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Preface to the Second English Edition

This second English edition has been required only 1'12 years
after the first; it appears shortly before the fifth German
edition, of which it is a translation. A major change is the
expansion and revision of Chapter 4 by new exercises on the
use of the stereographic, orthographic and gnonomic projec
tions, and on indexing. Dr. R. O. Gould has again under
taken the translation and has made a thorough revision of the
text of the first edition. I am very grateful to him for his
efforts. I should also like to thank Dr. Wolfgang Engel of
Springer Verlag, Heidelberg, very much for his encourage
ment and his help during a collaboration of more than a
decade.

MUnster, Summer 1995 W. BORCHARDT-OTT



Preface to the First English Edition

This book is based on the lectures which I have now been
giving for more than 20 years to chemists and other scientists
at the Westfalische Wilhelms-Universitat, Munster. It is a
translation of the fourth German edition, which will also be
appearing in 1993.

It has been my intention to introduce the crystallographic
approach in a book which is elementary and easy to
understand, and I have thus avoided lengthy mathematical
treatments. As will be clear from the contents, topics in
crystallography have been covered selectively. For example,
crystal structure analysis, crystal physics and crystal optics
are only touched on, as they do not fit easily into the scheme
of the book.
The heart of the book is firmly fixed in geometrical

crystallography. It is from the concept of the space lattice that
symmetry operations, Bravais lattices, space groups and
point groups are all developed. The symmetry ofmolecules is
described, including the resulting non-crystallographic point
groups. The treatment of crystal morphology has been
brought into line with the approach used by International
Tables for Crystallography. The relationship between point
groups and physical properties is indicated. Examples of
space groups in all crystal systems are treated. Much
emphasis is placed on the correspondence between point
groups and space groups. The section on crystal chemistry
will serve as an introduction to the field. Of the various
methods of investigation using X-rays, the powder method is
described, and an account is given of the reciprocal lattice. At
the end of each chapter are included a large number of
exercises, and solutions are given for all of them.
The first stimulus to have this book translated was given

by Professor P. E. Fielding of the University of New England
in Armidale (Australia). The translation was undertaken by
Dr. R. O. Gould of the University of Edinburgh. I thank Dr.
Gould for his enthusiasm and for the trouble he has taken
over the translation. It was particularly beneficial that we
were able to consider the text together thoroughly.



X Preface to the First English Edition

Professor E. Koch and Professor W. Fischer, both of the
University of Marburg, have discussed each edition of this
book with me, and their criticism has been invaluable. I wish
to record my thanks to them also.

Munster, Autumn 1993 W. BORCHARDT-OTT
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Introduction

At the heart of crystallography lies an object - the crystal. Crystallography is
concerned with the laws governing the crystalline state of solid materials, with
the arrangement of atoms in crystals, and with their physical and chemical
properties, their synthesis and their growth.
Crystals playa role in many subjects, among them mineralogy, inorganic,

organic and physical chemistry, physics, metallurgy, materials science, geology,
geophysics, biology and medicine. This pervasiveness is perhaps better
understood when it is realised how widespread crystals are: virtually all
naturally occuring solids, i.e. minerals, are crystalline, including the raw
materials for chemistry, e.g. the ores. A mountain crag normally is made up of
crystals of different kinds, while an iceberg is made up of many small ice
crystals. Virtually all solid inorganic chemicals are crystalline, and many solid
organic compounds are made up of crystals, among them benzene, naphtha
lene, polysaccharides, proteins, vitamins, rubber and nylon. Metals and alloys,
ceramics and building materials are all made up of crystals. The inorganic part
of teeth and bones is crystalline. Hardening of the arteries and arthritis in
humans and animals can be traced to crystal formation. Even many viruses are
crystalline.
This enumeration could be continued endlessly, but it is already obvious that

practically any material that can be regarded as solid is crystalline.
In many countries, especially in Germany, crystallography is mainly taught

as a part of mineralogy, while elsewhere, notably in Britain and North America,
it is more often taught as a part of physics or chemistry. In any case,
"crystallographers" may be from a wide variety of scientific backgrounds. Most
countries have a National Crystallographic Committee representing the
International Union of Crystallography, the body which publishes Acta
Crystallographica and International Tables for Crystallography.
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1 The Crystalline State

The outward appearance of a crystal is exceptionally variable, but all the
variations which occur can be explained in terms of a single fundamental
principle. To grasp this, we must first come to terms with the nature of the
crystalline state. The following are a few properties that are characteristic of
crystals:

a) Many crystals not only have smooth faces, but, given ideal growth
conditions, have regular geometric shapes (see Figs.l.l-lA).

b) If some crystals (e.g. NaCI) are split, the resulting fragments have similar
shapes with smooth faces - in the case of NaCl, small cubes. This phenomenon
is known as cleavage, and is typical only of crystals.

Fig. I.! a, b. A garnet crystal with the shape of a rhomb-dodecahedron (a) and a crystal of
vitamin B I2 (b)
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bright yellow

blue

Fig. 1.2. Pleochroism as shown by a
crystal of cordierite



4 I The Crystalline State

Fig. 1.3. A crystal of kyanite, with a scratch illustrating the
anisotropy of its hardness

c) Figure 1.2 shows a corderite crystal and the colours that an observer would
see when the crystal is viewed from the given directions. The colours that
appear depend on the optical absorption of the crystal in that particular
direction. For example, if it absorbs all spectral colours from white light except
blue, the crystal will appear blue to the observer. When, as in this case, the
absorption differs in the three directions, the crystal is said to exhibit
pleochroism.

d) When a crystal of kyanite (AhOSi04) is scratched parallel to its length by
a steel needle, a deep indentation will be made in it, while a scratch
perpendicular to the crystal length will leave no mark (see Fig. 1.3). The
hardness of this crystal is thus different in the two directions.

e) If one face of a gypsum crystal is covered with a thin layer of wax and a
heated metal tip is then applied to that face, the melting front in the wax layer
will be ellipsoidal rather than circular (Fig. 1.4), showing that the thermal
conductivity is greater in direction III than in direction I. Such behaviour 
different values ofa physicalproperty in different directions - is called anisotropy,
(see also Fig. 1.5c). If the melting front had been circular, as it is, for example, on

./
a

Fig. 1.4. A crystal of gypsum covered with wax showing the
melting front. The ellipse is an isotherm, and shows the
anisotropy of the thermal conductivity
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6 I The Crystalline State

a piece of glass, it would imply that the thermal conductivity is the same in all
directions. Such behaviour - the same value ofaphysicalproperty in all directions
- is called isotropy, (see the right hand side of Fig. 1.5).

Anisotropy of physical properties is normal for crystals. It is, however, not
universal, as there are some crystals whose properties are isotropic. The origin
of all of the phenomena listed under (a) to (e) lies in the internal structure of
crystals. In order to understand this better, let us now consider the various states
of aggregation of matter.
All matter, be it gas, liquid or crystal, is composed of atoms, ions or

molecules. Matter is thus discontinuous. Since, however, the size of the atoms,
ions and molecules lies in the Aregion (lA = 10-8 cm = 0.1 nm) matter appears
to us to be continuous. The states ofmatter may be distinguished in terms oftheir
tendency to retain a characteristic volume and shape. A gas adopts both the
volume and the shape of its container, a liquid has constant volume, but adopts
the shape of its container, while a crystal retains both its shape and its volume,
independent of its container (see Fig. 1.5).

GASES. Figure 1.5a illustrates the arrangement of molecules in a gas at a
particular instant in time. The molecules move rapidly through space, and thus
have a high kinetic energy. The attractive forces between molecules are
comparatively weak, and the corresponding energy of attraction is negligible in
comparison to the kinetic energy.
What can be said about the distribution of the molecules at that particular

instant? There is certainly no accumulation ofmolecules in particular locations;
there is, in fact, a random distribution. A. Johnsen [21] has illustrated this by a
simple analogy (Fig.1.6a): we scatter 128 lentils over the 64 squares of a
chessboard, and observe that in this particular case some squares will have no
lentils, some 1, 2, or even 3 - but on average 2. If, instead of single squares we
considered blocks of four squares, the number of lentils in the area chosen
would fall between 7 and 9, while any similar block of 16 squares would have
exactly 32 lentils. Thus, two distinct areas of the same size will tend to contain
the same number of lentils, and this tendency will increase as the areas

8 •••• • • :•••• :••

7 -.-:.-•• .-~ '-.--••-;e.,. ... . . .., .G.,·.·.·'.· ,..,. ...'.
5 -.';.' .- -, - - .-:- ~ .--,..,.... ., . .., .
4.::: ••:••• :•• :.; ••3.-·- -.. -.-.' · -.; ~

, •• • ••• I

! .' •• ;. • •••:..:. .... , .. :
1 -.-:.-_ .•- .- .. ~: -••-.:.-.
te.,- ,e .,.

8

7

6

4

3

2

• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •• • • • • • • •
• • • • • • • •• • • • • • • •
• • • • • • • •• • • • • • • •
• • • • • • • •• • • • • • • •

b) abc d e f ~ h

Fig.1.6a,b. Statistical (a) and periodic (b) homogeneity. Johnsen [21]
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considered become larger. This kind of distribution is considered to be
statistically homogeneous, i.e. it shows the same behaviour in parallel
directions, and it may easily be seen that the physical properties of the
distribution are isotropic, i.e. are equal in all directions.

LIQUIDS. As the temperature of a gas is lowered, the kinetic energies of the
molecules decrease. When the boiling point is reached, the total kinetic energy
will be equal to the energy of attraction among the molecules. Further cooling
thus converts the gas into a liquid. The attractive forces cause the molecules to
"touch" one another. They do not, however, maintain fixed positions, and
Fig. 1.5 b shows only one ofmany possible arrangements. The molecules change
position continuously. Small regions of order may indeed be found (local
ordering), but if a large enough volume is considered, it will also be seen that
liquids give a statistically homogeneous arrangement of molecules, and
therefore also have isotropic physical properties.

CRYSTALS. When the temperature falls below the freezing point, the kinetic
energy becomes so small that the molecules become permanently attached to
one another. A three-dimensional framework of attractive interactions forms
among the molecules and the array becomes solid - it crystallises. Figure 1.5c
shows one possible plane of such a crystal. The movement of molecules in the
crystal now consists only ofvibrations about a central position. A result of these
permanent interactions is that the molecules have become regularly ordered.
The distribution of molecules is no longer statistical, but is periodically
homogeneous; a periodic distribution in three dimensions has been formed (see
also Fig. 2.la).
How can this situation be demonstrated using the chessboard model?

(Fig.1.6b). On each square, there are now precisely two lentils, periodically
arranged with respect to one another. The ordering of the lentils parallel to the
edges and that along the diagonals are clearly different, and therefore the
physical properties in these directions will no longer be the same, but
distinguishable - in other words, the crystal has acquired anisotropic proper
ties. This anisotropy is characteristic of the crystalline state.

Definition

A crystal is an anisotropic, homogeneous body consisting of a three-dimen
sional periodic ordering ofatoms, ions or molecules.

All matter tends to crystallise, if the temperature is sufficiently low, since the
ordered crystalline phase is the state of lowest energy. There exist, however,
materials, such as glass, which never reach this condition. Molten glass is very
viscous, and the atoms ofwhich it is made cannot come into a three-dimensional
periodic order rapidly enough as the mass cools. Glasses thus have a higher
energy content than the corresponding crystals and can best be considered
as a frozen, viscous liquid. They are amorphous or "form-less" bodies. Such
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/---
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Fig. 1.7. Heating curves for a crystal (-) and
a glass (- - -), Tm is the melting point of the
crystal

Tm Temperature--

materials do not produce flat faces or polyhedra since an underlying order is
missing.
How then is it possible to distinguish amorphous material from crystals?

One possibility is to examine the melting behaviour. As is illustrated in Fig. 1.7,
a crystal has a sharp melting point Tm , while amorphous bodies have a region of
softening. Another possibility derives from their different properties relative to
an incident X-ray beam. The three-dimensional ordering of the atoms in
crystals gives rise to sharp interference phenomena, as is further examined in
Chapter 12. Amorphous bodies, as they do not have underlying order, produce
no such effect.

EXERCISES

Exercise 1.1. Determine the volume of a gas associated with each molecule at normal
temperature and pressure.

Exercise 1.2. Determine the packing efficiency of Ne gas (RNe = 1.60A) under normal
conditions. The packing efficiency is the ratio of the volume of a neon atom to the
volume calculated in example 1.1. For comparison, a copper crystal has a packing
efficiency of 74%.

Exercise 1.3. Discuss the use of the term "crystal glass"!.



2 The Lattice and Its Properties

A three-dimensional periodic arrangement of atoms, ions or molecules is
always present in all crystals. This is particularly obvious for the a-polonium
crystal illustrated in Fig. 2.1a. Ifeach atom is represented simply by its centre of
gravity, what remains is a point or space lattice (Fig. 2.1b).
A point or space lattice is a three-dimensional periodic arrangement of

points, and it is a pure mathematical concept. The concept of a lattice will now
be developed from a lattice point via the line lattice and the plane lattice, finally
to the space lattice.

b)

Fig. 2.1 a, b. Three-dimensional periodic arrangement of the atoms in a crystal of a-polonium
(a) and the space lattice of the crystal (b)

2.1 Line Lattice

In Fig. 2.2, we may consider moving from the point 0 along the vector ato the
point 1. By a similar movement of 2ii, we will reach point 2, etc. By this
movement, one point is brought into coincidence with another, and a repetition
operation takes place. By means of this operation, called a lattice translation, a
line lattice has been generated. All points which may be brought into
coincidence with one another by a lattice translation are called identical points
or points equivalent by translation. IaI= ao is called the lattice parameter, and
this constant alone completely defines the one-dimensional lattice.
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aiD

·3.,(

Fig. 2.2 Fig. 2.3

Fig. 2.2. Line lattice with its lattice parameter Iii I= 110

Fig. 2.3. Plane lattice with the unit mesh defined by the vectors ii and 6

2.2 Plane Lattice

If a lattice translation 6 (6 $ a) is then allowed to operate on the line lattice in
Fig. 2.2, the result is the plane lattice or plane net (Fig. 2.3). The vectors aand 6
define a unit mesh. The entire plane lattice may now be constructed from the
knowledge of three lattice parameters, IaI=ao, 161 =bo and y, the included
angle. Ifany point is moved by any arbitrary lattice translation, it will come into
coincidence with another point. A plane lattice thus has lattice translations not
only parallel to aand 6, but also to any number ofcombinations of them, i.e. an
infinite number of lattice translations.

2.3 Space Lattice

If yet another lattice translation cis now introduced in a direction not coplanar
with aand 6, its action on the plane lattice in Fig. 2.3 generates the space lattice
shown in Fig. 2.4. This space lattice can also be produced solely by the
operations of three dimensional lattice translations. In contrast to a finite
crystal, a space lattice is infinite.

b

Fig. 2.4. Space lattice with the unit cell
defined by the vectors ii, 6 and C

a



2.4 The Designation of Points, Lines and Planes in a Space Lattice II

According to the arrangement of the vectors a, band e, we may introduce an
axial system with the crystallographic axes a, band c. The vectors a, band c and
their respective crystallographic axes a, band c are chosen to be right-handed.
That is, if the right thumb points in the direction of a (a) and the index finger is
along b (b), the middle finger will point in the direction of e(c). A lattice, or a
crystal described by it, may always be positioned so that a (a) points toward the
observer, b (b) toward the right, and c(c) upwards, as is done in Fig. 2.4.
The vectors a, band cdefine a unit cell, which may alternatively be described

by six lattice parameters:

length of lattice translation vectors

lal =ao
Ibl =bo
lei =Co

interaxiallattice angles

al\b=y
al\e=p
bl\c=a

Further application of lattice translations to the unit cell will produce the
entire space lattice. The unit cell thus completely defines the entire lattice.
Every unit cell has eight vertices and six faces. At all vertices there is an

identical point. Can all of these points be considered part of the unit cell? The
lattice point D in Fig. 2.4 is not only part of the marked-out unit cell, but part of
all eight cells which meet at that point. In other words, only one eighth of it may
be attributed to the marked unit cell, and since 8 x ~ = 1, the unit cell contains
only one lattice point. Such unit cells are called simple or primitive, and are
given the symbol P.

2.4 The Designation of Points, Lines and Planes in aSpace Lattice

2.4.1 The Lattice Point uvw

Every lattice point is uniquely defined with respect to the origin of the lattice by
the vector T= ua + vb +wc. The lengths of a, 6 and eare simply the lattice
parameters, so only the coordinates u, v and w require to be specified. They are
written as a "triple" uvw. In Fig. 2.5, the vector Tdescribes the point 231 (which

Fig. 2.5. Designation of lattice
points using the coordinates
uvw that define the vector
from the origin to the lattice
point uvw, i = ua +vb +we

a
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Fig. 2.6. Designation of lattice
lines using the coordinates
[uvw] (in square brackets) that
define the vector from the
origin to the given point
t =ua +v6 + we (I: [231], II:
[112])

is read as two-three-one). The coordinates u, v and w normally are integers, but
can also have values of integers + ~; ~ or ~, as is further explained in Chapter 6.4.
When they have integral values, the points uvw are the coordinates of the
points of a P-lattice. The coordinates of the vertices of a unit cell are given in
Fig. 2.5.

2.4.2 Lattice Lines [uvw]

A line may be specified mathematically in any coordinate system by two points.
The lattice line I in Fig. 2.6 contains the points 000 and 231. Since the lattice line
passes through the origin, the other point on its own describes the direction of
the line in the lattice, and the coordinates of this point thus define the line. For
this purpose, they are placed in square brackets [231], or in general [uvw], to
show that they represent the direction of a line.
The lattice line II' passes through the points 100 and 212. Line II is parallel to

this line, and passes through the origin as well as the point 112 and consequently
both lines may be referred to by the symbol [112].

Note that the triple [uvw] describes not only a lattice line through the origin and
the point uvw, but the infinite set oflattice lines which are parallel to it and have
the same lattice parameter.

Figure2.7 shows parallel sets of lattice lines [110], [120] and [310]. The
repeat distance along the lines increases with u, v, w.

Figure 2.8 shows a projection of a space lattice along c onto the a, b-plane.
The lattice line A intersects the points with coordinates 000, 210, 420 and 210.
Note that minus signs are placed above the numbers to which they apply - this
applies to all crystallographic triples. Each point on the line has different values
uvw, but the ratio u:v:w remains constant. In this case, the smallest triple is
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Fig. 2.7. Projection of a lattice onto the
a, b-plane showing parallel sets of lattice
lines [100], [120] and [310]

••-b• •
• ••••

I
a

• •
• •

• •
• • •

• • •
• • •

• • •

[010]

b
• • •

• •
• • Fig. 2.8. Projection of a

space lattice along c onto
• the a, b-plane. The lattice

line A is defined by the
• triple [210], while B may be

given as [130] or [I30]

used to define the lattice line. Lines parallel to aor 6are thus identified as [100]
or [010] respectively, while the line B is given as [130] or [130]; note that these
two representations define opposite directions for the lattice line.

2.4.3 Lattice Planes (hkl)

Consider a plane in the lattice intersecting the axes a, band c at the points mOO,
OnO and OOp. (These coordinates are given as mnp and not uvw to show that the
values need not be integral. An example of a lattice plane which does not
intersect the axes at lattice points is plane D in Fig. 2.11). The coordinates ofthe
three intercepts completely define the position of a lattice plane (Fig. 2.9).
Normally, however, the reciprocals of these coordinates are used rather than the
coordinates themselves:
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c

Fig. 2.9. The intercepts on the axes ofa lattice plane with
the Miller indices (362)

a

. h 1a-axIs: --
m

b-axis: k-1
n

. I 1c-axls: --
p

The smallest integral values are chosen for the reciprocal intercepts, and they
are then written as a triple (hkl) in round brackets.

Definition

The values (hkl) are called Miller indices. and they are defined as the smallest
integral multiples of the reciprocals of the plane intercepts on the axes.

The lattice plane shown in Fig. 2.9 has the intercepts min 1p = 21113 the
reciprocals of these are ~ IIIL leading to the Miller indices (362).

Fig. 2.10. The indexing oflattice planes by Miller indices, the smallest integral multiples of the
reciprocals of the intercepts on the axes; I (111), II (211)
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Fig. 2.11. Projection of a space lattice along c onto the a, b-plane. The "lines" A-G are the
traces of the lattice planes parallel to c with the Miller indices (210). The "line"H is the trace of
a lattice plane (230)

In the space lattice shown in Fig. 2.10, two lattice planes have been drawn in

m
1

P
(hkl)

I
II
111
122

1
1

1 1 (111)
(211)

In Fig.2.11, a projection of a lattice is shown together with the lines
representing the traces of lattice planes perpendicular to the plane of the paper
and parallel to the c-axis. These lattice planes are indexed as follows:

min I p ~I
1 I 1 (hkl)- -
n p

A 2 4 00 1 1 0 (210)2 4

B J 3 00 2 I 0 (210)2 3 3

C 1 2 00 1 I 0 (210)2

D I 1 00 2 1 0 (210)2

E - - - - - -

F I I 00 2 I 0 (210)2

G I 2 00 I 1 0 (210)2

H 3 2 00 I 1 0 (230)3 2

The lattice planes A to G belong to a set of equally spaced, parallel
planes resulting in the same indices. Generally, they are all described by the
triple (hk/), which represents not merely a single lattice plane, but an infinite
set of parallel planes. Since the plane E intersects the origin, it cannot be
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· . . . . . . . . . . . .
Fig. 2.12. Projection of a lattice
onto the a, b-plane, with the pro
jections of six sets of lattice planes

1

0 0 0 o-b

IOJ~ : : •

• •

I
a

(lOQ)· . . .

• • ..---e

. . . . . .

indexed in this position. Note that (210) and (210) define the same parallel set of
planes.
Figure 2.12 gives the projection of a lattice onto the a, b-plane. This

projection has a square unit cell. The projections of six sets oflattice planes with
various indices are also shown. As the indices rise, the spacing between the
planes decreases, as does the density of points on each plane.
Planes which are parallel to band c will thus only have intercepts with a and

are indexed as (100). Similarly, (010) intersects only the b-axis, and (001) only c.
The line H in Fig. 2.11 is the trace of the plane (230).

2.5 The Zonal Equation

We may ask what the relationship is between the symbols [uvw] and (hkl) if they
represent sets oflines and planes that are parallel to one another. The equation
of any plane may be written:

X y Z
-+-+-=1,
m n p

where X, Y and Z represent the coordinates of points lying on the plane, and
m, nand p are the three intercepts of this plane on the crystallographic axes

a, band c (see Sect. 2.4.3). If the substitution is then made h - ~, k ~ -l,
1 m n

and 1--, the equation may be written
p

hX + kY +IZ = C,

where C is an integer. The equation describes not only a single lattice plane, but
a set of parallel lattice planes. For positive h, k and I, giving C a value of +1
describes that plane of the set which lies nearest to the origin in the positive a, b
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Fig. 2.13. The lattice lines [UIVIWI] and [uzvzwz] define the lattice plane (hkl)

and c directions. Similarly, a value of -1 defines the nearest plane in the negative
a, band c directions from the origin. The plane (hkl) which cuts the origin has
the equation:

hX+kY +IZ=O.

As an example, the planes D, E and F in Fig. 2.11, are defined by the above
equation where (hkl) = (210) and C takes on the values 1, 0 and -1 respectively.
For any of these planes, the triple XYZ represents a point on the plane. In
particular, on the plane passing through the origin (C = 0) this triple XYZ could
describe a lattice line - the line connecting the point XYZ to the origin 000. In
this case, we would replace XYZ by uvw giving the relationship:

hu+kv Iw=O.

For reasons which will appear later this relationship is called the zonal equation.

Applications of the Zonal Equation

a) Two lattice lines [UtVtWt] and [U2V2W2] will describe a lattice plane (hkl)
(cf.Fig. 2.13), whose indices may be determined from the double application of
the zonal equation:

hUt + kVt + IWt =0

hU2+kv2+lw2=0.

The solution of these two simultaneous equations for hkl may be expressed in
two ways as the ratio of determinants:

h:k:l= IVtWt I: IWIUI I: IUtVtl
V2W2 W2U2 U2V2

(1)

(2)

The lattice plane symbols (hkl) and (fikl), however, describe the same set
parallel planes.

h: k: I= (Vt W2 - V2Wt): (Wt U2 - W2Ut): (UtV2 - U2V,).
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Ic'

Fig. 2.14. The lattice lines [101] and [121] lie in the lattice plane indicated by the dashed lines.
Since, however, that plane passes through the origin, it is necessary to consider an alternative
origin such as N' in order to assign its indices (111)

The following form is particularly convenient:

Ul VI WI Ul VI WI

~~~
U2 v2 W2 U2 V2 W2

(h k 1)

EXAMPLE. What is the set of lattice planes common to the lines [101] and
[12I]?

~IO!~OI!
~ 2 1 1 2 ~

2 2 2 ---. (Ill)

This result can also be obtained geometrically, as in Fig. 2.14. The lattice lines
[101] and [121] (_. - . - .) lie in the lattice plane (- - -). Other lines lying in
the plane are also shown (_. - . - .) in order to make it more obvious. The
indicated lattice plane cannot be indexed, as it passes through the origin. The
choice of an alternative origin N' makes it possible to index it:
mlnlp=11111---'(1ll).

If the determinant is set up in the alternative manner:

LI ~ i i ~ U
2 2 2 ---.(IIl).[seeEq.(2)]

(l11) and (111) belong to the same set of parallel lattice planes; in the
description ofcrystal faces (Chap. 4) the symbols (hkl) and (flkl) are taken to
represent a crystalface and its parallel opposite.
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[uvw]

------------------,
\
\
\
\

[u vwI

'--------------i'--....> lhzkzlzl

b) Two lattice planes (h,k,I,) and (h2k212) intersect in the lattice line [uvw] (see
Fig. 2.15), which can be identified by the solution of the equations:

h,u+k,v+l,w=O

h2u+k2v+hw=O.

Proceeding in the same method as above leads to the required lattice line [uvw]:

k, I, h, k,

~~~
k2 12 h2 k2

[u v w]

Note that, as in (aj, two solutions are possible: [uvw] and [uvw]. In this case,
these represent the opposite directions of the same line.

EXAMPLE. Which lattice line is common to the lattice planes (101) and (Il2)?

I 1 2 I 1 2
1 0 1 1 0 1

[l 3 I]

If the values of (hkl) are interchanged, the result will be [131].

EXERCISES

Exercise 2.1. Make a copy on tracing paper of the lattice points outlining a single unit
cell in Fig. 2.5. Lay your tracing on top of a unit cell in the original drawing and satisfy
yourself that you can reach any other cell by suitable lattice translations.

Exercise 2.2.
a) Examine the lattice in Fig. 2.16, and give the coordinates ofthe points P" P2, P3 and
P4, the values of [uvw] for the lattice lines that are drawn in.

b) On the same diagram, draw in the lines [211], [120] and [212].
c) Determine the lattice planes to which the lines [131] and [111] belong.
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Fig. 2.16

Exercise 2.3. Figure 2.17 is the projection of a lattice along the c-axis onto the
a, b-plane. The dark lines labelled I and II are the traces ofplanes that are parallel to the
c-axls.
a) Index planes I and II.
b) Calculate [uvwJ for the line common to the two planes.
c) Draw the traces of the planes (320) and (120) on the projection.

b

Fig. 2.17

Exercise 2.4. Give (hkl) for a few planes containing the line [211], and give [uvwJ for a
few lines lying in the plane (121).

Exercise 2.5. What condition must be fulfilled to make (a) [100J perpendicular to (100),
(b) [110J perpendicular to (110) and (c) [111J perpendicular to (lll)?

Exercise 2.6. What are the relationships between (110) and (lIO); (211) and (2H); [110]
and [HO]; [211] and [2HJ?
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3 Crystal Structure

In order to progress from a lattice to a crystal, the points of the lattice must
be occupied by atoms, ions or molecules. Because the points are all ident
ical, the collections of objects occupying them must also be equal. In
general, crystals are not built up so simply as the crystal of a-polonium in
Fig.2.1!
Let us consider the construction of a crystal by means of a hypothetical

example. Figure 3.1a shows a lattice with a rectangular unit cell projected on the
a, b-plane. We now place the molecule ABC in the unit cell of the lattice
in such a way that A lies at the origin and Band C within the chosen cell
(Fig. 3.1b). The position ofBor C with respect to the origin may be described by
a vector r in terms of the lattice translations ii, b, and c:

r = xii + yb +zc (see Fig. 3.3).

The coordinates are yet another triple: x,y,z, where Os;x,y,z<1 for all
positions within the unit cell. In our example, the atoms have the following
coordinates:

A: 0,0,0

This arrangement of atoms within a unit cell is called the basis. Lattice
translations reproduce the atoms throughout the entire lattice (Fig. 3.1c), or:

lattice + basis = crystal structure.

It follows that not only the A-atoms but also the B- and C-atoms lie on the
points of congruent lattices, which differ from one another by the amount
indicated in the basis (see Fig. 3.2). Every atom in a crystal structure is repeated
throughout the crystal by the same lattice translations.
Thus, the following simple definition of a crystal is possible.

Definition

Crystals are solid chemical substances with a three-dimensionalperiodic array
ofatoms, ions or molecules. This array is called a crystal structure.
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Fig. 3.1 a-c. Interrelationship of the lattice (a), the basis or the arrangement of atoms in the
unit cell (b) and the crystal structure (c), all shown as a projection on the a, b-plane

Fig. 3.2. All atoms of the crystal
structure shown in Fig. 3.1 lie on
the points of congruent lattices
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Fig. 3.3. Description of a point in a unit cell by
the coordinate-triple x, y, z defining the vector
r=xa +yb +zc

Ie

-b G
_b

0 12

I
c) a

Fig. 3.4a-c. The CsI structure shown in a perspective drawing taking account of the relative
sizes of the ions (a), with ions reduced to their centres of gravitiy (b) and as a parallel
projection on (001) (c)

An example of a simple crystal structure is caesium iodide. The unit cell is a
cube (ao=bo=co=4.57 A., a=f3=y=900)'. The basis is 1-: 0,0,0; Cs+: t~J In
Figure 3.4a, a unit cell is shown as a perspective picture, with the relative sizes of
the ions indicated. For more complex structures, this method of illustration is
less useful, as it prevents the positions of atoms from being clearly seen.
Consequently, it is more usual merely to indicate the centres of gravity of the
atoms, as in Fig. 3.4b. Figure 3.4c shows the same structure represented as a
parallel projection on one cube face.
An important quantity for any structure is Z, the number ofchemicalformula

units per unit cell. For CsI, Z=l as there are only one Cs+ ion and one
1- ion per cell. Using only structural data, it is thus possible to calculate the
density of CsI, since

I The Angstrom unit (A): 1 A =10-8 cm =0.1 nm. If a row of spheres with a radius of 1A is
made. these will be 50000000 of them per centimetre!

f----l0A~

IACf:XXX)- 50 000 000 - Cf:XXX)
-'-"-I f-
f-------Icm------~



Fig. 3.5. The description of lines and planes
in a unit cell by means of coordinates x, y, Z
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where m is the mass of the atoms in the unit cell and V is the volume of the cell.
The mass of one chemical formula is M/NA , where M is the molar mass and NA

is the Avogadro number, so

Z'M
m=-- and

NA

Thus, taking NA as 6.023xlO-23 mol- l , for CsI, where M=259.81g mol-I

In a structure determination, this operation is carried out in reverse: from the
measured density, the number of formula unit per cell is estimated.
Using the values (hkl) and [uvw] we have so far only described the

orientations of sets of planes and lines. Consideration of the contents of a unit
cell makes it necessary to describe specific planes and lines in the cell. Use
of the coordinates x, y, zmakes this possible. For example, the coordinates x, y, ~
identify all points in the plane parallel to a and 6 which cuts c at ~.

Figure 3.5 shows the planes x, y, ~ and ~,y, z. The line of intersection may easily
be seen to be described by the coordinates ~,y,~.
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EXERCISES

Exercise 3.1. Cuprite, an oxide of copper, has the

lattice: ao = bo= Co = 4.27 A, a = fJ = y= 90° and the

basis: Cu: i, i, i;
0: 0,0,0;

3 3 I.
4> 4> 4'

I I I
2' 2' 2'

a) Draw a projection of the structure on x,y,O (the a,b-piane) and a perspective
representation of the structure.

b) What is the chemical formula of this compoJlnd? What is Z (the number offormula
units per unit cell)?

c) Calculate the shortest Cu-O distance.
d) What is the density of cuprite?

Exercise 3.2. The cell dimensions for a crystal of AIB2 were determined to be
ao=bo=3.00A, co=3.24A, a=jJ=90°, y=120°. There is an AI-atom at 0,0,0, and
B-atoms at ~,~, ~ and ~,~,~.

a) Draw a projection of four unit cells of this structure on (001).

b) Calculate the shortest AI-B distance.
c) Calculate the density of AIB2•

Exercise 3.3. In the accompanying drawing of the unit cell of a lattice, give the
coordinates of the points occupied by small circles, which, as we will later learn,
represent inversion centres (Chap. 5.3).

c

b
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Exercise 3.4. Draw the unit cell of a lattice and give the coordinates which describe its
"edges".

Exercise 3.5. For the same unit cell, give the coordinates which describe its "faces".

Exercise 3.6. Give the coordinates for the planes and lines drawn in the unit cell shown
below.

,,"
/"

"",,/"
f----
I
I
I
I
I
I
I



4 Morphology

By the term "morphology", we refer to the set of faces and edges which enclose a
crystal.

4.1 Relationship Between Crystal Structure and Morphology

The abundance of characteristic faces and, at least in ideal circumstances, the
regular geometric forms displayed externally by crystals result from the fact that
internally, crystals are built upon a crystal structure. What is, then, the rela
tionship between the crystal structure (the internal structure) and morphology
(the external surfaces)? Figure 4.1 shows the crystal structure and the mor
phology of the mineral galena (PbS). The faces of a crystal are parallel to sets of
lattice planes occupied by atoms, while the edges are parallel to lattice lines
occupied by atoms. In Fig. 4.1a, these atoms are represented by points. A lattice
plane occupied by atoms is not actually flat. This may be seen for the lattice
plane (100), (010) or (001) in Fig. 4.1c when the size of the spherical atoms is
taken into account, and is even more marked for crystals of molecular com-

c

Fig. 4.1 a, b. Correspondence between crystal
structure (a) and morphology (b) in galena
(PbS). In a, the atoms are reduced to their
centres of gravity (c) shows the atoms
occupying the (100), (010) or (001) face.
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pounds. Atomic radii are very small - of the order of I A- so crystal faces
appear smooth and flat to the eye. A crystal face contains a two-dimensionally
periodic array of atoms.
The relationship between crystal structure and morphology may be summa

rised thus:

a) Every crystalface lies parallel to a set oflattice planes; parallel crystalfaces
correspond to the same set ofplanes.

b) Every crystal edge is parallel to a set of lattice lines.

The reverse conclusions must, however, certainly not be drawn, since a
crystal will have a very large number of lattice planes and lines, and generally
only a few edges and faces.
Furthermore, it should be noted that the shapes in Fig. 4.1 have been drawn

to vastly different scales. Suppose the edge of the crystal marked with an arrow
is 6mm in length; then that edge corresponds to some 107 lattice translations,
since the lattice parameters of galena are all 5.94 A.
Since crystal faces lie parallel to lattice planes and crystal edges to lattice

lines, Miller indices (hkl) may be used to describe a crystal face, and [uvw] a
crystal edge. The morphology of the crystal gives no information about the size
of the unit cell, but can in principle give the ratio between one unit cell edge and
another. Normally, however, the lattice parameters are known, so the angles
between any pair of lattice planes can be calculated and compared with the
observed angles between two crystal faces.
The crystal of galena in Fig. 4.1 has been indexed, i.e. the faces have been

identified with (hkl). Thus, with the origin chosen suitably inside the crystal,
(100) cuts the a-axis and is parallel to band c; (110) is parallel to c and cuts a and
b at the same distance from the origin; (111) cuts a, band c all at the same
distance from the origin.

4.2 Fundamentals of Morphology

Morphology is the study of the external boundary of a crystal, built up ofcrystal
faces and edges. In morphology, the words "form", "habit" and "zone" have
special meanings.

a) FORM. The morphology of a crystal is the total collection of faces which
characterise a particular crystal. The morphology of the crystals shown in
Fig. 4.2 consists of the combination of a hexagonal prism and a "pinacoid"; a
pinacoid is a pair of parallel faces which in this case make up the ends of this
prism. The prism and the pinacoid are examples of a crystal form, which is
further discussed in Chapter 8. In the meantime, we will simply consider a
crystal form as a set of "equal" faces. It is thus possible to describe the
morphology as the set of forms of a crystal.
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+
~I I~bl c)

Fig. 4.2a-c. The three basic habits: a equant, b planar or tabular, c prismatic or acicular with
the relative rates of growth in different directions shown by arrows

Plane of the normals
to the faces Fig. 4.3. A zone is a set of crystal faces

with parallel lines of intersection. The
zone axis is perpendicular to the plane
of the normals to the intersecting
faces, and is thus parallel to their lines
of intersection (After [32])

b) HABIT. This term is used to describe the relative sizes of the faces of a
crystal. There are three fundamental types of habit: equant, planar or tabular,
and prismatic or acicular (needle-shaped). These habits are illustrated in Fig. 4.2
by the relative sizes of the hexagonal prism and the pinacoid.

c) ZONE. The crystals in Figs. 1.1-1.4 show several examples of three or more
crystals faces intersecting one another to form parallel edges. A set of crystal
faces whose lines of intersection are parallel is called a zone (Fig. 4.3). Faces
belonging to the same zone are called tautozonal. The direction parallel to the
lines of intersection is the zone axis. Starting from any point inside the crystal,
the normals to all the faces in a zone are coplanar, and the zone axis is normal to
this plane. Only two faces are required to define a zone.
The galena crystal in Fig. 4.1 b shows several zones. For example, the

face (100) belongs to the zones [(101)/101)] = [010], [(110)/(110)] = [001],
(111)/(lII) = [011] and [(111)/111)] = [011].
All intersecting faces of a crystal have a zonal relationship with one another.

This is evident from consideration of Fig. 4.1b.
The faces or the lattice planes (h), k), I,), (h2, k2, h), and (h3, h h), are

tautozonal if and only if
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hlkjl j
h2k2h = 0
h3k3h

i.e. hi k2h + kjhh3+ Ijh2k3 - h3k21( - k3hh( - hh2k j= O.
Do the planes (hkl) belong to the zone [uvw]? The answer depends on

whether or not the zonal equation hu +kv + Iw = 0 is fulfilled. For example, (112)
does lie in the zone [111] since 1· (-1) +(-1)'1 +2'1 = O.

4.3 Crystal Growth

It is easier to understand the morphology of a crystal if the formation and
growth of crystals is considered. Crystals grow from, among other things,
supersaturated solutions, supercooled melts and vapours. The formation of a
crystal may be considered in two steps.

1. NUCLEATION. This is the coming together of a few atoms to form a three
dimensional periodic array - the nucleus - which already shows faces, although
it is only a few unit cells in size (see Fig.4.4a).

Fig.4.4a-d. Nucleation and growth of the nucleus to a macrocrystal illustrated in two
dimensions. a Nucleus, e.g. in a melt. b Atoms adhere to the nucleus. c Growth of a new layer
on the faces ofa nucleus. dThe formation ofa macrocrystal by the addition of further layers of
atoms
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Fig. 4.5. Quartz crystal showing its stepwise growth

2. GROWTH OF A NUCLEUS TO A CRYSTAL. As the nucleus attracts
further atoms, they take up positions on its faces in accordance with its three
dimensional periodicity. In this way, new lattice planes are formed
(Fig.4.4b-d). Note that the illustration is two-dimensional only. The growth
of the nucleus, and then of the crystal, is characterised by a parallel
displacement of its faces. The rate of this displacement is called the rate of
crystal growth, and is a characteristic, anisotropic property of a crystal.
Figure 4.5 shows a few stages in the growth of a quartz crystal.
The nucleus shown in Fig. 4.6 is bounded by two different types offaces, and

the rates of growth of these faces, VI and V2 are thus, in principle, distinguish
able. Figure 4.6a illustrates the case in which these rates of growth are similar,
while in Fig. 4.6b, they are very different. A consequence of this difference is
that the faces corresponding to the slow growth rate become steadily larger,
while those corresponding to rapid growth disappear entirely. In addition, it
should also be noted that crystal growth rates are affected by temperature,
pressure, and degree ofsaturation of the solution. The actual crystal faces which
eventually enclose the crystal depend on the ratios of the growth rates of the
various faces, the slower-growing ones becoming more prominent than those
that grow more rapidly. Those faces which do eventually develop generally have
low Miller indices and are often densely populated with atoms.
The three basic types of crystal habit may be understood in terms of the

relative growth rates of the prism and pinacoid faces, which are indicated in
Fig. 4.2 by arrows.
Figure 4.7 shows how crystals of different shapes can result from the same

nucleus. Crystal I is regular in shape, while crystals II and III have become very
much distorted as a result of external influences on the growth rate. None the
less, the angles between the normals to the crystal faces remain constant, since
the growing faces have simply been displaced along their normals. A parallel
displacement of the faces cannot change interfacial angles. This observation
applies equally to all growing faces of a crystal.
This observation is the basis of the law ofconstancy of the angle: in different

specimens of the same crystal, the angles between corresponding faces will be
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...............

a)

Fig. 4.6 a, b. Crystal growth showing
a small (a) and a large (b) difference

b) in growth rate with direction

Fig. 4.7. Despite difference in rates of growth of
different parts of a crystal, the angles between
corresponding faces remain equal

equal. This law, which is valid at constant temperature and pressure, was first
formulated by N. Steno in 1669, without any knowledge of crystal lattices!
The relative positions of the normals to the faces of the crystals in Fig. 4.7

remain constant. It is possible, by measurement of the angles between faces,
to determine these relative positions and thus eliminate the distortion.
So far, our discussion has assumed the existence of a single crystal nucleus,

or only a few, which can grow separately into single crystals like those shown in
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Fig. 4.8 a-c. Development ofa crystal aggregate. a Formation of several nuclei, which initially
can grow independently. b Collision of growing crystallites leads to interference and
irregularity in growth of the polyhedra. Eventually, the polyhedral shape of the crystallites is
entirely lost. c The single crystal domains of the aggregate with their grain boundaries

Fig. 1.1. The term single crystal, as it is used here, implies one which has grown
as such. It will normally display characteristic faces, but those grown in the
laboratory often do not. If many nuclei are formed simultaneously, they may
grow into one another in a random fashion, as illustrated in Fig. 4.8. This
disturbance will prevent the development of crystal faces and forms. Instead, a
crystal aggregate or polycrystal results. Figure 4.8 shows an example of single
phases in the development of such an aggregate. The individual crystallites ofan
aggregate are themselves single crystals.

4.4 The Stereographic Projection

Since crystals are three-dimensional objects, it is necessary to use projections in
order to work with them on a flat surface. One such projection is the parallel
projection onto a plane, which was illustrated in Fig. 3.4c for representing a
crystal structure.
For morphological studies, the stereographic projection has proved to be

particularly useful. The principle of this projection is shown in Fig. 4.9. A
crystal, in this case galena (PbS), is placed at the centre ofa sphere. The normals
to each face, if drawn from the centre of the sphere, will then cut the surface of
the sphere in the indicated points, the poles ofthe faces. The angle between two
poles is taken to mean the angle between the normals n, not the dihedral angle f
between the faces. These two angles are simply related as: angle of normals
n = 1800 - dihedral angle f (Fig. 4.12). The poles are not randomly distributed
over the surface of the sphere. In general they will lie on a few great circles, i.e.
circles whose radius is that of the sphere. Those faces whose poles lie on a single
great circle will belong to a single zone. The zone axis will lie perpendicular to
the plane of the great circle. Considering the sphere as a terrestrial globe, a line
from each of the poles in the northern hemisphere is projected to the south pole,
and its intersection with the plane of the equator is marked with a point. or a
cross + (see Fig. 4.10). Lines from poles in the southern hemisphere are similarly
projected to the north pole, and their intersections with the equatorial plane are
marked with an open circle O. For those poles lying exactly on the equator, a
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Fig. 4.9 5
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Fig. 4.10 5
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Fig. 4.11

Fig. 4.9. Crystal of galena at the centre of a sphere. The normals to the faces of the crystal cut
the sphere at their poles, which lie on great circles

Fig. 4.10. In a stereographic projection, lines are drawn between the poles of the faces in the
northern hemisphere and the south pole, and the intersection of these lines with the equatorial
plane is recorded

Fig. 4.11. Stereographic projection of the crystal in Fig. 4.9; see also Fig.4.1b
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Fig. 4.12. Relationship between the angle
of intersection of the normals (n) and the
dihedral angle (f) between the faces F I and
Fl' The poles of the faces lie on a great circle,
the zone circle

point or cross is used. The mathematical relationships of the stereographic
projection are shown in Fig. 4.33.
Figure 4.11 shows the stereogram of the crystal in Fig. 4.9, only those planes

belonging to the northern hemisphere being shown. Poles belonging to a single
zone lie on the projections of the relevant great circles. The points resulting from
the projections of each face are indexed.
Figure 4.13a shows the stereographic projection of a tetragonal prism and a

pinacoid, while Fig. 4.13b gives that of a tetragonal pyramid and a pedion. A

+------{e.}------.

a) b)

Fig.4.13a,b. Stereographic projection of a tetragonal prism and a pinacoid (a) and of a
tetragonal pyramid and a pedion (b). The angular coordinates q> and {J are given for one of the
pyramid faces
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pedion is the name given to a crystal form which consists ofa single face. In both
cases, the altitude of the prism or pyramid is set in the N-S direction. Both the
tetragonal prism and the tetragonal pyramid have square bases and square
cross-sections. The faces of the prism are perpendicular to the plane of the
stereographic projection, so their poles lie on the circumference of the circle of
that projection. The faces of the pyramid make equal angles with the
equatorial plane, so the poles of these faces are at equal distances from the
centre of the plane of projection.
The representation of the stereographic projection in Fig. 4.9-11 is only

intended to explain the principles of the method. In practice, the projection is
based on the values of measured angles.
The stereographic projection is also very useful for the description of the

point groups. In this case, there is a departure from the normal convention of
plotting the stereogram. For rotation axes and rotoinversion axes, the symbols
of these axes are used to indicate their intersection with the surface of the sphere
of projection. Similarly, for mirror planes, the corresponding great circle of
intersection is indicated (for an example, see Fig.6.8e).

4.5 The Reflecting Goniometer

The angles between crystal faces may conveniently be measured with a reflecting
goniometer. The crystal is mounted on a goniometer table, which is essentially a
rotating plate with a graduated angle scale (see Fig. 4.14). The crystal mount (or
goniometer head) is a construction of arcs and slides which makes it possible to
bring a zone axis of the crystal into coincidence with the rotation axis of the
goniometer table. The crystal is then rotated until the light beam from a lamp
mounted horizontally is reflected from a crystal face onto the cross-hairs of a
telescope, also mounted horizontally. The reading on the scale of the table then
fixes the position of that crystal face. The table is then rotated until another face
comes into the reflecting position, and the angular reading for this position is

Lamp

Goniometer table
with crystal

Telescope
Fig. 4.14. Light path for a one-circle
reflecting goniometer
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TeJescop

Lamp

Fig. 4.15. Two-circle reflection goniometer
with azimuthal circle cf> and pole distance
circle p (After [22])

taken. The difference between the two readings is the angle between the normals
to the crystal faces. Continuing to rotate the table through 360 0 will allow the
angles corresponding to the selected zone to be measured. This is the principle
of the one-circle reflection goniometer. For the measurement of the angles
corresponding to other zones on a one-circle reflecting goniometer, the crystal
must be remounted.
A two-circle reflection goniometer makes it possible to rotate and measure

the crystal about two mutually perpendicular axes (Fig. 4.15). In this way, all
possible faces can be brought into the reflecting position. From the position of
the two circles, the angular coordinates cP and (J may be measured. These
coordinates uniquely define the orientation of a crystal face, and the values can
be directly plotted on a stereographic projection.

4.6 The Wulff Net

The Wulff net is a device to enable measured crystal angles to be plotted readily
as a stereographic projection. The Wulffnet is itselfthe stereographic projection
of the grid of a conventional globe orientated so that the N'-S' direction lies in
the plane of projection (Fig. 4.16). The N-S direction of the stereographic

a)

N'

W' I- +++++H-+'T+++l

b)

Fig. 4.16a, b. The stereographic projection of the grid net of a globe (N'-S' 1- N-S) produces
the Wulff net; the positions of the angular coordinates cf> (the azimuthal angle) and p (the pole
distance) are indicated. The pole P has coordinates cf> = 90° and p = 30°
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projection (Fig. 4.9) is thus perpendicular to the N'-S' direction both of the grid
net of the globe and of the Wulff net (Fig. 4.16). Fig. 4.16a shows the grid ofonly
one hemisphere. The equator and all meridians of the globe are great circles,
while all of the parallels except the equator are small circles. With the help of the
Wulff net, the angle between any two poles on the surface of the sphere can now
be plotted directly on the stereographic projection. The angle measured
between any two crystal faces is the angle between their normals or the angle
between their poles. The two normals define the plane of a great circle (Fig. 4.9).
The arc of the great circle between the two normals is the measured angular
value. It is thus crucial that only arcs of great circles are used when angles are
plotted on or estimated from a stereographic projection!
We shall now demonstrate the use of the Wulff net to plot the two angles

measured with a two-circle goniometer (the azimuthal angle ¢ and the pole
distance p) on a stereographic projection. The circle of the plane ofprojection is
taken as the azimuth ¢, so possible ¢-values run from 0-360°. The front face of
the tetragonal pyramid in Fig.4.13b thus has a ¢-value of 90°. The p-axis
is perpendicular to the ¢-axis. The faces of the tetragonal pyramid have
¢-coordinates of 0°, 90°, 180° and 270° respectively and all faces have the same
p-value.
A similar consideration of a tetragonal dipyramid, e.g. no. 6 in Exercise 4.4

results in the following angular coordinates (¢, p) for the eight faces: 0°, p;
90°, p; 180°, p; 270°, pandO°, -p; 90°, -p; 180°, -p; 270°, -p. Note that faces
in the northern hemisphere are assigned values 0:::; p:::; 90°, while those in the
southern hemisphere have -90°:::; p:::; 0° where both 90 and -90° represent
positions on the equator. For an example, see the table of ¢, p-values for the
galena crystal in Exercise 4.13.
For practice, a Wulff net with a diameter of 20 cm and a 2°-grid is bound

inside the rear cover. For best results, this should be carefully removed and
pasted on a card with a minimum thickness of 1mm. Drawings are then made
on tracing paper secured by a pin at the centre of the net so as to be readily
rotated.
The stereographic projection has two important properties:

I) The projections of two vectors onto the sphere intersect with the same angle
as do the vectors themselves. The parallels and the meridians of the global net
are mutually perpendicular. Since the Wulff net is the projection of these circles,
the corresponding great and small circles of the Wulff net are perpendicular to
one another, cf. Fig. 4.16.

2) All circles, great and small, on the sphere will project as circles on the
equatorial plane (Fig. 4.17). Exceptionally, the meridians, which are parallel to
the N-S-direction, will project as straight lines. This property has several
consequences. For example, consider a circle with a radius of 30° on the surface
ofthe sphere. Select a general point on the Wulff net, place the pole M there, and
construct the locus of all points that are 30° from it. By rotating the tracing
paper, the poles lying 30° from M on each of the great circles will be found
(Fig. 4.18). These poles will indeed be found to lie on the circumference of a



5

4.6 The Wulff Net 39

Fig. 4.17. A circle on the surface
of a sphere remains a circle in its
stereographic projection on the
equatorial plane

Fig. 4.18. Detail of the equatorial
plane of a stereographic projec
tion. Points 30° from a pole M
are shown. These poles lie on the
circumference of a circle, whose
centre M' may be found by
bisecting the diameter K1K2

circle. However, M is not at the center of this circle. The actual center M' may be
found by bisecting the diameter K, K2.

The following examples illustrate the principles of the stereographic projection
and the use of the Wulff net.

I) Given the two poles I and 2, determine the angle between them: Place the
tracing paper over the Wulff net and rotate it until both poles lie on a great
circle, the zone circle (cf. Fig. 4.19a). The value of the angle can then be read
from the great circle. If one of the poles lies in the southern hemisphere, it must
be treated appropriately (cf. Fig.4.19b).

2) Two faces define a zone. Their line of intersection is the zone axis, which is
normal to the plane defined by the normals to the faces. (cf. Fig. 4.3). The zone
circle is perpendicular to the pole of the zone axis.

a) Draw the pole corresponding to a zone circle: Rotate the zone circle onto a
great circle of the Wulff net; the zone pole will then be 90° from the zone circle
along the equator (cf. Fig. 4.20).

b) Draw the zone circle corresponding to a given zone pole: Rotate the pole
onto the equator of the Wulff net. The zone circle is then the meridian 90° away
from the pole (cf. fig. 4.20).
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Fig. 4.19a, b. The angle between two poles may be read from the great circle on which they
both lie

Q2
" \EI \

-------~,L--tJ 1
I

I
I

I
I

Fig. 4.20 Fig. 4.21

Fig. 4.20. The zone circle and the zone pole (E:J) are mutually perpendicular

Fig. 4.21. The angle e between the planes of two zone-circles is the angle between the poles of
the corresponding zones (E:J)

3) The angle e between the planes of two zone-circles is the angle between the
poles of the corresponding zones (cf. Fig. 4.21).

4) Find the pole 3, which is separated from pole 1by an angle x and from pole 2
by an angle OJ: This will lie at the intersections of the two circles with the given
radii. Note that the centers and the radii of the circles must first be specified. The
center of the x circle is the midpoint of the diameter K, K2 (cf. Fig. 4.18); the
center of the w-circle is found by constructing the perpendicular bisector of a
chord. Note that there are two solutions to this problem (cf. Fig. 4.22).

5) Change the plane ofprojection ofa stereographic projection: An octahedron
is a crystal form consisting of eight equilateral triangular faces (Fig.4.23a).
Fig. 4.23 c gives the stereographic projection of this octahedron. The poles of the
faces are marked with a cross; those lying in the southern hemisphere are not
shown. The stereogram is now to be altered, so that the pole of one of the
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Fig. 4.22. Construction of the two poles 3, which
make an angle x with pole 1, and an angle OJ

with pole 2

N'

+-----,

S'

• + 54°44' • •I

_-15404';'//-- I~·,
/ ,

/ I "

c)b)

, /, /, /, /

.....----+-4,,4

a)

Fig. 4.23a, b, c. The octahedron in (a) is rotated into the position in (b). This rotation is shown
in the stereogram in (c). The crosses in the stereogram correspond to the faces in (a), the points
to the faces in (b). The poles move along small circles

octahedral faces is moved to the centre of the plane of projection. This may be
done by rotating one of the poles onto the equatorial plane of the Wulff net. The
pole will lie on the equator at 54°44' from its center. Rotating the pole about the
N'-S' axis of the net by 54°44' then brings it to the centre of the projection. The
other poles move along their own small circles by an angle of 54°44'. The new
positions of the poles of the faces, which are shown by points in Fig. 4.23c, cor
respond to the orientation of the octahedron in Fig. 4.23 b, which sits on a face.

4.7 Indexing of aCrystal

Today, it is rarely necessary to index a crystal whose lattice constants are
unknown. In general, lattice constants give no indication of which faces of a
crystal will actually be prominent, but it is possible to produce a stereogram
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Fig. 4.24. Stereogram of the poles of a few of
the faces of a topaz crystal allowed by the
lattice which have low indices

showing all the poles representing faces that are possible for that lattice. Since
crystals usually develop faces with low Miller indices, the number ofpoles which
must be drawn is small.
We shall now draw the stereogram of the poles of a crystal of topaz. The

lattice parameters are ao =4.65, bo=8.80, Co =8.40 A, a=fJ =y=90°. The
six faces (100), (100), (010), (010), (001), (001) which are normal to the
crystallographic axes can be entered immediately into the stereogram
(Fig. 4.24). These faces lie on the following zone-circles: [100] '= [(001)/(010)],
[010] '= [(100)/(001)], [001] '= [(100)/(010)]. The zone axis is normal to the plane
of the zone-circle, and is parallel to the set of lattice lines which are common to
the lattice planes making up the zone.
Figure 4.25 shows a (010)-section through the crystal lattice with the

traces of the planes (100), (101), and (001), which belong to the [01O]-zone. The

(001)
•

(001)

•

(100)

•

(010)

• •

Fig. 4.25

•

Fig. 4.26

•

Fig. 4.25. Section parallel to (010) through the lattice of a topaz crystal, showing the traces of
the planes (001), (101) and (100), all ofwhich belong to the zone [01O].1J is the angle between the
normals to (001) and (101)

Fig. 4.26. Section parallel to (100) through the lattice of a topaz crystal, showing the traces of
the planes (001), (011) and (010), all of which belong to the zone [100]. IJ' is the angle between
the normals to (001) and (011)
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angle 6 is the angle between the normals to (001) and (101). Since

tan 6=~, 6= 61.03 0. Similarly, Fig. 4.26, showing the (100)-section of the
ao

same lattice, gives the angle between the normals to (001) and (011). In this

case, tan6'=~, and 6'=43.67°. With the help of the Wulff net, the angles
bo

6 and 6' can be placed on the great circles corresponding to the zones [010] and
[100] respectively, giving the positions of the poles of the planes (101) and (011).
Since the planes (101), (1OI) and (10I) have the same inclination to the
crystallographic axes as (101), while (011), (011) and (OH) have that of (011), they
may likewise be entered on the stereogram (Fig. 4.24).
The great circles for the zones [(100)/(011)] and [(101)/(010)] may now be

drawn in, and the two intersections of these circles will occur at the poles with
Miller indices (111) and (HI). These traces of zone-circles lying in the southern
hemisphere are given as dashed lines. 1
The drawing in of the circles for further zones gives the poles for further

faces. From these, the poles can be located for all faces with the same axial
inclination as (111), viz. (111), (III), (HI), (111), (III), (lH) and (HI). For further
faces, the zonal equation is used. Eventually, a stereogram, like that
in Fig.4.27 may be produced showing the poles for all faces (hkl) with
2~h, k~2 and 0~1~2.
An actual topaz crystal is shown in Fig. 4.28. Once such a crystal has been

indexed with the aid of a stereogram, it is only necessary to measure a few angles
on the actual crystal in order to bring the angles of the crystal into
correspondence with the angles in the stereogram.
The indexing of the stereogram in Fig. 4.27 may be accomplished very easily

using the complication rule, formulated by V. Goldschmidt. This rule allows all
of the faces of a zone to be indexed by addition or subtraction of the indices of
two standard faces. The application of this rule is shown in Fig. 4.29. Let the
starting faces be (100) and (010). Addition of (100) + (010) gives (110);
(010) + (110) gives (120); (110) + (120) gives (230), etc. It should be clear that
subtraction will in the end lead to similar results. All of the calculated planes
belong to the zone [001].

In Fig. 4.30, two zone circles are shown, each having two indexed poles on it.
The complication rule may be used to index the pole at the point of intersection.
In zone 1, (011) + (110) gives (101), while in zone 2, (010) + (211) gives (201). These
poles lie between their generating poles. The problem is solved when further

J Application of the zonal equation leads to

LI 0 0 1 0 lJo 110 1 1

[0 I 1]

U1 0 0 1
1 0 1 1 0

[1 0 1]
lJ UI10I ll1 and 1 0 I 1 0 I

(1 1 1)

If the values of [uvw] are interchanged, the result is (III). Two zone circles intersect in two
poles. In morphology, (hkl) and (hkl) represent two parallel faces, which are related to only
one set of lattice planes, which may be designated as (hkl) or (hkl).
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100

010
-+::..--_--~

Fig. 4.27. Stereogram of the poles of those faces of a topaz crystal allowed by the lattice which
have indices (2~h,k~2; 0~1~2)

[001]

Q

b

Fig. 4.28. Topaz crystal. (After [37]) Fig. 4.29. Complication of the faces (100) and (010)

addition, or to be more precise subtraction, leads to a common point. In this
case, from zone 1 : (110) + (101) gives (2I1); while from zone 2, (201) + (010) gives
(211), so the pole corresponding to the intersection has been indexed. This
example is taken from Fig. 4.27. Note the relative positions of (101) and (201).
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Fig. 4.30. Indexing of the point of intersection of
two zone circles by complication of the (hkl) for
faces lying in these zones.

Table4.1. </> and {J angles for the topaz crystal in Fig. 4.28.

Face ffJ {J (hkl)

1, l' - to° 001
2,2' 0° ±43°39' 011
3,3' 0° ±62°20' 021
4 43°25' 90° 120
5,5' 62°08' ±45°35' 112
6,6' 62°08' ±63°54' III
7 62°08' 90° 110
8,8' 90° ±61 °0' 101

A corollary of the complication rule is that all the faces of a crystal may be
indexed by complication of the four simple planes (100), (010), (001) and (111).
Table 4.1 gives the </> and {J values for a crystal which has been measured on a

two-circle reflection goniometer. Fig.4.31 gives the corresponding stereo
graphic projection, in which the poles in the other octants may be inferred. The

I
a

Fig. 4.31. Indexing of the
topaz crystal in Fig. 4.28
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faces are to be indexed without reference to lattice constants. The crystallo
graphic axes have been chosen to be parallel to the main zone axes of the
stereographic projection. The faces normal to a, band c can then be indexed
directly. Since only (001) and (001) actually appear in the crystal, the positions of
(100), (100), (010) and (010) have been added as auxiliary poles, and represented
by open circles. One plane must then be chosen as the unit face (111), which cuts
each crystallographic axes a, b, c, at unit length. These unit lengths give the
relative spacings at which the unit face cuts the crystallographic axes, a, b, c.
They are calculated below. The only faces that can be considered for this
purpose are 5 and 6, as only they cut a, band c all in a positive sense. It is
reasonable to choose face 6 as the unit face, as the zone circles including this
pole contain more poles than those cutting 5. It is now possible to index faces
making equal intercepts on a, band c, viz. (111), (Ill), (Ill) and (Ill), together
with those having poles in the southern hemisphere, (111), (Ill), (III) and (III).
These last have not been included in the stereogram, nor have any others in the
southern hemisphere, i.e. those with negative p. Using the complication rule, it
is now possible to index the following faces and their equivalents:

(101) = (100) + (001) = (111) + (Ill),
(011) = (010) + (001) = (111) + (Ill),
(110) = (100) + (010) = (111) + (111).

The remaining faces are then:

5: (111) + (001) = (101) + (011) = (112)
3: (010) + (011) = (111) + (110) = (021)
4: (110) + (010) = (111) - (011) = (120)

The crystal is now fully indexed, and is, in fact, the topaz crystal shown in
Fig. 4.28.
The morphological axial ratios a: b: c, normally given as ~ : 1 :~, are

b b
characteristic of a crystal. The values for topaz can now be calculated:
The (110) face cuts a and b at unit length (Fig. 4.32). The angle 15" is the angle
between (110) and (100), and from table 4.1 (7), it is 90° - 62°08' = 27°52'. Thus

~= tan (27°52')=0.529. From Fig. 4.26, 15' is the angle between (011) and
b

001 OIl
b8'

\ 8"\
\

8"\
\

\
\

\
\

\
\
\ ,

100

a

Fig. 4.32. The all-positive oc
tant of the topaz stereogram
from Fig. 4.31 with the con
structed trace of the (110) face
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c
(001), and from Tab. 4.1 (2), J'=43°39'. Hence, - = tan(43°39')=0.954, and

b
the normalized morphological axial ratios may be given as ~: 1:~ =

b b
0.529: 1: 0.954. The numbers 0.529, 1 and 0.954 give the relative spacings (unit
lengths) at which the unit face cuts the crystallographic axes a, band c.
Today, it is usual to formulate the structural axial ratio in terms of the lattice

constants; for topaz~ : 1 :~ = 0.528 : 1 : 0.955 (cf. p. 42).
bo bo

4.8 The Gnomonic and Orthographic Projections

In addition to the stereographic projection, mention should be made of the
gnomonic and orthographic projections.

a) The gnomonic projection:

As in the stereographic projection, the crystal is considered to lie at the center of
a sphere. The normals to the faces produce points PG on a plane of projection,
which is tangential to the sphere at the north pole (Fig. 4.33). The poles
corresponding to the faces of a zone lie in straight lines on the projection plane.
Fig. 4.34 shows a gnomonic projection of the galena crystal in Fig. 4.9. As p
approaches 90°, the distances N - PG approach infinity. The poles of those faces
with p = 90° are represented in the projection by arrows. The distance N - PG

is R. tanp.

b) The orthographic projection:

As in the stereographic projection, the crystal is again considered to lie at
the center of a sphere. In distinction to the stereographic projection, the

s
Fig. 4.33. The relationship of the stereo
graphic, gnomonic and orthographic
projections
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Fig. 4.34. Gnomonic projection of the galena
crystal in Fig. 4.9

Fig. 4.35. Orthographic projection of the
galena crystal in Fig. 4.9

poles in the northern hemisphere are projected onto the equatorial plane
along the N - S direction, and not toward the south pole (Fig. 4.33). Fig. 4.35
shows an orthographic projection of the galena crystal in Fig. 4.9. The
distance M - Po is R. sin (1. Compare Figs. 4.11 and 4.35. The orthographic
projection is widely used in the description of the symmetry of cubic space
groups (Fig. 9.15).
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EXERCISES

Exercise4.1. With the help of the pattern in Fig. 4.36, build a model of the galena
crystal shown in Figs. 4.1 band 4.9. Make a photocopy of the pattern, cut it out, and
lightly score all the remaining lines. Fold away from you along the lines and stick
sufficient neighbouring faces together with transparent tape to hold the model
together.

Exercise 4.2. Plot the poles of the faces of the following objects on a stereogram.

-- 1 --.... 2

t--~
/ \ e / "-
( \ ( \
\ ) \ /

" /cube ......... - ./ rectangular box ,-

CD
- 3 _-....." 4

/' "" 0 /' "-! \ ( )l J
\ / \ /

house: plan '-_/ house: elevation ....... - /

Exercise 4.3. Plot the directions corresponding to the following axial systems on a
stereogram.

/.--- ............. '"
/ '\
/ \

I \
I \
I I
\ /
\ /
\ /" ,/............_---'

1. Orthogonal axial system

(cubic, tetragonal,
orthorhombic)

c

/.--- ............. '"
/ '\
/ \

I \
I \
I I
\ /
\ /
\ /" ,/............_---'

2. Hexagona .nial system



50 4 Morphology

Fig. 4.36. Pattern for a model of a galena (PbS) crystal
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Exercise4.4. Photocopy and cut out the following patterns, which may be made into
models of (a) a rhombic dipyramid, (b) a tetragonal pyramid with a pedion and (c) a
hexagonal prism with a pinacoid (Fig. 4.37). With a little imagination, you can make
similar models of the crystals in the following diagram (p. 52 and 53).

c)

Fig. 4.37a-c. Pattern for models of a rhombic dipyramid (a), a tetragonal pyramid and
pedion (b) and a hexagonal prism and pinacoid (c)



52 4 Morphology

Plot the poles of the faces of the crystals you have made on a stereogram with the
orientation chosen such that the altitude ofeach crystal is perpendicular to the plane of
projection. The drawings below give the geometric shape of the base or of any section
normal to the altitude.

rhombic tetragonal

Prism 1
~.

~~ :------- ...... - ........ ...-- ........
/ " c----'----' /' '": I \ I \I \I I I

\ J \ /
\ / ~ -- 1--- "'.

\ /--_ .. c. __ •.
.........__/

"'L------" "'-_/
Pyramid 2 5

m
/--- .------"-

I
/ "-\ / \

\ I \I J 8 I /
\ / '. '" /

'-. /......_/ ...... _.-/

Dipyramid 3 6....--- ........ '" /-- .......

/ \ / \
i---'- ( I I \..---_.-

": --- -- I
\ / \ )
\, / '- I-_/ .........---.---,

Basal

Dplane <>or section
ofthe
polyhedron

Rhombus Square

Exercise 4.5. Which faces of the hexagonal prism and pinacoid and of the tetragonal
dipyramid belong to a single zone? Draw in the zone circle on the appropriate
stereogram in Exercise 4.4.
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hexagonal

Prism

Pyramid

Dipyramid
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Exercise 4.6. What is represented by the following stereograms?
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Exercise 4.7. In a stereographic projection, choose a pole at random and draw in points
30° away from it in all directions. What is the locus of the points produced?

Exercise 4.8. Construct a Wulff net using a ruler, a protractor and a compass. Make the
circles at intervals of 30°.

Exercise 4.9. Insert poles on a stereographic projection with the following Ij> and
p values: 1) 80°, 60°; 2) 160°,32°; 3) 130°,70°. Determine the angle between a) 1and 2;
b) 1 and 3; c) 2 and 3. Indicate the zone pole for the zones determined by a) 1 and 2;
b) 1 and 3; c) 2 and 3, and give the Ij> and p values for their positions.

Exercise 4.10. The poles for the faces with angular coordinates 40°, 50° and 140°,60°
lie on zone circle A, while the poles 80°, 70° and 190°,30° are on zone circle B. These
zone circles have two points of intersection. Determine the angular coordinates Ij>, p
for these points. How are these faces orientated relative to each other?

Exercise4.11. What is the relationship among the normals to the faces comprising a
zone? How are they related to the zone axis?

Exercise 4.12. In the cubic unit cell shown in Fig. 4.38 three different sorts of axes are
shown. Three axes (0) pass through the midpoints of opposite faces (x,!,~;~, y,!; and
!' ~,z). Four axes (L::,.) lie along the body diagonals. Six axes (0) pass through the mid
points of opposite edges. All of these axes intersect in the centre of the unit cell.

Fig. 4.38. Cubic unit cell showing the
axes through the midpoints of opposite
faces (0), along the body diagonals (L::,.),
and through the midpoints of opposite
edges (0). (After [6])

Draw the axes on a stereographic projection making use of the Wulff net. It is
convenient to place one of the axes (0) at the centre of the plane of projection. The
angles between the various axes may be taken from Fig. 4.39 and 4.40, which show
cross-sections through the centre of the cube.
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Fig. 4.39. Section through the centre of the cubic unit cell in Fig. 4.38 parallel to a cube
face q,y,z or x,~,z or x,y,~)

Fig. 4.40. Section x, x,z or x, 1-x,z through the cubic unit cell of Figure 4.38. The angle
o is 54.73°, half of the tetrahedral angle (the H-C-H angle in methane) of 109.46°

Exercise 4.13. The galena crystal in Fig. 4.41 (see also Fig. 4.1) was measured using a
reflection goniometer. The angular coordinates cf> and (! are given in the accompanying
table.
a) Draw the stereogram of the pole faces.
b) Compare this stereogram with that of the axes in the cube drawn in Exercise 4.12.

Face

1.1'
2,2'
3
4,4'
5
6,6'
7
8,8'
9
10,10'
11
12,12'
13
14,14'
15
16,16'
17

0°
0°
45°
45°
90°
90°
135°
135°
180°
180°
225°
225°
270°
270°
315°
315°

± 0°
±45°
90°
±54.73°
90°
±45°
90°
±54.73°
90°
±45°
90°
±54.73°
90°
±45°
90°
±54.73°
90°

Fig. 4.41. Crystal of galena

Exercise 4.14. Draw a stereogram showing the pole faces of a crystal of rutile.The
lattice parameters are given in Table 9.5. Compare your stereogram with the crystal
given in Table 8.11.15.
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Exercise 4.15. Draw the stereogram of a cube in its normal setting, i.e. with one face
normal to the N-S direction. Rotate the cube to bring a body diagonal of the cube
parallel to N-S, and draw the resulting poles of the faces on the stereographic
projection.

Exercise 4.16. Draw the orthographic projection of the axes of the cube-shaped unit
cell shown in Fig. 4.38. The necessary angular values may be taken from exercise 4.12.
Sketch the main zone circles.

Exercise 4.17. Draw a gnomonic projection of the topaz crystal in Fig. 4.28. The lattice
constants are given on p. 42.
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5 Principles of Symmetry

Up to now, the only repetition operation that we have used formally has been
the lattice translation: the operation of three non-coplanar lattice translations
on a point which gives rise to the space lattice.

Fig. 5.1. This wheel may be considered either as derived from
an object consisting of a single spoke which is repeated by
rotation every 45 0 or as an object which is brought into
coincidence with itself by a rotation of 45 0

In addition to lattice translations, there are other repetition operations, such
as rotations and reflections. In these cases, an object is brought into a
coincidence with itself by rotation about an axis or reflection in a plane.

All repetition operations are called symmetry operations. Symmetry consists of
the repetition ofa pattern by the application of specific rules.

In the wheel illustrated in Fig. 5.1, the spokes are repetitions of one another
at intervals of 45°, or alternatively, as the wheel rotates, it is brought into
coincidence with itself by every rotation of 45°. When a symmetry operation has
a "locus", that is a point, a line, or a plane that is left unchanged by the operation,
this locus is referred to as the symmetry element.

Fig. 5.2. Reflection of either side of this gypsum crystal in the hatched
plane indicated brings it into coincidence with the other side. This plane
is called a mirror plane
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Fig. 5.3. Rotation of the pair of scissors through 180 0 about the axis
marked with an arrow brings it into coincidence with itself. This
axis is called a rotation axis

Figure 5.2 is an illustration of a crystal ofgypsum. The right-hand half of the
crystal can be brought into coincidence with the left-hand half through a
reflection in the hatched plane, which will equally bring the left-hand side into
coincidence with the right. Every point in the crystal will be moved by this
reflection operation except those which actually lie on the reflection plane itself.
The plane containing these points is thus the symmetry element corresponding
to the symmetry operation of reflection; it is called a mirror plane.

Rotation through 1800 about the axis marked with an arrow will bring either
half of the pair of scissors in Fig. 5.3 into coincidence with the other half.
Alternatively, rotation of the pair of scissors through 180 0 brings it into
coincidence with itself. Every point on the scissors moves during this operation
except those that lie on the rotation axis (the arrow) itself. The points
comprising this axis make up the symmetry element corresponding to the
symmetry operation of rotation: the rotation axis.
Another type of symmetry is shown by the pair of irregular pentagons in

Fig. 5.4. Reflection of either pentagon through the indicated point will bring it
into coincidence with the other pentagon. In this symmetry operation, which is
called inversion, only a single point remains unchanged, it is the symmetry
element of the symmetry operation inversion and is called an inversion centre or
a centre of symmetry.

Fig. 5.4. Either pentagon is brought into coincidence with the other
by reflection in a point. This is called inversion, and the point which
remains unmoved by the operation is called an inversion centre or
centre of symmetry .
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5.1 Rotation Axes

What symmetry elements are present in a general plane lattice, such as that
shown in Fig. 5.5? Make a copy of the figure on tracing paper and lay the copy
directly over the original. Then rotate the copy about the central lattice point A
until both lattices come into coincidence once more. In this case, this will
happen after a rotation of180°, and a further rotation of180° makes a full 360°
rotation, returning the upper lattice to its original position.
The symmetry element corresponding to the symmetry operation of rota

tion is called a rotation axis. The order of the axis is given by X where

X = 360° , and e is the minimum angle (in degrees) required to reach a
e

position indistinguishable from the starting point. In the above case,

X = 360° =2, and the axis is called a 2-fold rotation axis. The symbol for
180°

this operation is simply the digit 2. In a diagram, it is represented as (0) if it is
normal to the plane of the paper, or as -> if it is parallel to it.
Whenever a 2-fold axis passes through a point A, a 2-fold axis must pass

through all points equivalent by translation to A. 2-fold axes normal to the
lattice plane will also pass through all points B, C and 0 which lie on the
midpoints of a translation vector. There are thus an infinite number of rotation
axes normal to this plane.
Objects are said to be equivalent to one another if they can be brought into

coincidence by the application of a symmetry operation. If no symmetry

Fig. 5.5a, b. A general plane lattice (a) and its symmetry (b). Symmetry elements marked with
the same letter are equivalent to one another
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Fig. 5.6. A crystal with upper and lower parallelogram
faces and sides perpendicular to them has - so far as its
morphology is concerned - only a single 2-fold axis

operation except lattice translation is involved, the objects are said to be
"equivalent by translation" or "identical".
In Fig. 5.5, all rotation axes A are equivalent to one another, as are all axes B,
e and D. On the other hand, the axes A are not equivalent to B, and so forth.
A crystal, in which congruent lattice planes (Fig. 5.5) lie directly one above

the other, may develop a morphology in which the lower and upper faces are
corresponding parallelograms (pinacoid), and the side faces are all perpendicu
lar to these (Fig. 5.6). Such a crystal will come into coincidence with itself if it is
rotated through 1800 about an axis through the middle of the upper and
lower faces. It thus contains a single 2-fold axis. This observation may be
generalised as follows:

The morphology ofa single crystal will show only one symmetry element ofa
particular type in a particular direction, although both its lattice and its crystal
structure will show infinitely many parallel elements.

Let us now consider whether it is possible to have axes of order higher than 2.
An axis with X> 2 operating on a point will produce at least two other points
lying in a plane normal to it. Since three non-colinear points define a plane, this
must be a lattice plane. Thus, rotation axes must invariably be normal to lattice
planes, and we must decide whether the points generated by a rotation axis can
fulfill the conditions for being a lattice plane, specifically, that parallel lattice
lines will have the same translation period.

a) Threefold Rotation Axis: 3 (graphical symbol ~). Figure 5.7a shows a
3-fold rotation axis normal to the plane of the paper. By its operation, a

rotation of 1200(= 36
3
°0 ), point I comes into coincidence with point II,

and, by a second rotation of 1200 with point III. A further rotation of 1200

returns it to its original location. A lattice translation moves point I to point IV,
and the four points thus generated produce the unit mesh of a lattice plane.
Thus, 3-fold axes are compatible with space lattices.
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Fig. 5.7a-c. The arrays of points resulting from the operation on a point of a 3-fold, b 4-fold,
and c 6-fold axes normal to the plane of the paper can lead to lattice planes. C) additional
points produced by lattice translations

-/' , ~. ~'y •

•),0., • •
b) • • c) •

Fig. 5.8a-c. The arrays of points resulting from the operation on a point of as-fold, b 7-fold,
and c 8-fold axes do not fulfil the conditions for a lattice plane, in that parallel lines through
equivalent points do not have equal spacings. These rotation symmetries cannot occur in
lattices

b) Fourfold Rotation Axis 4 (graphical symbol (D). Fourfold axes are also
compatible with space lattices. As shown in Fig. 5.7b, the action of a 4-fold axis
on a point results in a square of points which is also the unit mesh of a lattice
plane.

c) Fivefold Rotation Axis 5. The operation of this axis on a point results in a
regular pentagon of points, as shown in Fig. 5.8a. The line through points III
and IV is parallel to that through II and V. If these are to be lattice lines, the
spacings of the two pairs ofpoints must either be equal or have an integral ratio.
Since this is clearly not the case, the points in Fig.5.8a do not constitute
a lattice plane, and we may conclude that 5-fold axes are impossible in space
lattices!

d) Sixfold Rotation Axis 6 (graphical symbol 0) I. This operation, applied to a
single point, results in a regular hexagon (Fig. 5.7c). A lattice translation places

I The standard international symbols for 2, 3, 4 and 6 are t, ..., • and., respectively. For
convenience, 0, !:>, 0 and 0 are also used here. In Chapter 8, filled and unfilled symbols are
used to distinguish the ends of a polar rotation axis Xp•
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a lattice point on the axis itself, and the resulting array meets the condition for a
lattice plane. Inspection of Fig. 5.7a and c will show that the lattices resulting
from 6-fold and 3-fold axes are, in fact, equal.

e) Rotation Axes ofOrder Higher Than 6. Figure 5.8b and c shows the effect of
attempting to build up a lattice plane by applying 7-fold and 8-fold axes to a
point. The results are analogous to those for the 5-fold axis described in
paragraph (c) above. These arrays do not produce equal spacings of points in
parallel lines and so cannot occur in lattices. The same result will occur for any
rotation axis with X> 6.

In space lattices and consequently in crystals, only 1-, 2-, 3-, 4-, and 6-fold
rotation axes can occur.

Note that the wheel in Fig. 5.1 contains an 8-fold axis.

5.2 The Mirror Plane

A further symmetry operation is reflection and the corresponding symmetry
element is called a plane of symmetry or, more commonly, a mirror plane, and
given the symbol m. The graphical symbol for a plane normal to the paper is a
bold line, as in Fig. 5.9. A mirror plane parallel to the paper is represented by a
bold angle; an example of this is in Chap. 14.2. Any point or object on one side
of a mirror plane is matched by the generation of an equivalent point or object
on the other side at the same distance from the plane along a line normal to it
(Fig. 5.9).
Figure 5.10 shows the operation of a mirror plane on a lattice line A,

generating another lattice line A'. Whether the line A is parallel to the mirror
plane or not, the result is a rectangular unit mesh. The generation of the lattice
plane in Fig. 5.lOb requires that a lattice point lies on m; this lattice contains two
points per unit mesh and is called centred. A primitive mesh is not chosen in this
case since the rectangular cell (with the symmetry plane parallel to an edge) is
easier to work with.

m

~
B

Fig. 5.9. The operation of a mirror plane
m on an asymmetric molecule. The mir
ror plane, perpendicular to the paper,
transforms A into B and likewise B into A
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a) m b) m

Fig. 5.10a, b. Operation of m on a lattice line: in a the lattice line is parallel to m. The resultant
plane lattice is primitive with a rectangular unit cell. In b, the lattice line is tilted with respect
to m. The resultant plane lattice again has a rectangular unit cell, but is now centred.
~; additional points produced by lattice translations

5.3 The Inversion Centre

The symmetry operation called inversion relates pairs of points or objects
which are equidistant from and on opposite sides of a central point (called an
inversion centre or centre of symmetry). The symbol for this operation is I,
and is explained in Section 5.4.1 a. An illustration of this operation on a
molecule is given in Fig. 5.11. The graphical symbol for an inversion centre is
a small circle. Every space lattice has this operation and is thus centrosym
metric, see Fig. 5.12.
The operation of an inversion centre on a crystal face generates a parallel

face on the opposite side of the crystal. An example of this is the crystal of
malonic acid in Table 8.11.2 which has no symmetry other than inversion, and is

Fig. 5.11. The operation of an inversion centre (0) on asymmetric molecules
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Fig. 5.12. The unit cell of a general lattice, showing
the inversion at ~, ~, ~. All lattices are centrosym
metric

entirely enclosed by pairs of such parallel faces (or pinacoids). The occurrence
of such pairs of parallel faces is important for the detection of inversion
symmetry in crystals.

5.4 Compound Symmetry Operations

The operations of rotation, inversion, reflection and lattice translation may be
linked with one another. There are two possibilities to be considered here:

a) Compound Symmetry Operation. Two symmetry operations are performed in
sequence as a single event. This produces a new symmetry operation but the
individual operations of which it is composed are lost.

b) Combination of Symmetry Operations. In this case, two or more individual
symmetry operations are combined which are themselves symmetry operations.
Both they and any combination of them must be compatible with the space
lattice.

a) 4

Fig. 5.13a, b. Compound symmetry operation a and combination of symmetry elements b ofa
4-fold rotation and an inversion, illustrated by the effect on the point 1. In a the rotation and
the inversion are not present; in b they are present. The open circles in a represent auxiliary
points occupied when only one part of the compound operation has been applied. In b, the
combination ofthe rotation and the inversion results also in a mirror plane normal to the axis
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Table 5.1. Compound symmetry operations of simple operations. The corresponding
symmetry elements are given in round brackets

Rotation Reflection Inversion Translation

Rotation x Roto- Roto- Screw
reflection inversion rotation

Reflection
(Roto- x 2-fold Glide
reflection axis) rotation reflection

Inversion
(Roto- (2-fold x Inversioninversion axis) rotation axis)

Translation (Screw axis) (Glide plane)
(Inversion xcentre)

These different cases may be illustrated for 4-fold rotation and inversion by
considering the examples given in Fig. 5.13.

a) Compound Symmetry Operation. Figure 5.13a shows an operation which
consists of a rotation of 90° about an axis followed by an inversion through a
point on the axis. Successive applications of this compound operation move a
point at 1 to 2, 3, 4, and back to 1. Note that the resulting array has neither an
inversion centre nor a 4-fold rotation axis.

b) Combination of Symmetry Operations. Figure 5.13b illustrates the result of
the operations 4-fold rotation and inversion also being present themselves.
Successive operations of the 4-fold axis move a point from 1 to 2, 3, 4 and back
to 1, while the inversion centre moves it from each of those positions to 7, 8, 5
and 6 respectively.

Combinations of symmetry operations will be further examined in Chap
ters 6, 8 and 9. Compound symmetry operations are summarised in Table 5.1,
where the names of the symmetry elements corresponding to the symmetry
operations are given in round brackets. Neither reflection plus inversion nor
translation plus inversion results in a new operation. Glide and screw
operations are beyond the needs of the present discussion and will be covered
in Chapter 9.1.

5.4.1 Rotoinversion Axes

The compound symmetry operation of rotation and inversion is called
rotoinversion. Its symmetry elements are the rotoinversion axes, with the general
symbol X(pronounced X-bar or bar-X). There are only five possible rotation
axes X: 1, 2, 3, 4 and 6, and five corresponding rotoinversion axes X: 1, 2, 3, 4
and 6.
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Fig.5.14a-d. The operation of rotoinversion axes on a point 1: aLb :2 == m. C 3== 3+L
d 6== 3 ..L m. For 4, see Fig. 5.lOa. The unfilled circles represent auxiliary points which are not
occupied when the two operations of which the compound operation is composed are not
themselves present

a) Rotoinversion Axis I (Fig. 5.14a). I implies a rotation of 360 0 followed by
inversion through a point on the I-fold rotoinversion axis. The operation of1
on a point 1 returns it to its starting position, and the subsequent inversion
takes it to point 2. The rotoinversion operation I is thus identical to inversion
through an inversion centre. For this reason, J is used as a symbol for the
inversion centre.

b) Rotoinversion Axis 2(Fig. 5.14b). The effect of rotation through an angle of
1800 followed by inversion is to take a point from 1 to 2. A repetition of this
compound operation returns it to its original position. The two points are,
however, also related to one another by reflection in a plane normal to the axis.
The operation 2 is thus identical with m, and need not be considered further.
Note, however, that 2 represents a direction normal to m.

c) Rotoinversion Axis 3 (graphical Symbol A) (Fig.5.14c). Successive appli
cations of the operation 3move a point to altogether six equivalent positions. In
this case, both of the simple operations 3and I are necessarily present - 3== 3+ I,
so the compound symmetry operation is here a combination of symmetry
operations.
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d) Rotoinversion Axis 4 (graphical symbol Ill) (Fig.5.13a). The 4 axis has
already been analysed in the previous section. As may be seen in Fig.5.l3a,
and as the graphical symbol indicates, 4 implies the presence of a parallel 2.

e) Rotoinversion Axis 6 (graphical symbol ~ ) (Fig.5.14d). Successive appli
cations of 6move a point to altogether six equivalent positions. It can be seen
that 6 implies the presence of a parallel 3 and a perpendicular m - 6== 3 1.. m.

The unambiguous demonstration of the relationships: I == inversion centre,
:2 == m, 3== 3+1, 4 implies 2, and 6== 31.. m in Figs.5.l3a and 5.14 is only
possible when an object such as an unsymmetrical pyramid is operated upon
by symmetry operations (see exercise 5.1a). Note particularly that only
rotoinversion axes of odd order imply the presence ofan inversion centre, viz. I
and 3.

5.4.2 Rotoreflection Axes

Like the rotoinversion axes, rotoreflection axes SI, S2, S3, S4, and S6 may be
defined. Rotoreflection implies the compound operation of rotation and
reflection in a plane normal to the axis. However, these axes represent
nothing new, since it is easy to demonstrate the correspondence SI == m; S2 == I;
S3 == 6; S4 == 4; S6 == 3. Rotoinversion axes are now invariably used in crystal
lography.
The symmetry elements with which the crystallographer is concerned are

the proper rotation axes X (1, 2, 3, 4 and 6) and the rotoinversion or improper
axes X (I == inversion centre, (2) == m, 3, 4 and 6). In addition to these, there
are screw axes and glide planes (see Chap. 9.1).

The axes X and X, including I and m, are called point-symmetry elements,
since their operations always leave at least one point unmoved.

For 1, this property applies to every point in space, for m to every point
on the plane, for 2, 3, 4, 6, to every point on the axis, and for I, 3, 4 and 6 to
a single point.
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EXERCISES

Exercise 5.1. The ten crystallographic point symmetry operations are shown on
pp. 68 and 69. Carry out these operations on:
a) An unsymmetrical pyramid, whose base lies into the plane of the paper. Sketch
the appearance of the generated pyramids, using dotted lines for those lying
below the paper.

b) A general pole on a stereographic projection.

Exercise 5.2. Carry out the rotoreflection operations SI, Sz, S3, S4 and S6 on a
general pole on a stereographic projection, and compare these with the stereograms
of the rotation-inversion axes 1, 2== m, 3, .4 and () in Exercise 5.1.

Exercise 5.3. When two faces are related by an inversion centre 1, how must they lie
with respect to one another?

Exercise 5.4. Carry out the rotoinversion operation a)5 b)8 c)lO on a general
pole on a stereographic projection.

Exercise 5.5. Analyse the rotoinversion axes (cf. exercises 5.1 and 5.4) into simple
symmetry elements, if it is possible.

Exercise 5.6. Which rotoinversion axes contain an inversion centre?

Exercise 5.7. What crystal form is developed by the faces whose poles result from
the operation of 3, 4, 6 and 6on a general pole? (see Exercise 5.1 b).

Exercise 5.8. What shape is implied for the section of a prism which has a 2-, 3,4, or
6-fold axis?

Exercise 5.9. Determine the location of the rotation axes of a cube.
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6 The 14 Bravais Lattices

The general space lattice, with no restrictions on the shape of the unit cell, may
be used to describe all crystals. In most cases, however, the lattices which occur
are special in that they have special features, such as unit cell dimensions (lattice
parameters) which are equal in two or three directions or angles between cell
edges with particular values, such as 60°, 90°, 120° or 54.73°. The general lattice
has no point symmetry elements except inversion centres. The presence of
rotation axes and mirror planes will restrict the cell parameters in some way,
and give special lattices. These special lattices give rise to simplifications in the
crystal morphology and in physical properties.

When lattice translations in two directions are equivalent, all physical pro
perties are equal in these directions.

In addition to the general space lattice, there are several special lattices.
Before we consider these space lattices, however, it is useful to develop the
concepts by consideration of general and special plane lattices.

The General (Oblique) Plane Lattice

If we take a point 1, and operate on it with a 2-fold axis, we will generate an
equivalent point 2 (Fig. 6.1 a). The application of a lattice translation ato point
1generates an identical point 3 (Fig. 6.1 b), and the 2-fold axis then relates point
3 to point 4 (Fig. 6.1c). We have now generated a unit mesh of the lattice. It has
the shape of an oblique parallelogram, where ao *boand y*90°.

1 1 b 4

0 i 0 "0. .
2 3 2 3 2

a) b) c)

Fig. 6.1 a-c. Development of the general plane lattice, with an oblique unit mesh
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Note that here and throughout this book, in reference to symmetry, *- means need
not be equivalent while = means are required by symmetry to be equivalent.

It is possible to vary ao, boand y in any way we like without losing the 2-fold
axis. Thus this lattice is fully general.

Special Plane Lattices

a) Returning to Fig. 6.1 a, point 3 could have been chosen so that the points 1, 2
and 3 described a right triangle, with the right angle at point 3 (Fig. 6.2a). The
operation of the 2-fold axis now results in a rectangular unit mesh, ao *-bo,
y = 90°. The arrangements of the points is now "special", as further symmetry
has been introduced, namely two mutually perpendicular mirror planes,
parallel to the 2-fold axis (Fig. 6.2b).

-~'I .+
a, 0 a) • • b)

3 2

Fig. 6.2a, b. Development of the special
plane lattice with a rectangular unit mesh
(a) and its symmetry (b)

b) A further possibility in Fig. 6.1a would be to choose the location of point 3
so that points 1, 2 and 3 formed an isosceles triangle with the two equal edges
meeting at point 3. The unit mesh of the resulting lattice is a rhombus: ao = bo,
y *- 60°, 90° or120° (Fig. 6.3a). Extension of the edges 1-4 and 1-3 a further unit
translation on the other side of 1, an alternative choice of unit mesh arises
(Fig. 6.3 b). It is rectangular (3{j *- ba,Y= 90°), and is called centred because it has
a point at its centre identical to those at the vertices. Consideration of the
symmetry of this cell shows that there are a pair of mirror planes, similar to
those in Fig. 6.2b, and several 2-fold axes (Fig. 6.3c).

4 0' ~b _-- r
1 I

T r I
I

To I I

0 I 0

a I I
I I
I I, 0

.~
ii'

_.
I,,----

3 a) b) c)

Fig.6.3a-c. Development of the special plane lattice with a rhombic unit mesh (a), and its
alternative description by a centred rectangular mesh (b). Symmetry of the plane lattice (c)
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Fig. 6.4a, b. Development of the special plane
lattice with a square unit mesh and its sym
metry

c) Returning once more to Fig. 6.1 a, we choose the position ofpoint 3 in such a
way as to make the points 1, 2 and 3 describe an isosceles right triangle, with the
right angle at 3. The resultant lattice now has a square unit mesh: ao =bo, y=90°.
As shown in Fig. 6.4b, there are now a 4-fold axis and four mirror planes
parallel to it in the cell.

d) Finally, let us choose the position of point 3 in Fig. 6.1 a such that the points
1,2 and 3make an equilateral triangle (Fig. 6.5a). The unit mesh of the resulting
hexagonal lattice is now a 120° rhombus, or ao =bo, y=120°. In addition to the
2-fold axis, there are now 3- and 6-fold axes as well as several mirror planes. The
axes are shown in Fig. 6.5b (see also Fig. 5.7a,c).

4 <J [>
Ii

1
[> 0 <J7

0 0
a . <J [>

2

a) b)
3

Fig. 6.5 a, b. Development of the special hexagonal plane lattice and its symmetry. The unit
mesh is a 1200 rhombus

We have now developed all four of the possible special lattice planes (which
were, in fact, introduced in a different way in Chapter 5) from the general plane
lattice. These plane lattices are summarised in Table 6.1 with their characteristic
symmetry elements. The general lattice (see Fig. 5.5) possesses 2-fold axes only,
but the special lattices (a)-(d) all have further symmetry elements, which are
shown on their diagrams in Fig. 6.6. It should be noted that only point
symmetry elements are shown here. There are compound symmetry elements
involving translation, glide planes (see Chap. 9.1).
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(a)

foI---o-----(~ - b

I
Q

(b)

1+--"",(1---+1- b'

I
Q'

o

o
o.
o

Fig. 6.6 a-d. Symmetry elements of the special lattice planes with a primitive (a) and a centred
(b) rectangular unit mesh, and a square (c) and a hexagonal (120° rhombus) (d) unit mesh

6.1 The Primitive Space Lattices (P-Lattices)

The relationships between lattices and symmetry elements in three dimensions
are similar to those in two. From the general space lattice, several special space
lattices may be derived, in which congruent lattice planes are stacked above one
another. If the symmetry of the lattice planes is not changed, the five space
lattices with primitive unit cells (P-Iattices) are produced. These are given in
Table 6.2.
Compare the stacking processes illustrated in Figs. 6.8-6.lOa, b; 6.12 and

6.13a, b. Notice that the centred rectangular plane lattice (b) does not occur. The
square lattice may be stacked either with Co =F ao = boor Co = ao = bo; the former
develops the tetragonal P-Iattice and the latter the cubic P-Iattice. The cubic
lattice is a special case of the tetragonal, since new, characteristic symmetry
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(c)

I
a

(d)

/

a

elements appear (three-fold rotation axes along the body diagonals of the unit
cell). The generation of the general or triclinic P-Iattice by stacking is shown in
Fig. 6.7a. All of the P-Iattices are illustrated in Table 6.3.
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Table 6.1. Plane lattices

Shape of Lattice
Characteristic

unit mesh parameters
symmetry Figure
elements

General
Parallelogram ao'" bo 2

5.5
plane lattices y",90° 6.lc

Special Rectangle ao'" bo 6.2a
plane lattice

a
(primitive) y=90°

m
6.6a

b
Rectangle ao", bo 6.3b
(centred) y=90°

m
6.6b

Square ao=bo 4
6.4a

c
y=90° 6.6c

d 120° Rhombus ao=bo 6 (3) 6.5a
y= 120° 6.6d

Table 6.2. P-Lattices

Shape of unit mesh
Interplanar spacing Lattice Figure

in stacked layers

Parallelogram'
bo Monoclinic P 6.8a,b

(ao"'co)

Rectangle
Co Orthorhombic P 6.9a,b

(ao '" bo)

Square
co'" (ao= bo) Tetragonal P 6.lOa,b

(ao = bo)

Square
co=(ao=bo) Cubic P 6.l3a, b

(ao= bo)

120°-Rhombus
Hexagonal P 6.12a, b

(ao= bo)
Co

, Note that for historical reasons, the description ao '" bo, y '" 90° has been changed in this case
to ao '" co, p"'90°.
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a Plane lattice with oblique unit mesh showing its symmetry.
Stacking of such planes directly above one another leads to the
monoclinic P-Iattice (cf. Fig. 6.8a, b). If, however, the lattice
points of the stacked planes do not coincide with the 2-fold
axes, these are lost, and the triclinic P-lattice has been
generated. (cf. b)

b

b Triclinic P-lattice, lattice parameters in the unit
cell are:

p----o------o- b

o

/
a
d Space group PI.
Projection of the symmetry elements of the triclin
ic P-lattice parallel to c onto the plane x, y, O. This
is the space group of highest symmetry in the
triclinic system

Fig, 6.7a-f. The triclinic crystal system

c Triclinic axial system:

(0)
e Point group I.
Symmetry of a lattice point in a triclinic P-Iattice.
This is the point group of highest symmetry in the
triclinic system

f 1 is the triclinic point group of lower symmetry
than I (formed by removal of I)
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c
/

o
Q- Iof----{l------;.)

a Plane lattice with oblique unit mesh showing its
symmetry. Stacking of such planes directly above
one another with interplanar spacing bo leads to
the monoclinic P-lattice (cf. b)

J:-__~cl5-

If b

;----(~r

b Monoclinic P-lattice, lattice parameters in the
unit cell are:

ao+bo+co
a = y= 90° P> 90°

c

c
/

o
Q - a---------a-----::lJ
---9-------<;r------Q--b

--
o------~>-------~----

I
Q

d Space group P 21m.
J
b

Projection of the symmetry elements of the mo
noclinic P-Iattice on x,O,z (above) and on x,y,O
(below). This is one of the space groups of highest
symmetry in the monoclinic system

a

c Monoclinic axial system:

a+b+c
a=y=90° P>90°
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c

c

2/m-CZh
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e Symmetry elements and stereograms of the
point group

21m,
I
b

the symmetry of a lattice point of the monoclinic
P-lattice. This is the highest symmetry point group
in the monoclinic crystal system

c

a
b /1--/ ......"
(-- '---)-b

'\. /
'- ~/

I
a

/7.........
/ : "\

f----F---j-b
\. i /
'--L-

I
a

m-C, 2-CZ

f Symmetry elements and stereograms of the monoclinic point groups of lower symmetry than 21m (formed by
removal of symmetry elements from it).

Fig. 6.8a-f. The monoclinic crystal system
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~---bo-----I

I----\l--.........j. -b

-- ~----a---'"""'ia

I
a

a Plane lattice with rectangular unit mesh show
ing its symmetry. Stacking of such planes directly
above one another with interplanar spacing Co
leads to the orthorhombic P-lattice (cf. b)

b Orthorhombic P-lattice, lattice parameters in
the unit cell are:

30* bo*Co
a=p=y=90°

t
a

d Space group

P 21m 21m 21m (Pmmm)
I I I
abc

Projection of the symmetry elements of the or
thorhombic P-lattice on x,y,O. This is one of the
space groups of highest symmetry in the ortho
rhombic system

c

c Orthorhombic axial system

a*b*c
a=p=y=90°

Fig. 6.9a-f. The orthorhombic crystal system
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e Symmetry elements and stereogram of the point
group

21m 21m 21m (mmm),
J J I
abc

the symmetry of a lattice point of the orthorhom
bic P-lattice. This is the highest symmetry point
group in the orthorhombic crystal system

C I CJ.<:>

./~~, .....- -,
/ "-/ I " / \

I I \ / \

~---+----~ -b
I \

b -b
a a \ I, I I \ /" i / "- /' ............. / "- ./

'- _.....
I I

i a a

222-02 mm2-Ch

f Symmetry elements and stereograms of the orthorhombic point groups of lower symmetry than
21m 21m 21m (formed by removal of symmetry elements from it)
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~ bo,..------I

I
a

-b
/ t ,t /
a--.....~'II -b(a2)

",

--
/

a Plane lattice with square unit mesh showing its
symmetry. Stacking of such planes directly above
one another with interplanar spacing Co" ao = bo
leads to the tetragonal P-lattice (cf. b)

b Tetragonal P-lattice, lattice parameters in the
unit cell are:

ao=bo"Co
a=p=y=90°

Fig.6.10a-f. The tetragonal crystal system

d Space group

P 4/m 2/m 2/m (P 4/mmm)
j I I
c (a) (110)

Projection of the symmetry elements of the tetra
gonal P-Jattice on x, y, O. This is one of the space
groups of highest symmetry in the tetragonal
system

c

(0)0

c Tetragonal axial system

a=b"c(a,=a,,,c)
a=p=y=90°
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c

@,~~')
I
0(0,)

4/m 21m 21m - D.h

e Symmetry elements and stereogram of the point
group

4/m 21m 21m (4/mmm),
I j j

c (a) (110)

the symmetry of a lattice point of the tetragonal
P-lattice. This is the highest symmetry point group
in the tetragonal crystal system

*, ....-

~ \~___ I ---i-bra2 ) If - b(a2)

\ I / I
l..- I

I L-- 1\ .--.....-I .::t? I
0(0,) 0(0,)

42m-D2d 4mm-C.,

.a:"'i~ 1I '" I / \

~
t---.--~-b(a2)

-- -bra)
\ // I " rI
';:( I '........ J../

d(a,) I
0(0,)

422-D. 4/m-C'h

c c

a
b

/i""
I : \
r --.----~-b(a)
\ : J

'-....l.-/
I
0(0,)

4-S.

a
b

,.......,~

" I "/ i \
I ' \r-----.-----J -bra)
\ I I, : /

.... I /"---.1. __

I
0(0,)

4-C.

f Symmetry elements and stereograms of the tetragonal point groups of lower symmetry than
4/m 21m 21m (formed by removal of symmetry elements from it). Note that a change in choice of axes in
the point group 42m gives a point group 4m2 «a) 1.. m). The two settings are equally satisfactory
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(:r--Q-----.~·1- b

/
a

a Plane lattice with 120° rhombus unit mesh
showing its symmetry. Stacking of such planes
above one another so that the second lattice plane
is at a height ofCo/3 with a lattice point on a 3 fold
axis, while the third plane is at a height of ~Co with
its lattice point on the other 3-fold axis. The fourth
plane will then come directly above the first. This
arrangement reduces the 6-fold axes to 3-fold, and
removes the symmetry planes in x,O,z; O,y,z
and x, x, z as well as the two-fold axis parallel to c
(cf. b)

d Space group

R 321m (R3m)
I I
c (a)

Projection of the symmetry elements of the trigo
nal R-Iattice on x, y, O. This is one of the space
groups of highest symmetry in the trigonal sys
tem

c Axial system: see Fig.6.l2c

a-

I) Trigonal R-lattice; the lattice parameters of the
cell are:

ao=bo"Co
a=p=90°, y=120°

II. Rhombohedral P-lattice; the lattice parame
ters of the cell are:

b From this arrangement of lattice points, two
distinct unit cells may be chosen:

Fig. 6.11 a-f. The trigonal crystal system

ao=bo=cQ
a'=p'=y'
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"32/m-D)d

e Symmetry elements and stereogram of the point
group

321m (3m).
J I
c (a)

the symmetry of a lattice point of the trigonal
R-Iattice. This is the highest symmetry point
group in the trigonal crystal system

c

a
b

/
/

/

j-
0(0,)

3m-C),

c

a b

1-C)i

(a),
\ ---j/"\ /1',

, \ I \

I '/ Jt----4---- -Wa)
\ f \ I
\ / \ //
.... .>-i---

ria,)

a
b

f Symmetry elements and stereograms of the trigonal point groups of lower symmetry than 321m
(formed by removal of symmetry elements from it)
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-b

/
a

a Plane lattice with 120° rhombus unit mesh
showing its symmetry. Stacking of such planes
directly above one another with interplanar
spacing Co leads to the hexagonal P-lattice (cf. b)

I
[210J

d Space group

P 6/m 21m 21m (P6/mmm).
1 I I
c (a) (210)

Projection of the symmetry elements of the hexa
gonal P-lattice on x,y,O. This is the space group of
highest symmetry in the hexagonal system

c

b Hexagonal P-lattice, lattice parameters in the c Hexagonal axial system
unit cell are:

ao;bo"Co
a~p;900, y;120°

Fig. 6.12a-f. The hexagonal crystal system

a;b+c (a,;a2;a3+c)
a;p;90°, y;1200
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c

b

e Symmetry elements and stereogram of the point
group

6/m 21m 21m (6/mmm),
J J I
c (a) (210)

the symmetry of a lattice point of the hexagonal
P-Iattice. This is the highest symmetry point group
in the hexagonal crystal system

6/m 21m 21m - D6h

~---------------~---------------------,

b ~-M~
~

0(0,)

6mm-C6 ,

c

a

~a--::~:"""':::>'- tb .(s)-~)
/

0(0,)

6/m -C6h

(0,)\ _-_
.x "-

/ \ / '\
--~t====._-.1lb ( ",' \

[----.----~-bfal)
\ I " I
\ / \ /"I '//<...__/

0(0,)

-bfa)

(0

00
)\, I

, I

" /
----.--- -bfa), ,

,/ \,

0(0,)

b

I)-C'h

a

f Symmetry elements and stereograms of the hexagonal point groups of lower symmetry than
6/m 21m 21m (formed by removal of symmetry elements from it). Note that a change in choice of axes in
the point group 6m2 gives a point group 62m «a)112). The two settings are equally satisfactory.



88 6 The 14 Bravais Lattices

rI---e:>----t. - b

00 '.--,

l.~
I
a

a Plane lattice with square unit cell showing its
symmetry. Stacking of such planes directly above
one another with interplanar spacing Co = ao = bo
leads to the cubic P-lattice (cf. b).

b Cubic P-lattice, lattice parameters in the unit
cell are:

3o=bo=Co
a=p=y=90o

Fig. 6.13a-f. The cubic crystal system

d Space group

P 4/m 2/m (Pm3m)
J J J
(a) (111) (110)

Symmetry elements (incomplete) of the cubic
P-lattice. This is one of the space groups of highest
symmetry in the cubic system

c Cubic axial system

a=b=c (a,=a2=a3)
a=p=y=90°
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I
0(0/)

4/m:J2/m- Oh

e Symmetry elements and stereogram of the point
group

P 4/m 321m (m3m),
1 1 1

(a) (lll) (110)

the symmetry of a lattice point of the cubic
P-Iattice. This is the highest symmetry point group
in the cubic crystal system

f Symmetry elements and stereograms of the cubic point groups of lower symmetry than 4/m :3 21m
(formed by removal of symmetry elements from it)

6.2 The Symmetry of the Primitive Lattices

Before considering the symmetry of lattices, it is useful to learn two rules
governing the generation of a symmetry element by the combination of two
others. In the following two cases, the presence of any two of the given
symmetry elements implies the presence of the third (cf. p. 91). Combination of
symmetry elements is no casual occurrence; it is fundamental to the nature of
symmetry.
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Table 6.3. The 14 Bravais Lattices

p C I F

Triclinic f1-r---~-V
~r

Monoclinic J~'~ ,~~
r~)'- ,
-:f-~ ~r-;-' -~r-
>t-----y-

Orthorhombic

lLUrtlt
-fl...... I ~'~ I

-V"- ':J ~o.~~"
I ~ -

~I~I '~~-f-..r :.r"? ~<f-.::::;cs'"''''''''''.r 'f
~ -c;

Tetragonal

J J[ilL -~:~
-£f'~?f -£,.~?f'

Trigonal

11{}D
Hexagonal l,,--

""( '" "-

Cubic

@ t$f'a
....,rl 1-

~-l j1
~<f-

~fi - --
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/1
// I

// I
(/ :
I I

t-:---~
I I
I )

: /
I /:/

c) 1/

Fig.6.14a-c. Symmetry rule I: a 21- m ~ I (at the intersection of 2 and m); b I on m ~ 2
(passing through I and normal to m); c I on 2~ m (passing through I and normal to 2)

c.:-;:-....
m" " m "

I m
I r--- ---1

I I -,-1 (
I I I I

1 I II I I
I I I I I
I m' 1

1
m I mI I I

I I I II I

.-J L_ /) I I.-
---J I-

I [.-/

a) <..1.> b) c)

Fig. 6.15a-c. Symmetry rule II: am' 1- m" ~ 2 (along the intersection of m' and m"; b 2 on
m"~m'l-m" (with 2 as the line of intersection); c 2 on m'~m"l-m' (with 2 as the line of
intersection)

In the following two rules the presence of any two of the given symmetry
elements implies the presence of the third:

Rule 1. A rotation axis ofeven order (Xe = 2, 4 or 6), a mirrorplane normal to Xe,

and an inversion centre at the point of intersection ofXe and m (Fig, 6.14) '.

Rule II. Two mutually perpendicular mirror planes and a 2-fold axis along their
line of intersection (Fig. 6.15).

Every lattice is centrosymmetric and has inversion centres on the lattice
points and midway between any two of them. Thus, in a P-Iattice, there are
inversion centres at 0,0,0; !,O,O; O,LO; O,O,L LLO; LO,L O,L~ and LL~.

Symmetry of the Triclinic P-Lattice. The only point symmetry elements of the
triclinic lattice are inversion centres (Fig. 6.16) at the coordinates given above.
A projection of the symmetry elements parallel to c onto x, y, 0 is shown in
Fig. 6.17. The z-coordinates implied for the inversion centres are 0 and~.

I X, = 2, 4 or 6. The illustration only includes the case X, = 2. The rule is not completely
general, since m +I can only generate 2.
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c

b

0-------0-----0 -b

o

/
a

Fig. 6.17. Projection of the symmetry
elements of space group PI onto x, y, O.
The z-coordinates ofl are 0 and ~,cf.Fig. 6.16

... Fig. 6.16. Triclinic P-lattice with the
symmetry elements of space group pI
(0 Ion lattice point)

Definition

The complete set ofsymmetry operations in a lattice or a crystal structure, or a
group of symmetry operations including lattice translations is called a space
group.

The space group of a primitive lattice which has only I is called PI, and the
conditions for its unit cell parameters: ao =1= bo=1= co; a =1= p=1= y.

Symmetry of the Monoclinic P-Lattice. The set of lattice planes from which
we generated the monoclinic P-Iattice (Fig. 6.8a) contain a set of 2-fold axes
parallel to b. In addition, there are mirror planes normal to b at x, 0, z and
x,Lz as well as the inversion centres that were present in the triclinic case.
The location of the mirror planes follows from our first rule: (2 and I
generate m 1.. 2 at 1.) The array of symmetry elements of the lattice is shown
in Fig. 6.8d in projections on x, 0, z and x, y, 0. 2 Since the 2 is normal to the
m, this combination is given the symbol 21m, pronounced "two over m". It is
not necessary to represent the inversion centre, since 21m implies I, by
Rule I.
The space group of the monoclinic P-Iattice is P2/m, where it is conventional

to choose the b-axis parallel to 2 and normal to m. The b-axis is called the
symmetry direction. The a- and c-directions thus lie in the plane of m. This is
called the "second setting". Occasionally, the so-called "first setting" is
encountered, with the c-direction parallel to 2 and normal to m. When this
convention is used, the lattice is formed in the more usual way by the stacking of
parallel lattice planes with ao =1= bo, y =1= 90°, and a spacing of co.

2 In the diagrams, the symbol J indicates a mirror plane parallel to the plane of the page
at heights of 0 and ~. When the planes lie ~t other heights, such as ~ and ~, this is shown
by adding ~. Note that if there is an m, 2 or 1at 0, it is also found at ~; if it lies at ~, it is also
at~, etc.
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Fig. 6.18. Symmetry elements of space
group P 21m 21m 21m. The inversion
centres are not shown

Symmetry of the Orthorhombic P-Lattice. In addition to the symmetry of the
stacked planes (Fig.6.9a), the orthorhombic P-lattice (Fig.6.9b) has mirror
planes normal to c at x, y, 0 and x, y, ~ and inversion centres (Fig. 6.9d). Further,
the application of rule I (m + I=>2 -l m) or rule II (m -l m => 2) generates 2-fold
axes at x,O,O; x,O,L x,LO; x,LL O,y,O; O,y,L LY,O and Ly,~.
An alternative approach, which leads to the same result is the following:

the unit cell of the orthorhombic P-lattice is a rectangular parallelepiped; it is
bounded by three pairs of lattice planes with primitive rectangular unit
meshes. These planes all have the same symmetry, that shown in Fig.6.9a.
The arrangement of symmetry elements is shown in Fig. 6.18, which should
be compared with Fig.6.9d. This set of symmetry elements can be given a
symbol. The symmetry elements are arranged in the order of the crystallogra
phic axes: a, b, c. Each axis has a 2-fold rotation axis parallel to it and mirror
planes normal to it. Thus, the symbol for this space group is: P 21m 21m 21m.

111
abc

Here the a-, b- and c-axes are all called symmetry directions. Fig. 6.19, gives a
projection of all point symmetry elements of space group P2/m2/m 21m, and
separate projections showing those elements related to the symmetry directions
a, band c.

Symmetry of the Tetragonal P-Lattice. In addition to the symmetry of the
stacked planes (Fig.6.lOa), the tetragonal P-lattice (Fig.6.10b) has mirror
planes -l c at x, y, 0 and x, y, ~ and inversion centres (Fig. 6.10d). Further, the
application of Rule I (m + I=>2 -l m) or rule II (m -l m => 2) generates several
2-fold axes. It should be noted in passing that the projection of the symmetry
elements for this space group in Fig. 6.10d is incomplete, since there are also
glide planes present (Section 9.1). The same is true for the space groups in
Figs. 6.11 d-6.13d, which in addition contain screw axes. These symmetry
elements are essentially irrelevant to our present purpose, and will not be
considered further here.
The unit cell of a tetragonal P-lattice has the shape ofa tetragonal prism; it is

bounded by two lattice planes with square unit meshes and four planes with
rectangular meshes, the symmetries of which are shown in Fig. 6.20. Compare
Fig. 6.20 with Fig. 6.10d, noting that the 2-fold axes parallel to [110] and [110] do
not appear in Fig. 6.20.
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t- -b

- -
-
t

• •
P2Im2lm2/m
! ! !

a) a a b c

t t
--b-b --

-- --
-- --

i t t I
a a

P 21m ... ... P ... 21m ...
! !

b) a c) b

r-; -b

I
a P 21m

d) !
c

Fig. 6.19. a Space group P 21m 21m 21m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions a, b, c are shown:
b P 21m... c P 21m , d P 21m

! ! !
abc

The 4-fold axes have the effect of making a and b equivalent, and they are
often denoted as al and a2, as in Fig. 6.lOd. Similarly, the directions [110] and
[110] are equivalent to one another. We must now introduce a further type of
brackets, pointed brackets (). The symbol (uvw) denotes the lattice direction
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Fig. 6.20. Symmetry elements of space group
P 4/m 21m 21m. The 2 along (110) and the inversion
centres are not shown

-0.....

......11-

I--
----1

~Ol!

[uvw] and all directions equivalent to it. Similarly, (a) denotes the a-axis and all
equivalent axes. For the tetragonal lattice, (110) implies both the [110] and the
[110] directions, and (a) implies both the a- and b-axes.
In the space group symbol, the symmetry elements are given in the order:

c, (a), diagonal of the (a)-axes, :viz. (110), all of which are called symmetry
directions. Thus, equivalent symmetry operations are given only once. The
space group symbol is thus P 4/m 21m 21m.

ttL
c (a) (110).

Figure 6.21 gives a projection of all point symmetry elements of space group
P4/m 21m 21m, and separate projections showing those elements related to the
symmetry directions c, (a) and (110).

Symmetry of the Hexagonal P-Lattice. In addition to the symmetry of the
stacked planes, the hexagonal P-Iattice, like the orthorhombic and tetragonal
lattices, has mirror planes 1.- c at x, y, 0 and x, y,L and inversion centres
(Fig. 6.12d), so the application of Rule I (m +I =* 21.. m) or rule II (m 1.. m =* 2)
generates several 2-fold axes.
Figure 6.22 shows the projection of a hexagonal P-Iattice on (001). The 6-fold

axis makes a = b, and a and b may also be written as al and a2. Another
direction, called the a3-axis, may then be added, making an angle of120 0 with al
and a2, and equivalent to them both. Thus, (a) now represents a" a2, a3. The
diagonals bisecting the (a)-axes are [210], [120] and [HOl As for the tetragonal
lattice, the symmetry elements are arranged in the space group symbol in the
order, c, (a), diagonals of the (a) axes, viz. (210), all ofwhich are called symmetry
directions.
The space group symbol is thus: P 6/m 21m 21m.

ttL
c (a) (210).

Figure 6.23 gives a projection of all the point-symmetry elements of space
group P6/m2/m2/m, and separate diagrams showing those elements related to
the symmetry directions c, (a) and (210).

Symmetry of the Cubic P-Lattice. The symmetry of the stacking planes is
shown in Fig.6.13a. The stacking results in a lattice with a cubic unit cell
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" /-- ...- ......~-... -
'." t /~"

a) 0 (0,) [T 10]

P4/m21m21m
! ! !
c <a> (110)

-- 6--4---6 --

" /

'I" ,,,Dl0]0(0,) P 21m
!
(110)

d)

-- --
I P4/m ......

, , ,
0(0,) !

c) 0(0, ) P ... 21m ...b) c
!

" / " /
(a)

, -b(02)

"

Fig. 6.21. a Space group P 4/m 21m 21m, In the other diagrams, only the symmetry elements
corresponding to the symmetry directions c, (a), (110) are shown:
b P 4/m .. , .. " c P .. , 21m .. " d P .. , .. ,21m

! ! !
c (a) (110)



-- \ I / [-"0J
[120J",,-- \ e / /

~~lve
---e-e_-e-e,---

·/1I~e/ I. \ ~
/1\

[21OJ

6.3 The Centred Lattices 97

Fig. 6.22. Hexagonal P-lattice projected
on (001) emphasising the symmetry direc
tions (a) = aj, a2, a3 and (210) = [210], [110]
and [120]

(ao =bo=co). This means that the lattice planes 0, x, z and x, 0, z have the same
symmetry as x, y,O, see Fig. 6.l3d. This equivalence of the planes generates four
3-fold axes along the body diagonals of the unit cell as well as inversion centres,
so these axes are represented as 3(==3 + I). Application of rule I (m +I - 21.. m)
or rule II (m 1.. m - 2) generates 2-fold axes parallel to [110] and equivalent
directions. (These 2-fold axes are not included in Fig. 6.13d).
In the space group symbol, the symmetry elements are given in the

order: (a), (Ill) =body diagonals of the unit cell, (110) =face diagonals
of the unit cell. The space group symbol for the cubic P-Iattice is thus:
P4/m 321m.

1 1 1
(a) (111) (110).
Figure 6.24 gives a projection of all the point-symmetry elements of space

group P4/m 321m, and separate diagrams showing those elements related to
the symmetry directions (a), (111) and (110).

6.3 The Centred Lattices

Consideration of the primitive lattices we have so far generated raises the
question as to whether it is possible to import into the P-Iattices one or more
further lattice planes without destroying the symmetry. Let us first consider
the monoclinic P-Iattice.
Figure 6.25 shows the monoclinic P-Iattice and its symmetry, P2/m,

projected onto x,O,z (see also Fig.6.8d). Each point of the lattice has 21m
symmetry, which implies the presence of an inversion centre in the point.
Insertion of new lattice planes parallel to (010) into the lattice is only possible
if the lattice points fall on a position which also has symmetry 21m, i.e. on
Lo,o; O,LO; O,O,!; LLO; LO,L O,LL or LL~. These possibilities must each
be considered.
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1 ' I "
[210J

P 21m
1
(210)d)

P6/m2lm2/m

,\1 ! ! !
c (a) (210)-

'/1\....... 1a [210Ja) (a/)

(03) (0\ I
\ \ I

- b(o]) -b(o)
\

~,
~

\

~
-

I. 1 \ /\
0(0/) a

P6/m .....
(a,)

P ... 21m ...
1 1

b) c c) (a)

(03)

\'/ ,1/
-Mo])

I"

Fig. 6.23. a Space group P 6/m 21m 21m, In the other diagrams, only the symmetry elements
corresponding to the symmetry directions c, (a), (210) are shown:
b P 6/m .. , .. " c P .. , 21m .. " d P .. , .. ,21m

! ! !
c (a) (210)
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P4/m 3 21m
! ! !

bla,) (a) (111)(110)

c) 1J"
(0,1

•
'11

II.. ,.b) -c(
(0,1

P4/m ....
1
(a)

p ... L.
1

(111 )

IC(O])

d).z'
ala,)

P .... 21m
1
(110)

Fig. 6.24. a Space group P 4/m 32/m . In the other diagrams, only the symmetry elements
corresponding to the symmetry directions (a), (111), (110) are shown.
b P 4/m .... , c P ... 3 ... , d P .... 2/m

J J J
(a) (ll1) (110)
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c
/

a-

Fig. 6.25. The monoclinic P-lattice and its symmetry elements projected onto x, 0, Z (0 lattice
point with y = 0)

c
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I

I
/
/

/
I

I
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a-()---
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/

e;t------e;t
I I

I /
/ I

Fig. 6.26. The monoclinic C-lattice projected on
x, 0, Z «) represents a lattice point with y = ~

a(c')-

Fig. 6.27. The monoclinic A-lattice (ao, bo, co)
can, by interchanging a and c, be converted to a
monoclinic C-lattice (30, bo, co)

a) Lattice Plane with Lattice Point at LL°(Fig. 6.26). These new lattice points
centre the a, b-face of the unit cell. This is called a C-face centred lattice, or more
simply a C-lattice, although this name is formally inexact, being used to describe
a "lattice with a C-face centred unit cell". The monoclinic C-lattice is illustrated
in Table 6.3.

b) Lattice Plane with Lattice Point at 0, ~, ~ (Fig. 6.27). If the new plane centres
the b, c-face, the result will be an A-face centred lattice. Since, however, in
monoclinic cells, the a and c axes may lie anywhere in the mirror plane, they may
be swapped, converting the A-lattice into a C-lattice.
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Fig. 6.28. The monoclinic B-lattice (ao, bo, co) can be
converted to a smaller monoclinic P-lattice (<10, bo, co)

Q-

Fig. 6.29. The monoclinic I-lattice
(ao, bo, co) can be converted to a mono
clinic C-lattice (<10, bo, co)

c) Lattice Plane with Lattice Point at L0, ~ (Fig. 6.28). The result is now a
B-Iattice, from which a smaller, primitive unit cell can be chosen (outlined in
bold) that still has monoclinic symmetry.

d) Lattice Plane with Lattice Point at ~,~, ~ (Fig. 6.29). A lattice is formed, with a
lattice point at the body centre of the unit cell. This is called a body centred or
I-lattice (from the German innenzentriert). As with the A-lattice, choice of
different axes convert this to a monoclinic C-Iattice.

e) Lattice Plane with Lattice Point at ~,o, 0; 0, ~,o or 0, 0, ~. In any of these cases,
the result is simply to halve the cell; no new type of lattice is formed.

f) It is also possible to introduce two lattice planes at the same time, for
example, as in both a) and b), giving additional lattice points at LL°and
0,L~ (Fig.6.30a). Since it is necessary that all lattice points have the same
environment, and parallel lattice lines the same period a further lattice point
(shown with a dashed outline) must be added at ~, 0, ~. Thus, all the faces of the
unit cell are now centred, giving an all-face centred or F-Iattice.

A general principle following from this is that a lattice centred on two faces
cannot exist because the requirement that all lattice points are identical and
parallel lattice lines have the same lattice period will convert it to an all-face
centred lattice.
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Fig. 6.30a, b. The development of the monoclinic F-Iattice a. The monoclinic F-Iattice
(ao, bo, co) can be converted to a monoclinic C-Iattice (ac), bo, co) b

The monoclinic F-Iattice can, in fact, be reduced to a C-Iattice of half the
volume, as is shown in Fig. 6.30b.
We have now considered all the possibilities for introducing extra lattice

planes into the monoclinic P-Iattice, and have shown that all of these may be
represented either as P~ or C-Iattices (A, I, F ---> C; B ---> P).
The orthorhombic lattice may be developed in the same way, giving rise of

orthorhombic A-, B-, C-, 1- and F-Iattices. The 1- and F-Iattices are now not
reducible as they were in the monoclinic case. The A-, B- and C-Iattices are
alternative representations of the same lattice; the a-, b-, and c-axes can always
be chosen so as to generate a C-Iattice. There are a few space groups which are
customarily treated as having an A-lattice (see Table 9.2). The C-Iattice may
also be developed by the vertical stacking ofplanes with the centred rectangular
unit mesh (Fig. 6.6b).
Similar considerations to those in the monoclinic case lead from the

tetragonal P-Iattice to the tetragonal I-lattice, and form the cubic P-Iattice to the
cubic 1- and F-Iattices (Table 6.3).
An examination of the hexagonal P-Iattice will show that the only point with

the same symmetry as 0,0,°is 0, 0, ~. The addition of a lattice plane there will
merely halve the size of the unit cell.
A 6-fold axis always contains a 3-fold axis. Starting from this fact, the plane

lattice with a 120° rhombus as unit mesh contains a 3-fold axes at O,O,z;
LLz and LLz (Fig. 6.11 a). It is possible to add a second plane at a height
of ~ Co with a lattice point on the 3-fold axis at ~, ~, z and a third plane at a height
on Co with a lattice point on the 3-fold axis at LLz (Fig. 6.11 b). The fourth
plane will then come at a height of co, directly above the first. This new
arrangement of lattice points reduces the 6-fold axes to 3-fold and removes the
mirror planes at x, 0, z; 0, y, z and x, x, z as well as the 2-fold axes parallel to the
c-axis. The resulting lattice has the shape of a hexagonal lattice (ao = bo*co,
a=p=90°, y=1200) but contains three lattice points per unit cell (0,0,0; LL~;

LLD·
It is possible, however, to describe this lattice by a primitive unit cell

(aQ = btl = cO, a' = P' = y'). If the first cell is used to describe the lattice, it is called
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a trigonal R-lattice, if the second is used, the lattice is called rhombohedral P
(Fig. 6.11b). The unit cell of the rhombohedral P-lattice has indeed the shape of
a rhombohedron, with six rhombi as faces.
Special cases of the rhombohedral P-lattice are: (a) a' = 90° gives the cubic

P-lattice; (b) a'=60° gives the cubic F-lattice and (c) a'=109.47° gives the cubic
I-lattice.

6.4 The Symmetry of the Centred Lattices

With the exception of the trigonal R-lattice, the derivation above of the centred
lattices always paid strict attention to retaining the full symmetry of the
corresponding P-lattice. All the symmetry elements of the P-lattice remained,
only the translation properties were altered. The centring does indeed introduce
new symmetry elements, notably screw axes and glide planes (see Chap. 9.1). In
spite of this, the symbols for the space groups of the centred lattices may easily
be given, since the new symmetry elements do not appear in them.
Now it is not difficult to derive the symbol for the trigonal R-Iattice from the

reduced symmetry of the lattice planes. There are, in addition to the normal
ones, further inversion centres, which, by Rule I (m +I - 21.. m), generate a set
of 2-fold axes parallel to ai, a2, a3 (Fig. 6.11 d). The 3-fold axis becomes 3since
3+I - 3. The order of the symmetry directions here is: c, (a), giving the symbol
R 321m.
1 1
c (a).
The space group symbols of the 14 Bravais lattices are given in Table 6.4 in

the same order as Table 6.3.
Table 6.3 contains the 14 lattices, which are usually known as the Bravais

lattices.

Table 6.4. The space group symbols for the 14 Bravais lattices

P C I F

Triclinic pI

Monoclinic P2/m C2/m

Orthorhombic P2/m2/m2/m C2/m2/m2/m 12/m2/m2/m F2/m2/m2/m

Tetragonal P4/m2/m2/m 14/m2/m2/m

Trigonal R32/m
P6/m2/m2/m

Hexagonal

Cubic P4/m32/m 14/m32/m F4/m32/m
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Table 6.5. Number and coordinates of the lattice points in the unit cells of the Bravais lattices

Lattice
No. of lattice points Coordinates of lattice points
in unit cell in unit cell

p 1 0,0,0

A 2 0,0,0; O,~,~

B 2 0,0,0; ~,O,~

C 2 0,0,0; ~,~,O

I 2 0,0,0; ~,~,~

R 3 0,0,0; ~,H; ~,~,~

F 4 0,0,0; ~,~,O; ~,O,~; O,~,~

The 14Bravais lattices represent the 14 and only ways in which it is possible to
fill space by a three-dimensional periodic array ofpoints.

All crystals are built up on one of these lattices. In Chapter 3, we defined a
crystal structure as a lattice plus a basis. While the number of lattices is fixed at
14, there are infinitely many possible ways of arranging atoms in cell. Any
crystal structure, however, has only one Bravais lattice.
The number and coordinates of the lattice points in the unit cells of the

Bravais lattices is given in Table 6.5.
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EXERCISES

Exercise 6.1. Symmetry of plane lattices.

a) Determine the symmetry elements for the given plane lattices, and draw these in
their places on the lattice. Note that only m, 2, 3,4 and 6 normal to the plane of the
paper need be considered.

b) Draw in the edges of the unit mesh and give the lattice parameters. Which lattice
parameters are equivalent and why?

c) Determine which symmetry elements are themselves equivalent by symmetry.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1)

2)

•

•
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Exercise6.2. For the given two-dimensional structures, determine:

a) The unit mesh.
b) The symmetry elements. It is only necessary to indicate those symmetry elements
which lie within the unit mesh. As in Exercise 6.1, only m, 2, 3, 4 and 6 normal to the
plane of the paper need be considered.

Two-dimensional structures after Kockel

1 ) 2)

~4~4
b>Jb>J
f>4~4

~4f>1 l>.db>.d
f>4f>4 f>4f>4

4)3)

[;VVJ .dLLJ
v~v

~iJ JLLJ
D7VJ vf>v
~iJ JLLJ

V V
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6)

7) 8)
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Exercise 6.3. (Refer to Symmetry Rule I)

a) Draw the given combinations of two symmetry elements on the stereographic
projection. As the inversion centre is a single point, it cannot be shown on the
stereogram, but may be taken to lie at the centre of the projection. Draw in a pole
which does not lie on any symmetry element, and allow the symmetry elements to
operate on it. On the basis of the positions of the resulting poles, determine the
third symmetry element generated by the combination of the given symmetry
elements, and draw it on the stereogram.

1) 2im 2) 2 + T 3) m + T

/-" ~- //-"
/ \ / "I \ ( \I \ I I \ \\ ) \\ / \ I
'-.. / '" / ........ /-- ./

.......... - _/

Demonstrate that:

4l-m~I 4+I~m

but

6l-m~I 6+I~m
m+I~2.

b) Below are given an orthorhombic unit cell and its projection on x, y, O. Draw the
third symmetry element generated by the two given elements on either or both of
these, give its symbol and the coordinates of its position. Note that only one
symmetry element of each type is drawn in the cell.

1)
c
I o

/11 11111111111 ~
-b

-b
I
a

mat O,y,z and I at O,~,O generate ... at ...
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2)

1 D--------, - b
2

-b
I
a

2 at 0,0, z and I at 0, 0, ~ generate ... at ...

3)

-b
I
a

2 at ~,o, z and m at x, y, ~ generate ... at ...

4) 5)

6 at O,O,z and I at 0,0,0
generate ... at ...

o

4 at ~,~, z and m at x, y, ~
generate ... at ...

6)

m at x,~,z and I at ~,~,~
generate ... at ...

7)

m at x,y,~ and I at O,~,~
generate ... at ...
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Exercise 6.4. (Refer to symmetry rule II)
a) On the following stereograms, draw in the third symmetry element generated by the
combination of the given two.

-~ ....... /r /- .......... ,
/ '\ / \ I \

I \ I \
I ,

\ I
\ \ -\ I \ I

\ I
" I '" /

........ /' ...... ./ _..-/

------- ------- -------

CD CD /1'/ \
/ \
I I
\ I
\ /" /
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b) An orthorhombic unit cell and its projection on x, y, 0 are given below. On either of
them, draw the third symmetry element generated by the two given elements, and
give its symbol and the coordinates of its position.

1)
C

I

IIDJ-b

-b
Ia/ a

m at x,~, z and at x, y, ~ generate ... at ...

2) C

I

0-1-b

-b I
/' aa

mat 0, y, z and 2 at 0, y, ~ generate ... at ...

4)3)

m at x,~,z and at ~,y,z
generate ... at ...

m at ~,y,z and 2 at ~,O,z
generate ... at ...



Exercise 6.5.

Which of the 14 Bravais lattices are each of the following?
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a)

c)

e)

c
.../'v (IV

..//1' /;:>_r

t;"LLa /f" /j"-

ao= bo= Co
a=p= y=90°

ao=bO*cO
a= p= y= 90°

b)

d)

ao*bO*cO
a= y=900 p>900

ao*bo*cO
a=p=y=9O°

ao= bo*CO
a= p= 90° y= 120°
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Exercise 6.6.

a) Draw the unit cells of each of the following lattices as a projection on x, y, 0, or,
in the monoclinic case, on x, 0, z. Use a scale o£1A = 1cm.

Monoclinic P: ao= 5.5, bo=4.0, co=4.oA; p= 105 0

Orthorhombic P: ao = 3.0, bo= 4.5, Co = 4.0 A
Tetragonal P: ao = 4.0, Co = 3.0A
Hexagonal P: ao = 4.0, Co = 3.0 A
Trigonal R: ao=4.5, co=3.oA

b) Determine the symmetry operations of lattices you have drawn, and plot the
symmetry elements on the projection of the lattice.

c) Now use a coloured pen to colour the symmetry elements, using colours so that
symmetry elements have the same colour if they belong to the same symmetry
direction (i.e. one of the various symmetry directions used in the space group
symbol).

d) Give the space group symbol for each lattice, making use of the colours of sym
metry elements you have chosen in (c).

Exercise6.7. Derive the three centred orthorhombic lattices (cf. Section 6.3).

a) What is the symmetry of a lattice point in the orthorhombic P-lattice?
b) Which points in the unit cell of the P-lattice have the same symmetry as the lattice
points? Give their coordinates.

c) Bring a lattice plane, parallel to (001) into a position such that a lattice point comes
into coincidence with each of the positions you have determined in (b). Repeat the
above exercise with two planes.

Exercise 6.8. Similarly, derive the centred tetragonal lattices.
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In the various lattices, the vectors ii, 6and cmust be chosen and associated with
a system of suitable crystallographic axes, a, b, c. This is not done arbitrarily.
Generally, so far as is possible, the choices are made so that the direction of
rotation axes, rotoinversion axes and the normals to mirror planes are parallel
to ii,6,c and to a,b,c:

ii, 6, c; a, b,c IIX, X, normal to m.

It is possible to distinguish six axial systems (systems of crystallographic
axes), which are given in Figs. 6.7 c-6.13 c and which correspond to the six
primitive lattices. These axial systems naturally apply equally to the centred
lattices. On this basis, we may define a crystal system:

Definition

All lattices, all crystal structures and all crystal morphologies which can be
defined by the same axial system belong to the same crystal system.

This definition distinguishes six crystal systems. It is, however, usual to
separate the system of crystallographic axes based on a '= b +c, a '= fJ '= 90°,
y '= 120° into a hexagonal and a trigonal crystal system. The hexagonal system
is characterised by the presence of 6 or 6, while the trigonal is characterised
by 3.
In Table 7.1, the seven crystal systems are listed along with the restrictions on

the axial system. It is important to remember, however, that equivalence of
crystallographic axes and special values of the angles are simply a consequence
of the underlying symmetry. Those symmetry elements which cause equivalen
ces to arise between crystallographic axes are listed. A full list of the symmetry
elements characterising the various crystal systems is given in Table 8.9.
The space groups of the lattices themselves have the highest symmetry which

can occur in that crystal system (cf. Table 6.4). Symmetry elements in each
crystal system can only be orientated in certain directions with respect to one
another, since it is not those symmetry elements alone, but they and all their
combinations which must be in accordance with the properties of the space
lattice. The symmetry of the lattice automatically determines all the angles
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Table 7.1. The seven crystal systems

Restrictions on the Equivalences of
Crystal system axial system Figure crystallographic

axes caused by:

Triclinic a+b+c a+p+ya 6.7c

Monoclinic a+b+c a=y=90°, P>90° 6.8c

Orthorhombic a+b+c a=p=y=90° 6.9c

Tetragonal
a=b+c a=p=y=90°

6.l0c 4,4//c(al=a2+ c)

Trigonal b 6.l2c 3//c

a=b+c a=p=90°, y= 120°

Hexagonal
(al =a2+c)

6,6//c6.l2c

Cubic
a=b=c a=p=y=90°

6.13c 3//(1ll)
(al =a2=a3)

a As usual, the signs = and + are to be read as must be equivalent and need not be equivalent
respectively as a consequence of symmetry.

b An alternative definition divides the hexagonal and trigonal systems differently, giving a
hexagonal and a rhombohedral system. The rhombohedral system (see Fig. 6.11 b) has the
restrictions on its axial system: a'=b'=c'; a'=p'=y'.

which the symmetry elements of the particular crystal system may make with
one another.
The symmetry directions in crystal systems are summarised in Table 7.2.

These symmetry directions are used for point groups (Chap. 8) and space
groups (Chap. 9). Symmetry directions are defined differently for each crystal
system. For some subgroups, a symmetry element does not necessarily exist
in the second and/or third position of the symmetry directions (cf. Table
8.10).

The normalized axial ratios from morphology ~: 1 :~ or from the
b b

crystal structure~ : 1 :~ for an orthorhombic crystal are discussed in sec-
bo bo

tion 4.7. These ratios are summarised in Table 7.3 for all crystal systems. They
may be expressed more simply for systems of higher symmetry.
The U.S. Department of Commerce: National Bureau of Standards and the

International Center for Diffraction Data have produced a series of volumes
Crystal Data - Determinative Tables. These contain an extensive listing of
important crystallographic data. Triclinic (anorthic), monoclinic and ortho-
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Table 7.2. Symmetry directions in the seven crystal systems

Position in the international symbol

1st 2nd 3rd

Triclinic -

Monoclinic b

Orthorhombic a b c

Tetragonal c (a) (110)

Trigonal c (a) - c

Hexagonal c (a) (210)

Cubic (a) (lll) (110)

C There are a few trigonal space groups with a 3rd. symmetry direction (210) as in the
hexagonal system, for example P31m or P312 with m or 2 in (210), cf. Table 9.2

Table 7.3. Normalized axial ratios as used for the various crystal systems.

Crystal system Axial ratios

morphological structural

Triclinic
~:1:~ ~:1:~Monoclinic

Orthorhombic b b bo bo

Tetragonal c Co
Trigonal -
Hexagonal a ao

Cubic - ao

rhombic crystals are listed in the order of the ~ ratio, where Co < ao < boo
bo

Tetragonal, trigonal and hexagonal crystals are arranged by the ~ ratio,
ao

and cubic crystals by the value of the lattice constant ao.



8 Point Groups

8.1 The 32 Point Groups

As has been noted, the space groups of the Bravais lattices are those with the
highest possible symmetry for the corresponding crystal systems. When the
lattice points are now replaced by actual atoms, ions or molecules, they must
themselves possess at least the full symmetry of the lattice point if the space
group is to remain unchanged. Now the symmetry of a lattice point is easily
determined from the space group; it consists of all of the point symmetry
elements of the space group that pass through the point (X, X, m) or lie on it (1).
In each crystal system, only the space group of the P-Iattice or, in the trigonal
system the R-Iattice, need be considered (see Figs. 6.7 d-6.13d), since the centred
lattices in each system define identical points. Lattice translations, the most
important of all the symmetry operations for space groups, are now discarded,
and the set of symmetry elements remaining is called a point group. The
symmetry elements of these point groups and their stereographic projections
are set out in Figs. 6.7e-6.13e, and the conversion from space group to point
group in Table 8.1. There is a great deal of useful information in the diagrams,
and it is worth taking the trouble to study them carefully.

Table 8.1. Correspondence of one of the space groups of highest symmetry in each crystal
system with the point group of highest symmetry in that crystal system

Crystal system Space group Point group Fig.

Triclinic pI ~ I 6.7d,e

Monoclinic P2/m ~ 21m 6.8d,e

Orthorhombic P 21m 21m 2/m~ 21m 21m 21m 6.9d,e

Tetragonal P 4/m 21m 2/m~ 4/m 21m 21m 6.l0d, e

Trigonal R j 21m ~ j 21m 6.11d,e

Hexagonal P 6/m 21m 2/m~ 6/m 21m 21m 6.12d,e

Cubic P 4/m j 21m ~ 4/m j 21m 6.13d,e
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The point groups are made up from point symmetry operations and
combinations of them. Formally, a point group is defined as a group ofpoint
symmetry operations whose operation leaves at least one point unmoved. Any
operation involving lattice translation is excluded.

The symmetry directions have the same relationship to the symmetry elements
ofthe point group as they do to those of the space group (Table 7.2). Those point
groups derived from the space groups of the lattices are also the highest
symmetry possible for the particular crystal system.
These point groups ofhighest symmetry in each crystal system all contain the

symmetry elements of one or more point groups of lower symmetry (sub
groups). These will be developed below for some crystal systems:

a) TRICLINIC. The only subgroup on is 1. Starting from the space group pI
(Fig. 6.16), all points which do not lie on inversion centres have the point
symmetry 1.

b) MONOCLINIC. 21m has the subgroups 2, m, I (cf. Symmetry rule I) and 1.
Since I and 1 belong to the triclinic system, only 2 and m are monoclinic point
groups (cf. Fig.6.8f). They possess sufficient symmetry to define the mono
clinic system: m..l.. b in the a, c-plane, and 2 parallel to b and normal
to the a,c-plane. In the space group P2/m (Fig.6.8d), the point 0,0,0 has
the point symmetry 21m, while any point on x, L z has point symmetry m,
and any point on the line Ly,~ has point symmetry 2 (cf. Fig. 9.13)

c) ORTHORHOMBIC. If inversion symmetry is removed from point group
21m 21m 21m, each 21m must be reduced either to 2 or to m (Symmetry rule I).
The possible orthorhombic subgroups are thus mmm, mm2 (or m2m or 2mm),
m22 (or 2m2 or 22m) and 222. The symmetry elements ofmmm are given on the
stereogram in Fig. 8.1. By Symmetry rule II (m..l.. m=2), 2-fold rotation axes
are formed at each intersection ofplanes, and the point group 21m 21m 21m has
been reformed. Similarly, the combination 22m also regenerates 21m 21m 21m
(cf. Fig. 8.2). The orthorhombic subgroups of 21m 21m 21m are thus 222 and
mm2 (Fig. 6.9f). As an example, in the space group P2/m 21m 21m (Fig. 6.9d),
all points on LL z (z "'" 0 orDhave point symmetry mm2.

In a similar way, the other crystal systems may be treated, giving in total
32 point groups or crystal classes, which are summarised in Table 8.2. They are
called the crystallographic point groups.
All crystallographic point groups are subgroups of either 4/m 321m or

6/m 21m 21m or both. The hierarchy of the subgroups is illustrated in
Fig. 8.3.
Some point groups have overdefined symbols, as we have seen for

21m 21m 21m (Fig. 8.1). In some of these cases, the symbol is abbreviated;
the abbreviated symbols are shown in round brackets in Table 8.2. These
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~L)
Fig. 8.1. The three mutually perpendicu
lar mirror planes of mmm showing with
dashed outline the automatically deve
loped 2-fold axes (Symmetry rule II).
Thus mmm is in fact 21m 21m 21m and
is used as an abbreviated symbol for it

Table 8.2. The 32 point groups
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Fig. 8.2. The symmetry elements of m22 (fully
drawn in) on the stereogram, automatically
generate (Symmetry rule II) the other sym
metry elements shown with dashed outline,
generating 21m 21m 21m. Thus, m22 is in fact
identical with 21m 21m 21m

Symmetry

Crystal system Point groups and stereograms
of the point groups
in Fig.

Triclinic I 1

Monoclinic 21m m,2 6.8e,f

Orthorhombic 21m 21m 21m mm2,222 6.ge, f
(mmm)

Tetragonal 4/m 21m 21m 42m, 4mm, 422 6.l0e, f
(4/mmm) 4/m, 4, 4

Trigonal 321m 3m, 32, 3, 3 6.11e,f(3m)

Hexagonal 6/m 21m 21m 6m2, 6mm, 622 6.12e, f
(6/mmm) 6/m, 6, 6

Cubic 4/m 321m 43m, 432, 21m3, 23 6.13e,f(m3m) (m3)

abbreviated forms are also used for space groups (Chap. 9). They are called
short symbols to distinguish them from the full symbols.
Up to now, symmetry symbols have always been used in relation to the

symmetry directions. The symbol on its own, however, clearly shows the
relative orientation of the various symmetry elements. Thus:

X2: rotation axis X and 2-fold axes perpendicular to it, e.g. 42(2)
(Fig.6.1O[).

Xm: rotation axis X and mirror planes parallel to it, e.g. 3m (Fig. 6.11 [).



122 8 Point Groups

48

/
/

/
/

/
/

/
24 /

/
/

/
/

16
E.... I..s
] I

12 I
Vl

I;>,....
() I I ./co _-1--.... 8., Ic:., IOIl

I.,
.s
.= 6
Vl.,
()

~
'-

40
.....,

.D
E
;:l

Z 3

2

/
/
/

/
/
/
./

/
/

/
/

/
/

/

Fig. 8.3. The crystallographic point groups and their subgroups, after Hermann [18]. The
circles corresponding to the highest symmetry group of each crystal system are outlined in
bold. Double or triple lines indicate that the supergroup is related to the subgroup in two or
three inequivalent settings. Connecting lines between point groups of the same crystal system
are bold, all others are plain or dashed. The presence of a line of any sort indicates that the
lower group is a subgroup of the higher. On the ordinate is given the order of the point group,
i.e. the number of faces in the general crystal form

X2: rotoinversion axis X and 2-fold axes perpendicular to it, e.g. 42(m)
(Fig.6.10f).

Xm: rotoinversion axis X and mirror planes parallel to it, e.g. 6m(2)
(Fig.6.12f).

X/mm: rotation axis Xand mirror planes both parallel and perpendicular to it,
e.g. 4/mm(m) (Fig. 6.10f).



8.1 The 32 Point Groups 123

Table 8.3. The Schonflies symbols for the point groups with the equivalent International
symbols

Cn: n-fold rotation axis; identical with X

x 2 3 4 6

Cni: odd-order rotation axis and inversion centre i == X (odd)
Cs: (s for German Spiegelebene) = mirror plane;
Sn: n-fold rotoreflection axis (only S4 and S6 used)

Cs

(2=)
m

Cnh: n-fold axis normal to mirror plane == X/m

Cnh CZh C3h C4h C6h

X/m 2/m (3/J.!1 ==)
4/m 6/m6

Cnv: n-fold axis parallel to n mirror planes == Xm

Cnv Czv C3v C4v C6v

Xm mm2 3m 4mm 6mm

Dn: n-fold axis normal to n 2-fold axes == X2

Dn D2 D3 D4 D6

X2 222 32 422 622

D nd: as D nplus mirror planes bisecting 2-fold axes

Xm 42m 3m

Dnh: as Dnplus mirror plane normal to n-fold axis

D nh D2h D 3h D4h D 6h

X/mm mmm (3/.fI1m ==) 4/mmm 6/mmm6m2

T (tetrahedral) and 0 (octahedral) groups

I I: 1_-:-;_----40-32----1f---4T-3:--f---mO-3-~--
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The symbols we have been using so far for space groups and point groups are
known as the International or Hermann-Mauguin symbols. In physics and
chemistry, the older SchOnflies symbols are widely used. Unfortunately,
Schonflies symbols are impossible to adapt as useful space group symbols.
Although they are adequate to define point groups, there is no particular
advantage to using them. Table 8.3 gives the International equivalents of all the
Schonflies symbols for the crystallographic point groups.

8.2 Crystal Symmetry

A space group reveals the entire symmetry of a crystal structure. When we
consider only the morphology of a crystal, the lattice translations which
characterise the space group are no longer relevant, and what is left is the point
group which is implied by that space group. If the crystal is bounded by plane
faces, the symmetry of its morphology will be the symmetry of that point group.
Figure 8.4 illustrates the symmetry of a crystal of PbS (galena) (cf. Fig. 4.1).

The symmetry elements which are apparent in the crystal are summarised on the
stereographic projection. The point group of the crystal is 4/m 321m. In Table
8.11, examples of crystals in various point groups are given in the right-hand
column.

8.2.1 Crystal Forms

In Chapter 4.2, crystal form was provisionally defined as a set of "equal" faces.
We are now in a position to give an exact definition.

c

4/m ....
j

(a)

b

a)

c

j

1
<1\1)

c

'" . ~im

1
<1\0)

b

c)

.---1I-.....-+~.b

a

Fig. 8.4a-d. A galena crystal in point group 4/m 3 2/m.
j j 1

(a) (111) (110)
In a, only those symmetry elements which relate to the a-axis
and equivalent directions (i.e. the b- and c-axes) have been
drawn in (4/m - (a»; in b, only those relating to the [111] and
equivalent directions (3 - (111»; in c, only those relating to the
[110] and equivalent directions (21m - (110». The stereogram of
the symmetry elements is given in d
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a) Q b) Q

Fig. 8.5 a, b. Stereograms of point group 4. a General form, tetragonal pyramid {hkl}.
b Limiting form tetragonal prism {hkO} of general form tetragonal pyramid {hkl}

When the symmetry operations of a point group are applied to a crystal
face, a number of equivalent faces will be produced. Thus, as shown in the
stereographic projection in Fig. 8.5a, application of the symmetry operation
of the point group 4 on the pole of a face produces a tetragonal pyramid.

A set ofequivalent faces is called a crystal form.

Exercise 5.1 b gives a manipulation which will always result in the
production of the stereogram of a crystal form.
The individual faces of the tetragonal pyramid in Fig.8.5a have been

indexed, i.e. assigned the values of their Miller indices. A scheme for indexing
the faces of tetragonal crystals will be given later (Fig. 8.8). A crystal form is
identified by the indices of one of the faces belonging to that form. In the case of
a form, the indices are placed in braces, thus: {hkl}, in order to distinguish
between a face and a form. The relationship between (hkl) and {hkl} is the same
as that between [uvw] and (uvw).
Each face of the tetragonal pyramid in Fig. 8.5a is itself unsymmetrical, as

there is no symmetry element normal to it. On its own, it thus has face symmetry 1.
Three types of crystal forms must now be distinguished: a general form, a

special form and a limiting form.

A generalform is a set ofequivalent faces, each ofwhich has face symmetry 1.

In other words, when the poles of the faces of a general form are placed on a
stereogram of the symmetry elements, they do not lie on any of them. General
forms have general indices {hkl}. The tetragonal pyramid {hkl} in Fig. 8.5a is
such a general form. The poles of the faces ofa general form have two degrees of
freedom, shown as arrows in the figure. The face can be displaced in two
directions without causing the tetragonal pyramid to cease to be a crystal form.
All that happens is that the inclination of the faces to one another is altered.
The variation of the indices {hkl} gives rise not to only one, but to an infinite

number ofgeneral crystal forms. In some point groups, care must be taken with
the signs of the indices. In any case, the possibility of infinitely many crystal
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Fig. 8.6a, b. Stereograms of point group 4mm. a Special form, tetragonal pyramid {hhl}.
b Limiting form, tetragonal prism {llO} of special form, tetragonal pyramid {hhl}

forms is only of theoretical interest, since in practice, crystals rarely have faces
with large values of h, k or I.

A specialform is a set ofequivalent crystalfaces which themselves have aface
symmetry higher than 1.

In a stereogram of the symmetry elements, the poles of the faces of a special
form lie on at least one of them. Figure 8.6a shows the stereogram of the
symmetry elements of the point group 4mm. If the pole ofa face (hhl) is entered,
the application of the symmetry elements gives a tetragonal pyramid {hhl}. This
is a special form, as the faces lie on a symmetry element, and each has face
symmetry ..m. The symmetry is given as ..m with reference to the order of the
symmetry directions used for point groups of the tetragonal system: c, (a), (110).
The mirror planes with which we are concerned here are those normal to (110).
The poles of the faces of this special form have only a single degree of freedom.
The form will remain a tetragonal pyramid only as long as the pole remains on
the mirror plane ..m. Should the pole move until it coincides with the 4-fold axis,
another special form arises, the pedion fOOl} with face symmetry 4mm. This
form no longer has any degree of freedom. A special form always has indices
which are a special case of {hkl}, such as {hhl}, {hOi} or {100}.

A limitingform is a special case ofeither a general or a specialform. It has the
same number offaces, each ofwhich has the sameface symmetry, but thefaces
are differently arranged.

Consider the situation in Fig. 8.5a if the pole moves to the periphery of the
equatorial plane of the stereographic projection. The result is a tetragonal prism
{hkO} which is the limiting form of the general form tetragonal pyramid {hkl}
with face symmetry 1. A similar movement of the pole {hhl} in Fig. 8.6b, along
the mirror plane to the periphery of the equator gives rise to the tetragonal
prism {110}, the limiting form of the special form {hhl} with face symmetry ..m.
Each point group has characteristic forms. What follows is a description of

those of the point group 4/mmm, the point group of highest symmetry in the
tetragonal system. Figure 8.7 a is a stereogram of the symmetry elements of this
point group. A single, asymmetric face unit is shown hatched in Fig. 8.7 a.
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General
form

Special
form

Fig. 8.7a-g. Crystal forms of point group 4/mmm, with their face symmetries. A stereogram
of the symmetry elements is given, with the asymmetric face unit and stereograms of each
form
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The asymmetric face unit of a point group, in terms of its stereographic pro
jection, is the smallest part ofthe surface ofthe sphere which, by the application
of the symmetry operations, will generate the entire surface of the sphere.

This particular asymmetric face unit is bounded by m.. , .m. and ..m. The
vertices have face symmetry 4mm, m2m. and m.m2. If a pole is entered in the
asymmetric face unit on the stereogram and operated on by the symmetry, the
result is a ditetragonal dipyramid, {hkl}, shown in Fig. 8.7 a. This form has two
degrees of freedom. A ditetragonal dipyramid will be generated as long as the
pole does not move onto one of the symmetry elements which constitute the
boundary of the asymmetric face unit. The ditetragonal dipyramid is a general
form (face symmetry 1, two degrees of freedom, {hkl}). The size of the
asymmetric face unit is simply the ratio of the surface area of the sphere to the
number of faces in a general form.

f . - fsurface area of the sphere
asym. face UOlt - .

number of faces 10 the general form

In this case, the number of such faces is 16, so the asymmetric face unit shown
hatched in Fig. 8.7a is kof the total surface area of the sphere.

An asymmetricface unit ofapoint group contains all the information necessary
for the complete description of the crystal forms in this point group. (This
definition may be compared with that of the asymmetric unit on p. 198.)

If the general pole (hkl) is moved onto the mirror plane m.. , this pole, and all
the others in the general form {hkl} will undergo a change. As the poles
approach this mirror plane, the angle between (hkl) and (hkl) becomes
progressively smaller, and is equal to 0 at the mirror plane. At this point, the two
faces (hkl) and (hkI) have coalesced into a single face (hkO). As shown in
Fig. 8.7b, the ditetragonal dipyramid has become a ditetragonal prism {hkO}.
Figure 8.8 shows the stereographic projection of a ditetragonal prism {hkO}

and the indices of the poles of its faces. In the stereogram, a section through the
ditetragonal prism is shown in bold lines which are extended (dashed lines) to
show the intercepts on the axes better, (hkO) = (210).
A pole of a face on the mirror plane .m. gives, after the application of the

symmetry operations, a tetragonal dipyramid, {hOI}, shown in Fig. 8.7c. A pole
ofa face on ..m gives a tetragonal dipyramid {hhl}, shown in Fig. 8.7 d. The three
forms {hkO}, {hOi} and {hhl} all have eight faces, i.e. half of the number of faces
of the ditetragonal dipyramid. These three forms each have one degree of
freedom. Each form retains its identity so long as the pole remains on the
appropriate edge (m) of the asymmetric face unit.
The poles of faces on the vertices of the asymmetric face unit have no degree

of freedom. The application of the symmetry operations to a pole with face
symmetry m2m. gives a tetragonal prism {100} (Fig.8.7e). Similarly the pole
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Fig. 8.8. Section through a ditetragonal
prism (outlined), in the equatorial plane
of a stereographic projection, with the
poles of the relevant faces and their indi
ces, {hkO} (= {21O}) shown. The dashed
lines serve to indicate the intercepts of the
faces on the axes

with face symmetry m.m2 gives a tetragonal prism {llO} (Fig. 8.7f), while that
on 4mm gives a pinacoid tOOl} (Fig. 8.7g).
The forms {hkO}, {hOI}, {hhl}, {lOO}, {llO} and tOOl} have the face symmetries

given in Fig. 8.7 and are thus special forms.
Figure 8.9 shows a stereogram with the poles of the crystal forms of point

group 4/mmm, the highest point symmetry of the tetragonal system. The poles
of the faces with negative indices I are not shown. The heavy lines divide the
surface into the 16 asymmetric face units of the point group 4/mmm. Those
poles which lie on the corners of the asymmetric face unit have no
degree of freedom. Those on the edges of the asymmetric face unit have one
degree of freedom, and represent all other poles lying on the same edge. The
poles lying within the asymmetric face unit have two degrees of freedom and
represent all faces whose poles lie in this area. In every case, taken together,
these faces produce ditetragonal dipyramids.
If the poles of the faces of a ditetragonal prism {hkO} (Fig. 8.8) are split and

moved an equal amount in the directions of (001) and (001), a ditetragonal
dipyramid {hkl} will be formed. The indexing of the faces of this form arise from
the {hkO} of the ditetragonal prism by the replacement of 0 with I and 1, as in
Fig. 8.9, the indices of all 16 faces of the ditetragonal dipyramid can be read
from the stereogram in Fig. 8.9, as can the indices for the faces of all of the
tetragonal forms.
In 4/mmm, there are n = 16 poles for faces of the general form, and

2n + 2 = 34 poles for faces of special forms, each type of form being considered
only once. The same relationship between the numbers of faces for the general
form and the total number of faces for all special forms also applies to the point
group of highest symmetry in the orthorhombic, hexagonal and cubic systems.
Starting from the point group of highest symmetry in a crystal system, the

subgroups can be developed - see Section 8.1. There is a similar relationship
between the general crystal form of the point group of highest symmetry and
those of its subgroups belonging to the same crystal system. These may be
illustrated by starting from the stereogram of the crystal forms of 4/mmm in
Fig. 8.9 and developing those of the subgroup 4mm.
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Fig. 8.9. Stereogram of the poles of the faces of all crystal forms of4/mmm, the point group of
highest symmetry in the tetragonal system. The stereogram shows the position and the indices
for each face in each form. Poles of faces with negative values of I are not included. The
spherical triangle with vertices (001), (100) and (nO) is an asymmetric face unit of the point
group4/mmm

Place a piece of tracing paper over the stereogram in Fig. 8.9, choose suitable
symmetry directions and mark on it those symmetry elements which belong to
4mm. A possible asymmetric face unit for this point group is a region bounded
by the pole faces (001), (100), (001) and (110). Because half of this asymmetric
face unit lies in the southern hemisphere, it is shown checked in Fig. 8.10a. It is
twice the size of the asymmetric face unit of 4/mmm, and is made up by
combining two such asymmetric face units.
Now enter on the tracing paper the pole of the general face (hkl), and allow

the symmetry operations of 4mm to act on it. The result is eight poles which
define a ditetragonal pyramid {hkl} (Fig. 8.10al)' The pole (hkI) which belongs
to the same asymmetric unit as (hkl) in 4mm gives a second ditetragonal
pyramid {hkI} (Fig.8.10a2)' Thus, the ditetragonal dipyramid which is the
general form in 4/mmm reduces to two ditetragonal pyramids in 4mm. The
doubling of the size of the asymmetric face unit results in a halving of the
number of faces in the general form.
In the same way, the general forms of the other tetragonal point groups may

be developed. The relevant asymmetric face units are given in Table 8.4.
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c

Asymmetric
face unit

4mm

.m~
a

2

a Ditetragonal pyramids, 1, {hkl) (1) and {hkI) (2)

2 2

/---..

"/0 0\
I \
I , I
\ I " I
\ 0 I OJ
" I /'_L__

b Tetragonal pyramids, .m., {hOI) (1)
and {hOI) (2)

c Tetragonal pyramids, ..m, {hhl) (1)
and {hhI) (2)

",,-/__~7 d Pedion, 4mm, {Om) and {OOI)

Fig. 8.10a-d. Crystal forms of point group 4mm, in so far as these differ from those in point
group 4/mmm (Fig. 8.7), with their face symmetries. A stereogram of the symmetry elements
is given, with the asymmetric face unit and stereograms of each form.

The general form of point group 4/m is a tetragonal dipyramid. The poles
(hkl) and (hiel) both give tetragonal dipyramids, {hkl} and {hiel}, by the action of
the symmetry operations, and these two dipyramids may be distinguished by
their positions. Figure 8.11 shows the square cross-sections of {hkl} and {hiel}.
Taking them together, and ignoring the dashed lines, they make up the cross
section of the ditetragonal dipyramid {hkl} of 4/mmm.
The general form of 42m is the tetragonal scalenohedron, and of 422 the

tetragonal trapezohedron [Table 14.1.2 (13) and (11)]. The combination of{hkl}
and {hiel} regenerates in both point groups the ditetragonal dipyramid.
The asymmetric face unit for 4 and 4 is four times the size of that of

4/mmm (Table 8.4). In 4, the ditetragonal dipyramid is split into four tetragonal
pyramids, {hkl}, {hk!}, {hiel} and {hie!}, while in 4, it becomes four tetragonal
disphenoids, {hkl}, {hie!}, {khl} and {khl} [Table 14.1.2 (9)].
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, Fig. 8.11. Square cross-sections through the
'; tetragonal dipyramids {hkl} and {hkl},

-----c:,-----------*---+--_-f.-I --~ b general forms in point group 4/m.
''-, \// Together, they make up the fully outlined

........{hkl} ditetragonal cross section of the ditetrago
nal pyramid. The same relationship holds
for the four tetragonal pyramids {hkl},
{hkl}, {hkl} and {hkl}, general forms in
point group 4

The special forms of point group 4/mmm in Fig. 8.7 are given in Table 8.4
with their face symmetries.
With the help of the stereogram in Fig. 8.9, we may derive the limiting and

special forms ofpoint group 4mm. As in 4/mmm, the pole of the face (hkO) gives
rise to the ditetragonal prism {hkO} (Fig. 8.7 b). This ditetragonal prism is the
limiting form of the general form ditetragonal pyramid {hkl}. These forms both
have face symmetry 1 and a total of eight faces.
Application of the symmetry operations 4mm to the pole of the face (hOI)

results in a tetragonal pyramid {hOi} (Fig. 8.lOb(), having point symmetry. m., a
special form. Similarly, {hOI} is a tetragonal pyramid (Fig.8.l0b2). These
pyramids are distinguished only by their settings, and their combination gives
the tetragonal dipyramid {hOi} of point group 4/mmm. The tetragonal prism
{lOO} is a limiting form of the special form tetragonal pyramid {hOi}, also having
face symmetry. m., and a total of four faces.
Tetragonal pyramids are also generated by {hhl} and {hhI} (Fig. 8.lOc), this

time with face symmetry .. m. These forms combine to give the tetragonal
dipyramid {hhl} of 4/mmm. The tetragonal prism {llO} is a limiting form of the
special form tetragonal pyramid {hhl}. Finally, the pole of the face (001) gives
the pedion {001}, with face symmetry 4mm. All of the forms of the point group
4mm are given in Table 8.4.
The special and limiting forms of the rest of the tetragonal point groups

are also to be found in Table 8.4. It will be seen that the various forms of the
point groups of lower symmetry are greatly simplified. For point group 4, for
example, all that remains beside the general form tetragonal pyramid is a
single limiting form, the tetragonal prism, and a single special form, the
pedion.
In Table 8.4, the general forms and their limiting forms are separated from

special forms by heavy lines, while dashed lines are used to separate the general
forms from their limiting forms. Equal forms with the same face symmetry are
collected together, as is also done in Tables 8.5-8.7.
The face symmetries in Table 8.4 are always derived from a three-component

symbol for the point group, which is expanded as required, e.g. 4/m(1) (1).
Thus, the face symmetry in {hkO} is given as m .. , and that in {OOl} is given as 4 ...
The same expansion is used for those point groups in other crystal systems
which have symbols with only 1 or 2 components, e.g. 3m(l), 23(1), etc.
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Crystal forms in the other crystal systems can be developed in the same way
to that we have done for the tetragonal system. In the following pages, the
crystal forms for the hexagonal (trigonal), cubic and orthorhombic systems are
set out to show their interrelationships and to provide an aid in the indexing of
faces. The crystal forms are first given for each system (Tables 8.4-8.7), and
Table 14.1 gives a summary of the 47 fundamental forms. The names used here
are those in the International Tables for Crystallography [14].

Crystal Forms in the Hexagonal and Trigonal Systems

In each crystal system, an axial system a, b, c must be chosen which is
appropriate for the symmetry. For the hexagonal and trigonal systems, in
addition to the unique c-axis, it is convenient to choose three equivalent axes a"
a2 and a3 (cf. p. 95 and Fig. 6.22) and to use the Bravais-Miller indices (hkil). The
index i corresponds to the a3 axis. The indices h, k and i are not independent, but
are related by h + k + i= 0 or h + k = 1. The application of this relationship can be
seen in Fig. 8.12. Joint consideration of the hexagonal and trigonal systems is
useful since all of the trigonal forms may be derived from the dihexagonal
dipyramid, the general form of6/m 21m 21m, the highest symmetry point group
of the hexagonal system (see Figs. 8.12 and 8.13 and Table 8.5). The trigonal and
hexagonal crystal forms are all set out in Table 14.1.3.

Crystal Forms in the Cubic System

The cubic crystal forms are collected in Table 14.1.4; see also Figs. 8.14 and 8.15
and Table 8.6.

Fig.8.12a,b. Section through a hexagonal prism {hkiO) (a) and {khiO) (b), in the equatorial
plane of a stereographic projection, with the poles of the relevant faces and their indices
indicated. The dashed lines serve to indicate the intercepts of the faces on the axes
[(hkiO) = (2130); (khiO) = 1230)]
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hikO • •hikl Uhl

hhOl Ohhl

0110

hOhl

ihkO khiO

ikhO

0(0,)
hkiO

1010

Fig. 8.13. Stereogram of the poles of the faces in all crystal forms of the point group of highest
symmetry in the hexagonal system, 6/m 21m 21m. The stereogram shows the positions and the
indices of all hexagonal and trigonal forms. The poles of faces with negative I are excluded.
The spherical triangle with vertices (1010), (0001), (1120) is an asymmetric face unit for the
point group 6/m 21m 21m

Fig. 8.14. Indices for the cubic faces belonging to the form {hkO} (= (21O}). If these are shifted
from their special position so that their poles move toward the pole of the (111) face, faces will
be obtained with general indices {hkl} in the point group 4/m 321m (cf. Fig. 8.15)

In the cubic, hexagonal (including trigonal) and tetragonal systems, all
crystal forms except the pinacoid and the pedion are characteristic of the
system.
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100

Fig. 8.15. Stereogram of the poles of the faces in all crystal forms of the point group of highest
symmetry in the cubic system, 4/m :3 21m. The stereogram shows the positions and the indices
of all cubic forms (hkO) =(310), (hkk) =(311), (hhk) =(221), (hkl) =(321). The poles of faces
with the third index negative are excluded. The spherical triangle with vertices (100), (110),
(111) is an asymmetric face unit for the point group 4/m :3 21m

100

Fig. 8.16. Stereogram of the poles of the
faces in all crystal forms of the point
group of highest symmetry in the ortho
rhombic system, 21m 21m 21m. The
stereogram shows the positions and
the indices of all orthorhombic forms.
The poles of faces with negative I are
excluded. The spherical triangle with
vertices (100), (010), (001) is an asym
metric face unit for the point group
21m 21m 21m
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hkO
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• hOI •

r
001

010....--··"T"..-·'·
• hOI •

hkl I hkl

hkO 100 hkO



T
ab
le
S
.7
.
C
ry
st
al
fo
rm
s
in
th
e
or
th
or
ho
m
bi
c
sy
st
em
an
d
th
ei
r
fa
ce
sy
m
m
et
ri
es

A
sy
m
m
et
ri
c

S
pe
ci
al
fo
rm
s

G
en
er
al
an
d

S
pe
ci
al
an
d
li
m
it
in
g
fo
rm
s

P
oi
nt
gr
ou
p

fa
ce
un
it
an
d

li
m
it
in
g
fo
rm
s

fa
ce
sy
m
m
et
ry

{h
O
I}

{O
kl
}

{h
kl
}

{h
kO
}

{l
O
O
}

{O
lO
}

fO
O
l}

m
..

mm
2

m2
m

R
ho
m
bi
c

r--
-p

R
ho
m
bi
c

R
ho
m
bi
c

R
ho
m
bi
c

21
m

21
m

21
m
\"
.m
.

..m
pr
is
m

pr
is
m

di
py
ra
m
id

pr
is
m

P
in
ac
oi
d

P
in
ac
oi
d

P
in
ac
oi
d

(m
m
m
)

.m
.

m
..

1
..
m

2m
m

m
2m

m
m
2

'-
2m
m

mm
2

I
m.
.

R
ho
m
bi
c

m
m
2
\,--
-.

D
ih
ed
ro
n

D
ih
ed
ro
n

py
ra
m
id

I
P
in
ac
oi
d

P
in
ac
oi
d

P
ed
io
n

",
.m

.
.m
.

m
..

1
I

.m
.

m
..

m
m
2

,
-

I
R
ho
m
bi
c

I
pr
is
m

.2
.2
.

1

'Q
~I
~[
~f

R
ho
m
bi
c

I
R
ho
m
bi
c

I
22
2

pr
is
m

I
di
sp
he
no
id

I
P
in
ac
oi
d

P
in
ac
oi
d

P
in
ac
oi
d

1
I

1
I

2
..

.2
.

..
2

L
I

I

0
0 tv (j ~ V

> E V
l

'< 3 3 (b S :;;:



142 8 Point Groups

Table 8.8. Eigensymmetry and generating symmetry of the tetragonal forms

Eigensymmetry Generating symmetry

Tetragonal pyramid 4mm 4,4mm

Tetragonal disphenoid 42m 4,42m

Tetragonal prism 4/mmm
4,4, 4/m, 422, 4mm
42m,4/mmm

Tetragonal trapezohedron 422 422

Ditetragonal pyramid 4mm 4mm

Tetragonal scalenohedron 42m 42m

Tetragonal dipyramid 4/mmm 4/m, 422, 42m, 4/mmm

Ditetragonal prism 4/mmm 422, 4mm, 42m, 4/mmm

Ditetragonal dipyramid 4/mmm 4/mmm

Crystal Forms in the Orthorhombic, Monoclinic and Triclinic Systems

All of the "rhombic" forms are listed in Table 14.1.1, see Fig.8.16 and
Table 8.7.
Only relatively simple forms occur in the monoclinic system. The general

form in 21m is the rhombic prism; in m and 2, the general forms are both
dihedra: a dome in m and a sphenoid in 2 (Table 14.1.1). The pinacoid and the
pedion are special or limiting forms.
The triclinic system gives only the pinacoid (1) and the pedion (1).
The symmetry of a crystal form can be considered in two separate ways. A

tetragonal pyramid is generated by the symmetry operations of 4; that is its
generating symmetry. On the other hand, a tetragonal pyramid actually
displays the symmetry of 4mm; that is its eigensymmetryl. In Table 8.8, these
eigensymmetries and generating symmetries are given for all tetragonal
forms.
Normally, crystals are not characterised by a single form but by a

combination of forms, which must, of course, all conform to the point group of
the crystal. The rutile crystal in Table 8.11.15 is a combination of a tetragonal
dipyramid {111}, and two tetragonal prisms, {lOO} and {110}.

1 eigen (German) = own
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8.3 Molecular Symmetry

Point symmetry is a very great help in the description of molecules, by which
term we include polyatomic ions of any charge. Figure 8.17 a shows a molecule
of H20, on which the symmetry elements, two mirror planes and a 2-fold
rotation axis, have been drawn. The point group mm2 (C2v) is shown on the
stereogram in Fig. 8.17b.
In Table 8.11.1-37 (left hand column) molecular examples are given for

several point groups. The stereogram for the point group is in most cases in the
same orientation as the example molecule.
The point groups of molecules are not limited to the 32 crystallographic

groups.They may contain such symmetry elements as 5-fold axes which are
incompatible with a crystal lattice. Table 8.11.33-37 and Fig. 11.6b give a few
examples of important non-crystallographic point groups with molecular
examples.

/
/

..--/ b)

a
ao;-----;:) a
a ~..---:: a
a

a)

a

b) a

c

Fig. 8.17a. Point symmetry (mm2 - C2v) of the
H20 molecule. b Stereogram of the symmetry
elements of this point group

a a

d

d) c

b Fig. 8.18a-e. Equivalence within mol
ecules. Equivalent atoms have the
same letter symbols; equivalent bonds
have the same pair of letters. a Ben
zene and b coronene (6/mmm-D6h);

c naphthalene and d pyrene (mmm 
D2h ); e phenanthrene (mm2-C2v )
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If""I I "
/1 "

I I ""
I F I "

I j~--- " F

F~~ -)bb \ \ //

\ \ /
\ \ /
\ \ /

\ \ /
\ /

f
a)

b)

Fig. 8.19a, b. The PFsmolecule (a) has point group
6m2 (OJh) (b). All atoms marked Fa are equivalent,
as are all marked Fb , but Fa and Fb are not
equivalent to
one another

Fig. 8.20 a-d. Conformations of ethane. a Eclipsed: ({J = 0 or 120 or 240°: (6m2 - OJh).
b Skew: 0 < ({J < 60°, 120 < ({J <180° or 240 < ({J < 300°: (32 - OJ), c Staggered: ({J = 60 or
180 or 300°: (3m - Old). d Skew: 60 < ({J <120°,180< ({J < 240° or 300 < ({J < 360°: (32 - 0). The
conformations in band dare enantiomorphs

The point group of a molecule indicates which atoms and which bonds
are equivalent. Thus, in benzene, C6H6, with point group 6/mmm - D6h all
C-atoms and all H-atoms are equivalent, as are all C-H and C-C bonds
(Fig. 8.18a, and also Table 8.11.27). Coronene, C24H 12 , also belongs to point
group 6/mmm - D6h . In Fig. 8.18 b, equivalent carbon atoms are indicated by
the letters a or b or c, and all bonds between pairs of similarly labelled atoms are
equivalent. There are thus four symmetry independent C-C bonds in coronene
(a-a, a-b, b-c and c-c). Further examples are naphthalene, CIOHg, and pyrene,
CI6H IO , both (mmm - D2h) (Fig. 8.18c), and phenanthrene, CI4H IO , (mm2 - C2v)
(Fig. 8.18e). The equivalences can be particularly clearly shown by copying the
stereogram of the appropriate point group (Table 8.11.7, 8 and 27) onto
transparent paper and superimposing it on the molecules in Fig. 8.18.

In PFs, phosphorus is surrounded by five fluorine atoms. Were this a
planar pentagonal molecule, all F-atoms and all P-F bonds would be equivalent
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(point group 5/mm2 (10m2), Table 8.11.35). In fact, the molecule has the shape
of a trigonal dipyramid (Fig. 8.19) with the P-atom at the centre, and point
symmetry 6m2 (D3h ). Thus, the two atoms labelled Fa are equivalent, as are the
three labelled Fb , but Fa and Fb are not equivalent to one another.
If one of the methyl groups of an ethane molecule is rotated about the C-C

bond through 360 0 with respect to the other, various different conformations
will be generated. These are illustrated in Fig.8.20 together with the
stereograms of the respective point groups. Conformations are the spatial
arrangements of the atoms of a molecule which result from rotation about a
chemical single bond.

8.4 Determination of Point Groups

Before the determination of the point group of a crystal (or a molecule having a
crystallographic point group), it should be assigned to one of the seven crystal
systems. For this, it is necessary to know the characteristic symmetry elements of
the crystal systems; these are given in Table 8.9, and can be derived from the
symmetry information given in Table 8.10.

Table 8.9. Characteristic symmetry elements of the seven crystal systems

Crystal
Point groups· Characteristic

system symmetry elements

Cubic 4/m ~ 2/m_ 4&
41m, 412, 2/m1, 21

Q/m 2/m 2/m
Hexagonal 6m2, 6mm, 622, .llr~

- Q/m,§,§

~/m 2/m 2/m 1. or 1~Tetragonal 42m, 4mm, 422,
- ~/-m,~, 1" (3. or 3~ -cubic)

:3 2/m 1&
Trigonal

lm~12,~, 1
(remember that m normal
to 3 gives 6 = hexagonal

Orthorhombic 2/m 2/m 2/m 2 and/or m
mm2, 222 in three orthogonal directions

Monoclinic li!!! 2 and/or m
!!!, ~ in one direction

Triclinic
1

lor 1 only
1

• Characteric symmetry elements are underlined.
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In determining the point group of molecules or crystals, it is in general not
necessary to find each and every symmetry element. Using Tables 8.9 and 8.10, it
may generally be done by answering a few, well-chosen questions. In practice, it
is best to consider first an important property of rotation axes. All rotation axes
are polar. This means that they have distinct properties in parallel and
antiparallel directions. Various other symmetry elements can destroy this
polarity, viz.:

(a) I (b) m1..X (c) 21.. X

The 2 in Fig. 8.17 and Table 8.11.18 and the 3 in Table 8.11.19 are examples of
polar rotation axes. The ends of polar axes are represented in symmetry
diagrams and stereograms by one solid and one open symbol (cf. Figs.6.8f
6.13f).

Questions to use for point-group determination:

1. Are rotation axes higher than 2 present (3, 4, 6)?
2. Are these axes polar? or
Is an inversion centre present?
(crystals with an inversion centre are characterised by sets of parallel faces
opposite one another.)

Point group determination will be illustrated by two examples:

a) The methane molecule (CH4) (Table 8.11.31). It is easily seen that a polar 3
fold axis lies on each C-H bond. As there are four of these, the point group
must belong to the cubic system, and it must be one with polar 3-fold axes
(indicated in Table 8.10 by a subscript p by the graphical symbol (e.g.•p).
This indicates either 23 or 43m (Table 8.10). These are readily distinguished,
since only 43m has mirror planes. These planes are readily seen in CH4, so the
point group is 43m.

b) A crystal of magnesium (Table. 8.11.27). The crystal contains a 6-fold
rotation axis, and so must belong to the hexagonal system. An inversion
centre is also easily found. This limits the point group to 6/m and 6/mmm
(Table 8.10). These may be distinguished by the mirror planes parallel to 6 in
6/mmm and not in 6/m. Since these planes are evident in the crystal, the
magnesium crystal may be assigned to point group 6/mmm.

Determination of the symmetry of a crystal is not always unambiguous. For
example, the cube (hexahedron) occurs as a form in all five cubic point groups
(Table 8.6). Determining the symmetry of a cube will naturally lead to the point
group of highest symmetry, m3m (Table 8.11.32). The mineral pyrites, FeS2
(point group m3) has cube-shaped crystals. The cube-faces, however, frequently
have characteristic striations which indicate the lower symmetry (Table
8.11.29).
In other ambiguous cases, "etch-figures" will indicate the true symmetry ofa

crystal face and hence of the entire crystal. These figures are bounded by faces
with high Miller indices and arise from the action of a solvent on a crystal face.
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Crystals of the mineral nepheline (Table 8.11.21) have a morphology (a hexa
gonal prism and a pinacoid) which indicate the point group 6/mmm. The etch
figures show that the true symmetry is only 6.

8.5 Enantiomorphism

The point group 1 (C1) is asymmetric. All other point groups with no symmetry
other than rotation axes are called chiral or dissymmetric. The relevant point
groups are:

X: (1), 2, 3, 4, 6
X2: 222,32,422,622
X3: 23,432

Cn: (C1), C2, C3, C4, C6
Dn : D2, D3, D4, D6
T,O

Asymmetric and dissymmetric crystals and molecules are those which are not
superimposable on their mirror images by rotation or translation. These mirror
images are said to be the enantiomorphs of each other. In Fig. 5.9 and Table
8.11.3 and 18, examples are given of enantiomorphic crystals and molecules.
Enantiomorphic molecules are also called enantiomeric.

8.6 Point Groups and Physical Properties

We shall now examine a few properties of molecules and crystals which are
related to their point groups, or whose effects may be traced back to specific
symmetry considerations.

8.6.1 Optical Activity

Optical activity refers to the ability of certain crystals and molecules to rotate
the plane of polarised light. It can only arise in those point groups which are
enantiomorphic (cf. Sect. 8.5 and Table 8.10). Two sorts of optical activity may
be distinguished:

a) Optical Activity as a Property ofa Crystal. The crystal is optically active, and
this activity is lost when the crystal is melted or dissolved. Examples include
MgS04 ' 7H20, Si02 (low-quartz), NaCI03 (Table 8.11.6, 18 and 28). Not only
the morphology but also the crystal structures exist in two enantiomorphic
forms. The "left" form rotates the plane of polarised light to the left, and the
"right" form an equal amount to the right.

b) Optical Activity as the Property ofMolecules. Some molecules are themselves
enantiomeric, and both their solutions and the crystals they form are optically
active. Well-known examples of this type of optical activity are the crystals of
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D- and L-tartaric acid (Table 8.11.3). In contrast, the "racemate" DL-tartaric
acid is optically inactive and gives crystals with point group I (C j ). Molecules of
the isomeric form meso-tartaric acid (1, (C j ), Table 8.11.2) are centrosymmetric
and hence optically inactive.
Optical activity is not limited to the 11 point groups in which enantiomor

phism occurs (Sect. 8.5). It can also occur in crystals in the point groups m(Cs),
mm2(C2v), 4(S4) and 42m(D2d ), cf. Table 8.10.

8.6.2 Piezoelectricity

Some crystals, when subjected to pressure or tension in certain directions
develop an electric charge; this property is called piezoelectricity. This effect is
clearly seen in plates of quartz (point group 32), cut normal to the a-axis or any
polar 2-fold rotation axis (Fig. 8.21). The direction of the applied pressure or
tension must be along a polar axis. Polar axes are those which have distinct
physical properties in the parallel and antiparallel directions. These directions
must thus not be themselves related by symmetry. It follows that within the
crystal there will be an asymmetric charge distribution along polar axes. The
opposite faces, normal to the polar axis, develop electric charges when a
pressure is applied along the axis. The direction of this electric field is reversed
when the pressure is replaced by a tension.
Piezoelectricity is only observed in crystals which have polar axes. Polar

directions only exist in point groups without a centre of symmetry. There are 21
such point groups, as is shown in Table 8.10. The point group 432 is also
excluded, as the symmetry is too high for the effect to develop.
The piezoelectric effect is reversible. If an electric field is applied in the

direction of the polar axis of a quartz plate, the crystal will undergo
compression or expansion. The application of an alternating field will cause the
crystal to vibrate.
Other crystals which show piezoelectricity include D- and L-tartaric acid (2

C2), Table 8.11.3; tourmaline (3m - C3v), Table 8.11.19; NaCI03 (23 - T), Table
8.11.28; ZnS (sphalerite) (43m - Td), Table 8.11.31.
Piezoelectricity has many technical applications, including ultrasonic gener

ators, amplifiers, microphones and quartz time-pieces.

c

b)

a,
c)

Fig. 8.21 a-c. The piezoelectric effect in a quartz plate arising from pressure along a polar axis,
here parallel to the a I axis
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8.6.3 Pyroelectricity

When a crystal of tourmaline (Table 8.11.19) is heated, the polar ends of the
crystal develop electric charges. Heating causes the positive end of the c-axis to
become positively charged relative to the negative end, and cooling has the
opposite effect. This effect results from the fact that tourmaline has a permanent
electric dipole. The charge which builds up is soon dissipated by conduction
into the surroundings. Changes in temperature change the size of the electric
dipole.
The dipole moment is a vector. Pyroelectricity can only arise when the point

group has no symmetry operations which alter the direction of this dipole. The
vector must remain unchanged by all the symmetry operations. Point groups
having this property include those with only a single rotation axis: 2(C2), 3(C3),
4(C4) and 6(C6) as well as those which have only these axes plus mirror planes
parallel to them: mm2(C2v), 3m(C3v), 4mm(C4v) and 6mm(C6v). The dipole
moment vector lies in the rotation axis. The conditions for the presence of a
dipole moment are also found in the point groups m (for all directions parallel
to the mirror plane) and 1 (for every direction), cf. Table 8.10.
Knowledge of the symmetry gives only a qualitative indication of the

possible presence of pyroelectricity. It does not indicate the size of the dipole
moment or the directions of the positive and negative ends.
Sucrose, C12H220th (2 - C2) and hemimorphite, Zn4[(OH)2/Si207]' H20

(mm2 - C2v) are examples of crystals showing pyroelectricity.

8.6.4 Molecular Dipole Moments

Many molecules have an asymmetric distribution of electric charge and hence
an electric dipole moment. The relationship between the point group of a
molecule and the direction of its dipole is the same as that developed above for
the pyroelectricity of crystals (cf. Sect. 8.6.3).
The measurement ofa dipole moment can give important information about

the shape of a molecule. PF3 has a dipole moment, while BF3 does not.
Molecules of the formula AB3may have the shape of an equilateral triangle with
A at the centre [6m2(D3d )] or a triangular pyramid with A at the apex [3m(C3v)],
cf. Table 8.11.19 and 26. The shape of BF3is thus the former, while PF3is the
latter.
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Table 8.11. Examples of molecules and crystals for the point groups

Molecules

H~OH

HO~H
HOOe

H
HO \ eOOH

~'c-e/
HOO/ \"'OH

H

Meso-Tartaric acid

m

H;fyOH HO~H

HyOH HOyH

HODe eOOH

The enantiomers of tartaric acid

Point group

o

/ -----
/ "\
~------1
\ /
'--...-/
2-C2

Crystals

,---
',)-__ I

I ,
, I
I ,
I I

"c+---"':>J.' I----

CH2(COOHh (Malonic acid)

H)BO), CuSO.· 5H20
MnSiO) (Rhodonite)
NaAISi)Og (Albite)

m

D- L-
Tartaric acid

Li2S04 'H20
C'2HnOli (Sucrose)
C14H IO (Phenanthrene)

2

3
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Table 8.11 (continuation)

Molecules

CI

Noel

\ /
/~\

CI

Trans-I,2-Dichloroethene

Diphenylethine

Point group

o
m-C,

o
21m -C'h

-~,
/" I "-

/ I "\
/ I \

~---+----~
\

I I
I /

" I /............. ./
222- D,

Crystals

CaSO•. 2H20 (Gypsum) Fig. 5.6
FeSO.·7H20
KAISiJOs (Sanidine), S
CIOHs, C1.H IO (Anthracene)
(COOH),' 2H20

MgSO.· 7H20 (Epsomite)

Vitamin BI2 (Fig. 1.1 b)
KNaC.H.06 • 4H20
(Rochelle salt)

4

5

6
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Molecules Point group
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Crystals

H H

\ //C=C\
CI CI
Cis-I,2-Dichloroethene

H H

\ /
C=C

I \
Ethene

CD

mmm-D2h

NH.MgPO•. 6H20 (Struvite)

C6H.(OHh (Resorcinol)
Ag3Sb (Dyskrasite)
FeAI03

CaC03 (Aragonite)

7

8

2+

/--- ..........

I \
I \
\ • I
\ I
\ /
"..... ,.//

4-C.

CaSO. (Anhydrite), KCIO.
BaSO. (Barytes), S
(COOH)2 (Oxalic acid), C6H6, 12

PbMoO. (Wulfenite)

(CH3CHO). (Metaldehyde)

9

C-(S-CH,l.

Ca2[AsO./B(OH).] (Cahnite)

BPO., BAsO.
QCH20H). (Pentaerythritol)

10
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Table 8.11 (continuation)

Point group Crystals

II
2+

0
4/m-C4h CH20H . (CHOHh' CH20H

(Isoerythritol)

CaWO, (Scheelite)
NaIO,. BaMoO,

2+

12

/~

11, : ~
I ',1/ \
t---)I(---1
\ /I"v'
~ I '........ ..J../

CCl3COOK .CChCOOH
422 - 0,

NiSO,'6H2O

13

I
I

Molecules

XeOF,
4mm-C,.

C3H. (Allene)

(*)
'---1.-/
42m -D2d

Hg(CNh

KH2PO"
CO(NH2h (Urea)
CuFeS2 (Chalcopyrite)

14



Table 8.11 (continuation)

Molecules Point group
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Crystals

" A<'
H~H

CI

CH,CCI,

15
, (111)

@
----("t---

, ,, ,
, I

: I
I I
, I

(110), I, ,, ,, ,
----- ___lyJ___

,
4 i mmm - D4h

,,
(100)

,

Ti02(Rutile)

Sn02 (Cassiterite)
Ti02(Anatase)
ZrSi04(Zircon)

16

/~----"",

I \
( .. i
\ /""'_/
3-C,

NaI04'3H2O

Tl2S

17

/' "
I \
\ A )

"" /-----..-/

3-C"

CaMg(C03h (Dolomite)

FeTi03 (Ilmenite)
Be2Si04 (Phenacite)
LizBeF4
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Table8.1l (continuation)

Molecules Point group Crystals

m 18

H ~ H

~
C2H6 (Skew conformation)

/~-~
/ \ / \
~-----~----~
\ / \ /
,-I ,,/,-_.p

32-0,

L- R-
Low-quartz Si02

AlPO., Se, Te, HgS, K2S20 6
(C6HsCO)2 (Benzil)

C6H12 Cyclohexane (Chair-form)

3m-C,v

I
I
I
I
I
I
I
I
I
I
I

-------l
','....

Tourmaline

Ag3SbS3(Pyrargyrite)
NiS (Millerite)
LiNaSO.

CaC03(Calcite)

As, Sb, Bi, CdCh, NaN03
Ah03 (Corundum)
Fe203 (Haematite)
Mg(OH12 (Brucite)

19

20



Table8.11 (continuation)

Molecules

CHFCI = R

Hexa-R-Benzene

H\ /--.:t:
O--B

\
/0
~

B(OH)3

Hexaazacorone

Hexaphenylbenzene

Point group

/--'"
/ \
I • \
\ J

\ /
\ /
'- /--_/
6-C6

ii-C'h

6/m-C6h

622- 0 6
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Crystals

21

KNa3(AISiO.). (Nepheline) with
etch-figures

22

23

Ca,[F/(PO.hJ (Apatite)

24

KAISiO. (Kaliophilite)
Si02 (High-quartz)
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Table 8.11 (continuation)

Molecules

CH;Br

BrH;cAcH;Br

BrH;cycH;Br

CH;Br

Hexabromomethylbenzene

Benzene

Tetramethylmethane

Point group

6/mmm-D6h

23-T

Crystals

AgI

ZnS (Wurtzite), CdS
ZnO, BeO

BaTi(Sij0 9)
(Benitoite)

Mg

Be, Zn, CuS, NiAs,
BejAhSioOl8 (Beryl)
C (Graphite), MoS2
C2H6

Left-NaClOj

25

26

27

28
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Table 8.11 (continuation)

Molecules Point group Crystals

31

30

29

ZnS (Sphalerite)

Si02(Melanophlogite)

Alums (e.g. KAl(SO.n·12H20)

FeS2 (Pyrite) with Striations on
the cube faces

C>h~T"'
~CH'

CH, CH,

Octamethylcubane

CuCI, CuBr, CuI
Al(P03)3, Ag3PO.

CsHs (Cubane)

m3m-Oh

32

I
I
I
I
I
I

///J--- . _

NaCI, KCI, CaF2, MgO

PbS (Fig. 4.1), CsCl
Garnet (Fig. 1.1 a)
Cu, Ag, Au, Pt, Fe, W, Si
C (Diamond)
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Table 8.11 (continuation)

A few Don-erystaUographic point groups

Molecules Point group Crystals

CO, HCl, CN-

0-0
H2
O2
Cl2

0 • 0
CO2

C2H2

An oo-fold rotation axis with infinitely many
mirror planes parallel to it.

oom-Coev

An oo-fold rotation axis with infinitely many
mirror planes parallel to it and infinitely
many 2-fold axes normal to it, a mirror plane
normal to it

oo/mm-D~h

33

Impossible

34

Impossible

35
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EXERCISES

Exercise 8.1.
a) What is meant by a polar rotation axis?
b) Which symmetry elements can compensate the polarity of a rotation axis? The
arrows in the diagram represent X-fold polar rotation axes, Xp •The polarity will be
compensated by a symmetry operation which reverses the head of the arrows.
Draw in the location of symmetry elements which can do this.

c) How can polar rotation axes be recognised in symmetry diagrams and in the
stereograms of point groups?

Exercise 8.2. Are there polar rotoinversion axes? If so, specify which; if not, state why
not.

Exercise 8.3. Combine the operations 1+1, 2+1, 3+1, 4 +1, 6+1. Which point groups
result? Give their symbols.

Exercise 8.4. Combine the operations (A) 2+ 2, (B) m +m and (C) 2+m, where the
elements intersect at angles of 30, 45, 60 and 90°. Take the direction of m to be the
direction of its normal.
Complete the stereographic projections shown in Table 8.12. Which symmetry

elements are generated? What are the resultant point groups? Give the symbols for
each.
Copy the stereograms of the point groups in columns A, B or C into column D, and

add 1. Which new point groups are generated? Give their symbols.
For each point group, choose an axial system and assign each point group to a

crystal system.
The solution of that part of the exercise will explain the following symmetry rules:

A) The combination of two 2-fold axes at an angle of!.... produces an X-fold
2

axis through their point of intersection perpendicular to their common plane.

X = 360°
G

B) The combination of two mirror planes at an angle of!.... produces an X-fold
. .. f' . 360° 2aXIs along their lme 0 mtersectlOn. X = --.

G
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Table 8.12

A B C D
2+2 m+m 2+m A orB +forC

~~ \"-r ....... A,--T--I' -r~

ti1Y / I ", /( 1 I"",/ \ 1 / .A
I~' /

/ \ 1 I '\ I-. \ 1 I
1 / /,,, \ I / // \ I \ 1/ /\ \ II /' I " \ 1 I //\
V i--_~\!/~-- - j \11.// \ L__ _~I/~:::' __ ~ "\'1/ \

\ //I\~" I 1'~1
t---~:, ~---l

\ //// 1 \ / \ /('1\ I \ / /1\" /
'y/ I I , ''I y/ / 1 , / I 1 \ ,

, / I \ / Y / I \
'- I : \'yo '(' / I \ )

''''; 1 )/ '--<. I V"--..J_>- ~-..l_ z...--.J.~
"""'...L- ---

/~)\ /~r---~
/~, '---1-'

~
A I

/ 1 / \
I ,A /\ I /\

/ "': // \
I 1 / \:// \ L !/ \ I "I / \v I---~ ~---j 1----"(.----1

\ /1',- J \ /1"'/ \ ---;1---- ,
\ //1", /

\ / I '/
\ / 1 \ / 1 /
'/ 1

/ 1 'v/ I ')/v I )
'- I / '< I /'....... __L/

-.J~
,

,~- .......... _L/

/,~,

~\i---
--T--, --T-

/ 1 ~
/ I ,

/ I ' / I "

~ /'" : /\ J... 1 '
/" I / /,-" I /F'\ I "" I //\1.--/ ........ ,I~,/'" I .......~I,,// / ',1// \ I ", // I
\ ///1", j /j)' , /' I"" I\ /// ; "" I \ //1'" I
Y I ' / I """; / I '-.....I

" I l
y 1 '/ '(' I / '( I /

" I /
" I " I /'........ L/ '--.1_ ,~~ --~~

/-T-' /'- ....... /1' /1-....... I,
~

/ 1 '\ / \ / " / I "-
I I \ I \ (---- ----)

/ 1 \

~---; ----1 / I \
i--- ----I,

J \ : /\ 1 / \ / ' /
" I //" I / "- /' " /'-.L,/ ........ -- '-- /'

' __L/
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C) The combination of a 2-fold axis with a mirror plane at an angle of.!..- pro-
_ 2

duces an X axis through the point of intersection of the axis with the normal to
the plane and perpendicular to the common plane of the axis and the normal.
- 360°X=--

e

- -- -- - e
Since only X = 1, 2, 3, 4 and 6 or X = 1, 2 == m, 3, 4 and 6 are permitted, - can

2
only have the values 30,45,60,90 and 180°. The combinations at an angle ofl80° are
not included in Table 8.12.

Exercise 8.5. Combine the operations of (E) 2+ 3, (F) 4+3 and (G) 4 + 3, where the
elements intersect at an angle of 54.73° (the angle between the edge and the body
diagonal of a cube).
Complete the stereographic projections shown in Table 8.13, and give the symbols

for the resultant point groups. Copy the stereograms in E, F and G into H, I and K and
add I to them. Give the symbols of the point groups which now result.

Table 8.13

2+3 4+3 4 +3

""""-7f\-"""'- """"-7f\-- /-,?'I'\.......... "< /1\ /'\ < / I \ }\ ,;( / I \ /\; '.t--~-¥ \ I ,);--+-'v \ ! )j,--L_{ \
( --I" I / ....... ~/ ''',,1//\ ....... ' ' /' I" I / .......
K+-'W- \_~ ,-t-7f-t-~ ~-+-)f{-}-~
" \ /1" ., / I \ ....... ,v 1,*/ / \ " .......\/ 1*/;......... / '1(\ /~~- "/ \ /\---r , \ /\:-+ "< \ I / ' '< \ I / Y 'f \ I / V
"'~---/' .........~/ "~/

E F G
--- 11"\'-..... +1 --71':.......... +1 ........-~-..... +1

/ /1\ A / / \ " ;< /1\ >\I" / I \ / I" / -t \ /\( /"0-r ;\( \ K -\( \ 'J--+-~
(//'" 1/\ ....... k:/t""I// \ "~/ ,,1/ \ ~ ~ "/ ~&---J--A-t-- K- --*-t-- --t--f-;:-j-

......... \ / 1 ,,1/ / " \ /1" / / \" \/1"))__ / J\ '\ 'J/\ )\-+--K: / --+-- /" 1 ?\T /' ;V \ 1 / ,/ ~/ \1/ > '< \ I / >'......... W /' "---~ ------ ----
,--~........-

H I K
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Exercise 8.6. Starting from the point of highest symmetry in the trigonal system 321m,
develop its trigonal subgroups.

Exercise 8.7. Colour the circles of the point groups in Fig. 8.3, using the same colour for
all point groups belonging to the same crystal system.

Exercise 8.8.
a) How is it possible to identify the crystal system of a point group from its
International symbol?

b) For each crystal system, give the characteristic point-symmetry elements, and, if
necessary, the number of such elements or their relationship to one another. Mark
the position these elements occupy in the International point-group symbol, and
give an example for each crystal system.

Characteristic Position of
symmetry elements characteristic

Crystal system number and symmetryelement(s) Example
relationship in the symbol
to one another

1st I 2nd I 3rd

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic
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Exercise 8.9. Determine the International symbol for the point groups whose
symmetry elements are illustrated in the following stereograms:

a) First, find the symmetry elements that charcterise the crystal system.
b) Indicate the crystallographic axes a, b, c on the stereogram, bearing in mind the
orientation of the symmetry directions for the crystal system.

c) Give the International symbol and, in brackets, the Schonflies symbol.

1)

3)

*
/T" \

~ I ---i
\ : /

I----
~-""""'"/ \ I~

/ \ / \

~----,,----~
\ I \ /,-,I ,,/

""'--_P

2)

\ 1

\ /" /" /-- --

5)
~-

/
/

I
I

-..
"\

\
\

6)
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ExerciseS.lO. In the stereograms below, indicate the symmetry elements for the given
point group:

a) Determine the crystal system.
b) Draw the appropriate axial system on the stereogram. The c-axis should always be
perpendicular to the plane of projection.

c) Analyse the point group symbol with respect to the symmetry directions.
d) Finally, draw the symmetry elements on the stereogram. Remember that rotations

androtoinversion axes, as wellas the normals to mirrorplanes are arrangedparallel to
their symmetry directions.

222

4mm

321m
(3m)

21m -'"/ \
( )
\ /,,_/

/'1-
6m2 I "

1'.............. ! //""\
\ //:, .............. .......;
\: I /.......... L

~---;f'\,
43m

, " ..j-~""(/K I/'~
-t/~-)-\....... "*~ I y//
-{, r I)
~~
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Exercise 8.11. Determination of point groups
Determine the point groups of the molecules and ions given below, using the method
described in Section 8.4. Give the International symbol and the Sch6nflies symbol, and
draw the symmetry elements on the stereographic projection.

I Benzene 2 Chlorobcnzene
.".- ---.. - ...........I "'-, / \

OJ I . \ © ( . )
\ J

'---- \ ) ..... ./ \ /
'-..._/ "'---"

I
3 I ,2-Dichlorobenzene I 4 1,3-Dichlorobenzene

/~ I
~ ---.....

( '" / \I 0 !©1 \ . , I I 1
'- ..... J I \.. _./ \ )"-. / I '-......_./_/
1.2- I 1.3-

I---------------
5 1,4-Dichlorobenzene 6 1,2,3-Trichlorobenzene

/ -
'"

- ..........
/' \

OJ ( \ ©J I \
\ I

\ ) ............. J \ )........

""'- / \ ./
-~ '---

1.4 - 12.3 -

---------------
I

7 1,2,4-Trichlorobenzene I 8 1,3,5-Trichlorobenzene
/--....... I .......----

I \ I / "'-

©J ) I @ ( \
~ ) \ I ,-~J \ J'- .....

"- / I "- /_/ I --12.4 -
I

135 -
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/~ --/ "//' i \ '\\ I \
9 Sf 6

4=::.t-·· . ' '" \'::' "r--"; \ /\"\(// \.
'-- ./

~
/-

//'/ ! \ \'\ I "
10 SfSX

~J--\,\ ( \
,\',' . ',,'"''\ \r--~~;' \ I

"'~\I~,/,/'" " /--_/
//1 \", --// i \"\ I "-

11 Sf 4X2
~t-~,''\'\ I \
':'-~r--::'; \ I

/
'\,~,(// " /-- --
/~

--.....
/ \.

12
~f.--',''\,\ { \" ...... ' ....... "'\ ' ---"---->"" \r / \ I

/
''<\::,,// "- /-- ..-

/~ --I "-

13 Sf3X3
~t-_\ '\\ { \

'\ r---- \ }
'\ \ I ,/

'\\:~/// " /-- --/

/~
--/ "

14
,/ I \', {

\
~t--, ...... ,>\ I'\,: \r---:/ \ /

',\,\~\ {;////;/ "- /-- ./



//~-----::;i --- ----.'----')Z[' , I \" ,
Methane I I I I ( II I I ,

15 I I I I
CH
4

I I I I

I I l~

\V'----~--- ' /
I >'.:~----_l.-/--

'-- /

--.../1\------:;~ /-"'----)4/ , ( \I I I

)Chloromethane I I I I
I I 1 I

16 I I I I

\CH
3
C1 I I I I

/I I l~V'----L--- '
I .::---__1/,/ "_/
..-......--,------:;~

_--....
'----.)4/ I

/ '\
I, I

I \Dichloromethane I I t I
17 I I I I

I I I ICH 2C1 2 I I I I

\ )
v---+~I .::---__1......../ "- /

....-/1\-----::::'1 /' "-'----')Z[' I ('I I

\• I I I

Chloroform I I I I

18 I I I I

CHC13 ~: N \ )I ..... ..1-- ___1-___ I

I .:~--- __l/.- ... "- /
....../,-----::;~ --'----')4' I

/ \I I I ICarbon tetrachloride I I r I

1I I I I
19 t I I I

CC1 4
~N \ /I .... ...1---_-1-___ I

1 .... "' : ............

" ./------_J. .....

--/ '\10; ! )20 580;-

AsO;-- \ /
"- /

--......
/ \

21
NO; ( 1
Co;- \ /,,_/

8 Exercises 171



172 8 Point Groups

- ........

>4< / '\
Cyclopropane ( \22

C3H6 \ I
/

" /--
>J\

,......-"
Monochlorocyclopropane I \

C
3
H5Cl I \23

/\ /.......----Dichlorocyclopropane

>4<
/ ~

C
3

H
4

C1
2 I \24

\ I
/

"'- /---->J\
/ '\

{ \
25

\ J
"'- /--- "- ........

>4<
/ '\

I ,
26

\ /
"- /--

---- -
A / "

27
I \,
\ I
"- /
'----Trichlorocyclopropane

~
/ ~

C
3

H
3

C1
3 { \,

28
\ /
"'- /--



---Trichlorocyclopropane

>J< / "\C
3
H
3
Cl
3

( j29
\ /

" /---""
~

/ \

( \,
\ I

30

"...... - /---">4<
/

\/ \
\ /

31

\. I
'- ./
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32

33

34

35

-""/' \
( . I
\ /" ./........ -
-"/ \

/ I
\ /
\ /'-----/ '\
( \

\ ;'
'\ /----/ '\

/ \
\ I
\. I
........ _/
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--
~

I "\
Cyclobutane I I36
C4H8 \ /

"- /
'-- "--Tetrachlorocyclobutane

~
/ "-

C4H4C1 4 f \
I37

\ /
"- /--- .........

>4t\
/' \

I \
38

I J
\ /,----
--....

>J=r<
/ \

f \
39 \ J

J
\. /
'-- - ./
/-"

>4t< I \
I

,
40

\ I
/, - ---

~
/,--...\
/ \

41 I I
\ /, /-----....

>4t<
/' \

I \
42 \ I

I
\ /

"'- ./



Tetrachlorocyclobutane

>Jt<
/'-'"

C
4
H
4
Cl
4

I \
43 \ I

/\ /
"- _./

>4=r<
,,--

I "\
I \

44
J

\ /
"- ./

~
--/ "( \

45
\ I

/
\. /,_/
--......

>4=r<
/ '\

I \
46

\ J

\. I
"- ./--)4=r\ / "( \

47 I
\ /
'\.. /--- ........

>J=t<
/' '\

I \
48 \ /

\ /'_./

rt=r<
,....--"

I \
49 \ I

\ /
"-_/

a) Which isomers of tetrachlorocyclobutane are enantiomers?
b) Which molecules possess a dipole moment?
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Exercise 8.12. What information about the spatial arrangement of the atoms in the
following molecules can you infer from the point group symmetry?

1.)

-
a

b

...... - - .......
/ "-

/ \
I \

1-'--....---i\ -b
\ I
\ /
\ /
'- /'-- --

mm2-C"
I
a

c2. )

NH
3

0
b ,

f.
3m-C." 6(0,)

3. )

H2C=C=CH2 *,~--- ---1 - bfo}i
Allene \ : /

I'.--

42m- D'd
0(0,1

4. )

~
, ,
, ,

PF
S ---- ---- -b(o})

0
;' "

/ "
,fro,)

6m2 - DJh
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Exercise 8.13. Rotate one of the CH2C1 groups of a I ,2-dichloroethane molecule about
the C-C bond stepwise through 360 0 with respect to the other. Which symmetry
distinct conformations are encountered? Give their point groups, and compare them
with the corresponding conformations of ethane in Fig. 8.20.

I

\
"'-

/-

I '" \
}
/

/-

( "'\
\ )
"'- /

Exercise 8.14. Will measurements of their dipole moments distinguish the cis and trans
forms of dichloroethene?

H H

\ //c=c\
Cl Cf

H /'\=C
/ \

Cl

Exercise 8.15.

a) Determine the point groups of the following crystals with the help ofTable 8.10 and
crystal models such as those illustrated in Exercise 4.4. Draw the symmetry
elements on the stereogram, and give the International symbol for the point group.

b) Indicate the position of the crystallographic axes on the stereograms and the crystal
diagrams.

c) Estimate by eye the positions of the crystal faces, and enter the poles on the
stereogram, using different colours for different forms.

d) Index the crystal forms.
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,
,,

,

_____ __i..~, .... ~

Rhombic
prism

,,
,,
,,
,
"-/' -'- ..

Trigonal
prism

Rhombic
pyramid

Trigonal
pyramid

......- ........
/ '\

f \
\ J

\ //

"--

3

--- -
/ '"( \

I I
\ /
" /--

5

......-- ........
/ '\
( \
\ J
\ /
'- /---

7

- .........
/' '\
/ \
I I
\ /
" /---

,,

i
________ ..1",

Tetragonal
prism

Hexagonal
prism

Tetragonal
pyramid

Hexagonal
pyramid

......-- ........
/ '\
( \
\ J
\ I" ,/--

......--
/ "'-
{ \
\ 1
\ /
" /_/

2

4

6

8



Rhombic
dipyramid

Trigonal
dipyramid

OJ]
Hexahedron

9

-~
/ "'-

I \
\

\\ J

"-.. /
_../

11

13--/ "( \

\ )
" /--

Tetragonal
dipyramid

Hexagonal
dipyramid

Octahedron
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10

12--/' "I \
I I
\ /

" /'-_/

14--/ '"{ . \
\ J

'" /_./

Tetrahedron

15--/ "'-
( \

\ ''" /---/

16

Rhombohedron
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Exercise 8.16. Which of the crystals in Exercise 8.15 might, on the basis of its crystal
forms, show the piezo-electric effect? Mark the appropriate diagrams "Piezo-elect."

Exercise 8.17. There is a simple relationship between the numbers offaces, edges and
vertices of a polyhedron. Work out what it is.

Exercise 8.18. The figure shows the cross-section of a ditetragonal prism on the
equatorial plane of a stereographic projection, together with the corresponding poles.
The dashed lines have been added to point out the axial intercepts of the faces.

0(0,)

a) Index all the faces of the crystal form {hkO} or {21O}.
b) If the faces of a ditetragonal prism are inclined by a given angle in the direction of
the positive and negative c-axis, the poles of the faces move a corresponding
amount away from the periphery in the [001] and [001] directions. What is the
resulting crystal form? Index all the faces of this form.
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Exercise 8.19. The figure shows the cross-section of a hexagonal prism on the
equatorial plane of a stereographic projection, together with the corresponding poles.
The dashed lines have been added to point out the axial intercepts of the faces.

0(01)

a) Index all the faces of the crystal form {hkiO} or {2130}.
b) If the faces of a hexgonal prism are inclined by a given angle in the direction of the
positive and negative c-axis, the poles of the faces move a corresponding amount
away from the periphery in the [0001] and [0001] directions. What is the resulting
crystal form? Index all the faces of this form.

Exercise 8.20. Derive the crystal forms of the following point groups:

a) Use the characteristic symmetry elements to determine the crystal system (cf. Table
8.9).

b) Look up the stereogram of the poles of the forms for the point group of highest
symmetry in that system: Fig. 8.16 for orthorhombic, Fig.8.9 for tetragonal,
Fig. 8.13 for hexagonal or trigonal, and Fig. 8.15 for cubic.

c) Place a piece of tracing paper over the stereogram, and draw in the symmetry
elements for the point group, appropriately orientated to the crystallographic axes.

d) Indicate the asymmetric face unit.
e) Draw in first the poles for the faces of the general form. What is it called? Index all
the faces.

£) If the general form has limiting forms, draw these in and name and index them.
g) Draw in the special forms and their limiting forms (if any). Name and index them
and give the point symmetry of their faces.

(It is a good idea to use several pieces of tracing paper!)

1) 42m 5) 6/mmm
2) 4 6) 622
3) mmm 7) 3m
4) mm2 8) m3m

9) 43m
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Exercise 8.21. In International Tables for Crystallography, Vol. A, for the point group
4/m 321m, the trapezohedron (or deltoidicositetrahedron), is given as the special form
{hhl}, Ihl<111 and the trisoctahedron for {hhl}, Ihl>lll. In Table 8.6, however, the
trapezohedron is given for {hkk} and the trisoctahedron for {hhk}. Explain this
apparent inconsistency.

Exercise 8.22. Which special forms in the hexagonal and trigonal systems have limiting
forms?



9 Space Groups

9.1 Glide Planes and Screw Axes

The 32 point groups are the symmetry groups of many molecules and of all
crystals, so long as only the morphology is considered. Space groups give the
symmetry not only of crystal lattices, but also of crystal structures.
In Table 6.4 are given the space-group symbols for the 14 Bravais lattices; the

space-group symbol does not in general enumerate all the symmetry elements of
the space group. In particular, the space groups of centred lattices contain new
symmetry operations. These are compound symmetry operations which arise
through reflection and translation (1) and rotation and translation (2) (cf.
Chap. 5.4 and Table 5.1).

1. In the orthorhombic C-Iattice, reflection through a plane (- - -) at Ly, z,

followed by a translation of 6 moves the lattice point 0,0,0 to LL0
2

(Fig. 9.1 a). This symmetry operation is called a glide reflection, and the
corresponding element is a glide plane (in this case, a b-glide plane).

b _
2" }- ~b::.:c.-{

a) b)

,() Fig. 9.1. a Location of a b-glide plane in
an orthorhombic C-lattice. b Position of
2-fold screw axis in an orthorhombic
I-lattice. «) lattice point with z=D

2. In the orthorhombic I-lattice, ~ 1800 rotation about an axis (.) at LLz,

followed by a translation of ~, moves the lattice point 0,0,0 to LL ~
2

(Fig. 9.1 b). This symmetry operation is called a screw rotation, and the
corresponding element is a screw axis (in this case, a 2-fold screw axis).
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9.1.1 Glide Planes

The compound symmetry operation "glide reflection" implies:

A) a reflection and
B) a translation by the vector gparallel to the plane ofglide reflection where IgI
is called the glide component.

Figure 9.2 contrasts the operation ofa mirror plane with that ofa glide plane
on a point lying off the planes.

a/
bb

a/

~-h
I

a) a

~-b

~
I

b) a

Fig. 9.2a,b. Operation of a mirror plane m (a) and of a glide plane c (b) on a point shown in
perspective and as a projection on (001)

A second application of the glide reflection brings one to a point identical to
the starting point.

g is one-half ofa lattice translation parallel to the glide plane, Igi = ~I il·

Glide planes are developments of mirror planes, and can only occur in an
orientation that is possible for a mirror plane.
For this reason, in the orthorhombic system, glide planes only occur parallel

to (100), (010) and (001). Compare the space group P2/m 21m 21m in Fig. 6.9d
with the point group 21m 21m 21m in Fig. 6.ge. Since the glide component Igl
must be half of a lattice translation parallel to the glide plane, in an ortho
rhombic space group the only possible glide planes parallel to (100) will have
glide components ~161, ~Icl, ~16+cl and ~16±cl, and this last type will only
occur in centred lattices, whereH6±cl can be halfofa lattice translation. In Fig.
9.3, these cases are illustrated, together with those parallel to (010) and (001).
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~d
$~}"(001)
~a

11(100)

b

Fig. 9.3. Glide planes in the orthorhombic system

Glide planes are designated by symbols indicating the relationship of their
glide components to lattice vectors i, 6 and c. Those with axial components:
~ Iii, ~ 161 or ~ IcI are given the symbols a, band c respectively, those with
diagonal components ~Irl +r21 have the symbol n, while those with the
component ~Irl ± r21, known as diamond glides, have the symbol d.
Since glide planes play so important a role in space groups, the operation of a

few examples will be given in an orthorhombic cell projected on x, y, O. In these
projection diagrams, only a single glide plane is shown - see Chapter 14.2 for an
explanation of the graphical symbols.

a) In Fig.9.4a, an a-glide is shown at x,Lz. Reflection of a point x, y, z in
this plane gives x, ~ - y, z, called an "auxiliary" point and the translation ~i

then moves this auxiliary point to ~ +x, ~ - y, z.

b) The b-glide plane at x,y,O in Fig.9.4b reflects a point x,y,z to the
auxiliary point x, y, z, which the translation of ~6 then moves to x, ~ +y, z.

c) The c-glide plane at x,Lz in Fig. 9.4c reflects a point x, y, z to the auxiliary
point, x, 1-y, z which the translation of ~c then moves to x, 1- y, ~ +z.

d) The n-glide plane at x, y, 1in Fig. 9.4d is parallel to the a, b-plane, and thus
has a glide component ~ Ii + 61. It reflects a point x, y, z to the auxiliary point
x, y, ~ - z, which the translation of Hi+6) then moves to ~ +x, ~ +y, ~ - z.
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t------bo-------i

b b-glide at x, y,°

f~Q--x/-y,-z-------,

'- -aib L 1 1
~~+Y,2-Z

b

a a-glide at x, ~ z

c c-glide at x, ~, z

~...)

d n-glide at x,y,~ with glide component
~la+61

en-glide at 0, y, z with glide component
~16+cl

Fig.9.4a-e. Operation of glide planes on a point. In each case, only a single glide plane is
shown projected on x,y,O in an orthorhombic cell.
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e) The n-glide plane at O,y,z in Fig.9.4e has a glide component ~16 +cl It
reflects a point x, y, z to the auxiliary point x, y, z, which the translation of
'(b- -) h - I I:1 +c t en moves to x,:1+Y,:1+z,

9.1.2 Screw Axes

The compound symmetry operation "screw rotation" implies:

360°
A) a rotation of an angle e=--; (X =1, 2, 3, 4, 6) and

X

B) a translation by a vector sparallel to the axis, where lsi is called the screw
component.

For rotation axes and rotoinversion axes, the direction of rotation was
unimportant. This is not the case for screw axes; for a right-handed axial system,
X, Y, Z (Fig. 9.5, see also Chap. 2.3) a rotation about an axis on Z from the X
axis toward the Y-axis is linked with a positive translation along Z. This is the
motion of a right-handed screw, which corresponds to the motion of advancing
the thumb of the right hand in the direction of the vector sas the fingers of this
hand point in the sense of rotation.

z

x

Fig. 9.5. The handedness of a screw axis

Fig. 9.6. Operation of a 6-fold screw axis 61
on a point lying off the axis

Figure 9.6 shows the operation ofa 6-fold screw axis (e = 60°) on a point lying
off the axis. The points 1, 2, 3 ... are arranged like the treads ofa spiral staircase.
After X rotations (X =6) through the angle e(X· e=360°), the point 1will return
to its starting point. In this case, however, the rotations have been accompanied
by a translation of X . S, and the point l' has been reached, which is identical to
the starting point. The vector 1-1' is not necessarily a single lattice translation i,
but may be any integral multiple a of r.
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Fig. 9.7a,b. Operation of a 4-fold rotation axis and the three 4-fold screw axes on a point lying
off the axes. a shows perspective views and b projections on x, y, 0

X'lsl =a!fl or

1S1=~lfl.
X

Since lsi < If I, a<X and can have the following values:

a=O, 1, 2, ... X-I

and lsi =0, 1- lfl , ~ If I, .... X-I If I
X X X

since the screw component

screw axes are designated XX-I.

For X=4, a=O, 1, 2, 3. The resulting screw axes are 40 (a 4-fold rotation
axis), 4" 42 and 43, with screw components 0, ~Ifl, ~Ifl and ~In (Note that
the screw component is directly derivable from the symbol, by inverting it
and considering it as a fraction, e.g. 4} ~D The 4-fold rotation and screw



9.2 The 230 Space Groups 189

axes are compared in Fig. 9.7. Successive operations of the 4-fold screw axes
on a point lying off the axis move point 1 to 2, 3 and 4. A lattice translation
of r generated the points 1', 2', 3' and 4'. The operations of the screw axes
are also illustrated in Fig. 9.7b by projection of the points within a single
lattice translation onto the plane normal to the axis. Note that the sets of
points generates by 4, and 43 are mirror images of one another, i.e. they are a
pair of enantiomorphs. Since 4, represents a right-handed screw, 43 may be
described as a left-handed screw with a screw component Is'l =~Irl also.
Figure 9.8 shows all of the other screw and rotation axes possible for crystals

(see also Chap. 14.2). The enantiomorphous pairs are 3, and 32,41and 43, 61 and
65, and 62 and 64•
Screw axes can only occur in crystals parallel to those directions which are

possible for rotation axes in the corresponding point group.

9.2 The 230 Space Groups

The 32 crystallographic point groups have been derived from the point groups
of highest symmetry in each crystal system (see Table 8.2). All of the space
groups can be derived in a similar manner. Starting from the space groups of
highest symmetry in each crystal system, i.e. those of the 14 Bravais lattices (see
Table 6.4), it is possible to derive an analogous scheme for determining all of
their subgroups. It must, however, be borne in mind that screw axes can replace
rotation axes, and glide planes mirror planes thus:

2 <-- 2,
3 <-- 3" 32
4 <-- 4" 42, 43
6 <-- 61, 62, 63, 64 , 65
m <-- a, b, c, n, d.

The space groups of the monoclinic system will be derived as an example for all
crystal systems. We start from the two monoclinic space groups of highest
symmetry; P2/m and C2/m (Fig. 9.9). Additionally, in C2/m, there are a-glide
planes at x,Lz and x,Lz, and 2,-axes at LY,O; Ly,~; LY,O and ty,~.

The monoclinic subgroups of the point group 2/m are m and 2. The point
symmetry elements 2 and m can be replaced by 21 and a glide plane respectively.
Since m is parallel to (010), only a-, c- and n-glides are possible. However, a
different choice of the a and c axes will convert either an a- or an n-glide into a
c-glide (Fig. 9.10). Thus, only the c-glide need be considered.
Replacement of2 and m by 2, and c results in the 13 monoclinic space groups

shown in Table 9.1 as subgroups of P2jm and C2/m.
The sets of symmetry elements for these space groups are shown in Fig. 9.9,

in the same order as Table 9.1, as projections on x, y, O. Additionally, a- and n
glide planes occur in C-centred space groups. Thus it can be seen that the pairs
of symbols C2/m and C2,/m, C2/c and C21/c, and C2 and C2, represent only a
single space group each, cf. exercise 9.4.
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Fig. 9.8. Operation of rotation and screw axes on a point lying off them. The enantiomor
phous pairs 3,-32, 6,-65 and 62-64 are given together. 4, 4,,42 and 4J are shown in Fig. 9.7
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Fig. 9.8 (continued)

In the same way, inspection of the other crystal systems leads to the entire
230 space groups. These 230 space groups are listed in Table 9.2, sorted by
crystal system and point group. Only the standard abbreviated symbols (short
symbols) are given.
In every case, the point group is easily derived from the space group symbol.

The screw axes are replaced by the corresponding rotation axis, the glide planes
by a mirror plane, and the lattice symbol is omitted, the result being the point
group to which the space group belongs.
It would be useful to revise the space groups of the Bravais lattices, which are

given in Figs. 6.7d-6.13d.
The International (Hermann-Mauguin) symbols thus indicate the symmetry of

each space group clearly. SchOnflies symbols, on the other hand, merely assign
an arbitrary number to each space group within a given point group. Thus, for
point group m(Cs), we have:

Pm: (Cs1), Pc: (C}), Cm: (C;), Cc: (C:).

This is the main reason that Schonflies symbols are rarely used in crystallogra
phy.

9.3 Properties of Space Groups

It is certainly not necessary to study each of the 230 space groups individually,
but a general knowledge of how space groups differ from one another is useful.
For this reason, the properties of a few space groups will be explored in detail.
Figure 9.11 gives the symmetry elements for the space group Pmm2. The

application of the symmetry operations to a point x, y, z will generate the points
x, y, z; x, y, z and x, y, z, as well as equivalent points such as x, 1- y, z; 1- x, y, z
and 1- x, 1 - y, z.

The number of equivalent points in the unit cell is called its multiplicity.
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Fig. 9.9a-c. The monoclinic space groups projected on x, y, O. The c-axis is not normal to the
plane of projection, but is tilted such that p> 90°.
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Table 9.1. The point and space groups of the mo
noclinic crystal system

Point groups Space groups

P2/m C2/m
P2,/m - a

2/m P2/c C2/c
P2,/c -b

Pm Cm
m

Pc Cc

2
P2 C2
P2, - c

Table 9.2. The 230 Space groups

Crystal system Point
Space groups

group

triclinic I PI
I pI

monoclinic 2 P2 P2, C2
m Pm Pc Cm Cc
2/m P2/m P2,/m C2/m P2/c

P2,/c C2/c

orthorhombic 222 P222 P222 j P2,2,2 P2,2,2,
C222, C222 F222 1222
12,2,2,

mm2 Pmm2 Pmc2, Pcc2 Pma2
Pca21 Pnc2 Pmn2, Pba2
Pna2, Pnn2 Cmm2 Cmc2,
Ccc2 Amm2 Abm2 Ama2
Aba2 Fmm2 Fdd2 Imm2
Iba2 Ima2

mmm Pmmm Pnnn Pccm Pban
Pmrna Pnna Pmna Pcca
Pbam Pccn Pbcm Pnnm
Pmmn Pbcn Pbca Pnma
Cmcm Cmca Cmmm Cccm
Cmma Ccca Fmmm Fddd
Immm Ibam Ibca Imma
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tetragonal 4 P4 P41 P42 P43
14 141

4 P4 14
4/m P4/m P42m P4/n P42/n

14/m 14J!a
422 P422 P42 j 2 P4122 P41212

P4222 P42212 P4322 P43212
1422 14122

4mm P4mm P4bm P42cm P42nm
P4cc P4nc P42mc P42bc
14mm 14cm 141md 141cd

42m P42m P42c P421m P421c
P4m2 P4c2 P4b2 P4n2
14m2 14c2 142m 142d

4/mmm P4/mmm P4/mcc P4/nbm P4/nnc
P4/mbm P4/mnc P4/nmm P4/ncc
P4z1mmc P42/mcm P42/nbc P4z1nnm
P4z1mbc P42/mnm P42/nmc P42/ncm
14/mmm 14/mcm 14J!amd 141/acd

trigonal 3 P3 P3 1 P32 R3
3 P3 R3
32 P312 P321 P3 112 P3121

P3212 P3221 R32
3m P3ml P31m P3cl P31c

R3m R3c
3m P31m P31c P3ml P3cl

R3m R3c

hexagonal 6 P6 P61 P6s P62

P64 P63
6 P6
6/m P6/m P63/m
622 P622 P6,22 P6s22 P6222

P6422 P6322
6mm P6mm P6cc P63cm P63mc
6m2 P6m2 P6c2 P62m P62c
6/mmm P6/mmm P6/mcc P63/mcm P63/mmc

cubic 23 P23 F23 123 P213
1213

m3 Pm3 Pn3 Fm3 Fd3
1m3 Pa3 la3

432 P432 P4232 F432 F4 j 32
1432 P4332 P4132 14132

43m P43m F43m 143m P43n
F43c 143d

m3m Pm3m Pn3n Pm3n Pn3m
Fm3m Fm3c Fd3m Fd3c
Im3m la3d
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c c
la' I

o 0a----; a-
C a) b) c)

_a'

Fig.9.10a-c. In the monoclinic system, a-, C-, and n-glide planes parallel to (010) are all
possible. These are shown in a, band c respectively. Suitable alteration of the choice of axes
will convert a- and n- into c-glides

>Cj,z b d~y-z b d

~x..,v,z
-b

xj~zp x,1-xz p q
Fig. 9.11 a-c. Symmetry elements of
space group Pmm2 in projection on

b dl-~y-z I-x l-XZ b d
x, y, O. a The general position x, y, z.

, , b the special position ~'y, z. c The
special position ~,~, z

Plq P q
a) a

b) c) L..- ....L.. -'

In Fig. 9.11a, the position is "4-fold", or said to have a multiplicity of 4. This
position has no restrictions on its movement; it has three degrees of freedom,
and, as long as it does not move onto a point symmetry element, it continues to
have a multiplicity of 4. Such a position is called a general position.

A general position is a set of equivalent points with point symmetry (site
symmetry) I.

It is asymmetric, and this is indicated in Fig. 9.11 by the tail on the circle. The
figure is, of course, not really asymmetric, as it is unchanged on reflection in the
plane of the paper, but it is sufficiently unsymmetrical for our present purpose!
If the point in the general site x, y, z is moved on to the mirror plane at

~,y,z, the point 1- x, y, z comes into coincidence with it; the two points coalesce
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Table 9.3. Positions of the space group Pmm2

Degrees
Multi- Site

Coordinates
Position of

plicity symmetry
of equivalent Fig.

freedom points

general 3 4 I
x,y,z; x,y,z;

9.11a
x,y,z; x,y,z

2 m I . I - 9.11b2'y,z, 2'Y'z

2 m O,y,z; O,y,z

2
2 x,~, z; x,!' zm

2 m x,O,z; x,O,z
special

1 mm2 !'!' z 9.11c

1 mm2 ~,O,z

1
1 mm2 O,~, z

1 mm2 O,O,z

at the mirror plane to a single point ~, y, z. At the same time, the points x, 1- y, z
and 1- x, 1- y, z coalesce to the single point ~,1-y, z (Fig. 9.Ha, b). From the
4-fold general position, we have obtained a 2-fold special position. The
multiplicity of a special position is always an integral factor of the multiplicity
I position. Special positions are not asymmetric; they possess site symmetry
higher than 1, and in Fig. 9.Hb, the site symmetry is m.

A special position is a set of equivalent points with point symmetry (site
symmetry) higher than 1.

This particular special position has two degrees of freedom. As long as the
point remains on the mirror plane, its multiplicity is unchanged. Other similar
special positions arise from the mirror planes at x, 0, z; x, L z and 0, y, z.
A special position arises from the merging of equivalent positions.

If a point on Ly, z moves onto the 2-fold axis at L L z the two points
~, y, z and ~,1- y, z coalesce to ~, ~,z. This special position retains only a single
degree of freedom. The point symmetry of the position rises to mm2, and the
multiplicity falls to 1. The positions 0,0, z; L 0, z and 0, L z are similar to L L z.
Some space groups have special positions with no degrees of freedom, an
important case of this being a point on an inversion centre (see Table 9.4).
The general and special positions in space group Pmm2 are set out in

Table 9.3.
Another space group in point group mm2 is Pna2" shown in Fig. 9.12. The

space group symbol indicates that the unit cell is orthorhombic, with n-glide
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Fig. 9.12. Symmetry elements of the space group Pna2 j in projection on x, y, 0 showing the
general position x, y, z (1). Even if a point lies on the a-glide plane at x,Lz (1'), this does not
reduce its multiplicity. Glide planes and screw axes, unlike point-symmetry elements, do not
reduce the multiplicity of a position which lies on them

planes normal to the a-axis with a glide component ~ 16 +cI, a-glides normal to
the b-axis, and 2,-screw axes parallel to the c-axis. The general position, x,y,z,
as shown in Fig. 9.12, is again 4-fold. When, however, the point moves onto the
a-glide at x, ~, z, the multiplicity is unchanged. A special position does not arise,
since glide planes and screw axes do not alter the multiplicity of a point. As a
result, the space group Pna2J has no special positions.
Figure 9.13 shows the projection of the space group P2/m on x, y, O. In

addition to the general position, there are special positions with m, 2 and 21m
site symmetry. Table 9.4 shows these points, and gives the degrees of freedom,
the multiplicities, and the site symmetries of each type of position. Note that as
the site symmetry rises, the multiplicity falls.

The asymmetric unit ofa space group is the smallest part of the unit cell from
which the whole cell may be filled exactly by the operation ofall the symmetry
operations. Its volume is given by:

v . - Vunitcell

asym. urnt - multiplicity of the general position

and it has the property that no two points within it are related to one another by
a symmetry operation, cf. the asymmetric face unit of a point group in Chapter
8.2.1.

An asymmetric unit contains all the information necessary for the complete
description ofa crystal structure.
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x,1-y,zp

I
a

d l-x,y.I-z t) .L l-x.1-y.1-zb
I-x, 2 ,I-z

Fig. 9.13. Space group P2/m shown in projection on x, y, 0 with the general position x, y, z and
the special positions on m, 2 and 21m

Table 9.4. Positions of the space group P2/m

Degrees Multi- Site
Coordinates

Position of equivalentof freedom plicity symmetry
points

I x,y,z

general I q 3 4 1
x,l-y,z

I I-x, y, l-z

I
1- x, 1-y, 1- z

I
~ 2 2 m x,~, z

I l-x,!,I-z

special I q ~, y, ~1 2 2
I p-y,!
I

I ~ 0 1 21m I I I
2' 2' 2

I

An asymmetric unit of the space group P2/m is the volume limited by
0:,::: x :,:::!; 0:,::: y :,:::!; 0:,::: z :'::: 1. Its volume is one quarter of that of the unit cell, so
the equation above is fulfilled, as the multiplicity of the general position is 4.
The tetragonal space group P42/mnm will be described in Section 9.4, The

general position in the hexagonal space group P61 is illustrated in Fig. 9.14.
Fig. 9.14a shows the operation of a 61-axis at O,O,z on an asymmetrical point
x, y, z. The coordinate for each generated equivalent point are easily deter
mined. With different z-values, these x- and y-coordinates will also arise from
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x

a)

b)

a y

*-t-*
6 / \ ~ /

/,..\/
*-f-* c)

Fig.9.14. a Operation of a 6,-screw axis at 0,0, z on a point in a general site x, y, z.
b Displacement of the points originated in a by lattice translation into the unit cell (general
position). c Space group P6,

6,6,62,63,64,65,3,3,3(, 3r operations. In Fig. 9.14b, the equivalent points ofa
have been shifted to a single unit cell by lattice translations. From this
arrangement of the points, the 2, at LLz and the 3, at LLz and LLz are
clearly shown. The symmetry elements of P6, are given in c.
We shall now consider, as an example of the cubic system, the space group

P4/m 321m. This is the space group of the cubic P-Iattice, which has already
been introduced in Fig.6.13d. That diagram of the space group P4/m 321m
is incomplete. It was, however, adequate for the introduction of symmetry
relationships, and is also entirely suitable for the application of this space
group, as we shall see later. M. J. Buerger [6] developed projections of the
cubic space groups which have been included in the third edition of the
International Tables [14]. Figure 9.15 shows such a projection on x, y, 0 of the
space group P4/m 321m. In order to include those symmetry elements which
are parallel to (110) and (111) in the diagram, Buerger used an orthographic
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I
1

t
~

~-- f--!! t-t-....-t-t---Ht---O:--f-;t---+-t--IlIt--t-I ~ --- \

~ J-~ f-:+---el--+--j---+......--l~--t--+---t-+-o---Ii-J ~ -I ~

~ -- f--!! t-t-....-t-t--+-1t---O:-+-1t--+--'t--IlIt--t-I ~ --- \

Fig. 9.15. Space group P4/m j 21m [6], [14] projection on x,y,O

projection I, and representations of the oblique rotation- and screw-axes. In
order to understand the relationship of the various symmetry elements, it is
useful to study Fig. 9.15 and Fig. 6.13d, to see that they are representations of
the same thing.
Even for so complex a space group as P4/m 321m, it is relatively easy to

describe a general position. Figure 9.16a shows a section of a cubic unit cell. A
3-fold rotation axis lies along the body-diagonal of the unit cell x, x, x, but it is
not shown here. Starting from a point x,y,z (x=0.3, y=0.2, z=O.I), the
operation of the 3-fold axis generates the points z,x,y and y,z,x (Fig.9.16a).
Figure 9.16b shows the projection of these three points on x,y,O. The
application of the mirror plane at x, x, z to these points converts them to a set
of six points in a planar ring (Fig. 9.16c). The further application of the 4-fold
axis at 0,0, z converts this ring to a set of four rings (Fig. 9.16d). Finally, the
mirror plane at x, y, 0 reflects these rings downwards and produces the full set of
points for this 48-fold position. The coordinates of all 48 of these points are

I See section 4.8.
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x,z,y
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x,y,z X,2,y x,z,y x,y,z

y,X'ZO- _~y,x,Z
Y,Z,)( y,z,X

2,X,y z,x,y
z,y,x 2,y,x

Q c)

d)

Fig. 9.16a-d. The 48-fold general position of space group P4/m 321m.
a Section of a unit cell showing the operation of the 3-fold rotation axis at x,x,x (not drawn)
on a general point x, y, z with x = 0.3, y = 0.2, z = 0.1. b Projection of the equivalent points in
a on x, y, O. c The operation of the mirror plane at x, x, z on the points in b generates six
equivalent points in a planar, 6-membered ring. d The operations of the 4-fold axis at O,O,z
and the mirror plane at x, y, 0 on the points in c complete the full set of 48 equivalent points of
the general position. Only those points lying above the plane of the paper are shown. The rest
may be generated by giving a minus sign to the third co-ordinate of each triple
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given in Fig. 9.16d, if each triple is taken to imply one with a minus sign on the
third co-ordinate as well. These 48 equivalent points are generated entirely by
the symmetry of 4/m 3 m!
There is a simple relationship between the number of faces in the general

form of a crystal of a particular point group and the multiplicity of the general
position of a space group in that point group (cf. Table 9.2). For space groups
with a P-lattice, the multiplicity of the general position is equal to the number of
faces in the general form for the point group. For space groups with C-, A- and
I-lattices, the multiplicity of the general position is twice as great as the number
of faces, and for those with an F-lattice four times. The general form of
the point group mm2 is the rhombic pyramid (cf. Exercise 8.15(5)) with four
faces. The multiplicity of the general position in Pmm2 (Fig. 9.11a) or Pna2,
(Fig. 9.12) is 4, while for Cmm2, Aba2, Imm2 or Ima2 it is 8, and for Fmm2,
it is 16.
If the point group includes an inversion centre, all the corresponding space

groups will be centrosymmetric, cf the monoclinic space groups in Fig. 9.9.
Consider now the space group P42/n 21/c 21m. Removing the lattice symbol

and converting all glide planes and screw axes to the corresponding point
symmetry elements (42 -> 4; 21 -> 2; n, c -> m) gives the point group of this space
group: 4/m 21m 21m.

9.4 International Tables for Crystallography

Many of the most important properties of the 230 space groups are collected in
International Tablesfor Crystallography, Vol A. [18], [17], [14]. These tables are
very useful. The information they contain may be illustrated with respect to the
space group P42/mnm (Fig. 9.17).

(1) Short space group symbol, Schonflies symbol, point group, crystal system,
number of the space group, full space group symbol.

(2) Projection of the symmetry elements of the space group on x, y, 0; a points
down the page, b across to the right, and the origin is in the upper left
corner.

(3) Projection ofa general position on x, y, 0; the axial directions are as in (2), 0
represents a point, CD a point projecting on top of another, while (J) implies
that one of the points is derived from the other by a reflection or
rotoinversion operation. The z-coordinate is indicated.

(4) Information about the choice of origin, here at an inversion centre at the
intersection of three mutually perpendicular mirror planes. Since this is a
tetragonal space group, the symbols 21m 121m imply the symmetry
directions, c, (a), (110).

(5) The asymmetric unit:

V . - Vunilcell

asym. ufill - multiplicity of the general position

(6) The symmetry operations of the space group.
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(1) P42/mnm
No. 136

D 14
4h

P4zlm 2,fn 21m

41mmm Tetragonal

-ED +

@ (3)

(4) 4-(0,0, n i,O,z
(8) 2 x,f,O
(12) 4- O,!.Z; 0, Li
(16) m x.x,z

~+ED~-I

E9
~+

(3) 4' (0.0,n O.!.z
(7) 2 x,x,O

(II) 4+ i,O,z; i,0,!
(15) m x.f.z

+

E9
+ <Ii>-

+

E9
+ <Ii> -

(2) 2 O,O,z
(6) 2(i,O,O) x,U
(10) m x,y,O
(14) n(O,!.!) i,y,z

Asymmetric unit

(I) I
(5) 2(O,i,0) i,y,!
(9) I 0,0,0
(13) n(i,O,n d,z

Symmetry operatious

(2)

(4) OriIID al cenlre (m m m) al 21m 121m

(5)

(6)

(7) Positions

Muhiplici.y. Coordinates
Wyckoff tetter.
Site symmefry

16 k (1) x.y.z (2) f.J,z (3) J+i,x+!.z+! (4) y+i,Hi,z+!
(5) Hi,y+U+! (6) x+i,J+U+! (7) y,x.! (8) J,f.!
(9) f,J,! (10) x.y,! (11) y+i,HU+! (12) J+i,x+U+!

(13) x+i,J+!.z+! (14) H!.y+!,z+! (15) J.f,z (16) y.x.z

8 j ..m x.x.z f.f.z f+!.x+!.z+! x+i,Hi,z+!
f+ !.x+ !.!+! x+!.H i,t+! x,x.! f.f.!

8 i m. x.y,O f,J,O J+i,x+!.! y+i,HU
Hi,y+!.! x+!.J+U y,x.O J.f.O

8 h 2 .. O,i,z O,i,z+! !.O.t+l 1.0.!
O.U O.U+l i,O.z+ I 1.0.z

4 g m .2m x,f.O f.x.O x+!.x+!.! Hi,H!.!

4 / m .2m x.x.O f.f.O H!.x+!.! x+!.H!.!

4 e 2.mm O.O.z !.!,z+l I.U+l O.O,!

4 d 4.. O.Li O,l.! !.O.! !.O,l

4 c 21m .. O,!.O O,!.! 1.0,1 1,0,0

2 b m.mm 0,0,1 !.!,O

2 a m .mm 0,0.0 !.!.!

Fig. 9.17. Space group P42!mnm, from International Tables for Crystallography, Vol. A. [14]
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(7) General and special positions.
Col. 1: the multiplicity of the position.
Col. 2: the Wyckoff letter assigned to this position; the letter furthest

down the alphabet, here k, represents the general position.
Col. 3: the site symmetry (point symmetry of the position), in the

order c, (a), (110).
Col. 4: the coordinates of equivalent points in the position.

9.5 Space Group and Crystal Structure

In Chapter 3, we defined a crystal structure as lattice +basis. It is thus possible to
describe it as a geometrical arrangement of atoms. Table 9.5 A gives the lattice
and the basis for the rutile (Ti02) structure. The perspective drawing and the
projection on x, y, 0 in Fig. 9.18 are derived from these data.
Every crystal structure can be similarly described by its space group and the

occupation ofgeneral or specialpositions by atoms. The crystal structure of rutile

Table 9.5. Description of the crystal structure of rutile Ti02

A B

Lattice Basis Space group Positions of the atoms

tetragonal P Ti: 0,0,0 P42fmnm a Ti: 0,0,0
I I I I I I
2' 2'"2 2' 2'"2

----------- -- ----------------
ao=4.59 A 0: 0.3,0.3, ° ao=4.59 A f 0: x,x,o
co=2.96 A 0.8, 0.2, ~ co=2.96 A ~ +x, ~ - x, ~ x=0.3

0.2, 0.8, ~ ~ - x, ~+ x, ~
0.7,0.7,0 X, x,O

I
b) a

-b

0=0.=Ti

c
I

a)

Fig. 9.18a, b. The crystal structure of rutile, Ti02, shown: a in a perspective drawing, b in
projection on x, y,°
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is in space group P42/mnm. The titanium atoms occupy the position a, and the
oxygen atoms the position f with x= 0.3 (cf. the page of International Tables
in Fig. 9.17). The special position a is 2-fold, implying 0,0,0 and LL~;

f is 4-fold: x,x,O; ~+x,~-x,~; ~ -x,~ +x,~ and x,x,O (Table 9.5B). 0,0,0
and x, x, 0 (x = 0.3) lie in a single asymmetric unit of space group P42/mnm,
cf. Fig. 9.17. Substituting 0.3 for x in the coordinates for the O-atoms gives
the specific coordinates listed for the basis in Table 9.5A. The description of
a crystal structure in terms of the space group is much simpler than that
in terms of the basis when positions of high multiplicity are involved. In
addition, the space group shows clearly which atoms are related to one another
by the symmetry elements of the space group. This relationship is particularly
important for positions with one or more degrees of freedom. Any movement in
x (cf. position f in Fig. 9.17) alters the relationship of all the related atoms; for
example, an increase of x results in the movement of the O-atoms indicated by
the arrows in Fig. 9.18b.
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EXERCISES

Exercise 9.1. For the two-dimensional "Knockel" structures given below, indicate:

a) The unit mesh.
b) The symmetry elements, paying particular attention to glide planes.

P1P4
4f>4P
P4P4
4f>4P

1) ....----------,
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Exercise 9.2. Glide planes and screw axes. In the projections below of a unit cell onto
x, y, 0, only a single symmetry element is given. Allow this symmetry element to operate
on an asymmetric point (in a general site) at x, y, z and give the coordinates of the
equivalent point(s) generated.

1
m in x'Y'2

1
a in x'Y'4

e)

0' "rr=-------,
n in x,y,O

b)

d)

h)

m in x,-t,z

----------

b in t,y,Z

n in x,O,z



i)

-
.1

0~n 4" y,

k)

1~~ ----. -Jo. 1
4 4

m)

4
1

in OtOtZ

j)

1)

n)
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I
J

t

2 in 1 1 z
4'4'

II
3

1
in O,OtZ

Exercise 9.3. The figures show the operation of a glide plane and a 21-axis on a point.
The arrangement of the points appears to be the same in the two diagrams. Discuss this
apparent contradiction.

1
p p

p



210 9 Space Groups

Exercise 9.4. Show that (a) C2,/c=C2/c, (b) C2,/m=C2/m, and (c) C2, =C2.
Start from the projections of the space groups (a) P2,/c, (b) P2,/m and (c) P2, as

given in Fig. 9.9. Place a point at x, y, z and another at! +x,! +y, z (C-centring), and
allow the symmetry elements to operate on them. This will give the general positions
for: (a) C2,/c, (b) C2,/m and (c) C2,. Using these general positions, the complete
symmetry of the space groups can be determined. Using Fig. 9.9, show the corre
spondence of (a) C2dc with C2/c, (b) C2,/m with C2/m, and (c) C2, with C2,
moving the origin of the diagram as necessary.

Exercise 9.5. Determine the symmetry of the orthorhombic C- and I-lattices. Indicate
the symmetry elements on a projection of the lattice onto x,y,O, and give the space
group symbol.

Exercise 9.6. Draw the symmetry diagram of space group Pmm2 on a piece of graph
paper. Enter points in the general positions 0.1,0.1,0.1; 0.1,0.4,0.1; 0.25,0.25,0.1; and
0.4,0.4,0.1 and those points resulting from the operation ofthe symmetry elements on
them.

Exercise 9.7. The symmetry diagrams for seven space groups are given below as
projections on x,y,O.

a) Enter on each diagram a point in a general site x,y,z, and allow the symmetry to
operate on it.

b) Give the coordinates of the points equivalent to x, y, z.
c) What is the multiplicity of the general position?
d) Work out the space group symbol. (The graphical symbols for symmetry elements
are given in Chap. 14.2).

e) Indicate a special position - if there are any - and give its multiplicity.

0 0 o-b

/ /
0 0 0

a) / /
0 0 0

/
Q
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Exercise 9.8. Make a tracing of the projection of a hexagonal unit cell on x, y, 0
(Fig. 9.14) and place at O,O,z (a) a 6r axis, (b) a 6r axis.

I. Allow the symmetry elements to operate on a point in a general site, and give the
coordinates of the resulting equivalent points.

2. Draw in the other symmetry elements of the space group in the unit cell.
3. Which symmetry elements are contained within 62 and 63?

Exercise 9.9. Consider the space group P4/m .3 2/m (Figs.9.15 and 9.16). In a
projection on x,y,O, draw in the special positions (a) x,x,z, (b) x,X,x, (c) x,O,O.
Give the coordinates of the equivalent points and the multiplicities and site

symmetry of the positions.

Exercise 9.10. Draw a projection of the symmetry diagram for the space groups P2)/c,
Pna2), Pmna, Pbca, and P422.

Exercise 9.11. Criticise the symbol Pabc.
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10 The Interrelationship of Point Groups
and Space Groups

When point groups and space groups are compared and contrasted with one
another, various relationships between them become clear. Table 9.2 shows the
230 space groups arranged according to the corresponding point groups. Table
10.1 contains a comparative summary of properties of point groups and space
groups.
The only forms which can occur on a crystal are those which belong to the

point group resulting from the space group of the crystal structure. The rutile
structure, for example (Fig. 9.18) has the space group P42/mnm, and conse
quently point group 4/mmm. Point group 4/mmm includes only those forms
given in Fig. 8.7. Of these, the crystal in Table 8.11.15 has developed only {Ill},
{110} and {100}.
Molecules are also characterised by point groups. What is the role of

molecular symmetry when equal molecules associate with one another in a
crystal? Hexamethylenetetramine molecules belong to point group 43m
(Fig. 10.1 a). These molecules form crystals with space group 143m (Fig. 10.1 b),
in which the molecules occupy positions with the site symmetry 43m.
Unfortunately, this correspondence is far from common!
Ethylene molecules (point group 21m 21m 21m (mmm) Fig.lO.2a), give

crystals with space group P2 t/n 2Ifn 21m (Pnnm) in which they occupy
positions with site symmetry 21m only (Fig.1O.2b).
Similarly, benzene molecules, which have the very high point symmetry of

6/mmm, give orthorhombic crystals (space group Pbca) in which they occupy
positions with site symmetry I only (Fig.IO.3). Here the symmetry of the free
molecule is higher than that of the crystal structure.

a)

Fig. 10.1 a, b. Symmetry of hexamethylenetetramine (C6H12N4). a molecule: 43m. b crystal
structure: 143m. (After [2])
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Table 10.1. Comparison of point groups and space groups

Point group Space group

A group of point symmetry A group of symmetry operations
operations whose operation leaves at including lattice translations
least one point unmoved. Any oper-
ation involving lattice translations is
excluded.

I I 1 I
2 m 2 m 2); a, b, c, n, d
3 3 3 3 3),32
4 4 4 4 4], 42, 4)
6 6 6 6 6], 62, 6), 64, 65

lattice translations

a, b, c ao, bo, Co
a, fl, Y a, fl, Y

Order of the symmetry directions Order of the symmetry directions

e.g. 4/m 21m 21m e.g. P42/m 2)/n 21m
I I I I I I
c (a) (110) c (a) (110)

General form General position

Set of equivalent faces with Set of equivalent points with
face symmetry 1 site symmetry 1

fasym. face unil = Vasym. unit =

fsurface area of the sphere Vunitcell

number of faces in the general form multiplicity of the general position

Number of faces in the general form Multiplicity of the general position for
of a point group all space groups with P-lattice,

belonging to the point group

Special form Special position

Set of equivalent faces with Set of equivalent points with
face symmetry> 1 site symmetry> 1

Molecules C60 have the non-crystallographic point group 2/m 35(Fig. 11.6).
These molecules associate to give cubic crystals, with a ccp structure (space
group F4/m32/m).
There is no simple relationship between molecular and crystal symmetry.

The crystal structure that is adopted depends on many factors, including the
type of chemical bonding, the shape and the packing possibilities of the
molecules.
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a)

Fig.10.2a, b. Symmetry of ethylene (C2H4). a Molecule: 21m 21m 21m b Crystal structure
P2 1/n 21/n 21m

o
a)

./'
b) a

EXERCISES

b
Fig.10.3a, b. Symmetry of benzene
(C6H6). a Molecule: 6/mmm .
b Crystal structure: Pbca

Exercise 10.1. In each of the space groups pI (Fig. 6.7d), Pm and P2/m (Fig. 9.9) and
P2/m 21m 21m (Fig. 6.9d), place an atom A at the origin (0,0,0) and a different atom B
at a general position x,y,z (x,y,z <D.
a) What is the chemical formula of this structure?
b) What is the value of Z, the number of formula units per cell?
c) Describe the shape of the resulting molecule.
d) Give the point group of the molecule.
e) What is the site symmetry of the molecule in the crystal structure?



11 Fundamentals of Crystal Chemistry

Crystal chemistry is concerned with the crystal structure of the elements and of
chemical compounds. It attempts to explain why particular types of crystal
structures arise under specific conditions. It is, however, still only possible to
understand how relatively simple crystal structures arise from the atoms that
make them up.
A fundamental concept in crystal structures is the idea ofsphere packing. In

this approach, the atoms or ions of which the structure is composed are
regarded as hard spheres which pack with one another. Goldschmidt and Laves
summarised this approach in three principles:

1. The Principle of Closest Packing. Atoms in a crystal structure attempt to
arrange themselves in a manner which fills space most efficiently.

2. The Symmetry Principle. Atoms in a crystal structure attempt to achieve
an environment of the highest possible symmetry.

3. The Interaction Principle. Atoms in a crystal structure attempt to achieve
the highest coordination (Sect. 11.1), i.e. the maximum possible number of
nearest neighbours with which they can interact.

Chemical bonding is a very important factor in crystal chemistry, as it is
concerned with the forces holding the atoms together in the structure. The
atoms of a structure are held together in a characteristic order by the chemical
bonding. This bonding arises from interaction of the electron shells of the
atoms, and is conventionally divided into:

a) metallic bonding
b) van der Waals bonding
c) ionic or heteropolar bonding and
d) covalent or homopolar bonding.

They are illustrated schematically in Fig.l1.1. Actual compounds rarely
correspond exactly to one of these types. In most cases, the bonding is a mixture
of two or more types, which should be regarded only as limiting cases.
It is beyond the scope of this book to discuss the theory ofchemical bonding.

We shall restrict ourselves here, so far as bonding theory is concerned, to a small
number of principles on which further study may be based.
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Fig. 11.1 a-d. Schematic summary of bonding types in crystals.
a Metallic bonding. Valence electrons of the metal atoms are delocalised in an "electron
cloud". This negatively charged cloud encloses the positively charged atom cores and holds
them together.
b Van der Waals bonding. This arises from random variations in the charge distributions of the
atoms and is very weak. The atoms and molecules tend toward a closest packing.
c Ionic bonding. In an ionic crystal, the positively and negatively charged ions are held
together by electrostatic forces.
d Covalent bonding. This represents the four sp3-orbitals of a carbon atom in the diamond
structure

The principles stated above work well in rationalising the structures of
metallic and ionic materials. They also have some application to molecular
crystals, those held together by van der Waals forces. For covalent structures,
the principles of closest packing and of high coordination are rarely fulfilled.
This results from the fact that covalent bonding is directional in nature.

11.1 Coordination

In crystal chemistry, the immediate neighbourhood of each atom and the forces
which bind it to its neighbours playa leading role in the explanation of the
overall geometry of the crystal.

The number of nearest neighbours of a central atom or ion is called its
coordination number, and the polyhedron formed when the nearest neighbours
are connected by lines is called its coordination polyhedron.

Some important coordination polyhedra are given in Table 11.1 along
with actual examples. The coordination number, in square brackets, can be
inserted in the chemical formula as a superscript, and thus add significant
crystal-chemical information to the formula.
Ideally, coordination polyhedra have a high point symmetry. However, a

coordination polyhedron is nothing like so sharply defined as a crystal form
(Chap. 8.2.1). Even atoms of the same element coordinated to the same central
atom are not necessarily equivalent. Strictly speaking, cubic (m3m), octahedral
(m3m) and tetrahedral (43m) symmetries can only arise in the cubic system.
Coordination polyhedra are often more or less distorted. The cubic coordi-
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Table 11.1. Important coordination polyhedra

Coordination
Configuration Polyhedron or polygon

Examples

0,73

Cubic
closest
packing
of spheres
(Cu, Ne, etc.)

Hexagonal
closest
packing
of spheres
(Mg, He, etc.)

0,53Trigonal prismd)

o p
'0 / ~y--/", / " /,,/ ",-/

/" 'r'/ I , /,°6 '0 (~P
- [6] f--------=--------4-~---------+_--t__----

Na(6JCI
Ti[6J0 2
Pt[6IC~-

0,41

Square

Octahedron

" /.... /

~~
/ "/ ....

o
I
I

O-~.g--o
I

6

f)

e) +-l---I---------l-

g) Tetrahedron 0,23
Zn(4JS
Si[4l0 2
S[410~-

h) (3)

o
I
I

A
/" ,

0""" '0

Equilateral
triangle

0,15

a The limiting value of the radius ratio RA/Rx is that at which spherical coordinating atoms X
just touch one another, and the central atom A fits precisely into the resultant hole.

b Cf. exercise 3.2.
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a)

I--a~ c)

Fig. 11.2a-c. Cubic closest packing of spheres (Cu-type). a Coordination polyhedron [12]
(cuboctahedron) as a perspective representation, using spheres reduced in size, and as a
projection of the spheres on a close-packed layer. b The crystal structure. One of the layers
parallel to (111) is shown together with the layer sequence ABCA. c A unit cell (cubic
F-Iattice). The spheres are reduced in size, and their correspondence to the stacked layers is
indicated. The unit cell is also sketched in b

nation in cubic CsI (Fig.3.4) and the octahedral coordination in NaCI
(Fig. 11.1?) are strictly regular, while the octahedral coordination in tetragonal
rutile (Fig. 9.18) is distorted, cf. Exercise 11.10.

11.2 Metal Structures

A simple picture of metallic bonding is that the valence electrons of the metal
atoms are delocalised in an "electron cloud" (Fig. ILl a). This negatively
charged cloud encloses the positively charged atom cores (not ions) and shields
them from one another. The bonding forces are not directional; they are equal
in all directions.
In a metal, one can consider the atoms as spheres. Each atom attempts to

associate itself with the maximum number of similar atoms. This can be
achieved for 12 nearest neighbours in two different arrangements (coordination
polyhedra), shown in Figs. 11.2a and 11.3a, and also Table ILl a and b. Starting
from these coordination polyhedra as nuclei, crystal growth will result in the
formation of two distinct crystal structures. These structures can be described as
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a)

Fig. 1l.3a-c. Hexagonal closest packing of spheres (Mg-type). a Coordination polyhedron
[12] (disheptahedron) as a perspective representation, using spheres reduced in size, and as a
projection of the spheres on a close-packed layer. b The crystal structure. One of the layers
parallel to (0001) is shown together with the layer sequence ABA. c A unit cell. The spheres are
reduced in size, and their correspondence to the stacked layers is indicated. The unit cell is also
sketched in b

stackings of closest packed layers of spheres, and they differ in the layer
squence.

•
A

I C
B
A

•
•

II A
B
A

Structure I may be described by a cubic unit cell, with a cubic F-Iattice, and is
called the Cu-type, while structure II has a hexagonal unit cell, and is called the
Mg-type. The two structures are thus called cubic and hexagonal closest packing
respectively, abbreviated to ccp and hcp. Examples of each structure are given
in Table 11.2. Some metals occur with both structure types, e.g. Ni.
The atoms of the Cu or ccp structure are all related by simple lattice

translations, and are thus identical. In the Mg or hcp structure, atoms in the
A-layers are all identical, as are atoms in the B-Iayers. The A- and B-atoms are,
however, equivalent but not identical to one another. This is shown by the
positions given in Table 11.2.

If the lattice constant is known, the radius of a sphere (the atomic radius)
may be calculated. Figure 11.2b,c shows the diagonal of a (100) face of the cubic
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Table 11.2. Data for the three most important metal structure types, Cu, Mg and W, and
for a-Po

Cu Mg W a-Po
ccp hcp bcc sc

Lattice Cubic F Hexagonal P Cubic I Cubic P
+ --------- --------- --------- ---------
basis 0,0,0 0,0, 0; ~,~, ~ 0,0,0 0,0,0

Space group F 4/m:3 21m P 63/m 21m 2/c I4/m:3 21m P4/m:3 21m
+ ---------- --------- --------- ---------

Positions
(a) 0,0,0

(c)
(a) 0,0,0 (a) 0,0,0

occupied 0,0,0; H,~

Coordination
[12] [8] [6]number

Atomic radii ~ ao viz ~ ao ~ ao -J3 ~ ao

Packing
0.74 0.68 0.52efficiency

Mg (1.62)
Ag,Au Ni (1.63) Mo, V

Further Ni,AI Ti (1.59) Ba,Na
examples Pt,Ir Zr (1.59) Zr, Fe -

Pb,Rh Be (1.56)
Zn (1.86)

unit cell of the ccp-structure. Its length is equal to four sphere radii
(B-2C-A). Thus R=~aoJ2. In the hcp-structure, R=~ao (cf. Fig. 11.3b,c).
Radii of metal atoms are given in Table 11.3.
It is possible to fill spaces completely by packing equal cubes, or, indeed,

equal general parallelepipeds. This is not possible with spheres. In both types of
closest sphere packings, there are interstices remaining of specific coordination;
these are usually called "holes". These may be bounded by four spheres
(tetrahedral holes) or by six (octahedral holes), (Fig. 11.4) and are examples of
tetrahedral and octahedral coordination (Table 11.1).

The packing efficiency is defined as the ratio of the sum of the volumes of the
spheres making up a unit cell to the volume ofthe unit cell. If the spheres are equal
in size, it is given by

Z·jnR3

Vunitcell

4R
As we have seen, in the ccp structure, R = ~ ao J2. Thus ao = J2 and

V = a~ = 16R3J2. Since Z = 4, the packing efficiency is thus !!.- J2= 0.74. The
6

corresponding calculation for the hcp structure gives the same result.
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b) ......,------l'V

Fig. 11.4. a Tetrahedral [4] holes.
b Octahedral [6] hole in closest
packed arrays of spheres

Fig.11.5a, b. Crystal structure of tungsten. a With atomic radii shown to scale. b Showing only
the centres of gravity of the atoms

For the hcp structure, the ideal~ ratio may be calculated, since Co is
ao

the height of two coordination tetrahedra of edge 2R = ao, sharing a common

vertex (cf. Fig. 11.3c). This gives a value for ~ of ~ . .J6= 1.63. In Table
ao

11.2, the ~ values for several metals are given; they tend to lie between
ao

1.56 and 1.63. The value for Zn is considerably larger.
In addition to the two types of closest packing, a further structure adopted

by some metals is the W-type, with a cubic I-lattice, usually simply called body
centred cubic, and abbreviated bcc (Fig. 11.5). In this structure, the
body-diagonal of the unit cell consists of four sphere radii, i.e. R = i ao J3.
The packing efficiency of this structure is ~J3=0.68. The coordination

8
number is [8], and the coordination polyhedron is a cube.
An arrangement of metal atoms in a cubic P-lattice occurs only for

a-polonium (Fig. 2.1, Table 11.2). It has a packing efficiency of 0.52, a
coordination number of[6] and an octahedron as its coordination polyhedron.
Considering the above data for the hcp and ccp structures, the Goldschmidt

and Laves principles are very well fulfilled:

1. The packing efficiency is 0.74, the highest possible for the packing of equal
spheres.

2. F4/m:3 21m is one of the highest symmetry space groups of the cubic system,
and P63/m 21m 2/c is one of the highest symmetry space groups of the
hexagonal system.

3. [12] is the highest possible coordination number for spheres of equal size.
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The W-type or bcc structure has a packing efficiency of only 0.68 and its
coordination number, [8], is smaller than that of the closest packed structures,
but its symmetry, 141m 321m is also high.
The a-Po structure also has a high symmetry (P4/m 321m), but its packing

efficiency and coordination of 0.52 and [6] respectively are very small. This is
certainly the reason for a-Po being the sole example of this structure.
Metals attempt to achieve a high symmetry and a high packing efficiency.

The great majority of metals crystallise in one of the first three given structure
types.
Metals have many characteristic properties which are related to their

structure and bonding:

a) Electrical and Thermal Conductivity. Metals are good conductors of both
heat and electricity. These properties arise from the fact that the electron clouds
between the atom cores can move freely.

b) Plastic Deformation. Plastic deformation in a metal is a shearing parallel to
closest packed layers. This property is most prominent for metals with cubic
closest packing in which four equivalent (111)-planes can undergo shear
efficiently. These metals are generally soft, malleable and ductile. Gold, for
example, can be beaten to a thin foil that weakly transmits green light. Crystals
with hexagonal closest packing of the atoms are less malleable, since they have
only one shear plane, parallel to (0001). Body-centred cubic metals are yet more
brittle.

11.3 Structures of Noble Gases and Molecules

In noble gas and molecular structures, the atoms or molecules are held together
by van der Waals forces. These forces are very weak. This is apparent from the
very low melting points of such crystals, e.g. neon: -247.7°C, ethylene: -170°C,
benzene: 5.5°C and phenyl salicylate 43°C.
Noble gas atoms can also pack together as spheres, having a noble gas

electron configuration. The bonding forces, like those in metals are non
directional, and the same sphere packings occur:

a) cubic closest packing (cf. Fig. 11.2): Ne, Ar, Kr, Xe, Rn.
b) hexagonal closest packing (cf. Fig. 11.3): He.

Molecular structures are characterised by the fact that the energy holding the
atoms in the molecules together (covalent bonding) is large, while that holding
one molecule to another is very weak. Most molecular compounds are organic,
inorganic examples include sulphur (cf. the Sg molecule in Table 8.11.36) and
C60 , see below.
Three molecular structures were introduced in Figs.1O.1-1O.3 (hexa

methylenetetramine, ethylene and benzene). As was made clear in Chapter 10,
there is no simple relationship between crystal symmetry and molecular
symmetry. Although molecules are not spherical in shape, they do attempt to
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a)

Fig. 11.6a,b. The C60-molecule forms an almost spherical cage with 20 six-membered rings
and 12 five-membered rings (a) ([41]). The non-crystallographic point group 2/m35 (Ih) of the
molecule (b) ([14])

pack as closely as possible in crystals. The hexamethylenetetramine structure
(Fig. 10.1), for example, has a packing efficiency of 0.72. In the crystal structure
of CO2, the C-atoms occupy the positions of a cubic closest packing, the linear
molecules being parallel to (111).
Since the forces holding the molecules together are weak, it follows that

the lattice energies of organic compounds are, in general, low. Nonetheless,
the great majority of organic compounds can be crystallised. Even "giant"
molecules with very large unit cell dimensions have been crystallised, for
example:

1. vitamin B12 : C63HggN14014PCO, P21212" ao = 25.33 A, bo= 22.32 A,
co=15.92A, Z=4 (cf. Fig.l.lb)

2. pepsin: M= 40000, P6122, ao = 67 A, Co = 154A, Z = 12.

A recent discovery is a new series of molecules containing only carbon, the
main one of which has the molecular formula C60 • In this molecule, the atoms
form an almost spherical cage, made up of 20 six-membered rings and 12 five
membered rings. The structure is that of a soccer ball (Fig. 11.6a). The molecule
has the non-crystallographic symmetry 2/m35(Ih) (Fig. 11.6b), and for this
reason, all atoms are equivalent.
C60 molecules have been crystallised with a ccp structure (ao = 14.17 A).

11.4 Ionic Structures

Ionic crystals are built from positively and negatively charged ions, and the
bonding energy is Coulombic forces, which are non-directional and equal in all
directions. The strength of a bond is related to the charge on the ions, e, and the
distance, d, between them:

e . e
Coulomb's Law:K=~

d
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Each cation seeks to maximise the number of neighbouring anions, while
each anion equally seeks to maximise its neighbourhood of cations (Fig.1Uc).
The formation of ionic structures is thus another packing problem, but now the
spheres are ions ofopposite charge which generally are also different in size. The
relative sizes ofthe radius of the cation, RA, and that of the anion, Rx, the radius
ratio RA/Rx, can suggest the appropriate coordination polyhedron and thus the
crystal structure (Sect. 11.4.2-11.4.4).

11.4.1 Ionic Radii

Table 11.3 gives ionic radii as a function of atomic number.
The size of an ion, considering an ion as a sphere, depends on the charge on

the nucleus and on the number of electrons.

a) Within a column of the periodic table, the ionic radius generally rises with
the increasing nuclear charge.

Li+ =0.70A
Na+=0.98A
K+ =1.33A
Rb+=1.52A
Cs+ = 1.70 A

F- =1.33A
Cl- =1.81A
Br- = 1.96 A
1- =2.20A

b) For isoelectronic ions, an increase in the nuclear charge results in a lowering
of the ionic radius.

Na+

0.98A

MgZ+

0.65A

A1 3+

0.57 A

Si4+

0.39A

p5+

0.34A

S6+

0.29A

C1 7+

0.26A

c) For a particular element, the ionic radius falls as the positive charge rises:
Cf. S(16) or Mn(25) in Table 11.3.

11.4.2 Octahedral Coordination [6]

The octahedron as a coordination polyhedron is illustrated in Table l1.1e. The
limiting value for the radius ratio RA/Rx for this coordination may be
determined by considering an octahedron composed of spherical anions which
touch one another, and placing a cation precisely in the hole in its centre. Figure
11.7 shows a section through such an octahedron. It can be seen that
RA+Rx= Rx j2, or RA/Rx= j2-1 = 0.41. Octahedral coordination is only
stable ifRA/Rx is greater than or equal to 0.41 (Fig. 11.8a, b). A section through
an unstable octahedron is shown in Fig. 11.8c.
Octahedral coordination occurs in the Na[6ICI (Figs.11.9 and 11.17)

and rutile Ti[6]Oz (Fig. 9.18) structure types. The NaCI structure type can be
considered as a cubic closest packing of anions with cations in the octahedral
holes. For LiCI (RA/Rx= 0.43), the ideal radius ratio for octahedral coordi-
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Fig.H.7. Cross-section through a coordination octahedron ([6])

a) 0.54 b) 0.41 c) 0.25

Fig.H.8a-c. Section through a coordination octahedron, with the corresponding radius
ratio, RA/Rx. The arrangements in (a) and (b) are stable; that in (b) shows the limiting case
with RA/Rx= 0.41, and that in (c) is unstable

.0
No CI

Fig. 11.9. Na[6jCl structure, Fm3m
Lattice: cubic F
Basis: Na' at 0,0,0; Cl- at ~,O,O

nation is almost achieved. By contrast, NaCI itself has a radius ratio of 0.54
(Fig. 11.8 a).
The spinel structure Mg[4]Ah[6l0 4is based on a cubic closest packed array of

oxide ions. The Mg2' ions occupy tetrahedral holes and the A1 3+ ions octahedral
holes. Let us consider how many of the octahedral and tetrahedral holes are
occupied.
Considering the NaCI structure as a cubic closest packing of CI- ions

(Fig. 11.9), it will be noted that all octahedral holes are occupied by Na + ions.
In NaCl, the ratio Cl-: Na- is 1:1, thus each sphere in a ccp array (CI-)
corresponds to an octahedral hole (Na·). Figure 11.11 shows the "antifluorite"
structure. The sulphide ions are in a ccp array (Fig. 11.11 a), and the Li - ions
occupy all tetrahedral holes. In Li2S, the ratio Li-: S2- = 2: 1, so each sphere in a
ccp array (S2-) corresponds to two tetrahedral holes (Ln. The relation 2[4],
1[6] per sphere applies equally to both closest packings.
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Returning now to the spinel structure, Mg[4JAh[6J0 4, we can see that i of the
tetrahedral holes are occupied by Mg2+and ~ of the octahedral holes by AI 3+.
In the Ni[6JAs (niccolite) structure (P63/mmc), the As atoms are arranged as

a hexagonal closest packing and the Ni atoms occupy all of the octahedral holes
(Ni:As=l:l, Fig.n.18). The 02--ions of the corundum, A12[6J0 3, similarly
form a hexagonal closest packing. The A1 3+ions are in octahedral holes. From
the above relationship, ~ of the octahedral holes are occupied. In corundum,
every third octahedral hole is vacant, but in the ideal structure, all holes are
equivalent. This results in a lowering of the space group symmetry to R3c. Thus,
corundum is trigonal, while in NiAs, the symmetry of the hexagonal closest
packing (P63/mmc) is retained.
The 02-ions in forsterite, Mg2[6JSi[4J04, also are arranged as a hexagonal

closest packing. The Si4+ions occupy iof the tetrahedral holes, and the Mg2+
ions half of the octahedral holes. The symmetry is lowered to Pnma.
The atoms or ions in tetrahedral or octahedral holes are not statistically

disordered. In most cases, they are ordered in the structure.

11.4.3 Cubic Coordination [8]

As the radius ratio increases, there should be a range in which the trigonal
prism, with limiting RA/Rx= 0.53, is stable (cf. Table ILl d). In fact, for ionic
structures, the stable structure becomes cubic f8]-coordination, cf. Table n.lc.
Making use of Fig.n.lO, which shows a section through a cube parallel to (nO)
(cf. Fig. 3.4), the limiting value for RA/Rx for cubic coordination can be
calculated: RA+Rx= Rx ' V3, so RA/Rx = V3-l =0.73.
This implies that octahedral coordination is stable for the range

0.41 <RA/Rx< 0.73, while cubic coordination is preferred for RA/Rx> 0.73.
Cubic coordination is found in structures of the Cs[8JCI-type, and for the

fluorite or Ca[81Fr type (Fig.lLll). Cs[81I (Fig. 3.4) has the Cs[8JCl structure
with an almost ideal radius ratio of 0.75.
In Fig. n.n b the CaF2structure has been drawn with an F--ion at 0,0, O.

This makes the cubic coordination of the Ca 2+ more evident. Ca2+ ions occupy
every second cubic hole. The CI- ions have the same arrangement in the CsCI
structure; in that case, every cubic hole is occupied by Cs +. The fluorite structure
is found for SrF2, BaF2, SrCI2, U02etc., and also for a number of alkali metal
sulphides, e.g. Li2S, Na2S, K2S etc. As is indicated by the chemical formulae, in

Fig. 11.10. Section parallel to (110) through a
coordination cube [8] (cf. Fig.3.4a)



a) b)

11.4 Ionic Structures 231

Fig.n.na,b. The fluorite or Ca[8]F2structure, and the "antifluorite" structure (e.g. Li2S),
space group Fm3m
Lattice: cubic F
Basis: Ca2+ or S2~ at 0,0,0;

F~ or Li+ at ~,~,~; ~,~,~ (a)
Structure drawn with F~ at 0,0,0 in order to emphasise the cubic coordination (b)

Fig.n.l2a, b. Coordination tetra
hedron A[41 X4 , inscribed in a cube (a);
(llO)-section through a coordination
tetrahedron derived from sphere pack
ing (b)

these sulphides, the positions of the cations and the anions must be reversed, i.e.
S2- ions occupy the Ca 2+ positions and the alkali metal cations occupy the F
positions. This structure is called the "antifluorite" structure. In it, the S2- ions
form a ccp array, and the cations occupy all of the tetrahedral holes.

In Table 11.4, a number of AX and AX2 compounds are listed, arranged
according to structure type. The radius ratio values are also given. The
agreement between theory and experiment is reasonable, considering that the
use of radius ratios makes the assumption that ions are hard spheres.

11.4.4 Tetrahedral Coordination [4]

Table 11.1 g shows the tetrahedron as a coordination polyhedron. A suitable
radius ratio can also be calculated for tetrahedral [4]-coordination. In
Fig. 11.12a, a coordination tetrahedron is shown inscribed in a cube. Figure
11.12b shows a section through the cube and tetrahedron parallel to (110),
with the radii of ions drawn to scale. Since RA +Rx is half the body
diagonal of the cube G\/'3) and Rx is half of the face diagonal 0 J2),
(RA+Rx)/Rx = J3/J2, and RA/Rx= j'[-1=0.225.
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eo
Zn 5

Fig. 11.13. Zn[4JS-structure (sphalerite
or zinc blende). Space group F43m
Lattice: cubic F
Basis: Sat 0,0,0; Zn aq,~,~

------------/..,.
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Fig. 11.14. Zn[4JS-structure
(wurtzite). Space group P63mc
Lattice: hexagonal P
Basis: S at 0,0, 0; ~,~,~;

ZnatO,O,~+ z; ~,~, z (z =~)

Fig..: 11.15. Structure of high cristobalite, Si[4JOz,
Fd3m

This implies that tetrahedral coordination will have a range of stability for
0.225 < RA/Rx < 0.41. Important examples of this coordination are the sphaler
ite or zinc blende (Zn [4JS) structure (Fig. 11.13), the wurtzite (Zn[41S) structure
(Fig. 11.14) and all modifications of Si02 except stishovite. Figures 11.15 and
11.24 show the structures of different modifications of Si[4J0 2• The Si04
tetrahedra build a framework structure through the sharing of vertices. The
radius ratio for Si02 is 0.29.
The bonding in both Zn[4JS structures is, in fact, largely covalent in nature.

If, however, the geometry alone is considered, the S-atoms in the sphalerite
structure occupy the positions of a cubic closest packing, and in the wurtzite
structure those ofa hexagonal closest packing. In both structures, the Zn-atoms
occupy half of the tetrahedral holes.
How, then, do the basic principles for the formation of ionic structures work

out in practice?

1. In general, ionic structures have space groups of high symmetry, e.g. CsCl:
P4/m 321m; NaCI and CaF2: F4/m 321m. Structures based on the closest
packing of anions retain the space groups of those arrangements when
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1 0,58 0,33

f§jjjC§J~ a)

1 0,71 0,58
b)

Fig. 11.16a, b. Linking of pairs of tetrahedra (a) and octahedra (b) through a vertex, an edge
and a face. The numbers give the relative distances apart of the two coordinated cations, after
[35]

the interstices of a particular type are completely filled, e.g. Na[6JCl:
F4/m 32/m (Fig. 11.9). When the interstices are only partly filled, the
symmetry may be lowered, e.g. Ah[6J0 3: R3c.

2. The packing efficiency of ionic structures is usually high: for the ideal CsCI
type, with RA/Rx= 0.73, it is 0.73; for the NaCI type with RA/Rx= 0.41, it is
0.79. As the radius ratio increases for a particular structure type, the packing
efficiency decreases. For the structure of the NaCi type, for example, with
RA /Rx=0.54 (cf. Fig. 11.8a) it is 0.66.

3. In ionic structures, the commonly occurring coordination numbers, [8], [6],
and [4], are dependent on radius ratio and are relatively small. A better
correlation is obtained ifonly the coordinations of the anions are considered,
e.g. NaCI and Ah03: Coordination number [12].

Finally, the linking of coordination polyhedra in ionic compounds should
be considered. Linking by shared vertices is favourable. The sharing of edges,
and in particular the sharing of faces lowers the stability of a crystal structure.
This effect is greatest when a cation has a high charge or a low coordination
number: Pauling's third rule. In Fig 11.16, the linking of pairs of tetrahedra and
octahedra through a vertex, an edge and a face is shown. Taking the distance
between cations in the vertex-sharing polyhedra to be 1, the values in Fig. 11.16
show the decrease in cation-cation distance in the edge- and face-sharing cases.
Note that it is more severe for the linked tetrahedra (0.55, 0.38) than for the
linked octahedra (0.71, 0.58). The closer the cations come to one another, the
greater is the Coulombic repulsion, and the lower the stability of the structure.
The effect is greater when the cations have higher charge.
The SiO~- tetrahedra of numerous silicate structures, and of Si02 struc

tures, share vertices (cf. the Si[4J0 2 structures in Figs. 11.15 and 11.24). There
are a few exceptions; stishovite, Si[6J0 2, for example, has the rutile structure.
In the fluorite structure (Fig. 11.11 b), the coordination cubes share edges.
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Fig.n.17. The NaCI structure, showing the
edge-sharing coordination octahedra. Every
edge is shared by two octahedra

-0
a) ()

Ji~
b)

Ni As
Fig. 11.18a, b. Ni[6] As structure, P63/mmc
Lattice: hexagonal P
Basis: As 0,0,0; H,~

Ni ~,~,l; ~,~,~.

a Perspective drawing. b As projection on (0001).
The As-octahedra are face-sharing

In the NaCI and NiAs structures, the cations have octahedral coordination.
This coordination is indicated on the structures in Figs.n.17 and n.18. In
NaCI, the octahedra share edges, in NiAs, they share faces.
Comparison in this respect of the Na[6JCl and Cs[8JCl structures favours the

NaCI structure, since the Cs+ ions have a cubic coordination in which all cube
faces are shared.
The coordination octahedron of the rutile structure (Fig. 9.18) shares two

edges. This becomes clear when the unit cells above and below that shown are
considered. Two other forms of Ti02, brookite and anatase, have coordi
nation octahedra which share three and four edges respectively. The rutile
structure is thus the most stable form of Ti02, and, unlike brookite and
anatase, its structure is adopted by many compounds.



236 11 Fundamentals of Crystal Chemistry

11.5 Covalent Structures

Covalent or homopolar bonding, will be illustrated by the diamond structure,
which consists entirely of carbon atoms. The outer shell of a carbon atom in
free space is occupied by 2s22p2-electrons. We may consider one electron
promoted to give 2s 12p 3and the resulting set mixed to form a set of four Sp3
orbitals, pointing to the corners of a tetrahedron (Fig. 11.1 d). Each C-atom
can form bonds with a maximum of four other C-atoms. This results in the
formation of a crystal structure, based on tetrahedra (Fig. 11.19), which has the
same overall ordering of atoms as the sphalerite type in Fig. 11.13. Each
C-atom is surrounded by a tetrahedron of four other C-atoms.

Fig. 11.19. Diamond structure, Fd3m
Lattice: cubic F
Basis: Cat 0,0,0 and ~,~,~

In this case, the picture of bonding as sphere-packing is inapplicable as the
main forces are due to the directional bonding of overlapping atomic orbitals.
The packing efficiency of the C-atoms in diamond is not high. The bonding in
diamond is exceptionally strong, resulting in its great hardness.

11.6 Isotypes, Solid Solutions and Isomorphism

Crystals which have the same crystal structure are said to belong to a structure
type or to be isotypes. Isotypes are generally characterised by having the same
space group, analogous chemical formulae, and the same coordination
polyhedra occupying the same sites. Neither the absolute size of the atoms nor
the type of chemical bonding is important; ionic NaCl and metallic PbS
crystals are isotypes, as are metallic Cu and van der Waals Ar crystals.
The relationship between isotypic structures becomes closer if atoms in one

structure can replace those in the other. The following experiment will
illustrate this. Two single crystals of the isotypic structures Au and Ag are
pressed together as the temperature is raised, but kept below the melting point
of either crystal. By diffusion, silver atoms pass into the gold crystal and
occupy the places vacanted by gold atoms, while gold atoms similarly diffuse
into the silver crystal. This diffusion can proceed to such an extent that
eventually, in some parts of the mass, an atomic ratio Au: Ag of!:1 is reached.
The single crystal nature of the starting materials is apparently lost. In some
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0 0 0 0 0 • • • • •0 0 0 0 • • • • •0 0 0 0 0 • • • • •0 0 0 0 • • • • •0 0 0 0 0 • • • • •0 0 0 0 • • • • •0 0 0 0 0 • • • • •0 0 0 0 • • • • •0 0 0 0 0 • • • • •
Ag Au a)

0 0 • 0 • 0 • 0 • •• 0 0 0 • • 0 • 0
0 • • • 0 0 0 • 0 •0 0 • 0 0 • 0 • •• 0 0 0 • • • • 0 0

• • • • 0 0 0 0 •0 0 • 0 0 • • 0 0 •• 0 0 • • 0 • • 0

• 0 • 0 0 • 0 0 • 0

Ag.Au b)

Fig. 11.20. a Single crystals of Ag and Au pressed against one another. b The resultant solid
solution Ag,Au resulting from diffusion of one metal into the other. Only a single layer
at x,y,O is shown

regions, arrangements of atoms like that in Fig. 11.20 will occur. Figure 1l.20a
shows the initial situation, with separate crystals of Ag and Au, while
Fig 1l.20b gives the situation after the diffusion process. The diffusion process
has distributed the Au and Ag atoms statistically over the sites of the crystal
structure.

Crystals in which one or more pOSitIOns are occupied by a statistical
distribution of two or more different atom types are called mixed crystals or
solid solutions.

The reciprocal exchange of atoms in crystals is referred to as diadochy or
replacement. Solid solutions in which one atom directly replaces another are
called substitutional solid solutions.
The chemical formula is also an indication that a crystal structure is

actually a solid solution. Interchangeable atoms are written together in a
chemical formula, separated by a comma. The solid solution described above
would be written as Ag, Au. K(CI, Br) describes a solid solution in which Cl
and Br- replace one another. In olivine, (Mg, Fe)2Si04, the oxide ions form an
hcp array. The Mg2+ and Fe2+ ions are statistically distributed over specific
octahedral holes.
Solid solutions form most commonly when the replaceable atoms or

groups of atoms are most similar in chemical properties and size. A rule of
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a)
o.
Cu Au b)

Fig. 11.21. a The CuAu structure. b The CU3Au structure as superstructures of the Cu,Au
solid solution

thumb for solid solution formation is that the radii of the interchangeable
atoms should differ by no more than 15%. Silver and gold are miscible in all
proportions (RAg =1.44A, RAu =1.44A, difference L1 - 0.0%). Ag, Au solid
solutions are generally formed by slow cooling of a mixture of melts of the two
components.
Copper and gold are only miscible in all proportions at high temperatures

(Rcu =1.28 A, L1 =11%). During slow cooling the (Cu, Au) solid solution is
converted to ordered structures, called superstructures. The superstructures
with composition CU3Au and CuAu are given in Fig. 11.21. Note that CuAu is
tetragonal, and no longer cubic.
Gold and nickel L1 = 14%) are also miscible at high temperature. At lower

temperature, the solution separates into Ni-rich and Au-rich solid solutions.
The separation can be essentially complete, so that only pure Ni and Au
domains remain.
Plagioclases are solid solutions whose limiting compositions are NaAlSi30 s

and CaAhSi20 s. Here, the formation of a solid solution occurs through the
simultaneous substitution of Ca for Na and Al for Si, or vice versa. In order to
keep the charges balanced Na++Si4+ = Ca2+ +AJ3+.
When crystals of the same structure type (isotypic crystals) form solid

solutions with one another, the structures are said to be isomorphous. As the
following examples will show, however, solid solution formation is no
criterion for isotypes.
Zn[4IS (sphalerite-type, Fig. 11.B) and FeS (Ni[6JAs-type, Fig. 11.18) are

clearly not isotypic. In sphalerite, however, a (Zn, Fe) substitution up to about
20% is possible. Fe2+ and Zn2+ are bivalent ions with almost equal radii of
0.74 A. A substitution (Fe, Zn) in FeS does not occur. The occurrence of
substitution is thus not only dependent on the size of the atoms but also on the
properties of the crystal structures.
Ag[6JBr (NaCl-type) and Ag[4JI (sphalerite-type) show limited solid sol

ution formation. In AgBr, a (Br/!) substitution of up to 70% 1- is possible,
while in AgI, substitution of Br- occurs only very slightly.
Li[6JCl (NaCl-type) and MgCl2(CdCI2-type, a layer structure) have not only

different crystal structures, but also different chemical formulae. In both
cases, the Cl- ions form ccp arrays, and Li+and Mg2+occupy octahedral holes
in these arrays. All octahedral holes are occupied in LiCl, while in MgCI2, only
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every second hole is occupied. When solid solutions are formed, a Mg2+ ion
occupies one Li+ site in LiCl, and causes another Li+ site to be vacant.
Similarly, when a Li+ ion occupies a Mg2+site, another Li+ ion will occupy one
of the empty octahedral holes in MgCI 2.

11.7 Polymorphism

Under different conditions, many solid substances can produce different
crystal structures of the same chemical constitution. This phenomenon is
known as polymorphism.
Nickel crystallises in both the Cu[12Ltype (ccp) and the Mg[12Ltype (hcp),

zirconium in both the Mg[12Ltype (hcp) and the W[8Ltype (bee), and Zn[4JS in
both the sphalerite and wurtzite types. CaC03 can give crystals of both the
calcite-type (Ca[6JC03) and the aragonite-type (Ca[9]C03). These CaC03
structures naturally produce different morphologies (cf. Table 8.11.8 and 20).
The interconverison of polymorphs, also called structure transformations,

can proceed in a variety of ways. Buerger [5] distinguished the following types
of transformation:

1. Transformations ofFirst Coordination

The transformation alters the coordination numbers, and thus the arrange
ment of nearest neighbours. The new structure thus has new coordination
numbers.

a) Dilatational Transformations. Cs[8JCl is converted, above 445°C to the
Na[61Cl type. The CsCl structure (Fig.ll.22a) is converted to the NaCl
structure by a dilatation along a body diagonal of the cube (Fig. 11.22b). From
the cubic arrangement of the Cl- ions (a cube is a special rhombohedron with
a 90° angle) arises a rhombohedral arrangement with a 60° angle. A rhombo-

a) b)

Fig.1l.22a, b. Dilatational transformation in the first coordination. The Cs[81Cl structure (a)
is converted by means of a dilitation along the body diagonal of the cube into the Na[6JCI
structure (b). (After [5])
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Table 11.5. The occurrence of the calcite and aragonite structures as a function of cation
radius.

Structure type Formula Cation radius (A) Coordination number

MgC03 0.66
FeC03 0.74

Calcite
ZnC03 0.74

[6]MnC03 0.80
CdC03 0.97
CaC03 0.99

CaC03 0.99

Aragonite
SrC03 1.12 [9]PbC03 1.20
BaC03 1.34

hedral P-cell with a = 60° is a cubic F-Iattice (cf. Chap. 6.4). The movement of
the Cl- ions causes the Cs+ ions to lose two neighbours, and the cubic
coordination is transformed to octahedral. Dilatational transformations are
rapid.

b) Reconstructive Transformations. Cal91C03 (aragonite) is converted about
400°C to Ca l61C03 (calcite). The coordination number falls from [9] to [6].
The bonds between Ca2+ and C032- are broken and reformed. Another
example of this type of transformation is the conversion of Zr from the Mgl12L
type (hcp) to the Wl8Ltype (bee). Reconstructive transformations are very
slow.
In Table 11.5, examples are given of compounds crystallising in the calcite

and aragonite structure types, with the radii of the cations. Rea2+ = 0.99 Ais the
limiting radius for the two types. Smaller cations fit well into the [6]-holes of
the calcite structure, while larger ones fit better into the [9]-holes of the
aragonite structure. Ca 2+ ions can form both structures. Raising the tem
perature favours the conversion of Ca I9]C03 (aragonite) to Ca[6]C03 (calcite),
while raising the pressure converts calcite to aragonite. These observations
may be summarised by the rules: higher temperatures favour lower coordination
numbers; higher pressures favour higher coordination numbers.

2. Transformations in Secondary Coordination

In these cases, the arrangement of nearest neighbours, i.e. the coordination, is
unchanged. The arrangement of next-nearest neighbours is changed. Figure
11.23 shows such a change diagrammatically. The three structures are all made
up of planar AB4 "polyhedra" which are interconnected in different ways.

a) Displacive Transformations. These involve a direct conversion of (a)
into (b) (Fig. 11.23). The polyhedra undergo rotation only, and no bonds are
broken. An angle A-B-A which is less than 180° in (a) becomes equal to 180° in
(b). The density falls and the symmetry rises.
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T

reconstructive

b)

displacive

Fig.l1.23a-c. Transformations in the sec
ondary coordination sphere for structures
based on square AB4 coordination.
a ~ b is displacive,
b~ c is reconstructive. (After [5])

a)

Low- and high-quartz structures, Si[4]02 are three-dimensional networks of
Si04 tetrahedra, which share vertices with one another. In right-handed low
quartz (P322) (cf. Table 8.11.24), these tetrahedra form a helix about a
3z-screw axis, parallel to the c-axis. In right-handed high-quartz (P6222), this
becomes a 6z-screw axis. Figure 11.24 gives a projection of both structures
onto (0001). At 573°C, a displacive transformation between low- and high
quartz occurs. The two structures are very similar; only a small rotation of one
tetrahedron relative to another has occurred. The conversion of low- to high
quartz lowers the density from 2.65 to 2.53 g cm -3.

b) Reconstructive Transformations. Consider the conversion of (b) to (c) in
Fig. 11.23. For this to occur, the bonds in b must be broken, so that the
4-membered rings of (b) may be rebuilt into the 6-membered rings of (c).
When high-quartz is heated above 870°C, it undergoes a reconstructive

transformation to high-tridymite (P63/mmc, Fig. 11.24c). The tridymite struc-
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reconstructive

-0,

b)

displacive

Fig. 1l.24a-c. Transformations in
the secondary coordination of
Si[410 2 structures shown as projec
tions on (0001).
a ..... b Displacive: right-handed
low-quartz (P322) ..... right-handed
high-quartz (P6222).
b ..... c Reconstructive: right-handed
high-quartz (P6222) ..... high
tridymite (P63/mmc).
a, b after [39]
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Fig.l1.25a,b. Polytypes of graphite structure. a 2H; b 3R. After [37]

ture consists of 6-membered rings of Si04 tetrahedra, which are packed above
one another, normal to the c-axis.
The transformation between sphalerite and wurtzite is also reconstruc

tive.
Displacive transformations require little energy and are relatively rapid;

reconstructive ones require more energy and are very slow.

3. Order-Disorder Transformations

Copper and gold are miscible in all properties at high temperatures. In the
(Cu, Au)-solid solution, the Cu and Au atoms are statistically distributed over
the sites of the ccp crystal structure (disorder). On cooling, there is an ordering
through the formation of the CuAu and CU3Au superstructures (Figs. 11.20 and
11.21, cf. Sect. 11.6)

4. Transformations Involving Changes in Type ofBonding

Carbon occurs as diamond (Fig. 11.19), graphite (Fig. 11.25) and the various
fullerenes (e.g. C60 , Fig. 11.6a). In diamond, the bonding throughout the crystal
is covalent. In graphite and in the fullerenes, covalent bonds hold the atoms in
the layers or molecules while van der Waals forces hold layers and molecules
together. Transformations of this sort are very slow.
In the graphite structure, the carbon atoms are ordered in 6-membered rings

in the layers. The coordination "polyhedron" in this case is an equilateral
triangle [3] (Table 11.1 h). The layer stacking can repeat itself at intervals of
either two or three layers (Fig. 11.25). Both of these structures have been
observed. This special form of polymorphism is called polytypism. In these
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polytypic structures, (a) gives a hexagonal unit cell and (b) a rhombohedral. The
structures are thus labelled as the 2H- and the 3R-polytypes of graphite,
respectively.

11.8 Literature on Crystal Structures

Further information about specific crystal structures is obtainable from many
sources. The following references are particularly recommended: [29], [43]
[45], [51].
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EXERCISES

Exercise 11.1. Calculate the ideal radius ratio RA/Rx for the coordination polyhedra:
trigonal prism [6] and equilateral triangle [3] (cf. Table ILl).

Exercise 11.2. Give a description of the following structures in terms oflattice + basis:

a) a-Polonium (cubic P-Iattice), cf. Fig.2.l.
b) Tungsten (cubic I-lattice), cf. Fig.H.5.
c) Magnesium (hexagonal closest packing) cf. Fig. H.3.
d) Copper (cubic closest packing) cf. Fig. H.2.
e) Draw four unit cells of the Mg-structure in projection on (0001). Find those
symmetry elements which characterise the structure as hexagonal.

Exercise 11.3. Calculate the radii of the atoms in the structures in Exercise H.2, using
the following lattice parameters:

a) a-Po: ao=3.35 A.
b) W: ao=3.16A.
c) Mg: ao=3.21 A, co=5.21 A.
d) Cu: ao = 3.61 A.

Compare these values with those given in Table H.3.

Exercise 11.4. Calculate the ideal colao ratio for hexagonal closest packing.

Exercise 11.5. The packing efficiency is the ratio of the sum of the volumes of the atoms
making up a unit cell to the volume of the cell itself. Calculate the packing efficiencies
of:

a) a-Polonium (cubic P-Iattice).
b) Tungsten (cubic I-lattice).
c) A hexagonal closest packing.
d) A cubic closest packing.

Exercise 11.6. The diamond structure has:
lattice: cubic F, ao = 3.57 A
basis: C: 0,0, 0; ~,~,~.

a) Draw a projection of the structure on x, y, O. Sketch tapered C-C bonds with
colours indicating the height (use green for 0 < z< ~ and red for ~ < z<1)

Atoms with

0 z=o

~ z=~
4

() z=t

a z= 1-
4

b) Calculate the length of a C-C bond.
c) What is the value of Z?
d) Describe the structure.
e) Compare the diamond structure with that of sphalerite (Fig.lLl3).
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Exercise 11.7. The graphite (2H) structure has
lattice: hexagonal P: ao = 2.46 A; Co = 6.70 A.
basis: C: 0,0,0; 0, O,~; ~,~, 0; ~,~,~.

a) Draw a projection on four unit cells on x, y, O. Join each C-atom to its three nearest
neighbours with the same z-coordinate with coloured lines (z = 0 green, z= ~ red).

b) Calculate the length of a C-C bond.
c) What is the value of Z?
d) Describe the structure. How large is the inter-layer spacing?
e) Calculate the densities of diamond and graphite and comment on the difference.

Exercise 11.8. LiCI (NaCl-type; ao = 5.13 A) has an arrangement of CI- ions which is
cubic closest packed (Rx/RA = 0.43). Calculate the ionic radii of CI- and Li+ and the
packing efficiency of the LiCI structure.

Exercise 11.9. Draw the ions on the x,y,O-plane of the NaCi (ao = 5.64 A), LiCI
(ao = 5.13 A) and RbF (ao = 5.64 A). The ionic radii can be taken from Table 11.3.

Exercise 11.10. Calculate the Ti-O distance in the coordination octahedron of the
rutile structure (cf. Table 9.5). Which distances are equivalent by symmetry, and hence
required to be equal?

Exercise 11.11. The pyrites structure (FeS2) has:

a) Space group Pa3 (P21/a3)

Fe: 4 a 3 0,0,0; O,~,~; ~,~, 0; ~, O,~.

S: 8c3 x,X,X; ~+x,~-x,x; x,~+x,~-x; ~-x,x,~+x;

x,x,x; ~-x,~+x,x; x,~-x,~+x; ~+x,x,~-x.

b) Lattice constant: ao = 5.41 A.
1. Draw the structure as a projection on x, y,O (let ao= lOcm).
2. Describe the structure.
3. What is the value of Z?
4. Calculate the shortest Fe-S and S-S distances.
5. Draw the symmetry elements on the projection.

(x=0.386).
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Exercise 11.12. A compound of NH4/Hg/CI has:

a) Space group P4/mmm.
b) Lattice constants: ao=4.19 A, Co= 7.94 A.
c) Positions: Hg: 0,0,0

NH4: ~,~, ~

Cl(I): ~,~,°
CI(2): :r (0, 0, z) z = 0.3

1. Draw a projection of the structure on 0, y, z (1 A= 1cm).
2. Give the chemical formula of the compound, and the value of Z.
3. Describe the coordination of Hg and NH4, giving the coordination number and the
coordination polyhedron.

4. Calculate the shortest Hg-C1 and NH4-C1 distances.

Exercise 11.13. The crystal structure of BaS04 has:

a) Space group Pnma with special and general positions:

(4c) ±(x,~,z; ~+x,H-z)

(8d) :r(x,y,z; q+y,z; ~ "x,~-y,~-z; ~-x,y,~+z)

b) Lattice constants: ao=8.87 A, bo=5.45 A, co=7.15 A.
c) Occupation of positions:

Position multiplicity
x y zand Wyckoff letter

Ba (4c) 0.18 1 0.164

S (4c) 0.06 1 0.704

0(1) (4c) -0.09 I 0.614

0(2) (4c) 0.19 I 0.544

0(3) (8d) 0.08 0.03 0.81

I. Draw a projection of the structure on x, 0, z.
2. What is the value of Z?
3. Determine the coordination of 0 atoms around S.



12 Studies of Crystals by X-Ray Diffraction

Since the wavelengths of X-rays and the lattice parameters of crystals are of the
same order of magnitude, X-rays are diffracted by crystal lattices. It was from
the discovery of this effect in 1912 by Max von Laue that we may date the
beginning of modern crystallography. Only then did it become possible to
determine the structures of crystals.
We shall only describe here one X-ray method, the Debye-Scherrer

technique, in detail, because it is a very important research tool for the
scientist. Also, a brief description will be given of how a crystal structure may
be determined.
For a fuller description of X-rays and their properties, the reader is referred

to textbooks of physics.

12.1 The Bragg Equation

The diffraction of X-rays by crystals can be formally described as a reflection
of X-rays from sets of lattice planes. Assume that a parallel, monochromatic
beam of X-rays (i.e. one characterised by a single wavelength A) falls on a
set of lattice planes with a spacing of d, making a glancing angle of () with
them (Fig. 12.1). The waves I and II will be reflected at Al and B, and will

II

d

a) --------"'c,------.JI'------

II

b) _

Fig. 12.1. a Diffraction ("reflection") ofan X-ray beam by a set of lattice planes. b Interference
of waves reflected by a set oflattice planes (T = 1il)
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thus undergo interference. At the point A" the waves will have had a path
difference T= BA I - AlB' = BAJ - BC = CAJ, since BA I = BAJ and B'Al = Be.
Thus,

• LJ T
Slnu=-

2d

An interference maximum will be observed when T is an integral multiple n
of A., or r = n,1" where n is the order of the interference. This gives rise to the
Bragg equation:

I n,1,=2dsin8.

12.2 The Debye-Scherrer Method

In the Debye-Scherrer method, a fine powder of a crystalline substance is
irradiated with monochromatic X-rays. According to the Bragg equation, a
set of parallel planes (hkl) will reflect X-rays with certain characteristic
glancing angles 8 (Fig. 12.2a). Since the crystallites are randomly arranged
in a fine powder, there will always be a large number of crystals orientated
in such a way that a given set of planes (hkl), which make an angle 8 with
the X-ray beam can cause reflection to occur. These planes are tangent to
the surface of a cone with a cone-angle of 28. The beams reflected by these
planes lie on the surface of a cone with a cone angle of 48 (Fig. 12.2b).
Figure 12.2c shows the reflection cones of a few different sets of planes.
In the Debye-Scherrer method, a cylindrical camera is used with the

powdered specimen, contained in a thin tube mounted along the cylinder
axis. The cones of reflection intersect the film in Debye-Scherrer lines
(Fig. 12.2c,d). The angle between pairs of lines originating from the same
cone is 48. Thus

S

2nR

48

360 0

where R is the radius of the camera. For R=28.65mm (2nR=180mm), the
measured value of S in mm is thus equal to the value of 28 in degrees.
In order to obtain information from X-ray photographs, it is necessary

to index the reflections, i.e. to determine which set of lattice planes gave rise
to the observed interference. Since the value of 8 is easy to read from the
photograph and A. is known, the Bragg equation allows d, the spacing of the
lattice planes, to be calculated.
How are these d-spacings related to (hkl)? The plane lying next to the one

which passes through the origin in Fig. 12.3 intercepts the orthorhombic axes
at the point mOO (a-axis), OnO (b-axis) and 0000 (c-axis), cf. Chapter 2.4.3.
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a)

c)

Point at which
X-ray beam enters
the camera

-'-_--L....o d)

I---- 5 ----f

Fig. 12.2. a Relationship between the primary beam and a ray diffracted by the lattice planes
(hkl). b Possible orientations of the set ofplanes (hkl) in a crystal1ine powder. The result of the
random orientation of the planes giving a glancing angle of fI is a cone with a generating angle
of 4f1. c, d The rays diffracted from the various lattice planes lie on concentric cones about the
primary beam. Their intersections with the film give rise to the "lines" of the powder diagram.
(After [11])

a

Fig. 12.3. Relationship between the Mil1er indices of a
set of lattice planes and the spacing of the planes d for
an orthorhombic crystal
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For a set of planes (hkl):

d h
cosqJa=--=d'-

m'ao ao

d k
COSqJb=-- =d'-

n'bo bo

d 1
cosqJc=-- =d·-.

p' Co Co

Squaring these and adding them together gives:

cos2qJa+cos2qJb+cos2qJc=d2. (h: + k: +~)=1
ao bo Co

1
dhk1 = -;::::========-

h2 k2 12
-+-+-
aij bij cij

this relationship applies to the orthorhombic system. In the cubic system, it
simplifies to

ao
dhk1 = ~;=::7-=====:=~

\!h2+k2+12
Substituting this equation for the d-spacing into the Bragg equation and
squaring gives:

.F
sin28=-· (h2+ k2+12).

4aij

The right-hand side of this equation is the product of a constant factor A2j4aij
and an integer (h 2+ k2+12). The values of sin28 for individual reflections are
thus related to one another as integers.
The powder pattern for tungsten in Fig. 12.4 was taken with CuKa radiation,

A= 1.54A. Table 12.1 shows the calculations for this photograph. Note that this
table includes the reflections 200, 220 and 400, which contravene the definition
of Miller indices as they do not represent the smallest integral multiples of the
reciprocals of intercepts on the axes. In fact, they are Miller indices multiplied
by the factor n, the order of diffraction. In other words, 200 may be

'((0')5<[(( )))
Fig. 12.4. Powder diagram of tungsten (reduced to 0.65 of original size)
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regarded as the second order of diffraction from the (100) planes. These hkl
triples, written without brackets, are called Laue symbols, and their use makes
the factor n of the Bragg equation unnecessary.
From the constant factor A.2/4a6 = 0.0592, the lattice parameter ao = 3.16A

may be determined. Z, the number of formula units per unit cell, can also be
determined (cf. Chap. 3)

Z= p·V·NA

M

Z = 19.3.3.163.10-24.6.023.1023

183.86

Z-2.

A cubic structure of an element with Z = 2 can only occur if the substance has a
cubic I-lattice, cf. Fig. lIS
In Table 12.1, 100, 111 and 210 do not occur. Such absences occur in

structures which have centred lattices or contain glide planes or screw axes.
The absent reflections are said to be extinct. Those reflections which do

occur in Table 12.1 obey the rule h + k + I= 2n, where n is an integer, and this is
characteristic for all structures with an I-lattice.
The number of reflections which can be observed on an X-ray photograph

is limited. In the Bragg equation sin () = ~, -1 < sin () <+1. Thus~ <+1
2d - - 2d -

and d:2: ~ . Diffraction can only arise from those sets of lattice planes for
A.

which d >-. For CuKa radiation, A. = 1.54A, the limiting value for d is-2

Table 12.1. Interpretation of the powder pattern of tungsten

No of S B il 2
dhklAsin 2B=-. (h 2 + k 2 +1 2) hklreflection mm degree 4aij

1 40.3 20.15 0.1187 = 0.0594·2 110 2.24

2 58.3 29.15 0.2373 = 0.0593 ·4 200 1.58

3 73.2 36.60 0.3555 = 0.0592·6 211 1.29

4 87.1 43.55 0.4744 = 0.0593·8 220 1.12

5 100.8 50.40 0.5937 = 0.0594 '10 310 1.00

6 115.0 57.50 0.7113 = 0.0592 '12 222 0.91

7 131.2 65.60 0.8294 = 0.0592 ·14 321 0.85

8 154.2 77.10 0.9502 = 0.0592 ·16 400 0.79
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4-806 JCPDS·ICDD Copyright C 1991 Quality:·

dA Int. h k I

W
2.238 100 1 1 0

Tungsten 1.582 15 2 0 0
1.292 23 2 1 1
1.1188 8 2 2 0
1.0008 11 3 1 0

Rad: CuKal Lambda: 1.5405 Filter: Ni dsp:
Cutoff: Int: Diffractometer I/Icor: 18.00 0.9137 4 2 2 2
Ref: Swanson, Tatge, Nat!. Bur. Stand. (U.S.), Circ. 539, 1 28 (1953) 0.8459 18 3 2 1

0.7912 2 4 o 0

Sys: Cubic S.G.: Im3m (229)
a: 3.1648 b: c: A: C:
A: B: C: z: 2 mp:
Ref: Ibid.
Ox: 19.262 Om: SS/FOM: F8 ~ 108 (.009.8)

ea: nwB: ey: Sign: 2V:
Ref:

Color: Steel-gray to tin-white
Pattern at 26'C. Sample prepared at Westinghouse Electric Corp. CAS no.:
7440-33-7. Analysis of sample shows SiO, 0.04"10, K 0.05'1., Mo, AI,O and 0.01 'I.
each. Merck Index, 8th Ed., p. 1087. W type. Also called: wolfram. PSC: cIZ. Mwt:
183.85. Volume [CD]: 31.70.

JStrong lines: 2.24/X 1.29/2 1.58/2 0.85/2 1.00/1 1.1211 0.91/1 0.79/1

Fig. 12.5. PDF (formerly ASTM) index "card" for tungsten, as a computer printout

thus 0.77 A. The pattern for tungsten contains no reflections with ad-value
A 0

<-=0.77 A.-2
The greatest use of the Debye-Scherrer method is in the identification of

crystalline substances. Every sort of crystal produces a pattern of lines with
characteristic positions and intensities. The intensity is roughly proportional to
the blackness of a photograph. The American Society for Testing Materials
published an index (the ASTM index) containing data for all crystalline
inorganic and organic substances which have been studied by X-ray diffraction.
This index is now administered by the Joint Committee for PowderDiffraction
Standards (JCPDS) at the International Center for Diffraction Data in
Swarthmore, USA. Every substance has an index card which contains the d
values and the relative intensities for individual reflections, as well as many
other crystallographic data. The PDF-card for tungsten is given in Fig.l2.S. For
the identification of an unknown substance, use is made of the lines with the
strongest intensities, which are given in tabular form. Naturally, the file is now
normally accessed by computer.

12.3 The Reciprocal Lattice

Crystals are three-dimensional systems. A stereographic projection, which gives
a useful summary of the arrangements of the crystal faces with respect to one
another, can be derived simply from a consideration of the morphology
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,--------- -.------
\ ~\ \

\ \ \
\ \
\ \ \

\ \ \
\ p,* \ c\ \._------ ---.---- --- 001q
\ \
\ \ \

\ \
\
\\ \ \

\ \ \
\ \ \

------\ ----0-- ------
P~OO 0

000

(100)

Fig. 12.6. Monoclinic P-Iattice as a projection on (010) with the points PO~I and Pl~O. p~o, PO~1

and Pl~O define a lattice, the reciprocal lattice

of a crystal. As described in Chapter 4.4, the normals to the crystal faces are
used for this purpose.
An alternative system for representing the lattice planes was proposed by

P. P. Ewald to discuss the scattering of X-rays by the crystal lattice. Since, as is
described in section 12.1, the diffraction of X-rays can be interpreted as the
reflection of the rays by sets of parallel lattice planes, it was important to devise
an aid to illustrate both the orientations of the lattice planes and their
diffraction. This aid is the "reciprocal lattice". Each set of lattice planes in the
crystal is represented by a point in the reciprocal lattice. The construction of a
"reciprocal lattice" from the corresponding "direct lattice" may be performed as
follows:

For each set of lattice planes (hkl), the normal is drawn from the origin

with a length d* ==~. where d is the lattice spacing and C is a propor
dhkl

tionality constant.

The construction of the reciprocal lattice corresponding to the projection
on (010) of a direct monoclinic P-lattice is shown in Fig. 12.6. The normal to
the set of lattice planes (001) is drawn from the origin and assigned a length
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P2~10-__

-----

Fig. 12.7

Fig. 12.9

Fig.12.S

202\~--------10ft------- o01~~
\ \ \
\ \ \
\ \ \
\ \ \

201~--------10~-------OmC\
\ \ \ Co
\ \ \
\ \ \

b---------~-- -----y~
200 100 O' 000

Fig. 12.10

Fig. 12.7. Monoclinic P-Iattice as a projection on (010) with the traces of the lattice planes (10 I)
and the point P~)I of the reciprocal lattice

Fig. 12.S. Monoclinic P-Iattice as a projection on (010) with the traces of the lattice planes (201)
and the point P~)1 of the reciprocal lattice

Fig. 12.9. Monoclinic P-Iattice as a projection on (010) with the traces of the lattice planes (102)
and the point PI'02 of the reciprocal lattice

Fig.12.10. Reciprocal lattice (a *c*-plane) corresponding to the monoclinic P-Iattice of
Fig. 12.6
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d* =~. The resulting point is called PO~I' A similar construction for the set
dOOI

of(100) planes gives the point Plto. The points Po'~)l and Pl~O represent the relative
orientations of the (001) and (100) lattice planes.
Making use of the three points Po~, Pl~O and Pdoh a two-dimensional

lattice can be constructed. This reciprocal lattice plane is indicated by dashed
lines in Fig. 12.6. It must now be shown that the reciprocal lattice points
corresponding to all sets of lattice planes with indices (hOI) fall on this same
plane. Figures 12.7-12.9 show the relevant constructions for the sets of (101),
(201) and (102) planes. When all relevant points are added to the drawing, its
lattice-like nature is apparent (Fig. 12.10). This construction does not, how
ever, lead to all of the points required by the reciprocal lattice. For example,
PO~2, Pi'oo and P2t2 are missing since lattice planes with indices such as (002),
(200) and (202) contravene the definition of Miller indices given in Chapter
2.4.3. It is, of course, possible to define a set of "lattice planes" (002) with

a spacing d = dOOI . In these "lattice planes", only half of the planes inter-
2

sect points of the direct lattice. Furthermore, the Bragg equation (Sect. 2.1)

can be written in the form A= 2~ sin e. If this is done, every n-th order
n

diffraction with a plane spacing of d can be replaced by a first-order

diffraction from planes with a spacing of ~. PO~2 describes in the same way
n

a second-order diffraction from the planes (001), PO~3 a third order, and so
on. The same sort of reasoning applies to the points P2~O, P2t2, etc. (see also
Sect. 12.2).

The rule for constructing the reciprocal lattice given above (p. 255) is thus

incomplete and should read: ... with a length d* = -.-£. and all integral mul
dhkl

tiples thereof, where d is the lattice spacing . ...

The reciprocal lattice, like the direct lattice, IS defined by six lattice
parameters:

1
_*1_ *- 1 _ bocosinaa -ao----

d(IOO) V

16*1 =bti=_I_= aocosin/3
d(OIO) V

1
_*1_ *- 1 _aobosinyc -co-------'---'--'---

d(OOI) V

V= aoboco' \11 - cos 2a - cos 2/3 - cos 2Y+ 2 cos a cos /3 cos y

(Volume of Ihe unit cell)
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Fig. 12.ll.
The Ewald construction

a *={) * /\ C*; cos a *= cos {3 cos y - cos a
sin {3 sin y

{3*
cos a cos y - cos {3

{3*=a* /\ C*; cos =----'-----!.-
sin a sin y

Y
* = a~ * /\ b~ *', * cos a cos {3 - cos ycosy =

sin a sin{3

The use of the reciprocal lattice allows an elegant discussion of the appli
cation of the Bragg equation to the diffraction of X-rays by a lattice. Figure
12.11 shows a section through a reciprocal lattice. The direction of the
primary beam is indicated by a straight line through the point P60o. A sphere

(which in Fig. 12.11 becomes a circle) with a radius of~ and a centre at
A

the point M on the line is then constructed so that the surface of the sphere
intersects the origin of the reciprocal lattice, Po~o. This sphere is known as the
sphere of reflection. In general, no point of the reciprocal lattice other than
Po~o lies on the surface of the sphere. By choosing the direction of the primary
beam appropriately, however, it may be possible to cause another point P:k1
to lie on the surface of the sphere of reflection, as in Fig.l2.11. In this case,
the condition for the Bragg equation nA = 2d sin () is fulfilled precisely for the
set of planes (hkl). Diffraction occurs, and the diffracted beam has the
direction MP:kl . The orientation of the planes (hkl) is shown in Fig. 12.11 by a
dotted line. It is obvious that the diffracted beam with a glancing angle equal
to () can equally well be described as a reflection from the lattice planes (hkl).

1

It will be noticed that for the triangle P:k1MT, sin () =~ =~, fulfilling
1 2d

A
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•

,

•

,

Fig. 12.12. Precession photograph of p-eucryptite, LiAlSi04 (space group P6422): a *b*
plane (Photograph A. Breit)

Fig. 12.13. a *b*-plane of a hexagonal
reciprocal lattice, cf. Fig. 12.12
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the Bragg condition. This geometrical construction is known as the Ewald
construction.
If a single crystal is rotated about an axis which is perpendicular both to

the primary beam and to a selected plane of the reciprocal lattice, then the
reciprocal lattice itself rotates about an axis through Po"Oo. During this
rotation, other points of the reciprocal lattice will pass through the surface of
the sphere of reflection, and the corresponding lattice planes will come into
the diffracting position. These relationships are the basis of rotating crystal
methods.
The precession method of M. Buerger produces an undistorted represen

tation of the reciprocal lattice. In this technique, an axis of the crystal
precesses about the primary beam. The resulting picture is of the reciprocal
lattice plane perpendicular to this axis. A precession photograph of fJ-eucryp
tite, LiAlSi04 (space group P6422) is shown in Fig. 12.12. It represents the
a *b*-plane. The reciprocal lattice of a hexagonal lattice is itself hexagonal, as
is shown in Fig. 12.13 which should be compared with Fig. 12.12.

12.4 Laue Groups

In general, the intensity of an X-ray beam diffracted from one side of a set of
lattice planes is equal to that diffracted from the other. A diffraction pattern
is thus centrosymmetric. It follows that instead of 32 point groups only the 11
which contain an inversion centre can characterise a diffraction pattern.
These 11 point groups are known as Laue groups (cf. Table 8.10).
As an example, the Laue groups of the tetragonal system will be ex

plained. An inversion centre is added to each point group:

Laue group 4/m

4+1-4/m (Symmetry rule I)
4+1-4/m (cf. Fig. 5.13) The operation of an inversion centre on the 4

array in (a) results in the 4/m array in (b).

Laue group 4/m 2/m 2/m (4/mmm)

422 +I - 4/m 2/m 2/m (Symmetry rule I)
4mm +I - 4/m 2/m 2/m (Symmetry rule I)
42m +I - 4/m 2/m 2/m (4 +1== 4/m as above and symmetry rule I).

Consideration of the first Symmetry rule together with the relationships
3+I ==:3 and 6+1== 6/m will allow the Laue groups of the other crystal
systems to be derived from each point group (cf. Table 8.10).
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12.5 The Determination of aCrystal Structure

Powder diffraction patterns allow the determination only of relatively sim
ple structures. Techniques have been developed which make use of measure
ments of the intensities of the reflections of sets of lattice planes from single
crystals. Study of relationships among intensities and "systematic absences"
in the diffraction pattern can lead to the determination of the space group.
Measurement of the density of the crystals gives Z (cf. Sect. 12.2), the
number of formula units in the unit cell. The intensity of the individual
reflections depends on the extent to which the sets of lattice planes are
occupied by atoms. Since different sets of lattice planes will vary greatly in
both the number of atoms occupying them and the "heaviness" (in terms of
electrons) of those atoms, the intensities of a very large number of reflec
tions can allow the determination of the arrangement of atoms in the unit
cell.

For simple crystal structures, it is possible to make useful structural
conclusions from only a small amount of data. This may be illustrated by the
structure of Sn02, cassiterite, for which the following data have been
determined:

1. Lattice constants: ao=4.74 A, Co= 3.19 A.
2. Space group: P42/mnm
3. Density: 6.96 g cm -3.

The value of Z (the number of chemical formula units per unit cell) may be
directly calculated (cf. the formulae on p. 24):

Z= p'NA'V = 6.96'6.023'1023'4.742.3.19.10-24 =1.99=2.
M 150.69

Thus, there must be two formula units ofSn02 or two tin and four oxide ions per
unit cell. The Sn4+ions must then occupy a set of 2-fold positions in the unit cell,
and the 0 2- ions a set of 4-fold positions, or (less likely) two sets of 2-fold
positions. The space group, P42/mnm, (Fig.9.17) has two sets of 2-fold
positions (a and b), and five sets of 4-fold positions (c to g). Let us see whether
the ionic radii (R(Sn4+)=0.nA, R(02-)=1.32A) can help to select the sites
which are actually occupied. In the following illustrations, the lattice constants
and the ionic radii have been drawn to the same scale.
First, consider the possible 4-fold positions for the 0 2- ions.

1) Positions (c): These comprise the fixed point O,LO and O,L! (Fig. 9.17).
These are shown as points on the line 0,Lz in Fig. 12.14c, in which the lattice
repeat is scaled to the actual length co. When the 0 2- ions are then drawn in to
scale, it is clear that they overlap badly.

2) Positions (d): These also comprise fixed point O,U and O,U which are
shown as points on the line 0,Lz in Fig. 12.14d. When the 0 2- ions are then
drawn in to scale, the overlap is the same as in (1).
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o,o,z

Position c d e

Fig. 12.14c, d, e. Investigation of the structure of Sn02' The 0- ions cannot lie in the given
places as required by the positions c to e of space group P42/mnm

a) b)

c)

Fig. 12.15 a, b, c. Structure of Sn02. Placing the Sn4+ ions on positions a and the 0 2- ions on f
leads to an acceptable arrangement. a) the x, y, 0 plane. b) the x, y, ~ plane. c) the x, x, z plane
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3) Positions (e): Here, there is one degree of freedom to be considered. A pair of
points 0,0, Z and 0,0, Zmust both lie within the range of the lattice constant Co
(Fig. 1l.14e). Whatever value is chosen for z, the overlap will be at least as bad as
that in (l) and (2).

Clearly, these three sets of positions are not possible for the Sn02 structure.

4) Positions (f): Again, there is one degree offreedom to be considered. In order
to limit the possibilities for the 0 2- ions somewhat, the Sn4+ ions have been
inserted at 0,0,0 (positions (a» in a scale drawing of the x,y,O-plane
(Fig. 12.15a). It is then possible to draw in the 0 2- ions at x, x,°and X, X,°along
the diagonal between the Sn4- ions at 0,0,°and 1,1,0. In fact, the ions fill the
gaps precisely! It is possible to estimate a value for x:

R(Sn4+) + R(02-) = 0.71 + 1.32 = 2.03 A;

2.03 A/)2= 1.44 A; 1.44 A/co = 0.304 = x.

Substituting the value x = 0.3(04) in the positions (f) gives 0.2, 0.8, ~ and
0.8, 0.2, ~ for ions 3 and 4. These are shown along with the Sn 4+ ion at LL~ in
Fig. 12.15b. Fig. 12.15c shows the X,X,Z section through Figs. 12.15a and b.
Each Sn4+ ions occupies an octahedral hole formed by six 0 2- ions.
The structural results may then be summarised thus: Space group

P42/mnm (Fig. 9.17). Sn
4T in 2 a m. mm and 0 2- in 4 f m. 2m with x=0.304.

The currently accepted value for x is 0.3053. Sn02 has the same structure type as
rutile (Fig. 9.18).

5) The positions (g) have not yet been considered. In fact, placing the 0 2- ions
in these positions leads to an alternative description of the same structure.

The following are a few still simpler examples; the calculation of Z will be
omitted.

I) CsI: Z = 1. The space group is P4/m 32/m, which has only two I-fold
positions:

1 b m3m LU and 1 a m3m 0,0,0

Thus, the CST may be placed at 0,0,0 and the 1- at
(cf. Fig. 3.4).

or vice-versa

Table 12.2. Coordinates for some of the positions of space group F4/m 321m., from [14].

(0,0,0)+ (O,~,D+ (~, 0, ~)+ q,~, 0)+

24 d m.mm O,~,~ O,~,~ ~,O,~ ~,O,~ ~,~,O ~,~, 0

8 c 43m I I I I I 3
4' 4' 4 4' 4' 4

4 b m33m I I I
2' 2' 2

4 a m3m 0,0,0



264 12 Studies of Crystals by X-Ray Diffraction

II) NaCl: Z = 4. The space group is F 4/m 321m. Table 12.2 gives the
coordinates of the positions a to d for this space group. There are two 4-fold sets
ofpositions, so Na +may be placed on a and CI- on b or vice-versa, cf. Fig. 11.9.
In Fig. 11.9, L0,°is given instead of the equivalent LL~.

III) CaF2: Z = 4. Space group F 4/m 321m (Table 12.2). The F- ions occupy the
8-fold positions c, while the Ca 2+ ions may be placed either on a (0,0,°etc.) or
on b G, ~,~ etc.). Either choice leads to the same structure.

EXERCISES

Exercise 12.1. Draw the (100)- and the (OOl)-lattice planes of the rutile structure (cf.
Fig. 9.18 and Table 9.5). Using the introduction in Section 12.3, construct the a* c*- and
the a*b*-planes of the reciprocal lattice.

Exercise 12.2. For the crystal structure of thallium, the lattice parameters are
ao=bo=co=3.88A, a=fJ=y=90°, and the density is 1l.85gcm-3• Determine the
crystal structure, and draw it, projected on x, y, O.

Exercise 12.3. Derive the cubic Laue groups.

Exercise 12.4. A powder photograph has been taken of the cube-shaped crystals ofKI,
using Cu Ka radiation (A. = 1.54 A). The first nine lines, measured from the position of
the direct beam, give the following 28-values:

21.80; 25.20; 36.00; 42.50; 44.45; 51.75; 56.80; 58.45; 64.65.

1. Index these powder lines and calculate their d-values.
2. Determine the lattice constant ao.
3. What is the value of Z? (The density of KI is 3.13 g cm -3)
4. Suggest the structure type of KI.
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A crystal with a volume of 1cm 3 will contain about 1023 atoms. Lattice
theory requires in principle that all of these atoms occupy a regular lattice.
The array of atoms must conform to one of the 230 space groups. The
equivalent points of a position of a space group must be fully occupied by
atoms of the same type. This theoretical model is only achieved conceptually,
by an ideal crystal.
The observation of a large number of crystals will show that they in fact have

cracks and fissures, and that crystal faces are often not really flat. At cleavage
surfaces, crystalline domains are often displaced with respect to one another.
Inclusions occur in crystals, which may themselves be crystalline, liquid or gas.
In practice, a real crystal deviates considerably from the ideal model described
above.
All deviations from ideal crystalline behaviour are described as crystal

defects. Many important properties of crystals derive from defects, including
luminescence, diffusion, mechanical properties, etc. Nevertheless, the ideal
crystal structure is the starting point for all studies of crystals.
Individual defects make themselves apparent in many ways. They can be

categorised in terms of their dimensionality (Table 13.1).

Table 13.1. Types of crystal defects

13.1 Point defects 13.2 Line defects 13.3 Plane defects

a) Substitution defects a) Edge dislocations a) Small angle
b) Solid solutions b) Screw dislocations grain boundaries
c) Schottky and Frenkel b) Stacking faults
defects c) Twin boundaries
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13.1 Point Defects

Point defects are concerned with atomic dislocations.

a) Substitution Defects. An ideal crystal must consist entirely of the substance
to which its formula refers, and this situation never occurs. As there are about
1023 atoms in 1cm3 of a crystal, even a purity of 99.99999% implies the
presence of some 10 16 foreign atoms! These foreign atoms will in general be
larger or smaller than the atoms they replace. Furthermore, the foreign atoms
may have different bonding capacities. This can result in the propagation of
further irregularities in the crystal which may no longer be of the point-defect
type.
In some cases, crystals with specific impurities are actually required. It is

such impurities which control the electrical conductivity of many semiconduc
tors.

b) Solid Solutions. The statistical distribution of atoms in solid solutions (cf.
Chap. 11.6) are also point defects.

c) Schottky- and Frenkel Defects. Every crystal contains voids. These are
places in a crystal where the expected atoms do not occur. If these missing
atoms have "wandered" to a surface of the crystal, the result is called a
Schottky defect, while if they have moved to places between other atoms
(interstitial sites), the result is called a Frenkel defect. Both of these types are
illustrated for an ionic crystal in Fig.B.l. The concentration of faults in a
crystal is in thermal equilibrium, and increases with rising temperature. The
type of fault which occurs depends on the structure itself, its geometry and its
bonding type. In alkali halides, Schottky defects predominate, while Frenkel
defects predominate in silver halides. Measurement of the density of a crystal
gives an indication of the defect type, since Schottky defects decrease the
density (more volume for the same mass) while Frenkel defects leave the
volume and hence the density unchanged.
Wuestite (NaCI-structure type) does not have the ideal stoichiometry FeO,

because the Fe 2+ ions in some places are replaced by Fe 3+. This unbalanced
charge results in a corresponding number of cation vacancies, giving a formula
Fel_xO.

e 0 e 0 e e 0 e 0 e e 0 e 0 e
e

0 e 0 e 0 0 e 0 e 0 0 e 0 0 0

0 e 0 e 0 e e 0 e 0 e e 0 e 0 e
0 e 0 0 0 e 0 e 0 e 0 0 0 0 e 0e

a) e 0 e 0 e b) e 0 e 0 e c) e 0 e 0 e
Fig.l3.la-e. Schottky defects (a) and Frenkel defects (c) in an ionic crystal (0 void); (b) the
ideal crystal
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The occurrence of these faults gives rise to a number of properties. The
defects make possible the diffusion of ions through the crystal. If a gold crystal
and a silver crystal are pressed firmly against one another as the temperature is
raised, Ag-atoms diffuse into the gold crystal, and Au-atoms into the silver,
forming solid solutions (cf. Fig. 11.20). At sufficiently high temperatures, ionic
crystals, such as NaCl, show a small electrical conductivity. This does not result
from electronic conduction, as in metals, but is brought about by ionic
movement. Without crystal defects, this would not occur.
Solid-state reactions are almost always propagated by crystal defects. The

heating of a mixture of finely powdered ZnO and Fez03 crystals to a
temperature well under their melting points brings about a reaction yielding
crystals of the spinel zinc ferrite, ZnFez04' The rates of solid-state reactions are
much less than those taking place in the gas or liquid phase. They do, however,
rise with temperature as the concentration of crystal faults and the rates of
diffusion rise.

13.2 Line Defects

This type of defect forms along a line, the line of dislocation.

a) Edge Dislocations. The upper portion of the crystal in Fig. 13.2a has been
displaced by the vector BC (= B'C') in the plane ABA'B' relative to the lower
portion in such a way that the line AA' (the line of dislocation) marks the limit
of the displacement. Figure 13.2b shows the structure of a plane normal to the
line of dislocation AA'. The displacement vector, which amounts to a
displacement (= BC) is known as the Burgers vector ii, and is normal to the line
of dislocation AA'.

b) Screw Dislocations. The crystal in Fig. 13.3 contains a screw dislocation
which arises from a displacement in the plane ABCD with the line ofdislocation
AD. In the region of the line of dislocation, the crystal does not consist of neatly
stacked lattice planes, but of an arrangement of atoms which repeat through the

/~ C B
/

/
/

E-
a)

..
b

I
[

I
1-

I
!

~
I b)

Fig.n.2a, b. Edge dislocation; pictorial (a), structural representation (b) (1. end of the line of
dislocation)
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Fig. 13.3. Screw dislocation ([38])

structure in a helical manner (screw dislocation). In this case, the Burgers vector
Ii is parallel to the line of dislocation.
Edge- and screw dislocations, as described here, are only limiting cases;

intermediates also occur. Dislocations are important in the plastic deformation
of metals (Chap. 11.2) (movement of dislocations).
Screw dislocations also play an important role in crystal growth. The

deposition ofatoms on a step of the helix is always energetically favourable, and
these steps persist during the growth of the crystal, permanently.
Dislocations are active regions in crystal faces, and etching gives rise there to

characteristic etch-figures (cf. Table 8.11.21). By etching, the concentration of
dislocations per cm2can be estimated. This varies from virtually zero in the
most perfect single crystals ofgermanium (semiconductor) to 10 12 per cm2in the
most strongly deformed metals.
"Whiskers", or ultrathin, needle crystals, often form with the screw

dislocation parallel to the needle axis. They display remarkable mechanical
properties. For example, the breaking strength of a NaCl-whisker of 1,um
diameter is as much as 110kPmm~2.

13.3 Plane Defects

a) Small Angle Grain Boundaries. It frequently occurs that different domains of
a single crystal are tilted by a small angle with respect to each other. Their
boundary faces are small angle grain boundaries, and are built up by a series of
dislocations. A small angle grain boundary, consisting entirely of step
dislocations, is illustrated in Fig. 13.4. The inclination angle () which the crystal
domains make with each other, may be calculated from the Burgers vectorEand
the separation of the displacements D, since

()= E .
D
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Fig. 13.4. Small angle grain boundary formed from edge
dislocations «() = inclination angle)

b) Stacking Faults. Stacking faults are disturbances of the normal layer
sequence in the building of a structure. They are most frequently observed in
metals (ccp and hcp, Figs. 11.2 and 11.3) and in some layer structures (e.g.
graphite, Fig. 11.25). Cobalt crystallises with both cubic and hexagonal closest
packing, and it also occurs that both stacking sequences (ABCA ... and ABA ...)
may alternate irregularly. Such an array is only periodic in two dimensions and
thus does not qualify to be called a crystal.

e

e e

e e e

e e e e

e e e e e
_e____-e-e-e- (101)

e e e e e

e e e e

e e e

e e

e Fig. B.S. Twin with twin-plane (l0l)

Fig. 13.6. Plane of a real crystal with mosaic blocks.
([1])



270 13 Crystal Defects

c) Twin Boundaries. A twin is the regular growing together of crystals of the
same sort. The crystals lie in a symmetric relationship to one another. The
commonest twinning symmetry elements are 2 and m. Twins can arise during
crystal growth (growth twins) or through mechanical stress (deformation
twins). In Fig.B.5, the twin element is a mirror plane parallel to (101).
In general, because of the occurrence of small angle grain boundaries, a

crystal may be thought of as being built up of small mosaic blocks, which are
only slightly displaced relative to one another. Figure 13.6 shows such a mosaic
formation, with the inclination angles grossly exaggerated.
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14.1 Symbols for Crystallographic Items

a, b,c Crystallographic axes

aI, a2; a" a2, a3 Symmetrically equivalent crystallographic axes

(a)

~'l'~
b' . b

a, b,c

Set of symmetrically equivalent crystallographic axes
(aI, a2; aI, a2, a3)

Morphological axial ratio

Lattice vectors of the unit cell

~:l:~
bo bo

Lengths of vectors
Lengths of cell edges

Interaxial angles

Structural axial ratio

ILattice parameters

Crystallographic "triples"

x,y,z

uvw

[uvw]

(uvw)

Coordinates of the vector r = xa + yb + zc
Coordinates of a point in the unit cell, 0:::; x, y, z < 1

Coordinates of the lattice translation vector
r=ua +vb+wc
Coordinates of a lattice point, integers and integers + ~; ~; ~

Indices of a set of parallel lattice lines. Indices of a zone axis or
parallel crystal edges

Indices of a set of symmetrically equivalent lattice lines or
directions
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(hkl)

(hkil)

{hklJ

{hkilJ

hkl

ii*,b*,c*

Miller indices: Indices of a crystal face or of a set of parallel
lattice planes

Bravais-Miller indices: indices of a crystal face, or of a set of
parallel lattice planes, for the hexagonal axes a\, a2, a3, c

Indices of a set of symmetrically equivalent crystal faces
(crystal form) or lattice planes

Indices of a set of symmetrically equivalent crystal faces
(crystal form) or lattice planes, for the hexagonal axes
al,a2,a3,c

Laue symbol (indices): indices of a X-ray reflection from a set
of parallel lattice planes (hkl)

Vectors of the unit cell in the reciprocal lattice

lii*1 =at I
Ib *I= bt Lengths of vectors
Ic*1 =ct
a*=b*/\c* I
P* = ii* /\ c* Interaxial angles
y*=ii*/\b*

14.2 Symmetry Elements

a) Symmetry elements (planes)

]

Parameters of the
reciprocal lattice

Glide Graphical symbol
Symmetry element component Symbol

!gl 1.. Plane of II Plane of
projection projection a

Mirror plane
- m IJPlane of symmetry

Glide plane ii r-rwith axial - a ------
glide component 2

b -,- b -----
2

C- c ................
2

a If the z-coordinate is not 0 or ~, its value is given.
b In tetragonal and cubic systems only.
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Glide Graphical symbol
Symmetry element component Symbol

Igi 1- Plane of II Plane of
projection projection a

Glide plane a+b Fwith diagonal --
2

glide component

a+e--
2

n

b+e-- _._._._.
2

a+b+eb

2

"Diamond" a+b ¥l--
glide plane 4 8 8

aTe--
4

b+e d .•._._._.-
-- ._._._.+.-
4

a+bt-eb

4

b) Symmetry elements (axes)

Symmetry element
Screw

Symbol
Graphical

component 151 symbol

Onefold rotation axis == identity - 1

Inversion centre 1 0'
Centre of symmetry

-

• 0
1- Plane of
projection

Twofold rotation axis - 2
---+

II Plane of
projection'



274 14 Appendix

Symmetry elements (axes) (continued)

Symmetry element
Screw

Symbol
Graphical

component lsi symbol

~
.1 Plane of

Twofold screw axis ~ITI
projection

21
~

II Plane of
projection a

Threefold rotation axis - 3 .6.1::::.

Threefold rotoinversion axis - 3 A.

~ITI 3. ~Threefold screw axes

~ITI 32 ~
Fourfold rotation axis - 4 .0

Fourfold rotoinversion axis - 4 III

~ITI 4. lI-
Fourfold screw axes ~ITI 42 ~

~ITI 43 --Sixfold rotation axis - 6 eo
Sixfold rotoinversion axis - (; ~

~C{) 61 .-
~co 62 ~

Sixfold screw axes ~co 63 •
~co 64 ~

~co 65 •
c) Symmetry directions in the seven crystal systems, cf. Table 7.2.

d) Characteristic symmetry elements in the seven crystal systems, cf. Table 8.9.
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14.3 Calculation of Interatomic Distances and Angles
in Crystal Structures

Specific interatomic distances (e.g. bond lengths) and the angles between the
corresponding vectors (bond angles) are often of great interest.

Interatomic Distances. The distance I between atoms A (x" Y" zd and B
(X2, Y2, Z2) may be calculated by use of the following formulae:

Crystal system I

Triclinic
{(LI x)2a~ + (Lly)2b~ + (LI Z)2C~ + 2L1 xLI yaobocos y+
+2L1 xLI zaoco cosP+ 2L1 yLlzboco cos a ll/2

Monoclinic {(LI X)2 a~ + (LI y)2b~ + (LI Z)2C~ + 2L1 xLI zaoco cos Pl 1/2

Orthorhombic {(LI x)2 a~ + (LI y)2 b~ + (LI z)2c~ll/2

Tetragonal {((Llx)2 + (Lly)2)a~ + (Llz)2c~ll/2

Trigonal or hexagonal {((LI X)2 + (LI y)2 - LI xLI y)a~ + (LI z)2 C5 ll/2

Cubic {((Llx)2 + (Lly)2 + (Llz)2)a~ll/2

A

I

'W
c

Fig. 14.1. The triangle formed by atoms, A, Band C

Angles. The angle w, relating the atoms A, Band C (Fig. 14.1) may be readily
calculated by calculating the lengths of the three edges, 1,,12 and hof the triangle
ABC and applying the cosine rule:
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14.4 Crystal Forms (Table 14.1)

Table 14.1. The 47 crystal forms

14.1.1 Triclinic, monoclinic and orthorhombic systems

1. Pedion
(Monohedron)

2. Pinacoid
(Parallelohedron), Fig. 8.7g

3. Dihedron
(Sphenoid (2), Dome (m»

4. Rhombic disphenoid

5. Rhombic pyramid,
Exercise 8.15(5)

6. Rhombic prism,
Exercise 8.15(1)

7. Rhombic dipyramid,
Exercise 8.15(9)

14.1.2 The tetragonal system

-
,,,. ,............~ .,
I

(3)

8. Tetragonal pyramid,
Fig. 8.10b, c

9. Tetragonal disphenoid

10. Tetragonal prism,
Fig.8.7e, f

11. Tetragonal
trapezohedron

12. Ditetragonal pyramid,
Fig.8.lOa

13. Tetragonal
scalenohedron

14. Tetragonal dipyramid,
Fig.8.7c, d

15. Ditetragonal prism,
Fig.8.7b

16. Ditetragonal dipyramid,
Fig.8.7a

1 Pedion
2 Pinacoid Some crystal forms after Niggli [32]
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17. Trigonal pyramid,
Exercise 8.15(7)

18. Trigonal prism,
Exercise 8.15(3)

19. Trigonal trapezohedron

20. Ditrigonal pyramid

21. Rhombohedron,
Exercise 8.15(16)

22. Dilrigonal prism

23. Hexagonal pyramid,
Exercise 8.15(8)

24. Trigonal dipyramid,
Exercise 8.15(11)

25. Hexagonal prism,
Exercise 8.15(4)

26. Dilrigonal scalenohedron

io.l.;,;......

(20)

(22)

27. Hexagonallrapezohedron

28. Dihexagonal pyramid

29. Ditrigonal dipyramid

30. Dihexagonal prism

31. Hexagonal dipyramid,
Exercise 8.15(12)

32. Dihexagonal dipyramid

1 Pedion
2 Pinacoid

......,

,
,
,

I'~
,
,
I

: (30)
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14.1.4 The cubic system

33. Tetrahedron,
Exercise 8.15 (15)

34. Hexahedron (cube),
Exercise 8.15(13)

35. Octahedron,
Exercise 8.15(14)

36. Tetartoid (Tetrahedral
pentagon-dodecahedron)

37. Pyritohedron
(pentagon-dodecahedron)

38. Deltoid-dodecahedron
(deltohedron)

39. Tristetrahedron

40. Rhomb-dodecahedron,
Fig. 1.1 a

41. Diploid
(disdodecahedron)

42. Trisoctahedron

43. Trapezohedron
(deltoid-icosi tetrahedron)

44. Gyroid

45. Hexatetrahedron
(hexakistetrahedron)

46. Tetrahexahedron
(tetrakishexahedron)

47. Hexaoctahedron
(hexakisoctahedron) (47)
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15 Solutions to the Exercises

The solutions to a few exercises are incomplete, as the drawings would require
too much space.

Chapter 1

1.1 22.41 (the molar volume)j6.023 X 1023 (the Avogadro number, NA)
= 37191A3, which corresponds to a cube with an edge of 33.4 A.

1.2 0.046%.

1.3 No glass can be a crystal, nor any crystal a glass!

Chapter 2

2.2 (a), (b)

a

(c) (112).

2.3 (a)

(b)[OOl].

b

(320)
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2.4 (111), (102), (120), (Ill)
[111], [101], [210], [012].

2.5 a) {3=y=90°
b) ao=bo; a={3=90°
c) ao=bo=co; a={3=y

2.6 (hkl) and (hkI) belong to the same set of parallel planes; [uvw] and [uvw]
are opposite directions.

Chapter 3

3.1 (a)

o 0
~ a
()
a ~o 0

OCU

0 0

(d) 6.Ig/cm3.

3.2

OAI

0 8 (b) 2.37A (c) 3.20 g/cm 3

3.3

3.4

3.5

3.6

All combinations of 0, Land 1 from 0,0,0, to 1,1,1. Figure 2.5 includes a
partial solution; see also p. 91

x,O,O; O,y,O; O,O,z
x,I,O; I,y,O; I,O,z
x,O,I; O,y,I; O,l,z
x,I,I; I,y,I; I,I,z

x,y,O; x,O,z; O,y,z
x,y,I; x,I,z; I,y,z

x,y,~; x,Lz; x,U.

Chapter 4

4.2 (1) + (2) = Fig. 4.11 a (lower part).

(3) /-.__

/ "\

I \
• • o. •, /
\ /

" ""-.--

(4) ......... --,.
" "-I \

I \
• @ •
, I
\ /

" ",,/
....... -.-



4.3 (1) = Exercise 4.4 (4)
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(2) = Exercise 4.4 (10).

4.4 1 4 7 10

........ --., .- ....... ,...---.... .-- ....
./ ....... • •

'\ / '\ /\ 1'\/ I I \ / \/ \ \
/ \I \ I \ I \ I \
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\ / \ / \ / \ / \ /
"- / , / , / ,I \ /

'e__ ..-e ...... ..- ......... _.-'e
e __ ......-.-

//---- .......

I • • \
I \
\ 0 I

/
\ . . /
"- /'-_./

--./ ......
/ . "-

/ \
I • 0 • )
\ /" . /, ./

8

~-"""/ . \
( \
\. 0 I
\ • I,--_//

3 6 9 12
/-- ......... -1- /--- ....... ,......--,

"- I!':__ I __~

/ @ @ \/ @ @ \ / \ ,<f, /\ / @ \
/ \ \/ I '\/ J I @ \

(@ @jI I l--@----@- I1 • I / \ / \\ \ I ',I / \ /\ @ @ / '!_-~,-y \ @/ \ @ @ /
......... / .........-.!--./ " ./

,
./--- --- ---

Cf. Exercise 4.4 (6) and (10).

1. Trigonal pyramid and pedion.
2. Tetragonal dipyramid.
3. Hexahedron, tetragonal prism and pinacoid, rectangular box, orthog
onal axes.

4. Hexagonal prism and pinacoid, hexagonal axes.

cr. Fig. 4.18.

4.5

4.6

4.7

4.8 N

4.9 a) 60°/229°; 58°
b) 46°/260°; 30°
c) 44°/32°; 69°
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4.10 100°; 44° und 280°; -44°, parallel

4.11 They lie in a plane, perpendicular to the zone axis.

4.12 Cf. Fig. 6.13f (432).

4.13 Cf. Fig. 4.11. The stereograms in Exercises 4.12 and 4.13 are geometrically
equivalent.

4.14 Too

loo

4.15 Hexahedron 1 + 0; Hexahedron 2· 0

120

/
TIO

I
TTo

\

4.16 Cf. Orthographic projection in 0,0,0 of Fig. 9.15

4.17 1:'0
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110
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Chapter 5

5.1 Cf. pp. 283 and 284.

5.2

5.3 Parallel.

5.4

o

o

•

•

o

I----~----I

•

b)

5.5 I == Inversion centre, 2. == m, 3== 3+I, 5== 5 I,
6== 3 1.- m, 10 == 5 1.- m.

5.6 X(odd): I, 3, 5....

5.7 Trigonal, tetragonal, hexagonal pyramid; trigonal dipyramid.

5.8 Rhombus I, equilateral triangle, square, regular hexagon.

5.9 Cf. Fig. 4.21.

Chapter 6

6.1 Cf. Figs. 6.6 and 5.5b.

6.2 (1)

CD
(2) Cf. Fig.6.6a, (3) Cf. Fig.6.6c,

I Solids with rectangular or parallelogram cross-sections are not prisms in the crystallogra
phic sense as their faces are not all equivalent (cf. Chapter 8.2.1).
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(4) (5) Cf. Fig.6.6d, (6) Cf. Fig.5.5b,

(8)

(9) No symmetry except lattice translation.

(10)

6.3 (a)

(;I~~·
\ . . /" /..... _/

(b)

(1) 2 in x,LO,
(3) I in LO,L
(5) I in LLL
(7) 2 in O,Lz.

(2)minx,y,L
(4) min x,y,O,
(6) 2 in Ly,L

6.4 (a) Cf. Fig. 6.9f (right) and Fig. 8.11.7
(b) (1) 2 in x,U, (2) m in x,y,L
(3) 2 in LLz, (4) m in x,O,z.

6.5 (a) cubic P, (b) monoclinic P, (c) triclinic P, (d) orthorhombic P,
(e) tetragonal P, (f) hexagonal P.

6.6 (a) Cf. Fig.6.7a-6.12a,
(b) Cf. Fig.6.7d-6.12d,
(c) and (d) Cf. Figs. 6.18-6.23.

6.7 (A), (B), C, I, F.

6.8 I.
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Chapter 8

8.1a The directions parallel and antiparallel to a polar axis have distinct
physical properties.

8.1h (1) I, (2) m.l X, (3) 2.1. X [also valid for 4 and 6].

8.2 No. Rotoinversion implies rotation through an angle followed by
inversion. The two ends of the axis remain equivalent.

622 6mm 6m2 6/m 21m 21m

422 4mm 42m 4/m 21m 21m

32 3m 321m 321m

222 mm2 mm2 21m 21m 21m

8.3 1, 21m, 3, 4/m, 6/m.

8.4

Cf. also Figs. 6.ge, f-6.12e, f.

8.5
23 43m 432

21m 3 4/m 321m 4/m 321m

Cf. also Fig. 6.13e, f.

8.6 3m, 32, 3, 3.

8.7 Cf. Table 8.4.

8.8 Cf. p. 145.

8.9 (1) 42m, (2) m, (3) 32, (4) 6mm, (5) mm2, (6) 43m.

8.10 Cf. Figs. 6.8e, f-6.13e, f.

8.11 (1) 6/m 21m 21m, (2)-(4) mm2, (5) 21m 21m 21m, (6) mm2, (7) m,
(8) 6m2, (9) 4/m 321m, (10) 4mm, (11) 4/m 21m 21m, (12) mm2,
(13) 3m, (14) mm2, (15) 43m, (16) 3m, (17) mm2, (18) = (16),
(19) = (15), (20) 3m, (21) + (22) 6m2, (23) m, (24) mm2, (25) m, (26) 2,
(27) 2, (28) 3m, (29) m, (30) + (31) 1, (32) 321m, (33) mm2, (34) 2,
(35) mm2, (36) 4/m 21m 21m, (37) 4mm, (38) 42m, (39) 21m 21m 21m,
(40) mm2, (41) 21m, (42)+(43) m, (44)+(45) 2, (46)-(49) 1
(a) Enantiomers: (26)-(27), (30)-(31), (44)-(45), (46)-(47), (48)-(49).

(b) Polar molecules: (2)-(4), (7), (8), (10), (12), (14), (16)-(18), (20),
(23)-(31), (33)-(35), (37), (40), (42)-(49)

8.12 (1) Bent, (2) pyramidal, (3) Table 8.11.14, (4) Fig. 8.9.
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8.13 mm2 (0°); 2 (0° < ({J <180°);
21m (180°); 2 (180° < ({J < 360°).

8.14 Yes; mm2(+); 2/m(0).

8.15 (1) 21m 21m 21m, (2) 4/m 21m 21m, (3) 6 m2, (4) 6/m 21m 21m,
(5) mm2, (6) 4mm, (7) 3m, (8) 6mm, (9) 21m 21m 21m,
(10) 4/m 21m 21m, (H) 6 m2, (12) 6/m 21m 21m, (13) + (14) 4/m 321m,
(15) 4 3m, (16) 321m.

8.16 (3), (5), (6), (7), (8), (H), (15).

8.17 Faces + vertices = edges + 2 (Euler).

8.18 a) Cf. Fig. 8.8.
b) Ditetragonal dipyramid; from (hkO) arise (hkl) and (hkl) etc., or from
(210) arise, for example, (2H) and (211) etc.

8.19 a) Cf. Fig. 8.12a.
b) Hexagonal dipyramid; from (hkiO) arise (hkil) and (hkiI) etc. or from
(2130) arise, for example, (2131) and (2131).

8.20 (1), (2): Table 8.4; (3), (4): Table 8.7;
(5), (6), (7): Table 8.5; (8), (9): Table 8.6.

8.21 OttO' .- ---. 01 0

'00

(Part of Fig. 8.15)
The pole (H3) corresponds to the crystal form trapezohedron or deltoid
icositetrahedron {3H} or {hkk}. (3H) lies in the asymmetric face unit.

8.22 6m2: (m ..);ditrigonal prism {hkiO}: hexagonal prism {H20}
321m: (.m.);rhombohedron {hOhl}: hexagonal prism {lO10}
6mm: (.m.);hexagonal pyramid {hOhl}: hexagonal prism {1010}

(.. m; hexagonal pyramid {hh2hl}: hexagonal prism {H20}
3m: (.m.),trigonal pyramid {hOhl}: trigonal prism {1010}.



Chapter 9

9.1

(1)

[
--------J
--------

---------

(2)

.~.f-----.
I I I
I I I• • •I I I

I I I• • •
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(3)

(4)

I I--r----r-
I • I
I I
I I--'----1--
I I

(5)

....---------

9.2 (a)x,y,l-z, (b)x,~-y,z, (cH+x,y,~-z, (dH-x,~+y,z,

(e) x,~-y,~+z, (f) ~-x, ~+y,~+z, (g) ~+x,~+Y,z,
(hH+ x, y,~ + Z, (i) ~ - x, y, z, (j) I-x, y, ~+ z, (k) X, ~ +Y, ~ -z,
(1) ~-x,~-y,z, (m)Y,x,i+z;x,y,~+z;y,x,~+z, (n)Y,x-y,~ +z;

x+y,x,~+z.

9.3 The difference between the operation of a glide plane and a 21 is only
evident when a "fully asymmetric point" is considered. An example is the
asymmetric pyramid in the following figure., l'1

~! [7
I
I

I' ,
~
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9.5

-~ ~ ~ : ~ I
~ 1----,----1----,----1 ~
-0 : 0 : 0-

~ 1----,----1----,----1 ~
-0 I 0 I O-

f J ~ J ~

C 21m 21m 21m

'f+ ~ I ~ n
,- ---+,---1---+---1-'

I I
I I

~"""- -'-'-'-~f'-'-'- -'-'-'-~r'-'-'- -,.. ~
i i

121m 21m 21m

9.6 •

•

o 0

Ell Ell

o 0

o 0

Ell Ell

o 0

•

•

9.7
0----0 0

IPOd I
I 0 1(1)

(a) (2) x, y, z; x, y, Z,2 (3) 2, (4) PI, (5) on all I, one-fold.

2 Coordinates are given as in International Tables [18] [17] [14], i.e. instead of1-x, 1- y, 1- z
is written X, y, z.
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I I
9 I I PI I

I II II II
P 9 II I

I I (1)

(b) (2) x, y, z; x, y, z; ~+ x, ~ -y, z; ~ + x, ~+ y, z, (3) 4, (4) em,
(5) on m, 2-fold.

•
-.D i Y I

----+-------4----
I vi
I • I
I 0.- I
I I

~---,--------~---
IIi cr
i. (1)

"
(c) (2) x, y, z; ~ + x, ~ -y, z; ~ - x,~ +Y, z; X, y, z, (3) 4, (4) Pba2,

(5) on 2, 2-fold.

·-·-·-:-·-·-t-·_·:·-·_·

p I 9 i
'-'-'-1-'-'-'··-'-·-1'-'_·

1 6 1 d
.-.-.j.-.-.-e.-.-.j .-.-. (1)

(d) (2) x, y, z; x,~ -y, ~ + z; x, ~ +Y, ~ + z; x, y, z, (3) 4, (4) Pnc2,
(5) on 2, 2-fold.

....-- ---1--- ---t
i v cr i !
t··..····.. ··..··..·..·r......·..· ···..·....··1
I -.D 0.- . .r-- ---t=o (;-1
i .;............ .. i, '-f) 0.-'....-- ---1--- --4 (1)

(e) (2) x,y,z; x,~-y,z; ~-x,y,~+z;~-x,~-y,~+z;
!+x,~+y,~+z;~+x,y,~+z;x,~+y,z; x,y,z. (3) 8, (4) Ibm2,

(5) on 2, 4-fold.
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11+
0 a 0

i V i u i.1._,
I '_L.. . . ..

1 Q.- 1 -D 1
0 a 0
i v i u i

.l.-f I ,_L
.. . . ..

! Q.- I -D I
0 a 6

(1)

(f) (2) x, y, z; ~ - x, ~ - z; ~ + x, y, ~ - z; x, y, z; x, y, z; ~ - x, y, ~ + z;
~ +x, y, ~ +z; x, y, Z, (3) 8, (4) P 21m 2/n 21/a, (5) on m and 2, 4-fold, on
I,2-fold.

, I ........ IP
Q'. ·· 1./·
- ~- - - - -'JC--....r'. 0- /(.

...... Ib ')I." 1 ••...•
". I ,ql ..

". I' . I ..'
". ./..0 ' ...'
-~----~--/·1···. ····1·' ""D/d .... .... "

.. .. .. .
(1)

(g) (2) x,y,z; x,y,z; y,x,~+z; y,x,~+z; ~+x,~-y,z;~-x,~+y,z;
~-y,~-x,~+z;~+y,~+x,~+z.(3) 8, (4) P42bc, (5) on 2, 4-fold.

9.8 a) 1. x,y,z; x,y,z; x-y,x, z+L x+Y,x,z+L
y,x-y,z+~;y,x+Y,z+~

2. 2 in LO,z; LLz; O,Lz; 32 in LLz; LLz
3. 32,2

b) 1. x,y,z; Y,x-Y,z; x+Y,x,z; x-y,x,z+L
x, y, z + ~; y, x + y, Z+ ~

2. 21 in L 0, z; L L z; 0, L z; 3 in L L z; L L z
3. 3,21
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9.9 x,z,x x,z,x
x,x,z 0 0 0 o x,x,z
z,x,x 0 o Z,X,x

b
24
.. m

z,x,xO Oz,x,x

x,x,zO 0 0 o x,x,z
x,z,x x,z,x

a a)

x,x,xQ o X,X,x

b
8
.3m

x,x,x 0 o X,X,x

a b)

x,o,o
0

o,x,o o,o,x o,x,o
b

6
0

!
0 4m.m

x,O,o

a c)

Coordinates are not given for those points which are reflected by m to
locations below the plane x, y, O. The third coordinate of each triple must
be taken to have both a plus and a minus sign.
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9.10 P21/c (Fig. 9.9a), Pna21 (Fig. 9.12), Pmna (Exercise 9.6f).

Pbca

,1/~t~,1/-
/ '"

)'. 
'\.

/-
/1" VI"" /l"

P422

9.11 This is absurd: an a-glide plane cannot be normal to the a-axis ...
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Chapter 10

10.1 pI:

-0 -0

• •

/
o·

/
o·

-0 -0
(a) AB2, (b) Z=l, (c) linear,• •

o· o· • zoo (d) co/mm, (e) 1.

.------.
Pm:

·0 o· ·0 o·

• • (a) AB2, (b) Z=l,
'0 o· ·0 o· (c) bent, (d) mm2, (e) m.

P2/m:

-0 0- -0 0-

• •
-0 0- -0 0-

(a) AB4, (b) Z=l, (c) planar

0- -0 0-
[4]-coordination

-0
(rectangular),• •

-0 0- -0 o· (d) 21m 21m 21m, (e) 21m.

P 21m 21m 21m:

-0- -0- ·0- -0-
• •

'0- -0- -0- -0-

(a) ABg, (b) Z=l,
(c) [8]-coordination

'0- -0· ·0 -0' (rectangular parallelepiped),• •
-0- -o· '0- -0- (d) and (e) 21m 21m 21m.
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Chapter 11

11.1 Cf. Table 11.1 d and h.

11.2 (a) cub. P; Po: 0,0,°
(b) cub. I; VV:O,O,O
(c) hex. P; Mg: 0,0,0; LU
(d) cub. F; Cu: 0,0,°
(e) 63 in LLz; 6 in O,O,z

11.3 (a) 1.675 A, (b) 1.37A, (c) 1.605 A, (d) 1.28 A.
11.4 1.63.

11.5 (a) 0.52, (b) 0.68, (c) 0.74, (d) 0.74.

11.6 (a) Cf. Fig. 11.14

(b) 1.546A, (c) 8, (d) each C is tetrahedrally coordinated by 4C.
(e) The two structures have the same geometry.

11.7 (a) Cf. 11.15a

o 0 3
(b) 1.42 A, (c) 4, (d) 3.35 A, (d) PD = 3.50 g/cm ;
PG=2.27g/cm3.

11.8 Li+: 0.76A; Cl-: 1.81A; 0.79



11.9
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NoCI

LiCI

RbF

11.10~

1.95 A(distances indicated by thick lines), 1.97A(distances indicated by
thin lines), cf. Fig. 9.18.
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11.11

0.61 1 0.11 1 0.61
1 1 1
,,~ ~

" "0. 39 0.89 0. 39

· + .· .
--~-- --:--· .· .
0.89 0. 39 0. 89

1 0 ~l
,,~ 4

0.11 0. 61 0. 11

: + :--~-- --~--· .· :

0.61 0. 11 0·61
1 ~l

"
-.:-- 4

0. 39 ~ 0.89 ~ 0. 39

The j are orientated parallel to (111). 0 0
5 Fe

(3) 4, (4) Fe-S: 2.27 A; S-S: 2.06 A.

11.12

o Hg

OCl

(1)

(2) HgNH4Ch, Z=l, (3) Hg[6] (octahedron), NHJ8] (cube),
(4) Hg-Cl: 2.38 A; 2.96 A, NHcCl: 3.36 A.
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11.13

o Ba

OS

0 0

~
'VJ
8

~

0·03~

a

11 oordinated by 40.4 (3) S is tetrahedra y c(2) ,

--+--
I
I

---l'---'--1 I
I I I I
I I I I
I I I
I
I I
f----T
I I
I I

Chapter 12

12.1

I I I
I

I I --+1--- l'I---~

L--~f__+,-111-;1 _*
: ! 1 c C

1

I I i Q*I
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r---.,. --,---
I I I
I I I
I I I
f----t- --+---

i I I
I I I
i-----l ---l-----,

I I I -I I b*
: I J Q*

i
b

I

12.2

12.3

12.4

Z = 2, W-type (Fig. 11.5).

23 _ 2+I = 21m, 3+I = 3 } 21m3
21m3
432 4+I=4/m,3+I=3,2+I=2/m l
43m 4+I=4/m,3+I=3,m+I=2/m 4/m32/m
4/m32/m
(1) 111 4.077; 200 3.534; 220 2.495; 311 2.127; 222 2.038; 400 1.766;
3311.621; 420 1.579; 422 1.442.

(2) ao = 7.06A. (3) Z = 4. (4) Because Z = 4, so KI must have either the rock
salt or the sphalerite structure. As RA/Rx for KI is 0.61 (see Table 11.3)
the structure should be the rock salt (NaCl) type.
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A-lattice 100
Acicular 29
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Angle between the normals 33
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Anisotropic 4, 5
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Aragonite structure 240
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Bragg equation 249,250,253
Bravais lattice 71, 103
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C60 162,214,225
CaC03 structure 240
CaF2 161
CaF2 structure 263
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Calcite structure 240
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Centred lattice 97
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297
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Diamond structure 236
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Ditrigonal dipyramid 136/137,277
Ditrigonal prism 136/137,277
Ditrigonal pyramid 136/137,277
Ditrigonal scalenohedron 136/137,277
Dolomite 157
Dome 141,276

Edge dislocation 267
Eigensymmetry 142
Electrical conductivity 224
Enantiomeric 150, 153
Enantiomorphism 147-150,189,190
Equant 29
Equivalent 59
Equivalent by translation 59
Etch-figure 146,268
Ethane 144
Ethylene 213,224
Ewald 255
Ewald construction 258
Extinct 253

F-Iattice 90, 101
Face symmetry 125-127,131,134-137,
139,141

Fivefold rotation axis 61
Fluorite structure 231, 234
Fluorite-type 232
Forsterite structure 230
Fourfold rotation axis 61
Frenkel defect 266
Full symbol 121

Galena 27,33,48,50,55, 124
Garnet 3
Gas 5,6
General form 125,214
General plane lattice 71, 76
General position 196,203,214
Generating symmetry 142
Glancing angle 249
Glass 8
Glide component 184
Glide plane 183-187
Glide reflection 183, 184
Gnomonic projection 47
Goldschmidt 43



Goniometer 37
Graphite structure 243
Great circle 33,40
Growth rate 31
Gypsum 4,57
Gyroid 139,278

Habit 29
Handedness 188
Hardness 4
hcp 221,223
Hermann 122
Hermann-Mauguin symbol 147, 191
Heteropolar bonding 217
Hexagonal 86, 136-138
Hexagonal closest packing 221, 224
Hexagonal dipyramid 53, 136/137
Hexagonal prism 53, 136/137
Hexagonal pyramid 53, 136/137
Hexagonal trapezohedron 136/137, 277
Hexahedron 139,179
Hexakisoctahedron 278
Hexakistetrahedron 278
Hexamethylenetetramine 213, 224
Hexaoctahedron 139,278
Hexatetrahedron 139,278
(hkil) 133,272
{hkil} 272
hkl 253,272
(hkl) 14,28, 125,272
{hkl} 125,272
Homogeneous 5-7
Homopolar bonding 217

I-lattice 90, 101
Idea of sphere packing 217
Ideal crystal 265
Identical 59
Identical points 10
Indexing 41-45
Interaction principle 217
International symbol 123,124,147,191
International tables for crystallography
133,203

Interrelationship of point groups and space
groups 213

Inversion 58, 63
Inversion centre 58, 63, 66
Ionic bonding 217
Ionic radii 226, 228
Ionic structure 225
Isometric 29
Isomorphism 236
Isotropic 5
Isotypes 236

JCPDS 254

Subject Index 305

Kyanite 4

Lattice 9,21
Lattice line 12
Lattice parameter 10, II, 253
Lattice plane 13
Lattice point II
Lattice translation 10, 71
Laue 249
Laue group 260
Laue symbol 253
Law constancy of the angle 31
Limiting form 126
Line defect 265, 267
Line lattice 10
Liquid 5,7

Magnesium 146
Malonic acid 153
Metal structure 220
Metallic bonding 217
Methane 146, 161
Mg-type 221
Miller indices 14,42,251
Mirror plane 58, 62
Mixed crystals 237
Molecular dipole moment 152
Molecular structure 224
Molecular symmetry 143
Monochromatic beam 249
Monoclinic 79, 120
Morphological axial ratio 46, 117, 271
Morphology 27,59, 115, 124
Mosaic blocks 269
Multiplicity 191, 197

NaCl 161,226,3
NaCI structure 235,239,263
NaCl-type 232, 238
Naphthalene 143
Nepheline 159
NiAs structure 230, 235
NiAs-type 238
Noble gas structure 224
Non-crystallographic point group 143,
162

Nucleation 30
Nucleus 30
Number of chemical formula units per unit
cell 23,253,261

Octahedral coordination 226
Octahedral hole 222
Octahedron 40, 139, 179
Olivine structure 237
One-circle reflection goniometer 37
Optical activity 147-150



306 Subject Index

Order-disorder transformation 243
Orthographic projection 47
Orthorhombic 80, 120, 140, 141

P-Iattice 12,74,76-78,80,82,86,88,
90-97

Packing efficiency 222, 223
Parallelohedron 276
Pauling's third rule 234
PDF index card 254
Pentagon-dodecahedron 278
Periodically homogeneous 5
Phenanthrene 143
Physical property 4,71, 150
Piezoelectricity 147-149,151
Pinakoid 28, 35, 127
Plagioclase 238
Planar 29
Plane defect 265, 268
Plane lattice 10
Plastic deformation 224
Pleochroism 3
Point defect 265, 266
Point group 77,79,81,83,85,87,89,119,
120,147

Point lattice 9
Point symmetry operation 120
Point symmetry elements 67
Points equivalent by translation 10
Polar 146-149
Polar axis 151
Pole distance 38
Pole of the face 33
a-Polonium 9,223
Polymorphism 239
Polytypism 243
Powder diagram 251, 252
Powder pattern 253
Precession method 260
Principle of closest packing 217
Prismatic 29
Pyrene 143
Pyrite 161,246,298
Pyritohedron 139,278
Pyroelectricity 147-149, 152

Quartz 31, 151, 158
Quartz structure 241

R-Iattice 84
Radius ratio 219,226,227,230-234
Rate of crystal growth 31
Real crystal 265
Reciprocallattice 255-259
Reconstructive transformation 240,241
Reflection goniometer 36
Reflection 58, 62

Repetition operation 10, 57
Rhomb-dodecahedron 3, 139
Rhombic dipyramid 52, 141
Rhombic disphenoid 141,276
Rhombic prism 52, 141
Rhombic pyramid 52, 141
Rhombohedral 84
Rhombohedron 136/137, 179
Rotation 58
Rotation axis 58, 59
Rotoinversion 65
Rotoinversion axis 65
Rotoreflection 67
Rotoreflection axis 67
Rutile 157,205,213,226
Rutile structure 232, 235
Rutile-type 232

Schonflies symbol 123, 124, 147, 191
Schottky defect 266
Screw axis 183, 187-189
Screw component 187
Screw dislocation 267
Screw rotation 183, 187
Short symbol 121
Single crystal 33
SiOzstructure 234
Site symmetry 196-199,203
Sixfold rotation axis 61
Small angle grain boundaries 268
Small circle 41
Sn02 structure 261
Solid solution 236, 266
Space group 77,78,80,82,84,86,88,92,
183, 189, 194

- pi 77,92,210,290
- P2 193
- P21 193
- C2 193
- Pm 193
- Pc 193
- Cm 193,211,291
- Cc 193
- P2/m 78,92, 192, 198, 199
- P2I!m 192
- C2/m 192
- P2/c 192
- P21/c 192
- C2/c 192
- Pmm2 106, 191
- Pnc2 211,291
- Pba2 211,291
- Pna21 197, 198
- Ibm2 206,211,291
- P2/m 2/m 2/m 80, 93, 94
- P2/m 2/n 2I!a 207,212,292
- P2 1/b 21/c 21/a 294



- C2/m 2/m 2/m 290
- I2/m 2/m 2/m 290
- P4/m 2/m 2/m 82, 95, 96
- P42/m 2,/n 2/m 204
- P42bc 212,292
- P422 294
- R2/m 84, 103
- P6/m 2/m 2/m 86, 95, 98
- P6, 198-200
- P4/m 2/m 88,97,99, 199-202,293
- P2J!a 246, 298
Space lattice 9, 10
Special form 126,214
Special plane lattice 72-76
Special position 197,203,214
Sphalerite 161,233
Sphalerite-type 238
Sphenoid 141,276
Spinel structure 227,230
Stacking faults 269
Statistically homogeneous 5
Steno 32
Stereographic projection 33-36
Structural axial ratio 47, 117, 271
Substitution defect 266
Substitutional solid solution 237
Superstructure 238
Symmetry 89
Symmetry direction 92-97, 103, 117, 147
Symmetry element 57, 59, 272-274
Symmetry operation 57,214
Symmetry principle 217
Symmetry rule 91

Tabular 29
Tartaric acid 153
Tautozonal 29
Tetartoid 139,278
Tetragonal 82, 130
Tetragonal dipyramid 52, 127, 134/135
Tetragonal disphenoid 131,134/135,276
Tetragonal prism 35,52,127,132,134/
135

Tetragonal pyramid 35,52,131,134/135
Tetragonal scalenohedron 131,134/135,
276

Tetragonal trapezohedron 131,134/135,
276

Tetrahedral coordination 231
Tetrahedral hole 222
Tetrahedral pentagon-dodecahedron 278
Tetrahedron 139, 179

Subject Index 307

Tetrahexahedron 139,278
Tetrakishexahedron 278
Thermal conductivity 224
Threefold rotation axis 60
Ti02157, 205, 226
Topaz 42,44
Tourmaline 152, 158
Transformation in secondary
coordination 240

Transformation involving changes in type
of bonding 243

Transformation of first coordination 239
Trapezohedron 139,278
Triclinic 77, 120
Tridymite structure 242
Trigonal 84
Trigonal dipyramid 53, 136/137
Trigonal prism 53, 136/137
Trigonal pyramid 53, 136/137
Trigonal trapezohedron 136/137,277
Trisoctahedron 139,278
Tristetrahedron 139,278
Two-circle reflection goniometer 37
Twofold rotation axis 59

Unit cell II
Unit length 46
Unit mesh 10, 76
uvw 11,271
[uvw] 12,28, 125,271
(uvw) 93, 125,271

van der Waals bonding 217
Vitamin B'2 3, 225

W-type 223
Whisker 268
Wulfenite 155
Wulff net 37-41
Wurtzite structure 233

x,y,z 21-23,271
X-ray 8
X-ray diffraction 249

Zinc blende 233
ZnS 233
Zonal equation 16-19
Zone 29, 33, 39
Zone axis 29, 39
Zone pole 39
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