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Preface 

There are two groups of users of an applied book on time series analysis 
such as this. The first consists of students (undergraduate or graduate) 
who encounter a course on time series methods in their study of statistics 
or its allied fields. The second consists of workers in the many fields in 
which time series data arise. The fact that this book was written with both 
groups in mind has imposed noticeable constraints on the contents and 
presentation, but they have proved entirely beneficial. 

In the interests of the second group, the statistical level of the presen­
tation has been kept low. The minimum statistical knowledge needed to 
follow the essential sections corresponds to a single introductory course 
in statistics. Greater knowledge of statistics, combined with some expe­
rience in the analysis of observational data, would, of course, allow the 
reader both an easier passage and the opportunity for greater gain along 
the way. 

The interests of students are best served, at least on their first contact 
with time series, by tying the presentation to examples. All the methods 
described in this book are introduced in the context of specific sets of data, 
so that the motivation behind a method is evident as it is developed. The 
abstract properties of a procedure are discussed only when the motivation 
has been solidly established. 

Many people have difficulty when they first encounter Fourier analysis 
or the Fourier transform. The discrete Fourier transform is described in 

vii 



viii PREFACE 

Chapter 4 and is used in one form or another throughout most of the 
remaining chapters. It is elementary from a mathematical point of view, 
involving nothing more advanced than the summation of finite series, 
not even calculus. However, the properties of the discrete transform are 
analogous to those of other types of Fourier transform. Careful study of 
Chapter 4 and the expenditure of some time on its exercises will convince 
the most faint-hearted that Fourier transforms can be fun! 

Complex numbers are used extensively in deriving the properties of the 
discrete Fourier transform, but purely for notational simplicity. To follow 
the algebra it is necessary only to know the rules for obtaining the sum 
and product of two complex numbers. 

The topics discussed are as follows: 

(i) Harmonic regression: least squares regression on one or more sinu­
soids (Chapters 2 and 3); 

(ii) Harmonic analysis: the discrete Fourier transform and periodogram 
analysis (Chapters 4, 5, and 6); 

(iii) Complex demodulation: local harmonic analysis, and the complex 
time series (Chapter 7); and 

(iv) Spectrum analysis (Chapters 8,9, and 10). 

The order of the discussion is dictated by the increasing complexity of the 
statistical concepts involved. At all stages of the book, the reader is urged 
to stop and consider the appropriateness of applying a particular method 
to the time series being studied. In several cases, some preprocessing is 
carried out to make the analysis more appropriate. This is all designed 
to make the point that any data-analytic procedure based on the sine and 
cosine functions has a better chance of yielding useful concluSions if the 
data show some kind of oscillation, preferably as uniform or as regular 
as possible. 

Exercises will be found at the ends of many sections. Some are algebraic 
manipulations designed to make the reader more familiar with the tools of 
discrete Fourier analysis, and to build the reader's confidence. Others are 
used to indicate some of the directions in which the theory of time series 
analysis has revealed useful results. However, the most useful exercise, 
one that should be omitted by no serious reader, is the analysis of data. All 
of the time series used as examples in this book are readily obtained, for 
instance on the Internet. Footnotes give complete directions for retrieving 
each set of data as of this writing. However, the reader who tries the 
methods on data arising in his or her own field will gain the added benefit 
of seeing these data from a new point of view. 
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All of the analysis of examples was carried out in the S-PLUS environ­
ment. Appendices to some chapters discuss particular functions that 
were used. Other data analysis software such as SAS or MATLAB may 
be used to carry out essentially similar analyses. 

Bookmarks for the data and S-PLUS dumpOs of the versions used in 
this edition will be found at http://www . stat. ncsu. edul ~b 1 oomfl dl 
FATS/. More extensive samples of code are available at the same site, 
and other material will be posted there from time to time. This site is al­
so accessible through the Wiley statistics page, http://www . w; 1 ey . eoml 
stat; st; es. 

This second edition differs from the first in various ways: 

• The material on harmonic regression has been split into two chap­
ters, the first dealing with the case of known frequencies, and the 
second dealing with unknown frequencies that need to be estimated. 

• The discussion of the fast Fourier transform has been abridged. 

• Discussion of complex demodulation has been extended to include 
construction of the complex analog of an observed time series. 

• Throughout, frequencies are expressed in cycles per unit time rather 
than the less useful radians per unit time, and the definitions of 
periodograms and spectra have been changed accordingly. 

• One time series used in examples has been omitted, and some new 
ones have been introduced. 

I was encouraged to write this book by Geoffrey Watson, who saw clear­
ly the need for an introductory text on Fourier methods not encumbered 
by an abundance of mathematical, probabilistiC, or statistical detail. With 
sadness, I note his passing in 1998. The time series community lost an­
other of its most eminent members with the death of E. J. Hannan in 1994. 
Both are missed, as colleagues and as friends. 

Many years have gone into the preparation of this second edition, with 
the encouragement of many and against the advice of a few; all shall re­
main nameless-you know who you are-I respect all the opinions that 
have been offered on the subject. Many thanks to all who have offered 
corrections or other comments-without you, this would not have been 
possible; all remaining or newly introduced errors are wholly mine. 

Raleigh, North Carolina 

November 1999 

PETER BLOOMFIELD 
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1 
Introduction 

A time series is a collection of numerical observations arranged in a natu­
ral order. Usually each observation is associated with a particular instant 
or interval of time, and it is this that provides the ordering. The observa­
tions could equally well be associated with points along a line, but when­
ever they are ordered by a single variable it is referred to conventionally 
as "time." It will generally be assumed that the time values are equally 
spaced. 

There are many situations in which more than one aspect of a phe­
nomenon is observed at each time point, and this gives rise to multiple 
time series. In other situations each observation is associated with the 
values of a number of variables (or, in other words, with a point in a 
space of dimension higher than 1). Such data are called spatial series, 
the most common form being observations associated with points in the 
plane. Both of these types of data are generalizations of the simple time 
series, and each requires the appropriate extension of simple time series 
methods. However, many of the considerations that arise in the analysis 
of such series arise also in the analysis of simple time series, to which the 
bulk of this book is devoted. 
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Fig. 1.1 Monthly average total ozone levels, 65° S to 65° N. 

1.1 FOURIER ANALYSIS 

In its narrowest sense, the Fourier analysis or harmonic analysis of a time 
series is a decomposition of the series into a sum of sinusoidal compo­
nents (the coefficients of which are the discrete Fourier transform of the 
series). However, the term is used in a wider sense to describe any data­
analysiS procedure that describes or measures the fluctuations in a time 
series by comparing them with sinusoids. 

Figure 1.1 shows a set of data that are used in Chapter 2 to illustrate 
harmonic regression. They are monthly average global ozone column lev­
els, from November 1978 to April 1993. The measurements were made 
by the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus-7 satel­
lite (Stolarski et al., 1991). The TOMS instrument produces a global map 
of ozone levels each day. These were averaged by month from 65 0 S to 
65° N, the part of the globe for which largely complete data are available. l 

The figure shows a clear annual variation superimposed on a small down­
ward trend. Sinusoids may be used to approximate the seasonal variation 
and by subtracting these components the long term trend is made more 
visible. Other sources of variability on shorter time scales also become 

IThese ozone data were obtained from NASA's TOMS website, http://jwocky . gsfc. 
nasa. gov /. Zonal, hemispheric, and global means for Version 7 of the ozone lev­
els are in ftp://toms.gsfc. nasa. gov/pub/ni mbus7 /data/zonal\_means/ozone/zm\ 
JIlonth. n7t. 
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Fig. 1.2 Magnitude of a variable star at midnight on 600 successive nights (from Whit­
taker and Robinson, 1944, p. 349). 

apparent when the strong annual cycle is removed. 
Another set of data that is used as an example in Chapters 3 and 6 is 

shown in Figure 1.2. It represents 

the magnitude (i.e., a measure of the brightness) of a variable star at 
midnight on 600 successive days. (These magnitudes were obtained 
by reading off from a curve, on which all of the star's brightness were 
plotted: they have been reduced to a scale suitable for periodogram 
analysis.) 

(From Whittaker and Robinson, 1944, p. 349).2 This example differs from 
the previous one in that here there is no guidance as to what periods 
might be present. This time series is shown in Chapter 3 to consist ap­
proximately of the sum of two sinusoidal components, and in this case 
Fourier analysis in its narrower sense (with some slight modifications dis­
cussed in Chapter 6) provides an accurate and economical description of 
the data. 

2The variable star series is available online at the OzData archive http://www.maths . 
uq.oz.au/-gks/data/index.html maintained at the University of Queensland, Aus­
tralia. The series is described in the entry http://www.maths.uq.oz.au/-gks/data/ 
general/star .html and the data may be retrieved from http://www.maths.uq.oz.au/ 
-gks/data/general/star. txt. The series is also contained in the time series archive 
http://www.york.ac . uk/depts/maths/data/ts/welcome. htmmaintained by the Uni­
versity of York, England, where it will be found in the entry http://www.york.ac . uk/ 
depts/maths/data/ts/ts26.dat. 
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Fig. 1.3 Annual sunspot numbers, 1700 to the present (from the Solar-Terrestrial 

Physics site at the National Geophysical Data Center. 

Figure 1.3 shows a third set of data used as an example, the annual 
sunspot numbers from 1700 to the present.3 Although these data con­
tain a clear succession of peaks occurring about every 11 years, they are 
not regular enough to be represented by anyone sinusoid. A local form 
of harmonic analysis known as complex demodulation may be used to de­
scribe the oscillations in these data. 

Figure 1.4 shows the index of wheat prices in Western Europe4 pre­
sented by Beveridge (1921). Again there is a succession of peaks in the 
data, but no tendency for them to occur in any regular fashion is evident. 
Harmonic analysis reveals that there are few if any persistent sinusoidal 
components in these data. Nevertheless, the oscillations in this series (or 
a suitably transformed series) may be described in sinusoidal terms by a 
spectrum analysis. This is a method that describes the tendency for oscil­
lations of a given frequency to appear in the data, without requiring them 
to persist throughout. 

3 Annual sunspot numbers are maintained online at the Solar-Terrestrial Physics site of the 
U.S. Department of Commerce's National Geophysical Data Center http://WNW . ngdc. 
noaa.gov/stp/stp.html. The series is in the entry ftp://ftp.ngdc.noaa.gov/STP/ 
SOLAR'-OATA/SUNSPOT\_NUMBERS/YEARLY.PLT. 
4The wheat price index may be found at the University of York's time series archive, in 
the entry http://WNW.york.ac.uk/depts/maths/data/ts/ts04.dat. Beveridge also 
created a "trend-free" version of the index, which is also in the archive: http://WNW . 
york.ac.uk/depts/maths/data/ts/tsOS.dat. 
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Fig. 1.4 Index of wheat prices in Western Europe, 1500 to 1869 (average from 1700 

to 1745 = 100). 

All of these methods fall under the heading of Fourier analysis in its 
wider sense. In the following chapters the methods are described in detail, 
and applying them to various sets of data shows how they may be used 
to draw various inferences about the data being analyzed. 

1.2 HISTORICAL DEVELOPMENT OF FOURIER METHODS 

The simplest periodic data are those consisting of a single cosine wave 

Xt = Rcos2rr(jt + cp), 

observed with very little error. For example, early Egyptian and Greek as­
tronomers had sufficiently accurate observations of the apparent motion 
of the sun to know that the length of the year is approximately 365.25 
days. Julius Caesar relied on the advice of the Greek astronomer Sosi­
genes when, in 46 B. C, he enshrined this value in a reformed, or Julian, 
calendar (Richards, 1998). 

Data that contain more than one periodic component are more difficult 
to analyze. In 1772, Lagrange proposed a method based on the use of 
rational functions to identify such components, and used it to analyze 
the orbit of a comet (see Lagrange, 1873). Like related methods proposed 
by Dale (l914a,b) and Prony (Hamming, 1987, Section 39.4), the method is 
tedious to apply to any but the shortest of series, and it is very sensitive 
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to errors or other disturbances in the data. 
The first procedure to be used at all widely, and the first to be feasible 

for moderate numbers of data points, was described in 1847 by Buys­
Ballot (see, e.g., Whittaker and Robinson, 1944). This is a tabular method 
and is most easily used to detect a periodic component for which one 
cycle covers a whole number of observations. A more sophisticated ver­
sion, described by Stewart and Dodgson (1879), may be used with some 
computational effort to improve the estimate of an approximately known 
period. The procedure is discussed in detail by Whittaker and Robinson 
(1944) in Chapters 10 and 13, and Anderson (1994) on pages 106-112. 

The Fourier analysis of a series of numbers may be carried out by a 
similar tabular technique, described by Schuster (1897). This method 
was used in the second half of the nineteenth century to find periodic 
components of known periods in tidal data, meteorological series, and 
astronomical series. However, the computations involved were repetitive 
and tedious. Again, the method is easiest if the period of the component 
covers a whole number of observations. Thomson (1876,1878) described 
and built an instrument for carrying out this analysis mechanically and 
claimed that it would reduce the time needed for an analysis by a factor 
of 10. Stokes (1879), in a comment on the report of Stewart and Dodgson 
(1879), pointed out that Thomson's harmonic analyzer could also be used 
to determine the unknown period of a component in a series. The method 
is related to complex demodulation 

However, when Fourier analysis is used to search for periodic com­
ponents of unknown period in empirical data, the results may be very 
misleading. For instance, Knott (1897) claimed to have discovered compo­
nents in a series of Japanese earthquakes with periods related to the lunar 
cycle. Schuster (1897) then showed that their magnitudes were not large 
enough to be statistically significant. Schuster (1898) provided additional 
discussion of the Fourier analysis of empirical data, introduced the peri­
odogram, and made many penetrating comments on its use. In some fur­
ther papers (Schuster, 1900, 1906) he applied these ideas to the analysis 
of various sets of data, including the sunspot series (Figure 1.3). Beveridge 
(1921, 1922) gave an extensive periodogram analysis of the wheat-price 
index (Figure 1.4), which at the time constituted a major computational 
venture. 

The probabilistic and statistical theory of time series was developed 
during the 1920s and 1930s (see Wold, 1954), and the concept of the 
spectrum of a series was introduced. This concept was in fact the subject 
of a remarkable note by Einstein (1914) (see also Brillinger, 1993; Yaglom, 
1987). The spectrum measures the probable amplitude of the oscillations 
in a series as function of frequency, and therefore shifts attention away 
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from the search for unknown periodicities in a series toward the usually 
more informative study of the relative amplitudes at all frequencies. 

In the 1940s and 1950s there was great interest in the problem of 
estimating the spectrum of a series. Daniell (1946) pointed out that a 
smoothed form of the periodogram is a suitable estimate, as had Ein­
stein (1914). This was followed up by Bartlett (1948) and Kendall (1948), 
while Hamming and Tukey (1949) proposed a slightly different procedure. 
There followed a rapid development of the theory and practice of spec­
trum estimation, to which major contributions were made by Grenander 
and Rosenblatt (1953, 1957), Parzen (1957a,b), and Blackman and Tukey 
(1959). The stimulus for this development was the increase in the use of 
Fourier methods in many fields, principally electrical engineering in its 
diverse forms, and the parallel increase in the availability of computers 
to carry out the extensive computations involved. 

The next major advance was in the computation of Fourier transforms 
of data. Cooley and Tukey (1965) described an algorithm that Significant­
ly reduces the computational effort involved. The fast Fourier transform, 
as it became known, together with advances in computer technology, has 
made feaSible the routine Fourier analysis of extensive sets of data (see, 
e.g., Brigham, 1988). The spectrum estimation techniques described in 
Chapters 8 and 10 are designed to take full advantage of these computa­
tional advances. 

1.3 WHY USE TRIGONOMETRIC FUNCTIONS? 

The essence of Fourier analysis is the representation of a set of data in 
terms of sinusoidal functions. At this point it seems appropriate to justify 
the choice of these particular functions, since many other families of peri­
odic functions share at least some of the properties of the sinusoids. Any 
of these families could be used in a similar way, and in some situations 
special considerations may make a nonsinusoidal family more suitable. 
For instance, square waves are used in the Haar transform and the related 
Haar wavelets, which have found fruitful application in signal process­
ing, especially of images. However, sinusoids have some characteristic 
properties which give them a distinguished role. 

The most basic property of the sinusoids that makes them generally 
suitable for the analysis of time series is their simple behavior under a 
change of time scale. A sinusoid of frequency f (in cycles per unit time) 
or period 1/ f (in units of time) may be written as 

c(t) = R cos 2rr(jt + </», (1.1) 
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where R is the amplitude and <I> is the phase. If the time variable is 
changed to u = (t - a) / b, which incorporates a change of both origin 
and scale, c(t) becomes 

d(u) = c(a + bu) 

= R cos 2rr(fbu + <I> + fa) 

= R' cos2rr(j'u + <1>'), 

say, where R' = R, J' = fb, and <1>' = cf> + fa. Thus the amplitude is 
unchanged, the frequency is multiplied by b (the reciprocal of the change 
in the time scale), and the phase is altered by an amount involving the 
change of time origin and the frequency of the sinusoid. Since the time 
origin associated with a set of data is often arbitrary, the simplicity of 
these relationships is useful. In particular, since the amplitude of the 
sinusoid depends on neither the origin nor the scale of the time variable, 
it may be regarded as an absolute quantity with no arbitrariness in its 
definition. 

Another interesting property is that a sum of sinusoids with a common 
frequency is another sinusoid with the same frequency. In fact, since 

R cos 2rr(jt + <1» = R cos 2rr ft cos 2rrcf> - R sin 2rr ft sin 2rrcf>, 

any sinusoid with frequency f is a linear combination of the two basis 
{unctions cos 2rr ft and sin 2rr ft, and the converse is also true (see, e.g., 
Section 2.2). 

In interpreting the sinusoid (1.1) it is often helpful to rewrite it as 

c(t) = R cos 2rr f(t - to), 

where to = -<I>1f is a time at which the curve reaches its maximum. 
The effect of the change of time scale from t to u is now to change the 
sinusoid to 

d(u) = R' cos 2rrf' (u - uo), 

where R' = R and J' = fb as before, and Uo = (to - a)/b is the time of 
the same maximum represented on the transformed scale. 

A further useful feature of the sinusoids is their behavior under sam­
pling (Le., observing a function of the continuous variable t at an equally 
spaced set of values to, tl. ... ), for if the sampling interval is ~, the sinu­
soids 

R cos 2rr(jt + cf» and Rcos2rr(j't + <1» 

are indistinguishable if f - f' is a multiple of 1 / ~. This phenomenon, 
known as aliaSing, is discussed further in Section 2.5. 
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2 
Fitting Sinusoids 

The simplest use of sinusoids in data analysis is to describe and isolate 
the periodic part of a series, when the periods are known. This amounts to 
estimating their amplitudes and phases, although it is easier to approach 
the problem in slightly different terms. 

2.1 CURVE-FITTING APPROACH 

As an example, consider the ozone data of Figure 1.1 (p. 2). These data 
show a pronounced annual cycle, though not of a simple sinusoidal form. 
Nevertheless, the dominant part of the annual cycle may be expected to 
be represented in the form 

St = /.l + R cos2rr(jt + cp) (2.1) 

where the frequency is f = 1/12 cycles per month. The data {XO,Xl, .. ·, 

xn-d will be modeled as 
Xt = St + et, 

where et is the residual at time t (i.e., whatever is needed to make the 
equality exact). The model is regarded as good (and is said to fit the data 
well) if the residuals are generally small. The term /.l is an added constant. 
Since a cosine wave oscillates about 0, while the data oscillate around the 
value 300, such a term is clearly needed if the residuals are to be at all 

9 
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small. 
The unknown parameters are J.l, R, and cf>; the next section will de­

scribe how to find values for them that make the residuals as small as 
possible in a certain specific sense. The situation where j is also un­
known will be covered in the following chapter. 

For the purposes of this chapter, the size of the residuals as a group will 
be measured by the sum of their squared values, although other choices 
are possible. Thus the problem is to find J.l, R, and cf> to minimize 

n 

S (J.l , R, cf» = L {x t - J.l - R cos 2rr (J t + cf»} 2 
, 

t=O 

the term between braces being precisely the t th residual for given values 
of J.l, R, and cf>. This is an example of the method of least squares. Least 
squares methods are widely used and have many computational and the­
oretical conveniences. However, they also have certain defiCiencies, one 
of which will be mentioned briefly in Section 6.3. 

It is easily seen that least squares problems are simplest when the mod­
el is a linear function of the unknown parameters, since then the function 
to be minimized is quadratic in the same quantities. Equation (2.1) is 
nonlinear in cf>, but it may be rewritten as 

St = J.l + Acos2rrjt + BSin2rrjt, 

where A = R cos 2rrcf> and B = -R sin2rrcf>. Furthermore, given any 
values of A and B, the corresponding values of R and cf> may be found. 
The parameters will therefore be taken to be J.l, A, and B, and the model 
is now linear. The elementary problem of finding J.l, A, and B will be 
solved in the next section. 

Exercise 2.1 The Least Squares Straight Line 

Suppose that (x1.yd, (X2,Y2), ... , (xn,Yn) are points in the plane. 
It is sometimes useful to model such a set of points by a straight line, 
Y = a + bx. The least squares straight line has parameter values it and 
b that minimize the sum of squared residuals, 

n 

S(a,b) = L (Yi - a - bxd 2• 

i=l 
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(i) Verify that, provided the x -values are not all the same, 

and 

n 

LYi(Xi - x) 
b == .:..i=-::;l ___ _ 

n 
L(Xi _X)2 

i=l 

a=y- bx, 

where x = (Xl + X2 + ... + Xn) In and y is similarly defined. 

(li) Find the corresponding formulas for the coefficients of the least 
squares parabola, Y = a + bx + CX2. 

Note that both problems are simplified by writing x' = x - x, and chang­
ing the equations to Y = a' + b' x' and Y = a' + b' x' + c' x' 2 , respectively. 

2.2 LEAST SQUARES FITTING OF SINUSOIDS 

This section covers how to estimate the parameters of a sinusoid, with or 
without an added constant. The frequency j is regarded as known and is 
not varied to improve the fit. In the next chapter the method is extended 
to include the estimation of j. First consider the simple two-parameter 
model of a sinusoid with no added constant. The model is 

Xt = Acos 2rrjt + B sin2rrjt + et, 

and the principle of least squares leads to the minimization of 

n-l 

S(A,B) == L (Xt -Acos2rrjt-Bsin2rrjt)2, 
t=O 

keeping j fixed. Now 

~~ = -2 L cos 2rrjt(xt - A cos 2rrjt - B sin2rrjt), 

~~ = -2Lsin2rrjt(xt -Acos2rrjt-Bsin2rrjt), 
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and the equations that result from equating these to zero have the solu­
tion 

A = A =~ {IXtcos2rrft I(sin2rrft)2 

- I Xt sin 2rr ft I cos 2rr ft sin 2rr ft} , (2.2) 

B = 13 = ~ {I Xt sin 2rr ft 2) cos 2rr ft)2 

- I Xt cos 2rr ft I cos 2rr ft sin 2rr ft} , 

where 

~ = I(cos 2rr ft)2 I(Sin2rrft)2 - (I cos 2rrft sin2rrft)2 . 

The sums involving only trigonometrical functions may be evaluated using 
the results of Exercise 2.2 to give 

I(cos 2rrft) 2 = % {l + Dn(2j) cos 2rr(n - l)f}. 

I cos 2rrft sin2rrft = ~ Dn(2j) sin 2rr (n - l)f, 

I(sin2rrft)2 = %{l- Dn (2j) cos2rr(n -1)f}, 

and hence 

where 

D (j) = Sin.rr fn 
n nSIDrrf 

(2.3) 

is a version of the Dirichlet kernel (Titchmarsh, 1939, p. 402). The sums 
involving {Xt} usually have to be evaluated directly. 

To find R and cp, the amplitude and phase, the equations 

A=Rcos2rrcp and B=-Rsin2rrcp 

must be solved. Since R is nonnegative, it follows that R = J A 2 + B2 . 
The basiC equation for cp is tan2rrcp = -BfA. However, the solution 
2rrcp = arctan-BfA is incomplete, since this gives the same value for 
(-A, -B) as for (A, B). A full solution which gives an answer in the in-
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terval (-1/2,1/2] is 

arctan( -BIA), A>O, 

arctan(-BIA) -rr, A < O,B > 0, 

2rr</> = 
arctan(-BIA) + rr, A < O,B 5 0, 

-rr /2, A = O,B > 0, 

rr /2, A = O,B < 0, 

arbitrary, A=O,B=O. 

(The FORTRAN function ATAN2 (-B, A) returns the required value while in 
S-PLUS it is atan (-b, a). SAS has the function atan, but this is precisely 
arctan, and the above extension must be used to give the correct answer 
when A 5 0.) 

Since the ozone series oscillates around a positive value, an appropriate 
model to describe the dominant part of the seasonal oscillation is the 
three-parameter "sinusoid plus constant" model given in Section 2.1, 

Xt = J.l + Acos 2rrft + B sin2rrft + et. (2.4) 

The equations for the least squares estimates of /1, A, and B are 

2)Xt - /1- Acos 2rrft - B sin2rrft) = 0, 

L. cos 2rrft(xt - /1- Acos 2rrft - B sin2rrft) = 0, and 
(2.5) 

L. sin2rrft(xt - J.l- Acos 2rrft - B sin2rrft) = 0. 

These too may be solved explicitly (see Exercise 2.3). For the ozone data 
with f = 1 I 12 cycles per month, the solution is 

Xt = 293.017 - 4.274cos 2rrft + 1.16sin2rrft 

= 293.017 + 4.429 cos 2rr(jt - 0.458). 

The fitted seasonal curve is shown in Figure 2.1. The residuals, which may 
be interpreted as deviations from this seasonal curve, are also shown. The 
deviations exhibit a pronounced semi-annual wave, which suggests that 
the model (2.4) should be extended to include such a wave. Fitting models 
with more than one sinusoidal component is discussed in the following 
section. 
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Fig. 2.1 Three-parameter seasonal curve fitted to the ozone series (upper graph), and 
residuals (lower graph). 

Exercise 2.2 Some Trigonometric Identities 

(i) Show that 

n-1 e2rriJn 1 
"" e2rriJt = -
L.. e2rriJ - 1 
t=O 

. erriJn _ e-rriJn 
= e TTlJ (n -1) _-..,..,..-__ :-::­

erriJ - e-rriJ . 

(ii) Use the Euler relation 

eix = cosx + isinx 
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and its inverse 

1 ( . . ) cos x = 2" elX + e-lX 
, 

1 ( . . ) sinx = 2i etX 
- e- tX 

to deduce that 

n~l sinrrfn 
L. cos 2rrft = cos{rrf(n - l)} . f = cos {rrf(n - l)}nDn(f), 
t=O sm rr 

nil sin2rrft = sin{rrf(n _ I)} srr: rr ffn = sin{rrf(n - 1) }nDn(f), 
t=O sm rr 

where Dn (f) was defined in (2.3) (strictly, only for f +- 0, ± 1, ... ; by 
continuity, Dn(O) = 1, etc.). Note that (n - 1)/2 = f is the average 
of the time values 0, 1, ... ,n - 1, and that the results may be written 

n-l 

L cos 2rrft = cos(2rrff)nDn(f), 
t=o 
n-l 

L sin2rrft = sin(2rrff)nDn(f). 
t=O 

(iii) Use the addition formulas 

sin(x + y) = sin x cosy + cos x siny, 

cos(x + y) = cos x cos y - sin x siny 

and their inverses 

to evaluate 

1 
cosxcosy = 2" {cos(x + y) + cos(x - y)}, 

cosxsiny = ~{Sin(X + y) + sin(x - y)}, 

sin x siny = ~{COS(X - y) - cos(x - y)}, 

L cos 2rr ft cos 2rr j' t, 

L cos 2rrft sin2rrj't, 

L sin 2rr ft sin 2rr j' t. 

Note the special forms of the answers when f = f'. 
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Exercise 2.3 The Three-parameter "Sinusoid Plus Constant" Model 

The derivatives of 

n-l 

5(11, A,B) = 2, (Xt - 11 - Acos 2rrjt - B sin2rrjt)2 
t=O 

with respect to 11, A, and B are 

05 n-l a = -2 2, (Xt -11- Acos2rrjt - BSin2rrjt), 
11 t=O 

05 n-l 
oA = -22, cos2rrjt(Xt-I1-Acos2rrjt-Bsin2rrjt), and 

t=O 

a n-l 

o~ = -2 2, sin2rrjt(xt -11-Acos2rrjt - Bsin2rrjt), 
t=O 

respectively. Simplify these expressions using the results of Exercise 2.2, 
and solve them for the least squares estimates p, A, and B of 11, A, and 
B, respectively. 

Exercise 2.4 The Sum of Squares Associated with a Frequency 

(i) For the two-parameter model, show that the residual sum of squares 
5 (A, B) may be written as 

5(A,B) = 2, x; - i {(2,XtCOS2rrjt)2 2, (sin 2rrjt) 2 

- 2 2,Xt cos2rrjt 2, Xt sin2rrjt 2, cos2rrjt sin2rrjt 

+ (2, Xt sin 2rr jt) 
2

2, (cos 2rr jt)2 } , 

and use the results of Exercise 2.2 to evaluate the purely trigono­
metric sums. 

NOTE: This equation may be interpreted as 

sum of squares of reSiduals 

= sum of squares of original data 

- sum of squares associated with frequency j. 

(ii) Find the corresponding expression for the sum of squares associated 
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with j in the three-parameter model, defined by the equation 

sum of squares of residuals 

= sum of squares of original data 

- sum of squares associated with J1 

- sum of squares associated with frequency j, 

where 
sum of squares associated with J1 = nx2• 

2.3 MULTIPLE PERIODICITIES 

Figure 2.1 made it clear that the seasonal behavior in the ozone series 
could not be described by a single sinusoid with the annual frequency 
(1/12 cycles per month). If a semi-annual wave is added to the model (2.4), 
the resulting five-parameter model is 

Xt = J1 + Al cos 2rr jt + BI sin 2rr jt 

+ A2 cos4rrjt + B2 sin4"jt + et, 

which may be fitted using an extension of the equations (2.5) (see Exer­
cise 2.5). The fitted curve is 

Xt = 293 - 4.205 cos 2" jt + 1.075 sin 2rr jt 

- 2.614cos4rrjt + 1.477sin4"jt 

= 293 + 4.34 cos 2"(jt - 0.46) 

+ 3.003 cos 2rr(2jt - 0.418). 

The fitted seasonal curve, with both components, and the corresponding 
residuals are shown in Figure 2.2. The new deviations show no obvious 
periodicity, and subtracting out the seasonal part of the original data has 
allowed the other variations, notably the downward trend but also some 
variations on a two- to three-year time scale, to be seen more clearly. 

Exercise 2.5 Fitting Two Sinusoids 

To fit the general model with two sinusoids, 

Xt = J1 + Al cos2"/It + B Sin2"jIt 

+ A2 cos 2rr ht + B2 sin4rr ht + et, 
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Fig. 2.2 Five-parameter seasonal curve fitted to the ozone series (upper graph), and 
residuals (lower graph). 

the sum of squares function 

n-l 

S(J.I,AI ,BI,A2,B2) = L (Xt - J.I- Al cos 2rrfit - BI sin 2rrfl t 
t=O 

- A2 cos Zrr ht - B2 sin2rrht)2 

must be minimized. Its derivatives are 

oS n-I a = -2 L (Xt - J.I- Al cos 2rrfit - BI sin2rr fIt 
J.I t=O 

- A2 cos Zrr ht - B2 sin Zrr ht), 
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a n-l 

a~. = -2 L. cos2rrlit(Xt - 11- Al cos2rrflt - Bl sin2rrflt 
J t=O 

- A2 cos2rrfzt - B2 sin2rrfzt), j = 1,2 

as n-l 

aBo = -2 L. sin2rrfjt(xt - 11- Al cos2rrflt - Bl sin2rrflt 
J t=O 

- A2 cos 2rr fzt - B2 sin 2rr fzt), j = 1,2. 

Simplify these expressions using the results of Exercise 2.2, and specialize 
them to the case fz = 2fl . 

2.4 ORTHOGONALITY OF SINUSOIDS 

Comparing the coefficients in the three- and five-parameter models fitted 
to the ozone series reveals an interesting detail: the constant term and 
the coefficients of the annual wave changed when the semi-annual wave 
was added to the model, but by very little, even though the semi-annual 
term itself was comparable in size with the annual term. In general, coef­
ficients in a fitted equation do not change only when the newly introduced 
variables are orthogonal to those in the existing equation. This suggests 
that the cosine and sine at the semi-annual frequency are not orthogonal 
to the constant term or the annual terms, but are nearly so. This near 
orthogonality is explored in this section, and a condition is found under 
which it becomes exact orthogonality. 

The due lies in the coefficients of the equations derived in Exercises 
2.3 and 2.5, which define the respective fitted coefficients. These equa­
tions may be approximated by 

nil = L.Xt, 

n
A 

'" "2A = L.Xt cos2rrft, 

n
A 

'" "2B = L.Xt cos2rrft 

and 
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respectively, where the coefficients of the omitted terms include one of 
the form nDn (fl - Jz) cos 2rr(fl - Jz)f, and the others are similar. Now 

and hence these terms are all small compared with the terms that were 
retained, which are all n or n/2, provided that none of it, Jz, and 11 ±Jz 
is close to 0 or 1. However, it is clear that the solutions for {l, A, and B 
are the same for both models in this approximate form, and this explains 
the near equality seen in the exact solutions. 

The omitted terms do in fact vanish exactly if 11 and Jz are of the form 
il In and h In for integers il and h, since in this case 

D (f -f:) 2 (f -f: )t-= sinrr(h -h)cos2rr(h -h)tln =0 
n n 1 2 cos rr 1 2 . ( . . ) I ' sIDrr JI - J2 n 

and the other terms also have the sine of an integer multiple of rr in the 
numerator. In this case, all the sine and cosine terms are orthogonal to one 
another, and to the constant term whose coeffiCient is p. The solutions 
for the three-parameter model become 

_ _ 1" 
p=x= nL.Xt, 

- 2" A = - L.Xt cos 2rr/t, 
n 

- 2" B = - L.xtsin2rr/t, n 

and the sum of squares associated with I is just 

(see Exercise 2.4, p. 16). 
Frequencies that are integer multiples of lin are distinguished by the 

fact that the corresponding periods nl j are repeated a whole number of 
times in the span of the data. They are said to be harmonic with respect 
to the span of the data, and are known as the Fourier frequencies. The 
annual and semi-annual frequencies fail to be harmonic for the ozone data 
because the data available for analysis cover some years and a fraction. 
Had they covered a whole number of years, the annual and semi-annual 
frequencies would have been harmonic, and the near constancy noted at 
the start of this section would have been exact. 
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2.5 EFFECT OF DISCRETE TIME: ALIASING 

Thus far, no restrictions have been discussed that might need to be im­
posed on the frequency f of any sinusoid being fitted to the data. Since 
the units of frequency are cycles per unit time, it is natural to require that 
frequency be nonnegative. This may be justified by arguing that, since 
cos( - x) = cos x and sin ( - x) = - sin x, any cosine wave with negative 
frequency - f may be written as 

Acos 2rr( - j)t + B sin 2rr ( - f)t = Acos 2rrft + (-B) sin2rrft, 

a cosine wave with a positive frequency. Thus the frequencies f and - f 
are indistinguishable; they are said to be aliases of each other. 

The equal spacing in time of the observations introduces a further alias­
ing. Suppose that the sampling interval is ~, so that the t th observation 
is made at time t ~. If the data consist of a pure cosine wave at frequency 
f (for the sake of argument, with unit amplitude and zero phase), the tth 
observation will be 

Xt = cos 2rr ft~. 

If f is increased from zero, this wave oscillates more and more rapidly 
until at f = 1/2~ it is 

Xt = cosrrt = (-l)t, 

which is clearly the most rapid oscillation that may be observed. Suppose 
that f is increased further, say, to a value satisfying 1/2~ < f < 1/~. 
Let l' = 1/~ - f. Then 

Xt = cos2rrft~ 

= cos2rr(1/~ - f')t~ 

= cos 2rr(t - f'tM 

= cos 2rr1't~. 

In the same way sin2rrft~ = -sin2rr1't~. Thus the frequencies f 
and l' are also indistinguishable and hence are aliases of each other. 
The argument may be extended to any positive frequency, no matter how 
large. 

The result is that every frequency not in the interval 0 s; f s; 1/2~ has 
an alias in that interval, termed its principal alias. To avoid indeterminacy, 
frequencies will be restricted to this range. Figure 2.3 shows a number of 
frequencies with the same principal alias. The frequency 1/2~ is known 
as the Nyquist frequency. It is also called the folding frequency, since 
higher frequencies are effectively folded down into the interval [0, 1 / 2~] . 
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= 0.2/ t:. cycles per unit time. 

Since the sampling interval is ~, the sampling frequency is 1 / ~ obser­
vations per unit time_ Thus the Nyquist frequency is one-half the sampling 
frequency; in other words, there are two samples per cycle of the Nyquist 
frequency, the highest frequency that may be observed_ 

The phenomenon of aliasing is important not only in the choice of fre­
quencies to be fitted to data; it must also be borne in mind when design­
ing a scheme to observe a time series_ Suppose that x(u) is a function of 
the continuous time parameter u, and that it is desired to sample x(u) 
to obtain information about frequencies in some interval, say (fa, it)­
Then the Nyquist frequency should usually be chosen to be larger than 
11 so that all such frequencies are directly observable_ However, if x(u) 
contains oscillations with frequencies greater than it, the sampling fre­
quency should be chosen so that these are not aliased into the interval 
of interest_ In fact, it is preferable when possible to remove these fre­
quencies from the function before sampling, so that this problem cannot 
arise_ 

It should be noted that aliasing is a relatively simple phenomenon_ In 
general, when one takes a discrete sequence of observations on a contin­
uous function, information is lost. It is an advantage of the trigonometric 
functions that this loss of information is manifest in the easily understood 
form of aliaSing. 

In the chapters to follow the sampling interval will typically be adopted 
as the unit of time. Then ~ = 1, and the Nyquist frequency is Simply 1/2. 
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Except where otherwise stated, this convention will be followed tacitly. 

2.6 SOME STATISTICAL RESULTS 

This chapter has described how to obtain estimates of the coefficients of 
one or more sinusoidal components in a series. With the added assump­
tion that the errors in the series are statistical or random in nature, the 
accuracy of those estimates may be described. 

Suppose that the data Xo, Xl. ... , Xn-l were generated by the model 

Xt = J1 + A cos 2rrft + B sin2rrft + at, 

where {at} are random errors or disturbances, and satisfy 

The assumption that the errors at different times are uncorrelated is a 
nontrivial restriction, often violated in practice. In the case of the ozone 
series, there is clearly more in the residuals shown in Figure 2.2 than 
uncorrelated errors. A more realistic assumption will be discussed in 
Chapter 9. 

Statistical statements about the estimates discussed above may be ob­
tained, based on these statistical assumptions. As least squares estimates, 
{.t, A, and B are all unbiased. Their variances and covariances are, in gen­
eral, complicated (see Exercise 2.6), but for the Fourier frequencies they 
simplify to 

u 2 

var({.t) = n' 
A A 2u2 

var(A) = var(B) = -, 
n 

cov({.t, A) = cov({.t, B) = cov(A, B) = o. 

If the errors ao, aI, ... , an-l are additionally assumed to be indepen­
dent, then by the central limit theorem (see, e.g., Feller, 1968, pp. 244 
and 254) {.t, A, and B, as linear functions of the at s, would be expected 
to be approximately normally distributed with the stated means and vari­
ances. This may be verified by showing that the sequences of coefficients 
in these linear functions satisfy the relevant requirements. 
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Exercise 2.6 Means, Variances, and Covariances of the Estimates 

(i) For the two-parameter model with no constant term, least squares 
estimates of A and B are given by (2.2). Use these equations to write 
A and B as A and B plus corresponding linear functions of the at s, 
respectively. Verify the unbiasedness of A and B, and derive their 
variances and covariances. Note the simplification that results when 
f is a Fourier frequency. 

(ii) Extend the results to the three-parameter model in which the con­
stant term 11 is added to the equation. 

Appendix 

The coefficients in the fitted equations mentioned above were computed 
using general-purpose least squares fitting programs, rather than by solv­
ing the equations. Typical code using S-PLUS (see, e.g., Spector, 1994), in 
this instance for the ozone time series, is: 

a <- (2 * pi * time(toms)) 
x <- ebind(eos = eos(a) , sin 

sin2 = sin(2 * a)) 
ls.print(lsfit(x, toms)) 

si n(a) , eos2 eos(2 * a), 

Here toms is an S-PLUS time series object containing the ozone observa­
tions together with the information that the series contains 12 values per 
year and that the first value is for month 11 in 1978. The function ti me 0 
uses this information, its value being a vector of the same length as the 
time series with entries that are the times, in years, associated with the 
values of the series. These values begin at 1978 + 10/12 and increment 
by 1/12. The second statement creates a matrix x, whose columns are 
the required cosines and sines, and the third statement carries out the 
fitting and prints the results, here for the five-parameter model: 

Residual Standard Error = 4.5272, Multiple R-Square = 0.417 
N = 173, F-statistic = 30.0358 on 4 and 168 df, p-value = 0 

Intercept 
cos 
sin 

cos2 
sin2 

coef std.err 
293.0001 0.3445 
-4.2052 0.4880 
1. 0748 0.4864 

-2.6142 0.4862 
1. 4769 0.4878 

t.stat p.value 
850.6130 0.0000 

-8.6180 0.0000 
2.2099 0.0285 

-5.3764 0.0000 
3.0279 0.0029 



Fourier Analysis of Time Series: An Introduction. Peter Bloomfield
Copyright  2000 John Wiley & Sons, Inc. ISBN: 0-471-88948-2

3 
The Search for 

Periodicity 

The problem of fitting sinusoids of known frequency to a time series was 
discussed in Chapter 2. There are many situations where this can be 
a useful step in data analysis, typically involving the identification and 
study of annual, weekly, or diurnal variations. In some series, however, 
there may be clear oscillations of fixed but unknown frequency, such as 
those in the variable star series shown in Figure 1.2 (p. 3). A statistical 
approach to the analysis of such series is to view the frequency as an 
additional unknown, and estimate it together with the other parameters of 
the oscillation. Estimating frequency is however a more difficult problem 
than estimating amplitude and phase, as the model is inherently nonlinear 
in I. 

3.1 FITTING THE FREQUENCY 

The 600 days of variable star data (Figure 1.2, p. 3) show 21 peaks, and this 
suggests that any periodicity should have a period of around 600/21 :::::: 
28.6 days. Thus the tth data value should contain a component of the 
form 

A cos 2rr It + B sin 2rr It 

with 

I:::::: 1/28.6 = 0.035cycles per day. 

25 
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Fig. 3.1 The sum of squares of the variable star data associated with f, 0.03 ~ f ~ 
0.04 cycles per day. 

The problem of fitting the parameters A and B by least squares, for fixed 
f, was covered in the previous chapter. The method of least squares may 
be extended to estimating f by minimizing 

n-l 

S (p, A, B,J) = I (Xt - p - A cos 2" ft - B sin 2" ft)2. 
t=O 

The minimum for fixed f is T(f) = S(jj(j),A(j),B(j),J), where p, 
A, and B have been replaced by the estimates derived in the previous 
chapter. The frequency f is now estimated by the value that minimizes 
T(j), or, equivalently, that maximizes the sum of squares associated with 
f (see Exercise 2.4, p. 16). The latter is graphed for f close to 0.035 cycles 
per day in Figure 3.1. The frequency at which the function is maximized, 
and the fitted equation, are 

j = 0.034442 = 1/29.0343 

Xt::: 17.084 + 7.024cos2"jt + 7.82sin2"jt 

= 17.084 + 10.511 cos 2"(jt - 0.134). 

The fitted model and residuals are shown in Figure 3.2. 
The graph of the sum of squares associated with j shows subsidiary 

peaks, or side lobes, occurring on either side of the main peak and sep­
arated from it by troughs in which the value is indistinguishable from 
zero. It will be seen in Chapter 4 that this is typical of such graphs. Small 
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Fig. 3.2 Fitted sinusoid with pertod 29.034 days (upper curve), and residuals (lower 
curve). 

sidelobes such as these do not indicate the presence of other periodic 
components. 

The location of the maximum of the function was found numerically 
(see the Appendix to this chapter). The derivative with respect to f is 
highly nonlinear and has many zeros; indeed, Figure 3.1 shows that there 
are eleven zeros in the interval 0.03 !S: f !S: 0.04 cycles per day. This 
makes analytic solution impossible and also renders methods based on 
the gradient treacherous. For instance, Newton's method could easily lead 
to one of the other stationary points, either a local maximum or, worse, a 
local minimum. 



28 THE SEARCH FOR PERIODICITY 

The residuals from the current fit, shown in the lower panel of Fig­
ure 3.2, have a very pronounced periodicity with a period of around 24 
days. or a frequency of approximately 0.042 cycles per day. Thus the 
original data must have contained at least two periodic components. The 
estimation of a number of frequencies is described in the next section; in 
particular, it will be shown that the presence of a second periodiC compo­
nent, especially one with a similar frequency, can noticeably distort the 
estimates of frequency and of amplitude and phase. 

3.2 FITTING MULTIPLE FREQUENCIES 

It emerged at the end of the preceding section that the data being used 
as an example actually contain more than one periodic component. The 
fitting of a number of components is described in this section, using the 
same variable star series as an example. 

The simplest procedure would be to repeat the analysis of Section 3.1 
but searching now for a maximum near f = 0.042 cycles per day. The 
best frequency and the fitted equation are 

j = 0.041724 = 1/23.967 

Xt = 17.115 - 2.847cos2rrjt + 7.234sin2rrjt 

= 17.115 + 7.774 cos 2rr(Jt - 0.31). 

However. these estimates were obtained by the least squares fitting of the 
model 

Xt = /1 + A2 cos 27Tf2t + B2 sin 27Tf2t + et. 

where et is the tth residual. The idea behind a least squares method 
is to make these residuals as small as possible. In the present case the 
residual term necessarily contains the strong periodic component found 
in the preceding section, and it does not make sense to try to make this 
small. A better approach is to include the second component in the model. 
as in Section 2.3: 

Xt = /1 + Al cos 27TfIt + BI sin 27TfIt 

+ A2 cos 2rrf2t + B2 Sin27T /2t + et. 

The sum of squares function to be minimized is 

n-I 

S(/1.AI,BI.A2. B2,fI.f2) = L (Xt - /1 - Al cos 2rr fIt - BI sin 2rrfl t 
t=O 
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Fig. 3.3 The sum of squares associated with fl and h, 0.030 ~ fl ~ 0.037, 0.038 ~ 

h ~ 0.045 cycles per day. 

The most natural extension of the method used in Section 3.1 to find 
a single frequency is as follows: First note that for fixed II and 12 the 
model is linear in the remaining parameters. Hence the conditionally best 
values of these may be found by conventional methods and substituted 
in the function S. This gives a new function 

T(fI.J2) = S(P,AI,ih,A2,B2.JI.J2), 

where P, AI, BI, A2, and B2 are all functions of 11 and 12. The function 
T(fI,f2) may then be minimized numerically. An equivalent optimiza­
tion problem is to maximize the sum of squares associated with the pair 
of frequencies (II, 12) , 

n-I 

U(fI.f2) = L (Xt - X)2 - T(II,f2). 
t=O 

Figure 3.3 shows U(II.f2) for (fI,f2) in the square 0.030 :::; 11 :::; 0.037, 
0.038 :::; 12 :::; 0.045 cycles per day. The graph shows two orthogonal 
ridges, intersecting in a peak. The higher ridge is associated with fI ;::: 
0.034 cycles per day, and the lower ridge with 12 ;::: 0.042 cycles per 
day. Note that by analogy with the functions examined in the preceding 
section, T (fI, 12) may be expected to have many stationary points, and 
therefore to require some care in finding its minimum. Indeed, the figure 
has 15 local maxima in the set of frequencies graphed, and an additional 
12 local minima. 
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The least squares estimates and the fitted equation are 

J1 = 0.034482 = 1/29.0003 

J2 = 0.041666 = 1/24.0001 

Xt = 17.086+ 6.074cos2rrJlt + 7.983sin2rrJ1t 

-1.833cos2rrJ2t + 6.843sin2rrJ2 t 

= 17.086 + 10.031 cos 2rr(J2t - 0.146) 

+ 7.085 cos 2rr (J2 t - 0.292). 

The fitted curve and the residuals are shown in Figure 3.4. The residuals 
now show no obvious periodic behavior. 

The residual sum of squares is 54.7, and the root mean square value of 
the residuals is 0.3019, which are remarkably small values. The fact that 
the data were reported as integers means that they should contain errors 
at least as large as that caused by rounding off a number to the nearest 
integer. Since the error incurred by such rounding is roughly uniformly 
distributed from -1/2 to 1/2, the mean squared error would be 1/12. 
Thus rounding alone would cause a residual root mean square of around 
.Jl/12 = 0.2887. Hence the unrounded data must have been almost ex­
actly the sum of two pure sinusoids. A further curious feature of these 
data is that the two fitted periods are surprisingly close to whole numbers 
of days for the periods of a variable star. The apparent construction of 
this series will be mentioned in Chapter 6. 

3.3 SOME MORE STATISTICAL RESULTS 

The statistical properties of estimated frequencies may be studied under 
the same assumptions about the model as before, namely, 

where 

. Xt =J.l+Acos2rrjt+Bsin2rrjt+at, 

E(at> = 0, 

{ 

2 t = t' 
E(atat') = U, 

0, otherwise, 

and independence of the errors. Since the frequency f enters nonlinearly 
into the model, the sampling distribution of its fitted value is relatively 
difficult to obtain. The problem was first studied by Whittle (1952) and 
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Fig. 3.4 Two-component model fitted to the variable star series. Upper graph is the 
fitted curve, lower graph shows the residuals (note expanded scale of axis). 

later by Walker (1971). The principal results for the estimate j are that 

E(j) = f + terms involving .!.. 
n 

and 
A 60-2 

var(j) = rr 2n 3(A2 + B2) + smallerterms. 

At first Sight, the n-3 behavior of var(j) is surprising, since the variance 
of an estimated parameter usually behaves like the variances of A and B, 
that is like n-l. However, we may easily demonstrate that a higher power 
is appropriate. 
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Consider the case in which R2 = A2 + B2 is large compared with (J"2. 
Thus the data consist of clear oscillations, with small errors superim­
posed. Then the number of cycles in the n data points may be counted 
accurately, and the only uncertainty involves the magnitude of the odd 
fraction of a cycle at each end of the data. If, for instance, the data show 
m complete cycles, but not m + 1, the period 1 I j is known to lie between 
n/(m + 1) and n/m, or min $ j $ (m + 1)/n. Thus any estimate of 
j should lie within 1 In of the true value, and this implies that its vari­
ance is of order l/n2 or better. The extra power of n is achieved by the 
relatively sophisticated least squares estimate 1. 

The variance (J"2 of the errors is their mean square value. The corre­
sponding quantity for the signal is 

ave(Acos2rrjt + BSin2rrjt)2 = ave{Rcos2rr(jt + ¢)}2 

= R2avecos2rr(jt + ¢)2 
R2 

- 2· 

The quantity 

R2/2 = mean square value of signal 
(J"2 mean square value of noise' 

called the signal-to-noise ratio, or sm, indicates how well the signal shows 
up in the noise. The variance of 1 may be rewritten as 

A 3 
var(j)::::: 2 3 ' rr n sm 

which shows, perhaps surprisingly, that a long series is more effective in 
reducing the variance than a strong signal. 

For the variable star series these formulas yield standard errors of 
1.60 x 10-6 cycles per day for 11 and 2.27 x 10-6 cycles per day for 
12. These values show that the frequencies are in theory capable of very 
sharp resolution. It should be noted, however, that this result depends 
heavily on the assumptions made, especially independence of the errors. 

The variances of A and B are increased by replacing j by its esti-
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mate J. The results are 

~ 20-2 (A2 + 4B2) 
var(A) ~ n R2 ' 

~ 20-2 (4A2 + B2) 
var(B) ~ n R2 ' 

~ ~ 20-2 (-3AB) 
cov(A,B) ~ n ~ , 

~ ~ 0-
2 

(-6B ) 
cov(A, j) ~ rrn2 R2 ' 

~ ~ 0-
2 (6A) 

cov(B, j) ~ rrn2 R2 . 

However, if the model is reparametrizedas 

Xt = J.i + A' cos2rrj(t - f) + B' sin2rrj(t - f) + at 

where i = (n - 1) /2, then the results become 

~, ~, 20-2 
var(A ) ~ var(B ) ~ -, 

n 

cov(A' ,B') ~ cov(A' , J) ~ cov(B', 1> ~ 0, 

(see Exercise 3.1). That is, when the cosine and sine coefficients A and B 
are defined relative to a time origin at the midpoint of the series, rather 
than at its start, their variances and covariances are unchanged by esti­
mating the frequency. 

Furthermore, estimates concerning different frequencies are, to this 
order of approximation, uncorrelated. Since, as Walker (1971) shows, A, 
B, and J are all approximately normally distributed, a confidence interval 
for each parameter is readily found. 

In the light of the (approximate) standard errors of the two estimat­
ed frequencies, it is instructive to recall that their estimates when fitted 
jointly differed by many standard errors from the values obtained when 
fitting them separately. Since the two frequencies are fairly close, they 
interact or interfere with each other, and this effect dominates the statis­
tical error, unless it is removed as in joint fitting. Pisarenko (1973) has 
shown that when a series contains two very similar frequencies the above 
formulas for variances and covariances may not be valid. Although Pis­
arenko's results are for frequencies closer than those in the present data, 
they suggest that the standard errors given above should be treated with 
some caution. 
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Exercise 3.1 Reparametrization 

(i) Rewrite the model 

Xt = J1 + A cos 2rrft + B sin2rrft + at 

as 
Xt = J1 + A' cos 2rrf(t - i) + B' sin2rr j(t - i) + at 

by expanding cos{2rrj(t - i) + 2rrf£} and sin{2rrj(t - i) + 2rrj£} 
using the trigonometric addition formulas. Obtain equations for A' 
and B' in terms of A, B, and j, by identifying the coefficients of 
cos2rrft and sin2rrft. 

(ii) Use Taylor's expansion to find linear approximations to A' - A' and 
if - B' in terms of A-A, B - B , and ] - f. Justify the linear expansion 
by showing that the omitted quadratic terms are of smaller order, 
using the approximate moments from this section. 

(iii) Obtain the variances and covariances of A', B', and ] from the 
linear approximation and the variances and covariances of A, B, 
and]. 

Appendix 

Estimates of one or two frequencies were found using the nonlinear least 
squares function n 1 s from S-PLUS. The commands for the third optimiza­
tion, of both frequencies Simultaneously, were 

f1 <- 0.034442 
f2 <- 0.041724 
t <- time(star) 
a <- 2 * pi * f1 * t 
x <- cbind(cos(a) , sin(a)) 
a <- 2 * pi * f2 * t 
x <- cbind(x, cos(a), sin(a)) 
1 <- lsfit(x, star) 
n <- nls(star - mu + a1 * cos(2 * pi * f1 * t) 

+ b1 * sin(2 * pi * f1 * t) 
+ a2 * cos(2 * pi * f2 * t) 
+ b2 * sin(2 * pi * f2 * t), 
data = data.frame(star, t), 
start = list(mu = 1$coef[1] , 
a1 = 1$coef[2] , bl = 1$coef[3], 



a2 = 1$coef[4] , b2 
fl = fl, f2 = f2)) 

1$coef[5] , 
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The values 0.034442 and 0.041724 cycles per day are starting values 
for the search, and were taken to be the values from fitting the two fre­
quencies separately. The (linear) least squares fitting function 1 sf; to is 
used to find good starting values for the other parameters. Models with 
more frequencies may be fitted in the same way, but the computational 
effort may be expected to increase rapidly with their number. 
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4 
Harmonic Analysis 

Fitting a sinusoid of known frequency to a time series was discussed in 
Chapter 2, and the ideas were extended to fitting the frequency as well in 
Chapter 3. Such procedures are useful when periodicity clearly exists in 
the data and needs to be deSCribed exactly. Ibis chapter covers a method 
for analyzing an arbitrary set of data into periodic components, whether 
or not the data appear periodic. 

For some sequences of values such an analysis is of little meaning. 
However, other sets of data, although they may not appear to be periodic, 
do, in fact, contain interesting periodic components. Harmonic analysis 
is irreplaceable in detecting such components. 

4.1 FOURIER FREQUENCIES 

The result that underlies harmonic analysis is the orthogonality property 
of sinusoids with frequencies restricted to the Fourier frequencies fj = 
j In. This property was mentioned in Section 2.4, but will be exploited 
more fully in this chapter. Because of aliasing (see Section 2.5) the only 
frequencies that need to be considered are those satisfying 0 ::5; fj ::5; 1/2. 
Note that if n is even, then 1/2 = fn/2 is a Fourier frequency, but not if 
n is odd. The follOwing identities are a direct consequence of the results 

37 
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found in Exercise 2.2 (p. 13): 

n-l 

I COS2TTht = 0, j!- 0 
t=O 

n-l 

I Sin2TTfjt = 0, 
t=O 

n-l {n/2' I cos 2TT ht cos 2TT fj' t = n, 
t=O 0, 

n-l 

I cos 2TTfjt sin 2TTfj' t = 0, 
t=O 

I Sin2TThtcos2TTh,t = ' 
n-l {n/2 

t=O 0, 

j = j' !- 0 or n/2, 
j = j' = 0 or n/2, 
i!-j', 

j = j' !- 0 or n/2, 
otherwise. 

(4.1) 

The special results for j = j' = 0 or n / 2 hold essentially because the sine 
terms vanish identically at these frequencies. The first two relations are 
special cases of the next two with j set equal to 0 and j' replaced by i. 
The results state that the cosines and sines of the Fourier frequencies are 
orthogonal with respect to summation over the integers 0, 1, ... ,n - 1. 
(Their orthogonality with respect to integration as well as summation is 
also important. See Exercise 4.1.) 

Now suppose that xo, Xl, ... ,Xn-l are any n numbers, and let 

2 n-l 
A(f) = - L XtCOS2TTft, 

n t=O 

2 n-l 
B(f) = - I Xt Sin2TTft. 

n t=O 

Then the orthogonality relations (4.1) imply that 

Xt = A(O) + 2 I {A(h) COS2TTht + B(h) Sin2TThtJ 
0<j<n/2 

[ + A(fn/z) cos 2TTjn(2t], t = 0,1, ... , n -1, 

(4.2) 

(4.3) 

the term in square brackets being included only if n is even (see Exer­
cise 4.2). Thus an arbitrary sequence of numbers may be represented as 
a sum of periodic components. Notice that, whether n is even or odd, 
there are n coefficients in the sum. 

This is, of course, not the only way in which a representation in terms 
of cosines and sines may be found. If the n data values are regarded as 
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a single point in n-dimensional space, a similar representation holds for 
any set of frequencies whose cosines and sines form a basis for that space. 
However, the Fourier frequencies are a natural set to use, being equally 
spaced over the range of frequencies we wish to use. Also, because of the 
orthogonality relations (4.1), the coefficients {A(O), AUI), B(ft>, . .. } are 
easily calculated. This is not true for most other sets of frequencies. 

Equation (4.3) has been shown to hold only for t in the range 0, 1, ... ,n-
1. Any other value of t may be written as kn + t' for some integer k and 
t' in this range. If kn + t' is substituted for t in the right-hand side 
of (4.3), the ks drop out because of the form of the Fourier frequencies. 
Thus the value found is simply Xt'. Hence if t is an unrestricted integer 
variable, the sum defines a periodic sequence with period n, consisting 
of the values xo, Xl, ... ,Xn-l repeated cyclically. 

The j th Fourier frequency has period 1/ /j = n /j. A sinusoid with 
this frequency executes j complete cycles in the span of the data, thus 
providing a useful interpretation of the index j. One consequence of this 
is that few of the periods are integers (although of course all are rational). 
The harmonic analysis (4.3) represents the decomposition of a series into 
components each of which is repeated a whole number of times in the 
span of the data. 

Exercise 4.1 Orthogonality of Sinusoids with Respect to Integration 

(i) Show that if t is an integer, then 

and 

rl 
cos 2rrft df = {I, 

Jo 0, 

if t = 0, 

otherwise, 

f:Sin2rrft=0, alln. 

(tl) Hence show that for integers t and t' , 

I {I So cos 2rrftcos 2rrft' df = !, 
0, 

f: cos 2rr ft sin 2rr ft' df = 0, 

t = t' = 0, 

t = ±t' f= 0, 

t f= ±t', 

all t, t' 

I {!, t = t' f= 0, 
So sin2rrftsin2rrft' df = -!, t = -t' f= 0, 

0, otherwise. 

(4.4) 

(4.5) 
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Exercise 4.2 Inverse Relations 

Since !it = }t /n = ft}, the orthogonality relations (4.1) may also be 
written (for t and t' in the range from 0 to n - 1) as 

1+2 L cos2rr!itcos2rrfjt' [+cos2rrfn/2tcos2rrfn/2t'] 
O<j<n/2 

I
n/2, t = t' f= 0 or n/2, 

n/2, t = n - t' f= n/2, 

n, t = t' = 0 or n/2, 

0, otherwise, 

2 L cos 2rr!it sin 2rr !it' = 0, all t, t' 
O<j<n/2 

{

n/2, 

2 L sin2rr!it sin2rr!it' = -n/2, 
O<j<n/2 0, 

t = t' f= 0 or n/2, 

t = n - t' f= n/2, 

otherwise; 

here the term in square brackets is omitted if n is odd. Use these relations 
to verify the inversion formula (4.3). 

Exercise 4.3 Integral Inverse Formula 

The integral orthogonality property derived in Exercise 4.1 may be used 
to show that 

Xt = J: {AU) cos 2rrft + B(f) sin2rrft} df 

1 

= 2 102 
{A(f) cos2rrft + B(f) sin2rrft} df, t = 0, 1, ... ,n-1. 

Verify this equation, and show that if the right-hand side is evaluated 
for other values of t, the value is O. Note the contrast with the discrete 
inverse formula (4.3). 

4.2 DISCRETE FOURIER TRANSFORM 

The theory of Section 4.1 is simpler when written in complex form. In 
particular, all formulas are the same for even n as for odd n, and there 
are no separate forms for cosine versus sine functions. There are in fact 
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occasions when a pair of real-valued time series are most naturally regard­
ed as the real and imaginary parts of a single complex-valued time series. 
The deviations of the instantaneous axis of rotation of the earth provide 
one example, studied by Brillinger (1973). The deviation is measured by 
a pair of Cartesian coordinates which may be treated theoretically as a 
single complex number. 

In general, however, observed data are strictly real-valued. These may 
always be regarded as complex numbers with zero imaginary parts, al­
though this may seem an unnecessary complication. However, certain 
algebraic simplifications that arise make the required stretch of the imag­
ination seductively appealing. 

The Euler relation 
eix = cos x + isinx 

and its inverse 

were used in Chapter 2, and show that the complex exponential function 
eix is intimately related to the cosines and sines. The orthogonality rela­
tions corresponding to (4.1) are 

n-l n-l L e2rriJite2rrifkt = L e2rrifjte-2rri/kt 

t=O t=O 

= {n if j == k (mod n), 
o otherwise. 

(4.6) 

The result for j == k (mod n) is immediate, for then each summand is 1. 
The other values follow from the identity derived in Exercise 2.2 (p. 13). 

Now suppose that XO,XI, ..• ,Xn-l are any n complex numbers. Let 

n-l 

d(j) = .!.. L xte-2rrift. 

n t=O 

(4.7) 

Notice that d(j) = A(j) /2 - iB(j) /2, where A(j) and B(j) were 
defined in the previous section. The data may be recovered from d(j) by 
the equation 

Xt = L d(fj )e2rrifjt, 

j 

(4.8) 

which follows from the inverse form of (4.6) (see Exercise 4.4). The sum­
mation may be over j = 0,1, ... ,n - 1 or -n/2 < j ~ n/2. Both ranges 
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give the same answer because d(j) is periodic with period 1. The range 
-n/2 < j :::; n/2 is perhaps the more natural in the light of the results of 
the previous section; it is the same range, with negative frequencies added 
because e2rriJt and e2TTi( - Jlt are not identical. Note that if the symmetric 
range -n/2 :::; j :::; n/2 were used instead, the difference between n even 
and odd would reappear, and the terms for j = ±n/2 would have to be 
given weight 1/2. The range of j will usually be taken to be 0, 1, ... ,n-l, 
however, to emphasize the similarity between (4.7) and (4.8). 

By analogy with the usual (integral) Fourier transform, d(j) is called 
the discrete Fourier transform of {xo, Xl. ... ,xn-Il, which are obtained 
from d(j) by the inverse transform (4.8). In the same way, A(j) and 
B(j) of Section 4.1 are referred to as the cosine and sine transforms, 
respectively. 

The introduction of negative frequencies (or frequencies between 1/2 
and 1) into the transform and its inverse brings no new information to 
the analysis of real-valued data. From (4.7), 

d( 1 - j) = d( - f) 

and if all the x s are real, then 

1 n-l 
= - 2: xte2TTift, 

n t=O 

1 n -lIn -1 _--;::--:--::-: - 2: Xte2rrift = - 2: Xte-2TTift 
n t=O n t=O 

= d(f). 

Thus for real-valued data, the values of d(f) for negative frequencies are 
determined by the values for ° :::; f :::; 1/2. 

The discrete Fourier transform, as a complex function, possesses two 
natural representations. The first is in terms of its real and imaginary 
parts, which are just A(j) /2 and - B (j) /2, where A (f) and B (f) were 
defined in the previous section. The second is in terms of its magnitude 
R(f) and phase and cjJ(j), defined by R(j) = Id(f) I and 

d(f) = R(f)ei</><fl. 

The magnitude R (f) measures how strongly the oscillation with frequen­
cy f is represented in the data. It is often displayed in the form 

where I (j) is known as the periodogram 
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If f is restricted to be a Fourier frequency, the cosine and sine trans­
forms A(h) and B(fj) are precisely the cosine and sine coefficients ob­
tained in fitting a cosine wave by least squares (see Section 2.4). The 
discrete Fourier transform has a similar interpretation in the context of 
fitting the complex exponential function: the sum of squares function 

n-l 

S(d) = 2:: IXt - de2rrijt 12 
t=O 

is minimized at d = d(f) , regardless of whether f is a Fourier frequency. 
The Fourier transform has an elementary but important property known 

as linearity or superposability, which will be used in many places below. 
Suppose that the data {Xt} are the sum (or superposition) of {Yt} and 
{zd. Then 

2:: xte-2rrijt = 2:: (Yt + Zt )e-2rrijt 
t 

= 2:: Yte-2rrijt + 2:: zte-2rrijt 
t t 

or, in an obvious notation, 

In words, the transform of the sum is the sum of the transforms. 
In the rest of this book, the complex discrete Fourier transform will 

be used extensively. However, unless stated otherwise, the series being 
analyzed will always be assumed to be real. 

Exercise 4.4 Complex Inverse Relations 

The inverse version of (4.6) is 

2:: e2rri/it e2rrijjt' = {n if t == t' (mod n), 
j 0 otherwise, 

where the range of summation is any set of n consecutive integers j. 
Verify this, and use it to derive the inverse transform (4.8). 

Exercise 4.5 Other Inversion Formulas 

(i) The complex analog of (4.4) and (4.5) is 

e2rrijt e2rrijt' df = ' il {I t=t', 
o 0, otherwise. 
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Verify this, and use it to confinn the complex analog of the result in 
Exercise 4.3, 

Xt = f: d(f)e2rriJt df, t = 0,1, ... ,n - 1. 

Note that, as before, the right-hand side evaluates to 0 for other 
values of t. 

(ii) The orthogonality relations (4.6) may be generalized to 

II e 2rri(/j+o)te2rri(Jk+O)t = {n if j == k (mod n), 
t=O 0 otherwise. 

Verify this, and deduce that 

Xt = I d(h + B)e2rri (/j+(J)t, t = 0, I, ... ,n - 1. 
j 

Here, as before, the range of summation of j is any set of n con­
secutive integers, such as j = 0,1, ... ,n - 1, and consequently it is 
sufficientto consider fo = 0 < () < fl = l/n. 

• What values are obtained if the sum is evaluated for other values 
of t? 

• Show that in the particular case () = 1/2n, the values xo, Xl, 

... , Xn-l are repeated cyclically, but with alternate blocks op­
posite in sign. 

Parts (i) and (ii) both provide inversion formulas for obtaining Xo, Xl, ... , 

Xn-l from the transform d(j), 0 ::s; f < 1 or -1/2 < f ::s; 1/2. They 
give different answers when evaluated for t outSide this range, which 
may be useful when the observed data are to be embedded in a longer 
sequence, perhaps of zeros or of cyclic repetitions of the data. Note that 
the formulas may be averaged, still giving the values Xo, Xl, ... ,Xn-l for 
t = 0,1, ... ,n - 1 but embedded in a variety of longer series. 

4.3 DECOMPOSING THE SUM OF SQUARES 

The orthogonality relations of Sections 4.1 and 4.2 imply identities be­
tween the sums of squares of the original data and of the transforms. For 
the cosine and sine transforms A(f) and B(f) this takes the form 

n-l 

I Xf = nA(0)2 + 2n 2: {A(h)2 +B(fj)2} 
t=O O<j<n/2 

[ + nA(fn/2)2] , 
(4.9) 
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where, as always, the term in square brackets is included only if n is even. 
The analog for the discrete Fourier transform d(j) is 

n-l 

L IX tl 2 =nL Id(jj)1
2 

= Ll(h), (4.10) 
t=O j j 

which again shows the algebraic simplicity of the complex version. 
This partitioning of a sum of squares is usually known as an analysis 

of variance. In the present case, it may be interpreted as a parallel to the 
representation 

Xt = L d(jj )e2rrifjt 

j 

(4.11) 

of the data. In (4.11) the data are exhibited as a sum of various periodic 
components. In (4.10) the sum of squares of the data is decomposed into 
corresponding parts. 

Exercise 4.6 Decomposing the Sum of Squares 

Relation (4.9) may be derived either from (4.2) and the inverse orthogo­
nality relations (Exercise 4.2), or from (4.3) and the original orthogonal 
relations (4.1). Verify this, and find the corresponding two ways to de­
rive (4.10). 

4.4 HARMONIC ANALYSIS OF SOME SPECIAL FUNCTIONS 

In this section, harmonic analysis of some particular functions is used to 
display some of the properties of the discrete Fourier transform. 

(i) Cosine Wave 

In terms of Fourier analysis, the simplest place to begin is with a cosine 
wave, R cos 2rr (jot + CP). Since the transform is a linear operation, R 
occurs only as a scale factor throughout, and may be taken to be 1. Now 

cos 2rr(jot + CP) = ~ [e 2rri(fo t +<P) + e-2rri(fot +<P)] 

= ~ (e 2rri<P e2rrifot + e-2rri<p e-2rrifot) , 
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whence it is sufficient to find the transform of e2rriJot (once again, e 2rri</> 

is just a scale factor). But the complex transform of e2rriJot is 

n-l 
d(j) = ..!. I e2rrifote-2rriJt. 

n t=O 

The sum may be evaluated using the result of Exercise 2.2 (p. 13) to give 

d(f) = e 2rri(Jo-flin Dn (f - fo), 

where i = (n - 1)/2 is the average of the time values 0,1, ... , n -1 and 

D (j) = Sin.rr fn 
n nSllrrf 

is the Dirichlet kernel (see Section 2.2). 
The transform vanishes if f - fo is a multiple of lin, that is, if f 

and fo differ by a Fourier frequency, except at f = fo, where it takes the 
value 1. Since the original cosine wave involves - fo as well as fo, its 
transform vanishes only if f ± fo are both nonzero Fourier frequencies. 
This is true if f and fo are different Fourier frequencies, but also if they 
each differ from a Fourier frequency by 1/2n, that is, if they fall midway 
between Fourier frequencies. The first factor has modulus 1, whence the 
amplitude of the transform is (the absolute value of) the second factor, 
and the phase is the phase of the first factor ( + 1 12 if the second is 
negative). 

When f ± fo is not a Fourier frequency, the transform is nonzero. The 
appearance of a nonzero value in the transform at a frequency f because 
of the presence of a sinusoid at a different frequency fo is called leakage. 
Since harmonic analysis is carried out to separate the effects of different 
frequencies, leakage is an undesirable phenomenon. The transform is 
typically calculated at the Fourier frequencies, and leakage then occurs 
whenever there are oscillations in the data at other frequencies. This may 
sometimes be avoided, by choosing n to be a multiple of the periods of all 
oscillations; for instance, by analyzing a whole number of years' worth of 
data when only the annual wave, the semiannual wave, etc., are expected. 
This is not always possible or desirable, and techniques for controlling 
leakage when it is unavoidable are discussed in Section 6.2. 

The Dirichlet kernel arises frequently in the study of harmonic analysis. 
If n is moderately large and f is small, it is approximately 

sin rrfn 
rrfn . 

The functions Bo(X) = (sinrrx)/(rrx) and Dn(x/n) are shown in fig­
ure 4.1 for n = 5 and 20. The principal features are the peak of height 1 



N 

9 

SPECIAL FUNCTIONS 47 

g(x) 

n = 5 
n = 20 

Fig. 4.1 The function Bo(X) = (sin7Tx)/(7Tx) and the Dirichlet kernels Dn(x/n), 

n = 5,20. 

at x = 0, the zeroes at x = ±l, ±2, ... ,and the relatively slowly decaying 
minor peaks or sidelobes. 

Thus the amplitude of the transform d(J) of the complex wave e2TTiJot 

consists approximately of the function (sin rrx) I(rrx) centered at fo and 
scaled so that its zeros are separated by lin, the frequency separation 
of adjacent Fourier frequencies. The transform is large only for f close 
to fo, and as f moves away from fo its magnitude decays proportionally 
to lilf - fol. 

The transform of the original real cosine wave consists of contribu· 
tions from fo and - fo. When f is positive, the term centered at - fo is 
relatively small unless f is close to ° or 1/2 cycles per unit time. 

(ii) Single Impulse 

The transform of a sequence that consists of a single nonzero value of 1 
at t = to is 

d(!) = ~e-2TTiJta. 
n 

It has constant amplitude, and the phase is (mod 1) a linear function 
of frequency. Notice the duality between this example and the last. They 
emphasize the phenomenon that if a function is highly localized (Le., large 
over only a small part of its domain), then its transform is very diffuse 
(nearly constant in amplitude and linear in phase) and conversely. 
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(iii) Step Function 

Let {Xt} be the step function 

Xt= {
I, 

0, 

o ~ t < m, 
m~t<n, 

for some m in the range 1,2, ... ,n - 2. Then 

n-l 
d(j) = ! L Xt e - 2rri!t 

n t=O 

m-L 

= ! L e-2rri!t 

n t=O 

= e-2rri!(m-I)/2 sin TT Im/2 
nsinTTI/2 

= e-2rri!(m-I)/2mDm(j). 
n 

The amplitude of d(j) is thus the (absolute value of the) Dirichlet func­
tion (m/n)IDm(j)I, which decays roughly as 1/J from a maximum of 
min < 1 at I = O. As in examples (i) and (li), the phase of the transform 
is a linear function of frequency. 

(iv) Straight Line 

A general linear function a + b t may be written as a linear combination of 
a constant and the simplest linear function, which for the present purpose 
is 

- n-l 
Xt = t - t = t - -2-' t = 0,1, ... ,n-l. 

The transform of this function is 

d(j) = ~e-2rrifi n sin TT I cos TT In - cos TT I sin TT In 
2n (sin TT j)2 

for I 1= 0, and d(O) = O. The amplitude of d(j) is the absolute value 
of the second factor, and for large n and small I this is approximately 
n 2gz{nj) , where 

(x) = TTX cos TTX - SinTTX 
gl (TTX)2 

This function and d n (x/n)/n2 are shown in Figure 4.2 for n = 5 and 
20. Note that TTgz{X) is the derivative of (sin TTX)/(TTX), while the lin­
ear function of which it is approximately the transform is the integral of 
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g(x) 

n = 5 

Fig.4.2 The functions gr(x) = 1TxcOs(~)2simTx and dn (x/n)/n2, n = 5,20. 

o 

.", 

-40 -20 20 40 

o 

Fig. 4.3 The sawtooth function, n = 20. 

the step function. As in the case of the step function, the decay of the 
sidelobes for large ifi is like 1/ ifi. 

lt should be recalled that when the inverse transform is evaluated for 
values other than 0,1, ... ,n - I, the periodic extension of the original 
series is found. In the present case, this is the sawtooth function shown in 
Figure 4.3, and not a continued straight line, as might have been expected. 
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(v) Shifts, Symmetry, and Linear Phase 

In all the above examples, the phase of the transform depends linearly 
on the frequency f. This is a consequence of certain symmetries in the 
corresponding series. 

Consider first the effect of shifting (cyclically permuting) a series. Sup­
pose that Yt = Xt+h for some (integer) h, the subscripts being interpreted 
(mod n). For example, if h = 1 then Yt = Xt+l for t = 0, 1, ... ,n - 2 
and Yn-l = Xo. The transform of the shifted series, for a general shift h, 
is 

d y (J) = ! LYte-2rrift 
n t 

= ! L Xt+he-2rrift 
n t 

= ! L xte-2rrif(t-hl 
n t 

= !e2rri/ h L xte-2rri/t 
n t 

= e2rri/hdx(j). 

The amplitudes of the transforms are the same, and the phases differ by 
a linear function of 2rr f, the coefficient h being precisely the shift. 

Now consider a periodic series symmetric about t = 0 (a series with 
even symmetry), that is, with X-t = Xn-t = Xt, t = 1,2, ... ,n - 1. In this 
case, 

d(J) = ! L xte-2rri/t 
n t 

= ! L Xn_te-2rri/t 
n t 

= ! L Xn_te2rrif(n-tl 
n t 

1 '" 2rrift' = - L,.xt,e 
n t' 

= d(J), 

and hence the transform d(J) is real. The converse is also true. In the 
same way, for an antisymmetric series (a series with odd symmetry), one 
for which X-t = -Xt, the transform d(J) is purely imaginary, and con­
versely. 
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In Example (iii), the step function, the amplitude is a symmetric func­
tion of f and the phase is - f (m - 1) /2. If the series were shifted 
by - (m - 1) /2, the transform would be entirely real and would thus 
be symmetric. This implies that the series has even symmetry about 
t = (m - 1) 12. Strictly, this argument is valid only for odd m, as the 
shift must be an integer. However, the conclusion is also valid for even 
m, since a series may be symmetric about either an integer time or a 
half-integer time, and the whole argument is easily extended to the latter 
case. 

In Example (iv), a shift of -(n - 1)/2, or equivalently of 

n- (n-1)/2 = (n+ 1)/2, 

makes the transform purely imaginary, whence this series has odd sym­
metry about t = (n - 1) /2. Both symmetries are easily verified from the 
definitions of the corresponding series. 

(vi) Periodic Series 

Suppose that the series XO,XI, ... ,Xn-l is periodic with period h, an 
integer, and that n is an integer multiple of h, say n = kh. The discrete 
Fourier transform d(f) satisfies 

where 

1 n-l 
d(j) = - L xte-2rrijt 

n t=O 

1 h-l k-l . 
= - L L Xt+hu e - 2mj(t+hu). 

n t=O u=O 
h-l k-l 

= .!.. L xte-2rrijt L e-2rrijhu 

n t=O u=O 
h-l 

= .!.. L Xte-2rrijte-rrifh(k-l)kDdfh) 

n t=O 

= dh(f)e-rrijh(k-l)Dk(jh), 

h-l 
dh(j) = .!.. L xte-2rrijt 

h t=O 

is the transform of the first full cycle of the series. Thus d(j /h) = 

dh(j /h) for any integer j, but d(j) = 0 for any other Fourier frequen­
cy. That is, the discrete Fourier transform, when evaluated at the Fourier 
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frequencies, is nonzero only at f = 1/ h and its multiples. This frequen­
cy is called the fundamental frequency of the wave, and its multiples are 
harmonics. 

The argument shows that the transform of a periodic series must van­
ish at certain Fourier frequencies, and not that it is necessarily nonzero at 
the remainder. For instance, if the periodic series were just cos 2rrt / h = 

cos 2rr fht, only the fundamental frequency would have a nonzero coeffi­
cient, and all the harmonics would disappear from the representation. 

Exercise 4.7 Quadratic Function 

Find the transform of the series 

Xt = (t - n; 1) 
2

, t = 0,1, ... ,n -1, 

and an approximation for large n, small f, of the form 

Should Bq(x) be real or imaginary? At what rate does Bq(X) decay for 
large Ixl? 

Exercise 4.8 Triangle Wave 

The series 

it, 
Xt= 

n - t, n/2 ~ t < n 
o ~ t ~ n/2, 

defines a triangle (or hat) function that extends periodically to be a triangle 
wave. Find its transform and an approximation as in Exercise 4.7. Find 
the rate of decay of the approximation. 

Exercise 4.9 Truncated Sinusoid 

The step function of Example (iii) is a special case of a truncated sinusoid, 

{
cos2rr(fot + 4», 0 ~ t < m, 

Xt = 
0, m ~ t <no 

Find the transform of this series, and note that, in general, it is nonzero at 
all of the Fourier frequencies, even if the frequency fo is itself a Fourier 
frequency. 
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4.5 SMOOTH FUNCTIONS 

Consider a sequence {Xo, Xl, ... , Xn-l} for which the cosine and sine co­
efficients are large only for low frequencies. This means that the sequence 
may be represented as a sum of terms each of which is smooth, and hence 
the sequence itself must be smooth. Since the cosines and sines of higher 
frequencies oscillate rapidly, no smooth sequence can contain them with 
large amplitudes. Thus smooth sequences must be those whose trans­
forms are small except at low frequencies. 

This qualitative argument may be made more precise in several ways. 
The simplest is to define the (circular) roughness coefficient of the se­
quence to be 

n-l 

I (Xt - Xt_I)2 
t=o 

n-l 

I xl 
t=O 

where the definition is made circular by replacing X-I by Xn-l. This 
definition reflects the idea that, in a smooth sequence of points, the dif­
ferences between successive values are all relatively small, and hence the 
numerator will be small. The denominator is essentially a scaling factor, 
since the roughness of a sequence is a dimensionless quantity and should 
not depend on the magnitudes of the numbers. In many cases the rough­
ness coefficient should also not depend on the level of the data (that is, to 
be unaffected by adding the same constant to each Xt, t = 0, 1, ... , n -1). 
This is achieved by replacing Xt by Xt - X, with very little effect on what 
follows. 

This roughness coefficient was defined, although not with this name, 
by Ernst Abbe in 1863 (see Kendall, 1971). The noncircular version 

n-l 

I (Xt - Xt_I)2 
t=l 
n-l 

I (Xt - X)2 
t=l 

is also known as the von Neumann ratio and the Durbin-Watson statis­
tic. It has been studied by von Neumann et al. (1941), von Neumann 
(1941,1942) and Hart and von Neumann (1942), and by Durbin and Wat­
son (1950, 1951, 1971). In each case the principal goal was to find the 
probability distribution of the ratio when the series {Xt} has some Gaus­
sian distribution. However, the coefficient is of interest here more as a 
general indicator of the roughness (or smoothness) of a sequence. 
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The noncircular definition is the more natural, since a series that is oth­
erwise smooth should not usually be penalized for a difference between 
its end values. However, the circular definition is more convenient and 
the difference is slight, at least for large n. 

The roughness coefficient may be represented in terms of the discrete 
Fourier transform of the sequence as follows. The complex version of the 
discrete Fourier transform is used for convenience. Its inverse is 

whence 

n-l 
Xt = L d(h)e2rrijjt, 

j=O 

n-l 
Xt - Xt-l = L d(h)[e 2rri/jt - e2rrijj(t-ll] 

j=O 
n-l 

= L d(h)e2rri/jt (1 - e-2rrijj). 

j=o 

The results of Section 4.3 allow the roughness coefficient to be rewritten 
as 

n-l 

L 11 - e-2rri/j 12 Id(fj) 12 
j=O 

n-l 

L Id(fj)12 
j=O 

n-l 

L 2(1- cos2rrh)ld(fj)1 2 

j=O 

n-l 

n-l 

L Id(fj)1 2 

j=O 

L 4(sin rr h )2Id(fj) 12 
j=O 

n-l 

L Id(h)1 2 

j=O 

Since sin rr f increases from ° to 1 as f increases from ° to 1/2, it is 
clear that, for a fixed value of the denominator, the roughness is reduced 
by increasing the amplitude of low-frequency terms at the expense of 
high-frequency terms. 

The smoothest function in this sense is the constant function, for which 
the roughness coefficient vanishes. The roughest functions are those for 
which the transform vanishes except at the frequency or frequencies clos­
est to 1/2, that is 

Xt = ACOS1Tt 

=A(-I)t, A*O, t=O,I, ... ,n-l 
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if n is even. and 

Xt = R cos2rr {(~ - 2~) t + <I>} 

=R(-1)tcoS2rr(2~-<I». R>O. t=O.l ..... n-l 

if n is odd. In each case the series oscillates rapidly. The cosine term 
in the case of odd n (which completes one half of a cycle in the span of 
the series) is present because of the circularity of the definition of the 
roughness coefficient. 

If Xt is replaced by Xt - x in the definition of the coefficient. the only 
modification is that d(O) vanishes. The roughness coefficient is thus un­
defined for the constant function. and the smoothest functions are of the 
form Acos 2rr(t/n + <1». which executes one complete cycle in the span 
of the data. 

Exercise 4.10 Smooth Sequence 

Suppose that 

(
t + 1) 

Xt=f ~ • 

where f(x) is a continuous function with a continuous derivative on the 
interval (0.1). Then for large n. {xtl is certainly a smooth sequence. 
Show that the roughness coefficient is approximately 

n-2 f: f' (X)2 dx 

f: f(x)2dx 

Exercise 4.11 Segments of a Series 

Suppose that a series is divided into two segments. which either start 
with the same value or end with the same value. Show that the roughness 
coefficient of the whole series lies between the coefficients of the two 
segments. 
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5 
The Fast Fourier 

Transform 

Despite the similarity of the names, the fast Fourier transform is neither 
a variant of nor an alternative to the discrete Fourier transform described 
in Chapter 4. It is instead an algorithm (or, rather, a class of related 
algorithms) for computing the discrete Fourier transform of a data series 
at all of the Fourier frequendes, using relatively few arithmetic operations. 

The background of the fast Fourier transform and its computational 
advantages are described in Section 5.1. The simplest case, in which the 
series length factorizes into two factors, is discussed in Section 5.2. Sec­
tion 5.3 describes how the algorithm may be used to carry out harmonic 
analYSis of observed time series data. 

5.1 COMPUTATIONAL COST OF FOURIER TRANSFORMS 

The Simplest way to compute the discrete Fourier transform of a set of 
data xo, Xl, ... ,Xn-l of length n is to evaluate the sums 

n-l 
d(j ) '" -2rrif-t . 0 1 1 n j = L... Xte J, J = , , ... , n - , (5.1) 

t=O 

in turn. The complex formulation is used for convenience, and complex 
addition and multiplication will be used to count the computational cost 
of the algorithm. The first sum, for j = 0, requires just n - 1 additions, 

57 
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since the exponent is ° for each summand. Each of the remaining sums 
requires n - 1 multiplications and n - 1 additions, since the first term in 
each is Xo. Thus the total cost is (n - 1)2 multiplications and n(n -1) 
additions, or roughly n2 of each. The values of 

(5.2) 

are also needed for all j and t in the range 0, 1, ...• n - 1. Since (5.2) 
depends only on the residue of jt (mod n), there are only n distinct 
values, which could be tabulated to avoid repeated calculation. 

The fast Fourier transform gives the same values (5.1), but the number 
of additions and multiplications used is of the order n log2 n. In compar­
ison with the simple method, the cost is reduced by a factor of the order 
of (log2 n)/n. For the relatively short series length of 1024, Gentleman 
and Sande (1966) found that the execution times for ALGOL programs us­
ing a refinement of the simple method and a fast Fourier transform were 
59.1 seconds and 2.0 seconds, respectively (on an IBM 7094 computer). 
The advantage of the fast Fourier transform increases with n and makes 
feasible the transformation of very long series. 

The most frequently used algorithm was first discussed in detail by 
Cooley and Tukey (1965), although the basic idea was known much ear­
lier. For a history of the development of the algorithm see Cooley et al. 
(1967). An important variation (the Sande-Tukey algorithm) was intro­
duced by Gentleman and Sande (1966). Both of these variations depend 
on the series length n having many small factors (being highly compos­
ite). A simple version of each occurs when n is a power of 2. A different 
algorithm deSCribed by Good (1958,1971) requires that n possess mutu­
ally prime factors, and thus cannot be used in the case n = 2k. Bluestein 
has deSCribed an algorithm that does not depend on the factorization of 
n (see Brigham, 1988, p. 195). 

5.2 TWO-FACTOR CASE 

The basic idea behind the fast Fourier transform may be seen in the case 
where n has two factors n = n 1 n2, when the Cooley-Tukey and Sande­
Tukey algorithms are in fact the same. For any t in the range 0,1 •... , 
n - 1, tl and t2 may be found such that 

SpeCifically. tl is the integer part of t /n2 and t2 is the remainder. The 
numbers tl and t2 are the characters (generalized digits) of t in the finite 
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mixed-radix arithmetic with radices nl and n2 _ Similarly, for any such 
tl and t2, the value tl n2 + t2 lies in the range 0, 1, ... ,n - 1. Thus each 
Xt is associated unambiguously with the corresponding pair (h, t2). If 
the data are written in a table with nl rows and n2 columns, filling the 
rows of the table consecutively, Xt will fall in the (h + 1) st row and the 
(t2 + 1) st column, here called the (tl, t2) position: 

Xn-l· 

The entry in the (h, t2) position will be denoted Yh,t2' 

The reversed arithmetic with radices (n2, nl) is used to represent the 
index i of the transform. Specifically, i is written hnl + iI with 0 ::::; 
h < n2 and 0::::; il < nl· 

For any integer lX let Wa = e-2rri / a . Then the transform of {xo, Xl. .•• , 

Xn-l} may be written as 

since 

n-l 
°t 

nd(h) = 2: XtW~ 
t=o 
nl-ln2-1 

_ '" '" W<h n l+h)(tlnz+t2) - L.. L.. Xtln2+tz n 
tl =0 tz=O 
nl-lnz-l 

_ '" '" Whnltz+jltlnz+jltz 
- L.. L.. Yh,tz n , 

tl =0 t2=0 

The sums may be rearranged as 

nz-l nl-l 

nd(h) = 2: W~znlt2W~lt2 2: Ytl.tZ w~ltlnz 
tz=O tl =0 

since 
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Now 
nl-l 
'" TATjltl Z jl,t2 = L. YtJ.t2 rrnl 

tl=O 

is (proportional to) the it th term in the transform of the nl numbers 
YO,t2' Yl,t2' ••• ,Ynl-l,t2' Similarly 

is (proportional to) the i2 th term in the transform of the n2 numbers 
Wo UTi! W jl (n2-1) Th h all f f nZjl,O, rrn Zjl,l, ... , n Zi!,n2-1. us t e over trans orm 0 

the series of length n = nl n2 may be accomplished by a number of trans­
forms of subseries of lengths nl and n2, together with multiplication by 
the intermediate "twiddle factors" W~lt2. 

The final transform nd(h) may also be arranged in a table with nl 
rows and n2 columns. In computer programs, it is usually the same table 
as the data were stored in at the start of the process. However, since the 
mixed radix representation of j used nl and n2 in the reverse order, 
consecutive entries fall in the same column: 

d(fo) d(fnl) d(fn-nl) 
d(fd d(fnl+d d(fn-nl+d 

1 
d{fnl-d d(hnl-d d{fn-d. 

Hence the transform must be copied out in a different order, a process 
known as "unscrambling." 

In computing the transform for all n of the Fourier frequencies, the 
process involves n2 transforms of subseries of length nl and nl trans­
forms of subseries of length n2, as well as n = n 1 n2 twiddle factor multi­
plications. If straightforward summation is used to evaluate these shorter 
transforms, the total computational cost is roughly n2ni +nl n~ +nl n2 = 

nln2(nl + n2 + 1) multiplications and n2ni + nln~ = nl n2(nl + n2) ad­
ditions, or roughly n2ni + nln~ = nln2(nl + n2) of each. This maybe 
compared with n 2 = nln2(nln2), the approximate number of multipli­
cations and additions used in the simple method. The computational cost 
is reduced by the factor (n 1 + n2) Inl n2. For instance, if n 1 = n2 = 5 the 
factor is 0.4, and if nl = n2 = 10 it is 0.2. 

In the general algorithm it is assumed that n may be factorized further 
as nl n2 ... nk. In this case the computational cost is reduced roughly by 
the factor (nl +n2+" ·+ndln. If each factor is 2, this becomes 2kln = 
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(210g2 n)/n, which is the result usually quoted. Bergland (1968) gives 
precise formulas for the number of real additions and multiplications 
required by some different versions of the algorithm. 

5.3 APPLICATION TO HARMONIC ANALYSIS OF DATA 

The efficiency of the fast Fourier transform algorithm has made possi­
ble the routine harmonic analysis of extensive sets of data. However, the 
gains may be small if n has large prime factors. Sometimes a small part 
of the data may be discarded to leave a more convenient number. How­
ever, this is often unacceptable, since it inevitably involves some loss of 
information. One solution is to use the chirp-Z algorithm, introduced by 
Bluestein (see Brigham, 1988, p. 195). This algorithm works by rewriting 
the basic transform sum 

11-1 

nd(j) = L xte-2rrijt 

t=O 

as a convolUtion, and using the fast Fourier transform to carry out the 
convolution numerically (see Section 7.2). 

Another solution is to pad the data with zeros. This has the side effect 
of changing the grid of frequencies at which the transform is calculated, 
making it finer. Data are in fact sometimes padded to achieve just this 
refinement of the grid of frequencies. The padded data xo, xi, ... ,x~, 
x~+ l' ... ,x~, are defined as 

, {Xt 0::; t < n x -
t - 0 n::; t < n'. 

The discrete Fourier transform d' (j) of these padded data satisfies 

11'-1 

n'd' (j) = L x;e-2rrijt 

t=O 
11-1 

= L Xte-2rrift 

t=O 

= nd(j) 

and therefore differs trivially from d(j). However, it is normally eval­
uated on the grid of Fourier frequencies for the padded data, namely, 
f = 0, 1/n',2/n', ... , (n' -l)/n'. 

This refinement of the grid is sometimes sought for graphical purpos­
es, for instance, allowing d(j) and functions derived from it to be plotted 
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more smoothly. The extension of the data by zeros can be beneficial in cer­
tain applications, such as the computation of autocovariances (see Section 
8.4). However, it emphasizes the problem of leakage: the phenomenon in 
which the presence of a particular harmonic component causes the trans­
form to be nonzero at other frequencies. Example (i) of Chapter 4 (p. 45) 
showed that any frequency other than a Fourier frequency causes leakage 
into all Fourier frequencies. In the present case, however, a sinusoid in 
the original data becomes a truncated sinusoid in the extended data, and 
it was shown in Exercise 4.9 (p. 52) that the transform of this is in gen­
eral nonzero at the Fourier frequencies, for any frequency in the original 
data. Thus any harmonic component in the original data will give rise 
to leakage in the extended data. This makes the control of leakage more 
obviously desirable, although it is in fact essential even in the analysis 
of nonextended data. Techniques for leakage reduction are discussed in 
Section 6.2. 

Exercise 5.1 Correcting for the Mean 

Suppose that the series Xo, ... , Xn-l shows relatively small fluctuations 
Yt about a large average value, x (that is, Xt = x + Yt, where IYt I « Ix I). 
The series is analyzed by extending it with zeros to a length n' > n, 
followed by calculation of the discrete Fourier transform (at the Fourier 
frequencies for n'). 

(i) Show that leakage from the zero-frequency component x is present 
in all terms of the transform. How large would x have to be for this 
leakage to dominate the transform of {Yt}? 

(ii) Show that, if the mean of the extended series is subtacted from each 
term in the extended series, this leakage is unaffected. 

(iii) Show that, if the mean of the original series is subtracted out before 
the extension by zeros, the leakage is removed completely. 

(iv) Show that these considerations hold also for any periodic compo­
nent in the data whose frequency is a Fourier frequency for the orig­
inal, unextended data. 
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6 
Examples of Harmonic 

Analysis 

The theory of harmonic analysis was described in Chapter 4, and a numer­
ical algorithm for carrying it out with relatively little computational effort 
was given in Chapter 5. This chapter presents some examples of harmon­
ic analysis of data series and illustrates the insights that such analyses 
can (and cannot) provide about the data. Sections 6.2 and 6.7 mention 
two ways in which the data may be modified before the analysis to make 
the interesting features of the data more apparent. 

6.1 VARIABLE STAR DATA 

As a first example consider the variable star data (Figure 1.2, p. 3), which 
were used in Chapter 3 to illustrate the model of hidden periodicities. In 
that chapter it was shown that these data consist of two strong sinusoidal 
components plus residuals that are of precisely the order of magnitude ex­
pected to arise from rounding off the data to integers. Harmonic analysis 
will now be used to see what structure, if any, there is to these residuals. 
Harmonic analysis can detect whether any behavior of interest occurs at 
frequencies other than the two discovered in Section 3.2. 

Figure 6.1 shows the amplitude R(f) of the discrete Fourier transform 
for the variable star data, graphed on a logarithmic scale for 0 < f :5 1/2. 
The logarithm of the periodogram I(j) = nld(f) 12 = nR(f)2 is a linear 

63 
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Fig. 6. J Amplitude function for variable star data at frequencies Ii = j /600 cycles 
per day, j = 1, ... ,299. 

function of the logarithm of R (j) , and this graph may also be interpreted 
as a graph of I(j) against f by a simple change of axis labeling. The right­
hand axis of Figure 6.1 is labeled accordingly. Recall that the discrete 
Fourier transform is usually computed on the grid of frequencies f = 

Ii = j/n,O ::;; j < n, but graphs are often restricted to 0 ::;; f ::;; 1/2 
because of the symmetries described in Section 4.2. In the present graph, 
the point at f = 0 was omitted since d(O) is just the series mean, and 
comparing it with the amplitudes of sinusoidal components is usually of 
no interest. 

The logarithmic scale is preferable for plotting because of the variation 
in the order of magnitude of the amplitude between different frequencies. 
Had the logarithmic scale not been used, no scaling of the axis could 
accommodate the details both at the largest and the smallest amplitudes. 

The peaks corresponding to the two components are the dominant fea­
tures of the graph. The largest ordinates are at j = 21 and 25, corre­
sponding to f = 0.0350 and 0.0417 cycles per day, respectively. These 
two frequencies would have provided adequate starting frequencies for 
the nonlinear least squares fitting of Section 3.2. This would be the usual 
procedure for determining the number of components and the approxi­
mate values of the corresponding frequencies. 

The moderately large values of the amplitude close to the peaks are 
caused by leakage from the peaks. The results of Section 3.2 showed that 
no other components with amplitudes as large as 1.0 could be present in 
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Fig. 6.2 Amplitude and periodogram functions for the final residuals of the variable 

star data. 

the data, since the series may be written as a sum of the two components 
plus residuals with a average squared value of around 1/12. 

The simplest way to remove the leakage is to remove its sources, the 
two strong components. (Another way is described in the next section.) 
Figure 6.2 shows the amplitude function of the residuals from the two­
component model fitted in Section 3.2, graphed as before. Note first that 
all trace of the two main peaks has gone. There are, in fact, slight "holes" 
where they have been removed. 

Comparison of Figures 6.1 and 6.2 shows that the leakage in the for­
mer extends to essentially all frequencies. Figure 6.2 shows a succession 
of peaks, some accompanied by their own leakage profiles, separated by 
troughs in which the values of the amplitude are smaller by two or more 
orders of magnitude. These peaks are mostly visible also in Figure 6.1, 
although they are not all as well defined. A few are completely submerged 
in the leakage. 

All of these subsidiary peaks, the largest of which are at amplitudes 
of a little less than 0.1, occur at multiples of the frequencies of the two 
strong components. This observation suggests that the original signal is 
the sum of two periodic terms, each of which is almost, but not exactly, 
sinusoidal (see Example (vi) of Chapter 4, p. 51). Table 6.1 displays the 
frequencies of all local maxima with amplitudes larger than 0.014, and 
their relationships with the frequencies of the main peaks. 
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Table 6.1 Frequencies associated with subsidiary peaks in Figure 6.2. 

Frequency Multiple of hI Multiple of 125 

41 2 
SO 2 
62 3 
83 4 

100 4 
103 5 
125 6 5 
145 7 
150 6 
166 8 
175 7 
186 9 
200 8 
207 10 
228 11 
250 10 
269 13 
275 11 
290 14 
300 12 

6.2 LEAKAGE REDUCTION BY DATA WINDOWS: TAPERS 

AND FADERS 

It was demonstrated in Section 6.1 that leakage from strong components 
in a set of data may be reduced by removing its source, the strong com­
ponents themselves. This section introduces an alternative method that 
leaves the sources intact in the series, but dramatically reduces the mag­
nitude of the leakage. 

Consider first the simple case of data consisting of a pure sinusoid: 

Xt = Re2rri (jot+t/>} , t = 0,1, ... ,n - 1. 

For Simplicity, take R = 1 and cf> = 0; the general case may be recovered 
by multiplying by Re2rrit/>. The transform of this series is 

n-l 

d(j) = ! L Xte-2rrift 

n t=O 

= e {2TTi(n -1)(10 - j)} sin{TTn(jo - j)} 
xp 2 n sin { TT (jo - j) } 
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(see Exercise 2.2, p. 13). The algebra to follow is simpler when written in 
terms of a slightly modified transform in which time is measured relative 
to t = (n -1)/2, the average of the data times instead of that of the first 
observation. The modified transform is 

n-l 
dC (f) = ..!. L xte-2rrif<t-t> (6.1) 

n t=O 

= e2rriffd(f) 

_ 2rrifot sin {rrn(fo - f) } 
- e n sin{ rr(fo - f)}" 

(6.2) 

For large n and fo f= f, 

dC(f _ lin) = e2rrifof sin{rrn(fo - f) + rr} 
nsin{rr(fo - f) + rr/n} 

~ e2rrifof sin{ rrn(fo - f) + rr} 
nsin{rr(fo - f)} 

= -dC(f), 

and, similarly, dC(f + lIn) ~ -dC(f). Thus, if df.r(f) is defined by 

df.r(f) = ~dC(f - lIn) + ~dC(f) + ~dC(f + lIn), (6.3) 

it follows that df.r(f) ~ 0 to this order of approximation. More precisely, 

df.r(f) = ~e2rrifot sin{rrn(fo - f)} 
4n 

X[sin{rr(~o-f)} - sin{rr(fo-lf)-rr/n} - sin{rr(fo-lf)+rr/n}]. 

If n is large, then 

sin{rrn(fo - f) -rrln} ~ sin{rrn(fo - f)} - rr cos{rrn(fo - f)} 
n 

and 

sin{rrn(fo - f) + rr In} ~ sin{rrn(fo - f)} + rr cos{rrn(fo - f)}, 
n 

and hence, after some simplification, 

rr2 . 
df.r(f) ~ __ e2mfot sin{rrn(fo - f)} 

2n3 

[cos{rr(fo - f)}]2 
X sin{rr(fo - f)} ([sin{rr(fo - f)}]2 - (rr 2 /n2 )[cos{rr(fo - f)}]2) 

~ _ rr2 2rrifot . { (f! -f)} [cos{rr(fo-f)}]2 
2n3e sm rrn JO [sin{rr(fo-f)}P. 

(6.4) 
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Operation (6.3) is known as hanning, and the subscript H distinguishes its 
results. The leakage in the hanned version of de, approximated by (6.4), 
is better than that for de itself, given exactly by (6.2), in two ways. First, it 
contains a factor n -3 rather than n -1 ; this means that it is much smaller 
in long series. Second, the factor [sin{rr(fo - f)}]-3 decays like Ifo­
fl- 3 rather than Ifo - fl- 1 , and thus for a given value of n the leakage 
diminishes more rapidly as f moves away from fo, the position of the 
peak. Hence the leakage is reduced in magnitude and is contained more 
closely around f == fo. 

If (6.1) and (6.3) are used to define dfI (f) for an arbitrary series {Xt}, 

then (see Exercise 6.1) 

1 - n-l 1 - cos {2rr (t + 1) In} 
dfI(f) == _e2rrijt L Xte-2rrijt 2 2 , 

n t=O (6.5) 

implying that 

(6.6) 

is the transform of the series 

1 - cos {2rr (t + !) In} 
Yt = Xt x 2 ' t = 0,1, ... , n - 1. (6.7) 

The function dH (f) defined in (6.6) will be called the hanned transform of 
{Xt}, although it should be pointed out that it is not found from d(f) by 
hanning as in (6.3). Equation (6.7) shows that an alternative way to com­
pute dH (f) is to multiply the data xo, Xl, ... , Xn-1 by the data window 
(or fader) 

WI : H 1 - cos err (: + ~) } l t : 0,1" .. , n - 1 (6.8) 

and transform the windowed or tapered data. 
When data are analyzed without first tapering them, a rectangular data 

window (or boxcar) is, in effect, used by default: 

{
I, 0 ~ t < n, 

Vt = 
0, otherwise. 

The raised cosine sequence {Wt} defined in (6.8) may be thought of as 
a smooth approximation to the boxcar. Now the transform of a tapered 
sinusoid is just the transform of the data window centered at the frequen­
cy of the sinusoid (see Exercise 6.2). Hence leakage in the transform of a 
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Fig. 6.3 The boxcar, the cosine bell window, and the split cosine bell window, p = 0,5, 

tapered sinusoid is caused by the sidelobes of the transform of the data 
window (which is the Dirichlet kernel for the boxcar). It was shown in 
Sections 4.4 and 4.5 that the transform of a smooth series decays more 
rapidly than that of a rough series. Thus the smoothness of the data 
window {Wt} leads to its good leakage characteristics. 

Consequently, any smooth approximation to the boxcar is a candidate 
for use as a data window. SpeCifically, if w(x) is a smooth function de­
fined for 0::;; x ::;; 1, with w(O) = w(l) = 0, then Wt = w{(2t + 1)/2n} 
could be used as a data window. In many cases it is desirable to leave 
the bulk of the data unmodified, and just taper the ends. A convenient 
window may be constructed by separating the two halves of the raised 
cosine bell (6.8) and inserting a stretch of 1 s. This gives the split cosine 
bell window 

{

!{l - cos 2rrx /p}, 

wp(x) = 1, 

! {l - cos 2rr(l - x) /p}, 

0::;;x<p/2, 

p/2::;;x<l-p/2, 

1 - p/2 ::;; x::;; 1, (6.9) 

where p, the proportion of the data that is tapered, is some desired value. 
Tukey (1967) has suggested that 10% or 20% may be suitable. It may be 
seen (see Exercise 6.5) that this window gives an intermediate reduction 
in leakage. Figure 6.3 shows the boxcar and cosine bell data windows and 
the split cosine bell with 50% tapering. The transforms of these windows 
(computed with centered times as in equation 6.1) are shown in Figure 6.4. 
Other candidate functions for use as data windows are discussed by Harris 
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Fig. 6.4 Transforms of the data windows shown in Figure 6.3 for a series of length 16. 

(1978) and Marple (1987). Kaiser and Schafer (1980) present a simple and 
attractive window based on Bessel functions. 

Exercise 6.1 Hanning 

Verify that (6.1) and (6.3) imply (6.5). 

Exercise 6.2 Transform of a Tapered Sinusoid 

Suppose that {WO, Wi, ... , Wn-i} is a sequence of numbers. In the present 
context, they may be interpreted as a data window, but the results of this 
exercise and the next do not depend on this interpretation. The transform 
of this sequence is 

Let 

n-l 
dw(J) = .! I Wte-2rrift. 

n t=O 

Zt = wte2rrifot, t = 0,1, ... ,n - 1 

be a corresponding tapered sinusoid. Verify that the transform of {Zt} is 

n-l n-l 
dz(J) = .! I Zte-2rrift = .! I Wte- 2rri(f-fo)t 

n t=O n t=O 

= dw(J - fo). 
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Exercise 6.3 Transform. of a Product of Series 

The following fundamental result is easily verified using the result of the 
preceding exercise. Suppose that {Xt} and {Yt} are any two series, with 
discrete Fourier transforms d x (f) and d y (f), respectively. Let Zt = 

XtYt, t = 0,1, ... , n - 1. If Xt is written as the inverse of its transform 

Xt = I d(fj )e2rri!jt, 

then Zt is a sum of sinusoids with coefficients {d(fj)}, each "tapered" 
by {Yt}. From this, deduce that the transform of {Zt} is 

dz(fj) = I d x (fddy (fj - fk) = I dx(fk)dy(/j-d, 
k k 

the convolution of the transforms of {Xt} and {Yt}. In words, the trans­
form of a product is the convolution of the transforms. Note that the con­
volution is defined circularly, since d(f) is a periodic function of f with 
period 1. 

Verify the more general result 

dz(f) = I dx(fk)dy(f - fk) 
k 

= I dy(fk)dx(f - fk). 
k 

Exercise 6.4 Continuation: The Dual Result 

The duality between the (complex) discrete Fourier transform and its in­
verse makes the dual result easy to prove. If 

Zt = I XuYt-u, t = 0, 1, ... , n - 1, 
u 

where now t - u is interpreted (mod n), verify that if f is a Fourier 
frequency then 

dx(f) = ndx(f)dy(f), 

or, in words, the transform of a convolution is (proponional to) the product 
of the transforms. 

Exercise 6.5 Split Cosine Bell Data Window 

Suppose that {Ut} is the data window for a series of length n obtained 
from the split cosine bell window wp(x) defined as in (6.9). Find its 
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Fig. 6.5 Periodogram of the variable star data, tapered 25%. 

transform. 1 Show that the rate of decay of the transform lies between 
that of the boxcar and that of the (undivided) cosine bell window that 
results from hanning. 

6.3 TAPERING THE VARIABLE STAR DATA 

Figure 6.5 is the periodogram (plotted on a logarithmic scale) of the vari· 
able star data, with the mean subtracted and with 25% of the data tapered. 
Comparison with Figure 6.2 (p. 65) shows that the leakage from the main 
peaks has been eliminated except in their immediate neighborhood. The 
closest subsidiary peaks now stand out from the background. There is 
a price to be paid for this reduction in leakage, namely, that the peaks 
are slightly broader or more rounded than they were (see Exercise 6.6), al· 
though this change is not obvious in the graph. For these data, it appears 
that 25% tapering is sufficient to contain the leakage from the main peaks 
to a usefully narrow band of frequencies. It should be pointed out that 
tapering requires far less thought and effort than the model·fitting pro­
cedure that led, as one result, to Figure 6.2. However, it gives no precise 
information about the locations of the peaks. 

1 As a result of Exercise 6.2 the transfonn d(f) is needed for all frequencies I, not just 
the Fourier frequencies Ij = j / n . 
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Fig. 6.6 Periodogram of the variable star data, tapered 50%. 
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Fig. 6.7 Periodogram of the variable star data, tapered 100%. 
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Figures 6.6 and 6.7 show the results of 50% and 100% tapering, respec­
tively, the latter being the periodogram derived from the hanned trans­
form (6.6). The progressive reduction of leakage is clear, especially around 
the main peaks. The accompanying broadening of the peaks may also be 
seen. 

The near constancy of the periodogram away from the peaks is highly 
unusual. More typically, periodogram values fluctuate randomly in any 
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Fig. 6.8 Phase of the hanned transform of the variable star data, centered at to = 300. 

interval of frequencies where there is no peak (see Section 6.8). This sug­
gests that tapering has made the transforms of the periodic components 
small enough to reveal the presence of yet another component, one with 
a constant periodogram. The simplest series with a constant periodo­
gram is one in which only a single value is nonzero (see Example (li)of 
Chapter 4, p. 47), and often such a component arises because of an er­
ror in a single observation In this case the phase of the transform is a 
linear function of frequency (mod 1), and the slope of the phase plot 
is the negative of the time offset of the nonzero term from the start of 
the record. The magnitude of the nonzero term is n times the magnitude 
of the transform, nR(j) = nld(j) I. The value in this case is therefore 
around 600 x 0.0017 ~ 1. Since the data are in integers, a likely value for 
an error is 1, but it would have to be near the middle of the data to keep 
this value after tapering. 

Figure 6.8 is a graph of the phase of the hanned transform, corrected 
for a slope of -to = -300 and reduced (mod 1); that is, the jth ordinate 
istheresidue (mod 1) (defined to lie in the interval from -1/2 to 1/2)of 
cJ> j + 300 Ii, where cJ> j is the phase (measured in fractions of a cycle) of the 
j th term in the transform. Away from the peaks in the periodogram, this 
centered phase is almost identically 0 and is certainly a linear function 
of frequency. This confirms that the remaining term is of the "single 
error" form (although not finally; the behavior of its phase at the peak 
frequencies is still not known). Furthermore, centering the phase at to = 
300 has reduced the slope to 0, and therefore the error must be in X300, 
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Fig. 6.9 Periodogram of the variable star data with X300 modified, tapered 100%. 

the 301st observation. Finally, since the phases are all equal to 0, the 
"error" is positive. The only other possible value for the phase at f = 0 
(and hence for f 4= 0 also) is ± 1 /2 , which would correspond to a negative 
"error" (see Example (ii) of Chapter 4, p. 47). 

Had the initial guess of to = 300 been less lucky, there would have 
been a remaining slope identifying the necessary adjustment. Thus had 
to = 295 been the choice, the resulting slope of -5 would have made the 
phase drift down from 0 at f = 0 to -1/2 at f = 0.1, and then show 
two complete cycles from 1/2 to -1/2 as f increases to f = 1/2. 

Figure 6.9 shows the periodogram of the data with X300 = 19 replaced 
by X300 - 1 = 18. The troughs now fall to values of around 10-8 to 10-10 , 

where previously they were supported by the "floor" at roughly 10-5 • The 
difference between this graph and Figure 6.7 confirms that X300 was in 
some sense perturbed. 

It is interesting that the smallest possible perturbation in a single ob­
servation (a change of 1 in the least significant digit) should have such a 
visible effect on the analysis. This is possible only because the rest of the 
data have such a strongly periodic character; however, a larger perturba­
tion could similarly affect the transform of less highly structured data. 
This sensitivity to a few large "errors" may be traced to the least squares 
interpretation of the periodogram developed in Chapter 2, or equivalently 
to the fact that the discrete Fourier transform is a linear function of the 
data Any analysis that was less sensitive to errors would necessarily be 
nonlinear in the data. 
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Exercise 6.6 Effect of Tapering on Periodogram Peaks 

Consider a sinusoid 
Xt = e2rriJot 

tapered by Wt,O:5 t < n, to give Yt = WtXt. In the light of Exercise 6.2, 
all that must be assumed about the taper is that its transform is nonzero 
at 1 = 0 and small elsewhere. 

(i) Find the ratio of the heights of the peaks at f = fo in the period­
ograms of {Xt} and {Yt}. In what way should data windows be 
normalized if unbiased estimates of amplitude are desired? 

(li) The curvature of the peak can be measured by the second derivative 
of the periodogram at 1 = 10. Show that for {Yt} this is 

where 
t = ItWt 

IWt 
is the average value of t with respect to the weights Wt [usually 
because of symmetry this is (n -1)/2]. Show that this curvature is 
less than the corresponding curvature for the untapered {Xt}, when 
the normalization in (i) has been used (i.e., when the peaks are of the 
same height). 

6.4 WOLF'S SUNSPOT NUMBERS 

Wolf's sunspot numbers are an index of surface activity of the sun. They 
are a much analyzed set of data for which no completely satisfactory ex­
planation exists (see, e.g., Bray and Loughhead, 1964; Newton, 1958). It 
has been shown that solar activity has an impact on many terrestrial phe­
nomena, especially the earth's magnetic field, and its climate. Figure 1.3 
(p. 4) shows the annual averages of the sunspot index for the years 1700 to 
the present. The succession of peaks and troughs shows that a definitely 
periodic phenomenon is at work in the data. For a variety of reasons from 
scientific curiOSity to the need for forecasting future peaks of activity, it 
is desirable to describe this periodicity as accurately as possible. 

The periodogram of these data is shown in Figure 6.10. The mean 
of the data was subtracted out, and the data were then tapered 5% at 
each end. The tapering covers 13 years at each end of the data, or a 
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Fig. 6. 10 Periodogram of the annual sunspot numbers for 0 < f :s 1/2. 

little more than one cycle. This may seem rather small in the light of the 
improvement made by much heavier tapering in Section 6.3. However, 
the graph shows that there is, in fact, no strong peak in the periodogram, 
and relatively little tapering should suffice. As usual, the periodogram is 
displayed logarithmically for frequencies 0 < I :5 1/2. 

This periodogram shows a much less strongly defined periodicity than 
did any of the periodograms of the variable star data in Sections 6.1 
and 6.3. The largest ordinate is at 12l = 21/235 = 0.08936 cycles per 
year, corresponding to a period of 235/21 ~ 11.2 years, the commonly 
quoted "period" of sunspots. However, this ordinate is not dramatically 
larger than its neighbors, whose magnitude cannot be explained by leak­
age. There is instead a broad peak of indeterminate width, extending 
roughly from I = 0.06 to I = 0,12 cycles per year. Several very low 
frequencies show almost the same power. Thus it would be misleading to 
name any single frequency as dominant. 

Is there anything in the original data that could warn that harmonic 
analysis will not give the deSired clear picture? Recall that a harmonic 
analysis decomposes the data into sinusoidal terms. The oscillations in 
these data do, in fact, show a number of departures from purely sinu­
soidal behavior. The first is that the sequence of peaks and troughs is not 
completely regular. For instance, there is no peak between 1787 and 1802, 
a gap of 15 years, whereas peaks in 1761 and 1769 are separated by only 
8 years. The second visible departure involves the amplitude of the oscil­
lations. All the troughs occur at around the same level, but the heights of 
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the peaks vary widely. A third feature which may also be seen under close 
examination is that the individual oscillations are not purely sinusoidal. 
Typically there is a sharp, well-defined peak and a broad trough, and it 
often appears that the rise is steeper than the drop (Newton, 1958, pp. 
529-554). 

The next two sections will describe the general effect on a harmonic 
analysis of such departures from sinusoidal behavior. Section 6.7 exam­
ines the extent to which the oscillations may be made more sinusoidal by 
a Suitable transformation. 

6.5 NONSINUSOIDAL OSCILLATIONS 

The theory of Fourier series shows that any periodiC function may be 
represented as the sum of a (usually infinite) series of sine and cosine 
functions. For the discrete Fourier transform described in Chapter 4 there 
is a corresponding result, given in Example (vi) of Chapter 4 (p. 51). It 
states that, if a series {Xt} is periodic with period h, its transform is 
nonzero only at the frequency 1/ h and its mUltiples.2 The frequency 
1/ h is the fundamental frequency of the oscillation, and its multiples are 
harmonics. 

Some aspects of nonsinusoidal behavior in the sunspot series (Fig­
ure 1.3, p. 4) were noted in Section 6.4. The first is that the troughs 
tend to be flatter than the peaks, and the second is that the rises tend 
to be slightly steeper than the falls. Figure 6.11 shows two periodic 
functions, each displaying one of these phenomena. The upper curve 
is cos 2rru + 1/4 cos4rru and the lower is cos 2rru - 1/8 sin4rru. Thus 
each contains just its fundamental and second harmonic frequencies. 

This suggests that the periodogram of the sunspot data (Figure 6.10) 
should show some power at the second harmonic of the fundamental 
frequency. There is indeed some evidence of a second, ill-defined peak 
at around f = 0.2 cycles per year, but it is very slight. Periodogram 
smoothing techniques, deSCribed in Chapter 8, give a clearer picture of 
these broad peaks. 

The periodogram provides information only about the magnitude of 
the discrete Fourier transform. In the present case, the direction of the 

2To be precise, for discrete time series, periodicity may be defined only for integer periods 
h, and the result holds only if the series length n is a multiple of the period. However, 
when the data are obtained by sampling a continuous time phenomenon, a noninteger 
period has an obvious interpretation and usefulness. If n is not a multiple of the period, 
a corresponding apprOximate result holds. 
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Fig. 6. 11 Two periodic functions: cos 27TU + 1/4 cos 47TU (upper curve) and cos 27TU-

1/8sin47Tu (lower curve). 

departure from sinusoidal behavior should be evident in the phase of 
the transform. Both of the functions in Figure 6.11 may be written as 
cos 2rru+R cos 2rr(2u + tJI)' where the phase tJI has the values 0 and 1/4 
cycles, respectively. An intermediate phase gives a function showing both 
types of behavior (see Exercise 6.7). If the scale of the u axis is changed 
by a factor fo and the u -origin is changed to u = Uo from u = 0, the 
common form cos 2rru + R cos 2rr(2u + tJI) becomes 

cos(2rr!0(u - uo) + R cos 2rr{2!0(u - uo) + tJI} 

= cos 2rr(jou + 4>1) + R cos2rr(2fou + 4>2), 

say, where 4>1 = - fouo and ¢2 = -2!ouo + tJI are the phases of the 
fundamental and the second harmOnic, respectively. The intrinsic shape 
of the function is, of course, not affected by such changes, and is still 
characterized by tJI, which may be obtained from 4>1 and ¢2 as tJI = 

4>2 - 2¢1, the relative phase of the second harmonic to the fundamental. 
Since the sunspot periodogram shows a broad peak rather than a single 

frequency, it seems appropriate to exanline this relative phase for each 
frequency in a band covering the peak. The frequencies chosen were the 
Fourier frequencies Ii = j In satisfying 0.06 < Ii < 0.12 cycles per year. 
If the transform at frequency Ii is d(jj) = R (jj )e21Ti<Pj , then the relative 
phase is tJlj = ¢2j - 24>j. 

A natural way to present these phases graphically is as points on a cir­
cle. This corresponds to plotting, in the complex plane, the points e21Til/Jj 
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Fig. 6. 12 Some values of the third order periodogram of the sunspot data, showing 
the relative phase of the second harmonic. 

for which 0.06 < fi < 0.12. Since interest is focused on frequencies 
for which the fundamental and second harmonic are strong, it is desir­
able for the plot also to contain some information about the magnitudes 
of the transform at these frequencies. Displacing each point radially by a 
suitable amount achieves this goal. A convenient amount is R (fj)2 R (f2j) , 
since 

R(jj)2 R (212j )e2rri!IJj = R (fi )2 e-4rri</>j R (f2j )e2rri</>2j 

--2 = d(fi) d(2jj), (6.10) 

permitting a simple calculation of the complex values to be graphed. fig­
ure 6.12 shows the resulting graph. The cluster of points near the origin 
corresponds to frequencies where either the fundamental or second har­
monic is weak. The only point at any distance from the origin is in the 
quadrant suggested by Exercise 6.7. 

Function 6.10 is a special case of the third order periodogram d (fl, 12) , 
which is proportional to d(fI)d(12)d(jl + 12). Higher order periodo­
grams may, in fact, be defined to an arbitrarily high degree in a similar 
way, although they are rarely used. Brillinger and Rosenblatt (1967b) de­
scribe a similar but more extensive analysis of monthly sunspot data. The 
quantities they compute are smoothed third and fourth order periodo­
grams, computed by techniques similar to those described in Chapter 8 
for smoothing the conventional (or, in this terminology, second order) 
periodogram. 
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Exercise 6.7 Relative Phase of the Second Harmonic 

Consider the function 

cos 2rru + ~ cos4rru - ~ sin4rru, 

where a, b > 0 and a + b = 1. 

(i) Show that this function may be written in the form 

cos 2rru + R cos 2rr(2u + 1/1), 

where 0 < 1/1 < 1/4. 

(li) Show that this function combines the features of the two curves in 
Figure 6.11. (Hint: Evaluate the first derivative at u = ±1/4 and the 
second derivative at u = 0 and u = ±1/2.) 

6.6 AMPLITUDE AND PHASE FLUCTUATIONS 

The simplest example of a cosine wave with a fluctuating amplitude is the 
phenomenon of beats. If two cosine waves with nearly equal frequencies 
j ± oj are superimposed, the result is 

cos 2rr(j + oj)t + cos 2rr(j - oj)t = 2 cos 2rr jt cos 2rrojt. 

This oscillates at the average frequency frequency j, but the amplitude 
changes slowly according to the modulating function cos 2rrojt. The pe­
riod of the modulating function is l/oj, which is large if oj is small. 
Conversely, if the modulated cosine wave is decomposed by Fourier anal­
ysis, the apparent frequency j splits into the pair of original frequencies 
j ± oj. In this extreme case the transform is, in fact, zero at the apparent 
frequency j. 

In the case of the sunspot data (Figure 1.3, p. 4), the modulation is 
not as Simple as this. In particular, the amplitude seems to vary about 
a positive value, rather than about zero, as in the case of beats. In addi­
tion, it appears that the frequency of the oscillations is not constant, but 
similarly changes slowly with time. Thus the data might be represented 
approximately as 

Xt = Rt cos 2rr(jtt + cp), (6.11) 

where Rt and jt are slowly varying sequences.3 If jt varies about some 

3The term slowly varying is used here with no precise mathematical definition in mind. 
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typical value fo, the last equation may also be written 

Xt = Rt cos 2rrUot + 4> + (ft - fo)t} 

= Rt cos 2rr(fot + 4>t>, 
(6.12) 

say, in which the frequency is constant and the phase 4>t = 4> + (ft - fo)t 
varies. The frequency fo need not be a typical value of ft to carry out this 
rearrangement, but it makes more sense if this is the case, since otherwise 
the phase 4>t would show a systematic drift. 

The complex analog of (6.12) is 

Xt = Rte
2TTi(jt+<I>tl 

= zte2TTiJt, 
(6.l3) 

say, where Zt == Rte2TTi<l>t is a complex-valued modulating function. Ex­
pression (6.13), a modulated sinusoid, is formally identical to the tapered 
transform of Exercise 6.2, and therefore its transform consists of that of 
{zd centered about frequency fo. Specifically, 

dx(f) == .!. IXte-2TTijt 
n 

= .!. I Zte- 2TTi(j-Jo)t 
n 

= dz(f - fo). 

Now {Zt} varies slowly and smoothly, and hence its transform is large 
only for low frequencies (see Section 4.5). Therefore the transform of 
{Xt} is large only for frequencies close to fo. However, the single spike 
that would be seen for a pure (unmodulated) sinusoid is split or spread 
into a displaced image of the transform of {Zt}. Typically, the transform 
of a modulating function {Zt} would show an irregular peak surrounding 
f == 0, and in particular would rarely vanish at f = o. Correspondingly, 
the transform of {Xt} is usually nonzero at f = fo, although this may 
not be the largest value. 

In the sunspot data, four or five intervals may be identified where peaks 
tend to be large, separated by intervals where they are smaller. The phase 
variation is harder to evaluate by eye. If the phase is assumed to be chang­
ing no more rapidly than the amplitude, the transform of the (complex) 
modulating function might be expected to be large only for frequencies 
in the interval -Sin < f < Sin cycles per year, or, since n == 261 years, 
-0.02 < f < 0.02 cycles per year. Thus the periodogram of the sunspot 
numbers might be expected to show a peak with a width of around 0.04 
cycles per year. Figure 6.10 does, in fact, show a peak of roughly this 
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width, suggesting that the poor definition of that peak may well be caused 
by amplitude and phase variations. Complex demodulation, described in 
Chapter 7, is a useful tool for analyzing data containing amplitude or 
phase variations. 

6.7 TRANSFORMATIONS 

Sections 6.S and 6.6 described two common ways in which a periodic se­
ries may fail to be purely sinusoidal. Both have the effect that the trans­
form of the series has power at frequencies other than the fundamental 
frequency corresponding to the period of the series. To this extent, there 
is information about the periodicity of the series in its discrete Fourier 
transform at frequendes other than the fundamental. In particular, no 
single ordinate of the transform contains all of the available information. 

A series may sometimes be transformed in such a way that it becomes 
more closely sinusoidal. This means that a greater proportion of the pow­
er associated with the periodicity appears at the fundamental frequency 
in the transform, and hence the fundamental becomes more pronounced. 
For example, the upper curve in Figure 6.11 is 

1 1 
cosu + 4 cos2u = cosu + 4{2(COSU)2_l} 

1 3 
= 2(1 + COSU)2 - 4' 

Thus if the periodic signal were 

3 1 
4 + cosu + 4 cos2u, 

which, like the sunspot data, is nonnegative and has zero as its lowest 
value, it could be transformed into a pure sinusoid by the square root 
transformation 

As a second example, suppose that a series is Xt = Y[, say, where 

Yt = R cos 2rr (jt + ef» + Zt 

and {zd is a slowly varying series. Then 

Xt = R2 cos 2rr(jt + cp)2 + 2ztR cos 2rr(jt + cp) + z; 
1 

= 2R2{cos4rr(jt + cp) + I} + 2ztRcos2rr(jt + cp) + z;, (6.14) 

which consists of a term with frequency 2f, a slowly varying term R2 /2 + 
z; , and an amplitude-modulated term 

2ztRcos2rr(jt + cp). 
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1700 1750 1800 1850 1900 1950 2000 

Fig. 6.13 Square roots of the annual sunspot numbers, 1700 to 1960. 

Thus, in this case, the square root transformation would eliminate both 
the term with frequency 2J (the second harmonic) and the amplitude 
modulation. Of course, the original data must have the special structure 
(6.14) for this to be the case. 

Notice that a transformation of the values of a series can do nothing to 
change time asymmetry in a waveform, such as that shown by the lower 
curve of Figure 6.11. Similarly, variations in the phase of an otherwise 
periodic signal cannot be changed. These features could be removed only 
by a transformation of the time axis, which would, in general, be difficult 
both to find and to interpret. 

Figure 6.13 shows the square roots of the sunspot numbers. The ten­
dency for the troughs to be flatter than the peaks has been largely removed 
and possibly partly reversed. The values at the troughs show greater vari­
ation than before, but still not as great as that of the heights of the peaks. 
It also appears that the amplitude modulation has been reduced and a 
low-frequency component introduced, as in the example above. These 
observations suggest that the power at the second harmonic should be 
reduced, and that the main peak should be more clearly defined. 

Figure 6.14 shows the periodogram of square roots, which is, in fact, 
very similar to the original periodogram, Figure 6.10 (p. 77). Close inspec­
tion suggests that the power at the second harmonic has been reduced 
slightly, but the main peak is no clearer. The phase fluctuations, which 
are not affected by this transformation, and the remaining amplitude fluc­
tuations are sufficiently strong for the peak still to be diffuse rather than 
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Fig. 6. 14 Periodogram of the square roots of the sunspot numbers. 
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Fig. 6. 15 Some values of the third· order periodogram of the square roots of the 
sunspot numbers, shOwing the relative phase of the second harmOnic. 

sharp. 
Figure 6.15 is the relative phase plot for the second harmonic of the 

frequencies fJ between 0.06 and 0.12 cycles per year, computed as de­
scribed in Section 6.5. Only one point falls at a large radius, correspond­
ing to f = 0.08936 cycles per year, and this point falls much closer to 
the imaginary axis than before. This confirms that the square root trans-
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formation has substantially reduced the difference between the nature 
of peaks and troughs, while leaving the time asymmetry relatively un­
changed. 

The most generally useful transformations are the power transforma­
tions Y = X()( and the logarithmic transformation Y = log x , which arises 
as the limit as oc approaches 0 of (x()( - 1) loc. These may be applied 
only to nonnegative data (positive data if oc :::; 0). However, the data 
most in need of transformation are usually nonnegative, so this is not 
a serious restriction. In certain other cases, other transformations may 
be suitable. In the case of the sunspot data, it is doubtful whether an­
other transformation would bring about a substantial improvement. The 
amplitude modulation was not entirely eliminated, and it appears that a 
stronger transformation, perhaps cube roots, is needed for this. On the 
other hand, the difference between the natures of the peaks and troughs 
has been largely eliminated, and a stronger transformation would pre­
sumably reintroduce a difference in the opposite direction. 

Exercise 6.8 Effect of a Transformation 

Suppose that {Yo, Yl, ... , Yn-l} is obtained from {Xt} by a transforma­
tion Yt = I(xt), with inverse Xt = g(Yt). Suppose also that 

Yt = J..I + R cos 2rr(jt + cp), 

where I = j In is the jth Fourier frequency. 

(i) Suppose, in addition, that j divides n. Show that the transform of 
{Xt} is nonzero only at multiples of I. 

(ti) Suppose, more generally, that the greatest common divisor of j and 
n is l. Show that the transform of {Xt} is nonzero only at multiples 
of Il = lin. (Hint: Find the period of {yd and hence of {xd, and 
note that the period of a discrete time series must be an integer.) 

Exercise 6.9 Continuation 

Suppose that {Xt} and {Yt} are related as in Exercise 6.8, but that 

Yt = J..I + Rcos2rr(jt + cp) + R' cos2rr(j't + cp'), 

where f' = j'ln is another Fourier frequency. Show that the transform of 
{Xt} is nonzero only at multiples of Il' where l is the greatest common 
divisor of j, j', and n. 
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a so 100 150 200 250 

Fig. 6. 16 A series of 256 pseudorandom numbers drawn from the standard normal 

distribution. 

Exercise 6.10 An Approximation 

Suppose that {Xt} and {Yt} are as in Exercise 6.9, and that R and R' are 
small compared with 11. Use a Taylor series expansion about 11 to show 
that in the transform of {Xt} there are first-order terms at f and I' , and 
second-order tenus at 2f, 21', and If ± 1'1. 

6.8 PERIODOGRAM OF A NOISE SERIES 

One feature common to most of the periodograms shown in this chapter is 
the roughness of the graphs in any interval in which there is no peak. The 
exceptions were the periodograms of the heavily tapered variable star da­
ta, which showed an unusual constancy (Figures 6.6, p. 73, and 6.7, p. 73). 
Even in that case, however, the characteristic roughness reappeared when 
the exceptional value was corrected (Figure 6.9). This behavior is typical 
of periodograms of empirical data and is usually caused by the presence 
of a random component in the data. 

The simplest such component is a series of independent random num­
bers. Figure 6.16 shows 256 pseudorandom numbers drawn from the nor­
mal (or Gaussian) distribution. Their periodogram, shown in Figure 6.17, 
shows the typical roughness, but otherwise has no interesting structure 
or overall shape. By analogy with the spectrum of white light, which is 
also flat and featureless, a series of independent errors is also known as 
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Fig. 6.17 Periodogram of the pseudorandom data. 
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Fig. 6. 18 Histogram of the periodogram of the pseudorandom data. 

white noise. 

Figure 6.18 is the histogram of this periodogram, with an exponential 
curve superimposed. The similarity is no coincidence. When the data are 
independent random numbers drawn from a Gaussian distribution, it may 
be shown that the periodogram ordinates at the Fourier frequencies (other 
than 0 and 1/2 cycles per unit time) are independently exponentially 
distributed (see Exercise 6.11). It is this independence that makes the 
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Fig. 6. 19 Histogram of the periodogram of the annual sunspot numbers (shown in 
Figure 6.10) for 0.3 < f < 0.5 cycles per year. 

graph of the periodogram rough, since it means that there is no tendency 
for adjacent ordinates to have similar values. 

When the periodogram is calculated at frequencies other than the Fou­
rier frequencies (e.g., when it is calculated after extending the data by 
zeros), each ordinate is still approximately exponentially distributed, but 
neighboring ordinates are by no means independent (see Exercise 6.12). 
Tapering a series adds a further complication, since then the distribution 
of the periodogram ordinates is only approximately exponential even at 
the Fourier frequencies (see Exercise 6.13). 

Figure 6.19 is the histogram of the sunspot periodogram (Figure 6.10, 
p. 77) for 0.3 < f < 0.5 cycles per year, again with an exponential curve 
superimposed. Despite the fact that the data were tapered, no gross de­
parture from the exponential distribution is evident. The number of ordi­
nates used, 47, is too small to detect slight departures. No more ordinates 
could be used, however, as the periodogram begins to increase as f is re­
duced below f = 0.3 cycles per year. Inclusion of these ordinates would 
result in mixing the graphed distribution with exponential distributions 
having larger scale parameters. 

The exponential distribution of periodogram ordinates has been de­
rived here on the assumption of independent, normally distributed errors 
(or noise). The key point, however, is that the cosine and sine sums are 
normally distributed. If it is assumed only that the errors are indepen­
dent and have finite variance, the central limit theorem (see, e.g., Feller, 
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1968, pp. 244, 254) assures that these sums are approximately normally 
distributed for large n. It follows that periodogram ordinates are still 
approximately exponentially distributed under this weaker assumption, 
and indeed in any situation where a central limit theorem holds. 

Exercise 6.11 Periodogram of a Noise Series 

Suppose that {Xo, Xl, . .. ,Xn-l} are independent and identically distribut­
ed with the standard normal distribution. 

(i) If f is a Fourier frequency and 0 < f < 1/2, show that both 

n-l 

L Xt cos2rrjt and 
t=O 

n-l 

L Xt sin2rrjt 
t=O 

have zero expectation, that their variances are both n / 2, and that 
their covariance is zero. It follows that the periodogram has a X2 

distribution with 2 degrees of freedom, which is the exponential 
distribution. 

(ii) If l' is another Fourier frequency in the same interval, show that 
the cosine and sine sums involving l' are uncorrelated with those 
involving j. This lack of correlation, together with the normal dis­
tribution, implies independence of the sums, and hence of the peri­
odogram values. 

Recall that when the periodogram is calculated at the Fourier frequencies, 
prior subtraction of the series mean has no effect; thus the result of this 
exercise holds, regardless of whether the data are centered at their mean 
before computation of the periodogram. 

Exercise 6.12 Periodogram at a Non-Fourier Frequency 

Suppose the {Xt} is as in Exercise 6.11, but that f is not a Fourier frequen­
cy. Show that the values found in Exercise 6.11 for the moments of the 
cosine and sine sums are still approximately valid, and deduce that the 
periodogram at f is still approximately exponentially distributed. (See 
also Exercise 2.6, p. 24.) 
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Exercise 6.13 Periodogram of a Tapered Noise Series 

Suppose the {Xt} is as in Exercise 6.11, and consider the cosine and sine 
sums of the series tapered by {Wt}, 

n-l 

L WtXt cos 2rr jt and 
t=O 

n-l 

L WtXt sin2rrjt. 
t=O 

Suppose further that Wt = W {(t + 1/2)/n} for some smooth function 
W (x) defined on 0 ~ x ~ 1. Find the variances and covariance of these 
sums, and show that they may be approximated by integrals involving 
W(X)2. Use the fact that 

f: W(X)2 cosAxdx and f: W(X)2 sinAxdx 

converge to zero as A - 00 to deduce, as in Exercise 6.12, that the peri­
odogram is approximately exponentially distributed. 

6.9 FISHER'S TEST FOR PERIODICITY 

The distributional results of the preceding section mean that it may be 
misleading to look for peaks in a periodogram. Since the ordinates at 
the Fourier frequencies are approximately independent, they are bound 
to fluctuate and show many small peaks and troughs. Furthermore, since 
the distribution is exponential, the largest ordinate, even for a noise series, 
tends to be large compared with its neighbors (see Exercise 6.14) and may 
appear to indicate a reasonably strong periodicity. 

Fisher (1929) proposed a test of the Significance of the largest peak 
in a periodogram and gave a table of critical values for various series 
lengths. The test statistic is the ratio of the largest of the periodogram 
ordinates at the Fourier frequencies to the sum of the ordinates. Fuller 
(1995, Table 7.1.2) gives a more extensive table for an equivalent statistic, 
the ratio of the largest ordinate to the average. 

The null hypothesis in each case is that the data consist of independent 
errors (white noise). For an exact theory it is assumed that the errors 
are normally distributed (Gaussian white noise), but the discussion of 
Section 6.8 suggests that, if the Gaussian assumption is not satisfied, the 
theory should continue to provide a useful approximation. 

This null hypothesis is often inappropriate, in that it may be clear from 
the data that even if no periodicity is present, the data do not consist of 
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Fig. 6.20 Ten-year running means of mean January temperatures at Central Park Ob­

servatory, New York City, for 1870 to 1994 (Karl et al., 1990; Easterling et al., 1996). 

independent errors. Whittle (1952) describes a modified procedure that 
is appropriate for testing a more general null hypothesis. 

Fisher's test may be used to assess the significance of an apparent peri­
odiCity in the data shown in Figure 6.20, which are 10-year running means 
of January temperatures for 1870 to 1994 at Central Park Observatory, 
New York City. The data from 1869 to 1973 were discussed by Spar and 
Mayer (1973); the data shown here were obtained from the u.S. Histori­
cal Climatology Network (Revision 3) at the National Climatic Data Center 
(Karl et al., 1990; Easterling et al., 1996).4 There appears to be a strong 
20-year cycle, especially in parts of the record. 

Figure 6.21 shows the periodogram of the Original, unsmoothed, Jan­
uary temperatures. The running means shown in Figure 6.20, a smoothed 
series, would have a periodogram with less power at high frequencies. 
The largest value in the periodogram occurs at the lowest frequency in 
the transform, and is associated with the overall trend. With this ordi­
nate set aside, the next highest is at 0.048 cycles per year, corresponding 

4The web site for the Historical Climate Network (HCN) is http://cdi ac. esd. ornl . 
gov/epubs/ndp019/ndp019. html. The monthly mean temperatures for all HCN stations 
in New York state are maintained in a single file: http://cdiac.esd.ornl.gov/r3d/ 
ushcn/state/NY INY94mea. html, in which each line beginning with the station code for 
the Central Park station, 305801, contains a single year's data. Each year's record contains 
the monthly means, quarterly means, and the annual mean, where the quarters are Winter 
(Dec, Jan, Feb), Spring (Mar, Apr, May), Summer Gun, Jul, Aug), and Fall (Sep, Oct, Nov). 
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Fig. 6.21 Periodogram of unsmoothed mean January temperatures. 

to a period of 20.8 years. The ordinate is 4.420 times the average of these 
m = 61 ordinates. The value of the test statistic for which Fuller's table 
is relevant is therefore 4.420. Linear interpolation between the entries 
for m = 60 and m = 70 yields an upper 10% point of 6.161. Thus the 
peak is far short of statistical significance. It follows that these data alone 
provide no statistical evidence for the presence of a 20-year cycle. 

Exercise 6.14 Largest Periodogram Ordinate 

Suppose that h, h ... , 1m are independent and exponentially distributed 
with mean 0- 2 , that is, 

pr(Ij/0-2 :5 x) = 1- e-x , x 2: O,j = 1,2, ... , m. 

Let Xm = max{h,h .. . ,Im}. 

(i) Show that 
pr(Xm/0-2 :5 x) = (1 - e-x)m, 

and hence that for large m, 

pr(Xm/0-2 :5 x + logm) ~ exp (_e- X ). 

This implies that Xm is probably close to 0-2 log m. 

(ii) Show that for large m, 
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in the sense that the distribution of Ym/«(T2m) becomes concen­
trated arbitrarily close to the value 1. 

(iii) Deducethatif ~m = Xm/(Ym/m) iSFuller'sversionoftheteststatis­
tic, then 

pr(~m ~ x + logm) ::::: exp (-e- X
) 

or 

For the temperature data of Figure 6.20, n = 125 and there are 62 Fourier 
frequencies. Omitting the first leaves m = 61 ordinates to be tested. The 
observed value ~obs = 4.420 would be exceeded with a probability of 
approximately 

1 - exp (_61e-4.420) = .520, 

or 52% of the time, under the null hypothesis that the data are a pure 
noise series. 

The approximation derived in this exercise may be used to obtain ap­
proximate percentage points: 

pr{~m ~ log m -loge -log q)} ::::: q, 

which gives the approximate upper 10% point for m = 61 as 6.361 (cf. 
the interpolated value 6.161). 

Exercise 6.15 A Better Approximation 

Chiu (1989) has studied the properties of a family of tests related to Fish­
er's, and has shown that the following argument provides a better approx­
imation to the distribution of ~m. Write 

the sum of all the ordinates except the largest. Chiu shows that 

y:n ::::: (T2(m - 1 -logm) 

and hence that 
3:' = Xm(m - 1 -logm) 
~m y.:n 

has the same approximate distribution as ~m: 
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Since 
f - ~ (m -1 -logm) 

m - m m-~m 

it follows that 

where 
~' = ~ (m - 1 - log m) . 

m-~ 

Chiu compared this approximation with the exact distribution obtained by 
Fisher and tabulated by Fuller, and found that it provides a surprisingly 
accurate approximation. For these data the value ~obs = 4.420 corre­
sponds to ~~bs = 4.366, which would be exceeded approximately 53.9% 
of the time for pure noise, leaving the conclusion unchanged. This more 
accurate approximation gives the upper 10% point of the distribution of ~ 
as 6.233, which is indeed closer to the (interpolated) exact value of 6.161 
than the value 6.361 found in the previous exercise. 

Appendix 

The S-PLUS function spec. pgramO is a general purpose tool for estimat­
ing spectra (Chapter 8) based on smoothing the periodogram, and will 
return the periodogram of tapered data as a default. The function fft 0 
is designed for the more specific purpose of calculating the discrete Fou­
rier transform d(j), and was used for the calculations in this chapter. 
This function returns the unnormalized transform, that is, without the 
n -1 multiplier used here. Thus a typical usage would be 

star.dft <- fft(star)/length(star) 

Split cosine bell tapers were computed from the function 

taper <- funetion(n, p) 
{ 

P <- max(O, min(l, p)) 
x <- (2 * (l:n) - 1)/(2 * n) 
(1 - eos(2 * pi * pmin(x/p, 1/2, (1 - x)/p)))/2 

} 

which could be used as in 

star.dft50 <- fft((star - mean(star)) * taper(n 
length(star) , p = O.5))/length(star) 
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The amplitude function R(J) = Id(j)1 was obtained using the S-PLus 
function Mod (): 

star.amp50 <- Mod(star.dft50) 

and the periodogram I(j) = nld(J)12 = nR(j)2 was found similarly: 

star.pgm50 <- length(star) * Mod(star.dft50)A2 

The third-order periodograms shown in Figures 6.12 and 6.15 can be 
found using, for instance, 

n <- length(sunspots) 
spot.dftl0 <- fft((sunspots - mean(sunspots))*taper(n, 

O.I))/n 
spot.dftl0 <- spot.dftl0[-I] # drop the zero-frequency term 
f <- (1:(n - 1))/n 
i <- (1:(n - 1))[f > 0.06 & f < 0.12] 
spot.3rd <- d[2 * i] * Conj(d[i])A2 
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7 
Complex Demodulation 

Harmonic analysis of the sunspot series in Chapter 6 showed that not 
all "periodic" phenomena have simple representations in terms of cosine 
functions, even when much has been done to improve the analysis. Com­
plex demodulation is a more flexible approach to the analysis of such da­
ta (Bingham et al., 1967). By trading off some frequency resolution for 
time resolution, complex demodulation can describe features of data that 
would be missed by harmonic analysis, and also to verify in some cases 
that no such features exist. The price of this flexibility is a loss of preci­
sion in describing pure frequencies, for which harmonic analysis is most 
exact. 

7.1 INTRODUCTION 

Suppose that a set of data contains a perturbed periodic component 

Xt = Rt cos 2rr(fot + cf>t>. (7.1) 

Here {Rt} is a slowly changing amplitude, and {cf>t} is a slowly changing 
phase. It was shown in Section 6.4 that the oscillations in the sunspot 
series could reasonably be regarded as having the structure (7.1). The aim 
of complex demodulation is to extract approximations to the series {R t } 

and {cf>t}. It may be regarded as a local version of harmonic analysis; it is 
analogous to harmonic analysis in that it seeks to describe the amplitude, 

97 
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and phase of an oscillation, but it is local in that these are allowed to 
change slowly over time. 

How rapidly the amplitude and phase are allowed to change is the issue 
of time resolution, and is one of the key choices in carrying out complex 
demodulation. It is a matter of compromise: allowing more rapid changes, 
that is, increasing the time resolution, inevitably reduces the frequency 
resolution. 

Consider first the complex analog of (7.1), 

(7.2) 

The extraction of {Rt} and {cJ>t} is trivial if 10 is known, as is assumed, 
since then it is possible to construct 

Then 

Yt = Xte-2rrifot 

= Rte2rricJ>t. 

Rt = !Yt! and e2rricJ>t = Yt . 
!Yt! 

The new series {Yt} is said to be obtained from {Xt} by complex demod­
ulation. Now the real form (7.1) may be written as 

and is thus the sum of two complex terms, the first similar to (7.2) and 
the second its complex conjugate. This real series may be analyzed in one 
of two ways. The first is to use complex demodulation initially ignoring 
the second term, and then to remove it using linear filtering techniques. 
The second way is to separate the two terms and then to use complex 
demodulation on either. The separation is also based on filtering, so the 
two ways are only superficially different. However, they suggest different 
directions of development, and will be presented separately. The former 
approach is described below, and the latter in Section 7.6. 

Complex demodulation of the real series (7.1) yields 

Y =! R e2rricJ>t + !e-2rri (2fo t+cJ>t) 
t 2 t 2 . 

The first term is the desired one, since as before {Rt } and {cJ>t} are easily 
extracted. The second term, which is a perturbed complex sinusoid with 
frequency - 210, has to be removed. 

In general, the series being analyzed does not consist solely of the per­
turbed sinusoid (7.1). For instance, it was shown in Sections 6.4 and 6.7 
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that the sunspot series contains some low frequency terms, especially af­
ter transformation, and in Section 6.5 that it contains some terms that 
may be identified as second harmonics. It is also clear from the graph of 
the series, Figure 1.3 (p. 4), that there is a noise component. Thus, more 
generally, the data series would be 

where Zt contains the additional terms, and hence 

Yt = Xt e - 2rri!ot 

= !. R e2rricf>t + !.e-2rrH2!ot+cf>t> + Z e-2rri!ot 2 t 2 t· 

(7.3) 

The basic problem in complex demodulation is to separate the first 
term in (7.3) from the others. The feature that makes this possible is that, 
since both {R t } and CPt} are assumed to be smooth, the first term likewise 
is smooth. The second term oscillates at a frequency around -2fo. All 
frequencies in the final term are shifted by - fo by the demodulation 
(see Exercise 7.1). Now {zd may be assumed to have no component at 
frequency fo, since any such component would be indistinguishable from 
Rt cos 2IT (jot + CPt). Thus {Zte-2rri!ot} contains no component around 
zero frequency, and hence is not smooth (see Section 4.5). The problem, 
therefore, is to extract the smooth component of {Yt}. This is usually 
accomplished by linear filtering, which is described briefly in the next 
section. 

Exercise 7.1 Transform of a Demodulated Series 

For any series {Xt}, the demodulated series 

Yt = Xte- 2rri!ot, t = 0, I, ... , n - 1 

is formally the same as the tapered sinusoid of Exercise 6.2. Verify that 
the transform of {Yt} consists of the transform of {Xt} centered at fo, 
that is, 

d y (j) = ~ "" Yt e - 2rri!t 
nL... 

= ~ LXte-2rrH!+!o)t 
n 

= dx(j + fo). 

In this sense, complex demodulation just shifts all the frequencies by - fo. 
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7.2 SMOOTHING: LINEAR FILTERING 

The problem just encountered arises in many contexts: given a series that 
consists of a smooth function, the signal, plus disturbance or noise, how 
can the two components be separated? The question is essentially how 
to smooth the series. Linear filters are often used for this purpose. Since 
these filters have been discussed extensively elsewhere (see, e.g., Otnes 
and Enochson, 1972; Hamming, 1998), only a brief account is given here. 

Suppose that the series {Yt} may be written as 

where {ad is smooth and {ed represents errors or disturbances. Since 
{ad is smooth, at-l and at+1 are approximately the same as at. Thus 
the average of Yt-l, Yt, and Yt+l is approximately at plus the average 
of et-l, et, and et+1. However, these errors tend to cancel out, so that 
the average error tends to be smaller than the individual errors. If this 
averaging is carried out for each t, a new series is obtained, say {Zt}, 

which consists approximately of {at} plus errors that tend to be smaller 
than before. Hence some progress has been made toward extracting the 
smooth series {at}.1 

The clearest way to describe the effect of this procedure, which is 
known as simple moving averaging, is through a frequency approach. 
Suppose first that the series {Yt} is exactly sinusoidal, 

Yt = R cos 2rr(jt + cJ». 

Then 

1 
Zt = 3(Yt-1 + Yt + Yt+d 

1 
= 3R{cOS 2rr(jt - j + cJ» + cos2rr(jt + cJ» + cos 2rr(jt + j + cJ», 

which is most easily evaluated as the real part of 

!R{e2rri(jt- j +<t» + e2rri(jt+<t» + e2rri(jt+j+<t» 
3 

= ! Re2rri(Jt+<t» {e-2rrij + 1 + e2rrij } 
3 

= ~Re2rri(jt+<t»(l + 2cos2rrj). 
(7.4) 

lOne point at each end of the series cannot be calculated without some modification of 
the procedure. 
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Fig. 7.1 The function (1 + 2 cos 2rr f) /3. 

The real part is thus R/3 cos 2rr(jt + cJ>)(1 + 2 cos 2rr j). Thus the output 
of this procedure {Zt} is obtained from the input {Yt} by multiplying by 
(1 + 2 cos 2rr f) /3. A graph of this as a function of f is given in Figure 7.1. 

Because in this smoothing procedure the output is a linear function 
of the input, it is also clear what happens when the input is the sum 
of a number of cosine terms. The output then contains cosine terms 
with the same frequencies, but with each amplitude changed by the factor 
(1 + 2 cos 2rr f) /3, f being the corresponding frequency. Thus terms with 
frequency near zero pass through almost unchanged, whereas a term with 
f = 1/3 is removed completely. 

However, it was shown in Chapter 4 that any series may be written 
as a sum of cosine terms, and hence the action of this filter on an arbi­
trary series may be described in these frequency terms. This provides 
an alternative description of the effect of simple averaging in the origi­
nal problem, where {Yt} is smooth "signal" plus error, or "noise": it was 
shown in Chapter 4 that for a function to be smooth its transform must 
be concentrated at low frequencies, whereas at least for white noise (see 
Section 6.8) the magnitude of the transform is relatively constant. Thus 
the averaging procedure described here passes most of the signal, but 
cuts down the power of the noise, at least over certain frequency bands. 

A general linear filter consists of a set of weights {gr,gr+l, ... ,gs}, 
such that if the input to the filter is {Yt} the output is 

s 

Zt = L guYt-u· (7.5) 
u=r 
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The three-term simple moving average above has r = -1, s = 1, and 
Bu = 1/3, u = -1,0, 1. Note that if the input series is available for 
t = 0,1, ... , n - 1, the output may be computed only for t = s,s + 1, ... , 
n - 1 + r. When the input series is the sinusoid Rcos2rr(jt + 1», the 
output, for t in the latter range, is the real part of 

5 5 

L BuRe2rri<ft- fu+.p) = Re2rri(jt+.p) L Bue-2rrifu. 
U=T U=T 

The second factor, 
5 

G(j) = L Bue-2rrifu, 
U=T 

is called the transfer (unction of the filter, since it describes the way in 
which a sinusoid with frequency j is transferred from the input to the 
output. Its squared magnitude IG(j) 12 is the power transfer (unction. 

In the case of a symmetric filter, one for which r = -s and B-u = Bu, 
the transfer function is real, and the output is RG(j) cos 2rr(jt + 1». 
Notice that in this case 

G(j) = LBu cos 2rrju 

= Bo + 2 L Bucos2rrju, 
u>O 

and since cos ux is a polynomial in cos x, G(j) may be expanded as a 
polynomial in cos 2rr j. 

More generally, G (j) may be complex, say G (j) = r (j) e2rriy(j) , where 
r (j) is real and nonnegative and y(j) is real. The output is then the real 
part of 

Re2rri<ft+.p)f(j)e2rriY(f) , 

which is 
Rf(j) cos2rr{jt + 1> + y(j)}. 

In this case, the amplitude is changed by f (j) as before, but in addition 
the phase is changed by y(j). It should be noted that when the input 
series is real, the filter weights are usually also real-valued, and conse­
quently G( - j) = G(j). Thus f( - j) = r(j) and y( - j) = -y(j). Thus, 
as might be expected, it is necessary to study the behavior of transfer 
functions only for positive frequencies. 

Relation 7.5 defining the output of a filter in terms of its inputs and 
a set of filter weights is an example of convolution. If the values at the 
ends of the output are computed as if the input were part of a periodic 
series with period n, the operation is the circular convolution defined in 
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Exercise 6.4. It follows from the results of that exercise that if f is a 
Fourier frequency, then 

dz(j) = ndy(j)dg(j) 

= G(j)dy(j), 
(7.6) 

since the transform of the weights is just dg (j) = n -1 G (j). Typically, 
some other rule is used to compute the end values of the output series. 
Two simple rules are to treat unavailable values in the input series as 
equal to the corresponding end value, and to treat the input series as if 
it were symmetric about each end value. It may be shown that for any 
reasonable rule (7.6) is approximately true (see Exercise 7.3). 

Since the transfer function is proportional to the transform of the 
weights, it may be inverted to yield the weights. Thus a general linear 
filter may be defined in terms of either the weights {gu} or the trans­
fer function G(j). The weights are also known as the impulse response 
function, since if the input series is an impulse (i.e., consists of a single 
nonzero value in a string of zeros), the output consists precisely of the 
weights (see Exercise 7.6). The filters described above are known as finite 
impulse response (FIR) filters. All filters used below are in this class. The 
other main class consists of recursive filters, in which the output at a giv­
en time depends on a finite number of values of the input series and also 
on values of the output at a finite number of other times (usually in the 
past). Recursive filters do not have finite impulse response. The transfer 
function of a filter is also known as its frequency response function, since 
in a dual way it describes the output when the input contains a single fre­
quency. Recursive and nonrecursive filters are discussed in more detail 
by Hamming (1998). 

The simplest filters are those which shift the series; that is, if the input 
is {ytl, the output is {zd where Zt = Yt+h for some h. Since Zo = Yh 

this may be viewed as a change of time origin to t = h. The transfer 
function is e2rriJh, whence ref) = 1 and y(j) = fh, a linear function of 
frequency f. Whenever a transfer function has a linear phase it may be 
viewed as including a shift, even if ref) is not constant. 

A convenient way to construct filters is by repeated application; if both 
are low-pass filters (see Section 7.3), this is called resmoothing (Tukey, 
1977). When filters with transfer functions Gl (j) and G2 (j) are applied 
in succession, they are equivalent to a composite filter with transfer func­
tion G (j) = Gl (j) G2 (j): if the input to the first is e2rriJt then the output, 
which is the input to the second, is GI (j)e2rriJt, whence the final output 
is Gl (f) G2 (j)e2rriJt. The order in which they are applied does not matter 
except for possible effects at the ends of the series: the transfer functions 
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Gl (j) G2 (j) and G2 (j) Gl (j) are identical and by the above argument the 
transfer function determines the filter. 

Clearly, the result of resmoothing is an output series that is more 
smooth than that of either filter applied on its own. Sometimes it is de­
sired to combine filters so that the output is less smooth, for instance, if 
it is judged that an otherwise satisfactory filter has eliminated part of the 
signal. One way to achieve this is by reroughing (Tukey, 1977). The sec­
ond filter is applied not to the output of the first but to the corresponding 
rough: 

rough = input - output. 

The output of the second filter is then added to the output of the first, to 
restore the eliminated part of the signal. The transfer function is easily 
seen to be G(j) = Gl (j) + G2 (j) - Gdj)G2 (j), whence 1 - G(j) 
{1- Gdj)}{I- G2(f)}. 

Exercise 7.2 Circular Filters 

Suppose that a linear filter with weights {gu : r ::;; u ::;; s} is defined as a 
circular convolution. Show that (7.6) holds approximately when f is not 
a Fourier frequency. (Hint: Write out (7.6) explicitly for the end terms and 
note that only finitely many terms are affected.) 

Exercise 7.3 (Continuation) Noncircular Filters 

A possible definition of a reasonable rule for extending an input series 
in order to compute the output of a noncircular filff~. would be that any 
substitute value falls in the range of the data In other lvords, if y is any 
value substituted for Yt, t < 0 or t ~ n, then 

min{Yt : 0::;; t < n} ::;; Y ::;; max{Yt : 0::;; t < n}. 

With this definition, show that (7.6) holds approximately for any f. 

Exercise 7.4 Impulse Response Function 

Suppose that a linear filter has weights {Uu : r ::;; u ::;; s}, where r ::;; 0 ::;; s, 
and that its input is 

{
I if t = v 

Yt= o otherwise 
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for some v satisfying s ~ v < n + r. Show that the output is 

{

gt-v if v + r ~ t ~ v + s 
Zt = o otherwise. 

7.3 DESIGNING A FILTER 

Two essentially distinct approaches may be taken to designing a filter for 
any given application. The first is to take a convenient set of primitive 
filters, such as simple mOving averages of various lengths, and use them 
as building blocks in assembling a filter with the desired characteristics. 
The second is to specify the requirements precisely, and then to construct 
a filter directly to satisfy them. Examples of both approaches are given in 
this section and the next, and applied to complex demodulation later in 
the chapter and to other filtering problems in other chapters. Hamming 
(1998) discusses filter design at length. 

The requirements for a filter are usually specified in terms of both the 
impulse response function and the frequency response function. 

• Other things being equal, it is usually desirable for the filter to have 
a short span, where the span is 

max{u: gu =1= O} - min{u: gu =1= a}. 

The span is one more than the total number of points that are lost 
(or have to be computed specially) at the ends of the data, and the 
computation- 1 effort required to apply the filter is usually roughly 
proportiOl.al to the span. 

• It is usually undesirable for the impulse response function to show 
eccentric behavior such as large ripples. 

The desired frequency response function, or transfer function, may 
usually be specified more precisely. The problem that arose in Section 7.1, 
that of separating a low-frequency component from other terms, is typical. 
A filter that does this is called a low-pass filter. Its transfer function should 
be close to 1 for frequencies in the band associated with the low-frequency 
signal (the pass band, extending from f = 0 to the pass frequency) and 
close to 0 elsewhere (the stop band, extending from the stop frequency to 
f = 1/2 cycles per unit time). Since transfer functions are continuous, 
there is necessarily an intermediate band (the transition band) where the 
transfer function lies between 0 and 1 in magnitude. 
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The transfer function of a symmetric filter (only symmetric filters will 
be used in the present application) is a polynomial in cos 2rr f, and hence 
these requirements cannot be met exactly for all frequencies. For complex 
demodulation, additional information shows which frequencies are most 
important. Equation (7.3) showed that one unwanted component contains 
a sinusoid with frequency2 around 2fo. Thus the transfer function should 
be 0 at 2fo, and small in a band surrounding 2fo. The other unwanted 
frequencies are those in the final term. Since in the present case {Zt} 
is known to contain a low-frequency term and the second harmonic of 
fo, this term contains power at around fo and 3fo. Thus the transfer 
function should similarly vanish at fo and 3fo. 

The simplest way to meet these minimal requirements is to find a poly­
nomial P(x) such that 

PO) = 1, P(cos 2rrfo) = P(cos4rrfo) = P(cos6rrfo) = o. 
(7.7) 

The transfer function P(cos 2rr f) is then necessarily close to 1 for low 
frequencies and close to 0 around fo, 2fo, and 3fo. The lowest degree 
polynomial satisfying (7.7) is 

P(x} = (x - cos2rrfo)(x - cos4rrfo)(x - cos6rrfo). 
0- cos 2rr fo)(l - cos4rrfo)(1 - cos6rrfo} 

The graph of P(cos 2rr f) is shown in Figure 7.2 for fo = 0.08936 cycles 
per year, the approximate frequency of the sunspot cycle. The graphed 
behavior is unacceptable because 

• the values between the zeros are too large, and 

• the function becomes large in magnitude as f approaches 1/2 cy-
cles per year. 

A sinusoid with frequency between 1/4 and 1/2 cycles per year would 
be strongly amplified (and have its phase changed by one half of a cycle). 
If further zeros are added at 4fo and 5fo, the transfer function becomes 
that shown in Figure 7.3, which is more acceptable. 

The filter corresponding to any transfer function may be found in sev­
eral ways. 

• Evaluate the transfer function on a sufficiently fine grid of frequen­
cies, and apply the inverse discrete Fourier transform. 

2Strictly the frequency is -210, but since the transfer function is symmetric, the sign may 
be ignored. 
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Fig. 7.2 A transfer function with three zeros. 
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Fig. 7.3 A transfer function with five zeros . 

• Replace cos 2" f by Ce2rriJ + e-2rriJ ) /2 and expand in powers of 
e2rriJ . 

• If the transfer function is specified in a factorized form 

PCCOS21Tf) = nCaj + 2bj cos 21Tf) 
j 

it may be applied by successive application of three-term filters with 
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weights b j, a j, b j, since the transfer function of the j th of these 
is exactly the j th factor. 

The last is an example of building a filter using three-term filters as prim­
itives. 

The simplest way to fill in the two end values when using a three-term 
filter is to treat Y -1 and Yn as if they vanish. One modification is to scale 
the resulting values by (aj + 2bj}/(aj + bj), thus making the sum of the 
weights for the end values the same as the sum of the basic weights. Both 
these methods destroy the symmetry of the filter, however, and it may be 
preferable to use Yo or Yn-1 multiplied by aj + 2bj . 

When the frequency fo corresponds to an integer period p, the p -term 
simple moving average provides a useful filter. If p is odd, say p = 2q + 1, 
this is 

1 q 

Zt = - I. Yt-u, 
p u=-q 

with transfer function Dp (j), the Dirichlet kernel (see Section 2.2). Since 
Dp(O) = 1 and Dp(kfo) = 0, k = 1,2, ... ,q, this transfer function has 
zeros at the required frequencies, and its oscillations become smaller as 
f increases. The period of the sunspot series is dose to 11 years, and, in 
fact, Du (f) is very similar to the transfer function shown in Figure 7.3 
(see also Exercise 7.6). 

When p is even, say p = 2q, there is no symmetric simple moving 
average of length p. The modified average 

1 (1 q-1 1) 
Zt = p 2"Yt-q + I. Yt-u + 2"Yt+q 

u=-q+1 

(7.8) 

is typically used. It is the combination of an asymmetric simple moving 
average of length p and an asymmetric simple moving average of length 
2, whence its transfer function is Dp (f)Dz (j) = Dp (j) cos IT f (see Exer­
cise 7.7). The main effect of the factor cos IT f is to add a second zero at 
f = 1/2 cydes per unit time. 

For simple moving averages a natural rule for filling in end values is 
to take the average of the available data. For example, if p = 2q + 1 the 
values of zo, Zl. . .. would be 

1 1 

2 
I. Y1-u, .... 

q + u=-q 

However, these averages are asymmetric, and an alternative is to use cen­
tered averages of the available data, Yo, (Yo + Yl + Y3)/3, .... 
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Since simple moving averages are easy to compute, they could be added 
to the set of primitive filters. A filter could then be built by starting with 
a suitable simple moving average (or combination of simple moving aver­
ages), and using three-term filters to incorporate any further zeros that 
might be needed in the transfer function. End values would be filled in by 
an appropriate rule at each step. 

The transfer function may be made arbitrarily small in the stop band 
by these resmoothing techniques. Reroughing may be used to improve 
its behavior in the pass band. If, for instance, the transfer function Gl (j) 
decreases too rapidly as f increases from 0, the following simple mod­
ification provides an improvement. Suppose that G2 (j) is the transfer 
function of a second filter with a similar pass band. When these are com­
bined by reroughing, the transfer function G(j) of the combination sat­
isfies 1 - G(f) = {l- GItf)}{l- G2(f)}. Since both Gdf) and G2(f) 
are close to 1 in the pass band, G(f) is closer than either. Thus the pass 
band behavior has been improved without seriously compromising3 the 
stop band. One cost is that the span of the filter is increased (see Exer­
cise 7.5). 

Exercise 7.5 Combination of Filters 

Suppose that a filter is obtained by using a filter with weights {gu : r ~ 
u ~ s} on the output of another with weights {g~ : r' ~ u ~ s'}. Show 
that the span of the combined filter is the sum of the individual spans 
less 1, and find the impulse response function of the combined filter. 

Exercise 7.6 Impulse Response Function 

Find the impulse response function of the II-term filter whose transfer 
function has zeros at }fo,} = 1,2, ... ,5 for fo = 0.08936 and takes the 
value 1 at f = o. Verify that each weight is approximately 1/11. 

Exercise 7.7 Simple MOving Averages of Even Length 

Verify that the modified simple moving average of length p = 2q defined 

3In the stop band I GICf) I « 1 and IG2 (j) I « 1, whence G(j) ", Gdf) + G2 (f) . 
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in (7.8) gives the same output as the combined asymmetric filters 

, 1 q 

Zt = - L Yt-u, 
p u=-q+l 

1 (' ') Zt = 2 Zt + Zt+l . 

7.4 LEAST SQUARES FILTER DESIGN 

A more systematic way of designing a filter is as follows. Suppose that the 
context suggests an ideal transfer function H(j) and that we decide to 
approximate it by a finite impulse response filter. For instance, to design 
a low-pass filter we might deCide on a pass frequency f p , a stop frequency 
fs, and tolerances 8p and 8 s, and then look for the filter with the shortest 
span whose transfer function G (f) satisfies 

11 - G(j)1 :::; 8p , 0:::; If I :::; f p , 

1 
IG(j)1 :::; 8s, fs:::; If I :::; 2· 

Such problems are usually complex, and can be solved only by numerical 
optimization. 

An easier approach is to fix the span of the impulse response function 
and then find the filter whose transfer function best approximates H(j) 
in the least squares sense. In other words, for given r and 5 we find 
{Bu: r :::; u ::; s} to minimize 

! 1 s 12 f~! H(f) - L Bue-2TTiJu df· 
2 u=r 

(7.9) 

The optimal value of Bu may be verified to be 
I 

hu = f! H(j)e2TTiJudf, r::; u :::; 5, (7.10) 
2 

the u th Fourier coefficient of H (j) (see Exercise 7.8). It is interesting and 
convenient that the optimal value of Bu does not depend on the values of 
r and 5, a consequence of the orthogonality of these complex sinusoids. 

The transfer function of the approximating filter is 
s 

Hr.s (f) = L hue-2rriJu 
u=r 

I 

= (5 - r + 1) J:! H(f - f')Ds-r+l (f')e-TTi!r+s)f' df' (7.11) 
2 
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where Ds-r+t<J) is the Dirichlet kernel (see Exercise 7.9). The sum is 
just the Fourier series of H(f) truncated at r and s. If H(f) is real and 
symmetric and r = -5, then 

and 

say. 

1 

hu = f! H{j)cos2rrfudf 
2 

1 

= 2 f: H(J) cos 2rrfu df 

= h-u 

5 

Hr,s{j) = L hue-2TTifu 
u=-s 

s 

= ho + 2 L hucos2rrfu 

1 

= (25 + 1) f~! H{j - f')D2S+1{j')df' 
2 

= Hs{j), 

A Low-pass filter 

(7.12) 

Suppose that this method is used to approximate the ideal low-pass trans­
fer function 

f {
I 0:::; If I :::; fe, 

H( ) = 1 
o fe < If I :::; 2' 

(7.13) 

where fe is the cutoff frequency. The Fourier coefficients are 

ife {2fe u = 0, 
hu=2 cos2rrfudf= sin2rrfeu 

o u!- o. 
rru 

For example, in the sunspot data a reasonable cutoff frequency would 
be Ie = 10/2 = 0.04968 cycles per year. Figure 7.4 shows the approx­
imating transfer functions for 5 = 5 (an ll-term filter) and 5 = 20 (a 
41-term filter), together with the ideal transfer function. The curve for 
5 = 20 shows pronounced overshoot on either side of the cutoff frequen­
cy. This is known as Gibbs's phenomenon (Lanczos, 1961, p. 225) and is 
characteristic of the truncated Fourier series of a discontinuous function. 
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Fig. 7.4 Transfer functions of least squares low-pass filters, 5 = 5 (short dashed line) 

and 5 = 20 (long dashed line). 

Convergence Factors 

Overshoot and the accompanying sidelobes may be greatly reduced as fol­
lows: The wavelength of the sidelobes may be shown to be approximately 
8 = 2/(25 + 1) (see Exercise 7.10). Thus, the smoothed function 

<5 

Hs(J) = ~ f:Q Hs(f - j')dj' 
2 

has smaller sidelobes, since the integration is over one complete cycle. 
But 

'" ~ sin1T8u 
Hs(J) = ho + 2 L. hu 8 cos 21Tfu 

u=l 1T U 

and this corresponds to replacing the Fourier coefficient hu by 

h sin 1T8u = h Sin21TU/(25 + 1) 
u 1T8u u 21TU/(25 + 1) . 

The multipliers 

Sin21TU/(25 + 1) 
as,u = 21TU/(25 + 1) . 

(7.14) 

(7.15) 

are an example of convergence factors and are essentially the same as 
the a-factors introduced by Lanczos (1961, pp. 225-229) to accelerate 
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Fig. 7.5 Transfer functions of least squares low-pass filters with convergence factors 
applied, S = 5 (short dashed line) and S = 20 (long dashed line). 
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Fig. 7.6 Absolute values of transfer functions in Figure 7.5, logarithmic vertical scale. 

the convergence of Fourier series. Figure 7.5 shows the functions Hs (f) 
and H20(f) corresponding to the functions in Figure 7.4. The sidelobes 
in each have been substantially reduced, as has the overshoot in H20(f). 
The absolute values of these functions are plotted on a logarithmic scale in 
Figure 7.6. The plot shows that the sidelobes, especially those of H20(f) , 
are uniformly small. 
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The use of convergence factors is analogous to the use of a data win­
dow (see Section 6.2). A truncated Fourier series may be regarded as the 
infinite series with the coefficients multiplied by a boxcar function. This 
multiplication is equivalent to convolving the original function with the 
transform of the boxcar, the Dirichlet kernel. Such equivalence has, in 
fact, been shown in (7.ll). The convergence factors, which are initially 
1 and decay smoothly to 0, are a smooth approximation to the boxcar. 
The modified truncated sum can be represented as the convolution of the 
original function with the transform of the convergence factors (see Exer­
cise 7.11), which has smaller sidelobes than the Dirichlet kernel. A split 
cosine bell taper (see Section 6.2) would have achieved much the same ef­
fect. Note that the cosine bell, in fact, approaches 0 more smoothly than 
the convergence factors, which behave like (sinx)/x (see Figure 4.1 on 
p. 47). It is, therefore, likely that cosine bell tapering applied only to the 
higher coefficients would be roughly equivalent to the use of the factors 
derived in this section. 

Transition Band 

Another interpretation of the application of convergence factors may be 
derived as follows. The convergence factors are the Fourier coefficients 
of the boxcar function 

C(j) = () - 2 
{

l If I < §. 

o otherwise, 

and therefore the products (7.15) are the Fourier coefficients of the con­
volution of the ideal transfer function H (j) with this boxcar (see Exer­
cise 7.12). Thus the modified partial sum (7.14) may also be regarded as 
the least squares approximation to this convolution, which is a smoothed 
version of the ideal transfer function. 

The modified transfer function thus has two interpretations, as: 

• a smoothed version of the least squares approximation to the ideal 
transfer function (the original derivation), or 

• the least squares approximation to a smoothed version of the ideal 
transfer function. 

For the ideal low-pass filter (7.13), when fe ;;:: 8/2 the effect of this 
smoothing is to replace the ideal low-pass transfer function, with its sharp 
cutoff at fe cycles per unit time, by a modified function that decays lin­
early from the value 1 at fe - D/2 to 0 at fe + D/2 cycles per unit time. 
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Fig. 7.7 Ideal low-pass transfer functions with and without transition bands, and 
transfer function of least squares low-pass filter with convergence factors applied, 
5 = 20,graphedfor 0:5 f:5 0.125. 

This creates a transition band of width 8 = 2/(25 + 1). The transition 
band is defined by its lower limit, the pass frequency Ie - 8/2, and its 
upper limit, the stop frequency Ie + 8/2. 

Convergence factors have a less desirable effect when the condition 
Ie ~ 8/2 is not met. In the case of Hs(j) , the half-width is 8/2 = 1/11 = 

0.0909, while Ie = 0.04968 cycles per year. When Ie < 8/2, the transi­
tion band is centered at 8/2 instead of at Ie, and has width 2fe instead of 
8. Thus convergence factors have the intended effect only if 25 + 1 ~ 1/ Ie. 
This explains the poor approximation given by Hs (j), since in the present 
case life ~ 22. 

The ideal low-pass transfer function with its sharp cutoff, the modifi­
cation with a transition band of width 8 = 2/41, and H20(j) are shown 
in greater detail in Figure 7.7 for 0:5 I :5 0.125 cycles per year. 

Passing a Constant Term 

A filter is sometimes required to pass a zero-frequency component (that 
is, a constant term) without change. This requires that the transfer func­
tion have the value 1 at zero frequency. For the filters constructed in 
Section 7.3 this requirement is easily imposed, but Figures 7.4 to 7.7 
show that least squares approximations to an ideal filter with this prop­
erty do not, in general, share it, whether or not convergence factors are 
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used. The least squares argument is easily modified to include this con­
straint, the only effect on the solution being that hu is replaced by hu + 
(1- L~'=r h u') /(25 + 1). When convergence factors {us,u, -5 ::s; U ::s; 5} 
are used, an appropriate modification is to replace hu by 

h 
1 - L~'=-s hu'us,u' 

u + "'s 
L..u'=-s (Ts,u' 

In either case, a simple alternative is just to rescale the coefficients so that 
they sum to 1. 

End Values 

Filling in end values is not as easy with the filters described in this section 
as with the three-term and simple moving average filters of the preced­
ing section. The least squares approach suggests the constraint that the 
weights attached to unavailable data to be 0, with the remaining coeffi­
cients chosen optimally. However, these optimal values are not affected 
by the constraints, and thus the overall effect is the same as replacing 
unavailable values by o. The resulting filter becomes quite asymmetric at 
the extreme ends of the series and hence may be unacceptable in some 
cases. 

If convergence factors are used, they should be computed separately 
for the two sides of the filter. Thus when 0 ::s; t < 5, for instance, the 
output calculation, normally 

s 

Zt = L huus,uYt-u 
u=-s 

o 5 

== L huus,uYt-u + L huus,uYt-u 
u=-s u=l 

would be computed instead as 

o t 

Zt == L huus,uYt-u + L huUt,uYt-u, 
u=-s u=l 

with a similar modification at the other end of the series. 

Exercise 7.8 The Fourier Coefficients 

Verify that the values of Bu, U = r, r + 1, ... ,5, that minimize (7.9) are the 
Fourier coefficients (7.10). (Hint: Write H(j) as X(j) + iY(j) and Bu as 
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Xu + iyu, expand (7.9) in terms of these real quantities, and differentiate 
with respect to Xu and Yu.) 

Exercise 7.9 The Truncated Fourier Series 

Verify (7.ll). (Hint: Substitute the integral formula (7.10) for hu, and 
sum.) 

Exercise 7.10 Gibbs's Phenomenon 

Specialize (7.12) to the case of the ideal low-pass filter with transfer func­
tion (7.13). Show that, if 5 is large and Ie is small, the oscillations in 
Hs(j) in any small interval (fl,f2) not containing 0 are approximately 
sinusoidal, with period 2/(25 + 1). (Hint: The denominator of Dn(j) is 
approximately constant in any such interval.) 

Exercise 7.11 General Convergence Factors 

Suppose that {hu} are the Fourier coefficients of H(f), defined as in 
(7.10), and that {cu, r sus 5}, are a set of numbers which, in the present 
context, are interpreted as convergence factors. Let 

5 

HcCj) = L cuhue-2rriju 
u~r 

be the corresponding modified partial sum of the Fourier series for H (j) . 
Show that 

1 

He(j) = i:! H(j - j')C(j')dj', 
2 

where 
5 

C(j) = L cue-2rrifu. 
u~r 

(Hint: Substitute the integral formula for hu.) 

Notes: 

• No assumption about the convergence of the infinite Fourier series 
of H (j) is needed . 

• This identity is analogous to the discrete result derived in Exer­
cise 6.4. In words, the Fourier coefficients of the convolution of 
two functions are the products of the respective Fourier coefficients, 
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provided that one of the functions has a finite Fourier series [in this 
instance, C(j)]. 

Exercise 7.12 (Continuation) A Generalization 

Suppose that He (j) is the convolution of H (j) and C (j), as in Exer­
cise 7.11, but make no assumption about the finiteness or convergence of 
the Fourier series of either H(f) or C(f). Show that the Fourier coeffi­
cients of He(j) are the products of those of H(j) and C(f). 

7.S DEMODULATING THE SUNSPOT SERIES 

The first application of complex demodulation is to the sunspot series 
analyzed in Section 6.4. It was verified in that section that the oscillations 
in this series have a period of around 11 years, but that the amplitude 
and phase of the oscillations vary. This section shows how complex de­
modulation can be used to describe those variations, first using moving 
average filters and then using least squares filters. 

Moving Average Filters 

Figure 7.8 shows the instantaneous amplitude and instantaneous phase 
of the oscillations in the sunspot series as functions of time. They were 
calculated by forming the demodulated series 

Yt = Xt e- 2rri!ot, t = 0,1, ... , n - 1, 

where Xt is the annual sunspot number for year 1700 + t and fo = 1/11 
cycles per year is the base frequency. The demodulated series was then 
smoothed by taking a simple moving average of II-year blocks. As ex­
plained in Section 7.3, this removes most of the unwanted components of 
{Yt} (see equation 7.3). The integer period of II years was used in pref­
erence to the period of 11.2 years, which corresponds to the largest peak 
in the periodogram, because the integer value allows the use of a simple 
moving average filter. With this combination of frequency and filter, the 
interpretation of complex demodulation as a local version of harmonic 
analysis is, in fact, exact, since the t th term in the smoothed demodu­
lated series is just the discrete Fourier transform of Xt-S, Xt-4 •.. . , Xt+S 

evaluated at the frequency 1/11 cycles per year, the fundamental fre­
quency of a series (or subseries) of length 11. In the same way, if a more 
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Fig. 7.8 Instantaneous amplitude and phase of sunspot series at 10 = 1/11 cycles per 
year (ll-term simple moving average filter). 

sophisticated filter is used, the t th term in the smoothed demodulated 
series is the transform of a tapered stretch of data centered at time t, the 
data window weights being (proportional to) the weights of the filter. 

The smoothed series is 

. 1 R 21Ticp Zt = Ut + LVt ;:::;"2 te t, 

and R t and ¢t are approximated by solving the equations R cos 2rr¢ = 

2Ut, R sin 2rr¢ = 2Vt. The solution for R is 2~u~ + vl, while for ¢ it is 
the modification of arctan Vt IUt described in Section 2.2. 
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The amplitude plot (Figure 7.8, upper panel) shows that there are in­
deed substantial variations in the amplitude of the oscillations, with a 
range of about 3 : 1. The raggedness of this graph shows that the 11-
year moving average did not remove all of the unwanted components (or 
perhaps allows a better identification of what is wanted and what is not). 
The short-term fluctuations in the graph are difficult to interpret as fluc­
tuations in the amplitude of a sinusoid with an II-year period. 

The phase plot also displays substantial variations. Note that in any 
time interval in which the phase is a linear function cPt ::::l a + bt the 
oscillations are approximated by 

Rt cos 2rr(fot + a + bt) = Rt cos 2rr{ (fo + b)t + a}, 

a modulated sinusoid with frequency fo + b. That is, linear behavior of 
the phase indicates a shift in frequency. Overall the phase graph shows 
a slight downward slope, indicating that the basic frequency is slightly 
below 1/11 cycles per year, or, in other words, that the basic period is 
slightly greater than 11 years. However, estimating the slope from differ­
ent stretches of data would give very different answers, meaning that the 
period is not well determined by these data. 

Figure 7.9 shows the instantaneous amplitude and phase calculated us­
ing two consecutive 11-term simple moving averages. The transfer func­
tion of this filter is the square of the Dirichlet kernel and, therefore, has 
much smaller sidelobes. Thus more of the unwanted components are re­
moved, and the two graphs are smoother, especially the amplitude plot. 
The broad features of these graphs are very similar to those of Figure 7.8, 
suggesting that the extra smoothness has not been gained at the cost of 
loss of accuracy. 

The end values were not filled in for either of the filters used to obtain 
Figures 7.8 and 7.9. The possibilities deSCribed in Section 7.3 are either 

• asymmetric, thus introducing phase shifts into the smoothed values, 
or 

• based on only a few data points, leaving them insufficiently smooth­
ed. 

Both of these characteristics are undesirable, and unless the end values 
are important it may be preferable simply to omit them. In the case of the 
II-term simple moving average this amounts to losing 5 points at each 
end of the series, which often will not be critical. With the second pass of 
this filter an additional 5 points are lost at each end, which may be more 
important, especially if the amplitude and phase of future cycles must be 
forecast. 
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Fig. 7.9 Instantaneous amplitude and phase of sunspot series at fo = 1/11 cycles per 
year (two passes of II-term simple mOving average filter). 

Figures 7.8 and 7.9 give information about variations in the fundamen­
tal frequency of the sunspot oscillations. The analysis of Section 6.5 
suggests that the instantaneous relative phase of the second harmonic 
might be useful in exploring the nonsinusoidal nature of the oscillations. 
This is the instantaneous analog of the relative phase discussed in Sec­
tion 6.5 and is constructed by demodulating at frequency 2fo in addition 
to fo. Figure 7.10 shows the results for the two filters used previously. 
In each panel the quantity graphed is cf>d2fo} - 2cf>t(Jo), where cf>t<fo} 
and cf>t(2fo} denote instantaneous phase obtained from demodulation at 
frequencies fo and 2fo cycles per year, respectively. Where the principal 
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Fig. 7. 10 Instantaneous relative phase of second harmonic of the annual sunspot 
numbers, at fo = 1/11 cycles per year; upper panel based on 11-year simple moving 

average. lower panel based on two passes of 1 I-year simple moving average. 

value of phase makes a jump between 1/2 and -1/2 cycles, the graph 
switches to the alias that keeps the curve continuous. Both curves tend 
to stay in the principal range 0 to 1/2 or one of its aliases, as is to be 
expected from the nature of the oscillations (see Section 6.5). Transitions 
from one alias of this range to another occur where the amplitude of the 
second harmonic is weak, where its phase is not well determined. 
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Fig. 7. 11 Instantaneous amplitude and phase of sunspot series at fo = 1/11 cycles per 
year (41-term least squares filter with cutoff frequency fe = 0.04968 and convergence 
factors). 

least Squares Filters 

Figure 7.11 shows the instantaneous amplitude and phase that result from 
using a least squares filter with convergence factors, as described in Sec­
tion 7.4. For comparison with the earlier figures, the demodulation fre­
quency was fo = 1/11 cycles per year. The filter has 41 terms (s = 20), 
giving a transition band of width {) = 2/(2s + 1) = 2/41 cycles per year. 
The transition band extends from the pass frequency of 0.02529 cycles 
per year to the stop frequency of 0.07407 cycles per year. The transfer 
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function of this filter is shown in Figures 7.5 to 7.7. The instantaneous 
amplitude and phase obtained in this way are both very similar to those 
resulting from two passes of an II-term simple moving average, shown 
in Figure 7.9. 

7.6 COMPLEX TIME SERIES 

The essential step in complex demodulation is the separation of the two 
parts of the perturbed sinusoid (7.1): 

Xt = R t cos 2rr(fot + cf>t> 

= ~ R t {e2rri<Jot+<pt) + e-2rri(!ot+<Pt) } . 

The discrete Fourier transform (Section 4.2) provides a way to achieve this 
that is superficially quite different from the steps described above. Recall 
that any stretch of a time series of length n may be written as the inverse 
of its discrete Fourier transform: 

where 

Xt = Ld(/j)e2rrifJt, t = 0,1, ... , n - 1, 
j 

n-l 

d(f) = .! L Xt e - 2rri!t 
n t=O 

and /j = j / n. The sum over j may be viewed as covering frequencies ° s: fj < 1 or, alternatively, -1/2 < /j s: 1/2. The latter is the more 
interesting in the present context, as it displays the time series as a sum 
of terms with positive and negative frequencies together with the central 
term with f = 0. When n is even, there is also a term with frequency 
fn/2 = 1/2, which may equally be regarded as representing f = -1/2. 
Uke the term at f = 0, this term is purely real. The series may thus be 
written 

where 

Xt = xt + Xi + x~eal. t = 0,1, ... , n - 1, 

xt = L d(/j )e2rrifJt, 

o<fJ<! 

xi = L d(fj)e2rrifJt, 

-!</j<o 

(7.16) 
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and x~eal consists of the remaining one or two terms. The two parts {xi} 
and {xi} are inherently complex, and are complex conjugates of each 
other. Each contains the information to recover the original series except 
for {xfeal }: 

real 2'" + 2"'-Xt - x t = nXt = nX t , 

where ~z denotes the real part of the complex number z. The part con­
taining the positive frequencies, {xi}, is the complex time series derived 
from {xtl. 

Equation (7.16) suggests a way to separate the two parts of (7.16). Sup­
pose first that {Rt } and {cpt} vary slowly enough that {Rte21TicJ>t} may 
be written as 

Rte21TicJ>t = I p(h)e21Tifjt for some 8 < fo. 
1/jI<D 

(7.17) 

Notice that this, in fact, requires {Rte21TicJ>t 1 to vary slowly for all t; since 
the representation is periodic, there must also be no sharp breaks between 
t = -1 and t = 0, t = n - 1 and t = n, and so on. 

In this case (7.16) maybe written 

2xt = R t {e 21Ti(fo t +cJ>tl + e-21Ti (jot+cJ>t)} 

= e21Tifot R t e 21TicJ>t + e-21Tifot R t e 21TicJ>t 

= e21Tifot I p(h )e21Ti/jt + e-21Tifot I p(h )e-21Ti/jt 

Ifjl<6 Ifjl<D 

= I p(h)e21Ti (fo+/j)t + I p(h)e-21Ti(fo+fj)t. 

1/jI<D 1/jI<D 

Because Ifjl < 8 < fo, all of the frequencies fo + fj in the first sum are 
positive, and all of those in the second are negative. Thus, if the steps 
outlined in (7.16) are followed, the result will be 

and 

xi = 1:. I p(jj)e21Ti(jO+/j)t 
2 

Ifjl<D 

= 1:. Rte21Ti(jOt+cJ>tl 
2 

xi = ~ I p(h)e-21Ti(jO+fj)t 

1/j1<6 

= 1:.R e- 21Ti(fot +cJ>t) 2 t . 
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That is, {xn and {xt} are exactly the two parts of (7.16), respectively. 
From either part, {R t } and {t:Pt} are easily extracted. 

In practice, it is unlikely that {Rte2rri<Pt} would have the band-limited 
representation (7.17). In particular, there is in general no reason for it to 
be periodic with period n, meaning that there would be breaks at the ends 
of the record when it is extended periodically. These can be smoothed out 
by tapering the data before carrying out this analysis. It may still be rea­
sonable to assume that the transform p (j) is large only for frequencies 
in a band ifi < 8 < fo. To the extent that other values of p(j) may be 
ignored, {xt} and {xi"} continue to provide approximations to the two 
parts of (7.16). 

Another problem that often arises in practice is that there are oth­
er components to a series that may obscure the identification of {Rt} 
and {t:Pt} (Section 7.1). In the earlier analysis of the sunspot series (Sec­
tion 7.5), these terms were eliminated by filtering. The natural way to 
accomplish much the same goal in the present approach is by further 
limiting the set of frequencies in constructing the complex time series. 
This is illustrated in the next section. 

7.7 SUNSPOTS: THE COMPLEX SERIES 

The complex time series for the sunspot data, computed as in (7.16), is 
shown in Figure 7.12. The upper panel shows the amplitude, and the lower 
panel shows the phase as deviations from the base frequency fo = 1/11 
cycles per year (Le., the phase of {e- 2rrifotxn). The data were centered 
at their mean and tapered 10% (5% at each end) to reduce the impact of 
their lack of circularity. 

Evidently, the simple construction of the complex time series has not 
produced useful approximations to {Rt} and {t:Pt} , especially to the for­
mer. The amplitude plot shows substantial oscillations at roughly the 
period of the underlying phenomenon (compare with Figure 1.3 on p. 4); 
the interpretation of {R t } as the instantaneous amplitude of the phe­
nomenon, however, requires it to be nearly constant on the time scale of 
one period. 

It was noted in Section 7.5 (p. 118) that the sunspot data contain com­
ponents at other frequencies than the roughly II-year period of the basic 
phenomenon. In that section, these other components were removed by 
filtering, revealing a clearer picture of the amplitude and phase variations 
in that phenomenon. In the spirit of the current approach, the same ef­
fect may be found by restricting the set of frequencies included in the 
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Fig. 7.12 Complex time series for the sunspot data. Amplitude (upper panel) and 
phase deviations from 10 = 1/11 cycles per year (lower panel). 

complex series: 
xt = L d(Ii )e2rriht, 

[<Jj<7 

where the default values of t and 7 are 0 and 1/2 cycles per year, re­
spectively. 

Figure 7.13 shows the result when f = 1/22 cycles per year and 7 is 
left at its default value of 1/2 cycles per year. While the amplitude and 
phase are still far from smooth, the strong oscillation in amplitude seen 
in Figure 7.12 has been eliminated. The graphs are similar in quality to 
those in Figure 7.B. 
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Fig. 7.13 Complex time series for the sunspot data, with f. = 1/22 cycles per year. 
Amplitude (upper panel) and phase deviations from fo = 1/11 cycles per year (lower 
panel). 

Figure 7.14 shows the result when in addition I = 3/22 cycles per 
year. ExCising the higher frequencies gives greater smoothness without 
changing the broad picture; the results are now more comparable with 
those in Figure 7.9. 

Omitting a term from the sum that defines {xt} is equivalent to multi­
plying it by zero. Thus the series shown in Figures 7.13 and 7.14 may also 
be found by multiplying the discrete Fourier transform by an appropriate 
set of weights (all zeros and ones) before inverting it. They may, there­
fore, also be viewed as the result of applying circular filters to the original 
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Fig. 7.14 Complex time series for the sunspot data, with L = 1/22 cycles per year 
and f = 3/22 cycles per year. Amplitude (upper panel) and phase deviations from 
fa = 1/11 cycles per year (lower panel). 

data. The coefficients in the filters, as the transforms themselves of these 
weights, have a complicated structure and, in particular, have substantial 
sidelobes. They are, therefore, quite different from the filters described 
in Section 7.3. However, this equivalence makes the similarity between 
the results not unexpected. 
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Appendix 

The basic steps in obtaining the results shown in this chapter are: 

• demodulation, followed by 

• filtering. 

If fO is the frequency of interest, the demodulated form of x may be 
obtained in S-PLUS by 

y <- X * eomplex(real = eos(2 * pi * fO * time(x)) , 
imag - sin(2 * pi * fO * time(x))) 

where the standard S-PLUS function complex 0 is used to construct the 
vector e-2TTiJot from its real and imaginary parts. The simple moving 
average filters are easily calculated in an explicit loop. 

For graphical purposes, the instantaneous amplitude and phase may 
be obtained using the S-PLUS functions Mod(z) and Arg(z), respectively. 
The latter is in radians, and is more useful when converted into cycles, 
as Arg(z)/(2*pi). To avoid distracting and irrelevant discontinuities 
where the phase jumps from -1/2 to 1/2 or back, it may be rendered 
continuous using the function 

unwrap <- funetion(p) 
{ 

} 

pd <- diff(p) 
p[] <- cumsum(e(p[l] , pd - round(pd))) 
p 

The S-PLUS function demod 0 provides a one-step implementation of 
complex demodulation using least squares filters, and was used to gen­
erate Figure 7.11. Its arguments, in addition to the time series to be de­
modulated and the demodulation frequency 10, are the pass frequency 
and stop frequency of the filter. It returns the instantaneous amplitude 
and phase, the latter unwrapped as above by default (the option exists to 
suppress the unwrapping). The phase is returned in radians, and should 
be divided by 2rr to convert it to the more useful measure of cycles. 

The number of terms in the filter constructed by demod 0 is controlled 
by the width 8 of the transition band delimited by the specified pass 
frequency and stop frequency. If 8 = 2/(25 + 1) cycles per unit time for 
some integer 5, the result is precisely the least squares approximation to 
the ideal low-pass transfer function with convergence factors described in 



APPENDIX 131 

Section 7.4. Regardless of the form of 8 it has the second interpretation 
as the least squares approximation to the transition band version of the 
ideal transfer function. 

The calculation in S-PLUS of the complex time series for a given time 
series x, discussed in Sections 7.6 and 7.7, is straightforward: 

n <- length(x) 
y <- (x - mean(x)) * taper(n, p) 
y <- fft(y)/n 
f <- (O:(n - 1))/n 
y[f <= flo I f >= fhi] <- O. 
Y <- fft(y. inv = T) 

Here p is the fraction of the data to be tapered, and flo and fhi are the 
parameters L and 7 used in Section 7.7 to control the character of the 
complex time series. 
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8 
The Spectrum 

The results of harmonic analysis can be difficult to interpret, even when 
the data show definite periodicity in the form of successive, fairly regular, 
peaks and troughs. The sunspot series analyzed in Chapters 6 and 7 is 
ample evidence of this fact. 

What, then, can be achieved by harmonic analysis of a series with less 
well defined oscillations, such as Beveridge's wheat price series (Figure 1.4, 
p. 5)? These data were collected and published by Beveridge (1921) as 
part of a study of the impact of meteorological variables on economic 
conditions. They are a price index for wheat in Europe, normalized to 
make the average price for 1700 to 1745 equal to 100. Historical records 
from 48 separate locations were combined to produce the index. Although 
the graph of the data shows a succession of peaks and troughs, these are 
by no means as regular as those of the sunspots. Nevertheless, harmonic 
analysis (and its close relative, spectrum analysis) of such economic series 
is widely used. The kind of information it can yield will be explored in 
this chapter. 

8.1 PERIODOGRAM ANALYSIS OF WHEAT PRICES 

The first problem in analyzing these data is the change in scale. No sinu­
soid can match oscillations that grow in amplitude. Beveridge produced 

133 
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Fig. 8.1 Index of fluctuation of wheat prices in Western Europe, 1515 to 1854. 

an "index of fluctuation," shown in Figure 8.1, by dividing each value in 
the series by the average of 31 centered adjacent values. The oscillations 
in this index are more uniform and, in particular, show no tendency for 
their amplitude to change over time. Beveridge (1921) gave various val­
ues of the periodogram of the index of fluctuations, and in a later paper 
(Beveridge, 1922) presented a more extensive analysis, including some 
corrections of the earlier values. 

The construction of the index of fluctuations may be motivated by mod­
eling the data as Xt = Ttlt , where Tt is the trend at time t and It is an 
irregular or oscillating term. The interpretation of these terms is that 
the trend reflects long-term economic forces such as inflation, whereas 
the irregular terms are caused by short-term effects such as fluctuations 
in supply from year to year. The wheat-price series was constructed to 
allow examination of these short-term fluctuations, and the trend term is 
an unwanted complicatiOn. The 31-year moving average may be regarded 
as an approximation to the trend term, and thus the index of fluctuations 
is the corresponding estimate of the irregular component. 

However, operations such as these introduce their own effects into the 
data, as is most easily seen in the case of the additive model Xt = Tt + It. 
A natural way to estimate Tt is by applying a linear filter (see Section 7.2) 
to the data {xd. Suppose that the filter has weights {Bu : - s :s; u :s; s} 
and transfer function G(f). Then Tt is approximated by 

5 

Yt = L BuXt-u· (8.1) 
u=-s 
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Now {Ttl is assumed to be smooth, and thus Tt- u ::::: Tt for -s :$; U :$; s, 
provided that S is reasonably small. Hence 

5 5 

Yt = 2: BuTt-u + 2: Bult-u 
u=-s u=-s 

5 

::::: Tt + 2: Bult-u, 
u=-s 

provided I Bu = I, which is the natural normalization. Then It is ap­
proximated by 

Zt = Xt - Yt 
5 

::::: It - 2: Bult-u, 
u=-s 

which is the result of applying a linear filter to {It}. The transfer function 
of the filter is 

1 - 2: Bue-2rrifu = 1 - G(j). 
u 

Thus the series {Zt}, constructed as an approximation to {It}, is really 
an approximation to a filtered version of {It}. 

In the case of the multiplicative model Xt = Ttlt, the trend term is 
approximated in the same way by applying a linear filter to {Xt}, but it 
is then removed by division instead of subtraction. The resulting series 
Zt = Xt / Yt, the general analog of Beveridge's index of fluctuations, is also 
approximately a filtered version of {It}, with the same transfer function 
1-G(J), as is shown by Granger and Hughes (1971) (see also Exercise 8.1). 
For the index of fluctuations, G(j) = D31 (j), a Dirichlet kernel. From 
the results of Section 7.2, it follows that the transforms of {Zt} and {It}, 
d x (j) and d[ (j) , respectively, are related by 

dz(j) ::::: {l - G(J) }d/(j) 

= {l - D31 (j)}d/(j). 

Thus the periodogram of {Zt} consists approximately of that of {It} mul­
tiplied by 11 - D31 (j) 12 , the corresponding power transfer function. 

A graph of the function 11 - D31 (j) 12 appears in Figure 8.2. The func­
tion has the value 1 whenever D3dJ) vanishes, that is, at f = k/31 
cycles per year, k = 1,2, .... There are alternate peaks and troughs be­
tween these points, occurring roughly at (k + 1/2)/31 cycles per year, 
k = 1,2, ... , with the first peak almost reaching the value 1.5. The cor­
responding period is 62/3 = 20.67 years, and it follows that the pe­
riodogram values around this period are considerably amplified. The 
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Fig. 8.2 The power transfer function 11 - D31 (j) 12 . 

first trough, by contrast, falls almost to the value 0.75 and occurs near 
f = 2.5/31 cycles per year, corresponding to a period of 62/5 = 12.4 
years. The periodogram is correspondingly attenuated around this peri­
od. 

The enhancement of the periodogram at periods near 21 years and its 
attenuation near 12 years could easily lead one to infer the existence of a 
peak in the periodogram at around 21 years. The possibility that spurious 
periodicities may be introduced into data by operations involving linear 
filters was raised by Slutsky in 1927 (see, e.g., Slutsky, 1937), and the 
phenomenon is known by his name. Schuster (1898) was also aware that 
linear filtering may cause such distortions in the transform of a series. 

Table 8.1 shows the effect on the periodogram of the wheat-price series. 
The first two columns contain the integer periods from 2 to 36 years 
and the periodogram ordinates given by Beveridge (1921), ordered by the 
magnitudes of the ordinates. 1 The last three columns show the periods, 
the periodogram ordinates corrected by dividing by {l - D31 (j)}2, and 
the rank of the ordinate before correction. As might be expected, the 
20-year period moves down several places, while the 12- and 13-year 
periods move up. Granger and Hughes (1971) describe the effect of a 
similar correction and find that the largest peak is moved from a 15.2-
year period, close to Beveridge's figure of 15.3 years, to 13.3 years. 

A different procedure is suggested by the model Xt = TtIt. All three 

lSome of these values were revised by Beveridge (1922), but not substantially. 
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Table 8.1 Beveridge's periodogram for integer periods, 

before and after corrections for the power transfer fWlction. 

Original Analysis After Correction 

Period Periodogram Period Periodogram Previous 
(years) Ordinate (years) Ordinate Rank 

15 47.28 15 50.48 1 
11 40.93 11 46.51 2 
20 32.44 36 36.92 7 
17 29.35 13 36.41 5 
13 27.81 12 25.99 9 
24 26.48 17 24.59 4 
36 26.27 35 36.92 10 
16 20.14 20 22.39 3 
12 20.11 16 18.90 8 
35 17.52 24 18.51 6 
18 17.26 34 13.50 15 
25 14.95 18 13.23 11 

6 12.29 7 12.12 16 
8 12.05 6 11.53 13 

34 11.04 8 11.31 14 
7 10.43 25 10.81 12 

30 7.86 30 7.38 17 
23 7.54 23 5.15 18 
22 7.50 22 5.06 19 
21 6.33 10 5.06 21 
10 5.39 31 5.04 23 
29 5.05 5 4.73 24 
31 5.04 29 4.46 22 

5 4.43 21 4.28 20 
4 3.44 4 3.23 25 

26 3.35 33 3.22 27 
33 2.82 26 2.52 26 

9 2.39 9 2.00 28 
28 2.00 28 1.67 29 
19 1.50 32 1.12 32 
27 1.25 19 1.08 30 
32 1.05 27 0.99 31 

3 0.23 3 0.25 33 
14 0.02 14 0.02 34 

2 om 2 om 35 
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Fig. 8.3 Logarithms of the index of wheat prices. 

terms are strictly positive, and the model may be written 

10gXt = log Tt + logh. 

Thus the logarithms of the data should consist of a smooth term, log Tt , 

with an added irregular component, log h. The trend term Tt is naturally 
thought of as the typical value of Xt in the neighborhood of t, and then 
h is a dimensionless quantity close to 1. Hence log h fluctuates around 
O. Figure 8.3, which shows the logarithms of the original data, is a con­
siderable improvement over the original data (Figure lA, p. 5), in that the 
fluctuations show no definite tendency either to increase or to decrease in 
magnitude over time. This is, in fact, to be expected, given the Similarly 
constant amplitude of the oscillations in the index of fluctuations shown 
in Figure 8.1 (see Exercise 8.2). 

The logarithms also show some advantages over the index of fluctua­
tions, however, in that the spikiness of the peaks has been reduced. Sec­
tion 6.5 showed that nonsinusoidal behavior such as a marked disparity 
between the natures of the peaks and those of the troughs of a series in­
troduces structure into its Fourier transform that is not revealed by the 
periodogram. Thus transformation of a series to remove or reduce such 
disparities is desirable. The logarithmic transformation goes some way 
toward achieving this for the wheat-price series. 

Beveridge (1921) argued that the early part of the series is unreliable, 
as it is based on data from relatively few sources, and that the later part 
of the series is of a different nature because of economic changes in the 
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Fig. 8.4 Periodograms of the index of fluctuations (squares) and logarithms of the 

index of wheat prices (dots). 

nineteenth century. He chose the years 1545-1844 for his periodogram 
analysis, giving a series of 300 terms. Figure 8.4 shows the periodograms 
of the index of fluctuations and of the natural logarithms (see Exercise 8.2) 
of the original data, for the same time window. The index of fluctuations 
was first corrected for its typical value of 1 and then tapered 20%. The 
logarithms of the index were detrended by subtracting the least squares 
straight line and then similarly tapered 20%. 

The periodogram of the logarithms is considerably larger that that of 
the index of fluctuations at low frequencies, since even after a trend-line 
has been removed, obvious low frequency terms remain. Near f = 0.05 
cycles per year the ordering is reversed. This is the range of frequen­
cies where the transfer function in Figure 8.2 reaches its first and highest 
peak, amplifying the periodogram of the index of fluctuations. Over the 
remaining frequencies the ordering varies, although the values are gener­
ally similar. 

Exercise 8.1 Removing a Multiplicative Trend 

Suppose that a series {xtl maybe represented as Xt = Tth, where {Ttl 
is a smooth trend series, and {It} is an irregular series consisting of small 
fluctuations around 1. Suppose that Tt is approximated by Yt as in (8.1). 
Show that Zt = xt!Yt satisfies 

Zt ~ 1 + It - L BuIt-u· 
u 
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(Hint: Since Tt is smooth, 

and hence 

Yt ~ Tt I BuIt-u, 
u 

It 
Zt ~ . 

IuBuIt-u 

Write It = 1 + Et, where lEt I « 1, and expand using a Taylor series.) 

Exercise 8.2 (Continuation) Logarithmic Transformation 

Suppose that the series {Xt} is as in Exercise 8.1. Let 

Yt = I Bu log Xt-u 
u 

and Zt = log Xt - Yt. Show that 

Zt ~ It - I BuIt-u· 
u 

Note that this implies that the fluctuations in the logarithms of a se­
ries should be approximately the same as the quotients defined in Ex­
ercise 8.1-for example, Beveridge's index of fluctuations. 

8.2 ANALYSIS OF SEGMENTS OF A SERIES 

To investigate the consistency of the periodicities in the wheat-price se­
ries, Beveridge (1921) also gives some terms from the periodograms of 
the two halves of the series (as suggested by Schuster, 1898), 1545-1694 
and 1695-1844, respectively. Corresponding periodograms of the loga­
rithms of the series are shown in Figure 8.5. Each half of the series was 
detrended and tapered as in Section 8.l. 

The two periodograms have the same general shape. They are large 
at the lowest frequencies and show a broad peak between 0.06 and 0.10 
cycles per year, corresponding to periods of around 10 to 17 years. They 
then show a gentle decline over the rest of the periodogram, with small 
fluctuations superimposed. However, the fine structures of the two peri­
odograms are quite unrelated: a local peak in one is just as likely to be 
matched by a local trough as a local peak in the other. In other words, the 
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Fig. 8.5 Periodograms of logarithms of two halves of the index of wheat prices (1545-

1694 = squares, 1695-1944 = dots). 

fine structure is not repeated from one segment to the next, but the broad 
features show a statistical regularity or consistency across segments. 

Thus the fine structure of the periodogram of these data is not char­
acteristic of the series as a whole, but depends on the particular segment 
being analyzed. On the other hand, the broad features of the periodo­
gram do not appear to vary in this way, and may be characteristic of the 
series as a whole. Hence if interest is focused on the series as a whole, 
the fine structure should be ignored in favor of the broad features of the 
periodogram. 

By way of contrast, Figure 8.6 shows the periodograms of the first and 
second halves of the variable star data. Each half was centered at its mean 
and tapered 20%. Here the peaks are perfectly aligned with each other, 
and clearly the fine structure is characteristic of the whole series. 

Thus different series may be characterized by different aspects of the 
periodogram. For series similar to the variable star data, the periodo­
gram itself is a useful tool. For series like Beveridge's, the fine details 
need to be suppressed, so that the broad behavior that is common to dif­
ferent segments and characteristic of the series as a whole can be seen. 
In this case, the periodograms of different segments may be regarded as 
the same underlying smooth curve, with different segment-specific fluc­
tuations superimposed. As with the complex demodulation problem dis­
cussed in Chapter 7, approximations to the underlying smooth curve are 
often constructed by linearly filtering or smoothing the periodogram. 
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The underlying smooth curve is called the spectrum of the series. The 
theory to be sketched in Chapter 9 shows that such a curve exists for 
many time series models. Constructing an estimate of the spectrum is 
one of the possible uses of the periodogram for this kind of time series 
data. 

8.3 SMOOTHING THE PERIODOGRAM 

To see the common features of the two periodograms of Figure 8.5, a sim­
ple procedure would be to graph the average of the two ordinates at each 
frequency. Since the periodogram is typically graphed on a logarithmic 
scale, either the average of the logarithms or the logarithm of the averages 
could be used. The latter is preferable, since it puts more weight on larger 
values than on small ones, and the small values are the most susceptible 
to perturbations of all kinds, particularly leakage from other frequencies. 

More generally, the data could be divided into a number of segments, 
the periodograms computed and averaged, and graphed on a logarith­
mic scale. This procedure was first suggested by Bartlett (1948) (see also 
Bartlett, 1950; Kendall, 1948). Figure 8.7 shows three such averages, with 
2, 15, and 60 segments, respectively. Each segment was tapered 20%, and 
to partially compensate for the reSUlting loss of data, the segments were 
arranged so that each overlapped its two neighbors by 10%. As a result, 
each data point received either full weight in a single segment or partial 
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Fig. 8.7 Averaged segment periodograms for the logarithms of the wheat prices, 1545-

1844 

weight in two segments. 
The three graphs show that varying degrees of smoothness may be 

attained in this way, ranging from essentially none to quite severe. To 
understand the process better, an alternative representation of the peri­
odogram will help. 

The complex form of the periodogram will be used, for convenience. 
Also for convenience, the data will be treated as deviations around zero, so 
that no centering is needed. The data are xo, Xl, ... , Xn-l , their transform 
is 

and the periodogram is I(j) = nld(j) 12. Since Id(j) 12 can be found as 
d(j) times its complex conjugate d(j), the periodogram may be rear­
ranged as 

I(j) = n x d(j) x d(j) 

= ~ LXtr2rrift LXt,e2rrift' 

n t t' 

= ~ L L xtx t,e- 2rri!(t-t'). 
n t t' 

There are n 2 terms in this double sum, indexed by t and t'. Howev­
er, since the exponential factor in each depends only on t - t', rather 
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than on t and t' separately, and t - t' takes on only the 2n - 1 values 
-n + 1, -n + 2, ... , -1,0, 1, ... ,n - 2, n -1, it follows that there are only 
2n - 1 corresponding values of the exponential factor. The expression 
may therefore be rewritten 

n-l 

I(j) =..!. L L XtXt,e-2rrij<t-t') 

n r=-n+l t-t'=r 

1 n-l L L XtXt,e-2rrijr 

n r=-n+l t-t'=r 

1 n-l 
L e-2rrijr L XtXt'· 

n r=-n+l t-t'=r 

The limits on the inner sum are not explicit. It is read simply as the sum 
over all pairs (t, t') with t - t' = r, and listing these pairs is elementary 
if a little tedious. 

The periodogram is thus itself a Fourier series, in which the coefficient 
of e-27Tijr is n-1 L.t-t'=r XtXt'. Some manipulation yields 

where 

I(j) = L cre-2rrijr, 

JrJ<n 

{ 

n-l 

1:. L XtXt-r r ~ 0, 
Cr = n t=r 

C- r r < ° 

(8.2) 

(8.3) 

(see Exercise 8.3). The quantity Cr is the autocovariance of {Xt} at lag r. 
Because of the symmetry of the autocovariances, (8.2) may also be written 
as 

n-l 

I(f) = Co + 2 L Cr cos 2rrfr. 
r=l 

Suppose that the data are divided into k segments, for convenience not 
overlapping and not tapered, each of length m = n/k. Write Ij(f) for 
the periodogram of the j th segment, and {c j,r} for the corresponding 
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autocovariances. The average of these periodograms is 

1 k 
s(j) = k L Ij(j) 

j=l 

I (~± cj,r) e-2rrijr (8.4) 
Irl<m j=l 

k 

= L (1 _l!l) 1 L mCj,re-2rrijr. 
Irl<m m k (m - Irl) j=l 

Now 2.jmcj,r is, like nCr, a sum of products of the form XtXt+r, but not 
of all such products that are available: the term XtXt+r is included only 
if Xt and Xt+r fall in the same segment. There are m -Irl terms in each 
Cj,r, and thus 

1 k 

k (m - Iri) ~ mCj,r 
J=l 

is the average of these products. Replacing this part of (8.4) by 

nCr Cr 

n - Irl 1 - Irl In 

seems reasonable, since this is the average of all available products of 
this form. This replacement yields the modified function 

say, where 

A (I) _ '" 1 - Irl 1m -2rrijr 
SB - L... 1 _ Irljn cre 

Irl<m 

= I wrcre-2rrijr, 

Irl<m 

1-lrl/m 
wr = 1 - Irl/n . 

(8.5) 

(8.6) 

(8.7) 

The function SB(J) defined in (8.5) is known as the Bartlett spectrum es­
timate, and the quantities {wr} are the corresponding lag weights. 

If, more generally, the segments are tapered and overlapped, as in the 
computations underlying Figure 8.7, a similar analysis is possible. The 
coefficient of e-2rrijr is now a more general weighted sum of the prod­
ucts XtXt+r. In the extreme case where consecutive segments differ by 
only one time point, the calculation is essentially the same as complex 
demodulation, and the weights on these products become equal, except 
for some end terms (see Exercise 8.8, p. 154). 
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Fig. B.B Bartlett spectrum estimates for the logarithms of the wheat prices. 1545-1844 

The Bartlett spectrum estimate differs from the periodogram in two 
ways: 

• All terms with Irl ;::: m have been omitted. 

• The remaining terms are progressively reduced in magnitude by the 
factor W y • 

Both effects make the function smoother than the periodogram. Further­
more, varying the truncation point m (which no longer needs to be re­
quired to divide n) provides control over the degree of smoothness. 

One characteristic of the Bartlett spectrum estimate is that, unlike the 
averaged periodograms to which it is an approximation, it is not guaran­
teed to be positive. Figure 8.8 shows the three estimates corresponding 
to those in Figure 8.7; these are, in fact, positive at all frequencies. The 
calculation was carried out along the lines described in Section 8.4. The 
data were detrended and tapered 20% before calculation of the autoco­
variances. 

Modifying the periodogram to make it smoother is analogous to the 
use of a data window (see Section 6.2) on a data series. In each case a 
series of quantities is tapered at its end to make its Fourier transform 
smoother. It is due partly to historical accident and partly to a difference 
in interpretation that the classes of tapers used are different in each case. 

As in the case of a data window, the significant property of the lag 
weights is that they decay smoothly from the value 1 as r = 0 to 0 at 
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r = ±m, and many such sets of weights have been used to construct 
spectrum estimates. Anderson (1994) lists the most commonly used sets 
of weights and their properties. Note that, in contrast with the tapers used 
as data windows, the Bartlett weights begin their decay linearly, since for 
small r, Wr ~ 1 - Irl (m-1 - n-1). All the other sets of weights used 
to construct spectrum estimates have the property that the weights stay 
closer to 1 for small r, and typically behave like 1 - ()(r2 for some ()( > O. 
For this and related reasons (see Section 8.5) the Bartlett estimate is rarely 
used in practice. 

The most obvious way to compute any spectrum estimate of the form 
(8.6) is by 

• calculating the autocovariances from (8.3), and 

• summing the terms in (8.6). 

This strategy is especially attractive when the truncation point m is small, 
since relatively few autocovariances need to be calculated and the sum 
(8.6) has relatively few terms. The next section shows that all of the 
autocovariances {cr } may be computed efficiently using the fast Fourier 
transform and its inverse. The calculation (8.6), which is itself a Fourier 
transform, may then be carried out using a third application of the fast 
Fourier transform. This method involves less computation when the trun­
cation point m is large. A simpler way to construct spectrum estimates, 
involving even less computation, is desCribed in Section 8.5 

Exercise 8.3 Alternative Expression for the Periodogram 

Verify that the periodogram may be written as in (8.2), where the autoco­
variances {cr } are defined by (8.3). 

8.4 COMPUTING AUTOCOVARIANCES AND LAG-WEIGHTS 

SPECTRUM ESTIMATES 

Computing the rth autocovariance of {Xt} directly from (8.3) requires 
n - r multiplications and n - r - 1 additions. Computing Co, Cl, .•. , Cm 

therefore requires m{n - (m - 1)/2} multiplications and m{n - (m + 
1)/2} additions, or roughly mn of each. However, (8.3) displays the pe­
riodogram as the Fourier transform of the autocovariances, raising the 
possibility of using the inverse fast Fourier transform to obtain the auto­
covariances (see, e.g., Gentleman and Sande, 1966). 
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When the periodogram is evaluated at a Fourier frequency ij = j In, it 
may be rewritten 

n-l 

I(ij) = I (Cr + Cn-r) e-2rri/jr (8.8) 
r=O 

(see Exercise 8.4), provided Cr is defined to be 0 for Irl ~ n. Therefore 

a computation which may be carried out using the inverse fast Fourier 
transform. However, the only part of the autocovariance sequence that 
this yields is Co, which emerges in the case r = 0 because Cn = O. All 
other autocovariances appear in pairs. If r is small relative to n, the term 
Cn - r contains many fewer products than Cr , whence, in general, Cr + 
Cn - r ::::; Cr , and the computation may be viewed as giving approximations 
to the autocovariances at small lags. 

The discrete Fourier transform and the periodogram are, however, eas­
ily obtained on a finer grid i; = j In' for some n' > n (see Section 5.3), 
by padding the data with a block of n' - n zeros. At these frequencies, 
(8.8) becomes 

n-l 

I(i;) = I (Cr + Cn'-r) e-2rrif
jr (8.9) 

r=O 

and inversion now gives 

n'-l 
1 '" I(f') 2rriFr Cr + Cn' -r = --; L.. j e ), 
n j=O 

yielding Co, Cl, •.. , cn'-n exactly. In particular, if n' = 2n - 1, all autoco­
variances are obtained. 

Since the computational cost of the fast Fourier transform of a series 
of length n' is roughly 2n' 10g2 n' , the first m autocovariances may be 
found with a cost of roughly 2 (m + n) 10g2 (m + n), and they may all be 
found with a cost of roughly 4nlog2 2n. if m and n are both large, the 
fast Fourier transform approach offers substantial computational savings. 

Once the autocovariances have been computed, the fast Fourier trans­
form may be used one more time to construct the spectrum estimate for 
any set of lag weights {wr }. Suppose that the spectrum estimate is need­
ed on a grid of frequencies ii = j In', 0 :5 i; :5 1/2, where n' is no 
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longer assumed to be larger than n. In fact, since a spectrum estimate is 
typically a smooth function of frequency, often relatively few frequencies 
are required. To use the fast Fourier transform, the weighted series of 
autocovariances is first extended to length n': 

dr = {wrcr ' O!S: r < m 
0, m!S:r <n' 

and er = d r + d n, -r, r = 0, I, ... , n' - 1. An argument similar to that used 
to obtain (8.9) shows that the transform of {er } is the required spectrum 
estimate. 

Ex.ercise 8.4 Inverting the Periodogram 

Show that the periodogram, evaluated at a Fourier frequency, may be writ­
ten as in (8.8). (Hint: Use (8.2), the symmetry of the autocovariances {cr}, 
and the special properties of the Fourier frequencies.) 

Note that (8.9) follows by an identical argument. 

8.5 ALTERNATIVE REPRESENTATIONS OF A SPECTRUM ESTIMATE 

Suppose that a spectrum estimate 5 (j) is given by 

s(j) = L wrcre-2rrijr, 
Irl<n 

(8.10) 

where it is no longer assumed that all the lag weights vanish beyond some 
truncation point. By the integral inversion formula (see Exercise 4.3, p. 40) 
applied to the periodogram, 

Then 

where 

Cr = f: I (j)e2rrijr df· 

s(j) = f: Wn(j - f')I(j')df', 

Wn(j) = L Wre-2rrijr 
Irl<n 

(8.U) 

(see Exercise 8.5). Hence any spectrum estimate of the form (8.10) may be 
written as an integral average of the periodogram. Equation (8.U) is the 
integral analog of the discrete linear filters described in Section 7.2. 
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Fig.8.9 Spectral windows Wn(j) for the Bartlett spectrum estimates of Figure 8.8. 

The function Wn(j) is called the spectral window associated with the 
spectrum estimate. The spectral window of the Bartlett estimate (8.5) 
cannot be written in closed form, but is easily computed. Figure 8.9 shows 
the spectral windows for the estimates in Figure 8.8. Each window is 
negative near the frequencies f = jim, j = 1, 2, ... ; nonpositive values 
are omitted from this logarithmic plot. 

For a modified Bartlett estimate with lag weights 

Wr = {I -Irl/m, Irl < m 
0, Irl ~m 

(8.12) 

the spectral window is 

Wn(j)= L (l-lrl/m)e-27Tijr 
JrJ<m 

(see Exercise 8.6), where Dm (j) is the Dirichlet kernel (see Section 2.2). 
Since this spectral window is nonnegative, the integrand in (8.11) is also 
nonnegative, and consequently the spectrum estimate is guaranteed to be 
nonnegative. Figure 8.10 shows the modified Bartlett spectrum estimates 
for the logarithms of the wheat price series corresponding to the Bartlett 
estimates of Figure B.B. The spectral windows are shown in Figure 8.11. 
These windows vanish at the frequencies f = jim, j = 1,2, ... , and these 
values are omitted from the logarithmic plot. 



o 
o 
o 

o 
S ~ 
II) 

o 

o 
o 
o 

0.0 

ALTERNATIVE REPRESENTATIONS 151 

Period in years 

30 15 10 7 6 5 4 3 2 

0.1 0.2 0.3 0.4 0.5 

Frequency in cycles per year 

Fig. B. 10 Modified Bartlett spectrum estimates for the logarithms of the wheat prices, 

1545-1844. 

Period in years 

30 15 10 7 6 5 4 3 2 
N 
< 
0 

0 -';- --
< 
0 

S 
-----

~ N 

< 
0 

"<t" 

< 
0 

0.0 0.1 0.2 0.3 0.4 0.5 

Frequency in cycles per year 

Fig. B.ll Spectral windows Wn (j) for the modified Bartlett spectrum estimates of 
Figure B.lO. 

The central peak in the spectral window of the modified Bartlett esti­
mate is of height m and the first zeros on either side are at f = ±l/m 
cycles per unit time. However, a sizable proportion of the mass of W n (j) 
is contained not in the main peak but in the sidelobes. These decay slowly, 
and hence periodogram values at some distance from f may contribute 
substantially to the integral. Previous examples have demonstrated that 
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periodogram ordinates may vary by several orders of magnitude, in which 
case the estimated spectrum in one frequency band where there is little 
power may be swamped by such leakage from another band with high 
power, even when these bands are not adjacent. 

This source of leakage is quite distinct from the ones mentioned in pre­
vious chapters. It was shown in Chapter 6 that if no data window is used, 
there may be substantial leakage in the periodogram itself. However, even 
if leakage in the periodogram is controlled by the use of a data window, 
leakage may appear in a smoothed version of the periodogram because of 
sidelobes in the spectral window. 

The sidelobes of the modified Bartlett window are larger and decay 
more slowly than those of the most commonly used estimates (see An­
derson, 1994, Chapter 9), and for this reason it is rarely used. However, 
sidelobes of some magnitude are bound to exist for any spectrum esti­
mate for which Wr = 0 for Irl ~ m (that is, with a truncation point m), 
for Wn(j)e27Ti(m-llj is a polynomial of degree 2(m - 1) in e27Tij and 
hence may vanish for at most 2 (m - 1) frequencies. For a given m these 
frequencies must be placed so that Wn(j) remains small for f not close 
to o. It is desirable for W n (j) to be nonnegative, since otherwise negative 
values of the estimate s(j) may arise. This requires that the zeros of the 
polynomial occur in pairs. 

Equation (8.11) suggests a different way of constructing spectrum es­
timates. If W(j) is any suitable function, then 

s(j) = f: W(j')I(f - f')df' (8.13) 

is a smoothed version of the periodogram. Furthermore, it may be written 
in the form (8.10) with 

Wr = f: W(j)e27Tijr df (8.14) 

(see Exercise 8.5). This implies that s(j) also satisfies (8.11) for some 
spectral window Wn (j), but this need not be the same function as W (j). 
From a mathematical perspective, the lag weights Wr are·the Fourier co­
efficients of W (j), and therefore W n (j) is a partial sum of the Fourier 
series for W (j). The spectrum estimate based on a series of length n de­
pends on only the first n Fourier coefficients, whence different functions 
can yield identical spectrum estimates (for a given series length n). 

Daniell (1946) suggested an estimate of the form (8.13), with 

W(j) = {210' If I < O. 
0, If I ~o. 
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The resulting estimate SD (j) is simply the integral average of the period­
ogram over an interval of length 26 surrounding f, This is the integral 
analog of the simple moving average filters discussed in Section 7.2 and 
may, in the same way, be applied successively to build up more complex 
filters (see Section 8.7, p. 157). 

A spectrum estimate defined as in (8.13) cannot be computed directly 
from the integral (8.13). It may be computed as a lag-weights estimate 
through (8.10); alternatively, the integral (8.13) could be approximated by 
a numerical quadrature formula. If the truncated Fourier series W n (f) is 
available, s(j) may also be calculated as 

s(j) = ~ I Wn(f - fj)I(jj)' 
n . 

(8.15) 
J 

where fj = n' / j are the Fourier frequencies associated with any series 
length n' ~ 2n-1. Equation 8.15 may be regarded as an exact quadrature 
formula for (8.11) or (8.13). The result of Exercise 8.7 shows that, when 
the estimate is in fact a lag-weights estimate with truncation point m, 
then n' ~ n + m - 1 is sufficient for (8.15) to hold. 

Equation (8.15) shows that the estimate s(j) may be obtained from 
the periodogram, evaluated on a sufficiently fine grid, by a linear filtering 
operation (see Section 7.2). This is the simplest way to describe such 
an estimate and is also a useful computational route, for the fast Fourier 
transform will compute the required periodogram ordinates and the linear 
filter may be applied directly. If the filter has weights {tV j} , which in this 
context are called spectral weights, the formula is 

s(j) = L wjI{f - fj). 
j 

(8.16) 

This type of estimate is called a discrete spectral average. It may also be 
written in the lag-weights form (8.10) with Wr = W( - f;), where W(j) is 
the transfer {unction of the filter {w j } , 

W(j) = L tVje-2rrifj , 

j 

(8.17) 

and in the integral form (8.13). However, (8.16) provides the simplest 
representation, and the spectral weights may be chosen directly to make 
the filtering operation have the required smoothing effect while remaining 
simple in nature. The choice of spectral weights is discussed in the next 
section. 
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Exercise 8.5 Alternative Representations 

(i) Verify (8.11). Note that Wn(J) is a periodic function of f with pe­
riod 1. 

(ii) Verify that the spectrum estimate s(J) defined by (8.13) satisfies 
(8.10) with lag weights given by (8.14). 

Exercise 8.6 Modified Bartlett Window 

Verify that 
L (1- Irl/m)e-2rrijr = mDm(j)2. 

Irl<m 

(Hint: Exercise 2.2 shows that the Dirichlet kernel Dm (J) satisfies 

n-l L e2rriJt = eTTij (n-1)mDm (j). 
t=O 

Use Dm (J)2 = 1 Dm (J) 12 = Dm (J)Dm (j» and rearrange the latter prod­
uct as a double sum, in the same way that the periodogram was rearranged 
in Section 8.3. ) 

Exercise 8.7 Discrete Spectral Averages 

Suppose that s(j) is defined by (8.11), and that it has truncation point 
m (Le., that Wr = 0 for r ~ m). Note that m ~ n. Show that (8.15) 
holds for any n' ~ n + m - 1. (Hint: Substitute the definition of Wn(J) 
below (8.11) into (8.11) and use the orthogonality relations to show that 
the result simplifies to (8.10). ) 

Note that (8.15) does not hold in general if n' < n + m - 1. 

Exercise 8.8 Spectrum Estimation by Complex Demodulation 

Suppose that a series {xo, Xl, ... , Xn-l} is demodulated at frequency f 
and then filtered using weights {nul (see Sections 7.1 and 7.2). The in­
stantaneous amplitude Rt (J) satisfies 



where 

(i) Show that 
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~ 2 
S(f) = L.t Rt(f~ 

nL.uBu 

is approximately the lag-weights spectrum estimate 

where 

I WrCre-2rrijr, 

Irl<n 

W 
- L.u BuBu-r 

r - 2 
L.uBu 

(Hint: The sum L. Rt (f)2 may be written as a triple sum, in which ev­
ery term is some multiple of a product ofthe form XtXt,e- 2rrij(t-t'). 

Collect terms with t - t' = r, and note that the multiplier in each 
term is L.u BuBu-r, except for a fixed number of terms at the ends 
of the sum. ) 

(ii) Show that the corresponding spectral window is 

W (I) = IG(f) 12 
n ,,2 ' L.uBu 

where G (f) is the transfer function of the filter weights {Bu}. 

Note that for any lag-weights spectrum estimate with truncation point 
m, if Wn(f) is nonnegative then it may be factorized as IG(f) 12 , where 
G(f) is the transfer function of a filter of span m. The class of spec­
trum estimates obtainable by complex demodulation is therefore essen­
tially the same as the class of nonnegative lag-weights estimates. The 
connection between these estimates and the segment-average estimates 
was mentioned in Section 8.2. For more details see Bingham et al. (1967). 

8.6 CHOICE OF A SPECTRAL WINDOW 

Four factors need to be taken into account when choosing a spectral win­
dow: 

• Resolution, or bandwidth; 

• Stability; 
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• Leakage; and 

• Smoothness. 

Resolution is the ability of a spectrum estimate to represent fine struc­
ture in the frequency properties of the series, such as narrow peaks in the 
spectrum. Because of the averaging involved in computing a spectrum 
estimate, a spike or narrow peak in the periodogram is spread out into 
a broader peak. This peak is roughly an image of the spectral window 
of the estimate, and its "width," suitably defined, is the bandwidth of the 
estimate (see Section 9.6). If the spectrum of a series contains two nar­
row peaks closer together than the bandwidth of the estimate used, the 
resulting broad peaks in the spectrum estimate overlap and form a single 
peak. In this case the estimate has failed to resolve the peaks. 

The stability is the extent to which estimates computed from differ­
ent segments of a series agree, or, in other words, the extent to which 
irrelevant fine structure in the periodogram is eliminated. Resolution and 
stability are conflicting requirements, because high stability requires av­
eraging over many periodogram ordinates, while this increases bandwidth 
and consequently reduces resolution. Section 9.5 gives a statistical treat­
ment of the stability of spectrum estimates. 

Leakage has been discussed in the context of the Bartlett estimate in 
Section 8.5. It is caused by sidelobes in the spectral window, which are 
always present in a lag-weights estimate with a nontrivial truncation point 
m < n. However, the computationally simpler discrete spectral averages 
described in Section 8.5 can avoid leakage problems entirely. The first 
step is to use a data window to control leakage in the periodogram, and 
the second is to use a spectral window of a desired compact form. 

The smoothness of a spectrum estimate is a less tangible property, but 
an important issue in graphical presentation and visual interpretation. 
The need for smoothness can introduce further conflict in the choice of 
a window. For instance, a simple definition of the bandwidth of an esti­
mate is the span of frequencies over which the periodogram is averaged. 
Results of the next chapter show that the most stable estimate for a given 
bandwidth is the corresponding Daniell estimate. However, if the periodo­
gram contains one or more large spikes, as is often the case, each of these 
is flattened out into a rectangle (or boxcar). The result can hardly be de­
scribed as smooth, and the angular appearance of the spectrum estimate 
makes visual assessment difficult. Repeated smoothing using successive 
Daniell windows can yield a satisfactory estimate, as is shown in the next 
section, but necessarily gives a less stable estimate than is achievable for 
the resulting bandwidth. 
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Fig. 8. 12 Smoothed periodogram of logarithms of wheat price index, with spectral 

window inset. (Modified Daniell filter, m = 6.) 

8.7 EXAMPLES OF SMOOTHING THE PERIODOGRAM 

Wheat prices 

Figure 8.12 shows the result of smoothing the periodogram of the loga­
rithms of the wheat price series, plotted as usual on a logarithmic scale. 
The periodogram itself is shown in Figure 8.4 (p. 139), and its computa­
tion is described in Section 8.1. The frequencies at which it was calculated 
are its Fourier frequencies fj = j /300, j = 0,1, ... ,150. The smoothing 
was carried out using a modified discrete Daniell procedure, 

(8.18) 

which is the simple moving average of length 6 (see Section 7.3). The 
spectral weights are shown inset in Figure 8.12. 

The graph in Figure 8.12 is still by no means smooth, and in a number 
of places an image of the spectral window is visible. This occurs where a 
relatively large periodogram ordinate has not been smoothed sufficiently. 
Figure 8.13 shows the result of applying a second modified Daniell filter 
to Figure 8.12, this time a simple moving average of length 12: 

56,12 (f) ~ 112 H s6(f - f6) + j~/6(f - fj) + ~ Sa<f + f6) } . 
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Fig. 8. 13 Smoothed periodogram of logarithms of wheat price index, with spectral 

window inset. (Modified Daniell filter, m = 6, 12.) 

As was shown in Section 7.2, the result is equivalent to applying a com­
bined filter directly to the periodogram, and the corresponding spectral 
weights are shown inset. The many local fluctuations in Figure 8.12 have 
been smoothed out, but the broad features remain. The two peaks in the 
spectrum at around f = 0.07 and f = 0.18 cycles per year are quite clear. 
The only remaining structure in the spectrum appears to be a decrease in 
spectral power at higher frequencies. 

Sunspots 

Figure 8.14 shows estimates of the spectra of the yearly sunspot numbers 
(Figure 1.3, p. 4) and the square roots of these numbers (Figure 6.13, p. 84). 
They were obtained by smoothing the periodograms of the two series 
(Figures 6.10, p. 77 and 6.14, p. 85, respectively), using three aplications 
of the modified Daniell procedure (8.18).2 

The spectral weights are again shown inset. They have the same span 
as those in Figure 8.13 (Le., they cover the same number of periodogram 
ordinates) but they are smoother and have a narrower peak. The spec­
trum estimates correspondingly show more rounded but slightly larger 
fluctuations. This argument is made more precise in Chapter 9. 

2 The square root series was rescaled to make its variance match that of the original sunspot 
numbers. 
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Fig. 8. 14 Smoothed periodograms of yearly sunspot numbers (solid line) and their 

square roots (broken line), with spectral window inset, (Modified Daniell filter, m = 

6,6,6.) 

The presence of the second harmOnic of the basic sunspot cycle is clear, 
although no higher harmonic is visible. Also visible is that the square root 
transformation makes the main peak slightly more prominent. Thus the 
transformation sought in Section 6.7 has the desired effect of making 
the main peak more distinct, but not to any great extent. Recall that the 
change is not visible in the periodograms themselves (Figures 6.10, p. 77 
and 6.14, p. 85); one of the benefits of smoothing the periodogram is 
revealing such small effects. 

Further discussion of the choice of a spectral window or lag weights 
for spectrum estimates may be found in Jenkins (1961) and Parzen (1961) 
(see also Section 9.6). 

Exercise 8.9 Combination of Filters 

Find the weights in the combined filters that were used to obtain the spec­
trum estimates in Figures 8.13 and 8.14. You should find that the first set 
is trapezoidal with some modifications in the angles, and that the sec­
ond set is quadratic in three sections, again with some modifications at 
the boundaries. (Hint: The moving averages of lengths 6 and 12 can be 
written as moving averages of lengths 5 and 11, respectively, followed in 
each case by a moving average of length 2. Since filtering operations may 
be applied in any order, the moving averages of length 2 may be applied 
last. Combining the longer filters should give the piecewise linear and 
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piecewise quadratic shapes described. ) 
In this case the longer averages are themselves fairly short, and the 

"modifications" introduced by the averages of length 2 leave little of the 
exact behavior. The exercise may be repeated with longer windows to see 
the structure more clearly. 

8.8 REROUGHING THE SPECTRUM 

In the wheat price spectrum shown in Figure 8.13 (p. 158), the trough 
between the peak at zero frequency and the peak near i = 0.07 cycles 
per year is not as well defined as it is in Figure 8.12 (p. 157), because the 
bandwidth in the estimate shown in Figure 8.13 is large enough for the 
two peaks to begin to overlap. The corresponding slight loss of resolution 
suggests that the spectrum estimate may be somewhat oversmoothed. 
Similarly, in the sunspot spectra shown in Figure 8.14 (p. 159), the prin­
cipal features are similar in width to the spectral weights, again raising 
the possibility of oversmoothing. As in filter design (Section 7.2), when a 
smoothing operation has possibly smoothed away part of the signal, some 
of the details may be restored by reroughing or twicing (Tukey, 1977). 

In the context of linear filters, the rough is defined by 

rough = input - output, 

and if the output has been oversmoothed, then part of the signal finds 
its way into the rough. Reroughing consists of smoothing the rough, and 
adding the smoothed rough back into the original output. Since period­
ograms and spectra are inherently nonnegative, the context of spectrum 
estimation calls for the rough to be defined by division instead of sub-
traction: 

h 
input 

roug = 
output' 

and for the smoothed rough to be incorporated by multiplication instead 
of addition (Bloomfield, 1991). To be specific, if l(i) is the periodogram 
and s(j) is the current spectrum estimate, the rough is 

1(j) 
r(j) = s(j). 

If 5 (j) suffers from oversmoothing, there are narrow-band features in the 
periodogram that were not fully transferred to s(j), and these therefore 
appear partially in r(j). They can be extracted with another round of 
smoothing, say as 

f(j) = LBur(j - iu), 
u 
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and the reroughed spectrum estimate is 

sr(f) = f(f)S(f). 

If the same filter is used in the second round as in the first, the process 
is called twicing. 

Wheat Prices 

The results of twicing the spectrum estimate of Figure 8.13 are shown in 
Figure 8.15. The upper panel shows the rough r(f) and the smoothed 
rough f(f). with the same modified Daniell smoothing as that used for 
Figure 8.1..> (modified Daniell filters of lengths 6 and 12). The graph of 
f(f) deviates from 1 principally in the dip at low frequencies, suggesting 
that the trough between the peak at zero frequency and the peak near 
f = 0.07 cycles per year should indeed be more sharply defined than in 
Figure 8.13. The lower panel shows the twiced spectrum estimate sr(f) 
(solid line) and the original estimate s(f) (broken line). As expected, 
twicing has deepened the trough, adding emphasis to the separation of 
the two peaks. 

Because of the way it is constructed, the reroughed spectrum estimate 
is not a discrete spectral average for any set of spectral weights. The spec­
tral window shown inset in Figure 8.15 is the one that would result from 
additive reroughing of the spectrum estimate. The negative sidelobes con­
firm that additive reroughing could, undesirably, give negative estimates. 
This window is shown here to give a rough guide to the resolution of the 
estimate. Careful comparison shows that the main lobe of this window is 
slightly narrower than that shown in Figure 8.13, and this partly explains 
the deepening of the trough. When the center of the window is located 
in the trough, the negative sidelobes fallon the adjacent peaks, and also 
contribute to the deepening. 

Sunspots 

Figure 8.16 shows the result of twicing the sunspot spectrum estimate of 
Figure 8.14. Again, the main effect is the deepening of the troughs and a 
resulting enhancement of the peaks, consistent with the suggestion that 
the original spectrum estimate may be oversmoothed. 

The corresponding window again has a somewhat narrower main lobe 
than that shown in Figure 8.14. In fact, the effect of twicing, and of 
reroughing in general, is to make the smooth somewhat less smooth, 
which will generally result in a narrower main lobe. The window has a 
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Fig. 8. 1 5 Twicing the spectrum estimate of logarithms of wheat price index. Upper 

panel: rough r(j) and smoothed rough f(f). Lower panel: twiced estimate (solid line) 

and original estimate (broken line), with corresponding spectral window inset. (Modified 

Daniell filter, m = 6,12.) 

more satisfactory shape than that in Figure 8.15 as a result of the smooth­
er profile of the original window (compare Figures 8.13 and 8.14). When 
modified Daniell filters are used, a minimum of three passes is required 
to achieve such a result. 
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Fig. 8. 16 Twicing the spectrum estimate of yearly sunspot numbers. Upper panel: 

rough r(j) and smoothed rough r(f). Lower panel: twiced estimate (solid line) and 

original estimate (broken line), with corresponding spectral window inset. (Modified 

Daniell filter, m = 6,6,6.) 

Prewhitening 

Reroughingis closely related to prewhitening (Blackman and Tukey, 1959). 
Oversmoothing the periodogram leads to leakage from frequency bands 
with high power to adjacent bands with lower power. From this perspec­
tive, the oversmoothing problem is caused by a large dynamic range in the 
spectrum. Prewhitening is a technique for reducing dynamiC range prior 
to fOrming the periodogram and estimating the spectrum. It reduces the 
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problem of leakage, and allows the use of a more stable estimate with 
lower resolution. 

The simplest form of prewhitening is replacing the data {Xt} by their 
first differences {Yt = Xt - Xt-l}. This is a linear filtering operation with 
transfer function G(f) = 1 - e2rrif and power transfer function IG(f)1 2 

= Il_e2rrifl2 = 4(sin IT f)2. Differencing often reduces dynamic range in 
the common situation where the highest power occurs at low frequencies, 
and other high-pass filters have a similar effect. If the high power occurs 
in some other frequency band, a filter may be designed to reduce the 
imbalance. 

The periodogram of the prewhitened (Le., filtered) series is approxi­
mately the same as the periodogram of the original series multiplied by 
IG(f) 12 , the power transfer function of the prewhitening filter. This dis­
torts the underlying spectrum, but the distortion may be reversed by di­
viding the resulting spectrum estimate by the same function. The par­
allel with reroughing is clear, with multiplication by the power transfer 
function playing the role of division by an initial spectrum estimate. How­
ever, the parallel is not exact, precisely because the periodogram of the 
prewhitened series is only approximately the same as the periodogram of 
the original series multiplied by the power transfer function. Rerough­
ing may be thought of as an enhancement to spectrum estimation, while 
prewhitening is a form of preprocessing. 

Appendix 

The Bartlett estimates shown in this chapter were computed using S-PLus 
commands similar to the following: 

n <- length(x) 
y <- c(taper(n, p) * x, rep(O, m)) 
acov <- fft(Mod(fft(y))A2, inv = T)/nA2 
acov <- acov * bartweights(O:(length(acov) - 1), m, n) 
acov[-1] <- acov[-l] + rev(acov[-1]) 
spec <- fft(acov) 

Here x is the time series, prepared for Fourier transformation by centering 
or removing a trend line, p is the fraction of the series length to be tapered 
(e.g., p = 0.2 for 10% tapering at each end of the series), and m is the 
parameter of the Bartlett estimate. The function bartwei ghts provides 
the required lag weights: 

bartweights <- function(r, m, n) 



{ 

} 

W <- pm ax (0 , 1 - abs(r)/m) 
w[w> 0] <- w[w > 0]/(1 - abs(r)/n)[w > 0] 
w 

APPENDIX 165 

The modified Daniell spectrum estimates were obtained using the S­
PLUS function spec. pg ram 0, which may also be used to calculate the pe­
riodogram. In addition to the time series, spec. pgramO has arguments 
that control 

• the number of passes and the spans, 

• tapering, 

• padding with zeros, 

• adjusting the series by centering at the mean or subtracting the least 
squares straight line, and 

• plotting. 

The spans may be specified as even integers, as above, or as odd integers, 
the actual spans of the filters. For instance, the component described 
above as a 6-term moving average actually has a span of 7 because of the 
modification at the ends of the window, and may be speCified as either 
span = 6 or span = 7. The argument controlling tapering specifies the 
fraction of data to be tapered at each end of the series. Similarly, the argu­
ment controlling padding speCifies the number of zeros to be appended 
to the data as a fraction of the series length, with a default of zero. A 
small number of additional zeros may be appended if the length of the 
padded series has large prime factors, which would otherwise make the 
fast Fourier transform relatively inefficient. 

The function returns a list with many components, including the spec­
trum estimate (in decibels, 10 log 10 5 (f) ) and the weights of the compos­
ite filter. The figures in this chapter were made by graphing the actual 
spectrum estimate on a logarithmic scale, rather than by using the plat 
option of spec. pgramO. 

The spectrum estimates were reroughed (to be specific, twiced), using 
code similar to the following: 

a <- spec.pgram(x, spans 
a$spec <- 10A (a$spec/10) 
b <- spec.pgram(x) 
b$spec <- 10A (b$spec/10) 

c(6, 12)) 
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r <- b$spec/a$spec 
lenpad <- round(1/diff(a$freq[1:2])) 
r <- r[pmin(l:lenpad, lenpad + 2 - l:lenpad)] 
rtilde <- filter(r, filter = a$filter, circular = T) 
twice <- rtilde[l:length(a$spec)] * a$spec 

The default options of tapering 10% of each end of the series and de­
trending the series were adopted. In the second use of spec. pgramO 
the span defaults to 1, and the result b$spec is thus the unsmoothed 
periodogram. The function filterO was used carry out the smoothing 
of the rough, r, using the filter weights a$ fi 1 te r in a circular convolu­
tion. Since spec. pgramO returns the spectrum only for 0 sf s 1/2, r 
must first be extended to frequencies 0 s f < 1, in the steps involving 
the length of the padded series 1 enpad. 



Fourier Analysis of Time Series: An Introduction. Peter Bloomfield
Copyright  2000 John Wiley & Sons, Inc. ISBN: 0-471-88948-2

9 
Some Stationary Time 

Series Theory 

The spectrum of a time series was introduced in Chapter 8, as the aspects 
of its periodogram that show statistical regularity and are characteristic 
of the series as a whole. The concept is statistical in nature, and this 
chapter discusses a class of theoretical models that show such statistical 
regularity, namely, the class of stationary time series. A theoretical spec­
trum may be defined for a stationary time series, and the spectrum esti­
mates described in Chapter 8 may be thought of as prOviding estimates of 
it. Some properties of the sampling distributions of spectrum estimates 
may be found and, in particular, approximate confidence intervals for the 
theoretical spectrum may be constructed. 

This chapter gives a brief nonrigorous description of a small part of 
stationary time series theory. More extensive and more rigorous math­
ematical discussion may be found in Anderson (1994), Brillinger (1981), 
Hannan (1970), Koopmans (1995), or Priestley (1981a). 

9.1 STATIONARY TIME SERIES 

A (weakly) stationary time series is a collection of random variables {Xt } 

defined for all real t or all integers t, as the case may be, with the following 
properties: 

(i) E(Xt ) is constant, and 

167 
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(li) E(XtXt,) depends on t and t' only through t - t'. 

Since E(Xd = 11 is constant, it may be estimated and subtracted from 
the series with little effect on what follows. Henceforth, E(Xd will be 
assumed to be zero, and modifications that must be made when the se­
ries mean is subtracted from the data will be described where necessary. 
Property (li) implies that var(Xt) is constant and that 

)'r = cov(Xt , X t +r ) = )'-r 

does not depend on t. The quantity )'r is the theoretical autocovariance 
at lag r of {Xt } and may estimated by 

n-I 
* 1" cr = - L (Xt - Il)(Xt-lrl - 11), 

n t=lrl 
(9.1) 

which for r = 0 reduces to (lIn) I(Xt - 11)2. If 11 is replaced by its esti­
mate X in (9.1), the sample autocovariance Cr used in Chapter 8 emerges. 
The expected value of ci is (l- Irlln)Yr, whence it is a biased estimate 
of )'r, although the bias is small for large n (see Exercise 9.1). 

The sequence {Yr} is nonnegative definite, meaning that for any k> 0 
and constants aI, a2, ... , ak 

L arYr-sas ~ 0, 
r,s 

since the double sum is the variance of a linear combination of random 
variables in the series and hence is certainly nonnegative (see Exercise 9.2). 
A theorem due to Herglotz states that for any such sequence there exists 
a nondecreasing function S (f) such that 

Yr = f: e2rrijr dS(j) 

(for a proof, see Doob, 1953, p. 474). If S(j) has a derivative s(j), then 

Yr = f: e2rrijr s(j)df· (9.2) 

The functions S(j) and s(j) are the spectral distribution (unction and 
spectral density (unction, respectively. The spectral density function is the 
theoretical counterpart of the (empirical) spectrum defined in Chapter 8. 
Equation (9.2) shows that the theoretical autocovariances {Yr} are the 
Fourier coeffiCients of the spectral density function s (j). Hence under 
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mild conditions on s(j), the latter may be represented as the Fourier 
series 

00 

s(j) = I Yre-2rrijr 
r=-oo 

00 
(9.3) 

= Yo + 2 I Yrcos2rrjr. 
r=l 

The equation 

var(Xd = Yo = S(l) - S(O) = f: s(f)dj 

shows that the variance of the series may be regarded as the sum of com­
ponents associated with each frequency in the interval [0,1), and also 
that s(f) has a finite integral. 

Since the autocovariances {Yr} are real, it follows that the spectral 
density function is symmetric about zero, and the spectral distribution 
function is also symmetric in the sense that 

S(f) -S(j') = -{S(-f) -S(-j')}. 

The Fourier series (9.3) represents a periodic function with period 1, 
and it is natural to view the spectral density function as periodic. Any 
integral with limits ° and 1 may then also be written with limits -1/2 
and 1/2. Because of the symmetry of s(j), the autocovariance Yr may 
also be written 

Yr = f: e2rrijrs(j)dj 

1 

= fl e2rrijr s(f)dj 
2 

1 

= f: {e-2rrijr s( - j) + e2rrijr s(j)} dj 

1 

= fo2 {e-2rrijr + e2rrijr} s(j)dj 

1 

== f02 2 cos(2rr jr)s(f)dj, 

where the integrand is now entirely real. 

The following sections give some simple but central examples of sta­
tionary time series and their spectra. 



170 SOME STATIONARY TIME SERIES THEORY 

Sinusoid 

If 

where 

and 

Xt = Acos2rrft + Bsin2rrft, -00 < t < 00, 

E(A) = E(B) = E(AB) = 0 

2 

E(A2
) = E(B2

) = ~ , 

say, then {Xt } is weakly stationary with 

E(Xd = 0 

and 

a2 
)'r = Tcos2rrfr. 

Thus S(f) is a step function with jumps of a2 /4 at - f and f (see Ex­
ercise 9.4). The sum of several series of the same kind, with various fre­
quencies and amplitudes, is itself stationary if all the coefficients are un­
correlated (see Exercise 9.5). The spectral distribution function then has 
a jump at each of the frequencies involved. 

Notice that Fourier analysis of a set of observed values from such a 
series would provide estimates of the coefficients A and B, and hence of 
the squared amplitude A 2 + B2. However, the parameter a 2 is the expected 
value of this quantity, and even a long record yields only a single observed 
value of each of A and B. Thus even a long record does not provide a 
good estimate of S (j), unless A2 + B2 is nonrandom (has a degenerate 
distribution). It is possible for A 2 + B2 to be nonrandom, for instance if 

A = a cos 2rr4> 

and 

B = asin2rr4>, 

where ~ is uniformly distributed on [0, 1). The series may then be written 

X t = a cos 2rr(jt - 4», 

a random phase model. Since S (f) is not differentiable, there is no 
spectral density function except in the sense of generalized functions (0 -
functions). 
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White Noise 

If 

E (Xd = 0, 

E (xl) = u 2, and 

X (XtXt') = 0 for t 1= t', 

then {Xt } is stationary, and 

{

U 2 

Yr = 0 
r = 0, 

r 1= o. 

Therefore, 

S(f) = u 2f. 

(see Exercise 9.6). In this case, S (j) has no discontinuities, and the se­
ries contains no pure sinusoids as in the previous example. The spectral 
density function is s (j) = u 2 , a constant. 

Output of a Filter 

Suppose that {Xt } is stationary with mean zero and spectral distribution 
function S x (j), and that 

Then 

and 

Yt = 'I,BrXt-u, -00 < t < 00. 

u 

E(Yd = 0, 

U,U' 

= 'I, (1 e 2TTiJ(r+U-U')dSx (f) 
r,s Jo 

= f: IG(f) 12e2TTiJr dSx(f) , 
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where 

G(j) = L gue-2rriju 

is the transfer {unction of the filter (see Section 7.2). Thus {Yt} is also 
stationary, and its spectral distribution function is 

Sy(f) = f: IG(f')1 2dSx (f'). 

The function IG(f) 12 is called the power transfer (unction of the filter. 
The relationship between the spectral density functions is simpler: 

Exercise 9.1 Mean of the Sample Autocovariance 

If ci is defined as in (9.1), verify that 

E(ci) = (1 - 1:1) Yr. 

Note that ci 1(1 - Irl In) provides an unbiased estimate of Yr. Howev­
er, in the context of spectrum estimation the sample autocovariances are 
heavily damped at large lags r, whence this modification would have lit­
tle effect. The lag weights of the Bartlett spectrum estimate (B.5) (p. 145) 
contain such a divisor, derived from heuristic reasoning, while the mod­
ified Bartlett lag weights (B.12) (p. 150) do not. Compare the spectrum 
estimates for the wheat price series, shown in Figure 8.8 (p. 146) and Fig­
ure B.10 (p. 151), respectively. 

Exercise 9.2 Autocovariances Are Nonnegative Definite 

Find the variance of 2:r arXt-r, and hence deduce that {Yr} is nonnega­
tive definite. 

Exercise 9.3 (Continuation) Sample Autocovariances 

Show that the sample autocovariance sequence {cr }, where Cy is defined 
to be zero for lags greater than or equal to the series length, is nonnegative 
definite. (Hint: Use the integral inversion formula 

Cr = f: I(j)e2rrijr dj, -00 < r < 00, 
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where I (j) is the periodogram, and the property I (j) ~ O. ) 

Exercise 9.4 Random Sinusoid 

Verify that the sinusoidal series {Xt } defined in Section 9.1 is weakly 
stationary. 

Exercise 9.5 Superposition of Stationary Series 

Suppose that {Xtl and {ytl are weakly stationary, and that 

Show that {Zt = Xt + ytl is also weakly stationary. 

Exercise 9.6 White Noise 

Show that the spectral distribution function S (j) = (J"2 J corresponds to 
the the autocovariance sequence 

_ {(J"2 r = 0 
)lr - 0 r!- 0 

and hence to a series of uncorrelated random variables. 

9.2 CONTINUOUS SPECTRA 

The examples in the previous section showed that if a time series con­
tains a periodic component then its spectral distribution function has a 
discontinuity at the corresponding frequency, and hence the spectral den­
sity function does not exist. When the spectral distribution function has 
no discontinuities and the spectral density function exists, the series is 
said to have a continuous spectrum. The autocovariances {)lr} of such a 
series are given by (9.2). It was noted above that s(j) has the properties: 

• Nonnegativity: s(j) ~ 0 

• Symmetry: s( - J) = s(j) 

• Periodicity: s (j + 1) = s (j) 

• Integrability: fJ s (j)dJ < 00. 
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In fact, any function 5 (j) with these properties may arise as a spectral 
density function. Write Gl (j) = ~s(j). Then there are filters with trans­
fer functions arbitrarily close to Gl (j). For instance, suppose that s (j) is 
continuous. Then so is Ql (x) , where Ql (cos 2rr j) = G1 (j). But in that 
case there is a polynomial that is arbitrarily close to Ql (x) , and hence a 
polynomial in cos 2rr j that is arbitrarily close to Gl (j). But it was shown 
in Section 7.2 that any cosine polynomial is the transfer function of some 
filter. Taking limits along a sequence of such filters leads to a limit filter 
with transfer function G1 (j). The limiting filter may involve an infinite 
number of data points and may, therefore, be somewhat hypothetical in 
nature. 

Now suppose that {Ut } is a white noise process with variance 1. If the 
weights of the limiting filter are {Br} , let 

(9.4) 
r 

From Section 9.1, the spectral density function of {Ut } is the constant 1. 
From results in the same section, therefore, the spectral density function 
of {Xd is 1 Gdj) 12 = s (j). A process of the form (9.4), that is, the output 
of a filter to which the input is white noise, is called a moving average 
process. It follows from the above argument that for any nonnegative 
function 5 (j) with a finite integral there exists a moving average process 
whose spectral density function is s (j) . 

There is another result which states that every time series with a con­
tinuous spectrum is a moving average process (Doob, 1953, p. 498). The 
argument is along the following lines: Suppose that the series is {Xt} and 
that its spectral density function is s (j). It is convenient, although not 
necessary, to assume that s (j) is continuous and strictly positive. Then 
G2 (j) = 1/ ~s (j) is bounded and continuous, and as before a limiting fil­
ter may be found with transfer function G2 (j). Suppose that {Ut } is the 
result of applYing this filter to {Xt }. Then the spectral density function 
of {Ud is 

su(j) = 1 G2 (j) 12 s(j) 

= 1, 0:$ j < 1, 

and hence {Ud is white noise. Now suppose that the filter constructed 
above, with transfer function Gl (j) = ~s(j), is applied to IUd. The 
result is the same as applying to {Xt} a combined filter with transfer 
function Gl (j)G2 (j) = 1, 0 :$ j < 1. In other words, the combined filter 
is the identity filter, which leaves {Xt} unchanged. That is, the white 
noise series {Ut} has been constructed so that (9.4) holds, thus proving 
the result. 
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It must be remembered that the white noise process has been defined 
only in terms of its first and second moments, and that lack of correlation 
does not imply independence. To see how far from independent the terms 
in a white noise process may be, consider the following example: Suppose 
that Y is drawn from a symmetric distribution F on [0,1), and that cI> is 
drawn from the uniform distribution on the same interval, independently 
of Y. Let 

Xt = a cos 2rr( Yt + cI». 

Conditionally on Y = J, this becomes the random phase model (see Sec­
tion 9.1), with mean zero and autocovariances 

a 2 
E(XtXt+rIY = f) = "2 cos2rrJr. 

The unconditional moments are thus 

a2 fl 
E(XtXt+r) = "2 Jo cos(2rr Jr)dF(j) 

= ~2 f: e2rriJr dF(j), 

and hence the spectral distribution function is a2 F(f) /2. In particular, 
if F is the uniform distribution on [0,1), {Xt } is a white noise process. 
However, any realization of the series is a pure sinusoid! 

9.3 TIME AVERAGING AND ENSEMBLE AVERAGING 

The spectrum of an observed series was defined as the aspects of its pe­
riodogram that show statistical regularity from one segment of the series 
to another. The first spectrum estimate described in Chapter 8 was de­
rived by averaging periodograms of a number of segments. Exercise 8.8 
(p. 154) shows that most spectrum estimates may similarly be regarded 
as the average over time of a local measure of spectral power. 

However, the probabilistic model for a stationary time series described 
in Section 9.1 is one in which an ensemble of possible realizations of the 
series is envisaged, and the expected value operator E ( ... ) refers to av­
eraging across the ensemble, rather than along time. A series is said to 
be ergodic if the time average of a quantity is (with probability 1) equal 
to its ensemble average (see Brillinger, 1981, Section 2.11). Statistical in­
ferences about the structure of such a series, such as estimation of its 
spectrum, should therefore be based on the probabilistic properties of 
ergodic series. 
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The random phase model (Section 9.1) and the related white noise ex­
ample constructed in Section 9.2 show that nonergodic series are easy 
to construct. In the random phase model, the periodogram 1(/; t) of 
the stretch of data {Xt, Xt+l, ... , Xt+n-l} is always equal to (A2 + B2) /a2 

times its expected value, and hence so is the time average of 1(f;t). Thus 
the series can be ergodic only if A 2 + B2 has a degenerate distribution (Le., 
if A2 + B2 = a2 with probability 1). Similarly, any series with disconti­
nuities in its spectral distribution function can be ergodic only if all the 
amplitudes are (with probability 1) constants. The white noise series ob­
tained in Section 9.2 by randomizing the frequency illustrates the problem 
more clearly. From anyone realization of the series, its spectrum would 
be inferred to be purely discontinuous, whereas it is in fact continuous. 
However, a white noise series in which the observations are independent 
and identically distributed is ergodic, and so too is any moving average 
series constructed from it (such a moving average process is called a lin­
ear process). In the remainder of this chapter, we examine the statistical 
properties of the periodogram of a moving average series, and of spec­
trum estimates constructed from it. 

9.4 PERIODOGRAM OF A TIME SERIES WITH 

A CONTINUOUS SPECTRUM 

It was shown in Chapter 6 that, if {Ut} is a Gaussian white noise series with 
variance 0-2 , the periodogram ordinates at the Fourier frequencies (other 
than 0 and 1/2 cycles per unit time) are independently exponentially 
distributed, with expected value 0-2 • At / = 0, and at / = 1/2 if it is 
a Fourier frequency, the expected value is the same, but the distribution 
is X2 with 1 degree of freedom instead of 2. If the mean is subtracted 
from the series, the periodogram vanishes identically at zero frequency. 
If the {Ut } are independent with a finite variance 0-2 but a non-Gaussian 
distribution, the central limit theorem assures that for large n the joint 
distribution of any finite number of periodogram ordinates approaches 
the same distribution Central limit theorems for dependent processes 
(see, e.g., Ibragimov and Linnik, 1971) show that the same result holds 
for dependent white noise processes, provided the dependence is limited 
in time. The rather extreme example of Section 9.2 shows that the result 
cannot be true for all white noise processes. 

Now suppose that {Xtl has a continuous spectrum, with spectral den­
sity function s(f). Suppose further that 

Xt = L,BrUt-r, 
r 
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where {Ut } is a white noise process with variance 1, either 

• Gaussian, and hence independent, or 

• Non-Gaussian but independent, or 

• Non-Gaussian and dependent, but close enough to independence for 
the limiting distribution of the periodogram is exponential. 

Then the transfer function G (J) ofthe filter weights {By} satisfies 1 G (j) 12 
= s(J), and the argument of Section 7.2 shows that the Fourier transform 
of a stretch {XO,Xl, ... ,Xn-d satisfies 

dx(J) ~ G(J)du(j). 

Hence the periodogram satisfies 

IxU) ~ IG(J) 12 Iu(j) 

= s(J)Iu(j). 
(9.5) 

It is easily shown that E{Iu(j)} = 1, and hence that E{Ix(J)} ~ s(J). 
Thus /x(j) is an approximately unbiased estimate of s(J). However, 
since its distribution is X2 with 2 degrees of freedom, it is a poor estimate 
and does not improve with increasing series length. 

The approximation in (9.5) is caused by end effects of the filter and 
improves with increasing series length n. Thus for large n the periodo­
gram of {Xt } consists of the spectral density function of {Xt } multiplied 
by the periodogram of a white noise process. This accounts for the spik­
iness of the periodograms shown in earlier chapters. Olshen (1967) gives 
a rigorous study of the asymptotic behavior of periodograms. 

9.S APPROXIMATE MEAN AND VARIANCE OF 
SPECTRUM ESTIMATES 

The background material is now in place to derive approximations to the 
statistical behavior of the spectrum estimates introduced in Chapter 8 
(see also Priestley, 1981a, Chapter 6). 

Discrete Averages 

The simplest spectrum estimates are discrete averages of periodogram 
ordinates evaluated at the Fourier frequencies, 

s(j) = LBuI(j - ju). (9.6) 
u 
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By the arguments of Section 9.4, such an estimate is a sum of approxi­
mately independent and exponentially distributed terms, and thus its ap­
proximate distribution may be derived analytically. The following cruder 
approximation is usually satisfactory. 

It was shown in Section 9.4 that 

E{I(j)} ~ s(j). 

If the averaging in (9.6) is assumed to cover a small interval of frequencies 
and that s(j) is continuous in that interval, then s(j) is approximately 
constant over the same interval. Hence 

E{I(j - fu)} ~ s(j) 

and 

E{s(j)} ~ s(j) LBu. 
u 

Thus s (j) is an approximately unbiased estimate of s (j) , provided that 
L: Bu = 1. In Section 9.6, a more refined argument yields an approxima­
tion to the bias (see also Parzen, 1957b). 

The variance of an exponentially distributed random variable is the 
square of its expected value, and hence 

var{I(f)} ~ S(f)2. 

It was shown in Section 9.4 that periodogram ordinates at different Fourier 
frequencies are approximately independent, and hence if f f= ° or 1/2, 

var{s(j)} ~ LB~S(j-fu)2. 
u 

If s(j) is assumed as before to be approximately constant over the inter­
val of averaging, then 

var{s(j)} ~ S(j)2 LB~. (9.7) 
u 

Equation (9.7) shows that the coefficient of variation of s(j) does not 
depend on f, unless the spectral weights {Bu} themselves are frequency­
dependent. In the examples discussed in Chapter 8 and later, the spec­
tral weights are always chosen to be the same at all frequencies. How­
ever, there is still an implicit frequency-dependence at frequencies close 
to ° and 1/2 cycles per unit time. Near these frequencies, the convo­
lution defining s (j) extends to frequencies outside the principal inter­
val [0,1/2]. These are aliased with frequencies inside this interval, and 
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the spectral weights effectively accumulate on the corresponding period­
ogram ordinates. This phenomenon leads to a progressive increase in 
sampling variability as f approaches 0 or 1/2 cycles per unit time, dou­
bling the variance at these limiting frequencies. For instance, confidence 
intervals are widened by a factor that increases to v'2. 

Lag Weights Estimates 

A lag-weights estimate may be written in the integral form 

where 

s(j) = f: Wn{j - f')I(f')df', 

Wn{j) = L Wre-2rrijr 
Irl<m 

(9.8) 

is the corresponding spectral window. The integral (9.8) may be approxi­
mated by the sum 

(9.9) 

which is of the form (9.6), and hence 

var{S(j)} ~ var{Sd{j)} 

~ (~) 2 S(j)2 ~ Wn{j _ fu)2 

~ !S(j)2 e Wn {j')2df'. 
n Jo 

Now 

and thus an alternative form is 
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The lag weights are usually given by a formula such as Wr = w(r 1m), 
where w(x) = 0 for Ixl ~ 1. Then 

( r)2 L w 2 = L w -
Irl<m r Irl<m m 

~mJl w(x)2dx. 
-1 

The function w(x) is the lag window of the estimate. This gives another 
approximation, 

var{S(j)} ~ m S(j)2 Jl w(x)2dx. 
n -1 

(9.10) 

This shows that for a given lag window the variance of the spectrum es­
timate is determined by the ratio mIn. This ratio is just the proportion 
of sample autocovariances for which the lag weights do not vanish. 

Discrete Averages on a Refined Grid 

Lastly consider the discrete spectral average computed from the periodo­
gram ordinates at a set of frequencies Ii = j In' more finely spaced than 
the Fourier frequencies, 

s(j) = I BuI(I - I~)· 
u 

If the spectral weights {Bu} approximate a smooth window W (J) , in the 
sense that Bu = (l/n')W(j~), then 

s(j) ~ J W(j')I(j - j')dj'. 

This approximation may be justified by an argument similar to that used 
in Exercise 9.B. As for a lag weights estimate, it follows that 

Now 
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and thus 

n' 
var{S(j)} ~ -S(j)2 LB~. 

n u 

The factor n'ln may be regarded as a correction for the finer spacing of 
the frequencies. 

Often the smooth window W (j) is given by 

W(j) = mV(mj), 

where V(x) = 0 for Ixl ~ 1, and 

Jl V(x)dx = l. 
-1 

The function V (x) is referred to as a standardized spectral window. By 
varying m a family of windows is obtained with different widths. Now 

fl W(j)2dj = m2 fl V(mj)2dj 

= m II V(x)2dx, 
-1 

and hence 

var{S(j)} = m S(j)2 II V(x)2dx. 
n -1 

Comparison with (9.10) shows that the parameter m has the same effect 
as the truncation point of a lag weights estimate. Note that the span of 
the resulting filter {Bu} is roughly n'lm, and hence its bandwidth (see 
Section 8.6) is at most 11m. 

Tapering 

The effect of tapering a set of data before computing the periodogram 
from which a spectrum estimate is constructed also needs to be taken 
into account. If the data window is rUt : 0 s t < n}, then 

E{I(j)} ~ U2S(j) (9.11) 

(see Exercise 9.9), where 

1 
U2 = - Lur 

n t 
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Thus for the periodogram to continue to provide an approximately un­
biased estimate of the spectral density function s(f), the data window 
should be normalized so that U2 ~ 1.1 With this normalization the effect 
on the variance of any of the spectrum estimates is to multiply it by a 
factor that is approximately 

(see, e.g., Hannan, 1970, Section V.4). 
In terms of the logarithm of a spectrum estimate, the possible biasing 

factor U2 becomes an added constant and is relatively unimportant in 
many situations. The variance of the logarithm is multiplied by U4 / u} , 
and this, of course, does not depend on whether or not the added bias is 
removed. 

For the split cosine bell taper described in Section 6.2, 

where 

{
~{l- COS(27TX/p)} 

u(x) = 1, 

~[1- COS{27T(l- x)/p}], 

o !5: X !5: p/2, 

P /2 < x !5: 1 - P /2, 
1 - P /2 < x !5: 1, 

and p is the total proportion of the series tapered (p = 2m/n, where m 
is as in equation (6.9), p. 69). It follows that 

U2 ~ 1-p+p f: {~(l-COS27TX)r dx 

3p 
=l-p+-

8 

= 1- Sp 
8' 

1 Note that this normalization differs from that which is appropriate when the discrete 
Fourier transform of the tapered data is used to estimate the parameters of a sinusoidal 
component of the data. (See Exercise 6.6, p. 76.) 
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and hence 
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U4 ~ 1 - P + P J: {~(l - cos 2 IT x) r dx 

35p 
=l-p+-

128 
= 1- 93p 

128 

U4 1-~ 
128 

u} ~ (1 _ 5:)2 
128 - 93p 
2(8-5p)2· 

For p = 0.1 and 0.2, the levels of tapering used on the sunspot num­
bers and the wheat-price index, respectively, U4/U} has the values 1.055 
and 1.116, respectively. These modest increases in variances are a rela­
tively small price to pay for the protection against possible leakage given 
by tapering in each case. 

Combining these factors, we find that the variance of the discrete spec­
tral average 

s(f) = LBuI(f - f~) 
u 

is 

(9.12) 

say. These arguments have to be modified for estimates at frequencies 
f = 0 and f = 1/2, for the periodogram is symmetric about both of these 
frequencies, and thus a central average at either frequency is the same as 
a one-sided average of one-half the length. The result is that the variance 
of 5(0) and 5 (1/2) is twice the value given by (9.12). This is true whether 
or not the series mean is subtracted before the analysis. 

Confidence Intervals 

To construct confidence intervals for s(f) or lns(f) we need an approx­
imation to the distribution of 5 (f). The simplest one is found by not­
ing that, since sef) is approximately a sum of independent variables, its 
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distribution is approximately normal. Since its mean is positive and its 
variance is small, lns(j) is also approximately normally distributed. A 
Taylor series expansion of lns(j) about s(j) gives 

lns(f) ::::: lns(f) + s(f~(f~(j) , 

and hence 

E{lns(f)} ::::: lns(f), 

{I A(f)} _ var{S (f) } 
var ns - s(f)2 

~g2. 

Thus, for example, a 95% approximate confidence interval for lns(f) is 

lns(f) ± 1.969 

and the corresponding interval for s (j) is 

e-1.969s(j) ~ s(j) ~ e1.969s(j). 

When 9 2 is not small, the normal distribution may give a poor approxi­
mation to the distribution of lns(j). Since s(f) is approximately a sum 
of independent exponentially distributed quantities, another possibility is 
to use the X2 -distribution as an approximation to that of s(f) (see, e.g., 
Jenkins and Watts, 1968, pp. 87, 252-255). The mean p, variance a-2 , and 
degrees of freedom v of the X2 -distribution are related by va-2 = 2p2 or 
v = 2p21 u 2. Thus, we approximate the distribution of s(j) by the X2-
distribution with 

2S(j)2 2 
v= =-

9 2s(f)2 9 2 

degrees of freedom. The quantity 2/92 is called the equivalent number 
of degrees of freedom of the estimate s (j). To be exact, 

2 vs(f) 
X = s(j) 

is approximately X2 -distribution with v degrees of freedom. Thus, for 
instance, a 95% confidence interval for s(f) is given by 

vs(f) vs(f) 
X~(O.975) ~ s(f) ~ X~(O.025)' 

where X~(O.025) and X~(O.975) are the 2.5% and 97.5% points of the 
X2 -distribution with v degrees of freedom. 
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In constructing confidence intervals from the X2 -distribution it is con­
ventional to place equal masses of probability in two tails. This does not 
give the shortest interval for a given level of confidence, and the interval 
is not symmetric about the estimated value on either a linear or a log­
arithmic scale. However, it does provide the convenient property that, 
for instance, the upper limit of a 95% confidence interval is also a 97.5% 
upper confidence bound. 

The distribution of s(j) is in fact exactly X2 for the Daniell estimate 
(to be exact, for the discrete Daniell estimate with n' = n and no tapering, 
applied to a Gaussian white noise series). However, for other estimates it 
is more skewed that the approximating X2 -distribution. The distribution 
of s (f) CY. is less skewed than that of s (f) if ()( < 1, and thus a better 
approximation can be found by matching the first three approximate mo­
ments of s(j) to those of {) x (X2)1/CY., where X2 has the X2 -distribution 
with v degrees of freedom. However, this is not an elementary problem, 
and we have not used intervals based on its solution. 

Examples 

The estimate of the spectrum of the wheat-price index shown in Fig­
ure 8.12 (p. 157) is a discrete average of periodogram ordinates at the 
Fourier frequencies, for a data set of length 300, and the factor n'ln is 
therefore 1. The value of L.g~ is 0.153. The correction factor for ta­
pering (of 20%, or p = 0.2) is 1.116. Thus, the combined factor g2 = 

(U4IUi)(n' In) L.g~ has the value 0.171. As noted in Section 9.5, this 
value is appropriate for all frequencies not close to 0 or 1/2 cycles per 
unit time; g2 progressively increases to twice this value as f approaches 
either of these limiting frequencies. 

The approximate 95% confidence limits for s(f) based on the nor­
mal distribution are s(j) multiplied by e±1.96g = 2.247 and 0.245. The 
degrees of freedom in the approximating X2 -distribution are 2/0.171 = 

11.7, and the factors prOviding the 95 % confidence interval are 2.765 and 
0.511. Figure 9.1 shows the same spectrum estimate as Figure 8.12, with 
these confidence limits added.2 The normal theory limits are symmetric 
around the spectrum estimate because the graph has a logarithmic axis, 
and are shown by short dashed lines. The X2 theory limits are asymmet­
ric, and are shown by the long dashed lines. 

In the same way, Figure 9.2 shows the spectrum estimate of Figure 8.13 

2The confidence intervals are wider for frequencies close to 0 and 1/2 cycles per year 
because of the adjustment of 9 2 . 



186 SOME STATIONARY TIME SERIES THEORY 

Period in years 

30 15 10 7 6 5 4 3 2 

0 
0 

s 0 til 

0 
0 
0 

0.0 0.1 0.2 0.3 0.4 0.5 

Frequency in cycles per year 

Fig. 9. 1 Smoothed periodogram of logarithms of wheat price index, with approximate 

95% confidence limits. (Modified Daniell filter, m = 6.) 
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Fig. 9.2 Smoothed periodogram of logarithms of wheat price index, with approximate 

95% confidence limits. (Modified Daniell filter, m = 6,12.) 

(p. 158) with approximate confidence limits added. In this case the value 
of Igi is 0.0687, and with the same correction for tapering the com­
bined factor g2 has the value 0.0767. The factors for the normal theory 
limits are 1. 721 and 0.581, and those for the X2 theory limits, based on 
2/0.0767 = 26.1 degrees of freedom, are 1.876 and 0.621. 
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Fig. 9.3 Smoothed periodograms of yearly sunspot numbers (solid line) and their 

square roots (broken line), with approXimate 95% confidence limits. (Modified Daniell 

filter, m = 6,6,6.) 

The limits shown in Figure 9.1 are quite wide, and clearly none of the 
local fluctuations in that curve represents a statistically significant fea­
ture. The interval based on the X2 -distribution is quite asymmetric, and 
is 7% wider than the more approximate interval based on normal dis­
tribution theory. The limits shown in Figure 9.2 are narrower. The X2 
limits are more nearly symmetric and in this case are only 2 % wider than 
the normal theory limits. In both graphs the normal theory limits provide 
very reasonable approximations, at least as a visual guide to the statistical 
variability in the spectrum estimates. 

For the spectrum estimates of the sunspot series shown in Figure 8.14 
on p. 159, we have n = 299, n' = 300, u4/ui = 1.055, and LB~ = 

0.0943. The approximate 95% confidence limits based on the normal 
distribution are therefore 1.826 and 0.548, and the limits based on the 
appropriate X2-distribution (with 21.1 degrees of freedom) are 2.034 
and 0.593. Figure 9.3 shows the same pair of spectrum estimates as 
Figure 8.14, with Gaussian-based and X2 -based confidence intervals for 
the spectrum of the original untransformed values. Again, the normal 
theory interval is accurate enough for graphical presentation. Note that 
the difference between the estimated spectra of the original series and 
of the square-rooted series is mostly much smaller than the width of the 
confidence interval. 

Either of the confidence intervals we have deSCribed may be plotted as a 
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band surrounding the estimated spectrum, as in the figures shown above. 
However, neither interval provides a simultaneous confidence band, which 
would have the property that the true spectrum is everywhere covered by 
the band with a given probability, say 0.95. Instead, we should expect 
the true spectrum to fall outside the band over about 5% of the inter­
val [0,1/2). The results of Woodroofe and Van Ness (1967) would al­
low the construction of a simultaneous confidence band for the whole 
of the estimated spectrum. However, this simultaneous confidence band 
would be wider in each case by a factor of around log m, where m is 
1/(bandwidth of estimate). For relatively short series such as the wheat­
price index and the annual sunspot numbers, these wide simultaneous 
confidence bands are not particularly useful. It also seems likely that the 
approximation is good only for very long series (see Hannan, 1970, p. 294). 

Exercise 9.7 Approximate Variances 

Verify the steps leading to the apprOximation (9.7) for the variance of an 
average of periodogram ordinates at Fourier frequendes. 

Exercise 9.8 ApprOximation 

Show that the difference between (9.8) and (9.9) is 

Note that for r > 0 

m 

2 L WrCn - r cos 2rrr f. 
r=l 

1 r-l 

Cn-r = - L XtXt+n-r, 
n t=O 

and hence 

(9.13) 
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where k2 = E (xi) is assumed to be finite. Thus I Cn - r I is at most of order 
kr In in probability, and hence the difference (9.13) is at most of the order 

2k m - I rlwrl 
n r=1 

in probability. If Wr = w(rlm), then 

~ r; fl Ixw(x) Idx, 

and so the difference (9.13) is at most of the order 

km Jl - Ixw(x)ldx 
n -1 

in probability. Now the variance of the discrete average spectrum esti­
mate (9.9) is of the order min, whence its standard deviation is of the 
order ..jmln, and thus the difference between (9.8) and (9.9) is negligible 
compared with the standard deviation of either. 

Exercise 9.9 Effect of Tapering 

Suppose that {Xt } is a Gaussian white noise series, that is, that the ran­
dom variables {Xt } are independent, each with the standard normal dis­
tribution. Suppose that the stretch {XO,Xlo ... ,Xn-d is tapered by {uo, 
Ul, ... , un-d, and that the periodogram I(j) and a spectrum estimate 
5 (j) with lag weights {wr } are computed from the tapered data. 

(i) Verify (9.11). 

(li) Show that 

(iii) Find the expected value and variance of s(j). (Hint: Note that 

and 

{
I t = t' 

E(XtXt,) = 8t t' = ' 
, 0, t f= t' 
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from the properties of the normal distribution.) 

(iv) If Ut = u{(2t + 1)/2n} for some smooth data window u(x), show 
that for large n 

E{s(j)} :::! f: u(x)2dx, 

and if j f= 0 or 1/2 cycles per unit time, 

1 i1 

varU(j)} :::! - (I w;) u(x)4dx. 
n 0 

9.6 PROPERTIES OF SPECTRAL WINDOWS 

It was shown in Section 9.5 that the variance of the discrete spectral av­
erage 

s(j) = ~I V(mj~)I(j - j~) 
n u 

(9.14) 

is approximately 

",::4 S(j)2 f V(x)2dx, 

where U4 is the correction for tapering. It was also shown that s(j) is 
approximately unbiased. To obtain a more exact description of the bias, 
E{S(j)} - s(j) may be approximated by 

b(j) = {:, ~ V(mf~)s(j - f~)} - s(j). 

Now if 5 (j) is smooth enough, 

f'2 
s(j - j~) :::! s(j) - j~s'(j) + 2u s"(j), 

and hence 

b(j) :::! ~s(j) I V(mj~) - s(j) 
n 
- :'s'(j) Ij~V(mj~) 

+ 2::,S"(j) If'~v(mj~). 

Now 

~ Iv(mf~):::! ~fV(X)dX = I, 
n m 
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and 

~ 2.f~V(mf~) ~ ~ fXV(X)dX, n m 

which vanishes if V(x) is symmetric, the usual case. A similar approxi­
mation for the last term3 gives 

(9.15) 

Since this approximation to the bias depends on the spectral densi­
ty function only through s" (j), it clearly represents only the contribu­
tion from local "smudging" of the spectrum, and not leakage. As might 
be expected, the bias is negative at peaks and positive at troughs. Fail­
ure to represent the local features of a spectrum was referred to in Sec­
tion 8.6 as loss of resolution. Since loss of resolution is caused by a large 
bandwidth, it seems reasonable to define the bandwidth of the window 
W(j) = mV(mj) to be 

~ ) f x 2V(x)dx. 

To the present order of approximation, the statistical properties of the 
spectrum estimate s(j) depend only on n, m, s(j), s"(j), fV(X)2dx, 
and f x 2V(x)dx. The approximations to bias and variance show that 
making both of the latter two quantities small is desirable. If Vc (x) = 

cV(cx), then Vc (x) may also be regarded as a standardized spectral win­
dow, since 

f VC<x)dx = f V(x)dx = 1. 

Now 

and 

3This approximation depends on the integrability of x 2V(x), which fails for the Bartlett 
window, since its sidelobes decay as x-2 (see, e.g., Jenkins and Watts, 1968, p. 247, for 
an account of the bias of the Bartlett estimate). 
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and hence 

{I Vc (x)2dx r I x 2Vc (x)dx = II V(x)2dx r I x 2V(x)dx. 

Since V (x) and VcCx) generate the same family of windows, the invariant 
quantity 

(9.16) 

is a suitable figure of merit of the standardized window V(x), small val­
ues being desirable. Exercise 9.10 shows that choosing the bandwidth to 
minimize the approximate mean squared error leads to the same func­
tional of V (x) . 

For nonnegative windows the figure of merit is always at least 9/125 = 

0.072.4 For the rectangular window that corresponds most closely to the 
modified Daniell procedure used in Section 8.7, the value is 1/12 = 0.083. 
For the combined window that results from many repeated applications 
of the Daniell procedure, the value is approximately 1/4rr = 0.080 (see 
Exercise 9.13). Neither of these values is unacceptably high compared 
with the minimum. The results of Exercise 9.12 show that with two ap­
plications of the Daniell procedure with one averaging length being twice 
the other, the minimum is almost achieved. However, three applications 
give the spectrum estimate a smoother appearance (see Section 8.7). 

Smaller values of the figure of merit may be obtained when the window 
is not constrained to be nonnegative, and there is, in fact, no positive lower 
bound in this case. However, negative sidelobes in a spectral window are 
generally undesirable, as they may easily lead to negative values of the 
spectrum estimate. 

The values of the figure of merit for many commonly used windows 
may be computed from values given by Anderson (1994, Table 9.3.4; 
f x 2V(x)dx is 2k in Anderson's notation, and Similarly f V(x)2dx is 
(l/2rr) f k(X)2dx). For example, the value for the widely used Parzen 
window is 0.088. 

The bandwidth of a spectral window is sometimes defined as the width 
of the rectangular window that gives the same variance. For W(j) = 

mV(mj) this is therefore {m f V(x)2dx}-1. However, this definition has 
the disadvantage that both bandwidth and approximate variance depend 
on the shape of the window through the same functional of V (x). Thus it 
provides no tool for discriminating between windows of different shapes. 

4The window that attains the minimum value is not particularly desirable (see Exer­
cise 9.11). 
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Further discussion of the properties of spectral windows may be found 
in Parzen (l957a, 1961), Jenkins (1961), Marple (1987), Priestley (1981a, 
Chapter 7) and Rosenblatt (1971). The figure of merit described above was 
also used by Parzen (195 7a). The lower bound and the window that attains 
it are given by Epanechnikov (1969). The same inequality was derived in 
a different statistical context by Hodges and Lehmann (1956). 

Exercise 9.10 Minimum Mean Squared Error 

Combine the expressions (9.15) and (9.14) to find an approximation to the 
mean squared error (bias2 + variance). Find the value of the parameter 
m that minimizes the mean squared error, and the minimum value. 

Notes: 

(i) The minimum mean squared error depends on the standardized win­
dow V(x) only through the invariant figure of merit (9.16). 

(ii) The bandwidth that achieves the minimum depends on s(j) and 
5" (j) and, therefore, itself depends on f. 

(iii) An optimal bandwidth that does not depend on f may be defined by 
minimizing the integral, possibly weighted, of the mean squared er­
ror. It still depends on the standardized window V(x) only through 
the figure of merit. 

(iv) All minimum mean squared error considerations lead to optimal 
bandwidths that depend on the true spectrum. Since the latter is 
typically unknown, finding an optimal m is not straightforward. 

Exercise 9.11 Optimal Window 

Let 

() { ~(l - x 2 ), Ixl:s; 1, 
Vo x = o otherwise. 

(i) Verify that 

I vo(x)dx = 1, 

and evaluate f x2Vo(x)dx and f (Vo(x)2dx. Show that the figure of 
merit 

II VO(X)2 d X } 
2 I X2Vg == O(x)dx 

has the value 9/125. 
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(ii) Let V(x) be any nonnegative window for which 

f V(x)dx = 1 

and 

Show that f V(x)2dx ~ f Vo(x)2dx, 

with equality only if V(x) == Vo(x). 

(Hint: Write V(x) = Vo(x) + 6(X), and note that f 6(x)dx = 0, 
f X26(X)dx = 0, and 6(x) ~ 0 for Ixl ~ 1. ) 

Note that because this window does not approach 0 smoothly, it would 
not result in particularly smooth spectrum estimates. 

Exercise 9.12 Daniell Window and Combinations 

(i) Evaluate the figure of merit for the standardized Daniell window 

{
!, Ixl ~ I, 

V(x) = 
0, otherwise. 

(ii) Two applications of Daniell smoothing with the same length of av­
eraging in each step result in the triangle window 

{
I - lxi, Ixl ~ I, 

V(x) = 
0, otherwise. 

Show that the value of the figure of merit is 2/27 = 0.074. 

(iii) Two applications of Daniell smoothing with different lengths of av­
eraging result in the trapezium window 

1
1~p, Ixl ~ p, 

V(x) = ~=-~21, p < x ~ I, 

0, otherwise, 

for some 0 ~ p ~ I, where the ratio of the two averaging lengths 
is (1 + p) : (1 - p). Show that the value of the figure of merit is 

2(1 + 2p)2(1 + p2) 

27(1 + p)4 
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and that the values for p = 1/2 and p = 1/3 are 0.0732 and 0.0723, 
respectively. Note that these values of p correspond to ratios of 
smoothing lengths of 3 : 1 and 2 : 1, respectively. 

Exercise 9.13 Gaussian Window 

Any smooth probability density function may be used as a spectral win­
dow. The Gaussian window is 

V(x) = _1_e-x2/2 . 
../'FIT 

(i) Show that I x 2V(x)dx = 1. (Hint: Integrate by parts, and use the 
fact that I V(x)dx = 1.) 

(ii) Show that I V(x)2dx = 1/4" = 0.0796. 

Note that repeated application of filters corresponds to convolution of the 
windows, and hence by the central limit theorem the combined window 
is approximately Gaussian. 

9.7 ALIASING AND THE SPECTRUM 

The time series under analysis often consists of measurements made at 
a discrete, equally spaced, set of times on some phenomenon that is ac­
tually evolving continuously, or at least on a much finer time scale. Thus 
there may well be oscillations in the behavior of the phenomenon with fre­
quencies higher than the Nyquist frequency associated with the sampling 
interval; see Section 2.5. 

The simplest situation is as follows. Suppose that {X(t)} is some ran­
dom process defined for all real values of t. The two most common ways 
of deriving a discrete set of measurements of such a process are as fol­
lows: 

(i) Sampling: Yt = X(t); and 

(ii) Averaging: Zt = ILl X(u)du. 

It is, in fact, sufficient to consider sampling. 
The theory of spectra of random processes (stochastic processes) de­

fined for a continuous variable t is essentially similar to that described 
in Section 9.1. The analog of the auto covariance sequence is the autoco­
variance function 

Y(T) = cov{X(t),X(t + T)}, 
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which has the representation 

Y(T) = f:oo e21TiJT dS(j). 

Note that the limits of integration are now infinite, since there is no Ny­
quist frequency to limit the frequency of oscillations. The finiteness of 
the variance y(O) requires that the total increase of the spectral distribu­
tion function, S ( 00) - S ( - 00 ), be finite. It is easily seen that this implies 
the continuity of y(). 

Now if {X(t)} is sampled according to (i), 

Yr = cov(Yt• Yt+r) 

= cov{X(t), X(t + r)} 
= y(r) 

= f:oo e21TiJr dS(j). 

For simplicity, suppose that S(j) has a derivative s(j). Then for any 
integer r, 

Yr = f:oo e21TiJr s (j)df 

00 rk +1 
= L Jk e21Tifr s(f)df 

k=-oo 

00 e 
= L Jo e21Ti (J-k)r s(f - k)df 

k=-oo 
00 rl 

= L Jo e21TiJr s(j - k)df, 
k=-oo 

since e-21Tikr = 1. Interchanging the order of summation and integration 
yields 

¥T = J: e'·ifT Lt s(j - k) } dj. 

and consequently the spectral density function of {Yt} is 

00 

Sy(j) = I: s(j - k), 0:::; f < 1. (9.17) 
k=-oo 

The right-hand side of (9.17) is the aliased spectral density function. Its 
value at frequency f cycles per unit time consists of the sum of contribu­
tions from all frequencies of the form f - k cycles per time for integer k. 



ALIASING AND THE SPECTRUM 197 

Fig. 9.4 An aliased spectrum 

Since f is the principal alias of all of these frequencies (see Section 2.5), 
this is an intuitively natural result. 

Aliasing of the spectral density function is illustrated for the function 
5 (j) = 1/ (1 + 4f2) in Figure 9.4. The upper graph shows this function 
"folded in" onto the interval (-1/2, 1/2), and the lower graph shows the 
sum of the various contributions. In this case, the series may be summed 
analytically to yield Sy (j) = IT sinh IT / 2 (cosh IT - cos 2IT j) . 

For the series {Zd obtained by averaging the input series as in (li), a 
similar result holds. If the continuous time process {W(t)} is defined by 

Wet) = It X(t')dt', 
t-l 

(9.18) 
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then {Zd is the result of sampling {W(t)}. The operation (9.18) is an ex­
ample of continuous time filtering and is exactly analogous to the discrete 
time filtering described in Section 7.2. The transfer function is again de­
fined to be the factor by which a complex sinusoid of frequency 1 cycles 
per unit time is changed, and for the operation (9.18) is 

-rrif sin rr f 
e ----rrr. 

The spectral density function of {W (t)} is 

sw(j) = IG(j)12s(j) = (S~;/) 2 s(j). 

Since {Ztl is found by sampling {W (t)}, its spectral density function is 
given (9.17) with s(j) replaced by sw(j). Thus 

sz(j) = k~OO s(j - k) { S~7)~ ~)k) } 2 

~ (s~?) 2 {S(f) + k~oS(f - k) V S} (9.19) 

The series in (9.19) converges more rapidly than that in (9.17) because 
of the additional factor, which decays as 1/lkI 2 • Thus aliasing is re­
duced, but at the cost of some distortion of the leading term. The factor 
(sin rr j)2 / (rr 1)2 has the value 1 at 1 = 0, but falls to 4/rr2 = 0.405 
at 1 = 1/2 cycles per unit time. Thus power at frequencies close to the 
Nyquist frequency is attenuated to around 40% of its true value. 

Aliasing can be a confusing phenomenon, since a peak in the true spec­
trum at a frequency beyond the Nyquist frequency may be strong enough 
to be seen in the aliased spectrum. This may give the impression that a 
frequency is significant when it is not, or the peak may partly obscure an­
other frequency of interest. When the sampling interval (the time interval 
between consecutive observations) is at the disposal of the experimenter, 
it may be chosen small enough that no substantial amount of power falls 
beyond the Nyquist frequency, avoiding aliasing problems completely. 

However, the cost of collecting the data may become prohibitive. One 
compromise is to collect the data initially with a small sampling interval, 
filter these high sampling rate data to remove unwanted power at high fre­
quencies, and then deCimate the output (Le., take every kth observation, 
where k is chosen to increase the sampling interval to a desired level). 
The simplest such filter would be the discrete analog of (ii), namely, an 
unweighted average of k successive values. 
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More sophisticated filters could be designed at in Sections 7.2 and 7.3. 
A desirable filter would distort the spectrum as little as possible up to 
the reduced Nyquist frequency, while passing as little power as possible 
from higher frequencies. These characteristics are essentially those of a 
low-pass filter, with its pass band ending at the new Nyquist frequency. 

For many common data collection tasks, specialized data collection 
systems are available that incorporate high frequency sampling, filtering, 
and decimation. The occasional user of such equipment or of the resulting 
data may be quite unaware of the steps that are taken between the actual 
measurement and the presentation of results to the user. 
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10 
Analysis of Multiple 

Series 

By a multiple selies we mean a number of time series observed simultane­
ously. This should not be confused with situations in which "time" itself 
is multidimensional, as when data are collected on a grid in the plane. 
Fourier-analytic methods may be extended in a fairly obvious way to the 
latter type of data, but the subject will not be discussed here. For most of 
this chapter we examine the situation in which a pair of series is observed; 
that is, at each time point t we have available a pair of numbers, (Xt, Yt). 

The separate series {Xt} and {Yt} will be referred to as components. 
When only a single series is observed, the questions that we usually 

wish to answer are of the form "What is the internal structure of this 
set of data?" If the data have an oscillatory appearance of the loose 
form encountered in the examples of preceding chapters, one answer will 
usually be a description of the data by one of the methods already dis­
cussed, namely, harmonic analysis (Chapter 6), complex demodulation 
(Chapter 7), and spectrum analysis (Chapter 8). When two series are ob­
served, we shall usually be interested in the internal structure of each, 
but in addition we shall be concerned with their joint structure, or the 
dependence of either series on the other. 

Harmonic analysis and its local form, complex demodulation, may be 
used without modification on a multiple series, by analyzing the series 
component by component. Suppose, for instance, that we observe a pair 
of series {xd and {yd, each containing oscillations at a frequency around 

201 
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f cycles per unit time, but with amplitude and phase fluctuations. Thus 
we may write 

Xt = Rx,t cos 2rr(jt + c/>x,t> + x;, 

and 

Yt = Ry,t cos 2rr(jt + c/>y,t> + Y;, 

where {x;} and {y;} denote other components in the two series. By 
complex demodulation of the two component series, we may find approx­
imations to the instantaneous amplitudes Rx,t and Ry,t, and the instan­
taneous phases c/>x,t and c/>y,t. From the phases we may also compute the 
instantaneous relative phase of {Xt} relative to {Yt}, c/>x,t - c/>y,t. The in­
stantaneous phase of either series is interpreted as the amount by which 
its oscillations have drifted from the oscillations in a pure sinusoid with 
frequency f cycles per unit time, and thus the relative phase measures 
the extent to which oscillations in both series drift together. In this way 
it gives information about the joint behavior of the two series. 

Estimated spectra, on the other hand, give information only about the 
oscillations in individual series. Similarities between the spectra of two 
series, such as peaks at similar frequencies, may suggest that the series 
are related. To investigate such suggestions we may compute estimates of 
the cross spectrum of the two series. This is an extension of the definition 
of the spectrum, and is conveniently estimated by smoothing the cross 
periodogram. 

10.1 CROSS PERIODOGRAM 

The periodogram has a natural extension to the multiple series context. 
Let dx(j) and dy(j) denote the Fourier transforms of the component 
series; that is, 

with dy (j) defined similarly. The periodograms of the component series 
are n 1 dx (j) 12 and n 1 dy (j) 12, respectively. These will now be denot­
ed Ix,x(j) and Iy,y(j) and referred to as the autoperiodograms of the 
component series to distinguish them from the cross periodogram, 
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Notice that, in contrast with autoperiodograms, the cross periodogram 
Ix,y(j) is, in general, not positive, nor even real, and not symmetric. In­
stead it satisfies the identities 

Ix,y( -f) = Iy,x(j) = Ix,y(j). 

These identities do imply that Ix,y (j) is real at f = 0 and 1/2 cycles per 
unit time, but still not necessarily positive. 

Another identity is 

1 Ix,y(j) 12 = Ix,x(j)Iy,y(j), (10.1) 

whence the magnitude of the cross periodogram contains no information 
that is not in the autoperiodograms. If we write the transform d x (j) as 
Idx (j) le2TTi<l>x(j) , the phase of the cross periodogram is 4>x(j) - 4>y(j) , 
the difference of the phases of the two component series, or the relative 
phase. Note that the relative phase does not depend on the choice of origin 
for the time scale. It would be the same for any stretch of n consecutive 
observations on these series, unlike the phases of the two transforms 
d x (j) and dy (j) separately. 

Thus the cross periodogram contains no information that is not con­
tained in the two Fourier transforms. However, the same is true of the 
autoperiodogram, and yet it is a useful tool, especially in a smoothed 
form. Recall the observation made in Chapter 8 that when the series 
being analyzed contains oscillations with no strong periodiCity, the pe­
riodogram may still show statistical regularity, in that its overall shape, 
although not its fine structure, is consistent from one stretch of the series 
to another. For the same kind of data the cross periodogram shows a simi­
lar statistical regularity. The smooth function that results from averaging 
cross periodograms from different stretches of data is called the cross 
spectrum. It is in general complex-valued, like the cross periodogram. 

Estimates of the cross spectrum will be constructed by smoothing the 
cross periodogram, using much the same procedures as for smoothing 
autoperiodograms. The only new problem that arises with smoothing 
cross periodograms involves the alignment of the series. This is discussed 
below in Section 10.6. 

Exercise 10.1 Properties of the Cross Periodogram 

(i) Verify that Ix,y( -j) = Iy,x(j) = Ix,y(j). 

(ii) Suppose that two stretches of data {Xo, Xl, ... , Xn-l} and {Yo, YI, 
... , Yn-l} are shifted cyclically by amounts h and k, respectively. 
Show that the phase of the cross periodogram Ix,y(j) changes by a 
linear function of frequency, which vanishes if h =: k. 
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10.2 ESTIMATING THE CROSS SPECTRUM 

The formula for the cross periodogram may be rearranged to give 

I (f) = "" C e-2rrijr x,y ~ x,y,r , (10.2) 
Irl<n 

where 

1 
Cx,y,r = n LXtYt-r. Irl < n, 

the latter sum being over all t for which both t and t - r lie in the 
range 0,1, ... , n - 1. The quantity Cx,y,r is the cross covariance of {Xt} 
and {Yt} at lag r. Notice that, in general, Cx,y,-r -/= Cx,y,r, but instead 
Cx,y,-r = cy,x,r. 

The expansion (10.2) is analogous to the expression given in Section 8.3 
for the autoperiodogram. As a result, the discussion of smoothing auto­
periodograms in Chapter 8 is immediately applicable to smoothing cross 
periodograms. In particular, all of the various equivalences derived in 
Section 8.5 between the different types of estimates extend to the mul­
tiple series situation. In the examples that follow, the discrete spectral 
averages deSCribed in Section 8.5 will be used for smoothing the cross 
periodogram. 

For an example of estimating cross spectra we use the one-year and ten­
year interest rates! shown in Figure 10.1 and the industrial production 
index2 shown in Figure 10.2. Industrial production was converted into 
the monthly percentage changes shown in Figure 10.3. 

Spectrum estimates of the interest rates and monthly changes in indus­
trial production are shown in Figures lOA and 10.5, respectively. Each se­
ries was corrected for its mean and tapered 20%. The periodogram of each 
was then smoothed by three applications of modified Daniell smoothing 
of length 16 (see Section 8.7; the resulting spectral window is shown in­
set). 

The cross periodogram Ix,y (f) was smoothed in the same way to pro-

IThese time series are retrievable from FRED, the Federal Reserve Economic Data archive 
http://v.ww. stl s. frb. org/fred/i ndex. html maintained by the Federal Reserve Bank 
of Saint Louis, http://www.stls.frb.org. The one-year rates are in the file http:// 
www.stls. frb. org/fred/data/i rates/gsl and the ten-year rates are in the file http: 
//www.stls.frb.org/fred/data/irates/gslO. 
2 The industrial production index is also retrievable from the FRED data archive, in the file 
http://v.ww.stls.frb.org/fred/data/business/indpro. 
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Fig. r o. r One-Year (solid line) and Ten-Year (broken line) Treasury Constant Maturity 

Rates. (Source: H.lS Release - Federal Reserve Board of Governors.) 
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Fig. r 0.2 Industrial Production Index. 1992=100, Seasonally Adjusted. (Source: Fed­
eral Reserve Board, Washington, DC) 

duce an estimate of the cross spectrum: 

Sx,y(f) = I Bu1x,y(j - fu). 
u 

This function has the same symmetries as Ix,y (j) , namely, 

Sx,y(-f) = Sy,x(j) = Sx,y(j). 

(10.3) 
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Fig. 10.3 Monthly percentage change in Industrial Production Index. 
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Fig. 10.4 Smoothed periodograms of one-year and ten-year interest rates, with spec­

tral window inset. (Modified Daniell filter, m = 16,16,16.) 

like the cross periodogram Ix,y(j) , the cross spectrum Sy,x(f) is not, in 
general, real except at f = 0 and 1/2 cycles per unit time. In place of the 
identity (l0.1), Sy,x(j) satisfies the inequality 

1 Sx,y(f) 12 ~ Sx,x (f)Sy,y (j) (lOA) 

(see Exercise lOA). 
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Fig. 10.5 Smoothed periodogram of monthly changes in industrial production, with 

spectral window inset. (Modified Daniell filter, m = 16,16,16.) 

The real and imaginary parts of the cross spectrum are called the co­
spectrum and the quadrature spectrum, respectively. The cospectrum 
measures the extent to which the two series oscillate with the same phase 
(or with opposite sign, that is with a phase shift of a half cycle), while the 
quadrature spectrum measures the extent to which they tend to oscillate 
with a phase difference of a quarter cycle in either direction. 

Typically the estimated cross spectrum SX,y(J) is more usefully pre­
sented in terms of its magnitude ISx,y(J) I and phase ¢X,y(J) , the latter 
defined by 

Sx,y(J) = Isx,y(f) I e21Ticf>x,y(j) , 

than by the cospectrum and quadrature spectrum. The difference is es­
sentially that between using polar coordinates and using Cartesian coordi­
nates to represent a complex number. The phase, of course, is undefined 
where the cross spectrum vanishes. As in other statistical contexts, this 
means that it is also essentially meaningless where the cross spectrum is 
small. 

Since the autospectra sx,x(f) and Sy,y(f) are also available, the infor­
mationin the magnitude ISx,y(J) I is the same as that in the dimensionless 
ratio 

~2 ISx,y(f) 12 
KX,y(f) = sx,x(f)Sy,y(j) ' 

the estimated squared coherency of {Xt} and {Yt}. The inequality (l0.4) 



208 ANAL YSIS OF MUL TIPLE SERIES 

Period in years 

2 0.5 0.25 0.167 

co 
0 

S U) 

N ci 
< 
rtl 

~ a. 
a. 0 
rtl 
~ 

N 

0 

0 
0 

0 2 3 4 5 6 

2 0.5 0.25 0.167 

0 
ci 

§: 
.J: V 
a. 0 

9 

co 
0 

9 

0 2 3 4 5 6 

Frequency in cycles per year 

Fig. 10.6 Estimated squared coherency (upper panel) and phase (lower panel) of one­
year and ten-year interest rates. 

shows that the squared coherency lies between 0 and 1, with 0 corre­
sponding to no dependence and 1 corresponding to exact linear depen­
dence at frequency f cycles per unit time. 

The estimated squared coherency and phase for the one-year and ten­
year interest rates are shown in Figure 10.6. The estimated squared co­
herency is strong, as might be expected from the way the two interest 
rate series track each other in Figure 10.1. The estimated phase is close 
to zero, although negative at most frequencies. Phase spectra are difficult 
to interpret, except in the simple case of a linear phase, which indicates 
a lead/lag relationship (see Exercise 10.7). In the present case the phase 
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Fig. 10.7 Estimated squared coherency (upper panel) and phase (lower panel) of ten­
year interest rates and monthly changes in industrial production. 

does not show linear dependence on frequency; however, if it were ap­
proximated by a downward-sloping line through the origin and with the 
value -0.02 cycles at f = 3 cycles per year, the negative slope would sug­
gest that the {Yt} series, the ten-year interest rates, leads the {Xt} series, 
one-year interest rates. The absolute value of the slope, -0.02/3 = 0.007 
years or around 2 - 3 days, would suggest that the lead is of around this 
magnitude_ 

Figure 10.7 shows similar estimates of squared coherency and phase for 
ten-year interest rates and industrial production. The squared coherency 
is much lower in this case, and the phase is therefore less well determined. 
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The phase is -1/2 of a cycle at zero frequency, meaning that at the low­
est frequencies, interest rates and changes in industrial production are 
negatively related. The positive slope in the part of the phase spectrum 
corresponding to the larger squared coherencies suggests that at these 
frequencies, say up to two cycles per year, interest rates lead changes in 
industrial production. Since the phase has progressed to around zero cy­
cles at f = 2 cycles per year, the slope is around 0.25 years. That is, high 
interest rates in a given month are associated with a decline in industrial 
production around one quarter later, and conversely. 

The interpretation of these graphs of estimated squared coherencies 
and phases is complicated by the need to distinguish frequencies where 
the squared coherency is large, where the phase is meaningful, from those 
where it is small, and the phase is correspondingly meaningless. The dis­
tinction is usually guided by statistical ideas: assessing the statistical sig­
nificance of the squared coherency, and attaching confidence limits to the 
phase. Tools developed below in Section 10.5 embody these techniques. 

Exercise 10.2 Rearranging the Cross Periodogram 

Verify (10.2), and find expliCit limits for the sum defining Cx,y,r. Note 
that they take different forms depending on the sign of r. Verify also 
that Cx,y,r = cy,x,-r. 

Exercise 10.3 Properties of Estimated Cross Spectra 

Show that the estimated cross spectrum Sx,y(f) has the properties of the 
cross periodogram derived in Exercise 10.1. 

Exercise 10.4 Coherency Inequality 

Suppose that in the calculation of the estimated cross spectrum Sx,y(f) 
from equation (10.3), the weights {Bu} are nonnegative. Show that in 
this case, ISx,y(j)12 ~ sx,x(j)Sy,y(j). (Hint: Use the Cauchy-Schwartz 
inequality.) 

Note that this result remains true even if the smoothing procedures 
used to compute the estimated autospectra sx,x(f) and Sy,y(j) differ 
from that used to compute Sx,y(f) , provided the weights satisfy Bx,x,r ~ 

0, By,y,r ~ 0, and Bi,y,r = Bx,x,rBy,y,r. Here {Bx,x,r} are the spectral 
weights used to compute sx,x (f), etc. 
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Exercise 10.5 [nvariance of Estimated Squared Coherency 

Suppose that {Zt} is obtained from {Yt} by linear filtering. Show that the 
estimated coherencies Sx,y(f) and sx,z(f) are approximately the same. 
(Hint: Assume that the transfer function of the filter is smooth and, in par­
ticular, may be treated as constant over the span of the spectral window. 
Use the result of Exercise 7.3.) 

Exercise 10.6 (Continuation) Coherency as a Measure of Dependence 

With {Yt} and {Zt} as in the previous exercise, show that the esimated 
squared coherency of {Yt} and {Zt} is approximately 1 for all f. Note 
that {Yt} and {Zt} are completely linearly dependent, since each term in 
{Zt} may be computed linearly from the terms of {Yt}. 

10.3 THEORETICAL CROSS SPECTRUM 

The theoretical cross spectrum of a pair of series may be defined by mak­
ing the appropriate extension to the theory described in Chapter 9. The 
basic extension is to the definition of stationarity. 

The stochastic processes {Xt } and {Yt } are jointly weakly stationary 
if 

(i) E(Xd and E(Yd are constant, and 

(ll) E(XtXt') , E(Xt Yt,), and E(Yt Yt') depend on t and t' only through 
t - t'. 

This implies that both of the component processes {Xt} and {Yt } sepa­
rately are weakly stationary under the definition of Section 9.1. The extra 
strength of the present definition lies in the requirement that E (Xt Yt' ) 

depend only on t - t' , since this concerns the joint probabilistic structure 
of {Xd and {Yd. 

For jointly weakly stationary processes {Xt } and {Yt }, the covariances 

YX,X,r = cov(Xt,Xt - r ), 

YX,Y,r = cov(Xt , Yt- r ), 

YY,Y,r = cov(Yt, Yt- r ), 

do not depend on t. The first and third are the autocovariances of {Xt } 

and {Yt }, respectively, while the second, YX,Y,r, is the theoretical cross 
covariance of {Xt} and {Yt } at lag r. Like the empirical cross covariances 
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defined in Section 10.2, the theoretical cross covariances are not generally 
symmetric, but satisfy YX,Y,r = YY,X,-r. These sequences are jointly non­
negative definite, in the sense that for any k and constants ai. a2, ... , ak 
and bi. b2, ... , bk, 

I (arYX,X,r-sas + arYx,Y,r-sbs + brYY,X,r-sas + brYY,Y,r-sbs) ~ o. 
r,s 

This implies that, in addition to the spectral distribution functions Sx,x (j) 
and SY,y(f) , which satisfy 

YX,x(f) = f: e2rriJr dSx,x(j) 

and 

YY,Y(f) = f: e2rriJr dSy,y(f), 

there exists a function SX,y(f) for which 

YX,y(f) = f: e2rriJr dSx,y(j). 

From the properties of cross covariances it follows that the cross spectral 
distribution (unction SX,y(f) satisfies 

SX,Y(I) - Sx,Y(j') = SX,y( - I') - SX,Y( - f) 

= SY,x(I) - SY,x(f'). 

The spectral distribution functions SX,x(f) and Sy,y(j) are nondecreas­
ing (see Section 9.1); this is equivalent to stating that for I > f', 

SX,x(f) - SX,x(j') ~ 0 

and 

The cross spectral distribution function satisfies the additional condition 

{SX,x(f) - SX,x(f')} {Sy,y(f) - Sy,y(j')} 

- 1 SX,y(j) - Sx,y(j') 12 ~ O. (10.5) 

These three conditions are equivalent to the matrix-valued function 

S(I) = [Sx,x(f) SX,Y(f) ] = [Sx,X(j) SX,y(f) ] 
SX,y(f) SY,y(f) SY,x(f) SY,Y(f) 
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having nonnegative definite increments. 
If any of these functions is discontinuous at a frequency I, then a pure 

sinusoid of frequency 1 is present in one or both of the component pro­
cesses. The other important case is where SX,X(j) , SX,y(j) and Sy,y(j) 
all have derivatives, sX,x(j), SX,y(j) and sy,y(j)' respectively. Condi­
tion (10.5) is then equivalent to 

Isx,y(j) 12 ::5 SX,x(j)sy,y(j), 0::5 1 < I, (10.6) 

or, in other words, to stating that the matrix-valued function 

s(j) = [SX,X(j) SX,y(j) ] = [SX,X(j) SX,y(j) ] 
SX,y(j) sy,y(j) SY,x(j) Sy,Y(j) 

is nonnegative definite. The functions sX,x(j) and sy,y(j) are the spec­
tral density functions of {Xt } and {Yt }, respectively (see Section 9.1), 
while SX,y(j) is the cross spectral density function of {Xd and {Yd, the 
theoretical counterpart of the empirical cross spectrum estimate Sx,y(j) 

described in Section 10.2. Like its empirical counterpart, SX,y(j) is not in 
general real except for 1 = 0 and 1/2 cycles per unit time, but satisfies 

SX,y{-j) = sY,x(j) = SX,y(j). 

The counterparts of the empirical coherency and phase are KJ.,y(j) and 
<PX,Y(j) , where 

2 (I) _ Isx,y(j) 12 
KX,y - sX,x(j)sy,y(j) 

and <Px,y(j) is defined by 

SX,y(j) = Isx,y(j) 1 e2TTicf>X,y(j) 

= Kx,y(j)~sx,x(j)SY,y (j) e
2TTicf>X,Y(j). 

From (10.6) it follows that the theoretical squared coherency, like its em­
pirical counterpart, satisfies 0 ::5 Kl y (j) ::5 1. The statistical properties of 
the autoperiodogram and cross periodogram, described in the following 
section, depend on these various theoretical spectra. 

Exercise 10.7 Operations on Jointly Weakly Stationary Processes 

Suppose that {Xt} and {Yt } are jointly weakly stationary, with spectral 
densities SX,X(j) , SX,y(j) , and sy,y(j). 

(i) Let Zt = Xt + Yt . Show that {Ytl and {Ztl are jointly weakly station­
ary, and find the corresponding spectral density functions. (Hint: 
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Find the autocovariances and cross covariances, and use the Fourier 
series representation 

for SX,y(j).) 

SX,y(j) = LYx,y,re-2rrifr 
r 

(ii) Let Zt = 2.uBuXt-u. Show again that {Yd and {Zd are jointly 
weakly stationary, and find the spectral density functions. 

(iii) Suppose that the weights {gu} above are symmetric about u = h. 
Thus {Zd is the result of applying a symmetric filter and a shift of 
h time units to {Xt}. Show that the squared coherency of {Xt} and 
{Zt} is identically 1, and that the phase spectrum is cP x,z (j) = hJ. 

10.4 DISTRIBUTION OF THE CROSS PERIODOGRAM 

In this section we derive approximations to the sampling distribution of 
the autoperiodograms and cross periodograms of a pair of jointly weakly 
stationary processes {Xt } and {Yt}, in terms of their spectral densities 
sx,x (j), SX,y (j), and sY,y (j) . For rigorous derivations of the results 
of this section and the next, see Anderson (1994, Section 8.2), Brillinger 
(1981, Section 7.2), Hannan (1970, Section V.2), or Priestley (1981b, Chap­
ter 9). We assume first that the series are Gaussian (Le., that all their 
joint distributions are multivariate normal), and discuss later how this 
assumption may be relaxed. 

The joint distribution of the transforms of two series is simplest if the 
two series are not cross correlated (i.e., if their cross covariances vanish at 
all lags, or equivalently if their cross spectrum vanishes at all frequencies). 
Under the Gaussian assumption, this implies independence; hence the two 
transforms are independent, and their jOint distribution is the product of 
their marginal distributions, found in Section 9.4. 

We show first that the joint distribution of the two transforms in the 
general, cross correlated, case may be found from this special case. Sup­
pose then that the cross spectral density function SX,y(j) is not identi­
cally zero, and let G(j) = SX,y(j)/sx,x(J). Then by an argument similar 
to that used in Section 9.4 we may find a filter, perhaps only in a limiting 
sense, with transfer function G(j). Suppose that {Z;} is the result of 
applying this filter to {Xt }, and let Zt = Yt - Z;. Then the cross spectrum 
of {Xt } and {Zt} vanishes at all frequencies. The variable Z; is in fact 
the regression of Yt on {Xu: - 00 < u < oo}, and Zt is the residual from 
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this regression. The autospectral density function of {Zt} is 

1 Sx,y(f) 12 
sz.z(j) = Sy.y{j) - sx.x(f) , 

the residual spectral density {unction of {Yt } after regression on {Xt}. 

Since {Xt } and {Zt} are not cross correlated, the joint distribution of 
their transforms is the product of the marginal distributions. The real 
and imaginary parts have a joint four-dimensional distribution with all 
first moments zero, all covariances either exactly or approximately zero, 
and 

var {~dx(j)} ::::: var {Ddx(f)} ::::: sx~~j), 

var {~dz(j)} ::::: var {Ddz(j)} ::::: szt:!) . (l0.7) 

Here 1tdx(j) and Ddx(j) denote the real and imaginary parts, respec­
tively, of dx(j). 

Now dy(f) , the transform of {Yo, Yl, ... , Yn-d, must satisfy dy(j) = 
dz(f) +dz' (f), and by the argument of Section 7.2 dz,(j) ::::: G(f)dx(f) , 
whence 

dy(j) ::::: dz(f) + G(j)dx(j). (l0.8) 

As linear combinations of Gaussian random variables, the real and imag­
inary parts of dx(f) and dy(f) have a"joint four-dimensional Gaussian 
distribution, with moments that follow from (10.7) and (10.8). First mo­
ments are all zero, and the second moments are: 

} 
Sx x(f) 

var {~dx(f) ::::: var {Ddx(f)} ::::: 2n ' 
var {~dy(j)} ::::: var {Ddy(j)} ::::: Sy;:!) , 

cov {~dx(j), Ddx(f)} ::::: cov {~dy(j), Ddy(j)} ::::: 0, 

cov {~dx(j), ~dy(j)} ::::: cov {Ddx(j), Ddy(j)} ::::: cx;~j) , 

cov {~dx(j), Ddy(j)} ::::: -cov {Ddx(f), ~dy(j)} ::::: -q~'y(j). 
n (l0.9) 

Here cx.y{j) and qx,y(f) are the cospectrum 1tSX,y(f) and quadrature 
spectrum Dsx.y(f) , respectively. 

The results of Section 9.4 show that 

E {Ix.x(j)} ::::: sx.x(f), var {Ix.x(f)} ::::: SX.X(j)2, 
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and 

From (10.9) it follows additionally that 

E {Ix,y(j)} ::::; SX,y(j), 

var {IRIX,y(j)} ::::; ~ {sx,x(j)Sy,y(j) + CX,y(j)2 - qX'y(j)2} , 

var {!JIx,y(j)} ::::; ~ {sx,x(j)Sy,y(j) - CX'y(j)2 + qX,Y(j)2} , 

cov {1R1x,Y(j), !JIx,y(j)} ::::; CX,y(j)qx,Y(j), 

cov {IRIx,y (j).Ix,x (j) } ::::; CX,y(j)sx,x(j), 

cov {!JIx,y(j).Ix,x(j)} ::::; qX,y(j)sx,x(j), 

cov {IRIx,y(j),!y,y(j)} ::::; CX,y(j)SY,y(j), 

cov {!JIx,Y(j),!y,y(j)} ::::; qx,Y(j)Sy,y(j), 

cov {Ix,x(j),!y,y(j)} ::::; \ SX,y(j) \2 = CX,y(j)2 + qx,y(j)2. 
(10.10) 

Equation (10.10) gives the means, variances, and covariances of the var­
ious periodograms at a single frequency j. As in Section 9.4, it may 
be shown that these quantities evaluated at a Fourier frequency are ap­
proximately independent of the same quantities evaluated at any other 
Fourier frequency. This is all the information needed to derive approxi­
mate sampling distributions of the smoothed periodograms described in 
Section 10.2. 

Since the discrete Fourier transform is a linear function of the data, 
and the periodograms, auto- and cross, are quadratic functions of the 
data, the moment formulas given above depend on the joint distributions 
of the data only through moments up to the fourth. That is, they are valid 
for any non-Gaussian series with the same moments, up to the fourth, as a 
Gaussian process. In other cases there would be additional contributions 
from the fourth-order cumulants. 

An approximation to the full joint distribution of the periodograms 
may also be found, but by contrast this does depend on the Gaussian dis­
tribution of the Fourier transforms. In this approximation, the marginal 
distributions of IRIx,z(j) and !JIx,z(j) , the real and imaginary parts of 
the cross periodogram of the independent series {Xt } and {Zt}, are both 
double exponential (or Laplacian). The real and imaginary parts are not 
independent, however, but instead have a circularly symmetric distribu­
tion. The approximate joint distribution of the real and imaginary parts 
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of the cross periodogram of the dependent series {Xt} and {Yt} is not 
simple if SX,y(j) =1= o. 

The approximations discussed in this section depend only on the joint 
distribution of the discrete Fourier transforms dx(j) and dy(j) being 
approximately Gaussian; normality of the series {Xt} and {Yt } is only the 
most convenient assumption that ensures this. The assumption may be 
weakened in various ways-for instance, by assuming instead that all the 
terms in the white noise series that generate {Xt } and {Zt} are indepen­
dent of each other; see Section 9.4 for further discussion. 

Exercise 10.8 Regression of Yt on {Xt! 

The regression of Yt on {Xt : -00 < t < oo} is the linear combination 
of the variables {Xt } that is closest to Yt in the sense of mean squared 
error. 

(i) Show that the weights {Bu} that minimize 

E ( Yt _ ~ BuXt-u ) 2 

satisfy 

G(j) = L.Bue-2TTi/U = SX,y(j) . 
u sX,x(j) 

(ti) Let Zt = Yt - Lu BuXt-u, where the weights {Bu} are these optimal 
weights. Use the results of Exercise 10.7 to find the spectral densities 
of {Xt } and {Zt}. Note that 

1 Sx,y(j) 12 
SZ,z(j) = sy,y(j) - sX,x(j) 

is nonnegative by the coherency inequality (10.6). 

Exercise 10.9 Moments of Transforms 

Verify that the moments of dx(j) and dy(j) are as stated in (10.9). 
(Hint: Use (10.7) and (10.8) and the definition G(j) = SX,y(j)/sx,x(j) = 

{CX,y(j) - iqx,y(j)} / sX,x(j).) 

Exercise 10.10 Moments of Periodograms 

Verifythatthemomentsoftheperiodograms IX,x(j) , Ix,y(j) , and h,y(j) 
are as stated in (10.10). (Hint: If A, B, C, and D have a joint Gaussian dis-
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tribution with zero means, then E(ABCD) = E(AB)E(CD)+E(AC)E(BD)+ 
E(AD)E(BC) .) 

Exercise 10.11 Distribution of the Cross Periodogram 

Suppose that A, B, C, and D are independent, each with the standard 
normal distribution. 

(i) Show that AB + CD has the double exponential distribution. (Hint: 
AB = 1/4{ (A + B)2 - (A - B)2}.) 

(ii) Show that P = AB + CD and Q = AD - BC have a circularly sym­
metric joint distribution. That is, if c2 + S2 = 1, then the jOint dis­
tribution of cP + sQand cQ - sP is the same as that of P and Q. 

10.5 DISTRIBUTION OF ESTIMATED CROSS SPECTRA 

As with autoperiodograms, cross periodogram ordinates calculated at dif­
ferent Fourier frequencies are uncorrelated. Furthermore, a cross period­
ogram ordinate at one Fourier frequency is uncorrelated with either auto­
periodogram ordinate at a different Fourier frequency, and the same is 
true for the two autoperiodograms. This may be summarized by saying 
that any periodogram ordinate (cross or auto-) at a given Fourier frequen­
cy is uncorrelated with any periodogram ordinate at any other frequency. 

It follows, therefore, that if a periodogram is smoothed using weights 
{Bu}, and if the theoretical spectra are approximately constant over the 
span of these weights, then the resulting spectrum estimates sx,x(!) , 
5X,y(j) , and 5y,y(j) have the same variances and covariances as Ix,x(j) , 
Ix,Y(j) , and h,Y(!) (given at the end of Section lOA) but multiplied by 
the factor 2:u B~. If the data were tapered before the periodogram was 
calculated, this factor is multiplied by the correction factor U4 / uj derived 
in Section 95. Lastly, if the periodogram was computed on a finer grid 
than the Fourier frequencies, we must also multiply by the factor n'ln > 
1, the ratio of the spacings. In the most general case, the variances and 
covariances of 5x,x(j), Sx,y(j), and 5y,y(j) are the same as those of 
IX,x(j) , Ix,y(j) , and h,y{j) in (10.10), but multiplied by the factor 

2 n' U4" 2 
B = n U2 L,Bu' 

2 u 
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The phase c/>x,Y(f) satisfies 

{ A} _ fJSx,y(j) 
tan 2rr¢x,y(j) - ~sx,y(f)' 

and is calculated using the branch of the arctangent that gives the correct 
sign to, say, ~Sx,y (j), as described in Section 2.2. Approximations to the 
moments of ¢x,y(j) maybe obtained only by assuming that Sx,y(j) has 
been smoothed enough to ensure that it is close to SX,y(j). If SX,y(j) = 

SX,y(f) + a + ih for small a and h, we may expand c/>x,y(f) in a Taylor 
series in a and h. The zero- and first -order terms are 

:i. (f) ~ rI.. (f) _ aqx,y(f) - hcx,y(j) 
'¥X,y '¥X,y 1 f 12 ' 2rr Sx,Y( ) 

and thus 

and 

where ¢x,Y(f) and Ki,y(f) , defined in Section 10.3, are the theoretical 
phase and squared coherency, respectively. Notice that the approximate 
variance is large if the coherency is small. The approximation is, in fact, 
valid only when it is small, that is, when Ki,y(f) is not small. 

The estimated phase is approximately normally distributed when this 
approximation is good, and thus, for instance, an approximate 95% con­
fidence interval for ¢x,Y(f) is 

:i.X y(f) ± 1.96 9
2 {I I} 

'¥ , 2rr 2 Ri,y(f) - , 
(10.11) 

where the theoretical coherency Ki y (f) has been replaced by its estimate 
R1.y(j). The arguments used by H~an (1970, Section V.2) suggest that 

AI. [ 9
2 {I }] ¢x,Y(f) ± 2 arCSill tv (.05) 2(1 _ 2) A2 (j) - 1 

rr 9 KX,y (10.12) 

would be a better approximation, where tv(a) is the 100a% point of the 
t -distribution with v degrees of freedom, and v = 2/92 - 2. 
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The approximate variance of K1.y(f) and the covariance of ¢x,y(f) 
and Ki,y(f) maybe found similarly. If §X,x(f) = sX,x(f)+c and Sy,Y(f) = 

sY,Y(f) + d, then, provided K1.y(f) f- 0, 

~ (I) ISx,Y(f) I 
KX y = r========= 

, ~sx,x(f)Sy,y(f) 

~ KX y(f) + aCX,y(f) + bqx,Y(f) (10.13) 
, KX,y(f)sx,x(f)Sy,y (f) 

- ~KX,y(f) {Sx,;(f) + Sy,:(f)} ' 

and hence 

and 

cov {¢X,y(f), KX,y(f)} ~ O. 

The approximate bias in KX,Y (f) may be found by taking the expecta­
tion of the next term in the Taylor series expansion. The result is 

92 {1- Kl,y(f) }2 
4 KX,y(f) 

which is always positive. Recall that, if the coherency is computed from 
the periodograms without smoothing, its value is identically 1. We see 
that some positive bias remains even after smoothing. There is another 
source of bias when the spectra are not effectively constant over the band­
width of the spectral window. Unlike the present source, this increases 
with the bandwidth. Thus a trade-off is called for in controlling these two 
sources of bias. 

The variance of KX,y(f) depends on KX,y(f) in the same way as that 
of a correlation coefficient depends on the theoretical correlation. Thus 
the arctanh transformation makes the variance constant to this order of 
approximation (see Jenkins and Watts, 1968, p. 379, or Brillinger, 1981, 
Section 8.9). In fact, 

and 

E {arctanh Kx,y(f)} ~ arctanh KX,y(f) 

2 

var {arctanh Kx,y(fH ~ ~ . 
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Thus an approximate 95% confidence interval for KX,y(j) may be found 
as tanhZ1 :::; KX,y(j) :::; tanhz2, where Zl and Z2 are 

A ~2 1 1 + Rx,y(j) ~2 
arc tanh KX,y(j) ± 1.96 2 = -2 ln _ A (j) ± 1.96 2' 

1 KX,Y (10.14) 

Expansion (10.13) is invalid for KX,y(j) = 0, and therefore gives poor 
approximations for small KX,y(j). The distribution of RI,y(j) when 
KX,y(j) = 0 is given by 

pr {Rl'y(j) :::; 0'(p)2} ;::;; p, 

where 
0'(p)2 = 1 - (1 _ p)g2f(1_g2) 

(see, e.g., Brillinger, 1981, p. 317). Thus, for example, the 95% point of the 
distribution is 

(10.15) 

Observed values of Rl,y(j) less than 0'(0.95)2 should therefore be re­
garded as not significantly different from 0, and the confidence interval 
(10.14) should be used only if Rl,y(j) exceeds this value. Further discus­
sion of the construction of confidence intervals for the estimated phase 
and coherency maybe found in Hannan (1970, Section V.2) and Brillinger 
(1981, Sections 6.9, 8.9). 

Examples 

Figure 10.8 shows the estimated squared coherency of one-year and ten­
year interest rates as in Figure 10.6 (p. 208), but with level lines showing 
the Significance level of the observed coherency under the null hypoth­
esis that the coherency is zero. Note that all probability statements are 
made on a frequency-by-frequency basis. A test of the hypothesis that 
coherency is zero at all frequencies would be quite different. 

The observed coherency is evidently strong. Figure 10.9 is another ver­
sion of the graph, with 95% confidence intervals computed from (10.14) 
added. These intervals show that the coherency is estimated relatively 
precisely. 

Figure 10.10 shows the estimated phase of one-year and ten-year in­
terest rates with 95% confidence intervals computed from (10.12). The 
intervals are relatively tight, with a length of less than 0.05 cycles at fre­
quencies where the coherency is strongest, and mostly including the zero 
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Fig. 10.8 Estimated squared coherency of one-year and ten-year interest rates, with 
cutoff levels for 10%, 1%, and 0,1% significance levels under the null hypothesis of in-
coherency. 

Period in years 

2 0.5 0.25 0,167 

00 
0 

S 
N 
< 
CIS 
0. "<t 
0. 0 

.' 
CIS '-' 
~ 

.' 
0 
0 

° 2 3 4 5 6 

Frequency in cycles per year 

Fig. 10.9 Estimated squared coherency of one-year and ten-year interest rates, with 
approximate 95% confidence intervaL 

line. If the true phase were zero at all frequencies, the interval would be 
expected to include zero at around 95% of frequencies. It appears from 
the graph that it the percentage of frequencies where the interval includes 
zero is somewhat less than 95%, suggesting that the lead of ten-year rates 
over one-year rates is real. However, since the indicated lead is of only 
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Fig. 10.10 Estimated phase of one-year and ten-year interest rates, with approximate 
95% confidence interval. 
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Fig. 10.1 1 Estimated squared coherency of ten-year interest rates and monthly 
changes in industrial production. with cutoff levels for 10% and 1% significance lev­
els under the null hypothesis of incoherency. 

a few days, these monthly data are less useful for exploring it than daily 
data would be. 

Figures 10.11 and lO.12 display the coherency of ten-year interest rates 
and industrial production from Figure 10.7 (p. 209), similarly enhanced 
by the addition of significance levels and 95% confidence intervals, re-
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Fig. 10.12 Estimated squared coherency of ten·year interest rates and monthly 
changes in industrial production, with approximate 95% confidence interval. 

spectively. The coherency shown in these figures is much lower than that 
between the interest rates. However, it appears that there is some re­
al coherency, in that the observed coherency lies above the 10% and 1% 
points of the null distribution for somewhat more than 10% and 1% of 
frequencies, respectively. 

Figure 10.13 shows the corresponding phase with 95% confidence in­
tervals, again obtained from (10.12). The intervals are considerably wider 
than those in Figure 10.10 because of the weaker coherency, and are, in 
fact, undefined at some frequencies, where the argument of the inverse 
sine function is outside the interval [ -1,1]. However, where the coheren­
cy is strongest, at frequencies up to around two cycles per year, the con­
fidence intervals are consistent with the linear phase behavior discussed 
in Section 10.2. 

Comparison of Spectra 

It is sometimes of interest to compare the autospectra of a number of 
series. For instance, the two interest rate spectra shown in Figure 10.4 
(p. 206) are commensurate, and a frequency-by-frequency comparison of 
the power in each could be illuminating. Because the series are not inde­
pendent, the autospectra are all positively correlated, and this fact has to 
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Fig. , O. 13 Estimated phase of ten-year interest rates and monthly changes in indus­
trial production, with approximate 95% confidence intervaL 

be taken into account in setting up confidence intervals for differences.3 

The resulting intervals decrease in width as the coherency increases. Thus 
very precise comparisons may be made between the autospectra of two 
highly coherent series, even though the autospectrum of each may not be 
estimated very precisely. 

The variance of 
I sX,x(j) 
n sY,Y{f) 

is approximately 292 {I - Kk,y(f)}; thus, for example, an approximate 
95% confidence interval for 

is 

In sX,x(j) 
sy,y(j) 

In !;:;i~~ ± 1.96)292 {I - Kk,y(j)}, 

where KX,y(j) has been replaced by its estimate KX,Y(f). Figure 10.14 
shows the ratio of the estimated spectrum of ten-year interest rates to 
that of one-year interest rates, with the corresponding approximate 95% 
confidence interval. The varying width of the interval is apparent, as is 
the conclusion that the ten-year interest rates have simtiftcantly higher 

3These differences are most naturally calculated as differences of logarithms of spectra 
or equivalently as logarithms of ratios of spectra. 
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Fig. 10.14 Ratio of smoothed periodograms of one-year and ten-year interest rates, 

with 95% confidence interval. 

spectral power at most frequencies, though notably not at the lowest fre­
quencies, where both series have highest power. 

10.6 ALIGNMENT 

It was stated in Section 10.1 that smoothing a cross periodogram is essen­
tially no more difficult than smoothing an autoperiodogram, except for 
the question of alignment of the series. In this section we illustrate this 
problem and discuss ways to avoid it. 

Suppose that a pair of series {Xt} and {Yt} is observed, and that in 
fact {yd consists of {xd shifted by h; that is, Yt = Xt-h. We say that 
{Yt} lags {Xt} and {Xt} leads {Yt} by h time units. Then the transforms 
of {xo, Xl. ... , xn-d and {Yo, Yl, .. ·, Yn-d satisfy 

dy(j) ~ dx(j)e-2rrijh, 

this being an approximation rather than an identity because of h terms 
at each end of the corresponding sums that are not equal. Thus 

ix,y(j) = ndx(j)dy(j) ~ ix,x(J)e2rrijh. 

Similarly the cross spectrum of a pair of jointly weakly stationary pro­
cesses {Xd and {Yd satisfying the same lag-h relationship satisfies 

SX,y(j) = sx,x(f)e2rrijh. 



Then the spectrum estimates should satisfy 

SX,y(f) ~ sx,x(f)e2rrifh. 

However, if h is large enough this cannot be the case. 
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To see this, consider a lag-weights spectrum estimate with truncation 
point m, 

Now 

whence 

~ (f) '" -2rrifr Sx,y = L. WrCx,y,r e . 
Irl<m 

1 
Cx,y,r = n 2: XtYt-r 

1 
~ - 2: XtXt-h-r n 
= cX,x,r+h, 

~ (f) '" -2rrifr Sx,y ~ L. WrCx,x,r+he . 
Irl<m 

(10.16) 

Now {cx,x,r : r = 0, ±l, ... , ±(n - 1)} is a symmetric sequence with its 
maximum at r = O. Thus, if Ihl ~ m, the largest term in the sequence 
{cx,x,r} is omitted from the sum (10.16), and therefore Sx,y(j) will tend 
to be smaller than sx,x(f)e2rrifh. If h is large enough, all of the large 
autocovariances are omitted from (10.16), and thus 

ISx,y(j) I «sx,x(f) = Sy,y(j). 

Hence the estimated squared coherency between {Xt} and {Yt}, 

is close to zero. We would therefore conclude that the two series are 
unrelated, whereas they are in fact completely dependent. 

The phenomenon does not appear only for lag-weights estimates. Any 
estimate may also be written as a spectral average (see Section 8.5), with 
an appropriate window. Now Ix,x(f) is real and nonnegative and hence 
averages to a positive value. However, 

Ix,y(f) ~ Ix,x(j)e2rrifh 



228 ANAL YSIS OF MUL TIPLE SERIES 

and if the complex factor e2rriJh goes through one or more complete cy­
cles within the bandwidth of the window, the values of Ix,y(j) tend to 
cancel out, and thus their average Sx,y(j) again may satisfy 

ISx,y(j) I «sx,x(j). 

This happens if the bandwidth is at least 1/ h, which is equivalent to 
h ~ m if we define the bandwidth of a lag-weights estimate to be l/m. 

The simplest way out of this predicament is to realign the data If we 
define {zd by Zt = Yt+h, there are no alignment problems for tXt. zd. 
We have to know h to carry out this realignment, at least to within an error 
that is small compared with m. The lag of the largest entry in {cx,y,r} is 
the most obvious candidate. A similar correction could be implemented 
by analyzing Ix,y (j)e-2rriJh. 

In this example, realignment of the two series removes the problem. 
However, in general, it is not possible to find a single realignment that 
removes the problem at all frequencies. Consider the following example. 
The series {Xt} is the sum of two components {Ut} and {Vt}, where the 
first has more power at low frequencies, and the second at high frequen­
des. Now, if Yt = Ut + Vt-h, then Ix,y(j) ~ Iu,u(j) at low frequendes, 
and Ix,y(j) ~ Iv,v(j)e2rriJh at high frequencies. Thus, whereas no re­
alignment is called for at low frequendes, a realignment of h time units 
is needed at high frequencies. More generally, there could be several fre­
quency bands, each requiring its own realignment. 

Another way of describing the problem is as follows: Write 

SX,y(j) = I SX,y(j) I e2rri<px,y(J) 

and suppose that both I SX,y(j) I and 4>'x,y(j) are smooth, but the latter 
is large. Then for f' close to f we have 

Hence 

sx,Y(f') ~ Isx,y(j) I e2rri{<PX,Y (f) + (!'-J)<Px,y(j)} . 

E {Sx,y(j)} ~ 2. BuSx,y(j - fu) 
u 

~ I SX,y(j) I e2rri<px,y(j) 2. Bue2rriJu<p'x,y(f) 
u 

. u<Jo'x y(f) 
= SX,y(j) 2.Bue2TTt~. 

u 

If 4>'x,y(j) is an integer, then by equation (8.17) (p. 153), the sum is, in 
fact, the "lag weight" of this lag. If 4>'x,y(j) is not an integer, it may be 
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regarded as an interpolated value between adjacent lag weights. Thus the 
problems we have described are associated with rapidly varying phase, in 
that the sum may be small or even vanish if 4>'x,y(J) is large enough. 

One way to remove the problem therefore would be to modify the pe­
riodogram so that its phase cannot vary rapidly. Since 

sx,y(f) = 1 SX,y(j) 1 e27Ti<PX,y(j) 

it follows that Ix,y(J)e-27Ti<Px,y(f) is an estimate of the real, positive quan­
tity Isx,y(j) I. Thus there are no more problems in smoothing this func­
tion than in smoothing the autoperiodogram. One procedure would be to 
follow these steps: 

• Obtain an initial estimate of the phase spectrum 4>x,y(j); 

• Correct Ix,y(J) for phase using this estimate; 

• Smooth the result to obtain an estimate of 1 SX,y(J) 1 ; and 

• Combine this with the phase information to obtain an estimate of 
SX,y(J). 

The resulting estimate of SX,y(j) could then be used to obtain a new 
estimate of the phase spectrum, thus setting up an iteration. A few steps, 
say two or three, should be sufficient to achieve reasonable convergence. 

The problem of alignment is also discussed by Hannan (1970, Section 
V.7) and Brillinger (1981, p. 266). Hannan and Thompson (1973) suggest 
that estimation of the phase spectrum 4> X,y (J) be replaced by estimation 
of the group delay 4>'x,y (J), and discuss the problems involved. 

Example 

Figures 10.7 (p. 209) and 10.13 (p. 225) showed that there is around a 
one quarter misalignment between ten-year interest rates and monthly 
changes in industrial production. Figure 10.15 displays the coherency 
between these series when the interest rates are lagged (realigned) by one 
quarter. Comparison with Figure 10.11 (p. 223) shows that this relatively 
small realignment changes the estimated squared coherency only slightly, 
and results in no change in the general conclusion of a weak association 
limited to low frequencies. 

Figure 10.16 displays the corresponding estimated phase spectrum. 
Comparison with Figure 10.13 (p. 225) confirms that the realignment has 
essentially eliminated the slope in the phase spectrum over the frequency 
band where the coherency is largest. 
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Fig. 10. 15 Estimated squared coherency of lagged ten-year interest rates and monthly 
changes in industrial production, with cutoff levels for 10% and 1% significance levels 
under the null hypothesis of incoherency. Interest rates lagged one quarter. 

The realignment has not simply adjusted the phase by a linear function 
of frequency, although this is what was suggested by Exercise 10.7. How­
ever, the new phase differs from the result of such an adjustment chiefly 
by (irrelevant) whole cycles, making transitions where the coherency is 
small. Interestingly, at all of the frequency bands where the coherency is 
large enough for the phase confidence interval to be defined, the phase 
spectrum is close either to 1/2 or to an alias of 1/2, suggesting that a 
single realignment is appropriate at all frequencies. 

Appendix 

The S-PLus function spec. pgramO described in the Appendix to Chap­
ter 8 (p. 164) may be given a multiple time series as its first argument, in 
which case the list that it returns includes a matrix of estimated squared 
coherencies and phases in addition to the spectra. It was used in this way 
to produce the spectra graphed in this chapter. 

In constructing the multiple time series (the functions tsmat r; x 0 and 
ts. i nte rsect 0 may be used for this), the natural alignment is used, all 
elements in a given row corresponding to the same time. If a different 
alignment is needed, the function 1 ag 0 may be used to change the time 
scale of one of the components. 
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one quarter. 
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11 
Further Topics 

Many aspects of time series analysis have not been covered in the pre­
ceding chapters. Some of these have been omitted because they are not 
Fourier analysis methods, while others are more advanced and cannot be 
treated without a more thorough development of the theories of statis­
tics and stochastic processes. Ibis chapter contains brief descriptions of 
some of these topics, with references to more extensive discussion. 

11.1 TIME DOMAIN ANALYSIS 

All the methods of analysis described in this book may be termed fre­
quency domain methods, in that they seek to describe the fluctuations in 
one or more series in terms of sinusoidal behavior at various frequencies. 
The other main type of analysis is time domain analysis, in which the be­
havior of a series is described in terms of the way in which observations 
at different times are related statistically. 

The basic tools in time domain analysis are the sample autocovariances 
{cr } defined in Section 8.3 and the related sequence of autocorrelations, 
usually defined as 

Cr rr = - Irl < n. 
co' 

These are a normalized version of the autocovariances and satisfy ro = 1, 
Irr I =:;; 1. The autocorrelation at lag r, rr, measures the extent to which 

233 
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the observation at time t is related to the observation at time t - r. 
The autocorrelation sequence and the periodogram [(i) [strictly, the 

normalized periodogram I (j) I co] are equivalent in the sense that each is 
the Fourier transform of the other. However, the periodogram, either un­
smoothed or in its smoothed form as a spectrum estimate, is the simpler 
of the two to interpret. This is so because periodogram ordinates of a 
stretch of n observations at frequencies separated by more than 1 In are 
approximately independent, whereas estimated autocorrelations in gen­
eral have a complicated covariance structure. 

Time domain methods have been applied with great success to some 
specific problems in time series analysis, including forecasting and con­
trol. In the forecasting problem one observes a series {Xt} (or, more 
generally, a number of series, {Xt}, {Yt}, ... ) up to time n and wishes to 
predict or forecast some future value X n +r , r > 0. In the control problem 
one observes a series {Xt} that depends on another series {Yt} whose 
values may be determined by the observer (more generally, {Xt} depends 
on a number of observed series {Yt}, {Zt}, ... , some of whose values are 
under the control of the observer). The problem here is to manipulate the 
controllable series in such a way that future values of {Xt} lie as close as 
possible to desired values. The theory of these problems is described by 
Whittle (1963), and their solution by time domain methods is discussed 
extensively by Box et al. (1994). 

11.2 SPATIAL SERIES 

In the examples used in earlier chapters the variable t has always rep­
resented time in one unit or another. However, the methods described 
are immediately applicable to any set of observations associated with a 
single variable with constant increments, such as the thickness of a lam­
ina at equally spaced points along a line. More generally, we might have 
observations at the points of a rectangular grid in the plane (or a higher­
dimensional space), say, 

Xh,tz' h = 0,1, ... , nl - 1, t2 = 0,1, ... , n2 - 1. 

Such a collection of data is called a spatial series. The basic tool in the Fou­
rier analysis of such data is the multidimensional discrete Fourier trans­
form 
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where fl,i = j Inl and fz,i = j In2 are Fourier frequencies associated 
with nl and n2, respectively. The inverse transform is 

(11.1) 

which represents the data as linear combinations of elementary sinusoids. 
As a function of tl and t2, the (iI,jz) term 

(11.2) 

depends only on fl,i, tl + fz,h t2. If we make an orthogonal change of 
variables to 

the term (11.2) becomes 
d . . e27TiFti 

}I,}2 

where F = ~fl,il + fi.h' and does not depend on tz· Thus the <it. jz) 
term is a sinusoidal surface, constant along the lines ti = constant, which 
are parallel to the tz -axis, and with wavelength 1 IF = 1 I fl,i, + fi.h 
(measured orthogonally to these lines). The inverse trans orm (11.1), 
therefore, represents the data as a sum of sinusoidal surfaces with differ­
ent orientations and wavelengths. 

If we were looking for such purely sinusoidal components in the data, 
we would compute the periodogram 

I(ft,f2) = -1-ld(ft,fz) 12 
nln2 

from a suitably tapered set of data. More commonly, however, we will be 
interested in a smoothed version 

S(ft,f2) = f f W(Jl - f{.J2 - f 2)I(f{.J2)df{df2 

or a discrete analog. The simplest way to carry out this smoothing is to 
divide the (ft, fz) plane into possibly overlapping sets, average each set 
of periodogram ordinates, and associate the result with the average of the 
frequencies. An alternative is to divide the data into possible overlapping 
rectangles, compute periodograms for each, and average them. In terms 
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of the arithmetic operations required, these two approaches are similar, 
but the latter requires less storage, since the data are processed in seg­
ments. Since both n 1 and nz may be large, computation time and storage 
requirements may be important considerations in the choice of method. 

If more sophisticated smoothing is required, the discrete averaging 
method may be improved by introducing nonconstant spectral weights 
and by increasing the number of points at which averages are computed. 
The equivalent spectral window for the second method is 

W(f,f') = Iw(f,f')1 2, 

where 

w(f,f') = 2. wt,t'e-2rrHit+J't'l 
t,t' 

and Wt,t' is the data window used on each rectangular segment. Thus 
any spectral window may be used implicitly by a suitable choice of data 
window. 

Often the orientation of the grid on which the data are collected is 
arbitrary. In this case it is desirable that the smoothed periodogram be 
approximately invariant under rotation of the grid (or, rather, equivariant, 
since the orientation of the sinusoidal surfaces is referred to the orienta­
tion of the grid). This may be achieved by using a spectral window with 
circular symmetry. In the second case the spectral window is circularly 
symmetric if the data window is likewise circularly symmetric. 

The statistical properties of the spectrum estimates obtained in this 
way may be derived by making the appropriate extensions to the defini­
tion of a stationary process. Bartlett (1955) discusses processes defined 
in this way, and Rayner (1971) describes the spectrum analysis of spatial 
series. Unwin and Hepple (1974) review the general analysis of spatial 
processes and give an extensive bibliography, including several applica­
tions of spectrum analysis. General issues in the analysis of spatial data 
are discussed by Cressie (1991) and Ripley (1981,1988). 

11.3 MULTIPLE SERIES 

In Chapter 10 we discussed estimating the cross spectrum, coherency, 
and phase of a pair of series. These are covariance- and correlation-like 
quantities, in that they are symmetric (or Hermitian) functions of the two 
series, and describe the way in which the two series are related. Often, 
however, one series depends (or is thought to) on one or more other series, 
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and this dependence is the real object of the investigation. In this case an 
analog of regression analysis is needed. 

Suppose that the dependent series is {X1,tl, and that it depends on 
{X2,t} , {X3,t}, ... , {Xp,t} , through 

P 

X1,t = 2: 2: Bj,uXj,t-u + Yt, 
j=2 u 

(11.3) 

where Yt is uncorrelated with all the terms in the independent series. 
Then the sum in (11.3) is the linear combination of the terms in the in­
dependent series that is closest to X1,t the sense of mean squared error 
and is called the linear regression of X1,t on the independent series. If 
{X2,t} , {X3,t}, ... , {Xp,t} are jointly weakly stationary (Le., all pairs satis­
fy the definition in Section 10.3), and {Yt} is weakly stationary, then Xu, 
{X2,t}, {X3,t} , ... , {Xp,t} are jointly weakly stationary, and we may define 
the spectra {5j,k(j),j,k = 1,2, ... ,p}. If Gj(J) is the transfer function 
of the j th filter {B j,u} , it may be shown that 

The residual spectrum 5y,y(f) is given by 

= 51,1 (j) {1 - R(j)}, 

say. The quantity R(J) is the multiple coherency of X1,t with {X2,t}, 
{X3,t} , ... , {Xp,t} and is the analog of the multiple correlation coefficient. 
Note that if p = 2, (11.4) Simplifies to 

and 

G2(J) = 52,1 (J) 
52,2(J) 

R(j) = 51,2(j)52,df) 
51,1 (/)52,2 (j) 

1 51,2(/) 12 

51,1 (/)52,2 (/) , 
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the squared coherency discussed in Chapter 10. 
If it is known that two of the series, say X1.t and {X2.t} , depend on 

the others, we may wish to investigate whether there is any other depen­
dence between them, or whether they are related only by the fact that both 
depend on {X3.t} , ... , {Xp•t }. To do this we compute the partial spectra 

[
51.1.3 ..... P(f) 
52.1.3 ....• p(f) 

_ [51.3 (f) .. . 
52.3 (f) .. . 

51.2.3 ....• P(f)] _ [51,1(j) 51.2(j)] 
52.2·3 •...• p (f) - 52.1 (j) 52.2 (j) 

] [

53.3(j) ... 
51.P(j) . 
52.p(j) : 

5p .3(f) 

-1 

S3.
P:(f)] [53.\(f) 

Sp.p(f) 5p.1 (f) 

and hence we may find the partial coherency and partial phase (see Priest­
ley, 1981b, Chapter 9). If the partial coherency is not significantly differ­
ent from 0, the two series {X1.t} and {X2.t} have no further dependence. 

In practice, the theoretical spectra are replaced by estimates. Hannan 
(1970, Chapter V) describes the statistical properties of the resulting esti­
mates of transfer functions, multiple coherencies, and partial coherencies. 
Brillinger (1981, Chapter 8) gives extensive discussion of the computation 
and use of these quantities. 

Other methods of multivariate analysis such as principal components 
and canonical correlations may also be extended to apply to time series 
data (see, e.g., Brillinger, 1981, Chapters 9 and 10). 

11.4 HIGHER ORDER SPECTRA 

In Section 6.5, it was shown that the third-order periodogram can give 
us information about nonsinusoidal behavior of a series (in that case, the 
sunspot series). In Section 7.5 a similar quantity was calculated in a lo­
cal way using complex demodulation. Brillinger and Rosenblatt (1967a,b) 
define the k th order autoperiodogram as 

k 

It (iI,h,··· .Jk) = n k
-

1 n d(h), 
j=l 

where Ih == 0 (mod 1). We have 

lz (j, - j) = nd(j)d(f) 

= nld(j)12 

= I(f) 

(11.5) 
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and thus (11.5) contains the familiar periodogram as a special case. The 
definition may be extended in an obvious way to give k th order cross 
periodograms of a multiple series. 

The expectation of a k th order periodogram is (approximately) the Fou­
rier transform of the cumulants of the process being analyzed (Brillinger 
and Rosenblatt, 1967a). Since all cumulants of orders higher than 2 of a 
Gaussian process vanish, these higher order spectra provide information 
about nonnormality of a process. They also give information about non­
linearity in the structure of a process and may be used to indicate whether 
some transformation such as those discussed in Section 6.7 will lead to a 
series with simpler structure (see Brillinger, 1965; Godfrey, 1965). 

It is easily seen that nonsinusoidal oscillations in a series are evidence 
of nonnormality in its probability structure. For a zero-mean Gaussian 
process {Xd has the symmetry properties that {Yd and {Zd have the 
same distribution as {Xd, where Yt = -Xt and Zt = X-t. However, in 
the sunspot series (Figure 1.3, p. 4) we see oscillations that do not have 
these symmetry properties. In the square roots of the sunspot series 
(Figure 6.13, p. 84) the spatial asymmetry has been largely eliminated, 
but the time asymmetry remains (see also Figure 6.15, p. 85). Since no 
transformation of the data can remove this time asymmetry, it represents 
a fundamental nonnormality in the distribution of the sunspot numbers. 

Like spectrum estimates for series defined for multidimensional "time," 
higher order spectrum estimates may be calculated either by frequency 
domain smoothing of the corresponding higher order periodogram of the 
whole series, or by time domain averaging of periodograms of segments 
of the data. Brillinger and Rosenblatt (1967b) describe an estimate of 
the first type, while Godfrey (1965) uses the second type. The second 
approach is preferable from a computational point of view. It requires 
less storage because the data are processed one segment at a time and 
the periodograms of successive segments may be accumulated as they 
are computed. Also, for k > 2, fewer arithmetic operations are required 
to compute the periodograms from the transforms. 

11.5 NONQUADRATIC SPECTRUM ESTIMATES 

All the spectrum estimates discussed in Chapters 8 and 9 are quadratic 
forms of the data {Xt}; that is, they may be written as 

n-l 

s(j) = I Xtat,t' (f)Xt" 
t,t'=O 
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Similarly, the cross spectrum estimates of Chapter 9 are bilinear forms of 
the two series and may be written as 

n-l 

Sx,y(f) = .L Xtat,t,(f)Yt', 
t,t'=O 

In recent years there has been some interest in other kinds of spectrum 
estimates. One approach is to assume that the spectrum belongs to some 
parametric family s(f; 00,01, ... , Op), where 0o, th .... , Op are unknown 
parameters. Estimates 00, 01 .... , Op are computed from the data. and the 
spectrum is then estimated by 

The family used most widely is that of autoregressive spectra 

0o 
s(i; 0o. 010 .... Op) = 2 \1 - 01 e2rriJ - ..• - Ope2rriJP \ 

(see. e.g. Parzen. 1969; Marple, 1987. Chapters 8-10). This is the spectrum 
of the autoregressive process {Xt }. defined by 

(11.6) 

where {Ut} is a zero-mean white noise process with variance 0o, and 

E(UtXt- y ) = O. r = 1.2 ..... p. (11.7) 

The parameters 0o• 010 ...• Op are constrained to satisfy 

• eo> O. and 

• 1- 01Z - ... - OpzP f= 0 for any Izl ~ 1. 

the second condition being required to ensure the existence of a station­
ary solution to the difference equation (11.6) satisfying (11.7). Relations 
(11.6) and (11.7) show that the autoregressive process has some of the 
properties of the conventional multiple linear regression model. and its 
parameters may be estimated in a similar way (see, e.g .• Box et al .• 1994. 
Sections 7.3.1 and A7.S). The exponential model of Bloomfield (1973) may 
be used in the same way to produce estimated spectra. 

Another approach was used by Burg (see. e.g., Lacoss. 1971). Suppose 
that we know the first m autocovariances of a weakly stationary process 
(see Section 9.1. p.167). Yo. Yl •...• Ym-l or, alternatively. that we have 
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good estimates of them. These are consistent with any spectrum s (j) 
for which 

f: S(j)e2TTiJr dJ = Yr, r = 0,1, ... , m - 1 (U.8) 

and Burg's procedure is to use the spectrum satisfying (11.8) that maxi­
mizes the entropy 

f: 10gs(j)dJ. 

In this sense it is the smoothest spectrum satisfying (11.8). It may be 
shown (Lacoss, 1971) that the resulting maximum entropy spectrum is 
of autoregressive form; in fact, if the m autocovariances are estimated 
from a stretch of data (the most common case), the resulting estimate is 
the same as the autoregressive spectrum estimated from that stretch of 
data (with p = m - 1). 

A different estimate, called the maximum likelihood spectrum, is sug­
gested by Capon (1969). A relationship between this and the maximum 
entropy spectrum (and hence also the autoregressive spectrum) is given by 
Burg (1972). Pisarenko (1972) describes a class of generallynonquadratic 
estimates that includes as special cases the conventional quadratic spec­
trum estimate (in the form of the Bartlett estimate) and the maximum 
likelihood spectrum (see also Marple, 1987, Chapter l3). 

Various arguments have been made in support of the use of these spec­
trum estimates. The general procedure of assuming a parametric model 
for a spectrum and then estimating the parameters is efficient (in a sta­
tistical sense) when the true spectrum belongs to the family, and is a 
flexible method if the family is diverse enough. However, the resulting 
spectrum estimate is a more complex function of the data than a con­
ventional quadratic estimate, and on these grounds is harder to interpret. 
It is also computationally more complex, at least in the case of a large 
number of parameters. 

It has also been shown that nonquadratic spectra may have greater res­
olution than a conventional quadratic spectrum estimate using the same 
number of autocovariances (thOUgh we note that some of the compar­
isons that have been made use the Bartlett estimate as the conventional 
estimate, and that the Bartlett estimate is undesirable on at least two 
counts; see Sections 8.3, p. 142, and 8.5, p. 149). Nonquadratic spectra 
would therefore be useful in situations where only a fixed number of au­
tocovariances are known or estimated, and a spectrum estimate of the 
highest possible resolution is needed. One such situation would be where 
we observe many short segments of time series with the same structure; 
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autocovariances pooled across segments could provide good estimates at 
short lags, but no estimates would be available at longer lags. 

However, in the more common case where a single stretch of the origi­
nal data is available for analysis, conventional estimates may be construct­
ed with any desired resolution. In the extreme case where it is desired to 
estimate the frequency of a sinusoid from a few cycles or a fraction of 
a cycle, the exact least squares methods of Chapter 3 give the maximum 
resolution. 

11.6 INCOMPLETE DATA, IRREGULARLY SPACED DATA, 

AND POINT PROCESSES 

Often a series of observations from which it is desired to compute a spec­
trum estimate is incomplete (or contains bad values, which should be 
omitted). There are a number of ways in which this situation may be 
handled. 

Gaps Large and Few 

If the gaps are relatively few and far apart, and especially if each gap is 
fairly large, the simplest procedure is to treat each uninterrupted stretch 
of data as a separate series, compute a periodogram for each, and average 
them. The segments should each be tapered and then extended by zeros 
to a common length, to ensure that each periodogram is relatively free of 
leakage and that all are computed at the same frequency. 

Suppose that there are m stretches of data, of lengths n 1, n2, ... , n m, 
and that we compute the weighted average 

m 

51 (j) = L ajlj(j), 
j=1 

where a j > 0, j = 1, ... , m, and L.j a j = 1. This is computed at the fre­
quencies fi = j / n' for some n' ~ max {n 1, n2, ... , nm} and then smooth­
ed to form 

S2(j) = LBuSl(j - f~) 
u 
m 

= 2. 2. Bu1j(j - f~). 
j=1 u 

Now the periodograms of disjoint stretches of data are approximately 
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uncorrelated, whence 

var{s2(j)}:::: j~a]Var{~Bulj(j-f~)} 
(11.9) 

and 

(11.10) 

where Uj is the variance inflation factor due to tapering of the j th stretch 
of data (see Section 9.5, p. 177). Note that the variance inflation factors 
may be different for different stretches, since we may wish to taper the 
same number of observations, rather than the same proportion, at the 
ends of each stretch. 

Expression (11.10) incorporates a modification that prevents it from 
exceeding s(j)2; if nj were so small that 

n' 2 
-U/'IBu> 1, 
nj u 

(11.11) 

then filtering with weights {Bu} would have little effect on lj (j). Thus 

2. Bulj(j - f~) :::: lj{f) 

and hence 

u 

var {~BUlj(j - f~)} :::: var {lj(j)} 

J::;S(j)2. 

From (11.9) and (11.10) it follows that var {S2(j)} is minimized by tak­
ing 

a 
aj = . {n' 2}' rom 1, nUj 2:u Bu 

where a is chosen so that 2:j a j = 1; that is, 

1 m 1 
a = 2. . { n' U" 2 } • 

j=l rom 1, n j L.uBu 

Thus the optimal weights in the averaging of lj(j) depend on the amount 
of subsequent smoothing. Often (11.11) does not hold for any j, and then 

(11.12) 
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Thus, if Sz (j) is a sufficiently heavily smoothed form of 51 (1), the op­
timal weights are given by (11.12) and do not depend on the amount of 
smoothing. If the weights (11.12) are used when (11.11) does hold for 
some j, the effect is to place less weight on the j th segment. Since only 
the shortest segments are affected in this way, it seems reasonable that 
weights (11.12) should be used in any case. The resolution of these short 
segments is poor, and such down-Weighting therefore reduces the bias in 
S2 (j) because of this poor resolution. 

Gaps Small and Few 

On the other hand, if missing or bad observations tend to occur in isolated 
ones or twos, it is simplest to replace any such observation by a linear 
combination of its neighbors. It may be shown that the effect of this is 
to introduce a small bias into the spectrum, proportional to the fraction 
of data that are missing. The effect on the variance of the estimate is 
to replace s(j) by the biased form, and thus the variance of logs(j) is 
unaffected. 

A combination of these two approaches may also be used. The data 
are divided into segments at any long gaps, and shorter gaps within each 
segment are then filled in by linear combinations of their neighbors. 

Gaps Small and Many 

When a moderate proportion of the data is missing, say more than 10% or 
20%, it may not be possible to divide the data into stretches with relatively 
few data points missing in each stretch. In this case even the combined 
approach may lead to an unacceptable bias in the estimated spectrum. 
However, in the special case where missing data are replaced by zeros (a 
trivial linear combination), the bias may be estimated and removed. Esti­
mates constructed in this way have been considered by several authors. 
Jones (1962) and Parzen (1963) assume that the data are missed in some 
periodic way. Scheinok (1965) assumes that each observation is observed 
with a given probability, independently of the others. Bloomfield (1970) 
generalizes this to a general random mechanism. Jones (1971) makes no 
assumption about the mechanism that causes observations to be missed, 
and gives a formula for the approximate variance that differs from the 
expressions of Scheinok and Bloomfield. 

Any of these procedures may result in negative spectrum estimates, 
which are generally undesirable. This is less likely to happen if the spec­
trum is close to white than if it has a large dynamic range. Thus the data 
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should usually be prewhitened (see Section 8.8, p. 160) to some extent, 
even though this increases the number of missing observations. 

Irregular Data 

It has been assumed throughout this book that the data are collected at 
equally spaced times. The missing data problems considered above rep­
resent a small departure from this assumption. More generally, however, 
we may wish to estimate the spectrum of a continuous time series {x (t)} , 
observed at times h, t2, ... , tn which do not fall on a grid. 

If these epochs of observation are generated by some random mecha­
nism, they constitute a realization of a point process. The estimation of 
the spectrum of {x(t)} is related to the estimation of the spectrum of the 
point process {til, which is defined by Bartlett (1963). These estimation 
problems are discussed by Bartlett and by Brillinger (1972). Several issues 
in the analysis of irregular data are discussed by contributors to Parzen 
(1984). It is interesting that the first theoretical study of the statistical 
properties of the periodogram was presented by Schuster (1897) in the 
context of a point process, the occurrence of earthquakes in Japan. 
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