. [127], who found that In surface segregation only occurs after a threshold

excess metal is accumulated.

11.7 Summary
Computer-aided calculation methods enable us to interpret and predict various material

properties from a quantum mechanical viewpoint. Assuming atomic arrangements

in materials, this facilitates computer-aided materials science such that any property

for material can be systematically predicted by using a few elementary input parameters.
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In this article, we have shown the power and applicability of ab initio calculations

and chemical potential analysis to the crystal growth for semiconductors, such as

GaAs, InAs on GaAs, GaN, and InGaN on GaN, in understanding their surface re-

constructions through predicting surface-phase diagrams and growth processes,

including adsorption–desorption and migration behavior of atoms and molecules on the

surfaces with the aid of the MC simulations. Success with the chemical potential analysis

will lead to more realistic simulations of crystal growth for various materials to predict

atomic arrangements themselves as functions of growth conditions, such as temperature

and gas pressure.

For example, polytypism in AlN grown on 4H-SiC(11-20) as a function of III/V ratio in

addition to temperature and gas pressure has been clarified by using the chemical

potential analysis [128]. The distinctive atomic arrangements were found to appear in

subsequent adsorption of Al and N atoms after N and Al predepositions, respectively.

After the N deposition, the subsequent Al adatom occupies the 4H lattice site similarly to

the results for single Al on the surface. On the other hand, the N adatom tends to form a

dimer structure with the predeposited Al. Reflecting these results, Al adatoms can easily

occupy the 4H lattice sites to form the 4H-AlN layer at a III/V ratio greater than 10. In the

range of a III/V ratio less than 0.1, the N adatoms reside in the stable interstitial sites to

form the Al-N dimer layer or intermittently migrate to the 2H lattice site to form the

2H-AlN layer. Moreover, we have successfully applied the chemical potential analysis to

more complicated investigations, such as elemental nitridation processes of corundum

Al2O3(0001) and (1-102) surfaces [129]. The calculations reveal that the structures with

substitutional N atoms beneath the surface are stabilized under nitridation conditions.

We also found that the desorption of O atoms at the topmost layer induces outward

diffusion of O atoms as well as inward diffusion of N atoms, leading to the trans-

formation into AlN films. The kMC simulations in conjunction with density functional

theory results indeed demonstrate a dependence of these chemical and structural

changes on temperature and gas pressure.

The results presented here are just an example of future prospects in the ab initio-

based approach to crystal growth. The ab initio-based approach with chemical poten-

tial analysis has been successfully applied to investigate a wide range of problems, such

as the surface structures of InP(111)A [130], AlN [26,27], GaN, and InN with hydrogen [23]

with various orientations; the incorporation of Si on GaAs(111)A [131], Mg [22], and C [24]

on GaN(1-101); Bi [132] and N on GaAs(001) [133]; and the formation of InP nanowires

[134]. Recent progress in fabrication techniques will make it possible to create various

new nanomaterials, including nanodots, nanowires, and nanocolumns, by controlling

the atomic arrangements during crystal growth. Under these circumstances, the chem-

ical potential analysis on the basis of ab initio calculations will be an essential technique

in the future of materials design to interpret and predict the dynamic changes of these

materials’ properties because of its availability of predicting atomic arrangements during

the crystal growth. We believe that the ab initio-based approach with chemical potential

analysis will lead to great advances in crystal growth for various materials.
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12.1 Overview on Methods and Goals
Today, most of the devices in electronics and optoelectronics exploit their functionality

by layers and structures deposited from the gas phase on a substrate. Usually, the

functionality depends critically on the structure of the material deposited. To gain better

understanding of the deposition process, a wide range of numerical tools has been

developed and applied. On the production scale, global heat and mass transport are

considered, resulting in the computation of the variation in layer thickness on a wafer.

Such simulations as, e.g., [1,2] are not the subject of this chapter. These global calcu-

lations are based on the knowledge of the kinetic processes at the surface or at least on

realistic assumptions (a good overview on linking different scales is given in [3]). In this

chapter, an overview on numerical methods will be given, aiming to gain a basic un-

derstanding of the surface kinetics in epitaxial growth processes. The results of such

computations will help to interpret the experimental results in terms of physics and

surface chemistry, and will eventually provide realistic input parameters for the afore-

mentioned global simulations.

The most fundamental calculations are based on ab initio methods, which are free of

input parameters. However, all ab initio methods include certain approximations.

Depending on the final goal of the computations, they might be simple or sophisticated,

resulting in low or high demand for computational time. Ab initio methods are divided in

two major groups: quantum chemical and solid-state physics simulations. Methods of the

first category are based on the Hartree‒Fock method, and used for computing the

electronic structure of molecules or agglomerates of molecules; they can also be used to

study reactions from a thermodynamic point of view (see, e.g., [4]). As indicated by the

name, the second category is for computing the electronic structure of solids and with an

extension also for surfaces. This so-called density functional theory (DFT) method is

subject of the next section. The name refers to the electron density, which is subject to

computation. In the context of phase field crystal (PFC) methods, the term density

functional method often appears with the meaning of a particle density such as atoms in

liquid and solid. This DFT should be not mixed with the one we discuss in this chapter.

The outcome of DFT calculations is the electronic structure (band structure) and the

total energy of the configuration considered. Energy barriers, e.g., for diffusion processes

are the result of differences in energies of two configurations such as the initial one and

the one of an intermediate state along the diffusion pathway. Because total energies

might be rather large (depending on the size of the system) but barriers might be small,

this presents challenges for the accuracy of the computations.

As a next step, one can include dynamics by performing molecular dynamics (MD)

calculations. The task is to solve Newton’s equation of motion for every particle in a

potential field. The first question is how to obtain the potential field. The most accurate

way would be to obtain the potential from ab initio calculations. This ab initio MD became

attractive after the important step by Car and Parinello toward an efficient computational

scheme [5]. Nevertheless, the method is very time-consuming and more appropriate for
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the computation of configurations of large molecules or dynamics of single defects rather

than for surface growth dynamics. The other possibility is to use interatomic potentials,

which are a function of the distance between two respective atoms. Still, the achievable

real time is quite short, because every vibration of the particles is included in the com-

putations. Because vibrational frequencies are about 1012–1013 1/s, one can imagine the

computational cost. Kinetic Monte Carlo (KMC) methods circumvent this by ignoring the

vibrations and using a fixed prefactor for rates of particle movements. Still, they are sta-

tistical methods and can treat processes far from thermodynamical equilibrium.

In this chapter, we will introduce only KMC but not MD methods. KMC can use

interatomic potentials in the same way as MD. In this case, one can use the so-called

off-lattice KMC as applied by some groups for specific problems [6,7]. More recently,

for off-lattice KMC, on-the-fly techniques for computing saddle points of transitions have

also been applied [8]. However, in this chapter we will restrict our discussion to on-lattice

KMC. This means all particles/atoms sit on fixed positions of a lattice (often a simple cubic

one) and obey certain rules for movements, including definitions for their energy barriers.

All types of KMC have the commonality of being serial in time, i.e., one event is

computed after the other. Thus, in case of fast kinetics, one needs to compute a huge

number of events in a given physical time. Some approaches have been developed to

circumvent these lengthy computations if one type of the processes has very fast kinetics

compared to all the others (see, e.g., [9,10]). The other drawback of the serial character of

KMC is that one cannot make use of the modern computer architectures in terms of

running the code in parallel. Contrary to KMC in lattice gas automata (LGA), all particles

sit on the nodes of a regular lattice and hop synchronously from one site to another

according to a site- and time-dependent probability (see, e.g., [11]). The time step is fixed

and defined by a reference process. The major appeal of LGA dynamics, besides natural

parallelism, is its mathematical and computational simplicity and efficiency. On the

other hand, it is based on a very simple description of the dynamics, which have to be

deduced from possibly very complex surface phenomena. LGA has been applied, e.g., to

nanowhisker growth [12]. We will not discuss this method.

A step further toward macroscopic scale is the use of phase field models. Here, the term

phase field is linked to the layer height. The height is still resolved on the atomic scale but

the lateral direction is not. Phase field models are continuous models and have a smooth

transition from one layer to the next. Phase field models have been used for studying step

dynamics. Based on the same thermodynamic concept, PFC models have been developed.

Once again, we have an atomar resolution, but in contrast to the discrete method discussed

above (MD and KMC), all fluctuations are integrated out. Thus, the time scale is diffusive

and processes can be followed for longer times than with KMC. Themain restriction of PFC

models today is the limited number of currently available energy functionals. This means a

very limited number of structures, which can be handled by this method.

Numerical simulations are not a standalone field but have to be compared to

experimental results and verified by well-defined experiments. The latter is, in general,

not an easy task, because the required tools for measurements do not work under the
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conditions of processing as they are used in numerical simulations. For instance, the

investigation of surface structures on microscopic and atomar scale is often possible

only under low-pressure/vacuum conditions. The same is true for in situ observations of

the growth process. Because of the controlled deposition of atoms, molecular beam

epitaxy (MBE) is well suited for this purpose, whereas pulsed laser deposition and the

technologically more interesting chemical vapor deposition are too complex in the

arriving particles on the surface to be a good tool for comparison with fundamental

numerical investigations. The classical method for in situ investigation of growth is

reflection high-energy electron diffraction (RHEED). Also, scanning probe techniques

such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) have

been used for in situ investigations of growth (see, e.g., [13]). However, growth kinetics

must be slow compared to the scan times. Very recently, transmission electron micro-

scope (TEM) has been adapted for in situ investigations (growth of nanowires [14],

structural reorganization of graphene [15]).

12.2 Density Functional Theory Calculations
12.2.1 Basics of the Method

When we want to describe solids or surfaces by quantum mechanical methods, we are

confronted with solving the many-body Schrödinger equation, which is challenging.

However, we can circumvent this due to the important theorem by Hohenberg and

Kohn1 in 1964 that, for the ground-state of an electron gas system, the many-body

system can be replaced by many one-electron systems with wave functions ji and

single electron energies εi [16]. Thus, we get the equation [17]:�
� 1

2
V2 þ VeffðrÞ

�
jiðrÞ ¼ εijiðrÞ with VeffðrÞ ¼ VextðrÞ þ VHðrÞ þ VXCðrÞ; (12.1)

where the effective one-electron potential Veff is represented by three terms, namely the

charged cores of the atoms (Vext(r)), the electron–electron repulsion (Hartree potential

VH), and the exchange-correlation potential (Vxc). The ground-state charge density is

given by nðrÞ ¼ PN
i¼1jjiðrÞj2, where N is the number of electrons N¼ !dr n(r). Vext does

not depend on n(r), but is given by the charge and positions of the core of the atoms. The

two other potentials are given by

VHðrÞ ¼ 1

2

Z
dr0

nðr0Þ
jr� r0j; VXCðrÞ ¼ dEXC½nðrÞ�

dnðrÞ : (12.2)

The exchange-correlation energy Exc contains the many-particle corrections (correlation

energy) and the correction because of Pauli’s principle (exchange energy). In particular, EXC
has to be approximated (see below), which is the only weakness at this point. A self-

1Walter Kohn received the Nobel Prize for Chemistry in 1998 for his pioneering work in density

functional theory.
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consistent solution to the problem can be obtained by solving Eqn (12.1), getting the en-

ergies and wave functions, and from the latter, the electron density n(r). With this n(r), new

potentials VH and VXC can be computed and Eqn (12.1) can be solved again. This is repeated

until there is no change up to numerical accuracy. The total energy of the system is given by

E ¼
XN
i¼1

εi þ 1

2

X
jsi

ZiZj��Ri � Rj

��� 1

2

Z
nðrÞnðr0Þ��ri � rj

�� drdr0 þ
�
EXCD

Z
dr VXCnðrÞ

�
: (12.3)

Zi and Ri are the charge and the position of the core of the i-th atom, respectively.

In a pure bulk crystal, we have a periodicity of unit cells in all three spatial directions

represented by translational vectors ai. Thus, we have a translational invariance for the

effective potential in Eqn (12.1) as Veff(r þ RT)h Veff(r) employing the lattice vector

RT¼ n1a1 þ n2a2 þ n3a3, where ni is any integer number. This means that any one-

electron wave function can be represented by the product of an exponential factor

with the wave vector k and a periodic function ui,k(r þ RT)hui,k(rt):

ji;k

�
r
� ¼ eikrui;k

�
r
�
: (12.4)

This function is named the Bloch function, and it fulfills:

ji;k

�
rþ RT

� ¼ eikrji;k

�
r
�
: (12.5)

Equation (12.1) can be rewritten as:�
1

2

�
K � iV2

�þ VeffðrÞ
�
ui;kðrÞ ¼ εi;kui;kðrÞ: (12.6)

The energy eigenvalues εi,k of each level i changes smoothly with increasing wave

number k. The entire volume can be separated into polyhedral cells (Voronoi cells)

around each atom, called Wigner‒Seitz cells. Such a cell is defined by polygons, which

intersect the connection from the atom considered with an adjacent one.

Now, we wish to shift to the reciprocal space and introduce the reciprocal lattice

vector G¼ l1b1 þ l2b2 þ l3b3, where ai$bj¼ 2pdij. Then, by expanding ui,k in a Fourier

series, the wave function can be expressed as

ji;k ¼ 1ffiffiffiffi
U

p
X
G

~uiðkDGÞeiðkDGÞr; (12.7)

where U is the volume of the unit cell and

~ui

�
k þ G

� ¼ 1ffiffiffiffi
U

p
Z
cell

e�Grui;xðrÞdr (12.8)

The Kohn–Sham equation in the reciprocal space reads:

X
G0

��
1

2
ðk þ GÞ2 � εj

�
dGG0 þ ~V eff

�
G0 � G

��
~uj

�
k þ G0� ¼ 0; (12.9)

where the effective potential in real and reciprocal space are related via

VeffðrÞ ¼
P
G

~V effðGÞ eiGr:
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Since ji,k(r)hji,kþG(r), one can confine the wave vector k to the Wigner–Seitz cell,

also called first Brillouin zone in this context. Formally, the Kohn–Sham equation has to

be solved in the entire Brillouin zone and, e.g., the charge density must be obtained by

integrating over the Brillouin zone:

nðrÞ ¼
X
j

Z
BZ

dk j�
j;kðrÞjj;kðrÞ: (12.10)

The integral must be replaced by a finite sum choosing a representative set of k-

points (S(k)) and associate a specific weight f (k):

nðrÞ ¼
X
j

X
sðkÞ

X
G

f ðkÞ��~ujðk þ GÞ��2: (12.11)

Monkhorst and Pack set up rules for S(k) and f(k) as a function of the number of

integration points, which are commonly used [18].

One also wishes to limit the number of plane waves used in the expansion (12.7), which

is done by choosing amaximumkinetic energy 1/2(k þ G)2, normally called cutoff energy.

For many properties, only the valence electrons are of interest. In the “pseudopo-

tential” approach, the core electrons are completely ignored in the self-consistent

computational scheme. Thus, instead having a core potential in Eqn (12.1), Vext(r) is

represented by the superposition of individual, nonoverlapping atomic pseudopotentials

Vi(r) as Vext(r)¼ Sl wl(r –Rl), where Rl are the coordinates of atom l. A further step toward

saving computation time was the introduction of ultrasoft pseudopotentials by

Vanderbilt [19]. However, with increasing computer power, full potential codes have

become more attractive.

A different approach for solving the Kohn–Sham equations is to divide the space into

a potential spherical part around each atom (muffin-tin region), where the Schrödinger

equation can be written in spherical coordinates. Out of this region the potential is

constant. This introduces an adjustable parameter, namely the radius of the muffin-tin

region. The wave function expansion (augmented plane waves) depends on the region:

j
MT;in
k ðrÞ ¼ eikR

X
lm

AlmYlmðqr;frÞRlðjr� RjÞ (12.12)

j
MT;out
k ðrÞ ¼

X
G

Ck

�
G
�
eiðkþGÞr: (12.13)

By this definition, the augmented-planewave method (APW) is an all-electron method

but not a full potential one. Within the muffin-tin radius, the symmetry of the potential is

fixed; it is spherical. The APW method is suitable to study excited states, where the inner

electrons might contribute, but it is not as computationally heavy as the full-potential

planewave method.

A subject of research and controversy is the proper definition of the exchange-

correlation potential EXC[n(r)]. The choice depends on the system of investigation (meta-

llic, ionic, covalent, van der Waals character) and the properties to be computed (energy

barriers, band gaps, optical properties, etc.). The most straightforward approach is to use a
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homogeneous electron gas, which gives the local density approach (LDA). This is good for

systemswith smoothlychangingelectrondensity. In the generalizedgradient approximation

(GGA), also the local gradient of the electron density is taken into account for the functional.

In most cases, GGA underestimates bond strengths, whereas LDA overestimates them.

Therefore, LDA gives smaller lattice constants and GGA larger ones than experimentally

observed. Because LDA and GGA are available in parameterized form, the computational

effort is negligible. Another approach stemming from the world of quantum chemical cal-

culations is the hybrid functional B3LYP [20]. It contains an exact exchange potential from

Hartree‒Fock ðEHF
x Þ but on the other hand has three mixing parameters for different con-

tributions (the subscripts c and e denote correlation and exchange, respectively):

EB3LYP
xc ¼ ELDA

xc þ a0

�
EHF
x � ELDA

x

�þ ax

�
EGGA
x � ELDA

x

�þ ac

�
EGGA
c � ELDA

c

�
: (12.14)

The B3LYP functional became fashionable during the last years, but exhibits severe

problems for certain systems (see, e.g., [21]). Another approach is the self-interaction

correction (sic), which is useful for systems with spatially localized electron charges,

as it is especially the case for d- and f-states (see, e.g., [22]). Depending on the approach

in detail the method can be computationally extremely heavy.

Another approach does not add much computational cost, but introduces another

parameter: the Hubbard parameter U. It might be difficult to find a proper value.

Corrections to LDA and GGA are of great importance for systems with impurities as, e.g.,

hydrogen on the surface. For instance, the position of the electron impurity level below or

above the conduction band minimum will define the character of the surface. In the latter,

it will become metallic as it was predicted, e.g., for H/SrTiO3 [24]. Because the band gap is

over- and underestimated in LDA and GGA, respectively, the conclusion might be different

(and wrong) depending on the method used. At the end, we shall mention that recently the

random phase approximation has been used and tested for crystalline solids [25].

12.2.1.1 Surfaces
So far, the method can be applied to bulk material with periodic boundary conditions in

all three directions. To treat surfaces, one has to introduce a vacuum, represented by

plane waves. The system is still periodic in z-direction but now with a slab of certain

number of atomic layers and a vacuum of certain thickness on both sides of the slab. In

this supercell approach, two new parameters are introduced: the number of layers in the

slab NL and the thickness of the vacuum DVac. In principle, one likes to obtain the result

for a quasi-infinitively thick slab and vacuum. From a computational point of view, the

vacuum is not the problem, but the slab. A typical procedure is to run the job for an

increasing number of atomic layers and plot the energy versus the number of layers. One

also has to keep in mind that the atoms near the surface will rearrange their positions

because of the symmetry breaking by the surface. Thus, one needs to let the position of

the atoms in a certain number of surface layers free to relax at least in z-direction.

However, atoms might change their positions also in the x/y-direction, as is the case for

surface reconstructions. In other words, one has to perform several runs of DFT
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calculations to obtain the configuration of minimum energy. This makes these types of

computations rather time consuming.

As an example for a configuration of surface computation in Figure 12.1, the situation

for SrTiO3 is shown. In contrast to, e.g., Si, where for low index surface planes upper and

lower surfaces are identical, for SrTiO3 it becomes more complicated. In (001) direction,

SrTiO3 consists of alternating layers of SrO and TiO2 (see also Figure 12.2). Thus, the

surface can either be SrO-terminated or TiO2-terminated. From a stoichiometric point of

view, the upper surface should be SrO-terminated and the lower TiO2-terminated or vice

versa. However, the electron density is different over the SrO layer than over TiO2 layer.

Consequently, when defining the slab in the above-mentioned manner, an artificial

dipole moment will be the result. Therefore, a mirror symmetry should be used with the

same termination on both sides, as shown in Figure 12.1.

12.2.1.2 Order of Computations
Exact quantities of bulk properties, such as, e.g., the lattice constant, depend critically on

the details of the method used. For instance, the choice of the exchange-correlation

x y

z

DVac

NL

DVac

DVac

NL

DVac
x y

z

Figure 12.1 Model for SrO-terminated (left) and TiO2-terminated (right) SrTiO3(001) surface. The model is periodic
in all three directions. In the slab, there are five layers. On the left side, three SrO and two TiO2 layers and on
the right side, three TiO2 and two SrO layers. The atoms in the inner three layers are fixed in their positions
according to the bulk calculations. All other atoms can relax into the positions of minimum total energy. For a
1� 1 surface cell, only the rimmed atoms are in the supercell (10 atoms left and 13 atoms right). Sketch based on
Figure 3.5 in [23].
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functional might have a significant influence on the results. For this reason, it is

necessary to perform calculations for the bulk prior to start with computations for

the surface. In this step, properties of the bulk should be tested against the number of

k-points and the cutoff energy for plane waves. For our purposes, the most important

properties are the formation energy and the lattice constant.

In the following, we will consider SrTiO3 as the substrate material.For this particular

material, the formation energy is given by:

EForm
SrTiO3

¼ EBulk
SrTiO3

� ESr � ETi � 3

2
EGas
O2

(12.15)

Thus, one needs to compute a Sr and Ti bulk crystal as well as an oxygen molecule in

vacuum. For all these three computations, one uses a fixed structure, i.e., a fixed lattice

constant (may be taken from literature data) and a fixed bond length for the oxygen.

Because the bulk modulus depends on the spatial derivates, it is more sensitive than

the lattice parameter itself. One can also test the influence of the cutoff energy on the

forces in the oxygen molecule; the bond length is kept fixed by definition. In Figure 12.3,

one can see their dependence on the cutoff energy. The convergence behavior is

different for different exchange-correlation functions as, in particular, for LDA (left side)

and PBE (right side). PBE is one type of GGA functional. This underlines the necessity to

test the convergence once again when changing the exchange-correlation function.

The output of the bulk calculations is the lattice constant a0, which should be used for

all subsequent calculations with surfaces and adatoms. Furthermore, one knows the

minimum number of k points and plane waves.

12.2.2 Surface Structure and Reconstruction

The first point to be investigated is the structure of the pure surface. The surface atoms

have only a part of the bondings as in the bulk and will therefore rearrange with respect

to their bulk positions. In the simplest case, there will be a shift of the positions only in

the vertical direction. But it might also be necessary to rearrange atoms in the lateral

direction to minimize the energy of the system. This can lead to a reconstruction of the

surface.

a0

a0

SrO-layer

a0

TiO 2-layer

xy

z

oxygen

Sr

Ti

Figure 12.2 Structure of SrTiO3 at room temperature ðPm3mÞ.
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One of the classical examples in semiconductors is the 7� 7 reconstruction of Si(111)

surface. Many models have been developed and many experiments have been per-

formed. However, the latter were exclusively experiments in the Fourier space and the

large unit cell, which contains 49 atoms at the surface for a 7� 7 reconstruction, rep-

resents a challenge both for resolution and for analyzing the data. The first real-space

determination was done in 1982 [26]. It became possible by the invention of the scan-

ning tunneling microscope (STM) by Binnig and Rohrer2 a year before [27]. The inves-

tigation of the Si(111) surface was one of the first applications of the new equipment,

which underlines the importance of this kind of reconstruction during that time. The

large unit cell also presented a major challenge for density functional calculations.

Nearly 10 years after the experimental clarification of the structure, the system was

investigated by means of ab initio molecular dynamics [28]. The breakthrough was due

to the emergence of massively parallel computers. Brommer et al. considered 1,000

atoms and used 16,384 one-bit processors in a Thinking Machines CM-2.

Another example is the investigation of the complex surface structure of Fe304(001).

A quantitative analysis is a big challenge due to the large number of atoms involved, and

interpretation of the outcome of low-energy electron diffraction (LEED) is very difficult.

In this case, DFT was used to support the data analysis from LEED measurements [29].

Through repeated cycles of DFT and LEED refinement, the researchers obtained a good

overall agreement between the two methods, both with respect to size and direction of

the relaxations.Now, we return to our example SrTiO3 and consider the (001) plane.

Thus, we have a stack of SrO and TiO2 layers as shown in Figure 12.2 and the surface can
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Figure 12.3 Lattice constant a0 and bulk modulus B of the SrTiO3 crystal, as well as the force F on one oxygen
atom of the oxygen molecule as a function of the planewave basis set. Two different exchange-correlation
potentials were used: LDA (left), and GGA–PBE (right). Reprinted from Figure 3.3 in [23].

2Gerd Binnig and Heinrich Rohrer received the Nobel Prize in 1986 for the development of STM

together with Ernst Ruska for his invention of the electron microscope.
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be either SrO-terminated or TiO2-terminated. The outmost cations move toward the

bulk, so that the distance between the cations of the topmost layer and the layer below

decreases with respect to the bulk distance (Dd12 is negative, see Table 12.1). The dis-

tance between the cations of the second and third layer is increased (Dd23 is positive),

and even on the layer below an effect on the positions is detected. Furthermore, the

oxygen atoms and cations of one layer are no longer at the same height as in the bulk.

The oxygen atoms are shifted, in the top layer outward, and in the second layer inward.

These shifts are called “rumplings” and are denoted by si (see Table 12.1). There has been

some discussion on surface reconstruction of SrTiO3 surfaces, because the interpretation

of some experiments suggests such rearrangement of atoms [32,33]. However, almost all

DFT calculations exhibit unreconstructed surfaces as the ones with lowest energy. It has

to be noted that DFT calculations have been performed for a surface versus vacuum and

formally at 0 K. In experiments, the deviation from these ideal conditions might have an

impact on the results.

12.2.3 Adatoms

When we wish to investigate the growth kinetics in epitaxial growth, the first step is to

consider adatoms on the surface. This implies the next challenge in computation

because we might need many unit cells in x-y-direction depending on the adatom

density. The simplest situation occurs for a full layer of atoms—the system can be

restricted to one unit cell in x-y-direction.

As an example, we consider an oxygen atom adsorbed on a SrTiO3(001) surface. As

already seen, there are two possibilities of terminations: TiO2 and SrO termination.

In Figure 12.4, the configuration with lowest energy is shown for the case of a 2� 2 cell.

The first thing to be observed is the different position of the oxygen atom with respect to

that in the bulk (the bulk position is indicated by a light grey atom with dotted rim). The

bonding is very similar to that in an O2 molecule. This behavior holds for both termi-

nations. In Table 12.2 the binding energy 1
2 ðEsurf

O@SrTiO3
� Esurf

SrTiO3
� E

gas
O2

Þ is listed for different

Table 12.1 DFT Computations for the SrTiO3(001) Surface. Change of Vertical
Cation–Cation Distances with Respect to Bulk Values (Ddij. Shifting si (“Rumpling”) of
the Oxygen Atoms with Respect to the Cations of the Same Layer

SrO-term Dd12 [%] Dd23 [%] Dd34 [%] S1 [Å] S2 [Å]

LDA [30] �14 þ5 �3 0.23 �0.05
PBE [30] �15 þ5 �5 0.22 �0.05
LDA [31] �14 þ5 0.22

TiO2-term Dd12 [%] Dd23 [%] Dd34 [%] S1 [Å] S2 [Å]

LDA [30] �9 þ5 �3 0.07 �0.12
PBE [30] �13 þ5 �2 0.09 �0.14
LDA [31] �7 þ3 0.07
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configurations. Esurf
O@SrTiO3

and Esurf
SrTiO3

are the total energies of the surface with and without

the oxygen adatom. E
gas
O2

is the total energy of the gas phase molecule computed in an

18� 18� 18 Å supercell with the experimentally measured bond length. The factor 1/2

accounts for the fact that we have a surface on both sides of the slab. For the

TiO2-termination (EIB), the binding energy is always positive, i.e., a reaction of the SrTiO3

surface with O2 is endothermic. For the SrO-termination, the binding energy is slightly

negative except for a full coverage (1� 1 unit cell). The influence of the slab thickness

can be clearly seen.

To find the most stable surface configuration, i.e., the configuration with minimal

energy, one has to perform runs for different positions. From the results, one can

Ti(1)O(3)

O(1)O adO(2)

xy

zIA)

O(2)

Ti(2)

Ti(1)O(1) O ad

O(3)

xy

zIB)

Bulk Bulk

Figure 12.4 Positions of an adsorbed oxygen atom on both terminations of SrTiO3. The adsorbed oxygen is
bonded to the oxygen of the topmost layer in a similar way as in an oxygen molecule. The dotted grey ball
indicates the position of an oxygen atom in the bulk. The situation is plotted for a 2� 2 surface cell. Figure 4.1
from [23], slightly extended.

Table 12.2 Binding energies for O on SrTiO3(001) as a function of
coverage and slab thickness

Surface Unit Cells NL EIA bridge I EIB Bridge II

1� 1 7 0.28 — 0.69 —

9 0.28 — 0.69 —

11 0.27 — 0.70 —

2� 2 7 �0.10 0.26 0.54 0.66
9 �0.11 — 0.45 —

11 �0.13 — 0.38 —

3� 3 7 �0.10 — 0.33 —

9 �0.15 — 0.30 —

11 �0.20 — 0.29 —

13 �0.22 — — —

Taken from Table 4.1 in [23].
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construct a potential energy surface. The potential energy surfaces are shown in

Figure 12.5 for both terminations. On the left hand, the white rhombs indicate the

position of oxygen atoms for which calculations have been performed. It is note-

worthy that, at least in this case, it is essential to compute the potential energy surface

(PES) by means of many runs to find the most stable surface structure. As shown in

Figure 12.4, the oxygen atom on top is not found in a position of high-symmetry.

Thus, a restriction of computing the structure for adatoms in highly symmetric po-

sitions might lead to invalid conclusions as occurred, e.g., in [34]. An accurate PES is

even more important if one likes to identify the diffusion path and its energy barrier

(see next subsection).

12.2.4 Adsorption, Dissociation and Diffusion

Adsorption, desorption, dissociation, and diffusion are dynamical processes and

therefore cannot be tackled by DFT directly. However, DFT computations can

Figure 12.5 Potential energy surface for an oxygen atom on a SrO-terminated (top) and a TiO2-terminated
(bottom) surface. The white rhombs indicate the positions of the oxygen adatom, for which calculations have
been performed. Reprinted from [30] with permission of Elsevier.
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provide an energetic landscape, which helps to identify pathways for the dynamical

processes.

In the last subsection, it was shown that the binding energy for an oxygen atom is

only slightly negative for the SrO-termination and even positive for the TiO2-termina-

tion. Thus, it is very unlikely that an O2 molecule will dissociate on a perfect SrTiO3

surface. On the other hand, in reality, an atomically perfect surface is rather unusual.

According to DFT calculations of oxygen vacancies in bulk SrTiO3, the energy of such

defects is quite high [35]. Thus, one can expect that an oxygen molecule can easily stick

to a vacancy position on the surface.

A similar behavior has been observed for oxygen adsorption on rutile TiO2(110)

[36]. Adsorption on a perfect surface is strongly endothermic (binding energy is

positive), whereas on a surface with one vacancy per unit cell, the adsorption is

exothermic (binding energy is negative). From the viewpoint of growth kinetics, it

would be desirable to compute the adsorption at a step edge. For instance, adsorp-

tion at step edges might be preferred with respect to that on terraces, which would

drive the system toward a step growth mode. However, because of the periodic

boundaries in DFT calculations, one needs a large lateral cell to mimic a step edge,

which requires considerable computer resources. Atoms can also diffuse on the

terrace and finally attach a step edge. The computation of a diffusion barrier by DFT

is by far not as computationally heavy as the adsorption at a step edge. We continue

with oxygen on a SrTiO3(001) surface. In Figure 12.5, the potential energy surface for

an oxygen adatom on a 2� 2 surface unit cell is plotted. The surface was constructed

by computing the binding energy for a set of predefined locations (see white

rhombs). From this figure, the minimum saddle point of a diffusion path can be

found. By this method, one gets 0.81 and 0.67 eV for the diffusion barrier of an

oxygen atom to its neighboring stable position for SrO- and TiO2-terminated sur-

faces, respectively.

Instead of searching the diffusion path by hand after constructing the PES, one can

employ the so-called nudge elastic band method [37]. The algorithm is searching the

path of minimal energy between two surface configurations. This reduces the amount of

computations if the surface processes are more complex than the diffusion of a single

atom like oxygen. As an example, we consider the diffusion of an OH molecule on the

SrO-terminated surface of SrTiO3 (see Figure 12.6). Starting point is an adsorbed H2O

molecule (reaction coordinate 0.0). One H atom of the water molecule is binding to a

surface oxygen atom. The binding energy is negative and therefore adsorption of a water

molecule on a perfect SrO-terminated SrTiO3(001) surface is very likely, in contrast to the

adsorption of an oxygen molecule. Afterward, the water molecule can dissociate, leaving

one hydroxyl group in place and another moving to the neighboring site (IIA2) in

Figure 12.6. For this diffusion, an energy barrier of about 1 eV has to be overcome

(DEIIA12). The energy barriers for a further diffusion of the hydroxyl group are signifi-

cantly smaller than the very first one.
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12.2.5 Ab Initio Thermodynamics

In DFT calculations, neither the surrounding atmosphere (partial pressures, tempera-

ture) nor the temperature of the substrate itself is considered. This gap to real systems

can be tried to be closed by ab initio thermodynamics.

The interfacial energy per unit area is given by

gint ¼
"
GintðT ;pÞ �

X
A;B;.:

NnmnðT ;pÞ
#
=2S: (12.16)

Gint is the Gibbs energy of the contents of a supercell containing two interfaces, mn is the

chemical potential of component n, and Nn is the number of atoms of component n in

the supercell. The termination on both sides of the slab is expected to be identical with a

surface area S. As an example, we consider the adsorption of water on SrTiO3. In this case

we have

gint ¼
1

s



GH2O@surf � Gsurf �NH2OmH2O

�
: (12.17)

GH2O@surf and Gsurf are the Gibbs free energies of the surface covered with NH2O water

molecules per surface area S and of the corresponding clean surface, respectively. The

difference in these Gibbs free energies can be identified with the difference in the total

energies obtained from the DFT calculations. By this procedure, we neglect differences

in the vibrational energy and in the configurational entropy. We are left with the

computation of the chemical potential mH2O of the water vapor, which can be written as:

mH2O
¼ EH2OðgasÞ þ DmH2O

�
T ;pH2O

�
: (12.18)

The total energy contribution EH2OðgasÞ can be computed by DFT and the relative

potential DmH2O is split in the relative potential at the standard condition of
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Figure 12.6 Energy profile for surface diffusion of the protruding O1-H1 hydroxyl group over the SrO-terminated
surface. Reprinted from [38] with permission of APS.
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pH2O ¼ 1 barhp0 and the change due to different pressure according to the ideal–gas

relation:

DmH2O

�
T ;pH2O

� ¼ DmH2O

�
T ;p0

�þ kBT ln

�
pH2O

p0

�
: (12.19)

The relative potential at the standard condition can be derived from tabulated values

for the enthalpy H and entropy S:

DmH2O

�
T ;p0

� ¼ 

H
�
T ;p0

��H
�
0 K;p0

��� T


S
�
T ;p0

�� S
�
0 K;p0

��
: (12.20)

Data for standard enthalpies and entropies for many elements and compounds are

provided by, e.g., the National Institute of Standards and Technology (NIST) also via

internet: http://kinetics.nist.gov/janaf/.

In Figure 12.7 the surface energy is plotted as a function of the chemical potential of

water, which can be translated into a partial pressure at a fixed temperature. The dotted

grey boxes indicate the region above the H2O-rich limit, i.e., where the present approach

assuming equilibrium with water vapor is no longer strictly applicable. For a

SrO-termination (left), the surface energy becomes negative before reaching this region;

i.e., the calculations predict that a coverage with H2O is stable up to a coverage of 25%.

A full coverage is unstable (line for [1� 1]). The plain blue background boxes mark the

region of gas-phase conditions probed by Iwahori et al. in their friction force micro-

scope (FFM) experiments [39]. On a TiO2-termination, water adsorption is not

stable even at a coverage of only 11%. This observation corresponds with the results of

Iwahori et al.

Another example is the stability of the SrTiO3 and its surfaces under different vapor

conditions of oxygen and different chemical potentials of Sr. In experiments, the latter is

provided by atomic sources (MBE), by fragments of a target (PLD), or metalorganic

compounds (MOCVD). In all these cases, no direct link between experimeneal condi-

tions and chemical potential can be made. Only qualitatively a low chemical potential
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Figure 12.7 Stability of water adsorption on the two terminations of SrTiO3. Reprinted from [38] with permission
of APS.
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Dmsr means poor Sr and Ti rich conditions. In Figure 12.8, the phase diagram for the

system Sr, Ti, and oxygen is shown. At low oxygen pressures, a titanium crystal is stable

as long as the Sr is not provided in excess. In an intermediate region, SrTiO3 is stable

(region boundary is marked by a white line). Interestingly, the TiO2-termination is

thermodynamically stable only in a very narrow region (area with white dots) in con-

trary to the SrO-termination. Nevertheless, the preparation of SrTiO3 surfaces using

buffered HF solution yields a TiO2-terminated surface [40]. Strontium reacts much

easier with the solution than Ti does. The SrO-terminated surface is stable at atmo-

spheric pressure and the conditions of typical deposition experiments. This is not

necessarily in contradiction to the theoretical study, because the conversion from a SrO-

to a TiO2-terminated surface might be kinetically hindered. Kinetics were not taken into

account in the considerations above. In principle, one can go beyond this equilibrium

situation by employing the KMC method (see next section), and using this, kinetic ef-

fects can be included. Using the data obtained by DFT for the KMC calculations, one

replicates the phase diagram by DFT. For instance, this was shown for the surface of

LnMnO3 in an oxygen atmosphere [41]. The results are shown in Figure 12.9: the left is

the result of DFT thermodynamics, where (B) and (C) represent equilibrium and

metastable situation, respectively.

DFT, the middle of KMC at equilibrium, and the right with KMC representing a

metastable situation. At low temperatures, a coverage with oxygen atoms is stable over

wide range of O2 pressure. However, the dissociation is kinetically hindered and, in re-

ality, one will have a metastable situation as in case (C). The surface is covered by

molecular oxygen at low temperatures.

The gas atmosphere might not influence only the surface termination but also the

surface structure, i.e., different reconstructions can occur depending on the partial

pressures. As an example, we refer to Wang et al. and their calculations for a-Fe2O3

(0001) [42].
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12.3 Kinetic Monte Carlo Simulations
12.3.1 Introduction of the Method

With the help of KMC methods, one can study the dynamics of a system on atomistic

scale, typically in situations far away from equilibrium. First of all, one has to distinguish

between off-lattice and on-lattice methods. In the latter, a fixed grid is given and atoms

can only move from one site to another. Such an on-lattice approach is not the best

choice for treating defects. In an off-lattice approach, the atoms are not sitting on a rigid

grid but can rearrange within a potential field. As in MD simulations, potential models

are used to define the interaction of the atoms. Also, the treatment of heteroepitaxy, i.e.,

including effects of strain, is much more natural as in the case of on-lattice KMC (see,

e.g., [7,43]). However, the use of a potential has two drawbacks. First, the computational

requirements are drastically increased, and often calculations are restricted to 1 þ 1

dimensions. Second, potentials like Lennard‒Jones or Buckingham are good approaches

to reproduce bulk properties, but often fail for surfaces. In on-lattice KMC, rules are set

up for defining movements and their energy barriers. In principle, there is no limit in

complexity, but the crucial point is to relate the heuristic model to reality. Data for the

input might come from DFT calculations as described in the previous section, or from

experimental measurements. A different procedure is to perform a parameter study and

compare the results with experimentally observed ones to find the realistic set of

parameters.

12.3.2 Kinetic Monte Carlo Simulation of Deposition from Gas Phase

The KMC method is a statistical method taking into account all possible processes at the

surface at a certain time. Let us assume that the entire system (substrate þ adatoms) has

the configuration citl at iteration it1. In the next update, the configuration will change to

cit1þ1. The transition from citl to cit1þ1 has a probability P(citl/ cit1þ1). As mentioned
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Figure 12.9 Phase diagram for the MNO2-terminated LnMnO3 surface in oxygen atmosphere. Three
different kinds of computations have been applied: (A) DFT thermodynamics (B) and (C) kinetic Monte Carlo,
whereas (B) and (C) represents equilibrium and metameta-stable situation, respectively. Reprinted from [41] with
permission of ACS.
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above, all possible processes are taken into account, therefore the new configuration

cit1þ1 has to be picked up from a large set of different configurations. For instance, an

adatom might diffuse in four different directions by moving from an adsorption site to

another, or it can desorb. Thus, in total there will be five new configurations, and each

transition might have its own probability. If there are N new possible configurations, we

have N probabilities Pn(citl/ cit1þ1), where n denotes the process. The probability is

given by the activation energy for the process En and the thermal energy:

Pn ¼ expf�En=kBTg: (12.21)

The concept of configurations c has roots in classical Monte Carlo simulation and its

master equation. The basics of the dynamical Monte Carlo methods can be found in

[44,45]. In the original concept, there was only one time scale; in all processes, the particles

had the same frequency v in their potential wells. Typically, it is vz 10l2—10l3 s�1. In

principle, v can be computed by DFT calculations. However, the frequencies might not be

unique. Therefore, we proceed using rates Rn¼ vnPn rather than probabilities.

To pick up a process, one introduces the relative rate

dRn ¼ Rn=
XN
n0¼1

Rn0 ; 0 � dRn � 1: (12.22)

The process ð~nÞ is chosen randomly by

X~n�1

n0¼0

Rn0 < N rand �
X~n

n0¼0

Rn0 ; (12.23)

where 0<Nrand< 1 is a random number. Formally, R0h 0. This procedure is visualized

in Figure 12.10. It should be noted that also processes with a high activation barrier and

consequently low rate might occur by this procedure, which underlines the statistical

character of KMC. Adsorption can be also treated in this framework. If F is the rate of

particle impingement from the gas phase on the surface, the rate for the adsorption

process is

Rads ¼ F S; (12.24)

where S is the sticking coefficient. The sticking coefficient can be defined locally,

Event 1
Event 2

Event 3
Event 4

Event 5
Event 6

Event 7
Event 8

0 1
Random
number

Figure 12.10 Selection of an event in KMC calculations. The arrow indicates the number computed by the random
number generator. It is more probable that the arrow hits an event with a high rate than one with a low rate.
However, an event with a very small rate might also occur.
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depending on the local configuration. For instance, if the adsorption of an O2 molecule is

not possible at a certain site, S¼ 0 and thus Rads¼ 0 at this site.

Once a process is picked up, the particle will be moved according to this process and

the new configuration is stored. This is one Monte Carlo step. We still have to access a

time to this process and link it to the real world. The time is incremented by

Dt ¼ �ð1=PRnÞln N 0
rand; where 0 < N 0

rand < 1 is a random number.

In practice, the random numbers will be generated numerically by so-called

random number generators. For realistic results, the quality of the random gener-

ator is essential; see, e.g., discussions in [46]. One run of a KMC will give one possible

evolution of the system. For a reasonable statistic, one has to perform several runs

using different initializations for the random number generator. Depending on the

system, the outcome of different runs might be quite different, at least at intermediate

stages when the system is far from equilibrium. An example is shown in Figure 12.11

for a system InAs/GaAs, as two runs with the same parameters but different

initialization.

12.3.3 On-Lattice KMC

As mentioned in the introduction, we will deal only with on-lattice KMC. In this model,

particles sit on predefined sites of a regular lattice. The simplest case is a simple cubic

lattice. The energy for a process En is defined in terms of the neighboring atoms.

A typical definition reads

Diffusion: Ediff ¼ ES þ Eneigh þ EES (12.25)

Desorption: Edes ¼ ES þ Eneigh þ DEdes: (12.26)

Es is the binding energy to substrate, thus defines the diffusion coefficient on a bare

terrace. Eneigh is the energy to neighbor atoms in the same layer, which can be set in

(A)

(B) 

θ = 0 .5 ML θ = 7 ML) θ = 2 ML θ = 10 ML

Figure 12.11 The results of two runs with the same physical parameters but different initializations of the
random number generator (A) and (B) are shown at different stages. In case (B), a small island is formed, which is
growing fast in height. Visualization was done by VESTA [47].
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simplest version as Eneigh¼NEn, where N is the number of neighbors and En is the

binding energy between two neighbor atoms. At steps, there might be in addition an

Ehrlich–Schwoebel barrier, represented by EES. The Ehrlich–Schwoebel barrier lowers

the probability for a particle on a terrace to hop down at a step edge to the lower terrace,

compared to the diffusion on the terrace itself. For desorption, one needs to overcome

an additional energy DEdes. Typically, on-lattice KMC is restricted to the solid-on-solid

(SOS) model, i.e., no overhanging is allowed. In the SOS model, particles move to the

adjacent grid site occupying the position on the topmost particle. Thus, no vacancy can

be created.

KMC handles nucleation on a plane or terrace intrinsically. All surface energies are

defined by the interaction energies between the particles. Because normally only nearest

neighbors and partly next-nearest neighbors are taken into account, the interaction is

short range. However, this is a question of defining the particular model and not a

problem of the KMC method in general.

Homoepitaxial growth of silicon is a simple example, because only one type of atom is

involved. However, the Si(001) surface obeys a 2� 1 surface reconstruction, i.e., the Si

atoms are arranged in dimer rows. Hence, the energy contributions are different for atoms

along the row ðEjjÞ and normal to the row ðEtÞ: Ediff ¼ ES þNjjEjj þNtEt þ Edim [49]. Edim

is the additional energy for atoms arranged in dimers. By comparing computed and

measured island densities Cavalotti et al. optimized the energy parameters [48]. For

different substrate temperatures, different growth modes can be observed, as depicted

in Figure 12.12. The simulations started from a surface with two steps of one atom

distance. Still, there are periodic boundary conditions in both lateral directions. When

an atom is leaving the domain at the right-hand side on a lower terrace, it will reenter

on the left-hand side on the upper terrace and vice versa. For the two cases with high

temperature, a step-flow mode is observed and the steps prevails throughout the

deposition. For lower temperatures, diffusion is too slow for the deposition rate of

1 ML/s and the surface becomes rough. In a technical process, silicon is not provided

by an atomic source as in MBE but as silane (SiH4). Consequently, also hydrogen will

adsorb on the surface. Configurations and energies have been computed by DFT

calculations (for details, see [3]). KMC calculations showed that at low temperatures,

the surface is mostly covered by hydrogen, which will hinder further growth of the

silicon layer. One outcome of the KMC calculations is the growth rate, which can enter

a global simulation. A global simulation comprises the reactor aiming to compute the

change of the layer thickness on a wafer as a function of the process time. Vice versa,

temperature and deposition rates enter the KMC model. Such a coupled model can

recover the experimentally observed growth rates of runs with different process

parameters very well [3].

So far, we have dealt with a system of one atom type only. For instance, treating III-V

compounds such as GaAs, we have two types of atoms. However, in most KMC simu-

lations, GaAs is treated as one particle. This reflects the phenomenological nature of

KMC, which in the end should mimic the real growth dynamics. Systems of III-V
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compounds have been mainly investigated, aiming at understanding the formation of

quantum dots. The 3D growth is induced by strain and will be discussed in the next

subsection.

Oxides are another interesting system with a variety of applications. One example

in which KMC was applied is the homoepitaxy of MgO. In this system, the atoms

O and Mg and their movements in terms of diffusion and rotation are considered

[50]. The latter results in a vacancy diffusion. The energies for the processes have

been computed before by DFT calculations. With such a KMC model, one can, e.g.,

study how perfect the layers are in terms of filling up under different process con-

ditions such as surface temperature and pressure (see Figure 12.13). The higher

the pressure, the higher the impingement rate on the surface and, consequently, the

filling ratio is lower. A higher temperature enhances the diffusion and leads to a higher

filling rate.

For perovskites like SrTiO3, the situation is even more complex. Zhang et al.

considered three types of particles: SrTiO3, SrO, and TiO2 [52]. SrO and TiO2 are

deposited with a certain rate and can diffuse on the surface. If SrO and TiO2 collide,

Figure 12.12 KMC simulation of Si(001) homoepitaxy on-lattice 64� 69 atoms. The influence of temperature on
the growth is shown. Reprinted from [48] with permission of Elsevier.
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SrTiO3 will be formed, which will be fixed at this site. In this model, the perovskite

structure is not recognized.

Handling the atoms separately needs a more complex model. However, the perovskite

structure can be mapped on a simple cubic lattice by defining two types of layers, one for

SrO and one for TiO2 [51]. Also, in one layer the sites of the lattice are not equivalent:

sites with odd numbers in both x- and y-direction may be defined as sites for Sr; sites

with even numbers in both x and y-direction may be defined as sites for O. The other

sites are unoccupied. In the other layer, sites with even number in one direction and odd

in the other are the ones for O, and sites with even numbers in both x- and y-direction

are the ones for Ti. The principal mapping can be figured out from the right-hand side in

Figure 12.2.

From the DFT, we know that a single oxygen adatom will sit on the oxygen of the layer

below instead of the site in bulk. Thus, one should allow an oxygen atom to sit on these

sites and should give other values for ES and Eneigh. In particular, ES on this site should be

larger than on the bulk site such that an oxygen atom will preferentially sit on the site,

which has minimum energy according to DFT. Once the layer is filled up and the oxygen

atom has metal atoms as neighbors, the bulk position should become favorable, which

can be reached by setting Eneigh properly. On the bulk position for oxygen, the value

should be high, whereas on the other position it should be low or even negative to

enhance diffusion. The rules and barriers for KMC might have a strong impact on the
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Figure 12.13 Influence of temperature and pressure during homoepitaxy of MgO on the filling ratio as a function
of the plane number. All data correspond to averages over 10 KMC runs. For each run, 30,000 molecules were
deposited on a perfect substrate of 50� 50 atoms. Reprinted from [50] with permission of Elsevier.
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resulting surface structure, as seen in the example for the deposition of Na0.5Bi0.5TiO3 on

SrTiO3 in Figure 12.14. The left part was observed was obtained by simple rules, whereas

the right part is based on the outcome of the DFT calculations as discussed in the

previous section [53].

There is one additional point if the processing is in PLD or metalorganic chemical

vapor deposition (MOCVD). In both cases, it is unlikely that pure metal atoms arrive at

the surface. In PLD, the target is often the same as the layer to be grown, and different

fractures of the material will arrive at the surface, as, e.g., when depositing SrTiO3 there

might arrive SrO, TiO2, SrTiO3, or clusters. In MOCVD, complex precursors are used,

where the metal atom is bonded to several oxygen atoms. Thus, it is more likely that SrO,

TiO, or TiO2 will arrive on the surface. This has to be taken into account in KMC sim-

ulations, in particular when defining the sticking coefficient S in Eqn (12.24).

12.3.4 Kinetic Monte Carlo with Elastic Strain

Most of the interesting systems are not homo- but heterosystems with layer material

different from that of the substrate. In general, this means different bulk lattice constants

of the two materials, which implies an elastic strain in the layers. In an off-lattice KMC,

these effects are intrinsically included by using potential models. However, the outcome

of such computations depends critically on the applicability of the used potentials. In the

phenomenological ansatz of the on-lattice KMC, the effect of strain has to be introduced

explicitly. The elastic strain will change the diffusion barriers, which is typically included

in KMC by another energy term DEstrain. Thus, Eqn (12.25) becomes:

Ediff ¼ ES þ En þ EES þ DEstrain (12.27)

Three approaches have been developed and used for computing DEstrain:

• DEstrain ¼ 1
2 ½
P
j

g=r3i2j �
P
j

g=r3i1j�, where rij is the distance between the considered

adatom i and an island atom j. The initial and final positions are sites ii and i2,
respectively [54].

Figure 12.14 Kinetic Monte Carlo (KMC) simulation for the deposition of Na0.5Bi0.5TiO3 on SrTiO3 with a simple
parameter set (left) and parameter set partly based on DFT calculations (right). Na and Bi atoms are not
distinguished and are colored in red. The small black atoms are oxygen and the yellow atoms are Ti atoms of the
topmost substrate layer. Reprinted from [51] with permission of Wiley-VCH.
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• Green’s function formalism [55].

• Ball and spring model introduced by Orr [56] and Lam [57].

The first one is a simple method and by this, the calculation of D Estrain is rather quick.

Such a procedure is obviously isotropic and does not account for different elastic con-

stants in different directions.

The second approach is also an isotropic formalism. It has been used for the

computation of the formation of GaAs quantum dots [58] and SiGe pyramids [59]. These

computations were intended to study the self-assembling of quantum dots without any

wetting layer. Investigating a transition from layer-by-layer growth to island growth was

not the subject of these calculations.

For the rest of this section, the ball and spring model will be described, and ap-

plications will be presented. This approach was originally introduced by Orr et al. [56]

and more than 10 years later it was applied to the system Ge/Si (100) [57,60,61].

Further developments focus on a higher efficiency of the method [62] and island

growth [63]. Elastic effects are taken into account by assuming that the bonds will act

as springs between the atoms. It is assumed that the mass-spring system is always in

mechanical equilibrium. In the following, two types of springs are considered, a

lateral one with constant kL and a diagonal one with constant kD. In the case of a

cubic lattice, the two spring constants are related to the elastic constants (in Voigt

notation) via kL¼ a(C11–2C12) and kD¼ aC12. C11 and C44 cannot be distinguished in

the approach with two spring constants. a is the lateral distance of atoms in the

material. In the following, we denote the lateral distance of atoms in the substrate and

the film by as and af, respectively. An adsorbed layer (full coverage) will be in equi-

librium if the vertical distance of atoms is az ¼ af þ asεkD/(kL þ kD). This relation can

be derived from the balance of forces on the surface atoms. Such a system of com-

plete layers acts as a reference system. For a general system of N adatoms, the dis-

placements of atoms with respect to this reference system are computed solving a

matrix equation:

F ¼ AUþ B (12.28)

The contributions B¼(b1, b2,.,bN) are the forces due to the fact that a layer might be

not complete. The matrix A includes the contributions from the interaction with the

substrate and the film. The resulting forces F¼ (f1, f2,.,fN) should be zero in equilib-

rium, i.e., the left-hand side in Eqn (12.28) is a zero vector. Obviously, the matrix

increases by time because particle adsorption leads to an increase of the value N.

Therefore, the cost of computing the displacements U¼(u1, u2,.,uN) increases with

progressing time and is quite considerable. Once the displacements have been

computed, the energy stored in all springs can be computed via:

Estrain ¼ 1

2

X
εijk; (12.29)
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where the sum is over all sites and eijk is the total energy stored in all the bonds asso-

ciated to the atom located at site (i, j, k). The 1/2 accounts for double counting of the

summation. eijk is composed as eijk ¼ exijk þ e
y
ijk þ ezijk; where exijk is given by:

exijk ¼ kL

2

�
½uxði þ 1; j; kÞ � uxði; j; kÞ þ dx�2 þ ½uxði � 1; j; kÞ � uxði; j; kÞ � dx�2



þ kD

2

�
½uxði þ 1; j; k þ 1Þ � uxði; j; kÞ þ dx�2 þ ½uxði � 1; j; k þ 1Þ � uxði; j; kÞ � dx�2



þ kD

2

�
½uxði þ 1; j; k � 1Þ � uxði; j; kÞ þ dx�2 þ ½uxði � 1; j; k � 1Þ � uxði; j; kÞ � dx�2



þ kD

2

�
½uxði þ 1; j þ 1; kÞ � uxði; j; kÞ þ dx�2 þ ½uxði � 1; j þ 1; kÞ � uxði; j; kÞ � dx�2



þ kD

2

�
½uxði þ 1; j � 1; kÞ � uxði; j; kÞ þ dx�2 þ ½uxði � 1; j � 1; kÞ � uxði; j; kÞ � dx�2


:

(12.30)

Because the values ux(i, j, k) were computed with respect to the reference system,

the difference dx¼ af – as enters Eqn (12.30). So, finally we get the contribution for

Eqn (12.27):

DEstrain ¼ Estrainðwith adatomÞ � Estrainðwithout adatomÞ: (12.31)

The method has been used to study the transition from layer-by-layer to 3D growth.

At this point some general remarks on epitaxial growth are in order. Layer-by-layer

(Frank van der Merwe) growth is observed if the lattice mismatch is small. If the lat-

tice mismatch is large, 3D (Vollmer–Weber) growth will occur. In the atomistic view, it

means that now the adatom–adatom bond is stronger than the adatom–surface bond, in

contrast to the Frank van der Merwe mechanism, where it is opposite. In reality, often a

mixture is observed: the Stranski‒Krastanov growth mode. For a few layers, a layer-by-

layer takes place before 3D growth starts.

For a given set of parameters, one can scan the misfit ε¼(af – as)/af and check the

growth mode. Here, af and as are the bulk lattice constants of the film and substrate,

respectively. By this procedure, one obtains either the Frank van der Merwe or the

Vollmer–Weber mode. Stranski–Krastanov growth is not observed.

There is an ongoing discussion on the origin of the Stranski–Krastanov growth

mode. One reason might be the occurrence of interdiffusion. Atoms supplied to the

surface will diffuse to bulk and, in reverse, atoms of the substrate will diffuse to the

surface. This will reduce the lattice mismatch, hence a layer-by-layer growth is

possible. With progressing time and layer height, the composition will change by

decreasing the amount of atoms from the substrate, hence the lattice misfit will in-

crease. Eventually, this leads to 3D growth. However, the strain may be also relaxed by

defects like vacancies. For SiGe nanostructures, the current status is discussed in [64].

This kind of nanostructure is of interest for electronic applications, therefore has been

the focus of KMC simulations. For instance, Xiang et al. studied the spontaneous
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formation of Ge quantum dots on Si [65]. They applied a misfit of ε¼ 0.08.

Spontaneously, there is a 3D island growth without any stage of layer-by-layer growth.

In Figure 12.15, the strain relaxation energy Es is plotted as a function of the coverage.

This energy is defined as the difference between the strain energy stored in all springs

at mechanical equilibrium and the strain in the homogenously strained state. In the

latter, all atoms are sitting at their bulk positions, i.e., the atoms did not relax to new

positions out of the bulk ones. By this definition, Es is always negative. Es was measured

at various times and in the plot, its values were indicated by the maximum height in the

system (2D island, two-layer island, etc.). The plot can be understood as follows: After

nucleation of the first island, this island spreads and the strain is increased. With

increasing size, the probability of nucleation of a new layer on top is increasing. Once

formed, it results in a drop of strain energy.

Baskaran et al. introduced an intermixing in their KMC model for computing Ge

pyramids on a Si substrate [63]. They simply allowed the Si atoms of the underlying

substrate to hop. For this reason they introduced a certain number of layers for the

substrate. Strictly speaking, they allow surface diffusion for the substrate atoms, but not

a bulk diffusion for the Ge atoms. The main result of their computation was showing the

different evolutions of the Ge pyramids in cases with and without intermixing. In the

latter, no wetting layer was formed, whereas in the case of intermixing, first a layer-by-

layer growth was observed before the 3D growth has overtaken. Another system with a

Stranski‒Krastanov mode is InxGal–xAs/GaAs. Experimental measurements and theo-

retical attempts have been made to find the critical layer thickness at which the tran-

sition occurs from a layer-by-layer to a 3D growth.

This transition depends on the composition of the incoming fluxes x, which can be

tuned with high precision in MBE experiments. Such a system can be studied by KMC
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Figure 12.15 Plot of the strain relaxation energy per atom Es/N against coverage q from simulations at deposition
rates 1,3, and 10 MLs–1. The island height is inferred from the measured maximum surface height. Reprinted from
[65] with permission of APS.

Chapter 12 • Simulation of Epitaxial Growth 547



[66]. Intermixing is not taken into account explicitly but indirectly, by using an effective

lattice misfit εeff, which is given by

εeff ¼ x � x

1� x

H

Hc;1

εx1 : (12.32)

x is the composition for which holds: if x> x there is 3D growth at finite thickness. Only

for this case Eqn (12.32) is valid � otherwise εeff¼ 0. εx1 is the critical effective misfit in

the case x¼ 1 and Hc,1, the corresponding apparent critical layer thickness. This equa-

tion can be derived from the fact that Estrain¼ ε
2DW, where DW does not depend on the

misfit. Relating everything to the case of a flux composition of x¼ 1 (corresponding

misfit ε1¼ 0.07), we obtain:

DW ðH ; xÞ ¼ x2
effDWε1

with xeff ¼ εx1

ε1

x � x

1� x

H

Hc;1

(12.33)

DW
ε1 will be computed during the run. The two parameters Hc,1and x have to be

determined beforehand. Because Hc,xzHc,1(1�x)/(x�x), one can use two experimental

points to obtain both Hc,1 and x. In Figure 12.16, the prediction of the KMC is shown

together with experimental results and a curve from theoretical considerations. It shows

that the KMC runs reproduce the experimental data. Once validated by this comparison,

the KMC can be used to study the details of the growth process such as quantum dot

formation and growth.

12.3.5 Growth of Quantum Dots

Quantum dots have become of great interest because of the new physics in such

confined systems. In contrary to a typical film growth, where one likes to have layer-by-

layer growth, for quantum dots one needs a 3D growth mode. For applications, quantum
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Figure 12.16 Critical layer thickness as a function of the composition of the particle flux. Ref. [8], Ref. [21], and
Ref. [27] are [68, 69, 70], respectively. Reprinted from [66] with permission of Elsevier.
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dots should be of the same size and arranged in a regular manner, which might be

achieved by a self assembling of the system. This has been the subject of research and, in

this context, KMC has been used. Meixner et al. studied the size distribution under

different process conditions such as deposition rate and substrate temperature [58].They

used the Greens function formalism and performed calculations in the submonolayer

regime.

Ideally, quantum dots are clearly separated and have a well-defined shape. However,

in 3D growth, instabilities in the shape of the 3D object might occur or a growth with

shallow mounds between the objects. KMC can provide better insight into the processes

(see overview [71]).

Sometimes, peculiar structures occur in 3D growth mode. For instance, when

growing GaSb nanostructures on Si doped GaAs(100) by droplet epitaxy, ring structures

of GaSb were observed. Such structures could be revisited by means of KMC [72].

For certain applications, quantum dots are not freestanding but packed in a matrix.

For instance, the quantum dots are overgrown by the same material as the substrate.

Taking interdiffusion into account, such processing might not result in the structure

wanted. One can use KMC to study the process in detail; in experiments, the inter-

mediate stages cannot be investigated. This has been done for InAs quantum dots on

a GaAs substrate embedded in InxGa1�xAs [73]. The evolution in time can be seen in

Figure 12.17. Two different distributions of quantum dots have been used for

following capping processes. For every stage the situation is shown for an InxGa1�x

capping with a consecutive increasing x (two top lines) and for a GaAs capping (two

bottom lines). InAs particles are in yellow, GaAs particles are in blue. As already

mentioned, the computation of the elastic strain in every Monte Carlo step is very

time consuming, because the matrix of the entire system has to be solved. Several

simplifications have been introduced. One approach is to compute the elastic strain,

not for every adatom but only for those at step edges. This is based on the fact that the

largest strain is felt by atoms at the step edges and the elastic energy is decreasing

with increasing height of the 3D object (see, e.g., Figure 2 in [59]). Consequently, one

can restrict the additional term DEstrain to atoms at step edges, which will reduce the

computational requirements dramatically [74]. As a consequence, runs for a larger

number of monolayers are possible. We consider the system InAs/GaAs employing the

relevant input data from [75] [58], and [76]. In Figure 12.18, the mean height as a

function of the substrate temperature and the deposition rate is shown. A large value

means a few pyramids with large height, which are preferentially formed at low

deposition rate and high temperature because the surface diffusion is fast. Climbing

up a step edge is enhanced by strain (DW1¼ 0.3 eV) but hopping down is hindered by

the Ehrlich–Schwoebel barrier (0.08 eV). The relation of these two barriers has a large

influence on the size and distribution of quantum dots. If there is no strain energy

applied (DEstrain¼ 0), one needs an unrealistically high Ehrlich–Schwoebel barrier to

obtain 3D structures (DEES> 0.15 eV). On the other hand, for DW1¼ 0.05 eV, the

growth is already 3D.
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12.4 Phase Field Methods
12.4.1 Philosophy of Phase Field Approaches

Phase field methods are devoted for phase transitions, i.e. at least we have two different

phases, which are described by different values of an order parameter f (x, t).

For instance, in the solidification/melting transition, one introduces 4¼ 0 for melt

and 4¼ 1 for solid. The important point is that the order parameter is a continuous

variable. Formally, this enables us to write a free energy functional F as a function of 4.

Then, the equation of motion can be obtained by the variational principle, i.e., taking the
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Figure 12.17 140� 20 nm2 cross sections through the KMC data set. Each window shows two stretches and two
situations. These uncapped QDs represent the initial configuration for all performed KMC simulations of the
capping process. (A)–(F) The indium fraction x is increased in the consecutive windows, which show the situation
after the growth of the InGaAs capping layer (top two panes), and after the growth of the pure GaAs spacer
layer (bottom two panes). (E), (F) The horizontal red line marks, for an exemplary QD, the boundary between the
pure InAs region and the region of phase separation Examples of the three observed peculiarities are marked:
(1) variation in the thickness of the InGaAs layer between the QDs (solid red line), (2) indium-depleted regions,
and (3) asymmetrically shaped QDs. Reprinted from [73] with permission of APS.
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derivative of F with respect to f. It also means that there is no sharp interface and there

are regions that are partly one phase and partly the other. J. S. Langer was the first who

proposed the use of this Ginzburg–Landau approach to the liquid/solid transition. The

first publication was by G. Caginalp [77] (see also “Phase Field Models” by M. Plapp in

Volume 1b). Afterward, Liu and Metiu were the first who introduced this concept for

layer growth [78]. They used it for computing a 1D step motion. Such simulations are

based on the concept of Burton, Cabrera, and Frank (BCF) [79], which is described in

more detail below. The phase field measures the layer height such as f¼ 0, 2, 4, 6,. The

steps are smeared out in the lateral direction where the value of f changes from one

integer value to the next. Karma and Plapp applied this kind of model in full 3D

calculation and considered spiral growth [80].

Since fmeasures the layer height, it has an atomistic resolution in the stack direction.

One can go one step further and apply the phase field variable, a purely atomistic

meaning, i.e., f¼ 1 means particle and 4¼ 0 means no particle. f becomes an atomistic

density. Elder et al. introduced this concept in 2002 giving (2D) examples for grain

growth, ordering of a binary alloy, and epitaxial growth [81]. The length scale is atomar

and, thus, the same as in molecular dynamics or KMC calculations, but the time scale is

diffusive. This allows the study of slow processes.

12.4.2 Phase Field Crystal—Structures and Defects

As mentioned above, the PFC model was introduced by Elder and coworkers [81] by

defining a free energy as a function of the particle density f with a periodic hexagonal

structure as its minimum. Recent overviews can be found in [67,82,83]. The simplest

form of a free energy is:

F ¼
Z
V

�
1

2
f
h�
q2
0 þ V2

�2 þ a
i
fþ 1

4
f4

�
dV : (12.34)

q0 and a are two phenomenological parameters. a can be considered as the driving force.
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Figure 12.18 KMC simulations of depositing InAs on GaAs [74]. Mean island height hd is shown as a function of
temperature T for different deposition rates F. For two parameter points, a representation of the surface
configuration is shown. Extended figure from [74] with permission of Elsevier.
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q0 defines the lattice spacing in the bulk. Because f is conserved (closed system with the

mass conserved), the dynamics are given by

vf

vt
¼ V2dF

df
þ V2 ¼ V2

h�
a
�
q2
0 þ V2

�2
f� f3

i
þ V2; (12.35)

where 2 is a stochastic noise field of particle fluxes.3

A phase diagram can be derived as a function of the driving force a and the mean

value of j, i.e., the density of the system. For low densities, a system of stripes will have

the minimum free energy, at medium densities a hexagonal system, and at high densities

a constant state. The latter is the liquid phase. Equation (12.34) can be modified to

obtain also fcc and bcc phase in a certain range of density and driving force [84]:

F ¼
Z
V

�
1

2
f
h
l
�
q2
0 þ V2

�2h�
q2
1 þ V2

�2 þ r1

i
þ a

i
fþ 1

4
f4

�
dV : (12.36)

In their original paper, Elder et al. gave one example of epitaxial growth. They used

two different values of q for the substrate (small circles in Figure 12.19) and for the

adlayer (larger circles). It is a 2D simulation exhibiting the development of two bulk

defects. Going to a specific system, Xu and Liu proposed another free energy [85]. Their

aim was to describe the dimerization on Si(001) or Ge(001) surfaces. It is a 2D model,

thus they consider only the surface and looking on the surface structure as a function of

the temperature. Computation of epitaxial growth is not yet possible for such a system.

Chen et al. studied the influence of vicinal angles of the substrate on the emerging

structure of the deposited layers [86]. They employed the original 2D model of Elder plus

an external potential of the form V ¼ VS½cosðqsxÞ þ cosðqSyÞ� þ j. The additional po-

tential represents the influence of the substrate and qs¼ 2p/as with as as the lattice

constant of substrate. The lattice constant of the film is entering q0 of Eqn (12.35). j is

the average value of j. The lattice mismatch in their3 calculations was ε¼ 0.065 and 0.11

and the vicinal angle was varied between 4.5� and 14.5�. Facetted growth, columnar

growth, and occurrence of defects were observed, depending on the two parameters varied.

PFC methods are promising, but currently the type of systems to be handled is very

limited, and free energy definitions for the variety of realistic systems are lacking.

(B)
(A)

Figure 12.19 Two-dimensional phase field crystal simulation of epitaxial growth. Situation (A) and (B) are after a
deposition of an average of 13 and 21 layers. Reprinted from [81] with permission of APS.

3Please note that sometimes you will find equations with a stochastic noise h instead of V2. This is incorrect,

because the mass is not conserved in every time step but may be conserved only as an average over time.
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12.4.3 Phase Field Simulation—Step Growth and Beyond

The phase field model was introduced to tackle the problem of step motion by numerical

simulations. At this point, we give a short description of the governing equations, which

are based on the BCF model. We do not consider atoms as in the PFC model but have an

atom density r on terraces, i.e., a density per area. On a terrace, r obeys the following

diffusion equation:

vtr ¼ V
�
D
�
r
�
Vr

�þ F � s�1
desr: (12.37)

F is the flux from gas phase, i.e., how many particles per area and time will attach to the

surface of the terrace. s�1
des is the desorption rate. Terraces end at steps, which are sinks or

sources of adatoms. In equilibrium, the step edge will not move and there is neither a

release nor a consumption of atoms. For this situation, the adatom density at the step

edge is req. If the actual density is different, there a flux to or from the steps, and we have

the following boundary conditions at the step edge, one for the lower terrace and for the

upper one:

D
vrþ

vn
¼ kþ�rþ � req

�
; from the lower terrace (12.38)

�D
vr�

vn
¼ k��r� � req

�
; from the upper terrace: (12.39)

kþ and k– are the rates for incorporating atoms at the step. Because in most real cases we

have an Ehrlich–Schwoebel barrier for atoms hopping from the upper terrace to the

lower one, kþ> k– for many real systems. The equilibrium adatom density at the step

edges depends on the energy due to the curvature k and the thermal energy kB T:

req ¼ r
eq
0

�
1þ Ugk

kBT

�
¼ r

eq
0 ð1þ d0kÞ: (12.40)

g is the energy of the step edge, d0 the capillary length, and U is the atomic area. r
eq
0 is

the equilibrium adatom density for a straight step. This is given by the relation between

the energy gain of an atom by attaching to the step edge Eattach and the thermal energy:

r
eq
0 ¼ 1

��
1þ eEattach=kbT

�
(12.41)

The velocity of the step is given by:

ystep ¼ �D

�
vrþ

vn
� vr�

vn

�
: (12.42)

The set of equations is difficult to solve in a sharp interface approach, where the

boundary conditions have to be applied to a moving step edge, which requires a moving

grid or a clever approach of interpolation. The problem becomes even worse if new steps

occur by 2D nucleation on a terrace. To overcome these problems, the phase field

concept has been applied to epitaxial growth by introducing an order parameter 4,

where an even integer value of 4 denotes the layer height. The phase field evolves via

sfðr; tÞvtf ¼ W 2V2fþ vff þ lrgfr; (12.43)
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with

f ðfÞ ¼ �1

p
ðcosðp½f� fs�Þ þ 1; vff ¼ sinðp½f� fs�Þ (12.44)

gðfÞ ¼ �1

p
ðsin ðp½f� fs�Þ þ f; vgf ¼ cos ðp½f� fs�Þ þ 1: (12.45)

fs is the height of the substrate. The equation for the adatom density becomes:

vtr ¼ VðDðrÞVrÞ þ F � s�1
desr�

1

2

vf

vt
: (12.46)

On the terraces, f has even integer value, and in the region of the step edge it is smoothly

changing from one even integer value to another. The width of this transition region is

W. The parameters l, and sf are related to the capillary length and diffusion constant via

d0¼ a1W/l and l¼ sf D/a2W
2. a1 and a2 are 0.718,348 and 0.510,442 obtained by a 1D

stationary profile solution. Karma and Plapp employed this model to compute a spiral

growth on the surface. Shortly after their publication, spiral growth was studied by the

so-called level-set method, a method similar to phase field methods [87]. A further

extension was made by the inclusion of heat transport in the layers [88].

Going toward a real system, Yu et al. applied the phase field model to the anomalous

spiral step growth on Si(001) surfaces [89]. Such a behavior has been previously observed

by in situ low-energy electron microscopy [90]. In the phase field simulations, the two

terraces, namely (2� 1) and (1� 2), are indicated by f¼ 1, 3, 5,. and f¼ 2, 4, 6,.
The functions in Eqn (12.43) are now given by:

f ðfÞ ¼ 1

p
½ �cosð2pfÞ � DgðpfÞ� (12.47)

gðfÞ ¼ 1

p
½sinð2pfÞ � 2pf� DgðpfÞ� ; (12.48)

where the parameter Dg is the difference of the surface energy of the (2� 1) and (1� 2)

termination. By this parameter, a strain field at the screw dislocation is introduced,

which is considered to be related to the anomalous spiral motion. Setting Dg¼ 0, one

can compute the regular spiral motion on Si(111). dg on Si(001) depends on the location

around the dislocation, which acts as a source for the spiral growth (see Figure Z3B in

[90]). The differences in the spiral structure for finite and zero Dg can be clearly seen in

Figure 12.20.

Hitherto, step growth was treated by the phase field model. The concept is quite

flexible and so one can, e.g., also deal with island growth. The phase field simply dis-

tinguishes between island (f¼þ1) and nonisland (f¼�1). Xu and Liu derived a free

energy to describe the evolution of metal islands on insulators [91]. This kind of

calculation allows overhanging as it is observed at higher temperatures. An example for

island shapes at different temperatures is shown in Figure 12.21. The diffuse interface

region defined by the phase field model is clearly seen in this figure by the grey regions. A

direct comparison to experiment was not yet made. However, these kinds of shapes for

the crystallites were observed some time ago for Pb/graphite(00.1) [92].
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13.1 Introduction
Crystallization plays a crucial role in the preparing of functional materials [1–4], the

structural characterization of natural and synthetic molecules [5,6], and the development

of advanced technologies [7–9]. However, crystallization has in many ways continued to

be more like an art than a science, mainly because there is no sufficient knowledge on

its critical early stages and the atomic processes [10–17]. In this regard, the kinetics of

the transition from metastable phases to stable phases has so far been open to question.

The key challenge is the in situ imaging of the atomic/molecular dynamic process, which

is limited by both the spatial and the temporal definition of current technologies and

the absence of direct observations on the transition process in real space, except for

some local events of crystallization/quasi-crystallization of large species, namely pro-

teins [18–24] and colloidal particles [25–27]. Computer simulations have been applied to

acquire the information [28–30]. Nevertheless, due to the constraint of computation

power and the methodologies, the knowledge obtained is still limited [31]. It is therefore

of critical importance to develop a new methodology to “simulate” or “monitor” the

atomic/molecular dynamic process of the nucleation and growth of crystals.

Colloids refer to solid/liquid/gas particles of a size ranging from 1 nm to 10 mm, which

disperse in an ambient phase. In solutions, colloidal particles are small enough to exhibit

Brownian motion and have a well-defined thermodynamic temperature. Colloidal as-

sembly from a disordered to an ordered state is of broad interest in developing advanced

materials [32]. In physics, the self-assembly of colloidal particles from dilute dispersions

to crystalline structures is a typical first-ordered phase transition, the so-called crystal-

lization. In addition to crystallization, colloids exhibit rich phase transitions between gas,

liquid, and solids. These transitions are analogous to that occurring in atomic systems

[33]. Based on these features, colloidal particles can be regarded as big atoms to model

phase transitions. Compared with atoms, colloidal particles are large enough for direct

observation using normal microscopy and their relatively much slower movement can

be monitored in real time at the single-particle level. In addition, the interactions be-

tween colloidal particles can be tailored from attractive to repulsive, from short-range to

long-range, from hard to soft, and from symmetric to directional. As model systems,

colloids have been widely employed to study phase transitions including crystallization

[34], glass transition [35], and melting [36], among others.

This chapter introduces the most recent developments in the kinetics of crystalliza-

tion, simulated by colloidal systems. This will cover the dynamics of nucleation, step

kinetics, and surface roughening. Section 13.2 discusses the interactions between

colloidal particles and the ways of controlling colloidal crystallization. In Section 13.3, the

thermodynamics in a colloidal system and the classical nucleation theory are addressed.

In Section 13.4, the atomic process of nucleation will be examined in terms of colloidal

nucleation. In Sections 13.5 and 13.6, the attention will be focused on the interfacial

processes of crystallization. In Section 13.7, we will discuss the defect formation dynamics

in the colloidal model system. Finally, some general remarks will be given in Section 13.8.
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13.2 Colloidal Assembly under Control
The type of phase diagram in colloidal model systems is determined by the feature of

interactions between colloidal particles [33]. For example, in hard sphere systems, there

are only two stable phases (Figure 13.1(A)): fluid and solid [37]. As hard spheres are

complemented with a long-range attractive interaction, the system displays three phases

(Figure 13.1(B)): gas, liquid, and solid. If the effective range of the attraction is shorter

than 15% of the hard core diameter, the system exhibits only two stable phases: gas and

crystal. The critical point where gas and liquid become identical moves to the metastable

region, which is below the freezing curve, and a metastable liquid–liquid transition may

occur (Figure 13.1(C)).

The interaction between colloidal particles in solutions is generally a combination

of attractions and repulsions. The attractive interactions may be depletion attractions,

van der Waals attractions, and attractive dipole–dipole interactions. The repulsive

interactions are usually induced by electrostatic repulsions and electric/magnetic

dipole–dipole interactions. The overall interactions between colloidal particles can

be described by the Deryagin–Landau–Verwey–Overbeek (DVLO) theory [38]. In DVLO

theory, the overall interaction between colloidal particles is simplified as a combi-

nation of short-range van der Waals attractions and long-range electrostatic

repulsions.

Figure 13.2 presents three typical cases of DVLO theory. At low ionic strengths

(Figure 13.2(A)), the electrostatic repulsion is relatively strong and long-range. The

overall interaction is then repulsive at a large distance and attractive at a short distance.

At an intermediate distance, there is an energy barrier for colloids to overcome before

they can close into each other for aggregation. At intermediate ionic strengths

(Figure 13.2(B)), the energy barrier for colloids to aggregate becomes small and a sec-

ondary potential minimum exits. At high ionic strengths (Figure 13.2(C)), the long-range

coulomb repulsion is greatly screened; the overall interaction is then dominated by the

short-range attraction. In the first situation (Figure 13.2(A)), the competition between

the short-range attraction and the long-range repulsion leads to an intriguing phase

Te
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FIGURE 13.1 Phase diagrams in colloidal systems. (A) Hard spheres. (B) Systems with a long-range attraction. (C)
Systems with a short-range attraction. Atomic systems are often modeled by hard spheres with long-range attrac-
tions. Reprinted with permission from Ref. [33]. Copyright (2002) Nature Publishing Group.
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behavior: equilibrium clusters with an optimum size formed through microphase sep-

arations are more stable with respect to an infinite bulk crystal [39].

To examine the underlying mechanism of colloidal phase transitions, the ability of

controlling colloidal phase behavior by tuning colloidal interactions is critical. So far, a

variety of strategies have been developed to control the behavior of colloidal particles

[32,40,41]. Because colloidal particles in solutions are generally charged, external electric

fields have been widely used in controlling colloidal aggregation [32] for various appli-

cations [42]. For example, Figure 13.3(A) illustrates an experimental colloidal system

controlled by an alternating electric field (AEF). In this system, as the AEF is applied,

two-dimensional (2D) colloidal self-assembly will occur on electrodes [43]. In compar-

ison with other stimuli, the electric stimulus therein can be switched on/off instantly

without disturbing the original solutions after experiments. As a number of experimental

results summarized in this chapter are from this 2D colloidal system, a brief introduction

to this AEF-controlled system may help in going through the rest of the sections.
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FIGURE 13.3 Alternating electric field (AEF)-induced colloidal aggregation. (A) The schematic of the experimental
setup. The colloidal suspension is sandwiched between two Indium tin oxide (ITO)-coated glass plates separated
by insulating spacers. (B) Electrohydrodynamic (EHD) flow around colloidal particles near the electrodes. For
C0
0 < 0, the flow direction is clockwise and counterclockwise for C0

0 > 0. (C) A representative plot of the radial
EHD velocity around a colloid near the electrode. For negative ut, the EHD flow brings another particle close and,
vice versa, the flow carries another distinct colloid away. B, numerical solution with a volumetric body force; —,
analytical solution with slip conditions specified at the boundaries. Parts (b) and (c): Reprinted with permission
from Ref. [44]. Copyright (2007) Cambridge University Press.
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FIGURE 13.2 Interactions between colloids of DVLO theory. From left to right, electrolytes concentration increases.
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The driving force for the 2D colloidal aggregation in the AEF-controlled system arises

from the so-called electrohydrodynamic (EHD) flow [44]. The mechanism is that the

dissolved ionic species build up an electric double layer adjacent to the electrode sur-

face. The double layer is then disrupted due to the presence of charged colloidal parti-

cles, giving rise to a spatially varying free charge distribution. At the same time, the

presence of charged colloidal particles also distorts the applied field, resulting in a lateral

electrical field. The interaction between the free charges and the lateral electric field

leads to a fluid flow around the particles (Figure 13.3(B)). The studies by Ristenpart et al.

[45] show that the tangential EHD flow velocity along the electrode surface scales as

follows:

utw
3εε0
mk

E2
N

�
C 0

0

�
C 0

0 þ
Dk2

u
C00

0

��
(13.1)

where ε0 is the permittivity of free space, k is the reciprocal Debye length, and EN is the

strength of the incident electric field. D denotes the ionic diffusion coefficient and u is

the angular frequency of the applied oscillating electric field. The parameters C0
0 and C00

0

are associated with the dipole coefficient. The strength and the direction of the EHD flow

depends on frequency: within a frequency window, the flow velocity is negative (flowing

toward the particles), leading to an attractive Stokes force between the colloidal particles.

Beyond this frequency window, the EHD flow becomes essentially zero or even positive

(flowing away from the particles).

In addition to the EHD flow-induced attraction, repulsive electrostatic screened

Coulomb interactions and dipole–dipole interactions also play key roles in this system

[46]. The competition between the attractive force and repulsive force determines

whether the 2D colloidal aggregation occurs or not. According to Eqn (13.1), increasing

the frequency will reduce the EHD flow-induced attractive force. However, dipolar in-

teractions between identical particles are not sensitive to the frequency, although it

strongly depends on the strength of AEF [44]. Consequently, upon increasing the fre-

quency (f> 500 Hz), the overall interaction between colloidal particles becomes domi-

nated increasingly by the repulsive component; thus, the normalized equilibrium

distance req in a 2D colloidal crystal increases correspondingly (Figure 13.4(A)). The

frequency window for 2D colloidal crystals, as Figure 13.4(A) shows, becomes wider at a

higher temperature. The mechanism is that increasing temperature increases the ionic

diffusion coefficient D and thus enhances the EHD flow-induced attraction (Eqn (13.1))

[47]. Moreover, Eqn (13.1) suggests that both the flow-induced attraction and the dipolar

repulsion will be enhanced upon increasing the strength of the AEF. Therefore, the

equilibrium distance req is independent of the field strength (Figure 13.4(B)) as the fre-

quency is above hundreds of hertz. However, at low-frequency regions, the behavior of

req deviates from the prediction of the EHD flow mechanism. First, because the fre-

quency is below 500 Hz, the equilibrium distance decreases upon increasing frequency

(Figure 13.4(A)); in the frequency window of 100–200 Hz, (Figure 13.4(B)), req increases

with the field strength. At a very low frequency of 40 Hz, req can even be tuned from
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1.05� 2a to 2.23� 2a by increasing the field strength (Figure 13.4(C)). The discrepancy

between the observation of req and the EHD mechanism suggests that, at low fre-

quencies, the 2D colloidal aggregation is dominated by a different mechanism other than

the EHD flow.

Risterpart et al. suggested [48] that, in steady electric fields, both electroosmotic flow

(EOF) and EHD mechanism are responsible for the 2D aggregation on electrodes. The

EOF stems from the influence of the incident steady electric field on the equilibrium

diffuse layers of particles. The strength of EOF, uEOF, is dependent on the field strength

EN and the particle surface potential z by uEOFw z EN. In a steady field, the EHD flow

scales as utw EN$log EN. The EHD flow-induced attraction works at a distance far from

the particles, whereas the EOF-induced attraction is valid near the particles. The EOF

mechanism is based on a steady electric field. However, if the frequency is not high

(<1000 Hz), the EOF mechanism is still valid for an oscillating field. At a low-frequency

region, increasing the field strength will enhance both the EHD flow and the EOF.
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FIGURE 13.4 (A) Variation of dimensionless equilibrium distance req/2a with frequency at different temperatures
at field strength EN¼ 1.5� 104 V/m. (B) req/2a as a function of the field strength at different frequencies with
temperature of 25 �C. (C) Colloidal aggregations at different field strengths (from left to right) of 5.8� 104,
7.5� 104, and 8.3� 104 V/m. The measured equilibrium distance req/2a (from left to right) is 1.34, 1.66, and 2.23.
Adapted with permission from Ref. [47]. Copyright (2007) AIP Publishing LLC.
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Simultaneously, increasing field strength enhances the repulsive dipolar interaction.

Because the repulsive dipolar interaction is proportional to the square of field strength

[49], the increase of repulsion will overwhelm the increase of attraction, giving rise to a

larger equilibrium separation, as seen in Figure 13.4(C). Nevertheless, req becomes larger

at a lower frequency (<500 Hz), as Figure 13.4(A) shows. This behavior so far is still not

well understood. It follows that, at low frequencies, the mechanism underlying the 2D

colloidal aggregation becomes complex. Experimentally, the related studies usually were

conducted in the frequency window where the EHD mechanism is valid.

Figure 13.5 presents the phase diagram of the 2D colloidal systems in the space of

field strength EN and frequency f. The structures observed range from oscillating vortex

rings to interlinked chains and from 2D crystals to three-dimensional (3D) aggregation

[50]. This phase diagram is obtained at room temperature with colloidal particles of 1 mm

(diameter). However, it is important to mention that the phase boundaries in Figure 13.5

may shift if a different particle size or ionic concentration is employed.
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FIGURE 13.5 The phase diagram and typical colloidal patterns induced by an AEF. (A) A 2D colloidal crystal at field
strength sE¼ 2.6� 104 V/m and f¼ 800 Hz. (B) 3D aggregation of colloidal particles, as captured by the Laser
scanning confocal microscope (LCSM) at sE¼ 2.4� 104 V/m and f¼ 100 Hz. (C) Static snapshot of colloidal chains by
the LCSM at sE¼ 1.8� 104 V/m and f¼ 0.1 Hz. (D) Snapshot of oscillatory vortex rings at 2.3� 104 V/m and f¼ 1 Hz.
(E) The isotropic liquid state of colloidal suspension. Scale bars in (B) and (C) represent 5 mm; scale bars in (A), (D), and
(E) represent 10 mm. Colloidal suspension (0.1% in volume fraction) of monodisperse charged polystyrene spheres
(1 mm in diameter) is confined to a horizontal layer between two conductive glass microscope slides. Glass spacers set
the layer thickness in the cells at 2H¼ 120� 5 mm across the 1.5� 1.5 cm2 observation area. The AEF was supplied by
a waveform generator. The motions of the colloidal particles were recorded with a computer-driven digital Charge
coupled device (CCD) camera. Reprinted with permission from Ref. [50]. Copyright (2009) AIP Publishing LLC.
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13.3 Thermodynamic Driving Force for Crystallization
Thermodynamically, phase transitions are driven by the trend to minimize the free

energy of metastable systems. For example, the chemical potentials of a growth unit in

the ambient mother phase and a crystal phase are represented by mambient
i and mcrystal,

respectively. The difference between the chemical potentials mambient
i and mcrystal is

given by:

Dm ¼ mambient
i � mcrystal (13.2)

Subscript i denotes the solute in the ambient phase. For Dm> 0, the chemical potential in

the ambient mother phase is higher than that in the crystal phase; the system is then said

to be supersaturated and crystallization will occur. Conversely, if Dm< 0, the system is

undersaturated and crystals will dissolve. For Dm¼ 0, the ambient phase can coexist with

the crystal phase. For the crystallization from solutions, the chemical potential of species

i is often associated with the activity ai or concentration Ci by [51]

mi ¼ m0
i þ kBT ln aizm0

i þ kTB ln Ci (13.3)

where m0
i denotes the standard state (ai¼ 1) of the chemical potential. Correspondingly,

the thermodynamic driving force for crystallization can be quantified by:

Dm

kBT
¼ ln

ai

a
eq
i

zln
Ci

C
eq
i

(13.4)

a
eq
i and C

eq
i are, respectively, the equilibrium activity and concentration of species i. With

the definition of supersaturation s:

s ¼ �
ai � a

eq
i

��
a
eq
i z

�
Ci � C

eq
i

��
C

eq
i (13.5)

Equation (13.4) can be simplified as

Dm=kBT ¼ ln ð1þ sÞys ðin the case of s � 1Þ (13.6)

13.3.1 Classical Nucleation Theory

Any crystallization process contains two subsequent stages: nucleation and crystal

growth. By nucleation, initial embryos of crystals are created from metastable mother

phases. After nucleation, the resulted nuclei grow into bulk crystals by incorporating

growth units. The quality of crystals to a large extent is determined by nucleation. To

apply control on nucleation, a full understanding of nucleation is critical. Currently, the

most widely used theory about nucleation is the so-called classic nucleation theory

(CNT), which was initially developed in the 1920s [2]. CNT suggests that by transferring a

growth unit from the metastable liquid phase to the stable crystalline phase, the free

energy of the system is lowered by Dm, as indicated by Eqn (13.2). However, the for-

mation of a crystalline nucleus creates a surface at the same time. On the surface, a

growth unit has less bonded neighbors than a bulk unit does, giving rise to the so-called

interfacial free energy or surface tension. As a result, the formation of a surface con-

tributes a positive addition to the free energy. The total free energy change DG associated
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with the formation of a crystalline nucleus is a sum of the decreasing bulk free energy

and the increasing surface free energy, namely:

DG ¼ �nDmþ Fn (13.7)

where n is the number of the growth unit contained by the nucleus and Fn is the total

surface energy of the nucleus. For spherical nuclei with a radius R, one has n¼ 4pR3rc/ 3

and Fn¼ 4pR2g Here, rc is the particle number density in nuclei and g is the surface free

energy area density. Alternatively, Eqn (13.7) can be expressed as

DG ¼ �4

3
pR3rcDmþ 4pR2g (13.8)

During the growth of nuclei, the decreasing bulk free energy has to compete with the

increasing surface free energy. As a result of the competition, DG experiences a

maximum DG* at a critical size Rc (Figure 13.6(A)). DG* is the so-called nucleation

barrier. Mathematically, the nucleation barrier and the critical size can be calculated by

setting 0 ¼ dDGðRÞ=dRjRc
. The results are represented by:

DG� ¼ 16pg3

3ðrcDmÞ2
(13.9)

Rc ¼ 2g

rcDm
(13.10)

For subcritical nuclei smaller than the critical size Rc, most of the growth units reside at

the surface and the overall free energy change DG is dominated by the positive interfacial

free energy. Therefore, the formation of subcritical nuclei is not thermodynamically

favored; thus, they have to be created by fluctuation. Before they reach the critical size,

subcritical nuclei can dissolve or grow by chance (Figure 13.6(B)); only after they cross

over the critical size, nuclei become stable and can grow stably. Figure 13.6(C) represents

a nucleation process observed in the 2D AEF-controlled system. There, two subcritical

nuclei are created and grow almost simultaneously. However, only one of them even-

tually develops into a stable nucleus, while the other one vanishes finally.

In deriving Eqns (13.7)–(13.10), the effect of foreign bodies on nucleation is not taken

into account, and the probability of forming a critical nucleus is assumed to be uniform

in space throughout the system, the so-called homogeneous nucleation. However,

foreign bodies, such as the wall of solution container, foreign particles, or substrates,

often occur in nucleating systems. In many cases, a foreign body can effectively lower

the interfacial (or surface) free energy and thus reduce the nucleation barrier. In this

case, nucleation occurs preferentially near or on the foreign bodies, namely heteroge-

neous nucleation. The effect of foreign bodies in lowering the nucleation barrier can be

depicted by an interfacial correlation factor f :

f ¼ DG�
heter

�
DG�

homo (13.11)

where DG�
homo is the homogeneous nucleation barrier as defined by Eqn (13.9) and

DG�
heter is the heterogeneous nucleation barrier. According to Gibbs-Thomson effect [54],
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given the thermodynamic condition, the size of the critical nucleus in a homogeneous

nucleation is the same as that in a heterogeneous nucleation. As a result, the interfacial

correlation factor can be given by:

f
�
m;R0� ¼ 1

2
þ 1

2

�
1�mR0

w

�2

þ 1

2
R03

"
2� 3

�
R0 �m

w

�
þ
�
R0 �m

w

�2
#
þ 3

2
mR02

�
R0 �m

w
� 1

�
(13.12)
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FIGURE 13.6 (A) Nucleation barrier and critical size for nuclei [52]. (Reprinted with permission from Ref. [52].
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(C) Subcritical nuclei dissolve or grow by chance. i–v: Experimental observation. vi: Size of the nuclei as a function
of time. (Reprinted with permission from Ref. [53]. Copyright (2004) Nature Publishing Group.)
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Here, m¼ (gsf� gsc)/gcfw cos q (Figure 13.7(A)) and w¼ [1þ (R0)2� 2R0m]1/2. R0 is
the dimensionless radius of a curved substrate in reference to the radius of the critical

nucleus Rc. gij is the surface free energy between phases i and j. The subscripts f, c, and

s denote the fluid, crystalline phases, and the foreign body, respectively. As a function

of m and R0, the value of f(m,R0) ranges from 1 to 0 (Figure 13.7(C)). When R0 / 0,

f(m,R0)¼ 1, implying that the foreign body does not act as a nucleating substrate. This is

true if foreign bodies are too small with respect to the critical radius, such that they play

no role in lowering the nucleation barrier. On the other hand, if R0[1, the foreign body

is large enough to be treated as a flat substrate with respect to the critical nuclei

(Figure 13.7(B)). In this case, f(m,R0) depends only on the parameterm, and Eqn (13.12)

is then simplified as:

f
�
m;R0� ¼ f

�
m
� ¼ 1

4

�
2� 3mþm2

�
(13.13)
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13.3.1.1 Nucleation Kinetics
Nucleation is a dynamic process by which atoms or molecules aggregate to form clus-

ters. The most widely employed kinetic model of nucleation (within the cluster

approach) was established by Farkas [3] in 1927. In this model, nucleation is a process of

successive “chain reaction” from monomer to n-sized clusters and can be depicted by a

group of continuity equations [12]:

dZn=dt ¼ Jn�1 � Jn (13.14)

where Zn(t) is the concentration of n-sized clusters at time t and Jn is the flux through

point n on the size axis. The flux through the critical nucleus size n*, Jn� ðtÞ, defines the

nucleation rate, which is time dependent. A basic problem in studying nucleation

kinetics is to determine the nucleation rate by solving the master Eqn (13.14). In prin-

ciple, there are three distinct states in nucleation (Figure 13.8): the equilibrium, the

stationary (or steady) state, and the nonstationary states.

13.3.1.2 Equilibrium State
In an equilibrium state, the size distribution of nuclei follows the Boltzmann law, Zn¼ Cn

(Cn is the equilibrium concentration of n-sized clusters). The distribution does not

change with time anymore, dZn/dt¼ 0 and Jn¼ 0. According to the Boltzmann law, one

can easily obtain:

Cn=Z ¼ ðC1=SÞn expð � DGn=kTÞ (13.15)

where n¼ (2, 3, 4,.) with the effective total number of “molecules” per unit volume. At

the critical size n¼ n*, DG(Dm) reaches the maximum; correspondingly, Cn experiences a

minimum at n*. The increasing of Cn at n> n* is not a physical scenario; it just reflects

the fact that the mother phase is saturated.

Equilibrium state

Steady state

1

Cn

nn*

C*

Zn

Z'n

Nonsteady state

FIGURE 13.8 Possible states of nucleation.
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13.3.1.3 Stationary (or Steady) State
In the stationary state, the fluxes through all sizes are the same, Jn ¼ constant ¼ Jn� ¼ J ,

and thus dZn/dt¼ 0. The stationary nucleation rate for homogeneous nucleation is given

by the Becker-Doering formula [55]:

J ¼ zK �

vm
exp

�
� DG�

homo

kBT

�
(13.16)

with

z ¼ Z 0
n�
�
Cn� � Z 0

n�þ1

�
Cn�þ1 (13.17)

where Z 0
n (wZn) is the steady-state cluster size distribution, z is the so-called Zeldovich

factor [56], K � ¼ Kn� depicts the frequency of monomer attachment to the critical nu-

cleus, and nm denotes the average volume of structural units in the ambient phase. At the

steady state, J0, the number of new formed critical nuclei per unit volume-time around a

foreign body is equal to the steady growth rate of clusters on the surface of the foreign

body. Taking into account the effect of the substrate on both the nucleation barrier and

the transport process, the nucleation rate is given by [56]:

J ¼ 4paðRsÞ2N 0f 00ðm;R0Þ1=2
"
� 16pg3

cfU
2

3kBT ½kBT ln ð1þ sÞ�2 f
�
m;R0�# (13.18)

where N0 denotes the number density of the substrates (or “seeds”) and B is the kinetic

constant. Due to the presence of the substrate, the growth units from the side of the

substrate (Figure 13.7(B)) are screened from colliding the surfaces of nuclei. In Eqn

(13.18), the shadow effect of the substrate on nuclei growth is reflected by the prefactor

f 00(m,R0), which is the ratio between the average effective collision in the presence of

substrates and that of homogeneous nucleation. For homogeneous nucleation, Eqn

(13.18) can be simplified to:

J ¼ B exp

"
� 16pg3

cfU
2

3kBT ½kBT ln ð1þ sÞ�2
#

(13.19)

For a 2D nucleation, the nucleation rate has a similar form [56]:

J2D ¼
(
2Dsn

2
1

p

	
U ln ð1þ sÞ

h


1=2
exp

"
� pUhg2

ðkBT Þ2ln ð1þ sÞ2
#)

bkink (13.20)

where Ds denotes the surface diffusivity, n1 is the number of single particles (monomers),

and bkink is the sticking possibility. In general, although 3D and 2D nucleation are not

exactly the same, they share many common features in almost all aspects [57]. Therefore,

the principles obeyed by 3D nucleations can be applied to understand 2D nucleation,

and vice versa.

13.3.1.4 Nonsteady State
In a nonsteady state, the size distribution Zn changes with time, dZn/dts 0; thus, the

flux Jn is dependent on n and t. The nucleation rate Jnonst(t) will change with time.
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13.3.2 Experimental Verification of Classical Nucleation Theory

Classical nucleation theory and its predictions have been established for a long time.

However, direct experimental verification had been absent until recently, when it was

performed by Liu et al. in the AEF-controlled 2D colloidal system [53]. In their study, the

size distribution of 2D subcritical nuclei was obtained and the predictions of CNT were

quantitatively examined. It was found that the nucleation starts from anonstationary state

(Figure 13.9(A) t> 0 s) and gradually approaches a stationary state (Figure 13.9(A), t> 20 s)
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in which the distribution of nucleating clusters Zn is independent of time. A critical nuclei

size nc at time t is defined by Zn� ðtÞ ¼ 1. In the experiments, nc is time-dependent at the

beginning and becomes constant until the nucleation goes into the stationary state

(Figure 13.9(B)). Therefore, the critical size of nuclei is definite only at a stationary state.

Figure 13.9(C) shows that the number Nc of supercritical nuclei (n> nc) increases with

time. The slope of linear fitting ofNcw t gives the nucleation rate J2D, the average number

of newly formed supernuclei per unit time in a unit area. Figure 13.9(D) shows that the

nucleation rate is dependent on the driving force and the plot of ln(J)w 1/ln(1þ s) can be

well fitted with a linear relationship, agreeing with the prediction (Eqn (13.20)) of CNT

under the genuine steady state.

13.3.3 Discrepancies between CNT and Observations

The observation presented in Figure 13.9 offers an example indicating that CNT is

successful in describing nucleation processes. However, there are also a growing amount

of discrepancies between the predictions of CNT and the actual observations from ex-

periments and simulations. For example, Gasser et al. found that crystal nucleus is not

necessarily spherical and may be anisotropic (elliptic) [25]. Moreover, in apoferritin

protein solutions, planar nuclei were observed as well [58]. These observations are in

contrast to the spherical nuclei assumption of CNT. More intriguingly, the experimen-

tally measured nucleation rate undergoes a maximum upon increasing supersaturations

[59] and the nucleation rate derived from CNT can be 10 orders higher than what

experimentally measured [60]. There are also remarkable discrepancies between the

experimentally observed and predicted kinetic factors [61]. These discrepancies suggest

that CNT has intrinsic limitations. The limitations may stem from the fundamental as-

sumptions of CNT, such as the following [62]:

1. Nuclei are spherical. The physics of this assumption is that nuclei tend to mini-

mize the surface free energy.

2. Nuclei are identical to an infinite bulk crystal (in the case of crystallization) in

structure.

3. The surface tension of crystal nuclei is exactly the same as that of an infinite bulk

crystal and is independent of the size and shape of nuclei.

4. During the growth, nuclei incorporate one monomer at a time. Coalescence of

nuclei and clusters are neglected.

5. The stationary distribution of subcritical nuclei is established instantaneously once

the system is supersaturated. The nucleation rate is thus time-independent.

There is increasing evidence suggesting that the basic assumptions adopted by CNT

are not valid in many cases. For example, ten Wolde et al. [28] found that nuclei

structure can be size-dependent. Initially, nuclei with a metastable body-centered

cubic (BCC) structure are created and, subsequently, a structure transition from BCC

to face-centered cubic occurs as nuclei reach the critical size. In another work, ten
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Wolde and Frenkel found that nucleation in systems with short-range attractions, such

as granular proteins, may proceed through a two-step process: First, amorphous

droplets are formed from a supersaturated solution and crystalline structures are

subsequently nucleated from the amorphous droplets. It is becoming increasingly clear

that the properties, such as the shape and the structure, of nuclei in many cases are

dependent on nuclei size. Nucleation may proceed through intermediate states or

structures, being in contradiction to the assumptions of CNT. However, these de-

viations from CNT can be well understood in the framework of the so-called Ostwald’s

rule, which suggests that the first nucleated phase is not necessarily the thermody-

namically most stable one, but the one closest to the metastable liquid phase in terms

of free energy [63]. Alternatively, Stranski and Totomanow argued that the first

nucleated phase should be the one that has the lowest free energy barrier [64]. Although

Ostwald’s rule offers an interpretation to nonclassical nucleation routes, the kinetics

involved are still open to question. It is in colloidal model systems that a lot of insights

were obtained in past decades.

13.4 Nonclassical Nucleation
Classical nucleation theories assume that crystal nuclei are created with a thermody-

namically stable crystalline structure. However, severe deviations occur frequently in

actual observations. Therefore, more details concerning nucleation under different

conditions should be acquired. In this context, the application of the experimental

modeling not only verified observed events (e.g., multistep crystallization, templating)

but also identified some new phenomena, such as supersaturation-dependent nucle-

ation routes and supersaturation-driven interface mismatch, shedding new light on the

understanding of crystallization.

13.4.1 Structure Evolution of Precritical Nuclei

Applying new image techniques, it is now possible to visualize 3D nuclei by confocal

microscopes. However, nucleation process is a fast dynamic process; even with confocal

microscopes, it is still a challenge to track moving nuclei and identify their structures at

the same time. Although 3D and 2D nucleation share common physical features [57], 2D

nucleation offers the better experimental accessibility in identifying the structure of

nuclei and studying the dynamic evolution of nuclei. To quantitatively study the

structure of a 2D nucleus, a local two-dimensional bond-order parameter j6(ri) is widely

used. It is defined as follows [26]:

j6

�
ri
� ¼ M�1

X
i

e�i6qij (13.21)

where M is the number of nearest neighbors of particle i and ri denotes the center

position of particle i. All its neighbor particles are characterized by an angle qij, which is

defined by the vector connecting the particle i to its jth nearest neighbor in reference to
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the arbitrary axis. The order degree of a particle is measured by jj6(ri)j. The average value

hjj6ðriÞji in typical 2D crystals is taken as the criterion for crystal-like particles.

In the AEF-controlled 2D colloidal system, it was found that at a relatively high fre-

quency (low supersaturation), nuclei are created with a liquid-like structure

(Figure 13.10(A), top left). As the nuclei grow, their structure becomes more ordered

simultaneously (Figure 13.10(A), top middle and right) [27]. The transition from the

initial liquid-like structure to the final stable crystalline structure is a continuous pro-

cess. This can be seen clearly in terms of hjj6ðriÞji (Figure 13.10(A), bottom): the average

bond-order parameter of the nuclei increases with the size and becomes essentially

constant (w0.8) as the nuclei is beyond a critical size.

FIGURE 13.10 (A) Top: Snapshots of a growing nucleus under conditions of Vpp¼ 2.5 V, f¼ 5000 Hz. In the
schematic representations, red particles represent crystal-like particles with jj6(ri)j> 0.8 and blue particles repre-
sent the liquid-like particles. The average bond-order parameter hjj6ðriÞji of nuclei increases gradually as a func-
tion of the size of nuclei and reaches the plateau at a critical size. (B) hjj6ji as a function of nuclei size N under
conditions of Vpp¼ 2.5 V, f¼ 1000 Hz, Nuclei are created with a crystalline structure from the beginning. Salt
(Na2SO4) concentration: 2� 10�4 M. Reprinted with permission from Ref. [27]. Copyright (2009) Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim.
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At a high supersaturation, a distinct nucleation as shown in Figure 13.10(B) is

observed. In this case, nuclei are created with a crystalline structure, which is stable in

the following growth. Consistently, the average bond-order parameter is measured as

w0.8 from the early beginning and remains stable during the whole growth

(Figure 13.10(B)). At an intermediate supersaturation (Figure 13.3 in Ref. [27]), the

structure of subcritical nuclei becomes flexible: the structure is crystalline at one time

and then in the subsequent seconds it becomes disordered. Only when the size is beyond

a critical size is the crystalline structure adopted stably. It is concluded from the above

observations that the structure of subcritical nuclei is supersaturation dependent. At low

supersaturation, a metastable liquid-like structure is likely to occur first. At higher su-

persaturations, stable crystalline structures are preferred from the beginning. The un-

derstanding is that at low supersaturations, nucleation barriers are high for stable

crystalline structures, while for a metastable liquid-like structure it is much lower.

Therefore, the occurrence of a metastable liquid-like structure can significantly reduce

the nucleation barrier and enhance the nucleation [65].

Upon increasing supersaturation, the nucleation barriers decrease, both for stable

crystal structure and metastable liquid-like structures. When the supersaturation is high

enough, the difference between the nucleation barriers for stable crystalline structures

and metastable liquid-like structures becomes so small that it is comparable to (or even

smaller than) kBT. As a result, the effect of metastable structures on the lowering

nucleation barrier becomes subtle and nuclei can adopt the stable crystalline structure

from the beginning. In other words, at low supersaturations, the nucleation barrier is

lower than that predicted by CNT due to the presence of metastable structures. At high

supersaturations, as the nucleation barrier becomes substantially low, adopting meta-

stable structures is not energetically favorable anymore. Therefore, the nucleation pro-

cesses follow CNT.

13.4.2 Multistep Crystallization

In systems with short-range attractions, such as proteins, ten Wolde and Frenkel found

by simulations that nucleation for crystals may proceed through a two-step processes,

namely two-step crystallization (TSC) [66]. Sense amorphous droplets are formed first

through liquid–liquid phase separation; within the amorphous droplets, crystalline

nuclei are subsequently nucleated. The occurrence of a metastable amorphous phase

has also been found in biomineralization, by which organisms form a variety of crys-

talline structures [67]. The crystalline structures created by organisms are ubiquitously

well-defined in size and shape. There is increasing evidence that metastable amorphous

phases in biomineralization play a key role in controlling the size and the shape [68].

Although TSC has been extensively studied [69], the mechanism of TSC remains unclear

because of the absence of direct observations. In this case, the experimental studies

conducted in the AEF-controlled 2D colloidal system offer a direct demonstration of TSC

on a single-particle level.
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Figure 13.11 presents a typical multistep crystallization (MSC) process, as observed

by Zhang et al. [26] In MSC, 2D dense amorphous droplets are created first from the

supersaturated solution. As the amorphous droplets grow up, a few subcrystal nuclei

are created by fluctuation from the droplets (Figure 13.11(A)). However, the subnuclei

are not stable and usually dissolve soon; new subnuclei are created somewhere

randomly again (Figure 13.11(B)). The crystalline nuclei in the droplets have to acquire

a critical size N*cry before they become stable in the droplets (Figure 13.11(C)).

Experimentally, every droplet can produce only one stable crystal. To form a stable

crystal beyond N*cry, the droplets have to acquire a critical size N*. Although many small

dense droplets are created at the beginning, only a small fraction of them can reach the

critical size N* and accommodate a stable crystal. In MSC, the overall nucleation rate Jc
of crystal nuclei can be determined by measuring the local nucleation rate jc in indi-

vidual dense droplets [70].

13.4.3 CNT and Ostwald’s Rule

The observations of the metastable structures of nuclei and MSC are in contrast to CNT.

However, these observations can be well understood in the framework of the Ostwald

step rule [63]. The liquid-like structure of subnuclei and the amorphous droplets in MSC

have a smaller surface tension because of their liquid-like structure and thus a lower

energy barrier. Kinetically, they will be created faster than observed. Increasing evidence

shows that Ostwald’s rule may underlie most of crystallization processes in physical,

chemical, and biological systems. However, although the Ostwald step rule offers a

framework in understanding stepwise nucleation, it is a challenge to establish a theo-

retical model that can quantitatively take into account the effect of the metastable

structures on nucleation barrier and nucleation rate. So far, CNT is still widely used

because quantitative analysis is necessary. A quantitative model including the Ostwald

step rule is highly expected in this field.

(A) (B) (C)

FIGURE 13.11 Multistep crystallization observed in the 2D colloidal system. The crystal-like particles defined
by hjj6ji> 0.8 are colored. (A) Amorphous dense droplets are first created from the mother phase and small
subcrystalline nuclei are then created in the droplets by fluctuation. (B) Subcrystalline nuclei are not stable.
(C) A stable mature crystalline nucleus is created from the dense droplet. Adapted with permission from Ref. [26].
Copyright (2007) American Chemical Society.
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13.5 Kinetics of Crystal Growth
After nucleation, crystal growth, which is the second stage of crystallization, occurs.

The growth of crystals proceeds through a number of dynamic processes, such as

surface diffusion, island nucleation, and incorporation. Figure 13.12(A) illustrates the

surface of a growing crystal. At the surface, there are flat regions (the so-called terrace),

steps, and diffusing adatoms. New terraces can be created by 2D nucleation on an

existing terrace. The steps are usually zigzagged due to the presence of kink sites, which

are the most stable positions for incoming atoms or molecules to attach because more

bonds can be formed there. Kink sites can be created by thermally activated detach-

ment or adatom absorption. During the growth, surface morphology, such as island

density and terrace width, is critical in determining the quality of resulted crystals.

Surface morphology is generally a result of interplay between dynamic processes,

including surface diffusion, step diffusion, and mass transfer between terraces. For the

mass transfer between terraces, there is a step-edge barrier, namely the Ehrlich-

Schwoebel (ES) barrier (Figure 13.12(B)). So far, a rich variety of phenomenon have

been observed during the growth of crystals; such phenomenon, such as surface

roughening, defect formation, and polymorphism, have been studied for decades in

atomic systems [53]. In the last decade, this kind of study was extended into colloidal

systems; it was found that the dynamic processes included in colloidal crystal growth

follow the same principles obeyed by atoms [71]. However, in a crystallizing colloidal

system, direct observation of crystal growth on single-particle level is allowed, while it

is limited in atomic systems.

13.5.1 Step Kinetics

For thin-film materials, a smooth surface is extensively required. In epitaxial growth,

smooth growth or two-dimensional growth is usually observed at high temperatures

when adatoms have enough kinetic energy to overcome the ES barrier. At low

FIGURE 13.12 (A) Surface of a growing crystal. (B) Step-edge barrier.
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temperatures when the interlayer transport is inhibited by the ES barrier, rough

surface occurs [72]. However, when the temperature is lower than a critical value,

smooth growth occurs unexpectedly [73]. To address the reentrant smooth growth at

low temperatures, downward funneling (DF) was suggested [74]. The DF mechanism

argues that atoms deposited beyond a step edge would like to funnel down to lower

layers with their condensation energy. However, van Dijken et al. found that if the

attraction between growing fronts and incoming atoms is taken into account [75],

incoming atoms would be directed to the top of exiting islands in a steering effect.

The steering effect and the DF mechanism are competing with each other [76].

Therefore, it is still a challenge to interpret the smooth growth at low temperatures as

the steering effect is present.

Direct observations of incorporation processes in the AEF-controlled 2D colloidal

system revealed that the steering effect suggested in previous studies reflects only one

side of the attraction’s role [75]. Figure 13.13 presents a typical process of adsorbing

incoming dimers. Particles 3–6 form a step protrusion of a growing 2D crystal. The

incoming dimer consisting of particles 1–2 is approaching the step (Figure 13.13(A)). As

the attraction between the incoming dimer and the particles at the protrusion peak
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FIGURE 13.13 Smoothening effect of the attraction between incoming clusters and step protrusions. (A)–(D) Step
particles are pulled down by the incoming dimer, resulting in a reduction of the local roughness. Reprinted with
permission from Ref. [77]. Copyright (2007) American Chemical Society.
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begins to work, the trajectory of the dimer is directed toward the protrusion

(Figure 13.13(B)). Simultaneously, step particles 3–6 are accelerated to move. Particles

4 and 6, with their excess kinetic energy, descend to the lower layers (Figure 13.13(C)).

In the end, the incoming dimer incorporates into the protrusion. At the same time, the

protrusion is remarkably smoothened, ready to accept more incoming particles [77].

From this observation, it is concluded that the role of the attraction between the

incoming particles and the step particles is twofold: it can induce a steering effect and,

simultaneously, can also activate a smoothening process. The attraction-induced

smoothing effect can effectively fill up the gaps between step protrusions and leads

to smooth steps. The smoothening effect would become more significant if the

incoming units are large clusters.

13.5.2 Cluster Adsorption

In crystal growth, as Figure 13.13 shows, the growth often happens through cluster

adsorption. Using the AEF-controlled 2D colloidal system, the structure evolution of

absorbed clusters was studied by Xie et al. [78]. In their studies, a line template was

fabricated first on the electrodes to control the crystallization (Figure 13.14(A)). The

FIGURE 13.14 (A) Schematic illustration of the epitaxial assembly of 2D colloidal crystals under an AEF. (B) High-
resolution time snapshots of the epitaxial crystallization of 1.8-mm colloidal particles using a 1.8-mm colloidal parti-
cle line as a template, under the AEF of frequency f¼ 800 Hz and field strength EN¼ 4.0� 104 V/m. The bright
dots correspond to the well-focused spheres that are assembled on the bottom electrode. The dark dots corre-
spond to the ill-focused spheres, which are suspended in the bulk solution. (A) Reprinted with permission from
Ref. [40]. Copyright (2012) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Reprinted with permission from
Ref. [78]. Copyright (2009) American Chemical Society.
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colloidal solution was loaded after the templating (Figure 13.14(B), 0 s). Upon the

application of AEF of a frequency 800 Hz and a field strength EN¼ 4.0� 104 V/m,

crystallization occurs preferentially near the line templates. At the same time, a large

number of colloidal clusters are formed (Figure 13.14(B), t¼ 2.6 s). During the growth

of the crystal, clusters adsorption occurs frequently. In the absorption, the clusters

exhibit high structure flexibility (Figure 13.14(B): 15.6 s, 24.8 s) and the occurrence of

defects is rare. It is believed that the local melting induced by the impact of incoming

clusters plays a key role in annealing the growing fronts [79]. Nevertheless, if the

incoming flux of clusters is too high, voids or grain boundaries can be formed and

frozen in the crystals.

13.5.3 Surface Roughening

The growth of crystals occurs at the boundaries/interfaces between the crystal phase

and the fluid phase; the boundaries keep moving toward the fluid phase [80]. The

morphology of the crystal surface results from a certain growth model, which in turn

will affect the growth kinetics of crystal faces. There are two types of crystal surfaces:

flat surface (Figure 13.15(A) left) and roughened surface (Figure 13.15(A), right) [80].

FIGURE 13.15 Surface roughening by the solid-on-solid model. (A) Schematic illustration of flat (left) and
roughened (right) crystal surfaces. (B) Paraffin crystal grown from a hexane solution below the roughening
temperature (i) and above the roughening temperature (ii) of the faces {110}; the faces {110} (side faces) are
straight.
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Flat surfaces generally result from layer-by-layer growth or faceted growth. In this

case, the overall crystallographic orientation is well maintained during the growth

(Figure 13.15(B), left; the (110) face of n-C23H48 crystals). In a roughened growth or

normal growth mode, the growing crystal faces lose the overall crystallographic

orientation and the surface becomes round (Figure 13.15(B), right; the (110) face of

n-C23H48 crystals) [81]. A faceted crystal surface may experience a transition from the

flat mode to the rough mode at a critical temperature, the so-called roughening

temperature TR [81] (Figure 13.15(A)). The mechanism is that, below the roughening

temperature, there is a nonzero free energy—the so-called step free energy associated

with the creation of a step of unit length at the surface [82]. Consequently, the cre-

ation of a new layer on existing layers at crystal surfaces has to overcome a free

energy barrier, the so-called two-dimensional nucleation barrier. Therefore, below the

temperature TR, the creation of new islands is not preferred, giving rise to an overall

flat surface [83]. Above TR, the step free energy vanishes; the energy cost to form new

steps or kinks is small. As a result, the surface microscopically becomes rough and

crystallographic orientation is lost.

The roughening transition has been investigated extensively by computer simu-

lations [83]. In these simulations, the so-called solid-on-solid interfacial model was

widely used. This model is a generalization of Ising model, which assumes that crystal

surface is a collection of interacting columns. The corresponding Hamiltonian is

given by:

H ¼ gE

X
ij

��hi � hj

��2 (13.22)

Here, gE is the step energy per unit length and hi, is the column height; the step free

energy g is dependent on temperature by:

gwexp
h
� aðTR � TÞ�1=2

i
as T/TR

�
T < TR


(13.23)

As the temperature approaches TR, g vanishes continuously. Therefore, the roughening

transition can be regarded as a type of Kosterlitz-Thouless transition (an infinite-

order transition) [84]. However, the experimental observations in the AEF-controlled

2D colloidal system show that a roughening transition can be of infinite order or

first order [85].

The 2D colloidal crystals can be regarded as the top layer of atoms or molecules on a

crystal surface. In this system, a phase transition from a highly ordered colloidal

monolayer to an isotropic suspension can be induced by decreasing the field strength or

increasing frequency [85]. Intriguingly, the transition induced by decreasing field

strength as shown in Figure 13.16(A) is an infinite-order transition, while the frequency-

induced transition is a typical second-order phase transition. We notice that both the

infinite-order and the second-order phase transition (Figure 13.16(B)). We notice that

both the infinite-order and the second-order surface roughening have so far not been

recognized in previous studies.
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FIGURE 13.16 (A) The change of order parameters of the transition induced by the field strength. Left: The
translational correlation length xT. Right: the bond-orientational order h6 change with the external field strength
from 2.8� 104 V/m to 0.5� 104 V/m at a fixed frequency of f¼ 0.8 kHz. Here, the position of the vertical dotted
line is the critical strength sE

c ¼ 0.9� 0.05� 104 V/m. The lnw ln plots of the normalized order parameters xT0 and
h6

0 against ln(sE� sE
c) are shown in the right-corner insets. The straight dotted line in each inset is the least-

squares fit of the data, resulting in the values of the fitting parameters of ln(a)¼�2.055� 0.058,
b¼�1.33� 0.061 for the left and ln(a)¼�2.518� 0.057, b¼�1.350� 0.058 for the right. The red curves are the
best fits of the exponential function with the given fitting parameters. (B) The change of the order parameters of
the transition induced by the frequency. xT (left) and h6 (right) change with the frequency of the electric field
from 2.1 to 4.2 kHz at a fixed strength sE¼ 2.8� 104 V/m. The position of the vertical dotted line is the critical
frequency fc¼ 3.7� 0.1 kHz. The ln plots of the normalized order parameters xT0 and h6

0 against ln(fc� f) are
shown in the left-corner insets. The straight dotted lines in the insets are the least-squares fits of the data, result-
ing in the values of the fitting parameters of l¼ 2.04� 0.07 for the left and l¼ 2.09� 0.11 for the right. The red
curves are the best fits of the power-law function with the given fitting parameters. Reprinted with permission
from Ref. [85]. Copyright (2006) by the American Physical Society. (For interpretation of the references to color in
this figure legend, the reader is referred to the online version of this book.)

Chapter 13 • Controlled Colloidal Assembly 585



13.6 Interfacial Structural Mismatch and Network
Formation

On one hand, substrates can lower nucleation barriers in a supersaturated solution. On

the other hand, they also exert a negative impact on the surface integration, the so-called

shadow effect, as illustrated in Figure 13.7(B). The shadow effect will slow the nucleation

kinetics and weaken the effect of reduced nucleation barrier. These two competing ef-

fects play different roles in different regimes (Figure 13.17(A) up). At low supersatura-

tions, the nucleation barrier is high; thus, nucleation will be substantially enhanced if the

nucleation barrier is lowered effectively (f(m)/ 0). In this case, the interaction between

the substrate and the nucleating phase is important and heterogeneous nucleation is

kinetically favored. Under this condition, nucleation barrier can be most effectively

reduced if the structural synergy between the nucleating phase and the substrate is

optimal, giving rise to self-epitaxial nucleation [86]. At higher supersaturations, nucle-

ation barrier becomes low and the effect of substrates in reducing nucleation barrier

becomes less important. Instead, the shadow effect of the substrate becomes significant.

Nuclei on the substrates with larger f(m) and f 00(m) (or m/ 0, �1; see Eqn (13.18))

will have a higher freedom in orientation (or a larger entropy) and thus have more

chance to grow. It follows that as the supersaturation is too high, the epitaxial templating

relationship between substrates and nucleating phases cannot be maintained, even if

substrates have an excellent structural match with the new phase, leading to a

supersaturation-driven interfacial structural mismatch. Figure 13.17(A) (bottom) illus-

trates a typical example of the self-epitaxial nucleation induced assembly and the

supersaturation-driven interfacial structural mismatch. As shown, in a solution growth,

calcite crystals evolve from single crystals to polycrystals upon increasing supersatura-

tion. At relatively low supersaturations, the polycrystals are well aligned with each other

(self-epitaxial nucleation induced assembly). As the supersaturation increases, the

structural match between the adjacent crystallites in the assembly are lost gradually,

namely supersaturation-driven interfacial structural mismatch.

The supersaturation-driven interfacial structural mismatch plays a very important

role in pattern formation, crystallite network formation, and supermolecule soft material

formation [9]. Although it has been studied theoretically for a long time, a direct

experimental verification of the supersaturation-driven interfacial structural mismatch

has been missing. Recently, such direct observations was realized in the AEF-controlled

2D colloidal system by Xie and Liu [78]. In their study, one-dimensional colloidal tem-

plates were fabricated on the electrodes first. As the AEF was switched on, 2D crystal-

lizations occurred preferentially along the line templates (Figure 13.17(B), left). To

examine the ordering degree of the colloidal crystals, an orientational order parameter

S ¼ 1=2h3 cos2 q� 1i was used to quantify the uniaxial ordering of the colloidal assem-

bly. The misfit angle q of a crystal domain was measured in reference to the epitaxial

colloidal line templates. The brackets denote an overall average of the particles in the

assembly. S¼ 1 means that the orientation of a crystalline domain is parallel to the line

586 HANDBOOK OF CRYSTAL GROWTH



template. This was observed in the low-frequency range (400–800 Hz), where the

resulting crystals are free of defects. At high frequencies (1000–2000 Hz), the quality of

crystals in terms of S gradually decreases (Figure 13.17(C), left). The interparticle sepa-

ration req in the crystalline domains (Figure 13.17(C), right) decreases with frequency at

the low-frequency region and reaches its minimum in the range of 1000–2000 Hz. This

implies that the attractive force between particles becomes stronger as the frequency

FIGURE 13.17 (A) Self-epitaxial nucleation-induced assembly and supersaturation-driven interfacial structure
mismatch nucleation. The structural match between the daughter crystals and the parent crystal will become poor
as supersaturation increases. An example in calcite crystallization is demonstrated. (B) Heterogeneous 2D colloidal
crystallization. Left: Orientational order parameter S¼ 1 at 800 Hz. Right: S¼ 0.83 at 1000 Hz. (C) Variation of
the orientational order parameter, the equilibrium distance, and nucleation rate as a function of frequency. The
diameter of the colloidal particles is 1.8 mm. (a) Reprinted with permission from Ref. [40]. Copyright (2012)
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b)–(c) Reprinted with permission from Ref. [78]. Copyright
(2009) American Chemical Society.
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increases. In other words, the supersaturation for crystallization is stronger at high fre-

quencies. The reduced ordering degree of the colloidal crystals and the decreased S can

be regarded as a direct reflection of a supersaturation-driven interfacial structural

mismatch at high supersaturations.

13.7 Crystal Defects
Defects exist ubiquitously in crystals. There are several different types of defects: va-

cancy, dislocation, and grain boundary. These defects have great impact on the prop-

erties of crystals. For example, the presence of dislocation can strongly change the

electrical and optical properties of crystals; vacancies can enhance atom diffusion in

crystals [87]. Understanding the diffusion of defects and the interaction between defects

are of great importance in condensed-matter physics and material sciences [88]. The

development of colloidal model systems allows the direct observation of defects at the

single-particle level [89].

In the AEF-controlled 2D colloidal systems, configurations and diffusion of vacancies

were studied by Zhang and Liu [90]. Figure 13.18(A) shows that, in the 2D system, both
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FIGURE 13.18 Configurations of vacancies in 2D colloidal crystals. (A) Configurations of dimer vacancies and
trimer vacancies. (B) Average squared displacement and trajectories of the mass center of vacancies. Reprinted
with permission from Ref. [90]. Copyright (2006) AIP Publishing LLC.
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dimer and trimer vacancies exhibit two stable configurations—threefold symmetric (D3)

and twofold symmetric (D2), respectively. For dimer vacancies, the relative occurrence

probabilities for D2 and D3 are 0.47� 0.01 and 0.53� 0.01, respectively, being slightly

different. The free energy difference Dε between configurations D2 and D3 can be esti-

mated from the occurrence probabilities. It was found that the Dε for dimer vacancies is

about 0.12kBT. Experimentally, dimer vacancies keep hopping between the two stable

configurations (Figure 13.18(A) up). For trimer vacancies, the relative occurring proba-

bilities of D3 and D2 are 0.68� 0.01 and 0.32� 0.01 respectively, being significantly

different. The corresponding energy difference is around 0.75kBT.

In the experiments, monomer vacancies are immobile, whereas dimer/trimer va-

cancies keep hopping from one configuration to another configuration. Accompanying

the configuration transformation, themass center of vacancies undergoes a displacement.

The linear fitting of the average squared displacements hDr2i of the mass center of

vacancies shows that the diffusion coefficient of the dimer vacancies is around

0.13� 0.03 mm2/s. However, as Figure 13.18(B) (left) shows, the average squared dis-

placements of trimer vacancies reaches a plateau as the observation is beyond 2 s, sug-

gesting that the trimer vacancies do not experience global diffusion in the 2D crystal. This

is more clearly demonstrated by the trajectory plot (Figure 13.18(B), right). For dimer

vacancies, the trajectory of the mass center exhibits a global Brownian motion in the

crystal, whereas the mass center of trimer vacancies experiences only a local oscillation

between two positions. The limited diffusion of trimer vacancies can be attributed to the

significant energy difference between its two stable configurations: trimer vacancies prefer

to adopt theD3 configuration, and hopping betweenD2 andD3 is not energetically favored.

In previous studies [91], both monomer vacancies and dimer vacancies in colloids

with repulsive interactions are mobile and can diffuse globally. Moreover, dimer va-

cancies can dissociate into a dislocation pair. All these observations are distinct from the

observations presented in Figure 13.18. These discrepancies may be due to the different

interactions between colloidal particles [90]. In repulsive colloids, the particles adjacent

to the missing particle of monomer vacancies tend to be pushed out from their equi-

librium positions, leading to the deformation and diffusion of monomer vacancies.

However, in AEF-controlled 2D colloidal systems, the electrostatic repulsion between

two particles inside the clusters is balanced by an attraction. A small displacement from

the equilibrium positions will produce a recovering force to pull the particle back.

Therefore, the hopping of colloidal particles next to the missing particles of monomer

vacancies is inhibited.

13.8 Concluding Remarks
In this chapter, we summarized recent progresses in understanding the mechanism of

crystallization, which were achieved in colloidal modeling systems. In the modeling

systems, almost all fundamental aspects of crystallization can be examined. It follows

from these studies that classical nucleation theories provide a reasonable good
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description for the main feature of nucleation dynamics in the steady state. On the other

hand, the actual nucleation deviates from CNT in many cases. For example, in contrast

to the assumption of CNT about the structure of crystal embryos, the structures of the

embryos are usually supersaturation-dependent; in some cases, nucleation can occur

through metastable phases or structures. These nonclassical nucleation routes can

effectively reduce the overall nucleation barrier, hence speeding up the kinetics.

Alternatively, the occurrence of substrates can also effectively reduce nucleation barriers.

However, the effect of a substrate on nucleation is supersaturation dependent as the

templated 2D colloidal nucleation reveals: supersaturation-driven structural mismatch

may happen at high supersaturations.

Colloidal experimental modeling also demonstrates that a cluster of a few growth

unites can be incorporated into the steps without causing any defect. In the context of

surface roughening, one can have both the infinite-order and the second-order surface

roughening transition at the two layer solid–fluid interface as different parameter sets

were chosen. This is in contrast to the two-dimensional Ising models, which only predict

a second-order phase transition. Moreover, as demonstrated, the colloidal modeling

technique has been successfully applied to examine many other crystallization pro-

cesses, such as adatomic step integration, defect generation, and migration kinetics,

which have never been understood before at the single-particle level.

In the future, numerous important phenomena should be further examined using

controlled colloidal modeling:

1. The formation and diffusion of grain boundaries in crystals.

2. Oriented attachment, which has been suggested as another important mechanism

for nuclei/nano-crystal growth [92,93]. So far, in situ observations for this mecha-

nism are rare, and the underlying mechanism is still open to discussion [94].

3. Heterogeneous nucleation. Although there are a plenty of discussions about the

mechanism of heterogeneous nucleation, to the best of our knowledge, there is still

limited direct experimental evidence available. By pinning colloidal clusters on the

surfaces where crystallization occurs, we can examine systematically how the size

and the shape of the clusters as nucleation centers will affect nucleation processes.

4. Interaction between defects. How defects, such as dislocations, interact with each

other is intriguing. Direct observations may improve our understanding of it.

There are still many other problems to be added to the list. It is certain that a

comprehensive understanding of these subjects will significantly improve the ability to

fabricate advanced materials.
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[5] Becker R, Döring W. Kinetic treatment of germ formation in supersaturated vapour. Ann Phys 1935;
24:719–52.

[6] Zeldovich JB. On the theory of new phase formation. Acta Physicochim URSS 1943;18:1–22.

[7] Hirth JP, Pound GM. Condensation and evaporation. Oxford: Pergamon Press; 1963.

[8] Nielsen AE. Kinetics of precipitation. Oxford: Pergamon; 1964.

[9] Liu XY. From solid-fluid interfacial structure to nucleation kinetics: principles and strategies for
micro/nanostructure engineering. In: Liu XY, De Yoreo JJ, editors. Nanoscale structure and as-
sembly at solid-fluid interface, vol. 1. Kluwer Academic Publishers; 2004. p. 109.

[10] Lewis VB, Anderson JC. Nucleation and growth of thin films. London/New York/San Francisco:
Academic Press; 1978.
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14.1 Introduction
The phenomenon of morphological stability pertains to the stability of the shape of a

crystal during growth. In particular, it pertains to the stability relative to some idealized

shape, the so-called unperturbed shape that is based on a reasonable simplification or
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idealization of the growth conditions. It can pertain to growth from the vapor or from

solution, but in this article we will concentrate on growth from the melt by means of

crystallization (solidification), which has been studied extensively.

A vast literature on this subject has developed since the original papers by Mullins

and Sekerka [1,2] and Voronkov [3]. Although the phenomenon became well known to

members of the metallurgy and crystal growth communities, where it was reviewed by

Delves [4], the review article by Langer in 1980 [5] brought the subject to the attention of

the physics community which introduced new quantitative methodologies. For example,

see the reviews by Kessler et al. [6] and Caroli et al. [7].

The comprehensive article in the previous edition of the Handbook of Crystal Growth

[8] by two of the current authors contains extensive references to this literature,

including other review articles. In the present article, and in the spirit of writing for a

handbook, we will begin by taking a more tutorial approach with the objective of

acquainting the nonexpert reader with the basic aspects of the phenomenon. In later

sections, we will present a more detailed analysis of some of the more important aspects.

In many cases, however, we will not repeat the account given in [8]. In the final section,

Concluding Remarks, we will give a brief discussion and references to closely related

topics that space limitations have precluded.

The motivation for the theory of morphological stability comes from experiments

involving unidirectional solidification of dilute alloys [9] in which the solid–liquid

interface would ideally be planar but is observed to deviate, under certain conditions,

from planarity on a scale of typically 10–100 mm. In particular, rapid extraction of the

liquid during the solidification process often reveals a cellular structure which could only

have formed if the planar interface were unstable. In growth from a pure melt, instability

might be expected if the melt is supercooled because a slight projection of the solid into

the supercooled liquid would reach a colder region where solidification might take place

more rapidly, thus enhancing its growth. Most experiments, however, were performed

on binary alloys with a positive temperature gradient in the liquid at the solid–liquid

interface. In that case, such instabilities were attributed to constitutional supercooling

(CS) [10], according to which the liquid ahead of the solid was supercooled with due

respect to its composition. This results because an alloy melt has a different freezing

point than a pure melt. In castings, especially alloy castings, one frequently encounters

dendritic growth which is a more extreme morphology that results subsequent to the

onset of morphological instability.

The explanation of morphological instability on the basis of the idea of super-

cooling was attractive and tended to explain experimental results but suffers from the

fact that it did not account for the dynamics of the solidification process, which would

be expected to change as a shape perturbation attempted to grow preferentially. The

theory of morphological instability, on the other hand, is based on a dynamic

approach in which the equations that govern heat flow, and also diffusion in the case

of an alloy, are solved simultaneously while allowing for a change of shape due to a

perturbation.
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14.2 Elementary Considerations
We first give a simplified analysis of the instability of a planar interface for unidirectional

solidification of a pure melt. This will introduce the reader to the methodology of a

perturbation analysis of stability in a simplified setting and prepare for the stability

analyses of future sections for more complicated problems. For a binary alloy, it is found

experimentally that the solid–liquid interface can be unstable even for a positive tem-

perature gradient in the liquid. We shall, therefore, review the simple idea of CS, which

suggests a reason for such instability.

14.2.1 Elementary Theory for a Pure Melt

We analyze the stability of a crystal that is growing at constant unidirectional velocity V

from a pure melt [11,12] by means of unidirectional solidification, perhaps brought

about by means of a traveling furnace and heat sink. The sample is assumed to be very

long and initially has a planar interface located in the moving plane z¼ 0 located far

from its ends. We suppose that a steady-state exists such that constant temperature

gradients GS and GL are maintained in the solid and liquid just behind and ahead of the

moving planar interface, where the temperature is at the melting point TM.

The situation is assumed to be one dimensional, so conservation of energy

requires

KSGS � KLGL ¼ LVV (14.1)

where KS and KL are thermal conductivities of solid and liquid and LV is the latent heat

per unit volume. For simplicity, we assume that the solid and liquid have equal and

constant densities and forbid fluid convection in the melt. This is the idealized unper-

turbed solution whose stability we shall examine.

We proceed to solve the problem for a slightly perturbed interface having features of

very small amplitude. The amplitude will be assumed to be sufficiently small that we can

describe an arbitrary perturbation by means of normal modes, so we proceed to examine

a single Fourier component of spatial wavenumber u. Thus the perturbed interface

shape is represented by

z ¼ hðx; tÞ ¼ dðtÞ cosðuxÞ (14.2)

where d(t) is a small amplitude whose dependence on time remains to be determined

and x is a coordinate perpendicular to z. It suffices to consider only a two-dimensional

problem in this linear analysis because a perturbation of the form cosðuxxÞ cosðuyy þ fÞ
gives the same results if u/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x þ u2

y

q
, as shown in Section 14.3.1.

The perturbed temperature fields TS and TL depend on time and satisfy time-

dependent equations. However, near the onset of instability, the perturbations are ex-

pected to evolve so slowly relative to heat conduction that the temperature fields relax

rapidly to steady state solutions to Laplace’s equation that evolve slowly with time.
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This is known as the thermal steady-state (TSS) approximation, which is valid except

for perturbations of long wavelength. The unperturbed temperature fields are, therefore,

given by the equations

T
ð0Þ
S ¼ TM þ GSz; z < 0; T

ð0Þ
L ¼ TM þ GLz; z > 0 (14.3)

and the perturbed temperatures can be taken in the form

TS ¼ T
ð0Þ
S þ T

ð1Þ
S ; solid; TL ¼ T

ð0Þ
L þ T

ð1Þ
L ; liquid (14.4)

where

T
ð1Þ
S ¼ AS

�
t
�
exp

�
uz

�
cos

�
ux

�
; T

ð1Þ
L ¼ AL

�
t
�
exp

��uz
�
cos

�
ux

�
: (14.5)

It is readily evident that the expressions in Eqn (14.5) satisfy V2TS;L ¼ 0 and decay to zero

far from the interface; whereas, the amplitudes AS(t) and AL(t) will be determined by

satisfying the boundary conditions at the interface.

At the perturbed interface, the temperature fields must be continuous and assumed

to equal the temperature TI(x,t) of that interface determined by thermodynamic con-

siderations. Thus

TSðx;hðx; tÞ; tÞ ¼ TLðx;hðx; tÞ; tÞ ¼ TI ðx; tÞ: (14.6)

The temperature TI(x,t) is given by the Gibbs–Thomson equation

TI ¼ TM � TMGK (14.7)

where K is the interface mean curvature and G¼ g/LV is a capillarity length, where g is

the solid–liquid interfacial free energy. For our small amplitude perturbation,

Kz� v2h
�
vx2 ¼ d

�
t
�
u2 cos

�
ux

�
: (14.8)

Equation (14.6) is to be expanded to terms linear in h, which gives

AS ¼ �d
�
t
��
GS þ TMGu2

�
; AL ¼ �d

�
t
��
GL þ TMGu2

�
: (14.9)

The remaining boundary condition for conservation of energy at the interface can be

written for perturbations of small amplitude in the form

LV

�
V þ vh

vt

�
¼ KS

�
vTS

vz

�
z¼h

� KL

�
vTL

vz

�
z¼h

; (14.10)

where it is to be understood that the right-hand side is to be expanded to terms linear in

h, consistent with former small amplitude approximations. It therefore becomes

LV

�
V þ _d cos

�
ux

�� ¼ KS

�
GS þ uAS cos

�
ux

��� KL

�
GL � uAL cos

�
ux

��
; (14.11)

where _d ¼ dd=dt. After simplification by using Eqn (14.1), Eqn (14.11) can be solved to

give

_d

d
¼ ðKS þ KLÞ

LV

u
h
�G� � TMGu2

i
(14.12)

where
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G� ¼ KSGS þ KLGL

KS þ KL

(14.13)

is a conductivity-weighted average temperature gradient.

Equation (14.12) is a differential equation for the perturbation amplitude d(t) and

determines whether the planar interface is stable or unstable. The left-hand side is the

fractional rate of change of amplitude with time which increases with time for any values

ofu for which the right-hand side is positive. The right-hand side is sketched in Figure 14.1

as a function of u. It will be positive for a band of wavelengths l¼ 2p=u whenever

G� < 0; instability (14.14)

and all wavelengths will be stable if G*> 0. In view of Eqn (14.1), we see that instability

occurs whenever more of the latent heat is extracted into the liquid, as opposed to the

solid. If Eqn (14.1) is used, Eqn (14.14) takes the form GL<�LV/2KL, so a sufficiently

negative gradient in the liquid is required for instability. Provided that G*< 0, we see that

perturbations having wavenumber u < u00 ¼ ½�G�=ðTMGÞ�1=2 are unstable and of those,

the fastest growing will have wavenumber u0 ¼ u00=
ffiffiffi
3

p
, which corresponds to the

maximum of curve b in Figure 14.1.

The previous simple analysis illustrates correctly that capillarity (the term in G in Eqn

(14.12)) is always stabilizing, whereas the temperature gradient term involving G* will be

destabilizing if negative. For a given value of the right-hand side of Eqn (14.12), we see

that d changes exponentially with time. If d increases exponentially with time, it will soon

become so large that our linearization for small d will become invalid, so all that we are

able to say is that the interface starts to become unstable, but then other things will

happen because nonlinearities become important. It might continue to become unstable

in a more complex way (e.g., dendritic growth) or stabilize into a cellular structure, all of

which is beyond the scope of linear stability theory.

The present analysis breaks down for sufficiently small u which corresponds to very

large wavelengths. For example, if a sample has a cross-sectional width W, wavelengths

are essentially limited to l<W which corresponds to u>W/2p. Moreover, the TSS

approximation breaks down for sufficiently long wavelengths because the propagation

FIGURE 14.1 Sketch of Eqn (14.12) as a function of u. If _d=d is positive for any value of u, the interface is unstable
to perturbations of that wavenumber. Curve a is for G*> 0, stability, while curve b is for G*< 0, instability. u00 is
the wavenumber for marginal stability and u0 is the wavenumber of the fastest growing perturbation.

Chapter 14 • Morphological Stability 599



time for heat to diffuse over a distance l is roughly tw l2/k where k is a thermal diffu-

sivity. An improved analysis given in Section 14.3.1.3 shows that perturbations with very

small u are stable if G*> 0 and explores conditions for which all perturbations are stable

even for G* slightly negative.

14.2.2 Constitutional Supercooling

Prior to the development of morphological stability theory, the instability of a planar

interface during unidirectional solidification of a dilute binary alloy was explained by

appealing to the concept of CS [10]. This concept is based on a steady-state solution in a

moving reference frame for the solute profile in the liquid ahead of a planar solid–liquid

interface that moves with constant velocity V in the z direction. For a steady state in a

frame of reference that moves with velocity V, the concentration c(z) of solute in the

liquid is governed by the equation

v2c

vz2
þ V

DL

vc

vz
¼ 0 (14.15)

where DL is the diffusivity in the liquid, assumed to be constant for simplicity. Diffusion

in the solid is ignored because the solid diffusivity is several orders of magnitude smaller

than DL. The boundary conditions are c(0)¼ CL at the solid–liquid interface and c¼ CN

far into the liquid, as z/N. To achieve a steady state, the concentration in the solid

must also be CN. It is assumed that the alloy is dilute, so the liquidus and solidus lines of

the phase diagram are straight lines. The liquidus line has a slope m, and the solidus line

has a slope m/k where k is a constant known as the distribution coefficient. These lines

meet at the melting point TM of the pure solvent. There are two possible cases, k< 1 and

k> 1, as illustrated by the phase diagrams in Figure 14.2. The sign convention is such

that m(k� 1)> 0.

During solidification, local equilibrium at that interface is assumed, so CN¼ kCL.

Thus, the solution of Eqn (14.15), subject to the aforementioned boundary conditions, is

c ¼ CN
1� k

k
exp

��Vz
�
DL

�þ CN: (14.16)

TM

TI

S L + S L

CS CL

TM

TI

+L L S S

CL CS
FIGURE 14.2 Portions of idealized phase diagrams for dilute binary alloys. On the left, k< 1 and m< 0 and on the
right k> 1 and m> 0. In both cases, CS¼ kCL, m(k� 1)> 0, and the solid–liquid interface temperature is
TI¼ TM þmCL¼ TM þ mCS/k.
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For k< 1, solute is rejected on freezing and builds up in a boundary layer ahead of the

interface; whereas, if k> 1, solute is preferentially incorporated on freezing, so there is a

depleted zone in a boundary layer ahead of the interface. The thickness of the boundary

layer is roughly DL/V. The temperature at the interface is TI¼ TM þmCN/k. The tem-

perature in the liquid is given by

TL ¼ TM þmCN=k þ GLz (14.17)

whereas, the freezing point of the liquid ahead of the interface would be given by

TF ¼ TM þmc ¼ TM þmCN=k þmðk � 1ÞðCN=kÞ½1� expð�Vz=DLÞ�; (14.18)

which is sketched in Figure 14.3. Recalling m(k� 1)> 0, we see for z¼ 0 that TL¼ TF as

expected, but for z> 0, the liquid ahead of the interface will never be supercooled if

GL> (dTF/dz)z¼0, so stability of the planar interface might be expected. On the other

hand, there will be a zone of supercooled liquid if GL< (dTF/dz)z¼0 and instability might

be expected. We note that�
dTF

dz

�
z¼0

¼ m

�
dc

dz

�
z¼0

hmGc ¼ m
k � 1

k
CN

V

DL

(14.19)

This leads to the CS criterion

GL > mGc stability; GL < mGc instability: (14.20)

Note that the quantity mGc is always positive, irrespective of whether k< 1 or k> 1. To

analyze experiments, one typically plots GL/V versus CN which is a straight line that

passes through the origin and divides stable (large GL/V) from unstable regions, as

shown in Figure 14.4.

For typically slow crystal growth speeds, the CS criterion is roughly in agreement with

experiments, considering the uncertainty of material parameters, especially DL.

Nevertheless, it is based on a comparison of temperatures before any instability takes

place. We know that any perturbation that grows must release latent heat and that heat

can also be conducted into the solid. Moreover, the CS criterion does not account for any

stabilization due to capillarity, which essentially arises because the nonplanar interface

TM + mC∞

TM + mC∞ /k

a

z

b

FIGURE 14.3 Graph of temperature versus z to illustrate constitutional supercooling. The curved line is the
freezing temperature TF given by Eqn (14.18). The three sloping lines are possible actual temperatures with
gradients GL. Line a is for large GL and is greater than TF, while line b is for small GL and cuts below TF, resulting
in a zone of liquid that is supercooled with due respect to its composition. The full line corresponds to the critical
gradient for which the initial slopes are the same.
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will have a larger surface free energy. These are the main things that morphological

stability theory seeks to correct by providing a criterion based on the dynamics of

perturbation growth.

14.3 Linear Stability Analysis
We now turn to a systematic application of linear stability analysis for various geome-

tries. First we treat the linear stability of a planar interface and then go on to explore

other shapes such as spheres and cylinders.

14.3.1 Planar Interface

We first discuss the morphological stability of a planar interface during the directional

solidification of a binary alloy, essentially following the original work of Mullins and

Sekerka [2]. Then we discuss various extensions of that work.

For the analysis that follows immediately, we shall employ a frame of reference that

moves in the z direction with constant velocity V along with the unperturbed planar

interface that will be analyzed for stability. The temperature fields in the melt (L, liquid)

and the crystal (S, solid) are governed by the equations

V2TL þ V

kL

vTL

vz
¼ 1

kL

vTL

vt
; V2TS þ V

kS

vTS

vz
¼ 1

kS

vTS

vt
; (14.21)

where kL and kS are thermal diffusivities, assumed to be constant and isotropic. Isotropy

is only valid for cubic crystals. The concentrations in the liquid and solid are governed by

V2cL þ V

DL

vcL
vz

¼ 1

DL

vcL
vt

; V2cS þ V

DS

vcS
vz

¼ 1

DS

vcS
vt

; (14.22)

where DL and DS are solute diffusivities, also assumed to be constant and isotropic. We

also forbid convection in the melt and assume that the densities of solid and liquid are

the same and uniform. Relaxation of some of these assumptions will be discussed later.

Typically, DS � DL, so we will ignore diffusion in the solid unless otherwise specified.

stable

unstable

GL/V

−LV /(2KL) C∞

a

b

(0,0)

FIGURE 14.4 Comparison of the constitutional supercooling (CS) criterion (line a) with the modified CS criterion
(line b) corresponding to Eqn (14.46) below, illustrated for KS¼ 2KL and m0 ¼ m. Because of a finite latent heat,
the modified CS line does not pass through the origin. Experiments are unlikely to distinguish between these two
criteria unless very good materials property data are available.
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The unperturbed fields pertain to a steady state in the moving frame of reference, in

which case the time derivatives on the right-hand sides of Eqn (14.21) and Eqn (14.22)

are zero. Since we are interested in perturbing a steady-state solution and seek to

understand the onset of instability, we expect the perturbations to evolve so slowly that

the temperature and solute fields will relax rapidly to steady state fields that evolve

slowly with time. Thus, one can make the quasi-steady-state (QSS) approximation by

setting the right-hand sides to zero, even for the perturbed fields. Since we know from

the CS analysis that the relevant length scale of the solute boundary layer is DL/V, we

observe that V =kL;S ¼ ðV =DLÞðDL=kL;SÞ. But typically, DL=kL;S � 1. Thus, the thermal

fields can be assumed to obey Laplace’s equation, V2TL ¼ 0 and V2TS ¼ 0, which we call

the TSS approximation. These approximations were made in the original work of

Mullins and Sekerka but here we proceed at first in more generality [13,14].

Boundary conditions at the solid–liquid interface are�
v $ bn�LV ¼ �

KSVTS � KLVTL

�
$ bn (14.23)

for conservation of energy, and�
v $ bn��cL � cS

� ¼ �DLVcL $ bn (14.24)

for the conservation of solute. bn is a unit vector normal to the interface and pointing into

the liquid. The interface temperature is given by a modification of Eqn (14.7) to account

for the presence of solute and takes the form

TL ¼ TS ¼ TM þ gðcLÞ � TMGKhTe (14.25)

where TE¼ TM þ g(cL) is the equation of the liquidus line of the phase diagram. The

quantity Te ¼ TE � TMGK is the local equilibrium temperature of a curved interface,

and the solidus is given by cS¼ k(cL)cL [14]. This is a little more general than used in

Section 14.2.2 where g(cL)¼mcL where m is a constant and k(cL) is also a constant.

Instead of the constants m and k, the linearized equations will depend on parameters

m0 ¼ ðdg=dcLÞc0
L
ð0Þ and k0 ¼ ðd½kðcLÞcL�=dcLÞc0

L
ð0Þ ¼ ½k þ cLðdk=dcLÞ�c0

L
ð0Þ, where c0Lð0Þ de-

notes the liquid concentration at the planar interface. For simplicity hereafter, we use

the symbol k to denote the value kðc0Lð0ÞÞ which results in c0Lð0Þ ¼ CN=k as in our

treatment of CS as well as the treatment of Mullins and Sekerka.

To do a linear stability theory, we can take the interface shape to be of the form

z ¼ h
�
x; y; t

� ¼ d0 exp
�
st þ i

�
uxx þ uyy

�	
(14.26)

where we employ complex variables to represent sinusoidal perturbations with the

understanding that we can ultimately take the real part. Here, d0 exp(st) plays the role of

the amplitude d(t) in Eqn (14.2). We recall from Eqn (14.12) that d(t) evolves exponen-

tially with time. Here, we allow for the possibility that s could have an imaginary part in

which case one could have the more general possibility of oscillations in time with an

exponential amplitude factor. In that case, the criterion for stability would require the

real part of s to be negative.
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To proceed, it is necessary to linearize all boundary conditions in h. The fields

are sums of an unperturbed part and a perturbed part, specifically TL ¼ T 0
L ðzÞ þ T 1

L ðzÞh;
TS ¼ T 0

S ðzÞ þ T 1
S ðzÞh and cL ¼ c0LðzÞ þ c1LðzÞh. The linearized mean curvature is

K ¼ �V2h ¼ u2h, where u2 ¼ u2
x þ u2

y , so x and y are not distinguished because of the

assumption of isotropy of the interfacial free energy. If we set f(x,y,z,t)¼ z – Vt� h(x,y,t)

we find that bn ¼ Vf =jVf j, and v $ bn ¼ �vf =vt=jVf j which can be inserted in Eqn (14.23)

and Eqn (14.24) to give

LV

�
V þ sh

� ¼ 

KS

v
�
T 0
S ðzÞ þ T 1

S ðzÞh
	

vz
� KL

v
�
T 0
L ðzÞ þ T 1

L ðzÞh
	

vz

�
z¼h

(14.27)

and

ðcL � cSÞz¼h

�
V þ sh

� ¼ �


DL

v
�
c0LðzÞ þ c1LðzÞh

	
vz

�
z¼h

(14.28)

The interface temperature is given by�
T 0
L ðzÞ þ T 1

L ðzÞh
	
z¼h

¼ �
T 0
S ðzÞ þ T 1

S ðzÞh
	
z¼h

¼ TM þ g
�
c0L
�
z¼h

þm0c1Lh� TMGu2h: (14.29)

After evaluation at z¼ h, further linearization in h and subtraction of the unperturbed

parts, the factors of h all cancel from Eqns (14.27)–(14.29).

By solving Eqn (14.21) for TS and TL and Eqn (14.22) for cL subject to the linearized

boundary conditions, one obtains the dispersion relation given by equation 36 of [8],

namely

s ¼


� KLGL

2Ka

�
aL � V

KL

�
� KSGS

2Ka

�
aS þ V

KS

�
� TMGu2 þm0Gc

a� V =DL

a� p0V =DL

�

�



LV

2Ka
þ m0Gc

V ða� p0V =DLÞ
��1

;

(14.30)

where

a ¼
�
V
�
2DL


þ
h
ðV =2DLÞ2 þ u2 þ s

�
DL

i1=2
(14.31)

aL ¼
�
V
�
2kL


þ
h
ðV =2kLÞ2 þ u2 þ s

�
kL

i1=2
(14.32)

aS ¼ �
�
V
�
2kS


þ
h
ðV =2kSÞ2 þ u2 þ s

�
kS

i1=2
(14.33)

a ¼ ðKSaS þ KLaLÞ=
�
2K

�
; K ¼ ðKS þ KLÞ=2 (14.34)

m0 ¼ ðdg=dcLÞCN=k; k0 ¼ k þ
�
CN

�
k

ðdk=dcLÞCN=k; p0 ¼ 1� k0 (14.35)

Equation (14.30) is a rather complicated equation for s, which also occurs in many

places on its right-hand side. It is likely to have many roots, including complex roots
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s¼ sr þ isi which would correspond to solutions that oscillate with time. Its analysis

can be simplified considerably if we somehow know that si¼ 0 at the onset of

instability where sr¼ 0. In other words, s¼ 0 at the onset of instability, which is

known as the principle of exchange of stabilities. By means of an analysis based on

the Laplace transform [13], the exchange of stabilities has been shown to hold in the

steady-state approximation for the thermal fields (TSS), i.e., kS and kL are infinite. In

the same approximation, exchange of stabilities was demonstrated explicitly for this

problem by Wollkind and Segel [15] for vanishing latent heat. It has also been shown

that there are no unstable oscillatory modes if either the thermal properties of solid

and liquid are equal or if the TSS approximation is valid [16]. See Ref. [7] for an

extended discussion.

14.3.1.1 TSS Approximation
We proceed to make the TSS approximation, in which case aL ¼ aS ¼ a ¼

ffiffiffiffiffiffi
u2

p
¼ juj and

Eqn (14.30) becomes

s ¼ N �
u2; s

�
 LV

2K juj þ
m0Gc

V ða� p0V =DLÞ
��1

; (14.36)

where the numerator

N �
u2; s

� ¼ 

�G� � TMGu2 þm0Gc

a� V =DL

a� p0V =DL

�
: (14.37)

In Eqn (14.37), G* and Gc are the same as given by Eqn (14.13) and (14.19). The quantity a

still depends on s, so cL is still a solution to the full time-dependent Eqn (14.22). But in

this case, we know that we have an exchange of stabilities, so at the onset of instability

where s¼ 0, a becomes a0¼ (V/2DL) þ [(V/2DL)
2 þ u2]1/2. This is the result one would

get if vcL/vt¼ 0 in Eqn (14.22) and amounts to the QSS approximation for cL, which was

made in the original work by Mullins and Sekerka. In that approximation, Eqn (14.36) is

already solved for s as a function of u and can be replaced by _d=d where d(t) is the

interface amplitude that evolves exponentially.

It turns out that the onset of instability is the same, whether or not one makes the QSS

approximation. This occurs because the denominator in Eqn (14.36) is positive provided

that k0 > 0, which will be true unless there is retrograde solubility, a possibility that has

been treated [16], but one that we eliminate here. Therefore, at the onset of instability,

we need

0 ¼ N �
u2; 0

� ¼ 

�G� � TMGu2 þm0Gc

a0 � V =DL

a0 � p0V =DL

�
: (14.38)

Equation (14.38) is the same as analyzed by Mullins and Sekerka provided that m0 ¼ m

and p0 ¼ 1� k are constants corresponding to a phase diagram having straight lines for

the solidus and liquidus. For G*> 0, which would insure stability for a pure melt, analysis

shows that Nðu2; 0Þ begins at �G* and either decays to �N as u2 increases or rises to a
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simple maximum and then decays to �N as u2 increases. The division between these

two behaviors can be found by studying the derivative

vNðu2; 0Þ
vu2

¼ �TMGþ k0Vm0Gc

2DL

n
u2 þ ðV =2DLÞ2

o�1=2

fa0 � p0V =DLg�2
: (14.39)

This is a monotonically decreasing function of u2 whose value at u2¼ 0 is given by

vNðu2; 0Þ
vu2

����
u2¼0

¼ m0GcD
2
L

k0V 2

�
1�A�

; A ¼ k0TMGV 2

m0GcD
2
L

: (14.40)

Thus for A > 1, we see that vNðu2; 0Þ=vu2 begins at a negative value and continues to

decrease as u2 increases, which means that Nðu2; 0Þ begins at the negative value �G*

and decreases as u2 increases. Consequently, for A > 1, Nðu2; 0Þ is always negative so

Eqn (14.38) can not be satisfied and the planar interface in stable. This stabilization is

due to strong capillarity and was called absolute stability by Mullins and Sekerka. It

becomes important at large V that corresponds to small values of the characteristic

length scale DL/V.

For A < 1, vNðu2; 0Þ=vu2 begins at a positive value and continues to decrease

to negative values as u2 increases. This means that Nðu2; 0Þ increases from its initial

value �G*, passes through a maximum and then continues to decrease. When this

maximum has the value zero, Eqn (14.38) can be satisfied. Therefore, the onset of

instability occurs whenever

N �
u2; 0

� ¼ 0 and
vNðu2; 0Þ

vu2
¼ 0: (14.41)

The roots of vNðu2; 0Þ=vu2 ¼ 0 can be found by introducing the variable r¼
[1 þ (2DLu/V)

2]1/4 and solving the cubic equation [17]

r3 þ �
2k0 � 1

�
r � 2k0�A1=2 ¼ 0: (14.42)

By graphical methods, it is easy to see that Eqn (14.42) has only one real positive root

greater than one, which we designate by rcrðA; k0Þ. This root can be substituted into Eqn

(14.38) to get

G�

m0Gc

¼ 1� 3A1=2rcr þ
�
1� ð1� 2k0Þr2cr

	A=4k0hS�A; k0�: (14.43)

The stability function 0 < SðA; k0Þ < 1 and has been evaluated numerically; see

Ref. [11,17] for graphs of SðA; k0Þ versus A for various values of k0. The criterion for

stability is therefore

G�

m0Gc

> S�A; k0�: (14.44)

For small velocities, A � 1 and SðA; k0Þz1, so

G�

m0Gc

> 1; stability; modified CS (14.45)
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which is known as the modified CS criterion. It resembles Eqn (14.20) except the

conductivity-weighted gradient G* replaces GL. In terms of GL it becomes

GL

V
> � LV

2KL

þ KL þ KS

2KL

m0ðk � 1Þ
DLk

cN; stability; modified CS: (14.46)

This becomes the CS criterion if we set LV¼ 0, KS¼ KL and m0 ¼ m. The two criteria are

sketched in Figure 14.4.

For larger velocities, the function SðA; k0Þ can be quite small, resulting in considerable

stabilization due to capillarity (interfacial free energy) effects. The typical behavior can

be illustrated by taking k0 ¼ 1=2 which allows a simple solution of the cubic Eqn (14.42),

namely r ¼ A�1=6. The corresponding critical value of u and its associated wavelength

are given by

ucr ¼ V

2DL

�
1�A2=3

�1=2
A1=3

; lcr ¼ 4p
DL

V

A1=3

ð1�A2=3Þ1=2
¼ l0

A2=3ð1�A2=3Þ1=2
; (14.47)

where l0¼ 2pGTM/(�mCN). The stability function becomes simply

S�A; 1
�
2
� ¼ 1� �

3
�
2
�A1=2 þ �

1
�
2
�A: (14.48)

Figure 14.5 shows plots of the wavelength lcr/l0 and the stability function SðA; 1=2Þ
versus log10A. For A � 1, we observe that SðA; 1=2Þz1, which is the region where the

modified CS criterion is applicable and lcr=l0zA�2=3fðDL=V Þ2=3. AsA increases to larger

values, lcr=l0 decreases, capillarity (interfacial free energy) becomes an important sta-

bilizing factor, and SðA; 1=2Þ decreases toward zero, which is the threshhold of absolute

stability for positive G*.

The general behavior of the stability criterion can be illustrated in terms of the

control parameters CN, V, and GL by the log–log plots in Figure 14.6. To make

such a plot, one can introduce reference values C0 ¼ kLVDL=½ðKS þ KLÞm0ðk � 1Þ�,
V0 ¼ LVD

2
L=½k0TMGðKS þ KLÞ�, and G0 ¼ ðDLLV Þ2=½2k0KLðKS þ KLÞTMG�. Then we can

λcr λ0

log10 A
–5 –4 –3 –2 –1

0.2

0.4

0.6

0.8

1

S

log10 A

/

FIGURE 14.5 Plots of the critical wavelength lcr for instability from Eqn (14.47) and the function S from Eqn
(14.48) as functions of log10A for k0 ¼ 1=2. For A/1, lcr/N rapidly as absolute stability sets in. For small A, lcr
becomes proportional to (DL/V)

2/3.
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introduce dimensionless variables ~v ¼ V =V0, ~c ¼ CN=C0, and ~gL ¼ GL=G0 which allows

the stability criterion to be written in the form

~gL þ ~v ¼ ~v~cSðA; k0Þ; A ¼ ~v
�
~c: (14.49)

For k0 ¼ 1=2, we can insert the value of SðA; 1=2Þ from Eqn (14.48) to obtain a quadratic

equation for ~c1=2 which can be solved to give

~c1=2 ¼ �
3
�
4
�
~v1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�16Þ~v þ ~gL

�
~v þ 1

q
: (14.50)

For small ~v and large ~c, the lines in Figure 14.6 depend on the temperature gradient ~gL

and are nearly straight with a slope of �1. This is the region where the modified CS

criterion, Eqn (14.46), applies approximately. In this region, A ¼ ~v=~c � 1, so Sw1 and
~gL=~vw~c � 1. For large values of ~v, there is stabilization because of capillarity (interfacial

free energy) and the lines coalesce into a single line, practically independent of ~gL. That

single line is given approximately by ~c ¼ ~v which corresponds to A ¼ 1, which is the

onset of absolute stability.

Incidentally, if the parameter G* rather than GL is used, one can make a similar plot in

terms of the dimensionless parameter ~g� ¼ G�=½2KLG0=ðKS þ KLÞ�. In that case, again for

k0 ¼ 1=2, ~c1=2 ¼ ð3=4Þ~v1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=16Þ~v þ ~g�=~v

p
. Now for ~v=~c � 1, the curves will asymptote

~g�=~v ¼ ~c.

A plot similar to Figure 14.6, but in terms of dimensional variables, is given by Coriell

and McFadden [8] in their figure 3 for a germanium–silicon alloy for a temperature

gradient in the liquid of 50 K/cm. They also give some analytic sufficient conditions for

stability for general values of A and k0.

–4 –2 2 4

1

2

3

4

5

log10 c̃

log10 ṽ

g̃L = 2 .5

g̃L = 0 .5

g̃L = 0 .1

stable

unstable

stable

FIGURE 14.6 Log–log plot for k0 ¼ 1=2 of the critical dimensionless concentration, ~c ¼ CN=C0, versus dimensionless
velocity ~n ¼ V=V0 at three values of the dimensionless temperature gradient in the liquid, ~gL ¼ GL=G0. The
quantities C0, V0, and G0 are given in the text for general k0. For ~n � 1 and ~c[1, the curves depend on ~gL and
are nearly straight lines with slope �1. They would be given approximately by the modified CS criterion, Eqn
(14.46), which in these units is ~gL=~n ¼ ~c � 1. For large ~n, the curves merge, capillary stabilization comes into play,
and stabilization becomes possible for large values of ~c along the line ~n ¼ ~c which corresponds to A ¼ 1, the
threshold for absolute stability. For a fixed value of ~c above the minimum of a curve, the interface first becomes
unstable with increasing ~n and then restabilizes for sufficiently large ~n.
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14.3.1.2 Experimental Tests of Morphological Stability
The directional solidification of tin-bismuth alloys were carried out on the United

States Microgravity Payload space flights USMP1 and USMP3 by using the Mephisto

Bridgman furnace [18]. A comparison of the experimental results for the onset of

instability with the CS and morphological stability criterion was made. Since the

experiments were carried out in space, convective effects were greatly reduced. For

the alloys with atomic fractions of 0.58% and 1.6%, the experimental velocities for the

onset of instability were stated to be 6.2� 0.4 mm/s and 2.25� 0.1 mm/s, respectively

(in terms of total uncertainties). The morphological stability criterion yields 6.8 and

2.35 mm/s, respectively, in agreement with the experimental results. The corre-

sponding CS criterion gives 10 and 3.45 mm/s, respectively. For the low velocities used

in these experiments, the surface tension terms in the morphological stability crite-

rion are unimportant, and the theories differ because the conductivity-weighted

temperature gradient replaces the liquid temperature gradient. An extensive discus-

sion of the accuracy of the values of the thermophysical properties of tin-bismuth

alloys was given.

14.3.1.3 Long-Wavelength Perturbations
As pointed out by Coriell and McFadden [8], the TSS approximation is not valid for

perturbations of long wavelength which correspond to u2 at or near zero. This occurs

because ðV =2kS;LÞ2 becomes comparable to u2 and can no longer be ignored. This can

have implications for the unusual case G*< 0 which must be treated with great care.

One must therefore use the full expression given by Eqn (14.30). The problem is only

tractable, however, if the thermal properties of liquid and solid are the same, in which

case there is an exchange of stabilities (no unstable oscillatory modes). In that case,

the term �G* in Eqn (14.37) is replaced by �ðGS þ GLÞ=2� LVV
2=ð4kLKLaÞ and only

s¼ 0 is considered, so a ¼ ½ðV =2kLÞ2 þ u2�1=2. The analysis is similar to that for

Nðu2; 0Þ which gets replaced by Rðu2; 0Þ ¼ N ðu2; 0ÞKS¼KL
� LVV

2=ð4kLKLaÞ, which has

the value �GS at u¼ 0 and becomes �N as u2/N. Then one can examine

vRðu2; 0Þ=vu2, which turns out to be a monotonically decreasing function of u2. It has

the property �
vRðu2; 0Þ

vu2

�
u¼0

¼ LV k
2
L

KLV
þm0GcD

2
L

k0V 2

�
1�A�

; (14.51)

which, if negative, would be a sufficient condition for stability if �GS< 0 because it

would guarantee that Rðu2; 0Þ would decay monotonically from a negative value to �N.

Inserting values for A and Gc, this sufficient condition for instability becomes [19]

V >
LV k

2
L

KLTMG
þ DLm

0

k0TMG

k � 1

k
CN (14.52)

which might require unrealistically high velocities V to satisfy. This condition also turns

out to be necessary if GS¼ 0. Thus, if GS¼ 0 and GL< 0, growth into such a supercooled
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liquid would be unstable for realistic conditions. Of course for GS s 0 one could analyze

the extrema of the function Rðu2; 0Þ to obtain a necessary condition for instability, but

this has not been done for the binary alloy.

For a pure material, for which m0Gc ¼ 0, the problem is greatly simplified, and one

can easily determine the necessary and sufficient conditions for stability. In that case,

the stability condition becomes

ðGS þ GLÞ
2

> maxfQ�
u2

�g; Q�
u2

�
h� LVV

2

4KLkLa
� TMGu2; (14.53)

where “max” means the maximum as a function of u2. We find�
vQðu2Þ
vu2

�
¼ LVV

2

8KLkLa
3
� TMG;

�
vQðu2Þ
vu2

�
u2¼0

¼ LV k
2
L

KLV
� TMG: (14.54)

We note that ½vQðu2Þ=vu2� is a monotonically decreasing function of u2 and define the

parameter

h ¼ �
TMGKLV

�
LV k

2
L

�
: (14.55)

Then if h� 1 we see that ½vQðu2Þ=vu2�u2¼0 	 0, so Q will decay from its value at u2¼ 0 to

negative values as u2 increases. Since Qð0Þ ¼ �LVV =2KL, we will have

ðGS þ GLÞ
2

> �LVV

2KL

; stability h � 1: (14.56)

Since GS�GL¼ LVV/KL, we must recognize that with V specified, GL and GS are not in-

dependent variables. Thus Eqn (14.56) is equivalent to

GS > 0 or GL > �LVV

KL

h � 1: (14.57)

We note that h> 1 gives Eqn (14.52) for CN¼ 0, so it is unlikely to be satisfied.

If h< 1, ½vQðu2Þ=vu2�u2¼0 > 0, so Qðu2Þ rises from �LVV/2KL, passes through a

negative maximum, and then decays to �N as u2 increases. This maximum occurs at

u2 ¼ ðV =2kLÞ2ðh�2=3 � 1Þ and has the value

maxfQg ¼ �LVV

2KL

f
�
h
�
; f

�
h
� ¼ 3

2
h1=3 � 1

2
h: (14.58)

The function 0< f(h)< 1, so for small h the system will be much less stable. The stability

condition becomes

ðGS þ GLÞ
2

> �LVV

2KL

f
�
h
�
; stability h < 1: (14.59)

Equivalent conditions are

GS >
LVV

2KL

�
1� f

�
h
��

or GL > �LVV

2KL

�
1þ f

�
h
��

h < 1: (14.60)

These stability conditions are shown graphically in Figure 14.7. For small h, the region of

stability for negative (GL þ GS)/2 becomes very small.
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14.3.2 Spheres and Cylinders

We present the linear stability analysis of a sphere growing from a pure supercooled melt

[1], which has several complicating features compared to the planar analysis. First, the

sphere itself is growing, so its radius changes and the base state we must perturb de-

pends on time. Second, we must perturb the sphere with a compatible set of eigen-

functions, namely spherical harmonics, which are somewhat more complicated than

sinusoids. The problem turns out to be tractable provided that the dimensionless

supercooling is small, specifically

ST ¼ KLðTM � TNÞ
kLLV

¼ TM � TN
LV =CLV

� 1: (14.61)

Here, TN is the temperature of the supercooled melt (bath temperature) and CLV is the

heat capacity per unit volume of the liquid. The quantity LV/CLV is typically several

hundred degrees K, so this inequality is satisfied for an interesting range of super-

coolings. For any supercooling ST< 1, it is possible to solve the time-dependent

growth of a sphere having constant temperature TM exactly. The sphere grows with

radius R ¼ x0ðkLtÞ1=2 where x0 satisfies a rather complicated transcendental equation

FIGURE 14.7 Stability diagram illustrating the compatibility of stability conditions Eqn (14.59) and Eqn (14.60) for
f(h)¼ 0.2. Temperature gradients GS and GL are plotted in units of G00¼ LVV/2KL. The dashed horizontal line
GL¼�G00(1 þ f) meets the dashed vertical line GS¼G00(1� f) and the sloping dashed line (GS þ GL)/2¼�G00f at
point A; there is stability along the solid line upward and to the right. The sloping line with small dashes that
passes through the point B is GS þ GL¼ 0. There is stability for negative (GS þ GL)/2 only along the solid line
between A and B, a region that shrinks to zero as h/ 0. For h¼ 1, the intersection point A would be located at
the point GL¼�2G00 GS¼ 0.
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(see equation 90 of Ref. [8]). But for small ST, the root of this equation is simply

x0 ¼ ð2ST Þ1=2, so the sphere grows according to

R ¼ ½ð2KL=LV ÞðTM � TNÞt�1=2: (14.62)

If the time-dependent equation for TL is approximated by Laplace’s equation, V2TL ¼ 0,

we obtain

TL ¼ TN þ ðTM � TNÞRðtÞ=r (14.63)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Thus,

dR
�
dt ¼ ��

KL

�
LV

�½dTL=dr�R ¼ �
KL

�
LV

��
TM � TN

��
R: (14.64)

Multiplication of Eqn (14.64) by R and integration subject to R¼ 0 at t¼ 0 leads

immediately to Eqn (14.62). Therefore, we see that the TSS approximation is valid for

small dimensionless supercooling. The steady-state approximation is also valid for

growth of precipitates by diffusion if the supersaturation is small [20]. Mullins and

Sekerka [1] used this approximation to give a similar analysis of the stability of a

spherical precipitate growing by diffusion.

Of course, the growth rate predicted by Eqn (14.62) is infinite at t¼ 0 and, therefore,

unrealistic. This is easily fixed in the TSS approximation by replacing TM by TM(1� 2G/R)

which would be the equilibrium temperature for a sphere of mean curvature 2/R. Then,

by introducing the nucleation radius R*¼ 2TMG/(TM� TN), Eqn (14.64) is replaced by

dR

dt
¼ KLðTM � TNÞð1� R�=RÞ

LVR
: (14.65)

According to Eqn (14.65), dR/dt< 0 for R< R* and dR/dt> 0 for R> R*, so the nucleation

radius R¼ R* is a point of unstable equilibrium. If the sphere were just slightly larger

than R*, it would start to grow, achieve a maximum velocity of KL(TM� TN)/(4LVR*) at

R¼ 2R*, and then decay in velocity in proportion to 1/R for R[R�. This ability to include

capillarity in the TSS approximation is essential because we know that capillarity gives

rise to stabilization while a negative temperature gradient will be destabilizing. It is also

possible to include linear interface kinetics in the TSS approximation, but we defer that

for now. One can treat a perturbed sphere by means of a perturbation

R ¼ RðtÞ þ dðtÞY‘mðq;4Þ (14.66)

where d is a small amplitude and Y‘mðq;4Þ is a spherical harmonic, with q and 4 the polar

and azimuthal angles of spherical coordinates. These harmonics are known to be a

complete set of functions on a sphere, so by superposition one can treat an arbitrary

perturbation, just as with sinusoids for the planar interface. Since we are doing linear

stability, we can even use the complex spherical harmonics common to quantum me-

chanics, which are known to be eigenfunctions of the angular part of the Laplacian

operator with eigenvalue�‘ð‘þ 1Þ. This is very useful because the mean curvature K that

appears in the interface temperature can be calculated by using the Laplacian operator,

resulting in (see equation 5 of Ref. [1])
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TI ¼ TM

�
1� 2G

�
R� G

�
d
�
R2

��
‘þ 2

��
‘� 1

�
Y‘m

�
q;4

��
: (14.67)

One can then find a perturbed temperature containing a term in Y‘mðq;4Þ, linearize all

other boundary conditions, and ultimately cancel Y‘mðq;4Þ from all perturbed terms to

obtain

_d
�
d ¼

�
_R
�
R
�

‘� 1
�h
1� �

1
�
2
�ðR=R� � 1Þ�1�

‘þ 2
��
‘þ q‘þ 1

�i
; (14.68)

where _d ¼ dd=dt, _R ¼ dR=dt, and q¼ KS/KL. In Eqn (14.68), the factor ‘� 1 appears

because a sphere perturbed with real linear combinations of the Y1m is just a slightly

translated sphere.

One can obtain a criterion for marginal instability by requiring the expression in

brackets to be positive. This gives

R
�
R� > 1þ �

1
�
2
��
‘þ 2

��
‘þ q‘þ 1

�
¼ ��

1þ q
��

2
	
‘2 þ ��

2þ 2qþ 1
��

2
	
‘þ 2; marginal instability: (14.69)

For ‘ ¼ 2, instability occurs at R2/R*¼ 7 þ 4q and for ‘ ¼ 3, at R3/R*¼ 11 þ 15q/2. We see

in general that as R increases, perturbations with larger ‘ will grow.

This is not the whole story, however, because the sphere is also growing. Thus, if the

relative growth rate _d=d of perturbations is smaller than the relative growth rate ð _R=RÞ of
the sphere, the change will be toward a more spherical shape. Put another way,

ðR=dÞdðd=RÞ=dt ¼ _d=d� _R=R > 0 for shape change to be enhanced. The more meaningful

criterion for relative instability is therefore

_d
�
d

_R
�
R
> 1 relative instability (14.70)

which leads to

R
�
R� > 1þ ð‘� 1Þð‘þ 2Þð‘þ q‘þ 1Þ

2ð‘� 2Þ ; relative instability: (14.71)

In Eqn (14.71), the factor of ð‘� 2Þ in the denominator requires R/R*¼N which is at first

alarming but is just a manifestation of the well-known result that a sphere perturbed by

Y20 is an ellipsoid which also grows like t1/2. Thus, the first meaningful relative instability

occurs at ‘ ¼ 3 for which ðR3=R
�Þrel ¼ 21þ 15q, which is larger than R3/R* for marginal

stability. This trend continues for larger ‘; however, for very large ‘, the factor

ð‘� 1Þ=ð‘� 2Þ/1, so the two instability criteria become the same.

We can also express the growth rate of perturbations in terms of the negative of the

temperature gradient at r¼ R, namely �GL ¼ ðTM � TNÞð1� R�=RÞ=R ¼ ðLV =KLÞ _R. Then

Eqn (14.68) becomes

_d
�
d ¼ �

KL

�
LV

���
‘� 1

��
R
	��GL �

�
TMG

�
R2

��
‘þ 2

��
‘þ q‘þ 1

�	
: (14.72)

This shows that GL< 0 is destabilizing while the capillarity term containing G is stabi-

lizing. For large ‘, we can identify a perturbation wavelength lw2pR=‘ and thus a

perturbation wavenumber u ¼ ‘=R in which case Eqn (14.72) becomes

_d
�
d ¼ �

KL

�
LV

�
u
��GL � TMG

�
qþ 1

�
u2

	
: (14.73)
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This resembles Eqn (14.12) for a planar interface, except now GS¼ 0. The important

point here is the relative roles played by temperature gradient and capillarity, somewhat

irrespective of the geometry of the solidifying front.

For Eqn (14.72), marginal stability occurs at u2 ¼ ðqþ 1ÞTMG=ð�GLÞ which for equal

thermal conductivities, q¼ 1 corresponds to a wavelength

lw2p

�
2TMG

�GL

�1=2
¼ 2p

h
2d0

kL

V

i1=2
(14.74)

where the capillary length d0¼GTMCLV/LV.

Langer and Müller-Krumbhaar [21,22] have used Eqn (14.73) in an effort to select the

tip radius r in dendritic growth. For the growth of a branchless dendrite in the shape of a

paraboloid of revolution, a heat flow analysis by Ivantsov [23] shows that rV/2kL is a

function of the dimensionless undercooling ST given by Eqn (14.61) but provides no

means of determining V and r separately. Langer and Müller-Krumbhaar conjectured

that the tip radius could be determined by a stability criterion by assuming that rw l for

marginal stability. Accordingly, they wrote Eqn (14.74) in the form

s� ¼ 2d0kL

r2V
¼ 1

ð2pÞ2z0:025: (14.75)

Surprisingly, this result is in reasonable agreement with experiments, although the actual

value of the constant s* seems to be fortuitous. Nevertheless, this result suggested that

capillarity plays a significant role in dendrite tip selection and spurred much further

analysis, including the very existence of a steady-state solution that includes capillarity

(so-called microscopic solvability theory) as well as an essential role played by crystalline

anisotropy [24–27].

Coriell and McFadden [8] allowed for departure from local equilibrium at the

solid–liquid interface by means of a linear interface kinetic law, namely v¼ m0(Te� TL),

where Te is the equilibrium temperature, including capillarity, and TL is the actual

temperature at the interface. Then by using the TSS approximation, Eqn (14.65)

becomes

dR

dt
¼ KLðTM � TNÞð1� R�=RÞ

LVRð1þ b=RÞ ; (14.76)

where b¼ KL/m0LV is a length associated with the kinetic coefficient. The factor (1 þ b/R)

has the effect of slowing down the unperturbed growth rate. But kinetics also slows down

the growth rate of perturbations, and Eqn (14.68) is replaced by

_d
�
d ¼ �

_R
�
R
��
‘� 1

�"1� �
1
�
2
�ðR=R� � 1Þ�1�

‘þ 2
��
‘þ q‘þ 1

��
1þ b

�
R
�

1þ ðb=RÞð‘þ q‘þ 1Þ

#
: (14.77)

Equation (14.77) is now sufficiently complicated that one must resort to numerical

analysis. By scaling with a time s ¼ LVR
�2=½KLðTM � TNÞ�, Coriell and McFadden made

plots of the dimensionless quantities D0 ¼ s _R=R and D ¼ s _d=d as functions of R/R* for
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two values of b/R* and various ‘. Thus, there is relative instability whenever D>D0.

For b/R*¼ 0, the curves cross at values given by Eqn (14.71). By comparison of the case

b/R*¼ 10 with b/R*¼ 0 (see their figures 4 and 5) they find that instabilities are shifted

by kinetics to much larger values of R/R*. For example, for ‘ ¼ 4 they are shifted from

40.5 to 100.

The role of a small anisotropy of surface free energy g, and hence of G¼ g/LV, was

investigated by Cahn [28]. The anisotropy was taken to have the form

G ¼ G0 þ G‘mY‘mðq;4Þ. The base state is no longer a perturbed sphere and the expression

for _d=d in Eqn (14.72) is modified so that G in the second term in brackets is replaced by

G0(1� de/d), where de ¼ G‘mR=G0. This extra factor due to anisotropy is effective in

triggering an instability consistent with the anisotropy, but once there is significant

growth of d it has little effect. Of course, the actual anisotropy of G must be consistent

with crystal symmetry, which would require a suitable combination of spherical har-

monics to be used. The role of surface tension anisotropy for a planar interface has been

discussed in Ref. [8], Section 3.2.3.

14.3.2.1 Circular Cylinder
The instability of a circular cylinder was treated by Coriell and Parker [29] by using

cylindrical coordinates r, 4, z where now r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the cylindrical radius. They

conducted a linear stability analysis for a perturbed cylinder of the form

r ¼ RðtÞ þ dðtÞ cosðnfÞ cosðuzÞ: (14.78)

More general perturbed shapes can be obtained by superposition. They also used the

steady-state approximation, although now there is a complication because the axially

symmetric solution to Laplace’s equation is of the form TL¼ c1 þ c2 ln r where c1 and c2
are constants. Thus, the unperturbed solution would diverge for r/N. They handled

this technical problem by cutting off the solution at a large time-dependent value

r¼ Rc(t), where the cutoff radius Rc(t) was chosen to match the t1/2 growth rate of a time-

dependent solution in cylindrical coordinates. Then they added capillarity, as for the

sphere. Another complication is the well-known Rayleigh instability that occurs for n¼ 0

for a perturbed cylinder with no net growth, so its volume is equal to that of the un-

perturbed cylinder. In that case, the total surface energy actually decreases for pertur-

bations of wavelength greater than the unperturbed circumference. This happens

because the principal radii of a perturbed cylinder with n¼ 0 have opposite signs in

certain places, so their sum, the total curvature, can be negative. For wavelengths larger

than the unperturbed circumference, the total surface area actually decreases, so

capillarity can actually be destabilizing. Aside from these complications, the stability

analysis is similar to that for the sphere.

Hardy [30–32] conducted experiments for cylinders of ice growing from supercooled

water but comparison with theory required several refinements. Instabilities with n

equal to a multiple of six began to grow, apparently due to the hexagonal anisotropy of

ice in the basal plane. Those with u¼ 0 first began to grow and became rather large
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before those with us0 appeared. It was, therefore, necessary to develop an approximate

nonlinear correction [33] for instability of a shape initially of the form r¼ R(t) þ df(t)

cos(nf) perturbed by adding dz cos(nf) cos(uz). By comparison of perturbation growth

rates with this theory, the interfacial energy for ice-water was calculated and found to be

25 mJ/m2, as compared to 29 mJ/m2 measured from grain boundary groove shapes. This

is quite reasonable, given the approximations of the nonlinear analysis and the difficulty

of the measurements. See Ref. [8] for more detail and related experiments.

14.3.3 Paraboloids, Ellipsoids, and Other Shapes

The question naturally arises as to whether and how the morphological stability phe-

nomenon applies to other shapes such as paraboloids and ellipsoids. It is hard to believe

that it would not, because of the basic physics behind equations such as Eqn (14.12) and

Eqn (14.73) for planes and spheres. Essentially, for supercooled melts, the temperature

gradient (negative) is destabilizing, and capillarity is stabilizing, pretty much indepen-

dent of geometry.

To address this question quantitatively, it is necessary to recognize that all three

shapes treated so far in this article have surfaces of constant mean curvature, K.

Therefore, incorporating the isotropic Gibbs–Thomson effect (see Eqn (14.7) and Eqn

(14.25), for example) leads to unperturbed shapes with isothermal temperatures. Such is

not the case for bodies that do not have isocurvature.

To illustrate the complications that are involved, there exists an exact solution by

Ivantsov [23] for a solid in the shape of an isothermal circular paraboloid at a constant

temperature TM that translates at constant velocity V into a supercooled melt. Such a

body has been used as a model of a branchless dendrite. But the curvature of such a body

varies over its surface, being largest at its tip and decreasing toward zero far from the tip.

Temkin [34] has calculated approximate thermal fields in both solid and liquid in terms

of integrals of Bessel functions for such a nonisothermal paraboloid, but was only able to

satisfy the heat flux condition at the tip. However, despite these technical complications,

there is no reason to believe that the correct steady-state shape of a branchless non-

isothermal body is a paraboloid, or even if such a solution exists, as has been addressed

by microscopic solvability theory [24–27]. Therefore, any attempt to add perturbations to

the paraboloidal dendrite would first have to correct for the shape of the steady-state

body and then give information about its stability. An attempt to do this was carried

out by J.J. Xu [35–37] but is beyond the scope of this article. Similar considerations would

apply to ellipsoids and other bodies that are not shapes of isocurvature.

14.4 Extensions of the Mullins-Sekerka Analysis
In the previous edition of this handbook [8], Coriell and McFadden discuss a number of

extensions of the original Mullins-Sekerka analysis. There is little to add to these

comprehensive discussions, so here we shall deal mostly with rapid solidification, which
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turns out to trigger the new phenomenon of oscillatory instabilities, and then we will

summarize a few more recent extensions.

14.4.1 Rapid Solidification

The term “rapid solidification” usually refers to growth speeds so large that there are

significant departures from local equilibrium, an example being an interface tempera-

ture that is a measurable amount below the equilibrium melting point or a solute

incorporation in the solid that is much closer to the liquid concentration than in equi-

librium. At very high growth speeds, solute from the liquid can become trapped in the

solid, and the segregation coefficient can approach unity. This requires modification of

the boundary conditions at the solid–liquid interface, which is undercooled by an

amount DT¼ Te� TI where Te is its local equilibrium temperature (see Eqn (14.25)) and

TI is its local actual temperature. This undercooling can be related to the local normal

growth speed v by a so-called kinetic law, which we write in the form

y ¼ f ðDT ; cI Þ ¼ f ðTe � TI ; cI Þ: (14.79)

Nonequilibrium segregation of solute can be handled by allowing the segregation

coefficient k to also depend on v, namely

cSI ¼ cIkðcI ; yÞ: (14.80)

One might expect large departures from local equilibrium for the unperturbed solution

but for slowly growing perturbations of that solution the corresponding deviations are

expected to be small. Therefore, for the perturbations we can linearize about the base

state, which leads to four derivatives of the base state known as kinetic coefficients,

namely

mT ¼ vf =vðDT Þ; mc ¼ vf =vcI (14.81)

and

kc ¼ vk=vðcI Þ; ky ¼ vk=vy (14.82)

where these derivatives are assumed to be evaluated at the unperturbed base state.

When one carries out a linear stability analysis, the results of a linear stability analysis

resemble Eqn (14.36) but with several modifications. First of all, m0 is replaced by

m*¼m þ mc/mT and p0 is replaced by p� ¼ p0 � cIkc, but these changes are assumed to be

sufficiently small that they do not result in sign changes. On the other hand, the de-

nominator becomes [8]

D�
u2; s

� ¼ 

LV

2Ka
þ 1

mT

þ m�Gc

V ða� p�V =DLÞ
�
1� Vkv

1� k

��
(14.83)

which involves the kinetic coefficients mT and kv. The coefficient mT is positive except

for very large supercoolings, so it is regarded as positive and does not result in any

qualitatively new effects. On the other hand, if kv/(1� k) is positive, as it is for the

model of Aziz and Jackson et al. [38,39], the term in square brackets can become

Chapter 14 • Morphological Stability 617



negative for large V. This term could cause the entire denominator D to become

negative, thus reversing the regions of stability and instability previously analyzed on

the basis of local equilibrium.

For positive kv/(1� k), but still positive D, the dispersion relation has been analyzed

numerically [14]. The previous modes for s¼ 0 are still found, but the exchange of

stabilities no longer holds. For sufficiently large Vkv/(1� k), oscillatory modes with long

wavelengths become strongly unstable. At high solidification rates, lateral diffusion of

solute can only occur over short distances, but perturbations of short wavelength are

strongly stabilized by capillarity. However, variations of the local normal growth speed v

along the interface can result in variations of solute segregation over long wavelengths

which are hardly stabilized by capillarity. This has been called the “solute pump

mechanism” and is suspected to be responsible for unstable oscillatory modes [14].

Huntley and Davis [40] have used nonequilibrium kinetic laws to analyze oscillatory

instabilities under more general conditions. They find that oscillatory modes can be

unstable at zero wavenumber, corresponding to an oscillating planar interface.

Experiments by Boettinger et al. [41] were used to study the effect of velocity on

microstructure for silver–copper alloys. For copper concentrations with weight fractions

of 1 and 5%, they find a fairly normal transition from a cellular to a segregation-free

microstructure at respective velocities 15 and 60 cm/s, in qualitative agreement with

local equilibrium theory, as illustrated in Figure 14.6. However, for higher concentra-

tions, a banded structure occurs at velocities intermediate to those that yield cellular and

segregation-free microstructure. The bands are perpendicular to the growth direction

and alternate between cellular structure and segregation-free structure. This suggests

some kind of oscillatory instability, but a firm connection between current theory and

experiment has not been established.

14.4.2 Other Extensions

If the alloy concentration during directional solidification exceeds the concentration for

morphological instability, the onset of instability may occur during the initial transient

as the interface concentration increases from the bulk concentration cN to cN/k. While it

is not possible to carry out a stability analysis for this time-dependent base state, the

relevant differential equations and boundary conditions can be solved numerically, and

the time evolution of a small perturbation can be calculated [42]. The results for the

onset of instability are in good agreement with the time-independent base state theory if

the instantaneous values of the interface velocity and temperature gradient are used.

Van Vaerenbergh et al. [43] have considered the effect of thermodiffusion (Soret ef-

fect) and the temperature dependence of the liquid diffusion coefficient on morpho-

logical stability during directional solidification of a tin alloy containing silver. For this

alloy, the diffusion coefficient is a linear function of temperature [44]. This temperature

dependence has little effect on the conditions for the onset of instability, but has a

significant effect on the wavenumber at the onset of instability.
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Isotropic interface kinetics does not affect the conditions for the onset of instability

for the directional solidification of a binary alloy. For many metals, the interface kinetic

coefficient is large; for example Rodway and Hunt [45] have measured a kinetic coeffi-

cient for lead of 28 cm/(sK) so that for a growth velocity of 10 mm/s, the kinetic under-

cooling is less than 0.0001 K. The anisotropy of the kinetic coefficient for nickel has been

calculated by molecular dynamics, and the values are 35.8, 25.5, and 24.1 cm/(sK) for the

100, 110, and 111 interfaces, respectively [46]. However, for materials which develop

facets for specific crystallographic orientations and grow by step motion, the kinetic

coefficient is a strong function of crystallographic orientation. Such materials include

metals such as gallium and bismuth, many semiconductors, and crystals grown from

solution. A quasistatic approximation to the diffusion field demonstrated that kinetic

anisotropy gave rise to traveling waves along the interface [47]; hence, for anisotropic

kinetics the principle of exchange of stability is not valid. If we consider growth in which

the planar interface deviates slightly from a singular surface, then the kinetic coefficient

is given by m ¼ mst jpj, where mst is the step kinetic coefficient and p¼ tanq, where q

measures the deviation of the interface from a singular orientation. For silicon, the value

of the step kinetic coefficient has been estimated as 50 cm/(sK) [48]. Yuferev [49] showed

that anisotropic kinetics enhanced morphological stability.

For growth by motion of steps along the interface, morphological instability leads to

the formation of macrosteps. Shear flows along the interface can have a large effect on

stability. In experiments on the growth of ammonium dihydrogen phosphate [50] in

which the direction of the shear flow was periodically reversed, a macrostep developed

on the side of the hillock where the flow was down the steps and disappeared on the side

where the flow was up the steps. A number of articles have analyzed morphological

stability in which anisotropic kinetics is due to step motion, and the orientation of the

interface is near a singular orientation (a vicinal surface) for constant velocity growth

from a supersaturated solution [51,52] and for solidification [53,54]. The effect of shear

flows along the interface have also been treated [55,56] and confirm the observation that

flow up the steps is stabilizing and flows down the steps are destabilizing. The effects of

an oscillatory shear flow on stability was calculated using Floquet theory [57] to model

the experiments of Chernov et al. [50].

Morphological stability during the electrodeposition of copper in the presence of a

catalyst that enhances the growth rate has been treated by McFadden et al. [58]. Both the

copper ions and the catalyst satisfy diffusion equations and the catalyst coverage at

the interface is governed by an adsorption equation. The growth rate is described by the

Butler–Volmer equation.

Peppin et al. [59] have carried out morphological stability calculations for the freezing

of water containing a hard sphere colloidal suspension. The dependence of the diffusion

coefficient on concentration is treated.

Style and Worster [60] have considered the morphological stability of a solid–vapor

interface. The results are applied to frost flowers, which form when ice evaporates into a

cold vapor.
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14.5 Nonlinear Analysis
Up to now, we have only considered linear stability theory according to which pertur-

bations can decay or grow exponentially, depending on growth conditions. Several

essential things are missing from such an analysis. On the one hand, perturbations that

grow exponentially will soon become large, and the linear analysis will no longer be

valid. For example, for a planar interface, if a sinusoidal perturbation of the form

z ¼ hðx; tÞ ¼ dðtÞ cosðuxÞ ¼ dðtÞ cosð2px=lÞ grows exponentially, we will soon have a

situation in which jdðtÞ=ljw1. Also, the slope vh=vx ¼ �2pðd=lÞ sinðuxÞ will no longer be

small compared to unity and the denominator in the formula for the curvature, namely

ð1þ ðvh=vxÞ2Þ3=2 will no longer be nearly equal to one. Evaluation of boundary condi-

tions, such as Eqn (14.6), at the interface could not be expanded accurately to first order

in h. Superposition of solutions having different u would no longer be valid. Instead,

Fourier modes will couple, and the time evolution of the interface will change consid-

erably. Furthermore, for growth conditions in which a linear analysis would result in

stability, a larger perturbation might actually grow.

It might also be possible for the interface to restabilize but with some nonplanar

periodic shape. In two dimensions, such shapes are usually called “corrugations” or

“bands.” In three dimensions, stable shapes known as “cells” or “nodes,” often in hex-

agonal arrays, can form. If the interface restabilizes with a nonplanar shape, steady-state

crystal growth will still be possible, but for alloys there will be solute segregation, known

as microsegregation, in the direction perpendicular to the growth direction. If the system

does not restabilize, branching might continue, forming a dendritic (tree-like) structure

with primary, secondary, and tertiary arm spacings.

14.5.1 Weakly Nonlinear Analysis

A fully nonlinear analysis would require repeated solution of a free-boundary problem for

a variety of perturbations, which could only be accomplished in principle by numerical

calculations, a formidable task. We can, however, gain more insight into nonlinearities by

means of a weakly nonlinear expansion, first introduced to this problem by Wollkind and

Segel [15]. The key idea is to work near the threshold of instability such that a single

(fundamental) Fourier component, say h1ðx; tÞ ¼ AðtÞ cosðuxÞ, is the most important and

use expansion techniques to develop an approximate nonlinear amplitude equation for

that component. Thus, the interface would be assumed to have the form

h ¼ h1ðx; tÞ þ h2ðx; tÞ þ h3ðx; tÞ þ/ (14.84)

where h2 is of order A
2, h3 is of order A

3, etc. Then, after expansion of all equations and

boundary conditions, terms of the same order of A are equated. In doing so, however, it

is necessary to treat carefully just a few other Fourier components that couple strongly to

the fundamental component. For example, there will be nonlinear terms such as

A2 cos2
�
ux

� ¼ A2
h
1
2 þ 1

2 cos
�
2ux

�i
, but neither term would “resonate” with A cosðuxÞ. But
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a third order term such as A3 cos3ðuxÞ ¼ A3½3 cosðuxÞ þ cosð3uxÞ�=4 contains the

fundamental cosðuxÞ and would resonate and couple. See Eqns (116) and (117) of Ref. [8]

for discussion of formalities of the expansion technique and solvability condition.

The result of such a weakly nonlinear analysis to lowest order is an equation of the

form

dA

dt
¼ sA� a1A

3 (14.85)

which is known as a Landau equation. In the lowest order term, s is the same as in a

linear stability analysis, so s< 0 corresponds to linear stability and s> 0 corresponds to

linear instability. In the third-order term, a1 can be either positive or negative. A quadratic

term in A is missing because the problem has a translational symmetry such that

x/ x þ p is the same as A/�A. There are four possibilities, as illustrated in Figure 14.8.

The most interesting ones occur if s and a1 have the same sign; then one can solve dA/

dt¼ 0 to obtain a nontrivial steady solution, A¼�a where a ¼ ffiffiffiffiffiffiffiffiffiffi
s=a1

p
. Without loss of

generality, we can restrict our analysis to positive A for which the four possibilities are:

Stability s< 0 and a1>0; there is stability for all A.

Instability s> 0 and a1< 0; there is instability for all A.

Subcritical bifurcation s< 0 and a1< 0; the system is stable for small A but be-

comes unstable for A> a. Thus, there is a threshold value of A needed for insta-

bility; if exceeded, instability can take place prior to conditions for linear

instability. This is called a subcritical bifurcation and is illustrated in the left mem-

ber of Figure 14.9. The steady-state A¼ a is unstable because a slightly different

value of A will lead to motion away from a.

(i) stable

dA/dt

A

(ii) unstable

dA/dt

A

(iii) initially stable but unstable at larger
amplitudes (subcritical bifurcation)

dA/dt

Aa

(iv) initially unstable but stable at larger
amplitudes (supercritical bifurcation)

dA/dt

Aa

FIGURE 14.8 Plots of dA/dt¼As� a1A
3 versus A for the four cases discussed in the text. (i) s< 0, a1> 0; (ii) s> 0,

a1< 0; (iii) s< 0, a1< 0; (iv) s> 0, a1> 0. The arrows along the curves point in the direction of increasing time.
The states corresponding to A¼ a are steady states, unstable for the subcritical bifurcation for which the arrows
lead away from a and stable for the supercritical bifurcation for which the arrows lead toward a.
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Supercritical bifurcation s> 0 and a1> 0; the system is unstable for small A but

becomes stable for A> a. There is no threshold amplitude for instability, which

first takes place when s first becomes positive, as for linear instability. This is

called a supercritical bifurcation and is illustrated in the right member of

Figure 14.9. The steady-state A¼ a is stable because a slightly different value of A

will lead to motion toward the point a.

The stability of the states A¼ a for subcritical bifurcation and supercritical bifurcation

can be analyzed by writing A¼ a þ ε where jε=Aj � 1 and expanding Eqn (14.85) to first

order in ε. This results in dε/dt¼�2sε, so

ε ¼ ε0 expð�2sÞ; (14.86)

where ε0 is the initial value of ε. In fact, Eqn (14.85) is separable and can be integrated for

s/a1¼ a2> 0 to obtain a solution for all A, which can be written in the form

A
�
a ¼

n
1þ

h
ða=A0Þ2 � 1

i
exp

��2s
�o�1=2

; (14.87)

where A0 is the initial value of A.

In Figure 14.9 we note the A/�A symmetry, inherent in Eqn (14.85); these are

known as “pitchfork bifurcations.” Small imperfections such as a grain boundary could

produce bias and destroy this symmetry [61,62]. An elementary model that illustrates

this point is

dA

dt
¼ sA� a1A

3 þ ε (14.88)

where ε is a small quantity that will be taken as positive for the sake of illustration.

Steady-state solutions will therefore satisfy

s ¼ a1A
2 � ε

�
A: (14.89)

Symmetry for positive and negative A is broken, and there are no longer roots at A¼ 0, so

solutions avoid that point and are, therefore, strongly distorted near s¼ 0. As illustrated

in Figure 14.10, each pitchfork bifurcation is replaced by two continuous branches.

A

σ

A

σ

FIGURE 14.9 Bifurcation diagrams illustrating nonplanar steady states A ¼ � ffiffiffiffiffiffiffiffiffiffi
s=a1

p
as a function s for fixed values

of a1. Dashed lines represent unstable states. The bifurcation on the left is subcritical (s< 0 and a1< 0) because
instability at finite amplitude can occur before linear instability occurs. The bifurcation on the right is supercritical
(s> 0 and a1> 0) because instability takes place according to linear stability at an infinitesimal amplitude and the
system evolves to a stable nonplanar steady state.
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14.5.2 Other Nonlinear Topics

14.5.2.1 Sideband Instability of the Two-Dimensional Solution
The fundamental work of Eckhaus in 1965 [63] showed that the weakly nonlinear steady-

state solution hðxÞ ¼ A cos ux of Eqn (14.85) can be unstable to two-dimensional per-

turbations with wavenumbers that are nearby to u (“sideband instabilities”).

Linear stability theory predicts a critical wavenumber uc for a state of marginal sta-

bility with a vanishing growth rate s. Near this point of marginal stability we may

formally express the dispersion relation for linear stability in the functional form (cf.

Ref. [8,64])

s ¼ FðM ;uÞ; (14.90)

where M¼mGc/G* can be regarded as a dimensionless control parameter; for notational

simplicity, we suppress the dependence of the growth rate on the remaining material

parameters. The point of marginal stability s¼ 0 then corresponds to a critical value

M¼Mc and u ¼ uc. Owing to the quadratic nature of the dispersion relation near uc, if

M>Mc there is a range of unstable wavenumbers ju� ucj2wðM �McÞ for which s> 0.

The question of which wavenumber, if any, the unstable system prefers can be partially

addressed by considering the stability of weakly nonlinear solutions to a generalized

version of the Landau Eqn (14.85) known as the Landau–Ginzburg equation,

vA

vt
¼ sA� a1jAj2Aþ k

v2A

vx2
; (14.91)

where A(x,t) is now a complex amplitude such that the interface has the approximate

form

hðx; tÞ ¼ RefAðx; tÞ expðiucxÞg: (14.92)

Here Re(w) denotes the real part u of the complex number w¼ u þ iy, with absolute

value jwj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ y2

p
. The coefficients s and k are determined by the linear dispersion

relation in Eqn (14.90), with

sz
vF
vM

�
Mc;uc

��
M �Mc

	
; kz� 1

2

v2F
vu2

�
Mc;uc

�
> 0; (14.93)

and the coefficient of the cubic term a1 again determines whether the bifurcation is

supercritical (a1> 0) or subcritical (a1< 0); here we consider the case of supercritical

A

σ

A

σ

FIGURE 14.10 Diagrams illustrating the distortion
of perfect bifurcations, Figure 14.9, by
imperfections. Amplitude A of nonplanar steady
states is plotted as a function s for fixed a1< 0
(left) and a1> 0 (right) for Eqn (14.89). Dashed
lines represent unstable states. The transitions are
now smooth, and instabilities first take place at
finite amplitudes.
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instabilities. Equation (14.91) then admits a steady-state nonplanar solution of the

form

A ¼ Aq exp
�
iqx

�
;

��Aq

��2 ¼ s � kq2

a1

(14.94)

representing a perturbed interface with total wavenumber uc þ q that lies inside the

band of linearly unstable wavenumbers, here given by q2< s/k. It is relatively straight-

forward to perform a linear stability analysis of this solution (see, e.g., Ref. [65]). We write

the perturbed shape in terms of a normal mode, Aðx; tÞ ¼ Aq þ Bp expðltÞ expðiðqþ pÞxÞ,
and find an instability (l > 0) when ð3q2 � s=k� p2=2Þ > 0. The band of stable wave-

numbers is then reduced to the range q2 < s=3k (cf. Figure 4.3 of Ref. [64]).

By considering an appropriate two-dimensional version of the Landau–Ginzburg

equation, it is also possible to test the stability of the one-dimensional solution Aq to

normal modes that depend on both lateral coordinates x and y. One then finds condi-

tions for a “zig-zag” instability of a banded structure with periodic wiggles in the

transverse direction [66,67].

14.5.2.2 Three-Dimensional Weakly Nonlinear Solutions
As discussed in Section 14.3.1 the linear stability of the planar solution to a three-

dimensional perturbation with wavenumbers ux and uy in the transverse directions

will depend only on their magnitude u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x þ u2

y

q
in the absence of anisotropic effects.

This leads to a number of possible small amplitude nonplanar solutions with different

interface shapes that share a common value of u. Consider, for example, an interface of

the form

z ¼ h
�
x; y; t

� ¼ A
�
t
�


cos ux þ cos u

�
� x

2
þ

ffiffiffi
3

p
y

2

�
þ cos u

�
� x

2
�

ffiffiffi
3

p
y

2

��
; (14.95)

representing the superposition of three two-dimensional interfaces with wavenumbers

of equal magnitude but differing in direction by 120
. In the terminology of Morris and

Winegard [68], a solution of this type corresponds to a hexagonal array of “cells” (A> 0)

or “nodes” (A< 0). To study the stability of solutions of this type, Sriranganathan et al.

[69] considered interfaces having the general form

h
�
x; y; t

� ¼ A
�
t
�
cos

�
ux

�þ B
�
t
�
cos

�
ux

�
2
�
cos

� ffiffiffi
3

p
y
.
2

; (14.96)

for which the solution in Eqn (14.95) is a special case with B(t)¼ 2A(t). They derived a

coupled set of amplitude equations for A and B of the form

dA

dt
¼ sA� a0B

2 � A
�
a1A

2 þ a2B
2
�
; (14.97)

dB

dt
¼ sB� 4a0AB� B

�
2a2A

2 þ 1

4
ða1 þ 2a2ÞB2

�
; (14.98)

to describe the evolution of the system near marginal stability (s¼ 0). Here the co-

efficients a0, a1, and a2 depend on the material parameters in the system, and

624 HANDBOOK OF CRYSTAL GROWTH



determine the amplitude and stability of the nonplanar solutions. For example, the

“band” solutions correspond to B¼ 0 and A2¼ s/a1, and the hexagonal solutions

satisfy ða1 þ 4a2ÞA2 þ 4a0A� s ¼ 0 and B¼ 2A. There is also a more general rectangular

solution that connects these two branches of solutions. The stability of these solutions

can be determined by performing a linear stability analysis of the amplitude equa-

tions, whose results are cataloged by Sriranganathan et al. [69]. This two-mode

analysis has also been extended by Wollkind et al. [70] to a more general six-mode

analysis with independent complex amplitudes for each of the three basic wave-

numbers. The set of weakly nonlinear solutions is basically unchanged, but their

stability is modified upon consideration of this broader class of perturbations. One can

also consider Eckhaus instabilities of hexagonal interfaces [71]. An extension to the

case of a surface energy with cubic anisotropic for growth along two-, three-, or four-

fold axes of symmetry has also been considered [72]. Finite amplitude numerical

computations have been performed that complement weakly nonlinear analyses.

Examples of interface shapes and their associated solute fields are shown in

Figure 14.11 and can be compared to the experimental results obtained by Morris and

Winegard (Ref. [68]; see also Ref. [70]).

FIGURE 14.11 The solute field (lower plots) in the crystal at the crystal–melt interface for the interface shape
(upper plots) z ¼ A½cosðxÞ þ 2 cosðx=2Þ cosð ffiffiffi

3
p

y=2Þ with distribution coefficient k¼ 0.4 [73]. Left: For A¼�0.1 the
solute field corresponds to “nodes.” Right: For A¼ 0.1 the solute field corresponds to “cells.”
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In certain parameter regimes, the critical wavelength becomes large compared to

other lengths in the system, and it is possible to obtain large-amplitude evolution

equations for the interface shape that allows an extended analysis of nonplanar solu-

tions. A number of such longwave evolution equations have been obtained by Davis and

colleagues, as described in Ref. [64], Section 4.2. For a treatment in the context of

dissipative systems, see the book by Pismen (Ref. [74], Chapters 2–4).

14.6 Concluding Remarks
Convection in the fluid, which has not been treated here due to space limitations, can

have significant effects on morphological stability. This huge subject was treated

extensively by Davis [75] in Chapter 13, Vol. 1b of the previous edition of this handbook.

The central difference from convection in regions with fixed boundaries is that interfaces

can deform by means of phase transformation, and this can greatly enhance fluid

dynamical instabilities. For example, for free convection of a pure fluid between vertical

concentric cylinders, deformation by phase transformation of the inner cylinder can

reduce the critical Grashof number by a factor of more than 10 and result in spiral in-

stabilities. Similarly, phase transformation can increase greatly the critical Taylor

number for instability in Taylor-Couette flow. Generally speaking, convection in the melt

can help to homogenize the concentration, thus enhancing morphological stability

somewhat, but morphological modes and fluid-dynamical modes can couple, so forced

convection can easily promote morphological instability in certain directions. See also

the book on solidification by Davis (Ref. [64], Chapters 9 and 10) and the book by Johns

and Narayanan (Ref. [76], Chapter 7) on interfacial instability for further information and

references to the original literature.

Another important topic that is not treated here is phase field theory, which provides

important information about growth subsequent to morphological instability. According

to phase field theory, the sharp interface between phases is replaced by a diffuse

interface described by a continuous phase field variable that changes rapidly over a thin

layer. This subject is being treated in the present edition of this handbook by Plapp [77].

In order to get the phase field model to agree with the sharp interface model, it is

necessary to modify the phase field equations by extra terms that insure that the basic

physics is the same. This was first done by McFadden et al. [78] for pure materials and

later by Echebarria et al. [79] for alloys in which the additional terms alleviate solute

trapping. But the real power of the phase field model is that it enables the computation

of growth forms in the strongly nonlinear regime subsequent to morphological stability.

An example of the morphology of cells computed from an early alloy phase field model

[80] is shown in Figure 14.12. Note especially the secondary instability showing droplets

of solute-rich liquid in the cell grooves. Such droplets have been observed in directional

solidification of thin samples of transparent organics, but it remains for more refined

phase field models to determine whether they are artifacts of the model.
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The general aspects of pattern formation subsequent to morphological stability of

alloys has been reviewed in an article by Billia and Trivedi [82] contained in Chapter 14,

Vol. 1b of the previous edition of this handbook. This review contains the results of

extensive experiments that were analyzed by theory and scaling analysis. It is shown that

the transition from cellular to dendritic arrays occurs as velocity is increased during

directional solidification; the cell spacing first decreases and then abruptly increases just

prior to the transition to a dendritic array, suggesting that some cells go on to become

dendrites, and those in between them cease to grow. A detailed experimental study of

individual dendrites and comparison with theory by Glicksman [83] is contained in

Chapter 14, Vol. 1b of the previous edition of this handbook, but an updated review that

also addresses nearly convection-free dendritic growth in microgravity may be found in

the present edition of this handbook [84].
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15.1 Introduction
Crystal growth can generate a huge variety of different morphologies. A visit to a good

minerals collection or the observation of frost and snowflakes in winter will motivate any

curious spirit to ask the question by which set of fundamental mechanisms this wealth of

shapes is created. There are also some practical reasons that call for a precise under-

standing of pattern formation in crystal growth: many manmade materials are crystal-

line, and their properties depend on their microstructure. Hence, which patterns form

for given processing conditions is a question of both fundamental and practical interest.

Fundamentally, crystal growth can be divided into two stages: new material has to be

transported to the surface of the growing crystal, and it has to find its place in the

structure of the growing crystal. Which of these is the rate-limiting step depends on the

structure of the crystal interface at the atomistic scale. For crystals that have a micro-

scopically rough interface (atoms can easily attach to and detach from the surface,

microscopic fluctuations of the interface structure are large), growth is mainly controlled

by bulk transport. This is generally the case for metals. In this case, morphological
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instabilities occur, simple growth shapes are unstable, and complex microstructures

develop, such as dendrites (tree-like, branched structures). In contrast, for crystals

whose interfaces are smooth on an atomic scale, growth is mainly controlled by the

kinetics of incorporation, which depends on the density of surface defects such as steps,

kinks, and dislocation outcrops. Generally, this growth mode leads to the emergence of

strongly facetted shapes, such as found in many minerals.

Historically, the problem of transport-limited crystal growth was first formulated as a

free-boundary problem [1,2]: the interface is represented by a mathematical surface

without thickness, and its local growth velocity is proportional to the flux of heat and/or

matter that arrives at the crystal surface. The temperature and concentrations at the

surface obey thermodynamic boundary conditions, and fluxes of heat and matter follow

the appropriate transport laws inside the volume of both phases. While this formulation

is simple and intuitive, free-boundary problems are known to be extremely hard to solve,

both analytically and numerically.

Since about 30 years ago, the phase-field method has been established as a new

approach to the modelling of transport-limited crystal growth. Surfaces and interfaces

are described implicitly by one or several scalar fields, the so-called phase fields that

describe the local state of matter. The equations of motion for these fields are rooted in

the physics of phase transitions and can be obtained from the laws of out-of-equilibrium

thermodynamics. They are coupled to the transport equations for heat and chemical

constituents. The advantage of the phase field approach is that an explicit tracking of the

evolving interfaces is avoided, which makes it possible to implement phase-field models

with the standard mathematical methods used for any set of coupled partial differential

equations. The phase-field method has been extremely successful in the description of

crystal growth; in particular, it has had a tremendous impact on the understanding of

solidification microstructures.

The phase-field method is also used in many other fields, such as, for example, solid-

state phase transformations [3] and hydrodynamics [4], and it has become one of the

standard methods for the modelling of moving interfaces. Therefore, the available

literature is abundant. There are several pedagogic reviews [5–8], an introductory book

[9], and several recent papers that review various applications in crystal growth and

solidification [10–14]. Therefore, in the present contribution I will not attempt to be

exhaustive, but instead present some essential concepts, “bricks” and ingredients that

are needed to construct efficient phase-field models for crystal growth. Some of the

material is fairly basic, but a thorough understanding of some fundamentals is necessary

to appreciate the differences between the various models found in the literature, which

are sometimes subtle, but can have important consequences for the performance in

simulations. One of the difficulties for a review of phase-field models is that the nota-

tions, conventions, and definitions are not standardized and differ between various

“schools.” Sometimes, I will attempt to quote several different formulations, but an

exhaustive panorama would be too lengthy. I will restrict the presentation to phase-field

models for solidification; it will be assumed in the following that the reader is familiar
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with the fundamentals of solidification science [15–17]. Phase-field models for step-flow

growth during molecular beam epitaxy are briefly reviewed by W. Miller in Chapter 12 of

Vol. IA of this book.

For the understanding of phase-field models, it is useful to take two complementary

perspectives: a “bottom-up” and a “top-down” view. On the one hand, order-parameter

models have originally been developed as a continuum description of phase transitions.

They can therefore be obtained, by a coarse-graining procedure, from microscopic

models (as described in Section 15.2), which provides one of the centerpieces of phase-

field models, namely, a mesoscopic free energy functional. This description naturally

yields diffuse interfaces, some properties of which will be reviewed in Section 15.3. On

the other hand, phase-field models can be seen as a numerical tool for the solution of

free-boundary problems; in this “top-down” perspective, the diffuse interfaces are a

mathematical regularization of a sharp-interface problem (Section 15.4). These two

viewpoints are combined in Section 15.5 to construct phase-field models for a variety of

solidification phenomena. Finally, Section 15.6 will present a brief conclusion and a

selection of open problems.

15.2 Order-Parameter Models: The “Bottom-Up” View
The roots of the phase-field method can be found in the continuum description of phase

transitions. A characteristic feature of first-order phase transitions is the coexistence of

two thermodynamic phases. This implies the existence of interfaces that delimit the

domains occupied by each phase. Seen on a macroscopic scale, these interfaces appear

as surfaces of discontinuity in an otherwise continuous medium. However, on the

microscopic scale, interfaces have a finite width and an internal structure. The first

theory for a phase transition with diffuse interfaces was formulated by van der Waals for

the liquid–vapor transition in a one-component fluid (pure substance) [18]. Later on, this

description was connected to the general theory of phase transitions by Ginzburg and

Landau. The first application to materials science was the Cahn-Hilliard equation for the

evolution of composition in binary mixtures [19].

In this approach, the spatial structure and time evolution of a heterogeneous system

is described by a continuous field that is identified with a physical quantity—the order

parameter of Landau theory. The time evolution of this field is then given by the laws of

out-of-equilibrium thermodynamics, taking into account the nature of the order

parameter (scalar, vector, or tensor), its conservation laws, and the symmetries of the

problem.

In principle, the evolution equations can also be obtained directly from a micro-

scopic description using the method of coarse-graining. While this procedure can in

general not be carried out explicitly without drastic approximations, it provides in-

sights into numerous properties of order-parameter models. Therefore, it seems useful

to outline, as an example, the principal steps that need to be taken in order to obtain

diffuse-interface equations for two simple lattice models, the Ising model for the
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ferromagnetic to paramagnetic transition and a binary lattice alloy model; more details

can be found in [5].

In its simplest version, the microscopic Hamiltonian of the Ising model is given by

H ¼ �J
X
hi;ji

SiSj � h
X
i

Si: (15.1)

Here, i and j denote points on a lattice, which for simplicity is assumed to have periodic

boundary conditions and to be large enough for finite-size effects to be negligible. The

“spin variables” (magnetic moments) Si can take the values �1, the first sum runs over

the pairs of nearest neighbor sites, and the constant J is positive, such that parallel

alignment of neighboring spins is favored. The second term describes the interaction of

the spins with the external magnetic field h.

The thermodynamic (Helmholtz) free energy F is obtained from the standard formula

F ¼ �kBT ln Z; (15.2)

where kB is Boltzmann’s constant, T is the (fixed) temperature, and the partition function

is given by

Z ¼
X
C

exp

�
�HðCÞ

kBT

�
; (15.3)

where the sum runs over all possible configurations C, that is, all possible sets of spin

values {Si}.

With these definitions, F is a function of temperature T and magnetic field h. In order

to describe inhomogeneous systems, some information about the spatial distribution of

spin values needs to be retained. To this end, space is divided in “cells,” say cubes of

‘d lattice sites, where d is the space dimension. Then, in each cell (labeled by capital

indices), a local magnetization is defined by

mI ¼ 1

‘d

X
i˛I

Si: (15.4)

The calculation of the partition function can now be split in two steps:

Z ¼
X
fmI g

X
C=fmI g

exp

�
�HðCÞ

kBT

�
: (15.5)

The idea is that the same set of cell magnetizations can, in general, be obtained by many

different microscopic configurations; the second sum in Eqn (15.5) runs over all the

microstates that are compatible with the “imposed” set of cell magnetizations. A free

energy can then be defined by the logarithm of just the second sum,

FðfmIgÞ ¼ �kBT ln
X

C=fmI g
exp

�
�HðCÞ

kBT

�
: (15.6)

This mesoscopic free energy depends on the set of mI and, therefore, on the spatial

structure of the magnetization field. The thermodynamic free energy can then be
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obtained by summation over the cell variables, which corresponds to the outer sum in

Eqn (15.5).

It is generally impossible to evaluate explicitly these formulas. To make further

progress, the standard path is to use mean-field approximations for the coarse-grained

free energy. The local magnetization variables are hence replaced by local average

values. Furthermore, under the assumption that the magnetization varies slowly on the

scale of a coarse-graining cell, the magnetization values in the individual cells can be

interpolated by a continuous magnetization field, and the first sum in Eqn (15.5) can be

replaced by an integral. As a result, the coarse-grained free energy takes the Ginzburg-

Landau form

F ¼
Z
V

�
1

2
~K ðVmÞ2 þ f ðmÞ

�
dV ; (15.7)

where integration is over the volume of the system, f(m) is the local free energy density

(the free energy calculated for a single coarse-graining cell), and the gradient term arises

from the interactions between neighboring coarse-graining cells (the constant ~K is

proportional to the interaction energy J and to the number of lattice bonds between

neighboring cells). For the Ising model, the free energy density in the mean-field

approximation takes the form

f ðmÞ ¼ 1

ad

�
� zJ

2
m2 � hmþ kBT

��
1þm

2

�
ln

�
1þm

2

�
þ
�
1�m

2

�
ln

�
1�m

2

���
(15.8)

where a is the lattice spacing and z the coordination number of the lattice (number of

first neighbors). The first two terms inside the braces represent the spin–spin in-

teractions and the interaction with the external magnetic field, respectively; the third

term represents the contribution of the configurational entropy to the free energy. An

expression that is easier to handle analytically is obtained by a Taylor expansion around

the critical point (T¼ Tc¼ zJ/kB, m¼ 0), which yields (up to a constant that can be

omitted)

f ðmÞ ¼ 1

ad

�
1

2
kBðT � TcÞm2 þ 1

12
kBTcm

4 � hm

�
: (15.9)

This free energy density is plotted in Figure 15.1 for temperatures above and below

the critical temperature. For T> Tc, the system is paramagnetic: the free energy has a

single minimum, the location of which is shifted by the application of a magnetic

field. For T< Tc, f(m) has a double-well structure. For zero magnetic field, the two

minima are equivalent, which corresponds to the coexistence of two phases with

opposite spontaneous magnetizations: the system is ferromagnetic. The transition

from the paramagnetic to the ferromagnetic state is of second order (the equilibrium

magnetization varies continuously with temperature). Below Tc, there is a first-order

transition when the magnetic field is varied: the magnetization jumps discontinu-

ously from one minimum to the other when the magnetic field crosses zero. For a

range of magnetic fields around h¼ 0, there are still two minima, but with different
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values of the free energy density; the higher one of the two corresponds to a meta-

stable phase.

There are several methods to obtain an equation of motion for this model. We will

follow here standard arguments of irreversible thermodynamics. Equilibrium is reached

when the total free energy is minimal; therefore, an equation which implies a decrease in

the free energy will drive the system towards (global or local) equilibrium. The time

derivative of the total free energy is

dF
dt

¼
Z
V

dF

dmð x!Þ
vmð x!; tÞ

vt
d x!; (15.10)

where dF=dmð x!Þ denotes the functional derivative of the free energy functional with

respect to the magnetization at the point x!, and we have used the chain rule for dif-

ferentiation. It is easy to see that we always have dF=dt � 0 if we choose

vm

vt
¼ �G

dF

dmð x!Þ ; (15.11)

where G is a positive constant: this expression makes the integrand on the right-hand

side of Eqn (15.10) negative or zero. The quantity dF=dm, that is, the variation of the

free energy with the local magnetization, can be interpreted as a thermodynamic force,

and G as a mobility. The local magnetization is a nonconserved quantity, since it can

change by simple flips of the spins inside a coarse-graining cell. Equation (15.11) thus

simply expresses that the rate of change of the magnetization is proportional to the

thermodynamic driving force. It can be shown by statistical mechanics methods (linear

response theory) that this proportionality is always valid for small enough driving forces

and for systems in which the time evolution results from the superposition of numerous

microscopic processes.

Let us now consider a binary lattice alloy model. Lattice sites are occupied by atoms A

or B (no vacancies), and atoms interact only when they are on nearest neighbor sites,

with atoms of the same kind contributing a negative energy. It can be shown through a

simple change of variables that the microscopic Hamiltonian is then completely

–1 –0.5 0 0.5 1
m

0

0.5

1

1.5

fa
d /

k B
T

c

fa
d /

k B
T

c

h = 0
h/kBTc = 0.5

h = 0
h/kBTc = 0.01

(A) (B)

–1 –0.5 0 0.5 1
m

–0.02

–0.01

0

0.01

0.02

0.03

0.04

FIGURE 15.1 The free energy density given by Eqn (15.9) for (A) T¼ 2Tc and (B) T¼ 0.9Tc.
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equivalent to the one of the Ising model, with “up spins” corresponding to A atoms, and

“down spins” to B atoms. As a consequence, the coarse-grained free energy functional is

also equivalent. It is usually written in terms of the composition, or local fraction of B

atoms (the number of B atoms in a coarse-graining cell divided by the number of lattice

sites in the cell), which is related to the magnetization m by

c4
1�m

2
: (15.12)

The phase transition is now from a miscible to a phase-separated mixture: for T> Tc, the

system is miscible (all compositions are stable). For T< Tc, a miscibility gap exists: for a

range of composition, the system separates into an A-rich and a B-rich phase.

There is one decisive difference between the two systems: whereas the local

magnetization can change by a simple flip of a spin, an A atom cannot transform into a B

atom. The number of B atoms in a cell can therefore only change if atoms are exchanged

between neighboring cells; the composition c obeys a conservation law:

vc

vt
þ V

/

$ J
!¼ 0; (15.13)

where J
!

is the exchange current of A and B atoms. Under this constraint, the time

derivative of the free energy becomes

dF
dt

¼
Z
V

dF

dcð x!Þ
vcð x!; tÞ

vt
d x!¼ �

Z
V

dF

dcð x!Þ V
/

$ J
!

d x!: (15.14)

Integration by parts yields for a closed system (no mass currents through the system

boundaries)

dF
dt

¼
Z
V

J
!

$ V
/ dF

dcð x!Þ d x!: (15.15)

A decrease in the free energy can thus be guaranteed by the choice

J
!¼ �MV

/ dF

dcð x!Þ ¼ �MV
/

~m; (15.16)

with M a positive constant. Again, this equation has a direct microscopic interpretation.

The variation dF=dc (designated by ~m in the second equality of the right-hand side of Eqn

(15.16)) is the change in free energy with composition; the system can therefore lower its

energy if B atoms flow to regions where ~m is lower, and A atoms in the opposite direction.

The gradient of ~m hence drives the mass currents that correspond, on a microscopic level,

to exchange processes between A and B atoms. The quantity ~m is sometimes called

“chemical potential,” sometimes “diffusion potential;” it is given by

~m ¼ rðmB � mAÞ; (15.17)

where mi ¼ vF=vNijT ;V ;Nj
are the “standard” chemical potentials of A and B atoms, and r

is the density of lattice sites (in other words, r ¼ N A=Vm, with N A the Avogadro number

and Vm the molar volume of the mixture). Equation (15.16) again is the product of a
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thermodynamic driving force (the gradient of diffusion potential) and a mobility M. The

combination of Eqns (15.13) and (15.16) yields the Cahn-Hilliard equation,

vc

vt
¼ V

/

$

�
MV

/ dF

dc

�
: (15.18)

At this point, it is useful to make a number of general comments:

• We have obtained the evolution equations for the magnetization and the composi-

tion in the canonical ensemble (fixed temperature), with the free energy as the

thermodynamic potential. The introduction of a Ginzburg-Landau free energy

functional that has the form of an integral over a local free energy density implies

the assumption that the individual coarse-graining cells are large enough to make

the evaluation of local partition functions and statistical averages meaningful. In

this case, the equivalence between statistical ensembles applies, and the evolution

equations can also be formulated in other thermodynamic ensembles. Many

authors have started from an entropy functional (microcanonical ensemble, see for

example Ref. [20]), and used the condition that the local entropy production must

always be positive. Grand-canonical approaches have also been used more recently

[21–23].

• The mobilities introduced in Eqns (15.11) and (15.16) can depend on local state

variables, on space and/or time, as long as they remain positive.

• We have obtained the evolution equations by thermodynamic arguments. It is also

possible to derive them from microscopic models, which often makes it possible to

obtain expressions for the mobility functions. Lattice models are very naturally

simulated by the Monte Carlo method, which defines a microscopic stochastic

process. The microscopic master equation can then be used to describe the evolu-

tion of local averages. In a kinetic mean-field approximation, it is possible to

obtain evolution equations of the form of Eqns (15.11) and (15.18) for simple spin-

flip and particle-exchange models, respectively (see Ref. [24] for a review).

• The definition of a coarse-grained free energy functional implies the choice of a

coarse-graining length (in the above example, the cell size ‘). Obviously, the free

energy density as well as the gradient energy coefficient ~K depend on this choice,

since the number of microscopic configurations inside a coarse-graining cell and

the interaction strength between neighboring cells both depend on ‘. This depen-

dence on ‘ disappears in the mean-field approximation, but is present in more

accurate evaluations of the partition functions, which is perfectly natural since the

mesoscopic functional F can contain only the free energy of all fluctuations on

length scales below ‘. The complete free energy is obtained by the outer summa-

tion in Eqn (15.5). In the dynamic Eqns (15.11) and (15.18), these large-scale fluc-

tuation modes can be included by additional stochastic noise terms, which

transforms them into Langevin equations. Indeed, it is clear that under a given

microscopic dynamics (for example, a Monte Carlo process), the cell variables

exhibit fluctuations with an amplitude that depends on the coarse-graining size.

638 HANDBOOK OF CRYSTAL GROWTH



Therefore, the noise amplitude has to be consistent with the free energy functional.

More detailed investigations of these questions in the context of solid-state diffu-

sion can be found in Refs [25,26]. Some further issues concerning the addition of

noise are discussed in Refs [22,27].

• Whereas coarse-graining is conceptually simple and intuitive, it generally cannot be

performed rigorously. It relies on strong assumptions about scale separation: on the

one hand, the coarse-graining cells must be large enough to justify the use of local

thermodynamic identities; on the other hand, the cells must remain small enough to

be considered homogeneous, that is, they must remain smaller than the correlation

length. For solid–liquid interfaces in metals, the typical width of the microscopically

rough interface is about half a nanometer, which corresponds to only a few atomic

distances [28]. Therefore, there exists no intermediate scale between the size of an

atom and the thickness of the interface on which coarse-graining could be rigor-

ously performed. In the vicinity of a critical point, where the correlation length di-

verges, the fluctuations also diverge such that mean-field approximations break

down. Therefore, direct quantitative results for the thermodynamic description of

specific systems cannot be expected from mesoscopic free-energy functionals, which

should rather be seen as a phenomenological description.

• The Taylor expansion that leads from Eqns (15.8) and (15.9) is an example for a

Landau expansion. The idea of Landau theory is that for any phase transition there

exists a suitable order parameter that can distinguish between the different phases.

Around a critical point, the free energy density can always be expanded in a poly-

nomial form that only depends on the structure of the order parameter and the

symmetries of the considered problem. First-order phase transitions can also be

phenomenologically described by such free-energy densities, despite the fact that

they may not exhibit a critical point. As a consequence, it is straightforward to write

down order-parameter models for a large variety of phenomena: it is sufficient to

identify the suitable order parameters and their conservation laws. The Landau

expansion, together with gradient square terms, yields the free energy functional,

and the conservation laws determine the form of the equations of motion. A classifi-

cation of the simplest possible models was given by Hohenberg and Halperin [29].

In this list, Eqn (15.11) (one nonconserved order parameter) is called model A, and

Eqn (15.18) (one conserved order parameter) model B; model C has one non-

conserved and one conserved order parameter and was the original starting point

for phase-field models of solidification [30–32]; finally, a model that includes hydro-

dynamics is called model H. It describes the liquid–vapor transition of a one-

component fluid, taking into account conservation of mass, momentum, and energy.

15.3 Diffuse Interfaces at Equilibrium
Two-phase coexistence implies the existence of interfaces. Their properties can readily

be obtained from the Ginzburg-Landau free energy functional introduced in the
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preceding section. This will first be illustrated for the simple example of the Ising model,

and then discussed in more generality.

Let us consider a ferromagnetic state of the Ising model (T< Tc) without magnetic

field (h¼ 0). The local free energy density given by Eqn (15.9) has two minima for

f 0ðmÞ ¼ 0 4 m ¼ �meq meq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
ðTc � T Þ

Tc

s
: (15.19)

In terms of j ¼ m=meq, the free energy can be rewritten as

F ¼
Z

1

2
K
	
V
/

j

2þHfdwðjÞ; (15.20)

with K ¼ ~Km2
eq=a

d, H ¼ kBTcm
4
eq=ð3adÞ and the double-well function (with minima at

j ¼ �1)

fdwðjÞ ¼ �j2

2
þ j4

4
: (15.21)

In this formulation, all the physical parameters are contained in the two constants K andH.

They have a dimension of energy per unit length and energy per unit volume, respectively.

From this, we can immediately deduce fundamental scaling relations for the thickness x of

the interface (a length) and its surface free energy g (energy per unit surface),

xw

ffiffiffiffiffi
K

H

r
; (15.22)

gw
ffiffiffiffiffiffiffiffi
KH

p
wHx: (15.23)

To understand these relations, observe that the first term in the integral of Eqn (15.20) is

minimized by a flat profile (with zero gradients), whereas the second one favors values of

f close to �1 and is thus minimized by a step function. Therefore, the finite interface

thickness results from the competition between the two terms in the functional.

Moreover, inside the interface, the field j takes values in between the two minima, such

that the interface contributes an extra free energy density of order H (from the

“potential” Hfdw) across a space region of thickness x.

For a more rigorous derivation of these relations, consider the equation for an

equilibrium interface, dF=dj ¼ 0, for a planar interface oriented normal to the x direc-

tion, with a profile jðxÞ. The evaluation of the functional derivative (see Eqn (15.60)

below for the precise definition of this procedure) yields

�KvxxjþHf 0dw
	
j

 ¼ 0; (15.24)

where vxxj is shorthand for v2j=vx2, and f 0dw denotes the derivative of fdw with respect to

j. We introduce the dimensionless coordinate ~x ¼ x=W with W ¼ ffiffiffiffiffiffiffiffiffiffiffi
K=H

p
. After a change

of variables from x to ~x and division by H, Eqn (15.24) becomes

�v
~x~x
jþ f 0dwðjÞ ¼ 0: (15.25)

Therefore, the interface profile jeqð~xÞ is determined by the double-well function; only its

length scale depends on the physical parameters.
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Far away from the interface, the magnetization tends to its equilibrium values m ¼
�meq ðj ¼ �1Þ, and the bulk free energy density is Hfdwð�1Þ. For definiteness, let us

suppose that jð�NÞ ¼ 1 and jðNÞ ¼ �1. The surface energy g is defined as the excess

free energy (per surface area) due to the presence of an interface. This can be

expressed as

g ¼
ZN
�N

�
1

2
K ðvxfÞ2 þH

�
fdwðjðxÞÞ � fdwð�1Þ��dx

¼ ffiffiffiffiffiffiffiffi
KH

p ZN
�N

�
1

2
ðv

~x
fÞ2 þ �

fdwðjðxÞÞ � fdwð�1Þ��d~x:

(15.26)

This integral can be simplified with the help of a relation that is obtained from Eqn

(15.25) by multiplying both sides with v~xj and integrating from �N to ~x, which yields

1

2
ðv

~x
jÞ2 ¼ fdwðjð~xÞÞ � fdwð�1Þ: (15.27)

This result can be used to eliminate either one of the two terms in the integral of Eqn

(15.26); after the elimination of the square gradient term and a change of integration

variable from ~x to j, g can be evaluated as

g ¼
ffiffiffiffiffiffiffiffi
KH

p Z1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
fdwðjÞ � fdwð�1Þ�q

dj ¼
ffiffiffiffiffiffiffiffi
KH

p
I (15.28)

where I (the value of the integral) is defined by the second equality. For the fourth-order

polynomial given by Eqn (15.21), I ¼ 2
ffiffiffi
2

p
=3, and the interface solution is given by

jðxÞ ¼ �tanh

�
x � x0ffiffiffi
2

p
W

�
(15.29)

for an interface centered at x0.

Again, several general remarks can be made:

• The fourth-order polynomial given by Eqn (15.21) is the most popular choice for a

double-well function, both because it is the lowest-order double-well function that

appears in a Landau expansion and because of the existence of a closed-form ana-

lytic solution for the interface. However, any other double-well function yields a

similar interface shape (that is, a sigmoid curve) because of Eqn (15.25): the

modulus of the slope is highest in the center of the interface, where j is “on the

top” of the potential barrier.

• The definition of the interface thickness x is somewhat arbitrary, and many

different conventions have been used in the literature. One choice that works for

arbitrary potentials is to define x as the inverse of the maximum slope,

x ¼ 1=maxðjvj=vxjÞ, which yields x ¼ ffiffiffi
2

p
W for the fourth-order polynomial.

• The above results can be used to rewrite the free energy in two different forms,

which both have been used in the literature. In the first, the coefficient H of the
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double-well potential is pulled out of the integral, and the definition W 2 ¼ K=H is

used to obtain [33]

F ¼ H

Z
V

1

2
W 2

	
V
/

j

2þfdwðjÞ: (15.30)

The ratio F=H is sometimes called “dimensionless free energy,” although it is the free

energy density (the integrand) which is dimensionless. Therefore, when the prefactor H is

absorbed in the definition of F , the latter acquires the dimension of a volume, and the

surface free energy becomes a length [33]. The advantage of this convention is that a

rescaling of all lengths by W yields equations that do not contain any coefficients, such

as Eqn (15.25). Another possibility to rewrite the free energy is to eliminate the co-

efficients K and H in the functional in favor of x and g. The result for the fourth-order

polynomial is

F ¼
Z
V

3

8
g

�
x
	
V
/

j

2þ fdwðjÞ

x

�
; (15.31)

both the square gradient and the potential term have to be modified if the interface

thickness is to be changed at constant surface energy.

Let us now generalize these results for other interfaces. Consider a mixture of K

different components in which two phases are in coexistence (elastic effects are not

included here for simplicity; for a detailed discussion of stress effects on interface

thermodynamics, see for example Ref. [34]). The extensive thermodynamic quantities

are energy E, entropy S, and the number Ni of particles of species i, with volume densities

e, s, and ri, respectively. The conjugate intensive variables for S and Ni are the temper-

ature T and the chemical potentials mi. Since there is an equilibrium between two phases

which can exchange energy and particles, all the intensive variables must be equal in the

two phases, and uniform in inhomogeneous systems (and, thus, in diffuse interfaces). In

contrast, the densities of the extensive quantities can be different in the two phases, and

vary through the interface region in a continuous manner, as in the example of the

magnetization seen above. Macroscopic thermodynamic properties can be assigned to

such profiles through the classic Gibbs construction, illustrated in Figure 15.2: in a

system of total length L that contains an interface normal to the x direction, the total

amount of an extensive quantity of density y(x) is compared to a macroscopic two-phase

system with an interface at position xint, and the difference is assigned to the interface,

yint ¼
24ZL

0

yðxÞdx
35� �

yaxint þ ybðL� xintÞ
�
; (15.32)

where ya and yb are the bulk densities of y in the two phases. If yasyb, the value of the

interface excess depends on the choice of the interface position xint. Therefore, it is al-

ways possible to define the interface position such that the interface excess is zero.

However, when several extensive quantities exhibit variations through the interface, only

642 HANDBOOK OF CRYSTAL GROWTH



one of the corresponding excess quantities can be made zero by the choice of the

interface position, except in the presence of special symmetries.

The interface free energy is the interface excess of the relevant thermodynamic

potential, which is often quite loosely called “free energy” without further precisions.

“Relevant” means that this potential must have the same value in the two phases;

otherwise, the surface energy cannot be defined unambiguously since it would depend

on the choice of the interface position. Since the coarse-grained description is based

on volume integrals, we will consider a system of fixed total volume V. In that case, the

relevant potential is the grand potential. In contrast, if a fixed pressure is assumed, the

relevant potential is the Gibbs free energy. See Ref. [35] for a detailed discussion on

how to define interface excesses in this case. For constant volume, the pressure is

not an independent variable, but is equal to the negative of the grand potential

density, �P ¼ e � Ts �PK
i¼1miri. The equality of the pressures in the two phases

therefore implies

ea � Tsa �
X
i

mir
a
i ¼ eb � Tsb �

X
i

mir
b
i ; (15.33)

where rni are the equilibrium number densities of component i in phase n.

Two special cases merit further discussion. For a pure substance (K¼ 1) in which

both phases have equal number densities ðra ¼ rbÞ, Eqn (15.33) reduces to

ea � Tsa ¼ eb � Tsb, that is, fa ¼ fb, with the free energy densities fn ¼ en � Tsn. Therefore,

the surface free energy is given by the excess of the Helmholtz free energy. Note that

we have already used this fact in the definition of g for the magnetic model, Eqn

(15.26), in which the two phases are related by the up-down symmetry of the spins. For

a binary mixture (K¼ 2) of A and B particles with constant number density (or,

equivalently, constant molar volume), rA þ rB ¼ r, fa � ðmB � mAÞraB ¼ fb � ðmB � mAÞrbB.
Using that the composition c ¼ rB=r ¼ rBVa, with Va ¼ Vm=N A the volume occupied by

an atom, we find

fa � ~mca ¼ fb � ~mcb ¼ ueq; (15.34)

xint

Phase α Phase β

yβ

yα

L0

FIGURE 15.2 Illustration of the Gibbs construction: thermodynamic properties and a position on a macroscopic
scale can be assigned to a diffuse interface by comparing the total content of an extensive quantity y(x) with the
one of a step function, localized at the position xint, between the macroscopic values of y in the two phases.
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where ~m ¼ ðmB � mAÞ=Va is the diffusion potential introduced in Eqn (15.16). The surface

free energy is the interface excess of u ¼ f � ~mc with respect to its equilibrium

value ueq,

g ¼
ZN
�N

�
f � ~mc � ueq

�
dx: (15.35)

Let us now introduce the phase field. This name was coined at the beginning of the 1980s

when the first diffuse-interface models for solidification were formulated [30–32]. The

phase field is a scalar field that specifies the state of matter (solid or liquid). One may ask

why such a field is needed, although the thermodynamics of any system can be

expressed in the traditional thermodynamic variables e, s, and ri; indeed, the solid and

liquid phases generally have different values for all of these quantities. Why not choose

one of them as a marker to distinguish between solid and liquid? The answer to this

question lies in the particular nature of the solid–liquid transition, which does not have a

critical point, contrary to the other phase transitions that have been discussed so far.

Indeed, for a phase-separating mixture, there are two distinct phases at low temperature,

which means that not all values of the composition are accessible; however, at high

temperature the system becomes completely miscible. This means that there is a unique

free energy function f ðc;TÞ which can describe all possible states of the system. The

same holds for the liquid–gas transition and its free energy f ðr;TÞ. For the solid–liquid

transition, there is no continuous thermodynamic path that connects solid and liquid,

which means that these two phases must be described by separate free energy curves.

Therefore, an additional parameter is needed to interpolate between these curves.

A physical interpretation can be given to the phase field as the order parameter of the

solid–liquid transition, which can be defined even if there is no critical point for this

transition. A pure solid and its liquid are distinguished by the long-range order present in

the crystal, which can be probed by diffraction experiments. Order parameter functions

can be defined that locally detect crystalline order in the data of molecular dynamics

simulations [36,37]. In classical density functional theory, the fundamental field is the

probability of presence of an atom at a particular position. Whereas this probability

density is uniform in a liquid, for a solid it exhibits peaks around the equilibrium

positions of the atoms in the lattice. This means that in reciprocal space the amplitude of

certain “density waves” is finite for a solid, but zero for a liquid. Therefore, the ampli-

tudes of density waves can be used as order parameters [38]. If this amplitude is allowed

to vary in space on a scale much larger than the lattice spacing, in the spirit of amplitude

equations, the free energy for solid–liquid coexistence takes a Ginzburg-Landau form,

with a double-well potential and square gradient terms for the amplitude [39]. Therefore,

the assumption of a Ginzburg-Landau form for the contribution of the phase field to the

free energy is well justified.

The phase field f is usually defined as the normalized order parameter, that is, f¼ 0

in the liquid and f¼ 1 in the solid. All the formulas derived so far for the dimensionless

magnetization field j are also valid for the phase field, with the change of variables
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f ¼ ð1þ jÞ=2; the standard double-well potential used for f is fdw ¼ f2ð1� fÞ2. The
phase field f exhibits a variation through the interface, just like the extensive thermo-

dynamic quantities. However, there is no intensive variable that is conjugate to the phase

field. The phase field can be related to the volume fraction of solid: in a system of volume

V, the latter is given by ð1=V ÞRVfð x!Þ, and a time evolution of the phase field corresponds

to a relaxation of the volume fraction of solid towards its equilibrium value. Since the

crystalline order can change locally by short-range motion of the atoms into or out of the

equilibrium positions in a crystal lattice, the phase field is a nonconserved quantity and,

therefore, must satisfy an equation of the type of Eqn (15.11). However, the evolution of

the phase field (interpreted as a volume fraction) depends on the values of the local

thermodynamic state variables and, therefore, the equations for f, the temperature, and

the composition are intrinsically coupled, as will be detailed below.

15.4 Free-Boundary Problems: The “Top-Down” View
In Section 15.2, we have seen how mesoscopic free-energy functionals and equations of

motion for the associated order parameters can be obtained by coarse-graining, that is,

by averaging over the small length and time scales of the microscopic dynamics. Now,

we will take the opposite, “top-down” view and see how phase-field models can be

obtained by introducing supplementary small scales into a macroscopic problem.

The starting point are free-boundary problems, introduced by Stefan [1,2] for the

growth of ice layers at a water surface in contact with cold air. In free-boundary prob-

lems, partial differential equations (usually for transport phenomena) need to be solved

in domains that evolve with time in response to the fluxes at the boundaries. The time

evolution of the domain boundaries is thus a part of the problem solution.

As a simple example, let us consider the freezing of a pure substance (thegrowthof aone-

component pure crystal from its melt). We suppose that the density of solid and liquid are

equal and that themelt is quiescent, such that no hydrodynamic flowneeds to be taken into

account. Under these circumstances, crystal growth is limited by the diffusion of heat: upon

solidification, the latent heat is set free and has to be evacuated for crystal growth to

continue. This problem can be formulated as a set of equations for the temperature field

Tð x!; tÞ defined on domains of solid and liquid that are separated by a sharp interface:

vT

vt
¼ DnV

/2

T ðn ¼ l; sÞ (15.36)

VnL ¼ bn $
h
CsDsV

/

T

s
�ClDlV

/

T

l

i
(15.37)

Tint ¼ Tm � gTm

L
K� Vn

mk

: (15.38)

The first equation describes the diffusion of heat in the two phases (liquid and solid), with

Ds and Dl the associated heat diffusion coefficients. The second equation (Stefan condi-

tion) expresses the conservation of energy at the interface that advances with normal
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velocity Vn; L is the latent heat per unit volume, bn the unit normal vector to the interface

pointing into the liquid, and Cs and Cl the specific heats per unit volume in solid and

liquid. Finally, Eqn (15.38) gives the boundary condition for the temperature at the

interface, which differs from the bulk melting temperature Tm by the Gibbs–Thomson

effect (capillary shift of the melting temperature), where K is the interface curvature, and

by interface dissipation due to the finite time of attachment of new atoms to the surface,

with mk being the interface mobility (for more details, see for example Ref. [17]). Equation

(15.38) also implies that the temperature is continuous at the interface.

For future reference, let us restate this set of equations in terms of a dimensionless

temperature field

u ¼ T � Tm

L=Cl

: (15.39)

The Equations (15.36)–(15.38) become

vu

vt
¼ DnV

/2

u ðn ¼ l; sÞ (15.40)

Vn ¼ bn $
h
ðCs=ClÞDsV

/

u

s
�DlV

/

u

l

i
(15.41)

uint ¼ �d0K� bVn: (15.42)

Here, d0 ¼ gTmCl=L
2 is the thermal capillary length and b ¼ Cl=ðmkLÞ is the kinetic

coefficient. A particularly simple case that has been widely employed is the symmetric

model, in which Cs¼ Cl and Ds¼Dl are assumed.

The free-boundary formulation is appealing because it directly corresponds to our

intuition about the motion of macroscopic domains—the finite thickness of the in-

terfaces is hidden from our eyes or even the standard means of observation (for example,

optical microscopes). Of course, this very fact is also the reason why sharp-interface

models are an excellent description: there is a scale separation of several orders of

magnitude between the thickness of the interface and the characteristic length scales of

the macroscopic problem, such that the internal structure of the interfaces has no

detectable effect on the macroscopic evolution.

However, free-boundary problems are notoriously difficult to solve. In front-tracking

methods, the interface is represented explicitly, for example by marker points that are

located on the interface (Figure 15.3). Boundary conditions and fluxes are then evaluated

at this boundary, and the velocity of the points is computed. Problems arise, however, if

the length of the interface increases (by ramification, for example) or if topological

changes such as pinch-off or coalescence occur, because the interfaces need to be

frequently remeshed in order to maintain a desired precision. The alternative idea of

front-capturing methods is to use an additional scalar field to implicitly represent the

interface by one of its level sets. Since the level set changes when the field evolves,

the laws of motion for the interface need to be translated into an evolution equation for

the new field that takes into account the correct boundary conditions. The most well-

known method of this type is probably the level-set method [40]. The phase-field

646 HANDBOOK OF CRYSTAL GROWTH



method can be seen as another member of this family, with the additional advantage

that its thermodynamic construction implies that number of boundary conditions at the

interface, as well as the important conservation laws, are “automatically” incorporated.

In this perspective, the phase field is seen as a mathematical tool for the computation of

the interface evolution, and its equation of motion only needs to reproduce, on a large

scale, the desired free-boundary problem.

Mathematically, this view of the phase field corresponds to a regularization of the

free-boundary problem. Indeed, Eqns (15.36)–(15.38) implicitly contain singularities: the

material’s properties (specific heat, diffusion coefficient) exhibit jumps at the interface,

and the latent heat is released at the infinitely thin interface, which corresponds to a

singular heat source term. Formally, this can be made apparent by rewriting Eqns

(15.40)–(15.42) in terms of distributions: the domain occupied by the solid is represented

by an indicator function, qsð x!Þ, which equals one inside the solid, and zero outside. The

interface location can then be described by a Dirac d function that is related to the

derivative of qs, V
/
qs ¼ �dð x!� x!intÞbn, where bn is again the unit normal to the interface

pointing into the liquid, and x!int is any point located on the interface. Detailed dis-

cussions about this procedure can be found in [17,41–44].

The numerical treatment can be simplified by smoothing out these singularities. The

smoothed indicator function of the solid domain can directly be identified with the

phase field. In this spirit, the thickness of the smooth interfaces is not linked to any

physical quantity, but is a mathematical parameter that can be freely chosen as long as

the necessary scale separation is maintained. As a simple example, reconsider Eqn

(15.31) for the surface free energy with x as a free parameter. It can be seen, on the one

hand, that in the limit x/ 0 the free energy excess is concentrated in an infinitely thin

layer (while keeping a constant value), which corresponds to the sharp-interface

formulation. On the other hand, an interface with a given free energy can be repre-

sented by a profile of arbitrary thickness x if the two terms in the interfacial free energy

density are properly rescaled, as expressed by Eqn (15.31).

The smoothing of a sharp interface as described by Eqn (15.31) is exact for a sta-

tionary planar interface. When the interface is curved and/or in motion, the smoothing

FIGURE 15.3 (A) Illustration of interface tracking versus interface capturing methods: in interface tracking, the
interface is represented explicitly, for example by marker points. (B) In interface capturing, it is treated implicitly
as a level set of a function that evolves with time (black line on the blue surface).
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(which corresponds to the introduction of the additional length scale x) induces errors

with respect to the original free-boundary problem, which need to be quantified if the

method is to be used as a reliable simulation tool. This can be accomplished by the

method of matched asymptotic expansions, often also called boundary-layer calcula-

tions. The main steps of such a formal calculation are the following.

1. Define two different coordinate systems. The first one corresponds to the sharp-

interface problem (“outer scale”), characterized by a macroscopic scale l specific to

the considered problem (for example, the tip radius in the case of dendritic

growth). The second (“inner scale”) is attached to the interface, and scaled by the

interface thickness x. The ratio ε ¼ x=l defines a small parameter.

2. Formally expand the relevant fields as a power series in the parameter ε on the two

different scales, which gives an outer expansion and an inner expansion.

3. Solve the equations of the phase-field model perturbatively order by order in 3in

each region, using the relevant coordinate system.

4. Match the two expansions order by order using the condition that the limit of the

inner expansion far from the interface must coincide with the limit of the outer

expansion when the interface is approached.

5. The results of this procedure are boundary conditions for the relevant fields on the

outer scale which are determined by the equations on the inner scale. In general,

these boundary conditions also take the form of a power series in ε.

The explicit calculation of the matched asymptotics is quite tedious and has been

presented in detail in several publications [8,33,45,46]. Therefore, here only an

example for a particular model will be reviewed: the celebrated phase-field model of

Karma and Rappel [33]. It consists of two coupled equations for a phase field j that

varies between þ1 (solid) and �1 (liquid) and the dimensionless temperature field u,

defined in Eqn (15.39),

vtj ¼ W 2V
/2

jþ j� j3 � lu
	
1� j2


2
; (15.43)

vtu ¼ DV
/2

uþ 1

2
vtj: (15.44)

Here, W is the interface thickness as introduced in Eqn (15.30), and l is a dimensionless

constant. Details about the derivation of this model will be given in Section 15.5 below.

In order to illustrate the procedure of asymptotic matching, we consider a planar

interface of a solid that grows towards the positive x direction into a melt of initial

dimensionless temperature uðNÞ ¼ �1� D with 0 < D � 1. It is easy to verify that the

free-boundary problem has a steady-state solution: an interface propagating with a

constant velocity V ¼ bD and the temperature given by u ¼ �D for x < xint and u ¼ �1�
Dþ exp½�ðx � xintÞV =D� for x > xint. The numerical solution of the phase-field model

given by Eqns (15.43) and (15.44) is plotted in Figure 15.4 on the two relevant scales. On

the outer scale (given by the diffusion length l¼D/V), the phase-field profile appears as

a sharp step, and the slope of the temperature field has an apparent discontinuity at the
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interface, as prescribed by the Stefan condition, Eqn (15.41). On the inner scale W, the

slope of the temperature field changes slowly and continuously, since the source of

latent heat is not concentrated in a single point, but “smeared out” over the entire

interface region.

The two dash-dotted lines in Figure 15.4(B) are fits to the asymptotes of the inner

solution far from the interface, extrapolated to the interface position (the point where

f¼ 0). This is an illustration of the matching condition between inner and outer fields:

the boundary conditions for the field u “seen” on the outer scale correspond to the

values of these asymptotes at the interface. Note that (1) the two asymptotes reach the

same value at the interface position, so that the temperature is continuous on the outer

scale, and (2) that the value of u at the intersection point (that is, the boundary condition

on the outer scale) does not correspond to any value of the actual field u taken inside the

interface.

The main result of the asymptotic calculations is that the system of Eqns (15.43) and

(15.44) is equivalent to the symmetric model of solidification, with

d0 ¼ a1

W

l
(15.45)

b ¼ a1

�
s

lW
� a2

W

D

�
; (15.46)

where a1 ¼ 5
ffiffiffi
2

p
=8 and a2¼ 0.6267 are numbers of order unity. The first of these equa-

tions describes the Gibbs–Thomson effect, and is “naturally” built into the phase-field

model, as will be described below. The second deserves some more comments.

Equation (15.46) contains two terms. The first one is obtained if the temperature field

is assumed to be constant inside the interface, and describes the dissipation due to a

homogeneous undercooling of the interface. The second term is due to the in-

homogeneities of the temperature field inside the interface, which are illustrated in

Figure 15.4(B). After what has been said above, it may seem surprising that this

contribution plays an important role: the characteristic scale for the variations of the
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FIGURE 15.4 Steady-state solution of Eqns (15.43) and (15.44) for D¼ 0.02 and l¼ 1, plotted on the scale of the
diffusion length l¼D/V in (A) and on the scale of the interface thickness W in (B).
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temperature field is the diffusion length and, therefore, an inhomogeneity on the scale of

the interface should be unimportant if WV/D is small enough. However, this reasoning

neglects the heat source term in Eqn (15.44): this term varies on the scale of W and thus

always creates contributions to the diffusion field on that scale; therefore, the second

term of Eqn (15.46) is important even for small velocities [33].

The expression of the kinetic coefficient given by Eqn (15.46) is of crucial

importance. Since there are two contributions of opposite sign, it is possible to

choose b ¼ 0, that is, to simulate interfaces in local equilibrium, with arbitrary

interface thickness. The choice is limited, of course, by the convergence of the

asymptotic matching procedure, which requires a sufficient separation between inner

and outer scales. In practice, good convergence can often be obtained even with a

scale ratio as large as 0.1. In order to appreciate the gain in computational time that

can be achieved by this procedure, it is sufficient to remark that the smallest grid

spacing needed to resolve a diffuse-interface model is proportional to the interface

thickness. Therefore, being able to “upscale” the interface thickness with respect to

its physically realistic value permits the use of larger grid spacings and, therefore, also

of larger time steps. For a simple explicit algorithm on a regular grid, the number of

numerical operations scales as 1/Wdþ2 [33], and thus an increase of the interface

thickness by a factor of 100 provides a gain of 1010 in the computation time in three

dimensions (d¼ 3)!

15.5 Phase-Field Models for Solidification
The construction of a few elementary phase-field models for solidification will now be

reviewed. In this exposition, the “bottom-up” and thermodynamic viewpoint is taken as

a guideline, but repeated use of the “top-down” philosophy is also made in order to

obtain efficient models that can be used to calculate solidification microstructures for

realistic parameters.

15.5.1 Pure Substance

Microstructure formation in a pure substance is mainly of academic interest. The growth

of a dendritic monocrystal is a paradigmatic problem of pattern formation and has

attracted an enormous amount of attention over many decades. It comes, therefore, as no

surprise that this was also one of the first test beds for the accuracy of phase-field models.

Let us consider the symmetric model of solidification, introduced in Section 15.4, and

choose the free energy as the thermodynamic potential (canonical ensemble). The free

energy functional is written in terms of a phase field f that takes the values f¼ 1 in the

solid and f¼ 0 in the liquid as

F ¼
Z
V

fint
	
f; V

/

f

þ gðfÞfsðT Þ þ ð1� gðfÞÞflðT Þ: (15.47)
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Here, fint represents the surface energy contribution and is of the form of Eqn (15.20),

with fdw ¼ f2ð1� fÞ2, fs(T) and fl(T) are the free energy densities of solid and liquid,

respectively, and g(f) is an interpolation function that satisfies

gð0Þ ¼ 0 gð1Þ ¼ 1 g 0ð0Þ ¼ g 0ð1Þ ¼ 0: (15.48)

The two choices that are most frequently used in the literature are the polynomials gðfÞ ¼
3f2 � 2f3 and gðfÞ ¼ 10f3 � 15f4 þ 6f5. The motivation for Eqn (15.47) is easily under-

stood: both of the quoted expressions for g(f) are monotonous in f and, therefore,

gðfð x!ÞÞ is an approximation for the step function qsð x!Þ and gðfÞfsðTÞ þ ð1� gðfÞÞflðTÞ
approximates the bulk free energy in the sharp-interface formulation. Moreover, the first

term, when integrated across the interface, yields the surface free energy, so that the

volume integral of fint is an approximation of the surface tension times the interfacial area.

The last condition in Eqn (15.48), g 0ð0Þ ¼ g 0ð1Þ ¼ 0, ensures that the bulk equilibrium

values of the phase field are always equal to 0 or 1. Indeed, the phase field follows a

nonconserved equation with mobility G,

1

G
vtf ¼ �dF

df
¼ KV

/2

f�Hf 0dwðfÞ � g 0ðfÞ�fs	T
� fl
	
T

�
: (15.49)

For a homogeneous system ðV
/
f ¼ 0Þ, since g 0ð0Þ ¼ g 0ð1Þ ¼ 0, the two fixed points of this

equation are f¼ 0 and f¼ 1, even when TsTm and thus fssfl.

The equation for the temperature can be obtained with the help of thermodynamic

identities. First, we exploit the fact that the variation of the free energy with respect to the

temperature is the opposite of the entropy density,

dF
dT

¼ �sðT ;fÞ ¼ �ssðTÞgðfÞ � slðTÞ½1� gðfÞ�; (15.50)

where sn ¼ �vfnðTÞ=vT are the entropy densities of liquid and solid. Next, we use that at

constant density de¼ T ds, and find

de ¼ T
vs

vT
dT þ T

vs

vf
df (15.51)

with the help of the chain rule. Finally, we divide this equation by dt, combine it with the

conservation law for the internal energy density,

vte ¼ V
/	

CDV
/

T


; (15.52)

and use that the specific heat C ¼ Tvs=vT and the latent heat L ¼ T ½slðTÞ � ssðTÞ�. The
result is

Cðf;TÞvtT ¼ V
/	

Cðf;TÞDV
/

T

þ Lg 0ðfÞvtf: (15.53)

In the case of the symmetric model, C is independent of f. Since, in addition, we are

interested in a limited range of temperatures around the melting point, we may

approximate the values of C, ss, sl, and L by their values at the melting point. Then, we

obtain the simple equation,

vtT ¼ V
/	

DV
/

T

þ L

C
g 0ðfÞvtf; (15.54)
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which is very intuitive: the temperature changes by heat diffusion in the bulk and by the

release of latent heat at the interface. The equation for the phase field can also be

simplified by expanding the free energies in the right-hand side around the melting

temperature, which yields

1

G
vtf ¼ KV

/2

f�Hf 0dwðfÞ � g 0ðfÞ L

Tm

ðT � TmÞ: (15.55)

The model of Karma and Rappel can now be obtained from these equations by the

following steps:

1. Choose the fifth-order polynomial for g(f) and the standard fourth-order poly-

nomial for fdw.

2. Replace the function g(f) by another function h(f) in the equation for the temper-

ature. This function describes how the latent heat is released inside the interface

and should, therefore, satisfy h(0)¼ 0 and h(1)¼ 1. If hðfÞsgðfÞ, the model is no

longer variational; however, it has been shown in Ref. [33] that more efficient

models can be obtained with this additional freedom. In Eqn (15.44), h(f)¼ f.

3. Change variables from f to j ¼ ð1þ fÞ=2 and from T to the dimensionless field u.

Divide the equation for the phase field by the constant H contained in fint, define

the phase-field relaxation time by s ¼ 1=ðGHÞ, and combine all constants and nu-

merical prefactors in the last term on the right-hand side in the parameter l. The

expression for l that results from these steps is identical to Eqn (15.45). This shows

that the Gibbs–Thomson effect is naturally present in the phase-field model

through its thermodynamic construction.

15.5.2 Anisotropy and Dendritic Growth

All equations discussed so far have been isotropic. It is clear that such equations cannot

describe the phenomenon of dendritic growth since a dendrite has well-defined privi-

leged growth directions that are set by the crystallographic axes of the solid. According to

microscopic solvability theory, two different effects linked to the crystallographic

structure have a decisive influence on the selection of the dendrite operating state: the

anisotropies of the interface free energy and of the interface mobility.

The static (capillary) anisotropy leads to a dependence of the interface free energy on

the interface orientation. The coordinate system is attached to the crystallographic axes

of the growing monocrystal, and the surface free energy is expressed as a function of the

interface normal bn as

gðbnÞ ¼ gacðbnÞ; (15.56)

where g is the mean surface free energy and acðbnÞ is a dimensionless function. Similarly,

the interface mobility mk, or equivalently the kinetic coefficient b of Eqn (15.42), may

depend on the orientation as

bðbnÞ ¼ bakðbnÞ: (15.57)
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These anisotropies lead to a modification of the Gibbs–Thomson boundary condition in

the sharp-interface problem. Equation (15.42) is replaced by

uint ¼ �d0

X
i¼1;2

"
acðbnÞ þ v2acðbnÞ

vq2i

#
1

Ri

� bðbnÞVn; (15.58)

where the capillary length d0 is now evaluated using the mean surface free energy g, Ri

are the local principal radii of curvature of the interface, and qi are derivatives with

respect to the angle along the corresponding principal directions. The new terms arise

from the fact that now the interface energy can change in two ways, by a change in the

surface area or by a rotation with respect to the crystallographic axes.

Since the phase-field methodology is based on a free energy functional, it is

straightforward to incorporate capillary anisotropy by letting the surface free energy

contribution fint in Eqn (15.47) depend on the interface orientation. In view of the

general scaling relation for the surface free energy given by Eqn (15.23), there are several

possibilities to achieve this. Historically, the first idea was to make the coefficient of the

square gradient term depend on orientation [47–49]. In the formalism of Eqn (15.30)

(dimensionless free energy density), it is sufficient to replace W by

W ðbnÞ ¼ WacðbnÞ: (15.59)

The kinetic anisotropy can then be incorporated by choosing the orientation-dependent

phase-field relaxation time by Eqn (15.46), which remains valid for anisotropic interfaces

if W is replaced by its orientation-dependent value [33].

This method works well for weak anisotropy. However, Eqn (15.59) implies that there

is also a variation of the interface thickness with orientation, which may lead to nu-

merical problems for strong anisotropy. This can be avoided by using the formulation of

Eqn (15.31), which directly makes g and x appear in the free energy functional, and by

replacing g by gðbnÞ at constant x. This form of the functional was found to perform well

for strong anisotropy [50].

In both cases, the equation for the phase field has to be modified. The correct equation

is “automatically” generated by the evaluation of the functional derivative. For a free

energy of the form F ¼ R
V f ðf; V

/
fÞ, where f ðf; V

/
fÞ is the total free energy density (with

local and square gradient terms), the general formula for the functional derivative is

dF
df

¼ vf

vf
�
Xd
i¼1

v

vxi

vf

vðvifÞ; (15.60)

where d is the dimension of space, xi are the (Cartesian) coordinates, and vif denotes the

ith component of V
/
f. The outward unit normal vector is expressed in terms of the phase

field as

bn ¼ � V
/

fV/f
 : (15.61)
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Since ac is a function of bn and thus of V
/
f, the derivatives of the free energy density with

respect to the gradient components generate the derivatives of ac appear with respect to

the orientation in Eqn (15.58). This straightforward incorporation of surface energy

anisotropy is one of the major advantages of the phase-field model with respect to sharp-

interface methods. Indeed, the curvatures, directions, and angles that appear in Eqn

(15.58) are contained in the functional derivative of the phase field and do not need to be

evaluated explicitly.

The anisotropy function that has been most extensively used is the “standard” cubic

anisotropy given by

acðbnÞ ¼ 1þ εc

h
4
�
n4
x þ n4

y þ n4
z

�
� 3

i
; (15.62)

where εc is the anisotropy strength; an equivalent expression holds for the kinetic

anisotropy. In two dimensions, the interface orientation is described by a single angle q,

with bn ¼ ðcos q; sin qÞ, and we have simply gðqÞ ¼ g½1þ ε4 cosð4qÞ�. Simulations of

dendritic growth have been carried out using this form of the anisotropy, and the results

are in good agreement with solvability theory both at high [33,51] and low undercooling

[52]. An example for such a dendrite is shown in Figure 15.5. Good agreement with

experiments has also been achieved concerning the anisotropic shape of the dendrite tip

at low undercooling [52,54] and the growth velocity of nickel dendrites at high under-

cooling [55]. This proves that a quantitative description of dendritic growth in a pure

substance can be obtained with the help of the phase-field method.

It should also be mentioned that for anisotropies that are strong enough to generate

forbidden orientations, the phase-field model has to be amended. Indeed, in this

FIGURE 15.5 Growth of a dendrite
simulated with the anisotropic version
of the phase-field model for a pure
substance, given by Eqns (15.43) and
(15.44), with an anisotropy of the
surface free energy given by Eqn
(15.62) with εc ¼ 0:00625, and isotropic
(vanishing) kinetics ðbðbnÞ ¼ 0Þ. The
dimensionless undercooling is D¼ 0.1,
that is, the initial and boundary values
of u¼�0.1. The simulation is carried
out with the multiscale algorithm
described in Ref. [53].
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situation, there exist orientations in which an interface is unstable with respect to the

formation of hill-and-valley structures [56]; for interfaces in these orientations, the

equations outlined above become ill-posed, and the model has to be regularized, either

by a “convexification” of the anisotropy function [57] or by the addition of higher-order

derivatives (such as the square of the Laplacian, or the square of the local interface

curvature) in the free-energy functional. See Ref. [50] for a more detailed discussion of

these issues and the various models that have been proposed.

15.5.3 Binary Alloy

Alloy solidification is obviously of great practical importance. Whereas “real” alloys used

in metallurgy usually have multiple components, binary alloys offer the simplest setting

in which to develop the methods that can later be extended to multicomponent systems.

Therefore, let us come back to the model system of a binary alloy, which is assumed to

have constant total number density r (or, equivalently, constant molar volume). The new

variable with respect to the pure substance is the composition c ¼ rB=r.

The earliest attempts to formulate models for binary alloys just extended the

formalism for a pure substance presented above (to be more precise, they were not

exactly formulated as presented below, but they can easily be brought into this form)

[58,59]. The free energy densities fs and fl of the functional given by Eqn (15.47) are now

functions of both T and c, and the equation of motion for the variable c (a conserved

quantity) is obtained by the standard procedure,

vt c ¼ �V
/

$ J
!¼ V

/

$

�
MV

/ dF
dc

�
: (15.63)

While this model is a viable representation of the physical system if the thickness of the

phase field interface has its natural (atomistic) width, it is difficult to use it with

“upscaled” interfaces. The reason is that the interface properties intrinsically depend on

the bulk thermodynamics in this model. This can be understood in several manners. As

already found in Eqn (15.34) in Section 15.3, equilibrium between solid and liquid in a

mixture implies that the function un ¼ fn � ~mcn takes the same values ueq for liquid and

solid ðn ¼ l; sÞ. Since the composition of solid and liquid in an alloy differ, this implies

that there are two extensive quantities (f and c) which vary across the interface, in

addition to the phase field f. If Gibbs dividing surfaces are constructed by the condition

of zero interface excesses for c, f, and f following the procedure outlined in Section 15.3,

the positions of the three surfaces will, in general, not coincide, which implies that the

interface thermodynamics is nontrivial [34]. The profiles of f and c at equilibrium are

actually related, because the condition that the diffusion current vanishes yields

dF
dc

¼ gðfÞ vfs
vc

þ ð1� gðfÞÞ vfl
vc

¼ ~meq ¼ constant: (15.64)

This equation relates c and f, and at a given point xwithin the interface, gðfðxÞÞfsðcðxÞÞ þ
ð1� gðfðxÞÞÞflðcðxÞÞ � ~mcðxÞ generally differs from ueq. According to Eqn (15.35), this
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gives a contribution to the interface excess free energy g. This fact was detected for the

first time in Ref. [60].

Another way to reach the same insight is to write down the equilibrium condition for

the phase field across a planar interface. It reads

0 ¼ �dF
df

¼ Kvxxf�Hf 0dwðfÞ þ g 0ðfÞ�fsðc;TÞ � flðc;TÞ
�
: (15.65)

For a pure substance, the free energy densities of solid and liquid are equal; this is not

the case for alloys. Therefore, in the interface (where g 0ðfÞs0), a driving force acts on the

phase field that competes with the terms proportional to K and H to shape the interface

profile. As a consequence, the surface free energy does not follow the simple scaling of

Eqn (15.23), but also depends on the choice of the bulk free energies.

Different solutions have been developed to overcome this problem and to obtain

models in which the interface width can be more easily adjusted. The first idea was to

start from a “phase-superposition” picture that is based on the general principles of

volume-averaged transport equations for multiphase systems [61]. Solid and liquid are

seen as two independent macroscopic phases, with two separate composition fields cs
and cl, which overlap in the diffuse interface region. Since there is, in reality, only one

global composition, the additional degree of freedom has to be removed by a supple-

mentary condition. In the case of a dilute binary alloy, one may use the partition relation

cs¼ kcl, where the partition coefficient k is a constant. With the help of this relation, cs
can be eliminated, and the model can be completely written in terms of cl [43,62]. In the

general case, the relation between the two compositions results from the equilibrium

between the solid and liquid passes,

~ms ¼
vfs

	
c;T



vc


Cs

¼ ~ml ¼
vfl

	
c;T



vc


Cl

: (15.66)

The “true” composition is then obtained as

c ¼ csgðfÞ þ cl½1� gðfÞ� ¼ cl½1� ð1� kÞgðfÞ�; (15.67)

where the second equality is valid only for a dilute alloy. It is immediately clear, that with

this convention, the combination f � ~mc is a constant through the interface, and thus,

there is no interface excess energy associated with bulk thermodynamics. The equations

of motion for the composition and the phase field are given in Ref. [60]; the combination

f � ~mc appears as the thermodynamic driving force for the phase field.

A completely equivalent formulation of this model can be given, in which the

connection to the model for a pure substance is more straightforward [63]. It starts from

the functional

U ¼
Z
V

uint þ usð~m;T ÞgðfÞ þ ulð~m;T Þ½1� gðfÞ�: (15.68)

Here, uint has the same form as fint, and un ¼ fn � ~mc are Legendre transforms of the free

energy densities, which means that they depend on the diffusion potential instead of the
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composition. This functional has been called “grand potential functional,” although the

correct expression for the grand potential of a binary mixture is f � mArA � mBrB; how-

ever, in the case of constant molar volume, the function u satisfies exactly the same

thermodynamic relations as the grand potential of a pure substance if the chemical

potential is replaced by the diffusion potential. In particular,

vun

v~m
¼ �cn: (15.69)

The equations of motion for the variables f and ~m can now be obtained in a straight-

forward way. The equilibrium equation for the phase field is equivalent to Eqn (15.65),

with the difference fs� fl replaced by us � ul. Since the latter is zero at equilibrium, the

interface profile is determined by uint alone, and the scaling of Eqn (15.23) applies, as

desired.

The variation of U with respect to ~m yields an expression for the local composition,

dU

d~m
¼ vus

v~m
gðfÞ þ vul

v~m
½1� gðfÞ� ¼ �cð~m;fÞ: (15.70)

It can easily be seen using Eqn (15.69) that this expression is actually identical to Eqn

(15.67). By taking the time derivative of cð~m;fÞ and using mass conservation,

vtc ¼ V
/
ðMV

/
~mÞ, one obtains an equation for the diffusion potential,

c
	
~m;T ;f



vt~m ¼ V

/	
MV

/

~m

þ 	

cl � cs


g 0	f
vtf; (15.71)

with

cð~m;T ;fÞ ¼ csð~m;TÞgðfÞ þ clð~m;TÞ½1� gðfÞ� cn ¼
v2un

v~m2
(15.72)

being a generalized susceptibility [5]. The structure of this equation is perfectly equiv-

alent to the one of Eqn (15.53) for the temperature, with c playing the role of the specific

heat C, and cl� cs in place of sl� ss. Of course, this just expresses the thermodynamic

equivalence of the intensive variables T and ~m and the extensive variables s and c. The

major difference, however, with the case of a pure substance is that c is generally quite

different for liquid and solid, so that the dependence of c on f cannot be neglected.

15.5.4 Antitrapping Current

The model outlined above, as well as the models of Refs [43,60] are still not suitable for

the quantitative modelling of solidification microstructures with upscaled interfaces.

The reason is the phenomenon of solute trapping, which occurs during the solidification

of alloys at sufficiently high velocity. Since liquid and solid have different compositions,

the composition of a piece of matter has to change during the solidification process;

some components are rejected into the liquid, others are incorporated into the solid.

Generally, solute (impurities) has to be rejected during solidification. When the driving

force for solidification (provided, for example, by rapid cooling) is high, the interface

advances at such a high velocity that these redistribution processes cannot be
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completed, and the solid remains at a composition that differs from the equilibrium one.

As a simple criterion for the occurrence of solute trapping, one may compare the time

that an interface needs to propagate by a distance equal to its intrinsic thickness, x/V, to

the characteristic time of diffusion through the same interface, x2/D, where D is the

solute diffusivity within the interface. If the ratio of the two, xV/D, is much smaller than

unity, the solute atoms have enough time to escape from the advancing solid; in the

opposite limit, they are trapped. This means that the solid does not grow at the

composition that corresponds to the thermodynamic equilibrium with the liquid, but at

a higher solute content. In other words, the diffusion potential does not have the same

value at the two sides of the interface: there is a jump in this intensive quantity across the

interface.

Although, under such circumstances, the hypothesis that local equilibrium is estab-

lished on the scale of a coarse-graining cell breaks down (recall that we had supposed

that intensive quantities are constant within a cell, which is not the case any more for the

diffusion potential), phase-field models can describe solute trapping quite well [64]: the

transition from growth in local equilibrium to complete solute trapping with increasing

growth velocity is well reproduced when the parameter xV/D is varied. The problem for

quantitative simulations is now obvious: since this effect depends on the thickness of the

interface, its magnitude is greatly exaggerated if the interface thickness is upscaled in

simulations. This means that solute trapping will appear for solidification velocities that

are much smaller than those for which it is really observed in experiments. For accurate

simulations, it has hence to be eliminated from the model.

A way to accomplish this was developed in Ref. [65] for isothermal solidification, and

in Ref. [46] for directional solidification: an antitrapping current is added to the model.

This is an additional contribution to the solute current which counteracts solute trap-

ping. For this purpose, it should be proportional to the interface thickness and to the

growth velocity, and it should be directed from the solid to the liquid in order to assist

solute redistribution. Concretely, the solute current is written as

J
!¼ �MV

/

~mþ J
!

at; (15.73)

with the antitrapping current

J
!

at ¼ �aðfÞðcl � csÞxvtfbn; (15.74)

where a(f) is a dimensionless function of f that depends on the details of the model, and

cl� cs is the composition jump between the phases, taken at equilibrium. For the models

of Refs [46,65] that describe the solidification of binary alloys, the function a(f) is

actually just a constant, the value of which has to be determined by matched asymptotic

expansions. The details of this procedure can be found in Ref. [46].

These works were the first examples of a successful interface upscaling in phase-field

modelling of alloy solidification; since then, this methodology has been used to explore

dendritic and cellular solidification, and convincing quantitative agreement between

simulations, theories, and experiments has been achieved [66–69]. The antitrapping
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methodology has also been extended to other alloy models [13,23,63,70]. Furthermore,

the models for pure substance and alloy have been combined to build a model for crystal

growth limited simultaneously by heat and solute diffusion [71], which has then been

used to explore dendritic growth in this regime [72].

15.5.5 Multiphase and Multicomponent Solidification

Many solidification phenomena involve multiple phases. The simplest example is the

solidification of eutectic alloys, during which two different solids with distinct compo-

sitions are formed from the liquid. For such situations, models with more than one order

parameter are needed in order to distinguish between phases. In the earliest attempts to

formulate such models, one phase field and the composition field [73,74] or two phase

fields [75] were used, with free energies in the form of simple Landau expansions. While

these models were capable of describing the basic features of eutectic growth, their

generalization to different alloy phase diagrams or a larger number of phases is not

straightforward.

A general approach was provided by the multiphase-field method, first introduced in

Ref. [76]. One phase field is associated to each thermodynamic phase that is present in

the system and interpreted as local volume fraction, which impliesXN
n¼1

fið x!Þ ¼ 1 c x! (15.75)

for N phases. With this constraint, there are obviously only N� 1 independent fields, and

one variable could immediately be eliminated. However, it is advantageous to keep all

the degrees of freedom for the formulation of the free energy functional because this

gives rise to particularly simple and symmetric functional forms. The constraint can be

taken into account at the end with the help of a Lagrange multiplier.

A multiphase system contains multiple types of interfaces and, therefore, a general-

ization of the interface free energy density fint is needed in terms of the multiple phase

fields. The extensions of the square gradient terms that are most commonly used areP
abKabV

/
fa $ V

/
fb or

P
abKab

qab

2 with qab ¼ faV
/
fb � fbV

/
fa. Both expressions are sums

over pairwise terms that are zero everywhere except in a-b interfaces or multijunctions.

For the local free energy density, we need a multiwell potential function over the

N� 1-dimensional state space of the phase field configurations (taking into account the

sum constraint), with N distinct minima that describe the possible phases.

The choice of the gradient terms and the potential function presents some new

nontrivial issues that are illustrated in Figure 15.6 for the case of three phases. The state

space for the three phase fields, taking into account the sum constraint, can be conve-

niently visualized in the standard simplex, an equilateral triangle in which each corner

represents a pure phase (one of the fields equals 1, all others 0). The free energy density

must have a minimum on each corner to generate the correct number of phases, with

potential barriers in between (for an example, see Figure 15.7). Interfaces between

phases correspond to trajectories in the state space that go from one minimum to
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another. The properties of the interface are determined by this trajectory, which is

influenced both by the shape of the potential landscape and the gradient terms (see

Ref. [78] for a detailed illustration and discussion of this point in a specific model).

Since a precise control of the interface properties is mandatory for interface

upscaling, one would like, in particular, to have “clean” two-phase interfaces. That is, in

a system in which only bulk phases a and b are present, the interface between these

phases should be free of the presence of any other phase, that is, one requires to have

fa þ fb ¼ 1 instead of Eqn (15.75). In the simplex of Figure 15.6, this corresponds to a

perfectly straight line along one of the edges (the dashed red line). In contrast, if the

trajectory travels inside the simplex (full blue line), this corresponds to the presence of

additional phases inside the interface, and thus to “third-phase adsorption.” This phe-

nomenon (which could be present in real systems) makes the analytic solution of

–10 –5 0 5 10x
0

0.2

0.4

0.6

0.8

1

φ1
φ2
φ3

φ1 φ2

φ3
(A) (B)

FIGURE 15.6 Left: representation of the state space of a multiphase-field model with three phases ðf1 þ f2 þ f3 ¼
1Þ in a simplex. Each corner corresponds to a pure phase. The two lines represent different interfaces between
phases 1 and 2. Along the red dashed line, f1 þ f2 ¼ 1. Along the full blue line, the phase fields vary as depicted
in the graph to the right for an interface along the x direction.

FIGURE 15.7 Triple-well potential of the three-phase model detailed in Ref. [77], plotted over the three-phase
simplex (black lines). This multiwell potential,

P3
i¼1½f2

i ð1� fiÞ2�, generates interfaces that run along the edges of
the simplex.
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interface equations and the calculations of asymptotic matching impossible. For a

quantitative modelling of solidification, the presence of such additional phases in the

interfaces must therefore be avoided.

For a smooth free-energy functional, this requirement imposes nontrivial condi-

tions on the potential landscape and the gradient terms. A formulation that allows

for a complete control of the interface properties in three-phase systems (for

example, one liquid and two solids) has been given in Ref. [77] and extensively

benchmarked against sharp-interface models and experiments [79]. The potential

landscape is shown in Figure 15.7, plotted over the three-phase simplex.

Unfortunately, a generalization of this approach to more than three phases is not

straightforward. This task is simplified by the use of the multiobstacle potential. In

the “double-obstacle potential,” the double-well function for a simple phase field,

fdwðfÞ, is replaced by

fdoðfÞ ¼
�
Hfð1� fÞ if 0 < f < 1

N otherwise
(15.76)

which can be seen as the limit of zero temperature of Eqn (15.8). In practice, when the

simulation code yields a value of the phase field lower than 0 or larger than 1, f is just set

back to the limit of the allowed interval with the help of an “if” instruction. The

advantage of this formulation is that it yields an evolution equation for f that is linear

and has as equilibrium solution a simple sine profile. Moreover, since the derivative of

the potential at the (cusp-like) minima is finite, there is always a finite force that drives

the phase field to its bulk values. For multiple phase fields, the configuration space is

restricted to the simplex defined by fn > 0c n,
P

nfn � 1. The finite slope of the potential

landscape at the borders of this simplex “pushes” the interface solution against the

“walls” (obstacles), which provides the desired “clean” interfaces. In summary, a simple

version of the interface energy can be written as

fint ¼
XN
a;b¼1

�
KabV

/

fa $ V
/

fb þHabfa

	
1� fb


�
: (15.77)

The surface free energy for each interface can then be controlled as in the case of a single

phase field with the help of the constants Kab and Hab. If these values are strongly

different for different interfaces, higher-order terms (products of more than two phase

fields) may need to be added in order to avoid third-phase adsorption.

The free energy functional is completed by the thermodynamic part, that is, the

contribution of the bulk phases. This is straightforward: since each phase n occupies a

certain spatial domain described by a specific phase field fn, the indicator function is

approximated by gðfnÞ, and the bulk contribution to the free energy is written as

fbulk ¼
XN
n¼1

gðfnÞfnðc;T Þ: (15.78)

One can see that Eqn (15.47) is a special case of this expression for two phases. Also, it is

clear that in order to obtain a model with good upscaling properties, either the
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phase-superposition approach has to be generalized to multiple phases (with the

introduction of a separate composition field for each phase) [62], or a grand-canonical

approach has to be used [23].

Let us now come to the equation of motion for the multiple phase fields. Since the

phase fields can still be seen as nonconserved order parameters, they should obey the

relaxation dynamics of Eqn (15.11). If one such equation is written down for each field,

only N� 1 mobility coefficients can be specified, whereas there are in total N(N� 1)/2

different types of interfaces in an N-phase system (the number of possibilities to

choose two different phases out of N). At first glance it, therefore, seems that the

kinetic properties of each interface cannot be controlled separately. However, there are

several possibilities to circumvent this difficulty. Either, the evolution equation can be

made nonlinear by making the mobilities depend on the phase fields, which gives the

possibility to give the mobility the desired value on each interface [77]. Or, the prin-

ciples of out-of-equilibrium thermodynamics may be used, which stipulate that the

time evolution of any state variable can depend on all the thermodynamic driving

forces in the system. Therefore, the general evolution equation for the phase fields

reads

vtfa ¼ �
XN
b¼1

Gab

dF
dfb

: (15.79)

Furthermore, the Onsager symmetry principles imply that Gab ¼ Gba. Since there are

only N� 1 independent fields, there are only N(N� 1)/2 independent coefficients in the

matrix Gab, which precisely corresponds to the number of independent interfaces. A

particularly intuitive manner of rewriting the above equation is

vtfa ¼
X
bsa

~Gab

�
dF
dfb

� dF
dfa

�
: (15.80)

In this form, the rate of transformation of phase a is decomposed in the same manner

as for a network of chemical reactions, in which a substance a can transform into

various other chemicals by different reaction pathways. The coefficients ~Gab directly

control the rate of transformation from phase a to b and, therefore, the kinetics of the

ab interfaces.

Let us finally briefly touch upon the subject of multicomponent systems, which is a

whole area of research in itself; here, only the aspects that are important for the con-

struction of phase-field models will be very briefly mentioned. In a system with a total

number of K components, the composition fields ci give the molar fractions of

component i and satisfy XK
i¼1

ci ¼ 1: (15.81)

It is customary to designate one of the components (in principle, the majority compo-

nent, say component K) as the “solvent,” and to eliminate its composition field to obtain
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K� 1 independent variables. The conjugate intensive variables are the K� 1 diffusion

potentials ~mi ¼ ðmi � mK Þ=Va, where mi are the chemical potentials and Va the atomic

volume. The diffusion current of component i is then written as

J
!
i ¼ �

XK�1

j¼1

MijV
/

~mj (15.82)

with a matrix of mobility coefficients Mij. Each component obeys a separate conserva-

tion law,

vtci ¼ �V
/

$ J
!
i: (15.83)

The driving force for phase transformations that appears in the equation of motion for

the phase fields also has to be generalized. It now involves the difference between the

functions

un ¼ fn �
XK�1

i¼1

~mici (15.84)

taken for two phases a and b. The evolution equation for the phase fields can be written

down either in the phase-superposition approach, in which the driving force is eval-

uated in terms of separate concentration fields for each phase and component [13,80],

or in the grand-canonical approach, in which the functions u are used to construct a

generalization of the functional U of Eqn (15.68), and a change of variables from the

compositions ci to the diffusion potentials ~mi is made [23]. Several generalizations of the

antitrapping current to multiphase and multicomponent systems have also been

proposed [13,23,70,77]. Therefore, in principle, all the elements needed for a quanti-

tative modelling of solidification in multicomponent and multiphase systems are

available.

As an example for the use of multiphase-field models, Figure 15.8 shows simulations

of microstructures obtained during the directional solidification of a binary eutectic

alloy. In such an alloy, a liquid of composition close to the eutectic point can solidify in

two different solids of distinct compositions, and the solidification process generally

results in a composite in which the crystals of the two phases are intertwined in complex

patterns. The two most frequent morphologies are regular lamellae and rods, but more

FIGURE 15.8 Simulations of eutectic microstructures, carried out with the multiphase-field model of Ref. [77].
The solid grows upward in a temperature gradient, and the liquid (transparent) solidifies into two solid phases.
Disordered labyrinths (A) and zig-zag structures (B) have been obtained [81], in good agreement with experi-
mental observations [82].
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complicated patterns have recently been observed in real time in situ observations of

transparent eutectic alloys [82], among which are disordered labyrinths and zig-zag

patterns, which are both well reproduced by the model [81].

15.6 Conclusions and Open Questions
The models described in this chapter represent developments that have spanned

more than three decades. During this period, enormous progress has been made both

in model development and in the understanding of the solidification phenomena that

have been studied with their help. Nevertheless, there is still a large number of open

questions. I have not touched at all the coupling of phase-field models to mechanics

(both hydrodynamics and elasticity), which could be the subject of a review on its

own, and which presents important and exciting research opportunities. I will

conclude this chapter by commenting on some active and open research questions in

diffusion-limited crystal growth, within the areas that are covered in the preceding

sections.

• Asymptotics. The asymptotic matching described in Section 15.4 has made it

possible to perform accurate and efficient simulations in two important special

cases: the symmetric model (equal diffusivities in both phases) and the one-sided

model (no diffusion in the solid). There is, presently, no generalization for arbitrary

diffusion coefficients in the two phases. Attempts have been made to formulate

such models by generalizing the antitrapping concept [13,83], but these models

work well only in cases in which the current arriving at the interface is zero (or at

least small) in one of the phases [22]. In the general case, there always remain

some thin-interface corrections that make an accurate interface upscaling impos-

sible. A solution to this problem would be of great interest.

• Anisotropy. Surprising results have recently been obtained when the effect of

interface anisotropy was explored with functional forms that go beyond the simple

expressions given by Eqn (15.62). For instance, “hyperbranched” dendrites can be

obtained by combining two different cubic harmonics [84]; a “dendrite–orientation

transition” is also observed in alloys of substances that have different crystal struc-

tures [85]. Finally, anisotropy effects also play an important role for the selection of

cellular microstructures [67]. All these results show that there is a lot left to under-

stand concerning the relation between anisotropy and structure selection.

• Junctions. In multiphase-field models, trijunctions, triple lines, and multijunctions

naturally appear. The equilibrium properties of these singularities conform to the

well-known Young–Laplace law, which is implied by the thermodynamic construc-

tion of the model. However, much remains to be learned about nonequilibrium

behavior. It has already been shown [77] that the dynamics of trijunctions in

phase-field models is slightly different from the assumptions usually made in

sharp-interface models. Moreover, the energetics of such junctions can be
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controlled in phase-field models by adding suitable higher-order terms (products

of three or more phase fields) to the free-energy functional. This possibility has

been explored little so far.

• Growth and diffusion kinetics. Up to now, attention has been mostly focused on

models that permit maintaining local equilibrium at the interfaces. However, in

many cases, it is necessary to introduce strong interface kinetics or departure from

equilibrium between the two sides of an interface in a well-controlled way, for

example if slowly diffusing species are present in multicomponent systems. In a

recent line of works, several authors have formulated phase-field models that

contain new coupling terms between the phase field and the diffusion equation

[86–88], which lead to discontinuities in intensive fields at the interface. This

approach also yields an interesting new derivation of the antitrapping current.

Moreover, the “phase-superposition” approach has been generalized, replacing the

equilibrium condition of Eqn (15.66) between the phases by a kinetic equation for

the individual phase compositions [89,90]. Both of these approaches could consid-

erably extend the domain of applicability of phase-field models and should be

further pursued.

• Polycrystals. Monocrystals are actually quite rare in nature; most crystal growth

processes lead to the spontaneous emergence of polycrystals, that is, solids that

consist of multiple grains of the same thermodynamics phase, separated by

grain boundaries. Two very different phase field approaches have been pursued

to model polycrystals. The first is an application of the multiphase-field

concept: each grain is represented by a different phase field, but with identical

free energy densities [78,91,92]. The second is the orientation-field approach, in

which a single phase field is combined with an orientation field that indicates

the local direction of the crystallographic axes. Whereas the validity of the

evolution equation for the orientation can actually be questioned [22], these

models were successful in describing a large variety of polycrystalline growth

structures [93,94]. It is highly interesting from a conceptual point of view to

further explore the possibilities of such models and their eventual relation to

crystal plasticity.

• Multicomponent systems. As already mentioned, several models have been

proposed and used for multicomponent and multiphase systems. They differ

in various choices for the free energy functionals, the interpolation schemes,

and the mobility functions. Only in very few cases have rigorous asymptotics

been carried out. Therefore, there is still a need for comprehensive bench-

marking in order to thoroughly assess their reliability. This task is made

difficult by the fact that multicomponent multiphase systems are inherently

complex, and thus the definition of useful and accessible benchmark problems

is far from simple. However, the large practical impact of such modelling

tools is expected to provide an important driving force for future

developments in this area.
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16.1 Introduction and Background
Dendrites, a descriptiveword derived from theGreek, “dendron” (dεndrun—a tree) are tree-

like crystalline objects, more formally described as fine, ramified, single crystals that grow

by diffusion-limited heat and mass transfer. Dendrites typically exhibit morphological

features that include constrained directionality, i.e., crystallographically-related, straight

primary stems, which periodically branch laterally into secondary “side arms.” The side

arms, in turn, often branch into tertiary, or even higher-order, arms. This cascade of mul-

tiple branching exhibits a progression of crystalline stems growing in the surrounding

space, obeying crystallographically-related angles, each displaying symmetries that

appropriately reflect the underlying lattice structure of the material. Sharp asperities

growing in crystallographically selected directions enhance locally the thermal- and mass-

diffusion fields that surround them. This insures locally intense heat and mass transfer to

and from the surrounding phase, which may be a melt, solution, or vapor. For example,

many cubic materials (e.g., both face-centered and body-centered) develop similar looking

dendrites,witheachorderofbranchingdevelopingorthogonally to thepriororder alongone

of the six equivalent h100i cube-edge directions. In this respect, dendritesmake efficient use

of their available growth space to transform their parent fluid phase into crystalline matter.

Other associated thermodynamic and kinetic factors, derived from the underlying

crystalline fields and liquid-state properties of the melt or solution from which dendrites

form, include interfacial energy anisotropy, and directional preferences for easy mo-

lecular attachment. These kinetic mobility and energy anisotropy factors further modify

the morphology and growth characteristics of dendritic crystals. The multiplicity of

physical factors influencing the shapes and growth characteristics of dendrites accounts
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for the fact that there are at present only a few definitive rules for predicting the features

of dendritic structures for different substances crystallizing at different rates under

different supersaturations. For example, the interplay of thermal and solutal fields with

capillarity induces temperature and concentration changes that affect the dendritic ki-

netics. Absent, however, are fundamental rules for predicting details of dendritic mor-

phologies. Nonetheless, rapid, kinetically unhindered, attachment of molecules from a

surrounding supercooled or supersaturated melt or solution are considered the most

important general requirement for inducing dendritic growth forms. Details of such

mechanisms will be discussed later in this chapter.

16.1.1 Early History of Dendrites

Snow flakes and hoar frost are the most common natural examples of dendritic growth.

Snow flakes evolve individually from microscopic ice nuclei born at high altitudes that

grow, and, eventually, fall through a water-saturated cold atmosphere. Frost patterns

appear where ground-level moisture condenses, supercools, and then freezes dendriti-

cally in contact with cold surfaces. Indeed, snow flakes, the iconic symbol of winter the

world over, are recognized by their distinctive six-fold intricate patterns. Such patterns

reflect the underlying arrangement of hydrogen-bonded H2O molecules arranged in the

rhombohedral crystal structure of water-ice, yet exhibit endlessly elaborate geometries

[1–3]. See Figure 16.1.

Indeed, dendritic snow-flake patterns have drawn the attention of astute observers of

nature, including such notables as Johannes Kepler, (the German mathematician and

astronomer who seldom ever looked downward) but in 1611 published his essay, “Strena

FIGURE 16.1 Magnified images of snow flakes (H2O ice–vapor dendrites) as viewed on the basal plane. Their
striking “snow-flake” symmetry arises from ice’s rhombohedral crystal structure, which is 6-fold symmetric about
its h100i direction. Inspection of these snow flakes reveals three levels of dendritic branching. One notes, howev-
er, that despite the apparent—but only approximate—hexagonal symmetry, each main branch, or primary stem,
remains unique in its detailed form, exhibiting fine-scale features only imperfectly mirrored by the remaining
stems. This is evidence for random disturbances affecting dendritic patterns. Photos adopted from the work of
K. Libbrecht [5].
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Seu De Nive Sexangula.”1 More than two centuries later, similar comments were elicited

from Henry David Thoreau—the famous 19th century American philosopher/naturalist—

who noted in his journal, “How full of the creative genius in the air in which these [snow

flakes] are generated!”

Many different natural crystalline materials develop dendritic structures besides

water-ice, including native copper (face-centered cubic), and a multitude of mineral

compounds that exhibit strongly preferred low-index growth directions for their primary

stems, plus crystallographically related branches determined by their individual un-

derlying lattice and point-group symmetries. In technology, dendritic crystalline forms

appear in melt-grown and electro-deposited metallic crystals, many of which facet

readily, including elemental diamond-cubic silicon and germanium, and trigonal bis-

muth and antimony, as well as vapor-grown snow flakes that form even more intricate

faceted dendritic structures. Dendrites may in addition exhibit “hopper-like” facets, fins,

and internal twins, combined with non-faceted primary tips. Faceting in dendritic

structures also depends on such factors as their anisotropic interfacial energy, kinetic

mobility, and the crystallographic ability to form low-energy twin variants.

16.1.2 Dendrites: Both Useful and Deleterious

Dendrites may be viewed as the fully evolved “end-state” attending unstable crystal

growth. In this regard, dendrites represent crystalline structures that have evolved via a

series of morphogenic changes from a simpler starting geometry initiated at nucleation.

Figure 16.2 shows a series of interfacial patterns observed by Losert, Shi, and Cummins

in a binary organic alloy [6]. The sequence starts with a featureless planar interface and

evolves toward a dendritic state.

Complex dendritic morphologies, in fact, are clearly undesirable in most crystal

growth processes, especially those developed to produce nearly perfect, homogeneous,

stress-free, bulk crystals. The appearance of dendrites in these important products must

be avoided wherever possible. It is their geometrically complicated, indeed, nearly fractal

character, that is responsible for the onset of chemical microsegregation, sub-boundary

defects, non-equilibrium phase distributions, void formation, and inclusions in den-

dritically ‘contaminated’ single crystals [10]. Such deleterious aspects during bulk crystal

growth degrade chemical and structural uniformity, and are harmful in crystals for

which inhomogeneities in chemical, electrical, magnetic, or optical properties would

diminish their quality and possibly compromise device performance.

The challenge to contemporary crystal growers is the necessity to avoid, at acceptable

cost, the appearance during crystal growth of dendrites, or the onset of other unstable

growth forms, such as interfacial cells that can cause similar problems. This can be

accomplished in practice by adopting specific precautions and strategies to be discussed

1Kepler’s title, Strena Seu De Nive Sexangula, translates to “A New Year’s Gift of Hexagonal Snow,” a

commentary on how complex and beautiful patterns emerge mysteriously from “thin air” [4].
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later in this chapter. The “cost” of avoiding dendrites and other forms of interfacial

instability accompanying bulk crystal growth involves either reducing rates of

crystal growth—i.e., diminished productivity—and/or accepting the application of higher,

more technically difficult, and potentially defect-inducing, temperature gradients.

As mentioned above, avoiding cellular breakdown and dendritic growth at a growing

crystal interface is far more preferable than attempting amelioration of their detrimental

effects on single crystal quality and performance by resorting to post-growth processing.

FIGURE 16.2 Steady-state crystallization fronts observed in a dilute organic alloy, showing three major interfacial
morphologies as the growth speed normal to the interface is increased step-wise from slowest, panel (A) Plane
front; (B) Periodically rippled; (C) Deep cells; to fastest, panel (D) Aligned three-dimensional dendrites. Adapted
from Ref. [6].
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In the industrial important sectors of primary metals production, alloy casting, and

welding, dendritic growth modes during solidification are unavoidable, and their

potentially negative impact on the properties of cast and fusion-welded materials must

be dealt with by foundry and welding engineers. For example, in casting metallurgy,

dendrites determine the difficulty of melt flow to “feed” remote areas within a solidifying

casting, and often dictate the distance scales over which chemical microsegregation

occurs as well as the time-scales to eradicate chemical segregation by annealing.

Dendrites also determine a material’s as-cast solidification texture, porosity, and grain

size, all of which collectively influence the mechanical and chemical properties of cast

materials. Such practical considerations dictate the need and added expense for

downstream processing to reduce chemical segregation, lower residual stresses, and

improve as-cast mechanical properties to meet engineering requirements.

On the positive side, for example, dendrites proved essential in an industrial crystal

growthprocess developed in the early tomid-1960s byR. Seidensticker andhis associates at

Westinghouse Semiconductor Division [7, 8]. Known as “web-silicon,” this crystal growth

process produced electronic-grade single-crystal ribbons of Si directly from the melt.

Dendritic ribbons were grown for the commercial purpose of producing high-efficiency,

inexpensive solar cells. Web silicon crystal growth employs pairs of widely-spaced

growing dendrites, between which is stretched a thin film of molten Si that is withdrawn

from the bulk melt and steadily crystallized as a continuous single crystal ribbon or sheet.

The dendrites maintain strict crystallographic integrity and high structural perfection

throughout the entire crystal, even after many meters of continuous ribbon growth.

A commercially successful example of controlled dendritic crystal growth is

manufacturing near-net-shape superalloy single crystals for jet engines—currently a

multi-billion dollar world-wide technology for aircraft engines and their refurbishment.

The process of directional dendritic growth was developed in the 1960s by F. Versnyder

and A. Giamei, both research metallurgists at Pratt & Whitney Aircraft Corporation [9].

One could claim that it was the development of directional dendritic growth of super-

alloys that allows today’s cost-effective, safe, efficient, high-speed air travel. The devel-

opment and broad adoption of directionally solidified (DS) single-crystal shaped

castings for civil jet aircraft represents one of the most important materials improvement

in producing high-temperature turbine-blades for manufacturing reliable jet aircraft

engines, as well as for developing efficient high-temperature turbomachinery now used

in large-scale, land-based, electrical energy production.

As in the web-silicon process, it is the preferred growth orientations of dendritic

primary stems during directional solidification that allow crystallographic orientation to

overcome thermally induced uncontrolled flows in the melt, and to resist other random

disturbances encountered during crystal growth. Proprietary DS casting methods, which

were vastly improved over the past half-century by Pratt & Whitney, GE, Siemens, and

Rolls Royce, impose sufficient crystallographic coherency of processed superalloys that

leads to well-aligned dendritic textures even in large (circa 1m long) geometrically

complex castings, such as turbine airfoils. Controlled DS castings qualify as “single
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crystals,” with their specified (001) dendritic zone axis aligned to withstand maximum

service stresses in the part. Shaped dendritic castings are devoid of grain boundaries, and

therefore are technically considered monocrystals, notwithstanding their occasional,

unavoidable, low-angle sub-boundaries and second phase precipitates, or troublesome

“freckle” defects that occur near sharp cross-section changes [9]. DS processed dendritic

crystals also suffer from a distribution of small rotational misorientations about the

controlled primary growth axis.

A simple example of crystallizing a seeded DS dendritic crystal in the form of a shaped

airfoil is shown in Figure 16.3. The impressive degree of structural alignment of the

component dendrites achieved by industrial DS processing is also suggested in

Figure 16.3, in which is inserted a scanning electron (SEM) micrograph of a small region

in a decanted superalloy casting. The dense “forest” of aligned dendrites is evident in this

SEM micrograph, with all the (001) primary stems pointing upward (antiparallel) to the

maximum heat flow direction maintained during solidification. In addition, one notes

that all the dendrites within the SEM’s field of view have the four {010} lateral branching

sheets in strict alignment, indicating that single crystallinity was achieved throughout

this region of the casting.

Dendrites, of course, also dominate the as-cast microstructures of more common-

place polycrystalline alloy castings produced via numerous industrial methods,

FIGURE 16.3 Directionally solidified (DS) superalloy “single crystal,” shown macroetched. DS dendritic technology
was developed through the 1960s at Pratt & Whitney Aircraft [10]. Strong directional heat flow, augmented by a
grain selector, aligns a fast growing (001) dendritic direction with the blade’s centrifugal stress axis. Single crystal
airfoils resist cracking much better than do polycrystalline ones, provide excellent creep and rupture life, and
represent an enormous metallurgical step forward in the engineering of reliable high-temperature turboma-
chinery. Adapted from Refs [7,11,12].
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including sand- and permanent-mold casting, poured ingots, continuous casting,

directional casting, spray casting, die casting, and fusion welding. In fact, the study,

understanding, and, ultimately, the control of crystalline dendrites gain additional

importance where this mode of freezing is not only ubiquitous but unavoidable.

Dendrites appear under most industrial solidification conditions where commodity

ferrous and non-ferrous foundry alloys are cast rapidly under relatively uncontrolled,

multidirectional, low temperature gradients. Such conventional casting methods

represent both expedient and cost effective manufacturing of shaped parts.

Finally, beside their obvious importance in metals processing, dendrites are also

encountered and affect the production and quality of pharmaceuticals, many of which

are manufactured in industrial-scale batch crystallizers, and of commodity chemicals,

such as fertilizers and pesticides, which are crystallized by the kilotonne using high-

throughput prilling towers [13,14].

16.2 Observations and Simulation of Dendritic Growth
Dendrites of many pure substances and alloys are capable of growing relatively rapidly

(0.1–1mm/s) even under moderate cooling rates and shallow thermal gradients, or at

small melt supercooling or supersaturation. The growth rate of dendritic crystals in pure

substances, such as molten Ni, was found to be limited primarily by the thermal con-

ductivity of the melt and its supercooling [15,16]. J. Walker, and independently, G.

Colligan, who were among the earliest researchers on rapid dendritic growth in bulk

metallic melts, successfully supercooled, by several hundred Kelvins, specimens of

molten Ni encapsulated in a protective flux. The specimens used by Walker and Colligan

had relatively large volumes, in the range of 10–50 cm3. Walker and Colligan reported

dendritic growth speeds exceeding 10m-s�1, often accompanied by a burst of acoustic

emission [17]. In the case of highly supercooled metallic melts, dendrites can achieve

impressive axial growth rates approaching 30 m-s�1 [18,19].

Later, a variety of droplet techniques was developed to supercool a much wider range

of metals and alloys far below their melting points or liquidus temperatures. Droplet

techniques include fine droplet flux dispersion used in nucleation experiments [20], and

“containerless” solidification methods, including drop tubes, and electromagnetic or

electrostatic levitation [21–23]. This remarkable feature of high-speed dendritic growth is

directly related to the fact that the size scale of dendritic tips and stems is inversely

related to their growth speed. The tip-size/speed relationship for dendrites remains an

important theoretical issue for this mode of crystal growth, and will be discussed in more

detail in Section 16.3.

An early optical growth sequence photographed in situ is shown in Figure 16.4. These

photo frames show details of a metallic dendrite growing on the surface of its slightly

supercooled melt. The series of photos was taken over equal time intervals. The crys-

talline and molten surfaces of pure, elemental Sn, a body-centered tetragonal (BCT)

crystal were protected by a thin transparent layer of molten anhydrous SnCl4, which acts
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as a protective flux capable of dissolving any oxide films. These early micrographs

show an actively growing Sn crystal periodically developing side branches, behind what

appears to be a steadily advancing curved tip that preserves its contour over time. It will

be shown later in this chapter, however, that the “steady-state” aspects of dendritic

crystal shapes—a feature often claimed in conventional theories of dendritic growth—is

perhaps more apparent than real.

A great deal of progress has been made over the past decade both in understanding

the fundamentals of dendritic growth, and in achieving improved engineering control of

dendritic crystallization. For example, Figure 16.5(A), shows an example of a synchrotron

x-ray image extracted from a video of an Fe–Si dendrite growing from its continuously

FIGURE 16.4 In situ photo-sequence of BCT Sn dendrites actively crystallizing on the surface of supercooled pure
molten Sn. The melt is protected from contamination by an immiscible layer of a transparent molten flux (SnCl4).
The four micrographs of this thermal dendrite reveal its “steady-state” features: the unchanging curved tip and
the uniform rate of advance; as well as the periodic emission of branches. Adapted from Ref. [24].

(A) (B)

FIGURE 16.5 (A) Synchrotron X-ray image of an iron-silicon dendrite growing from a high-temperature melt of
Fe-5.3 At% Si cooled through its liquidus temperature at 2K/min. (Image extracted from synchrotron video data
provided by Professor B. Billia, University of Marseille, France, 2010.) (B) Computer simulation of a Ni-alloy
dendrite growing from a mold wall in a 5-component melt (Ni–Al–Cr–Ta–W). Color scale indicates the melt’s ther-
mal field into which the dendrite advances. This simulation was used to advertise commercially available soft-
ware, according to which computational thermodynamics (THERMO-CALC�) and multicomponent diffusion
simulations (DICTRA�) were combined with a phase-field microstructure evolution code (MICRESS�). Simulation
image adapted from Ref. [26].
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cooled melt at 1500 C. Comparisons of x-ray images of metals solidifying dendritically at

high temperatures with earlier optical micrographs of transparent plastic crystals crys-

tallizing near ambient temperatures show extremely good correlation of their mor-

phologies and speed with the melt properties. Such observations provide confidence that

dendritic morphologies, and even dendritic kinetic behavior, have several “universal”

features that are substantially material independent.

Dendritic crystal growth may now be simulated by numerical computation, even for

cases of multicomponent melts that approach the compositional complexity of a modern

superalloy [25]. Computational thermodynamics and multicomponent diffusion data

bases, combined with microstructure evolution simulated using phase-field models, now

yield reasonably realistic results. Figure 16.5(B) shows the computed image of a

5-component Ni-base alloy dendrite with its associated thermal field growing in its melt.

Thermodynamic and kinetic data bases are now available to simulate solidification of tool

steels, superalloys, semiconductors, ceramics, as well as numerous non-ferrous casting

alloys based on Al, Ti, Mg, and Zr [26]. (See chapter on phase-field models.)

16.2.1 Initiation of Dendrites

The result of a heterogeneous nucleation event occurring within the volume of a

transparent supercooled melt is shown in Figure 16.6(A). Here one sees the initial growth

of a dendrite of high-purity succinonitrile (SCN)2. Plastic crystalline behavior is, of

(A) (C)(B)

FIGURE 16.6 (A) Photomicrograph of the early stages in the growth of an equiaxed dendritic crystal of SCN. This
crystal displays initial development of primary stems extending in the six cube-edge, h100i, directions—with four
growing in the plane of the photograph, and two growing normal to the page. The six dendrite tips form the
vertices of an octahedron in the available melt space, which is the cubic analog to the hexagonal snow flakes
shown in Figure 16.1. Appearance of secondary branches is just beginning on each stem behind the advancing
tips. (B) Dendritic SCN crystal at a more advanced stage, showing development of initially periodic side arms
along a downward-pointing primary stem. Other arms grow in the four equivalent {100} planes, forming “sheets”
consisting of parallel side branches. Mature branches compete in a coarsening process caused by their poly-
dispersity in curvature distributions. (C) Kinetic Monte Carlo simulation of the initiation of a dendritic crystal using
106 voxels in the computation. Color scale related to the local temperature gradients acting on the growing crys-
tal. Courtesy of T.P. Schultze [27].

2Succinonitrile (N2(CH4)2N2) is a transparent, BCC, “plastic crystal.” Plastic crystallinity allows such

compounds to be used as convenient analogs for in situ studies of dendritic crystal growth [28].
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course, common in metals, but relatively rare among organic compounds. SCN is easily

purified, transparent, freezes at 58.08 C, and proves convenient for studying the detailed

morphology and evolution of dendritic crystals. Figure 16.6(A) was photographed normal

to the {100} plane, with two of the six primary h100i growth directions oriented normal to

the page. Again, hints of incipient side-branch growth may be observed near the base of

the four projecting stem tips. Figure 16.6(B) shows the later stage morphology of a h100i
primary stem. Fully developed secondary branching ‘sheets’ extend outward with side-

arms in the {100} planes of this cubic crystal. An interesting simulation of dendrite initi-

ation in a supercooled melt using kinetic Monte Carlo numerical techniques is displayed

in Figure 16.6(C). Comparison of this simulation with the early-stage dendrite photomi-

crograph shown in the adjacent left-hand panel reflects key features of dendrite initiation.

These include the formation of six primary h100i stems and faint indication of their

incipient branches. The pattern’s correspondence with reality is remarkable, considering

how few “molecules” (circa 1 million voxels) actually participated in this simulation.

16.2.2 Alloy Dendrites

Alloy dendrites, for which transport of rejected components away from the interface is

the limiting transport process governing growth, develop and grow spontaneously dur-

ing directional solidification (DS), without any thermal supercooling of the melt. The

driving force for growth is “constitutional supercooling” near the tip, a concept intro-

duced in the mid-1950s by B. Chalmers [29]. Pure substances will not form dendrites

under DS control—as constitutional supercooling does not develop without the presence

of some solute or impurity; thermal supercooling of the melt is thus required. It should

be noted, however, that even minute levels of impurities, which are present even in

nominally “pure” materials, can initiate dendrites under DS conditions, providing the

imposed growth speed is sufficiently high to induce constitutional supercooling.

Figure 16.7(A) shows an array of aligned [100] dendrites of SCN þ 0.1 vol% acetone

growing steadily with a uniform tip shape and well-developed, regular, primary stem

spacings. Here the heat of solidification was conducted back through the already-formed

solid. Figure 16.7(B) is a video frame of directionally solidifying low-carbon steel,

freezing under a steep applied thermal gradient. Alloy dendrites are non-equilibrium

structures with fine branches that have a large interfacial area per unit mass, with a

corresponding large excess free energy stored in the branched microstructure.

16.2.3 Castings

Castings usually solidify under low, relatively uncontrolled thermal gradients. Dendrites

in castings often grow in multiple directions as they crystallize without benefit of

directional heat transfer. Individual dendrites, of course, remain single crystals with their

primary stems along a h100i zone axis in cubic materials. Figure 16.8 shows some well-

resolved dendrites in a partially solidified Al–Cu alloy, imaged with scanning electron

microscopy (SEM) on a decanted portion of the casting’s equiaxed zone [33].
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(A)(A) (B)

FIGURE 16.7 (A) In situ micrograph of slow directional solidification (DS) of SCNþacetone alloy forming aligned
primary dendritic stems. The heat of fusion is extracted through a heat sink located below the bottom of the
photo, so the melt is constitutionally supercooled. See Reference [30] for a complete discussion of constitutional
supercooling during DS processing. Note the uniform stem spacings and tip shapes, displaying well-developed sec-
ondary arms, the spacing of which sets the scale of microsegregation. Adapted from [31]. (Size scale not avail-
able.) (B) Frame from an X-ray video of directionally solidifying low-carbon steel (Fe-0.11wt.% C), advancing at
1 cm/s in an applied thermal gradient of 100 K/mm. Two partially solidified grains, consisting of aligned dendrites,
compete for space as they advance through the melt. A misorientation of 17

�
occurs between the dendrite’s [100]

preferred growth directions, which, when fully solidified, will result in the formation of a high-angle grain
boundary. (Size scale not available.) Adapted from [32].

FIGURE 16.8 SEM image of dendrites from the equi-axed zone of an Al–Cu alloy casting. Note how the proximity
of these crystals causes foreshortened side branches to develop on the upper dendrite in the SEM. Side-branch
foreshortening is caused by local melt convection and so-called “soft collisions,” caused by overlap of the thermal
fields. Here latent heat released from the lower dendrites causes the melt (removed here by decanting) to
become hotter and more buoyant, thereby slowing the growth of branches on the upper dendrite. Such local
heat-transfer effects profoundly influence the microstructures of conventionally cast alloys [33].
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16.3 Dendritic Growth Theories
16.3.1 Background

As discussed in Section 16.1.2, dendritic crystalline forms appear commonly in nature

and throughout important technologies such as metal casting and crystal growing.

Analytical transport theories were initially sought to predict dendritic speed and size

relationships, and later, a variety of microscopic hypotheses involving the crystal-melt

interface were introduced, as transport theory alone was recognized as insufficient to

solve the dendrite pattern problem. Combining macroscopic transport concepts with

various microscopic theories became the approach used during the 1970s and 1980s to

provide fundamentally-based estimates of dendritic growth direction, speed, tip size,

and, less successfully, dendritic morphology. These characteristics of dendritic crystals

were considered significant in materials applications where their control is important.

Theories of dendritic growth originally consisted of two distinct components: (1)

classical transport theory, describing steady-state heat conduction and mass diffusion

from the moving interface into the surrounding melt phase; and (2) “microscopic”

considerations at the crystal-melt interface involving capillarity (curvature and excess

interfacial energy) and/or details of the liquid-to-solid phase transformation (usually

concerned with the ease of molecular attachment and interface mobility). The interested

reader should also consult references [34] and [35] for more comprehensive reviews and

commentary on the extensive literature published on these subjects.

Contemporary crystal growth theories, discussed in Section 16.3.7, evolved over the

past 20 years with the rapid development of efficient computational methods in mate-

rials science, which are now capable of solving energy and matter transport while

evolving and up-dating the interfacial form separating the phases. These computations

are accomplished by numerically solving coupled sets of partial differential equations

that track relevant thermodynamic energies, mass conservation, and entropy changes.

The interested reader should consult the monograph on phase-field analysis by

H. Emmerich for basic details of the method [36].

16.3.2 Transport Theory

In 1947, G. Ivantsov published an exact mathematical solution to the steady-state

temperature field surrounding an isothermal branchless dendrite growing in the form

of a paraboloid of revolution [37]–[39]. This particular shape approximates the tip

shape of dendritic crystals, and was suggested by experimental observations made by

A. Papapetrou [40].

Figure 16.9(A) shows the tip region of a steadily-advancing SCN dendrite. The vertical

line separates the dendrite’s “steady-state” tip region from its time-dependent branching

region. The separation of these regions is actually arbitrary, as will be shown in Section 4,

and proves more apparent than real. The time-independent form of a paraboloidal

dendrite, as adopted in Ivantsov’s theory, is shown in the adjacent panel, Figure 16.9(B),
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along with associated, co-moving coordinate systems (h, x, 4 and r, z, 4) used to solve the

steady-state transport problem. Orthogonal isotherms, h¼ constant, and heat flow

surfaces, x¼ constant, in the surrounding melt are easily portrayed with confocal

paraboloidal coordinates, a planar projection of which (4¼ 0) is also included on the

diagram [42, 43].

The solid and its melt (at a uniform hydrostatic pressure) are assumed to be pure

phases in local equilibrium at their melting temperature, Tm. The melting temperature is

taken as a constant everywhere along the interface. The effect of curvature and inter-

facial energy on the melting point (the Gibbs–Thomson effect) [44], are not included in

Ivantsov’s analysis. Of course, a real dendrite, as shown in Figure 16.9(A), displays a

more complex time-dependent morphology than is suggested by the steady-state tip

shape assumed in this analysis. Despite overlooking time-dependent aspects of den-

drites, steady-state heat flow analysis correctly captures several important features of the

thermal conduction process surrounding a dendrite tip. Thermal conduction alone, in

fact, controls the important relationship between a dendrite’s axial propagation speed, v,

and its tip radius, R.

Time-dependent morphological features, such as the trailing wake of side branches,

remain of great practical importance, because side branches are responsible for the

occurrence of spatial variations of chemical concentration (microsegregation) in

 = const.

 = const.  = 1

z

r

η 

η ξ

(A) (B)

FIGURE 16.9 (A) Photomicrograph of an advancing SCN dendrite. To the left of the vertical black bar is the
“steady-state” region, which approximates a smooth body of revolution with its tip growing at a speed v+. To
the right of the vertical bar appears the time-dependent region, as a regular sequence of growing side-branches.
The branching region is not included in Ivantsov’s steady-state analysis. (B) Branchless model used by Ivantsov to
formulate the diffusion field surrounding a paraboloid of revolution. Heat flow surfaces, x¼ const., and iso-
therms, h¼ const., are indicated on this projection onto the plane 4¼ 0. The three-dimensional steady-state
thermal field, T‘(h, x, 4), is co-moving with the paraboloid’s tip with radius, Rtip, advancing at speed v in the
þz-direction. The crystal-melt interface is the coordinate surface h¼ 1. Alternative (r, z, 4) cylindrical coordinates
are also include here, as the model’s temperature field is assumed to be axisymmetric. Adapted from [41].
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dendritically crystallized alloys. The presence of side branches has only a moderate effect

on thermal or solutal diffusion around the tip region, which accounts, in part, for the

success of Ivantsov’s theory describing transport fields surrounding dendritic crystals.

Indeed, the tip region of dendrites in weakly anisotropic crystals, as exemplified in

Figure 16.9(A), is well approximated as a paraboloid of revolution, although other more

complex dynamic shapes occur that are flattened, finned, or cruciform.

Ivantsov solved two steady-state thermal transport equations: one that holds every-

where within the “infinite” supercooled melt phase, and one valid within the evolving

dendritic crystal. These equations arewritten in aGalilean coordinate system that removes

the explicit time-dependence by moving at the steady-state speed of the advancing

dendrite tip, v. These equations do not include any advective effects in themelt inducedby

the small mass density change accompanying crystallization. McFadden and Coriell

showed thatmelt advection accompanying the density change on crystallization typical for

most substances has minor effects on the kinetics of dendritic growth [45].

The steady-state energy equations that describe the temperature fields within the

crystal (i¼ s) and the melt (i¼ ‘), written in coordinates co-moving with the velocity, v!,

of the dendrite tip are:

vTi

vt
¼ V2Ti þ v!

ai

$VTi ¼ 0 ði ¼ s; ‘Þ; (16.1)

where ai ¼ kiUi

Ci
p
is the thermal diffusivity in the ith phase.

16.3.2.1 Key Assumptions and Boundary Conditions
The following physical assumptions and boundary conditions establish the basis for

Ivantsov’s steady-state solution for paraboloidal dendrites:

1. The þz-coordinate is aligned with the primary growth direction of the dendrite. For

cubic crystals, this axis aligns with the h100i cube-edge direction. Dendrites in cu-

bic materials exhibit four-fold symmetry about their h100i zone axis, not the radial

symmetry assumed in Ivantsov’s treatment. For low anisotropy crystals i.e., for

crystals with small interfacial energy variations, the tip region of a dendrite is well

approximated as a body of revolution.

2. Solute diffusion becomes inoperative when crystallizing pure materials. Ivantsov’s

solution, when applied to such pure materials, describes only the conduction of

latent heat from the moving crystal-melt interface into the surrounding super-

cooled melt, as described by equation (1).

3 The melt is initially uniformly supercooled by an amount DT¼ Tm� TN, permitting

dendritic crystallization to occur spontaneously via thermal conduction. The melt

at points remote from the growing dendrite (r/N) remains at its initial super-

cooled temperature, TN< Tm.

4. The temperature at the interface equals the equilibrium (bulk) freezing point, Tm.

The influence on the equilibrium temperature caused by interfacial curvature and

crystal-melt energy is ignored. This simplification is equivalent to assuming that
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the interfacial energy is zero. In addition, interfacial isothermality at Tm implies

that molecular transfer from the melt and subsequent attachment to the crystal

lattice, plus all other microscopic kinetic processes, occur easily, i.e., with negli-

gible dissipation of free energy. The latter assumption is tantamount to assuming

‘infinite’ interfacial mobility.

5. The steady temperature field, T‘(z,r), developed in the melt surrounding the

moving dendrite may be found by solving Eqn (16.1) in co-moving coordinates,

non-dimensionalizing the results by using the (unknown) tip radius, Rtip, as

the length scale for physical distances in the problem, namely, z¼ z/Rtip, and

r¼ r/Rtip.

6. The temperature field, Ts(z,r), developed at steady-state within the isothermal crys-

tal is the trivial solution to Eqn (16.1), namely, Ts(z,r)¼ Tm. The temperature vari-

able itself is usually non-dimensionalized by scaling the thermal field by the

material’s so-called “characteristic temperature”, DHf/Cp, where DHf and Cp are the

molar latent heat of freezing and the molar specific heat of the melt, respectively.

16.3.2.2 Solution Parameters
The following parameters and equations appear in Ivantsov’s transport analysis:

1. As mentioned in Section 16.3.2.1, item 6, the thermal scale for non-

dimensionalizing the transport field is set by the material’s characteristic

temperature, DHf/Cp. Specifically, w(z, r) is the dimensionless temperature, or

thermo-potential, throughout the melt space, the field for which is defined here as,

wðz; rÞh T‘ðz; rÞ
DHf

�
Cp

: (16.2)

2. The growth Péclet number, P, is the main dependent variable which describes key

aspects of the dendritic kinetics, specifically the dendrite’s speed and tip radius.

The Péclet number is defined as the dimensionless parameter,

Ph
vRtip

2a‘

: (16.3)

The Péclet number becomes the unknown to be found by solving the dimen-

sionless transport equation and its boundary conditions.

3. The growth Péclet number, defined in equation (16.3), may also be used for solute

diffusion transport that describes dendritic growth in alloy melts, by simply

substituting the melt’s solute diffusivity, D‘, for its thermal diffusivity, a‘. Thus, the

Péclet number may be thought of in pure substances as the ratio of the dendrite’s

tip radius, Rtip, to its ‘thermal conduction length’ in the melt, 2a‘/v, or, in the case

of alloys, the ratio of the dendrite’s tip radius to its ‘diffusion length’, 2D‘/v. These

dimensionless ratios have a direct influence on the nature of the conduction/diffu-

sion boundary layer that develops adjacent to the crystal-melt interface, which will

be discussed in Section 3.5.
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The growth Péclet number, for thermal- or solutal-limited crystal growth conve-

niently non-dimensionalizes Eqn (16.1), and yield at a specified supersaturation, or

supercooling, much finer, but slower, alloy dendrites.

4. The steady-state energy equation for the melt, Eqn (16.1), may be scaled for dis-

tances and temperatures (or, equivalently, concentrations, for alloys) to yield the

linear, nondimensional, convecto-diffusion equation,

V2wþ 2PVw ¼ 0; (16.4)

where in Eqn (16.4) the Laplacian, V2[ ], and the gradient, V[ ], both represent scalar

operators taken with respect to the non-dimensional distance coordinates in the melt

region, (z,r).

5. The inner boundary condition for the melt is given as the constant dimensionless

interface temperature,

wint ¼ Tm

DHf

�
Cp

; (16.5)

and its outer boundary condition, or far-field melt temperature, is the dimensionless

initial melt temperature,

wN ¼ TN

DHf

�
Cp

: (16.6)

6. The scaled temperature difference between the outer and inner melt boundaries,

wN�wint, provides the independent variable that acts as the thermodynamic

“driving force” for dendritic growth, namely the dimensionless “supercooling”, Dw,

defined as3

Dwhwint � wN; ð0 � Dw � 1Þ; (16.7)

where the unitary range of dimensionless supercooling is specified in Eqn (16.7) to

obtain a unique transport solution4.

16.3.3 Transport Solution

16.3.3.1 Dendrite Thermal Field
Ivantsov obtained an analytic expression for the steady-state temperature field sur-

rounding a paraboloidal dendrite. His transport solution allows application of energy

3The dimensionless supercooling, or supersaturation used here in this discussion of dendritic growth

theory is also referred to as the Stefan number, St, in heat transfer theory for solidification free boundary

problems [46]–[48]. The Stefan number also proves to be a convenient parameter for comparing the kinetic

behavior of dendrites at different melt supercooling or supersaturation.
4Exceeding the upper-bound for supercooling, Dwmax� 1, in Eqn (16.7) and (16.8) leads to the condition

of “hypercooling,” where dendritic growth can continue to total crystallization without additional transfer

of latent heat from the melt to its surroundings. If a melt is hypercooled, the crystal-melt interface must

depart from local equilibrium, and its temperature is no longer determined by capillarity alone [49].

Hypercooling require additional kinetic information about the melt’s viscosity, the ease or difficulty of

rapid molecular attachment, and defect creation. See Section 16.3.8 for additional details on hypercooling

and associated non-equilibrium behavior during dendritic growth from deeply supercooled melts.
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conservation to the heat-emitting interface to establish the relationship between the

dimensionless supercooling, Dw, the independent variable, and the growth Péclet

number, P, the dependent variable.

Specifically, a “characteristic equation” that connects these parameters of the transport

problem is derived using energy (ormass) balance between the gradient field at the crystal-

melt interface, which is responsible for heat conduction (or mass diffusion), and the

corresponding release rates of latent heat (or rejected solute) during crystallization.

Dw ¼ P ePE1

�
P
�
h Iv

�
P
�
; (16.8)

where E1(P), is the 1st exponential integral, a tabulated function defined as,

E1ðPÞh
ZN
P

e�u

u
du: (16.9)

Ivantsov’s result, Eqn (16.8), may be written formally as Dw ¼ IvðPÞ, which notation

implies that the dimensionless supercooling is a unique function of the growth Péclet

number. In most crystal growth processes, however, the independent variable is not the

Péclet number, but rather the melt supercooling or supersaturation. Thus, the Péclet

number would normally be chosen as the dependent variable, and the inverse to Eqn

(16.8) would offer a better form for the desired transport solution.

An analytic inverse to Eqn (16.8), however, does not exist in “closed form”. That is, a

combination of a finite number of elementary functions cannot represent the inverse

Ivantsov solution. Instead, onemay express the inverse transport solution symbolically, as

P ¼ Iv�1ðDwÞ, where the notation Iv�1 () represents the formal mathematical inverse. If

presented as a graph or table of the solution characteristic, the inversion may be accom-

plished numerically, by merely plotting the supercooling, or supersaturation, as the

abscissa, or independent variable. Eqn (16.8) is plotted in this manner on double-

logarithmic coordinates in Figure 16.10 to show the nature of Ivantsov’s “inverted”

transport solution.

16.3.3.2 Supercooling Limits
At large supercoolings, see again Figure 16.10, the growth Péclet number derived from

transport theory increases rapidly, and as Dw/1, or, equivalently, as DT/DHf/Cp, a

divergence occurs in the transport solution, and P/N. The divergence of Ivantsov’s

solution at large supercooling implies that if the dimensionless supercooling exceeds

unity, so Dw� 1, a condition termed “hypercooling” occurs, and the kinetics of dendritic

growth would no longer be transport-limited [49, 50]. The reason heat transport no

longer controls interface speed is that beyond the onset of hypercooling the interfacial

thermal gradient developed at the tip of a dendrite, assuming constant molar latent heat

and specific heat of the melt, is given by the ratio of the material’s characteristic tem-

perature, DHf =C
‘
p, divided by its limiting boundary layer thickness, a/v. [See explanation

in Section 16.3.5.2 associated with Eqn (16.24)], namely,
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GradðT‘Þtip ¼ �

�
DHf

C‘
p

�
a
v

: (16.10)

The precise definition of the hypercooled state must take into account the fact that the

molar specific heat of a melt, C‘
p, usually increases with supercooling [51]. The melt

supercooling, Tm� Thyp, at which hypercooling begins is given by the integral expression,

DHf ¼
ZTm

Thyp

C‘
pdT : (16.11)

Eqn (16.11) also indicates that for small molar latent heat, or for melts with nearly

constant specific heat, hypercooling occurs when

St ¼ 1z
Tm � Thyp

DHf

.
C‘

p

: (16.12)

Thus, when the melt supercooling (approximately) equals the material’s character-

istic temperature, some additional kinetic barrier, or barriers, to crystallization, other

than latent heat conduction, must intercede to limit the speed of the interface. Heat flow,

FIGURE 16.10 Plot on double-logarithmic coordinates of Ivantsov’s characteristic Eqn (16.8). The growth Péclet
number becomes singular (P/N), and diverges as the dimensionless supercooling, Dw, approaches unity. Over a
portion of the range of supercooling shown here, viz., 0.001<Dw< 0.05, the (log) Péclet number is almost linear
with log supercooling. It may be approximated as the power law, Eqn (16.13).
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per se, no longer sets the speed limit. The condition of hypercooling has been reported in

a variety of diverse crystallizing melts, including metals and alloys [52, 53], organics [54],

and ceramics [55].

The Péclet number becomes nearly linear on log-log coordinates in the range of small

dimensionless supercooling (or supersaturation) and low growth rates encountered in

crystal growth. Ivanstov’s solution can be approximately as the power law,

Pez0:647Dw1:27
�
Dw � 0:1

�
: (16.13)

Substituting the definition of the Péclet number, Eqn (16.3), into the formal inverse

provides a hyperbolic relationship between the growth speed, y, and the tip radius, Rtip.

Specifically, Ivantsov’s solution predicts that

vRtip ¼ 2a‘ Iv
�1
�
Dw
�
: (16.14)

Although transport theory yields a steady-state relationship, Eqn (16.14), connecting

all the dendritic parameters, viz., v, Rtip, a‘ and Dw, the unique steady-state solution, or

kinetic “operating state” of the dendrite, ðv+;R+
tipÞ, that one expects to observe at a

specified melt supercooling remains elusive. The reason, of course, is that Eqn (16.14)

contains two unknown quantities, v and R, and, consequently, is incapable of predicting

the unique velocity and radius of the dendrite for a given supercooling. Thus, an

additional equation independent of energy transport—to be developed later in this

discussion—must be introduced to solve the steady-state dendritic growth problem. To

accomplish this, one usually appeals to the microscopic physics of dendritic growth.

Figure 16.11 shows the hyperbolic relationship established between v and Rtip by

transport theory, via Ivantsov’s solution, Eqn (16.14). Results are plotted for several

values of the supercooling for a fixed value of the melt’s thermal diffusivity, a‘. One notes

that blunt-tipped thick dendrites grow slowly relative to sharp-tipped slender ones that

grow more rapidly. The general tendency for slowly growing dendrites to have large tips,

whereas rapidly growing ones to have small tips, is referred to as the “point effect”—a

well-known effect of geometry in diffusion field theory [56].

16.3.3.3 Other Steady-State Transport Solutions
Analytic solutions of the steady-state diffusion equation have been found for other

families of dendritic shapes that vary from cylindrical sheets to elliptical paraboloids [57].

All such solutions involve finding the characteristic equations that lead to different

relationships between the growth Péclet number and the supercooling. Suffice it to say,

however, that the dynamic shapes of dendrite tips are determined by several additional

factors affecting the growth kinetics, none of which are included in Ivantsov’s analysis.

These additional factors include the anisotropies of the interface energy [58] and mobility,

both of which introduce non-linear effects on the tip shape. LaCombe et al. studied the

steady-state tip morphologies of pure pivalic anhydride dendrites. These investigators

found that the tips differed markedly from paraboloids of revolution, which are well

approximated at small anisotropies [59]. Pivalic anhydride freezes as a non-faceting FCC
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crystal, but has a relatively large 3–4% anisotropy in its crystal-melt interfacial energy [60].

Dendritic growth theory was expanded to include solute diffusion in alloy melts by Lipton

and co-workers [61, 62]. When steady-state tip shapes remain unknown, due to the

presence of these and other factors, numerical methods are needed to solve the associated

transport equations, and to evolve the correct interface shape dynamically. Numerical

techniques used to simulate dendritic growth will be discussed briefly in Section 16.3.7.

16.3.4 Tests of Transport Theory

Pure diffusion-limited dendritic growth was carefully measured in the mid-1990s in a

series of microgravity experiments carried out on NASA’s United States Microgravity

Payload missions (USMP) aboard the shuttle Columbia [63, 64]. Three missions, USMP-

2, 3, and 4, flown by NASA in 1994, 1996, and 1997 carried the Isothermal Dendritic

Growth Experiment (IDGE), the purpose of which was to observe the kinetics and

FIGURE 16.11 Double logarithmic coordinate plot of Ivantsov’s transport solution, displaying as straight lines the
hyperbolic relationships between growth velocity, v, and tip radius, Rtip, for several values of the dimensionless
supercooling, Dw. The thermal diffusivity is arbitrarily selected as a¼ 0.1 cm2/s. The general trend is that transport
of heat (or solute) from a dendrite tip is a more efficient process at smaller tip radii, the larger curvature of
which increases the local gradient field, fluxes, and tip speed. Thus, fast growing dendrites usually exhibit finer
scale features, and slower dendrites are coarser.
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photograph the morphologies of diffusion-limited dendritic growth, free of gravity-

induced convection.5

Figure 16.12 (A) shows four SCN dendrites growing under terrestrial conditions at

various angles with respect to the earth’s gravity vector, g!0 [66]. The growth orientation

to terrestrial gravity alters the buoyancy-induced melt-flow patterns, which convectively

modify local heat transfer at the crystal-melt interfaces [67, 68] and influence the growth

rate and morphology. Melt convection, if strong, precludes comparison of observed

dendritic growth with predictions made on the basis of diffusion transport theory pre-

sented in Section 16.3.2. When dendrites grow without the presence of gravity,6 as they

FIGURE 16.12 Left: Dendrites growing at various angles with respect to earth’s gravity, g!. The orientation to
gravity affects the convective melt-flow pattern adjacent to the crystal-melt interface, which changes heat trans-
fer rates, growth velocities, and the morphology. In panel (A), the dendrite grows normal to the gravity vector
and exhibits foreshortened upper branches. In panel (B), the dendrite grows at an oblique angle to gravity, and
secondary branches fail to appear along its upper interface. In panel (C), where the primary growth axis is parallel
to the gravity vector, the dendrite exhibits the balanced, four fold symmetry expected for a cubic crystal. Panel
(D) shows that moderate angular deviations from growth parallel to gravity have small effects on the
morphology. Right: Plots of Péclet number, P¼ vRtip/2al, versus supercooling. All data points shown were
measured with the IDGE either under terrestrial conditions, ,, or in microgravity -. These experimental data
and the Ivantsov diffusion transport solution, (dashed line) Eqn (8), provide a critical zero-parameter check of
dendritic transport theory. Note that the data obtained in supercooled melts in microgravity, 0.003�Dw� 0.08,
show broad agreement with Ivantsov’s analysis, whereas terrestrial data agree only where DT� 1 K, above which
thermal conduction finally becomes stronger than convective heat transfer in the presence of earth’s gravity.

5For a recent review of crystal growth research conducted in microgravity, the reader is directed to

reference [65].
6The quasi-static acceleration levels for all the IDGE experiments in low-Earth orbit was circa

10�7 � �� g!0

��, where
�� g!0

��z9:8m-s�2 [69,70]. As such, melt convection all but disappears in microgravity,

save for weak advective flows caused by the mass density change at the crystal-melt interface.

690 HANDBOOK OF CRYSTAL GROWTH



do in low-Earth orbit, buoyancy-mediated convection in the melt disappears, and

interfacial heat transfer during dendritic growth occurs by thermal conduction and ra-

diation. As shown by the data in Figure 16.12(B), the observed growth speed and den-

dritic tip radii may be combined as the growth Péclet number, and predicted from the

supercooling by using transport theory. Only convection-free dendritic growth results in

a predicted growth Péclet number that agrees with transport theory. See again Eqn

(16.3).

Transport theory alone is, however, incapable of predicting the unique combination

of variables, ðv+;R+
tipÞ, that would be observed if one sets the supercooling level and

conducts a solidification experiment. The dendrite’s “operating state” thus remains

beyond the predictive power of transport analysis alone, which is not a surprising

outcome given that Eqn (16.14) is one equation in two unknowns, viz., v+ and R+
tip.

Clearly additional physics is needed to provide an independent equation connecting

these unknowns. The choice of such physics will be discussed in Section 16.3.6.1 in order

to determine the operating steady-state of a dendrite.

Before adding the required interfacial physics, several useful engineering concepts

concerning thermal and solutal boundary layers will be discussed, to help make clear

how dendritic crystals interact among themselves and with their environment during

growth.

16.3.5 Boundary Layers and Diffusion Interactions

Figure 16.9(A) shows a sketch of a branchless dendrite growing in a melt at a speed v+ in

the þz direction. As suggested by the right panel, the total diffusion field, w‘ðx; hÞ, sur-
rounding the crystal-melt interface at h¼ 1 extends, in principle, to infinity. In practice,

however, a thermal or solutal boundary layer of thickness DZ extends a short distance

outward from the advancing interface, capturing the “meaningful,” or active region over

which the transport field extends and exerts physical influences. Boundary layers

represent estimates of the important distances within which are contained the gradient

fields primarily responsible for transferring heat or solute to the bulk melt. When

dendrites develop during crystallization they can interact with and influence their

neighbors, or be affected themselves by the local crystal growth environment. For

example, boundary layer thicknesses indicate the proximity at which significant in-

teractions between a growing interface and nearby walls, probes, or baffles. Thus,

dendritic boundary layers provide engineering estimates of the effective size scale of

these crystals and their transport fields, denoting the physically significant extent of their

“active” thermal or solutal fields.

Besides providing practical estimates of the spatial extent of transport fields during

crystal growth, thermal and solutal boundary layers also help identify the system pa-

rameters upon which these fields depend. As mentioned, boundary layers have finite

thicknesses, in contrast with the “infinite” extent of the (mathematically predicted)

transport field, or the “infinitesimal” character of the ‘sharp’ interface model. For
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example, the thickness of a thermal boundary layer, DZth, may be defined in a pure

system as the estimated distance over which the temperature falls substantially from the

melting point, Tm, at the crystal–melt interface, to the supercooled temperature, TN,

located at some distance from that interface. Similarly, a solute boundary layer thickness

may be defined as the distance, DZsol, over which the equilibrium solubility in the melt,bC ‘, immediately adjacent to the interface, falls (or rises) to the nominal melt composi-

tion, C0, at some distance ahead of an advancing interface.

First, we consider thermal boundary layers. Local energy conservation yields a

thermal flux balance at any arbitrary point on the crystal-melt interface, requiring that

the latent heat released at each location is conducted away into the nearby supercooled

melt via the local normal temperature gradient. This net zero sum of the latent heat

released and the heat conducted through the melt represents the local form of Stefan’s

energy balance, which may be expressed as,

DHf

U

�
v!$ n!� ¼ �k‘V

/

T $ n!; (16.15)

where n! is the unit normal vector on the solid–liquid interface pointing toward the melt,

k‘ is the thermal conductivity of the melt, and U is the molar volume. If the right-hand

side of Eqn (16.15) is applied to thermal conduction conditions prevailing at the dendrite

tip, r¼ 0, the local normal vector, n!, aligns with the þz-axis. The magnitude of the

thermal gradient vector at the dendrite tip, jVT jtip; may be estimated as the total tem-

perature drop ahead of the tip, viz., TN� Tm, divided by the thermal boundary layer

thickness, DZth. The steady-state heat flux leaving the advancing tip is,

DHf

U

�
v!, n!�zk‘

�
Tm � TN
DZth

	
: (16.16)

Eqn (16.16) defines a boundary layer thickness at the dendrite tip, DZth.

Solving Eqn (16.16) for DZth, and recalling the definition of the dimensionless

supercooling, Dwh (Tm�TN)Cp/DHf, one finds that the thermal boundary layer thick-

ness at a dendrite tip is

DZth ¼ k‘UDw

Cpv
: (16.17)

Dividing both sides of Eqn (16.17) by the dendritic tip radius, Rtip, then multiplying

the numerator and denominator of the right-hand side by 2, and recalling the definitions

of the thermal diffusivity of the melt, a‘h k‘U/Cp, and the Péclet number, P ¼ vRtip=2al,

Eqn (16.3), yields the ratio of the boundary layer thickness to the dendritic tip radius,

DZth

Rtip

¼ Dw

2P
: (16.18)

If the Ivantsov solution, Eqn (16.8) is now substituted for the dimensionless super-

cooling, Dw, on the right-hand side of Eqn (16.18), one obtains an expression for this

ratio in terms of the growth Péclet number,
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DZth

Rtip

¼ epE1ðpÞ
2

: (16.19)

Not surprisingly, the boundary layer thickness is also a sensitive function of the melt

supercooling or supersaturation. Figure 16.13 displays the thermal boundary layer

thickness, DZth, in units of the dendritic tip radius, Rtip, plotted as a function of the

growth Péclet number in accord with Eqn (16.19). Approximations appropriate at ‘small’

and ‘large’ growth Péclet numbers are also included for comparison in figure 13. These

boundary-layer approximations are discussed next.

16.3.5.1 Small Péclet Numbers
Many dendritic growth and casting processes operate at small growth Péclet numbers,

P� 1. One may substitute the well-known expansions that follow for each of the cor-

responding functions that appear in the characteristic equation, Eqn (16.8), and thereby

simplify both the transport solution and the boundary layer expression, Eqn (16.19), at

low Péclet numbers:

i: eP ¼ 1þ P þ ðPÞ2=2þ/;

ii: E1ðPÞ ¼ �ðln P þ gEÞ þ P � ðPÞ2=4þ/; where gE ¼ 0:57721. is Eulers constant:

One obtains an approximation for Dw in elementary functions by inserting these ex-

pansions into the characteristic Eqn (16.8) if Pe� 1:

DwzPð1þ PÞ ðP � ln P � gEÞ: (16.20)

FIGURE 16.13 Ratio of the dendritic boundary layer thickness to the tip radius, DZth
Rtip

, versus growth Péclet number.
Asymptotic approximations for the boundary layer thickness at low and high Péclet numbers are included (dotted
and dashed curves, respectively) that show their respective ranges of validity. Note that the exact transcendental
relationship (solid curve), Eqn (16.19), is required over the intermediate range of growth Péclet numbers,
0.1< P< 10, where large errors would occur using asymptotic boundary layer approximations.
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Using the low Péclet number expansion developed for Dw in Eqn (16.20) and drop-

ping higher-order terms, yields the ratio of the thermal boundary layer width to the tip

radius for small Péclet numbers,

DZth

Rtip

z�
h
ln

ffiffiffiffi
P

p
þ gE

i
ðP � 1Þ: (16.21)

16.3.5.2 Large Péclet Numbers
Ivantsov’s solution is also easily approximated in the limit of large Péclet numbers,

where P[ 1. Large Péclet numbers are encountered both in the crystallization of deeply

supercooled pure melts, or in cast alloys, where Dw also represents the dimensionless

solute supersaturation of the melt, defined as the solute concentration, C, divided by the

width of the phase diagram’s tie-line, bC ‘ � bCs, at the crystal growth temperature.

Analogy with Ivantsov’s thermal transport solution shows that the solutal growth Péclet

number is given by Psol¼ vRtip/2D‘, where D‘ is the solute diffusivity in the melt.

Substituting expansions i. and ii., given above, into the characteristic equation,

Eqn (16.8), yields for high Péclet numbers the approximation,

Dwz1� 1

P
ðP[1Þ: (16.22)

If a flux balance is applied to the tip of the dendrite, and the procedures outlined for

Eqn (16.16–16.21) are followed—excepting the use of expansion Eqn (16.22) instead of

Eqn (16.20)—one obtains the ratio of the solutal boundary layer thickness to the tip

radius in the limit P[ 1 as

DZsol

Rtip

z
1

2

�
1

P
� 1

P2

	
: (16.23)

Given that Eqn (16.23) is valid only when P is large, so 1/P� 1, the solutal boundary

layer thickness in the case of alloys is given by,

DZsolz
Rtip

2P
¼ D‘

v
: (16.24)

Thus, at high dimensionless supersaturations the solutal boundary layer thickness at

the tip of a dendrite equals the diffusion length, D‘/v, ahead of a planar front moving at

the same speed. Solutal boundary layers can be much smaller than the tip radius itself.

Equivalently, at high supercoolings, approaching the hypercooling point of a melt, the

thermal boundary layer thickness at the tip of a pure dendrite equals its thermal diffu-

sion length, a‘/v. Eqn (16.19) and its approximations at low and high Péclet numbers

confirm that the ratio of the boundary layer thickness to the physical tip radius depends

only on the relevant Péclet number. Eqn (16.19), moreover, predicts both thermal and

solute boundary layers in dendritic growth, because their corresponding thermal and

solute transport solutions are mathematical equivalents. One merely uses Dw to repre-

sent either the supercooling for the thermal boundary layer, or the supersaturation for
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the solutal boundary layer. Solute Péclet numbers at the tip region of a dendrite in a pure

material, as already mentioned, are usually much larger than the thermal Péclet

numbers because of the disparity (about 4-orders of magnitude) between values for the

thermal and solutal diffusivities in most melts. Consequently, solute boundary layers

tend to be much thinner than are thermal boundary layers. Boundary layer analysis also

teaches that dendrites only interact with each other and their environment at close

proximity, corresponding to just a few tip radii; consequently, dendrites grow nearly

independently, and therefore develop surprising uniformity in their tip shapes and

branching sequences even in densely populated cast microstructures.

16.3.6 Interface Physics

As mentioned in Section 16.3.3, transport theory alone is incapable of predicting the

operating state of a dendritic crystal for a given level of supercooling or supersaturation.

Numerous hypotheses were posed over the intervening 60 years since Ivantsov’s work,

each attempting to add the elusive “missing” interface physics. Among the early sug-

gestions for improving the kinetic theory of dendritic growth (See, for example, Ref. [71])

was the ad hoc notion that dendrites ought to grow at the maximum rate permitted by

transport theory, and could do so by reducing their tip radii to just twice the critical

nucleation radius, as set by the melt supercooling [72]. Experiments eventually showed,

however, that dendrites grow with their tip radii almost 100 times larger than their

nucleation radii, and achieve growth rates that are only a small fraction of this “theo-

retical” hypothesized maximum [66].

Others thought that dendrites grow so their entropy production rates are minimized

[73], or even maximized! Xu and co-workers, using slender-body analysis and other

mathematical techniques, showed that “trapped-wave” eigenstates are possible in

dendritic crystals, which could account for deterministic branching [74–76]. Another

now broadly accepted theory evolved from a self-consistent analysis of steady-state

dendritic growth [77, 78]. Known as “microscopic solvability,” this theoretical approach

to model dendritic growth asserts that the allowed operating state, found through so-

phisticated mathematical analysis, is the fastest (steady-state) speed compatible with the

anisotropy of the interfacial energy, and maintaining a smoothly-shaped tip [79–81].

Despite the remarkable diversity of theoretical approaches, none of the analytic theories

developed to date have been verified experimentally, despite careful attempts to check

them [60].

16.3.6.1 Tip Characteristics
Some theoretical treatments of dendritic growth apply concepts of dynamic

morphological stability, which were developed during the early 1960s by Mullins and

Sekerka [82–84] and independently by Voronkov [85]. Interface stability theories alone

will be detailed further in this chapter, because of their compelling physical and

mathematical simplicity, and their success in providing scaling laws for dendrites.
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Stability-based dendritic growth theories, moreover, originated more than 40 years ago

with the numerical studies reported by W. Oldfield [86], whose findings were among

the first computational approaches applied to the study of dendritic growth.

Specifically, Oldfield suggested that dendritic crystals develop a “dynamic balance”

between the stabilizing influences of interface capillarity and the destabilizing effects

of solute diffusion or thermal conduction. His numerical work was soon followed by

several analytical tip stability models [87, 88], in which steady-state behavior could be

captured by the same interesting scaling law discovered numerically by Oldfield: viz.,

that the volumetric rate of freezing at a dendrite’s tip, v R2
tip, remains constant, inde-

pendent of supercooling. Transport theory, as discussed in Section 16.3.3, shows that v

and Rtip are both sensitive functions of supercooling, so the dendritic scaling law,

v R2
tip ¼ const:; derived from linear stability-based theories, indeed suggests a sur-

prising aspect of their kinetic behavior.

The analysis of dendritic tip stability was proposed first by J. Langer and H. Müller-

Krumbhaar [89,90] and is now known as marginal stability theory. That analysis was

influenced by contemporary experimental progress based on several quantitative in situ

observations of steady-state dendritic growth [91, 92]. Examples drawn from these

experimental studies are presented in Figure 16.14, where tip-speed data for pure sub-

stances were obtained over wide dynamic ranges of the supercooling. The tip-speed data

contained in Figure 16.14—although not recognized at the time they were reported—

were affected by (unavoidable) gravitationally-induced melt convection, a transport

mechanism already mentioned in Section 16.3.4. Nevertheless, these dendritic growth

experiments provide at least semi-quantitative agreement with predictions based on

stability-based dendritic growth theories. Eventually, other prominent theories, such as

microscopic solvability, were carefully re-checked during the 1990s, using a combination

of terrestrial [60] and microgravity experiments [93, 94]. These later experiments show

convincingly that solvability theories yield relatively poor estimates of observed dendritic

growth behavior, and thus the detailed interfacial physics used to formulate them re-

mains in doubt.

Marginal stability, to be detailed in the next section, encouraged additional accurate

experiments [95, 96], which confirmed quantitatively that the spacing of side branches

and a dendrite’s corresponding tip radii were not independent features, linked by the

marginal stability hypothesis.7 That is, the proportionality between branch spacings

and tip radii, which was assumed heuristically in marginal stability theory, indeed held

true, despite the fact that dendritic side branches are time-dependent features, whereas

the tip shape itself was assumed to be at steady-state. See again Figure 16.9 (A) for

the questionable distinction drawn between the so-called “steady-state” and “time-

dependent” growth regions of the crystal-melt interface in dendrites.

7This peculiarity is resolved later in Section 16.4.2, as the tip region of a dendrite does not actually

grow in a truly steady-state mode, but as suggested by Xu’s trapped-wave analysis [97], and by

independent dynamic studies by Lowengrub and Li [98], undergoes faint oscillations as side branches

initiate extremely close to the tip.

696 HANDBOOK OF CRYSTAL GROWTH



16.3.6.2 Marginal Stability
Consider a pure crystal-melt system with a planar interface advancing into its super-

cooled melt at a velocity v0 in the þz direction. The interface is subject to random

perturbations, or disturbances, each comprised of small-amplitude sinusoidal distor-

tions. The Fourier-components of the disturbance have wavenumbers k ¼ 2p
l
, where l is

the wavelength of each independent component, which exhibits a small, time-

dependent amplitude, d(k, t)� 1. The question addressed by linear perturbation the-

ory is, Among all possible wavenumbers, 0� k�N, what is the critical, or smallest

wavenumber, k+, to which the interface could be subjected without destabilizing it?

Stability requires the evolving amplitudes to decay, and eventually vanish, whereas

instability allows the amplitudes to increase exponentially in time. Note that the curved

dendritic tip being tested is rather loosely treated here, by analyzing its shape stability

FIGURE 16.14 Free dendritic growth velocity versus melt supercooling (log–log). The four-decade correlation
shown by these free dendritic growth data suggested that a consistent kinetic mechanism operates in dendritic
growth over wide dynamic ranges, even for very different crystals, such as SCN, a BCC organic plastic crystal, and
H2O-ice I, a rhombohedral hydrogen-bonded crystal. Experimental results such as these helped to stimulate the-
ories to explain this ubiquitous form of crystal growth.
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either as a planer interface [87] or as a spherical interface [96]. The conclusions reached

concerning marginal dendritic tip stability, however, differ only slightly with the

particular choices of the interface shape being analyzed.

Figure 16.15 shows the general conditions prevailing near a perturbed planar inter-

face. The stability function (a complex exponent) for this interface when perturbed by its

marginal (minimum) wavenumber, k+, is found to be Fðk+Þ, the real part of which

reduces to zero, allowing the amplitude of tip perturbations to remain constant. The

linear dynamical condition found for marginal stability is

F
�
k+
� ¼ 0 ¼ �TmGk

+2 � Gs þ G‘

2
: (16.25)

The first term on the right-hand side of Eqn (16.25) contains the microscopic capillary

length,G¼ gs‘U/DHf, which accounts for the stabilizing influence of interfacial energy, gs‘,

that resists the growth of fine-scale ripples with high wavenumbers, whereas the second

term accounts for the destabilizing negative thermal gradient present ahead of the

advancing interface that favors the growth of ripples with high wavenumbers. Note, these

countervailing effects of capillarity and thermal gradients are what Oldfield originally

suggested from his numerical analysis of dendritic growth [86].

Specifically, the solid phase thermal gradient, Gs, in Eqn (16.25), is zero, because the

interior of the dendrite remains isothermal and is gradient-free. Thus, the average

gradient on the right-hand side of Eqn (16.25), G ¼ �G‘=2, depends solely on the thermal

gradient developed in the melt at the advancing tip. Inserting the average thermal

gradient into Eqn (16.25) and solving for the critical wavenumber, k+, yields the result,

k+ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�G‘

2TmG

s
: (16.26)

Ivantsov’s transport solution yields the non-dimensional thermal gradient, bG‘ in the

melt just ahead of the dendrite’s tip as,bG ‘ ¼ �2Pe: (16.27)

The dimensional thermal gradient G‘, may be recovered from Eqn (16.27) by using the

characteristic thermal gradient, DHf/(CpRtip), and substituting the definition of the

FIGURE 16.15 Sinusoidal
perturbation, z(x, t), of an interface
advancing in the þz direction at a
speed v0. This interface is of
infinite extent in the �x directions.
A moving coordinate, Z, travels
with the planar interface, which
only roughly approximates the
stability conditions at a curved tip.
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growth Péclet number, Peh vRtip/(2a‘). These steps yield the steady-state thermal

gradient in the melt at the dendrite tip as,

G‘ ¼ �
�
DHf

a‘Cp

	
v: (16.28)

Inserting Eqn (16.28) into Eqn (16.26) provides an important relationship defining the

marginal wavenumber and wavelength,

k+ ¼ 2p

l+
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vDHf

2a‘CpTmG

s
: (16.29)

Solving for l+, and grouping some of the material constants, yields the central result

of marginal stability theory, namely that

l+ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffi
2a‘d0

v

r
; (16.30)

where the length scale, d0, has been introduced into Eqn (16.30) that is proportional to

the capillary length8 G. This branching length is defined as,

d0 h
CpTmG

DHf

: (16.31)

If both sides of Eqn (16.30) are squared, and the terms rearranged, a scaling law for

dendritic growth results, which is similar to that discussed in Section 16.3.6.1, namely,

vl+2 ¼ 4p2
�
2a‘d0

� ¼ const: (16.32)

Langer and Müller-Krumbhaar suggested that a dendrite tip operates just within

the margin of stability, whereas the remainder of the dendritic interface grows in an

unstable, time-dependent manner, producing waves that amplify into side arms, or

branches. As their stability analysis is linear, and approximates the tip shape as a

plane, issues such as branch location and spacing, and their growth rate are not

addressed.

Eqn (16.32) predicts that the speed of the dendrite tip multiplied by the square of the

marginally stable wavelength is a constant, independent of the supercooling. Langer and

Müller-Krumbhaar’s idea that the tip of a dendrite operates at the margin of stability

suggests that the tip grows as large as possible without experiencing instability, or

splitting. Their hypothesis for the dendritic operating state is one of “noise-mediated”

stability and provides a basis for their guess that Rtipzl+. The approximation symbol

applied here between the observable tip radius, Rtip, and the unobservable marginal

wavelength, l+, helps underscore an important fact: namely, linear morphological sta-

bility analysis was developed to test initially simple interfacial “basis shapes” (i.e.,

planes, spheres, and cylinders) that can become cellularly unstable, and not for dendrites

8The small variation of the magnitude of d0 among materials as diverse as metals, semiconductors,

ceramics, and polymers, also suggests that dendritic crystals tend to exhibit similar morphological

characteristics among different materials classes.
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that evolve as non-linear dynamic structures that pass through several stages of shape

changes.

Nevertheless, by accepting, tentatively, that marginal stability selects an accurate

dynamic state for a dendrite tip, also allows the scaling law, Eqn (16.32), to be restated in

terms of the volumetric crystal growth rate at the dendrite tip,

2a‘d0

vR2
tip

¼ 1

4p2
y 0:025: (16.33)

The dendritic scaling law, vR2¼ const., has several useful applications. It permits

estimates to be made of the spatial scales for chemical segregation in cast microstruc-

tures, and can help relate cast materials properties to several key solidification variables,

including pouring temperature, cooling rate, and alloy composition.

The selection, or stability, constant, 1/4p2, that appears in Eqn (16.33) is usually

designated s+ in the literature. The approximate theoretical value for s+ varies from

about 0.0192� 0.005 to 0.0253� 0.005, depending on details of the stability analysis.

Experimental checks of s+ show, however, that its value is not a constant for a given test

material, but falls slowly with increasing melt supercooling, as confirmed by experi-

mental measurements of steady-state dendritic growth carried out under microgravity

conditions [99–100].9

16.3.6.3 Estimating y and Rtip
Ivantsov’s transport solution, Eqn (16.14) and Eqn (16.33)— the scaling law derived from

marginal stability theory—are sufficient to predict an operating state of a steady-state

dendrite. One can summarize these independent equations as follows:

Dendritic transport theory : vRtip ¼ 2a‘Iv
�1
�
Dw
�
; (16.34)

Linear interface stability : vR2
tip ¼ 2a‘s

+d0: (16.35)

Solving Eqns (16.34) and (16.35) simultaneously for the values of the dendrite’s

operating velocity, v+, and radius, R+
tip, gives

v+ ¼ 2a‘

s+d0

�
Iv�1

�
Dw
��2

; (16.36)

and

R+
tip ¼ s+d0

Iv�1ðDwÞ : (16.37)

The operating state (tip speed and radius as a function of supercooling) of a dendrite

growing in a pure melt can be expressed in their dimensional form as,

9Experimental support for the scaling law given by Eqn (16.33) does not, however, test all the important

elements of dendritic growth theory that are based on selective noise amplification. This scaling law

verifies only that heat and mass diffusion and interface capillarity comprise significant aspects of the

physics of dendritic growth, which are broad conclusions that seem to be valid, provided that the melt

supercooling is not large.
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v+ y 0:018

 
a‘TmDS

2
f

cpgs‘U

!
Dw2:5; (16.38)

and

R+
tip y 55

 
cpgs‘U

TmDS2
f

!
Dw�1:25: (16.39)

Equations (16.38) and (16.39) remain valid for values of the dimensionless super-

cooling, Dw, over which most free dendritic growth experiments are carried out

(0.01�Dw� 0.3). At values of Dw� 0.01, stability theory reduces to a pair of linked power

laws: v+ ¼ KvDw
2, and R+

tip ¼ KRDw
�1, so the scaling law, Eqn (16.35), still holds, viz., v �

R+2
tip ¼ KvK

2
R ¼ const. As a practical matter, however, the thermal boundary layer sur-

rounding a slowly growing dendrite at low supercooling widens sufficiently that the

crystal’s growth kinetics becomes extremely sensitive to even minor convective motions

in the melt. Such dendrites, observed in any realistic experimental setting, would no

longer be considered as “freely growing” and “isolated” from their environment.

16.3.7 Numerical Methods

Analytic models of crystal growth are more and more supplanted by computer simula-

tions capable of including many more kinetic and thermodynamic factors. Simulations

yield graphical displays and numerical outputs that provide great versatility and con-

venience for foundry engineers and crystal growers analyzing the process. Moreover,

advances in simulation methods, as well as major improvements in machine speed and

memory—some accomplished just over the past decade—now allow credible simulation

of alloy casting. Compare the realistic simulations exhibited in Figure 16.5 with the

simplified analytical model sketched in Figure 16.9. Microstructure simulations employ

sophisticated algorithms, currently offered through continuum level set and phase-field

methods, as well as by cellular automata and finite elements. Even discrete molecular

dynamics captured by Monte Carlo methods, as shown Figure 16.6, prove useful for

modeling dendritic growth. Commercial solidification codes are now applied routinely

in foundries to improve vastly the detail and accuracy of many kinds of simulated so-

lidification processes. Such codes are becoming increasingly capable of making useful

and accurate predictions down to the grain-scale of cast microstructures, but do not yet

capture details of the dendritic structure.

Phase-field models solve coupled partial differential equations describing the kinetics

of crystal growth [127–132]. Although phase-field approaches remain fundamentally-

based continuum calculations [25, 36], and offer seemingly boundless capability to

incorporate time-dependent complexities, such as dendritic branching and coarsening,

their impressive and realistic-looking results are not always straightforward to interpret

mechanistically. This difficulty arises firstly from the abstract potentials and parameters

required to carry out phase-field and level-set computations, which do not always

identify easily with commonly known macroscopic system parameters, including latent
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heat, interfacial energy density, thermal diffusivity, etc. In addition, phase field simu-

lations require demanding algorithmic trade-offs that are made to achieve acceptable

resolution of the wide spatial scales to be captured that include a dendrite’s macroscopic

form, along with adequate temporal resolution of the motion of its molecularly thin

solid-liquid interface. All that and avoiding excessive computational cost are afforded by

continuum phase-field models, which certainly place them among the leading choices as

future microstructural models of complex crystal growth and solidification processes.

Increased computational speed, parallel processing, andmassivememory storage, also

combine to permit practical application of statistical mechanical models, such as

employing kineticMonte Carlomethods to simulate dendritic growth, “atom by atom,” so

to speak. For example, a kinetic Monte Carlo model, developed by T. P. Schulze, uses a

million ‘atoms’ (voxels) to simulate earlystage microscopic processes associated with

dendritic growth, including nucleation, interface formation and organization, lattice fields

and anisotropy, surface diffusion and side-branching [133,134]. These fundamental

modeling efforts will doubtless help contribute knowledge about the microscopic physics

of dendritic crystal growth at yet smaller length scales than have been probed to date.

16.3.8 Other Kinetic Limitations

At large supercooling and supersaturation—i.e., at values of Dw approaching or

exceeding, unity—the assumption of local equilibrium at a dendrite’s crystal-melt

interface fails, and may no longer be used as an approximation in formulating growth

theories at large supercooling. Dendritic growth enters the kinetic realm of “far-from-

equilibrium” solidification, where crystal growth processes based on such large de-

partures from local equilibrium are termed rapid solidification processing (RSP). Rapid

solidification and deep melt supercooling are crystal growth situations accompanied by

a variety of interesting non-equilibrium kinetic phenomena, many aspects of which

depend sensitively on the chemistry of the melt and details of the resultant crystal

structure. For more comprehensive reviews of rapid solidification, deep supercooling of

melts, and detailed discussions on rapid crystallization concepts and techniques see

references [102–108].

Kinetic processes induced by rapid interface motion during dendritic growth of highly

supercooled metallic melts, or even by crystals growing more slowly from viscous,

covalently- or anisotropically-bonded network melts cooled to temperatures low enough

to approach their glass transitions [109], behave in ways quite different from near-

equilibrium crystal growth described thus far. Crystal-melt interfaces under extreme

supercooling continue to dissipate some of the available melt free energy, first by pro-

ducing entropy needed to transport the heat and solute rejected from the crystal-melt

interface, by transport processes already described in Section 16.3.2. Such far-from-

equilibrium interfaces also “re-allocate” a portion of the available free energy into

other modes sequestered, or “stored”, within the growing crystal. Free-energy storage via

line and surface defects, or excess monovacancies raises the chemical potential of the
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resultant metastable crystalline structure above that of its equilibrium phase, and

correspondingly lowers its solidus temperature.

Stored free energy induced by rapid dendritic freezing may variously appear in the

form of lattice dislocations; stacking faults; sub-boundaries; solute trapping; excess va-

cancy concentrations and lattice disorder; and even quasi-crystal and glass-phase for-

mation [110]. These interesting non-equilibrium effects were studied experimentally

from the mid-1980s to the present by D. Herlach and co-workers, using drop tubes and

other containerless melting and crystallization devices to access deep supercooling.

Their investigations include most of the major non-equilibrium kinetic effects discov-

ered during rapid dendritic growth of metallic [22], semiconductor [111], and glass-

forming alloys subject to extreme supercooling [112–121]. Laser and electron beam

melting experiments, as alternatives to form thin supercooled films that crystallize

rapidly, also contributed much useful kinetic information on solute trapping and other

far-from-equilibrium processes; however, thin film crystallization studies fall outside the

scope of the present chapter.

To date only a few elements have been reported as successfully crystallized beyond

the onset of hypercooling. Two early examples of hypercooled melts include 1) a-white

phosphorus, P4, (DThyp¼ 25.1 K) that forms a melt consisting of P4 molecules, which

crystallizes to a complex a-manganese cubic phase [49], and 2) small drops (0.15 g) of

molten Ga that were hypercooled with respect to both gallium’s b-phase (DThyp¼ 88 K)

[122], and to its a-phase (DThyp¼ 189 K) [123]. Herlach also confirmed that hypercooling

was achieved in large drops of molten transition metals, including Mo (DThyp¼ 585 K),

Fe (DThyp¼ 311 K), and Ni (DThyp¼ 480 K) [22]. Perepezko and coworkers, using fine

droplet dispersions of pure metals in fluxes to suppress surface nucleation, reported the

onset of hypercooling in Hg (DThyp¼ 79 K) and In (DThyp¼ 105 K) [124]. A few alloy melts

have been successfully hypercooled, including Pb-Bi and Zr-Cu [125], but many alloy

melts when cooled rapidly to the supercooled state, especially those exhibiting deep

eutectic valleys in their phase diagrams, are prone to glass formation with, or without,

partial crystallization [126].

Two examples of experimental studies of hindered molecular attachment caused by

fast dendritic growth in non-network (simple molecular) melts, coupled with the onset of

increasing melt viscosity from deep supercooling, are presented together in Figure 16.16.

Both of these kinetic effects dissipate much of the available free energy during crystalli-

zation. They also can add sufficient interfacial “drag”, or resistance, inhibiting crystal

growth to the point where the growth speed slows even at increasing supercooling! Such

effects are more commonly observed in polymer melts and oxide glasses, but are seldom

seen in simple molecular melts or metallic alloys that crystallize congruently.

The dendritic growth speeds of a-P4, and equimolar Zr-Cu, an alloy melt which

freezes congruently, are plotted together in Figure 16.16 as functions of their dimen-

sionless melt supercooling, Dw, or Stefan number. Despite the much lower thermal

diffusivity of P4, its dendrites achieve speeds above 350 cm-s�1, whereas molten metallic

Zr-Cu, with its much higher thermal conductivity, exhibits dendritic growth speeds
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limited to only 2.5 cm-s�1. The thermal gradients developed at the crystal-melt interface

in molten a-P4, supercooled beyond its onset of hypercooling at DT� 25.1 K, are enor-

mous, exceeding 2� 106 K/cm. Clearly, this example of rapid dendritic crystal growth is

removed so far from the condition of local equilibrium that estimates of its kinetic

behavior based on conventional transport theory would be misleading.

16.4 Branching
16.4.1 Stochastics

Branching is a basic morphological characteristic of dendrites that seems well described

theoretically by various analytical and numerical growth models [135–137]. Yet, dendritic

branching still remains curiously uncertain fromadeepermechanistic standpoint, despite

its historical utility in correlating cooling rates in cast alloys using the secondary side-

branch spacing [138]. The reason for uncertainty in the branching mechanism is that

models for dendritic growth, such as marginal stability, described in Section 16.3.6.2,

consistently consider branching as a randomly induced, noise-related phenomenon. In

FIGURE 16.16 Dendritic growth speed versus supercooling for (cubic) a-P4 [49] and equimolar Zr-Cu alloy,
reference [111]. Supercooling is expressed here dimensionlessly as the Stefan number, St ¼ DT

DHf =Cp
. Hypercooling

occurs when St� 1. Interface speeds up to 350 cm-s�1 were observed for a-P4, which forms a melt with low ther-
mal diffusivity, compared to a maximum growth speed of only 2.5 cm-s�1 in Zr-Cu, which has a much higher
(metallic) thermal diffusivity. Data here suggest that the combined dissipative kinetics of hindered molecular
attachment, plus latent heat transport to the melt, operate continuously for a-P4 over the supercooling range
0.5� St� 1.5. Beyond St¼ 1.5, a fall-off is observed from the linear behavior between speed and supercooling as
the P4 melt viscosity rises gradually with supercooling. By contrast, dendrites crystallizing from equimolar Zr–Cu,
(DThyp¼ 202 K), show a precipitous drop in speed beyond St¼ 1 from the rapid increase in its melt viscosity as its
glass-transition is approached.
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the specific case of marginal stability, the crystal-melt interface is tested for stability by

applying linear perturbation theory, wherein the interface reacts dynamically to a broad

spectrum of small-amplitude sinusoidal disturbances. Recall that the marginal wave-

number, k+, is selected as it separates higher wavenumber interfacial perturbations that

decay uneventfully, from lower wavenumber disturbances that result in instability. Thus,

wave-like interfacial branches on dendrites are assumed to be “selectively-amplified”

interfacial noise. For visualization of dynamic instability at a planar crystal-melt interface

undergoing first cellular instability, then dendritic growth, see again the sequence shown

inFigure 16.2. Thenotion of a stochastic origin for dendritic branching is also reinforcedby

the fact that some numerical models of dendritic growth actually require the addition of

noise—either numerical, thermodynamic, or extrinsic in origin—to stimulate the growth

dynamics and produce side branches that resemble those in experiments.

Study of morphological stability using non-linear analyses [139–141], augmented by

accurate non-linear numerical simulations [142,143] seem well-grounded in their

explanation of the onset of stages of cellular instabilities from low-amplitude pertur-

bations at growing crystal-melt interfaces to deep cell formation [144]. As a cautionary

note, however, it was also demonstrated experimentally over 40 years ago [145] that

some interfacial structures arise as instabilities during crystal growth that are not

stimulated by noise and random fluctuations, but depend instead on persistent distur-

bances caused by the presence of crystalline imperfections interacting with the interface.

Examples of such “persistent disturbances” include the initial network of grooves

marking the traces of sub-boundary intersections with the interface, as well as localized

shallow pits, or dimples, from individual dislocation cores threading through the

interface.

Other experimental observation relevant to dendritic branching and stability were

made in the late 1970s by studying the precise forms of free dendrites [95,96]. S.C.

Huang and the present author found that dendrite tips for a given substance behaved

self-similarly: that is, their steady-state profiles are identical, except for scale, and

remain so independent of the melt supercooling. Self-similarity did not, however,

also hold for the adjacent branching and coarsening that occur behind the advancing

tip, as would be otherwise suggested by stability models based on amplification of

selected noise. More specifically, Figure 16.17 shows a series of micrographs of SCN

dendrites photographed while growing from their melt over a wide (20-fold) range of

supercooling and a 500-fold range of tip speeds. The magnification of these micro-

graphs is adjusted in Figure 16.17 so the tip radii appear to be identical, i.e., display

self-similarity. Were branching induced through selective amplification of noise

acting under the single transport field surrounding each dendrite, then the subse-

quent branching sequence should also scale self-similarly, as do the tips themselves.

Instead, one notes that at progressively higher supercooling side branches make

their initial appearance closer and closer to the tip, by amplifying faster—which is a

non-self-similar behavior, suggestive of a causal mechanism different from that

acting at the tip.
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As will be discussed in the next section, dendritic branching appears instead to be

stimulated by a persistent interfacial perturbation that travels along with the tip, and not

by random noise selectively amplified over differing wavenumber ranges by the exterior

(Ivantsov) field. The origin of these persistent perturbations was not recognized until

recently [146–148].

16.4.2 Deterministic Branching

16.4.2.1 Background
About ten years ago, a numerical model capable of accurately computing complex

diffusion-limited microstructures patterns was developed by J. Lowengrub and his col-

laborators [149–153]. Their numerical model solves Laplace’s equation in two- or three-

dimensions for a crystal growing in a melt, under some prescribed far-field temperature

or flux. Their numerical code accurately tracks the evolution of a sharp interface, by

summing, as integral equations, the field responses produced by a dense distribution of

Green function heat sources distributed along the interface. Capillarity and interface

attachment kinetics were included in their model.

What proved especially interesting for our purposes using Lowengrub and Li’s dy-

namic numerical model is that it is virtually noise free. Their model, devoid of any

significant noise, and with zero interfacial energy anisotropy, simulated complex pat-

terns evolving from simple starting shapes, similar to those observed when two fluids of

differing viscosity interpenetrate in Hele-Shaw cells [154–156]. When interfacial anisot-

ropy was introduced into their model, it simulated noise-free dendritic crystals growth

patterns. As demonstrated in Figure 16.18, Lowengrub and Li showed that their model

evolves noise-free dendritics in two dimensions from simple starting shapes, including

circles and ellipses, or in three dimensions from spheres, providing that some anisotropy

was included either in the crystal-melt interfacial energy density, or the interface

mobility [157]. These noise-free simulation data were related back to earlier

FIGURE 16.17 Branch amplification on SCN dendrites growing at different supercoolings. Self-similar branching, at
the same relative locations, would be expected if branching were caused by selective amplification of noise.
Horizontal dashed lines indicate observed locations for the first discernible branches on the plan view. Vertical
white bars show locations of the first discernible branches that are growing normal to the plane of these micro-
graphs. Both observations show incursion of branching.
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experimental observations of capillary-induced shape changes in the melting of small

ellipsoidal crystals in microgravity [158], which were eventually shown to be relevant to

the same mechanism of persistent perturbations stimulating dendritic branching [159].

16.4.2.2 Interface Energy Conservation
The origin of persistent perturbations that induce dendritic branching may be identified

by a general analysis of energy conservation for a two-phase crystal-melt domain con-

taining a curved, time-dependent, interface, S(t). This analysis follows, by analogy, a

mass conservation model developed by Spencer et al. [160] to track surface diffusion of

mobile species during solid-state phase transformation.

Total time differentiation of all the energies contained within a two-phase crystal-

melt domain, both those within the phase volumes and their interface, yields a form of

the Leibniz-Reynolds energy transport theorem [161,162]. The bi-phase domain is

subject to “contraction”, a procedure that excludes the volumetric energies, but retains

surface energies on the evolving crystal-melt interface, S(t), around which the sur-

rounding phases remain in local equilibrium.

Energy conservation applied to the crystal-melt interface, SðtÞ, is expressed by the

following integral, which reveals four rates of energy change that collectively cancel at

every point along the evolving interface:ZZ
SðtÞ

"
�
�
ksV

/

½Ts	sðtÞ þ k‘V
/

½T‘	sðtÞ
�

$ n!þ DHf

U
v!$ n!þ gð4ÞHð4Þ v!$ n!þ

X2
m¼1

V
/

m $ Jm

#
dA ¼ 0:

(16.40)

Solid

Liquid

FIGURE 16.18 Dynamic evolution of a dendrite in two dimensions (R2) from a projecting “bump” (upper row,
left), simulated by Lowengrub and Li using their integral equation solver in a noise-free numerical environment.
Computational results such as these raised questions concerning the broadly accepted view that dendritic
branching is a result of selective amplification of noise impressed on the interface.
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The terms appearing in the integrand of Eqn (16.40) are as follows:

1. �ðksV
/
½Ts	SðtÞ þ k‘V

/
½T‘	SðtÞÞ $ n! is the sum of heat flux components normal to the

interface that are conducted to, or from, the adjacent solid (s) and liquid (l) by

their respective thermal gradients, kiV
/
½Ti	sðtÞ.

2. DHf

U v!$ n! is the rate of latent heat released, or absorbed, from crystallization or

melting, at an interface point moving at speed v!$ n!. Here v! is the local interface

velocity, and n! is the unit normal vector at that point on the interface, directed to-

ward the melt.

3. gð4ÞHð4Þ v!$ n! is the rate of interfacial “stretching,” which accounts for the rate

that energy is stored or released, as interfacial regions with mean curvature Hð4Þ
either increase or decrease their areas, respectively.

4.
P

V
/

m $ Jm is the scalar sum of the surface divergences of capillary-mediated

tangential heat fluxes on an interface. These fluxes are directed along each

surface coordinate, m¼ 1,2, containing the principal curvatures, km. Note that

for “ruled” interfaces, to be considered shortly, only one (in-plane) curvature, k,

exists.

We also note that term 3, the interface stretching (storage) rate, remains small

provided the interface is not too irregular. This restriction remains valid for typical

mesoscale structures such as dendrites. Once multiple branching or splitting occur,

however, the interface becomes rumpled, and energy storage by “stretching’ could

make a non-trivial contribution to the local energy balance.

Now, limiting Eqn (16.40) to just the remaining three rates of energy exchange,

i.e., terms 1, 2, and 4, the Stefan energy balance reduces to

�
�
ksV

/

½Ts	sðtÞ þ k‘V
/

½T‘	sðtÞ
�
$ n!þ DHf

U
v!$ n!þ

X2
m¼1

V
/

m $ Jm ¼ 0; (16.41)

The “standard” Stefan energy balance used in theories of crystal growth contains only

the first two terms appearing in Eqn (16.41), where term 1, heat conduction to or from

the bulk phases, balances term 2, the latent heat release [46, 163]. The last term in Eqn

(16.41), as revealed by the Leibniz-Reynolds theorem, also affects the local

Stefan balance, as a persistent perturbation. We designate this term as the capillary bias

field, which represents a weak, capillary-mediated source of energy that derives from

the surface divergence of the tangential thermal fluxes along principal curvature di-

rections on the interface. Tangential fluxes, such as Jm, are normally dismissed as

“unimportant,” insofar as they do not contribute to the net rate of phase trans-

formation. Although this statement remains true, one finds that the surface divergences

of the tangential fluxes provide additional rates of energy release, or withdrawal, along

the interface. We now proceed to show that the scalar bias field affects the local

interface velocity without affecting the global, or net, transformation rate over the total

interface. This energetic interaction provides the perturbative mechanism that induces

interfacial branching.
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16.4.2.3 Time Scales
The capillary bias field, Eð4Þ ¼ V

/

m $ Jm, as shown in the next section, derives straight-

forwardly from classical capillarity, combining with the rate of latent heat release to

modulate the local interface motion. Both the capillary bias field and latent heat release

involve extremely fast microscopic processes occurring at the molecular level, on or

adjacent to the interface: i.e., 1) the capillary bias field derives from gradients in the

Gibbs-Thomson-Herring potential (discussed in detail in Section 16.4.2.5) that reflect

local interfacial equilibrium established by molecules exchanging across the interface,

and 2) the latent heat results from molecular phase transition events, as melt molecules

arrive and join the growing crystal. By contrast, thermal conduction, the first term in the

Stefan balance, Eqn (16.41), changes relatively slowly in time, as it requires long-range

macroscopic diffusion over many millions of molecules. The large disparity in the

time scales for heat conduction, compared to the fast generation of latent heat, allows

the capillary bias field and phase change energy to combine on short time scales as a

total local energy rate. This total energy release rate is balanced by the more slowly

varying macroscopic heat conduction term. The effect of this energetic combination—

latent heat modified by capillary energy—is to perturb the interface at special points

where the bias field changes sign.

Consequently, if the bias field, responding to the local interface shape and orienta-

tion, results in a positive deposition of energy that adds to the latent heat term, with the

latter proportional to the interface speed, then the interface slows slightly to satisfy the

Stefan energy balance, which is dominated by the slowly changing thermal conduction

field. Vice versa, if the bias field results in energy removal, and reduces the total heat

release, then the interface accelerates slightly to boost the latent heat and interface speed

and allow energy balance with the conduction term. In summary, the bias field tracks the

fast-changing GTH equilibrium potential distribution. Its energy rate, which may be

positive or negative, perturbs the latent heat production rate by modulating the interface

normal speed. In this manner, microscopic and macroscopic processes always remains

in balance.

Even more importantly, where the bias field changes sign, it establishes a persistent

“disturbance” that induces branching by inflecting the interface. The details of this

deterministic branching mechanism will be explained next. Thus, it is capillarity that

provides coupling of fast-changing rates of energy, linking the local interface configu-

ration with the interface speed and latent heat release. This critically important per-

turbative interaction occurs during dendritic growth, but is overlooked in conventional

crystal growth theory, despite the fact that careful thermodynamic analyses of interfaces

[173,164] had already clearly identified all the terms appearing in Eqns (16.40) and

(16.41).

16.4.2.4 Interface Capillarity
The surface energy density of a crystal-melt interface is normally anisotropic, as it re-

flects the directional molecular fields established by the underlying crystal lattice
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[165–167]. We treat the simple example of a circular interface in two dimensions

enclosing a growing crystal. This crystal is subject to anisotropic surface energy density,

but as it is growing, the interface may not relax toward its full equilibrium Wulff form—

which represents the sole circumstance under which the GTH interface potential be-

comes uniform. Instead it evolves dynamically. See Figure 16.19. The anisotropy of the

crystal’s interfacial energy density is described by g(4), where the normal angle, 4¼ 0,

aligns with the positive x-axis, which orients the interface normals, n, to the crystalline

axes. The energy density, g(4), is chosen, again for simplicity, as a two-dimensional

convex graph, with 4-fold harmonics and pairs of maxima aligned along the circle’s

x- and y-axes. These maxima are located at corresponding interface orientations 4¼ (0,p)

and 4 ¼
�

p
2;

3p
2

	
, respectively. The anisotropic energy density is, therefore, chosen as

gð4Þ ¼ g0ð1þ ε cos 4 4Þ; (16.42)

where g0 is the modulus, or angularly averaged energy density over the interface. The

amount, or strength, of 4-fold anisotropy, is specified by ε. To avoid concerns about

“missing” orientations i.e., jumps in the normal vectors caused by equilibrium faceting,

the energy densities allowed for the purposes of this discussion are restricted to convex

graphs [168,169], which limit the maximum amplitude of 4-fold anisotropy to ε � 1=15.

16.4.2.5 Local Equilibrium
The chief assumption employed in this model of deterministic dynamic branching is

that local—not global—equilibrium prevails along the interface, which contacts the

FIGURE 16.19 A circular crystal-melt
interface (thick curve on Cartesian axes)
x2þ y2¼ a2, where a is the crystal’s initial
radius, and the corresponding convex
polar plot (thin curve) of the 4-fold
interfacial energy density, Eqn (16.42).
This initially circular crystal, which is
growing, is not the Wulff shape required
at global equilibrium, and thus the initial
interface depicted here, and its
subsequent evolved dynamic shapes,
achieve only local equilibrium via the
Gibbs–Thomson–Herring temperature
distribution. The quantity gð4Þ

g0
, plotted on

polar coordinates, is the anisotropic
interfacial energy density, g(4), scaled to
its angular average, or modulus, g0. Were
the crystal not forced to grow, it would
relax toward its equilibrium Wulff form,
which is a shape congruent with the
pedal transform of the convex gamma-
plot shown here (light polar contour).
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surrounding melt at uniform pressure. Local equilibrium will prevail if, and only if, the

interfacial temperature follows the Gibbs–Thomson–Herring (GTH) equilibrium condi-

tion [165, 166]. Global equilibrium, by contrast, requires minimization of the system’s

free energy, a process which is precluded here by dynamic crystal growth. The GTH

condition, a necessary, but insufficient, condition for global equilibrium [167–169],

derives from the Euler–Lagrange variational principle [170, 171]. Thus, the local inter-

facial temperature, Tint(4,t), is prescribed at each point by the GTH condition through

the local interface curvature, k(4), and its orientation-dependent energy density, g(4). As

such, the GTH temperature distribution along the interface depends only on its shape

and local crystallographic orientation, n(4), as

Tintð4; tÞ ¼ Tm � Tmg0U

DHf

�
gð4Þ þ g4;4

g0

	
kð4; tÞ: (16.43)

The term Tm, appearing on the right-hand side of Eqn (16.43), denoted the equilib-

rium temperature on a planar crystal-melt interface at the same melt pressure; the term

g4,4 is the second derivative of the interfacial energy density, g(4), with respect to the

normal angle. Rearrangement of Eqn (16.43) leads to the definition of the dimensionless

GTH thermal potential along the interface,

wð4; tÞhTintð4; tÞ � Tm

Tm

¼ lc

a

�
gð4Þ þ g4;4

g0

	bkð4; tÞ; (16.44)

where lc
a ¼ g0U

aDHf
is the system’s capillary constant, and bkð4Þhakð4Þ is the dimensionless

curvature of the interface, where a is the radius of the initial circular interface.

Our choice of 4-fold interfacial anisotropy, Eqn (16.42), and the GTH equilibrium

constraint, Eqn (16.44), may be combined to yield the harmonic form for the thermo-

dynamic potential existing momentarily along the evolving circular interface, namely,

wð4; εÞ ¼ lc

a
½15ε cosð44Þ � 1	 ðt ¼ 0Þ: (16.45)

The anisotropy strength appearing in the interfacial energy density, ε, as already

explained in Section 16.4.2.4, is limited here to values less than 1/15. This choice avoids

possible formation of equilibrium facets.

16.4.3 Interfacial Gradients and Fluxes

Gradients of the GTH temperature field, or thermal potential, always occur along a

curved crystal–liquid interface, save for two related exceptions representing global

equilibrium: 1) circular interfaces with isotropic interfacial energy, or 2) So-called

“Wulff shapes” evolved with their corresponding anisotropic energy densities [169].

We choose the case of a circular interface of radius a, with 4-fold anisotropic energy,

εs 0, to demonstrate the action of bias-field effects. Consequently, the spatially varying

equilibrium temperature along such a circular interface supports the presence of

tangential interfacial gradients. Temperature continuity between the crystal and the
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adjacent melt also imply identical tangential gradients impressed on the bulk phases

where they meet.

The general form for the tangential thermal gradient, G
!

sð4Þ, induced by capillarity is

found by differentiating the GTH thermal field, either Eqn (16.43) or (16.44), with respect

to the interfacial arc length, s(4). The interfacial temperature gradient in the positive i.e.,

anti-clockwise 4-direction may be found conveniently by first differentiating the GTH

temperature field with respect to its normal angle, 4, and then applying the chain rule by

multiplying that derivative by v4/vs¼ k(4). Carrying out these operations sequentially on

Eqn (16.44) yields the tangential thermal gradient along any smoothly curved crystal-

melt interface in R2,

G
!

sð4Þ ¼ lcTm

a2
bkð4Þ2

24�g4 þ g4;4;4

g0

	
þ
�
gð4Þ þ g4;4

g0

	 bk4bkð4Þ
35 s!: (16.46)

Here s! is a unit tangent vector pointing in the anti-clockwise direction along the

interface,with crystal located on the left, andmelt located on the right, and the subscripted

4-notation indicating the various orders of differentiation with respect to the normal angle.

The tangential thermal flux, J
!

sð4Þ, associated with this interfacial gradient field may

be calculated from Eqn (16.46) by applying Fourier’s law of heat conduction to the

interfacial region, namely,

J
!

s

�
4
� ¼ �kint G

!
s

�
4
�
: (16.47)

The crystal-melt interface is modeled as a smoothly curved surface with a non-zero

thermal conductivity, kint, which bears units of [J/K-s], so as to be compatible with the

units of the corresponding tangential energy fluxes that are [J/m-s]. The interfacial

conductivity is a “composite” transport property reflecting the passage of thermal energy

through the region where the crystalline and melt phases meet. Few details are known at

present about this interfacial transport property, except that one might estimate it as an

average response by the bulk phases to a gradient impressed along their respective

surfaces. By contrast, surface diffusion coefficients for mobile species diffusing over

crystalline interfaces have been measured and reported for more than a century [172].

Their thermal analogy, kint, although seldom discussed, has been exposed by careful

analyses of interface thermodynamics, e.g., Caroli et al. [173], and clearly implied by

analogy in kinetic studies of surface evolution by Mullins [174] and Spencer et al. [160].

Application of the tangential flux expression, Eqn (16.47), to the specific case of a

circular interface subject to 4-fold anisotropic interfacial energy density gives its

tangential energy flux as

J
!

sð4Þ ¼ �60

�
kintTmlc

a2

	
ε sin 4 4 s!: (16.48)

A tangential flux, such as J
!

sð4Þ, cannot alter the overall, or net, transformation rate of

the initial circular crystal, because its net rate of growth is determined solely by its

surrounding transport field, which provides normal thermal gradients that conduct away
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the latent heat to the surrounding melt. Nevertheless, the surface divergence of the

vector tangential flux, V
/

s $ J
!

sð4Þ, which equals (minus) the scalar bias field, locally

deposits and removes energy from the interface, causing, as already explained in Section

16.4.2.3, perturbation of the local interface speed without altering the crystal’s overall

growth rate. This feature is another interesting attribute of the capillary bias field: it

modulates local growth rates without affecting the overall growth rate. The bias field,

even for non-circular shapes, remains a net zero energy field, and thus only perturbs the

interface dynamics locally.

16.4.4 Bias Field

We now analyze the exact initial forms of the capillary bias field, Eð4; 0Þ, acting on a

circular interface, to predict the early stages of pattern evolution, namely, where

branching initiates on a circular crystal exhibiting 4-fold anisotropy.

The bias field can be determined analytically by taking the surface divergence of

(minus) the vector tangential flux, Eqn (16.48). This is accomplished by differentiating

the tangential flux field with respect to its normal angle, 4, and again applying the chain

rule by multiplying that result by v4/vs¼ k(4). That procedure yields an analytic

expression for the initial bias field, acting on the circular interface at t¼ 0, namely,

Eð4; 0Þ ¼ �V
/

s $ J
!

sð4Þ ¼ 240

�
kintTmlc

a3

	
ε cos 44: (16.49)

Inspection of the Stefan balance, Eqn (16.41), shows that if the conduction term is

momentarily considered as constant (at least for the brief interval needed to establish local

equilibrium) then the algebraic sumof the bias field energy rate plus the latent heat release

rate also remains constant. If the bias field were positive at a point on the interface

(contributing energy) the latent heat term would be decreased by slightly lowering the

local interface speed, v $ n!. Conversely, if the bias field energy rate were negative

(removing energy) the local interface speed would increase commensurately to balance

the (momentarily constant) conduction term with a slightly larger release of latent heat.

16.4.4.1 Dynamic Responses
Figure 16.20 shows a polar plot of the analytically predicted initial interface response to

the bias field, equation Eqn (16.49), for a small anisotropy, ε ¼ 0:005, acting on the

circular interface. Recalling that the interface accelerates slightly where Eð4; 0Þ < 0, and

is retarded where Eð4; 0Þ > 0, one predicts a total of eight initial inflection points that

develop around the circular interface, each separating interfacial segments where out-

ward acceleration switches to retardation. Precisely the same behavior is noted

dynamically in Figure 16.21, where the predicted four branches (eight inflection points)

appear in the first two video panels displayed on the top row. These two panels represent

the initial circle (Frame 001), and an early stage of its dynamically evolved shape is

observed seventy-five frames later (Frame 76), where four prominent bumps form, as

predicted analytically from the bias field mechanism.
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As time increases, the roots of the bias field drift outward toward the tips of the initial

four bumps, where another sixteen inflections occur, causing eight new bumps to

develop, as shown in the third video panel of the top row (Frame 94). Later, as the dy-

namic shape becomes increasingly ramified, it couples more strongly with the exterior

transport field and accelerates the process of branching. The initial four bumps have by

now clearly evolved into primary stems, and sixteen more inflections, and eight new side

bumps form along the extending tips at positions where the roots of the bias field

stimulate additional inflections of the interface. The second panel on the lower row

shows that the tips of the primary stems no longer exhibit semi-circular tip profiles, as

they did along the top row, but are beginning to look more like parabolic tips. That

important change is evident in the last panel, where a distinctly parabolic tip begins

“sprouting” periodic side branches. Still not understood is the dynamic synchronization

of the bias field roots with the tip motion, which leads to a branching pattern suggestive

of a periodic “limit cycle,” which produces the classical dendritic morphology [144].

One means to check quantitatively the bias-field analysis developed here is to

compare its predictions against dynamic simulations of the same starting shape.

Accurate measurements of the inflection points developed in the early dynamic pattern

allow retrospective analysis by measuring their drift backward in time toward the

starting shape. This procedure independently tests the analytical estimate of the early

FIGURE 16.20 Local effects of
capillary-mediated bias field on an
initially circular crystal-melt
interface (thin unit circle). The
initial distortions of a circular
interface with anisotropy are
actually independent of the
anisotropy strength, ε, and consist
of local segments of interfacial
acceleration and retardation,
separated by the eight roots of the
bias field function, Eqn (16.49).
Compare the analytical branching
predictions (thick curve) with
dynamic results displayed in
Figure 16.21, top row, first two
frames from left (dynamic video
frames 001 and 076).
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pattern evolution using several arbitrary initial shapes. In this manner one reveals the

dynamic interface perturbations that autonomously modified the initial form into its

time-sequence of dynamic shapes. Convergence to a few tenths of a percent of the

numerical and analytical procedures for several elliptical shapes (not detailed here)

reveal that capillary-mediated bias fields are the likely deterministic cause of branching

in dendrites.

16.4.4.2 Dendritic Branching
Zeros, or roots, of the bias energy field are especially important near dendrite tips, as

they designate interfacial locations where the local change in the interface speed also

undergoes a sign change. As local acceleration in interface speed boosts curvature,

whereas local retardation in interface speed decreases curvature, an inflection, or “twist”

develops. Figure 16.22 shows quantitatively how deposition and removal of bias field

energy induce interface inflection over time. The adjacency along the interface of

FIGURE 16.21 Progression of noise-free dynamic frames showing pattern evolution of an initially circular crystal,
in local equilibrium, with a weak 4-fold anisotropy (ε¼ 0.005). The total pattern area (black pixels) developed in
this simulation are kept constant in time for ease of comparison. Analytical results, shown in Figure 16.20, are in
agreement with the simulated sequence shown in the first two panels on the top row. The lower row of frames,
taken later in the simulation, produce a progression of branches that appear eventually to synchronize with the
advancing (parabolic) tip and establish a “limit cycle.” Video data for dynamic frame extractions produced by J.
Lowengrub and S. Li [175].
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simultaneous retardation and acceleration of the local normal velocity stimulates in-

flection and branching. The examples shown here in Figure 16.22 is a hyperbolic pro-

tuberance, with a bias field that has a small 4-fold anisotropy.

16.5 Summary
This chapter reviewed selected areas of the history, applications, and scientific state of

knowledge concerning the field of dendritic crystal growth—a crystalline form of

considerable scientific and technological importance. Dendrites that appear in crystal-

line materials as diverse as snow flakes, minerals, casting alloys, chemicals, and super-

alloys, are broadly the result of diffusion-limited crystal growth that leads to complex,

and often beautiful tree-like forms. As discussed and developed in this chapter, theo-

retical descriptions of dendritic growth generally entail a combination of transport

theory, i.e., heat conduction, melt convection, and species diffusion—all, incidentally,

well understood subjects—with microscopic interfacial processes that include capil-

larity, molecular interface attachment, and viscosity-limited melt mobility, which

remain as subjects of active, ongoing materials research. As pointed out with specific

industrial successes, such as directional freezing of alloys, single crystal castings, and

large-scale crystallization of commodity chemicals, our limitations in the scientific un-

derstanding of growth kinetics and pattern formation has neither stifled technological

progress, nor limited innovation in materials processing that involve dendritic growth at

some stage of their production or use. That scientific progress will accelerate in the near

term is virtually assured, especially with constant improvements and maturation of

numerical simulation techniques, which include phase field, as well as other continuum

FIGURE 16.22 Initiation of deterministic branching near a hyperbolic tip with weak 4-fold anisotropy (ε¼0.005).
The zeros, Eð4+Þ ¼ 0, locate the positions on the interface where the sign of the bias energy changes. Bias field
zeros induce inflection, or “twisting”, of the interface by retarding the interface where E � 0, and advancing the
interface where E � 0. The persistent negative field aft of the roots produces small humps on the interface that
develop over time into side branches.
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models, quantum-level molecular dynamics, and, recently, statistical methods realized

through large-scale kinetic Monte Carlo calculations. The next decade of scientific and

technological progress in this area of crystal growth may yet prove to be the most

impressive. This author looks forward to seeing those anticipated scientific advances and

associated technological improvements unfold in time.
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17.1 Introduction
Grain growth is an important phenomenon in the solidification of silicon for photovoltaic

applications. In the photovoltaic market, solar cells made of polycrystalline Si (commonly

called multicrystalline Si, or mc-Si) are themain products both now and potentially in the

future because of their production cost, storage of raw materials, safety, reliability, and

energy conversion efficiency of solar cells. The crystal structure of anmc-Si ingot obtained

by casting based on a unidirectional solidification technique is markedly different from

that of an Si single crystal (sc-Si) grown by the Czochralski (CZ) method. The formation of

grain boundaries and the distribution of crystallographic orientations prevent the reali-

zation of high-efficiency solar cells. A reduction of grain boundary density can significantly

improve the energy conversion efficiency of solar cells because some grain boundaries

serve as recombination centers of photocarriers. Once an mc-Si ingot is obtained by

casting, it is hard to drastically change its grain size in the solid state. Therefore, it is

necessary to control grain size during the solidification process. For this reason, funda-

mental studies of grain growth have attracted attention recently.
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Generally, there are two processes for crystal grains to propagate themselves during

the growth of an ingot, as schematically shown in Figure 17.1: nucleation–growth, which

occurs on the bottom wall of the crucible in the earlier stage of growth, and unidirec-

tional growth, which occurs after the formation of the bottom part of the ingot. In the

former, each crystal grain can grow after nucleation on the crucible wall until it impinges

on other crystal grains; in the latter, some crystal grains competitively grow laterally in

the direction of ingot growth until the completion of unidirectional solidification.

In this chapter, the grain growth phenomenon during the growth of a bulk poly-

crystalline ingot will be described, with a focus on the growth of an mc-Si ingot. To

understand the kinetics of phase transformation from the liquid phase to solid phase

from a macroscopic viewpoint, the Kolmogorov-Johnson-Mehl-Avrami equation will be

explained first. Next, a general expression of the growth rate of a crystal grain in melt

growth and the growth mechanism of a faceted dendrite, which is often observed in the

growth of an mc-Si ingot, will be described. Finally, grain growth phenomena during

unidirectional growth will be introduced. The growth mode on the atomic scale related

to surface kinetics, such as step advancement, two-dimensional nucleation–growth, or

spiral growth, will not be described in this chapter to avoid overlapping with other

chapters.

17.2 Kinetics of Nucleation–Growth
In the early stage of the growth of a polycrystalline ingot, nucleation–growth occurs on

the bottom wall of the crucible, as shown in Figure 17.1 (left). First, we should consider

this phase transformation from the macroscopic viewpoint. Göler and Sachs

MeltMeltM

Nucleation-growth process

Crystal grain

Crucible

Direction of ingot growth
Unidirectional growth process

Crystal grain
Melt

Top view Side view

Melt

Expanding to lateral direc�on

Grain boundaries

Figure 17.1 Growth of a polycrystalline ingot.
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theoretically studied nucleation–growth for the first time in the 1930s [1]. Then,

Kolmogorov [2], Johnson and Mehl [3], and Avrami [4–6] developed the kinetics of this

phase transformation. They obtained a similar result, which we now express with the

Kolmogorov-Johnson-Mehl-Avrami theory (KJMA theory). Their general ideas, including

the historical background of the development of the kinetics of the phase trans-

formation, were explained in detail by Koiwa [7–10]. In this section, derivations of the

KJMA theory will be shown, following the explanation described in Refs. [7,9,10].

17.2.1 Time Relations for Nucleation–Growth [1]

Nucleation occurs when a melt is cooled to a temperature T below the melting point TM,

and small crystal grains grow with the advancement of the crystallization front, as shown

in Figure 17.2. For simplicity, we consider the case of a constant nucleation frequency

and a constant crystal growth rate. When a nucleus formed at time s isotropically grows

at a constant rate R, the volume of the crystal v at time t is given as

vðt; sÞ ¼
�
4pR3

3

�
ðt � sÞ3: (17.1)

Because the nucleation occurs only in the remaining melt V0� V(t), the total volume of

the crystal V(t) is

V ðtÞ ¼
Z t

0

vðt; sÞNv½V0 � V ðsÞ�ds; (17.2)

where Nv is the nucleation frequency per unit volume and unit time.

When the total volume is normalized as V0¼ 1, the volume of the remaining melt U(t)

is given as

UðtÞ ¼ 1� V ðtÞ; (17.3)

and

UðtÞ ¼ 1�
�
4pNvR

3

3

�Z t

0

UðsÞðt � sÞ3ds: (17.4)

Melt

Crystal

Figure 17.2 Early stage of nucleation–growth.
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The solution of the integral equation Eqn (17.4) is given as

UðtÞ ¼ cosh pt $ cos pt; (17.5)

V ðtÞ ¼ 1�UðtÞ ¼ 1� cosh pt $ cos pt; (17.6)

p4 ¼ 2pNvR
3: (17.7)

This solution has physical significance at 0� t� tr (hp/2p) because the crystallization

finishes when U(t)¼ 0 and V(t)¼ 1 at t¼ tr.

Figure 17.3 shows the time dependence of V(t) obtained by Eqn (17.6). For com-

parison, the result based on Eqn (17.8) derived by the KJMA theory, which will be

explained in the next section, is also shown in Figure 17.3. In the above treatment, the

impingement of growing crystals was not considered. Therefore, Eqn (17.6) correctly

represents only the very early stage of crystallization; thus, the difference of both results

in Figure 17.3 becomes remarkable in the later stage. The problem of such impingement

was independently studied by Kolmogorov, Johnson and Mehl, and Avrami.

17.2.2 KJMA Theory

As shown in Figure 17.4, the main problem of the impingement of growing crystal grains

is how to treat the overlapping of two or more crystal grains. For this problem, the

theoretical approaches by Kolmogorov [2], Johnson and Mehl [3], and Avrami [4–6] gave

one and the same solution, which is described as

V ¼ 1� expð�KtnÞ: (17.8)

Equation (17.8) was individually derived by the geometrical approach of Johnson and

Mehl [3] and Avrami [4–6] and by the probabilistic approach of Kolmogorov [2]. In the

following, these derivations of Eqn (17.8) will be described.

Figure 17.3 Progress of crystallization. Comparison of the result based on Eqn (17.6) and on the KJMA theory
expressed as the form of Eqn (17.8). KJMA, Kolmogorov-Johnson-Mehl-Avrami.
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17.2.2.1 Geometric Approach of Johnson/Mehl and Avrami
We consider the overlapping of crystal grains, as shown by the shadowed areas in

Figure 17.4, and assume that there is no interaction among growing crystals. Now, the

extended-volume Vex (as expressed by Avrami), which is the volume at which the phase

transformation finished, is considered as follows: In the calculation of Vex, the volume of

the shadowed region is counted in response to the number of overlapping crystals. When

two crystals overlap, the volume of the shadowed region is counted twice. When n

crystals overlap, it will be counted n times.

Now, let us consider the relationship between dVex and V, where dVex is the variation

in Vex between the time t and tþ dt, and V is the volume at which the phase trans-

formation finished. When we choose one point inside the total volume, the probability

that the chosen point is the point in the region where the phase transformation is not

finished is (1� V). Therefore, if dVex appears in the entire range of total volume with

equivalent probabilities, the following relationship is established:

dV ¼ ð1� V ÞdVex: (17.9)

dVex always appears as spherical shells surrounding spherical crystals, as shown in

Figure 17.5.

Melt

Crystal 
grain

Figure 17.4 Overlapping of growing crystal grains [4].

Figure 17.5 Impingement of crystal grains in nucleation–growth. The rings represent the increase in volume
in time dt: in ring ①, all of the increase is effective; in ring ③, none of the increase is effective; in ring ②,
only the part of the increase (hatched area) lying outside all other grains is effective. From the appendix in
Ref. [3].
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Johnson and Mehl considered that, if we calculate the extended volume Vex by

permitting the assumption that nucleation occurs not only in the untransformed region

but also in the transformed region (assuming a phantom nucleus), the completely

randomized condition will be satisfied. Thus, we can use

Vex ¼
Z t

0

vðt; sÞNðsÞds (17.10)

instead of Eqn (17.2). N(s) is the nucleation frequency.

The integration of Eqn (17.9) gives

V ¼ 1� expð�VexÞ: (17.11)

When the nucleation rate Nv and the growth rate R are constant, Vex is described as

Eqn (17.12) from Eqn (17.10):

Vex ¼
�p
3

�
NvR

3t4: (17.12)

Therefore,

V ¼ 1� exp
�
� p

3
NvR

3t4
�
: (17.13)

Equation (17.13) was derived by Johnson and Mehl.

Avrami also used Eqns (17.10) and (17.11) to derive the relationship between Vex and

V, similarly to Johnson and Mehl. However, the treatment of the time dependence of the

nucleation rate differed between them; Johnson and Mehl assumed a constant nucle-

ation rate as above, whereas Avrami considered that the nucleation rate is dependent on

time. Avrami assumed that there are “germ nuclei” that serve as the basis of the growth,

and that these nuclei are consumed as the reaction proceeds. When we neglect the case

in which germ nuclei are swallowed up by growing crystal grains during transformation,

the number of germ nuclei is given by N0 exp(�nt); thus, the nucleation rate at the unit

untransformed volume and unit time is given by nN0 exp(�nt). In this case, the rela-

tionship between Vex and V is derived as follows.

When we use s¼ nt instead of time t and the constant growth rate R for simplicity, the

extended volume is described as

Vex ¼ sa3N0

Zs

0

ðs� zÞ3e�zdz (17.14)

where ah R/n and s is a constant related to the shape of the crystal grain. The

integration of Eqn (17.14) is

Vex ¼ 6sR3N0

n3

�
e�s � 1þ s� s2

2!
þ s3

3!

�
hb3E3ð� sÞ (17.15)
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where

b3h6sN0ðR=nÞ3

Emð�xÞ ¼ 1

m!

Zx

0

ðx � zÞme�zdz

¼ ð�1Þmþ1

�
e�x � 1þ x/ð�1Þmþ1x

m

m!

�
:

(17.16)

In the case of two-dimensional grains (e.g., platelike grains with a very small thickness),

m¼ 2. For one-dimensional grains (e.g., fine lines), m¼ 1.

Here, e�s is developed as

e�s ¼ 1� sþ s2
�
2!� s3

�
3!þ s4

�
4!þ/: (17.17)

Therefore, when s is very small,

Vexxb3s
4
�
4! ¼ sR3N0nt

4
�
4: (17.18)

When s becomes larger, the term s3 becomes more dominant than the terms e�s, s, and
s2; then,

Vexzb3s
3
�
3! ¼ sR3N0nt

3: (17.19)

Therefore, the transformation proceeds with time as

V ¼ 1� expð�VexÞ ¼ 1� expð�ktnÞ: (17.20)

When s is small and the nucleation rate is constant, Eqn (17.20) corresponds to Eqn

(17.13) derived by Johnson and Mehl.

The values of n are 4～3 for three-dimensional growth, 3～2 for two-dimensional

growth, and 2～1 for one-dimensional growth.

17.2.2.2 Probabilistic Approach of Kolmogorov
Kolmogorov’s paper [2] was published in 1937, before Johnson and Mehl [3] and Avrami

[4–6]. However, it was difficult for many people to read it because it was published in

Russian. Here, we summarize Kolmogorov’s approach on the basis of the explanations in

Refs. [10,11].

Here, we consider the probability q(t) that an arbitrarily chosen point P in the melt

has not crystallized at time t. If nucleation occurs at another point P0 at time s (s< t),

the radius of the nucleus becomes R(t� s) at time t when the growth rate is R. The

point P is included in the crystallized region at Rðt � sÞ > PP0. Thus, if nucleation

occurs at time t0 (s< t0 < t) in the spherical region around P, P is included in the

crystallized region at time t, as shown in Figure 17.6. The volume of the spherical

region around P is described as v(s)¼ (4p/3)R3(t� s)3. Now, the probability that at

least one nucleus will form in the time interval Ds in the volume v(s) is given by Nv v(s)
Ds, and the probability that a nucleus will not form in Ds in v(s) is given by 1�Nv v(s)
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Ds. The probability for P to be outside a crystallized region at time t from the beginning

of the process is given by

qðtÞ ¼
Yn
i¼1

ð1�Nv vðiDsÞ DsÞ; (17.21)

where t¼ nDs and si¼ iDs. Taking the logarithm of Eqn (17.21) yields

ln qðtÞ ¼
Xn
i¼1

ln ð1�NvvðiDsÞDsÞ ¼ �
Xn
i¼1

NvvðiDsÞDs ¼ �Nv

Z t

0

vðsÞds ¼ �NvU: (17.22)

U ¼
Z t

0

vðsÞds ¼ 4p

3
R3

Z t

0

ðt � sÞ3ds ¼ p

3
R3t4:

The volume of the remaining melt U(t) is given as

UðtÞ ¼ qðtÞ ¼ e�NvU ¼ exp
�
� p

3
NvR

3t4
�
: (17.23)

Therefore, the transformed volume V(t) is

V ðtÞ ¼ 1� qðtÞ
¼ 1� exp

h
� p

3
NvR

3t4
i
:

(17.24)

Equation (17.24) is in agreement with Eqn (17.13) derived by Johnson and Mehl.

As described above, the kinetics of phase transformation during nucleation–growth

were individually derived by Kolmogorov, Johnson and Mehl, and Avrami. Their

approaches were different but the equations they obtained were similar. These equations

led to the KJMA equation.

Finally, let us introduce the simplest derivation of Eqn (17.11) by Hillert, which was

also introduced by Koiwa [7,10] as follows.

P
P’

Melt

R (t τ)

Figure 17.6 Calculation of the probability of finding an arbitrarily chosen point P in a crystallized region.
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We consider the case that the phase transformation proceeds in the system with a

total volume V. The ratio at which phase transformation was completed is expressed

by f. Suppose there are spherical particles of volumes y1, y2, etc. at time t. We assume

that, even if the impingement of these particles occurs, they will maintain their volume

with the same shape as when they grow without impingement. The probability that a

certain point is outside the volume y1 is 1� y1/V. The probability that it is outside all the

volumes is 1� f, but also

Y�
1� yi

V

�
:

When each nodule is much smaller than the total system V, we obtain

ln
�
1� f

�
¼

X
ln ð1� yi=V Þy�

X yi

V
: (17.25)

If the number of nuclei is N at t¼ 0, then

X
yi=V ¼ N $

4p

3
r3V ¼ N

V
$
4

3
pR3t3; (17.26)

If the nucleation rate is constant Nv, then

X
yn=V ¼

Z
Nv

V
$
4p

3
R3ðt � sÞ3ds ¼ Nv

V
$
4

3
pR3t4: (17.27)

Here,
P

yn ¼ Vex: thus, we immediately obtain

f ¼ 1� exp ð�VexÞ: (17.28)

Again, Eqn (17.28) corresponds to Eqn (17.13).

The time relations for the nucleation–growth process considered by Kolmogorov,

Johnson andMehl, and Avrami show that this process is expressed in the formof Eqn (17.8).

In the unidirectional growth of an mc-Si ingot, the phenomenon treated in this

section appears in the earlier stage at the bottom wall of the crucible, as shown in the left

of Figure 17.1. In actuality, the total time taken for this process is dependent on the

growth rate of crystal grains, which will be considered in the next section.

17.3 Growth Rate of Crystal Grains in Melt
Growth [11,12]

The kinetics of phase transformation during nucleation–growth were described from the

macroscopic viewpoint in the previous section. Here, we consider the growth rate R of

each crystal grain during melt growth. The growth of a crystal grain containing twin

boundaries, the so-called faceted dendrite, is also described, which often appears in the

melt growth of silicon and germanium.

17.3.1 Wilson-Frenkel Formula

When the melt temperature T is reduced to below the melting point TM, a crystal grain

born from a melt grows until it impinges on another crystal grain [11,12]. The grain
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growth is driven by the second law of thermodynamics to minimize the Gibbs free

energy G at a given temperature T1 and a pressure p.

At the melting point TM, the Gibbs free energies of the liquid (GL) and solid (GS)

phases cross each other, as shown in Figure 17.7:

GSðTM;pÞ ¼ GLðTM;pÞ; (17.29)

HSðTM;pÞ � TMSSðTM;pÞ ¼ HLðTM;pÞ � TMSLðTM;pÞ; (17.30)

where H and S are the enthalpy and entropy, respectively. The latent heat L generated at

the melting point corresponds to the enthalpy difference between the liquid and solid

phases as L¼HL(TM, p)�HS(TM, p); thus, L is proportional to the entropy difference

DS¼ SL(TM, p)� SS(TM, p):

L ¼ HL �HS ¼ TMDS: (17.31)

Because S is the temperature derivative of Gibbs free energy as S¼�(vG/vT)p, Eqn

(17.31) is written as

�
vGL

vT

�
p

�
�
vGS

vT

�
p

¼ � L

TM

: (17.32)

Equation (17.32) shows that the phase transition with a latent heat is associated with the

discontinuity in the slope of Gibbs free energy.

The growth of crystal grains in a melt occurs below the melting point to minimize

Gibbs free energy; thus, the driving force of grain growth is the difference in Gibbs free

energy between the melt and the crystal: DG¼GL(T, p)�GS(T, p). When the under-

cooling DT¼ TM� T is small, the driving force is approximately described as

DGz

�
vGL

vT

�
p

ðT � TMÞ �
�
vGS

vT

�
p

ðT � TMÞ ¼ L
DT

TM

: (17.33)

Now, we consider the ideal growth rate R of a crystal grain, where we neglect the tem-

perature increase at the crystal/melt interface induced by the latent heat of crystalliza-

tion as well as by the roughness of the crystal surface at the crystal/melt interface. To

grow a crystal grain, atoms or molecules in the melt must be incorporated into the

T

G

TM

GL

GL

GS
GS

T1

Figure 17.7 Gibbs free energies of liquid (GL) and solid (GS) phases at constant pressure p as functions of
temperature T.

732 HANDBOOK OF CRYSTAL GROWTH



crystal grain at the crystal/melt interface. Now, we consider how atoms in the melt

become crystals. The density of a melt is not markedly different from that of a crystal—

that is, the numbers of atoms or molecules in a certain volume are not markedly

different between the melt and the crystal at the crystal/melt interface. In the case of

silicon or germanium, the density of the melt is higher than that of the crystal. In such a

situation, atoms change their positions mainly with a vibration of frequency n. To change

the configuration, atoms have to overcome the energy barrier Ed, and this probability is

expressed by exp(�Ed/kBT) at a temperature T, where kB is the Boltzmann constant.

Therefore, the rate of crystallization is given as n exp(�Ed/kBT). Considering the proba-

bility of melting at the crystal/melt interface, the growth rate of crystal grains is given as

R ¼ av exp

�
� Ed

kBT

��
1� exp

�
� Dm

kBT

��
; (17.34)

where a is the height of an atom and Dm is the difference in chemical potential between

the liquid and solid phases. Using the Einstein–Stokes relation [13],

a2v exp

�
� Ed

kBT

�
¼ D ¼ kBT

6pha
; (17.35)

where h and D are the liquid viscosity and diffusion constant, respectively. R is given as

R ¼ kBT

6pa2h

�
1� exp

�
� Dm

kBT

��
¼ K

�
1� exp

�
� Dm

kBT

��
: (17.36)

Equations (17.34) and (17.36) are called the Wilson-Frenkel formula [14,15] for melt

growth, and K¼ kBT/6pa
2h in Eqn (17.36) is called the kinetic coefficient. At a small

undercooling DT, R is approximated by

RzK
Dm

kBT
zKTDT ; (17.37)

where KT¼ Kl/kBTTM, with l¼ L/N being the latent heat per atom. Equation (17.37)

shows that the ideal growth rate of crystal grains is proportional to DT when the

undercooling of a melt is small.

In the above consideration, we did not consider any rate-determining processes in

crystallization. Generally, there are three processes that control the growth rate of crystal

grains [11,12]:

1. Surface kinetics: the process in which atoms in the melt are incorporated in the

crystal at the crystal/melt interface

2. Chemical diffusion: the process in which atoms in the melt are transported to the

crystal/melt interface

3. Heat conduction: the process in which latent heat released by crystallization is

transported away from the crystal/melt interface.

The ideal growth rate given by Eqn (17.37) is realized if all processes are sufficiently

fast. When one process is particularly slow, the growth rate of crystal grains is governed

by the slowest process. In actuality, the conduction of latent heat must govern the
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growth rate of crystal grains in melt growth. The surface kinetics at the crystal/melt

interface is also important in the melt growth of silicon or germanium, which has

anisotropic crystal/melt interfacial energies. The surface kinetics at an atomically

smooth crystal/melt interface and an atomically rough crystal/melt interface must be

different. However, such a difference related to the growth mode will not be treated in

this chapter; a detailed explanation is provided in Chapter 9 of Volume IA.

17.3.2 Heat Conduction Process

As shown in Eqn (17.37), the growth of crystal grains occurs in an undercooled melt at a

temperature T1. The latent heat L is released at the growth front with grain growth. The

growth of crystal grains is driven by the difference between the Gibbs free energies of the

crystal and melt:

DG ¼ GL � GS ¼ L
TM � T1

TM

; (17.38)

where GL and GS are the Gibbs free energies per volume of the melt and crystal,

respectively, and L is the latent heat per volume. However, in actuality, the temperature

at the crystal/melt interface increases to a temperature Ti by the release of the latent

heat, as schematically shown in Figure 17.8. Therefore, the driving force of crystal growth

at the crystal/melt interface reduces to DGi¼ L(TM� Ti)/TM. If the crystal surface at the

crystal/melt interface is rough, the growth rate is proportional to DGi following the

Wilson-Frenkel formula:

Rx ¼ KT ðTM � TiÞ; (17.39)

with KT as the kinetic constant.

The heat flow J should be proportional to the temperature gradient VT as

J ¼ �kVT ; (17.40)

where k is the thermal conductivity. The temperature change at a certain position is

Cp

vT

vt
þ V $ J ¼ 0; (17.41)

Crystal/melt interface x

T

T1

Ti

TM

Crystal Melt

Figure 17.8 Temperature field around the crystal/melt interface of growing crystal grains.
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where Cp is the specific heat per volume. From Eqns (17.12) and (17.13), the thermal

diffusion equation is given as

vT

vt
¼ DTV

2T : (17.42)

Here, DT¼ k/Cp is called the temperature conductivity. Although it is considered here

that the heat is transported only in the melt for simplicity, heat transport also occurs in

the crystal.

When the crystal grain is growing at Rx, the latent heat released per unit area in unit

time is LRx. This heat is transported by heat flow in the x-direction as

LRx ¼ �kðx $VÞTh� kvxT : (17.43)

Now, consider that a crystal grain with a flat crystal/melt interface grows along the

x-direction, which is vertical to the interface plane (y–z plane) at a constant rate R. In this

case, the temperature is a function expressed as x0 ¼ x� Rt. Therefore, the temperature

change and position change with time are

vTðx0Þ
vt

¼ dT

dx0
vx0

vt
¼ �R

dT

dx0 ; (17.44a)

and

vT ðx0Þ
vx

¼ dT

dx0
vx0

vx
¼ dT

dx0 ; (17.44b)

respectively. From the thermal diffusion equation Eqn (17.42),

�R
dT

dx0 ¼ DT

d2T

dx02 : (17.45)

The solution of Eqn (17.45), which satisfies both conditions that the temperature at the

crystal/melt interface is Ti and that the temperature far from the interface (x/N) is T1, is

T
	
x; y; z; t


 ¼ Ti þ
	
T1 � Ti


	
1� e�Rðx�VtÞ=DT



: (17.46)

Here, the diffusion length lD is defined as

lD ¼ 2DT

R
: (17.47)

The heat flow J at the crystal/melt interface is

J ¼ �k
vT

vx

����
x¼Vt

¼ �kV
TN � Ti

DT

¼ �CpV ðTN � TiÞ: (17.48)

As latent heat is transported by this heat flow, Eqn (17.43) becomes

LR ¼ �CpR
	
TN � Ti



: (17.49)

Therefore, the temperature at the crystal/melt interface is Ti¼ TNþ L/Cp. From the

Wilson-Frenkel formula, growth rate is described as

R ¼ KT

	
TM � TN � L

�
Cp



: (17.50)
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The thermal field shown in Figure 17.8 is maintained when a growing crystal is sur-

rounded by an undercooled melt with a sufficiently large area. However, when a growing

crystal grain encounters another growing crystal grain, the thermal fields in front of the

crystal/melt interface overlap; thus, the temperature at the crystal/melt interface in-

creases, which leads to a decrease in the growth rate of crystal grains.

17.3.3 Growth of Crystals Containing Twin Boundaries

In this section, we consider the grain growth of a crystal containing twin boundaries.

Currently, it is recognized that many twin boundaries exist in an mc-Si ingot grown by

casting, which is widely used for solar cells. Silicon and germanium are typical faceted

materials with an anisotropic crystal/melt interfacial energy. Therefore, it seems that a

silicon or germanium crystal grain is bounded by {111} facet planes during its growth,

when a growing crystal grain is surrounded by a sufficiently undercooled melt. Twin

boundaries are often generated in a growing crystal because the grain boundary energy

of twin boundaries with a {111} boundary plane is quite low in silicon (i.e., 30 mJ/m3)

[16]. Many models of twin boundary formation have been proposed, as summarized in

Ref. [17]. When at least two {111} twin boundaries with a narrow spacing are generated in

a growing crystal, the crystal initially grows with a dendritic shape, which is the so-called

faceted dendrite. The unique growth behavior of a faceted dendrite was found in

germanium by Billig in 1955 [18]. To clarify the growth mechanism, we directly observed

the growth process of faceted dendrites from silicon melt by using an in situ observation

system consisting of a furnace and a microscope. Figure 17.9 shows one of our in situ

observation systems. A silicon sample was set in a crucible. The inside of the furnace was

evacuated using a rotary pump and then filled with argon gas. A temperature gradient

was formed in the furnace by setting the temperatures of the two heaters at different

In situ observa�on system

furnace

Carbon heater Carbon heater

Carbon sheetWater tube

Inside of the furnace

Si sample

Crucible

microscope

Figure 17.9 In situ observation system.
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values during the heating and cooling processes. It is also able to promote the unidi-

rectional growth by inserting a water tube. Crystallization processes were recorded on

videotape or computer. We could clearly observe the growth process of faceted dendrite,

as shown in Figure 17.10. The features of a faceted dendrite are different from dendrites

of metallic alloys in terms of the following [19–27]:

1. Its surface is bounded by {111} facet planes.

2. At least two parallel {111} twin boundaries exist at its center.

3. Its preferential growth direction is h112i or h110i. (Hereafter, dendrites with these

growth directions will be expressed as h112i and h110i dendrites, respectively.)
The growth rate of a faceted dendrite is much higher than that of a crystal with no

twin boundaries, as shown in Figure 17.10.

The growth model of h112i dendrites was proposed in 1960 [20,21]; it was improved

on the basis of observations of the growth of h112i and h110i dendrites [28,29].

Figure 17.11 shows the growth shapes of h112i and h110i dendrites observed from h110i
or h112i direction (upper figures) and h111i direction (lower figures). The features of

growth shapes of h112i and h110i dendrites were clarified by observations of growing

dendrites from the direction perpendicular to the {111} twin boundaries:

• Triangular corners with an angle of 60� are formed at the tip of faceted dendrites.

• The direction of the 60� corners alternately changes from outward to forward in

the direction of growth.

• The tip of h112i dendrites becomes wider during their growth, whereas that of

h110i dendrites remains narrow.

Before considering the growth mechanism of faceted dendrites, let us consider the

effect of twin boundaries on crystal growth. Crystals bounded by {111} facet planes

containing no twin boundaries and one twin boundary are shown in Figure 17.12 [20].

1 mm

Si  melt

Faceted dendrite

Si crystal

Figure 17.10 Observation of growing faceted dendrite.
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When a twin boundary is formed in the growing crystal, reentrant corners with an angle

of 141� are formed at the growth surface, as shown in Figure 17.12 (upper right).

Now, the difference between the incorporation of atoms in a melt to a crystal at a

reentrant corner and that at aflat {111} surface shouldbe considered. Eachatom ina silicon

or germanium crystal has four bonds connected to neighboring atoms. We can consider

that an adatombecomes a “crystal” when half of its bonds are connected to other atoms at

the crystal/melt interface. When a crystal grows on a {111} surface (left panel of

Figure 17.13), three adatoms are required to form half of their bonds with each other and

the underlying crystal surface. On the other hand, a pair of adatoms can satisfy half of their

bonds with each other and the underlying crystal surface at the reentrant corner at a {111}

twin boundary (right panel of Figure 17.13). Therefore, it seems that the rapid growth in the

h112i direction occurs at a reentrant corner. When the rapid growth occurs at a reentrant

corner, triangular corners are formed eventually, as shown in Figure 17.12 (lower right). At

this moment, the reentrant corner disappears from the growth surface, and thus the rapid

growth of the crystal ceases. Therefore, continuous rapid growth like dendrite growth does

not occur in crystals containing only one twin boundary.

On the other hand, when a crystal contains at least two twin boundaries, the crystal can

continue its rapid growth (faceted dendrite growth). The growth scheme of the crystal with

Figure 17.11 Difference in the growth shape of h112i and h110i dendrites [29].
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two twin boundaries is described in Figure 17.14 [28–30]. The top views of the crystal

during growth are also shown in Figure 17.14. Figure 17.14-1 shows the equilibrium shape

of a crystal containing two twin boundaries of distance d. The crystal is bounded by {111}

facet planes. We consider that this crystal unidirectionally grows in the h112i direction for

simplicity. A reentrant corner with an angle of 141� is formed at an upper-side twin

boundary, whereas a cone with an angle of 219� is formed at a lower-side twin boundary.

The rapid growth occurs at the reentrant corner at a rate of Rtwin. The detailed growth

kinetics at the reentrant corner, including the kinetic constant, has not been clarified yet.

The rapid growth at the reentrant corner at the upper-side twin boundary leads to the

{111} facet plane

141°

Twin boundary

Ad-atoms
Ad-atoms

Melt Melt

Figure 17.13 Atomic incorporation at {111} facet plane (left) and reentrant corner (right).

141°

219°
111

111
111

111

112

219°

219°

Twin plane

Figure 17.12 Crystals containing no twin boundaries (left) and one twin boundary (right) bounded by {111} facet
planes. Rapid growth at a reentrant corner with an angle of 141� will lead to the formation of a triangular
corner at the growth tip (lower right) [20].
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formation of a triangular corner with an angle of 60�, and the reentrant corner disappears

from the crystal/melt interface (Figure 17.14-2). When the length required to form a

triangular corner is h, the time consumed in this process is t1¼ h/Rtwin. Although the rapid

growth is inhibited, the crystal grows continuously on a {111} flat surface at a rate of R111.

When the triangular crystal propagates across the lower-side twin boundary with a

consumed time of t2¼ d/R111, reentrant corners are newly formed at the lower-side twin

boundary (Figure 17.14-3). Again, rapid growth occurs there until the formation of a

triangular corner (t3¼ h/Rtwin), and then a crystal grows continuously on a {111} flat

surface (Figure 17.14-4). The reentrant corner is formed at the upper-side twin boundary,

again when the triangular crystal propagates across the upper-side twin boundary with a

consumed time of t4¼ d/R111 (Figure 17.14-5). After that, this cycle (from Figure 17.14-1 to

17.14-5) is repeated for the growth of the h112i dendrite. Figure 17.12 shows that the tip of

h112i dendrites becomes wider with further crystal growth, which was experimentally

confirmed by in situ observation [28,29]. The time consumed and growth length in this

t1 = h / R twin

twin

t2 = d / R 111

t3 = h / R

1

t4 = d / R 111

2

3

4

5

Figure 17.14 Growth scheme of h112i dendrites [28,29]. 1: Equilibrium shape of a crystal containing two twin
boundaries, which is bounded by f111g facet planes. 2: A triangular crystal is formed due to the rapid growth at
an upper-side twin boundary. Crystal growth can continue on the f111g flat surface, although the rapid growth is
inhibited because of the disappearance of a reentrant corner with an angle of 141�. 3: When the triangular
crystal propagates across the lower-side twin boundary, reentrant corners are formed at the lower-side twin
boundary. 4: Rapid growth occurs at reentrant corners formed at lower-side twin boundary. 5: The reentrant
corner is formed at the upper-side twin boundary when the triangular crystals propagate across the upper-side
twin boundary.
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cycle are 2(h/Rtwinþ d/R111) and h, respectively. Indeed, the growth on a {111} flat surface

always occurs during this cycle. Therefore, the growth rate of a faceted dendrite prefer-

entially grown in the h112i direction Rh112i is given as

Rh112i ¼ h

2ðh=Rtwin þ d=R111Þ þ R111: (17.51)

Equation (17.51) shows that the growth rate of dendrites is dependent on the twin

boundary spacing d. We could observe three dendrites grown in the same orientation at

the same solid/liquid interface, as shown in Figure 17.15 [30]. The growth rate of den-

drites was d1> d2> d3. The parallel twins observed at the center of d1, d2, and d3 were

measured by EBSP (Electron Back Scatter Diffraction Patterns) after crystallization, and

it was found that the twin boundary spacing was d3> d2> d1, as also shown in

Figure 17.15. These experimental results supported the prediction that the growth ve-

locity of dendrites depends on the twin boundary spacing.

Figure 17.16 shows the calculation results of the twin boundary spacing d depen-

dence of the growth rate of h112i dendrites, R112, using Eqn (17.51). In the calculation, h

and R111 were fixed at 1 and 1 mm/s, respectively, and Rtwin of 5 mm/s or 1000 mm/s was

used. It is shown that the growth rate of the dendrites abruptly increases with a decrease

in twin boundary spacing. On the other hand, when twin boundary spacing becomes

larger, the growth rate of the dendrites approaches the growth rate of the {111} facet

plane. It is often observed that the growth rate of faceted dendrites is more than 10 times

larger than that of normal crystals in experiments. This suggests the higher growth rate at

a reentrant corner. The growth rate at a reentrant corner, Rtwin, and the {111} facet plane,

R111, should depend on the growth mode. For the growth on the {111} facet plane, the

two-dimensional nucleation growth mode or step flow growth mode has been consid-

ered [31–33]; however, studies of this growth mode in melt growth remain limited.

Figure 17.15 Observation of three dendrites grown from the same interface at the same time (upper). Twin
boundary spacing in those dendrites was measured by EBSP (lower) [30].
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Therefore, the general consideration on the kinetics at the reentrant corner and {111}

face plane in melt growth seems worthy of study.

The growth scheme of faceted dendrites preferentially grown in the h110i direction is

also established by a similar growth scheme, and the shape of h110i dendrites grown

with a narrow tip is also represented, as shown in Figure 17.17 [29,30]. Note that reen-

trant corners always appear at both twin boundaries simultaneously in the growth of

h110i dendrites, although the reentrant corner alternately appears at each twin boundary

in the growth of h112i dendrites, as shown in Figure 17.14.

The fast growth of faceted dendrites will continue when the melt temperature in front

of the growth tip remains sufficiently lower than the melting point. However, when a

dendrite crystal grows along the crucible wall during nucleation–growth in the early

stage of unidirectional solidification, as in the situation given in the left panel of

Figure 17.1, the growing dendrite will encounter other crystal grains. Before the

impingement of the dendrite crystal and another crystal, their thermal fields formed by

the latent heat of solidification, shown in Figure 17.8, will overlap, and then the melt

temperature in front of the growth tip will increase. Therefore, the fast growth of the

faceted dendrite is suppressed and its tip flattens, as shown in Figure 17.18.

17.4 Grain Growth during Unidirectional Growth
of Polycrystalline Ingot

In the previous section, the grain growth behaviors that are mainly observed during

nucleation–growth were considered. In this section, the grain growth in the unidirec-

tional growth of a polycrystalline ingot after forming the bottom structures of the ingot,

as shown in Figure 17.1 (right panel), is considered. Generally, for example, in the growth
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Figure 17.16 Calculation of growth rate of h112i dendrites as functions of twin spacing.
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of multicrystalline Si ingots for solar cells, the melt at a crucible bottom is crystallized at

the beginning of the growth. Nucleation-growth occurs on the bottom wall of the cru-

cible. After the entire bottom wall of the crucible is covered by crystal grains, the crys-

tallization is promoted in the upper direction, as shown in the right panel of Figure 17.1.

1

2

3 4

5

Figure 17.17 Growth scheme of h110i dendrites [29]. 1: Equilibrium shape of crystal containing two twin
boundaries. It is considered that the crystal is growing only in the <110> direction. Reentrant corners with an
angle of 141� appear at both twin boundaries. 2: Triangular crystals are formed due to the rapid growth at both
twin boundaries. Crystal growth can continue on the {111} flat surface, although the rapid growth is inhibited
because of the disappearance of a reentrant corner with an angle of 141�. 3: When the triangular crystals
propagate across another twin boundary, two reentrant corners are newly formed at both twin boundaries. 4:
Rapid growth occurs at the two twin boundaries again, and triangular crystals are formed. 5: After propagation
of the triangular crystals, reentrant corners are formed at the both twin boundaries.

1 mm

Faceted dendrite

Crystal

Melt

Figure 17.18 Impingement of growing dendrite and crystal grain.
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In this unidirectional growth, some of the characteristics, such as grain orientation and

grain boundary characteristics, of crystal grains formed at the bottom will be transferred

to upper part of the ingot. On the other hand, structural changes also occur during

unidirectional growth; that is, various defects are generated and the nucleation of new

crystal grains occurs at the crystal/melt interface. Grain growth and grain shrinkage are

also observed in this process, as schematically shown in Figure 17.19. Some of the grains

expand in the lateral direction of ingot growth, and adjacent grains shrink with unidi-

rectional growth. For this phenomenon, studies are being conducted from both exper-

imental and theoretical viewpoints [34–36]. Here, only the simplest case will be

considered.

We consider the unidirectional growth of two crystal grains with one grain boundary

between them, as shown in the left panel of Figure 17.20. One crystal grain has the {111}

surface, which is an atomically smooth facet plane (h111i grain), and the other has the

{100} surface, which is an atomically rough plane (h100i grain), at the crystal/melt

interface. Both of the crystal/melt interfaces are flat macroscopically at the beginning.

Now, two simple cases are considered. In the first case, the temperature gradient in the

melt at the crystal/melt interface is negative (i.e., dT/dz< 0). In the second case, the

temperature gradient in the melt at the crystal/melt interface is positive (i.e., dT/dz> 0),

as indicated in the right panel of Figure 17.20. First, let us consider the case of the growth

in the negative temperature gradient (Figure 17.20, upper right). When the melt tem-

perature T1 is lower than the temperature at the crystal/melt interface, Ti, the pertur-

bation introduced into the flat interface is amplified at the {100} crystal/melt interface

owing to interface instability [37,38], and a zigzag interface bounded by {111} facet

planes is established finally. The interface instability of a flat interface, the so-called

Mullins-Sekerka instability [39,40], will be described in detail in another chapter. Such

morphological transformation observed at the {100} crystal/melt interface does not

occur at the {111} crystal/melt interface; thus, a flat interface is maintained. The zigzag

crystal/melt interface of h100i grain is located forward from the flat crystal/melt interface

Melt

Crucible

Grain boundaries

Expanding Shrinking

Figure 17.19 Grain growth (shrinkage) during unidirectional growth.
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of h111i grain at this moment. Therefore, the h100i grain can grow faster in a larger

amount of undercooling melt with a larger driving force, and it can also expand in the

lateral direction covering the h111i grain during unidirectional growth, as shown in

Figure 17.20 (upper right).

We next consider the second case, where the melt temperature T1 is higher than the

temperature at the crystal/melt interface, Ti. This situation is more similar to the real

unidirectional growth of ingots (Figure 17.19, lower right). Let us assume that the growth

rates of h100i and h111i grains are almost the same, and both crystal/melt interfaces are

located at the same position. Interface instability does not occur at the {100} crystal/melt

interface, owing to the positive temperature gradient. In this case, how does the grain

growth during unidirectional growth occur? If the crystal/melt interface is completely

straight for the two crystal grains, grain growth might not occur. However, a significant

groove is formed at the grain boundary, as shown in Figure 17.21. The groove shape at

the triple junction—that is, the grain-grain-melt—has been theoretically explained by

Duffar and Nadri [41,42]. One can imagine that groove shape affects the temperature

field at the crystal/melt interface, which determines which grain will expand during

unidirectional growth, as suggested by the simulation results [36].

The phenomena shown in Figure 17.20 were experimentally observed by in situ

observations [34]. In this experiment, two seed crystals of Si (100) and Si (111) were set in

parallel together with Si wafer chips in the crucible, as shown in Figure 17.22(A). The

sample was heated in the furnace of Figure 17.9. During the melting process, the wafer

chips and part of both seed crystals were melted by controlling the temperature gradient.

Before the seed crystals were completely melted, the sample was cooled at a steady rate
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Figure 17.20 Consideration of grain growth behavior during unidirectional growth.

Chapter 17 • Grain Growth in the Melt 745



and the crystal growth started at both seed crystals. One sample was cooled at 30 K/min

and the other was cooled at 1 K/min during the crystallization. Figure 17.22(B) and (C)

show the crystal/melt interfaces during crystal growth and scanning electron micro-

scopy (SEM) images after crystallization of the samples cooled at 30 K/min and 1 K/min,

respectively.

 {100}

 {111}

Si melt

Si seed crystals Crucible

1 mm

150 μm

Seed Growth directionGrowth direction

1 mm

{111} seed

{100} seed

300 μm

Seed

(A) (B) (C)

Figure 17.22 (A) Experimental setup of the sample for the growth at two seed crystals. (B) Crystal/melt interface
during unidirectional growth (upper) and an SEM image after crystallization (lower) of the sample cooled at
30 K/min. (C) Crystal/melt interface during unidirectional growth (upper) and an SEM image after crystallization
(lower) of the sample cooled at 1 K/min [34].

Si melt

Si crystal

Groove Groove

1 mm
D

irection of unidirectional grow
th 

Grain boundaryGrain boundary

Figure 17.21 Observation of grain boundary grooves at the crystal/melt interface of mc-Si.
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From Figure 17.22(B), it was found that the (100) crystal/melt interface became a

zigzag-faceted shape, whereas the (111) interface remained a flat shape at a larger

cooling rate. It was also found that the growth rate of (100) crystal was higher than that of

(111) grain. The SEM image in Figure 17.22(B) shows that the (100) grain gradually

extended to the lateral direction, covering the (111) grain. On the other hand, both

interfaces of (100) and (111) were flat and the growth rates of both grains were almost the

same in the sample cooled at 1 K/min, as shown in Figure 17.22(C). The SEM image in

Figure 17.22(C) showed that the (111) grain gradually extended to the lateral direction,

which was the opposite result of the sample cooled at 30 K/min.

Phase field simulations by Chen et al. [35] and Cantù et al. [36] showed that the shape

of the grain boundary groove at the crystal/melt interface influenced the grain growth

behaviors. It was also shown that the shape of the grain boundary groove at the

crystal/melt interface in mc-Si varies according to the orientations of grain boundary

and crystal/melt interface [34–36,41–45]. Further accumulation of experimental/theo-

retical evidence on the relationship between the grain boundary groove shape and grain

growth behavior is expected to increase the understanding of the grain growth phe-

nomena at the crystal/melt interface.

17.5 Concluding Remarks
The study of the crystal growth of Si single crystals has a long history involving the

Czochralski method and floating zone melting method. Now, high-quality Si single

crystals for LSI (Large Scale Integration) and solar cells are commercially provided. On

the other hand, there is a lot of room left for improvement of the crystal quality of mc-Si

ingot grown by casting. The control of the macro- and micro-structures, such as grain

size, grain orientation, grain boundary characteristics, dislocation/subgrain boundaries,

and impurity distribution, is required during the solidification processes. Grain growth,

as discussed in this chapter, is one of the phenomena that will affect the macro- and

micro-structures of the mc-Si ingot. Fortunately, studies on melt growth of mc-Si have

been untaken recently. It is expected that the accumulation of fundamental studies will

lead to the establishment of a technology for producing high-quality mc-Si ingots.
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18.1 Overview
The technology for semiconductor nanostructures has been progressing since Dr

Richard P. Feyman made a presentation entitled “There’s Plenty of Room at the Bottom”

in 1959 [1]. It is no exaggeration to say that the progress made with nanostructures and

their technologies followed advances in methods of crystal growth. Tremendous

advances in crystal growth methods have brought about rapid progress in device

applications, such as solid-state lighting (SSL) and electronics.

The advances in epitaxy in SSL led to the realization of blue light-emitting diodes

(LEDs), multicolored (from infrared to ultraviolet) light sources, and high-brightness

LEDs. White LEDs using blue LEDs have recently been commercialized in displays

and lighting, and SSL now needs more advanced materials that are low-cost and low-

power, and that achieve high levels of brightness with epitaxial techniques. Enlarged

active layers are required for high levels of power in planar LED architectures to high-

brightness LEDs. However, high-brightness LEDs with low levels of power need many

chips to be integrated because the intensity of LEDs is low, and this approach results in

high cost. Planar LED architectures will reach a limit because these demands on epitaxial

growth techniques are conflicting issues. Therefore, new architectures and nanocrystals

are being explored as building blocks for future low-cost, low-power, high-brightness

SSL because recent advances in epitaxial techniques have enabled low-dimensional

semiconductor nanocrystals to be formed. These semiconductor nanostructures ach-

ieve high-density integration of SSL at low costs with less power consumption.

Moreover, the nanostructures can achieve thresholdless lasing emissions [2,3].

The specific miniaturization of field-effect transistors (FETs) in electronic circuits is

now faced with serious problems in terms of huge power consumption because of

inherent issues they pose, such as an increased off-state current and enhanced

short-channel effects. In this regard, Si-based FET technologies are expected to change

their gate structures [4–6] and channel materials [7–9] to reduce power consumption in

nanoelectronic circuits while avoiding these inherent issues in the gate length of the

8-nm node. However, the technologies to achieve miniaturization have yet to be devel-

oped for mass-produced, small Si-based transistors (gate transistors <8 nm-length).

Advances in epitaxial techniques, such as heteroepitaxy on silicon platforms, are urgently

needed in this field to integrate nanometer-scale channels. Non-Si materials, such as

III-Vs and Ge, have higher carrier mobilities than that of Si. Several semiconductor

nanostructures attained by advances in epitaxy, such as selective-area epitaxy, would be

suitable for state-of-the-art FETs.

One of main reasons that Si has been the conventional material used for mass-

producing transistors since the invention of the transistor in 1947 is that it has

allowed excellent contact to be made between the interfaces of SiO2/Si. Therefore,

superior metal-oxide-semiconductor (MOS) junctions can be created in terms of elec-

trical properties. III-V compound semiconductors typified by GaAs, on the other hand,

have no useful oxides for fabricating MOS-type transistors. Mainstream semiconductor

750 HANDBOOK OF CRYSTAL GROWTH



technology has been broadly divided due to this situation into three aspects: Si-based

large-scale integrations (LSIs), optical devices that use III-V compound semiconductors,

and emerging devices, such as high electron mobility transistors (HEMTs), resonant

tunneling diodes (RTDs), and single electron transistors (SETs) using heterostructures in

the semiconductors, which is so-called band engineering. Of these three branches, the

latter two have progressed with the development of growth techniques such as molecular

beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE). It is now easy to

fabricate superlattices (SLs), which was predicted by Esaki and Tsu [10], with these growth

techniques. Expressed simply, these advances are directly related to the development of

methods of fabrication to produce III-V semiconductor nanostructures.

Semiconductor nanostructures are generally categorized into three types of nano-

structures: two-dimensional (2D) nanostructures (e.g., quantum wells (QWs)), one-

dimensional (1D) nanostructures (quantum wires (QWRs) and nanowires (NWs)), and

zero-dimensional (0D) nanostructures (quantum dots (QDs)), as shown in Figure 18.1.

QW structures have become the best established of these nanostructures since their

discovery by Esaki and Tsu in the 1970s [10]. They confine the motion of electrons or

holes in one dimension and allow free propagation in two dimensions when the

quantum well thickness is shrunk to the order of the de Broglie wavelength. In addition,

they can be used in band engineering by combining them with several semiconductor

QW structures. The applications of QWs have been commercialized in LEDs and HEMTs.

Studies on QDs have been rapidly expanding since it was found that self-organized

InAs quantum dots were formed in the Stranski-Krastanow (S-K) mode [11]. This

structure has a three-dimensional (3D)-confined density of states when dimensions are

FIGURE 18.1 Illustration for bulk, quantum wells (QWs), quantum wires (QWRs), and quantum dots (QDs) and
schematics for density of states (DOSs) for bulk, QWs, QWRs, and QDs.
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shrunk to the order of the de Broglie wavelength. Because QDs are zero-dimensional,

they have a sharper density of states than higher-dimensional structures [2]. As a

result, they have superior transport and optical properties and are being researched for

use in laser diodes [3], solar cells [12], and biological sensors.

There are two approaches to the application of QDs: the first is to create high-density

QDs and the second is to create single QDs at arbitrary positions. The former is an

approach to gain high-intensity luminescence from QDs. Sb-irradiation has been found

to achieve high-density QDs [13]. However, this approach achieves a single-photon

emission device [14] and single-electron tunneling (SET) using entangled QDs.

Position-controlled growth of InAs QDs is required to apply single QDs to applications.

Some approaches have aimed at forming single QDs in arbitrary positions. Fukui et al.

pioneered the field of position-controlled QD growth by using selective-area MOVPE

[15]. Their method used a combination of top-down and bottom-up approaches. In

addition, a single-photon emitter has been reported that uses a single QD [16], as formed

with a top-down approach. The high-temperature operation of a single-photon emission

of GaN QDs has also been reported [17].

Studies on 1D nanostructures are more mature than those on other dimensional

nanostructures. Wagner and Ellis investigated Si-whisker growth [18] in 1964. When the

dimensions of structures reach the de Broglie wavelength, the motion of electrons or

holes is confined in two spatial dimensions, which allows free propagation in the third

dimension. The potential and advantages of one-dimensional nanostructures used in

electronics and photonics have been evolving since the 1980s. Sakaki proposed in 1980

that 2D would improve the ballistic transport of electrons, which was related to the

shrinking of the other two dimensions of structures [19]. In addition, the conversion

from indirect bandgap to direct bandgap has been confirmed for Si 1D nanostructures

formed by anodization [20] in terms of the properties of matter.

1D nanostructures have greater flexibility for shaped dimensions because their

structures have both 2D and 0D nanostructures in their dimensions. In fact, 1D nano-

structures can be used as a constructive tray for other nanostructures. The early

investigations into 1D nanostructures focused on QWRs. Kapon demonstrated the

formation of QWRs via a self-assembling process in the late 1980s and developed a

high-quality QWR laser using V-grooves [21,22]. This laser involved the application of

QWs in a 1D nanostructure. The controlled formation of QWRs, in addition to V-grooves,

was demonstrated on vicinal surfaces. Hara et al. [23] and Miller et al. [24] pioneered

controlled epitaxial growth on vicinal surfaces to create different compositions directed

at different stripes—that is, theoretically to a fraction of the step length that occurred

from the miscut angle of vicinal surfaces. This led to the demonstration of vertical QWs

and band engineering for string-shaped superlattice structures.

The method of fabricating 1D nanostructures that was previously described is the

so-called bottom-up approach. The top-down approach has also been used for a long

time. One of the most intensively studied top-down approaches has been demonstrated

on 1D-0D-1D resonant tunneling devices and single-electron devices. The target of these
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kinds of devices has been to accomplish resonant tunneling, in which the emitter and

collector use a 1D nanostructure and the active regions or core parts of the device use

QDs. Reed et al. pioneered these types of devices [25] in the late 1980s, and Kita et al.

more recently reported Coulomb-blockades in single-electron devices [26]. The progress

made in 1D nanocrystals and their applications has been focused on so-called NWs in

addition to the developments achieved in QWRs. Although the basic concept underlying

NWs is the same as that behind the other 1D nanostructures previously mentioned, NWs

have an advantage in terms of electronic and optical functionality.

The primary issues in the growth of semiconductor nanocrystals, such as 1D and 0D

nanostructures, are to form uniform sizes and to arrange these structures at arbitrary

positions. This is not only to use device applications but also to characterize the optical

and electronic properties of the nanocrystals. Progress in selective-area epitaxy (SAE)

based on pure crystallographic properties is expected to play an important role in this

regard to resolve these issues. This chapter mainly focuses on the selective-area growth

(SAG) of semiconductor nanostructures and their applications.

18.2 Selective-Area Epitaxy
SAE is a kind of template method that involves a combination of bottom-up (epitaxial

growth) and top-down (lithography) approaches. The most common feature of SAE is

that all epitaxial methods can be implemented such as liquid-phase epitaxy (LPE),

MOVPE, and MBE to grow epitaxial thin film. This enables nanostructures to be fabri-

cated with lithographically defined positioning. The masks used with SAE are usually

amorphous films, such as SiO2 and SiNx. The SAE technique was developed in the early

1960s and was first used for Si-integrated circuits [27]. Tausch et al. were the first to

investigate the SAE of GaAs [28] in 1965, and Rai-Choudhury investigated the SAE of

GaAs by using a metal-organic source [29]. Then, Jones reported the SAE of GaAs by

using lithography-defined native oxide patterns [30].

SAE was divided into two main types for specific purposes after its introduction. The

first was to screen for the propagation of dislocations due to lattice mismatches in the

epitaxial layer by using template film and opening patterns, whereas the second was to

form polygonal structures under faceting mechanisms. The former is so-called micro-

channel epitaxy (MCE) and the latter is SAG, which specifies the formation of semi-

conductor nanocrystals. MCE and SAG are summarized in this section.

18.2.1 Microchannel Epitaxy

Microchannel epitaxy is a combination of SAE and epitaxial lateral overgrowth (ELO).

ELO has a long history in semiconductor epitaxy; its name was proposed by Jastzebski

[31]. Both ELO and MCE use template masks, such as amorphous and metal films. Tsaur

et al. first reported in 1982 that the heteroepitaxy of GaAs on a Ge/Si substrate by ELO

had a dislocation density of 104 cm2 in the epitaxial layer [32]. They unintentionally
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reduced dislocation with ELO. In contrast to ELO, MCE intentionally suppresses the

propagation of dislocation networks in the epitaxial layer while transferring lattice

information. This is because amorphous films eliminate the propagation of defect

information and the openings in amorphous films transfer lattice information. Nishinaga

et al. reported the MCE of GaAs on GaAs [33]. Ujiie et al. reported a GaAs layer on Si

grown by ELO and first found that a wide dislocation-free area could be formed by MCE

outside the dislocated area above the seed [34].

MCE is categorized by two methods: horizontal and vertical. Defect information on

substrate and lattice information are simultaneously transferred into the epitaxial layer

in conventional epitaxy with defects, as can be seen from Figure 18.2(A). The main

purpose of MCE is to transfer lattice information on the substrate through a small

opening while preventing defect information from being transferred into the epitaxial

layer [35]. The horizontal MCE in Figure 18.2(B) blocks defects from being propagated

with an amorphous layer, and lattice information is transferred through the openings.

Therefore, a defect-free layer could be grown by ELO. The vertical MCE in Figure 18.2(C)

constructs an epitaxial layer vertically from small openings. This method can be used to

stop dislocations from propagating and move them out of the side surface by choosing

proper substrate orientations. This vertical MCE is related to faceting growth by SAG. An

amorphous mask is deposited on the epitaxial substrate in the practical process flow of

MCE and openings (microchannels) are formed in the amorphous mask. Then, epitaxial

growth occurs in the direction of lateral growth in the openings as seeds. The dislocation

area is restricted within the region over the seeds in the openings and a dislocation-free

area can be formed. Sakawa et al. achieved a dislocation-free area in a GaAs epitaxial

layer on Si [36], and Naritsuka et al. formed a defect-free region in an InP layer on Si [37]

with MCE. Suzuki et al. investigated MCE-grown Si layers on an Si substrate [38] with

homoepitaxy, and Zhang et al. reported a GaP layer grown on a GaP substrate by MCE

[39]. MCE-grown GaN films on sapphire substrates were investigated by Usui et al. [40],

and Sakai et al. grew a 120 mm-thick GaN layer [41]. Dobosz et al. reported GaSb

heterepitaxial growth on a GaAs substrate [42].

FIGURE 18.2 Concept underlying micro-channel epitaxy (MCE): (A) conventional epitaxy, (B) lateral MCE, and (C)
vertical MCE.
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It is important to enhance ELO to carry out horizontal MCE by using large anisotropy

in epitaxial growth, in which anisotropy originates from the difference in the growth

rates on a facet and on the atomically roughened surface. More lateral overgrowth (LOG)

should be obtained than that of vertical growth after the initial growth or nucleation in

the openings. Although the growth rate on the atomically roughened surfaces indicates a

linear increase as interface supersaturation is increased, growth on the facet does not

occur until 2D nuclei are generated under the high interface supersaturation. By using

the difference in the growth rates, ELO is enhanced and an epitaxial layer is grown on

amorphous films.

A large area for the MCE layer on amorphous films that eliminates defect information

should be achieved when ELO is relatively more enhanced than vertical growth. This

method effectively works on the heteroepitaxy of III-V compound semiconductors on Si

substrates. There are several problems due to the mismatches in lattice and crystal

structures between group-IV materials and III-V compound semiconductors, including

lattice mismatches, differences in thermal expansion coefficients, and antiphase

domains (or boundaries) due to polarity. These mismatches form misfit dislocations and

threading dislocations, which degrade device performance. Therefore, epitaxial tech-

niques to overcome these mismatches have been investigated since the 1980s. Thus far,

the use of buffer layer growth [43] to relax strains that have resulted from lattice

mismatches and two-step growth [44] to suppress the formation of antiphase domains

have been proposed. There are no epitaxial techniques that can completely overcome

these dislocations, although heteroepitaxial techniques have been applied to GaN

growth on Si and blue LEDs [45]. The lowest dislocation density obtained with the

conventional epitaxial technique is 106 cm2, which is too high to fabricate laser diodes.

A dislocation-free area on an Si(111) substrate by MCE was first achieved in 1989 by

Ujiie and Nishinaga [34], who reported that they had formed an MBE-grown GaAs buffer

layer with a huge number of dislocations and had used an amorphous mask to eliminate

the propagation of dislocation networks in the buffer layer (see Figure 18.3). They grew

the MCE-GaAs layer with LPE because LPE makes it difficult to obtain a smooth interface

between GaAs/Si. Because Si is aggressively attacked by Ga atoms, GaAs cannot be

directly grown on Si with LPE. Thus, they formed a GaAs buffer layer with MBE.

Figure 18.4 has high-resolution transmission electron microscopy (TEM) image of GaAs

grown by MCE on Si(111) after collusive etching. No etch pits can be observed outside

the openings in the figure. The number of cracks would be increased if the buffer layer

were thicker due to the difference in the thermal expansion coefficients between GaAs

and Si. The lowest data thus far obtained have been a thickness of 12 mm and a width of

200 mm [46].

Figure 18.5 shows a TEM images of the GaAs MCE layer on the GaAs-buffer layer/

Si(111) substrate, where the GaAs buffer layer was grown by metal-organic chemical

vapor deposition (MOCVD). We can see some dislocation propagated on {111} planes

through the openings in this figure, while defect-free regions were formed on the

amorphous film. It was important to enhance ELO while suppressing vertical growth to
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obtain a large defect-free area with MCE because the dislocation area expanded as

growth thickness increased on the amorphous film [34]. Figure 18.5 is a cross-sectional

TEM image showing a part near the SiO2 mask and GaAs buffer layer interface.

Propagation of dislocation stopped at the interface between SiO2 and the GaAs buffer

layer, and no dislocation were observed in the epitaxial layer on the SiO2 mask.

The best approach for large dislocation-free areas with MCE is to achieve uniform

nucleation in the initial stages of growth and to enhance ELO on the amorphous mask

while suppressing the vertical growth rate. These two distinct features are mutually

connected and enable a smooth MCE layer to be obtained. Initial growth in the openings

should be uniform to obtain a smooth MCE layer. Deura et al. investigated the growth of

InGaAs on Si with MCE and found that multinucleation affects the growth morphology

[47]. When multinucleation and coalescence occurred in the early stages of growth inside

the openings, the MCE layer had a hillock-like morphology. This is because coalescence

formed huge numbers of adsorption sites, such as kinks and steps, and the growth rate

became isotropic. Then, the morphology maintained the information of nucleation. Thus,

the formation of uniform nuclei in the openings is an important parameter for MCE.

We next enhanced ELO by using a specific substrate orientation, such as (111), growth

temperatures, and a growth method. A detailed description of the use of (111) surface

FIGURE 18.3 (A) Illustration of micro-channel epitaxy (MCE) GaAs on Si substrate with GaAs thin buffer layer. (B)
Optical microscopic image of GaAs grown by MCE on Si(111) substrate. (Adapted from Ref. [46]) (C) Cross-
sectional TEM image of GaAs MCE layer on GaAs-coated Si substrate. Adapted from Ref. [34].
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orientation will be given in Section 18.2.2, where the preferential direction of growth can

FIGURE 18.4 High-resolution TEM image of GaAs micro-channel epitaxy layer near SiO2 and GaAs buffer layer.
Adapted from Ref. [35].

FIGURE 18.5 Schematic of atomic arrangement viewed from the [1-10] direction and definition of facets.
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be changed by the growth conditions on the (111)-oriented substrate. Another approach

is to use the coalescence of MCE layers. A wide area for the MCE layer is obtained when

the layer continues growth until two laterally growing layers coalesce. Zhang et al.

reported this coalescence in a GaP/GaP system [39], and Nagal et al. and Banhart et al.,

investigated an Si/Si system by using LPE-ELO on SiO2 [48,49]. Furthermore, no etch pits

appeared in the coalesced area in InP/InP [50] or GaAs/GaAs systems [51]. Baccin et al.

used low-angle incidence MBE, also called low-angle incidence MCE (LAIMCE), to

enhance ELO with MCE. The fluxes of precursors with low angles enhanced selectivity

and increased ELO in an MBE system. Umeno et al. achieved a wide area for an MCE

layer with very thin MCE (w70 nm) by using LAIMCE [52].

MCE is an effective approach to form dislocation-free heteroepitaxial layers. MCE

layers with less dislocation density have recently been used in optical and electronics

applications on Si platforms.Naritsuka investigated the fabrication of AlGaAs-related laser

diodes grown by MCE on Si [53], and Deura et al. reported a dislocation-free InGaAs MCE

layer on Si toward III-V MISFET metal-insulator-semiconductor (MIS) FET applications

[54]. Furthermore, MCE was practically used in laser didoe applications to enhance the

lifetime of devices [55] and has continuously been investigated to reduce dislocation

networks in GaN free-standing films [56].

18.2.2 Selective-Area Growth

18.2.2.1 Facets in Selective-Area Growth
Equilibrium crystal shapes have a polygonal morphology surrounded by close-packed

planes with low surface energy. The low surface energy results in a stable surface with a

slow growth rate. Thus, crystal shapes surrounded by stable crystal planes are formed by

facetinggrowth.This trendappears prominently inSAG.Thegrown structure is surrounded

by low-index planeswith slow growth rates. The origin of faceting in the SAG can simply be

explained by the difference in the surface chemical potential of the planes (i.e., the number

of dangling bonds). This is because the growth rate roughly depends on the number of

dangling bonds of the surface. The planes are formed as facets normal to the vectors of the

surfacepotential due toWulff’s construction theorem[57]. Figure18.6 illustrates theatomic

arrangement of GaAs from the<1-10> direction. For example, the tilted angles formed by

the joining of (113), (111), and (110) with (001) planes correspond to 25.7�, 54.7�, and 90�.
Some low-index planes are arranged on the (001) planes. Interestingly, one of the family of

{110} planes, the {1-10} planes, are arranged normally to the (111)A or (111)B planes in this

illustration. Fukui et al. demonstrated the formation of vertical {1-10} facets on the (111)

B-oriented surface [58]. These facets canbe controlled by growth conditions. The control of

facets and their crystal shape using facets will be explained in this section.

The identification of crystallographic facets is one of the top priorities in investigating

and understanding the nature of SAG. It should be noted that there are six {110} cleavage

planes that are 30� apart, perpendicular to any {111} facets, as the basis of the orientation of

facets.We can identify the orientation of crystallographic facets of grown structures on the
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basis of six {110} cleavage planes of grown substrates. The upward sloping facets of

grown structures (facet X) can be distinguished by the difference in contrast from the

(111) top surface from the top view of grown substrates. The angle between facet X and the

(111)B surface can be determined by tilting the substrate and calculating the angle from

the difference in the apparent area of facet X. The angle between normal to the planes

(h1k1l1) and (h2k2l2), q, is given by Eqn (18.1) for the dot product of the two appropriate

vectors as

cos q ¼ h1h2 þ k1k2 þ l1l2�
h2
1 þ k2

1 þ l21
�1=2�

h2
2 þ k2

2 þ l22
�1=2 (18.1)

Referring to Eqn (18.1), facet X, approximately 35� to (111)B, appears to correspond to

{110}, and the facet at 55� appears to correspond to {100}.

Each facet can be controlled by the shape and direction of the openings on the

masked substrate as well as the growth conditions. Figure 18.7 has a schematic of the

relationship between the edge direction, the type of facet, and the atomic arrangement

for {111}B viewed from [110], and the {110} facet viewed from [100]. For example, {110}

facets have a fourfold symmetry, so pyramidal structures can be formed with only four

{110} facets as the sidewalls. Growth occurred under group-V atom excess conditions

such as high group-V source supply rates and/or low growth temperatures (TG) due to

the surfaces of {110} and {111}A in Figure 18.7(B) and (C). The {111} facets are polarity

surfaces for III-V compound semiconductors. The {111}A planes have group-III atoms as

outermost atomic arrangements. There are group-III atoms on the surface of {111}A

[(111), (-1-11), (1-1-1), and (-11-1)], which are the growth conditions. Group-V atoms are

revealed as the outermost surface on the {111}B-oriented surfaces [(-1-1-1), (-111),

(1-11), and (11-1)]. Figure 18.8 plots the relationship between low index planes that can

exist in facet growth on (111)A- and (111)B-oriented surfaces. The growth rate of the

facets is not isotropic, but they strongly depend on the surface coverage of group-V

atoms and surface reconstructions. Thus, the shapes of grown structures can be

changed by growth conditions, such as TG and supply materials. The use of these facets

enables various geometries of structures to be fabricated with SAG.

FIGURE 18.6 (A) Illustration of the relationship between low-index facets that can exist in faceting growth on
(001) surface. Schematics of relationship between edge direction and orientation of facets, and atomic arrange-
ment viewed from (B) <1-10> and (C) <110> directions.

Chapter 18 • Growth of Semiconductor Nanocrystals 759



18.2.2.2 Control of Facets with SAG
Low-index planes, whose growth rate is minimum, can appear as facets during SAG. The

low-index planes are {100}, {110}, {111}A, and {111}B, and the growth rates of {110} and

{111}B planes tend to be slow during III-V growth. Show investigated the order of growth

rates for GaAs growth during vapor-phase epitaxy (VPE): {111}A> {100}> {110}> {111}B

[61]. Jones et al. reported the order of growth rate for GaAs growth during MOVPE:

{100}> {111}A> {110}> {111}B [62]. Interestingly, the growth rates of {111}A and {100}

traded places with each other for VPE and MOVPE, while the growth rates of {111}B

and {110} tended to be slower for both growth methods. Growth for VPE was limited

due to the reaction limited regime. However, growth by MOVPE was limited by the

FIGURE 18.7 Illustrations of low-index facets that can exist in faceting growth on (111)A and (111)B surfaces.
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mass-transport limited regime. Figure 18.9 plots the growth rate of GaAs during MOVPE

with variations in the growth temperature. Leys reported the dependence on tempera-

ture on the GaAs(001) substrate [59]. There were three distinct regimes: the reaction

(kinetics)-limited regime, mass-transport-limited regime, and desorption-limited

regime. The reaction-limited regime was below 600 �C, the mass-transport-limited

regime ranged from 600 to 850 �C, and the desorption-limited regime was above

850 �C for GaAs by MOVPE. The growth rate in the mass-transport-limited regime was

FIGURE 18.8 Growth rate as a function of substrate temperature indicating three distinct growth regimes for
typical III-V compound semiconductors in MOVPE. Adapted from Refs [59,60].

FIGURE 18.9 Typical behaviors in growth rates of GaAs with various growth parameters under diffusion-limited
regimes.
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independent of the temperature. However, the growth rates of other surface orientations

had different dependencies than those of the (001)-oriented surface.

The growth rate of the GaAs (001) surface was independent of variations in TG and the

partial pressure of AsH3 ([AsH3]) due to diffusion-limited growth. However, the growth

rates of the GaAs (110), (111)A, and (111)B surfaces tended to vary with TG and [AsH3], as

can be seen from Figure 18.10. The growth rates of GaAs (111)A and (110) surfaces

increased more than those of (111)B planes under low TG and high [AsH3]. This was

because the As-trimers that formed on the (111)B surface suppressed nucleation on the

GaAs (111)B surface. However, the growth rates of GaAs (001) and (111)B surfaces

increasedmore than those of the GaAs (011) and (111)A surfaces at high TG and low [AsH3].

The four key processes in typical MOVPE during growth have been summarized by

Stringfellow as mass transport, the physical process, chemical reactions, and thermo-

dynamics [60]. The mass-transport process is related to the boundary (stagnant) layer

above the growth surface, which is formed by the laminar flow of vapor in the reactor.

The growth pressure and gas flow velocity define the thickness of the boundary layer.

The physical process involves the physics of adatoms on the growth surface. Growth is

simply described by the Kossel model (terrace-step-kink model) [63]. Surface recon-

struction as energetic stable atomic configurations should be simultaneously consid-

ered. Chemical reactions must be taken into account for a more detailed description of

the growth process. The chemical processes in MOVPE have very complex radical

reactions, including decomposition and desorption processes. Thermodynamics defines

the deviation from equilibrium and thus the driving force for growth. The facets in SAG

can mutually appear due to a combination of these distinct processes.

The growth rate of the (111)B surface will be changed by TG and the V/III ratio in the

mass-transport limited regime of GaAs during MOVPE, whereas the growth rate of

the (100) surface is constant. Ando et al. investigated the growth rate of AlGaAs on (001)

and (111)B with variations in TG and the V/III ratio [64]. The growth of the (111)B surface

was beyond the mass-transport-limited regime in this report and the growth rate was

increased with increasing TG, and decreased with an increasing V/III ratio. The reduced

growth rate of the (111)B surface under low TG and higher [AsH3] resulted from higher As

coverage (qAs). The excess As atoms under higher As coverage formed As-trimers, and the

trimers suppressed the crystal growth process. The formation of As-trimers was first

observed by Biegelsen et al. in an MBE system [65]. Nishida et al. reported a similar

formation of As-trimers during MOVPE with the method of surface photoabsorption [66].

As-trimers are sensitive to TG and start to desorb with higher TG> 700 �C. This is because
qAs decreases with higher TG.

The qAs affects the growth rate of {110} planes. Asai investigated growth rates in

the <110>, <1-10>, and <001> directions on a GaAs(001) substrate with variations in TG

and the V/III ratio [67]. The [110] growth rate was higher than that of <-110> with low

TG and higher [AsH3] in this report, whereas the <110> growth rate decreased as [AsH3]

decreased and the <-110> growth rate remained almost constant. Both the <110> and

<-110> growth rates increased linearly with the partial pressure of the group-III
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FIGURE 18.10 Selective-area growth of GaAs on (A) GaAs(111)B substrate, (B) GaAs(001) substrate, and (C) GaAs (311)B substrate. Images summarize
structures grown at high TG and low [AsH3]. (D) SEM images and schematics of crystal shapes on GaAs (111)B, (001), and (311)B. Schematic of GaAs
crystal structure with injection of [1-10] direction. Green, blue, and red solid lines correspond to (111)B, (001), and (311)B surface orientations of GaAs.
Illustrations indicate cross-sections of structures in (D). Dashed line indicates family of {1-10} planes. These planes are normal to the (111)A or (111)B
surface.
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precursor, which was similar to that of <001>, and they reduced as TG decreased. Chang

et al. systematically investigated the growth rate in the <-110> direction by using the

SAG of GaAs on the GaAs (111)B substrate [68]. They used stripe-patterned openings on

the GaAs(111)B substrate to characterize lateral overgrowth in the <-110> direction

under various growth conditions. The growth rate in the <-110> directions (i.e., LOG)

increased as TG decreased and [AsH3] increased in their characterizations. The growth

rate of (111)B, on the other hand, was suppressed with low TG and high [AsH3] due to the

formation of As-trimers. The growth rate in the <-110> direction with low TG was 23

times faster than that in the [111]B direction. The difference in the growth rate along the

<�110> directions occurred under similar conditions to those of the (111)B surface. This

is because qAs changed in the same way as that for the (111)B surface. qAs is expressed by

Lagmuir’s adsorption isotherm [69] as

qAs ¼ BPAs=ð1þ BPAsÞ; (18.2)

where B is the adsorption coefficient of As atoms and PAs is the partial pressure of As.

When we described B by using the adsorption energy (EAs), B and qAs are expressed as

B ¼ b $ expðEAs=kTÞ and (18.3)

qAs ¼ b $PAs expðEAs=kTÞ
f1þ b $PAs expðEAs=kTÞg : (18.4)

EAs depends on the number of dangling bonds on the growth surface [67]. According to

Eqn (18.4), qAs depends on TG and [AsH3]. Thus, qAs decreases at high TG and low [AsH3].

Crystal growth can proceed by suppressing the evaporation of adatoms because

group-III atoms diffusing from the vapor phase are adsorbed with three dangling bonds

of As atoms on the (-110) surface with high qAs. Because adsorbed As atoms on the (-110)

surface can easily desorb on the surface with low qAs, the time to adsorb group-III atoms

decreases. Thus, the [-110] growth rate slows at high TG and low [AsH3]. The GaAs

polygonal shape surrounded by facets during SAG uses the difference in growth rates

that originate from qAs and the formation of As-trimers.

18.2.2.3 Formation of Polygonal Shapes Due to Facet Growth
The SAG enables polygonal-shaped structures to be formed, surrounded by facets with

precise positioning. Polygonal nanostructures surrounded by {1-10}, (111)B, and (111)A

planes are formed on GaAs (111)B, (001), and (311)B substrates in this way, as shown in

Figure 18.10. Also, tetrahedral structures surrounded by (111)A surfaces are formed at

high TG and low [AsH3]. Interestingly, the crystal shape of GaAs on (111)B-oriented

surfaces become hexagonal pillars surrounded by vertical {1-10} facets. This is because

the family of {-110} planes is vertically arranged from the (111)B surface.

Furthermore, semiconductor nanocrystals with various carrier confinements can be

formed by combining SAG and heterostructures. For example, Ando and Fukui reported

the formation of GaAs/AlGaAs by SAG [58,64]. They used stripe patterns with a [110]

direction in their research and grew GaAs at lower TG and higher [AsH3] to form a
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trapezoidal structure. The grown structure was surrounded by (111)B facets, which is

shown in Figure 18.11. Ando et al. systematically investigated the formation of a

trapezoidal structure surrounded by uniform (111)B facets [64] by growing GaAs/

AlGaAs heterostructures under the same conditions. They then changed the growth

conditions to form heterostructures on the (111)B inclined facets. They grew the

AlGaAs/n-AlGaAs/GaAs heterostructures at high TG and lower [AsH3]. Carriers were

confined in the GaAs/AlGaAs interface as the two-dimensional electron gas (2DEG) in

Figure 18.11 due to a modulation doping effect. The width of carrier confinement

in this structure could be defined by the thickness of the first GaAs layer. This method

could avoid process-induced damage in the channel layer. The line-width for carrier

confinement could be simply controlled by the thickness of the epitaxial layer. Thus,

these are promising to characterize the carrier transport and carrier scattering

mechanisms [58].

Fukui et al. demonstrated lateral QWRs achieved by SAG [70]. They grew GaAs

rectangular-shaped GaAs structures surrounded by vertical {-110} and (111)B surfaces

on a GaAs(111)B substrate at higher TG and lower [AsH3]. Then, a GaAs/n-AlGaAs

heterostrucutre was formed on (-110) side facets under lower TG and higher [AsH3].

Ando et al. investigated the formation of uniform {-110} facets [71]. A modulation-doped

heterostructure-based GaAs/n-AlGaAs/GaAs structure was formed on a vertical {-110}

facet under specific growth conditions, as shown in Figure 18.12. Because the carrier

concentration of contamination and impurities increases at higher TG during MOVPE,

the first rectangular GaAs structure was doped with oxygen to form a semi-insulating

structure. The depletion layer in this structure should have taken into account the

channel width of 2DEG. They characterized the effective thickness of 2DEG by

magnetoresistance oscillation at 4.2 K [72], and then found that the net thickness of

2DEG was thinner than that of the grown thickness because the depletion layer could

be dispersed on both sides of the (111)B surface (top (111)B and bottom (111)B surface

on SiO2).

FIGURE 18.11 (A) Illustration of GaAs/AlGaAs quantum wire structure produced by selective-area growth.
(B) Cross-sectional SEM image of structure. 2DEG, two-dimensional electron gas. Adapted from Refs [58,64].
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The use of the direction of vertical preferential growth at higher TG and lower [AsH3]

enabled QWRs to be fabricated that consisted of vertical-stacked double heterostructures

(DHs), such as GaAs/AlGaAs DHs. Figure 18.13 illustrates a DH. The main advantage of

this faceting growth is that the Fabry-Péroit cavity structure with crystal facet mirrors

could be fabricated by only using crystal growth. Moreover, the length of the cavity could

be changed by using lithographically defined opening patterns. Ando et al. reported

short-cavity laser diodes fabricated with SAG and they characterized optically pumped

laser oscillations with variations in cavity length [73]. Another approach to form laser

cavity structures by crystal growth is to use prepatterned V-groove structures. Bhat et al.

first reported the fabrication of GaAs/AlGaAs DH structures and achieved electrically

pumped laser emissions by using crystal facet cavities [74].

FIGURE 18.12 (A) Fabrication flow for lateral quantum wires (QWRs) by selective-area growth. (B) Cross-sectional
SEM image of lateral QWR. 2DEG, two-dimensional electron gas. Adapted from Refs [70,71].

FIGURE 18.13 (A) Illustration of GaAs/AlGaAs double heterostructure grown by selective-area growth on
GaAs(111)B substrate. (B) Cross-sectional SEM image of structure. Adapted from Ref. [73].
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18.3 Quantum Dots
18.3.1 Self-assembled Growth of Quantum Dots

A well-known method of growing quantum dots (QDs) is to use the Stranski-Krastanow

mode in heteroepitaxial systems [11]. Lattice mismatch between the epitaxial layer and

the substrate contributes to their growth modes as well as the formation of misfit

dislocations in heteroepitaxial systems. There are typically three growth modes, as

characterized in Figure 18.14: the Frank-van der Merwe (F-M), the Stranski-Krastanow

(S-K), and the Volmer-Weber (V-W) modes. Thin film in the F-M mode in

Figure 18.14(A) is atomically stacked layer by layer from the formation of 2D nuclei in the

early stages of growth. The S-K mode in Figure 18.14(B) is a combination of layer-by-

layer growth in the early stages of growth and 3D island growth. The transition from

the layer-by-layer growth to the 3D island growth occurs across a critical thickness for

the lattice to relax lattice strain due to lattice mismatch. The V-W mode in

Figure 18.14(C) is only 3D island growth in the early stages of growth.

The use of the S-K growth mode enables QDs to be formed regardless of the kinds

of defects under critical thickness [75]. Strain-induced roughening and the formation of

defects and their propagation were suppressed in very small nanostructures during the

transition from 2D nuclei to 3D island growth in the S-K mode. Eaglesham et al. reported

a dislocation-free S-K growth mode in Ge/Si and SiGe/Si systems [76]. The S-K growth

mode is independent of materials systems and growth methods such as VPE, MBE, and

MOVPE. One of the most widely studied QDs in the S-K mode has been the growth of

InAs QDs on GaAs substrates [77], where the lattice mismatch was 7.2% and 3D islands

started to form from the critical thickness of 1.7 monolayer (ML).

The growth mode in a lattice-mismatched system is changed by the interface free

energy and lattice mismatch. The formation of 3D islands is driven by interface energy

(g12) and the epitaxial layer’s surface energy (s2). If the substrate surface energy (s1) is

lower than (g12þ s2), thin-film growth proceeds according to the S-K or V-W modes. The

variations in (g12þ s2) therefore drive the transition from the F-M to the V-M mode or

misfit dislocations are introduced underneath the islands to relax the stain. When the

adatoms interact more strongly than adatom-surface bonds, s2 reaches large fractions.

FIGURE 18.14 Illustration of growth modes in heteroepitaxy. (A) Frank-van der Merwe, (B) Stranski-Krastanow,
and (C) Volmer-Weber modes.
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Thus, the V-W mode occurs. The S-K growth mode appears for systems with small g12
with large lattice mismatches. Nakajima systematically characterized the free energy of

these three modes in III-V ternary systems and found that the diagram of thickness-

composition phases for these growth modes was determined by the balance of free

energy, which is plotted in Figure 18.15 [78].

18.3.2 Selective-Area Growth of Quantum Dots

The SAG can synthesize QD structures by using facet growth. {110} facets can be formed

under specific growth conditions, as was explained in Section 18.2.2. Moreover, {-110}

and {-1-10} facets are distinctly controlled by changing growth conditions and shapes of

mask openings. Ando et al. investigated the formation of vertical {-110} facets and in-

clined {-1-10} facets of GaAs SAG on (111)B-oriented substrates by changing TG and

[AsH3] [79]. The tetrahedral structures surrounded by {-1-10} facets and the hexagonal

structures surrounded by vertical {-110} facets were distinctly formed by TG and [AsH3],

as seen in Figure 18.16. This distinct morphology is defined by the growth rate of the

(111)B surface. The growth rate of the (111)B surface was faster than that of the {-1-10}

surface at lower TG and higher [AsH3], where 35o-tilted {-1-10} facets were formed by

SAG. The growth rate of (111)B, on the other hand, was minimal for low index planes at

higher TG and low [AsH3] due to the formation of As-trimers, where vertical {-110} facets

were formed rather than {-1-10} facets. These growth modes could be used to form QDs

with lithographically defined positioning.

Fukui et al. demonstrated the formation of pyramidal structures surrounded by the

{-1-10} facets [80], where they used triangular opening masks for SAG. Each side of

the openings was parallel to the <-1-10> direction. First, they grew a trapezoidal AlGaAs

FIGURE 18.15 Phase diagram of thickness-
composition of Frank-van der Merwe, Stranski-
Krastanow, and Volmer-Weber modes for a InPSb/
InP(111) structure. Adapted from Ref. [78].
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structure surrounded by {-1-10} facets and the (111)B surface. The {-1-10} facets were

tilted by 35.26� to the (111)B surface. Next, they stacked GaAs layers on the (111)B top

surface. Then, they covered the structure with an AlGaAs layer (Figure 18.17). The GaAs

layers in this structure acted as QDs. The main advantage of the SAG is that it could

be used to precisely control the QD size because the surface area of the (111)B could be

defined by the thickness of the first layer (Figure 18.17). Moreover, conventional

thin-film growth, such as that for QWs, can be used to form QDs regardless of lattice

mismatches, misfit dislocations, or lattice strain in the S-K growth mode. The quantum

size effect for a GaAs QD is 20 times stronger than that of a single QW. This is because the

effective quantum size effect in the GaAs pyramidal structure is close to the internal

spherical shape of a pyramid and the size is approximated to the diameter of the inner

ball. This formation of QDs with SAG was applied to the GaN-based QD structure [17].

The SAG enables the positions of growth of nanostructure to be controlled, such as

QDs. Another interesting approach to form QDs is the combination of the S-K growth

mode with SAG. Many efforts have been expended to fabricate site-controlled QDs with

the S-K mode. For example, Watanabe et al. investigated dense site-controlled QDs by

using inverted pyramids, or so-called V-grooves [81], where the (111)B GaAs substrates

FIGURE 18.16 Phase diagram for facet growth
characteristics on the (111)B surface at various
combinations of TG and [AsH3]. Adapted from
Ref. [9].

FIGURE 18.17 Schematics of tetrahedral
quantum dot based GaAs/AlGaAs
obtained by selective-area growth [80].
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were patterned prior to growth with hexagonal arrays of inverted pyramids that con-

sisted of three equivalent smooth (111)A facets. They formed these V-grooves with

anisotropic wet etching. Then, GaAs/InGaAs/GaAs heterojunctions were grown by

MOVPE. The InGaAs QDs were formed at the bottom of inverted pyramid structures

because higher In-module fractions segregated into the bottom, and this formed a

deeper potential well to confine carriers. They observed single-photon emissions

from QDs in V-grooves [82]. Furthermore, Kitamura et al. reported the formation of

InGaAs QDs aligned on GaAs multiatomic steps [83] and Tatebayashi et al. formed area-

controlled InAs QDs [84]. The combination of SAG and the S-K mode has enabled the

formation of site-controlled QDs regardless of any damage and etching. Kusuhara et al.

reported the formation of InAs QDs on AlGaAs ridge QWR structures [85].

Figure 18.18 outlines the formation of InAs QDs on ridge wire structures. InAs QDs

are only formed on the (001) top facet, and the QDs across the wires are limited by the

surface area of the top (001) facet. In addition, Kim et al. reported the SAG of InGaAs QDs

on vicinal substrates [86]. They formed single- or double-row aligned InGaAs QDs on

GaAs structures grown by SAG using the step-bunching effect. InGaAs QDs were selec-

tively grown on the step edge of a (001) top terrace that was affected by the dissimilar

bunching effect of the GaAs layer due to the misoriented angle of the substrate.

Self-assembled QDs formed by the epitaxial S-K mode have attracted a great deal of

attention in device applications as well as studies on the fundamental physics in low-

dimensional systems. Most investigations have concentrated on optical devices such

as LEDs [2], single-photon sources [87], and photodetectors [88]. The possibilities of

designing electron memory devices using QD structures have recently been expected for

low-power consumption. QD memories generally consist of a QD layer to store electrons

and a channel in close proximity to sense their charged states. InAs QD memories

fabricated by combining SAG and the S-K mode not only enable the channel width to be

reduced due to the formation of facets, but also InAs QDs to be controlled on facet

surfaces. Ooike et al. fabricated a QD memory structure grown by combining SAG and

FIGURE 18.18 (A) Illustration of InAs quantum dots (QDs) grown on top facet of AlGaAs tetrahedral structure on
GaAs(001) substrate. (B) Representative SEM image of InAs QDs on AlGaAs tetrahedral structure. Adapted from
Ref. [85].
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the S-K modes (as shown in Figure 18.19) [89]. They grew a GaAs/AlGaAs structure

including 2DEG by facet growth (Figure 18.19(B)) after they formed the stripe-patted

openings along the [110] direction on the SiO2-mask. Then, InAs QDs were formed on

the top (001) facets with the S-K growth mode. They characterized memory operations

and found that a strong confinement effect was required for memory operation at room

temperature (RT).

Numbers and position-controlled QDs are required to achieve low-power operation

and uniform electrical properties. Ooike et al. further advanced the combination of

SAG and the S-K mode to form single QDs. They used specific opening patterns coupled

with two direction wires for the [100] and [110] directions in Figure 18.20. A GaAs saddle

structure is formed in this mask pattern by facet growth and a self-limited growth mode

FIGURE 18.19 (A) Illustration of a memory device structure of SAG-grown InAs quantum dots (QDs). (B) Schematic
of grown structure and energy-band diagram. Dashed line plots Fermi level. Adapted from Ref. [89].

FIGURE 18.20 (A) SEM image of mask pattern that indicates a mask openings correspond to dark part, which has
structure coupled with two directional wires for [100 and 110]. (B) SEM image of GaAs saddle structure grown on
mask opening. (C) Surface profile image obtained by AFM. (D) SEM image of position-controlled InAs quantum
dots (QDs) on GaAs saddle structure. InAs QDs were formed self-assembled at bottom of saddle structure.
Adapted from Ref. [90].
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(see Figure 18.20(B) and (C)). The top (001) terrace is restricted to a small region. Then,

S-K growth occurs to form a single QD. Figure 18.20(D) reveals how a single InAs QD is

formed [90].

18.4 Formation of III-V Nanowires
Semiconductor nanowires (NWs) have attracted a great deal of attention for use in future

nanometer-scale electronic and optical devices [91–96] because they have small

diameters and large surface areas that enable high-density integration of active devices

on various platforms and the fabrication of various kinds of functional devices through

the use of heterostructures. The surface area to grow radial heterostructures enables

core–shell (CS) or core multishell (CMS) NWs to be formed. Moreover, top surfaces with

small diameters enable the formation of axial heterostructures regardless of lattice

mismatches. The use of CS or axial NWs gives some functionality to NW-based

applications.

The main approach to grow NWs is based on the vapor-liquid-solid (VLS) mecha-

nism, which uses catalysts and the liquid phase underneath metal particles for crystal-

lization. Wagner and Ellis reported the mechanism responsible for forming Si whiskers

[18] in 1964. Small Au particles were placed on an Si substrate in the VLS growth of Si

whiskers and they were heated above the eutectic temperature. Au formed small droplets

that catalyzed the growth of Si whiskers through the liquid phase at the interface of

droplets and Si grown material.

A typical procedure for VLS growth is illustrated in Figure 18.21. Precursor atoms

prefer to adsorb on the surface of droplets to form an alloy when a supply gas containing

the growth materials flows over the grown substrate. Precursor atoms prominently

incorporate into the liquid phase of the droplets and increase supersaturation of

the grown precursors in the liquid phase. Consequently, crystal growth appears at the

solid–liquid interface and NW-growth starts. Thus, this method can be used to control

FIGURE 18.21 Growth process flow of catalyst-assisted vapor-liquid-solid growth of nanowires (NWs). (A) Metal
seed particles were formed and deposited onto substrate. (B) Sample was heated to required growth temperature
and growth materials were introduced, which are allowed with the particles. (C) When appropriate, supersatura-
tion of growth materials was achieved; nucleation occurred at the particle–crystal interface. (D) NW growth
occurred at the particle–wire interface.
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the NW diameter on a nanometer scale by changing the size of droplets. Droplets in most

cases remain at the top of the NWs, which can be seen in Figure 18.21(D).

A key feature of the VLS growth mechanism is that equilibrium-phase binary dia-

grams can be used as guidelines to optimize catalyst and growth conditions, thereby

rationalizing the synthesis of new NW materials. Therefore, optimum TG for NW syn-

thesis can be chosen according to binary phase diagrams between catalyst metals and

target materials. For example, the pseudobinary phase diagram of Au-Si indicates that an

Au-Si liquid and an Si solid are in the principle phase above 363 �C in the Si-rich region.

This implies that Au can serve as a catalyst to grow Si NWs above this temperature due to

the VLS mechanism. However, it is difficult to control the unintentional positions of Au

droplets created by annealing Au thin films or depositing Au nano-particles. Position

controlled epitaxial NWs have been studied using lithographically position-defined

metal seed particles. Sato et al. reported site-controlled GaAs NWs by using an SiO2

mask substrate [97]. Moreover, Ohlsson et al. synthesized size-selected III-V NWs grown

on a crystalline substrate [98]. They used size-selected Au aerosol particles and

controlled the whisker diameter with the size of Au particles. In addition, they demon-

strated nanometer-scaled manipulation of Au aerosol atoms by atomic force microscopy

(AFM) [99].

The VLS-grown III-V compound semiconductor nanowhiskers were investigated in

the early 1990s [91]. The potential of NWs to be applied to future electronics and

photonics was demonstrated in the early 2000s after this pioneering work [92–96]. Since

then, VLS has become exceedingly common because it can be used to synthesize almost

all semiconductor NWs, even oxides and metals, through rather simple procedures.

Metal catalysts, however, often act as unintended impurities inside NWs [100] and form

deep levels that could degrade the performance of NW-based devices. Au is the most

frequently used catalyst metal for NW growth with the VLS mechanism. However, the

incorporation of Au is known to result in deep-level defects near the mid-gap state of Si,

which drastically degrade minority carrier lifetimes. In fact, high-angle annular dark-

field (HAADF) scanning TEM images (STEM) of Si NWs have indeed provided

evidence of Au particles being incorporated into Si NWs [101]. HAADF-STEM has

revealed that there are more Au atoms than those expected from simple extrapolation of

bulk solubility to low TG. It should be noted that the incorporation of Au is not only a

problematic issue for Si NWs, but also for the NWs of any materials, such as those for

III-V compound semiconductors.

The self-catalyzed method has recently been investigated to grow NWs regardless of

unintended impurities [102]. NWs can be grown with the so-called self-catalytic

mechanism without Au or other metals, where the grown material itself acts as a catalyst.

Morral et al. reported the formation of GaAs NWs by Ga-self catalyzed VLS and formed

GaAs/AlGaAs CS NWs [103]. Heiss et al. demonstrated the formation of GaAs/InGaAs

axial heterostructure NWs grown by Ga-droplet VLS [104]. Furthermore, they changed

the V/III ratio for Ga self-catalyzed VLS growth to form pn-junctions [105]. In addition,

one constituent of the wire material formed the catalytic droplets, enabling VLS growth
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on top of NWs. Mandl et al. systematically investigated the formation of Au-free epitaxial

growth of III-V NWs [106,107]. Kim et al. demonstrated catalyst-free Si and Ge NWs for

group-IV NWs [108]. These methods were based on the VLS mechanism but were not

concerned with contamination due to the catalyst materials.

18.4.1 Selective-Area Growth of III-V Nanowires

Another approach to grow NWs is catalyst-free SAG. Selective-area metal-organic vapor

phase epitaxy (SA-MOVPE) is a kind of template method, which involves a combination

of bottom-up (epitaxial growth) and top-down (lithography) approaches. This

approach uses partially masked templates with lithographically defined opening

patterns. Position-controlled polygonal nanostructures surrounded by several facets

can be formed inside the openings, because crystal continues to grow through the

mechanism of faceting growth. Because the direction of preferential growth for III-V

NWs is <111>A or <111>B, the use of III-V (111)A or B substrates enables vertically

aligned hexagonal pillars to be formed surrounded by {-110} vertical sidewalls. These

position-controlled NWs have been achieved in III-V compound semiconductors, such

as GaAs [109–112], InP [113,114], InAs [115,116], InGaAs [117–120], and GaAsP [121], as

well as nitrides [122] and oxides [123]. Position-controlled AlGaAs/GaAs [124], InAs/InP

[124], and GaAsP/GaAs [125] CS NWs, and InP/InAs/InP CMS [126] NWs have been

reported by using SA-MOVPE. The position-controlled growth of InGaAs/GaAs

[127,128], InAsP/InP [129], and AlGaAs/GaAs axial [130] heterostructured NWs has also

been investigated.

The actual growth procedure to form NWs with SAG is outlined in Figure 18.22. After

the substrate is degreased, SiO2 films with a thickness of 10–30 nm are formed by

radiofrequency (RF) sputtering, plasma-enhanced chemical vapor deposition (PECVD),

or thermal oxidation (Figure 18.22(A)). Thermal oxidation is usually used to form SiO2

where III-V NWs are grown on Si because of the thermal tolerance of the film. Next,

circular openings with a regular pitch are formed on the amorphous films by using

electron-beam (EB) lithography and wet chemical etching. The circular openings are

arranged in a triangular lattice with a pitch of 0.4–3.0 mm. The opening diameter, d0,

ranges from 20 to 400 nm. The d0 is around 70–300 nm when NWs are used in optical

FIGURE 18.22 (A) Fabrication process to grow nanowires (NWs) with selective-area growth. After amorphous film
was deposited, hole openings were formed by lithography and etching. NWs were grown with MOVPE. (B) SEM
image of the patterned substrate. EB, electron beam.
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applications. Reactive-ion etching (RIE) is occasionally used. There is a scanning elec-

tron microscopy (SEM) image of the masked substrate in Figure 18.22(D). Finally, NWs

were grown by MOVPE. The (111)B or (111)A-oriented surfaces were used to grow

NWs with SA-MOVPE because III-V NWs preferentially grew in <111>A or <111>B

directions. The (111)A surface had its topmost layer arranged by group-III atoms, and the

(111)B surface had topmost layer arranged by group-V atoms.

Therefore, hexagonal III-V NWs surrounded by {1-10} vertical facets could be formed

on the (111)B-oriented surface because these tendencies in the SAG of GaAs have

commonly been in other III-V compound semiconductors, except for InP. It should be

noted that vertical InP NWs have been formed on (111)A-oriented surfaces in SAG [113].

This is because the direction of preferential growth for InP NWs is in the <111>A

direction and phosphorous trimers can be formed on the InP (111)A surface [131]. The

growth rate of GaAs (111)A and (110) surfaces, on the other hand, increases more than

that on (111)B planes under low TG and high [AsH3]. This is because the As-trimers

formed on the (111)B surface suppress nucleation on the GaAs (111)B surface [65].

Controlling the growth conditions enables the CS NWs to be formed.

The formation of facets was further confirmed by their dependence on growth

conditions. The <111>B-growth for GaAs was considerably suppressed under low TG

with high [AsH3]. As-trimers were formed due to high qAs on the (111)B under these

conditions and these trimers suppressed adsorption and nucleation processes. The rapid

reduction in the <111> growth rate was mentioned in Section 18.2.2. Similar suppres-

sion of the growth rate of the (111)B surface was observed on grown structures on

(001)-and (311)B-oriented mask substrates, in which the area of (111)B facets was

enlarged (see Figure 18.23(B)). Moreover, the growth rate of (111)A facets increased and

the (111)A surface eventually disappeared on the grown structure in Figure 18.23. The

growth rate along the <110> direction on the (110)-oriented substrate was enhanced

under low TG with high [AsH3]. These enhancement in growth on the (111)A and {110}

surfaces can be explained by the increments of adsorbed Ga sites at high qAs.

We can see typical results for III-V NWs grown with SAG in Figure 18.24.

Figure 18.24(A) has GaAs NWs grown on a GaAs(111)B substrate. The NWs are 70 nm in

diameter and 3 mm high. Figure 18.24(B) shows InAs NWs grown on an InP(111)B

substrate with a diameter of 20 nm and a height of 400 nm. Figures 18.24(C) and (D) have

InP NWs grown on InP(111)A under different growth conditions [113,114]. The diameters

of NWs in Figure 18.24 were equal to the diameters of openings. The edges of the

openings in Figure 18.24(B) were tapered due to isotropic etching by the HF solution.

The diameters of the InAs NWs in Figure 18.24(B) corresponded to those of the bottom

windows of the openings. Position-controlled III-V NWs were successfully grown on

III-V(111)B or (111)A substrates. Nanometer-scale growth with SAG has enabled III-V

NWs to be formed on lattice-mismatched substrates regardless of lattice mismatching

[132–136]. The optimum conditions to form III-V NWs by SAG will not change in these

heteroepitaxial systems. We will next briefly summarize the optimum conditions and

typical behaviors to grow these III-V NWs with SAG.
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18.4.1.1 GaAs Nanowires
The optimum TG window ranges from 700 to 750 �C [109–112]. The metal-organic (MO)

sources were TMGa and AsH3. Tertiarybutyl arsine (TBA) is sometimes used to grow

NWs [137]. The GaAs NWs were formed under a V/III ratio of 100–250. The optimum TG

window for GaAs NWs was the boundary between the formation of As-trimers and the

desorption of adatoms on the (111)B surface. The As-trimer forming on the (111)B

surface became dominant below the optimum TG, and their formation suppressed GaAs

growth on the (111)B surface. Here, LOG along the <1-10> direction was dominant

because the growth rate of {1-10} sidewalls was faster than that of the (111)B surface.

However, the desorption of adatoms was enhanced above the optimum TG because

desorption-limited growth occurred in these temperature ranges. LOG was almost

suppressed above the optimum TG, where the growth rate of GaAs NWs decreased

because of desorption. Moreover, the growth rate of {1-10} sidewalls was suppressed due

FIGURE 18.23 SEM image of GaAs growth. (A) (111)B, (C) (001), and (D) (311)B substrates. Images summarize
structures grown under high TG and low [AsH3] conditions (figure at left) and those grown at low TG and high
[AsH3] (figure at right). (B) SEM image of selectively grown GaAs on (111)B with one step (left) and two-step
(right) conditions. Adapted from Ref. [111].
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to desorption of group V-atoms. The use of optimum growth conditions for GaAs

enabled growth of the highly uniform NW arrays shown in Figure 18.24(A). GaAs NWs

can also be grown on Si(111) substrates [133].

The height of GaAs NWs was inversely proportional to the opening diameter of the

mask [112]. This suggests that the migration of growth species on the NW sidewalls

played a major role in the SAG of GaAs NWs.

18.4.1.2 InAs Nanowires
Figure 18.24(B) shows InAs NWs grown on an InP(111)B substrate (lattice mismatch is

3.3%). Very thin InAs NWs with a diameter of 20 nm were grown on an InP(111)B

substrate that was patterned with lithography. The optimum TG window ranged from 540

to 580 �C [115]. This optimum TG window is typical for H2 carrier gas. The TG window

changes from 650 to 700 �C for nitrogen carrier gas [116]. The MO sources were TMIn and

AsH3. The InAs NWs were formed under a V/III ratio of 250 with SAG. LOG was enhanced

below the optimum TG, and the growth rate for InAs NWs was reduced above the opti-

mum TG [115]. The mechanism for these behaviors was the same as that for the GaAs

NWs with SAG. The height of the InAs NWs was inversely proportional to the square of

the opening diameter of the mask [115]. This means that the surface diffusion of growth

species on the SiO2 and NW sidewalls played a major role in NW growth. We confirmed

that InAs NWs could be grown on (111)B-oriented and Si(111) substrates [115,132].

FIGURE 18.24 Typical results for III-V nanowires (NWs) grown by SA-MOVPE. (A) GaAs NWs with diameter of
70 nm and height of 3 mm. Substrate is GaAs(111)B. (B) InAs NWs with diameter of 20 nm and height of 400 nm.
Substrate is InP(111)B. (C) InP NWs grown at 600 �C and V/III ratio of 55. (D) InP NWs grown at 660 �C and V/III
ratio of 18.
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18.4.1.3 InP Nanowires
The optimum TG window ranged from 600 to 660 �C [124]. The MO sources were TMIn

and tertiarybutyl phosphine (TBP). The InP NWs were formed under a V/III ratio of

15–60 with SAG. The direction of preferential growth was <111>A. Thus, vertical InP

could be formed on the (111)A substrate. LOG was enhanced below the optimum TG and

high [TBP]. The most distinct features of InP NWs are their different morphologies and

crystal structures. The morphology of InP NWs achieved a straight and cylindrical

structure at low TG and a high V/III ratio, as seen in Figure 18.24(C), and a tapered

structure was formed at high TG and a low V/III ratio, as seen in Figure 18.24(D). We

found that these differently shaped InP NWs had dissimilar crystal structures. The

tapered InP NWs exhibited wurtzite structure with few stacking faults, and the straight

InP NWs exhibited a twin-included zincblende structure [125].

18.4.1.4 InGaAs Nanowires
The optimum TG to form InGaAs NWs on InP(111)B ranged from 630 to 670 �C [117–120],

and the TG to form InGaAs NWs on GaAs(111)B ranged from 650 to 700 �C [120].

Moreover, the In/Ga composition varied with the NW pitch due to the migration of

growth species on SiO2 and NW sidewalls. For instance, the Ga composition of InGaAs

NWs changed from 62% to 80% with decreasing pitch from 6 to 0.6 mm [119]. The MO

sources were TMIn, TMGa, and AsH3. The height of InGaAs NWs was inversely

proportional to the square of the opening diameter of the mask [119]. This was because

the surface migration of In atoms was dominant during InGaAs NW growth.

18.4.1.5 GaP Nanowires
The pyramidal structures surrounded by {111}B surfaces for GaP were formed on

GaP(111)A. Hexagonal GaP NWs, on the other hand, were formed on the GaP(111)B

surface. The direction of preferential growth was in the <111>B direction. The optimum

TG window ranged from 770 to 790 �C. The MO sources were TMGa and TBP. The GaP

NWs were formed with a V/III ratio of 200–250 with SAG.

18.4.1.6 InGaP Nanowires
The SAG of InGaP NWs was reported by Ishizaka et al. [138]. They investigated the SAG of

In-rich InGaP NWs on an InP(111)A substrate. The TG was fixed at 650 �C. There was an

issue regarding the preferential growth direction for ternary InGaP NWs with variations

in the In composition. The preferential growth direction for In-tich InGaP was <111>A,

which was similar to that of InP NWs fabricated by SAG. However, the preferential

growth direction changed to <111>B for Ga-rich InGaP NWs, which was similar to that

of GaP NWs fabricated by SAG. Furthermore, the optimum TG for ternary InGaP NWs

would depend on the In/Ga composition of the ternary. In fact, the LOG of InGaP

NWs with a Ga-supply of 10% was enhanced more than that of InGaP NWs with a

Ga-supply of 5%. This indicates that the increment of Ga composition of InGaP NWs

changed the optimum TG for NW growth regardless of LOG.
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Table 18.1 summarizes the optimum TG of III-V NWs obtained through SAG and the

melting point (TC). Interestingly, the optimum TG/(TGþ TC) for SAG growth of III-V NWs,

regardless of the coincidence of LOG, was around 0.34–0.38 of the melting point.

Although this tendency is a trivial coincidence, it could be a guideline for the SAG growth

of NWs with unknown materials, such as other IV, III-V, and II-VI materials.

The most distinctive feature of SAG for NWs growth is the isolation of LOG and NW

growth modes by TG or the V/III ratio. For example, low TG enhanced the LOG of GaAs

without any NW growth after GaAs NWs were grown under optimum TG [111]. The

diameter of GaAs NWs increased more than that of the mask opening without NW

growth. This is because the growth rate of the {-110} sidewall increased due to the

suppressed desorption process on these same {-110} sidewalls. Ikejiri et al. systematically

investigated the controllability of LOG of GaAs by using TG [111]. They grew GaAs NWs at

high TG with low [AsH3] and then grew GaAs at low TG with high [AsH3].

Figure 18.23(B) shows micrographs and a schematic of the growth results. The GaAs

NWs were 1.3 mm high and 500 nm in diameter after the first GaAs growth. The diameter

of the GaAs NWs increased to 1.3 mmwhile the NW height remained constant. This further

confirmed that GaAs only grew on (111)B-oriented facets at high TG with low [AsH3],

and only on {-110}-oriented facets at low TG and high [AsH3]. The importance of the

formation of facets during SAG is illustrated in Figure 18.24. This tendency was similarly

observed in other materials. Phosphorous (P) coverage (qP) governed by TG and [TBP] was

found to similarly strongly influence the direction of InP growth [113] for InP NWs.

Although relatively lower qP induced axial growth, higher qP was altered, and competing

growth of the top (111)A surface and the (110) sidewall facets occurred, making it possible

to accurately define the growth direction by precisely optimizing growth conditions.

The use of this property to grow heterostructures enabled us to form CS or CMS

NWs, such as GaAs/AlGaAs CS NWs [139]. Figure 18.25(A) has schematics and

micrographs of GaAs/AlGaAs CS NWs grown on an Si substrate [133]. LOG of the AlGaAs

shell layers only occurred on the sidewalls of the GaAs NWs because the height of the

NWs was the same before and after the AlGaAs shell layer were grown. The number of

surface states of NWs could be increased more than that with planar III-V because the

NWs had large surface areas on the NW sidewalls. These surface states degraded the

Table 18.1 Stacking Fault Energy of Si, GaAs, InAs, and InP

Materials
Optimum TG for
nanowires (�C)

Melting
point TC (�C) TG/(TG + TC)

GaAs 700–750 1238 0.36–0.37
InAs 540–580 943 0.36–0.38
InP 600–660 1070 0.36–0.38
InGaAs 630–670 – –

GaP 770–790 1467 0.34–0.35
InGaP 650 – –
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optical properties of III-V NWs and device performance through a nonradiative

recombination process. The CS structures effectively passivated these surface states of

NWs. The shell layers were also more stable in the atmosphere compared to sulfur

passivation [138]. GaAs/AlGaAs CS NWs improved photoluminescence (PL) intensity up

to 490-fold due to the reduction in surface states plotted in Figure 18.25(B) [133]. The

ability to control the growth mode is promising for the formation of NWs with complex

structures, such as heterostructures and pn-junctions. Except for simple GaAs/AlGaAs

CS or CMS NWs, InAs/InP/InAs CMS heterostructures [124], GaAs/GaAsP radial/axial

FIGURE 18.25 (A) Illustration of growth of GaAs/
AlGaAs core–shell (CS) nanowires (NWs) and SEM
images of GaAs NWs and GaAs/AlGaAs CS NWs
on Si substrates. (B) photoluminescence (PL)
spectra of GaAs NWs and GaAs/AlGaAs CS NWs
at 4.2 K. Adapted from Ref. [133].
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heterostructures [125], InP CS with radial pn-junctions [140], and GaAs/AlGaAs CMS

with radial pn-junctions [141] have been fabricated by controlling the growth direction

during SAG. These growth techniques have further been used to demonstrate NW-LEDs

using GaAs/AlGaAs CS [141], GaAs/InGaAs CMS NWs [142], NW-solar cells using GaAs

CS [105,143], GaAs/GaAsP (or InGaP) CMS NW [144,145], InP/AlInP CS NW [146],

NW-FETs using InAs/InAlAs CMS [147], InGaAs/InAlAs CS [136,148], and InGaAs/InP/

InAlAs/InGaAs CMS NWs [136].

18.4.2 Twinning Growth Model

The unit cell of diamond or zincblende (ZB) crystal structures is the same and is cubicwith

a side length of a0, called the lattice parameter. The diamondunit cell can be described as a

one face-centered cubic (fcc) unit cell interlaced with another translated by a0/4 along all

three axes. The two fcc sublattice contains different species of atoms in the ZB structure.

One sublattice of III-V consists of group-III atoms and the other of group-V atoms.

Figure 18.26 outlines the atomic arrangement of the ZB structure in the <1-10>-viewing

direction. The cubic ZB structure in the [111] direction consists of three distinct atomic

bilayers stacked [.ABCABCABC.]. The atomic stack in the <111> direction of the ZB

structure creates specific defects, such as rotational twins. The crystal structure of GaAs

NWs, whose growth direction is <111>B, is basically that of cubic ZB, which contains

rotational twins around the <111> growth axis (Figure 18.26). The stacking sequence for

the ZB structure in the <111> direction is expressed as .ABCACBA.. Thus, the ZB

structure in the [111] direction consists of three distinct atoms in bilayer staking. However,

the stacking sequence for the rotational twins is.ABC/A/CBA., where the slash denotes

the twin boundary (dashed square in Figure 18.26). The structure model of the rotational

twin is illustrated in Figure 18.26. As the sequence of group-III and -V layers at the

rotational twin boundary is not changed, the (111)B surface is maintained after twinning,

while the crystal axis along the <111>B direction is rotated by 60�.

FIGURE 18.26 Atomistic model of zincblende
structure with rotational twin viewing from
[1-10] and twin boundary.
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Nucleation of twin planes, such as the B plane on top of ABC in ZB resulting in ABCB,

occurs under typical NW growth conditions. The extra interface energy associated with

this is the twin energy, which has been approximated by half the stacking fault energy in

Table 18.2 [149]. Ikejiri et al. discussed a comparison of changes in the Gibbs free energy

of nucleation related to critical size in the early stages of NW growth [112]. The Gibbs free

energy of nucleation was calculated for tetrahedral and hexagonal structures as a

function of the base length of the tetrahedron shown in Figure 18.28. The diffusion/

surface migration of the growth species and gas were neglected in nucleation growth. For

simplicity, they assumed that the base length of the tetrahedron was equal to the

diameter of the hexagon (NW diameter) and that both shapes grew to an equal volume.

The Gibbs free energy change is expressed as

G ¼ ðsurface energy changeÞ � ðchemical potential changeÞ: (18.5)

The chemical potential change per mole of nucleation is calculated as

Dm ¼ ðRTÞ
�
PIII loge

�
PIII=P0III

�
þ PV

logeðPV=P0VÞ
PIII þ PV

�
; (18.6)

where R is the gas constant, T is the absolute temperature, PIII and PV are the partial

pressures of III and V sources, and P0III and P0V are the equilibrium vapor pressures of III

and V atoms on the solid III-V surface at temperature T. The [AsH3] for GaAs growth in

forming NWs with SAG was two orders of magnitude higher than that of [TMGa] under

the experimental conditions. Therefore, this approximated Eqn (18.7) as

DmzðRTÞloge
�
PAs=P0As

�
; (18.7)

where Dm is calculated by using two source gas pressures of 5.03� 10�4 and

5.03� 10�7 atm. The different pressures correspond to the assumption that TMGa is

100% effective and AsH3 is 0.1% effective at nucleation. The surface energy was calcu-

lated for the entire surface of the tetrahedron or hexagon except for the bottom face.

Table 18.2 Optimum Growth Temperature TG, and Melting Points of GaAs, InAs,
InP, InGaAs, GaP, and InGaP

Lattice MismatchΕ

Substrate/Lattice Constant at 300 �K (Å)

Si Ge AlP AlAs GaP GaAs InP InAs

5.43 5.66 5.46 5.66 5.45 5.65 5.87 6.06

Epitaxial layer Si – 4.0% 0.6% 4.1% 0.4% 3.9% 7.5% 10.4%
Ge 4.2% – 3.6% 0.0% 3.8% 0.1% 3.6% 6.6%
AlP 0.6% 3.4% – 3.5% 0.2% 3.4% 6.9% 9.8%
AlAs 4.2% 0.0% 3.6% – 3.8% 0.1% 3.5% 6.6%
GaP 0.4% 3.7% 0.2% 3.7% – 3.6% 7.1% 10.0%
GaAs 4.1% 0.1% 3.5% 0.1% 3.7% – 3.7% 6.7%
InP 8.1% 3.7% 7.4% 3.7% 7.7% 3.8% – 3.1%
InAs 11.6% 7.1% 10.9% 7.0% 11.1% 7.2% 3.2% –
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There were (-1-10), (0-1-1), and (-10-1) facets for tetrahedral GaAs structures that have a

three-fold symmetry around the <111> axis in Figure 18.27. All three facets were 35.3�

off the (111)B substrate surface. They were also equivalent to the (1-10) side facet of

hexagonal GaAs. The surface energy was related to the density of dangling bonds on the

crystal surface, and the surface energy of the (1-10) facet was about 23% higher than that

of (111) [150]. The total surface energies for tetrahedrons and hexagons were obtained by

using the surface energy density of 0.482 J/m2 for the (1-10) [151]. The Gibbs free energy

change (DG) for tetrahedral growth in Figure 18.27 indicates that DG reached maximum

at the critical size of a¼ 3.6 nm as an increase from zero, but it rapidly decreased after

maximum for the source gas pressure of 5.03� 10�7 atm. The maximum energy was

reduced and shifted to the smaller critical size of a¼ 1.0 nm as the source gas pressure

was increased by three orders of magnitude. DG for hexagonal NW growth reached

maximum at a¼ 5.7 nm as an increase from zero, but it decreased after the peak for the

source gas pressure of 5.03� 10�7 atm. Maximum energy was reduced and the critical

condition occurred at a¼ 1.5 nm for the source gas pressure of 5.03� 10�4 atm. The

critical size for hexagons was 50–60% greater than that for tetrahedrons at the same

source gas pressure. Note that the maximum energy for tetrahedrons was 1/3 to 1/4 that

for hexagons under the same conditions. This means that the nucleation of tetrahedral

shapes was energetically favorable.

Figure 18.28 shows the initial growth of GaAs with a mask opening diameter of 100 nm

under NW growth condition. The grown crystal had facets with threefold symmetry of

(-1-10), (0-1-1), and (-10-1) facets, as shown in the upper left of Figure 18.28 [152]. There

were two kinds of tetrahedral structures, in which one of the three corners was pointed

FIGURE 18.27 Difference in change on Gibbs free energy calculated as a function of tetrahedron base length
(hexagon diameter). Adapted from Ref. [112].
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toward the <-1-12> or <11-2> directions. It is uncertain which of the two directions the

corner was likely to take because of the threefold symmetry of the (111)B surface of the

substrates. Tetrahedral structure, which had threefold symmetry having three inclined

(-1-10) facets with respect to the (111)B surface, were obtained with decreasing [AsH3] or

increasing TG. This is consistent with the report by Ando et al. [73]. Hexagonal NWs, on the

other hand, which have sixfold symmetry and are surrounded by six (-110)-equivalent

vertical facets with respect to the (111)B substrate, were grown within a small mask

opening at lower TG and higher [AsH3]. Therefore, whether GaAs grew as tetrahedral or

hexagonal shapes depended on the three parameters of TG, [AsH3], and opening size.

Theremaybeanother explanation for thedifference in themorphologies (tetrahedral or

hexagonal shapes) due to difference in surface reconstructions. Surface reconstruction in

GaAs(111)B has been studied both during MBE and MOVPE and is known to depend on

qAs—that is, on TG and [AsH3]. A 2� 2 structure whose unit cell consists of As-trimers

appears at low TG or higher [AsH3]. However, a
ffiffiffiffiffiffi
19

p � ffiffiffiffiffiffi
19

p
reconstruction, which con-

sists of an array of As-capped hexagonal rings, appears at low [AsH3] or high TG under

vacuum conditions [153–156]. Nishida et al. revealed the behavior of surface reconstruc-

tion on the GaAs (111)B surface duringMOVPE determined from surface photoabsorption

measurements [66]. A phase transition from 2� 2 to
ffiffiffiffiffiffi
19

p � ffiffiffiffiffiffi
19

p
takes place in this phase

diagram,where the [AsH3] is decreased orTG is increased. The solid lines A, B, andCdenote

the borders of the previouslymentioned GaAs (111)B surface reconstructions as functions

of 1/TG and [AsH3]. Ando et al. also reported that GaAs grew into tetrahedral or hexagonal

shapes depending on [AsH3] and TG by using MOVPE [73]. According to these reports,

similar dependencies in the same graph as functions of [AsH3] and 1/TG can be plotted in

Figure 18.29. The border between hexagonal and tetrahedral structures is indicated by

dashed line D in Figure 18.29. Interestingly, the slopes of lines A–D are almost the same,

FIGURE 18.28 SEM images of GaAs substrate surface after MOVPE for growth time of 1 min at 750 �C. Mask
window diameter is 100 nm and pitch is 500 nm. Schematic of tetrahedron at the upper left above depicts
threefold symmetry facets (-1-10), (-10-1), and (0-1-1), which correspond to grown crystal in enlarged SEM image
below. Adapted from Ref. [112].

784 HANDBOOK OF CRYSTAL GROWTH



even though the experiments were carried out using different growth methods. The

optimum growth conditions for GaAs NWs by SAG are within dashed rectangle E

in Figure 18.29. Chen et al. reported that there were GaAs tetrahedral structures and twins

existing in the transition region between the 2� 2 and
ffiffiffiffiffiffi
19

p � ffiffiffiffiffiffi
19

p
reconstructed surface

duringMBE. When they increased TG, the twins completely disappeared while tetrahedral

structures remained. They also found that higher substrate temperature and a low [AsH3]

produced a tendency to decrease twin density with various growth methods [112].

Ikejiri et al. proposed a model for the evolution of crystal shapes of III-V NWs with SAG

that was called the “twinning growth model” [112]. Selectively grown GaAs initially takes

a truncated tetrahedral shape, forming inclined (110) facets with respect to (111)B at an

initial stage in this model. It then develops into a hexagonal shape with (110) vertical

facets through several atomic layers being stacked up on one another along the <111>B

direction, with rotational twins sandwiched in between. This model implies a strong

relationship between the twins and formation of GaAs NW growth. A hypothetical growth

model of how the GaAs shape changes from triangular to hexagonal in the early stages of

growth is shown in Figure 18.30. The SEM images above or next to the illustrations

correspond to the crystal shapes for the respective stages. The crystal at growth stage (A)

has an inverse mesa shape. Inverse mesas have a high growth rate in the lateral threefold

symmetrical directions of <11-2>, <1-21>, and <-211>. Triangular crystal grows into a

FIGURE 18.29 Phase diagram where hexagons or a tetrahedrons exist as functions of [AsH3] and 1/TG. Solid lines
on the map denote boundary lines of GaAs surface reconstruction as functions of [AsH3] and 1/TG reported by
Nishida et al. (Adapted from [66].) Solid line A denotes condition where (2� 2)-like surface reconstruction occurs
with 90% probability. Solid bold line B indicates border of (2� 2) and

ffiffiffiffiffiffi
19

p � ffiffiffiffiffiffi
19

p
structures. Solid line C indicates

condition where
ffiffiffiffiffiffi
19

p � ffiffiffiffiffiffi
19

p
like surface reconstruction occurs with 90% probability. Broken line D indicates

another border where tetrahedral and hexagons occur with equal probability under selective-area growth (SAG)
conditions. Dashed line enclosed by E denotes region for SAG experimental conditions. Adapted from Ref. [152].
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hexagonal base in (C) and then grows thicker to reach stage (D). A twin plane develops on

the triangular (111)B top surface at stage (E). Three inverse mesa facets are formed in this

way and fast lateral growth is again promoted toward the threefold symmetry directions

of <-1-12>, <-12-1>, and <2-1-1>, as schematically indicated in (B) to (F). When

stage (G) is reached, the next twin develops at stage (H). Therefore, a hexagonal pillar

grows along the <111>B direction by twins being piled up one after another.

18.4.3 Coherent Growth of Nanowire Heterostructure

Heteroepitaxy enables advances in optoelectronics using semiconductor hetero-

structures. The heteroepitaxy of semiconductors, however, inherently forms defects due

to mismatches in lattice constants, thermal expansion, and polarity. Conventional het-

eroepitaxial thin-film growth is especially affected by the formation of misfit dislocations

due to lattice mismatches. The lattice mismatch between two materials is given as

εz
aepi � asub

asub

; (18.8)

where aepi is the lattice constant of the epitaxial layer and asub is that of the host sub-

strate. For instance, a lattice with Si for GaAs and InP is 4.1% for the former and 8.1% for

the latter. The lattice constants are summarized in Table 18.3.

A serious problem in heteroepitaxy with large lattice mismatches is the quality of

interfaces with high misfit dislocation density. The formation of misfit dislocation

occasionally changes the growth mode of two-dimensional thin-film growth (F-M mode)

FIGURE 18.30 Estimated evolution of GaAs hexagons featuring lateral growth and twin development from
triangular crystal. Illustrations (A)–(G) partly connected with SEM images depicting how crystal shape changed
during growth. Crystal twins have been shaped and whitened for clarity.
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rather than degrades interface quality. Defects, in this regard, act as preferred sites for

impurity atoms, high diffusivity paths of dopants, and nonradiative recombination

centers. These sites degrade electrical or optical properties. Matthews and Blakeslee

introduced a general model for the critical thickness of lattice relaxation due to lattice

mismatches for the formation of misfit dislocations [157]. This model was based on the

assumption of a condition for mechanical equilibrium and represented an elasticity

approach. The epitaxial layers in this model relax when defects are forming when the

layer reaches a certain critical thickness, which limits the dislocation-free thickness of

strained layers [157]. People and Bean modeled the critical thickness of heteroepitaxial

films by using elastic energy in dislocation, which was based on energy equilibrium and

its balance between epitaxial film and the host material [158].

As the requirement for lattice matching is relaxed in heterostructure NWs during NW

growthdue to small footprints,NWsexhibit surface-strain relaxationwithout the formation

of defects usually observed in a highly lattice mismatched system, such as III-V hetero-

epitaxy on Si. Thus, NWs are usually single-crystalline, which indicates a highly crystalline

structure. The nanometer-scale footprint in NW structures achieves coherent growth

regardless of misfit dislocations. Ertekin et al. and Glas modeled the critical diameter

for the coherent growth mode in NW growth using equilibrium analysis as a function of

lattice mismatch [159,160]. The critical diameter decreases as lattice mismatch increases,

as shown in Figure 18.31. For instance, no defects are formed at the heterointerface

in 200-nm diameter NWs with as much as 3% mismatch [159]. Björk et al. demonstrated

InP/InAs axial NWs regardless of misfit dislocations using the VLS method [161].

Selective-area growth can systematically change the diameter of interfaces by changing

the opening diameter. Tomioka et al. first achieved coherent growth of GaAs NWs on an Si

substrate with SAG [133]. They reduced the opening diameter to less than 20 nm and grew

very thin GaAs NWs on Si. TEM observations and strain analysis of the heterointerface of

GaAs/Si revealed that the heterointerface had no misfit dislocations instead of the strained

layer at the interface. They reported the formation of misfit dislocations in InAs NW/Si

heterojunctions in highly lattice mismatched systems, such as InAs on Si [132,133], where

they observed the periodicity of misfit dislocation was enlarged more than that of planar

lattice mismatch (11.6%). Tomioka et al. systematically investigated the formation

of lattice mismatches in III-V NW/Si interfaces as a function of the diameter of

Table 18.3 Lattice Mismatches in
Two Materials

Materials
Stacking Fault
Energy (mJ/m2

Si 55 � 7
GaAs 45 � 7
InAs 30 � 7
InP S18 � 7
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heterointerfaces [162]. They fabricated a number of heterointerfaces made with InAs

(11.6%), In0.7Ga0.3As (8.1%), and GaAs NWs (4.1%) on Si (see in Figure 18.32). InAs NW/Si

and InGaAs NW/Si had larger lattice mismatches of 11.6% for the former and 8.1% for the

latter, but the effective lattice mismatch of these III-V NWs on Si decreased as the

diameter decreased. For example, the number of misfit dislocations for InGaAs NWs with

a diameter of 18 nm was the same as those for GaAs/Si (4.1%: dashed curve in

Figure 18.32). These plots predict the critical diameter for coherent growth regardless of

misfit dislocations in the heteroepitaxy of III-V NWs with various lattice mismatches.

FIGURE 18.32 Numbers of misfit dislocations at III-V nanowire (NW)/Si heterojunctions with variations in di-
ameters of heterointerfaces. Dashed lines are calculated values from lattice mismatches. Closed squares (InAs NW/
Si), triangles (InGaAs NW/Si), and circles (GaAs NW/Si) are experimental data obtained from mapping and TEM im-
ages. Adapted from Ref. [161].

FIGURE 18.31 (A) Schematic of nanowire (NW) geometry with lattice-mismatched heterostructures. (B) Variations
in critical thickness of misfit layer growing on top of NWs as a function of radius (r0), for various values of lattice
mismatch (ε0), given in percent near each curve and Poisson’s ratio of 1/3. Adapted from Ref. [160].
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19.1 Introduction
In the early days of materials science, it was assumed that crystals such as those of

diamond, quartz, or calcite were only a property of the mineral world, and that no living

organism would contain them. The first protein crystals, of hemoglobin, were discovered

accidentally in 1840, in dried earthworm blood. In the following years, by 1871, crystals

of hemoglobin from nearly 50 species had been reported. By the end of the nineteenth

century, crystals of numerous other proteins of both plant and animal origin had

been obtained. Crystal formation was considered a criterion for purity of the protein

preparation. In the further discussions of the nature of proteins, their ability to form

crystals was one of the major arguments supporting their molecular nature and refuting

the hypothesis, common at that time, that proteins are colloid particles of disordered

matter [1].

Currently, protein crystals are of interest for several fields of science and technology.

Their formation underlies several human pathological conditions. An example is the

crystallization of hemoglobin C, illustrated in Figure 19.1, and the polymerization of
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hemoglobin S that cause, respectively, the CC and sickle cell diseases [2–5]. The for-

mation of crystals and other protein condensed phases of the so-called crystallines in the

eye lens underlies the pathology of cataract formation [6,7]. A unique example of benign

protein crystallization in humans and other mammals is the formation of rhombohedral

crystals of insulin in the islets of Langerhans in the pancreas. The suggested function of

crystal formation is to protect the insulin from the proteases present in the islets of

Langerhans and to increase the degree of conversion of the soluble proinsulin [8].

Another area which relies on protein crystals is pharmacy: the slow crystal dissolution

rate is used to achieve sustained release of medications, such as insulin, interferon-a, or

the human growth hormone [9–13]. Work on the crystallization of other therapeutically

active proteins, e.g., antibodies for foreign proteins, which can be dispensed as a

microcrystalline preparation, is underway. If the administered dose consists of a few

equidimensional crystallites, steady medication release rates can be maintained for

longer periods than for doses comprising many smaller crystallites.

Traditionally, protein crystals have been used for the determination of the atomic

structure of proteinmolecules by X-ray crystallography [14], illustrated in Figure 19.2; this

method contributes w87% of all protein structures solved, with the majority of the other

determinations carried out by Nuclear Magnetic Resonance (NMR) spectroscopy [15].

FIGURE 19.1 Crystals of human hemoglobin C, a relatively rare mutant associated with CC disease. Right: a crystal
of about 300 mm in width grown in the laboratory and imaged with bright field microcopy. Left: two red blood
cells containing crystals of hemoglobin C; diameter of cell to the right is about 7 mm; imaging by differential
interference contrast microscopy.

X-ray diffracƟon paƩern Atomic structureProtein crystals

FIGURE 19.2 Crystallography is the main route to structure determination of proteins. The preparation of
diffraction-quality crystals of soluble and membrane proteins is the bottleneck in this process.
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The last 30 years have seen the Golden Age of protein crystallization research. The

field has greatly benefited from the adoption of concepts and methods from physics,

chemistry, and life sciences. Physics contributed the theory of phase transitions, the

understanding and control of intermolecular interactions, and the mechanism of

nucleation and crystal growth. Chemistry came in with the notions of solvent struc-

turing, hydration and hydrophobicity, and salt bridges and ionicity. Biochemistry and

molecular biology brought about the ideas of molecular patches, the role of amino acid

residues, homologs, and mutations to enhance crystallizability.

In turn, protein crystallization has enriched many of these fields not only with

additional examples of the applicability of established theories, but also by assisting the

development of new concepts and mechanisms. A few examples include the role of

molecular anisotropy for the thermodynamics and kinetics of phase transitions [16,17],

direct imaging of crystallization processes at the molecular level, determination of

molecular level parameters [18–22], clarification of defect formation mechanisms [23],

and novel mechanisms of crystallization [24,25]. Particularly important was a contri-

bution to nucleation theory: the two-step nucleation mechanism. In contrast to classical

theory, which envisions that solute molecules form crystal nuclei directly as they

assemble into a high-concentration cluster, this mechanism posits that the first step of

crystal nucleation is the formation of disordered protein-rich clusters of mesoscopic size

[24,26–28]. The second step is the formation of crystal nuclei inside the clusters [29,30].

In all these works, the pursuit of informative results has been facilitated by the large sizes

of the protein molecules. In addition, proteins proved convenient for monitoring and

manipulating because their molecular interactions can be influenced by a variety of

methods that include mutations, varying solution ionic strength, and the use of co-

solutes.

In this chapter, we review the advances in the understanding of the processes of

nucleation and growth of crystals obtained with proteins and their relevance to the

broad fields of crystal growth and protein crystallization.

19.2 Proteins and Protein Crystals
19.1.1 The Protein Molecules

The protein molecules are heteropolymers of only 20 amino acids linked by the so-called

peptide bond into linear chains, Figure 19.3. One protein chain may contain up to

several 100 amino acid residues. In these 20 amino acids the amine group is attached at

a-positions, i.e., it is separated by one methylene group from the carboxyl residue. The

amino acids differ by the side chain attached to the same a position: the 20 side chains

vary from a single hydrogen atom in glycine to the bulky arginine, in which a three-

carbon aliphatic chain is capped by a complex guanidinium group. Counting the

amine group, the side chain, the carboxyl group, and remaining hydrogen atom, the

a-carbon atom has four different ligands and is chiral. In all proteins in nature, this
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(A)

(B)

(D)

(C)

FIGURE 19.3 The structure of the biological amino acids and selenocysteine. From Wikipedia commons. ©Dan
Cojocari, 2010.
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carbon atom is in the L-conformation so that all naturally existing amino acids are

a-L- amino acids. The amino acid residues can be classified according to their polarity as

nonpolar, polar, and positively or negatively charged, Figure 19.3. The nonpolar residues

consist of straight or branched aliphatic chains and may contain aromatic rings; the

polar ones contain alcohol or amide groups. The positive side chains contain one or

more extra amino groups which associate a positive hydrogen ion in acidic solutions.

The negative amino acids contain an extra carboxylic group, which may dissociate and

form an anion in basic solutions.

In their native environments, the protein chains do not exist as random coils but fold

into compact structures. The structures are unique and representative for every protein.

The folded chain is not fixed in place, and considerable dynamics exist. These dynamics

are crucial for the understanding of many aspects of protein behavior and function: the

binding to substrates and to nucleic acids, resistance to aggregation and proteolysis, and

others. In the folded protein molecules, the hydrophobic nonpolar residues are tucked

inside and are mostly in contact with other such residues from the same molecule. The

charged and the polar residues are mostly on the outside and ensure favorable in-

teractions with water and protein solubility. The amino and carboxyl groups in the side

chain are weak bases or acids and have pKa values in a broad range, from 4.0 for glutamic

acid to 12.48 for arginine [31]. Hence, at a set pH value some of the surface residues are

charged and others neutral. In this way, the pH of the environment in which a protein

exists and functions regulates its charge.

The proteins are divided into two big classes: globular and transmembrane. The

globular proteins are water soluble and are present in the cytosol of live cells and in the

intracellular and body fluids such as blood, stomach juice, etc. The transmembrane

proteins are embedded in the cellular membranes and serve to transmit signals be-

tween the cellular environment and the cytosol, to transfer nutrition into cells and

waste out, to strengthen and control the membrane, and others. To be able to perform

these functions, the transmembrane proteins are structured as a hydrophobic midriff

capped with two hydrophilic plates: one facing the cytosol and the other the cellular

environment.

19.1.2 Intermolecular Contacts in Crystals

For each set of crystallization conditions, i.e., protein, precipitant, buffer concentrations,

pH, and temperature, the bonds between molecules in the crystal are directionally

specific. If this specificity is missing, crystals would grow preserving only the trans-

lational but not the orientational order of molecules. The translational order leads to

faceted and optically birefringent crystals, which do not yield crystalline X-ray diffraction

patterns; a case in point is thermolysin [32].

Each specific intermolecular contact between neighbor molecules includes several

hydrogen bonds between reciprocal basic and acidic side chains, several water-mediated

hydrogen and ionic bonds, and several van der Waals bonds between hydrophobic side

800 HANDBOOK OF CRYSTAL GROWTH



chains, all sitting on the surfaces of the contacting molecules. The contacts between

adjacent protein molecules in the crystal lattice are often categorized in terms of patches

of several amino acid residues. A patch often covers only a few percent of the whole

molecular surface so that all contacts may cover less than half of it.

An example in Figure 19.4 shows in red the contact areas between molecules of the

thermophilic tRNA synthetase in orthorhombic and monoclinic polymorphs [33]. This

FIGURE 19.4 Molecule of the aspartyl–tRNA synthetase consists of two firmly bound domains shown in green
and yellow. Molecular structure was found to be identical when found from orthorhombic (A) and monoclinic
(B) crystalline modifications. Areas (patches) involved in the intermolecular contacts within these two different
polymorphs are shown in red. In (A) and (B), all the patches occupy 14.4 and 7.8% of the whole molecular
surface, respectively. With permission from Ref. [33].
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enzyme is responsible for attachment of amino acids to their cognate tRNA in

translating genetic information in protein synthesis. Each molecule (Mw ¼ 132 kDa) is

a homodymer of two firmly bound subunits interrelated by the two fold symmetry

axis. In the orthorhombic case (Figure 19.4, row A), all six contact patches cover 14.4%

(7040 Å2) of the total molecular surface. The largest macro contact takes 7.2%

(3540 Å2) of the total solvent-accessible molecular area, the other two take 4.2% and

4%. Out of 51 amino acid residue bonds, there are 38 hydrophobic and 13 are ionic

and hydrogen bonds. In the monoclinic polymorph, the same molecule has not six

but eight nearest neighbors involved in contacts (Figure 19.4, row B). These eight

patches cover only 7.8% of the molecular surface. Among the 53 contacts between

surface residues, there are 35 van der Waals and 18 ionic and hydrogen bonds. The

general conclusions emerging from this and other similar analyses of the intermo-

lecular contacts in protein crystals are that (1) the contact patches occupy a low

fraction of the molecular surface, and (2) that different amino acids are selected to

partake in the intermolecular contacts in different crystal polymorphs of the same

protein molecule.

19.1.3 Solution Trapped in the Intermolecular Space

In solutions and crystals of small molecules, the size of the molecules or ions is com-

parable to the range of the molecular forces, 2–3 Å, or less. In macromolecular systems,

the size of the macromolecules ranges from 20 to 2000 Å. The consequences of this

difference in size are discussed in detail below [34]. One trivial observation is that,

because of this size disparity between solute and solvent, a significant amount of solvent

is trapped in the void space between the protein molecules in the crystals.

The solvent filling the intermolecular voids between protein molecules occupies 30%

and 70% of the crystal volume. Much of the water, buffer, and other solvents molecules

in the interstices are free to diffuse in and out of the crystal. This property is extensively

used in protein structure determinations to infuse a ready crystal with heavy metal ions

that have higher X-ray contrast and, in this way, their presence facilitates the determi-

nation of the structure. On the other hand, the hydrophilicity of the protein surfaces

results in 20–30% of the total trapped water being structurally fixed.

19.3 The Thermodynamics of Protein Crystallization
19.2.1 Definitions

In correspondence to the typical physiological, laboratory, and industrial conditions,

protein phase transitions are typically considered under constant temperature and

pressure. With such constraints, the transfer of protein molecules from solution to the

crystal is driven by the change of Gibbs free energy [35]. The change in Gibbs free energy

of crystallization DGo
cryst at constant temperature T is the sum of the contributions of the
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enthalpy DHo
cryst and entropy DSocryst: DGo

cryst ¼ DHo
cryst – TDSocryst. The associated

crystallization equilibrium constant,

Kcrysthexp
�
� DGo

cryst=RT
�
; Kcryst ¼ C�1

e ; (19.1)

in which C�1
e is the protein solubility with respect to the studied crystalline form, R is the

universal gas constant, and T is the absolute temperature.

19.2.2 Molecular Processes Underlying the Thermodynamics
of Protein Crystallization

In the last few years, chemists and physicists working in the area of protein solutions

realized that the molecular-level processes in protein solutions operate on two distinct

microscopic length scales: a finer scale, determined by the size of water and other sol-

vent molecules, and a coarser one, corresponding to the size of the significantly larger

protein molecules [16,36,37]. Whereas some features of the mechanisms of protein

crystallization can be reasonably well understood on the coarser length scale of the

protein molecules, understanding of principles that govern molecular recognition and

the thermodynamic driving forces leading to or preventing crystallization requires

consideration of the finer length scale of the solvent [38,39]. Various techniques have

shown that a several ångstrom thick solvent layer exists around protein molecules

[40–44]. Within this biological layer [44,45], the water molecules are in either of two

states, between which a dynamic equilibrium exists: directly attached to the protein

surface, and free, Figure 19.5. Another equilibrium exists between the biological layer

FIGURE 19.5 Schematic of exchange of waters
within a biological layer and between this
layer and solution bulk. Hydrogen bonds are
shown as dashed lines. There are also free
water molecules that are not directly hydrogen
bonded to the protein. Solid curved arrows
indicate the dynamical exchange between free
and bound water. Free water molecules diffuse
into the layer from the bulk, and this
represents a feedback mechanism of layer
hydration. zL, width of hydration layer, kbf and
kfb, kinetic constants of exchange between the
free water and bound water molecules in the
hydration layer. With permission from
Ref. [44].
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and the bulk solution water [44]. This layer affects enzyme-substrate and deoxy-

ribonucleicacid (DNA)-drug binding [46,47], and is natural to expect a similar effect on

the protein–protein interactions involved in protein crystallization.

Although the existence of this layer is necessary for the protein’s conformational

stability [48], it may interfere thermodynamically with protein function (DNA or sub-

strate binding, or other) and assembly. This potential conflict is resolved by the fact that

in contrast to the classically envisioned iceberg structure [48], the solvent layer is not

rigid, and the water molecules are constantly exchanged between the different states

[44,45]. Below, we show that the enthalpy and entropy contributions from the biological

solvent layer largely determine the thermodynamics of crystallization.

A number of recent molecular dynamics (MD) studies of model mesoscopic solutes:

colloid particles, graphene sheets, protein molecules, etc., were aimed at quantification

of the intermolecular interaction potentials on the length scales of a water molecule

[40–44,49–57]. As expected, these studies demonstrate in these potentials a primary

attractive minimum, mostly due to the van der Waals interactions. The MD results also

indicate that in addition to this minimum, there exist relatively shallow secondary and

tertiary minimums, Figure 19.6. These extra minimums correspond to one and two water

layers between the solutes. Three key observations are in order: (1) The extra minimums

have depth of several units of the thermal energy kBT. (2) They are present independent

of whether the solutes are hydrophilic or hydrophobic, and whether the bare solutes

attract or repel [52–54,56–58]. (3) The secondary and tertiary minimums are at distances

significantly greater than the typical binding distances between small molecules.

Several analyses of protein crystallization thermodynamics have shown that the

standard free energy change for crystallization DGo
cryst is only moderately negative; this

makes the crystallization process sensitive to even the slightest changes in the
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FIGURE 19.6 The potential of mean force for interaction in water between two graphene sheets, each consisting
of 60 carbon atoms, which imitate the interactions between the hydrophobic amino acid groups on the surface of
protein molecules. Separation is measured from the centers of the C-atoms. vdW indicates the deepest minimum
due to van der Waals attraction between bare C atoms, the other two minimums, and all three local maximums
are due to water structured at the surfaces of the graphene sheets. With permission from Ref. [53].
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experimental conditions. Intuitively, it appears that crystallization is prohibitively dis-

favored by a massive negative change in entropy as three-dimensional (3D) order is

imposed on the molecules in the crystal lattice. Indeed, this entropy cost consists of the

loss of six translational and rotational degrees of freedom per protein molecule, and is

only fractionally compensated by the newly created vibrational degrees of freedom

[59,60]. Theoretical models suggest that the balance should yield an average entropy loss

of about �100 J mol�1 K�1 [59,61] although it may be as high as �280 J mol�1 K�1, as

predicted for insulin [60]. This negative entropy contributes to a positive DGo
cryst and,

unless it is compensated, no crystallization will occur. The compensation may come

from a negative DHo
cryst or from the entropy of accompanying processes.

In those few cases where accurate measurements were made, the crystallization

enthalpy DHo
cryst varied within a broad range, from �70 kJ mol�1 for lysozyme [62],

through w0 kJ mol�1 for ferritin, apoferritin, and lumazine synthase [63–65], to

155 kJ mol�1 for hemoglobin C [66,67]. Thus, enthalpy effects are unlikely to rationalize

crystallization in a general sense, and in many cases are also unfavorable.

To understand entropy effects, we consider the two distinct microscopic length scales

significant for protein solutions. Experimental studies of crystallization of such proteins

as apoferritin, ferritin, hemoglobin C, lysozyme, insulin and lumazine synthase allowed

estimates of the enthalpy, entropy, and the standard free energy change for crystalli-

zation as functions of the temperature and of the composition of the respective solutions

[63,66–68]. These thermodynamic determinations indicate that upon incorporation into

a crystal lattice, some of the structured water/solvent molecules, bound to the protein

molecule in solution, are released or, conversely, additional water/solvent molecules

may be trapped, as schematically depicted in Figure 19.7. Both phenomena would have a

significant entropy effect: the analogous transfer of water from clathrate, crystal hydrate,

or other ice-like structures leads to an entropy gain of w22 J mol�1 K�1 [61,69]

Considering the complexity and importance of the entropy effects, the solvent and

protein entropy changes during crystallization have been distinguished:

DGo
cryst ¼ DHo

cryst � T
�
DSo

protein þ DSo
solvent

�
: (19.2)

FIGURE 19.7 A schematic illustration of DSsolvent > 0. The protein molecules in solution and its incorporation site
are coated with water molecules, which are released upon attachment of the protein molecules to the crystal. If,
alternatively, additional water molecules are trapped upon attachment of a protein molecule, DSsolvent < 0 would
ensue.
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A more negative DGo
cryst is favored by a positive sum (DSoprotein þ DSosolvent). In some

cases it has been possible to estimate the value of DSoprotein [34,63,67,70,71–75]. As

expected, the resulting value of DSoprotein is in the range �15 to �100 J mol�1 K�1. This

negative contribution is overcome by a significantly positive DSosolvent Refs. [34,38,39]:

the experimentally determined values of DSosolvent range from 100 J mol�1 K�1 to more

than 600 J mol�1 K�1 for different proteins. With the above value of the entropy gain for

the release of one water molecule, this corresponds to the release of w5–30 water or

solvent molecules upon the incorporation of a protein molecule into a crystal [39,67].

Thus, it appears that in most cases the structuring of the water around the protein

molecules is the main thermodynamic driving force for crystallization [39,67]. (An

important exception is lysozyme crystallization, for which DSosolvent is estimated as

�70 J mol�1 K�1 indicating the trapping of three or four water molecules; in this case

the negative crystallization enthalpy DHo
cryst is the main driving force for

crystallization.)

Although the above thermodynamic considerations yield considerable insight into

the driving forces of protein crystallization, they are oversimplified: although assigning

microscopic properties to the solvent, they do not consider the microscopic properties of

the protein surface structure, its dynamics, and the associated entropy, enthalpy, and

free-energy factors, as well as the associated kinetic consequences. The protein mole-

cules are viewed as rigid spheres, ignoring the chemical specificity of their surfaces. A

better model for the protein molecules is a rigid body enveloped by the sheath of con-

formationally variable, high-entropy side chains, the chemical nature of which affects

the water structure. Thus, the protein’s microscopic surface properties will have a critical

impact on the thermodynamics and kinetics of crystallization. This opens a possibility of

rational engineering of proteins to enhance their crystallization potential [75,76].

There have been a few preliminary, still qualitative attempts to address the role of

individual amino acid residues on the surface of a protein molecule in protein crystal-

lization. These approaches focus on the change, upon crystallization, of the configura-

tional entropy of lysine, glutamate, and arginine residues on the protein crystal surface

[77–79].

19.2.3 The Crystallization Driving Force

Crystal formation occurs in supersaturated solutions, in which the concentration C is

higher than the solubility Ce. Accordingly, the chemical potential of the solute m in the

solution is greater than the one at equilibrium me, which in turn is equal to the chemical

potential of the crystallizing material in the crystal, me ¼ mcrystal. The chemical potential

m ¼ m0 þ RT lngC and me ¼ m0 þ RT ln geCe, in which g and ge are the activity coefficients

of the solute in the crystallizing solution and in a solution with equilibrium concen-

tration Ce, respectively, and m0 is the chemical potential in a standard solution. Then the

nucleation driving force Dm ¼ m – me ¼ RT ln(gC/geCe). Often, it is assumed that g ¼ ge so

that Dm ¼ RT ln(C/Ce).
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Because g is a function of concentration, if C [ Ce, the assumption g ¼ ge is

unjustified. In protein solutions, the activity coefficients are evaluated from the relation

ln g y 2A2C, in which A2 is the second osmotic virial coefficient, discussed in depth in

Section 19.5.1 below.

This definition of Dm ¼ m – me ¼ m – mcrystal, accepted in the fields of phase trans-

formations, nucleation and crystal growth, contradicts the standard definition of the

change of a thermodynamic variable in a physical or chemical process. In the standard

definition, D signifies the difference between the final and initial states, whereas in the

above definition, the crystal is the final state and the solution the initial. Hence, the two

definitions of Dm differ in sign.

19.2.4 The Phase Diagram: Dense Liquid Phases, Crystalline
Polymorphs, Gelation, Spinodals

The thermodynamics of the formation of protein condensed phases, i.e., the regions

in the phase diagram of stability, metastability, and coexistence of the respective phases,

the driving forces, and the underlying processes occurring at the level of protein and

solvent molecules are by now relatively well understood [80]. The phase diagram in the

temperature, concentration (T, C) plane of the solution of the protein lysozyme, a

favorite model in protein physical chemistry, is shown in Figure 19.8.

The phase diagram in Figure 19.8 contains the liquidus or solubility lines, which

denote the concentration of a solution in equilibrium with a crystal phase, the lines
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FIGURE 19.8 The phase diagram of a lysozyme solution determined experimentally in 0.05 M Na acetate buffer at
pH ¼ 4.5% and 4.0% NaCl. Liquidus, or solubility lines—from Refs. [116,305], liquid–liquid (L–L) coexistence and
respective spinodal, from Ref. [95], solution-crystal spinodal, from Ref. [224], gelation line, from Refs. [94,95].
Solidus line is at w 800 mg ml�1 and is calculated from the density of the crystals of 1.3 g cm�3 and water
content of 33% [306].

Chapter 19 • Nucleation and Growth Mechanisms of Protein Crystals 807



characterizing the dense liquid phase, and a gelation line. A crucial feature of the protein

phase diagrams, also seen in Figure 19.8, is that the liquid–liquid (L–L) coexistence line

(also called binodal) is submerged below the lines of liquid–solid equilibrium

[6,37,81,82]; this is in contrast to the phase diagrams of binary mixtures of small mol-

ecules. The reason for the lowering of the L–L binodal is that the characteristic ranges of

all types of interactions between protein molecules in solution are shorter than the sizes

of the respective protein molecules by several nanometers: the ranges of the hydration

and hydrophobic interactions are a few water molecular diameters, i.e., up to 10

Ångstroms [41,83,84]; the ionic or other bridges have an even shorter range of a few

Ångstroms [85,86]; the van der Waals forces extend to about the same distances [87,88];

the electrostatic range is defined by the so-called Debye length, which is about eight

Ångstroms in solutions of the physiological ionic strength of w0.3 M and even shorter at

the higher ionic strengths used in laboratory and industrial processing of proteins

[89,90].

Like all other liquid–liquid separations [91], the formation of the dense protein liquid

phase is characterized with two phase lines: the coexistence line and a spinodal, below

which the formation of the dense liquid proceeds without a nucleation barrier [92,93].

Experimentally, the L–L binodal is detected by direct microscopic observation of the

formation of dense liquid droplets and their dissolution in a protein solution; these are

sometimes referred to as clouding and de-clouding [29,94]. The temperature of the

spinodal is determined for a given solution composition by static light scattering by

extrapolating the temperature dependence of the reciprocal intensity I�1 of the scattered

light to the temperature at which I�1 reaches zero [92,93,95]. Because light is scattered by

the concentration fluctuations, I�1 / 0 and I / N correspond to a diverging amplitude

of these fluctuations. The spinodal and binodal touch at the so-called critical point for

liquid–liquid separation: the highest temperature at which the coexistence of two liquid

phases is possible. In Figure 19.8, the critical point is at T ¼ 19 �C and the

C ¼ 231 mg ml�1.

If more than one solid phase is possible in a solution of certain composition, the

phase diagram will contain a respective number of solubility lines. In the lysozyme

case depicted in Figure 19.8, these are the solubilities of the tetragonal and

rhombohedral crystals. The presence of two solubilities highlights the fact that the

solubility is a property of the solution-crystal equilibrium and not of the protein

alone, as sometimes presented in the biochemical literature. The two respective

solidus lines, denoting the concentration of protein material in these two crystal

forms, would be at concentrations about 800 mg ml�1, which are outside of the range

of the concentration axis in Figure 19.8. Because little is known about the tempera-

ture dependence of the protein crystal density, the solidus is typically drawn as a

vertical line [6,65].

At higher protein concentrations the protein solution may gel, even if the temperature

is above the critical temperature for liquid–liquid separation [29,94]. Protein gelation is

still relatively poorly understood; some recent theories attribute it to the action of
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additional, long-range attractive forces [96–98]. A recent hypothesis links gelation to the

formation of weak, limited-lifetime networks of protein molecules [99].

Both the L–L coexistence boundary and the solubility can be shifted to higher or lower

temperatures by varying the acidity and ionicity of the solution [94,100], or the use of

other modifiers of the protein intermolecular interactions, e.g., nonadsorbing polymers

[29,101].

The lysozyme phase diagram in Figure 19.8 is an example of normal temperature

dependence: the solubilities of the crystal phases and the concentration of the solution

in equilibrium with the dense liquid decrease as temperature is lowered. This depen-

dence indicates that the condensed phases are favored at low temperature. Opposite

examples, in which crystallization or liquid–liquid separation are favored at high tem-

perature, exist: hemoglobin C has the so-called retrograde temperature dependence of

the solubility, whereby the solubility increases at low temperature [66,102]; dense liquid

appears in solutions of several hemoglobin variants upon temperature increase

[103,104].

In crystallographic practice, only limited control of temperature is available and ex-

periments are carried out either at room temperature, i.e., around 22 �C, or in cold

chambers at 4 �C. Hence, use is made of phase diagrams on coordinates (Cprotein,

Cprecipitant), similar to the one depicted on Figure 19.9(A). In such phase diagrams, the

phase areas of undersaturated solution, metastable solution, unstable solution, and

precipitation are delineated. The distinction comes from empirical observations of the

behavior of protein solutions in the different parts of the phase diagram. Thus, a crystal

placed in an unsaturated solution would dissolve, whereas a crystal placed in a meta-

stable solution would grow. On the other hand, spontaneous nucleation of crystals in the

metastable zone is unlikely. Such spontaneous nucleation is expected to occur in the

unstable zone. At very high supersaturation, precipitation of amorphous phases occurs.

Although it is possible that these phases may contain amyloid fibrils, the issue is had not

FIGURE 19.9 The phase diagram of the protein solution in coordinates (Cprotein, Cprecipitant). (A) the empirical phase
diagram used in protein crystallization work. (B) A theoretical phase diagram highlighting the analogy between
higher temperature and lower precipitant concentration as determinants of the phase behavior in protein
solutions. With permission from Ref. [105].
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been explored because, even if this is so, they would be of little use for structure

determinations.

Phase diagrams in (Cprotein, Cprecipitant) coordinates such as the one in Figure 19.9(A)

are used to rationalize and optimize crystallization conditions. It is considered that

nucleation should occur at the boundary between the metastable and the unstable zones

so that relatively few crystals would form and, the depletion of the solution due to their

growth would shift the system into the metastable regime, in which these crystals would

grow to advantageous sizes.

Recent theoretical work has demonstrated in most general terms that a protein so-

lution responds to increases in precipitant concentration in the same way that it re-

sponds to lower temperature: both of these changes in external parameters drive a

transition to condensed phases [105,106]. Thus, the phase diagram in coordinates

(Cprotein, Cprecipitant) in Figure 19.9(B) appears very similar to the one in coordinates

(Cprotein, T ) in Figure 19.8: the lines for the solubility, concentration of protein in the

crystal, the binodal and spinodal for liquid–liquid coexistence, and even the gelation

lines are present in both. It is tempting to view the empirical phase diagram in

Figure 19.9(A) as a subsection of the diagram in Figure 19.9(B), highlighted by the dashed

square. Indeed, it is likely that the boundary between the unsaturated and the meta-

stable zones in Figure 19.9(A) is the solubility line in Figure 19.9(B). However, the

analogy ends here: the boundary between the metastable and the unstable zones is likely

not the liquid–liquid binodal, but the solution-crystal spinodal plotted in Figure 19.8 and

discussed in Section 19.6.3 below. Furthermore, the boundary between the unstable and

precipitation zones is again not the liquid–liquid binodal, but an empirical line that may

be anywhere below the solution-crystal spinodal.

19.4 Methods of Protein Crystallization
The methods for protein crystallization account for the fact that expression, extraction,

and purification of a protein are often time-consuming procedures. Hence, wide use is

being made of various micro-methods of protein crystallization allowing one set of

crystallization experiments in protein solution of droplets of 5–20 ml containing only

0.1–0.5 mg of the protein.

There are four commonly used methods for protein crystallization: dialysis, vapor

diffusion, batch crystallization, and liquid–liquid diffusion [107]. Each of these methods

uses a smart combination of the transport properties of the proteins and small molecule

or polymer additives and elaborate control of convective flows through the size and

geometry of the respective cells to achieve a gentle increase of the supersaturation and,

along the way, test several combinations of protein and precipitant concentrations for

their efficacy in producing crystals, Figure 19.10.

There are numerous commercial cells for microdialysis. In a typical arrangement,

the crystallization volume is separated into two parts by a membrane (or, in some cases,

gel plug), which is impenetrable for the protein, but allows free passage of the
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low-molecular components of the solution, Figure 19.10a. The protein solution and a

buffer is held on one side of the membrane and the precipitant is on the other.

Crystallization occurs when a precipitant that lowers the protein solubility diffuses

through the membrane into the protein-containing cell [108].

The vapor diffusion methods are most commonly used in protein X-ray crystallog-

raphy. The protein solution is placed in a sealed container, which also hosts a greater

volume of solution with a higher concentration of the some of the additives, but without

protein, called a reservoir, Figure 19.10(B). Because of the higher additive concentration

in the reservoir, the water chemical potential in it is lower and water diffuses toward it

through the air space separating the two solution volumes [109]. Depending on the

geometry of the droplet and the reservoir, this method is divided into hanging drop,

sitting drop, and sandwich drop. In the simplest hanging-drop cell, a drop of protein

solution containing a small amount of precipitant is placed on a glass plate [110,111].

Then the plate with the drop is turned over and placed on top of a cup containing the

precipitant solution in concentration sufficient to precipitate the protein. After several

days of (mainly water) vapor diffusion, the precipitant and protein concentration in the

drop rises and the protein starts to crystallize. The sitting-drop technique is similar with

the drop sitting on top of a pedestal rising above the solution reservoir. In the

sandwiched-drop technique, the protein solution is held between two surfaces.

In the batch technique, protein and additives are mixed in the solvent at their desired

concentrations and placed in an environment of controlled temperature. The containers

are monitored for the appearance of crystals. In some implementations of this tech-

nique, slow evaporation of solvent is allowed to achieve gentle increase in supersatu-

ration. Recently, a microbatch technique was proposed, illustrated in Figure 19.10(C), in

which the protein and precipitant solutions are held between two layers of silicone,

perfluorosilicone, or lipid oil [112,113]. The water has extremely low solubility in either of

Protein Precipitant Membrane 

Oils 

(A) 

(B) (C) 

FIGURE 19.10 Laboratory methods of protein
crystallization. (A) The microdialysis method: the
volumes holding the protein and the precipitant
are separated by a semipermeable membrane. The
crystals form in the protein volume. (B) Vapor
diffusion methods: hanging drop, sitting drop, and
sandwiched drop. (C) The microbatch method.
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these oils, and so its escape from the solution droplet is very slow. This provides for a

gentle increase in supersaturation and increases the chances of crystal formation.

In the liquid–liquid diffusion method, two solutions are loaded at the two ends of a

capillary and placed in contact at the middle [114]. This method is similar to the dialysis

technique in Figure 19.10(A), and differs from it by the absence of a membrane sepa-

rating the volumes of the protein and precipitant solutions. One of the solutions contains

the precipitant and the other one the protein. As the precipitant and protein diffuse

against one another, a continuum of combinations of protein/precipitant concentration

ratios is achieved. Furthermore, if a crystal is not formed at a certain location in the

capillary, the concentrations of protein and precipitant continuously increase imposing

higher supersaturation. On the other hand, if a crystal is formed, the local concentrations

of protein and precipitant drop and the constrained geometry of the capillary provides

for a gentle supply of these two components mostly through diffusion.

The crystallization conditions are usually found by trial and error, which involves

screening tens or even hundreds of drops. At present, special computer-controlled in-

stallations, robots, are employed to screen thousands of protein crystallization condi-

tions. Complete automation of all liquid handlings increases the speed, precision, and

reproducibility of the experiment. Recent further advances of these methods based on

microfluidics have reduced the size of the solution droplets for crystallization down to

the nanoliter scale, thus reducing the amount of protein required [14,107,109].

To somewhat rationalize the trial-and-error approach, the influence of various ions

on the protein solubility [115–117], dependence of growth rates of different crystal

faces on the protein concentration in the solution [118–120], convection and flow rates

close to the growing crystal [121–126], and epitaxy of the protein crystals [127] have all

been investigated. Relatively weak interaction between the large protein molecules in

solution (per unit molecular area), peculiarities of protein structure, and multicom-

ponent composition of mother solutions make the crystallization process extremely

sensitive to physical and chemical conditions. The same protein can crystallize in

several crystalline forms, depending on the solution composition and pH. For instance,

lysozyme crystallizes in tetragonal, monoclinic, triclinic, and orthorhombic polymorph

modifications.

In their native environments, the membrane proteins are embedded in the phos-

pholipid bilayer of the cell membrane, where they are held by their hydrophobic mid-

riffs. Two approaches to extract the membrane proteins from the membrane and make

them mobile have been designed. In the first approach, illustrated in Figure 19.11(A), the

membrane proteins are solubilized by coating this midriff with detergent molecules, akin

to enclosing them in a detergent micelle [128]. The search for crystallization conditions

of the solubilized protein is then carried out as for the water-soluble proteins. The

second approach relies on the existence of three-dimensional (3D) structures in high-

concentration solutions of some lipids, Figure 19.11(Bb) [129,130]. These structures

consist of a lipid bilayer warped into 3D network of rods and junctions, interlaced with

aqueous channels.
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19.5 The Role of Nonprotein Solution Components
and the Intermolecular Interactions in Solution

In their native environment, the cytosol, soluble proteins are in a water-based envi-

ronment at pH around 7.2. In the cytosol, most of the small-molecule components are at

low concentrations, and the ionic strength is around 0.3 M [31]. In this environment,

proteins are stable against aggregation because of positive natural selection during many

years of evolution [131]. The relatively few proteins that crystallize in their native envi-

ronments: insulin in mammalian pancreases [8], or gluten in grain [132], have been

modified in the course of evolution to readily allow crystallization [132].

In the laboratory or an industrial facility, proteins are placed under conditions far

removed from native. Even if pH is near the physiological, it is maintained by a buffer,

the ions of which are a component foreign to the protein. Furthermore, inorganic,

organic, or mixed salts are added and are believed to induce screening of the charges

between the protein molecules and in this way facilitate attraction between them and,

Detergent 
micelles 

Membrane  
protein 
in naƟve  
membrane 

Solubilized 
protein 

Hydrophobic  
region 

+ 

Lipid bilayer 

Membrane protein 
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(B) 

FIGURE 19.11 Methods of crystallization of membrane proteins. (A) Solubilization by coating the hydrophobic
midriff of the molecules with detergent. (B) The membrane protein molecules are embedded in lipidic cubic
structures, as the one shown on the left, in which the protein molecule is in an environment resembling the one
in the cell membrane.
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eventually, crystallization. Very often, organic molecules, such as acetone, glycerol,

polyethylene glycol (PEG), mono-, di-, and polyvalent alcohols and others, are also

added [110,111,133]. The effects on the protein molecules of the components of a so-

lution, and the consequences of these molecular-level effects for the complex of pro-

cesses leading to protein crystals, are even now largely unclear. Below, we summarize a

few recent findings in an attempt to provide some initial understanding of the effects of

these additives.

Often, the effects of additives on protein crystallization are cast in the term specific

interactions. In a subset of these cases, in which divalent or polyvalent additives are

used, the specific interactions are bridges, in which an additive molecule binds to two

adjacent protein molecules in the crystal. The role of a variety of additives in protein

crystallization with two or more functional groups: di- and tri-carboxylic acids,

diamine compounds, molecules bearing one or more sulfonyl or phosphate groups,

and a broad range of common biochemicals, coenzymes, biological effectors, and

ligands was analyzed in Refs. [85,134]. It was found that the polyvalent additives serve

as bridges between protein molecules in the crystal and in this way facilitate crys-

tallization. However, in many cases the additive molecules are monovalent and

cannot serve as bridges and the term specific interactions is left as a placeholder for

unclear.

A viewpoint stemming from recent experimental and theoretical results is that all of

these components have one common role at the molecular level: they modify the

structure of the water shell around the protein molecules to allow intermolecular

contacts compatible with a crystallographic arrangement. Although the modification of

the water structure may be the most significant effect common for many additives, it is

not the only one: many additives may serve as intermediates in bridging interactions

[85]; salts, polymers and other organic additives at concentrations commensurate to

that of water (55.5 M). Thus, in a 20% w/v solution of PEG, which is about 4.5 M with

respect to the –CH2CH2O– units, with each of them binding four molecules of water

[135], PEG lowers the water activity by 18 M and may affect the activity of the bulk

water, etc.

In this subsection, we examine how the added solution components: buffer ions,

precipitant ions, and organic additives modify these water structures. Our objective is to

provide a framework, within which the action of the additives tested by a crystallization

practitioner can be rationalized and the search for additives yielding useful crystals can

be accelerated.

19.5.1 Types of Interaction between Protein Molecules in Solution

As discussed above, protein crystals grow out of solutions containing inorganic and

organic ions, as well as numerous molecular species. Traditionally, it has been assumed

that electrolytes induce crystallization (or other types of solid-phase formation) by

screening the electrostatic repulsion between the like-charged protein molecules.
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Reference is often made to the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory

of colloid stability [136,137], which is based on the balance between van der Waals

attraction and electrostatic repulsion mediated by the electrolyte in the solution.

For the electrostatic part of the DLVO potential, the solution of the

Poisson–Boltzmann equation for the potential energy Uel between two charged spheres

at a distance r is [138]

UelðrÞ ¼ ðz0eÞ
ε

expð2kaÞ
ð1þ kaÞ2

expð� krÞ
r

; (19.3)

in which z0 is the number of charges per protein molecule, e is the elementary charge,

ε is the dielectric constant of the solvent, ni and zi are, respectively, the number ionic

concentration and charge. The constant k is the Debye–Hückel inverse screening length

defined by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2

εkBT
� I

s
; I ¼ 1

2

X
i

niz
2
i (19.4)

in which kB and T are the Boltzmann constant and absolute temperature, respectively,

and I is the solution ionic strength.

The attractive part of the DLVO potential comes from the van der Waals dispersion

interactions. In a dielectric medium, this potential is given by [138]

UVdW ðrÞ ¼ �AH

12

"
1

ðr þ 1Þ2 þ
1

r2 þ 2r
þ 2 ln

 
r2 þ 2r

ðr þ 1Þ2
!#

(19.5)

in which AH is the Hamaker constant, independent of electrolyte type or concentration.

A common way to evaluate the interaction between protein molecules in solution is

via the second osmotic virial coefficient A2 [139,140]. This A2 can be determined by light,

X-ray, and neutron-scattering techniques [87,140–142]; recently, methods based on self-

interaction chromatography have been developed [143,144]. Static light scattering is a

reliable method for A2 determination, available in many laboratories. The method is

based on recording the concentration dependence of the scattered light intensity. The

Raleigh ratio Rq ¼ Iq
/I0, in which Iq is the intensity scattered at angle q, typically, 90�, and

I0 is the incident intensity, is plotted as a function of the protein concentration C, the so-

called Debye plot [145]

KC

Rq

¼ 1

Mw

ð1þ 2A2MwCÞ; (19.6)

in which Mw is the molecular mass of the protein, and K ¼ 1=NAð2pn0=l
2Þ2ðdn=dCÞ2 is a

constant, (dn/dC) is the increment of the solution refractive index with protein con-

centration, NA is Avogadro’s number, l is the wavelength, and n0 is the refractive index of

the solvent. The dimensionless form of A2 in Eqn (19.6) is

B2 ¼ 3A2M
2
w

4pNAd
3
h

: (19.7)
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The link between the experimentally observed second virial coefficients A2 and B2

and the interaction potentials between the molecules U(r) comes from the definition

of B2 [139]

B2ðT Þ ¼ 12

ZN
0

"
1� exp

 
�Uð~r;T

kBT

!#
~r2d~r; ~r ¼ r=2a: (19.8)

According to Eqn (19.8), B2 is an integral characteristic of the interaction potential U(r).

Hence, U cannot be directly evaluated from data on B2. However, by recording the

dependence of B2 on external parameters of the solutions, e.g., electrolyte concentration

[84,89], concentration of an additive [146], temperature [64,95], or others, valid con-

clusions about the role of the tested components on the intermolecular interactions can

be formulated.

The second virial coefficient is one of the few thermodynamics concepts (solubility is

another one) that are widely used by protein crystallographers in the interpretation of

the results of crystallization trials. The reason for this is a correlation found in the early

1990s between the values of the A2 [140,147,148]. It was found that if A2 is mildly

negative, corresponding to a weak average attraction between the molecules in a solu-

tion, relatively large crystals of good perfection form. If A2 is positive, crystals do not

form, and strongly negative values of A2 lead to precipitation [140,147,148]. The range of

values of A2 suitable for crystallization was named the crystallization window [140,148].

As justifications for this observation, two sets of theoretical observations were offered.

In the first one, the nature of A2 and B2 as integral characteristics of the interactions

between pairs of protein molecules was highlighted [80,82,84,86,87,90,143,144,149–155].

In the second approach, a thermodynamic correlation between the second virial coef-

ficient and the protein solubility was derived, with heavy approximation, and in a few

cases experimentally demonstrated [64,156].

In fact, there are no fundamental reasons why the second virial coefficient and the

solubility or crystallizability of a protein should be correlated. The solubility is the result

of the balance between the interactions between protein molecules in the solution and

those in the crystal. Because of the rotational and translational mobility of the molecules,

the solution interactions are averaged over all distances and angles. The interactions in

the crystal only occur at the surface patches in contact with patches from other mole-

cules. On the other hand, A2 and B2 are averaged characteristics of the interactions in the

solution. This averaging masks the role of the locations of contacts in the crystal, and is

the basis of the different response of B2 and the solubility to variations in solution

parameters.

By now, there are numerous observations in the literature of protein crystals forming

under conditions of positive A2 and of uncorrelated changes of A2 and the solubility in

response to a solution parameter. An example is the crystals of lumazine synthase,

depicted in Figure 19.12 Ref. [65]. Although A2 stays positive at phosphate concentrations

up to 1.3 M, crystals form at any phosphate concentration higher than 0.5 M.
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Furthermore, the variation of A2 in Figure 19.12 and the solubility response to Cphosphate

from Ref. [65] are uncorrelated: the solubility decreases steeply as the phosphate con-

centration is increased above 0.1 M.

19.5.2 Deviations from the Simple Colloid Approach

There are several problems with the above interpretation of the interactions between

protein molecules and of electrolyte function. At a relatively moderate ionic strength of

0.1 M, corresponding to concentrations of monovalent electrolytes, such as NaCl or

KH2PO4, of 0.1 M, the screening length k�1 is w10 Å [89,157], i.e., not sufficiently longer

than the size of the ions and solvent molecules to warrant the continuum approximation

underlying the above theories. Even if we ignore this inconsistency and expect the theory

to produce results at least qualitatively adequate to reality, we see that the predicted

range of the interactions is significantly shorter than the molecular size and the typical

intermolecular distances in a solution. That is, the electrostatic repulsion is already

suppressed, and further increases in the electrolyte concentration should not affect the

protein interactions and the resulting thermodynamics and kinetics; see, e.g., [158,159].

The threshold concentration for “suppression” of electrostatic interactions is even lower

for divalent, such as CaSO4, or trivalent, such as Al(NO3)3, electrolytes [137].

A related contradiction in the application of the colloid stability approach to protein

solutions and protein crystallization is the assumption of isotropic interactions.

Although this assumption maybe justified for relatively large colloid particles, it is
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FIGURE 19.12 The dependence of the second virial coefficient A2 on the concentration of the phosphate buffer at
20 �C. Closed and open symbols denote two independent series of determinations. Solid line is just a guide for
the eye. Horizontal dashed line indicates value of A2 ¼ 3.2 � 10�6 cm3mol g�2 for noninteracting hard spheres of
volume and mass equal to those of the lumazine synthase molecule. (From Ref. [42].) Insert: A model of the
lumazine synthase molecule. The molecule has diameter of w15.6 nm and consists 60 identical subunits. (With
permission from Ref. [65].)
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certainly a poor approximation for protein molecules: for protein molecules, the length

scale of the anisotropy is the size of the surface amino acid residues,w0.5 nm, and this is

not sufficiently smaller than the molecule size of a few nanometers to justify the

isotropic assumption. On the other hand, due to the rotational diffusion of the protein

molecules, the isotropic assumption may be valid for interactions at longer separations.

To estimate the typical size at which the anisotropy of a protein molecule

becomes insignificant for its interactions with another protein molecule, we evaluate the

mean length hDx2i1/2 of translational diffusion during the mean time of molecule rota-

tion s. Typical rotational diffusivities of protein molecules are on the order of

Drot z 106 s�1, so that s z 4 � 10�5 s. With the typical translational diffusivities of

Drot z 10�7 – 10�6 cm2 s�1, hDx2i1/2 z 10�6 cm ¼ 10 nm.

This estimate shows that anisotropic interactions should be considered for inter-

molecular separations closer than 10 nm. A simple estimate [27] shows that such sep-

arations are reached for protein solution concentrations higher thanw50 mgml�1. Thus,

the assumption of isotropic interactions may be adequate in discussing dilute solutions,

but would fail to describe dense liquids and crystals. More importantly, the isotropy

assumption would be inadequate in the description of equilibria involving dense liquids

and crystals even if the other equilibrium state is the dilute solution.

Although numerous systems have displayed decreasing repulsion with increasing salt

concentrations predicted by Eqns (19.3) and (19.4) [89], observations of gross deviations

from the predictions of the DLVO theory even at the qualitative level abound. Thus, it

was found that different salts at the same ionic strengths have different effects. These

differences have been cast in the form of a “Hofmeister series” of co-solvent ions.

However, even this empirical classification of the strength for the individual ions is not

obeyed for all proteins. It appears that for an often-studied protein, lysozyme, the

“reverse Hofmeister series” applies [117]. For other proteins, completely different rela-

tive efficacies of the individual ions have been recorded [160].

As another deviation, a careful quantification of the interaction between lysozyme

molecules found that the Hamaker constant depends not only on the type, but also on

the concentration of the counter ions; that at the ionic strengths employed the DLVO

theory predicts complete loss of stability of the protein solution, whereas the solution is

stable at significantly higher salt concentrations [89]. The unequivocal conclusion of the

authors, in line with the other evidence summarized above, was that specific protein-ion

binding strongly modifies the interactions included in the simple colloid model [89].

In light of these contradictions, other types of interactions have been discussed. The

thermodynamic evidence, discussed in Section 19.3.2 above, favors the hydration

repulsion and the hydrophobic attraction. Both of these two types of interaction are due

to the structuring of water molecules on the surface of the protein molecule. Their

different nature—attraction versus repulsion—is due to the different polarity of the

amino acid residues at which the water molecules align: If the protein surface is polar,

the water molecules are firmly attached to it and their removal, upon the approach of

another protein molecule, leads to a free-energy increase [161–163]. At nonpolar protein
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surfaces, water structuring is driven by the maximization of the number of hydrogen

bonds per water molecule while the water molecules remain unattached to the protein.

When another protein molecule approaches, these waters are set free and this leads to an

entropy increase, free energy decrease, and effective attraction between the molecules

[53,58]. Both the hydration and the hydrophobic interactions may be enhanced by

electrolytes. Modification of hydrophobic attraction requires electrolyte concentrations

of order moles per liter for noticeable effects [162–164], while the build-up of hydrated

ions at polar protein molecules surface has been shown to enhance hydration repulsion

even if the ion concentration is in the millimolar range [158,159]. The effects

of electrolytes, present in protein solutions as buffers or salt precipitants, and of un-

charged small molecules on the hydration layer around protein molecules are discussed

below.

19.5.3 Buffers, Salts and Organic Molecules and the Water Structure

19.5.3.1 Buffers
Buffers are solutions of weak acids (or, sometimes, weak bases) and their salts. They

maintain the solution pH at a relatively fixed value independent of the addition of other

solution components. A buffer is most effective at a pH that is near the pKa of its

component acid [31]. If a protein is placed in a solution the pH of which is fixed by a

buffer, some of the protein’s acidic and basic residues will have a pKa above the set pH,

whereas the pKa of other such residues will be below this pH. Thus, some of the acidic

and basic residues will be protonated; others will be neutral; whereas a third group will

be deprotonated. The association of a proton, Hþ, shifts the charge of the protein

molecule by one elementary unit in the positive direction, whereas the dissociation of a

protein shifts the charge by one unit in the negative direction. In turn, the molecular

charges determine the strength of the Coulomb forces between the protein molecules.

Thus, buffers set the charge of the protein molecules in solution and in this way control

the electrostatic intermolecular interactions.

The possibility that buffers play an extra role and the role of buffers for the in-

teractions between protein molecules in solutions was addressed on the example of the

protein lumazine synthase [65]. This protein crystallizes in phosphate buffer at pH ¼ 8.7.

For insight into the phosphate contribution to the interactions between the lumazine

synthase molecules, the dependence of the second osmotic virial coefficient A2 on the

concentration of the phosphate buffer was determined, Figure 19.12 [65]. The values of

A2 in Figure 19.12 at Cphosphate < 1.4 M are significantly greater than the values for

noninteracting hard spheres, AHS
2 ¼ 4VmM

�2
w , (Vm is the molar volume of lumazine

synthase). This suggests significant repulsion between the molecules, which cannot be

due to the action of electric double-layer forces [89,165]. The reason is that, at ionic

strengths >0.25 M (the ionic strength of a phosphate buffer at pH ¼ 8.7 is near 0.3 at

Cphosphate ¼ 0.1 M), these forces are almost fully screened [158,159]. Hence, the repulsion

reflected in Figure 19.12 must be of nonelectrostatic origin. Because the list of repulsive
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forces in solution contains two items, and the first one, electrostatic, is excluded, we are

left with the second source of repulsion, structuring of the solvent: water, phosphate, and

cations, around the protein molecules. Such solvent structures, as discussed above,

introduce a repulsive minimum at molecular separations w1 nm, corresponding to the

thickness of a shell of several water molecules [41,44,158,159,166,167]. This

intermediate-range repulsion is the likely reason for the large positive A2 values seen in

Figure 19.12.

In view of the lack of correlation between the angle-averaged intermolecular in-

teractions and the crystallization behavior, the role of buffers on the protein crystalliz-

ability should be independently examined. Figure 19.13 shows crystals of the protein

lysozyme from hen egg white, grown from a 50 mM potassium phosphate buffer at pH

7.2, without the addition of other components. The crystallization times were

several hours, near those typically observed with this protein. However, when

the protein was placed in solution with the same pH, maintained by HEPES

(N-2-Hydroxyethylpiperazine-N0-2-ethanesulfonic acid) buffer at the same concentra-

tions of 50 mM (both phosphate and HEPES have polyvalent anions and at pH ¼ 7.2

maintain approximately equal ionic strength), no crystals formed in any of several runs

even after days of observation. It is unlikely that the crystals formed in the presence of

phosphate are due to phosphate bridges between the lysozyme molecules: the crystals in

Figure 19.13 are tetragonal and similar to lysozyme crystals formed with many other

inorganic additives. The contrast between the actions of the two buffers indicates that the

buffers affect the interactions between patches on the protein molecular surface, involved

in intermolecular contacts. Because the two tested buffers maintain the same pH, the

affected interactions are not electrostatic. Most likely, the buffers are involved in

the formation of the water structures at the contact patches and, in this way, the nature of

the buffer determines the protein crystallizability [168].

100 μm

FIGURE 19.13 Crystal of lysozyme formed at pH ¼ 7.2 in phosphate buffer with concentration 0.05 M,
corresponding to ionic strength w0.12 M. W. Pan, private communication, 2007.
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19.4.3.2 Salts
Protein crystals grow out of solutions containing inorganic and organic ions, as well as

numerous molecular species. Traditionally, it has been assumed that electrolytes induce

crystallization (or other types of solid-phase formation) by screening the electrostatic

repulsion between the like-charged protein molecules. In light of the contradictions

between the application of the colloid stability approach to protein crystallization and

the experimental observation, discussed previously, other types of interactions that may

be affected by ions in the solution have been invoked. Evidence for one type of such

interaction is the unusual dependence of the dimensionless second osmotic virial co-

efficient A2 in apoferritin solutions on the concentration of Naþ ions. This dependence

exhibits a minimum at [Naþ] between 0.1 and 0.15 M, see Figure 19.14 [64,158,159]. The

value of A2 at the minimum of w4 is equal to that expected for noninteracting hard

spheres, indicating that at these [Naþ], electrostatic repulsion is completely suppressed.

The ascending branch of this dependence is a manifestation of a surprisingly strong

repulsion between the molecules at electrolyte concentrations about and above 0.2 M, at

which electrostatic interactions are insignificant. This strong deviation from the pre-

dictions of the DLVO theory was attributed to the water structuring, enhanced by the

accumulation of hydrophilic counter ions around the apoferritin molecules, see

Figure 19.15 [34,64,158,159], giving rise to hydration repulsive forces [41,164].

The addition of even 0.01 M Cd2þ leads to a drop of the virial coefficient in a solution

with 0.2 M Naþ from the relatively large positive value typical of the hydration repulsion,

to about zero [158]. Note that even these low Cd2þ concentrations are orders of

magnitude higher than the apoferritin concentrations (in the micromolar range in a

1 mg/mL solution of this protein with Mw ¼ 450,000 Da). However, further increases of

the [Cd2þ] up to 0.22 M ¼ 2.5% (w/v) (the value typically used in crystallization trials) did

not lower the value of A2 further and it remained around zero. We interpret the action of

Cd2þon the molecular interactions in the following way. The strong coordination bond
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FIGURE 19.14 Dependence of the dimensionless second osmotic virial coefficient A2 on the concentration of
sodium ions [Naþ]. Curve is just a guide for the eye. With permission from Ref. [159].
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that Cd2þ establishes between two apoferritin molecules [169–171] is reflected in the

potential as a deep minimum limited to distances of about 0.2 nm, i.e., comparable to

the size of the Cd2þ ion. If, in addition to this effect, Cd2þ would also destroy the hy-

dration shell around each molecule, this deep minimum would lead to highly negative B2

values. The closeness of the actual values to zero indicates that the repulsive hydration

shells are present even with the Cd2þ in the solution. The resulting potential around an

apoferritin molecule in a crystallizing solution containing 0.2 M Naþ and 0.22 M Cd2þ is

schematically depicted in Figure 19.15.

The potential depicted in Figure 19.15 differs from those modeled in Figure 19.6 only

in the nature of the deep minimum close to the protein molecular surface: in the system,

modeled in Figure 19.6, the minimum is due to the van der Waals attraction, whereas in

Figure 19.15 it reflects the Cd2þ mediated bond. In both cases, the local maximum at

intermediate separations is due to the structuring of the solvent. A smaller difference is

that in the case depicted in Figure 19.15, the solvent structures include sodium cations,

whereas in Figure 19.6, only water molecules partake in the shell around the protein

molecules.

Previously, we provided an example of hydration repulsion, due to the buildup of

hydrated ions at the surface of the protein molecules [41,161–164]. Another type of

water-structuring interactions, which has always been considered by the protein bio-

chemists and physical chemists, is the hydrophobic attraction. It is important to note

that the hydrophobic attraction is also enhanced by electrolytes, organic molecules, and

other solution components [69,172,173]. Typically, it is assumed that the required

concentrations of the additives needed for the engineering of the hydrophobic bonds are

higher, up to moles per liter.
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FIGURE 19.15 Mean-field potential of interaction between two apoferritin molecules with diameter 2a at a
distance r between their centers. Upper curve: potential of hydration forces in the presence of 0.2 M Naþ; lower
curve: likely potential in the presence of 0.2 M Naþ and 0.22 M Cd2þ.
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19.4.3.3 Organic Molecules
The role that small organic molecules play in the stability of protein solutions and in

protein crystallization is very poorly understood. Numerous facts on the effects of

molecules such as mono-, di- and polyalcohols, ketones, polymers, ethers, and others,

have been cast in descriptive terms, which carry little information about the molecular

mechanism of action of the respective additive and weak rationalization of its applica-

bility to new systems.

One compound, the role of which in protein crystallization has been rationalized is

PEG; it has been suggested that its presence enhances protein intermolecular attraction

through the action of depletion forces [101,174–176]. This explanation is somewhat

problematic: the action of the physical mechanism behind the depletion forces requires

that the interacting molecules be significantly larger in size than the dimensions of the

random PEG coil in solution (which has a hydrodynamic radius equal to that of a protein

with about three-fold greater molecular mass), and this is not the case for many proteins

for which PEG is employed [29].

For deeper insight into the mechanisms of organic additives, the action of acetone on

the intermolecular interactions in insulin solutions, and on the crystallization of this

protein was studied. The temperature dependence of the solubility of insulin at varying
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FIGURE 19.16 Variations with acetone concentration of (A) standard crystallization enthalpy and (B) standard
entropy change for crystallization of insulin. With permission from Ref. [68].
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concentration of the co-solvent acetone revealed that, as a rule, the solubility increases

as temperature increases. The entropy change upon crystallization DSocryst is

w35 J mol�1 K�1 at the low-acetone-concentration range, and drops to about

�110 J mol�1 K�1 at the higher, Figure 19.16(B) [68]. As discussed above, positive values

of the crystallization entropy indicate release of solvent, mostly water, molecules

structured around the hydrophobic patches on the insulin molecules’ surface in the

solution. As acetone concentration increases to 15% and above, unstructured acetone

molecules apparently displace the waters, and their contribution to DSocryst is minimal.

This shifts DSocryst to a negative value close to the value expected for tying up of one

insulin molecule from the solution. The accompanying increase in DHo
cryst from about

�20 kJ,mol�1 in acetone-free solutions and at low acetone concentration to about

�55 kJ,mol�1 at acetone concentrations above 15%, Figure 19.16(A), suggests that the

water structured around the hydrophobic surface moieties has a minimal enthalpy ef-

fect, likely due to the small size of these moieties [68]. The solubility is a reflection of the

balance of thermodynamic variables between two states: molecules in solution and

those in the crystal. Thus, the variations of the thermodynamic variable for insulin

crystallization with acetone concentration reveal that acetone destroys the water

structures exiting in solution at the sites on intermolecular contacts in the crystal.

This conclusion is supported by the determinations of the second osmotic virial

coefficient A2 from the data in Figure 19.17. Both Debye plots in Figure 19.17 yield

negative values of the second osmotic virial coefficient A2, indicating both in the pres-

ence and absence of acetone the interactions averaged over all intermolecular separa-

tions and all body angles are attractive. Insulin forms nice rhombohedral crystals in both

solvents. Because the crystals formed in both solvents are identical, it is likely that the

depth and width of the respective minima are also identical. Then, the lower magnitude

of A2 in purely aqueous solvent indicates that a repulsive maximum exists at
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FIGURE 19.17 Determination of the second osmotic virial coefficient A2 of insulin, in crystallizing solutions in the
presence and absence of acetone. A2 is the slope of the straight lines.
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intermediate separations and partially compensates for the minimum in B2 value. The

most likely molecular mechanism that underlies this repulsive maximum is structuring

of the water molecules around the insulin molecules in purely aqueous solvents. The

addition of acetone destroys this structure and leads to a lower values of A2.

Correlating the effects of acetone on the insulin solubility to those on the second virial

coefficient, we note another deviation from the general rule that lower algebraic value of

A2 leads to lower solubility: as discussed above, insulin solubility in the presence of

acetone is higher than in purely aqueous solvents. To understand this deviation, we note

that acetone destroys the water structures both at the molecular surface sites involved in

crystal contacts, which is reflected in the solubility, and over the entire surface of the

molecule, reflected in A2. The reason for the deviation from the general correlation

between A2 and the solubility, despite the similarity of the action of acetone at the

molecular level, are the entropy consequences of the structured water. When the water

structures are destroyed, the crystallization entropy decreases, and the crystallization

free energy increases, leading to higher solubility. This entropy effect on the crystalli-

zation free energy is sufficiently strong to compensate for the decrease in crystallization

enthalpy in Figure 19.16(A). On the other hand, the destruction of the water structures is

accompanied by decrease in A2, as discussed previously.

19.6 Crystal Nucleation
Because of its crucial place at the start of the crystallization process, the nucleation of

protein crystals determines many properties of the emerging crystalline phase. It is

obvious that the nucleation selects the polymorphic form and if a different polymorph is

desired, conditions at which its nucleation is faster than that of the other possible

polymorphs should be sought. If nucleation is fast, many crystals form nearly simulta-

neously. Their growth depletes the medium of solute and may lead to cessation of

nucleation at the later stages of crystallization. Thus, the majority of crystals grow to

approximately identical sizes. In contrast, if nucleation is slow and fewer crystals

nucleate at a time, the supersaturation in the solution drops slowly, the nucleation of

new crystals continues and a population of crystals of various sizes forms. Ultimately, if

nucleation is hindered everywhere in the growth container but at a few selected spots,

crystals only nucleate at these spots and grow large before the solution is depleted of

nutrient. Hence, control of nucleation is a means to control size, size distribution,

polymorphism, and other properties of the crystals, Figure 19.18.

19.6.1 The Classical Nucleation Theory

19.6.1.1 Thermodynamics
The formation of crystals is a first-order phase transition. Accordingly, it is characterized

by nonzero latent heat, the crystallization enthalpy DHo
cryst. More significant for the

kinetics of nucleation is the second feature of first-order phase transitions: the
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discontinuity of the concentration at the phase boundary. Because of this discontinuity,

the solution–crystal boundary possesses nonzero surface free energy. If a small piece of a

condensed phase forms in a supersaturated solution, the surface free energy of the

emerging phase boundary makes this process unfavorable. Thus, a very limited number

of embryos of the condensed phase appear because of the few fluctuations which

overcome the free-energy barrier. The first step in the formation of a new phase, in

which the kinetics of the phase transformation is determined by this barrier, is called

nucleation.

The thermodynamic part of the classical nucleation theory was developed by J.W.

Gibbs in two papers [177,178]. We present it here with two modifications: we consider

the formation of a crystal in contrast to the J.W. Gibbs’ consideration of a liquid droplet,

and we assume that the initial crystallite is shaped like a cube with a side a instead of

assuming a spherical droplet of a certain radius. In a supersaturated solution, i.e., one in

which the solute chemical potential is higher than that of molecules in the crystal so that

Dm ¼ msolute – mcrystal > 0, the formation of such a cluster leads to a free energy loss of

–nDm. On the other hand, the creation of the phase boundary with area S and surface free

energy a between the cluster and the solution leads to a free energy gain Sa. Assuming

FIGURE 19.18 Nucleation largely determines the outcome of crystallization. Examples of protein crystals and other
condensed phases illustrate, at top left, the failure of nucleation, in which no crystals or other condensed phase
are generated in a supersaturated lysozyme solution; and clockwise from there, the nucleation of two crystals of
apoferritin, which grow to a relatively large size; the nucleation of numerous crystals of insulin, which have a
broad size distribution; needle-like crystals of lysozyme; dense liquid droplets in a solution of hemoglobin A, and,
at bottom left, amorphous precipitate in a supersaturated lysozyme solution. Scale bar is shown in bottom
right panel.
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that the crystal cluster is a cube, S ¼ 6a2n2/3; other shapes will lead to coefficients

different than 6a2 in this relation, but the 2/3 scaling with n will be preserved for all

three-dimensional nuclei. Thus.

DG
�
n
� ¼ �nDmþ 6a2n2=3a: (19.9)

This dependence is plotted in Figure 19.19.

Differentiating DG(n), we find the cluster size n* for which DG passes through a

maximum DG*

n� ¼ 64U2a3

Dm3
and DG� ¼ 32U2a3

Dm2
¼ 1

2
n�Dm; (19.10)

in which U ¼ a [3] is the volume occupied by a molecule in the crystal.

As Figure 19.19 illustrates, DG* is the barrier that must be overcome to form a crystal

from solute molecules. The growth of clusters smaller than n* is associated with an in-

crease of free energy and is unfavorable. Clusters may still grow to such sizes because of

fluctuation, but because a driving force exists for the decay of these clusters, such events

are rare. On the other hand, if as a result of a fluctuation a cluster reaches as size greater

than n*, its growth is accompanied by a decrease of free energy and occurs spontaneously.

A cluster of size n* has equal probabilities of growth and decay and, hence, such clusters

are called critical, and they represent the nuclei of the new phase. Note that, by this

definition, all nuclei are critical and the term critical nuclei is redundant [179].

19.6.1.2 The Rate of Crystal Nucleation
To model the nucleation rate J, i.e., the number of nuclei which appear is a unit solution

volume per unit time; M. Volmer postulated—in analogy to the Arrhenius equation—that

J ¼ J0exp(–DG*/kBT), in which kB is the Boltzmann constant [180]. The external pa-

rameters, such as temperature, concentration, and pressure, as well as the solution

supersaturation, affect the nucleation rate mostly through DG* according to Eqn (19.10);

the effects on J0 are significantly weaker. There are numerous statistical–mechanical

derivations of the nucleation rate law within the assumption of the classical nucleation

6αn2/3 
ΔG

ΔG*

n
n*

ΔG(n)

- nΔμ

FIGURE 19.19 Illustration of the thermodynamic effects of formation of a crystal. n: number of molecules in
crystalline embryo; Dm: solution supersaturation; a: surface free energy; DG: free energy; * denotes critical cluster.
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theory; for an example, see Ref. [181]. The final expression of these derivations can be

represented as [182]

J ¼ v�Zn expð� G�=kBTÞ (19.11)

in which n* is the rate of attachment of monomers to the nucleus, Z is the Zeldovich

factor, which accounts for the width of the free-energy profile DG(n) in the vicinity of the

maximum DG*, see Figure 19.19, and n is the number density of molecules in the so-

lution. Equation (19.11) assumes that the replacement partition function of the nucleus

[181,182] is equal to one. This factor accounts for the additional stabilization of the

nuclei due to their translational and rotational degrees of freedom [183]. Neglecting it is

a reasonable assumption for crystal nuclei suspended in a viscous solution; this would

not be the case for nucleation in the gas phase.

19.6.2 Experimental Data on the Nucleation Kinetics

19.6.2.1 Evolution of Aggregate Sizes
The time evolution of the sizes of large aggregates observed by dynamic light scattering

in supersaturated solutions of satellite tobacco mosaic virus (STMV) is shown in

Figure 19.20 [184,185]. This figure shows that the size of these large aggregates R reaches

a critical value Rc, after which the size increase is fast. The higher the STMV supersat-

uration in solution, the shorter the time needed to reach this critical Rc. These obser-

vations agree with the predictions of the classical nucleation theory for the nucleation of

STMV crystals. The slow initial increase of R corresponds to the attempts by subcritical

clusters, by fluctuations, to climb on the top of the free energy barrier in Figure 19.19.

After the barrier is overcome, the addition of new molecules to the cluster brings about

decrease, rather than increase, of the cluster’s free energy. Thus, Rc was identified as the

radius of the nucleus Rc ¼ a
2

ffiffiffiffiffi
n�3

p
(for the definition of n*, see Eqn (19.10) above). Similar

experiments were carried out with solutions of horse spleen ferritin, apoferritin, and

pumpkin seed globulin. The Rc dependencies on the supersaturation s h Dm/kBT are

plotted in Figure 19.21 and they agree with the proportionality between Rc and 1/s

predicted by Eqn (19.10). The values of the surface free energy of the nucleus a, emerging

from the data in Figure 19.21, are 0.018 erg cm�2 for STMV, 0.027 erg cm�2 for apo-

ferritin, and 0.061 erg cm�2 for pumpkin globulin [184,185].

19.6.2.2 The Rate of Crystal Nucleation
For further insights into themechanismof nucleation of protein crystals, we turn to data on

the dependence of the nucleation rate on supersaturation for crystals of the protein lyso-

zyme, a convenient and often used model system. The dependencies of the homogeneous

nucleation rate of lysozyme crystals on the thermodynamic supersaturation s, at three

different concentrations of the precipitant NaCl, are presented in Figure 19.22 [186–189].

Each data series in Figure 19.22 corresponds to nucleation experiments carried out at

a fixed precipitant concentration and at a fixed temperature. In agreement with general
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FIGURE 19.20 Time evolution of the average radius of a satellite tobacco mosaic virus (STMV) cluster forming
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expectations and Eqn (19.3), the nucleation rate increases exponentially with supersat-

uration at each of the three precipitant concentrations, and, overall, is higher at higher

precipitant concentrations. However, the dependencies contain four peculiarities.

1. The J(s) dependence at the highest precipitant concentration, CNaCl ¼ 4%, breaks

at s > 3.1 and, in dramatic contrast to prediction of Eqns (19.11) and (19.10), the

section above this concentration is practically steady as supersaturation increases.

2. At s > 3.45 in the same J(s) dependence, the data scatter increases and three of

the recorded points deviate significantly from the dominant trend.

3. The measured nucleation rates are on the order of 0.1–1 cm�3s�1, which is about

10 orders of magnitude less than the prediction of the classical nucleation theory;

the estimate of J stemming from the classical nucleation theory is discussed

subsequently.

4. The dependence of the nucleation rate on temperature, shown in Figure 19.23 pre-

sents another puzzling complexity: as supersaturation is increased upon lowering

of temperature, the nucleation rate first increases exponentially, as expected from

the classical theory, but then passes through as a sharp maximum and recedes

following a weaker dependence.

In the following subsections, we discuss these four peculiarities.

19.6.3 the Nucleus Size and Solution-Crystal Spinodal

To understand the breaking J(C) dependency, feature (1) previously, we use the nucle-

ation theorem to determine the size of the critical nucleus for crystallization. According

to Eqn (19.2), the number of molecules in the nucleus n* largely determines the height of

the free-energy barrier for nucleation DG*, and hence the nucleation rate J. The nucle-

ation theorem [190–193], a universal, model-independent nucleation law, provides an

estimate for n* from the nucleation rate J.

n� � n0 ¼ kBT
vln J

vDm
þ a1; (19.12)

in which a1 is a correction that takes values between 0 and 1 [191].

Figure 19.22(B) indicates that at CNaCl ¼ 2.5% and 3%, n* does not change throughout

the respective supersaturation ranges, whereas at CNaCl ¼ 4% the nucleus size changes

abruptly at s ¼ 3.1, corresponding to C ¼ 33.5 mg/ml. The value of the parameter n0,

which roughly corresponds to the number of solute molecules displaced by the nucleus,

can be roughly estimated as less than 1. Then the nucleus sizes n* – n0, extracted from

the four linear segments in Figure 19.22(B), are ten, four, five and one molecules,

respectively. From here we see that the breaking in the J(C) dependence at CNaCl ¼ 4% is

due to the transition of the nucleus size from five to one molecules.

Nucleus size n* – n0 ¼ 1 means that every molecule in the solution can be an embryo

of the crystalline phase, and the growth to dimer and larger clusters occurs with a free

energy gain. Thus, the free energy barrier for the formation of the crystalline phase DG* is
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below the thermal energy of the molecules. In analogy to the nucleation of a fluid within

another fluid, we call spinodal the phase line at which the nucleation barrier vanishes

and the rate of generation of the new phase is only limited by the kinetics of growth of its

clusters. The spinodal is defined as the boundary between metastability and instability of

an old phase, supersaturated with respect to a new phase [177,178,194].

The case discussed here, the solution–solid phase transition, is one for which a mean-

field free energy expression encompassing both phases cannot be formulated because of

different standard states. Because the inflection point in the dependence of DG on the

order parameter along which the phase transition occurs is typically used to define the

spinodal [195–197], a thermodynamic definition of the solution–crystal spinodal is

impossible [195]. The definition proposed here is a kinetic one, based on the transition to

nucleus size of one molecule, i.e., to where no thermodynamic barriers for the formation

of the crystalline phase exist.

In Figure 19.8, we have depicted the solution–crystal spinodal line in the (C, T) plane,

determined as the concentration C at the transition to n* – n0 ¼ 1 from Ref. [198].

2.5%

2.5%

3%

3%

4%

4%

(B)

(A)

0.4

0.2

0
1

0.1

0.01

2.5 3.0 3.5
Thermodynamic supersaturation σ = In (C/Ceq)

H
om

og
en

eo
us

 n
uc

le
at

io
n 

ra
te

 J
 [c

m
-3

 s
-1

]

FIGURE 19.22 The dependence of the rate of homogeneous nucleation J of lysozyme crystals of supersaturation
s h Dm/kBT at T ¼ 12.6

�
C and at the three concentrations of the precipitant NaCl indicated on the plots. Solid

lines: fits with exponential functions; dashed lines fits with the classical nucleation theory expression, Eqn (11).
Vertical dotted lines at s ¼ 3.9 indicate the liquid–liquid coexistence boundary at this T and CNaCl ¼ 4%; this
supersaturation corresponds to lysozyme concentration 67 mg ml�1. (A) Linear coordinates; (B) semi-logarithmic
coordinates. With permission from Ref. [205].
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At concentrations and temperature below this spinodal line DG*z 0, the nucleation rate

J does not increase as supersaturation is increased by increasing C or lowering T. This

explains puzzle (1) above. The existence of a solution–crystal spinodal also helps to

explains the maximums in the dependencies of the nucleation rate J on temperature in

Figure 19.23, puzzle (4) above; for a further details and a theoretical model of these

factors, see below.

The transition to a spinodal regime of crystal formation also explains the increased

data scatter of J(s) at s > 3.45, puzzle (2) above. As shown in Ref. [29,199], at the point of

transition from nucleation to spinodal decomposition the nucleation rate undergoes a

sharp maximum: on the one side is an ascending branch due to the decrease of the size

of the nucleus, and on the other side is a descending branch due to the temperature

decrease and associated kinetic factors. Near this maximum, the nucleation rate is very

sensitive to variations of the experimental conditions: temperature, protein and pre-

cipitant concentrations, and others. Hence, minor inconsistencies of these parameters

may lead to significant variations in J [30].

19.6.4 The Classical Theory Overestimates the Crystal Nucleation
Rate by 10 Orders of Magnitude

To understand puzzle (3) above, we use Eqn (19.11) for an estimate of the crystal

nucleation rate based on the classical nucleation theory. The rate n* can be evaluated

from the rate of attachment of molecules to lysozyme crystals at similar protein con-

centrations. As discussed in Section 19.7.1 below, the surfaces of a crystal growing in
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FIGURE 19.23 The dependence of the rate of homogeneous nucleation J of lysozyme crystals on temperature T at
two fixed lysozyme concentrations indicated in the plot. The temperatures of equilibrium between crystals and
solution are 315 K at Clys ¼ 50 mg ml�1 and 319 K at Clys ¼ 80 mg ml�1. The temperatures of L–L separation are
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Symbols represent experimental results from [29]. Lines are results of two-step model in Eqns (19.13)–(19.15).
With permission from Ref. [199].
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solution are smooth and molecules only attach to growth steps that occupy about

10�3 – 10�2 of the crystal surface [200]. Hence, the rate of attachment to crystals should

be estimated from the velocity of step propagation rather than from the rate of growth of

the crystal faces.

There are numerous determinations of the step velocities of lysozyme crystals

[120,126,201]. At temperatures and concentrations similar to those during the determi-

nation of the nucleation rate in Figure 19.22 the step velocities are w1 mm s�1. This

yields, with molecular size of lysozyme of 3.2 nm, attachment rate to the steps w300 s�1.

In contrast to that of large crystals, the nucleus surface is likely rough (because of the

small size of the nucleus) and molecules can attach anywhere. Hence, we assume that

n* z 300 s�1. This estimate of n* should be viewed as approximate because the config-

uration of molecules in a kink on the smooth crystal facet during crystal growth may be

significantly different than the molecular configuration on the rough surface of a near-

critical cluster. Hence, the barriers encountered by an incoming molecule may also

differ. On the other hand, estimates of n* from the diffusion rate of molecules in the

solution would yield a significant overestimate because they would completely neglect

this barrier, which can be on the order of several tens of kilojoules per mole [22,202].

The Zeldovich factor Z accounts for the width of the free energy profile along the

nucleation reaction coordinate around the location of the maximum [179,181,203,204]. It

is expected to be on the order of 0.1–0.01 for nucleation of any protein condensed phase

[179,204,205]. The protein number density in a solution of concentration w50 mg ml�1

as the one used for the experiments in Figure 1922 [93] is n ¼ 2 � 1018 cm�3. With these

values for n*, Z and n, the pre-exponential factor in Eqn (19.11) is of order

1019 � 1020 cm�3 s�1.

The nucleation barrier DG*, determined from the slope of the dependencies in

Figure 19.22(B), DG* z 10�19 J. We can use Eqn (19.10) to evaluate the surface free

energy a of the interface between the dense liquid and the solution from the value of

DG*. From the crystal structure, U y 3 � 10�20 cm3 [206]. We get a z 0.2 erg cm�2

Ref. [205], which is close to determinations for number of other protein crystals

[184,185], see Section 19.6.2.a above and this correspondence supports the estimate of

DG* from the data in Figure 19.22.

Combining the estimate for the pre-exponential factor with this estimate for DG* we

get from Eqn (19.10) a prediction for J z 108–109 cm�3 s�1. This value is about 10 orders

of magnitude higher than those in Figure 19.22. It is important to note that because we

estimate DG* from experimental data, the difference between the experimentally

determined J and the prediction of the classical nucleation theory is due to an over-

estimate of the preexponential factor by the classical theory.

19.6.5 The Two-step Mechanism of Nucleation of a Crystal in Solution

To understand puzzles (3) and (4) above, that the nucleation rate is lower by many orders

of magnitude than the prediction of the classical theory and the nonmonotonic
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dependence of the nucleation rate on temperature, we consider a mechanism of the

nucleation of crystals, according to which the formation of crystalline nuclei occurs

inside stable droplets or metastable mesoscopic clusters of dense protein liquid, as

illustrated in Figure 19.24.

A major assumption in the derivation of Eqn (19.11) is that the solute molecules

exchange directly with the crystalline embryo. To understand the meaning of this

assumption and why it might not apply to nucleation of crystals in solution, we need to

step back and consider the distinction between a solution and a crystal.

Let us start with the phase diagram of a solution in coordinates concentration and

temperature at constant pressure, as in Figure 19.8. This phase diagram typically con-

tains three equilibrium phases: a dilute solution, a dense liquid, and crystal; a higher

number of phases are possible if more than one crystalline polymorph may form;

kinetically arrested states, such as gels, are sometimes included in the phase diagram.

Although with some solutions of small-molecule compounds the dense liquid might not

be observable, the dense liquid is readily seen in protein, colloid, and some organic

solutions [81,94,95,207]. To distinguish between the three phases present in the phase

diagram, at least two parameters, called order parameters, are needed. Thus, the dilute

solution and the dense liquid differ by the solute concentration, the dense liquid and the

crystal differ by structure (there may be a slight difference in concentration), and the

dilute solution and the crystal differ by both concentration and structure.

From this point of view, the formation of crystals in solution should be viewed as a

transition along two order parameters: concentration and structure [18]. If a crystal

nucleates not from its melt, but from a dilute solution or gas, both a concentration and a

structure fluctuation are needed so that a crystalline nucleus may form, Figure 19.24(A).

Thus, the above assumption that an ordered nucleus forms directly in the dilute solution

corresponds to the assumption that the solution to crystal transformation occurs as a

transition along both order parameters, density and crystallinity, simultaneously; in

Figure 19.23(A) this pathway is represented by the arrow along the diagonal of the

(Concentrations, Structure) plane. It could be argued that a more energetically favorable

pathway is for the transition to proceed along the two order parameters in sequence.

Such a sequential pathway would correspond to the formation of droplet of a dense

liquid followed by the formation of a crystalline nucleus inside this droplet, as illustrated

in Figure 19.24(B).

This mechanism was first suggested by simulations and analytical theory [208–210].

These theoretical efforts predicted that the density and structure fluctuations are only

separated near the critical point for liquid–liquid (L–L) separation occurring in model

protein solution systems [37,92,208], whereas for off-critical compositions, the fluctua-

tions of the density and structure order parameters occur synchronously [208], similarly

to the classical viewpoint.

According to the two-step mechanism, the nucleation of crystals proceeds in two

steps: the formation of a droplet of a dense liquid, followed by nucleating a periodic

crystal within the droplet [29,30,211,212], as schematically illustrated in Figure 19.24.
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If the dense liquid is stable with respect to the dilute solution—this case is represented

by the lower curve in Figure 19.24(C)—the nucleation of crystals occurs inside macro-

scopic droplets of this phase. A far more common case is when the dense liquid is not

stable but has a higher free energy than the dilute solution [94,95], represented by the

upper curve in Figure 19.24(C). In these cases, the dense liquid is contained in meta-

stable clusters, intriguing objects in their own right, and crystal nucleation occurs within

the clusters.

Direct observations of ordered nuclei forming within the dense liquid exist, but only

for the case of stable dense protein liquid, Figure 19.25 [103,213]. Such direct imaging
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FIGURE 19.24 Schematic illustration of the two-step mechanism of nucleation of crystals. A dense liquid cluster
forms. A crystal nucleus may form inside the cluster. (A) Microscopic viewpoint in the (Concentration, Structure)
plane; (B) Macroscopic viewpoint of events along thick dashed line in (A). (C) The free energy DG along two
possible versions of the two step nucleation mechanism. If dense liquid is unstable and DG0
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C ,
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L�L < 0, reflected by lower curve. DG�
1 is the barrier for forma-

tion of a cluster of dense liquid, DG�
2 is for a formation of a crystalline nucleus inside the dense liquid.
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would be difficult or impossible for the more common case in which the dense liquid is

unstable. The action of the two-step mechanism in this case is inferred from two pieces

of evidence: First, we demonstrate the existence of metastable mesoscopic dense liquid

clusters in solutions. Then, we analyze the complex kinetic curves for nucleation of

crystals of the protein lysozyme in Figures 19.22 and 19.23, propose a kinetic law for the

two-step mechanism, and show that its predictions qualitatively and quantitatively agree

with the experimental data. Finally, we review experimental results which demonstrate

that this mechanism applies to many other proteins, to small molecule organic and

inorganic compounds, including biominerals and colloids.

19.6.6 Dense Liquid Clusters in the Homogenous Region
of the Phase Diagram

If crystallization is carried out at a point in the phase diagram where the dense liquid is

unstable, all density fluctuations are expected to decay with a characteristic time on the

order of the diffusion time of the protein molecules, 10 ms, see below [26,27,65]. Because

the molecules in the region of high concentration within the fluctuation move with the

same characteristic time, it would be impossible for them to probe various structures

and find the right one for the crystalline nucleus. Thus, the crucial question for the

understating of nucleation from dilute media is: How does the transition along the order

parameter concentration occur? The answer lies in the recently discovered metastable

mesoscopic clusters of dense liquid.

The evidence for metastable dense liquid clusters comes from monitoring solutions

of three hemoglobin variants, oxy-HbA, oxy-HbS, and deoxy-HbS [26], and the proteins

lumazine synthase [24,65] and lysozyme [27] by dynamic light scattering (DLS) and

atomic force microscopy [214]. Figure 19.26(A) shows a typical intensity correlation

FIGURE 19.25 Confocal scanning laser fluorescence microscopy imaging of nucleation of crystals of glucose
isomerase within dense liquid droplets. Bright field imaging, PEG with molecules mass 10,000 g mol�1 (PEG
10,000) used to induce crystallization. The time interval between the left and right images is 380 s.
Cprotein ¼ 55 mg ml�1, CPEG ¼ 9.5%, 0.5 M NaCl, 10 mM Tris maintaining pH ¼ 7. The width of each image is
326 mm. With permission from Ref. [213].
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function of a lysozyme solution in the homogeneous regions of the phase diagram. The

correlation function reveals two processes: the faster process, with characteristic time s1
on the order of 10–100 ms, is the Brownian motion of single lysozyme molecules; it is

present at all solution concentrations. The corresponding hydrodynamic radius, deter-

mined via the Stokes–Einstein equation, is about 1.5 nm and matches well the diameter

of a lysozyme molecule of 3.2 nm. The slower process has a characteristic time s2 on the

order of milliseconds; its amplitude increases with higher lysozyme concentrations. This

longer time could come from either compact lysozyme clusters suspended in the lyso-

zyme solution, or from single lysozyme molecules embedded in a loose network struc-

ture constraining their free diffusion. Because the measured low shear viscosity of

lysozyme solutions is equal to those determined using high shear rates [99], no loose

networks in lysozyme molecules exist in these solutions, and we conclude that the long

times in Figure 19.26(A) indeed correspond to lysozyme clusters [26]. The time-

dependence of their radius is shown in Figure 19.26(C), and it shows that the clusters
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FIGURE 19.26 Characterization of dense liquid clusters. (A) Examples of correlation function of the scattered
intensity g2(s) and the respective intensity distribution function G(s) of a lysozyme solution with C ¼ 148 mg ml�1

in 20 mM HEPES buffer; data collected at angle 145�. (B) Atomic force microscopy imaging of liquid cluster
landing on the surface of a crystal in a lumazine synthase solution. Tapping mode AFM imaging, scan width
20 mm. Apparent lateral cluster dimensions are misleading; cluster height is 120 nm. (With permission from
Ref. [24].) (C) Time dependence of the radius of dense liquid clusters in the same lysozyme solution as in a.
(D) The dependence of the decay rate G ¼ s2

� [1] of the cluster peak in the correlation function on the squared
wave vector q2 for a lysozyme solution as in (A).
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appear immediately after solution preparation; their radius is relatively steady. We

therefore conclude that these are clusters of dense liquid.

The number density n2 of the dense liquid clusters and the fraction of the total

solution volume 42 they occupy are evaluated from the amplitudes of the respective

peaks in the distribution function in Figure 19.26(A) [26]. Further results on the

behavior of clusters of dense liquid in solutions of hemoglobin and lumazine synthase

are presented in Refs. [24,26,65]. It was found that with all studied proteins, the clusters

exist in broad temperature and protein concentration ranges. The clusters

occupy 4 ¼ 10�6 – 10�3 of the solution volume and have number densities on the order

of 105 – 1010 cm�3 Ref. [26].

To evaluate the lifetime of the lysozyme clusters, we note that cluster decay processes

contribute a q-independent component to the overall rate G2 ¼ s2
�1 sensed by DLS

Ref. [215], G2 ¼ G0 þ D2q
2, and can be distinguished from cluster diffusion. (G0 is the rate

of cluster decay, D2 is the cluster diffusion coefficient, and q is the wave-vector.) The

q-dependent, diffusion component indeed dominates the DLS signal, Figure 19.26(D).

Using G0 � D2q
2 with q2 ¼ 3.5 � 1010 cm�2 and D2 ¼ 2 � 10�9 cm2 s�1, G0 � 70 s�1, we

obtain a lower bound 1/G0 z 15 ms for cluster lifetimes.

The determination of the lifetime of the clusters of lumazine synthase was more

straightforward and yielded an estimated of w10 s [24,65]. In addition to detection by

dynamic light scattering, clusters of lumazine synthase were directly imaged by atomic

force microscopy, Figure 19.26(B) [24,65], which confirmed their macroscopic lifetimes

and their size.

The lifetimes of the clusters (>15 ms for Hb and lysozyme and w10 s for lumazine

synthase) significantly exceed the equilibration times of the protein concentration at

submicrometer length scales, i.e. w10�5 s. Thus, the compact clusters represent a

metastable phase separated from the bulk dilute solution by a free energy barrier.

Attempts to rationalize the finite size of clusters have focused on a balance of short-

range attraction, due to van der Waals, hydrophobic, or other forces, and screened

Coulombic repulsion between like-charged species [216,217]. Although small clusters

that contain about 10 particles naturally appear in such approaches, large clusters are

expected only if the constituent particles are highly charged, with hundreds of

elementary charges. Such high charges are feasible for micron-size colloidal particles;

however, proteins in solution are known to carry less than 10 elementary changes per

molecule. Hence, whereas for colloidal suspensions these theories successfully predict

aggregation [218–220], or even the existence of metastable clusters [221], we conclude

that a distinct mechanism is at work in protein systems, in which clusters contain as

many as 106 molecules [27]. A recent study concluded that the clusters consist of a

nonequilibrium mixture of single protein molecules and long-lived but ultimately un-

stable complexes of proteins [27]. The puzzling mesoscopic size of the clusters is

determined by the lifetime and diffusivity of these complexes. Several possible mecha-

nisms of complex formation: domain swapping, hydration forces, dispersive in-

teractions, and other, system-specific interactions were highlighted.
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19.6.7 The Rate Law for the Two-step Mechanism
of Crystal Nucleation

A phenomenological theory was developed that takes into account intermediate high-

density metastable states in the nucleation process [199]. The rate law for the depen-

dence of the nucleation rate on protein concentration and temperature emerging from

this theory is.

J ¼
k2C1T exp

�
� DG�

2

kBT

�

hðC1;TÞ
	
1þ U1

U0
exp

�
DGo

C

kBT

�
 ; (19.13)

in which the constant k2 scales the nucleation rate of crystal inside the clusters, C1 is the

protein concentration inside the clusters, i.e., w300 mg ml�1, DDG�
2 is the barrier for

nucleation of crystals inside the clusters, h is the viscosity inside the clusters, U1 and U0

are the effective rates of, respectively, decay and formation of clusters at temperature T,

and DGo
C is the standard free energy of a protein molecule inside the clusters in excess of

that in the solution, depicted schematically in Figure 19.24(C) Ref. [199]. Recent

experimental determinations indicate that DGo
C is on the order of 10 kBT [27].

Following Ref. [222], the nucleation barrier DG�
2 in the vicinity of the solution–crystal

spinodal was modeled as

DG�
2ðT Þ ¼

E�

ðTe � TÞ2
"
1� ðTe � T Þ2�

Te � Tsp

�2
#

; (19.14)

in which E* is a parameter, Te is the temperature at which a solution of the studied

concentration is in equilibrium with a crystal, and Tsp is the spinodal temperature. Te

and Tsp are determined from the phase diagram in Figure 19.8, and E* is determined by

fitting Eqn (19.14) to the slope of the J(C) dependencies in Figure 19.22(B).

The viscosity inside the dense liquid clusters was modeled as.

h ¼ h0

�
1þ ½h�C1 expðkh½h�C1Þ

�
expð� Eh


kBTÞ; (19.15)

in which [h] is the viscosity increment, and kh and Eh are constants; all three viscosity

parameters are determined from the known dependencies of viscosity in the studied

solution on temperature and concentration.

A crucial assumption in Eqn (19.13) is that the concentration inside the dense liquid

clusters C1 increases as temperature is lowered, in agreement with the phase diagram in

Figure 19.8 and the likely similarity between the dense liquid in the clusters and the

stable sense liquid depicted in the phase diagram [199]. As a result of this C1(T)

dependence, the viscosity h increases much more strongly in response to decreasing

temperature T than suggested by the quasi-Arrhenius member of Eqn (19.15) with Eh
about 10–20 kJ mol�1 [223].

The denominator of Eqn (19.13) offers another pathway by which decreasing tem-

perature affects the nucleation rate J, besides the temperature dependence of the
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viscosity. Because (U0/U1)expð�DGo
C=kBTÞ is the nonequilibrium volume fraction

occupied by the clusters f2, the term in the square brackets in the denominator of

Eqn (19.13) is approximately f2
�1. Because DGo

C > 0, see above, lower T leads to a

greater value of the denominator, which corresponds to a lower volume of the dense

liquid clusters and accordingly to lower J. This contributes about factor of five in the

decrease in J as temperature is lowered from Tsp to the lowest values probed in

Figure 19.23.

Using Eqns (19.13)–(19.15), nucleation rate data at varying temperature and protein

concentrations in Figure 19.22 and Ref. [224], as well as nonmonotonic dependencies of

the nucleation rate on temperature in Figure 19.23 were reproduced with high fidelity

using literature values or independently determined parameters of the thermodynamic

and kinetic parameters of the system [199]. The good correspondence between the

model results and the experimental data supports the validity of the two-step nucleation

mechanism. According to Eqn (19.13), the increasing part of the J(T) as temperature is

lowered below Te is due to the increase of the supersaturation Dm that shrinks DG�
2

according to Eqn (19.10); this leads to exponential increase in the nucleation rate J. The

maximum in J(T) is reached exactly at T ¼ Tsp, in which DG�
2 vanishes; note that Tsp is

independently determined from plots similar to the one at 4% in Figure 19.22(B) [224].

The steep decrease in the nucleation rate as T is lowered beyond the maximum at Tsp is a

crucial part of the proof of the validity of the two-step mechanism: within the two-step

mechanism this steep decrease is explained by the smaller volume of the dense liquid

clusters at lower temperature, and by the higher concentration inside them, leading to

higher viscosity. Both the lower volume of the clusters and the higher viscosity lead to

lower nucleation rate.

No pathway of steep decrease of nucleation rate beyond the spinodal temperature

exists if one assumes one-step nucleation: nuclei forming within the dilute solution

would be exposed to its viscosity, which is a weak function of temperature. Thus, the

nucleation rate would decrease almost imperceptibly, by w16%, assuming

Eh ¼ 20 kJ mol�1, within the 5–6 K range probed. Note that the decrease in nucleation

rate in glass-forming melts in response to temperature decrease, interpreted as a result

of viscosity increase in the melt, occurs over 40–50 K [225]; furthermore, this response is

significantly enhanced by the stronger temperature dependence of melt viscosity as

compared to that of solutions.

To understand puzzle (iii) above, that the nucleation rate is lower by 10 orders of

magnitude than the prediction of the classical theory, we compare the nucleation ki-

netic law in Eqn (19.13) to that in Eqn (19.11). We see that k2f2C1T/h takes the place of

the product nZn. In solutions of concentration C in the range 20–60 mg ml�1, as the

ones in which the nucleation rates in Figure 19.22 were measured, the cluster volume

fraction f2, represented by the denominator in Eqn (19.13), is on the order of

10�7–10�6. With the concentration C1 in the clusters around 300 mg ml�1, Eqn (19.15)

shows that the viscosity h of the dense liquid in the clusters is around 100 centiPoise, or

w100 times higher than in the normal solution. We get that the nucleation rate should
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be w109 times lower than the prediction of the classical theory, which assumes

nucleation in the solution bulk.

19.6.8 The Rate Determining Step in the Two-step
Nucleation Mechanism

The derivation of Eqn (19.13) is based on the assumption that the first step in the two-

step mechanism, the formation of the dense liquid clusters, is fast and that the second

step, the formation of the crystal nuclei within the dense liquid clusters, is rate deter-

mining. Although the excellent agreement between the experimental data and the pre-

diction of Eqn (19.13) in Figure 19.23 can be viewed as a support of this assumption, it

should and can be tested independently.

As first evidence in favor of the fast rate of generation of the dense liquid clusters, we

view data on the time dependence of three characteristics of the cluster population:

average radius, number density, and volume fraction, illustrated for the case of average

cluster radius in Figure 19.26(C). All of these dependencies, monitored for the proteins

lumazine synthase [24,65], lysozyme [27], and three hemoglobin variants [26] reveal that

the clusters appear within several seconds of solution preparation. After that, the cluster

populations are stable for several hours.

For an additional test, we use the similarity between the clusters and stable droplets

of dense liquid that exist below the liquid–liquid coexistence line in the phase diagram in

Figure 19.8. The rate of nucleation of the dense droplets was determined by monitoring

the increase in time of the number of droplets appearing in an isothermal solution

supersaturated with respect to the formation of dense liquid [93]. These data yield

droplet nucleation rates, which are on the order of 108 cm�3 s�1. These rates are about 10

orders of magnitude faster than the rates of crystal nucleation and support the

conclusion that the nucleation of the dense liquid precursors, stable or unstable, is much

faster than the rate of crystal nucleation within these precursors.

The conclusion that the rate of nucleation of crystals within the dense liquid clusters

is the rate-determining step in the two-step nucleation mechanism supports the

applicability of Eqn (19.13) as the rate law for this process. Another important conse-

quence of this conclusion is related to the applicability of the nucleation theorem to the

two-step nucleation mechanism. Because cluster formation is fast, the clusters can be

considered in equilibrium with the solution. Then the chemical potential of the protein

in the clusters is equal to the chemical potential of the protein in the solution, and

Dm ¼ msolute – mcrystal is the supersaturation to which the crystal nuclei are exposed within

the clusters. Because the cluster number is steady, J is the rate of nucleation of crystals

inside the clusters. From the latter two conclusions, it follows that applying the nucle-

ation theorem, Eqn (19.12), with the macroscopically observed nucleation rate and the

external supersaturation, is equivalent to applying the nucleation theorem to the

nucleation of crystals in the dense liquid. Hence, the size of the nuclei determined using

the nucleation theorem refers to the crystalline nuclei within the clusters. Furthermore,
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the transition to the spinodal regime occurs when the crystalline nuclei reach the size of

one molecule, and this transition corresponds to DG�
2 ¼ 0.

Finally, we can resolve an apparent controversy. From the above estimate of the

lowering of the nucleation rate due to the low volume fraction and the high viscosity of

the dense liquid, it may appear that the selection of the two-step mechanism violates the

principle of fastest increase of entropy, e.g., Ref. [226,227]. This principle governs the

selection of kinetic pathways toward, in most cases, the mechanism leading to the fastest

rate: faster consumption of supersaturation corresponds to faster increase of the total

entropy of the universe. This is an incorrectly posed problem: the estimate of the

nucleation rate above used the value of the nucleation barrier DG* extracted from the

experimental data. As just demonstrated, this barrier is in fact DG�
2 from Figure 19.24(C)

and Eqn (19.13), i.e., the barrier for nucleation of crystals inside the clusters. Because the

surface free energy at the interface between the crystal and the solution is likely

significantly higher than at the interface between the crystal and the dense liquid, the

barrier for nucleation of crystals from the solution would be much higher. This would

lead to much slower nucleation of crystals directly from the solution than inside the

clusters. Thus, the protein crystal nucleation follows the two-step nucleation mechanism

because it provides for faster rate of the solution-to-crystal phase transition and in this

way for faster decrease of the free energy of the system, which corresponds to faster

increase of the entropy of the universe.

19.6.9 The Role of Heterogeneous Nucleation Substrates

Knowing that the nucleation of crystal within the dense liquid clusters is the rate-

limiting step in the two-step mechanism, we can address a broader related question:

Because from a general point of view, the rate of nucleation via the two-step mechanism

depends on two preexponential factors, J01 and J02, and two barriers, DG�
1 and DG�

2, which

of these four parameters is the most significant? From the discussion in the previous

subsection, the answer should be sought between J02 and DG�
2. Because nucleation oc-

curs in the vicinity of the solution–crystal spinodal, DG�
2 is very small, and hence, the

most important parameter is J02. This is a surprising conclusion, and it sheds light on the

role of heterogeneous substrates in nucleation.

Nucleation is often facilitated by heterogeneous centers [195,228]. The generally

accepted mechanism of heterogeneous nucleation is that it follows the kinetic law for

homogeneous nucleation but is faster due to lowering of the nucleation free energy

barrier [195]. Because we now know that DG�
2 is insignificant, we conclude that, in

contrast to the generally accepted viewpoint, heterogeneous nucleation centers assist

nucleation not by lowering DG�
2, but by assisting the growth of the ordered clusters

through the factor accounted for in the preexponential factor J02.

Many mechanisms exist by which a surface may facilitate the growth of the ordered

clusters. The most obvious one is that the right crystal structure, i.e., the one that

minimizes the free energy of the system, is similar to the structure of the surface.
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Alternatively, the surface structure may stabilize a necessary intermediary en route to

the right crystal structure, similar to the way enzymes stabilize the transition state, and

not the final product of the catalyzed reaction [61]. Another possibility is that the

surface may catalyze the formation of the intermolecular bonds in the crystal. If the

structure of a substrate is similar to the structure of the growing crystal, this is referred

to as templating [229,230]. Examples were found for crystallization of proteins on

mineral substrates and on ordered lipid layers [127,231]. One may view the acceler-

ation of nucleation of g-glycine crystals in the bulk of a supersaturated solution by

elliptically polarized light, and a-glycine crystals by linearly polarized light, as exam-

ples of assisted structuring of the dense liquid by an appropriately structured electric

field [232].

19.6.10 Other Systems for Which the Two-step Nucleation
Mechanism Applies

Previously, we analyzed in detail data on the kinetics of nucleation of crystals of the

protein lysozyme, which allow a rather confident conclusion about the applicability of

the two-step mechanism. The evidence for the applicability of this mechanism to the

nucleation of crystals of other proteins is less direct. In Ref. [233], crystals of several

intact immunoglobulins were found to coexist for extended lengths of time with dense

liquid droplets without the droplets generating additional crystal nuclei. The crystals that

were nucleated on the droplet boundaries grew into the dilute solution, rather than into

the dense liquid. This was interpreted in favor of nucleation of the crystals within dense

liquid clusters suspended in the solution.

Besides the nucleation of protein crystals, the action of the two-step mechanism has

recently been demonstrated for the homogeneous nucleation of HbS polymers, with

metastable dense liquid clusters serving as precursor to ordered nuclei of the HbS

polymer [26,234,235]. Other studies have shown that the nucleation of amyloid fibrils of

several proteins and peptide fragments, such as Alzheimer-causing A-b-peptide or the

yeast prion protein, follows a variant of the two-step mechanism in which the role of the

intermediate liquid state is played by a molten globule of consisting of unfolded protein

chains [236,237].

The applicability of the two-step mechanism to the nucleation of crystals of urea and

glycine was deduced in a series of experiments, in which high-power laser pulses were

shone on supersaturated solutions [232,238]. It was found that the nucleation rate in-

creases because of the illumination by eight to nine orders of magnitude and that

by using elliptically or linearly polarized light, a� or g� glycine crystals could be

preferentially nucleated. Because glycine does not absorb the illumination wavelength,

and the electric field intensity was insufficient to orient single glycine molecules,

it was concluded that the elliptically or linearly polarized pulses stabilize the

structure fluctuations within the dense liquid, which lead to the respective solid phases

[211,238].
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Colloid systems are the ones for which the evidence in favor of the applicability of the

two-step mechanism is the strongest. By tracking the motions of individual particles of

the size of a few microns by scanning confocal microscopy, the nucleation of crystals in

colloidal solutions was directly observed [239–241]. These experiments revealed that the

formation of crystalline nuclei occurs within dense disordered and fluid regions of the

solution [242].

The role of an amorphous precursor in the nucleation of crystal of biominerals has

been speculated for a long time; for a historic overview, see [243]. However, it was

envisioned that the precursor does not facilitate that formation of the crystalline nuclei,

but only serves as a source of material for reprecipitation into a crystalline phase. Only

recently, it was shown that amorphous or liquid clusters of calcium and carbonate ions

are present in calcium carbonate solutions and facilitate the nucleation of calcite crystals

in a manner similar to the role of the mesoscopic clusters in lysozyme crystallization

discussed above [243–245]. The free energy landscape along the nucleation reaction

pathway in Figure 19.24(C) was used to characterize kinetics of the process of calcite

crystallization [245].

A two-step nucleation mechanism going through metastable clusters (in this case,

swollen micelles) has also been theoretically predicted for a ternary system of two ho-

mopolymers and their block-copolymer [246].

Stable dense liquid was found to exist in solutions of organic materials and serve as

location where crystals nucleate and grow [207]. The existence of the dense liquid in

these solutions has been attributed to the same fundamental physical mechanism as

the one acting in protein solutions: the size of the solute molecules is larger than the

characteristic length scale of the intermolecular interactions in the solution [37]. On the

other hand, unpublished evidence from the pharmaceutical industry suggests that in

many other cases the stable dense liquid, referred to as oil by the practitioners in the

field, is so viscous that no crystals can form in it. This is in contrast to the observations in

Figure 19.25, in which crystals form in the relatively nonviscous dense protein liquid.

Although this has not been tested, it is possible that the two-step mechanism operates in

these organic systems by utilizing dense liquid clusters, similar to those seen in protein,

colloid, and calcium carbonate solutions.

The broad variety of systems in which the two-step mechanism operates suggests that

its selection by the crystallizing systems in preference to the nucleation of ordered

phases directly from the low-concentration solution may be based on general physical

principles. This idea is supported by two examples of physical theory: by Sear [247] and

by Lutsko and Nicolis [248]. Of particular interest is the latter work. It treated a range of

points in the phase diagram of two different model systems, which likely encompass a

broad variety of real solutions, and demonstrated that the two-step formation of crys-

talline nuclei, via a dense liquid intermediate, encounters a significantly lower barrier

than the direct formation of an ordered nucleus and should be faster. Interestingly, the

intermediate state resulting from the theory was not stabilized and represents a just as

well developed density fluctuation.
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19.6.11 A General Perspective on the Nucleation of Protein Crystals

Recent advances in the understanding of nucleation of protein and other crystals in

solution have shown that the classical nucleation theory fails to provide understanding

of several features of measured kinetic curves: nucleation rates, which are orders of

magnitude lower than the classical prediction; nucleation kinetics curves, which exhibit

saturation, or, even more puzzling, maximums and decreasing branches, with increasing

supersaturation, as well as the role of the other, stable and unstable, phases possible in

solution.

These features of the nucleation kinetics reflect the action of two factors, which are

unaccounted by the classical nucleation theory: the existence of a spinodal for the

solution-to-crystal phase transition, and the action of a two-step nucleation mechanism.

As the spinodal is reached upon supersaturation increase, the barrier for nucleation of

crystals vanishes and further increases in supersaturation do not yield a faster nucleation

rate. According to the two-step mechanism, the nucleation of a crystal occurs within

mesoscopic clusters of dense liquid. Although the initial thought-provoking results on

the nucleation kinetics were obtained for the nucleation of protein crystals, and,

correspondingly, the two-step mechanism was first proposed only for these types of

crystals, further investigations have shown the validity of this mechanism to several

organic, inorganic, and colloid materials, including the important class of biominerals.

In general, the two possible intermediate states for the two-step mechanism, the

stable dense liquid and the metastable clusters, have distinct mechanisms: the

discrepancy of the length scale of the intermolecular interactions in the solution, the size

of the crystallizing molecules for the stable dense liquid, and the existence of limited-

lifetime complexes for the clusters. Thus, for a given system, the availability of any of

these two intermediate states is independent of the other; both of them depend on the

exact physicochemical characteristics of the system.

To assess the applicability of the two-step mechanism to the overwhelming majority

of untested systems, we note that its action relies on the availability of disordered liquid

or amorphous metastable clusters in the homogeneous solutions prior to nucleation.

Although such clusters have been demonstrated for several protein systems and for

calcium carbonate solutions, it is likely that not all solutions would support the existence

of such clusters with properties allowing the nucleation of crystals in them. In such

systems, the action of the direct nucleation mechanism might be the only option. On the

other hand, an intriguing hypothesis is presented by one of the theories discussed above:

that a stabilized intermediate state, as a stable dense liquid, as seen in Figure 19.25, or as

a metastable mesoscopic cluster, as in Figure 19.26, is not needed, and the two-step

mechanism will act even if the intermediate step is just a density fluctuation. Thus,

the two-step mechanism may in fact operate in systems where no intermediate is

independently found.

The applicability of the concept of the solution–crystal spinodal appears more

straightforward: the nucleation of numerous crystals in industrial and laboratory
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practice is carried out at such high supersaturations that the nucleation occurs either in

the spinodal regime or in the immediate vicinity of this regime, in which the nucleus

consist of just a few molecules.

19.7 Mechanisms of Growth of Crystals
19.7.1 Rough and Smooth Interfaces

The elementary act of growth of a crystal or a dense droplet is the attachment of mol-

ecules from the solution. In the case of growth of crystals, this attachment occurs at sites

called kinks, in which an incoming molecule has half of the number of neighbors that it

would have in the crystal bulk [249,250], Figure 19.27. The kinks were defined as special

sites for growth because of two specificities of attachment there: the kinks are retained

after the attachment, and the attachment does not alter the surface free energy of the

crystal [250]. The rate constant of growth of a crystal is determined by two factors: the

density of kinks on the interface with the growth medium, and the barriers, both entropic

and enthalpic, for incorporation of a molecule into a kink.

In some cases, the kink density is high: it comprises a significant fraction, e.g., one

tenth or higher, of all molecular sites at the interface. Such interfaces are called rough,

and their existence is related to the low surface free energy between the growth medium

and the crystal [251]. There is one example of a rough interface during the growth of

protein crystals: the protein ferritin studied in Ref. [252].

Protein crystals typically exhibit smooth interfaces because of high surface free en-

ergy between the crystal and the growth medium. The smooth interfaces between

crystals and solution are usually crystal planes with a high density of molecules,

designated with low Miller indexes. This is because these planes are the slowest to grow:

the faster growing planes taper out because of geometry and disappear from the crystal

faceting. Thus, the notion that a macroscopic crystal is faceted by planes that minimize

its surface free energy is a misconception, albeit a common one. In fact, the anisotropy

Molecule

Terrace
PosiƟve kink

NegaƟve kink

Adsorbed
molecule

Crystal

FIGURE 19.27 Schematic illustration of the structure of the surface of a faceted crystal.
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of the surface free energy only affects the shape of crystals of near-equilibrium size, i.e.,

the size of the nucleus [253].

From the above, we see that crystals in contact with the solution are typically faceted

and follow the layer growth mode. In this mode, a new lattice layer, typically one lattice

spacing high, is deposited on the smooth surface of the previous lattice layer,

Figure 19.27. The edges of the incomplete layers are called steps. The flat terraces be-

tween the steps are the singular crystal planes. The kinks on faceted crystals are located

at the steps, Figure 19.27.

Experimental determinations of the step density on the surfaces of growing protein

crystals have yielded numbers on the order of 10�2 – 10�3 Refs. [19,20,25,63,201,254–259].

The density of the kinks along the steps is from 10�2 to 1. This relatively low density of

kinks on the surface of a growing protein crystal highlights the significance of three issues

for the regulation of the crystal growth rate: the mechanism of generation of kink, the

pathway of the molecules from the solution into the sparse kinks, and the kinetics of

incorporation of a molecule into a kink. In turn, the issue of kink density subdivides into

generation of steps and generation of kinks along the steps.

19.7.2 Generation of Steps

Faceted crystals grow by the generation and spreading of layers. New layers are gener-

ated only in supersaturated solutions by several mechanisms. A common layer gener-

ation mechanism is by screw dislocations, piercing the growing facet. The dislocation

produces a step on the facet, which terminates and is pinned at the point where the

dislocation outcrops on the surface. The step grows in a supersaturated solution and

because of the pinned end, twists into a spiral around the dislocations. If step motion is

isotropic, the spiral will be circular; if the velocity of step propagation is faster in some

directions and slower in others, the spiral will develop edges at the faster directions and

become polygonized. This mechanism was postulated by F.C. Frank in 1948 [70] and is

illustrated by an image of a polygonized spiral during insulin crystallization in

Figure 19.28(A) [255,260].

Another common layer generation mechanism is by two-dimensional (2D) nucleation

of islands of new layers. This is the original layer generation mechanism put forth by

Stranski and Kaischew in the 1930s [261,262]. This mechanism operates at high

supersaturations and is illustrated in Figure 19.28(B) on the example of an apoferritin

crystal.

Recently, a new mechanism of layer generation was discovered during crystallizations

of the enzyme lumazine synthase. In a certain supersaturation range, below the

threshold needed for 2D nucleation, droplets of dense liquid of the protein [65], several

100 nanometers in size, land on the crystal facet and transform into crystalline matter

that is in perfect registry with the underlying lattice [24,254]. The island of layers, several

lattice parameters thick, spreads sideways generating several new steps, Figure 19.28(C).

These clusters were discussed above in relation to their role in the nucleation
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mechanism; they are common in protein solutions [24,26,65], and, importantly, also in

small-molecule solutions [263], hence, this mechanism is likely to be valid for a wide

range of systems.

Other modes of layer generation discussed in literature mostly involve gross defects in

the crystals: occlusions of solution, or the imperfect incorporation of microcrystals into

larger growing crystals [23,252,258,264,265].

The growth rate R of a faceted crystal, measured in a direction perpendicular

to the growing facet, is related to the step velocity v via themean step density, h/l, in which

l is the characteristic spacing between the steps and h is the step height, typically equal to

one or two lattice parameters in the direction perpendicular to the growing face.

R ¼ ðh=lÞv: (19.16)

If the steps are generated by a screw dislocation, the spiral around its outcrop point

forms a hillock. Because the spacing l between the steps in this spiral is constant

[70,253], this hillock has constant slope p ¼ h/l and.

R ¼ pv: (19.17)

19.7.3 Step Propagation

If the step contains kinks with a mean spacing y0 ¼ ank, in which a is the molecular size

or, more accurately, the lattice parameter, and nk is the mean number of molecules

between two kinks, then [266]

v ¼ a

nkð jþ � j�Þ : (19.18)

1 m 2 μm 2 m

On dislocaƟons By 2D nucleaƟon By the landing of dense 
liquid clusters

μμ

(A) (B) (C)

FIGURE 19.28 Three mechanisms of generations of crystalline layers. (A) By a screw dislocation outcropping on
the face; a (100) insulin face is shown. (With permission from Ref. [255].) (B) By 2D nucleation; a (111) ferritin
face; red color: higher crystal layers; green color: lower layers. (With permission from Ref. [22].) (C) By the landing
and subsequent crystallization of metastable clusters of dense liquid; a (0001) face of lumazine synthase crystal.
(With permission from Ref. [24].)
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In this relation, ( jþ – j�) is the net flux of molecule into a kink, the difference between

the number incoming jþ and departing j� molecules per unit time, and a( jþ – j�) is the
rate of kink propagation along the step. The kink density n�1

k relates the 1D growth of a

kink to the 2D growth of a step in the same way that the slope p relates the step

propagation to the 3D growth of the crystal in Eqn (19.12).

Because the incorporation of molecules into steps is a monomolecular process and

follows first-order chemical kinetics, v is proportional to [exp(�Dm/kBT) – 1] [267,268], in

which Dm ¼ mcrystal – msolution is the difference in chemical potential of the crystallizing

species, as defined in Section 19.3.3 above.

19.7.4 The Step Kinetic Coefficient

Because the molecular concentration of the crystallizing species in the solution is

significantly lower than in the crystal, the coefficient of proportionality between v and

C/Ceq �1 is divided into two, and v is written as.

v ¼ bUCeq

�
C

Ce � 1

�
; (19.19)

in which b is the step kinetic coefficient, and U is the crystal volume per molecule, so that

the dimensionless product UCe accounts for the change in number density of molecules

between the solution and the crystal. Derivations of Eqn (19.19) have been offered,

which, however, imply a mechanism of incorporation of molecules from the solution

into the crystal [266]. Thus, it is better justified to use Eqn (19.19) as a definition of b.

This provides uniformity and the ability to compare kinetic coefficients of different

systems regardless of their concrete mechanism. On the other hand, the physical

meanings of b should be judged on the basis of additional data on the mechanism of

attachment of molecules from the solution into kinks [269].

If C in Eqn (19.19) above is replaced by the concentration of the molecules in the

immediate vicinity of a kink, then the kinetic coefficient b relates to the first-order kinetic

constant for incorporation into a kink k as b ¼ a k and has units of length per time. b is

also related to the free energy barrier DGs for incorporation into a kink as

b ¼ an�1
k nþexp

��DGs

kBT

� ¼ an�1
k nþexp

�
DSs


kB

�
exp

��DHs

kBT

�
; (19.20)

in which n ¼ ( jþ – j�) is net flux of molecules into kinks, and nþ is an effective frequency

of attempts by a solute molecule to enter a kink by overcoming the barrier DGs. Because

in solution the entropy, especially its contribution from the association of solvent

molecules, is an important part of the thermodynamics of crystallization, see Section

19.3.2 above [20,39,67,68,76], it is likely that it contributes to the incorporation barrier via

DSs. Note that typical methods of evaluation of the barrier heights in chemical kinetics,

via determinations of b as a function of T and plotting the data in Arrhenius coordinates,

would only yield the enthalpy part DHs of the barrier.

Equations (19.20) show that the kinetic coefficient b and thus the step velocity v, and,

to a large extent, the crystal growth rate R, are determined by the kink density n�1
k and

the incorporation barrier DGs. The kink density n�1
k is determined by the mechanism of
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generation of kinks, whereas DGs is determined by the mechanism of incorporation of

molecules into kinks and the chemical interactions between solute and solvent and

crystal surface and solvent. The concentration of molecules in the immediate vicinity of

a kink is determined by the pathways of the molecules from the solution to the steps.

These three factors are discussed subsequently.

19.7.5 Generation of Kinks

In general, kinks along the steps are generated by one of three mechanisms: thermal

fluctuations of the step edge, 1D nucleation of new molecular rows, and association of

2D clusters preformed and diffusing on the terraces between the steps.

The suggestion that the edges of the unfinished layers, the steps, fluctuate and in this

way create kinks was put forth by J.W. Gibbs [177]. Burton, Cabrera, and Frank (BCF)

hypothesized that the same mechanism would apply in supersaturated solutions, and it

would determine the kink density during growth of a step [70]. They derived a relation

between the mean kink density n�1
k and the free energy of kinks u.

nK ¼ 1=2expðu=kBTÞ þ 1: (19.21)

The validity of the BCF hypothesis was demonstrated in a broad supersaturation range

for the crystallization of ferritin and apoferritin: the kink density at C/Ce ¼ 43 was equal

to that at equilibrium and to that at several intermediate supersaturation values [20,63].

The molecular structures of a {111} apoferritin face and of a growth step are shown in

Figure 19.29. A molecule at a kink in the face-centered cubic (f.c.c.) lattice of ferritin and

vacancy

cluster

200 nm

FIGURE 19.29 Molecular structure of a growth step on an apoferritin crystal. Dark color: lower layer; light color:
advancing upper layer. Adsorbed impurity clusters and surface vacancies are indicated. The kinks are the ends of
the unfinished rows of molecules at the step edge. With permission from Ref. [63].

850 HANDBOOK OF CRYSTAL GROWTH



apoferritin has six neighbors, which is half of the total number of adjacent molecules in

this lattice. Out of the six neighbors in a kink, three molecules belong to the underlying

layer, and three molecules are from the step. From Figure 19.29 and other similar im-

ages, the distribution of the number of molecules between two kinks, nk, was determined

yielding nk ¼ 3:5 [270]. From the value of nk in Figure 19.29 and Eqn (19.21), we get

u ¼ 1.6 kBT. If we assume first-neighbor interactions only, we can evaluate the inter-

molecular bond energy, f. When a molecule is moved from within the step on a (111)

face of an f.c.c. crystal to a location at the step, four kinks are created. For this, seven

bonds (four in the top layer and three with molecules from the underlying layer) are

broken, and five are formed. Then, u ¼ f/2 and f ¼ 3.2 kBT y 7.8 kJ/mol.

According to Eqn (19.17), on materials for which the energy of the bonds between the

molecules is such that u becomes higher than (1–2)kBT, the distance between kinks will

exponentially increase. One example of such high kink energy is crystallization of insulin,

illustrated in Figure 19.30. At low supersaturations, near equilibrium, the step contains

only single-molecule kinks. From Figure 19.30 and other similar images at low super-

saturations, it was found that nk ¼ 5:6, corresponding to a kink density n�1
k ¼ 0:18.

Several other cases of such steps have been studied and it was found that instead of

growing with correspondingly low velocity, the steps use additional mechanisms of kink

generation: by one-dimensional (1D) nucleation of new molecular rows or by the as-

sociation with the steps of clusters pre-formed on the terraces. In contrast to 3D and 2D

nuclei, a 1D nucleus cannot be defined thermodynamically. However, a 1D nucleus can

be defined kinetically, as a molecular row of length such that its probability to grow is

equal to its probability to dissolve [271], Figure 19.31(A). Analyses [271] yielded that if

new rows are generated by 1D nucleation, the mean distance between kinks increases

with supersaturation from its equilibrium value nk;0:

nK ¼ nK ;0ðC=CeÞ1=2; (19.22)

10 nm

FIGURE 19.30 Structure of steps on {100} faces of insulin crystals at supersaturations (C/Ce � 1) < 0.05. AFM image
of typical structure of steps on a (100) face of insulin crystals at low supersaturations. A step with two kinks
(curved arrows) is highlighted with white lines. An insulin hexamer is encircled in black. With permission from
Ref. [25].
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and

vfanþðC=CeÞ1=2ðC=Ce � 1Þ: (19.23)

Equation (19.23) assumes that the kinks generated by 1D nucleation are still relatively

few and the kink density does not reach its limit. However, the kink density is limited by

geometry to 0.5, and, if one accounts for kink stabilization due to their mobility, the

upper bound of the kink density should be even lower. Thus, if, upon supersaturation

increase, this maximum kink density is reached, v can only increase linearly with su-

persaturation. The total dependence of v on (C/Ce – 1) then consists of a linear part at

ðC=Ce � 1Þ < n�1
k;0, an accelerating part at ðC=Ce � 1Þ > n�1

k;0, and a second linear part at

ðC=Ce � 1Þ[n�1
k;0.

An example of a protein crystal with low kink density is the crystallization of the

orthorhombic form of lysozyme, for which it was found that u ¼ 7.4 kBT [272]. This high

value leads to an extremely low kink density with nk as high as 400–800, and step

propagation limited by the rate of kink generation [272].

A novel mechanism of kink generation was demonstrated for the crystallization of

insulin [270,273]: 2D clusters of several insulin molecules, preformed on the terraces

between steps, associate with the steps, as schematically depicted in Figure 19.31(B).

This mechanism operates at moderate and high supersaturations, whereas, as discussed

above, at low supersaturations, only kinks generated by thermal fluctuations exist. The

mobility of clusters of several molecules is not surprising; see discussion, theory, and

experimental examples in Refs. [274,275]. This mobility prevents identification of their

structure prior to their association. They might be ordered or disordered, akin to a 2D

liquid formed in the pool of insulin hexamers adsorbed on the terraces: examples of

liquid phases in 2D systems [276] have been discussed [277]. A 3D analog of this process

would be layer generation by the landing of dense liquid droplets on the surface of an

existing crystal [24], discussed above and seen in Figure 19.28(C).

Ti
m

e 

(A)

(B)

FIGURE 19.31 (A) Schematic illustration of
kink generation by 1D nucleation of new
molecular rows. Rows shorter than a critical
length, denoted with vertical dashed lines,
dissolve, as shown at left. Rows longer then
this critical length, grow. (B) The association
of 2D clusters preformed on the terraces to
the steps, yields protrusions (one such
protrusion is shown), rich in kinks. The
protrusions spread sideways and promote
the step forward.
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Rhombohedral crystals of Zn-insulin hexamers form in the islets of Langerhans in the

pancreatic b-cells of mammals [8,278–280]. The likely biological function of insulin

crystallization in vivo is to protect the insulin from further proteolysis (after conversion

from proinsulin) while it is stored until regulated secretion into the blood serum [8,279].

It has also been suggested that crystal formation increases the degree of conversion from

soluble proinsulin [8,281]. Either of the two functions of crystallization requires that the

rate of growth of the crystals be fast and readily responsive to inevitable fluctuations in

the rate of conversion. The mechanism of kink generation by the association of 2D

clusters preformed on the terraces provides an understanding of the fast growth rates

and nonlinear acceleration of the rates of insulin crystallization.

19.7.6 The Barrier for Incorporation into Kinks

Given the crucial role of structured water in the thermodynamics of crystallization and for

the interactions between protein molecules in solution, discussed in Sections 19.3.2 and

19.5 previously, it is natural to hypothesize that the water structuring plays a major role in

crystal growth kinetics. It was shown that the rate of the elementary step of crystallization,

the attachment of a molecule from the solution to an existing growth site on the crystal

surface, is determined by the rate of diffusion over a repulsive barrier [34,38,202,282].

Within the mechanism of the role of water structures in the kinetics of crystallization, this

barrier would be the repulsive maximum depicted in Figure 19.6 and 19.15.

Critical tests of this hypothesis were carried out with the protein insulin. In laboratory

conditions, this protein crystallizes in the presence and absence of an organic co-solvent,

acetone. Thermodynamic analyses revealed that acetone destroys the shell of structured

water around the insulin molecules in solution [68]. Figure 19.32 shows that this leads to

faster kinetics of crystallization and a five times greater kinetic coefficient b [255]. When

transport limitations were overcome by using the edges of larger crystals, around which

buoyancy-driven convection is faster [122,124], or by forced solution flow [126], b in the

presence of acetone reached 0.4 mm s�1, comparable to these of small molecular
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FIGURE 19.32 Step velocity on the (100) face of insulin as a function of supersaturation (C/Ce – 1), in the presence
and the absence of acetone. Lines are regression fits to the respective sets of data. With permission from
Ref. [255].
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compounds [283]. Thus, the destruction of the water shell correlates with faster kinetics,

supporting the important role of structured water for the kinetics of incorporation.

The destruction of the water shell around solute molecules is likely the main

component of the barrier for incorporation in kinks not only for protein but also for

other materials. For evidence of this hypothesis, these barriers were determined for

about 10 diverse substances and were found to fit into an unusually narrow range of

28 � 7 kJ mol�1, Table 19.1 [285]. The chemical nature of these substances ranges from

inorganic salts, through organic molecular compounds, to proteins and viruses. Hence,

the narrow range of the activation barriers is unexpected if the barriers should reflect the

chemical variety of the crystallizing compounds. On the other hand, if the barrier in all

cases reflects a high-energy state of partial destruction of the water structures around the

solute molecules and at the kinks, the consistency of the barrier is natural. This

magnitude of the barrier corresponds to the energy of one or two hydrogen bonds, i.e.,

one can think that the high-energy state is when these bonds have been broken and the

new bonds that exist in the crystal have not formed. Although the participation of one or

two hydrogen bonds in the association of small molecules and ions to kinks is expected,

one may wonder why the barriers are not higher for a protein crystal, in which a greater

number of hydrogen bonds may be broken. However, as discussed in Section 19.2.2

above, the large protein molecules have relatively limited areas of intermolecular contact

in the crystal lattice [286], in which only a few hydrogen bonds exist.

Table 19.1 Kinetic Coefficients, b, Diffusivities, D, Effective Molecular Diameter a,
Point Symmetry Group of Molecule G, Order of Symmetry Group Z, for Protein and
Inorganic Systems

Protein b, 10L4 (cm sL1) D, 10L6 (cm2 sL1) a [284] G Z Source

Insulin 6.5 3 6 257
No acetone 90 0.79
w5% acetone 420

Apoferritin 6 0.32 13 432 24 65
Ferritin 6 0.32 13 432 24 204
Canavalin, R3 form 5.8–26 0.4 3.5–8 3 3 121
Lumasine synthase 3.6 0.16 18 m5 60 24
Catalase 0.32 n.a. 11.5 222 4 292
Hemoglobin C 0.2 0.5 5.5 2 2 293
Lysozyme {101} 0.73 3 1 1
Typical 2–3 294
No step bunching 22–45 128
Lysozyme {110} 2–3 120
STMV 4–8 0.2 16 m5 60 19
Thaumatin 2 0.6 4.0 1 1 295
Various inorganic systems
(ADP, KDP, alums, etc.)

w100–1000 w1–5 0.5 1, 2, 2, m, etc. 1, 2 34
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Clearly, the barrier for incorporation, which is due to the water structuring, contains a

large entropy component, which, as the entropy of crystallization, splits into entropy due

to solvent and entropy due to the solute molecules. The solvent component may be both

positive and negative, depending on whether additional molecules of water are trapped

in the transition state, or some of those associated with the solute molecules are

released. The contribution of the solute molecules to the activation entropy is due to the

necessity to orient the molecule in a way suitable for association with the kink [266,287].

There have been estimates that the protein reorientation may slow crystallization ki-

netics of large molecules by as much as 1000 times. The estimates of this contribution

are based on the following line of thought: With the typical translational diffusivities of

the protein molecules on the order of 10�7 cm2 s�1, see Table 19.1, a protein molecule

spends w10�7 s travelling through the last 10 Å prior to incorporation. During that time,

with the typical rotational diffusivities of 106 s�1, the molecule could rotate by w0.3 rad.

Because an incorrectly aligned molecule would not be able to form the necessary bonds

with the kink and will be rejected, only 0.3/4pz 0.02 of all attempts of incorporation will

succeed, decreasing by 50 times the kinetic coefficient. Because the rotational diffusivity

scales as a�3 Ref. [288], and the translational diffusivity scales as a�1 Ref. [289], the

slowing down is significantly stronger for larger molecules.

To evaluate the significance of this contribution, in Table 19.1 we compare the step

kinetic coefficients b of about a dozen proteins, protein complexes and viri, as well as

some inorganic substances [19,24,34,63,118,119,126,202,255,290–293]. The b’s for the

large molecules fit in the range (0.2–420) � 10�4 cm s�1. The molecular symmetry groups

of these large molecules have orders ranging from 1, through 3, to 24 for the ferritin and

apoferritin, and 60 for the viri and lumazine synthase. No correlation exists between

higher molecular symmetry and higher kinetic coefficients.

This lack of correlation once again suggests that in the case of solution growth the

activated state is not a classical one with stretched bonds, but rather is a state in which

the water shell is slowly destroyed, while the molecule retains rotational freedom. The

slow destruction of the water shell prolongs significantly, by a factor of wexp(28,000/

RT) z 1 � 105 the time for the approach of a molecule to the kink. During this extended

approach time, the incoming molecule tests different orientations and finds the right

one. With some inaccuracy, it could be said that the overcoming of the barrier due to the

water shells is the rate-limiting step in the association with a kink, whereas the selection

of the proper orientation is significantly faster and does not affect the kinetics.

19.7.7 The Molecular Pathway from the Solution into a Growth Site

During crystal growth from solution, the solute molecules have two possible pathways

between the solution and the kinks: they can be directly incorporated [70,253], as

schematically illustrated in Figure 19.33(A), or they can first adsorb on the terraces be-

tween the steps, diffuse along them, and then reach the steps [70,180,294],

Figure 19.33(B).
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If a crystal grows by the direct incorporation mechanism, the competition for supply

between adjacent steps is mild [253,295]. On the contrary, competition for supply

confined to the adsorption phase is acute [295,296]; it retards step propagation and acts

as a strong effective attraction between the steps. This dramatically affects the stability of

the step train, the appearance and evolution of step bunches [297–300], and ultimately

the crystal quality and utility [298,301].

The two mechanisms can be directly discerned by monitoring the adsorbed solute

molecules on the crystal surface. Direct imaging of the diffusion of fluorescently labeled

lysozyme molecules along the surface of a growing crystalline faces was monitored in

elaborate recent experiments [201,302]. Electron microscopy of flash-frozen samples has

in several cases revealed the presence of adsorbed solute molecules on the crystal sur-

face [303].

Indirect evidence for the growth mechanism of several systems has been sought by

comparing the velocities of isolated steps to those of closely spaced steps. Slower growth

of dense step segments was interpreted in favor of the surface diffusion mechanism for

the proteins lysozyme [304] and canavalin [119].

A study of the growth processes of crystals of the proteins ferritin and apoferritin at

the molecular level compared the fluxes of molecules entering the steps to those leaving

the steps, jþ and j� from Eqn (19.19) [269]. Comparing Eqns (19.19) and (19.20), it is

relatively straightforward to show that in the case of direct incorporation, the ratio of

these two fluxes should be equal to the ratio of the concentration to the solubility,

jþ=j� ¼ C=Ce [38,269]. However, it was found that at C/Ce ¼ 2 or 3, the upper bound for

the ratio jþ/j– was 1.1. This and other pieces of evidence for this system allowed the

conclusion that during the growth of ferritin and apoferritin crystals, the molecules from

the solution enter the steps via a state of adsorption on the terraces between steps.

Although further tests may reveal direct incorporation of solute molecules into kinks

for a studied crystallization system, such a finding appears unlikely. First, in all cases in

which critical tests have been carried out, the action of the surface diffusion mechanism

has been unambiguously demonstrated. Furthermore, estimates of the barrier for

(A) (B)

FIGURE 19.33 Schematic illustration of the two pathways of a molecule from the solution into a step. Left: Direct
incorporation from the solution. Right: Adsorption on the surface followed by surface diffusion and incorporation
into a step.
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incorporation of a molecule from the solution directly into a kink suggest that this barrier

should be w2 times any of the barriers of the subsequent steps in the surface diffusion

mechanism. Because the typical barriers for any of these steps is on the order of

30 kJ mol�1, this enhanced barrier for incorporation would lead to slower incorporation

by a factor of w105. This higher barrier may be the general reason for the selection of the

surface diffusion mechanism in solution growth, including solution growth of protein

crystals.

19.8 Concluding Remarks
In this chapter, we have provided a summary of the physical principles underlying the

crystallization of proteins. Although the basic laws of crystallization work well for the

proteins, their large size and the sensitivity of their surfaces to the solution chemistry

adds new features to the protein crystals and their formation. We cannot overemphasize

that whereas it is very important to know the physical principles of the processes, it is

equally important to realize the importance of the biochemical specificity of the

proteins—that in many cases the physics will be masked by the biological and chemical

features of the process. On the other hand, one should not make the opposite mistake:

because of the huge difference between the proteins, draw the conclusion that the

physics are unimportant, and cannot help in any way. The integration of the biochemical

understanding of the specificity of each protein into the current crystal growth models is

the challenge that the field now faces.
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20.1 Introduction
Life is a geological force [1]. Since life appeared on our planet, most probably more than

3.5 billion years ago (a date still under discussion [2]), it has continuously and

dramatically affected the geochemical evolution of the planet. At the beginning, uni-

cellular organisms were only able to modify their neighborhood, for instance by

increasing the local pH and triggering the precipitation of magnesium and calcium

carbonates. Their organic surfaces also acted in many cases as a substrate for hetero-

geneous nucleation, reducing the free energy required for mineralization. The sticky

extracellular polymeric substances secreted by these organisms served to adsorb mineral

particles and to build large complex mineral rocks called microbialites [3]. All of these

mechanisms by which life rather passively favors mineral precipitation are called bio-

logically induced mineralization. However, living organisms started to govern control

over nucleation and crystal growth after the appearance of the first multicellular

organisms perhaps 1.5 billion years ago (another date under discussion [4]) and certainly

after the explosion of diversity that took place 540 million years ago [5,6]. These

multicellular organisms managed to control precipitation in order to build mineral

structures required to support the increasing volumes and weight of their organisms. But

they also created mineral devices of complex patterns to see, to hear, to balance, to

orient and navigate, to color, to eat (chew), as well as for transpiration or to protect their

embryo. This kind of sophisticated biomineralization in which organisms play an active

role is called biologically controlled mineralization.

After so many millions of years of Darwinian evolution, it is not a surprise that bio-

logical crystallization is a ubiquitous phenomenon in nature that accounts not only for

the formation of both inorganic and organic compounds by organisms but also for the

crystallization of biological macromolecules such as proteins, lipids, keratins, chitins,

etc. Many organisms from diverse phyla have developed the ability to precipitate various

minerals [7], exploring distinctive pathways to use these minerals to build sophisticated

structural architectures for different purposes [8]. Most of these processes take place

under physiologic conditions, at lower temperatures than those required to precipitate

their inorganic counterparts [9], therefore with a highly efficient use of energy for the

construction of such architectures. Under strict biological control of the nucleation,

growth, and organization of the crystals, organisms are able to build sophisticated

structures with hierarchical order and physical properties in many cases as yet unpar-

alleled by their synthetic counterparts. Even in those cases in which organisms crys-

tallize minerals abnormally, so-called pathological crystallization, in some specific cases

(e.g., kidney stones) the deposits can show a structure with a hierarchical organization

with their morphological and textural features strongly linked to the organization of

nanocrystals at the mesoscopic level [10].

There are several excellent textbooks, dedicated volumes, and reviews where the

subject of biomineralization is described more extensively than in this chapter (e.g.,

[7,8,11–17]) or that deal with specific biomineralization problems in more detail (e.g.,
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eggshell [18,19], bone [20,21], enamel [22,23], dentin [24,25], pathological calcification

[10], etc. to cite a few examples). We have decided to review different crystalline devices

made by organisms, first from the point of view of their function and then the formation

mechanism of these structures. Therefore, we will cover the current knowledge on the

biological control of nucleation, growth, and organization of inorganic or organic crys-

talline structures for a number of functional composite inorganic/organic biominerals

such as mollusk shells, echinoderm spines, bones, teeth, otoliths, eggshells, magneto-

somes, pearls, stromatolites, proteins, and pathological crystallizations. We will also

cover purely organic structures such as the mammalian stratum corneum, reptilian

molts, fish scales, or butterfly wings where the crystalline order is mesoscopic and not

always translational. The minerals precipitated by biological induction do not usually

have a function. Consequently, this chapter does not deal much with biologically

induced mineralization processes, except for the interesting case of microbialites. Note

that we have titled this chapter “Biological Crystallization” instead of the more classical

“Biomineralization” or “Biological Mineralization” because this chapter deals with many

structures that are not made by minerals but by organic molecules such as carbohy-

drates, polysaccharides, proteins, and biopolymers in general, and we are more inter-

ested in the formation and growth of the crystals than in the structure itself. It is not clear

whether this term will stand in the future, but we believe it is worthwhile to use it.

The chapter is organized into four main sections. After this introduction, in

Section 20.2 we review the mechanisms of biological crystallization, including how living

organisms control nucleation, growth, and texture. Then, in Section 20.3 we discuss

several crystallization techniques used to study and in some cases to mimic the problem

of biological crystallization in vitro. In Section 20.4, we revise the different roles played by

devices made by biological crystallization. Finally, we conclude with the current trends

and some considerations of future challenges in this fascinating crystallization topic.

20.2 The Mechanisms of Biological Crystallization
After hundreds of millions of years of evolution, organisms are able to grow many

different minerals, but the mechanisms of nucleation and crystal growth have been

reasonably studied only for a few of them. This section provides an overview of the

strategies adopted by organisms in the control of nucleation, growth, and construction of

their mineralized regions, with a focus on a few examples for which enough information

is available.

20.2.1 Biological Control at Nucleation Level

In biological crystallization, heterogeneous nucleation is ubiquitous. Thus, a central

question is how organized organic surfaces can control the nucleation of inorganic

materials by geometric, electrostatic, and stereochemical complementarity between

nuclei and functionalized substrates. Nucleation is the initial appearance of a new phase
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during a first-order phase transition when the nuclei that have formed within a super-

saturated solution overcome the nucleation barrier. In other words, small crystal nuclei

form spontaneously in supersaturated solutions, but unless their size exceeds a critical

value—the so-called critical nucleus—they will redissolve instead of growing [26–28].

The crystal nucleation rate, Jn, depends exponentially on the nucleus size, from which

comes a nucleation free-energy barrier [29].

Jn ¼ Aeð�Bg3=s2Þ (20.1)

where A is a kinetic preexponential factor that depends on many parameters (viscosity of

the solution, the molecular charge, the molecular volume, and the density of the solu-

tion) and the coefficient B comprises all the factors (temperature, molar volume) other

than interfacial energy (g) and supersaturation (s) [29]. Eqn (20.1) shows that the height

of the nucleation free-energy barrier depends on interfacial energy and supersaturation.

In general, the effect of the organic substrate is to lower the interfacial energy [30].

Moreover, the equilibrium crystal phase is controlled by the depths and shapes of the

energy minima [30]. By varying the height of the energy barrier, the growth kinetics can

be controlled and nonequilibrium final or intermediate states can be selected [15].

The nucleation process has been well described by classical theories [29], but

numerous recent observations in biological crystallization studies strongly suggest that

this view of nucleation is not appropriate. The discovery of stable prenucleation clusters

(PNCs) [31] has defined nonclassical nucleation, which represents the basis of

nonclassical crystallization theory [32].

Accordingly, during the nucleation of biominerals, the relevant species are not ions

but PNCs that encode distinct structures before precipitation takes place [33,34]. In this

novel view of the nucleation process, the crystallization phase diagram is analogous to

that of atomic and molecular systems and can be described under the laws of classical

nucleation theory [35].

The earliest events of homo/heterogeneous nucleation from an initial supersaturated

solution are pivotal in order to address the knowledge of biological crystallization stra-

tegies. Direct observation of nucleation is very difficult because once crystal nuclei have

grown to an observable size, they are already beyond the critical stage [36]. Even in the

light of nonclassical crystallization theory in which PNCs are involved, the factors that

control the formation and stabilization of the PNCs and their transformation in the

crystalline phase are still unclear.

In biomineralization, the organic matrix, composed of proteins, polysaccharides,

and lipid assemblies, is the key to triggering nucleation. The organic matrix is the major

control factor for PNC formation, maturation, and transformation [37–39]. Indeed, it

has been shown that organic matrix proteins play an important role in the nucleation

process and can work as “mineral enzymes” in manipulating the PNCs pathway

[31,33,40]. The catalytic role that proteins have in the nucleation stage during a bio-

mineralization process is beginning to be understood, and it is likely that over time

mechanistic insights will emerge [41]. The nucleation pathway to the final crystalline

876 HANDBOOK OF CRYSTAL GROWTH



state seems to pass through several stable states of increasing stability (Figure 20.1)

[26,27,35,42,43].

The first reported example of this process is the teeth of the chiton (see also crystal to

chew section) [44]. The outer layer of the tooth contains magnetite, a hard magnetic

mineral. It forms from a disordered ferrihydrite (hydrous ferric oxyhydroxide) precursor

phase [45]. The inner layer of the tooth contains carbonated apatite, the same mineral

present in bone. This inner layer forms by way of an amorphous calcium phosphate

precursor phase [46]. In the years following these discoveries, it was shown that
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FIGURE 20.1 Crystallization pathways. Schematic diagrams of generalized crystallization pathways involving (A) an
extracellular matrix, (B) a vesicle-confined space (syncytium), and (C) the formation of mature mineralized
elements within a vesicle inside the cell. (1) The medium from which the ions are derived (seawater or body
fluids). (2) The ion-sequestering process: endocytosis of seawater droplets and/or ion channels and/or transporters.
(3) Transport within the cell to specialized vesicles. (4) Specialized vesicles in which the formation of the first
disordered mineral phase occurs. (5) Transport of the mineral-bearing vesicles and their contents into the
extracellular environment or into the syncytium. (6) The translocation of the disordered phase to the
crystallization front. (7) Transformation of the initial disordered phase into more ordered phases. (8) The mature
mineralized tissue. In the case of the crystallization pathway shown in panel c, the mature mineralized product
may remain within the cell (e.g., guanine crystals in fish skin) or may be transported to the cell surface (e.g.,
Coccolithophoridae and miliolid foraminifera). Very little is known about transient precursor phases in the
crystallization pathway shown in panel c. Figure 20.6 from [43] with permission.
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ferrihydrite is a precursor phase of magnetite formation in magnetotactic bacteria [47].

Recently, the use of pulsed-laser atom-probe tomography has unveiled the three-

dimensional chemical maps of organic fibers, which have a diameter of 5–10 nm and

surround nanocrystalline magnetite in the tooth. Most fibers co-localize with either

sodium or magnesium ions, and the clustering of these cations in the fiber indicates a

structural level of hierarchy in which individual organic fibers probably have different

functional roles in controlling fiber formation and matrix–mineral interactions [48]. The

important role of precursors and organic matrix molecules in the formation of magnetite

has recently been reexamined. Cryogenic transmission electron microscopy has shown

that the nucleation and growth of magnetite proceeds through the rapid agglomeration

of nanometric primary particles and, in contrast to the nucleation of other minerals, no

intermediate amorphous bulk precursor phases are involved [49].

The spines of echinoderms represent another example of biomineralization control

over nucleation that has been extensively investigated (Figure 20.2). These single crystals

[50] form inside a syncytium [51], a membrane envelope produced by many cells. The

cells provide the necessary raw materials for constructing the growing crystals [52,53].

The crystal grows out of an aqueous solution saturated with calcium carbonate [54].

Insights into the nucleation of these crystals have been gained from studies of calcitic

spicule formation in sea urchin larvae [55]. The larval spicules grow on a single calcite

crystal seed by the transformation of a transient amorphous calcium carbonate (ACC)

phase [56]. ACC is apparently fed into the syncytium by cells in the form of

ACC-containing vesicles [57]. Thus, packages of ACC are delivered to the crystal depo-

sition site and then transform in a controlled manner into calcite single crystals.

Moreover, there is no discernible aqueous phase around the growing spicule [57]. Most

of the information on spine formation was gained taking advantage of the fact that sea

urchins are able to regenerate spines that break. Spine regeneration begins with the

epidermis reconstruction around the broken spine. Within this space, a new syncytium

is formed by sclerocytes in contact with the stump of the old spine. The regenerated and

old spines together diffract X-rays as one single crystal [50]. The regeneration process is

thus considered to be very similar to the original spine growth. Following this approach

FIGURE 20.2 SEM images of fractured spine from sea urchin Paracentrotus lividus (left) and Heterocentrotus
mammillatus (right). On the background a camera picture of the two coral species is shown.
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it was observed that calcium carbonate is first deposited as hydrated ACC, which then

dehydrates prior to or concomitant with crystallization. ACC is introduced into the

syncytium as an isotropic noncrystalline solid and can thus be molded into any shape.

The solid itself is clearly a very concentrated source of ions. The subsequent trans-

formation of the amorphous phase into a composite crystalline solid with much better

mechanical properties [58] leads to a functional skeleton. The mechanism of trans-

formation is complex—the transforming spine does not display a well-defined crystal-

lization front. In fact, there are three distinct mineral phases: a short-lived, presumably

hydrated ACC phase; an intermediate transient form of ACC; and the biogenic crystalline

calcite phase. The amorphous and crystalline phases are placed side by side, often

appearing in adjacent sites. Thus, the amorphous-crystal transformation may propagate

following a winding path through preexisting amorphous units [59]. The co-orientation

of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary

nucleation, propagating out from the previously formed fibers and plates into the

amorphous precursor nanoparticles [60]. During this process, a residual surface layer of

ACC and/or macromolecules remains around the crystalline nanoparticle units and

contributes to the conchoidal fracture behavior [61].

Nacre represents one of the most studied mineralized tissues (more than 600 pub-

lished papers in the last 10 years, WoK source). It consists of a brick-and-mortar-like

structure in which hard aragonite tablets are glued together with soft organic mate-

rials to form tiles (Figure 20.3). Different models have been proposed to describe the

mechanisms of nacre nucleation. Weiner et al. [62–64] suggested a structural relation-

ship between organic macromolecules and the tablet-like aragonite crystals, where the

organic sheets template aragonite tablet orientation by heteroepitaxy. This model is

supported by in vitro experiments that show how the nacre-extracted organic molecules

induce aragonite deposition rather than the more stable calcite [65–67]. By doing

FIGURE 20.3 Scanning electron microscope of the cross-section of the nacreous layer (in the hexagon) from the
shell of Abalone rufescens (in background).
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histochemical assays, Nudelman et al. hypothesized that each tablet crystal nucleates

independently by a single, well-defined macromolecule arrangement in the organic

matrix sheet, resulting in a peculiar pattern of functional groups highly conserved across

species [68]. Schäffer et al. [69] observed the presence of “mineral bridges” through pores

in the organic sheets, which is in agreement with the connected tablet model by which

no new nucleation events occur at each tablet [70]. The presence of pores in the organic

matrix has been repeatedly questioned as an effect caused by the sample preparation

[71]. Nonetheless, in recent studies, Checa et al. [72] have shown that the mineral bridges

of several mollusk species do not connect tablets; they are interrupted by organics, and

the crystals across interruptions are not co-oriented. Olson et al. [73] proposed a

mechanism in which there is one mineral bridge at the center of each organic tablet site

of nucleation, which looks like a donut with a hole at its center. In a recent study, stacks

of co-oriented aragonite tablets arranged into vertical columns or staggered diagonally

were found [74]. Overgrowing nacre tablet crystals were most frequently co-oriented

with the underlying spherulitic aragonite or with another tablet, connected by mineral

bridges. Therefore, aragonite crystal nucleation in nacre is epitaxial or near-epitaxial.

The presence of one mineral bridge per tablet was proposed [74], and that “bridge-

tilting” was a possible mechanism to introduce small, gradual, or abrupt changes in the

orientation of crystals within a stack of tablets as nacre grows.

There are three main hypotheses to explain the nucleation mechanism of individual

nacre tablets, that is (1) single crystal growth, (2) a coherent agglomeration of nanograins,

and (3) phase transformation from ACC to stable aragonite. Nassif et al. [75] discovered

that the aragonite tablets in nacre are covered with a continuous layer of ACC. Rousseau

et al. [76] provided evidence of nanocrystals within the aragonite tablet. Qia in Qiao et al.

[77] reported in vitro crystal growth on a nacre surface, by monitoring in real time the

growth process of nacre-like tablets and layers on the fresh nacre surface. The formation of

nacre-like tablets was a complex andmultistep process, from anACC layer, to iso-oriented

nanostacks, to hexagonal tablets. Zhang and Xu [78] observed that the early immature

tablet consists of closely packed colloidal nanoparticles, which contain nanocrystals

surrounded by ACC. The nanocrystals were generally different in shape, size, and orien-

tation. In this work, it is shown that the immature tablet grew via oriented attachment

instead of a transformation of the ACC phase; andwith growth, the colloidal nanoparticles

gradually increased in crystallinity and size until fully crystallized and fused together,

leading to a mature tablet that is a monolithic single crystal of aragonite.

Other interesting examples of biological control of nucleation are apatite nucleation

during the formation of bone and enamel. Bone has a particular hierarchically struc-

tured architecture, unique mechanical properties, and remodeling capabilities. Weiner

and Wagner [21] have observed seven levels of hierarchy in bone structure, ranging

from the nanoscale to the macroscopic scale (Figure 20.4). At the most elementary

level, bone composition includes molecular and crystalline components such as

collagen, apatite, water, and the rest of molecules, while the second level is a

description of the bone nanostructure composed of mineralized collagen fibrils.
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Different arrays of mineralized collagen fibrils, different patterns of fibril arrays, and

cylindrical structures called osteons constitute the third, fourth, and fifth levels,

respectively. The sixth level is composed of spongy (trabecular or cancellous) or

compact (cortical) bone tissues, while the seventh one is the whole bone. The nucle-

ation, growth, and orientation of the biological crystals of apatite take place in the

second level of bone hierarchy. Type I collagen molecules assemble their tropocollagen

units giving rise to holes and overlapping areas that can be observed as a periodic

banding pattern along the 67-nm repeat and a less dense 40-nm-long gap zone (when

stained for observation by TEM), the so-called D-band pattern (Figure 20.5). In the gap

zone the first crystalline units of apatite nucleate. For many years there has been

controversy over whether it is collagen or noncollagenous proteins (NCPs) [79] that

initiate intrafibrillar mineral nucleation, and over the mechanisms producing it at

molecular level. It was thought that NCPs, while bonded to collagen fibers, could act as

promoters of intrafibrillar nucleation. Such a hypothesis was supported by reports

showing that NCPs appear during the formation of new bone in a very specific

FIGURE 20.4 The seven hierarchical levels of bone organization. Reprinted with permission from [85]. Copyright
Dove Medical Press Ltd, 2010.
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spatiotemporal time line [80] and also that type-I collagen alone, dissociated from

NCPs, is unable to produce bone mineralization [81]. On the other hand, it has been

proven that some NCPs, when they are dissociated from collagen, are inhibitors of

calcium phosphate nucleation in solution [82]. Price et al. [83] proposed a mechanism

for fibril mineralization based on inhibitor exclusion, in which macromolecular in-

hibitors of apatite growth favor fibril mineralization by selectively inhibiting apatite

crystal growth in the solution outside the fibril. These authors tested this mechanism

by using fetuin, a 48-kDa inhibitor of apatite nucleation. In the absence of fetuin,

mineral formation occurs primarily in the solution outside bone collagen, whereas in

the presence of fetuin, mineral forms almost exclusively within bone collagen. In 2010,

Sommerdijk and coworkers [84] used cryo-TEM and cryogenic electron tomography to

show that collagen functions in synergy with inhibitors of apatite (polyaspartic acid or

(A)

(B) (C)

FIGURE 20.5 Cryo-TEM images of (A) loosely packed collagen bundle (arrow, 1) and assembled fibril (arrowhead,
2) at pH 7.4. (B) Assembled fibril showing clear D-band pattern. The dashed rectangle indicates the area used to
calculate the profiles depicted in (C). (C) Intensity profile of the collagen fibril along the long axis, showing
D-band pattern. Reprinted with permission from [86]. Copyright Royal Society of Chemistry, 2011.
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fetuin instead of NCPs) nucleation to actively control mineralization by a mechanism

of electrostatic interactions.

Enamel formation, or amelogenesis, is a highly regulated process involving physio-

logical and chemical events, including protein secretion, protein assembly, mineral

growth, and protein degradation. The major structural protein is amelogenin, which

accounts for more than 90% of the total organic matrix. Other secreted proteins are

ameloblastin, enamelin, and amelotin. In short, during the initial stage of enamel for-

mation, the secretion and self-assembly of the extracellular matrix occurs in a stepwise

and programmed manner with the crystals growing along the c-axis, forming long thin

ribbons [23]. During the formation of enamel [87], these ribbon-like crystals co-align

their c-axis and form parallel arrays. In the maturation stage, the matrix is rapidly

degraded by resident proteases whilst mineral ribbons grow rapidly in thickness and

width, resulting in a hypermineralized tissue containing >97% w/w mineral, and only

1–2% of protein and water, with a structural organization of the enamel crystals estab-

lished during the secretory stage [88]. Over the last 40 years, significant progress has

clearly been made to elucidate the mechanism by which proteins control mineralization

and organization of crystals in enamel tissue. It was suggested that a function of ame-

logenin is stabilizing the amorphous calcium phosphate phase (ACP), in control of

apatite crystal morphology and orientation, and in control of enamel thickness

[22,89–91]. One of the roles of enamelin in cooperation with amelogenin is the control of

mineral nucleation and elongated growth [92,93], while ameloblastin is involved in

biological events such as cell adhesion, control of cell differentiation, and keeping the

rod integrity [94]. However, the complete mechanism of enamel formation remains

unknown.

20.2.2 Biological Control at Growth Level

One of most striking features of many biologically formed crystals is the remarkable

morphology. Organisms can produce single crystals with complex shapes and curved

surfaces. They have developed mechanisms that override the basic growth form of a

crystal. They have crystals whose overall morphologies often bear no relationship with

the symmetry of the crystal lattice. Biological control over the growth is mainly exerted

by: (1) interaction of growing crystals with soluble additives, which can be occluded

within biominerals; (2) physical constraints of the compartment in which mineralization

takes place; and (3) changes in the activity or positioning of ion pumps and channels

during mineralization that may lead to crystal growth in preferred directions.

The morphological influence of additives was first described in general crystal growth

theory [95], and Weiner and Addadi were the first to suggest its potential applicability to

biomineralization [96]. Since then, it has been widely demonstrated that many additives

can alter the morphology of calcite crystals and other biologically relevant minerals, e.g.,

[97,98]. This was shown to occur by adsorption onto specific crystallographic faces.

Atomic force microscopy (AFM) studies suggest that this specificity in binding may
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actually be occurring at the growing step edges and not the flat crystal faces [99,100]. The

“sculpted” nonequilibrium morphologies observed in various biominerals were sup-

posed to result from the stereospecific interactions with the soluble organic matrix. The

evidence to support this mechanism was partly based on in vitro crystal growth exper-

iments in the presence of additives, including proteins extracted from the biomineral,

e.g., [66,101–103]. These experiments show that proteins influence crystal growth and

often produce the expression of new crystal faces, which, although rough, have been

correlated to the crystallographic planes expressed on the corresponding biomineral.

This argument was also supported by the analysis of biomineral crystallographic tex-

tures, which arose from anisotropic intercalation of proteins after they had adsorbed to

specific crystallographic faces [104–106]. In addition to biological macromolecules,

moderately sized organic molecules [98,107] and small inorganic molecules [108,109]

may influence mineralization kinetics and energetics as well as the shapes of

crystals [110].

Crystals with unusual morphologies and curved surfaces are typically found within

vesicles (e.g., calcite produced by coccoliths and sea urchin larval spicules) [16]. Vesicles

have well-defined shapes, and crystals grow until they impinge upon the vesicle, which

effectively acts as a mold. The size and shape of the vesicle may be altered during the

crystal growth process. Soft organic membranes also impose a form on a crystal. The

growth of biogenic single crystals of calcite may also occur inside the cell, and the final

morphology is determined by the cell membrane. The coccolith (from the algae

Emiliania huxleyi) comprises about 30–40 units organized in a ring to give a double-

rimmed structure. The formation of coccoliths begins with the assembly of vesicles

along the rim of an organic baseplate scale. Nucleation then occurs within the vesicles to

generate a proto-coccolith ring of interlinked calcite crystals. The crystals initially form

as 40 nm thick rhombohedral plates that are inclined to the plane of the ring. The plates

grow up to a height of 100 nm, and radial outgrowth along the c-axis from the top and

bottom faces generates a Z-shape. These units become interlinked by selective growth

along the inside rim, and further radial growth from the base and top of the element

produces the proximal and distal shield elements.

In contrast to this, there are additives, inorganic or organic, that can modify the

crystallization process by transforming the conventional crystal growth into an amor-

phous precursor process. Notably, the organic–inorganic interactions that lead to shape

regulation in this case occur prior to the formation of any crystal structure and, there-

fore, do not require interactions specific to crystal lattice arrangements. These process-

directing agents can have a pronounced effect on crystal morphology, as well as other

crystal properties, and thus provide an alternative explanation for the morphogenesis of

biominerals [111].

Bone apatites are calcium-deficient (and hydroxide-) nanocrystals whose size varies

depending on the technique used: length (20–50 nm), width (15–30 nm), and thickness

(1.5–4 nm) [7,112,113]. They are doped with ionic substituents, typically 4–6 wt% car-

bonate, 0.9 wt% Na, 0.5 wt% Mg, and other minor elements. Bone apatite also presents a
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typical plate-like morphology and poor crystallinity. Synthetic nanocrystalline apatites

present a hydrated surface layer that becomes progressively transformed into the more

stable apatitic lattice upon maturation in aqueous media. As this layer has a strong

ability for ion exchange and adsorption of organic molecules, it is thought that in bone

apatite this layer might actively participate in homeostasis [114]. It is generally assumed

that the very small particle size and the nonstoichiometry are features that presumably

bestow the mineral phase with the solubility needed for resorption of the bone by os-

teoclasts, while their small thickness favors the mechanical properties, likely preventing

crack propagation. Using advanced solid-state NMR spectroscopy, Hu et al. [115] have

revealed that a small carboxylate molecule, the citrate, accounts for about 5.5 wt% of

total bone organic matrix and is strongly bound to apatite surfaces (1 molecule per every

2 nm2). These researchers proposed this molecule as responsible for the inhibition of

crystal thickening and also for the stabilization of nanocrystals within the collagen

matrix. The role of citrate ions leading to the platy morphology during ACP to apatite

transformation, therefore breaking the hexagonal crystal apatite symmetry, was further

confirmed by using synchrotron X-ray total scattering combined with AFM [116].

20.2.3 Biological Control at Constructional Level

The impressive complexity of mineralized biological structures arises from the

controlled construction of hierarchical architectures that involves the assembly of

mineral-based building blocks into a series of progressively more highly ordered struc-

tures. This concept has evolved to the definition of mesocrystals [32]. Mesocrystals are

three-dimensional registered nanocrystals, which diffract X-rays as a single crystal does.

The shape and structural organization of these nanocrystals is controlled by specific

macromolecules that cover this double function. The shape of nanocrystals is controlled

by specific molecular adsorption, as described above. Even more intriguing is the

capability of these macromolecules to induce the alignment of the nanocrystals. In this

case, the process seems to be driven by specific functional groups’ interactions. It cannot

be excluded that the register may also imply phenomena of pseudo-epitaxy, as reported

for nacre. Indeed, although it has been demonstrated that large molecules, such as

proteins, are incorporated within a biogenic single crystal, the locations have been found

by measure of the coherence length and domain spread. The three-dimensional map-

ping of the distribution of imperfections of sets of biogenic calcite single crystals of very

different shapes (sea urchin spines and larval spicules, five different kinds of calcareous

sponge spicules, single prisms from mollusk shells and two kinds of foraminifera shells)

has revealed a striking correspondence with macroscopic crystal shape [104,105,117].

This observation can be explained by assuming an accurate, nanometer-scale controlled

delivery of the proteins onto the growing crystals. Protein intercalation is also mirrored

by the mechanical properties. Microindentation carried out on spicules results in

anisotropic crack propagation along the same unique direction where proteins are not

intercalated [97]. When crystal morphology matches crystal symmetry, it may be
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sufficient to exploit the recognition capabilities of the (glyco)proteins for specific crystal

motifs.

The biological “prevail” of the inherent nature of the crystal protein interactions

raises the question of whether or not it has the functional purpose of producing a more

isotropic material in terms of defect distributions.

20.3 Crystallization Techniques to Study Biological
Crystallization

Biological crystallization involves the precipitation of inorganic crystals under strict

control of the nucleation and growth mechanism. This process is mediated by biological

“additives,” i.e., soluble macromolecules, templates, membranes, or vesicles that act as

isolated compartments. In many cases, these processes are produced in biological media

whose viscosity and physicochemical features resemble those of a hydrogel-like media.

The kinetics in biological crystallization are slower in comparison to “typical” crystal-

lization. Thus, in order to mimic these processes, the primary goal has been to adapt or

develop suitable techniques such as those presented in this section: batch, vapor

diffusion, and gel crystallization. Moreover, crystallization may also be manipulated by

using microorganisms for specific applications, a technique that is here described as “in

vivo induced mineralization.”

20.3.1 Batch Crystallization

The easiest way to test the effect of an additive on the crystallization of a given mineral

phase is to use a batch method. Batch methods are commonly used in the chemical and

pharmaceutical industry to prepare a wide variety of crystalline products. To study

biomineral formation at laboratory scale, the most useful method is reactive crystalli-

zation, a process in which supersaturation is achieved by a chemical reaction between

two soluble reactants. The decrease of supersaturation is accompanied by the precipi-

tation of a sparingly soluble compound. A wide variety of electrodes allow us to monitor

several reaction parameters such as temperature, pH, conductivity, and ionic concen-

tration, all of them carrying information on the evolution of the supersaturation as well

as on the effect of the additives. Most inorganic counterparts of biominerals found in

nature can be precipitated in batch, such as calcium carbonates [118] or nanocrystalline

carbonate-apatites [119].

Different arrangements can be adopted either to keep the supersaturation and/or the

pH constant, the best known being the so-called “constant composition method”

[120,121] and/or the “pH-stat method.” The effect of an additive on the mineral

nucleation and growth can be studied by means of unseeded or seeded experiments

[122]. The advantages of the technique are speed and simplicity; the disadvantage is that

only one condition is tested in each run. Scaling down the precipitation processes using
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plates, microdroplets, or microfluidic devices, whilst increasing the possible number of

batches for each experiment, can reduce the consumption of biological additives.

20.3.2 Vapor Diffusion

A longstanding method employed by the biomineralization community to precipitate

calcium carbonate is the slow diffusion of vapor released from ammonium carbonate

sources [66,123]. The method is essentially based on the diffusion of NH3(g) and CO2(g)

released from (NH4)2CO3 into a Ca2þ solution bearing the additive. The experiment is

carried out inside a closed system (usually a desiccator). The released NH3(g) diffuses

through a few mL of the Ca2þ solution, increasing its pH while the CO2(g) reacts to form

CO3
2� species, eventually leading to the precipitation of CaCO3.

To reduce the consumption of biological additives, the experiment can be performed

in microdroplets (around 40 mL) using an innovative microdevice called a “crystallization

mushroom.” In addition to its reduced volume, this setup offers the advantage of good

reproducibility due to the possibility of running numerous batches of crystals for each

experiment. Hernández-Hernández et al. [124] used the crystallization mushroom to

reveal the dramatic effect of myoglobin and a-lactalbumin in selecting calcite as the

preferred precipitating polymorph in contrast to the additive-free experiment, which

yielded a precipitate composed of 63% calcite, 15% aragonite, and 22% vaterite. The

effect of these proteins in selecting the polymorph calcite was more pronounced as the

protein concentration was higher.

Apart from CaCO3, the vapor diffusion method has been adapted to crystallize bio-

mimetic calcium phosphates [125–127]. Iafisco et al. [126] and Gómez-Morales et al.

[125] carried out calcium phosphate crystallization experiments using a modified

“mushroom” (Figure 20.6) by diffusing vapors of NH4HCO3 through aqueous droplets

containing a Ca(CH3COO)2/(NH4)2HPO4 mixed solution. Thus, in additive-free experi-

ments performed over 1 week [126], ACP was obtained at the early stages, then it

FIGURE 20.6 (A) Crystallization mushroom setup. (B) Carbonate-apatite nanocrystals precipitated in sitting
droplets containing Ca(CH3COO)2 þ (NH4)2HPO4 þ L-Arginine. The NH3(g) and CO2(g) slowly diffuse from the
NH4HCO3 reservoir to the droplets through the small hole located in the bottom of the upper chamber.
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transformed to octacalcium phosphate (Ca8H2(PO4)6$5H2O, OCP) and carbonate-

apatites nanocrystals whose sizes oscillated between 60 nm and 120 nm. However,

when the experiment was performed in the presence of amino acids with different

isoelectric points, namely L-aspartic acid (L-asp, iep ¼ 2.77), L-alanine (L-ala, iep ¼ 6.00),

and L-arginine (L-arg, iep ¼ 10.76) at different concentrations, irrespective of the nature

and concentration of the amino acid used, the early stage in the precipitation consisted

in the formation of a white viscous suspension of ACP spherulites. After 1 week, at the

higher concentration of L-aspartic acid, brushite (CaHPO4$2H2O, DCDP) platelets and a

few needle-like carbonate-apatite crystals were found. In the presence of L-alanine, the

precipitate was composed of both OCP platelets and needle-like carbonate-apatite, and

in the presence of L-arginine, carbonate-HA nanocrystals (shown in Figure 20.6) of

20–40 nm and a few OCP crystals [125]. These experiments illustrate the crucial role of

biological additives in calcium phosphate precipitation.

20.3.3 Gel Crystallization

A remarkable feature of gels is that they suppress convection and sedimentation [128],

thus creating a diffusive scenario for the transport of reactant species during the crys-

tallization process. Crystal growth in gels and, in particular, the counterdiffusion tech-

nique, has attracted the interest of many researchers as a method for optimizing crystal

size and crystalline quality [129–133], to simulate microgravity environments [133], or to

produce crystals analogous to those formed in geological environments [134].

Very recently, this technique has emerged as a powerful platform for mimicking

crystal deposition in biomineralization processes [135–139]. The main motivation

behind this approach has been that many processes take place in a gel-like organic

matrix, which is an assembly of proteins, polysaccharides, and/or glycoproteins. These

matrices provide the structural framework that serves as a source of functional groups to

direct the nucleation and growth of inorganic minerals [135,140,141]. Among the many

different minerals, most noteworthy is the employment of this technique to crystallize

calcium phosphates [136,142] and calcium carbonates [138,143,144] along with the study

of the effects of inorganic and organic additives on the crystallization processes of these

substances [143,144].

In a typical counterdiffusion experiment, two reacting solutions are allowed to diffuse

against each other from two reservoirs separated by a gel column. This setup generates a

continuous gradient of concentrations of both reagents in the gel column, and thus a

continuous variation in space and time of the ionic activity product and supersaturation

[145,146]. Therefore, precipitation will occur at the time and location of the gel column

where the critical supersaturation value for nucleation is reached for the first time

[29,146–149]. Under the counterdiffusion configuration, the supersaturation threshold to

trigger nucleation is a function of the rate of development of supersaturation [146–149],

and, at the same time, the equivalence rule must be satisfied in addition to reaching the

supersaturation threshold [29,146,148,149].
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Figure 20.7 illustrates the precipitation of CaCO3 in a high viscous agarose sol, i.e.,

hydrogel with a low degree of entanglement. In the U-tube setup, three main parameters

can be estimated: the waiting time (tw) or elapsed time from the onset of the experiment

up to the appearance of the first precipitate; the starting point of precipitation (xo) or

distance from the cationic reservoir to the place where the first crystals appear; and the

crystal growing space (D) or length within the column gel where precipitates are

observed at the end of the experiment. The boundaries of D, xcat, and xan represent,

respectively, the places where the activity of anions in the zone close to the cationic

reservoir and the activity of cations in the zone close to the anionic one are the lowest to

still sustain nucleation and growth of crystals.

Two examples of the use of this setup can be found in references [150,151]. The effect of

charged polypeptides entrapped in an agarose sol on the crystallization of CaCO3,

mimicking the roleof acidicmacromoleculesonamodelbiomineralizationprocess [150], or

the role of a solubleorganicmatrix extracted fromBalanophyllia europaea (a zooxantellated

coral) and Leptopsammia pruvoti (an azooxantellated one) entrapped on the agarose, have

been assessed by analyzing their impact on the above-defined crystallization parameters.

20.3.4 In vivo Induced Mineralization

In recent years, considerable interest has been aroused by the use of microorganisms

(bacteria) that have the ability to induce the extracellular deposition of a wide range of

minerals, for purposes as diverse as strengthening and consolidation of soils, protection

and repair of concrete and cement structures, or protection and consolidation of

decayed ornamental stones. Bacteria can influence the chemistry of the environment

where they grow as a result of their metabolic activity. They can therefore actively create

conditions of supersaturation to induce the precipitation of a given mineral phase.

Bacteria may also act in a passive manner, by serving as a nucleation site for mineral

deposition [152]. There is a wide variety of bacteria capable of inducing the precipitation

of carbonates [153], oxides [154], sulfates [155], and phosphates [156]. It is noteworthy

that those bacteria are able to induce the precipitation of calcium carbonate used in

conservation and restoration of ornamental limestone [157–159]. Rodrı́guez-Navarro

et al. [159] tested a bacterial conservation method based on the use of Myxococcus

FIGURE 20.7 Schematic diagram
showing a U-tube setup for
counterdiffusion experiments.
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xanthus, a gram-negative, nonpathogenic, common soil bacterium belonging to the

�d subdivision of the proteobacteria. Depending on the culture media, this bacterium is

able to induce the formation of phosphates (struvite, schertelite, newberyite), carbonates

(calcite, Mg-calcite, vaterite) and sulfates (barite, taylorite). This capability for biomin-

eralization is of particular importance because it may be used to consolidate a wide

spectrum of materials.

20.4 The Role (Function) of Biological Crystallization
20.4.1 Crystals to Support and Protect the Organism’s Body:

Exoskeletons and Endoskeletons

The exoskeleton and the endoskeleton are the hardest part of the body of vertebrates and

invertebrates, respectively. In popular usage, some of the larger kinds of exoskeletons are

known as “shells.” Examples of exoskeleton organisms include insects such as grasshop-

pers and cockroaches, and crustaceans such as crabs and lobsters. The shells of the various

groups of shelled mollusks, including those of snails, clams, tusk shells, chitons, and

nautiluses, are also exoskeletons. Exoskeletons contain rigid and resistant components

that fulfill a set of functional roles including protection, excretion, sensing, support,

feeding, and acting as a barrier against desiccation in terrestrial organisms. Exoskeletons

have an important role indefense frompests andpredators, in support, and inproviding an

attachment framework for musculature. The types of minerals forming exoskeletons, the

sites of deposition, and the organizational motifs in which they are found are all extremely

diverse [7]. Endoskeleton is constituted of bones, rigid organs that fulfill important me-

chanical and biological functions, the most important of which are to support, move, and

protect the various organs of the body as well as to produce red and white blood cells and

store minerals [160]. From a material science point of view, bone can be described as an

organic–inorganic composite material, where the organic fraction (basically type-I

collagen, noncollagenous proteins, signaling molecules, and minor organic molecules)

represent about 25 wt%; the mineral phase, composed of nanocrystalline apatite, repre-

sents about 65 wt%; and the rest is water, which acts as a plasticizer [7,21].

20.4.2 Crystals to Control Water Flow: Lipids in the Epidermis

The primary function of the skin is to act as a barrier against unwanted influences from

the environment. The barrier function of the skin is located in its outermost layer, the

stratum corneum, which consists of dead cells filled with keratin and water, and

embedded in lipid regions. The latter are the only continuous structure in the stratum

corneum and represent the main barrier component. Small-angle X-ray diffraction

studies have revealed the biological crystallization of lipids in two lamellar phases in the

human stratum corneum: one with a short periodicity of approximately 6 nm and a long

one of approximately 13 nm [161].
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In the plane perpendicular to the direction in which the lamellar phases are defined,

the lipids are arranged in a liquid phase, a hexagonal phase, or an orthorhombic phase.

The orthorhombic phase is the most densely packed. It has been shown that there is a

correlation in the content of the orthorhombic lateral packing that is present in the

stratum corneum and the transepidermal water loss value [162], a measure for the skin

barrier activity. This demonstrates the relevance of the orthorhombic lateral packing in

the skin barrier function.

Recently, it has been observed that water permeability in snake molt drastically varies

among species living in different climates and habitats. The analysis of molts from four

snake species—tiger snake, Gabon viper, rattlesnake, and grass snake—revealed corre-

lations between the molecular composition and the structural crystalline organization of

the lipid-rich mesos layer with control in water exchange as a function of temperature

(Figure 20.8). It was shown that this control is generated from the change in size and

phase distribution of crystalline domains of specific lipid molecules as a function of

temperature. The content of lipids in orthorhombic lateral packing was the discrimi-

nating factor. This research also revealed that these lipid structures can protect the

snakes from water loss even at temperatures higher than those of their usual habits,

showing the relevance of this biological crystallization [163].

FIGURE 20.8 The picture shows the details of 3D structures concerning snake molt, consisting of mesos layer
(shown as vertical cylinders) sandwiched between keratin layers (the brown net). The two models (based on
micro-XRD data) show how the change in the crystalline structure (due to temperature) controls the water
(showed as blue molecules) passage through the molt. Beyond the 3D models, which concerns the structure at
298 K (green bowl) and 333 K (red bowl), it is possible to see the corresponding micro-XRD spectra.
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20.4.3 Crystals to Chew: The Teeth

Diamonds are known as the best material for grinding, but have a high cost and show a

lack of adaptation [164]. Organisms, on the other hand, produce cheap and functional,

highly performing teeth to grind and bite using diverse content and types of crystals

formed into specific organic matrices. Two representative case studies are the

mammalian tooth enamel and the radula teeth.

Teeth are composed of a bulk of dentin covered with enamel on the crown and

cementum on the root surface [165]. Dentin is similar to bone in inorganic content

(about 70 wt% carbonate-apatite), crystal size, crystallinity, and organic composition,

including a type-I collagen matrix [166,167]. Enamel, by contrast, is a highly mineralized

tissue that protects teeth from external physical and chemical damage. Mature enamel is

an almost completely inorganic structure (>97 wt% apatite with about 1–2 wt% proteins

and water) composed of extremely long and narrow crystals (50–70 nm width, 20–25 nm

thick and aspect ratios higher than 500 [168]). When compared to hydroxyapatite min-

eral, however, enamel has a higher elastic modulus and hardness, as well as much better

fracture toughness. Additionally, the dentin–enamel junction provides additional me-

chanical support that prevents enamel deformation, which might otherwise result from

the high external forces involved in chewing. Unlike other biomineralized tissues,

mature enamel is acellular and does not resorb or remodel.

A complex architecture is present in enamel—on the nanoscale, a highly organized

array of hydroxyapatite (HA) crystallites that grow preferentially along the c-axis in the

amelogenin matrix [22,169–171]. At the mesoscale, rod and interrod are present as main

structural components. The rods are bundles of aligned crystallites that are organized

into intricate architectures (3–5 mm in diameter). The individual nanoscale crystallites

contained within the rods of mature human enamel are approximately 30 nm thick and

60 nm wide [172] and vary among species on the order of millimeters in length [173]. The

interrod (or interprismatic) enamel, which surrounds and packs between the rods, is the

second structural component of the enamel matrix. The rod and the interrod differ in the

orientation of HA crystals; the former contains aligned crystallites, whereas in the latter

they are less ordered. These structures coalesce to form the tough tissue of enamel

(shown in Figure 20.9), which can withstand high forces and resist damage by crack

deflection [23,168,172,174–176].

Chitons and limpets feed by rasping macro- and microalgae from the rocks on which

they live through the use of a radula. The radula has been coined as a conveyor belt of

continuously developing teeth, replaced by new teeth as they are worn and lost.

These biologically crystallized teeth of chitons are sophisticated composite structures

resulting in highly efficient, self-sharpening, feeding implements ideally suited to their

function. These biologically optimized tools possess many of the desirable features of a

perfect knife.

In both limpets and chitons, newly formed teeth consist of a a-chitin matrix with

associated proteins [177]. In limpet teeth, mineralization begins with the formation of
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elongated crystals of goethite (a-FeOOH) [44] closely associated to the organic matrix

[178]. At later stages, further toward the mouth, the space between goethite crystals is

impregnated with a hydrated amorphous silica phase (SiO2$nH2O) [179,180]. The

particular arrangement of the goethite crystals determines the fracture and wears

characteristics of the tooth [181]. The orientations of goethite crystals in the tooth are

controlled by the chitin fibers of the organic matrix [178,180]. By using cryotechniques,

it has been observed that the unmineralized matrix is formed by relatively

well-ordered, densely packed arrays of chitin fibers, with only a few nanometers

between adjacent fibers. The first-formed mineral phase within the chitin matrix is

goethite, which nucleates on the chitin fibers that control the orientation of the

crystals. Contrariwise, crystal growth is only influenced by the matrix [182,183]

(Figure 20.10).

FIGURE 20.9 Hierarchical architecture of
mammalian enamel. Enamel (E) is the
outermost layer at the crown of the
tooth and resides above the dentin (D).
The pulp (P) contains nerves and blood
vessels, while the cementum (C) is the
outermost layer of mineralized tissue
surrounding the root of the tooth,
allowing the tooth to be anchored to the
jawbone through the periodontal
ligament (PDL). The bulk image depicts
the E organ, the transition across the D-E
junction, and the D below. On the
mesoscale level, prismatic E consisting of
the weaving of rods (or prisms) that
range from 3 to 5 mm in diameter can be
visualized. Upon further magnification,
the micrometer scale shows the
composition of a single rod. The
nanometer scale reveals a highly
organized array of individual HA
crystallites (approximately 30 nm thick,
60 nm wide, and several millimeters in
length), which are preferentially aligned
along the c-axis. Adapted from [254].
Copyright 2008 Materials Research
Society.
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20.4.4 Crystals to Hear and Balance: The Otoliths

The basic principle of gravity perception by organisms is that downward gravity forces

exerted by specially formed heavy bodies are detected by the surrounding tissues. The

movement of the whole organism realigns these tissues relative to the forces of gravity

exerted by the heavy bodies, and it is this movement that is detected and interpreted in

terms of a change in orientation [185]. The quantity of minerals used by organisms for

gravity perception is extraordinary, with many different specific gravities ranging from

2.2 in gypsum to 4.5 in barite. Most of the minerals formed by animals for gravity

perception are calcium salts.

Thehearing andbodybalance infishare twodifferent sensations initiatedbyacommon

mechanism [186]. The inner ear contains three otolith organs that containmacular sensory

hair cells coupled with an otolith, a biomineralized ear stone composed of calcium car-

bonate and proteins. The otolith acts as an inertial mass, and sound- and head

movement–evoked acceleration produces relative displacement between the otolith and

the coupledhair cells due to thedifference in their inertia. This displacementmechanically

deflects the hair bundles and opens mechanotransduction channels, which can subse-

quently produce a receptor potential [187]. Behavioral studies that eliminated the otolith

organ in fish revealed the functional differences between the three otolith organs the

saccule (S) and lagena (L) are necessary for auditory perception, and the utricle (U) is

FIGURE 20.10 (bottom) Light micrograph of the radula of the chiton Acanthopleura gaimardi showing the
progressive stages of radular tooth development. From the clear unmineralized teeth, comprised of a chitinous
organic matrix on the right, to the black, fully mineralized, working teeth on the left. (top left) Images of the
organomineral interactions in the magnetite region of the tooth cusps of Acanthopleura echinata, showing the
fish scale appearance of the rod and trough structures, viewed with an environmental scanning electron
microscope. (top right) Diagram depicting the various regions in the tooth cusp. Adapted from [184].
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essential for postural equilibrium [188,189]. The mechanisms underlying their functional

differentiation, however, remain unclear. Interestingly, the otoliths removed from

maculae, especially the S otoliths, did not grow as large as otoliths that remained in their

normal environment. This indicated that otolith growth occurred in a region-specific

manner that is specific to each macula. This shows that components of the otolithic

membrane, andproteins secretedbymacular hair cells and supporting cells, are important

for otolith development. Thus, the growth of the S otolith is tightly regulated during

development so that the otolith grows to an appropriate size for acoustic sensory trans-

duction [190] (Figure 20.11). The biological crystallization of otoliths occurs from the same

endolymphatic fluid. In this process the presence of specific macromolecules is able to

control the shape and, eventually, the polymorphisms of the otoliths [102]. The biosyn-

thesis of the polymorphism regulatingmacromolecules is controlled at genetic level. It was

reported that a gene, starmaker, is required in zebrafish for otolith morphogenesis.

Reduction of starmaker caused a change in the otolith polymorphism and morphology

[191].

20.4.5 Crystals to Orient and Navigate

One of the most sophisticated functions of biological crystallization is the detection of

the earth’s magnetic field using magnetite, as performed by the magnetotactic bacteria,

FIGURE 20.11 Schematic illustration (left) of the inner ear of teleost fish showing terminology. The labyrinth
includes three connected semicircular canals and three otolithic organs consisting of the sacculus, utricle, and
lagena, each of which contains an otolith called sagitta (sg), asteriscus (as), and lapillus (lp), respectively. The
asteriscus and lapillus are usually millimeter sized, but the sagitta can range from millimeter to centimeter size.
As sagittae are the largest otoliths, they have been widely utilized in teleost growth rate and age assessment
studies. Crystals of otoliths, once deposited, are metabolically inert, except under extreme stress. Thus, the otolith
can potentially retain the variation in crystalline structure due to variation in the organic matrix or in the
crystallization environment. The two scanning electron microscopy images (right) show the sagitta from Aspitrigla
cuculus in juvenile and adult age. Scale bar 500 mm.”
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discovered by Blakemore [192] in 1975. Magnetotactic bacteria form linear chains of

magnetite crystals, each one of which is sheathed and held together by a lipid bilayer

admixed with proteins [193]. The entire structure is called magnetosome (Figure 20.12).

The crystals have various shapes in the size range of 0.1 mm and are considered single

crystalline domains. This way the entire magnetosome acts as a single bar magnet. The

function of the magnetosome is to align the bacterium along magnetic field lines, in such

a way that using the flagellae it propels itself in this referred direction. Magnetotaxis is

the process by which magnetotactic bacteria orientate themselves within Earth’s

geomagnetic field. Thus, magnetotactic bacteria in the northern hemisphere are north

seeking while those in the southern hemisphere are south seeking. Iron is not only used

as the element forming magnetite but is an essential element for all living organisms,

though potentially toxic, for which reason it needs to be stored safely. For these pur-

poses, many organisms use ferritin. Ferritin is formed by an inner core containing iron

minerals and a multisubunit protein shell with a diameter of 12.5 nm [194].

Magnetotactic bacteria are typically divided into three groups according to the type of

magnetic nanocrystal that they synthesize: (1) magnetite (Fe3O4); (2) greigite (Fe3S4) or a

combination of greigite and pyrite (FeS2); and (3) a combination of magnetite and

greigite [195–197]. Magnetotactic bacteria that synthesize iron sulfide minerals can

(A)

(C) (D)

(B)

500 nm 500 nm

100 nm 100 nm

FIGURE 20.12 TEM images of magnetotactic bacteria. (A) Magnetospirillum magneticum strain AMB-1 and
(B) Desulfovibrio magneticus strain RS-1. BacMPs of (C) the AMB-1 strain and (D) the RS-1 strain. Figure from
[194], with permission. Copyright 2008 Materials Research Society.
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sequester a large amount of sulfur and may therefore exert significant effects on the

biogeochemical cycling of sulfur, in addition to iron, on Earth [198].

It has been observed that biomineralization in magnetotactic bacteria provides highly

uniform magnetite crystals with narrow size distributions (an average diameter of

50–100 nm; [197]). Furthermore, magnetite crystals in magnetosomes are of high

chemical purity [199,200]. The size, type, and morphology of magnetic crystals vary from

species to species but are highly conserved within the same bacterial species or genus

[201]. The three most common magnetic crystal morphologies are elongated prismatic,

roughly cuboidal, and tooth shaped [192,195,197]. In contrast, magnetite crystals pro-

duced by abiotic mineralization have low crystallinity and broad size distributions.

20.4.6 Organisms to Produce Engineered Biological Crystallization

Sometimes biological crystallization is triggered in organisms trying to protect them-

selves from foreign bodies. Pearls are formed in mollusks by this mechanism. To protect

themselves, mollusks secrete CaCO3 aragonite and proteins to envelop the irritant body.

The result is the formation of a pearl. Depending on how aragonite is arranged, the pearl

may have a high luster (nacre, or mother-of-pearl) or a more porcelain-like surface.

Pearls may be of a variety of colors, including white, pink, and black. Any mollusk can

form a pearl, although some of them are pearl oysters, including species in the genus

Pinctada. The species Pinctada maxima produces pearls known as South Sea pearls.

Black pearls are grown by Pinctada margaritifera [202], an oyster extremely abundant in

Polynesian waters, whose shells have been used in the button industry. The pearls

produced by the P. margaritifera vary in color from pearly white to nearly black and

include purple, gray, champagne, and greenish colors. There are no pearls that are

completely black in color like an onyx.

20.4.7 Crystals to Packaging: Eggshells—The Protein Containers

Eggshell formation represents one of the most intriguing and beautiful examples of

biomineralization and a source of inspiration for material scientists aiming to design and

construct a perfect container for biological material. Eggshell is a porous composite

material containing about 95% of calcite as mineral phase, 3.5% of organic phase and

1.5% of water. It possesses remarkable mechanical properties. In hens, the shell resists

up to 30 N in static compression for a mean thickness of 0.33 mm. This structure is

crucial for the protection of its biological content against the microbial environment, in

the control of water and gases through the pores of the shell during the embryonic

development, in protection against predators, and in the birth of the chick. The eggshell

is composed of six layers (Figure 20.13). The innermost two layers are the noncalcified

inner and outer shell membranes made of a network of organic fibers (mainly collagen).

The inner calcified layer (cone layer) is composed of the basal parts of calcified column

that penetrates the outer eggshell membranes. The palisade layer starts when the col-

umns amalgamate to form a compact shell. The pores are formed when columns are not
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amalgamated. The thin vertical crystal layer is deposited on the surface of the palisade

layer. The cuticle is the most external layer of the shell and is constituted of organic

matter and eggshell pigments.

The process of shell mineralization takes place in the uterine fluid, an acellular milieu

whose calcium concentration, CO2 partial pressure, and organic composition change

through its three main stages [19,203]: (1) the initial stage when the first calcite crystals

are deposited around the mammillary knobs to form the cone layer; (2) the active growth

phase when there is a rapid mineral deposition during the formation of the palisade

layer; and (3) the terminal phase (the last 2 h of the egg formation process) when there is

an arrest of shell calcification and the deposition of the most external layer, the cuticle.

The eggshell structure and, consequently, its mechanical properties are most prob-

ably the result of, on one hand, a competitive crystal growth mechanism by which

crystals growing from adjacent sites compete for the available space [204] and, on the

other hand, from the influence of matrix molecules on the nucleation and growth of the

crystals [19,205–207]. During the last decade, much effort has been been made to

identify the different organic macromolecules in the crystallization milieu (uterine fluid)

and in the shell. The identified matrix protein components can be divided into three

distinctive groups: (1) “egg white” proteins such as ovalbumin [208], lysozyme [209] and

ovotransferrin [210]; (2) ubiquitous proteins that are found in many other tissues such as

osteopontin, a phosphorylated glycoprotein also present in bone and other hard tissues

[211], and clusterin, a widely distributed secretory glycoprotein that is also found in

chicken egg white [212]; and (3) matrix proteins unique to the shell calcification process

FIGURE 20.13 Scanning electron micrograph
showing a cross-section through a fully formed
eggshell that reveals the eggshell membranes,
the cone mammillary layer, the palisade layer,
and the cuticle.
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that are secreted by specific regions of the oviduct where eggshell mineralization is

initiated and takes place (red isthmus and uterus). Ovocleidin-17 (OC-17) was the first

eggshell protein purified from the shell [213]. Ovocleidin-116 (OC-116), another eggshell-

specific protein, was the first eggshell matrix protein to be cloned [214]. A more recent

proteomic survey of the acid-soluble organic matrix of the calcified chicken eggshell

layer has allowed the identification of several hundred proteins in the shell [215].The

number of these organic components and their concentration change in the uterine fluid

along the different stages of eggshell deposition in a well-defined way [203]. In each

stage, specific organic components are expressed at a given concentration. Also, these

organic components are secreted at specific times and locations in the oviduct and

incorporated at specific substructural regions of the eggshell. On the other hand, in vitro

precipitation tests show that some of these components influence calcium carbonate

precipitation. In particular, they affect the nucleation frequency, the polymorph selec-

tion, the crystal size, and the morphology [206,207].

20.4.8 Undesired Crystallization: Pathological Mineralization

When talking about pathological crystallization many readers think of the formation of

kidney stones or urinary calculi; however, several major diseases such as cancer and

cardiovascular abnormalities may be linked to the pathological deposition of minerals or

organic compounds in various tissues.

In particular, pathological calcifications due to the ubiquity of calcium and the

wide presence of carbonate, phosphate, oxalate, or other anions, may occur in various

organs or locations in the body [10], namely joints, brain, breast, cartilage, cardiac

valves, middle ear, gallbladder, gastric system, heart, intestine, kidney, larynx, liver,

lungs, pancreas, prostate, saliva, tendons, testicle, tooth, thyroid, and artery and

vessels. Even calcifications of medical devices made of polyurethane, silicone, and

hydrogels have been reported [216]. Different minerals or organic compounds have

been identified on these microcalcifications. To cite a few examples, calcium

pyrophosphate dihydrate (Ca2P2O7$2H2O), octacalcium phosphate (OCP), carbonated

apatite (CO3-Ap), tricalcium phosphate (Ca3(PO4)2), and whitlockite Ca9Mg(HPO4)

(PO4)6 have been described as occurring in joints [167]; apatite and weddellite (cal-

cium oxalate dehydrate, COD, CaC2O4$2H2O) were found in breasts [217]; different

calcium and magnesium phosphates including CO3-Ap, OCP, brushite, whitlockite and

struvite, calcium oxalates monohydrate, dihydrate and trihydrate (COM, COD

and COT), anhydrous uric acid, monohydrate and dehydrate, different urate salts and

amino acids such as cysteine, leucine, tyrosine, etc. formed kidney stones [218];

cholesterol, calcium bilirubinates, CO3-Ap, amorphous carbonated calcium phos-

phates, and calcium carbonate anhydrous polymorphs (aragonite, vaterite, calcite)

were found in the liver [219]; calcium carbonate polymorphs in the pancreas [220];

whitlockite and CO3-Ap, in the aorta [221]; CO3-Ap in skin and muscle [222]; and

so on.
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Pathological crystallization (basically calcifications) includes four families of bio-

minerals of medical interest [10]. First, concretions, formed by precipitation from

supersaturated mineralized fluids, as for example urine found in the kidney, to form

stones. Second and third are metastatic and dystrophic calcifications, unexpected min-

eralizations occurring in soft tissues. In the case of the metastatic, they are associated

with systemic mineral imbalance. The fourth group is composed of those physiological

calcifications, such as bone mineralization, that become pathological with diseases such

as arthrosis or osteoporosis.

Biological calcified entities may have hierarchical structural organizations, which are

the morphological characteristics strongly linked to nanocrystal organization at the

mesoscopic level, and can be related to the clinical history of the patient [10]. Thus, two

different morphologies of whewellite kidney stones originate from hyperoxaluria type 1, a

rare inherited disease, or by an alimentation disorder. The different levels of organization

are the result of an aggregation process of microcrystals, where each microcrystal appears

formed by primary nanocrystals, typically of several hundreds of nanometers. The for-

mation of these entities is related to the solubility of the different mineral phases,

nucleation, growth, and aggregation phenomena as well as to the presence of proteins,

organic substances, or ions acting as crystallization promoters or inhibitors. Epitaxial

growth is also important in the formation of different types of calcifications [223,224]. Due

to the complex environments where they form, which, in the case of urine, for example,

has a variable flow rate, pH, and chemical composition, although supersaturation must be

reached for the precipitation of a given phase, it alone does not predict stone formation.

20.4.9 Crystals to Manipulate Light

Apparently more sophisticated than other uses—but just another finding of evolution—

is the ability of living organisms to precipitate crystalline structures with textural pat-

terns that allow them to handle light with different purposes. For instance, cystoliths are

ACC bodies that form in the leaves of some plant families. They are regularly distributed

in the epidermis and protrude into the photosynthetic tissue, the mesophyll. In some

cases, ACC is replaced by calcium oxalate druses. It has been demonstrated that in both

cases they act as light scatterers and improve the efficiency of the distribution of the light

flux more evenly inside the leaf [225]. The compound eyes of extinct Paleozoic arthro-

pods named trilobites have lenses made of calcite [226]. The calcite crystals self-

assemble to be co-oriented with their three-fold axes parallel toward the light flow,

thus avoiding optical birefringence.

Among the most fascinating devices developed by living organisms are those created

with the purpose of coloring themselves, either to avoid visual predators or to attract

partners or symbiotic species [227]. In many cases, the color of bird feathers, butterfly

wings, and the carapaces or some fruits and leaves are not produced by pigments or

dyes. They are actually the product of the interaction of visible light with mineral

structures organized at nanoscale, so they are properly called structural colors, which are
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more intense, lasting, and brighter than colors produced by pigments and dyes. In fact,

these nanopatterns are nothing other than what is known nowadays as photonic

structures, a kind of novel structure of great technological interest that life started to

create about 600 million years ago [228–230]. Unlike for exo- and endoskeletons, the

materials used by organisms to build these photonic crystals are not inorganic minerals

but organic macromolecules such as keratin, cellulose, collagen, or chitin. The photonic

structures are either one-dimensional, two-dimensional, or three-dimensional quasi-

order structures. For a detailed analysis and classification of crystalline structures in

biological photonic crystals, see the work of Hyde and Schroder-Turk [231].

There are many studies correlating the optical properties with the mesoscale crys-

talline patterns. For instance, the colors of the wings of Chrysiridia rhipheus arise from

coherent scattering and interference of light by the microstructure of the ribbon-like

scales made of chitin-air [232]. In other cases, the wing scales carry assemblies of

chitin-air multilayers with perforated chitin layers [233]. By studying five butterfly spe-

cies from Papilionidae and Lycaenidae families, with small-angle X-ray scattering (SAXS),

Saranathan and coworkers [234] have shown that the chitin-air 3-D photonic nano-

structures are actually single network gyroid (I4132) photonic crystals, that is, 3D cubic

crystals with a lattice parameter in the range of hundreds of nm, rather than a 2D film.

Noticeably, these patterns are not the result of classical nucleation and crystal growth

mechanisms but of self-assembly processes in many cases not yet properly understood.

To continue with the example of the butterfly, it has been shown that the hard porous

chitin wing-scale material is templated by an extant soft lipid–protein matrix that is itself

self-assembled. It has been shown that the complex chitin matrix seen in mature wing

scales in butterfly pupae is produced by the gradual polymerization of chitin oligomers

within a water matrix defined by the bounding lipid membrane that spontaneously form

a gyroid structure [235], i.e., they are the result of the self-assembly of biological lipid-

bilayer membranes. These butterfly photonic nanostructures initially develop a double

gyroid nanostructure that is later transformed into a single gyroid network through the

deposition of chitin in the extracellular space. It is interesting to note the suggestion that

the butterflies develop the thermodynamically favored double gyroid precursors as a

route to the optically more efficient single gyroid nanostructures [234]. Many more

studies are required to fully understand their formation mechanism and how biology

controls with precision the self-assembly of the lipidic mesophases and their filling by

the ending material. The increasing technological interest in photonic crystals means

that whether there is anything to learn from biomimesis, not only in the structure of the

devices but in the way they are grown in life, will soon be explored in more detail.

20.4.10 Induced Biological Crystallization

Beyond the sophisticated mineral skeletons described above, living organisms are able to

induce the formation of complex mineral structures without having a direct and active

role in precipitation. For instance, benthic microbial communities have the ability to
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create organosedimentary deposits by inducing mineral precipitation by different

mechanisms. One of these is the change in physicochemical conditions of the local

environment by their metabolism or degradation [236], for instance by increasing the pH

to trigger the nucleation of calcium carbonate. A second is achieved by facilitating het-

erogeneous nucleation, offering calcium binding negatively charged surface groups such

as carboxylate, phosphate, and sulfate as passive substrate for nucleation [237]; and a

third, as binders of nano and microparticles of minerals through their extracellular

polymeric substances (EPS). The results of this passive effect of living organisms are

structures called microbialites [238], which can be made from one or more different

mineral phases, including carbonates, phosphates, sulfates, arsenates, oxides-hydroxides,

silica, chlorides, fluorides, or metals, and certainly by organic crystals [239,240].

One of the most interesting examples of biologically induced crystallization is the

so-called stromatolites, laminated structures made from the trapping, binding, and

cementation of mineral microparticles by microbial mats [241]. The morphology of these

accretionary structures varies from simple semispherical balls, called trombolites, to

large columns with mushroom-like morphologies, such as those found in the hypersa-

line seawaters of Shark Bay in Western Australia (Figure 20.14). Stromatolites are found

in modern environments, including hypersaline waters, but also in fresh water, whether

marine or continental. However, they are very scarce compared to ancient times. As seen

from the geological record, petrologic structures strongly reminiscent of modern stro-

matolites appear widely distributed during the Precambrian [242,243] time, and they

started to decline upon the emergence of grazing animals, about 600 million years ago.

These stromatolitic structures are important pieces in the search for primitive life on this

planet because they are the most frequent remnants of life for a period of 2 billion years.

Indeed, as some stromatolitic-like structures are thought to date back as far as about

3.5 Gy [244–246], their possible biotic origin would have profound consequences for our

current views on how and when life began on Earth.

FIGURE 20.14 Left: calcium carbonate stromatolites photographed at low tide in Shark Bay, Western Australia. The
height of the rocks on the pictures is 40 cm in average. Right: 2.7 Gy old stromatolithic structure from the Andalusian
Hill, Tumbiana Formation, (Hamersley Basin, Western Australia, Australia). The height of the sample is 22 cm.
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Modern stromatolites are undoubtedly organosedimentary structures induced by

living organisms. Actually, their construction results from a combination of roles of

different microbial mats, which explains the layering but also the growth features such as

pro-gravity growth. Thus, each layer of the stromatolithic structures is formed first by

filamentous cyanobacteria whose extracellular polymeric substances (EPS) bind mineral

particles. This is followed by a thin biofilm of heterotrophic bacteria that favors calcium

carbonate precipitation preserving the underlying particles, and finally another film of

endolithic cyanobacteria that tunnels the minerals and fills the holes with EPS, where

aragonite is precipitated (see [239]). Complex and sophisticated as this life-induced

morphogenetic process can be, it does not necessarily mean that petrological struc-

tures reminiscent of stromatolites formed in Archean times also necessarily have a

biological origin [247–249].

However, while complex mineral microstructures with continuous curvature

mimicking primitive life remnants have been produced in the laboratory under plausible

geochemical conditions [250], stromatolite-like laminated structures are really difficult

to produce either by laboratory analogous [249] or by computer simulation [251]. Those

stromatolitic structures that have overall fingering morphology or mushroom-like

structure are difficult to explain abiotically, especially when the curvature creates flaps

areas where the gravity vector and the growth vector are parallel or pseudoparallel. There

is one possible inorganic explanation for the formation of stromatolitic structures made

of gypsum such as those found in small ponds named Los Puquı́os in the Salar de

Llamara, north of Atacama Desert in Chile (Figure 20.15). There the water is near

saturation for gypsum, and therefore precipitation is linked to evaporation versus

refilling with underground water. The biological diversity is very broad in these com-

munities, but the mechanism of gypsum growth and dissolution seems to be governed

by physicochemistry. The mushroom shape of these structures can be explained by the

strong dependence of growth and dissolution of gypsum on NaCl concentration

(Figure 20.15 bottom right). The water is saturated in gypsum, and, when the water level

is rather high, gypsum precipitates as semispherical radial layered structures. However,

when the evaporation flux is high enough to decrease the level of water below the height

of the hemispherical ball and to increase the concentration of salt beyond nucleation

threshold, gypsum becomes unstable and the lower part of the hemisphere dissolves.

Upon several cycles of growth and dissolution, the structure takes the form of a

mushroom by decreasing the size of its lower part, creating the “foot” of the mushroom.

20.5 Current Trends and the Future of Biological
Crystallization

To lose the field notes or laboratory notebook of an entire working year would be a real

disaster. Then why lose not 1 but 600 million years of continuous experimentation in the

fabulous laboratory of trial and error that is life? Thousands of species populate the
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planet carrying on and/or in their bodies a broad but distinguished list of materials and

devices made to fit the needs of different ecosystems and different functions. In the

laboratory of life, millions of crystallization experiments have produced patterned ma-

terials at the mesoscale and nanoscale that have fabulous physical and chemical prop-

erties, and they do so at low energy cost and using clean “technology.” In many cases,

these devices developed by life are years ahead of the best device imagined by our

“inorganic” technology. Therefore, one of the main trends in the future will be to rein-

force the detailed study of the chemistry of materials and textures and the physics of

devices seeking inspiration in biology.

Actually, what is really important in biomimetic or bio-inspired studies are not the

devices themselves but to understand the mechanisms that life uses to produce them.

The reason is that living organisms do not design ad hoc materials or procedures to

manufacture their bodies. Life, as we have said above, works by trial and error, and is

always producing new models, which are tested and selected by an external medium

with relentless adaptability criteria. Therefore, the molecular machinery and its products

are not necessarily models of excellence (although sometimes they could look like

models because of their exquisite performance), and thus they can be improved.

Moreover, any biologically inspired crystallization taking advantage of the synthetic

FIGURE 20.15 Left: Gypsum stromatolithic structures from los Puquíos de Llamara (Atacama, Desert, Chile). Top
right: Cross-section of one of the stromatolithic structures. Bottom right: An abiotic explanation of the mushroom
shape of the gypsum stromatolithic structures.
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strategies developed by organisms will not be constrained to the use of nontoxic

elements but potentially may have any chemical composition.

While the study of classical nucleation and crystal growth processes will continue to

yield interesting information on kinetics and on textural and morphological control, the

main interest will soon shift toward self-assembly. In the opinion of the authors, in the

coming years there will be an increasing interest in the studying of self-organized,

autocatalytic processes leading to the complex structures recently found in many

organisms, including, for instance, 3D mesophases. Understanding the pathway that life

uses to produce these sophisticated structures with precision at the nanometer scale, at

low cost and at low temperature, will be invaluable for the development of high-tech

materials. Conversely, knowledge obtained from pattern formation of self-assembled

complex materials synthesized in the laboratory (for instance, inorganic biomorphs

[252,253]) will be very useful to understand possible morphogenetic and textural path-

ways found by life.

Another subject that will be explored in the future is the detailed study of biologically

induced mineralization. This low-cost route that life has explored for about

3 billion years may conceal very useful information for sustainability technologies,

including CO2 sequestration, biomining, and industrial reutilization of waste materials.

In a very advanced era, wise from the environmental point of view, this aspect will be of

ever-increasing interest.
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Garcı́a-Ruiz JM. Cryst Growth Des 2008;8(5):1495.
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21.1 Introduction
Crystallization is a popular research topic for the pharmaceutical industry, because it

offers the opportunity to purify, improve, and tailor physicochemical properties of

pharmaceuticals. When a new active pharmaceutical ingredient (API) is launched on the

market, it is essential to have a thorough knowledge of its different solid phases and to

respect the Good Manufacturing Practice Guide for APIs (http://www.ich.org/products/

guidelines/quality/quality-single/article/good-manufacturing-practice-guide-for-active-

pharmaceutical-ingredients.html). For instance, recent history in the pharmaceutical

industry [1] has shown that the emergence of a new phase can seriously compromise the

intended process and potentially the patient’s life. S.R. Chemburkar of Abbott

Laboratories, who dealt with the ritonavir case in the 1990s, drew the following

conclusion known as the 7P rule: “Dealing with Polymorphism is Potentially Precarious

Practice and the Proper way to Play this game is with Patience and Perseverance” [2].

Moreover, product quality characteristics are also related to crystal morphology, habit,

and size distribution (CSD). That is why, early in the development of a process to pro-

duce an API or an intermediate, crystallization conditions and the phase to be produced

must be defined. This prerequisite means determining the system thermodynamics and

kinetics, that is, the phase diagram (the number of polymorphs and/or phases and their

relative thermodynamic stability) and the phase transition kinetic. Thus, it is necessary

to develop an experimental strategy in order to study the respective influence of tem-

perature, supersaturation, medium (chemical conditions), and hydrodynamics on the

API or intermediate crystallization.

Moreover, depending on whether the chemical composition of the crystal is mono-

component or multicomponent, different terminologies are used. An API or an inter-

mediate can be crystallized as different phases [3] (e.g., polymorphs or solvates) or as

pure enantiomer, racemate, or conglomerate [4]. API can also be crystallized as a salt [5]

or a co-crystal [6]. This is for technological reasons (i.e., increasing solubility (in water)

and improving the dissolution profile, bioavailability, stability, and compressibility) or

for economic reasons such as patent protection. The final objective is a robust crystal-

lization process producing a crystallized solid with the desired properties.

In the previous chapters of this volume, the following aspects were treated: nano-

crystal growth from solution, protein crystal growth, biological crystallization, organic

crystal growth, and growth of chiral molecules. In this chapter, we treat pharmaceutical

crystallization. First, the basic concepts are illustrated with examples. Second,
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crystallization methods used in the laboratory are described. Lastly, we look at how a

batch crystallization process is developed in the laboratory.

21.2 Crystallization from Solution
Producing pharmaceutical crystals raises the same problems regardless of whether it is

for biology, opto-electronics, or nanomaterials, because in all these cases crystal growth

mechanisms are the same. That is to say, macromolecules and small organic or mineral

molecules follow the same crystallization rules [7], even though each material exhibits

specific characteristics. In the specific case of pharmaceutical crystallization, it is

important to control the physicochemical properties, which are related to the phase, the

morphology, the habit, and the size of the crystals.

21.2.1 The Crystallization Medium

The crystallization medium is defined by the chemical composition of the medium used

for crystallization. Note that crystallization is a purification process; thus, the solvent is

considered as an impurity. In pharmaceutical crystallization, the crystallization medium

is composed of the solvent (either pure or a mixture) and/or other species such as

byproducts, isomers, or enantiomers.

In order to obtain any nucleation or growth, it is necessary to dissolve the API in a

good solvent. In crystallization, a good solvent is defined by high solubility of material,

easy control of nucleation, and/or fast growth of crystals exhibiting the appropriate

properties. Dissolution of the solute occurs via the creation of solvent–solute in-

teractions. What is the best solvent for a given crystal? Boistelle [9] proposed following

the old rule according to which like dissolves like. That is to say, the choice of the solvent

is directed by the solute to be dissolved. Solvents are classified into nonpolar, polar

aprotic, and polar protic solvents (Table 21.1). For instance, chlorides, sulfates, and

phosphates are more soluble in polar protic solvents than in polar aprotic solvents. The

anions are dissolved by ion–dipole interactions (polar solvents), with some additional

hydrogen bonding (protic solvents).

21.2.2 Solubility, Supersaturation, and Phase Diagrams

Once the material is in solution, this solution must be supersaturated in order to observe

nucleation or growth. The solution is supersaturated when the solute concentration

exceeds its solubility, namely, the concentration at which crystals and solution are at

equilibrium. Supersaturation is the driving force for nucleation and growth.

Supersaturation is the difference between the chemical potential of the solute molecules

in the supersaturated state (m) and in the saturated state (ms). For one molecule, the

expression of this difference is:

Dm ¼ m� ms ¼ kTlnb (21.1)

Chapter 21 • Crystallization of Pharmaceutical Crystals 917



where k (J/K) is the Boltzmann constant; and T (K) is the temperature. For the sake of

simplicity, supersaturation is usually defined as a ratio b, and considering activities equal

to the concentrations, b can be written here without specifying the units:

b ¼ C=Cs (21.2)

where C is the concentration of the solute in solution; and Cs is its saturated or equi-

librium concentration. Another dimensionless ratio s¼ b� 1 is also used in the

literature:

s ¼ ðC� CsÞ=Cs (21.3)

Moreover, if b> 1, the crystal grows; if b< 1, the crystal dissolves; and, if b¼ 1,

crystals and solution are at equilibrium. It is also worth noting that supersaturation

is sometimes defined as the difference between C and Cs. In this case, its value

depends entirely on the concentration units. However, this may conceal the specific

influence of the concentration (and medium) on crystallization. As an example, let

us consider the case of carbamazepine (phase III), whose solubility in different

solvents is known [10] (Figure 21.1). Thus, a supersaturation, b¼ 2, can be achieved

in different solvents: for instance, in methanol, where solubilities are high (109.3 g/L

at 311.4 K); or in 2-propanol, where solubilities are lower (18.9 g/L at 311.4 K). In

these cases, the mass of solute crystallized is either 109.4 g/L or only 18.9 g/L,

respectively. Consequently, despite the same b value, nucleation and growth will be

favored in methanol.

API molecules that exhibit acidic and/or basic functions are a special case. These API

can be crystallized in either their neutral or salt forms. The neutral form is poorly soluble

in water. Conversely, the salt form is much more soluble and is very often preferred for

therapeutic use. In water, these acidic and/or basic functions can be partially dissociated

when they are weak. The consequence is that these molecules present a pH-dependent

solubility profile.

Table 21.1 Classification of Organic Solvents

Type of Solvent Chemical Species Low Boiling Point High Boiling Point

Polar protic Alcohol–water Methanol n-butanol

Ethanol Benzyl alcohol

Polar aprotic Ketone Acetone Methyl-isobutyl-ketone

Nitrogen compound Acetonitrile Propionitrile, dimethylformamide

Amino compound Ethyl acetate N-methyl-2 pyrrolidone

Ester Diethyl-ether, methyl-tert-butyl-ether Isopropyl acetate, butyl acetate

Ether Dichloromethane Dibutyl-ether

Chlorinated compound

Monochlorobenzene Ortho-dichlorobenzeneAromatic chlorinated compound

Nonpolar Alkane Pentane, hexane Decane

Aromatic Toluene, xylene

Reprinted with permission from Ref. [8]. Copyright 2009 American Chemical Society.
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For a weakly acidic API, at pH< pKa� 2 (with pKa the acid ionization constant), the

molecule is mainly in its undissociated form (99%), namely, free acid, with the remaining

1% being in its dissociated form. The crystal is composed of the free acid molecule, and

its intrinsic solubility concentration Cs can be measured by titration of the saturated

solution. The supersaturation definitions (21.2) and (21.3) for undissociated compounds

can be applied. Conversely, at pH> pKa þ 2, the molecule is almost completely

dissociated (99%), and the remaining 1% is undissociated, with a counter-ion in solution

that ensures electroneutrality. The salt form crystallizes above a precise pH called

pHmax. pHmax differs from pKa, being dependent on the cation associated with an acid

anion [11]. Like sparingly soluble electrolytes, the supersaturation ratio b is expressed as

[12,13]:

b ¼ �Aa��x�Bbþ�y=KS b ¼ ½Aa��x $ �Bbþ�y
KS

(21.4)

where [Aa�] and [Bbþ] are the concentrations of the dissociated acid and its counter-ion,

respectively; KS is the concentration solubility product; x and y are the stoichiometric

factors; and a and b are the valencies of the ions.

For a weakly basic API, Aa� is the counter anion and Bbþ is the protonated base. For

pH> pHmax, the free base form is crystallized, and the supersaturation definition (21.4)

can be applied. Conversely, the salt form is crystallized at a pH lower than pHmax, and

the supersaturation expression (21.4) needs to be used.

Lastly, there is another class of multicomponent crystals named co-crystals, which

are composed of an API with its co-crystallizing agent, the two species forming a

building block in the crystalline lattice. Although co-crystals are not ionic compounds

(the species remains neutral), the supersaturation of co-crystals can be evaluated by
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FIGURE 21.1 Mole fraction solubility of
carbamazepine (phase III), x1, in different
solvents: ;, methanol; C, ethanol;
B,1-propanol; :, 2-propanol; A,
1-butanol; >, tetrahydrofuran. Reprinted
with permission from Liu et al. [10].
Copyright 2008 American Chemical
Society.
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considering the solubility product [14,15]. The supersaturation definition (21.4) can be

applied and expressed as:

b ¼ ½API�X $ ½B�Y
KS

(21.5)

where [API] and [B] are the concentrations of the API and its co-crystallizing agent,

respectively; KS is the concentration solubility product of the co-crystal APIXBY; and X

and Y are the stoichiometric factors of the two species in the building block. For the

moment, most of the referenced co-crystals are equimolar (X¼ 1:Y¼ 1); however, there

are also ternary and quaternary co-crystals [16]. Note that the solvent affects the

composition of the stoichiometric solid phase nucleated [17].

The phase diagram is the map of the experimental domain, in which the stability

domains of the solid and liquid phases are located. Polymorphs are crystals of a chemical

compound that have the same composition but different crystal structures. In contrast,

different crystal phases are crystals of a compound that have both different compositions

and different crystal structures. Moreover, in the phase diagram, there is a region where

two coexisting liquids can be observed, which corresponds to a miscibility gap in the

phase diagram. The phase diagram describes the thermodynamics of the system and

thus does not include the kinetics, but we will see in the following how important

the phase diagram is to the understanding, control, and design of crystallization

experiments.

21.2.3 Crystal Nucleation

When a solution is supersaturated, the solid phase forms more or less rapidly depending

on crystallization conditions: the temperature, supersaturation and concentration of

solute, nature and concentration of impurities, hydrodynamics (crystallizer geometry

and stirring), and presence of solid particles. This phase transition is called nucleation.

21.2.3.1 Primary Nucleation
Primary nucleation occurs in a solution that is clear, without crystals. It is called ho-

mogeneous nucleation if the nuclei form in the bulk of the solution. It is called het-

erogeneous nucleation if the nuclei preferentially form on substrates such as the walls of

the crystallizer or solid particles such as dust particles. Conversely, secondary nucleation

is induced by crystals of the same phase present in the slurry, either resulting from

primary nucleation or introduced as seeds by the operator.

Until recently, primary solution nucleation has been described solely by classical

nucleation theory (CNT), a theory derived from nucleation of droplets in the bulk of pure

supersaturated vapors. It considers that once a cluster has reached the critical size r*,
given by the Gibbs–Thomson equation (Eqn (21.6)), nucleation starts.

r* ¼ 2Ug

kTlnb
(21.6)
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where g is the crystal–solution interfacial free energy (J/m2); and U is the volume of a

molecule inside the crystal (m3). Note that the larger the supersaturation, the smaller the

critical nuclei, and thus the easier the nucleation.

While this theory has the advantage of simplicity, some discrepancies have been

observed with experiments [18,19]. Therefore, a more complicated two-step mechanism

has been proposed for protein crystallization [20]: first, formation of a dense phase of

clusters on the model of a liquid–liquid phase separation; and, second, organization of

these clusters into structured clusters (Figure 21.2). This second step was found to be

rate limiting in the case of lysozyme crystallization [19], explaining why it is often more

difficult to nucleate macromolecules than small molecules.

The homogeneous nucleation rate or nucleation frequency J1 is the number of crystals

that form in a supersaturated solution per unit of time and unit of volume [22–25]. Hence,

J1 is proportional to n times the solubility, N0, which is expressed as the number of mol-

ecules per unit of volume. Here, we only need to recall that (in the case of CNT):

J1 ¼ nN0n exp

 
� fU2g3

ðkTÞ3 ln2b

!
(21.7)

where n (s�1) is the frequency with which nuclei of critical size r* become supercritical

by the addition of a molecule and develop into crystals; the term nN0n can be simply

described as a pre-exponential factor Ko; and f is the nuclei form factor (16p/3 for a

spherical nuclei, as assumed in the CNT). Equation (21.7) shows that the frequency of

nucleation depends not only on the supersaturation b but also on the concentration of

molecules nN0. All things being equal, including supersaturation, the higher the prob-

ability of intermolecular contact, the easier nucleation appears. Systems with high sol-

ubility meet this condition. For systems with low solubility, the solute molecules are

separated by greater distances and by a greater number of solvent molecules. The

probability that the molecules will come into contact and form a nucleus is thus lower.

To summarize, the higher the solubility, the easier the nucleation.

Now we can introduce kinetic information: in the phase diagram, a zone where

nucleation is kinetically inactive appears, bounded by the metastable zone limit (MZL).

According to the definition given by Kashchiev et al. [26], theMZL is characterized by the

maximum supersaturation, below which a solution can retain its metastability for a time

defined according to the application (with no nucleation occurring during this time).

Two-step
nucleation model

(A)

Classical
nucleation model

(B)

FIGURE 21.2 Schematic representation of
the different nucleation mechanisms,
from (A) a supersaturated solution to (B)
a crystal. Reprinted with permission from
Erdemir et al. [21]. Copyright 2009
American Chemical Society.
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21.2.3.2 Secondary Nucleation
In an industrial context, where crystallization is performed on a large scale under stir-

ring, secondary nucleation mechanisms play a major role, as shown by Oullion et al. [27]

for a plate-like organic product. Generally, the crystallization is carried out in the

metastable zone. Experimental results reveal two significant secondary nucleation

phenomena. First, a surface nucleation mechanism may occur on smooth, growing

crystals. Secondary nuclei are formed on the crystal surface, as a preordered species, as

clusters in the immediate solution vicinity, or by dendritic growth and dendritic coars-

ening. These nuclei and/or small dendrites can detach from the crystal surface [28]. This

surface mechanism appears to be strongly dependent on the supersaturation level and

on the total crystal surface area. A kinetic expression was proposed by Mersmann [28]

and successfully applied to model the temporal evolution of particle size distribution

during a batch operation [29].

J2;surf ¼ E $ aC $
DAB

d4
m

$ exp

 
� p $K2 $

½lnðCC=C*Þ�2
lnb

!
(21.8)

where ac is the total crystal area per cubic meter of suspension (m�1); DAB is the

diffusion coefficient of the solute in the solution (m2/s); dm is the molecular

diameter (m); CC is the crystal molar density (M/m�3); C* is the solubility (M/m�3);

and b is the supersaturation degree. K is derived from the calculation of the

interfacial tension between the crystal and the solution. Nielsen [30] originally

proposed a calculated value of 0.414. On the basis of numerous experimental data,

the value of 0.333 was reported by Mersmann [28]. E represents the fraction of

crystal area that is really “efficient” in producing single nuclei. Generally, K is fixed

and E tuned so as to reproduce the observed experimental behavior of the studied

system.

Like primary nucleation, this surface mechanism is an activated one and decreases as

supersaturation decreases in the metastable zone. Because the production of particles

remains active under stirring even at rather low supersaturation levels, a contact

mechanism is proposed based on micro-attrition of crystals when crystals collide with

each other or with the stirrer blades and walls of the vessel [28,31]. A “standard”

phenomenological kinetic equation is proposed in the literature and accounts for the

dependence of the contact secondary nucleation rate upon the supersaturation level,

solid concentration, and stirring power:

rN2;cont ¼ kNεs
jAC

jS
S (21.9)

where ε (W/kg) is the specific stirring power dispersed per unit mass of slurry; s is the

relative supersaturation; and CS is the molar concentration of solids in suspension. The

kinetic parameter kN is generally assumed to be temperature dependent, according to

Arrhenius’s law. Exponent jA, which does not depend on temperature, is commonly

found to be between 0.5 and 2.5, whereas exponent jS is generally found to be between 1

and 2, and is expected to slightly depend on temperature [32].
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As a concluding remark, it should be emphasized that the objective of crystal growers

is to control the crystallization process, and thus separate the nucleation and growth

phases as much as possible. This task is extremely challenging because growth of crystals

is optimal in the metastable zone, at low supersaturation, where primary nucleation is

kinetically inactive and secondary nucleation can be controlled. To obtain reproducible

operation and to avoid batch-to-batch differences, seeding is often used (see Section

21.4.3 in this chapter).

21.2.4 Crystal Growth

Once the nuclei are formed and exceed the critical size, they become crystals and grow.

A crystal is limited by faces. The set of equivalent faces resulting from the crystal

symmetry is a form1. All the forms present on a crystal represent the morphology of the

crystal. However, in order to describe the external form of a crystal, morphology is not

sufficient and the concept of crystal habit is needed, entailing the notion of face extension

or morphological importance. But it is important to point out that the growth form of the

crystal is defined by the faces with the slowest growth rates. This is shown by Figure 21.3,

which represents the growth in the metastable zone of a seeded monoclinic Bovine

Pancreatic Trypsin Inhibitor (BPTI) crystal in Potassium Thiocyanate (KSCN) solution [33].

During the experiment, all the faces migrate parallel to themselves and cross distances

proportional to their growth rates. Obviously, the growth forms are different in frames

(3(A) and (C)). The slowest faces develop at the expense of the fastest faces, which entirely

disappear. The growth form thus depends on kinetic factors, that is, crystallization con-

ditions. This is the reason why changing the crystallization conditions (medium, super-

saturation, or temperature) produces different crystal habits for the same crystal phase.

Because the theories of crystal growth mechanisms are extensively discussed else-

where [34–36] and in this book, we will limit ourselves here to a brief survey. Growth

kinetics and mechanisms depend on external factors (medium or chemical composition,

temperature, supersaturation, and hydrodynamics) and on internal factors (structure,

100μm

(A) (B) (C) (D)

FIGURE 21.3 Growth of a BPTI crystal in 350 mM KSCN at pH¼ 4.9. (A)–(C) are frames of a time sequence,
obtained at different temperatures, showing the evolution of the growth form as illustrated in (D), in which
arrows indicate the face displacement with time. Reprinted with permission from Astier and Veesler [33].
Copyright 2008 American Chemical Society.

1Note that in the pharmaceutical literature, “different crystal forms” is often used instead of “different

crystal phases” (inaccurate use of terms).

Chapter 21 • Crystallization of Pharmaceutical Crystals 923



bonds, and defects). The growth medium influences the growth kinetics of the faces in

different ways. First of all, the solvent is more or less adsorbed on the faces and selec-

tively slows down their growth rates. Moreover, growth rate increases with solubility. The

growth medium also influences solvation, desolvation, and complex formation [37].

Furthermore, variations in temperature produce extremely different growth rates. Lastly,

hydrodynamics, the relative velocity of the solution compared to the crystal [38], is an

important parameter. If the solution is quiescent, the face grows slowly at a rate

determined by molecular diffusion and convection of the solute toward the crystal. The

growth rate of the face increases with the flow velocity of solution to the crystal.

However, there is still a diffusional limitation: this growth rate tends very quickly toward

a plateau and thus reaches an upper limit determined by phenomena at the crystal

surface. Note that at the laboratory scale, thermal and mass convections can be reduced

using either gel as a medium of crystallization [39] or small volumes as in microfluidics

experiments [40–44].

Crystallization is a purification process, and because impurities are often present in

the crystallization medium, they tend to concentrate during crystallization. This increase

in impurity concentration is more pronounced for evaporation-based methods.

Impurities are all that is contained in the crystallization medium apart from the solute:

that is, the solvent, chemical impurities coming from the solvent, byproducts, and ad-

ditives. In practice, impurities adsorb on the crystal faces. Depending on the energy of

the bonds between impurity and adsorption sites, adsorption is more or less reversible.

Thus, while growth proceeds, there is competition between the kinetics of molecule

incorporation and the kinetics of impurity adsorption and desorption. Accordingly,

impurities hinder the crystallization processes so that nucleation and growth rates are

sometimes drastically slowed down. When impurity adsorption selectively occurs on a

crystal face, the growth rate of this face is selectively reduced and its relative develop-

ment rapidly increases at the expense of the development of the other faces. Thus, this

behavior induces crystal habit modification and influences the crystal characteristics

[45]. When impurity adsorption takes place on all crystal faces and is irreversible (i.e.,

without exchanges with the surrounding solution), growth is completely inhibited. Then,

the so-called growth cessation is observed. One way to overcome this difficulty is to

drastically increase supersaturation, which sometimes leads to new surface nuclei,

meaning that growth starts again. Another option is to start to dissolve crystals, by

increasing the temperature for instance, and then recreate growth conditions, by

lowering the temperature for instance. However, if the crystal surface is too energetically

“poisoned” by impurities [36], 3D nucleation becomes easier than growth. Thus, the

solution nucleates new crystals.

As a general rule, the habit and/or kinetic change results from impurity adsorption

and not from impurity incorporation. However, impurity incorporation can take place,

especially when the molecule of the impurity resembles the molecule of the crystal. This

was first observed in the case of small molecules (e.g., glutamic acid incorporated into

asparagine monohydrate crystals [46]) and later on in the case of biological
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macromolecules (e.g., contamination of turkey-egg-white lysozyme crystallizing solu-

tions by hen-egg-white lysozyme [47]). Consequently, pure materials are difficult to grow

when impurity and crystal molecules are homologs.

Lastly, the presence of impurities can lead to the nucleation of a new phase (here, the

term new phase means a phase not previously observed), as for ritonavir [48] a related

compound with structural similarities was able to act as a template for nucleation of a

new phase.

21.2.5 Dissolution

Dissolution study of API is very important in the pharmaceutical industry, because

dissolution kinetics govern the bioavailability of a drug and are involved in phase

transformation (part 6). Dissolution tests are generally performed on pharmaceutical

dosage forms and are mainly used for quality control [49–51]. In practice, dissolution

occurs when the crystal is located in an undersaturated solution. There is a loss of

species (molecules, ions, or atoms, depending on the nature of the crystal) from the

crystal lattice, leading to a decrease in the particle size and to an increase in solute

concentration. As in the case of crystal growth, dissolution involves two main steps: (1)

surface reaction and detachment of the surface species, followed by (2) mass transfer of

this species toward the bulk solution across the diffusion layer that surrounds the

crystals [52]. Like the crystal growth rate, the dissolution rate is controlled by the slowest

step. The dissolution kinetic of a readily soluble compound is limited by mass transfer

(step 2), whereas the dissolution of a sparingly soluble compound is controlled by the

kinetics of the events occurring at the crystal surface (step 1). Moreover, for a mineral

and an API, several authors have revealed different behaviors depending on the degree of

undersaturation [53,54]. At high undersaturation, the dissolution rate was found to vary

linearly with the initial undersaturation and quadratically at lower undersaturation. The

authors concluded that the mechanism changed from a mass-transfer-controlled pro-

cess at high undersaturation to a process controlled by a surface mechanism at lower

undersaturation. Moreover, in the case of polycrystalline or aggregates, disaggregation

can occur during the initial stage of dissolution, leading to an acceleration of the overall

dissolution kinetics at the beginning of the dissolution process [55].

21.2.6 Phases

The variations in the physical properties of a solid, such as crystal habit, solubility,

hardness, color, melting point, or chemical reactivity, play an essential part in the

formulation of the solid and in the application of the formulated product [56]. For

instance, the bioavailability of an API depends directly on its solubility, which itself

depends on the phase crystallized. A drug can thus become completely ineffective if the

amount of substance initially intended to enter the blood circulation system is reduced

through low solubility and/or low dissolution kinetics. Moreover, if its solubility is higher

than intended, the risks of side effects are increased [57,58]. Thus, the discovery or
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emergence of a new phase may delay its marketing; for instance, in the case of ritonavir,

“the sudden appearance and dominance of this dramatically less soluble crystal form

made this formulation unmanufacturable” [48]. However, it may also extend it, as with

Zantac [56]. Note that the new phase can also be a salt or a co-crystal.

21.2.6.1 Solubility and Ostwald Rules
Let us consider a dimorphic system, that is, one constituted by two polymorphs, I and II.

At a specific temperature, polymorph II is more stable than polymorph I. The more

stable polymorph has the lower free energy G; in other words, the more stable poly-

morph of the two always has lower solubility, whatever the solvent in contact with the

solid. This rule is not (always) true for solvates or desmotropes [59], for instance. In

practice, two situations are possible for a dimorphic system (Figure 21.4). First, the

system is considered as enantiotropic if the solubility curves cross each other at a lower

temperature (noted Tr, or transition temperature) than the melting points of polymorphs

I and II. As presented in Figure 21.4(A), polymorph II is less soluble under the transition

temperature and therefore stable in this temperature range. Conversely, above the

transition temperature, polymorph I is the stable form.

Second, the system is considered as monotropic if the solubility curves do not cross

each other in solution. In Figure 21.4(B), polymorph II is the stable one. The temperature

range of the solubility curves is often limited in solution (e.g., by the boiling temperature

of the solvent).

When several phases are possible in the same solution, each of them has its own

solubility so that the solution can be supersaturated with respect to several phases at the

same time. Another consequence of nucleation is the occurrence, for kinetic reasons, of

unstable phases, despite the fact that the supersaturation of the stable phase is higher

than for the metastable phase. These unstable phases may remain in a metastable state

for a few seconds or several centuries. The transformation of a metastable phase into a

stable phase, corresponding to the minimal free energy of the system, is called the phase

transition. Ostwald [60] established in 1897 the (kinetic) rule that a chemical system does

FIGURE 21.4 Solubility curves for two polymorphs, I and II, related either (A) enantiotropically or (B)
monotropically. Reprinted with permission from Mangin et al. [8]. Copyright 2009 American Chemical Society.
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not directly tend toward equilibrium but rather toward the closest metastable state. In

other words, nature prefers to follow a sequence of nucleations, growths, and phase

transitions rather than directly nucleating the most stable phase.

21.2.6.2 Phase Transition
Several phases or polymorphs can temporarily coexist, but all except one are subject to

transformation. Metastable phases undergo a phase transition as soon as a nucleus of a

more stable phase (i.e., a less soluble phase) appears. This transformation in the pres-

ence of a solvent is called a solution-mediated phase transformation (SMPT). The basic

phenomena involved in SMPT have already been described [61]. For a given system, this

transformation requires at least three mechanisms:

1. primary nucleation, often heterogeneous, of the more stable solid phase (this step

can be replaced by a seeding of the stable solid phase) and growth of both phases

until solubility of the metastable phase is reached;

2. dissolution of the metastable solid phase; and

3. growth of the more stable solid by mass transfer of solute in the solution.

These three mechanisms are either consecutive or concomitant. The primary nucle-

ation of the stable phase, or its seeding, is thus the trigger for a phase transition in a stirred

crystallizer. In most cases, heterogeneous primary nucleation occurs on the surface of a

substrate, such as an impurity [48] or crystals of the metastable phase (Figure 21.5(A))

[62–68]. It can also occur by heteroepitaxy, as shown in Figure 21.5(B) [69].

Generally speaking, three types of phase diagram occur naturally, depending on the

range of the molecular substance interaction [70–73]. (1) For simple hard spheres, only

fluid and crystal phases are present; and (2) introducing attractive interactions results in

three-phase equilibria: gas–liquid–crystal or liquid–liquid–crystal. For instance, this type

of phase diagram is observed and described for the emulsification and crystallization of

lauric acid in an ethanol–water mixture [74]. The nucleation of a new liquid phase is called

liquid–liquid phase separation (LLPS) or demixion, also termed “oiling-out” in the in-

dustrial literature. And (3), with shorter range attractions, the gas–liquid or liquid–liquid

equilibrium becomes metastable. This type of phase diagram is often observed in protein

(A) (B)

FIGURE 21.5 (A) Carbamazepine stable phase (FIII) nucleated, in ethanol, on carbamazepine metastable phase (FI).
Reprinted with permission from O’Mahony et al. [68]. Copyright 2013 American Chemical Society. (B) Uric acid
monohydrate phase epitaxially grown on the anhydrous phase, after Boistelle and Rinaudo [69].

Chapter 21 • Crystallization of Pharmaceutical Crystals 927



systems [75–77]; however, a few cases are documented for small molecules [78–85]. When

there is competition between liquid and solid phase nucleation, the nucleation of a dense

liquid metastable phase is more likely than crystal nucleation (stable phase) because the

excess free energy of the solution–liquid interface is considerably reduced relative to the

solution–crystal interface, resulting in a lower thermodynamic barrier to LLPS than to

crystallization [20,86], in agreement with the Ostwald rule of stages. This phenomenon is

known to disturb the crystallization process and thus affects product quality

[78,79,81–83,87]. In the example presented in Figure 21.6, the authors compared crystals

of an API obtained from different experimental starting positions in the phase diagram,

inside (Figure 21.6(C)) or outside the LLPS region (Figure 21.6(A)). They showed that the

LLPS strongly affected crystallization. The presence of API-concentrated droplets

completely alters the medium, changing from classical crystallization from solution to

emulsion crystallization such as spherical crystallization [88,89]. In these experimental

conditions, quasispherical agglomerates (Figure 21.6(C)) with good handling and

compression properties [90] are produced.

NB: In spherical crystallization [88,89] a quasiemulsion is normally formed by adding

a binary mixture of a good solvent and a solute to a poor solvent. With LLPS, the qua-

siemulsion is obtained as temperature-induced phase separation; it can also be obtained

as composition-induced phase separation [91,92].

21.2.7 Ripening

After nucleation, in a batch crystallization experiment for instance, crystals of different

sizes are present in suspension depending on the time at which they formed and the

velocity at which they grow. We observe a decrease in supersaturation that, in theory,

should reach solubility. At the end of crystallization, a decrease in the number of crystals

and an increase in the crystal size can also be observed. Large crystals grow at the

expense of small ones due to the fact that smaller crystals have higher solubility: this

phenomenon is called Ostwald ripening [94]. From Eqn (21.10), it appears that each

(A) (B) (C)

FIGURE 21.6 (A) Crystals obtained by a classical secondary nucleation and growth experiment; (B) observation by
optical microscopy of the nucleation of crystals in the droplets of the API-rich phase at 20 �C; and (C) scanning
electron microscopy image of quasispherical particles obtained after crystallization in the droplets of (B).
Reprinted with permission from Veesler et al. [93]. Copyright 2006 American Chemical Society.
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crystal of radius r corresponds to only one concentration C for which the equation

stands. Thus, the smaller the crystal size r, the greater the C.

r ¼ 2Ug

kT ln C
Cs

(21.10)

Ostwald ripening is an isothermal process that is very slow for crystals larger than 1 mm

and very fast for submicrometer crystals. In protein crystallization, this explains why

sometimes crystals grow from precipitates [95]. In fact, these precipitates are composed

of submicrometer crystals, the largest of which grow and the smallest of which dissolve.

In an API production process, the crystallization step has to be fast and efficient;

therefore, crystallization is stopped before equilibrium is reached. Moreover, kinetics of

dissolution and growth are usually (very) low in the vicinity of solubility; thus, Ostwald

ripening is not very often observed in pharmaceutical crystallization. Ripening can be

activated by temperature: this is the kinetic ripening method [96,97]. Temperature

fluctuations in the neighborhood of the equilibrium temperature induce dissolution of

the smallest crystals and growth of the largest ones. Figure 21.7 presents the complete

kinetic ripening process for a-amylase crystals in experiments with a wide CSD

(Figure 21.7(A)). In the first stage, the temperature is increased by a few degrees. Both

small and large crystals dissolve (Figure 21.7(B)), but as small crystals have less matter to

be transferred, they dissolve faster and the process is stopped by a temperature decrease

(second stage) before complete dissolution of the larger crystals. Finally, large crystals

grow and are faceted (Figure 21.7(C)).

21.3 Crystallization Methods
Crystallization requires the creation of conditions where the equilibrium solubility value

is lower than that of the concentration of solute in the solution. In practice, this means

that the system is moved in the phase diagram from an undersaturated region to a su-

persaturated one. Supersaturation can be generated either by reducing solubility or by

concentrating the medium. These two methods of generating supersaturation ways can

also be used in concert. Five practical methods are discussed hereafter from the

(A) (B) (C)

FIGURE 21.7 Kinetic ripening of a-amylase crystals shown in (A), by (B) partial dissolution and (C) regrowth.
Reprinted with permission from Astier and Veesler [33]. Copyright 2008 American Chemical Society.
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commonest to the newest: (1) temperature change, (2) solvent evaporation, (3) modi-

fying the composition of the solution by changing the solvent composition, (4) chemical

reaction, and (5) adding a co-crystallizing agent.

21.3.1 Temperature

The most commonly used method is changing the temperature of the medium in order to

reduce solubility. As discussed in the previous section, the solubility of most materials

decreases with decreasing temperature, so the medium is cooled. The concentration re-

mains constant (pathway 1 in Figure 21.8). Crystallization starts when the MZL is reached.

Conversely, solubility may decrease with increasing temperature. In this case, the

temperature change necessitates heating the medium (Figure 21.9). Temperature change

is useful because it allows supersaturation to be generated at constant composition, and

the effect is reversible [33]. Usually, surface cooling occurs through the wall of a jacketed

reactor. Another industrial procedure is to evaporate the solvent, condense it, and

recycle it. The coolest part of the medium is the boiling surface rather than the reactor

walls, thus avoiding fouling. Moreover, the heat transfer capacity is 10 to 20 times higher,

allowing a quicker cooling rate.

21.3.2 Solvent Evaporation

After temperature change, partial evaporation of the solvent in isothermal conditions is

the most commonly used method of generating supersaturation, because the solute

FIGURE 21.8 Solubility and metastable zone limit (MZL) of lysine monohydrochloride. (Pathway 1: cooling
crystallization; pathway 2: evaporative cooling; pathway 3: adiabatic evaporative cooling.) Data from [125].
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concentration increases as the solvent is removed. The route follows a vertical line in the

phase diagram (pathway 2 in Figure 21.8). As previously, the primary nucleation is

triggered at the MZL, followed by the growth of nuclei. This procedure is particularly

recommended when the temperature dependence of solubility is too low and when the

crystallization is operated continuously. For instance, this is the case for some inorganic

compounds in water (Figure 21.10). Performing such isothermal evaporation necessi-

tates heating the crystallizer, and the solvent evaporation temperature is controlled via

the pressure level in the reactor. An advantage is that it is possible to perform crystal-

lization at high temperature, often leading to a high growth rate and sometimes to

particles of millimeter size. Nevertheless, all species in the solution also concentrate, and

thus impurities may hinder nucleation and crystal growth and modify API solubility in

the medium. A possible deterioration of the particle habit grown in the final moments is

also possible. This last point could be a major drawback.
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When the crystallization yield is not high enough during a batch operation, it is

possible to combine the cooling of the medium with the evaporation of the solvent

(pathway 3 in Figure 21.8). This is easily possible with an adiabatic evaporation.

A progressive depressurization profile is applied in the reactor leading to a cooling

profile. There is no need to heat the reactor.

21.3.3 Chemical Composition

The modification of the solvent composition to crystallize low-molecular-weight com-

pounds is quite common in pharmaceutical processing, as it can often rapidly create

higher supersaturation compared to cooling or evaporation. The more general term is

antisolvent crystallization; the principle is dissolving the API in a good solvent (in which

solubility is high) and adding an antisolvent (in which the API is sparingly soluble). The

inverse procedure common in producing pharmaceuticals and fine organic chemicals,

when the solution containing the solute is added to an antisolvent, is known as drowning

out. If an organic solvent is added to an aqueous solution containing a salt to be crys-

tallized, the process is termed salting out. Whatever the denominations, the funda-

mentals are the same [100]. Note that it is necessary to choose an antisolvent fully

miscible with the solvent already present in the medium. This condition is not sufficient

because an LLPS prior to the crystallization may occur (see Section 21.2.6 and

Figure 21.6(B)). This complicates the process, because a ternary medium composed of

two populations of droplets and particles is formed in a continuous liquid phase.

Crystals developed in this manner will likely have a poorly defined structure and be

agglomerated (Figure 21.6(B) and (C)). Four types of problems may result from such a

scenario: (1) a large drop of coalesced oil (dense phase) that will not disperse and can

harden into a gel, and gum or stick on walls, stirrer blades, and shafts; (2) severe mixing

problems due to the presence of these two dispersed phases; (3) occlusion of impurities

and solvent in the solid phase, in particular if crystals agglomerate due to the preferential

wettability of the oil on the particles; and (4) poorly defined structure not fully crystal-

line. However, this situation can, in some cases, be avoided by increasing the temper-

ature before adding the antisolvent in order to avoid the demixion or oiling-out zone in

the phase diagram before primary nucleation occurs.

The normal mode of addition is to add the antisolvent to the medium. Even though

the medium is partially diluted, the supersaturation region is quickly attained because

solubility declines quickly (Figure 21.11). Crystallization starts as soon as the nucleation

is kinetically active, when the concentration corresponding to the MZL is reached, the

addition flowrate being the operating parameter. If the demixion or oiling-out is avoided,

one major advantage is that the process is often carried out at the ambient temperature,

which is of paramount importance for heat-sensitive compounds. Moreover, the level of

supersaturation when primary nucleation occurs is reasonably low but higher than in

cooling or evaporative crystallization. If the API exhibits several polymorphs, a meta-

stable polymorph or a mix of polymorphs, including the stable one, could be obtained
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(abecarnil [101]). A reverse addition mode consists of adding the product solution to the

antisolvent. This favors very high supersaturation levels resulting in high nucleation

rates, sometimes with agglomeration. This inverted mode can be used to produce small

particles. Nevertheless, product purity can be compromised, because analog impurities

can also crystallize in such a low-solvating and highly supersaturated medium.

Moreover, the tendency for organic compounds to form a demixion with this reverse

mode is higher, because high supersaturation is generated locally. However, this can be a

useful way to screen the polymorphism of an API. Beckmann [101] on abecarnil API

evaluates the level of supersaturation using the two addition modes (normal and reverse)

and shows that the polymorph obtained differs depending on the addition mode. Using

a supercritical fluid (like compressed carbon dioxide) in reverse addition mode (known

in the literature as the gas antisolvent process) is also possible, leading to higher su-

persaturation and other polymorphs [101].

A mixture of solvents is sometimes used, producing a co-solubilizing effect that en-

ables the initial solute concentration in the medium to be increased [102].

Adding a solvent that induces a solubility decrease can lead to different cases. In the

example of Figure 21.12, the experiment starts from point at a concentration of 26 g/

100 of solvent (paracetamol in 70–30 weight% isopropanol–water mixtures) at 40 �C; with

the addition of water, the solute concentration decreases to point . In practice, two

cases are possible. First, as in the case of Figure 21.12, point is undersaturated at 40 �C;
therefore, to crystallize, the antisolvent addition has to be combined with cooling to

FIGURE 21.11 Solubility of terephthalic acid (TA)
in dimethyl sulfoxide (DMSO)–water mixture at
25 �C. After Ref. [99].
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T< 30 �C. Second, after the antisolvent addition, the solution is supersaturated and

crystallization starts.

21.3.4 Chemical Reaction

When API supersaturation is generated by a chemical reaction, the operation is termed

reactive crystallization. This operation is also known as precipitation. The reaction is

between two complex organic compounds mixed under stirring. The product of the

reaction can exhibit a solubility several orders of magnitude lower than that of the

reactants, leading to very high supersaturation, higher than that generated by anti-

solvent crystallization. The chemical reaction is generally fast, involving rapid mixing of

the reactants. Macro- and micromixing are vital to this process [100]. This method is

chosen in the fine chemicals industry to create fine particles for a wide variety of ap-

plications, including photographic chemicals, dyes, and printing inks. API molecules

often have basic or acidic functions, their solubilities significantly changing as a

function of pH in protic mediums. Hence, supersaturation can be achieved by varying

pH. In aqueous medium, it is the neutral molecular form (also called free acid or free

base) that is less soluble and is crystallized by neutralizing the salt form. Conversely, in

organic medium, the neutral molecular form is much more soluble, and crystallization

occurs provided salt is formed. An API can first be isolated in a solid state in a

FIGURE 21.12 Solubility of paracetamol in isopropanol–water mixture. Reprinted with permission from Hojjati and
Rohani [103]. Copyright 2006 American Chemical Society.
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chemically neutral form in order to purify it, and subsequently dissolved and precipi-

tated in an organic solvent as a salt for biopharmaceutical applications. Such a strategy

requires a multidisciplinary approach involving chemists, chemical engineers, and

pharmacists [5]. The final CSD is determined by the balance between primary nucle-

ation, growth, and agglomeration rates.

21.3.5 Co-crystallization

The co-crystallization method may appear to be a recent development, but, as Childs

and Zaworotko [104] pointed out, it is actually an older method revived. Co-

crystallization makes it possible to generate a multicomponent crystal containing an

API when it is difficult to isolate a given API that cannot crystallize easily in its pure solid

phase, in solvate, or in its salt form. Moreover, co-crystals sometimes offer better

pharmaceutical properties [105] than pure API crystals. Finally, patenting co-crystal

phases of API is also a new way for pharmaceutical companies to acquire extra years

of patent protection for the drug substance beyond the expiry of the API molecule patent

[106]. Co-crystallization allows two or more molecular species to be bounded within one

crystallographic lattice without making or breaking covalent bonds, leading to a multi-

component crystal. The species interact by hydrogen bonding or other noncovalent

interactions rather than by ion pairing [107]. The co-crystals differ from a salt in that the

molecular species remain neutral. They also differ from solvate crystals in that both

components exhibit pure crystalline phases at room temperature.

Thus, the method consists in adding a molecular species (called a co-crystallizing

agent) to the crystallization medium in order to generate a molecular association be-

tween the API (the solute) and its co-crystallizing agent. The phase diagram changes

drastically, and several regions appear in which only the co-crystal is the stable phase.

Figure 21.13 is a broad view in the orthogonal axis of the phase diagram of carbamaz-

epine (CBZ) and nicotinamide (NCT, the co-crystallizing agent) in isothermal condition

in ethanol. It shows the solubility curves of the CBZ–NCT co-crystal, and of the mono-

component crystals of CBZ and NCT at 25 �C [108,109]. The easiest procedure is to add

crystals of this co-crystallizing agent to the solution containing the solute. The con-

centration of the molecular association rises along the bisecting line (arrow in

Figure 21.13) as these crystals dissolve until a supersaturated region is reached for the

co-crystals, which nucleate and grow. Note that the choice of solvent is critical [17].

Although there is no chemical reaction, this method is conceptually close to precipita-

tion, because it is the addition of a foreign species, which triggers crystallization.

Generally, the solubility product of co-crystals is much higher than that of ionic com-

pounds or salts, with the result that they are moderately soluble and crystallization is

more progressive, without the problem of mixing reactants often encountered in pre-

cipitation. Another advantage of this method is that it is possible to increase the yield

either by adjusting the amount of co-crystallizing agent introduced in the medium

[14,109] or by finishing the operation with a classic cooling crystallization (if the
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solubility product declines with temperature). The drawback to be underlined is that the

API or the co-crystallizing agent may also simultaneously crystallize in their pure form as

metastable solids. This is due to the fact that the kinetic pathway crosses a region where

a nondesired solid phase may also nucleate [108]. Moreover, one solid phase can favor

the crystallization of another phase by heterogeneous nucleation because these phases

can exhibit an epitaxial relationship [108]. We recommend focusing the operation in the

region of the phase diagram in which only the co-crystal phase appears, with the other

solid phases remaining soluble. This zone is called the safe operating region. For co-

crystallization in isothermal mode, this corresponds to region 4d in the phase diagram

(Figure 21.13). When the operation is carried out in polythermal mode, this region is

narrower [109,110]. If a foreign solid phase pollutes the solid phase, a reprocessing

treatment can be set up by triggering an SMPT by the addition of one of the co-crystal

components [109,111].

If the API is a protein, things are more complex, because almost all the parameters

listed above can interact on the phase diagram of this particular class of (bio)

chemical compound. Nevertheless, the crystallization methods are no different from

those used on small molecules [112], and these are treated in Chapter 19, “Protein

crystal growth.”

FIGURE 21.13 Phase diagram of carbamazepine (CBZ)–nicotinamide (NCT) system in ethanol at 25 �C. Dashed lines
are CBZ (horizontal) and NCT (vertical) solubility curves; solid line is CBZ–NCT co-crystal solubility curve. Reprinted
with permission from Gagniere et al. [14,109].
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21.4 Development of a Batch Crystallization Process
at the Laboratory Scale

21.4.1 Prerequisite

Generating intermediate or API crystals has three main objectives: (1) to obtain sufficient

chemical product quality and purity, for instance removing traces of impurities resulting

from the chemical synthesis; (2) to generate the solid phase required and to ensure

uniformity from batch to batch (according to established specifications); and (3) to

obtain a physical product quality such that downstream operations can be performed

more easily: adequate filterability, low fine-particle concentrations, limited caking in

storage, and good powder flow. Obtaining good physical properties is a real challenge

that is still relevant today, whatever the chemical composition of the crystal (mono-

component for pure API; multicomponent for hydrate, solvate, salt, and co-crystal).

Crystallization operations can be carried out regularly in a process having several

synthetic steps in order to limit the number of different impurities and their total

quantity. In practice, this is always done after the last synthetic step in order to obtain a

crude product. A re-crystallization operation is often performed in order to ensure the

desired chemical and physical properties. The crystallization operations are defined as

follows:

• Dissolution of the crude product in a given solvent by raising temperature if

necessary.

• A possible decolorizing on activated charcoal followed by filtration to remove

foreign particles is then performed.

• Start of the operation by playing with one of the parameters described in Section

21.3. If the primary nucleation can be avoided, a seeding procedure is

recommended.

• Crystal growth starts as soon as nuclei or external seeds are present.

• Agglomeration of crystals may sometimes develop.

• Because impurities are concentrated in the liquid medium when cooling is per-

formed, all the crystallization kinetics (secondary nucleation, growth, and agglom-

eration) decrease with time. The solid production rate is high in the first hours of

crystallization, but the manufacturer must wait a few hours, sometimes with a final

isothermal plateau, in order to let the medium reach equilibrium, thus obtaining

the desired yield.

21.4.2 Screening of Crystallization Conditions and Phases

This first step needs to be done as early as possible, in order to guide the practitioner,

chemist, or process engineer in selecting the phase to be developed and the crystalli-

zation methods. The first step is an efficient screening of all the possible solid phases

(including polymorphs, solvates and hydrates, salts, and co-crystals). This step can be
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carried out on a small amount of API, using experimental techniques with or without

solvent, sometimes in a way far removed from the final operating conditions. These

screening strategies are presented in recent reviews and textbooks [5,6,8].

The second step requires the construction of the thermodynamic phase diagram. The

solid phase that will be developed is chosen based on stability, end use, and bioavail-

ability. In terms of process development, it is preferable to select a stable phase rather

than a metastable phase. The relative stability of the solid phases in solution that may be

encountered in the process sometimes needs to be determined, because the appearance

of another phase will alter the crystalline purity of the final solid.

21.4.3 Determination of Operating Conditions

To control a batch operation, the essential parameters to consider are solvent selection,

seeding strategy, cooling rate, evaporation rate, or addition flowrate, depending on the

crystallization method or process. Mixing methods also need to be taken into account,

particularly in the case of precipitation.

21.4.3.1 Solvent Selection
The selection of the solvent for a given crystallization is not always easy. In many cases,

the solvent may already have been selected from the upstream operations, because a

solvent used in a synthetic step or a liquid purification step (i.e., liquid extraction) may

be used. From a process point of view, there are three main points to consider when a

solvent is chosen:

• The solute to be crystallized should be readily soluble in the solvent. Section 21.2.1

in this chapter explains how to choose a solvent able to dissolve the API. Mullin

[12] defined as solvent power the mass of solute that can be dissolved by a mass of

solvent at one specified temperature. This point affects crystallizer volume and

crystallization yield.

• The temperature (or other process parameter) dependence of the solubility is the

second point to consider, because it has a tremendous impact on crystal yield.

• There are many factors to take into account in choosing the solvent, such as its

toxicity and hazard (the list of allowed solvents is becoming shorter and shorter), its

chemical stability with time for all foreseeable operating conditions and absence of

reaction with any of the crystallizer materials or with the solute, its viscosity (moder-

ate viscosity may reduce solute diffusion in solution and hence crystal growth rate),

its impact on crystal habit (if possible, choose a solvent that promotes an equant

habit), its ease of recovery in the process by mechanical and thermal treatments,

and the level of residual solvent in the dry product as well as its cost.

21.4.3.2 Seeding Strategy
Seeding techniques are applied for batch crystallization in order to control the primary

generation of solids during the initial stage of the run. During this period, there are very
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few particles in suspension present on which the solute can nucleate. This is particularly

frequent with APIs, which tend to be difficult to nucleate, and/or when homolog im-

purities from the synthetic steps are present in solution in sufficient quantities to pre-

vent the formation of nuclei. Thus, high supersaturation is often reached, followed by an

excessive uncontrolled primary nucleation producing very fine particles. This can also

lead to incrustation and/or equipment damage. There are also some systems that are

characterized by a random primary nucleation. For all these reasons, it really makes

sense to control the nucleation process in order to avoid significant batch-to-batch

variations [113]. Another reason is to control the solid phase by seeding with the

desired phase [8,114].

Five points are critical to successful seeding:

• Seed quality: dry seed is very often used in industry, for practical reasons.

However, seed particles may float on the liquid if the wettability of the solid is

poor and if some air bubbles remain around the particles. Conversely, wet seed is

in equilibrium with the solvent and is immediately reactive upon introduction in

the solution. Wet seed can be produced at laboratory scale by mixing dry particles

from a previous batch in a solvent already saturated or slightly undersaturated in

order to dissolve fine particles stuck on the surface and/or to desorb impurities so

as to prepare or activate the seed surface for growth and secondary nucleation [27].

In industry, seeds can either be prepared specifically in a batch or a small amount

of slurry can be recycled from the previous batch.

• Seed surface area and seed quantity: if the seed area is too small, secondary nucle-

ation and growth will be insufficient to consume the supersaturation and the MZL

will be reached, resulting in spontaneous nucleation. The final CSD obtained is

broad, leading to poor filterability. In practice, it is the seed quantity rather than

the seed surface area that is determined. The quantity varies from 0.5% weight up

to 5% weight of the total final product.

• Seed CSD and mean size: we recommend choosing calibrated particles in order to

control the seed area. Nevertheless, for practical reasons, bulk particles with a

broad CSD are often used, and it is mainly the smallest particles that are active in

the seeding process, representing the largest part of the surface area. An alternative

is to retrieve a small part of the slurry coming from a previous batch, wet mill it to

generate more active seeds, and then use it as wet seeds.

• Seeding point: seeding at low supersaturation necessitates introducing the seeds

close to the solubility curve. The risk of triggering a surface secondary nucleation

during the seeding is almost negligible, but the quantity of seeds must be substan-

tial in order to obtain the growth of the particles. Sometimes, the seeds start

growing only if higher supersaturation is generated [115]. Seeding at higher super-

saturation, quite close to the MZL, induces a burst of secondary nucleation, quite

often via a surface mechanism. The number of final particles is then much higher

than the number of seed particles, and the final particles are smaller [27]. The
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standard recommendation is to seed at 40% of the maximum subcooling meta-

stable zone width [100].

• Cooling profile (after seeding): the most frequent recommendation is to maintain

an isothermal plateau of 1 h at least, in order to start the growth of the seed.

Consequently, supersaturation decreases and can reach the equilibrium. Slow

cooling is then applied and is progressively increased in order to limit the opera-

tion time.

All these points were discussed by Mersmann and Rennie [28] for inorganic com-

pounds and Kohl et al. [116,117] for b-cyclodextrin in water. Note that soluble impurities

in solution may interact on seeding, by modifying the solubility level and by a possible

poisoning of the seed surface, limiting seed growth. This is why it is necessary to test the

seeding procedure on industrial solutions if the study was primarily carried out in pure

medium.

21.4.3.3 Cooling Strategy
Cooling is the main operating parameter commonly used since it is easily controlled in a

batch process. Let us consider a classic situation where a stirred reactor is cooled via a

coolant circulating in a jacket. The difference between the external (coolant) and internal

(slurry) temperatures is also limited in order to avoid fouling on the vessel walls. The

initial hot solution is undersaturated. The cooling profile is critical in several ways

because it strongly influences the supersaturation pathway in the phase diagram.

• The position of the MZL in the phase diagram depends on the cooling rate and the

crystallizer volume and geometry, due to its kinetic nature. Fast cooling shifts the

MZL to a higher supersaturation zone [99]. Consequently, the primary nucleation

rate may be dramatically more intense, leading to a smaller final CSD. This is why

we recommend starting an unseeded crystallization with a moderate cooling rate

(from a few to 10 �C/h), and the value of the cooling rate needs to be determined

according to the observed nucleation temperature.

• After primary nucleation or seeding, there are two possibilities: (1) a slow cooling

rate allows the crystals to consume the solute and then to consume the supersatu-

ration. The desupersaturation rate is higher than the cooling rate and the solute

concentration pathway tends to approach the solubility curve (pathway ① in

Figure 21.14). Surface secondary nucleation vanishes quickly under a supersatura-

tion threshold, but contact secondary nucleation is still present and can produce

significant quantities of crystal fragments over time. Note that impurities in solu-

tion can hinder the growth rate quite early in the operation, when a low supersatu-

ration level is reached. Thus, concentration no longer decreases and

supersaturation increases again due to the cooling rate, with the risk of an un-

wanted nucleation [118]. (2) With a fast cooling rate, supersaturation continues to

increase because solute consumption by growth is not great enough to balance the

cooling rate. The solute concentration pathway tends to the MZL until a second
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burst of nuclei occurs spontaneously (pathway ② in Figure 21.14). The return to

equilibrium may be quick, but the CSD is bimodal (i.e., the population consists of

large particles from the first primary nucleation or seeding and of a large quantity

of finer particles). This is why the recommendation after seeding is always to start

with a slow cooling rate (see the previous section about seeding strategy) and to

use on-line sensors to monitor and control solution concentration throughout the

crystallization [113].

Whatever the situation (seeded or unseeded batch), it is always recommended to start

with a slow cooling rate as soon as particles are present in suspension and then pro-

gressively increase it as the total crystalline surface area increases. Wey and Karpinsky

[98] provide a good discussion of the current state of the art in this area for industrial

practitioners.

21.4.3.4 Crystallizer Hydrodynamics (Mixing)
Mixing is a general term that can be broken down into two processes depending on the

scale of observation. Macromixing refers to the blending of a suspension in the crys-

tallizer with an antisolvent or a reactant when a semibatch operation is performed, and

to the input flowrate.

Macromixing occurs by convection generated by the stirring system and leads to

spatial uniformity of the average concentration of the solute (hence the average super-

saturation) in solution, and of the solid in the slurry. Macromixing is governed by stirring

intensity and affects all the mechanisms and kinetics of crystallization.

Micromixing is the mixing that occurs at molecular and near molecular scales. The

local value of solute concentration (hence local supersaturation) is determined by
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micromixing. Primary nucleation is the fastest of the crystallization mechanisms and the

main competitor with micromixing. Changing stirring speed, stirrer, or feedstream lo-

cations will modify crystallization mechanisms and kinetics [119]. It is obvious that

micromixing should only be considered if an intense primary nucleation rate occurs for a

significant time. This occurs with precipitation carried out in a semibatch mode.

How mixing parameters affect crystallization carried out in a mechanically stirred

vessel is treated thoroughly in detail in textbooks [119–122]. Here, we focus on five

recommendations:

• A turbulent flow regime should be ensured in the suspension (except when viscos-

ity is too high) because it eases the scale-up of the operation from the laboratory

to pilot or to plant.

• Sufficient bulk turnover needs to be achieved in the reactor through a high-flow

recirculation rate, in order to (1) promote sufficient heat transfer between the

vessel jacket and the slurry, which also minimizes possible fouling on the vessel

walls; (2) promote sufficient mass transfer of the solute from the solution to the

crystallizing surface, which may counteract growth inhibition by impurities; (3)

avoid particle settling in the vessel bottom (it is not necessary to uniformly

disperse particles in the slurry); and (4) ensure sufficient dispersion of an anti-

solvent or a chemical reactant through good macromixing. Note the possible nega-

tive effects of overmixing, resulting in crystal breakage and microattrition and/or

surface nuclei detachment [123].

• The design of the crystallizer equipment plays a major role. Very often, crystalliza-

tion is carried out in a multipurpose plant, and the most appropriate reactor for a

crystallization operation needs to be chosen. The use of baffles even in a glass-

lined vessel is essential. The stirrer must ensure a sufficient recirculation rate with

reduced shear. This is achieved by using an axial flow stirrer, like a three-flat-blade

propeller. A 45� pitched blade turbine (PBT45) could be an alternative because this

stirrer is quite common due to its versatility for chemical reactions, liquid extrac-

tion, and crystallization operations. It offers a suitable balance between shear and

pumping flow. A common arrangement involves adding a secondary radial flow

impeller smaller in diameter on the stirring shaft near the bottom of the tank in or-

der to avoid local incrustation and to ensure mixing until the slurry discharge is

complete.

• The stirring rate is a practical parameter to be tuned at laboratory scale. Ensuring

particle off-bottom suspension is often considered. The stirring speed is then

calculated according to the well-known correlation of Zwietering [124]. Some au-

thors prefer to choose a value of 0.3 W/kg of the specific power input (also denoted

as the average energy dissipation rate in computational fluid dynamics). Generally,

this last criterion is kept constant when scaling up is considered.

• The feed addition point needs to be determined if the primary nucleation interacts

with micromixing. A simple test proposed by Klein and David [119] is to perform
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trials at constant stirring speed, with different addition points located in zones of

differing turbulence. If no significant modification of CSD is observed, then there is

no influence of micromixing for this stirring rate, and the feed point location no

longer needs to be taken into account. Otherwise, micromixing plays a role, and

the optimum feed addition point must be located in the maximum turbulence

zone characterized by the shortest mixing time. This necessitates using a subsur-

face addition line. For a downpumping PBT45, this point is just above the stirrer so

that the input flow is rapidly mixed. For a radial flow turbine (flat blade or Rushton

type), it would be directed into the discharge zone.

In practice, laboratory runs allow the effects of these parameters to be investigated. It

is essential to use a scaled-down stirred vessel designed to mimic the plant crystallizer

hydrodynamics as closely as possible.

21.5 Conclusion
This chapter introduces the fundamental physical concepts in pharmaceutical crystal-

lization: solubility, supersaturation, nucleation, growth, phase transformation, and

ripening of crystals. Above all, we believe that a thorough knowledge of the phase

diagram is vital to the selection of the starting position and pathway for any crystalli-

zation experiment.
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[13] Söhnel O, Garside J. Precipitation. Oxford: Butterworth-Heinemann; 1992.

[14] Gagnière E, Mangin D, Puel F, Rivoire A, Monnier O, Garcia E, et al. Formation of co-crystals:
kinetic and thermodynamic aspects. J Cryst Growth 2009;311:2689–95.

[15] Rodrı́guez-Hornedo N, Nehm SJ, Seefeldt KF, Pagán-Torres Y, Falkiewicz CJ. Reaction crystalli-
zation of pharmaceutical molecular complexes. Mol Pharm 2006;3:362–7.

[16] Desiraju GR. Pharmaceutical salts and co-crystals: retrospect and prospects. In: Wouters J,
Quere L, editors. Pharmaceutical salts and co-crystals. Cambridge: RSC; 2011. p. 1–28.

[17] Leyssens T, Springuel G, Montis R, Candoni N, Veesler S. Importance of solvent selection for
stoichiometrically diverse cocrystal systems: caffeine/maleic acid 1:1 and 2:1 cocrystals. Cryst
Growth Des 2012;12:1520–30.

[18] Dixit NM, Kulkarni AM, Zukoski CF. Comparison of experimental estimates and model predictions
of protein crystal nucleation rates. Colloid Surf A Physicochem Eng Aspect 2001;190:47–60.

[19] Knezic D, Zaccaro J, Myerson AS. Nucleation induction time in levitated droplets. J Phys Chem B
2004;108:10672–7.

[20] Ten Wolde PR, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctua-
tions. Science 1997;277:1975–8.

[21] Erdemir D, Lee AY, Myerson AS. Nucleation of crystals from solution: classical and two-step
models. Acc Chem Res 2009;42:621–9.

[22] Zettlemoyer AC. Nucleation. New York: Marcel Dekker; 1969.

[23] Abraham FF. Homogeneous nucleation theory. Amsterdam: Academic Press; 1974.

[24] Toschev S. Homogeneous nucleation. In: Hartman P, editor. Crystal growth: an introduction.
Amsterdam: North Holland; 1973. p. 1–49.

[25] Kashchiev D. Nucleation: basic theory with applications. Oxford: Butterworth-Heinemann; 2000.

[26] Kashchiev D, Verdoes D, Van Rosmalen GM. Induction time and metastability limit in new phase
formation. J Cryst Growth 1991;110:373–80.

[27] Oullion M, Puel F, Févotte G, Righini S, Carvin P. Industrial batch crystallization of a plate-like
organic product. In situ monitoring and 2D-CSD modelling. Part 1: experimental study. Chem
Eng Sci 2007;62:820–32.

[28] Mersmann A. Crystallization technology handbook. 2nd ed. New York: Marcel Dekker; 2001.

[29] Oullion M, Puel F, Févotte G, Righini S, Carvin P. Industrial batch crystallization of a plate-like
organic product. In situ monitoring and 2D-CSD modelling. Part 2: kinetic modelling and iden-
tification. Chem Eng Sci 2007;62:833–45.

[30] Nielsen AE. Electrolyte crystal growth mechanics. J Cryst Growth 1984;67:289–310.

[31] Gahn C, Mersmann A. Theoretical prediction and experimental determination of attrition rates.
Chem Eng Res Des 1997;75:125–31.

[32] Garside J. Industrial crystallization from solution. Chem Eng Sci 1985;40:3–26.

[33] Astier JP, Veesler S. Using temperature to crystallize proteins: a mini-review. Cryst Growth Des
2008;8:4215–9.

[34] Burton WK, Cabrera N, Frank FC. The growth of crystals and the equilibrium structure of their
surfaces. Phil Trans R Soc 1951;243:299–358.

944 HANDBOOK OF CRYSTAL GROWTH

http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0060
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0060
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0060
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0065
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0070
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0075
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0075
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0080
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0080
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0085
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0085
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0090
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0090
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0090
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0095
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0095
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0105
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0105
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0110
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0110
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0115
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0120
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0125
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0125
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0130
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0135
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0135
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0145
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0150
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0150
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0150
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0155
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0160
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0160
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0165
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0170
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0170
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0175
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0175


[35] Gilmer GH, Ghez R, Cabrera N. An analysis of combined surface and volume diffusion processes in
crystal growth. J Cryst Growth 1971;8:79–93.

[36] Chernov AA. Modern crystallography III, crystal growth. Berlin Heidelberg: Springer-Verlag; 1984.

[37] Nielsen AE, Toft JM. Electrolyte crystal growth kinetics. J Cryst Growth 1984;67:278–88.

[38] Rosenberger F. Fundamentals of crystal growth I. Berlin: Springer-Verlag; 1979.

[39] Garcia-Ruiz JM, Novella ML, Moreno R, Gavira JA. Agarose as crystallization media for proteins: I:
transport processes. J Cryst Growth 2001;232:165–72.

[40] Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 2005;77:
977.

[41] Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, et al. Nanoliter microfluidic hybrid method for
simultaneous screening and optimization validated with crystallization of membrane proteins.
Proc Natl Acad Sci 2006;103:19243–8.

[42] Shim J-U, Cristobal G, Link DR, Thorsen T, Fraden S. Using microfluidics to decouple nucleation
and growth of protein. Cryst Growth Des 2007;7:2192–4.

[43] Leng J, Salmon JB. Microfluidic crystallization. Lab Chip 2009;9:24–34.

[44] Ildefonso M, Candoni N, Veesler S. A cheap, easy microfluidic crystallization device ensuring
universal solvent compatibility. Org Process Res Dev 2012;16:556–60.

[45] Weissbuch I, Leiserowitz L, Lahav M. “Tailor-made additives” and impurities. In: Mersmann A,
editor. Crystallization technology handbook. New York: Marcel Dekker; 1995. p. 401–58.

[46] Black SN, Davey RJ, Halcrow M. The kinetics of crystal growth in the presence of tailor-made
additives. J Cryst Growth 1986;79:765–74.

[47] Abergel C, Nesa MP, Fontecilla-Camps JC. The effect of protein contaminants on the crystalliza-
tion of turkey egg white lysozyme. J Cryst Growth 1991;110:11–9.

[48] Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, et al. Ritonavir: an extraordinary example
of conformational polymorphism. Pharm Res 2001;18:859–66.

[49] Pillay V, Fassihi R. Evaluation and comparison of dissolution data derived from different modified
release dosage forms: an alternative method. J Control Release 1998;55:45–55.

[50] Cammarn SR, Sakr A. Predicting dissolution via hydrodynamics: salicylic acid tablets in flow
through cell dissolution. Int J Pharm 2000;201:199–209.

[51] Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001;13:
123–33.

[52] Zhang J, Nancollas GH. Unexpected pH dependence of dissolution kinetics of dicalcium phos-
phate dihydrate. J Phys Chem 1994;98:1689–94.

[53] Amathieu L, Boistelle R. Crystallization kinetics of gypsum from dense suspension of hemihydrate
in water. J Cryst Growth 1988;88:183–92.

[54] Garcia E, Hoff C, Veesler S. Dissolution and phase transition of pharmaceutical compounds. J Cryst
Growth 2002;237-239:2233–9.

[55] Mangin D, Garcia E, Gerard S, Hoff C, Klein JP, Veesler S. Modeling of the dissolution of a phar-
maceutical compound. J Cryst Growth 2006;286:121–5.

[56] Bladgen N, Davey R. Polymorphs take shape. Chem Br 1999:44–7.

[57] Byrn SR. Solid state chemistry of drugs. New York: Academic Press; 1982.

[58] Haleblian JK. Characterization of habits and crystalline modification of solids and their pharma-
ceutical applications. J Pharm Sci 1975;64:1269–88.

Chapter 21 • Crystallization of Pharmaceutical Crystals 945

http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0180
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0180
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0185
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0190
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0195
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0200
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0200
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0205
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0205
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0210
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0210
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0210
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0215
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0215
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0220
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0225
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0225
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0230
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0230
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0235
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0235
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0240
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0240
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0245
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0245
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0250
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0250
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0255
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0255
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0260
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0260
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0265
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0265
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0270
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0270
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0275
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0275
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0280
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0280
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0285
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0290
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0295
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0295
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[76] Grouazel S, Perez J, Astier J-P, Bonneté F, Veesler S. BPTI liquid–liquid phase separation monitored
by light and small angle X-ray scattering. Acta Cryst 2002;D58:1560–3.

[77] Vivares D, Belloni L, Tardieu A, Bonnete F. Catching the PEG-induced attractive interaction
between proteins. Eur Phys J E 2002;9:15–25.

[78] Lafferrere L, Hoff C, Veesler S. Polymorphism and liquid–liquid demixing in supersaturated drug
solution. Eng Life Sci 2003;3:127–31.

[79] Bonnett PE, Carpenter KJ, Dawson S, Davey RJ. Solution crystallisation via a submerged liquid–liquid
phase boundary: oiling out. Chem Commun 2003:698–9.

[80] Lafferrere L, Hoff C, Veesler S. Study of liquid–liquid demixing from drug solution. J Cryst Growth
2004;269:550–7.

946 HANDBOOK OF CRYSTAL GROWTH

http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0300
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0300
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0305
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0305
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0310
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0310
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0315
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0315
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0320
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0320
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0325
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0325
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0330
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0330
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0335
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0340
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0340
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0340
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0345
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0345
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0345
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0350
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0350
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0355
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0355
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0360
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0360
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0365
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0365
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0370
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0370
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0375
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0375
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0380
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0380
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0385
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0385
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0390
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0390
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0395
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0395
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0400
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0400
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0405
http://refhub.elsevier.com/B978-0-444-56369-9.00021-6/ref0405


[81] Kiesow K, Tumakaka F, Sadowski G. Experimental investigation and prediction of oiling out during
crystallization process. J Cryst Growth 2008;310:4163–8.

[82] Sheikh AY, Pal AE. Crystallization in the vicinity of liquid–liquid phase separation boundary. In:
Ulrich MKAJ, editor. 16th international symposium on industrial crystallization. Dresden,
Germany: VDI Verlag GmbH; 2005. p. 659–70.

[83] Zhao H, Xie C, Xu Z, Wang Y, Bian L, Chen Z, et al. Solution crystallization of vanillin in the
presence of a liquid–liquid phase separation. Ind Eng Chem Res 2012;51:14646–52.

[84] Smith KW, Cain FW, Favre L, Talbot G. Liquid–liquid phase separation in acetone solutions of
palm olein: implications for solvent fractionation. Eur J Lipid Sci Technol 2007;109:350–8.

[85] Deneau E, Steele G. An in-line study of oiling out and crystallization. Org Process Res Dev 2005;9:
943–50.

[86] Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, et al.
Microscopic evidence for liquid–liquid separation in supersaturated CaCO3 solutions. Science
2013;341:885–9.

[87] Lafferrere L, Hoff C, Veesler S. In situ monitoring of the impact of liquid–liquid phase separation
on drug crystallization by seeding. Cryst Growth Des 2004;4:1175–80.

[88] Espitalier F, Biscans B, Laguerie C. Particle design part A: nucleation kinetics of ketoprofen. Chem
Eng J 1997;68:95–102.

[89] Sano A, Kuriki T, Kawashima Y, Takeuchi H, Niwa T. Particle design of tolbutamide by the
spherical crystallization technique. II. Factors causing polymorphism of tolbutamide spherical
agglomerates. Chem Pharm Bull 1989;37:2183–7.

[90] Espitalier F, Biscans B, Laguerie C. Particle design part B: batch quasi-emulsion process and
mechanism of grain formation of ketoprofen. Chem Eng J 1997;68:103–14.

[91] Gupta R, Mauri R, Shinnar R. Liquid–liquid extraction using the composition-induced phase
separation process. Ind Eng Chem Res 1996;35:2360–8.

[92] Maeda K, Nomura Y, Guzman LA, Hirota S. Crystallization of fatty acids using binodal regions of
two liquid phases. Chem Eng Sci 1998;53:1103–5.

[93] Veesler S, Revalor E, Bottini O, Hoff C. Crystallization in the presence of a liquid–liquid phase
separation. Org Process Res Dev 2006;10:841–5.

[94] Baronnet A. Ostwald ripening in solution; the case of calcite and mica. Estud Geol 1982;38:185–98.
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22.1 Introduction and Background
22.1.1 What Chirality is and how it Works in Molecules and Crystals

Chirality is a useful concept in physical and life sciences, especially when applied to a

molecular level. It derives from the Greek work cheir meaning “hand” because, like

hands, the molecules and objects in general are not superposable with their mirror

images [1]. The term chiral was coined by Lord Kelvin in his Baltimore lectures (given in

1884 and 1893) [2], although its usage remained ignored for nearly one century, being

rediscovered by the mid-1960s to define a geometrical model devoid of certain symmetry

elements, with the exception of an axis of rotation.

Chirality manifests itself in both molecules and crystals, and its origin lies clearly in

molecular architecture. The analogy between crystals and molecules in this context was

first caught by Pasteur (vide infra, cf. Section 22.1.4), who realized that the nonidentity of

the crystal (or molecule) with its mirror image was due to what he called dissymmetry

(we would now say chirality). Although Pasteur himself conjectured on different struc-

tural arrangements, including tetrahedra, he was unaware of the tetrahedral asymmetric

carbon postulated by van’t Hoff and Le Bel in 1874. The two forms of a chiral molecule

are called enantiomers and have identical physical and chemical properties, although

they will rotate the plane of polarized light in opposite senses (i.e., optical activity). Two

enantiomers will usually differ in reactivity in the presence of other chiral molecules, a

fact of enormous significance in biology and drug discovery (Section 22.1.5).

Chiral and related words (e.g., homochiral, heterochiral) have engendered both

confusion and ambiguity in the literature and, unfortunately, improper usage is not

unusual. A brief, yet convenient, discussion illustrates the points. A single chiral mole-

cule will either be right-handed or left-handed. The term chiral is insufficient, however,

when applied to a compound or sample (i.e., a macroscopic collection of molecules),

because it does not imply that we are dealing with molecules having the same sense of

chirality. Introduction of homochiral or heterochiral labels are appropriate to this end.

Moreover, homochiral means that the sample is made up of molecules with the same

sense of chirality or handedness, which does not necessarily imply the existence of a
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single enantiomer (L-alanine and L-valine are thus homochiral). Clearly, one needs to

know if the sample in question is actually racemic (made up of equal numbers of

molecules of opposite chirality within the limits of technical detection), or nonracemic,

in which the chiral sample contains a certain excess of the major enantiomer [3]. Finally,

as one would have expected for a term restricted to molecules and objects, chiral and

chirality should not be employed for dynamic transformations (e.g., chiral synthesis,

chiral separation, chiral amplification and so on) despite their widespread use [4]. The

situation may even be more complex in crystals because a racemic crystal is not

equivalent to a racemic compound in terms of molecular composition (cf. Section

22.1.2) [5]. In addition, the distinctive nature of stereoisomers in the solid state is crucial

to understand the separation and resolution of enantiomers by crystallization (see

Section 22.2) [6].

Chirality can be recognized at different length scales, from subatomic particles to

atoms and molecules, and beyond, which includes of course crystals, polymers, and

supramolecular assemblies. With the exception of elementary particles, whose inherent

chirality accounts for parity violation at a cosmic scale, spontaneous resolution can

actually be observed through different dimensions: enantiomorphous solids, mono-

layers, liquid crystals, and large noncovalent aggregates [7].

The most common structural motif encountered in chiral molecules is the chiral

center (or asymmetric center in old literature), usually a carbon atom surrounded by

four different substituents (Cabcd). The presence of a single and configurationally stable

chiral center is a sufficient condition (although not a necessary one) for the existence of

chirality, i.e., the existence of a molecule that is not superposable with its mirror image

like the enantiomers of the proteinogenic amino acid alanine shown in Figure 22.1.

It is often customary to allude to stereogenic center instead of chiral center, but once

again, here is the stereochemical terminology to worry us. In their highly cited 1984

paper, Mislow and Siegel pointed out the misuse of this term and introduced the term

chirotopic [8]. Since interchange of two ligands at a stereogenic center leads to a ste-

reoisomer, stereogenic centers may be or may not be chiral (consider, for instance,

achiral carbons in diastereomeric alkenes or cycloalkanes). However, all chiral centers

are stereogenic. For the sake of clarity, the term chiral center (a carbon atom in

FIGURE 22.1 The two mirror-image enantiomers of the amino acid alanine behave as a pair of left- and right-
hand gloves.

Chapter 22 • Crystallization of Chiral Molecules 953



particular) is strongly recommended in line with the concept embedded in van’t Hoff’s

asymmetric carbon.

Chirality in molecules devoid of chiral centers occurs in both natural and synthetic

substances, which have enormous importance as ligands in asymmetric catalysis, and

some exhibit biological activity (e.g., the antifertility agent gossypol, Figure 22.2).

Molecules belonging to this class of stereoisomers include biphenyls, allenes, spiranes,

helicenes, cyclophanes, and molecular propellers. Unlike molecules possessing chiral

centers (central chirality), the above examples possess chiral axes (axial chirality) and

can also be viewed as helices, where chirality is due to molecular overcrowding. The

existence of symmetry planes gives rise to achiral structures (meso), which lack obviously

optical activity.

22.1.2 Chirality in Crystals and Structure Determination

Things can ostensibly be more complex when one moves to the crystal territory (as

mentioned above for racemic crystals), because chiral structures require the assistance

of unambiguous elucidation methods such as X-ray diffractometry. It is well established

that molecules can pack into 230 space groups, which are also divided into centro-

symmetric and noncentrosymmetric groups [9]. Among the noncentrosymmetric ones,

there are 65 space groups lacking both reflection and inversion symmetry, and they are

the only ones in which enantiopure chiral molecules can crystallize. If the crystal space

group is noncentrosymmetric, then the sample will be a conglomerate (although rare

exceptions do exist), i.e., a racemic mixture of the two enantiomers with each crystal

being made up of a single enantiomer (homochiral molecules). Under such circum-

stances, resolution of enantiomer mixtures may be possible without the assistance of

other chiral substances. An in-depth discussion is provided in Section 22.2, although

structure–chirality relationships are introduced herein for clarity.

Those 65 space groups include 11 pairs of enantiomorphous crystal classes. Such

space groups are inherently chiral, and when one enantiomer crystallizes in one of such

enantiomorphous groups, the opposite enantiomer will do it the opposite space group of

the pair (Section 22.2.2).

FIGURE 22.2 Molecular structures of compounds displaying axial chirality: (A) gossypol (chirality not shown),
(B) pentahelicene [(P)-(þ)-isomer], and (C) Fecht acid [(P)- or (S)-configured].
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Counterintuitively, achiral molecules can crystallize in chiral space groups, a fact

recognized more than 150 years ago and observed since in numerous inorganic and

organic compounds, which are not resolvable. Typical examples include minerals such

as a-quartz (P3121) or cinnabar (a-HgS, P3121), and a wide range of achiral molecules,

e.g., NaClO3 (P213), SrSi2 (P4132), hydrogen peroxide (H2O2, P41212), benzil (P312),

succinic anhydride (P212121), glycine (P21, P31) or tri-o-thymotide (P3121). The inherent

handedness in the solid state arises from screw axes constructed with helicoidal or spiral

chains of achiral molecules. As noted above, a few rare cases of racemic compounds (i.e.,

substances existing as two enantiomers and hence potentially resolvable) also crystallize

as chiral crystals (e.g., o-tyrosine, erythro-phenylglyceric acid or camphor oxime, all in

P21 space group).

A chiral solid is by definition optically active, and rotations can be estimated in the

same way as the specific rotation in solution. Enantiomers are of course optically active

molecules, and their crystals will exhibit optical rotations too; rotations can actually be

greater than those observed for the pure enantiomer in solution [9]. The probability of

accommodating pure enantiomers in a chiral space group varies considerably, and two

space groups (P21, monoclinic; P212121, orthorhombic) represent the favored arrange-

ments. Moreover, the probability of finding hemihedral faces (rare but instrumental in

Pasteur’s discovery) is moderate to good in P21 and rather poor in P212121. The corre-

lation between crystal structures and molecular chirality can be summarized through the

flow chart shown in Figure 22.3.

The chirality sense of a molecule is denoted by its absolute configuration, which can

be ascertained by different tools, notably diffraction and chiroptical methods. In a chiral

crystal, however, the chirality sense is specified by what we call absolute structure, again

an elusive term. Determination of structure requires the systematic use of X-ray and

neutron diffraction analyses, and crystals are studied as molecular systems in controlled

orientations. The issue lies beyond the scope of this article, although an in-depth, yet

understandable, discussion has been provided by Flack [10]. Investigations on single

FIGURE 22.3 Molecular chirality versus chiral and achiral solids.
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crystals by X-ray diffraction measurements benefit from the so-called Flack parameter,

which is the molar fraction (x) in equation C ¼ (1�x)A þ x�A, where C represents a crystal

treated as a mixture of an oriented structure A and its inverted structure �A [11]. For

noncentrosymmetric and achiral crystal structures, x denotes the proportions of the

oriented (A) and oriented-inverted (�A) domain structures, which are related by rotation.

For chiral structures, x describes the ratio of the two enantiomorphs in the sample. The

Flack parameter thus provides a way to detect the two different hands of the chiral

lattice, as well as the existence of racemic twinning. The parameter must in any case be

treated as significant (larger than statistical error). A small number would point to a

correct handedness by pure chance. Conversely, if x approaches to 1, one should refine

the inverted structure, which will be the correct chirality sense. Flack has also wondered

about crystal structures generated from nonracemic enantiomeric mixtures, which have

presumably been reported, although reliable data are difficult to obtain from a direct

search on the Cambridge Structural Database (CSD). Symmetry arguments tell us that

only chiral structures should be permitted [10].

There are certainly some limitations regarding the application of diffraction methods

(e.g., equivalence of enantiomorphous pairs in some circumstances) [12] and the Flack

parameter invariably exhibits a standard uncertainty [13,14], although further protocols

and improvements may overcome such hurdles [15]. Comparisons of X-ray crystal

structures with ab initio-calculated structures appear to be crucial for accurate

determinations.

22.1.3 Chirality Measurements

It has been reasonably argued that the number of chiral crystals in nonbiological sam-

ples could be higher than thought, a fact usually overlooked [16]. The unit cell and

therefore the whole crystal may be chiral by virtue of chiral clusters of individual mol-

ecules (which may actually be interconnected by hydrogen bonds) or based on chiral

conformers frozen in the unit cell. While the individual molecule retains its achirality,

such clusters can adopt different symmetries.

Chirality measurements, estimated by different algorithms [17–20], can be a useful

diagnostic tool as well for assessing the degree of chirality of a crystal. Among them, the

continuous symmetry measures (CSM) formalism, developed by Avnir and associates,

deserves consideration [18,19]. In short, one searches for the minimal distance that the

atoms of a given molecule deviates from the nearest perfectly G-symmetric object. A

value of S(G) ¼ 0 denotes achirality (the desired G-symmetry) and the measure increases

as the object becomes more chiral. The CSM methodology is rather general and can be

applied to a wide range of chiral molecules for comparative purposes and quantitative

relationships. This of course includes chiral crystals and can be employed to determine

the degree of helicity or, alternatively, the degree of C2-symmetry as the C2 axis bisects

the helical axis. Interestingly, the helix of quartz reaches the maximal S(G) value after

one turn and a third. A straightforward application of CSM in such a case is also
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illustrated by chirality–temperature correlations [21], following the seminal observation

by Le Châtelier in the late nineteenth century that the optical rotation of quartz increases

with temperature; a phase transition occurs at 848 K. Figure 22.4 makes clear that an

increase in temperature is associated with an increase in the degree of chirality; in other

words, a decrease of S(C2) values as shown (the helical fragment �O(SiO3)4� becomes

closer to C2-symmetry) [21].

22.1.4 Crystal Growth and Hemihedrism: Revisiting Pasteur and Early
Stereochemistry

It should be unnecessary to underline the importance of Pasteur’s experiments with

tartrate crystals that led ultimately to the first example of spontaneous resolution. There

are comprehensive treatments on the history of stereochemistry and Pasteur himself,

although the reader is referred herein to a few authoritative and recent reviews, which

summarize well Pasteur’s achievements in context [22,23]. It suffices to highlight again

how instrumental the existence of hemihedrism in tartrate crystals was to achieve their

manual enantioseparation. In the absence of hemihedral faces (such as h faces in

Figure 22.5), the enantiomorphism of the crystals cannot be detected. Hemihedrism was

a known morphological phenomenon before 1848. The French mineralogist Haüy

noticed as early as 1801 the existence of hemihedrism in quartz crystals and in 1822 the

British astronomer Herschel observed a relationship between the sense of optical rota-

tion and faces inclined in one direction.

FIGURE 22.4 Dependence of the degree of helicity (degree of C2-symmetry) of quartz tetrahedra [�O(SiO3)4�
helical fragment] on temperature. The Y axis denotes the optical rotation (OR) ratio. Reproduced with permission
from Ref. [21]. Copyright 2006 Elsevier Ltd.
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While these observations were confined to quartz, which exhibits optical activity in

the solid state only, Pasteur envisaged that, since tartrate salts showed optical activity in

solution as well, there should be a correlation between crystal’s handedness and mo-

lecular dissymmetry; i.e., molecules would thus bear a similar relationship of non-

superposable mirror images. Since hemihedrism is certainly rare and chirality in crystals

may be investigated by other methods, scientists have largely overlooked the relation-

ship between crystal habit (of interest to crystallographers) and molecular configuration

(relevant to chemists). In fact, assignments of absolute configuration linked to crystal

morphology took more than one century [24].

Pasteur’s notebooks contain remarkable pieces of work about other chiral substances

and observations on crystal growth, polymorphism, and twinning [23]. Based on a

previous synthesis of aspartic acid from a fumarate salt, Pasteur was the first in realizing

that while naturally occurring and synthetic aspartic acids had identical physico-

chemical properties, the synthetic sample had no optical activity. Although Pasteur’s

conclusions were inaccurate and confusing due in part to the poor quality of aspartic

acid crystals with respect to those of tartrate salts optically active aspartic acid crystal-

lized in a different crystal system from the synthetic sample, which is characteristic of a

racemic compound. Thus, the search for a universal dissymmetric force in nature

leading to optically active substances became a recurring idea in Pasteur’s working

hypotheses and dissertations.

By the mid-1850s, Pasteur recognized that chiral crystal structures may be generated

from enantiomerically pure compounds as well as by achiral molecules. Without clear-

cut knowledge of molecular structure, he concluded that for crystals formed from achiral

molecules, the chirality arose from the crystalline arrangement only and had nothing to

do with the corresponding molecular structure. Like in quartz, Pasteur was able to obtain

both right- and left-handed crystals of strontium diformate, an achiral compound, and

suggested using this substance for further studies, which were never published. Notably,

Pasteur mentioned sodium chlorate (NaClO3) for the first time in 1856 as a compound

FIGURE 22.5 Schematic representation of the sodium ammonium salts of (þ)- and (�)-tartaric acid crystals, which
are related as an object to its mirror image.
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having achiral ions with a chiral crystal structure, although he ignored the use of such

crystals in further investigations, harnessed by Kipping and Pope much later (1898; see

Section 22.3).

In the context of crystal growth, Pasteur performed seminal experiments on broken

and repaired crystals, mainly on malate salts, as collected in his notebooks, although

most results were not published [23]. He observed that a broken crystal grew on all faces;

however, growth of the broken section occurred faster than the rest, until the whole

crystal reached the original morphology. By measuring the rates of growth of crystal

faces, Pasteur concluded that such differential growth rates from aqueous solutions of

pure enantiomers were responsible for the disappearance of the minor faces, thereby

producing a chiral morphology. Regrowth of broken crystals showing achiral

morphology in aqueous solutions revealed the appearance of the minor faces showing

the chirality at the regrowth zone. However, the minor faces disappeared after full

regrowth.

Least-known studies continued after 1860 when Pasteur turned his attention to

microbiology rather than chemistry. In 1886, Italian chemist Arnaldo Piutti succeeded in

separating enantiomorphous crystals of asparagine (a nonessential amino acid). Since

L- and D-asparagine exhibit different taste (a fact noticed by Piutti), that separation not

only represents the second recorded example of spontaneous resolution, but also the

first finding of enantioselectivity at biological receptors [25].

While the study of optically active molecules and crystals is largely confined to

organic compounds, this by no means excludes inorganic substances, particularly metal

coordination compounds whose chirality was predicted by Alfred Werner (1866–1919),

the founder of this field [26–28]. Moreover, by 1890 Werner pointed out (in a joint paper

with Arthur Hantzsch) that a nitrogen atom should possess a tetrahedral geometry and

could then give rise to isomers in a similar fashion to carbon atoms.

Werner enrolled in the field of coordination chemistry fascinated, like other chemists,

by the curious reactivity and broad range of colored solutions shown by transition metal

complexes. He soon challenged the current structural descriptions (“the chain theory”)

and formulated arrangements where a central metal atom was surrounded by ligands

that could be replaced by other groups. He noticed clearly the existence of stereoiso-

mers, including nonsuperimposable mirror image structures. Werner realized that the

type of isomerism was different from that of organic compounds as there is no asym-

metric carbon. Surprisingly, however, it took more than one decade for the first sepa-

ration of enantiomers. In collaboration with his American student Victor King, Werner

succeeded in resolving [Co(en)2(NH3)Cl]Cl2 using chiral D-bromocamphorsulfonate.

While this key result was reported in 1913, it seems that the possibility of spontaneous

resolution had been neglected in Werner’s group.

Reinvestigations of past events often lead to new insights and prove how useful and

fascinating the marriage of history and chemistry can be. This is certainly the case in

[27]. Edith Humphrey (who died in 1977 at 102) was the first woman to earn a Ph.D.

degree under Werner’s guidance in 1901. She had obtained cis (chiral) and trans (achiral)
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isomers of bis(ethylenediamine)dinitro cobalt salts: [Co(en)2(NO2)2]X (Figure 22.6). Both

the chloride (X ¼ Cl) and the bromide (X ¼ Br) exhibit different solubility for the race-

mate and pure enantiomers, and therefore spontaneous resolution might have occurred.

Unfortunately, conclusive evidence on conglomerate behavior and X-ray diffraction data

were reported nearly 80 years after the original publication by Werner and Humphrey. It

is now clear that Werner was fully aware of conglomerate crystallizations, although

enantiomer separations and identification of crystal enantiomorphism were unsuc-

cessful, chiefly due to the small crystal size and poor quality of the samples. A collection

of [Co(en)2(NO2)2]Br crystals, obtained by Humphrey and Werner’s other students, was

stored at the University of Zürich and subjected recently to Flack-parameter-based X-ray

diffraction analysis and circular dichroism spectra in solution; the result was that large

crystals showed no enantiomorphism. Only small crystals were enantioenriched

(Figure 22.7). Other samples containing a few crystals revealed racemic, enantioen-

riched, and enantiopure specimens.

22.1.5 Industrial and Biological Significance of Chiral Substances.
The Role of Crystallization

With rare exceptions in the realm of natural products [29], chiral molecules are usually

produced in living organisms in enantiomerically pure form. Paradigmatic examples of

life’s single handedness are amino acids, nearly all being left-handed (L-configured), and

most sugars belonging to the D-series. This evolutionary aspect has been associated with

the origin of life itself, in the belief that key processes of molecular recognition and

replication would have been extremely inefficient in a racemic world. Hypotheses and

theories accounting for the origin of homochirality are diverse, and a unified frame

cannot be established. Probably, some mechanisms might have occurred, often oper-

ating in a synergic manner [30]. In this context, the spontaneous resolution of con-

glomerates appears to be one of the most plausible mechanisms of separation of chiral

molecules. During the crystallization process of conglomerates, any of the two enan-

tiomers may crystallize preferentially, while the mirror image molecule will remain in

solution.

FIGURE 22.6 Structures of the enantiomers of the bis(ethylenediamine)dinitro cobalt cation. Bromide and chloride
salts crystallize as conglomerates.
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Moreover, the actions of enantiomorphous inorganic crystals and chiral surfaces pre-

sent on Earth’s minerals and rocks should be highlighted. Enantioselective adsorptions of

primeval organic partners on such crystals might likewise have contributed to local

enantioenrichment. The latter has beenpostulated in the case of clays or quartz, which can

form chiral structures [30,31]. Centrosymmetric crystals (e.g., calcite), which are achiral as

a whole, may possess faces that bear mirror image relationships and as a result, enan-

tiomers of opposite configuration will preferentially attack one of such faces [32]. Glycine

crystals grown with face orientation at the air–water interface may also discriminate the

absolute configuration of a-amino acids [33]. When glycine crystals grow from a solution

of glycine (achiral molecule) and racemicmixtures of a-amino acids, the (R)-enantiomers

(D-configured) are selectively occluded into the (010) face, whereas the (S)-enantiomers

(L-configured) are occluded in the opposite enantiomorphous face. If by chance one

monocrystal of glycine exposes its (010) face toward the solution, the enantioselective

adsorption of the (R)-enantiomers will cause a small imbalance of the (S)-amino acid in

solution. Crystal growth will thus continue by orienting the (010) face to the solution,

which will be enriched in one of the enantiomers. In general, these processes should

neither be neglected nor overestimated in the context of chirobiogenesis. Naturally

occurring chiral crystals (quartz being the typical case) are present in local niches in high

enantiopurity, but the global distribution on Earth approaches a racemic state. On the

other hand, the enantiomeric excesses observed during selective adsorptions are generally

very small, so that a further amplification mechanism would have been required to justify

the high enantiomeric excesses characteristic of biomolecules.

FIGURE 22.7 Left: Humphrey’s crystals of [Co(en)2(NO2)2]Br (inset: large crystals do not show enantiomorphism).
Right: microscope images of enantiomorphous crystals. For the sake of clarity, crystal edges are shown with blue
lines. The absolute structures were elucidated by X-ray diffraction analysis. Reproduced with permission from
Ref. [27]. Copyright 2011 Wiley-VCH Verlag GmbH & Co. KGaA.
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A practical consequence of the distinctive response of enantiomeric molecules in

chiral media is the fact that essential physiological and metabolic processes involve only

one of the possible enantiomers of a chiral molecule. Biological receptors (e.g., enzymes)

are enantiopure substances and the two enantiomers of a drug will bind differently to the

active site, which often lead to different biological effects.

The chirality of drugs has become a significant topic in the discovery, design,

patenting, and marketing of new pharmaceuticals [34,35]. Until the 1990s, the market

was dominated by racemates, but the advent of more sophisticated protocols and

technologies, particularly the development of catalytic asymmetric syntheses and

biotransformations allowed the preparation of single enantiomers in large amounts

and high enantiopurity [36]. Legal regulations, particularly according to U.S. Food and

Drug Administration (FDA) guidelines, have become stricter and, in general the mar-

keting of a racemic drugs is justified only in cases where the drug in question un-

dergoes in vitro/in vivo racemization or in vivo/in vitro stereochemical inversion, and

after assessing the toxicity of each stereoisomer separately. The latter is well exem-

plified by the “profens” family of painkillers and anti-inflammatory agents (ibuprofen

or naproxen as representative compounds), as the less active (R)-enantiomer converts

in vivo (in humans) into the most active (S)-enantiomer. Still, administration of a

single stereoisomer may prevent undesirable side effects or toxicity caused by the

racemic mixture. Both enantiomers of the anesthetic agent bupivacaine do show

anesthetic properties; however the levorotatory enantiomer is a safer drug than the

racemate due to the cardiotoxicity of the dextrorotatory isomer. Consequently, some

countries have introduced the unichiral drug in clinical practice. In addition, the

patenting of a chiral molecule, either as single enantiomer or racemate, may lead to

claims of invention or intellectual property. A few years ago, the oral antiplatelet chiral

drug Plavix� (Clopidogrel) was under legal fire in the United States, as the original

patent claimed both enantiomers and their mixture, while a later patent claimed only

the (þ)-enantiomer [37]. Figure 22.8 depicts the marketing evolution of chiral drugs

(expressed in terms of new molecular entities), approved by the U.S. FDA and other

developed countries in the past decade [38].

Clearly, crystallization currently plays a pivotal role in the preparation of chiral drugs

as well as other fine chemicals [39]. Classical or dynamic resolutions represent standard

procedures to obtain the pure enantiomers for pharmaceutical or industrial purposes.

Given the scarce number of chiral compounds crystallizing as conglomerates (ca. 10%),

spontaneous resolution has limited applicability. The resolution of a racemic compound,

i.e., a homogeneous crystal form where both enantiomers are packed together in the

crystal lattice, cannot be achieved by direct crystallization. A versatile and general

strategy to produce pure enantiomers (even if yields are far from ideal) involves the

formation of diastereomers, which can be separated by fractional crystallization. The

phenomenon dates back to Pasteur’s preliminary experiments in the early 1850s [23]. He

noted that some achiral compounds combined with either dextrorotatory or levorotatory

tartaric acids gave rise to derivatives with identical physical and chemical properties
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except for the sign of their optical rotation. When the achiral compound was replaced by

an optically active substance (natural alkaloids such as quinine, brucine, or strychnine),

two different products were obtained. Modern applications on a large scale are

employed by the pharmaceutical industry. For instance, preferential crystallization and

resolution of ibuprofen with (S)-lysine are conducted in a semibatch process from the

viewpoint of the slurry concentration, but it is semicontinuous by virtue of constant

supersaturation and temperature. During resolution, (S)-Ibu-(S)-Lys is grown selectively

in the crystallizer while (R)-Ibu-(S)-Lys is left in the dissolver. The resolution is achieved

by the appropriate control of seed and supersaturation to grow the desired diastereomer

[40]. Crystallization can be combined with other methodologies such as chromatography

or chemical/enzymatic preparations to recycle the unwanted enantiomer. Important

drugs are thus susceptible to enantioresolution by means of tandem sequences involving

chemical and physical purification [41,42].

FIGURE 22.8 Percentages (shown on the y-axis) and number (above the bars) of new molecular entities (NMEs)
according to their chirality approved by (A) the U.S. Food and Drug Administration (FDA) and (B) worldwide in
the periods specified. Reproduced with permission from Ref. [38]. Copyright 2012 Macmillan Publishers Ltd.
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In the next sections, we shall discuss asymmetric crystallizations in detail from the

above-mentioned traditional methods of enantioseparation by direct crystallization and

diastereomer formation to most innovative cases of resolutions and deracemizations.

22.2 Chiral Crystallization
22.2.1 Characterization of the Racemic Composition

by Using Phase Diagrams

From a thermodynamic point of view, enantiomers make a unique situation resulting

from the perfect symmetry between them. Indeed, every nonvectorial intensive

property leads to the same value, e.g., density, enthalpy of melting, melting point,

refractive index, etc. When vectorial properties are considered, they have the same ab-

solute values but opposite signs, e.g., specific rotatory power (a) (which depends on the

wavelength of the polarized light, the solvent, and the temperature), or the anormal

scattering effect [43].

The phase rule has to be carefully considered when dealing with enantiomers. The

possible racemization has also to be taken into account. For nonracemizable enantio-

mers, the perfect symmetry between the two mirror image components leads to amend

the Gibbs phase rule (Eqn (22.1)) [44].

V ¼ n2

2
þ n1 þ 2� 42

2
� 41 (22.1)

n1 and 41 stand for the number of independent components and number of phases,

respectively, which are not symmetrical, while n2 and 42 denote, respectively, the

number of independent components and number of phases that are symmetrical. It is

worth noting that this relationship is applicable only if 42 � 2 and, to date, no clear-cut

experimental evidence has been found. For racemizable enantiomers in the liquid phase,

the system undergoes a symmetry breaking when solid phases are considered; in other

words, as if we had two symmetrical unary systems.

22.2.1.1 Non-Racemizable Enantiomers
A selection of seven phase diagrams is given below as an illustration of the most

probable occurrence. For every case in Figures 22.9 and 22.10, the upper monophasic

domain corresponds to the liquid phase or a complete solid solution. From Figures

22.9.1–22.9.4, there is progressive homochiral recognition. Figure 22.9.1 shows a com-

plete solid solution at low temperature; (�) and (þ) enantiomers can substitute each

other in the crystal lattice. Here, the chiral discrimination in the solid state is extremely

poor. Figure 22.9.2 shows that below Tc the monophasic domain splits in two sym-

metrical solid solutions, one progressively rich in (�), the other progressively rich in (þ)

as temperature is lowered [45]. Figure 22.9.3 shows a miscibility gap between the two

enantiomers, which has enlarged to such an extent that it creates a eutectic invariant

[46,47]. In Figure 22.9.4, the domains of partial solid solutions are not detectable at any
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temperature. The latter is the conglomerate without partial solid solution, and this

corresponds to the best chiral discrimination in the solid state.

From Figures 22.10.1–22.10.4 there is progressive heterochiral recognition.

Figure 22.10.1 shows the emergence of an intermediate monophasic domain (sss g).

This nonstoichiometric racemic compound has a much higher thermal stability in

Figure 22.10.2. In Figure 22.10.3, there is no partial solid solution associated with the

enantiomers; in contrast, the racemic compound is still nonstoichiometric.

Figure 22.10.30 shows the opposite case, where the racemic compound is stoichiometric

but partial solid solutions exist on both ends of the binary system. Figure 22.10.4 shows

the most popular case of supramolecular association: the racemic compound. It can be

viewed as a stoichiometric co-crystal. To keep it simple, the situations described above

in Figures 22.9 and 22.10 do not consider all possible impacts of polymorphism

associated (or not) with solid solutions, which is quite common among organic

compounds.

The relative stability of the racemic compound versus the conglomerate can be

temperature dependent. In other words, at a given temperature, a conglomerate could

become more stable than the racemic compound and vice versa at another temperature.

Figures 22.11.1 and 22.11.2 depict such cases. The corresponding three solid phase

equilibria are the peritectoid and the eutectoid invariants, respectively. It is worth

mentioning that those three phase equilibria are associated with a poor heat transfer and

a slow kinetics, which make them difficult to detect in the binary system, thus ternary

systems (with solvents) make their detection easier [48,49]. These three phase invariants

should not be confused with polymorphism [50].

Figures 22.12.1–22.12.3, supposed to be expressed in mole fraction, depict cases with

stable conglomerates without solid solution but with different a ratio (a ¼ molar solu-

bility of the racemic mixture/molar solubility of the enantiomer).

Figure 22.12.1 is typically what can be obtained with a fully dissociated salt (it might

be necessary to add excess of a counter-ion to observe this effect; thus, it is actually a

ternary section of a quaternary system). Figure 22.12.2 corresponds to the ideal case: the

solubility of one enantiomer does not influence the solubility of the other [51].

Figure 22.12.3 depicts how one enantiomer can increase the solubility of its antipode.

Figure 22.12.4 shows the presence of a stable conglomerate with partial solid solutions.

The tie-lines (in blue) connect the compositions of the solid phases to the compositions

of the liquid phases with which they are in equilibrium [46,47,52]. Figure 22.12.5 shows

the most popular situation: a stable racemic compound. Due to the symmetry of the

diagram, this stable racemic compound has necessarily a congruent solubility. The

conglomerate is metastable and can be observed in a limited number of cases [53,54].

Figure 22.12.6 shows the case of a stable racemic compound in the binary system

(�)–(þ); nevertheless, at that temperature in that solvent (V), the two enantiomers

crystallize as solvates whose 50:50 mixture (i.e., stable conglomerate) is more stable than

the nonsolvated racemic compound. This interesting case demonstrates that conglom-

erate screening should not be limited to counter-ions or co-crystal formers, but it should
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FIGURE 22.9 AND 22.10 The symbol ‘sss’ stands for solid solution by substitution. Figure 22.9.1 shows a complete
solid solution between two enantiomers. Figure 22.9.2 shows a complete solid solution at high temperature and a
miscibility gap for T < Tc. Figure 22.9.3 shows a eutectic with two symmetrical partial solid solutions, i.e., a
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also involve a screen of solvates or heterosolvates for every partner of crystallization

(counter-ion or co-crystal former).

22.2.1.2 Racemizable Enantiomers in the Liquid Phase
We will suppose that the racemization kinetics are almost instantaneous in the liquid

phase, and there is no racemization in the solid state, at least when the molecular

mobility is low (T < Tg). Figure 22.13.1 shows that when approaching the liquid state, the

kinetics associated with the formation of the <1-1> heterochiral compound (i.e., the

racemic compound) increase; this is symbolized by the length of the arrows. At low

temperature, a full asymmetric transformation delivers a pure enantiomer that can

remain enantiopure for long periods of time as long as the temperature of storage is far

from the temperature of the molten state. Figures 22.13.2 and 22.13.3 correspond to

conglomerates with and without partial solid solutions, respectively. After formation of

the racemic mixture, the system will remain a physical mixture of mirror-related phases

as long as the systems are not submitted to temperature close to fusion and/or sub-

mitted to attrition, temperature gradients, ultrasounds, temperature cycles, etc. (see

Section 22.3 on deracemization). If, by contrast, the systems are stimulated by a flux of

energy and/or any physical effect that facilitates the transfer of matter (e.g., introduction

of a solvent), a spontaneous break of symmetry should occur (Figure 22.13.2.1 or else

Figure 22.13.2.2, with partial solid solutions, and Figure 22.13.3.1 or else Figure 22.13.3.2

without partial solid solution).

Figure 22.14 displays the corresponding isotherms with racemizable enantiomers in

the liquid phase.

1.11erugiF

T 

(–) (–)(+)

Liquid or sss

Te

Tπ

2.11erugiF

T

(+)

Liquid or sss
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FIGURE 22.11 Figure 22.11.1 shows a peritectoid invariant at Tp. Above that temperature the conglomerate is
stable, and below that temperature the racemic compound is stable. Figure 22.11.2 shows a eutectoid invariant at
Tε. Below that temperature the conglomerate is stable, and above that temperature the racemic compound is
stable.

conglomerate with partial solid solution. Figure 22.9.4 depicts a conglomerate without solid solution.
Figure 22.10.1 shows a complete solid solution at high temperature and a nonstoichiometric racemic compound
at low temperature. Figure 22.10.2 shows a nonstoichiometric compound and two symmetrical partial solid
solutions. Figures 22.10.3 and 22.10.30 show partial solid solutions associated to the racemic compound and the
enantiomers, respectively, and Figure 22.10.4 depicts the usual stoichiometric racemic compound.

=

Chapter 22 • Crystallization of Chiral Molecules 967



22.2.2 Statistics about Racemic Compounds, Conglomerates,
and Solid Solutions

A rough view on this subject leads to the following figures: racemic compounds amount

to 90–95%, 5–10% for conglomerates, and a small percentage for solid solutions [9].

Nevertheless, these statistics tend to overlook the following points:

(1) There are important fluctuations in the probability to find a conglomerate-

forming system. Figure 22.15 shows two series of structurally related conglomerates.

Isotherms with different cases of conglomerates (mole fracƟon) 

1.21erugiF
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4.21erugiF
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(+)V
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(–)

(+)V

(–)-Sn
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FIGURE 22.12 Figure 22.12.1 shows a stable conglomerate with a < 2; Figure 22.12.2: stable conglomerate with
a ¼ 2; Figure 22.12.3: stable conglomerate with a > 2; Figure 22.12.4: stable conglomerate with partial solid
solution; Figure 22.12.5: stable racemic compound and metastable conglomerate; Figure 22.12.6: stable
conglomerate of solvates and nonsolvated metastable racemic compound.
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For instance, derivatives of 5-aryl-5-alkyl hydantoins and 4-aryl-triazolyl ketones

constitute clusters of conglomerates.

Likewise, in the series of trans-cinnamate salts of 1-amino-alkan-2-ols: 1-amino-

butan-2-ol, 1-amino-pentan-2-ol, 1-amino-3-methylbutan-2-ol, 1-amino-hexan-2-ol,

1-amino-4-methylpentan-2-ol, and 1-amino-2-cyclohexylethan-2-ol are all stable con-

glomerates [55]. This demonstrates that modulations around the developed formulae of

a molecule forming a stable conglomerate increase the chance, even for salts, of

observing full homochiral discrimination in the solid state. This is particularly true when

nonpolar moieties, just involved in Van der Waals contacts, are “slightly” modified.

(2) When the volume of the achiral counter-ion increases, the probability of detecting

at least partial solid solutions increases as well. Therefore, when the difference in volume

Figure 13.1
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Figure 13.2.1 Figure 13.2.2         Figure 13.3.1        Figure 13.3.2 
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FIGURE 22.13 Solid–liquid equilibria between racemizable enantiomers in the liquid state; for all of them, only
the 50:50 composition is accessible in the liquid state. Figure 22.13.1 corresponds to a stable racemic compound
forming system. Figures 22.13.2 and 22.13.3 show, respectively, conglomerate-forming systems with
(Figure 22.13.2) and without (Figure 22.13.3) partial solid solution. On aging, or when a flux of energy crosses the
system (mechanical stresses, thermal cycles or gradients), spontaneous symmetry breaking occurs, leading to either
Figure 22.13.2.1 or Figure 22.13.2.2 for partial solid solutions and either Figure 22.13.3.1 or Figure 22.13.3.2 in the
case of conglomerate-forming system without solid solution.
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exceeds a certain threshold, the crystal lattice of the salt will be mainly governed by the

achiral ion, and both chiral species can accommodate the crystallographic site irre-

spective of their handedness.

22.2.2.1 How to Spot a Stable or a Metastable Conglomerate?
There is a restriction of symmetries for crystal containing an enantiomeric excess. In the

crystal lattice of a pure enantiomer symmetry, operators must regenerate a homochiral

equivalent, and therefore any center of symmetry, mirrors and glide mirrors, inverted

axes (�3), (�4), (�6) cannot exist. Out of the 230 space groups, only 65 remain

compatible with a pure enantiomer. The exhaustive list is given in Table 22.1. Space

Figure 14.1

(–)

(+)V s

With a par al solid solu on
Figure 14.2.1 Figure 14.2.2

(–)

(+)V

(–)

(+)V

Without solid solu on 
Figure 14.3.1 Figure 14.3.2 

(–)

(+)V

(–)

(+)V

FIGURE 22.14 In Figure 22.14.1, only the racemic line is accessible in the liquid phase and the solid phase
(s represents the solubility curve of the racemic compound at the temperature of the isotherm). The following
figures are associated: Figures 22.13.2.1 and 22.14.2.1, Figures 22.13.2.2 and 22.14.2.2, Figures 22.13.3.1 and
22.14.3.1, Figures 22.13.3.2 and 22.14.3.2. (red and blue).
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FIGURE 22.15 Conglomerate-forming structures in hydantoin and triazolyl-ketone derivatives. The asterisk
denotes the chiral center.

Table 22.1 Space Groups Compatible with Homochiral Molecules

Systems Point Groups Mode Space Groups

Triclinic (1) P P1
Monoclinic (2) P P2; P21

C C2
Orthorhombic (2 2 2) P P222; P2221; P21212; P212121

C C222; C2221
I I222; I212121
F F222

Tetragonal (4) P P4; [P41; P43]; P42
I I4; I41

(422) P P422; P4212; [P4122; P4322]; [P41212; P43212]; P4222; P42212
I I422; I4122

Trigonal (3) P P3; [P31; P32]; R3
(32) P P312; P321; [P3112; P3212]; [P3121; P3221]; R32

Hexagonal (6) P P6; [P61; P65]; [P62; P64]; P63
(622) P P622; [P6122; P6522]; P6322; [P6422; P6222]

Cubic (23) P P23; P213
I I23; I213
F F23

(432) P P432; [P4132; P4332]; P4232
I I432; I4132
F F432; F4132

Chapter 22 • Crystallization of Chiral Molecules 971



groups in brackets are enantiomorphous in terms of symmetry operators; space groups

listed in blue and italics are those that should fulfill Kleinman restrictions for SHG

(second harmonic generation, vide infra) detection of noncentrosymmetry, provided

that no adsorption effect exists. Note that all chiral space groups are non-

centrosymmetric, but the reverse is not true. P212121 alone represents ca. 58% for chiral

“small” organic molecules; this is why it is often called the “whale” [56]. The P21 space

group represents circa 30% of crystal packing observed for chiral small molecules.

Below, we shall examine some techniques used to detect mixtures of homochiral

crystals and to crystallize those stable conglomerates.

22.2.2.2 Techniques Used to Spot a Conglomerate
Because the probability of spotting a conglomerate is quite small, multiple efforts have

been made to find techniques that are appropriate to detect them. Several of the most

commonly used techniques are listed below. Some comments are added to detail the

pros and cons of these techniques.

1. Construction of the binary phase diagram between antipodes. It is rather time

consuming and useless (if the purpose is just to spot a stable conglomerate).

Moreover, many organic crystals do not stand fusion, and at least one enantiomer

should be available.

2. Construction of ternary phase diagram between antipodes and a solvent (if this is

extended to a mixture of solvents, then it is just a ternary section of a higher order

phase diagram). This constitutes more work than the construction of the binary

system. The diagnostic will be error free, although a disproportionate amount of

work will be required for the potential benefit.

3. Prescreening by means of second harmonic generation (SHG). [57] Nonlinear optics

teaches that when a noncentrosymmetric crystal is illuminated by powerful pulses

of a laser beam (wavelength l), a part of the energy is converted into photons that

have a wavelength l/2. Conversely, when a powder is emitting at half of the wave-

length of the illuminating beam, it can be concluded that a noncentrosymmetric

material exists in this powder. This effect can be used to discard all centrosym-

metric phases produced during a conglomerate screen (Table 22.2). Fortunately,

the vast majority of the racemic compounds crystallize in centrosymmetric space

groups such as P21/c, P-1, C2/c, Pbca, Pbcm, etc., which makes this technique effi-

cient. This allows the experimenter to concentrate effort on differentiating chiral

from noncentrosymmetric, nonchiral space groups. For the latter, in a subset

including Pc, Pca21, Cc, Pna21 space groups, the 50:50 composition corresponds

obviously to a racemic compound, since there is at least one inverting symmetry

operation in the lattice. Thus, application of the SHG method can only constitute a

prescreening, but it is still interesting because: (1) no comparison with the crystal

lattice of the corresponding pure enantiomer is required; (2) it is almost instanta-

neous; (3) it is nondestructive; (4) a small amount of solid (often w10 mg is

972 HANDBOOK OF CRYSTAL GROWTH



enough) is required; (5) it can be run in an automatic way; (6) it can operate at

different temperatures [58,59], and (7) it works on suspensions, which means that

efflorescent solvate conglomerates can be detected as well. On the other hand,

there is also a potential drawback with the highly symmetrical space groups stem-

ming from the (422) (622) and (432) point groups (Table 22.1). To discard centro-

symmetric space groups, Kleinman relationships [60] lead to conclude that the

corresponding space groups, even though chiral, should be SHG inactive. The main

problem will be associated with deleting the “good” chiral space groups (e.g.,

P41212 and P43212, essentially), which are not common but not exceptional either

(ca. 2–3% or lower probability among conglomerates). Fortunately, and based on

our experience, these limitations do not hold because a sufficient adsorption phe-

nomenon is present most of the time [61].

4. Evidence of an entrainment effect. Even if a conglomerate is metastable, it might be

possible to perform preferential crystallization (vide infra for further details). The

recent example of diprophylline highlights this point very well. Conversely, a stable

conglomerate does not anticipate a feasible preferential crystallization [62,63].

5. Comparison between spectroscopic data of the racemic mixture and the pure enan-

tiomer by means of solid-state nuclear Magnetic Resonance (SS-NMR), Infrared

Spectroscopy (IR), Raman spectroscopy , X-ray powder diffraction (XRPD), or ter-

ahertz spectroscopy. Such techniques need access to the pure enantiomer, and

sometimes it is difficult to differentiate spectroscopic data due to the high degree

of similarity between the two crystal lattices and/or poor crystallinity.

22.2.2.3 How to Make a Stable Conglomerate Crystallizing
Based on the above paragraph, there are two possibilities:

1. The experimenter already knows one stable conglomerate with a well-defined

structure, and it is then possible to find “around” other conglomerates by

Table 22.2 Centrosymmetric, Chiral, and Noncentrosymmetric, Nonchiral Space
Groups. The SHG Method Serves to Differentiate Centrosymmetric Space Groups (SHG
Negative) from the Two Other Classes (SHG Positive)

System
Centrosymmetric
Space Groups

Chiral Space
Groups

Noncentrosymmetric
Nonchiral Space Groups

Triclinic 1 1 –

Monoclinic 6 3 4
Orthorhombic 28 9 22
Tetragonal 26 16 26
Cubic 17 13 6
Trigonal 8 11 6
Hexagonal 6 12 9
Total 92 65 73
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introducing minor structural changes in the chiral molecule or its crystallization

partners (counter-ions, solvent molecules, co-crystal formers).

2. It is a new chemical entity with a priori no direct relationship with any other

known conglomerate. In that case, the “game” consists in adding partners with

which the crystal lattice will be fully chiral discriminating. In practice, this means

that a combinatorial screen will have to be implemented. It is not unusual to

perform hundreds of trials, a certain number of them resulting in oils, gums, or

other badly crystallized materials.

A regular screen consists in trying to crystallize solvates or heterosolvates (i.e.,

different solvent molecules located at different crystallographic sites in the lattice), salts,

co-crystals, and all sorts of hybrids between those classes of compounds. Thus, for a

particular counter-ion, it is recommended to make tests in different solvents or solvent

mixtures, even checking “exotic” stoichiometries that deviate from the natural ratios

between acid-base functions [64]. Moreover, these protocols may also be repeated at

different temperatures.

22.2.2.4 Interest in Spotting Conglomerates
A series of benefits and advantages can easily be identified:

1. Recovery of the whole enantiomeric excess (ee). When a resolution method or a par-

tial asymmetric synthesis yields a mixture of enantiomers, a stable conglomerate

gives the opportunity to recover the full ee, without loss, by a single recrystalliza-

tion. Starting from a mixture M of enantiomers (Figure 22.16), a precise amount of

solvent V can be used to recrystallize and ensure that the mother liquor will have

no ee (ee ¼ 0). In addition, this could be employed to spot a conglomerate: Starting

from a known ee, it is possible to observe that the concentrated suspension has no

ee, for example, by using High Performance Liquid Chromatography (HPLC) or

polarimetry.

 

V

(–) (+)

K

M

FIGURE 22.16 This diagram shows the best composition (point K) for a quantitative purification of a mixture M of
enantiomers. Point K represents the maximum amount of solvent required leading to a mother liquor without
enantiomeric excess (0% ee).
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When using diastereomeric salts for resolution (for instance, of a given amine) rather

than recrystallizing the mixture of diastereomeric salts, it is often wiser to free the base

(salting out) and purify the mixture of enantiomers so long as they form a stable

conglomerate. In practice, this depends mainly on whether or not there is presence of a

partial solid solution between the diastereomers.

2. Recovery of the whole amount of each enantiomer (if preferential crystallization is

applicable; see next section).

3. Induction of preferential primary nucleation (initiated by addition of a pure enan-

tiomer structurally related to the racemic (�) solute [65].

4. Deracemization in the solid state by means of racemization in the liquid state and

application of flux of energy (as mentioned by means of attrition, sonication, tem-

perature cycles, etc.). Furthermore, there is also the application of the so-called

second-order asymmetric transformation (provided that crystallization and racemi-

zation in the liquid phase plus attrition can be combined under the same operating

conditions).

22.2.3 Resolution by Preferential Crystallization

Preferential crystallization is an interesting process owing to three key arguments [66]:

(1) there is no need for a chiral resolving agent; (2) it leads to an easy and quantitative

enantiomeric purification of the crude products, and (3) the process itself is compatible

with both batch and continuous processes. We shall first examine preferential crystal-

lization of nonracemizable enantiomers, at least in the crystallization context (Figures

22.17–22.22).

Preferential crystallization is an alternate process that has several variants depending

mainly on the seeding mode and temperature variations. The key step is a stereoselective

crystallization of a single enantiomer out of a doubly supersaturated solution. The

simplest mode is seeded and isothermal preferential crystallization (SIPC). Starting from

point E at high temperature containing an excess of M mass units of an enantiomer

(Figure 22.17), the system is cooled (Figure 22.18) and moves from equilibrium to

(–) (+)

V

E 

FIGURE 22.17 Equilibrium at T1 (monophasic domain in grey).
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out-of-equilibrium conditions. Upon seeding with particles containing the pure enan-

tiomer in excess (preferably with a large surface area), the crystallization of that single

enantiomer is triggered. The solution point and the overall composition point are

superimposed first (Figure 22.18). Then, due to the stereoselective crystallization of the

(þ)-enantiomer, the solution point moves continuously along the (þ)-E line toward the

metastable solubility curve S–S1–S2–Sf (Figures 22.19–22.21). When, ideally, Sf is attained,

a fast filtration is implemented, leading to a mass 2 M of the (þ)-enantiomer and a

mother liquor with M mass units of excess of the opposite (�)-enantiomer. By adding

(–) (+)

V

E = S

FIGURE 22.18 System out of equilibrium (as Figure 22.17) after a fast cooling.

(–) (+)

V

E 
S1

FIGURE 22.19 Preferential crystallization after selective seeding with (þ)-crystal.

(–) (+)

V

E 
S2

FIGURE 22.20 Preferential crystallization of (þ)-enantiomer continued after stage shown in Figure 22.19.
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2 M mass units of the racemic mixture and heating at T1 for complete homogenization

and cooling down to TF, the out-of-equilibrium system is represented by points E0 and S0

symmetrical to E ¼ S in Figure 22.22 through the medium plane of the ternary system.

On cooling from T1 to TF, seeding with fine and very pure particles of the (�)-enantiomer

ensures the stereoselective crystallization of the (�)-enantiomer at a point (Sf0, not

represented) symmetrical to Sf through the medium plane. This second entrainment

affords 2 M mass units of the (�)-enantiomer. The following steps consist simply in

adding 2 M followed by these two symmetrical crystallizations.

Among the variations proposed, one should mention:

1. Auto-seeded process [67–69]. Here, instead of a complete dissolution, the highest

temperature is adjusted so that the overall synthetic mixture is located in the

biphasic domain:<þ> and its saturated solution s (Figure 22.23). Thus, the starting

point of the process corresponds to a suspension of a pure enantiomer and there is

no need for seeding. Up to 40% of the future crops can already be present as crys-

tals in equilibrium with their saturated solution. The same procedure is applied to

the auto-seeded crystallization of the antipode. When compared to the seeded and

isothermal process, the auto-seeded and polythermic preferential crystallization

appears somewhat as a preferential growth because crystals are bigger (and easier

(–) (+)

V

E 
Sf

FIGURE 22.21 Preferential crystallization of (þ)-enantiomer at the final stage; metastable equilibrium for
(þ)-enantiomer. The size of the black disc in Figures 22.19–22.21 is proportional to the amount of solid.

(–) (+)

V

E’ = S’

FIGURE 22.22 Stage after filtration of previous run and reloading in racemic mixture.
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to filtrate) [70], yields are improved, the process is usually more reproducible and

robust, and it can easily be scaled up [71].

2. Preferential crystallization induced by solvent evaporation (ASPreCISE) [72,73]. This

variation is adapted for temperature-sensitive products and/or when the solubility

curve is excessively steep, i.e., the variation of solubility versus temperature is very

small over a substantial range of temperature (Figure 22.24). In that case, supersat-

uration can be created by evaporation of a volatile solvent (or mixture of solvents)

in which the solute has a sufficient solubility [73]. The evaporation can be carried

out by simple distillation with or without depression or stripping by injection of an

inert gas (e.g., N2). This variant of preferential crystallization is compatible with

auto-seeding (e.g., the evaporation starts with a suspension), and it also yields

interesting results in resolutions involving temperature-sensitive molecules, as the

process can be conducted without temperature cycles.

3. Simultaneous preferential crystallization. In this process, simultaneous crystalliza-

tion with two different sizes of crystals is implemented. Ideally, this process works

(–) (+)

V

E
s 

FIGURE 22.23 Location of the overall composition mixture as the starting point of the auto-seeded process.

(–) (+)

V

E0

E
F

(–) (+)

V

E0

E
F

FIGURE 22.24 Pathways of the overall synthetic mixtures during resolution of the (þ)-enantiomer (left) and
(�)-enantiomer (right) by using ASPreCISE. The corresponding pathways of the solution points are not
represented, but they can ideally be considered to move along the metastable solubility curves (in blue) at the
extremities of the tie-lines.
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with two nonoverlapping crystal size distributions. Sieving at the end of the pro-

cess ensures the separation of the two enantiomers [74–76].

4. Coupling with racemization in solution [72]. This process, labelled SOAT for

second-order asymmetric-transformation, can theoretically lead to a single enan-

tiomer with a yield limited by the solubility of the enantiomer at the final tempera-

ture. As the preferential crystallization is progressing, the mother liquor keeps at

ee ¼ 0% because of the racemization of the solvated enantiomers (here, we sup-

pose that racemization in solution is faster than crystallization).

22.2.4 Deracemization in Heterogeneous Systems

When two enantiomers crystallize as a stable conglomerate (a metastable conglomerate

might be considered as well, but the application can be more problematic) and undergo

a fast racemization in solution (or loss their chirality when solvated), a deracemization

process can be implemented [77,78]. This general process is the ultimate access to

homochirality and will be discussed in detail in Section 22.3, although some preliminary

ideas can be introduced herein within the broad context of resolution protocols. Starting

from a suspension of the racemic mixture, a flux of energy is applied through the het-

erogeneous system. The system, adopting different kinetic behaviors, will sooner or later

evolve toward a suspension containing a single enantiomer. The energy flux can be

different in nature, e.g., mechanical attrition (Viedma ripening) [79], ensured by glass

beads, ultrasound with long exposure and high energy to speed up the process [80],

temperature cycles, or temperature gradients [75,81,82]. They can be used as a unique

source of energy or in various combinations. In general, the more powerful the flux of

energy, the faster the deracemization (of course, there is an upper limit!).

If the starting material is perfectly racemic and without any chiral impurities, the

evolution of the system should be perfectly stochastic. Nevertheless, those conditions are

rarely fulfilled, thus the system could be “biased” so that a preferred enantiomer will be

obtained. The advantage is provided by the enantiomer having the bigger particles,

although if the antipode largely outnumbers, the final evolution could be toward the

initial “small particles.”

When the system is not far from the above conditions, no “irreversible” evolution can

be detected, even after several days. However, one can detect the presence of local

fluctuations in ees. Those deviations are globally cancelling each other. In practice, a

given enantiomer can be targeted; the latter being envisaged by unbalancing the initial

enantiomeric excess of the solid in the slurry toward that enantiomer. A specific chiral

impurity is also an alternative to “push” the evolution toward a desired enantiomer.

Several authors have tried to interpret the mechanism of this process (see Section

22.3), some proposing a model that accounts for the usual S shape of the ee (solid) versus

time representation. This means that the whole process is autocatalytic. In other words,

the more the solid phase deviates from the 50:50 composition, the faster the kinetics of

deracemization. Even if all the authors agree with the autocatalytic character of this
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phenomenon, the underlying mechanism is still a matter of debate, and synergetic ef-

fects may be involved.

22.2.5 Resolution of Racemates via Diastereomeric Associations
(Usually Salt Formation)

To date, the resolution of racemic mixtures by diastereomeric salt formation has been

the most widely used process, and the literature reveals thousands of successful appli-

cations (this includes a high proportion of patents; cf. the extensive review by Newman

[83]). The advantages of this Pasteurian method are: (1) resolution is based on stable

thermodynamic equilibria; (2) operational simplicity; (3) flexibility and compatibility

with intermittent stages of production; and (4) easy scaling up (from mg to hundreds of

tons). Nevertheless, the commonly acknowledged drawbacks of this method should

likewise be highlighted: (1) a great deal of time and substantial amounts of matter might

be necessary to find a productive and cost-effective process; (2) the need for a great deal

of handling and time occupancy of the equipment; (3) the need for a quantitative salting

out and the possible recycling of the resolution agent (additional work-up is often

required); (4) traces of the resolving agent might be present in the final enantiomer,

which could jeopardize the interest of the whole procedure (especially in the pharma-

ceutical industry); (5) both enantiomers of the resolving agent are not always available;

and (6) the filterability of the crude, less soluble diastereomer can also be problematic.

As for any resolving method, the racemization of the distomer (the less active enan-

tiomer in terms of therapeutic applications) has a major impact on the economical

performance of the process.

The main factors controlling the success of preparative resolutions are listed below

and will be examined in the following paragraphs:

1. nature of the resolving agent

2. nature of the solvent

3. solute/resolving agent stoichiometries and solute/resolving agent/solvent

stoichiometries

4. temperature of crystallization

5. control of crystal growth

6. enantiomeric purification

7. chemical purity of the racemic mixture to be resolved.

22.2.5.1 Nature of the Resolving Agent
Despite considerable efforts to rationalize the design of optimal resolving agents for a

given couple of enantiomers, it is still a matter of trial and error. Nevertheless, some

empirical guidelines, based largely on experience, are commonly used as criteria for

selecting a priori a resolving agent or synthesizing new resolution agents [84]. Thus, (1)

the chiral center should be as close as possible to the functional group responsible for
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the salt formation; (2) the diastereomeric salt should have a tight rigid structure, which is

usually achieved when several polar functional groups forming hydrogen bonds are

readily accessible; and (3) strong acids or bases generally give better results than weak

acids or bases.

Crystal structures and molecular modelling show that the differences in the physi-

cochemical properties of the two salts lie in the 3D network of the two packings, and

usually these differences are small, if not very small. Ideally, the best resolving agent,

A(þ) hereafter, should lead to a huge difference in solubility of the two associations A(þ)

B(�) (denoted salt n because of the sign of the two chiral species) and A(þ)B(þ)

(i.e., salt p) in a simple solvent at (or near) room temperature. Provided this condition is

fulfilled, the yield of the resolution could be almost quantitative. As a general statement,

the yield of the resolution will depend on how far the eutectic composition departs from

the 50:50 composition (examples in Figure 22.25: system I is more favorable than system

II) and the absence of solid solution for, at least, the less soluble salt. When the di-

astereomers are nonsolvated phases, this situation is prompted by a great difference

between the melting point of salts n and p; moreover, the diastereomeric salt with the

highest temperature should have the highest enthalpy of fusion as well. Examples of

such influences are given by the binary systems I and III (Figure 22.26) shown below.

In cases of ideal behavior with the solvent used (see Figures 22.27.1 and 22.27.2), the

yield Y (or Y0) of the process is simply given by the application of the lever rule:

Y ¼ 1� 2Xe

1� Xe
˛½0; 1� or Y 0 ¼ 0:5� Xe

1� Xe
˛½0; 0:5�

Figures 22.27 (below) show two binary phase diagrams corresponding to n and p salts

with the same melting points and the same enthalpy of melting. The difference between

these two binary systems relies on the existence (or not) of domains of partial solid

solution. In Figure 22.25(II), the yield of the resolution is lower than that of

Figure 22.25(I). When the solvent leads to an ideal behavior, the purification of the solids

T 

pn

Salt n + salt p 

Salt p + liquid 

0.5 xe

Mass fraction

  I 
T 

n  p 

Solid solution n + 
solid solution p 

Solid solution p 
+ liquid 

0.5xe

Mass fraction

Solid 
solution p Solid 

solution n

   II 

FIGURE 22.25 Binary systems between diastereomers with (I) and without (II) partial solid solutions. NB: the
composition of the eutectic liquid remains identical.
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is limited by the width of the monophasic domain and the temperature of crystallization.

As a rule of thumb, the domain of solid solutions is narrow in composition if the crystal

structure contains several H-bonds (directional strong bonds) between the cation and

the anion.

[ ] [ ]5.0;0
1
5.0'1;0

1
21 ∈

−
−=∈

−
−=

Xe
XeYor

Xe
XeY

T 

pn

Salt n + salt p 

Salt p + liquid 

0.5Xe 

Mass fraction 

T 

n p 

Salt n + salt p 

Salt p + liquid 

0.5Xe 

Mass fraction

T 

n  p 

Salt n + salt p 

salt p + liquid 

0.5Xe

Mass fraction 

 I  II  III 

FIGURE 22.26 Effects of differences in temperature of fusion and enthalpy of fusion of the diastereomers on the
composition of the eutectic. In the three schematic cases (I, II, III), the melting temperature and the enthalpy of
fusion of diastereomer p are kept the same. Diagrams I and II show the effect of the difference in melting
temperature between the diastereomers: the greater the difference, the more deviates the diastereomeric excess
of the eutectic liquid. Diagrams I and III show the effect of the melting enthalpy of the diastereomer n on
diastereomeric excess of the eutectic liquid.

FIGURE 22.27.1 Polythermic projection showing the monovariant lines in the ideal case.
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To optimize the resolution at pilot and industrial scales, several additional conditions

apply to the resolving agent. (1) It should be available in the purest possible state and (2)

it should be readily recoverable after completion of the crystallization step (and of course

the same applies for the desired enantiomer). This recycling should give a high yield and

be racemization-free even after many recoveries; in addition, it should easily be achieved

by treatment with strong mineral acids or alkalis. A counter example is given by. D-(�)

mandelic acid, which does not withstand completely the strong conditions of the free

base step. (3) The resolving agent should be available as both enantiomers so that both

chiral molecules can be obtained at the first crystallization step.

The formation of solid solutions can be used in a beneficial way by adding several

closely related resolving agents of the same handedness: usually three is enough. The

less soluble salt (we suppose here a family of acidic derivatives of resolving agents: RA1,

RA2, and RA3) usually has the following formulae: RA1(1�x�y)RA2xRA3yB, where x and y

generally depart from any simple ratios. This means that spontaneously the crystals will

sort out the best composition, which builds the most stable less soluble salt. This variant

of the Pasteurian resolution, called “family resolution” or “Dutch resolution,” has been

found to increase the number of crystallized tests and the yield of the resolution. It also

seems to have an inhibiting effect on the nucleation of the most soluble salt [85].

22.2.5.2 Nature of the Solvent
In the vast majority of applications, the resolution is performed in a solvent; therefore,

the selective crystallization takes place in the three-component system salt n–salt

p–solvent. In some cases (see next section), the order of the system is even higher.

A few extra considerations are important too, such as deviation from ideality or the

presence of a solvate. Regarding the former, starting from the results in the binary

FIGURE 22.27.2 Two isotherms are represented without partial solid solution; also neither polymorphism nor
solvate. Starting from an initial 50:50 composition, the ideal composition for the best yield and purity of the salt
p is denoted by Et1 at high temperature and Et2 at low temperature.

Chapter 22 • Crystallization of Chiral Molecules 983



system (see above), the solvent will be of major importance according to whether or not

there is a deviation from ideality induced by the third component in the saturated so-

lutions. Figures 27–29 illustrate the three different possibilities: (i) ideal behavior, (ii)

positive deviations from ideality, and (iii) negative deviations from ideality.

Figure 22.27.1 depicts the polythermic projection of the ternary phase diagram.

Starting from the binary eutectic mixture, the monovariant line goes straight down to the

ternary eutectic point; the solvent is just a physical diluent which does not introduce any

deviation from the binary eutectic composition. Figure 22.27.2 shows two isothermal

sections of this ideal ternary system. The best composition to perform an optimal res-

olution are points Et1 and Et2, depending on the working temperature T1 and T2,

respectively [86,87]. The temperature of crystallization and filtration has an impact just

on the volumic yield. The lower the temperature, the greater the amount of solvent, thus

the lower the volumic yield.

Figure 22.28.1 shows the polythermic projection of the system: salt p–salt n–solvent V.

By comparison to the similar ideal case (Figure 22.27.1), it is clear that the monovariant

valley deviates toward the more soluble salt (salt n) as temperature decreases. Without

taking into account the effect linked to dilution—impacting on the volumic yield—the

resolution should be preferably performed at low temperature. Two isotherms displayed

in Figure 22.28.2 explicitly show the effect of the interactions between the solid phases

and the saturated solutions at two different temperatures.

Figure 22.29.1 illustrates a negative effect of the solvent on the resolution process. The

monovariant valley deviates toward the 50:50 composition plane. The yield is lowered as

the temperature of crystallization/filtration is dropped. The two isothermal sections at T1

and T2 (Figure 22.29.2) clearly show that the lower the temperature, the lower the yield.

FIGURE 22.28.1 Polythermic projection showing the monovariant lines. Departure from ideality leads to a
favorable situation at low temperature.
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The results of the resolution of a-(2-thianaphthenyl)propionic acid demonstrate that,

apart from the choice of the resolving agent, the selection of the solvent plays a decisive

role [88]. It is worth noting that addition of small quantities of co-solvents can drastically

modify the course of the separation. As the n and p components possess ionic bonds,

water often has an important impact on the practical course of the crystallization. For

example, resolution of 2-phenylpropionic acid using (þ)-a-phenylethylamine is best

carried out with propan-2-ol containing water (10%) as co-solvent [89]. By contrast,

resolutions of 1-amino-alkan-2-ols are achieved in pure ethanol (the drier the better)

[55]. As soon as the ethanol contains more than 0.5% of water, the process becomes

more difficult to carry out and the yield decreases.

FIGURE 22.28.2 Two isotherms are shown without partial solid solution, polymorphism, or solvate. Starting from
an initial 50:50 composition, the ideal compositions for the best yield and purity of the salt p are denoted by Et1
at high temperature and Et2 at low temperature, the latter being the more favorable.

FIGURE 22.29.1 Polythermic projection showing the monovariant lines. Departure from ideality leads to an
unfavorable situation at low temperature.
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Concerning the presence of solvates, solvent molecules cannot only be the major

component of the saturated solutions, and play a role in the possible deviation from

ideality, but they can also be active partners in the construction of the crystal lattices.

Among numerous situations, Figures 22.30–22.32 illustrate situations where the presence

of solvate is favorable, unfavorable, or even makes resolution impossible at low tem-

perature. So, given these possible effects, the presence of a solvate must be systemati-

cally screened. Most of such solvates have a noncongruent melting. Some of them can

lead to solid–vapor formation and decomposition (i.e., efflorescence) according to the

value of the couple: temperature–partial pressure of the solvent.

22.2.5.3 Influences of Solute/Resolving Agent, Solute þ Resolving Agent/Solvent
Stoichiometries

The classical procedure involves a solute/resolving agent ratio ¼ 1:1. Within the

framework of ideality, Figure 22.27.2 gives at two temperatures the best

solute þ resolving agent/total mass ratio. The coordinates of the total synthetic mixture

are represented by Et1 at temperature T1 (the most concentrated system) and by Et2 at

temperature T2 (the less concentrated system). The yields of the two processes carried

out at T1 and T2 are identical and equal to:

Y ¼ ð0:5� x0Þ =ð1� x0Þ
If a solvate appears at low temperature (salt p-Vk, e.g., Figure 22.30.2) a more favorable

process can be carried out at temperature T2.

Two main modifications are occasionally applied to the classical procedure:

(1) Solute/resolving agent s1 [86,87]. Usually in this situation, the solute/resolving

agent ratio is greater than 1, and as a result the consumption of the chiral resolving agent

is reduced. The optimal ratio is determined by studying, at least, a part of the quaternary

system: solvent; (þ)enantiomer; (�) enantiomer; resolving agent. The resolving agent

FIGURE 22.29.2 Two isotherms are shown without partial solid solution, polymorphism, or solvate. Starting from
an initial 50:50 composition, the ideal compositions for the best yield and purity of the salt p are denoted by Et1
at high temperature and Et2 at low temperature, the former being the more favorable.
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added in excess can also be used so that the solute is more soluble (i.e., use as pH

modifier). For instance, an excess of a-methylbenzylamine can be added for resolving a

racemic acid to ensure a better solubility of a poorly soluble chiral acidic molecule to be

resolved [90]. In Figure 22.33 below (isotherm of the quaternary system: (þ)-(�)-

resolving agent-solvent), the resolving agent induces a solid solution of the less soluble

salt when used in 1:1 stoichiometry. When used in default, the domain of the solid so-

lution has been significantly reduced without impairing the diastereomeric

V

π

ε

(salp p)-Vk

FIGURE 22.30.1 Polythermic projection showing the monovariant lines. The presence of a stable solvate for the
less soluble salt leads to a more favorable situation at low temperature.

Salt n Salt p

A

Et1

Et2

FIGURE 22.30.2 Two isotherms are displayed with neither partial solid solution nor polymorphism, but with a
solvate of the less soluble salt at low temperature. Starting from the 50:50 composition, the ideal compositions
for the best yield and purity of the salt p are denoted by Et1 at high temperature and Et2 at low temperature,
the latter being the more favorable.

Chapter 22 • Crystallization of Chiral Molecules 987



ptlaSntlaS

V

ε

π

FIGURE 22.31.1 Polythermic projection showing the monovariant lines. The presence of a stable solvate for the
more soluble salt leads to an unfavorable situation at low temperature.

ptlaSntlaS

A

Et1

Et2

(Salt n)-Ap

FIGURE 22.31.2 Two isotherms are shown with neither partial solid solution nor polymorphism, but with a solvate
of the most soluble salt. Starting from the 50:50 composition, the ideal compositions for the best yield and purity
of the salt p are displayed by Et1 at high temperature and Et2 at low temperature, the former being the more
favorable.
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discrimination (the diastereomeric excess of the invariant liquid remains unchanged).

It is also worth mentioning that some anomalous salts can appear in these systems

especially if, for instance, the resolving agent is a polyfunctional carboxylic acid.

(2) Addition of an achiral ion Z of the same ionic sign as the resolving agent [91]. The

optimal composition is determined by studying part of the quinary system: solvent-

(þ)-(�)-resolving agent and Z. Usually the salts between Z and the solute in question are

very soluble in the solvent used (or a mixture of solvents). This method helps in reducing

the consumption in resolving agent [90,92].

ptlaSntlaS

A

FIGURE 22.32.1 Polythermic projection showing the monovariant lines. The existence of a stable double solvate
impedes resolution at low temperature.

Salt n Salt p

V

Et1

FIGURE 22.32.2 Two isotherms are shown with neither partial solid solution nor polymorphism, but with a double
solvate at low temperature. Starting from the 50:50 composition, the ideal composition for the best yield and
purity of the salt p is denoted by Et1 at high temperature. No resolution takes place at low temperature.
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22.2.5.4 Crystallization Temperature
The efficiency of the process is constant if the heterogeneous equilibrium has a quasi-

ideal behavior whatever the temperature. In practice, this is not the usual rule and the

yield is temperature dependent. The presence of solvate(s) and/or polymorphism

constitute additional complications, which require the identification of the phases in

competition as well as their domain of crystallization.

22.2.5.5 Control of Crystal Growth
Despite very favorable thermodynamic conditions for resolution to occur, a process

can be of low efficiency and difficult to carry out because of problems appearing during

the nucleation stage and/or crystal growth of the less soluble salt and/or downstream

operations such as filtration.

1. Nucleation. Because 50% of the solute is an “impurity,” the metastable Ostwald

area can be enlarged to such an extent that no crystallization occurs, or when it

does, the suspension (composed of the mother liquor plus the less soluble salt) is

far too viscous to lead to a manageable filtration. The possible remedy to that

problem is to seed the mother liquor as soon as the temperature is low enough,

thereby favoring a smooth process of crystal growth of the less soluble salt at the

expense of a noncontrolled primary nucleation. Another option is to perform some

temperature cycling, thus favoring the growth of large crystals and to improve the

crystallinity of solid particles.

2. Crystal growth. The great similarities between the two diastereomers can lead to a

strong inhibiting effect on the crystal growth of the less soluble salt. The resulting

Resolving agent

(+) 

(–) 

Solvent 

Stoichiometry (1-1)

Resolving agent in 
default 

FIGURE 22.33 Influence of the solute/resolving agent ratio on resolution performances. For 1:1 stoichiometry,
the less soluble salt�with the (�)-enantiomer�has a domain of partial solid solution. In the other section where
the resolving agent is in default, the domain of solid solution is almost nonexistent without changing the
diastereomeric excess of the invariant liquid.
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effects of these interactions at the solid–solution crystal interface are: (1) a

decrease in the rate of crystallization; (2) possibility of creating inclusion among

crystals, which lowers the optical purity of the crops; (3) a decrease in the crystal-

linity of the crop so that the presence of the counter diastereomer is possible, even

beyond the thermodynamic concentration given by the equilibrium, and (4) induc-

tion of extreme shape in crystals—usually very fine platelets or elongated needle

along the crystallographic axis parallel to the bonds that have the most ionic char-

acter. The last effect makes the suspension prior to filtration viscous and prompts

difficulties during the separation of the crystals from their mother liquor. The

above alternative methods (vide supra: Subsection 22.2.5.3) can be of great help in

dealing with such difficulties. Some tailor-made additives can also constitute an

option as crystal-shape modifiers. In any case, the control of the nucleation step

(e.g., by means of seeding) and the implementation of a programmed cooling rate

is strongly recommended in this situation.

22.2.5.6 Enantiomeric Purification
The best strategy is to analyze carefully two ternary systems: salt n-salt p-solvent

and (�)-enantiomer-(þ)-enantiomer-solvent (base of the tetrahedral Figure 22.33)

and to seek the best opportunity for purification purposes. Basically, there are two

options:

1. Advantageous purification of the less soluble salt prior to release of the desired

enantiomer (if no solid solution exists among the diastereomeric salts and/or a

stable racemic compound exists between the enantiomers, or a solid solution ex-

ists in the ternary system: (�)-enantiomer-(þ)- enantiomer-solvent).

2. Advantageous purification of the crude enantiomer could be performed in the

ternary system: (�)-enantiomer-(þ)-enantiomer-solvent (in the case of a solid solu-

tion between diastereomeric salts and/or a stable conglomerate between the enan-

tiomers) [93]. It is worth mentioning that extreme pH values can induce (a partial)

racemization. It is therefore recommended to check the stability of the enantiomer

during salting out.

22.2.5.7 Chemical Purity of the Racemic Mixture
This issue can be of prime importance when screening resolving agents and solvents.

Indeed, the attempts to crystallize a diastereomeric salt can be seriously inhibited by

the impurity(ies) in the racemic mixture. As a preventive action, it is recommended to

purify the racemic mixture prior to any resolution effort. In a second step, when a

positive “hit” has been found, the crude racemic mixture can be checked and, perhaps,

the good surprise could be that the resolution is not derailed by the side product(s). If,

unfortunately, the impurity(ies) has(have) a detrimental effect on the course of the

resolution, a fair comparison with the purified starting racemic mixture can help in

quantifying the magnitude of the problem.
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22.3 Chiral Crystallization from Achiral
and Chiral Molecules

As mentioned above, achiral molecules can crystallize in one of the 65 Sohncke space

groups, although the chirality of the crystal structure arises from a particular molecular

packing such as the formation of chiral helices. The two enantiomers will appear in two

separate chiral crystals. It is still a matter of debate among stereochemists whether or not

the latter should be denoted spontaneous resolution (vide supra: Section 22.2 in any case)

because, strictly, there is no racemate to resolve, but merely spontaneous generation of

chirality.

A paradigmatic example is provided by sodium chlorate, NaClO3. This substance is

achiral, but it crystallizes as two enantiomorphous chiral solids (l and d), in the cubic

chiral space group P213 [94]. Hence, NaClO3 is achiral before crystallization, as it exists

in solution as more or less dissociated ions or clusters without a definite chirality,

although such species are able to generate a chiral solid. In the classical experiments

by Kipping and Pope in the late nineteenth century [95], NaClO3 was crystallized by

evaporation of an unstirred solution. Many crystallites were nucleated spontaneously

and grew further. This experiment was systematically repeated, and in most cases equal

amounts of left- and right-handed crystals were formed.

22.3.1 Homochirality in Crystal Growth from Achiral Molecules

It is possible to generate an enantiopure sample from an initial racemic batch of crystals

through Ostwald ripening if all crystals convert into a single crystal, whereby the surface-

to-volume ratio is minimum and thermodynamically more stable. In such experiments,

the selection of chirality is largely stochastic and different trials will give rise to either

enantiomer (vide infra for an extended discussion).

However, the whole amount of solute may be crystallized as a single enantiomer,

which represents a case of symmetry breaking during crystallization. Kondepudi et al.

reported the most striking example of this phenomenon when the crystallization pro-

cess was performed under rapid stirring [96]. In a given experiment, crystals with the

same chirality could be formed, either levorotatory or dextrorotatory, thus leading to

complete symmetry breaking. Obviously, the handedness distribution in different ex-

periments is random, and L and D crystals are obtained in different solutions

(Figure 22.34).

What accounts for this symmetry breaking is clearly secondary nucleation. Under

rapid stirring, the first chiral crystal, randomly formed, is broken by shear forces and

triggers the production of a large number of secondary crystals of the same chiral sense.

The growth process of such “daughter” crystals depletes the solution, avoiding super-

saturation, which would lead to opposite-handed crystals by primary nucleation.

Overall, this crystallization results in the generation of crystals with the same handed-

ness in a particular batch (Figure 22.35).
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22.3.2 Near-Equilibrium Systems

Viedma showed the remarkable and dramatic emergence of single chirality crystals of

sodium chlorate (NaClO3) and sodium bromate (NaBrO3) in saturated suspensions of the

two enantiomorphous crystals. Experiments are conducted with a racemic mixture so

the system is equilibrated with an equal amount of right- and left-hand crystals in

saturated aqueous solution. No new crystals nucleate under such conditions. It is

demonstrated that abrasive grinding of crystals by stirring in the presence of glass beads

promotes dynamic dissolution/crystallization processes that lead to a solid state of

single chirality: One of the chiral populations of crystals disappears totally in an irre-

versible autocatalytic process that nurtures the other one. The system evolves from a

similar amount of crystals of both hands to a single enantiomorphic population of

crystals. The conversion takes place randomly, i.e., to the left or right hand with equal

FIGURE 22.34 Classical experiment by
Kondepudi and coworkers (1990): When
NaClO3 was crystallized from an aqueous
solution without stirring, equal numbers
of L and D crystals were found. Moving
the system to far-from-equilibrium
conditions under stirring, a particular
sample had invariably one single chirality,
either L or D.

FIGURE 22.35 Under stirring, the growth of the
primary nucleus and the secondary nuclei can
reduce the concentration to a level at which the
rate of primary nucleation is zero. Secondary
nuclei coming from a “mother” primary nucleus
have the same handedness. In the absence of
stirring, no (rapid) autocatalytic production of
nuclei occurs, and all of them emerge from
primary nucleation with random handedness.
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probability. The systemmoves from an equilibrium stage between left- and right-handed

crystals to a single chiral population of crystals promoted by grinding [79].

The first explanation of this striking observation was that attrition by glass beads

produces a great number of smaller crystals, whose increase in the mixture causes in

turn a slight supersaturation of NaClO3 in solution—although not enough to support

primary nucleation. This is possible because, according to the Gibbs–Thomson effect,

small particles have a higher solubility than large ones, therefore small crystals dissolve

more readily than large crystals [97]. The latter is a direct consequence of the surface to

volume ratio of the crystals as the system minimizes its total surface free energy. In a

saturated solution in contact with crystals of different sizes, the phenomenon also leads

to Ostwald ripening: Large crystals grow at the cost of smaller ones [98]. Thus, grinding

enhances Ostwald ripening in the system and permanently generates particles of

different size, therefore increasing the dissolution-growth process.

Notably, when a crystal of NaClO3 dissolves, the molecules are achiral, and they

retain no memory of the previous chiral crystals, in a sort of “chiral amnesia” [99]. In this

way molecules feed bigger crystals independently of their chirality: left- or right-handed

crystals. Thus, a sort of recycling in this system relies on the fact that solid-phase

chirality of the intrinsically achiral molecule of NaClO3 is lost upon dissolution, gain-

ing a “second chance” at choosing its solid-phase chiral fate [99]. Ostwald ripening can

reasonably be considered the driving force for the dissolution-growth process through

this system (Figure 22.36).

FIGURE 22.36 Big crystals under grinding lose tiny fragments or chiral clusters that dissolve until they achieve the
achiral molecular level. Such molecules or chiral clusters feed the larger crystals, thereby promoting a recycling
process.

994 HANDBOOK OF CRYSTAL GROWTH



22.3.3 Extension to Chiral Molecules

Gratifyingly, the above premises could be extended from chiral crystals formed by

achiral molecules to crystals formed by intrinsically chiral molecules. With this, we open

the door to interesting applications en route to optically active and configurationally

stable substances, particularly in the pharmaceutical industry [78]. The problem a

priori is that chiral molecules in solution only add to chiral crystals of the same chirality:

left-handed molecules add to left crystals only and right-handed molecules will add to

right crystals. Obviously, under such circumstances, one cannot convert one enantiomer

into the other by cycles of dissolution and growth in a mixture of enantiomorphous

crystals.

Nevertheless, solution-phase racemization could satisfactorily solve that hurdle:

Chiral molecules can interconvert between their left and right forms (L 4 D). Following

this idea, Blackmond [99] and Viedma [100] suggested that evolution to a single chirality

solid phase could appear in heterogeneous conglomerate systems of intrinsically chiral

compounds that racemize in solution. This process allows the molecules to forget their

chiral signature in solution. Racemization, essentially, plays the same role as the achiral

state: Molecules lose their chiral identity, enabling the asymmetric conversion of crystals

of one hand into the other (Figure 22.37). Paradoxically, molecular racemization in so-

lution can be considered the driving force that guarantees chiral purity in the solid state

from a previously solid racemic system [100].

The proof of concept could be verified experimentally for an imine derived from

phenylglycine [77], aspartic acid (a proteinogenic amino acid) [101], and aldol and

Mannich reaction products [102,103].

FIGURE 22.37 The necessary recycling process for the evolution to a solid phase of single chirality can occur in
heterogeneous conglomerate systems of intrinsically chiral molecules that racemize in solution.
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The case of aspartic acid is noteworthy, as it represents the first example of total

enantioenrichment of the solid phase for an essential amino acid mediated by solution-

phase racemization. Moreover, homochiral evolution could be accomplished without

mechanical energy (no glass balls), and induced only by heat. The process was studied

under the Yoshioka racemizing conditions in acetic acid with a catalytic amount of

salicylaldehyde [104]. Under these conditions, aspartic acid is hardly soluble and crys-

tallizes as conglomerate [104]. The experiments start with heterogeneous solutions of

racemic mixtures of L- and D-aspartic amino acid crystals in equilibrium with their so-

lutions and the ee of the crystals rises inexorably over time, evolving to a single chirality

solid state from any small initial imbalance in chiral crystal composition. The solid phase

results in a complete solution-mediated conversion of the minor chirality into the

originally more abundant crystal phase (Figure 22.38).

In principle, Ostwald ripening may account for complete homochirality of the solid

phase so long as both chiral populations of crystals have different size. Different size

means different solubility, and the equilibrium concentration of both molecular species

in solution will not be identical. The rate constants for the forward and backward

interconversion steps between D- and L-enantiomers would be different and the race-

mization process, proportional to the amount of enantiomers in solution, shifts toward

the less soluble chiral crystals (Figure 22.39). This generates a thermodynamic

disequilibrium in the system and the solution becomes supersaturated, although un-

dersaturated for each chiral population of crystals depending on its solubility. Finally,

only the less soluble enantiomer (having the biggest size) remains in solution as the

system attempts to reestablish the equilibrium. This particular case has been proven

experimentally for a conglomerate derivative of the amino acid phenylalanine by mixing

two populations of chiral crystals with different sizes [105].

One artificial way to alter the size of crystals between two populations of chiral

crystals in solution has also been proposed [106]. Thus, an enantiomerically pure solid

phase can be isolated from a racemic conglomerate, even in the absence of racemiza-

tion, provided that a suitable chiral additive is present during abrasive grinding. The

additive stereoselectively hampers the growth of one enantiomer, and in this way

FIGURE 22.38 Evolution of solid-phase L-aspartic acid (ees vs time) under racemizing conditions. Different initial
enantiomeric imbalances require different times to achieve homochirality.
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changes both the size and solubility between them. With this induced asymmetric

bifurcation in the crystal size distribution under near-equilibrium abrasive grinding, it is

possible to isolate the desired enantiomer but not to convert one enantiomer into the

other. As expected, in the absence of the additive, the solid phase remained racemic.

However, an initially equal and random distribution of crystal sizes among two

populations of chiral crystals, or a homogeneous distribution in size imposed by

grinding, need further assumptions to justify complete homochirality. Paradoxically, the

grinding process tends to avoid Ostwald ripening competition between both populations

of chiral crystals because abrasion continuously standardizes crystal size distribution

regardless of its chirality. Nevertheless, in all experiments, the minor chiral population of

crystals dissolves and the more abundant one grows (Figure 22.40).

From a theoretical standpoint, several analyses have demonstrated that for Ostwald

ripening to show exponential enantioenrichment in the solid phase, it is not sufficient to

describe the crystal growth exclusively by incorporation of monomers [107]. We need an

additional autocatalytic growth process to explain the observed phenomena. The first

theoretical model to describe this abrasive effect was proposed by Uwaha [108]. In this

model, the autocatalytic process is due to the incorporation of subcritical chiral clusters

in crystals of the same handedness. Saito and Hyuga suggested that the racemization

FIGURE 22.39 A saturated solution with
chiral populations of crystals having
different size (hence different solubility)
shifts the racemization process toward
the less soluble chiral crystals. Ostwald
ripening provides a plausible rationale
that justifies complete homochirality.

FIGURE 22.40 Saturated solutions with
an imbalance in the amount of solid
enantiomers, but equal solubility, shift
the racemization process toward the
more abundant enantiomer (vide supra,
Figure 22.39 for comparative purposes).
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step is enhanced at the surface of the chiral crystals [109], while Tsogoeva and associates

have reported enantioenrichment in the solution of the enantiomer that forms the minor

population in the solid phase during a reversible Mannich reaction [110]. These authors

concluded that the chiral crystal surface enhances the racemization process.

McBride and Tully proposed that, in addition to Ostwald ripening, reincorporation of

the chiral clusters to crystals of the same chirality by a sort of “nonclassical crystal

growth” is required [111]. Again, this conjecture found some experimental support

because, in the absence of racemization, a concentration inversion of molecules in so-

lution exists during the grinding of a slurry of an enatioenriched racemic conglomerate

[112]. The reincorporation of chiral clusters is more frequent for the major population of

chiral crystals, thus a bigger amount of chiral clusters of the minor population of chiral

crystals dissolve. The latter increases the concentration of molecules of the minor

population in solution. Upon racemization, this difference in concentration drives

molecules from the minor population to molecules of the major population. In this way,

there is finally a complete conversion of the minor population of chiral crystals into

crystals of the chirality that initially form the major population (Figure 22.41).

This novel route to single chirality has been given the name Viedma ripening. [112]
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FIGURE 22.41 During grinding, crystals are continuously fragmented into clusters. Reincorporation of chiral
clusters occurs frequently for the major population of chiral crystals and, as result, a larger amount of chiral
clusters of the minor population of chiral crystals dissolve.
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23.1 Introduction
Crystal growth in vapor phase is promoted by incorporation of adatoms into the kink

sites of atomic steps. As a result of adatom incorporation, atomic steps advance; thus,

observing the motion of atomic steps during growth provides insights into growth
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physics. Atomic resolution is obtained by scanning tunneling microscopy (STM), and

thus atomic processes of adatom incorporation can be observed by the state-of-the-art

technology [1]. At the growth temperature of semiconducting materials, however, ada-

tom diffusion length becomes on the order of 102–104 nm, which is far larger than the

atomic scale and is not easily accessible for atomic-resolution measurement methods.

Electron microscopy is a complementary method to STM and useful to obtain wide-

range information of crystal growth. Especially for III-V compound semiconductor

growth, compatibility with the molecular beam epitaxy (MBE) technology is important.

Thus, scanning electron probes including scanning reflection electron microscopy

(SREM) and scanning electron microscopy (SEM) have been used for in situ observation

of MBE processes [2–9].

The present authors have developed an atomic-step observing method based on SEM

[10–12] and applied it to the in situ observation of semiconductor growth by MBE

[13–25]. The advantage of SEM for observing crystal growth is that it is rather easy to

combine with MBE because the SEM instrument is simple, and restriction to the ge-

ometry of molecular beam sources and the electron gun is not very strict [13,21].

Furthermore, the wide field of view in SEM is useful for observing phenomena occurring

on a large scale [22–25].

This chapter describes the basics and applications of in situ SEM. Initial stages of

GaAs and Si MBE processes are shown as real-space images. Different growth modes, 2D

island nucleation, step propagation (step flow), and unstable step flow are observed

depending on the adatom diffusion length and the terrace width on the surfaces.

A recent application to graphene growth is also discussed.

23.2 Method of In Situ Imaging by SEM
23.2.1 Historical Background and Instrumentation

Ichikawa et al. used a scanning electron probe for the first time to observe MBE-grown

Si surfaces [3]. They detected reflection high-energy electron diffraction (RHEED) spots

to image the growing surfaces. The microprobe RHEED apparatus is shown in

Figure 23.1 [2]. The primary electron beam of 20 keV was directed to the sample surface

at a grazing incidence. Dark field scanning images were obtained by selecting one of

RHEED spots by the aperture and optical fiber (SREM images). They demonstrated

Si(111) surface topography changes corresponding to RHEED intensity oscillation

during MBE growth [3].

Similar systems were attempted to be applied to the observation of GaAs and AlGaAs

growth processes by Inoue et al. [4], Isu et al. [5], and Nishinaga et al. [8]. An example of

an MBE system equipped with microprobe RHEED and SEM is shown in Figure 23.2 [8].

As the MBE chamber, the system has Knudsen cells and liquid nitrogen shrouds. An

electron gun with differential pumping systems is mounted on top of the chamber [8] or

side of the chamber [6]. To dump mechanical vibration, the whole system is set on a
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vibration isolator. Surface diffusion lengths were analyzed from the variations of growth

rate as a function of position, which were measured from intensity oscillation in the

SREM images [5,9]. In addition to SREM images, secondary electron (SE) images were

utilized to observe Ga droplet formation and lateral growth of Ga monolayers [7,8].

The advantage of microprobe RHEED or SREM is that structural information of the

growing surfaces is obtained as real space images. However, the grazing incidence for

RHEED causes extreme image foreshortening. For example, a 2� grazing incidence

elongates the beam spot size in the beam incidence direction to about a factor of 29.

Thus, when a 10-nm-diameter beam is used, the resolution in the parallel direction

degrades to about 300 nm. This makes observation of small 2D islands difficult. To

overcome the disadvantage of SREM, the present authors took a different approach.

FIGURE 23.1 Microprobe reflection high-energy electron diffraction apparatus [2]. 1. Tungsten field-emission
(FE) tip, 2. variable aperture, 3. sample, 4. cylindrical mirror analyzer (CMA), 5. fluorescent screen, 6. optical
lens, 7. aperture plate, 8. optical fiber.
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They used a moderate grazing incidence of 10�–20� and observed atomic steps and 2D

islands as SE images. With a 10� incidence, the elongation of beam spot is reduced to less

than a factor of 6. The apparatus was similar to the microprobe RHEED apparatus,

equipped with a cold field emission electron gun, that of Hitachi S-800 modified to ul-

trahigh vacuum compatible, and Knudsen cells for Ga and As molecular beams. Special

care was taken to reduce mechanical vibration of the sample manipulator. A schematic

illustration of the geometry around the sample is shown in Figure 23.3. As a Si source, Si

was evaporated by resistively heating a Si ribbon near the sample. The SE detector was a

conventional Everhart–Thornley detector set near the tilt axis of the sample. For in situ

SE imaging, the sample surface should be exposed to both the electron and molecular

FIGURE 23.2 Molecular beam epitaxy system equipped with scanning electron microscopy and microprobe
reflection high-energy electron diffraction [8]. IP, ion pump; RP, rotary pump; TMP, turbo-molecular pump; TSP,
titanium sublimation pump; VTR, videotape recorder.
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FIGURE 23.3 Schematic illustration of the geometry around the sample in the in situ molecular beam epitaxy/
scanning electron microscopy system. PE, primary electron; SE, secondary electron.
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beams. The incident angles of the electron beam and molecular beams are not inde-

pendent. When the electron beam incident angle is qe to the sample surface, the Ga and

As molecular beams are directed upward onto the surface at qM � qe. With qM z 45�, qe of
10�–20� makes the molecular beam incidence of 35�–25�.

23.2.2 Principle of Imaging

The SE contrast of atomic steps is created by topographic effects at the step edge. The

topographic contrast appears even for monatomic-high steps due to SE yield change at

the step edge and anisotropy of detection efficiency of SE detector [10,11]. The behaviors

of the edge contrast in terms of the relationship between electron beam incidence and

step edge, and that between detector position (or detection efficiency depending on the

direction of emitted SEs) and step direction are all the same for monatomic and

macroscopic steps. The difference is only the total SE intensity at the steps. An example

of atomic step contrast in SEM is shown in Figure 23.4. This is an atomically flat

GaAs(001) surface grown in the in situ SEM/MBE combined system. There are bright and

dark lines in the SE image. Those are monatomic steps on the GaAs(001) surface. Since

the terrace height is lowest near the center of the image, the staircase of atomic steps

goes up toward both the top and bottom of the SEM image. The primary electron beam

of 25 keV was incident from the bottom to the top of the image at a grazing angle of 10�

to the surface. Thus the electron beam goes downward to the steps for the lower half of

the image and upward to the steps for the upper half. Atomic steps appear bright when

FIGURE 23.4 Secondary electron image of atomic steps on GaAs(001) surface. The height of terrace is lowest at
the center of the image. The primary electron beam of 25 keV was incident from the bottom to the top of the
image at a grazing incidence of 10� to the surface.
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the primary electron beam goes down the atomic step staircase, while they appear dark

when the primary electron beam goes up the staircase. The difference between the step-

down and step-up cases is the amount of SEs emitted from the step-riser part as shown

in Figure 23.5(A). In the step-down case, a large amount of SEs is produced by forward-

scattered primary electrons. Similar edge contrast can be obtained for 2D islands that are

small terraces. For small islands, the bright contrast dominates as shown in

Figure 23.5(B).

An entirely different type of contrast can be used for atomic step imaging on the

Si(111) surface. This utilizes the surface phase contrast between the 7 � 7 reconstructed

domains and 1 � 1 domains on the Si(111) surface. A clean Si(111) surface in ultrahigh

vacuum takes a long-range ordered structure, the 7 � 7 reconstruction, at below the

transition temperature (z860 �C) [26]. In SE images, a 7 � 7 domain appears brighter

than a 1 � 1 domain [12]. An example of 7 � 7 and 1 � 1 domain contrast is shown in

Figure 23.6. This was observed at 3 �C below the 7 � 7�1 � 1 transition temperature. The

phase transition to the 7 � 7 reconstruction starts to occur at the atomic step edge.

However, due to the strain energy of the 7 � 7 reconstructed structure, the phase tran-

sition does not propagate to the entire terraces, and 1 � 1 regions coexist at this tem-

perature [27]. The brighter regions are 7 � 7 and darker regions are 1 � 1. The origin of

surface structure dependent SE emission is not well understood. The difference in the

PE PE

SE
SE

Scattered 
electron range

Scattered 
electron range

Bright Dark

200 nm

2D islands

(A)

(B)

FIGURE 23.5 (A) Schematic illustration of secondary electron (SE) emission at the step edge depending on the
primary electron incident direction. (B) SE contrast of 2D islands on GaAs(001) surface. PE, primary electron.
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electronic structure or atomic scale surface roughness (e.g., corner holes in the 7 � 7

structure) might be responsible for the SE yield change.

This 7 � 7 and 1 � 1 domain contrast is useful for step imaging on a large Si(111)

terrace (7 � 7 decoration method). When the sample is rapidly quenched from above the

transition temperature toward room temperature, continuous 7 � 7 domains are only

formed along atomic steps. On a large terrace, small 7 � 7 domains nucleate but do not

cover the entire terrace as shown in Figure 23.7, which shows an SEM image of Si(111)

surface with a screw dislocation. Thus, atomic steps are highlighted with the bright 7 � 7

lines in SE images. The width of the 7 � 7 phase at step is z1 mm [25]. This method is

applicable to the observation of atomic steps on a wide terrace after MBE growth.

Although this is not a real-time observation method, the effect of quenching on the step

motion is negligible when large-scale phenomena are observed, and the method can

elucidate the atomic step distribution at the growth temperature.

23.2.3 Limitations of the Method

Electron beam irradiation can cause damage of the surface if the electron current density

is high. For GaAs, because the vapor pressure of As is high, As is easily desorbed from the

surface by electron beam irradiation when the As flux is low or the substrate temperature

is too high [16]. In such cases, monolayer holes are created on the electron beam

scanned area due to evaporation of As as shown in Figure 23.8(A). The electron current

density is typically on the order of 10�2 A/cm2 (102 A/m2) when an area of 1 mm square

(106 nm2) is scanned with a beam current of 10�1 nA. Figure 23.8(B) shows the electron

7 × 7
1 × 1

1 μm

FIGURE 23.6 Secondary electron image of Si(111) surface with 1 � 1 and 7 � 7 triangular domains observed at just
below the 1 � 1�7 � 7 phase transition temperature. The 7 � 7 domains appear brighter than the 1 � 1 domains.
Arrows show the location of atomic steps. The primary electron beam of 25 keV was incident at 45� to the
surface. The effect of oblique incidence was corrected by changing the aspect ratio of the image.
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current densities and the As4 pressures, which produce beam damage at the substrate

temperature of 580 �C [16]. When the As4 pressure is less than 1 � 10�5 Torr and the

electron current density exceeds 1.3 � 10�2 A/cm2 (for example, at a magnification of

100,000, a scanned area of 0.89 � 5.1 mm and a beam current of 0.6 nA), surface damage

occurs. Practical ways to avoid beam damage without reducing image magnification are

to reduce the electron beam current or increase the As4 pressure. The electron beam

current can be reduced to 0.1–0.3 nA, and the As4 pressure was usually set at

z1 � 10�5 Torr (z1 � 10�3 Pa).

Another limitation comes from the scanning rate of the probe beam. The normal

scanning rate of SEM is 10–40 s/frame. Because the signal/noise ratio is reduced with an

increase in the scanning rate, a 10 s/frame is almost the limit for obtaining a high-

contrast image of atomic steps and 2D islands. A rapid scan (TV rate) mode can be

used only when the contrast of object is high enough, such as the graphene edge contrast

shown in Section 23.3.4.

23.3 Application of In Situ SEM
23.3.1 Growth Mode

23.3.1.1 Basic Picture of MBE Growth
In the MBE growth, the growth rate is low and the surface diffusion of deposited atoms

(adatoms) is the dominant process of crystal growth. Such a situation is well described

with the standard model by Burton, Cabrera, and Frank [28]. In this model, the adatom

0.3 μm

FIGURE 23.7 Secondary electron image of 7 � 7 domains on a quenched Si(111) surface. Bright lines are 7 � 7
domains that decorate atomic step continuously, showing a screw-shaped distribution around a dislocation. Small
triangles are individual 7 � 7 domains on the terrace.
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density r is determined by the surface diffusion and evaporation. The incorporation of

adatoms into atomic steps is supposed to be fast enough. Then, r follows the diffusion

equation:

_r ¼ DsV
2r� r

�
sþ F (23.1)

where Ds is the surface diffusion length, 1/s is the evaporation probability of an adatom,

and F is the flux of impinging atoms. Ds is related to the surface diffusion length ls as

l2s ¼ Dss. When the rate of attachment and detachment of adatoms at the steps is much

faster than that of diffusion, the adatom density at the step becomes an equilibrium

value r0. As the surface diffusion is much faster than the motion of steps, _r ¼ 0. Then, for

an isolated straight atomic step at x ¼ 0, the solution of Eqn (23.1) is

rðxÞ ¼ r0 þ ðFs� r0Þ½1� expð�jxj=lsÞ� (23.2)
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FIGURE 23.8 (A) Electron beam damage created on GaAs surface by scanning electron microscopy observation.
The surface morphology is compared between first and second electron beam scans. The beam scan area was
0.59 � 3.4 mm, and the beam current was 0.6 nA. (B) As4 pressure and electron current density conditions that
cause electron damage on GaAs surface [16].
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where Fs is the equilibrium adatom density determined by the impinging and evapo-

ration of adatoms. The adatom density distribution is schematically shown in

Figure 23.9(A). The adatom diffusion flux to the atomic step is proportional to the

gradient of the adatom density distribution, Dsdr/dx, and the resulting step velocity is

vN ¼ 2Ds

n0

����
dr

dx

����
x¼0

¼ ðFsv � r0Þ
2ls
n0s

(23.3)

where n0 is the density of surface sites. A factor of 2 is multiplied because both the upper

and lower terraces contribute to the growth. Adatoms within jxj<z ls contribute to

crystal growth, and those outside the z2ls region evaporate before being incorporated

into atomic steps.

When the atomic step spacing l is smaller than ls, the solution of Eqn (23.1) for the

terrace with atomic steps at x ¼ –l/2 and þl/2 is

rðxÞ ¼ Fss þ coshðx=lsÞ
coshðl=2lsÞ ðr0 � FssÞ: (23.4)

0 xλs–λs

Fτ

ρ0

ρ

ρ

xl/20–l/2

ρ0

Fτ

xl/20–l/2

ρ0

ρsat

ρ

2D island

(A)

(B)

(C)

FIGURE 23.9 Schematic illustration of adatom density distribution for (A) an isolated step, (B) steps separated by I
at a low impinging flux, and (C) steps separated by I at a high impinging flux. Dashed line indicates the adatom
density distribution after 2D island nucleation.
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The adatom density distribution is schematically shown in Figure 23.9(B). For each step,

adatoms on a half of the terrace contribute to the growth. For a parallel atomic step

array, both the upper and lower terraces contribute to the growth. When the widths of

the upper and lower terraces are l and l’ and much smaller than ls, the step velocity is

v ¼ vN
2ls

l þ l0

2
: (23.5)

As seen in Figure 23.9(B), the adatom density is highest at the center of a terrace. When the

impinging flux becomes high, the adatom density at the center can exceed the saturated

adatom density rsat. In this case, nucleation of a new terrace (2D island) occurs at the

center of the terrace as depicted in Figure 23.9(C). If the impinging flux is very high, the

effective diffusion length of adatoms becomes smaller than ls because adatoms collide

with each other before evaporation. In this case, plural 2D islands nucleate on the terrace.

Thus, the growth mode changes depending on the terrace width relative to the sur-

face diffusion length and the impinging flux. For a low impinging flux, steps propagate as

the result of adatom incorporation at kink sites on the atomic steps. This growth mode is

called step-flow growth. For a high impinging flux exceeding the saturated adatom

density, 2D-island nucleation becomes dominant, which is called 2D-island nucleation

growth. Once 2D island is formed, step-flow growth takes place until one monolayer is

completed, because the adatom density decreases with a decrease in average terrace size

as shown in Figure 23.9(C).

23.3.1.2 SE Images of 2D-Island Nucleation and Step Flow
As an application of in situ SE imaging, the growth modes described above will be shown

with real space images. For this purpose, an ultra-large terrace on Si(111) surface is used.

Usually, the step spacing on a commercially available wafer is on the order of

10�1 mm. This is because the actual wafer surface is slightly misoriented from ideal

crystallographic orientation. For Si(111) wafers, the step spacing is 0.18 mm and 1.8 mm

for the misorientation angle of 0.1� and 0.01�, respectively. On the other hand, the

adatom diffusion length on the Si(111)-1 � 1 surface is quite large. It reaches z50 mm at

above the 7 � 7�1 � 1 transition temperature and decreases with an increase in tem-

perature because evaporation of adatom is enhanced [29,30]. Thus, only the step-flow

growth takes place on a normal Si(111) wafer surface at high temperatures. In

contrast, if we use a large crater created on a Si(111) wafer surface, it is possible to form a

huge (111) terrace comparable to the diffusion length [29]. This phenomenon is sche-

matically explained in Figure 23.10. At the bottom terrace in the crater, the step-flow

retraction takes place so as to expand the terrace during evaporation. Once the terrace

size exceeds the adatom diffusion length, a 2D hole is created at the center of the terrace

(just opposite to Figure 23.9(C), resulting in a concentric step distribution as shown in

Figure 23.10(B). Then, by increasing the diffusion length with a decrease in temperature,

the bottom terrace can be expanded up to w100 mm [31]. Such a huge terrace is useful to

observe the elemental processes of crystal growth.
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Figure 23.11 shows images of nucleated Si islands after 10 s growth at 880 �C with

various Si deposition rates. These images were observed after quenching the sample

from the growth temperature. Since the observed area was large, thermal drift due to

slow cooling during observation was not a problem. When the deposition rate is high,

multiple islands are created on the (111) terrace. At the deposition rate of 1.0 monolayer

(ML)/s, islands cover the terrace except for z15 mm from the edge where the adatom

density has a larger concentration gradient. Step flow from the crater edge occurred as

indicated by the arrow in image (A). The island size is smaller in the central area because

of the higher density of islands. With decreasing the deposition rate, the number of

islands decreases, and finally only one island nucleates on the terrace at the deposition

rate of 0.007 ML/s as shown in image (D). The island is located at the center of the ultra-

large terrace, indicating that the adatom concentration is highest at the center. This

exactly corresponds to Figure 23.9(C).

Step-flow growth can be observed when the radius of the circular step is smaller than

the surface diffusion length. An initial surface with a SiC particle near the center of the

ultra-large terrace was prepared [22]. Growth was performed at 940 �C where the surface

diffusion length was estimated to be 51 mm. As the SiC particle acted as a nucleation site,

a central 2D island was formed while outer circular steps advanced during growth as

schematically depicted in Figure 23.12(A). With increasing growth time, both the central

(A)

(B)

≈λs

Step flow

2D hole

Bottom terrace

50 μm

1180 ºC 1000 ºC, 12 min

FIGURE 23.10 (A) Schematic illustration of sublimation process of atomic layers in a crater. (B) Secondary electron
images of concentric circular steps created at the bottom of a crater on Si(111). The step structures were created
by annealing at 1180 �C (left image) and then annealing at 1000 �C (right image). The effect of oblique incidence
(45�) was corrected by changing the aspect ratio of the image.
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island and outer terraces expanded causing shrinkage of the lowest terrace as shown in

Figure 23.12(B). The growth temperature, 940 �C, is so high that sublimation of the

surface takes place when the Si flux is absent. Sublimation is the reverse process of

crystal growth, which is shown in Figure 23.12(C). In this case, both the central island

and outer terraces shrank, resulting in the expansion of the lowest terrace. The analysis

of radius evolution of the island and terraces showed that growth and sublimation

processes were perfectly symmetric [22].

23.3.2 Nucleation and Growth on GaAs Surface

23.3.2.1 GaAs(001)
GaAs(001) surfaces grown by MBE were observed using SEM by supplying Ga and As

fluxes of 10�3 Pa [16]. When the growth rate is low, the 2D island size becomes large

enough and the initial stage of 2D island nucleation can be observed by SEM.

Figure 23.13 shows the initial one monolayer growth of the GaAs(001) surface [14].

50 μm 

(B)(B)(B)(A)(A)(A)

(C)(C)(C) (D)(D)(D)

FIGURE 23.11 Secondary electron images of 2D islands grown during 10 s growth at 880 �C on the ultra-large
Si(111) terrace. The growth rate was (A) 1.0, (B) 0.2, (C) 0.06, and (D) 0.007 ML/s. The arrow in image (A) indicates
the step advanced flow from the crater edge.
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The growth temperature was 580 �C and the growth rate was z50 s/ML (0.02 ML/s). The

SE image scanning rate was 80 s/frame. Thus, more than 1 ML grew during acquisition of

an SE image. That is, the initial stage of 2D island nucleation and evolution is recorded

on an SE image, though each stage is recorded on the different portion in the image.

Growth started at the top of the image and proceeded with scanning toward the bottom.

The deposited amount (not the actual coverage) is indicated at the right side of

Figure 23.13. In the first 0.25 ML, atomic steps are still visible, showing that the surface is

almost unchanged. Then, 2D islands are seen as small bright dots. The density and size

of islands increase with the growth time. Due to the increased surface roughness

Island

Outer holes

Growth

Sublimation

(A)

(B)

(C)

FIGURE 23.12 Evolution of step shape on Si(111) during growth and sublimation. (A) Schematic illustration of the
sample surface. Arrows indicate the step-flow direction during growth. (B) Successive secondary electron (SE)
images during growth at 940 �C. (C) Successive SE images during sublimation at 940 �C. The interval of each image
was about 2 min.
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(monolayer high), atomic steps are difficult to be discerned. With coalescence of islands,

holes are left on the surface (around 0.75 ML). Finally, the first monolayer is completed

at about 4/5 of the SE image. Atomic steps are visible again at this stage. The nucleation

of 2D islands of second layer can be seen at near the bottom of the image.

Figure 23.14 shows an SE image recorded at a higher growth rate, 14 s/ML (0.07 ML/s)

[14]. Oscillation of the surface morphology, i.e., the roughening–smoothening cycle due

to 2D island nucleation and coalescence, is clearly visible. This corresponds to the

RHEED oscillation [32]. It is interesting to compare the RHEED intensity oscillation with

the SE image evolution, but they cannot be acquired simultaneously because of the

difference in the electron beam incident angle. For comparison, the RHEED intensity

separately measured at the same growth condition is shown at the right of the SEM

image. In the first two cycles, the RHEED intensity and the surface morphology are

clearly correlated. With an increase in the growth cycle, the surface roughness accu-

mulates and the oscillation becomes difficult to be observed.

23.3.2.2 GaAs(111)
The size of 2D island depends on the nucleation density, which is governed by the

effective surface diffusion length of adatoms. The effective diffusion length can

be increased by decreasing the impinging molecular beam flux (see Figure 23.11), but

200 nm

0.25 ML

0.5 ML

0.75 ML

1.0 ML

Steps

2D island

Step

2D island

FIGURE 23.13 Secondary electron image of GaAs(001) surface during molecular beam epitaxy growth [14]. Growth
started at the top of the image.
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is finally limited by the intrinsic diffusion length. On the GaAs(001) surface, the

intrinsic diffusion length is small so that the 2D island size is limited to less than 10 nm.

A larger diffusion length can be attained on the Ga-terminated GaAs(111) surface

(A-surface).

Figure 23.15 shows successive SE images of a GaAs(111)A surface during MBE growth

[19]. These images were observed by repeating the image scanning at 20 s/frame at the

same position (because of thermal drift, imaging area was slightly shifted for each cycle).

The growth temperature was 577 �C and the Ga deposition rate was 85 s/ML (0.01 ML/s).

The growth rate was even lower due to desorption of Ga, and much lower than the image

scanning rate. Therefore, more detailed 2D island nucleation and growth stages are

recorded in an SE image. Furthermore, the 2D island size is large enough to show the

triangular shape reflecting the three-holed symmetry of (111) surface. The island edges

consist of h110i steps, and the islands expand keeping the same shape. These images

clearly indicate that island growth occurs as the result of step propagation (step flow).

Simultaneously, atomic steps at the edge of the terrace propagate. The diffusion length

of Ga was estimated to z100 nm from the step velocity perpendicular to the steps based

on Eqn (23.3), and was consistent with the island spacing [19]. The reason why the

isolated step case (Figure 23.9(A)) can be used is that the terrace size (z1 mm) is larger

200 nm

RHEED intensity

FIGURE 23.14 Secondary electron image of GaAs(001) surface during molecular beam epitaxy growth with a
higher growth rate [14]. Growth started at the position indicated by the arrowhead, and about five monolayers
grew during imaging. Reflection high-energy electron diffraction (RHEED) intensity oscillation measured
separately is shown at the right of the image.
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than the diffusion length. Thus, not all the deposited atoms contributed to the growth.

The first monolayer is completed in image (E). The layer growth was successfully imaged

in Figure 23.15. Some islands show 3D (multilayered) growth, probably due to defects on

the surface.

1 μm

(A)
(B)

(C)

(D)
(E)

FIGURE 23.15 Secondary electron image sequences showing the monolayer growth process of GaAs(111)A surface.
Growth started at the position indicated by the arrowhead in image (A). For each image, the scanning time was
about 18 s, and the interval between each image was about 8 s. The effect of oblique incidence (80�) was
corrected by changing the aspect ratio of the image.
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23.3.3 Instability of Step-Flow Growth

In Section 23.3.1, we described the adatom density in one dimension. This treatment

assumes straight steps. Actual MBE growth occurs on the surface, i.e., in two dimensions.

Straight steps (or circular steps as shown in Figure 23.12) are not stably maintained in

some situations. In this section, we will see an example of instability of step-flow growth.

Again, we use an ultra-large terrace on the Si(111) surface and observe the behavior of

isolated steps. As discussed in Section 23.3.1, by adjusting the deposition rate of Si, only

one island nucleates at the center of the ultra-large terrace. The island growth process is

observed by changing the growth time. For the observation of steps, the 7 � 7 decoration

method was used (see Section 23.2.2). However, quenching caused nucleation of other

small islands on the surface, which hindered the observation of successive evolution of

the center island. Therefore, images at different growth duration were observed by

quenching the sample after each growth duration starting from the flat surface without

islands.

Figure 23.16 shows time evolution of island morphology [24]. Initially, the central

island is circular as shown in image (A). The island shape changes to six-fold symmetry

extending to <110> directions as seen in images (B) and (C). The atomic step at the

periphery of the crater, which is the edge of the second lowest terrace, progresses toward

the center of the ultra-large terrace. This periphery step is smooth in this stage. After

further growth, the periphery step becomes wandering as seen in image (D). The

(A)(A) (B)(B) (C)(C)

(E)(E)(D)(D)

(A) (B) (C)

(E)(D)

FIGURE 23.16 Secondary electron image sequences showing the evolution of atomic step instability during
growth at 880 �C on the ultra-large Si(111) terrace [24]. The images were obtained after growth of (A) 10 s, (B)
20 s, (C) 1 min, (D) 5 min, and (E) 10 min.
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wandering amplitude is maximized at 0.5 ML coverage. Above this point, the wandering

amplitude decreases, and the center island becomes round as seen in image (E).

The phenomenon observed in Figure 23.16 is instability of step flow [23,24]. Bales and

Zangwill theoretically treated the wandering of steps in step-flow growth and showed

that when the flux of adatoms from the lower terrace exceeds that from the upper

terrace, the fluctuation in the atomic step is amplified, resulting in macroscale step

wandering [33]. This can be understood qualitatively from simple consideration of

adatom density distributions around a fluctuation (bump and dent) in a straight step as

shown in Figure 23.17. Because the bump part is closer to the high adatom density re-

gion on the lower terrace, the gradient of density distribution becomes large, resulting in

a larger diffusion flux from the lower terrace. Contrary to this, the diffusion flux from the

upper terrace is reduced because of a smaller gradient of density distribution. For the

dent, the flux from the lower terrace decreases while that from the upper terrace in-

creases. Thus, the lower terrace contributes to enhance the fluctuation both for bump

and dent, while the upper terrace contributes to reduce the fluctuation. When the lower

terrace contributes more to the step flow, the instability of straight step is induced.

One of the origins of asymmetry between lower and upper terraces is the

Ehrlich–Schwoebel barrier that supposes a higher energy barrier for incorporation of

adatoms into a step from the upper terrace than that from the lower terrace [34,35].

However, the Ehrlich–Schwoebel barrier on the Si(111) surface at high temperatures is

negligible, and this kind of step wandering is not observed for equidistant steps [22].

The origin of asymmetry between lower and upper terraces in Figure 23.16 is simply

the size difference. For the growth on the ultra-large terrace, a newly grown terrace

(upper terrace) is always small compared to the ultra-large terrace. Since the adatom

ρ

BumpDent

Step

Lower terraceUpper terrace

FIGURE 23.17 Schematic illustration of adatom density distributions for a fluctuated step.
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diffusion flux to a step is an increasing function of the terrace width (see Section 23.3.1),

the symmetry between the upper and lower terraces is broken and step instability is

induced. While the shape of the center island reflects the symmetry of the Si (111)

surface, the periphery step is initially smooth and then becomes wandering. This is

exactly the result of step fluctuation enhancement by the large lower terrace. The decay

of wandering shown in Figure 23.16(E) is due to the stabilization of step flow when the

upper terrace becomes large. The unstable growth regime is located between stable step

flow and 2D island nucleation in the phase diagram of growth mode as functions of

impinging flux and step spacing.

23.3.4 Graphene Growth

23.3.4.1 Monolayer Graphene Imaging
Graphene is a monolayer material composed of carbon honeycomb lattice. When

carbon-doped Ni is slowly cooled from above 900 �C, carbon atoms segregate to the

surface of Ni and form monolayer graphene [36]. This process is schematically depicted

in Figure 23.18. Above 900 �C, carbon atoms are dissolved in the Ni bulk. At around

900–790 �C, monolayer graphene segregates, and further segregation to form multilayer-

graphene occurs below 790 �C. The segregation temperature, though, depends on the

carbon concentration in Ni [37]. For lower carbon concentrations, the temperature range

of monolayer graphene segregation shifts to lower temperature by z100 �C.
The effect of graphene on SE emission is not large except for the insulator surface

where charging is compensated by the graphene overlayer [38]. On a polycrystalline

surface, crystal orientation of each grain causes SE contrast due to electron channeling

or work function difference, which makes recognition of few-layer graphene difficult.

However, during segregation of graphene on the surface, the edge of graphene can be

clearly observed by SEM [39]. Above 400 �C, the edge contrast of monolayer graphene

becomes prominent, thus, monolayer graphene can be distinguished from Ni grains in

SE images.

Figure 23.19 shows monolayer segregation process from a polycrystalline Ni surface

at around 800 �C. A Ni foil specimen 0.5 � 30 mm and 0.5 mm thick (unpolished) was

heated by passing direct current through it. Image (A) is the Ni surface before graphene

segregation, and only Ni grain contrasts are seen. Image (B) was obtained just after

nucleation of graphene islands. They extended to cover the Ni surface as shown in

Monolayer 
graphene

Multilayer 
graphene Ni(111)

<790 ºC 790–900 ºC >900 ºC

Carbon 
atom

FIGURE 23.18 Schematic illustration of graphene segregation on Ni(111) surface.
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images (C) and (D). Monolayer graphene islands appear as if they had steric edges due to

the topographic contrast. There are two types of edge contrast as indicated by black and

white arrows in image (B); dark contrast for edges facing toward top and right of the SE

image; bright contrast for edges facing toward bottom and left of the SE image. Such

edge contrasts are the same as those for atomic steps on Si and GaAs surfaces. In the case

of graphene observation, a low voltage SEM instrument was used with normal incidence

of the primary electron beam of 1.45 keV and an in-lens type SE detector that collects SEs

though the objective lens [39]. Therefore, the bright and dark contrasts are due to

anisotropy of detection efficiency depending on the direction of emitted secondary

electrons. Note that the SE images in Figure 23.19 are obtained at low magnification, and

the width of the image corresponds to 0.47 mm. Even though such a wide area is imaged,

the monolayer edge contrast is extremely clear. For the observation of monatomic steps

of GaAs and Si, much higher magnifications are necessary for direct imaging using the

edge contrast (see Section 23.3.2). For monolayer graphene, the strength of edge contrast

depends on temperature. For Ni, the edge contrast becomes prominent at around 400 �C
and higher. The edge contrast is clear even on the unpolished polycrystalline surface

100 μm

(A) (B)

(D)(C)

FIGURE 23.19 In situ observation of monolayer-graphene segregation process. (A) Ni surface before graphene
segregation, (B) just after graphene nucleation, (C) 3 min after graphene nucleation, and (D) 7 min after
graphene nucleation. The black and white arrows in image (B) indicate the dark and bright edge contrasts,
respectively. A Ni foil commercially available was used without further polishing.
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where the surface roughness is much larger than the monolayer graphene height. The

origin of the prominent contrast and its temperature dependence is still under

investigation.

23.3.4.2 Multilayered Graphene
Figure 23.20 shows the successive graphene layer segregation after the monolayer gra-

phene segregation shown in Figure 23.19 at the same temperature. The observed area

was the same as that in Figure 23.19. Due to the temperature gradient in the specimen,

the right side of the SE image was at lower temperature. Thus, carbon segregation first

occurred at the right side. The second layer is formed at the region indicated by the

arrow in image (A). Note that the edge contrast does not appear for the second layer,

because the second layer segregates underneath the first layer. The second layer appears

slightly darker. The third layer that is further darker appears at the right edge indicated

by the arrow in image (B). The darker regions expand and the right end of the SE image

becomes much darker, indicating the increase in the layer number in image (D). One-

third of the surface is covered with three layers or thicker graphene layers. The

100 μm

(A) (B)

(D)(C)

FIGURE 23.20 In situ observation of multilayer-graphene segregation process. Those images were observed
following to Figure 23.19(D). Elapsed time after graphene nucleation (Figure 23.19(B)) is: (A) 9 min, (B) 11 min, (C)
13 min, and (D) 15 min. The arrows in images (A) and (B) indicate second and third graphene layers, respectively.
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contrast change depending on the number of graphene layer is attributed to the work

function change and also the difference in attenuation of secondary electrons generated

in Ni by graphene overlayers.

23.3.4.3 Graphene Nucleation
Graphene nucleation preferentially occurs on the (111) Ni grains in the segregation case

[39]. The carbon flux to the surface should be the same for all the faces when surface

carbon atoms are supplied by segregation of bulk dissolved carbon atoms. However,

because of the surface energy difference, the equilibrium surface concentration of car-

bon is higher on Ni(111) [40] and the surface atomic arrangement is commensurate to

graphene on Ni(111). Thus, at a higher temperature in the monolayer graphene segre-

gation range, graphene preferentially segregates on the (111) surface. On a mirror-

polished polycrystalline Ni surface, the graphene nucleation probability by segregation

of carbon is so low that a large graphene domain is formed [41]. Also, it is reported that a

single-domain graphene expanded continuously in a carpet-like manner, not only over

steps on the Ni surface but also over Ni grain boundaries, independent of the Miller

index plane [41]. Monolayer or few-layer steps of the Ni surface have a negligible effect

on the nucleation and growth of graphene. This means that Ni atomic steps are not an

effective trap site of carbon atoms, different from homo-epitaxial growth of GaAs and Si.

Then, a question arises: what is the nucleation site of graphene segregation? In situ

SEM is useful to investigate the nucleation processes because of the wide field of view.

Observations of graphene nucleation processes on a mirror-polished polycrystalline Ni

surface were performed by repeating dissolution of graphene above the segregation

temperature and nucleation of graphene at the segregation temperature [42]. There were

several nucleation sites where nucleation was repeatedly observed. Combining ex situ

atomic force microscopy (AFM) measurement at the same areas as the SEM observation,

the surface structures of nucleation sites were elucidated. Those were step-bunched

structures on a Ni(111) grain. Some sites were located near the grain boundary, and

others were at the center of the large (111) grain. While a grain boundary can have such a

step-bunched structure, step bunches on the large (111) grain may be created by step

bunching during heating.

The expansion process of the graphene island at a step-bunched structure on the

large (111) grain is shown in Figure 23.21 as successive images from panel (A) to panel

(F). An AFM image and line profile near the nucleation site, which is indicated with the

square in the SE images, is shown in panels (G) and (H), respectively. Initially, the island

expanded along the step bunch. The expansion rate perpendicular to the step bunch was

low, about 1/10 of the parallel direction. Once the island edge went over the step bunch,

however, it expanded rapidly as seen in panels (C)–(F), indicating slow carbon diffusion

across the step bunch. The SE images of second cycle segregation are shown in panels (I)

and (J). Graphene nucleated at the same area and showed similar expansion process. The

step-bunched face of Ni is inclined by 2.4� to the (111) face [42]. The bunch consists of

about 100 steps with average step spacing of 4.85 nm assuming an equidistant spacing.
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FIGURE 23.21 (A)–(F) In situ secondary electron (SE) images of graphene nucleation and growth at a step-bunched
structure. (G) Atomic force microscopy (AFM) image of the nucleation site indicated with the black square in
the SE image. (H) Line profile along the line in AFM image. (I), (J) In situ SE images of graphene nucleation and
growth in the second cycle. The time elapsed after graphene nucleation is indicated in the scanning electron
microscopy images. A mirror-polished Ni foil was used.
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As mentioned above, Ni atomic steps are not an effective trap site of carbon atoms.

However, the equilibrium carbon concentration at the Ni step edge can be slightly higher

than the terrace region, and the Ni steps can reduce carbon atom diffusion perpendic-

ular to the steps. This situation can be expressed by assuming a smaller 1/s at the steps

compared to that on terraces in Eqn (23.1); here F represents the carbon flux segregating

from the bulk instead of the impinging flux from the vapor phase. A numerical solution

of Eqn (23.1) for the surface with a step-bunched region is shown in Figure 23.22, by

assuming that 1/s at the step-bunched region is twice as low as that on the terrace, and

the step spacing is much smaller than ls. Although this is a simple model, and the pa-

rameters are set as examples, the result clearly shows that the surface carbon concen-

tration at the center of the step bunch is slightly higher than that on the terrace. The

higher carbon concentration enhances the nucleation probability of graphene nuclei at

the step bunch. The large number of steps hinders the surface diffusion of carbon atoms

and thus causes the slower growth rate of graphene island perpendicular to the step

bunch. The critical step bunch size should be large enough to achieve the carbon con-

centration for graphene nucleation in the center of step bunch. From the results in

Figure 23.21, the critical size would be 20 nm in height with 100 steps.

23.4 Summary
Initial stages of MBE growth have been observed by in situ SEM. On the GaAs(001)

surface, a small diffusion length (on the order of 10 nm) caused 2D island growth. The

monolayer growth processes, 2D island nucleation, island growth and coalescence, and

completion of monolayer, were clearly imaged. On the GaAs(111)A surface, the diffusion

length reached 100 nm, and 2D islands became large enough to show the symmetry of

FIGURE 23.22 Calculated steady state surface carbon concentration around a step bunch [41]. The initial
carbon concentration was set r(x, 0) ¼ 0. Parameters used for calculation were Ds ¼ 0.1, F ¼ 0.1, 1/s(terrace) ¼ 1,
and 1/s(step bunch) ¼ 0.5.
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the surface. The step flow growth following to 2D island growth could be observed. On

the Si(111)-1 � 1 surface, where the diffusion length was as large as 50 mm, the motion of

isolated steps was observed using the ultra-large terrace. When the terrace size was

comparable to the diffusion length, unstable step-flow growth could be observed. The

method was also applied to the observation of graphene segregation on a polycrystalline

Ni surface. Extremely clear contrasts of monolayer graphene edges could be obtained at

elevated temperatures.

It is interesting that macroscopic observations by SEM can reveal phenomena that

relate to the attachment of atoms to atomic steps. Although this chapter mainly focuses

on the imaging aspects, quantitative analyses have been done using those images

[19,22]. The analyses showed that the MBE growth of GaAs and Si is well described with

the standard model by Burton, Cabrera, and Frank [28]. That is, the surface diffusion of

adatoms is the dominant process of crystal growth, and the incorporation of adatoms

into atomic steps is fast enough.

References
[1] Bastiman F, Cullis AG, Hopkinson M. InAs/GaAs(001) molecular beam epitaxial growth in a

scanning tunnelling microscope. J Phys Conf Ser 2010;209(012048):1–9.

[2] Ichikawa M, Doi T, Ichihashi M, Hayakawa K. Observation of surface micro-structures by micro-
probe reflection high-energy electron diffraction. Jpn J Appl Phys 1984;23:913–20.

[3] Ichikawa M, Doi. Observation of Si(111) surface topography changes during Si molecular beam
epitaxial growth using microprobe reflection highenergy electron diffraction. Appl Phys Lett 1987;
50:1141–3.

[4] Osaka J, Inoue N, Mada Y, Yamada K, Wada K. In-situ observation of roughening processes of MBE
GaAs surface by scanning electron microscopy. J Cryst Growth 1990;90:120–3.

[5] Hata M, Watanabe A, Isu T. Surface diffusion length observed by in situ scanning microprobe
reflection high-energy electron diffraction. J Cryst Growth 1991;111:83–7.

[6] Inoue N. MBE monolayer growth control by in-situ electron microscopy. J Cryst Growth 1991;111:
75–82.

[7] Kanisawa K, Osaka J, Hirono S, Inoue N. Al-Ga monolayer lateral growth observed in situ by
scanning electron microscopy. Appl Phys Lett 1991;58:2363–5.

[8] Suzuki T, Nishinaga T. First real time observation of reconstruction transition associated with Ga
droplet formation and annihilation during molecular beam epitaxy of GaAs. J Cryst Growth 1994;
142:49–60.

[9] Nishinaga T, Shen XQ, Kishimoto D. Surface diffusion length of cation incorporation studied by
microprobe-RHEED/SEM MBE. J Cryst Growth 1996;163:60–6.

[10] Homma Y, Tomita M, Hayashi T. Secondary electron imaging of monolayer steps on a clean Si(111)
surface. Surf Sci 1991;258:147–52.

[11] Homma Y, Tomita M, Hayashi T. Atomic step imaging on silicon surfaces by scanning electron
microscopy. Ultramicroscopy 1993;52:187–92.

[12] Homma Y, Suzuki M, Tomita M. Atomic configuration dependent secondary electron emission
from reconstructed silicon surfaces. Appl Phys Lett 1993;62:3276–8.

[13] Homma Y, Osaka J, Inoue N. In-situ observation of monolayer steps during molecular beam epitaxy
of gallium arsenide by scanning electron microscopy. Jpn J Appl Phys 1994;33:L563–6.

1028 HANDBOOK OF CRYSTAL GROWTH

http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0010
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0010
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0015
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0015
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0020
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0020
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0020
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0025
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0025
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0030
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0030
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0035
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0035
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0040
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0040
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0045
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0045
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0045
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0050
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0050
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0055
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0055
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0060
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0060
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0065
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0065
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0070
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0070


[14] Homma Y, Osaka J, Inoue N. In situ observation of surface morphology evolution corresponding to
reflection high energy electron diffraction. Jpn J Appl Phys 1995;34:L1187–90.

[15] Osaka J, Inoue N, Homma Y. Delayed and continuous nucleation of islands in GaAs molecular beam
epitaxy revealed by in situ scanning electron microscopy. Appl Phys Lett 1995;66:2110–2.

[16] Homma Y, Osaka J, Inoue N. Secondary electron imaging of nucleation and growth of GaAs. Surf Sci
1996;357–358:441–5.

[17] Homma Y, Yamaguchi H, Horikoshi Y. Direct comparison of GaAs surface morphology between
migration enhanced epitaxy and molecular beam epitaxy. Appl Phys Lett 1996;68:63–5.

[18] Homma Y, Yamaguchi H, Horikoshi Y. In situ observation of MEE GaAs growth using scanning
electron microscopy. J Cryst Growth 1997;175/176:292.

[19] Yamaguchi H, Homma Y. Imaging of layer by layer growth processes during molecular beam
epitaxy of GaAs on (111)A substrates by scanning electron microscopy. Appl Phys Lett 1998;73:
3079–81.

[20] Yamaguchi H, Homma Y, Kanisawa K, Hirayama Y. Drastic improvement in surface flatness
properties by using GaAs(111)A substrates in molecular beam epitaxy. Jpn J Appl Phys 1999;38:
635–44.

[21] Homma Y. In situ observation by scanning electron microscopy of III-V Growth. In: Encyclopedia of
materials: science and technology. Elsevier; 2001. p. 3680–3.

[22] Finnie P, Homma Y. Nucleation and step flow on ultraflat silicon. Phys Rev B 2000;62:8313–7.

[23] Finnie P, Homma Y. Stability-instability transitions in silicon crystal growth. Phys Rev Lett 2000;85:
3237–40.

[24] Homma Y, Finnie P, Uwaha M. Morphological instability of atomic steps observed on Si(111)
surfaces. Surf Sci 2001;492:125–36.

[25] Homma Y, Finnie P. Step dynamics on growing silicon surfaces observed by ultrahigh vacuum
scanning electron microscopy. J Cryst Growth 2002;237–239:28–34.

[26] Florio JV, Robertson WD. Phase transformations of the Si(111) surface. Surf Sci 1970;22:459–64.

[27] Hibino H, Homma Y, Ogino T. Triangular-tiled arrangement of 7 � 7 and 01 � 10 domains on Si(111).
Phys Rev B 1998;58:R7500–3.

[28] Burton WK, Cabrera N, Frank FC. The growth of crystals and the equilibrium structure of their
surface. Phil Trans R Soc 1951;243:299–358.

[29] Homma Y, Hibino H, Ogino T, Aizawa N. Sublimation of Si(111) surface in ultrahigh vacuum. Phys
Rev B 1997;55:R10237–40.

[30] Homma Y, Hibino H, Ogino T, Aizawa N. Sublimation of a heavily boron-doped Si(111) surface.
Phys Rev B 1998;58:13146–50.

[31] Finnie P, Homma Y. Motion of atomic steps on ultraflat Si(111): constructive collisions. J Vac Sci
Technol A 2000;18:1941–5.

[32] Harris JJ, Joyce BA. Oscillations in the surface structure of Sn-doped GaAs during growth by MBE.
Surf Sci 1981;103:L90–6.

[33] Bales GS, Zangwill A. Morphological instability of a terrace edge during step-flow growth. Phys Rev
B 1990;41:5500–8.

[34] Ehrlich G, Hudda FG. Atomic view of surface self-diffusion: tungsten on tungsten. J Chem Phys
1966;44:1039–49.

[35] Schwoebel RL, Shipsey EJ. Step motion on crystal surfaces. J Appl Phys 1966;37:3682–6.

[36] Shelton JC, Patila HR, Blakely JM. Equilibrium segregation of carbon to a nickel (111) surface: a
surface phase transition. Surf Sci 1974;43:493–520.

Chapter 23 • In Situ Observation of Crystal Growth 1029

http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0075
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0075
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0080
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0080
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0085
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0085
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0090
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0090
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0095
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0095
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0100
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0105
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0105
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0105
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0110
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0110
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0115
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0120
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0120
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0125
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0125
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0130
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0130
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0135
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0140
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0145
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0145
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0150
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0150
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0155
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0155
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0160
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0160
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0215
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0215
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0165
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0165
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0170
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0170
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0175
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0180
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0180


[37] Eizenberg M, Blakely JM. Carbon monolayer phase condensation on Ni(111). Surf Sci 1979;82:
228–36.

[38] Hiura H, Miyazaki H, Tsukagoshi K. Determination of the number of graphene layers: discrete
distribution of the secondary electron intensity stemming from individual graphene layers. Appl
Phys Express 2010;3. 095101-1-3.

[39] Takahashi K, Yamada K, Kato H, Hibino H, Homma Y. In situ scanning electron microscopy of
graphene growth on polycrystalline Ni substrate. Surf Sci 2012;606:728–32.

[40] Isett LC, Blakely JM. Segregation isosteres for carbon at the (100) surface of nickel. Surf Sci 1976;58:
397–414.

[41] Odahara G, Hibino H, Nakayama N, Shimbata T, Oshima C, Otani S, et al. Macroscopic single-
domain graphene growth on polycrystalline nickel surface. Appl Phys Express 2012;5. 035501-1-3.

[42] Momiuchi Y, Yamada K, Kato H, Homma Y, Hibino H, Odahara G, et al. In situ scanning
electron microscopy of graphene nucleation during segregation of carbon on polycrystalline Ni
substrate. J. Phys. D: Appl. Phys. 2014.

1030 HANDBOOK OF CRYSTAL GROWTH

http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0185
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0185
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0190
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0190
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0190
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0195
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0195
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0200
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0200
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0205
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0205
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0210
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0210
http://refhub.elsevier.com/B978-0-444-56369-9.00023-X/ref0210


24
In Situ Observation of Crystal
Growth and Flows by Optical

Techniques

Katsuo Tsukamoto
GRADUATE SCHOOL OF SCIENCE, TOHOKU UNIVERSITY, ARAMAKI AOBA, SENDAI, JAPAN

CHAPTER OUTLINE

24.1 Introduction ............................................................................................................................. 1032

24.1.1 Major Rate-Determining Processes............................................................................ 1032

24.1.2 Surface Observation.................................................................................................... 1032

24.1.3 Growth Rate versus Supersaturation Measurement ............................................... 1033

24.2 Development of Optical Techniques .................................................................................... 1035

24.2.1 Toward In situ Observation of Crystal Growth........................................................ 1035

24.2.2 Phase-Sensitive Microscopic Techniques ................................................................... 1037

24.2.3 Observation of Monomolecular Growth Steps ........................................................ 1037

24.2.4 Measurement of Step Height by Classical Interferometry ..................................... 1039

24.3 Modern Interferometry and Microscopy for In situ Observation of Crystal Growth..... 1043

24.3.1 Phase-Shift Interferometry ......................................................................................... 1043

24.3.2 Application of Modern Interferometry to In situ Observation of Crystal
Growth ......................................................................................................................... 1045

24.3.3 In situ Measurement of Growth Rate by Interferometry ....................................... 1047

24.3.4 Confocal Microscopy ................................................................................................... 1048

24.3.5 Laser Confocal Phase-Shift Interferometry............................................................... 1049

24.4 Three-Dimensional Observation of Flow and Concentration Field................................... 1050

24.4.1 Convection or Convection-Free Environment .......................................................... 1050

24.4.2 Importance of Computerized Tomography in Crystal Growth .............................. 1052

24.4.3 Interferometric Tomography ..................................................................................... 1053

24.5 Future Developments ............................................................................................................. 1055

Acknowledgments ........................................................................................................................... 1057

References......................................................................................................................................... 1057

Handbook of Crystal Growth. http://dx.doi.org/10.1016/B978-0-444-56369-9.00024-1 1031
Copyright © 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/B978-0-444-56369-9.00024-1


24.1 Introduction
We focus on the development of high-resolution optical microscopies for in situ

observation of crystal growth from solution and their application to varieties of crystal

growth fields with comparison to other techniques. In situ observation is needed not

only in the field of fundamental crystal growth to understand crystal growth mechanisms

but also in applications such as semiconductor technologies, mineralogy, space sci-

ences, environmental problems like carbon sequestration or nuclear waste disposal

underground. The range of applications has expanded from laboratories to the depth of

the earth and space environments.

There is a growing interest in understanding the growth kinetics and variations in

surface morphologies of a crystal growing from its aqueous solution. It has therefore

been experimentally as well as theoretically established that the growth history and

perfection of the growing crystal are intricately linked with its time-dependent external

shape and surface morphology along with the associated heat and mass transport

phenomena in the growth solution. These parameters, in conjunction with the interfacial

solution temperature and the degrees of supersaturation in 2D and 3D over the crystal

surface, govern the growth rates, the surface morphology, and resultant character of the

growing crystals. It is therefore important to visualize these parameters during the

growth process at the best possible spatial and time resolution. Since no probe needs to

be introduced in the field of observation, optical visual techniques are nonintrusive and

nondestructive and thus useful for in situ monitoring of the growth process and to

directly understand the crystal growth mechanism.

24.1.1 Major Rate-Determining Processes

Crystal growth from solution is the process of mass and heat transport from the envi-

ronment to the crystal surface, followed by the integration of these molecules at the

crystal surface [1–3]. Among varieties of crystal growth mechanisms from liquids, crystal

growth from solution differs from the crystal growth from melts, in which heat transport

is the major rate-determining process. In the solution growth, coupling of mass transport

of molecules in the solution and the integration of molecules at the crystal surface are

the major rate-determining processes, Figure 24.1. Dehydration process of molecules at

the interface is also important rate-determining process as discussed later. In order to

understand these processes, we have attempted to analyze each process by a variety of

techniques. Observation of crystal surfaces and the growth rate measurement are the

examples [3].

24.1.2 Surface Observation

In 1949, Frank [4] pointed out the possibility that growth of crystals at low supersat-

uration could take place at the emergent points of dislocations with a screw compo-

nent. When growth take place on these exposed molecular terraces, the edges of these
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layers develop into spirals centered on the dislocation. Griffin [5] verified the spiral

growth theory by observing these monomolecular layers on the (0001) face of a natural

beryl crystal and has shown by multiple-beam interferometry [6] that the height of

these steps are only one unit cell high. By measuring the spiral step spacing, the

authors could calculate the small degree of the supersaturation in nature at which the

crystal was growing slowly.

After this observation, numerous spiral steps were observed on SiC [7], diamond [8],

and natural hematite crystals [9,10], verifying the applicability of spiral theory to the

growth from vapor and melt phases. However, it was not clear whether the spiral theory

could be applied to aqueous solution–grown crystals. The observation of spirals on

aqueous solution–grown crystals, like NaCl and KCl, was not easy because the surface

was easily damaged with moisture. Surface microstructures of the (100) faces of these

crystals were observed under the phase contrast and differential interference contrast

microscopes after crystals were taken out from the solution. In both cases, evidence

showing spiral growth was obtained for the first time in1972 [11], Figure 24.2, followed

by the observations of spirals on KDP, ADP [8,12], and protein crystals by optics [13], and

by atomic force microscopy [14–16].

Numerous growth spirals have been observed on the faces of SiC [7] and measured with

the aid of phase contrast microscopy [17] and multiple-beam interferometry. The surfaces

were observed not only for the verification of the spiral growth theory but also for the

characterization of differences in polytypes and their origins. Since spiral patterns reflect

how and where the crystals grew, the observation has been important in earth sciences [9].

In the 1950s, these spirals of transparent crystals were observed by coating the

crystal faces with a thin film of silver of reflectivity nearly 90% in order to reduce the

reflection from inside of the crystal. This technique was used until recently when in situ

observation methods and confocal techniques were developed.

24.1.3 Growth Rate versus Supersaturation Measurement

It was Bennema [3,18] who measured the growth rate of inorganic crystals from aqueous

solution as a function of supersaturation. He pointed out the importance of the relation

FIGURE 24.1 Major rate-determining processes in solution growth, though dehydration process is not illustrated
here.
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to verify the spiral growth mechanism for growth also from solution, Figure 24.3; for this

experiment, he developed a fine weighing method to measure the growth rate of solution

grown from extremely small supersaturation, Figure 24.4. He concluded that

theBurton�Cabrera�Frank (BCF) spiral theory that was developed for crystal growth

from vapor could also be applied to the solution growth. This idea to measure the growth

rate versus supersaturation became important for the prediction of growth mechanism.

His weighing method was simple, but there were several disadvantages in its practical

use. For instance, it took many hours/days to measure the growth rate at low

supersaturation and the measured rate was an average values from all crystal faces.

Interferometry and optical microscopies have subsequently been used to measure the

FIGURE 24.2 Composited spiral steps from solution-grown KCl crystal, differential interference contrast micro-
scopy. (A) and (B): spiral centers.

FIGURE 24.3 Growth rate vs supersaturation that depends on growth mechanism. Spiral: spiral growth; 2D
Nucleation: 2D nucleation growth.
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growth rate for much smaller growth rate measurements, details of which will be dis-

cussed in later sections.

There is wide variety of crystal growth/dissolution rate of crystals, Figure 24.5. The

maximum growth rate of solution-grown crystals might be several mm/s. The growth

rate measured from giant gypsum crystals, Figure 24.6, in Nica, Mexico, was 10�5 nm/s

[19], which is the slowest growth rate measured to date by any technique.

24.2 Development of Optical Techniques
24.2.1 Toward In situ Observation of Crystal Growth

Developments in microscopy and interferometry have resulted in a resurgence of optical

imaging techniques in the field of crystal growth in the past few decades. In situ

observation of the process of crystal growth is a novel and completely nondestructive

FIGURE 24.4 The weighing method to measure the growth rate vs supersaturation. This apparatus was used by
Bennema.
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approach for directly understanding the crystal growth mechanism. We have focused

especially on observing monomolecular growth steps on the crystal surface and the

concentration field adjacent to the crystal surface.

The importance of optical techniques for such applications has been highlighted

primarily for two reasons. First, specially designed optical methods aid the study of

FIGURE 24.5 Wide varieties of growth/dissolution rate of crystals.

FIGURE 24.6 Giant gypsum crystal in Nica, Mexico. Some are more than 10 m long. The growth rate was
measured to be 10�5 nm/s in the laboratory by PSI.
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crystal growth by enabling direct observation of surface phenomena. For example,

modern interferometric techniques have successfully paved the way for the observa-

tion of surface features at a resolution sufficient enough to reveal monomolecular

growth steps on crystals. In fact, the vertical resolution provided by these modern

techniques is comparable to that achieved with atomic force microscopy (AFM)

technique. Second, with the advent of highly coherent light sources and means for

faster data storage, optical methods have added a new dimension of quantitatively

mapping the solution properties and related transport phenomena around a growing

crystal, such as temperature and/or concentration field distribution and their gradients

in the growth chamber. For example, in the case of inorganic crystal growth, the dif-

ference of 0.01 mol concentration at the surface was detected during the growth

process [20–26]. A majority of optical techniques are field techniques in the sense that

an entire cross-section of the physical region can be mapped. The recorded images can

be interpreted as path integrals in the direction of line of sight. Three-dimensional

local properties can be subsequently reconstructed by using the principles of tomog-

raphy [27–29]. Moreover, they can be employed over a wide range of working

temperatures, e.g., from room temperature to elevated temperatures as high as 2000 K

or even more [30,31].

24.2.2 Phase-Sensitive Microscopic Techniques

The optical microscopic technique is one of the oldest and most popular methods for

in situ observation of micromorphological features of crystal surfaces. For the obser-

vation of growth patterns on the surface of the growing crystal, a variety of optical

phase-sensitive microscopes are available. Whereas surface scanning microscopic

techniques, such as Atomic Force Microscope (AFM) and Scanning Tunneling

Microscope (STM), have a better lateral resolution, these optical microscopic tech-

niques have similar vertical resolution, Figure 24.7. It may be surprising to learn that

these optical techniques were used to observe growth steps of 0.23 nm height almost

50 years ago [10,32].

Phase contrast [33] and differential interference contrast microscopy are well-known

phase-sensitive microscopic techniques that have been used for crystal surface obser-

vation [34]. Recent developments of phase-shift interferometry (PSI) [20,35-38] have

changed the notion that was prevalent for the last few decades that interferometry is for

measurements and microscopy is for observation. Several recent studies have shown

that PSI [39] has the capability to both measure as well as observe the crystal growth

surface, the details of which will be discussed later.

24.2.3 Observation of Monomolecular Growth Steps

Figure 24.8 is an illustration of growth steps with monomolecular height, h. When an

incident light illuminates the surface, a phase difference of 2h appears in the reflection,

though we cannot detect the phase difference but can detect intensity or color
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differences. The phase difference therefore has to be converted by phase-sensitive mi-

croscopy [33,40] or interferometry [7] to intensity or color differences if we want to

observe the steps.

Two examples will illustrate the use of phase-sensitive optical microscopy for

observation of the crystal surface during growth. In the case of transmission phase

contrast microscopy [41], steps are observed through the crystal, solution, and glass

windows of the growth cell. We need to keep in mind that normal objective lenses

employed in the microscopes are made for use in air; therefore, if there is a medium

other than air, which changes the phase of the images, various optical aberrations

occur—in the worst case, the image will not be clear and loose the contrast. To

avoid such aberrations, the total thickness of the crystal, solution, and glass

windows of the growth cell along the optical path must be reduced as much as

possible to reduce the optical aberrations; or alternatively, objective lenses should be

FIGURE 24.7 Growth steps observed by AFM (left) and phase contrast microscopy (right). Note the similar vertical
resolution.

FIGURE 24.8 Phase difference arising from growth steps with less than 1 nm height.
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designed to correct for the optical aberrations arising due to the thickness.

The maximum allowable thickness depends on the magnification and on the

microscopy.

Figure 24.9 shows an example of in situ observation of spiral growth steps on the

surface of CdI2 crystal during its growth from aqueous solution. In this case, the total

thickness of the crystal, solution, and glass windows is less than 1 mm. If reflection-type

microscopy is used, the role played by the thickness of the crystal is not important;

however, the optical path increase doubles due to reflection. The increase of the aber-

ration leads to the loss of image sharpness and also considerably reduces the contrast of

the image, which is important for surface observation.

Another example is shown in Figure 24.10, in which 2D islands on a protein crystal

(hen–egg white lysozyme crystal), left and a spiral growth hillock, right are shown.

The minimum heights of these steps are 5.6 nm and 11 nm, respectively, as described

later.

24.2.4 Measurement of Step Height by Classical Interferometry[41]

Among the different types of interferometers available, the Michelson interferometer has

been extensively used for measuring the growth rate of crystals growing from their

aqueous solution for the understanding of growth and dissolution kinetics [21,42–44].

The interferometer has also been used to observe the detailed shapes and profiles of

growth hillocks during crystal growth from solution [43].

The optical configuration of a Michelson interferometer for in situ observation of

crystal growth processes is schematically shown in Figure 24.11. A beam splitter is used

to split a laser beam into two separate beams: test beam and reference beam. The phase

of one of the interfering beams (the test beam) that is reflected from the crystal surface is

shifted due to the variations in the morphology of the crystal surface. This phase vari-

ation manifests itself in the form of changes in the resultant fringe pattern in the

FIGURE 24.9 Spiral steps of CdI2, by transmission phase contrast microscopy, in situ.
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interferogram produced due to the interference of the two beams. Though multiple-

beam interferometry after Tolansky [6] is a very sensitive method for the measure-

ment of step height, there is a limitation for in situ observation because of a spatial

configuration to use a half mirror.

FIGURE 24.10 2D growth islands of tetragonal-lysozyme crystal (left) and spiral growth steps originating from a
dislocation generated from an inclusion (indicated by an arrow) just below the surface (right) as observed using
transmission phase contrast microscopy.

FIGURE 24.11 Schematic diagram of a standard Michelson interferometer with objective lenses for surface
observation.
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The interferograms recorded using Michelson interferometry technique are capable

of providing direct qualitative as well as quantitative information about the surface

morphology of a growing crystal, e.g., growth step, 2-D islands, spiral growth hillocks,

etc. One such interferogram is shown in Figure 24.12 for illustration. The physical sig-

nificance of the fringe pattern shown in the figure can be understood as following: The

face of the growing crystal shows the presence of two large spiral hillocks and a small

hillock. These growth hillocks, originated from screw dislocations, result in an interfer-

ence pattern consisting of concentric fringes of almost equal inclinations.

The series of interferograms provides a time-dependent geographical description of

the growing face, from which various growth kinetic parameters—such as normal growth

rate R, the change of slope of the spiral growth hillock p, and the tangential growth

velocity v of the steps—Figure 24.13, can be computed. The difference of height between

adjacent fringe contours on a hillock can be expressed as:

d ¼ l=2n

Here l is the wavelength of the laser used as the light source and n is the refractive index

of the solution. Similarly, if D is the distance between the two points on a face, which lie

on the adjacent fringes, then slope of the dislocation growth hillock p is:

p ¼ tan q ¼ d

D

Michelson interferometry often employs laser illumination for quantitative measure-

ments, but noncoherent white light sources can also be used to avoid laser speckle

patterns that decrease lateral resolution. While making an interference pattern by laser is

fairly easy, it is somewhat difficult to suppress speckle noises due to unwanted inter-

ference patterns caused by reflections from other areas of the growing crystal and/or

optical components. Suppressing this noise is the key to achieving high resolution and

meaningful interference fringes.

The quality of images recorded using a Michelson interferometer can be very sensi-

tive not only to small inclusions or imperfections in the growing crystal but also to the

FIGURE 24.12 Michelson two-beam interferogram from spiral hillocks of Ba(NO3)2 growing in solution.
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surface of glass windows. This aspect of imaging has been pictorially demonstrated in

Figure 24.14. For example, since the reflectivity of the crystal surface of, say, protein

crystals is less than 1%, light scattered from inclusions, from the back side of the crystal

or glass windows, leads to a considerable amount of noise in the interference images,

thereby reducing the image contrast. Reflections from the surface of glass windows of

FIGURE 24.14 Surface observation to reduce reflections from the back side, glass windows. This simple
configuration considerably improves the image quality.

FIGURE 24.13 Schematic step profile. V, Rnormal, ls, and d are, respectively, step velocity, growth rate normal to
the surface, step spacing, and step height.
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growth cells can also distort images, and it is important to slightly tilt the windows or use

antireflection coating.

For the best imaging, it is also important to reduce the thickness of the glass windows

and the solution above the growing crystal surface since most objective lenses are

designed assuming that no medium other than air is present between the object under

study and the objective lens. The presence of such media between the object and the

objective lens causes optical aberration, which considerably reduces the contrast and

quality of images [45].

24.3 Modern Interferometry and Microscopy
for In situ Observation of Crystal Growth

Because of recent progress in optical microscopes [46,47] and interferometry [20,35],

image quality has dramatically improved compared to when in situ observation of

monomolecular growth steps began [41,48]. New cooled CCD cameras with much higher

resolution, higher contrast, and low-noise specifications and high definition recording

systems have contributed greatly to the improvements in the image quality. The

development of optics like PSI and combination of confocal principle with DIC [46,47]

have contributed extremely important improvements, too.

As mentioned previously, microscopy and interferometry developed independently,

and each has respectively been employed for qualitative 2D observation of the crystal

surface and quantitative growth rate measurements along the direction normal to the

crystal surface. The combination of these two methods is needed to get 3D information

from the surface with, for instance, spiral steps. However, this combination had not

been achieved until PSI developed for in situ observation of crystal growth. This

interferometry has a great advantage in sensitivity (two order of magnitude higher)

but also each pixel of the image has phase information (height information) and

thus each pixel possesses absolute value of height information with the accuracy of

<1 nm [20,35].

24.3.1 Phase-Shift Interferometry

Although classical interferometry is a highly sensitive measurement technique, it is still

not capable of observing and measuring growth steps with monomolecular height.

Therefore, the step height was calculated by counting the number of growth steps be-

tween two neighboring interference fringes, which corresponds to one-half of the

wavelength of the light beam, by phase contrast microscopy, for instance [32,41].

As discussed in the previous section, in order to analyze the phase arising from the

step height difference, one needs to measure the relative fringe shift from the fringe

pattern obtained using conventional two-beam interferometry (e.g., Michelson inter-

ferometer). In this regard, recent developments in the field of real-time phase-shift

interferometric techniques [20,39,49,50] have caused a revival in the concept of
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interferometry. In PSI, the intensity of fringes is directly related to the phase that we

want to measure.

The intensity I(x, y) of interference fringes from two beams E1 and E2 at (x, y) is:

Iðx; yÞ ¼ E2
1 þ E2

2

2
þ E1E2 $ cosffðx; yÞ þ 2qg (24.1)

Here f(x, y) and 2q are the phase difference and the angle between two vibrations of the

beams, respectively. As seen in Eqn (24.1), the measurable intensity I(x, y) is not

a function of the phase alone. By a process in which the phase is successively shifted by

l/4 wavelengths, the following three equations corresponding to the three phase-shifted

values can be obtained:

I1 ¼ aþ b $ cosffðx; yÞ þ 2q1g (24.2)

I2 ¼ aþ b $ cosffðx; yÞ þ 2q2g (24.3)

I3 ¼ aþ b $ cosffðx; yÞ þ 2q3g (24.4)

where a ¼ E2
1þE2

2

2 , q1 ¼ �p
4, q2 ¼ p

4, q3 ¼ 3p
4 and b ¼ E1E2.

Equations (24.2) through (24.4) lead to the simple relation:

fðx; yÞ ¼ tan�1

�
I1 � I2
I2 � I3

�
(24.5)

The phase in Eqn (24.5) is directly related to the intensity of the interferogram at any

point (x, y), which is illustrated in Figure 24.15 for the case of a lysozyme crystal growing

in its aqueous solution.

FIGURE 24.15 Principle of PSI. By successive phase shift of p/2, three interferograms (I1, I2, I3, left) are obtained,
from which one phase-shift interferogram can be calculated (right). Note the saw-shaped intensity profile along a
line in PSI. In two-beam interferogram, the profile is sinusoidal.
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PSI has the advantages of microscopy as well as interferometry because the vertical

resolution of this interferometry from each pixel of an image is less than 1 nm if a 8 bit

A/D converter is used for the processing. This value is much less than the height of

elementary steps of proteins, and therefore surface topographies with nanometer reso-

lution can be directly measured and the microscopic image can be mapped. Figure 24.8

is an example showing 2D islands of a growing lysozyme crystal with the elementary step

height of 5.6 nm. Since better 12–16 bit A/D converters are available, the vertical reso-

lution might exceed 0.1 nm in the processing. The availability of such high resolution,

however, depends on the quality of original optical images and interference fringes. The

key for success in the improvement is also whether they can suppress the optical ab-

erration. Conventional lenses are made for observing objects that are placed in air and

not in solution or melt, or through glasses or solution, and thus aberration appears in

principle for in situ observation of crystals in solution.

24.3.2 Application of Modern Interferometry to In situ
Observation of Crystal Growth

A two-beam interferogram and a phase-shift interferogram are compared in

Figure 24.16. Since PSI can directly measure the absolute height of steps, it is possible to

obtain not only height of growth steps but also the images of the steps. Roughly

speaking, the resolution of 2-beam interferometry is one-tenth of the wavelength of light.

PSI is approximately100 times more sensitive [39].

PSI has been applied to the growth of a protein crystal (lysozyme) to study the growth

mechanism, Figure 24.17. PSI image in (A) has the height information in each pixel. The

height profile along x–x0 is readily be seen to calculate the step height, 5.6 nm, which is

exactly the same as elementary step height obtained from the crystal structure of a

tetragonal hen-egg lysozyme crystal. The height information also gives a micrographic

FIGURE 24.16 Two-beam interferometry vs phase shift interferometry: ex situ observation of a SiC surface. In
phase-shift interferometry (PSI), the interference fringe intensity is proportional to the height and the 3D phase-
shift image can be directly obtained.
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image and a 3D image as shown below in (A). Successive phase-shift interferograms (B)

are important for the measurement of frequency of 2D nucleation and step advance rate

of these monomolecular steps.

This method can be applied to the dissolution of crystals with an extremely slow rate.

In Figure 24.18, an example of the dissolution process of a calcite crystal is shown

together with an A–B profile and a 3D-surface topography of etch pits in PSI image and

in a differential phase image. The latter image can be obtained by taking a derivation of

(A)

(B)

FIGURE 24.17 Monomolecular growth steps of 2D islands, tetragonal lysozyme with 5.6 nm high by white beam
PSI, unpublished (Dold and Tsukamoto). (A) The vertical resolution of PSI is less than 1 nm. Left down: a phase-
shift image of 2D islands; Right down: 3D display of the 2D islands, 5.6 nm high. (B) Successive images showing
how the crystal face grows by 2D nucleation and spread of the steps. Both nucleation rate and step advance rate
can be measured directly.
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the PSI image along the horizontal direction. Since the PSI image possesses height/depth

information, both 3D growth and dissolution rate can be calculated precisely from

desired areas. PSI could cover most of the growth/dissolution rate shown in Figure 24.5,

if the rate is more than 10�5 nm/s.

24.3.3 In situ Measurement of Growth Rate by Interferometry

Recently, PSI has been used to measure the growth rate of crystals in a precise way, as

shown in Figure 24.19. In (A), an original phase-shift interferogram of a spiral hillock on

a growing lysozyme crystal is shown. In (B), the corresponding time line along a solid

line in (A) is shown. Since the vertical axis in (B) is time, the slope of the fringes in (B) is

the spreading velocity of the fringes, which can be converted to the normal growth rate

of the spiral hillock. Among varieties of methods of growth rate, this is probably the most

sensitive and accurate way to measure crystal growth rate. The smallest growth or

dissolution rate measured to date is about 10�5 nm/s [51–54], which corresponds to a

rate of only 1 mm/year!

This sensitive method is important in environmental sciences and mineralogy

because these phenomena are usually natural phenomena and thus is very slow process

compared to the synthesis of crystals. The dissolution of concrete or clay barriers of the

containers for nuclear radioactive waste disposal underground, dissolution or alteration

of minerals or concrete [53–58], and carbon sequestration to reduce carbon dioxide in

atmosphere to form calcium carbonates underground are in such a category. Since the

FIGURE 24.18 Dissolution of a calcite crystal observed by PSI. Note the 3D dissolution topography being suitable
for small dissolution rate. The differential phase image (right) is obtained by taking derivative of the PSI image.
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process is very slow, acceleration test by changing conditions has commonly been used.

However, in situ observation techniques are capable of revealing each elementary pro-

cess during the whole reaction.

PSI is a highly sensitive technique in which even the slight disturbances from airflow,

mechanical stage vibration, cell expansion due to temperature inhomogeneity, voices, or

slight changes in ambient conditions can severely affect measurement accuracy. For

small growth rate measurements, such disturbances cause the mechanical shift of the

cell much larger than the thickness increase due to growth of crystals. In order to

compensate for these disturbances, a reference area on the surface of the crystal is

generally prepared [51,59]. For dissolution experiments, a part of the crystal surface

is masked with a thin gold foil [52–55,57].

24.3.4 Confocal Microscopy

If the crystal is transparent, transmission-type phase contrast microscopy is a highly

efficient method to observe monomolecular growth steps [41]. However, because of

defects and inclusions in crystals or because of complex crystal morphologies, reflection-

type microscopy often seems to be a better option. The method of observation of a step

profile using reflection-type microscopy is schematically shown in Figure 24.14. If the

crystal is opaque, there is no problem since the reflection of the incident light is strong.

However, if the crystal is transparent, many problems arise due to reflections from the

back side of the crystal or from inclusions within the body of the crystal. It is usually the

case that the intensity of light reflected from the back side is higher than the intensity of

light reflected from the top surface. This problem may be solved simply, for instance, by

cutting off the back side with the angle of a few degrees from the front surface to avoid

the strong reflection from back side, Figure 24.14.

(A)

(B)(B)(B)

FIGURE 24.19 Phase-shift fringes and the time line, to precisely measure the growth rate of a crystal and its
fluctuation. Tetragonal-lysozyme, unpublished.
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The principle of confocal microscopy has been used to overcome these problems. The

original idea of confocal microscopy was to get the three-dimensional profile of a

relatively flat surface by using a pinhole with a scanning laser beam [60]. In order to

reduce the effects caused due to unwanted reflections from the crystal back surface and

inclusions, new types of microscopy and interferometry have recently been developed

using of the basic principle of confocal microscopy. Laser confocal microscopy tech-

nique was coupled with differential interference contrast microscopy to produce laser

confocal differential interference contrast microscopy (LCDICM) [46]. We should keep in

mind, however, that confocal principle cannot improve the contrast of the images but

can suppress the useless reflection that reduces the contrast or the image quality arising

from inside of the crystals. This is also true for laser confocal phase-shift interferometry

(LCPSI) [37,61], which is described in the following section. This, in turn, means that if

you obtain good reflection from the surface, conventional differential interference

microscopy (DICM) is enough for quantitative surface observation.

24.3.5 Laser Confocal Phase-Shift Interferometry

The recently developed LCPSI is shown in Figure 24.20. It consists of a small Michelson

interferometer attached to a commercially available laser confocal microscope.

Compared to white light PSI, the adjustment for in situ observation of the surface is

FIGURE 24.20 Configuration of laser confocal phase-shift interferometer (LCPSI) newly developed mainly for
in situ observation of transparent crystals like protein crystals.
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much easier. In Figure 24.21, a confocal image, a two-beam interference image, and an

LCPSI image of growing lysozyme crystals are shown in comparison. The step profile

measurement of the crystal is also shown. Because the phase information is involved in

the phase-shift images, the height profile along A–B in (D) can be plotted. The steps that

consist of a hillock in (D) have double height of the step of 2D islands. This is attributed

to the fact that the unit Burgers vector of the crystal is w11 nm.

24.4 Three-Dimensional Observation of Flow
and Concentration Field

24.4.1 Convection or Convection-Free Environment

There has been extensive discussion as to why convection-free microgravity conditions

[62], in a gel or in upside-down geometry of the growth cell [63] sometimes lead to better

quality of crystals. In solution growth, the concept of forced convection has been applied

for homogenizing the concentration gradients over the growing crystals to improve the

(A)

(B) (C) (D)

FIGURE 24.21 In situ observation of lysozyme crystals: comparison between confocal microscopy (A), 2-beam inter-
ferometry (B) and laser confocal phase-shift interferometry (LCPSI) (C) and (D). Intensity of phase-shift interfer-
ence fringes is a direct representative of the height information. The step profile is from the A–B in (D).
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crystal quality. However, in convection-free conditions, the buoyancy-induced convec-

tion is generally suppressed, and thus a larger concentration gradient over the surface is

expected, yet they have been claimed to grow better quality crystals.

In order to answer these pertinent questions, the 2D supersaturation distribution over

the (100) face of a sodium chlorate crystal with/without convection under normal gravity

conditions has been conducted by measuring a 3D concentration field around the crystal

by using 3D interferometry [29]. Many researches have been conducted by interferom-

etry or Schlieren method to visualize convection or concentration fields around growing

crystals in solution [20,22,64,65] for the study of effects of convection or concentration

gradient on the crystal quality or growth mechanisms.

These studies have aimed to measure the concentration profile over the surface.

However, this is not so easy because in gravity, solutal convection cannot be avoided,

which is highly complex in shape, and thus conventional 2-D interferometry to view

along a single direction is not sufficient. In order to overcome these difficulties, multi-

directional interferometry has been applied to reconstruct 3D-distribution images

around a crystal, leading to the reconstruction of 2D distribution of supersaturation

along a surface.

Although there are many reports on the measurements of concentration fields close

to crystal surfaces, most of these are based on 2D observations, namely, projected optical

imaging from only one direction. Therefore, the resultant concentration field is path

integrated along the direction of propagation of the light beam and hence represents

path-averaged information. Previous works have shown that the concentration field

around a growing crystal is not uniform due to flow or convection, etc., and, as a result,

the growing crystal surface deviates from the desired ideal flatness.

Although some previous studies have used 3D observations to visualize convection

around the crystal [66], quantitative measurements for crystal growth studies at an

appropriate resolution of the concentration field have not been reported. Srivastava and

coworkers [28,67] observed the concentration surrounding a crystal by the Schlieren

method.

Srivastava et al. [28] recently initiated a quantitative analysis of the concentration

field around a crystal interface by using an octagonal crystal-growth cell in combi-

nation with a Mach–Zehnder interferometer, which is more sensitive in the change of

concentration field. One of the advantages that interferometry-based optical imaging

techniques offers is that, in addition to be an effective tool for mapping the surface

features of the crystal, these techniques can simultaneously be used for in situ

investigation of the associated transport phenomena in the vicinity of the growing

crystal. The distribution of concentration gradients near the crystal surface–solution

interface and surface concentration can provide important information in addressing

the coupled effects of fluid dynamics and mass transport that are often detrimental to

the crystal quality. The rate of solute transport from the solution to the crystal surfaces

is primarily controlled to the concentration gradients. Hence, a higher concentration

gradient would cause a higher probability of morphological instabilities [68–70],
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resulting in macro steps, step bunches, and solution inclusions on the growing crystal

surfaces.

24.4.2 Importance of Computerized Tomography in Crystal Growth

A crystal growing from its aqueous solution creates a three-dimensional solute distri-

bution in its vicinity that is responsible for the evolution of buoyancy-driven convection

currents in the growth chamber. Hence mapping of convection patterns as well as the

determination of the three-dimensional concentration fields is required to fully under-

stand the mechanism of crystal growth. With the availability of high-speed computers

and means for large data storage, it is theoretically possible to record a very large number

of projections of the concentration field around a growing crystal in many directions and

subsequently reconstruct the original concentration field to a high degree of accuracy

using the principles of tomography [71].

The ray indices, in Figure 24.22, are s and q, where s is the perpendicular distance of

the ray from the object center and q is the angle of the source position (or object rota-

tion). Here, z is a coordinate along the chord SD. In a given experiment, the optical

techniques collect the projection data p(s, q) for various values of s and for several q.

Usually the projection profile is measured for q ranging from 0 to p. The transformation

of an object function f(r, f) into its projection data p(s, q) is called the Radon transform.

The method of tomography then creates the 3D map of the field under study from a

collection of 2D projection data.

FIGURE 24.22 Schematic drawing showing the data collection using parallel beam geometry. S: source, D:
detector, s: perpendicular distance from the center of the object to the ray, q: view angle, and (r, f): polar
coordinates.
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24.4.3 Interferometric Tomography

This section briefly discusses the reconstruction results of three-dimensional distribu-

tion of concentration field around a NaClO3 crystal growing from its aqueous solution

using interferometric tomography technique. The crystal growth experiments have been

carried out in an octagonal growth cell. Projection data of the concentration field has

been recorded using a Mach–Zehnder interferometer from four different view angles—

0�, 45�, 90�, and 135�—by slowly turning the growth chamber [28].

Figure 24.23 shows the interferograms as recorded from four view angles. Lateral

dimension of the crystal is about 1 mm. Concentration gradients caused due to the

deposition of salt onto the crystal surfaces are visible in the form of fringe displacements

in the figure. The thickness of the solutal boundary layer can be identified as the region

over which fringe displacement is seen in the interferograms. Figure 24.24(A) shows

reconstructed concentration profiles at four horizontal planes above the growing crystal.

Figures (A–C) in Figure 24.24(A) correspond to four planes located within the thickness

of the boundary layer (at a distance of 25 mm, 50 mm, 100 mm, and 150 mm, respectively,

from the crystal surface). In Figure 24.24(B), 3D representation of the concentration map

over the crystal is shown. The stability of convection plum was reported to be related to

growth rate fluctuation [45,72] but also to the formation of quasi-hopper surface,

Figure 24.25, due to the large concentration gradient along the surface [73]. Such a large

concentration gradient was recently investigated by 3D interferometry precisely using a

cylindrical cell [29].

Murayama et al. [29] compared this result with the data from convection-free con-

dition. It has been believed that if the convection or flows were suppressed in

convection-free condition, the concentration gradient along the surface would increase

due to no solution mixing effect. However, they found that the reduction of supersat-

uration at the middle of the surface without convection is less than 40%, the value of

0o 45o

90o 135o

FIGURE 24.23 Interferometric images as recorded from four different view angles (0�, 45�, 90�, and 135�) using
the Mach–Zehnder interferometer, NaClO3.
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which is much smaller than the case when a convection plume is formed over the

surface of a crystal. This situation is shown schematically in Figure 24.26. A similar result

was obtained from the comparison of crystal growth of lysozyme under microgravity [59]

and in gravity.
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(A)

(B)

FIGURE 24.24 (A) Reconstructed concentration profiles over four horizontal planes above the top surface of the
growing crystal. The coordinate y represents the vertical distance of the horizontal plane from the crystal surface.
(B) Schematic representation of possible fluid movement in the vicinity of the growing crystal drawn on the basis
of distribution of three-dimensional salt concentration obtained using Fourier analysis–based phase-shift interfer-
ometric tomography. Blue shade represents low salt concentration, whereas green and yellow shades correspond
to relatively higher concentration of solute.
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This result would give us a key to solve why crystal quality is sometimes better in

convection-free microgravity condition because of improved stability of a crystal face

caused by more homogeneous distribution of supersaturation over along the crystal

surface [69,70]. This result will also be confirmed using the data of space experiments on

lysozyme crystal growth in the International Space Station, to be published in forth-

coming papers.

24.5 Future Developments
The contents of this chapter have emphasized the importance of recent advances made

in the field of, mainly, interferometric-based imaging techniques for nanoscopic map-

ping of morphological features of the surface of a growing crystal and the associated

hydrodynamics in the crystal vicinity. By improving optical methods, sensitivity in

the phase detection, i.e., vertical resolution for the surface observation became less

than 1 nm, and the growth rate of less than 10�5 nm/s could be measured in a short time.

This is a victory in the improvement of spatial resolution. Then, how about time

resolution?

Time resolution is practically limited by the TV rate, and thus the maximum speed of

real-time PSI [45,49] is 30 frames/s. There are many interesting phenomena in crystal-

lization. Nucleation of crystals is such a phenomenon to be investigated by in situ

methods. However, nucleation is a rapid phenomenon compared with crystal growth.

FIGURE 24.25 Formation of quasi-hopper surface due to convection plum. This depression of the surface at the
middle would result in the formation of defects, like inclusions and dislocations.
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We have therefore been trying to improve time resolution for the study of nucleation and

some other rapid phenomena. Oxide smoke particles are our target materials [74,75].

Figure 24.27 is one example that shows the nucleation of tungsten smoke particles as

observed by unpublished ultra-high speed PSI. Since the concentration of gas and the

temperature are measurable, the critical supersaturation for nucleation can be calcu-

lated, so we can test whether nucleation theories can be applicable based on experi-

mental data from in situ observation.

Finally, we emphasize the importance of coupling these optical in situ observation

techniques with other independent observation methods. We have been employing

frequency modulated AFM, which is capable of imaging atomic configuration of the

surface [76] and even the hydration structures [77] formed over a crystal surface during

crystal growth. Crystal growth proceeds via the transport of molecules from solution to

the interface. This means that precious information is stored not only at the surface of

the crystal but also in water molecule structures near the interface. We need to under-

stand how molecules arrive at the surface through hydrated structures because the

dehydration process is the most important rate-determining process in aqueous solution

growth [78].

FIGURE 24.26 Schematic summary of experimental results (A) in convective and (A) in convective-free condi-
tions. The red lines schematically represent equal concentration in the solution. The gray contour maps are
2D supersaturation distributions over the crystal surface. The blue lines show the concentration profiles along
the yellow dotted lines in the supersaturation contour maps. (A) Large reduction of supersaturation at the
middle of the crystal face due to buoyancy-driven convection. (B) Quasi-microgravity condition by suppression
of the convection using upside-down geometry. Note the reduction of supersaturation at the middle of the
face is much smaller than the case of (A). This smaller drop of supersaturation in (B) would keep the stability
of a crystal face.
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25.1 Introduction
Snow and ice are the most ubiquitous materials in our daily life, associated with weather,

winter sports, frozen foods, etc. They seasonally or perennially cover vast regions of our

planet. Snow and ice play a central role in various natural phenomena occurring in the

cryospheric regions of the earth surface and in the cold atmosphere [1–4]. In this

chapter, we discuss the growth and pattern formation of these unique materials.

Understanding the formation mechanisms of an ice or snow crystal, which usually occur

at temperatures close to their melting point, is essential for predicting the future of the

earth’s climate, geology, and life. They are also interesting in relation to crystal growth

fundamentals, surface sciences, morphological instability, and pattern formation. Snow

and ice crystals, while both are crystals of water, are recognized as crystals grown from

supersaturated water vapor during their fall through clouds and as crystals grown from

supercooled liquid water, respectively.

Snow crystals, as shown in Figure 25.1, have been among the most familiar natural

crystals to people living in cold-climate regions of the earth. Their natural beauty and

exquisite symmetry property undoubtedly fascinate anyone observing them for the first

time. Observations of natural snow crystals have a very long history, beginning in 1611

with Kepler’s [5] discussion of why snow crystals are hexagonal in his book entitled

A New Year’s Gift on the Six-cornered Snowflakes. The historic transition of snow crystal

observations has been discussed in detail by Kobayashi and Kuroda [6].

Probably the most famous publication about snow crystals is the book entitled Snow

Crystals, which was published in 1931 by Bentley and Humphreys [7]. It includes
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approximately 2500 micrographs of natural snow crystals taken by Bentley, who was a

farmer by trade, not a scientist. His pictures, however, are impressive in light of the fact

that the universal hexagonal shapes and infinite number of beautiful patterns observed

in snow crystals are hidden in a veil of mystery. Professor Ukichiro Nakaya of Hokkaido

University, Sapporo, who had been inspired by Bentley’s book, started research on snow

crystals in 1932. He began by observing natural snow crystals and took more than 3000

photographs in mountainous areas of Hokkaido over a period of several years [8].

Initially, he classified the snow crystal patterns into about 40 categories of morphology.

He subsequently succeeded in producing almost all natural snow crystal morphologies

in the laboratory [9]. As a result, he elucidated the relationships between shapes of snow

crystals and atmospheric conditions (i.e., temperature and supersaturation of the

(A)

(C) (D)

(B)

FIGURE 25.1 Pictures of naturally occurring snow crystals taken in the mountainous area of central Hokkaido,
Japan using a conventional microscope with a special illumination method. (A) Hexagonal plate (planar view),
(B) hexagonal dendrite (planar view), (C) hexagonal prism (side view), and (D) needle. Scale bars indicate 0.5 mm.
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atmosphere). He summarized his results in the form of a diagram [8], which is now

referred to as the Nakaya diagram. This diagram allows one to “read” the meteorological

information “written” on a snow crystal, because the weather conditions in the upper air

can be inferred by observing snow crystal morphologies on the ground. In this sense,

Nakaya was often quoted as referring to a snow crystal as “a letter from the sky”. He

might be considered to be the first researcher who discussed snow crystals as a topic of

physics prior to the emergence of the crystal growth research field [4,6].

Nakaya’s pioneering work, however, did not provide answers to basic questions, such

as why the morphology of snow crystals can change drastically with only slight variations

of crystal growth conditions as described in subsection 25.4.1. Although many re-

searchers had struggled with this difficult problem over the 50 years after Nakaya’s work,

they had not been able to obtain satisfactory understanding for the remarkable variety of

observed snow crystal shapes, because elucidation of this fascinating mystery is strongly

associated with knowledge accumulation about the crystal growth fundamentals. In the

last two decades, important clues in the formation mechanisms of a variety of snow

crystal shapes have been discovered.

The first in-situ observation of ice crystal growth in supercooled water was also

carried out at the laboratory of Nakaya in 1952 [10,11]. Growth patterns of an ice crystal

at the surface of supercooled water were photographed by the method of shadowgraphy

and clearly showed the process of morphological instability at the interface between the

solid and liquid. This work was carried out more than 10 years before publication of the

Mullins–Sekerka instability model in 1964 as the first model of morphological instability

at the crystal–melt interface [12].

Thus, crystal growth and pattern formation on snow and ice crystals include many

kinds of basic subjects related to various aspects of the fundamentals of crystal growth.

In this chapter, we will introduce the special features of pattern formation and

morphological instability of snow and ice crystals.

25.2 Crystallographic Features of an Ice Crystal
Crystalline features are very important to consider the growth of a crystal. Because

unusual and typical features of the crystalline structure of ice have been discussed in

detail in many books [13–16] related to ice crystals, we summarize those very briefly

here. When liquid water freezes under usual atmospheric conditions or water vapor is

deposited at temperatures below 0 �C or above about �80 �C, the water molecules are

arranged in orderly repetitive positions to form a crystalline solid with hexagonal sym-

metry, which is referred to as normal hexagonal ice Ih, or simply ice. Although ice Ih is

just one of at least 13 polymorphs that have been observed under different conditions of

pressure and temperature, it is the most important and popular phase appearing in

terrestrial conditions [16]. Because we consider only the first-order phase trans-

formations between vapor–solid phases or liquid–solid phases in this chapter, a phase

diagram between ice Ih and the liquid and vapor phases around the triple point (273.16 K
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and 611.7 Pa) is shown in Figure 25.2. It is well known as the basic feature of ice that the

ice Ih melting point curve (the boundary between ice Ih and water phases) has a negative

slope with increasing pressure, and the melting point reaches 273.15 K at atmospheric

pressure, which is taken as the zero degree of the Celsius scale of temperature. The

negative slope of the melting curve also reflects phenomena such as increase in the

specific volume of ice by freezing of water and melting of pressurized ice below 0 �C. This
feature also appears on crystals of semiconductors, such as Si and Ge [17].

FIGURE 25.3 Crystallographic structure of
ice Ih. Each oxygen atom (indicated by large
spheres) makes a water molecule with the
association of two hydrogen atoms (indicated
by small spheres) at the tips of bars
extending from each oxygen atom and
connects with four neighboring oxygen
atoms by the hydrogen bond. The hydrogen
atoms are disorderly arranged in ice Ih, in
accordance with the Bernal–Fowler rules.
Adapted from Nada [18].
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FIGURE 25.2 Phase diagram of H2O around the triple point (273.16 K and 611.7 Pa). Dotted line indicates the
equilibrium line between vapor and supercooled water. Scales of the longitudinal and abscissa axes are not
accurate but the drawing specifies the feature of phase diagram.
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Figure 25.3 shows the crystalline structure (P63/mmc) of ice Ih [18]. Oxygen atoms,

shown by large spheres, are arranged on a hexagonal lattice with a structure named after

the mineral wurtzite. Each oxygen atom is covalently connected to the four nearest

neighboring oxygen atoms located at the corners of a tetrahedron by hydrogen bonds.

The hydrogen atoms, shown by small spheres, are located on two alternative sites on

each bond to form H2O molecules in the crystal lattice. A statistical model for the

disordered arrangement of hydrogen atoms in the crystalline lattice of ice Ih is domi-

nated by assumptions referred to as the ice rules (namely, Bernal–Fowler rules [19]),

which are “there are two hydrogen atoms adjacent to each oxygen atom” and “there is

only one hydrogen atom per bond”. As a result, completely disordered structures for the

“orientations” of water molecules in three dimensions are produced, and this disordered

structure remains even at the absolute zero temperature. It is called “residual entropy” or

“zero-point entropy” [14,15,20]. The unusual dielectric and conductive properties of ice

are strongly related to how water molecules turn round or protons flow through the

crystalline lattice originating from the disordered structure of ice, rather than the

molecular arrangement and lattice vibrations of an ice crystal.

The ice crystalline structure contains many kinds of point defects, dislocations, and

planar defects in common with other crystalline materials [16,21]. It is well known that

there are several categories for point defects in ice: molecular defects, impurity defects,

electronic defects, protonic defects, and combined defects. Dislocations in the ice

structure are also formed during the growth and plastic deformation of ice crystals and

can be directly observed by X-ray topography [16,22]. Because the crystal structure of ice

consists of basal {0001} planes of molecules stacked on top of one another, a stacking

fault can be easily introduced as a planar defect normally lying on a basal plane. This

structural feature relates to the transformation between hexagonal ice and cubic ice,

which will be described in Section 25.4.5.

25.3 Surface Structure of an Ice Crystal
25.3.1 Surface Melting

Crystal growth rates strongly depend on the microscopic structures of crystal surfaces. It

is well known as a basic property of ice surfaces at temperatures in a range close to the

melting point that the ice surface is covered by a thin melted liquid film, a so-called

quasi-liquid layer (QLL) or liquid-like layer, since Michael Faraday [23] first proposed

the existence of such a layer on an ice crystal in the 1850s. The QLLs play very important

roles in the slipperiness of a skating rink [24], regelation (pressure-induced change in

freezing) [25], dynamics of ground freezing [26–28], evolution of the polycrystalline

fabrics of great ice sheets [24], mechanism of charge transfer that drives thunderstorm

electrification [29,30], icicle growth from the thin water layer [31], ozone destruction [32],

and so on. However, the most interesting phenomenon related to the QLL is the pattern

formation of snow crystals. In the 1980s, Kuroda and Lacmann [33] first pointed out the
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relationship between the habit change of snow crystals and the anisotropic property of

surface melting of ice, and Furukawa et al. [34] confirmed the existence of QLLs on both

the basal {0001} and prismatic f1010g faces of ice and their anisotropic properties using

the method of ellipsometry. This phenomenon is a kind of first-order phase transition

occurring on the crystal surfaces or interfaces and is not unique to ice crystals but

generally occurs on many kinds of crystals [35]. It is well known that superheating of a

crystal, which is the effect opposite to supercooling of the liquid, is never observed

except in the internal melting cavity, such as a Tyndall figure formed inside an ice crystal

by infrared radiation [15]. The reason comes from the fact that a crystal surrounded by

surfaces or interfaces can start to melt by the continuous increase in QLL thickness at the

melting point [17]. That is, surface nucleation process is not required for bulk melting of

a crystal.

Here, let us briefly consider the thermodynamic aspect of the QLL, because the

detailed properties of a QLL based on thermodynamic consideration have been

described in many previously published reports [18,35–37]. The existence of a QLL on

the surface below the melting point is disadvantageous in the sense of free energy of the

bulk liquid phase but is advantageous in the sense of total surface free energy. The

wettability parameter, which is calculated by the equation DsN ¼ ssv � (sqv þ ssq), is a

judgment condition for the occurrence of surface melting, where ssv, sqv, and ssq are the

interface free energies at solid (s)-vapor (v), QLL (q)-vapor (v) and solid (s)-QLL (q),

respectively, as shown in Figure 25.4. Namely, a QLL can exist on the surface when DsN
is positive. Although it is not easy to determine the value of DsN, predicted values of DsN
for major elements’ crystals are summarized in Ref. [35].

The total free energy, s, of the vapor-QLL-crystal interface system for a unit area is

given by

s ¼ ssq þ sqv þ LN
DT

Tm

; (25.1)

FIGURE 25.4 Schematic illustration of ice crystal surfaces: (A) a bare surface; (B) a surface covered with a quasi-
liquid layer (QLL) formed by surface melting. At a temperature, T, lower than the critical temperature, Tsm, of
surface melting, the bare ice crystal surface is thermodynamically stable. In contrast, at T > Tsm, the crystal surface
covered with a QLL with a thickness d becomes stable. ssv, sqv and ssq show free energies at each interface.
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where L is the latent heat of melting for one molecule, N is the number of molecules

contained in the QLL of thickness d, Tm is the melting temperature, and

DT ¼ Tm � T. QLLs show properties that are intermediate between those of solid and

bulk liquid, and more specifically, thinner QLLs receive stronger effects of substrate

crystalline characteristics. Based on this equation, the equilibrium thickness of the

QLL deq can be determined by minimization of the total free energy. For example, if

we assume a long-range interaction between the molecules, it is given by the power

function,

deqðT Þ ¼ a

8<
:
 
TmDsNpN

p�1
0

DTL

!1=ðpþ1Þ

� 1

9=
;: (25.2)

Here, N0 is the number of molecules on a crystal surface for a unit area, and then

d ¼ aN/N0: a is a lattice constant of crystal, and p is the positive integer.

In the case of an ice crystal, Kuroda and Lacmann [33] clarified that the value of DsN
becomes positive just below the melting point and the crystallographic-surface

dependence of DsN is estimated to be DsNð1010Þ < DsNð0001Þ from the specific

surface density of dangling hydrogen bonds and the hydrogen-bond energy estimated

from latent heat of vaporization. This result indicates the relation of

deqð1010Þ > deqð0001Þ. In addition, when we assume that long-range interaction, such as

van der Waals attraction, dominates the interaction between water molecules, deq is

given by Eqn (25.2) and p ¼ 2. Because deq is proportionate to DT �1/3, QLL grows thick

up to infinity at 0 �C, at which temperature ice and water coexist as indicated in the

phase diagram.

As the thickness becomes equal to or thinner than one monomolecular layer below a

critical temperature, TSM, the crystal surface is no longer covered with the QLL and is

regarded as a surface that is geometrically irregular. It may correspond to the case of a

rough or uneven surface. The degree of this irregularity may decrease with falling

temperature and become very small at another particular temperature and finally

become a molecularly smooth surface. This is the so-called thermal roughening tran-

sition [38,39]. These two transition temperatures correspond to the surface melting

temperature and the roughening transition temperature, respectively, and these

temperature-dependent surface structures may cause critical changes in growth kinetics

and eventually in growth rates, as described in Section 25.4.

25.3.2 Experimental Evidence for Surface Melting of Ice

The existence of QLLs on ice surfaces had been claimed by many researchers, in

connection with many interesting phenomena related to the surface structures

[29,40–43]. Various experimental studies on ice surfaces melting at vapor surfaces have

been carried out using a variety of techniques, including optical determination

[34,44,45], proton channeling [46], glancing angle X-ray scattering [47,48], atomic force

microscopy [49,50], sum-frequency vibrational spectroscopy [51,52], and near-edge
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X-ray absorption fine-structure spectra [53]. The existence of QLLs at grain boundaries

and interfaces between the ice crystal and other substrates has been also detected by

various experiments using optical determination [54], nuclear magnetic resonance

[55–57], adsorption isotherms [58], X-ray diffraction pattern [59,60], Fourier trans-

formation infrared spectroscopy [61,62], and so on. Major results for QLL thickness and

properties are summarized in Table 25.1. It should be noted that experimental results for

QLL have still scattered and that exact structures and dynamic properties of ice surfaces

have remained unclear, as pointed out in Ref [16].

Even though all the experimental results described in Table 25.1 indicated that the ice

surface is covered by a QLL, definite evidence for QLL thickness and physical properties

has been obtained only by noncontact optical measurements. Beaglehole and Nason [44]

and Furukawa et al. [34] used the ellipsometry method for ice surface samples placed in

air-filled chambers, and Elbaum et al. [45] conducted measurements of reflectivity at the

Brewster angle for samples placed in a pure water-vapor environment. Because the

melting of low-index surfaces, such as basal and prismatic planes at equilibrium in clean

environments, is limited to a span of only a few degrees below the melting point,

particular care was taken to assure crystal surface perfection in all three studies.

Beaglehole and Nason [44] used samples cut from a single crystal and then wiped with a

warmed copper blade, but the surface orientations were off within �20� from the exact

basal or prismatic planes. On the other hand, Furukawa et al. studied surfaces lumbered

from “negative crystals” [34,64,65], which are cavities grown in a single ice crystal. These

surfaces had exact orientations of both basal and prismatic planes and were molecularly

smooth because they were formed by layer-by-layer evaporation. Elbaum et al. [45]

prepared vapor-deposited surfaces on freshly cleaved mica.

The results all showed that surface melting depends on orientation; for example, the

lowest temperatures at which Furukawa et al. [34] could detect liquid were 2 �C on

the basal face but �4 �C on the prismatic face, and the QLL thickness was larger on the

former than on the latter at temperatures above �1 �C. In addition, the index of

refraction for the QLL was also measured as 1.330, which was very close to that for the

bulk water, 1.333, but slightly smaller. This was the first result suggesting that the

transition layers observed on ice crystal surfaces had a physical property different from

that of bulk water. In contrast, Elbaum et al. [45] found the surface melting of both basal

and prismatic faces was incomplete, with the QLL thickness being far larger on the

former than on the latter. On basal faces, QLL smoothly became thicker as it was

warmed, but halted at a few hundredths of a degree below Tm and then droplets were

observed on the wetted surface above this temperature. Thus, they claimed that the

melted layer no longer wetted the bulk ice within that narrow interval below Tm [66].

Elbaum and Wettlaufer [67] found that the behavior changed to complete surface

melting—that is, smoothly increasing to divergence at Tm, when the ice surface was

placed in air. This finding is consistent with the results of earlier works [34,44] carried out

in an atmosphere of humid air that showed surface melting smoothly increased all the

way to Tm.
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Table 25.1 Summary of Experimental Evidence for Quasi-Liquid Layers (QLLs) on Ice Surfaces

Technique (References) Technical Merit Sample Preparation Thickness of the QLL Description for the QLL

Nuclear magnetic resonance
[57]

Detects the liquid state in the
solid state by nuclear
resonance measurement

Ice–silica interface w90 nm at �1 �C QLL was detected even
below �30 �C

Attenuated total reflectance-
Fourier transform infrared
spectroscopy [61,62]

Detects the liquid state in the
solid state by infrared
adsorption

Grain boundaries in
polycrystalline ice

5 nm at �1 �C Disordered layer was
detected over �40 �C

X-ray diffraction pattern [59] Detects the distribution of H2O
molecules from the lattice
points

Surfaces and grain boundaries

Proton channeling [46] Detects thermal vibration of
the oxygen atoms in the QLL

Basal surface prepared by
cleavage of ice–glass interface

w94 nm at �1 �C

Ellipsometry [34] Measures the dielectric profile
at the surface

Exact basal and prismatic
surfaces prepared by the
negative crystal method

20 nm for both basal and
prismatic surfaces at �1 �C

Anisotropy between basal
and prismatic surfaces, and
refractive index of
QLL w1.330

Optical reflectmetry [45] Measures the dielectric profile
at the surface

Vapor-deposited surfaces on
freshly cleaved mica

w7 nm in air and w2 nm in
pure water vapor at �1 �C

Incomplete wetting in pure
water vapor, but complete
wetting in air

Sum-frequency vibrational
spectroscopy [51,52]

Measures the degree of
orientational order of the
dangling OH bonds at the
surface

Basal surfaces in contact with
air, a hydrophobic substrate,
and a hydrophilic substrate

Disordered structure was
detected above 200 K and
increased dramatically with
temperature

Glancing angle X-ray scattering
[47,48]

Detects the disruption of the
hydrogen-bonding network at
the surface

Basal and prismatic surfaces 30 nm on the basal surface
and w90 nm on the
prismatic surface at �1 �C

Near-edge X-ray absorption
fine-structure spectra [53]

Measures the intensity of
transition from O1s core state
to empty states which is
affected by the bonding
environment of H2O molecules
at the surface

Surface of polycrystalline ice w2 nm at �1 �C

Atomic force microscopy
[49,50]

Measures jump-in distance
induced by capillary force from
the QLL

Surface of polycrystalline ice w20 nm at �1 �C

Laser confocal microscopy
combined with differential
interference microcopy [63]

Visualizes a thin layer with a
height smaller than the
monomolecular scale

Exact basal and prismatic
surfaces epitaxially grown on
the cleavage surface of AgI

Two types of QLL, namely
a- and b-QLL, were first
observed
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25.3.3 Visualizations of QLL Behaviors on a Molecular Scale

For experiments previously carried out for an ice crystal, uniformly covering QLLs on

an ice surface had been assumed as a prerequisite for analyzing their thickness and

properties, because no one had succeeded in observing the dynamic behavior of a

QLL on the ice surface. Only recently, Sazaki et al. [63,68] successfully observed

dynamic behaviors of QLL on basal surfaces of ice placed in a nitrogen atmosphere by

using a newly developed microscope consisting of a laser confocal microscope com-

bined with a differential interference microscope (LCM-DIM), which could directly

visualize the 0.37-nm-thick elementary steps on ice crystal surfaces [69]. Figure 25.5

shows the surface morphologies of basal faces. “Elementary steps” were seen on the

surfaces at temperatures below �0.2 �C (Figure 25.5(A)), but rounded objects (white

arrowhead) appeared at �0.3 �C (Figure 25.5(B)). Then, the number and size of

rounded objects both increased with a rise in temperature (Figure 25.5(C)). Although

they look like droplets, analysis of interference fringes observed on the droplets

FIGURE 25.5 Appearance of a quasi-liquid layer (QLL) with a curved surface shape (a-QLL phase), indicated by
white arrowheads on a basal face of an ice crystal [68]. Temperatures of ice samples were (A) �0.6 �C, (B) �0.4 �C,
and (C) �0.3 �C. Black arrowheads and black arrows indicate elementary steps and their directions of movements,
respectively. (D) Interference fringes that appeared on the surface of a different ice crystal at �0.3 �C. Adapted
from [68].
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showed that they are about 50 mm in width and about 0.5 mm in height (in

Figure 25.5(D)); namely, their height/width ratios are very small (less than 1/100). At a

higher temperature of �0.2 �C, a different type of QLL, like a thin layer, newly

appeared, as shown by the half-white/black arrowheads in Figure 25.6. When the

temperature was further increased to �0.1 �C, a bare surface with advancing

elementary steps in the left side of the observation area and a surface covered with a

melted layer in the right side coexisted at the same time. The thickness of the thin

layer was smaller than the detection limit of interferometry (smaller than several tens

of nanometers). This result means that two types of QLLs exist on ice surfaces, and

they were named a-QLL and b-QLL, respectively. Amazingly, both types of QLLs are

immiscible in spite of the fact that both QLLs are identical, and also the feature of

surface melting of the ice is completely different from the traditional concept of the

surface being covered by a uniform QLL with temperature-dependent thickness. In

conclusion, there remain many unanswered questions regarding ice surface struc-

tures, and even the mechanisms of various natural phenomena related to the surface

melting must be reconsidered in the future.

25.3.4 Computer Simulation Studies of Ice Surface Structures

Surface melting of an ice crystal has been a popular and attractive subject for computer

simulation, especially molecular dynamics (MD) simulation, and has been treated over

and over again by many researchers, depending on the advanced technological stage of

computers. Weber and Stillinger [70] first found that melting of a 250-molecule hexag-

onal ice crystal began at the surface and proceeded inward at �150 K, and Kroes [71] also

found that the onset of surface melting of the basal face began with high molecular

rotational and translational mobility at about �40 �C. However, the most important MD

simulations were carried out by Nada and Furukawa, who examined the microscopic

structures of ice-vapor and ice-water surfaces and their relation to growth kinetics

[72–74] (see Figure 25.7). They used a newly developed potential model (six-site model)

for an H2O molecule [75] that was designed to adjust to various physical properties of

both water and crystalline ice. Their simulation showed that the surface melting of basal

and prismatic faces differs in onset temperature and temperature dependence of QLL

thickness, consistent with the results of ellipsometry measurement [34] discussed in the

previous section.

25.4 Growth of Snow Crystals
25.4.1 Typical Features of the Growth Morphologies of Snow Crystals

Even though naturally observed snow crystals include not only many types of single-

crystalline patterns but also many types of twinning patterns, pictures of natural snow

crystals in books or the literature are often single-crystalline types, as shown in

Figure 25.1. The reason for this is that taking pictures of polycrystalline snow crystals
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with three-dimensional structures using a microscope is very difficult compared to

taking pictures of single snow crystals with planer configuration. In this section, we first

describe the pattern formation of single-crystalline snow crystals and briefly describe the

formation of twinned snow crystals at the end.

FIGURE 25.7 Surface structures of the basal and prismatic faces of an ice crystal, obtained by a 2-ns molecular
dynamics simulation at 280 K, which is very close to the melting point [18]. The six-site potential model for a
water molecule [75] and the Ewald summation method for estimation of the Coulomb interaction were used in
the simulation. The melting point for the hexagonal ice crystal in this model was predicted to be 289 K [76].
Adapted from Nada (2013).

FIGURE 25.6 Appearance of a quasi-liquid layer (QLL) in the state of a thin film (b-QLL phase), indicated by half-
white/black arrowheads, with a rise in temperature [68]. Temperatures of ice surfaces were (A) �0.2 �C and (B–D)
�0.1 �C. Images (B)–(D) were taken at 0, 18, and 239 s after the temperature reached �0.1 �C. Other arrows and
arrowheads indicate the same as those in Figure 25.5. Adapted from Sazaki (2012).
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As mentioned in Section 25.1, the first full-fledged study on snow crystals goes back to

the determination of the Nakaya diagram in the 1940s, which shows the relationship

between their growth patterns and growth conditions. Since then, many researchers

[77,78] have carried out experiments on the growth of artificial snow crystals. Finally,

Kobayashi [79] updated the Nakaya diagram of snow crystal shapes as a function of

temperature and excess vapor density by the consolidation of various experimental

results (see Ref. [4] about this diagram). The most important thing indicated by this

diagram is that there are two kinds of changes in snow crystal shapes [33], as shown in

Figure 25.8. That is, the first one shows three alternations of the basic patterns of snow

crystals with falling temperature: namely, from plate to prism at �4 �C, to plate again at

FIGURE 25.8 An illustration showing two basic changes of snow crystal patterns. The horizontal axis indicates the
temperature dependence of the habit change, and the vertical axis indicates the degree of instability for the
facetted crystals as a function of supersaturation. Each pattern at the four corners, (A)–(D), indicates the basic
patterns of snow crystals and corresponds to the pictures, (A)–(D), shown in Figure 25.1. The diverse shapes of
natural snow crystals arise from intermediate configurations among these basic patterns or combinations of these
different patterns. Modified from Ref. [33].
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�10 �C, and then to prism at �22 �C. This temperature-dependent change is the

so-called habit change. The second is a change of in pattern from a simple hexagonal

shape to a more complicated shape with increasing supersaturation, such as from a

hexagonal plate to a sector plate and then to a hexagonal dendrite in the temperature

ranges of 0 to �4 �C and �10 to �22 �C or from a hexagonal column to a skeletal crystal

and then to a needle crystal in other temperature ranges. This change relates to the

“instability on facetted surface” occurring during the growth of a polyhedral crystal [80].

Namely, we can claim that the shapes of snow crystals should be distinguished by only

four categories, delineating the growth features of snow crystals (i.e., plate, prism (col-

umn), dendrite, and needle), which correspond to the pictures of snow crystals shown in

Figure 25.1. Actually, natural snow crystals may be formed as intermediate shapes

between different types and/or complete transitions from one type to another type

during the growth.

Before considering the basic pattern formation mechanisms of snow crystals, it will

be very useful to consider the initial process of snow crystal formation in the cloud.

Small ice particles (the origin of snow crystals) are formed in a cloud by the freezing of

small cloud droplets with diameters of approximately 10 mm. Such particles with

spherical shapes start to grow in the supersaturated water vapor. Because only the

crystallographic planes with the lowest growth velocities can survive during the growth,

the initially spherical particles grow into hexagonal prisms with an aspect ratio of nearly

unit (lc/la w 1). Here, lc is the length along the c-axis and la is the diameter along

1120-axes. The fundamental prisms continue to grow while falling through the cloud,

and their shapes change into plate-like or columnar habits. It should be noted that the

habit of a snow crystal is determined as a necessary consequence of crystal growth.

When the growth rate of the basal plane, R(0001), is larger than that of the prismatic

planes, Rð1010Þ, the habit becomes prism-like (lc/la > 1). When the reversed relation

Rð0001Þ < Rð1010Þ holds, a plate-like habit (lc/la < 1) appears. Consequently, the

fundamental challenge in understanding the habit change is to clarify the alternative

changes in the growth rates between the basal and prismatic planes.

25.4.2 Kuroda–Lacmann Model for the Habit Change of Snow Crystals

The habit change of snow crystals is related to the temperature-dependent surface

structures, as mentioned in the previous section. Here, we introduce one of the mech-

anisms for the habit change of snow crystal patterns based on the model proposed by

Kuroda and Lacmann [33]. This model is based on the growth mechanism depending on

different surface structures and anisotropic changes of surface structures on the basal

and prismatic surfaces. This model is schematically shown in Figure 25.9. First, we

consider the growth mechanisms of ice surfaces with different structures.

Smooth surface (at region III below the transition temperature TII/III): Incident water

molecules from vapor are incorporated only at the kink sites along the growth steps

after diffusion along the surface. These growth steps on the ice surfaces are thought
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to be formed by a two-dimensional nucleation mechanism, because few screw dis-

locations are observed in snow crystals [81]. The growth rate or nucleation rate

depends on the relative supersaturation on the ice surface. Consequently, the growth

rate in region III, RIII, is determined by the nucleation rate J, as well as the step

velocity v [33]:

RIII ¼ dJ1=3v2=3; (25.3)

where d is the average spacing of growth steps.

Rough surface (at region II between the transition temperatures of TI/II and TII/III):

Incident water molecules from vapor should be immediately incorporated after

attachment to the rough surface (i.e., the adhesive growth mechanism). Consequently,

the growth rate is dominantly determined by the diffusion process of water molecules in

the atmosphere surrounding the growing snow crystal and the growth rate in region II,

RII, is given by the Heltz-Knudsen equation of

RII ¼ ac

�
p� pi

�
U

ð2pmkTÞ1=2
; (25.4)

where p is the actual pressure of water vapor in the atmosphere, pi is the equilibrium

vapor pressure of the ice surface, U is the molecular volume, m is the mass of a water

molecule, and ac is the condensation coefficient. For adhesive growth, ac z 1.

Surface covered by a QLL (at region I above the transition temperature of TI/II): Growth

rate, RI, is determined by the balance between the rate of incorporation of

water molecules from vapor to the QLL, RQLL
I , and the rate of solidification from the

QLL to the crystal lattice, R
QLL=ice
I —namely, the V-QLL-S mechanism. For example, the

former is determined by the Hertz–Knudsen equation and the latter is determined by

FIGURE 25.9 Kuroda–Lacmann model to
explain the habit change of snow crystals
depending on the temperature-
dependent change of ice surface
structures and its anisotropy between the
basal and prismatic faces. Modified from
Ref. [33].
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two-dimensional nucleation at the interface between the QLL and ice, and the two rates

must be equal in a steady state:

RI ¼ RQLL
I ¼ R

QLL=ice
I : (25.5)

This mechanism is basically the same as the VLS growth mechanism, which is a well-

known mechanism for the growth of a eutectic system [82]. However, the driving forces

for the two mechanisms are different—namely, thickness of the QLL for the former and

solute concentration in the liquid for the latter.

Based on this model, Kuroda and Lacmann calculated the growth rates of ice surfaces

as a function of temperature. In conclusion, the relationship of RII > RI [ RIII was

confirmed, and those growth rates are schematically shown by arrows in Figure 25.9. On

the other hand, the transition temperatures TI/II and TII/III of the surface structure as well

as growth mechanism depend on the surface orientation. Taking into consideration the

anisotropic surface free energies, they obtained the relations of TI=II ð0001Þ > TI=II ð1010Þ
and TII=III ð0001Þ > TII=III ð1010Þ. Consequently, if we assign

TI=II

�
0001

� ¼ �4
�
C; TII=III

�
0001

� ¼ �10
�
C; and

TI=II

�
1010

� ¼ �10
�
C; TII=III

�
1010

� ¼ �20
�
C;

we can divide the temperature region into four parts according to the combination of

growth mechanisms of each surface, as shown in Figure 25.9. In temperature region A,

both surfaces grow by the V-QLL-S mechanism, but the relation Rð0001Þ < Rð1010Þ can
be expected on the basis of a detailed discussion about the step energy dependence at

two-dimensional nucleation growth. In temperature range B, because the basal surface

grows by the adhesive mechanism but the prismatic plane continues to grow by the

V-QLL-S mechanism, Rð0001Þ[Rð1010Þ. In temperature range C, Rð0001Þ � Rð1010Þ, as
is the case in range B. In range D, both surfaces grow by the two-dimensional nucleation

mechanism, but Rð0001Þ > Rð1010Þ can be obtained by taking into consideration the

vapor diffusion field around the crystal. In conclusion, the habit change of a snow crystal

depending on growth temperature can be explained by the behavior of anisotropic

surface melting.

This theoretical aspect for the habit change of a snow crystal provides an elegant

solution to the problem that has alluded many researchers for a long time. To examine

this model, it is important to continue to study ice crystal surfaces and growth kinetics in

more depth by various methods.

25.4.3 Formation of a Dendritic Pattern of a Snow Crystal

Snow crystals grow from water vapor in the atmosphere, and both the diffusion process

of water vapor to the growing surface and the diffusion process of heat released from the

surface are important, as well as the surface kinetic process. External forms of snow

crystals change remarkably during growth depending on the degree of supersaturation in

addition to the atmospheric temperature. A spherical single ice crystal with a radius in
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the order of 1–10 mm is initially formed by freezing of a supercooled water droplet in a

cloud, and then it grows into a hexagonal prism bounded by two basal and six prismatic

faces. The hexagonal prism growing in the temperature region between �10 and �22 �C,
for example, forms various types of plate-like snow crystals such as a hexagonal plate,

sector plate, and dendrite. In this section, we summarize the simulation of pattern

formation in growth of plate-like snow crystals based on the work of Yokoyama and

Kuroda [83].

The formation of snow crystal patterns is mainly controlled by a diffusion process for

supplying the water vapor in air toward the crystal surface and a surface kinetic process

for incorporating the water molecules into the crystalline lattice. Because the growth rate

is not so large, the effect of thermal diffusion of released latent heat can be ignored.

Yokohama and Kuroda treated the formation of growth patterns starting from a circular

single ice crystal in two dimensions. Growth rate determined dominantly by a surface

kinetic process, Vk, is generally calculated by the following equation:

Vk ¼ bðq; sSÞsS; (25.6)

where b(q, sS) is the kinetic coefficient depending on the rotation angle q around the

0001-axis of hexagonal ice crystal and the surface supersaturation sS. The q dependence

for b(q, sS) has six minima with respect to 60� corresponding to six prismatic planes. As is

well known, sS is determined by the interaction between the diffusion process and

surface kinetic process. If there is no anisotropy for the kinetic coefficient, we may still

obtain circular disk forms. When the minima of anisotropic kinetic coefficients are

sufficiently deep, anisotropy of growth rates also become stronger and then prismatic

faces appear as facet surfaces. For an intermediate degree of anisotropy, the area of

facets decreases with increase in sS. As an example of the source of anisotropic kinetics,

Yokoyama and Kuroda [83] assumed that growth steps on the prismatic faces are sup-

plied from the screw dislocations emerging at the center of six prismatic faces during the

growth process from a circular disk to a perfect hexagonal plate and at the corner of

hexagonal plates for further growth process.

By the condition of mass conservation, the growth rate Vk determined by the surface

kinetic process must be equal to the growth rate Vd that is determined by the volume

diffusion process under a steady-state condition [84], namely Vk ¼ Vd. Furthermore, su-

persaturation s in the region surrounding a crystal is governed by the Laplace equation for

diffusion: Ds ¼ 0. Adding the boundary condition specified as s ¼ sN, Yokoyama and

Kuroda solved the diffusion field and the pattern development of snow crystals as a

function of growth time. Here, sN is the supersaturation far from the growing snow crystal.

By this analysis, Yokoyama and Kuroda obtained various patterns ranging from a

circular disk to a dendritic pattern as functions of the diffusion coefficient of water vapor

in air and the value of sN. Figure 25.10 shows the growth process of a snow crystal under

the conditions of D ¼ 0.2 cm2/s (corresponding to the value in 1 atm air) at 258.15 K

(–15 �C) and sN ¼ 8.5, 17, and 34%. The initial circular disk changes to a hexagonal disk,

and the corners start to develop, and finally dendritic patterns are formed. It should be
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noted that the six primary branches have periodic structures at their tips caused by the

bunching process of monomolecular growth steps. These structures may play a role in

the formation of secondary branches of snow crystals, because surface supersaturation

at the bunch should become a local maximum. In conclusion, Yokoyama and Kuroda

showed that snow crystal patterns strongly depend on crystal size in addition to

supersatuation.

25.4.4 Effect of Air Flow on Pattern of a Snow Crystal

It is well known that dendrites observed in natural snow crystals always have extremely

refined hexagonal symmetry, as shown in Figure 25.1. Natural snow crystals grow during

their fall in the atmosphere and achieve a falling velocity of 30–100 cm/s depending on

the crystal shape and size [85]. On the other hand, artificial snow crystals grown in a

growth chamber usually lack symmetry, as indicated by many pictures of artificial snow

crystals appearing in the literature [8,78]. Because artificial snow crystals are usually

fixed on a thin fiber, this asymmetry may occur due to the lopsided supply of water vapor

to the surface of the snow crystal, which is mainly caused by the convection around the

growing snow crystal. Keller and Hallett [86] first carried out experiments on the growth

of artificial snow crystals fixed on a fiber in a growth chamber with forced air flow; they

found that both the growth forms and growth rates at the dendrite tips are strongly

modified by introduction of air at a velocity of only 5 cm/s. Consequently, the reason

why a natural snow dendrite has such excellent symmetry is not so trivial. At least, the

symmetrical property observed on the natural snow dendrite strongly indicates that all

FIGURE 25.10 Simulation results for pattern evolutions of prismatic faces surrounding snow crystals [83].
(A) Diffusion coefficient D ¼ 0.2 cm2/s of water vapor in air (corresponding to 1 atm) and supersaturation
sN ¼ 8.5% at a position far from the crystal. A circular crystal becomes a perfect hexagon at 1200 s by anisotropic
kinetics. (B) D ¼ 0.2 cm2/s and sN ¼ 17%. The onset of transition from a hexagonal pattern to a dendritic
pattern. (C) D ¼ 0.2 cm2/s and sN ¼ 34%. Formation of six primary branches with periodic structures at the tips
was caused by bunching of monomolecular steps, which played a role in the formation of secondary branches.
Modified from Ref. [83].
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of the tips of the six branches are growing under exactly the same conditions, including

the effect of air flow. That is, branching at the dendrite tip may occur in a deterministic

manner for all of the dominant factors related to crystal growth but in a random process,

as appeared on the fractal patterns.

25.4.5 Twinned Snow Crystals

25.4.5.1 Structures of Twinned Snow Crystals
Most of the snow crystals falling from the sky are twinned snow crystals. The importance

of twinned snow crystals was first pointed out at the opening lecture given by Frank [87]

at the Fourth International Conference on Crystal Growth held in Tokyo in 1974. Single

snow crystals are in fact seldom seen among snow crystals in nature. The structures and

formation mechanisms of twinned snow crystals are therefore important research issues

in relation to crystal growth.

After Frank’s lecture, Japanese researchers measured the angles between 0001 axes of

components using natural twinned snow crystals, and they discovered the salient fact

that those angles were dominantly concentrated at 70.5–70.6� (or 109.4–109.5� as degrees
of their supplementary angles) and that one of the 1120 axes of one component corre-

sponded to that of the other component [6,88–93]. Amazingly, this angle agreed

completely with the angle between the {111} faces of a cubic ice structure, Ic, namely

109.5�. Cubic ice is usually observed in a deposited ice film from water vapor at tem-

peratures ranging from about 130 to 150 K, but it is metastable at temperatures higher

than 170 K and is easily transformed to ordinary hexagonal ice, Ih [94–96]. Even though

the lowest formation temperature of natural snow crystals is not lower than about 220 K,

what seems certain is that cubic ice has an important role is the twin formation.

Kobayashi and Furukawa [93] speculated that metastable cubic ice can be forced to

nucleate rather than stable hexagonal ice when ice nucleation occurs in a supercooled

water droplet at temperatures above 220 K. Because the surface structure of {111} faces

of cubic ice is equivalent to that of basal faces of hexagonal ice, hexagonal ice can grow

on {111} faces of cubic ice in a continuous manner. Finally, the water droplet will change

into an ice sphere composed of eight components of hexagonal ice with 0001 axes

intersecting the angle of 109.5�. Each component of hexagonal ice continues to grow in a

manner similar to that of a single ice crystal, and finally a twinned snow crystal is

formed. This phenomenon is well known as Ostwald’s step rule [97]—that is, a meta-

stable phase with higher chemical potential can appear in the run-up to the formation of

a stable state with lower chemical potential in the process of phase transformation.

25.4.5.2 Formation Mechanism of Twinned Snow Crystals
Takahashi [98,99] theoretically investigated the possible nucleation process in a super-

cooled droplet by the cubic ice instead of hexagonal ice. The {111} faces of cubic ice and

the basal faces of hexagonal ice have the same configuration of water molecules in the

nearest neighbors but different configurations for the secondary nearest neighbors,

because the cubic and hexagonal structures differ from each other only in the stacking
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sequence of molecular layers. Consequently, the relationship of s111 < s0001 is expected.

Because the unit density of the dangling bonds on prismatic faces is larger than that of

basal faces, the relationship of s0001 < s1010 is also approved. Based on these relation-

ships, Takahashi investigated the total free energies for the regular octahedron of cubic

ice and the hexagonal column of hexagonal ice as a function of size. He found that the

total free energy for the former was lower than that for the latter when the embryo size

was smaller than a critical value, but that this magnitude relation was inverted when the

sizes became larger than the critical value. Johari [100] recently pointed out that, on the

basis of the enthalpy and interfacial energy of hexagonal ice and cubic ice, water droplets

smaller than 15 nm in radius and films thinner than 10 nm would freeze to cubic ice in

the temperature range of 160–220 K. A computer simulation study [101] also showed

the formation and stability of cubic ice in a frozen water droplet.

As for evidence of the occurrence of cubic ice in the atmosphere, Whalley [102]

suggested that Scheiner’s halo, which occasionally occurs at 27.46� from the sun can be

exclusively produced by light passing through regular octahedral crystals of cubic ice.

Mayer and Hallbrucker [103] detected X-ray diffraction peaks coming from the structure

of cubic ice at approximately 240 K for a polycrystalline ice sheet formed by freezing

deposition of water droplets on a copper cold plate, and they also found that cubic ice

was kept for long stretches even at this temperature. This temperature was much higher

than the stable temperature range below 170 K for cubic ice formed by vapor deposition

[16]. This was the first direct evidence of the formation of cubic ice by the freezing of

water droplets, and various studies have since been carried out to clarify the mechanism

of cubic ice formation in frozen water droplets in conjunction with cubic ice formation

in the earth’s atmosphere [104].

Similar phenomena have also been reported for other materials. For example, a

tetrapod-like twin crystal of ZnO [105–107] or CdS [108] is formed by the successive

growth of wurzite crystals on the four zinc {111} surfaces of a cubic crystallite, and its

existence at the center of a tetrapod-like twin crystal was confirmed by electron

diffraction. Recently, Niekawa and Kitamura [109] theoretically studied the conditions

for transformation induced by heterogeneous nucleation of a stable phase on the surface

of a preformed metastable phase, referred to as “epitaxy-mediated transformation”

based on Ostwald’s step rule, and showed that the formation of twinned crystals is

dominantly formed by the transformation from the metastable phase to stable phase at

the initial stage of crystallization.

25.5 Free Growth of an Ice Crystal in Supercooled
Water

25.5.1 Equilibrium Forms of Ice Crystals

Pattern formation of an ice crystal during growth in supercooled water is also a very

interesting subject in relation to morphological instability. When we consider this
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problem, the most fundamental subject is the equilibrium form. Even though the

theoretical expedition of equilibrium form is quite common, direct observation is

generally difficult, with rare exceptions. In the case of ice, Maruyama and his coworkers

[110,111] successfully observed equilibrium forms with the use of volume dilatation

upon the freezing of water, as is well known from the phase diagram of water

(Figure 25.2). Because this is a beautiful work for the equilibrium forms, it is worth

introducing in this section. Maruyama and his coworkers put only one single ice crystal

in a pressurized chamber completely filled with pure water and immersed the whole

apparatus in refrigerant liquid, of which the temperature was kept constant below 0 �C.
When the ice crystal grows in the chamber, the inside pressure increases due to volume

dilatation of the ice crystal and then it conduces to melting point depression. Growth of

the ice crystal is gradually suppressed and finally stops when the melting point of ice

becomes equal to the ambient temperature. In this way, a complete equilibrium state at

the coexistence state of a single ice crystal and water is automatically accomplished, and

they found that the equilibrium form of an ice crystal is a circular disk surrounded by

two flat basal faces and a rounded prismatic face above �16 �C, but that it changes to a

hexagonal plate surrounded by two basal and six prismatic faces. These results mean

that the basal face is molecularly flat (smooth plane) even at the triple point of 0 �C,
while the prismatic face transits from a molecularly flat interface to a molecularly rough

interface at �16 �C, indicating that the so-called thermal roughening transition [39]

occurs on the prismatic interface of the ice crystal and that the anisotropy of free

energies for the interfaces perpendicular to the basal plane is negligibly small at

temperatures above �16 �C. It should be noted that they also successfully observed

the transition process between circular and hexagonal disks by artificial changes of

pressure [112].

25.5.2 Growth Morphologies of Ice in Free Growth

In situ observations of ice crystal growth in supercooled water under atmospheric

pressure conditions have been carried out by many researchers [113–115]. Figure 25.11

shows sequent pictures of a growing ice crystal in supercooled H2O water. The ice crystal

shape is initially a circular disk bounded by two basal interfaces (Figure 25.11(A)), and

morphological instability subsequently occurs at the periphery of the ice disk, resulting

in the formation of a perturbed disk (Figure 25.11(B)). Finally, a well-developed dendrite

with hexagonal symmetry is formed, as shown in Figure 25.11(F). Furukawa and

Shimada [113] first analyzed the three-dimensional patterns of an ice crystal during its

growth using Mach–Zehnder interferometry. They observed that the dendrite consists of

a combination of two flat basal interfaces and a rounded interface, and that the tip

patterns of the dendrite are not symmetric with respect to the basal plane; that is, the

interface joining basal faces is not parallel to the c-axes. Although the observed tip

shapes of ice dendrites are different from the parabolic shapes that are generally

assumed in the theory of dendritic growth [116–119], the tip growth velocities shown as a

1082 HANDBOOK OF CRYSTAL GROWTH



function of supercooling exhibit good agreement with the theory of dendritic growth,

except for the condition of low supercooling. Shimada and Furukawa [115] also showed

that morphological instability occurs at the edge of the circular disk when the thickness

exceeds a critical value, hc, which is inversely proportional to the bulk supercooling, DT.

DT ¼ Tm � TN, where TN is the water temperature far from the crystal interface. This

means that morphological instability is controlled by disk thickness rather than disk

radius.

The first theoretical analysis of ice disk growth was carried out by Fujioka and Sekerka

[120] with the assumption that the disk thickness is constant, with no growth on the

basal interfaces. The experimental results of reference [115] were analyzed using phase

plane analysis of an ordinary differential equation for h with respect to R, in which it was

shown that the difference between the two types of disk growth corresponds to a

(A)

(E) (F)

(B)
(C)

(D)

FIGURE 25.11 Sequential pictures of an ice crystal growing in supercooled pure water in a thin circular growth
cell. Time intervals were 2 s. The ice crystal initially had a circular disk shape with flat basal faces (B), and then
perturbation occurred along the periphery of the ice disk (C), and a hexagonal dendrite pattern was formed
(D)–(F).
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difference of kinetics on the basal faces between spiral growth, with the aid of a screw

dislocation, and growth by two-dimensional nucleation [121]. Recently, it has been

shown that the critical thickness hc is related to the critical condition for the stable

growth of a basal face, and that the difference between the growth rates of two basal

faces is a possible mechanism for the appearance of an asymmetrical disk shape [122].

Sekerka [123] pointed out that the shapes of growing crystals are determined by an

interplay of complex processes that include transport of energy and matter through bulk

phases, capillarity-related processes that determine local equilibrium conditions at the

crystal–nutrient interface, and nonequilibrium kinetic processes that take place locally at

that interface. By treating the above three processes in pairs, he showed that the inter-

play of transport and interface kinetics leads to a consideration of facet instability, that

the interplay of diffusive transport and capillarity leads to morphological instability, and

that the interplay of capillarity and interface kinetics leads to a consideration of corner

instability. In contrast, the determination of shapes of ice crystals growing in super-

cooled water must be controlled by all of these factors, different from the simple cases

described in Sekerka’s paper, because the basal faces related to facet instability and the

rounded side face related to morphological instability exist together in an ice crystal

shape.

25.5.3 Free Growth of Ice Crystals under Microgravity Conditions

25.5.3.1 Experimental Setup
The role of interaction between the flat basal faces and rounded faces in pattern

formation of an ice crystal is a very interesting subject. There has, however, been no

measurement of the growth rate of basal faces freely growing in supercooled water, even

though the growth rates at dendrite tips have been measured under a gravity condition

[113,114]. Consequently, simultaneous measurement of growth velocities, both at the

dendrite tip and at the basal plane, with no convection effect is important. In this sec-

tion, we present the results of experiments on free growth of ice in supercooled bulk

water that were carried out in the Japanese Experiment Module (generally called “Kibo”)

of the International Space Station (ISS) in the period from December 2008 to February

2009 [124–126]. The purpose of these experiments was to examine how the growth of

basal faces affects the appearance of an asymmetrical disk, the morphological stability at

the edge of the asymmetrical disk, and the formation of patterns of dendrites.

Figure 25.12 shows a schematic of the ice growth apparatus used in space, which is

composed of two parts: a cylindrical growth cell and a disk-shaped nucleation cell. Both

cells were connected with a thin glass capillary. The growth apparatus was completely

filled with pure water degassed by vacuum evacuation. The temperature of each cell

could be independently controlled within the accuracy of �0.05 �C by Peltier cooling

elements. In this experiment, heavy water (D2O) was used as the water sample instead of

H2O, because the higher melting point of D2O than that of H2O could compensate for the

limited power supply to the apparatus from the system of Kibo.
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The growth and melting processes of an ice crystal could only be controlled by setting

the temperature remotely from the ground. Video images and temperature data were

downloaded from ISS to the ground with a time lag of several seconds. The experimental

procedure started from making a homogeneous supercooling state of the D2O sample in

the growth cell. After the complete establishment of supercooling, the nucleation cell

was rapidly cooled to initiate ice nucleation. Then, nucleated ice particles continued to

grow inside the capillary and compete against each other, and only one crystal could

finally survive inside the capillary. Consequently, an ice crystal, with its c-axis perpen-

dicular to the capillary axis, started to grow from the end of the capillary into the

supercooled D2O. A total of 134 experiments were successfully carried out using a single

growth apparatus in the supercooling range from 0.03 to 2 K.

25.5.3.2 Results of ISS–Kibo Experiments
Time-sequence images of an ice crystal grown in space under the supercooling of 0.4 K,

which were imported from the moving image file, are shown in Figure 25.13. The

FIGURE 25.12 Schematic illustration of an ice growth apparatus for space experiments [125]. The apparatus
consisted a growth cell of 26 mm in diameter and 24 mm in length, a nucleation cell of 6 mm in diameter and
1.2 mm in thickness, and a glass capillary of 1 mm in outside diameter connecting the two cells. Inside surface
of the growth cell carved out from a cube of oxygen-free high-conductivity copper was coated with a thin
Teflon layer to maintain the supercooled state. The inside wall of the nucleation cell was coated with Au to
promote ice nucleation. One end of the capillary was connected to the side wall of the nucleation cell, and the
other end was inserted into the center of the growth cell. Observation of a growing ice crystal was carried out
by using orthogonally-crossed biaxial Mach–Zehnder interferometers. Movie images of crystal growth were
simultaneously downlinked from the International Space Station (ISS) in operation of space experiments. SCOF
indicates the solution crystallization observation facility, which is one of the facilities equipped in “Kibo” of ISS.
The SCOF has a two-wavelength interference microscope to simultaneously measure changes in morphology
and growth conditions (i.e., temperature or concentration). Researchers can freely design experiment-unique
cartridges.
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growth rates, vtip and vbasal, along the 1120- and 0001-axes, respectively, obtained in

space are shown in Figure 25.14. Figure 25.14(A) plots the dimensionless tip growth

velocity V as a function of dimensionless supercooling D, which is defined by the

equation

D ¼ TM � TN

L
�
cp

; (25.7)

(A)

(B)

(C)

FIGURE 25.13 An ice crystal grown in space at DT ¼ 0.4 K. Bright-field image (A) and interference fringe image
obtained by using Mach–Zehnder interferometer (B). The movie images were appropriately analyzed by using
spatiotemporal image processing, and both the growth velocities of dendrite tips and the growth rates of basal
faces were precisely analyzed [125]. An ice crystal shown in (C) was grown on the ground. GC indicates the tip of
glass capillary.
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where L is the latent heat released per unit volume of D2O ice, and cp is the specific heat.

The tip growth velocity vtip is also scaled by the ratio of capillary length d0 to thermal

diffusivity kT of D2O water, which is indicated as the equation

V ¼ d0

kT
vtip; (25.8)

where d0 ¼ gcpTm/L
2, including the isotropic surface tension g. Figure 25.14(B) shows

the rate increase in thickness between both-sided basal faces, dh/dt (z2vbasal), as a

function of supercooling DT.

The tip growth velocities plotted as both open circles and solid circles in

Figure 25.14(A) indicate the situations of no growth on the basal faces for D < 0.002 and

growing basal faces with D > 0.002, respectively. The corresponding patterns of ice

crystals during no growth of basal faces were a disk shape for D < 0.0007, a disk with a

FIGURE 25.14 Growth rates of ice crystals measured in space [125]. (A) Dimensionless tip growth velocity V as a
function of dimensionless supercooling D. The solid curve was obtained from the universal law proposed by LMK
theory [116,117]. The open circles indicate no growth on the basal faces and the solid circles indicate the situation
of growing basal faces. The star marks were obtained by ground experiments under 1G [113] (B) Rate of increase
in thickness dh/dt (¼2vbasal) as a function of supercooling DT.
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perturbed periphery for Dw 0.0007 and a perturbed disk having broad and short primary

stalks for 0.0008 < D < 0.002. On the other hand, well-developed dendrites including

secondary branches appeared with the start of basal face growth. The solid curve in this

figure shows the theoretical prediction obtained from the universal law for dendrite tip

growth proposed by Langer and Müller-Krumbhaar (LMK) [116,117], assuming no

anisotropy of surface tension g.

The tip growth velocities agree with the LMK theory in the region of supercooling for

D > 0.002 (¼0.16 K) when the growth on the basal face is not zero. At very low super-

cooling of less than 0.1 K, there is no growth on the basal face. With increase in

supercooling, the basal faces start to grow and the growth rate changes as a function of

supercooling with a power law, with an exponent of w2 from 0.2 to 0.5 K and with an

exponent approaching 1 as supercooling increases to above 0.5 K. We interpret the

growth on the basal face as being controlled by two-dimensional nucleation for

DT < 0.1 K, which changes to spiral growth with the aid of screw dislocations for

0.2 K < DT < 0.5 K and then to a linear growth law with increasing supercooling for

DT > 0.5 K. Because there appears to be disagreement between the theoretical curve and

the tip growth velocities for D < 0.002 in the temperature range in which there is no

growth on the basal face, we conclude that the basal face kinetics significantly affects the

tip growth velocity rather than the asymmetric shape with respect to the basal plane.

Yoshizaki et al. [126] measured the tip radii of dendrites using the results of space

experiments and estimated the stability factor s* defined in the LMK theory [116,117].

This value is theoretically predicted to be constant and around 0.02 for dendrite tips with

the paraboloid of revolution. Figure 25.15 shows the estimated s* values as a function of

supercooling. The values measured for ice crystals in space were constant against

supercooling. This tendency has already been pointed out on the basis of the results of

ground-based experiments conducted by Furukawa and Shimada [113], and is qualita-

tively supported by the results obtained in microgravity. The values obtained here

(w0.007), however, are about 30 times less than the theoretical prediction (0.02), while

the values measured in microgravity by Koss et al. [127] for succinonitrile (SCN) was very

close to 0.02. This large discrepancy was due to the fact that the tip shape of the ice

dendrite deviated from the paraboloid of revolution. As reported by Furukawa and

Shimada [113], the tip of an ice dendrite has two radii, R1 and R2, which are tip radii in

the basal plane and in the direction perpendicular to the basal plane, respectively. R2 is

two orders of magnitude less than R1. In the case of SCN, R1 equals R2. It is not

appropriate to use R1 or R2 to represent the tip radius for calculating s*. The calculated

value of s* with the geometric mean radius Rmean defined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 $R2

p
is also shown in

Figure 25.15, where values of R2 were estimated by the relation of R2/d0 ¼ 425 � D�0.58

obtained by Furukawa and Shimada [113]. The value of s* calculated by using Rmean

became about 0.013, which was nearer to theoretically predicted value, even though tip

shapes of ice dendrites were far from the paraboloid of revolution. The reason for this

fact has not been explained.
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25.5.4 Molecular Dynamics Simulation of the Ice–Water Interface

Structural and dynamic properties at the ice–water interface near the melting point are

attractive subjects for computer simulations, such as MD or Monte-Carlo simulations

[18]. MD simulations for the interfacial structure at the ice–water interface under a stable

condition have been carried out using a classical potential model of TIP4P [128] by

Karim and Haymet [129] and by Nada and Furukawa [130–132]. The former showed that

the interface of the basal plane has a diffuse structure throughout the thickness of several

molecular layers (w1 nm). In response, the latter indicated that, although the interface

thickness is larger for the basal plane than for the prismatic plane, the diffusion coef-

ficient of H2O molecules in water near the interface is smaller for the prismatic plane

than for the basal plane. This interesting result may be related to the molecularly rough

structure of the prismatic interface, which has been shown by various experiments.

Nada et al. [133,134] performed MD simulation in order to observe the growth pro-

cess in the molecular scale on the interfaces of basal, prismatic, and f1120g-secondary
prismatic planes using the new potential model for H2O molecules developed by Nada

FIGURE 25.15 Relationship between stability factor s* and supercooling [126]. The solid circles and triangles are
results in microgravity using Rmean and using R1, respectively. The open triangles indicate ground-based results for
ice dendrites obtained from the reference [113], and the open squares indicate the results succinonitrile in
microgravity [127].
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and van der Eerden [75], which is called a six-site model of rigid H2O and was developed

in a reproducible fashion for both physical properties of ice crystal and liquid water.

Using the simulation data, they analyzed the growth mechanism for each plane aside

from the interface structure. The results indicated that the interface structure for the

basal plane was molecularly flat, whereas the structures for the prismatic and f1120g
planes were rough in the molecular scale, and also that the growth processes of ice

crystals occurred by the arrangement of hydrogen-bonded networks of H2O molecules in

water near the interface from the structures of water to ice crystal lattice. They also

found that the ice crystal was grown by a layer-by-layer mode for the basal plane but by

the rearrangement in three dimensions for the prismatic and f1120g planes, namely the

collective incorporation of water molecules. It is notable that these results of MD

simulations reproduce very well the actual anisotropy for ice growth and the interface

structure, which have been described in many reports [18,113,125].

The anisotropy in the growth mechanism and the interface structure could be

explained on the basis of the difference in the directions of dangling bonds, which the

stable configuration has, among the planes [133]. Namely, though the stable configu-

ration on the {0001} plane has seven dangling bonds, six of them are in directions parallel

to the plane and the other one is normal to the interface (see Figure 25.3). This is a

reason why growth occurs two-dimensionally and why the interface structure tends to be

molecularly flat. On the other hand, for the other planes, all dangling bonds are in

intermediate directions between parallel and normal to the plane. Consequently, growth

can occur three-dimensionally in a collective manner and the interface structure also

tends to be molecularly rough. Results of MD simulations using the six-site model have

greatly contributed to an understanding of the growth kinetics of ice on the molecular

scale [76,135,136].

25.6 Directional Growth of Ice Crystals
25.6.1 Pattern Formation at the Ice–Water Interface

25.6.1.1 Experiments
One-directional growth of a single crystal in the defined temperature gradient is also a

universal method for observing the morphological instability and pattern development

at the growing interface [137]. This method has been applied to ice crystal growth in a

solution of muriate because ice crystal growth induced by a temperature gradient

condition can usually occur anywhere on the terrestrial surface, such as during ice

growth by freezing of seawater on the polar sea surface. In this section, some interesting

phenomena that are distinctly different from others are introduced [138–140].

A thin rectangular growth cell (76 � 20 mm2) with a gap of 100 mm, which was filled

with water containing potassium chloride (KCl), was put on each of two separately

placed copper blocks, the temperatures of which were independently kept constant.

Then, a linear temperature gradient (G) was established in the orientation of the long
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axis of growth cell (Z-direction), and a flat water–crystal interface was formed at the

center of the growth cell (Figure 25.16 (A)). The growth cell could be moved transversally

at an arbitrary constant velocity V using a stepping motor system, and the ice crystal was

forced to grow at the same speed as V but in the opposite direction of cell movement.

The whole apparatus was placed on the stage of a microscope combined with a

Mach–Zehnder interferometer, and the three-dimensional patterns of interfaces and the

distribution of additives in front of the growing interface were analyzed.

25.6.1.2 Morphological Instability at an Ice Interface Growing in KCl Solution
Morphological instability at the interface during one-directional growth is usually

promoted by constitutional supercooling, which is caused by interaction between the

diffusion field of an impurity developing in front of the growing interface and the

temperature gradient. Because the effect of impurity concentration works as depression

of the equilibrium melting point, the kinetics of crystal growth is hardly affected by the

existence of impurity molecules in the solution.

Only one single crystal with its 0001 axis perpendicular to the growth cell, namely the

basal plane of the growing ice crystal being parallel to the growth cell surface, was grown

FIGURE 25.16 Schematic illustration of the development of a constitutional supercooling region in front of the
growing interface [139]. (A) Schematic configuration of one-directional growth cell. (B) The solute is rejected at
the growing interface and exponentially distributed concentration field is formed in front of growing interface.
(C) An equilibrium melting point corresponding to the solute concentration is estimated using a relation for
molar depression of freezing point. A constitutional supercooling region is defined at the region where Ge is
larger than G.
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in all of the experiments. Water sample thickness of 100 mm and KCl concentration of

3 wt% were selected to obtain the most appropriate interference fringes, even though

they were much larger than those used for conventional experiments on one-directional

growth. Sequential photographs showing the development of interfacial patterns at

V ¼ 5 mm/s observed by a conventional microscope are presented in Figure 25.17. Before

the start of growth cell movement, the interface was completely flat and perpendicular to

the direction of the temperature gradient at the position of equilibrium melting

temperature. After starting to grow, it changed to an unleveled interfacial pattern at

unpredictable intervals, namely the initiation of morphological instability at the inter-

face (Figure 25.17(A)). The amplitude of its unevenness gradually increased

(Figure 25.17(B)–(E)) and then cellular structures appeared (Figure 25.17(F)). Splitting

(A) (F)

(G)

(H)

(B)

(C)

(D)

(E)

FIGURE 25.17 Sequential pictures of the interfacial pattern observed at the interface between an ice crystal
and KCl solution. The 0001 axis is perpendicular to the plane of space. Elapsed times after start of growth are
(A) 180 s, (B) 193 s, (C) 215 s, (D) 245 s, (E) 377 s, (F) 443 s, (G) 829 s, and (H) 1431 s.
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and coalescing continuously occurred at the tips of cellular patterns (Figure 25.17(G)),

and regular cellular patterns were finally formed (Figure 25.17(H)).

Morphological instability of the interface during one-directional growth arises due to

constitutional supercooling that develops in front of the interface [137,141]. Figure 25.16

schematically shows the phenomenon that occurs in the interfacial region during

growth. Because the segregation coefficient k of KCl for an ice crystal is nearly equal to

zero (k ¼ 2.7 � 10�3), the KCl solute is rejected at the growing interface and distribution

of solute concentration, CL, develops in front of the planar interface, as shown in

Figure 25.16(B). An equilibrium melting point Teq corresponding to CL can be estimated

using a novel relation of equilibrium temperature depression for a colligative solution.

Figure 25.16(C) shows Teq as a function of Z. If the equilibrium temperature gradient (Ge)

at a point of the interface is larger than G, a constitutional supercooling region is formed

in the solution near the interface and causes morphological instability of the interface.

The dynamics are usually explained on the basis of Mullins-Sekerka instability [12].

The criterion for the occurrence of morphological instability during one-directional

growth is generally given as the following relationship:

V

G
�
�
mC0

DL

� ð1� kÞ
k

; (25.9)

where m is the gradient of the liquidus line in the phase diagram for a two-component

solution system, DL is the diffusion coefficient of solute in the solution, and k is the

segregation coefficient. This model is very general but direct evidence of a relationship

between the development of constitutional supercooling and morphological instability of

the interface, to the best of my knowledge, has not been shown because it is not easy to

directly observe the solute concentration distribution in front of a growing interface. In the

next section, evidence for this relationship obtained in an ice growth experiment is shown.

25.6.2 Solute Distribution in Front of the Ice–Water Interface and
Morphological Instability

Sequential pictures of interfacial fringes observed in the region around the interface

growing at V ¼ 5 mm/s are shown in Figure 25.18. In the initial condition of no growth,

the interface was perpendicular to the Z-axis, and straight interference fringes indicate

no diffusion field of solute in the solution (Figure 25.18(A)). After growth started,

interference fringes also started to curve in both regions of the solution and the ice

around the interface (Figure 25.18(B)–(D)). At the same time, development of pertur-

bation at the interface began as shown in Figure 25.18(C). By analysis of the interference

fringes, the solute concentration profile, CL, in front of an advancing interface was

obtained as shown in Figure 25.19(A). The figure clearly shows that a solute diffusion

field started to grow from the uniform distribution of solute by the rejection of solute

soon after the start of growth and continued to develop as a function of growth time.

These profiles can be easily converted to equilibrium melting point profiles by esti-

mating the colligative temperature depression generally given by the relationship
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FIGURE 25.18 Sequential pictures of the development of a diffusion field in front of a growing interface observed
by using a Mach–Zehnder interference microscope [139]. Growth conditions were G ¼ 2.3 K/mm, C0 ¼ 3 wt%, and
V ¼ 5 mm/s. (A) Flat interface in the initial condition, (B) beginning of instability, (C) appearance of a wavy
pattern, and (D) development of a cellular structure. Elapsed time of each picture is 1-min interval after the start
of growth at (A).

FIGURE 25.19 Results of analysis of the development of a diffusion field in front of an interface [139].
(A) Concentration distributions CL as a function of the distance from the interface forefront Z. Growth conditions
were the same as these shown in the caption of Figure 25.18. (B) Profiles of equilibrium melting point Teq
estimated from CL as shown in (A). At t � 0 s, Teq near the interface decreased due to an increase in the solute
concentration, and the interface moved to a position at which the actual temperature was equal to the interface
melting point. Solid lines indicate the actual temperature profiles in the solution at the elapsed times of 60 and
120 s. The hatched regions correspond to constitutional supercooling, namely the region of T � Teq. Instability
was initiated at the moment of formation of constitutional supercooling.
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Teq ¼ mC(Z). For a KCl solution, m ¼ �0.468 K/wt%. In Figure 25.19(B), the profiles of

equilibrium melting temperatures of ice Teq versus Z are given as a function of growth

time. The slope of the equilibrium temperature profile at the interface, dTeq/dZ (Z ¼ 0),

increased with time and finally exceeded the value of the actual temperature gradient

determined as the experimental condition at t ¼ 60 s. Namely, a constitutional super-

cooling region formed in front of the interface, as shown by the hatched region at

t ¼ 120 s in Figure 25.19(B). Furthermore, if we go back to Figure 25.17 again, we can

know that morphological instability at the interface occurred at the moment of t ¼ 60 s,

which was the beginning of constitutional supercooling. This is the first direct evidence

of a relationship between morphological instability and development of constitutional

supercooling.

On the other hand, the diffusion length ls of the solute can be determined by the

equation (C(ls) � C0)/(Cint � C0) ¼ 1/e, assuming exponential decay of the solute dis-

tribution profile. In this experiment, ls was estimated to about 250 mm and independent

of growth time. This value is much larger than the average cell spacing at the interface

(which is less than 135 mm as shown in Figure 25.17). Consequently, the spatial fluctu-

ation in the solute distribution might be caused by the mutual interaction among

growing cellular branches through the diffusion field around each branch.

Finally, let us consider the behavior of Cint depending on the development of an

interfacial pattern. Even though Cint gradually increased with advance of the interface

due to the rejection of solute while the interface was flat at the initial stage, it showed a

sudden decrease after morphological instability occurred on the planar interface. After a

steady-state cellular structure had been attained and a stable diffusion field was main-

tained, Cint remained constant but was much lower than the critical value expected from

the equilibrium segregation coefficient. Consequently, the “effective” segregation

coefficient for the cellular pattern interface could be determined from this analysis. For

example, Cint was estimated to approximately 3.7 wt% under the conditions of

V ¼ 10 mm/s and C0 ¼ 3 wt% [139], because the solute could be incorporated into the

interspaces between the neighboring cellular branches and/or the interfaces between ice

crystals and glass walls.

25.6.3 Cellular Tilting

25.6.3.1 Tilt Angle Measurement for Cellular Patterns of Ice Crystals
Although the 0001 axes of ice crystals growing by the one-directional growth method

always remained in the direction perpendicular to the glass plate of the growth cell, the

directions of 1120 axes were randomly allocated in the plane parallel to the glass plate.

For this reason, the axes of cellular patterns could be tilted from the growth direction of

the ice crystal (Z-direction) depending on the growth velocity V of ice crystal and the

angle, j, between the Z-direction and one of the ice 1120 axes. Figure 25.20 shows

pictures of cellular patterns as a function of V at j ¼ 20�. The tilt angle of the cellular

pattern, 4, was calculated by the relation 4 ¼ tan�1(VX/V) from the measurement of the
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lateral growth velocity, VX, of cellular tips, and tilting angles for various growth velocities

are shown as a function of j in Figure 25.21(A). It is notable that tilting of the cellular

pattern was not observed at j ¼ 30� in this range of V. The average cell spacing for

cellular patterns, which could be measured in these observations, is also important for

discussion of the effects of interface kinetics, as explained in the next section.

25.6.3.2 Anisotropic Interface Kinetics
Analysis of tilted cellular patterns provides quantitative results concerning the anisotropic

interface kinetics. Coriell and Sekerka [142] developed a linear stability model for small

(A) (B)

(C) (D)

FIGURE 25.20 Regularly arrayed cellular patterns in a steady state condition at j ¼ 20�. Growth velocities V were
(A) 3 mm/s, (B) 5 mm/s, (C) 7 mm/s, and (D) 40 mm/s [138]. Dotted lines indicate the directions of central axes of
cellular pattern.

FIGURE 25.21 (A) Tilt angles 4 of cellular patterns as a function of j for various values of growth velocities V.
(B) Kinetic supercooling temperatures as a function of j [138].
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perturbations on a planar interface during directional growth of binary alloys, and they

analyzed both the effects of anisotropic interfacial free energy and kinetics. They showed

that a translational perturbation wave can occur along the interface (x-axis) due to the

effect of anisotropic interface kinetics and the anisotropic kinetic parameter, mX/mT :

VX ¼ �2h

�
mX

mT

�
: (25.10)

Here, mX and mT represent vV/v4 and vV/v(DTk), respectively. DTk (¼ Teq � Tint) defines

the kinetic supercooling at the interface, namely the difference between the equilibrium

temperature, Teq, which is depressed by the effects of local curvature and solute concen-

tration at the interface, and the actual interfacial temperature, Tint. The parameter h is

usually derived in consideration of the kinetic effect. However, because the tip growth ve-

locities measured for free growth of dendrites completely agreed with the theoretical pre-

dictionswithoutanykinetic effect [114,116,117,119], absolutemagnitudeof thekinetic effect

may benegligibly small. Consequently, wemayneglect the kinetic terms in the derivation of

parameter h, which is given in the form of a local equilibrium condition, as follows:

2h ¼ Vu

8><
>:G

kS � kL

kS þ kL

þ umGC

u	 � V
D
ð1� kÞ

9>=
>;

�1

; (25.11)

where kS and kL represent the thermal conductivities of solid and liquid, respectively, m

is the slope of the liquidas line, and GC is the concentration gradient at a planar interface.

u* is given by
�
V =2D

�þ ½ðV =2DÞ2 þ u2
12, where u (¼ 2p/l) is the wave number of the

cellular array. At small values of V, u* z u þ (V/2D).

On the other hand, the following relationship is obtained by the solute flux balance at

the interface:

GC ¼ �
�
V

D

��
1� k

�
Cint : (25.12)

Thus, the anisotropic kinetic parameter mX/mT is obtained by substituting Eqns (25.11)

and (25.12) into Eqn (25.10) as

mX=mT ¼ �
�
lVx

2pV

��
G

kS � kL

kS þ kL

�mCintV

D
þ lð2k � 1Þ

4p

	
: (25.13)

Finally, it should be noted again that anisotropy of the kinetic effect becomes clear in

Eqn (25.13). In addition, observations of cellular tilting indicate that nonzero anisotropy

of kinetics exists for growth of an ice crystal, no matter how small the magnitude of the

kinetic effect is.

Because the anisotropic kinetic parameter, mX/mT, is given as (v(DTk)/vj)V from the

definitions of mX and mT, it is possible to calculate this value with Eqn (25.13) from the

results for VX and l. Furthermore, the integration of (v(DTk)/vj)V with respect to inter-

face orientation j at a constant velocity gives the kinetic supercooling, DTk(j) � DTk(0)—

that is, �[Tint(j) � Tint(0)].
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Figure 25.21(B) shows results estimated from Figure 25.21(A) using the

following values of physico–chemical parameters: Tm ¼ 273.15 K, kS ¼ 2.2 J/msK, and

kL ¼ 0.56 J/msK for pure water and ice and m ¼ �0.468 K/wt% and D ¼ 1.70 � 10�9 m2/s

for KCl solution. Because these values are proportional to the interfacial kinetic effect

for growth, the degrees of anisotropy for growth kinetics in the interface parallel to

the basal plane were quantitatively determined as a function of growth velocity. Namely,

the preferred growth direction of an ice dendrite, which corresponds to the 1120

direction, coincides with the directions with minimum effects of growth kinetics.

25.7 Ice Crystal Growth Controlled by Biological
Macromolecules

25.7.1 Features of Biological Macromolecules with Antifreeze
Function

25.7.1.1 Antifreeze Effect
Seawater temperature underneath the sea surface covered by ice in polar or subpolar

regions can drop to about �2 �C by the colligative effect of salt water, namely the molar

depression of equilibrium freezing point. Even in this subzero environment, many kinds

of fish make their habitats. While the serum of fish living in polar seawater can carry

enough salt to lower their freezing temperature to about 1 �C, it is not enough to head off

a crisis of freezing death. Consequently, they must rely on another mechanism for

survival in a supercooled state [143]. Elucidation of the mechanism of antifreeze effect is

a crucial issue related to crystal growth controlled by biological macromolecules. In this

section, we describe findings regarding the mechanism of ice crystal growth inhibition

by the existence of special proteins with an antifreeze function.

The “antifreeze effect” for polar fish was first discovered by DeVries and Wohlshlag

[144,145], and four types of antifreeze proteins (AFPs) and one type of glycoprotein

(antifreeze glycoprotein (AFGP)) were identified in the serum of fish [143]. Some new

types of AFPs, which exert a 10-times greater antifreeze effect than that of fish proteins,

have been identified in the bodies of insects [146,147], plants [148], and bacteria [149].

Currently, AF(G)Ps are used in some frozen foods [150] and are known to improve the

storage of rat islets and human blood platelets [151,152]. It is important from both a

scientific standpoint as well as a technological one to understand the fundamental

mechanism of the action of AF(G)Ps, and it has been the focus of much research to date.

While it has dramatic consequences for natural biological processes and technological

applications, little is known about the dynamic mechanism of ice growth inhibition [153].

25.7.1.2 General Functions of Antifreeze Glycoproteins and Proteins
There exist at least five distinct classes of these proteins, ranging in structure from a

short a-helical rod to extended helices and even larger globular forms with distinct

compositions. Yet they all have the same basic functions: inhibition of ice crystal growth
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and ice recrystallization and radical modification of growth forms [143]. Figure 25.22

shows that the molecular structure of an AFGP consists of a varying number of repeating

units of alanine–alanine–threonine (Ala–Ala–Thr), with minor sequence variations and a

disaccharide residue joined to the hydrogen oxygen of the threonine residue, varying in

molecular mass from 2.6 to 33 kDa, categorized as AFGP1-8 depending on the molecular

weight. Here, the characteristic functions of AFGPs that make them unique are sum-

marized (other fish AFPs also have the similar functions as described below

[143,154,155]):

1. They lower the freezing temperature (Tf) of water by inhibiting the growth of

existing ice crystals but keep the melting point (Tm) of ice at the equilibrium

melting point. As shown in Figure 25.23(A), the temperature region between Tm

and Tf is called the “thermal hysteresis” region [143]. Interestingly, the amount of

AFGP required for freezing inhibition is up to 500 times less than that of the colli-

gative effect of protein solutions, and even much less for some proteins in insect

serum.

2. These proteins drastically modify the growth forms of ice crystals. Figure 25.24

shows pictures of ice crystals grown in supercooled AFGP solutions with different

concentrations. The ice crystals are much different from the growth forms in

supercooled pure water as shown in Figure 25.11. The growth forms in AFGP

solution greatly depend on the concentration of AFGP and the supercooling, but

growth kinetics switches to a layer-by-layer mode, becoming highly faceted, and

the lc/la ratio can be greater than one at higher concentrations, namely needle-type

crystals [156,157]. It should be emphasized that the crystals in AFGP solution in the

FIGURE 25.22 An Antarctic cod (Trematomas borchgreviki) with antifreeze glycoprotein (AFGP) in its blood
serum (top), and the molecular structure of AFGP (bottom). The peptide backbone is composed of
alanine(A)–alanine(A)–threonine(T) repeating tripeptide units. The threonine peptide has a disaccharide
residue. Eight distinct fractions of these proteins have been isolated from fish serum, and the difference is
mostly in the number of tripeptide repeats, which change from 52 (w33 kDa) to 4 (w2.6 kDa) for bands 1–8,
respectively [143].
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hysteresis temperature range take on hexagonal bipyramidal shapes surrounded by

f1011g faces with length of a few tens of microns at most, and their growth

completely stops (Figure 25.23(A));

3. The recrystallization inhibition function has emerged as perhaps the most impor-

tant function due to its applicability in frozen foods [143]. It is well known that, at

concentrations as low as a few mg/ml, AFGPs significantly reduce the recrystalliza-

tion process of polycrystalline ice samples.

These special features of AF(G)Ps strongly suggest that these proteins function via

some interaction with the ice–water interface, namely in a nonequilibrium way.

Figure 25.23(B) shows illustrative images for pinning models based on the adsorption of

AF(G)P molecules on the ice–water interfaces, first proposed by DeVries and Wohlschlag

[144]. The adsorbed molecules can work as pinning points for further growth of the

FIGURE 25.23 Schematic illustration of thermal hysteresis and Gibbs–Thomson model for ice growth inhibition.
(A) In the cooling process of antifreeze glycoprotein (AFGP) solution, ice crystals existing in the supercooled
solution do not grow unless and until the solution temperature reaches the critical freezing temperature (Tf).
Melting of ice crystals during the heating process, however, can occur at the bulk melting point (Te). The thermal
difference between Tf and Te is the so-called thermal hysteresis region. Ice crystals inside this region have hexago-
nal bipyramidal shapes. (B) Fundamental conception of the growth inhibition mechanism (Gibbs–Thomson model).
Local melting point depression is induced by local curvatures between the pinning points of adsorbed AFGP mole-
cules, and the interface temperature equilibrates with the circumjacent supercooling temperature.
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crystal interface, and the interfaces between the neighboring adsorbed molecules should

be forced to bulge into the supercooled water, resulting in curvature formation. Because

the melting point of the curved interface changes by the amount estimated by the

Gibbs–Thomson equation,

DT ¼ 2UgTm

rDH0

; (25.14)

the melting temperature of the curved interface equals the supercooling temperature of

water in the hysteresis region. Here, U is the molar volume of ice, g is the interface free

energy, DH0 is the latent heat of fusion, and r is the radius of local curvature at the

interface. Because the curvature radius of protrusions reaches half of the distance

between neighboring adsorbed molecules at the lower limit, Tf, of the hysteresis region,

the adsorbed molecules are incorporated into the ice crystal and overgrowth of the

interface is promoted.

This growth inhibition kinetics has been accepted so far by many researchers since

the first idea proposed by DeVries and Wohlschlag [144]. Direct experimental evidence

for the adsorption–inhibition relationship, however, has not been provided, and the

exact inhibition mechanism by AF(G)P molecules therefore remains unknown.

Consequently, results of recent research on the growth behavior of ice crystals and the

(A) (B) (E)

(F)(D)(C)

FIGURE 25.24 Pictures of ice crystals growing in AFGP solutions with different concentrations: (A) in pure water
(circular disk), (B) 10 mg/ml (hexagonal plate), (C) 200 mg/ml (polygonal column), (D) 5 mg/ml (needle), (E) facetted
dendrite of ice crystal, and (F) bunched growth steps observed on {0001} interfaces. Scale bars indicate 500 mm,
respectively.
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adsorption behavior of AF(G)P molecules themselves will be summarized in the

following subsections.

25.7.2 Ice Crystal Growth and AFGP Adsorption on the Ice Interface

25.7.2.1 Growth Behavior of Ice Crystals and AFGP Distribution
To obtain direct evidence for the interaction between adsorption of proteins and ice

growth inhibition, Zepeda et al. [158,159] conducted experiments on free growth of

single ice crystals in supercooled water containing 5 mg/ml of AFGP labeled by fluo-

rescent protein molecules (fluorescein isothiocyanate). In their experiments, the

supercooling temperature of the solution was kept at less than 0.05 K (i.e., just around

the freezing temperature), presumably due to small temperature variations formed by

heat released during growth.

Figure 25.25(A) shows a snapshot of an ice crystal growing at the tip of the glass

capillary observed by a laser confocal fluorescent microscope. The ice crystal has a thin

hexagonal shape surrounded by basal and prismatic faces. The contrast of this image

reflects in the intensity of fluorescence emission, and the most striking feature is that the

prismatic interfaces marked by 1, 3, and 4 are bordered by bright rims along the

interfaces and their growth is completely inhibited, but no bright rim is seen along

interface 2, which continuously grows. This observation directly confirms inhibition of

(A) (B)

(C)

FIGURE 25.25 Redistribution of FITC-labeled antifreeze glycoprotein (AFGP) molecules during the growth of an ice
crystal. (A) A snapshot of an ice crystal in the form of a hexagonal plate growing in AFGP solution at a concentra-
tion of 5 mg/ml with supersaturation of 0.05 K, which was observed by a confocal and fluorescent microscope
system. The small picture shows an ice disk grown in pure water. (B) AFGP concentration distribution along the
longer direction of rectangular region b indicated in (A). (C) Schematic illustration for side view of an ice crystal.
Thickness of laser focal region for confocal optical system was about 100 mm, and the thickness of ice crystal was
40 mm. Consequently, the fluorescent intensity at an “ice þ solution” region was about 60% of that at a solution
region. Modified from Ref. [159].
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ice crystal growth caused by the interfacial adsorption of AF(G)P molecules.

Figure 25.25(B) shows the distribution of average concentrations along the rectangle

indicated as “b” in Figure 25.25(A), which was calculated from the fluorescent intensity

variation. The local peak at the interface comes from the adsorbed molecules on the

prismatic faces perpendicular to the basal plane. Because the fluorescent intensity

observed inside the ice crystal corresponds to the number of AFGP molecules existing in

the solution included in the focal depth (Figure 25.25(C)), we can conclude that AFGP

molecules are never incorporated into the matrix of the ice crystal. Actually, the bright

rim along the prismatic interface as shown in Figure 25.25(A) can easily fade away by

some cause, and then its interface immediately starts to grow again. Namely, AFGP

molecules adsorbed on the prismatic faces can easily break away from the interfaces and

diffuse back into the solution.

25.7.2.2 Adsorption of AFGP Molecules on the Ice–Water Interface
From detailed analysis of the fluorescence intensity profile as shown in Figure 25.25(B),

the adsorption density of AFGP molecules on the prismatic interfaces could be obtained.

In this particular case, the distance between the nearest neighboring molecules was

estimated to be about 21 � 4 nm [159]. Because the average diameter of AFGP molecules

was about 3 nm, the spacing between the neighboring AFGP molecules, d, was deduced

to be about 17 nm. The Gibbs–Thomson model predicted a freezing temperature

lowering of 6 �C for this open interface. This value is much lower than the solution

temperature (�0.05 �C) configured as an experimental condition. This contradiction

indicates that the simple static model based on the Gibbs–Thomson effect, which was

introduced in the previous subsection, can no longer be used as a model to explain the

antifreeze effect of AFGPs.

Meanwhile, let us consider the situation of AFGP molecules adsorbing on ice–water

interfaces. The secondary structure of an AFGP molecule has been shown to be a highly

flexible extended helix by precise analysis using various methods, including nuclear

magnetic resonance [160], Raman [161], X-ray scattering [162] and infrared [163] spec-

troscopic techniques. Even though it is, in contrast, quite difficult to analyze those in the

adsorbed state on the ice–water interface, Uda et al. [62] successfully analyzed the

secondary structures of AFGP molecules in the adsorbed state on the ice–water interface

using the method of attenuated total reflection (ATR)-Fourier transform infrared spec-

troscopy (FTIR) spectroscopy. As measurement samples, thin films of D2O containing

AFGPs were deposited on the surface of an ATR prism and then cooled down at a

constant rate. During the course of cooling, the phase change of the film from a liquid

state to a supercooled state and finally to a frozen state was monitored by using the FTIR

spectrum from the O–D stretching band of D2O molecules. Some liquid-state water was

still observed in the frozen film below the melting point. This liquid came from the QLL

formed at the grain boundaries and the interfaces between the ice crystal and the ATR

prismatic surface [61], and its thickness was estimated to be 15 nm at �1 �C and it

decreased with decreases in temperature. Because AFGP molecules are never
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incorporated into the ice crystal lattices as shown in the previous subsection, all of the

molecules included in the original liquid film should be concentrated in the QLL in the

grain boundaries. In this context, the amide I band spectrum coming from AFGP mol-

ecules, which was not overlapped with any band coming from D2O molecules, was

analyzed to determine the secondary structures of the molecules. As a result, a dominant

increase in the a-helical content of AFGP molecules was clearly detected when the film

changed from the supercooled state to frozen state. The difference between a-helix

contents in the two states indicates that a fraction of AFGP molecules upon adsorption at

the ice–water interface underwent a conformational change from the flexible extended

helix to the a-helix, emphasizing the importance of the structure–function relationship,

even for highly flexible AFGP molecules.

25.7.2.3 Two-Step Adsorption of AFGPs and Inhibition of the Growth of Prismatic
Interfaces

Experimental results described in the previous section suggest that AFGP molecules

excessively adsorb on the interface compared to the amount predicted by the classical

Gibbs–Thomson model, but only a fraction of those molecules have an a-helix secondary

structure. Even though AFGP molecules with the original extended helix structure can be

absorbed on the ice interface, their adsorption force should be weaker than that of AFGP

molecules with an a-helix structure, because the former do not have periodicity suffi-

cient to fit in the ice crystal lattices, whereas the latter may fit in the crystal lattices.

Actually, Nada and Furukawa [164,165] confirmed by MD simulation that a-helix mol-

ecules such as AFP type I molecules can strongly adsorb if they sit only in the appro-

priate direction to the ice crystal lattice. We conclude that the adsorption of AFGP

molecules occurs in a phased step from “weak adsorption” to “strong adsorption,”

depending on the change in secondary structures. The weakly adsorbed AFGP molecules

do not work as pinning points for advance of the interface and can be easily desorbed

from the interface, which means reversible adsorption of AFGP molecules on the ice

interfaces. The strongly adsorbed AFGP molecules, on the other hand, will be able to

work as pinning points. Figure 25.26 shows the adsorption states of AFGP molecules at

the ice-water interface. Only the strongly adsorbed AFGP molecules contribute to the

inhibition of ice interface growth, and the others are adsorbed in the reversible manner.

This behavior of AFGP molecules on prismatic interfaces is called two-step reversible

adsorption, which is a crucial model to understand the adsorption-inhibition mecha-

nism of AFGP molecules for ice prismatic interfaces.

25.7.2.4 Directional Growth of Ice Crystal from AFGP Solution
Pattern formation at an ice–water interface during one-directional growth from a solution

of AF(G)Ps is also an interesting subject in relation to anisotropy of the kinetic effect for

ice growth. An experiment similar to these described in the previous section was carried

out using a growth cell with inside dimensions of 76 � 16 � 0.06 mm3 [166]. The AFGP

concentration of the solution used in that experiment was 0.2 mg/ml (i.e., 0.02 wt%).
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An ice crystal growing from the AFGP solution in the temperature gradient of G ¼ 1.1 K/

mm was observed in the velocity range from V ¼ 3–11 mm/s. Only one single crystal was

grown in the growth cell, and the 0001-axis orientation of the ice crystal was fixed in the

direction perpendicular to the glass wall. Figure 25.27 shows sequential pictures of

pattern development at the ice–water interface for V ¼ 5 mm/s. The process of pattern

development and the interfacial patterns in the steady state are both very different from

those observed during one-directional growth from a salt solution system. The difference

from the cellular patterns observed in KCl solution is the formation of regularized

FIGURE 25.26 A new model for inhibition of the growth of a prismatic face based on the concept of two-step
reversible adsorption. Some of the antifreeze glycoprotein (AFGP) molecules on the prismatic interface adsorb
strongly and can work as pinning points for advancement of the interface. The majority of AFGP molecules on
the interface adsorb weakly and cannot work as pinning points. These weakly adsorbed molecules can be easily
desorbed from the interface.

(A) (B)

(D)(C)

FIGURE 25.27 Sequential pictures of pattern development at the interface between ice and antifreeze
glycoprotein (AFGP) solution during one-directional growth in a thin growth cell [166]. The initial concentration
of AFGP was 200 mg/ml, the growth velocity was 5 mm/s and the tilting angle of the 1120-axis j was 3�. Positions
shown by broken arrows indicate the lines of 0 �C. The dotted lines indicate the position of interface before the
start of growth, namely the position of interface in (A). Elapsed times after the start of growth are (A) 0 s,
(B) 41 s, (C) 62 s, (D) 363 s, (E) 650 s, and (F) 1798 s.
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patterns bounded by faceted interfaces. Because the kinetics at the growing interface

have a profound effect on crystal growth in the case of ice crystal growth in an AFGP

solution, the actual position of the interface may be pushed down on the line of Tf, which

is the freezing temperature defined in Figure 25.23.

Figure 25.28 shows pictures of interfacial patterns at j ¼ 3�, 8� and 28� that were

observed under a quasi-steady condition. The repetition intervals of zigzag patterns

become larger with increasing j and finally disappear when j reaches 30�, at which

point the flat interface coincides with the prismatic plane. The absolute positions of 0 �C
in the temperature gradient are indicated by the dotted lines in each picture. It should be

noted that the line of 0 �C does not coincide with the position of the flat interface at

(A)

(B)

(C)

FIGURE 25.28 Regularly arrayed zigzag patterns that are kept stationary during growth at V ¼ 5 mm/s [166]. The
tilting angles, j, were (A) 3�, (B) 8�, and (C) 28�. The dotted and broken lines indicate the positions of 0 �C lines
and bottom lines of zigzag patterns, respectively.
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j ¼ 28� (Figure 25.28(C)). Namely, the interfacial temperature should be equal to Tf. In

this case, Tf ¼ �0.2 �C. Compared with this, the lines connecting the tips and bottoms of

the zigzag patterns observed at j ¼ 3� and 8� coincided with the lines of Tm and Tf,

respectively, as shown in Figures 25.28(A) and (B). Interestingly, this result indicates that

the thermal hysteresis region DT can be determined from analysis of the zigzag interface

pattern.

25.8 Summary
In this chapter, selected topics of the scientific states of knowledge concerning crystal

growth of ice from water vapor (snow crystal) and from supercooled water (ice crystal)

were reviewed. Ice crystals show very interesting phenomena as diverse as morpho-

logical instability, pattern formation, morphology change, surface melting, twinning,

impurity effect, and growth control by biological macromolecules. As discussed in this

chapter, unique and advanced results have been obtained from theoretical, experi-

mental, and computational studies and have attracted the attention of many researchers

working in other research fields. Furthermore, because an ice crystal usually grows under

a temperature condition close to the equilibrium melting point, it may be regarded as a

useful test material for the melt growth of metals or semiconductors. On the other hand,

ice crystals are one of the most ubiquitous materials found in the surface area of the

terrestrial cryosphere. Their crystal growth phenomena commonly occur in diverse ways

and play crucial roles in climate change, weather phenomena (e.g., snowing, raining,

lightning), and artificially induced environmental concerns (e.g., ozone hole formation).

Consequently, research on ice crystal growth constitutes the bedrock of these global

problems that are crying out for solutions.

Finally, let us again place emphasis on the importance of the bilateral character of an

ice crystal—that is, generality and particularity. As we already know, the former is the

characteristic as one of the materials and the latter is the characteristic as the dominant

material on terrestrial surfaces. This issue indicates the direction that crystal growth

research should take in the near future.
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26.1 Introduction to Quasicrystals
Quasicrystals (QCs) are a new form of matter, which differs from crystalline and

amorphous materials by exhibiting a new ordered structure, quasiperiodicity, and

symmetries that are forbidden in classic crystallography (e.g., 5-fold, 10-fold, 8-fold,

12-fold). The first diffraction pattern (Figure 26.1) of a QC was reported by Shechtman

et al. in 1984 [1]. Since then, several new concepts have been employed to understand

the structure and stability of QCs. Soon after the discovery in the 1980s, great progress

was made by theorists in understanding the framework of atomic structure and

fundamental properties in structure of QCs [2]. Progress on the experimental side was

made by the discovery of a series of stable QCs [3].

FIGURE 26.1 Electron diffraction pattern of a rapidly solidified Al86Mn14 alloy taken along a fivefold axis [1].
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The Nobel Prize in Chemistry of 2011 was awarded to Shechtman for the discovery of

QCs. This made the name “quasicrystal” more widely known among various fields in

science as well as industry; nevertheless, the QC is not well understood. The difficulty of

understanding QCs arises from the fact that one must figure out the structure of a QC in

reciprocal space, which is not easy to imagine in real space for those outside the field of

crystallography.

26.1.1 Crystal and Periodicity

The structures of crystals are realized by Bragg’s law, by which the atoms arrange

periodically in three dimensions. Bragg’s law is shown in Eqn (26.1):

2d sin q ¼ nl (26.1)

where d and l are the lattice spacing of a crystal and wavelength of radiation,

respectively; q is the incident angle of radiation; and n is any integer. Because l is

fixed, diffraction is generated when q and d satisfy Bragg’s law. Equation (26.1) can be

rewritten as sin q¼ nl/2d. Here, d represents a sequence of lattice planes with equi-

distance, which is inversely proportional to sin q, implying that periodicity of atomic

planes is requested for generating diffractions. Assuming the observation of crystal

was performed with transmission electron microscopy (TEM) operating at an accel-

erating voltage at 200 kV, as shown in Figure 26.2(A), l would be around 0.003 nm,

FIGURE 26.2 (A) Schematic description of formation of diffraction pattern in transmission electron microscopy
(TEM). (B) Real square and triangular lattices and their corresponding calculated diffraction patterns.
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which is much smaller than d; hence, sin qy q. Then, Eqn (26.1) could be simplified

to q¼ nl/2d.

Note that the relationship between l, d, and q shown in Figure 26.2(A) satisfies Bragg’s

law. Therefore, it could be regarded approximately that q is inversely proportional to d.

On the other hand, camera constant L is the distance between the specimen and the

screen where diffractions are being projected, which is a constant parameter of the

microscopy. r is the distance between the transmitted peak and diffraction peaks on

the screen, which is measurable from the diffraction pattern. Once r is obtained, one can

easily determine d or q. Again, r is inversely proportional to d.

With this in mind, let us consider a diffraction pattern generated from a square lattice,

as shown in Figure 26.2(B). A sequence of lattice spacing d generated a diffraction of

r¼ d* on the diffraction pattern. Then, the other sequence of lattice spacing D, where

D¼ 2d, would generate a diffraction of r¼D*, where D*¼ d*/2. Although the diffraction

is reciprocal to the corresponding lattice spacing, both of them share the same property

of periodicity. That is, the arrangement of diffractions generated by a crystal with

periodic structure (real lattice) must be periodic in the diffraction pattern (reciprocal

lattice). By the definition of Bragg’s law, the occurrence of diffractions is equivalent to

periodicity, which is another name for crystals in classic crystallography.

For a two-dimensional square lattice, the same periodic arrangement of diffractions

would be observed along the vertical direction. As a result, diffractions form a square

arrangement in the diffraction pattern analogy to its original lattice. A similar correlation

must be observed in any three-dimensional lattice as well. An important feature inherent

in this correlation is that the shape in the real lattice is preserved in the reciprocal lattice.

Therefore, in Figure 26.2(B), if the real lattice is described by repetition of a square, then

one must be able to find a square to describe the reciprocal lattice. The words “repeti-

tion” and “translation” have different meanings, but they are commonly used to describe

the periodicity. Therefore, for a long time, “periodicity” was another name for a crystal,

until the discovery of QCs.

26.1.2 Restriction on Symmetry by Translation

Because a crystal structure is composed of a translation of the lattice and point group

of symmetry of the basis, only a number of symmetries are allowed. Restriction of

symmetry due to translation is described in Figure 26.3(A). Assuming a crystal con-

taining lattice points of A, B, C, D, and E, distances between these lattice points are

commonly a. If angles between lines formed by lattice points are a, then

na¼ 360� ¼ 2p, where n is an integer that represents the times of symmetry. Let AB¼ b;

then b¼ma must be approved, where m must be an integer in order to satisfy trans-

lation. The equation of b¼ 2acos a could be derived, and conclusively cos a¼m/2.

Because m must be an integer, only a number of rotation angles are allowed, as shown

in Table 26.1 Consequently, the allowed rotation symmetries n are 1, 2, 3, 4 and 6, and

no rotation symmetry more than 6 is allowed. According to this derivation, fivefold
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symmetry and its multiplicity are not allowed in the classic crystallography. This can

also be easily understood in terms of tiling by using a pentagon, as shown in

Figure 26.3(B), where the rhombus cavity would come out. In other words, a basis or a

motif with fivefold symmetry is impossible to fill in a two-dimensional plane or three-

dimensional space.

26.1.3 Discovery of QCs

The electron diffraction pattern shown in Figure 26.1 was in conflict with the defi-

nition and restriction of a crystal. The electron diffraction pattern exhibits somewhat

sharp diffractions arraying with tenfold symmetry, which were forbidden in crystals as

mentioned above. However, the first discovered Al–Mn icosahedral QC (IQC) shown in

Figure 26.1 was prepared by rapid solidification; hence, it had a highly disordered

structure as evidenced by peak broadening and shifting of diffractions, as well as low

thermal stability. Two promising structural models for IQC—the icosahedral glass (IG)

model [4,5] and the giant crystal model [6]—were proposed to explain the disorder.

IQC structures described by the IG model or a metastable state of approximants can

be interpreted within a framework of typical solid structures [7]. Therefore, new

FIGURE 26.3 Descriptions of (A) rotational symmetries compatible with lattice translation and (B) the impossibility
of tiling by only using pentagons.

Table 26.1 Rotational Symmetries Compatible with
Lattice Translation

m cos a[m/2 a n[ 360�/a

2 1 0, 2p 1
1 1/2 p/3 6
0 0 p/2 4
�1 �1/2 2p/3 3
�2 �1 p 2
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structures, such as the Penrose pattern [8] or the concept of quasilattice, would have

been unnecessary to describe IQC structures; hence, there was a huge controversy

concerning whether IQCs really represented a new form of solid. This controversy

lasted for a few years after the discovery of the first IQC. The discovery of the stable

Al–Cu–Fe IQC (Figure 26.4) represented a breakthrough because its diffraction pattern

and high-resolution image could not be interpreted by either the IG model or meta-

stable states of approximants [3]. The highly ordered structure was maintained over a

wide range, as large as on the order of millimeters. Consequently, stable QCs revealing

sharp diffractions, as verified in a sequence of alloys, established that the QCs were a

new form of solids. The International Union of Crystallography redefined the crystal in

1991 as “any solid having an essentially discrete diffraction diagram” [9]. In the new

definition, the QC, which will be described next, is a crystal in high-dimensional

space.

26.2 Structures of QCs
The question “Where are the atoms?” was asked soon after the discovery of QCs [10].

Here, we first describe the basic concept to understand the framework of structure

of QCs, then provide two real examples of structures with accurate atomic

decorations.

26.2.1 One-dimensional Quasiperiodic Structures and the Fibonacci
Sequence

A one-dimensional quasilattice obtained by a cut-and-projection method [11], as

shown in Figure 26.5(A), is the best example to describe how a high-dimensional

crystal converts to a QC. First, let us put a square lattice in two-dimensional space.

(A) (B)

FIGURE 26.4 (A) High-resolution transmission electron microscopy image and (B) electron diffraction pattern
taken along a fivefold axis of the stable Al65Cu20Fe15 IQC [3].
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Then, we introduce a set of orthogonal axes, namely rjj and rt, which are rotated by an

angle of q with respect to the original coordinate system of the square lattice. rjj and rt

are two projection axes, called the physical axis and complementary axis, respectively.

Parallel to rjj, we introduce a strip with a width of a unit square (W) along rt. The strip

is also called a “window” for projection, which contains a number of lattice points of

the square lattice. The next step is let the lattice points inside the window project on to

rjj, as shown in Figure 26.5. A tiling consisting of two different lengths long (L) and

short (S), which are the projection of two different sides of the unit square lattice, is

then obtained.

If the tan a is irrational, such as in the case in Figure 26.5(A) where a¼ tan�1(1/s)z
31.716� (s ¼ 1þ ffiffi

5
p
2 is Golden mean), a one-dimensional quasiperiodic tiling with L and S

line segments is formed. Note that if a small W is used, points of projection will be less

dense and L and S line segments will be larger, and vice versa. The size of W only

changes the density of projection points or the lengths of L and S; as long as the slope is

the same, one gets the same quasiperiodic array and length ratio, S/L¼ 1/s. This is the
property of self-similarity, and the factor of self-similarity for a quasiperiodic array is

irrational.

If the slope of W, m (¼S/L) approached a rational number, as shown in

Figure 26.5(B), such as m¼ 2/3, the projection points will form a periodic array with a

periodicity of 2S þ 3L. The quasiperiodic array is a one-dimensional QC, and a

periodic array derived by projection is an approximant crystal. By choosing m to be

a continued-fraction approximant to s (m¼ 1/1, 1/2, 2/3, 3/5.), one creates a

structure with larger periods that approximate the quasiperiodic tiling (Figure 26.5,

right) better and better. The sequences of L and S for the quasiperiodic structure and

approximant (projected with m¼ 1/s and m¼ 2/3, respectively) are shown in

Figure 26.5. The differences between two sequences are indicated with arrowheads,

where the LS observed in quasiperiodic tiling is replaced by SL in the approximant

[12]. The period of the approximant is LSLLS. The difference is due to a flipping

between L and S; with regard to QCs, this flipping is called “phason flipping,” which is

a sort of defect in QCs.

FIGURE 26.5 Projection of a
two-dimensional lattice onto a
one-dimensional space with (A) an
irrational slope (1/s) and (B) a
rational slope (2/3) to obtain a
one-dimensional quasicrystals and
approximant, respectively.
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Because the one-dimensional quasiperiodic structure can be derived from a two-

dimensional periodic structure, as shown in Figure 26.5, a QC is called a crystal in

high-dimensional space. The one-dimensional quasiperiodic sequence can be obtained

by a substitution rule: L/ LS and S/ L, which can be expressed by Eqn (26.2).

L

LS

LSL

LSLLS

LSLLSLSL

LSLLSLLSLLS

.

(26.2)

Each series can be expressed as Fn¼ Fn � 1 þ Fn � 2, where lim
n/N

Fn�1

Fn
¼ 1

s. The number of

total L and S for each series will be 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.. This is the Fibonacci

number or Fibonacci sequence. Note that a series of ratios of numbers, such as 1/2, 2/3,

3/5, 5/8. are corresponding to m and are used to obtain a series of approximant

crystals.

26.2.2 Two-dimensional Quasiperiodic Structures and the Penrose
Pattern

There are a number of two-dimensional quasiperiodic structures owning different

symmetries, such as 8-fold (octagonal), 10-fold (decagonal), and 12-fold (dodecahedral)

symmetries [13]. In reality, QCs with a decagonal lattice (decagonal quasicrystals, DQC)

are well studied and are stable, which allowed discussion of the mechanism of crystal

growth; here, we focus on the decagonal lattice.

The typical decagonal lattice is described by the well-known Penrose pattern shown

in Figure 26.6(A). The Penrose pattern is constructed by tiling a two-dimensional plane

with two rhombic tiles, namely a “fat” tile with an angle p/5 and a “skinny” one with an

angle p/10. A perfect Penrose pattern is formed only when tiling is made along so-called

matching rules, which are formulated using a marking of the edge. Each rhombus has

single or double arrows along the edges; rhombi of the same type have identical arrow

markings. Neighboring rhombi have edges in common. To make a Penrose tiling, one fits

these rhombic tiles together according to the matching rule: two rhombic tiles can be

placed side by side only if coinciding edges have the same type and directions of the

arrows. This leads to quasiperiodicity of the tiling.

Each vertex in an infinite Penrose tiling is surrounded by one of eight combinations of

tiles [14]. In an infinite Penrose tiling, the ratio between the number of fat tiles (NF) and

that of skinny tiles (NS) will approach s. Any vertex out of these eight combinations will

be a defect and the ratio of NF/NS will deviate from s. The Penrose pattern could be

obtained by the cut-and-projection method of a five-dimensional cubic lattice onto a

two-dimensional space, similar to that shown in Figure 26.5. In this case, instead of
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a strip shown in Figure 26.5, a number of polygons, namely pentagons of windows

(also called occupation domains), are used. The vertex of Penrose patterns forms a two-

dimensional QC, which could be assigned with five vectors: e1, e2, e3, e4, and e5, as shown

in Figure 26.6(B), with an angle of intersection of p/5. Because e1 þ e2 þ e3 þ e4¼�e5,

four vectors is enough for assignment. Every spot in its diffraction pattern can be

indexed with a combination of the vectors (cos(2pj/5), sin(2pj/5))/a [15], where a is the

edge length of Penrose pattern and j¼ 1,., 5.

A typical flipping of tiles, as shown in Figure 26.6(C) is also observed in the mis-

matching of Penrose tiling, which could be made from projection by a shift or change in

size of W. Two hexagons have the same outline; both are made of two skinny and one fat

tiles, but their arrangements are different. In terms of tiling, the flipping of tiles makes a

significant difference. However, if we assume that the seven vertexes are all occupied by

atoms, this flipping is simply made by a slight switching of atomic position from A to B

(or B to A) at the interior of hexagons. This is phason flipping in a two-dimensional QC,

which has been observed in real QC samples.

There is a self-similarity of Penrose pattern, as shown in Figure 26.6(D). By dividing

the original tile with a length ratio of 1:s, one may obtain identical tiles with a scale of

1/s with respect to the original ones. In the Penrose pattern, a larger number of

vertices reveal local fivefold symmetry, and along any direction there is no periodicity

of lattice spacing. The calculated diffraction pattern of the Penrose pattern reveals

10-fold symmetry and a quasiperiodic arrangement of diffractions inflated with s
scaling, which closely resembles that observed by Shechtman et al. Obviously, the

Penrose pattern is the key to understanding the structure of QCs. It is normally used as

a template for modeling the structure of two-dimensional QCs by decorating rhombic

tiles with atoms.

FIGURE 26.6 (A) Description of Penrose
tiling made with two rhombi. (B) Five basis
vectors used to index the Penrose lattice.
(C) A description of the phason flip: lattice
position exchange between A and B
changes the arrangement of tiles.
(D) Inflation in Penrose tiling.
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The Penrose pattern itself is a decagonal structure with a 10-fold axis and is the

simplest template to describe a DQC. A structure of a DQC, as shown in Figure 26.7 [16],

is periodic along one direction and quasiperiodic in the plane perpendicular to it (i.e.,

the paper). Thus, it can be expressed as a periodic stacking made by different atomic

layers alternatively along a decagonal axis. The period of Figure 26.7 is on the order of

0.4 nm (two different atomic layers), but it could be a multiple of this periodicity.

TEM is a powerful tool for studying DQC because it can get high-resolution images

along the periodic direction, which contain symmetry and the interior atomic position of

clusters. The formation of stable DQCs allows one to study the structure by means of a

single-grain X-ray diffraction technique; one example is shown in Figure 26.7. The struc-

ture model with atomic decoration superimposes on the Penrose pattern for Al–Ni–Co

DQC. This DQC exhibits a periodicity of 0.4 nm or two atomic layers; hence, the atomic

positions shown in Figure 26.7 are a projection of two different atomic layers. High-

resolution TEM studies suggested a similar structure, indicating the model is reliable [17].

It should be noted that the atomic positions in Figure 26.7 are not fully occupied and

there are several partial sites in the real DQC structure. Two partial sites could be treated

as one atom flipping between two too-close sites, shown in Figure 26.6(C); in terms of

tiling, this is the phason flipping. There are several flipping sites in real DQCs, which are

essential for forming long-range quasiperiodic structures and are the origin of the diffuse

scattering observed in X-ray diffraction studies. The DQC structure can be described by

the overlap of decorated decagons (Grummelt decagon) [18,19] with a diameter of

0.2 nm, as highlighted by the thick lines in Figure 26.7.

FIGURE 26.7 Structural model of Al72Ni20Co8 DQC superimposed by two different atomic layers. Gray circles and
black circles represent Al and transition metals (Ni or Co), respectively. A highlighted decagon composed of
kites, boats, and a star is Gummelt decagon, which is used to construct the structure by overlapping rather than
tiling [16].
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26.2.3 Three-dimensional Quasiperiodic Structures

There is only one three-dimensional quasiperiodic structure: the IQC. The simplest set of

unit cells for a three-dimensional quasiperiodic structure consists of the acute and

obtuse rhombohedra shown in Figure 26.8(A). These two unit cells play the same roles as

the skinny and fat tiles, respectively, in the Penrose tiling. All the faces are identical

rhombuses, which are a Golden rhombus with length ratio s for two diagonals.

As shown in Figure 26.8(B), 10 acute and obtuse rhombohedra can be packed to form

a rhombic triacotahedron (RTH) and 20 acute rhombohedra can be packed to form a

stellated dodecahedron. Both polyhedrons reveal icosahedral symmetry, which shows

how the unit cells can be packed to fill space. Using polyhedrons as unit cells with

atomic decoration, it is easy to imagine the symmetry of structure. Similar to Penrose

patterns, a three-dimensional quasiperiodic structure can be obtained by a cut-and-

projection method of a six-dimensional cubic lattice onto a three-dimensional space.

The typical W for the projection is a rhombic triacontahedraon shape with edge length

1/s2 times that of projected structure [14]. In the six-dimensional construction, the

analog of W in Figure 26.5 is the product of a three-plane and a suitable three-

dimensional cross-section. The L and S line segments correspond to acute and obtuse

rhombohedra, respectively. If the vectors used to describe W are a series of (m, 1, 0)

vectors, then the three-dimensional quasiperiodic structure results when m/ s. By

taking the rational approximants m¼ 0/1, 1/1, 1/2, 2/3., one obtains a sequence of

cubic structures with larger and larger lattice constants. Two 1/1 approximants

have been verified in a-AlMnSi [12] and (Al, Zn)49Mg32 [20] compounds, which are

FIGURE 26.8 (A) Acute rhombus (AR) and obtuse rhombus (OR) constructed by a so-called golden rhombus, of
which the ratio of diagonals is s. (B) A rhombic triacontahedron constructed by 10 AR and 10 OR and a stellated
dodecahedron constructed by 20 AR. (C) Six basis vectors used to index lattice of icosahedral quasicrystals,
described by an icosahedron.
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body-centered cubic (bcc) packing of icosahedral clusters with different shell structures.

For simplicity, both the IQC and the approximant consist of icosahedral clusters, of

which the arrangement is quasiperiodic for the former and periodic for the latter.

Therefore, the approximants contain very useful information for building an initial

structural model for IQCs. Lattice points of IQCs are normally assigned with six vectors

expressed on an icosahedron—namely e1, e2, e3, e4, e5, and e6, as shown in Figure 26.8(C).

A possible basis for the diffraction spots of an IQC is given by the six vectors [21]:

a�
i ¼

1

a
ð1; s; 0Þ; 1

a
ð�1; s; 0Þ; 1

a
ð0; 1; sÞ; 1

a
ðs; 0; 1Þ; 1

a
ðs; 0;�1Þ; 1

a
ð0; 1;�sÞ (26.3)

where i¼ 1,., 6.

So far, there is only one IQC, namely i-Cd5.7Yb [22], whose structure has been

completely solved [23]. A cubic-phase Cd6Yb with a space group of Im-3 and lattice

parameter a¼ 0.156 nm exists in the Cd–Yb phase diagram [24]. The structure of Cd6Yb

has been determined, and it was demonstrated to be a 1/1 approximant to the IQC

phase. The i-Cd5.7Yb is adjacent to the Cd6Yb phase in the phase diagram. The shell

structure of the icosahedral cluster deduced from Cd6Yb is shown in Figure 26.9(A). The

icosahedral cluster in Cd6Yb approximant has the following structure: the first shell is

created by four Cd atoms around the cluster center; the second shell consists of 20 Cd

atoms that form a dodecahedron; the third shell is an icosahedron of 12 Yb atoms, the

fourth shell is a Cd icosidodecahedron obtained by placing 30 Cd atoms on the edges of

FIGURE 26.9 (A) A rhombic triacontahedral (RTH) unit with atomic decoration used to construct (B) 1/1 and (C) 2/1
approximants in Cd–Yb system, where the structure of 1/1 approximant can be described by the RTH and
structure of 2/1 approximant needs a (D) decorated acute rhombus unit in addition to the RTH. There are only
two linkages between two adjacent RTH are allowed: (E) b-linkage link by sharing a rhombus unit and
(F) c-linkage connected by overlapping an obtuse rhombus [23].
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the Yb icosahedron, and the fifth shell is an RTH in which Cd atoms are located on 32

vertices and 60 edge centers. The i-Cd5.7Yb was studied by single-grain X-ray diffraction,

by which the icosahedral cluster was demonstrated to be identical to that of the Cd6Yb

approximant. The icosahedral cluster contains five atomic shells (Figure 26.9(A)) and is

an RTH cluster. It is important to indicate that a well-defined chemical order presents in

the RTH cluster, where Yb (only on an icosahedral shell) and Cd occupy different atomic

sites.

The structure of the 1/1 approximant is a bcc packing of RTH clusters, as shown in

Figure 26.9(B). Furthermore, the structure of a 2/1 approximant (Figure 26.9(C)) was

solved to consist of the same RTH as the 1/1 approximant, but it needs an additional unit

[25]—namely, an acute rhombohedron (Figure 26.9(D)) with suitable atomic decoration

to fill the cavity. In both approximants, the RTH clusters are linked to each other

(Figure 26.9(E)) along the twofold (b-bond) directions by sharing a rhombus face and the

three-fold direction (c-bond) with interpenetration of an obtuse rhombohedron, as

shown in Figure 26.9(F). Consequently, three fundamental building units—an RTH

cluster (a), an acute rhombohedron (d), and an obtuse rhombohedron (f)—are supposed

to be necessary for constructing the IQC structure.

Using the knowledge of linkage rules and building units, a precise structural model

for i-Cd5.7Yb was proposed (Figure 26.10), which describes the structure in terms of

inflation and hierarchical packing of clusters. Figure 26.10 shows the RTH center posi-

tions and their connection on a fivefold plane. Starting from the center, it can be shown

that a cluster of RTH units (icosidodecahedron) is formed. The cluster of RTH forms a

FIGURE 26.10 Structural description of i-Cd5.7Yb with rhombic triacontahedral (RTH) unit. (A) A dense plane of
RTH units is seen along a fivefold axis. (B) A small ball represents an RTH unit used to construct an
icosidodecaherl cluster, by which a larger icosidodecahedral cluster can be built up. Ratio of edge length between
large and small icosidodecahedra is s3 [23].
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large “cluster of a cluster,” which is also an icosidodecahedron but with a s3 times in-

crease in scale. A prominent feature of the model is that almost all of the IQC structure is

described by interpenetrating RTH clusters because 93.8% of the atoms belong to the

RTH clusters [23]. The full structure is described by the RTH clusters, where 100% of

atoms belong to the RTH clusters for the 1/1 approximant. These two structures are both

described by the RTH clusters but stand at two oppositional extremes, with a difference

in composition of only w2 at%. One interesting feature is that all approximants exist as

stable phases in nature; they can be mathematically derived by a cut-and-projection

scheme.

26.3 Variations of QCs
QCs can be formed through various processes and by various techniques. The structure

and the intrinsic disorder of QCs are very sensitive to the process of formation. They

could be stable and metastable, depending on alloys, and they reveal a number of var-

iations in structure. QCs can be sorted by their diffraction features and symmetries,

which are easily determined from diffraction patterns.

26.3.1 Three-dimensional QCs

26.3.1.1 Lattice Type
In terms of symmetry, only one three-dimensional QC has been discovered so far—IQC.

This is the QC studied most extensively among all known QCs. Figure 26.11 shows the

typical selected area electron diffraction (SAED) patterns taken with incidences along

fivefold, threefold, and twofold symmetry axes, as well as the morphology of a single IQC.

The IQC possesses a very high symmetry with the point group m-3-5. It was predicted

from theory that there exist three types of Bravais lattices in three-dimensions, consis-

tent with the icosahedral point symmetry. They correspond to primitive, body-centered,

FIGURE 26.11 Electron diffraction
patterns taken along the fivefold,
threefold, and twofold axes (left)
and a SEM image (right) of stable
Al65Cu20Fe15 IQC [26].
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and face-centered hypercube in a six-dimensional hyperspace. The primitive and face-

centered types have been verified in real samples. These two types of IQCs can be

distinguished by extinction rules of diffractions in their twofold patterns [3,13].

Figure 26.12(A) and (B) shows partial diffraction patterns taken along twofold axes for

the primitive and face-centered IQCs. Indexing is given in Figure 26.13(C), where the

diffraction spot arrangement is inflated by s3 and s for primitive and face-centered type

lattices, respectively. Note that face-centered type lattice has odd–even parity. Most

Al-based metastable IQCs should have a face-centered lattice, but it is obscured by

quenched-in disorder. For stable IQCs, Al-based and Zn–Mg-RE (where RE¼ rare earth

metals) systems have face-centered lattices and Cd–Yb groups have primitive lattices.

26.3.1.2 Structure of Icosahedral Clusters
IQC can be classified into three classes according to the hierarchic structures of icosa-

hedral clusters derived from their corresponding crystalline approximants: the Al–Mn–Si

class [12], the Mg–Al–Zn class [27], and the Cd–Yb class [22]. The structures of atomic

shells for the three classes are shown in Figure 26.13. The three classes are also called

Mackay, Bergman, and Tsai clusters, respectively. The clusters were first recognized by

Henley and Elser in two compounds, a-Mn12(Al,Si)57 [12] and Mg32(AlZn)48 [20], which

are supposed to be 1/1 approximants to IQCs. The clusters have icosahedral symmetry,

FIGURE 26.12 Electron diffraction patterns of (A)
P-type and (B) F-type IQCs and (C) indexing of
diffraction spots in their corresponding fivefold
axis [3].
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which was very useful for guessing the structure of IQCs. However, the structures of most

stable IQCs have not been solved; the hierarchic structures of icosahedral clusters were

not determined to belong to either of the two classes, except Al5.5Li3Cu, which revealed

the same clusters as Mg32(AlZn)48. Recently, a series of IQC and approximants were

discovered in Na-containing intermetallic compounds [28], which belong to the

Bergman type. More recently, the structure of an Al–Pd–Cr–Fe 3/2 approximant to IQC of

the Al–Pd–Mn system has been solved [29], which is well described as a dense packing

of two kinds of clusters: mini-Bergman and pseudo-Mackay clusters. For the group of

Zn60Mg30RE10 stable IQCs, the structure of icosahedral cluster is still unknown because

no appropriate approximant has been reported. Obviously, grouping the IQCs by hier-

archic structures of clusters may not be clear for these two classes. On the other hand,

the Tsai cluster was verified to be identical in several IQCs and approximants in Cd–Yb,

Ag–In–Yb, Zn–Sc, and so on [30], as shown in Figure 26.9 and Figure 26.13(C); cluster

grouping is strictly clear in this group. For convenience, the stable IQCs are grouped as

Al–TM, Zn–Mg-RE, and Cd–Yb classes in this chapter.

26.3.2 Two-dimensional QCs

So far, there are three kinds of two-dimensional QCs: decagonal, dodecahedral, and

octagonal QCs, as classified by their electron diffraction patterns. Figure 26.14 shows the

typical diffraction patterns of DQC along a 10-fold axis and two characteristic twofold

axes, together with an scanning electron microscopy image revealing decaprism

morphology. The 10-fold axis is the axis along which the diffractions are arranged

periodically. Perpendicular to this axis is the quasiperiodic plane, in which the

Vacant          12 Al/Si                     12 Mn                    30 
Al/Si

Vacant           12 Al/Zn          20 Mg                  12 
Al/Zn

4 Cd        20 Cd         12Yb
30 Cd

(A)

(B)

(C)

FIGURE 26.13 Atomic decoration of successive
shells of atomic clusters expected in various
families of icosahedral quasicrystals: (A) Mackay
type, (B) Bergman type, and (C) Tsai type.
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diffractions are arranged in a quasiperiodic array with a 10-fold symmetry. This will be

12-fold [31] and 8-fold [32] symmetries for dodecahedral and octagonal QCs, respec-

tively, as shown in Figure 26.15. Only DQC was found to be stable in Al–Ni–Co,

Al–Cu–Co, and some Al–Pd systems.

26.3.3 Alloy Systems of Stable Phases

Stable QCs have two inherent properties: stability and a well-ordered structure. The

stability allows QCs to be grown at slow cooling rates, thus enabling large single-domain

QCs with high structural orders to be produced for precise measurements. Both prop-

erties are crucial for verifying that QCs are a new form of solid that differs from both

crystalline and amorphous solids. The first Al–Mn QC was prepared by rapid

FIGURE 26.14 Electron diffraction patterns
taken along a 10-fold and two twofold axes,
and an SEM image of Al72Ni20Co8 decagonal
quasicrystal.

(A)(A) (B)(B) FIGURE 26.15 Electron diffraction
patterns taken along an 8-fold (A)
and a 12-fold (B) from octagonal
and dodecahedral quasicrystals,
respectively.
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solidification and hence had a high defect density and low thermal stability. QCs

obtained by rapid solidification are thermodynamically metastable and thus decompose

into crystalline phase(s) on heating at temperatures much lower than their melting

points. Moreover, their grain sizes are a few micrometers, which is too small to precisely

investigate their structures. In such samples, the structure and properties originating

from their quasiperiodicity are masked by the structural disorder. This resulted in

controversy regarding structural modeling for interpreting the origin of diffraction pat-

terns observed in the early 1980s. Since 1986, several stable QCs with grain sizes as large

as w100 mm and facetted morphologies have been discovered in various alloys. This

greatly increased the precision of QC measurements, enabling structural analysis and

investigations of the physical properties of single QCs to be performed. The stability of

stable QCs has been explained in terms of electronic structures or valance concentration

(e/a: electron-atom ratio) in several articles, so we do not go into detail in this chapter.

The stable QCs alloys discovered to date are summarized in Table 26.2. Most stable

QCs (especially IQC) are a new group of electron compounds as described by Hume-

Rothery for intermetallic compounds in the early 1900s [33]. The e/a criterion is even

stricter for IQCs than crystalline compounds because stable IQCs only form at sharp

compositions with strict e/a values [34]. Unlike stable IQCs, stable DQCs only form in a

few alloy systems, such as Al–Ni–Co and Al–Cu–Co systems, but their compositional

ranges are much wider in each system.

A phase appears in the equilibrium-phase diagram, meaning that it is thermody-

namically stable. This was first noted in the Al–Li–Cu phase diagram established in 1955

[35], of which an unknown T phase was verified to be an IQC in 1986 [36]. Revisiting the

phase diagram after discovery of the stable i-Al–Cu–Fe [26], it was found that when the

system being mapped in 1930s [37], the IQC was observed and labeled as the j phase, as

shown in Figure 26.16(A). Similarly, the Zn60Mg30Y10 IQC [38] turned out to be the

so-called Z-phase [39], as shown in Figure 26.16(B), which had been reported as distinct

but unidentified phase in the Zn–Mg-Y system a few years before the discovery of QCs.

Table 26.2 Alloy Systems Forming Stable Icosahedral Quasicrystals

P-Type F-Type

Al–Mn–Al Al63Cu25TM12 (TM:Fe Ru Os)
Al70Pd20TM10 (TM:Mn Tc RE)

Zn–Mg–Al Al5Li3Cu Zn60Mg30RE10 (RE:Y Dy Ho Gd Er Tb)
Zn70Mg20RE10 (RE:Er Ho) Zn74Mg19TM7 (TM:Zr Hf)

Cd–Yb Cd5.7M (M:Yb Ca), Zn88Sc12, Cd88M12(M:Gd,Tm,Y)
Cd65Mg20M15 (M:Yb Ca Y Ho Gd Er Tb)
Zn80Mg5Sc15
In42Ag42M16 (M:Yb Ca)
Au60Sn25M15(M¼ Yb,Ca), Au51Al34Yb15
Zn74Ag10Sc16, Zn75Pd9Sc16
Zn77Fe7Sc16, Zn18Co6Sc16, Zn75NI10Sc15
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26.4 Growth Methods
Many quasicrystalline phases have been discovered as stable phases in equilibrium-

phase diagrams. Thus, it is possible to grow large single-grain QCs by conventional

crystal growth methods for the precise measurement of crystal structure, surface

structure, and physical properties.

26.4.1 Czochralski Method

The Czochralski method has been adopted to grow large single QCs of i-Al–Fe–Cu

[40,41], i-Al–Pd–Mn [42,43], i-Al–Li–Cu [44], d-Al–Ni–Co [45–50], and d-Al–Cu–Co [51,52].

The crystals prepared by the Czochralski method grow from near-equilibrium condi-

tions, so a detailed phase diagram involving the primary crystallization field of quasi-

crystalline phase is necessary for designing the starting composition and temperature

program.

A typical setup of a Czochralski furnace is illustrated in Figure 26.17(A) [42]. As for

many others materials, the necking process is applied to obtain a narrow volume for

selective growth of a single nucleus and eliminate dislocations in the subsequent growth.

Most QCs are ternary intermetallic compounds with incongruent solidification, so

relatively slow growth rates are required for growing high-quality single QCs. The typical

FIGURE 26.16 Partial phase diagrams involving the icosahedral quasicrystal (IQC) phase in the (A) Al–Cu–Fe [37]
and (B) Zn–Mg-Y [39] systems, where j and Z phases were indicated as unknown compounds and later were
verified to be IQC phases.
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pulling rate for Al-based QCs is in the range of 0.1–10 mm/h. The diameter of the ingot is

controlled by the temperature of molten solution, and the composition of the residual

liquid melt in the crucible is varied during the growth. With the Czochralski method, a

skilled researcher can grow single QCs of about 1 cm in diameter and several centimeters

in length. Figure 26.17(B) shows photographs of the Czochralski d-Al–Ni–Co ingots [50].

26.4.2 Bridgman Method

In most cases of QC growth, the sample nucleates spontaneously rather than grows on a

preset seed, because it is difficult to control the partial melting of the seed at the

beginning of crystal growth. Therefore, the control of spontaneous nucleation at the

early stage of crystal growth is of primary importance. A crucible with a cone-shape

bottom is usually used to minimize the possibility of forming many nuclei

(Figure 26.18). The conventional Bridgman furnace that the authors used has three

temperature zones, as schematically illustrated in Figure 26.18.

To protect sample from oxidation or evaporation, the crucible with initial materials is

sealed in a quartz ampoule (Figure 26.18), which is preliminarily evacuated and filled

with an inert gas. At the beginning of crystal growth, the ampoule is raised into the upper

zone and kept at a high temperature for a long time to get a homogeneous molten

solution. Then, the ampoule is pulled down slowly in the furnace to pass the tempera-

ture gradient zone. The QC first nucleates at the bottom of the crucible and then grows

upwards when the molten solution passes the liquid–solid interface. A slow pulling

speed in the range of 0.1–10 mm/h is used for single QC growth. With this method, large-

size, high-quality single i-Al–Pd–Mn [53], i-Ag–In–Yb [54,55], i-Zn–Mg–Ho [56,57],

d-Al–Ni–Co [43,58], and d-Al–Cu–Co [59] have been grown. For congruent melting QCs,

such as i-Ag–In–Yb [55], i-Cd–Yb, and i-Ag–In–Ca, the whole ingot can be a single grain

when the starting material is of stoichiometry.

FIGURE 26.17 (A) The schematic illustration of the Czochralski growth apparatus [42]. The crucible containing
molten alloy is heated by high-frequency induction coil. A pull rod with a seed crystal is mounted axially above
the crucible. (B) Single d-Al–Ni–Co synthesized by the Czochralski method on [00001] and [10-100] oriented
seeds [50].
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26.4.3 Floating Zone Method

The floating zone method is schematically illustrated in Figure 26.19(A). Before crystal

growth, a polycrystalline feed rod with the same composition as the target QC is pre-

pared by arc melting or the electrical induction method. The diameter of the feed rod is

similar to that of the final single QC. The concept of this method is forming a molten

zone (floating zone) in the feed rod using a high-frequency induction coil or infrared

heater (halogen lamps mounted around the growth region) and moving the molten zone

upwards at a speed around 0.5–1 mm/h. The crystal growth proceeds by moving the

molten zone from the bottom to the upper part of the feed rod.

FIGURE 26.18 The schematic illustration of the Bridgman furnace (left), quartz ampoule encapsulated crucible
(middle), and temperature profile in the furnace (right).

FIGURE 26.19 (A) The schematic illustration of the floating zone method. (B) A single i-Al–Pd–Mn grown by the
floating zone method [3]. HF, high-frequency.
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Similar to the Czochralski method, an oriented seed can be preset at the bottom of

the feed rod to control the quality and direction of the single QC. Because a planar

liquid–solid interface is hard to achieve due to the inhomogeneous heating in the

molten zone, the feed rod and grown rods are rotated slowly in opposite directions to

eliminate the composition gradient along the radial direction in the molten zone. So

far, the floating zone method has been successfully used for growing large single QCs

of i-Al–Pd–Mn [3] and d-Al–Ni–Co [60,61]. Figure 26.19(B) shows a photograph of

the single i-Al–Pd–Mn produced by the floating zone method [3]. The growth direction

is along a twofold axis, which is controlled by a single grain seed at the right part of

the image.

26.4.4 Solution Growth (Self-Flux) Method

There exists a field that the QC is in equilibrium with the melt in the phase

diagrams in many QC alloys; hence, the self-flux method is applicable. It is possible to

extract single grains from molten solution at high temperatures if an appropriate

starting composition and a suitable decanting temperature are selected. So far, the

self-flux method has been widely applied for growing single QCs of i-Al–Cu–Fe [62],

i-Al–Pd–Mn [63], i-Al–Cu–Ru [64], i-Al–Pd-RE [65,66], i-Ag–In–Yb [67], i-Zn–Mg-RE

(RE¼ Y and rare earth) [68], i-Zn–Sc [69], i-Cd-RE [70], and d-Al–Ni–Co [43,71] by

cooling an off-stoichiometric melt that intersects the liquids associated with the QC

phase.

Figure 26.20 shows a schematic illustration of process for the self-flux method applied

in several QCs. Special care in the process is that a mesh fixed at a position above

the alloy for decanting the melt at the end of crystal growth. Normally, the melt is

homogenized at high temperatures and then cooled down slowly at a rate of 0.1–3 �C/h.
In some cases, to control the nucleation process and reduce the number of nuclei, a cold

finger attached at the bottom of the crucible is introduced in a modified setup [72]. At a

certain temperature before a second phase solidifies, the ampoule containing the single

QCs and melt is removed from the furnace and turned upside down into a centrifuge to

spin off the remaining liquid phase. There is an advantage to this method, in that the

QCs grown always exhibited a natural facet, as shown in Figure 26.21, which enable one

to index the orientation of QC quickly.

FIGURE 26.20 The schematic illustration of the self-flux method.
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26.5 Selected Results
As shown in Section 26.3 and Table 26.2, QCs are stable in some alloy systems and exist

in the phase diagrams. Moreover, most stable QCs reveal high structural perfection, for

which one may expect production of high-quality single-grain samples. However, in

reality, this is still a technical challenge because of the following reasons. (1) Most stable

QCs are ternary intermetallic compounds. This gives a complexity to the solute partition

between melts and solids upon solidification. (2) Most QCs form through complex

peritectic reactions. That is, they do not crystallize primarily in the melts. (3) Some QCs

consist of elements such as Zn or Mg, which have low melting temperatures and high

vapor pressures, thus creating technical difficulty in crystal growth. These problems are

also inherent in many binary and ternary crystalline intermetallic compounds. Hence,

the successful growth of single crystal requires applying the proper method, designating

the alloy composition, and maintaining precise control of the temperature program. The

single crystal growth processes developed for a number of QCs using various techniques

in different alloys systems are summarized in Table 26.3 A number of cases are described

in the following sections.

26.5.1 Al–Pd–Mn System

The temperature gap between the L (liquid) and IQC phase in Al–Pd–Mn system is

around 20 �C, which is the smallest among Al-base QC alloys and can be easily bypassed

by supercooling during crystal growth. Hence, only the single grains of i-Al–Pd–Mn with

sizes on the order of centimeters have been easily grown by the Czochralski method

[42,43], Bridgman method [53], floating zone method [3], and self-flux method [63].

Yokoyama et al. reported a partial isothermal phase diagram, in which the IQC phase

precipitates as a primary phase in the range of 3–9 at% Mn and 18–25 at% Pd [42]. Based

on the phase diagram, a large single IQC with diameter of 10 mm and length of 50 mm

could be grown with an initial composition of Al73.5Pd19.7Mn6.8 at 870 �C by the

Czochralski method [42]. Gödecke and Lück [73] reported the refined phase diagram

shown in Figure 26.22, where the IQC phase solidifies from melt in range of about

71–78 at% Al, 15–22 at% Pd, and 4–10 at% Mn. A vertical cut section at 20 at% Pd content

(A) (B) (C)

FIGURE 26.21 Single quasicrystals of (A) i-Al–Pd–Mn [63], (B) i-Ag–In–Yb [67], and (C) d-Al–Ni–Co [71] synthesized
by the self-flux method.
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Table 26.3 Single Crystal Growth Process Developed for a Number of Quasicrystals
Using Various Techniques in Different Alloys Systems

Alloys Techniques
Conditions (Initial Composition,
Growth Temperature, Growth Rate) Size References

i-Al–Fe–Cu Czochralski Al57.7Cu37.7Fe3.5Si1.1, 800 �C, 0.2 mm/h F¼ 4 mm, L¼ 40 mm [40]
Al57.7Cu37.7Fe3.5Si1.1, 800 �C, 0.18 mm/h F¼ 2 mm, L¼ 100 mm [41]

Self-flux Al60Cu36Fe4, cooled from 900 to 780 �C
at 1 �C/h and decanted

5 mm [62]

i-Al–Pd–Mn Czochralski Al73.5Pd19.7Mn6.8, 870 �C F¼ 10 mm, L¼ 50 mm [42]
Al72.4Pd20.5Mn7.1, 890 �C F¼ 8 mm, L¼ 50 mm [43]

Bridgman 0.5 �C/h 1.5� 0.5� 0.5 cm3 [53]
Floating zone Al72Pd19Mn9, 1 mm/h F¼ 12 mm, L¼ 50 mm [3]
Self-flux Al73Pd19Mn8, cooled from 875 �C to

Td (835–870 �C) in a duration of 120 h
10 mm [63]

i-Al–Li–Cu Czochralski Al63Li25Cu12, 600 �C, 0.3 mm/h F¼ 1–5 mm, L¼ 60 mm [44]
i-Al–Cu–Ru Self-flux Al62Cu34.5Ru3.5, cooled from 1050 to

800 �C at 2 �C/h and decanted
5 mm [64]

i-Al–Pd-RE Self-flux Al75Pd20Re5, cooled from 1050 to
900 �C at 1 �C/h and decanted

5 mm [65]

Al93�xPdxRe7 (x¼ 15–22), cooled from
1025 to 900 �C at 0.5 �C/h and decanted

5 mm [66]

i-Ag–In–Yb Bridgman Ag42In42Yb16, upper temperature
800 �C, 0.2 mm/h

F¼ 10 mm [54]

Ag42In42Yb16, upper temperature
800 �C, 0.5–0.8 mm/h

F¼ 11 mm, L¼ 30 mm [55]

Self-flux Ag41In44Yb15, cooled from 635 to
610 �C at 1 �C/h and decanted

10 mm [67]

i-Zn–Mg-RE Bridgman Zn46Mg51Ho3, upper temperature
680 �C, 0.2 mm/h

0.5 cm3 [56]

Zn62.8Mg33.6Ho3.6, upper temperature
750 �C, 0.2 mm/h

1.5� 0.8� 0.2 mm3 [57]

Self-flux Zn46Mg51RE3, cooled from 650 to
480 �C at 2 �C/h and decanted

8 mm [68]

i-Zn–Sc Self-flux Zn100�xScx (x¼ 2–4), cooled from
800 to 480 �C at 5–10 �C/h and decanted

0.5 cm3 [69]

i-Cd-RE Self-flux Cd99.2RE0.8 (RE¼ Y, Gd–Dy) or Cd99.4RE0.6
(RE¼Ho–Tm), cooled from 455 to 335 �C
at 2 �C/h and decanted

1 mm [70]

d-Al–Ni–Co Czochralski Al75Ni14.5Co10.5, 7 mm/h F¼ 8 mm, L¼ 30 mm [45]
Al83Ni9Co8, 927 �C, 1 mm/h F¼ 1–7 mm, L¼ 60 mm [46]
Al75.6–78.5Ni11.0–14.0Co7.5–13.4, 1050 or
1100 �C, 0.2–0.5 mm/h

1 cm3 [47,48]

Al75Ni14.5Co10.5, 1–2 mm/h F¼ 10 mm, L¼ 60 mm [49]
Al77Ni17Co6, 0.15 mm/h Centimeters [50]
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(highlighted by the dotted line in Figure 26.22(A)) is shown in Figure 26.22(B), in which

the L þ I refers to the area that the IQC phase is in equilibrium with liquid phase, with I

being the stability range of the IQC phase.

Based on the phase diagram, Feuerbacher et al. prepared high-quality single

i-Al–Pd–Mn fromamelt of Al72.4Pd20.5Mn7.1 using theCzochraskimethod [43]. Single grain

with twofold or fivefold orientation was used as seeds and dipped into the melt at 890 �C.
After wetting the seed, the temperature of themelt was increased by about 10 �C to grow a

thin neck of about 1 cm in length, followed by a decrease in temperature to increase the

ingot diameter. The final temperature for constant diameter growth was about 880 �C.
Further progress for single IQC growth in a Al–Pd–Mn system was made using a self-

flux method developed by Fisher et al. [63]. The optimal initial composition is

Al73Pd19Mn8, which is close to the composition of the IQC phase (Al71Pd21Mn8). The

temperature profile is as follows: heat to 1100 �C to get a homogeneous melt, rapidly cool

Table 26.3 Single Crystal Growth Process Developed for a Number of Quasicrystals
Using Various Techniques in Different Alloys Systems—cont’d

Alloys Techniques
Conditions (Initial Composition,
Growth Temperature, Growth Rate) Size References

Bridgman Al77Ni12.5Co10.5, upper temperature
1200 �C, 1 mm/h

3–4 cm3 [43]

Floating zone Al72Ni12Co16, 0.5 mm/h 1 cm3 [60,61]
Self-flux Al77.0Ni10.5Co12.5, slowly cooled from

1200 to 1000 �C and decanted
1 cm3 [71]

Al77.0Ni10.5Co12.5, slowly cooled to
1010 �C and decanted

1–2 cm3 [43]

d-Al–Cu–Co Czochralski Al63.9Cu28.2Co7.9, 900 �C, 0.3 mm/h F¼ 1–5 mm, L¼ 30 [51]
Al66.0Cu26.0Co8.0, 0.1 mm/h 2 g, needle shape [52]

Bridgman Al65Cu27.5Co7.5, upper temperature
1100 �C, 0.2 mm/h

F¼ 5 mm, L¼ 10 mm [59]

F, diameter; L, length.

FIGURE 26.22 (A) Phase diagram of the Al–Pd–Mn system involves the solidification area of the icosahedral
quasicrystal phase. (B) A vertical cut section at 20 at% Pd content, as highlighted by the dotted line in (A) [74].
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down to 875 �C, slow cool (approximately 120 h) from 875 to Td (835 �C< Td< 870 �C),
and decant the residual liquid phase. By changing the decanting temperature, single

grains with a mass of several to several tens of grams have been grown. The obtained

single grains exhibited pentagonal dodecahedral facetted morphology (Figure 26.21(A)).

26.5.2 Al–Ni–Co System

Among the DQCs found to date, it is easy to grow a large single grain in d-Al–Ni–Co

(Al72Ni12Co16). As shown in Table 26.3, single d-Al–Ni–Co grains with a size on the order

of centimeters have been synthesized via the Czochralski method [45–50], Bridgman

method [43], floating zone method [60,61], and self-flux method [43,71].

The phase diagram of the Al–Co–Ni alloy system has been studied by several groups

[75,76]. Figure 26.23 shows a partial phase diagram along Al72.5Co27.5�xNix (x¼ 5–20 at%)

isopleths involving the primary crystallization field of the quasicrystalline phase [75]. The

d-Al–Ni–Co is an incongruent melting phase, existing in a large composition range

compared to the IQCs in Al-based alloys. L þ D shows the area that the DQC phase is in

equilibrium with liquid phase and D is the stability range of DQC phase. Sato et al. were

the first to grow centimeter-sized single d-Al–Ni–Co by the floating zone method [60].

Single grains with a volume of 1 cm3 have been obtained using starting polycrystalline

rods with a composition of Al72Ni12Co16 at a growth rate of 0.5 mm/h. Because the

d-Al–Ni–Co phase is in equilibrium with the Al-enriched liquid phase in a large compo-

sition range in the phase diagram, it is easy to grow single d-Al–Ni–Co from Al-rich molten

solution by the self-flux method. Fisher et al. [71] and Feuerbacher et al. [43] have pre-

pared centimeter-sized single d-Al–Ni–Co from an initial melt of Al77.0Ni10.5Co12.5.

The most successful growth of centimeter-sized single d-Al–Ni–Co has been carried

out using the Czochralski method [45–50]. The details have been studied by Gille et al.

[47,48,50]. With this method, high-quality single grains of centimeter size have been

FIGURE 26.23 A partial phase diagram along
Al72.5Co27.5�xNix (x¼ 5–20 at%) isopleths
involving the primary crystallization field of the
decagonal quasicrystal phase [75].
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synthesized form Al-rich melts in the range of approximately 75.6–78.5 at% Al,

11.0–14.0 at% Ni, and 7.5–13.4 at% Co. During the process, the seed was dipped into the

melt at 1050 �C. The crystal growth was performed using a very slow pulling rate

(0.1–0.5 mm/day) as well as rotation of the crucible and the growing ingot in opposite

directions. The diameter of the ingot is mainly controlled by the temperature of the melt.

Thus, after having increased the diameter of the ingot to about 10–15 mm at a certain

temperature, a decrease in temperature of 0.1–0.8 K/h is applied to keep the diameter

constant. The morphology of the final ingot is dependent on the orientation of the seed

QC. Circular cross-sections of the growing ingot were obtained when d-Al–Ni–Co seeds

of [00001] orientation were used, whereas with other growth directions elliptical shapes

of the growth interface occurred due to the anisotropic growth, with much faster growth

rates along the periodic direction of the 10-fold axis. The single d-Al–Ni–Co grown on an

oriented seed shows a clear faceting corresponding to the 10-fold or 2-fold symmetry, as

shown in Figure 26.17(B). The unoriented single d-Al–Ni–Co has facets of 32 types, with

different inclination of planes toward the 10-fold axis [50].

26.5.3 Zn–Mg-RE System

The i-Zn–Mg-RE system(Zn60Mg30RE10, RE¼ Y and rare earth) is a family of stable IQCs that

contains localized 4f electrons of rare earth elements, which enable intrinsic magnetism

inherent inquasiperiodic lattices [39,68]. The growthof single IQCs in this systemallowsone

to study themagnetic properties of a quasiperiodic structure. Langsdorf et al. has performed

single crystal growth in a Zn–Mg-Y system using a liquid-encapsulated top-seeded solution

growth method [77,78], in which a LiCl–KCl mixture was used as liquid encapsulant to

prevent the evaporation of Zn and Mg components. With this method, single grains of i-

Zn–Mg-Y with dimensions of a few millimeters in size can be obtained. Sato et al. reported

thegrowthofa large single i-Zn–Mg–Hoof0.5 mm3 involumewith theBridgmanmethod, in

which the vapor can be confined within a small closed crucible [56]. However, considering

the phase diagram of the Zn–Mg-RE systems, themost suitablemethod for single i-Zn–Mg-

RE growth is the self-flux method fromMg-rich melts [68].

Figure 26.24(A) shows a pseudobinary section of the Zn–Mg-Y phase diagram for the

section of Zn40þ2yMg60�3yYy determined by Langsdorf et al. [77,78], in which the IQC

phase is in equilibrium with the liquid in a wide range (Q þmelt), being easy to grow

single IQCs from molten solution via the self-flux method. Other Zn–Mg-RE systems

have similar phase diagrams as that of Zn–Mg-Y. Based on the phase diagram, the

optimal starting composition for crystal growth with the self-flux method has been

adjusted to be Zn46Mg51RE3 [68,77,78]. An exception is the Zn–Mg–Tb system, in which

the primary solidification surface has shifted in composition and the initial composition

is set to Zn40Mg57.4Tb2.6 [68]. Ta (or Mo) tubes are used in the experiment to prevent

attack from Mg and rare earth elements. A perforated Ta strainer is incorporated into the

Ta tube for decanting the remaining liquid melt. Following this procedure and the

temperature program shown in Ref. [68], one can produce single IQCs with pentagonal
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dodecahedral facetted morphology of up to centimeters in size (Figure 26.24(B)). The

composition of the final obtained single i-Zn–Mg-RE is around Zn57Mg34RE9.

26.5.4 Ag–In–Yb System

The i-Ag–In–Yb system (Ag42In42Yb16) has been discovered based on the stable binary

i-Cd–Yb (Cd5.7Yb) by replacing one half of the Cd with Ag and the other half of Cd with In

[22,74]. In addition to the IQC phase, two kinds of periodic cubic structural approx-

imants (the 1/1 Ag40In46Yb14 approximant and 2/1 Ag41In44Yb15 approximant) have also

been discovered [54]. It is thus possible to carry out comparative investigation of IQC and

approximants, which have similar building blocks but different long range orders [23].

The Ag–In–Yb can be regarded as a pseudo-binary system, and its partial phase di-

agram involving IQC phase and approximants is similar as that of the Cd–Yb system

(Figure 26.25). The i-Ag–In–Yb is a congruently melting compound and is suitable for

growing a large single grain with the Bridgman method [54,55], as shown in Figure 26.18.

The sample is kept heating at 800 �C for 2 days to enable the homogeneous melting of

the elements; then, the temperature of the upper zone is decreased to 627 �C for crystal

growth. In the experiment, a growth rate of w0.8 mm/h produces high-quality single i-

Ag–In–Yb. At a growth rate above 5 mm/h, the possibility of obtaining a polycrystalline

sample increases evidently.

Figure 26.26(A) shows the macrographs of a sample grown with a starting composition

of Ag42In42Yb16 at a growth rate of 0.8 mm/h. The size of the sample is 1.1 cm in diameter

FIGURE 26.24 (A) Pseudo-binary cut of the Zn–Mg-Y phase diagram for the section of Zn40þ2yMg60�3yYy [77,78].
The two-phase region in which the icosahedral quasicrystal phase is in equilibrium with the liquid is labeled
Q þ melt. The arrow shows the starting composition for crystal growth with the self-flux method. (B) Photograph
of a single i-Zn–Mg–Dy (w2 mm in size) grown by self-flux method.
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FIGURE 26.25 A partial phase diagram of the temperature-composition section along the composition line
Ag26þxIn74�2xYbx [54].

(A) (B)

(C)

FIGURE 26.26 Macrograph of (A) appearance and (B) naturally cleaved fracture surface for the Ag42In42Yb16

sample [55]. (C) Back Laue diffraction patterns obtained from single grain of (A, B).
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and over 3 cm in length. From the fragment, one can clearly observe the shiny part

corresponding to the single grain region. Figure 26.26(B) shows the mirror-like naturally

cleaved fracture surface of the same sample, which has luster and is smooth but not

absolutely flat. The single grain is chemically homogeneous to be around Ag42In42Yb16
and structurally uniform, as confirmed by the back-reflection Laue X-ray diffraction

patterns shown in Figure 26.26(C). The clear diffraction patterns with two-, three-, and

fivefold symmetries indicate a highly ordered IQC structure over a long range of

centimeter order. All the single-grain IQCs (about 20 samples) synthesized by the

Bridgman method grew nearly along a twofold axis, according to the Laue diffraction

experiment.

26.5.5 Cd-RE and Zn–Sc Systems

Two types of stable binary QCs—i-Cd-RE (RE¼Gd to Tm, Y) and i-Zn–Sc (Zn88Sc12)—

were discovered by Goldman and Canfield et al. via re-examination of the existing binary

phase diagrams at compositions close to the approximant phase [69,70]. Both types of

IQCs contain the same basic structural unit of an RTH cluster as that of i-Cd–Yb.

However, the newly discovered i-Cd-RE QCs contain localized magnetic moments,

which are different from the previously discovered nonmagnetic i-Cd–Yb. These binary

QCs are obtained at compositions near the known crystalline approximants by the so-

lution growth decanted at high temperatures and normally exhibited high disorder in

structures.

26.6 Growth Mechanism
Because QCs are produced by both rapid and slow solidification, their morphologies and

growth mechanism can be qualitatively understood in terms of classical solidification

theory. However, due to the complexity of structure and phase diagrams, difficulties

arose in the course of experiments. Short of structural information, there were only few

reports dealing with growth mechanism. Recently, great progress on structural analysis

has been made for i-Cd–Yb, which is helpful for understanding growth mechanism of

QCs. Surface studies on QCs also provided crucial information for understanding growth

morphology and stability. Indeed, understanding the stability and morphologies of QCs

surfaces allows insight into the growth mechanism of QCs. Here, the morphologies of

QCs will first be described; then, on the basis of the morphologies, phase diagrams, and

surface studies, the growth mechanism will be discussed in terms of solidification

theory.

26.6.1 Morphologies of QCs

26.6.1.1 Stellated Polyhedron
In most of the early experiments, QCs synthesized by rapid solidification revealed highly

dendritic morphologies. Visible but distorted pentagon dodecahedra around w0.01 mm
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were observed in melt-quenched AlMnSi [79,80]. For alloys containing lower contents of

Mn (below 8 at%), a stellated polyhedron as shown in Figure 26.27 appeared, resembling

one of the polyhedrons in the three-dimensional quasiperiodic lattice; this is shown in

Figure 26.8(B), as composed of 20 acute rhombohedra and exhibiting icosahedral

symmetry. The beautiful stellated polyhedral morphologies are only observed in low Mn-

content Al alloys because of the formation of a small number of nuclei in the melt upon

solidification, which allowed equaxial growth of IQC grains. In view of the morphologies,

it seems that the preferential growth direction is along the threefold direction.

26.6.1.2 Rhombic Triacontahedron
One of most beautiful morphologies observed is the conventional solidification state of

i-Al–Li–Cu (Al5.5Li3Cu), which exhibits a form of a rhombic triacontahedron [81,82], as

shown in Figure 26.28. This is the other polyhedron existing in a three-dimensional

quasiperiodic lattice, which is consisted of 10 acute rhombohedra and 10 obtuse

rhombohedra.

26.6.1.3 Pentagonal Dodecahedron
The pentagonal dodecahedron is the morphology most often observed in IQCs. Clear

morphologies were observed in conventionally solidified Al–Cu–Fe and Ga–Mg–Zn

alloys. Similar morphologies with grain sizes of w1 mm were also observed in most

stable IQCs, such as i-Al–Cu–Ru, i-Al–Pd-RE, i-Zn–Mg-RE, and i-Ag–In–Yb. As mentioned

previously, except for i-Cd–Yb and i-Ag–In–Yb, all stable IQCs form through peritectic

reactions at stoichiometric compositions. Figure 26.29(A) shows a faceted sphere

morphological form in an as-solidified Al65Cu20Fe15 alloy. According to the phase dia-

gram, the b and l phases are the nucleation sites of IQC phase. It was recognized that the

FIGURE 26.27 An SEM image of melt-quenched A94Mn6 alloy after etching treatment. Icosahedral quasicrystal
reveals a stellated dodecahedral form.
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faceted sphere is the b phase on which facetted planes can be indexed. Many steps

surrounding the facet planes are clearly observed, which is a fingerprint of peritectic

reactions. The [110] axis has been found to be coincident with one of the fivefold axes of

the IQC phase. Hence, we may expect that the [110] plane would grow and the [100] and

[111] would degenerate [13]. Therefore, the facetted sphere shown in Figure 26.29(A) is a

midway stage of crystal growth; at a sufficiently slowing cooling rate, the b phase would

be fully consumed to form a dodecahedral IQC phase, as shown in Figure 26.29(B).

According to the morphology, it is clear that the IQCs in this case are not dendritic

growth along three-fold axes. Instead, exhibition of larger and flat pentagonal planes

indicates planar growth of IQCs along fivefold axes in melts upon slow cooling.

(A) (B)

FIGURE 26.29 (A) A facetted sphere and (B) a dodecahedral morphological forms of b and icosahedral quasicrystal
phases in an arc-melting Al65Cu20Fe15 alloy [13].

FIGURE 26.28 An SEM image for an isolated single icosahedral quasicrystal with a rhombic triacontahedral
morphology in Al–Li–Cu alloy [82].
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Surface studies on the i-Ag–In–Yb and i-Al–Pd–Mn show that fivefold planes have a

flat structure—enough for obtaining atomic resolution [83]. This is evidence that the

fivefold planes are relatively stable, terminating at planes containing relatively

high concentrations of Yb (40 at%) for i-Ag–In–Yb (16 at% Yb) and Al (w80 at%) for

i-Al–Pd–Mn (70 at% Al), with respect to their bulk compositions. According to structure

models, the atomic densities r of twofold planes are highest (r2> r5> r3) in these two

IQCs. However, Yb and Al, which have relatively low surface energies [84] with respect to

the other two constituent elements, concentrated at fivefold planes would sufficiently

lower the surface energy of fivefold planes. Especially upon crystal growth produced by

solution growth process, the lower surface energies would reduce solid–liquid interfacial

energies; consequently, a pentagonal dodecahedron would form.

26.6.1.4 Decaprism
Figure 26.30 shows columnar decagonal solidification morphologies of single grains in a

conventionally solidified Al70Ni15Co15 alloy. The DQC phase possesses a two-

dimensional quasiperiodic plane stacked periodically and the decaprism morphology

reflects the crystallographic symmetry of the DQC itself. Because the DQC forms in a

wide composition range in the Al–Ni–Co system, this morphology was universally

observed in several alloys. The elongated prismatic axis demonstrates that the growth is

fastest along the 10-fold axis and slowest along twofold directions.

Figure 26.30(A) shows the beginning of columnar growth for DQC, where a number of

grains are growing along the same 10-fold direction. The fronts of columns are basically

spherical, but many facets inclined to the 10-fold axis on the fronts are visible. These

facets correspond to planes relating to the periodic and quasiperiodic directions; they

indicate the existence of dense atomic layers in DQC on net planes (lattice planes)

inclined to the 10-fold axis and are related to strong Bragg reflections. Because they link

(A) (B)

FIGURE 26.30 A columnar decaprismatic solidification morphology of single grains of the decagonal quasicrystal
in an Al70Ni15Co15 alloy. (A) A faceted column and (B) a decaprismatic solidification morphologies of single grains
of decagonal quasicrystal in an Al70Ni15Co15 alloy
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the quasiperiodic and periodic directions, these inclined net planes may play a crucial

role in the growth and stabilization of DQC. Evidently, the atomic layers associated with

these planes are not completely flat and exhibit some degree of corrugation [85].

However, this is supposed to be observed only in the very beginning of crystal growth,

where the crystal is small enough and interfacial energy still works.

In Figure 26.30(B), many wrinkle-like lines are clearly seen at the twofold planes,

which run across on different twofold planes along the twofold directions. This is a sign

that crystal growth in DQCs is planar growth along the 10-fold axis. Surface studies on

DQCs also revealed that the tenfold plane is stable because surface preparation was easy

to prepare and large terraces were easy to obtain for 10-fold planes. On the other hand,

there were always strong corrugations at twofold planes. One might be able to predict

the morphology of decaprism for QDCs from their surface stabilities.

26.6.2 Morphological Stability Theory

Because most stable QCs available for studying crystal growth are ternary alloys and have

complicated phase diagrams, initial solidification processes are not easy to study.

However, crystal growth for QCs could be qualitatively figured out in terms of the

classical solidification theory.

According to the solidification theory, the solidification morphology of a crystalline

grain is determined by the stability of the solid–liquid interface. When the interface

changes from stable to unstable, the morphology of crystalline grains change from

equaxial grains with a planar interface to cellular grains, and then from cellular grains to

dendritic grains on the basis of the constitutional undercooling criterion. Generally, the

limit of constitutional undercooling can be expressed in its usual form [86]:

G=R > mC0ðk � 1Þ=D (26.4)

where G is the interface temperature gradient, m is the liqudus slope, R is the rate of

interface movement, C0 is the initial bulk solute concentration, k is the partition coef-

ficient (the ratio of solute concentration in solid to that in liquid), and D is the diffusion

coefficient. If the ratio of G/R is smaller than mC0(k� 1)/Dk, interface instability will

occur. It is clear that in a relatively low solute concentration, a high thermal gradient

must be imposed in order to suppress interface instability and cellular dendritic growth.

By taking account of the interfacial energy, an absolute interface stability criterion has

been derived in a dilute alloy [87].

A ¼ k2TmGR
�ðk � 1ÞmC0D (26.5)

where A is an interface stability parameter (being 1 for a stable interface), G¼ s/DH is the

surface tension constant, s is the interfacial energy, and DH is the latent heat. The cri-

terion is especially available at high solidification rates. The higher the rate of interface

movement, the less time there is for lateral diffusion of solute: long-wavelength per-

turbations at the solid–liquid interface do not have enough time to form. On the other

hand, short-wavelength perturbations will be suppressed by surface tension. Thus, for a
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liquid with given bulk solute concentrations, there is a solidification rate above which a

planar interface is always stable. At a high solidification rate, stable planar growth can

occur at concentrations far greater than those predicted by the constitutional super-

cooling criterion. Therefore, the absolute interface stability criterion is a good approxi-

mation at high solidification rates (e.g., the melt-quenched process), whereas the

constitutional supercooling criterion is a good one at low solidification rates (e.g.,

normal crystal growth processes) [88]. As an illustration, a metastable equilibrium

pseudo-binary phase diagram of the IQC phase and a-Al face-centered cubic (fcc) phase

in the Al–Mn system is shown in Figure 26.31(A) [89]. A schematic microstructure

dependence on growth velocity, R, and composition, C0, was constructed and is shown

in Figure 26.31(B) [89]. At small C0 when R is small, the interface is stable and planar.

This regime is represented by the lower left corner of the diagram. As the growth rate of a

dendritic structure approaches that for absolute interface stability, it is anticipated that

FIGURE 26.31 (A) A schematic of the metastable phase equilibria between the icosahedral quasicrystal (i) and fcc
Al phases. (B) The dependence of microstructure on the growth rate R and the composition C0 [89].
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the microstructure will change from dendritic to cellular before becoming a planar front.

At a very large R (A> 1), the instability is suppressed and a planar front is retained,

corresponding to the upper left corner of the diagram in Figure 26.31(B).

26.6.3 QCs upon Rapid Solidification

In earlier morphological investigations, the IQC grains were found to possess rounded

outlines embedded in a matrix of fcc Al [90]. The IQC grains grew dendritically with arm

directions along threefold axes. In some cases, facetted outlines with rather straight

boundaries between the Al crystal and IQC phase and consequently pentagon dodeca-

hedral morphology were found [80]. Now, the pentagonal dodecahedron as a principal

morphology, found in rapidly solidified alloys as well as in most stable IQCs except

Al–Li–Cu, is a consensus. However, depending on the preparation conditions, the

morphology could be dendritic arms or pentagonal dodecahedra. This has been clarified

by an investigation on melt-quenched Al–Pd–Cr alloy on the basis of criterion of the

interface stability in alloy solidification [89]. Figure 26.32 shows the TEM electron mi-

crographs of melt-quenched Al72Pd25Cr3 alloy, revealing a mixed structure consisting of

IQC and DQC phases. The IQC grains show an elongated columnar structure with a flat

plane perpendicular to the fivefold axis; they are surrounded by the DQC phase in

Figure 26.32(A). Here, the two IQC grains show the same twofold diffraction pattern with

the same orientation, showing one of the fivefold directions that coincide with the planar

growth direction (indicated with arrows) of the columnar structure. The results strongly

suggest that the IQC predominantly grows along the fivefold direction during rapid

solidification.

The diffraction patterns along the twofold direction taken from the regions near

the interface between the IQC (A, C) and DQC (B, D) are compared in Figure 26.32.

One of fivefold directions of the IQC coincides with the 10-fold direction of their DQC.

The angle between two adjacent 10-fold axes is 63.43�, which is equal to the angle

(A) (B)

FIGURE 26.32 Transmission electron microscopy images of a melt-quenched Al72Pd25Cr3 alloy taken along the
coincident twofold axes of the decagonal quasicrystal (DQC) and the icosahedral quasicrystal (IQC) phases.
(A) Each DQC phase grain is observed to be growing with its tenfold axis along one of fivefold axes of the parent
IQC phase. (B) Two DQC grains grow with their tenfold axes along two different fivefold axes of the parent IQC
phase [89].
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between two fivefold axes on the twofold diffraction pattern or two adjacent fivefold

axes of an icosahedron. The same orientation relationship was also confirmed in the

different regions of the sample, as shown in Figure 26.32(B), where two DQC grains

with angle of intersection of 63.43� nucleated from the same IQC grain. In all cases,

the IQC phase grows along the fivefold direction, and the DQC nucleated out of the

IQC and grow along the 10-fold direction, which coincides with one of the fivefold

directions of the IQC.

The average compositions for IQC and DQC are Al67Pd29Cr4 and Al73Pd25Cr2,

respectively. IQC has higher Pd and Cr contents and, according to the phase diagrams,

the solidification temperature for IQC would be higher than that of DQC. During

solidification, the IQC nucleates and grows first, rejecting the excess Al into melt. This

process then slows down the growth of the IQC and favors the nucleation of an Al-richer

DQC. If the moving rate of the solid–liquid interface was fast enough to suppress the

diffusion of Al at the interface, the formation of DQC would be suppressed and IQC with

planar growth would be completed. In Figure 26.32(A), in the upper part, a horizon line

indicates that the two IQC grains had the same front of the solid–liquid interface in the

beginning, but it broke down upon solidification due to either the slow-moving rate of

the interface or fast solute diffusion across the interface. Consequently, the dendritic

growth would occur as shown in Figure 26.31. For the same alloy but at a higher

solidification rate, planar growth is still expected [89].

26.6.4 QCs Prepared by Classic Crystal Growth Methods

The QCs produced by these processes have a common feature that they all revealed

planar growth upon solidification. Because the solidification rates are all very small and

the moving rate of the solid–liquid interface R would be small, and in terms of the

constitutional supercooling criterion, planar growth occurs if the temperature gradient is

not too large at the interface. This condition corresponds to the lower left part in

Figure 26.31(B). The large pentagonal and decagonal planes observed in IQCs and DQCs

prepared by the solution growth process are evidence of the planar growth. The planar

growth is along the fivefold axis for the former and is along the 10-fold axis for the latter.

The planar growth is also observed in several QCs prepared by the Bridgman and floating

zone methods.

Figure 26.33(A) is a longitudinal microstructure near the solidification interface for a

single DQC prepared by the floating zone method at a growth rate of 0.5 mm/h, starting

with a raw material of Al72Ni12Co16 [91]. Phases aligned in the form of rods near the

solidification interface consisted of fcc Al, Al3Ni2, Al9Co2, and the DQC phase, although

only the DQC was detected from the grown crystal and feed rod. These results indicate

that at the steady state, a single DQC grain grows. When the heating power of the furnace

is turned off, the melt starts to solidify from the solid–liquid interface, forming the four

phases in the rod configurations. Therefore, the present quenching rate is high enough

to preserve the solidification interface during the steady-state single crystal growth.
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Similar to crystalline solids, the flat quenched interface implies that planar growth

proceeded, which is a prerequisite for single crystal growth of QCs.

Figure 26.33(B) shows the chemical composition distribution from the grown crystal

to the feed rod through the quenched molten zone. At the initial growth stage, the crystal

starts to grow, with Al and Co contents that are lower than those of the feed rod and Ni

content that is the opposite. As the crystal growth proceeds, the composition becomes

close to that of the feed rod and reaches the steady state. Solute redistribution at this

steady state can be clearly seen at the quenched solidification interface in

Figure 26.33(B). Al is significantly enriched in front of the solidification interface by

6.87 at%; conversely, Co and Ni are depleted by 5.95 at% and 0.93 at%, respectively,

which indicates that the DQC is incongruent at Al72Co16Ni12. The melt with this

composition is considered to play the role of flux for the crystal growth of the incon-

gruent alloy. Interestingly, the flux was spontaneously produced during the crystal

growth. The solute partition ratios are supposed to be close to the equilibrium state. Due

to significant solute redistribution, the single DQCs was only could grow at the lower

growth rate, R. It is noted that spontaneous growth direction is parallel to the 10-fold

axis. Similar planar growth with similar solute partition ratios was also observed for

FIGURE 26.33 (A) Optical microstructure of a longitudinal cross-section of an Al72Ni12Co16 alloy prepared by the
floating zone method along the growth direction near the quenched molten zone. Note that the solidification
interface is flat. (B) Composition distribution of Al, Ni, and Co along the longitudinal (growth) direction of the
same sample [91].
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an IQC prepared by the floating zone method starting with Al72Pd19.5Mn8.5 and with a

growth rate of 1.0 mm/h, in which the spontaneous growth direction was parallel to a

twofold axis. Figure 26.34 is the microstructure of a cross-section across the solidifica-

tion interface for a single IQC grown by the Bridgman method at 0.2 mm/h starting with

Al72Pd19.5Mn8.5. The front of solidification interface is slightly curved due to the surface

tension of liquid and the effect of the crucible, but basically it is planar growth parallel to

the twofold axis.

26.6.5 Selection of Growth Direction

The previously mentioned processes are common when using slow cooling upon so-

lidification, but they differ in temperature gradient, growth direction, and crucible. In

the floating zone, Czochralski, and solution growth process, QCs were grown in liquid

without effects from the furnace; hence, they revealed different degrees of facet. In the

solution growth process, because the overall furnace was cooled homogenously, the

temperature gradient at the solid–liquid interface is supposed to be very small.

Isotropic growth of IQCs and anisotropic growth of DQCs in the liquids are expected

according to their structure symmetries. In this case, the growth direction will be

determined by the stability of atomic plane (i.e., the atomic structure of QCs them-

selves). According to structure models and surface studies [92,93], densities r of the

atomic planes are in the order of r2> r5> r3 for i-Ag–In–Yb and i-Al–Pd–Mn (or

i-Al–Cu–Fe). Actually, the difference between r5 and r2 is very small and the concen-

tration of elements with lower surface energies, such as Yb in i-Ag–In–Yb and Al in

i-Al–Cu–Fe, are relatively higher on fivefold planes. In other words, concentration

fluctuation of Yb or Al is the largest along the fivefold axis, and this scenario has been

successful for interpreting the surface structures of fivefold planes for IQCs, where large

terraces with nonperiodic step heights are observed [92,93]. The lower surface energy of

the fivefold plane induces lower interfacial energy of the solid–liquid interface; this is a

plausible reason why the fivefold plane is a steady state for growth, and consequently

pentagonal dodecahedra of a few millimeters in size were observed in these two sys-

tems. This is also the case for i-Zn–Mg-RE.

FIGURE 26.34 Optical microstructure of a cross-section near the solidification interface of Al72Pd19.5Mn8.5 grown
by the Bridgman method at a growth rate of 0.2 mm/h.

Chapter 26 • Crystal Growth of Quasicrystals 1151



However, when temperature gradient was employed in crystal growth (e.g., floating

zone and Bridgman methods) for IQCs, the growth direction was always along the

direction parallel to a twofold axis. Two reasons are considerable for the conflict with

the solution growth process. First, with the temperature gradient existing near the

solid–liquid interface, the stability of the interface will be dominated by both solute

distribution and interfacial energy. As a result, planar growth will prefer a direction

with less concentration fluctuation (homogeneous) and, on an atomic plane, lower

surface energy or higher atomic density. The second reason is explained by icosahedral

symmetry of the IQCs. Figure 26.35 shows a schematic pentagonal dodecahedron along

a fivefold axis (Figure 26.35(A)) and projection of icosahedron onto a twofold axis

(Figure 26.35(B)), where twofold and fivefold axes are indicated with arrows. If there is a

temperature gradient at the interface, the growth of IQCs will be constrained to uni-

directional; six different fivefold planes with lower surface energy will be competitive

for growth and only one of them will be selected, with the rest being suppressed

(Figure 26.35(A)). With respect to this as shown in Figure 26.35(B), two adjacent fivefold

planes complementarily grow; consequently, growth along a twofold axis will be

energetically favored. On the other hand, due to strong anisotropy, the DQCs reveal a

common feature of growth direction regardless of the crystal growth process.

26.7 Concluding Remarks
After a general introduction of QCs, including structural properties, structural models,

and alloy systems, the crystal growth of QCs (as studied so far) was reviewed.

Solidification theories, such as constitutional supercooling, and absolute interface sta-

bility criteria were employed to understand the growth mechanism of QCs. The

solid–liquid interface stability and growth direction of QCs were interpreted in terms of

structural models and surface studies.

It is clear now that more than a few QCs are stable and exist in the phase diagrams as

equilibrium phases. All stable IQCs could be regarded as a new group of intermetallic

FIGURE 26.35 Schematics of (A)
dodecahedrons and (B) icosahedrons used
for describing the favorable direction upon
unidirectional growth of icosahedral
quasicrystals.
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compounds that form at very strict compositions and normally have a special value of

e/a. On the other hand, the formation of stable DQCs is more flexible in composition.

For the former, the strict composition is an indication of the high structural stability,

which favors crystal growth of IQCs in a given process. For the latter, flexibility in

composition makes growing single grains easy, but their precise compositions are not

controllable. Although the crystal structure of QCs is very complex, the quality of single

grains of QC seems to be better than well-known intermetallic compounds with simple

structures, as evidenced by the occurrence of a large number of sharp diffractions.

Due to the success in growing high-quality single grains of QCs, great progress in the

structure, physical, and chemical properties and surfaces have been achieved. This

progress can be used to understand the mechanisms of crystal growth for QCs.
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energy barriers, 319–322

equilibrium state, 572

experimental verification, 574–575

homogeneous nucleation

rate of, 322–326

thermodynamics, 319–322

induction time for nucleation, 327–328

non-steady-state, 326–327, 573

nucleation

driving force, 318–319

kinetics, 572

steady state, 573

nucleation rate, 322–326

Clausius-Clapeyron formula, 425

Cluster potentials, 142–143

CMS. See Core multishell

CNT. See Classical nucleation theory

Co-crystallization, 935–936

Coalescence balance, 354

Coarse-grained free energy, 635

Coarse-graining, 633–634, 639

COD. See Calcium oxalates dihydrate

Coherence volume, 413–414, 414f

Coherent scattering, 408–409

Colloidal systems, 562, 563f, 844

Colloids, 562

COM. See Calcium oxalates monohydrate

Commercial software packages, 109

Complex crystals, 446–447

Component, 86

Compton scattering, 415

Computational methods

chemical potential, 479–483

Monte Carlo simulations, 483–484

Computerized tomography, 1052

Concentration, 87

triangles, 126–127

Configurational degeneracy factor, 139–140

Configurational entropy, 149

Confocal microscopy, 1048–1049

Conglomerates, 968

metastable, 970–972

spotting, 974–975

stable, 970–974

techniques using, 972–973

Congruent, 196–199

composition, 181–182

melting, 122–123

Congruent LiTaO3 (c-LT), 182

Conservation law, 637

Constant

composition method, 886

interfacial angles, 4–5

temperature process, 39–40

Constituent element activities

conventional stoichiometric crystal in,

185–188

extended stoichiometric crystal in, 189–191

in melt and solid states, 196–199

Constitutional supercooling (CS), 12–13,

600–602, 679

Continuous symmetry measures (CSM),

956–957

Continuum models, 396–397, 462–463

Controlled colloidal assembly, 563–567

crystal

defects, 588–589

growth kinetics, 580–584

crystallite network formation, 586–588

interfacial structural mismatch, 586–588

nonclassical nucleation, 576–579

thermodynamic driving force for

crystallization, 568–576
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Convection-free environment, 1050–1051

Conventional congruent-melting LiNbO3

(c-LN), 185, 193

Conventional differential interference

microscopy (DICM), 1049

Conventional sputtering, 61–62

Conventional stoichiometric crystal, 184–188

activities of constituent elements, 185–188

Conventional stoichiometric LiNbO3 (s-LN),

185

Cooling profile, 940

Cooling strategy, 940–941

Core multishell (CMS), 772

Core–shell (CS), 772

Corrugations, 620

COT. See Calcium oxalates trihydrate

Critical 2D nucleus, 371–372

Critical nucleus size, 319–322

Critical point, 635

CRT method. See Chemical transport reaction

method

Crystal building block (CBB), 321

Crystal defects, 588–589

Crystal formation, 796

Crystal growth, 16–17, 89–90, 360–361,

385–387, 580, 631, 923–925, 1003–1004,

1032. See also Epitaxial growth;

Nonclassical nucleation; Optical

techniques; Thermodynamic driving

force

barrier for incorporation, 853–855

cluster adsorption, 582–583

concentration field, 1050–1055

control, 990–991

crystals growth/dissolution rate, 1036f

diffusion field, 391

melt and solution growth, 391–394

planar interface growth, 394–395

growth rate vs. supersaturationmeasurement,

1033–1035, 1034f–1035f

major rate-determining process, 1032, 1033f

generation of steps, 847–848

kinks generation, 850–853

melt growth method, 17–38

molecular pathway, 855–857

from mother phases

melt growth, 365–369

solution growth, 369–370

vapor growth, 364–365

normal and lateral growth

adhesive growth on rough faces, 370–371

spiral growth with screw dislocations,

377–380

two-dimensional nucleation, 371–377

phase transition process, 361

equilibrium and transition to solid phase,

361–362

linear kinetics, 363

transport and chemical potential, 363

rough interface, 846–847

simulation models, 395

atomistic model and, 395–396

continuum models, 396–397

smooth interface, 846–847

solid state recrystallization, 70–72

solution growth method, 38–53

step kinetics, 580–582

step kinetic coefficient, 849–850

step propagation, 848–849

surface

observation, 1032–1033

roughening, 583–584

synthetic diamond crystals, 65–70

theories evolution, 4

early developments, 4–5

nineteenth century, 5–6

twentieth century, 6–16

three-dimensional observation of flow,

1050–1055

transport-limited, 632

vapor growth method, 53–65

Crystal morphology, 450

Crystal nucleation, 825, 920–923. See also

Protein crystallization

aggregate sizes evolution, 828

classical nucleation theory, 825–828

classical theory overestimation, 832–833

dense liquid clusters, 836–838

heterogeneous nucleation substrates,

842–843
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Crystal nucleation (Continued )

in melts, 330

molecular-kinetic approach, 335–338

nucleus size, 830–832

on protein crystals nucleation, 845–846

rate, 827–830

solution-crystal spinodal, 830–832

in solutions, 331

two-dimensional, 339–342

two-step mechanism, 833–836, 835f

evidence for, 843

principles, 844

rate determination, 841–842

rate law, 839–841

urea and glycine, 843

Crystal sites

degrees of freedom in, 188–189

in oxide crystals, 179–180

Crystal-melt interface, 276–277, 712

Crystalline

imperfections, 7–8

polymorphs phase, 807–810

Crystallite network formation, 586–588

Crystallization, 562, 916, 924, 960–964

conditions, 812

driving force, 806–807

medium, 917

multistep, 578–579

from solution, 917–929

temperature, 990

thermodynamic driving force for, 568–576

Crystallization electromotive force (c-EMF),

180, 193–196, 196f, 202–203

Crystallizer hydrodynamics, 941–943

Crystals equilibrium shape, 339. See also

Nucleation

CS. See Constitutional supercooling;

Core–shell

CSD. See Cambridge Structural Database

CSM. See Continuous symmetry measures

Cubic zirconia (ZrO2), 37

Curie group, 113–115

Cutoff energy, 526

CVD process. See Chemical vapor deposition

process

Cylinders, 611–616

circular, 615–616

Czochralski crystal pulling method

invention, 20–22

oxide growth, 24–25

semiconductors, 22–24

Czochralski method, 1131–1132

D
d-Al–Ni–Co phase, 1138

Daltonides. See Line compounds

Debye length, 807–808

Debye plot, 815

Debye–Hückel inverse screening length, 815

Decagonal lattice, 1120

Decagonal quasicrystals (DQC), 1120

Decaprism, 1145–1146

Degeneracy function, 155

Dendrites, 15, 670

early history, 671–672

steady-state crystallization fronts, 673f

thermodynamic and kinetic factors, 670–671

useful and deleterious, 672–676

Dendritic growth, 652–655

alloy dendrites, 679

branching

bias field, 713–716

deterministic branching, 706–711

fluxes, 711–713

interfacial gradients, 711–713

stochastics, 704–706

castings, 679

initiation of dendrites, 678–679

observations and simulation, 676–679

theories, 681

boundary layers, 691–695

diffusion interactions, 691–695

interface physics, 695–701

kinetic limitations, 702–704

numerical methods, 701–702

transport solution, 685–689

transport theory, 681–685, 689–691

Dendritic pattern formation, 1077–1079

Dendritic snow-flake patterns, 671–672

Dense liquid
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clusters, 836–838

phase, 807–810

Density functional theory method (DFT

method), 145, 437–438, 522

ab initio thermodynamics, 535–537

adatoms, 531–533

adsorption, dissociation and diffusion,

533–534

basics of method, 524–529

order of computations, 528–529

surfaces, 527–528

binding energies, 532t

surface structure and reconstruction, 529–531

Density matrix renormalization group method

(DMRG method), 303

Density-of-states (DOS), 155

Deposition rate effect, 451–452

Deracemization, 979–980

DERI. See Droplet elimination by radical beam

irradiation

Deryagin–Landau–Verwey–Overbeek theory

(DVLO theory), 563, 564f, 814–815

Detailed balance equation, 325–326

Deuterated potassium dihydrogen phosphate

(DKDP), 40–41

Dewetting, 452–453

DF. See Downward funneling

DFP. See Disordered flat phase

DFT method. See Density functional theory

method

DG model. See Discrete Gaussian model

Diamonds, 892

DICM. See Conventional differential

interference microscopy

Differential scanning calorimetry (DSC),

101–102, 205–206

Differential thermal analysis (DTA), 122

Diffraction by crystal, 412–413

Diffuse interfaces, 633

at equilibrium, 639–645

picture, 368–369

Diffusion, 533–534

boundary layer, 381

interactions, 691–695

length, 395

Diffusion-limited dendritic growth, 689–690

Dimensionless free energy, 642

Direct techniques, 434–435

Directional growth, ice crystals

cellular tilting, 1095–1098

pattern formation, 1090–1093

solute distribution, 1093–1095

Directional solidification (DS), 674–675, 675f,

679

in situ micrograph, 680f

Discontinuous surface tension, 300–302

Discrete Gaussian model (DG model),

308

Discrete order parameter, 276

Dislocation loops, 152–153

Disordered flat phase (DFP), 291–292

Dispersion relation, 604, 618, 623

Dissociation, 533–534

Dissolution, 925

Distinct scatterers, 408

DKDP. See Deuterated potassium dihydrogen

phosphate

DLS. See Dynamic light scattering

DMRG method. See Density matrix

renormalization group method

DOS. See Density-of-states

Double differential scattering cross section,

408–409

Downward funneling (DF), 580–581

DQC. See Decagonal quasicrystals

Driving force

for crystal growth, 304, 305t

of solidification, 362

Droplet elimination by radical beam

irradiation (DERI), 511

Drumhead wandering, 269–270, 272–275

“Drumhead” Hamiltonian work, 274

DS. See Directional solidification

DSC. See Differential scanning calorimetry

DTA. See Differential thermal analysis

DVLO theory. See Deryagin–Landau–

Verwey–Overbeek theory

Dynamic light scattering (DLS), 836–838

Dynamic responses, 713–715

Dystrophic calcifications, 900
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E
EBSP. See Electron Back Scatter Diffraction

Patterns

ECMC simulation. See Electron-counting

Monte Carlo simulation

ECS. See Equilibrium crystal shape

Edge-defined film-fed growth (EFG), 22,

34–35

EDIP. See Environment-dependent

interatomic potential

EFG. See Edge-defined film-fed growth

Eggshell formation, 897–899

EHD flow. See Electrohydrodynamic flow

Ehrlich-Schwoebel barrier (ES barrier),

384–385, 452

8-interstitial cluster, 151

Einstein–Stokes relation, 367, 732–733

Elastic step–step repulsion, 297

Elastic strain, 544–548

Electrochemical crystal growth, 52–53

Electrodeposition, 52

Electrohydrodynamic flow (EHD flow),

565–567

Electron Back Scatter Diffraction Patterns

(EBSP), 741

Electron-counting Monte Carlo simulation

(ECMC simulation), 483

Electron–electron repulsion, 524

Electroosmotic flow (EOF), 566–567

Elementary theory for pure melt, 597–600

Ellingham type diagrams, 131–133

Ellipsoids, 616

ELO. See Epitaxial lateral overgrowth

Empirical potential atomistic simulations,

142–145

Empirical potential Monte Carlo technique

(EPMC technique), 434–436

Empirical potential structure refinement

(EPSR). See Empirical potential Monte

Carlo technique (EPMC technique)

Enamel formation, 883

Enantiomeric purification, 991

Endoskeletons, 890

Energy barriers, 319–322, 351–352

Enthalpy, 91–94

Entropy, 94–96, 805

Environment-dependent interatomic

potential (EDIP), 142–143

EOF. See Electroosmotic flow

Epitaxial deposits, 48

Epitaxial growth, 484–485. See also Crystal

growth

density functional theory calculations

ab initio thermodynamics, 535–537

adatoms, 531–533

adsorption, dissociation and diffusion,

533–534

basics of method, 524–529

surface structure and reconstruction,

529–531

KMC simulations, 538

of deposition from gas phase, 538–540

with elastic strain, 544–548

on-lattice, 540–544

quantum dots growth, 548–549

methods and goals, 522–524

phase field methods

PFC model, 551–554

philosophy, 550–551

Epitaxial lateral overgrowth (ELO), 753–754

Epitaxy-mediated transformation, 1081

EPMC technique. See Empirical potential

Monte Carlo technique

EPS. See Extracellular polymeric substances

Equilibrium concentrations, 141–142

Equilibrium crystal shape (ECS), 216, 267–268

attractive step–step interaction, 250–253

first-order transitions, 245–250

formal results applications

cusps and facets, 224–225

sharp edges and forbidden regions, 225–227

Wulff plot, 227–229

sharp edges, 245–250

from surface free energies

formal treatment, 220–223

general considerations, 217–220

Equilibrium partition coefficient, 199

Equivalent lattice gas model, 276–277

ES barrier. See Ehrlich-Schwoebel barrier

ESS. See European spallation source
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European spallation source (ESS), 432–433

Eutectic(s), 117–119

crystal, 15

system, 107–108

Eutectoids, 117–119

EXAFS. See X-ray absorption fine structure

Exchange–correlation potential, 526–527

Exoskeletons, 890

Extended stoichiometric crystal, 193

activities of constituent elements, 189–191

Extracellular polymeric substances (EPS),

901–903

F
F-M mode. See Frank-van der Merwe mode

Face-centered cubic (fcc), 1146–1148

Facet, 363

Faceted dendrite, 731

Faceting transition, 267–268

fcc. See Face-centered cubic

FDA. See U.S. Food and Drug Administration

FDL. See Frank partial loop

Ferromagnetic system, 635–636

FET. See Field-effect transistor

FF. See Free fermion

FFM. See Friction force microscope

Fibonacci sequence, 1118–1120

Field-effect transistor (FET), 750

Film growth, 455. See also Monte Carlo

simulations (MC simulations)

inhibited diffusion effect, 457–458

smooth film growth strategy, 459

temperature effect, 457

wetting effect, 455–456

First-order transitions, 99, 245–250

phase transition, 316

shape transition, 298

First-principles calculations. See ab initio

calculations

Fission reactors, 432

Flack parameter, 955–956

Flame fusion method, 19

Floating zone technique, 32, 1133–1134

Flux growth method. See Solution growth

method

Fluxes, 711–713

Forbidden orientations, 654–655

45� pitched blade turbine (PBT45), 942

4-interstitial cluster, 149–150

Fourier transform infrared spectroscopy

(FTIR), 1103–1104

Frank partial loop (FDL), 152–153

Frank-van der Merwe mode (F-M mode), 767

Frank’s theory, 10

Free energy

density, 635–636

functional, 661

Free fermion (FF), 237–238, 269

Free-boundary

formulation, 646

problem, 632, 645–650

Friction force microscope (FFM), 536

Front-capturing methods, 646–647

Front-tracking methods, 646–647

FTIR. See Fourier transform infrared

spectroscopy

Fugacity, 481–483

G
Gallium arsenide (GaAs), 130–131, 484–485

GaAs(001) surface, 1015–1017

GaAs(111) surface, 1017–1019

growth on, 488–492

InAs on, 493–502

growth on, 496–502

surface structures, 493–496

nanowires, 776–777

surface, 485–488

growth, 1015–1019

nucleation, 1015–1019

Gallium nitride (GaN), 502–503

growth on, 507–510

InGaN on, 510–511

growth on, 513–515

surface structure, 511–513

surface structure, 504–506

g plot, 216–217, 221f

GaP nanowires, 778

Gas bubble nucleation, 328–329

crystal nucleation, 330–331
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Gas bubble nucleation (Continued )

heterogeneous nucleation, 329

Gases, rare, 425–426

Gel crystallization, 888–889

Gel growth method, 43–44

Gelation phase, 807–810

Generalized gradient approximation (GGA),

145, 526–527

Generalized Wigner distribution (GWD), 238

Geneva Rubies, 19

Germ nuclei, 728

GF method. See Gradient freeze method

GGA. See Generalized gradient approximation

Gibbs construction, 642–643, 643f

Gibbs energy minimization, 109

Gibbs free energy, 96–98, 535

change, 782

Gibbs phase rule, 88, 964

Gibbs–Curie–Wulff theorem, 339

Gibbs–Thomson

effect, 141, 393, 645–646, 682

equation, 321, 324, 920–921

model for ice growth, 1100f

GMPT type. See Gruber-Mullins-Pokrovsky-

Talapov type

Gradient freeze method (GF method), 26–27

Grain growth, 723

unidirectional growth of polycrystalline ingot,

742–747

Grand potential functional, 656–657

Graphene growth, 1022–1027

Graphene nucleation, 1025–1027

Graphoepitaxy, 64–65

Green’s function formalism, 545

Ground state point defect. See also High

temperature defect thermodynamics

cluster thermodynamics, 147

large planar self-interstitial clusters,

152–153

small compact self-interstitial clusters,

149–151

vacancy clusters, 147–149

formation properties

empirical potential atomistic simulations,

142–145

quantum mechanical estimation, 145–147

Growth cessation, 924

Growth direction selection, 1151–1152

Growth mechanism, 1142

by classic crystal growth methods, 1149–1151

growth direction selection, 1151–1152

morphologies of, 1142–1148

rapid solidification, 1148–1149

Gruber-Mullins-Pokrovsky-Talapov type

(GMPT type), 269

Gruber–Mullins approximation, 236

GWD. See Generalized Wigner distribution

H
HA. See Hydroxyapatite

HAADF. See High-angle annular darkfield

Half-crystal position, 335–336, 335f

Hall process, 52

Hartree potential. See Electron–electron

repulsion

Heat

conduction process, 734–736

of fusion, 92–93

of transition, 92–93

of vaporization, 92–93

Heat exchanger method (HEM), 30, 86

Heavy water (D2O), 1084

Height–height correlation function, 280

Heltz-Knudsen equation, 1076–1077

HEM. See Heat exchanger method

Hemihedrism, 957–960

HEMT. See High electron mobility transistor

Hertz-Knudsen formula, 365

Hess’s law, 93–94

Heterogeneous nucleation, 329, 342–346, 920

nucleation substrates, 842–843

High electron mobility transistor (HEMT),

750–751

High pressures and temperatures (HPHT),

65–66

High temperature defect thermodynamics,

158

self-interstitial clusters, 163–167

single vacancy, 158–159

vacancy clusters, 159–163
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High temperature solution growth

bulk crystals, 44–48

thin film liquid phase epitaxy, 48–49

High-angle annular darkfield (HAADF), 773

Hofmeister series, 818

Homochirality, 992

Homogeneous nucleation, 920

thermodynamics, 319–322

Horizontal ribbon growth method

(HRG method), 35–36

HPHT. See High pressures and temperatures

HRG method. See Horizontal ribbon growth

method

Humble/Arai configuration, 163–164

Hybrid functional B3LYP, 526–527

Hydrothermal growth, 49–52

Hydroxyapatite (HA), 892

I
i-Ag–In–Yb system, 1140

i-Al–Li–Cu alloy, 1143, 1144f

i-Cd5. 7Yb phase, 1124–1125, 1125f

i-Zn–Mg-RE system, 1139

ICCG. See International Conferences on

Crystal Growth

Ice crystals, 1062. See also Snow crystals

crystallographic features, 1064–1066

directional growth, 1090–1098

free growth, 1081–1090

growth control, 1098–1107

surface structure, 1066–1072

Ice rules. See Bernal–Fowler rules

Ice surface, 1072

melting, 1066–1068

experimental evidence, 1068–1069

Ice–water interface, 1089–1090

AFGP molecules adsorption, 1103–1104

pattern formation, 1090–1093

solute distribution, 1093–1095

Icosahedral clusters, 1127–1128

Icosahedral glass (IG), 1117–1118

Icosahedral QC (IQC), 1117–1118

IDGE. See Isothermal Dendritic Growth

Experiment

IG. See Icosahedral glass

III-nitride semiconductors, 502–503

ILL. See Laue-Langevin Institute

Imaginary-path-weight random walk method

(IPW random walk method), 278,

304–306

Imaging principle, 1007–1009

In situ imaging method, 1004–1010

In situ observation, 1032

crystal growth, 1035–1037

microscopy, 1043–1050

modern interferometry, 1043–1050

In vivo induced mineralization, 889–890

InAs nanowires, 777

Incoherent scattering, 408–409

Incongruent melting, 119–120

Incorporation barrier, 849–850

Induced biological crystallization, 901–903

Induction time, 327

Inelastic scattering, 440

InGaAs nanowires, 778

InGaP nanowires, 778

Inherent Structure Landscape (ISL), 153–154

for defects in crystals, 155–156

Inherent structure theory, 153–157

InP nanowires, 778

Interface

capillarity, 709–710

energy conservation, 707–708

equivalent lattice gas model, 276–277

existence of roughening transition

temperature, 275–276

free energy, 222, 607–608, 643

Ising model, 276–277

kinetics, 363

physics, 695

Ivantsov’s transport solution, 700–701

marginal stability, 697–700

tip characteristics, 695–696

tension, 277–279

Interfacial gradients, 711–713

Interferometric tomography, 1053–1055.

See also Computerized tomography

Intermediate compounds, 121–122

International Conferences on Crystal Growth

(ICCG), 3
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International Organization of Crystal Growth

(IOCG), 3

International Space Station (ISS), 1084

Intrinsic point defects, 138

Inverse roughening, 292

Inverse techniques, 435–436

IOCG. See International Organization of

Crystal Growth

IPW random walk method. See Imaginary-

path-weight random walk method

IQC. See Icosahedral QC

Ising model, 234, 276–277

ferromagnetic state of, 640

microscopic Hamiltonian of, 634

ISL. See Inherent Structure Landscape

Isopleth sections, 127–128

Isothermal Dendritic Growth Experiment

(IDGE), 689–690

Isotropic formalism. See Ball and spring model

Isotropic interface kinetics, 619

Isotropy, 113–115

ISS. See International Space Station

ISS–Kibo experiments, 1085–1088

Ivantsov’s transport solution, 700–701

J
Jackson a factor, 11

Jackson’s parameter, 271

K
K2O flux, 46–47

Kapitza’s method, 30–31

Karma and Rappel model, 652

KDP. See Potassium dihydrogen phosphate

Kinetic

coefficient, 363, 382, 733

law, 617

limitations, 702–704

molecular theory, 6

roughening, 379

Kinetic Monte Carlo simulations (KMC

simulations), 483, 522–523

of deposition from gas phase, 538–540

with elastic strain, 544–548

on-lattice KMC, 540–544

Kinks generation, 850–853

KJMA theory. See Kolmogorov-Johnson-Mehl-

Avrami theory

KMC simulations. See Kinetic Monte Carlo

simulations

Koch–Cohn cluster, 178

Kohn–Sham equation, 525–526

Kolmogorov-Johnson-Mehl-Avrami theory

(KJMA theory), 724–731

geometric approach, 727–729

probabilistic approach, 729–731

Kossel-like crystal nucleus model, 350–351

Kosterlitz–Thouless transition (KT transition),

266, 286–290

Kröger–Vink notation, 200–201

KT transition. See Kosterlitz–Thouless

transition

L
l-1 repulsions, 219

l-2 interaction, 218–219

LAIMCE. See Low-angle incidence

microchannel epitaxy

LAMMPS software, 157

Landau theory

Landau equation, 621–622

Landau–Ginzburg equation, 623

order parameter, 633

Langer and Müller-Krumbhaar method (LMK

method), 614, 1087–1088

Langmuir adsorption, 292–293

Large planar self-interstitial clusters, 152–153

Large-scale integration (LSI), 750–751

Laser confocal differential interference

contrast microscopy (LCDICM), 1049

Laser confocal microscope-differential

interference microscope (LCM-DIM),

1071–1072

Laser confocal phase-shift interferometry

(LCPSI), 1049–1050

Laser diode (LD), 502–503

Laser-heated pedestal fiber growth (LHPG),

32–33

Lateral coherence, 413–414

Lateral growth, 370
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Lateral overgrowth (LOG), 755

Lattice gas automata (LGA), 523

Lattice type, 1126–1127

Lattice-mismatched system, 767–768

Laue-Langevin Institute (ILL), 431

Layer growth. See Lateral growth

LCDICM. See Laser confocal differential

interference contrast microscopy

LCM-DIM. See Laser confocal microscope-

differential interference microscope

LCPSI. See Laser confocal phase-shift

interferometry

LD. See Laser diode

LDA. See Local density approximation

Lead magnesium niobium-titanate (PMNT),

71–72

LEC method. See Liquid encapsulation

Czochralski method

LED. See Light emitting diode

LEED. See Low-energy electron diffraction

Lenosky potential (LP), 142–143

Lever rule, 119–121

LGA. See Lattice gas automata

LHPG. See Laser-heated pedestal fiber growth

Li2B4O7. See Lithium borate

Light emitting diode (LED), 48–49, 502–503,

750

LiNbO3. See Lithium niobate (LN)

Line compounds, 105–106

stoichiometric crystal, 192

Linear kinetics, 363

Linear stability analysis, 602. See also Mullins-

Sekerka analysis; Nonlinear analysis

cylinders, 611–616

circular cylinder, 615–616

ellipsoids, 616

linear stability theory, 623

paraboloids, 616

planar interface, 602–610

experimental tests of morphological

stability, 609

long-wavelength perturbations, 609–610

TSS approximation, 605–608

spheres, 611–616

Liquid

diffractometer, 433

liquid-like layer, 1066–1067

metals, 425–426

semiconductors, 427

Liquid encapsulation Czochralski method

(LEC method), 24

Liquid phase epitaxy (LPE), 48, 753. See also

Selective-area epitaxy (SAE)

Liquid state, 402–405. See also Supramolecular

liquid structures

characterizations, 436–438

computer simulations, 434–436

experimental setups, 433–434

Liquid–liquid (L–L), 807–808

coexistence line, 807–808

diffusion method, 812

separation, 834

Liquid–liquid phase separation (LLPS),

927–928

Liquidus, 106–109, 113–115

LiTaO3. See Lithium tantalate (LT)

Lithium borate (Li2B4O7), 184, 187

Lithium niobate (LN), 32–33, 101–102, 177,

179, 181, 207

compositions, 190f

MgO-doped, 201–207

neutral and ionic chemical species, 192f

Lithium tantalate (LT), 180, 207

compositions, 200f

MgO-doped, 207–210

L–L. See Liquid–liquid

LLPS. See Liquid–liquid phase separation

LMK method. See Langer and Müller-

Krumbhaar method

LN. See Lithium niobate

Local density approximation (LDA), 145,

526–527

Local equilibrium, 710–711

LOG. See Lateral overgrowth

Long range order (LRO), 402–403

Long-wavelength perturbations,

609–610

Longitudinal coherence, 413

Low-angle incidence microchannel epitaxy

(LAIMCE), 756–758
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Low-energy electron diffraction (LEED),

530–531

LP. See Lenosky potential

LPE. See Liquid phase epitaxy

LRO. See Long range order

LSI. See Large-scale integration

LT. See Lithium tantalate

M
Mach–Zehnder interferometer, 1051

Macromixing, 941

Magnesium oxide (MgO), 176–177

Magnetotactic bacteria, 896

Magnetotaxis, 895–896

Many-body Schrödinger equation, 524

Marginal stability, 696–700

Marginal wavenumber, 704–705

Maryland notation, 218–219

Mass crystallization, 345–346

Master equation, 408

Matched asymptotic expansion method,

647–648

MBE. See Molecular beam epitaxy

MC simulations. See Monte Carlo simulations

mc-Si. See Multicrystalline Si

MCE. See Microchannel epitaxy

MD. See Molecular dynamics

MEAM. See Modified embedded-atom model

Mean value of work of separation (MWS), 336

“Mean-field” value, 240

Meandering. See Step wandering

Melt growth method, 17–18, 365–369. See also

Solution growth method

Bridgman–Stockbarger method, 25–27

crystal grain growth, 731

heat conduction process, 734–736

twin boundaries, 736–742

Wilson-Frenkel formula, 731–734

Czochralski crystal pulling method, 20–25

diffuse interface picture, 368–369

Kapitza’s method, 30–31

Nacken–Kyropoulos methods, 28–29

nineteenth century and Verneuil process,

18–20

shaped growth, 33–36

sharp interface picture, 366–368

skull melting method, 37–38

Stöber/heat exchanger methods, 30

twentieth century, 20

zone melting method, 31–33

Membrane proteins, 812, 813f

Memory effects, 330

Mephisto Bridgman furnace, 609

Mesoscopic free energy, 634

Metal oxides, 180

Metal-insulator-semiconductor (MIS), 758

Metal-organic chemical vapor deposition

(MOCVD), 544, 755–756

Metal-organic vapor-phase epitaxy (MOVPE),

477–478, 750–751

Metal-oxide-semiconductor (MOS), 750–751

Metastable equilibrium state, 379

Metastable zone limit (MZL), 921

Metastatic calcifications, 900

Metropolis Monte Carlo simulation (MMC

simulation), 483

MgO. See Magnesium oxide

MgO-doped LiNbO3, 201

bulk crystal growth, 203–207

crystallization electromotive force, 202–203

melting temperature distribution, 201–202,

202f

temperature gradient dependence, 203f

MgO-doped LiTaO3, 207

bulk crystal growth, 208–210

crystallization electromotive force, 208

curie temperature, 208–210

melting temperature distribution, 207–208

Michelson interferometer, 1040f, 1041–1043

Micro-pulling-down method (m-PD method),

32–33, 86, 194f

Microbatch technique, 811–812

Microchannel epitaxy (MCE), 753–758

Micromixing, 941–942

Microscopy, 1043–1050

models, 308

solvability, 695

Microstructure formation, 650

Migration, 488–489

MIS. See Metal-insulator-semiconductor
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Mixed crystal, 88

Mixing. See Crystallizer hydrodynamics

ML. See Monolayer

MLEK method, 29

MMC simulation. See Metropolis Monte Carlo

simulation

MOCVD. See Metal-organic chemical vapor

deposition

Modern interferometry, 1043–1050

Modified embedded-atom model (MEAM),

142–143

Molecular beam epitaxy (MBE), 60, 477–478,

523–524, 750–751, 1003–1004,

1010–1013

Molecular crystals, size and habit evolution,

466–472

Molecular dynamics (MD), 434–435, 522–523,

804, 1072

sampling inherent structures, 156–157

simulation, 13, 156–157, 396

of ice–water interface, 1089–1090

Molecular-kinetic approach, 335–338

Monoatomic liquids, 416–419

Monochromatic plane wave, 413

Monolayer (ML), 767, 1014

graphene imaging, 1022–1024

Monotectics, 124

Monte Carlo simulations (MC simulations),

396, 434–435, 446, 483–484, 638

deposition on spherical crystal seed, 450

deposition rate effect, 451–452

faceting, 450–451

description, 448–449

molecular crystals, 466–472

nucleation of films, 452

inhibited diffusion effect, 454–455

temperature effect, 453

wetting effect, 452–453

PVD, 462–466

step coverage, 462–466

texture development, 460–462

Moore’s temperature lowering method, 40

Morphological instability, 1091–1093

Morphological stability, 595–596

elementary considerations, 597

constitutional supercooling, 600–602

elementary theory for pure melt, 597–600

linear stability analysis, 602

paraboloids and ellipsoids, 616

planar interface, 602–610

spheres and cylinders, 611–616

Mullins-Sekerka analysis, 616–617

extensions, 618–619

rapid solidification, 617–618

nonlinear analysis, 620

sideband instability, 623–624

three-dimensional weakly nonlinear

solutions, 624–626

weakly nonlinear analysis, 620–622

stability theory, 1146–1148

MOS. See Metal-oxide-semiconductor

Mound formation, 380

MOVPE. See Metal-organic vapor-phase

epitaxy

MSC process. See Multistep crystallization

process

Mullins-Sekerka analysis, 616–617. See also

Linear stability analysis; Nonlinear

analysis

extensions, 618–619

instability, 744–745

rapid solidification, 617–618

Multicomponent

solidification, 659–664

systems, 665

Multicrystalline Si (mc-Si), 723

Multilayered graphene, 1024–1025

Multinucleation growth, 373, 376–377

Multiphase solidification, 659–664

Multiphase-field method, 659, 664–665

Multistep crystallization process (MSC

process), 579

MWS. See Mean value of work of separation

MZL. See Metastable zone limit

N
Nacken–Kyropoulos methods, 28–29

Nanocrystals, 880

Nanowires (NW), 751, 772

III-V NW formation, 772
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Nanowires (NW) (Continued )

coherent growth, 786–788

SAG, 774–781

twinning growth model, 781–786

VLS growth mechanism, 773

NCP. See Noncollagenous protein

NCT. See Nicotinamide

NDIS. See Neutron diffraction with isotopic

substitution

Near-equilibrium system, 993–994

Neutron

scattering, 405–416

sources, 431–433

Neutron diffraction with isotopic substitution

(NDIS), 421

Next nearest-neighbor interaction (NNN

interaction), 233

Nicotinamide (NCT), 935–936

Nodes. See Cells

Non-racemizable enantiomers, 964–967

Non-steady-state nucleation rate, 326–327

Nonaqueous solution growth, 44

Nonclassical nucleation, 576. See also Classical

nucleation theory (CNT); Crystal

growth

multistep crystallization, 578–579

Ostwald’s rule, 579

structure evolution of precritical nuclei,

576–578

Noncollagenous protein (NCP), 880–883

Nonlinear analysis, 620

sideband instability, 623–624

weakly nonlinear analysis, 620–622

three-dimensional, 624–626

Nonprotein solution components, 813.

See also Protein crystallization

buffers, 819–820

organic molecules, 823–825

protein molecules interaction, 814–817

salts, 821–822

simple colloid approach, 817–819

Nonreactive gases, 61

Nonstationary time lag, 327

Nonstoichiometry, 176

Normal growth, 370

Normal melting, 425–427

Nucleation, 316, 361, 825–826, 875–876, 990.

See also Classical nucleation theory

(CNT)

barrier, 569, 570f

burst, 348

gas bubbles, 328–331

heterogeneous, 342–346

nucleation–growth kinetics, 724–725

KJMA theory, 726–731

time relations, 725–726

phase formation, 317f

probabilistic features, 347–348

protein crystals, 348–354

theorem, 346–347

theories, 333–335, 346–347

3D models of Kossel-crystals, 344f

in vapors, 317–328

Nuclei saturation density, 345–346

Nucleus size, 830–832

Numerical methods, 701–702

NW. See Nanowires

O
OC-17. See Ovocleidin-17

Octacalcium phosphate (OCP), 899

Off-lattice KMC, 523

OM precursor. See Organometallic precursor

OMVPE. See Organometallic vapor phase

epitaxy

On-lattice KMC, 540–544

1/1 approximant, 1125

One component systems. See also Two

component systems

fields, 111–112

pressure–temperature diagrams, 110–111

One-dimensional quasiperiodic structure,

1118–1120

1D nanostructures, 752–753

Onsager symmetry principles, 662

Optical parametric oscillator (OPO), 204–205

Optical techniques

crystal growth in situ observation, 1035–1037

monomolecular growth steps, 1037–1039

phase-sensitive microscopic techniques, 1037
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standard Michelson interferometer, 1040f

step height measurement, 1039–1043

visualization techniques, 1032

Order parameter, 633

functions, 644

Organic

matrix, 876

molecules, 823–825

solvent, 932

solvents classification, 918t

Organometallic precursor (OM precursor),

58–59

Organometallic vapor phase epitaxy (OMVPE),

58–60

Ostwald ripening, 70, 928–929

Ostwald rules, 579, 926–927

step rule, 1080

Otoliths, 894–895

Ovocleidin-116 (OC-116), 898–899

Ovocleidin-17 (OC-17), 898–899

Oxide crystals. See also Stoichiometric crystal

growth characteristics

crystal sites in, 179–180

extended concept of stoichiometry, 182–191

partitioning behavior of ionic solutes,

180–182

stoichiometric composition coincident with

congruent point, 200–212

stoichiometry and point defects, 176–179

vacancy clustering and cluster association,

178f

Oxide growth, 24–25

Oxide melt, 192–193

activities of constituent elements, 196–199

partitioning behavior of ionic solutes in,

180–182

P
p-RSOS model, 300

Pair correlation function, 403f, 404–405,

419–420

Paraboloids, 616

Paramagnetic system, 635–636

Partial pair correlation functions, 424–425

Partial structure factors, 420–423

Partially stabilized zirconia (PSZ), 37

Pasteur stereochemistry, 957–960

Pathological mineralization, 899–900

Pauli’s principle, 524–525

PBT45. See 45� pitched blade turbine

PDB. See Protein Data Bank

PDL. See Perfect dislocation loop

Pearson, Takai, Halicioglu, Tiller potential

(PTHT potential), 142–143

Péclet numbers

growth, 684

large, 694–695

small, 693–694

PECVD. See Plasma-enhanced chemical vapor

deposition

Pedal, 216–217

Pedestal growth method, 32

PEG. See Polyethylene glycol

PEL. See Potential energy landscapes

Penrose pattern, 1120–1122

Pentaerythritol Tetranitrate crystal (PETN

crystal), 467

Pentagonal dodecahedron, 1143–1145

Perfect dislocation loop (PDL), 152–153

Peritectics, 122–123

point, 123

Peritectoids, 122–123

PES. See Potential-energy surface

PETN crystal. See Pentaerythritol Tetranitrate

crystal

PFC model. See Phase field crystal model

pH-stat method, 886

Pharmaceutical crystallization, 917

batch crystallization process development,

937–943

crystal

growth, 923–925

nucleation, 920–923

crystallization

medium, 917

methods, 929–936

dissolution, 925

organic solvents classification, 918t

phases, 917–920, 925–928

ripening, 928–929
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Pharmaceutical crystallization (Continued )

solubility, 917–920

supersaturation, 917–920

Phase diagram, 86, 807–810, 917–920

analytical expressions, 106–109

Gibbs energy minimization, 109

calculation, 103–109

miscibility, 103–106

Phase equilibria, 86

components and concentrations, 86–88

between condensed phases

one component, 110–112

three and more components,

124–129

two components, 112–124

gas phase, 129

Ellingham type diagrams, 131–133

volatile species, 130–131

phase transitions, 98–103

phases and phase rule, 88–89

system, 89–90

thermodynamic functions and potentials,

90–98

Phase field crystal model (PFC model), 522,

551–552

step growth and beyond, 553–554

structures and defects, 551–552

Phase-fieldmodels, 397, 632–633, 644, 701–702

diffuse interfaces at equilibrium, 639–645

free-boundary problems, 645–650

order-parameter models, 633–639

for solidification, 650

anisotropy and dendritic growth, 652–655

antitrapping current, 657–659

binary alloy, 655–657

multiphase and multicomponent

solidification, 659–664

pure substance, 650–652

Phase-shift interferometry (PSI), 1037,

1043–1045, 1044f

in situ measurement, 1047–1048

Phase(s), 88–89, 925–928

contrast microscopy, 1048

field, 523

rule, 88–89

transitions, 98–103, 927–928

temperatures, 285t

Phason flipping, 1119, 1122

Photoluminescence (PL), 779–781

Physical vapor deposition (PVD), 446, 462–466

Physical vapor transport (PVT), 86, 130

Physiological calcifications, 900

Piezoelectric materials, 51

Pinctada maxima, 897

Pitchfork bifurcations, 622

PL. See Photoluminescence

Planar interface, 602–610

experimental tests of morphological stability,

609

long-wavelength perturbations, 609–610

TSS approximation, 605–608

Plasma-enhanced chemical vapor deposition

(PECVD), 774–775

PMNT. See Lead magnesium niobium-titanate

Point defects, 139–140, 176–179

clusters, 140–142

Polyatomic liquids, 420–425

Polycrystalline microstructures, 446

Polycrystals, 665

Polyethylene glycol (PEG), 813–814

Polygonal shape formation, 764–766

Polygons, 525

Polymorphism, 916

Potassium chloride (KCl), 1090–1091

morphological instability, 1091–1093

Potassium dihydrogen phosphate (KDP),

40–41

Potassium Thiocyanate (KSCN), 923

Potential energy landscapes (PEL), 153–157

Potential-energy surface (PES), 508

Precipitation. See Reactive crystallization

Preferential crystallization, 975–979

Preroughening phenomena, 291–292

Pressure–temperature diagrams, 110–111

Primary nucleation, 922, 941–942

Product-wave-function renormalization group

(PWFRG), 240–241, 254–255, 303

Prokrovsky-Talapov argument, 240–241

Protein crystallization, 798, 810–812, 811f

crystal growth mechanisms, 846–857
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experiments, 41

thermodynamics, 802–810

Protein crystals, 796–797

aspartyl–tRNA synthetase, 801f

crystallography, 797f

intermolecular contacts, 800–802

nucleation, 348–354, 845–846

protein molecules, 798–800

solution trapping, 802

Protein Data Bank (PDB), 349

Protein(s), 798–802

cluster–cluster aggregation, 352–354

intercalation, 885

molecules, 798–800

interaction, 814–817

protein-rich clusters, 798

Pseudobinary system, 86

Pseudoternary system, 86

PSI. See Phase-shift interferometry

PSZ. See Partially stabilized zirconia

PTHT potential. See Pearson, Takai, Halicioglu,

Tiller potential

Pure phase, 109

Pure substance, 650–652

PVD. See Physical vapor deposition

PVT. See Physical vapor transport

PWFRG. See Product-wave-function

renormalization group

Q
QC. See Quasicrystals

QD. See Quantum dots

QHA. See Quasi-harmonic approximation

QLL. See Quasi-liquid layer

QMS. See Quadrupole mass spectroscopy

QSS approximation. See Quasi-steady-state

approximation

Quadrupole mass spectroscopy (QMS),

487–488

Quantum chemical simulations, 522

Quantum dots (QD), 493, 548–549, 751, 751f,

767

SAG, 768–772

self-assembled growth, 767–768

Quantum well (QW), 751, 751f

Quantum wire (QWR), 751, 751f

Quartz, 51

Quasi-harmonic approximation (QHA),

160–161

Quasi-liquid layer (QLL), 1066–1067, 1071f,

1073f

experimental evidence, 1070t

visualizations of, 1071–1072

Quasi-steady-state approximation

(QSS approximation), 603

Quasicrystals (QC), 1114

discovery, 1117–1118

electron diffraction pattern, 1114f

fibonacci sequence, 1118–1120

growth mechanism, 1142–1152

growth methods, 1131–1134

one-dimensional quasiperiodic structure,

1118–1120

Penrose pattern, 1120–1122

and periodicity, 1115–1116

selected results, 1135–1142

single crystal growth process, 1136t–1137t

symmetry by translation, 1116–1117

three-dimensional quasiperiodic structure,

1123–1126

two-dimensional quasiperiodic structure,

1120–1122

variations, 1123–1126

Quasielastic scattering, 440

Quasiperiodic array, 1119

QW. See Quantum well

QWR. See Quantum wire

R
Racemates resolution, 980–991

Racemic

composition, 964–967

compounds, 968–975

mixture chemical purity, 991

Racemizable enantiomers, 967

RADmethod. See Ribbon against drop method

Radial distribution function (RDF), 404

Radiofrequency (RF), 774–775

Radius of critical nucleus, 371–372

Rate law, 839–841
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Rayleigh instability, 615

RDF. See Radial distribution function

Re-crystallization operation, 937

Reactive crystallization, 934–935

Reciprocal salt pairs, 128–129

Reflection high-energy electron diffraction

(RHEED), 487–488, 523–524, 1004, 1005f

Regeneration process, 878–879

Residual entropy, 1066

Resolving agent, 980–983

Resonant tunneling diode (RTD), 750–751

Restricted solid-on-solid model (RSOSmodel),

286

RSOS-I model, 308

Reverse Monte Carlo approach (RMC

approach), 434–435

RF. See Radiofrequency

RHEED. See Reflection high-energy electron

diffraction

Rhombic triacontahedron (RTH), 1123–1124,

1143

Ribbon against drop method (RAD method),

35–36

Ribbon to ribbon method (RTR method),

35–36

Ripening, 928–929

RKKY interaction, 256

RMC approach. See Reverse Monte Carlo

approach

Rocking tank method, 40

Room temperature (RT), 770–771

Rough interface, 846–847

Rough regions near facets. See also

Equilibrium crystal shape (ECS)

critical behavior

experiment on lead, 241–243

novel approach, 243–245

theory, 239–241

vicinal surfaces–entrée, 234–239

Rough surface, 1076

energy and shape relationship, 281–282

interface, 275–279

roughness of single step, 282–284

surface roughness, 279–281

Roughening, 11

exponent, 216–217

and faceting transition, 284–293

temperature changes

inverse roughening, 292

Langmuir adsorption, 292–293

transitions, 266

Rough–smooth transition

drumhead wandering, 272–275

entropy effect, 271–272

rough surface, 275–284

in crystal growth, 270–271

universal features, 266–270

RSOS model. See Restricted solid-on-solid

model

RT. See Room temperature

RTD. See Resonant tunneling diode

RTH. See Rhombic triacontahedron

RTR method. See Ribbon to ribbon

method

S
S-K mode. See Stranski-Krastanow mode

s-LN. See Conventional stoichiometric

LiNbO3; Stoichiometric LiNbO3

s-LT. See Stoichiometric LiTaO3

SA-MOVPE. See Selective-area metal-organic

vapor phase epitaxy

SAE. See Selective-area epitaxy

SAED. See Selected area electron diffraction

SAG. See Selective-area growth

Salts, 821–822

formation, 980–991

Sample environment, 433–434

Satellite tobacco mosaic virus (STMV),

828

SAXS. See Small-angle X-ray scattering

SBN. See Strontium barium niobate

Scaled surface width, 280

Scanning electron microscopy (SEM), 679,

774–775, 1003–1004

in situ imaging method, 1004–1010

GaAs surface nucleation and growth,

1015–1019

graphene growth, 1022–1027

growth mode, 1010–1015

1176 Index



Scanning reflection electron microscopy

(SREM), 1003–1004

Scanning transmission electron microscope

(STEM), 773

Scanning tunneling microscope (STM), 237,

243, 523–524, 530, 1003–1004

Scattering

neutrons, 405–416

spectrum, 410

X-rays, 405–416

Scherrer broadening, 412–413

Schwoebel instability, 453

SCN. See Succinonitrile

Screw dislocation, 377

SE. See Secondary electron

Second-order phase transition, 316

Secondary electron (SE), 1004–1005,

1007–1008

step flow, 1013–1015

2D-Island nucleation, 1013–1015

Secondary harmonic generation (SHG), 182,

972–973

conversion efficiency, 206–207

Secondary nucleation, 922–923

Seed quality, 939

Seeded and isothermal preferential

crystallization (SIPC), 975–977

Seeding strategy, 938–940

Segregation, 119–121

Selected area electron diffraction (SAED),

1126–1127

Selective-area epitaxy (SAE), 753. See also

Microchannel epitaxy (MCE)

Selective-area growth (SAG), 753, 787–788

facets, 758–759

control, 760–764

of GaAs, 763f

III-V NWs formation, 774–781

polygonal shapes formation, 764–766

QD structures, 768–772

Selective-area metal-organic vapor phase

epitaxy (SA-MOVPE), 774

Self-catalyzed method, 773–774

Self-epitaxial nucleation-induced assembly,

586, 587f

Self-flux method. See Solution growth method

Self-interaction correction (sic), 527

Self-interstitial clusters, 163–167

landscape roughness and pressure effect,

165–167

SEM. See Scanning electron microscopy

Semiconductors, 22–24

materials, 478

nanocrystals, 750–751, 753

III-V NWs formation, 772–788

QD, 767–772

SAE, 753–766

Sequential layering film deposition process, 62

SET. See Single electron transistor; Single-

electron tunneling

7P rule, 916

SFT. See Stacking-fault tetrahedrons

Shadow effect, 586

Shaped growth, 33–36

Sharp

edges, 245–250

facet reconstruction, 245–250

interface

models, 396–397

picture, 366–368

SHG. See Secondary harmonic generation

Short range order (SRO), 402–403

sic. See Self-interaction correction

Sideband instability, 623–624

Silicon, 53

homoepitaxial growth of, 541

Simple colloid approach, 817–819

Simultaneous preferential crystallization,

978–979

Single electron transistor (SET), 750–751

Single nucleation growth, 373

Single vacancy, 158–159

Single-crystal silicon, 138

Single-electron tunneling (SET), 752

SIPC. See Seeded and isothermal preferential

crystallization

Skull melting method, 37–38

SL. See Superlattice

Small compact self-interstitial clusters,

149–151
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Small-angle X-ray scattering (SAXS), 901

Smooth free-energy functional, 661

Smooth interface, 846–847

Smooth surface, 1075–1076

SMPT. See Solution-mediated phase

transformation

Snow crystals, 1062, 1063f. See also Ice crystals

air flow on pattern, 1079–1080

dendritic pattern formation, 1077–1079

growth morphologies, 1072–1075

Kuroda–Lacmann model, 1075–1077, 1076f

twinned snow crystals, 1080–1081

Sodium bromate (NaBrO3), 993–994

Sodium chlorate (NaClO3), 958–959, 992–994

Solid solutions, 968–975

Solid state recrystallization, 70–72

Solid-on-solid model (SOS model), 266–267

interfacial model, 584

Solid-state lighting (SSL), 750

Solid-state physics simulations, 522

Solidification, 595–596, 1148–1149

Solid–liquid interfacial free energy, 598

Solidus line, 106–109, 113–115

Solubility, 816

rules, 926–927

Solute

partitioning behavior, 180

pump mechanism, 618

solute/resolving agent, 986–989

trapping, 657–658

Solution growth, 369–370

Solution growth method, 38, 45–46, 369–370,

1134, 1134f. See also Vapor growth.

method

aqueous solution growth, 38–41

biological macromolecules growth, 41–43

electrochemical crystal growth, 52–53

growth from gels, 43–44

high temperature solution growth, 44–49

hydrothermal growth, 49–52

nonaqueous solution growth, 44

Solution-crystal spinodal, 830–832

Solution-mediated phase transformation

(SMPT), 927

Solvent, 983–986

evaporation, 930–932

requirements, 45

selection, 938

Soret effect, 618

SOS model. See Solid-on-solid model

Spallation sources, 432–433

Specific heat capacity, 90–91

Spheres, 611–616

Spherical crystallization, 928

Spider rotating seed holder, 40

Spinodals phase, 807–810

Spiral growth, 377

facet with dislocations, 378–379

growth mode change, 379

kinetic roughening, 379

mound formation, 380

screw dislocation, 377

velocity of, 377–378

Sputtering method, 61–62

Squared surface width, 279

SREM. See Scanning reflection electron

microscopy

SRO. See Short range order

SrTiO3. See Strontium titanate

SrxBa1–xNb2O6. See Strontium barium niobate

(SBN)

SSL. See Solid-state lighting

Stable equilibrium, 320f

Stable phases alloy system, 1129–1130

Stacking-fault tetrahedrons (SFT), 493

Static approximation, 410–412

Stationary state. See Steady state

Steady state, 573

energy equations, 683

nucleation rate, 322–326

Stefan energy balance, 708–709

Stellated polyhedron, 1142–1143

STEM. See Scanning transmission electron

microscope

Step

bunching, 390–391

coverage, 462–466

free energy, 584

kinetic coefficient, 849–850

propagation, 848–849
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wandering, 388–389

Step faceting

discontinuous surface tension, 300–302

macrostep stability, 298–300

Step flow growth, 1013–1015

instability, 1020–1022

Stillinger–Weber potential (SW potential),

142–143

Stirring rate, 942

STM. See Scanning tunneling microscope

STMV. See Satellite tobacco mosaic virus

Stöber/heat exchanger methods, 30

Stoichiometric crystal growth characteristics,

192. See also Oxide crystals

activities of constituent elements, 196–199

crystallization electromotive force, 193–196

oxide melt, 192–193

Stoichiometric LiNbO3 (s-LN), 182

Stoichiometric LiTaO3 (s-LT), 182

Stoichiometry, 182–183

conventional stoichiometric compositions,

184–188

extended concept, 182

impurities and vacancies, 188–191

law of multiple proportions, 184–188

materials, 176

pseudo-binary systems, 184f

stoichiometric-congruent composition,

195–196

thermodynamic definition, 183–184

Strain-annealed crystal growth, 71

Stranski-Krastanow mode (S-K mode),

751–752, 767

Stratum corneum, 890–891

Striation, 25

Strontium barium niobate (SBN), 115

Strontium titanate (SrTiO3), 111, 528, 529f,

536–537

Sublimation, 55–56, 130

Subregular solution model, 104

Substrate nucleation. See Heterogeneous

nucleation

Succinonitrile (SCN), 678–679, 1088

Supercooled water, ice crystal free growth in

equilibrium forms, 1081–1082

growth morphologies, 1082–1084

ice–Water interface, 1089–1090

microgravity conditions, 1084–1088

Supercritical bifurcation, 622

Superlattice (SL), 750–751

Supersaturation, 337, 886, 917–920, 934–935

Supersaturation-driven interfacial structural

mismatch nucleation, 586–588

Supramolecular liquid structures, 438–440

Surface

diffusion, 382–387

length, 383–384

free energy, 267–268

reconstruction, 478–480

surface-phase diagram calculations, 478–479

width calculation, 306–307

Surface roughness

height–height correlation function, 280

microscopic models, 284

ASOS model, 286

BCSOS model, 285–286

RSOS model, 286

surface width–variance of surface height,

279–280

thin film-like surface, 281

SW potential. See Stillinger–Weber potential

Symmetric model, 646

Syntectics, 124

Synthetic diamonds, 65–66

crystals, 65–70

T
Tammann’s method, 20

Tangential flux, 712–713

Taylor expansion, 639

TBP. See Tertiarybutyl phosphine

Teeth, 892–893, 893f

TEM. See Transmission electron microscope

Temperature

change, 930

conductivity, 735

effect, 453, 457

10-fold axis, 1128–1129
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Terrace step kinkmodel (TSKmodel), 235, 269,

294–295

Terrace-ledge-kink model (TLK model), 6–7,

269

Terrace-width distribution (TWD), 236

Tertiarybutyl phosphine (TBP), 778

Texture development, 460–462

Theory of chemical bonding, 6–7

Thermal steady-state approximation (TSS

approximation), 598, 605–608

Thermodynamic driving force, 568. See also

Crystal growth

CNT, 568–573

discrepancies with observations, 575–576

experimental verification, 574–575

Thermodynamics, 825–827

protein crystallization, 802–803

crystallization driving force, 806–807

molecular process, 803–806

phase diagram, 807–810

supersaturation, 318

Thermomechanical analysis (TMA), 102–103

Thin films, 48, 446

liquid phase epitaxy, 48–49

Third-phase adsorption, 660–661

3-body correlations, 437–438

Three-dimensional quasicrystal, 1126–1128

Three-dimensional quasiperiodic structure,

1123–1126

Tie-line, 119–120

Tilt angle measurement, 1095–1096

Time-dependent morphological features,

682–683

TLK model. See Terrace-ledge-kink model

TMA. See Thermomechanical analysis

TMG. See Trimethylgallium

Tolman length, 331–332

“Top-down” view. See Free-boundary

problems

Top-seeded solution growth method (TSSG),

46–47, 86

Transition state, 396–397

Transitions of first kind. See First-order

transitions

Transmission electron microscope (TEM),

523–524, 755, 1115–1116, 1122

Transport solution

dendrite thermal field, 685–686

steady-state, 688–689

supercooling limits, 686–688

Transport theory, 681–685

key assumptions and boundary conditions,

683–684

solution parameters, 684–685

tests, 689–691

Transverse coherence, 413–414

“Trapped-wave” eigenstates, 695

Trimethylgallium (TMG), 487–488

Trouton’s rule, 272

TSK model. See Terrace step kink model

TSS approximation. See Thermal steady-state

approximation

TSSG. See Top-seeded solution growthmethod

TWD. See Terrace-width distribution

Twinned snow crystals, 1080–1081

Twinning growth model, 781–786

Two component systems, 112

eutectics and eutectoids, 117–119

intermediate compounds, 121–122

lever rule, 119–121

peritectics and peritectoids, 122–123

segregation, 119–121

syntectics and monotectics, 124

total miscibility in 2 phases, 113–117

2D circular island growth, 374–375

2D-Island nucleation, 1013–1015

Two-dimensional crystal nucleation, 339–342,

340f

Two-dimensional electron gas (2DEG),

764–765

Two-dimensional quasicrystal, 1128–1129

Two-dimensional quasiperiodic structure,

1120–1122

Two-dimensional square lattice, 1116

Two-step nucleation mechanism, 334–335,

833–836, 835f

rate determination, 841–842

rate law, 839–841
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U
U.S. Food and Drug Administration (FDA), 962

Unidirectional casting method, 36

United States Microgravity Payload missions

(USMP), 689–690

V
V-W mode. See Volmer-Weber mode

Vacancy clusters, 147–149, 159–163

Vapor diffusion, 887–888

Vapor growth, 364–365, 382–387

method, 53–55

artificial epitaxy, 64–65

bulk growth method, 55–58

vapor phase epitaxy, 58–62

VLS method, 63–64

Vapor phase epitaxy

ALD, 62

MBE, 60

OMVPE, 58–60

sputtering method, 61–62

Vapor-liquid-solid technique (VLS technique),

63–64, 772–773

Vapor-phase epitaxy (VPE), 53–54, 478–479,

760–762

Vdovichenko’s method, 306

Verneuil process, 18–20

Vertical elevator furnace, 26

Vertical gradient freezemethod (VGFmethod),

26–27, 86

Vibrational entropy, 139–140

Vicinal face growth, 380. See also Crystal

growth

bulk diffusion, 381–382

deformation of, 388f

stepped surface morphology, 387–391

surface diffusion, 382–387

vapor growth, 382–387

Vicinal surface

logarithmic behavior

elastic step–step repulsion, 297

height–height correlation function, 296–297

1D free-fermion universal features, 295–296

TSK picture, 294–295

VLS technique. See Vapor-liquid-solid

technique

Voids, 162

Volatile species, 130–131

Vollmer–Weber growth, 546

Volmer-Weber mode (V-W mode), 767

“Vortex” spin configuration, 267

VPE. See Vapor-phase epitaxy

W
Water-structuring interactions, 822

Weakly nonlinear analysis, 620–622, 624–626

Web-silicon, 674

Wetting effect, 452–453, 455–456

Wetting layer (WL), 493

Wilson-Frenkel formula, 367, 731–734

“Window” for projection, 1118–1119

Wulff construction, 222, 222f, 467

2D studies, 233–234

thermal faceting and reconstruction, 229–230

type A & B, 231

Wulff plot, 227–229

Wullf ’s theorem, 339

x
X-ray

scattering, 405–416

sources, 430–431

X-ray absorption fine structure (EXAFS), 403,

427–430

X-ray absorption near edge structure (XANES

regime), 427–428

X-rays absorption spectroscopy (XAS),

427–430

x–y diagrams, 124–125

Y
Young–Laplace equation, 316

Young–Laplace law, 664–665

Yttrium zirconia (YCZ), 37

Z
Zeldovich factor, 373, 833

Zero-dimension (0D), 751

Index 1181



Zero-point entropy, 1066

Zinc oxide (ZnO), 53

Zincblende (ZB), 781, 781f

Zirconium–hafnium system, 113–115

Zn–Mg-RE system, 1139–1140

Zn–Mg–Tb system, 1139–1140

Zn–Sc system, 1142

Zonal sublimation method, 55

Zone leveling, 32

Zone melting method, 31–33
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