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Preface

GeoComputation 2003, held at the School of Geography, University of Southampton
(SoG, UoS) and the Ordnance Survey on 8 to 10 September 2003, was the seventh
in a series of successful international meetings concerned with solving geographical
problems through the use of computers. The conference was organized by Peter M.
Atkinson, Giles M. Foody, and David Martin. However, to take full advantage of the
enthusiasm and interest of the large number of quantitative geographers at the SoG,
UoS, the conference was advertised both as a whole and as a series of special interest
sessions organized by individual staff in the institutions. Three of those special interest
sessions were “Remote Sensing of Change” (Giles M. Foody), “Spatially Distributed
Modelling of Land Surface Processes” (Peter M. Atkinson and Stephen E. Darby),
and “Urban Dynamics” (Fulong Wu). These sessions were sculpted, for example,
through clear guidance in the calls for papers, so as to develop academically strong,
but focused collections of research papers. This was achieved both within and between
the three sessions in order to assemble a critical mass of researchers interested in
spatial dynamics. The result was a lively and interesting conference, for which this
book provides a lasting record.

GeoComputation research arose from the application of computer power to solve
geographical problems. The uppercase C in GeoComputation was retained to empha-
size that each part (geography, computation) was equally important. Much was written
at the end of the 1990s about the definition of GeoComputation and several books
emerged on the topic. Importantly, whereas early proponents emphasized the efficacy
of computational solutions, almost as an antidote to the strictures of model-based
statistics, Longley (1998) was at pains to retain dynamics (and, thereby, process) as
a component of GeoComputation. In many ways, this book focuses on that part of
GeoComputation that deals with dynamics.

The conference itself was a great success both academically and socially and
all those involved will no doubt have fond memories. Through very generous
sponsorship, we were able to attract three very high profile academics as keynote
speakers. First, John C. Davis (Kansas Geological Survey) opened the conference by
giving the International Association for Mathematical Geology, IAMG, Distinguished
Lecture. On the second day, during the afternoon session (organized by and held
at the Ordnance Survey, Southampton) Mike Batty (CASA, UCL) delivered the
Ordnance Survey keynote lecture and, on the final day, Peter Burrough (Utrecht,
The Netherlands) presented the Taylor & Francis keynote lecture. All presentations
were fascinating and maintained the “buzz” of the conference. The conference was
also successful as a social event. The conference dinner was held at the Hampshire
County Cricket ground at the Rose Bowl, Southampton. Equally memorable was
the quiz night (organized by Gary Llewellyn and Matt Thornton) held the evening
before. Delegates enjoyed answering a bizarre range of “pub quiz” style questions
on the subject of (believe it or not) GeoComputation! One question involved actually
deciphering some MATLAB code which drew the letters GC in raster image format.
More than one team answered correctly!
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All chapters in this book were presented within one of the three special sessions
(above) at GeoComputation 2003, with the exception of the introduction (kindly
written by Paul Longley — by invitation), the section introductions and the conclusion.
The Foreword was kindly written by Peter Burough, also by invitation. All chapters
have been subjected to peer review, each chapter being scrutinized by three referees
(one selected from the set of authors within the book and two external to the book).
While we do not name referees here for the sake of anonymity, we wish to record our
deepest gratitude to those who gave their time to ensure the quality of the individual
chapters and of the book as a whole. We are also grateful to the authors themselves
for delivering their manuscripts and revisions to very strict deadlines. That the entire
set of over 20 chapters was returned within the very tight schedule is remarkable.
Further, the referees comments were often critical as befits scholarly work and the
authors responded admirably to the challenge of dealing with such comment. As a
result, a rigorous refereeing process was completed in a remarkably short time frame
(6 months from conference to submission of the entire edited volume to the publisher).

Organizing and running a major international conference is a huge task and it
would not have been possible without the help of many individuals. We would now
like to take the opportunity to thank these individuals. First, we would like to thank our
sponsors. These included Taylor & Francis, John Wiley & Sons, the Royal Geograph-
ical Society with the Institute of British Geographers Quantitative Methods Research
Group (RGS-IBG QMRG), the Association for Geographic Information (AGI), and
PCI Geomatics. We are very grateful to these bodies for their generous support. We
also acknowledge the goodwill of our personal contacts within these organizations
who continue to support important academic activities such as GeoComputation 2003.
Second, many individuals helped with the actual day-to-day running of the confer-
ence. In particular, Karen Anderson, Richard Breakspear, Marie Cribb, Jana Fried,
Pete Gething, Nick Hamm, Gary Llewellyn, Nguyen Quang Minh, Ajay Mathur,
Aidy Muslim, Nick Odoni, Sally Priest, Isle Steyl, Matt Thornton, Debbie Wilson,
and Matt Wilson provided invaluable assistance as the conference helpers. These indi-
viduals, all graduate students at the SoG, UoS, constantly overwhelm us with their
generosity of time and effort. Their help is vital to running any sizeable conference
and a great debt of gratitude is owed to them. We thank the Ordnance Survey for help
with the smooth running of the conference at Ordnance Survey on the Tuesday after-
noon. We thank, in particular, Vanessa Lawrence, Toby Wicks, Nick Groome, and
David Holland. Also, we wish to thank the Geodata Institute and, in particular, Julia
Branson who played a crucial role in handling the conference registration and the
delegates packs, as well as liaising with the UoS Conference and Hospitality Office.
Finally, we wish to thank all others who contributed to the production of the book.
In particular, we thank Randi Cohen and Jessica Vakili (CRC Press) for their enthu-
siasm and positive attitude, Denise Pompa (SoG Office) for help with incorporating
editorial revisions into manuscripts, and Adam Corres (SoG Office) for his help with
finances, conference exhibitions and general running of the conference.

GeoComputation 2003 was a challenge to organize and run. We managed to
achieve a successful and memorable conference without pain through the generous
goodwill of all those associated with the conference. We hope that this book, which
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acts as alasting record of the event, is found to be useful by academics and practitioners
alike, and makes a valuable contribution to the growing literature on GeoDynamics.

REFERENCE
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Foreword

This volume comprises a fine selection of the papers presented at the 7th International
Conference on GeoComputation held at the School of Geography, University of
Southampton on 8 to 10 September 2003. The term GeoComputation has been gath-
ering strength in recent years: it embraces the links between numerical modeling
(i.e., computing) and its application to explain and increase our understanding of a
wide variety of the dynamic aspects of the physical (i.e., geological, geomorpholo-
gical, hydrological, and ecological) and social (urban change and land use planning)
processes operating on the earth’s surface. Many new insights into these processes are
becoming available as enthusiastic, computer-literate geographers continue to explore
the opportunities for linking numerical models of landscape and urban dynamics to
the increasingly large and detailed data sets that are being provided by both surface
and satellite sensors. Indeed, many of the surface modeling applications developed
for Earth are just as relevant for creating detailed views of distant Earth-like planets
and moons (Pike, 2002). So, although the term GeoComputation may seem limited to
our own planet, in fact it embraces a generic set of widely applicable tools for model-
ing surface processes. The main differences between planet Earth and the Earth-like
moons and planets are that (a) in spite of the skills of rocket scientists and robot
technology to persuade us otherwise, field work on the latter is severely limited, and
(b) currently active hydrological, biogeographical, and urban processes seem to be of
great importance only on the earth.

The editors have divided the book into three convenient sections: Remote Sensing,
Physical Processes, and Human Processes. This division implies strong separation
between these themes, but once one has read the contributions to this book, one gets
the idea that there may be other generic structures and themes currently dominat-
ing the GeoComputational literature that better describe the shared aspects within
rather than between the sections. These are (a) issues of accuracy and uncertainty,
(b) dynamic modeling, and (c) applications of cellular automata and agents, and
possibly combinations of all three.

In Section I, for example, the most common focus is on the spatial resolution and
accuracy of the gridded satellite sensor image data, and this theme of data quality
is repeated in the other sections, being applied to processes as physically diverse as
flood modeling and urban change simulation. Several authors address the problems of
making assessments of the accuracy of the classification of remotely sensed images.
There is particular concern that few commercial image processing systems provide
software to monitor classification quality, in spite of the large amount of knowledge of
the problem. Why, they ask, are the vendors (and users) of commercial software
systems so disinterested in error management and quality, which is such a recurring
theme in the scientific side of the GeoComputation world? So, they take on the task
of providing software tools for error analysis in a way that addresses both crisp and
soft classification problems.

A related topic is the issue of how accuracy and error may vary with aggrega-
tion and spatial resolution. Although the problem is illustrated by a scanned aerial
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photograph of vegetation, the chapter addresses a general problem in the analysis of
raster data that has wide application.

Change detection is also a commonly recurring theme. Holland and Tompkinson
describe the approach being investigated by the U.K. Ordnance Survey to help ahuman
photo interpreter pick out land use and cover change from aerial photographs using
semi-automated user-guidance techniques. The more or less deterministic approach
adopted here contrasts with and complements the chapter by Comber et al., who
opt for a statistical approach to identifying land cover change. Brown addresses the
problem of per-pixel uncertainty for change detection as revealed by airborne data.
Which approach to change detection is better? What is in principle the difference
between change detection (as a once off comparison of scenes) and a dynamic model
of continuous change in a landscape or cityscape?

Further, what is the role of uncertainty in these studies? We shall have to wait
and see, but my guess is that both the deterministic and the stochastic approaches are
needed, and of course, accuracy and error analysis will be part of the game. For this,
a study of patterns of noise could take spatial analysis a step further by examining
the effects of visual texture (which is a surrogate for colored noise) in images and
how the presence of different textural patterns in an image actually provides useful
information.

Not everyone finds statistics necessary, and there is new material on the role
that computer science and modern information theory may play in spatial analysis.
The aim is to develop smart spatial systems around the CommonKADS approach,
which recognizes new ways to deal with the complexity of the knowledge engineering
process. This application of CommonKADS is new to spatial (remotely sensed) data
and may provide interesting new insights.

One of the revelations to come out of GeoComputation in recent years concerns
the ability to deal with geographical phenomena not just in space but over time as well.
And then, time does not mean a single still point of the turning world but a vector that
admits that the process includes the possibility of feedback, thereby implying continu-
ous and often unpredictable change. The basic elements of space may be grid cells or
vectors, but most GIS-based GeoComputational modeling implies dynamic change,
whether the focus of study is a landslide, river flooding, or the intricacies of urban
dynamics. In terms of GeoComputation, much is shared between models of phys-
ical and human processes, especially when the common link is provided by cellular
automata (CA) or by agents.

As Fulong Wu discusses in his introduction to Section III, human processes
provide the most dynamic forms of GeoComputation and active use of CA methods,
at least in terms of visual material and model complexity. Is this because human pro-
cesses are easier to deal with than geological or hydrological systems? This is almost
certainly not so, but demographics dictate that more people are interested in urban
dynamics than geomorphology or agriculture. Eighty percent of the world population
live in cities and the changes they bring are so rapid, from the simple movements
of millions of shoppers to geographical real-time, to urban landuse change manage-
ment or problems of waste disposal or food supply requires effective networking and
interaction on a real-time basis. Is it purely a question of numbers and concentra-
tions of people and money that mean that urban problems attract more attention than
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geomorphology? As Keith Clarke points out, one important difference in modeling
approach between the urban and the physical world is that urban models often aim
explicitly to modify the future, whereas physical models usually only attempt either
to explain past events or to give an indication of how a current situation has been
reached. Only for short-term processes in the earth sciences (meteorology, hydro-
logy, flooding) is the concept of “forward modeling” in geology and geomorphology
really applicable, though the current geological use of the term covers periods from
tens to hundreds of thousands of years.

Throughout the book there are many contrasting aspects concerning the practice
of “good modeling.” A recurrent theme is that both physical and urban modelers need
powerful, complex, simple to operate, easy to understand, flexible, numerical models
that can operate on a minimum of expensive, high spatial resolution, readily available
data. An implicit aim is to keep the models simple so users and decision makers can
understand what they are doing; data requirements must be modest so models are
not too expensive to run. But the internal structures of the models must be as rich
and diverse as possible so that the models will mimic the real-world complexity that
people experience. In order to even begin to match these opposing requirements,
the urban modelers have turned to cellular automata methods and agents in a big
way, even though Michael Batty, Helen Couclelis, and colleagues have pointed out
elsewhere (Environment and Planning B 1998) that CA and agents may not yet be up
to the job. Perhaps we still have far to go. The difficulties with these approaches may
not be so much that they are fundamentally unsound, but that initially at least, they
have been supplied with deterministic rules. Given the stochastic nature of so much
of the world, it seems that the next level of CA and agent-based models will need
to include powerful methods for capturing uncertainties in the processes under study
and appropriate methods of error propagation (or error recognition) in these models
will need to be devised. Is it really likely that simplicity, honesty, and complexity can
all be found together in a single model?

My own contribution to this symposium was to present the Taylor & Francis
Lecture, which was a unique experience, because it was a keynote presentation that
rounded off the meeting rather than introduce a new topic to one’s colleagues. Having
seen and heard the contributions before me, I decided to adopt an approach that dealt
with the growth and decay over space and time of diverse subjects such as citation fre-
quency of scientific publications and invading armies. Interestingly enough, citation
frequency data published by Taylor & Francis in Advances in Physics (1950-2002)
and the International Journal of Geographical Science display certain similarities. In
fact, they adhere to what is well known as Zipf’s law, which states that if the data are
ranked from largest to smallest and are plotted on double-log axes together with the
attribute of interest (e.g., number of citations), the plot is frequently a straight line.
This means that the decay of citation index follows a power law, as do all other ranked
data that yield a straight line on a double-log plot, such as the decay of Napoleon’s
Grand Armee enroute and back from his disastrous attempt to capture Moscow in
1812.

Many similar kinds of data seem to follow Zipf’s law, and power-law hunting
has become a regular sport (see Barabasi, 2002). Large databases with hundreds of
thousands of instances yield results that are similar to those derived from a couple of
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hundred. Batty (2003) has demonstrated that the model can also be applied without
change to spatially distributed phenomena, such as local densities of researchers.
The problem is, though the model (i.e., the “law”) is simple, needs not too much
expensive data and frequently produces robust results, no one really seems to know
why. Some put it down to chance, but why should chance deliver similar forms?
There must be a reason, but it has yet to be explained. A worthy challenge for a future
GeoComputation!

Peter A. Burrough
Utrecht
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GeoDynamics: An Introduction

Paul Longley

GeoDynamics is of fundamental importance to our ability to represent the world
around us. Geographic information systems (GIS) and remote sensing provide us
with the ability to abstract selectively from the seemingly infinite complexity of the
real world: the accumulated experience of applications helps us to develop guiding
principles, techniques, and conventions that will allow us to do still better next time.
Remote sensing can provide us with increasingly detailed, and frequently updated,
classifications of the surface (and shallow sub surface) of the Earth. But apparent
success in depicting how the world looks is much less useful than understanding of
how the world works, because only knowledge of how the world works enables us to
predict. Most observers would concur that GIS and remote sensing are not only suc-
cessful, but also strongly convergent, technologies: however, their use to represent the
world often raises frustrating and profound questions — and this is often because of the
limitations of cross-sectional analysis. GIS is important because “almost everything
that happens, happens somewhere” (Longley et al., 2001, p. 1); understanding of
GeoDynamics is important because almost everything that happens also entails a
lifecourse of events and occurrences, and robust understanding necessarily requires
represention as more than a single or limited sequence of cross-sectional images.
Almost any geographic representation of the world is necessarily incomplete, and
the central art of cross-sectional GIScience entails informed judgment about what to
retain and what to discard (Goodchild, 1992). Usually this decision is largely made
for us — we have to “make do” with the raw data that we turn into usable information
using GIS, simply because that is all that is available. Much activity in GIScience thus
becomes concerned with managing the uncertainties that the process of “making do”
generates. These tasks are compounded if, in building a representation, temporal
as well as spatial granularity and completeness is compromised by circumstances
beyond our control. In representing time as well as space we are faced with the total-
ity of reality, and until recently, GIS and image processing software has simply not
been up to this task. Yet, the contributions to the first part of this book illustrate the
remarkable transformations that are now taking place in our abilities to represent, and
hence understand, the dynamics of change. Remote sensing and image processing
provide long-established approaches to representing surface characteristics that are
geographically extensive, detailed and (most important of all in the present context)
frequently updateable. This can reduce some of the uncertainty inherent in building
representations of how the world works. The chapters in Section I of this book set
out a number of current research perspectives upon management of the uncertainties
that dog our representation of GeoDynamics. Here, fuzzy classification, manage-
ment of scale and aggregation, increased ontological understanding and tactical user

XXi
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interventions are all mooted as ways of improving the depiction of change over space.
Together, these various contributions engender the shift beyond image processing
towards image understanding that is well underway in remote sensing, and illustrate
how we are beginning to understand not just the state of geographically extensive
areas but also their dynamics.

Richer depictions of the world are also necessary for improved understanding and
simulating physical processes. Developments in the creation of geographic informa-
tion are of undoubted importance here, and the last decade has seen the reinvention of
large parts of geomorphology and geology as field disciplines, with the near ubiquitous
deployment of portable measurement devices that are enabled with global positioning
system (GPS) technology. If our representations are necessarily uncertain and incom-
plete in a static sense, so our representations of evolution are inherently more so,
and together these provide significant challenges to the scientific community in the
understanding of landscape change. But greater explanation and increased predictive
ability also entails better models of the dynamic processes extant in three dimen-
sions. The range of applications discussed in Section I of the book are essentially
two-dimensional with the addition of time (2-D and 3-D): the emphasis upon geo-
morphologic process in Section II raises more explicitly the management of the third
dimension, not least because outcomes such as flood inundation and vegetation spread
are heavily focused upon such considerations. The range of applications described in
this section are also particularly interesting because the temporal granularity of simu-
lations is here much more coarse — the objective is still creation of predictions that
work over short-time horizons but unlike the remote sensing contributions, the basis
to measurement and the premises concerning evolutionary processes are necessarily
examined over much longer periods.

If physical landscape modelling is inherently more uncertain than some remote
sensing applications, so consideration of the human dimension to dynamic analysis
introduces a host of additional problems. The work of Keith Clarke and colleagues
at Santa Barbara (e.g., Clarke, 1998) has illustrated the ways in which the innova-
tion of field computing has greatly increased the technical feasibility of measuring
and monitoring human behaviour over time. The ways in which we all interact with
machines, with increasing frequency, in our daily lives also leaves disparate yet telling
digital traces of our activity patterns that can be subjected to analysis and general-
isation. However, few individuals would wish all aspects of their behaviour to be
monitored in these ways, and those that might acquiesce are likely to be unrepres-
entative of those who would not. The task of specifying and computing all possible
interaction patterns between universes of human individuals also remains non-trivial.
This poses significant problems of developing and managing data to specify and
test models of systems whose dominant features are revealed through their dynam-
ics. In analytical terms there are further problems manifest in finding appropriate,
practicable, parsimonious ways of representing human agency. The chapters of Sec-
tion IIT of this book describe state-of-the-art thinking about the representation of
human agency in GIS, and establish a range of scientific perspectives on the pro-
cesses through which agents use, occupy, and mould space. They illustrate tangible
progress as well as state-of-the-art thinking, but also signal that we remain some way
from consolidating a consistent basis to measurement and hence theory. In this quest,
the accumulated experience of GIS actually provides rather few way markers, and
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age-old spatial analysis problems of defining measurable individuals and interfacing
micro models of behaviour with macro scale system constraints recur with almost
predictable frequency in the literature. In this context, the contributions to Section III
of this book also provide a state-of-the-art overview of the new perspectives that are
opening up on the problems of representing dynamics at fine levels of granularity
where the agent rather than the aggregate is the prime concern.

Taken together, it is clear that considerable problems remain in the cumulative
development of analysis that is grounded in fine levels of granularity and individual
events rather than aggregate patterns. The data that are used to build representations
of the world, the dynamic processes that define system behaviour, the interactions
between system components and the networking of individual agents are all key to
understanding the GeoDynamics of complex systems. The contributions to this book
illustrate that these considerations take us well beyond the accumulated experience of
GIS, and illustrate that GeoDynamics should be a central concern of GIScience. The
development of GeoDynamics within GIScience will itself take time, and the contri-
butions to the different sections of this book suggest cross-cutting strategies and
priorities through which this might be achieved. One implication is that progress
requires a science that complements contemporary GIS yet makes it possible also to
assimilate our rapidly increasing understanding of GeoDynamics. Improvements in
the quality, quantity, and delivery of disaggregate data are providing us with more
detailed support for our existing theories. This initiates a virtuous circle, in which
better data assists the development of better theory, which in turn stimulates demand
for still better data. In this respect, the development of better theory is often indirectly
driven by technologies that enable us to collect better data. High spatial resolution
remote sensing, new kinds of geodemographics, and new methods of synthesising
data from diverse sources are forcing the pace, and we should anticipate impor-
tant advances in the various domains of our understanding of GeoDynamics in this
decade.

Finally, it is important also to recognise that all of these developments are taking
place in a scientific context that is itself changing. It is interesting to note that the sci-
entific questions that are posed in this book are very different in type and detail from
those that drove spatial theory development in geography’s Quantitative Revolution
(Berry and Marble, 1968), or even less than 10 years ago at the dawn of GeoCompu-
tation (Longley, 1998). Many of the chapters in this book illustrate the importance of
interdisciplinary science, of clearly defined problems of practical concern, of sharing
data and representations, of effective communication through visualisation, and of
concern with the individual. In this context, the success of GIS through application
provides a valuable template for further progress. But the essential contribution of
this book is the recognition that it is no longer good enough to think of dynamics
as an afterthought to the building of spatial representations. GeoDynamics is here
to stay.
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CHAPTER 1

Introduction — Remote Sensing in
GeoDynamics

Giles M. Foody, Stephen E. Darby, Fulong Wu, and Peter M. Atkinson

The dynamic nature of geographical phenomena is widely recognised. Changes may
be perceived as good or bad but are often of considerable importance. Environmental
changes, for example, may have a marked impact on human health and well-being
which, in addition to normal scientific curiosity, call for a greater understanding of
phenomena undergoing change and of the effects of their dynamism. To support
studies of dynamic geographical phenomena there is a need for information on
environmental properties at a range of spatial and temporal scales. Various geospatial
technologies have developed to provide the data needed to further the understanding
of the environment (Konecny, 2003; Thurston et al., 2003). These geospatial tech-
nologies include the use of global position systems (GPS) for accurate information on
location; geographical information systems (GIS) for data integration and analysis;
and geostatistical tools for quantitative analyses, which recognise the spatial depen-
dence that exists with most geographical data. In Section I of the book, however, the
major focus is upon another major technology used in the study of GeoDynamics,
remote sensing.

Remote sensing is a powerful means of acquiring data on environmental
properties. It can provide data at a range of spatial and temporal scales, enabling
dynamic phenomena with spatio-temporal characteristics ranging from local and rapid
through to large and slow to be observed and characterised. Thus, it is unsurprising
that remote sensing has had a major role to play in relation to numerous key application
areas, including attempts to answer major science questions of the era. For example,
in relation to studies of global warming, one of the most prominent environmental
concerns for current generations upon which awareness amongst the general public

0-8493-2837-3/05/$0.00+$1.50
© 2005 by CRC Press LLC 3
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and politicians as well as scientists is high, remote sensing has made many important
contributions. This is particularly important as climate change arising from global
warming may represent a greater threat to the world than other politically high profile
issues such as international terrorism (King, 2004). Global warming, driven partly
by enhanced atmospheric carbon loadings, may lead to many negative environmental
changes including increased frequency of extreme events such as flooding, drought,
and crop harvest failures. Remote sensing may be used in many ways to help fur-
ther the understanding of issues connected with global warming or in helping to
mitigate or adapt to changes. It has, for example, been used in a diverse range of
studies including those focused on important aspects of environmental change asso-
ciated with the atmosphere and cryosphere (e.g., Laxon et al., 2003; van der A et al.,
2003; Kelly, 2004). However, considerable attention has been directed at the use of
remote sensing in studying terrestrial environmental properties that are associated
with some of the major uncertainties in knowledge on environmental processes and
change. For example, some of the greatest uncertainties in the global carbon cycle are
associated with the terrestrial biosphere (Roughgarden et al., 1991; Houghton et al.,
2000). It has been recognised for some time that remote sensing has the potential
to provide key information on the terrestrial biosphere, notably the extent and bio-
mass of forests, very basic environmental variables, at the spatial and temporal scales
required (Dixon et al., 1994; Houghton et al., 2000; Royal Society, 2001; Achard
et al., 2002). Thus, by providing information on apparently basic variables such as
land cover and its properties remote sensing can help in answering major scientific
questions.

Given that a remotely sensed image is simply a representation of the way that
radiation interacts with the Earth’s surface and most general land cover classes of
interest differ in the way they interact with radiations commonly sensed, remote
sensing should be an ideal source of land cover information. This is of immense value
as land cover a key environmental variable. Moreover, land cover one of the most
dynamic terrestrial features mapped (Belward et al., 1999) and its changes have an
environmental effect that is at least as large as that associated with climate change
(Skole, 1994). Remote sensing has considerable potential as a source of informa-
tion on land cover properties and their dynamics. It has, for example, been used
to map land cover classes ranging from individual tree species in forests (Turner
et al., 2003; Carleer and Wolff, 2004) through broad classes over very large areas
including globally (Hansen et al., 2000; Friedl et al., 2002; Latifovic et al., 2004)
and in monitoring change in time (Wallace et al., 2003; Guild et al., 2004). Similarly,
remote sensing has been used to estimate biophysical and biochemical properties over
a range of spatial and temporal scales (Wessman et al., 1988; Curran et al., 1997;
Blackburn, 2002; Roberts et al., 2003).

The immense potential of remote sensing as a source of information on land
cover is, however, often not fully realised (Townshend, 1992; Wilkinson, 1996).
A vast array of reasons may be suggested to explain this situation. These include the
complex interactions of the atmosphere with the radiation sensed (e.g., attenuation
by transient atmospheric components), the nature of the classes (e.g., class definition
and degree of homogeneity), the properties of the sensor (e.g., spectral and spatial
resolution), and the techniques used to extract the land cover information from the
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remotely sensed imagery (e.g., classification methods). There are also concerns that
the maps derived from remote sensing may be presented at too fine a spatial resolution,
with the minimum mapping unit typically defined implicitly as the spatial resolution of
the sensor data from which the map was derived and many basic difficulties associated
withissues such as class definition and scaling. The effect of these various issues, alone
or combined in some manner, is to limit the accuracy of land cover data extraction,
greatly limiting the ability to study geodynamic phenomena. For example, the IGBP
map of global land cover, a major technical achievement, has an estimated accuracy
of just 67% (Scepan, 1999). The meaning of this accuracy statement is, however,
difficult to assess, as it varies with factors such as user requirements, the effect of
differential error magnitudes and the confidence in the ground or reference data sets
used in the accuracy evaluation (DeFries and Los, 1999; Estes et al., 1999; Foody,
2002). The low accuracy of this and other maps is, however, a cause for concern and
has driven a research agenda focused on trying to reduce error.

One major source of error noted with land cover maps derived from remote
sensing, especially in maps derived from coarse spatial resolution sensors such as
those commonly used in the derivation of global maps, is associated with mixed
pixels. Since the techniques traditionally used in analysing remotely sensed imagery
assume pure pixels (i.e., the area represented by each pixel comprises a single land
cover class), mixed pixels (representing an area covered by more than one land cover
class) cannot be appropriately or accurately mapped. Since the use of conventional
(hard) classification techniques in mapping land cover from remote sensor imagery
must introduce error when mixed pixels are present, researchers have sought alter-
native approaches for mapping. One popular approach has been to use a soft or
fuzzy classifier (Foody, 1996). These classifiers can give more accurate and real-
istic representations when mixing is common. Since mixing is a particular concern
when using coarse spatial resolution imagery, that are typically dominated by mixed
pixels, it is now common for soft approaches to be used. Although the representation
derived from a soft classification approach may be more appropriate and accurate
than a hard classification there are many concerns with this type of approach. One
major concern with soft classification and related techniques is the assessment of
classification accuracy, which is a more challenging task than for a conventional hard
classification (Foody, 2002).

The problems encountered with mapping land cover may feed into and grow when
attempting to monitor change. There are many methods by which land cover change
may be studied with remotely sensed data (Mas, 1999). Fundamentally, however, the
accuracy of change detection is often dependent on the accuracy with which land cover
may be mapped. There are also other major non-thematic errors that creep into stud-
ies of change. Of these, the effect of image mis-registration is particularly important
(Foody, 2002). A basic requirement in monitoring change is to register data sets spa-
tially such that the same location in each time period is being studied. Precise spatial
co-registration is difficult to achieve and hence it is common for a small, but important,
mis-registration error to be introduced into analyses. The effect of mis-registration can
be such that it may mask or greatly exaggerate the amount of change that has occurred
(Roy, 2000). Additionally, as with mapping, most change detection studies are hard,
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commonly focusing on the binary variable of change or no-change. This may often be
inappropriate as the change may be gradual or occur at a sub-pixel scale. The assess-
ment of change on the basis of soft classifications, however, yields for instance a very
different assessment of change to that derived from hard classifications, notably in the
area of land changing class and the magnitude or severity of the change (Foody, 2001).

The great potential of remote sensing as a source of information on major environ-
mental variables such as on land cover and its dynamics is, therefore, constrained by
a suite of problems. This situation has driven the research agenda for many working
in the remote sensing community. As a result, there has been a plethora of studies
focused on different aspects of the problems from a variety of perspectives. Some have
sought the use of hyperspectral sensor data sets in the hope that the fine spectral reso-
lution will enhance class separability, while others have developed sub-pixel mapping
approaches or have addressed basic philosophical and methodological issues relating
to the nature of the land cover and the impacts this has in relation to the techniques
used. The seven chapters that follow in Section I of this book all address important
issues in the use of remote sensing as a source of data on dynamic geographical
phenomena including some of the major issues noted above.

One of the key problems encountered in past studies has related to the appar-
ently simple task of extracting the desired thematic information accurately from
remotely sensed imagery. Issues of data extraction are the focus of several chapters
that follow. Each of these chapters has addressed a different issue but makes an impor-
tant contribution to the general aim of trying to exploit fully the potential of remote
sensing. For example, Chapters 4 and 7 by Holland and Tompkinson, and Lucieer
et al. respectively, include discussions on the use of image texture and context as a
discriminatory variable. Although it is well established that textural and contextual
information can be used together with spectral information to enhance class identi-
fication, numerous problems have been encountered and these two chapters focus on
specific instances when such information may be useful. Lucieer et al., for example,
present a supervised method for land cover mapping using textural information while
Holland and Tompkinson use shadow as a variable to aid the identification of build-
ings and other objects in imagery. The chapters by Crowther and Hartnett and Shalan
et al. (Chapters 5 and 2, respectively) address different issues in the extraction of
information from imagery. Crowther and Hartnett discuss the use of spatial reasoning
methods and illustrate the use of CommonKADS in the study of agricultural crops.
Shalan et al. focus on the accuracy of thematic information extraction with particular
regard to the methods that may be applied to assessment of hard and soft image
classifications.

Uncertainty in geospatial data sets has been an issue of considerable interest over
recent decades (Goodchild and Gopal, 1989; Atkinson, 1999; Foody and Atkinson,
2002). It is also an issue addressed in several chapters including those by Carmel,
Lucieer et al., and Brown (Chapters 3, 7 and 8 respectively). In particular, issues
associated with thematic and non-thematic uncertainty are addressed. These combined
with additional problems encountered in change detection such as those raised by
Comber et al. (Chapter 6) and Holland and Tompkinson are key foci of attention.
To understand land cover change and use information on it to help mitigate against
or adapt to negative environmental impacts the effects of mis-registration on change
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detection need to be addressed. Brown, Carmel, and Lucieer et al. all discuss issues
associated with spatial uncertainty in studies of land cover change. Lucieer et al.
show how thematic uncertainty may be largest in transition zones between classes.
Similarly, Brown attempts to quantify thematic uncertainty in land cover classification
but also presents early work on how this information may be combined with modelled
positional uncertainties. From a different perspective, Carmel explores the effect of
data aggregation on thematic and locational uncertainty, and critically illustrates a
method by which an appropriate level of aggregation may be defined to reduce error.
Finally, Comber et al. tackle an important but relatively rarely addressed set of issues
related to class definition. With reference to two maps of British land cover produced
approximately a decade apart Comber et al. highlight the effect of inconsistencies in
the two mapping approaches, notably the meaning of the class labels used, on the
evaluation of land cover change using the two maps.

The chapters that follow have, therefore, addressed a variety of major concerns
in the study of dynamic variables such as land cover from remotely sensed data. This
includes work focused on major concerns such as mixed pixels and mis-registration
effects, often the largest sources of error in thematic mapping (Foody, 2002). Together
the set of chapters provide an indication of the current position of the research frontier
and point to some potential avenues for future research. Moreover, the chapters
that follow discuss some important basic issues associated with the measurement
of geographical phenomena upon which modelling and other activities discussed in
later sections of the book may depend.
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2.1 INTRODUCTION

The value of any geodata set depends on its fitness for use. A critical measure of
the fitness is the data quality, knowledge of which may significantly increase the
confidence of the user in explaining and defending the results derived from analyses
with the map (LMIC, 1999). Therefore, extensive information about the quality of
geodata input to a GeoDynamics analysis and modeling process (refer chapters in
Section II) is essential. Remotely sensed derived land use land cover information on
temporal basis is a key data source on GeoDynamic phenomena and has been used
in studies focused on modeling the effect of climatic variables on tree distributions
(Svoray and Nathan, 2004) and land cover change detection (Comber et al., 2004).
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Besides this, land use land cover is a significant variable for a variety of other earth
science applications.

Remote sensing data are now being used on regular basis to produce land cover
classifications. Both crisp and fuzzy classifications may be performed. Convention-
ally, in a crisp classification, each image pixel is assumed pure and is classified to one
class (Lillesand and Kiefer, 2000). Often, particularly in coarse spatial resolution
images, the pixels may be mixed containing two or more classes. Fuzzy classifica-
tions that assign multiple class memberships to a pixel may be appropriate for images
dominated by mixed pixels (Foody and Cox, 1994).

Generally, supervised classification is adopted that involves three stages: training,
allocation, and testing (Arora and Foody, 1997). The quality of the derived land cover
data is expressed in terms of the accuracy of classification, which is determined in the
testing stage and is the focus of this chapter. In essence, the assessment of accuracy
involves comparison of the classified image with reference or ground data. The refer-
ence data may be gathered from field surveys, existing maps, aerial photographs, and
datasets that are at finer spatial resolution than the image being classified. Typically,
the accuracy of crisp classification is determined using traditional error matrix based
measures such as the overall accuracy (OA), user’s accuracy (UA) and producer’s
accuracy (PA), and kappa coefficient of agreement (Congalton, 1991). Smits et al.
(1999) have recommended that the kappa coefficient may be adopted as the standard
accuracy measure. Despite this, a number of other measures, for example, Tau coef-
ficient (Ma and Redmond, 1995), and classification success index (Koukoulas and
Blackburn, 2001) have also been proposed, though used sparingly. The development
of a number of measures clearly indicates that there are many problems in the accu-
racy assessment of image classification (Foody, 2002). One of the major problems is
the occurrence of mixed pixels in imagery. Fuzzy set theoretic approaches may be
applied to classify the images dominated by mixed pixels to produce fuzzy classi-
fication outputs. To evaluate the accuracy of fuzzy classification, these outputs are
often hardened so that the error matrix based measures may be used. Degrading a
fuzzy classification to a crisp classification results in loss of information contained
in the fuzzy outputs thereby hampering its proper evaluation. Moreover, the refer-
ence data are also not always error-free and may contain uncertainties, and therefore
may be treated as fuzzy (Bastin et al., 2000). Hence, alternative accuracy measures
that may appropriately include fuzziness in the classification outputs and/or refer-
ence data have been proposed. These include root mean square error, correlation
coefficient (Foody and Cox, 1994), entropy and cross entropy (Maselli et al., 1994;
Foody, 1995) distance-based measures (Foody, 1996; Foody and Arora 1996), fuzzy
set-based operators (Gopal and Woodcock, 1994) and recently introduced fuzzy error
matrix based measures (Binaghi et al., 1999).

The growth of so many accuracy measures both for crisp and fuzzy classification
indicates clearly the current research potential of classification accuracy assess-
ment procedures as no single measure may be adopted universally. Depending upon
the nature of classification outputs, uncertainties in reference data and the quality
of information desired by the end user, it may be necessary to adopt not one but
a combination of accuracy measures.
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Despite the considerable research undertaken on classification accuracy assess-
ment and its importance, current image processing software are limited in providing
sufficient accuracy information to the user. For example, the well known and the
most widely used software namely ERDAS Imagine, ENVI, and IDRISI, contain
accuracy assessment modules that can report only a few crisp accuracy measures
notably OA, PA and UA, and kappa coefficient of agreement. No other competit-
ive accuracy measures have been included, which may be of interest to the user in
cases where the assumptions regarding the current accuracy measures are not met by
the dataset. Also, there is no provision for accuracy assessment of fuzzy classifica-
tion in these software. Only IDRISI has a measure called classification uncertainty
that determines the quality of classification on a per-pixel basis, and thus may not
be treated as a measure to indicate the accuracy of the whole classification. Thus,
to evaluate the accuracy of fuzzy classification, users either have to depend on
other statistical and mathematical software, where import/export of the data from
one package to another may be a tedious task, or they may have to develop their
own software. Further, to critically examine the usefulness of a particular accuracy
measure vis a vis other measures, a dedicated software for classification accuracy
assessment needs to be developed. In view of this, a stand alone software acronymed
as CAFCAM (Crisp And Fuzzy Classification Accuracy Measurement) has been
developed. Detailed information on this software may be found in Shalan et al.
(2003a). Formulation of a number of accuracy measures discussed here has been
included in this software.

The aim of this chapter is to apprise the readers with a set of accuracy measures,
incorporated in this software, to evaluate the quality of both crisp and fuzzy classifica-
tion of remote sensing data. The Section 2.1 has provided an introduction to the scope
of this chapter. The Section 2.2 is a review on classification accuracy assessment of
crisp and fuzzy classification. A working example is presented in the Section 2.3 that
is followed by a summary of the chapter.

2.2 CLASSIFICATION ACCURACY ASSESSMENT

In its simplest form, classification accuracy refers to the correspondence between the
class label assigned to a pixel and the true class as observed directly on the ground
or indirectly from a map or aerial photograph (reference data). Since the beginning
of satellite remote sensing, the problem of classification accuracy assessment has
received an immense recognition within the remote sensing community (e.g., van
Genderen et al., 1978; Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986;
Story and Congalton, 1986; Fung and LeDrew, 1988; Kenk et al., 1988; Congalton,
1991; Foody, 1992; Fitzgerald and Lee, 1994; Gopal and Woodcock, 1994; Janssen
and van der Wel, 1994; Foody, 1995; Ma and Redmond, 1995; Verbyla and Hammond,
1995; Naesset, 1996a,b; Binaghi et al., 1999; Smits et al., 1999; Stehman, 2001;
Foody, 2002). An inspection of these studies reveals that according to the nature of
classification (i.e., crisp or fuzzy), proper accuracy measures may have to be adopted
to derive meaningful land cover information from remote sensing data.
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2.2.1 Crisp Classification Accuracy Assessment

A typical strategy to assess the accuracy of a crisp classification begins with the
selection of a sample of pixels (known as testing samples) in the classified image
based on a sampling design procedure (Stehman, 1999), and confirming their class
allocation with the reference data. A number of statistically sound sampling schemes
has been proposed in the literature and range from a simple random sampling, stratified
random sampling to systematic and cluster sampling, each having their own merits
and demerits (Congalton, 1988; Stehman, 1999). The formulation of many accuracy
measures included in the software CAFCAM is based on simple random sampling
scheme.

The pixels of agreement and disagreement are summarized in the form of
a contingency table (known as error or confusion matrix), which can be used to
estimate various accuracy measures (Congalton, 1991). Table 2.1 shows a typical
¢ % ¢ error matrix (c is the number of classes) with columns representing the refer-
ence data and rows the classified image, albeit both are interchangeable. For an ideal
classification, it is expected that all the testing samples would lie along the diagonal
of the matrix indicating the perfect agreement. The off-diagonal elements indicate
the disagreements referred to as the errors of omission and commission (Story and
Congalton, 1986).

The elements of the error matrix are used to derive a number of accuracy measures,
which have been divided into three groups:

1. Percent correct measures
2. Kappa coefficients
3. Tau coefficients

The formulations of all the accuracy measures considered under these groupings
are given in Table 2.2. Further details on these formulations can be found in the
respective references cited in this table.

The first group consists of five accuracy measures — (OA), (UA), and (PA)
(Story and Congalton, 1986), average and combined accuracy (Fung and LeDrew,

Table 2.1 Layout of Traditional Error Matrix

Reference Data

Classified Image Class1 Class2 ... Classc Row Total
Class 1 nq no Me Ny
Class 2 Noq nNoo cen Noce N2
Class ¢ Ne1 Neo Nee N¢
Column total My Mo Mc N=Y9¢ N,

Definition of terms: nj; are the pixels of agreement and disagreement, N is
the total number of testing pixels.
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Table 2.2 Crisp Classification Accuracy Measures

Accuracy Metric Formulation Base Reference
Overall accuracy 1N Zf: 1 Mii Story and
Congalton (1986)
User’s accuracy nji/N; Story and
Congalton (1986)
Producer’s accuracy nji/ Mj Story and

Average accuracy (user’s)

Average accuracy (producer’s)
Combined accuracy (user’s)

Combined accuracy (producer’s)

Kappa coefficient of agreement

Weighted Kappa

Conditional Kappa (user’s)

Conditional Kappa (producer’s)

Tau coefficient (equal probability)

Tau coefficient (unequal probability)

Conditional Tau (user’s)

Conditional Tau (producer’s)

120 ni
Cc i=1 N,‘
120 njj
C i=1 M,‘
S[0A + AAy]

SIOA+ AAp]

1— Pe
2 ViiPojj
> VjPei
Poci+) — Pe(it)
1= Pe(ip)
Potiy = Pectiy
1= Pe(tiy
Po—(1/c)
1-(1/0
Po— Py
1— P{
Pogiy) — Pi
1-P;
Potiy = Pi
1- P,

Congalton (1986)
Fung and LeDrew (1988)

Fung and LeDrew (1988)
Fung and LeDrew (1988)

Fung and LeDrew (1988)

Congalton et al. (1983)

Rosenfield and
Fitzpatrick-Lins (1986)

Rosenfield and
Fitzpatrick-Lins (1986)

Rosenfield and
Fitzpatrick-Lins (1986)
Ma and Redmond (1995)
Ma and Redmond (1995)

Naesset (1996)

Naesset (1996)

Definition of terms: N is total number of testing pixels; nj; is the number of samples correctly
classified; N; and M; are the row and column totals for class i, respectively; Po = (1/N) Z,-C:1 nji
is the observed proportion of agreement Pg = (1/N2) Z;; N;M; is the expected chance
agreement; vj; is the weight; Po,./is the observed cell proportion; Pej; is the expected cell pro-
portion; Py is the observed agreement according to user’s approach computed from all
columns in ith row of the error matrix; Pg(j ) is the agreement expected by chance for ith row;
Po(+iy is the observed agreement according to producer’s approach computed from all rows
in ith column of the error matrix; Pg(L.j) is the agreement expected by chance for ith column;
Pr=1/N) Z,-C:1 nj4 X;, where x; is the unequal a priori probability of class membership; P; is

the a priori probability of class membership.
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1988). While overall, average, and combined accuracy signify the quality of whole
classification, UA, and PA indicate the quality of each individual class. PA is so
called, because the producer of the classification is typically interested in know-
ing how well the samples from the reference data can be mapped using a remotely
sensed image. In contrast, UA indicates the probability that a sample from the
classification represents an actual class in reference data (Story and Congalton,
1986).

The OA is one of the most commonly adopted measures to assess the accuracy
of a classification. OA weights each class in proportion to its area representation
in the map. Its value may be affected by the relative abundance and separability
of the classes. A way to resolve the problem of differences in sample size of an
individual class may be to keep their sample sizes equal. Alternatively, the elements
of the error matrix may be normalized to compute normalized accuracy (Congalton,
1991). However, Stehman and Czaplewski (1998) have not preferred normalization
procedure since it may lead to bias and may have the effect of equalizing the UA and
PA that may actually differ considerably.

Accuracy measures in the percent correct group do not take into account the
agreement between the datasets (i.e., classified output and reference data) that
arises due to chance alone. The kappa coefficient of agreement incorporates chance
agreement into its formulation and thus provides a chance-corrected measure. It com-
pensates for the chance agreement that results from misclassifications represented
by the off-diagonal elements of the error matrix. The second group of accuracy
measures consists of four measures from kappa family — kappa coefficient of
agreement (Congalton et al., 1983), weighted kappa (Cohen, 1968; Rosenfield
and Fitzpatrick-Lins, 1986; Naesset, 1996a), and conditional kappa — user’s and
producer’s perspective (Rosenfield and Fitzpatrick-Lins, 1986; Naesset, 1995). Since
kappa coefficient of agreement (K) is based on all the elements of the error mat-
rix, and not just the diagonal elements (as is the case with OA), therefore, K may
sometimes be an appropriate candidate for accuracy assessment of a classification.
Conditional kappa coefficients may be derived to assess the accuracy of individual
classes. Weighted kappa (Kyw) may be thought as a generalization of K. When the
misclassification of some classes is more serious than others, weighted kappa may be
implemented since it does not treat all the misclassifications (disagreements) equally
and tends to give more weight to the misclassifications that are more serious than
others (Cohen, 1968; Hubert, 1978).

Nevertheless, as argued by Foody (1992) and later supported by Ma and Redmond
(1995), the kappa family may overestimate the chance agreement that may result in
an underestimation of accuracy. Therefore, alternatives to kappa family coefficients
such as Tau coefficient have been proposed (see Brown (2004) this volume, for an
example of its use in remote sensing). These form the third group of accuracy meas-
ures. The critical difference between the two coefficients is that Tau coefficient is
based on a priori probabilities of class membership, whereas kappa uses the a pos-
teriori probabilities. Unlike kappa coefficient, Tau coefficient compensates for the
influence of unequal probabilities of classes on random agreement. Moreover, for
classifications based on equal probabilities of class membership, Tau compensates
for the influence of the number of groups (Ma and Redmond, 1995). A conditional



CRISP AND FUZZY CLASSIFICATION ACCURACY MEASURES 17

Tau coefficient may be used to indicate the accuracy of an individual class (Naesset,
1996b).

It may thus be seen that there are a number of measures that may be computed
from an error matrix. Each measure may, however, be based on different assumptions
about the data and thus may evaluate different components of accuracy (Lark, 1995;
Stehman, 1997). Therefore, in general, it may be expedient to provide an error matrix
with the classified image and report more than one measure of accuracy to fully
describe the quality of that classification (Stehman, 1997).

2.2.2 Fuzzy Classification Accuracy Assessment

The traditional error matrix based measures inherently assume that each pixel is
associated with only one class in the crisp classification and only one class in the
reference data. Use of these measures to assess the accuracy of fuzzy classifica-
tion may, therefore, under- or over-estimate the accuracy of a classification. This is
due to the fact that the fuzzy classification outputs of pixels have to be degraded to
produce a crisp classification to adhere to this assumption thereby resulting in the loss
of information.

At the first instance, fuzzy classification outputs indicating the probability of class
memberships in a given pixel may be used to compute entropy. Entropy is a measure
of uncertainty in the classification (Table 2.3) and shows how the strength of class
membership (i.e., fuzzy outputs) is partitioned between the classes for each pixel
(Foody, 1995). The entropy for a pixel is maximized when the pixel has equal class
memberships for all the classes. Conversely, its value is minimized, when the pixel
is entirely allocated to one class. It, thus, shows the degree to which a classification
output is fuzzy (i.e., uncertainty in class allocation) or crisp. Its value as an indicator
of classification accuracy is based on the assumption that in an accurate classification
each pixel will have a high probability of membership belonging to only one class.
Another measure called classification uncertainty (Eastman, 2001) may also be used
to indicate the uncertainty in class allocation of a pixel. The classification uncer-
tainty is computed as the complement of the difference between the maximum class
membership value and the total dispersion of the class memberships over all classes
divided by the extreme case of the difference between a maximum proportion value
of 1 (i.e., total commitment to a single class) and the total dispersion of that commit-
ment over all classes (Table 2.3). This ratio expresses the degree of commitment to a
specific class relative to the largest possible commitment that can be made. In real-
ity, the classification uncertainty differs from entropy in the sense that it is not only
concerned with the degree of dispersion of class membership values between classes,
but also the total amount of commitment to a particular class present in a pixel. For
example, if a pixel is assigned equal memberships to all classes then the classification
uncertainty becomes 1, on the other hand if a pixel is assigned to only one class then
the classification uncertainty becomes 0.

Both accuracy measures — classification uncertainty and entropy — however, are
only appropriate for situations in which the output of the classification is fuzzy and
the reference data are crisp (Binaghi et al., 1999). Since fuzzy reference data may
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Table 2.3 Fuzzy Classification Accuracy Measures

Accuracy Metric Formulation Base Reference

Entropy -3¢ ,(3pj)loga (?pj) Maselli et al. (1994)

_ max(p) — (- p)/c)

Classification 1 Eastman (2001)

uncertainty 1-(/0
£1('pi —2pp?
Euclidean distance z= T Kent and Mardia (1988),
¢ Foody (1996)
¢ 1" —2pil
L4 (City Block) distance % Foody and Arora (1996)
Cross-entropy or D(1p,2p) = - f:1 (1p,-) Iog2(2p,-) Foody (1995)

direct divergence
+3¢ ,('pp loga('py)

b42p
Measure of information I0p,2p) =D (1p, 2) Foody (1996)
closeness
2
) - Cov('p;,2pp)
Correlation coefficients Yo I e Foody and Cox (1994),
Std('p;)Std(<p;) Maselli et al. (1996)

Definition of terms: 1p,- and 2p,- is the proportion of ith class in a pixel from the fuzzy reference

data (1 ), and classification (2), respectively; max(p) is the maximum proportion for a pixel in fuzzy
classification; )_ p is the sum of the proportions in a pixel; ¢ is the number of classes in fuzzy

classification; 1p is the probability distribution of fuzzy reference data; 2p is the probability dis-
tribution of fuzzy classification output; Cov(1p,-,2p,-) is the covariance between the two datasets;
Std(1p,-) and Std(zp,-) are the standard deviations of the respective datasets.

also be generated on the basis of a linguistic scale (Gopal and Woodcock, 1994) or
class proportions (Shalan et al., 2003b), a few fuzzy set based operators namely max,
right, and difference may be applied to evaluate the accuracy of a crisp classification
with respect to fuzzy reference data. For instance, in the working example in the
Section 2.3, a land cover map produced from an IRS PAN image at 5 m spatial
resolution has been used as reference data to assess the accuracy of fuzzy classification
produced from an IRS LISS Il image at 25 m spatial resolution. A pixel of the LISS III
image corresponds to a number of 5 m pixels (in this case 25 pixels) from which the
proportional coverage of a class in the 25 m spatial resolution image may be derived.
These class proportions sum to one for each pixel are called as fuzzy reference data.
The fuzzy reference data may be hardened to produce crisp reference data for accuracy
assessment of crisp classification.

The accuracy assessment using the entropy and the fuzzy set based max, right,
and difference operators account for fuzziness either in the classification or in the
reference data, respectively. The ideal situation will be to compare fuzzy classification
with fuzzy reference data. In this scenario, these accuracy measures may therefore
not be appropriate. To accommodate fuzziness in both the classification output and
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the reference data, other measures are required. In this case, the accuracy of fuzzy
classification outputs is determined by comparing these with fuzzy reference data.
A number of accuracy measures may be used. For simplicity, these measures have
been divided into three groups:

1. Measures of closeness
2. Correlation coefficient
3. Measures based on fuzzy error matrix

The formulations of all the accuracy measures considered under these groupings are
given in Table 2.3. Further details on these formulations can be found in the respective
references cited in this table.

The first group includes cross entropy, L1 and Euclidean distances and a general-
ized measure of information closeness. These measures estimate the separation of two
datasets based on the relative extent or proportion of each class in the pixel (Foody
and Arora, 1996). The lower the value of these measures, the higher is the accuracy of
the classification. The distance measures and cross entropy may be applicable when
there is compatibility between the probability distributions of the classified outputs
and reference data. On the other hand, the generalized measure of information close-
ness may be used even if the probability distributions of the two datasets are not
compatible (Foody, 1996). The correlation coefficients for each class between fuzzy
classification output and fuzzy reference data may also be used to indicate the accu-
racy of individual classes. The larger the correlation coefficient the more accurate the
classification of the specific class considered.

All the above measures may be treated as indirect methods of assessing the accu-
racy of fuzzy classification, because the accuracy evaluation is interpretative rather
than a representation of actual value as denoted by traditional error matrix based
measures. Recently, Binaghi et al. (1999) proposed the concept of fuzzy error matrix,
which can be generated on the lines of traditional error matrix used for the evaluation
of crisp classification. The layout of a fuzzy error matrix is similar to the traditional
error matrix with the exception that elements of a fuzzy error matrix can be any
non-negative real numbers instead of non-negative integer numbers. The elements
of the fuzzy error matrix represent class proportions corresponding to reference
data (i.e., fuzzy reference data) and classified outputs (i.e., fuzzy classified image),
respectively.

Let R, and C,, be the sets of reference and classification data assigned to class n
and m, respectively, where the values of #n and m are bounded by one and the number
of classes c. Note here that R,, and C,, are fuzzy sets and {R,} and {C,,} form two
fuzzy partitions of the testing sample dataset X, where x denotes a testing sample
in X. The membership functions of R, and C,, are given by,

Ur, : X — [0, 1]

and
ue, = X = [0, 1]
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where [0, 1] denotes the interval of real numbers from O to 1 inclusive. Here, ug, (x)
and uc, (x) is the class membership (or class proportion) of the testing sample
x in R, and C,,, respectively. Since, in the context of fuzzy classification, these
membership functions also represent the proportion of a class in the testing sample, the
orthogonality or sum-normalization is often required, which for the fuzzy reference
data may be represented as,

> R @) =1 @D
1=l

The procedure used to construct the fuzzy error matrix M employs fuzzy min operator
to determine the element M (m, n) in which the degree of membership in the fuzzy
intersection C,, N R, is computed as,

M(m, n) = |Cp N Ryl =Y _min(uc,. (r,) (2.2)

xeX

For clear understanding of the fuzzy error matrix, let us consider a simple example,
where a pixel has been classified into three land cover classes. The corresponding
class proportions from fuzzy reference data and fuzzy classification output for that
pixel are given by,

UR (x) =03, upr,(x) =02, pugy(x) =05

and
pe (1) =05, pey(0) =02, pe,x) =03

The fuzzy error matrix for the above pixel is then created using min operator from
fuzzy set theory, and is displayed in Table 2.4. The fuzzy error matrix for the whole
classification is accumulated by summing up the elements of fuzzy error matrix of each
testing pixel (i.e., testing sample). OA, PA, and UA may then be estimated in usual
fashion from this matrix to indicate the accuracy of a fuzzy classification and of
individual class.

Due to its correspondence to the traditional error matrix, the use of fuzzy error
matrix to evaluate fuzzy classification may therefore be more appropriate than the
distance based measures and correlation coefficients. Moreover, the formulation of
fuzzy error matrix is such that it can also be used to assess the accuracy of crisp clas-
sification given the crisp reference data. Thus, from the point of view of standardizing

Table 2.4 Fuzzy Error Matrix for an Individual Testing Sample

Fuzzy Reference Data

Fuzzy Classification Class1(Ry) Class2 (Ry) Class3 (R3;) Total Memberships

Class 1 (Cy) 03 0.2 0.5 05
Class 2 (C») 0-2 0.2 0.2 0-2
Class 3 (C3) 03 0.2 0-3 0-3

Total memberships 0-3 0.2 0-5 1.0
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the accuracy assessment procedures for both crisp and fuzzy classification, fuzzy error
matrix and the associated measures appear more suitable in assessing the quality of
remotely sensed derived classifications.

2.3 A WORKING EXAMPLE

The software CAFCAM was written in MATLAB, which includes formulation of
all the accuracy measures discussed in this chapter. To demonstrate the utility of
some accuracy measures, a case study on accuracy assessment of fuzzy land cover
classification from IRS 1C remote sensing data is briefly presented here. More details
can be found in Shalan et al. (2003b). An IRS 1C LISS III image (Figure 2.1a)
was used as the primary image to produce a fuzzy classification. Five dominant
land cover classes in the region, namely agriculture, forest, grassland, urban, and
sandy areas, were considered. Maximum likelihood derived crisp classification of
the PAN image into five land cover classes was used as reference data (Figure 2.1b).
The LISS image was registered to the PAN image derived land cover classification
to an accuracy of one third of a pixel, using first order polynomial transformation
and nearest neighborhood resampling. The registered LISS and PAN images were
resampled to 25 and 5 m, respectively such that a LISS pixel corresponds to a specific
number of PAN pixels (in this case 25 pixels) to facilitate generating fuzzy reference
data in the form of class proportions.

Two markedly different classification algorithms, the conventional maximum
slikelihood classifier (MLC) and the fuzzy c-means (FCM) clustering algorithm, were
used to perform a fuzzy classification in this study. The MLC is the most widely used
classifier in the remote sensing community. In a majority of studies, this classifier
has generally been used to provide crisp classification output. However, the output

Grass
Areas

Forest

Sandy [ﬁ
Areas
Built-up

Areas

{ Agriculture

Figure2.1 (see color insert following page 168) (a) IRS 1C LISS Ill FCC. (b) Classified PAN
image used as reference data.
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of MLC in the form of a posteriori class probabilities may be related to the actual
class likelihoods for each pixel on the ground thereby providing fuzzy classification
(Foody et al., 1992).

The FCM is based on an iterative clustering algorithm that may be employed
to partition pixels of an image into class proportions (Bezdek et al., 1984). It is
essentially an unsupervised clustering algorithm but can be suitably modified to run
in supervised mode. In the supervised mode, cluster means are computed from the
training areas created in the training stage.

For effectual comparison with MLC, the supervised version of FCM was applied
here (Wang, 1990). In the formulation of FCM, a weighting factor m that describes
the degree of fuzziness has to be provided. Similar to a study conducted by Foody
(1996), where m = 2-0 was found to produce the most accurate fuzzy classification,
in this study also, m was set to 2-0 after several experiments on the dataset considered.

The training data consisted of 997, 286, 279, 1596, and 805 randomly selected
pixels for agriculture, urban area, sandy area, forest, and grassland, respectively.

Table 2.5 Accuracy of Fuzzy Classifications
Produced from MLC and FCM

Accuracy Metric

(Average) MLC FCM
Entropy 0-526 0-565
Cross-entropy 0-262 0-287
Euclidean distance 0-057 0.060
Information closeness 0-145 0-160

Table 2.6 Correlation Coefficients of Classes
from Fuzzy Classifications

Class MLC FCM
Agriculture 0-590 0-495
Urban area 0-507 0-626
Sandy area 0-854 0-860
Forest 0-708 0-583
Grassland 0-402 0-366

Table 2.7 Accuracy of Fuzzy Classification Derived
from Fuzzy Error Matrix Based Measures

Accuracy Measure MLC FCM
Overall accuracy (%) 33-80 31.80
Average accuracy

User’s 31.20 2920
Producer’s 3410 32.20
Combined accuracy

User’s 32.50 30-50

Producer’s 33-90 32-00
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FCM MLC Fuzzy
Reference Data

Agriculture

Urban areas

Forest

Grassland

Sandy areas

Figure2.2 Fraction images portraying the spatial distribution of five land cover classes.

In the testing stage, a total of 650 testing pixels from the entire image were randomly
selected for accuracy assessment using simple random sampling.

The accuracy of the fuzzy classifications was evaluated using a number of accur-
acy measures (Table 2.5). Entropy was used to examine the degree of uncertainty in the
fuzzy classification outputs. For a five-class problem, the maximum value of entropy
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is 0-69. From Table 2.5, it can be seen that the average entropy values (computed
over all the pixels) for the fuzzy classifications produced from both the classifiers,
are very close to the maximum entropy value. This illustrates clearly the presence of
class mixtures (or uncertainties) in the dataset. In Table 2.5, the lower values of cross
entropy and Euclidean distance for MLC demonstrate that this classifier has produced
more accurate classifications than FCM for the dataset considered. From correlation
coefficients (Table 2.6), it can be seen that the class sandy area was the most accur-
ately classified class in both classifications, as this class was very spectrally separable
from the other classes.

The fuzzy error matrices were also generated for classifications produced from
both classifiers. The resulting measures corresponding to this matrix are shown in
Table 2.7. From this table, it can again be seen that ML.C has produced more accurate
fuzzy classification than the FCM.

To inspect fuzzy classifications visually, fraction images portraying the spatial
distribution of five land cover classes were also produced (Figure 2.2). It can be
observed that for all the classes, in particular for the class sandy areas, MLC has
generally predicted class proportions more accurately than the FCM.

2.4 SUMMARY

Classification accuracy assessment is an important step of the image classification
process. A number of accuracy measures for both crisp and fuzzy classifications have
been proposed. No measure has been universally adopted. Often, a combination of
accuracy measures may have to be used to describe the quality of classification com-
pletely. However, current image processing software lacks the provision of various
accuracy measures. Therefore, a software, named CAFCAM was written exclusively
for accuracy assessment of remotely sensed derived classifications. The software
includes a number of accuracy measures for the assessment of crisp and fuzzy classi-
fications. In this chapter, a discussion on the accuracy measures used in that software
was presented. A working example demonstrating the usefulness of some accuracy
measures to evaluate a fuzzy land cover classification from IRS 1C LISS remote sens-
ing data was also provided. Amongst the two fuzzy classifiers namely MLC and FCM
used, all the accuracy measures showed that the former produced the most accurate
fuzzy classification for this dataset.
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3.1 INTRODUCTION

Thematic raster maps are digital images where each pixel is assigned to one of
a k discrete classes. This type of maps is ubiquitous, and numerous remote sens-
ing applications yield products such as maps of land cover, vegetation, or soil, all in
the format of thematic raster maps.

In remote sensing applications, aggregation is a process of laying a grid of cells
on the image or raster map (cell size > pixel size), and defining the larger cells as
the basic units of the new map. This process is also referred to as image degradation.
When pixels are aggregated into larger grid cells, the information on pixel-specific
location is lost, regardless of the aggregation method used. However, aggregation
retains some thematic information, and some aggregation methods can conserve the
entire thematic information in the map. For example, a k-layer degraded map may be
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constructed, where each layer corresponds to a specific class in the original map, and
indicates its proportion in each cell (Carmel and Kadmon, 1999). In many cases, such
maps are more useful than their precursors. In forestry applications, for example, users
are sometimes interested in the proportion of trees in a given area. Note, however,
that other aggregation methods do not retain full thematic information, such as the
“majority algorithm,” which is a common method of image degradation, where the
grid-cell is assigned to its most frequent value. In this study, the specific aggregation
process discussed conserves full thematic information, in the form of proportion cover
of each class in each cell.

Several studies have suggested that a decrease in spatial resolution enhances
thematic map accuracy significantly (Townshend et al., 1992; Dai and Khorram,
1998). On the other hand, the decrease in spatial resolution involves a loss of informa-
tion that may be valuable for particular applications (Carmel et al., 2001). Thus, users
could benefit from viewing the plot of thematic map accuracy as a function of spatial
resolution, and choose the specific spatial resolution and its associated uncertainty
level that best fits the needs of a specific application. The goal of this study is to
explore the relationship between spatial resolution and thematic map accuracy, and
to develop a model that quantifies this relationship for thematic (“classified”) maps.

Accurate change detection is crucial for description of a variety of processes,
such as vegetation dynamics (Svoray and Nathan, Chapter 10, this volume; Malanson
and Zeng, Chapter 11, this volume), geomorphic processes (Wichmann and Becht,
Chapter 12, this volume; Schmidt, Chapter 13, this volume). Two major approaches
for change detection exist, image differencing (Stow, 1999) and post-classification
analyses (Brown, Chapter 8, this volume). In the latter approach, thematic maps are
used for change detection, and overall error is a product of classification errors in each
time step, and may become large (Brown, Chapter 8, this volume). In addition, another
source of error is introduced in change detection, namely location error, termed also
misregistration (Brown, Chapter 8, this volume). The effect of misregistration on
accuracy of change detection analyses is large (Stow, 1999), often surpassing the
effect of classification error (Carmel et al., 2001).

In order to illustrate this point, consider a change detection analysis applied to
the maps in Figure 3.1. The two maps portray a small area in an earlier (gray) and

)
©

Figure3.1 Two misregistered maps, representing a pond, a house, and a tree, in an earlier
and a latter time steps (in gray and black, respectively). Although no change has
occurred in the area, change detection analysis would indicate transitions.
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latter (black) time steps, and are misregistered. One can tell that no change has
occurred in this area. However, due to misregistration, change detection analysis
would point out two transitions: a house in the earlier map became covered by pond
in the latter, and a tree in the earlier map gave way to a house in the latter. In the
aggregation procedure, the whole area portrayed in Figure 3.1 may be considered as
a single grid cell, and proportion cover of each land-use may be estimated. A change
detection analysis of the aggregated map would avoid those false transitions and is
likely to be more accurate.

3.2 THE MODEL

3.2.1 Location Accuracy

For a single pixel, misregistration is translated into thematic error if its “true” location
is occupied by a pixel belonging to a different class. Let us define p(loc), the
probability that a pixel is assigned an incorrect class due to misregistration:

P(IOC)rc = piyc # ir+e(x),c+e(y)) 3.1

where r and c are pixel coordinates, i, is the class assigned to the pixel, e(x) and e(y)
are the x and y components of location error, respectively (measured in pixels). Thus,
p(oc),. depends on the magnitude of location error, and on landscape fragmentation
(map heterogeneity). p(loc) can be estimated empirically for a given map, based on
map pattern and the magnitude of location error. Location error may not be uniform
across an image (Brown, Chapter 8, this volume; Carmel, 2004a). Thus, the general
model scheme presented here does not assume a constant location error, but allows
error to vary across the image. Location error is assumed, however, to be constant in
each grid cell (the unit that the pixels are aggregated into).

Considering a larger cell size A, let us define a similar probability, p#(loc), which
is the probability that a pixel within the framework of a larger cell was misclassified
due to misregistration. For cell sizes larger than location error, this probability would
be lower than the original probability p(loc), since misregistration would shift a
certain proportion of the pixels only within the grid cell, and for those pixels, thematic
error is cancelled at the grid cell level (Figure 3.2). Here, a conceptual model is
presented, in which this probability is denoted by:

pA(loc) = a - p(loc) (3.2)

where « is the proportion of a cell of size A in which pixels are misplaced into
neighboring cells, and may thus result in thematic error (Figure 3.2).

This proportion, «, is termed here the effective location error. It is a function
of cell size A and of location error magnitude. The effective location error « is the
proportional area of the dark gray region in the cell (Figure 3.2) and is denoted by:

_(Are)+A-e(y) —elx)-e(y)
o= 12

(3.3)
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Figure 3.2 Quantification of the effect of location error on thematic accuracy. An image is
“shifted” against itself. The results are shown here for a single grid cell within the
image. Here, cell size A = 10 pixels. The original image is shown in light gray and the
shifted image is shown in dark gray. e(x) and e(y) denote the x and y components
of location error, respectively (in this figure e(x) = 2 pixels and e(y) = 1 pixel).
Pixels in the area of overlap between the two images would remain within the cell
and thematic accuracy at the cell level would not be affected (see arrow a). Pixels
in the dark gray region are shifted into neighboring cells, and may result in thematic
error (see arrow b). The effective location error « is the proportional area of the dark
gray region within the cell (Equation 3.3).

where location error components e(x) and e(y) are assumed constant for all pixels
within a single cell. Using Equation 3.3, the reduction in effective location error
when cell size increases may be illustrated easily (here, for the special case where
e(x) = e(y), Figure 3.3). Effective location error « declines rapidly from 1 for cell
sizes < the magnitude of location error to 0-36 for cell sizes five times the magnitude
of location error (Figure 3.3).

Location error may vary largely across an image (since its major sources, topo-
graphy and quality of ground-control points imply inherent spatial pattern). Thus, o,
p(loc), and pA(loc), should ideally be estimated for each grid cell in the map. This
requires that location error components e(x) and e(y) are available at the grid-cell
level. Typically, location error information is available for several locations (test
points) only. Interpolation methods such as kriging may be used to construct loca-
tion error surfaces for both e(x) and e(y) (Fisher, 1998). Following Equation 3.1,
a specific cell in coordinates r, c, is shifted by e(x),. and e(y),. on the x and y axes,
respectively. p(loc) is estimated as the proportion of pixels that are ‘misclassified’
due to the shift. Equations 3.2 and 3.3 may then be used to derive cell-specific & and
pA(loc). This process is repeated for each cell in the map, and the global mean of
these parameters can then be calculated.

An alternative to this process, that may be somewhat less accurate but much
simpler to apply, is to assume a constant location error across the image. The average
location error is typically defined as RMSE, Root Mean Square Error (see Brown,
Chapter 8, this volume), decomposed here into its x and y components. The x and y
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Figure 3.3 Effective location error « as a function of cell size. Cell size is shown here in multiples
of pixels, where average location error is set to 1 pixel in both x and y directions. Cell
size varies between 1 and 25 times the magnitude of location error. (After Carmel,
2004b; IEEE Geoscience and Remote Sensing Letters, reproduced with permission
from the IEEE.)

components of RMSE are denoted by:

n 2 n 2
RMSE(x) = 4 M RMSE(y) = 4 M (3.4)

where e(x), and e(y), are the x and y components of the deviation between the
true location of a test point g and its location on the map, respectively, and # is the
number of test points.

In order to determine p(loc), & and p“(loc), the practice of “shifting” a map
against itself can be employed (Townshend et al., 1992; Dai and Khorram, 1998).
This is a simulation approach that enables one to estimate the thematic consequences
of misregistration between two maps. The process results in two identical maps, where
one is spatially “shifted” off the other by a lag equal to the estimated location error
(here, the map is shifted against itself by RMSE(x) and RMSE(y) on the x and y
axes, respectively). A typical thematic error analysis can then be applied, to form
an “error matrix.” This matrix contains essentially two types of pixels: (1) those that
were not affected by the shift between maps, and (2) those for which the shift resulted
in “thematic error.” p(loc) is derived as the proportion of type (2) pixels in the map.
Finally, @ and p“(loc) are calculated for the entire image, using Equations 3.2 and 3.3.

3.2.2 Classification Accuracy

The probability that a pixel is misclassified, p(cls), may be estimated as the proportion
of misclassified pixels in the map. The probability that a pixel of class i is assigned to
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class j due to misclassification, p(cls);;, can be estimated from the error matrix as:

nij
p(ClS),‘j = — (3.5)
n;
where n; is the number of pixels of class i in a cell and 7;; is the number of class i
pixels misclassified as j in that cell. This simple method to calculate p(cls);; follows
the common practice in classification accuracy assessments, and ignores the spatially
heterogeneous nature of classification error (e.g., error is more likely to occur near
boundaries between classes). An alternative to this method was recently suggested
(Kyriakidis and Dungan, 2001), where kriging is used to construct a classification
error surface. The same method may be used here to estimate cell-specific p(cls);;.

Considered within the framework of grid cells, classification error may be reduced
when cell size increases. Consider the case of two pixels within the same grid cell,
class i pixel misclassified as j and class j pixel misclassified as i. At the cell level,
where pixel information is reduced to proportion cover of each class in the cell, both
errors cancel each other. The probability for a pixel to be misclassified within the
frame of a larger cell A, pA (cls), can be calculated as:

pA(cls) = B - p(cls) (3.6)

where f is the proportion of misclassified pixels in the cell that were not cancelled
out at the grid-cell level. 8 is dependent on cell size and on the spatial pattern of land
covers shown in the map (since it is a function of the number of pixels of each class
in each grid cell). Thus, B should be estimated for each classification error pair i
separately. ;; is dependent on the number of both ij and ji misclassification types.
The abundance of these misclassifications is denoted by n;; and nj;, respectively.
From this point on, n;, n;j, nj;, and B, are cell-specific. Consider a cell that contains
many class i pixels and many class j pixels. It is expected that some misclassified i
pixels (n;;), as well as several ji misclassified pixels (n j;) will be present in that cell.
n;;j is calculated locally as the product of the number of class i pixels in the cell n;
and p(cls);;:

nij =n; - p(ClS),'j (3.7)

The calculation of g;; requires information on the spatial relationship between ij and
Jji misclassified pixels in each grid cell. If n;; < nj; then all ij misclassifications
are cancelled out, and an equal quantity of ji misclassified pixels is cancelled out as
well. In that case, the effective ij misclassification rate, B;;, is 0, and the effective
Ji misclassification rate, 8;; is (nj; —n;;)/n ;. Thus, B;; is denoted by a conditioned
term as follows:
Bij =0 if nij <nji
njj —nj . (3-8)
Bij =—— ifn;; >nj
nij



AGGREGATION AS A MEANS OF INCREASING THEMATIC MAP ACCURACY 35

Using Equations 3.5, 3.7, and 3.8, B;; can be calculated for each aggregated cell in the
map. Next, 8 can be determined as the weighted average of all §;;:

k nA
B = ZZ(@, Z—) (3.9)

i=1 ]=1 i=1 Z =1 n

Average B can be calculated for the whole map, for a range of cell sizes, and the
reduction in effective classification error that accompanies the aggregation process
can be illustrated.

3.2.3 Model Application

In order to exemplify the utility of this model, it was applied to a vegetation map
derived from a 1995 aerial photograph of Carmel Valley, California (Figure 3.4). This
map was produced as a part of a study of Mediterranean vegetation dynamics (Carmel
et al., 2001; Carmel and Flather, 2004). In the original image, pixel size is 0-6 m.
Location error was estimated using 40 test points that were compared with a known
reference (independent of the control points used in the rectification process). Location
error components RMSE(x) and RMSE(y) were 1-86 and 1-68 m, respectively. Clas-
sification error was assessed using 325 test-points, most were collected in the field
and some were determined with a stereoscope-aided manual photo-interpretation.
These data served to construct a classification error matrix. The map was shifted
against itself by 1-86 and 1-68 m, in the x and y axes, respectively. The original and
shifted maps served to construct a location error matrix, similar to the classification

Meters

0

Figure 3.4 An aerial photograph (a) and a vegetation map (b) of Hastings Nature Reserve, in
Carmel Valley, California. The white, light gray, and dark gray shades in the map
represent grass, chaparral, and trees, respectively. (After Carmel, 2004b, /EEE
Geoscience and Remote Sensing Letters reproduced with permission IEEE.)
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Table 3.1 Location and Classification Error Matrices for the 1995 Vegetation Map of
Hastings Nature Reserve, California

Location Classification
1995 Forest Chaparral Grassland Forest Chaparral Grassland
Forest 7,260,180 173,030 1,492,576 169 3 2
Chaparral 177,796 1,328,014 328,503 5 29 1
Grassland 1,457,213 333,164 4,903,500 14 5 107
PCC 077 0-91

Source: Modified after Carmel et al. (2001). Reproduced with permission, The
American Society for Photogrammetry and Remote Sensing. Carmel et al.
combining location and classification error sources for estimating multi-
temporal database accuracy, Photogrammetric Engineering and Remote Sensing,
67, 865-872.

error matrix. The proportion of pixels classified correctly (PCC) is the sum of the
diagonal cells divided by the sum of all cells. Table 3.1 shows both matrices.

Model parameters p(loc) and p(cls) were estimated globally, assuming error
homogeneity for both error types. The former was estimated from the location error
matrix as the proportion of “mismatched” pixels due to the shift, while the latter was
estimated from the classification error matrix as the proportion of misclassified pixels
(in both cases those are the sum of non-diagonal cells divided by the sum of all cells,
in the respective matrices). The probabilities of error at the pixel level p(loc) and
p(cls) were 0-23 and 0-09, respectively. Using the same classification error matrix,
p(cls);; was estimated for each ij cell in the classification error matrix.

Using Equation 3.3, o was estimated for a range of cell sizes, between 3 and
60 m. o decreased notably from 0-83 to 0-07, when cell size changed from 3 to
60 m. Model parameters n;; and 8;; were then estimated for each cell in the image,
using Equations 3.7 and 3.8, respectively, and the GRID module of ARC-Info™ as
a platform. Global B was calculated using Equation 3.9. This process was repeated
for the same range of cell sizes (3 to 60 m). 8 decreased moderately across this range,
from 0-95 to 0-8.

Finally, Equations 3.2 and 3.6 were used to derive the probabilities of error for this
map at the grid cell level, p“(loc) and p“(cls), for location and classification errors,
respectively, for a range of grid cell sizes. Results show that p“ (loc) diminished from
0-19 to ~0-01 in the range of 3 to 60 m, while the decrease in pA(cls) for the same
range was negligible (Figure 3.5). Note that in this figure, unlike Figure 3.3, a real
image is analyzed, and cell size is defined in meters, not in pixels.

3.3 DISCUSSION

The results of this study support previous indications that the impact of misregistration
on map accuracy is large (Townshend et al., 1992; Dai and Khorram, 1998; Stow,
1999), and reveal that aggregation is a very effective means of reducing this impact.
This study develops a conceptual model to quantify the effect of aggregation on map
accuracy. Given the tradeoff between spatial resolution and accuracy, potential utility



AGGREGATION AS A MEANS OF INCREASING THEMATIC MAP ACCURACY 37

27
0 ——~ Location error p* (loc)
e Classification error p? (cls)
\
\
\
\
\
\
= \
2014 \
L N
TN
N .
\
N
\\
0 ———T—T—T———— —
3 9 15 21 27 33 39 45 51 57

Cell size

Figure3.5 Cell-level error probabilities, pA(loc) for location error and pA(cls) for classification
error, as a function of cell size. Cell size is in meters. (After Carmel, 2004b, IEEE
Geoscience and Remote Sensing Letters.)

of this model would be to help the user choose an appropriate cell size for a specific
application. A first approximation of the gain in accuracy with increased aggregation
level can be visualized using a simple procedure: solve Equation 3.3 for a range
of relevant cell values, and portray « as a function of cell size (Figure 3.3). This
procedure is particularly easy to apply if RMSE is taken to represent e.

In addition, the impact of aggregation on classification accuracy can be viewed
by drawing S, the effective classification error, as a function of cell size. This study
found that the impact of aggregation on classification error was negligible. In maps of
highly fragmented landscapes, § may be more prominent. Further information can be
gained by estimating the actual probabilities of error, p4 (loc) and p*(cls), for various
aggregation levels. This stage requires spatially explicit simulations that manipulate
the actual map.

The model was applied to an actual case study, assuming a uniform error across
the map. An on-going research in our laboratory (http://envgis.technion.ac.il/) studies
the spatially explicit modifications for estimating model parameters, and their impact
on the accuracy of these estimates.

In conclusion, this methodology provides an effective tool for assessing the impact
of aggregation on thematic map accuracy, and evaluating it against information loss,
in order to decide on a proper level of map aggregation. The most effective reduction
in error was achieved when cell size was in the range of 3 to 10 times the size of
average location error. Map-specific error rates may somewhat alter this conclusion.
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4.1 INTRODUCTION

In the United Kingdom, as in many parts of the world, the demand for up-to-date
geospatial information continues to grow rapidly. One of the foremost user demands
is that the geospatial information reflects the real world situation as it stands at the
time they purchase the product and that any changes in the environment (such as
the building of new houses, or the clear-felling of woodlands) are incorporated into
the product as soon as possible after they occur. In order to meet this demand, national
mapping agencies require efficient methods of capturing change; effective spatial data
management techniques; and rapid, user-targeted, methods of data dissemination.
This chapter concentrates on the first of these — the rapid and efficient detection and
capture of change, to update an existing geospatial database.

There are several possible methods, which may be used to determine when change
occurs on the ground. For a mapping agency, change is often identified by local
observation by field surveyors or notification of planning applications by local author-
ities. These methods are perhaps least effective in rural areas, where a small number
of surveyors must cover a large area of land, and where many types of change are
not subject to planning legislation. Many mapping agencies, including the Ordnance
Survey in Great Britain, have used remotely sensed imagery as a source of inform-
ation on change detection for several decades. However, the processes of detecting
the change and subsequently updating the spatial information from imagery have
remained very manually intensive. One long-term goal of a mapping agency is to
develop or procure a system that can detect change and capture feature information
from imagery, with little or no human intervention. While this goal of full automation
remains unrealised, there are ways in which automatic techniques can be used to
streamline at least some elements of the data capture process.

Almost all the large-scale spatial information products supplied by mapping agen-
cies are based on vector datasets. These datasets are derived from a variety of sources,
to meet specifications defined at a regional or national level. Most of these products
are stored in geospatial databases composed of points, lines and polygons, which
represent both natural and artificial features in the landscape. Aerial photography
is used extensively by mapping agencies as a source of raw data from which such
national geospatial datasets are derived and maintained. In most cases, the process
of capturing any changes in the underlying spatial dataset relies solely on the ability
of a photogrammetrist to manually identify and accurately capture the features that
have changed.

One way to make the data capture process more efficient would be to automate the
detection of change. Ideally, this would be followed by an automatic extraction of all
the features for which a change has been detected. Although this subject has been an
active area of research for many years (e.g., see Brenner et al., 2001; Niederost, 2001
and other papers in Baltsavias et al., 2001), the transfer of results from a research
to a production environment is still quite limited. In this chapter, a prototype change
detection system is described, for use in a data collection production flowline. Also
presented are examples of methods which may be used to aid the automated change
detection processes embedded within such a system.
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4.2 A PROTOTYPE CHANGE DETECTION SYSTEM

4.2.1 Rationale

Change detection, as performed by a mapping agency, often involves the use of
an image pair — one image showing the current state of the region to be mapped;
the second image showing the state at a previous point in time — often the time of the
last update. In addition, many mapping agencies will already have a geospatial data-
base, in which topographic features are stored. One frequently encountered problem
is that the real requirement is to determine the differences between the features in the
geospatial database and the new image; rather than the simpler requirement of determ-
ining the differences between two images. The problem lies in the fact that one
dataset is a vector model, determined by a specification designed to show cultural
information; while the other is a raster model, dependent on the physical charac-
teristics of the sensor and the conditions extant at the time of capture. One way to
overcome this problem is to map one of the data sources onto the characteristics
of the other — that is, the vector data must be rasterised; or the imagery must be
segmented into polygons. Either approach leads to some loss of integrity in the data,
and it is generally better to use a like-for-like comparison. The method first described
in this chapter is similar to an image-to-image comparison; but differs in that the
system first performs a segmentation of each image, then compares the two sets of
segments. This automatic stage is followed by a machine-assisted manual capture
process.

Many researchers in the field of change detection wish to develop systems that
can not only identify change, but can also capture the exact outlines of all the features
that have changed. This has proved to be more difficult than one might expect. For
example, despite over 20 years of research in digital photogrammetry and computer
vision, no universal edge detector has been developed that can both identify and track
edges with sufficient success (Agouris et al., 2000). The capacity of the human eye and
brain to infer the presence of a feature from rather imprecise visual cues has proved
very difficult to reproduce in an automated system. Despite the lack of a complete
solution, it is possible to develop a system that provides a marked improvement on
a purely manual data collection system. Such a system takes into account the fact
that much time is potentially wasted by human image-interpreters, as they scan two
or more images and identify those areas that require a closer look. Once this process
is complete, the image-interpreter must revisit each area of potential change, and
employ different criteria to determine exactly what has changed, and which features
must be edited, deleted or created in the geospatial database.

4.2.2 Choice of Source Data

Many different types of remotely sensed imagery are currently available, at a range
of different resolutions and from an increasing number of different technologies,
including laser and radar as well as the more familiar optical sensors. Mapping
agencies have traditionally used aerial photography as the data source; either
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in analogue form (diapositives or prints) or in digital form. While analogue
aerial photography still forms the basic source material in current data capture
operations, it is now often scanned to convert it to digital form before being
interpreted.

There has been a remarkable growth in recent years in the use of digital cameras
in the home consumer market, but the transfer of this technology into the professional
photogrammetric market has been slower. Traditional photogrammetric cameras are
expensive to purchase, and most of those currently in use have many years of service
left in them. To discard such a system in favour of an equally expensive but relatively
un-tested digital system is perhaps too great a risk for many mapping agencies at
the present time. However, as the technology matures and the costs reduce, it can
only be a matter of time before most film-based aerial camera systems are replaced
by their digital equivalents.

In the field of satellite remote sensing, the last 5 years have seen a radical change
in the type of imagery available to the general consumer. Technologies developed
for the defence and intelligence market have been developed for commercial use,
enabling anyone with sufficient funds to purchase satellite sensor imagery at spatial
resolutions of 1 m or less (Petrie, 2003a). There are now three main U.S. companies
providing such imagery — Space Imaging (IKONOS satellite, operational since
1999), Digital Globe (QuickBird, operational since 2001), and OrbImage (OrbView 3,
launched in 2003). Several other countries have launched military satellites that
may serve a dual purpose by providing imagery to the commercial market (Petrie,
2003b).

The current photogrammetric processes within Ordnance Survey use scanned
colour aerial photographs. However, the use of digital imagery from both airborne
and spaceborne sensors has been a major topic of research in recent years (Holland
and Marshall, 2003). In this chapter, two types of imagery are used. Since the existing
update systems use scanned aerial photography, it was natural to use such imagery
in the prototype system described in this section. Also, digital imagery has not been
readily available for very long, so obtaining two sets of such images, separated by
a sufficient period of time, can be difficult. The work described later in this chapter,
on shadow analysis, was partly inspired by the observation of prominent shadows in
QuickBird sensor imagery, hence this imagery was used in the research. In each case,
the choice of imagery is, therefore, somewhat arbitrary and the authors do not mean
to imply that this is the most appropriate type of imagery for the application under
discussion.

4.2.3 System Design

The prototype system described in the following sections is the focus of ongoing
research investigating the extent to which the software interface of a data capture
production system can help to reduce the time taken to update a geospatial database.
The underlying premise of this research is that there needs to be a strong appreciation
of the fact that the system needs to be considered in terms of both “software” and
“user” subsystems. As a result, the research concentrates upon the information flow
between the software and user. In this chapter, the focus is directed on the visual cues
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presented to the user by the system. This system represents a software interface that
can have components inserted, removed, or changed, as and when new methods for
enhancing such information are developed.

The first incarnation of the system (described in more detail in Tompkinson et al.,
2003) relies on the availability of imagery captured at two instances in time (usually
separated by several years). Once the sensor distortions, chromatic differences and the
different viewing geometries have been accounted for, the two images are compared
and any differences are highlighted. In a traditional change detection system, the
process stops at this point, and it is left to the operator to search for all the areas
which the system has identified as areas of potential change, to study these areas,
and to capture the data manually. Figure 4.1 illustrates how such a change detection
system might be organised according to a generic tiered structure commonly used in
system design (e.g., as described in Bennett et al., 1999).

In the proposed system, the user is given more information than before and
is guided automatically to the places where potential changes have been identified.
In this system, the following functions are executed:

e An automatic image-to-image change detection process is performed:
e First the two images are segmented into polygons. This gives a set of
polygons for each of the two instances in time.
e Polygons from the two time instances are then compared and overlapping
polygons are detected.

Presentation Logic | | Business Logic | Database Logic
O
User User-defined Imagery at time t,
interface parameters
~——
Change
detection
Graphical technique
display Imagery at time t,
-

I The user must interpret and prioritize all
change illustrated in the graphical display;
then interpret the locations of those changes
both in the imagery and in the database

Manual
intervention

fromuser \ /5----------mmmmmomommooooomoooooo oo database

Topographic

Figure4.1 Atiered system-design diagram illustrating a typical change detection system within
a data capture software environment.
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e The overlapping polygons are then compared using their compactness ratios

(Equation 4.1)

p2

47 A
where p is the perimeter of the polygon, A is the area of the polygon.
e Those with very different compactness ratios are flagged as potential areas
of change.

e The process described above is similar to that described by Ware and Jones (1999).
(Note: Although image segmentation was used in the prototype, any change detec-
tion technique could be performed at this stage.)

e Via a graphical user interface, the operator is guided to each potential area of
change in turn. The user is presented with a view of the changed areas in both the
images, together with a representation of the geospatial data currently held in the
topographic database.

e The user is also presented with a visual cue of the polygons that are most likely to
have changed, as determined by the system.

4.1)

By placing change detection within the context of the system in which it is applied,
this research places an emphasis upon the application of computational methods
to simulate the thought processes of a manual interpreter. In the prototype system,
emphasis is placed upon utilising cues of change detection to assess where change has
taken place and presenting this information to the user (Figure 4.2). This information
is then used to iteratively “drive” the user to the location of the change. The user and
the system work together to make the data collection process more efficient.

4.2.4 Results of the Prototype

The prototype system presented here has been developed in Visual Basic using
ESRI ArcObject™ technology, with a change detection technique implemented
in C4++-. Since it produces vector segments from imagery in a consistent and effi-
cient manner, the eCognition software package (from Definiens Imaging) is used
to segment the images and generate the input vector data. The process flow in this
system, from the input of the image pair, via the segmentation and the implement-
ation of the change detection technique, through to driving the user to the location
of change, is depicted in Figure 4.3.

Initial tests have been performed using a small image subset, with dimensions
of 250 m x 210 m. Demonstrations of this prototype, to those involved in the man-
agement of a large photogrammetric flowline, have been successful in conveying the
concept of a system that enables efficient interpretation of change locations through
the automation of pan and zoom functions. It is envisaged that such an application
has the potential to increase the speed of data capture from image blocks that cover
even larger areas of land. This becomes of greater importance if a mapping organ-
isation were to capture features from fine spatial resolution satellite sensor imagery
rather than aerial photography, since such imagery covers large areas without the need
to produce aerial image mosaics.

Experimentation using larger (4 km x 1 km) areas of aerial orthophotographs
is currently underway. It is intended that such trials will enable a more complete
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Figure4.2 A tiered system design diagram illustrating the proposed change detection system
within a data capture software environment.

assessment of whether simply implementing the methods described in this system
really do increase efficiency. These trials have indicated that limitations in the software
platform and data structures used mean that the prototype can be slow to function.

Research is also underway that addresses the problems of edge effects, which
currently present difficulty when processing sets of images taken from different
orientations. These problems notably occur in the region between the convex hull
and the envelope of a line of photographs, or in a region where photography is only
available for one set of images. In such areas, polygons are often misclassified as
having changed.

4.3 OTHER CUES OF CHANGE DETECTION

4.3.1 Types of Change Detection Techniques

The change detection technique in the prototype system described above uses a shape
comparison between image segments. While this has produced encouraging results
in the area tested, the system is not dependent on the technique. The system could
be improved by allowing a variety of different change detection techniques to be
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Figure4.3 (see color insert following page 168) Process flowline through the prototype
change detection system.

incorporated into the flowline, each technique being adapted to a particular type of
change. In a manual change detection process, the photogrammetrist will be skilled in
identifying changes in the landscape from remotely sensed imagery. During manual
comparisons between temporally separated image pairs, or between an image and
map data, changes may be identified in several ways. In one method, an operator
may use indicators such as alterations in the shape of landscape features; in another
the operator may concentrate on the detection of artefacts within large homogeneous
topographic objects. A new building development may be recognised by a change in
texture over a large area of land; whilst a new wall may be identified through indirect
evidence such as its shadow. If existing topographic data are available, these too can
be used to supply extra information, directly either to the user or to the system, to help
identify significant areas of change. In Section 4.3.2, some other techniques which
may be used to indicate the incidence of change are discussed. These techniques could
be incorporated into future versions of the change detection system.
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4.3.2 Using Shadows to Detect Change

4.3.2.1 Shadows as Indicators of Topographic Features

Shadows within an image can provide an indication of the presence of buildings and
other objects, and they are usually easier to detect than the often-complex multi-
textured objects which cast them (Irvin and McKeown, 1989). Many authors have
used shadows observed in aerial photographs to estimate the height of buildings (Hinz
et al., 2001). Until recently, the analysis of shadows in satellite sensor imagery was
of very little interest to researchers, since the length of a shadow cast by a typical
object (e.g., a suburban house) would often be smaller than the size of an image
pixel. The latest satellite sensors from Space Imaging (IKONOS) and Digital Globe
(QuickBird), however, provide imagery in which shadows are quite easy to detect.
As previously mentioned, the main catalyst for this research was the observation that
shadows appeared prominently within a QuickBird sensor image of Christchurch in
Dorset, supplied to Ordnance Survey by Eurimage. The image from the QuickBird
sensor used in this research has pixels with a ground sample distance of 64 cm. Even
in the late morning, when the image of the study area was acquired, the shadows cast
by a small house comprise 40 to 50 pixels (Figure 4.4). In this study, no attempt was
made to extract 3D information from these shadows, they were simply used as an
indicator of the presence of a solid object (such as a building) or a “semi-solid” object
(such as a tree in leaf).

4.3.2.2 Detecting Shadows

One way of finding shadows is to simply threshold the image at a certain gray level,
so that any pixels brighter than a given value are removed from the image, leaving only
the areas of potential shadows. The most suitable threshold to use for this purpose
depends on the characteristics of the image (e.g., what proportion of the image is
in shadow and how much contrast is present in the image). After experimenting

A

Shadow of a hedge

Shadow of a house

Figure4.4 Examples of buildings, hedges and their shadows in a QuickBird sensor image.
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Figure4.5 Image of the study area, comprising a mainly residential area of Christchurch,
centred on National Grid coordinates SZ191929: (a) the original image, (b) the
image after thresholding.

with various values, a suitable threshold was chosen, calculated as the mean minus
one standard deviation (these being the statistics of the pixel values in the image). For
the test area of Christchurch in Dorset (Figure 4.5A), this results in the thresholded
image shown in Figure 4.5B.

After thresholding, the potential shadows were enhanced by passing a shadow
detection filter over the image. The filter used was an ellipse, with its minor axis
aligned with the direction of the Sun at the time of image capture (23° east of south,
asrecorded in the image metadata) and its values weighted as the inverse distance from
the central pixel, modified by the angular distance from the Sun angle. The filter values
were positive on the sunward side of the ellipse and negative on the leeward side. A dia-
gram of the filter is shown in Figure 4.6, with the positive values in the filter represented
by white-to-mid-gray and the negative values represented by black-to-mid-gray. The
characteristics of this filter were determined empirically — further work is required
to determine whether this filter is appropriate for other images, and to investigate
other types of filter (e.g., a simple linear filter, oriented in the direction of the Sun).

The filtering process highlighted the parts of the original image where the
boundaries between light areas and dark areas are aligned with the predicted shadow
angle (Figure 4.7A). These correspond to features such as buildings, walls, bushes,
and trees.

4.3.2.3 Detecting Shadows Cast by “New” Features

To detect the features that are not present in the topographic database, a set of
“expected shadows” was generated from the building footprints already held in the
database. The first step in the process was to assign a nominal height of 6 m to each
building (the typical eave-height of a standard house in the study area, determined
by local observation). Then the shadows cast by these buildings, at the time and date
on which the image was taken, were predicted using the Sun azimuth and elevation
angles recorded in the image metadata (azimuth 23° east of south, elevation 60°).
Figure 4.7B shows the buildings and their predicted shadows.
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Figure4.6 The shadow filter, with a Sun azimuth of 23°.
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Figure4.7 Buildings, trees, and their shadows: (a) the image after thresholding and filtering,
(b) the buildings in the database, together with their predicted shadows.

The areas covered by the buildings and their predicted shadows were removed
from the filtered image. This effectively took out of the image all the features that were
already known. Many very small areas of shadow were present in the resulting image.
This occurs for a variety of reasons, not least of which is the imprecision inherent in
the prediction of shadows from the building features in the database. If the true heights
of buildings were recorded in the topographic database, a more realistic prediction
of shadows would be possible. During this research, such height information was
not available, so only a nominal typical building height could be applied. To remove
the small shadow areas from the filtered image, a morphological “opening” (dilation
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Figure4.8 The filtered image after known buildings and their shadows have been removed and
the resulting image morphologically opened.

followed by erosion) was performed on the image. The final filtered image is shown
in Figure 4.8.

4.3.2.4 Results of the Shadow Detection

The processes described above leave an image of “unidentified shadows” (Figure 4.8)
that could not be predicted from the existing spatial data. In an ideal world, these would
indicate the presence of new features, which could then be manually or automatically
extracted and added to the topographic database. In reality, many of the detected
shadows were found to be cast by bushes and trees, even in the urban area under
consideration. Most of these “new” features, although real enough, are not part of
a mapping agency’s typical data specification. Since individual trees and bushes are
not present in the topographic database, neither these features nor their shadows can
be predicted.

At the southern edge of the study area the topographic data were not used, so
the final image in this area shows shadows cast by both buildings and by vegetation.
A close-up view of part of this area is shown in Figure 4.9. From this example,
it is clear that those shadows which were cast by buildings were very difficult to
separate from those cast by trees. It was expected that the building shadows would be
characterised by straight lines and right angles, while the vegetation shadows would
be less regular. In fact, the vegetation in this urban area is often arranged in regular
patterns, and a shadow of a large hedge looks very similar to the shadow of a row of
houses. Conversely, a house with a gable roof can cast a shadow that looks remarkably
tree-like.

To quantify the results, an analysis of the shadows in the filtered image
(Figure 4.7A) was undertaken. Recall that this image contained all the shadows identi-
fied by the thresholding and filtering processes, before any predicted building shadows
are removed. From this image, all the shadow features greater than 100 m? in area
were manually classified as either buildings or trees/hedges (without reference to the
original image, or to the topographic vector data). Each of these classified shadows
was then identified in the original image and compared with the topographic data.
The results for every classified shadow are shown in Table 4.1. Note that there were
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Figure4.9 A comparison of the predicted shadows and the original image, showing shadows
cast by both trees and buildings.

Table 4.1 Results of the Classification of Shadows into Buildings or Trees

Predicted

Classified Total
Features Features
Correctly  Correctly

Not Identified Identified
Actual Building Tree Classified in Percent in Percent
Building 181 69 60 724 58-4
Tree 32 93 744
Predicted features 85.0 574
correctly classified
in percents

Note: The table includes buildings in the topographic database that could
not be classified (as either building or tree) from the shadow data alone.
A similar statistic for trees is not included, since trees are not present
in the topographic database.

60 buildings in the topographic data that were not classified at all (i.e., they did not
appear in the shadow data, or the shadow was too small to be classified). The most
encouraging aspect of these results is that 85% of the shadows predicted to be build-
ings were found to be present as buildings in the topographic data. Conversely, only
58.4% of the total number of buildings present in the topographic data were correctly
predicted from the shadow data.

The above analysis indicates that, without extra information, an automatic tech-
nique would have limited success in identifying new buildings from the shadow data
alone. Suitable extra information may, for example, be obtained from a multispectral
image captured at the same time as the panchromatic image used to identify the
shadows. The combination of multispectral image classification and shadow detec-
tion algorithms will be further investigated. Also, further analysis of the shadows of
potential features could provide enough evidence to guide a semi-automatic process,
such as the one described earlier in this chapter.
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4.3.3 Detecting Change by Examining “Empty Space”

A second indicator of change is currently under investigation. This research focuses
upon utilising texture measurements to compare imagery with topographic data. The
analysis is concentrated on areas in the image for which there are no existing features
in the topographic database (or areas covered by polygons recorded as “general surface
land” or similar). In these areas, since there are no noteworthy topographic features,
the presence of image-texture differences will provide a further cue to the presence
of changes to the features on the ground. However, as with the shadow detection
process, initial results of this research show that trees in these areas severely restrict
the effectiveness of the procedure. While one might expect that areas of “general
surface land” would exhibit low image texture, it has been found that image texture
can often be very complex in these areas, usually due to the presence of trees and
bushes. Paradoxically, it is often the case that features such as buildings in the image
will exhibit less texture than the “general surface land” features. Buildings often show
little texture difference within their large, flat areas of roofs (and also within vertical
walls if the sensor is pointing off-nadir), while there will be large texture differences
at the boundary between these features and their surroundings.

Further research will examine these areas more thoroughly, and will look at other
cues, which could be used to indicate change, such as the detection of straight lines
and corners within areas recorded in the topographic database as featureless.

4.4 SUMMARY

This chapter presented a prototype change detection system that could be used to
increase the speed of spatial data capture from imagery. The prototype has been tested
on sample images of a small area and has received favourable comments from person-
nel involved in the photogrammetric data capture area of a national mapping agency.
In the initial prototype, image segmentation and polygon-matching techniques were
used to determine the locations of change. Related research work has investigated the
use of other cues of change, including shadow detection and the analysis of regions
in the image which are “empty” in the geospatial database. These techniques could
be used in later incarnations of the change detection system.

Current research concentrates on enhancing the prototype to take larger images;
to overcome edge effects in the data processing; and to optimise the system to make
it more useable in a production environment.

4.5 CONCLUSIONS

This chapter puts forward the view that a technique that includes the user as an integral
part of the change detection process can make the geospatial data capture process more
efficient.

The use of shadows to detect change between features in a geospatial database
and features in an image has met with limited success. While new buildings can be
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detected from their shadows, the presence of shadows from trees and other vegetations
make it difficult to determine whether or not the identified shadows indicate changes
to the features required in the database. Further work is needed to determine whether
other cues, such as shadows with straight edges, could be used to discriminate between
building features and vegetation.

Initial research into the use of image texture to indicate the presence of features
in areas recorded in a database as “empty space” has shown that many such areas are
in fact rich in image texture, again mainly due to the presence of vegetation. Further
research is needed in this area to determine whether the technique can be modified to
produce more reliable indicators of change.
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5.1 INTRODUCTION

In 1997, a project was initiated to investigate the feasibility of using satellite-based
sensor data to produce classified crop images in North West Tasmania. The domain of
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crop identification is dynamic, with the spectral characteristics of a paddock changing
during the growing season. Data acquisition continues throughout the season, but at
irregular intervals due to cloud. Despite this, the study resulted in the development
of techniques that identified the major economic crops at an accuracy of >85%.

Finding algorithms that produced a classified image was the first objective of
this initial study, which was met (Barrett et al., 2000). There were, however, two
problems. First, it became apparent that the structure of the system that was being
developed was ad hoc and the original notion of the task comprised both the task
specification and the knowledge base. Effectively, the problem solving method was
fixed and formed an integral part of the implementation. Second, the organizations
providing the funding support had different ideas of how the resulting classified image
could be used. The initial results were classified images, which then required further
processing to be useful to the organizations.

To solve these problems, a CommonKADS model was developed for the next
iteration of the system. One application, that of planning pyrethrum crop plantings
based on existing crops and crop rotation knowledge, will be presented here. The
components of that system were then made available to develop further systems,
which met other objectives. Reuse in this context has been successfully achieved
(Crowther et al., 2002), but not in a geographic domain.

The Knowledge Acquisition and Design System (KADS) was initiated as a “Struc-
tured methodology for the development of knowledge based systems” (Schreiber
et al., 1993, p. xi). The limitations of production rules, combined with their inherent
non-reusability contributed significantly to the impetus to develop methodologies like
KADS. KADS modeled knowledge, but it became apparent that a model of knowledge
was only one component of an overall knowledge-based systems (KBS). This lead
to CommonKADS. The two central principles that underlie the CommonKADS
approach are the introduction of multiple models as a means of coping with the
complexity of the knowledge engineering process, and the use of knowledge-level
descriptions as an intermediate model between expertise data and system design.

Motta (1997) coins the term “knowledge modelling revolution,” which refers to
the paradigm switch from symbol level (rule based) approaches to knowledge level
task centered analysis. This heralded the necessary decoupling of the task specification
and the problem solving method.

5.2 COMMONKADS

Figure 5.1 gives an overview of the interconnecting CommonKADS models. Each of
the models has a series of associated templates that, when filled in, provide detailed
documentation of the system and its requirements (Schreiber et al., 2000). In this
chapter only the organizational, task, agent, and knowledge model will be discussed
in detail as the communication and design model are very platform specific.

The Organizational Model is a model that documents the objectives of the system
and identifies opportunities of value to the organization. One of the advantages of
CommonKADS is that the organizational model provides an analysis of the socio-
organizational environment that the knowledge-based system (KBS) will have to
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Context | Organizational Task Agent
model model model
Concept Knowledge Communication
model model
Artifact
Design
model

Figure5.1 The CommonKADS knowledge classification scheme (after Schreiber et al., 2000;
Knowledge Engineering and Management, reproduced with permission from the
MIT Press.)

function in. This includes descriptions of functions within the organization (Wielinga
and Schreiber, 1993). The organization model is also used to identify risks of fielding
a KBS. These risks tend not to be technical as KBS’s are now widely used and there
is less risk of KBS failure through technical issues (De Hoog et al., 1993). This is as
true of spatial KBS’s as non-spatial ones.

The Agent Model provides an understanding of the systems users and identifies
how these users or agents will perform their tasks (Gustafsson and Menezes, 1994).
An agent in this context is a person, hardware or software that interfaces with the
KBS. In a spatial system, for example, it would be likely that an agent could be a
geographic information system (GIS).

The CommonKADS Task Model specifies how the functionality of the system is
achieved (Gustafsson and Menezes, 1994). The task model links to the agent model
to identify the people (or the roles that individuals have), hardware or systems that
perform tasks. These tasks operate in the domain defined in the organizational model.

The Communication Model models the interaction of the system with the user
and other system components. It models how software and users of the system work
together and specifies the environment in which KBS must work.

The Knowledge Model (Figure 5.2) defines the knowledge necessary to meet the
objectives specified in the organizational model and the tasks in the task model. It is
split into three layers.

The CommonKADS Domain Layer is knowledge describing a declarative theory
of the domain. Knowledge at this level should be represented in a way that is inde-
pendent of the way in which it is to be used. Generally, this is described using the
Unified Modeling Language (UML) notation (Rumbaugh et al., 1999). It defines
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Figure5.2 The three-layer knowledge model (after Schreiber et al., 2000; Knowledge Engin-
eering and Management, reproduced with permission from the MIT Press.)

the conceptualization and declarative theory of the problem domain and provides the
knowledge to carry out given tasks. In other words it contains facts, rules, and domain
types. The other layers contain knowledge to control the use of knowledge from the
domain layer (Fensel and Van Harmelen, 1994).

The Inference Layer specifies how to use the knowledge from the domain layer.
It restricts the use of the domain layer and abstracts from it. A formal specification
language has been developed to record knowledge in each of the layers (Schreiber
et al., 1994).

The Task Layer represents a fixed strategy for achieving problem solving goals. It
includes a specification of the goals related to a specific task and indicates how these
goals can be decomposed into subgoals.

The task layer in the geographical classification scheme shows how to apply
the problem solving strategy to a whole image set. Depending on the objective of
the system, different strategies can be used, including the masking out of areas not
relevant in a particular domain. For example, in a geographical knowledge classifi-
cation scheme, knowledge about specific objects, like an instance of the crop class
potato, would be held at the domain level. Inference knowledge would be used to
apply the domain knowledge. At the task level there would be a task to identify all
paddocks containing potato crops. This could be defined in more abstract terms (apply
crop labels to paddocks) and reused to identify other crops.

The original KADS methodology proposed a four-layer knowledge model
(Schreiber et al., 1993). The CommonKADS methodology (Schreiber et al., 2000)
amended this to the three-layer model, which is shown in Figure 5.2.

In the earlier four-layer model, the top level of knowledge was the Strategy
Layer, which involves knowledge of how to choose between various tasks that when
completed successfully achieve the same goal. This layer has been removed in the
CommonKADS model, but may have application in spatial systems. In geographic
knowledge applications the strategy layer could contain alternate ways of classifying
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images. This could be important when choices need to be made between using rules
developed from machine learning, neural networks or rules elicited from domain
experts to classify images. It should be noted once again that the strategy layer is not
part of the CommonKADS model.

5.3 A SPATIAL APPLICATION

The rest of this chapter will present an example based on the analysis of satellite
sensor imagery in an agricultural domain where expert knowledge was captured and
applied. A series of CommonKADS models will be presented and evaluated.

In 1997, a project was initiated to create crop identification and monitoring
system using remotely sensed images from Landsat 5 TM, SPOT HRYV 2, and SPOT
HRYV 4 satellite systems over the major agricultural region of North West Tasmania
(Figure 5.3). The aim was to establish crop distributions, monitor crop health, and
estimate yield. Crops of interest were restricted to poppies, potatoes, peas, pyrethrum,
and onions.

The Landsat TM provided seven spectral bands of information and the SPOT
HRY, three (the 1580 to 1750 nm sensor of SPOT 4 was not used). All images were
co-registered and resampled to cover the same area at 20 m resolution (Barrett et al.,
2000).

Figure 5.4 shows a UML class model (Rumbaugh et al., 1999) defining the overall
problem domain. This model forms the basis for the design of the database, which
is part of the system. The automated part of the system deals with assigning crop
labels to paddocks. Some research has been carried out into automated boundary
(fence) extraction (Anderson et al., 1999), but at the moment this is not accurate
enough to use. Paddock boundaries were therefore manually digitized and added to
the system as an overlay. A soil distribution map and a digital elevation model were
also added as map overlays and linked to paddock once the boundary digitization
has been completed. Classes such as Farmer, AgRegion, Fertilizer, and Spray were

Figure5.3 Composite image of part of the study area around Devonport in North West
Tasmania.
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Figure5.4 The agricultural domain.

all entered manually. Once entered, these were displayed as overlays based on their
association with the class paddock.

In this system, a paddock is a polygonal object that is central to the study.
A paddock contains a crop, although at any one time there is only one crop in a
paddock. The different types of crop of interest to the case study have been shown
as specializations of crop and inherit all of crop’s attributes and operations. Specific
attributes can be added to these specializations as required. In this system, it is the
contents of the paddock (crop) that is identified and then assigned to an instance of

paddock.

In the initial stages of the study, the crop identification techniques were paramount,
with only a broad definition of how the final system would be used (Barrettetal.,2001).
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This study addresses that problem by building models for individual applications using
CommonKADS models. Components of the crop planning system can be reused.
Reuse is one of the main advantages of using the CommonKADS approach (Valente
et al., 1998).

5.3.1 Organizational Model

The aim of producing an organization model is to establish the objectives of the
system in terms of the organization (De Hoog, 1994). This model also establishes the
organizational setting, problems, opportunities, and available resources for meeting
these objectives.

Figure 5.5 is a skeleton of the organization model for a pyrethrum processing com-
pany that wants to use a satellite sensor image classified into different crop categories.
This information is then used as a basis for planning future crop plantings.

Problems belongs Current problem
Competitive to Reliant on growers
environment. to identify sites for
Planning and future planting.

Identification of
crop location. T
belongs to addressed by

Opportunities

Optimise planting. Solutions

Identify all potential

Plan future plantings

planting sites. |ane?SG planting in effected by
Coordination of suitable areas.
contractors. sponsored by
Agent model
Agent
People Power GIS
Image interpreters Image interpr_ett_er
Company employees / Cqmpany logistics
Farmer hold can be officer
Agronomist
Contractors
hold Knowledge
effected by ~Nas position in applied by Image interpretation

experts
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context Processors g derived from ———— |

Vegetable Processor Contractors applied by
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Distributors Other
resources Computing
| \ resource
realized in used in
Ordered Acy capable
Function r bere » Process of
y implementation

Figure5.5 Organizational model.
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Figure5.6 Task model showing relationship to the agent model.

5.3.2 Task Model

The agent and the task model are shown together in Figure 5.6 in the form of a UML
use-case diagram. The use cases describe the tasks that are required. The primary task
of the system, as it was initially developed, was to produce a classified image. This
is still required, but a classified image on its own is of limited value to the pyrethrum
processor.

From the Organizational Model view, one identified problem is that the organ-
ization is reliant on growers to identify future crop sites. The opportunity is to
identify all potential planting sites. From that it may be possible to optimize plant-
ing and coordinate planting contractors. To realize this opportunity, the primary
task is to identify the location where crops can be sown in the following season.
This task requires knowledge of crop rotation as well as knowledge about how
to identify current crops and will be found in the domain layer of the Knowledge
Model.

There are also a series of other tasks that must be completed before the primary
task can be completed. For example, to be able to identify current crops, an image set
needs to be loaded, then classified. In the task model, this dependency is documented
using the <<uses>>, <<include>>, and <<extend>> stereotypes from UML.

Finally, there needs to be tasks which provide a mechanism to add knowledge to
the system which can be used to produce that classification. Each task in the Task
Model is described by a template (Schreiber et al., 2000). As an example Task 01
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from the Figure 5.6 would be described as follows:

TASK: 01 Identify next seasons locations

ORGANIZATION agronomist, contractor coordinator, strategic
crop planner

GOAL AND VALUE identify paddocks where the crop can be
grown next season

Find optimal locations which will result in a good

crop yield

DEPENDENCY AND FLOW

Input tasks: specific crop type distribution,

Output tasks: paddock location for sowing

OBJECTS HANDLED

Input objects: classified image (showing crop which precedes
the target planting crop)

Output objects: classified image with target paddocks for
sowing

Internal objects: this is shown by Figure 5.4

TIMING AND CONTROL

Frequency: yearly.

Timing: after collection of growing season images and before
planting time

(i) preconditions crop ready for harvesting;

(ii) postconditions paddocks ready for sowing.

AGENTS agronomist, GIS

KNOWLEDGE AND COMPETENCE Competent with GIS

RESOURCES As required

QUALITY AND PERFORMANCE Increase the total area to be
harvested

The task template describes what is required. The knowledge required to carry out
the task is Task Knowledge and is defined in the knowledge model, described below
in Section 5.3.4.

5.3.3 Agent Model

The agent model describes the actors that interact with the overall system. In the case
of the agricultural system these are the end users of the system, generally those who
want a classified image, an image classification expert, and finally a GIS package
which may be useful to manipulate the classified images. Individual end users can
have multiple roles and each role is shown as a separate agent. For example, the
strategic crop planner and the agronomist may be the same person, and both roles
fall under the more generalized role of user. There is interaction between these agents
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as well. For example, the strategic crop planner could use a GIS to view the classified
image and next season’s potential crop sites (not all of which may be used).

The following is an example of an agent template from the model defining the
strategic crop planner agent

NAME strategic crop planner

INVOLVED IN Load image, identify next seasons locations
COMMUNICATES WITH agronomist, GIS

KNOWLEDGE how to select between suggested crop locations
OTHER COMPETENCES use of a GIS or image processing
software

ORGANIZATION consultant

RESPONSIBILITIES AND CONSTRAINTS select paddocks where the
next planting of the crop is to be carried out. Do not
select too many locations to avoid a shortage of sites for
the year following the planned year

5.3.4 Knowledge Model

The original crop identification system had no structuring of the knowledge, which
it contained. The system was examined and knowledge at all levels was extracted
and placed into the CommonKADS knowledge model structure. The feasibility of
this approach has been shown in industrial process systems (Crowther et al., 2001).
As part of this approach the validity of existing knowledge was checked and new
knowledge required to meet the objectives defined in the task model added.

5.3.4.1 Task Knowledge

Task knowledge is not the same as the task model, although there is a relationship. In
the CommonKADS methodology high level abstract classes would be associated with
the task level of the knowledge model. For example, a key task in the task model is
identify next seasons planting locations. The task knowledge necessary to achieve this
would be held at the abstract class image primitive level rather than the concrete level
such as poppy. An example of task knowledge specification is as follows with anaming
convention from UML and stored as an operation in the image_ primitive class:

TASK: identify next seasons planting locations
ROLES:
INPUT: object: paddock with current crop label
OUTPUT: decision (will plant, could plant, will not
plant)

END TASK

TASK-METHOD assign-decision-label
REALIZES: identifying next season planting locations
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DECOMPOSITION
INFERENCES: select, assign
TRANSFER-FUNCTIONS: obtain;
ROLES
INTERMEDIATE
Goal: establish the suitability of a paddock for
planting pyrethrum
establish suitability;
establish level of suitability;
Result: a label of suitability

CONTROL-STRUCTURE
FOR each paddock;
DO
establish current crop;
retrieve previous crop;
compare (observed-rotation + expected
rotation -> result);
IF result = = equal
THEN label = suitable;
ELSE label = unsuitable

END TIF
IF label = = suitable
THEN establish suitability level
END IF
END FOR

END TASK-METHOD assign-decision-label

Task knowledge is therefore the knowledge required to fulfil the tasks identified in
the task model. Hence, each task in the task model would have at least one equivalent
template in the task layer of the knowledge model.

5.3.4.2 Inference Knowledge

Inference Knowledge is how to apply domain knowledge to meet a particular task. In
the agricultural domain there are three main types of feature that require inference.
These are:

e image primitives, such as polygons, points, and lines,
e features which are determined through their relationships to other features,
e more complex features which are a combination of image primitives.

In Figure 5.7, these have been identified as Primitive Knowledge, Relationship
Knowledge, and Assembly Knowledge respectively (Crowther, 1998).
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Figure5.7 CommonKADS Inference Knowledge.

For example, the inference select was identified in “TASK: identify next seasons
planting locations” which is one element of the task knowledge discussed in
Section 3.4.1. The domain class involved is paddock which is a subclass of polygon
which itself is a specialization of the image primitive class. The inference select would
be defined:

INFERENCE select
ROLES
INPUT paddock, paddock history
OUTPUT availability
STATIC rotation-model
SPECIFICATION:
Each time the inference is invoked it generates a
Boolean for the availability of the paddock for
planting
END INFERENCE

This knowledge could be reused in other domains which require classification
of scenes. The detail of how the result was derived would be held in the static
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classification model defined at the domain knowledge level. The inference knowledge
is, therefore, used to achieve the task goal of classifying the image.

5.3.4.3 Domain Knowledge

Domain Knowledge is about individual instances of objects in the problem domain.
This is shown at a high level in Figure 5.4 where the relationships between the various
domain classes are described. From a CommonKADS domain knowledge stance,
these classes are termed concepts. Each of these concepts has attributes and value
types associated with it. Hence the concept pyrethrum in Figure 5.8 has five attributes
associated with it. Each attribute has a value type defined in the form:

VALUE-TYPE pixel signature maximum value
VALUE: 79

TYPE: NUMBER

END VALUE-TYPE pixel signature maximum value

This information is still very similar to that which would be found in a class dia-
gram, however, there are also rule types associated with each concept. For example,
an important piece of domain knowledge is about crop rotation, which would be
defined as:

RULE-TYPE crop-rotation
ANTECEDENT: current crop
CARDINALITY: 1;
CONSEQUENT: suggested crop
CARDINALITY: 1;
CONNECTION-SYMBOL
precedes
END RULE-TYPE crop-rotation
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For each of the rule-type definitions individual rules are defined using the
connection symbol to connect the antecedent and the consequent, for example,

PADDOCK-HISTORY.crop name = peas
precedes
PADDOCK-HISTORY.next crop = pyrethrum;

PADDOCK-HISTORY.crop_ name potato

precedes
PADDOCK-HISTORY.next crop = peas;

The final knowledge base contains instances of the rule types defined in the domain
model. The CommonKADS domain knowledge in the knowledge base is then used
by the inference knowledge which in turn is required by the task knowledge.

5.4 DISCUSSION

CommonKADS provides a series of models in which any KBS can be developed.
In a general sense it provides the organizational objectives of the system, the
organizational setting, the users, both human and system, and the specific goals. The
knowledge model provides the knowledge required to meet these goals and objectives.

The crop identification component of the system which applied crop labels to
each of the paddocks in the domain exceeded 85% in the 1998 to 1999 growing
season. The results for the crops of commercial interest being: poppies (producer’s
accuracy 92.2%), onions (88.6%), peas (94.2%), and pyrethrum (87.1%). The results
were then used to plan the following seasons planting of pyrethrum. Since the system
was specifically requested by the pyrethrum processor, there was potential conflict
for paddocks with other processors. For example, paddocks suitable for pyrethrum
are also suitable for poppies. As a result a paddock was still only potential until
negotiations with individual farmers were completed. A further complication in this
was that pyrethrum is a perennial crop committing a grower to having it in their
paddock for at least 4 years.

5.4.1 Spatial Extensions to CommonKADS

There are no direct extensions needed to the CommonKADS model to develop smart
or expert spatial systems. However, at the knowledge model level it is useful if a
template for different types of spatial knowledge is used. The one suggested here is
of primitive, relationship, and assembly knowledge (Crowther, 1998). This provides
an overall framework which can be used for the inference layer in the knowledge
model.
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5.4.2 A Case for Strategy Knowledge in a Spatial Domain

There are many ways of producing a classified satellite image including the use
of neural networks (Openshaw, 1993), knowledge-based approach (Crowther et al.,
1997), and clustering algorithms (Richards, 1993). The classification method used
in this system was a knowledge-based approach using a pixel level classification.
Although this was the method that was used in the planning of pyrethrum crop
locations, other inference methods could have been used and may be more suitable in
other applications. Strategy knowledge from the original KADS system would allow
modeling of this high-level knowledge.

5.4.3 CommonKADS Library

An advantage of building a CommonKADS series of models is that an ontology of
the domain is developed. An ontology defines the constraints of possible objects
expressed in the model in addition to the constraints imposed by the syntax.
Wielinga and Schreiber (1993) use the following basis for a description of ontologies.
A knowledge base can be viewed as a model of some part of the world, that allows
for reasoning to take place in that world model, given some inference mechanism.
The model is described in a particular language and has a vocabulary and syntax.
The ontology developed as part of this project could be reused on similar types
of projects, but to do that, it would have to be made available as part of a library.
The CommonKADS Expertise Modeling Library (Valente et al., 1998) is an example
of such a library, as is Ontoligua server (Farquhar et al., 1996). One possible future
development is the setting up of a library of spatial ontologies. In this example that is
unlikely to happen as the pyrethrum processor regards this knowledge as proprietary.

5.5 CONCLUSIONS

Many spatial KBS have been developed, generally with a lot of attention to reasoning
strategies, but few seem to have been developed using an overall set of interrelated
models. CommonKADS provides these models without specific spatial extensions,
which can be easily represented using the now widely accepted UML notation. These
document the goals and objectives of a system and place it within the organizational
context where it will be used.

The advantage of using a series of integrated models to develop knowledge-based
geographic systems is that not only is knowledge modeled, but also the organizational
requirements and the environment it will operate in. This is an aspect that appears
to have been lacking in the development process of most spatial KBS. By using
this type of modeling, an information system that meets a specific users needs can
be developed in a form that encourages structure and reuse of components, be they
knowledge components or interface components.

Given that CommonKADS is designed to exploit ontologies in the form of the
CommonKADS Library (Valente et al., 1998), collaborative systems could be built
reusing knowledge from the domain layer and inference layer of the knowledge model.
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In other words, there is no need to build specific spatial extensions to CommonKADS,
rather a library of model components of a spatial nature could be developed. These
components could then be used for rapid development of other systems with a
spatial base.
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6.1 INTRODUCTION

Land resource inventories are often subject to changes in methodology due to tech-
nological innovation and developments in policy (Comber et al., 2002, 2003a). The
net result is that different data nominally purporting to record the same processes
may do so in different ways, identifying different objects, using different labels, and
different definitions. Subjectivity derives from the use of different pre-processing
techniques, classification algorithms, and class definitions. There is an increasing
recognition of this phenomenon within remote sensing, acknowledging the subjective
nature of much information classified from remotely sensed data. This is exemplified
by the increased acceptance of concepts such as fuzzy classifications, soft accuracy
measures, as described by Shalan et al. (Chapter 2, this volume) and fuzzy land cover
objects Lucieer et al. (Chapter 6, this volume).

The central feature of change detection is that change is a subset of inconsistency
between two signals. This inconsistency may be as a result of artefactual differences
between the data (thematic or raw) or due to actual differences on the ground. In order
to identify any signal of actual change it must be separated from the noise of data
difference caused by differential processing and classification. The approach presen-
ted by Brown (Chapter 8, this volume) requires thematic and registration errors to
be quantified so that they can be used as an input to any change model. In this
chapter, an approach for integrating different data based on the way that the land
cover objects contained within each data are conceptualised is described. The way
that a dataset conceives, specifies, measures, and records objects defines the data onto-
logy (Guarino, 1995). For some landscape processes (e.g., geological) the interval
between surveys is small relative to the timescale at which changes occur. For others,
such as land cover, differences in ontology may obfuscate any signal of change. This
situation hinders the development time series models, environmental monitoring and
the identification of locales of change.

This generic problem is exemplified by the land cover mapping of Great Britain
in 1990 (LCM1990) and in 2000 (LCM2000), descriptions of which can be found
in Fuller et al. (1994) and Fuller et al. (2002), respectively. LCM1990 records 25
target land cover classes defined mainly on pixel reflectance values, identified using
a per-pixel maximum likelihood classification algorithm. Some knowledge-based
corrections were included but no metadata was included to record their application. In
contrast, LCM2000 records land cover information on a per-parcel basis at three levels
of detail, including 26 Broad Habitat classes. Parcel reflectance values were classi-
fied, assisted by ancillary data (soils) and Knowledge-based Corrections. Extensive
metadata are attached to each parcel as described in Smith and Fuller (2002). The net
resultis a drastic change in the meaning behind the class labels between LCM 1990 and
LCM2000. Changes in ontology make it difficult to relate the information contained
in the previous dataset to that of the current. To overcome this problem, Comber et al.
(2003b) have proposed a semantic statistical approach for reconciling the ontological
difference between datasets.

The generic problem of spatial data integration has been addressed by various
workers under a series of different headings (Bishr, 1998; Devogele et al., 1998;
Ahlqgvist et al., 2000; Visser et al., 2002; Frank, 2001; Kavouras and Kokla, 2002).
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A common theme to emerge from this work is the identification of semantics as the
bottleneck to translation between different data ontologies. The problem of semantic
translation between data concepts can be tackled using formal ontologies. An ontology
in this context is an explicit specification of a conceptualisation (Guarino, 1995). The
integration “problem” is that an object described in one conceptualisation may not
correspond or translate to another conceptualisation. For instance, Bennett (2001)
describes the problem of vague definitions of “forest” that can result in uncertainty
due to a lack of clearly defined criteria. Various definitions of forest are illustrated at
http://home.comcast.net /~gyde/DEFpaper.htm. For instance, a forest may be defined
on the basis of the physical properties of tree height and crown canopy cover, and
many countries include definitions of land that could be under trees, or where there
is a probable intention to replant in the foreseeable future; also that many countries
include bamboo and palms into their definition of what constitutes a “tree” and hence
a forest. In the “ontologies approach,” the capacity for data integration and sharing
depends on understanding the way that these data are conceptualised — what the data
objects mean. To this end Pundt and Bishr (2002) describe how members of different
information communities (e.g., remote sensing, ecology, landscape ecology) are able
to access to the meaning (in the wider sense) of other data if they can unravel the
ontologies that have been developed by those who collected the data.

This chapter describes the results of using the semantic statistical approach to
identify locales of land cover change from LCM1990 and LCM2000. The approach
combines expert opinion of how the semantics of the two datasets relate with
metadata descriptions of LCM2000 parcel spectral heterogeneity. This approach
explores semantic and ontological links between datasets, exposes weakness in expert
understanding of the data concepts, and provides a methodology for integrating
different data.

6.2 SEMANTIC STATISTICAL APPROACH FOR
DETECTING CHANGE

The hypothesis behind the semantic statistical approach is that by characterising each
parcel in 1990 and 2000 it is possible to identify change between LCM1990 and
LCM2000. The 1990 characterisation was based on the distribution of LCM1990
classes that intersected with the parcel. The 2000 characterisation was based on
the distribution of spectral subclasses contained in the parcel spectral heterogeneity
metadata attribute “PerPixList.” Parcels whose characterisations were different were
possible areas of change. Note that due to methodological similarities the parcel
spectral heterogeneity information is equivalent to LCM1990 classes.

An expert data user, familiar with both datasets, was asked to describe the pair-
wise relations between LCM1990 and LCM2000 classes in terms of their being
unexpected (U), expected (E), or uncertain (Q). This was done under a scenario of
idealised semantic relations — that is, without considering any noise in the pair-wise
relations from such things as spectral confusions or likely transitions. These relations
were tabulated into the semantic Look Up Table (LUT). The parcel characterisa-
tion for 1990 was calculated by interpreting each intersecting LCM1990 pixel via
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the semantic LUT. For each parcel a (U, E, Q)99 triple was determined by summing
the number of pixels in each type of relation.

A spectral LUT was used to characterise the parcel in 2000. The LUT was con-
structed from information about the expected spectral overlap between the spectral
subclass in the spectral heterogeneity attribute (“PerPixList”; PPL) and the broad hab-
itat classes that accompanied the release of the LCM2000 data. The pairwise relations
in the spectral LUT between the broad habitat classes and spectral subvariant classes
were again described in terms of their being expected, unexpected, or uncertain. Each
element in the spectral heterogeneity attribute was interpreted through the spectral
LUT to produce a (U, E, Q)2000 triple for the parcel.

A vector in a feature space of U and E was generated by comparing the two
characterisations (after normalising one to the other: 2000 was based on percentage
of the parcel area, 1990 on the number of pixels). Note that the Uncertain scores (Q)
were ignored because the objective was to identify parcels whose characterisation
had changed most, that is, whose changes in U and E represented definite shifts rather
than uncertain ones. Parcels whose descriptions varied the most between the two dates
(i.e., had the largest vectors) formed the set of hypothesised land cover changes. The
100 parcels with the largest vectors were identified for three LCM2000 broad habitat
classes, representing three cases of ontological difference between LCM1990 and
LCM2000:

1. “Broadleaved Woodland” was similarly defined in 1990 and in 2000 and represented
minor ontological change.

2. “Suburban and Rural Development” was likely to have been affected by the use of
the parcel structure in 2000 to delineate homogenous areas. Therefore, this class
represented a moderate level of ontological change between 1990 and 2000.

3. “Acid Grassland” did not exist as a land cover mapping concept in 1990. It is a
class designed to address specific post-Rio habitat monitoring obligations. It was
differentiated from other grassland land covers by applying a soil acidity mask.
Thus this class represented major ontological change between 1990 and 2000.

Because it was possible to calculate the gross vector for each parcel based on the
number of pixels or the percentage vector based on the percentage of pixels, two sets
of 100 parcels were identified for each broad habitat class. Of the 600 parcels, 100
were randomly selected and of those 93 were visited. The numbers of parcels visited
and identified in the different directions for each LCM2000 broad habitat are shown
in Table 6.1.

6.3 RESULTS

The semantic statistical method has at its core the notion that change can be identified
by comparing two characterisations of the LCM2000 parcel, one from the intersecting
LCM1990 pixels, and the other from the spectral subclass (“PerPixList”) attribution.
Parcels that were hypothesised to have changed were those whose characterisations
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Table 6.1 The Number of Parcels of Each Broad Habitat Land Cover
Type Visited Against the Number Identified using the Semantic
Statistical Method

LCM2000
Broadleaved Suburban and

Direction Woodland Acid Grassland Rural Development Total
NE — 3/20 — 3/20
SE 2/7 19/157 11/56 32/220
SwW 5/7 5/13 3/3 13/23
NW 21/186 2/10 22/141 45/337
Total visited 28 29 36 93

Table 6.2 The Number of Parcels Identified by the Magnitude of their
Vector Found to have Changed in the Field for Each Broad

Habitat
Change Observed .
Proportion

LCM2000 Class No Yes Total Correct
Broadleaved Woodland 23 5 28 0-22
Acid Grassland 26 3 29 0-12
Suburban and Rural Development 25 11 36 0-44
Total 74 19 93 0-26

were most different. This process generated a vector between 1990 and 2000 and
it was possible to analyse the results with reference to the direction and magnitude
of the 1990 to 2000 vector. Placing unexpected scores on the x-axis and expected
ones on the y, movements were grouped into four basic directions corresponding to
quadrants of a compass: NE, SE, SW, and NW.

6.3.1 Analysis of Change Detection Results

The reliability of change detection was evaluated, by broad habitat, by vector direc-
tion, and by magnitude. Some examples of actual changes are also included by way
of illustration.

6.3.1.1 Broad Habitat

A simple binary analysis of whether a field survey confirmed (or denied) that the
parcels suspected of change had actually been subject to some change on the ground
is shown in Table 6.2. From Table 6.2, 26% of the hypothesised changes were found
to be actual change on the ground and predictions about the “Suburban and Rural
Development” were the most reliable.
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Table 6.3 The Number of Parcels Identified by
the Magnitude of their Vector Found
to have Changed in the Field for Each

Direction
Change Observed .
Proportion
Direction No Yes Total Correct
NE 3 — 3 0-00
SE 28 4 32 0-14
SW 11 2 13 0-18
NW 32 13 45 0-41
Total 74 19 93 0-26
.,\\\
H‘“x,‘
“~ -

Expected score

Unexpected score

Figure 6.1 The distance and direction of the parcel vectors for which actual change was found
on the ground. Vectors for Suburban and Rural Development are in black lines,
Broadleaved Woodland are dashed and Acid Grassland in bold.

6.3.1.2 Vector Direction

Table 6.3 presents results by vector direction. It is apparent that most of the suc-
cessfully identified changes had a vector direction NW, that is moving from (high U,
low E) to (low U, high E). These are shown in Figure 6.1.

6.3.1.3 Comparing Change and “No-Change” Vectors

The magnitude and direction of the vector of those parcels found to have changed can
be compared with the remainder of the 100 parcels, to see whether they are system-
atically different. These are shown in Figure 6.2 for Suburban/Rural Development.
Changes to this class were the most reliably identified and parcels identified on the
number of pixels as opposed to the percentage of pixels are shown for clarity.
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Expected score

Unexpected score

Figure6.2 Vectors of 100 parcels of broad habitat class Suburban and Rural Development.
Those that were identified as actual changes (1999 to 2000) are in bold.

6.3.1.4 Example Changes

Figure 6.3 shows six example parcels, with vectors that moved NW and that were
found to have changed by way of illustration.

6.3.2 Analysis of False Positive Results

The second set of results is a breakdown of the reasons for the false positive results
(i.e., those parcels identified as a potential change area which when visited were found
not to have done so). Table 6.4 shows the origins of the large vector between the 1990
and 2000 characterisations for the visited “no change” parcels and the reasons why
the false positives were identified as change parcels using this methodology:

1. 46% of the parcels that were found not to have changed either had a large number of
LCM1990 pixels that were inconsistent with “no change” or the LCM2000 parcels
were incorrectly classified.

2. 7% of the parcels had empty PerPixList fields.

3. 35% of the parcels had a PerPixList attribution that was inconsistent with the parcel
classification.

4. 12% of the parcels were erroneously identified because of expert misunderstanding
of the changed ontologies between 1990 and 2000 combined with inconsistent or
empty PerPixList fields.

The impact of all of these artefacts was to create a large vector between 1990 and
2000 which resulted in the polygon being identified as a potential change area. From
Table 6.4 it is evident that false positives for Acid Grassland, the class with the greatest
change in ontology between 1990 and 2000, were all related to PerPixList (spectral
attribution) anomalies. Artefacts for the other two classes are evenly spread.
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LCM2000 class, 1990

to 2000 change Geo-Context Picture
process, 1990 classes

Broadleaved
Woodland,
Maturation, from
Grass Heath

Broadleaved
Woodland,
Maturation, from
Bracken and Moorland
Grass

Acid Grassland,
degraded land quality
by overstocking, from
Mown and Grazed Turf

and Pasture

Acid Grassland,
changes in land
quality, let go,
degraded from Tilled
Land

Suburban and Rural
Development, new
housing development,
from Tilled Land

Suburban and Rural
Development, new
housing development,
from Mown and Grazed|

Turf and Pasture

Figure 6.3 (see color insert following page 168) Six example change parcels, a brief descrip-
tion of the nature of the change, the original (1990) class and some context from OS
1:50,000 Raster scanned maps (© Crown Copyright Ordnance Survey. An EDINA
Digimap/JISC supplied service).

6.3.3 Explanation of Negative Results Using Vector Directions

The false positive results were then analysed by vector direction as shown in Table 6.5,
to identify any further rules or filters.
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Table 6.4 The Broad Habitat Classes and Origins of Large Vector Size for Parcels Sus-
pected of Change but When Visited Found Not to Have Done So (i.e., The
False Positive Results)

Empty Incorrect Expert and

LCM1990 LCM2000 PPL PPL PPL Total
Broadleaved 5 12 4 2 — 23
Woodland
Acid Grassland — 2 — 15 9 26
Suburban and Rural 6 9 1 9 — 35
Development
Total 11 23 5 26 9 74

Note: LCM1990: the LCM1990 pixels were not consistent with the actual land cover.

LCM2000: the LCM2000 parcel classification was not consistent with the actual land
cover.

Empty PerPixList (PPL): empty spectral heterogeneity attribute field.
Incorrect PPL: spectral heterogeneity attributes not related to parcel class.

Expert and PPL: expert error where the expert failed to fully understand the change
ontology and either an empty or incorrect spectral heterogeneity attribute.

Table 6.5 The Vector Directions and Origins of the Large Vector for the Par-
cels Suspected of Change but When Visited Found not to Have
Done So (i.e., The False Positive results)

Empty Incorrect Expert and

Direction LCM1990 LCM2000 PPL PPL PPL Total
NE _ — — — 3 3(0)
SE — 2 — 23 3 28 (4)
sw — — 5 3 3 11 (2)
NW 11 21 — — — 32 (13)
Total 11 23 5 26 9 74

Note: True positive results in bold.

Analysis of the false positive results by direction presents a much clearer picture
than analysis by land cover class (Table 6.3). In the sections below, the anticipated
explanations for movement in each direction between 1990 and 2000 are described
in the subsections below, followed by analysis of the field validation.

6.3.3.1 Movement NE: Increased E, Increased U

Parcels with a NE vector were anticipated to contain conflicting spectral attribute
information. This may have been due to a changed ontologies or parcels with high
spectral heterogeneity. All of the parcels identified in this category were Acid Grass-
land. Movement was due to a failure by the expert to understand the links with the
LCM1990 class of Moorland Grass and due to major ontological change. The effect of
these was a low starting point in 1990 (due to high uncertainty scores) and conflicting
attribute information in 2000.
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6.3.3.2 Movement SE: Decreased E, Increased U

Parcels with a SE vector were expected to contain spectral attribution inconsistent to
the parcel class. Despite some change being found (4/32 parcels) these were believed
to be by chance rather than design. All of the parcels with vectors moving in this
direction had anomalous spectral attribution. Most of this was due to the use of single
date imagery, rather than composite two date imagery, resulting in an attribute of
“100% Water, variant c” for 20 out of the 32 parcels. Of the other 12:

i) seven were indications of genuine heterogeneity (one Acid Grassland parcel and

six Suburban with “Urban” variants classes with no expected relation to Suburban);

ii) three were parcels classified incorrectly and therefore their attribution did not match
the class (two Acid Grassland, one Suburban);

iii) two were due to the changed ontology, defining Acid Grassland in terms soil acidity.

Movement in this direction therefore indicates spectral attribute anomaly.

6.3.3.3 Movement SW: Decreased E, Decreased U

Movement in this direction was expected to indicate increased uncertainty about the
parcel because the LCM2000 attributes would be contributing less to the Expected
and Unexpected scores than the LCM 1990 pixels. The parcels that were identified
in this category can be placed into two groups: those with empty spectral attribution
fields and those containing Spectral subclass not described in the information that
accompanied the release of the LCM2000 data. Vectors moving in this direction
indicated systematic artefacts in the parcel attributes.

6.3.3.4 Movement NW: Increased E, Decreased U

Parcels with vectors moving in this direction were thought to have increased certainty
about parcel classification, relative to the way the parcel area was classified in 1990
and therefore indicative of land cover change. Parcels with vectors moving in this
direction indicated either land cover change or misclassification in 1990 or 2000.

6.3.3.5 Summary

In summary the four directions of movement are attributable to the following:

NE — (spectral) attribution was inconsistent with the parcel land cover class and there
was a failure by the expert to understand the relationships between the 1990 and 2000
ontologies;

SE — attribute inconsistency (heterogeneity);

SW — spectral heterogeneity attribute is empty or there are subclasses not described in
the Spectral LUT;

NW — either there has been actual change on the ground or an error in one dataset.
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6.4 DISCUSSION

The major finding of this work is the extent to which systematic analytical and data
artefacts can be identified and used to generate filters for further analyses. Here, the
data selected for analysis was not filtered in any way — all parcels were included if
the vector was in the subset of the 100 largest vectors for their class, regardless of the
origins of that vector. The analysis of results show that vector direction is a useful
indicator of different artefactual trends in the data: specific anomalies or artefacts are
indicated by specific vector directions. From these a set of filters or rules to eliminate
parcels with specific characteristics from analysis can be constructed. The following
artefacts with associated actions were identified for omission from future analyses:

e parcels with empty PPL fields;

e parcels with PPL attributes not described in the metadata accompanying the release
of the data;

e parcels identified from Single Scene Imagery;

e parcels where the “knowledge-based” correction was inconsistent with the PPL
attributes.

A further important finding was the extent to which the field visits revealed inconsist-
encies in expert understanding of how the LCM2000 class of Acid Grassland related
to various 1990 classes. The results show that the semantic LUT was not consistent
with observed phenomena in the field for a specific class. The expert used in this
study did not fully understand the impact of the changed ontology of Acid Grassland.
This was confirmed when the results were taken back to the expert and the expert’s
understanding of the data concepts was revisited. The expert was more familiar with
lowland vegetation and ecosystems and thus when focusing on Acid Grassland it may
be preferable to use another expert.

Future work will be directed in a number of areas. First, exploration of how
different expressions of expert opinion may be used. Here, a single expert was used
under the scenario of their idealised mapping of how the semantics relate — a semantic
LUT. Other experts and scenarios for mapping relations between the classification
schemes are available. For instance, a “Change LUT” of the expected transitions
between land cover classes and a “Technical LUT” of how different land cover class
concepts relate based on heuristic knowledge of where spectral confusion may occur.
Evidence from these might support or be contrary to the evidence from the semantic
LUT, and in turn may allow stronger or weaker inferences to be made about change
for specific parcels. Second, multiple pieces of evidence from different experts under
different scenarios would be suitable for combination using uncertainty formalisms
such as Dempster-Shafer or Rough Sets. Third, as yet current and potential users
of LCM2000 have little information about the metadata might be used for specific
applications. One of the motivations for this work is to develop a “cook book” that
would help users link their application specific understandings of land cover concepts
with those of LCM2000 through the LCM2000 metadata.

Rules will be developed from these results and further analyses of other field data
to filter data and attribute artefacts, and to identify some of the analytical limits of
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the data and metadata. There is an issue about the size of the parcel and the use of
parcel vectors generated using percentage or area data. It may be that parcels larger
than a certain area have to be eliminated from analyses, and that above a particular
threshold (to be determined) vectors based on percentage change need to be applied
to assess large, noisy parcels. Similarly for small parcels, there may be a minimum
size below which nothing useful can be said about the probability of change.

6.5 CONCLUSIONS

The problem of detecting changes between thematic (land cover) maps was described
by Fuller et al. (2003) with reference to the accuracy of LCM1990 and LCM2000.
Because of the differences between the conceptualisations of the two datasets, the
release of LCM2000 was accompanied with a “health warning” against comparing it
to LCM 1990 (Fuller et al., 2002). Fuller et al. (2003) indicated a possible way forward
for detecting change between LCM 1990 and LCM2000 would be to utilise the parcel
structure of LCM2000 to interrogate the LCM 1990 raster data, thereby providing local
descriptions of LCM2000 distributions. This work has shown that change analysis is
possible using the semantic statistical approach developed by Comber et al. (2003b)
applied at the level of the parcel. Change areas were identified by characterising the
LCM2000 parcel in terms of its spectral attribution and the intersection of LCM 1990
data, and then comparing the two characterisations. Typically, change was by an
increased expected score and decreased unexpected score between 1990 and 2000.

In the process of determining the extent to which change is identified reliably,
certain data artefacts have also been revealed:

e Parcels that were anomalous in terms of their attribution were identified. From
these rules were established that will eliminate data with specific characteristics
from future analyses according to the direction of their vectors.

e Failings in the expert understanding of data concepts were revealed, which may
lead to the use of different experts or revision of expert understandings.

At the time of writing there is little guidance about how the extensive LCM2000
metadata may be used and analysed. Examining the results of a field validation con-
firms that the semantic statistical approach provides a greater understanding of how
the ontologies of LCM1990 and LCM2000 relate to each other than is provided by
data documentation, specification, and class descriptions alone. This gives greater
insight into the meaning of the LCM2000 data structures with reference to their attri-
bution. The situation of dataset difference is endemic in natural resource inventory
making it difficult to relate the information contained in one survey to that of another.
Metadata commonly describes easily measurable features such as scale and accu-
racy when compared with some reference data. It does not describe the fundamental
meaning being the data elements, nor does it report at the object level. It is hoped that
the work reported here contributes to a developing area involving the analysis and
use of metadata to evaluate and revise the base information. LCM2000 has allowed
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the identification of these issues, but they exist in many other analyses, often where
there is not metadata with which to work.
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7.1 INTRODUCTION

Recent research on remote sensing classification has focused on modelling and
analysis of classification uncertainty. Both fuzzy and probabilistic approaches have
been applied (Foody, 1996; Hootsmans, 1996; Canters, 1997; Fisher, 1999; Zhang
and Foody, 2001). Much of this research, however, focused on uncertainty of spectral
classification on a pixel-by-pixel basis, ignoring potentially useful spatial information
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between pixels. An object-based approach instead of a pixel-based approach may be
helpful in reducing classification uncertainty. Additionally, interpretation of uncer-
tainty of real world objects may be more intuitive than interpretation of uncertainty
of individual pixels. In this study, uncertainty arises from vagueness, which is char-
acteristic for those geographical objects that are difficult to define, both thematically
and in their spatial extent.

Object-oriented approaches to remotely sensed image processing have become
popular with the growing amount of fine spatial resolution satellite and airborne
sensor imagery. Several studies have shown that segmentation techniques can help to
extract spatial objects from an image (Gorte and Stein, 1998). Segmentation differs
from classification, as spatial contiguity is an explicit goal of segmentation, whereas
it is only implicit in classification. Uncertainty, however, occurs in any segmented
or classified image and can affect further image processing. In particular, in areas
where objects with indeterminate boundaries (so-called fuzzy objects) dominate an
indication of object vagueness is important.

A straightforward approach to identify fuzzy objects is to apply a (supervised)
fuzzy c-means classification, or similar soft classifier (Bezdek, 1981; Foody, 1996).
This classifier gives the class with the highest membership for each pixel, and
possibility values of belonging to any other class. However, it does not consider
spatial information, also known as pattern or texture.

Texture analysis has been addressed and usefully applied in remote sensing studies
in the past. An interesting overview paper concerning texture measures is Randen
and Husgy (1999). Bouman and Liu (1991) studied multiple resolution segmenta-
tion of texture images. A Markov random field (MRF) model-based segmentation
approach to classification for multispectral images was carried out by Sarkar et al.
(2002). For multispectral scene segmentation and anomaly detection, Hazel (2000)
applied a multivariate Gaussian MRF. Recently, Ojala and his co-workers have further
pursued an efficient implementation and application towards multi-scale texture-based
segmentation (Ojala et al. 1996, 2002; Ojala and Pietikdinen, 1999; Pietikdinen et al.,
2000). Their Local Binary Pattern (LBP) measure may be more appropriate than
the traditional texture measures used in classification (Ojala et al., 1996). The LBP is
a rotation invariant grey scale texture measure.

In identifying spatial objects from remotely sensed imagery, the use of texture is
important. Texture reflects the spatial structure of both elevation and spectral data
and is therefore valuable in classifying an area into sensible geographical units.
The aim of this study is to present a supervised texture-based image segmentation
technique that identifies objects from fine spatial resolution elevation (LiDAR) and
multispectral airborne imagery (CASI). It is applied to a coastal area in northwest
England. Information on coastal land cover and landform units is required for
management of this conservation area. Since this environment is highly dynamic,
(semi-) automatic and objective techniques are required to update information and
maps. This chapter builds on the work of Lucieer and Stein (2002) and further
explores the use of texture and the generation of an uncertainty measure to depict
object vagueness in image segmentation to help the accurate identification of fuzzy
objects.
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7.2 STUDY AREA

The study area was the Ainsdale Sands, on the coast of northwest England. The
Ainsdale Sand Dunes National Nature Reserve (NNR) totals 508 ha and forms part
of the Sefton Coast. The NNR is within the coastal Special Protection Area. It is also
within the Sefton Coast candidate Special Area of Conservation. The NNR contains
arange of habitats, including intertidal sand flats, embryo dunes, mobile yellow dunes,
fixed vegetated dunes, wet dune slacks, areas of deciduous scrub, and a predominantly
pine woodland. Management of this area consists of extending the area of open dune
habitat through the removal of pine plantation from the seaward edge of the NNR,
maintaining and extending the area of fixed open dune by grazing and progressively
creating a more diverse structure within the remaining pine plantation with associated
benefits for wildlife (Ainsdale Sand Dunes NNR, 2003). Therefore, mapping of this
coastal area can be useful for protection and management of the environment as
a major and threatened habitat type and as a defence against coastal flooding.

In 1999, 2000, and 2001, the Environment Agency, U.K., collected fine spatial
resolution digital surface models (DSM) by LiDAR, and simultaneously, acquired
multispectral Compact Airborne Spectral Imager (CASI) imagery (one flight each
year). The aircraft was positioned and navigated using a Global Positioning System
(GPS) corrected to known ground reference points. The aircraft flew at approximately
800 m above ground level, acquiring data with a 2 m spatial resolution from the LiDAR
and 1 m with the CASI. In this study, the imagery of 2001 was used. These data
were also analysed in Brown (Chapter 8, this volume). These images, geometrically
corrected by the Environment Agency, were spatial composites of multiple flight
strips. The area covered by these images was approximately 6 km? (Figure 7.1).

A relevant distinction exists between land cover and landform, both characterising
coastal objects. Landform properties can be extracted from digital elevation data,

Figure7.1 (A) Band 12 (NIR, 780 nm) of the CASI image of the Ainsdale Sands. (B) Three-
dimensional view of the LIDAR DSM of the same area with the foredune clearly
visible.
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the LIDAR DSM of the area. Four landform classes were distinguished: beach plain,
dune, dune slack, and woodland. Land cover was obtained from spectral information
extracted from the CASI imagery. Four land cover classes can be distinguished: sand,
marram grass, willow shrub, and woodland. Detailed mapping of these classes is
required, because knowledge about the location and dynamics of these object types
is important for monitoring the rare habitats in this area which also act as a defence
against flooding.

Coastal objects are often characterised by fuzzy boundaries. Vagueness is the main
source of uncertainty in this area as these fuzzy boundaries dominate. Therefore,
information on vagueness is required to identify transition zones and to map these
objects. Cheng and Molenaar (2001) proposed a fuzzy analysis of dynamic coastal
landforms. They classified the beach, foreshore, and dune area as fuzzy objects
based on elevation data using a semantic import model. Some classification errors,
however, are likely to occur when using elevation as diagnostic information alone.
For example, an area of low elevation behind the foredune was classified as beach,
whereas it is almost certainly an area of sand removal by wind like a blowout or an
interdune area. These types of errors can be reduced by using spatial or contextual
information (e.g., by considering at morphometry or landforms). Cheng et al. (2002)
and Fisher et al. (2004) proposed a multi-scale analysis for allocating fuzzy member-
ships to morphometric classes. This technique can be used to model objects, which
are vague for scale reasons. The morphometry classes modelled at different scale
levels were: channel, pass, peak, pit, plane, and ridge. Although this analysis fails
to identify positions of dunes, it is possible to identify dune ridges and slacks and
to monitor their changing positions. The use of textural information might aid the
identification of these coastal objects.

7.3 METHODS

7.3.1 Texture

Regions with similar reflectance can be identified easily as objects in a remote sensing
image. Additionally, texture is an important property of geospatial objects and should
be taken into account in image analysis. In this study, texture is defined as a pattern or
characteristic spatial variability of pixels over a region. The pattern may be repeated
exactly, or as a set of small variations, possibly as a function of position. There is also
a random aspect to texture, because size, shape, colour, and orientation of pattern
elements can vary over the region.

Measures to quantify texture can be split into structural (transform-based),
statistical and combination approaches. Well-known structural approaches are the
Fourier and wavelet transform. Several measures can be used to describe these
transforms, including entropy, energy, and inertia (Nixon and Aguado, 2002). A well-
known statistical approach is the grey level co-occurrence matrix (GLCM) (Haralick
et al., 1973) containing elements that are counts of the number of pixel pairs for
specific brightness levels. Other texture descriptors are Gaussian Markov random
fields (GMRF), Gabor filter, fractals and wavelet models. A comparative study of
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texture classification is given in Randen and Husgy (1999). They conclude that
adirection for future research is the development of powerful texture measures that can
be extracted and classified with low computational complexity. A relatively new and
simple texture measure is the local binary pattern operator (LBP) (Pietikéinen et al.,
2000; Ojala et al., 2002). The LBP is a theoretically simple yet efficient approach to
grey scale and rotation invariant texture classification based on local binary patterns.

7.3.2 The Local Binary Pattern Operator
Ojala et al. (2002) derived the LBP by defining texture 7 in a local neighbourhood

of a grey scale image as a function ¢ on the grey levels of P(P > 1) image pixels

th(gc,go,uwngl)Zt(gc’gP) (7‘1)

where g, corresponds to the value of the centre pixel (P;) and 2p = (g1,...,gp)
presents the values of pixels in its neighbourhood. The neighbourhood is defined by a
circle of radius R with P equally spaced pixels that form a circularly symmetric neigh-
bourhood set (Figure 7.2). The coordinates of the neighbouring pixels in a circular
neighbourhood are given by

2mi 2mi
{xci>Yei} = {Xc — Rsin o ,¥e + Rcos i fori =0,...,P -1
’ P P
(7.2)

Invariance with respect to the scaling of pixel values or illumination differences is
achieved by considering the signs of the differences instead of their numerical values

T* = t(sign(go — &), sign(gp — &c)) (7.3)

90

Figure7.2 Circular pixel neighbourhood set for P =8 and R = 1.
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This results in the following operator for grey scale and rotation invariant texture

description
P-1

LBP, = ) sign(gi — &) (74)
i=0
Ojala et al. (2002) found that not all local binary patterns are sufficiently descriptive.
They introduce a uniformity measure U to define uniformity in patterns, correspond-
ing to the number of spatial transitions or bitwise 0/1 changes in the pattern. With
gp = go, U, is defined as
P
Ue =) Isign(gi — gc) — sign(gi—1 — &) (1.5)
i=1
Patterns with U, < j are designated as uniform. Ojala et al. (2002) found that for
J = 2 the most suitable LBP measure was obtained for describing texture. This results
in the following operator for grey scale and rotation invariant texture description

P—1
LBPC’J‘ — i;) Slgn(gi - gC) if UC <] (76)
P+1 otherwise

The LBP operator thresholds the pixels in a circular neighbourhood of P equally
spaced pixels on a circle of radius R, at the value of the centre pixel. It allows for
the detection of uniform patterns for any quantisation of the angular space and for
any spatial resolution. Non-uniform patterns are grouped under one label, P + 1.

7.3.3 Texture-Based Image Classification

Most approaches to supervised texture classification or segmentation assume that
reference samples and unlabelled samples are identical with respect to texture scale,
orientation, and grey scale properties. This is often not the case, however, as real
world textures can occur at arbitrary spatial resolutions, rotations, and illumination
conditions. The LBP operator is very robust in terms of grey scale variations, since
the operator is by definition invariant against any monotonic transformation, and it
is rotation invariant. The operator is an excellent measure of the spatial structure
of local image texture, but by definition, it discards the other important property of
local image texture, contrast. Therefore, the LBP measure can be further enhanced by
combining it with a rotation invariant variance measure that characterises the contrast
of local image texture. Local variance is defined as

P—1
1 .
VAR, = — 3 " (i — ftg)? (7.7)
—

where

=
fig =+ ZO 8i (1.8)
1=
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Most approaches to texture analysis quantify texture measures by single values
(e.g., mean, variance, entropy). However, much important information contained
in the distributions of feature values might be lost. In this study, the final texture
feature is the histogram of LBP. ; occurrence, computed over an image or a region
of an image, or the joint distribution of the two complementary LBP. ; and VAR,
operators. The joint distribution of (LBP. j, VAR.) is approximated by a discrete
two-dimensional histogram of size P + 2 x b, where P is the number of neigh-
bours in a circular neighbourhood and b is the number of bins for VAR,. Ojala et al.
(2002) show that this is a powerful tool for rotation invariant texture classification.
The number of bins used in the quantisation of the feature space plays a crucial role
in the analysis. Histograms with too modest a number of bins fail to provide enough
discriminative information about the distributions. If the number of entries per bin is
very small (i.e., too many bins), however, histograms become sparse and unstable. In
this study, following Ojala et al. (1996), the feature space was quantised by computing
the total feature distribution of (LBP,. ;, VAR,) for the whole image. This distribution
was divided into 32 bins having an equal number of entries.

In texture classification, the (dis)similarity of sample and model histograms as
atest of goodness-of-fit is evaluated using a nonparametric statistic, the log-likelihood
ratio statistic, also known as the G-statistic (Sokal and Rohlf, 1987). Here, the sample
is a histogram of the texture measure distribution of an image window. The model
is a histogram of a reference image window of a particular class. By using a non-
parametric test, no assumptions about the feature distributions have to be made. The
value of the G-statistic indicates the probability that two sample distributions come
from the same population: the higher the value, the lower the probability that the two
samples are from the same population. The more alike the histograms are, the smaller
is the value of G.

It should be noted that the window size should be appropriate for the computa-
tion of the texture features. However, as windows of increased size are considered,
the probability that regions contain a mixture of textures is increased. This can bias the
comparison, since the reference textures contain only features of individual patterns.
On the other hand, if the window size is too small it is impossible to calculate
a texture measure. Within this constraint, it is impossible to define an optimum size
for segmenting the entire image, therefore, classifying regions of a fixed window
size is inappropriate (Aguado et al., 1998). Alternatively, a top—down hierarchical
segmentation process, as discussed in the next section, offers a suitable framework
for classifying image regions based on texture.

7.3.4 Texture-Based Image Segmentation

Split-and-merge segmentation consists of a region-splitting phase and an agglomer-
ative clustering (merging) phase (Horowitz and Pavlidis, 1976; Haralick and Shapiro,
1985; Lucieer and Stein, 2002). Objects derived with unsupervised segmentation
have no class labels. Class labels can be assigned in a separate labelling or classifica-
tion stage. In the unsupervised approach of Lucieer and Stein (2002), the image was
initially considered as a block of pixel values with mean vector and covariance matrix.
This block was split into four sub-blocks characterised by vectors of mean pixel values
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and covariance matrices. To define homogeneity, they considered a threshold for the
mean and thresholds for the covariance matrix. These values were chosen in advance
and kept constant during segmentation. Heterogeneous sub-blocks were split recur-
sively until homogeneity or a minimum block size was reached. The resulting data
structure was a regular quadtree. In the clustering phase, adjacent block segments
were merged if the combined object was homogeneous. The homogeneity rules were
applied in a similar way. However, texture was not taken into account in this approach.
Recently, Ojala and Pietikdinen (1999) applied a similar unsupervised split-and-merge
segmentation with splitting and merging criteria based upon the (LBP, ;, VAR,)
texture measure.

Supervised segmentation uses explicit knowledge about the study area to train
the segmentation algorithm on reference texture classes. In a supervised approach,
segmentation and classification are combined and objects with class labels are
obtained. Aguado et al. (1998) introduced a segmentation framework with a top—down
hierarchical splitting process based on minimising uncertainty. In this study, the
(LBP. ;, VAR,) texture measure and the segmentation/classification framework as
suggested by Aguado et al. (1998) were combined. Similar to split-and-merge
segmentation each square image block in the image was split into four sub-blocks
forming a quadtree structure. The criterion used to determine if an image block is
divided was based on a comparison between the uncertainty of the block and the
uncertainty of the sub-blocks.

To obtain a segmentation, the image was divided such that classification confi-
dence was maximised, and hence uncertainty was minimised. Uncertainty was defined
as the ratio between the similarity values for the two most likely reference textures.
This measure is similar to the confusion index (CI) described by Burrough (1998).
Reference textures were described by histograms of (LBP. ;, VAR,) of character-
istic regions in the image. To test for similarity between an image block texture
and a reference texture the G-statistic was applied. In this study, the CI (depicting
vagueness) was defined as

1 -G
- 1-Gy

CI (7.9)
where G was the lowest G value of all classes (highest similarity) and G, was the
second lowest G value. CI contained values between 0.0 and 1.0. CI was close to 1.0,
if G| and G, were similar. In this case, the decision of classifying the region was
vague. The uncertainty in classification decreased, if the difference between these
two texture similarities increased. The subdivision of each image block was based on
this uncertainty criterion. An image block was split into four sub-blocks, if

Clp > 4 (Clspi + Clspa + Clsps + Clspa) (7.10)

where the left side of Equation (7.10) defined vagueness when the sub-blocks were
classified according to the class obtained by considering the whole block (B). The
right side of Equation (7.10) defined vagueness obtained if the sub-blocks (SB1, SB2,
SB3, and SB4) were classified into the classes obtained by the subdivision. Thus, the
basic idea was to subdivide an image block only if it was composed of several textures.
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Additionally, classification was always uncertain at the boundaries of textures because
the image block contained a mixture of textures. Accordingly, blocks that had at least
one neighbouring region of a different class were subdivided until a minimum block
size was reached (Aguado et al., 1998). Finally, a partition of the image with objects
labelled with reference texture class labels was obtained.

The building blocks of each of the objects gave information about object uncer-
tainty. The measure Clg was used to depict the vagueness with which an object
sub-block was assigned a class label. It provided information about the thematic
uncertainty of the building blocks. The spatial distribution of building block uncer-
tainty within an object provided information about spatial uncertainty. Therefore,
high uncertainty values were expected in object boundary blocks, caused by mixed
textures or transition zones.

7.3.5 Example

To illustrate the problem of classifying regions of different texture an image (512 by
512 pixels) with a composition of photographs of five different textures was used
(Figure 7.3A). Each of the classes was unique in terms of its texture. Figure 7.3
shows that the human visual system not only can distinguish image regions based
on grey scale or colour, but also on pattern. Five classes could be distinguished
in Figure 7.3A, labelled class NW (granite), class NE (fabric), class SW (grass),
class SE (stone), and class Centre (reed mat). A pixel-based classifier does not take
into account texture or spatial information. This is shown in Figure 7.3B, which
gives the result of a (pixel based) supervised fuzzy c-means classifier applied using
a Mahalanobis distance measure and a fuzziness value of 2.0 (Bezdek, 1981). Five
regions of 40 by 40 pixels were selected in the centre of the five regions to train

T
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it l LI

Classes

- Class NW - Class NE - Class SW - Class SE |:| Class Centre

Figure7.3 Textures image and results (A) Artificial composition of five different natural textures.
(B) Result of a pixel based supervised fuzzy c-means classifier.
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the classifier. Figure 7.3B shows that, although the patterns are still visible, no clear
spatial partition of classes was found.

Figure 7.4 gives the results of two segmentations of Figure 7.3A. Figure 7.4A
shows that a split-and-merge segmentation without texture characterisation cannot
identify regions of homogeneous texture. It should be noted that this approach was
unsupervised (Lucieer and Stein, 2002). Random grey values were used to depict
different objects. Figure 7.4B shows a segmentation result from an unsupervised
split-and-merge segmentation algorithm with the LBP. ;, VAR histograms to model
texture (Ojala and Pietikdinen, 1999). The spatial partition derived corresponded
closely to the five different texture classes contained in the texture composite.

Figure 7.5 gives the results of a supervised texture-based segmentation of
Figure 7.3A. The uncertainty criteria proposed by Aguado et al. (1998) were

Figure7.4 Segmentation results (A) Unsupervised split-and-merge segmentation of Fig-
ure 7.3A based on mean and variance. (B) Unsupervised split-and-merge segment-
ation based on texture distributions.

B

Uncertainty
1

- Class NW - Class NE - Class SW |:| Class SE |:| Class Centre

Figure7.5 Supervised texture-based segmentations (A) Supervised texture-based segmenta-
tion of Figure 7.3A with five reference classes. (B) Related uncertainty for all object
building blocks.
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applied to obtain this result. Five reference regions were selected in the image,
corresponding to the five different texture classes (similar to the supervised fuzzy
c-means classification). Values for P and R were 8 and 1, respectively (correspond-
ing to the eight adjacent neighbours). Figure 7.5A shows the segmented objects with
their corresponding class label. In Figure 7.5B uncertainty values (CI) for each of the
objects’ building blocks are given. Class NE was classified with lowest uncertainty
values, between 0.3 and 0.4. The centre class was classified with uncertainty values
between 0.4 and 0.5. Class SE was classified correctly, but with higher uncertainty
values, between 0.5 and 0.7. Confusion of this class occurred with class SW. Class NW
was classified correctly, but with high uncertainty values between 0.5 and 0.75.
In class NW a cluster of small objects was classified as class SW. The building blocks
of these objects showed uncertainty values of 0.95 and higher, meaning that the classi-
fication confusion in these areas was very high. Confusion of this class occurred with
class SE. The main area of Class SW was classified correctly. In this class, small
objects were classified as class NW, SE, and Centre, however, block uncertainty
values were higher than 0.94 for these objects. This type of texture, however, was
very irregular (i.e., its pattern was not repetitive and the reference area did not fully
represent the whole texture area). In addition, all small blocks at the boundaries of
textures showed high confusion values (>0.9), because they contained mixtures of
different textures.

7.4 RESULTS

7.4.1 Segmentation of the LIDAR DSM

Figure 7.6 shows the result of a supervised segmentation of a 512 by 512 pixel
subset of the LIDAR DSM of the study area (Figure 7.1B). Four reference areas of

Uncertainty

Classes

- Beach Flat - Dune - Dune Slack |:| Woodland

Figure7.6 Supervised segmentation outputs (A) Supervised texture-based segmentation of
the LiDAR DSM with four reference landform classes. (B) Related uncertainty for all
object building blocks.
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50 by 50 pixels were selected for training. These areas represented the following
landform classes: Beach, dune, dune slack, and woodland. Values for P and R were
8 and 1, respectively. Figure 7.6A shows the segmented objects with class labels and
Figure 7.6B shows the corresponding uncertainty values (CI). Woodland was used
as one of the landform classes, as it showed a characteristic texture in the LiDAR
DSM. The woodland area was classified correctly, with low uncertainty values ranging
from 0.02 to 0.35. Uncertainty values increased at the border of the woodland area.
Fieldwork showed that zones of willow trees occurred at the border of the main
pine woodland area, which explained the higher uncertainty because of their slightly
different texture. Dune slacks and blowouts are very similar in form. Blowouts are
active, however, and not vegetated. Dune slacks are often stable, because they are
vegetated. These texture differences could not be observed in the LiDAR DSM.
Therefore, these units were classified as a single class type, called dune slacks. The
core of these areas was classified correctly, with uncertainty values between 0.2 and
0.5. The boundaries of these objects, however, showed uncertainty values of 0.8 and
higher. These high values can be explained by the transition zones from dune slacks to
dune. No crisp boundary could be observed between these object types. Furthermore,
Figure 7.6 shows that no distinction could be made between the foredune and the
inland dune field. These areas have similar textures and, therefore, were classified
as one class. The (steep) foredune showed, as expected, a short transition zone to
the beach, depicted by high uncertainty values (>0.8), depicted by a thin black line in
the upper left corner of Figure 7.6B. The dune area was classified with low uncertainty
values (<0.4), except for the transition zones with the dune slacks. In the southwest
and centre part of the image, small objects (with uncertainty values of 0.95) were
incorrectly classified as beach. This can be explained by observations in the field
showing that this area is an active flat and bare sand area, with similar texture to
the beach. The beach flat was classified early in the segmentation process, as can
be concluded from the large building blocks. Uncertainty related to the classification
of these building blocks varied between 0.1 and 0.5. Within the beach area, highest
uncertainty occurred in areas where sand is wet and has a different texture from
dry sand.

An accuracy assessment of the segmentation results provided an overall
accuracy of 86% and a Kappa coefficient of 0.81. Per class producer and user
accuracy percentages are given in Table 7.1. It can be concluded from this
table that small areas of both beach and dune slack were incorrectly labelled
as dune.

Table 7.1 Producer and User Accuracy Percentages for
the Landform Classes

Producer User
Class Accuracy (%) Accuracy (%)
Beach 50.00 96.87
Dune 100.00 97.51
Dune slack 95.20 100.00

Woodland 100.00 100.00
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7.4.2 Segmentation of the CASI Image

In Figure 7.7, the results of the segmentation of the CASI image (Figure 7.1A) are
shown. The image was resampled to a spatial resolution of 2 m to match the spatial
resolution of the LIDAR DSM. Again, a subset of 512 by 512 pixels was used for
segmentation. Band 12 at 780 nm (NIR) was chosen for this study since it is suitable
for discrimination of land cover types. Figure 7.7A shows the segmentation result for
four land cover types: Sand, marram grass, willow shrub, woodland. Four reference
areas of 50 by 50 pixels were selected to train the algorithm. Values for P and R
are 8 and 1, respectively. The woodland area in the southeast corner of the image
was correctly classified with uncertainty values between 0.1 and 0.5 (Figure 7.7B).
The northeastern corner of the image and several small objects in the northern part
of the image were also segmented as woodland. However, fieldwork showed that no
woodland occurred in this area. The area was characterised by a chaotic pattern of
dune slacks and dune ridges with a mixture of vegetation types. No homogeneous
textures could be found, therefore this area was characterised by high uncertainty
values (>0.7) in the segmentation result. The main part of the dune field was classified
as willow shrub land. Fieldwork showed that marram grass was mainly found on the
foredune and on the highest parts of the dune ridges in the dune field. Only a few small
patches of marram grass occur in Figure 7.7A in the foredune area. Willow shrub was
found all over the dune field, but mainly in the dune slacks. Image texture for these
two classes, however, was very similar. Marram grass fields were characterised by
a mixture of grass and sand; willow shrub areas were characterised by a mixture of
baby willow shrubs and sand or low grass. High uncertainty values (higher than 0.7 in
the dune field and higher than 0.95 in the foredune and dune ridge areas) in Figure 7.7B
confirmed the confusion between these two classes. The sand cover on the beach was
correctly segmented, because of its characteristic texture. Uncertainty values were
lower than 0.2. Again, Figure 7.7B shows a short transition zone from the foredune

F

3 Uncertainty

Classes

- Sand - Marram Grass -Willow Shrub |:| Woodland

Figure7.7 Results of the segmentation of the CASI image (A) Supervised texture-based seg-
mentation of band 12 of the CASI image with four reference land cover classes. (B)
Related uncertainty for all object building blocks.
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Table 7.2 Producer and User Accuracy Percentages
for the Land Cover Classes

Producer User
Class Accuracy (%) Accuracy (%)
Sand 39.15 100.00
Marram grass 5.18 100.00
Willow shrub 87.13 55.17
Woodland 100.00 86.37

to the beach with a decreasing marram grass coverage (narrow zone with uncertainty
values of 0.95 and higher southeast of the sand area).

An accuracy assessment of the segmentation results provided an overall accuracy
of 64% and a Kappa coefficient of 0.51. Per class producer and user accuracy
percentages are given in Table 7.2. It can be concluded from this table that major
marram grass areas were incorrectly classified as willow shrub.

7.5 DISCUSSION AND CONCLUSIONS

In this chapter, a texture-based supervised segmentation algorithm derived labelled
objects from remotely sensed imagery. Texture was modelled with the joint distri-
bution of LBP and local variance. The segmentation algorithm was a hierarchical
splitting technique, based on reducing classification confusion at the level of the
image blocks that were obtained. By applying this segmentation technique, one does
not only obtain an object-based classification, but also an indication of classification
uncertainty for all the object’s building blocks. The spatial distribution of uncertainty
values provided information about the location and width of transition zones. This
study showed that object uncertainty values provide important information to identify
transition zones between (fuzzy) objects.

To illustrate the algorithm for mapping coastal objects, a LIDAR DSM and
CASI image of a coastal area on the northwest coast of England was used.
An accurate segmentation was obtained for the extraction of landform objects from
the LiDAR DSM, with an overall accuracy of 86%. Uncertainty values provided
meaningful information about transition zones between the different landforms. Land
cover objects derived from the CASIimage showed large uncertainty values and many
incorrectly labelled objects. The overall accuracy was 64%. The woodland area
showed a characteristic texture in both data sources, however, the woodland object
showed a different spatial extent and area in both segmentation results. This differ-
ence was caused by the occurrence of small patches of willow trees in, and on the
border of, the woodland area. The texture of these willow trees was different from
the pine trees in the area in the LIDAR DSM. The segmentation of the LIDAR DSM
correctly depicted the spatial extent of the pine area. However, the texture difference
did not occur in the CASI image, resulting in a different segmentation result.

Errors in segmentation can possibly be prevented by taking into account spectral
information from more than one spectral band. The combination of textural and
spectral information from all 14 CASI bands could greatly increase the accuracy
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of segmentation. This combination could be useful for mapping other land cover
types in the area, like grasses, herbaceous plants, mosses, scrub. Additionally, the
resolution of the neighbourhood set of the LBP measure affects the segmentation
result. In this study, a neighbourhood set of the nearest eight neighbouring pixels
(P =8, R = 1) was used. A multi-resolution approach with different combinations
of P and R might enhance texture description. In future research, the focus will
be on the assessment of the effect of different neighbourhood sets on segmentation.
Additionally, a multispectral approach with a multivariate LBP. ; texture measure
will be the focus of future research.
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8.1 INTRODUCTION

The 1992 European Council Habitats Directive (92/43/EEC) requires that the extent
and condition of a variety of ecologically important habitats be reported on a six-yearly
basis. Remote sensing provides one approach by which these requirements may be
met and could also provide monitoring to assess the impact of management practices
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on protected sites. An essential part of any monitoring program is to determine where
land cover change is taking place. However, operational methods of carrying out
this monitoring using remote sensing are currently not in place. There is, therefore,
a need to refine aspects of remote sensing techniques, particularly in the field of
change detection.

8.1.1 Change Detection

There are a number of approaches for change detection, but one of the most widely
used for detecting thematic change is post-classification change analysis (Mas,
1999; de Bruin, 2000; de Bruin and Gorte, 2000). There are limitations to this
approach, as errors within either classification may result in errors in change detec-
tion. An acceptable classification accuracy limit of 85% has been suggested (Wright
and Morrice, 1997), but in some cases this may not be achievable. Assuming perfect
co-registration, the maximum theoretical error within the final change layer is the
sum of the errors of the two classifications. Therefore, even with low thematic errors
in classifications, the error of the change detection layer may be relatively high.

The change detection process is subject to a number of errors at each stage of the
data gathering and classification process and these errors may be subject to complex
interactions as the change process is modelled. As errors are passed from source to
derived data, the errors may be modified such that it may be amplified or suppressed
(Veregin, 1996). For example, geometric error in two images used for change detection
would result in a low misregistration error if the geometric error vectors were of
a similar magnitude and direction. Errors within the final change surface could be
as a result of errors from the sensors, ground data, co-registration, or due to a lack
of spectral separability of classes. The classifiers used will also affect error. Though
there are a number of sources of error within the change detection process, these
errors manifest themselves in two major forms: thematic and misregistration errors.
To estimate the confidence limits of the change detection process, the errors in each
stage must be quantified and the propagation of errors through the change detection
process modelled (Goodchild et al., 1992).

8.1.2 Error and Uncertainty

The most commonly used methods of quantifying error within remote sensing data are
global methods. Global methods provide a single measure of classification accuracy
such as overall accuracy (Pp), the Kappa coefficient of agreement (Cohen, 1960;
Stehman, 1996), or by using the confusion matrix to derive per-class accuracy
measures (Janssen and van der Wel, 1994; Campbell, 1996; Shalan et al., Chapter 2,
this volume). Geometric and misregistration error is generally quantified using a
measure such as the root mean square error (RMSE) (Janssen and van der Wel, 1994).
However, these global approaches are spatially unreferenced and so error is assumed
to apply uniformly across an image. Therefore, the position of likely change detection
errors cannot be identified using global methods. If information is required on where
change detection errors occur, local error measures need to be derived. One method
of identifying where these errors occur in a pixel-based classification approach is
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to estimate both thematic and misregistration errors on a per-pixel basis. Deriving
per-pixel error metrics has the potential to provide more accurate identification of
where change is taking place.

It is impractical to quantify the actual error on a per-pixel basis, and so the focus
of any error study must be on the probability of error or the uncertainty inherent in the
stages involved in the change detection process. Therefore, the uncertainty in each
stage must be quantified and the propagation of errors through the change detection
process modelled.

The consideration of uncertainty in change detection is essential, as errors within
classification layers may be magnified when they are merged for change detection.
de Bruin (2000) demonstrated that when per-pixel thematic probabilities are con-
sidered in post classification change detection, the results might be very different to
simple direct comparison of two classifications.

Several studies (Shi and Ehlers, 1996; de Bruin, 2000; de Bruin and Gorte, 2000)
use per-pixel thematic uncertainty, but ignore the effect of geometric errors. However,
even sub-pixel misregistration errors can result in large change errors (Townshend
et al., 1992; Dai and Khorram, 1998; Roy, 2000).

If a pixel is incorrectly georeferenced, a thematic error may occur. This would
occur if the pixel that should have occupied the position was of a different class.
Geometric errors may result in thematic errors particularly at the boundaries between
classes (Carmel et al., 2001). This means that misregistration results in a greater
probability of change detection error at the boundary rather than the centre of classes
(Dai and Khorram, 1998; Carmel et al., 2001).

Though uncertainty in change detection has been considered in several studies,
there are few that consider the effect of both thematic and misregistration at the pixel
level, even though these errors vary spatially. Pixels that are not represented by the
training data, are mixed or belong to classes that overlap spectrally are more likely to
contain error. Misregistration will be spatially complex, as it will be a combination
of geometric errors within the two layers being co-registered. It is therefore essential
that the spatial function of these errors is also considered (Arbia et al., 1998).

8.1.3 Thematic Uncertainty

A number of studies have generated per-pixel thematic uncertainty using the
maximum likelihood classifier (Shi and Ehlers, 1996; Ediriwickrema and Khorram,
1997; de Bruin and Gorte, 2000), neural networks (Gong et al., 1996; Foody, 2000)
and boosting, a machine learning technique (Mclver and Friedl, 2001).

Statistical approaches to deriving probabilities have limitations as they assume a
data model such as Gaussian distribution (Benediktsson et al., 1990). Machine learn-
ing techniques, such as neural networks, are dependent only on the data not on the
data models and therefore do not require data to be normally distributed and uncor-
related (Benediktsson et al., 1993; Atkinson and Tatnall, 1997; Zhou, 1999). As well
as being distribution-free, neural networks are importance-free (Benediktsson et al.,
1990; Zhou, 1999), meaning that the network will model the relative importance of the
input data surfaces during the training process without requiring operator input. This
characteristic is particularly critical when considering multisource data, as a priori
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knowledge of the level of importance of data layers is not required. A neural network
will set weightings to account for a data layer’s importance during the training process
(Zhou, 1999).

The most commonly used network in remote sensing is the multilayer perceptron
(MLP). This network has previously been used to generate per-pixel thematic uncer-
tainties. Per-pixel thematic uncertainty may also be generated by directly estimating
posterior probabilities using the nonparametric probabilistic neural network (PNN)
proposed by Specht (1990).

8.1.3.1 Multilayer Perceptron

Atkinson and Tatnall (1997) give adescription of the MLP and its use in remote sensing
classification. The basic unit of the MLP is the node, which mimics a biological
neurone. The node sums the inputs and performs a function on the summed input.
The MLP consists of three types of layers; input, hidden, and output (Figure 8.1).
The input layer has as many nodes as there are input data layers. There may be one
or more hidden layers with the number of layers and nodes specified by the user. The
output layer contains as many nodes as there are output classes.

Every node in the hidden and output layers is connected to all nodes in the previous
layer. As the signal passes between nodes it is modified by weights specific to each
node—node connection.

Input signals are passed through the MLP, being modified by the weights associ-
ated with the connection between nodes and the functions of each node. The movement
of input signals and their modification through the network from input to output is
the “feedforward” stage of the MLP. The outputs of the MLP are activation levels at
each output node. These activation levels may be linked to a biophysical property or
land cover class.

Hidden
Input layer
layer Output
hy layer
— I
0y ———»
—» b hy
o0y ——»
_’ II
hy

Figure8.1 Structure of the multilayer perceptron neural network.
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Training data are entered into the MLP and the activation level of each of the
output nodes is compared with the validation values and an error function is calcu-
lated. A learning algorithm is applied that alters the weightings within the network to
minimise the error. The whole process is then repeated until a specified number of iter-
ations have taken place, or the error is minimised or reduced below a predetermined
level (Atkinson and Tatnall, 1997; Kanellopoulos and Wilkinson, 1997).

The MLP provides an output or activation level for every class on a pixel-by-pixel
basis. In a hard classification, the pixel is allocated the class with the highest activation
level. However, the activation levels for all classes may be used to provide additional
information for each pixel. MLP activation levels have been used as indicators of
membership on a per-pixel basis (Foody, 2000). Normalised MLP activation levels
have also been used as per-pixel indicators of correct allocation, where a pixel with
a high normalised activation is assumed to have a high probability of correct class
allocation (Gong et al., 1996).

8.1.3.2 Probabilistic Neural Networks

The PNN proposed by Specht (1990) may also be used to classify imagery and
generate per-pixel thematic uncertainty measures. The PNN is a feedforward network
with a similar structure to a MLP. The pattern layer corresponds to a single hidden
layer in the MLP and has as many nodes as there are training pixels. Each node
models a distribution function or kernel, based on the point represented in feature
space by the training pixel (Figure 8.2). The output layer contains as many nodes
as there are classes. Each node in the pattern layer is only connected with the class
output node associated with the training data and sums the inputs from the pattern
layer to generate a probability density function (PDF).

When the allocation stage of classification is carried out, the probability of
membership to each of the radial nodes is calculated and these are summed for
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Figure8.2 Example of the kernel approach to density estimation and the effect of smooth-
ing function. This example uses one-dimensional Gaussian kernels and training
samples at 0.4, 0.5, and 0.7.
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each class and normalised to give a posterior probability of membership to each
class (Figure 8.2). The pixel is then allocated the class it has the highest posterior
probability of membership to.

The width of the kernel distribution is determined by the operator and is known as
the smoothing function, #. When the smoothing function is too large, the estimated
PDF is over smoothed, resulting in inaccurate classification (Bishop, 1995, p. 54).
For an infinite sample size, as 1 — 0 the PDFs will approach a true representation
of the density. However, for a finite sample, as 4 — 0 the PDF will approach a
series of “spikes” or delta functions representing each training sample, resulting in
a noisy representation of the PDF. When & = 0 and assuming the training samples
used for different classes represent unique points in feature space, the classification
accuracy of the training data will be 100%. However, any point in feature space
not represented in the training data will not be classified, resulting in an inability
of the network to generalise. This characteristic of PNNs means that care must be
taken when determining the smoothing function to be used. The training error may
give a very inaccurate indication of the ability of the PNN to correctly classify non-
training data. For this reason it is essential that the optimal smoothing function should
be determined by testing the PNNs with independent data.

PNNs have advantages over networks that are trained iteratively, as training
requires only the generation of kernels for each of the training samples and the only
variable that needs to be determined is the smoothing function. However, each train-
ing point is represented by a node in the radial layer and so the allocation process can
be very intensive computationally, especially if a large number of training samples
are used.

The generation of the PDFs for each class by PNNs mean that the outputs may
be interpreted directly as posterior probabilities and may therefore be used to derive
per-pixel thematic uncertainties.

PNNs have been used for classification of magnetometry data for the detec-
tion of buried unexploded ordnance (Hart et al., 2001); texture classification
(Raghu and Yegnanarayana, 1998) and cloud classification (Tian and Azimi-Sadjadi,
2001).

8.1.4 Geometric and Misregistration Uncertainty

During the change detection process, georeferencing errors in either input classifica-
tion is highly likely to result in misregistration errors in the final change detection layer.
Misregistration is likely to be complex due to the interaction of spatially dependent
geometric errors in either input layer (Carmel, Chapter 3, this volume). If mis-
registration errors are reduced, the ability to detect change accurately is increased
(Dai and Khorram, 1998; Stow, 1999; Roy, 2000). The point at which misregis-
tration results in change detection errors can be when the misregistration between
images is sub-pixel in magnitude (Townshend et al., 1992; Dai and Khorram, 1998;
Roy, 2000).

One approach to determine the spatial variation of misregistration would be to
estimate misregistration at points across a scene and interpolate. This approach would
be valid in a relatively static habitat or where known areas remain the same. However,
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in an environment where change is taking place, positional errors may be difficult to
estimate if reference points are not known to be static. These errors may be increased
in natural or seminatural environments, where there are likely to be few easily iden-
tifiable fixed points. In coastal environments this problem is likely to be increased
as in many cases the greatest change occurs at the seaward side of the habitat, the
area where there are least reference points. In an area where reference points cannot
be found at one edge of a scene, extrapolation of the misregistration surface would
be required, resulting in an increased probability of error.

In the area used in this study, there are no obvious features that may be used for
geocorrecting or assessing the accuracy of geocorrection (Figure 8.3). In this case,
a sensor dependent alternative approach that does not require interpolation could be
used. The first stage is to georeference the imagery automatically using navigational
data from instrumentation onboard the platform. Estimates are then made of the
uncertainties associated with the navigational data. A geometric error model may
then be generated using the navigational uncertainty and a digital elevation model
(DEM) or digital surface model (DSM) to provide measures of geometric uncertainty.
This negates the need for fixed reference points on the ground for geocorrection and
geometric error assessment.

If the automated approach to georeferencing is taken, geometric errors within
the final layer may be due to either system or orthometric errors. Instrument system
errors are due to navigational data or calibration errors. These errors may be quan-
tified prior to data gathering either using knowledge of the component parts of the
system, or by testing. Orthometric errors are due to differences between the actual
and assumed terrain heights when georeferencing is carried out. Orthometric errors
are a function of height errors and the viewing angles of the system. At the edge of an
image swath, where the nadir angle is greatest, the potential for orthometric errors is
largest.

Figure 8.3 2002 Ainsdale Sand Dunes test site data (A) CASI; (B) LIiDAR DSM.
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8.1.5 Aims

As discussed in Section 8.1.4, there is a need for per-pixel measures of thematic and
misregistration errors for change detection. The aims of this chapter are to:

1. Develop methods of deriving per-pixel thematic uncertainty from the output
activations of neural network classifiers.

2. Develop a model of the misregistration uncertainty associated with co-registration
of CASI imagery.

8.2 METHOD AND RESULTS

8.2.1 Data

Remotely sensed data were gathered over Ainsdale Nature Reserve, Southport, U.K.
in 2001 and 2002 (Figure 8.3). Multispectral data were gathered using the ITRES
Compact Airborne Spectrographic Imager (CASI) with a spatial resolution of 1 m.
DSM data were gathered using Optech 2033 Light Detection and Ranging (LiDAR).
The LiDAR x, y, z point data were resampled to the same 1 m raster grid as the
CASI data.

The CASI data were geocorrected using ITRES automated geocorrection software
using post processed differential global positioning system (dGPS), Applanix POS AV
inertial measurement unit (IMU) attitude data and the LiDAR DSM.

For both flights, ground data for eight classes for classification training and accur-
acy assessment were also collected within 3 weeks. The classes were: water; sand;
marram; grasses/mosses/herbaceous vegetation; creeping willow; reeds/rushes; sea
buckthorn; and woodland/scrub. Within this 3 week time period of data acquisition,
it is unlikely that there would have been change in vegetation type. Point accur-
acy assessment data were gathered using a geographic stratified random sampling
approach. The strata used were squares with sides 60 m long. The size of the square
was selected by estimating the maximum number of data points that could be collected
within the study area in the time available. The accuracy assessment data were split
into two sets. One set consisted of one in four points, which was used to determine
the optimum heuristics for the MLP and PNN. The remaining point data were used
to determine the accuracy of the final classifications and the relationship between
activations and thematic uncertainty.

In order to assess geometric uncertainties of the CASI automated geocorrection
system, multiple images were flown over a test site at Coventry Airport, U.K. during
2001. Easily recognisable points on the site were surveyed using dGPS. These points
were used to test geocorrection error across the imagery.

8.2.2 Thematic Uncertainty

The 2002 CASI data were classified using MLP and PNN classifiers. A brief study
was carried out prior to the main experimentation to assess the optimum architecture
of the MLP and PNN smoothing function to classify these data. MLP networks with



PER-PIXEL UNCERTAINTY FOR CHANGE DETECTION 111

5,10, 15, 20, 25, and 30 nodes in a single hidden layer were trained using 250 iteration
intervals between 250 and 3000 iterations. PNNs were trained using a smoothing
function between 0.01 and 0.1, with intervals of 0.01. All networks were tested using
data independent of the training and accuracy assessment data and the most accurate
MLP and PNN were selected. The final MLP contained 20 nodes in a single hidden
layer and was trained for 2000 iterations using a learning rate of 0.1 and a momentum
of 0.3. The smoothing function of the final PNN was 0.03.

The global accuracy of the classification was tested using the Modified Kappa or
Tau (Foody, 1992; Ma and Redmond, 1995; Shalan et al., Chapter 2, this volume).
The classification of the Ainsdale sand dune habitat was only 0.9% more accurate
using the PNN (Tau = 0.793) than the MLP (Tau = 0.784), and using Tau variance
this difference was found to be not significant at 95% confidence.

MLP activations were normalised by dividing the activation for each output node
by the sum of the activations for each pixel. The activation levels were tested for suit-
ability as thematic uncertainty measures, assuming that network activations provide
a direct measure of the likelihood of a class being correct.

The output activations of all the accuracy assessment pixels for all eight classes
were binned according to activation level, with ten even bins between 0 and 1. The
proportion of times each of the activations resulted in the correct class and the mean
activation were calculated for each bin. A statistically significant relationship between
mean output activation and the proportion of correctly classified pixels was found for
the MLP (r2 = 920, F = 104-5, DF = 8, p < -001) and the PNN (r2 = 979,
F =426-7, DF = 8§, p < -001) (Figure 8.4; Table 8.1).

8.2.3 Geometric and Misregistration Errors

The CASI flown over the Coventry test site data were geocorrected as described
above. The DSM used was derived by resampling the dGPS surveyed points used
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Figure 8.4 Proportion of times a given activation resulted in the correct class as a function of
neural network activation. The dashed line represents the result of the linear regres-
sion. The dotted line represents the assumption that activation equals predicted pro-
portion of times a given activation resulted in the correct class. (A) MLP and (B) PNN.
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Table 8.1 Testing for Correlation between Neural Network Activation
and Thematic Uncertainty Using Linear Regression

Degrees
Classifier Adjusted r2 RMSE F-value Freedom Significance
MLP .920 0.116 104.5 8 p < -001
PNN .979 0.047  426.7 8 p < -001
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Figure 8.5 Frequency of CASI horizontal errors as a function of error distance.

to test the horizontal accuracy of the CASI data to a 10 m raster grid using nearest
neighbour resampling. This provided precise elevation data at the points used to test
horizontal accuracy, minimising orthometric errors in the geocorrection process over
the survey points. As the orthometric error was minimised, the major error component
was therefore due to the system.

The difference between GPS and CASI positions of the surveyed points was used
to derive error measures. Linear regressions were carried out to test whether there were
relationships between positional error and two variables derived from the navigation
data: viewing angle and rate of attitude change. In neither case was a statistically
significant relationship found. As a local measure of instrument error could not be
derived, the frequency of CASI horizontal errors (Figure 8.5) was used to derive a
global model of CASI instrument geometric error (Figure 8.6). The model consisted
of a matrix based on 29 possible instrument error points or pixels. For each CASI
pixel the model assumes that there are 29 possible pixels that could be the actual
position on the ground and gives a probability of this occurrence.

For each square of the matrix the distance between the centre of the matrix and
the centre of the square was calculated. The number of squares in the matrix that
occurred at each of the bins in Figure 8.5 was calculated. The frequency within each
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Figure 8.6 Pixel-based matrix of probabilities of CASI instrument geometric error assuming 1 m
spatial resolution.

bin was divided by the number of squares to provide a per-square probability of error.
This value was applied to the matrix.

Nadir and azimuth angles from the CASI instrument were derived from dGPS
and used to estimate the potential orthometric error using:

0 = tan(v)(Zortho — ZLiDAR) 8.1)

where o is the orthometric error towards the CASI instrument; v is the off nadir angle
of a given pixel; zorho 1S the elevation used in the automated geocorrection; zipAR
is the LiDAR elevation of the instrument error point. o is then used to estimate the
orthometric error in x and y:

Xortho = Sil’l(O{)*O (8.2)

Yortho = €0s(a)*0 (8.3)

where « is the azimuth angle of a given pixel.

The global model of instrument error was combined with the local model of ortho-
metric errors to provide an overall measure of local geometric uncertainty. Testing
the geometric error model was difficult due to the requirement to survey many easily
recognisable points on a variety of slopes. A more practical method was to test the
misregistration between two images.

The geometric uncertainty model was used to generate a model of the misregis-
tration between CASI images. The potential error within each pixel in the matrix for
2001 was combined with the potential error within each pixel in the matrix for 2002.
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The combined probabilities were used to predict a mean misregistration error.

Xerror — (xortho,n - xortho,m) + (xpixel,n - xpixel,m) (8.4)

Yerror = (Yortho,1 — Yortho,m) + (Vpixelin — Ypixel,m) (8.5)

where xotho 1s the error in x due to orthometric effects; xpixel is the x offset from
the central pixel of the matrix (Figure 8.6); n is a pixel in matrix 1; m is a pixel in
matrix 2.

The misregistration between two pixels in matrix 1 and matrix 2 (4, ) is given by:

Hnm = (xezrror + yezrror)(l5 (8.6)

and overall misregistration y is given by:

p P
M= Z Z Mn,mPnPm 8.7
n=1m=1

where p is the number of pixels in the CASI instrument geometric uncertainty matrix
(29 in this study); p, and p,, are the probability of geometric error for matrix 1 and
matrix 2, respectively. They are derived from Figure 8.6.

This model was tested using an urban area next to the Ainsdale sand dune test
site. The positions of 100 easily identifiable points on the 2001 and 2002 data sets
were estimated and the actual misregistration between the images was compared to
that estimated by the model.

To compare the actual and predicted misregistration, predicted misregistration was
sorted by magnitude of error for every point and binned in groups of ten to generate
average predicted and actual misregistration. A linear regression was carried out on
the averaged values and a statistically significant relationship was found between
predicted misregistration and actual misregistration (+> = -530, F = 11-1, DF = 8,
p < -05) (Figure 8.7). The relationship between predicted and actual misregistration
is given by:

Mactual = 1'27Mpredicted - 0-39 (8.8)

Though there was correlation between predicted and actual misregistration, the slope
of the relationship is not close to one (Equation (8.8)) and therefore more work is
required on the model.

8.3 DISCUSSION AND CONCLUSIONS

The PNN and MLP classifier had very similar global thematic accuracies, with Tau
coefficients of 0.793 and 0.784, respectively. However, when estimating per-pixel
thematic uncertainty the PNN approach had a 59% lower RMS error than the MLP
(Table 8.1). This indicates that the PNN was more suitable for deriving local them-
atic uncertainty than the MLP for the data in this study. The increased accuracy in
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Figure 8.7 Actual misregistration as a function of values predicted in model. Each point on the
graph is the average of ten ground points. The dashed line represents the result
of a linear regression. The dotted line represents the assumption that predicted
misregistration equals actual misregistration.

determining thematic uncertainty may have been due to the ability of the PNN to
directly output posterior probabilities rather than the indirect approach of the MLP.

Although the PNN was more accurate in estimating local thematic uncertainty
measures from airborne remote sensing data, both approaches resulted in significant
relationships between per-pixel output and thematic uncertainty (Table 8.1). This
builds on previous studies that have derived thematic uncertainty using a variety
of classifiers (Gong et al., 1996; Shi and Ehlers, 1996; de Bruin and Gorte, 2000;
Foody, 2000; Mclver and Friedl, 2001). The measures derived will allow mapping of
the potential uncertainty associated with every class on a per-pixel basis.

Local measures of geometric uncertainty may be derived using a global model
of CASI instrumentation uncertainty and a fine spatial resolution DSM to provide
measures of potential orthometric error. Though it was possible to derive a local
model of instrument error, more complex models involving interaction between GPS
and IMU and aircraft movement should be developed. This would allow uncertainty to
be modelled more precisely on a per-pixel basis by accounting for the local variation
in error due to geometric correction errors. The accuracy of the misregistration model
also has the potential to be increased by modelling the uncertainty associated with
the DSM used in georeferencing image data.

The measures derived in this chapter have the potential to be used as inputs for
change detection, allowing the spatial context of change to be modelled on a per-pixel
basis in a probabilistic framework, quantifying inaccuracies in the post classification
change detection process. The misregistration metric in this chapter was a measure
of the potential misregistration between two pixels, effectively an averaged value
(Equation (8.7)). However, one method of combining thematic and misregistration
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models to provide a per-pixel model of change would be to use the geometric error
model. The geometric error model consisted of a series of geometric error vectors,
each of which had a probability associated with them. Due to geometric error, every
pixel could actually occupy a series of alternative positions. The geometric error model
estimates the probability associated with each of those positions. During the change
detection process, the thematic uncertainty for every pixel derived from the classific-
ation would be modified by the thematic uncertainty of the pixels in these alternative
positions. The magnitude of the modification would be determined by the geometric
model probability. Misregistration would therefore be considered in a probabilistic
framework using thematic uncertainty.

This chapter focuses on the use of uncertainty for hard land cover change detection.
However, there are a number of issues that have not been addressed, particularly
representing a continuous surface as a series of discrete pixels, each given a single
land cover category (Fisher, 1997). Further work needs to be carried out to determine
whether the thematic uncertainty measures derived above describe the continuous
nature of the surfaces being examined as well as error.
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CHAPTER 9

Introduction — Spatially Distributed
Dynamic Modelling

Stephen E. Darby, Fulong Wu, Peter M. Atkinson, and Giles M. Foody

It is perhaps no coincidence that an emerging interest in the use of spatially dis-
tributed dynamic modelling (hereafter SDDM) to simulate geographical phenomena
has coincided with a shift in the nature of the “big” questions facing the Earth and
environmental science communities. Until comparatively recently most of these “big”
questions have tended to focus on the identification and characterisation of land cover
and climate change processes — an area of research in which remote sensing has
made numerous important contributions. However, the net results of these studies
have served to focus the attention of policy makers on the fact that global change
processes are real, and that they have tangible, large-scale, environmental, and socio-
economic impacts. At the same time, a scientific consensus has now essentially been
reached regarding the significance and nature of future climate change. Accordingly,
it can be argued that the core research agenda is now moving away from identification
towards impacts assessment. SDDM has therefore emerged as an important discipline
in its own right because it represents a means of predicting the response of a range
(examples in this section comprise hydrological, geomorphological, and ecological
applications) of environmental systems to environmental change felt from the local
to the global scale.

Particularly in the key context of impacts assessment, it can even be argued that
SDDM is the only viable means of predicting the response of complex, spatially
distributed, environmental systems to global change drivers. The nature of SDDM
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is that it employs a spatially explicit approach with any reasonable number of process
models representing various facets (e.g., tree growth, seed dispersal, etc.) of the
environmental system of interest. However, due to spatial feedbacks and interactions
between process models, very complex model behaviour can emerge even if the basic
spatial data structure and sub-models employed are apparently relatively simple. What
this implies is that the value of SDDM may lie primarily in its use as a tool for
predicting system response that would otherwise be unforeseen. By combining large-
scale spatial data sets with process models, SDDM offers the advantage of being able
to simulate dynamic phenomena across a cascade of scales ranging from the local and
rapid through to the large and slow. It should also be clear that the spatially distributed
data sets required for parameterising and validating SDDM models are married to the
forms of data acquisition associated with the remote sensing technologies that are
a core concern of this book. Put another way, the chapters in this book suggest that
there is now a synergistic relationship between remote sensing and SDDM.

Turning now to the specific content of the contributions in this section, two
chapters focus on simulating ecosystem dynamics. First, Svoray and Nathan
(Chapter 10, this volume) present a process-based model of tree (Aleppo pine)
population spread, while Malanson and Zeng (Chapter 11, this volume) use cellular
automata to simulate the interaction between forest and tundra ecosystems as a basis
for understanding the controls on the shifting location of treelines. An interesting
feature of both these (and many other SDDM) studies is that a combination of
relatively simple process rules, together with the use of spatially explicit data sets
to parameterise the models, results in the emergence of complex non-linearities and
feedbacks, thereby producing complex interactions that could not otherwise have been
foreseen. The unique ability to identify this type of behaviour serves to highlight one
of the key advantages of SDDM approaches.

The two chapters that focus on geomorphological response are similarly charac-
terised by the emergence of complex model behaviour as a result of interactions
between apparently simple process rules and spatial feedbacks. Wichmann and
Becht’s (Chapter 12, this volume) contribution is concerned with predicting the sed-
iment yield derived from steep, alpine environments. They highlight the importance
of representing both the physical mechanics of the governing processes (in this case,
triggering mechanisms for rapid mass movements) and their spatial relation (in this
case, the pathways along which sediment is routed after initiation of motion). Along
similar lines, Schmidt (Chapter 13, this volume) is concerned with predicting the
onset of landsliding. In this case, the key control that influences the spatial and, as
a result of climate change, temporal distribution of shallow landslides is the spatial
distribution of sedimentary properties combined with the temporal evolution of pore
water pressures predicted through the use of a groundwater model.

The focus of the first four chapters in this section on process representation
suggests that while progress has already been made in SDDM applications, there are
fundamental challenges still to address. Indeed, it is possible to argue that errors and
uncertainties in our ability to model geodynamic processes might be derived primarily
from a lack of knowledge about these governing processes. However, this argument
would overlook the difficulties that are associated with the use of the spatial data
sets that are used to parameterise geodynamic models. The last chapter of Section I,



INTRODUCTION — SPATIALLY DISTRIBUTED DYNAMIC MODELLING 123

by Wilson and Atkinson (Chapter 14, this volume), focuses on this issue. They explore
the extent to which uncertainties in the creation of digital elevation models (DEMs) of
floodplain topography influence the prediction uncertainty of flood inundation models
that use the DEM data.

The chapters in this Section, comprising as they do case studies drawn from such
apparently diverse fields as ecosystem dynamics, drainage basin geomorphology,
and flood modelling, serve to remind us that the issues involved in SDDM cut across
the traditional boundaries of subject disciplines. As with the other sections in this
book, taken together these contributions highlight the concept that “GeoDynamics”
in general, and SDDM in particular, have much to offer, while simultaneously
identifying the issues that remain and signposting avenues for fruitful further research.
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10.1 INTRODUCTION

The recent rise of spatial ecology emphasises the critical importance of the spatial
context at which ecological processes take place (Levin, 1992; Tilman and Kareiva,
1997; Clark et al., 1998; Silvertown and Antonovics, 2001). For example, there
has been a growing recognition that seed dispersal — one of the most critical
processes in plant spatial dynamics (Harper, 1977; Schupp and Fuentes, 1995;
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Nathan and Muller-Landau, 2000) — should be incorporated in a spatially realistic
manner in models of plant population dynamics, because different distributions of
dispersal distances can give rise to entirely different dynamics (Levin et al., 2003).
In addition, several features of the environment, such as water availability and soil
surface temperature, which are of critical importance to plant recruitment dynamics,
typically exhibit pronounced variation in space and time.

It is therefore surprising that plant population models have not yet incorpor-
ated spatially and temporally realistic descriptions of key environmental factors that
shape seed dispersal and plant recruitment processes. This can be explained by the
great complexity of natural habitats, and the difficulty in identifying key factors
and measuring the variation over large spatial and long temporal scales. Recent
advances in remote sensing, GIS, geocomputation, and field measurements, along
with increased knowledge of recruitment processes, may now allow us to cope with
this challenge.

Adult plants produce seeds with considerable spatiotemporal variation among
individuals inhabiting different sites. This generates a non-random spatial struc-
ture in the annual (or seasonal) seed output within the population (Nathan and
Muller-Landau, 2000). Seed release is followed by seed dispersal, the major (or only)
stage during which individual plants move in space. The process of dispersal is
affected by multiple factors (Chambers and MacMahon, 1994) that can also vary sub-
stantially in space and time (Schupp and Fuentes, 1995; Nathan and Muller-Landau,
2000). Seed predators can also be affected by environmental heterogeneity and can
drastically alter the spatial structure of dispersed seeds (Hulme, 1993). Seed dormancy
can induce an additional component of temporal variation in the availability of seeds
for germination (Andersson and Milberg, 1998). Spatial patterns of seedlings can
be different from those of seeds, due to spatial heterogeneity in the distribution
of suitable micro-habitats for germination. Similarly, spatial variation in seedling
survival, generated, for example, by differential herbivory, may further alter the
pattern of seedlings. Overall, successive stages of early recruitment generally show
low concordance (Schupp and Fuentes, 1995); hence, modelling plant population
dynamics requires detailed descriptions of spatiotemporal variation in environmental
conditions and their effects on different recruitment processes.

This research proposes a spatially explicit dynamic model to predict long-term
tree population spread in a heterogeneous environment. The model is formulated
based on mechanistic principles, which describe specific conditions during seed
dispersal, germination, seedling survival, and tree establishment. We apply the model
to predict the dynamics of pine population spread during two consecutive generations
and evaluate the predictions using field data, including visual interpretation of aerial
photography and tree age measurements from annual growth rings.

10.2 SPECIES AND STUDY AREA

The Aleppo pine (Pinus halepensis Miller) is the most widely distributed pine of
the Mediterranean Basin (Quézel, 2000). It is also common in plantations within
and outside its natural range, spreading rapidly from plantations to nearby natural



DYNAMIC MODELLING OF THE EFFECTS OF WATER, TEMPERATURE, AND LIGHT 127

habitats (Richardson, 2000). The species, considered one of the most invasive
pines (Rejmanek and Richardson, 1996), threatens native biodiversity in various
habitats and has even caused severe financial losses, especially across the Southern
Hemisphere (Richardson, 2000). Early recruitment processes play a key role in
determining Aleppo pine spatial dynamics (Nathan and Ne’eman, 2004); successful
management of natural, planted, and invasive populations should therefore be guided
by models that incorporate spatial heterogeneity and its effects on early recruitment.

Mt. Pithulim at the Judean Hills of Israel holds a native Aleppo pine population
that was well isolated for a long time from any neighbouring population, with no
evidence for any planting, cutting, or fire. This population has expanded from five
trees at the early 20th century, to the thousands of trees that inhabit the site today. The
history of this spatial spread, and of major influencing factors, has been reconstructed
in exceptionally fine detail, providing a uniquely detailed long-term perspective into
the dynamics of Aleppo Pine populations. The study site on Mt. Pithulim and its
surroundings covers an area of roughly 4 km?, and contains several tens of thousand
pine trees, including recent plantations. To concentrate our efforts on the population
of interest, a subset area of 60 ha (750 x 800 m?) was selected. This 60 ha plot was
selected to (a) include the core of the old stand and a buffer of at least 150 m around
it; (b) to avoid very steep terrain (>35°) in which fieldwork is extremely difficult; and
(c) to represent the major topographical and edaphic units of the area where current
tree population spread processes occur.

10.3 THE MODEL

10.3.1 Overall

Our model incorporates the spatial and temporal variation of tree recruitment, focusing
on factors operating on early stages of seed dispersal and germination. The temporal
resolution is a single month for rainfall and temperature and the spatial resolution is
5x5 m. To simulate seed dispersal, the model draws on a previous dispersal model.
Then post-dispersal recruitment is simulated in three steps: (1) evaluation of the
conditions for seed survival and germination, on a monthly basis; (2) evaluation of
the conditions for seedling-to-adult survival, on a yearly basis; (3) selection of cells
that have met a set of expert-defined threshold values for each recruitment factor for
each grid cell, followed by selection of cells that have met an expert-defined threshold
value for the joint (all factors combined) suitability for each grid cell. The overall
conceptual model with its three stages is described in Figure 10.1.

10.3.2 Assumptions
Six assumptions are made regarding the processes that dictate tree population spread:
Seed dispersal

1. Seed dispersal can be simulated from data on a few physical and biological
factors, as implemented in the dispersal simulator WINDISPER (see below).
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Figure10.1 A conceptual framework for the dynamic model developed in the current study.

Seed survival and germination
2. Seed survival increases with distance from adult trees due to the attraction

of seed predators to the vicinity of adult trees (Nathan and Ne’eman, 2004).

3. Seeds germination is restricted to the winter and spring (between November

and April inclusive); seeds that did not germinate do not survive for the next

year (Izhaki and Ne’eman, 2000).

4. Seed germination is affected primarily by surface temperature and water
availability (Thanos, 2000).



DYNAMIC MODELLING OF THE EFFECTS OF WATER, TEMPERATURE, AND LIGHT 129

Establishment
5. Seedling survival increases with distance from adult trees due to shading,
competition for water with adults, sibling competition and the attraction of
seedling herbivores to the vicinity of adult trees (Nathan et al., 2000).
6. Tree mortality occurs mostly during early establishment (Nathan and
Muller-Landau, 2000); hence individuals that survive the seed and seedling
stages will become adults in the model (Nathan and Ne’eman, 2004).

10.3.3 Seed Dispersal Model

Seed dispersal was simulated using the mechanistic simulator WINDISPER (Nathan
et al., 2001). WINDISPER assumes a log-normal distribution of horizontal wind-
speed and normal distribution of vertical windspeed (truncated to exclude net
upward movements), height of seed release and seed terminal velocity. The model
assumes a logarithmic vertical profile of the horizontal windspeed. It has been tested
against extensive seed trap data collected in two native Aleppo pine populations:
(i) Mt. Pithulim (within the focal area of the current study site); and (ii) Mt. Carmel
(Israel). The results show close agreement between predictions and observations. As
with these previous applications of this simulator, we assume here that the seed output
is a linear function of the tree canopy projection, and the distance travelled by each
individual seed was calculated after random selection of parameter values, based on
their measured empirical distribution.

10.3.3.1 Spatial and Temporal Variation of Recruitment Factors

We assemble a set of parameters that reflect different expressions of the key relation-
ships assumed above. Seed survival, represented by its distance-dependent effects
(assumption 2), is translated by assigning three levels of survival for grid cells of
different proximity to adult-containing cells. Adult-containing cells were assigned
zero probability of survival, adjacent (first neighbouring) cells were assigned an inter-
mediate level, while all other cells were assigned the highest level. The role of water
availability and surface temperature (assumption 4) were incorporated in a more
complex manner, by distinguishing the effects of topographic and climatic factors.
Spatial variation in soil water content is highly dependent on topographic conditions
through surface and subsurface runoff convergence and dispersion. It is expected that
lower areas in the catchment are moister due to the accumulated water reaching these
plots through upper and lower runoff flows (Beven and Kirkby, 1979). Among the
key topographic parameters affecting surface hydrology, the local slope and the catch-
ment area determine the hydraulic gradient and the potential water flux to a given area
(Barling et al., 1994). Following Beven and Kirkby (1979) and Burrough et al. (1992),
we used these two parameters in conjunction as a wetness index (Equation (10.1)):

Asj
WI; = Ln (10.1)
tan 6;

where As; is the specific catchment area (the upslope contributing area) and 6; is
slope angle of the surface. The parameter As; was calculated using the ArcGIS 8.2
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flow accumulation algorithm, while the local slope (degrees) was calculated using
the ERDAS Imagine Terrain Analysis algorithm.

We also incorporated the effects of slope orientation on water availability. Slopes
of different orientation differ in the amount of solar radiation they receive, hence in
evapotranspiration and water loss rates. Consequently, south-facing slopes are less
humid than slopes oriented to the north, east, or west (Kutiel, 1992). The aspect
layer was calculated from the DEM using the algorithms of the Terrain Analysis
module of the ERDAS IMAGINE software. The output value range of the aspect
characteristics (0-360°) was categorised into three sectors: north-facing slopes (315—
45°), south-facing slopes (135-225°), and a sector of united east- and west-facing
slopes (45—-135° and 225-315°).

The above topographic parameters change in space over the simulated landscape
but not in time. The climatic parameters, however, do the reverse: they change in time
(month) but are assumed to be the same over the entire simulated landscape. Monthly
statistics of surface temperature and rainfall are from measurements taken at the
Israel Meteorological Service (IMS) station at Beit-Jimal, 16 km west of the study
site, between 1945 and 2003. These data show high temporal variance in both rainfall
(ranging between 1.5 and 460 mm per month) and temperature (ranging between
maximum temperature of 12 and 34°C).

The biotic conditions for seedling survival are based also on the distance from
the trees that was set for the nearest neighbour cell of each tree. Thus, cells that are
already occupied by trees will not allow the development of a new tree and the adja-
cent cells are of less favoured conditions from more distant cells. Consequently, the
second neighbourhood and onward provide the best conditions for seed and seedling
survival.

10.3.4 Fuzzy Model

Fuzzy logic is used here to assess the suitability of grid cells for tree establish-
ment. Several membership functions (MFs) are used to determine the degree of
membership of each individual recruitment factor to the set A (Table 10.1). The set A
represents a group with sufficient conditions for the establishment of a new Aleppo
pine tree.

The weights are determined based on our understanding of the tree population
spread processes: seed dispersal, survival and germination, and tree establishment.
Their weights are assumed to be of equal importance; thus, MFO, MF1, and MF6
that represent processes 1, 2, and 4, respectively, are set to a weight value of 0.25.
Process 3 of seed germination is represented here by the combined effect of wetness
index, slope orientation, rainfall, and temperature. The factors that affect this process
(MF2 to MF5) were also assumed to have equal importance, and therefore, their
weights are set to 0.0625.

To perform the first step in the overall model (Figure 10.1), the membership
functions are joint (JMF) with their respective weights (111 g; Table 10.1) to provide
the monthly assessment as in Equation (10.2):

JMF(month) = A¢MF0 4+ A;MFI1 + - -- + AsMF5 (10.2)
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Table 10.1 A Summary of the MFs Used in Our Model

Attribute Type Id MF type MF Weights A
Available seeds Biotic MFO Linear y—X/y —« 0-25
Seed predation Biotic MF1 St 1—(X—y/y —a)? 0-25
Slope orientation ~ Topography MF2 Linear y—X/y —« 0-0625
Wetness index Topography MF3 Linear y—X/y —«a 0-0625
Temperature Climate MF4 Combined 1—-(x—y/y— @)2; 0.0625
linearand ST  y —x/y —«a

Rainfall Climate MF5 St 1—-(X—y/y —a)? 0-0625
Seedling mortality  Biotic MF6 St 1—(x—y/y —a)? 0-25

Note: « is the minimum point; y is the maximum point; and x is the grid cell value. All x are
the weights while 0 < 2 < 1and YA = 1. St is S-shape MF with a right open shoulder
often used in fuzzy logic according the conditions described in Robinson (2003).

This JMF model is well known as the convex combination JMF where the membership
of a cell in the new fuzzy set A and it is determined based on the weighted sum of the
membership functions MFO, ..., MF5.

This approach could be very useful to represent complexities in tree population
spread processes. For example: in cases where MF2 is low due to a south-facing
slope location, MF3 can compensate with a high membership value due to footslope
location. However, in cases where no seeds reach their destination to a given cell,
and consequently MFO is equal to zero, other MF values may falsely compensate and
the cell might be attributed to the set A. To overcome this problem, we added to the
model a rule that adjusts the entire JMF (month) to zero when MFO is equal to zero.

The second step introduces the annual timescale by adding seedling mortality as
in Equation (10.3):

Z IMFNoy + -+ - + JMFApril

JMF(Year) = ;

+ A¢MF6 (10.3)

The sum of monthly JMFs is divided by the number of months and thus the annual
joint membership function of the recruit factors is the average monthly JMF. This
step is applied to normalise the data and thus the total JMF for the next step (decade
JMF) will also sum to one in the best-case scenario.

The third step introduces the temporal scale of a decade, simply as the sum of
annual JMFs — Equation (10.4):

IMF (Decade) = Y " IMF;__. 10 (10.4)

This third and last step of the model is followed by two tests to determine which
cells are expected to be established by trees in the next generation. This is done using
simulated threshold values that represent degrees of membership from which the
establishment of a tree is expected (defuzzification). The threshold values are deter-
mined based on mechanistic assumptions that are used to populate Equations (10.2)
to (10.4). The tests include threshold values for the suitability of the final JMF and for
the suitability of each of the recruitment factors separately. The predicted suitability
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of all grid cells within the simulated landscape to tree establishment is then tested
against visual interpretation of historical air photos and tree ring measurements.

10.3.5 Fieldwork — Model Validation

We have gathered a database of 93 of the oldest trees in the study area. The trees were
inspected from historical airphotos (1956 and 1974). The airphotos were scanned and
the images were rectified using the Orthobase Pro tool of ERDAS IMAGINE. The
reference image is a colour air photo from 1996 that was available from our previous
work in the site (Nathan et al., 1999, 2001), including an orthophoto and a digital
elevation model (DEM) at 0.25 m horizontal resolution. The spatial resolution of the
orthophotos is 0.43 m with 13 ground control points and total RMS error of <0-6 m.
The interpretation of the trees was verified by a sample of 43 trees whose age was
measured using the tree ring methodology. Since tree age estimation using the tree
ring methodology is very labour-demanding and therefore cannot be implemented
to the entire population, the use of high accuracy, well-rectified historical remote
sensing data is an important component of the model validation.

10.4 RESULTS

The observed Aleppo pine tree population of the first generation and the potential
conditions of the modelled cells, that is, grades of the total joint membership function

Figure10.2 (see colorinsert following page 168) The estimated spatial distribution of the first
generation of Aleppo pines (tree symbols) on the Mt. Pithulim site, within a radius
of 100 m from the central location of the five older trees (M) that have inhabited
the site prior to 1940. The background is a map of the total (decade) grades where
lighter grey represents lower membership grades and darker grey represents higher
membership grades.
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Figure10.3 (see color insert following page 168) A map of the membership grades of
seed dispersal where black colours represent higher values and dark grey colours
represent lower values. The background is a panchromatic orthophoto acquired in
1956.

are illustrated in Figure 10.2. The results are examined within a radius of 100 m
from the central location of the previous generation — the five old trees — since
this distance roughly marks the limit of short-distance dispersal that can effectively
be predicted by WINDISPER (Nathan et al., 2001). Figure 10.3 provides the seed
dispersal membership values within this range. The 100 m limit excludes trees that
could have been established through rare long-distance dispersal events. Preliminary
data suggest that such events did take place during this period, but their analysis is
beyond the scope of this chapter.

Only 14 of the 93 trees are located on cells with extremely low potential for
tree establishment (represented by white cells; Figure 10.2). Many of the other trees,
mostly those of the northern part of the study area, are located in cells with relatively
high predicted suitability values while up to 20 trees, located mostly in the southern
part of the studied area, are located in cells of rather low potential.

A quantitative analysis of the results in Figure 10.2 requires a test of how many
trees did and how many trees did not actually establish in cells of high and low
potential. We distinguished between cells of “high” and “low” suitability by setting
an arbitrary threshold of total IMF >0.59 for “high” suitability. The proportion of trees

Table 10.2 A Summary of the Four Categories that Represent the
Presence and Absence of Trees within Cells of High and
Low Suitability

Suitability Cells
High Low

Presence of trees 51 28
Absence of trees 541 692
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located in cells of high predicted suitability is significantly higher than their proportion
in cells of low predicted suitability (Table 10.2; chi-square test, df = 3; P < -0001).

10.5 CONCLUSIONS

We have shown in this chapter a mechanistic model that represents spatial and tem-
poral variation in water conditions, temperature, and seed and seedling predation. The
model was applied to a heterogeneous Mediterranean environment of Mt. Pitulim,
Israel. The results show that sites (cells) of high predicted suitability for recruitment
are occupied by more trees than cells of low predicted suitability (df = 3; P < -0001).
Furthermore, sites predicted to hold no potential for recruitment were populated by
trees in very rare cases and mainly in the margins of the study area. These cases were
attributed to long distance seed dispersal processes that were excluded from the cur-
rent analysis. Further application of the model framework suggested here to longer
dynamics in the study area and to other sites populated by Aleppo pine trees will help
to increase our understanding of processes of tree population spread.
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11.1 INTRODUCTION

The spatial patterns of ecosystems in landscapes are important to their functioning
(Turner, 1989). Exchanges of energy, matter, and individual organisms and species
across landscapes are in part determined by pattern, and it is this exchange, along with
vertical fluxes, that creates the pattern. Central to our understanding of pattern, spatial
fluxes across landscapes, and changing pattern are ecotones, the transition zones
between adjacent ecosystems (Risser, 1995). Ecotones are primarily characterized by
the change in species composition, but are also seen as areas of interaction among
ecosystems. The change in species is important because it indicates the limits of
a species range, at least locally, and can be indicative of a species’ relationship to
the environment and other species. Fluxes may be higher here because of steeper
gradients in the environment that coincide with the difference in species.

11.1.1 Treeline Ecotones

Treelines are the ecotones most studied. Most such studies are of treelines where
forest borders grassland or tundra (rather than tree—shrub boundaries). The physical
contrast has led to a number of hypotheses of treeline formation, location, and pat-
tern. All recognize multiple causes, but they have different emphases. Stevens and
Fox (1991) propose stature- and growth-related hypotheses. The stature-related hypo-
theses involve such problems as those a large plant encounters when resources are
spatially and temporally limited, such as the inability to accumulate enough resources
in its space. Other stature-related problems are those of exposure of the terminal buds
and/or photosynthetic tissue damage. Growth-related hypotheses are related to the res-
piration costs of a large woody plant when resources are few in time (i.e., seasonally)
and/or space. Analyses of carbon balance indicate that calculations of photosynthesis
minus respiration are a fair indicator of treeline location (Cairns and Malanson, 1998),
but physiological studies indicate that treeline carbon storage may be more flexible
than previously thought (Hoch and Korner, 2003). These studies have not, however,
considered alpine treeline advance and its spatial configuration from the perspective
of complexity. Our recent work indicates that endogenous fractal dynamics may be
the underlying mechanism (Zeng and Malanson, in review).

Important to understanding the above is the recognition of feedbacks between
trees and their physical environment. Wilson and Agnew (1992) theorized that positive
feedbacks occur where trees can modify their local environment in their own favor or
cause environmental deterioration nearby, and that forbs and grasses can do the same.
Negative feedback has not been as well theorized for treelines in general, but shading
the soil is one such effect (Korner, 1998). With feedback comes the recognition of
the role of spatial pattern in affecting the process. Feedbacks are local. They occur in
the immediate vicinity of the trees, so that the pattern of trees determines the pattern
according to which the underlying and surrounding environment is modified; this
process affects the pattern in a feedback loop (Malanson, 1997).

The alpine treeline, also called the forest—alpine tundra ecotone, typifies such
ecotones (Figure 11.1). Positive feedbacks for trees encroaching on tundra include
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Figure11.1 Patterns at treeline include advancing fingers, isolated patches, and openings
remaining within contiguous forest.

warming the canopy by means of lower albedo, increasing nutrients and water by
increasing local atmospheric deposition, and reducing transpiration and abrasion by
slowing wind. The boundary is between adjacent ecosystems of very different physical
characterisitics. The macro-scale controls are clearly related to climate, given the
elevation gradient of treelines from the equator to high latitudes. The local elevations
and patterns are not so straightforward, and so may help us understand the interaction
of pattern and process.

We wish to study the relationship between the spatial pattern of trees, the feed-
backs that ensue, and the potential change in the spatial pattern that results. This
study is part of a project that includes other modeling approaches. Having started
with a topography-based empirical model (Brown et al., 1994) and a physiologically
mechanistic model that calculates photosynthesis, respiration, and the allocation of
carbon (Cairns and Malanson, 1998), we added a forest dynamics model to simulate
the population dynamics of trees (Bekker et al., 2001). We are now exploring cellu-
lar automata (CAs), wherein the weights given to neighboring trees in determining
acell’s tree/tundra status are based on the calculation of physiological effects (Alftine
and Malanson, 2004). However, there are two obstacles. First, landscape processes
and their interactions with spatial patterns are complex, and thus it is difficult to
identify specific mechanisms. Second, even if an expression can be used, it is difficult
to evaluate any set of parameters. Here, we attempt to determine whether the weights
for the effects of neighboring trees on the status of a cell in a CA can be determined
using evolutionary computation (EC).

11.1.2 Evolutionary Computation

Evolutionary computation is a means of producing aspects of computer programs
that achieve specified ends. EC is commonly applied to optimization problems in
geography wherein the locations of facilities or land use sites are to be optimized
relative to multiple criteria. It is essentially an engineering approach that models
an evolutionary process to search a large parameter space; it is used because of
its genetic operations and its stochastic nature under selection pressure to avoid
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becoming trapped in a local minimum while approximating the global maximum.
The inherent parallelism in EC can explore a large solution space in an efficient way
(Mitchell, 1996). Techniques based on EC have been pioneered in human geography
for location-allocation (e.g., Hosage and Goodchild, 1986; Xiao et al., 2002), and
for spatial modeling — including pattern recognition — by Openshaw (1992, 1995,
1998; Diplock and Openshaw, 1996; Turton and Openshaw, 1998). They have been
applied in land use (Bennett et al., 1999; Matthews et al., 1999) and transportation
studies (e.g., Pereira, 1996). Manson (2003) used genetic programming to deter-
mine local farmers’ land use strategies. Applications related to biogeography are few
(e.g., Noever et al., 1996), and those with spatial detail are rare (e.g., Hraber and
Milne, 1997; Giske et al., 1998). The issue of how to make use of this optimiza-
tion method for scientific simulation needs to be explored further. Here, we evaluate
genetic algorithms (GAs), which are one of the methods under the umbrella of EC,
to help us in this task.

11.2 ANALYSIS WITH THREE SPATIAL METRICS

11.2.1 Methods A

We apply GAs to a CA model of the alpine treeline to simulate the advance of
trees into tundra. We begin with a CA in which the cells are either tree or tundra
(cf. Noble, 1993; Malanson et al., 2001). We assume that the presence of trees in a
neighborhood will increase the probability that a tundra cell will become a tree cell
based on the positive feedback mechanism (Wilson and Agnew, 1992; and others).
The number of trees in the neighborhood can be considered in several ways. Landscape
ecologists have developed numerous spatial metrics for quantifying landscape pattern
(McGarigal and Marks, 1995). Here, we chose three metrics that we thought should
be important: number of trees, size of patches, and total number of cellsina 3 x 3
window. Because we do not know the optimal weights or parameters in an expression
of feedback, we adopted evolutionary computation to search for the most likely ones.
A genetic algorithm is essentially a goal-directed random search program, and we
can take advantage of its implicit parallelism in maintaining a large set of search
points at any given time. Here, the task of the GA is to find the weights that determine
the effect of the chosen metrics on a cell. Another reason to adopt GA is related to
the uncertainty about the exact form of feedbacks. It is possible that the feedback
can be expressed in different but equivalent forms. Even though the exact forms of
feedbacks are uncertain or unknown, we can allow a GA to approach the best results
that can be obtained under different forms of transition rules.

11.2.1.1 General Design of the Simulation System

There are three modules in this system: the GA, the CA, and the spatial metrics
calculation (Figure 11.2). Operationally, they are organized into three layers: the first
layer is the GA, which creates a population of values in the parameter space expressed
as sets of weights according to the genetic operations of mutation, crossover, and
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Module diagram

Genetic algorithm
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Figure11.2 Outline of the interaction between components of the EC model for an alpine
treeline.

selection. The second layer is the CA model, which accepts a set of weights into its
transition rule, which in turn drives the treeline advance. The third layer is the spatial
metrics module, which is called by the CA model to calculate the spatial metrics
in a designated neighborhood. The resulting treeline spatial patterns are in turn fed
back into the GA module for the purpose of computing a fitness value in the genetic
operations and producing the next generation of parameters or sets of weights for
future CA steps.

11.2.1.1.1 CA model

Our CA is a two-dimensional lattice with each cell having two possible states, tree or
tundra. The lattice represents along gradual slope of tundra, initially with trees near the
bottom. Although, nonuniform conditions, random and not, are found (e.g., Malanson
et al.,, 2002; Walsh et al., 2003), we assumed uniform conditions across the slope
in order to examine what patterns could emerge from endogenous processes alone.
Tundra cells can change to tree cells, but not the reverse. The lattice is initialized with
a gradient of probability of a tundra cell changing into a trees. The initial probability
of a cell changing into a tundra cell is modified by trees in its neighborhood. The
change in the probability is calculated as a function of selected spatial metrics.

11.2.1.1.2 Spatial metrics

Our fitness function is defined as the combination of spatial metrics that best matches
the observed pattern at an alpine treeline. Landscape ecology is largely founded
on the notion that environmental patterns greatly influence ecological processes
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(Turner, 1989). Landscape patterns can be quantified in a variety of ways depending
on the type of data collected, the manner in which they are collected, and the objec-
tives of the investigation (McGarigal and Marks, 1995). At each iteration the pattern
of trees and tundra is analyzed. We are trying to determine whether the clumping of
trees has a different effect from the number of trees. We construct patches of con-
tiguous trees and quantify the number and size of patches and the density of trees.
The fitness function is calculated as the sum of normalized similarities in the shape-
adjusted patch number, total tree cells, and the average patch size between simulated
and observed (classified ADAR image) treeline landscapes.

Fitness value = APN + ATCN + AAPS (11.1)

where APN = patch number in simulated landscape — patch number in observed
landscape; ATCN = total tree cells in simulated landscape — total tree cells in
observed landscape; AAPS = average patch size in simulated landscape — average
patch size in observed landscape. We ran the simulation using different neighborhood
window sizes ranging from 3 x 3 to 9 x 9; the results based on different window sizes
are indistinguishable.

11.2.1.1.3 Genetic algorithm

To find the optimal weights for the spatial metrics used to set the probabilities in the
CA, we used a GA. Population-level operations included (1) roulette wheel selec-
tion. Subsequent chromosome-level operations included (2) reproduction by N-point
crossover; (3) mutation; and (4) statistics of the average, highest, and lowest fit-
ness values. We used a distance measure in the space defined by the three spatial
metrics as the fitness function. Remote sensing is a primary source of input to the
model. Similarity to the pattern observed in a classified ADAR image of a section of
treeline on Lee Ridge, Glacier National Park, MT (Figure 11.3) was calculated. The
ADAR 5500 System is a second-generation, charge-coupled device frame camera
system. It operates in four channels in the visible and near-infrared wavelengths. For
this study, spectral information was captured at a spatial resolution of 1 x 1 m? in
July 1999. On-board GPS technology spatially relates each acquired image frame
to ground coordinates. We generated 1 m representations of trees/no-trees using a
supervised, maximum likelihood classification based on field data.

11.2.1.1.4 Monte Carlo runs

Because of high variances of the resultant spatial patterns from the same set of weights
in the transition rule, we adopted a Monte Carlo approach to try to increase the
reliability of the fitness comparison and the next generation of weights used in the
model. We tried the variance reduction technique of antithetic variables, but without
success. We believe that the variance of the resultant spatial patterns is equivalent to
different stages of treeline advance and can be considered as differential realization
of the same system, and that it arises from self-organization within this system, as
discussed below.
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Figure 11.3 Classified ADAR multispectral aerial photograph (1 m spatial resolution) of a portion
of Lee Ridge, Glacier National Park, MT, U.S.A. (tundra = white, tree = black).

11.2.1.2 Tests

We use EC to determine the weights in the CA for two conditions, a linear model:

P =weight 1 x patch number + weight 2 x average patch size

+weight 3 x total cell number (11.2)
and a nonlinear model:

p =weight 1 x patch number + weight 2 x (average patch size)?

+ weight 3 x total cell number (11.3)

Mean fitness is calculated by averaging the fitness values of one generation of chromo-
somes, which provides a representation of how fit this generation is and how close it is
to the global maximum. The mean fitness series also conveys the progress of the GA.
Elite fitness measures the best chromosome from the current generation, the one pro-
ducing the highest fitness value. In this program, we use elitism to keep the best
chromosome in the next generation in order to accelerate the evolutionary process of
optimization.

11.2.2 Results A

The landscapes resulting from the nonlinear transition rule are much closer to the
observed one than those from the linear transition rule after optimization (Figure 11.4).
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Figure11.4 Fitness performance of the models based on spatial metrics with and without a
nonlinear function and with and without the use of elite fitness.

Even the elite fitness of the linear model was not as high as the mean fitness of the non-
linear model. The overall results do not show improvement over time after the early
generations. These results suggest that nonlinear positive feedback is more likely to
be the driving force in creating alpine treeline patterns. They do not inform us about
the usefulness of EC, but instead point to another line of research wherein EC may
be useful, that is, the determination of the value for the exponent in the nonlinear
function. However, the variances from the linear and nonlinear simulations are indis-
tinguishable. This suggests that some internal variability is independent of the choice
of transition rules, and thus that limiting by evolutionary optimization techniques is
not satisfactory. How best to apply optimization methods for such a stochastic system
needs further study. The variance may also be due to the spatial metrics chosen to
describe the landscape. Perhaps these cannot exactly quantify the internal complexity
of this system, which causes the “moving target” problem for optimization.

The results show that it is difficult to distinguish different transition rules in terms
of different sets of weights. The variances in the results are very large, and the Monte
Carlo approach cannot reduce them. The underlying cause has been explored, and it
seems that self-organized complexity may be responsible for such phenomena; the
nearly steady state after a few generations supports this idea. The endogenous self-
organization process makes the system insensitive to quantitative changes of internal
mechanisms, which is consistent with universality in self-organized complex systems.
We suggest that the quantitative modification of transition rules may not be a good
way of searching for appropriate mechanisms.
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11.3 ANALYSIS WITH POLYNOMIAL FEEDBACK

11.3.1 Methods B

Close examination of the spatial patterns generated using the above method reveals
that there are fewer big patches and more small patches than in the observed landscape.
To further explore the usefulness of a GA to the analysis of a self-organizing system,
we turn to a description of establishment and mortality probabilities that take into
account both positive and negative feedbacks that are linear or nonlinear. Taking the
Weierstrass Approximation Theorem, that is, that a continuous function on a bounded
and close interval can be approximated on that interval by polynomials (Krantz, 1999),
we chose polynomials of the following form to represent the establishment process:

N
Probability (X) = ) w; X' (11.4)
i=1

where X is the average size of patches in a neighborhood for establishment and w;
are the weights determined by the EC. The probability of tree mortality (Ppy) is a
function of the age of a tree and the number of trees in its immediate neighborhood.
If the tree’s age is 6 years or under,

1 1
= 1— 11.5
P cﬁ( 1+,\e—z) (11.5)

where A is a coefficient; here it takes the value 50. C is a parameter to adjust the
strength of positive feedback in mortality, here it takes the value 3.0; n is the number
of tree cells in the immediate neighborhood (3 x 3); z is the age of the tree. If the tree’s
age is over 6 years, mortality probability is 0.02.

We then rewrote the GA program so that the GA searches the function space of
the polynomials by searching the parameter space. In accordance with our previous
work exploring self-organized complexity (Turcotte and Rundle, 2002) in the alpine
treeline (Zeng and Malanson, in review), we used the difference between the power
law exponents of the frequency-size distributions of the observed and simulated
landscapes as the fitness function. In this way, one can see whether more similar spatial
patterns can be generated and identify the relative importance of the two processes.
The rationale is that, even if one does not know the specific functions for establishment
and mortality, the GA will search for the best results of the two processes, which can
then be compared. This is different from, and a conceptual improvement on, the Monte
Carlo approach in that we have used our theoretical understanding of the system and
the optimization power of genetic algorithms to search for the best performance to
see whether realistic spatial patterns can be obtained and to identify the relative
importance.

We ran two simulations. One had establishment as a random process and used
the mortality with feedback described above, whereas the second reversed this
comparison and had mortality as a random process and establishment with feedback.
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Figure11.5 Fitness performance of the models based on polynomials with either establishment
or mortality random and the other with feedback, and with and without the use of
elite fitness.

11.3.2 Results B

This approach produces useful insights into the system. Figure 11.5 shows the dynam-
ics of the mean and elite fitness values from the two simulations. It shows that both
mean and elite fitness values with random establishment and spatially explicit mor-
tality are higher than those from the reverse case. This result indicates that mortality
is the more essential process, and more important than the establishment process in
generating observed spatial patterns. Establishment without spatial positive feedback
in mortality does not generate many large patches. The highest fitness will occur
when both processes include spatially explicit feedback. The differences among the
runs are, however, informative. The result indicates that ongoing mortality, tempered
by the ameliorated environment of nearby trees, is the part of the process that most
influences the spatial pattern of an advancing treeline.

The GA is not able to sharpen our understanding of system behavior by focusing
on particular values for the coefficient in the polynomials. It does, however, set some
boundaries. Atlower levels of establishment, or higher levels of mortality, trees do not
advance at all, whereas in the reverse case the advance does not allow the development
of a spatial pattern. These results in general are trivial, but this is where quantitative
specificity may be most useful.

11.4 DISCUSSION AND CONCLUSIONS

This research supports the theory that feedback is important in structuring the tree
establishment pattern found at the alpine treeline. Further research is necessary to
determine the relative importance of the various components of feedback, includ-
ing directional forces. The overall balance between negative and positive feedbacks
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and the roles of establishment and mortality need additional investigation. Trees
or krummholz create a negative feedback by cooling soil temperatures below and
immediately adjacent to themselves (Korner, 1998), but nearby they create positive
feedbacks by increasing canopy temperature and reducing wind. The balance of these
two forces in creating the pattern varies with the wind and the canopy structure, which
depend on each other. The two will affect establishment and seedling mortality in
different directions.

As aresult of these simulations, we tested a theoretical model of treeline advance
(Zeng and Malanson, in review). Here, feedback modifies establishment probability
as a logistic function that captures the positive neighborhood feedback or facilitation,
which is reduced by negative neighborhood feedback when too many trees are nearby
(and shading dominates). Tree mortality is a function of a tree’s age and the number of
trees in its immediate neighborhood. We analyzed the relationship between the time
series of landscape potential and that of the exponent of the frequency distribution
of patch size (Figure 11.6). When lagged by 5 years, the exponent of the frequency
distribution of patch size is negatively correlated with landscape potential (—0.4186;
p < .001), suggesting that spatial structure may change ahead of landscape potential
and exert a positive impact on the latter.

The rules specify the nonlinear positive and negative feedbacks between pattern
and process at alocal scale, but these local interactions diffuse stochastically across the
landscape. Global patterns and a linear correlation between global pattern and process
with temporal and spatial fractal scaling properties emerge from these dispersed,
localized interactions through a cross-scale self-organizing process (Figure 11.7).

Fractal dynamics driven by dispersed, localized pattern—process interactions
collectively are capable of self-organizing to create long-term landscape-scale cor-
relations. When new tree patches form or existing patches expand, localized
pattern—process interactions are established across the landscape. The spatial pattern
of trees increases environmental heterogeneity and establishes landscape connectiv-
ity at various scales diffusively. These interactions cause fluctuations at small and
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Figure11.6 The frequency distribution of patch size is a useful indicator of the spatial structure
of alpine treeline and it is correlated with the potential of the landscape to support
new advance based on positive feedback.
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Figure11.7 Simulated treelines for the (A) linear and (B) nonlinear transition rules (tundra =
white, tree = black).

medium scales at most times, but occasionally the interactions create connectivity
at the landscape scale through long-term and large-scale feedbacks in a coalescence
of patches. A second-order phase transition between high and low fractal states is
triggered that collapses the environmental variability, and connectivity extends across
the landscape. We propose that self-organized complexity (in the sense of Turcotte
and Rundle, 2002; not self-organized criticality in the sense of Bak et al., 1988) is an
organizing theory that covers this pattern—process interaction.

The GA-CA simulations presented here support the interpretation of self-
organization in the alpine treeline ecotone. Moreover, in self-organizing systems,
EC has the potential to help us understand the broad form of the functions describing
system behavior. Within the form of these functions, however, the exact values of the
coefficients may not be narrowed down by EC, but they may not be so important. The
nature of self-organization and the basic optimization purpose of EC are not harmo-
nious. The particular coefficients that we use in our model are not very important,
and the overall system behavior is robust across some range. Future research will
be aimed at assessing the range of the coefficients, the extent to which the range can
be explained in terms of biophysical processes, and, finally, whether EC can be used
to determine the general form of the function if not the specific coefficient values.
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12.1 INTRODUCTION

The work presented here is part of the sediment cascades in alpine geosystems project
(SEDAG), within which a research team from five universities is studying alpine sedi-
ment transfer by various geomorphic processes. It is intended to obtain more detailed
information about the sediment budget and landscape evolution of two catchment
areas in the Northern Limestone Alps, Germany (Lahnenwiesgraben, Ammergebirge
mountains and Reintal, Wetterstein mountains). Therefore, the spatial interaction of
hill slope and channel processes — including soil erosion, rockfall, debris flows on
slopes and in channels, shallow landslides and full-depth avalanches — is studied
(see Heckmann et al., 2002; Keller and Moser, 2002; Schrott et al., 2002; Unbenannt,
2002). It is attempted to develop new spatially distributed modeling approaches to
describe the sediment cascade. The modeling task is to identify starting zones of
the processes (disposition modeling; e.g., Becht and Rieger, 1997) and to determ-
ine which areas would be affected (process modeling; e.g., Wichmann et al., 2002;
Wichmann and Becht, 2004a,b). It is intended to explore and illustrate the potential
effects of land management strategies and climate change on landscape evolution (see
Schmidt, Chapter 13, this volume, for an analysis of the effects of climate change
on landslides). Because of the detailed modeling of process path, run-out distance
and erosion and deposition areas, the models can also be applied to natural hazard
assessment.

For both catchments, each with a surface area of about 16 km?, digital elevation
models (DEMs) with a cell size of 5m have been calculated from photogrammet-
ric contour data using ARC/INFO’s TOPOGRID. Raw data at a 1:10,000 scale
was obtained from the Bavarian Ordnance Survey (© Bayerisches Landesvermes-
sungsamt Miinchen, Az: VM-DLZ-LB0628). Aerial photographs and orthophotos
provided a basis for land use and geomorphologic mapping. Additional data layers
with geomorphological, geologic, and land use data were prepared at the same spatial
resolution like the DEMs.

A new GIS, system for an automated geo-scientific analysis (SAGA, see Bohner
etal., 2003), developed by the working group ‘geosystem analysis’ at the Department
of Physical Geography, University of Goettingen, was used to build the models.
SAGA is capable of processing raster and vector data of various formats and is based
on a graphical user interface. Additional functionality is added by loading external
run time libraries; so-called module libraries. Thus, it is possible to extend SAGA
without altering the main program. The module libraries are programmed with C++
which is rather easy, because many object classes and basic functions are already
provided. All models presented here are coded as such module libraries.

12.2 METHODS

12.2.1 Process Starting Zones

Different approaches have been used to determine possible process starting zones:
rule-based models, multivariate statistical analysis, and more physically based
approaches.
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12.2.1.1 Rule-Based Models

Areas susceptible to process initiation may be derived by qualitative and quantitative
analysis of significant data layers. This includes the classification and weighting of
each parameter map. For example, the following procedure was used to determine
possible starting points of debris flows in channels (Zimmermann et al., 1997; Buwal
et al., 1998):

e Extraction of the channel network from digital elevation data using flow accumu-
lation and plan curvature thresholds.

e Extraction of channel cells receiving enough sediment from the hill slopes to pro-
duce debris flows. Therefore, a maximum distance to the channel network and
a minimum slope threshold in the uphill direction were specified to determine hill
slope cells that may deliver material. This material contributing area was weighted
in relation to vegetation cover and active process (e.g., a cell with bare soil will
deliver more material than a cell covered with vegetation, a cell with landslide
activity will deliver more material than a cell with rockfall activity).

e Extraction of possible starting points by combining empirically derived thresholds
for flow accumulation, slope and potential sediment supply. The basic idea is that
the triggering of a debris flow is governed by sufficient peak discharge, channel
bed slope, and available sediment. On steeper channel beds a lower discharge is
needed than on lower slopes.

Potential rockfall source areas, that is, mostly uncovered sheer rock faces, were
derived by applying a simple slope threshold as described in Section 12.2.2.

12.2.1.2 Multivariate Statistical Analysis

A multivariate regression analysis for alphanumeric data is used to delineate possible
starting zones of debris flows on slopes. A similar approach has been used by Jiger
(1997) to determine potential landslide areas. The analysis is based on a binary grid
containing mapped debris flows (1: presence, 0: absence of debris flow starting zones)
and several (classified) grids containing relevant geofactors (e.g., slope, vegetation)
in the area under study. In order to get a larger sample, the analysis was carried out on
the catchment area of the observed debris flows instead of using point data. All relevant
parameter combinations were examined in SAGA and written to a contingency table
that is exported to an external statistical software package (SPSS, 2001). A log-linear
model was used to calculate the probability of process occurrence. The result was
retransformed to a probability map in SAGA. In the special case of using the catchment
area instead of point data, one obtains the probability of a grid cell belonging to
a catchment that may produce debris flows on slopes.

12.2.1.3 Physically Based Approaches

A more physically based approach is used to analyze the topographic influence on
shallow landslide initiation (Montgomery and Dietrich, 1994; Montgomery et al.,
2000). Therefore, a hydrologic model (O’Loughlin, 1986) is coupled with a slope
stability model. Soil saturation is predicted in response to a steady state rainfall for
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each cell of the DEM. An infinite-slope stability model uses this relative soil satura-
tion to analyze the stability of each topographic element. The model was extended to
use spatially variable soil properties (soil thickness, effective soil cohesion including
the effect of reinforcement by roots, bulk density, hydraulic conductivity, and friction
angle). Thus, it was possible to calculate which elements become unstable for a given
steady state rainfall, or to calculate the necessary steady state rainfall, which causes
instability in an element. The latter can be seen as a measure of the relative potential of
each element for shallow landsliding. Besides the stability classes stable and unstable,
Montgomery and Dietrich (1994) define two further stability classes: unconditionally
unstable elements are those predicted to be unstable even when dry and uncondi-
tionally stable elements are those predicted to be stable even when saturated. First
results are presented in Wichmann and Becht (2004a) and show a good agreement
with mapped initiation sites. Schmidt (Chapter 13, this volume) uses physically based
approaches to explore the influence of climate change on landslide activity in central
Germany (Bonn).

12.2.2 Process Path and Run-Out Distance

Process pathways are modeled by a combination of single and multiple flow direction
algorithms. The algorithms are incorporated in a random walk model, which can be
adjusted to different processes by three calibration parameters. The total process area
results from Monte Carlo simulation. Run-out distances are modeled by calculating
the velocity along the process path by either one or two parameter friction models.

12.2.2.1 Random Walk

The process path is modeled by a grid based random walk similar to the dfwalk model
of Gamma (2000). All immediate neighbor cells in a 3 x 3 window, which have
a lower elevation than the central cell, are potential flow path cells. To reduce this
set N, two parameters are available: a slope threshold and a parameter for divergent
flow. Possible flow path cells are determined by:

N={ni

ie{l,2,....8},a>1

Vi = (Vmax)? if 0 < Ymax < 1,
Yi = Vmax if > Ymax > 1,

(12.1)

and
tan p;
Vi:—ﬂl, Bi =0, ie{l,2,....8 (12.2)
tan Binres

where ymax 1S the max(y;), B; is the slope to neighbor i, Binres is the slope threshold,
and a is a parameter for divergent flow. N is reduced to the neighbor of steepest
descent if the slope to the neighbor is greater than the slope threshold. This results in
a single flow direction algorithm like D8 (Jenson and Domingue, 1988). Otherwise
Equation (12.1) provides a set of potential flow path cells. The probability for each
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cell to be selected from this set as flow path is given by

tan-f; - p

= ifi’ eN,
j tan B .
pi = thanﬂ,- J i,jeN (12.3)
= ifi' ¢ N,
> jtanp;

If the set contains the previous flow direction i/, abrupt changes in direction can be
reduced by a higher weighting of i’. Therefore the persistence factor p is introduced,
which is also contained in the calculation of the sum. The calculated transition prob-
abilities are scaled to accumulated values between 0 and 1, and a random number
generator is used to select one flow path cell from the set.

For each starting point, several random walks are calculated (Monte Carlo simu-
lation). Each run results in a slightly different process path. A high enough number
of iterations assures that the whole process area is reproduced.

The approach offers the following properties (for more details see Gamma, 2000):

e The slope threshold allows the model to adjust to different relief. In steep passages
near the threshold, only steep neighbors are allowed in addition to the steepest
descent. In flat regions, almost all lower neighbors are possible flow path cells. The
tendency for divergent flow is increased. Above the slope threshold a single flow
direction algorithm is used.

e The degree of divergent flow is controlled by parameter a.

e Abrupt changes in flow direction are reduced by a higher persistence factor.

e A tendency towards the steepest descent is achieved as the transition probabilities
are weighted by slope.

With these properties, it is possible to calibrate the model in order to match the
behavior of different geomorphic processes. A higher persistence factor implies a
greater fixation in the direction of movement (accounting for inertia) as may be
observed by debris flows or wet snow avalanches. A process like rockfall may be
modeled with no persistence and a higher degree of divergence.

12.2.2.2 1-Parameter Friction Model

A general method for defining the run-out distance of rockfall was developed by
Scheidegger (1975) and extended by van Dijke and van Westen (1990) and Meissl
(1998). With this method, the velocity of a rock particle is calculated along a profile
line that is divided into a number of triangles. We adapted this method to grid-based
modeling (see Figure 12.1). The velocity on the processed grid cell depends on the
velocity on the previous cell of the process path. It is updated as soon as a new
cell is delineated as a flow path by the random walk model. The area between the
rockfall source and the point at which the velocity becomes zero is considered to be
the potential process area.
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Figure12.1 Grid-based approach to separate the flow path into triangles. Labels refer to 1- and
2-parameter friction model.

After a block is detached from the rock face, it is falling in free air
(Equation (12.4)). The impact on the talus slope is accounted by reducing the velocity
to a specified amount (75% after Broilli (1974), Equation (12.5)). Instead of using a
separate grid with coded impact areas as done by Meissl (1998), a slope threshold is
used to verify if the talus slope is reached. After the impact, the block is modeled as
either sliding or rolling (Equations (12.6) and (12.7)).

Falling : v; = +/28hy (12.4)
Impact : v =+/28hy —1\/28hy (12.5)
Sliding : v = \/vfl._l) +2g(h — usD) (12.6)
Rolling: v = \/v(%._l) + 99 (h — ;D) (12.7)

where v is the velocity [m/s], g is the acceleration due to gravity [m/s?], hy is the
height difference between start point and element i [m], r is the energy loss, 4 is
the height difference between adjacent elements [m], D is the horizontal difference
between adjacent elements [m], us is the sliding friction coefficient, and u; is the
rolling friction coefficient.

The model is calibrated by three parameters: a slope threshold to determine if the
block is in free fall (due to the grid data structure, a slope near or over 90° does not
exist); a reduction parameter to account for the energy losses because of the impact
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on the talus slope; and a friction parameter. It is possible to use spatially distributed
friction parameters to account for different geological materials and the effect of
vegetation. The module is producing several output grids to facilitate the calibration
process (including a grid with all cells in which free fall occurred and a grid with
modeled maximum velocities).

12.2.2.3 2-Parameter Friction Model

A 2-parameter friction model (Perla et al., 1980) was used to calculate the run-out
distance of snow avalanches and debris flows. Originally developed for snow ava-
lanches, the model has also been applied to debris flows more recently (Rickenmann,
1990; Zimmermann et al., 1997; Gamma, 2000). The process is assumed to have
a finite mass and the position in space or time of the center of mass is calculated. It is
assumed that the motion is mainly governed by a sliding friction coefficient (1) and
a mass-to-drag ratio (M/D). M/D has a higher influence on velocity in steeper parts
of the track, whereas the velocity in the run-out area is dominated by p. Again, the
process path is divided into segments of constant slope and an iterative solution is
used to calculate the velocity along the path. The velocity on the processed grid cell
depends on the velocity of the previous cell and is calculated by:

vi = \/ a; % (M/D); (1 — expPi) + (vi-1))? expFi (12.8)
and
o = g(sin6; — u; cos6;) (12.9)
Bi = —2Li (12.10)
" (M/D); '

where v is the velocity [m/s], g is the acceleration due to gravity [m/s?], @ is the local
slope, L is the slope length between adjacent elements [m], ug is the sliding friction
coefficient, and (M/D) is the mass-to-drag ratio [m]. At concave transitions in slope,
Perla et al. (1980) assume the following velocity correction for v;_1y before v; is
calculated with Equation (12.8):

. (12.11)
V(i-1) if 9(1'_1) < 9,'

. {v(i—l) cos(@i—1) —0;) if6;_1)>6;
V-1 =
The correction is based on the conservation of linear momentum. For the case
Oi—1) < 6; the authors expect that velocity decrease due to momentum change is
compensated to a larger extent by velocity increase due to the reduced friction as the
process tends to lift off the slope. If the process stops at a mid-segment position, the
shortened segment length s may be calculated by:

. 7 2
o MDy (1_ (wi-n) ) (12.12)
2 ;i (M/D);
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In our grid-based approach, we circumvent solving Equation (12.12) and the process
stops as soon as the square root in Equation (12.8) becomes undefined.

The model is calibrated by the two parameters © and M/D. To overcome the
problem of mathematical redundancy of a two parameter model (different combin-
ations of p and M/D can result in the same run-out distance), the parameter M/D
is taken to be constant along the process path in the case of debris flow modeling
(Zimmermann et al., 1997; Gamma, 2000). It is calibrated only once to obtain real-
istic velocity ranges. The parameter p is calculated from the catchment area of each
grid cell by empirically derived estimating functions (Gamma, 2000) as described in
Section 12.3.2.

12.2.3 Erosion and Deposition Modeling

To model the sediment transfer throughout the catchment, erosion and deposition sites
need to be identified. We use simple methods to classify the process area accordingly
and calculate relative erosion and deposition heights assuming transport-limited con-
ditions. The latter may be used to scale event-based measurements of sediment yield
along the process path. Another possible field of application are stochastic-driven
models that estimate erosion volumes from probability functions.

In the case of rockfall, a specified amount of material is subtracted from the DEM
at the starting location in each model run. This amount is added to the DEM at the
last cell of the process path (i.e., where the process stops).

A different approach is used for debris flows. We use simple threshold functions
of slope and modeled velocity to delineate relative erosion and deposition heights
along the process path. The threshold functions for erosion and deposition are com-
bined in such a way that artifacts resulting from the usage of one threshold alone
are minimized. For example, no material is deposited in flat parts of the profile if
the velocity is still high. And no material is deposited in steep passages even if the
velocity is low. A more detailed description of the method is given in Wichmann
and Becht (2004b). In a slightly different version of the model, a specified amount
of material is eroded and deposited during each model iteration and thus influences
the following runs. Deposited material may produce sinks in the DEM and a spe-
cial algorithm is used to fill sinks as soon as they are detected by a following run.
Thus the filling of sinks and barriers and the plugging of the channel can be simu-
lated. The algorithm fills the sink and, if needed, further cells of the process path
upslope with available material up to heights that assure valid flow directions for the
next runs.

12.3 FIRST RESULTS

This section provides first results obtained for rockfall and debris flows on slopes
and in channels. Up to now it is not possible to calibrate the models to a full extent,
since the data obtained from the individual working groups have not yet been fully



MODELING OF GEOMORPHIC PROCESSES IN AN ALPINE CATCHMENT 159

Modelled rockfall source and process areas
(Lahnenwiesgraben) ¥ s

run-out distances calculated
_ without taking into account
the effect of vegetation cover

Rockfall

source areas

Process area

high
frequency
low

2 3 km

Figure12.2 Results of rockfall modeling in the Lahnenwiesgraben catchment area.

analyzed. Nevertheless it is possible to show the potential of the models to describe
spatially distributed sediment transfers in the Lahnenwiesgraben catchment area.

12.3.1 Rockfall Modeling

The results of rockfall modeling in the Lahnenwiesgraben catchment area are shown
in Figure 12.2. Rockfall source areas are derived from the slope map including the
effect of vegetation. The slope map was reclassified to slopes >40° (a value also used
by Dorren and Seijmonsbergen, 2003) and then the true surface area of each grid cell
was calculated (cell area/cos(slope)). The land use map was weighted by the fraction
of free ground surface (100% uncovered, full of gaps (50%), and 25% uncovered).
Potential rockfall source areas including relative process intensities result from the
multiplication of the two maps. This method results in 13.9% of the Lahnenwiesgraben
catchment area to be classified as rockfall producing area. Besides sheer rock walls,
very steep slopes are also included. Talus slopes, in contrast, exhibit lower gradi-
ents than the threshold (20 to 40°, see photo (1) and magnified map (2) insets in
Figure 12.2).

Process paths and run-out distances are modeled with a combination of random
walk and a 1-parameter friction model. A slope threshold of 30°, a divergence factor
of 2 and a persistence factor of 1 are used in the random walk model. The 1-parameter
model is calibrated to fit the observed run-out distances on different slope materials
by using spatially distributed friction coefficients (see Table 12.1). Free fall occurs as
long as the slope is steeper than 60° and the velocity reduction by impact is 75%. On
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Table 12.1 Sliding Friction Coeffi-
cients Used in Rockfall

modeling
Material/Vegetation Sliding Friction
Cover Coefficient (1)
Marl 0.4
Fluvial materials 0.5
Glacial deposits 0.6
Dolomite 0.7
Limestone 0.8
Forest 1.2
A B

100 m

Figure12.3 Three-dimensional view of (A) the initial rock face and (B) after 375,000 m3 of
material have been eroded and deposited.

the scree slope a sliding motion is modeled (Kirkby and Statham, 1975; Scheidegger,
1975).

Modeled run-out distances match the observed deposits. The effect of forest cover
must be included in the friction coefficient, otherwise the run-out distances are over-
estimated (see dashed lines in Figure 12.2, SE part of the catchment). This shows the
importance of dense forests for rockfall hazard mitigation.

The rockfall module was extended to test the model for the simulation of long-
term landscape evolution. Instead of using a grid with coded process initiation cells,
a slope threshold is used to define a set of potential starting cells. Start cells are
selected from this set by random and the process path, run-out distance, and erosion
and deposition are modeled. The set of potential starting cells is regularly updated to
account for changes in elevation. Figure 12.3A shows an artificially produced rock
face with a height of 100 m. The result after 1,500,000 random walks with 0.01 m
erosion in each iteration is shown in Figure 12.3B. The rock face retreated and scree
slopes developed with an inclination corresponding to the selected sliding friction
coefficient. In the future, it is intended to test if the model is capable of reproducing
the rockfall deposits (sediment storages) observed in the Reintal study area.
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Figure12.4 Map of potential debris flow producing grid cells in the Lahnenwiesgraben
catchment area.

12.3.2 Debris Flow Modeling on Slopes

Process initiation cells for debris flows on slopes in the Lahnenwiesgraben catchment
area are derived by multivariate statistical analysis as described in Section 12.2.1.2.
The analysis is based on reclassified maps of slope, vegetation, infiltration capacity,
and flow accumulation. Although material properties are important for the occur-
rence of debris flows, it was not possible to incorporate geological information into
the analysis, because nearly all of the observed debris flows occur on talus slopes
composed of dolomite. The results of the statistical analysis show that very low
gradients and gradients >60° reduce the probability of debris flow initiation. Dense
vegetation cover prevents high probabilities, debris flow initiation occurs mainly in
areas with sparse or no vegetation. Higher infiltration rates favor the saturation of
slope debris and thus debris flow initiation. High flow accumulation values, which
are associated with higher discharges, do not allow enough material to accumulate
for debris flow initiation and thus reduce the probability. Unfortunately, the small
sample size of observed debris flows prevents a significant statistical analysis and
makes further investigations in other catchments necessary. Nevertheless, model-
ing results show a relatively good agreement with observed debris flow catchments
in the Lahnenwiesgraben. Within susceptible areas, the spatial distribution of high
probabilities lacks some detail (Figure 12.4).

To derive potential starting points from the calculated probabilities to belong to
a debris flow producing catchment, a separate module was used to accumulate prob-
abilities in the downslope direction. Potential starting cells exceed a user-specified
threshold of accumulated ‘disposition’ and must have slopes in a range typical for
debris flows (20 to 45°). The user-threshold was set to values slightly higher than
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Figure12.5 Relation between friction coefficient .« and catchment area a. A minimum threshold
is set to 0.045 and a maximum threshold to 0.3. Estimator functions represent
minimum (upper dashed line), likely and maximum (lower dashed line) run-out
distance.

those calculated for observed initiation sites. The catchment area of each starting cell
is delineated simultaneously and may be weighted by its mean probability to obtain
a relative measure of debris flow release potential.

Process paths and run-out distances were modeled with a combination of random
walk and a 2-parameter friction model. A slope threshold of 20°, a divergence factor of
1.3 and a persistence factor of 1.5 are used in the random walk model. Run-out distance
is calculated with a constant mass-to-drag ratio of 75 m and spatially distributed
friction coefficients (©). The friction coefficient of each cell is calculated in relation
to its catchment area a. The estimating functions (least squares method) in Figure 12.5
are empirically derived from mapped debris flows in Switzerland by Gamma (2000).
The relationship is based on the observation that the sliding friction coefficients tend
towards lower values with increasing catchment area. This is attributed to changing
rheology with higher discharges along the process path. A minimum threshold is set
to 0.045 and a maximum threshold to 0.3. Between the thresholds, u is decreased with
increasing catchment area upstream of the position of the debris flow in accordance
with one of the estimating functions. The functions represent different scenarios as
indicated in Figure 12.5. As slope type debris flows normally exhibit small catchment
areas, they are mostly modeled with a constant maximum g of 0.3.

Figure 12.6 shows a three-dimensional-view of the “Kuhkar” cirque (looking
south). Erosion and deposition are modeled with arbitrary quantities of material to
support visualization. Large amounts of erosion occur in steep parts of the process
path and are followed by a zone of slight erosion before deposition sets in. Material
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Figure12.6 Three-dimensional-view of debris flow modeling on slopes in the “Kuhkar” cirque,
Lahnenwiesgraben catchment area. Photo (1) shows a view of the cirque and white
arrows indicate the line of sight of photo (2).

is eroded and deposited during every model iteration. Because of the sink filling
algorithm used, the appearance of the resulting deposit is very similar to observed
debris flow deposits. The deposits exhibit a steep front and decreasing deposition
heights upslope.

12.3.3 Debris Flow Modeling in Channels

Process initiation cells for debris flow in channels are derived by qualitative and
quantitative analysis as described in Section 12.2.1.1. Those cells which have a flow
accumulation higher than 2500 m? and a concave plan curvature are classified as
channel cells. All cells within a maximum distance of 250 m to the channel net-
work and with a slope (in the direction of flow) steeper than 20° are selected as
material contributing area. Each cell may be weighted in relation to its intensity
of material supply, but up to now not enough information is available to do so.
The relation between channel slope and catchment area in Figure 12.7 was derived
empirically by Zimmermann et al. (1997) from debris flows in Switzerland. Potential
starting cells exceed this threshold and have a minimum material contributing area of
10,000 m?.

The resulting grid contains possible process initiation cells. A filter along the
channel network is used to reduce the number of start cells since it is unnecessary to
calculate the process path for each cell of the grid. If a starting cell is detected by the
filtering algorithm, all lower starting cells in a specified distance along the channel
reach (here: 500 m) are eliminated. Process path and run-out distance are modeled
with a combination of random walk and 2-parameter friction model. A slope threshold
of 20°, a divergence factor of 1.3, and a persistence factor of 1.5 are used in the random
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Figure12.7 Relation between channel slope and catchment area. The threshold function is
used to derive potential debris flow initiation cells.
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Figure12.8 Debris flow modeling in channels in the Lahnenwiesgraben catchment area. Arrows
indicate the line of sight of photo (1) and (2).

walk model. Run-out distance is calculated with a constant mass-to-drag ratio of 75 m
and spatially distributed friction coefficients (w) as described in Section 12.3.2. As
the catchment area a of channel-type debris flows increases significantly downstream,
the sliding friction coefficient is gradually reduced by one of the estimating functions.
In Figure 12.8, the maximum run-out distances were calculated with the estimator
function i = 0.13 % a~%2% (Gamma, 2000).

Although the material contributing area was not weighted, the results match well
with observed debris flows in the catchment area. Material is eroded and deposited
along the process path following the rules stated in Section 12.2.3. Most debris flows
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stop as soon as they reach the main channel with lower slopes. Further transportation
of the deposited material is then accomplished by high discharges. In the year 2002,
a high magnitude rainstorm event triggered several debris flows in some of the steeper
torrents of the Lahnenwiesgraben. Photos (1) and (2) in Figure 12.8 show some of the
damages done to the forest road. Wichmann and Becht (2004b) provide more details
about the event in 2002 and the corresponding modeling results.

12.4 CONCLUSION

The first results presented here look promising and it should be possible to combine
the models to describe parts of the sediment cascade in alpine catchments. Although
the used models were originally developed for natural hazard zonation, they are
applicable to geomorphologic problems too. By overlaying the model outputs it is
possible to do a detailed terrain classification with respect of the spatial distribution
of different geomorphic processes. As the calculated process areas are further sub-
divided into sections of erosion and deposition, it becomes possible to analyze the
spatial relocation of material. Further research and data is needed to couple the mod-
els with measured sediment yield. Process rates may be obtained from historical data
(e.g., dendrochronology, sediment accumulation dating by radiocarbon, geophysical
methods) or from measurements of recent process intensities. In the future, we intend
to incorporate more physically based approaches for erosion and deposition model-
ing. But in the meantime, the simple approaches to subdivide the process area are
useable. Although the calculation of relative erosion and deposition heights lacks
a true physical background, it is possible to obtain realistic results when measured
sediment yield is scaled accordingly.

A validation of the modeling results is difficult, because it is impossible to map the
complete spatial distribution of geomorphic processes. Mapping during the field trips
is done on orthophotos, but a spatial displacement of the orthophotos with respect
to the DEM makes the calculation of model accuracy difficult. A visual comparison
of our own maps and available topographic maps with the modeled process areas
reveals a high degree of conformance. In some cases, we discovered old deposits
already covered with vegetation that had not been mapped yet.

Especially the validation of disposition modeling is difficult, as the model output
consists of potential initiation sites. The most deficient results are those of the mul-
tivariate statistical analysis used for slope-type debris flows. The model needs to be
improved, otherwise minor differences in the spatial occurrence of debris flows are
not reproduced. We obtained more convenient results with conditional analysis as
used by Clerici et al. (2002) for landslide susceptibility zonation. Satisfactory results
are produced by the disposition models for rockfall and torrent bed-type debris flows.
The empirical functions used in the latter case seem to be transferable to the natural
conditions found in the Lahnenwiesgraben catchment area.

The random walk model in conjunction with a Monte Carlo simulation is cap-
able of reproducing the observed process paths. The three calibration parameters
allow the model to be applied to different processes. Some problems arise because
of inaccuracies of the DEM. Our grid-based approach of the friction models used to
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calculate the run-out distances yields also satisfactory results. We intend to extend
the models to reproduce different event magnitudes by using adequate friction coef-
ficients. Further models, for example, slope wash and channel erosion, are under
development.
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13.1 INTRODUCTION

Recent climate impact research has been directed towards the assessment of the
effects of climatic variability and climate change on geomorphic processes and the
related hazards, such as landslides (Collison et al., 2000; Dehn et al., 2000). General
circulation models (GCMs) and downscaling techniques have been applied to pre-
dict changing climate parameters and their consequences for small-scale hillslope
processes (Dehn et al., 2000). These models, however, include high uncertainties
because of the unknown boundary conditions and the system complexity, which
increases with scale. Moreover, the model output cannot be validated. It is therefore
necessary to study also past effects of climatic change on geomorphic processes by
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field evidence and reconstruction (Corominas and Moya, 1999). This gives the chance
to validate and to develop sound models reflecting the physical process behavior.
Climate is related to landslides via the system of hillslope hydrology. Physically based
models of rainfall-induced landslides have been used to study these complex inter-
actions (Brooks, 1997). These studies showed that hydrologic triggering systems for
landslides show complicated behavior in relation to geotechnical, hydrological, and
climatological parameters (van Asch, 1997). Therefore, more research is needed to
understand those relationships, and to relate them to past and future climates (Crozier,
1997).

Landslides heavily affect hillslopes in central and southern Germany
(see Wichmann and Becht, Chapter 12, this volume, for an analysis of hillslope
processes in southern Germany). A series of recent and historical landslides have
been recorded in the Bonn area. Previous studies have shown that precipitation-
induced groundwater rises are an important contributor to slope instability in that
region (Grunert and Hardenbicker, 1997; Hardenbicker and Grunert, 2001; Schmidt
and Dikau, 2004b). However, little is known about the history of landslides and about
the link between climate change, precipitation, hillslope hydrology, and landslide
processes in that area. It is generally assumed that climatic changes have consider-
able effects on landslide activity (Grunert and Hardenbicker, 1997), but these effects
remain to be verified.

This chapter presents an approach to modeling the effects of climate variability
on slope stability for historical time periods. The aim is to assess the stability of
hillslopes around Bonn in relation to changing climate by coupling proxy-derived,
historic climate series with a physically based model for groundwater-controlled slope
stability, that is, climate variables (precipitation, temperature) were used to drive
a groundwater/slope stability model. The effects of the different scenarios on model
output were compared and used to assess the characteristics of the different hillslopes
and the effectiveness of their hydrologic triggering systems with respect to slope
stability.

13.2 STUDY AREA

Topography of the area around Bonn is characterized by the plateau of the
“Kottenforst” (a horst) west of the Rhein, and the hilly area of the “Siebengebirge”
(Figure 13.1) east of the Rhein. As topographic information, contour lines from
1:25,000 Topographic maps and a 10 m grid DTM were available. A Devonian
baselayer is overlain with Tertiary sediments, varying from marine clays to sands
and fluvial gravels. Under Pleistocene periglacial conditions, terrace material and
loess were deposited. West of the Rhein, terrace sediments are found above a series
of Tertiary layers (clay, sand, and gravel) and the Devonian baselayer. Pleistocene
and Holocene fluvial processes dissected the plateau of the Kottenforst and formed
a series of small valleys (e.g., Godesbachtal, Melbtal, Katzenlochbachtal), many of
which are incised to the Devonian baselayer. East of the Rhein, layers of volcanic
sediments (trachytic tephras) cover large parts of the area and a series of eroded latitic,
basaltic, and andesitic intrusions form the hills of the Siebengebirge. The slopes are



GIS-BASED MODEL OF HISTORICAL GROUNDWATER AND SLOPE STABILITY 171

A7 J‘:‘"-.'I & ’; TR G

\Q s 2 " FRey
‘\‘ p. Siebengebirge ﬁ"
,,.: i’ = E C- S

e

DoIIendorfer Hardt
AR i\

research site
Melbtal

5617

< «Hamburg

o ""( ; oH
Kottenforst ~ = | . annovér

sleipzi

5616

5615

sFrankfurt/Majn

M akarsruhe

/ sMiiichen [
VSN i

n n n L il | fA=10 r—— o
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 &

5614

Figure13.1 Topography and landslides (white polygons) in the Bonn area. Areas of high land-
slide susceptibility are the hillslopes incised in the horst of the “Kottenforst” and the
“Siebengebirge.” Three field areas were chosen as detailed study windows.

covered with Pleistocene sediments above volcanic ashes (trachyte tuff). Trachyte
tuff is interfingered with Tertiary sediments.

Landslides of varying size and age occur on the hillslopes of the Kottenforst and
Siebengebirge (Figure 13.1, compare Grunert and Hardenbicker, 1997). Landslide
susceptibility in the Bonn area is influenced by lithology, that is, the sensitive,
clay-rich Devonian and Tertiary sediments and layers of volcanic tuffs exposed
on the hillslopes. Most of the landslides were interpreted as Holocene mass
displacements, with a series of events also occurring in the 20th century (Grunert and
Hardenbicker, 1997). Previous studies showed that landslide occurrence is related to
rainfall-determined groundwater rises; additionally anthropogenic influences play an
important role (Grunert and Hardenbicker, 1997; Hardenbicker and Grunert, 2001;
Schmidt and Dikau, 2004b).

Bonn has a moderate maritime climate, dominated by oceanic air masses.
Average annual temperature is about 9°C and annual rainfall is about 600 to
750 mm. Temperatures are characterized by mild winters (2°C monthly average)
and moderately warm summers (ca. 18°C monthly average) (Figure 13.2). The long-
term monthly precipitation totals show a minimum in winter (February, about 40 mm)
and a maximum in summer (July, about 70 mm). Holocene climate variability indic-
ates a series of climatic fluctuations, including cool and humid periods, which are
of particular relevance for landslide occurrence (Brooks, 1997; Hardenbicker and
Grunert, 2001).
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Figure13.2 Climatic characteristics of the Bonn area. Shown are long-term average temperat-
ure and precipitation (and their standard deviations).

Land surface and lithology of the Bonn area show a complex pattern. As a
simplification, three study sites were chosen, which serve as representative locations
for different geomorphological situations in the Bonn area. Intensive field studies
were carried out to explore subsurface stratigraphy and material properties (Schmidt,
2001; Schmidt and Dikau, 2004a, b). The aim was to explore the sensitivity of the
different lithological and geomorphometric conditions to changing climatic condi-
tions. The “Melbtal” is a small valley west of the Rhein, cut into the Kottenforst plateau
(Figure 13.1). The field investigations (Schmidt, 2001) showed that stratigraphy is a
sequence (from top to bottom) of terrace and loess sediments, Tertiary layers (clay,
sand, and lignite), and a Devonian baselayer. Loess and terrace sediments associated
with Pleistocene periglacial processes can be found on the valley side-slopes. Sensitive
Tertiary layers of clay, sand, and lignite introduce considerable slope instability, and
several landslides are located on the valley sides (Schmidt and Dikau, 2004b). The
valley shows a distinct asymmetry with gentler west-facing valley side-slopes, which
also show more extensive loess accumulation. Hillslope “me3” (Figure 13.3) served
as a representative location for hillslopes west of the Rhein where Pleistocene and
Tertiary sediments are exposed. Land surface and lithological information were taken
from a west-facing lower-valley hillslope position of the Melbtal. The average gradient
for the site is 7.4°. According to the borehole logs and lab analysis for this site, Tertiary
lignite and clays are overlain by Tertiary sand and loess (Schmidt, 2001; Schmidt and
Dikau, 20044, b). The lithology was modeled as a sequence (from top to bottom) of
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Figure 13.3 Field site hillslope “me3.” Shown are landform (DTM) and lithology used in the
groundwater model.

loess, Tertiary sand, and lignite and Tertiary clay layers (Figure 13.3). Lignite and
sand have significantly higher permeability and pore content than the clay layers.

Hillslope “me5” (Figure 13.4) served as a representative location for hillslopes
west of the Rhein where only Tertiary sediments are exposed. Land surface and litho-
logical information were taken from an east-facing, lower-valley hillslope position of
the Melbtal, where Tertiary sediments are exposed on the valley sides. The hillslopes
were steeper than the first site: 8.1° average gradient. The lithology was modeled as
a sequence (from top to bottom) of Tertiary clay, lignite, Tertiary sand, lignite, and
Tertiary clay (Figure 13.4).

The “Dollendorfer Hardt” is a volcanic hill in the Siebengebirge (Figure 13.1).
Landform and lithology are dominated by a basaltic dome forming the top of the hill,
and trachyte tuff, Tertiary sediments (clays, sands) and the Devonian baselayer (from
top to bottom) exposed on the southern hillslopes. The south- and west-facing hill-
slopes show high slope angles (up to 40°), whereas the gentle north- and west-facing
hillslopes are contiguous with the northern Siebengebirge. Three landslides are
documented for the area of the Dollendorfer Hardt. The largest (landslide “si7,”
affected area: 30,000 m?) has been investigated in a range of studies (Hardenbicker
and Grunert, 2001; Schmidt, 2001; Schmidt and Dikau, 2004b). The south-facing
hillslope of the Dollendorfer Hardt, hillslope “si7” (Figure 13.5), served as a rep-
resentative location for sensitive hillslopes of the Siebengebirge where Tertiary and
volcanic sediments are exposed. The gradient is considerably higher than at the other
sites (12.2°). The lithology was modeled according to the drilling results as a sequence
(from top to bottom) of basaltic and trachytic layers, Tertiary sediments and the
Devonian baselayer (Figure 13.5).
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Figure13.5 Field site hillslope “si7” Shown are landform (DTM) and lithology used in the
groundwater model.

13.3 METHODOLOGY AND MODELS

The methodology of this study consists of several parts (Figure 13.6). A model
for historical climatic variability delivered scenarios for past climatic conditions.
The three hillslopes of the Bonn area as described above were used as spatial
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Figure 13.6 General methodology.

scenarios for land surface and lithology. A three-dimensional groundwater model
was developed and applied using the spatial and temporal scenarios. The derived
groundwater scenarios were used to calculate slope stability using the “infinite slope
model.”

13.3.1 Modeling Climate Variability

Historical climatic conditions for the study area were modeled as annual climate series
of temperature and precipitation, using statistical analysis of available weather records
and proxy data. The data used in this study were long-term daily meteorological
records (precipitation, temperature) from the Bonn area and inferred paleo data for
seasonal temperature and precipitation (from proxies) representing Middle European
conditions since AD 1500 (Glaser et al., 1999; Schmidt and Dikau, 2004a). The paleo
data were classified into years with similar seasonal patterns, which are related to
general climatic trends. The identified clusters were then applied to classify the data
sets of weather records in the Bonn area (Figure 13.7). The derived time series of
precipitation and temperature were used as model inputs for the groundwater model.
Each time series has daily resolution and represents the “average year” for the three
scenario classes. Details of the classification procedure are described in Schmidt
(2001) and Schmidt and Dikau (2004a).

13.3.2 A GIS-Based Groundwater Model

A groundwater model for small-scale areas (up to several square kilometers) was
developed using the modeling environment of the GIS PCRaster (Wesseling et al.,
1996; van Beek and van Asch, 1999). PCRaster provides a grid-based, algebraic
macro language for development of dynamic models and visualization of environ-
mental processes. Additionally, PCRaster provides graphical user interfaces (GUIs)
for visualization and exploration of the model data. The model is a three-dimensional-
tank model, simulating lateral and vertical saturated flow in daily timesteps. The
model is based on a spatial discretization in equal-sized 10 m cells according to
the spatial resolution of the digital terrain model (DTM) available. Additional elev-
ation raster maps provide the information about lithological layers, giving heights
of lower-layer boundaries for each cell (Figure 13.8). These three-dimensional sub-
surface models are produced from the borehole logs of the field investigations and
spatial (polynomial) interpolation routines. Each lithological unit is parameterized



176 GEODYNAMICS

Proxy data for —p Unsupervised — 3 year types
middle Europe classification 4 YPeS | 3 climate scenarios:
annual time series of daily
Weather > precipitation and temperature
records for
Bonn area

Figure 13.7 Methodology for deriving paleo-climate scenarios.

by material properties: saturated hydraulic conductivity and maximum water content.
Precipitation, evaporation, and interception are used as spatially uniform daily time
series for the simulated area to calculate net precipitation. Evaporation is calculated
using the method of Thornthwaite (1948). Interception was derived from literature
values, as the study areas show spatially homogeneous vegetation cover. Infiltration
is modeled as the minimum of net precipitation and maximum infiltration capacity.
Maximum infiltration capacity is determined by soil water storage of the top layer
and a top-layer permeability term. Soil water transport processes are modeled as
vertical fluxes between layers, and lateral fluxes between the columns of each cell
using Darcy’s law for saturated conditions. Vertical fluxes are modeled accord-
ing to the difference in degree of saturation and hydraulic conductivity between
layers (Schmidt, 2001). Vertical flux leaving the lowest layer is modeled as flow
in an infinite storage (base flow) and is limited by the hydraulic properties of the
lowest layer (conductivity and soil water content) and an additional conductivity
term. The groundwater table is derived from the degree of saturation of the upper-
most unsaturated layer for each cell. Only one lateral flux is modeled for each soil
column (i.e., not layer specific), dependent on the effective height difference in
saturated layers (i.e., groundwater table) and the effective conductivity of the adjacent
columns.

13.3.3 A GIS-Based Model of Failure Probability

A module calculating local safety factors (FOS), based on the common infinite slope
model extended the groundwater model as described in Section 13.3.2. Moisture
content of the soil layers and the groundwater table simulated from the groundwater
model were used as input for the stability model. Additional material parameters were
required for each lithological unit: dry unit weight, effective cohesion, and effective
angle of friction. Moreover, an approach for calculating probability of failure (POF)
was implemented (Lee et al., 1983). The output of the model were values for the
factor of safety FOS(x, y, z, t) and probability of failure POF(x, y, z, t) for each node
in the four-dimensional mesh, that is, for each cell (x, y) of the used grid, a series
of depths z, and for each model day ¢ (Schmidt and Dikau, 2004a). This model
output was recalculated to allow comparison of different scenarios: maximum failure
probability, POF,, and minimum factor of safety, FOSy, for all modeled depths and
timesteps describe the highest instability for each cell of a hillslope and a climate
scenario, and therefore one map is produced for a model run.
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Figure 13.8 Physically based, three-dimensional groundwater model.

13.4 RESULTS

Long-term trends in the paleo data indicate three major stages in Middle European
climate (Figure 13.9): (1) a phase of decreasing temperature and precipitation before
ca. AD 1740, (2) a transition phase with a relatively distinct temperature rise of more
than 1°C from ca. AD 1740 to AD 1850, and (3) the time period since AD 1850, indic-
ating higher temperature level, and lower, but increasing, precipitation. Classification
of the paleo data delivered three “year types.” The three types (“classes”) of years
clearly represent the detected climatic trend as described above (Figure 13.9).

e Class 1 is a year type with high precipitation and comparatively low temperat-
ures (especially summer precipitation and temperatures) revealing high frequencies
before AD 1750.

e Class 2 shows intermediate temperatures (but low winter temperatures) and lower

precipitation (especially in winter) and is dominant in the period between AD 1750
and AD 1850.
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e Class 3 indicates an annual pattern of high temperatures and relatively low pre-
cipitation (especially in summer); frequencies have risen in the period since
AD 1850.

The three average year types were used as input in the groundwater and slope
stability models based on the three hillslopes (Figure 13.3 to Figure 13.5). The
modeled spatial patterns of maximum failure probability POFy, indicate sensitivity of
high slope angles and Tertiary layers. Figure 13.10 to Figure 13.12 show the modeled
groundwater pattern for the three hillslopes and climate scenarios. Figures 13.13
displays the percentage of modeled unstable areas (safety factor <1) for the different
hillslopes and climate scenarios. The modeled scenarios led to the following results.

Generally, low average values for failure probability and for effective failure depth
are due to the high frequency of nodes of lower sensitivity (e.g., flat areas) that were
included in the calculations (Schmidt and Dikau, 2004a). However, groundwater and
slope stability show distinct differences for the three hillslopes. Hillslope “me3”
indicates lower (approximately half) average maximum failure probabilities and
less unstable area than hillslope “me5” (Figure 13.13), consistent with the lower
slope angle and less sensitive layers (loess). Hillslope “si7” delivered low failure
probabilities, because combination of weak substrate and steep slopes (trachyte,
Tertiary sediments) cover only small parts of the area (Figure 13.5). The modeled
groundwater patterns for the three areas show the groundwater concentration in
hollows and valleys. According to the increasing precipitation in climate scenarios 1
and 2, the saturated areas are more extended for those scenarios (Figure 13.10
to Figure 13.12), therefore those scenarios also show increased failure probability
(higher slope instability) (Figure 13.13). The results reveal the higher geomorphic
effectiveness of climate scenario 2, although climate scenario 1 has higher annual
precipitation sums, which can be attributed to the occurrence of a few intensive precip-
itation events in the winter in scenario 2 (Schmidt and Dikau, 2004a). Climatic years
of scenario 2 dominate the “climatic transition phase” from Little Ice Age to recent
conditions. This climatic transition phase is prone to fluctuations in annual weather
patterns that are likely to induce slope failure. The analyses showed that for all three
hillslopes the increasing failure probability for climate scenario 2. Figure 13.13 indic-
ates that the effect of scenario 2 on increasing failure probability is more significant for
hillslope “me3” than for hillslopes “me5” and “si7,” that is, hillslope “me3” is more
sensitive to climatic changes (high groundwater tables). For hillslope “me3,” the effect
of climate scenario 2 leads to a considerable extension of the saturated areas. These
saturated areas extend especially to steep hillslopes, which in turn leads to higher
slope instabilities for this spatial scenario. The failure probability for scenario 2 and
hillslope “me3” reaches comparatively high values (Figure 13.13).

For hillslope “me5” the saturated areas extend along the valley bottoms, the
hillslopes are less affected. Consequently slope instabilities do not increase as much
as for hillslope “me3” (Figure 13.13). The reason for that behavior being a more
permeable baselayer of Tertiary clay and lignite and less groundwater recharge due
to low permeable top clay layers.

For hillslope “si7,” sensitive areas are predominantly the Tertiary layers, which
occupy only a small part of the steeper hillslopes. Convergent areas on steeper
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Figure13.10 Groundwater pattern for hillslope “me3” and the three climate scenarios.
Top: climate scenario 1, middle: climate scenario 2, bottom: climate scenario 3
(compare Figure 13.9). Dark: groundwater close to surface.

Figure13.11 Groundwater pattern for hillslope “me5” and the three climate scenarios.
Top: climate scenario 1, middle: climate scenario 2, bottom: climate scenario
3 (compare Figure 13.9). Dark: groundwater close to surface.

hillslopes in Tertiary sediments show therefore the highest instabilities (Schmidt and
Dikau, in review). The effect of changing climate leads to only minor extended satur-
ated areas in these hollows (Figure 13.12). Only a low increase in slope instabilities
is recognizable (Figure 13.13).
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Figure13.12 Groundwater pattern for hillslope “si7” and the three climate scenarios.
Top: climate scenario 1, middle: climate scenario 2, bottom: climate scenario
3 (compare Figure 13.9). Dark: groundwater close to surface.

Unstable area (%)

Figure 13.13 Modeled unstable areas (FOS < 1) for the different climate scenarios (Figure 13.9)
and hillslopes (Figure 13.3 to Figure 13.5). The results indicate the effectiveness
of climate scenario 2 for creating slope instabilities, particularly for hillslope “me3.”

These results show that sensitivity to failure shows a clear relationship to general
site properties such as gradient and lithology. However, sensitivity to climatic vari-
ations is dependent on the spatial configuration of each site. The occurrence of
low-permeability clay layers below lignite and sands results in a potential groundwater
rise for more sensitive (steeper) areas for hillslope “me3,” whereas for hillslope “si7,”



182 GEODYNAMICS

groundwater rise above low-permeability Devonian layers lowers slope stability only
for less sensitive areas. Hence, the location of permeable layers (prone to groundwater
rise) in relation to sensitive layers (lower strength) and higher gradient areas (higher
stress) determines the sensitivity of a site with respect to climatic changes.

13.5 DISCUSSION AND CONCLUSION

The uncertainty in the assessment of historical environmental conditions is high.
The results presented in this study showed the potential and utility of proxy data
for assessing past climatic conditions and their effects on geomorphic processes.
A method for deriving annual patterns of climate parameters for past periods was
developed and applied (Schmidt and Dikau, 2004a). Three “climatic year types”
were derived by statistical analysis of paleo climate data. These types are related to
past climate periods.

It was shown that this scenario approach is a valuable method to identify different
climatic regimes with respect to their effectiveness in driving geomorphic processes
(in this study landslides). The identified “representative climatic years” were used
to drive groundwater and slope stability models for three different hillslopes in the
study area. The nine resulting scenarios were compared. The models showed con-
siderable variations in the sensitivity to slope instabilities of the modeled landscapes
in relation to climate variations. The results give indications of (1) differences of
the pattern of slope stability for the three spatial scenarios (hillslopes), (2) consid-
erable differences of the effectiveness of the climate scenarios, and (3) variations
of the spatial sensitivity of the different hillslopes with respect to climatic changes.
The modeled spatial slope stability patterns match well with the spatial pattern of
observed existing landslides in the field (Schmidt and Dikau, 2004a, b). The temporal
pattern of slope stability derived in this study, however, was not validated because
of a lack of appropriate field data for the study area (i.e., dated landslides). It was
shown that the modeled climate regime 2 (representing dominantly the transition
phase from Little Ice Age to recent climatic conditions) was generally more effective
leading to increased slope instability for all tested sites. This can be explained by
the high frequency of intensive rainfall events for the unstable transition phase of
climate regime 2 (Schmidt and Dikau, 2004a). The sensitivity of slope stability to
climatic change, however, is dependent on the internal configuration of the landscape.
This means the slope stability system is “filtered” by the system of hillslope hydro-
logy, which is largely dependent on landscape structure, that is, topographical and
lithological convergences, and sensitive layers.

The described model is solely based on the effect of climate on changing process
behavior. Precipitation and temperature were used as the only variable boundary
conditions. In historical time periods, however, certainly landcover conditions alter
in response to changing climatic and anthropogenic conditions. Those feedbacks
should be included in extending the presented modeling approach. Using historical
and recent remote sensing data in combination with integrated evolutionary models
(see Svoray and Nathan, Chapter 10, this volume) is a prospective step forward in that
direction. These models would be able deliver landcover simulations that could be
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applied in combined scenario models of climate and land cover variability and their
effects on hillslope hydrology and slope stability.

It was shown that for landslide sensitivity, besides the general geomorpholo-
gical and lithological properties (especially shear strength), landscape configuration
is an important determinant. A more sensitive landscape in terms of actual slope
stability is not generally more sensitive to climatic changes. Therefore, landscape
sensitivity should be viewed as a dynamic feature and has to be specifically connected
to processes and climatic changes. Scenario approaches are useful in assessing
these sensitivity changes. Despite the simplifications of the presented approach, the
method is capable of representing the effect of climate changes in relation to land-
scape sensitivity for landslide processes on a static level. It can be used to quantify
differences in slope stability for different landscapes and their changes with climatic
variations. Therefore, simplified two-dimensional modeling approaches as often used
in landslide hazard assessments are not suitable to represent a situation as shown in
this study. Climatic variations can potentially have complex interactions with the
geomorphologic system requiring the utilization of process-based, three-dimensional
models for an adequate prediction of the effects of future climate change.
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14.1 INTRODUCTION

Flood awareness in the United Kingdom has risen dramatically in the last few years
after several major flood events. Flood inundation models allow river discharge
upstream to be related directly to flood extent downstream and are, therefore, poten-
tially very useful predictive tools that can be used in a variety of real and “what-if”
scenarios. However, all data used (and hence parameters and variables) in flood inund-
ation models have inherent uncertainty. The challenge is to quantify this uncertainty
and, perhaps more importantly, assess the effect that uncertainty may have on model
predictions.
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Other than the main river channel, floodplain topography is the principal variable
that affects the movement of the flood wave and is, therefore, critical to the predic-
tion of inundation extent. Since river floodplains are usually characterised by a low
spatial variation in topography, a small degree of uncertainty in elevation may have
a relatively large effect on model predictions. Small changes in floodplain elevation
may determine the horizontal location of the predicted flood boundary and the timing
of inundation. Ideally, a flood inundation model requires elevation data that repres-
ent closely the true ground surface. High quality remotely sensed elevation data are
often unavailable for the area of interest and may contain features higher than the true
land surface (e.g., buildings and vegetation). Any land feature that restricts (but not
prevents) the flow of water (e.g., forest) should be accounted for in the friction terms
of the model rather than represented by an area of higher elevation.

In this chapter, readily available contour data were supplemented with Differential
Global Positioning System (DGPS) measurements of elevation on the floodplain. To
assess the effect of elevation prediction uncertainty on inundation extent, multiple
plausible digital elevation models (DEMs) were generated. Each DEM was then
used to predict flood inundation for the Easter 1998 flood event on the river Nene,
Northamptonshire, England, using the grid-based model LISFLOOD-FP (Bates and
De Roo, 2000).

14.2 LISFLOOD-FP MODEL OF FLOOD INUNDATION

LISFLOOD-FP is a raster-based flood inundation model (Bates and De Roo, 2000;
De Roo et al., 2000; Horritt and Bates, 2001). Channel flow is approximated using the
one-dimensional linear kinematic Saint-Venant equations (e.g., Chow et al., 1988).
Cells in the domain that are identified as channel are incised by the bankfull depth,
and a hydrograph is routed downstream from the domain inflow. When channel depth
reaches a cell bankfull level, flood inundation commences.

Flow on the floodplain is based on a simple continuity equation, which states that
the change in volume in a cell over time is equal to the fluxes into and out of it (Estrela
and Quintas, 1994):

. -y i
i L -0+ -0y (14.1)
dt AxAy '

where hi+/ is the water free surface height at the node (i, j) at time, ¢, and Ax and Ay
are the cell dimensions. Floodplain flow is described by Horritt and Bates (2001):
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where Q' and sz,] are the flows between cells in the x and y directions, respectively.
The depth available for flow, 0w, is defined as the difference between the maximum
free and bed surface heights in the two cells. Values for the Manning friction coeffi-
cient, n, are published for a wide variety of land covers (see Chow, 1959; Chow et al.,
1988).

The design philosophy of LISFLOOD-FP was to produce the simplest physical
representation that can accurately simulate dynamic flood spreading when compared
with validation data (Horritt and Bates, 2002). Within the limitations of available
validation data, LISFLOOD-FP has been found to be capable of similar accuracy
to more complex models such as TELEMAC-2D (Horritt and Bates, 2001; Horritt
and Bates, 2002). However, due to the simplification of the process representation,
the model is more dependent on high quality input data. One advantage of a simple
flood inundation scheme (such as that used in LISFLOOD-FP) over finite element
models (such as TELEMAC 2D) is computational efficiency, with approximately
40 times fewer floating-point operations per cell, per time step (Bates and De Roo,
2000). Despite high-speed modern computers, this becomes important when multiple
simulations are conducted as part of a sensitivity analysis or uncertainty assess-
ment. Further, the use of a raster data structure makes the incorporation of multiple
data sets in the model relatively straightforward, particularly from remotely sensed
sources.

14.3 ELEVATION DATA

Land-form PROFILE™ contour data were obtained from the Ordnance Survey, and
were then supplemented by DGPS measurements. A Trimble ProXRS GPS unit was
used to gather elevation measurements along the channel and across the floodplain.
The ProXRS is a 12 channel unit with carrier-phase filtered measurements, able
to obtain sub-decimetre accuracy in all directions. The location of DGPS measure-
ments in relation to the contour data is shown in Figure 14.1. Measurements were
obtained on foot along accessible paths along the channel and across the floodplain,
and by vehicle along roads in the area. Some problems were encountered in wooded
areas as a clear line of sight is needed between the DGPS unit and the satellite plat-
forms. However, as large parts of the area are open, it was still possible to cover
a wide area. The density of DGPS measurements was approximately one point
every 5 m when collected on foot, or one point every 80 m when collected by
vehicle.

Experimental variograms were predicted for the PROFIL contour data,
both inclusive and exclusive of the DGPS measurements (Figure 14.2A). In addi-
tion, areas above the 15 m contour line were removed and variograms predicted
(Figure 14.2B). In both cases, the inclusion of DGPS with the PROFILE™ contour
data increased the variance. For the area below the 15 m contour line, the inclu-
sion of DGPS data increased the variance at shorter lags than globally. The
increase in spatial variation may indicate that the new data set is more represent-
ative of the floodplain, and, therefore, more suitable for use in flood inundation
modelling.
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Figure14.2 Variograms of PROFILE™ contour data, and PROFILE™ contour data after
the inclusion of additional DGPS measurements, (A) for the full area, and (B) for
the floodplain area below the 15 m contour line.

14.4 GENERATION OF ELEVATION SCENARIOS

Spatial prediction uncertainty in the combined PROFILE™ contour and DGPS data
was assessed using the geostatistical method of stochastic imaging or conditional
simulation. This enabled the sensitivity of LISFLOOD-FP to small changes in topo-
graphy to be assessed. Conditional simulation (Deutsch and Journel, 1998) was used
to generate elevation scenarios as it honours the values of the data at their original
locations (Figure 14.1), and aims to reproduce global features and statistics of the
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Figure14.3 Standard deviation of elevation scenarios generated using sequential Gaussian
simulation.

data. In particular, each simulation aims to maintain the same original variogram.
Therefore, given the original data, each simulation can be said to have an equal prob-
ability of representing the true floodplain surface. Importantly, each simulation is
superior to a Kriged surface, which is not a possible reality: by predicting optimally
(i.e., taking the most probable value from the posterior distribution), Kriging pro-
duces a smoothed surface with a variogram very different to that of the original data
(Goovaerts, 1997). In addition, conditional simulation is superior to methods such as
Monte Carlo simulation, which do not maintain the spatial structure of the data.

One hundred different (but equally probable) elevation scenarios from the com-
bined PROFILE™ contour and DGPS data were generated at a spatial resolution of
30 m using the Sequential Gaussian simulation (SGSim) program, part of the GSLIB
software package (Deutsch and Journel, 1998). The original variogram of the com-
bined PROFILE™ contour and DGPS data was used (Figure 14.2A) as scenarios
were generated from the full data set to avoid assumptions regarding the location of
the floodplain boundary. The standard deviation of all the DEMs generated is shown in
Figure 14.3. Standard deviation is low in the vicinity of data points, and progressively
rises with increased distance (and, hence, increased uncertainty). Figure 14.4 shows
a smaller area of floodplain for clarity. By comparing model results obtained using
the multiple elevation scenarios generated, the effect of spatial prediction uncertainty
on the prediction of flood inundation was assessed.

14.5 SENSITIVITY OF LISFLOOD-FP TO PREDICTED ELEVATION

All 100 elevation scenarios were used to predict inundation, on a large Beowulf
cluster at the University of Southampton, using the hydrograph shown in
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Figure 14.4 Standard deviation of elevation scenarios for a smaller area of floodplain, generated
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Figure 14.5 Inflow hydrograph for the upstream end of the channel reach, obtained from the
Environment Agency, Anglian Region. Authority reference: U32610; Station name:
Wansford.
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Figure 14.5. Initial channel stage was determined using measurements provided by the
Environment Agency, and channel width and bankfull level were determined using
channel cross-sections. Channel friction was set at 0.035 and static floodplain
friction at 0.04.

The standard deviation and coefficient of variation (CV) of inundation depth
at the flood peak (80 h) are shown in Figure 14.6. Only flooded cells were included
in the calculations, which prevented non-flooded cells from skewing the results. Cells
that were not flooded in some simulations would have decreased both the standard
deviation and CV. Variation in predicted inundation depth was generally greatest in
areas of large elevation uncertainty. For example, the maximum standard deviation in
depth was ~0.8 m at BNG 513,500 E; 297,000 N, which corresponded well with the
larger standard deviation in elevation for the same area. In addition, along some lines
of small elevation uncertainty, variation in predicted flood depth was correspondingly
low. This was not always the case, however, as the pattern was highly complex.
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Figure14.6 Variation in depth at flood peak (80 h): (A) standard deviation, and (B) coefficient
of variation. Nonflooded cells in each simulation were discounted to avoid skewing
the results.
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Points of small elevation uncertainty may still have resulted in a variable prediction
of flood depth due to the surrounding topography. When mean depth was taken into
account using the CV, it was the shallowest areas (particularly at the edge of the flood
envelope) that exhibited the greatest variation in depth.

Uncertainty at the edge of the flood envelope was also observed by calculating
the percentage of simulations in which each cell was flooded at the flood peak
(Figure 14.7). A shallow gradient at the edge of the floodplain resulted in an uncer-
tain prediction of flood extent, such as in the area at BNG 512,000 E; 298,500 N.
Conversely, areas with steep slope at the edge of the floodplain (such as the outside
of the meander bend at BNG 514,500 E; 298,750 N) have a high degree of certainty
in flood extent.

The standard deviation and CV of the area of inundation is shown in Figure 14.8.
Maximum standard deviation occurred shortly after the time of maximum inunda-
tion extent, as the flood wave moved downstream. The maximum value of 0.17 km?
was equivalent to ~189 cells. Although the standard deviation in area decreased as
the flood wave receded, the CV continued to rise to a maximum of 2.5%. A similar
trend was observed in the mean depth of flooding (Figure 14.9). Although the
maximum standard deviation of 0.0225 m was small, the CV continued to rise through-
out the simulation to a maximum of 3.2%. Likewise, the CV of volume of flood
inundation (Figure 14.10) continued to rise to a maximum of 4.4%. These figures
suggest that variation in predictions become compounded through time. Given flood
simulations longer than the 340 h duration here, variation (and, hence, uncertainty)
may further increase.

A different trend was observed in channel outflow discharge (Figure 14.11). Here,
the greatest variation occurred during the rising limb of the hydrograph, before drop-
ping back to a relatively low level. The maximum standard deviation was 3.82 m?/s,
which represented the maximum CV of 4.5%. Large variation in outflow was expected
during the rising limb, as this is when flood inundation commences. Variation also

x 108
3\ 100
2995 __ . 90
2991 ol ' 80
£ 2.985 b '-\%? : PacTo N K
S 298 : i ol 60
& 2975 " /“-\ ) gt 50
Z 297 ( - -~y 40
2.965 InE 30
2.96 : 20
2.955 | 10
2.95
5.08 5.1 5.12 5.14 5.16 5.18

BNG, east x 10°

Figure 14.7 Spatial extent of inundation at flood peak: percentage of simulations in which each
cell was inundated. Cells which did not flood in any simulations have been removed
for clarity.
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Figure14.8 Variation in flooded area for all simulations: (A) standard deviation; and (B)
coefficient of variation.

occurred during the recession limb of the hydrograph. However, as flood inundation
occurred more quickly than flood recession, the variation is restricted to a shorter
period of time.

The mean time of maximum flood depth increased progressively downstream,
other than in outlying areas with topographic restrictions. As with the depth at the flood
peak, only flooded cells were included in the calculations. High variability in time of
maximum flood depth occurred in topographically restricted areas, where the flood
wave took longer to reach. The greatest standard deviation in time of maximum depth
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Figure 14.9 Variation in mean depth of flooding for all simulations: (A) standard deviation; and
(B) coefficient of variation.

(Figure 14.12A) was >100 h, observed in the area at BNG 512,000 E; 298,500 N.
This equated to a CV of ~70% (Figure 14.12B). Variation in the time of maximum
flood depth for the near-channel floodplain is more clearly shown in Figure 14.13,
and for the channel itself in Figure 14.14. As the flood wave progressed downstream,
variation in time of maximum flood depth increased to a maximum standard deviation
of ~0.6 h, which was equivalent to a CV of 0.6%. This uncertainty may have increased
further given a longer river reach.
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Figure 14.10 Variation in volume of flooding for all simulations: (A) standard deviation; and (B)
coefficient of variation.

Variations in the time of initial flooding are shown in Figure 14.15. Areas furthest
from the channel that tend to flood last, generally have the largest standard deviation.
By using the CV, however, it is clear that there are many areas on the near-channel
floodplain in which the time of flooding onset has a high degree of variability of
10 to 20% (Figure 14.15B). Local (high-frequency) topographic variations were
the principal control over where flood water initially flowed. Therefore, the time
of initial flooding was particularly influenced by the small changes in local topo-
graphy across the elevation scenarios. In addition, during the early stages of the flood
event, near-channel topography (especially bank topography) controlled the timing
of inundation.
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Figure 14.11 Variation in channel outflow discharge for all simulations: (A) standard deviation;
and (B) coefficient of variation.

14.6 DISCUSSION

There are large areas where elevation is still uncertain despite additional DGPS data,
as indicated by the standard deviation of elevation realisations (Figure 14.3). Some
areas of high standard deviation had access problems, and it was not possible to
make DGPS measurements within them. Although a denser network of DGPS may
reduce the amount of prediction uncertainty in elevation, this may not be feasible for
all areas.
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Figure 14.12 Variation in time of maximum flood for all simulations: (A) standard deviation; and
(B) coefficient of variation. Non-flooded cells in each simulation were discounted
to avoid skewing the results.

The effects of prediction uncertainty in elevation on the prediction of flood
inundation were observed both locally and globally, and increased both through
time and with distance downstream. For example, during the simulations the uncer-
tainty in the predicted area of inundation increased to a maximum of 2.5%. For
a large flood event, this degree of uncertainty may represent a substantial area.
Locally, uncertainty in predicted inundation extent was greatest where elevation
gradients were smallest. The location of the flood shoreline is critical for the
flood insurance and reinsurance industries, and for floodplain management. It is in
these areas that uncertainty must be reduced. In particular, topographically import-
ant features such as ditches or embankments (natural or anthropogenic) should be
captured by the elevation data since they may control the volume of water entering
such areas.

At the downstream end of the reach, uncertainty in the time of maximum flood
depth was 0.6 h. This was despite the large influence the channel had on the flood
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Figure 14.13 Variation in time of maximum flood for all simulations: (A) standard deviation; and
(B) coefficient of variation, scaled to highlight the near-channel floodplain.

wave. For larger reaches, and for flood events where the rising limb lasts longer, this
uncertainty may be greater. Away from the channel in areas which were topograph-
ically restricted, uncertainty in flood wave timing was greater. This has implications
for the real-time modelling of flood events when the forecasting of the arrival of the
flood wave is essential for emergency management.

14.7 CONCLUSIONS

In this chapter, the PROFILE™ contour data were obtained from the Ordnance
Survey and supplemented by measurements of elevation on the floodplain and along
the channel using Differential GPS. The aim was to assess the effect of uncertainty
in predictions of elevation on the prediction of inundation extent. The addition of the
DGPS measurements to the contour data increased the amount of spatial variation
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Figure 14.14 \Variation in time of maximum flood for all simulations along the channel: (A)
standard deviation; and (B) coefficient of variation.

in elevation in the domain, suggesting that the data were more representative of the
floodplain.

Sequential Gaussian simulation was used as a novel method of generating multiple
realisations of elevation based on combined contour and DGPS data, whilst main-
taining their spatial character. Importantly, each realisation was equally representative
of floodplain topography, and model predictions were, therefore, equally valid. The
effect of uncertainty in the DEM on the prediction of flood inundation increased both
with distance downstream and throughout the simulation. This is important as uncer-
tainty is likely to increase for predictions of flood events at larger scales or of longer
duration.



PREDICTION UNCERTAINTY IN FLOODPLAIN ELEVATION 201

A x 105
14
<
S
c
0}
b4
o
5.08 5.1 5.12 5.14 5.16 5.18
BNG, east x 10°
B
30
- 25
ESS 1 20
S
< 15
(O]
% 10
5
i 0
1 1 1 1 1 O/o
5.08 5.1 5.12 5.14 5.16 5.18
BNG, east x 10°

Figure 14.15 Variation in time of initial flood for all simulations: (A) standard deviation; and (B)
coefficient of variation. Non-flooded cells in each simulation were discounted to
avoid skewing the results.
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15.1 PROGRESS IN CA DYNAMIC MODELLING

Ithas been over 10 years now since we saw initial diffusion of interests in using cellular
automata (CA) to model human and environmental changes (in particular urban
land development). The special sessions of the Annual Meeting of the Association
of American Geographers in 1994 marked the development of the paradigm of
highly disaggregated CA modelling, which is very different from “traditional” land
use and transport modelling. The sessions subsequently resulted in a special issue in
Environment and Planning B (Batty et al., 1997). Advances in GIS visualization and
data processing capacities have further added momentum to CA applications. Since
then, there have been widespread applications of various sorts of CA.

Moreover, there have been great improvements in model calibration (Clarke et al.,
1997; Clarke and Gaydos, 1998; Li and Yeh, 2001; Silva and Clarke, 2002; Wu, 2002;
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Straatman et al., 2004), irregular presentation of cellular space (O’Sullivan, 2001),
vector (Shi and Pang, 2000), and multidimensional representation (Semboloni et al.,
2004), together with a series of attempts to expand CA into theoretical modelling
tools (Webster and Wu, 1999a, b, 2001; Wu and Webster, 2000; Wu, 2003), as well
as a diversity of definitions of transition rules (White et al. 1997; Wu and Webster,
1998; Batty et al., 1999; White and Engelen, 2000; Li and Yeh, 2001; Yeh and Li,
2002). Of course, the above reference list is only partial and does not include many
recent publications in CA (e.g., Wu and Martin, 2002; Arentze and Timmermans,
2003; Barredo et al., 2003; Liu and Phinn, 2003; and papers in the special issue of
Computers, Environment and Urban Systems, 28, 2004), which are truly proliferating.

Emerging from a CA workshop in CASA (Centre for Advanced Spatial Analysis),
an editorial in Environment and Planning B (Torrens and O’Sullivan, 2001) asks
“Where do we go from here?” in cellular automata and urban simulation. The authors
identify a few areas for enhancement such as exploring spatial complexity, infusing
urban CA with theory, outreaching education roles, developing hybrid CA-agent
operational models, and validating CA models. Recently, there has been tremendous
progress in CA research, or broadly speaking, in geodynamic modelling. These issues
have been addressed to various extents in the GeoComputation 2003 conference held
in Southampton, from which this volume has been developed.

The strength of CA lies in its heuristic, transparent, and flexible rules, which have
a potential link to the decision making process, plus its visualization of future spatial
forms. The weaknesses of CA are its rigid notion of cell states, geographical localness,
and validation difficulty. While there is always room for making adjustments such as
changing the size of neighbourhood and fine-tuning the transition rules, CA models
are surprisingly robust in different sorts of model construction. While the perform-
ance might not be up to the aspiration of real-life decision support, the output often
presents a “signature” of pattern, which reveals some interesting underlying mech-
anism. Without fine toning, the complex system built upon the recursive and locally
defined rules often leads to “self-organized criticality” (Bak, 1996). This is intuit-
ively appealing, as our city is robust against major catastrophe brought by individual
events and large changes are actually triggered by “ordinary” and “insignificant”
actions. With regard to CA research itself, however, it seems that it has reached an
evolutionary plateau where there are many meaningful improvements but without an
evolutionary breakthrough.

Perhaps the notion of GeoDynamics can inject some new energy — CA modelling
listed here is after all a dynamic modelling approach to changing human and natural
environments. More significant development in the modelling methodology would
come from the practical task of managing these environments rather than intelligent
and innovative twists by modellers. Although CA is based on the notion of grid or
cells, itis not necessarily confined to cell structure. The model can be developed based
on any configuration of spatial units. The proximity (local) relationship between these
units can be mapped by, for example, the list of “neighbouring” units. This notion in
fact brings us very close to the “traditional” form of urban modelling and thus opens
a door to reuse of many useful model structures in future hybrid CA models. Xie and
Batty (Chapter 19, this volume) as well as other agent-based modelling advocators
(e.g., Parker et al., 2003; Beneson and Torrens, 2004) have developed new forms or
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approaches beyond the constraint of CA. However, Xie and Batty’s approach differs
from agent-based models in that its basic block is more like an aggregated unit (a cell
containing households and jobs) than the individual household and thus is closer to the
operational urban models. This structure has its strength because dynamic modelling
ties very closely to the spatial analyses that are routinely carried out by GIS in a
static way.

Considering the strengths and weaknesses of CA, it can be seen that its weaknesses
have not been overcome by introducing more flexibility. Dynamic modelling through a
multi-agent system approach has become more flexible, after introducing the concept
of “agents,” cognitive actions and non-grid space. Its ability to attach the behaviour to
the real object originating such behaviour (i.e., a household presenting the behaviour
of migration, which is different from a census tract having different attributes) is
appealing. But the challenge of validation becomes even greater. Although CA and
other spatially explicit dynamic models have gained popularity, there is still a long
way to go before they can satisfy the aspiration for supporting policy making.

15.2 GEODYNAMIC MODELLING IN HUMAN ENVIRONMENTS

In the Section III, the chapters are concentrated on the development of dynamic
modelling in human settlements and the interaction between human and natural
environments.

Clarke raises a serious issue of developing/applying the model of “simplicity”
and its limit in dealing with complex and rich human and natural environments. His
extensive research in CA and GIS in a policy context (Clarke et al., 1997; Silva and
Clarke, 2002) helps him to observe that the general public prefers an incomprehensible
model that gives useful results to an understandable model. The challenge is, therefore,
for the modellers to make the underlying assumptions (required by model simplicity)
more explicit. Through comparing three widely available models (SLEUTH, SCOPE,
and What if?), he found significant variations in the model outputs. Moreover, each
model uses “scenarios” to communicate their results but there is a question to what
extent these scenarios are just hypothetical assumptions rather than being rooted
in the “real” dynamics of environments. In fact, the use of scenarios is a tool of
model reduction. He concludes that rather than rushing towards model reduction, it
is important to emphasize the ethics of modelling and in turn to make models more
open to scrutiny.

Since the SLUETH model has gained such a popularity recently (see application
such as Silva and Clarke, 2002; Yang and Lo, 2003), the Chapters 16 and 17 address
the spatial and temporal variation of rule definition and new calibration methods.
Dietzel uses the example of San Joaquin Valley, California, to show that the coef-
ficients estimated from different geographical areas vary significantly. The research
further raises the question of “scale” at which derived models are applicable. There
might be different kinds of model (model parameters) in predicting coarse or finer
GeoDynamics of natural and human environments. This research is a further step from
Silva and Clarke (2002) to “fine tune” the parameter space according to the suitable
geographic region. This spatial-temporal limitation of model coefficients is somewhat
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similar to the modifiable areal unit problem (MUAP), where the relationship between
two variables depends upon the spatial unit partition as well as the scale. Thus, the
rules derived/calibrated from one region might not be appropriate to another region.
The same is true of time — rules valid in one period may not be appropriate in another.

Calibration continues to be a substantial issue in dynamic modelling. Goldstein
introduces a generic algorithm (GA) into calibration of the SLUETH model. The
calibration method developed by Clarke et al. (1997, see also Clarke and Gaydos,
1998) is based on historical urban spatial data. There are five coefficients (integers
ranging from 0 to 100) controlling the morphology. They are the coefficients of diffu-
sion, bread, spread, slope resistance, and road gravity. The results of the coefficients
are usually evaluated by a “product metric.” The search for the best values is com-
putationally intensive. The method, called “Brute Force,” basically steps through
coefficient space by a coarse step (e.g., 25 units) through the entire coefficient space,
then a finer step (e.g., 5 to 6 units), followed by even finer step such as 1 unit. The
GA thus has its advantage because it searches through the coefficient space in an
adaptive manner and thus reduces the computational burden. Furthermore, the use
of GA in model calibration opens the door to using artificial intelligence methods to
calibrate dynamic models. There have recently been various reports of using artificial
neural network (Li and Yeh, 2001) and the difference in cells (Straatman et al., 2004).
More broadly speaking, GA can be used in the search of coefficient space without
necessarily being confined within the existing SLUETH model structure and range
of parameters (i.e., from 0 to 100). For many parameters from real life, such as pop-
ulation density and the distance to the transport network, their values are not within
the defined range of SLEUTH. GA as well as other artificial intelligent approaches
can thus still search for the best range of parameters more flexibly.

The CA model traditionally is strongly associated with urban morphologic studies.
To a lesser extent the model uses factors dealt with in traditional urban models,
such as land price, travel cost and behaviour, and land development. In contrast,
Strauch et al. report a large-scale modelling project, named Integrated Land-Use
Modelling and Transportation System Simulation (ILUMASS), which is reminiscent
of large-scale urban modelling but uses microsimulation as the core method to simu-
late the interaction between urban land use development, transport demand, dynamic
traffic assignment, and environment impacts. The microsimulation approach allows
the modelling at the highest disaggregated units, for example, synthetic households
and jobs. From these synthetic households and jobs are estimated travel demand and
goods transportation, which in turn are manifested in the trips and assigned into the
network dynamically forming network flows. Emissions are estimated from traffic
flows, and the impacts of air quality on population and firm locations can be assessed.
The model reported by Strauch et al. here shares some features of microsimulation-
based models such as UrbanSim (Waddell, 2000) and California Urban Futures (CUF)
(Landis and Zhang, 1998). As seen in large-scale urban modelling, integrating many
model components might prove to be a challenging task.

As one of the pioneers who introduced CA into the domain of urban studies,
Batty (1997), together with his colleagues, has developed a series of simulation
models in the GIS environment (Batty, 1998; Batty et al., 1999). Xie and Batty
systematically evaluate the progress of CA modelling and in particular review the
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prototype and applications of Dynamic Urban Evolutionary Model (DUEM), one
of the earliest urban CA models (Xie, 1996). They discuss five key design issues
in their new model, Integrated Dynamic Urban Evolutionary Modelling (IDUEM),
which keeps many attractive features of DUEM but is enhanced with a significant
breakthrough in terms of design philosophy and implementation. Recognizing the
limitation of current CA models in their inability to handle socio-economic attrib-
utes and spatial interaction, they urge a closer linkage of CA models to traditional
cross-sectional land use and transport models such as population and employment
forecasting models, which are still widely used in local governments. They build
demographic and economic attributes into the cells, and through microsimulation
and an agent-based modelling approach, relate the attributes to land use and transport
models. Through iterative proportional fitting the attributes are partitioned into the
grid space. The relocation and flow of households and jobs are then modelled through
space-filling or new subdivision, which produces new urban structures. The overall
programming approach benefits from object-based simulation. In short, the model
will increase the use of dynamic modelling in operational management and urban
policy making by integrating the CA fundamentals with the zonal system in which
policy making processes usually take place.

The agent-based modelling approach appears to have some appealing features,
as it can model directly the behaviour of agents. In the Chapter 21 by Barros, she
uses StarLogo to simulate urban expansion in Latin American cities. Similar to other
agent-based simulation, the research is aimed to find some “generic” features of urban
development, which has been modelled before as in “polycentric urban structure”
(Wu, 1998) (in this case, the “peripheralization” phenomenon in the Third World
cities). Although the model itself is implemented in an abstract computer space, the
output shares similarity with the fragmentation patterns in many cities in developing
countries. The question is, however, whether such a fragmented spatial structure
is unique to this simulation. In other words, does the “signature” reflect the unique
simulation rules (and, in this case, the behaviour of land development in the developing
countries)? The chapter, again, shows that validation continues to be a challenge.

Despite simulation as an increasingly popular method, there are few studies spe-
cifically interrogating the error and uncertainty. In contrast, the issue of error propaga-
tion has become an established topic in GIS. Yeh and Li build upon their extensive
research in CA (Li and Yeh, 2000, 2001; Yeh and Li, 2001, 2002) to examine the
effect of error in CA modelling. They differentiate two types of error: errors from data
sources and errors from transformations. Furthermore, they examine model uncertain-
ties in terms of discrete space and time, neighbourhood configuration, model structure
and transition rules, parameter values, and stochastic variables. Yeh and Li find that
errors are propagated in CA simulation and that uncertainties are further increased
by model transformation. However, the error mainly exists in the fringe area of
urban clusters, which shows the robustness of CA model. That is, different stochastic
disturbance might change the urban form at the edge but not in its overall pattern.

Given the popularity of agent-based modelling, Benenson and Torrens (2004)
propose a modelling framework of a “geographic automata system” (GAS) to combine
CA with multi-agent systems. As a useful formalism, their framework allows a “tight”
coupling of CA with GIS (in this sense, it is similar to the Geo-Algebra, see Takeyama
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and Couclelis, 1997). Such formalism is not only useful to communicate model
structures between model designer and model programmer but also helps commu-
nication among different model builders. Their modelling platform, Object-Based
Environment for Urban Simulation (OBEUS), is a further development from agent-
based simulation (Portugali and Benenson, 1995; Portugali, 2000; Benenson et al.,
2002; Benenson and Torrens, 2004) but thoroughly redesigned.

Chapter 24 by Agarwal considers the ontological stance for agent-based
simulation. This potentially forces us to rethink about knowledge representation and
qualitative reasoning and in the end to develop reactive agents into cognitive models
of human behaviour. It seems that much useful discussion is currently going on under
the framework of “agents” (Parker et al., 2003) but there is still a long way to go before
fully implementing these agent-based systems for real policy decision making.

15.3 NEXT STAGE CA MODELLING

15.3.1 Geodynamic Modelling as a “Procedural Framework for
Temporal Fitting”

Many chapters in this volume share the view that there should be greater transparency
and verification of model building and better validation of the output. There is a need
to develop some standard testing data, against which different routines can be bench-
marked. Such an initiative can only be realized by coordinated research activities to
develop modelling standards, similar to that of image compression in computer sci-
ence where some standard “portrait” is used to test the effectiveness of different
compression methods.

There is also a need for a more procedural framework of geodynamic modelling,
perhaps not in the sense of “prototypes” as they often embed the designers’ concep-
tualization of how the city works. Such a conceptualization, no matter how flexible,
might still be a constraint for building models in a different context. The call for a
“procedure” of modelling is not to generate greater “simplicity” but, rather, to remove
unnecessary constraints imposed by prototype designer. On the other hand, the use of
some generic modelling language without a procedure is felt to be too “flexible” and
too difficult for most practical users. What is needed is a procedure or “routine,” like
y = f(x) where x could be a series of development factors and y is the dependent
variable describing the change in human environments. Similar to regression, there
need not to be just one type of modelling procedure. Each would suit different situ-
ations with the underlying assumption provided explicitly (just as different regressions
suit different probability distributions). Currently, CA research has seen too many
model-driven activities rather than data-driven procedures in dynamic modelling.
The former often involves encoding a more plausible and attractive conceptualization
of urban dynamics and implementation in diverse programming languages.

Just like the spatial interpolation method, dynamic modelling in the simplest sense
can be seen as a “temporal interpolation method.” As long as the errors associated
with these methods are explicitly treated, these methods would be useful for decision
making. The procedure of modelling would enhance the development of calibration,
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because the model itself provides some certainty for improving calibration. More
importantly, there is a need for dynamic calibration, that is, calibrating the rules in
multiple time periods and adapting them in the new space—time context. Deriving
rules from a series of temporal observations would be an important step towards
model refinement.

15.3.2 Geodynamic Modelling as an “Analogical Tool for
Theory Building”

The call for some procedure to be developed in dynamic modelling is not to reduce
it into boring time—space fitting routines. Another important direction of dynamic
modelling is to develop an “analogical tool for theory building,” in the sense of
“artificial worlds.” As with the rapidly growing agent-based models (e.g., Epstein and
Axtell, 1996), realism in the terms of geographical representation in these artificial
worlds is not an issue. But rather, it is the fundamental behavioural characterization
of the dynamics and replicable and valid theories building from the simulation that
are attractive features.

If two-dimensional spectra in the trade-offs between global versus local and
theoretical versus empirical characterization are used to define a typology of urban
simulation (Wu and Martin, 2002), then there are four extreme cases: global and theor-
etical models (e.g., urban land economics such as Alonso model), global and empirical
models (e.g., most GIS cartographic modelling, for example through overlay, to
derive land suitability and urban operational models such as the Lowry model), local
and theoretical models (e.g., physical metaphoric model such as diffusion-limited
aggregation), and finally local and empirical model (most hybrid CA models are in
this area but often go beyond the local constraint). In contrast to the proliferation of
the last type of models, there are not enough “behaviourally rich” theoretical models
in the bottom—up paradigm. The power of theoretical model lies in their parsimonious
rules and analogical output — the fundamental similarity between the morphology
(or signature) developed in artificial worlds and in real cities might provide a plaus-
ible explanation (or at least a “discourse”) of urban growth. It is rather unfortunate
that artificial world simulation does not attract enough attention from the modellers
(Webster and Wu, 1999b, 2001; Wu and Webster, 2000). It is not surprising, perhaps,
because most model builders are more familiar with GIS and quantitative geography.

As a consequence, quantitative/dynamic modelling has been deprived of the
rich language and theoretical thrusts, which are developing rapidly in “mainstream”
geography. The latter is now moving away from its scientific root towards critical
theories and experiencing the “postmodern cultural turn.” There is a need to open
up the imagination of dynamic modelling to embrace wider terms such as “regimes
of property rights,” public—private partnership, urban compaction, social segregation
and exclusion, and “clusters” (defined in “new economic geography”). Not all these
terms are spatial but many are often played out in a spatial context. Only by moving
away from being a satisfied mayor in the SimCity and taking seriously these rich beha-
vioural characterizations and learning from the “mainstream” theoretical perspectives
and policy concerns (e.g., exclusion and compaction) can quantitative modelling
regain its deserved recognition. Theoretical models such as Schelling (1978) can
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potentially generate insights to inform policy making. The ability to be involved in
policy agenda does not necessarily need to be “empirical” — as the discourse of
neoclassical economics through ideal demand and supply curves proves.

15.3.3 Geodynamic Modelling as an “Envision Device for
Alternative Futures”

So-called “predication” is merely temporal interpolation; and so-called “envision”
is “prescription” — often through visualizing different scenarios, which are prob-
ably generated under different conditions. Envision is often in a qualitative rather
than quantitative sense. Therefore, it is a matter of “discourse,” where the relation-
ship is lucidly explained (such as market equilibrium and the relationship between
supply and demand). This differs from the procedural modelling exercise where the
purpose is to fit the relationship, a task carried out through essentially data-driven
“procedure” in econometrics. Geodynamic modelling as an envision device is to
provide an alternative future. In this sense, it also differs from analogical theoretical
building because the process of envisioning is grounded in policy contexts and should
involve public participation. The envision type of dynamic modelling could not and
should not be made parsimonious; but rather there is a need for “GeoComputational
honesty” (Clarke, Chapter 16, this volume) to make these assumptions known. Rules,
rather than being hidden in the model, should be made explicit and involve users’
input. So, calibration through data is important but only serves as a starting point.
Parameters can be changed/modified, not to find the better fit but rather to generate
impact analysis. The outputs of envision modelling cannot be assessed in terms of
“accuracy” or goodness-of-fit in its traditional sense but, rather, should be evaluated
by the ability to inform policy making and reveal the hypotheses for future develop-
ment. This kind of exercise can be built with widespread web-based GIS and public
participation in envisioning the future of communities. Geodynamic modelling of this
kind can be built upon various media taking advantage of virtual reality and sketch
planning. Such a design principle is behind planning support systems such as What
if? (Klosterman, 2001) but the emphasis on the “dynamic” side would strengthen the
nature of local (inter- and intra-cities) interactions and the recursive process between
conscious actions and the consequential environmental changes.

REFERENCES

Arentze, T. and Timmermans, H., 2003, A multiagent model of negotiation process between
multiple actors in urban developments: a framework for and results of numerical
experiments. Environment and Planning B 30, 391-410.

Bak, P, 1996, How Nature Works: Algorithms, Calibrations, Predictions (Cambridge:
Cambridge University Press).

Barredo, J.I., Kasanko, M., McCormick, N., and Lavalle, C., 2003, Modelling dynamic spatial
processes: simulation of urban future scenarios through cellular automata. Landscape
and Urban Planning 64, 145-160.

Batty, M., 1997, Cellular automata and urban form: a primer. Journal of the American Planning
Association 63, 266-274.



INTRODUCTION — URBAN SIMULATION 213

Batty, M., 1998, Urban evolution on the desktop: simulation with the use of extended cellular
automata. Environment and Planning A 30, 1943-1967.

Batty, M., Couclelis, H., and Eichen, M., 1997, Urban systems as cellular automata.
Environment and Planning B 24, 159-164.

Batty, M., Xie, Y., and Sun, Z., 1999, Modeling urban dynamics through GIS-based cellular
automata. Computers, Environment and Urban Systems 23, 205-233.

Benenson, 1. and Torrens, P.M., 2004, Geosimulation: object-based modeling of urban
phenomena. Computers, Environment and Urban Systems 28, 1-8.

Benenson, 1., Omer, 1., and Hatna, E., 2002, Entity-based modeling of urban residential
dynamics: the case of Yaffo, Tel Aviv. Environment and Planning B 29, 491-512.

Clarke, K.C., Chapter 16, this volume.

Clarke, K.C. and Gaydos, L.J., 1998, Loose-coupling a cellular automaton model and GIS:
long-term urban growth prediction for San Francisco and Washington/Baltimore.
International Journal of Geographical Information Science 12, 699-714.

Clarke, K.C., Hoppen, S., and Gaydos, L., 1997, A self-modifying cellular automaton model
of historical urbanization in the San Francisco Bay area. Environment and Planning B
24,247-261.

Epstein, J.M. and Axtell, R., 1996, Growing Artificial Societies from the Bottom Up
(Washington D.C.: Brookings Institution).

Klosterman, R.E., 2001, The What if? Planning support system. In Planning Support Systems:
Integrating Geographic Information Systems, Models, and Visualization Tools, edited
by R.K. Brail and R.E. Klosterman (Redlands, CA: Environmental Systems Research
Institute).

Landis, J. and Zhang, M., 1998, The second generation of the California urban futures model.
Part 1. Model logic and theory. Environment and Planning B 25, 657—-666.

Li, X. and Yeh, A.G.O., 2000, Modelling sustainable urban development by the integra-
tion of constrained cellular automata and GIS. International Journal of Geographical
Information Science 14, 131-152.

Li, X. and Yeh, A.G.O., 2001, Calibration of cellular automata by using neural networks for the
simulation of complex urban systems. Environment and Planning A 33, 1445-1462.

Liu, Y. and Phinn, S.R., 2003, Modelling urban development with cellular automata incor-
porating fuzzy-set approaches. Computers, Environment and Urban Systems 27,
637-658.

O’Sullivan, D., 2001, Exploring spatial process dynamics using irregular cellular automaton
models. Geographical Analysis 33, 1-18.

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., and Deadman, P., 2003, Multi-
agent systems for the simulation of land-use and land-cover change: a review. Annals
of the Association of American Geographers 93, 314-337.

Portugali, J., 2000, Self-Organization and the City (Berlin: Springer-Verlag).

Portugali, J. and Benenson, I., 1995, Artificial planning experience by means of a heuristic
cell-space model: simulating international migration in the urban process. Environment
and Planning A 27, 1647-1665.

Schelling, T., 1978, Micromotives and Macrobehavior (New York: Norton).

Semboloni, F., Assfalg, J., Armeni, S., Gianassi, R., and Marsoni, F., 2004, CityDev, an
interactive multi-agents urban model on the web. Computers, Environment and Urban
Systems 28, 45—64.

Shi, W. and Pang, M.Y.C., 2000, Development of Voronio-based cellular automata — an
integrated dynamic model for geographical information systems. International Journal
of Geographical Information Science 14, 455-474.

Silva, E.A. and Clarke, K.C., 2002, Calibration of the SLEUTH urban growth model for Lisbon
and Porto, Portugal. Computers, Environment and Urban Systems 26, 525-552.



214 GEODYNAMICS

Straatman, B., White, R., and Engelen, G., 2004, Towards an automatic calibration procedure
for constrained cellular automata. Computers, Environment and Urban Systems 28,
149-170.

Takeyama, M. and Couclelis, H., 1997, Map dynamics: integrating cellular automata and GIS
through geo-algebra. International Journal of Geographical Information Science 11,
73-91.

Torrens, PM. and O’Sullivan, D., 2001, Cellular automata and urban simulation: where do we
go from here? Environment and Planning B 28, 163—-168.

Waddell, P. 2000, A behavioral simulation model for metropolitan policy analysis and planning:
residential location and housing market components of UrbanSim. Environment and
Planning B 27, 247-263.

Webster, C.J. and Wu, E.,, 1999a, Regulation, land-use mix, and urban performance. Part 1.
Theory. Environment and Planning A 31, 1433-1442.

Webster, C.J. and Wu, F., 1999b, Regulation, land-use mix, and urban performance. Part 2.
Simulation. Environment and Planning A 31, 1529-1545.

Webster, C.J. and Wu, E., 2001, Coase, spatial pricing and self-organising cities. Urban Studies
38, 2037-2054.

White, R. and Engelen, G., 2000, High-resolution integrated modelling of the spatial dynamics
of urban and regional systems. Computers, Environment and Urban Systems 24, 383—
400.

White, R., Engelen, G., and Uljee, 1., 1997, The use of constrained cellular automata for
high-resolution modelling of urban land-use dynamics. Environment and Planning B
24, 323-343.

Wu, F.,, 1998, An experiment on generic polycentricity of urban growth in a cellular automatic
city. Environment and Planning B 25, 731-752.

Wu, F., 2002, Calibration of stochastic cellular automata: the application to rural-urban land
conversions. International Journal of Geographical Information Science 16, 795-818.

Wu, E,, 2003, Simulating temporal fluctuations of real estate development in a cellular automata
city. Transaction in GIS 7, 193-210.

Wu, F. and Martin, D., 2002, Urban expansion simulation of Southeast England using pop-
ulation surface modelling and cellular automata. Environment and Planning A 34,
1855-1876.

Wu, F. and Webster, C.J., 1998, Simulation of land development through the integration of
cellular automata and multi-criteria evaluation. Environment and Planning B 25, 103—
126.

Wu, F. and Webster, C.J., 2000, Simulating artificial cities in a GIS environment: urban growth
under alternative regimes. International Journal of Geographical Information Science
14, 625-648.

Xie, Y., 1996, A generalized model for cellular urban dynamics. Geographical Analysis 28,
350-373.

Xie, Y. and Batty, Y., Chapter 19, this volume.

Yang, X. and Lo, C.P., 2003, Modeling urban growth and landscape changes in the Atlanta
metropolitan area. International Journal of Geographical Information Science 17,
463-488.

Yeh, A.G.O. and Li, X., 2001, A constrained CA model for the simulation and planning of
sustainable urban forms using GIS. Environment and Planning B 28, 733-753.

Yeh, A.G.O. and Li, X., 2002, A cellular automata model to simulate development density for
urban planning. Environment and Planning B 29, 431-450.



CHAPTER 16
The Limits of Simplicity:

Toward GeoComputational Honesty in
Urban Modeling

Keith C. Clarke

CONTENTS
16.1 Introduction .. ...ttt ittt i eans 215
16.2 Simplicityin Models. . ... ... ... i 216
16.3 Honesty in Models and Modeling ................. ..., 218
16,4 ACase Study .. ..ottt 220
16.4.1 The SLEUTHModel ......... ..., 220
16.4.2 SLEUTH Calibration..............c.ccoiieiiiiiinnnnnennn.. 221
16.4.3 The SCOPEModel ......... ..., 222
16.4.4 SCOPE Calibration ............ouuiiiineennnennnennnnnnn. 224
16.4.5 Whatif?. ... 224
16.4.6 What if? Calibration ............. ... iiiiiiiiinennn... 225
16.5 Model CompariSONS . ... ...vuuneeue ettt 226
16.6 DiSCUSSION ..o\ttt 229
Acknowledgments . .. . ... 230
References . ... ... 230

16.1 INTRODUCTION

A model is an abstraction of an object, system, or process that permits knowledge to be
gained about reality by conducting experiments on the model. Constraining modeling
to that of interest to the geographer, a model should abstract geographic space and the
dynamic processes that take place within it, and be able to simulate spatial processes
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usefully. At the absurd extreme, a model could be more complicated than the data
chosen to represent the spatio-temporal dynamics in question. Occam’s razor tells
us, of course, that when two models are of equal explanatory power, the simpler one
is preferred. Einstein stated that “a model should be as simple as possible and yet
no simpler.” Some earth systems are so predictable that they are indeed amenable to
modeling with the simplest of models. For example, the drop in atmospheric pressure
as a function of elevation is so predictable as to be suitable for building a measuring
instrument for the latter using the former as a proxy. Of course few human systems, or
coupled human/environmental systems are this simple. Geography’s past is laced with
attempts to use overly simple predictive or explanatory models for human phenomena,
the gravity model being a good example. In some cases, the simplicity these models
offer serves to produce insight, or at least fill textbooks, in the absence of geographic
laws. In this chapter, I raise the issue of model simplicity, and discuss Einstein’s
question of how much simplicity is enough.

16.2 SIMPLICITY IN MODELS

The problem of model simplicity is that models have multiple components and are
often complicated. Complex systems theory has shown that even simple models can
produce complexity and chaos when given the right initial conditions or rules, though
the theory gives little guidance on how to invert this sequence. Formally, models are
sets of inputs, outputs, and algorithms that duplicate processes or forms. The more
complicated the process or form, the less simple a model can be.

Models have been thought of as consisting of four components. These are (1) input,
both of data and parameters, often forming initial conditions; (2) algorithms, usually
formulas, heuristics, or programs that operate on the data, apply rules, enforce limits
and conditions, etc.; (3) assumptions, representing constraints placed on the data and
algorithms or simplifications of the conditions under which the algorithms operate;
and (4) outputs, both of data (the results or forecasts) and of model performance
such as goodness of fit. Considering modeling itself requires the addition of a fifth
component, that of the modeler, and including their knowledge, specific purpose, level
of use, sophistication, and ethics. By level of use, we distinguish between the user who
seeks only results (but wants credible models and modelers), the user who themselves
run the model, the user who seeks to change the model, and the user who seeks to
design a model. We term the former two secondary users, since the model is taken
as given. The latter two are primary users, and include modelers. Communication
between primary and secondary users usually consists of model documentation and
published or unpublished papers, manuals, or websites.

Spatial inputs and outputs are usually maps, and the algorithms in geography and
geographic information science usually simulate a human or physical phenomenon,
changes in the phenomenon, and changes in its cartographic representation. Modeling
itself, however, is a process. A modeler builds data or samples that describe the inputs,
selects or writes algorithms that simulate the form or process, applies the model, and
interprets the output. Among those outputs are descriptions of model performance,
forecasts of unknown outputs, and data sets that may be inputs to further models.
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Others have sought answers to the simplicity/complexity paradox, although not
always from the context of urban modeling. Smith (1997), for example, examined
the treatment of simplicity versus complexity evident in a series of papers on popu-
lation forecasting. Smith noted that “It is not necessary that simpler models be more
accurate than complex models to be useful” (Smith, 1997, p. 559). Long (1995)
defined three types of complexity (model specification, degree of disaggregation,
and assumptions/alternatives), and Smith argued that these could be used to classify
models by their complexity in each area. He concluded that “There is a substantial
body of evidence, then, supporting the conclusion that more complex models gener-
ally do not lead to more accurate forecasts of total population than can be achieved
with simpler models” (Smith, 1997, pp. 560-561). He pointed out other criteria than
accuracy as being important, and noted that complex models can make the modeler
appear sophisticated, “whereas the use of simple models and techniques may make
him/her appear to be stupid, lazy, or poorly trained” (Smith, 1997, p. 563). Occam’s
razor seems to have many dimensions!

Why might it be necessary to seek the limits of simplicity? I illustrate why using
a practical example of immense environmental significance in the United States, that
of the Yucca Mountain high-level radioactive waste disposal site in Nevada. The
problem requiring modeling is that of finding a permanent, safe, and environmentally
suitable storage location for the thousands of tons of highly radioactive waste from
decades of civilian and military work in nuclear energy. The specifications of this
site are that it should remain “safe” for at least 10,000 years. Safety is defined by
the level of radionuclides at stream gaging stations a few kilometers downstream
from the location. Failure in this case could be at least nationally catastrophic, and
safety depends on the waste remaining dry. The recommendation to bury the waste
deep underground dates back to 1957. The selection of the Yucca Mountain site
came after a very lengthy process of elimination, debate over safe storage and studies
by the regulatory agencies and the National Academy of Science. Scientists at the
Los Alamos National Laboratory in the Earth and Environmental Sciences division
took on the task of using computer simulation to approach the problem of long-term
stability at the site.

Simple risk assessment methodology uses probability distributions on the ran-
dom variables and perhaps Monte Carlo methods to gain knowledge of the overall
probability of failure. As the models become more complex, so also does the prob-
ability density function. In 1993, a study reporting the detection of radionuclides
from Cold War era surface nuclear testing in the deep subsurface at Yucca Moun-
tain introduced the immense complexity of modeling subsurface faults and so-called
“fast hydrographic pathways” (Fabryka-Martin et al., 1993). With the earliest, more
simple, models the travel times of radionuclides to the measurement point was about
350,000 years. Adding Dual Permeability, allowing rock fracture, generated a new
and far more complex model that showed travel times to only tens to hundreds of
years, thereby failing the acceptance criterion. Although more complex, these mod-
els are more credible because they can duplicate the data on the fast hydrographic
pathways.

Nevertheless, highly complex models become cumbersome when dealing with the
public decision-making process. Robinson (2003) notes that for a numerical model
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to be useful in decision making, it must be correct and appropriate to the questions
beings asked from the point of view of the scientists and model developers, and
understandable and believable from the perspective of decision makers. A report noted
that ““ ... the linkage between many of the components and parameters is so complex
that often the only way to judge the effect on calculated results of changing a parameter
or a submodel is through computational sensitivity tests.” (NWTRB, 2002). The
latest model, called TSPA-LA, has 9 major subcomponent models with 9 interacting
processes, and a total of 70 separate models, each with multiple input and complex
interconnectivity. Some components are apparently similar (e.g., Climate inputs and
assumptions), but interact in complex ways (in this case through unsaturated zone
flow and saturated zonal flow and transport). Some submodels produce outputs that
enter into macro-level models directly, while in other cases the same values are inputs
for more models, such as those related to disruptive events.

In such a case, does any one person comprehend the entire model, even at a super-
ficial level? How can it be proven that one or more variables actually contributes to
the explanatory power of the model? More important, how can scientists establish
sufficient credibility in such a complex model that sensible (or even any) political
decisions are possible, especially in a highly charged decision-making environment?
Los Alamos scientists have undertaken a process of model reduction as a consequence.
Model reduction is the simplification of complex models through judicious reduction
of the number of variables being simulated. Methods for model reduction do not yet
exist, and deserve research attention. For example, when does a complex model pass
the layman understandability threshold, and when it does, how much of the original
model’s behavior is still represented in the system? What variables can be made
constant, and which eliminate or assumed away altogether? How much uncertainty
is introduced into a model system by model reduction? In statistics, reducing the
sample size usually increases the uncertainty. Is the same true at the model level?
What are the particularly irreducible elements, perhaps the primitives, of models in
which geographic space is an inherent component? Such questions are non-trivial,
but beg attention if we are to work toward models that hold the credibility of their
primary and secondary users.

16.3 HONESTY IN MODELS AND MODELING

Sensitivity testing is obligatory to establish credibility in complex models. Sensitivity
tests are usually the last stage of model calibration. The modeler is also usually
responsible for calibrating the model, by tinkering with control parameters and model
behavior, and at least attempting to validate the model. While validation may actually
be impossible in some cases (Oreskes et al., 1994), calibration is obviously among
the most essential obligations of modeling. Model calibration is the process by which
the controlling parameters of a model are adjusted to optimize the model’s perform-
ance, that is, the degree to which the model’s output resembles the reality that the
model is designed to simulate. This involves necessarily quantitative assessments of
the degree of fit between the modeled world and the real world, and a measurement
of the model’s resilience, that is, how sensitive it is to its input, outputs, algorithms,
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and calibration. That the obligation to make these assessments is that of the modeler
is part of what the authors of the Banff Statement termed “Honesty in modeling”
(Clarke et al., 2002, p. 296). Honest and transparency are coincident, as Myers and
Kitsuse stated “The heart of the problem lies in the secrecy with which the forecaster
enters assumptions and prepares his models” (Myers and Kitsuse, 2000).

Such an approach could be considered an essential component of modeling ethics
generally, and even more so in Geography where the real world is our target. Uncal-
ibrated models should have the status of untested hypotheses. Such is not often the
case, however. Even reputable peer reviewed journals occasionally publish papers on
models that are only conceptual, are untested, or tested only on synthetic or toy data
sets. These papers are often characterized by statements such as “a visual comparison
of the model results,” or “the model behavior appears realistic in nature.” Assump-
tions go unlisted, limitations are dismissed, data are used without an explanation of
the lineage or dimensions, and fudge factors sometimes outnumber model variables
and parameters. A common practice is to use values for parameters that are “com-
mon in the literature,” or looked up from an obscure source. The Earth’s coefficient
of refraction for the atmosphere, for example, has long been assumed to be 0.13,
a value derived from the history of surveying. This number is a gross average for
a value known to vary from 0.0 to 1.0 and even beyond these limits under unusual
circumstances, such as in a mirage.

While simplicity in model form is desirable, indeed mandatory, what about sim-
plicity in the other four components of modeling? Simplicity is inherent in the model
assumptions, as these are often designed to constrain and make abstract the model’s
algorithms and formulas. Simplicity is not desirable in inputs, other than in parameter
specification, since the best data available to the scientist, in their judgment, should
always be that used. Nevertheless, what data are used as inputs is often determined
by the processing capabilities and the project’s budget. Data output is often also
complex, and requires interpretation, although our own work has shown that simple
visualizations of model output can be highly effective, for example, as animations.
Part of data output is performance data. Should there be simplicity in calibration and
sensitivity testing?

Reviews of the literature in urban growth modeling (e.g., Wegener, 1994; Agarwal
et al., 2000; EPA, 2000) show that precious few models are even calibrated at all,
let alone validated or sensitivity tested. Most common is to present the results of a
model and invite the viewer to note how “similar” it is to the real world. Such a lack
of attention to calibration has not, apparently, prevented the model’s widespread use.
Doubts are often assumed away because the data limitations or tractability issues
exceed these as modeling concerns.

If one uses the argument that we model not to predict the future, but to change it,
then the above concerns are perhaps insignificant. The development of new models
obviously requires some degree of trial and error in model design. Models are also
testbeds, experimental environments, or laboratories, where conceptual or philosoph-
ical issues can be explored (e.g., McMillan, 1996). This is often the case with games,
in which some models are intended for education or creative exploration. Such uses
are similar to the link between cartography and visualization; or science and belief.
These uses are not, strictly, of concern in science. Science-based models have to
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work in and of themselves. Methods for model calibration include bootstrapping and
hind casting. If models are to be used for decisions, to determine human safety in
design, or to validate costly programs at public expense, then clearly we need to
hold models to a more rigorous, or at least more valid, standard. Such issues are of
no small importance in geographical models, and in geocomputation at large. Even
minor issues, such as random number generation (Van Niel and Leffan, 2003), can
have profound consequences for modeling. Whether or not model algorithms and
code are transparent is at the very core of science: without repeatability there can be
no proof of spurious results, falsification, or progress toward theory.

16.4 A CASE STUDY

The simplicity question can be partially restated as: What is the minimum scientifically
acceptable level of urban model calibration? Whether this question can be answered in
general for all models is debatable. A complete ethics code for modeling is obviously
too broad for a single chapter. The domain of concern will be urban models and issues
of their calibration and sensitivity testing. This discussion examines the problem in
the context of a set of three models as applied to Santa Barbara, California. The three
models are the SLEUTH model (Clarke et al., 1997; Clarke and Gaydos, 1998), the
What if? Planning model by Richard Klosterman (2001), and the SCOPE model
(Onsted, 2002).

Using the case study approach, the three models are analyzed in terms of their
components, their assumptions, and their calibration processes. As a means of further
exploring the consequences of modeling variants, their forecasts are also compared
and the spatial dissimilarities explored in the light of the data for Santa Barbara.

16.4.1 The SLEUTH Model

SLEUTH is a cellular automaton (CA) model that simulates land use change as
a consequence of urban growth. The CA is characterized by working on a grid space
of pixels, with a neighborhood of eight cells of two cell states (urban/nonurban),
and five transition rules that act in sequential time steps. The states are acted upon
by behavior rules, and these rules can self modify to adapt to a place and simulate
change according to what have been historically the most important characteristics.
More details about the SLEUTH model can be found in the Chapters 17 and 18 by
Dietzel and by Goldstein.

SLEUTH requires five GIS-based inputs: urbanization, land use, transportation,
areas excluded from urbanization, slopes, and hillshading for visualization. The input
layers must have the same number of rows and columns, and be geo-referenced accur-
ately. For statistical calibration of the model, urban extent must be available for at least
four temporal snapshots, that for four dates, terminating with the most recently avail-
able map. Urbanization results from a “seed” urban file with the oldest urban year,
and at least two road maps that interact with a slope layer to allow the generation
of new nuclei for outward growth. Besides the topographic slope, a constraint map
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Figure 16.1 Forecast urban growth for Santa Barbara in 2030 using SLEUTH. Yellow was urban
in 2000. Red is urban with 100% probability in 2030. Shades of green are increasing
urban, starting at 50%.

represents water bodies, natural and agricultural reserves. After reading the input
layers, initializing random numbers and controlling parameters, a predefined number
of interactions take place that correspond to the passage of time. A model outer loop
executes each growth history and retains statistical data, while an inner loop executes
the growth rules for a single year.

The change rules that will determine the state of each individual cell are taken
according to the neighborhood of each cell, those rules are: (1) Diffusion, (2) Breed,
(3) Spread, (4) Slope Resistance, and (5) Road Gravity. A set of self-modification
rules also control the parameters, allowing the model to modify its own behavior over
time, controlled by constants and the measured rate of growth. This allows the model
to parallel known historical conditions by calibration, and also to aid in understanding
the importance and intensity of the different scores in a probabilistic way. The land
use model embedded within SLEUTH is a second phase after the growth model has
iterated for a single pass, and uses the amount of urban growth as its driver. This
model, termed the deltatron (Candau and Clarke, 2000), is tightly coupled with the
urbanization model. The dynamics of the land cover change are defined through
a four-step process in which pixels are selected at random as candidate locations and
changed by a series of locally determined rules controlled largely by proximity and
the land cover class transition matrix. Forecasts can be for either urban growth alone
(Figure 16.1), or for land cover forecasts and their associated uncertainty (Candau,
2000a).

SLEUTH is public domain C-language source code, available for download
online. It is not suitable for systems other than UNIX or its variants. A sample data
set (demo_city) is provided with a complete set of calibration results. A full set of
web-based documentation is on line at http://www.ncgia.ucsb.edu/projects/gig.

16.4.2 SLEUTH Calibration

SLEUTH calibration is described in detail in Clarke et al. (1996) and Silva and Clarke
(2002). This “brute force” process has been automated, so that the model code tries
many of the combinations and permutations of the control parameters and performs
multiple runs from the seed year to the present (last) data set, each time measuring
the goodness of fit between the modeled and the real distributions. Results are sorted,
and parameters of the highest scoring model runs are used to begin the next, more
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refined sequences of permutations over the parameter space. Initial exploration of the
parameter space uses a condensed, resampled and smaller version of the data sets,
and as the calibration closes in on the “best” run, the data are increased in spatial
resolution. Between phases in the calibration, the user tries to extract the values that
best match the five factors that control the behavior of the system. Coefficient combin-
ations result in combinations of 13 metrics: each either the coefficient of determination
of fit between actual and predicted values for the pattern (such as number of pixels,
number of edges, number of clusters), for spatial metrics such as shape measures, or
for specific targets, such as the correspondence of land use and closeness to the final
pixel count (Clarke and Gaydos, 1998). The highest scoring numeric results from each
factor that controls the behavior of the system from each phase of calibration feed
the subsequent phase, with user-determined weights assigned to the different metrics.
Calibration relies on maximizing spatial and other statistics between the model beha-
vior and the known data at specific calibration data years. Monte Carlo simulation
is used, and averages are computed across multiple runs to ensure robustness of the
solutions.

Recent work on calibration has included testing of the process (Silva and Clarke,
2002), and testing of the temporal sensitivity of the data inputs (Candau, 2000b).
Candau’s work showed that short-term forecasts are most accurate when calibrated
with short-term data. Silva and Clarke showed that the selection process for the
“best” model results is itself an interpretation of the forces shaping urbanization in
aregion. Recent work on Atlanta (Yang and Lo, 2003) has shown that the calibration
process steps that take advantage of assumptions of scale independence are invalid,
meaning that ideally the calibration should take place exclusively at the full spatial
resolution of the data. Discussion of these findings has sometimes taken place on
the model’s on-line discussion forum. In this book, Chapter 17 by Dietzel examines
the impact of changing the geographic extent of the spatial units on the results of
the SLEUTH calibration process. Similarly, Goldstein’s Chapter 18 examines the
substitution of a genetic algorithm for the brute force method that SLEUTH uses.
Both are contributions very much in accordance with furthering honesty in modeling
by critically examining how the model is applied, and by testing variations in model
results that are the consequence of how the input data are aggregated and applied,
rather than by parameter control.

16.4.3 The SCOPE Model

The South Coast Outlook and Participation Experience (SCOPE) model was ori-
ginally based on the UGROW model (EPA, 2000, p. 128), adapted and rebuilt in
PowerSim and eventually rebuilt again at UCSB by graduate student Jeffrey Onsted
in the STELLA modeling language (HPS, 1995; Onsted, 2002). SCOPE is a systems
dynamics model in the Forrester tradition (Forrester, 1969). This type of model posits
simple numerical relations between variables that can be simulated with basic equa-
tions that link values. STELLA allows these empirical relations to be represented in
a complex but logically consistent graphic system, that uses icons and a basic flow
diagram to build the model (Figure 16.2). Variables can be stocks and flows, with
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Figure16.2 Sample STELLA code from the SCOPE model.

measurable interactions with finite units, or factors influencing rates and flows but
not contributing to them directly.

The SCOPE model consists of hundreds of variable-to-variable links, expressed by
equations. Each of these involves its own set of assumptions. These assumptions can
be documented in the model code itself, and in SCOPE’s case are also contained in the
model’s documentation. The complete set of individual assumptions is immense, and
many assumptions are simply minor variants on relations and rates separated for one
of the five economic sectors in the model (population, quality of life, housing, busi-
nesses and jobs, and land use). The housing sector is further divided into low, middle,
and upper income, students and senior citizens. In essence, a separate model is main-
tained for each, with some assumptions enforced to keep aggregates the sum of their
parts. The model, when complete, can be used at several levels. At the modeler level,
actual parameters and links can be modified and the program used to generate statist-
ical output in the form of charts and tables. At the user level, the model has a STELLA
interface that allows users to turn on and off aggregate impacts, such as the application
of particular policies, enforcement of rules and zoning, and sets of assumptions lead-
ing to the particular scenarios being developed by the model’s funders. This is done
using graphical icons representing switches. Atathird and higher level, this interaction
can take place across the world wide web (http://zenith.geog.ucsb.edu). A last level
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uses only the scenarios developed through both this and the SLEUTH model to interact
with integrated planning scenarios (http://zenith.geog.ucsb.edu/scenarios).

The SCOPE model is proprietary in that it was funded as a local not-for-profit
project by the Santa Barbara Economic Community Project. Nevertheless, the model
is on-line, and so can be examined in totality, as can the assumptions behind the model
and formulas used. STELLA is a proprietary modeling environment, but is common
in educational environments, and is subsidized for students.

16.4.4 SCOPE Calibration

SCOPE’s original and secondary design were public participatory experiments.
A series of meetings were conducted with various local stakeholder and citizens
groups, including planners, local activists, the general public, and many others while
the model was partially complete to solicit input on what variables were important
and how they were best modeled. This was a long and arduous process, involving
hundreds of hours of work, but the result was encouraging in that when users under-
stood the model and its assumptions, they had high credibility in its forecasts, even
when they were counterintuitive. For example, SCOPE’s demographic module con-
sistently projected population decline in the region over the next few years, a fact at
first rejected and later accepted by the users.

Obviously no user and few modelers can understand the whole SCOPE model.
Nevertheless, the highly graphic STELLA modeling language and its different user
interfaces meant that all users could zoom into and get specific about critical parts of
the model from their perspective. Separate workshops were eventually held to work
separately on the major sectors of the model. Final integration was largely a guided
trial and error undertaking, with the constraint that as one component changed a
single calibration metric was used, that of the Symmetrical Mean Absolute Percent
Error (SMAPE) (Tayman and Swanson, 1996). Onsted (2002, p. 140-141) stated
“We considered an output ‘validated,” at least for now, if it had a SMAPE of less than
10%. This type of calibration has been called “statistical conclusion validity,” a type of
internal validity, described by Cook and Campbell as “inferences about whether it is
reasonable to presume covariation given a specified level and the obtained variances”
(Cook and Campbell, 1979, p. 41). While such an approach is similar to bootstrapping,
in SCOPE’s case rather extensive sets of historical data on a large number of the
attributes being simulated were available and could be used for SMAPE calculations.
Continued refinements to the model have since improved on the original reported
calibration results. Onsted (2002) conducted a sensitivity test of sorts, providing
a comprehensive bias and error table, and considering the impacts of the errors on
forecasts.

16.4.5 What if?

The What if? modeling and planning support system was developed by Richard
Klosterman at the University of Akron. He describes the system as “an interactive
GIS-based planning support system that supports all aspects of the planning
process: conducting a land suitability analysis, projecting future land use demands,
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and evaluating the likely impacts of alternative policy choices and assumptions”
(Klosterman, 1997, p. 1). The suite of software that constitutes the model is built
on top of ESRI’s ArcGIS using MapObjects and Visual basic. The software
is proprietary, and available from Klosterman’s consultancy via their web site
(http://www.what-if-pss.com).

For this experiment, a software license was obtained and the data for
Santa Barbara, equivalent to the above project, compiled into the ArcView shape
files necessary for What if ? Data preparation in What if? consists of bringing into
the software a large number of data files that contribute to the weighted selection by
overlay of the vector polygons that meet various criteria. Initial preparation consists
of selecting the layers, creating their union, and eliminating errors such as sliver
polygons. This creates a set of Uniform Analysis Zones (UAZs) that are used as the
granularity of analysis. Land suitability for urban use (high and low density residen-
tial, and commercial/industrial) are then computed using standard weighted overlay
multicriterion decision-making methods. The land suitability method was Rating and
Weighting (RAW), using current land use, distances to roads, streams, the coastline
and commercial centers, topographic slope, the 100 year floodplain, and preserving
agricultural land use. The user must select the weights, based on prior experience or
intuition, and the result is a land suitability map (Figure 16.3). These maps find their
way into an allocation routine that determines future demand for each use (based on
exogenous estimates), and assigns development based on probabilities calculated
from the weights. The result is a land suitability map, and maps showing devel-
opment under different assumptions and scenarios about allocations. The software
comes on a CD, which also contains data for a simulated data set (Edge City).

The approach was applied to Santa Barbara and used for the land suitability stage
only. The software distinguishes between drivers (the growth projection and demand)
and factors (the land suitability and assessment, and the land supply). A third stage,
allocation, brings demand and supply together. Thus our application used only part of
the software, which s a full planning support system. Results are shown in Figure 16.3.
Considerable effort was placed into getting the same data as used in SCOPE and
SLEUTH into the What if ? simulation.

16.4.6 What if? Calibration

The What if? documentation contains no information at all about calibration.
References are made to models that use the multicriterion weighted overlay method,
such as CUF II (Landis and Zhang, 1998) and MEPLAN (Echenique et al., 1990).
This tradition goes back to the work of McHarg and Lowry within planning, and is
an established approach. The modeling, or rather forecasting, is an allocation of an
exogenous demand using spatially determined input criteria such as buffers, thematic
layers, exclusion areas, and other factors.

To be fair, the planning approach of What if? is based on assuming an invariant
present and an almost absent past. This is because the model application here dealt
with only the land suitability component of the multi-step What if? approach, so
eliminating the past as a model input and dealing only with overlay of current data.
In the application, past 20-year decadal population totals were used to make linear
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Figure 16.3 (see color insert following page 168) What if? land suitability assessments for
Santa Barbara.

projections of future population as part of the housing demand estimation, but these
were totals only and not spatially disaggregated. Thus the intelligence passes from
the explicit assumptions of the model to the skills and experience of the modeler in
compiling accurate input data, in selecting and computing weights, and in combining
the requisite layers effectively. Forecasting routines are more deterministic, and even
the number of forecast periods is prescribed. The full model bases future projections
on past trends and allows the user to modify future conditions. Consequently, every
time the model is applied to a new area, its application is completely customized, and
while reproducible, is rarely sufficiently documented that the same results would be
attained even from the same data. This is because the What if? approach is seen as
away of engaging participants in the scenario-based planning process, a good example
of what has been called “urban modeling as story telling” (Guhathakurta, 2002). The
model relies entirely on the credibility of the input data and the acceptability of the
results. The actual code is compiled, and while the principles are demonstrated clearly
in the documentation, the actual executable code is a black-box.

16.5 MODEL COMPARISONS

Each of the models applied to Santa Barbara produced a forecast for the year 2030. It
should be pointed out that these models were chosen as being representative of three
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Table 16.1 Comparison of Model Results for Additional Developed Area in Santa Barbara
(2000-2030)

What if? SCOPE SLEUTH
New urban area (ha) 14,006 4,856 2,047
Assumptions All commercial and Base-line scenario Base line as SCOPE.
residential needs assumed (all All pixels with chance
are filled existing plans of urbanization >50%
followed) assumed to become
urban

classes of urban growth modeling strategies: cellular automata, systems dynamics,
and rule-based allocation. Whether or not the results are also representative of these
classes of models will be left for further work. There is considerable value in com-
paring models that use different strategies, particularly because agreement between
models is often seen as an improvement in the reliability of the forecast, especially
in weather and economic forecasting. Comparison between the models can only take
the form of a matching of forecasts, since the actual future distribution and amount of
housing in Santa Barbara in 2030 remains unknown. Thus we can “simply” compare
the models to each other. One of the few values that is an estimate in common among
the forecasts is the additional area of built up land. These directly comparable values
are listed in Table 16.1.

It should be pointed out that even these forecasts have so many caveats as to
be mostly incomparable. The What if ? forecasts come from the “What if?”” growth
report, generated by the software during forecasting. The value is a sum for separate
numbers for low-, high- and medium-density and multi-unit housing, plus commercial
and industrial land. Of this area, far more is allocated to commercial/industrial than to
residential by 8343.5 to 5662.8 ha. It was unclear how applying an exogenous demand
estimate would change these values. Spatially, commercial growth was allocated near
existing areas of that land use and particularly in Carpinteria (furthest east) and
Goleta (west). High-density residential followed the same pattern, while low-density
residential was more scattered.

The SCOPE forecasts were generated by flipping the “base-line” policy switch,
thus in a black-box fashion incorporating all of the general plan assumptions that go
along with this prebuilt scenario. These are listed as follows:

The Baseline scenario assumes that the current urban limit line and other boundaries
shall remain unchanged. Also, the South Coast will continue to build out as outlined in
existing General Plans, Local Community Plans and per existing zoning. The market
forces and demographics that drove change in the past will continue to influence the
construction of new commercial and residential development. Infill will continue as it
has along with redevelopment while large parcels will be more limited. There will be
some extension of urbanized areas. The Gaviota coast, however (with the exception of
Naples), shall be protected as well as the agricultural areas in the Carpinteria Valley.

As such, clearly a greater amount of local knowledge has been built into the forecast,
even though we do not know explicitly what values and parameters have been set.
Such information is, however, buried deep in the documentation.
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For SLEUTH, the assumptions made are summarized as follows: “This scenario
uses the most basic exclusion layer, and uses an additional ‘Urban Boundary’ GIS
layer to constrain growth. The Urban Boundary data was derived through a series of
workshops held by the Economic Forecasting Project of Santa Barbara where local
stakeholders defined a desired spatial limit to urban expansion. All growth in this
scenario is constrained within the urban boundary.” This constraint is the obvious
reason why this is the lowest of the three forecasts. Spatially, the growth is allocated
as infill in Santa Barbara and Goleta, expansion in Gaviota and Carpinteria, and
along a strip following U.S. highway 101 west from Goleta toward Gaviota. Even the
enforcement of the urban boundary, however, seems unlikely to stop urban sprawl.

While the model forecasts are at least comparable, they incorporate not only a new
set of assumptions about future (rather than assumed algorithm and data) behavior, but
also different ways of dealing with uncertainty. Since What if ? was not used beyond
the land suitability phase, no probabilistic boundaries on the spatial or non-spatial
forecasts were given. Nevertheless, the precision of the predictions (the report rounds
data to the nearest 1/10th of a hectare) gives an impression of certainty. The predic-
tions were given at decadal increments. SCOPE’s forecasts are broad, rounded to the
nearest 1000 acres given the error estimates listed in the SMAPE tables. SCOPE does,
however, generate annual amounts for the forecast values, allowing the declining rate
of addition of new urban land to be quite visible. SLEUTH’s forecasts were not forth-
coming. Data from the annual forecast images were brought into a GIS for tabulation.
SLEUTH had by far the most detailed spatial granularity (30 x 30 m? pixels), but
the Monte Carlo treatment of uncertainty added an averaging quality to the estimates.
The new urban areas were ranked by uncertainty. 1606 ha of growth was deemed
95 to 100% certain, with the remainder distributed across the probabilities greater
than 50%. Maps of percent likelihood of urbanization for Monte Carlo simulations
were computed by the SLEUTH program in its predict mode, and were available for
consultation.

So which model’s results are the “simplest?” All require further analysis, inter-
pretation, and require deeper understanding of both the input data and the model.
From the public’s point of view, far more variation in informed decision making
has come from variants in graphical presentation of the results than in their statist-
ical validity, level of calibration, or model robustness. It is not even evident that an
overlay of the maps, or an averaging of the forecasts for specific targets is any more
useful than the same taken independently. Only the passage of time, of course, can
actually validate these forecasts. And in the meantime, especially with the SCOPE
and SLEUTH models being used in devising a new community plan in the form of
the Regional Impacts of Growth Study (SBRECP, 2003) of course the models them-
selves could — indeed are designed to — influence the result. Thus, Heisenberg’s
uncertainty principle places the model’s use ever further from the scientific goals we
set as ethical standards. Where we began with simple ethical directives with data and
algorithms, as we move through the primary to the secondary model user, indeed on
to the tertiary model “decision consumer,” the science of modeling becomes more of
an art, and one highly influenced by the methods used for division, simplification, and
presentation of the modeling results. Perhaps foremost among urban planning uses
in this respect is the use of scenarios as a modeling reduction tool. In each case, the
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model applications discussed here resorted to scenarios when communicating results.
As a method in management science, scenarios indeed have a foundation in experi-
ence, yet this can hardly be claimed for Urban Planning and Geography (Xiang and
Clarke, 2003).

16.6 DISCUSSION

This chapter posed the question of what is the minimum scientifically acceptable
level of urban model calibration? Obviously the minimum (and perhaps the median)
current level of calibration is zero, irrespective of validation. Using the truth in labeling
approach that has permeated the spatial data and metadata standards arena, an obvious
conclusion to answer the question would be that all models should attempt to assess
their internal consistency using whatever methods or statistical means that are suit-
able. The number of digits used to present numerical results should be rounded to
levels appropriate to the expected variation, and at least some measure or estimate
of variance should be made. At the extreme minimum, the lower base would be that
of repetition. The modeler is obliged to say “I ran the experiment twice, and got the
same (or different) results each time.” Without this, the models are not scientific.
At least some kind of report on calibration and sensitivity testing should accompany
every model application too, and certainly if the work is to be peer reviewed.

In the examples and discussion, a whole new suite of meanings of “honesty in
modeling” have emerged. With the five components of modeling, the primary model
user has ethical obligations to the secondary and tertiary users. Thus, data need to
be the best available to the scientist, accurate, timely and of the correct precision
and spatial resolution; algorithms need to be rigorous, relevant, not-oversimplified
and subjected to peer review; assumptions need to be relevant, logical and docu-
mented; and output needs to be thorough, sufficient to detect errors and suitable
for use, and to include performance measures and success criteria for the model.
This discussion introduced a fifth component, the primary modelers themselves. The
modeler has the ultimate obligation to ensure that models are used appropriately,
not only in the scientific sense of being accurate and correct, but in the sense that
their outputs, reductions and simplifications will influence critical decisions, many
involving human safety, most involving efficiency or satisfaction with human life. For
these results, the modeler is equally to blame as the politician who acts upon them.

In conclusion, simplicity is not always a desirada for models or modeling.
Einstein’s statement about how simple is profound. In this case, the challenge becomes
one of reductionism. How simple can a complex model be made to become under-
standable? What is lost when such a model reduction is made? Most members of
society would rather have an incomprehensible model that gives credible and use-
ful results than an understandable model. Our own work has shown us that the
general public seeks to place faith in modelers, and desires credible modelers as
much as credible models. This, of course, places great responsibility on the modeler,
indeed begs the more comprehensive set of ethical standards that today we instill
in our graduate students only casually. We should not only think of ethics when
legal problems arise (Wachs, 1982). Furthermore, there are a whole suite of “more
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simple” reductionist methods that can be applied with minimal effort. Among these
are attention to calibration, accuracy, repeatability, documentation, sensitivity testing,
model use in decision making, and information communication and dissemination.
Modeling with spatial data is hardly in its infancy.

It has been pointed out that the views presented in this chapter assume that
decisions regarding urban development are made scientifically, and that policy makers
think according to the logic of scientific reasoning, and that this is a dubious assump-
tion. There is little doubt that models, or at least modelers, have influenced urban
and regional planning in the past. With increasing use of simulation in all aspects
of human life (Casti, 1997), the flood of data now available for mapping of urban
phenomena, and the ubiquitous availability of analysis tools such as GIS, it is likely
that in the future we will see increasing faith placed by the general public in the
models that become integrated into the planning process. At least once in the past,
during the 1970s, urban modeling’s progress was hampered, and even declared dead,
because of a lack of attention to the seven sins (Lee, 1994). Like it or not, urban
models have risen from the grave, and been given another chance to work, and work
well. Simple models may be understandable to the world at large, but they may not
do an adequate job of simulating the complexity of our world. At the same time,
urban modelers should not just talk among themselves, regardless of how simple or
complex, honest or dishonest their efforts. It is time that GeoComputational mod-
els moved out from behind the curtain, and confronted the complex and complicated
scientific world of GeoDynamics, in the understanding of which they are a useful part.
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17.1 INTRODUCTION

During recent years, models of land use change and urban growth have drawn
considerable interest. Despite past failures in urban modeling (Lee, 1973, 1994),
there has been a renaissance of spatial modeling in the last two decades due to
increased computing power, increased availability of spatial data, and the need for
innovative planning tools for decision support (Brail and Klosterman, 2001; Geertman
and Stillwell, 2002). Spatial modeling has become an important tool for city planners,
economists, ecologists and resource managers oriented towards sustainable develop-
ment of regions, and studies have attempted inventories and comparisons of these
models (Agarwal et al., 2000; EPA, 2000). These new models have shown potential
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in representing and simulating the complexity of dynamic urban processes and can
provide an additional level of knowledge and understanding of spatial and temporal
change. Furthermore, the models have been used to anticipate and forecast future
changes or trends of development, to describe and assess impacts of future develop-
ment, and to explore the potential impacts of different policies (Pettit et al., 2002;
Verburg et al., 2002). Because many of these models are being used to provide
information from which policy and management decisions are made, it is important
that modelers have a clear understanding of how the geographic extent at which they
are calibrating and modeling influences the forecasts that their models produce.
This is directly linked to a larger geographic issue in modeling. Can large-scale
(geographic extent) models accurately forecast local growth compared with smaller-
scale applications, or should state/nation/global modeling be done at a local level and
then aggregated to create a more realistic view?

The concept of geographic extent and how changing it alters a model’s parameter
space, and subsequently model outputs and forecasts is not something that has been
studied extensively. In this work, extent is defined as the geographic boundary of
a system. Generally speaking, when the extent of a geographic system is changed,
so should the statistics that describe the system, and the interactions that take place
within that system. Only in the case of a repeating pattern with small-scale structure,
such as a checkerboard or white noise, is this not true. In the case of urban models,
the effects of geographic extent on model calibration and outputs may be overlooked
or brushed aside due to two constraints that inhibit this type of modeling in general:
(1) many times researchers struggle to get the necessary data to run the models, at
any spatial extent; and (2) as the spatial extent of data gets larger, the computational
time increases, sometimes in more of an exponential manner than a linear one. These
two issues have prohibited urban modelers from addressing sufficiently the issue of
geographic extent and how it relates to urban model output, but even more importantly,
how calibration at different extents can impact model forecasting and final outputs.

With any model, there is an explicit need to calibrate and parameterize the model to
fit the dataset. Recently, modelers have increased their focus on the calibration phase
of modeling to gain a increased understanding of how models, in particular cellular
automata, work (Abraham and Hunt, 2000; Li and Yeh, 2001a; Silva and Clarke,
2002; Wu, 2002; Straatman et al., 2004). The calibration phase of modeling is one,
if not the most important, stage in modeling because it allows the fitting of model
parameters to the input data, to be further used in forecasting. Failure to calibrate
a model to the input data results in an application that is not robust or justifiable.
While these efforts have focused on refining the calibration process and the definition
of parameters for these models, none of them have focused on how calibration at
different spatial resolutions changes the parameter set and the model outputs. For all
models, the “best” parameter space is defined as the area or volume of parameters
that is searched to find the parameter set. The parameter set is then the “best-fit” set
of parameters that describe the behavior of the system within the framework of the
model. The parameter space is defined as an area or volume depending on the number
of individual parameters. If there are only two parameters, then the parameter space in
an area; any more than two then it is a n-dimensional volume. A better understanding
of how spatial resolution changes a model’s parameter set, and hence its outputs, is
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an important area of research, especially when many of these models are used in the
decision-making process.

Should modelers take into account that an urban area may be a transition zone
between two metropolitan areas or is influenced by a larger region in the calibration
process? And how does incorporating the influence of these areas change the param-
eter space, and hence the spatial output of the model? Inclusion of outside influential
areas into local urban models is not a new idea (Haake, 1972), but the study of how
their inclusion changes the parameter space of current models may be. Advances in
computing, especially the advent of parallelization and the cost effective strategy of
“clusters” have significantly deflated the GeoComputational cost of modeling larger
spatial areas at fine spatial resolutions, so inclusion of possibly influential, but outside,
areas is not as much of a taxing task as it once was. Capitalizing on these advances, this
research focuses on the relationship between spatial extent and parameter space, and
how calibration of an urban cellular automata model at varied spatial extent can allow
for forecasts that are more typical of the local-regional interactions taking place.

The SLEUTH urban model is a cellular automaton model that has been widely
applied (Esnard and Yang, 2002; Yang and Lo, 2003; also refer Chapter 16 by Clarke,
and Chapter 18 by Goldstein) and has shown its robust capabilities for simulation and
forecasting of landscape changes (Clarke et al., 1997). The model makes use of
several different data layers for parameterization, for example, multi-temporal land
use and urban extent data, transportation network routes and digital elevation model
data. Application of the model necessitates a complex calibration process to train the
model for spatial and temporal urban growth (Silva and Clarke, 2002). This chapter
documents work done on the role that geographic extent plays in the calibration of
urban models by working with SLEUTH. A large geographic area was calibrated and
modeled at three different geographic extents: global (extent of the entire system),
regional, and county. The derived parameters were then used to forecast urban growth
from 2000 to 2040. The results from the model forecasts were then compared to
determine the extent that calibration at different geographic extents had on model
forecasts. This analysis was then used to examine some general considerations about
the geographic extent over which urban models are calibrated and used, and the
implications that this has for using these models to evaluate policies and scenarios.

17.2 CALIBRATING URBAN AUTOMATA

Modeling geographic systems using cellular automata (CA) models is a recent
advance relative to the history of the geographic sciences (Silva and Clarke, 2002).
Tobler (1979) was the first to describe these models in geography, briefly describing
five land use models that were based on an array of regular sized cells, where the
land use at location i, j was dependent on the lan