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Dear DISC Participant:

It is a great pleasure to welcome you to the sixth annual SEG/EAGE Distinguished Instructor
Short Course (DISC), “Geostatistics for Seismic Data Integration in Earth Models,” by Olivier
Dubrule. The SEG, EAGE, and your local society are proud to provide this premier course in
geophysics education.

With rapidly changing technologies, geoscientists around the world have an increasing need to
acquire expert geophysical knowledge. SEG's Distinguished Programs, which include the joint
SEG/EAGE Distinguished Instructor Short Course, the Distinguished Lecture, and the joint
SEG/AAPG Distinguished Lecture, aid in the promotion of technologies that will have a signifi-
cant impact on geophysics and geology. Likewise, the EAGE supports Geoscience Education
through its Distinguished Lecture and Short Courses Programs.

Previous DISC programs included “Time-Lapse Seismic in Reservoir Management,” by Mr. lan
Jack of BP Amoco, in 1998; “The Seismic Velocity Model as an Interpretation Asset,” by Dr. Phil
Schultz of Spirit Energy, a division of Unocal Corporation, in 1999, “Shear Waves from
Acquisition to Interpretation,” by Mr. Robert Garotta, formerly with CGG, now retired, in 2000;
“Seismic Amplitude Interpretation,” by Fred J. Hilterman of Geophysical Development
Corporation, in 2001; and “Understanding Seismic Anisotropy in Exploration and Exploitation,” by
Leon Thomsen of BP Amoco, in 2002.

Geophysics education is one of the top priorities for both SEG and EAGE. Because the DISC is
an annually renewed program, your participation is key to its success. The Distinguished
Programs and DISC have become highly sought opportunities for financial sponsorship and
endowment by companies and organizations. In partnership and collaboration with the EAGE,
the DISC is sponsored and coordinated throughout Europe, Africa, and the Middle East by the
EAGE. The DISC program affords important opportunities for local organizations to provide first-
rate geophysical education opportunities at modest cost. The DISC is truly a cooperative effort
of many people dedicated to the promotion and advancement of geophysics.

We are honored to have Olivier Dubrule for our 2003 DISC program. This is a great opportunity
to learn from one of the recognized experts about the use of geostatistics to integrate seismic
and reservoir data. We encourage you to take full advantage of this opportunity to broaden your
perspectives through participation in the 2003 DISC.

Sincerely,
Ty Al — W ' 2
Mike Bahorich Paul van Riel
SEG President EAGE President
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Olivier Dubrule

1 Introduction

1.1 Historical Perspective

In this introduction, we would like to highlight what appear to be the important land-
marks in the history of geostatistical applications in the petroleum industry. What do
we mean by “geostatistics?” In this course, this term will cover the petroleum applica-
tions resulting from the pioneering work of Prof. Georges Matheron and his Research
Group at the Centre de Géostatistique de I'Ecole des Mines de Paris. As far as this
course is concerned, the main pillars of this work are the developments of variogram-
based modeling applications.

Variogram-based modeling applications can be classified in two broad categories,
the first of which can be called deterministic geostatistics and is essentially all the
development around kriging. We will see later that this covers a very wide number of
techniques, including external drift kriging, error cokriging, factorial kriging, and collo-
cated cokriging. Although kriging is a technique based on a stochastic model, it gener-
ates one single model as a result, and it is deterministic in that sense.

The second category can be called stochastic geostatistics, and it covers the numer-
ous techniques developed around the conditional simulation concept. Conditional sim-
ulation is stochastic in the sense that, as with the Monte-Carlo simulation, it generates a
family of “realizations™ of 1D, 2D, or 3D models, all compatible with the a priori model
and the existing data. With regard to kriging, conditional simulation includes several
techniques, such as indicator simulation, collocated cosimulation, or geostatistical
inversion. This explains why this one-day course is subdivided in two half-days, the
first half-day presenting the basic concepts and the deterministic family of applications,
the second half-day covering the stochastic applications (Fig. 1-1). The most complete
synthesis of Matherons work can be found in Chiles and Delfiner (1999). Isaaks and
Srivastava (1989), Hohn (1988), and Deutsch (2002) are also other excellent presenta-
tions of geostatistics.

Following the work of Matheron, petroleum applications went through different
episodes (Fig. 1-2). The first one could be qualified as deterministic mapping. This was
the first development of kriging for mapping applications; see, for instance, the papers
of Haas and Viallix (1974) or Haas and Jousselin (1976). This period saw the develop-
ment of commercial mapping applications, such as Bluepack (Renard, 1990). Another
important step in the development of 2D mapping applications was Doyen’s (1988)
paper showing the potential of cokriging for mapping porosity using seismic-derived
information and well data.

The mid-1980s to mid-1990s saw the explosion of 3D stochastic (simulation-
based) reservoir modeling. This followed the arrival of Prof. Journel who, after closely
working with Matheron, joined the faculty at Stanford University. Thanks to the devel-
opment of sequential algorithms, simulation proved its value for generating heteroge-
neous 3D reservoir models, a task made even easier by the development of the public-
domain GSLIB software library (Deutsch and Journel, 1992). As a result, reservoir and
production geologists adopted this new technique as an important step in reservoir
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Olivier Dubrule

modeling workflow (Dubrule, 1998). Commercial sofware also developed quickly, but it
remained limited to the generation of heterogeneity models within a somewhat simplis-
tic stratigraphic context.

Another potential application of simulation rapidly emerged — that of uncertainty
quantification. The pioneering work of the Norwegian School, led by Prof. H. Omre
(Lia et al., 1997), showed that it was possible to combine uncertainties related to
geometrical modeling (essentially 2D) with uncertainties associated with 3D hetero-
geneity modeling. However, if Lia et al.'s work showed that the approach was possible,
it also showed that powerful software was needed to make it practical for industrial
applications.

The arrival of 3D earth modeling in the mid-1990s, linked with the development
of new commercial software (see, for instance, Tinker, 1996, or Dubrule et al., 1997),
opened a new era. The dichotomy between 2D surface modeling and 3D property mod-
eling disappeared, thus giving a tremendous boost to cross-discipline integration.
Suddenly it became possible to quickly quantify the impact of a change in the time-to-
depth conversion velocity model on the predicted production profiles. It also became
possible, as Lia et al. had predicted, to quantify the joint impact of subsurface uncer-
tainties, including those associated with time-to-depth conversion, property modeling,
and dynamic parameters, on production forecasts (Corre et al., 2000).

It is not a coincidence that, at about the same time that 3D earth modeling soft-
ware was developing on an industrial scale, new applications emerged that led to a bet-
ter integration of seismic data in the construction of 3D reservoir models. Cokriging
became a viable approach for combining seismic and reservoir data (Xu et al., 1992),
and the relationships between geostatistical techniques and the approaches more com-
monly used by geophysicists tended to narrow. Doyen et al. (1996) showed that collo-
cated cokriging could be simply put in a Bayesian context, whereas Haas and Dubrule
(1994) proposed geostatistical inversion as a stochastic high-resolution addition to
deterministic stratigraphic inversion techniques.

Over the last 30 years, we have seen that the development of geostatistical tech-
niques, combined with that of earth modeling software, has led to better integration of
geostatistics in the disciplines’ workflow, whether the discipline is geology, geophysics,
or reservoir engineering. This is very good news. However, much progress can still be
made, because geostatistics is still regarded by many geoscientists as a random-number-
generating black box, disconnected from the constraints provided by the disciplines.
This may be partly the geostatisticians’ responsibility, because they have developed
many new techniques, sometimes using a very heavy mathematical formalism, without
clearly indicating what was really important and how it related with what the various
disciplines were used to doing.

Now, following this natural-selection period of about 30 years, one of our goals is
to clarify the actual achievements of geostatistics and their relationship to the practice
of various geoscience disciplines — especially geophysics.

1.2 The Role of Geostatistics at Different Steps of the Earth Modeling Workflow

The first element in the construction of a 3D earth model is the structural [ramework

Distinguished Instructor Short Course » 1-3



Introduction

(Fig. 1-3). It describes, through [aults and surfaces, the skeleton within which the meat
of the property model will be incorporated. In most cases, the structural model is con-
structed from 2D or 3D seismic data, although it may be built from wells alone if no
seismic data are available. We will see examples of modeling when only well data are
available, but we will spend more time discussing the geostatistical approaches for
velocity mapping and for time-to-depth conversion (error cokriging, factorial kriging,
external drift approach, and the like). We will also discuss how uncertainties that affect
the geometrical model can be quantified with geostatistics.

In many cases, the structural model is not sufficient to define the stratigraphic
framework. Important stratigraphic surfaces may be recognizable from seismic data and
wells or from wells alone. Fig. 1-4 shows examples of the envelope of a turbidite chan-
nel complex picked from a good-quality, deep-offshore seismic data set (left) and strati-
graphic surfaces picked on wells alone in a shallow-marine reservoir (right). In the lat-
ter example, the interpolation of the stratigraphic surfaces identified on wells is guided
by the main structural surfaces seen on seismic data, with the assumption, in that case,
that the surfaces are subparallel. The model combining structural and stratigraphic sur-
faces is the 3D geometrical model.

[he next step is very crucial and probably is the most important advance brought
about by earth modeling software. It is the construction of the stratigraphic grid, which
will effectively constitute the link between the geometrical and the property models.
The simplest form of stratigraphic grid is shown in Fig. 1-5. Each grid cell in the strati-
graphic grid has two coordinates: (x,y,z) corresponding to its absolute location in space,

STRUCTURAL MODEL

Integration of wells
and
seismic data

/

SEG/EAGE [ISC 2003 Ph. Samson
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STRATIGRAPHIC SURFACES AT THE RESERVOIR

Deep offshore

Shallow marine
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Introduction

and (i,j,k) corresponding to its relative location in the stratigraphic grid. The strati-
graphic grid can be seen as a map from the (relative) stratigraphic (deposition) space to
the (absolute) depth space. Obviously, when interpolating properties in 3D between
surfaces of the geometrical model, one must incorporate stratigraphic control. This
means that interpolation must take place in the stratigraphic space. However, the result
of this interpolation must be displayed in the absolute structural space.

In practice, geologic considerations are used to construct the stratigraphic model
(Fig. 1-6). For example, in cases where palaeohighs controlled deposition, onlapping
stuctures can be incorporated into the stratigraphic grid. In cases in which a good
sequence stratigraphic model has been established, sea-level falls may generate erosional
truncations that can also be represented in the earth model. Of course, stratigraphic sce-
narios can be combined — for instance, onlapping can be combined with erosion.

Experience shows that a typical grid cell of the earth model is around 1 m thick
and a few tens of meters wide (Fig. 1-7). This difference between thickness and lateral
extent is due to the assumption that geologic variations are much more rapid along the
vertical direction than along directions parallel to stratigraphy. This also implies that the
number of grid cells in an average-size reservoir often will be on the order of several
million.

What will be the impact of the stratigraphic grid assumptions on property model-
ing? Fig. 1-8 shows that it can be very significant. The three models all share the same
well data at their left end and the geostatistical model is also the same. However, just
because of the choice of stratigraphy, the onlapping model contains much fewer red
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TYPICAL SIZE OF INDIVIDUAL GRID CELL IN 3D
EARTH MODEL

Typically, 1 million grid cellsina 5 km x 5§ km x 100 m
reservoir model

SEGEAGE DISC 2003

IMPACT OF STRATIGRAPHIC GRID ON PROPERTY
MODELLING
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Stratigraphic grid controls lateral correlations
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Introduction

values than do the two other models. Fig. 1-9 shows the impact of using a stratigraphic
grid in a faulted model: whereas the (x,y,2) grid is obviously alfected by faulting the
(i,j,k) stratigraphic grid is not, because the assumption has been made that faulting was
postdepositional. Therefore two grid cells on each side of a fault are interpolated as if
they were neighbors, because they were neighbors at the time of deposition.

Fig. 1-10 is a nice example of the amount of information that can be integrated
and displayed with a 3D earth model. Surfaces and the acoustic-impedance properties
along these surfaces are both shown, together with amplitude and acoustic impedances
along cross-sections. An acoustic-impedance log is also displayed, together with a
cross-section of the stratigraphic grid, with a different color corresponding to each
stratigraphic layer. The use of 3D visualization environments, with participation of
geoscientists from different disciplines, offers the perfect setup for validating and, if
necessary, improving the model — thanks to different input brought by different
disciplines.

Standard flow simulators cannot handle more than approximately 100,000 grid
cells. The geometry of the simulation grid is also less [lexible than that of the earth
model grid. This means that an upgridding and an upscaling stage are often required to
translate the earth model into a dynamic model. These topics are too broad to be dis-
cussed here. Christie (1996) is a good reference on the subject.

Fig. 1-11 identifies the modeling stages for which geostatistics is often used. The
different techniques listed on the right-hand side will be discussed during this course.
Obviously, geostatistics plays a role in the construction of the geometric model, through

PROPERTY MODELLING IN COMPLEX 3D GRID

Each grid cell and data
point has absolute (x,y,z)
and stratigraphic (i.j, k)
coordinates

SEG/EAGE DISC 2003 Ph. Samson

1-8 « Society of Exploration Geophysici"s'ts_;-’_éuropaan Association of Geoscientists & Engineers



Olivier Dubrule

EXAMPLE OF 3D STATIC EARTH MODEL

Stratigraphic
grid Seismic
cube

Impedance
cube

Geological
horizon

SEGEAGE DINC 2003 Ph. Samson 1-10

GEOSTATISTICS AND EARTH MODELLING

Steps in earth model Useful
construction geostatistical functionalities

Structural model TIME-TO-DEPTH CONVERSION
Kriging, external drift, error cokriging,
¢ collocated cokriging, factorial kriging

UNCERTAINTY QUANTIFICATION
Layering and well correlations Impact of picking uncertainty and
* velocity model uncertainty

Gridding

¢ GENERATION OF HETEROGENEOUS MODEL
Conditional simulation (facies and properties)

Property modelling
MULTIDISCIPLINARY DATA INTEGRATION
¢ Collocated cokriging

UNCERTAINTY QUANTIFICATION

Upscaling and construction of dynamic model Multi-realization by conditional simulation

1-11
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kriging and through the quantification of associated uncertainties. It is also used in the
construction of the static and of the dynamic models, through the 3D modeling of geo-
logical facies and of petrophysical properties, and through the quantification of their
associated uncertainties.

1.3 The Goal of This Course

For both geometry and property modeling, deterministic (kriging-based) or stochastic
(conditional-simulation-based) geostatistical approaches can be used. The reasons for
using one rather than the other will be discussed later. As the title of the course indi-
cates, we will focus especially on the geostatistical techniques that can be used to incor-
porate seismic-derived information in the earth model, in combination with well data
and geological constraints.

We will clarify the current range of applications of geostatistical techniques, from
2D mapping applications to the generation of 3D heterogeneity realizations fully con-
strained by seismic data. However, we will not cover all methods, but only those that
appear to be the most widely used or the most promising for the future. We will not
have time to cover any topic in detail, but, hopefully, after following this course, people
will be familiar with the basic concepts and will be able to find their way through the
maze of geostatistical terminology and applications.

In the world of geophysics, geostatistics is often perceived as a black-box approach
that is often reduced to the generation of random numbers between wells. We will show
that this is far from true and that geostatistical applications can be understood as exten-
sions of techniques that are familiar to most geophysicists and interpreters.

We will discuss the relationships between geostatistics and approaches such as
Bayesian or regularization-based inversion methods, filtering, Fourier analysis, or
splines. A number of short mathematical developments will be given in the text and in
the figures, for the benefit of readers interested in more details than it is possible to
cover in a one-day course. But these developments are not rigorous. We only wish to
give a flavor of where the theoretical relationships may lead, and we apologize — once
and for all — for the mathematical shortcuts.

1.4 Basics of Univariate Statistics

To understand geostatistics, one must know a number of basic statistical results. In the
following, we focus on the statistical results that appear most relevant to the under-
standing of geostatistics. The reader familiar with statistics can skip this chapter.

1.4.1 Random variables

The concept of the random variable is crucial, because the geostatistical model assumes
that the value of any property z(x), whether x is a point along a line, in the plane, or in
3D space, is the realization of a random variable Z(x). There are many complicated
mathematical ways to define random variables. Let us avoid them and simply say that a
random variable is one that takes certain values with certain probabilities.

There are discrete random variables, which take only a small number of integer

1-10 « Society of Exploration Geophy_s%fsts! European Association of Geoscientists & Engineers
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values. Fig. 1-12 shows the simple example of the sum of two dice, which takes values
between 2 and 12 with different probabilities. The figure shows the number of ways
each value can be obtained out of the 36 possible results of the throw of the two dice.
This can be readily translated into probabilities by dividing by 36. This is a discrete
variable, because its histogram is made of a finite number of columns. A random vari-
able is usually designated using an uppercase letter (usually X, Y, or Z), whereas one of
its realizations is designated by a lowercase letter (usually 2). An example of a discrete
variable is lithology, which can be, for instance, O for shale and 1 for sand.

A continuous random variable is one that takes real values. Porosity, acoustic
impedance, and permeability are examples of such parameters. They are characterized
by a probability density function (pdf) and a cumulative density function (cdf). The
value of the cdf for x is equal to the area at the left of x under the pdf plot (Fig. 1-13).
Of course, in situations where a value is perfectly known (porosity measured on a
plug), the pdf is reduced to one single bar corresponding to the measured variable.
Otherwise, the pdf measures the degree of knowledge available about a parameter (Fig.
1-14). The larger the spread, the poorer this knowledge is.

Usually a pdf is derived from a combination of a priori knowledge that a specialist
has about a parameter: “in a braided-streams environment, 1 expect permeability to be
high,” and actual data from the area of interest. Examples from Capen (1976) or Rose
(2001) have shown how difficult it could be to provide a realistic measure of uncertain-
ty, and we will see later that this is a difficult issue in the application of statistical
approaches to natural phenomena. The statistical formalism, as such, is perfectly cor-

RANDOM VARIABLES

A random variable takes certain values with certain probabilities.

Example: Z = sum of two dice

HISTOGRAM

SEG/EAGE DISC 2003
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RANDOM VARIABLES

T Probability
1

Cumulative density

function (cdf) F(x)=P(X< x)

1 Frequency

Probability density
function (pdf)

L

THE PDF, BASIC INPUT TO STATISTICAL
APPROACHES

f(x)=F'(x)

SEG/EAGE DISC 2003

DETERMINISTIC: a single value | | PROBABILISTIC: a range of values

Histogram

R e PDF

x 12 13 T 12
Porosity Porosity

The probability distribution must be a realistic
representation of what is known and unknown.

SEG/EAGE DISC 2003 P. Delfiner 1-14
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rect, once all the inputs have been quantified. But, if things are not done carefully and
the assumptions are not right, the “garbage in, garbage out” law will apply.

1.4.2 Mean, variance, standard deviation, and support effect

Fig. 1-15 gives basic definitions of mean and variance. For the sake of simplicity,
we do not make a distinction in the notations between the population mean and the
sample mean, or between the population variance and the sample variance. Fig. 1-16
gives an example of how variance can be calculated. A number of points are worth dis-
cussing.

* The mean

The mean of the sum is equal to the sum of the means. This means that if the his-
togram of a large number of values picked on a map is calculated, the mean of this his-
togram will be independent of the block size on which it is calculated (Figs. 1-17 and
1-18). It does not matter whether the values have been averaged over a certain block
size before the histogram was calculated.

* The variance

On the other hand, the variance of the sum is not equal to the sum of the variances.
The formulas show that if a large number of uncorrelated variables are averaged, the
variance of the average is inversely proportional to the number of variables that are

MEAN AND VARIANCE

m=EX)= Y xP =" x f(x)dx

=N

o0

o2 =Var(X)= E{[X = E(.-\’)]?'} :Z [xi —EX) B = '[ (x—m)* f(x)dx

i=1,N -

Properties
E(X+Y) = E(X) + E(Y)
E(aX+b)=aE(X)+b
Var(aX + b) = a2 Var(X)
E(X.Y) = E(X).E(Y) if Xand Y are uncorrelated
Var(X+Y) = Var(X) + Var(Y) if Xand Y are uncorrelated

SEG/EAGE DISC 2003
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AN EXAMPLE OF VARIANCE CALCULATION

squared squared X

B1 729
324 0
1 361
196 16
25 169

Does not change if a
constant is added to
all data.

If all data are
multiplied by k the
variance is multiplied
by k2.

o?=Var(X) = 535 - 18% = 211

SEG/EAGE DISC 2003 P. Delfiner 1-16

THE IMPACT OF AVERAGING (1)
THE DATA
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THE IMPACT OF AVERAGING (2)
HISTOGRAMS

| Scale| Count | Minimum | Maximum | Mean |
[27x27] 100 | 1355% | 4073% | 2442% |
| 9x9 | 900 | 943% | 5347% | 2442% |
| 3x3 | 8100 | 612% | 7558% | 24.42% |
[ 1x1 | 72000 | _480% | 9887%

averaged (Fig. 1-19). In petroleum applications, we will see that the phenomenon is
somewhat attenuated. I[ porosity values within a volume are averaged, the variance of
the averaged values will decrease, but not as fast as given by the equation of Fig. 1-19,
because the values are usually correlated in space. This is what happens with the exam-
ples of Figs. 1-17 and 1-18: Spatial correlation between neighboring porosity values
implies that the compensation effect from one to another is not as extreme as in the sit-
uation where data are completely uncorrelated (Fig. 1-19). This is what geostatisticians
call the “support effect.”

Because of the support effect, it is meaningless to talk about “the variance of
porosity” over a given reservoir (while it is correct to talk about the mean of porosity, at
least if there is no systematic trend). The variance of porosity values is support-related,
in the sense that the variance of plug values ol porosity will usually be larger than the
variance of values derived from logs, because the latter are averaged over a larger vol-
ume than the former. Fig. 1-20, from Kelkar (2000), shows a model of how porosity
and its variance vary as a function of the averaging scale.

This also applies to an even larger scale. It would be completely meaningless to
use the histogram of plug porosities to derive the variance associated with field-aver-
aged porosity values! We will see later that, thanks to their use of the spatial covariance
or variogram, geostatisticians can theoretically predict how variance changes as the
averaging volume increases.

Distinguished Instructor Short Course = 1-15
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THE IMPACT OF AVERAGING (3) VARIANCE
DECREASES AS AVERAGING AREA INCREASES

:} t oo o’
. If Var \Mean )= I"n'[ — ) X, |=— ) Var(X,)=-
uncorrelated e )= N \ N .;Z\ ‘) N? ‘; i) N

Porosity Standard Deviation
If uncorrelated

=

Standard Deviation

i

Averaging Area

Adapted from P. Delfiner and Froulon 1-19

SPREAD AND VARIANCE OF POROSITY AS A
FUNCTION OF AVERAGING VOLUME (KELKAR, 2000)

CONFIDENCE
INTERVAL

POROSITY.%

T
20

AVERAGING AREA

SEGIEAGE DISC 2003
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1.4.3 Measures of central tendency and quantiles
* Measures of central tendency

There is often confusion between various measures of central tendency. Fig. 1-21 clari-
fies the definitions, using the asymmetrical lognormal distribution (see Fig. 1-27 for the
definition of a lognormal distribution). Usually, for right-skewed distributions such as
the lognormal, the mode is smaller than the median, which is smaller than the mean.
This can be understood as follows: Incorporation of a new, high value will have no
effect on the mode, will count for one in affecting the median, but will have a signifi-
cant impact on the mean. Fig. 1-22 uses a simple example to illustrate how to calculate
various measures of central tendency. Fig. 1-23 is a reminder of a crucial property of the
mean, which will justify a lot of the geostatistical developments to be discussed later on.
If a pdf is known, and if we need just one value to characterize it in such a way that the
average error made is minimal, the best value to use is the mean.

* Quantiles

In situations where a probabilistic approach has been used, SPE-WPC guidelines for
reporting reserves (SPE/WPC, 1997) are based on quantiles. The quantile definition is
best understood by using the cumulative density function (Fig. 1-24). Rather than
directly associating proven, probable, or possible reserves figures to quantiles, the prac-
tice in the industry is often to define “P” values. This amounts to taking a positive view
of things, basing the definitions on the probability of having “more than” (P90 means

MEASURES OF CENTRAL TENDENCY

Value that has the highest probability to occur

MEAN=100

Sl SN N NS SN NERNEANEEEAENREREAN

0.00 | MEDIAN=T1 22500

There are as many chances of drawing a value above
as there are of drawing a value below

SEG/EAGE DISC 2003
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EXERCISE: CENTRAL TENDENCY COMPARISON

DATA MEDIAN

10, 20, 30, 40, 50 30
10, 20, 30, 40, 50, 50 35
1,3,3,3,7, 23,100 X]
112,33 2
2, 2,40, 4000 21

SEGEAGE INSC 2000 P. Deifiner

A CRUCIAL PROPERTY OF THE MEAN

Mean[(Z-a)?] is minimum for a=m

BEGEAGE DiSC 2003
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QUANTILES

Probability

1 Cumulative density function

MIN Ao

a, quantiic IR

SEG/EAGE DISC 2003

DEFINITIONS USED WHEN REPORTING RESERVES

Qil Reserves Distribution

PROVEN+PROBABLE+POSSIBLE (P10=Q90

-+ __._..__._.__..__.71" E
PROVEN+PROBABLE (P50=0Q50 |

Cumulative probability

PROVEN (P90=Q10
N L 1 i

- o
30 40 50
Reserves (MMBOE)

SEG/EAGE DISC 2003 P. Delfiner 1-25
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that there is 90% chance to find more) rather than “less than.” SPE/WPC recommends
taking the 10% quantile as the value of proven reserves in situations in which a proba-
bilistic approach has been used (Fig. 1-25).

A result that will prove useful later is that, il a random variable is translormed into
another random variable through a continuously decreasing or increasing transforma-
tion, then quantiles are also transformed into quantiles.

[.4.4 Two important distributions
» Normal distribution and confidence interval

The normal (or Gaussian) distribution and its mathematical expression are given in Fig.
1-26. The normal distribution is often used to represent the pdf of porosity or of ran-
dom errors. We will see below, when discussing the central-limit theorem, why the nor-
mal distribution is so important in statistics. It is a symmetrical distribution (mean =
mode = median), such that 95% of the values fall between m — 26 and m + 20.

If we make a random draw from a Gaussian pdl, we have 95% confidence that this
draw falls within this interval, also called the confidence interval. On the basis of Fig.
1-23, we can also say that the best estimate of a value from a normal distribution is the
mean, and that the confidence interval around this estimate is plus or minus twice the
standard deviation. When discussing the quantification of structural uncertainties (Sec-
tion 6.2), we will see that this definition of confidence interval will help us define the nor-
mal distribution associated by an interpreter to his/her interpretation at a given location.

NORMAL (OR GAUSSIAN) DISTRIBUTION (m=25, ¢ =5)

CONFIDENCE INTERVAL:
95% of values fall between m~-2c and n

-

] (x—m)"
(x) = —==exp| ————— |also called N(m,c
/() o2n : 26° ( )

SEQ/EAGE DIST 2003
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. l_ugnurmal distribution

The lognormal distribution is closely related to the normal distribution. It is often used
to model permeability. It is important to understand the relationships between the mean
and standard deviation of a lognormal distribution and the mean and variance of its
associated normal distribution. We saw earlier that all quantiles must be preserved
through the exponential transformation. This means that the median of the lognormal
distribution must be transformed into the median of the normal distribution, which is
also its mean. On the other hand, the mean of the lognormal distribution is related to
the mean of the normal distribution through a relationship that incorporates the vari-
ance of the normal distribution (Fig. 1-27). This implies that any mean-preserving sta-
tistical operation in the normal distribution will usually NOT be transformed into a
mean-preserving statistical operation in the lognormal domain. A simple consequence
of this, often ignored in practice, is that an unbiased regression model calculated
between the logarithm of permeability and porosity will not simply translate into an
unbiased relationship for predicting permeability itself.

1.4.5 Two important theorems
* Generalizing the confidence interval

The inequality given in Fig. 1-28 generalizes the notion of the confidence interval intro-
duced above for the normal distribution. It shows that the knowledge of the mean and
standard deviation of any continuous and unimodal distribution may result in a 95%

THE LOGNORMAL DISTRIBUTION

Distribution of X = eY when Y is normal

mean

variance

l (-’.Jn‘—m) -
2 (8]

- | 1
J{x)=—F—+—¢

ov2 x

>
L0 o

Mean M = e" 2
Median =e™

The prototypical right-skewed distribution:
Qil-in-Place, Reserves....

SEG/EAGE DISC 2003 P. Delfiner
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confidence interval for this variable. As stressed by Chilés and Delfiner (1999), the
penalty for not knowing the distribution is an interval of width 66 instead of 40. Later,
this will help us better interpret kriging, which consists of calculating mean and stan-
dard deviation maps for a spatial parameter.

* Central limit theorem

The central limit theorem (Fig. 1-29) must also be mentioned at this stage. It justifies
the importance of the normal and lognormal distributions, respectively, as limits of
sums and products of random variables. Because many of the geostatistical conditional
simulations discussed later are obtained through the sum of a number of independent
random variables, the result of these conditional simulations will tend to be distributed
normally.

1.5 Basics of Bivariate Statistics

During this course, we will see the importance of using bivariate relationships, usually
between a seismic attribute and a parameter measured at wells. Such relationships will
be crucial when we are predicting the parameter of interest away from the wells. Thus,
some time needs to be spent discussing bivariate relationships.

1.5.1 Covariance and correlation coefficient

The basic tool to measure the relationship between two random variables is the covari-

GENERAL INEQUALITY FOR A CONTINUOUS AND
UNIMODAL DISTRIBUTION (CHILES AND DELFINER, 1999)

P[(m -30)s X =s(m+3 0)]2 0.95

The interval:

e e [m-30, m+30]

constitutes a 95% confidence interval for X

SEG/EAGE DISC 2003

1-22 « Society of Exploration Geophysicists / European Association of Geoscientists & Engineers



Olivier Dubrule

ance (Fig. 1-30). The development of the variance of the sum of two random variables
as a function of the covariance is a very important relationship used to derive the krig-
ing equations. To remove the effect of the variance of the two variables, for instance in
situations where the two variances are of dilferent orders of magnitude, the correlation
coefficient is preferred, because it normalizes the covariance by the two variances.

The correlation coefficient measures the degree of linear relationships between two
parameters, X and Y. In practice, it is calculated using the formula given in Fig. 1-31.
Fig. 1-32 gives an example of a correlation coefficient between core-porosity and porosi-
ty derived from logs. Increases in the absolute value of the correlation coefficient corre-
spond to convergence of the cluster toward a line (Fig. 1-33). Nevertheless, spurious
effects can be caused when the data cluster is strongly affected by outliers, that is, by
pairs of points that are clearly inhomogeneous with the rest of the cluster (Fig. 1-34).

1.5.2 Fitting a regression line

The regression line of Y against X is the line corresponding to the linear transformation
of X that best predicts Y. In order to obtain it, we minimize the sum of squared differ-
ences between actual and predicted values. The value of the slope is a function of the
correlation coefficient and the two standard deviations, whereas the intercept is simply
calculated by forcing the line to go through the point associated with the mean of the
two variables (Fig. 1-35).

CENTRAL LIMIT THEOREM FOR SUM AND PRODUCT

N independent random variables X, of means m, & variances ¢

Define:

- X/Z converges towards a normal distribution N(0,1)

SEG/EAGE DISC 2003
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COVARIANCE

Cov(X,Y)=E {[3\ - E(x)] [Y—E (})]}

Fundamental properties

Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y) Ef a?tatsrfg
- kriging

Cov(X,Y) =0 if X and Y are uncorrelated maths!

SEG/EAGE DISC 2001

CORRELATION COEFFICIENT DEFINITION

Cov (X, Y) O xy

f JVar (X)+[Var(Y) - oxoy

P

follows from a general mathematical inequality (Schwarz)
does not depend on the means nor on the scalesof Xand Y
no linear relationship between X and Y

perfect positive linear relationship between X and Y

perfect negative linear relationship between X and Y

SEGEAGE DISC 2003 P. Delfiner
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CORRELATION EXAMPLES

PHI core
Vapparent

|
zasoL

W00 3450 @500 2SS0 2600  26S0 ITOO  ZTS0 2800 2040

Vstack

SEG/EAGE DISC 2003 P. Delfiner  1-32

As p increases

= the slope of the regression line
increases

= the dispersion around the
regression line decreases

p=-07

SEG/EAGE DISC 2003 P. Delfiner
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Sometimes, people have difficulty understanding why there are two different
regression lines, one of Y against X and one of X against Y (Fig. 1-36). There are two
lines because the two lines are calculated using different criteria, respectively that of the
minimization of vertical and horizontal differences. As a result, the regression of X
against Y cannot be obtained simply by inverting the regression equation of Y against X.
This is explained on Fig. 1-37, where a third line is figured, that of the Reduced Major
Axis (RMA). This last line characterizes the cluster of points in a unique way. Because
the correlation coefficient is not present in the equation, there is perfect symmetry
whether we write Y as a function of X or X as a function of Y. However, if the RMA is
used as an equation for predicting Y from X or X from Y, it will lead to a poorer predic-
tion in terms of the sum of squared differences between predicted and actual values.

1.6 The Multivariate Normal Distribution

The definition of the univariate normal distribution easily generalizes to that of multi-
variate normal distribution, although the mathematical formalism may appear more
intimidating (Fig. 1-38). Why do we want to mention this in a course that should limit
the theoretical aspects? Because, il we look carefully at the term in the exponential, we
see that it is simply a quadratic form of the vector z where the inverse of the variance-
covariance matrix is present. Later in the course, this formula will help us understand
why energy-based and stochastic modeling approaches are closely related.

CORRELATION INTERPRETATION
(HIRSCHE ET AL., 1998)

é ALWAYS LOOK AT THE SCATTERPLOT!

Reservoir property

]
Seismic attribute

Apparent correlation of 0.93
caused by two outliers
when the majority of the
data are uncorrelated.

Correlation coefficient
reduced from 0.93 to 0.42 due
to two outliers.

SEG/EAGE DISC 2003
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CONSTRUCTING THE REGRESSION LINE OF Y ON X

Find coefficients a and b minimizing the sum of squared errors

| Line goes through center
of gravity of the cloud

Correlation coefficient Standard deviationsof X and Y

SEGEAGE DISC 2003

PREDICT Y FROM X OR X FROM Y?

Y =1.0235 X - 0.0017 Y = 0.824 X + 0.0161
R’ =0.8433 R* = 0.8433

Why this difference ?

SEG/EAGE D 03 P. Dalfiner
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BIVARIATE NORMAL DISTRIBUTION

Rough sketch of the scatterplot

Y Y =my +—X (X-my) (Reduced Major Axis)
(‘Ix

My+p l:—" (X-my) (Regression of Y against X)
Ox

My +p %(Y‘Iﬂy) (Regression of X against Y)

SEG/EAGE DISC 2003 P. Delfiner 1-37

MULTIVARIATE NORMAL DISTRIBUTION

Z is the vector

mis the expectation vector

> is the variance-covariance matrix

SEG/EAGE DISC 2003
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1.7 Trend Surface Analysis

Trend surface analysis follows the same formalism as does linear regression (1-39). The
goal is to predict one variable, whether it is defined in one or two dimensions, using a
linear combination of coordinates x and possibly x* in one dimension, or x, y, x*, y*in
two dimensions. The approach is that of least squares. Coefficients are calculated so
that they minimize the average squared error. This is a good approach for fitting a linear
or polynomial trend to spatial data. However, it is not a good interpolation technique,
because it does not honor the data points, and because it assumes that the residuals are
not correlated with each other in space (Fig. 1-40).

We will see in Chapter 2 that the model of geostatistics also assumes that the vari-
able of interest can be decomposed as the sum of a polynomial trend and a residual.
However, contrary to the trend surface analysis model, geostatistics assumes that the
residual is also correlated in space.

TREND SURFACE ANALYSIS

Model

| Value at Datum Point = Value of Deterministic Function + Random Error

Examples

Linear Trend Z(x,y)=a0 t+ta;X+a, y+¢
Quadratic Trend p{)"8Y) - I W5 G- VRS- Y 1 Vor a, x2 4 a; yz e

Method

Fit the coefficients of the trend function by least squares
and use this trend to predict Z at unknown locations

SEG/EAGE DISC 2003 P. Dalfiner 1-39
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TREND SURFACE ANALYSIS:
TOO SIMPLISTIC FOR MAPPING

NOT ADAPTED !

parabolic fit

* Does not fit the control points
* Errors must be correlated

sl GEOSTATISTICS
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2 The Covariance and the Variogram

2.1 Stationarity Versus Nonstationarity

Nature often behaves in a very complicated way, and geology is no exception. In petro-
leum applications, where we are dealing with reservoirs at depths of several kilometers
that are recognized by only a few wells and some seismic, we need to simplify the
description of these reservoirs by means of models. A model is a simplification of nature
and should never be identified with the natural phenomenon it seeks to describe.
However, a model has the advantage of reducing our understanding of the reservoir to
the estimation of a few parameters. The best approach is to explain the concepts using a
ID example.

Fig. 2-1 shows, on the left, a variable that varies around a constant mean. At any
location, the behavior of the variable, although complicated, can be qualified as “homo-
geneously heterogeneous.” On the average, it behaves the same everywhere, in the
sense that we would make the same kind of error at any location if we were to predict
the value of the variable from the value of the horizontal line. This will be discussed
later as the stationarity hypothesis.

The picture on the right of Fig. 2-1 shows a different behavior. There is a systemat-
ic trend in the data that can be fitted using a parabolic model. The variable can be
decomposed between a parabolic trend and a random pattern that varies around this
trend. Thus, it can be modeled as the sum of a smooth polynomial trend plus a “sta-

STATIONARITY

A spatial phenomenon can be modeled using 2 terms:
= a regional trend
» aresidual

No trend: a stationary variable A trend: a nonstationary variable

AGE DIBC 2002 P. Dolfiner/X. Froulon 2-1
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The Covariance and the Variogram

tionary” residual (to be better defined later). The model remains simple, in spite of the
fact that it is a bit more complicated than that of stationarity.

Fig. 2-2 shows variables whose behavior is harder to model. The curve on the left
shows more scatter on the right side than on the left side. Similarly, the variable on the
right of Fig. 2-2 cannot be modeled using a parabolic trend plus a stationary phenome-
non. These two variables cannot be approached using the “trend + stationary residual”
model.

Fig. 2-3 generalizes the discussion from 1D to 2D. If we were to guess which color
is present at any given pixel in the left square, we would probably give the same proba-
bility to each color: The statistical properties of the picture are independent of location,
thus the phenomenon is stationary. On the other hand, there is clearly a systematic
trend in the right picture (velocity data), which can be approached using the “polyno-
mial trend + stationary residual” model. Fig. 2-4 shows two other examples of station-
ary and nonstationary surfaces. The surface on the right would probably lend itself to a
“linear trend + stationary residual” model, which constitutes the geostatistical model.

Obviously. reducing a geological variable to such a model is a significant over-
simplification. The beauty of the approach is that it will allow us to characterize the
trend and residual using a few model parameters that we will try to estimate using the
few data available. This is what we will study next. Before moving to the next para-
graph, note that the choice of a model is always scale-dependent! In Fig. 2-5, if only the
blue zone is of interest, a stationary model is perfectly suitable. Similarly, in the yellow
area, a linear-trend model plus a residual will be satisfactory. In most applications, the

STATIONARITY

The residual should have a constant variance

A variable with A variable with
* no trend and * a trend and

+ a residual with varying dispersion + a residual with varying dispersion

SEC/EAGE DISC 2003 P. Delfiner/X. Froulon 2-2
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STATIONARITY
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EXAMPLE OF STATIONARY AND NONSTATIONARY
SURFACES

STATIONARY

NONSTATIONARY
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The Covariance and the Variogram

BEWARE: STATIONARITY IS A MATTER OF SCALE!!
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zone of interest — the well log here — is subdivided into subzones that are associated
with different depositional environments (in Fig. 2-5 these zones are separated by verti-
cal lines). Then, a different geostatistical model may be fitted to the different subzones.
We will come back to this example later.

Fig. 2-6 summarizes the main mathematical assumption behind geostatistics. If x
represents a point in 1D [x reduced to one coordinate (x)], 2D [x represented by two
coordinates (x,y)] , or 3D [x represented by three coordinates (x,y,z)], the geological
variable Z(x) will be modeled as a random function — simply a mathematical object
that is a random variable at every location x. The geostatistical model will consist of
modeling Z(x) as the sum of a polynomial trend m(x) and a residual random function
R(x). The trend m(x) is usually constant, linear, or parabolic in the coordinates of x. If
it is constant, we are simply in the context of a stationary model of mean equal to m. If
m(x) is linear or parabolic, its expression is the same as that of trend surface analysis
(Fig. 1-39). However, the difference with trend-surface analysis is that the residual of
trend-surface analysis is uncorrelated in space, whereas the residual R(x) is correlated in
space. Let us now discuss what this means.

2.2 The Stationary Model

How can we calculate statistics from just one outcome of a random function? Indeed,
there is little use in using a random-function model if we only are dealing with one real-
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THE BASIC ASSUMPTION OF GEOSTATISTICS

A geological variable z(x) is composed of a systematic
trend and a random component.

z(x) is the realization of a random function Z(x)
equal to the sum of a trend m(x) and of a random
stationary residual R(x) of mean 0:

Z(x) = R(x) + m(x)

But how can we calculate statistics from just
| one outcome?

BEG/EAGE DISC 2003

ization z(x) of this function. It is the same as having to predict the number of balls of
each color in a bag on the basis of drawing only one ball! However, the stationarity
assumption will allow us to infer statistical properties of the random function Z(x) on
the basis of this single realization z(x). The first assumption is that of a constant mean.
This will imply that this mean can be inferred by averaging the measured values of z(x)
at different locations. The second assumption is that the variance of Z(x) is also inde-
pendent of location. This means that we are dealing with a parameter that is behaving
somewhat as that of the left side of Fig. 2-3 and oscillating around a constant mean
with an amplitude that is statistically the same everywhere.

This last property generalizes into the covariance property in the stationary situa-
tion — covariance between measurements at two locations depends only on the vector
between these two locations. This means, as shown in Fig. 2-7, that we will be able to
infer this covariance by combining pairs of points taken at different locations. Thus,
thanks to the stationarity assumption, we are able to get around the limitation of having
only one realization by calculating statistics that combine values at different locations.
I'his would not be possible if mean and variance were dependent on location. The
covariance C(h) measures the spatial correlation.

In geostatistical practice, it is preferable to use the variogram tool rather than the
covariance. The variogram is simply (hall of) the variance of the increments (Fig. 2-8).
The variogram is often preferred to the covariance, because it can be calculated directly
from the data without needing to calculate the mean. The variogram is also more gener-
al than the covariance, because it only requires the stationarity of the increments of
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THE STATIONARITY ASSUMPTION

Mean and variance are independent
of location:

E [Z (x)]= E [Z (x + h)]= m

Var[Z (x)]= Vi ar[Z (x 4 h)]= o2

Covariance between values at two
locations only depends on distance:

Cov[z(x).Z(x + h) |- C(h)

SEG/EAGE DISC 2003

A MORE GENERAL ASSUMPTION THAN ORDER 2
STATIONARITY: THE STATIONARITY OF INCREMENTS

Increments are stationary

E[z(x+n)-z(x)]=0

Variogram

SEG/EAGE DISC 2003
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Z(x). We will see later that variables that have an unbounded variogram are not station-
ary, whereas their increments are stationary. This is the case for the power-law vari-
ogram model, which will be discussed later with relation to fractals. In the case of a sta-
tionary variable, the variogram flattens out at a certain distance, and we have a simple
relationship between variogram and covariance (Fig. 2-9). In most cases, because
covariance and variogram are even functions of distance, they are only plotted for posi-
tive distances. Fig. 2-9, as a reminder, also includes the relationship between covariance
and autocorrelation function.

2.3 Calculation of a Variogram

Fig. 2-10 is an example showing how to calculate a variogram in a very simplistic 1D
case. The approach consists of classing pairs of points by distances and then calculating
the mean squared difference between pairs corresponding to each distance. When data
are distributed in two dimensions, the isotropic (independent of direction) variogram is
calculated in a similar way (Fig. 2-11). For each possible pair of data, the difference
between values measured at the two locations can be plotted as a function of distance.
This constitutes the “variogram cloud,” which is a useful quality-check tool that shows
which pairs and hence which data points seem to be outliers of the distribution.
Differences corresponding to pairs associated with different bins of distances are then
averaged. Fig. 2-12 is an example of filtered migration velocity data from West Africa,
The isotropic variogram corresponding to these data is shown in Fig. 2-13 (consider

RELATIONSHIP BETWEEN VARIOGRAM AND
COVARIANCE IN THE STATIONARY CASE

Variogram

ore——-

Autocorrelation function: p(h)= C(h)/C(0)

SEG/EAGE DISC 2003
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SIMPLE EXAMPLE OF 1D VARIOGRAM
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HOW TO CALCULATE A 2D ISOTROPIC VARIOGRAM
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VELOCITY DATA EXAMPLE (1)
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VELOCITY DATA EXAMPLE (2)
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The Covariance and the Variogram

only the broken line at this stage). It shows, as expected, a slow increase as a function
of distance. Because these data have been filtered, the variogram behavior at the origin
is smooth, indicating that random noise has been removed.

Note that, in the above calculations, directions associated with each pair of points
are not taken into account. In many cases variability changes with direction, which jus-
tifies the calculation of a variogram in different directions, as illustrated in Fig. 2-14.
The difference with the isotropic variogram is that pairs are this time also binned
according to their direction. In the velocity-data example, as in many 2D cases, pairs are
classed according to four main directions: E-W, SW-NE, N-S, and SE-NW. The four vari-
ograms (Fig. 2-15) look quite similar. When this is the case, it is justified, as was done
in Fig. 2-13, to merge all the directions to get a more statistically reliable experimental
variogram. It is also possible to construct the 2D variogram map, as shown in Fig. 2-15.
Each point on this map provides the value of the variogram corresponding to that dis-
tance and direction calculated in relation to the center of the variogram map. It is
remarkably isotropic in our example.

Once we have a reliable experimental variogram to work with, we fit a theoretical
model to it. This constitutes the next step of our modeling approach. Alter choosing the
geostatistical model (here a stationary model), we evaluate the parameters of this
model. Fig. 2-16 summarizes the important features of a variogram, at least in the sta-
tionary case: the nugget effect (discontinuity at the origin), the range (distance at which
it becomes flat), and the sill (value of the plateau). Fig. 2-13 (smooth line) shows the
result of the model-fitting exercise on our experimental variogram. The fitted model is

CALCULATING 2D DIRECTIONAL VARIOGRAMS

Direction 1 |

Direction 2
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VELOCITY DATA EXAMPLE (3)

Variograms in four main directions

SEG/EAGE DISC 2003

EXPERIMENTAL VARIOGRAM AND ITS FITTED
MATHEMATICAL MODEL
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an exponential variogram with no nugget effect, a practical range of 6000 m, and a sill
of 6000 (m/s)*. We will explain later what an exponential variogram model is (Fig. 2-
23).

Fig. 2-17 is a simple example taken from Table 2.1 of Hohn (1988), which we will
use a lew times during this course. The variable is the thickness of Paleocene sedimen-
tary rocks in Libya. Here we will assume it is a depth counted down from a reference
surface. A spacing of one unit corresponds to about 0.3 mile. The figure shows the data
location and the histogram. Fig. 2-18 shows the experimental variograms. Because data
are scarce and irregularly sampled, a tolerance equal to half of the variogram lag is used
when deciding to which distance class a pair of points belongs. It is thus a good idea to
measure the impact of using one lag value rather than the other. Although there is some
variation from one curve to the other, all plots show similar characteristics. This is the
same with the variograms calculated in different directions. The isotropic variogram
increases from zero and levels off at a distance of around 8 units. We have fitted it with
a spherical model of range 8 and sill 320,000 (the spherical variogram model will be
defined in Fig. 2-23). There is no nugget effect. We will see below the implication of
this choice.

Some of the following figures show various examples of experimental variogram
models in 2D. Fig. 2-19, from a field in West Alfrica, shows a variogram calculated along
a slice of the 3D earth model stratigraphic grid. It has been fitted using a slightly
anisotropic model: The NE-SW direction has the smallest range, about .09, whereas the
NW-SE direction has the largest range, about .12 (the side of the square that constitutes

RAW DATA STATISTICS AND LOCATION (HOHN, 1988)

2000. 2500 8000 2500

Data Location Histogram

SEQ/EAGE DISC 2003
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ISOTROPIC VARIOGRAM AND MODEL (HOHN DATA)

- Isotropic model displayed with
varuugrams for different lags
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The Covariance and the Variogram

the area of interest is normalized to a distance ol one). We have also displayed the verti-
cal variogram calculated from the well data and the model that was fitted to it

The anisotropy is stronger on another seismic example (Fig. 2-20). The variogram
is that of seismic amplitudes along a horizontal slice of a 3D seismic block. There is
clearly more continuity in the red (NW-SE) direction than in the blue (NE-SW) direc-
tion, which translates into a more gradually increasing red variogram than the blue one
in the individual variogram curves. Note that the four directional variograms seem to
have a similar nugget effect, which is associated, as we will see below, with the seismic
noise. Again, the anisotropy appears very clearly on the variogram map.

Fig. 2-21 is another example, this time of two seismic maps corresponding to trav-
eltimes measured for different horizons of the same field, and, on the right, their corre-
sponding variogram maps. Note here that the anisotropy is very strong, as expected
from the maps. Also, for both maps, the variogram has a finite range in one direction
(SE-NW and E-W, respectively), but does not level off in the perpendicular direction.
Logically, the direction of the finite range is the strike direction, whereas the variogram
keeps increasing along the dip direction.

What if we are dealing with 3D data? In this situation, the experimental variogram
calculation is usually split into the calculations of one 2D and one 1D variogram (Fig.
2-22). It is especially important that the 2D variogram is calculated in the (i j,k) rather
than in the (x,y,2) space, to avoid combining pairs of points that are not stratigraphical-
ly related. The chosen 1D direction is usually the vertical direction. Obviously, the verti-
cal variogram shows variations over a much smaller distance than do horizontal vari-

VARIOGRAMS OF SEISMIC AMPLITUDES
(COLEOU, 2002b)

Variogram
maps

Variogram
curves
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VARIOGRAM MAP TO VISUALISE 2D VARIOGRAM
(SZERBIAK ET AL., 2001)
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3D EXPERIMENTAL VARIOGRAMS (PAWAR ET AL, 2001)
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The Covariance and the Variogram

ograms, because geology changes more rapidly perpendicular to stratigraphy than it
does along stratigraphy.

Note that Pawar et al. (2001) and other authors use the term “semi-variogram,”
because of the % factor in front of the variance of the increments. We prefer to stick to
the original terminology proposed by Matheron.

2.4 Stationary Variogram Models

Figs. 2-13 and 2-18 show the variogram models fitted to the isotropic velocity vari-
ogram and to the variogram obtained from the Hohn data set. It was mentioned that an
exponential and a spherical model were used. Fig. 2-23 shows the four main types of
stationary models currently used in geostatistics. Not every function can be used as a
variogram or covariance model. This is because variograms and covariances are used to
calculate variances, which must always be positive. Covariances must belong to the
class of positive definite functions, whereas the condition is somewhat more relaxed for
variograms. Chiles and Delfiner (1999) show that to check that a function is a covari-
ance, it suffices to calculate its Fourier transform and verify that it is positive. This
Fourier transform is nothing other than its spectral density and will be discussed below
in relation to the Wiener-Khinchin relationship.

The exponential and Gaussian variograms are bounded. but they only asymptoti-
cally reach the sill C. The practical range of the Gaussian and exponential variograms,
that is, the distance at which they reach 95% of their sill, are a¥3 and 3a, respectively:

THE MOST FREQUENTLY USED
CONTINUOUS VARIOGRAM MODELS
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As the range of the variogram becomes smaller and smaller, the covariance tends toward
the “pure nugget effect” or “white noise” covariance. The spherical and the exponential
models both have a linear behavior at the origin. However, the exponential model, for
the same practical range, “climbs” faster than the spherical, which means that two mea-
surements taken close to each other tend to differ more in the exponential than in the
Gaussian case. The cubic and Gaussian models are parabolic at the origin. However, the
Gaussian is much smoother at the origin than is the cubic, which means that, for the
same practical range, a Gaussian variogram corresponds to much smoother variations of
Z(x). Fig. 2-24 illustrates what has just been discussed: the higher (respectively lower)
the slope of the variogram at the origin, the more (respectively less) continuous the cor-
responding variable.

Because all variograms in Fig. 2-23 have a sill, they all correspond to a stationary
model. But beware, because, as mentioned before, stationarity is a matter of scale: A
spherical variogram of range a will correspond to a nonstationary variable for practical
purposes, if this variable is studied over an area of interest of size a/2! The covariance
functions associated with the four variogram models can be derived using the equation
of Fig. 2-9.

Fig. 2-25 shows more exotic but important models, displayed with the same spher-
ical model as in Fig. 2-23. The “De Wijs” variogram has historical interest because it
proved useful for modeling the spatial distribution of grades in early mining applica-
tions of geostatistics. It was introduced by Matheron (1962) to model the fact that, in
some cases, the variance of grades within mining blocks would plot linearly on a log-
log scale as a function of the block size. We will also see later that this model is closely
related to fractals because, if the log of a parameter follows a De Wijs model, then the
variogram of the parameter itsell follows a power-law model (Agterberg, 1994).
Matheron (1987) gives another interesting discussion of the relationship between the
De Wijs model and fractals. The “hole-effect” model is characteristic of variables show-
ing a strong periodicity, which is indicated by the decrease in the variogram around dis-
tance 800. This means that two measurements 800 units apart are more similar than
two measurements 400 units apart. 800 is obviously the period of the phenomenon.
However, we prefer not to dwell too much on this model, one that beginners may tend
to use too often, because it can lead to confusion between simple statistical fluctuations
of the experimental variogram and actual periodicity. The Cauchy model is not often
used, except in the context of gravity or magnetic data, while the power variogram is
related with fractals. Both Cauchy and power models will be discussed below.

An experimental variogram can be modeled using a sum of elementary models —
see, for instance, the vertical variogram of Pawar et al. (Fig. 2-22). This will prove
important later in this course, because the underlying concept is that the variable is the
sum of a number of components of various scales, each characterized by one of the ele-
mentary models. Factorial kriging will show interesting applications of this model for
filtering purposes.

2.5 Examples ol Anisotropic Experimental Models

We have already seen examples of anisotropic variograms. Often, horizontal (by hori-
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VARIOGRAM BEHAVIOUR AT THE ORIGIN
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zontal we mean parallel to stratigraphy, that is, in the (i,j) space) variograms are
anisotropic, which can be easily explained. For structural parameters, such as time or
depth to a horizon, the variogram will differ along the strike and dip direction. For
parameters such as porosity or velocity, which are heavily controlled by sedimentology,
features such as the paleocoast or the channel deposition direction will obviously have
an impact on the variogram. In almost all applications, horizontal variations are mod-
eled using a “geometrical anisotropy” model — the range of the variogram changes
according to direction, but the sill is the same. This can be modeled using a simple rota-
tion of the coordinates. The three examples of Figs. 2-19 to 2-21 show geometrically
anisotropic variograms, with that of Fig. 2-19 showing the anisotropic model together
with the experimental curve,

Things may be more difficult in 3D, when we deal with anisotropy between the
vertical direction and the direction parallel to stratigraphy (call it horizontal for simplic-
ity). Usually the vertical variogram is calculated over tens of meters, whereas the hori-
zontal variogram is calculated over kilometers. Also, there are more high-frequency
variations along the vertical than along the horizontal direction. Thus, the sill of the
vertical variogram may be different from that of the horizontal variogram (see the
example of Pawar et al. in Fig. 2-22). In this situation, the horizontal (whether isotropic
or not) and the vertical variogram can be separately fitted by a different model, but then
a merge between the two models must be performed to obtain a 3D model that will be
computable for any direction in 3D, including directions that are not strictly vertical or
horizontal. A zonal-anisotropy model is usually applied, in which the global 3D vari-
ogram is modeled as the sum of three different terms, the first term depending on the
three coordinates, the second one equal to the horizontal model, and the third one
equal to the vertical model. The use of the first term allows a smooth transition between
the vertical and the horizontal variogram. Pawar et al. (Fig. 2-22) separately fitted the
vertical and the horizontal (isotropic) model, but it is not clear how they derived the
3D variogram from these two models. Another possibility is that of modeling the
covariance as the product of two models, one depending only on horizontal coordi-
nates, the other depending only on vertical coordinates. This model was applied to the
variogram of Fig. 2-19. In some situations, however, a geometrical anisotropy will still
prove satisfactory for fitting a 3D experimental variogram. Exercise 1 at the end of this
book discusses such an example taken from Chu et al. (1994) and presented in Fig. 2-
26.

2.6 Unbounded Variogram Models and Their Relationship with Fractals

Fig. 2-25 shows two unbounded variogram models, the De Wijs and the power-law
models. Both are interesting because they have close relationships with fractals. It can
be demonstrated that, for a power-law model to be a valid variogram model, the expo-
nent of h must be smaller than two. Power-law variograms correspond to variables that
are not stationary but that have stationary increments, Structural variables, such as time
or depth, often follow power-law models. Interestingly, some of the very first applica-
tions of geostatistics in the petroleum industry found power-law models.

The time maps associated with the variogram of Fig. 2-27 clearly appear nonsta-
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MODELING 3D EXPERIMENTAL POROSITY VARIOGRAMS
(CHU ET AL, 1994)
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tionary, but at the same time no simple trend can be defined. Fig. 2-28 also shows a rare
example of velocities following a power-law variogram. The high nugget effect is char-
acteristic of stacking-velocities variograms, which will be discussed later. In the reser-
voir engineering literature, Hewett (1986) was a strong promoter of fractal models in
the 1980s, and Perez and Chopra (1991) showed interesting examples of power-law
variograms obtained on horizontal and vertical well logs (Fig, 2-29).

In the power-law variogram, readers familiar with the theory of fractals will have recog-
nized the same expression of the variance of increments as that found in Mandelbrot (1982). A
power-law variogram, compared with a variogram with a sill, has the interesting property that it
is identical at all scales, hence the term “self-similar™ often is used to characterize fractals.
However, when defining fractals, Mandelbrot was thinking about phenomena that were new
kinds of mathematical objects and that were continuous but not differentiable (such as the coast
ol Britain or Norway). Since a power-law variogram corresponds to a phenomenon that is both
self-similar and fractal, confusion arose in the literature between self-similar and [ractal phe-
nomena. The geostatistical formalism, in which fractals appear as a subset of a wider class of
models, helps clarify this difference between self-similarity (a global behavior) and nondifferen-
tiability (a local behavior). For instance, if we take stationary variograms that have a linear
behavior at the origin (such as exponential or spherical models). we see that they are associated
with fractal models, which are not self-similar. In spite of this, the two concepts are often mixed
up in the literature.

The relationship between the power of the variogram and fractal dimension is
shown in Fig, 2-30. As the power of the variogram model tends toward zero, the fractal
dimension tends toward the dimension ol the space (1, 2, or 3) plus 1. This is another

EARLY EXAMPLES OF POWER-LAW VARIOGRAMS (2)

~

Theoretical model
High Nugget
Effect ¥ (h) = 2800+ 200. h

Stacking velocities at top of hydrocarbon
reservoir (Haas and Viallix, 1974)

Distinguished Instructor Short Course « 2-21



The Covariance and the Variogram

EARLY EXAMPLES OF POWER-LAW VARIOGRAMS (3)
(PEREZ AND CHOPRA, 1991)
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RELATIONS BETWEEN POWER-LAW VARIOGRAMS
AND FRACTALS (PEREZ AND CHOPRA, 1991)
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way of saying (as shown in Fig. 2-24) that the closer the power of the variogram is to
zero, the more random is the variable. A very noisy variable “hlls” more space than a
smooth one.

2.7 First Uses of the Variogram: Predicting the Support Effect

We saw earlier (Section 1.4.2) that, contrary to the mean, the variance is heavily depen-
dent on the averaging volume. For instance, plug porosities are expected to show more
scatter (or a higher variance) than are log-derived porosities, which results from a mea-
surement over a larger volume. Thanks to formulas developed for the mining industry
(Journel and Huijbregts, 1978), knowledge of the variogram on plug porosities and of
the averaging volume for log measurements can be used to predict the variance reduc-
tion on the log-derived porosity data, as compared with the plug data. Strangely
enough, this important result of geostatistics is almost never used in petroleum applica-
tions.

In a recent paper, Frykman and Deutsch (2002) address this issue using porosity
measurements from a well in a chalk reservoir of the Dan field in the North Sea (Figs.
2-31 and 2-32). Along this well, they calculate the standard deviation of plug porosities
and log-derived porosities. As expected, the standard deviation of log-derived porosities
is smaller than that of plug porosities because of the support effect. Based on the vari-
ogram of plug porosities and thanks to the theoretical relationships of Journel and
Huijbregts, they can predict how the variance of log-derived porosities will decrease as a

PREDICTING THE SUPPORT EFFECT (1)
(FRYKMAN AND DEUTSCH, 2002)

Histogram
of core @

Histogram
of log @

l Well log
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function of the volume of investigation of the log (making the simplification that it is a
LD, along-hole length of investigation). But, because they already know this variance,
they invert the relationship. To achieve this, they plot the theoretical difference in vari-
ances between plug- and log-derived porosities, as predicted by the variogram model,
under all possible assumptions about the length of investigation of the log. Then they
pick the value that provides the best match between the experimental variance differ-
ence and the theoretical variance difference. They find, after a correction accounting for
the well deviation, a length of 0.74 m, a value close to the 0.60 m predicted from the
physics of the logging tool, which is an LDT (Litho-Density Tool).

At the end of their paper, Frykman and Deutsch list a number of reasons why this
sort of approach is not routinely used in the petroleum industry. A key reason is that
many properties — acoustic impedance or permeability, for instance — do not average
linearly. The approach would also need to be simplified to be applied to a large number
of wells and formations in a reservoir but, today, there is no industry-accepted method-
ology.

2.8 Cross-covariance and the Variogram

As we will see later, some of the most interesting applications of geostatistics will con-
sist of combining different sets of data, such as porosity and acoustic impedance, or
depth and two-way seismic time. How can we measure the relationships between such
data sets? The correlation coefficient was presented earlier, but it does not incorporate

PREDICTING THE SUPPORT EFFECT (2)
(FRYKMAN AND DEUTSCH, 2002)
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any spatial component, it simply evaluates the linear correlation between measurements
ol two parameters made at identical locations of space. What about the correlation coel-
ficient between a value of porosity at a location x and a value of acoustic impedance,
say, 1 km away? The cross-covariance function, or the cross-variogram, provides such
information. The cross-variogram is defined in Fig. 2-33, which shows the cross-vari-
ogram of average and stacking velocity calculated over 59 wells. In this example, aver-
age velocity is equal to marker depth at the well divided by seismic one-way time,
whereas stacking velocities have been previously smoothed. The cross-variogram is pos-
itive because the two variables are positively correlated. When the correlation is nega-
tive, the cross-variogram is negative. Note that the models used to fit the three experi-
mental variograms are all proportional to a cubic model.

The cross-covariance and cross-correlation [unctions are illustrated in Fig. 2-34,
which is taken from Doyen’s (1988) important paper. In this case there were only 10
wells, which were not enough to calculate the porosity covariance. Note that, again, we
are dealing with two positively correlated parameters, thereby resulting in a positive
cross-covariance function. Doyen’s approach was to fit a Gaussian model to both experi-
mental variograms and then to assume that the porosity variogram was also proportion-
al 1o this Gaussian model (see section 3.6.2).

In many applications, the first variable Z,(x) (which we will call the primary vari-
able) is measured at wells only, whereas Z,(x) (the secondary variable) is a parameter
sampled on the seismic grid, which provides information about the primary variable. A
paper by Xu et al. (1992) formalizes the modeling of cross variograms using propor-

NORTH ALWYN CROSS-VARIOGRAM EXAMPLE
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tional-variogram models. If the cross-covariance is proportional to the covariance of the
primary variable, we are dealing with a “Markov” model (which will lead to the collo-
cated cokriging simplification of cokriging). In most practical applications, this Markov
model — which uses only the primary variable variogram model and a proportional
cross-variogram — is applied. The variogram of the secondary variable is usually of no
use in collocated cokriging, as we will see below. Does this mean that it is of no use at
all? We will see later that, in cases where there are very lew well data, the variogram
derived from seismic may provide useful insight into the variogram ol the primary vari-
able (see section 3.6.2).

2.9 Practical Considerations about the Variogram

Let us try to understand the practical meaning of the different features of a variogram.
Fig. 2-35 shows synthetic images corresponding to various variogram models. The pure
nugget effect is clearly associated with the image of a white noise. The spherical, cubic,
and Gaussian models all correspond to stationary images, which differ from one anoth-
er by their degree of smoothness. The variogram with a linear behavior at the origin is
associated with a more random-looking image than are the variograms with a parabolic
behavior at the origin. The image corresponding with the Gaussian model varies
extremely smoothly because this variogram model is indefinitely differentiable at the
origin (Fig. 2-23). The image associated with the hole-effect variogram is periodic, as
expected. Finally, the linear-variogram image shows no stationarity around a mean

CROSS-COVARIANCE (CORRELATION) EXAMPLE
(DOYEN, 1988)
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value, and hence no range. The range appears to be related to the wavelength of the
oscillations around the mean, from zero with the pure nugget effect (two neighboring
values have no reason to be on the same side of the mean), to medium (the three sta-
tionary pictures), and then to infinite (the linear model).

Fig. 2-36 is another example based on a porosity well log from a chalk reservoir in
Denmark. Four different formations have been picked along the log, and experimental
variograms associated with each data set are presented in Fig. 2-37. Porosity within
Phase 3 and Phase 4 is clearly stationary, because it varies around a constant mean. The
range appears to be smaller for Phase 4. The sill associated with Phase 4 is also smaller
than that of Phase 3. This is because the sill of the variogram is simply related to the
variance of the variable. Multiplying a variable by a coefficient k causes the sill to be
multiplied by k* . The variograms of Phase 1 and 2 tend to climb more systematically
because of the lack of stationarity in the data.

Fig. 2-38 summarizes what has already been said of the variogram features. The
behavior at the origin tells us whether we are dealing with a very smooth (parabolic) or
rather random (linear) variable. The nugget effect tells us about the difference between
two measurements that would be made at the same location. We will see later that this
is closely related to measurement errors. The range gives information about the wave-
length. In the limited situation of the pure nugget effect (zero range), we are dealing
with a very high-frequency white noise model. The sill itself does not have much geo-
logical meaning and is simply related to the variance. Usually, the experimental variance
of the data is close to but smaller than the sill, and the difference between the two

IMAGES CORRESPONDING TO DIFFERENT
STATIONARY VARIOGRAM MODELS

i
:
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WELL LOG INTERVALS CORRESPONDING TO
DIFFERENT STATIONARY VARIOGRAM MODELS (1)
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increases with the range of the variogram. So in conclusion, these four features of the
variogram have a very practical interpretation. This will help us construct a variogram
model when not enough data are available.

Unlortunately, in many situations, the primary variable (porosity, for instance) is
known at only a few wells, whereas the secondary variable (acoustic impedance or seis-
mic attribute, for instance) is known on the whole seismic grid. If the secondary and
the primary variable are related, we can expect that anisotropies seen on seismic data
will also be present on the primary variable, because these anisotropies are controlled
by geology (depositional environment, diagenetic effects and the like). However, seismic
data are much lower resolution than well data, and they also have dilferent orders of
magnitude (see the example of Fig. 2-19). This means that the sill of the primary-vari-
able variogram can only be inferred from the (variance of) the well data. However, we
also have a priori knowledge about each type ol variable. This knowledge is the result
ol experience or information from analog data [rom other fields. For instance, we know
that thickness varies more smoothly than permeability (behavior at the origin). We also
know that stacking velocity is somewhat noisy. Such practical considerations can help
us construct the variogram model (Fig. 2-39).

'he above shows that the “geo” is at least as important as the “statistical.” In most
cases, because of the lack of data we do not apply a statistically rigorous approach, but
we instead try to summarize all our a priori knowledge of the variable into the vari-
ogram model. It is a geoscientist’s choice, not a statistician’s calculation (Dubrule,
1994). This is why it is crucial to have a practical understanding of the various parame-

THE VARIOGRAM IN SIMPLE TERMS
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ters of a variogram model.

WHAT TO DO WHEN NOT ENOUGH DATA ARE
AVAILABLE?
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Covariance, Fractals, and Spectral Density

A covariance function is associated with a stationary model. Thanks to
the Wiener-Kinchin relationship (Fig. 2-40), there is a relationship
between the covariance function and the spectral density.

Chiles and Delfiner (1999) provide the analytical expressions ol
spectral densities associated with a large number of stationary
variogram models. Fig. 2-41 shows the spectral densities of the
spherical, exponential, and variogram models, plotted for the same
value of the effective variogram range. The Gaussian model is associated
with lower frequencies than is the spherical or exponential model. The
exponential model, which, for the same range, has a steeper slope at the
origin than does the spherical, is also associated with higher
frequencies. The smoother the behavior of the covariance model at the
origin, the lower the frequencies represented in the spectral density. In
other words, the behavior of the covariance function at the origin
translates into a behavior of the spectral density at infinity.

COVARIANCE AND SPECTRUM

WIENER-KINCHIN relation:

c(x)=F[s]

L) 1 )

Covariance Spectral
function density

Inverse Fourier
transform
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Maus (1999) and Maus et al. (1999) provide an interesting discussion of
the value of analyzing magnetic and gravity data in the space or in the
frequency domain. They also show how, in aeromagnetic applications,

variogram models are derived from power spectra associated with
physical models corresponding to a range of source depths.
This will be discussed later.

We saw earlier that power-law variogram models are not strictly
associated with stationary random functions. However, these variograms
have a spectral representation. A characteristic of fractal models is that
they follow a power law in their spectral density (Fig. 2-42). As already
discussed in the stationary case, we see that the closer to 2 the power of
the variogram is — that is, the smoother Z(x) is — the lower are the
frequencies that the spectrum carries. Fig. 2-43 shows an example
of the behavior of well-log spectra modeled as [ractal by
Crane and Tubman (1990).

THE COVARIANCE,
A FREQUENCY INTERPRETATION (1D)

SPECTRAL DENSITIES FOR 3STANDARD
VARIOGRAM MODELS

|
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FRACTAL SPECTRAL DENSITY

A fractal follows a power law in its spectral density:

[} = power of the variogram + dimension of space

SEGEAGE Dn5C 2003

FRACTAL SPECTRAL DENSITY: AN EXAMPLE
(CRANE AND TUBMAN, 1990)

0.1
0.001

Vertical Well

Power spectrum of density log in a carbonate reservoir

SEGEAGE DISC 2003

Distinguished Instructor Short Course « 2-33




Olivier Dubrule

3 Interpolation: Kriging, Cokriging, Factorial Kriging,
and Splines

3.1 Introduction

In the previous two chapters, we discussed the meaning of the geostatistical model and
of its parameters. We will now discuss how this model can be applied. We will start
with deterministic techniques, known under the generic name of kriging. Here, “deter-
ministic” should be understood in the sense of “providing only one solution.” We will
see that, although the model is probabilistic, kriging produces only one solution.
Kriging covers a wide range of applications. The first one consists of interpolating one
single variable in one, two, or three dimensions, and the second one consists of interpo-
lating one variable but using the extra information provided by another variable that is
related, of course, to the first one.

3.2 Kriging, an Interpolation Technique
3.2.1 Introduction

Recall the probabilistic model we defined in the previous chapter. The variable Z(x) is
interpreted as the sum of a polynomial trend, m(x), plus a residual, R(x), of mean zero.
Under this model, universal kriging (Matheron, 1970) addresses the problem of inter-
polating a variable on the basis of a number of scattered data. This can be the interpola-
tion of layer-averaged porosity from well data or the interpolation of seismic times from
a 2D seismic campaign.

To understand kriging, let us consider the variogram from another perspective
(Fig. 3-1). Suppose that layer-averaged porosity has been calculated at a well and that
we want to estimate porosity 1 km away from that well by using the value at the well.
Obviously, we will make an error, which can be directly read from the variogram model
plot. This is where the choice of the variogram becomes critical. By choosing this
model, we have implicitly provided an estimate of very simple interpolation errors.
Kriging is just the generalization of this idea to the estimation of the value at location x
using, this time, a value not just one well away but several wells away.

3.2.2 Universal kriging
* A bit of theory

Universal kriging is the version of kriging obtained in the context of the model in
which Z(x) is the sum of a polynomial trend plus a residual of mean zero, R(x). The
problem that universal kriging addresses is estimation of the unknown value, z(x,), at a
location x, (in 1D, 2D, or 3D), using the measured values z(x;) obtained at N number
of scattered data points, (x,). z(xo) is estimated by a weighted average of the measured
values z(x;). Note that we use the notation z when we are discussing a realization of the
random function Z. Fig. 3-2 shows the criteria used to calculate the weighting factors. It
is natural to use the standard statistical approach of calculating the unbiased minimum
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KRIGING: ANOTHER USE FOR THE VARIOGRAM

This variogram provides an estimation of the average squared error made when estimating
the porosity value (in porosity units) 1km away from a well using the porosity at the well:

(h)

v(h)= 172 Var[®(x+h) - ©(x)] o GAUSSIAN confidence interval=
: [Diwell)-2x2, d{well)+2x2]
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Kriging will consist of finding the weights a,b,c minimizing this variance
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variance estimator Z,;(xo). Minimization of the estimation variance (using Lagrange
multipliers [t to account for the unbiased condition) leads to the universal kriging (UK)
system (Fig. 3-3). Note that the UK system is the same whether we use the covariance
or the variogram function, because only the Lagrange multipliers change.

Obviously, the kriging system accounts for the variogram and the trend model.
Changing the assumptions on any element of these two models will lead to a change in
the kriging system and in the kriging weights. In the kriging system, the relative posi-
tion of the data points is taken into account through the covariance function; whereas
on the right-hand side, the relative locations of the data points vis a vis the estimated
point are accounted for (Fig. 3-4).

Exercise 2 at the end of this book uses an example with four data points to illus-
trate how kriging weights change as the variogram and the data-point locations change.

A last item that is ol theoretical interest at this stage is the definition of the “simple
kriging” (SK) system. SK is the system of equations obtained with the covariance terms
only, without any trend present. The SK system is simply derived from the equation of
Fig. 3-3 by removing the last three lines and three last columns of the matrix, the
Lagrange multipliers, and the three last lines of the right-hand side. With UK, the coef-
ficients of the trend are automatically derived from the UK system. With SK, the user
may inject into the system a fixed mean value. This is especially handy in situations
where a correction factor is interpolated by SK, because this correction factor then
becomes equal to zero far away from the well data.

UNIVERSAL KRIGING SYSTEM
(2D MAPPING PROBLEM, LINEAR TREND)
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The formula is identical if variogram is used rather than covariance.
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KRIGING TAKES INTO ACCOUNT
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* Velocity data example

Enough of theory. Fig. 3-5 shows the kriged map calculated from the velocity data already
discussed in Figs. 2-12, 2-13, and 2-15. This map is obtained with a constant trend and
the variogram model of Fig. 2-13. A global neighborhood is used, which means that every
grid point is estimated using all the available data points (neighborhood considerations
are discussed below). No trend is apparent on the map, confirming what the variogram
analysis had shown. The map oscillates between highs and lows, which is characteristic
of stationary variables. We have already seen that the range of the variogram was related
to the wavelength of the oscillations. In simple situations, a rule of thumb that is often
used is that the variogram range represents about hall a wavelength. This rule seems to
apply here. The map is very smooth, because we are dealing with velocity data that have
already been filtered.

* A 2D seismic example

Let us now look at the results of kriging for the interpolation of 2D time picks of a
horizon in the Niger Delta (Fig. 3-6). Data points are 25 m apart. The model used is
that of a constant mean — m(x) is constant and independent of x. When UK is per-
formed with a constant mean, it is called ordinary kriging (OK). Because faults are pre-
sent, the variogram calculation accounts for the faults, and no pairs of points are used
in the calculation that have their extremities on each side of a fault. The variograms that
are calculated along and perpendicular to the main structural directions (Fig. 3-7)
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KRIGING: A 2D SEISMIC EXAMPLE
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behave somewhat similarly until about 3000 m, at which point the directions D2 and
D4 diverge, but the number of pairs used to calculate them is not sufficient to make the
difference significant. Thus, an isotropic experimental variogram is calculated and mod-
eled. Two variogram models appear to provide a satisfactory match (Fig. 3-8). They
have no nugget effect and a slightly different range and sill. Their main difference lies in
their behavior at the origin, where the cubic model is parabolic while the spherical
model is linear. We know that the former model corresponds to a smoother variable
than does the latter. What will be the impact on kriging?

The map associated with the cubic variogram tends to extrapolate trends more
strongly because of the continuity assumption carried by the variogram (Figs. 3-9 and
3-10). Fig. 3-11 shows the impact of the range. At a distance from data points greater
than the variogram’ range, kriging decides that, because no useful information can be
derived from the data points, it is best to return toward the mean. Thus the larger the
variogram’s range is, the less is the attraction toward the mean.

What if the interpreter decides that the map is not geologically satisfactory,
because the bulls-eyes are only on the seismic lines? Then he/she may decide to change
the variogram model into one that is anisotropic, which has the advantage of propagat-
ing structural features from one seismic line to another and parallel to the main fault’s
direction (Fig. 3-12). The interpreter should always have the last word and be able to
take advantage of the flexibility of kriging to input any a priori geological information
that is available.

VARIOGRAM ANALYSIS
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ISOTROPIC VARIOGRAM MODEL FIT: TWO OPTIONS

SEG/IEAGE DISC 2003 V. Bigault de Caranove 3-8

COMPARE THE TWO MAPS (1)

not actually occur in data set. The cubic model gly extrapolates
tinuity assumption (behaviour at the origin). The spherical model
carries a weaker continuity assumption: estimation there strictly follows the data.
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COMPARE THE TWO MAPS (2)
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A nearby couple of data with great difference
interpolation away from the data, resulting in a distal trough. The
because of its weaker continuity assumption, gives less impact to this apparent slope

of value triggers a slope in the cubic model

spherical model,

V. Bigault de Cazanove 3-10

COMPARE THE TWO MAPS (3)

SPHERICAL

The range of the spherical model is greater than the range of the cubic model
There is a lesser attraction towards the mean in the case of the spherical model
V. Bigault de Cazanove 3-11
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ANOTHER POSSIBILITY: INJECT A PRIORI GEOLOGICAL
INFORMATION IN THE VARIOGRAM MODEL

z Wsiem maasp T eree]
Isotropic rerics ? o

Bulls-eyes located only on Structural characteristics are
seismic lines better accounted for

In GEOstatistics, GEO comes first!

AGE DISC 2003 V. Bigault do Caranove 3-12

* An aeromagnetic data example

Hansen (1993) provides an interesting example of kriging of aeromagnetic data from
flight data points. Instead of deriving the covariance model by geostatistical analysis, he
derives it from the spectrum associated with the theoretical model of Spector and Grant
(1970). He calculates the parameters of this model from a spectral analysis of the data,
which have been interpolated on a regular grid using a minimum-curvature approach.

As in the previous example, Hansen observes (Fig. 3-13) that contour lines tend to
close around the data lines only. By forcing an anisotropy into the covariance model, the
kriging result obtained appears to be more geologically satisfactory to Hansen.

With such an example, it would have been interesting to see the result obtained
from geostatistical variogram analysis followed by kriging. This would have presented
the advantage of validating the covariance model derived from the Spector and Grant
spectrum. It also would have simplified this approach by requiring only one interpola-
tion. In Hansen’s approach, two interpolations are required: the intermediate minimum-
curvature grid (required to calculate the spectrum) and the final one.

* An example of 2D kriging from well data

Fig. 3-14 shows different maps of average velocity obtained by kriging from 59 wells on
the North Alwyn field (U.K.). As before, the trend is assumed to be constant and un-
known (ordinary kriging). The variogram model is cubic and anisotropic, with a range
of about 5000 m in the X direction and 10000 m in the Y direction (see Fig. 2-33).
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ANOTHER EXAMPLE OF INJECTING A PRIORI GEOLOGICAL
INFORMATION IN THE VARIOGRAM MODEL (HANSEN, 1993)

Aeromagnetic data (Cobb offset total field anomaly)
400N I— -,I.‘_. rr—
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Kriging obtained with the covariance Kriging obtained with an anisotropic
model associated with the Spector and covariance associated with the Spector

Grant (1970) spectrum model. and Grant (1970) spectrum model.
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EXAMPLES OF AVERAGE-VELOCITY KRIGING
(59 WELLS, NORTH ALWYN FIELD, NORTH SEA)
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The top maps show the different results obtained by keeping the same anisotrop-
ic ranges but changing the model. The exponential and the spherical models give
similar results. This is not surprising, because they are both linear at the origin. The
only difference is that, for the same range, the exponential model climbs faster toward
the sill. This has very little impact on the maps. On the other hand, the cubic model
provides a much smoother map. As mentioned earlier, parabolic behavior of the vari-
ogram at the origin leads to a model that tends to extrapolate local data trends more
strongly than does a linear behavior at the origin. Note, in particular, the more pro-
nounced extrapolations, whereas the exponential and spherical remain closer to the
mean.

The bottom maps show the results of three isotropic interpolations. The impact of
changing the range from 5000 m to 10000 m is clear around the isolated wells, Their
high and low velocities are extrapolated farther away with the larger-range model. The
last map, obtained with a linear (fractal) variogram, looks very good and is probably
close to what an interpreter would have drawn by hand. Kriging with a linear vari-
ogram is closely related to the successful multiquadric mapping method of Hardy
(1990).

In all situations, as soon as the interpolated point becomes separated from the con-
trol points by a distance greater than the range, kriging becomes equal to the trend
function. Because the variogram model says that there is no correlation between the
unknown value at the interpolated point and any of the values at the data points, krig-
ing cannot do better than use the trend value as the best estimate.

» Neighborhood considerations

Kriging consists of estimating the value at each location using a weighted average of the
data surrounding this location. In the six maps of the previous example, kriging was
performed in the “global néighborhood.” Because we only had 59 data points, we could
use all the data points for each interpolation. The main advantage of working in the
global neighborhood is that no discontinuity artifact appears in the data set. However, if
we deal with the interpolation of thousands of seismic data points, it is impractical to
invert the matrix associated with kriging in the global neighborhood. The required
computer time and storage space would be enormous, and the inversion of the kriging
system would become numerically unstable around a few thousand data points. This is
why “moving neighborhood™ kriging is used in such configurations.

In moving neighborhood kriging (Fig. 3-15), a limited subset of data (at least 24
for satisfactory resulis) is used to interpolate each grid point. A maximum search radius
and a quadrant or octant selection are usually applied to ensure that data are not oo far
away and that they properly surround the estimated point. Nevertheless, when the mov-
ing neighborhood is too small, the resulting kriged map may look awful. Fig. 3-16
shows that this problem can be serious with 2D seismic data. Our recommendation,
when dealing with fewer than 1000 data points, is to work in the global neighborhood.
We will see later that this only requires the inversion of the kriging matrix once and for
all. When this is not possible, it is very important to use computer packages that pro-
vide a clever neighborhood search and to use neighborhoods that are as large as possi-
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THE IMPACT OF THE NEIGHBORHOOD USED
(59 WELLS, NORTH ALWYN FIELD, NORTH SEA)

420000 430000, 440000, 45000

| Global Neighborhood | | Moving Neighborhood

@ Data points ..

®& Point to be w
estimated

SEQ/EAGE DISC 2003 P. Delfiner/X. Freulon  3-15

THE IMPACT OF THE NEIGHBORHOOD USED

SEG/EAGE DISC 2003 V. Bigault de Caranove 3-16
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ble. For instance, a number of programs now calculate each kriging sequentially, start-
ing with zones with no data and incorporating previously kriged values in the neighbor-
hood of subsequently kriged points (Th. Coleou, personal communication, 2002). The
extra computer time is well worth the improvement in the map.

* Kriging standard deviation

Not much has been said so far about the kriging standard deviation. Once the kriging
weights have been found that minimize the estimation variance o¢’, this variance can be
calculated at each kriged point. It is called the kriging variance 6i*. At the beginning of
petroleum geostatistics, this property was somewhat oversold. Thanks to relationships
such as that of Fig. 1-28, it was possible to translate the kriging standard deviation into
a confidence interval. Assuming that kriging errors were normally distributed, the confi-
dence interval was even equal to twice the kriging standard deviation (Fig. 1-26).
Kriging was the only method that provided an estimate of the error associated with each
interpolated value! Fig. 3-17 shows an example of a kriging standard-deviation map
associated with a kriged thickness map. A stationary ordinary kriging is used, and, not
surprisingly, the 6x map shows bulls-eyes around the data points and slowly increases
away from them. Because we are dealing with a stationary model, ok is constant as soon
as the distance from all data points becomes greater than the variogram’s range. It is
easy to show that, if the variogram model is multiplied by a constant, oy is multiplied
by the same value, but the kriged map itsell does not change. On the other hand, a
change affecting the range or the nugget effect will affect the ok map. ok provides useful

AN EXAMPLE OF A KRIGING STANDARD-DEVIATION MAP
(THICKNESS INTERPOLATION FROM 14 WELLYS)

Kriged map Kriging standard-
== : deviation map

SEG/EAGE DISC 2003 J.M. Guemeneo 3-17
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information about the relative uncertainty affecting the estimates at various locations.
We will also see that it plays a crucial role with conditional simulation.

3.2.3 Generalized covariances of order k

Matheron (1973) generalized the definition of stationary random functions to what he
defined as “intrinsic random functions of order k” (k-IRF). This theory is more mathe-
matically demanding than any we have seen so far, and we will simply discuss the phi-
losophy behind it.

There are two main reasons for Matheron’s generalization. The first is that, as
explained before, the universal kriging model requires the decomposition of the variable
Z(x) into a trend and a stationary residual about this trend. This is satisfactory in cases
where the trend is well defined over the whole area of interest, but it is more problemat-
ic when the trend cannot be modeled as a single polynomial over the entire field.
Another reason to choose k-IRF is a bit more technical. We have seen that not just any
function could be a covariance or a variogram and that the Fourier Transform of a
covariance function must be positive. This limits our flexibility in the choice of covari-
ance or variogram models.

Matheron (1973) realized that, in the universal kriging system, only a limited fam-
ily of linear combinations of values Z(x;) were considered — those “filtering” polynomi-
al trends. This allowed Matheron to relax the constraints on stationary covariances and
on variograms by defining what he called “generalized covariances of order k" (GC-k).
A GC-k is such that only the variance of those weighted averages ol values Z(x;) that fil-
ter trends of degree k must be positive. A major advantage is that simple polynomial
covariances are GC-k under certain conditions on their coefficients, which are given in
Matheron (1973).

Remember that, when we introduced the variogram function, we insisted that it
was associated with stationary increments of the variable Z(x). An increment is a linear
combination that filters out constant terms or terms of degree zero. Thus, in the formal-
ism of k-IRF, variograms are associated with generalized covariances of order 0. We
already know that power-law variograms are authorized GC-0 as long as the power of h
is strictly smaller than 2.

3.2.4 Kriging considered as an interpolating function

Now, let us focus our attention on mapping, or interpolation in 2D. So far, kriging has
been presented as a method for predicting the value at one location using a weighted
average of measurements available at actual data points. Many interpolation methods,
such as splines (Duchon, 1975), multiquadrics (Hardy, 1990), and radial basis functions
(Franke and Nielson, 1991) are presented from a different angle — that of calculating
the analytical expression of an interpolating function that is forced to honor the z(x;)
values at data locations and to satisfy a number of other properties.

If we work in the global neighborhood and invert the kriging system, we find that
zuk follows the relationship of Fig. 3-18. By writing kriging this way, . appears simply
as the sum of an interpolated trend plus an interpolated residual. Kriging is an exact
interpolator, in the sense that it honors the values of z at data locations. This leads to as
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KRIGING SEEN AS AN INTERPOLATING FUNCTION
(FOR A LINEAR TREND IN 2D)

Zuk (.\'.‘l') =dadpgt+tax+ary+ 2 !)f‘:’ J(.\' = .\';‘)2 +(‘\' — '1';’)2
i=1,N

Interpolated trend Interpolated residual

N+3 conditions to determine the N+3 coefficients

=l N i=l,]

SEG/EAGE ODISC 2000

many equations on the interpolating function’s coelfficients as there are data points. In
2D with a linear trend, there are three other equations that imply that, if the unknown
parameter is itself a linear function of coordinates (a trend), kriging will be exactly
equal to this function everywhere.

[n the case in which the variogram is a pure nugget effect, it is easy to see that 2
becomes exactly identical to the trend surface interpolation. This is LT.\pL‘LlC(l. because
the model behind trend surface analysis (Fig. 1-39) assumes that residuals from the
trend are uncorrelated.

Coleou (1996, 2002a) provides an interesting discussion of the interpolated trend
that is the result of universal kriging: he calls it “georegression.” In the case where the
trend is linear, it is the average plane fitted through the data points, taking spatial
redundancy into account. Automatically, data points that are clustered — that is, are at
a smaller distance from each other than the variogram’s range — will be given less
weight than data points that are isolated. Only when the data points are uncorrelated
with each other will the georegression be equal to the standard statistical regression of
Z(x,y) against x and y.

What if we now are dealing with a stationary variogram model (finite range)? In
this case, as soon as the distance between the interpolated point and all data points
exceeds the variogram’s range, the expression of z.i reduces to that of the trend. This
means that as soon as data points do not bring any statistical information, kriging
makes the safe choice of predicting Z using the low-frequency term: the trend. This is
illustrated by the example of Fig. 3-19, where the variogram range is smaller than the
data spacing. This example also nicely illustrates the impact of variogram behavior at
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KRIGED SURFACE WHEN RANGE OF VARIOGRAM
IS SMALL

Behaviour of the variogram at the origin

| Go back to the mean once range is reached

Spherical variogram, Range=10 (average distance between data = 25)
BEG/EAGE GISC 3005 ——— e —— =

the origin. At the neighborhood of each data point, the shape of the interpolating func-
tion is nothing other than the shape of the variogram! This is confirmed by Fig. 3-20,
obtained by keeping the same variogram range but by changing the variogram’s behav-
ior at the origin by that of a Gaussian model. As stressed by Oliver (1998), kriging
applies a covariance-based convolution operator to the data. Kriging is a smoothing
operator. Fig. 3-21 shows the impact of using a linear variogram with a constant trend.
[he kriging behavior close to the data points remains controlled by the linear behavior
of the variogram at the origin, but there is no extrapolation toward the mean, which is
not clearly defined because the model is not stationary. Note, however, that the shape of
the interpolation functions is quite satisfactory and “natural,” as already noted in the
North Alwyn case (Fig. 3-14).

Fig. 3-22 confirms what happens when a trending variable is interpolated using
the universal kriging model. On the left we see that, away from the data, extrapolation
converges toward the linear trend, whereas on the right, a stationary model (with the
same variogram) having a constant mean has been wrongly assumed. Away from the
data points, kriging tries to come back to the constant mean. Experience shows that the
main difference between kriging with a constant trend and kriging with a linear or a
parabolic trend lies in extrapolating at a distance from the data points that exceeds the
variogram range.

3.2.5 Cross-validation

Is there an objective means of evaluating the performance ol the interpolating function?
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KRIGED SURFACE WHEN RANGE OF VARIOGRAM
IS SMALL
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Gaussian variogram, Range=5 (average distance between data = 25)
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KRIGED SURFACE WHEN RANGE OF VARIOGRAM
IS LARGE

Linear (fractal) variogram
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Interpolation: Kriging, Cokriging. Factorial Kriging, and Splines

KRIGING WITH OR WITHOUT TREND

Kriging with a Kriging with a
linear-trend model constant-trend model

SEG/EAGE DiSC 2003

[he first reply could be that, if a geostatistician has fitted a trend and a variogram
model to the data, and if there is a sufficient number of data points to make the model
reliable, the kriging interpolator is optimal from a statistical point of view. In that case,
kriging should be optimal in the least-squares sense, and the standard-deviation map
should give an indication of the relative reliability of kriging at each location. However,
this remains a result of the model, which may be wrong. Also, quite frequently there are
not enough data points to fit a reliable trend and variogram model, and the choice of
the interpolating function may be related to cosmetic considerations. The linear vari-
ogram is quite a popular choice in that situation.

The user needs a more practical means of testing how well the interpolation is do-
ing. The most natural test is that of comparing actual values at data points with those pre-
dicted by the model. Cross-validation (Fig. 3-23) consists of dropping each data point in
succession and interpolating its value using the information at the other data points. Figs.
3-24 and 3-25 show the result in our example built from the Hohn data set. First, the
best variogram fit is used, then two others are tested. In each case, we see the interpolated
surface and the histogram of estimation errors obtained by successively dropping each of
the 39 data points. The spherical model, as expected, performs well, and the difference
with the linear model is small, whereas the Gaussian model performs more poorly.

Cross-validation can be extended further. The kriging standard deviation itsell can
be cross-validated by comparing how closely it is related to the actual cross-validation
errors, But the exercise is only meaningful in situations where the variogram model has
been fitted to the data points.
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CROSS VALIDATION

Yellow control point dropped from data set and estimated
using the other control points.

Estimated value can then be compared with actual value.

Perform the same operation for all data points.

SEG/EAGE DISC 2003

KRIGED SURFACE AND HISTOGRAM OF CROSS-
VALIDATION ERRORS, HOHN DATA
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TWO MORE INTERPOLATED SURFACES AND HISTOGRAMS
OF CROSS-VALIDATION ERRORS, HOHN DATA

SEGEAGE DISC

A limitation of cross-validation is that, il the number of data points is more than
approximately 100 and fewer than 1000, we may want to work in the global neighbor-
hood. As a result, re-estimating each data value from all the others requires inverting a
large kriging system each time, which maybe prohibitive. Dubrule (1983) demonstrated
that a more straightforward approach consists of inverting the matrix corresponding to
the kriging system based on all the data points. Then, the estimate of each data point in
the cross-validation process can easily be derived from this inverse matrix.

Cross-validation is a good exercise that provides precious understanding about
how the interpolating function actually performs. Note that it is a major benefit of krig-
ing. Interpolation techniques that numerically solve a finite-difference equation on a
regular grid (e.g., Briggs, 1974; Bolondi et al., 1976) are attractive in many ways, but
they do not allow cross-validation, because they are intrinsically mesh-dependent.

3.2.6 Conclusion on kriging

Two approaches are possible with kriging. The first one is the standard workflow
described in Fig. 3.26. This usually happens as soon as there are enough data to proper-
ly infer a geostatistical model. In such a situation, results such as kriging standard-devi-
ation maps are meaningful from a geostatistical standpoint. The second approach, usu-
ally applied when not enough data are available to build a reliable geostatistical model,
consists of choosing the trend model and the covariance that appear to provide the best
interpolation. “Best” can be interpreted according to various criteria, such as geological
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KRIGING WORKFLOW

Base map
Data analysis Basic statistics, histogram
Experimental variogram

Variogram model
Kriging parameters Trend model
Neighborhood

Cross-validation results
Kriging results Estimated trend

Kriged map

Kriging stand. dev. map

SEG/EAGE DISC 2003 P. Delfiner/X. Freulon 3-26

realism, smoothness, or anisotropy. This use of kriging may be quite justified, because
kriging provides a great flexibility, thanks to the choice of the trend and the covariance
model. However, in this situation, the results of kriging cannot be regarded as optimal
from the geostatistical point of view, and the kriging standard-deviation map is mean-

ingless (Fig. 3-27). '

3.3 Error Cokriging and Factorial Kriging to Distinguish Noise from Signal
3.3.1 Error cokriging for V. interpolation

Consider the case study of Fig. 3-28, in which the problem consists of building a map
from V. data. The histogram shows a nice, symmetrical behavior. The variogram map
is slightly anisotropic, which is not significant in terms of sill differences from one
direction to another (Fig. 3-29). The isotropic variogram shows a nugget effect, Co,
equal to about 18,000 (m/s)? . There are two possible interpretations for a nugget effect.
l. Cocorresponds to the sill of a very short-range variogram. The distance

between velocity data is too large to provide detailed information about

the range of this model, which may be associated with very high-fre-

quency spatial velocity variations (we know that no frequency informa-

tion can be derived above the Nyqyst frequency). This model, where the

variogram is the sum of several models of different ranges, will be dis-

cussed in the factorial kriging section.
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SOME CHARACTERISTICS OF KRIGING

- Honors the data points if no nugget effect P4 (X,- )= Z(x,-)

- Estimation of standard deviation of the estimation error

- For interpolation to be optimal in the geostatistical sense,
trend and variogram must be representative of the data

SEG/EAGE DISC 2

AN EXAMPLE OF ERROR COKRIGING
DATA ANALYSIS
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Vsrack VARIOGRAM MAP, ISOTROPIC VARIOGRAM
AND FITTED MODEL

SILL = 59000+18000=77000 (m/s)?
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SPHERICAL MODEL

RANGE = 2300 m

Variogram map

R NUGGET EFFECT= 18000 (m/s)?
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2. There is no short-range variation in velocity, but data are affected by a

measurement error, which directly causes a discontinuity in variogram

behavior at the origin. The model is described in Fig. 3-30. It is easy to

show that, if the variable ol interest Z(x) is alfected by a measurement

error, €(x), of mean zero and variance C,, spatially uncorrelated and

independent of velocity, this random error translates into a Cy nugget

effect on the variogram. This is the error cokriging model, thus called

because Z(x,) will be interpolated using values of the “other” variable

Y(x;) — that is, Z(x;) plus the unknown error £(x;) at data points x;.
With stacking velocities, which are known to be error-prone, the second interpretation
usually applies. How will this interpretation affect kriging? Fig. 3-31 shows the map
obtained and a cross-section associated with this map. Contrary to what would happen
with a zero nugget elfect, velocity data are not honored, and the map appears to be
quite smooth: Error cokriging filters Y and tries to interpolate Z instead. Without
dwelling on mathematics, let us simply mention that error cokriging amounts to adding
to the diagonal term of the kriging matrix (Fig. 3-3) a constant term equal to the
nugget effect.

What if we now use the first variogram interpretation? The variogram model
shown in Fig. 3-32 is fitted. As a result, kriging considers it is dealing with a variable
not alfected by measurement errors. The map obtained is shown in Fig. 3-33. This time,
all V,. data are honored, and, as a consequence, the map is much more noisy!

As a matter of curiosity, we have also plotted the map obtained with a pure nugget
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NUGGET EFFECT INTERPRETATION (1)

Random measurement error

r(x)-2(9)+< (3

Measured parameter True unknown parameter
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covly(x)e(x)]=0

With error cokriging, we estimate Z using the values of Y!
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RESULTS OBTAINED WITH NUGGET EFFECT
SPHERICAL MODEL

Blue: estimated grid
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FORCING A ZERO NUGGET EFFECT ON THE
VARIOGRAM MODEL
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RESULTS OBTAINED WITH NO NUGGET EFFECT
SPHERICAL MODEL
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effect (Fig. 3-34). This means that there is no spatial correlation at all between V., val-
ues. A data point that is in the close neighborhood of the interpolated values has no
more weight on this interpolation than a data point that is far away. The kriged value is
a moving average of the data points in the kriging neighborhood. We are back to trend-
surface analysis with a constant mean! The wiggles in the contour lines are due to the
fact that a change in the neighborhood points translates into a significant change in the
interpolated value, because all data have the same weight.

Fig. 3-35 discusses our interpretation of the nugget effect. A zero nugget means no
noise, and a pure nugget effect means no signal, pure noise. Hence the interpretation of
“noise-to-signal” ratio. The beauty of the approach is that this ratio is determined
directly from the variogram model. Instead of fudging the degree of smoothing versus
the degree of fidelity to the data (a major issue in many optimization approaches, as we
will see below), error cokriging automatically calibrates this “fudge factor” from the
data. This point will be addressed again when the relationship between error cokriging
and smoothing splines is discussed.

The ratio between the variance of the measurement error and the variogram sill
determines the amount of smoothing applied by error cokriging. If this ratio is low, the
method assumes that the measurement error can be neglected in comparison with the
variations of the interpolated variable, and the data values Z(x;) are almost exactly hon-
ored. If the ratio is high, then smoothing is applied.

Fig. 3-36 is another example of error cokriging, this time from Mathieu and Nuut
(1985). Again and again, this approach proves attractive for mapping stacking veloci-

RESULTS OBTAINED WITH PURE NUGGET EFFECT

Red: Scattered data Blue: estimated grid

SEGEAGE DISC 2003
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NUGGET EFFECT INTERPRETATION (2)
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ANOTHER EXAMPLE OF ERROR COKRIGING FOR
VELOCITY INTERPOLATION (MATHIEU AND NUTT, 1985)
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Interpolation: Kriging, Cokriging, Factorial Kriging, and Splines

ties. An example from Dubrule and Haldorsen (1984) also shows a successful applica-
tion of the technique to the joint interpolation of core- and log-derived permeability
values at wells. The variance of the measurement error can also be a function of loca-
tion. This can be a useful assumption when data resulting from two seismic campaigns
of different quality are combined (Haas and Viallix, 1974). Other applications will cer-
tainly appear in the future.

Other Fourier-based techniques allow the filtering of measurement errors. However,
they usually require that the variable is first interpolated on a regular grid and then fil-
tered. Error cokriging offers the advantage of performing the two tasks at the same time
— interpolation of the data over a regular grid, and hltering of the measurement error.
Error cokriging can also be applied in the context of nonstationary data.

3.3.2 Factorial kriging

Now let us come back to the first possible interpretation of the nugget effect, as a short-
range variogram. Fig. 3-37 presents a marine example of horizon-consistent stacking-
velocity data, and Fig. 3-38 presents the acquisition setup. The variogram clearly shows
a different behavior between the inline and the other directions. The geostatistical
analysis assumes that the variogram model corresponding to the geological signal (Fig.
3-39) is isotropic and equal to the sum of the linear model and a spherical one. The
other assumption is that the difference between the experimental variograms is only
due to acquisition artifacts or “inline effects.” An anisotropic model is fitted to explain
the difference between the inline and the three other directions.

THE FACTORIAL KRIGING MODEL
MARINE EXAMPLE: HORIZON-CONSISTENT Vgrack (1)

=1971 mis
=2374 mls
=2121m/s
=61 mis

= 3703 (m/s)?

2050 2500 2750 3000

2000 A0e0

V iaex Variogram

D2=XL 8
D4 I D3
D1=IL
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SEG/EAGE DISC 2003 J.L. Piazza and L. Sandjivy

3-28 « Soclety of Exploration Geophysicists / European Association of Geoscientists & Eng'inee-rs



Olivier Dubr@fsj

THE FACTORIAL KRIGING MODEL
MARINE EXAMPLE: HORIZON-CONSISTENT Vgrack (2)

125 m
+« >

3

=100 m
Alle —

7.5 m 2 sources 6 streamers

Vo))
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THE FACTORIAL KRIGING MODEL
MARINE EXAMPLE: HORIZON-CONSISTENT Vsrack (3)

Inline effect

{3) Spherical 1600 m (D1)
100 m (D2)
100 (m/s)

(4) Bpherical = (D1)
300 m (D2)

Geological signal : 4
13 Linear 7500 m, 1000 {rmis) Final model

{2) Spharical 1600 m, 300 (m/s)

(1) Linear 1000 (m/s)?
(2) Spherical 300 (m/s)?

(3) Spherical 100 (mis)?
artifacts (4) Spherical 450 (m/s)?

(5) Nugget 400 (m/s)?
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The interpretation behind this model is that stacking velocity Z(x) is the sum of
two uncorrelated components: an isotropic geological signal and an anisotropic inline
effect (Sandjivy, 1987; Piazza et al., 1997). As with error cokriging, we need to filter the
nongeological effect out of the interpolation. The result obtained by this filtering is
shown in Fig. 3-40. The validation of the two different maps will be obtained by review-
ing the picked stacking velocities.

Fig. 3-41 shows another example of factorial kriging, by Mundim et al. (1999).
Geological features, such as the main channel, are much more apparent after factorial
kriging. A related benefit is that, after factorial kriging, there is a much better relation-
ship between two-way time and reservoir facies thickness (Fig. 3-42).

In the example of Fig. 3-39, seismic data were alfected by both a measurement
error (uncorrelated noise) and correlated footprint effects. What does this actually
mean? In the example of Fig. 3-43, stacking velocity is modeled as a linear function of
two-way time plus a correlated residual. Fig. 3-43 is a map of this residual, which has a
mean of zero. This residual also shows high-frequency noise characterized by the
“checkerboard effect” and stripes associated with acquisition footprints. There is also a
lower-frequency component. A moving-average filter is first applied to remove nongeo-
logical effects (Fig. 3-44). This filter is not completely successful in removing the
stripes, and it may have a tendency to oversmooth the residual spatial variations.

Now the geostatistical analysis reveals a variogram map (Fig. 3-45) with a slight
anisotropy. The range in the NW-SE direction is smaller than that in the NE-SW direc-
tion. An analysis ol the autocorrelation function is even more interesting. For both the

THE FACTORIAL KRIGING MODEL
MARINE EXAMPLE: HORIZON-CONSISTENT Vsrack (4)
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GENERALIZING ERROR COKRIGING: AN APPLICATION OF
THE FACTORIAL KRIGING MODEL (MUNDIM ET AL., 1999)

£

Turbidite
channel
is much
better
imaged!
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Interval two-way time map after filtering small-

range component
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GENERALIZING ERROR COKRIGING: AN APPLICATION OF
THE FACTORIAL KRIGING MODEL (MUNDIM ET AL., 1999)

R-Square 0.3239
Xplot two-way time vs reservoir facies
thickness before filtering

Correlation is
much
improved!

10 15
R-Square 0.6001
Xplot two-way time vs reservoir facies
TR L e thickness after fiitering
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A VELOCITY SMOOTHING EXAMPLE (COLEOU, 2001)

Raw velocity residuals (V,,,-aT-b)

Compaction removed
Extrapolated to prevent edge effects

Three features:
* checkerboard pattern indicating noise

» alternating stripes from acquisition
imprint

low-frequency lateral variations

BEGEAGE DISC 2001

MOVING AVERAGE HIGH-LOW FREQUENCY FILTER
(COLEOU, 2001)

High frequencies | Low frequencies

Scale (-100,+100)m/s
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inline and crossline functions, noise characterizes itself as a nugget effect, whereas foot-
prints have a different impact in both directions. The autocorrelation function along
crosslines shows a nugget effect due to the random variations as one moves from one
inline to another (acquisition footprints). The third component is related to geology.
The variogram model is decomposed into these three components and then the velocity
residual is reinterpolated, but this time, thanks to the variogram decomposition, the
three different components are separated (Figs. 3-46 and 3-47). The low-frequency
component is to be compared with the result of the moving-average filter of Fig. 3-44.
The geostatistical low-frequency component contains higher frequencies than does the
moving-average result. This is not the result of an arbitrary choice of the interpreter, but
is the result of the geostatistical analysis, which has produced an estimate of the relative
variance ol noise, acquisition lootprint, and low-[requency component. As a result, krig-
ing has been able to define what is correlated and noncorrelated noise. Fig. 3-48 sum-
marizes the differences between factorial kriging and moving-average filtering.

Fig. 3-49 gives a flavor of the mathematics behind factorial kriging. Actually, the
kriging matrix is the same as that with universal kriging, because it is a function of the
full covariance model. On the other hand, the right-hand side is only a function of the
component of interest of the covariance. Note that the system does not incorporate any
lagrange multiplier here, because we are mapping residuals that have a zero mean.

Now what can we say ol factorial kriging versus spectral approaches? This is dis-
cussed in Chiles and Guillen (1984), who compare the results obtained with [actorial
kriging and spectral analysis on French gravimetry data. Both variogram and [requency

VARIOGRAM ANALYSIS (COLEOU, 2001)

Variogram map

Inlines
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DECOMPOSITION IN THREE COMPONENTS (1)
(COLEOU, 2001)

; 3 | | Small range along inlines |
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DECOMPOSITION IN THREE COMPONENTS (2)
(COLEOU, 2001)
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FACTORIAL KRIGING VS MOVING AVERAGE
FILTERING (COLEOU, 2001)

Moving average
Smoothing increases when the size of the window increases
Some criteria to choose smoothing window:
» Maximising correlation with the well velocities
* Visual QC of noise and smoothed grid

Factorial kriging

Initial analysis allows identification of three features on the map
* Noise (checkerboard pattern), through nugget effect

* Acquisition/picking imprint. Stripes along inlines characterized by short-
range spherical model

= Low-frequency lateral variations with anisotropy N30E

Interpolation only function of variogram model. Specific features can
be filtered

* Random noise
« Organized noise (stripes)
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FACTORIAL KRIGING EQUATIONS (SANDJIVY, 1987)

N
As usual, value at x, estimated by: Z/k (xg) = 2 )\,-Z(x!-)

Factorial kriging system for component Cr:
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Same matrix as kriging Only component C?
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Interpolation: Kriging, Cokriging, Factorial Kriging, and Splines

spectrum analysis lead to a split between two components (Fig. 3-50). The low-
(respectively high-) frequency component is associated with the deep (respectively shal-
low) gravity hield. Both analyses require significant interpretation that is based on a pri-
ori information about the geology. A significant difference is that variogram analysis is
directly applied to the data, whereas spectral analysis is performed after a preliminary
interpolation of these data on a rectangular grid. This interpolation usually introduces
some smoothing and, hence, some low frequencies that were not initially in the data. In
the example, the variogram that is fitted to the data is composed of the sum ol two ele-
mentary Cauchy models (Fig. 2-25). The Cauchy model is closely associated with fre-
quency spectra derived by Spector and Grant (1970) alter making simplifying assump-
tions about the source locations. Fig. 3-51 show the results of kriging with this vari-
ogram model, and Figs. 3-52 and 3-53 compare the interpolation of the deep and shal-
low gravity fields obtained by each method. The two results are somewhat similar, how-
ever, the spectral method appears to have limitations that the factorial kriging approach
does not have (Fig. 3-54).

As already mentioned with error cokriging, factorial kriging performs, in one sin-
gle operation, the filtering and the smoothing, whereas spectral analysis must start from
data already interpolated on a regular grid. As Coleou (2001) discusses, “Geostatistics,
through variogram decomposition and factorial kriging, designs spatial filters very effi-
cient for the removal of organized noise present in seismic velocities.”

COMPARING SPECTRAL AND FACTORIAL KRIGING
APPROACH (1) (CHILES AND GUILLEN, 1984)

alieg
wonaTe depth ”W !
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COMPARING SPECTRAL AND FACTORIAL KRIGING
APPROACH (2) (CHILES AND GUILLEN, 1984)

| Kriged gravity field |
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COMPARING SPECTRAL AND FACTORIAL KRIGING
APPROACH (3) (CHILES AND GUILLEN, 1984)

Deep
gravity
field

Spectral estimate Factorial kriging estimate
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COMPARING SPECTRAL AND FACTORIAL KRIGING
APPROACH (4) (CHILES AND GUILLEN, 1984)

| Shallow
gravity
field

Spectral estimate Factorial kriging estimate
SEGIEAGE DISC 2003 = — - ]

COMPARING SPECTRAL AND FACTORIAL KRIGING
APPROACH (5) (CHILES AND GUILLEN, 1984)

Limitation of spectral method
« Complete rectangular grid requires interpolation + extrapolation
« Tapering or padding to make input grid periodic in both directions

« Stationarity and isotropy assumptions
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3.4 Kriging with an External Drift
3.4.1 The external-drift model

The “external-drift” method has been specifically developed with seismic applications in
mind. Take the example of a marker picked on seismic (2D or 3D) and intersected by a
small number of wells. The seismic map can be considered a low-frequency representa-
tion of the actual seismic horizon. To construct this horizon, well data will need to be
combined with information provided by seismic data, with some control about the
range of influence of well data compared with seismic (Fig. 3-55).

How can this be modeled using geostatistical lormalism? In universal kriging, the
trend m(x) can be regarded as precisely the low-frequency component of Z(x). Then
why not substitute the seismic data there? This is precisely the external drift model,
easily derived from the universal kriging model of Fig. 2-6. Z(x) is now assumed to be a
linear function of the seismic data, plus a residual (Fig. 3-56). Naturally R(x) will be
close to zero away from the wells, but R(x) will provide the “hump” allowing the model
to go through the wells! Based on what we have seen before, we can easily guess that
the residual’s variogram range will help us control the width of the hump around the
well data.

There is no need to write down the “kriging with an external drift” (KED) equa-
tions. In 2D (mapping) applications, they are identical to those of universal kriging
with a linear trend, except that the two trend components x and y are replaced by the
single component S(x.y), the value of the seismic variable at location (x,y). An interest-

EXTERNAL-DRIFT APPROACH

Seismic trend
and residuals

Kriging ED large-range

Kriging ED small-range

SEG/EAGE [NSC 2003 V. Bigault de Caranove
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THE EXTERNAL-DRIFT MODEL

Two variables Z(x) and S(x)
S(x) assumed to be known at each location x

S(x) defines the shape of Z(x)

Z(x)=ag+ aS(x) + R(x)

a,+a,S(x) is the deterministic external-drift

R(x) is a spatially-correlated random residual

SEG/EAGE DISC 2003 V. Bigauit de Caranove 3-56

ing KED property is that, if S(x,y) is multiplied by a constant, the result is left
unchanged. KED is used mostly for time-to-depth conversion.

3.4.2 Examples of time-to-depth conversion using the external-drift approach

Fig. 3-57 shows a time horizon (the base Cretaceous unconformity, or BCU) from the
Alwyn North example already discussed. Sixty-two wells are available, but we use the
depth data from only 59 of them and save the three others to check the results. Fig. 3-
57 shows that there is an excellent linear correlation between time and depth. In spite
of this excellent correlation, the residuals may take values as high as 50 m (Fig. 3-58),
but there is no correlation between residual and time to the BCU. The residuals’ experi-
mental variogram has a range of around 4 km, which confirms that depth can be inter-
preted as a sum of a linear transform of time plus a stationary residual. Note that this is
different from the trend-surface-analysis model (Fig. 1-39), which assumes that the
residual from the trend is spatially uncorrelated.

In this example, the inputs to KED are a time map and well depths, and the out-
put is a depth map (Fig. 3-59). This means that KED performs, in one single step, an
operation that is often performed in two steps. A common practice consists of first
transforming the seismic data using a linear transform, then correcting the misfits at the
wells by constructing a map of the residuals between the well data and the seismic-
derived map. Here, as shown in Fig. 3-60, the KED procedure makes sure that the lin-
ear transformation and the mapping of the residual take place in one step. It is easy to
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NORTH ALWYN EXAMPLE
BCU TIME-TO-DEPTH CONVERSION

6740000. 6750000,
3500, 4000,

depth:BCU mTVDss

£730000.

720000,

Time Map

_‘ i A
420000. 430000. 440000 .

Depth predicted by a linear regression of time:
= 59 wells (on 62 available, 3 wells used for validation)
» TVD = 1.6"TWT-1146.4
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NORTH ALWYN EXAMPLE
BCU TIME-TO-DEPTH CONVERSION

e . ' | : lcul
Statistics on depth residuals | Vzrn'?jir;;: ::eas;:duuztgd

50.

BCU (LR-59%w)

0.

Resdepth:

Variogram model:
y (h) = 200 + 288 spherical (4000m)
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NORTH ALWYN EXAMPLE: BCU TIME-TO-DEPTH
CONVERSION USING TIME AS AN EXTERNAL DRIFT

L
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=r Kriging standard-deviation
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KRIGING WITH AN EXTERNAL DRIFT
SEEN AS AN INTERPOLATING FUNCTION (IN 2D)

o ked (\ ) ) =ag+aS(x,y)+ E h';y [\/(\ - ‘\‘5)2 + (1' - J-‘,‘)z
i=1.N

\W_IW_J

Linear transform of Interpolated residual
seismic data

N+2 conditions to determine the N+2 coefficients

& VAR, (.\’;._1‘;) = z; at N data points
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check that the interpolated residual is zero, at a distance from the well data greater than
the variogram range.

In our example, because the variogram has been modeled using a nugget effect,
the depth values at the wells are filtered. The depth map obtained by KED is equal to
the trend, that is, a linear function of time, as soon as the distance from all data points
reaches 4 km. Close to the wells, however, the depth values at the wells control the
interpolation. The kriging standard deviation is meaningful here, because it uses the
variogram model actually fitted to the residuals’ experimental variogram. Although the
external-drift approach has been used a lot for time-to-depth conversion, one of its
drawbacks is that it maps depth from time, without providing a detailed analysis ol
velocities. Another issue is that the velocity information is provided by the wells only,
through their depth values. This introduces a bias il wells do not penetrate zones that
are representative of the actual velocity variations. Coleou (2001) stresses that stacking
velocities provide the regional information that addresses this bias issue. Let us see how
such information could have been used in the North Alwyn example.

Fig. 3-61 shows a map of stacking velocities to the same horizon as before. The
crossplot between stacking velocity and the 59 average well velocities confirms that
stacking velocities tend to be faster than well velocities, because of nonvertical travel
paths and heterogeneity due to layering. This time, the KED model will use stacking
velocities as an external drift in order to interpolate seismic velocities away from the
wells. Once again, velocity residuals are not correlated with time to the BCU (Fig. 3-
62). An exponential variogram model is used, with a zero nugget effect. KED properly

NORTH ALWYN EXAMPLE
BCU TIME-TO-DEPTH CONVERSION

£740000

Average velocity

440000
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Vetk: B o/ 8

Stacking velocity

¥

Average-velocity predicted by regressionof V..
+ 59 wells (on 62 available, 3 wells used for validation)
V,.=784+0.62V,

stack

= 2
BEG/EAGE DISC 200) . =0.892 P. Delfimar/X. Freulon 3-61

3 ﬁfsrf'hguisr?ed Instructor Short Course « 3-43



Interpolation: Kriging. Cokriging, Factorial Kriging, and Splines

maps the large blue zone on the right, thanks to regional information provided by
stacking velocities (Fig. 3-63).

Comparison with data from three wells (Fig. 3-64) shows that the method using
stacking velocities seems to perform slightly better for predicting depth than does the
one based only on well depths and the time map. Beyond this difference, which may be
of a purely statistical nature with only three wells, geophysicists prefer working with
stacking velocities in order to control the quality of the velocity map before combining

it with time (Coleou, 2001).

3.5 Bayesian Kriging, a Generalization of Kriging with an External Drift

Bayesian kriging (Omre, 1987) is a generalization of KED that is useful for time-to-
depth conversion, when the coefficients of the external drift have a physical interpreta-
tion (Fig. 3-65). In such situations, and when the number of wells is not enough to
provide a good statistical calibration, Bayesian kriging (BK) offers the possibility to
specify a priori statistical constraints on these parameters. These constraints can be
derived from surrounding reservoirs of the same formation that happen to be at a more
mature developmental stage (Abrahamsen et al., 1991, 2000). Fig. 3-66 is a BK applica-
tion in a North Sea example, using the model of Fig. 3-65. Only two wells are available,
but, thanks to regional information, a priori statistical information is injected to con-
strain the estimation of k and V. This example will be used again when discussing
uncertainty quantification.

Bayesian kriging can also be used in situations in which a time-to-depth conver-

NORTH ALWYN EXAMPLE
BCU TIME-TO-DEPTH CONVERSION

‘ Variogram calculated
on velocity residuals

Statistics on velocity residuals |
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NORTH ALWYN EXAMPLE: VELOCITY MAP USING
Vstack AS AN EXTERNAL DRIFT

X
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420000 430000 440000. 450000

Velocity map
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NORTH ALWYN EXAMPLE
COMPARISON OF ERRORS ON 3 BLIND WELLS

“ Actual depth | Depth estimation by external drift Velocity estimation by external drift

3/9a-N39 3524.00

3/9a-N40 3583.00

3/9a-N41 3460.00
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BAYESIAN KRIGING, A GENERALIZATION OF THE
EXTERNAL-DRIFT MODEL (ABRAHAMSEN ET AL, 2000)

Because of compaction velocity is correlated with time:

V(x.y) =V, + kT (x, )
DEPTH (x,y) =V, T(x,y)+kT*(x,y)

T(x,y) is a linear external-drift for average velocity V(x,y) or a
parabolic external-drift for DEPTH (x,y).

: |

Bayesian kriging can use a priori interpreter’s knowledge
(mean and variance) on V, and k

SEGEAGE DISC 2003

BAYESIAN KRIGING EXAMPLE:
NORTH SEA CASE STUDY (ABRAHAMSEN ET AL., 2000)
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sion model has been constructed using a significant number of wells, say 10, and when
the interpreter wants to avoid, while the model is updated by new well data, a complete
change in the external drift used. Thanks to BK, the user can specify a rather small vari-
ance — hence a small uncertainty — on the coefficients of the trend, thus controlling
the impact of new wells (Th. Coleou, personal communication, 2002).

The concept of BK can also be applied to universal kriging, where the trend is con-
stant, linear, or parabolic, but is not derived from seismic as it is with KED (Omre and
Halvorsen, 1989). For instance, UK or KED is equivalent to BK with no a priori con-
straints on the trend coefficients, whereas kriging with a zero mean is equivalent to BK
with a perfect a priori knowledge of the trend coefficient (mean and standard deviation
equal to zero).

3.6 Cokriging and Collocated Cokriging
3.6.1 Introduction

The KED method was a transition toward multivariate estimation techniques, because it
consisted of interpolating a parameter measured at wells using information from a para-
meter measured on seismic, assuming that the latter could be interpreted as a trend of
the former. With cokriging, we are now going to discuss the most general kriging-based
approach for combining several sources of information. We will limit ourselves to
bivariate cokriging, that is, the interpolation of one parameter by use of a weighted
average of values of this parameter (the primary variable) at a number of locations and
values of another parameter (the secondary variable) at other locations (Fig. 3-67).
There is no need to mathematically develop the cokriging equations, which make use
not only of the variogram of each variable but also of cross-variogram (or cross-covari-
ance) functions already discussed in Figs. 2-33 and 2-34.

3.6.2 A cokriging example”

Cokriging has been successfully used in mining applications since the 1960s. Doyen’s
(1988) article in GEOPHYSICS had a significant impact in the industry, because it
showed how the technique could be used to map porosity over an Alberta oil-bearing
reservoir using porosity data at the wells and acoustic impedance resulting from a seis-
mic inversion exercise. The cross-covariance between porosity and the inverse of
impedance, and the inverse impedance covariance model used by Doyen, were those of
Fig. 2-34 (the assumption was made that impedance data were exact and not affected
by any uncertainty, which is a simplification because inversion is known to be a
nonunique process). Both models are proportional to a Gaussian covariance of range
about 1 km. The porosity variogram could not be obtained from the well data (only
eight wells). To solve this problem, Doyen assumed that the porosity variogram was
also proportional to the Gaussian model.

Comparison of the three maps (Fig. 3-68) shows that, in areas where there is little
well control (southeast part of the map), the cokriged map is controlled by the linear
regression of porosity against the inverse of impedance. The map derived from linear
regression does not honor the well data, but cokriging makes sure that near the wells,
the map is strongly controlled by the well data. In spite of the successful application by
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COKRIGING
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Doyen, the cokriging system and the input needed to be simplified. Xu et al. (1992)
changed this situation by proposing a clever simplification of the cokriging system.

3.6.3 Collocated cokriging

In petroleum applications, the primary variable is usually known at wells, whereas the
secondary variable is derived from seismic data. When we are predicting a value away
from the wells, the knowledge of the secondary variable at that location will be crucial.
However, because of the smoothness of seismic data, the knowledge of seismic values at
other locations close to the interpolated point will not bring much extra information,
once the seismic value at the interpolated location has been used. This is the philoso-
phy behind collocated cokriging (CCK). Xu et al. proposed to retain, at each interpolat-
ed location x,, only the value of the secondary variable Z at xitsell. This assumption
also had the advantage of greatly simplifying the resolution of the system by making the
matrix inversion more stable. Coleou (2002a) uses a slightly different definition of
CCK, because he incorporates in the kriging system not only the value of the secondary
variable at the estimated location xo, but also its values at the data points x;. Chiles and
Delfiner (1999) call this other approach “multi-collocated cokriging” (MCCK), and
compare the relative merits of CCK and MCCK.

It is easy to confirm that, in the CCK equations, knowledge of the variogram of
the secondary variable is not necessary, except for the variance itsell. Because only the
secondary variable value at X, is used, this value needs only to be cross-correlated with
itself or with the values of the primary variable. In a way, this is a pity, because the vari-
ogram of the secondary parameter is usually the one that is best known because of the
large number of seismic data available! Nevertheless, in practice few wells are available,
which means that, as explained in Fig. 2-39, inferences about the primary-variable vari-
ogram tend to be made using information derived from the seismic-data variogram.
Realizing that variogram and cross-variogram models were usually oversimplified
because of well data scarcity, Xu et al. (1992) proposed a further approximation to
CCK, related this time to the choice of the cross-covariance model. They called this the
Markov model, which assumes that the cross-covariance function is proportional to the
covariance of the primary variable. Thus, if the Markov model is used, all that is
required as input is the knowledge of (1) the correlation coefficient between the prima-
ry and secondary variable, (2) one single model assumed to be representative of both
the primary variable covariance and the cross-covariance between the primary and sec-
ondary variable, and (3) the variances of the two variables.

A good example from the giant Ghawar field (Saudi Arabia) is presented by Jeffery
et al. (1996). Although 150 wells were available for predicting average velocity, this
proved insufficient in terms of lateral coverage. Jeffery et al. used residual gravity as a
secondary variable to provide velocity information between wells. Fig. 3-69 shows the
maps of each variable. Well velocities are simply equal to vertical depth of the reservoir
divided by one-way seismic traveltime. Residual gravity data were interpolated over a
regular 500-m grid, after a number of filtering steps. Using the variogram of residual
gravity data, Jeffery et al. applied ordinary kriging to estimate their values at the well
location. The crossplot between these kriged values and well velocities showed that the
correlation was excellent (Fig. 3-70). Predicting velocity away from the wells by using
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COLLOCATED COKRIGING
(JEFFERY ET AL., 1996)
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just a linear transform of kriged residual gravity would already provide good results, but
the well velocity data would not be honored. Thus, Jeffery et al. applied CCK. They
made the Markov assumption, meaning that the input to the exercise was limited to the
variogram of velocity data, the correlation coefficient, and the variance of residual-gravi-
ty data. This led to the velocity map of Fig. 3-70. Cross-validation showed that, thanks
to CCK, an improvement of more than 25% was obtained in the mean absolute error of
velocity estimates, which decreased from 22 m/s with standard mapping techniques to
15.5 m/s with CCK.

Let us now come back to the North Alwyn velocity data (see variogram models in
Fig. 2-33). All three variogram models are proportional to an anisotropic model
Together with this theoretical model, the sills of the average- and stacking-velocity vari-
ograms determine the variance, and the correlation coefficient is 0.85. The CCK map
obtained with these input parameters is shown in Fig. 3-71, together with a map
obtained using a different correlation coefficient. Obviously, as the correlation coeffi-
cient increases, the weight of the Vi, information increases.

Fig. 3-72 illustrates the difference between CCK and KED. V., (the secondary
variable) tends to have a stronger relationship with the kriging result in the case of
KED. This may be due to the fact that the variogram of the residuals for KED (Fig. 3-
62) has a smaller range than does the variogram of the primary variable for CCK (Fig.
2-33). As a result, with CCK, the final interpolation remains under the control of the
well data for a longer distance.

NORTH ALWYN EXAMPLE: VELOCITY MAP BY
COLLOCATED COKRIGING USING Vsrack AS A
SECONDARY VARIABLE
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A Few Words on Bayesian Statistics

Let us discuss Bayesian statistics using a simple example, inspired from
Doyen et al. (1996). This is the situation where, at one location x, in 2D
or in 3D, we want to predict, say, porosity, using two kinds of
information: that coming from the other wells and that coming from the
value of a seismic-derived parameter — or attribute — at the same
location x, Two kinds of information will help us achieve this:
the knowledge of the seismic A, attribute at location xqand the
knowledge of porosity values at the other wells.

We also assume that porosity is normally distributed. Then, the best
estimate of @, from the wells only will be kriging ®,, with a kriging
standard deviation equal to 6i. Under the Gaussian assumption, we can
even say that @, follows a normal distribution p(®y/®;) with mean @,
and standard deviation . This is the a priori information we have on
the unknown porosity, on the basis of the other wells and the
geological knowledge quantified by the variogram.

Now, we also have a measure of the seismic attribute Aqat location x,.
We assume that there is a linear correlation between porosity and
seismic attribute, quantified by the correlation coefficient p. A, and
®d, are related by the regression relationship, such as, at fixed porosity
@y, Ao follows a normal distribution with mean

Ao = pq)o
and variance:
(1-p?)

(the formulas are simplified as compared with those of Fig. 1-35, by
assuming that the variances are one and the means are zero).
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Bayes’s relationship provides a way to combine these two types of
information, that given by the wells, and that given by the seismic
attribute. We use the following formula giving the probability
of finding @, given both the porosity values at the wells
and the seismic attribute A at location xq:

p (Do / Ag, D,..., Dx) o< f (Ao / Do) p (Dy / Dy,..., D)

The second term of the right-hand side is the a priori pdf of @, given
the values of porosity at the other wells. We saw that this was a
Gaussian pdf of mean equal to the kriging estimate @, and of
standard deviation equal to the kriging standard deviation o,. This pdf
represents the knowledge we have of porosity @, before using the
seismic attribute, just on the basis of geological knowledge
(quantified by the variogram) and wells.

The first term of the right-hand side is the likelihood function for ®,. In
a way, for each possible value of @, at x,, it measures how compatible
the value of the measured seismic attribute A, is with this value @, .

Under the Gaussian assumption, the right-hand side is the product of
two exponential functions,

_(A - p®y)’ |, (D, - D)’

exp >0~ p) exp 7

This is the posterior pdf of ®,, combining the porosity information
from the wells with the information derived from the amplitude
Ao about porosity @, . Simple calculations show that, as a result
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of the Bayes relationship, this is itself a normal distribution,
with a mean equal to:

Po; A, + (1 — pH)D,
pior = 1) +1

This mean is simply a weighted average of the two estimates of @, at
Xo: the estimate based on regression against the seismic attribute
and the estimate based on kriging. Each estimate is weighted
by the inverse of its estimation variance. The variance of this
pdf is equal to the harmonic average of the variances of
each estimate, and it can be written:

o; (1 -p°)
pior —1)+1

The beauty of this result is that it is exactly equal to the result of CCK!
Thus, this result not only relates the world of kriging to that of
Bayesian analysis, it also shows that the CCK estimate can be simply
calculated as a weighted average of two estimates. The weight of each
estimate is a function of the relative magnitude of the correlation
coefficient versus the kriging standard deviation. This is discussed
more graphically in the following section.
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3.6.4 Revisiting collocated cokriging

Doyen et al. (1996) provided new insight on CCK by reformulating it in the context of
Bayesian analysis, as mathematically developed in the previous section. They used the
example where the primary and secondary variables are porosity at wells and acoustic
impedance from seismic. They considered that kriging at one location, x,, could be inter-
preted as the result of using the a priori geostatistical model. Based on the well data only
and on the variogram ol the primary variable, an a priori kriging estimate and its associ-
ated variance are calculated. Then this estimate is updated thanks to new information
derived from a second source, which is acoustic impedance (Fig. 3-73). The a priori
model is combined with the likelihood function to provide the posterior distribution
(Fig. 3-74). This leads to a beautifully simple expression, showing that collocated cokrig-
ing is a weighted average ol kriging and of the estimate derived from regression from
seismic (Fig. 3-75). The weighting factor is simply related to the correlation coefficient
between porosity and acoustic impedance. If the coefficient is zero, only kriging remains,
whereas if it is one, only the regression estimate is used. Also, the higher the kriging vari-
ance, the higher is the weight of the regression estimate. This decoupling of the two
sources of information also helps solve the collocated cokriging system very easily.
Doyen et al. (1996) provided an application from the Ekofisk field in Norway.
Porosity is predicted from an inversion-derived impedance map (Fig. 3-76), which is
assumed to be exact information, because no uncertainty is associated with this map.
The correlation coefficient between acoustic impedance and porosity is equal to —0.77
(Fig. 3-77), and the result of CCK is the map of Figs. 3-78 and 3-79. In addition to this,

COLLOCATED COKRIGING COMBINES TWO TYPES OF
INFORMATION (DOYEN ET AL., 1996)
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COLLOCATED COKRIGING BY BAYESIAN UPDATING
OF KRIGING (DOYEN ET AL., 1996)
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IMPEDANCE MAP (DOYEN ET AL., 1996)

Impedance
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Doyen et al. ran a blind-wells exercise. The well data set was divided in two groups:
wells drilled before and after 1989 (Fig. 3-80). Comparison of actual versus predicted
values at the wells drilled after 1989 showed that there is a significant improvement
resulting [rom the incorporation of seismic data in the estimation exercise (Fig. 3-81).

3.6.5 Collocated cokriging versus external drift

CCK and KED are the preferred industry solutions for combining well and seismic-
derived data. The discussion of the North Alwyn case and the examples used showed
that there could be a strong similarity between a map obtained with CCK and a map
obtained with KED. A simple mathematical development (Fig. 3-82) confirms that the
analytical expressions are very similar, even if the system of equations that leads to this
expression is different for CCK and KED. However, the main difference lies in the
assumptions that each method makes and that definitely impact one’s choice of the vari-
ogram model.

With KED, we assume that the secondary variable provides low-frequency infor-
mation about the primary one. The variable of interest, Z(x), is modeled as the sum of a
linear function of the external drift plus a stationary residual of mean zero. As a result,
the KED interpolation can be decomposed into the sum of a linear function of the
external drift — which does not have to be stationary — plus a residual that tends
toward zero at large distances. But how confident are we about this external drift?
Calculation of the estimation error variance attached to KED shows that the external
drift is assumed to be perfectly known.
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RELATIONSHIP BETWEEN POROSITY AND ACOUSTIC
IMPEDANCE AT WELLS (DOYEN ET AL., 1996)
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Only Bayesian kriging generalizes KED to the situation where the coefficients of
the external drift itself are uncertain. This is a limitation of KED, considering typical sit-
uations that are encountered today

a few wells, often fewer than 10, and an inter-
preted seismic map. With KED, the only calibration of the wells against the seismic
consists, after applying a linear transformation to the seismic data, of calculating the
variogram of the residuals. But is this a reliable thing to do from just a few wells? It
seems that a case where the use of KED appears defendable is time-to-depth conversion.,
where we are dealing with depth at the wells and time horizons, or average velocities
and stacking velocities. In this situation, there is a physical reason why the seismic map
should be related with the well data. Also, the map derived from seismic is often
smooth (assuming, in the case of V., that error cokriging has been applied in a previ-
ous step). When KED is applied, the variogram to use should be that of the residuals
from the external drift fitted to the well data, as in the examples of Figs. 3-58 and 3-62.
This variogram, which controls through its range how soon extrapolation will become
equal to the external drift (Fig. 3-55). should not be the model directly derived from
that of the primary or of the secondary variable.

With CCK, the approach is different and is based on a crossplot. A calibration step
is performed, before interpolation, through the calculation of the correlation coefficient.
The variances of the secondary and primary variables, and their relative values, also
play a role in the shape of the interpolating function. As clearly shown by Doyen et al.
(1996), the value of the correlation coefficient calibrates the relative weight of kriging
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(DOYEN ET AL., 1996)

Absolute Kriging Error
M Absolute Cokriging Error

l"

il 11!1

Better Worse

Absolute Prediction Error (%)

SEG/EAGE Dt

Distinguished Instructor Short Course « 3-61




Interpolation: Kriging, Cokriging, Factorial Kriging, and Splines

COMMON EXPRESSION FOR CCK AND KED

+ Both KED and CCK can be written in the interpolation formalism
(using a 2D isotropic assumption):

Z*(_\'q _1') =dm+ OIS(.\'. '1') =

« Both techniques result in the sum of a linear function of the
seismic-derived parameter and a residual that tends to zero away
from the data!

SEOGEAGE DISC 200

versus information derived from seismic. This means that the secondary variable does
not have to be smooth, as in the case of KED. The estimation variance produced by
CCK accounts for the variations of the secondary variable through its variance. This is
why many CCK applications consist of predicting a petrophysical parameter from a
seismic attribute (sometimes quite random), while KED tends to be more suitable for
structural applications.

When CCK is applied under the Markov hypothesis, only the variogram of the
primary variable is needed, because the cross-variogram is assumed to be proportional
to it. If not enough well data are available to derive the primary-variable variogram,
the secondary-variable variogram can be used to help define some of its parameters
(Fig. 2-39).

Again, CCK should be preferred when we are mapping attributes, whereas KED
should be preferred when mapping structural parameters. CCK also provides more flex-
ibility, thanks to the choice of the correlation coefficient, which means that, if no KED
algorithm is available, one can obtain an interpolation close to KED using CCK. Coleou
(2002a) demonstrated that, in the situation where all covariances are proportional,
MCCK is equivalent to KED. This assumption can even be relaxed. Haas et al. (1998)
show that, il there is proportionality between the cross-covariance model and the
covariance of the secondary variable, then MCCK and KED are identical. Haas calls this
situation “geostatistical regression.” KED is optimal when the residual is uncorrelated
with the secondary variable. Rivoirard (2002) has recently shown that this corresponds
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to a situation where the cross-covariance is proportional to that of the secondary vari-
able. Haas et al. (1998) call this situation “geostatistical regression,” whereas Journel
(1999) calls it “Markov Model 2" and Chiles and Delfiner (1999) call it “Reverse
Markov.”

3.6.6 Factorial cokriging

Coleou (2002b) recently presented a new application of cokriging, this time in combi-
nation with factorial kriging. This application may prove useful in the context of time-
lapse seismic. Assume that two seismic surveys have been obtained on the same area.
The model of factorial kriging is recalled in Fig. 3-83 on a synthetic example. Now, sup-
pose we have the two surveys only, and we want to extract some reservoir information
from these surveys. One approach would be to apply FK independently to each of
them. Coleou proposes to improve the consistency by applying factorial cokriging
simultaneously to both surveys, in order to obtain what he calls the “common part” of
these two surveys (Fig. 3-84). The equations are not presented here, but they are a sim-
ple generalization of those of cokriging and FK.

Fig. 3-85 shows a promising application of factorial cokriging on rms amplitude in
a horizon-controlled window above the target and on one of the time horizons. The
continuity outside the 4D signature is reduced, thereby providing a better delineation of
the 4D effect. Organized differences are only found at and below the fluid changes,
where they are expected. Although it is a bit early to tell, factorial cokriging appears to
have some promising properties for use in multisurvey filtering (Fig. 3-86).

3.7 Some Relationships between the Kriging Techniques

Fig. 3.87 lists a number of relationships between all the kriging methods presented so
far. We will not discuss the mathematics behind these different relationships, which
should appear logical after what we have discussed. Coleou (2002a) discusses the math-
ematics.

3.8 Kriging Versus Other Interpolation Techniques
3.8.1 Introduction

In section 3.2.4, we presented kriging from another perspective, that of an interpolating
function. In this chapter, we will limit our discussion to mapping problems and consid-
er kriging as a function z.(x.,y) of the coordinates (x,y) of any 2D location. We will
show that the expression of kriging given in Fig. 3-18 clarifies the relationships between
kriging and many other mapping techniques, especially splines. First, let us explain
splines.

3.8.2 Splines
* Biharmonic (thin-plate) and harmonic (membrane) splines

With thin-plate splines, the idea is to calculate an interpolating function that mimics
the shape of an elastic plate that would be forced to honor the data points. It can be
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WHAT HAPPENS TO THE 4D SIGNAL? (COLEOU, 2002b)
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shown (Briggs, 1974) that the function minimizes the integral given in Fig. 3-88, which
is representative of the bending energy of an elastic thin plate. The surface displayed in
FFig. 3-88 is based on the same data points as those of Figs. 3-19 to 3-21. Biharmonic
spline interpolation is smooth and tends to overshoot when there are significant varia-
tions of the interpolated variable between closely spaced data points. This is not sur-
prising, because one of the assumptions of the method is that the interpolated surface is
twice differentiable. This feature may prove unacceptable for some applications.

Another “natural” shape that comes to mind is that of a membrane forced to honor
the data points (Fig. 3-89), which correspond to harmonic splines. The map obtained
with harmonic splines appears unsatisfactory lor mapping applications, because it tends
to be very smooth between the data points and to “cone” too much at the data point
locations. To our knowledge, this “membrane” interpolating function has found no
petroleum application. However, we will see below that it is used to describe many
physical phenomena and that it has interesting relationships with fractal models.

Duchon (1975) showed that the harmonic and biharmonic spline functions are
solutions of the equations shown in Fig. 3-90. Both harmonic and biharmonic splines
converge in extrapolation toward their polynomial term — which is constant for har-
monic splines and linear for biharmonic splines.

* Other spline functions

Mitas and Mitasova (1988), Mitasova and Mitas (1993), and Wessel and Bercovici

RELATIONSHIPS BETWEEN KRIGING
INTERPOLATORS (COLEOU, 2002a)

Simple kriging is associated with zero-mean model.

Universal kriging and kriging with an external drift are both equal
to the trend calculated by kriging plus simple kriging of residual
from this trend.

When using coordinates instead of seismic data as an external
drift, kriging with an external drift is equivalent to universal kriging.

Bayesian kriging is very general and can replicate other methods:
simple kriging (coefficients of mean fixed to zero), universal
kriging or kriging with an external drift (no constraints on trend
coefficients).

Multi-collocated cokriging can replicate kriging with an external
drift if the covariance models are all proportional to each other.

SEGEAGE DISC 7002
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BIHARMONIC (THIN PLATE) SPLINE

Minimize E>(z) ff 2 +——— dxdy ff[V"z(x }) ]dxdl
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(1998) propose a more general definition of the energy functional than that of harmon-
ic and biharmonic splines. They derive general (and complicated) analytical expressions
for the interpolating function, minimizing this generalized functional with the con-
straint of honoring the data points. Because both the flexural rigidity of the plate and
the tension are involved, this leads to interpolating functions that combine the advan-
tages of harmonic and biharmonic splines. However, their complexity, and the number
of parameters involved, are an issue.

* Smoothing splines

The interpolating spline method can be generalized to the smoothing of data affected by
a measurement error. Instead of simply minimizing the energy functionals E;(z) and
E:(2), as described in the previous sections, a sum of this functional plus a distance to
the data is now minimized (see Fig. 3-91). This means that, contrary to the previous
case, the interpolating function is not forced to exactly honor the data points. A certain
tolerance is allowed, depending on the magnitude of the measurement error affecting
the data, z.

A source of great discussion in the literature on interpolation is the choice of the
coefficient 8, balancing the weight of the energy (or regularization) constraint versus
the distance to the data points. The constant 0 is usually calculated by cross-validation.
Data points are dropped one after the other, and the selected value is that for which the
estimation of the dropped data point, by use of the other points, is best.
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HARMONIC (MEMBRANE) SPLINE
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THE HARMONIC AND BIHARMONIC SPLINE MODELS

Harmonic splines

Zhs (‘-\T. 1) = ag + z l}j_fi [\/(\ - _\',-)2 - (\' - '1'_.-)2 ] with f (h) = Logh

i=l.N

E b =0
(N+1) equations on the (N+1) {

coefficients:

Biharmonic splines

Zhhs (_x._v) =dap+ax+ayy+ h"'_,r'_-l [\/(r - xf): + (r - _1',-)3 ] with f5(h) = l:zf,ug'h
i=l,N

(N+3) equations on the (N+3)
coefficients:
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3.8.3 Comparison among kriging, splines, and radial-basis functions
» Kriging and radial-basis functions

It is now obvious (simply compare Figs. 3-18 and 3-90) that splines and kriging func-
tions share a similar expression, which is that of the general class of radial-basis func-
tions. See, for instance, Franke and Nielson (1991) or Ahmed and Murthy (1997). Fig.
3-92 gives the generic expression of radial-basis-function interpolation and explains
how each term is interpreted, depending on whether we are working from a spline or
from a kriging perspective.

The multiquadric interpolation method of Hardy (1990), widely used in practice,
is also a special case of radial-basis functions. It is a significant result, from a mathemat-
ical and computer point of view, that such a variety of interpolating functions can be
reduced to a similar formalism. This will now allow us to throw a new light on a num-
ber of results.

» Special cases of radial-basis functions

In the following, we will look at a number of special cases of radial-basis functions and
see how they can be interpreted, either from the perspective of a geostatistical or a
spline model. This will help us start building the bridge between stochastic and energy-
based (or regularization-based) models.

* De Wijs variogram and harmonic functions

Kriging with a constant trend and a De Wijs variogram is equivalent to 2D inter-
polation with harmonic splines. This variogram (Logh) has a slope of infinity at the ori-
gin, which corresponds to an extreme case of spatial variability for a model with zero
nugget effect. As a result, kriging honors the data but rapidly returns to the mean. This
explains the somewhat peaked behavior of the interpolating function around the data
points (Fig. 3-89).

From the spline perspective, the interpolation surface (Fig. 3-89) is peaked around
the data points, since it represents the shape of a membrane — a kind of tent — going
through these data points. Away from the data, the membrane tends toward a flat sur-
face. This interpolating function is a solution of the Poisson equation, which is used to
describe many physical processes. It describes the shape of a soap film (Isenberg, 1992),
of a thin rubber sheet (a membrane) forced to pass through fixed points, or the value of
an electrostatic potential, over a surface, due to a two-dimensional finite distribution of
charges (Feynmann et al., 1964, Chapter 12). Given a set of control points, the interpo-
lating function takes the shape that minimizes its surface area. This is the familiar prop-
erty of minimal surfaces, which is represented in nature by the shape of soap films.

Thanks to its harmonic property, Logh is also associated with the familiar power
spectrum of fractals (Fig. 3-93). This is no surprise, because we already saw (read, for
instance, Section 2.4) that there was a close relationship between De Wijs’s variogram
and fractals.

* Spline covariance and biharmonic equation

Kriging with a linear trend and a generalized covariance equal to h*Logh is equiv-
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THE SMOOTHING SPLINE MODEL
(2D BIHARMONIC CASE)

Smoothing splines minimize:

Their expression is the same as interpolating splines:

Zes (\ v )= ag+apx+ayy + 2 b"fz \/(\ - ,\‘,-)2 - (1’ - _1’;-)3 with

; Ja(h) = h? Logh
i=l.N <

With (N+3) equations on the (N+3) coefficients:
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SPLINES AND KRIGING
TWO EXAMPLES OF RADIAL BASIS FUNCTIONS (RBF)

Interpreted as Interpreted as
kernel of minimized Green function
operator by splines by splines

Interpreted as Interpreted as
trend by kriging covariance by kriging
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alent to 2D interpolation with biharmonic splines. This generalized covariance of order
1 is associated with a smoother random function than the De Wijs or the linear vari-
ogram model. As a result, the interpolation function is much smoother (Fig. 3-88).
Away from the data, the map tends toward the value of a linear trend fitted through
the data points,

From the spline perspective, the interpolation surface is a solution of the bihar-
monic equation, corresponding to the shape of an elastic plate forced 10 honor the data
points at their location. Because it is an elastic plate rather than a membrane, the shape
is very smooth close to the data points. Away from all data constraints, the thin plate
spline comes back to an unconstrained flat (but not necessarily horizontal) shape.

Because of its biharmonic property, h*Logh is also associated with the familiar
power spectrum of fractals (Fig. 3-93). The fractal nature of the covariance associated
with the biharmonic spline has been recognized by Szeliski and Terzopoulos (1989).

* Smoothing splines and error cokriging

Now, let us examine the situation where the data points are affected by random
measurement errors. This will lead the spline specialist to use smoothing splines, as
presented in Fig. 3-91, and the geostatistician to use error cokriging as presented in sec-
tion 3.3.1. If we express error cokriging as a function, it is easy to verify that there is
equivalence between smoothing splines and error cokriging, as long as we use the trend
and covariance models just discussed.

But, in the error cokriging framework, what happens to the important smoothing
spline coefficient 8, which determines the relative weight of smoothing versus distance
to the data? It has been shown by Matheron (1981a) that error cokriging using the
covariance functions given in Fig. 3-94 is equivalent to calculating the smoothing spline
associated with the same parameter 8. Thus, in geostatistical formalism, the problem of
weighting the smoothness ferm versus the distance to the data is not raised. By fitting a
covariance model and its coellicient to the experimental data, error cokriging automati-
cally calibrates the variance of the measurement errors versus that of the covariance
function.

* Recent developments

When we discussed kriging in a global neighborhood (Section 3.2.2), we stressed
the fact that, due to computational limitations, this technique could only be used with
fewer than, say, 1000 data points. So far, this limitation has also applied to radial-basis
functions, which could not be used with more and a few thousand data points. Two
recent papers in GEOPHYSICS challenge this view. Billings et al. (2002a, b) review the
relationships between radial-basis functions, splines, and kriging, both for interpolation
and smoothing purposes. They define continuous global surfaces as those surfaces satis-
fying the equations of Fig. 3-92. They use this new terminology because they consider
that the class of radial-basis functions only encompasses those functions for which basis
functions are radially symmetric. Billings et al. (2002a) convincingly promote and
demonstrate the use of iterative techniques and efficient preconditioners for solving
global neighborhood problems involving millions of data points. Billings et al. (2002b)
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prefer to use smoothing splines rather than kriging, and recommend the use of general-
ized cross-validation for estimating the smoothing spline coefficient 8. If the approach
proposed by Billings et al. (2002a) proves general enough, kriging in a global neighbor-
hood may generalize to very large data sets, with a significant impact on many geostatis-
tical algorithms, such as those used for geostatistical conditional simulation (see
below).

* Conclusion

Interpolating splines, in 2D, consist of the calculation of an interpolating function
that minimizes an energy functional related to the stretching or a bending energy of a
plate. The choice of such an energy functional is equivalent to fixing the degree of the
trend function and the covariance model for kriging. In other words, fixing the energy
— or regularization — term of splines is equivalent to fixing the a priori model for
kriging.

Fig. 3-93 shows that there is a fundamental, inverse relationship between the
spline functional and the covariance. Kimeldorf and Wahba (1970) demonstrated that
this fundamental relationship also applies in the frame of discrete Bayesian statistics.
The consequence of this relationship on the spectral density is straightforward. The
spectral densities associated with the harmonic and biharmonic splines are power laws,
which means that they represent fractal models. Szeliski and Terzopoulos (1989) con-
vincingly demonstrate this relationship between splines and fractals.

Smoothing splines, in 2D, consist of the calculation of a function that minimizes

RELATIONSHIP BETWEEN
SPLINES AND FRACTAL MODELS

Harmonic splines

V:Logh=5_IS......(1)=2nf"

Biharmonic splines

V4 thOgh =0 Bd S hin Plate (f) L ‘Zth‘—4

Spectral density of spline interpolator follows a power law!
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ERROR COKRIGING COVARIANCE MODELS
ASSOCIATED WITH SMOOTHING SPLINES

Harmonic smoothing splines

0Logh

Biharmonic smoothing splines

Oh’ Logh

SEG/EAGE DISC 2003

the sum of an energy functional — or regularization term — plus a distance to the data.
This is equivalent to calculating the error cokriging interpolation associated with the a
priori model corresponding to the regularization term. The coefficient of the covariance
model is equal to the coefficient weighting the distance to the data against the regular-
ization term. However, in the error cokriging formalism, this term is not arbitrary but
instead results from the fit of the covariance model to the data.
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Why this relationship between splines and kriging?

Kriging and splines originated from different worlds, that of
approximation theory (splines) and that of probabilities (kriging). We
have demonstrated the formal equivalence between the two methods. So
far, this equivalence is purely formal and does not provide a
fundamental clue of why this bridge exists between the two formalisms.
The question is actually to relate an energy- or regularization-based
formalism, to a probability-based one.

The idea of converting an energy function into a probability distribution
comes from statistical mechanics, because the probability of a particular
configuration is inversely related to its energy. Suppose we calculate
the function z(x) minimizing an energy functional E(2).

Using the results of Geman and Geman (1984), Szeliski
and Terzopoulos (1989) associate a probability to this
energy through the Boltzmann (or Gibbs) distribution, p(z), defined as

E(2)

p(z) —7exp =

(where Z and T are positive constants).
If we now have a number N of data g available, and if we make,

as above, the assumption that these data are affected by independent
and Gaussian measurement errors €, of variance 67,

(z-2)
20‘i

p(z:/2) < exp

This is the likelihood function, which we can combine, using Bayes’s
theorem, with the above a priori probability, to obtain the posterior:

p(2/2) « p(z:/2) p(2)
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In the Gaussian formalism, we wish to maximize the posterior to obtain
the best estimate of z. This is equivalent to maximizing the logarithm,
and we obtain the smoothing splines functional:

(Z,. - 2)

N
=1 i

E(x)+0 Y

Fig. 3-95 summarizes the conclusion of these developments.

FROM ENERGY-BASED WORLD TO PROBABILISTIC
WORLD THANKS TO THE GIBBS DISTRIBUTION

Energy

| Probability |

Using a regularization-based smoothness constraint is
equivalent to using a correlated Gaussian field
as the Gaussian prior
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4 Conditional Simulation for Heterogeneity Modeling
and Uncertainty Quantification

4.1 Introduction

In the previous chapter, kriging proved to be an interpolation technique that was [lexi-
ble enough to filter correlated or uncorrelated noise from the data or to combine seis-
mic and well information. Thanks to the flexibility in the choice of the trend and the
covariance model, kriging is closely related with splines, multiquadrics, and trend-sur-
[ace analysis. Kriging, when it is based on the trend and covariance models fitted to the
data, also provides an estimate of the uncertainty at every location of the map. However,
kriging remains a deterministic approach that provides a very smooth image of geologi-
cal variables that are, in most cases, very erratic.

As an example, Fig. 4-1 shows in red the kriged surface already used in Fig. 3-24
(Hohn data set). This surface is very smooth. A variogram calculated on the points of
this surface would be extremely different from the spherical variogram fitted on the data
and used as input to kriging. Is there not a contradiction here? Should not the vari-
ogram of the kriged surface be the same as the spherical model used as input to krig-
ing? The answer is definitely no, because the goal of kriging is not to generate a surface
that mimics the actual variations of the interpolated variable, but to provide, at each
location, an estimate that is as close as possible — on average — to the unknown value.

A simpler way to understand this is to use the example of a random variable, Z,
taking the value —1 or +1, depending on the outcome of a game of heads or tails. A
game will generate a sequence of values -1 and +1 (Fig. 4-2). The variogram is obvious-
ly a nugget effect, since two draws are uncorrelated with each other. At locations with
no data points, kriging would be equal to the mean, which is zero (this also corre-
sponds to the trend-surface-analysis estimate in the case of a constant trend; see Fig,. 1-
39). Thus, in the case of a pure nugget effect — the noisiest parameter one can think of
— kriging is constant! This is hardly a representation of the actual heads-or-tails out-
come! But still, as we saw earlier in Fig. 1-23, the mean is the parameter that is, on
average, the closest to all possible values of the distribution.

The goal of geostatistical conditional simulation (GCS) is precisely to generate
samples of surfaces or of 3D earth models that satisfy the input statistics (mean, vari-
ance, and variogram) instead of smoothing them, and that honor the data points. The
yellow surface of Fig. 4-1 is a realization of GCS on the Hohn data set. This surface is
far noisier than the red kriged surface, but its experimental variogram is equal to the
spherical model fitted to the data. Before we discuss GCS in more detail, a few
reminders about Monte-Carlo simulation may prove useful.

4.2 A Few Reminders on Monte-Carlo Simulation

Monte-Carlo simulation (MCS) is a powerful technique for calculating the pdf of the
combination of several random variables. Take the example of Fig. 4-3. Standard origi-
nal oil-in-place (STOOIP) is a function of gross-rock volume (GRV), porosity (®), net-
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COMPARING KRIGING AND CONDITIONAL
SIMULATION

KRIGING

| 1{(h) = 320 000 Sph(8)

SEGE AGE TNSC 2000

to-gross (N/G), water saturation (S,.), and formation volume factor B,. If the pdf associ-
ated with each of these parameters is known, MCS consists simply of sampling each
parameter a large number of times and calculating the STOOIP for each set of samples.
Then the pdf of STOOIP can be derived from the histogram of the resulting STOOIP
distribution.

Nowadays, spreadsheet add-ons are available on the market that provide a very
easy user-interface to MCS. As a result, MCS is a generic approach now used in a large
number of industries to quantify uncertainties (Fig. 4-4).

Figs. 4-5 and 4-6 explain some of the technicalities of MCS. We said earlier that
MCS consists of sampling each parameter according to its input pdf. For continuous
parameters, this sampling can be performed because of a very general result of probabil-
ity theory. Fig. 4-5 explains how a sample from a pdf can be obtained by first sampling
a uniform distribution between 0 and 1, then applying the inverse of the cdf to the out-
come.,

Often, we will also need to sample discrete random variables, such as lithology.
For instance, we may know that the lithology at one location is either sandstone, shaly
sandstone, silty shale, or shale. The four probabilities of occurrence add up to one and
can be translated in four colors that each occupy a fraction of a segment of length 1
(Fig. 4-6). As in the previous case, a uniform distribution sampling can be used. The
lithology outcome is then simply the one corresponding to the color in which the sam-
ple of the uniform distribution falls.
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KRIGING IN THE FRAME OF A HEADS-OR-TAILS GAME

100 random "Heads-or-Tails" samples

Heads or Tails

D 10 20 30 40 ISO 60 70 80 90 100

Best estimate is the mean (zero!)
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Sample number
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BASICS OF MONTE-CARLO SIMULATION (2)
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SIMULATION OF A CONTINUOUS RANDOM VARIABLE
WITH A CDF F(x)

| Draw a

‘ uniform
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between
zero and |
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Find the value X associated with U
using the formula X=F-(U)

SEG/EAGE DISC 2003 P. Delfiner 4-5

4-4 « Society of Exploration Geophysicists / 'European Association of Geoscientists & Engineers




Olivier Dubru!e_-

.

SIMULATION OF A DISCRETE RANDOM VARIABLE

Assumption X takes n discrete values x,, x,, ... , Xy with probabilities
Pi1s P2s -« s Pn:

Method On the Y axis define segments of length p,, p,, ... , Px-
Simulate a uniform [0,1] and select the value corresponding
to the segment in which the random point falls.

P4

P3
U(0,1) =

SEG/EAGE DIBC 2003 P. Delfiner 4-6

T'he most difficult issue in MCS is that of correlations between parameters. Take
the example of three prospects located in the same play. each with a normal pdf for
their STOOIP (Fig. 4-7). What will be the pdf of the complete volume, assuming that
the three prospects are discoveries? In probability theory, one cannot avoid making cor-
relation assumptions when combining several pdfs. These assumptions go from one
extreme (pure independence between pdfs) to another (complete dependence). In the
first instance, the three pdfs tend to compensate each other. Independence implies that
there is a very small probability that the three volumes will be all low or all high. On
the other hand, complete dependence implies that volumes are either all low, all medi-
um, or all high. Thus, the range of uncertainty over the pdf of the sum is much larger
in the complete dependence than in the complete independence situation. Note that the
standard industry approach, which consists of adding the P90s and the P10s (see Fig. 1-
25 for definition) of individual field reserves to get the P90 or the P10 of the company’s
total reserves, is equivalent to assuming complete dependence between all fields.

Fig. 4-8 is an interesting paradox. Assume we know nothing about two parame-
ters. We only know that they are between 0 and 1, leading to the assumption that their
value is uniformly distributed between 0 and 1. What about their sum? A casual run of
a Monte-Carlo spreadsheet program leads to . . . a triangular distribution between 0 and
2, with a mode of 1! Why is the sum not distributed uniformly between 0 and 2? How
is it possible that there is less uncertainty on the sum of two unknown parameters than
on each of them individually? Again, the explanation lies in the parameter-correlation
question, to which there cannot be an answer such as “I don't know.” With Monte-
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An independence hypothesis is a very strong hypothesis!!!
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Carlo software, not entering any correlation information in the input is usually inter-
preted as an independence assumption. As a result, there is a tendency to mutual com-
pensation between the two parameters, leading to a sum that is closer to the middle
than to the edge of the [0,2] interval.

There are different approaches for generating samples of parameters that are corre-
lated with each other. The first approach consists of working sequentially. For instance,
net/gross is sampled first, then porosity is sampled as a function of this net/gross, then
saturation itself is controlled by porosity and net/gross. Another example is porosity and
permeability. Porosity is sampled first using a Gaussian distribution, then the logarithm
of permeability is derived from porosity using the regression equation associated with
the permeability-porosity calibration. The reliability of the regression equation can be
accounted for by adding a random term to the prediction of the logarithm of permeabil-
ity from porosity.

The second approach consists of making an assumption — usually that it is nor-
mal — about the multivariate distribution of the correlated parameters to be sampled.
For instance, it is assumed that the log of permeability and the log of porosity follow a
binormal distribution with a correlation coefficient equal to p. There are many ways to
generate samples from multivariate normal distributions; the approaches are simple for
bivariate distributions (Johnson, 1987). When there are more than two variables, the
general approach is discussed in Fig. 4-9. The trick consists of reducing the problem to
that of generating uncorrelated univariate samples. The first approach consists of writ-
ing the sampled multivariate random variable as a linear combination of independent
univariate samples, through Cholesky factorization. The other approach consists of
working sequentially and using the property that, in the normal multivariate case, uni-
variate conditional distributions are also Gaussian. These two approaches will also be
used in the algorithms for the conditional simulation of continuous parameters. The
use of multivariate normal distributions may not prove sufficient in situations where
some of the variables are not normally distributed. This is why some MCS commercial
programs prefer to use rank correlations, which are independent of the pdf of individual
variables.

4.3 Conditional Simulations for Continuous Parameters
4.3.1 Example

MCS is a technique that takes the pdf of individual random variables as input and
derives as output the pdf of any function of these variables (Fig. 4-4). Nowadays, para-
meters such as porosity, lithology, or net/gross are mapped in 2D or 3D. Because of the
uncertainty affecting each of these models, we may wish to quantify the joint impact of
these uncertainties on the STOOIP or on other results. We may also want to know what
the heterogeneities actually look like away from the wells, in order to input a realistic
model into flow simulation. GCS is the method that will allow us to generalize MCS to
2D and 3D models.

Fig. 4-10 is an example of acoustic-impedance kriging, as interpolated from six
wells in a North Sea field. Away from the wells, kriging is very smooth, because there is
no well information available, and the best estimate is the mean. However, this is not

Distinguished Instructor Short Course « 4-7



Conditional Sr'_rm_:faﬁon for Heterogeneity Modeling and Uncertainty Quantification

GENERATE A SAMPLE FROM A MULTIVARIATE
NORMAL DISTRIBUTION (JOHNSON, 1987)

f(z)=02r)"N "":"|Z|_I";2 exp ~%(z -m)'E"Y(z-m)

General approach: use a trick to only have to generate one sample of one
univariate distribution at a time. Two techniques for this:

«  Write YAEY. &S] where Yis a vector of N independent normal variables.

Generate Z, then Z, , /| Z,then Z , | Z 4, Z

Each conditional distribution is Gaussian with mean and variance equal to the
mean and variance derived from the regression against previously simulated
values
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A KRIGING EXAMPLE IN 3D (LAMY ET AL., 1998b)

Why should
the model be
smooth
precisely away
from the data
points?
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representative of the degree of variability of acoustic impedance away from the wells.
Fig. 4-11 shows a realization of GCS, using exactly the same input parameters as the
kriged model of Fig. 4-10. This realization is not optimal in the kriging sense, but it has
the property of satisfying the variogram and also some a priori statistics on the mean
and standard deviation, while still honoring the well data. Because these conditions are
not sullicient to entirely constrain the model, a large number of 3D realizations can be
generated that all satisfy these constraints (Fig. 4-12). Each GCS realization is represen-
tative of the heterogeneities that are likely to be encountered in the reservoir (Fig. 4-
13).

A fundamental difference between kriging and a GCS realization is that, although
both honor the wells, kriging becomes smoother away from the wells, whereas the GCS
realization looks the same everywhere. If the well locations are not displayed on the
model, it should be impossible to guess where there are on the basis of a GCS realiza-
tion. On the other hand, their location is usually easy to spot on a kriged map. Fig. 4-
14 illustrates this point on three 2D GCS realizations obtained from 70 wells. None of
the three realizations show “bulls-eyes™ at the well locations. The three intermediate
nonconditional simulations will be discussed later.

What is the relationship between kriging and GCS realizations? As the number of
realizations becomes very large — say, a few hundred — their mean becomes closer and
closer to kriging. Why is this? Because all realizations honor the wells, they tend to be
very similar to each other close to the wells. On the other hand, they are different away
from the wells, and they become uncorrelated as soon as the distance from the wells is

A SIMULATION EXAMPLE IN 3D (LAMY ET AL., 1998b)

Isn’t this model
more representative
of the
heterogeneities that
are likely to exist
between wells?

Al

km.g/s.cm

SEGEAGE DISC 2003 TFEEUK Geoscience Research Centre 4-11

Distinguished Instructor Short Course « 4-9



Conditional Simulation for Heterogeneity Modeling and Uncertainty Quantification

GENERATION OF MULTIPLE REALIZATIONS
(LAMY ET AL., 1998b)
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TWO REASONABLE BUT INCOMPATIBLE OBJECTIVES

1. Minimize the interpolation error between wells

> | KRIGING

2. Give a representative picture of the
heterogeneities between wells.

s> | CONDITIONAL SIMULATION
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CONDITIONAL SIMULATION: A 2D EXAMPLE

! Three realizations
constrained by
70 control points

Intermediate
nonconditional
simulations used
| in the simulation
algorithm
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greater than the range of the variogram. This results in a significant compensation effect
from one realization to another. Consequently, the mean of the realizations tends to be
very smooth. If we now calculate at each location the standard deviation of the realiza-
tions, we find the kriging standard deviation, which is equal to zero at the wells because
each realization honors these data (Fig. 4-15). Obviously, the GCS realizations also sat-
isfy the spectral density associated with the input covariance or variogram, which was
not true for kriging. Fig. 4-16 compares the properties of kriging and GCS.

Figs. 4-17 and 4-18 illustrate again the difference between GCS and kriging. We
know that the larger the variogram range, the better the correlation between values
away from each other. As a result, kriging remains controlled by the well data, as long
as the distance from the wells is smaller than the variogram range (Fig. 4-17). GCS real-
izations look rather smooth, precisely because the variogram model has a large range.
On the other hand, we know that kriging comes back rapidly toward the mean with
short-range variograms (Fig. 4-18), whereas GCS realizations look quite noisy. In other
words, the more randomness there is in the variable, the noisier the simulations . . . and
the smoother kriging!

The assumption made by GCS is not that Nature is random, but that our knowl-
edge of the reservoir is not sufficient to generate a single (deterministic) model of het-
erogeneities between wells. There are a number of possible scenarios given the data and
the a priori variogram and trend model. and the probabilistic approach is very conve-
nient for generating these scenarios (Fig. 4-19). Because of their great variability away
from the wells, realizations are more realistic than most deterministic models, which are
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STANDARD DEVIATION OF REALIZATIONS
(LAMY ET AL., 1998b)
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COMPARING KRIGING AND CONDITIONAL SIMULATION
(VERTICAL & HORIZ. SPHERICAL VARIOGRAM RANGE =40% OF MODEL SIZE)
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WHY STOCHASTIC, PROBABILISTIC OR GEOSTATISTICAL
TECHNIQUES IN RESERVOIR MODELLING?

Is nature random?

“This is not the issue!

We deal with one reservoir only, but our
knowledge of it is such that several
reservoir models are compatible with our
a priori knowledge and data”

SEGIEAGE DISC 2003

usually far too smooth. We will see later how GCS is now routinely used to generate
representative 3D heterogeneity models or to quantify the uncertainty associated with
3D models.

4.3.2 Algorithms
* The two main kinds of algorithms

Let us focus on the conditional simulation of a stationary Gaussian random function
measured only at wells. We assume that its pdf and its variogram are known. There are
two main categories of algorithms for GCS (Fig. 4-20). The first kind directly generates
realizations that not only match the statistical properties of the modeled parameter, but
also honor the data points. Among those, the most popular ones are sequential
Gaussian simulation (SGS), LU matrix decomposition, and iterative techniques in a
general sense.

The second kind of algorithm works in two steps. First, a nonconditional simula-
tion is generated. The realization, which does not honor the data points, is then “condi-
tioned” to the data points. In the discussion below, we have selected the techniques that
appear to be the most interesting and widely used. They will be described in 2D, but
their generalization to 3D is straightforward.

* Direct generation of conditional simulations

SGS (Deutsch and Journel, 1992) is probably the most popular and flexible tech-

4-14 » Sbciety of Exploration Geophysicists / European Association of Geoscientists & Engineers-



Olivier Dub{u_h_’:*

THE MAIN CONDITIONAL SIMULATION APPROACHES

A Gaussian model and control points

Moving Average

Conditional simulations
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nique today. Assume, for simplification, that a conditional simulation is generated on a
2D grid, where, say, three wells are available. The SGS approach is inspired directly from
an already discussed result of the statistical literature (Fig. 4-9). The algorithm works
sequentially, successively drawing and filling random locations of the plane (Figs. 4-21
and 4-22). At each new location, the value is kriged from the previously sampled values
and the well data. Then a random value is sampled from the Gaussian pdl, with mean
equal to the kriged value and standard deviation equal to the kriging standard devia-
tion. Then the sampled value is merged with the rest of the data set, and a new random
location is chosen. The data locations are left unchanged in the process. The result is a
Gaussian realization satisfying the input statistics (mean, variance, and variogram). This
is satisfied regardless of the order in which the sampled points are drawn. However, a
random sequence is recommended to avoid spreading random artifacts. Fig. 4-23 pro-
vides examples of anisotropic SGS realizations on a North Sea field. The weakness of
SGS is that it requires solving a kriging system at each location, which may prove time-
consuming. Also, each kriging system is calculated in a moving neighborhood. which
implies that the covariance function model is properly represented only within the dis-
tance of the moving neighborhood.

The second approach for direct conditional simulation was introduced to the
petroleum industry by Davis (1987) and Alabert (1987). It is another way, as described
in Fig. 4-9, to simplify the problem of GCS into that of generating independent random
variables. The covariance matrix is decomposed into the product of a lower triangular
matrix and its transpose. The conditioning by the data points is easily introduced as a
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further constraint in the algorithm. The disadvantage of the method is that, if the simu-
lation is calculated at 10,000 grid nodes, it requires the decomposition of the covariance
matrix, whose dimension is 10,000 x 10,0007

The third approach is that of iterative techniques, which belong to the general
class of Markov-Chain Monte-Carlo (MCMC) simulation (Gamerman, 1997). The
Norwegian School (Hegstad et al., 1994; Omre and Tjelmeland, 1997) is very active and
successful at developing and applying MCMC algorithms for sampling multivariate real-
izations constrained by wells, seismic, and production data. Their approach is Bayesian
and consists of calculating the posterior multivariate pdf of the variables of interest and
then sampling this pdf using the MCMC Metropolis-Hastings algorithm. Fig. 4-24
describes the Metropolis algorithm, which is a simplified version of Metropolis-
Hastings, applying in situations where iterative perturbations are symmetrical. The algo-
rithm starts from an initial random realization and converges toward the desired one
thanks to a proper choice of iterative perturbations. The choice of the perturbations to
apply is quite general and is not discussed here.

The Gibbs Sampler is the second prominent class of MCMC algorithms (Fig. 4-25).
It was originally proposed by Geman and Geman (1984) and has found applications in
the fractal modeling of natural terrain. Arakawa and Krotkov (1996) used the results of
the work of Szeliski and Terzopoulos (1989) to generate fractal terrain models.

The simulated annealing algorithm used by Deutsch (1992) for generating geosta-
tistical realizations constrained by well-test data also belongs to the class of MCMC
techniques. Deutsch et al. (1996) generalize the approach to the incorporation of seis-
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MARKOV-CHAIN MONTE CARLO (MCMC) (1)
(GAMERMAN, 1997)

| METROPOLIS ALGORITHM
Goal: sample from posterior p(z,, Z,,

Start with initial [z,(0), z,(0) ...... .., z,(0)]

At each iteration t:

1. apply perturbation to values z,(t-1), z,(t-1),z;5(t-1),.. , Z,,(t-1).
2. accept result of perturbation with probability:

p(after perturbation)

min| 1,

p(before perturbation)
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mic data. Rather than formulate the problem in the Bayesian framework, where the
prior distribution (geostatistical model) is clearly differentiated from the likelihood (fit
to the seismic and production data), Deutsch et al. incorporate all the constraints (geo-
statistical constraints, fit to well data, well-test data, and seismic data) into a single
global objective function.

MCMC algorithms are very time-consuming. However, they are rather straightfor-
ward to program, and they are able to address very general conditional-simulation prob-
lems that incorporate a great variety of data. They should be used only if noniterative
approaches cannot address the problem. MCMC techniques give samples from the spec-
ified posterior distribution in the limit only. One method for deciding whether the algo-
rithm is close to the limit is output analysis (Ripley, 1981). MCMC applications go far
beyond geostatistical or petroleum applications. In the geophysical literature, the works
of Mosegaard and Tarantola (1995) or Sen and Stoffa (1996) are important references.

* Two-step approaches

Two-step approaches start with generating realizations of nonconditional simula-
tions. A nonconditional simulation matches the required statistics, but does not honor
the data values.

A very popular method for generating nonconditional simulations is the Fourier
integral method (Fig. 4-26). Yao (1998) provides numerous references to this very pop-
ular approach. She also proposes to develop this algorithm into a conditional one by
adding an iterative identification of phases to honor data values at sample locations.
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MARKOV-CHAIN MONTE CARLO (MCMC) (2)
(GAMERMAN, 1997)

GIBBS SAMPLING
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THE FOURIER INTEGRAL METHOD FOR GENERATING
NONCONDITIONAL SIMULATIONS (YAO,1998)

1. Sample the covariance model to obtain the sequence of C(k), k=0, 1,..,K-1

2. Compute density spectrum by discrete Fourier transform of C(k):

3. Derive amplitude spectrum from density spectrum by:
|[40)| = Js(),j=0,..K-1

4. Generate random phase sequence ¢(j) from uniform distribution in [0,2x]

5. Calculate Fourier coefficients:

A() =|AG)le @) j=0,...K-1

6. Apply inverse discrete Fourier transform to complex coefficients A(j):
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Another popular method, which Doyen (1988) used in his already-referenced
paper, consists of convolving a white noise realization by a weighting function whose
autocorrelation function is equal to the desired covariance. Exercise 3 illustrates how a
simple averaging transforms the realization of an uncorrelated parameter into the real-
ization of a correlated one. Oliver (1995) calls this the moving-average technique and
generalizes it in 2D and 3D. For each covariance model to be simulated. Oliver calcu-
lates what he calls the “square root of the covariance operator.” This is obtained by cal-
culating the Fourier transform of the covariance function, then taking the square root of
the result and deriving its inverse Fourier transform. In his paper, Oliver provides the
analytical expression of the square root of commonly used covariance functions. The
method is quite elegant but may prove time-consuming when covariances with large
ranges are simulated.

How do we obtain a conditional simulation from a nonconditional one? The
approach is widely used and explained by Chiles and Delfiner (1999). Fig. 4-27 sum-
marizes its main steps, which can be interpreted in two different ways. According to
one interpretation, a nonconditional simulation is generated first. Then a kriging-based
smooth correction function is calculated, which corrects the values at the wells in order
to make them honor the data. This is the approach described in Fig. 4-27. There is
another way to look at it. First, the kriged surface interpolating the variable ol interest
is calculated. Then realizations of the kriging error are simulated and added to the krig-
ing error. The result of each addition is a GCS realization. Fig. 4-14 shows examples of
three nonconditional simulations and three conditional simulations from a case study.

HOW TO CONDITION A NONCONDITIONAL SIMULATION

.

3 .

SEMACE DISE 3083 Conditional simulation= Surface A+Surface D Ph. Lamy
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« Nonstationary and non-Gaussian variables

By definition, SGS assumes that the simulated variable is Gaussian. The other
methods — except for MCMC, which is very general — build the conditional simula-
tions by multiple additions of elementary random variables. Because of the central limit
theorem (Fig. 1-29), the resulting realizations will tend to be distributed normally. If we
wish to simulate a non-Gaussian variable, two approaches are possible. The first one
consists of initially transforming the data pdf into a normal distribution. This can be
done using the normal-score transform. This simple transformation, described in Fig. 4-
28, assigns to each value of the original variable another value such that the distribution
of the transformed data is normal. Alter generating the simulation, a back-transforma-
tion must be applied (Deutsch and Journel, 1992). This approach, although more rigor-
ous, also has a number of drawbacks. It is nonlinear, and it becomes tedious to use
when a variety of data (seismic data, production data, etc.) are combined in the simula-
tion process (Tran et al., 2001). Quite often the second approach is preferred, especially
if the data histogram — as is usually the case with porosity data — is not too far from
Gaussian. This approach consists of applying “Direct Simulation,” that is, simulation on
the untransformed data. In most situations, the variogram will be correctly reproduced.
This is true, for instance, for SGS, as long as each simulated value is drawn from a local
distribution whose mean and variance are obtained by simple kriging (Journel, 1993).
The histogram will not be properly reproduced, but a number of techniques have been
proposed to reproduce this histogram (Tran et al., 2001).

THE NORMAL-SCORE TRANSFORM

Normal distribution N(0,1)

Experimental
distribution
to transform

SEG/EAGE DISC 2002
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The generalization to nonstationary variables is simple, because the trend is a
deterministic function. Only the residual from the trend changes from one realization to
another. This also applies to GCS with an external drift. Only in the case of Bayesian
kriging, where the coefficients of the trend are themselves random, does the trend
model change with the realization (see, for instance, Abrahamsen et al., 1991).

4.4 Cosimulation

By “cosimulation,” we mean all the situations in which the GCS of one parameter must
incorporate information from another parameter, which provides extra information
about the first one. In earth modeling applications, cosimulation can apply to a number
of possible situations (Haas et al., 1998).

4.4.1 Collocated simulation with seismic data as a secondary variable

* Handling linear relationships

This is the situation that has already been encountered with collocated cokriging. A
seismic attribute, known as the secondary variable, is statistically correlated with the
parameter of interest, known as the primary variable. Information from the secondary
variable must then be incorporated into the simulation of the primary variable, in order
to keep the consistency between values of the primary and of the secondary variable.
Usually, the collocated cokriging approach is applied jointly with SGS.

The SGS technique can be straightforwardly generalized to cosimulation (Gomez-
Hernandez and Journel, 1993). The only difference with the single-parameter situation is
that, instead of calculating the kriging estimate and standard deviation at each new sam-
pled location (Fig. 4-22), this time the cokriging estimate and standard deviation are cal-
culated. Fig. 4-29 shows an example of the simulation of net/gross constrained by a seis-
mic attribute. Here, the seismic parameter is considered to be deterministic, or exact,
because is does not change from one realization of the primary variable to another.

* Handling nonlinear relationships

Gastaldi et al. (1998) argue that linear relationships are too limited to predict reservoir
thickness from seismic parameters under tuning conditions. In a case study in which 15
wells and a 3D seismic survey are available, they build a large number of “pseudo-
wells” and derive a synthetic seismic from them. Modeling results show (Fig. 4-30) that
reservoir thickness, the parameter of interest, can be predicted from the “reservoir
isochron™ and the “stratigraphic isochron” seismic attributes, using two nonlinear rela-
tionships. Gastaldi et al. assume that this multivariate relationship can be described by a
joint probability distribution function. A multiparametric kernel density estimation
method is used to estimate this pdf from the synthetic data set. Collocated cokriging,
which is based on the correlation coefficient between the primary and the secondary
variable, cannot be applied in this situation. However, the Bayesian formalism of Doyen
et al. (1996), already presented in Section 3.6.4, can be applied, because the likelihood
function is quite general and is not limited to linear relationships. Using SGS, Gastaldi
et al. generate a large number of reservoir thickness realizations constrained by seismic
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FITTING A NONLINEAR RELATIONSHIP BETWEEN PRIMARY
AND SEISMIC VARIABLE (GASTALDI ET AL., 1998)
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and derive the best geostatistical estimate of thickness — a kind of generalized nonlin-
ear cokriging — by averaging the Bayesian simulations. In their example, estimation at
five blind wells (Fig. 4-31) shows that the method gives better results than kriging or
than standard “linear” collocated cokriging.

Before Gastaldi et al., Bashore et al. (1993) developed a somewhat similar tech-
nique, which they called the cloud transform, for handling nonlinear relationships. Based
on the crossplot of porosity versus acoustic impedance, they build several porosity his-
tograms associated with each class of impedance values. This is a similar philosophy to
that of the kernel density estimation. Then, they generate the SGS conditional simula-
tions by sampling a porosity value from the histogram associated with each seismic-
impedance value. The approach they use to ensure lateral continuity between sampled
porosity values is different from and somewhat less general than that of Gastaldi et al.

4.4.2 Joint simulation of two parameters

This is exactly the generalization of the problem already discussed with joint Monte-
Carlo simulation. We need to generate conditional simulations of two parameters at the
same time, but cannot generate them independently because we know that there is a
degree of correlation between them. Take, for instance, porosity and net/gross (Fig. 4-
32). Here, cosimulation appears to be the right approach. With each realization, two
new maps of porosity and net/gross are generated. Both parameters are treated as sto-
chastic. However, as explained by Gomez-Hernandez and Journel (1993), the sequential
simulation algorithm can still be applied.

RESERVOIR THICKNESS PREDICTION AT 5 NEW WELLS,
(GASTALDI ET AL., 1998)

New Well
Absolute Error (m)

Average | Maximum

Kriging

Cokriging
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4.4.3 Cascade or parallel conditional simulation of several parameters?

Often, as Haas et al. (1988) discuss, different simulated variables are unlikely to play
the same role. For instance, we may first consider a porosity simulation constrained by
seismic attributes, and then other variables such as permeability or saturation can be
generated from the porosity model. In this case, it is more logical to perlorm successive
simulations, beginning with the most informed variable and using the previously simu-
lated variables to constraint further steps. In other words, it may be better to perform
cascade instead of parallel simulations (Fig. 4-33). This is an approach that has been
clearly formalized by the Norwegian School, using diagrams such as that of Fig. 4-34.
I'his diagram translates into a cascade simulation approach, where a reflection coeffi-
cient realization is first obtained from seismic data (this will be discussed later in the
geostatistical inversion chapter), then acoustic impedance is derived from the reflection
coelficient, then both permeability and porosity are derived from the acoustic imped-
ance (Fig. 4-35). Another plausible cascade simulation approach would be to derive
porosity from acoustic impedance, then permeability from porosity.

4.5 Conditional Simulation for Geological Facies Modeling
4.5.1 Introduction

Alter discussing the conditional simulation of continuous parameters such as porosity
or water saturation, we are now going to address the simulation of discrete parameters,

MAP CORRELATION IN CONDITIONAL SIMULATION
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Beware: joint simulation is different from collocated simulation!
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CASCADE OR PARALLEL SIMULATION?
(HAAS ET AL, 1998)
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SIMULATING ONE PARAMETER AT A TIME
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SIMULATING ONE PARAMETER AT A TIME
(HEGSTAD AND OMRE, 2001)
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such as geological facies, lithology, or rock types. This is a very important topic in
reservoir characterization and is described in more detail by Dubrule (1998). Here, we
will focus on what needs to be known in order to incorporate seismic data into earth
models.

Geological quantification is a topic that has always raised much interest and
debate among geologists. Fig. 4-36 shows three hand-drawn geological cross-sections
of the Statfjord Formation in the Brent field (North Sea). Depending on the deposition-
al environment he/she is dealing with, and using the well data as a constraint, the
reservoir geologist can draw sketches of the distribution of sands and shales.
Unfortunately, hand-drawn cross-sections are limited in that they do not lead to a 3D
model, and they represent only one possible model among an infinity of scenarios
matching the wells and compatible with the depositional environment. In the early
1980s, it became clear that geostatistical techniques could help generate such 3D geo-
logical scenarios. These scenarios will never be quite as realistic or “geologically
loaded” as those produced by a geologist, yet they present the advantage of being mul-
tiple and three-dimensional. Today, there are two major classes of techniques available
for generating 3D stochastic models: pixel-based and object-based models (Fig. 4-37).
Object-based models (Clemetsen et al., 1990; Damsleth et al., 1990) assume that geo-
logical bodies such as channels or crevasse splays can be described using simple geo-
metrical shapes. On the other hand, pixel-based models adopt a more modest approach
by simply making assumptions about the statistical relationships between the facies
types present at individual grid cells of the earth model.
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HAND-DRAWN CROSS-SECTIONS FROM STATFJORD
FORMATION, BRENT FIELD (JOHNSON & KROL, 1984)

TWO MAIN KINDS OF STOCHASTIC TECHNIQUES FOR
GENERATING 3D GEOLOGICAL MODELS
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4.5.2 Pixel-based models
* Indicator simulation

The most popular pixel-based approach is that based on the indicator variogram. Take
the example of wells drilled in a fluviatile reservoir. On the basis of cores or well logs,
a sequence of different lithologies encountered by the wells can be identified. If the
different lithologies are coded by different integer values, the next step consists of
defining “indicator variables” (Fig. 4-38), which characterize the presence or absence
of the facies of interest along the wells (in what follows, the generic term “facies” will
be used to designate a discrete variable representing the presence or absence of a geo-
logical feature, such as depositional environment, lithology, or rock type). Once this
has been done, the indicator variogram associated with each indicator variable is cal-
culated.

Fig. 4-39 shows the vertical and horizontal variograms of the shale indicator vari-
able calculated within a small area of the Prudhoe Bay field. As expected, the vertical
variogram range is on the order of meters, whereas the horizontal variogram range is on
the order of kilometers. Fig. 4-40 summarizes the property of the indicator variogram
and its associated covariance. The indicator variogram measures, for each distance, the
probability that two facies found this distance apart are different. Of course, this proba-
bility increases with distance. There is also a direct relationship between the proportion
of the facies of interest and the sill of the variogram.

The most common models that are used for indicator variograms are the spherical

FIRST STEP IN INDICATOR SIMULATION
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INDICATOR VARIOGRAMS FOR SHALE INDICATOR
VARIABLE, PRUDHOE BAY, USA (PEREZ ET AL., 1997)
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and exponential models (Fig. 4-41). Understandably, the Gaussian model is too smooth
to represent the kind of discontinuities associated with the changes of an indicator vari-
able from 0 to 1.

Once a model has been fitted to the experimental variogram, indicator simulation
is usually performed using the sequential indicator simulation (SIS) algorithm originally
developed by the Stanford School (Journel and Gomez-Hernandez, 1989), SIS (Fig. 4-
42) is the generalization of SGS to discrete variables. The only slight difference lies in
step 2 (compare Figs. 4-22 and 4-42). With SGS, step 2 consists of kriging the mean
and standard deviation of the variable at the current location. With SIS, step 2 consists
of kriging, from the surrounding indicator values, the probability of having a value of
the indicator function equal to one. This probability is equal to the mean of all possible
values of the indicator variable at that location.

[o better understand the geological implications of using one indicator variogram
model rather than another, we have computed nonconditional realizations for dillerent
kinds of models. The same random visitation path was used for the different models, in
order to stress the impact of the choice of the variogram model, independently from
that of the random path. Fig. 4-43 shows that there is very little difference between a
realization generated by a spherical and that generated by an exponential variogram. We
just expect the exponential model realizations to be a little bit noisier, because of the
steeper slope of this variogram model at the origin. In the following examples, we will
always use the spherical variogram model. Fig. 4-44 gives an idea, through the display
of four realizations, of the change from one realization to another while keeping the

THE TWO MOST-FREQUENTLY USED INDICATOR
VARIOGRAM MODELS

Spherical

Exponential
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SEQUENTIAL INDICATOR SIMULATION (SIS)
ALGORITHM

[ 1. Draw random location between wells | . 2. Krige P(I=1) at random location .

3. Sample indicator with probability 0.7 | 4. Merge sampled value & draw

new location

1
U(0,1) == I - |=1
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IMPACT OF CHANGING INDICATOR VARIOGRAM MODEL
(2/3 SAND AND 1/3 SHALE, VERTICAL AND HORIZONTAL RANGE=30%)

[Spherical

Exponential
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4 REALIZATIONS OBTAINED WITH SPHERICAL VARIOGRAM
(2/3 SAND AND 1/3 SHALE, VERTICAL AND HORIZONTAL RANGE=30%)

SLG/LAGL DISC 2003

variogram model fixed. Figs. 4-45 and 4-46 show the impact of changing the horizontal
or the vertical range of the variogram model.

[oo often, the range of an indicator variogram is considered to be representative of
the size of the individual facies bodies. This is wrong. To be convinced of this, just
think that the indicator variogram of the “shale” occurrence is the same as the indicator
variogram of the “non-shale™ occurrence. How could the range be representative of both
the size of shale and non-shale bodies? Fig. 4-47 clarifies the relationship between the
size of a geological object and the range of the indicator variogram. The spatial facies
proportion Q plays a significant role in the calculation. The greater the proportion, the
more the regions of occurrence of the facies of interest will be connected with each
other, thus increasing their average lateral extent. Carle and Fogg (1996) derived the
relationship between the parameters of the indicator variogram and the transition prob-
abilities used in Markov-Chain simulation (which should not be confused with the
already discussed MCMC). A recent paper by Ritzi (2000) further develops the results
of Carle and Fogg.

[he previous examples show that the outcome of SIS is not very strongly con-
strained in terms of geometry. This is because the indicator variogram itself does not
carry much geometrical information. This may prove to be a blessing in situations
where the geometry of various geological bodies is poorly known. In carbonate reser-
voirs for instance, SIS is often used, and we will see later a very good example of it
(Figs. 4-63 to 4-66). However, in [luvial or fluvio-deltaic environments, for instance, it
may be necessary to control the geometry of the simulated bodies. This is the goal ol
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IMPACT OF HORIZ. RANGE OF SPHERICAL VARIOGRAM
(2/3 SAND AND 1/3 SHALE, VERTICAL RANGE=30%)

' Horizontal Range = 30% '

| Horizant;IEér;g; 70‘;/0

l Horizontal Range = 100%
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IMPACT OF VERT. RANGE OF SPHERICAL VARIOGRAM
(2/3 SAND AND 1/3 SHALE, HORIZONTAL RANGE=30%)

Vertical Range = 30% |

Vertical Range = 70%
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GEOMETRY FROM INDICATOR VARIOGRAM
(CARLE AND FOGG, 1996)

Variogram

Ordinate Q

SILL Q(1-Q)

Distance h

L is the average length of facies 1

L = Q/variogram slope at the origin, where Q is proportion of facies 1

SEQ/EAGE DISC 2003

object-based models. But before presenting these models, let us discuss other pixel-
based techniques used in the industry.

* Other pixel-based models

The truncated Gaussian simulation method was developed by the Heresim Group
(Rudkiewicz et al., 1990). Fig. 4-48 is an illustration of the technique and an example
of the kind of 2D realization obtained with a three-facies model. In this 2D example, the
method consists of generating the pixel-based model in two steps. First, a continuous
Gaussian simulation is generated using a standard simulation technique, then two cut-
offs are applied to it, defining three different “facies.” Because of the way the facies map
is constructed, spatial relationships between different facies are automatically intro-
duced. For instance, in Fig. 4-48, direct transition from facies 1 to facies 3 is not possi-
ble without going through facies 2. These implicit relationships may prove useful when
they correspond to the modeled geology. In other situations, they are a limitation of the
method. Truncated Gaussian simulation can also be used for generating realizations
composed of two facies only (Fig. 4-49).

The generalization of Markov-Chain simulation (not to be confused with MCMC)
from one to three dimensions has always proved very difficult. In a recent paper, Parks et
al. (2000) propose to use the [lexibility of simulated annealing algorithms to generate
grids with Markov statistical structures honoring the wells. This is a promising area of re-
search, because the quantification of geological patterns by Markov chains has always
been attractive to geologists. However, convincing 3D applications are yet to be produced.

Distinguished Instructor Short Course + 4-35



Conditional Simulation for Heterogeneity Modeling and Uncertainty Quantification

A 2D EXAMPLE OF TRUNCATED GAUSSIAN
SIMULATION

Define 2 truncation thresholds Generate facies map

Surface to
truncate
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Facies 1
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AN EXAMPLE OF TRUNCATED GAUSSIAN
SIMULATION
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Strebelle and Payrazyan (2002) argue that the variogram, which is a two-point
measure of spatial variability, cannot describe realistic geological features. They develop
multiple-point geostatistics using a training image instead of a variogram to quantify
geological heterogeneity. The training images are nonconditional representations of the
geology of interest that can be hand-drawn by a geologist or produced by geological
modeling software (process models). Then the method “learns™ what statistical patterns
are contained in the training images and reproduces these patterns using a conditional
simulation approach. Existing seismic data can also be used to further constrain the
probability to find a given lithology or facies at a location of the model. Multiple-point
geostatistics addresses a real issue, that of injecting more geological information in geo-
statistical models. However, at this stage, it remains very difficult to use, and a number
of issues have to be addressed to make the workflow applicable in routine petroleum
applications.

The use of Markov random fields is not to be confused with that of Markov chains
or MCMC. Markov random fields are very popular in image analysis (Besag, 1974) for
quantifying the statistical relationship between one pixel and the surrounding pixels. (L.
Eidsvik et al., personal communication, 2003) express the probability of having sand at
one grid cell as an exponential function of the number of sand grid cells in the neigh-
borhood. Farmer (1988, 1992) introduced these models to the oil industry, but they
have proved difficult to use for quantifying geology. This is because, as with the method
of Strebelle and Payrazyan, they require the use of a training image for calibrating the
multipoint statistics quantified by the Markov random field model.

4.5.3 Object-based models

The Norwegians pioneered the development of object-based models, which produced
satisfactory representations of the distribution of channels in fluvio-deltaic formations
within some of their giant fields (Fig. 4-50). The difference from SIS realizations is
striking. Instead of dealing with “salt-and-pepper” models, poorly constrained geometri-
cally, we now have distributions of objects with well-defined shapes and varying size.

The model of Fig. 4-51 was produced within a fluviatile formation in the North
Sea. In this formation, we were dealing with meandering channels, the architecture of
which could be better constrained using object-based models rather than using SIS. In
Fig. 4-52, we are also dealing with fluvial channels, but they are assumed to be
straighter than in the previous case.

Object-based modeling simply assumes that the various facies are associated with
well-defined geometries and that their size (width, thickness, and length) is random
and can be statistically quantified by the reservoir geologist. Object-based simulation
can also incorporate constraints about the relative positions of different geological
objects (for instance, crevasse splays, which result from sediment spills on the edges of
channels, must always be located close to a channel, see Fig. 4-52). Trends can also be
incorporated for controlling the proportion of various objects vertically or spatially.

Object-based simulation algorithms work easily in situations where the well spac-
ing is much greater than the lateral dimension of the modeled objects. However, condi-
tioning is much more difficult when sand-body dimensions are large compared with
well spacing, because well-to-well geological correlations are difficult to handle
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OBJECT-BASED MODELS FOR MEANDERING
CHANNELS
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(Dubrule, 1998). Object-based models are not “better” or “worse” that indicator simula-
tion. They are just better suited to certain kinds of geological environments. So far, their
main application has been in fluvio-deltaic environments.

4.5.4 Facies models constrained by seismic information

We have already seen how information from a seismic attribute could be incorporated
to reduce the uncertainty on the kriging or conditional simulation of the primary vari-
able, when this variable was continuous. There may also be situations where the seismic
data provide direct information about the distribution of various geological facies in the
reservoir. Everybody has seen these impressive seismic-attribute maps from deep off-
shore reservoirs, showing clear meandering channel patterns. The challenge in con-
straining facies models by seismic data is that a discrete parameter (presence or absence
of a given facies) must be constrained by a continuous (seismic-attribute) parameter.

We may wish to constrain an indicator simulation or an object model using seis-
mic data. In both situations, two approaches are possible (Fig. 4-53). The first one is to
calculate the probability that a facies is present at a given location, then use this proba-
bility as a constraint in the simulation. The other one is to directly produce a joint sim-
ulation of facies and acoustic impedance, making sure that they are consistent with seis-
mic data. In this section, we will discuss techniques whereby facies distributions are
constrained by 3D probability models derived from seismic. Later on, in the geostatisti-
cal inversion chapter, we will see how joint realizations of facies and acoustic imped-
ance distributions can be directly constrained by seismic data.
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CONSTRAINING DISCRETE FACIES MODELS BY
SEISMIC DATA

Approach 1

Derive probabilities from seismic, then simulate facies model using:
- Indicator simulation: Bayesian approach (Doyen at al., 1994)

- Object-based models: Simulated annealing (Skare et al., 1997)

Approach 2

Directly cosimulate facies and other seismic parameters using:

- Indicator simulation (Grijalba-Cuenca et al., 2000; Hegstad and
Omre, 2001)

- Object-based models (Tjelmeland and Omre, 1997)

SEGEAGE DISC 002

« Constraining pixel-based models by probabilities derived [rom seismic data

Doyen et al. (1994) propose a very elegant approach that is a generalization to discrete
models of the methodology developed for continuous variables (Figs. 3-73 to 3-75).
Commonly, when relating facies information with seismic data, a plot such as that of
Fig. 4-54 is derived from the seismic-to-well calibration. This plot gives the seismic-
attribute histogram associated with each facies (here, the two facies are shale and sand,
and are called lithoclasses). The more difference there is between histograms, the more
hope there is that seismic will help discriminate between lithoclasses. Now, consider a
grid cell of the earth model where the seismic attribute has been mapped. Based on the
value of this attribute, a probability of the presence of shale or sand can be derived (Fig.
4-54). Doyen et al. interpret this value as a likelihood function, similar to the one
derived from the crossplot in the case of continuous variables (Fig. 3-73).

Now, assume we are running SIS (Fig. 4-55). We know (Fig. 4-42) that SIS pro-
vides, at each sampled location, the probability of finding sand or shale, on the basis of
the facies encountered at the wells and at the previously simulated locations. This can
be interpreted as an a priori probability, based on wells and on the a priori geological
model quantified by the variogram.

Now we have two pieces of information about the probability of finding shale or
sand: the prior probability given by SIS, and the likelihood given by the seismic
attribute. Doyen et al. simply combine these two pieces of information using Bayess
theorem (Fig. 4-56). The actual simulation runs are performed using SIS, with the only
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CONSTRAINING FACIES SIMULATIONS BY PROBABILITIES.
QUANTIFYING THE LIKELIHOOD (DOYEN ET AL., 1994)
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CONSTRAINING FACIES SIMULATIONS BY PROBABILITIES.
QUANTIFYING PRIOR PROBABILITIES (DOYEN ET AL., 1994)
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CONSTRAINING FACIES SIMULATIONS BY PROBABILITIES.
COMBINING THE INFORMATION (DOYEN ET AL., 1994)

| BAYES * THEOREM |

Likelihood Function Prior Distribution Posterior Distribution

f(z|shale) 1 1 l;hale

f(z|sand) Psand
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modification that, at each new sampled location, the probability of finding each facies is
calculated using the posterior rather than the prior probability.

Figs. 4-57 and 4-38 are an application of Doyen et al.’s methodology in the
Ness Formation of the Oseberg field (North Sea). Seismic amplitude is first calibrated
against occurrences of channels at the 14 wells, showing that there is a contrast in
rellection strength between channel and non-channel deposits. However, there is also
some overlap between the two histograms, making the discrimination difficult on the
basis of seismic data. In addition to the approach just described, Doyen et al. con-
strained the SIS realizations using locally identified channel directions, as picked on
seismic data by the interpreter. As a result, the realizations of Fig. 4-58 show a signifi-
cantly curved shape.

Insalaco et al. (2001) present an application of this approach to the detailed geo-
logical modeling of a West Africa turbidite deposit. Based on the pdfs associated with
each individual facies, they produce a global histogram of acoustic impedance per facies
(Fig. 4-59). Then, after translating this histogram into a likelihood function, they pro-
duce a model of the probability of encountering each [acies at every grid cell of the
earth model (Fig. 4-60 shows the probability of encountering facies 8). This informa-
tion is validated and. if needed, modified by the sedimentologist. Using this as input, a
realization of the 3D facies model is produced (Fig. 4-61).

Lo and Bashore (1999) propose a similar approach to those of Doyen et al. (1994)
and Insalaco et al. (2001). They obtain a 3D density model by inversion, then translate
it into probabilities of various facies being present. Facies realizations are constrained by
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CONSTRAINING FACIES SIMULATIONS BY PROBABILITIES.
CASE STUDY (DOYEN ET AL., 1994)
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CHANNEL SAND SIMULATIONS CONSTRAINED BY
SEISMIC AND WELLS (DOYEN ET AL., 1994)
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CONSTRAINING FACIES SIMULATIONS BY
PROBABILITIES (INSALACO ET AL., 2001)
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FACIES PROBABILITIES DERIVED FROM ACOUSTIC
IMPEDANCE (INSALACO ET AL., 2001)
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ONE FACIES REALIZATION CONSTRAINED BY SEISMIC-
DERIVED PROBABILITY (INSALACO ET AL., 2001)
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these probabilities and used as a template to predict porosity [rom acoustic impedance,
using the crossplot associated with the facies present at each location.

* Constraining object-based models by seismic data

It is fair to say that there is not much experience in the industry about constraining
object-based models by seismic data. The Norwegian School (Macdonald et al., 1995;
Skare et al., 1997; and Holden et al., 1998) has been a leader in developing this
approach, which assumes that — as the previously described method does — thanks to
seismic data, it is possible to define a likelihood function at each grid cell of a 3D earth
model. Then a simulated annealing algorithm is used to generate realizations by itera-
tively adding and subtracting channel bodies from the simulated volume. At each itera-
tion, a new objective function is calculated. The channel is accepted if the objective
function is decreased and is removed otherwise. One of the terms of the objective func-
tion evaluates the likelihood function of the new realization. The higher this likelihood,
the smaller the objective function.

Yarus et al. (2000) describe an application of such a methodology for constraining
an object-based model by seismic data in a Tertiary reservoir in the Gulf of Thailand
(Fig. 4-62). The environment is tide-dominated, associated with shallow-marine
deposits. A 3D probability cube was derived from the seismic data for each facies in
each zone. Then an object-based model was used to stochastically model the distribu-
tion of bar and channel facies bodies within a shaly background.
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SEISMIC-CONSTRAINED OBJECT-BASED MODEL.:
AN EXAMPLE WORKFLOW (YARUS ET AL., 2000)
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4.5.5 Hierarchical modeling of geology and petrophysical parameters
* An example

We have seen numerous examples of techniques for the conditional simulation of dis-
crete and of continuous variables. So far, the techniques have been presented somewhat
independently from each other. However, the strength of these techniques lies in the
ability to combine them together for modeling different reservoir features at different
scales. Alabert and Massonnat (1990) and Damsleth et al. (1990) give very good exam-
ples of early multiscale heterogeneity modeling studies, and Haldorsen and Damsleth
(1990) provide a good overview of the topic.

Rather than formalize this, let us take an example from Al Qassab et al. (2000).
[his covers the construction of a 3D earth model of the Unayzah reservoir in the
Hawtah field (Saudi Arabia). A large number of well data is available, and the reservoir
is subdivided in 13 layers. First, a depositional facies model is constructed using SIS,
under the control of sedimentary maps produced by the geologist (Fig. 4-63). The sec-
ond step consists of producing a rock-type model accounting for the lact that, within a
depositional facies, rock types can change. Three rock types are identified: reservoir,
intermediate, and nonreservoir. Fig. 4-64 compares the rock-type model we would
obtain by using (left) or not using (right) the control provided by the depositional-envi-
ronment-facies model. Obviously, the model controlled by the depositional environment
is better. Thus, at each simulation step, the generation of stochastic simulations is per-
formed independently within each region defined by the previous steps.
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3D MODEL OF DEPOSITIONAL ENVIRONMENT FACIES,
UNAYZAH RESERVOIR, HAWTAH FIELD, SAUDI ARABIA (1)
(AL QASSAB ET AL., 2000)

Stacked geological
facies maps

3D stochastic
facies model

3D PETROPHYSICAL ROCK MODEL, UNAYZAH
RESERVOIR, HAWTAH FIELD, SAUDI ARABIA (2)
(AL QASSAB ET AL., 2000)
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Seismic acoustic-impedance information was also available. It resulted from a sto-
chastic inversion exercise (we will discuss stochastic inversion later on). Crossplots
(Fig. 4-65) showed that the better the rock type in terms of reservoir quality, the better
the linear relationship between porosity and acoustic impedance. Within each rock
type, as determined by the 3D rock-type realization, it was thus possible to model
porosity by collocated cosimulation using the acoustic-impedance value at each sam-
pled location and the correlation coefficient corresponding to the rock type. The last
stage consisted of simulating permeability (Fig. 4-66) under the control of the simulat-
ed porosity values within each facies.

The geostatistical realizations obtained by Al Qassab et al. were used as input
to flow simulation, and provided a much better history match than would flow simu-
lations run on conventional (smoothly interpolated) models of porosity and permea-
bility.

* The heterogeneity modeling toolkit

The previous example shows what must be available from a heterogeneity-modeling
toolkit (Fig. 4-67). Fig. 4-68 takes the classification of reservoir architectures proposed
by Weber and van Geuns (1990) and assigns to this classification various geostatistical
simulation techniques that seem most appropriate for each situation.

The old “garbage in, garbage out” expression applies to everything we have seen
about 3D heterogeneity modeling. All these geostatistical simulation techniques need
some quantified geological information as input. In the last 20 years, the industry has

SEISMIC AND FACIES-BASED POROSITY MODEL,
UNAYZAH RESERVOIR HAWTAH FIELD, SAUDI ARABIA (3)
%' (AL QASSAB ETAL. 2000)
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POROSITY-DERIVED PERMEABILITY MODEL,
UNAYZAH RESERVOIR, HAWTAH FIELD, SAUDI ARABIA (4)
(AL QASSAB ET AL.., 2000)
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TOOLKIT NEEDED FOR GEOSTATISTICAL MODELLING

 Depositional environment modelling

« Rock-type or lithology modelling

* Joint petrophysical property modelling
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made a significant effort to collect quantitative information at all scales. Examples and
references of such collection are given in Fig. 4-69.

A good criterion for deciding whether to use geostatistical heterogeneity modeling
is to ask the geologist whether he or she would be able to hand-draw a representation
of the geological model. If this is not the case, there is probably not enough information
to build a 3D geological model, whether hand-drawn or generated by geostatistics. This
is 4 very important point, stressing that geostatistics is not a substitute for geological
knowledge, but rather a tool for quantifying this knowledge.
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EXAMPLE OF QUANTITATIVE
GEOLOGICAL INFORMATION AT DIFFERENT SCALES
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Geostatistics, Inverse of the Covariance, and Filtering

Let us discuss what Claerbout and Brown (1999) define as
the geoestimation problem. Using their terminology, we
deal with data, d, and a roughening filter, E

Clarbout defines the Prediction Error Filter (PEF) as the operator F,
such that, if it is applied to the data, the white noise is obtained
(“PEF output is white”). This means that the autocorrelation
of the filtered data is a white noise:

Fd * (Fd)= &

This implies that the spectrum of F is the inverse of the data
spectrum, or that F'F is the inverse of the covariance.

Thus, using our terminology and the results of Section 3.8.3 and
Fig. 3-93, we can anticipate that our equivalent to Claerbout’s PEF will
be the spline operator associated with the covariance of the data
(Fig. 4-70)! Claerbout (2002) mentions that “the PEF plays the role of
the so-called inverse-covariance matrix in statistical estimation theory,”
which agrees with the relationship of Fig. 3-93.

Even more interestingly, Claerbout (2002) explains that “of all the
assumptions we could make to fill empty bins, one that people usually
find easiest to agree with is that the spectrum should be the same in the
empty-bin regions as where bins are filled.” This is another way of
justifying the use of geostatistical simulation for generating
representative samples of a spatial parameter. Claerbout shows that
representative samples of such a model can be obtained by applying 1/F
to a white noise, U, which is easy to prove considering that the
spectrum of F is the inverse of the data spectrum.

Claerbout and Brown (1999) show that a variety of synthetic images
can be produced with this approach, which is very similar to the
moving-average method of Oliver (1995). Oliver applies the
square root of the covariance function to a white noise. In the previous
development, 1/F plays this role.
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RELATIONSHIP BETWEEN KRIGING AND
CLAERBOUT’S GEOESTIMATION PROBLEM

Claerbout’s Prediction Error Filter (PEF) :

Filters the variable of interest into a white noise.

" PEF is the filter associated with the
roughening spline operator obtained from the
inverse of the covariance
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The work of Kane et al. (2001) discusses the analogy between
deconvolution and kriging. Their results agree with the previous ones
because, as mentioned by Claerbout, “PEF is also called deconvolution.”

The previous discussion may be a bit confusing, because our
geostatistical developments have been based on the assumption that
z(x) was a function of x. In practice, we deal with regular grids
of interpolated or simulated values, and geostatistics
can also be expressed using a discrete formalism similar to
that of filtering theory (Matheron, 1981b).

Assume we calculate kriging on a regular grid, and that all values of

this grid are called z,. The data points z; are assumed to be
among these grid points. In the zero-mean case, if C,, is
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the covariance between two grid points u and v, Matheron
showed that the kriged grid values minimize:

-1
Z Zuclwzv

u.v

under the constraint that, at grid points where a data point i is present,
the value z; is honored. We recognize here the familar expression of the
multivariate Gaussian distribution (Fig. 1-38).

Thus, thanks to the use of the inverse covariance, kriging also appears
to minimize an energy-like expression. From the filtering point of view,
the interpretation is that, after specified filtering (as expressed by the
inverse of the covariance function), the data have minimum energy.
When the discrete version of splines is used (Briggs, 1974)
the quadratic form that is minimized is similar to that minimized
by kriging. Similar comments can be made about the properties
of PEE. Again and again, we see this duality between the
spline operator and the inverse of the covariance.

In the case where data values y; are alfected by measurement errors,
error cokriging minimizes this time:

Y 2.Coiz, B sy

The first term can also be interpreted as the regularization term
of the energy function traditionally used in inverse problems.

In the regularization context, the expression of the quadratic form is
driven by smoothing considerations. Kimeldorf and Wahba (1970)
argue that the choice of the regularization operator is merely driven by
computational convenience. On the other hand, geostatisticians
implicitly derive this operator from the a priori geological knowledge,
as quantified by the covariance function.
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5 Geostatistical Inversion

5.1 Introduction

In the previous chapter, we saw how geostatistics can be used to generate 3D hetero-
geneity models satisfying a number of input statistical parameters, such as the vari-
ogram, or equivalently, the spectral density. Relationships between simulated parameters
and seismic-derived information were statistical, usually coded as a linear correlation
between the seismic parameter and the simulated variable. This was the “primary- ver-
sus secondary-variable” approach. We also saw earlier that the geostatistical paradigm,
based on the concept of trend and covariance, can be considered to be an approach for
coding the a priori model that is often used in Bayesian terminology.

In parallel with geostatistical developments, inversion technology made significant
progress in the last three decades (Fig. 5-1). Thanks to the Bayesian formalism promot-
ed by authors such as Tarantola (1987) and Duijndam (1988), the standard optimiza-
tion-based deterministic approach (minimization of an objective function with a regu-
larization term) was improved, and it became possible to produce an estimate of uncer-
tainty together with the inverted acoustic-impedance block.

Logically, the idea emerged in the early 1990s to apply the conditional simulation
approach to acoustic-impedance inversion to produce multiple 3D realizations, all con-
strained by seismic data. This resulted in geostatistical-inversion methodology. In the
following, we will consider that geostatistical and stochastic inversion are exactly the
same thing.

5.2 Basics of Geostatistical Inversion

The method discussed here is that presented in the papers of Bortoli et al. (1992) and
Haas and Dubrule (1994). Geostatistical inversion (GI) consists of generating 3D
acoustic-impedance realizations, all constrained by seismic data. The input to a geosta-
tistical-inversion study is similar to that of any conventional simulation study, with the
important addition of a 3D seismic block (Fig. 5-2). Bortoli et al. asked the question:
How, using SGS, can we make sure that not only the well data and the variogram are
honored, but also the 3D seismic block? They proposed the solution described in Fig.
5-3, which specifically addresses a well-known inversion issue: how to make sure that
every single seismic trace is inverted, while preserving the lateral continuity between
inverted traces (that is, while avoiding the limitations of a single trace algorithm).

The algorithm is just an extension of SGS. At each sampled location, a large num-
ber of — say, 100 — local acoustic-impedance trace realizations are produced. These
traces are all convolved with the seismic wavelet, and the acoustic-impedance trace pro-
viding the best match with the seismic trace at that location is selected. Then the algo-
rithm moves to another location. When the whole space is filled with traces, we have
obtained one global realization. Of course, more than one global realization (say, 100) is
produced.

The algorithm is illustrated using a North Sea example. First, an acoustic-imped-
ance global realization was generated using only one local realization at each sampled
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EVOLUTION IN DATA INTEGRATION
(BOTH WITH SEISMIC AND PRODUCTION DATA)

Classical inversion
deterministic optimization with
regularization term

One model

Calculation of a posteriori model
under multi-Gaussian assumptions

One model and associated
uncertainty model

Stochastic inversion:

geostatistical inversion, MCMC

Multiple realizations
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Wells

Stratigraphic

Surface
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GEOSTATISTICAL INVERSION ALGORITHM (1)

For each global realization

Define a random path through all nodes (x,y) to be
simulated

Trace location

For each node (x,y) perform a local optimization
to be simulated

— generation of a large number of local
realizations of acoustic impedance traces

convolution with the wavelet
comparison with the actual seismic
retain the best trace which becomes
conditioning data

Go to next node

Actual seismic trace Local
SEG/EAGE DISC 2003 ' realizations

location. This is equivalent to ignoring the seismic data. Then we generated a global
realization where only 10 local realizations were sampled at each location, and we com-
pared the result with that obtained using 100 local realizations (Fig. 5-4). The seismic
match improves significantly as the number of local realizations increases.

This match can be controlled in a number of ways. One is to increase the number
of local realizations at each SGS step. Another is to keep generating local realizations
until a certain threshold of the local objective function is reached. There is great flexi-
bility in the choice of this objective function, which can be the absolute error, the mean
squared error, or the correlation coefficient. It can also be a combination of those three,
or it can vary with the location of the simulated trace. Common sense must be applied
when matching a synthetic from a simulated trace with the actual seismic data. Often,
well-to-seismic calibration does not produce very high correlation coefficients between
actual and synthetic seismic. Between the wells, it would be computationally possible,
but it would not make sense to ask for correlation coefficients higher than those
obtained at the wells themselves!

A number of input statistical parameters must be fitted to the well and seismic
data and used as input to GI, in order to constrain the different realizations (Fig. 5-5).
These parameters, which are usually layer-dependent, are the same parameters as are in
a standard geostatistical simulation study, plus the wavelet. They may be considered as
the a priori geostatistical model. Fig. 5-6 shows another example of convergence of the
algorithm, this time with layer-dependent parameters, and a display of the residuals
between synthetic and actual seismic.
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GEOSTATISTICAL INVERSION ALGORITHM (2)

Impedance Actual data Seismic
¥ I e
= :

— o -
e — .

1 Local realization
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INPUT TO A GEOSTATISTICAL INVERSION STUDY
AN EXAMPLE (LAMY ET AL., 1998b)

Statistical layer

Horizontal variogram Wavelet :
constraints

" Amplitude Impgdance

! I e

Vertical covariance $ tdme

1 Mean
Mean __2*Standard deviation

Time (ms)
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GEOSTATISTICAL INVERSION ALGORITHM (3)
(DUBRULE ET AL., 1998)

Impedance Seismic Residuals

1 Local realization

10 Local realizations

| 200 Local realizations 200 Local realizations

SEG/EAGE DISC 2003

Fig. 5.7 compares two seismic slices from a North Sea example: one slice is
through the actual seismic data, the other one is through the synthetic seismic block
associated with the results of geostatistical inversion. The maich is very good, although
the synthetic block exhibits too much continuity because of the lateral correlation
forced by the input horizontal variogram model.

Gl allows the generation of a large number of acoustic-impedance realizations
honoring the 3D seismic data (see Fig. 5-8 for a North Sea example). Uncertainty is
quantified by the variability from one realization to another. Why is there such uncer-
tainty affecting the results of geostatistical inversion, considering all the input con-
straints that are injected into the a priori model? This is because Gl is typically run on
stratigraphic grids composed of about 2-ms-thick individual grid cells, that is, on a
thickness that cannot be resolved by standard 3D seismic data sets. Because the seismic
data can only control impedance variations within the seismic bandwidth, the higher
[requency variations remain nonunique and vary from one realization to another. These
higher frequencies are precisely controlled by the vertical variogram model and the fre-
quencies it carries (see Fig. 5-9). On the other hand, lower [requencies are controlled by
statistical constraints (mean and standard deviation) on the acoustic impedance distrib-
ution within each layer of the stratigraphic grid.

An important point to stress is that, because of the use ol SGS, all realizations
honor the well data (most standard acoustic-impedance inversion approaches do not
honor the well data).

The lateral variogram applies to variations within the stratigraphic grid and is usu-
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COMPARING TWO SEISMIC SLICES
(LAMY ET AL., 1998b)

ACTUAL SYNTHETIC
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MAIN FEATURES OF GEOSTATISTICAL INVERSION
(LAMY ET AL., 1999)

Impedance realizations honor
« seismic data
» well data

Uncertainty on impedance
results

High vertical frequency of
impedance realizations
controlled by variogram model
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SCHEMATIC VERTICAL FREQUENCIES CONTROL IN
GEOSTATISTICAL INVERSION

« Statistical layer constraints (background) control low frequencies.

« Seismic amplitudes control medium frequencies.

« Variogram model controls high frequencies.

Geostatistical

BEG/EAGE DISC 7001 L. Barens & E. Robein, TFEEUK Geoscionce Research Contre  5-9

ally derived from both seismic information and well data, using considerations as
described in Fig. 2-39.

Obviously, Gl is not reduced to an algorithm, but requires a detailed workflow that
is described in Fig. 5-10. In this figure, input data and information (including a priori
geological knowledge) are indicated in yellow, whereas interpretation processes are in
white.

Fig. 5-11 shows a cross-section resulting from a standard Gl study (North Sea).
The wells are honored by GI, and the lateral variogram ensures lateral correlation
between traces. This implies that the mean of the realizations is continuous and that
their standard deviation is zero at the wells (at least if there is no nugget effect in the
variogram model; see Section 3.3).

[o help understand how different kinds of data are used to constrain the models,
Fig. 5-12 compares the average 3D blocks obtained in four situations. We are using the
same example as that used to introduce conditional simulations, in Chapter 4. Fig. 5-13
shows a view of the actual seismic data together with a synthetic block computed from
one of the inverted acoustic-impedance realizations. If the realizations in Fig. 5-12 are
conditioned neither by wells nor by seismic, the average block is simply an image of the
input statistical constraints (mean and standard deviation) that were used as the input
to the model. If only the wells are used to constrain the realizations, the average is sim-
ply equal to kriging from the wells only. The two other average blocks are constrained
by seismic. Because of a compensation effect from one realization to another, the high-
frequency variations are smoothed out, and the information contained in the mean
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GEOSTATISTICAL INVERSION PRELIMINARY WORKFLOW
(ROWBOTHAM ET AL., 2000)
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EXAMPLE OF GEOSTATISTICAL INVERSION RESULTS

(LAMY ET AL., 1999)
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COMPARING AVERAGE BLOCKS (LAMY ET AL., 1998b)

Not constrained by wells or seismic Constrained by seismic only
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COMPARING SYNTHETIC AND ACTUAL SEISMIC MAPPED
IN THE STRATIGRAPHIC GRID (LAMY ET AL., 1998b)

|
N/’ _ Actual |
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comes from what is common to all realizations, that is, the seismic data control within
their bandwidth. As expected, the difference between the two seismic-constrained
blocks is limited to the area close to the wells.

Gl generates a large number of realizations of acoustic-impedance blocks — say,
100. There is a real issue about the processing of these multiple realizations. How can
this enormous amount of information be summarized? A first approach may consist of
calculating the mean and the standard deviation of realizations. There may also be other
interesting ways to process the data, such as that of Fig. 5-14. At each grid cell, the
number of realizations above a certain threshold is counted and transformed into a
probability. This can provide very useful information in situations where high or low
impedances can be straightforwardly associated with the presence or absence of reser-
voir rocks.

5.3 Accounting for Faults

The GI algorithm is very flexible, because it is a local approach. Lamy et al. (1998a) and
Rowbotham et al. (2000) took advantage of the [lexibility of the algorithm, in the case
of faulted reservoirs. The quality of seismic data close to the faults tends to be poorer
than that away from these faults. Thus, the GI algorithm is first limited to the construc-
tion of acoustic-impedance traces away from the faults (Fig. 5-15). Once these traces
have been generated, which are controlled by a better-quality seismic, traces closer to
the faults are sampled. For these traces, the number of local simulations may be
reduced to one if the seismic data quality is too poor. The number of local realizations
can vary, depending on the quality of seismic data. This approach also guarantees that
the traces away from the faults are optimal, because they are not affected by artifacts
that may come from the fault traces.

Fig. 5-16 shows results obtained on a North Sea field by Rowbotham et al. (2000).
The match between actual and synthetic seismic is of average quality, but the blind well
test is rather satislactory (Fig. 5-17), showing that the difference between the actual
well log and the mean of the GI realizations is almost everywhere smaller than one
standard deviation.

Shrestha and Boeckmann (2002) also take advantage of the flexibility of the geo-
statistical-inversion algorithm. Because the quality of seismic data is poor in areas influ-
enced by salt, SGS is not permitted to generate more than one local realization in those
areas, which means that the simulation is not constrained by seismic.

5.4 A Variety of Methods
54.1 A different sampling algorithm

Following the publication of the first papers on G, the method has been integrated into
a number of commercial software packages, using a variety of algorithms. A popular
one is that presented in Grijalba-Cuenca et al. (2000). The main difference it has with
that discussed above lies in the fact that, instead of working trace by trace as the previ-
ous method does, Grijalba-Cuenca et al.’s method works grid cell by grid cell (Fig. 5-
18). First, an initial realization of acoustic impedance is generated, based on well data.
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HOW TO SUMMARIZE GEOSTATISTICAL INVERSION
RESULTS? (LAMY ET AL., 1998b)

Threshold impedance probability
without seismic

Threshold impedance probability
with seismic ‘
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DEALING WITH FAULTS IN GEOSTATISTICAL INVERSION
(ROWBOTHAM ET AL., 2000)

CDP

Traces blanked

out at Stage 1
-

Stage 2 will fill
up to the faults Unfaulted
Faulted
Blanked out
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FAULTED GEOSTATISTICAL INVERSION EXAMPLE
(ROWBOTHAM ET AL., 2000)
o T

—— - — = ——

| Actual

_Synth&c_ |
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BLIND WELL RESULTS (ROWBOTHAM ET AL., 2000)

Seismic Synthetic

Mean-sd
— Mean

Mean+sd
— Statistical
— Actual log
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ANOTHER GEOSTATISTICAL INVERSION ALGORITHM
(GRIJALBA-CUENCA ET AL., 2000)

SEISMIC
3) Simulation @ Synthetic Observed

(1) Randomly choose

© next Grid Point

1 « Reject Residual vy

. Accept Least Squares

SEQ/EAGE DIBC 2003

Then, each grid cell is sampled randomly, and each time, the new objective function
measuring the match between synthetic and seismic trace is calculated. If it is small
enough (according to a user-defined criterion), the search moves to another point. If
not, the value is resampled using an acceptance criterion similar to that of Metropolis
(Fig. 4-24). Fig. 5-19 shows, in an example from Argentina, how the map of the corre-
lation coefficient between synthetic and actual seismic varies as a function of the num-
ber of global iterations (a global iteration corresponds to an iteration where all individ-
ual grid cells have been visited once). There is a computer time issue, because it takes
more time to iterate on individual grid cells than on individual traces. In order to
reduce computer time, Grijalba-Cuenca et al. do not restart from scratch for each 3D
seismic-constrained realization. Instead, they generate the different realizations at each
local simulation step, which amounts to using the same search path for all realizations.
There is a risk, however, that not sampling the random path randomly may lead to real-
izations that do not span the actual range of uncertainty.

The method is quite popular and has had many successful applications. Fig. 5-20
shows a recent high-resolution geostatistical inversion performed by Torres-Verdin et al.
(C. Torres-Verdin, et al., personal communication, 2002), who went as high as a 0.5-ms
sampling rate on the inverted realizations (Fig. 5-21). The central well was used as a
blind well to validate the method, whereas the two other wells were used as input data
points. The three SP well logs are displayed on each cross-section, because the project
was looking for sands that were below seismic resolution. Acoustic impedance was use-
ful, in that high values of acoustic impedance correlated with clean sands (low volumes
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SEISMIC MATCH AS A FUNCTION OF GLOBAL ITERATIONS
1 MS GRID SIZE (TORRES-VERDIN ET AL., PERS. COMM., 2002)
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INVERTED ACOUSTIC IMPEDANCE, 1 MS VERTICAL GRID
SIZE (TORRES-VERDIN ET AL., PERS. COMM.,2002)
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INVERTED ACOUSTIC IMPEDANCE, .5 MS VERTICAL GRID
SIZE (TORRES-VERDIN ET AL., PERS. COMM., 2002)
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of shales). As expected, the match between the two input-well SP logs and the inverted
section is excellent, but it is also very satisfactory at the blind well. At which vertical
resolution should the inversion be performed? The higher the resolution, the more het-
erogeneities will be captured by the model, but the more uncertainty will be attached to
these heterogeneities. A trade-off must be found by running flow simulations and
choosing the resolution that is closest to that of the seismic but still provides realistic
[low simulations. This is an area that demands more investigation.

5.4.2 Geostatistical inversion based on fractals

Gunning and Paterson (1999) use a similar approach to that of Bortoli et al. (1992), in
that they sample the 3D volume trace-by-trace. But there are many other differences
between the two approaches. First, Gunning and Paterson work with fractal models,
which they claim to be more general than those used by Bortoli et al., because they are
nonstationary. It can be objected that fractal models, if they are certainly nonstationary,
are also quite specific and cannot be applied to all reservoirs. Gunning and Paterson
also use, as do Grijalba-Cuenca et al., the same random path for each global realization,
which saves a lot of time. A Cholesky decomposition and the subsequent inversion of
the covariance matrix is performed for the first global realization only, then reused for
other global realizations, leading to repeat simulations that are at least 100 times faster
than the first. But, as mentioned for the method described in the previous section, this
may also decrease the variability from one realization to another and thereby underesti-
mate the uncertainties. As an objective function, Gunning and Paterson propose to use
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a normalized sum of squares of the differences between the synthetic and the recalibrat-
ed true seismic trace. They accelerate the convergence by using an algorithm similar to
that of Metropolis-Hastings.

5.4.3 Analytical approach

Eide et al. (1997a) start from the same approach as that of Bortoli et al., but with a view
to solve the problem analytically. They formalize the geostatistical inversion problem in
a Bayesian-Gaussian framework and calculate the expression for the posterior reflection
coefficient pdf, that is, the prior covariance-based model is updated by the well and
seismic information.

Eide et al. address the problem in the very general situation of an unknown seis-
mic wavelet, to be determined during the inversion process. They show that, in the sit-
uation where this wavelet is unknown, the posterior pdf cannot be determined analyti-
cally. As a result, the sampling of the realizations is not trivial and is best addressed
using the Metropolis algorithm (Fig. 4-24), which converges toward the required pdf.
However, this algorithm remains very time-consuming.

In the more-frequent situation in which the wavelet is known (from a previous
seismic calibration exercise performed by the geophysicist) and the relationship
between reflectivity and impedance is linearized, the posterior pdl of acoustic imped-
ance is Gaussian and its sampling is trivial, thanks to such approaches as SGS.

Buland and Omre (2003) also propose a Bayesian AVO inversion technique where
the solution is given in an analytical form. The model parameters are P-wave velocity, S-
wave velocity, and density, which are assumed to follow lognormal distributions (Fig. 1-
27). The inversion method is based on a weak contrast approximation to seismic reflec-
tivity, as proposed by Aki and Richards (1980). Thanks to these simplifying assump-
tions, the posterior distribution of the three model parameters is multivariate normal
(Fig. 1-38) and can be calculated analytically. Realizations from these distributions can
easily be sampled using previously discussed techniques. However, an important limita-
tion of the model is that it is a single-trace inverse algorithm, because there is no lateral
correlation between vertical traces.

The mathematical developments of Eide et al. are somewhat cumbersome and the
computer implementation is slow, but the approach has the merit of formalizing the
problem consistently. As a result, the theoretically correct posterior distribution allows a
proper assessment of uncertainties. The approach seems to provide satisfactory results
on synthetic cases (Fig. 5-22).

5.4.4 Emerging techniques

* Wavelet inversion

A. Buland and H. Omre (personal communication, 2001) have developed a Bayesian
method for wavelet inversion. The method works both on stacked data and on prestack
data in the form of angle gathers. Seismic noise, errors in log data, and also possible
mis-ties between the seismic and well time axis, can be incorporated in the model. The
solution is not analytical, but is obtained by MCMC. Uncertainty in the estimated
wavelet is also quantified in this process.
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» Processing larger and larger seismic data sets, including AVO data

The algorithms used for geostatistical inversion will certainly evolve, because the gener-
ation of a large number of realizations constrained by seismic data remains very time-
consuming, and because the size and information content of seismic data sets is likely
to grow in the future.

The inversion of prestack seismic data is around the corner. Buland et al. (2003)
propose an AVO inversion technique incorporating spatial correlation between model
parameters. As in Buland and Omre (2003), the inverted parameters are P-wave veloci-
ty. S-wave velocity, and density, and the inversion method is based on a weak contrast
approximation to seismic reflectivity. In the Fourier domain, the spatially correlated
parameters can be decoupled, and the inversion problem can be solved independently
for each frequency component. This may be one of the most interesting ways to reduce
computer time, as shown by the promising results obtained on the inversion of a 3D
data set from the Sleipner field represented by three angle stacks on a grid with four
million grid cells.

Buland and Omre (personal communication, 2002) also have developed a Bayesian
method for joint AVO inversion, wavelet estimation, and estimation of the seismic noise
level. The stochastic model includes uncertainty in both the elastic parameters, the
wavelet, and the seismic and well-log data. The posterior distribution is explored by
MCMC simulation using the Gibbs sampler algorithm (Fig. 4-25).
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5.5 A Generalized Downscaling Approach

So far, geostatistical inversion has been presented as a method for constraining 3D
acoustic-impedance models by seismic data, using a convolution model. However, GI
can also be considered as a general “downscaling” technique, and can be applied in the
situation where we wish to constrain vertical traces of the 3D model by average values
derived from seismic or from any other source of information. Doyen et al. (1997)
assume that the estimation of a vertically averaged porosity has been derived from seis-
mic and present a technique for constraining porosity traces of the 3D model by these
seismic-derived averages. This technique sequentially samples the 3D model and works
grid cell by grid cell (somewhat similarly to the method presented in Fig. 5-18).

Fig. 5-23 shows the result obtained on the Ekofisk field (Norway). The average
porosity estimate was obtained by collocated cokriging using the impedance map as a
guiding attribute and then as a constraint on the vertical traces of the 3D porosity real-
ization.

Behrens et al. (1998) present a similar approach to that of Doyen et al. Their goal
is also to generate 3D porosity realizations constrained by layer-averaged values predict-
ed from seismic attributes, and their algorithm also works grid cell by grid cell. The
approach is different in that it uses block kriging to incorporate layer-averaged values in
the SGS simulation process, while Doyen et al. use the Bayesian formalism. The
Bayesian formalism appears to provide more flexibility for handling uncertainties associ-
ated with the layer-averaged values.

3D POROSITY SIMULATION CONSTRAINED BY SEISMIC-
DERIVED AVERAGE POROSITY MAP (DOYEN ET AL., 1997)

Seismic-derived
average porosity
map

Simulat
average porosity
map

Simulated Porosty |
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5.6 Going Further with Geostatistical Inversion Results

Earlier in this chapter, we saw that geostatistical inversion led to the generation of 3D
acoustic-impedance realizations all matching the seismic data up to a certain degree, as
measured by the value of the trace-by-trace objective function. These acoustic-imped-
ance traces are at the scale of the reservoir model. In favorable situations where there is
a relationship between acoustic impedance and a reservoir parameter (porosity, facies,
net/gross and the like), the next logical step is to predict this reservoir parameter from
acoustic impedance. In Chapter 4, we described techniques based on collocated cosim-
ulation for deriving a reservoir parameter from seismic. Here, the problem is a little bit
more complicated because the seismic parameter — acoustic impedance — is now itself
affected by uncertainties, and this uncertainty must be accounted for when predicting
the reservoir parameter.

We will discuss two solutions to the problem. The first solution consists of work-
ing in two steps: first, inversion, then, prediction of the reservoir parameter. The second
solution consists of simultaneously sampling impedance and the reservoir parameter.

5.6.1 Two-step approach: from seismic to impedance, from impedance to other properties
* Generalization of collocated cokriging

Lamy et al. (1999) argue that the prediction of reservoir parameters must be performed
in two steps: first, geostatistical inversion of acoustic impedance, and then, prediction of
reservoir parameters from acoustic impedance. This allows the geoscientist to have a
careful look at the outcome of the first step before embarking on the second one.

The example used by Lamy et al. is that of Fig. 5-8. There is a linear relationship
between acoustic impedance and V.., and their goal is to predict the value of V.. at
each location by combining the results of geostatistical inversion with the information
provided by the V.. well logs. If there were no uncertainty affecting the acoustic
impedance derived from geostatistical inversion, the problem would be addressed by
collocated cokriging, which combines the Vi, kriging estimate with the estimate
derived from acoustic impedance, using the correlation coefficient between impedance
and V. as a weighting factor (Fig. 3-75).

Now, because acoustic impedance is affected by uncertainty, the weighting factor
must be changed. Acoustic impedance must have less weight than in the situation
where it is not affected by uncertainty. Lamy et al. derive a new formula (Fig. 5-24) for
the correlation coefficient, which is now location-dependent. Logically, this new coeffi-
cient is smaller than the one used in the situation where uncertainty affecting acoustic
impedance is ignored, and both are equal if the variance affecting the result of inversion
is zero. The smaller the ratio in the denominator, that is, the greater the gain in variance
resulting from inversion, the closer the new coefficient is to the old one. Fig. 5-25
shows the results obtained by Lamy et al. on the same case study as that of Fig. 5-9.

* Generalization of collocated cosimulation

Marion et al. (2000) generalize the approach of Lamy et al. (1999) to the generation
ol stochastic realizations. In their case study, they have a good relationship between
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MODIFIED CORRELATION COEFFICIENT FOR
PREDICTING Vgyae (LAMY ET AL., 1999)
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porosity and acoustic impedance. This leads to about 50 porosity realizations, all con-
strained by seismic data, wells, and a sedimentary model produced by the geologist.
Obviously, the mean of the porosity realizations is smoother lor the realizations uncon-
strained by seismic (Fig. 5-26), because, having no seismic constraint away from the
wells, the average of realizations — which is equivalent to kriging — simply returns to
the global mean. There is also a clear difference between the color of the two maps,
because the use of seismic for constraint leads to a degradation of porosity realizations.

5.6.2 Predicting porosity during the acoustic-impedance inversion process

Eide et al. (1997b) propose an approach that accounts for the uncertainty affecting
acoustic-impedance realizations when predicting a parameter such as porosity. In the
synthetic example they present, the model they use (Fig. 5-27) assumes that porosity is
equal 1o a deterministic function of acoustic impedance plus a random term correlated
in space. They construct impedance realizations constrained to seismic data, then they
predict porosity using this model, which leads to porosity realizations that account not
only for the uncertainty alfecting the relationship between acoustic impedance and
porosity, but also for the uncertainty affecting inverted acoustic impedance itself.

5.6.3 Predicting facies during the acoustic-impedance inversion process
In Chapter 4, we discussed methods for constraining discrete facies models by seismic

data (Fig. 4-53). We saw that Approach 1 consisted of deriving probabilities from seis-
mic and then constraining facies models by these probabilities. Most methods derived

THE IMPACT OF SEISMIC DATA ON POROSITY MAPS
(MARION ET AL., 2000)
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PREDICTING POROSITY FROM ACOUSTIC
IMPEDANCE (EIDE ET AL, 1997b)
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the probabilities from acoustic-impedance data. However, the methods ignored the
uncertainty affecting these inverted data. We are now going to discuss methods associ-
ated with Approach 2, wherein facies and impedance models are jointly simulated.

* Joint sequential simulation of lithology and acoustic impedance

Sams et al. (1999) propose a promising approach whereby lacies and acoustic-imped-
ance realizations are simultaneously inverted. An initial realization of lithology and
associated impedance is generated that is consistent with the geostatistical input and
the well data. Then this model is iteratively updated at each grid cell by geostatistically
sampling new values of lithology and impedance, such that the match between synthet-
ic and actual seismic is improved. This approach was applied with a vertical sampling of
I ms (about 1 m) in a field of the Central Sumatra Basin, and proved capable of resolv-
ing sand units that could not be resolved with other approaches. Porosity distribution
was then predicted from each of the lithology-impedance model realizations. Validation
of the approach at one blind well (Fig. 5-28) proved quite successiul.

Grijalba-Cuenca et al. (2000) generalize the approach ol Sams et al. to the joint
simulation of lithofacies, density, and acoustic-impedance realizations in a field in
Argentina (Fig. 5-29). For each grid cell, lithology is simulated first, then density is
sampled from the lithology-dependent distribution, and finally acoustic impedance is
sampled from the bivariate distribution of impedance versus density. Once again, the
objective was to resolve individual sand units, and the simulations were performed with
a vertical resolution better than 2 ms. The outcome consisted of high-resolution cubes
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JOINT SIMULATION OF LITHOLOGY AND IMPEDANCE
BLIND WELL TEST (SAMS ET AL., 1999)
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JOINT SIMULATION OF LITHOLOGY AND IMPEDANCE
ALGORITHM (GRIJALBA-CUENCA ET AL., 2000)
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of lithology and density, which were fully consistent with the 3D seismic data, thanks to
the use of acoustic impedance as a variable in the process. Fig. 5-30 represents the aver-
age of six realizations, which show the good consistency between the different variables.

JOINT SIMULATION OF LITHOLOGY AND IMPEDANCE
(GRIJALBA-CUENCA ET AL., 2000)

Geostatistical inversion of density

* Joint simulation of lithology and petrophysical properties for AVO inversion

This philosophy of simultaneous inversion of lithology and acoustic impedance is gen-
eralized to AVO data with the Bayesian methodology followed by ]. Eidsvik et al. (per-
sonal communication, 2003). Their simulation approach (see section 4.5.2) is based on
Markov random fields. They invert zero-offset reflectivity and AVO gradient by jointly
simulating facies, fluid characteristics, porosity, and density. They derive from this joint
simulation the bulk and shear moduli using Gassmann, then P-wave and S-wave veloci-
ty. The forward model they use is that of Zoeppritz equations and approximations by
Shuey. Since the solution is too complicated to be treated analytically, they use
Metropolis-Hastings MCMC to generate samples of the posterior distribution of the
reservoir properties. Today, this is one of the most sophisticated applications of stochas-
tic inversion to seismic data.
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* Direct inversion of object-based models

Tjelmeland and Omre (1997) present a general approach for constraining an object-
based model of the distribution of shales to well, seismic, and production data. Once
again, because the model is not analytically tractable, MCMC is used to model 3D dis-
tributions of shale bodies constrained by well, seismic, and production data. To our
knowledge, industry applications along those lines have remained limited.
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6 Stochastic Earth Modeling That Integrates All
Subsurface Uncertainties

6.1 Introduction

In the previous pages, we have focused on the use ol geostatistical conditional simula-
tion for 3D heterogeneity modeling. We saw that GCS provided a satisfactory solution
to the problem of generating realistic 3D representations of the subsurface. We also saw
that, thanks to GCS, we were able to generate not one, but a large number of realiza-
tions, all of which were compatible with the well data, the a priori geostatistical con-
straints (histogram and variogram), and, in many cases, the seismic data. The variability
from one realization to another was a representation of the remaining uncertainty left
alter constraining our models by all this input information. We will now discuss how
this quantification of uncertainties can be applied to all parameters of the earth model
to lead to uncertainties attached to gross-rock volume, oil-in-place, reserves, or produc-
tion profiles (Fig. 6-1). But why should we be interested in quantifying uncertainties?
An uncertainty calculation is a useless exercise if no decision making is attached to
it (Fig. 6-2). But which kinds of decisions shall we be able to support with an uncer-
tainty calculation? Fig. 6-3 lists some of the most important decisions geoscientists are
led to support with their uncertainty studies (see examples in Tyler et al., 1996 and
Charles et al., 2001). Usually, these decisions are related to a significant financial invest-

QUANTIFICATION OF RESERVOIR UNCERTAINTIES

Probablhzed production profiles

Multiple realizations of earth model
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ment. Instead of one production profile, a typical uncertainty study will produce a fami-
ly of production profiles or the hield reserves pdl.

In the past, the geoscientist or reservoir engineer was asked to produce just one
reserves figure or one production profile, in spite of the great uncertainty affecting the
results. In a way, the geoscientist was asked, by choosing one scenario over many other
possible ones, to substitute himself/herself for the decision maker. It can be said that an
uncertainty-quantification approach, by attaching a risk to each possible decision, will
put the decision back in the hands of the decision maker.

The Norwegian School has been a pioneer in the quantification of earth model
uncertainties. See, for instance, the work of Sandsdalen et al. (1996), Damsleth and
Omre (1997), and Lia et al. (1997). The Lia paper can be regarded as a classic that
showed it was possible to combine all the uncertainties affecting the different building
blocks of a 3D earth model and quantify their impact on production profiles. Hegstad
and Omre (2001) show the progress that has been made in less than five years, by
developing an earth model uncertainty-quantification approach constrained by seismic
and dynamic data.

Nowadays, most earth model uncertainty studies are performed in three steps (Fig.
6-4). Although each step corresponds more or less to the quantification of uncertainties
associated with a different discipline (geophysics, geology/petrophysics, and reservoir en-
gineering), the combination of all the uncertainties in the earth model provides a fantastic
multidisciplinary integration tool. The direct quantification of the impact of structural un-
certainties on fluid flow, an issue that was often ignored in the past, can now be addressed.

EARTH MODELLING AND
QUANTIFICATION OF RESERVOIR UNCERTAINTIES

| Geom_etry

Static proPerties

Dynamic p_ro_gerties
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6.2 Geometrical Uncertainties

We present two different models for quantifying geometrical uncertainties and their
impact on gross-rock-volume uncertainties. The first approach is used extensively at
lotalFinaElf (Samson et al., 1996; Guéméné et al., 2002; Thore et al., 2002), and has
been designed to let the seismic interpreter give as much input as possible to the uncer-
tainty quantification, by producing separate picking- and time-to-depth conversion-
uncertainty maps. The second approach, used for a long time by the Norwegian School
(see Abrahamsen et al., 1991 or Abrahamsen et al., 2000), relies on the Bayesian kriging
formalism.

6.2.1 Two-step approach
* Quantilying picking and time-to-depth conversion-uncertainty maps

In most cases, a depth map is the result of the combination of a time map and a velocity
map. The seismic interpreter is best placed for quantifving the picking uncertainties
allecting his/her interpretation. The velocity model may be the result of a great variety
ol computations, depending on the velocity data available to start with. The basis of the
two-step approach is to produce two separate and independent uncertainty maps, then
combine them as shown in Fig. 6-5 to obtain a global depth-uncertainty map (see
Thore et al., 2002 for a complete discussion).

COMBINING UNCERTAINTIES
| Depth uncertainty

-

.

aD\" 9 girs >

(—] t“f‘*"(f] oy
/i

) o

(Chewaroungroaj et al,, 2000)

SEG/EAGE DISC 2003 4 M Guémana

6-4 -_So_mety of-Exptoralion Geopﬁysicists I_European Association of Geoscientists & Engineers



Olivier Dubrule

* Uncertainty maps

What do we exactly mean by “uncertainty map”? Let us take, for instance, the
velocity uncertainty map of Fig. 6-5. For practical purposes, we will assume that if the
velocity is V and if the uncertainty is AV at a given map location, this means that we
have a 95% chance that the actual unknown velocity value falls within the interval [V -
AV, V + AV]. We will also assume that errors are normally distributed. If we remember
what was said in Fig. 1-26, this implies that the uncertainty is equal to twice the stan-
dard deviation of the errors. This is to be related to the discussion of the kriging stan-
dard deviation in Section 3.2.2.

* Picking uncertainty

The picking uncertainty map must be built by the seismic interpreter. In the exam-
ple from Guémeéné et al. (2002) that is displayed in Fig. 6-6, the interpretation was
based on the results of PSDM, and performed in depth. The analysis of all the seismic
sections resulted in the mapping of areas of poor, fair, and good seismic quality. The
confidence interval around the picked marker was estimated at 50 m in the areas of
poor quality (below salt domes, ends of lines) and 20 m where the seismic image was
better. The absolute magnitude of the uncertainty is a matter of experience and judg-
ment from the interpreter.

* Time-to-depth conversion uncertainty

In the example of Fig. 6-6, the PSDM was performed with a velocity model com-

QUANTIFYING UNCERTAINTIES, GULF OF GUINEA
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puted from focalization analysis on each 2D line. The main uncertainty on velocity was
associated with the lateral instability of the velocity pick and to its approximation by a
smooth mathematical curve. The impact on depth of the velocity uncertainty was esti-
mated to vary between about 30 and 60 m (Fig. 6-7). A third uncertainty was that relat-
ed to the interpolation of the depth picks between 2D seismic lines, and was derived
from the depth kriging standard deviation, which increases away from seismic lines.

* Combining the uncertainties

All these depth-uncertainty maps were combined to obtain the total uncertainty
map of Fig. 6-7. Because all uncertainties were already expressed in depth, the partial
derivative term ol Fig. 6-5 was not needed. Let us stress here that confidence intervals
cannot be added to each other. Only the variance of the sum of independent errors is
equal to the sum of their individual variances (Fig. 1-15). This is why the formula of
Fig. 6-5 applies to squares and not to absolute values. Because confidence intervals are
proportional to standard deviations, only squares of confidence intervals (which are
proportional to variances) can be added to each other.

« Translating structural uncertainties into realizations

Our ultimate goal is to combine various uncertainties affecting parameters of the earth
model in order to quantily their joint impact on GRV, STOOIP, reserves, or production
profiles (Fig. 6-2). To reach this goal, we will need to combine realizations of depth
maps with realizations of petrophysical parameters, as shown in the three realizations of

COMBINING UNCERTAINTIES (GUEMENE ET AL., 2002)
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Fig. 6-1. This means that we must be able to generate multiple realizations of picked
surfaces, as shown in Fig. 6-8.

Thanks to our definition of uncertainty, the task of generating depth realizations
will be easy. The approach is explained in Fig. 6-9. Nonconditional simulations of nor-
mally distributed “errors” of mean zero and standard deviation 1 are multiplied by the
uncertainty map and then the result is added to the “base case,” that is, to the reference
interpretation. One weak point of the approach is that the variogram range of the errors
is not known. This variogram range has nothing to do with the variogram range that
would be derived from the uncertainty map, because this map is, by construction,
always positive (and usually quite smooth), whereas the simulated error must take neg-
ative and positive values (possible structural scenarios vary around the base-case inter-
pretation). Thus, the choice of the range is left to the interpreter and the “feeling” he or
she may have about the pattern of variation of the error. A large range will result in real-
izations that tend to stay on the same side of the base case longer than a short range
(Fig. 6-10). In the example of a time pick, a large-range error corresponds to a situation
where there is a multiple choice of seismic loops to pick, whereas a small variogram
range corresponds to a marker that is unambiguous but fuzzy because of poor seismic
resolution. Fig. 6-11 shows several realizations of the top of a formation in a Gulf of
Guinea reservoir. Obviously, once the realizations have been generated, they can be
associated with hydrocarbon-water-contact (HWC) values, and the corresponding GRV
can be calculated (Fig. 6-12). After eliminating unrealistic realizations, such as those
not showing closure, we can proceed to a pdf of the GRV.

GOING FROM UNCERTAINTIES TO REALIZATIONS
(GUEMENE ET AL., 2002)
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GOING FROM UNCERTAINTIES TO REALIZATIONS
FLOWCHART (THORE ET AL., 2002)
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GOING FROM UNCERTAINTIES TO REALIZATIONS: IMPACT
OF CORRELATION DISTANCE (SAMSON ET AL., 1996)
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DIFFERENT REALIZATIONS OF THE TOP OF A
TURBIDITE CHANNEL COMPLEX, GULF OF GUINEA

Visualization of the impact of the geophysical uncertainties on the
reservoir shape and on the spatial fluid distribution is very important!
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STRUCTURAL UNCERTAINTIES WORKFLOW
(THORE ET AL., 2002)
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This method of quantifying GRV uncertainties is quite fast, and hundreds of real-
izations can be generated. Some realizations will be very different from each other but
will still be associated with the same GRV. For instance, Fig. 6-13 shows, on an actual
case study, the base-case map and three realizations associated with a very similar vol-
ume, which happens to be the median of the GRV pdf. This means that there is no such
thing as a single “median” or “most likely” map. There are only maps corresponding to
the median value of the GRV pdf or to its q;0 or qeo quantiles (see Fig. 1-24 for the defi-
nition of quantiles). It may also happen, [or instance with very flat structures, that the
mean of the GRV pdf is much greater than the base-case GRV. The only thing we are
sure of is that the average ol all the realizations is equal to the base case, because all the
error realizations cancel each other when averaged.

6.2.2 Bayesian kriging approach

The method proposed by Abrahamsen et al. (2000) is just one of the most recent appli-
cations of a methodology developed over the last 10 years (see, for instance,
Abrahamsen et al., 1991). The model is an extension of that already presented in Fig. 3-
65. The main difference between this method and the previous one lies in the way the
time and velocity uncertainty models are treated. Guémeéneé et al. (2002) consider the
uncertainty maps for time and velocity to be an input of the method, in order to let the
interpreter control the whole process. Then time and velocity realizations are simulated
independently. Abrahamsen et al. do not use a velocity or time uncertainty map as

DIFFERENT MAPS CORRESPONDING TO SAME
GROSS-ROCK-VOLUME QUANTILE

BASE CASE MAP . Qso
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input. Their model incorporates a global (independent of location) standard deviation
for time and [or velocity anomalies (Fig. 6-14). Time realizations are simulated first,
then velocity realizations are derived from time by sampling a velocity anomaly and a
value for the compaction coefficients k and V..

Fig. 6-15 shows three realizations, which are ranked on the basis of their trapped
GRV. The map on the left corresponds to the smallest trapped volume, whereas the map
on the right does not show closure. The latter realization must be eliminated during the
simulation exercise.

lhe GRV pdf obtained from 197 realizations had a median and mean volume of
965 and 880 million m’, respectively. The GRV of the base-case map (center of Fig. 3-
66) had a significantly different and more pessimistic value, equal to 652 million m’ .
As mentioned earlier, this bias is very common for flat structures,

6.2.3 How many realizations?

What is the “reasonable” number of realizations to run to obtain reliable statistics on
the GRV pdf? This will depend on the complexity of the case study. A good approach is
to evaluate how the main property of interest — GRYV, for instance — varies as a func-
tion of the number of realizations. Fig. 6-16 is an example of such a calculation, where
we see that the quantiles become stable after a few hundred realizations.

QUANTIFYING STRUCTURAL UNCERTAINTIES WITH THE
BAYESIAN KRIGING MODEL (ABRAHAMSEN ET AL., 2000)
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NORTH SEA STRUCTURAL UNCERTAINTY QUANTIFICATION
CASE STUDY (ABRAHAMSEN ET AL., 2000)
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6.3 Static and Dynamic Model Uncertainties

Once a number of realizations of the geometry have been generated, the next step will
consist of evaluating other earth model uncertainties, in order to quantify their impact
with relation to that of geometrical uncertainties (Fig. 6-17).

6.3.1 Static model uncertainties

New generation earth modeling software offers the possibility to “hang” a stratigraphic
grid from each new geometrical realization and fill this stratigraphic grid with 3D real-
izations of geological (discrete) properties or petrophysical (continuous) properties
(Corre et al., 2000). Hierarchical geological modeling approaches such as those dis-
cussed in Section 4.5.5 can be applied. Realizations may or may not be constrained by
seismic data, using one of the approaches described in chapter 4 or 5.

The hydrocarbon-water contacts (HWC) may also be affected by uncertainties,
for example, if we are dealing with an “oil-down-to™ or a “water-up-to” situation. Once
the HWC have been positioned, water-saturation realizations consistent with these
contacts can be generated. Thus, quantification of static earth model uncertainty is
usually based on a hierarchical approach (Fig. 6-18) from geometrical to water-satura-
tion uncertainties.

Fig. 6-19 is an example of six realizations resulting from an actual North Sea case
study. Just one well was available to construct the model, and each realization is based
on a different structural map, a different HWC, and a different 3D porosity distribution.

COMBINING STATIC MODEL UNCERTAINTIES
(DUBRULE AND DAMSLETH, 2001)
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COMBINING STATIC MODEL UNCERTAINTIES
(CORRE ET AL., 2000)
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Figs. 6-20 and 6-21 are two realizations from an uncertainty quantification study on a
turbidite channel complex in the Gulf of Guinea. Four variables (N/G, V.., porosity,
and permeability) are generated for each realization and are strongly correlated with
each other. The structure map is also different for each realization.

A number of parameters of interest can be calculated from such earth model real-
izations. An important one is the oil-in-place volume (OIP). This volume will be differ-
ent for each realization, and the spread of the OIP pdl will represent the impact of all
individual uncertainties on the final volume.

In Fig. 6-22 we have histograms, corresponding to an actual case study, that illus-
trate the power of such an uncertainty study. As we move from left to right and from
top to bottom, more and more uncertainties are taken into account. It is clear from the
example that most of the uncertainty comes from the geometry, as is often the case
when few wells are available and the seismic is not top quality. Following such a study,
the decision might be to drill an extra appraisal well in order to reduce the structural
uncertainty.

6.3.2 Link with dynamic flow simulation
* Impact of static-model uncertainties on predicting production profiles

In the Fig. 6-22 example, only OIP uncertainties were addressed. We may also wish to
quantify the uncertainty on reserves by running flow simulations on a number of real-
izations. When we discussed geometrical uncertainties, we saw that a minimum or

GEOSTATISTICAL REALIZATIONS IN 3D EARTH
MODEL (CHARLES ET AL., 2001)
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GEOSTATISTICAL REALIZATIONS IN 3D EARTH
MODEL (CHARLES ET AL., 2001)
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|| properties on the
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In this example, geometry is key uncertainty
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maximum realization could only be defined with relation to a parameter of interest,
such as GRV or OIP. A more powerful way to pick such a realization is to use the cross-
plot of reserves versus OIP (Fig. 6-23) and pick the realizations that position them-
selves as quantiles of interest on both the OIP and reserves distributions.

* Accounting for dynamic-parameter uncertainties

So far, we have only discussed the impact of static-model uncertainties on production
profiles. Dynamic-parameter uncertainties must also be accounted for, in order to
address such questions as: What is the impact of the uncertainty affecting fault trans-
missibility? or What is the impact of relative permeability uncertainty? Usually, dynamic
parameters are easier to address, because they are real numbers, such as irreducible
water saturation or the transmissibility multiplier. Damsleth et al. (1992) and Corre et
al. (2000) explain how to use the statistical method of experimental design to derive
information on the uncertainty in production profiles that is caused by dynamic-para-
meter uncertainties.

* Addressing structural uncertainties in the history-matching process

['he applications of the approach described above go far beyond the quantification of
uncertainties. They can also boost multidisciplinary integration, all the way to the
history-matching exercise. Until recently, the construction of the reservoir model was
very sequential, and the structural map was never used as a matching parameter, in

SELECTION OF MINI, MEDIAN, MAXI MODELS
(CHARLES ET AL., 2001)
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spite of the fact that structural uncertainties were known to have a major impact on
results. This is now changing. In the example of Fig. 6-24 (Vincent et al., 1998),
dynamic-flow simulations have been run on a large number of earth model realizations.
Each point of the crossplot is the result obtained with one realization. Clearly, those
realizations corresponding to a smaller value of OIP are those that provide the best
match with production data. Thus, in this specific example, those realizations associat-
ed with deeper geometrical models are more likely to be representative of the actual
unknown surface.

* History matching under uncertainty

Hegstad and Omre (2001) formalize the problem of history matching under uncertainty,
using the Bayesian [ramework. They show how realizations of the posterior earth model
— that is, the model constrained by all data, including wells, production data, and seis-
mic — can be obtained using the Metropolis-Hastings algorithm. Although their solu-
tion appears to be quite general and has been tested successfully, it remains very cum-
bersome to run. As computing power develops in the future, it may prove more and
more interesting.

6.4 Multirealization Uncertainty-quantification Approach: A Panacea?

On the basis of what has just been discussed, one would be tempted to generalize the
approach into “multirealization economic analysis™ (Fig. 6-25), as discussed, for

TOWARD HISTORY-MATCH ON STRUCTURAL MODEL?
(VINCENT ET AL., 1998)
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A POSSIBLE INTEGRATED APPROACH
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instance, by Ovreberg et al. (1992). However, a number of geoscientists remain sceptical
about uncertainty quantification via geostatistical multirealization techniques (Dubrule
et al., 1996). Many argue that actual uncertainties are of a different order from those
that are quantified by geostatistical realizations. This point has been discussed by
Massonnat (2000), who distinguishes six different orders of uncertainties (Fig. 6-26).
Geostatistical conditional simulations have proved very successful in addressing
Massonnat’s step 6. It is also possible, by sampling the input geostatistical parameters
using Monte Carlo techniques, to account for the uncertainty alfecting these parameters
(step 5). For instance, the uncertainty affecting the mean of porosity can be quantified
by sampling a mean porosity value and then generating geostatistical realizations
around this sampled mean. Fig. 6-27 shows that this can dramatically increase the
range ol the average porosity histogram (and consequently the range of the OIP pdD).

6.4.1 Approaches by scenarios

Massonnat argues that uncertainties associated with steps 3 and 4 are far more signifi-
cant than those associated with steps 5 and 6. Step 3 is the characterization of the depo-
sitional environment, whereas step 4 covers the major stationarity assumptions, for
instance, about the distribution of facies probabilities in space. These two steps are usu-
ally addressed using a “scenario” approach. This terminology covers a variety of meth-
ods (Fig. 6-28). With Taylor (1996), scenarios are a small number of different models
associated with possible assumptions — usually min, median, max — about some of
the input parameters, such as N/G, sand body dimensions or fault sealing (steps 4 and
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THE DIFFERENT ORDERS OF UNCERTAINTY AFFECTING
GEOLOGICAL MODEL CONSTRUCTION (MASSONNAT, 2000)
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5). Dubrule and Damsleth (2001) discuss a possible approach where different scenarios
are obtained from different geoconcepts (steps 3 and 4). Corre et al. (2000) associate
scenarios with different assumptions (Fig. 6-29) about the size and number of sand
bodies (steps 4 and 5).

Scenarios differ from geostatistical conditional simulations in that the former are
discrete (leading to multimodal discrete histograms), whereas the latter result in a con-
tinuum of models (leading to unimodal continuous histograms). Usually, the number of
scenarios is rather small, from two to, say, twenty, which allows the geoscientist to bet-
ter control the geological meaning of each possible representation of the reservoir. In
some cases, the approach by discrete scenarios is mandatory, because we deal with
clearly different alternatives (e.g., choice of depositional environment, choice of seismic
loop on an interpretation) with no possible intermediate situations. However, construct-
ing multiple, discrete scenarios may be very time-consuming. The use of multiple, dis-
crete scenarios may also create the illusion that only two or three situations are possi-
ble, when in reality all the intermediate ones may also happen. In this case, it may be
better to sample geostatistical parameters in such a way that the discrete scenarios are
incorporated into a range ol realizations. The sampling approach, based on Monte Carlo
and geostatistics (Fig. 6-27), can be more efficient to run, because it does not require a
manual reconstruction of the model.

6.4.2 Combining scenarios and geostatistical realizations

Still, if we come back to Massonnat’s (2000) classification, the discrete scenario-based
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ACCOUNTING FOR UNCERTAINTY ON THE MEAN
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EXAMPLE OF GEOLOGICAL SCENARIOS
(CORRE ET AL., 2000)
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approaches for steps 3 and 4 can be combined with geostatistical ones for steps 5 and 6,
as described in Fig. 6-30, where multiple geostatistical realizations have been produced
for each scenario and then recombined using the probability of each scenario occur-
ring. This requires a quantification of this probability, which may be a difficult but use-
ful exercise. Corre et al. (2000) and Charles et al. (2001) discuss a number of applica-
tions of uncertainty quantification combining scenarios and geostatistical realizations.

Lia et al.’s (1997) classic uncertainty study combines scenario-based and geostatis-
tical approaches. They combine geostatistical realizations with multiple scenarios on
fault sealing. The base case is assumed to have a 0.5 probability (transmissibility multi-
pliers ranging from 0 to 0.05), whereas the no-sealing, complete-sealing, and almost-
sealing (transmissibility multipliers equal to 0.1 times the base case) scenarios have a
probability of 0.2, 0.15, and 0.15, respectively. Fig. 6-31 individualizes the output pdf
associated with each scenario, which helps us understand the radical impact of fault-
sealing assumptions on the recovery-factor uncertainty. Lia et al. also could have recom-
bined the four histograms in order to obtain a single — probably multimodal — pdf for
the recovery factor. They even could have sampled the transmissibility multiplier by
Monte Carlo, rather than produce different scenarios. However, in the example, keeping
the scenarios separate helps us understand the actual impact of fault sealing. So, the
choice of working by scenarios or by Monte-Carlo sampling of some of the input para-
meters may depend on the geological meaning and the sensitivity of the final results to
these parameters.
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COMBINING SCENARIOS AND GEOSTATISTICS
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THE IMPACT OF FAULT SEALING SCENARIO ON
RECOVERY FACTOR (LIA ET AL., 1997)
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WHAT IS UNCERTAINTY QUANTIFICATION?
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6.5 Conclusion on Uncertainties: A Word of Caution

The approaches presented above are merely a way to combine the uncertainties quanti-
fied by the various disciplines, in order to evaluate their joint impact on parameters that
have an economic importance (Fig. 6-32). If some important uncertainties are ignored
in the input phase, the uncertainty evaluation, whether quantified with geostatistics or
with a scenario approach, will be wrong.

As with Monte-Carlo simulation, the importance of the assumptions made about
parameter correlation cannot be stressed too much. As mentioned before, making no
assumption about the correlation between parameters is the same as assuming indepen-
dence. We saw earlier that independence means mutual compensation, which usually
leads to an underestimation ol global uncertainties (Fig. 6-33). The guidelines provided
in Fig. 6-34 must absolutely be followed to avoid transforming uncertainty quantifica-
tion into a black box.

The main value of uncertainty quantification may lie not in the results — the final
pdfs — but in the process that it involves among a team of geoscientists and possibly
other disciplines. This is nicely expressed by Spencer et al. (1998): “By having a clear
expectation of the range of parameters expected, clear accountability of the estimates, a
feedback process which trains us in our judgements, and an atmosphere in which the
sharing of mistakes and learning is encouraged, the Company benefits in multiple
ways.
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IMPACT OF CORRELATION ASSUMPTION ON
UNCERTAINTY
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RECOMMENDATION

Always carefully list:

Uncertainties that have been accounted for

Uncertainty quantification model (variogram, trend...)
Correlation assumptions

Allows:

Demystification of the approach to non-specialist
Documentation for post-mortems ("audit trail”)
Keep model alive when new data appear
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/ Conclusions

7.1 What We Have Learned

We have presented the model used by geostatistics for 2D and 3D petroleum applica-
tions. This quantified geological model assumes that the variable of interest is the sum
ol a deterministic trend plus a residual characterized by its variogram or its covariance.
When there are enough data, the variogram model can be fitted to the experimental
function. In other cases, assumptions based on geological knowledge, combined with a
variogram analysis of seismic data, will be used to define the variogram model.
Variograms can be related to fractal models and to a priori information used by geo-
physicists in seismic inversion or in Fourier analysis (Fig. 7-1).

I'he geostatistical model can address the problem of deterministic interpolation
through kriging. A degree of smoothing can be applied to kriging through the error-
cokriging approach, which allows the filtering of random noise, whereas the factorial
kriging approach allows the fhiltering of short-range — or high-frequency — terms due
(for instance) to seismic-acquisition artifacts. Kriging based on well data can also incor-
porate extra information coming from seismic data, through the external drift or the
collocated cokriging approach. Kriging is closely related to other interpolation tech-
niques, such as splines or radial-basis functions. Specifying a kriging model amounts to
specifying the regularization term ol energy-based inversion techniques.

Kriging and all its family of associated techniques remain a deterministic method.

CONCLUSIONS

: Quantification of a priori geological model via
Vam’gr?m and trend and variogram function. Link with fractals
covariance
=i = | and spectral analysis.

Deterministic interpolation, filtering of noise or

Kriging technidues _ acquisition artefacts. Incorporation of seismic
d ' data via external drift and collocated cokriging.

: Tool-box for generating realistic heterogeneity
Conditional simulations models, Including gmlogicﬂ' facies or
— — — petrophysical property models. Incorporation of
seismic data via 3D facies probabilities,
geostatistical inversion.

Multhrealizaticn &nd Quantification of joint impact of seismic,
Sdanadion geological and dynamic parameter uncertainties
= =t 1 on GRV, OIP, production profiles or reserves.
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The production of a minimum variance estimate results in an interpolation that is very
smooth away from the data points. In practice, however, geology has no reason to
become smoother away from the wells! The method of conditional simulation allows
the generation of models that show everywhere, including away from wells, a similar
degree of variability, as quantified by the variogram. All kriging techniques presented
here can be generalized into continuous parameter conditional simulation, thanks to
algorithms such as SGS.

Conditional simulation can also be used to generate models of discrete variables,
such as depositional facies, lithology, or rock type. The most popular techniques are
object-based models and indicator simulation. They can be applied jointly, in a hierar-
chical manner, and combined with continuous parameter-simulation techniques, using
tools available today in earth modeling software. Indicator simulation realizations can
be constrained by 3D probability models derived from seismic data using the Bayes
theorem and SIS. Object-based models can also be constrained by 3D probability
models, but this requires the use of MCMC algorithms.

Conditional simulation can be generalized into geostatistical inversion, a sequen-
tial technique that allows the generation of 3D acoustic-impedance realizations con-
strained by seismic data. The realizations can be produced at the reservoir model scale,
that is, at higher resolution than the seismic data. The lower the resolution of the seis-
mic data, the more variability there is from one inverted realization to another. The
acoustic-impedance realizations can then be used to constrain 3D realizations of litholo-
gy or petrophysical parameters.

Joint conditional simulation of the different features of a 3D earth model can also
lead to quantification of the 3D earth model’s uncertainty. Realizations of the geometri-
cal model, accounting for the uncertainty affecting interpretation picks and time-to-
depth conversion, are combined with realizations of the geological model, including
lithology and petrophysical parameters. This leads to the quantification of the GRV, OIP,
or reserves uncertainty resulting from uncertainties affecting the static model. The
impact of the uncertainties affecting dynamic parameters can be quantified using exper-
imental design. Scenario-based and geostatistical approaches can be combined, as long
as a probability is attached to each possible scenario.

7.2 Future Topics

The nature of geostatistical research has changed since the 1980s. At that time, petro-
leum geostatistics was still new, and there was an explosion of new techniques. Some of
them proved difficult to understand or to apply, while many others — in spite of the
jargon used — proved redundant with each other. Now, the dust has settled and a nat-
ural selection process has occurred. Geostatistical modeling has become part of the
standard reservoir-modeling workflow, and the interest of geologists, geophysicists, and
reservoir engineers in these techniques has grown. Instead of considering the tech-
niques to be remote from their day-to-day activities, geoscientists now understand that
they may have a strong impact on their workflow.

The development of earth modeling software has dramatically impacted the work
of the sedimentologist and the reservoir geologist. Fewer models are generated by hand,
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and geologists want better geologically loaded models that are able to incorporate their
a priori knowledge about reservoir architecture (Fig. 7-2). This is one of the drivers
behind the research in multiple-point geostatistics.

The border between geostatistics and seismic inversion, or between geostatistical
uncertainty quantification and production history matching, is also disappearing.
Reservoir engineers now see that the multirealization approach may help them tackle
this old problem of the nonuniqueness of history matching. The success met by geosta-
tistical inversion is generating new questions among geophysicists. How can we make
better use of the multiple realizations? Can we apply this stochastic paradigm to
prestack data? Academics, contractors, and petroleum companies work together on
these topics, which may require strong knowledge of mathematics and an understand-
ing of the business issues, and which may lead — when the methods are successful —
to their integration into earth modeling software.

The role of the petroleum geostatistician is also changing. More and more, he/she
must build a dialog with the various disciplines and understand the tools of the trade in
order to understand the added value that geostatistics can bring. The time when the
geostatistician worked sequentially with the geophysicist, the geologist. and the reser-
voir engineer is over. The geostatistician needs to spend less time developing new geo-
statistical methods, but more time understanding how the existing ones fit into the
multidisciplinary integration workflow.

Thus, geostatistics offers a range of tools for building 3D models that are consis-
tent with all data available, and for quantifying the associated uncertainty. The different

FUTURE TOPICS

Better geologically-loaded models

Industry-accepted approach to support effect

Faster geological model construction and update, from
seismic interpretation to production history-matching

Speed of stochastic inversion algorithms
Better post-processing of multiple realizations

Better integration between geostatistical inversion and
standard seismic-inversion and production history-
matching tools
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disciplines meet each other around the geostatistical model, which acts like a glue
between them, thanks to the algorithms and models it provides. In spite of the recent
progress made by earth modeling software, it still takes too much time to go from seis-
mic interpretation to flow simulation, or to update models as new data are acquired.
Today, new data often require complete reconstruction of the model, rather than a [ast
update. There is room for much progress in this area.

The multidisciplinary reservoir characterization process often remains long and
tedious. Issues such as the support effect, the speed of geostatistical inversion algo-
rithms, or the processing of multiple realizations are yet to be addressed properly and
with industry-accepted solutions.

7.3 Websites and Soltware

Fig. 7-3 provides a list of active geostatistics websites, all of which are run by academic
institutions that are leaders in petroleum geostatistics research: Stanford University,
Ecole des Mines de Paris, University of Alberta, Norwegian Computing Centre, and the
University ol Trondheim. This is definitely not an exhaustive list, but it is a good entry
point.

We do not specifically discuss software here, to avoid commercialism. Today, new
geostatistical techniques are usually developed by companies as in-house prototypes, or
by academics using public-domain software libraries (the most successful example
today is GSLIB; see Deutsch and Journel, 1992). There are very few stand-alone com-

WEBSITES ABOUT PETROLEUM GEOSTATISTICS

www.ualberta.ca/~cdeutsch/
ekofisk.stanford.edu/SCRFweb/index.html

www.math.ntnu.no/~omre

www.cg.ensmp.fr

www.tucrs.utulsa.edu/joint_industry_project.htm
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mercial geostatistical products. Once new geostatistical technologies have been proved,
whether by academics, contractors, or petroleum companies, they are usually incorpo-
rated into earth modeling software, because such software (see Chapter 1) provides the
geometrical and stratigraphic grid framework required for modeling studies.

7.4 The Role of Geostatistics in Geophysics

It seems appropriate to conclude this course with considerations about the role of geo-
statistics in geophysics. Hopefully, we have now made clear that the a priori geostatisti-
cal model, as quantified by the variogram and the trend model, is just an extension of
the a priori model used in Bayesian inversion. We have also seen in this course that, il
an energy-based inversion approach is used, the specification of a regularization term is
equivalent to that of an a priori model. Of course, the a priori model of the geostatisti-
cian should not be different from that of the geophysicist! Thus, geostatistics formalizes
and quantifies the a priori geological model and makes a significant step toward filling
the need stated by Scales and Tenorio (2001) (Fig. 7-4).

Geostatistics also provides a large number of tools that extend the standard 3D
modeling tool-box of geophysicists. Deterministic techniques such as kriging, error
cokriging, factorial kriging, collocated cokriging, and external drift provide new ways of
filtering acquisition artifacts or combining different kinds of information. These tools
can be applied to scattered data without going through the intermediate step of inter-
polation on a regular grid, as spectral methods do.

TWO RECENT PAPERS IN GEOPHYSICS

« “A Bayes Tour of Inversion : A Tutorial,” by Ulrych et al.,
Jan-Feb 2001.

* Tutorial: “Prior Information and Uncertainty in Inverse

Problems,” by Scales and Tenorio, March-April 2001.

“We need methods to incorporate data-
independent prior information to eliminate
unreasonable models that fit the data”
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Even more interesting, geostatistical simulation provides a means of generating
samples of the a posteriori distribution, whether it is constrained by wells, seismic, or
dynamic data (Fig. 7-5). The recent developments of geostatistical inversion, even if
algorithms need to be optimized, show that these techniques have the potential to
change the way seismic-constrained modeling was done in the past.

Thus, we hope that course attendees and readers of these notes will go home with
an understanding that the gap between deterministic and probabilistic techniques has
now almost disappeared, as Wadsworth et al. (Fig. 7-6) had already envisoned in . . .
1953!

QUESTIONS OFTEN ASKED IN INVERSION

How to obtain an a priori model?

How to filter the data?

How to weight fidelity to the data versus smoothness?

How to quantify uncertainties?

Solutions already exist in geostatistical modeling!

SEGIEAGE DISC 2003
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THE LASTWORD ...

THE DETERMINISTIC AND THE PROBABILISTIC
APPROACH

“There are two basic approaches to treating data
observed in nature, and in particular the data
represented on a seismogram. One is the deterministic

approach and the other is the probabilistic approach.
Many people think of these two approaches as
conflicting, but actually this is not the case. Recent
investigations indicate that each approach is
fundamentally equivalent to the other.”

Wadsworth, Robinson, Bryan and Hurley, 1953.
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8 Exercises

The exercises are modified from some of the exercises already presented in Dubrule
(1998).

8.1 Exercise 1: Fitting a Variogram Model

The goal of this exercise is to show how a 3D model is fitted to an anisotropic experi-
mental variogram.

The example used is from Chu et al. (1994). This paper shows (in its Fig. 7)
experimental porosity variograms calculated in the North-South, East-West, and vertical
directions. The data are from an Amoco west-Texas carbonate field of Permian age.

The experimental variograms were calculated from the well data in their strati-
graphic coordinates, within a layer of thickness ranging from 11 to 27 m. A total of
4697 elementary porosity-log data were available in 90 wells. Experimental variograms
are displayed in Fig. 2-26.

The model fitted by Chu et al. is shown in Fig. 2-26. A screen copy of the spread-
sheet used is shown in Fig. E1-1. Thanks to this spreadsheet, it is possible to evaluate
the impact of a parameter change on the variogram model, and thus to better under-
stand the meaning of each parameter. A particular point to discuss is the use of a short-
range model to represent the nugget elfect of the lateral variograms, without impacting
the vertical variogram fit.

EXERCISE 1 (CHU ET AL, 1994)

VARIOGRAM FITTING EXAMPLE

[
o
00
ooy
500
2000
2500
ey

4
(=}

&

/*"

@

VARIOGRAM

2800 4200 5600 7000
DISTANCE

BEGHEAGE DISC 2003

Diém_?gas'hed Instructor Short Course « 8-1



Exercises

8.2 Exercise 2: Understanding the Kriging System

The goal of this exercise is to evaluate the impact of the variogram choice on the results
of an elementary kriging system.

We assume that we work in 2D, and that the value of a variable z at a data point xo
is kriged using the values at four data points located in the neighborhood of x, (Fig. E2-
1). We make assumptions about the variogram model (which can be Gaussian, spheri-
cal, or exponential), about the practical range and the sill, and about the ratio and
direction of anisotropy. The size of the color circles is proportional to the value of the
four corresponding kriging weights. If a kriging weight is negative, no circle is plotted.

By moving the data points around the estimated point and changing the parame-
ters of the variogram model, the impact of each parameter of the variogram on the krig-
ing system is better understood.

EXERCISE 2 (KRIGING SYSTEM)

COMTIOL FPOINT LOCATIONS
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8.3 Exercise 3: Generating a Nonconditional Simulation in 1D

The goal of this exercise is to explain, using a simple example, how a nonconditional
simulation can be generated.

A throw ol a die generates a uniformly distributed, random variable taking the val-
ues 1, 2, 3, 4, 5, or 6. Il the die is thrown repeatedly, a sequence of uncorrelated values
is generated, In geostatistical terms, this is called an uncorrelated random function, or
“white noise,” the variogram of which is a “pure nugget effect.”

[he exercise consists of experimenting with a simple approach lor introducing
spatial correlation into such a sequence. The value of z at each location is averaged with
the two preceding and the two following values. A spreadsheet simulates 100 throws of
a die and calculates this moving average at each location.

Fig. E3-1 shows an example of a sequence ol values z (Raw) and the correspond-
ing average (moving) at 100 locations. How do the sequences differ? Fig. E3-1 also
shows the variograms calculated on the data displayed in Fig. E3-1. What has been the
impact of averaging the initial results of the die’s throw? How does this relate to the pre-

viously discussed moving simulation technique of Oliver (1995)?

EXERCISE 3 (NONCONDITIONAL SIMULATION)

COMPARING RANDOM DICE VALUES WITH MOVING AVERAGES

Sampled valur

COMPARING VARIOGRAMS BEFORE AND AFTER SMOOTHING

\arisgram

DISTANCE
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O Notation

X A pointin 1D, 2D, or 3D space

2(x) A property measured in 1D, 2D, or 3D space

Z(x) A random lunction in 1D, 2D, or 3D space (Section 2.1)

Z The value of variable z at location x;

Zi(x) The primary variable (Section 2.8)

Zy(x) The secondary variable (Section 2.8)

X A real number

f(x) A probability density function (pdf) (Section 1.4.1, Fig, 1-13)
F(x) A cumulative density function (cdf) (Section 1.4.1, Fig. 1-13)
X,Y,orZ A random variable (Fig. 1-12)

m The mean of a random variable (Fig. 1-15)

c The standard deviation of a random variable (Fig. 1-15)

g The x% quantile of a random variable (Fig. 1-24)

x=(x,y,2)  Coordinates of a point in space
(ij.k) Coordinates of a point in the stratigraphic grid (Figs. 1-5 and 1-9)
u=(u,v.w)  Coordinates of a point in the frequency domain (Figs. 2-40 and 2-41)

RMA Reduced-major-axis bivariate modeling technique (Fig. 1-37)
z Variance-covariance matrix (Fig. 1-38)

Co Variogram nugget effect (Section 2.3, Fig. 2-16)

C Variogram sill (Section 2.3, Fig. 2-16)

a Variogram range (Section 2.3, Fig. 2-16)

C(h) Covariance value for vector h (Section 2.2, Fig. 2-9)

y(h) Variogram value for vector h (Section 2.2, Fig. 2-9)

p(h) Autocorrelation value for vector h (Section 2.2, Fig. 2-9)

Aty AN Kriging weights (Fig. 3-3)
L M Lagrange multipliers (Fig. 3-3)

Cy Covariance between two data points, x, and x; (Fig. 3-3)

Cio Covariance between data points x; and estimated point x, (Fig. 3-3)

€ (xy) Measurement error at location (x,y), for instance, with V., data
(Fig. 3-35)

e Measurement error affecting measurement g, at location, x; (Fig. 3-91)

Viack Stacking velocity (Section 3.3.1)
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k.l.lml

UK
:;.L(K)
SK
OK
G|."(X)
FK

Zi(x)
KED
Zied(X)
BK
COK
:‘.,;‘(X)
g, ..Ll(K)
CCK
Z‘.L(x)

MCCK

k-IRF
GC-k

Zn(x)
Zhhs(X)
ZusX)
Zrhl(x)

0

GCS
MCS

oIp
STOOIP
GRV

D

N/G

Si

B,

SGS
SIS

MCMC

Gl

Apparent velocity (Fig, 3-14)

Universal kriging (Section 3.2.2, Fig. 3-3)

Universal kriging interpolation at location x (Section 3.2.2, Fig. 3-3)
Simple kriging (Section 3.2.2)

Ordinary kriging (Section 3.2.2)

Kriging variance at location x (Section 3.2.2, Fig. 3-17)

Factorial kriging (Section 3.3.2, Fig. 3-49)

Factorial kriging interpolation at location x (Section 3.3.2, Fig. 3-49)
Kriging with an external drift (Section 3.4, Fig. 3-56)

Kriging with an external drift interpolation at location x

Bayesian kriging (Section 3.5, Fig. 3-65)

Cokriging (Section 3.6, Fig. 3-67)

Cokriging interpolation at location x (Fig. 3-67)

Cokriging variance at location x (Fig. 3-67)

Collocated cokriging (Section 3.6.3)

Collocated cokriging interpolation at location x (Fig. 3-75)
Multicollocated cokriging (Section 3.6.3)

Intrinsic random [unctions of order k (Section 3.2.3)
Generalized covariance of order k (Section 3.2.3)

Harmonic spline interpolation at location x (Section 3.8.2, Fig. 3-90)
Biharmonic spline interpolation at location x (Section 3.8.2, Fig. 3-90)
Smoothing spline interpolation at location x (Section 3.8.2, Fig. 3-91)
Radial basis function interpolation at location x (Section 3.8.3, Fig. 3-91)

Weighting parameter used by smoothing splines (Section 3.8.2, Fig. 3-91)

Geostatistical conditional simulation (Chapter 4, Fig. 4-1)
Monte-Carlo simulation (Section 4.2, Figs. 4-3 and 4-4)

Oil-in-place volume

Standard original oil-in-place volume
Gross-rock volume

Porosity

Net/gross

Walter-saturation

Formation volume flactor

Sequential Gaussian simulation (Section 4.3.2, Fig. 4-22)
Sequential indicator simulation (Section 4.5.2, Fig. 4-42)

Markov-chain Monte Carlo (Section 4.3.2, Figs. 4-24 and 4-25)

Geostatistical inversion (Chapter 5, Fig. 5-3)
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