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Olivier Dubrule 

1 Introduction 

L.l Historical Perspective 

In this introduction, we would like to highlight what appear to be the important land
marks in the histol)' of geostatistical applica tions in the petroleum industry. What do 
we mean by "geostatislics?"' In th is course, this term will cover the petro leum applica
tio lls resulting from the pioneeri ng work of Prof. Georges Mathcron and his Research 
Group al the Centre de Geosta listique de l'Ecole des Mines de Paris. As far as this 
course is concerned, the main pillars of this work arc the developments of va riogram
based modeling applica tions. 

Variogram-bascd modeling applications can be classified in two broad categories, 
the first of which can be called deterministic geoslatistics and is essentially .. III the 
development around kriging. We will see later that this covers a very wide number of 
techniques, i.ncluding external drift kriging, error cokriging, facLOria l kriging, and co llo
cated cokriging. Although kriging is a technique based on a sLOchaslic model , it gener
ates one single model as a resu ll , and it is dete rministic in that sense. 

The second category can be called stochastic geosta lis tics, and it covers the numer
ous techniques developed around the conditional simulation concept. Conditional sim
ulation is sl.Ochasti c in the sense that , as wi th the Monte-Carlo simulation, it generales a 
family of "realizations" of 10 , 20, or 3D models , all compatible with the a prio ri model 
and the existing data. With regard to kriging, conditional simulation includes severa l 
tech niques, such as indica tor simula tion, collocated cosimulation , or geostatisti cal 
inversion. This explains why this one-day course is sulxl ivided in two hal f-days, the 
first half-day presenting the basic concepts and the deterministic family of applications, 
the second hal f-day covering the sl.Ochastic applications (Fig. 1-0. The most complete 
synthesis of Malheron's work can be found in Chiles and Oel finer (1 999). Isaaks and 
Srivastava (1989), Hohn (1988) , and Deutsch (2002) arc also other excell ent presenta
tions of geostatistics. 

Following the work of Matheron, petroleum applications went th rough different 
episodes (Fig. 1-2). The fi rst one could be qualified as deterministic mapping. This was 
the first development of kriging for mapping applications; see, for instance, the papers 
of Haas and Via llix (1974) or Haas and Jousselin (1976). This peri od saw the develop
ment of commercial mapping applications, such as Bluepack (Renard , 1990). AnOlher 
importa nt step in the develo pment of 20 mapping applications was Doyen's (1 988) 
paper showing the potential of cokriging for mapping porosi ty using seismic-derived 
in formation and well data. 

The mid-1980s to mid-1990s saw the explOSion of 3D stochastic (simulation
based) reservoir model ing. This foll owed the arriva l of Prof. Journel who, after closely 
working wit h Matheron, jOined the facu lty at Stanford University. Thanks LO the devel
opmem of sequential algori th ms, simulation proved its value for gene rating heteroge
neous 3 D reservoi r models, a task made even easier by the development of the publ ic
domain GSU B software library (Deutsch and Journcl , 1992). As a resu lt , reservoir and 
production geologists adopted this new technique as an important s tep in rese rvoir 
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Olivier Dubru/e 

modeling workflow (Dubrule, 1998). Commercial sofware also developed quick I}., but it 
remained limited to the generation of heterogeneity models within a somewhat simplis
tic stratigraphic context. 

Another potential application of simulation rapidly emerged - that of uncertainlY 
ql1al1lirlcation. The pioneering work of the Norwegian School, led by Prof. H. Omre 
(Lia et al. , 1997), showed that it was possible to combi ne uncertainties related to 
geometrical modeling (essentially 2D) with uncertainties associated wi th 3D hetero
geneity modeling. However, if Lia et a\. 's work showed that the approach was possible, 
it also showed that powerful software was needed to make it practical for industrial 
applications. 

The arrival of 30 carlh modeling in the mid-1990s, linked with the de\'elopment 
of new commercial software (see, for instance, Tinker, 1996, or Dubrulc ct aI., 1997), 
opened a new era. The dichotomy between 20 surface modeling and 3D property mod
eli ng disappeared, thus giving a tremendous boost to cross-disCipline integration. 
Suddenly it became possible to quickly quantify the impact of a change in the time-to
depth conversion velOcity model on the predicted production proliles. It also became 
possible, as Lia et al. had predicted, to quantify the joint impact of subsurrace uncer
tainties, including those associated with time-to-depth conversion, property modeling, 
and dynamiC parameters, on production forecasLS (Corre et aI. , 2000). 

It is nOL a coi ncidence lhat, at about the same time that 3D earth modeling SOrL
ware was developing on an industrial scale, new applications emerged that led to a bet~ 
ter integration or seismic data in the construction or 3D reservoir models. Cokriging 
became a viable approach ror combining seismic and reservoir daLa (Xu et aI. , J992), 
and the relationships betwccn gcostatis tical techniques and the approaches more com
monly used by geophysicisLS tended to narrow: Doyen et al. (1996) showed that collo
caLed cokriging could be simply put in a Bayesian contcxt, whereas Haas and Dllbrule 
(994) proposed geostatistical inversion as a stochastic high-resolution addition to 
deterministic stra tigraph ic inversion techniques. 

Over the last 30 years, we have seen that the dcvelopment or geostalistical tech+ 
niques, combined with that or eanh modeling software, has led to bctter intcgration or 
geoslalislics in the disciplines' workflow, whether the diSCipline is geology, geophysics, 
or reservoir engineering. This is very good ncws. Howevcr, much progress can still be 
made. because geostatislics is still regarded by many gcoscielllislS as a ralldol1l+numocr
generating black box, disconnecLed frolll the conStrai nLS provided by the discipli nes. 
This may be partly the geostatistieians' responSibility, because they have developed 
many new techniques, sometimes using a very heavy mathematical formalism, without 
dearl}. indicating whm was really important and how it related with what the various 
diSCiplines were llsed to doing. 

Now, rollowing this natural-selection period or about 30 years, one of our goals is 
to c1ariry the actual achievements of gcosLalistics and their relationship to the practice 
of various geoscience disciplines - especially geophYSiCS. 

1.2 The Role or Geostalistics aL Different SLeps or the Earth ~llodeling \Vorknow 

The first element in the construction or a 3D earth model is the structural rramework 
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(Fig. 1-3). It describes, through faulLS and surfaces, the skeleton within which (he meat 
of the propen )' model will be incorporatcd. In most cases, the structural model is con
structed from 2D or 3D seismic data , although it may be built from wells alone if no 
seismic data are available. We will see examples of modeling when only well data are 
available, but we will spend more lime discussing the geosta tistical approaches for 
veioci t)' mapping and for lime-lo-depth conversion (error cokriging, factorial kriging, 
ex ternal drift approach, a nd tbe like). We will also discuss how uncertainties thai affect 
the geometrical model can be quantified wi th geosLat istics. 

In many cases, the structu ral model is not sufficient to de fine the stratigraphic 
framework. Important stratigraphic surfaces may be recognizable from seismic data and 
wells or from wells alone. Fig. 1-4 shows examples of the envelope of a turbidite chan
nel complex picked from a good-qual ity, deep-offshore se ismic data set (le ft ) and stra ti
graph ic surfaces picked on wel ls alone in a shallow-marine reservoir (right). In the lat
ter example, the interpolation of the stra tigraphic surfaces identified on wclls is gUided 
by the main structural surfaces seen on seismic data, with the assumption, in that case, 
thaL the surfaces are subpara llel. The model combining structural and stratigraphic sur
faces is the 3D geometrical model. 

The next step is very crucial and probably is the most important advance brought 
about by eart h modeling so ft ware. It is the construction of the stra tigraphic grid , which 
will effeCliveJy constitute the link between the geometrical and the property models. 
The Simplest form of stra tigraphic grid is shown in Fig. 1-5. Each grid cell in the strati
graphic grid has two coordinates: (x,y,z) corresponding to its absolute location in space, 
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and ( iJ ,h) corresponding LO its relalivc location in the stratigraphic grid . The strati
graphic grid can be seen as a map fr0111 the (relat ive) strat igraphic (deposi tion) space to 
the (absolute) depth space. Obviously, when interpolating properties in 3D between 
surbces of the geometrical model, one must incorporate stra tigraphic control. This 
means that interpolation must take place in the stratigraphic space. However, the result 
of this interpola tion must be displayed in the absolute struc tural space. 

In practice, geologic considerations are used to construct the stratigraphic model 
(Fig. 1-6). For example, in cases where palaeohighs controlled deposition , onlapping 
stuctures can be incorporated into the stra tigraphic grid . In cases in which a good 
sequence stratigraphic model has been established, sea-level falls Illay generate erosional 
truncations that can also be represented in the earth model. Of course, stratigraphic sce
narios can be combined - for instance. onlapping call be combined \vith erosion. 

Experience shows that a typical grid cell of the earth model is around 1 III thick 
and a few lens of meters \vide (Fig. 1-7). This difference between thickness and lateral 
extent is clue to the assumption that geologic va riations are much more rapid along the 
vertical direction than along directions parallel to stratigraphy. This also implies that the 
number of grid ce lls in an average-size reservoir often will be on the order of several 
million. 

What will be the impact of the stratigraphic grid assumptions on property model
ing? Fig. 1-8 shows that it can be very Significant. The three models all share the same 
well data at their left end and the geostatistical model is also the same. I-!owever, j ust 
because of the choice of stratigraphy, the onlapping model contains much fewer red 
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valucs than do the two other models. Fig. 1-9 shows the impact of using a stratigraphie 
grid in a fau lLed model: whereas the (x,y,::::) grid is obviously aITeeted by fau lting the 
(ij,h) stratigraphic grid is nOl, because the assumption has been made that faulting was 
postdeposi tiona l. Therdore two grid cells on each side of a fau lt are interpolated as if 
they were neighbors, because they were neighbors at the lime of de posi tion. 

Fig. I-lOis a nice example of the alllount of information that can be in tegrated 
and displayed with a 3D earth mode l. Surfaces and the acousti c- impcdance properties 
along these surfaces are bOlh shown, together wi lh amplitude and acoustic impedances 
along cross-sections. An acoustic-impedance log is also displayed, together with a 
cross-section of the stra tigraphie grid , with a diITerent color correspondi ng to each 
stratigraphic laye r. The use of 3D visuali zation environments, wi th part icipation of 
geosc ientists frolll different disciplines, offers the perfect setup for va lidating and , if 
necessary, improving the model- thanks to different input brought by different 
di sci plines. 

Standa rd fl ow simulaLOTS cannot handle ma rc than approx imately 100,000 grid 
cells. The geometry of the simulation grid is also less flexible than that of the earth 
model grid . This means that an upgridding and an upscaling stage are oflcn required LO 
translate the earth model into a dynamiC model. These topics are too broad to be dis
cussed here. Christ ie (1996) is a good reference on the subject. 

Fig. 1-11 identifies the modeling stages for which geosLa tistics is oft en used . The 
different techniques listed on the right-hand side will be discussed du ri ng this course. 
Obviously, geostatis tics p lays a role in the cons truction of the geometric model, th rough 
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kriging and lhrough the quantification of associated uncertainties. It is also used in the 
construction of the static and of the dynamic models, through the 3D modeling of geo
lOgical facies and of pel rophysical properties , and through the quantification of their 
associated uncertai11lies. 

1.3 The Goal of This Course 

For both geometry and property modeling, deterministic (k riging-based) or stochastic 
(conditional-simulation-based) geostat istical approaches can be used. The reasons for 
using one rather than the other will be discussed later. As the title of the course indi
cales, we wi ll focus especially on the geost3 tislical techniques that can be used to incor
porate seismic-derived information in the earth model, in combination with well data 
and geologica l constrai nts. 

We will clarify the current ra nge of applications of geostatisticaltechniques, from 
20 mapping applications to the generalion of 3D heterogeneity realizations fully con
strained by seismic data . However, we will not cover all methods, but only those that 
appear to be the most widely used or the most promising for thc futurc. We will nOI 
have time to cover any topic in detail. bUI , hopefully, after following this course, people 
will be familiar with the basic concepts and wi ll be able 10 find their way through the 
maze of geostatistical terminology and applications. 

In t.he world of geophysics, geostatistics is often perceived as a black-box approach 
that is oft.en reduced lO the generation of random numbers between wells. We will show 
that th is is far from true and Ihal geoslalistical applications can be underslOod as extcn
sions of techniques that arc familiar to most geophysicists and interpreters. 

We will discuss the relat ionships between geostatistics and approaches such as 
Bayesian or rcgu lariza tio n-bascd inversion methods, filtering, Fourier analysis, or 
splines. A number of short mathematical developments will be given in the text and in 
the figures, for the benefit of readers intcrested in more details than it is possible to 
cover in a one-day course. But these developmcnts are not rigorous. We only wish to 

give a navor of where the thcorctical relationships may lead, and we apologize - once 
and for all- for the mathematical shortcuts. 

1.4 Basics of Univariate Statistics 

To understand geoslal.istics, one must know a number of basic statisti cal results. In the 
following, we focus on the statis lical results that appear mOSt relevant \0 the under
standing of geostatistics. The reader familiar with statistics can skip th is chapter. 

1.4.1 Random va ri(lhles 

The concept of Ule random variable is crucial, because the geostatistical model assumes 
thaI the value of any pro pcrty z(x), whether x is a point along a line, in t.h e plane, or in 
3D spacc, is Ihe realization of a random variable Z(x). There are many complicated 
malhematical ways to define random variables. Let us avoid them and simply say Ihal a 
random variable is one thaI lakes certain values with certain probabilities. 

There are discrele random variables , which take only a small number of integer 
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va lues. Fig. 1-12 shows the simple example of the sum of two dice, which takes values 
between 2 and 12 with diITerent probabilities. The figure shows the number of ways 
each value can be obtained out of the 36 possible results of the th row of the two dice. 
This can be readily translated illlo probabilities by dividing by 36. This is a discrete 
variable. because its histogram is made of a finite number of columns. A random vari
able is usually designa ted using an uppercase lelte r (usua lly X, Y, or Z), whereas one of 
its realizations is designated by a lowercase lelter (usually z). An example of a discrete 
variable is lithology, which can be, for instance, 0 for shale and 1 for sand. 

A cominllOUS random variable is one that takes real values. Porosity, acoustic 
impedance, and permeability are examples of such parameters. They are characterized 
by a probability density function (pdf) and a cumulativc density function (cdf). The 
value of the cdf for x is equal to the area at the left of x under the pdf plot (F ig. l-13). 
Of course, in sill1ations where a value is perfectly known (porosi ty measured on a 
plug), the pdf is reduced to one single bar corresponding to the mcasured variable. 
Ot herwise, the pdf measures the degree of knowledge available abou t a parameter (Fig. 
L- 14). The larger the spread , the poorer this knowledge is. 

Usually a pdf is derived from a combination of a priori knowledge that a special ist 
has about a parameter: "in a braided-streams environment , I expect permeability to be 
high ," and actual data from the area of interest. Examples from Capen (1976) or Rose 
(2001) have shown how difficult it could be to provide a realistic measure of uncertain
ly, and we will see later that this is a difficult issue in the application of statistical 
approaches to natural phenomena. The statistical fonnalism , as such, is perfectly cor-

• • • • • • • • • • • • 
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reet, once all the inputs have been quan ti fied. But, if things are not done carefully and 
the assumptions are nOt right , the "garbage in , ga rbage om" law will apply. 

1.4.2 Mcan, varimlcc, slane/ani deviation , ana support eJfeCl 

Fig. 1-15 gives basic defini tions of mean and va riance. For the sake of s impliCity. 
we do not make a dis tinction in the notations between the population mean and the 
sample mean, or between the population variance and the sample va riance. Fig. 1-16 
gives an example of how variance can be calculated. A num ber of points are wonh dis
cussing . 

• The mean 

The mean of the sum is equal to the sum of the means. This means lhat if the his
togram of a large number of values picked on a map is calculated, the mean of this his
togram will be independent of the block s ize on which it is calculatcd (Figs. 1·17 and 
1-18). It does not mailer whether the va lues have been averaged over a certain block 
size before the histogram was calculated . 

• The variance 

On the Olher hand , the variance of the sum is not equal 10 the sum of thc variances. 
The formulas show that if a large number of uncorrclated variables are averaged, the 
variance of the average is inversely proponional to the number of variables that are 

f 
+00 

/II = £(X) = L X/': = ~ X f(x) dx 
,,,,Ltv 
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Count Minimum M Oilll Std Oo.v Correlation 

4073% 2442% 6 49% 
9 43"1. 5347% 2442°1. 827% 

8100 612% 7558°1. 2442% 9 89°/. 
72900 480% 9887% 2442°/. 1034% 

averaged (Fig. 1· 19). In petroleum applications, we will see that the phenomenon is 
somewhat auenuated. If porosity values within a vo lume are averaged , the variance of 
the averaged values wi ll decrease. but not as fast as given by the equation of Fig. 1·19, 
because the va lues arc usually correlated in space. This is what happens with the exam
ples of Figs. 1- 17 and 1·18: Spatial correlation between neighboring porosity values 
implies that the compensat ion effect fTOm one to another is not as ex treme as in the si t· 
lIation where data are completely uncorrelated (Fig. 1-19). This is what geostalisticians 
ca ll the "support crfect." 

Because of the support effec t, it is meaningless to talk about hthc va riance of 
poroSity" over a given reservoir (while it is correct to ta lk about the mean of porosi ty, at 
least if there is no systematic trend). The variance of porosity values is supporHeiated, 
in the sense thal the variance of plug va lues of porosity will usually be larger than the 
variance of values derived frolll logs, because the latter are averaged over a larger vol· 
lime than the fonner. Fig. 1·20, from Kelkar (2000) , shows a model of how poroSity 
and its variance vary as a function of the averaging scale. 

This also applies to an even larger scale. It would be completely meaningless to 
lISC the histogram of plug porosities to de ri ve the variance associa ted with ficld·avcr· 
aged poroSity values! We wi ll see later that, thanks to their use of the spatial covariance 
or va riogram, geostatislicians can theoretically predict how variance changes as the 
averaging volume increases. 
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There is often confusion between various measures of central tcndency. Fig. 1-21 clari
fies the definitions, using the asymmetrical lognormal distribution (see Fig. 1-27 fo r t.he 
definition of a lognonnal distribution). Usually, for right-skewed distributions such as 
the lognormal, the mode is smaller than the median, which is smaller than the mean. 
This can be underslOod as follows: Incorporation of a new, high value will have no 
effect on the mode, will count for one in affecting the median , but will have a signifi
cant impact on the mean. Fig. 1-22 uses a simple example to illusnate how to calculate 
various measures of celllral tendency. Fig. 1-23 is a reminder of a crucial property of the 
mean , which wil1 justify a lot of t.he geostatistical developments to be discussed later on. 
If a pdf is kllOWl1, and if we need just one value to characterize it in such a way Ihaltl"Te 
average erTO r made is minimal , the best value to use is the mean. 

• Quantiles 

In situations where a probabilistic approach has been used, SPE-WPC guidelines for 
reporting reserves (SPEJWPC, 1997) are based on quantiies. The quantile defmition is 
best understood by using the cumulative density function (Fig. 1-24). Rather than 
directly associating provcn, probable, or possible reserves figures to quantiles, the prac
tice in the industry is often to define "P" values. This amounts to taking a pOSitive view 
of ulings, basing the definitions on the probability of havi.ng "more than" (P90 means 
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that there is 90% chance to find more) rather than "Iess than." SPEJ\VPC recommends 
taking the 10% quantile as the val ue of proven reserves in si tuations in which a proba
bilistic approach has been used (Fig. 1-25). 

A result thal will p rovc useful later is that , if a random variable is trans formed into 
another random va riable th ro ugh a con tinuously decreasing or increasing transforma
tion, then quantiles arc also transformed into quantiles. 

1.4.4 Two importcHlf distribufions 

• ormal distribution and confidence interva l 

The normal (or Gaussian) distribution and iLS mathematical expression are given in Fig. 
1-26. The no rmal distribution is o ft en used to represent the pdf o f po rosi ty o r of ran
dom errors. We will see below, when discussing the central -limit theorem , why the nor
mal distribution is so important in s tatistics. It is a symmet.rical distribution (mean = 

mode = median), such that 95% of the va lues fall between m - 20 and m + 20 . 
If we make a random draw from a Gaussian pdf, \\'e have 95% con fidence that th is 

draw fa lls wi thi n th is illlerval, also called the confidence interva l. On the basis of Fig. 
1-23, we can also say lhat the best estimate o f a val ue frolll a nonnal distribution is the 
mean, and that the confidence interval around this estimate is plus or minus twice the 
standard deviation. When discussing the quantifica tion of structural uncertainties (Sec
tion 6.2), we will sec that this definition of confidence interval will help us define the nor~ 
mal distribution associa ted by an interpreter to his/her interpretatio n at a given loca tion . 

(0( •.•.••••••••.•..•.••••••.•••.••••.••.•••••••.••.••••••.•....•.•••••.•..••••• 
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• Lognormal distribmion 

The lognormal distribution is closely related LO the normal distribution. It is often lIsed 
to model permeability. It is important to understand the relationships between the mean 
and standard deviation of a lognormal distribution and the mean and variance of its 
associated normal distribu tion. We saw ea rlier that all quantiles must be preserved 
through the exponentia l transformation. This means thaI the median of the lognormal 
distribution must be transformed into the median of the normal distribution , which is 
also its mean. On the other hand, the mean of the lognormal distribution is related LO 

the mean of the normal distribution through a relationship that incorporates the vari· 
ance of the normal distribution (Fig. 1-27). This implies that any mean-preserving sta
tistical operation in the normal distribution will usually NOT be transformed into a 
mean-preserving statistical operat ion in the lognormal domain. A simple consequence 
or this , often ignored in practice, is thaI an unbiased regression model calculated 
between the logarithm or permeability and porosity will nOt simply translate into an 
unbiased relat ionship ror predicting permeability itself 

1.4.5 1\\10 illlportant theorems 

• Generalizing the confidence interval 

The inequality given in Fig. J-28 generalizes the notion or the confidence interva l intro
duced above for the normal distribution. It shows that the knowledge or the mean and 
standard deviation or any continuous and unimodal dislrihution may result in a 95% 
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confidence interva l for this variable. As stressed by Chiles and Delfiner ( 1999), the 
penalty for not knowing the distribution is an interval of width 50 instead of 40 . Later, 
this wi ll he lp us bener interpret kriging, which consisLS of calculating mean and stan
dard deviation maps for a spatial parameter . 

• Central limit theorem 

The centra l limil theorem (Fig. 1-29) must also be mentioned at th is stage. It justifies 
the importance of the nonnal and lognormal distribu tions, respectively, as limi LS of 
sums and producLS of random va riables. Because many of the geostatisti cal condi tional 
simulations discussed later are obta ined through the sum of a number of independent 
random variables, lhe result of these conditional simulations will tend 1O be distributed 
no rmall y. 

1.5 Basics of Bivariate Statistics 

Duri ng this course, we will sec the importance of using bivariate relationships. usuall y 
between a se ismic attribute and a parameter measured at we lls. Such relationships will 
be crucial when we arc predicting the parnmeler of interest away from the wells. Thus, 
some time needs to be spent discussing bivariate rela tionships. 

1.5.1 Covaria nce and correla lioll coefficient 

The basic toollo measure the relationship between two ra ndom variables is the covari-
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ance (Fig. I ~30). The development of the variance of the sum of two random variables 
as a function of the covariance is a vel)' important relationship used to derive the krig-
ing equations. To remove the effect of the variance of the two variables, for instance in • 
si tuations where the lWO variances are of diITerent orders of magnitude, the correlation 
coefficielll is preferred, because it normalizes the covariance by the two variances. 

The correlation coefficient measures the degree of linear relationships between two 
parameters, X and Y. In practice, it is calculated using the formula given in Fig. 1-3l. 
Fig. 1-32 gives an example of a correla tion coefficient between core-porosi ty and porosi
ty derived from logs. Increases in the absolute value of the correlation coefficient corre
spond to convergence of the cluster toward a line (Fig. 1.-33). Nevertheless, spurious 
errects can be caused when the data cluster is strongly affected by outliers, that is, by 
pairs of points that are clearly inhomogeneous with the rest of the cluster (Fig. 1-34). 

1.5.2 Fittillg l1 regressioll Ii/If 

The regression line of Y against X is the line corresponding to the linear transformation 
of X that best prediCts Y. In order to obtain it, we minimize the sum of squared differ
ences between actual and predicted values. The value of the slope is a function of the 
correlation coeffi cient and the two standard deviations, whereas the intercept is simply 
calculated by forcing the line to go through the point associated with the mean of the 
two variables (Fig. 1-35). 

Distinguished Instructor Short Course • 1-23 



Introduction 

1-24 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Oubrule 

M 

• . . 
M 

.~ 

.. , , ~ ; .~ • .. • •• " • • l * II. us • . . 'm , 
•• • 

M 

~ 

~ " M M -.. ~ " -M 

~ ~ .. .. ~ . ~ •• ~ v,,", 
PHI log 

/
"' ., .. .' 

. . ; 
• t ••• • 

, . , " . .' · ..... ~ .• 
, " 

Distinguished Instructor Short Course • 1-25 



Introduction 

Sometimes, people have difficulty understanding why there are two differelll 
regression lines, one of Yagains t X and one of X agail15t Y (Fig. 1·36). There are two 
lines because the two lines are calculated using different crite ria , respectively that of the 
minimization of vertical and horizontal differences. As a resu iL , the regression of X 
against Y cannot be obta ined simply by inverting the regression equa tion of)' against X. 
This is explained on Fig. 1-37, where a Ihird line is figured, that of Ihe Reduced Major 
Axis (RMA) . This last line characterizes the cluster of poinls in a unique way. Because 
the correlation coefficielll is n01 present in Ihe equation, there is perfect symmetry 
whether we write Y as a function of X or X as a function of Y. However, if the RMA is 
used as an equation for predicting Y from X or X from Y, it will lead 10 a poorer predic· 
tion in lerms of the sum of squared differences between predicted and aClual values. 

1.6 The Multivariate Normal Distribution 

The definition of the univariate normal distribution easily generalizes 10 that of multi · 
variate normal distribution , although the mathematical formalism may appear more 
intimidating (Fig. 1·38). Why do we want to men tion this in a course Ihal should limit 
the theoretical aspects? Because, if we look carefu ll y at the term in the exponentia l, we 
see that it is simply a quadratic form of the vector z where the inverse of the variance· 
covariance mat.rix is present. Later in the course, this formula will help us understand 
why energy-based and stochastic modeling approaches are closely related. 
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1. 7 Trend Surface Analysis 

Trend surface analysis rollows the same ronna1isl1l as does linear regression 0·39). The 
goal is to predict one variable, whether it is defined in one or two dimensions , using a 
linear combination of coordinates x and possibly Xl in one dimension, or x, y , r , y 2 in 
two dimensions. The approach is that or least squares. Coe ITi cients are calculated so 
l.hat they minimize the average squared error. This is a good approach ror fitting a linear 
or polynomial trend to spatial data. However, it is not a good imerpolalion technique, 
because it does not honor the claw poims, and because it assumes that the residuals are 
not correla ted with each Olher in space (Fig. lAO). 

We will see in Chapter 2 Lhat the model or geostatistics also assumes that the vari· 
able or interest can be decomposed as the sum of a polynomial trend and a residual. 
However, contrary to t.he trend surrace analysis model, geostatistics assumes that the 
residual is also correla ted in space. 
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2 The Covariance and the Variogram 

2. 1 Stationarity Versus NOl1s tationarity 

Nature ohen behaves in a very complicated wa)', and geology is no exception. In petro
leum ap plications, where we arc dealing with reservoirs a l depths of several kilome ters 
that arc recognized by only a few wells and some seismic, we need to simplify the 
description of these reservoirs by means of models. A model is a simpli fi cation of nature 
and should never be identified with the natural phenomenon it seeks 10 describe. 
Ilowever, a model has the advantage of reducing our understanding of the reservoir to 
the estimation of a few parameters. The best approach is to explain the concepts using a 
10 example. 

Fig. 2-1 shows, on the leh, a variable that va ri es around a constant mean. AI an)' 
location, the behavior of the variable, although complica ted, can be qualified as "homo
geneously heterogeneous." On the average, it behaves the same everywhere. in the 
sense that we would make the same kind of error at any location if we were 10 predict 
the value of the variable fro m the value of the horizontal line. This wi ll be discussed 
laler as the stationarit)' hypothesiS. 

The picture on the right of Fig. 2-1 shows a di lTerent behaviof. There is a systemat
ic trend in the data thaI can be fitted usi ng a parabolic model. The va riable can be 
decomposed between a parabolic trend and a random pattern thal varies around this 
trend. Thus, it can be modeled as the sum of a smooth polynomial tfend plus a "sla-
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tionary" residua l (to be beLLer defined later) . The model remains simple, in spite of the 
fact that it is a bit more complicated than that of stationari ty. 

Fig. 2-2 shows variables whose behavior is harder to model. The curve on the left 
shows ma rc scatler on the right side than on the left side. Similarly, the variable on the 
right of Fig. 2-2 cannOl be modeled using a parabolic trend plus a stationary phenome
non . These two variables cannot be approached using the "trend + sta tionary residual" 
model. 

Fig. 2-3 generalizes the discussion from 10 to 20. Ir we werc to guess which color 
is present at any given pixel in the left square, we would probably give the 5.:1me proba
bili ty to each color: The statistical properties of the picturc are independent of location, 
thus the phenomenon is stationary. On the other hand, there is clearly a systematic 
trend in the righ t picture (velOCity data), which can be approached using the "polyno
mial trend + stationary residual " model. Fig. 2-4 shows two other examples of station
ary and nonstalionary surfaces. The surface on the right would probably lend itself to 3 
"linear trend + stationary residual " model, which constitutes the geost3tistical model. 

Obviously, reducing a geological variable to such a model is a significant over
simplification. The beauty of the approach is that it will allow us to charncterize the 
trend and residu<ll using 3 few model parnmeters that we wiU try to estimate using the 
few data available. This is what we wi ll stud}' next. Before moving LO the next para
graph, note that the choice of a model is always scale-dependent! In Fig. 2-5, if only the 
blue zone is of interest. a stationary model is perfectl}' suitable. Similarl y, in the yellow 
area, a linear-trend model plus a residual will be satisfactory. In most applications, the 

2-2 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



( 

I 
J 

Olivier Dubrule 

0-\ 
--:-; -- -

- 0 --
- 0 • • • • I. \ o - 1 

'0 0 0 -0 0 0 

'-", ••• f 
OJ 

Nonstationary 

Distinguished Instructor Short Course • 2·3 



The Covariance and the Variogram 

R1 unit 

""" .... 

zone or imerest - the well log here - is subdivided into subzones that are associated 
wi th different deposi tional environments (in Fig. 2-5 these zones are separated by ve rti
cal lines). Then , a dirrerelll geoslatistical model may be fitted to the difrcrent subzones. 
We will come back to this example later. 

Fig. 2-6 summarizes the main mathematical assumption behind geosta tislics. Ir x 
represents a point in LD Ix reduced to one coordinate (x)1, 20 Ix represented by two 
coordinates (x,y)] ,or 3D Ix represented by three coord inates (x,y,z)], the geological 
va riable Z(x) will be modeled as a random r unction - simply a mathematical object 
that is a random va riable at every location x. The geostatistical modeJ will consist or 
modeling Z(x) as the sum or a polynomial trend m(x) and a residual random runction 
R(x). The t.rend m(x) is usually conslalll , linear, or parabolic in the coordinates or x. Ir 
it is cons tan t, we are simply in the contex t o r a stationary model or mean equal to III . Ir 
m(x) is li near or parabolic, its expression is the same as that of tre nd surface analysis 
(Fig. 1-39). However, the dirrcrence with trend-surrace analysis is that the residual or 
trend-surrace analysis is uncorreJated in space, whereas the residual R(x) is correlated in 
space. Let us now discuss what this mcans. 

2.2 The Stationary Model 

I low can we calculate sta tistics rrom just one outcome or a ra ndom runction? Indeed, 
there is little use in using a random-runction model ir we only are dealing with one real-
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izatlon z(x) of this function. It is the same as having to predict the number of balls of 
each color in a bag 0 11 the basis of drawing only one ball! However, the stationarity 
assumption will allow us to infer statistical properties of the random function Z(x) on 
the basis of this single realization z(x). The first assumption is that of a constant me.'lI1. 
This will imply that lhis mean can be inferred b}' averagi ng the measured values of z(x} 
at differen t locations. The second assumption is that the va riance of Zex) is also inde
pendent of loca ti on. This means that we are dealing with a parameter that is behavi ng 
somewhat as that of the left side of Fig. 2-3 and OSci llating around a constalll mean 
with an amplitude that is statistically the same everywhere. 

This last property general iZes il1to the covariance property in the stationary situa
tion - covariance between measurements at two locations depends onl}' on the vector 
between these two loca tions. This means, as shown in Fig. 2-7, that we will be able to 
infer this covariance by combining pai rs of points taken at dirrerelllioeations. Thus. 
thanks to the stationarity assumption, we are able to get around the limitation of having 
only one realization by calcula ting statistics thal combine va lllcs at dirrerent locations. 
This would not be possible if mean and variance were dependent on location. The 
covariance C(h) measures the spatial correla tion. 

In geostatisti cal practice, it is preferable to usc the variogram tool ra ther than the 
covariance. The variogram is simply (hal f of) the va riance of the increments (Fig. 2-8). 
The variogram is often preferred to the covariance. because it can be calculated directly 
from the data without needing to calculate the mean. The variogram is also more gener
al than the covariance. because it only requires the stationarity of the increments of 
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Z(x). We wi ll see later that variables that have an unbounded variogram are not station
ary, whereas their incremellls are stationary. This is the case for the power-law vari 
ogram model, which will be discussed later with relation to fractals. In the case of a sta
tiona l)' variable, the va riogram nattens out at a certain distance, and we have a simple 
relationship between variogram and covariance (Fig. 2-9). In mOSI cases, because 
covariance and variogram are even functions of distance, lhey are only plotted for posi
tive distances. Fig. 2-9, as a reminder, also includes the relationship between covariance 
and autocorrelation function. 

2.3 Calculation of a Variogram 

Fig. 2-10 is an example showing how [0 calculate a variogram in a very simplistic ID 
casco The approach consists of classing pairs of points by distances and then calculating 
the mean squared difference between pairs corresponding to each distance. When data 
are distributed in two di mensions, the isotropic (independent of direction) variogram is 
calcula ted in a similar way (Fig. 2-11). For each possible pair of data , the difference 
bClween values measured at the two locations can be plotted as a function of distance. 
This constitutes the "variogram cloud," which is a useful quality-check tool that shows 
which pairs and hence which data poi nts seem to be outliers of the distribution. 
Differences corresponding to pairs associated wi th different bins of distances are then 
averaged. Fig. 2-12 is an example of filtered migration velocity data fro l11 West Africa. 
The isotropic vanogram corresponding to these data is shown in Fig. 2-13 (consider 
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an i}' the broken line at this stage). It shows, as expected , a slow increase as a funclion 
of distance. Because these da ta have been fi ltered , the variogram behavior atlhe origin 
is smoolh, indica ting that random noise has been removed. 

Note thal, in the above calculations, directions associated with each pair of points 
are not taken into account. In many cases variability changes wilh direction, which jus
ti fies the calculation of a va riogram in different direClions, as illustrated in Fig. 2-14. 
The difference wi th the isotro pic variogram is that pairs are this time also binned 
accord ing to their direction. In the velocity-data example, as in many 20 cases, pairs are 
classed according to four main directions: E-W, S\V-NE, N-S, and SE-N\ V. The four vari
ograms (Fig. 2-15) look quite simila r. \Vhen this is the case, it is juslifi ed , as was done 
in Fig. 2-13, to merge all the directions to get a more statistically reliable experimental 
variogram. It is also possible to conSlruct the 20 variogram map, as shown in Fig. 2-15. 
Each point on thi s map provides the value of the variogram corresponding to that dis
tance and direction calculated in relalion LO the center of the vanogram map. It is 
remarkably iSOlropic in our example. 

Once we have a reliab le experi mental va riogram to work with , we fit a theoretical 
model to it. This constitutes the nex t step of our model ing approach. After choosing the 
geoslatislical model (here a sta tionary model), we evaluate the parameters of this 
model. Fig. 2-16 summari zes the important fea tures of a van ogram, at least in the sta
tionary case: lhc nugget effect (discontinuity at the origin), the range (dis tance at which 
it becomes nat), and the sill (value of the plateau). Fig. 2-13 (smoolh line) shows the 
result of the model-fIlling exercise on our experimental variogram. The fIlled model is 
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an cxponemial va riogram with no nugget errect, a practical range of 6000 m, and a si ll 
of 6000 (m/s)2. We wi ll explain later what an exponential variogram model is (Fig. 2-
23). 

Fig. 2- 17 is a sim ple example taken from Table 2. 1 of I-I ohn (1988), wh ich we will 
use a few times du ri ng this course. The variab le is the thickness of Paleocene sedimen
tary rocks in Lib),a. Here we wi ll assume it is a depth coullLed down from a reference 
surface. A spacing of one unit corresponds to about 0.3 mile. The figure shows the data 
location and the histogram. Fig. 2-18 shows the experimelllal variograms. Because data 
arc scarce and irregula rl ), 5.:1.mpled, a to lerance equal to hal f of the variogram Jag is used 
when deciding to which distance class a pair of points belongs. It is thus a good idea to 
measure the impact of using one Jag value raliler than the other. Although there is some 
variation from one curve to the other, all plots show similar characteris tics. This is the 
sallle wi th the variograms calculated in different directions. The isotropiC va riogram 
increases from zero and levels off at a distance of around 8 units. We have fi lled it with 
a spherical model of range 8 and si ll 320,000 (the spherical variogram model will be 
defined in Fig. 2-23). There is no nugget crrecL We wi ll see below the implication of 
t his choice. 

Some of the fo llowi ng figures show various exmnples of experimental variogram 
models in 2D. Fig. 2-l9, from a field in \Vest Africa, shows a variogram calculated along 
a slice of the 3D earth model stratigraphic grid . It has been filled using a sligh tl ), 
anisotropic model: The NE-SW direction has the smallest range, about .09, whereas the 
NW-SE direction has the largest range, about .12 (the side of the square lhul constilutes 
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the area or interest is normalized [0 a distance or one). We have also displayed the verti
cal variogram calculated rrom the well data and the model that was fitted to it. 

The anisotropy is stronge r on another se ismic example (F ig. 2-20). The va ri ogram 
is tha t or seismic amplitudes along a horizontal slice or a 3D seismic block. There is 
clearly more con ti nuity in the red (NW-SE) direClion than in the blue (NE-SW) direc
tion, which translates illlo a 1110re grad ua lly increasing red va ri ogram than the blue one 
in the individual variogr::un curves. Note that the rour directional variograms seem to 
have a similar nugget erreCl, which is associa ted, as we wi ll see below, wi th the seismic 
noise. Again. the anisotropy appears very clearly on the va riogram map. 

Fig. 2-2 1 is another example, this time or two seismic maps corresponding to tra\,
eltimes measured for different horizons or the $.;.'lme field, and , on the right, their corre
spond ing variogram maps. Note here thaI the anisolr0PY is vcry strong, as expected 
rrom lhe maps. Also, ror bOlh maps, the variogram has a finite ra nge in one direCl ion 
(SE-NW and E-W, respectively) , but does nOl level off in the perpendicular direction. 
Logica lly, the direction or the fi nite range is the strike di rection, whereas the variogram 
keeps increasing along the dip direClion. 

\Vhat ir we are dealing with 3D da ta? In th is situat ion , the experimclllal vari ogram 
calculation is usually split il11 0 the calculations or one 2D and one I D va riogram (Fig. 
2-22). It is especia lly important that the 2D va riogram is ca lculalcd in the OJ.h) rather 
than in the (xJ'.z) space, to avoid combining pairs or poin LS thal are nol slratigraphical
ly relaled. The chosen 1D direclion is usually the verlical direclion. Obviousl)'. the \'eni
cal variogram shows variations over a much smaller distance lhan do horizon tal vari-
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ograms, because geology changes more rapidly perpendicular to stratigraphy than it 
docs along stratigraphy. 

Note that Pawar et 0.1. (2001) and other authors usc the term "semi-variogram," 
because of the Yt factor in front of the va riance of the incremenLS. We prefer LO stick to 
the original terminology proposed by Matheron. 

2.4 Stationary Variogram Models 

Figs. 2- L3 and 2-18 show the va riogram models ri tted to the isotropic velocit}' vari
ogram and to the "ariogram obtained from the I10hn data seL It was mentioned that an 
exponential and a spherical model weTe used. Fig. 2-23 shows the four main types of 
sta tionary models currently used in geosta tis tics. No t every functio n can be used as a 
variogram or covariance model. This is because variograms and covarianccs arc used to 

calculate variances, which Illust always be posi ti ve. Covariances must belong to the 
class of posi tive derinite functions, whereas the condition is somewhat 1110re relaxed for 
va riograms. Chiles and Delfiner (1999) show that 10 check that a function is a covari
ance, it suffices to calculate its Fourier transform and veri fy that it is posit ive. This 
Fourier transform is noth ing other tlmn its spectral denSity and wi ll be discussed below 
in relation to the Wiencr-Khinchin relationship. 

The exponential and Gaussian variograms are bounded, but they only asymptoti
call y reach the sill C. The practical range of the Gaussian and exponenliai va riograms, 
lhal is, lhe distance at which [hey reach 95% of their sill , are a...J3 and 3a, respectively. 
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As the range of the variogram becomes smaller and smaller, the covariance tends toward 
the "pure nugget effect" or "white noise" covariance. The spherica l and the exponential 
models bOlh have a linear behavior at the origin. However, the exponential model , for 
the same practica l range , "climbs" fastcr than thc spheri cal, which means dlat two mea
surements taken close to each other tend 10 differ Illore in the exponential than in the 
Gaussian case. The cubic and Gaussian models are parabolic althe origin. However, the 
Gaussian is much smoother at the origin than is the cubic, which means that , for the 
same practical range, a Gaussian va riogram corresponds 10 much smoother va riations of 
Z(x). Fig. 2-24 illuslralcs what has just been discussed: the higher (respectively lower) 
the slope of the variogram al the origin, lhe morc (respectively less) continuous the cor
responding variable. 

Because al l variograms in Fig. 2-23 have a sill , they all correspond to a stauonary 
model. But beware, because, as mentioned before, stationarity is a mailer of scale: A 
spherica l variogram of range a will correspond to a nonstationary variable for practical 
purposes, if this variable is studied over an area of interest of size al2! The covariance 
functions associated with the four variogram models can be derived using the equation 
of Fig. 2-9. 

Fig. 2-25 shows more exo tic but important models, disp layed wilh the same spher
ical model as in Fig. 2-23. The "De Wijs" variogram has historical interest because it 
proved useful for modeling the spatia l distribution of grades in ea rly mining applica
tions of geosta tistics. It was introduced by Matheron (1962) to model the fact that, in 
some cases, the variance of grades wi thin mining blocks would plot linearly on a log
log scale as a function of 1 he block size. We wi ll also see later that this model is closely 
related to fractals because, if the log of a parameter follows a De Wijs model, then the 
va riogram of the parameter itself follows a power-law model (Agterberg, 1994). 
Matheron (1987) gives anotheT interesting discussion of the relationship between the 
De Wijs model and fractal;;. The "hole-effect" model is characteristic of variables show
ing a strong periodici ty, which is indica ted by the decrease in the va riogram around dis
tance 800. This means that two measurements 800 units apart are more similar than 
two measurements 400 uni ts aparl. 800 is obviously the period of the phenomenon. 
However, we prefer nOI to dwell too much on this model , one that beginners may tend 
LO use too often, because it can lead LO confusion between simple statistical fluctuations 
of the experimclllal variogram and actual periodiCi ty. The Cauchy model is not often 
used , except in the context of gravity or magnetic data , wh ile the power variogram is 
related wi th fractals. Both Cauchy and power models will be discussed below. 

An experimental variogram can be modeled using a sum of elementary models
sec, for instance. the vertical variogram of Pawar et al. (Fig. 2-22). This witl prove 
imponalll later in this course, because the underlying concept is that the variable is the 
sum of a number of components of various scales, each characlerized by one of the ele
mentary models. FaclOria! kriging will show interesting applications of this model for 
filtering purposes. 

2.5 Examples of Anisotropic Experimental Models 

We have al ready seen examples of anisotropiC variograms. Oftcn, horizontal (by hori-
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zonta l we mean parallel to s tratigraphy, that is, in the OJ) space) variograms are 
an isotropic, wh ich can be easily explained. For s tnlctural parameters, such as time or 
depth to a horizon, the variogram will differ along the strike and dip direnion. For 
parameters such as poroSity or VeiOcit)l, which are heavily cont roll ed by sedimentology, 
fea tures such as the paleocoast or the channel deposition di rection will obviously have 
an impact on the variogram. In almost all applications. horizontal varia tions are mod
eled using a ~geomelrical anisotropy" model - the range of the variogram changes 
accord ing to direction , but the sill is the same. This can be modeled using a simple ro ta
tion of the coord inates. The three examples of Figs. 2-19 to 2-2 1 show geometrically 
anisotropic va riograms, wi th that of Fig. 2-19 showing the anisotropic model together 
with the experimental curve. 

Things may be more diffi cuh in 3D, when we deal with anisotropy between the 
verti cal direction and the direction parallel to stra tigraphy (call it horizontal for Simplic
ity). Usua lly the ve rtical va ri ogram is calculated over tens of meters, whereas the hori 
zonta l va ri ogram is calculated over kilomctcrs. Also, there are more high-frequency 
varia tions along the vertical than along the horizontal direction. Thus, the sill of the 
vert ical variogram may be diffe rent fro m that of the horizonLaI va riogram (sec the 
example of Pawar et a1. in Fig. 2-22). In this si lUation, the horizontal (whether isotropic 
or no t) and the vertica l variogram can be separately fitted by a different model, but then 
a merge between the two models must be performed to obtain a 3D model that will be 
computable for any d irection in 30, including directions that are nOt s tri ctl y vertical or 
horizolllai. A zonal-anisotropy model is usua ll y appl ied , in which the global 3D va ri 
ogram is modeled as the sum of three di ffere nt terms, the first term depending on the 
three coordinates, the second one equal to the horizolllal model , and the third one 
equa l to the vertical mode l. The use of the fi rst te rm allows a smooth transition between 
the vertical and the ho ri zon tal variogram. Pawar et al. (Fig. 2-22) separately fiued the 
ve nical and the ho ri zon t;tl (isotropic) model , but it is not clear how they derived the 
3D variogram from these two models. Another pOSSibil ity is that of modeling the 
covariance as the product of two models, one depending only on horizontal coordi
nates, the o ther depending on ly on vertical coordinates. This model was applied to the 
variogram of Fig. 2-19. In some situations. however, a geometrica l anisotropy will s till 
prove salisfaclOry for fitling a 3D experimental variogram. Exercise I at the end of this 
book discusses such an example taken from e hu et al. (1994) and prcscllled in Fig. 2-
26. 

2.6 Unbounded Variogn:am Models and Their Relationship with Fn:actals 

rig. 2-25 shows two unbounded variogram models, the De Wijs and the power-law 
models. Both are interesting because they have close re lationships with fractals. It can 
be de monstrated that, for a power-law model to be a valid variogram model, the expo
nent of Ii must be smaller than two. Power-law variograms correspond to va riables that 
arc no t stationary but that have stationary increments. Stnlclural variables, such as time 
or depth , often fo llow power-law models. Interestingly, some of the vcry fi rst applica
tions of geostat ist ics in the petroleum industry found power-law models. 

The lime maps associa ted wi th the variogram of rig. 2-27 clearly appear nonsta-
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tionary, but at the same time no simple trend can be defined. Fig. 2-28 also shows a rare 
example or veloci ties rollowing a power-law variogram. The high nugget erreci is char
acteristic or stacking-ve locities variograms, which will be discussed later. In the reser
voir engineering literature, Hewett ( 1986) was a strong promoter or rractalmodels in 
the 19805, and Perez and Cho pra (1991) showed interesting examples or power-law 
variograms obtained on horizontal and vc rtica l well logs (Fig. 2-29). 

In lhe power-law "anagram, readers familia r wilh the theory or fraclals will have recog
nized the same expression of the va riance of increments as that found in Mandclbrot (1982). A 
power- law variogram, comp..lrcd wi th a \'anogram with a sill , has the interest ing propert), Utat it 
is idemical at all scales, hence the lenn "self-similar" often is used to characterize fractals. 
Ilowever, when defining frac tals, Mandelbrot was thinking about phenomena that were new 
kinds of mathematical objects and that were continuous but not differentiable (such as the coast 
of Britain or Norway). Since a power-law variogram corresponds to a phenomenon that is both 
self-similar and fraclal, confUSion arose in the literature between self-si milar and fractal phe
nomena. The geostatislical form:llism, in which fractals :lppcar as a subset of a wider class of 
models. helps clarify thiS difference between self-Similarity (a global behavior) and nondifferen
tiability (a local behavior). For instance, if we L.~ke stationary vanograms that have a linear 
behavior at the origin (such as exponential or spherica l models). we see that they :Ire associated 
\\ ith fractal models, which are not self-similar. In spite of this. the two concepts arc oftcn mixed 
up in the literature. 

The relationship bClween the power or the variogram and fractal dimcnsion is 
shown in Fig. 2-30. As the power of the variogram model tends toward zero, thc fractal 
dimension tends lowarel the dimens ion or the space (1, 2, or 3) plus I. This is anOlhc r 

'1(11) =2eoo+200· " 
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EARLY EXAMPLES OF POWER-LAW VARIOGRAMS (3) 
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way of saying (as shown in Fig. 2-24) that the closer the power of the variogram is to 
zero , the more random is the variable. A very noisy variable "fills" more space than a 
smooLh one. 

2.7 First Uses of the Variogram: Predicting the SUppOTl Effect 

\Vc saw earlier (Section 1.4.2) that. contTary to the mean, the variance is heavily depen
dent on the averaging volume. For instance, plug porosities arc expected to show more 
scalter (or a higher variance) than are log-derived porosities, which results from a mea
suremelll over a larger volume. Thanks to fo rmulas developed for the mining industry 
UoumeJ and HUijbregts, 1978), knowledge of the variogram on plug porosities and of 
the averaging volume for log measurements can be used to predict the variance reduc
tion on the log-derived porosity data, as compared with the plug data. Strangely 
enough, this importanL rcsult of geostatistics is almost never Llsed in petroleum applica
tions. 

In a recent paper, Frykman and Deutsch (2002) address this issue using porosity 
measurements from a well in a chalk reservoir of the Dan field in the North Sea (Figs. 
2-3 1 and 2-32). Along this well, the), calculate the s tandard deviation of plug porosities 
and log-derived porosities. As expected, the standard deviation of log-derived porosities 
is smaller than that of plug porosities because of the support effecl. Based on the vari
ogram of plug porosities and thanks to the theoretical re lationships of Joumel and 
Iluijbrcgts. they can predict how the variance of log-derived poroSities will decrease as a 
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function of the volu me of invcstigation of the log (making the simplificatio n thai it is a 
I D, along-llOle length of investigation). BUI. because I hey already know th is va riance, 
they invert the relationship. To achievc this, they plot the theoretical difference in va ri
ances between plug- and log-derived porosi ti es, as predicted by the va riogram model, 
under all possible assumptions about the length of investigation of the log. Then they 
pick the value that provides the best match bctween the experimental variance differ
ence and the theoretical variance difference. They find , after a correction accounting for 
the well deviation, a length of 0.74 Ill , a value close to the 0.60 m predicted from the 
physics of the logging tool, which is an LDT (Litho-Density Tool) . 

At the end of their paper, Frykman and Deutsch lisl a number of reasons why this 
sort of approach is not routinely used in the petroleum industry. A key reason is that 
many properties - acoustic impedance or permeability, for instance - do nOt average 
linearly. The approach would also need to be simplified to be applied to a huge number 
of wells and formations in a reservoir but, LOday, there is no industry-accepted method
ology. 

2.8 Cross-covariance and the Variogram 

As we \vill see later, some of the most interesting applications of geostal istics will con
sist of combining different seLS of da ta , such as porosity and acoustic impedance, or 
depth and two-way seismic time. How can we meaSure the relationships between such 
data seLS? The correlation coefficient was presented ea rl ier, but it does not incorporate 
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any spatial component, it simpl)' evalua tes the linear correlation between measurements 
of two parameters made at identical loca tions of space. What about the correlation coef
ficient between a value of porosi ty at a loca tion x and a va lue of acoustic impedance, 
say, 1 km away? The cross-covariance functio n, or the cross-variogram, provides such 
information. The cross-variogram is defined in Fig. 2-33, which shows the cross-vari
ogram of average and Slack ing velocity calculated over 59 wells. In this example, aver
age velocity is equal to marker depth at the well divided by seismic one-way time, 
whereas stacking velocities have been previously smoothed. The cross-variogram is pos
itive because the two va riables are posit ively correlated. When the correlation is nega
ti ve. the cross-variogram is negative. No te that the models used to fit the Ihree experi 
mental variogTams are all proportional to a cubic model. 

The cross-covariance and cross-correlation fun ctions are illustrated in Fig. 2-3;', 
which is taken from Doyen's ( l988) important paper. In this case there were only 10 
wel ls, which were not enough to calcula te the porosity covariance. No te thaI, aga in, we 
are dealing with two positively correlated parameters, thereby resul ting in a positive 
cross-covariance function. Doyen's approach was to fi t a Gaussian model to bo th experi
mental va riograms and then to assume thal the porosi ty va riogram was also proportion
allo th is Gaussian modcJ (sec seClion 3.6.2). 

In many applications, the first va riable ZI(X) (which we will call the primary vari
able) is measured at wells onl y, whereas Z2(X) (the secondary variable) is a paramctcr 
sampled on the se ismic grid , which provides information aboul the primary variable. A 
paper by Xu el al. ( 1992) formal izes the modeling of cross va riograms using propor-
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tiona l-variogram models. Ir the cross-covariance is proport ional to the covariance of the 
primary variable, we are deali ng with a "Markov" model (which will lead \0 the collo
caled co kriging simplification of cokriging). [n most practical applications, this Markov 
model - which uses only the primary va ri able variogram model and a proportional 
cross-variogram - is applied. The variogram of the secondary variable is usually of no 
use in collocated cokriging, as we will see below. Does this mean that iL is of no use at 
all? We will see later that, in cases where there are very few well da la, the variogram 
derived from seismic may provide useful ins ight inLD the variogram of the primary va ri
able (see secLion 3.6.2). 

2.9 Practical Considerations abouL the Variogram 

Let us ti)' to understand the praClical meaning of the different fea tures of a variogram. 
Fig. 2-35 shows synthetic images corresponding to various variogram models. The pure 
nugget effect is clearly associated with the image of a white noise. The spherical, cubic, 
and Gaussian models all correspond to stationary images, which differ from one anoth
er by their degree of smoothness. The variogram wi th a linear behavior at the origin is 
associated wi th a morc random-looking image than are the variograms \vith a parabolic 
behavior at the origin. The image corresponding with the Gaussian model varies 
extremely smoothly because this variogram model is indefini tely differentiable at the 
origin (Fig. 2-23). The image associated with the hole-effect variogram is periodic, as 
expected. Finally, the linear-variogram image shows no sLationarity around a Illean 
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value, and hence no range. The range appears to be related 10 the wavelength of the 
oscillations around lhe mean, from zero with the pure nugget e[fccL (two neighboring 
values have no reason LO be on the same side of the mean), to medium (the three sta
tional), pictures) , and then to infinite (the linear model). 

Fig. 2-36 is another example based on a porosity well log from a chalk reservoir in 
Denmark. Four diITerellt formations haye been picked along the log, and experimental 
variograms associated with each data set are presented in Fig. 2-37. Porosity within 
Phase 3 and Phase 4 is clearly stationary, because it varies around a constant mean. The 
range appears to be smaller for Phase 4. The sill associated with Phase'" is also smaller 
than that of Phase 3. This is because the sill of the variogram is simply related to the 
variance of the variable. Multiplying a variable by a coefficient II causes the sililo be 
multiplied by hl . The variograms of Phase I and 2 tend to climb more systematically 
because of the lack of stationarity in the data. 

Fig. 2-38 summarizes what has already bccn said of the vanogram feaLures. The 
behavior at the origin tells us whether we are dealing with a very smooth (parabolic) or 
rather random (linear) va riable. The nugget effect tells us about the diITercnce between 
twO measurements that would be made at the same location. Vve will see later that this 
is closely related to measurement errors. The range gives information about the wave
length. In the limited si tuation of the pure nugget c[fect (zero range), we are dealing 
with a very high-frequency whi te noise model. The sil l itself does not have much geo
logical meaning and is simply related to t.he variance. Usually, the experimental variance 
of thc data is dosc to but smaller than the sill, and the di fference between the two 
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increases with the ra nge or the variogram. So in conclusion, these rour realures or the 
variogram have a vcry practical interpretation. This will help us construct a variogram 
model when not enough data are available. 

Unrortunately, in many siwations, the primary variable (porosity, ror instance) is 
known at only a rew wells, whereas the secondary variable (acoustic impednncc or seis
mic allribute. ror instance) is known on the whole seismic grid. Ir the secondary and 
the primary variable are related, we can expect that anisotropies seen on seismic data 
will also be present on the primary variable, because these an isotropies are controlled 
by geology (depositional enviro nment, diagenetic errecLS and the like). However, seismic 
data arc much lower resolution than we ll data , and they also have different orders or 
magnitude (see the example or Fig. 2-19) . This means that the sill or the primmy-vari
able variogram can only be in rerred from the (variance o[) the well data. However, we 
also have a priori knowledge about each type or variable. This knowledge is the result 
or experience or inrormation rrom analog data rrom other fields. For instance, we know 
that thickness varies more sllloOlhly than permeability (behavior at the origin). We also 
know that stack ing velocity is somewhat noisy. Such practical considerations can help 
us conslrucl lhe variogram model (Fig. 2-39). 

The above shows Lhat the "geo" is aL least as important as the "stat istica l. ~ In most 
cases, because of the lack or data we do not apply a sta tistically rigorous approach. but 
we instead try to summarize all our a priori knowledge of the va riable imo tbe vari
ogram model. It is a geoscientist's choice, not a statistician's calculation (Dubrule, 
1994). This is wh), iL is crucial to have a practical understanding of tbe various para me-
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Covariance, Fractals, and Spectral Density 

A covariance [unction is associated with a stationary model. Thanks to 
the Wicner-Kinchin relationship (Fig. 2-40), there is a relalionship 

between the covariance function and the spectral density. 

Chiles and Dclfiner (l999) provide the analytical expressions o[ 
spectral densities associated with a large number o[ stationary 
variogram models. Fig. 2-41 shows the spectral densities o[ the 

spherical, exponential, and variogram models, plotted [or the same 
value o[ the effective variogram range. The Gaussian model is associated 
with lower frequencies than is the spherical or exponential model. The 

exponential model , which. for the same range, has a steeper slope at the 
origin than does the spherical, is also associated with higher 

frequencies. The smoother the behavior of the covariance model at the 
origin, the lower the frequencies represented in the spectral denSity. In 

other words, the behavior of the covariance function at the origin 
translates inlO a behavior of the spectral density at infinity. 
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Maus (1999) and Maus el al. (1999) provide an interesting discussion of 
the value of analyzing magnetic and gravity data in the space or in the 
frequency domain . They also show how, in aeromagnetic applications, 

variogram models are derived from power spectra associated with 
physical models corresponding LO a range of source depths. 

This \vi.1I be discussed later. 

We saw earlier that power-law variogram models are not strictly 
associated with sl.ationary random functions . However, these variograms 
have a spectral representation . A characteristic of fractal models is that 
they follow a power law in their spectral density (Fig. 2-42). As already 
discussed in the stationary case, we see that the closer to 2 the power of 

the variogram is - that is , the smoother Z(x) is - the lower are the 
frequencies thal the spectrum carries. Fig. 2--43 shows an example 

of the behavior of well-log spectra modeled as fractal by 
C rane and Tubman (1990). 

1 

0 .8 
~ 

'" c 
0,6 

~ 
c 

0.4 

0,2 

a 
a 

SPECTRAL DENSITIES FOR 3 STANDARD 
V ARIOGRAM MODELS 

-SPHERICAL 

- EXPONENTIAL 
-GAUSSIAN 

0,5 1 1.5 

u 

The smoother the covanance at the ongin, 
the fewer high-frequencies It carnes 

2 

2·32 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Oubrule 

FRACTAL SPECTRAL DENSITY: AN EXAMPLE 
(CRANE AND TUBMAN, 1990) 
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3 Interpolation: Kriging, Cokriging, Factorial Kriging, 
and Splines 

3. 1 Introduction 

In the previous two chaptcrs, we discussed the meaning of the geostatistical model and 
of its parameters. \Ve will now discuss how th is model can be applied. We will start 
wi th de terministi c techniques, known under the generi c name of kriging. l !erc. "dete r
minis tiC" should be unde rstood in the sense of "providing only one so lution .~ \Ve will 
see that, although the model is probabi lis tic, kriging produces only one solut ion. 
Kriging covers a wide ra nge of applications. The fi rst onc consists of interpolating one 
Si ngle variable in one, two, or th ree dimensions, and the second one consists of interpo
lating one variable but using the ex tra information provided by another variable that is 
related, of course, to the first one. 

3.2 Kriging, an Interpo lation Technique 

3.2.1 /nlrodua iOlI 

Reca ll the probabil istic model we de fined in the previous chapter. The variable Z(x) is 
interpreted as the SUIll of a polynomia l tTend, m(x ), plus a residual, R(x ), of mean zero. 
Under this model , universal kriging (Mathcron, 1970) add resses the problem of inter
polating a variable on the basis of a number of scatte red data. This can be the interpola
tion of laye r-averaged porosity from we ll daLa or the interpolation of se is mic times fro l11 
a 20 seismic campaign. 

To understand kriging, let us consider the variogram from another perspective 
(i: ig. 3-1). Suppose that layer-averaged pOrOSi l}' has been calculated at a well and that 
we want to estimate porosity I kill away from that well by using the value al the well . 
Obviousl)" we wi ll make an error, which can be di rectly read fro m the va riogram model 
plol. This is where the choice of the variogram becomes cri tical. By choosing this 
modeJ, we have implicitly provided an estimate of very simple interpolat ion errors. 
Kriging is just the generaliza tion of this idea to the cstimation of the value at loca tion x 
using, this time, a va lue nOt just one well away but several wells away. 

3.2.2 Uni\'f:Tsal higillg 

• A bit of theory 

Universal kriging is the vers ion of kriging obtai ned in the context of the model in 
which Z(x) is the sum of a polynomial tre nd plus a residual of mean zero, R(x ). The 
problem lhat universa l krigi ng addresses is estimation of the unknown va lue, z(xo), at a 
location Xo (in 10 , 20 , or 3D), using the measured va lues .;:(x;) obtained at N number 
of scatlcred data pOints. (x,). Z(Xo) is cstimated by a we igilled average of the measured 
values t(x,). Note that we use the nOtation :z: when we arc discussing a realization of the 
random function Z. Fig. 3-2 shows the criteria used to calcula te the weighti ng factors. It 
is natural to use the standard statistical approach of calculat ing the unbiased minimum 
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variancc estimato r Zuk(Xo). Minimization ohhe cstimation variance (using Lagrange 
multiplicrs ~ILO account for the unbiased condition) leads to the universH.I kriging (UK) 
systcm (Fig. 3-3). Note that Ihe UK system is thc same whcthcr we use Ihe covariancc 
or the variogram funClion, because only Ihc L1gr:mge multipliers change. 

Obviously, the krigingsyslclll accounts for the variogram and the trend model. 
Changi ng the assumptions on any clcment of these two models will lead to a change in 
the kriging system and in the kriging wCights. In the kriging systcm, the relative posi
lion of the data points is taken into account through the covariance function; whereas 
on the riglu-hand side, the relative locations of the data points vis a vis the est imated 
point are accoun ted for (Fig. 3-4). 

Exercise 2 at the end of this book uses an example with four data poillls 10 illus
trate how kriging weights change as the variogram and the data-point locations change. 

A last item t.hat is of theoreti ca l interest at th is stage is the definition of the "simple 
kriging" (SK) system. SK is the system of equations obtained with the covariance terms 
only, wit hout any trend present. The SK system is simply derived from the equation of 
Fig. 3-3 by removing the last th ree lines and three last columns of the matrix, the 
Lagrange multipliers, and the three lasllines of the right -hand side. With UK, the coef
ficients of the trend arc automaticall y derived from the UK system. With SK, the uscr 
may inject into the system a fixed mean va lue. This is especially handy in situations 
where a correction factor is interpolated by SK, because this correction factor then 
becomes equaito zero far away from the well data. 
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• Veloci ty data example 

Enough of theory. Fig. 3-5 shows the kriged map calculated from the velocity data already 
discussed in Figs. 2- l2, 2- L3, and 2-,15. This map is obtained with a constant trend and 
the va riogram model of Fig. 2- 13. A global neighborhood is used, which means that every 
grid point is estimated using all the available data poin ts (neighborhood considerations 
are discussed below). No trend is apparent on the map, confirming what the variogram 
analysis had shown . The map osci llates between highs and lows, which is characteristic 
of stationary variables. We have already seen thal the range of the variogram was related 
to the wavelength of the oscillations. In simple situations, a rule of thumb that is often 
used is that the variogram range represents about half a wavelength. This rule seems to 
apply here. The map is very smooth, because we are dealing with velocity data that have 
already been fil tered . 

• A 20 seismic example 

Let us now look althe resul ts of kriging for the in te rpolation of 20 time picks of a 
hori zon in the Niger Del ta (Fig. 3-6). Data poin ts are 25 m apart. The model used is 
that of a constan t mean - m(x) is constant and independent of x. When UK is per
formed wi th a constam mean, it is called ordinary kriging (OK). Because faul ts are pre
sem, the variogram calculation accoun ts fo r the faul ts, and no pairs of poin ts are used 
in the calculation that have their extremities on each side of a faulL. The variograms that 
are calculated along and perpendicular to the main structural directions (Fig. 3-7) 
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behave somewhat similarly until about 3000 Ill , at which point the directions D2 and 
D4 diverge, but the number of pairs used 10 calculate them is not sufficient to make the 
difference significant. Thus, an isotropiC experimental variogram is calculated and mod
eled. Two variogram models appear to provide a satisfaClory malch (Fig. 3-8). They 
have no nugget effcct and a slightly differcm range and sil l. Their main d ifference lies in 
their behavior at the origin, where the cubic model is parabolic while the spherical 
model is lincar. We know that the former model corresponds to a smoother variable 
than does the latter. What will be the impact on kriging? 

The map associatcd with the cubic variogram tends to ex trapola te trends more 
strongly because of the continuity assumption carried by the variogram (Figs. 3-9 and 
3-10). Fig. 3- 1 L shows the impact of the range. At a distance from data points greater 
than the variogram's range. kriging decides thai , because no useful information can be 
derived from the data poin ts, it is besl to return toward the mean. Thus the larger the 
variogram's range is, the less is the attraction toward the mcan. 

What if the interpretcr decides thallhe map is nol geologically sa tisfactory. 
because the bulls-eyes are only on the seismic lines? Then hdshe may decide to change 
the va riogram model inlO one that is anisot ropic. which has the advantage of propagat
ing structural features from one seismic line to 'lI1other and para llel to the main fault's 
direction (Fig. 3-12). The illlerprcler should always have the last word and be able lO 
lake advalllage of the Oexibility of kriging to input any a priori geological information 
lhal is available. 

.. 
\L·> , -, --- ., 

* __ Very few pairs 

0' 
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Sill 32000 {m.l' 
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• An aeromagnetic data example 

Hansen (1993) provides an in te resti ng example of kriging of aeromagnetic data from 
flight da ta pOints. Instead.of de riving the covariance model by geostatislica l ana lysis, he 
de ri ves it from the spectrum associated wi th the theoretical model of Spector and Grant 
( 1970). He calculates the parameters of this model from a spectral analysis of the data, 
which have been illlerpolat cc! on a regular grid using a minimulll-curva ture approach. 

As in the previous example, Hansen observes (Fig. 3- L3 ) that contou r lines tend to 
close around the data lines o nl y. By forcing an anisotropy into the covariance model, the 
kriging result obtained appears to be more geologica lly satis facLOry to Hansen. 

With such an example, it would have been interesti ng to see tbe resu lt obtained 
from geostatistical variogram analysis followed by kriging. This would have presented 
the advantage of validating the covari ance model derived from the Spector and Grant 
spectrum. It also would ha\'e simplified this approach by requiring only one interpola
tion. In Hansen's approach, two interpolations are requi red: the intermediate minimum
curva ture grid (required LO calculate the spectrum) ancl the IInal one . 

• An example of 20 kriging from well data 

Fig. 3-14 shows di ffere l1ll11aps of average velocity obtained by kriging fro m 59 wells on 
the North Alwyn field (U.K.). As before, the trend is assumed to be cons tant and un
known (o rdinary kriging). The variogram model is cubic and anisouopic, with a range 
of about 5000 111 in the X di rection and 10000 m in the Y d irection (see Fig. 2-33). 
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The LOp maps s how the differem results obwined by keeping the same aniso trop
ic ranges but changing the model. The exponential and the spherica l models give 
similar resullS. This is not surprising, because they .1fe both linear at the ori gin. The 
only difference is that, for the same range, the exponential model climbs faster toward 
the si ll . This has very lillie impac t on the maps. On the other hand , the cubic model 
provides a much smoother map. As memioned ea rli er, parabolic behavior of the vari
ogram at the origin leads to a model that tends LO extrapolate local data lrends more 
strongly than does a linear behavior at the origin. Note, in parti cu la r, the more pro
nounced extrapolations. whereas the exponential and spherical remain closer to the 
meall . 

The boltom maps show the resulLS of three iso tropic interpolations. The impact of 
changing the range from 5000 III to 10000 III is clear around lhe isolated wells. Their 
high and low velocities arc ex tr,apolated farther away with the larger-range model. The 
last map, ob tained with a linear (fractal) variogram, looks very good and is probably 
close to what an in terpreter would have drawn by hanel. Kriging with a linea r vari
ogram is closely related LO the successful multiquadric mapping method of Hard) 
(1990). 

In all siLUations, as soon as the interpolated point becomes separated from the CO ll 

tro l poinLS by a distance greater than the range, krigi ng becomes equal to the trend 
fu nction. Because the variogram model says that there is no correlation between the 
unknown value at the interpolated point and any of the values at the data pOints, krig
ing cannot do better than usc the trend va lue as the best estimate. 

• Neighborhood considera tions 

Kriging consists of estimating the value at each location using a weighted average of the 
data surrounding this loca tion . In lhe six maps of the previous example, kriging was 
performed in lhe hglobal neighborhood. n Because we onl), had 59 data pOinLS, we could 
use all the da ta points for each interpolation. The main advalllage of working in the 
global neighborhood is thal no discontinuity artifact appears in the data sel. Ilowever, if 
we deal with the interpolation of thousands of seismic data points, it is impractical to 

invert the matrix associa ted with kriging in the global neighborhood. The required 
computer time and storage space would be enormous, and the inversion of the kriging 
system would become numerically uns table around a few thousand data poinLS. This is 
why "moving neighborhood" kriging is used in such con figu rations. 

In moving neighborhood kriging (Fig. 3- 15), a limited subset or data (at least 24 
for 5atlsfactory results) \s use.d to interpolate each ~rid palm. A. maximum search radius 
and a quadrant or octant selection are usuaHy applied to ensure thal data arc not too far 
away and thaL Lhey properly surround the estimated poinl. Nevertheless, when the mov
ing neighborhood is too small , the resulting kriged map may look awful. Fig. 3- 16 
shows that this problem can be serious with 20 seismic data. Our recommendation, 
when dealing with fewer than 1000 data poin ts, is to work in the global neighborhood. 
We wi ll see later that this only requires the inversion of the kriging matrl.x once and fo r 
all. \Vhen this is not possible, it is very important to lise computer packages that pro
vide a clever neighborhood search and to use neighborhoods that are as large as possi-

Distinguished Instructor Short Course • 3·11 



Interpolation: Kriging, Cokriging, Factorial Kriging, and Splines 

3·12 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

ble. For instance, a number of programs now calculate each kriging sequentially, start
ing wi th zones with no data and incorporating previously kriged values in the neighbor
hood of subsequenliy kriged points (Th. Coleou, personal communica tion, 2002). The 
extra computer time is well worth the improvement in the map . 

• Kriging standard deviation 

Not much has been said so far about the kriging standard deviation. Once Ihe kriging 
weights have been found that minimize the estimation variance OE1

, this variance can be 
calculated at each kriged point. IL is called the kriging variance 0,,1. At the beginning of 
petroleum geoslatistics, this property was somewhat oversold. Thanks 10 relationships 
such as thal of Fig. 1-28, it was possible to translate the kriging standard deviation into 
a confidence interval. Assllming that kriging errors were normally distributed, the confi 
dence interval was even equal to twice the kriging standard deviation (Fig. l-26). 
Kriging was the only method thaI provided an estimate of the error associated with each 
intc'l)olmed value! Fig. 3-17 shows an example of a kriging standard-deviation map 
associated wi th a kriged thickness map. A slational)' ordinary kriging is used , and, n01 
surprisingly, the 0 " map shows bulls-eyes around the dala points and slowly increases 
away from them. Because we arc dealing with a stationary model, oKisconslant as soon 
as the distance from all data points becomes greater than the variogram's range. It is 
cas)' to show that , if the variogram model is multiplied by a constant, 0,,1 is multiplied 
by the same va lue. but the kriged map itself does not change. On the other hand , a 
change affecting the range or the nugget effect will affect the OK map. 0 " provides useful 
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in fonnation abou t the relative uncertainty aITecting the estimates at various locations. 
We will also see that it plays a crucial ro le with cond itional simula tion . 

3.2.3 General ized covarillll Ccs of order k 

Mathero n ( l973) general ized the definition of sta tionary ra ndom functions to wha t he 
defi ned as "intrinsic random functions of orde r /:" (k-lRF). This theory is more mathe
matically demanding than any we have seen so far, and we will simply discllss the ph i
losoph)' behind iL. 

There are two mai n reaso ns for Matherons generalization. The fi rsl is tha t, as 
explained befo re, the un ivers..'l l kriging model requires the decomposi tion of the variable 
lex) in to a trend and a s tationary residual about this trend . This is satisfactory in cases 
where the trend is wel l de fi ned over t.he whole area of interest, but it is more problemat
ic when the tre nd cannot be modeled as a Single pol),llomial over lhe en tire fi eld. 
AnOlher reason 10 choose k- IRF is a bi llllore technical. We have seen that no t j ust any 
fu nction could be a covariance or a variogram and that the Fouri er Trans form of a 
covariance function must be posi ti ve. This li mits our nex ibili ty in the choice of covari
ance o r variogram models. 

Matheron (1973) real ized that, in the universal kriging system, only a limited fam
ily of linear combinations of values Z(x,) werc considered - those "fi llering" polynomi
al trcnds. This allowed Mathcron to relax the constrai nts on s tatiollary cova ri anccs and 
on va n ograms by de fining what hc called "genera li zed covariances of order h" (GC-k). 
A GC-k is such that only the variance of those wcigilled averages of va lues lex;) that fil
ter trends of degree It must be posi tive. A major advantagc is that simple polynomial 
covariances are GC-k under certa in condit ions on the ir coe ffi cients, which are given in 
Matheron (1973). 

Re member that, when we in troduced the variogram functio n, we insisted that it 
was associated with s tationary incremenlS of the variable l(x ). An increment is a li near 
combination that fi llers out constant terms or tcrms of degree zero. T hus, in the fo rmal
ism of k- lR F, variogra1l1s a re associated with genera li zed covariances of o rdcr O. We 
alread y know that power-law variograms are authorized GC-O as long as the power of II 
is slrictl y smaller than 2. 

3.2.4 Kriging consiclerl.'cI as all in lerpoialillgfwlcfi on 

Now. let us focus our allcntion on mapping, o r in terpolation in 20. So far, kriging has 
been presen ted as a method for predicting the value at one location using a weighted 
average of measurements ava ilable at actual data poinlS. Many in te rpolation methods, 
such as splines (Duchon, 1975), multiquadrics (Hard y, 1990), and radial basis fu nctions 
(Franke and Nielson, 199 1) arc presented from a di ffere nt angle - that of ca lculating 
the analytical expression of an interpolating function that is fo rced to honor t.he z(x,) 
va lues al data loca tions and to satisfy a number of o ther properties. 

If we work in the globa l neighborhood and inve rt the kriging s),stem, we fi nd that 
Zuk follows the relationship of Fig. 3-18. B)' wri ting kriging th is wa)" Zuk appears simply 
as the sum of an interpolated trend plus an interpolated residual. Kriging is an exac t 
interpolator, in the sense that it honors the values of:: at data locations. This leads to as 
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many equations on the interpola ting functions coeffi cients as there are dam points. In 
20 with a linear trend , there are tluee other equations that imply that. if the unknown 
parameter is itsel f a linear function of coordinates (a tfend), kriging will be exacLly 
equal to th is function everywhere. 

In the case in which lh e variogram is a pure nugget erfect, it is easy to see that Zuk 

becomes exactly identical Lo the trend surface interpolation. This is expec ted, because 
lhe model behind trend surface analYSis (Fig. 1-39) assumes that resicluals from the 
trend are uncorrc1ated . 

Coleou ( 1996, 2002a) provides an interest ing discussion of lhe interpolated trend 
that is the result of universal kriging: he calls il "georegrcssion." In the case where the 
trend is linear, it is the average plane fiued through the data points, taking spatial 
redundancy into account. AULOmali ca\l )~ data points that are clustered - that is, are a1 
a smaller distance from each other than the variogram's range - wil l be given less 
weight than data poin ts that are isolated. Only when the data poinLS are uncorrclalcd 
with each other will the georegression be equal to the standard sla tistical regression of 
Z(x.y) aga inst x and y. 

What if we now arc dealing wiLh a stationary vanogram model (fi nite range)? In 
this case, as soon as the distance between the imerpola ted point and all data points 
exceeds the variograms range, lhe expression of Zuk reduces to that of the trend. This 
means that as soon as data poi nts do not bring any sta tis tica l information, kriging 
makes the safe choice of predicting Z using the low-frequency term: the trend. This is 
illustrated by the example or Fig. 3-19, where the variogram range is smaller than the 
data spacing. This example a lso nicely illustrates lhe impact of variogram behavio r at 
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the o rigin , At the ne ighborhood of each data point, the shape of the interpolating func
tion is noth ing o ther than the shape of the variograml This is confirmed by Fig, 3-20, 
obtained by keeping the same variogram range but by changing the variogram's behav
ior at the o rigin by that of a Gaussian model. As stressed by Oliver ( 1998), kriging 
app lies a covariance-based convolution operator to the data, Kriging is a s tnoOlhing 
operator. rig. 3-2 1 shows the impact of usi ng a linear variogram wi th a constant trend. 
The kriging behavior close 1O the data poin ts remains c011lrolled by the linear behavior 
of the variogram at the o rigin, but there is no extrapola tion toward the mean, which is 
not clearly defined because the model is not s tationa ry. NO le, however, that the shape of 
the interpolation functio ns is quite sa tisfactory and "natural ," as already noted in the 
North Alwyn case (Fig. 3-14). 

Fig. 3-22 confi rms wha t happens when a trending va riable is interpola ted using 
the universal kriging model. On the left we see that, away from the data, extrapolation 
converges toward the linear trend, whereas on the right , a stationary model (with the 
same va riogram) having a constant mean has been wrongly assumed, Away from the 
data points, kriging tries to come back to the constant mean. Expe rience shows that the 
main difference between kriging with a constant trend and kriging wi th a li near or a 
parabolic trend lies in extrapolating at a distance from the data poinLS that exceeds the 
variogram range, 

3.2.5 Cmss-\,ali(/mioll 

Is there an objective means of evalualing the performance of the interpolating function? 
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The first reply could be lhat, if a geostatisti cian has fi ued a trend and a va riogram 
model to the data, and if the re is a sufficient number of data points to make the model 
reliable. the kriging interpolator is optimal from a statis tica l point of view. In that case, 
kriging should be optimal in the le~l~squares sense, and the s l a ndard~deviation map 
should give an indication of the relative reUability of kriging at each location. However, 
this remains a result of the model , which Illay be wrong. Also, quite frequently there are 
not enough daw poin ts to fit a reliable trend and variogram model, and the choice of 
the interpolating function may be related to cosmetic considera tions. The linear vari~ 
ogram is quite a popular choice. in thal si lLlalion. 

The user needs a more practical means of testing how well the interpolation is do
ing. The most natural lest is lhal of comparing actual values at data poinlS with those pre~ 
dicted by the model. Cross~validation (Fig. 3~23) consists or dropping each data poim in 
succession and interpolat ing its value using the inronnaLion at the other data points. Figs. 
3~24 and 3~25 show the result in our example built rrom the Hohn data sct. First, the 
best variogram fit is used, then two 01 hers afe tcsted. In each case, wc see the interpolated 
surrace and the hislOgram or esLimalion errors obta ined by sliccessively dropping each of 
Ihe 39 daw poinlS. The sphencal model, as expected, performs well, and the difference 
with the linear model is small , whereas the Gaussian model perrorms more poorly. 

CroS5~valida tion can be extended further. The kriging standard deviation itselr can 
be cross~valida tcd by comparing how closely it is related to thc actua l cross~"alidation 
errors. But the exercise is only meaningrul in si tuations where the variogram model has 
been fillcd to the data points. 
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A limitation of cross·validation is that, if the number of data points is more than 
approximately 100 and fewer than 1000, we may want to work in Ihe global neighbor. 
hood. As a result , re·estimating each data value from all the others requires inverting a 
large kriging system each time, which maybe prohibitive. Dubrule (1983) demonstrated 
that a more straightforward approadi consists of inverting the matrix corresponding to 
the kriging system based on all the data points. Then, the estimate of each data point in 
the cross·validation process can easily be derived from this inverse matrix. 

Cross·validation is a good exercise that provides precious understanding aboul 
how the interpolating function actually performs, Note that it is a major benerll of krig· 
ing. Interpolation techniques thatllulllerically solve a finite·dirrerence equation on a 
regular grid (e.g., Briggs, 1974; Bolondi et aI., 1976) are attractive in many ways, but 
they do not allow cross·validation, because lhey arc intrins ica lly mesh.dependent. 

3.2.6 Cone/usia" 011 hriging 

Two approaches are possible with kriging. The rlfSl one is the standard worknow 
described in Fig. 3.26. This usually happens as soon as therr are enough data to proper· 
Iy infer a geostatisticalmodcl. In such a situation, results such as kriging standard·devi· 
ation maps arc meaningful from a geostatistical standpoint. The second approach, usu· 
ally applied when not enough data are available to build a reliable geostatistical model , 
consists of choosing the trend model and the covariance tl13t appear to provide the best 
illlerpolation. "Best" can be interpreted according to various criteria , such as geological 
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real ism, smoOlhness, or anisotropy. This use of kriging may be qUite justified , because 
kriging provides a grca t flex ibili ty, thanks to the choice of the lrend and the covariance 
modc l. However, in this si lUatioll, the resul ts of kriging cannOl be regarded as optimal 
from the geostatistica l point of vicw, and the krigi ng standard·deviaLion map is mean· 
ingless (Fig. 3-27). • 

3.3 Error Cokriging and Factorial Kriging to Distinguish Noise from Signal 

3.3.1 E,"ror cohigi ngfor V"", ~ illt erpolation 

Consider the case sLUdy of Fig. 3·28, in which the problem consists of build ing a map 
from V<ta<k da ta. The his togram shows a nice, sym metrical behavior. The va riogram map 
is slightly anisotropic, which is not significant in terms of si ll di[ferences from one 
direc tion to ano ther (Fig. 3·29). The iso tropic va riogram shows a nugget effect, Co, 
equal to about 18,000 (m/s)2 . There arc two possible interpretations for a nugget effect. 

I. Co corresponds to the si ll of a vel)' short· range variogram . The dis tance 
between veloci ty data is too large to provide detailed information about 
the range of this mod el, which may be associated with very high· fre
quency spatial veloci ty variations (we know that no frequency infoflna
tion can be de ri ved above the Nyqyst frequency). This model , where the 
variogram is the sum of several models of different ranges, will be dis
cussed in the faclOrial kriging section. 
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2. There is no shon -range variation in velocity, but data are affected by a 
measurement error, which direcLly causes a discontinuity in va riogram 
behavior ,H the origin. The model is described in Fig. 3-30. It is easy to 
show that, if the va riable of interest Z(X) is affected by a measurcment 
error, E(X), of mean'zero and variance Co. spatia ll y ullcorreJatcd and 
independent of veloci ty. this random error transla tes into a Co nugget 
effect on the variogram. This is the erro r cokriging model , thus called 
because 2("0) will be interpolated using valucs of the "other" variable 
Y(x,) - that is , Z(x,) plus the unknown error E(X,) at data points X" 

With stacking velocities, which are known to be error- prone , the second interprctation 
usuallyapplics. How will this intcrpretation alTeet kriging? Fig. 3-3 1 shows thc map 
obta ined and a cross-sec tion associated with this map. Contrary to what would happen 
with a zero nugge t effect, velocity da la are not honored, and the Illap appears 10 be 
quile smooth : Error cokriging filters)' and tries 10 intcrpolate Z instead. \VithoUl 
dwclling on mathematics, let us si mply mention lhal error cokriging amountS to add ing 
to thc diagonal term of the kriging matrix (Fig. 3-3) a constant term equal 10 the 
nugget effect. 

What if we now use the first variogram interpretation? The variogram model 
shown in Fig. 3-32 is fillCd. As a resuh , kriging considers it is dea ling wi lh a variable 
not affected by measurement errors. The map obtained is shown in Fig. 3-33. This lime. 
all V~k data are honored. and, as a consequence. the map is much more noisy! 

As a matter of curiosity, we have also plotted the map obtained wi th a pure nugget 
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effect (Fig. 3-34) . This means tha t there is no spatial correlation at all between V.~1.. va l
ues. A data pOi11l that is in the close neighborhood of the intcrpolated va lues has no 
more weight 011 this imerpolalion than a data point that is far away. The kriged va lue is 
a moving average of the data poinlS in the kriging neighborhood. We arc back to trend
surface analysis with a constant mean! The wiggles in the contour li nes arc due to the 
fact that a change in the neighborhood poinlS translates il1lo a significan t change in the 
illlerpolated value, because all da ta have the same weight. 

Fig. 3-35 discllsses our interpretation of the nugget effecl. A zero nugget means no 
noise, and a pure nugget effect means no signa l, pure noise. I-Ience the interpretation of 
"noise-Io-signar ratio. The beauty of the approach is that th is ratio is de termined 
directly from the variogram model. Instead of fudgi ng the degree of smoothing versus 
the degree of fidelity to the data (a major issue in man)' optimization approaches, as we 
will sec below), erro r cokrigi ng au tomatically calibrates this "fudge factor" from the 
data. This point wil l be addressed again when the relationship between error cokriging 
and sllloOlhing splines is discussed. 

Thc ralio between the variance of the measurement error and the variogram sill 
determines the amount of smoothing applied by error co kriging. If this ratio is low, the 
method assumes that the measurement error can be neglected in comparison with the 
variations of the interpolated variable. and the data values Z(x,) are almost exactly hon
ored. If the ratio is high, then smoothing is applied. 

Fig. 3-36 is another example of error eokrigi ng, this time from Mathieu and NUll 
(1985). Again and again, this approach proves attractive for mapping stacking veloci-
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ties. An example from Dubrule and Haldorsen (1984) also shows a successful applica
tion of the technique to the join! interpolation of core- and log-de ri ved permeability 
values at wells. The variance of the measurement error can also be a function of loca
tion. This can be a useful assumption when data resulting from two seismic campaigns 
of differelll quality are combined (Haas and Viallix, 197·1). Other applications wi ll cer
tainly appear in the future. 

Other Fourier-based techniques allow lhe filtering of measurement errors. However, 
they usua lly require thatlhe variable is first interpolated on a regular grid and then Fil
tered . Erro r cokriging offers the advantage of performing the two tasks at the same lime 
- interpolation of the data over a regular grid , and filtering of the measurement error. 
Error co kriging can also be applied in the contex t of nonstationar}' data . 

3.3.2 FacfOrial hriging 

Now let us come back to the first possib le interpretation of [he nugget erfect, as a short
range variogram. Fig. 3-37 presenLS a marine example of horizon-consistent stacking
vclocil)1 data, and Fig. 3-38 presents the acquisit ion setup. The variogram clearly shows 
a different behavior between the inline and the other directions. The geoslalis tical 
allal},sis assumes Iha1 the variogram model corresponding to the geologic.11 Signal (F ig. 
3-39) is iso tropic and equal to the sum of the linear model and a spherica l one. The 
other assum ption is that the di(ference between the experimcntal variograms is only 
due to acquisition artifacts or "inlinc eITects.'· An aniso tropiC model is Fined to e.xpiain 
the diITerence between the inline and the three other di rections. 

D>-XL 
Dot .. t . D3 

-~Dl-lL 

V stack variogram 
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The interpretation behind this model is that stacking veloci t}' Z(x) is the sum of 
two uncorrelated components: an isolropic geological signa l and an anisotropic inline 
effect (Sandj ivy. 1987; Piazza et aI. , L997). As wi th error cokriging, we nced LO filter the 
nongeological effec t out of the interpolation. The result obtained by this filtering is 
shown in Fig. 3-40. The validation of the two different maps will be obtained by review
ing the picked stacking veloci ties. 

Fig. 3-41 shows another example of faClorial kriging, by Mundim CI al. (1999). 
Geological fcatures, such as the main channel , arc Illuch more apparent after factorial 
kriging. A related bencfit is thai, after facLOrial kriging. there is a much bener relation
ship between two-way time and rcscn'oir facies th ickness (Fig. 3-41). 

In the example of Fig. 3-39, seismic data were affected by both a measurement 
error (uncorrclated noise) and correlated footprilll effects. What does this aClUally 
mean? In the example of Fig. 3--+3, Slacking velocity is modeled as a linear function of 
two-way li me plus a correlated residual. Fig. 3--D is a map of th is residual , which has a 
mean of zero. This residual also shows high-frequen cy noise characterized by the 
"checkerboard effect" and stripes associated with acquisi lion footprin ts. There is also a 
lower-frequency componen t. A moving-average filter is fi rst applied 10 remove nongeo
logical effects (Fig. 3-44). This filter is not completely successful in removing the 
slripes, and il may have a tendency to oversmoolh the residual spatial va riations. 

ow the geoslatisticai analysis reveals a variogram map (Fig. 3-45) with a slight 
aniso tropy. The range in the NW-SE direction is smaller than tha t in the NE-SW direc
tion. An analysis of the autocorrelation funclion is even more interesting. For both the 
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inlille and crossline functions, noise characterizes itself as a nugget effect, whereas foot
prin ts have a different impact in bOlh direct ions. The autocorrelation function along 
crosslines shows a nugget eFfect due to the random variations as one moves from one 
inline to another (acquisition footprillls). The third componelll is rel ated to geology. 
The variogram model is decomposed into these three components and then the velOCity 
residual is rei nterpolated , bu t this time, than ks to the va riogram decomposition, the 
three differen t componen ts are separated (Figs. 3-46 and 3-47). The low-frequency 
component is \0 be compared with the result of the moving~average filter of Fig. 3A4. 
The geoslatisticallow-frequency component contai ns higher frequencies than does the 
moving-average result. This is not the result of an arbi trary choice of the interpreter, but 
is the result of the geosta tist ical analYSiS, which has produced an estimate of the relative 
variance of noise, acquiSition footprint . and low-frcquency componenl. As a resuit, krig
ing has been able to defi ne what is correlated and noncorrelated noise. Fig. 3-48 SUln

marizes the differences between factorial kriging and mOving-average filtering. 
Fig. 3-49 gives a navor of the mathematics behi nd factorial kriging. Actually. the 

kriging matrix is the same as that with unive rsal kriging, because it is a function of the 
full covariance model. On the other hand, the righ t-hand side is only a function of the 
componenl of interest of the covariance. Note that the system docs not incorporate any 
L1.grange multiplier here, because we are mapping residuals thal have a zero mean. 

Now what can we say of factorial kriging versus spectral approaches? This is dis
cussed in Chiles and Guillen (1984), who compare the results obtained ,vith factorial 
kriging and spectral analysis on French gravimetry data. Both variogram and frequency 
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spectrum analysis lead lO a sp lit between two components (fig. 3-50). The low
(respectively high-) frequency component is associa ted wi lh the deep (respectively shal
low) gravity field. Both analyses require signi fica nt interpreta lion that is based on a pri
ori information about the geologr A sign ificant di fference is that variogram analysis is 
directly applied to the data, whereas spectral analysis is performed I1 fter a preliminary 
interpolation of these data on a rectangula r grid. This interpoil1tion usually introduces 
some smoothing and, hence, some low frequencies Ihat were not initially in the data. In 
the example, the va riogram that is hued to the data is composed of the sum of IWO ele
mentary Cauchy models (Fig. 2-25). The Cauchy model is closely associaled wi th fre
quency spectra derived by Spector and Granl (1970) after making simplifying assump
tions aboul the source local ions. Fig. 3-5 J show the results of kriging with this vari
ogram model , and Figs. 3-52 and 3-53 compare the interpolation of the deep and shal
low gravity fields obtained by each method. The two results are somewhat similar, how
ever, the spectral method appears to have limitations thal the factorial kriging approach 
docs not have (Fig. 3-54). 

As already mentioned with error cokriging, factoria l kriging performs, in one sin
glc operation, the filtering and the smoothing, whereas spectral ana lysis must start from 
data already interpolated on a regular grid. As Coleou (200 I) discusses, "Geostalistics, 
through vnriogram decomposition and factorial kriging, designs spatial fillers ve!)' effi 
cient for the removal of organized noise present in seismic velocities." 

--,:':'7 

10 " !O 
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3.4 Kriging with an External Drift 

3.-1.1 Tlu: cxlel1lal-drift IIIodel 

The "external-drift" method has been specifica ll y developed with seismic applications in 
mind . Take the example of a marker picked on seism ic (2D or 3D) and intersected by a 
smallllumber of we lls. The seismic map can be considered a low-frequen cy rep resenta
lio n of the ac tual seismic horizon. To cons truct this horizon, well dara willllccd to be 
combined wi th information provided by seismic data , with some control abou t the 
range of innuence of well data compared wi th seismic (Fig. 3-55), 

How can th is be modeled using geoslatisli cal formalism? In universa l kriging, the 
t[cnd III (X) can be regarded as precisely the low-frequency component of Z(x). Then 
why not substitute the seismic data there? This is preCisely the external drirt model, 
easily deri ved rrom the univer~al kriging model of Fig. 2-6. Z(x) is now assumed to be a 
linear function of the seismic data , plus a residual (Fig. 3-56). Nawrally R(x) will be 
close to zero away from the wells, but R(x) will provide the "hump" allowing the model 
lO go th rough the we lls! B.'1scd on what we have seen before, we can easily guess Ihat 
Ihe res idual's \Tariogram range wi ll help us cOlll rol the width of the hump around the 
well da ta. 

There is no need to wri te down the "kriging wiLh an ex ternal drift" (KED) equa
tions. In 20 (mapping) applica tions, the}' are identical to those of universal krigi ng 
with a linear trend , except that the two trend components x and yare replaced by the 
single component S(x,y), the va lue of the seismic va riable at location (XJ'). An interest-
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ing KED property is that, ir 5(x,y) is multiplied by a constan t, the resu lL is leh 
unchanged. KED is used mostl y for ume-to-depth conversion. 

3.4.2 Examples of time.to--depLh ~onversion using the external--drift ~Ipproach 

Fig. 3-57 shows a time horizon (the base Cretaceolls unconformity, or BCU) from the 
Alwyn North example already discussed. Sixty-two we lls are available, but we use the 
depth data from only 59 of them and save the three others to check the resul ts. Fig. 3-
57 shows that there is an excellent linear correla tion between time and depth. In spite 
of th is excellent correla tion, the residuals may take values as high as 50 III (Fig. 3-58), 
bu t there is no correlation between residual and time to the BCU. The residuals' experi · 
mental variogram has a range of around 4 km, which confinns that depth can be inter
preted as a sum of a linear transfonll of time plus a stationary residual. Note Ihal this is 
different fro m the trend-surrace-analysis model (Fig. 1-39), which assumes that the 
residual rrom the trend is spatiall y ul1correlatcd. 

In this example, the inputs to KED are a time map and well depths, and the out
put is a depth map (Fig. 3-59). This means 1hal KED perfonns, in one Single step, an 
operation that is often performed in two steps. A common practice consists of fi rst 
transforming the seismic data using a linear transfonll, then correcting the mis fi ts at the 
wells by constructing a map of the residuals between the well data and the seismic
derived map. Here, as shown in Fig. 3-60, the KED procedure makes sure thal the lin
ear transformation and lhe mapping or the residua l take place in one step. It is easy to 
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check lhat the interpolated residual is zero, at a distance frolll the well data greater than 
the vanogram range. 

In our example, because the variogram has been modeled using a nugget errect, 
the depth values at the wells are filtered. The depth map obtained by KED is equal 10 
the trend, that is, a linear functio n of time, as soon as the distance from all data points 
reaches of- km. Close to the wells, however, the depth values at the wells control the 
interpolation. The kriging standard deviation is meaningful here , because it uses the 
variogram model actua lly fiued to the residuals' experimental variogram. Although the 
external·drift approach has been used a lot for time·LO-depth conversion, one of its 
drawbacks is that it maps depth from time, without providing a detailed analysis of 
velocities. Another issue is that the velocity information is provided by the wells only, 
through their depth values. This introduces a bias if wells do not penetrate zones that 
are represcntative of the actual velOCity variations. Coleou (2001 ) Stresses that slacki-ng 
velocities provide the regional infonnalion that addresses this bias issuc. Let us see how 
such information could have been used in the North Alwyn example. 

Fig. 3·61 shows a map of stacking velocities to the same horizon as before. The 
crossplot between stacking velocity and the 59 average well veloci ti es confirms that 
Slacking velocities lend to be faster than well velOCities, because of nonvcnicai travel 
paths and hcterogeneity due to layering. This lime. the KED model \vill lise stacking 
velocities as an cxtcrnal drifl in order to illlerpolatc scismic velocities away from the 
wells. Once again, velOCity residua ls are not correlated with time to the BCU (Fig. 3· 
62). An exponential variogram model is used , with a zero nugget effect. KED properl)· 

• 

-
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maps the large blue zone on the right, thanks to regional information provided by 
stacking velocities (Fig. 3-63). 

Comparison with data from three wells (F ig. 3-64) shows that the method using 
stacking velocities seems to perform slightly better for prediCling depth than docs the 
onc based only on well dept hs and the time map. Beyond this difference, which may be 
of a purely statistical nature with onl), three wells , geophysicists prefer working wi th 
Slacking velocities in order to comrolthe quality of the velOCity map before combining 
it with time (Coleou, 2001). 

3.5 Bayesian Kriging, a Generalization of Kriging with an External Drift 

BayeS ian kriging (Omre. 1987) is a generalization of KED that is useful for timc-to
depth conversion , when the coefficients of the external drift have a physical interpreta
tion (Fig. 3-65). In sllch s ituations, and when the number of wells is not enough to 
proVide a good statistical calibration, Bayesian kriging (BK) offers the possibility to 
specify a priori statistical constraints on these parameters. These constraints can be 
derived from surrounding reservoi rs of the same formation that happen to be at a more 
mature developmental stage (Abrahamsen et al.. 1991,2000). Fig. 3-66 is a BK applica
tion in a North Sea example. using the model of Fig. 3-65. Only two wells arc available, 
but, thanks to regional infonnation, a priori statistica l infonnation is injected to con
stmin the estimation of hand Vo. This example will be llsed again when discllssing 
uncertainty quantifica tion. 

Bayesian kriging can also be used in s ituations in which a time-to-depth conver-

• 
• 
• ,. 
• • 
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BAYESIAN KRIGING EXAMPLE: 
NORTH SEA CASE STUDY (ABRAHAMSEN ET AL. , 2000) 
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sion model has been constructed using a sign ilicam number or wells. s..'y 10, and when 
the illlerpreter wants to avo id, while the model is updated by ne\\ well data , a complete 
change in the external drih used. Thanks to BK, the user can speci ry a ra ther small vari
ance - hence a slllall ullcertailllY - on the coefficients or thc trend. thus cont roll ing 
the impact or new wells (Th. Coleou, personal communica tion, 2002). 

The concept or BK can also be applied to univers..'li kriging, where the trend is (on
stam, linear, or parabolic, bu t is not de ri ved rrol1l se ismic as it is with KED (Omre and 
Halvorsen, 1989). For instance, UK or KED is equivalent to BK with no a priori con
straints on the trend coefricients, whereas kriging wi th a zero mean is equivalclll to BK 
wi th a pcrrect a priori knowledge or the trend coefficien t (mean and standard deviation 
equal to zero). 

3.6 Cokriging and Collocated Cokriging 

3.6. 1 lnlroduclion 

The KED method was a transition toward multiva riate estimation techniques, because it 
consis tcd or interpola ting a parameter measured at wells using inrormation rrom a para
metcr measured on se ismic. assuming that the laner could bc interpre ted as a trcnd or 
the ronner. \Vith cokriging, we arc now going to discuss the most general kriging-based 
approach ror combining several sources or in rormalion. \Vc will limit ourselves to 
bivariate cokriging, that is, the interpolation or one para meter by use or a weighted 
average or values or this parameter (the primary variable) at a numbcr or locations and 
values or another parameter (the secondary va riable) at other locations (Fig. 3-67). 
There is no need to mathematically develop the cokriging equations, which make usc 
not only or the variogram of each variable but also or cross-variogram (or cross-covari
ance) runcLions already discussed in Figs. 2-33 and 2-3 .... 

3.6.2 A co/n-igi llg exwnp/e' 

Cokrigi ng has becn successrully used in mining applications si nce the 1 960s. Do)'cns 
(1988) art icle in GEOPI-I)'SlCS had a significant impact in the industry, because it 
showed how the technique could be used to map porosit), over an Albena oi l-bearing 
reservoir using porosit)' data at the we lls and acoustic impedance resulting rrom a seis
mic inversion exercise. The cross-covariance between porosi ty and the inverse or 
impedance, and the inverse impedance covariance model used by Doyen, were those or 
Fig. 2-34 (the assumption was made that impedance da ta were exact and not affected 
by an)' uncenain ty, which is a Simplification because inversion is known to be a 
nonunique process). Both models are proportional to a Gaussian covariance or ra nge 
about 1 km. The porosity variogram could not be obtained rrom the well data (only 
eight \\'ells). To solve this problem, Doyen assumed that the porosi ty va riogram was 
also proport ional to the Gaussian model. 

Comparison or the th ree maps (Fig. 3-68) shows that , in areas where there is lillie 
we ll cont rol (southeast pan or the map), the cokriged map is contro lled by the linear 
regression or porosity against the inverse or impedance. The map de rived rrom linear 
regression docs not honor the well data, bm cokriging makes sure that ncar the wells, 
the map is strongly controlled by the well data. In spi te or the successrul app lication by 
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Doyen, the cokriging system and the input needed to be simplified. Xu eL al. (1992) 
changed th is situation by pro posing a clever simplification of the cokriging systcm. 

3.6.3 Collocated cohigillg 

In petro leum applications. the primary variable is usuall}t known at wells, whereas the 
secondary variable is derived from seismic data. \Vhen we are predicting a value away 
from the we lls, the knowledgc of the secondary va riable at LhaL location will be crucial. 
However, because of the smooth ness of seism ic data , the knowledge of seismic \'al ues at 
other locations close to the interpolated point will not bring much ex tra infonnation, 
once the seismic va lue at the interpolated loca tion has been used. This is the philoso
phy behind colloca ted cokriging (CCK). Xu el al. proposed to retain , al each interpolat
ed location Xi)' only the value of the secondary variable 22 at Xo itself. This assumption 
also had the advantage of greatl y simplifying the resolution of the system by making the 
matrix inversion more stable. Coleou (2002a) uses a slightly differen t defi nition of 
CCK. because he incorporates in the kriging system not only the val ue of the seconda ry 
variable at the estimated location Xu, bu t also its values at the drna points XI. Chiles and 
Delfiner (1999) call this other approach "multi -collocated cokriging" (MCCK), and 
compare the relati ve merits of CCK and MCeK. 

It is easy to COnflf111 that , in the CC K equations, knowledge of the variogram of 
the secondary variable is not necessary, except for the variance itself. Because only the 
secondary variable value at Xn is used , this value needs onl}' to be cross-correlated \\'ilh 
itself or wi th the val ues of the primary variable. In a way, this is a pity. because the vari
ogram or the secondary parameter is usually the one that is best known because of the 
large number of seismic data available! Nevertheless, in practice few wells are avai lable, 
which means that, as explained in Fig. 2-39, inferences about the primary-variable va ri 
ogram lend to be made using information derived from the se ismic-data variogram. 
Realizing that variogram and cross-variogram models were usually oversimplified 
because of well data scarcit }', Xu el al. (1992) proposed a further approximation to 
CCK. related this time to the choice of the cross-covariance model. They ca lled this the 
Markov model, which assumes thalthe cross-covariance function is proponionalto the 
covariance of the primary variable. Thus, if the Markov model is used , all that is 
required as input is the knowledge of (1) the correlation coefficient be tween the prima
ry and secondary variable. (2) one Single model assumed to be representative of both 
the primary variable covariance and the cross-covariance between the primary and sec
ondary variable. and (3) the variances of the two variables. 

A good example from the giant Ghawar field (Saudi Arabia) is presented by Jeffery 
et al. ( 1996). Although 150 wells were available for predicting average veloci ty, th is 
proved insufficient in terms of lateral coverage. Jeffery et at used residual gravity as a 
secondary variable to provide velOCity infonnation between wells. Fig. 3-69 shows the 
maps of each variable. Well velocities are simply equal to vertica l depth of the reservoir 
divided by one-way seismic traveltime. Residual gravity data werc interpola tcd over a 
regular SOO-m grid , after a number of filtering steps. Using the variogram of residual 
gravily data. Jeffery et a!. applied ord inary kriging to estimate their values at the well 
10catiol1. The crossplot between these kriged values and well velocities showed that lhe 
correlation was excel1ent (Fig. 3-70). Predicting ve lOCi ty away fr01l11he wells by using 
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just a linear trans form of kriged residual gravity would already provide good resulLS, but 
the well velocity data would not be honored. Thus, Jeffery et al. applied CCK. They 
made the Markov assumption, meaning that the input to the exercise was limited to the 
vanogram of velocity data , the correlation coefficient, and the variance of residual-gravi
ty data. This led to the velocity map of Fig. 3-70. Cross-validation showed that , thanks 
to CCK, an improvement of Illore than 25% was obtained in the mean absolute error of 
velOCity estimates, which decreased from 22 m/s with standard mapping techniques to 

15.5 m/s with CCK. 
Let us now come back to the North Alwyn velocity data (see variogram models in 

Fig. 2-33). All three variogram models are proportional LO an anisotropic model. 
Together with this theoretica l model , the si lls of the average- and stacking-velocity vari
ograms determine the variance, and the correlation coefficient is 0.85. The CCK map 
obtained with these input parameters is shown in Fig. 3-7 1. toge ther with a map 
obtained using a different correlation coeffi cient. Obviously, as the correlation coeffi
cient incrcases, the weight of the Vsuck information increases. 

Fig. 3-72 illustrates the difference between CCK and KED. Vsu,k (the secondary 
variable) tends to have a stronger relationship wi th the kriging result in the case of 
KED. This may be due to the fact that thc variogram of the residuals for KED (Fig. 3-
62) has a smaller range than does the variogram of the prima!)' variable for CCK (Fig. 
2-33). As a resuIL , with CCK, the final interpolation remains under the control of the 
well data for a longer distance. 
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A Few Words on Bayesian Statistics 

Let us discuss Bayesian statistics using a simple example, inspired from 
Doyen et al. (1996). This is the situation where, at one location Xo in 20 

or in 3D, we wam 10 predict, say, porosity, using two kinds of 
information: that coming from the other wells and that coming from the 

value of a seismic-derived parameter - or aLLribute - al the same 
location Xu Two kinds of information will help us achieve this: 
the knowledge of the seismic Ao allribute at location Xu and the 

knowledge of porosity values at the other wells. 

We also assume that porosity is normally distributed. Then , the best 
estimate of <1>0 from the wells only will be kriging <l>k, with a kriging 

standard devialion equal to Ok. Under the Gaussian assumption, we can 
even say that <1>0 follows a normal distribution p(<l>oI<J>k) with mean <l\; 

and standard deviation Ok. This is the {f priori information we have on 
the unknown porosity, on the basis or the other wells and Ihe 

geological knowledge quantified by the variogram. 

Now, we also have a measure of the seismic auribule Aoat location "0. 

We assume that there is a linear correlation between porosity and 
seismic attribute, quantified by the correlation coefficient p. Ao and 

<1>0 are related by the regression relationship, such as, at fixed po rosily 
(1)0. Ao follows a normal distribution with mean 

Ao = p<1>o 

and variance: 

(the formulas are simplified as compared with those of Fig. 1-35, by 
assuming thaI the variances are one and the means are zero). 
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Bayes's relationship provides a way 10 combine these two types of 
information , that given by the wells, and that given by the seismic 

attribute. We usc the following formula giving the probability 
of finding <1>0 given both the porosity values at the wells 

and the seismic attribute Ao at location xu: 

The second term of the right-hand side is the CI priori pdf of <1>0. given 
the values of porosity at the other wells. We saw thai this was a 

Gaussian pdf of mean equal to the kriging estimate <I>kand of 
standard deviation equal 10 the kriging standard deviation cr\.; . This pdf 

represents the knowledge we have of porosity <1>0 before using the 
seismic attribute, just on the basis of geological knowledge 

(quantified by the variogram) and wells. 

The first tenn of the right-hand side is the likelihood function for <1>0. In 
a way, for each possible value of <1>0 at xu. it measures how compatible 
the value of the measured seismic attribute Ao is with this value <1>0 • 

• 
Under the Gaussian assumption, the right-hand side is the product of 

1 wo exponential functions , 

ex/ (Ao - p<1>o)'l. exp Ic <1>0 - <1>,)'l 
[ 2(1 - p') J L 2cr; J 

This is the posterior pdf of <1>0, combining the porosity information 
from the wells with the information derived (rom the amplitude 
Ao about porosity <1>0. Simple calculations show that , as a result 
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of the Bayes relationship, this is itself a normal dis tribution, 
with a mean equal to: 

pa; Ao + (l _ p' )<J>, 
p'(a: - 1) + 1 

This mean is simply a weighted average of the two estimat es of <1>0 at 
Xu: the es timate based on regression against the seismic auribme 

and the estimate based on kriging. Each estimate is weigllled 
by the inverse of its es timation variance. The variance of this 

pdf is equal to the harmonic average of the variances of 
each estimate, and it can be written: 

a; (1 _ p') 
p' (a; - 1) + 1 

The beauty of this result is that it is exacuy equal to the result of CC K! 
Thus, this result not only relates the world of kriging to that of 

Bayesian analys is , it also shows that the CCK estimate can be simply 
calculated as a weighted average of two estimates. The weight of each 

es timate is a fun ction of the relative magnitude of the correlation 
coeffi cient versus the kriging standard deviation. This is discussed 

more graphically in the following section. 
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3.6.4 Revisifing colloclIfcd cO/u-igi"g 

Doyen et al. (1996) provided new insight on CCK by reformulating it in the cOlllext of 
Bayesian anal ys is, as mathematically developed in the previous section. They used the 
example where the primary and secondary variables are porosity a1 wells and acoustic 
impedance from seismic. They considered that kriging at one location, "0, could be inter
preted as the result of using the (1 priori geosta tistical model. Based on the well data only 
and on the va riogram of the primary variable, an a priori kriging estimate and its associ
ated variance are calculated. Then this estimate is updated thanks to new information 
derived from a second source, which is acoustic impedance (Fig. 3-73). The a priori 
model is combined wi th the likelihood function to provide the posterior distribution 
(Fig. 3-74). This leads LO a beautifully simple expression, showing that collocated cokrig
ing is a weighted average of kriging and of the estimate deri ved from regression from 
seismic (Fig. 3-75). The weigh ting factor is simply related LO the correlation coeffi cient 
between poroSi ty and acoustic impedance. If the coefficielll is zero, only kriging remains, 
whereas if it is one, only the regression estimate is used. Also, the higher the kriging vari
ance, the higher is the weight of the regression estimate. This dccoupting of the two 
sources of information also helps solve the co llocated cokriging system very easily. 

Doyen el a!. (J 996) pro\'ided an application from the Ekofisk field in Norway. 
Porosity is predicted from an inversion-derived impedance map (Fig. 3-76), which is 
assumed Lo be exact infonnation, because no uncertainty is associated with this map. 
The correlation coeffi cient between acoustic impedance and porosi ty is equal to -0.77 
(Fig. 3-77), and Lhe result of CCK is the map of Figs. 3-78 and 3-79. In addition to this, 
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Doyen et a l. ran a bli nd-wells exercisc. The well data set was d ivided in IWO groups: 
wells d rill ed before and after 1989 (Fig. 3-80). Comparison of actual versus p red icted 
values at the we lls d rill ed after 1989 showed that Lhere is a s ign ificalll improvemen t 
resulting fro lll the inco rporaLion of ¥ismic data in the estimation exercisc (Fig. 3-8 1). 

3.6.5 Collowted cohrigillg versus extern al (hiJI 

CCK and KED arc the prdcrred industry solutio ns fo r combining well and scismic
derived data. The discussion o f the North Alwyn casc and the examples used showed 
that Ihere could be a strong similarity between a map obtained wi lh CCK and a map 
o btained with KED. A s im ple mathematica l development (Fig. 3-82) confi rms mal the 
ana lytica l expressions arc vcry s imilar, even if the system o f equatio ns that leads to this 
expression is diffcrelll for CCK and KED. However, the main d ifference lies in Lhe 
assum pLio ns that each method makes and that defini te ly impac t o nes cho ice o f the vari
ogram model. 

With KED, we assu me that Lhe secondary variable p rovides low-frequency in fo r
mation abou t the pri mary o ne. The variable of interest, Zex), is modeled as the sum of a 
li nea r function o f the external d ri ft plus a s tationary resid ua l of mean zero. As a result , 
the KED ill te rpolation can be decomposed into the s tun of a linear functio n o f the 
exte rnal d ri ft - which does not have to be s tationary - plus a residual that tencls 
loward zero al large dis tances. But how confident are we about this externa l d rift ? 
Calculat ion of thc estimat ion error variance attached to KE D shows tha I the extcrnal 
d rift is assumed 10 be perfectly known . 
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Only Bayesian kriging genera lizes KED LO the situation where the coefficients of 
the cxternal drift itself are uncertain. This is a limitation of KED, considering typ ical sit
uations that are encou nLcred LOday - a few wells, oftcn fcwer than 1,0, and an inter
preted seismic map. With KED, the only calibration of the wells against the seismic 
consists, after appl)'ing a linear transformation to the seismic elata, of calculat ing the 
variogram of the residua ls. But is this a reliable thing to do from just a few wells? It 
seems that a case where thc usc of KED appears defendable is time-to-depth convcrsion, 
where we arc dealing with depth at the wells and time hori zons, or average veloci ti es 
and stacking velocities. In this situation, there is a ph)'sical reason why the se ismic map 
should be relatcd wit h the well data. Also, the map derived from seismic is often 
smooth (assuming, in the case of V\tKk, that error cokriging has been applied in a previ
ous step). When KED is applied , the variogram to use should be that af the residua ls 
from the exte rnal dri ft filled to the well data , as in the examples of rigs. 3-58 and 3-62. 
This va ri agram, which controls through its range haw soon ex trapola tion will become 
equal ta the ex ternal drift (Fig. 3-55). should not be the model directl y de ri ved from 
that a f the primary or of the secondary variable. 

With CCK, the approach is differen t and is based on a crossploL A calibration step 
is performed, berore interpolation, th rough the cakuhllion of the correlation coefficient. 
The variances of the seconda ry and primary variables, and their relative va lues, also 
playa ro le in the shape of the interpolating function. As dearl )' shown b)' Doyen et al. 
(1996), the value of the correlation coeffi cient ca librates the relalive wcighl of kriging 
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• 50 hidden wells 
completed after 
1989 

o 57 control wells 
completed before 
1989 
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versus informalion derived from seismic. This means that the secondary variable does 
110t have to be smooth , as in the case of KED. The estimation variance produced by 
CCK accounlS for the va riations o~ the secondary variable through ilS variance. This is 
why many CCK applications consist of predicting a petrophysical parameter from a 
seismic allribule (sometimes quite random), while KED tends to be more suitable for 
structural applications. 

,,yhen CCK is applied under the Markov hypothesis, only the variogram of the 
primary variable is needed, because the cross-variogram is assumed to be proportional 
to it. If not enough well data are available to derive the primary-variable variogram, 
the secondary-variable variogram can be used to help define some of ilS parameters 
(Fig. 2-39). 

Again, CCK should be preferred when we are mapping 3tlribUles. whereas KED 
should be preferred when mapping strucLUral p.uamelers. CCK also provides more flex
ibility, thanks 10 the choice of the correlation coefficient, which means that . if no KED 
algorithm is available, one can obtai n an interpolation close to KED using CCK. Coleou 
(2002a) demonstra ted that, in the situation where all covariances are proportional , 
MCCK is equivalent to KED. This assumption can even be relaxed. Haas et al. ( 1998) 
show that, if there is proportionality between the cross-covariance model and the 
covariance of the secondary variable, then MeCK and KED are identical. Haas calls this 
situation "geosta tistical regresSion." KED is opLimal when the residual is uncorrelated 
with the secondary variable. Rivoirard (2002) has recently shown lhat this corresponds 
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to a situation where the cross~co\'ariance is proportional to lhal of the secondary vari
able. lIaas el al. (1998) call th is situation .... geostatislical regression," whereasJourncl 
(1999) calls it "Markov Model 2" and Chiles and Delfiner (1999) call it ~Reversc 

Markov." 

3.6.6 Faclarial collrigitlg 

Coleou (2002b) reeemly presented a new application of cokriging, this time in combi
nation with factorial kriging. This application ma}' prove useful in the context of Limc
lapse seism ic. Assume that two seismic surveys have been obtained on the same area. 
The model of factorial kriging is recalled in Fig. 3-83 on a symheLic example. Now, sup
pose we have the two survC}'s only. and we want 10 eX lrac t some reservoir infonnmion 
from these surveys. One app roach would be to apply FK independently to each of 
them. Coleou proposes lO improve the conSistency by applying factorial cokriging 
simultaneously to both surveys, in order to obta in what he calls the "common part" of 
these two surveys (Fig. 3-84). The equations are nOt presented here, but they arc a sim
ple generalization of those of cokriging and FK. 

Fig. 3-85 shows a promis ing application of faclOrial cokriging on rms amplitude in 
a horizon-controlled window above the target and on one of the time horizons. The 
continuity outside the 40 signature is reduced, thereby providing a better delinea tion of 
the 4D effect. Organized differences are only found at and bclow the fluid changes, 
where they are expected. Although it is a bit early to tell , factorial cokriging appears to 
have some promising properties for use in l11ultisurvey filtering (Fig. 3-86). 

3.7 Some Rela tions hi ps between the Kriging Techniques 

Fig. 3.87 lists a number of relationships between all the kriging methods presented so 
far. We will not discuss the mathematics behind these different relationships, which 
should appear logical after ,vhat we have discussed. Coleoll (2002a) discusses the math
ematics. 

3.8 Kriging Versus Other Interpolation Techniques 

3.8. J JlIlIoc/UCLiOfI 

In section 3.2.4, we presented kriging from another perspective, that of an interpolating 
funclion. In this chapler, we will limit our discussion to mapping problems and consid
er kriging as a function Zuk{X.Y) of the coordinates (x,y) of any 20 10catiol1. We will 
show thai the expression of kriging given in Fig. 3-18 clarifies the relationships between 
kriging and many other mapping techniques, especially splines. First, let us explain 
splines. 

3.8.2 Splin es 

• Biharmonic ( thin-plate) and harmonic (membrane) splines 

With Ihin.plme splines, the idea is to calculate an interpolating function th::H mimics 
the shape of an elastic plate that would be forced to honor the data points. 11 can be 
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shown (Briggs, 1974) that the function minimizes the il1legral given in Fig. 3-88, which 
is represelllative of the bending energy of an elastic th in plate. The surface displayed in 
Fig. 3-88 is based on the same data poinlS as those of Figs. 3- 19 to 3-21 . Bihannonic 
spline interpolation is smooth and tends to overshoot when the re are signi ficant varia
tions of the il1lerpolated variable between closely spaced da ta points. This is not sur
prising, because one of the assumptions of the method is lha[ the interpolated surface is 
twice differentiable. This femure may prove unacceptable for some applications. 

Another "natural" shape that comes [0 mind is that of a membrane forced to honor 
the data points (Fig. 3-89), which correspond to harmonic splines. The map obtained 
with harmonic splines appears unsatisfactory for mapping applications, because it tends 
to be very smooth between the data poin ts and to "cone" 100 much at the data point 
locations. To our knowledge, this "membrane" interpolati ng function has found no 
petroleum application. However, we will see below thaI it is used to describe many 
physical phenomena and that it has interesti ng relationships wi th fractal models. 

Duchon (975) showed that the hannonic and bihaml0nic spline functions are 
solUlions of the equations shown in Fig. 3-90. Both hamlOnic and bihannonic splines 
converge in extrapolation toward their polynomial teml - which is constant for har
monic spli nes and linear for biharmonic splines . 

• Other spline functions 

Milas and Mitasova (1988) , Mitasova and Mitas (1993), and Wessel and Bercovici 
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(1998) propose a more general defi nition of the energy funclionalthan that of harmon
ic and bihannonic splines. They derive general (and complicated) analytical expressions 
for the interpolating functio n, mini mizing this generalized functional with the con
straint of honoring lhe data pointS. Because both the nexural rigidity of the plate and 
the tension are involved. Ihrs leads to interpolating functions that combine the advan
tages of harmonic and biharmonic splines. However. their complexity, and the number 
of parameters involved. are an issuc. 

• Smoothing splines 

The interpolating spline method can be genera lized to the smoothing of data affected by 
a measuremelll error. Instead of simply minimizing the energy functionals Et(z} and 
E2(z). as described in the previous sections, a Slim of this functional plus a distance to 
the data is now minimized (see Fig. 3-91). This means that, contTary to the previous 
case, the interpolating function is not forced to exactly honor the data pointS. A certain 
tolerance is allowed, depending on the magnitude of the measurement error affecti ng 
the data, Z;. 

A source of great discuss ion in the literature on interpolation is the choice of the 
coefficient e, balancing the weigh t of the energy (or regularization) constraint versus 
lhe distance to the data points. The constant 8 is usually calculated by cross-validation. 
Data points are dropped one after the other, and the selected value is that for which the 
estimation of the dropped dala pOint, by use of the other pOints, is best. 
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It is now obvious (simply compare Figs. 3-18 and 3-90) that splines and kriging func
tions share a similar expression, which is that of the general class of radial-basis func
tions. See, for ins tance, Franke and Nielson (1991) or Ahmed and Murthy (1997). Fig. 
3-92 gives the generic expression of radial-hasis-function interpolation and explains 
how each tenn is interpreted, depending on whether we are working from a spline or 
from a kriging perspective. 

The multiquadric interpolation method of Hardy (1990), widely used in practice, 
is also a special case of radial-basis functions. It is a sign ificant result, from a mathemat
ical and computer point of view, that such a variety of interpolating functions can be 
reduced to a similar formalism. This will now allow uS to throw a new light on a num
ber of results . 

• Special cases of radial-basis functions 

In the following, we wi ll look at a number of special cases of radial-basis func tions and 
see how they can be interpreted , ei ther from the perspective of a geosta tistical or a 
spline model. This wi ll help us Sla rt building the bridge between stochastic and energy
based (o r regularization-based) models. 

• De \Vijs variogrwll and jw, monic Junctions 

Kriging with a constant trend and a De Wijs variogram is equivalent to 2D inter
polation with harmonic sp li nes. This va riogram (Logh) has a slope of infinity at the ori
gin, which corresponds to an extreme case of spatia l variability for a model with zero 
nugget effect. As a resu lt , kriging honors the data but rapidly returns to the mean. This 
explai ns the somewhat peaked behavior of the interpolating function around the data 
poinl5 (Fig. 3-89). 

From the spline perspective, the interpolation surface (Fig. 3-89) is peaked around 
the data pOints, since it represents the shape of a membrane - a ki nd of lelll - go ing 
through these data poi nts. Away from the data, the membrane tends toward a flat sur
face. This illlerpolating funct ion is a solution of lhe Poisson equation, which is used to 
describe many physical processes. It describes the shape of a soap film (Isenberg, 1992), 
of a th in rubber sheet (a membrane) forced to pass Lhrough fixed pOints, or the value of 
an electrostatic potential, over a surface, due to a two-dimensional hnite distribution of 
charges (Feynmann et aI., 1964, Chap ter 12). Given a set of control pOints, the illlerpo
la ting function takes the shape that minimizes its surface area. This is the familiar prop
erty of minimal surfaces, which is represented in nature by the shape of soap fi lms. 

Thanks to its harmonic property. Logil is also associated with the familiar power 
spectrum of fractals (Fig. 3-93). This is no surprise, because we already saw (read , for 
instance, Section 2.-0 thalthere was a close relationship between De Wijs's va riogram 
and fractals . 

• S,'/ine (Q\ari(IIIU and hillllnllollic equafion 

Kriging with a linear trend and a generalized covariance equal to h2Logh is equiv-
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alelll to 2D interpo lation with bihannonic splines. This generali zed covari ance of order 
I is assoc iated with a s ll100lher random funeLion than the De Wijs or the linear vari
ogram model. As a resu lt . the interpolation function is much smoOlhcr (Fig. 3-88). 
Away from the da ta. the map tends toward the va lue of a linea r trend fi lled th rough 
the data poin ts. 

From the spline perspective, the interpolat ion surface is a solution of the bihar
monic equa tion, corresponding to the shape of an elastic plate forced to honor the data 
points at their location. Because it is an elastic pla te ra ther than a membrane, the shape 
is very smooth close to the data poin ts. Away from all data constmints, the th in plate 
spline comes back to an unconstrained nat (but nOl necessarily horizontal) shape. 

Because of its biharmonic property, h!Logh is also associated wi th the familiar 
power spectrum of frac tals (Fig. 3-93). The fractal nature of the covariance associated 
with the biharmonic spline has been recognized by Szeliski and Terzopoulos (1989) . 

• Smoot hillg SIJ/il1cs and eno l' colnigil1g 

Now, let us examine the si tuation where the data poin ts arc affected by random 
measurement errors. This will lead the spline specia lis t to usc smoothing splines, as 
presented in rig. 3-9 J, and the geostatistician to use error cokriging as presented in sec
tion 3.3.1. If we express error co kriging as a fUllction, it is easy to verify that there is 
eqUivalence between smooth ing splines and error cokriging, as long as we use the trend 
and covariance models JUSt d iscussed. 

But, in the error cokrigi ng framework, what happens to the imponalll smoothing 
spline coeffi cicm e, which delermines the relative weigh t of smooth ing versus distance 
to the data? It has been shown by Matheron (198 Ia) that error cokriging using the 
covariance functions given in Fig. 3-94 is equivalent to calculating the smooth ing spline 
associa ted wi th the same parameter 8. ThllS, in geostatistical formalism, the problem of 
weighting Ihe smoothness ~erm versus the distance to Ihe data is not raised. By fi lling a 
covari ance model and ilS c!oefficielll to the experimental data , error cokriging automati 
ca lly calibmtcs the va riance o f the measuremelll errors versus that of the covariance 
function . 

• Recenl developments 

\ \fhen we discussed kriging in a global neighborhood (Section 3.2.2), we stressed 
the fact thai , due to computationallimitalions, this technique could only be used with 
fewer than, say, 1000 data poi nts. So far, this limitation has also applied to radial-basis 
functions, which could not be used with more and a few thousand da ta poin ts. Two 
recent papers in GEOPHYSICS challenge this view. Bill ings et al. (2002a, b) review the 
relationshi ps between radia l-basis functions, splines, and kriging, bOlh for interpolation 
and smoothing purposes. They defi ne continuollS global surfaces as those surfaces sa tis
fying the equa tions of Fig. 3-92. They use this new tenninology because they consider 
that the class of radial-basis functions only encompasses those functions for which basis 
fu nctions are radially symmetriC. Billings et al. (2002a) convincingly promote and 
demonstrate the use of ite rat ive techniques and effi cielll preconditioners for solVing 
global neighborhood problems involving millions of data poims. Billings et al. (2002b) 
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prefer to use smoothing splines rather than kriging, and recommend the usc of general
ized cross-validation for estimating the smoothing spline coefficient 6. If the approach 
proposed by Billings e1 al. (2002a) proves general enough, kriging in a global neighbor
hood may generalize to very large data sets, wi th a signi ficant impact on many geostatis
tical algorithms, such as those used for geostatistical condi tional simulation (see 
below). 

• Conclusion 

lnlerpolating splines, in 20, consist of the calculat ion of an interpolating function 
that minimizes an energy functional related to the stretchi ng or a bending energy of a 
plate. The choice of such an energy functional is equivalent to fixing the degree of the 
trend function and the covariance model for kriging. In other words , fixing the energy 
- or regularization - term of spl ines is equivalent to fixing the a prio ri model for 
kriging. 

Fig. 3-93 shows that there is a fundamcmal, inverse relationship between the 
spline functio nal and the covariance. Kimeldorf and Wahba (l970) demonstrated that 
this funda mental relationship also applies in the frame of discrete Bayesian statistics. 
The consequence of this relationship on the spectral density is straightforward. The 
spectral densities associa ted wi th the harmonic and biharmonic spli nes are power laws, 
which means that they represent fracta l models. Szeliski and Terzopoulos (1989) con
vincingly demonstrate this relationship between splines and fractals . 

Smooth ing splines, in 20, consist of the calculation of a fUllction thallllinimizes 
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the SUIll of an energy funclional- or regularization Icnn - plus a distance to the daw. 
This is equivalent to calcula ti ng the error cokriging interpolat ion associa ted with the a 
priori model corresponding LO the regularization lenn. The coefficient of the covariance 
model b equal to the coefficien t weighting the distance to the data against the regular
ization term. However, in. 'the error cokriging formalism, th is term is not arbit ra ry but 
instead resul ts from the fit o f the covariance modc1LO the data. 
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Why this relationship between splines and kriging? 

Kriging and splines originated rrom different worlds, that of 
approximation theory (splines) and that of probabilities (kriging). We 

have demonstrated the fonnal equivalence between the two methods. So 
far, this equivalence is purely formal and does not provide a 

fundamental clue of why this bridge exisLS between the two formalisms . 
The question is actually LO relate an energy· or regularizalion·based 

formalism , to a probability·based one. 

The idea of converting an energy function into a probability distribution 
comes rrom statistical mechanics, because the probability of a particular 

configuration is inversely related 10 its energy. Suppose we calculate 
the function z(x) minimizing an energy functional E(z). 

sing the resulLS of Geman and Geman (1984), Szeliski 
and Terzopoulos (1989) associate a probability to this 

energy through Ihe Boltzmann (or Gibbs) distribution, p(z), defined as 

(where Z anti T are positive const.ants). 

If we now have a number N of data ZI available, and ir we make, 
as above, the assumpt.ion that t.hese data are affected by independent 

and Gaussian measurement errors E;, of variance 0'1
2

, 

This is the likelihood function , which we can combine, using Bayes's 
theorem, with the above a priori probability, LO obtain the posterior: 

p(Z/Z) IX p(zJZ) p(z) 
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In the Gaussian formalism, we wish to maximi ze the posterior to obtain 
the best estimate of z. This is equivalent to maximizing the logarithm, 

and we obtain the smoothing splines functional: 

N 

E (z) + e I (z, - , z) 
j", I cr i 

Fig. 3-95 summarizes the conclus ion or these developments. 
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4 Conditional Simulation [or Heterogeneity Modeling 
and Uncertainty Quantification 

4 . 1 Introduction 

In the previous chapter, kriging proved to be an interpolation technique that was flexi
ble enough to filter corre lated or uncorrelated noise from the data or to combine se is
mic and well infommtion. Thanks to lhe flexibility in the choice of the trend and the 
covariance model , kriging is closely related with splines, multiquad rics, and trend-sur
face analysis. Kriging, when it is based on lhe lrend and covariance models rilled to the 
data, also provides an estima te of the uncertainty at every location of the map. However, 
kriging remains a determinis tic approach that provides a very smooth image of geologi
cal variables that are, in most cases, very erratic. 

As an example, Fig. 4- 1 shows in red the kriged surface already used in Fig. 3-24 
(l lohl1 da ta set). This surface is very smoolh. A variogrnm calcula ted on the poin ts of 
this surface would be extremel}' different from the spherical variogram fitted on the data 
and used as input to kriging. Is there nOl a con trad iction here? Should not the vari
ogram of the kriged surface be the same as the spherical model used as input to krig
ing? The answer is definitely no, because the goal of kriging is not to generate a surface 
lhat mimics the actual va riations of the interpolated variable. but to provide, at each 
loca tion, an estimate that is as close as possible - on average - to lhe unknown value. 

A simpler way lO understand this is to use the example of a random variable, Z, 
taking the value - l or + I, depend ing on the ou tcome of a game of heads or tails. A 
game wi ll generate a sequence of values -1 and +1 (Fig. 4-2). The variogram is obvious
ly a nugget effect, since two draws are uncorrelated with each other. At locations with 
no data points, kriging would be equal lO the mean, which is zero (this also corre
sponds lO the trend-surface-analysis estimate in the Case of a constant trend; see Fig. 1-
39). Thus. in the case of a pure nugget effect - lhe noisiest parameter one can think of 
- kriging is cons tant ! This is hardly a representation of the actual heads-or- tails out
come! But still , as we saw ea rl ie r in Fig. 1-23, the mean is the parameter that is, on 
average, the closest to all possible va lues of lhe distribu tion. 

The goal of geostatistical conditional simulation (GCS) is precise ly to generate 
samples of surfaces or of 3D earth models that satisfy the input statist ics (mean, vari
ance, and variogram) instead of smoothing them. and that honor the data points. The 
yellow surface of Fig. 4-1 is a realization of GCS on the Hahn data set. This surface is 
far noisier than the red krigcd surface, but its experimental variogram is equal to the 
spherical model fitted 10 the data. Before we discuss GCS in more detail, a few 
reminders about Monte-Carlo simulation may prove useful. 

4.2 A Few Reminders on MonLc-Cario Simulation 

Monte-Carlo simulation (MCS) is a powerful technique for calculating the pdf of the 
combination of several random variables. Take the example of Fig. 4-3. Standard origi
nal oi l-in-place (STOOIP) is a function of gross-rock volume (CRV), porosh)' (cl» , l1et-
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to-gross (N/G), water sa tu ration (5....) , and fonnation volume fac tor Bo. If the pdf associ
ated with each of these parameters is known, MCS consists simply of sampling each 
parameter a large number of times and calculating the STOOIP for each set of samples. 
Then the pdf of STOOIP can be derived from the histogram of the resuhing STOOIP 
distribution. 

Nowadays , spreadsheet add-ons arc available on the market that provide a very 
easy user-interface to MCS. As a result , MCS is a generic approach now used in a large 
number of industries to quanti fy uncertainties (Fig. 4-4). 

Figs. 4-5 and 4-6 explain some of the technicalities of MCS. We said earlier that 
MCS consists of sampling each parameter accordi ng to its input pdf. For continuous 
parameters, this sampling can be performed because of a very general resu lt of probabil
ity theory. Fig. 4-5 explains how a sample from a pdf can be obtained b)' Ilrst sampling 
a unifonn distri bUlion between 0 and 1, then app lying the inverse of the cdf to the Out
come. 

Often, we wi ll also need to sample discrete random variables , such as lithology. 
For instance, we may know that the lithology at one loca tion is ei ther sandstone, shaly 
sandstone, Silty shale, or shale. The four probabilities of occurrence add up to one and 
can be translated in four colors that each occupy a frac tion of a segment of length I 
(Fig. 4-6). As in the previous case, a unifonn distribution sampling can be used. The 
li thology outcome is then simply lhe one corresponding to the color in which the sam
pic of the uniform distribution falls. 
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The most di ffi cult issue in MCS is that or correlations between parameters. Take 
the example or th ree prospects loca ted in the same pla)l, each with a nomlal pdr ror 
their STOOIP (Fig. 4-7) . \Vhat will be the pdr or the complete volume, assuming that 
the th ree prospects are discoveries? In probability theory. one cannot avoid making cor
relation assumptions when combin ing several pdrs. These assumptions go rrom one 
ex treme (pure independence between pdrs) to another (complete dependence) . In the 
first instance, the Liuee pdrs lend 10 compensate each other. Independence implies that 
there is a very small probability that the three vo lumcs will be all low or all high. On 
the orner hand, complete dependence implies that volumes are either all low, all medi
um, or all high. Thus, the range or uncenainty over the pdf or the sum is much larger 
in the complete dependence than in the complete independence situation. NOLe that the 
standard industry approach, which consists or adding the pgOs and the P lOs (see Fig. 1-
25 ror defin ition) or individual field reserves to ge t the pgo or the PlO or the company's 
tota l reserves , is equivalent to assuming complete dependence between all fields. 

Fig. 4-8 is an interesting paradox. Assume we know nothing about two parame
ters. We only know that they are between 0 and 1, leading 1.0 the assumption that their 
va lue is unirormly distributed between 0 and 1. What about their sum? A casual run or 
a Monte-Carlo spreadshee t program leads to ... a triangular distribution between 0 and 
2, with a mode or I ! Why is the sum not distributed unironnly between 0 and 2? How 
is it possible that there is less uncertainty on the sum of twO unknown parameters than 
on each or them individually? Again, the explanation lies in the parameter-correiaLion 
qucslion, LO which there cannot be an answer such as "I don'l know." With MOllle-
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Carlo software, not entering any correlation infonnation in the input is usually inter
preted as an independence assumption. As a result, there is a tendency to mutual com
pensation between the two parameters, leading to a sum thaI is closer to the middle 
than to the edge of the [0,21 interval. 

There are different approaches for genera ting samples of parameters that are corre
lated with each other. The first approach consists of working sequentia lly. For instance, 
ncl/gross is sampled first , then porosi ty is sampled as a function of this nel/gross, then 
saLu ration itself is controlled by porosity and net/gross. Another example is porosity and 
permeability. Porosity is sampled first using a Gaussian distribution, then the logarilhm 
of permeabili ty is derived from porosity using the regression equation associated wi th 
the permeability-porosity cal ibration. The reliability of the regression equation can be 
accounted for by adding a random term to the prediction of the logarithm of permeabil
ity from porosity. 

The second approach consists of making an assumption - usually that it is nor
mal - about the multivariate distribution of the correlated parameters to be sampled. 
For instance, it is assumed that the log of penneability and the log of porOSity follow a 
binormal distribution with a correlation coefficient equal to p. There are many ways to 
generate samples from multivariate nonnal distributions; the approaches are simple for 
bivariate distributions (Johnson, 1987). When there are more than two variables , the 
general approach is discussed in Fig. 4-9. The trick consists of reducing the problem to 
that of genera ting uncorrelatcd univariate samples. The first approach consists of writ
ing the sampled multiva riate random variable as a linear combination of independent 
univariate samples, through Cholesky factorization . The other approach consists of 
working sequentially and using the property that, in the normal multivariate case, uni
variate condi tional distribut ions are also Gaussian. These two approaches will also be 
used in the algOrithms for the condi tional simulation of continuous parameters. The 
use of multivariate nonnal distributions may not prove sufficient in situations where 
some of the variables are not nonnally distributed. This is why some MCS commercial 
programs prefer to use rank correlations, which are independent of the pdf of individual 
variables. 

4.3 Conditional Simulations for Continuous Parameters 

4.3.1 Example 

MCS is a technique that takes the pdf of individual random variables as input and 
derives as output the pdf of any function of these variables (Fig. 4-4). Nowadays, para
meters such as porOSity, lithology, or net/gross are mapped in 20 or 3~. Because of the 
uncertainty afrecting each of these models, we may wish to quantify the jOint impact of 
these uncertainties on the STOOIP or on other results. We may also want to know what 
the heterogeneities actually look like away from the wells, in order to input a realistic 
model into now simulation. GCS is the method that will allow us to generalize MCS to 
2D and 3D models. 

Fig. 4~lO is an example of acoustic-impedance kriging, as interpolated from six 
wells in a North Sea fi eld. Away from the wells, kriging is very smooth , because there is 
no well infonnation available, and the best estimate is the mean. However, this is nOl 
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representative of the degree o f variability of acousti c impedance away from the wells. 
Fig. 4- l1 shows a realiza tion of GCS, using exactl y the same input parameters as the 
kriged model of Fig. 4-10. This rea li zation is not optimal in the kriging sense, bUl it has 
the property of satisfying the va riogram and also some a priori statistics on the mean 
and standa rd deviation, while still honoring the well data. Because these conditions are 
not sufficient 10 enti rely cons train the model , a large number of 3D realizations can be 
genera ted that all satisfy these constrain ts (Fig. 4-12), Each GCS rea lization is represen
tative of the heterogenei ti es that are likely to be encountered in the reservoir (Fig. 4-
13). 

A fundamental diffe rence between kriging and a GCS realization is that, although 
both honor the weils, kriging becomes smoother away from the wells. whereas the GCS 
reali zation looks the same evel)Where. If the well locations are not displayed on the 
model, it should be imposs ible to guess where there are on the basis of a GeS realiza· 
ti on. On the other hand, their loca tion is usually easy to spot on a kriged map. Fig. 4-
14 illustrates this poin t on th ree 20 GCS rea lizations obtained fro m 70 wells. None of 
the three rea lizations show "bulls-eyes" at the well loca tions. The three intennediate 
nonconditional simulations wi ll be d iscussed later. 

\Vhat is the relations hi p between kriging and GCS reali zations? As the number of 
realizations becomes very large - say, a few hundred - their mean becomes closer and 
closer to kriging. Why is this? Because all realiza tions honor the we lls, they tend to be 
ve ry simitar to each other close to the wells. On the other hand, they are differelll away 
fro m the wells, and they become uncorrelated as soon as the distance rro m the we lls is 
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greater than the ra nge of th e: va riogram. This results in a significant compensation effect 
fro m one: rea liza tion to another. Consequently, the mean of me realizations tends LO be 
very smooth. If we now calculate at each local ion the standard deviation of the realiza
tions . we find the kriging standard devi.ation, which is equal to zero at the wells because 
each realization honors these dala (Fig. 4-15). Obviously, the GCS realizations also sal
isfy the speclrnl dens ity associated wi th the input covariance or variogrnm, which was 
notlrue for kriging. Fig. 4-16 compares the properties of kriging and GCS. 

Figs. 4-17 and 4- 18 ill ustra te again the difference between GCS and kriging. We 
know that the larger the vanagram range, the belLer the correlation belween values 
away from each other. As a resul t, kriging remains controlled by the we ll data, as long 
as the distance from the wells is smaller than the va riogram range (Fig. 4-17). GCS real
izations look fat her smooth, precisely because the variogram model has a large range. 
On the other hand, wc know that kriging comes back rapidly toward the mean with 
short-range va riograms (Fig. 4-18), whereas GCS realizations look quite noisy. In other 
words, the more randomness the re is in the va riable, the noisier the simulations ... and 
the smoother kriging! 

The assumption made by GCS is not that Nature is random, but that our knowl
edge of the reservoir is nOt sufficient to generate a single (determin istic) model of het
erogenei ties betwcen wells. There are a number of possible scenarios given the data and 
the a priori variogram and lrend model, and the probabilistic approach is very conve
nient for generating mese scenarios (Fig. 4-19). Because of their great variability away 
from the we lis, realizations are more realistic than most detenninistic models, which are 
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usually far too smooth. We will see later how GCS is now routinely uscd to generate 
representative 3D heterogeneity models or to quanti fy the uncertainty associated wi th 
3D models. 

4.3.2 Algo rithms 

• The two main kinds of algorithms 

Let us focus on lhe conditional simulation of a stationary Gaussian random fun ction 
measured only at wells. Wc assume that its pdf and its variogram arc known. There are 
two main categories of algorithms for GCS (Fig . ... ·20). The fi rst kind direclly generates 
realizmions that not onl ), match the statistical propert ies of the modelcd parameter, but 
also honor the data poin ts. Among those, the most popular ones are scquclllia l 
Gaussian simulation (SGS), LU matrix decomposi tion, and iterative tcchniqucs in a 
gcneral sense. 

The second kind of algorithm works in two steps. First, a noncondit ional simula
tion is generated. The rea li zation, which does not honor the data points, is then "condi
tioned" to the data poin ts. In the discussion below, we have selected the techniques Ihat 
appear to be the most intcresting and widely used. They will be describcd in 20, but 
their generalization to 3D is straightforward . 

• Direc. gellcl"lItion of condiLional sill1u/miolls 

SGS (Deutsch and Journel, 1992) is probabl )· the most popula r and ncxiblc tech· 
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nique today. Assume, for simplification , that a conditional simulation is generated on a 
20 grid, where, say, three weLls are availablc. The SGS approach is inspired directly from 
an already discussed result of the stalisticalliteralure (Fig. 4-9). The algorithm works 
sequentially, succesSively drawing and filling random locations of the plane (Figs. 4-21 
and 4-22). At each new location, the value is kriged from the preViously 5.:'lmpled values 
and the well data. Then a random value is sampled from the Gaussian pdf, with Illcan 
equal to the kriged value and slandard deviation equal 10 the krigi ng standard devia
tion. Then the sampled value is merged wi th the rest of the data set, and a new random 
location is chosen. The da ta locations are left unchanged in the process. The result is a 
Gaussian rea liz~\lion satisfying the input statistics (mean, variance, and variogram). This 
is satisfied regard less of the order in which the sampled points arc drawn. However, a 
random sequence is recommended to avoid spreading random artifacts. Fig. 4-23 pro
vides examples of anisotropic SGS realizations on a North Sea rield . The weakness of 
SGS is that it reqUires solVing a kriging system at each location, which may prove time
consuming. Also, each kriging system is calculated in a moving neighborhood , which 
implies that the covariance function model is properly represented on ly within the dis
lance of the mO\ring neighborhood. 

The second approach for direct conditional simulation was introduced LO lhe 
petroleum industry by Davis (1987) and AJabcn ( J 987). It is another way, as described 
in Fig. 4-9, to simplify the problem of GCS into that of generating independent random 
variables. The covariance mauix is decomposed into the product of a lower triangular 
matrix and its transpose. The conditioning by the data points is easily introduced as a 
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further constraint in the algorithm. The disadvantage of the method is that , if the simu
lation is calculated at J 0,000 grid nodes. it requires the decomposition of the covariance 
matrix , whose dimension is 10.0002 

X 10,0002
• 

The third approach is that of iterative techn iques, which belong to the general 
class of Markov-Chain MOl1le-Carlo (MCMC) simulation (Gamerman, 1997). Thc 
Norwegian School (Hegstad et aI. , 1994; Omre and Tjelmeland, J997) is very active and 
successful at developing and applying MCMC algorithms for sampling multiva riate rea l
izations constrai ned by wells , seismic, and production data. Their approach is Bayesian 
and consists of calculating I he posterior mul ti variate pdf of the variables of interest and 
then sampling this pdf using the MCMC Metropolis-Hastings algorithm. Fig. 4-24 
describes the Metropolis algorithm, which is a simplified version of Metropolis
Hastings, applying in situations where itera tive perturbations are symmetrical. The algo
rithm starts from an initial random realization and converges toward the desi red one 
thanks to a proper choice of iterative perturbations. The choice of the perturbations to 

apply is quite general and is not discussed here. 
The Gibbs Sampler is the second prominent class of MCMC algorithms (Fig. 4-25). 

It was originally proposed by Geman and Geman (1984) and has found appl ications in 
the fractal modeling of nalUral terrain. Arakawa and Krotkov ( 1996) used the results of 
the work of Szeliski and Terzopoulos (1989) to generate fractal terrain models. 

The simulated annealing algorithm used by Deutsch (1992) for generating geosta
tislical rea lizalions constrained by well-test data also belongs to the class of MCMC 
techniques. Deutsch el al. ( 1996) generalize the approach to the incorporation of seis-
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mic data. Rather than formulate the problem in the Bayesian framework, where the 
prior distribution (geostatistical model) is clearly differentiated from the likelihood (fit 
to the seismic and production data), Deutsch e1 al. incorporate all the constrai nts (geo
statistical constraints, fit to well data, well-test data , and seismic data) into a single 
global objective function. 

MCMC algOri thms are very time-consuming. However, they are rather st raiglufor
ward 10 program , and they are able 1.0 address very general conditional-simulation prob
lems that incorporate a greal variety of data . They should be used only if noni lera live 
approaches cannot address the problem. MCMC techniques give samples from the spec
ified posterior distribution in the limit only. One method for deciding whether the algo
rithm is close to the li mit is ompUl analysis (Ripl ey, 1981). MCMC applications go far 
be),ond geoslatistica l or petroleum applica t.ions. In the geophysical literature. the works 
of Mosegaard and Tarantola (L995) or Sen and Stoffa (1996) are important references. 

• Two-step approaclles 

Two-step approaches Start with generating realizations of nonconditional simula
tions. A noncondi tional simulation matches the required statistics, bu t does not honor 
the dala values. 

A very popular method for generating nonconditional simulations is the Fourier 
integral method (Fig. 4-26). Yao ( 1998) provides numerous references to this very pop
ular approach. She also proposes to develop th is algori thm into a conditiona l one by 
adding an iterative identi ficat ion of phases to honor data values at sample locations. 
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Another popular method, which Doyen (1988) used in his already-referenced 
paper, consists of convolving a white noise realization by a "vcighting function whose 
autocorrelation function is equal to the desired covariance. Exercise 3 illustrates how a 
simple averaging transforms the rea lization of an uncorrelated parameter into the real
ization of a correlated one. Olivc r (1995) calls this the mOving-average technique and 
gcneralizes it in 20 and 3D. For each covariance model to be simulated , Olive r calcu
lates what he ca lls the "'square root of the covariance operator." This is obtained by cal
cula ting the Fourier transform of the covariance fun ction, then taking the square roO L of 
the result and deriving its inverse Fourier transform. In his paper, Oli ver provides the 
analytical expression of the square root of commonly used covariance functions. The 
method is qUite elegant but may prove time-consuming when covariances wi th large 
ranges are simulated. 

How do we obtain a conditional si mulation from a noncondilional one? Thc 
approach is widely used and explained by Chiles and DeLfiner (1999). Fig. 4-27 sum
marizes its main steps, which can be interpreted in two differenl ways. According to 
one interprctation, a nonconcli tional simulation is generated first. Then a kriging-based 
smooth correction funelion is calculated, wh ich corrects the values at the wells in order 
to make them honor the data . This is the approach described in Fig. 4-27. There is 
another way to look at it. First , the kriged surface interpolating the variable of interest 
is calculated. Then realizations of the kriging error arc simulated and added to the krig
ing error. The result of each addition is a GCS realization. Fig .... · 14 shows examples of 
three 110nconditional simulations and three conditional Simulations from a case slUdy. 

4·20 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

• onstalionary and non~Gaussian variables 

By definition, SGS assumes that Ihe simulated variable is Gaussian. The other 
methods - except for MCMC, which is very general - build the conditional simula~ 

lions by multiple additions of elementary random variables. Because of the central limit 
theorem (Fig. 1 ~29), the resulting realizations will Lend to be distributed nonnall)'. If we 
wish to simulaLe a non~Gaussian variable, two approaches are possible. The first one 
consists of initially transforming the data pdf into a normal distribu Lion. This can be 
done using the nom,al~seo re transform. This simple transformation, described in Fig. + 
28, assigns to each value of the original va riable another va lue such that the distribution 
of the transformed data is normal. After generating the simulation, a back~tral1sfonna+ 
tion must be applied (Deutsch and Journel, 1992). This approach, although more rigor
ous, also has a number of drawbacks. It is nonlinear, and i1 becomes tedious to use 
when a va riety of data (seismic data , production data , eLc.) are combi ned in the simula
tion process (Tran et aI. , 200l). Quite often the second approach is preferred, especiall y 
if the data histogram - as is usually the case with porosi ty data - is nOI too far from 
Gaussian. This approach consists of applying "Direct Simulation," that is. simulation on 
the ulll ransformed data. In most situations, the va riogram wi ll be correctl y reproduced. 
This is true, for ins tance, for SGS, as long as each simulated value is d rawn fro m a local 
distribution whose mean and variance are obtained by simple kriging Oournel , 1993). 
The histogram wi ll 1101 be properly reproduced, but a number of techniques have been 
proposed to reproduce this hisLogram (Tran et al. , 2001). 

I Normal distribution N(O,1) 

,2'jO ••••• ••••••••• ••• • •••• •• ••••••• . •••••••••.• 

·3.00 '1 .50 Y=<KZ) 0,00 
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The generalization to nonstationary variables is simple, because the trcnd is a 
deterministic funclion. Onl y the residual from the trend changes from onc rca liza tion to 
another. This also applies to GCS wi th an ex ternal drifl. Only in the case of Bayesian 
kriging, where the coefficients of the trend arc themselves random, does the lrend 
model change wi th the realization (see, for ins tancc, Abrahamsen et al. . 1991). 

4.4 Cosimulation 

By "cosimulation," wc mcan all the situations in which the GCS of one parameter must 
incorporate information fro m another parameter, which provides ex tra information 
about the first one. [n earth modeling applications, cosimulation can apply to a number 
of possible situalions (Haas et aI. , 1998). 

4.4.1 Collocated si lllu/cuion wilh seism ic cia/a as a secondary variable 

• Handling linear relationshi ps 

This is the situation that has already been encountered with colloca ted cokriging. A 
seismic attribute, known as the secondary va riable, is statistically correla ted with the 
parameter of interest, known as the primary variable. Information from the secondary 
variable must then be incorporated into the simulation of the primary va riable , in order 
to keep the consistency between values of the primary and of the secondary variable. 
Usuall y, the collocated cokriging approach is applied jOintly with SGS. 

The SGS technique can be straightforwardly general ized to cosimulation (Comez
Hernandez and Journel , 1993). The only dilTerence with the single-parameter situation is 
that, instead of calculating the kriging estimate and standard deviation at each new sam
pled location (Fig. 4-22), this time the cokriging estimate and standard deviation are cal
culated. Fig. 4-29 shows an example of the simulation of net/gross constra ined by a seis
mic auribUle. Here, the seismic parameter is considered to be deterministi C, or exact, 
because is docs not change from one realization of the primary va riable to another . 

• Handling nonlinear relationships 

Castaldi et al. (1998) argue that linear relationships are too limited to predict reservoir 
thickness from seismic parameters under tuning conditions. In a case study in which 15 
wells and a 3D seismic survey are avai lable, they build a large number of "pseudo
wells" and derive a synthetiC seismic from them. Model ing results show (Fig. 4-30) that 
reservoir thickness, the parameter of interest, can be prediCled from the "reservoir 
isochron" and the "stratigraphic isochron" se ismic attribUles , using two nonlinear rela
tionships. Gastaldi et al. assume that this mul tivariate rela tionship can be described by a 
joint probability distribution function. A Illuitiparametric kernel denSity estimation 
method is used to estimate this pdf from the synthetic data set. Co llocated cokriging, 
which is based on the correlation coefficient between the primary and the secondary 
va riable, cannot be applied in this situation. However, the Bayesian formalism of Doyen 
et al. (1996), already presented in Section 3.6.4, can be applied, because the likelihood 
function is quite general and is nOllimited to li near relationships. Using SGS, Gastald i 
et al. generate a large number of reservoir thickness realizations constrained by seismic 
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and derive the best geostalistical estimate of th ickness - a kind of generalized nonlin
ear cokriging - by averaging the Bayesian simulations. In their example, estimation al 
five blind wells (Fig. 4-31) shows that the method gives better results than kriging or 
than standard "linear" co llocated cokriging. 

Before Gastaldi et aI., Bashore et al. (993) developed a somewhat similar tech
nique, which they called the cloud transform, for handling nonlinear relationships. Based 
on the crossplot of porosity versus acoustic impedance, they build several porosity his
tograms associated with each class of impedance values. This is a similar philosophy to 
that of the kernel density estimation. Then, they genera te the SGS conditional simula
tions by sampling a porosity va lue from the histogram associated with each seismic
impedance value. The approach they usc to ensure latera l cOlllinuity between sampled 
poroSity values is diITerent from and somewhat less general than that of Gastaldi et al. 

4.4.2 Joint simulation of Ovo pcmuneters 

This is exacLly the general ization of the problem already discussed wi th jOint Monte
Carlo simulation. We need 10 generate conditional simulations of two parameters at the 
same time. but cannot genera te them independently because we know that there is a 
degree of correlation between them. Take, for instance, porosity and net/gross (Fig. 4-
32). Here , cosimulation appears to be the right approach. With each realization, two 
new maps of porosity and net/gross are genera ted. Both parameters are treated as Sto
chastic. However, as explained by Gomez-Hernandez and Journel (993), the sequelllial 
simulation algorithm can still be applied. 

I 

Kriging 

Cokriging 

Bayesian simulation 

Absolute Error (m) 

Average Maximum 
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-1.4.3 CasCClcie or parallel conditiollal simulation oj several parameLers? 

o rten, as Haas et al. (988) discuss, different simula ted variables are unlikely to play 
the same role. ror instance, we rna)' first cons ider a porosity simulation constrained by 
seismic attributes, and then other va riables such as permeability or saluration can be 
gencrated from the porosity model. In this case, it is more logical to perform successive 
simulations, beginning with the most informed va riable and using the previously simu
lated variables to cons traint further steps. In other words, it may be belter to perfoml 
cascade instead of parallel simulations (Fig. -+-33). This is an approach that has been 
clearly formalized by the Norwegian School, using diagrams such as that of Fig. 4-34. 
This diagram trans lates into a cascade simulation approach, where a reflection coeffi
cient realization is first obtained from seism ic data (this \vill be discussed later in the 
gcostatislical inversion chapLcr), then acousti c impedance is derived from the renection 
coefficient, then both penllcability and poroSity are derived from the acoustic imped
ance (Fig. 4-35). Another plaUSible cascade simulation approach would be to derive 
porosity from acoustic impedance, then permeability from poroSity. 

4.5 Conditional Simulation for Geological Facies Modeling 

4.5.1 Int roduction 

After discussing the conditional simulation of continuous parameters such as porosity 
or water saturation, we arc now going to add ress the simulation of discrete parameters, 
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CASCADE OR PARALLEL SIMULATION? 
(HAAS ET AL. 1998) 
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such as geological racies, li tho logy. or rock types. This is a very important topic in 
reservoir characteriza tion and is described in more detail by Dubrule ( 1998), Here, we 
will rocus 0 11 what needs to be known in order to incorporate seismic data inLO earth 
models. 

Geological qualllificatioll is a topic that has always raised much interest and 
debate among geologists. Fig. 4-36 shows three hand-drawn geological cross-sec tions 
or the Statfjord Formation in the Brent field (North Sea). Depending on the deposition
al cnvironmelll he/she is dealing with, and using the well da ta as a constraint , the 
reservoir geologisl can draw skclches of the distribution of sands and shales. 
Unrortunately. hand-drawn cross-sec tions are limited in that they do not lead to a 3D 
model , and Ihey represent only one possible model among an infinity of scenarios 
matching the wells and compatible wi th the depOSitional envi ronment. In Ihe early 
19805. it became clear that geosta tis tical techniques could help genera te such 3D geo
logical scenarios. These scenarios will never be quite as realistic or "geologically 
loaded" as those prod uced by a geologist, yet they present the advantage of being mul
tiple and three-dimensionaL Today, there are two major classes of techniques available 
for genera ting 3D stochastic models: pLxel-based and object-based models (Fig. 4-37), 
Object-based models (C1emetsen et aI. , 1990; Damsleth ct aI. , 1990) assume that geo
logical bodies such as channels or crevasse sp lays can be described using simple geo
metri ca l shapes. On the other hand, pixel-based models adopt a more modest approach 
by simply making assumptions abou t the statisti cal relationships between the facies 
t)'pes present at individual grid cells or the earth model. 
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4.5.2 PLw/-bascd lIIodels 

• Indicator simulation 

The most popular pixel-based approach is that based on the indicator \,ariogram. Take 
the example of wells drilled in a fluviatile reservoir. On the basis of cores or well logs, 
a sequence of different lithologies encountered by the wells can be identified. If the 
different lithologies arc coded by different illleger values, the next step consists of 
defining ""indicator variables" (Fig. 4-38), which characterizc the prescnce or absence 
of the facies of in terest along the we lls (in what follows, the generic term "facies" will 
be used to designate a discrete variable representing the presence or absence of a geo
logical feature , such as depositional environment, lithology, or rock type) . Once this 
has been done, the indicator variogral11 associated with each indicator variable is cal
culated. 

Fig. 4-39 shows the vertical and horizon tal variograms of the shale indicator vari
able calculated within a small area of the Prudhoe Bay field. As expected, the venical 
variogram range is on the order of meters, whereas the horizontal variogram range is on 
the order of kilometers. Fig. 4-40 sUlllmarizes the property of the indicator variogram 
and its associated covariance. The indicator "ariogram measures, for each distance, the 
probabilit) that two facies found this distance apart are differcnl . Of course, this proba
bility increases with d~tance. There is also a direct relationship between the proponion 
of the facies of interCSl and the sill of lhe "anagram. 

The most common models that are used for indicator variograms are the spherical 
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INDICATOR VARIOGRAMS FOR SHALE INDICATOR 
VARIABLE, PRUDHOE BAY, USA (PEREZ ET AL., 1997) 
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and exponential models (Fig. 4-41). Understandably, Ihe Gaussian model is too sllloOlh 
to represent Ihe kind of discontinuities associated wit h the changes of an indicator vari
able from 0 to l. 

Once a model has bccn filled to the experimc11lal va riogram, indicator simulation 
is usually performed using the sequential indicator simulation (SIS) algorithm originally 
developed by the Stanford School Uoume! and Gomez- Ilernandez, 1989). SIS (Fig. 4-
42) is the generalization of SGS to discrete variables. The only slight difference lies in 
step 2 (compare Figs. 4-22 and 4-42). \Vilh SGS, slep 2 consists of kriging the mean 
and siandard deviation of the variable at the current \ocalion. \Vith SIS. step 2 consists 
of kriging, frolll the surrounding indicator values, the probability of having a value of 
the indicator function equal to one. This probability is equal to the mean of all possible 
val LIes of the indicator variable at that location. 

To belte r understand the geological implications of using one indicator variogram 
model rather than another, wc have computed nonconditional realizations for differelll 
kinds of models. The same ra ndom \'isitation path was used for the differcnt models, in 
order to stress the impact of the choice of the variogram model , independently from 
that of Ihe random path. Fig. 4-43 shows that there is vcr)' little difference between a 
realization generated by a sphe rical and that generated by an exponential variogram. We 
JUSt expect the exponential model realizations to be a lillie bit noisie r, because of the 
steeper slope of this variogram model a1 the origin. In the following examples, we will 
always usc the sphericill variogm ll1 model. Fig. 4-44 gives an idea, through the display 
of four realizalions , of the change from one realization to another while keeping the 
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vanogram model fixed. Figs. 4-45 and 4-46 show the impact of changing the horizomal 
or the vertical range of the variogram model. 

Too often, the range of an indicator variogram is considered to be representative of 
the size of the individual facies bodies. This is wrong. To be convinced of this, just 
think that the indicator variogram of the "shale" occurrence is the same as the indicator 
variogram of the '"' non-shale" occurrence. How could the range be representative of both 
the size of shale and non-shale bodies? Fig. 4-47 clarifies the relationship between the 
size of a geological object and the range of the indica tor variogram. The spatial facies 
proportion Q plays a significam role in the calculalion. The greater the proportion, the 
more the regions of occurrence of the facies of interest will be connected with each 
other, thus increasing their ave rage lateral extent. Carle and Fogg (1996) derived the 
relationship between the parameters of the indicator variogram and the transition prob
abilities used in Markov-Chain simulation (which should not be confused with the 
already discussed MCMC). A recent paper by Ritzi (2000) further develops the results 
of Carle and Fogg. 

The previous examples show thatlhe outcome of SIS is not very strongly con
strained in terms of geometry. This is because the indicator variogram itself docs not 
carry much geometrical information. This may prove to be a blessing in situations 
where the geomeuy of various geological bodies is poorly known. In carbonate reser
voirs for instance, SIS is often used, and we will see later a ve')' good example of it 
(Figs. 4-63 to 4-66). However, in fluvial or fluvio-deltaic environments, for instance, it 
may be necessary to comrolthe geometry of the simulated bodies. This is the goal of 
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object-based models. But before presenting these models, let us discuss Olher pixel
based techniques used in the industry 

• Other pixel-based models 

The truncated Gaussian s imulation method was developed by the Heresim Group 
(Rudkicwicz et aI., 1990). Fig. 4-48 is an illustration of the technique and an example 
of the kind of 2D realization obtained with a th ree-facies model. In this 2D example, the 
method consis ts of generating the pixel-based model in two steps. First, a con tinuous 
Gaussian simulation is generated using a standard simulation technique, then two cut
offs arc applied to it, defining th ree differe11l "facies." Because of the way the facies map 
is constructed, spatial relationships between differen t facies arc automatical ly intro
duced. For instance, in Fig. 4-48, direct transition from facies 1 to facies 3 is not possi
ble wi thout going th rough facies 2. These implicit relationships may prove useful when 
the)' correspond to the modeled geology. In other situations, they are a limitation of the 
method. Truncated Gaussian simulation can also be lIsed for generating realiza tions 
composed of two facies only (Fig. 4-49). 

The generalization of Markov-Chain simulation (no I to be confused with MCMC) 
from one to th ree dimensions has always proved very difficu lt . In a recent paper, Parks et 
al. (2000) propose to use the nexibility of simula ted annealing algori thms to genera te 
grids wi th Markov statistical stmclufCS honoring the wells. This is a promising area of re
scarch, because the quantification of geological patterns by Markov chains has alwa),s 
been allracti\"e to geologists. Ilowcver, convinCing 3D applicat ions arc ret to be produced. 

DistingUished Instructor Short Course • 4·35 



Conditional Simulation for Heterogeneity Modeling and Uncertainty Quantlfica~I'~'o~n ______ _ 

4-36 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

Strebellc and Payrazyan (2002) argue that the variogram, which is a lwo·point 
measure of spatial variability, cannot describe realistic geological features. They de\'elop 
multiple-point geoslatistics using a training image instead of a variogram to quantify 
geological heterogeneity. The training images are nonconditional representations of the 
geology of interest that can be hand-drawn by a geologist or produced by geological 
modeling software (process models) .Then the method "learns" what statistical patterns 
are contained in the training images and reproduces these patterns using a conditional 
simulation approach. Existing seismic data can also be used to further constrain the 
probability to find a given lithology or facies at a location of the model. Multiple-point 
geostatistics addresses a real issue, that of injecting more geological information in geo
statistical models. However, at this stage, it remains very difficult to use, and a number 
of issues have to be addressed to make the workflow applicable in rouline petroleum 
applications. 

The use of Markov random fields is not to be confused with that of Markov chains 
or MeMe. Markov random fields are very popular in image analysis (Besag, 1974) for 
quantifying the statistical relationship between one pixel and the surrounding pix"els. (1. 
Eidsvik et al .; personal communication, 2003) express the probability of having sand at 
one grid cell as an exponential function of the number of sand grid cells in the neigh
borhood. Farmer (1988, 1992) introduced these models to the oil industry, but they 
have prQ\'ed dimcult to use for quantifying geology This is because. as with the method 
of Strebelle and Pa)'razyan, they require the use of a training image for calibrating the 
multipoint statistics quantified by the Markov random field model . 

4.5.3 Objecl-based models 

The Norwegians pioneered the developtnelll of object-based models , which produced 
satisfactol)' representations of the distribution of channels in nuvio-deltaic formations 
within some of their giam fields (Fig. 4-50). The difference from SIS realizations is 
striking. Instead of dealing with "salt-and-pepper" models , poorly constrained geometri
cally, we now have distributions of objects with well-defined shapes and varying size. 

The model of Fig. 4-51 was produced within a fluviatile formation in the North 
Sea. In this formation , we were dealing with meandering channels, the architecture of 
which could be bCller constrained using object-based models rather than using SIS. In 
Fig. 4-52, we are also dealing with nuvial channels, bUlthey are assumed to be 
straighter than in the previous case. 

Object-based modeling simply assumes that the various facies are associated with 
well-defined geometries and thatlheir size (wid th , thickness , and length) is random 
and can be statistically quantified b)' the reservoir geologist. Object-based simulation 
can also incorporate constraints about the relative positions of different geological 
objects (for instance, crevasse splays. which result from sediment spills on the edges of 
channels, must always be located close to a channel, see Fig. 4·52). Trends can also be 
incorporated for controlling the proportion of various objects vertically or spatially. 

Object-based simulation algorithms work easily in situations where the well spac
ing is much greater than the: lateral dimension of the modeled objects. However, condi
tioning is much more difficult when sand-body dimensions are large compared with 
well spacing, because well-Io-well geological correlations are difficult to handle 
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(Dubrule, 1998). Object-based models are not "beLLer" or "worse" that indicaLOr simula
tioll. They are just beller suited to certain kinds of geological environments. So far, their 
main app lica tion has been in fl uvio-deltaic environments. 

4.5.4 Facies models cOllslmined by seismic iliformalioll 

We have already seen how information from a seismic allribute could be incorpora ted 
to reduce the uncertai nty on the kriging or conditional simulation of the primary vari
able, when this va riable was continuous. There may also be silLlations where the seismic 
dala provide direct infonnation about the distribution of various geological facies in lhe 
reservoi r. Everybody has seen these impressive seismic-auribute maps from deep off
shore reservoirs , showi ng clear meandering channel paucrns. The cha llenge in con
straining facies models by seismic data is mat a discrete parameter (presence or absence 
of a given facies) mUSt be constrained by a continuous (scismic-altribute) parameter. 

We may wish 10 constra in an indicator simulation or an object model using seis
mic data. In bOlh situations , two approaches are possible (Fig. 4-53). The first one is to 

calculate the probability that a fades is present at a given location, then use this proba
bility as a constraint in the simulation. The other one is to directly produce a joint sim
ulation of facies and acoustic impedance. making sure that they are consistent wi th seis
mic data. In th is sect ion, we will discuss techniques whereby facies distributions are 
constrained by 3D probabilit}' models derived from seismic. latcr on, in the geostatisti
cal inversion chaptcr, we wi ll see how joint realizations or facies and acoustic imped
ance distributions can be directly constrained by seismic claw. 
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• Constraining pixel-based models by probabililies derived from seismic claw 

Doyen el al. (1994) propose a very elegant approach that is a generalization to discrete 
models of the methodology developed for continuous va riables (Figs. 3-73 to 3-75). 
Commonly, when relating facies infonnation wi th seismic data , a plot such as that of 
Fig. 4-54 is derived from the seismic- lo-we ll ca libration. This plot gives the seismic
anribUle histogram associated with each facies (here, the two facies are shale and sand, 
and are called lithoclasses). The more difference there is between histograms, the more 
hope there is that seismic will help discriminate between lithoclasses. Now, consider a 
grid cell of the earth model where the seismic attribute has been mapped. Based on the 
value of this attribute, a probability of the presence of shale or sand can be derived (Fig. 
4-54). Doyen et al. interpret this value as a likelihood function , similar to the one 
derived from the crossplot in the case of continuous variables (Fig. 3-73). 

Now, assume we are running SIS (Fig. 4-55). We know (Fig. 4-42) that SIS pro
vides, at each sampled loca tion, the probability of finding sand or shale, on the basis of 
the facies encountered at the wells and at the previously simulated locations. This can 
be interpreted as an a priori probability, based on wells and on the a priori geological 
model quantified by the variogram. 

Now we have two pieces of information about the probability of finding shale or 
sand: the prior probability given by SIS, and the likelihood given by the seismic 
attribule. Doyen et al. simply combine these two pieces of informaLion using Bayes's 
theorem (Fig. 4-56). The actual simulation runs are perfonned using SIS, with the only 
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modification thaI, at each new sampled location , the probability of finding each facies is 
calculated using the posterior rather than the prior probability. 

Figs. "'-57 and 4-58 are an application of Doyen el a l. 's methodology in the 
Ness Formation of the Oseberg field (North Sea). Seismic ampli tude is firs t calibrated 
aga inst occurrences of channels at the 14 wells, showing tha t there is a commst in 
reflection strength between channel and non-channel deposits. However, there is also 
some overlap between the two histograms, making the discrimination dirncuh on the 
basis of seismic data. [n addition to the approach JUSt desc ribed, Doyen el al. con
strained the SIS rea li zations using locally identified chan nel directions, as picked on 
seismic da ta by the interpreter. As a result , the real izations of Fig. 4-58 show a signifi
cantly curved shape. 

Insalaco et al. (200 I) present an app lication of this approach to the detailed geo
logical modeling of a \Vest Africa turbidite depOSit. Based on the pdfs associated wi th 
each individual facies , they produce a global histogram of acoustic impedance per facies 
(Fig. 4-59). Then, after translating this histogram into a likelihood function, they pro
duce a model of the probability of encountering each facies at every grid cell of the 
earth model (Fig. 4-60 shows the probabilil)' of encountering facies 8). This infonna
tion is va lidated and , if needed, modified by the sedimentologist. Using this as input, a 
realization of the 3D facies model is produced (Fig. ;.-61 ). 

Lo and Bashore (1999) propose a similar approach to those of Do}'en et al. (1994) 
and Insalaco et al. (2001). They oblain a 3D denSi ty model by inversion, then translate 
iL in to probabilities of various facies being present. Facies realizations are constrained by 
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these probabilities and used as a template to predic t porosity from acoustic impedance, 
using the crossplot associated with the facies preselll at each location . 

• Constraining object-based models by seismic data 

It is fair 10 S<ly that there is not much experience in the industry about constraining 
object-based models by seis mic dat.a. The Norwegian School (Macdonald et aI. , 1995; 
Skare et al. . 1997; and Holden et ai. , 1998) has been a leader in developing this 
approach, which assumes (hat - as the previousl)' described method does - {hanks to 
seismic data, it is possible to define a likelihood funClion at each grid cell of a 3D eanh 
model. Then a simulated annealing algorithm is used to generate rea liza tions by ite ra
tively add ing and suhtracting channel bodies from the simula ted vo lume. At each itera
tion. a new objec ti ve function is calculated. The channel is accepted if the objecti ve 
func tion is decreased and is removed otherwise. One of the terms of the objective func
tion evalua tes the likelihood function of the new rea liza tion . The higher th is li kelihood , 
the smaller the objecti ve function. 

Varus et al. (2000) descri be an application of such a methodology for constraining 
an object-based model by seismic data in a Terliary reservo ir in the Gul f of Thailand 
(Fig. 4-62). The enviro nment is tide-dominated, associated with sha llow-marine 
depOSits. A 3D probability cube was derived [rom the seismic data fo r each facies in 
each zone. Then an objec t-bascd model was used lO slOchaslica lly model lhe distribu
tion of bar and channel fades bodies within a shaly background. 
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'1.5.5 Hicmrc1licalmodelillg oj geology anti PflroplJ)'sical parameters 

• An example 

\Ve have seen numerous examples of techniques for the condi tional simulation of dis
cre te and of continuous va riables. So far, the techniques have been presen ted somewhat 
independen tl y from each other. However, the strength of these techniques lies in the 
abi lity to combine them together for modeling different reservoir features at different 
scales. Alaben and Massonnat (990) and Damsleth el al. (1990) give VCI)' good exam
ples of early l1lultisca le heterogeneity modeling slUciies, and Haldorsen and Damslcth 
( 1990) proVide a good overview of the topic. 

Rather than formal ize this. let us take an example from Al Qassab et al. (2000). 
This covers the construction of a 3D earth model of the Unayzah reservoir in the 
J-Iawtah field (Saudi Arabia). A large number of we ll data is available, and the reservoir 
is subdivided in 13 layers. First, a depOSitional facies model is cons tructed using SIS, 
under the cont rol of sedimentary maps produced by the geologist (Fig. 4-63). The sec
ond stcp consists of producing a rock-lype model accoullling for the faClthal , within a 
depositional facies, rock types can change. Three rock lypes are identified: reservo ir, 
intermediate, and nonreservoir. Fig. 4-64 compares the rock-type model we would 
obtain by using (left) or not using ( righ t) the cont ro l provided by the depositional-em";
ronme.nt-facies model. Obviously, the model controlled by the depositional environmem 
is better. Thus. al each simula tion slep, lhe genera tion of slOchaslic simulations is per
formed independemly wi thin each region defined by the previous steps. 
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Seis mic acoustic-impedance information was also available. It resuhed frolll a sto
chastic inversion exercise (we will disc uss stochastic inversion later on). CrossplolS 
(Fig. -+-65) showed that the beller the rock type in terms of reservoir quality, the bener 
the linear relationship between porosity and acoustic impedance. Within each rock 
type, as determined by the 3D rock-t)1)e realization , it was thus possib le to model 
porosit)' by co lloca ted cosimulation using the acoustiC-impedance value at each sam
pled location and the correlation coefficient corresponding to the rock type. The last 
slage consisted of Simulating penneabi li ty (Fig. +66) under the control of the simulat
ed porosity values wi Lh in each facies. 

The geostatislica l realizations obta ined by Al Qassab eL al. we re used as input 
to flow simula tion , and prov ided a much beller his(01), match than would flow simu
lations run on cOlwentional (smoothly interpolated) models of porosity and permea
bility . 

• The heterogeneity modeling toolkit 

The previous example shows wha t must be available from a heterogeneity-modeling 
toolkit (Fig. 4-67). Fig. -1--68 takes the classification of reservoir architectu res proposed 
by \Veber and van Geuns (J 990) and assigns to this classification various geostalislical 
simulation techniques that seem most appropriate for each si tuation. 

The old "garbage in , ga rbage out" expression ap plies to everything we have seen 
abOlIl 3D heterogeneity modeling. Allthcse geos latis tica l simulation techniques need 
some quantified geological informalion as input. In the last 20 yea rs, the industry has 
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made a significant elTon to collecl quantitative information at all scalcs. Examples and 
references of such co llection are given in Fig. 4-69. 

A good crilerion for decidi ng whether to use geosta tis tical heterogeneity modeling 
is to ask the geologisl whe ther he or she would be able to hand-draw a representation 
of the geological model. If this is not the case, there is probably not enough information 
to build a 3D geological model, whether hand-drawn or generated by geostalisti cs. This 
is a very important point, stressing that geostatistics is not a substitute for geological 
knowledge, but rather a too l for quantifying this knowledge. 

-
4·50 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



' ~;J: ._-.- -::::-

WlDTHfTMICKNESS RELATIONSHIPS 
VARIOUS OUTCROPS 

{Bryanl a nd FUnl. 19931 

II? 

SAHDSTONE lJTliOLOGY VARIOGRAAI 
U100lE JURASSIC. 'fClfV(SHIRE 

{Ravenna . 1 at, 19811 

Olivier Dubrule 

P£RIAEABlUTY VIIRIOQRAU 
"THE FEAAQt.I SANDSTONE 

(Ty1 .... UI. 1991 ) 

Distinguished Instructor Short Course . 4-51 



Conditional Simulation for Heterogeneity Modeling and Uncertainty Quantificat"io"n _______ _ 

Geostatistics, Inverse of the Covariance, and Filtering 

let us discuss what Claerbout and Brown (1999) define as 
the geoestimation problem. Using their terminology, we 

deal with data, d, and a roughening filter, E 

Clarbout defines the Prediction Error Filter (PEF) as the operator F, 
such that, ir it is applied to the data, the while noise is obtained 

("PEF output is white"). This means that the autocorrelation 
or the filtered data is a white noise: 

Fd * (Fd)'= 0 

This implies that the spectrum or F is the inverse or the data 
spectrum, or that F'F is the inverse or the covariance. 

Thus, using our terminology and the resulLS or Section 3.8.3 and 
Fig. 3-93 , we can anticipate that our equivalent to Claerbout's PEF will 

be the spline operator associated with the covariance or the data 
(Fig. 4-70) ! Claerbout (2002) mentions that "the PEF plays the role of 
the so-called inverse-covariance matrix in statistical estimation theory," 

which agrees with the relationship or Fig. 3-93. 

Even more interestingly, Claerhout (2002) explains that "or all the 
assumptions we could make to fill empty bins, one that people usually 

find easiest to agree with is that the spectrum should be the same in the 
empty-bin regions as where bins are filled. " This is another way of 

justirying the use or geostatistical simulation ror generating 
representative samples or a spatial parameter. Claerhout shows that 

representative samples of such a model can be obtained by applying IfF 
to a white noise, U, which is easy to prove considering that the 

spectrum or F is the inverse or the data spectrum. 

Claerbout and Brown (1999) show that a variety or synthetic images 
can be produced with this approach, which is very similar to the 

moving-average method of Oliver (1995). Oliver applies the 
square: root or the covariance runction lO a white noise. In the previous 

developmenl, lIF plays this role. 

4-52 • Society of Exploration Geophysicists I European Association 01 Geoscientists & Engineers 



Olivier Dubrule 

The work or Kane et al. (2001) d iscusses the analogy between 
deconvolution and kriging. Their resul ts agree with the previous ones 

because, as mentioned by Claerbout, "PEF is also called deconvolution." 

The previous discussion may be a bit conrusing, because our 
geostatis tical developments have been based on the assumption that 

z(x) was a runction or x. In practice, we deal with regular grids 
or interpolated or s imulated values, and geostatistics 

can also be expressed using a discrete rormalism similar to 
that of filtering theor), (Matheron, 1981b). 

Assume we calculate kriging on a regular grid, and that all values or 
this grid are called Zu . The data points Zl are assumed to be 

among these grid points. In the zero-mean case, ir Cu, ' is 
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the covariance between two grid points 1I and v, Matheron 
showed that the kriged grid values minimize: 

II,\' 

under the constraint that , at grid points where a data point i is present, 
the value Zi is honored. We recognize here the familar expression of the 

multivariate Gaussian distribution (Fig. 1-38). 

Thus, thanks to the use of the inverse covariance, kriging also appears 
to minimize an energy-like expression. From the filtering point of view, 
the interpretation is that, after specified filteri ng (as expressed by the 
inverse of the covariance function) , the data have minimum energy. 

When the discrete version of splines is used (Briggs, 1974) 
the quadratic fonn that is minimized is similar to that minimized 
by kriging. Similar comments can be made aboUl the properties 

of PEE Again and again , we see this duality between the 
spline operator and the inverse of the covariance. 

Ln the case where data values Yi are affected by measurement errors, 
error cokriging minimizes this time: 

'z C - 1Z +8'(z,-y,)' L.. U II \, \' L.. 2 
II ,\' i cr i 

The first term can also be interpreted as the regularization term 
of the energy function traditionally used in inverse problems. 

In the regularization context , lhe expression of the quadratic form is 
driven by smoothing considerations. Kimeldorf and Wahba (1970) 

argue that the choice of the regularization operator is merely driven by 
computational convenience. On the other hand, geostatisticians 

implicitly derive this operator from the a priori geological knowledge, 
as quantified by the covariance function. 
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5 Geostatistical Inversion 

5.1 Introduction 

In the previous chapter, we saw how geostatisti cs can be llsed to genera te 3D hetero· 
geneity models sa tisfying a llumber of input statistical parameters, such as the va ri
agram, or equivalently, the spectral density. Relationships between simulated parameters 
and seismic·derived information were statistical, usually coded as a linear correlation 
between the seismic parameter and the simulated variable. This was the "primary· vcr· 
sus secondary·variable" approach. We also saw earlie r that the geostatistical paradigm, 
based on the concept of trend and covariance, can be considered to be an approach for 
coding the a priori model that is often used in Bayesian tenninology. 

In para llel with geosla tistical developments, inversion technology made significa11l 
progress in the last th ree decades (Fig. 5·1). Thanks to the Bayesian fonnalism promot· 
cd by authors such as Tarantola (1987) and Duijndam (1988), the standard optimiza· 
tion·based deterministic approach (minimization of an objective function wi lh a regu
larization term) was improved, and it became possible to produce an estimate of uncer
tainty togeLher with the inve rted acoustic-impedance block. 

Logically, the idea emerged in the early 1990s to apply the conditional simula tion 
approach to acoustic- impedance inversion to produce muhiple 3D realizations, all con
stra ined by seismic data. This resulted in geostatistical-inversion methodology. In the 
following, we will consider that geosta tistical and stochastic inversion are exactl}' the 
same thing. 

5.2 Basics of Gcostalistical Inversion 

The method discussed here is that presented in the papers of Bartoli et al. (1992) and 
Haas and Dubrule (1994). Geostalis tica l inversion (G I) consists of generating 3D 
acoustic-impedance realizations, all constrained by seismic data. The input to a geosta
tistical-inversion study is similar to that of any conventional simulation study, with the 
important add ition of a 3D seismic block (Fig. 5·2). Bortoli et al. asked the question: 
How, using SGS, can we make sure that not only the well da la and the va riogram are 
honored, bUl also the 3D seismic block? They proposed the solution described in Fig. 
5~3, which speci ficall y add resses a well-known inversion issue: how to make sure that 
every single seismic trace is inverted , while preserving the lateral continuity between 
inve rted traces (that is, while avoiding the limitations of a Single trace algorithm). 

The algori thm is just an extension of SGS. At each sampled locat ion, a large num
ber of- say, 100 -local acoustic- impedance trace realizations are produced. These 
traces are all convolved with the seismic wavelet, and the acoustic-impedance trace pro
vidi ng the best match with !.he seismic trace at that location is selec ted. Then the algo
rithm moves 10 another location. When the whole space is filled wi th traces, we have 
obtained one global realization. Of course, ma rc than one global realization (say, 100) is 
produced. 

The algorithm is illustrated using a North Sea example. First , an acoustic-imped
ance global realization was genera ted using only one local realization at each sampled 
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location. This is equivalent LO ignoring the seismic data. Then we generated a global 
realization where on ly 10 local realizations were sampled at each loc3 tion, and we com
pared the result with that obtained using 100 local realizations (Fig. 5-4). The seismic 
match improves significalllly as the number of local realizations increases. 

This match can be controlled in a number of ways. One is to increase lhe number 
of local realizations at each SGS step. Another is to keep generating loca l realizations 
ulllil a certain threshold or the loca l objective runction is reached. There is great fl exi
bility in the choice or this objective runction, which can be the abso lute error, the mean 
squared error, Or lhe correlat ion coefficient. It can also be a combination or those three, 
or iL can vary with the loca tion o r the s imulated tracc. Common sense mUSL be applied 
when matching a synthetic rrom a si mulated trace with the actua l seismic data. Orlen, 
wdl-LO-seismic calibrat ion does nOL produce vel)' high corre lation coefficients between 
actual and synthetic seismic. Between the wells, it wou ld be computationally possible, 
bUL it would no t make sense to ask ror correlation coefficients higher than those 
obta ined at the wel ls themselves! 

A number or input s tatistica l parameters must be filled \.0 the well and seismic 
da ta and used as input to GI, in o rder to constrain the di fferent rea lizations (Fig. 5-5). 
These parameters. which are usuall), layer-dependent, arc the same parameters as are in 
a standard geostatistica l simulaLion s tud y, plus the wavelet. They ma), be considered as 
the a priori geostatis ticalmodel. Fig. 5-6 shows another exam pic or convergence or the 
algOrithm, this time wi th la)'cr-dependenl paramcters, and a display o r the residuals 
between synthetic and actua l seismic. 

Distinguished Instructor Short Course • 5·3 



Geostatisticallnversion 

5-4 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

10 (oc~1 '~'hl,II"-.n~ 

-... -

Fig. 5.7 compares twO seismic slices from a North Sea example: one slice is 
duough the actual seismic data , the other one is through the synthetic seismic block 
associated with the resulLS of gcOStatis lical inve rsion. The match is very good, although 
the synthe tic block exhib its lOa much continui ty because of the lateral correla tion 
forced by the input horizontal variogram model. 

GI allows the generation of a large number of acoustic-impedance realizations 
honoring the 3D seismic data (see Fig. 5-8 for a North Sea example). Uncertainty is 
quantified by the variability fro m one realization to anot her. W h), is there such uncer
tainlY affecting the results of geOSLati5ticai inversion, considering all the input con
strainLS that arc injected into the a priori model? This is because GI is typically run on 
stratigraphie grids composed of about 2-ms- thick individual grid cells, that is, on a 
thickness il13t cannOt be resolved by standard 3D seismic data sets. Because the seismic 
data can only control impedance variations wi thin the seismic bandwidth. the higher 
frequency variations re main nonuniquc and vary from one realization to another. These 
higher frequencies arc precisely controlled by the vertical variogram model and the fre
quencies it carri es (see Fig. 5-9). On the other hand. lower frequencies arc controlled by 
stat isti cal constraints (mean and standard deviation) on the acoustic impedance dislrib
Ulion within each la),er of the stratigraphic grid . 

An imponant point to Stress is Ihal , because of the usc of SCS, all realizations 
honor the well data (most standard acoustic-impedance inversion approaches do not 
honor the well data). 

The lateral variogram applies to va riations wi thin the stratigraphic grid and is usu-
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ally derived from both seismic infonnation and well data, using considerations as 
described in Fig. 2~39. 

Obviously, GI is not reduced to an algorilhm, but requires a detailed workflow lhat 
is described in Fig. 5~ 10. In this figure, input data and information (including n priori 
geologicnl knowledge) arc indicated in ye llow, whereas interpretation processes arc in 
white. 

Fig. 5~ 11 shows a cross~seCli on resulting from a standard GI siudy (North Sea). 
The wells arc honored by GI, and the lateral variogram ensures lateral correlation 
between traces. This implies lhnl the mean of the realizations is COI1I1IlUOUS and that 
their standard deviation is zero al the wells (at least if there is no nugget eITecl in the 
vnriogram model; sec Section 3.3). 

To help understand how different kinds of data are used 1O constrain the models, 
Fig. 5~12 compnres the average 3D blocks obtained in four situations. We are using lhe 
5.'lme example as that used to introduce condi tiona l simulations, in Chnpter 4. Fig. 5-13 
shows a view of the aCLunl seismic data together with a synlhetic block computed from 
one of the inverted acoustic-impedance realizations. If the reailzations in Fig. 5~ 12 are 
conditioned neither by wells nor b)' seismic, the average block IS simply an image of the 
input statistical conslrainLS (menn and standard deviation) that were ll.<.ed as the input 
to the model. If onl)' the wells are used to conslrain the realiznlions, the average is sim
pi}' equal to kriging from the wells onl),. The two olher average blocks arc constrained 
b}' seismic. Because or a compensation eITect rrom one renlizatioll to another, the high
frequency variations are smoothed Ollt , and the inrormation contained in the mean 

-
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comcs from what is C0l111110n to all realizations. that is. the seismic data cOlllrol within 
their bandwidth. As expectcd, the differencc between the two seismic-constrained 
blocks is limited to the area close to the we lls. 

GI generates a large number of realizations of acoustiC-impedance blocks - say, 
100. There is a real issue about the processing of these muhiple realizations. Ilow can 
this enormous amount of information be sUlllmarized? A first approach may consl5t of 
calculating the mean and the standard deviation of realizations. There may also be other 
iTlteresting ways to process the data , such as that of rig. 5-14. At each grid ceil, the 
number of realizations above a certain threshold is counted and transformed into a 
probability. This can proVide very useful information in si tuations where high or low 
impedances can be straigh tforwardly associa ted with the presence or absence of reser
voir rocks. 

5.3 Accoullting for Faults 

The GI algorithm is very flexible, because it is a local approach. L-lmyet al. ( 199&) and 
Rowbotham et al. (2000) lOok adval1lage of the fl exibility of the algorithm, in the case 
of faulled reservoirs. The quality of seismic data close to the faulls tends to be poorer 
than that away from these faults. Thus, the GI algorithm is first limited 10 the construc
tion of acoustic-impedance traces away from the faults (Fig. 5- 15). Once these traces 
have been generated, which arc con trolled by a better-quality se ismic, traccs closer to 
the faults are sampled. ror these traces, the number of local simulations may be 
reduced to one if the seismic data quality is too poor. The number of local realizations 
can vary, depending on the quality of seismic data. This approach also guarantees thaI 
the traces away from the faults are optimal , because they arc nol affeclcci by arti facts 
thalmay come from the fault traces. 

Fig. 5-16 shows results obtained on a 'Jorth Sea rleld by Rowbotham et al. (2000). 
The match between actual and s}"Jlthetic seismic is of average qualit )~ but the blind well 
test is rather satisfactory (Fig. 5-17), showing that the difference between the actllal 
well log .mel the mC<ln of the Gl realizations is almost everywhere smaller than onc 
standard deviation. 

Shrcstha and Boeckmann (2002) also take advan tage of the flexibility of the geo
statistical-inversion algonthm. Because the qualit)' of seismic data is poor in areas influ
enced by salt, SGS is not permitted to generate more than one local realization in those 
areas, which means that the simulation is not consuained by seismic. 

5.4 A Variety of Methods 

5.4.1 A differcrll saml}/illg algorithm 

Following the publication of the first papers on GI, the method has been integrated into 
a number of commercia l software packages, using a varielY of algo ri thms. A popular 
one is that presented in Grijalba-Cuenca et al. (2000). The main difference it has with 
that discussed above lies in the fact thaI , instead of working tracc by trace as the previ
OliS method docs, Grijalba-Cuenca et al.'s mcthod works grid cell by grid cell (Fig. 5-
l8). First , an ini tial realization of acoustic impedance is generated, based on well data. 
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Then, each grid ce ll is sampled randomly, and each lime, the new objective fu nction 
measuring the match between synthetic and seismic trace is calculated. If it is small 
enough (according to a user-defined criterion), the search moves to another point. If 
not, the va lue is resampled using an acceptance criterion similar to that of Metropolis 
(Fig. 4-24). Fig. 5~ 19 shows, in an example from Argentina , how the map of the corre
lation coeffi ciem bctween synthetic and actual seismic varies as a fUIlClion of the num
ber of global itera tions (a global iteration corresponds to an iteration where all individ
ual grid ce lls have been visi tcd once). There is a computer lime issue, because it takes 
more time to iterate on individual grid cells than on individual traces. In order to 
reduce computer lime, Grijalba-Cuenca et al. do not restart from scratch for each 3D 
seismic-constrained realization. Instead, they generate the differen t realizations at each 
local simula tion step, which amoun ts to using the same search path for all realizations. 
There is a risk, however, that nOI sampling the random path randomly may lead to real
izations that do not span the actual range of uncertai nty. 

The method is quite popular and has had many successful applications. Fig. 5-20 
shows a recent high-resolution gcosLatistical inversion performed by Torres-Verdin et al. 
(c. Torres-Verdin, cl aI., personal communicalion, 2002), who went as high as a O.5-I11S 
sampling rale on the inverted realizations (Fig. 5-2 1). The central well was used as a 
blind well to validate the method, whereas the lWO other we lls were used as input data 
points. The th ree SP well logs are displayed on each cross-section, because the project 
was looking for sands that were below seismic resolution. Acoustic impedance was use
fu l, in thaI high values of acoustic impedance correlated with clean sands (low volumes 
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of shales). As expected, Ihe match between the two input-well SP logs and the inve rted 
scclion is excellent , but it is also very 5<'ltisfactory at the blind well. At which venical 
resolulion should the inversion be performed? The higher the resolution, Ihe 1110re het
erogeneities will be captured by the model, but the more uncertainty will be attached to 
these hcterogenei ti es. A trade-off must be found by running now simulations and 
choosing the resolul ion thm is closest 10 that of the seismic but still provides reali sti c 
fl ow simulations. This is an area Ihal demands more investigation. 

5.4.2 GeOSfafistical ill versioll hased oll Jractals 

Gunning and Paterson ( 1999) usc a similar approach 10 Ihat of Bortoli et al. (1992), in 
that they sample the 3 D volume Irace-by-uace. But there are many other differences 
between the two approaches. First, Gunning and Paterson work wi th fractal models, 
which they cla im to be morc generallhan those used by I3onoli et al. . because they are 
nonstationary. It can be objected that fractal models , if they are certainly nonsta lio nal)~ 

are also quite speci flc and cannot be applied to all reservoi rs. Gunning and Pa terson 
also use, as do Grijalba-Cuenca et aI. , the same random path for each global realization, 
which saves a lot of lime. A Cholesky decomposi tion and the subsequelll inve rsion of 
the covariance matrix is performed for the fi rst global realization onl }~ then reused for 
other global real izations , lead ing to repea t simulations that are at least 100 times faster 
than the fi rs!. But . as mentio ned for the method descri bed in Ihe previous seclion, Ihis 
may also decrease the va riabil ity fro m one rea liza tion to another and thereby unde resti 
mate the uncertainties. As an objective funClion. Gunning and Paterson propose to usc 
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a normalized sum of squares of the differences between the synthetic and the recalibrat
ed true seismic trace. They accelerate the convergence by using an algori thm similar to 
that of Metropolis-Ilastings. 

5.4.3 Analytical approacil 

Eide el a!. ( 1997a) start from the same approach as tha i of Bortoli et al. , bu t wi th a view 
to solve the problem analyticall y. They formalize the geostalistical inversion problem in 
a Bayesian-Gaussian framework and calculate the expression for the posterio r renection 
coeffi cient pdf, that is, the prior covariance-based model is updated by the well and 
seismic information. 

Eide et al. address the problem in the vel)' general situation of an unknown seis
mic wavelet, to be determined du ring the inversion process. They show that, in the sit
uation where thi s wavelet is unknown, the posterior pdf cannot be determined analyti
cally. As a resuil , the sampling of the realizations is not trivial and is best add ressed 
using the Metropolis algOrithm (Fig. of-2·n, which converges LOwa rd the requ ired pdf. 
However, this algorithm remains vel)' time-consuming. 

In the more- rrequent si tuation in which the wavelet is known (from a previous 
seismic calibration exercise performed by the gcophysicist) and the relationship 
between renectivity and impedance is linearized, the posterior pdf of acoustic imped
ance is Gaussian and its sampling is trivial, thanks to such approaches as SGS. 

Buland and Omre (2003) also propose a Bayesian AVO inve rsion technique where 
the soilltion is given in an an<llytical form. The model parameters <lrc P-wave veloci ty, 5-
wave ve locity, and densit y, which arc assumed to follow lognormal distribulions (Fig. 1-
27). The inversion method is ba~ed on a weak contrast approxima tion to seismic re nec
tivi ty, as proposed by Aki and Richards ( 1980). Thanks 10 these simpli fying assump
tions , the posterior distribution of the three model parameters is multivariate normal 
(Fig. 1-38) and can be calculated analytica ll )'. Rea liza tions from these distributions can 
eaSily be sampled using previously discussed techniques. Ilowever, an important limita
tion of the model is that it is a Single-trace inverse algorithm, because there is no lateral 
correlation between verticaltraccs. 

The mathematical developments or Eide et al. are somewhat cumbersome and the 
computer implementa tion is slow, bu t the approach has the merit of formaliz ing the 
problem consistently. As a rcsul t, the theoretically correct posterior distribution allows a 
proper assessment of uncertaintics. The approach seems to provide .5.1tisfacLOry rcsults 
on synthetiC cases (Fig. 5-22). 

5.4.4 Emerging techniques 

• Wavelet inversion 

A. Buland and H. Omre (personal com munication , 200 1) have developed a BayeSian 
method for wavelct inversion. The method works both on Slacked data and on prcslack 
data in the form of angle gathers. Seismic noise, errors in log data, and also possible 
mis-ties between the seismic and well time axis, can be incorporatcd in the model. The 
solution is not analytical, but is ob tained by MCMC. Uncerta inty in the esti mated 
wavelet is also quantified in th is process. 
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• Processing larger and larger seismic data sets, including AVO data 

The algorithms used for geostalisticai inversion will certainly evolve, because the gener
ation of a large number of realizations constrai.ned by seismic data remains very lime
consuming, and because the size and infonnation contelll of seismic data sets is likely 
to grow in the future. 

The invers ion of prestack seismic data is arollnd the corner. Buland et al. (2003) 
propose an AVO inversion technique incorporating spatia l correlation between model 
parameters. As in Bu\and and Omre (2003), the inverted parameters are P-wave veloci
ty, S-wave veloci ty, and density, and the inversion method is based on a weak contrast 
approximation to seismic reOectivity. in the Fourier domain, the spatialJy correlated 
parameters can be decoupled, and the inversion problem can be solved independently 
for each frequency componenl. This may be one of the most interesting ways to reduce 
computer time, as shown by the promising results obtained on the inversion of a 3D 
data set from the Sieipner fie ld represented by three angle slacks on a grid wi th four 
million grid cells. 

Buland and Omre (personal communication, 2002) also have developed a Bayesian 
method for joilll AVO inversion, wavelet estimation, and estimation of the seismic noise 
level. The stochastic model includes uncertainlY in both the elastic parameters, the 
wavelet, and the seismic and well-log data. The posterior distribut ion is explored by 
MCMC simulation using the Gibbs sample.r algorithm (Fig. 4-25). 
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5.5 A Genemlized Downscaling Approach 

So far, geostalislical inversion has been presented as a method for constraining 3D 
acoustic-impedance models by seismic data, using a convolution mode l. However, Gl 
can also be considered as a general "downscaling" technique, and can be applied in the 
si lUation where we wish to conslmin vertical traces of the 3D model by average values 
derived from seismic or from any other source of information. Doyen et a!. (1997) 
assume that the estimation of a vertically averaged porosi ty has been derived from seis
mic and present a technique for constraining poroSity traces of the 3D model by these 
seismic-deri ved averages. This technique sequentially samples the 3D model and works 
grid ce ll by grid cell (somewhat similarly to the method presented in Fig. 5-18). 

Fig. 5-23 shows the resulL obtained 0 11 the Ekofisk field (Norway). The average 
porosi ty estimate was obtained by collocated cokriging using the impedance map as a 
guiding auribute and then as a constraint on the vertical traces of the 3D porosity real
ization. 

Behrens el al. ( 1998) preselll a similar approach to that of Doyen et al. Their goal 
is also to genera te 3D porosity realizations constrained by layer-averaged values predict
ed from seismic attributes, and their algorithm also works grid cell by grid cell. The 
approach is different in that it uses block kriging to incorporate layer-averaged values in 
the SGS simulation process, while Doyen et al. use the Bayesian formalism. The 
Bayesian fomlalism appears to provide more flexibility for handling uncertainties associ
ated with the la)ter-averagecl values. 
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5.6 Going Further Wilh GeoslaLislical Inversion Results 

Earlier in this chapter, we saw that geostalislical inversion led to the generation of 3D 
acoustiC-impedance realizalions all match ing the seismic data up to a certain degree, as 
measured by the va lue of the trace-b),-trace objeclive function. These acoustic-imped
ance lraces are at thc scale o f the reservoir model. In favorable situations where there is 
a relalionship betwecn acoustic impedance and a reservoi r paramete r (porosity, faCies, 
net/gross and the like), the nex t lOgical step is to predict this reservoir parameter from 
acouslic impcd'Ulce. In Chapter 4, we desc ribed techniques based on collocated cosim
ulalion for deri ving a reservoir parameter from seismic. Here, the problem is a little bit 
more complicated because the seismic parameter - acoustic impedance - is now itself 
affected by uncenainties , and Ihis uncenainty must be accolllllcd for when predicting 
the reservoi r parameter. 

We will discuss tWO so lutions to the problem. The first so lution consists of work
ing in two steps: first , inversion, then, prediction of the reservoir parameter. The second 
solution cons ists of Si multaneously sampling impedance and the reservoir parameter. 

5.6.1 TwO-SlCp approach: from seismic to impedance, from impeciclllcc to olllcr propel"lies 

• Generalization of collocated cokriging 

Lamy et al. (1999) argue that the prediclion of reservoir parameters mUSt be perfonned 
in two steps: first , geostatisti cal inversion of acoustic impedance, and lhen, prediction of 
rese rvoir parameters from acouslic impedance. This allows the geoscientist to have a 
careful look at the outcome of the Ilrst slep before embarking on the second one. 

The example used by Lamy Cl al. is that of Fig. 5-8. There is a linear relationship 
between acoustic impedance and V~~k, and their goal is to predict the value of Vwk at 
each location by combining the resu lts of geosLa listical inversion with the information 
proVided by the V'~l< well logs. If there were no uncertainty affecting the acoustic 
impedance derived from geostatjstical inversion. lhe problem would be addressed by 
colloca ted cokriging, which combines the V,hak kriging estimate with the estimate 
derived from acoustic impedance, using the correlation coefficient between impedance 
and V,h~l< as a weighting faclo r (Fig. 3-75). 

Now, because acoustic impedance is affected by uncertainty, the weighting factor 
mllst be changed. Acoustic impedance must have less weightlhan in the situation 
where it is not affected b}' uncenaint}'. Lamy el al. derive a new formula (Fig. 5-24) for 
lhe correlation coeffi cient , w hich is now localion-dependent. Logica lly. this new coeffi 
cient is smaller than the one used in the situation where uncenaint}' affecting acoustic 
impedance is ignored. and both are equal if the variance affecting the result of inversion 
is zero. The smaller the ratio in the denominator, that is, the greater the ga in in va riance 
resulting from inversion. the closer the new coefficient is to the old one. Fig. 5-25 
shows the resu lts ohtained by Lamy el al. on the same case study as that of Fig. 5-9 . 

• Genera li za tion of collocated cosimulation 

Marion et a!. (2000) genera lize the approach of L1.m}' et a!. ( 1999) to the generation 
of sLOcha~lic realizations. In their case study, they have a good relationship between 
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porosi l)' and acoustic impedance. This leads to about 50 porosity realizations, all con
strained by seis mic data. we lls, and a sedimemary model produced by the geologis t. 
Obviously, the mean of the porosity reali zations is s111001her for the rea lizat ions uncon
stra ined by se is mic (Fig. 5-26), because, having no seismic constraint away rrom the 
we lls, the average of realiza tions - which is equivalent to kriging - simply reLUrns to 
the global mean. There is also a clear difference between the color of the two maps, 
because the use of se is mic fo r constraim leads to a degradation of porosity realiza tions. 

5.6.2 PrcdiCli llg porosify during ril e Clcollstic- impedcUlcc inversion plVcess 

Eidc et al. ( 1997b) propose an approach that accounts fo r the uncertailllY affecting 
acousti c.impedance realiza tio ns when predicting a parameter such as porosity. In the 
synthetic example they present , the modellhey lise (Fig. 5·27) assumes that porosity is 
equal to a detcnninislic func tion of acoustic impedance plus a random term correlated 
in space. They constru Ct imped.mce realiza tions constrained to seismic data, then they 
predic t porosiL)' using this model, which leads to porosity realizations that account not 
on 1)" for the uncertailll), affec ti ng the relationship between acoustic impedance and 
porosi t)" but also for the uncert ainty affecting inverted acoustic impedance itsel f. 

5.6.3 PrcdicUIIgJacics dl/li ng tlU? llCOll5Lic· impedcHlce ill versioll process 

In Chapter 4, we discussed methods fo r constraining discrete facies models by seismic 
data (F ig. 4-53) . We saw thai Approach 1 consisted of deri ving probabilities from seis
mic and then constraining facies models by these probabilities. M OSI methods derived 

Distinguished Instructor Short Course · 5-21 



Geostatisticallnversion 

the probabilities rrom acoustic· impedance data. However, the methods ignored the 
uncertailllY arrecting these inverted data. We are now going to discuss methods associ
ated with Approach 2, wherein racies and impedance models arc joinliy simulated . 

• joint sequen tial si mulation or lithology and acoustic impedance 

Sams et al. (1999) propose a promising approach whereby racies and acoustic.itnped
ance realizations are simultaneously invened. An init.ial realization or lithology and 
associa ted impedance is generated that is consistent with the geostalistical inpUl and 
the well dala. Then th is model is iteratively updated at each grid cel l by geost<ltislically 
sampling new values or lithology and impedance, such that the match bel\veen synthet
ic and actual seismic is improved. This approach was applied wi th a vertical sampling or 
tillS (about t 111) in a field or the Central Sumatra Basin, and proved capable or resoh,
ing sand units that could not be resolved with Olher approaches. Porosity distribution 
was then predicted rrom each or the lithology-impedance model realizations. Va lidation 
of the approach at one blind well (Fig. 5-28) proved quile successful. 

Grijalba-Cuenca C1 al. (2000) generalize the approach or Sams el al. to the joint 
simulat ion of lithofacies, density, and acous tic.impcdance realizations in a field in 
Argemina (Fig. 5-29). For each grid ce il , lithology is si mulated first , then density is 
sampled rrom the lithOlogy-dependent distri bution, and fina ll y acoustic impedance is 
sampled rrom the bivariate distribution or impedance versus density. Once again, the 
objective was to resolve individual sand units, and the simula tions were perrormed wi th 
a vertica l resolution better than 2 ms. The outcome consisted or high-resolut ion cubes 
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of lithology and density, which were fully consistent wi th the 3D seismic data, thanks to 
the use of acoustic impedance as a variable in the process. Fig. 5·30 representS the aver· 
age of six realizations, which show the good consistency between the diITerent variables . 

• Joi lll simulation of lithology and petrophysical properties for AVO inve rsion 

This philosophy of simultaneous inversion of lithology and acoustic impedance is gen· 
eralized to AVO data with the Bayesian methodology followed by j. Eidsvik et al. (per
sonal communicat ion, 2003). Their simulation approach (see section 4.5.2) is based on 
Markov random fields. They inve rt ze ro-offset reflecti vi ty and AVO gradient by jOintly 
Simulating facies, fluid characteristics, porosity, and denSi ty. They derive from this joint 
simulation the bulk and shear moduli using Gassmann, then P-wave and S-wave veloci
ty. The forward model they use is that of Zoeppritz equat ions and approximations b), 
Shuey. Since the solution is too complicated to be treated analytically, they use 
Metropolis-Hastings MCMC to genera te samples of the posterior distri bution of the 
reservoir properti es. Today, th is is one of the most sophisticated applications of stochas
tic inversion to seismic da ta. 
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• Direct inversion of objec t· based models 

Tje1meland and Omre ( 1997) present a general approach for constraining an object· 
based model of the dislribUlion of shales to well , se ismic, and production data. Once 
aga in, because the model is not analytically tractable , MCMC is used to model 3D dis· 
tributions of shale bodies constrained by well , seismic, and production data. To our 
knowledge, industry applications along those lines have remained limited. 
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6 Stochastic Earth Modeling That lntegrates All 
Subsurface Uncertainties 

6.1 Inlroduction 

Olivier Oubrule 

In the previous pages, we have focused on lhe use of gcostalistical conditional simu la~ 

tion for 3D hcterogeneity modeling. We saw that GCS providcd a satisfactory so lUlion 
to the problem of generat ing realisti c 3D rep resentations of the subsurface. We also saw 
that, thanks to GCS. we were able to generate no\ one, but a large number of realiza~ 
lions, all of which were compatible with the well data, the a priori geostatislical con~ 
slraints (histogram and variogram), and, in many cases, the seismic data. The variabi lity 
from one realization to another was a representation of the remaining uncertainty left 
after constraining our models by all this input information. We will now discuss how 
this qualllification of unceflain ties can be applied to all parameters of the earth model 
to lead to uncertainties allached to gross-rock volume, oil-in-place, reserves, or produc
tion profiles (Fig. 6- 1). But why should we be interested in quantifying uncertainties? 

An uncertainty calculation is a useless exercise if no decision making is attached to 
it (Fig. 6-2). But which kinds of decisions shall we be able to support with an uncer
tainty calculation? Fig. 6-3 lists some of the most important decisions geoscientists are 
led to support with their uncertainty studies (see examples in Tyler el aI., 1996 and 
Charles et aI. , 2001). Usually', these decisions are related 10 a Significant financial invest-
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IDENTIFY KEY UNCERTAINTIES 

All uncertainty calculations must support a decision! 
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memo Instead of one production profile, a lypical uncertainty s LUdy will produce a fami
ly of production profiles or the field reserves pd r. 

In the past , the geoscien tist or reservoir engineer was asked to produce just one 
reserves figure or one production profile, in spite of the grea t uncertainty affecting the 
resulLs. In a way, the geoscientist was asked , by chOOSi ng onc scenario over many other 
possible ones, lO substitute himselflherself for the decision maker. It call be said that an 
uncertainty-quaI1lification approach, by attaching a risk to each possible decision, wi ll 
put the decision back in the hands of the decision maker. 

The Norwegian School has been a pioneer in the quantification of earth model 
uncertainties. Sec, for instance, the work ofSandsdalen et al. (1996), Damslclh and 
Omre (1997), and lia et al. (1997). The lia paper can be regarded as a classic that 
showed it was possible to combine all the uncertainties affecting the differelll building 
blocks of a 3D earth model and quantify their impacl on production profiles. Hegstad 
and Omre (200 1) show the progress that has been made in less than five years, by 
developing an earth model uncertainty-quantification approach cons trained by seismic 
and dynamic data. 

Nowadays, most earth model uncertainty studies are performed in three steps (Fig. 
6-4). Although each step corresponds more or less to the quantification of uncertainties 
associated with a different discipline (geophysics, geology/pe trophysics, and reservoir en
gineering), the combination of all the uncertainties in the earth model provides a fam3sLic 
multid isciplinary integration lOOI. The direct quantification of the imp.lct of structural un
certainties on nuid noW, an issue that was often ignored in the past, can now be addressed. 
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6.2 Geometrical Uncertainties 

We present two different models for quanti fying geometrical uncertainties and their 
impact on gross-rack-volume uncertainties. The (irst approach is used ex tensively at 
TotalFinaElf (Samson ct a!., 1996; Guemene et al.. 2002; Thore el a!., 2002) , and has 
been designed to let the seismic interpreter give as much input as possible to the uncer
tainty qualllification, by producing separa te picking- and time-la-depth convcrsion
ullcenailllY maps. Thc second approach, used for a long lime by the Norwegian School 
(see Abrahamsen et a!., 1991 or Abrahamsen et a\. , 2000), relies on the B..1.yesian kriging 
formalism. 

6.2. J Two-step (Ipproacll 

• Qualllirying picking and time-to-depth conversion-uncertainty maps 

In most cases, a depth map is lhe result of lhe combina tion or a lime map and a velOCity 
map. The seismic illlcrpreter is best placed ror quantirying the picking uncertainties 
affecti ng hislher interpretation. The veloci ty modelm01y be the result or 01 grea t va riely 
or computations, depending on the veloci ty data available La stan with. The basis or the 
two-step approach is to produce two separate and independent uncertainty maps, then 
combine them as shown in Fig. 6-5 to obtain 01 global depth-uncertainty map (see 
Thore et aI. , 2002 ror a completc discussion). 

, (aD)2 2 (aD)2 
cr b - aT aT + av 

I 
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• UIICC,UlillfY ml'l'S 

\Vhat do we exaClI), mean by "uncertainly map"? Let us take, for instance, the 
velocity uncertainty map of Fig. 6-5. For practical purposes, we will assume that if the 
veloci ty is V and if the uncertainty is ~ Vat a given map location, th is means that we 
have a 95% chance that the aClual unknown veloci ty value falls wi thin the interval \V
II V, V + II VI. \Ve wi ll also assume that errors are normally distributed. If we remember 
what was sa id in Fig. 1-26, th is implies that lhe uncertainty is equal lO twice the stan
dard deviation of the errors. This is to be related to the discussion of the kriging stan
dard devia tion in Seclion 3.2.2. 

• Piding uncc rwi,lty 

The picking uncertainly map must be built by the seismic interpreter. In the exam
ple from Guclllcne (': 1 at. (2002) thai is displayed in Fig. 6-6, the interpretation was 
based on the resul ts of PSDM, and performed in depth. The analysis of all the seismic 
sec tions resulted in the mapping of areas of poor, fa ir, and good seismic qua lit y. The 
confidence in te rva l around the picked marker was estimated at 50 III in the areas of 
poor quality (below salt domes, ends of lines) and 20 m where the seismic image was 
bette r. The absolute magnitude of the uncertainty is a matter of experience and judg
menL fro m the interpreter. 

• TIme-la-depflt corn crsioll uncerlai nlY 

In the example of Fig. 6-6, the PSDM was pe.rfonned wi lh a veloci ty model com-
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puted rrom rocalization analysis on each 20 line. The main uncertainty on veloci ty was 
associated with the lateral instability or the veloci ty pick and to its approxima tion by a 
smooth mathematical curve. The impact on depth or the velocity uncertainty was esti
mated to vary between abou1 30 and 60 m (Fig. 6-7). A third uncertainty was lhal rela t
ed to the interpola tion or the depth picks between 20 seismic lines, and was derived 
rrom the depth kriging standard deviation , which increases away rrom seismic lines . 

• Combining the wlccrtaimies 

All these depth-uncertainlY maps were combined to obtain the tOlal uncertainty 
map or Fig. 6-7. Because all uncertainties were already expressed in deplh , the partial 
derivative term or Fig. 6-5 was not needed. Let us stress here thai confidence inlervals 
cannot be added to each other. Only the variance or the sum or independent errors is 
equal to the sum or their individual variances (Fig. 1-15). This is why the rormula or 
Fig. 6-5 applies to squares and not to abso lute values. Because confid ence intervals are 
proportional to standard deviations, only squares or confidence intervals (which are 
proportional to variances) can be added to each other . 

• Translating struClural uncertainties into realizations 

Our ul timate goal is to combine various uncertaimies arrecting parameters or the earth 
model in order to quantiry their joint impact on CRY, STOOl?, reserves, or production 
profi les (Fig. 6-2). To reach this goal, we wi ll need to combine realizations or depth 
maps wilh realizations or petrophysical parameters, as shown in the three realizations or 
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Fig. 6· 1. This means that we must be able to generate mul tiple real izations of picked 
surfaces, as shown in Fig. 6·8. 

Thanks to our definition of uncertain t)~ the task of generating depth realizations 
wi ll be easy. The approach is expla ined in Fig. 6·9. Nonconditional simulations of nor· 
mally dis tributed "errors" of mean zero and standa rd deviation 1 are multiplied by the 
uncerta inty map and then the resuh is added to the "base case;' that is, to the reference 
interpretation. One weak poin t of t.he approach is lhal the variogram range of the errors 
is not known. This variogram range has no thing to do with the va riogram range that 
would be derived from the uncertainty map. because this map is, by construction, 
always posit ive (and usua lly quite smooth), whereas the simulated error must lake neg· 
ative and posit ive va lues (possible structural scenarios vary around the base·case inter
pretation). Thus, the choice of the range is left to the interpreter and the "feeling" he or 
she may have about the paucrn of variation of the error. A large range will result in real
izations that tend to stay on the same side of the base case longer than a short range 
(Fig. 6-10). In the example of a lime pick, a large-range error corresponds to a situation 
where there is a multiple choice of seismic loops LO pick, whereas a slllall va riogram 
range corresponds to a marker that is unambiguous but fuzzy because of poor seismic 
resolution. Fig. 6- L l shows several realizations of the lOp of a formation in a Gulf of 
Guinea reservo ir. Obviously, once the realizations have been generated, they can be 
associa ted wi th hydrocarbon-water-contact (H\VC) va lues, and the corresponding GRV 
can be calculated (Fig. 6·12). After el iminati ng unrea listic rea llza tions, such as those 
not showing closure, we can proceed to a pdf of the GRY. 

GOING FROM UNCERTAINTIES TO REALIZATIONS 
(GUEMENE ET AL. , 2002) 

Refere nce Map 

--
3 Realizations 

--
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Reference map Large correlation di.,ta"e" . 
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Short correlation distance 
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This method of quantifying GRV uncerLainties is qui te fasL, and hundreds of real
izations can be genera ted . Some realizations will be vel)' di fferent from each Olher but 
will s till be associated wi Lh the same GRY. For insLance, Fig. 6- 13 shows, on an actual 
case study, the base-case map and three rea lizations associated wi th a vel)' similar vol
ume, which happens LO be the median of the GRV pdf. Th is means that there is no such 
thi ng as a single "median n or "most likely" map. There are only maps corresponding to 
the median va lue of the GRV pdf or to its q lO or qQ() qua nLiles (see Fig. 1-2-1- fo r the defi
nilion of qua ntil cs). It may also happen, for instance with vel)' nat st ructures, that the 
mean of the GRV pdf is much grea ter than the base-case GRY. The only thing we are 
sure of is Ihal the average of all the rea lizations is equal LO the base case, because all the 
error realizations cancel each o ther when averaged. 

6.2.2 Bayes iall hrigillg approadl 

The method proposed by Abrahamsen el al. (2000) is JUSt one of the mosL recent appli
cations of a methodology developed over the last 10 years (see, fo r instance, 
Abrahamsen et aI. , 1991). The model is an ex tens ion of that already presented in Fig. 3-
65. The main di ffere nce between this method and the previous one li es in the way the 
time and velocity uncertainty models are trea led . Guemene el al. (2002) consider the 
uncertainty maps for ti me and veloci ty LO be an input of the method, in order to let lhe 
interpreLer control the whole process. Then Lime and velocity rea liza tions are simulated 
independently. Abrahamsen CL al. do not use a veloci ty or ti me uncertainly map as 
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inpuL. Their model incorporales a global (independent of localion) standard devialion 
for time and for velocity anomalies (Fig. 6·14). Time realizations are simulated first , 
then velocity realizations are derived from time by sampling a velocity anomaly and a 
value for the compaclion coefficients Il and Yo. 

Fig. 6-15 shows three realizalions, which are ranked on the basis of their lrapped 
G RY. The map on !.he left corresponds to the smallest trapped volume. whereas the map 
on the right does not show closure. The latter realization mUSl be eliminated during the 
simulalion exercise. 

The GRV pdf obtained from 197 realizations had a median and mean volume of 
965 and 880 million Ill), respectively. The GRV of the base·case map (center of Fig. ). 
66) had a Significantly difTerent and more pessimistic value, equal to 652 million m} . 
As mentioned earlier, this bias is very common for f1al Slructures. 

6.2.3 Ilow many realizations? 

What is the "reasonable" number of realizations to run to obtain reliable statistics on 
the GRV pdf? This will depend onlhe complexity of the case study. A good approach is 
to evaluate how the main property of interest- GRV, for instance - varies as a func· 
lion of the number of realizations. Fig. 6·16 is an example of such a calculalion , where 
we see that the quantilcs become stable after a few hundred realizations. 
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NORTH SEA STRUCTURAL UNCERTAINTY QUANTIFICATION 
CASE STUDY (ABRAHAMSEN ET AL. . 2000) 

- --- ---- ---- ---- ---- ---- ---- ---- ---- ---- ------ --- ---- - - -
Depth realIzatIon wIth Depth realIzatIOn wIth UnlimIted depth 
mInimum trapped GRV medIan trapped GRV realIzatIOn 

uc;. ...... 00..: .... 6-15 

6-12 • Society of E)(ploration Geophysicists I European Association 01 Geoscientists & Engineers 



Olivier Dubru/e 

6.3 StaLic and Dynamic Model Uncertainties 

Once a number of realizations of the geometry have been gencna ed, the next step will 
consist of evaluating other earth model uncertainties, in order to quantify their impact 
with relmion to lhat of geometrical uncertainties (Fig. 6-17). 

6.3.1 Swtic modcluncertain/ies 

New generation eart h modeling soft\\'are offers the possibility to "hang" a stratigraphic 
grid from each new geometrical realization and fill this stra tigraphic grid with 3D real
izations of geological (discre te) properties or petrophysical (colllinuolls) properties 
(Corre et a\., 2000). Hierarchical geological modeling approaches such as those dis
cussed in Section +.5.5 can be applied. Realizations mayor may nOI be constrained by 
seismic da ta, using one of the approaches described in chapter 4 or 5. 

The h)tdrocarbon-water con tacts (H\VC) may also be afreeted by uncertainties, 
for example, if we me dealing with an "oil-down-to" or a "water-up-to" situation. Once 
the t-IWC have been positioned, water-saturation realizations cons istent with these 
contacts can be generated. Thus, quantification of slatic earth model uncertainty is 
usually based on a hiera rchical approach (Fig. 6-18) from geometricailo waler-salura
tion uncertainties. 

Fig. 6-19 is an example of six realizations resulting from an actual North Sea case 
study. JUSI one well was available 10 construct the model, and each rea liza tion is based 
on a diITerent structural map, a different HWC, and a different 3D porosi ty distribution . 

POROSITY 

o .35 

. . . geometry and 30 
property distribution 
simultaneously vary 

UC.'1AG,OIK"" 6· 1 1 
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Figs. 6-20 and 6-2 1 are two realiza tions rrom an uncertainty quanti fi cat ion study on a 
turbid ite channel complex in the Gul r or Guinea. Four variables (N/G, V<Jtak. porosity, 
and permeabi lity) are generated ror each realization and are strongly correlated with 
each other. The s tructure map is also different ror each realization. 

A number of parameters or interest can be calculated rrom such carth model real
iza tions. An important one is the oil -in-place vo lume (DIP). This vo lume wi ll be difrer
ent ror each realization, and the spread or the OIP pdr will represent the impact or all 
individua l uncertainties on the final volume. 

In Fig. 6-22 we have histograms, corresponding to an actual case study, that illus
trate the power or Stich an uncertainty stud)~ As we move rrom left to right and rrom 
top to bottom, more and more uncertainties are taken into account. It is clear rrom the 
example that most or the uncertainty comes rrom the geometry, as is orten the case 
when few we lls are available and the seismic is not tOP quality. FollOWing such a study, 
the decision might be to drill an extra appraisal well in order LO reduce the struclUral 
uncertainty. 

6.3.2 lillil will! dy,wmicjlow simulation 

• Impact of static-model uncertainties on predicting production profiles 

In the Fig. 6-22 example , onl y OIP uncertaimies were addressed . We may also wish to 
quantiry the uncertailllY on reserves by nlllning now simulations on a number or real
iza ti ons. When we discussed geomctricalunccnaintics, we saw that a minimum or 
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maximum realiza tion could only be defined with relation to a parameter of inte rcst, 
such as GRV or D IP. A more powerful way to pick such a realization is to use the cross
plo t of reserves versus DIP (fig. 6-23) and pick the realizations thai posi tion them
selves as qu ... ntiles of interest on both the D IP and reserves distributions . 

• Accounting for dynamic-parameter uncertainties 

So far. we have only discussed the impact of slatic-lllodclul1ccrtaimies on production 
profiles. Dynamic-paramcter uncertainties must also be accou nted for, in order to 
addrcss such questions as: \Vhat is the impact of the uncertainty affecting fault trans
miSSibility? or What is the impact of relative pemleability uncenailllY? Usually, dynamic 
parameters are easier LO add ress, because they arc real numbers , such as irreducible 
water saWnl tion or the transmissibi lity multiplier. Damslcth el al. ( 1992) and Corre et 
al. (2000) exp lain how to use the statistical method of experimental design to derive 
information on the uncertainty in production profiles that is caused by dynamic-para
meter uncertain ties . 

• Addressing s tructural uncertainties in the history-matching process 

The applications of the approach described above go far beyond the qua ntification of 
uncerta in tics. The), can also boost multidisciplinary integration, all the way to the 
h istory-matching exercise. Unti l recently, the construction of the rese rvoir model was 
very sequential. and the structural map was never used as a matching parameter, in 
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spite or the ract that structural uncertainties were known to have a major impact on 
resulLS. This is now changing. In the example or Fig. 6-24 (Vincent et ai., 1998), 
dynamic-now simulations have been run on a large number or earth model rea lizations. 
Each point or the crossplot is the result obtained with one realization. Clearly, those 
realizations corresponding to a smaller va lue or DIP are those that provide the best 
match with production data. Thus, in this specific example, those realizations associat
ed with deeper geometrical models are more likely to be representative or the actual 
unknown surrace. 

- History matching under uncertainty 

llegstad and Om re (200I) fonnalize the problem of history matching under uncertainty, 
using the Bayesian rramework. They show how realizations or the posterior carth model 
- that is, the model constra ined by aU data , including wells, production data, and se is
mic - can be obtained using the Metropolis-Hastings algori thm. Although thei r solu
tion appears to be qUite genera l and has been tested successru ll y, it remains very cum
bersome to run. As computing power develops in the flilure , it may prove more and 
more interesting. 

6.4 Multircalization Uncertainty-quantification Approach: A Panacea? 

On the basis of what has just been discussed, one would be tempted to generalize the 
approach into "multirealization economic analysis" (Fig. 6-25), as discussed, ror 
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ins tance, by Ovreocrg ct al. ( 1992). Howe\,er, a number or geoscientists remain sceptical 
abou t uncerta inty quantification via geoslatistical mllitirealization techniques (Dllbrule 
et al., 1996). Many argue that actual uncertainties arc or a dirrerclll order rrom those 
that arc quantified by geoslatistical realizations. This poi nt has been discussed by 
Massonnal (2000), who d istinguishes six dirrcrelll orders or uncertainties (Fig. 6-26). 

Geostatistical condit ional simulations have proved vcry successrul in addressing 
Massonnat's step 6. It is also possib le, by sampling the input geostatislica l parameters 
using Monte Carlo techniques, LO account ror the uncertainty arrec ting these parameters 
(step 5). For instance, the uncertainty afrecting the mean or porosity can be quantified 
by sampli ng a mean porosity va lue and then genera ting gcostalistical rea liza tions 
around this sampled mean. Fig. 6-27 shows that this can dramatically increase the 
range or the average porosity hisLOgram (and consequently the range or the OIP pdf). 

6.4. 1 Approaches by ScelWri oS 

Massonna t argues that unce rtainties associated wi th steps 3 and -+ are rar more signifi
cant than those associatcd with steps 5 and 6. Step 3 is the charac terizat ion or the depo
sitional environment, whereas step 4 covers the major stalionarit)' assumptions, for 
instance, about the distribution of facies probabi lities in space. These two steps arc usu
ally addressed using a "scenari o~ approach. This tenllinology covers a variety or meth
ods (Fig. 6-28). With Taylor (1996), scenarios are a small number or different models 
associated with possible assumptions - usually min, median, max - about some or 
the input parameters, such as N/G, sand body dimensions or faull scaling (steps 4 and 
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5). Dubrule and Damsleth (200 1) discuss a possible approach where different scenarios 
arc obtained from different geoconcepts (steps 3 and -+). Corre et al. (2000) associate 
sccnarios with different assumptions (Fig. 6-29) aOOUl the size and number of 5<1.nd 
bodies (steps 4 and 5). 

Scenarios differ from geostatislical conditional simula tions in that the former arc 
discrete (leading to multimodal discrete histograms), whereas the laLler result in a con
tinuum of models (lead ing to unimodal cominuous histograms). Usua lly, the number of 
scenarios is ralher small, from two to, 5<1.y, lwenty, which allows the geoscielllis t to bet
ter cOlllroithe geological meaning of each possible representat ion of lhe reservoir. In 
some cases, the approach by discrete scenarios is mandatory, because we deal with 
clearly different alternatives (e.g., choice of depositional environment, choice of seismic 
loop on an interpretation) with no possible intermediatc situations. !lowever, construct
ing multiple. discrete scenarios may be very lime-consuming. The usc of multiple, dis
crele scenarios ma)' also crealC the illusion that on I)' twO or three situations are possi
ble, when in reality all the imermediale ones may also happen. In this case, it may be 
beLLer to sample geoslatistical parameters in such a way that the discrete scenarios are 
incorporated imo a mnge of realizations. The sampling approach, based on Monte Carlo 
and geostatistics (Fig. 6-27), can be more efficient to run , because it does not require a 
manual reconstruction of the model. 

6,..,.2 Combi/ling scenarios lHld gcoslalislical rralizations 

Still , if we come back lO Massonnal's (2000) c1assificmion, the discrete scenario-based 
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approaches for steps 3 and 4 can be combined with geostalistical ones for steps 5 and 6, 
as described in Fig. 6-30, where multiple geostatisti cal realizations have been produced 
for each scena rio and then recombined using the probability of each scenario occur
ring. This requires a quantification of this probability, which TUay be a dimcult but use
ful exercise. Corre et al. (2000) and Charles et al. (2001) discuss a number of app lica
tions of uncertainty quantification combining scenarios and geostalistical realizations. 

lia ct al. 's (1.997) classic uncertainty study combines scenario-based and geostatis
tical approaches. They combine geostaListica l realizations with multiple scenarios on 
faulL sealing. The base case is assumed to have a 05 probabili ty (transmissibility multi
pliers ranging from 0 to 0.05), whereas the no-sealing, complete-scaling, and almosl
sealing (transmissibi lity multipliers equal 10 0.1 times the base case) scenarios have a 
probabi li ty of 0.2, 0.15, and 0. 15, respectively. Fig. 6-31 individualizes the output pcIr 
associated with each scenario, which helps us understand the radical impact of fault
sealing assumptions on the recovery-faclOr uncertainty. Lia et al. also could have recom
bined the four histograms in order to obtai n a Single - probably multimodal- pdf for 
the recovery faclor. They even could have .5<1.mpled the lransmissibilit}, multiplier by 
Monte Cario, rather than produce different scenarios. However, in the example, keepi ng 
the scenarios separate helps us unde rstand the actual impact of fault scaling. So, the 
choice of working by scenarios or by Monte-Carlo sampli ng of some of the input para
meters may depend on the geological meaning and the sensilivity of the final results lO 
these paramelers. 
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6.5 Concl usion on Uncerta inties: A Word of Caution 

The approaches presented above are merely a way 10 combine the uncenainties quanti
fied by the various disciplincs, in order to evaluate their joiJ11lmpaCl on parameters that 
have an economic importance (Fig. 6-32). If some important unce rt ainties arc ignored 
in the input phase, the uncertainty evaluation, whether quaJ1lified with geos13tisucs or 
with a scenario approach, will be wrong. 

As with Monte-Carlo Simulation, the imporlance of the assumptions made about 
parameler correlation cannOl be stressed Loo much. As mentioned before, making no 
assumption abou t the correlation between parameters is the same as assuming indepen
dence. We saw earlier that independence means mutual compensa tion, which usually 
leads to an underestimation of global uncertai1llies (Fig. 6-33). The guidelines provided 
in Fig. 6-34 must absolutely be followed to avoid transforming uncertainty qualllifica
lion into a black box. 

The main va lue of uncerta inty quantification may lie not in the results - the final 
pdfs - bUI in the process thaL iL involves among a Learn of geoscientists and possib ly 
other disciplines. This is nicely expressed by Spencer el al. (1998): "By having a clear 
expectation of the range of parameters expected, clear accountability of the estimates, a 
feedback process which trains us in our judgements. and an atmosphere in which the 
sharing of mistakes and learning is encouraged, the Company benefits in multiple 
ways," 

-
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7 Conclusions 

7.1 \Vhat We Have Learned 

We have presented the model u~ed by geostatistics for 20 and 3D petroleum applica
lions. This quamified geological Illodel assullles that the variable of inte rest is the sum 
of a delennin istic trend plus a residual characterized by its va riogram or its covariance. 
Vvhen there arc enough data , the variogram model can be filted LO the experimelllal 
function. In other cases, assumplions based on geological knowledge, combined with a 
variogram analysis of seismic data, will be used to define the va riogram model. 
Variograms can be related to fractal models and to a priori information used by geo
physicists in seismic inversion or in Fourier analysis (Fig. 7-1). 

The geostatistical model can address the problem of deterministic interpolation 
through kriging. A degree of smoothing can be applied 10 kriging through the error
cokriging approach, which allows the filtering of random noise , whereas thc facto rial 
kriging approach allows the filt ering of short-range - or high- frequency - terms due 
(for instance) to seismic-acquisi tion artifacts. Kriging based on well data can also incor
pora te ex tra information coming from seismic data, through the cxtemal dri ft or the 
co ltocaled cokriging approach. Kriging is closely related to other interpolation tech
niques, such as sp li nes or radial-basis functions. Specifyi ng a kriging model amounts to 
specifying the regu larization term of energy-based inversion techniques. 

Kriging and all its family of associated techniques remain a deterministic method. 

Tool-box for generating realistic heterogeneity 
models, Including geological facies or 
petrophysical property models. Incorporation of 
seismic data via 3D facies probabilities, 
geostatlsticallnverslon. 
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The production or a minimulll variance estimate results in an interpolation that is very 
smooth away rrom the data poinLS. In practice, however, geology has no reason to 
become smoother away rrom the wells! The method or conditional simulation allows 
the generation or models that show everywhere, including away rrom wells, a similar 
degree or variabil ity, as quantified by the variogram. All kriging techniques presented 
here can be generalized illlo cOlllinuous parameter condi tional simulation, thanks to 
algorithms such as SGS. 

Conditional simulation can also be used to generate models or discrete va riables, 
such as depOSitional facies , lithology, or rock type. The most popular techniques are 
object-based models and indicator simulation. They can be applied jointly, in a hierar
chical manner, and combined with COtl(inUDUS parameter-simulation techniques , using 
tools avai lable today in earth modeling sortware. Indicator si mulalion reali.zations can 
be constrained by 3D probability models derived rrom seismic data using the Bayes 
theorem and SIS. Object-based models can also be constra ined by 3D probability 
models, bUI this requires the use or MCMC algorithms. 

Conditional simulation can be generalized imo geoslatistical inve rsion, a sequen
tial technique that allows the generation or 3D acoustic-impedance real izations con
strained by seismic data. The realizations can be produced at the reservoir model scale, 
that is, at higher resolution than the seismic data. The lower the resolution or lhe seis
mic data, the more variability there is rrom one inverted rea liza tion to another. The 
acoustiC-impedance realizations can then be used to constrain 3D realizations or litholo
gy or petrophYSical parameters. 

Joint condi tional simulation of the different features or a 3D eanh model can also 
lead to quantification of the 3D earth modeJ's uncertailllY. Realizations of the geometri
cal model, accounting ror the uncertainty arrecting interpretalion picks and time-to
dept h conversion, are combined wi th realizations or the geological model, including 
lithology and petrophysical parameters. This leads to the quantification or the GRY, OIp, 
or reserves uncertainty resulting rrom uncertainties arrecling the sta tic model. The 
impact or the uncertainties affecting dynamic parameters can be quantified using exper
imental design. Scenario-based and geostatisLical approaches can be combined, as long 
as a probabi lity is attached to each possible scenario. 

7.2 Future Topics 

The nature or geoSlatislicai research has changed since the 1980s. AI that lime, petro
leum geoslatistics was still new, and there was an explosion or new techniques. S0111e or 
them proved difficult to understand or to apply, while many others - in spite of the 
jargon used - proved redundant with each other. Now; the dust has seltled and a nat
ural selection process has occurred. Geostatislical madding has become part or the 
standard reservOir-model ing workflow, and the interest of geologisLS, geophysicists, and 
reservoir engineers in these techniques has grown. Ins tead or conSidering the tech
niques to be remote rrom their day-to-day activities, geoscientists now understand that 
they may have a strong impact on their workflow. 

The development or earth modeling so rt ware has dramaticall y impacted the work 
or the sedimentologist and the reservoir geologist. Fewer models are generated by hand, 
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and geologists want beLter geologically loaded models that are able to incorporate their 
a priori knowledge about reservoir architecture (Fig. 7·2). This is one of the drivers 
behind the research in multiple· point geoslatislics. 

The border between geosta tistics and seismic inversion, or between geosta tistical 
uncertainty quantification and production history matching, is also disappearing. 
Reservoir engineers now see that the multirealizalion approach may help them tackle 
this old problem of the nonuniqueness of history matching. The success met by geosla· 
tistical inversion is generating new questions among geophysicists. How can we make 
better use of the multiple realizations? Can we apply this stochastic paradigm to 
preslack data? Academics, comractors, and petroleum companies work together on 
these topics, which may require strong knowledge of mathematics and an understand· 
ing of the business issues, and which may lead - when the methods are successful 
to their integration into eanh modeling software. 

The role of the petroleum geoslatistician is also changing. More and more, hdshe 
must build a dialog with the various diSciplines and understand the tools of the trade in 
order to understand the added va lue that geostatistics can bring. The lime when the 
geostalistician worked sequentially with the geophYSiCis t, the geologist, and the reser· 
voi r engineer is over. The geostatistician needs to spend less time developi ng new geo· 
statistical methods, but more time understanding how the exis ting ones fit into the 
multidisciplinary integration worknow. 

Thus, geostatistics offers a range of tools for building 3D models Ih"l1 are consis
tem with all data available, and for quantifying the associated uncertainty. The different 
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disciplines meet each other around the geostatistical model. which aclS like a glue 
between them, thanks to the algorithms and models it provides. In spite of the recent 
progress made by earth modeling software, it still takes too much time to go from seis
mic interpretation to now simulation, or to update models as new data are acquired. 
Today, new data ofl en require complete reconstruction of the model, rather than a fast 
update. There is rool11 for much progress in this area. 

The multidisciplinary reservoir characterization process oft en remains long and 
tedious. Issues such as the support eITect, the speed of geostatistical inversion algo
rithms, or the processing of multiple realizations are yel to be addressed properly and 
with industry-accepted solutions. 

7.3 Wcbsitcs ,md Software 

Fig. 7-3 provides a list of active geoslatistics websilcs, all of which are run by academic 
institut ions that are leaders in petroleum geos lalistics research: Stanford University, 
Ecole des Mines de Paris, Unive rsi ty of Alberta, Norwegian Com pUling Centre, and the 
Univc rsity of Trondheim. This is definitely not an exhausti ve list, but it is a good entry 
poin t. 

\lYe do not specifica lly discuss software here, LO avoid commercialism. Today, new 
geosta tistical techniques are usually developed by companies as in-house prototypes, or 
by academics using public-domain software libraries (the 1110st successful example 
today is GSLlB; see Deutsch and Joumel, 1992). There are very few stand-alone com-
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mercia I geosla listica l products. Once new geostatistical technologies ha\te been proved, 
whether by academics, contrac tors, or petroleum companies, they are usuall y incorpo
rated imo eanh model ing software. because such software (see ChaptcT 1) provides the 
geometrica l and stra tigraphic grid framework requi red for model ing studies. 

7.4 The Role of Geoslalistics in Geophysics 

It seems ap propria te to conclude th is course with considerations about the ro le of gco
statistics in geoph)'Sics. Hopefu lly, we have now made clear that the a priori geostatisti 
ca l model, as quantifi ed by the variogram and the trend model . is just an ex tension of 
the a priori model used in Bayesian inve rsion. We have also seen in this course that, if 
an energy-based inversion approach is used , the specifica tion of a regulariza tion tcrm is 
equivalent to thaI of an a priori model. O f course, the a priori model of the geostatis li
cian should no t be d ifferent from thaI of the geophysicist! Thus, geosta tistics formalizes 
and quantifi es the a priori geologicalmodcl and makes a signiflcant step toward lilling 
the need sta ted by Scales and Tenorio (200l) (Fig. 7--+). 

Gcostatisti cs also provides a large number of tools that ex tend the standard 3D 
modeling too l-box of geophysicists. Dete rmin istic techn iques such as krigi ng, error 
cokriging, factori al kriging, colloca ted cokriging, and external drift provide new ways of 
filt cring acquisition artifacts or combining different kinds of info rmation. These tools 
can be applied to scattered data without going th rough the intermediate step of intcr
polation on a regular grid, as speclralmcthods do. 
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Even more interesting. geostatistical simulation provides a means of generating 
samples of the a posteriori distribution, whe ther it is constrained by we lls, seismic, or 
dynamic data (Fig. 7-5) . The recent developments of geostatis tical inversion, even if 
algorithms need to be optimized, show that these techniques have the poten tial to 
change the way seismic-constrained modeling was done in the past. 

Thus, we hope that course attendees and readers of these notes will go home wi th 
an understanding that the gap between deterministic and probabilistic techniques has 
now almost disappeared, as Wadsworth e l al. (Fig. 7-6) had already envisoned in .. 
1953! 
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8 Exercises 

The exercises are modified from some of the exercises already presented in Dubrule 
( 1998). 

8 .1 Exercise I: Filling a Variogram Model 

The goal ofthis exercise is to show how a 3D model is filled to an aniso tropic cxperi~ 
mental va riogram. 

The example used is from Chu el a!. ( t994). This paper shows (in its Fig. 7) 
experimental porosity variograms calculated in the North·SoUlh, East·Wcst, and vertical 
directions. The data are from an Amoco west-Texas carbonate field of Permian age. 

The experimental variograms were calculated rrom the well data in their strati· 
graphic coordinates, within a layer of thickness ranging from 1 j to 27 m. A total of 
+697 elementary porosity-log data were ava ilable in 90 wells. E:-'l:>crimental variograms 
are displayed in Fig. 2-26. 

The model fiued by Chu et al. is shown in Fig. 2·26. A screen copy or lhe spread· 
sheet used is shown in Fig. E 1- L. Thanks to this spreadsheet, it is possible La evaluate 
the impact of a parameter change on Ule va riogram model, and thus La better under
stand the meaning or each parameter. A particular point to discuss is the use of a short
range model to represent the nugget effeCl or the lateral variograms, without impacting 
the venical variogram fli. 

EXERCISE 1 (CHU ET AL, 1994) 

VARlOGRAM FITTlNG EXAMPLE _ .. _ .... --'''''''' -, - u u u - - • 
............ -. .....,.,,~ ... .. - .... ..... - .. ,"'- . .. _ . 
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8.2 Exercise 2: Understanding the Krigi ng System 

The goal of th is exercise is to evaluate the impact of the variogram choice on thc results 
of an e1eme11lary kriging systcm. 

We assume that wc work in 2D, and that the value of a variable z at a data point XI) 

is kriged using thc values at four data points localcd in the neighborhood of Xo (F ig. E2* 
1). We make assumptions aboutlhe variogram model (which can be Gaussian, spheri
cal, or exponen tial), about the practical rangc and the sill , and about the ratio and 
direction of anisotropy. Thc size of the color circles is proportionaiLO the va lue of the 
four corresponding kriging weights. If a kriging weigh t is negative, no circle is ploLted. 

By moving the data points around the estimated point and changing the paramc* 
tCTS of the va riogram model , the impact of each parameter of the variogram on the krig* 
ing system is bcttcr understood. 

EXERCISE 2 (KRIGING SYSTEM) 
__ ........... L ..... "" ... .......... __ t _~ ..... '" 
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8.3 Exercise 3: Generating a Nonconditional Simulation in 10 

The goal of this exercise is to c,xplain, using a simple example, how a nonconditional 
simulation can be generated. 

A throw of a die generates a unifomlly distributed, random variable taking the val
ues 1, 2, 3, 4, 5, or 6. If the die is thrown repeatedly, a sequence of uncorre1atcd values 
is generated. [n geostatistical terms, this is called an uncorrclated random function, or 
"while noise," the variogram of which is a "pure nugget effect." 

The exercise consists of experimenting with a simple approach for introducing 
spalial correlation into such a sequence. The value of ::: at each location is averaged wilh 
the IwO preceding and the two following values. A spreadsheet simulates LOO throws of 
a die and calculates Ihis 1110ving avemgc at each localion. 

rig. E3-1 shows an eX<1mple of a sequence of val lies ::: (Raw) and the correspond
ing average (moving) at lOO locations. I low do [he sequences differ? fig. E3· 1 also 
shows 1 he variograms calculated on the data displayed in Fig. E3·1. What has been the 
impact of averaging the il1llia1 results of the dies throw? How does this relate to the prt':
ViOllSI)" discussed moving Simulation technique of Oliver ( 1995)? 

_ , _b 
........ 1 __ .. 
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9 Notation 

x A point in 10, 20 , o r 3D space 
z(x) A property measured in 10, 2D, or 3 D space 
Zex) A random function in 10, 20 , or 3D space (Section 2, ) 

z, The value of variable z allocation X, 

Z I(X) The primary variable (Section 2.8) 
Z2( X) The secondary va riable (Section 2.8) 

x A real num ber 
rex) A probabil ity density fUIlClion (pd!) (Section 1.4.1, Fig. 1- 13) 
F(x) A cUlll ulati ve de nsity fun ct ion (cdO (Section 1.4. 1, Fig. 1- 13) 

X,Y, orZ 
III 

a 
'I, 

A random variable (Fig. 1-12) 
The mean of a random variable (Fig. 1-15) 
The s tandard deviation o f a rando m va riable (Fig. 1- 15) 
The x% quantile of a random variab le (Fig. 1-24) 

Coordi nates of a point in space 

Olivier Dubrule 

X=(XJ',Z) 
OJ,I,) 
u=(u,v,w) 

Coord inates of a point in the stra tigraphic gri d (Figs. 1-5 and 1-9) 
Coordinates of a poin t in the frequency domain (Figs. 2-40 and 2-4L) 

RMA 

Co 
C 
a 

C(h) 
y(h) 
p(h) 

AI, ... ) .. " 
~ , ""d.l. l 

c,' 
c" 
E (x ,y) 

Cj 

Reduced-major-axis bivariate modeling technique (Fig. 1-37) 

Variance-covariance matrix (Fig. 1-38) 

Variogram nugget erfect (SeClion 2.3 , Fig. 2-16) 
Variogram sill (Section 2.3, Fig. 2- 16) 
Variogram range (Section 2.3, Fig. 2-1 6) 

Covariance value for vector h (Section 2.2, Fig. 2-9) 
Variogram value for vecto r h (Seclion 2.2, Fig. 2-9) 
Au tocorrela tion value for vector h (Section 2.2, Fig. 2-9) 

Kriging weights (Fig. 3-3) 
Lagrange multipliers (Fig. 3~3) 

Covariance between two data points, Xi and Xj (Fig. 3~3) 
Covariance between data points x, and estimated point xo(Fig. 3-3) 

Measurement erro r at location (x,)') , for instance, with V.~~l data 
(Fig. 3-35) 
Measurement erro r affecting measurement Z, at location , X i (Fig. 3~9l) 

V, tack Stacking velocity (Section 3.3.1) 
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V,I'I' 

UK 
Zu~(x) 
SK 
OK 
" , ' (x) 
FK 

Z,,(x) 
KED 
Z~"'I(X ) 
ilK 
COK 
Z,,,,(x) 
" ",,'(x ) 
CCK 
Z" ,(x) 
MCCK 

11-IRf 
GC-JI 

" ,,(x) 
Zkh.(X) 
z,,(x ) 
Z,hf(X) 

e 

GCS 
MCS 

OIP 
STOOIP 
GRV 
<I) 
N/G 

5" 
Il" 

SGS 
SIS 

MCMC 

GI 

Apparen t veloc it ), (Fig. 3- 14) 

Unive rsa l kriging (Section 3.2. 2, Fig. 3-3) 
Unive rsa l kriging in terpola tion at location x (Section 3.2.2, Fig. 3-3) 
Simple kriging (Section 3. 2.2) 
Ordi na ry kriging (Sec tion 3.2.2) 
Kriging va riance at 10GHi o n x (Sec tio n 3.2. 2, Fig. 3- 17) 
FaclOrial kriging (Sec ti o n 3.3.2, Fig. 3--1-9) 

Facto rial kriging in terpolation at location x (Section 3.3.2, Fig. 3-49) 
Krigi ng wi th an external dri fl (Section 3.-1- , Fig. 3-56) 
Krigi ng with an ex ternal dri fl interpolation at location x 
Bayesian kriging (Se( tio l1 3.5 , Fig. 3-65) 
Cokri ging (Sect ion 3.6, Fig. 3-67) 
Cokrigi llg interpo latio n at loca tion x (Fig. 3-67) 
Cokrigillg variance at location x (Fig. 3-67) 
Colloca ted cokriging (Section 3 .6.3) 
Colloca ted cokriging interpo latio n at location x (Fig. 3-75) 
Multicollocated cokriging (Sectio n 3.6.3) 

In trinsic random fun cti ons of order II (Section 3.2.3 ) 
Gl' llcralizcd covari:lI1 ce of order II (Section 3 .2.3) 

Harmonic spline interpo lation at loca tion x (Section 3.8.2, Fig. 3-90) 
Biharmonic spline interpolation at loca tion x (Section 3.8.2, Fig. 3-90) 
Smoothing spline interpolat ion at iocation x (Secti o n 3.8.2, Fig. 3-9 1) 
Rad ial basis fun ction interpolation at locat io n x (Secti on 3.8.3 , Fig. 3-9 1) 

Weigh ting parameter used by smooth ing splines (Section 3.8.2, Fig. 3-91 ) 

Geostatistical condi tiona l s imulation (Chap ter -1- , Fig. -1--1 ) 
Mo nte-Carlo simulatio n (Secti o n 4.2, Figs. -1- -3 and -1--4) 

Oi l-i n-place vol ume 
Standard original oil-in -p lace vo lume 
Gross-rock vo lume 
Porosit)' 
Net/gross 
\ Iv'ater-sa t II ra t ion 
Formation volume factor 

Sequcntia l Gaussian simulation (Section -1- .3.2, Fig. -1-·22) 
Sequentia l indicato r s imulation (Sec tion .... 5.2, Fig. -1- -"'2) 

Markov-chain MonIc Carlo (Sect io n 4.3.2, Figs. -1--2-1- li nd -1--25) 

Geostatistical invers io n (Chapter 5, Fig. 5·3) 

9-2 • Society of Exptoration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

10 Acknowledgments 

Before a ll , I would like to than k TotalFinaElf fo r e lllhusiastically supponing me in both 
the prepara tio n and the aClUal delivery of th is 2003 DI SC course manua l and presenta
ti on . Thank )'Otl also to affi liat e companies, w ho provided some of their da ta. 

A ve ry special thank yo u 10 Pierre Deljillcl;) cmt -Luc Pia zza, and VitI celli lJigwdJ elc 
C lt ::WIOVC, w ho helped me a lo t in the preparation o f the manuscri pt. 

\Vi th in the com pany, man y other people we re kind eno ugh to provide me wit h 
some technica l mate ri al. They arc acknowledged b}' havi ng their name writt cll down at 

the bo tt o m o f cach figure the), contributed . Thes( people arc: Leoll B(lrCIIS (frolll fhe 
TowlFilwE/f Exp/orafiOlI UK Ceoscience Research CCllire ill Londoll ), Wafih Bcydollll, Pi erre 
Bivel; Bentwr/ Corrc, Pierre Delji,IC I; ViVie11 de FcrClluly, Xavier Frell/ol',)eall-Micl,d 
Cw::mcla\ Andre H(ws, Gerard JlvfasSolllwl , )call-Lllc Pilt ::::a, ElicIIIIC Robeill , Pllilippc 
Salllsoll . Pierre Tlwre. 

The following people from Total FinaElf also helped me in the preparation of the manu
script, by prodUcing slides. making bibliographic search, or re"inving the English: '-fflclle 
BoyC/; CalllY Brewerloll , Naclilll' Caldero,, ;, CCllcvievc Ocsbordcs, ) call-Louis POIIIOI-Cculcl , 
All re/im TCII (/(IIII . 

I wou ld also like to thank many people o uts ide To talFinaEIf. w ho kindl y con
tributed some materia l: 
l-lishmn AI Qass(liJ Jrom Saudi Aralllco, 
Philippe DOYfn,forlllerly willI Weslern GeophYSical, IwW wilh SC/tlwllhergn: 
PCle r Flyhlllall,from the Geological Survey oj Dellmllrll alld Crccnlwu/. 
1-/olllil1g Omrc, Jrom Ihe Norwegi(ln Univers ily oj Science (111(1 Tccllllology 
Pele r Swaby, JonHc r/y wilh Ihc TOUlIFilwE/f GcosciCl!ce Resea rcil Ccmre. 
Philippc Lanly.Jrom Ea rlh Dccisioll Sc iences. 
Laurenf de C'wllllmrc, Sarah BOtU/OII, SleplullZic UgcrOIl , Fleur /1ourwlIolif , from ERMS 
Thieny Colcoll alld David Lc MCUl; Jrolll CGC. 
Pall I Will Riel ,from Jason, alld Ca rlos To,-,.cs- Verdi 11, Jrom The Un iversilY oj Te.:ws a/ Ausl ill. 

Thank you to SEC and EACE for choosing me to give this course and suppo rt ing 
me a ll a long. Specia l thanks to SEC'S Oeall Cl(ll'll, Marcia Bllntell , and Ted Bo/wlltji(lI!; 
A ll/I f Thomas and Pro1~)'pc, for hel p ing mc in the prcparation of the manusc ript ; and to 
Lisa Siltliff from SEC, and Eve/j il t' SchUl from EACE fo r he lp ing mc in the o rga ni zati on o f 
the course. 

L'lst but no t leasl, [ wo uld like 10 th unk my wi fe Alllle, and my children PlW/ine. 
Nocmie , Arliu,,; and Thibaud for thei r love and support du ri ng these sunn y weeke nds in 
Pau, or the lasl SU lllmer vacatio ns in beau ti ful " I\e de Re." w hich I spem p repari ng the 
DISC lecLure , s luck in front o f m)' computer. 

Distinguished Instructor Short Course • 10-1 



Olivier Dubrule 

11 References 

Abrahamsen, p' , Hauge, R., Heggland, K. , and Moslad. P. , 2000. Estimat ion of gross-rock \'ol~ 
ume of filled geological structures with uncenainty measures: Soc. Petr. Eng .. Am. Inst. 
Min .. Metal!. Petr. Eng. , SPE Reservoir Evaluation and Engineering, 3(4). Aug. , 304-309. 

Abrahamsen. P. , Omre. H., and Lia , 0., 199 1, Stochasl ic models for seismic deplh call version 
of geo logical horizons: Soc. Pelr. Eng. , Am. Inst. Min. , Melal!. Petro Eng., SPE 23138. 

Agterberg, r: K. 1994. Fractals, multifractals. and change of suppo rt , ill Dimi trakopoulos, R .. 
Ed ., Geosta tistics for the nex t century: Kluwer Academic Publ. , 223-234. 

Ahmed, S., and Murthy, PS.N. , 1997, Could radial basis function estimator replace ordinary 
kriging, U! Baafi, E. Y, and Schofield , N. A. , Eels., Geostalislics Wollongong 96, Kluwer 
Academic Publ.. 314-323. 

Aki , K., and Richards . P. G., 1980, Quantitative seismology: W.l-I . Freeman and Co. 

Alaben , F. G., 1987, The practice of fast condit ional simulations through the LU decomposi 
tion of the covariance mat rix: Mathematical Geo logy, 19 (5), 369-387. 

Alabert. EG., and Massonna t. G.j. , 1990, Heterogeneity in a complex turbiditi c reservoir: 
Stochastic modeling of facies and petrophysical variabilit y: Soc. Petr. Eng .. Am. Inst. 
Min., Metall . Pelr. Eng. , SPE 20604. 

Almeida . A. 5., and Frykman , p. , 1994. Geoswtistical model ing of cha lk reservo ir propenies 
in the Dan Field , Danish North Sea, in Varus, J. M. , and Chambers, R. L. Eds., Stochastic 
modeling and geoslat istics: Am. Assn. Petr. Geo!., AAPG Computer Applicat ions in 
Geology, No.3 , 273-286. 

Al Qassab, 1-1 ., Fitzmaurite, J., Al Ali. Z .. AI Khalifa, M. , Aktas , G. , and Glover, P, 2000. 
Cross-discipline integration in reservoir modeling: the impact on nuid flow simula tion 
and reservoir management : Soc. Petr. Eng .. Am. lnst. Min., Meta l!. Petr. Eng., SPE 62902. 

Arakawa, K. and Krotkov, E., 1996, Fractal modcling of nawraltcrra in: analysis and surface 
reconstruction with range data: Graphical Models and Image Processing, 58(5), 413-436. 

Bashore , W. M., Arak tingi , U. G. , levy, M., and schweller, W. J., 1993, Thc importance of the 
geo logica l model for reservoir characterization using geostatistical techniques and the 
impact on subsequent fluid flow: Soc. Petro Eng. , Am. Inst. Min. , Mctall. Petr. Eng., SPE 
26474. 

Behrens, R. A .. Mac l eod. M. K. , and Tran , T. T , 1998, incorporating seismic attribute maps 
in 3D reservoi r models: Soc. Petr. Eng. , Am. Inst. Min. , Metal!. Petro Eng., SPE reservoir 
Evaluation and Engineering. April. 122-126. 

Besag. J., 1974. Spatial int eraction and the statistical anal ysis of latt ice systems: Journa l of the 
Royal Statis tica l Societ y, Series B. 36(2). p. 192-225. 

Billings, s. D., Beaston, R. K., and Newsam, G. N., 2002a, Interpolation of geophysica l data 
using cont inuous global surfaces: Geophysics, 67(6), 1810-1822. 

Billings, S.D., Newsam. G.N .. and Beaston. R.K. . 2002b, Smooth filling of geophysical da ta 
using cont inuous global surfaces: Geophysics, 67(6), 1823-1834. 

Bolondi , G. , Rocca , E, and Zanoletti , S. , 1976. Automatic contouring of faulted subsurfaces: 
Geophysics, 41 ( 6), 1377-1393. 

Distinguished Instructor Short Course • 11 -1 



References 

Bo n ol i, L. j ., Alaben , E, Ibas, A. , and journ el, A. G , 1992, Constrainin g stochastic images to 
se ismi c data. ill Soares A .. Ed ., Proceed ings of th e Intern ational Geos tati stics Congress, 
Troi a 1992: Kluwc r Acadcmi c Pub!. 

13riggs. I. c. , 1974, Mac hine co ntouring llsing minillluill curvalLlrc: Geophys ics, 39( 1) 39-+8. 

Bryant. I. D., and Flint . S. S., 1993, Quant itat ive clastic reservoir geo logical model ing: prob
lems and perspectives: Int ernal. Ass n. Sedim ent. Spec. PubIs ., .I S. 3-20. 

13 ula nd, A. , Kolbjornsc n, 0., Omre, 1-1 ., 2003, Rapid Spatiall ), Coupled AVO In version in th e 
Fou ri er DOI11<lin : Geoph ysics, 68 , in process. 

BulancL A .. and Omre , 1-1 ., 2003, l3ayesian linear ized AVO inversion : Geo physics, 68( l) , 
185- 198. 

Ca pen, E. c., 1976, The d iffi cu lt y of quantifying un ce rtainty: j ournal of Petroleum 
Tec hn ology, 18(8) ,843-850. 

Ca rle , S. E, an d Fogg, G. E., 1996, Transit io n probability-based geostatisti cs: Mathematica l 
Gco log)'. 28(4) .453-476. 

Ch.n lcs, Th ., Guemenc, j. M., Co rre, 13 ., Vince nt , G., and Dubrul e, 0., 200 1, Experie nce with 
the quantification of subsurface un certaint ies: Soc. Petro Eng., Am. lnsl. Min. , Metall . Petr. 
Eng., SPE 68703. 

Chcwaroungroaj , J ' Varela, O. j ., Lake, L, \V , 2000, An eval uati on of procedures to estimate 
un ce rtaint y in hyd rocarbon recovery predi ctions: Soc. Petro En g., Am. Ins!. Min ., Metal!' 
Pe tr. Eng., SPE 59+t9. 

Chiles,j. P, and Dell1ner, P. , 1999, Geostatislics modeling spatial un certaint y: Wiley Series in 
Pro babilit y and Statistics, Wiley & Sons. 

Chiles , ). P, and Guill en, A., 1984, Variogramm es et Krigl::ages pour la Gravimetrie elle 
Magnetisme: Sciences de la Terre, No. 20. 

Christ ie, M. A., 1996, Upscaling for rese rvoir si mulation: Journal of Petro leum Techn ology, 
48( 11 ) , 1004- 10 10. 

Chu , j., Xu, W., and j ournel , A. G., J 99-+ , 3-D implementation of geostatistical analyses - the 
Amoco cast" sllld y, ill Varus, J M., and Cham bers, R. L. , Ecls., Stochastic modeling and 
geosta Lis ti cs: Am. Assn. Pelr. Geol. , .'\APG Computer Appli cali ons in Geology, NO.3. 
20 1-21 6. 

Claerbout , J., and Grown , M., 1999, Two-dimensional tex tures and prediction -error filters: 
Presented at lhe EAGE 6 1st Co nference and Tec hni cal Exhibition, Eur. Assn. Geosci . 
Eng., Ex tended Abstracts. 

Clae rbolll , j. , 2002. Image estimation b)' example: geo phYSica l so und ings image co nstruct ion: 
llI ul t id i1llensiona I autoregression: < http ://scpwww. swnford. edu/sep/prob Accessed 
j an uary 21, 2003. 

C1c metsc n, R., Hurs!, A. R., Knarud , R. , and O l11re. H .. 1990. A computer program for evalua
ti on of fluvial resCl"voirs, No rth Sea oi l and gas reservoirs II : Graham and Trotman , 
373-385. 

Co teou . Th., 1996, Tying wel l data to seismic data : the mi ssing link between statistics and 
geostatislics: Prese ll1 ed at th e Norsk Petroleu1llforenin g (NP F) Conference on Geophys ics 
for Lithology Pred ictio n. 

Co teou, Th ., 200 1, O n th e use of se ismic \'clociti es in model bUild ing for depth conversion: 

11 -2 • SOCiety of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

Presen ted at lhe EAGE 6J,d Conference and Technica l Exhibit ion. Eur. Assn. Geosci. 
Eng., Exte nded Abstracts, IV-I. 

C01cO ll , Th .. 200201 , Links between ex te rmll drifL Bayesian kriging, collocated cokriging: 
<www.cgg.com/proserv/softwarcJhi nts/K RI.hunl> Accessed January 21. 2003. 

CO k-Oli. Th .. 2002b. Time- lapse fil te ri ng and improwd repeatabilit y with automatic factoria l 
co-krigi ng: Presented at the EAGE 6-l,h Conference and Tech nical Exh ibi tion. Eur. Assn . 
Geosci. Eng. 

Corre. B .. Tho rt~. P. . de Feraud y. v.. and Vi ncenl, G., 2000, Integra ted uncenaint}' assessment 
for project eva lua tion and risk analysis: Soc. PelT. Eng .. Am. Ins!. Min ., Metall . Petro Eng .. 
Soc. Pelr. Eng., SPE 65205. 

Crane, S.D. and Tubman , K.M. , 1990, Rese rvoi r variabilit y and mode ling wit h rractals: Soc. 
Petro Eng., Am. Inst. Min. , Melall. Petro Eng. , SPE 20606. 

Damslelh. E., Tjolscn, CB., Omre. H .. and Haldorsen. H. 1-1 ., 1990. A two-stage stochastic 
model appli ed 10 a North Sea reservoir: Soc. Petr. Eng., Am. Insl. Min ., Metall . Petr. Eng., 
SPE 20605. 

Damsle th. E., I-Iage. A., and Vo lde n. R., 1992, Maxi mum informat ion at minimum cost, a 
North SC;! field development sHiely wilh experiment;!l design: Jo urnal of Petroleum 
Tec hnolog),. -l4(l2). 1350-lJ56. 

Damsleth , E., and Omre, H .. 1997, Geosllltistical approaches in reservoir eval u<llion: Journal 
of Petroleum Tec hno logy, 49(5), 498-501. 

Davis , M. W. , 1987, Production of co nditional simulations via the LU triangular decomposi
tio n ortll e cova riance matrix: Mathematical Geo logy, 19(2),9 1- 98. 

Dell tsch , C. v.. and JOllmei , A. G .. 1992. GSU B, geostatistical software library and use rs 
gUide: Oxford Un iversit y Press. 

Deutsch. C v.. 1992, Annealing tec hn iques applied to rese rvoir modeling and the integrat ion 
of geo logical and engineering (well test) data: PhD Thesis, Stanfo rd Uni versit y. 

Deutsch, C. v., Srin ivasan, S .. and Mo, Y .. 1996. Geosta tistical reservoir modeli ng accounling 
for precisio n and scale of seismic data : Soc. Petro Eng., Am. Ins(. Min ., Me tall . Petro Eng .• 
.sPE 36497. 

Deutsc h. C. v.. 2002. Geostat istical reservoir model ing: Oxford Un iversity Press. 

Doycn, P.M ., 1988. Porosi t), from seismic data: a gcostatistica l approach: Geo physics. 53( 10) , 
1263- 1275. 

Doyen . 1'. M .. Psaila , D. E .. and Slrancienes, S .. 1994. Bayesian sequential ind icator simulation 
or channel sands rrom 3D seismic data in the Osebe rg field . Norwegian North Sea: Soc. 
Pe tr. Eng .. SPE 28382. 

Doye n, P. M., den Boer, L.D., an d Pill et. W. R. , 1996, Seismic porosit)' mapping in th e Ekofisk 
field using a new form of collocated co kriging: Soc. Petro Eng., Am. Ins!. Mi n .. Metall . 
Petr. Eng., SPE 36498. 

Doyen, P. M., Psaila, D. E .. den Boer, L D. , 1997, Reco ncili ng data at seismic and well log 
scales in 3-D ea rt h modeling: Soc. Pelr. Eng., Am. Ins!. Min ., Meta l!. Pet r. Eng .. 
SPE38698. 

Dubru le,O .. 1983, Cross-va lidatio n of krigi ng in a un ique neighborhood: Mathemat ical 
Geology. 15(6). 687-699. 

Distinguished Instructor Short Course • 11·3 



References 

Du brule , 0., and Haldorsen, H. H., 1984, Geosta tistics for pnmeability estimation, in 
Reservoir characterization: Academic Press , p. 223-247. 

Dubrule , 0. , 1994, Eslimating or choosing a geostatistical model? i/l Dimitrakopoulos , R., 
Ed., Geostatistics for the next century: Kluwer Academic Pub1. , 3-14. 

Dubrule , 0., Dromgoole , P. , and van Kruijsdijk, c., 1996, Workshop report: "Uncertainly in 
reserve estimates, " EAGE Conference: Petroleum Geoscience, 2(4) : 1996. 

Dubrule, O., Basin', C , Bombarde, S., Samson, Ph., Segonds, D" and Wonham,]., 1997, 
reservoir geology using 3-D modeling too ls: Soc. Petro Eng., SPE 38659. 

Dubrule . 0., 1998, Geostatistics in petroleum geology: Am. Assn. Petr. Geo!., AAPG 
Continuing Education Course Notes Series, No. 38. 

Dubrule , 0., Thibaut , M. , Lamy, Ph. , and Haas, A., 1998, Geostatistical reservoir characteriza
tion constrained by 3D seismic data: Petroleum Geoscience, 4, 121-128. 

Dubrule , O. and Damslelll , E., 2001 , Achievements and challenges in petroleum geoslatis
tics: Petroleum Geoscience , 7.1-7, 

Duchon , ]. , 1975, FonCli ons splines du lype plaque mince en dimension 2: Seminaire 
d'analyse numerique , No. 231, U.S .M.G. 

Duijndam. A .j. \v., 1988, Bayesian estimation in seismic inversion, pari ii: uncertainty analy
sis: Geophysical Prospecting, 36, 899-918. 

Eide , A. L., Omre, Ii., and Ursin, 13 , 1997a, Stochastic reservoir characterization conditioned 
on seismic data, in Baafi , E. Y., and Schofield, N. A., Eds ., Geostat istics Wollongong 96: 
Kluwer Academic Pub!. , 442-453, 

Eide. A. L, Ursin, B., and Omre, H. , 1997b, Stochastic simula tion of porosity and acoustic 
impedance conditioned to seismic data and well data: 6Th Ann. Mtg., Soc. Exp!. Geophs. , 
Expanded Abstracts, 1614-1617. 

Farmer, C L 1988, The generation of stochastic fields of reservoir parameters with specified 
geostatistical distributions: Mathematics of oil production: Oxford Science Publications, 
Clarendon Press, 235-252. 

Farmer, C. L, 1992, Numerical rocks, ill King, M. , Ed ., Mathematics of oil recovery: Oxford 
University Press. 

Feynmann, R. P., Leighton , R. B., and Sands, M. , 1964, The Feynmann lectures on physiCS, 
Volume II: Addison Wesley. 

Franke , R .. and Nielson, G. M., 1991, Scattered da ta interpolation and applications: a tutorial 
and survey, in Hagen , 1-/ " and Roller, D. , Eds, Geometric modeling methods and applica
tions: Computer Graphics Series, Springer-Verlag, 131-159. 

Fryk man , P., and Deutsch , C. V, 2002, Practical application of geostatistical scaling laws for 
data integration: Petrophysics, 43(3 ), 153-171. 

Gamerman, D., ] 997, Markov chain Monte Carlo: Chapman and HalL 

Gastaldi, C, Roy, D. , Doyen, Ph ., and Den Boer, L., 1998, Using Bayesian simulations to pre
dict reservoir thickness under tuning conditions: The Leading Edge , April , 589-593. 

Geman, D., and Geman, S., 1984, Stochastic relaxation, Gibbs distribution and the Bayesian 
restoration of images: IEEE transactions on pattern analysis and machine intelligence: 
PAMI-6(6),72 1-741. 

11·4 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

Gomez-Hernandez, J. J. , and Journel, A. G. , 1993, Jo int sequential simulation of 1l1ultigauss
ian fields, ill Geostatistics Troia '92, Kluwer Academic Pub!., 85-94. 

Grijalba-Cuenca. A., Torres-Ve rd in, C, and van de r Made, P. , 2000. Geostat istica l inversion 
of 3D seismic data to extrapo late wireline pel rophysical variables away from the we ll : Soc. 
Petro Eng., Am. Insl. Min .. Me tal!. Petr. Eng., SPE 63283. 

Guemene. J. M., Thore . I~. and Meesemaecker. R .. 2002, Structural uncertailllics and lheir 
impact on a Gul f of Gu inea field and sa te ll ite prospects: Presented at the EAG E 64,h 
Confe rence and Exhibilion , Eur. Assn. Geol. Eng. 

Gundeso, R. 0., and Egeland . 0., 1990. Sesimira-A new geo logica l tool fo r 3D modelling of 
heterogeneous reservoirs, ill Nonh Sea oil and gas reservoirs. 11 : Graham and Tro llnan, 
363-37 J. 

Gunning. J and Paterson, L. , 1999, Conditoning of Levy-stable fraclal reservoir models to 
seismic data : Soc. Petro Eng .. Am. Insl. Min .. Metal!. Petro Eng .. SPE 56823. 

Haas , A., and Viallix, J R., 1974. Krigeage applied 10 geophysics, Ihe answer 10 the problem 
of estinlal es and cOlHouring: Geophysica l Prospecting. 24. 49-69. 

Haas. A., and Joussel in , C. 1976. Geostatistics in the petrol eum indust ry. ill Adva nced geosla
listics in the mining indust ry: D. Reidel Publ. . 333-347. 

Haas, A., and Dubrule, 0. , 1994, Geostalistica1 inversion-a sequenti al method of stochastic 
reservoir modeling constra ined by seismic data: First Break. 12 ( I I), 561-569. 

Haas, A., !live r, P. . and Moulic re. D. 1998, Simulat io ns Stochastiques en Cascade. Cahiers de 
Geostat istique: Ecole des Mines de Paris, 6 . 31-43. 

Haldorsen, H. H .. and Damslcth . E .. 1990, Stochastic modeling: Journal of Pt'lroleum 
Technology, 42(4), 404-412. 

Hansen, R. 0., 1993, Interpreti ve gridding by aniso tropic kriging: Geophysics, 58( 10), 
1491 - 1497. 

Hard),. R.L. . 1990. Theol)' and applications of the muhiquad ric-bihannonic method, 20 yea rs 
of discover)'. 1968-1988: Computers Math. Applic .. 19(819) , 163-208. 

Hegstad, B. K., Omre, H. , Tjclemcland, H .. and Tyler, K., 1994. Stochastic simulation and 
conditioning by annealing in reservoir descrip tion. ill Amstrong. M. , and Dowel, P. A., 
Eds, Geostatistical simulations: K1uwer Academic Pub!. , 43-55. 

Hegstad , B. K .. and Omre. H., 2001 , Unce rtai nt), in production fo recasts based on well obser
yations. seismic data , and production history: Soc. Pe tr. Eng., Am. Ins\. Mi n .. Metall . Petr. 
Eng., SPE Journal , Dec., 409-424. 

Hewell . T. A .• 1986, Fractal distributions of reservoi r heterogeneit ), and their influence on 
fluid Iranspon : Soc. Petro Eng .. Am. Ins\. Min ., Meta l!. Petro Eng .. $PE 15386. 

Hirschc, K .. Boerner,S., Ka lkomey, C, Gastaldi. C, 1998, AVO iding pitfalls in geostatistical 
reservoi r characterization: a su rvival gu ide: The Leading Edge. April. 493-504. 

Hahn , M. E., 1988, Geostat istics and petroleum geo logy, computer methods in lhe geo
sciences: van Nostrand Rein hold . 

Holden. L., !'hlUgc , R., Skare, 0 .. and Skorstad , A .. 1998. Modeling of fluvial reservoirs with 
object models: Mathematica l Geo logy. 30(5),-. 

Insalaco, E., Boisseau . Y, Marion. D., Michel , B .. Rowbotham, P. , 200 1, Reservoir-scale 3D 
sedimell lal)' modeling: approaches and impact of integrat ing sed imentology into the 

Distinguished Instructor Short Course • 11-5 



References 

reservoir characterization workflow: Presented at the Am. Assn. Petro Geo l. Intcrnational 
Mcet ing. 

lsaaks, E. H., and Srivastava. R. M .. 1989. Applied gcoslat istics: Oxford Universi ty Press. 

Isenberg, C, 1992, The science of soap films and soap bubbles: Don':r. 

Jeffery, R. W , Stewan. \. C, and Alexander, D. W , 1996, Gcost:lIistical estimation of depth 
conve rsion velocit ), using well control and gravity daw: First Break 14(8).3 13-320. 

Johnson. H. D., ,lIld D. E. Krol , 1984 , Geological modeling of a heterogeneo us sandstone 
reservoi r: Lower Jurassic s latfjord Formation, Brent flrld : Soc. Petr. Eng. , Am. Inst. Min. , 
Metal!' I)etr, Eng" s PE 13050. 

Johnson , M. E .. 1987. Multivariate slatisti cal simulat ion: \-Vil ey Se ries in Probability and 
Mathemat ical s t:ui stics, John Wil ey & So ns. In c. 

Journc l, A. G., and Huijbregts, eh. J .. 1978, Mining geostatistics: Academic Press, Inc . 

Journcl . A. G., and Gomez Hernandcz, J-j., 1989, Stochasti c imagi ng I)f th e Wilmington 
Clastic Sequence: Soc. Pelf. Eng .. Am. Ins\. Min. , Mctrlil . Pelr. Eng., SPE 19857. 

Journel. A. G .. 1993, modeling uncertaint y: some conceptual thoughts, ill Dimitrakopoulos , 
R" Ed .. Geostatis tics for the next century: Kluwer Academic Pub!. 

Journcl, A. G" 1999, Ma rkov models for cross-covarirlnees: Mrlthcmatical Geo logy, 33(2), 
11 7-131. 

Kane . J . Roell. W .. and To ksoz, N .. 200 1. Simultaneous le.lst squares deconvolut io n and krig
ing using conjugate gradients: EAGE 63 rtl Confercnce and Techn ical Exhibit ion. Extended 
Abstracts, A·024, 

Kelkar. M .. 2000. Application of geostat istics for resc r\'oir charaetcrization-accomplish
melllS ,md chall enges: Journal of Canadian Pc troleum Tcchology, 39(7). 25- 29. 

Kimeldorf. G. S., and Wahha . G .. 1970, A correspondence bteween Ba),esilln estimation on 
stochas tic processes and smoothing by splines: Annals of Mat hematiclll Statistics. 41(2). 
495-502. 

Lam)'. Ph ., Swaby, I~ A, Rowbotham, r S. , and Marion , D., 1998a, Faulted rese rvo ir models 
from high-reso lution geoswtistical inversion: EAGEISPE In!ermu ional Symposium on 
Petroleum Geostat istics, Ex tended Abstract. 

Lam}" Ph .. Swaby, P A, Rowbotham, P S .. Dubrulc, 0" and Haas. A .. 1998b, From seismic to 
reservoir properties using geostatis tical inversion: Soc, Petf. Eng .. Am. Inst. Min .. Metall. 
Petro Eng" SPE 49147. 

Lamy, Ph ., Swaby. P. A. Rowbotham, I~ S., Dubrule , 0 ., and Haas, A., 1999, From seismic to 
reservo ir propert ies with geostatisllcal inversion: SPE Reservoir EV;lluatio n and 
Enginee ring, 2(4), 33+-340. 

Lia , 0 .. Omre, I-\. , Tjelmeland , rI ., Holden, L. and Egeland. T. . 1997, Uncertainties in reser
voir produc ti on forecasts: AAPG Bul l. , 8 1( 5) , 775-802. 

Lo. T. W .. and Bashore . W. M .. 1999, seismic constrained fac ies modeling lIsing stochastic 
seismic inve rsion and indicator simulation. a orth Sea Example: 69'h Annual Mee ting, 
Soc. Expl. Geophys. , Expllnded Abstnlcts. 923-926. 

Macdonald. A. C, Berg, j. 1. . Skare . 0" Holden. L. 1995, Constraining a stochastic model of 
channel geometri es using seismic daTa: 57,h EAGE Conference, Eur. Assn. Geosc i. Eng. , 
Extended Abstracts. F-052. 

11-6 • Society 01 Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubrule 

Mandclbrot , 13., 1982, The fnletal geo metry of n:llurc: Freeman und Co. 

Marion, D., Insalaco , E. , Rowbotham. 1'. . Lam },. Ph. , and Michel. 13 .. 2000, Constraining 3D 
stati c models to seismic and sedimentological data : a further step towards reduction of 
uncertainties: Soc. Petr. Eng .. Am. Ins1. Min .. Metall. Pelr. Eng .. SPE 65l32. 

Massonmll. G. J. . 2000. Can we sample the complete geo logica l ullcenaint }' splice in reservoir 
modeling uncertaint y estimates?: SPEJournal, 5(1), -+6-59. 

M:uheron . G .. 1961, Tr;:litc de Gcosta tistique Appliquee: Technip. 

Matheron. G .. 1970. The theory of regionaliz{.'d variables and its applications: Centre de 
Gc.oSWtistique de I"Ecole des Mines de Paris , Les Cah iers du Cent re de Morphologic 
Mathcmat ique. Fasc. 5. 

Malh<.'ron, G .. 1973, The intrinsic random functions and their applications: Advances in 
Applied Prob<1bility, 5, -+39--+68. 

M<11hcron, G .. 1981a. Splines and kriging, their fo rm<1l equivalence: Syraclise Univers it y Geol. 
Com rib ., 8. 

Matheron , G .. 1981 b. Rem<1 rques Sllr Ie Krige:lge et so n Dua l: Cel1lre de Geost:lt islique de 
l'Ecolc des Mines de Paris. Internal Report N-695. 

Malhcron, G., 1987, A simple <1nswer to an elementary qucstion . lcllcr to the editor: 
Mathcmati cal Geolog)'. 19(5). -+55-457. 

Mathieu , G., and NUll. L.. 1985, A geostatistital approach to veloci ty mapping: Schlumberger 
External Publication. 

Maus. S .. 1999. Variogram analySiS of magnetic and gravily data : Geophysics. 6-+ (3). 
776-784. 

Maus S .. Scngpiel , K. I~. ROuger. 13.. Siemon , B. ;lI1d Tordiffe. E. A. W, 1999, Variogram analy
sis of helicopter magnetic daw to identify paleochannels of the Omaruru River, Namibia: 
Geophysics. M (3). 785-79-L 

Mitas L.. and Milasova , 11 .. 1988, General variat ional approach 10 the interpolation problem: 
Compul. tvlath. Applic. . 16(1 2). 983-992. 

Mi tasova. II. . ;Hld Mitas, L. , 1993, Interpolation by regularised spline with tension: theory 
and implementation: Mathematical Geology, 25(6), 6-+ 1-655. 

Mosegaard . K., and TantnlOla. A .. 1995. Monte Ca rlo sampling of so luti ons to inve rse prob
lems:J. Geop h}'s. Res .. 100(B7) , 12.-+3 1-12.-+-+7 . 

Mundim. E. C. Johann. P, and Remacre. A. Z .. 1999. Factorial kriging anal ysis: geostatistical 
filtering applied to resen'oir characterization: The Leading Edge. July, 787-788. 

Oliver, D. S., 1998, Calcu lation of the inverse of the cm'ariance; M;uhematic,ll Geology, 
30(7), 9 11 -933. 

Oli \"Cr.D.S .. 1995. Moving averages for Gaussian simulation in two and three d imensions: 
Malhemalica l Geology. 27(8), 939- 960. 

Omre. 11. . 1987. Bayesian kriging. merging observations and qualified guesses in kriging: 
tv\:uhelllflticfli Geology. 19( 1), 15-39. 

Omre , 1-1 ., and llalvorse n, B., 1989. The Bayes ian bridge between s imple and universal krig
ing: Mathematical Geology, 21 (7) .767-786. 

Omre. H., and l Jel llleland. l l. . 1997, Petroleum gcoslatistics. illl3aafi E. Y. and Schofield , N. 

Distinguished Instructor Short Course • 11 -7 



References 

A., Eds, Geos tati sti cs Wo][ongong '96. Klu we r Academic Publishers, Netherlands, I. 
41-52. 

Ovreberg, 0., Damsleth. E .. and Haldorsen, H. H., 1992. Putting error bars on reservoi r engi
neering forecasts: Journal of Pelroleum Technology, 44(6), 732-738. 

Parks, K. P, Bentley, L R. , and Crowe, A. 5., 2000, Capwring geological real ism in stochastic 
simulations of rock systems wit h Ma rkov statistics and simulated annealing: Journal of 
Sedimentary Research, 70(4) , 803- 8 \3. 

Pawar, R. j. , Edwards, E. B., and Whillley, E. M., 2001, Geosta tistical ciwracterizat ion of the 
Carpinte ria fi eld, Cal iforn ia: Journal of Petroleum Science and Engineering, 3 1, 175- 192. 

Perez , G., and Chopra. A .K. . 199\, Evaluation of fractal models to describe reservoir hetero
ge neity and performance: Soc. Petro Eng., Am. Inst. Min ., Metall. Pel r. Eng .. SPE 22694, 
p.387-398. 

Perez, G , Chopra , A. K. , and Severson , CD., 1997, Integrated geosta tistics for model ing 
nuid contacts and shales in Prudhoe Bay: Soc. Pe tr. Eng., Am. Ins\. Min., Mewll. Petr. 
Eng., SPE Formation Eval uation , Dec.. 213- 219. 

Piazza , j. L. , Legeron , 5., and Sandj ivy, L.. 1997, Use of geostatistics to improve seismic veloc
ities: case studies : 67,10 An nual Mtg. , Soc. Exp\. Geophys., Expanded Abstracts, 
1293-1296. 

Ravenne, C, and Beuche r, 1-1.,1988, Recent developments in description of sedimentary bod
ies in a fluvio-delwic reservoir and their 3D cond it ional simulations: Soc. Pelr. Eng., Am. 
Insl. Min ., Metal\. Petr. Eng., SPE 18310. 

Renard , D., \ 990, Bluepack 3D and its use in the petroleum indust ry: Soc. Petr. Eng. , Am. 
Ins\. Min .. Metal l. Pet ro Eng. , SPE 20352. 

Ripley, 13 . D., 1981, Spatial statistics: John Wiley &- Sons, Inc. 

Ritzi. R. W. , 2000, Behavior of Indicator variograms "ncl transition probabilities in relation to 
th e variance in lengths of hydrofacies: Water Resources Research , 36(11 ), 337j-3381. 

Rivoirard , j., 2002, On the slructura ll ink bctween variables in kriging with an externa l drift : 
Mathematical Geology. 34(7). 797-808. 

Rose , P, 2001, Risk ana lysis and management of pctroleum exploration ven tures: Am. Assn. 
PetT. Geol. , AAPG Methods in Exploration Series, No. 12. 

Rowbo tham, P. Mario n, D., Lamy, Ph., Swaby, P. , and Rabary, G. , 2000, Detailed reservoir 
characterization of the Elgin fi eld using geostalistical inversion : 62nd EAGE Conference. 
Eur. Assn . Geosci . Eng .. Extended Abstracts , A-17. 

Rudkicwicz, J. L. Gucril lot, D., and Gall i, A., 1990, An integrated software for stochast ic 
modding of reservoir lithology and property wi th an example from th e Yo rkshi re Midd le 
Jurassic , ill Buller el aI. , cds., North Sea oil and gas reservoirs, II: Graham &- Trotman 
Ltd. , 399-406. 

Sams, M.s. , Atki ns, D., Said, P. T. , Parwito. E .. and va n Riel , I~, 1999. Stochastic inversion for 
high resolution reselvoi r characterization in the Cent ral Sumatra Basin: Soc. Petro Eng .. 
Am. Inst. Min. , Metall. Pelr. Eng. , SPE 57260. 

Samson, Ph. , Dubrule 0. , and Euler, N., 1996. Quantifying the impact of strucwral ullcer
ta inties on gross-rock volume estimates: Soc. PdT. Eng., Am. Inst. Min., Mctall. Pctr. 
Eng. , SPE 35535. 

11-8 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 



Olivier Dubruie 

Sandjivy. L , 1987, Ana lyse Krigeante des donnees de Prospection Geochimiquc: 
Docteur- Ingcnieur Thesis, Centre dc Geostatistique Ecole Na tionale Superieure des 
Mines de Paris. 

Sandsdalen, c., Barbieri, M., Ty ler, K. , and Aasen, j. 0 ., 1996, Applied uncerta inty analysis 
using stochastic modeling: Soc. Petro Eng. , Am. Ins!. Min. , Metall . Petro Eng., SPE 35533. 

Scales. J . A. and Tenorio , L . 2001, Prior information and unccrtaint y in inverse problems: 
Geophysics , 66(2) , 389-397. 

Sen , M. K., and Stoffa , P. L, 1996, Bayesian inference, Gibbs' Sampler and uncertainty estima
tion in geoph}'sical inversion: Geophysical Prospecting, 4 , 313-350. 

Shrestha, R. K. . and Boeckmann , M .. 2002. High-reso lution 3D impedance data for reservoir 
modeling: 64'h EAGE Conference and Exhibition. Eur. Assn. Geosei. Eng. , Extended 
Abstracts , H-37. 

Skare . 0 .. Skorstad. A. , Hauge, R .. and Holden, L. , 1997, Conditioning a nuvia l model on 
seismic data. , if] Baafi E.Y, and Schofield N.A., Eds., Geostatistics Wollongong '96: 
Kluwe r Academic Pub!. 

SPEJWPC, 1997. Rcserves definit io ns approved: Journal of Petroleum Technology, 49(5). 
527-528. 

Spector. A., and Grant, F. S., 1970, Statistical models for interpreting aeromagnetic data: 
Geophysics, 35, 293-302. 

Spencer. J. A .. and Mo rgan. D. T. K, 1998, Application of forecasting and uncertainty mcthods 
to production: Soc. PelT. Eng., Am. InsI. Min ., Metall. Pet ro Eng., SPE 49092. 

Strehclle , S., and Payrazyan, K., 2002, Modeling of a deepwater turbidite reservoir conditional 
10 seismic data using multiple-point geoslalistics: Soc. Petro Eng., Am. Ins!. Min ., Metall. 
Petro Eng .. SPE 77425. 

Szeliski. R., and Terzopoulos, D. , 1989. From splines 10 frac tals: Computer Graphics, 23(3), 
51-60. 

Szerbiak , R. 13. , McMechan. G. A .. Corbeanu, R .. Forster, C , and Snelgrove. S. H., 2001, 3D 
characterization of a clastic rese rvoir analog: from 3D CPR data to a 3D nuici permeability 
model: Geo physics, 66(4), 1026-1037. 

TaranlOla, A .. [987, In verse problem theory: methods for data rltling and model parameter 
estimat ion: Elsevier Science Publ. Co., In c. 

Taylor, S. R., 1996, 3D model ing 10 optimise production at the successive stages of field life: 
Soc. Petro Eng .. Am. Ins!. Min ., Metal !. Petr. Eng., SPE 35501. 

Thore, P., ShlUka, A., Lecour, M., Ai t-Etlajer, T. , and Cognot , R .. 2002, Structural uncertain
ti es: determination, management. and appl ica tions: Geophysics. 67(3), 840-852. 

Tinker, S. W., 1996, Building the 3D jigsaw puzz le: applicatio ns of sequence slnuigraphy to 
3D reservoir characterization, Pe rmian Basin: AAPG Bul!. , 80(4), 460-485. 

Tjelmeland , H., and Omrc, H., 1997. A Complex sand-shale facies model condi tioned on 
observations from wells, seismics and production , in Baafi . E. Y, and Schofi eld , N. A., 
Eels , Gcostat istics Wollongong '96: Kluwer Academic Publ. , I. p. 634-643. 

Trail. 1". T.. Deutsch, C v., and Xie , Yo, 200) . Direct geostatistica l si mulation with Tlluitiscale 
well. se ismic and produc tion data: Soc. Petro Eng .. Am. Ins!. Min ., Metal!. Petro Eng., SPE 
71323. 

Distinguished Instructor Short Course • 11-9 



References 

Tyler, K" S<l ndsdalen , L. . Maeland , L., Aasen, j. 0 .. Si ring, E .. and Barbieri . M .. 1996. 
Int egrated stoc hastic modeling in reservoir eva luation to project eval uation a nd risk 
assess ment: Soc. Pelr. Eng" Am. Ins\. Min .. Metal!. Pe tr. Eng. , SPE 36706. 

Tyler, N .. Barton , M. D., and Finley. R. j.. 1991. Outcrop characterization of flow lin it and 
sea l properties and gcomctries, Ferron Sandstone, Utah : Soc. Petro Eng" Am, lnsl. Min .. 
Mew l!. Petr. Eng .. SPE 22670. 

Ul rych. j. , Sacchi , M. D., and Woodbury. A. , 200 I , t\ l3.'lyes tour of inversion: a tutorial: 
Geophysics, 66(1), 55-69. 

Vincent. G" Corre. Il. and Thore, P. , 1998. Managi ng SlrLlClllral unce rtainty in a mature rield 
for optimal well placeme nt: Soc. Petr. Eng .. Am. lnsl. Min" Metal!. Petr. Eng., SPE 48953. 

Wadsworth, G. P., Robin so n, E. A. , I3ryan , j. G. , and Hurley, P. M. , 1953, Det ection of rellec
tions on seismic records by lincar operators: Geophysics, 18 (3),539-586. 

Webe r, K. J. , and van Gelltls. L. C. 1990. Framework for co nstructing clastic reservoir si mu
lation modcls:journal of Petroleum Technology. 42(10). 12-+9-1197. 

\Vessel. P. . and Bercovici . D., 1998, Interpo lation with splines in tension : A Green's Function 
approach: Mathematical Geology, 30(1 ), 77-93. 

Xu. W. , Tran , T. T. , Srivastava. R, M., and journel. A. G .. 1991, Integrati ng seismic data in 
rese rvoir modding: the co lloca ted cokriging allernative: Soc. Petr. Eng., Am. Ins!. Min" 
Me ta l!. Petro Eng. , SPE 2-+742. 

Yao, T, 1998. Auto matic covariance modeling and condit ional speclral simulatio n with fast 
Fourier transform: PhD Disse nalion. Stanford Universit y. 

Yarlls. j. M., Yang, K. , Srii srapo rn. S .. Chllelll1haisong, N .. and Sangwongwanich, K .. 2000, 
Integrating 3 D seis mic lind gcoslat islics: building a 3D model of a Tert iar), dehaic lind 
shallow marine dcposil , Malay Basin, offsho re Gu lf of Thailand: PrescllIcd al the 2000 
OTC Conference , OTC 11961. 

11 ·10 • Society of Exploration Geophysicists I European Association of Geoscientists & Engineers 


