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Preface to the English Edition

This book is based on the lectures which I have now been giving
for more than 20 years to chemists and other scientists at the
Westfilische Wilhelms-Universitat, Miinster. It is a translation
of the fourth German edition, which will also be appearing in
1993.

It has been my intention to introduce the crystallographic
approach in a book which is elementary and easy to understand,
and have thus avoided lengthy mathematical treatments. As will
be clear from the contents, topics in crystallography have been
covered selectively. For example, crystal structure analysis,
crystal physics and crystal optics are only touched on, as they do
not fit easily into the scheme of the book.

The heart of the book is firmly fixed in geometrical crystal-
lography. It is from the concept of the space lattice that
symmetry operations, Bravais lattices, space groups and point
groups are all developed. The symmetry of molecules is des-
cribed, including the resulting non-crystallographic point
groups. The treatment of crystal morphology has been
brought into line with the approach used by International
Tables for Crystallography. The relationship between point
groups and physical properties is indicated. Examples of space
groups in all crystal systems are treated. Much emphasis is
placed on the correspondence between point groups and space
groups. The section on crystal chemistry will serve as an
introduction to the field. Of the various methods of investi-
gation using X-rays, the powder method is described, and an
account is given of the reciprocal lattice. At the end of each
chapter are included a large number of exercises, and solutions
are given for all of them.

The first stimulus to have this book translated was given
by Professor P. E. Fielding of the University of New England in
Armidale (Australia). The translation was undertaken by Dr.
R. O. Gould of the University of Edinburgh. I thank Dr. Gould
for his enthusiasm and for the trouble he has taken over the
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translation. It was practicularly beneficial that we were able to
consider the text together thoroughly.

Professor E. Koch and Professor W. Fischer, both of the
University of Marburg, have discussed each edition of this book
with me, and their criticism has been invaluable. I wish to record
my thanks to them also.

Miinster, Autumn 1993 W. BORCHARDT-OTT
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Introduction

At the heart of crystallography lies an object — the crystal. Crystallography is
concerned with the laws governing the crystalline state of solid materials, with
the arrangement of atoms in crystals, and with their physical and chemical
properties, their synthesis and their growth.

Crystals play a role in many subjects, among them mineralogy, inorganic,
organic and physical chemistry, physics, metallurgy, materials science,
geology, geophysics, biology and medicine. This pervasiveness is perhaps
better understood when it is realised how widespread crystals are: virtually all
naturally occuring solids, i.e. minerals, are crystalline, including the raw
materials for chemistry, e.g. the ores. A mountain crag normally is made up of
crystals of different kinds, while an iceberg is made up of many small ice
crystals. Virtually all solid inorganic chemicals are crystalline, and many solid
organic compounds are made up of crystals, among them benzene, naphtha-
lene, polysaccharides, proteins, vitamins, rubber and nylon. Metals and
alloys, ceramics and building materials are all made up of crystals. The
inorganic part of teeth and bones is crystalline. Hardening of the arteries and
arthritis in humans and animals can be traced to crystal formation. Even
many viruses are crystalline.

This enumeration could be continued endlessly, but it is already obvious
that practically any material that can be regarded as solid is crystalline.

In many countries, especially in Germany, crystallography is mainly
taught as a part of mineralogy, while elsewhere, notably in Britain and North
America, it is more often taught as a part of physics or chemistry. In any case,
“crystallographers” may be from a wide variety of scientific backgrounds.
Most countries have a National Crystallographic Committee representing the
International Union of Crystallography, the body which publishes Acta
Crystallographica and International Tables for Crystallography.



1 The Crystalline State

The outward appearance of a crystal is exceptionally variable, but all the
variations which occur can be explained in terms of a single fundamental
principle. To grasp this, we must first come to terms with the nature of the
crystalline state. The following are a few properties that are characteristic of
crystals:

a) Many crystals not only have smooth faces, but, given ideal growth
conditions, have regular geometric shapes (see Figs. 1.1-1.4).

a) b) ‘

Fig.1.1a,b. A garnet crystal with the shape of a rhomb-dodecahedron (a) and a crystal of
vitamin By, (b)

bright yellow

_ blue-grey

blue

blue-grey Fig. 1.2. Pleochroism as shown by a

bright yellow crystal of cordierite



Fig. 1.3. A crystal of kyanite, with a scratch illustrating the
anisotropy of its hardness

b) If some crystals (e.g. NaCl) are split, the resulting fragments have similar
shapes with smooth faces - in the case of NaCl, small cubes. This
phenomenon is known as cleavage, and is typical only of crystals.

¢) Figure1.2shows a corderite crystal and the colours that an observer would
see when the crystal is viewed from the given directions. The colours that
appear depend on the optical absorption of the crystal in that particular
direction. For example, if it absorbs all spectral colours from white light
except blue, the crystal will appear blue to the observer. When, as in this case,
the absorption differs in the three directions, the crystal is said to exhibit
pleochroism.

d) When a crystal of kyanite (Al,0SiO,) is scratched parallel to its length
by a steel needle, a deep indentation will be made in it, while a scratch
perpendicular to the crystal length will leave no mark (see Fig.1.3). The
hardness of this crystal is thus different in the two directions.

|C

m

/ Fig. 1.4. A crystal of gypsum covered with wax showing

the melting front. The ellipse is an isotherm, and shows
the anisotropy of the thermal conductivity




Distribution | Physical

Representation
of molecules | properties

of the state

Retention
of shape
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of volume

a) Gas

(ﬁ No | No
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—————  Boiling point )
b) Liquid Isotropic?
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Periodically
Yes | Yes | homo-
geneous!

3

Anisotropic

' Equal physical properties in parallel directions 5
2 Equal physical properties in all directions
* Different physical properties in different directions

Fig. 1.5a-c. Schematic representation of the states of matter. a gas, b liquid, ¢ crystal
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e) If one face of a gypsum crystal is covered with a thin layer of wax and a
heated metal tip is then applied to that face, the melting front in the wax layer
will be ellipsoidal rather than circular (Fig. 1.4), showing that the thermal
conductivity is greater in direction III than in direction I. Such behaviour -
different values of a physical property in different directions - is called
anisotropy, (see also Fig. 1.5¢). If the melting front had been circular, as it s,
for example, on a piece of glass, it would imply that the thermal conductivity
is the same in all directions. Such behaviour - the same value of a physical
property in all directions - is called isotropy, (see the right hand side of
Fig. 1.5).

Anisotropy of physical properties is normal for crystals. It is, however, not
universal, as there are some crystals whose properties are isotropic. The
origin of all of the phenomena listed under (a) to (e) lies in the internal
structure of crystals. In order to understand this better, let us now consider
the various states of aggregation of matter.

All matter, be it gas, liquid or crystal, is composed of atoms, ions or
molecules. Matter is thus discontinuous. Since, however, the size of the atoms,
ions and molecules lies in the A region (1A=10"%cm=0.1nm) matter
appears to us to be continuous. The states of matter may be distinguished in
terms of their tendency to retain a characteristic volume and shape. A gas
adopts both the volume and the shape of its container, a liquid has constant
volume, but adopts the shape of its container, while a crystal retains both its
shape and its volume, independent of its container (see Fig. 1.5).

Gases. Figure1.5a illustrates the arrangement of molecules in a gas at a
particular instant in time. The molecules move rapidly through space, and
thus have a high kinetic energy. The attractive forces between molecules are
comparatively weak, and the corresponding energy of attraction is negligible
in comparison to the kinetic energy.

What can be said about the distribution of the molecules at that particular
instant? There is certainly no accumulation of molecules in particular
locations; there is, in fact, a random distribution. A. Johnsen [21] has
illustrated this by a mental exercise (Fig. 1.6a): we scatter 128 lentils over the
64 squares of a chessboard, and observe that in this particular case some
squares will have no lentils, some 1, 2, or even 3 - but on average 2. If, instead
of single squares we considered blocks of four squares, the number of lentils
in the area chosen would fall between 7 and 9, while any similar block of 16
squares would have exactly 32 lentils. Thus, two distinct areas of the same size
will tend to contain the same number of lentils, and this tendency will increase
as the areas considered become larger. This kind of distribution is considered
to be statistically homogeneous, i.e. it shows the same behaviour in parallel

5



bl P 5 P ol P D Pl P
70 0| 0| | o| | o} @] @
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
c| ol o]l o| o| o] ©| @] @
o o |0 (0|0 (0 0 |e
i 5 LJ (] L] LJ LJ LJ L] L]
: ‘ o |0 (o |0 |0 (0 |0 |0
: N . 4 .. .. 0. .. .. .. .. ..
. : ‘e | 31 e? el e® e®| e®e®|e®|e®
; - ° o }
2 !._L'_._ ',f’,.,', ° '.9, ,',._ih. Ll I P Il S P Pl ol P
.i.o :..0 .:o. .:2.0 PP e P P
a ab cd e f g h b) a b ¢ d e f § h

Fig.1.6a,b. Statistical (a) and periodic (b) homogeneity. Johnsen [21]

directions, and it may easily be seen that the physical properties of the
distribution are isotropic, i.e. are equal in all directions.

Liquids. As the temperature of a gas is lowered, the kinetic energies of the
molecules decrease. When the boiling point is reached, the total kinetic
energy will be equal to the energy of attraction among the molecules. Further
cooling thus converts the gas into a liquid. The attractive forces cause the
molecules to “touch” one another. They do not, however, maintain fixed
positions, and Fig. 1.5b shows only one of many possible arrangements. The
molecules change position continuously. Small regions of order may indeed
be found (local ordering), but if a large enough volume is considered, it will
also be seen that liquids give a statistically homogeneous arrangement of
molecules, and therefore also have isotropic physical properties.

Crystals. When the temperature falls below the freezing point, the kinetic
energy becomes so small that the molecules become permanently attached to
one another. A three-dimensional framework of attractive interactions forms
among the molecules and the array becomes solid - it crystallises. Figure 1.5¢
shows one possible plane of such a crystal. The movement of molecules in the
crystal now consists only of vibrations about a central position. A result of
these permanent interactions is that the molecules have become regularly
ordered. The distribution of molecules is no longer statistical, but is
periodically homogeneous; a periodic distribution in three dimensions has
been formed (see also Fig.2.1a).

How can this situation be demonstrated using the chessboard model?
(Fig.1.6b). On each square, there are now precisely two lentils, periodically
arranged with respect to one another. The ordering of the lentils parallel to
the edges and that along the diagonals are clearly different, and therefore the
physical properties in these directions will no longer be the same, but

6
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Fig. 1.7. Heating curves for a crystal (—)
and a glass (— ——), T, is the melting point
1 of the crystal

Ts Temperature

distinguishable - in other words, the crystal has acquired anisotropic
properties. This anisotropy is characteristic of the crystalline state.

Definition. A crystal is an anisotropic, homogeneous body consisting of a three-
dimensional periodic ordering of atoms, ions or molecules.

All matter tends to crystallise, if the temperature is sufficiently low, since
the ordered crystalline phase is the state of lowest energy. There exist,
however, materials, e.g. glass, which never reach this condition. Molten glass
is very viscous, and the atoms of which it is made cannot come into a three-
dimensional periodic order rapidly enough as the mass cools. Glasses thus
have a higher energy content than the corresponding crystals and can best be
considered as a frozen, viscous liquid. They are amorphous or “form-less”
bodies. Such materials do not produce flat faces or polyhedra since an
underlying order is missing.

How then is it possible to distinguish amorphous material from crystals?
One possibility is to examine the melting behaviour. As is illustrated in
Fig. 1.7, a crystal has a sharp melting point T,, while amorphous bodies have
a region of softening. Another possibility derives from their different
properties relative to an incident X-ray beam. The three-dimensional
ordering of the atoms in crystals gives rise to sharp interference phenomena,
as is further examined in Chapter 12. Amorphous bodies, as they do not have
underlying order, produce no such effect.

Exercise 1.1. Determine the volume of a gas associated with each molecule at normal
temperature and pressure.

Exercise 1.2. Determine the packing efficiency of Ne gas (Ry.=1.60 f\) under normal
conditions. The packing efficiency is the ratio of the volume of a neon atom to the volume
calculated in example 1.1. For comparison, a copper crystal has a packing efficiency of 74%.

Exercise 1.3. Discuss the use of the term “crystal glass™!.




2 The Lattice and Its Properties

A three-dimensional periodic arrangement of atoms, ions or molecules is
always present in all crystals. This is particularly obvious for the a-polonium
crystal illustrated in Fig. 2.1. If each atom is represented simply by its centre
of gravity, what remains is a point or space lattice (Fig. 2.1b).

A point or space lattice is a three-dimensional periodic arrangement of
points, and it is a pure mathematical concept. The concept of a lattice will
now be developed from a lattice point via the line lattice and the plane lattice,
finally to the space lattice.

2.1 Line Lattice

In Fig. 2.2, we may consider moving from the point 0 along the vector @ to the
point 1. By a similar movement of 23, we will reach point 2, etc. By this
movement, one point is brought into coincidence with another, and a
repetition operation takes place. By means of this operation, called a lattice
translation, a line lattice has been generated. All points which may be brought
into coincidence with one another by a lattice translation are called identical
points or points equivalent by translation. |a|=a, is called the lattice
parameter, and this constant alone completely defines the one-dimensional
lattice.

a) b)

Fig.2.1a,b. Three-dimensional periodic arrangement of the atoms in a crystal of
a-polonium (a) and the space lattice of the crystal (b)



o2 . 3 3 .
3 . . . . .
WA . . . . .
Fig. 2.2 Fig. 2.3

Fig.2.2. Line lattice with its lattice parameter |a| =a,

Fig. 2.3. Plane lattice with the unit mesh defined by the vectors a and b

2.2 Plane Lattice

If a lattice translation b (b 4 @) is then allowed to operate on the line lattice in
Fig. 2.2, the result is the plane lattice or plane net (Fig. 2.3). The vectors 2 and
b define a unit mesh. The entire plane lattice may now be constructed from the
knowledge of three lattice parameters, |a| —a,, |b| =b, and 7, the included
angle. If any point is moved by any arbitrary lattice translation, it will come
into coincidence with another point. A plane lattice thus has lattice
translations not only parallel to @ and b, but also to any number of
combinations of them, i.e. an infinite number of lattice translations.

2.3 Space Lattice

If yet another lattice translation ¢ is now introduced in a direction not
coplanar with @ and b, its action on the plane lattice in Fig. 2.3 generates the
space lattice shown in Fig. 2.4. This space lattice can also be produced solely
by the operations of three dimensional lattice translations. In contrast to a
finite crystal, a space lattice is infinite.

According to the arrangement of the vectors @, b and ¢, we may introduce
an axial system with the crystallographic axes a, b and c. The vectors @, band ¢
and their respective crystallographic axes a, b and c are chosen to be right-
handed. That is, if the right thumb points in the direction of @ (a) and the index
finger is along b (b), the middle finger will point in the direction of € (c). A
lattice, or a crystal described by it, may always be positioned so that & (a)
points toward the observer, b (b) toward the right, and ¢ (c) upwards, as is
done in Fig.2.4.

The vectors 4, b and ¢ define a unir cell, which may alternatively be
described by six lattice parameters:



Fig. 2.4. Space lattice with the unit cell
defined by the vectors a, b and ¢

length of lattice translation vectors interaxial lattice angles
|d] =a, anb=y
[b] =by anc=p
€] =c¢o bAaC=a

Further application of lattice translations to the unit cell will produce the
entire space lattice. The unit cell thus completely defines the entire lattice.

Every unit cell has eight vertices and six faces. At all vertices there is an
identical point. Can all of these points be considered part of the unit cell? The
lattice point D in Fig. 2.4 is not only part of the marked-out unit cell, but part
of all eight cells which meet at that point. In other words, only one eighth of it
may be attributed to the marked unit cell, and since 8 X3=1, the unit cell
contains only one lattice point. Such unit cells are called simple or primitive,
and are given the symbol P.

2.4 The Designation of Points, Lines and Planes in a Space Lattice

2.4.1 The Lattice Point uvw

Every lattice point is uniquely defined with respect to the origin of the lattice
by the vector 7 =ua +vb + wc. The lengths of @, b and € are simply the lattice
parameters, so only the coordinates u, v and w require to be specified. They
are written as a “triple” uvw. In Fig. 2.5, the vector 7 describes the point 231
(which is read as two-three-one). The coordinates u, v and w normally are
integers, but can also have values of integers +3,1 or 3, as is further explained
in Chapter 6.4. When they have integral values, the points uvw are the
coordinates of the points of a P-lattice. The coordinates of the vertices of a
unit cell are given in Fig. 2.5.

10



Fig. 2.5. Designation of lattice points using the coordinates uvw that define the vector from
the origin to the lattice point uvw, T =ua + vb + wc

2.4.2 Lattice Lines [uvw]

A line may be specified mathematically in any coordinate system by two
points. The lattice line I in Fig. 2.6 contains the points 000 and 231. Since the
lattice line passes through the origin, the other point on its own describes the
direction of the line in the lattice, and the coordinates of this point thus define
the line. For this purpose, they are placed in square brackets [231], or in
general [uvw], to show that they represent the direction of a line.

The lattice line I1’ passes through the points 100 and 212. Line I1 is parallel
to this line, and passes through the origin as well as the point 112 and
consequently both lines may be referred to by the symbol [112].

Fig.2.6. Designation of lattice lines using the coordinates [uvw] (in square brackets) that
define the vector from the origin to the given point T =ua +vb + wc (I: [231], IL: [112])

11



(1]

f0al'a

Fig. 2.7. Projection of a space lattice along ¢ onto the a, b-plane. The lattice line 4 is defined
by the triple [210], while B may be given as [130] or [130]

Note that the triple [uvw] describes not only a lattice line through the origin, but
the infinite set of lattice lines which are parallel to it and have the same lattice
parameter.

Figure 2.7 shows a projection of a space lattice along c onto the a, b-plane.
The lattice line A intersects the points with coordinates 000, 210, 420 and 210
(note that minus signs are placed above the numbers to which they apply -
this applies to all crystallographic triples). Each point on the line has different
values uvw, but the ratio u:v:w remains constant. In this case, the smallest
triple is used to define the lattice line. Lines parallel to @ or b are thus
identified as [100] or [010] respectively, while the line B is given as [130] or
[130]; note that these two representations define opposite directions for the
lattice line.

2.4.3 Lattice Planes (hkl)

Consider a plane in the lattice intersecting the axes a, b and ¢ at the points
m00, On0 and 00p. (These coordinates are given as mnp and not uvw to show
that the values need not be integral. An example of a lattice plane which does
not intersect the axes at lattice points is plane D in Fig. 2.10). The coordinates
of the three intercepts completely define the position of a lattice plane
(Fig. 2.8). Normally, however, the reciprocals of these coordinates are used
rather than the coordinates themselves:

12



0n0b
, Fig. 2.8. The intercepts on the axes of a lattice plane
moo, with the Miller indices (362)

. 1
a-axis: h~—
m

b-axis: k ~ L
n

. 1
c-axis: | ~—
p

The smallest integral values are chosen for the reciprocal intercepts, and
they are then written as a triple (hkl) in round brackets.

The values (hkl) are called Miller indices, and they are defined as the smallest
integral multiples of the reciprocals of the plane intercepts on the axes.

The lattice plane shown in Fig. 2.8 has the intercepts m|n|p =2|1|3 the
reciprocals of these are 1|1|}, leading to the Miller indices (362).

Fig. 2.9. The indexing of lattice planes by Miller indices, the smallest integral multiples of the
reciprocals of the intercepts on the axes; I (111), IT (211)
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Fig. 2.10. Projection of a space lattice along ¢ onto the a,b-plane. The “lines” A-G are the
traces of the lattice planes parallel to ¢ with the Miller indices (210). The “line” H is the trace
of a lattice plane (230)

In the space lattice shown in Fig. 2.9, two lattice planes have been drawn in

m|n|p L (hkl)

m p
I 1 1 1] 1 1 1 | (111
om|j1 2 2|1 : 1] @1

In Fig.2.10, a projection of a lattice is shown together with the lines
representing the traces of lattice planes perpendicular to the plane of the
paper and parallel to the c-axis. These lattice planes are indexed as follows:

1 1

m|n|p|— L (hkl)
m n p
A |2 4 | L 1 0o |10
B |2 3 | 2 L 0 |10
C |1 2 |1 L 0 [(10
D |! 1 |2 1 0 |10
E - - _ - - —
F |} 1 |2 1 (210)
G |1 3 |1 I o |@
H [3 2 | + 10 |30
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The lattice planes A to G belong to a set of equally spaced, parallel planes
resulting in the same indices. Generally, they are all described by the triple
(hkl), which represents not merely a single lattice plane, but an infinite set of
parallel planes. Since the plane E intersects the origin, it cannot be indexed in
this position. Note that (210) and (210) define the same parallel set of planes.

Planes which are parallel to b and ¢ will thus only have intercepts with a
and are indexed as (100). Similarly, (010) intersects only the b-axis, and (001)
only c. The line H is the trace of the plane (230).

2.5 The Zonal Equation

We may ask what the relationship is between the symbols [uvw] and (hkl) if
they represent sets of lines and planes that are parallel to one another. The
equation of any plane may be written:

X Y Z

—t—+—=1
m n p

})

where X, Y and Z represent the coordinates of points lying on the plane, and

m, n and p are the three intercepts of this plane on the crystallographic axes a,

b and c (see Sect.2.4.3). If the substitution is then made h~L, k~i,

1 m n
and | ~—, the equation may be written
p

hX +kY+1Z=C,

where C is an integer. The equation describes not only a single lattice plane,
but a set of parallel lattice planes. For positive h, k and 1, giving C a value of
+1describes that plane of the set which lies nearest to the origin in the positive
a, b and c directions. Similarly, a value of —1 defines the nearest plane in the
negative a, b and c directions from the origin. The plane (hkl) which cuts the

origin has the equation:
hX+kY+1Z=0.

As an example, the planes D, E and F in Fig. 2.10, are defined by the above
equation where (hkl)=(210) and C takes on the values 1, 0 and -1
respectively. For any of these planes, the triple XYZ represents a point on the
plane. In particular, on the plane passing through the origin (C =0) this triple
XYZ could describe a lattice line - the line connecting the point XYZ to the
origin 000. In this case, we would replace XYZ by uvw giving the relationship:

hu + kv + 1w =0.
For reasons which will appear later this relationship is called the zonal

equation.
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Fig. 2.11. The lattice lines [u;v,w,] and [u,v,w,] define the lattice plane (hkl)

Applications of the Zonal Equation

a) Two lattice lines [u;v,w;] and u,v,w,] will describe a lattice plane (hkl)
(cf.Fig. 2.11), whose indices may be determined from the double application
of the zonal equation:

hu; +kv,;+1lw; =0

hll2 + kV2 + 1W2 =0.

The solution of these two simultaneous equations for hkl may be expressed in
two ways as the ratio of determinants:

VW) wiu uv

h:k:1= M ! )
VoW, Wolp uzvs

- T = VoW whu uVv

h:k:l= o 2 2)
Viwy Wil uvi

The lattice plane symbols (hkl) and (hkI), however, describe the same set
parallel planes.

h:k:1=(viwy—vow)):(Wiuy — woup) @ (U vy — upvy).

The following form is particularly convenient:

u Vi W u; vy W
X XX
u, V, W2 U V) W2
(h kD
Example. What is the set of lattice planes common to the lines [101] and [121]?
101101
1121121




Fig. 2.12. The lattice lines [101] and [121] lie in the lattice plane indicated by the dashed lines.
Since, however, that plane passes through the origin, it is necessary to consider an
alternative origin such as N’ in order to assign its indices (111)

This result can also be obtained geometrically, as in Fig. 2.12. The lattice lines
[101]and [121](— —— ) lie in the lattice plane (— — —). Other lines lying in
the plane are also shown (—+—+—- ) in order to make it more obvious. The
indicated lattice plane cannot be indexed, as it passes through the origin. The
choice of an alternative origin N’ makes it possible to index it:
m|n|p=1]1|1-(111).

If the determinant is set up in the alternative manner:

2 1 2
0 10

o ]
|

1
1

2 2 2 —11D). [see Eq.(2)]

(111) and (111) belong to the same set of parallel lattice planes; in the description
of crystal faces (Chap. 4) the symbols (hkl) and (hkl) are taken to represent a
crystal face and its parallel opposite.

b) Two lattice planes (h;k;1,) and (h,k,l,) intersect in the lattice line [uvw]
(see Fig. 2.13), which can be identified by the solution of the equations:
hju+k;v+Lw=0
hyu + kv +1L,w=0.
Proceeding in the same method as above leads to the required lattice line

[uvw]:
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(k)

Fig. 2.13. The lattice planes (h,k,1;) and (h,k;l,) intersect in the lattice line [uvw]

h] k] 1] h] k] l1

X X X
h k, I, hy k; 1,

[u v w]
Note that, as in (a), two solutions are possible: [uvw] and [uvWw]. In this case,
these represent the opposite directions of the same line.
Example. Which lattice line is common to the lattice planes (101) and (112)?
121 1]2
011071

—

mn 3 1
If the values of (hkl) are interchanged, the result will be [131].

Exercise 2.1. Make a copy on tracing paper of the lattice points outlining a single unit cell in
Fig.2.5. Lay your tracing on top of a unit cell in the original drawing and satisfy yourself
that you can reach any other cell by suitable lattice translations.

Exercise 2.2.

a) Examine the lattice in Fig. 2.14, and give the coordinates of the points P,, P,, Py and P,,
the values of [uvw] for the lattice lines that are drawn in.

b) On the same diagram, drawn in the lines [211], [120] and [212].

¢) Determine the lattice planes to which the lines [131] and [111] belong.

18



Fig.2.14

Exercise 2.3. Figure 2.15 is the projection of a lattice along the c-axis onto the a, b-plane. The
dark lines labelled I and II are the traces of planes that are parallel to the c-axis.

a) Index planes I and II.

b) Calculate [uvw] for the line common to the two planes.

¢) Draw the traces of the planes (320) and (120) on the projection.

eSS
I~ls] ]
S =,

7] ]

[N

Fig. 2.15

Exercise 2.4. Give (hkl) for a few planes containing the line [211], and give [uvw] for a few
lines lying in the plane (121).

Exercise 2.5. What condition must be fulfilled to make (a) [100] perpendicular to (100),
(b) [110] perpendicular to (110) and (c) [111] perpendicular to (111)?

Exercise 2.6. What are the relationships between (110) and (110); (211) and (211); [110] and
[110]; [211] and [211]?
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3 Crystal Structure

In order to progress from a lattice to a crystal, the points of the lattice must
be occupied by atoms, ions or molecules. Because the points are all
identical, the collections of objects occupying them must also be equal. In
general, crystals are not built up so simply as the crystal of a-polonium in
Fig.2.1!

Let us consider the construction of a crystal by means of a hypothetical
example. Figure 3.1a shows a lattice with a rectangular unit cell projected on
the a,b-plane. We now place the molecule ABC in the unit cell of the lattice
in such a way that A lies at the origin and B and C within the chosen cell
(Fig. 3.1b). The position of B or C with respect to the origin may be described
by a vector T in terms of the lattice translations &, b, and ¢:

T=xda+yb+zC (see Fig.3.3).

The coordinates are yet another triple: x,y,z, where 0 <x,y,z<1 for all
positions within the unit cell. In our example, the atoms have the following
coordinates:

A:0,0,0 B: x1,y1,7, C: X2,V2,2.

This arrangement of atoms within a unit cell is called the basis. Lattice
translations reproduce the atoms throughout the entire lattice (Fig. 3.1¢),
or:

lattice + basis = crystal structure.

It follows that not only the A-atoms but also the B- and C-atoms lie on the
points of congruent lattices, which differ from one another by the amount
indicated in the basis (see Fig.3.2). Every atom in a crystal structure is
repeated throughout the crystal by the same lattice translations.

Thus, the following simple definition of a crystal is possible.

Crystals are solid chemical substances with a three-dimensional periodic array
of atoms, ions or molecules. This array is called a crystal structure.
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b) Basis
o Crystal
structure

A

Fig. 3.1a-c. Interrelationship of the lattice (a), the basis or the arrangement of atoms in the
unit cell (b) and the crystal structure (c), all shown as a projection on the a,b-plane

Fig.3.2. All atoms of the crystal
structure shown in Fig. 3.1 lie on
the points of congruent lattices
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Fig. 3.3. Description of a point in a unit cell by
the coordi_nate—triple X,V,z defining the vector
F=xa+yb+zC

Fig. 3.4a-c. The Csl structure shown in a perspective drawing taking account of the relative
sizes of the ions (a), with ions reduced to their centres of gravitiy (b) and as a parallel
projection on (001) (c)

An example of a simple crystal structure is caesium iodide. The unit cell is
acube (ag=by=cy=4.57 A, a=f=y=90°)". The basisis 1 :0,0,0; Cs*: 1,1 1.
In Figure 3.4a, a unit cell is shown as a perspective picture, with the relative
sizes of the ions indicated. For more complex strucutres, this method of
illustration is less useful, as it prevents the positions of atoms from being
clearly seen. Consequently, it is more usual merely to indicate the centres of
gravity of the atoms, as in Fig. 3.4b. Figure 3.4c shows the same structure
represented as a parallel projection on one cube face.

An important quantity for any structure is Z, the number of chemical
Sformula units per unit cell. For Csl, Z =1 as there are only one Cs " ion and one

! The Angstrom unit (A) = 10% cm = 0.1 nm. If a row of spheres with a radius of 1 A is made,
these will be S0000 000 of them per centimetre!

——10A——
i‘OOOOO—SU 000 000 — OOCOO
—

Tem —
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ped I b~ Fig. 3.5. The description of lines and
1a ] 1]~ planes in a unit cell by means of coordi-
) A L nates X,y,Z

I~ ion per cell. Using only structural data, it is thus possible to calculate the
density of Csl, since

o= m gcm ™3

V b
where m is the mass of the atoms in the unit cell and V is the volume of the cell.
The mass of one chemical formula is M/N,, where M is the molar mass and

N, is the Avogadro number, so

Z-
m= M and
Na
o Z-M em -
NA°V g ’
Thus, taking N as 6.023x 10" 2 mol !, for Csl, where M =259.81 g mol !
1-259.81

Ocs1 = =4.52gcm ™.

6.023-10%-4.573-10 %
In a structure determination, this operation is carried out in reverse: from the
measured density, the number of formula unit per cell is estimated.

Using the values (hkl) and [uvw] we have so far only described the
orientations of sets of planes and lines. Consideration of the contents of a unit
cell makes it necessary to describe specific planes and lines in the cell. Use
of the coordinates x,y,z makes this possible. For example, the coordinates
X,Y,3 identify all points in the plane parallel to 4 and b which cuts € at L.
Figure 3.5 shows the planes x,y,3and ,y, z. The line of intersection may easily
be seen to be described by the coordinates 3, y, .
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Exercise 3.1. Cuprite, an oxide of copper, has the

lattice: ay=by=cy=4.27A, a=f=y=90° and the

is: 11 331, 313 133
basiss  Cu 3,45 9% pop P
. L1
0: 0,0,0; 335

a) Draw a projection of the structure on X,y,0 (the a,b-plane) and a perspective
representation of the structure.

b) What is the chemical formula of this compound? What is Z (the number of formula units
per unit cell)?

¢) Calculate the shortest Cu-O distance.

d) What is the density of cuprite?

Exercise 3.2. The cell dimensions for a crystal of AIB, were determined to be ag=by = 3.00 A,

3.24 A, a=p=90°, y=120°. There is an Al-atom at 0,0,0, and B-atoms at 1%land

&

1
3
a) Draw a projection of four unit cells of this structure on (001).

Wity
N—

b) Calculate the shortest Al-B distance.
¢) Calculate the density of AlB,.
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Exercise 3.3. In the accompanying drawing of the unit cell of a lattice, give the coordinates of
the points occupied by small circles, which, as we will later learn, represent inversion centres

(Chap. 5.3).

Exercise 3.4. Draw the unit cell of a lattice and give the coordinates which describe its

“edges”.

Exercise 3.5. For the same unit cell, give the coordinates which describe its “faces”.

Exercise 3.6. Give the coordinates for the planes and lines drawn in the unit cell shown

below.
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4 Morphology

By the term “morphology”, we refer to the set of faces and edges which
enclose a crystal.

4.1 Relationship Between Crystal Structure and Morphology

The abundance of characteristic faces and, at least in ideal circumstances, the
regular geometric forms displayed externally by crystals result from the fact
that internally, crystals are built upon a lattice. What is, then, the relationship
between the crystal structure (the internal structure) and morphology (the
external surfaces)? Figure 4.1 shows the crystal structure and the morphology
of the mineral galena (PbS). Lattice planes are parallel to the crystal faces,
and lattice lines to the crystal edges. The relationship can be succinctly
described thus:

a) Every crystal face lies parallel to a set of lattice planes; parallel crystal faces
correspond to the same set of planes.
b) Every crystal edge is parallel to a set of lattice lines.

Fig.4.1a,b. Correspondence between crystal structure (a) and morphology (b) in galena
(PbS). In a, the atoms are reduced to their centres of gravity
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The reverse conclusions must, however, certainly not be drawn, since a
crystal will have a very large number of lattice planes and lines, and generally
only a few edges and faces.

Furthermore, it should be noted that the shapes in Fig.4.1 have been
drawn to vastly different scales. Suppose the edge of the crystal marked with
an arrow is 6mm in length; then that edge corresponds to some 107 lattice
translations, since the lattice parameters of galena are all 5.94 A.

Since crystal faces lie parallel to lattice planes and crystal edges to lattice
lines, Miller indices (hkl) may be used to describe a crystal face, and [uvw] a
crystal edge. The morphology of the crystal gives no information about the
size of the unit cell, but can in principle give the ratio between one unit cell
edge and another. Normally, however, the lattice parameters are known, so
the angles between any pair of lattice planes can be calculated and compared
with the observed angles between two crystal faces.

The crystal of galena in Fig. 4.1 has been indexed, i.e. the faces have been
identified with (hkl). Thus, with the origin chosen suitably inside the crystal,
(100) cuts the a-axis and is parallel to b and c; (110) is parallel to ¢ and cuts a
and b at the same distance from the origin; (111) cuts a, b and c all at the same
distance from the origin.

4.2 Fundamentals of Morphology

Morphology is the study of the external boundary of a crystal, built up of
crystal faces and edges. In morphology, the words “form”, “habit” and “zone”
have special meanings.

a) Form. The morphology of a crystal is the total collection of faces which
characterise a particular crystal. The morphology of the crystals shown in
Fig. 4.2 consists of the combination of a hexagonal prism and a “pinacoid”; a
pinacoid is a pair of parallel faces which in this case make up the ends of this
prism. The prism and the pinacoid are examples of a crystal form, which is
further discussed in Chapter 8. In the meantime, we will simply consider a
crystal form as a set of “equal” faces. It is thus possible to describe the
morphology as the set of forms of a crystal.

b) Habit. This term is used to describe the relative sizes of the faces of a
crystal. There are three fundamental types of habit: isometric or equant, platy
or tabular, and prismatic or acicular (needle-shaped). These habits are
illustrated in Fig. 4.2 by the relative sizes of the prism and the pinacoid.

c) Zone. A zone is a set of crystal faces whose intersecting edges are parallel.
The direction of these edges is called the zone-axis. In Fig. 4.1b, the crystal
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a) @ b) [ c)

Fig. 4.2a-c. The three basic habits: a isometric or equant, b planar or tabular, ¢ prismatic or
acicular with the relative rates of growth in different directions shown by arrows

faces (001), (101), (100), and (101) belong to a zone with the zone axis [010].
The zonal equation (see Chap. 2.5) naturally applies not only to the general
lines and planes of the lattice but equally to faces and edges parallel to them.
The faces (001), (111), (110) and (111) similarly constitute a zone. The
determinant scheme gives the zone axis:

171111
111011

11 0]

4.3 Crystal Growth

It is easier to understand the morphology of a crystal if the formation and
growth of crystals is considered. Crystals grow from, among other things,
supersaturated solutions, supercooled melts and vapours. The formation of a
crystal may be considered in two steps.

1. Nucleation. This is the coming together of a few atoms to form a three-
dimensional periodic array - the nucleus - which already shows faces,
although it is only a few unit cells in size (see Fig. 4.3a).

2. Growth of a Nucleus to a Crystal. As the nucleus attracts further atoms,
they take up positions on its faces in accordance with its three-dimensional

periodicity. In this way, new lattice planes are formed (Fig. 4.3b-d). Note that
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a) O O

d)

Fig. 4.3a-d. Nucleation and growth of the nucleus to a macrocrystal illustrated in two
dimensions. a Nucleus, e.g. in a melt. b Atoms adhere to the nucleus. ¢ Growth of a new layer
on the faces of a nucleus. d The formation of a macrocrystal by the addition of further layers
of atoms

the illustration is two-dimensional only. The growth of the nucleus, and then
of the crystal, is characterised by a parallel displacement of its faces. The rate
of this displacement is called the rate of crystal growth, and is a characteristic,
anisotropic property of a crystal.

Figure 4.4 shows a few stages in the growth of a quartz crystal.

The nucleus shown in Fig. 4.5 is bounded by two different types of faces,
and the rates of growth of these faces, v; and v, are thus, in principle,
distinguishable. Figure 4.5a illustrates the case in which these rates of growth
are similar, while in Fig. 4.5b, they are very different. A consequence of this
difference is that the faces corresponding to the slow growth rate become
steadily larger, while those corresponding to rapid growth disappear entirely.
In addition, it should also be noted that crystal growth rates are affected by
temperature, pressure, and degree of saturation of the solution. The actual
crystal faces which eventually enclose the crystal depend on the ratios of the
growth rates of the various faces, the slower-growing ones becoming more
prominent than those that grow more rapidly. Those faces which do
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Fig. 4.4. Quartz crystal showing its stepwise growth

Fig. 4.5a,b. Crystal growth showing
a small (a) and a large (b) difference
in growth rate with direction




Fig. 4.6. Despite difference in rates of
growth of different parts of a crystal, the
angles between corresponding faces remain
equal

eventually develop generally have low Miller indices and are often densely
populated with atoms.

The three basic types of crystal habit may be understood in terms of the
relative growth rates of the prism and pinacoid faces, which are indicated in
Fig.4.2 by arrows.

Figure 4.6 shows how crystals of different shapes can result from the same
nucleus. Crystal I is regular in shape, while crystals II and IIT have become
very much distorted as a result of external influences on the growth rate. None
the less, the angles between the normals to the crystal faces remain constant,
since the growing faces have simply been displaced along their normals. A
parallel displacement of the faces cannot change interfacial angles. This
observation applies equally to all growing faces of a crystal.

This observation is the basis of the law of constancy of the angle: in
different specimens of the same crystal, the angles between corresponding
faces will be equal. This law, which is valid at constant temperature and
pressure, was first formulated by N. Steno in 1669, without any knowledge
of crystal lattices!

The relative positions of the normals to the faces of the crystals in
Fig. 4.6 remain constant. It is possible, by measurement of the angles
between faces, to determine these relative positions and thus eliminate the
distortion.

So far, our discussion has assumed the existence of a single crystal nucleus,
or only a few, which can grow separately into single crystals like those shown
in Fig. 1.1. If many nuclei are formed simultaneously, they may grow into one
another in a random fashion, as illustrated in Fig. 4.7. This disturbance will
prevent the development of crystal faces and forms. Instead, a crystal
aggregate or polycrystal results. Figure 4.7 shows an example of single phases
in the development of such an aggregate.
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a) b)

Fig.4.7a-c. Development of a crystal aggregate. a Formation of several nuclei, which
initially can grow independently. b Collision of growing crystallites leads to interference and
irregularity in growth of the polyhedra. Eventually, the polyhedral shape of the crystallites is
entirely lost. ¢ The single crystal domains of the aggregate with their grain boundaries

4.4 The Stereographic Projection

Since crystals are three-dimensional objects, it is necessary to use projections
in order to work with them on a flat surface. One such projection is the
parallel projection onto a plane, which was illustrated in Fig.3.4¢ for
representing a crystal structure.

For morphological studies, the stereographic projection has proved to be
particularly useful. The principle of this projection is shown in Fig.4.8. A
crystal, in this case galena (PbS), is placed at the centre of a sphere. The
normals to each face, if drawn from the centre of the sphere, will then cut the
surface of the sphere in the indicated points, the poles of the faces. The angle
between two poles is taken to mean the angle between the normals, not the
dihedral angle between the faces. These two angles are simply related as: angle
of normals = 180° - dihedral angle. The poles are not randomly distributed
over the surface of the sphere. In general they will lie on a few great circles, i.e.
circles whose radius is that of the sphere. Those faces whose poles lie on a
single great circle will belong to a single zone. The zone axis will lie
perpendicular to the plane of the great circle. Considering the sphere as a
terrestrial globe, a line from each of the poles in the northern hemisphere is
projected to the south pole, and its intersection with the plane of the equator
is marked with a point « or a cross + (see Fig. 4.9). Lines from poles in the
southern hemisphere are similarly projected to the north pole, and their
intersections with the equatorial plane are marked with an open circle O. For
those poles lying exactly on the equator, a point or cross is used.

Figure 4.10 shows the stereogram of the crystal in Fig. 4.8, only those
planes belonging to the northern hemisphere being shown. Poles belonging to
a single zone lie on the projections of the relevant great circles. The points
resulting from the projections of each face are indexed.
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Fig. 4.8. Crystal of galena at the centre of a sphere. The normals to the faces of the crystal cut
the sphere at their poles, which lie on great circles

Fig. 4.9. In a stereographic projection, lines are drawn between the poles of the faces in the
northern hemisphere and the south pole, and the intersection of these lines with the
equatorial plane is recorded

Figure 4.11 a shows the stereographic projection of a tetragonal prism and
a pinacoid, while Fig. 4.11 b gives that of a tetragonal pyramid and a pedion. A
pedion is the name given to a crystal form which consists of a single face. In
both cases, the altitude of the prism or pyramid is set in the N-S direction.
Both the tetragonal prism and the tetragonal pyramid have square bases and
square cross-sections. The faces of the prism are perpendicular to the plane of
the stereographic projection, so their poles lie on the circumference of the
circle of that projection. The faces of the pyramid make equal angles with the

Fig. 4.10. Stereographic projection of the
100 crystal in Fig. 4.8; see also Fig.4.1b
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Fig.4.11a,b. Stereographic projection of a tetragonal prism and a pinacoid (a) and of a
tetragonal pyramid and a pedion (b). The angular coordinates ¢ and o are given for one of
the pyramid faces

equatorial plane, so the poles of these faces are at equal distances from the
centre of the plane of projection.

The representation of the stereographic projection in Fig.4.8-11 is only
intended to explain the principles of the method. In practice, the projection is
based on the values of measured angles.

4.5 The Reflecting Goniometer

The angles between crystal faces may conveniently be measured with a
reflecting goniometer. The crystal is mounted on a goniometer table, which is
essentially a rotating plate with a graduated angle scale (see Fig. 4.12). The
crystal mount (or goniometer head) is a construction of arcs and slides which
makes it possible to bring a zone axis of the crystal into coincidence with the
rotation axis of the goniometer table. The crystal is then rotated until the light
beam from a lamp mounted horizontally is reflected from a crystal face onto
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Fig. 4.12. Light path for a one-circle
reflecting goniometer

the cross-hairs of a telescope, also mounted horizontally. The reading on the
scale of the table then fixes the position of that crystal face. The table is then
rotated until another face comes into the reflecting position, and the angular
reading for this position is taken. The difference between the two readings is
the angle between the normals to the crystal faces. Continuing to rotate the
table through 360° will allow the angles corresponding to the selected zone to
be measured. This is the principle of the one-circle goniometer. For the
measurement of the angles corresponding to other zones on a one-circle
reflecting goniometer, the crystal must be remounted.

A two-circle reflecting goniometer makes it possible to rotate and measure
the crystal about two mutually perpendicular axes. In this way, all possible
faces can be brought into the reflecting position. From the position of the two
circles, the angular coordinates ¢ and ¢ may be measured. These coordinates
uniquely define the orientation of a crystal face, and the values can be directly
plotted on a stereographic projection.

4.6 The Wulff Net

The Wulff net is a device to enable measured crystal angles to be plotted
readily as a stereographic projection. The Wulff net is itself the stereographic
projection of the grid of a conventional globe orientated so that the N’-S’
direction lies in the plane of projection (Fig.4.13). The equator and all
meridians of the globe are great circles, while all of the parallels except the
equator are small circles. All circles on the surface of a sphere will be
represented on the plane of a stereographic projection by circles, arcs of
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I'ig. 4.13. a The grid net of a globe with
the plane of a stereographic projection
(PP). The stereographic projection of
this grid produces the Wulff net. The
position of the pole of a crystal face is
defined by the coordinates ¢ (azimuthal
angle) and o (pole distance). b The pole
P has the coordinates ¢ =90°, o =60°.
(After Ramdohr and Strunz [37])

circles or straight lines (Fig.4.13b). The sterecographic projection thus
represents circles consistently, as it does angles. With the help of the Wulff
net, the angle between any two poles on the surface of the sphere can now be
plotted directly on the stereographic projection. The angle measured between
any two crystal faces is the angle between their normals or the angle between
their poles. The two normals define the plane of a great circle (Fig. 4.8). The
arc of the great circle between the two normals is the measured angular value.
It is thus crucial that only arcs of great circles are used when angles are plotted
on or estimated from a stereographic projection!

We shall now demonstrate the use of the Wulff net to plot the two angles
measured with a two-circle goniometer (the azimuthal angle ¢ and the pole
distance o) on a stereographic projection. The circle of the plane of projection
is taken as the azimuth ¢, so possible ¢-values run from 0-360°. The front
face of the tetragonal pyramid in Fig.4.11b thus has a ¢-value of 90°.
The p-axis is perpendicular to the ¢-axis. The faces of the tetragonal pyramid
have ¢-coordinates of 0°, 90°, 180° and 270° respectively and all faces have
the same g-value.
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A similar consideration of a tetragonal dipyramid, e.g. no. 6 in Exercise
4.4 results in the following angular coordinates (¢, o) for the eight faces:
0°,0;90°, 0; 180°, p; 270°, p and 0°, —0; 90°, — p; 180°, — p; 270°, — 0. Note
that faces in the northern hemisphere are assigned values 0 < 0 <90°, while
those in the southern hemisphere have —90° < 0 <0° where both 90 and
—90° represent positions on the equator. For an example, see the table of
@, o-values for the galena crystal in Exercise 4.9.

For practice, a Wulff net with a diameter of 20 cm and a 2°-grid is bound
inside the rear cover. For best results, this should be carefully removed and
pasted on a card with a minimum thickness of 1 mm. Drawings are then made
on tracing paper secured by a pin at the centre of the net so as to be readily
rotated.

The stereographic projection is also very useful for the description of the
point groups. In this case, there is a departure from the normal convention of
plotting the stereogram. For rotation axes and rotoinversion axes, the
symbols of these axes are used to indicate their intersection with the surface of
the sphere of projection. Similarly, for mirror planes, the corresponding great
circle of intersection is indicated (for an example, see Fig. 6.8¢).

4.7 Indexing of a Crystal

Today, it is rarely necessary to index a crystal whose lattice constants are
unknown. In general, lattice constants give no indication of which faces of a
crystal will actually be prominent, but it is possible to produce a stereogram
showing all the poles representing faces that are possible for that lattice. Since
crystals usually develop faces with low Miller indices, the number of poles
which must be drawn is small.

We shall now draw the stereogram of the poles of a crystal of topaz. The
lattice parameters are ao=4.65, by=8.80, co=8.40 A, a=f—=»=90°. The
six faces (100), (100), (010), (010), (001), (001) which are normal to the
crystallographic axes can be entered immediately into the stereogram
(Fig. 4.14). These faces lie on the following zone-circles: [100] =[(001)/(010)],
[010]=[(100)/(001)], [001]=[(100)/(010)]. The zone axis is normal to the
plane of the zone-circle, and is parallel to the set of lattice lines which are
common to the lattice planes making up the zone.

Figure 4.15 shows a (010)-section through the crystal lattice with the
traces of the planes (100), (101), and (001), which belong to the [010]-zone.
The angle J is the angle between the normals to (001) and (101). Since
tan 5:—C°—, 0 =61.03°. Similarly, Fig. 4.16, showing the (100)-section of the

ehy
same lattice, gives the angle between the normals to (001) and (011). In this
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Fig. 4.14. Stereogram of the
poles of a few of the faces of
a topaz crystal allowed by
the lattice which have low

a indices

case, tan 5’:—;—9—, and 0'=43.67°. With the help of the Wulff net, the
0

angles ¢ and ' can be placed on the great circles corresponding to the zones
[010] and [100] respectively, giving the positions of the poles of the planes
(101) and (011). Since the planes (101), (101) and (101) have the same
inclination to the crystallographic axes as (101) and (011), (011) and (011) that
of (011), they may likewise be entered on the stereogram.

The great circles for the zones [(100)/(011)] and [(101)/(010)] may now be
drawn in, and the two intersections of these circles will occur at the poles with
Miller indices (111) and (111). These traces of zone-circles lying in the
southern hemisphere are given as dashed lines.'

The drawing in of the circles for further zones gives the poles for further
faces. From these, the poles can be located for all faces with the same axial

Application of the zonal equation leads to

110010 0O 0| 1001

q 0
0l1101 |1 10110 an 1

S
==
O =

]

[0 1 13 [101]' ai1u

If the values of [uvw] are interchanged, the result is (111). Two zone circles intersect in two

poles. In morphology, (hkl) and (hkl) represent two parallel faces, which are related to

only one set of lattice planes, which may be designated as (hkl) or (hkI).

38



001) o1
._1 ”r-—y

o
I~
S
N

(100) (010

L] L[]
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Fig. 4.15. Section parallel to (010) through the lattice of a topaz crystal, showing the traces of
the planes (001), (101) and (100), all of which belong to the zone [010]. J is the angle between
the normals to (001) and (101)

Fig. 4.16. Section parallel to (100) through the lattice of a topaz crystal, showing the traces of
the planes (001), (011) and (010), all of which belong to the zone [100]. &’ is the angle between
the normals to (001) and (011)

inclination as (111), viz. (111), (111), (111), (111), (111), (111) and (I111). For
further faces, the zonal equation is used. Eventually, a stereogram, like that
in Fig.4.17 may be produced showing the poles for all faces (hkl) with
2<h,k<2and 0<1<2.

An actual topaz crystal is shown in Fig. 4.18. Once such a crystal has been
indexed with the aid of a stereogram, it is only necessary to measure a few
angles on the actual crystal in order to bring the angles of the crystal into
correspondence with the angles in the stereogram.
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Fig.4.17. Stereogram of the poles of those faces of a topaz crystal allowed by the lattice

which have indices (2 <h,k <2;0<1<2)

Fig. 4.18. Topaz crystal. (After [37])



Fig.4.19. Pattern for a model of a galena (PbS) crystal
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Exercise 4.1. With the help of the pattern in Fig. 4.19, build a model of the galena crystal
shown in Figs. 4.1b and 4.8. Make a photocopy of the pattern, cut it out, and lightly score all
the remaining lines. Fold away from you along the lines and stick sufficient neighbouring
faces together with transparent tape to hold the model together.

Exercise 4.2. Plot the poles of the faces of the following objects on a stereogram.

—_ 1 —~_ ?
; / N L—Aa SN
! R N ( \
) o
cube ~_ rectangular box ~_7
/,-\\3 o~ 4
SRS
L) (
\\\_// \\ //

house: plan house: elevation

Exercise4.3. Plot the directions corresponding to the following axial systems on a
stereogram.

ﬂ=900_
|
a
/ \ / N\
/ / \
/ Y \
I / \
\ / ‘\ ]
\\ // \ /
\ /
/ /
\\\_// \\\_—‘///
1. Orthogonal axial system 2. Hexagonal axial system

(cubic, tetragonal,
orthorhombic)

4



Exercise 4.4. Photocopy and cut out the following patterns, which may be made into models
of (a) a rhombic dipyramid, (b) a tetragonal pyramid with a pedion and (c) a hexagonal
prism with a pinacoid. With a little imagination, you can make similar models of the crystals
in the following diagram (p. 44 and 45).

<)

Fig.4.20a-c. Pattern for models of a rhombic dipyramid (a), a tetragonal pyramid and
pedion (b) and a hexagonal prism and pinacoid (c)
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Plot the poles of the faces of the crystals you have made on a stereogram with the
orientation chosen such that the altitude of each crystal is perpendicular to the plane of
projection. The drawings below give the geometric shape of the base or of any section
normal to the altitude.

rhombic tetragonal
Prism — e — 4
Ve ~ e N
/
/ / \
[ [ 1
\\ \ /
~__ " N //
Pyramid - —— 5
-
y ~N Yz N \
/ / \
( l
\ \ J
N ~__ — 4 N ~_
Di .
ipyramid o~ P 6
/ h / \
/ / \
\\ \ J
/
N — _,// \\ -
Basal
plane
orsection
of the
polyhedron

Rhombus

Square

Exercise4.5. Which faces of the hexagonal prism and pinacoid and of the tetragonal
dipyramid belong to a single zone? Draw in the zone circle on the appropriate stereogram in

Exercise 4.4.
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trigonal hexagonal
Prism — 7 —— 10
/7 AN 7 AN
\ / .,
\\\__// ~__7"
Pyramid o 8 //_\\ n
/ N \
/ \ / \
(\ /] \ )
/
NS N~
Dipyramid o 9 —— 12
e AN 7 ~ \
/ \ / \
| | { |
\ / \\ /
\ ~__ // ~__ //
Basal
plane
or section
of the
polyhedron Equilateral Regular
triangle hexagon

Exercise 4.6. What is represented by the following stereograms?

17 -7~ 2 I
/0 ) / CEIN
\ + , \—@—JI'—@—}

/
\\O_‘/ \\I_,//

3//T\\ 4 /+\"\//+\
L4 YA
\ I / \ N/
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Exercise 4.7. What is the relationship between the normals to the faces comprising a zone?
How are they related to the zone axis?

Exercise 4.8. In the cubic unit cell shown in Fig. 4.21 three different sorts of axes are shown.
Three axes (0J) pass through the midpoints of opposite faces (x,3,3; 1,v,4; and 1,1,2).
Four axes (A) lie along the body diagonals. Six axes (()) pass through the mid points of

opposite edges. All of these axes intersect in the centre of the unit cell.

/\

Fig. 4.21. Cubic unit cell showing the
axes through the midpoints of opposite
faces (O), along the body diagonals (A),
and through the midpoints of opposite
edges (()). (After [6])

Draw the axes on a stereographic projection making use of the Wulff net. It is convenient
to place one of the axes (CJ) at the centre of the plane of projection. The angles between the
various axes may be taken from Fig. 4.22 and 4.23, which show cross-sections through the
centre of the cube.

tJ 0]

O

Fig. 4.22. Section through the centre of the cubic unit cell in Fig. 4.21 parallel to a cube face
(3¥,zorx,5,zorx,y, 1)

Fig. 4.23. Section x,X,z or X, 1-x,z through the cubic unit cell of Figure 4.21. The angle O
is 54.73°, half of the tetrahedral angle (the H-C-H angle in methane) of 109.46°
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Exercise4.9. The galena crystal in Fig.4.24 (see also Fig.4.1) was measured using a
reflection goniometer. The angular coordinates ¢ and ¢ are given in the accompanying

table.

a) Draw the stereogram of the pole faces.
b) Compare this stereogram with that of the axes in the cube drawn in Exercise 4.8.

Face [ L0
L1 - +0°
2,2 0° +45°
3 0° 90°
4.4 45° 154.73°
5 45° 90°
6,6’ 90° +45°
7 90° 90°
8,8 135° +54.73°
9 135° 90°
10,10" 180° +45°
11 180° 90°
12,12’ 225° +54.73°
13 225° 90°
14,14 270° +45°
15 270° 90°
16,16" 315° +54.73°
17 315° 90°

Fig.4.24. Crystal of galena

Exercise 4.10. Draw a stereogram showing the pole faces of a crystal of rutile.The lattice
parameters are given in Table 9.5. Compare your stereogram with the crystal given in Table

8.11.15.
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5 Principles of Symmetry

Up to now, the only repetition operation that we have used formally has been
the lattice translation: the operation of three non-coplanar lattice translations
on a point which gives rise to the space lattice.

Fig.5.1. This wheel may be considered either as derived
from an object consisting of a single spoke which is
repeated by rotation every 45° or as an object which is
brought into coincidence with itself by a rotation of 45°

In addition to lattice translations, there are other repetition operations,
such as rotations and reflections. In these cases, an object is brought into a
coincidence with itself by rotation about an axis or reflection in a plane. A/l
repetition operations are called symmetry operations. Symmetry consists of the
repetition of a pattern by the application of specific rules. In the wheel
illustrated in Fig. 5.1, the spokes are repetitions of one another at intervals of
45°, or alternatively, as the wheel rotates, it is brought into coincidence with
itself by every rotation of 45°. When a symmetry operation has a “locus”, that is
a point, a line, or a plane that is left unchanged by the operation, this locus is
referred to as the symmetry element.

Fig. 5.2. Reflection of either side of this gypsum crystal in the hatched
plane indicated brings it into coincidence with the other side. This
plane is called a mirror plane
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O Fig. 5.3. Rotation of the pair of scissors through 180° about the
axis marked with an arrow brings it into coincidence with itself.
\J This axis is called a rotation axis

Figure 5.2 is an illustration of a crystal of gypsum. The right-hand half of
the crystal can be brought into coincidence with the left-hand half through a
reflection in the hatched plane, which will equally bring the left-hand side into
coincidence with the right. Every point in the crystal will be moved by this
reflection operation except those which actually lie on the reflection plane
itself. The plane containing these points is thus the symmetry element
corresponding to the symmetry operation of reflection; it is called a mirror
plane.

Rotation through 180° about the axis marked with an arrow will bring
either half of the pair of scissors in Fig. 5.3 into coincidence with the other
half. Alternatively, rotation of the pair of scissors through 180° brings it into
coincidence with itself. Every point on the scissors moves during this
operation except those that lie on the rotation axis (the arrow) itself. The
points comprising this axis make up the symmetry element corresponding to
the symmetry operation of rotation: the rotation axis.

7 N Fig. 5.4. Either pentagon is brought into coincidence with the
other by reflection in a point. This is called inversion, and the
” point which remains unmoved by the operation is called an
inversion centre or centre of symmetry
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Another type of symmetry is shown by the pair of irregular pentagons in
Fig. 5.4. Reflection of either pentagon through the indicated point will bring
it into coincidence with the other pentagon. In this symmetry operation,
which is called inversion, only a single point remains unchanged, it is the
symmetry element of the symmetry operation inversion and is called an
inversion centre or a centre of symmetry.

5.1 Rotation Axes

What symmetry elements are present in a general plane lattice, such as that
shown in Fig. 5.5? Make a copy of the figure on tracing paper and lay the copy
directly over the original. Then rotate the copy about the central lattice point
A until both lattices come into coincidence once more. In this case, this will
happen after a rotation of 180°, and a further rotation of 180° makes a full
360° rotation, returning the upper lattice to its original position.

The symmetry element corresponding to the symmetry operation of
rotation is called a rotation axis. The order of the axis is given by X where

360°
X =

e

position indistinguishable from the starting point. In the above case,

360°
X =

180°
this operation is simply the digit 2. In a diagram, it is represented as (() if it is
normal to the plane of the paper, or as — if it is parallel to it.

Whenever a 2-fold axis passes through a point A, a 2-fold axis must pass
through all points equivalent by translation to A. 2-fold axes normal to the
lattice plane will also pass through all points B, C and D which lie on the
midpoints of a translation vector. There are thus an infinite number of
rotation axes normal to this plane.

Objects are said to be equivalent to one another if they can be brought into
coincidence by the application of a symmetry operation. If no symmetry
operation except lattice translation is involved, the objects are said to be
“equivalent by translation” or “identical”.

In Fig. 5.5, all rotation axes A are equivalent to one another, as are all axes
B, C and D. On the other hand, the axes A are not equivalent to B, and so
forth.

A crystal, in which congruent lattice planes (Fig. 5.5) lie directly one above
the other, may develop a morphology in which the lower and upper faces are
corresponding parallelograms (pinacoid), and the side faces are all perpen-
dicular to these (Fig. 5.6). Such a crystal will come into coincidence with itself
if itis rotated through 180° about an axis through the middle of the upper and

, and ¢ is the minimum angle (in degrees) required to reach a

=2, and the axis is called a 2-fold rotation axis. The symbol for
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Fig. 5.5a,b. A general plane lattice (a) and its symmetry (b). Symmetry elements marked with
the same letter are equivalent to one another

lower faces. It thus contains a single 2-fold axis. This observation may be
generalised as follows:

The morphology of a single crystal will show only one symmetry element of a
particular type in a particular direction, although both its lattice and its crystal
structure will show infinitely many parallel elements.

— 1 7

Fig.5.6. A crystal with upper and lower parallelogram

7 faces and sides perpendicular to them has - so far as its
morphology is concerned - only a single 2-fold axis
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Fig. 5.7a-c. The arrays of points resulting from the operation on a point of a 3-fold, b 4-fold,
and ¢ 6-fold axes normal to the plane of the paper can lead to lattice planes. <> additional
points produced by lattice translations

Let us now consider whether it is possible to have axes of order higher than 2.
An axis with X > 2 operating on a point will produce at least two other points
lying in a plane normal to it. Since three non-colinear points define a plane,
this must be a lattice plane. Thus, rotation axes must invariably be normal to
lattice planes, and we must decide whether the points generated by a rotation
axis can fulfill the conditions for being a lattice plane, specifically, that
parallel lattice lines will have the same translation period.

a) Threefold Rotation Axis: 3 (graphical symbol A). Figure 5.7a shows a
3-fold rotation axis normal to the plane of the paper. By its operation, a

360°
3

rotation of 120° ( ), point I comes into coincidence with point II,

and, by a second rotation of 120° with point III. A further rotation of 120°
returns it to its original location. A lattice translation moves point I to point
IV, and the four points thus generated produce the unit mesh of a lattice
plane. Thus, 3-fold axes are compatible with space lattices.

b) Fourfold Rotation Axis 4 (graphical symbol (O). Fourfold axes are also
compatible with space lattices. As shown in Fig. 5.7b, the action of a 4-fold
axis on a point results in a square of points which is also the unit mesh of a
lattice plane.

¢) Fivefold Rotation Axis 5. The operation of this axis on a point results in a
regular pentagon of points, as shown in Fig. 5.8a. The line through points I1I
and IV is parallel to that through II and V. If these are to be lattice lines, the
spacings of the two pairs of points must either be equal or have an integral
ratio. Since this is clearly not the case, the points in Fig. 5.8a do not constitute
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Fig. 5.8a-c. The arrays of points resulting from the operation on a point of a 5-fold, b 7-fold,
and ¢ 8-fold axes do not fulfil the conditions for a lattice plane, in that parallel lines through
equivalent points do not have equal spacings. These rotation symmetries cannot occur in
lattices

a lattice plane, and we may conclude that 5-fold axes are impossible in space
lattices!

d) Sixfold Rotation Axis 6 (graphical symbol ). This operation, applied to
a single point, results in a regular hexagon (Fig. 5.7¢). A lattice translation
places a lattice point on the axis itself, and the resulting array meets the
condition for a lattice plane. Inspection of Fig. 5.7a and ¢ will show that the
lattices resulting from 6-fold and 3-fold axes are, in fact, equal.

¢€) Rotation Axes of Order Higher Than 6. Figure 5.8b and c shows the effect of
attempting to build up a lattice plane by applying 7-fold and 8-fold axes to a
point. The results are analogous to those for the 5-fold axis described in
paragraph (c) above. These arrays do not produce equal spacings of points
and so cannot occur in lattices. The same result will occur for any rotation
axis with X > 6.

In space lattices and consequently in crystal structures, only 1-, 2-, 3-, 4-, and
6-fold rotation axes can occur.

Note that the wheel in Fig. 5.1 contains an 8-fold axis.

5.2 The Mirror Plane

A further symmetry operation is reflection and the corresponding symmetry
element is called a plane of symmetry or, more commonly, a mirror plane, and
given the symbol m. The graphical symbol for a plane normal to the paperisa

! The standard international symbols for 2, 3, 4 and 6 are |, A, Band @, respectively. For
convenience, (), A, O and O are also used here. In Chapter 8, filled and unfilled symbols
are used to distinguish the ends of a polar rotation axis X,,.
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Fig.5.9. The operation of a mirror

€; plane m on an asymmetric molecule.
The mirror plane, perpendicular to
the paper, transforms 4 into B and
A B likewise B into A4

bold line, as in Fig. 5.9. A mirror plane parallel to the paper is represented by
a bold angle; an example of this is in Chap. 14.2. Any point or object on one
side of a mirror plane is matched by the generation of an equivalent point or
object on the other side at the same distance from the plane along a line
normal to it (Fig. 5.9).

Figure 5.10 shows the operation of a mirror plane on a lattice line A,
generating another lattice line A’. Whether the line A is parallel to the mirror
plane or not, the result is a rectangular unit mesh. The generation of the lattice
plane in Fig. 5.10b requires that a lattice point lies on m; this lattice contains
two points per unit mesh and is called centred. A primitive mesh is not chosen
in this case since the rectangular cell (with the symmetry plane parallel to an
edge) is easier to work with.

1 ! A
\
| | // \
. . . 15\
| | // \
| | \
| b | /./ s : \.\
a / \\
A A a1l VA
a) m b) m

Fig.5.10a,b. Operation of m on a lattice line: in a the lattice line is parallel to m. The
resultant plane lattice is primitive with a rectangular unit cell. In b, the lattice line is tilted
with respect to m. The resultant plane lattice again has a rectangular unit cell, but is now
centred. {> additional points produced by lattice translations
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5.3 The Inversion Centre

The symmetry operation called inversion relates pairs of points or objects
which are equidistant from and on opposite sides of a central point (called an
inversion centre or centre of symmetry). The symbol for this operation is 1,
and is explained in Section 5.4.1a. An illustration of this operation on a
molecule is given in Fig. 5.11. The graphical symbol for an inversion centre is
a small circle. Every space lattice has this operation and is thus centrosym-
metric, see Fig. 5.12.

The operation of an inversion centre on a crystal face generates a parallel
face on the opposite side of the crystal. An example of this is the crystal of
malonic acid in Table 8.11.2 which has no symmetry other than inversion, and
is entirely enclosed by pairs of such parallel faces (or pinacoids). The
occurrence of such pairs of parallel faces is important for the detection of
inversion symmetry in crystals.

Fig.5.11. The operation of an inversion centre (O) on asymmetric molecules

Fig. 5.12. The unit cell of a general lattice,
showing the inversion at %,%,%. All lattices are
centrosymmetric
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5.4 Compound Symmetry Operations

The operations of rotation, inversion, reflection and lattice translation may
be linked with one another. There are two possibilities to be considered here:

a) Compound Symmetry Operation. Two symmetry operations are performed
in sequence as a single event. This produces a new symmetry element but the
individual operations of which it is composed are lost.

b) Combination of Symmetry Operations. In this case, two or more individual
symmetry operations are combined which are themselves symmetry opera-
tions. Both they and any combination of them must be compatible with the
space lattice.

These different cases may be illustrated for 4-fold rotation and inversion
by considering the examples given in Fig. 5.13.

a) Compound Symmetry Operation. Figure 5.13a shows an operation which
consists of a rotation of 90° about an axis followed by an inversion through a
point on the axis. Successive applications of this compound operation move a
point at 1 to 2, 3, 4, and back to 1. Note that the resulting array has neither an
inversion centre nor a 4-fold rotation axis.

b) Combination of Symmetry Operations. Figure 5.13b illustrates the result of
the operations 4-fold rotation and inversion also being present themselves.

b) 6

Fig.5.13a,b. Compound symmetry operation a and combination of symmetry elements b of
a 4-fold rotation and an inversion, illustrated by the effect on the point 1. In a the rotation
and the inversion are not present; in b they are present. The open circles in a represent
auxiliary points occupied when only one part of the compound operation has been applied.
In b, the combination of the rotation and the inversion results also in a mirror plane normal
to the axis
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TableS.1. Compound symmetry operations of simple operations. The corresponding
symmetry elements are given in round brackets

Rotation Reflection Inversion Translation
. - to- Screw
Rotation X Roto . Ro . .
reflection inversion rotation
. Roto- 2- i
Reflection ( . . X fOk.j Glide .
reflection axis) rotation reflection
. Roto- -fold .
Inversion ( . . @ fo. . X Inversion
inversion axis) | rotation axis)
. . . Inversion
Translation (Screw axis) (Glide plane) ( ! X
centre)

Successive operations of the 4-fold axis move a point from 1 to 2, 3,4 and back
to 1, while the inversion centre moves it from each of those positions to 7, 8, 5
and 6 respectively.

Combinations of symmetry operations will be further examined in
Chapters 6, 8 and 9. Compound symmetry operations are summarised in
Table 5.1, where the names of the symmetry elements corresponding to the
symmetry operations are given in round brackets. Neither reflection plus
inversion nor translation plus inversion results in a new operation. Glide and
screw operations are beyond the needs of the present discussion and will be
covered in Chapter 9.1.

5.4.1 Rotoinversion Axes

The compound symmetry operation of rotation and inversion is called
rotoinversion. Its symmetry elements are the rotoinversion axes, with the
general symbol X(pronounced X-bar or bar-X). There are only five possible

rotation axes X: 1, 2, 3, 4 and 6, and five corresponding rotoinversion axes X:
1,2,3,4and 6.

a) Rotoinversion Axis 1 (Fig. 5.14a). 1 implies a rotation of 360° followed by
inversion through a point on the 1-fold rotoinversion axis. The operation of 1
on a point 1 returns it to its starting position, and the subsequent inversion
takes it to point 2. The rotoinversion operation 1 is thus identical to inversion
through an inversion centre. For this reason, I is used as a symbol for the
inversion centre.
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¢ A3=3+1

Fig.5.14a-d. The operation of rotoinversion axes on a point 1: a 1. b 2=m. ¢ 3=3+1.
d 6=3 1 m. For 4, see Fig. 5.10a. The unfilled circles represent auxiliary points which are
not occupied when the two operations of which the compound operation is composed are
not themselves present

b) Rotoinversion Axis 2 (Fig. 5.14b). The effect of rotation through an angle
of 180° followed by inversion is to take a point from 1 to 2. A repetition of this
compound operation returns it to its original position. The two points are,
however, also related to one another by reflection in a plane normal to the
axis. The operation 2 is thus identical with m, and need not be considered
further. Note, however, that 2 represents a direction normal to m.

c) Rotoinversion Axis 3 (graphical Symbol A) (Fig. 5.14c). Successive appli-
cations of the operation 3 move a point to altogether six equivalent positions.
In this case, both of the simple operations 3 and T are necessarily present —
3=3+1, so the compound symmetry operation is here a combination of
symmetry operations.

d) Rotoinversion Axis 4 (graphical symbol @) (Fig.5.13a). The 4 axis has
already been analysed in the previous section. As may be seen in Fig.
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5.13a, and as the graphical symbol indicates, 4 implies the presence of a
parallel 2.

e) Rotoinversion Axis 6 (graphical symbol @) (Fig. 5.14d). Successive appli-
cations of 6 move a point to altogether six equivalent positions. It can be

seen that 6 implies the presence of a parallel 3 and a perpendicular m -
6=3_Lm.

The unambiguous demonstration of the relationships: 1= inversion
centre, 2=m, 3=3+1, 4 implies 2, and 6=3 L. m in Figs.5.13a and 5.14 is
only possible when an object such as an unsymmetrical pyramid is
operated upon by symmetry operations (see exercise 5.1a). Note particular-
ly that only rotoinversion axes of odd order imply the presence of an inversion
centre, viz. 1 and 3.

5.4.2 Rotoreflection Axes

Like the rotoinversion axes, rotoreflection axes Sy, S,, S3, S4, and Sg may be
defined. Rotoreflection implies the compound operation of rotation and
reflection in a plane normal to the axis. However, these axes represent
nothing new, since it is easy to demonstrate the correspondence S;=m;
S,=1; S;=6; S,=4; S¢=3. Rotoinversion axes are now invariably used in
crystallography.

The symmetry elements with which the crystallographer is concerned
are the proper rotation axes X (1, 2, 3, 4 and 6) and the rotoinversion or
improper axes X (I = inversion centre, (2)=m, 3, 4 and 6). In addition to
these, there are screw axes and glide planes (see Chap. 9.1).

The axes X and X, including 1 and m, are called point-symmetry elements,
since their operations always leave at least one point unmoved. In the case of
rotation axes, this property applies to every point on the axis.
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Exercise 5.1. The ten crystallographic point symmetry operations are shown on pp. 60

and 61. Carry out these operations on:

a) An unsymmetrical pyramid, whose base lies into the plane of the paper. Sketch the
appearance of the generated pyramids, using dotted lines for those lying below the
paper.

b) A general pole on a stereographic projection.

Exercise 5.2. Carry out the rotoreflection operations S;, S,, S3, S4 and S¢ on a general pole
on a stereographic projection, and compare these with the stereograms of the rotation-

inversion axes 1, 2=m, 3, 4 and 6 in Exercise 5.1.

Exercise 5.3. What crystal form is developed by the faces whose poles result from the
operation of 3, 4, 6 and 6 on a general pole? (see Exercise 5.1b).

Exercise 5.4. What shape is implied for the section of a prism which has a 2-, 3, 4, or
6-fold axis?

Exercise 5.5. Which rotoinversion axes contain an inversion centre?

Exercise 5.6. Determine the location of the rotation axes of a cube.
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6 The 14 Bravais Lattices

The general space lattice, with no restrictions on the shape of the unit cell,
may be used to describe all crystals. In most cases, however, the lattices which
occur are special in that they have special features, such as unit cell
dimensions (lattice parameters) which are equal in two or three directions or
angles between cell edges with particular values, such as 60°, 90°, 120° or
54.73°. The general lattice has no point symmetry elements except inversion
centres. The presence of rotation axes and mirror planes will restrict the cell
parameters in some way, and give special lattices. These special lattices give
rise to simplifications in the crystal morphology and in other physical
properties.

When lattice translations in two directions are equivalent, all physical properties
are equal in these directions.

In addition to the general space lattice, there are several special lattices.
Before we consider these space lattices, however, it is useful to develop the
concepts by consideration of general and special plane lattices.

The General (Oblique) Plane Lattice

If we take a point 1, and operate on it with a 2-fold axis, we will generate an
equivalent point 2 (Fig. 6.1a). The application of a lattice translation a to
point 1 generates an identical point 3 (Fig. 6.1b), and the 2-fold axis then
relates point 3 to point 4 (Fig. 6.1¢c). We have now generated a unit mesh of the
lattice. It has the shape of an oblique parallelogram, where ay+# by and y = 90°.

o~
-~

0 g 0
3 2
a) b)

Noe

Fig. 6.1a-c. Development of the general plane lattice, with an oblique unit mesh
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Note that here and throughout this book, in reference to symmetry, + means
need not be equivalent while = means are required by symmetry to be equivalent.

It is possible to vary a, by and y in any way we like without losing the 2-fold
axis. Thus this lattice is fully general.

Special Plane Lattices

a) Returningto Fig. 6.1 a, point 3 could have been chosen so that the points 1,
2 and 3 described a right triangle, with the right angle at point 3 (Fig. 6.2a).
The operation of the 2-fold axis now results in a rectangular unit mesh, ay #by,
y=90°. The arrangements of the points is now “special”, as further symmetry
has been introduced, namely two mutually perpendicular mirror planes,
parallel to the 2-fold axis (Fig. 6.2b).

Fig. 6.2a,b. Development of the
special plane lattice with a rectangular
a) . . b) unit mesh (a) and its symmetry (b)

Qi
<

b) A further possibility in Fig. 6.1 a would be to choose the location of point 3
so that points 1, 2 and 3 formed an isosceles triangle with the two equal edges
meeting at point 3. The unit mesh of the resulting lattice is a rhombus: a; = by,
y#60°,90° or 120° (Fig. 6.3a). Extension of the edges 1-4 and 1-3 a further
unit translation on the other side of 1, an alternative choice of unit mesh arises
(Fig. 6.3b). It is rectangular (aj+# by, y =90°), and is called centred because it
has a point at its centre identical to those at the vertices. Consideration of the

Fig. 6.3a-c. Development of the special plane lattice with a rhombic unit mesh (a), and its
alternative description by a centred rectangular mesh (b). Symmetry of the plane lattice (c)

64



Fig. 6.4a,b. Development of the special
plane lattice with a square unit mesh
a) o . b) and its symmetry

QY
<

symmetry of this cell shows that there are a pair of mirror planes, similar to
those in Fig. 6.2b, and several 2-fold axes (Fig. 6.3¢).

¢) Returning once to Fig. 6.1a, we choose the position of point 3 in such a
way as to make the points 1, 2 and 3 describe an isosceles right triangle, with
the right angle at 3. The resultant lattice now has a square unit mesh: a; = b,
y=90°. As shown in Fig. 6.4b, there are now a 4-fold axis and four mirror
planes parallel to it in the cell.

d) Finally, let us choose the position of point 3 in Fig.6.1a such that the
points 1, 2 and 3 make an equilateral triangle (Fig. 6.5a). The unit mesh of the
resulting hexagonal lattice is now a 120° rhombus, or ag=bg, y=120°. In
addition to the 2-fold axis, there are now 3- and 6-fold axes as well as several
mirror planes. The axes are shown in Fig. 6.5b (see also Fig. 5.7a,c).

Fig. 6.5a,b. Development of the special hexagonal plane lattice and its symmetry. The unit
mesh is a 120° rhombus

We have now developed all four of the possible special lattice planes
(which were, in fact, introduced in a different way in Chapter 5) from the
general plane lattice. These plane lattices are summarised in Table 6.1 with
their characteristic symmetry elements. The general lattice (see Fig.5.5)
possesses 2-fold axes only, but the special lattices (a)-(d) all have further
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. ; - 9 .
a

. . (b) . .

Fig.6.6a-d. Symmetry elements of the special lattice planes with a primitive (a) and a centred
(b) rectangular unit mesh, and a square (c) and a hexagonal (120° rhombus) (d) unit mesh

symmetry elements, which are shown on their diagrams in Fig. 6.6. It should
be noted that only point symmetry elements are shown here. There are
compound symmetry elements involving translation, glide planes (see
Chap.9.1).

6.1 The Primitive Space Lattices (P-Lattices)

The relationships between lattices and symmetry elements in three dimen-
sions are similar to those in two. From the general space lattice, several
special space lattices may be derived, in which congruent lattice planes are
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stacked above one another. If the symmetry of the lattice planes is not
changed, the five space lattices with primitive unit cells (P-lattices) are
produced. These are given in Table 6.2.

Compare the stacking processes illustrated in Figs. 6.8-6.10a,b; 6.12 and
6.13a,b. Notice that the centred rectangular plane lattice (b) does not occur.
The square lattice may be stacked either with cy+ag=by or cy=ay=byg; the

67



former develops the tetragonal P-lattice and the latter the cubic P-lattice. The
cubic lattice is a special case of the tetragonal, since new, characteristic
symmetry elements appear (three-fold rotation axes along the body diagonals
of the unit cell). The generation of the general or triclinic P-lattice by stacking
is shown in Fig. 6.7a. All of the P-lattices are illustrated in Table 6.3.

Table 6.1. Plane lattices

Shgpe of Lattice SCy}:r::rrjgtt:;istic Figure
unit mesh parameters clements
e s | Portogram | 470 Lt
Is){)ele::illelttice a g)ercirtr?ir:ig\i) ;‘1?9%00 m 6.22
Py S e
c Square ;0:9?)(:) 4 6.4c
d | 120° Rhombus ;0:13%0 6(3) 6.5a
Table 6.2. P-Lattices
isnh:tiilfefdulnai;gs%h Interplanar spacing Lattice Figure
z;a:)rjlcl:;ogram“ bo Monoclinic P 6.8a,b
Faiitij?le - Orthorhombic P 6.9a,b
Square
A co # (ag=by) Tetragonal P 6.10a,b
(S;uflr; ) co = (a9 =bp) Cubic P 6.13a,b
(li?i‘ll:“})‘ombus Co Hexagonal P 6.12a,b

©

Note that for historical reasons, the description a,# by, y # 90° has been changed in this
case to ag # ¢y, f+90°.
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a Plane lattice with oblique unit mesh showing its symmetry.
Stacking of such planes directly above one another leads to the
monoclinic P-lattice (cf. Fig. 6.8a,b). If, however, the lattice

points of the stacked planes do not coincide with the 2-fold
axes, these are lost, and the triclinic P-lattice has been
generated. (cf. b)

b Triclinic P-lattice, lattice parameters in the unit
cell are:

ag#bo#cy
a#*f+y

—— O

a

d Space group Pl.

Projection of the symmetry elements of the triclin-
ic P-lattice parallel to ¢ onto the plane x,y,0. This
is the space group of highest symmetry in the
triclinic system

¢ Triclinic axial system:

a+b+#c
a+f+y

©) B

e Point group 1.

Symmetry of a lattice point in a triclinic P-lattice.
This is the point group of highest symmetry in the
triclinic system

f Lis the triclinic point group of lower symmetry
than 1 (formed by removal of 1)

Fig. 6.7a-f. The triclinic crystal system
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a-F——-")— a—

L Qo

a Plane lattice with oblique unit mesh showing its
symmetry. Stacking of such planes directly above o

[ 1
one another with interplanar spacing by leads to
the monoclinic P-lattice (cf. b)

a

d Space group P 2/m.

!

b
Projection of the symmetry elements of the mo-
noclinic P-lattice on x,0,z (above) and on x,y,0
(below). This is one of the space groups of highest
symmetry in the monoclinic system

b Monoclinic P-lattice, lattice parameters in the
unit cell are:

ay#bg#cy

a=y=90° B>90°

i
ol
D%

—a )
¢ Monoclinic axial system:
a+b#c
a a=y=90° £>90°
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e Symmetry elements and stereograms of the
point group

\ 2/m,
/ !
N / b
~_1_~
| the symmetry of lattice point of the monoclinic
a P-lattice. This is the highest symmetry point group
2/m—C,, in the monoclinic crystal system
C c
AT T
/ N // N
T / c \\ sc
i
YA W AW
a \\ / a E
AN
i |
a a
m-C,

2-C,

f Symmetry clements and stercograms of the monoclinic point groups of lower symmetry than 2/m

(formed by removal of symmetry elements from it).

Fig. 6.8a-f. The monoclinic crystal system
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a

a Plane lattice with rectangular unit mesh show-
ing its symmetry. Stacking of such planes directly
above one another with interplanar spacing co
leads to the orthorhombic P-lattice (cf. b)

b Orthorhombic P-lattice, latticc parameters in
the unit cell are:

ag# by~
a=pf-=y=90°

-
—— —-
— ——

roo

a

d Space group

P 2/m 2/m 2/m (Pmmm)
1 1 1
a b ¢

Projection of the symmetry elements of the or-
thorhombic P-lattice on x,y,0. This is one of the
space groups of highest symmetry in the ortho-
rhombic system

|

AR 4
hg‘\-'-b

¢ Orthorhombic axial system

a#b#c
a=pf~=y=90°

Fig. 6.9a-f. The orthorhombic crystal system
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e Symmetry elements and stereogram of the point

group
2/m 2/m 2/m (mmm),

1 ! i

a b ¢

the symmetry of a lattice point of the orthorhom-
bic P-lattice. This is the highest symmetry point
group in the orthorhombic crystal system

f Symmetry clements and stercograms of the orthorhombic point groups of lower symmetry than
2/m 2/m 2/m (formed by removal of symmetry elements from it)
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a Planc lattice with square unit mesh showing its d Space group

symmetry. Stacking of such planes directly above

one another with interplanar spacing cy+ ay+ by P 4/1m 2/}m 2/1m (P 4/mmm)
leads to the tetragonal P-lattice (cf. b) ¢ (a) (110)

Projection of the symmetry elements of the tetra-
gonal P-lattice on x,y,0. This is one of the space
groups of highest symmetry in the tetragonal
system

-

@l bl

b Tetragonal P-lattice, lattice parameters in the ¢ Tetragonal axial system

unit cell are:
a=b#c(a =ay+c)

ag =by#cy a=p~y-90°
a=f-=y=90°

Fig. 6.10a—f. The tetragonal crystal system
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zlz(a,)

4/m 2/m 2/m — Dy,

—bla,)

0107

e Symmetry elements and stereogram of the point

group

4/m 2/m 2/m (4/mmm),

! | l
c (a) (110)

the symmetry of a lattice point of the tetragonal
P-lattice. This is the highest symmetry point group
in the tetragonal crystal system

\
— bla,)
/

===

4/m-C,,

—bfa,)
I

afa,)

~_ 7

? afa,)

4-S,

bl g by
§ @ ;

I %)
\J

f Symmetry elements and stercograms of the tetragonal point groups of lower symmetry than
4/m 2/m 2/m (formed by removal of symmetry elements from it). Note that a change in choice of axes in
the point group 42m gives a point group 4m2 ({a) L m). The two settings are equally satisfactory
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a Plane lattice with 120°rhombic unit mesh
showing its symmetry. Stacking of such planes
above one another so that the second lattice plane
is at a height of ¢;/3 with a lattice point on a 3 fold
axis, while the third plane is at a height ofgco with
its lattice point on the other 3-fold axis. The fourth
plane will then come directly above the first. This
arrangement reduces the 6-fold axes to 3-fold, and
removes the symmetry planes in x,0,z; 0,y,z
and x, X,z as well as the two-fold axis parallel to ¢
(cf. b)

wIN

Wi

b From this arrangement of lattice points, two
distinct unit cells may be chosen:

d Space group

R 32/m (R3m)
[
c (a)

Projection of the symmetry elements of the trigo-
nal R-lattice on x,y,0. This is one of the space
groups of highest symmetry in the trigonal sys-
tem

¢ Axial system: see Fig. 6.12¢

I) Trigonal R-lattice; the lattice parameters of the
cell are:

ay=by#C¢y
a=f-=90°, y-120°
II. Rhombohedral P-lattice; the lattice parame-
ters of the cell are:

8§~ by~ i

@ = =y

Fig. 6.11a-f. The trigonal crystal system
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e Symmetry elements and stereogram of the point
group

3 2/m (3m),
Lol
¢ (a)
the symmetry of a lattice point of the trigonal

R-lattice. This is the highest symmetry point
group in the trigonal crystal system

c
b;)\
AN
/N /N
/
B
N SN ]
>’
D
afa,)
32—-D;,
c
N &L
(a;) (@)
ST -~
%& /// \\\ // \\ ~ // \ / AN
a | Ny a i X /
b (,,”%J-—-)—b(a)) b r,_/‘;\,\_mj_b(az)
\ // \\ // AN / \ J
P
N da,) ) ala;)
3-Cy 3-G,

f Symmetry elements and stereograms of the trigonal point groups of lower symmetry than 3 2/m
(formed by removal of symmetry elements from it)
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a Plane lattice with 120° rhombus unit mesh
showing its symmetry. Stacking of such planes
directly above one another with interplanar
spacing ¢, leads to the hexagonal P-lattice (cf. b)

b Hexagonal P-lattice, lattice parameters in the
unit cell are:

ay="by# ¢y

a-$=90°, y-120°

QD

;: b((72)

[219]

d Space group
P6/m 2/m 2/m (P6/mmm).
! [
¢ (a) (210)
Projection of the symmetry elements of the hexa-

gonal P-lattice on x,y, 0. This is the space group of
highest symmetry in the hexagonal system

|

BN
(a, )a;é;\-{*b(az)

3&

¢ Hexagonal axial system

a=b#c (aj=a,-az;#c¢)
a=f-90°, y=120°

Fig. 6.12a—f. The hexagonal crystal system
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e Symmetry elements and stereogram of the point
group

6/m 2/m 2/m (6/mmm),
! ! 1
c (a) (210)
the symmetry of a lattice point of the hexagonal

P-lattice. This is the highest symmetry point group
in the hexagonal crystal system

Q b
S é\ bla,)

f Symmetry elements and stercograms of the hexagonal point groups of lower symmetry than
6/m 2/m 2/m (formed by removal of symmetry elements from it). Note that a change in choice of axes in
the point group 6m2 gives a point group 62m ((a)||2). The two settings are equally satisfactory.
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a Planc lattice with square unit cell showing its
symmetry. Stacking of such planes directly above
one another with interplanar spacing cy=ay= by
leads to the cubic P-lattice (cf. b).

b Cubic P-lattice, lattice parameters in the unit
cell are:

a,=by=cq
a=p=y-=90°

d Space group
P4/m
|
() (1

Symmetry elements (incomplete) of the cubic
P-Jattice. This is one of the space groups of highest
symmetry in the cubic system

w1

2/m (Pm3m)

1
1) (110)

=

(a;)c

e

(@) 5 | b(a)

¢ Cubic axial system

a=b=c (aj=ay=a;)
a=fF=y=90°

Fig. 6.13a—f. The cubic crystal system
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e Symmetry elements and stereogram of the point
group

P4/m 3 2/m (m3m),
Lol !
(a) (111) 110)

the symmetry of a lattice point of the cubic
P-lattice. This is the highest symmetry point group
in the cubic crystal system

f Symmetry elements and stereograms of the cubic point groups of lower symmetry than 4/m 32/m
(formed by removal of symmetry elements from it)

6.2 The Symmetry of the Primitive Lattices

Before considering the symmetry of lattices, it is useful to learn two rules
governing the generation of a symmetry element by the combination of two
others. In the following two cases, the presence of any two of the given
symmetry elements implies the presence of the third. Combination of
symmetry elements is no casual occurrence; it is fundamental to the nature of
symmetry.
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Table 6.3. The 14 Bravais Lattices

Triclinic

Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic
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Fig. 6.14a-c. Symmetry rule I: a 2 L m jf (at the intersection of 2 and m); b Tonm—2
(passing through 1 and normal to m); ¢ 1 on 2 — m (passing through 1 and normal to 2)

.

:T:) " q. "
A7 e
i
| .
| b
m' ! i lm'
| i
L 7]
| -
a) e b) =

Fig. 6.15a-c. Symmetry rule II: a m’ L m” — 2 (along the intersection of m”and m”; b 2 on
m”—m’, ,~ (with 2 as the line of intersection); ¢ 2 on m’ ~m”, - (with 2 as the line of
intersection)

Rule 1. A rotation axis of even order (X, == 2, 4 or 6), a mirror plane normal to X,,
and an inversion centre at the point of intersection of X, and m (Fig. 6.14)".

Rule 2. Two mutually perpendicular mirror planes and a 2-fold axis along their
line of intersection (Fig. 6.15).

Every lattice is centrosymmetric and has inversion centres on the lattice
points and midway between any two of them. Thus, in a P-lattice, there are
inversion centres at 0,0,0; 3,0,0; 0,5,0; 0,0,3; 3,3,0; 3,0,3; 0,1,5 and 1,3,3.
Symmetry of the Triclinic P-Lattice. The only point symmetry elements of the
triclinic lattice are inversion centres (Fig. 6.16) at the coordinates given above.
A projection of the symmetry elements parallel to ¢ onto x,y,0 is

'X.=2,40r6. The_illustration only includes the case X, =2. The rule is not completely
general, since m + 1 can only generate 2.
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O

/

a

Fig. 6.17. Projection of the symmetry
elements of space group P1 onto x,y,0.
The z-coordinates of 1 are 0 and %

<« Fig. 6.16. Triclinic P-lattice with the _
symmetry elements of space group P1
(0 1 on lattice point)

shown in Fig. 6.17. The z-coordinates implied for the inversion centres are 0
and 3. The complete set of symmetry operations in a lattice or a crystal
structure, or a group of symmetry operations including lattice translations is
called a space group. The space group of a primitive lattice which has only T is
called P1, and the conditions for its unit cell parameters: ag+ by # co; @ # f# 7.

Symmetry of the Monoclinic P-Lattice. The set of lattice planes from which we
generated the monoclinic P-lattice (Fig.6.8a) contain a set of 2-fold axes
parallel to b. In addition, there are mirror planes normal to b at x,0,z and
X, 3,z as well as the inversion centres that were present in the triclinic case. The
location of the mirror planes follows from our first rule: (2 and 1 generate
m L 2at1.) The array of symmetry elements of the lattice is shown in Fig. 6.8d
in projections on x,0,z and x,y,0.2 Since the 2 is normal to the m, this
combination is given the symbol 2/m, pronounced “two over m”. It is not
necessary to represent the inversion centre, since 2/m implies 1, by Rule 1.
The space group of the monoclinic P-lattice is P2/m, where it is
conventional to choose the b-axis parallel to 2 and normal to m. The b-axis is
called the symmetry direction. The a- and c-directions thus lie in the plane of
m. This is called the “second setting”. Occasionally, the so-called “first
setting” is encountered, with the c-direction parallel to 2 and normal to m.
When this convention is used, the lattice is formed in the more usual way by
the stacking of parallel lattice planes with ay +# by, y #90°, and a spacing of c,.

% In the diagrams, the symbol _/ indicates a mirror plane parallel to the plane of the page
at heights of 0 and % When the planes lie at other heights, such as i and %, this is shown
by addingzl. Note that if there isan m, 2 or 1 at 0, it is also found at %; if it lies at %, itis also
at 3, etc.

4
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Fig. 6.18. Symmetry elements of
space group P 2/m 2/m 2/m. The
- inversion centres are not shown
— b
a

Symmetry of the Orthorhombic P-Lattice. In addition to the symmetry of the
stacked planes (Fig. 6.9a), the orthorhombic P-lattice (Fig. 6.9b) has mirror
planes normal to ¢ at x,y,0 and x,y,3 and inversion centres (Fig. 6.9d).
Further, the application of rulel (m+1=2_1m) or rule2 (m L m=2)
generates 2-fold axes at x,0,0; x,0,3; x,5,0; X,3,%; 0,v,0; 0,y,3; 3,v,0
andi,y,s.

An alternative approach, which leads to the same result is the following:
the unit cell of the orthorhombic P-lattice is a rectangular parallelepiped; it is
bounded by three pairs of lattice planes with primitive rectangular unit
meshes. These planes all have the same symmetry, that shown in Fig. 6.9a.
The arrangement of symmetry elements is shown in Fig. 6.18, which should be
compared with Fig.6.9d. This set of symmetry elements can be given a
symbol. The symmetry elements are arranged in the order of the crystallogra-
phic axes: a, b, c. Each axis has a 2-fold rotation axis parallel to it and mirror
planes normal to it. Thus, the symbol for this space groupis: P2/m 2/m 2/m.

|
a b ¢

Here the a-, b- and c-axes are all called symmetry directions. Fig.6.19,
gives a projection of all point symmetry elements of space group
P2/m2/m 2/m, and separate projections showing those elements related to
the symmetry directions a, b and c.

Symmetry of the Tetragonal P-Lattice. In addition to the symmetry of the
stacked planes (Fig. 6.10a), the tetragonal P-lattice (Fig. 6.10b) has mirror
planes L cat x,y,0and x, y,4 and inversion centres (Fig. 6.10d). Further, the
application of Rule1 (m +1=2 1L m) or rule 2 (m L m = 2) generates several
2-fold axes. It should be noted in passing that the projection of the symmetry
elements for this space group in Fig. 6.10d is incomplete, since there are also
glide planes present (Section 9.1). The same is true for the space groups in
Figs. 6.11d-6.13d, which in addition contain screw axes. These symmetry
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‘ ¢ ‘ P2/lm2/lm2/lm
a) a a b ¢
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N |
Loy
R

a
P2/m ... ... P...2/m
l 1
b) a <) b

a P...... 2/m
d) !
[+

Fig. 6.19. a Space group P 2/m 2/m 2/m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions a, b, ¢ are shown:

b P2/m... .. ,cP...2/m..., dP... .. 2/m
! | 1
a b c

86



—

Fig. 6.20. Symmetry elements of space group
P 4/m 2/m 2/m. The 2 along (110) and the inversion

— centres are not shown
b,
1a,)

q,)

elements are essentially irrelevant to our present purpose, and will not be
considered further here.

The unit cell of a tetragonal P-lattice has the shape of a tetragonal prism; it
is bounded by two lattice planes with square unit meshes and four planes with
rectangular meshes, the symmetries of which are shown in Fig. 6.20. Compare
Fig. 6.20 with Fig. 6.10d, noting that the 2-fold axes parallel to [110] and [110]
do not appear in Fig. 6.20.

The 4-fold axes have the effect of making a and b equivalent, and they
are often denoted as a, and a,, as in Fig. 6.10d). Similarly, the directions
[110] and [110] are equivalent to one another. We must now introduce a
further type of brackets, pointed brackets (). The symbol (uvw) denotes the
lattice direction [uvw] and all directions equivalent to it. Similarly, (a) denotes
the a-axis and all equivalent axes. For the tetragonal lattice, (110) implies
both the [110] and the [110] directions, and (a) implies both the a- and
b-axes.

In the space group symbol, the symmetry elements are given in the order:
c, (a), diagonal of the (a)-axes, viz. (110), all of which are called symmetry
directions. Thus, equivalent symmetry operations are given only once. The
space group symbol is thus P 4/m 2/m 2/m.

Lol

¢ {a) (110).
Figure 6.21 gives a projection of all point symmetry elements of space group
P4/m 2/m 2/m, and separate projections showing those elements related to
the symmetry directions c, (a) and (110).

Symmetry of the Hexagonal P-Lattice. In addition to the symmetry of the
stacked planes, the hexagonal P-lattice, like the orthorhombic and tetragonal
lattices, has mirror planes L c at x,y,0 and x,y,}, inversion centres, and
several 2-fold axes (Fig. 6.12d). The application of Rule1 (m+1=2 1 m) or
rule 2 (m L m = 2) thus generates several 2-fold axes.
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Fig. 6.21. a Space group P4/m 2/m 2/m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions c, (a), (110) are shown:
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Figure 6.22 shows the projection of a hexagonal P-lattice on (0001). The
6-fold axis makes a =b, and a and b may also be written as a; and a,. Another
direction, called the as-axis, may then be added, making an angle of 120° with
a,and a,, and equivalent to them both. Thus, (a) now represents a,, a,, a3. The
diagonals bisecting the (a)-axes are [210], [120] and [110]. As for the
tetragonal lattice, the symmetry elements are arranged in the space group
symbol in the order, c, (a), diagonals of the (a) axes, viz. (210}, all of which are
called symmetry directions.

The space group symbol is thus: P 6/m 2/m 2/m.

I
¢ (a) (210).

Figure 6.23 gives a projection of all the point-symmetry elements of space
group P6/m2/m2/m, and separate diagrams showing those elements related
to the symmetry directions c, (a) and (210).

Symmetry of the Cubic P-Lattice. The symmetry of the stacking planes is
shown in Fig. 6.13a. The stacking results in a lattice with a cubic unit cell
(ag=bg=cy). This means that the lattice planes 0,x,z and x,0,z have the
same symmetry as X,y,0, see Fig.6.13d). This equivalence of the planes
generates four 3-fold axes along the body diagonals of the unit cell as well as
inversion centres, so these axes are represented as 3(=3 +1). Application of
rulel (m+1=2 1 m) or rule2 (m L m=2) generates 2-fold axes parallel to
[110] and equivalent directions. (These 2-fold axes are not included in
Fig. 6.13d).
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Fig. 6.23. a Space group P 6/m 2/m 2/m. In the other diagrams, only the symmetry elements
corresponding to the symmetry directions c, (a), (210) are shown:
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Fig. 6.24. a Space group P 4/m 3 2/m . In the other diagrams, only the symmetry elements
corresponding to the symmetry directions (a), (111), (110) are shown.
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In the space group symbol, the symmetry elements are given in the
order: (a), (111)=body diagonals of the unit cell, (110)=face diagonals
of the unit cell. The space group symbol for the cubic P-lattice is thus:
P4/m 3 2/m.

! l !

(a) (111) (110).

Figure 6.24 gives a projection of all the point-symmetry elements of
space group P4/m 3 2/m, and separate diagrams showing those elements
related to the symmetry directions (a), (111) and (110).

6.3 The Centred Lattices

Consideration of the primitive lattices we have so far generated raises the
question as to whether it is possible to import into the P-lattices one or
more further lattice planes without destroying the symmetry. Let us first
consider the monoclinic P-lattice.

Figure 6.25 shows the monoclinic P-lattice and its symmetry, P2/m,
projected onto x,0,z (see also Fig. 6.8d). Each point of the lattice has 2/m
symmetry, which implies the presence of an inversion centre on the point.
Insertion of new lattice planes parallel to (010) into the lattice is only
possible if the lattice points fall on a position which also has symmetry
2/m, ie. on 30,0; 0,1,0; 0,0,3; 1,3,0; 1,0,%; 0,3,%, or 3,1,5. These
possibilities must each be considered.

a) Lattice Plane with Lattice Point at },3,0 (Fig. 6.26). These new lattice
points centre the a,b-face of the unit cell. This is called a C-face centred
lattice, or more simply a C-lattice, although this name is formally inexact,
being used to describe a “lattice with a C-face centred unit cell”. The
monoclinic C-lattice is illustrated in Table 6.3.

c
/

Fig. 6.25. The monoclinic P-lattice and its symmetry elements projected onto x, 0, z (O lattice
point with y =0)
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Fig. 6.26. The monoclinic C-lattice projected
on x,0,z (@ represents a lattice point with
1

Fig. 6.27. The monoclinic A-lattice (ao, by, co)
s can, by interchanging a and c, be converted
G(C )— to a monoclinic C-lattice (ag, by, cg)

b) Lattice Plane with Lattice Point at 0,3, 1 (Fig. 6.27). If the new plane centres
the b, c-face, the result will be an A-face centred lattice. Since, however, in
monoclinic cells, the a and ¢ axes may lie anywhere in the mirror plane, they
may be swapped, converting the A-lattice into a C-lattice.

¢) Lattice Plane with Lattice Point at },0,3 (Fig. 6.28). The result is now a
B-lattice, from which a smaller, primitive unit cell can be chosen (outlined in
bold) that still has monoclinic symmetry.

d) Lattice Plane with Lattice Point at3,3, 1 (Fig. 6.29). A lattice is formed, with
a lattice point at the body centre of the unit cell. This is called a body centred
or I-lattice (from the German innenzentriert). As with the A-lattice, choice of
different axes convert this to a monoclinic C-lattice.

€) Lattice Plane with Lattice Point at 1,0,0; 0,3,0 or 0,0,3. In any of these
cases, the result is simply to halve the cell; no new type of lattice is formed.

f) It is also possible to introduce two lattice planes at the same time, for
example, as in both a) and b), giving additional lattice points at 3,3,0 and
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Fig. 6.28. The monoclinic B-lattice (ay, by, ¢y)
can be converted to a smaller monoclinic P-lattice
(ag, by, co)

Fig. 6.29. The monoclinic I-lattice
(ag, by, o) can be converted to a
monoclinic C-lattice (ag, by, cg)

0,3,3 (Fig. 6.30a). Since it is necessary that all lattice points have the same
environment, and parallel lattice lines the same period a further lattice point
(shown with a dashed outline) must be added at },0,3. Thus, all the faces of
the unit cell are now centred, giving an all-face centred or F-lattice.

A general principle following from this is that a lattice centred on two faces
cannot exist because the requirement that all lattice points are identical and
parallel lattice lines have the same lattice period will convert it to an all-face
centred lattice.

The monoclinic F-lattice can, in fact, be reduced to a C-lattice of half the
volume, as is shown in Fig. 6.30b.

We have now considered all the possibilities for introducing extra lattice
planes into the monoclinic P-lattice, and have shown that all of these may be
represented either as P- or C-lattices (A,I, F—~C; B—P).

The orthorhombic lattice may be developed in the same way, giving rise of
orthorhombic A-, B-, C-, I- and F-lattices. The I- and F-lattices are now not
reducible as they were in the monoclinic case. The A-, B- and C-lattices are
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Fig.6.30a,b. The development of the monoclinic F-lattice a. The monoclinic F-lattice
(a, by, ¢p) can be converted to a monoclinic C-lattice (ag, by, c) b

alternative representations of the same lattice; the a-, b-, and c-axes can
always be chosen so as to generate a C-lattice. There are a few space groups
which are customarily treated as having an A-lattice (see Table 9.2). The
C-lattice may also be developed by the vertical stacking of planes with the
centred rectangular unit mesh (Fig. 6.6b).

Similar considerations to those in the monoclinic case lead from the
tetragonal P-lattice to the tetragonal I-lattice, and form the cubic P-lattice to
the cubic I- and F-lattices (Table 6.3).

An examination of the hexagonal P-lattice will show that the only point
with the same symmetry as 0,0,0 is 0,0,1. The addition of a lattice plane
there will merely halve the size of the unit cell.

A 6-fold axis always contains a 3-fold axis. Starting from this fact, the
plane lattice will a 120° rhombus as unit mesh contains a 3-fold axes at 0,0, z;
3,3,z and 3,3,z (Fig. 6.11a). It is possible to add a second plane at a height
of jcy with a lattice point on the 3-fold axis at 2,1,z and a third plane at a
height of 3¢, with a lattice point on the 3-fold axis at 1,2,z (Fig. 6.11b).
The fourth plane will then come at a height of ¢y, directly above the first. This
new arrangement of lattice points reduces the 6-fold axes to 3-fold and
removes the mirror planes at x,0,z; 0,y,z and x,x,z as well as the 2-fold
axes parallel to the c-axis. The resulting lattice has the shape of a hexagonal
lattice (ag=bg#cy, a=F=90°, y=120°) but contains three lattice points
per unit cell (0,0,0; 2,31, 122y,

It is possible, however, to describe this lattice by a primitive unit cell
(ag=bg=cg, a’=p"=7"+90°). If the first cell is used to describe the lattice, it is
called a trigonal R-lattice, if the second is used, the lattice is called
rhombohedral P (Fig. 6.11b). The unit cell of the rhombohedral P-lattice has
indeed the shape of a rhombohedron, with six rhombi as faces.
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Special cases of the rhombohedral P-lattice are: (a) @ =90° gives the cubic
P-lattice; (b) a@=60° gives the cubic F-lattice and (c) @ =109.47° gives the
cubic I-lattice.

6.4 The Symmetry of the Centred Lattices

With the exception of the trigonal R-lattice, the derivation above of the
centred lattices always paid strict attention to retaining the full symmetry of
the corresponding P-lattice. All the symmetry elements of the P-lattice
remained, only the translation properties were altered. The centring does
indeed introduce new symmetry elements, notably screw axes and glide
planes (see Chap. 9.1). In spite of this, the symbols for the space groups of the
centred lattices may easily be given, since the new symmetry elements do not
appear in them.

Now it is not difficult to derive the symbol for the trigonal R-lattice
from the reduced symmetry of the lattice planes. There are, in addition
to the normal ones, further inversion centres, which, by Rulel
(m+1=21m), generate a set of 2-fold axes parallel to aj,a,,a;
(Fig. 6.11d). The 3-fold axis becomes 3 since 3+1=13. The order of the
symmetry directions here is: c, (a), giving the symbol R 3 2/m.

Lol
c (a).

The space group symbols of the 14 Bravais lattices are given in Table 6.4 in
the same order as Table 6.3.

Table 6.3 contains the 14 lattices, which are usually known as the Bravais
lattices. They represent the 14 and only ways in which it is possible to fill space
by a three-dimensional periodic array of points. All crystals are built up on one
of these lattices. In Chapter 3, we defined a crystal structure as a lattice plus a
basis. While the number of lattices is fixed at 14, there are infinitely many
possible ways of arranging atoms in cell. Any crystal structure, however, has
only one Bravais lattice.

The number and coordinates of the lattice points in the unit cells of the
Bravais lattices is given in Table 6.5.
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Table 6.4. The space group symbols for the 14 Bravais lattices

P C I F

Triclinic Pl

Monoclinic P2/m C2/m

Orthorhombic | P2/m2/m2/m | C2/m2/m2/m | 12/m2/m2/m | F2/m2/m2/m

Tetragonal P4/m2/m2/m 14/m2/m2/m

Trigonal R32/m
P6/m2/m2/m

Hexagonal

Cubic P4/m32/m 14/m32/m F4/m32/m

Table 6.5. Number and coordinates of the lattice points in the unit cells of the Bravais lattices

Lattice

No. of lattice points
in unit cell

Coordinates of lattice points
in unit cell

MR = QW »

AW NN DN

0,0,0
0,0,0; 0,
0,0,0;
0,0,0;
0,0,0;
0,0,0; 3,11 1212
0,0,0; 4

97




Exercise 6.1. Symmetry of plane lattices.

a) Determine the symmetry elements for the given plane lattices, and draw these in their
places on the lattice. Note that only m, 2, 3,4 and 6 normal to the plane of the paper need
be considered.

b) Draw in the edges of the unit mesh and give the lattice parameters. Which lattice
parameters are equivalent and why?

¢) Determine which symmetry elements are themselves equivalent by symmetry.

° ° ° °
° ° ° .
° ° ° °
° ° ° (] 1)
° ° ° .
. ° ° .
. ° ° °
° ) ° ) 2)
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Exercise 6.2. For the given two-dimensional structures, determine:

a) The unit mesh.

b) The symmetry elements. It is only necessary to indicate those symmetry elements which
lie within the unit mesh. As in Exercise 6.1, only m, 2, 3, 4 and 6 normal to the plane of
the paper need be considered.

Two-dimensional structures after Kockel
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Exercise 6.3. (Refer to Symmetry Rule 1)

a) Draw the given combinations of two symmetry elements on the stereographic
projection. As the inversion centre is a single point, it cannot be shown on the
stereogram, but may be taken to lie at the centre of the projection. Draw in a pole which
does not lie on any symmetry element, and allow the symmetry elements to operate on it.
On the basis of the positions of the resulting poles, determine the third symmetry
element generated by the combination of the given symmetry elements, and draw it on
the stereogram.

1) 21im 2) 2+ T 3)m+ T

Demonstrate that:

41m-1 4+1-m
but

6Llm-1 6+1-m m+1-2.

b) Below are given an orthorhombic unit cell and its projection on x,y,0. Draw the third
symmetry element generated by the two given elements on either or both of these, give its
symbol and the coordinates of its position. Note that only one symmetry element of each
type is drawn in the cell.

-~ a

1

mat0,y,zand 1 at 0,2,0 generate ... at ...
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Nl —

S
[ T

2at0,0,zand 1 at 0,0,% generate ... at

c
3)
1
7| —b
a” a

2atd 0,zand mat x,v.! generate ... at

4) 5)
1|
2

VAVARE

4atl) zandmatx,y,%

6at0,0,zand 1at0,0,0 333>
generate ... at ... generate ... at ...
6) 7) 1
. 2
- O—
2
1
gz
| Tl 11 1 7 11
mat X,3,zand lats,5,5 matx,y,iandlato,i,5
generate ... at ... generate ... at ...
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Exercise 6.4. (Refer to symmetry rule 2)
a) On the following stereograms, draw in the third symmetry element generated by the

combination of the given two.

~ ~ yan ~.
i \ / \
| )| -
\ \
/
// \\\
i
‘ )
\ /
AN v/
-
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b) An orthorhombic unit cell and its projection on x,y,0 are given below. On either of
them, draw the third symmetry element generated by the two given elements, and give its
symbol and the coordinates of its position.

1)
1
2 —b
a
mat x,i,zand at x,y, generate ... at ...
2) ‘|3
1
” -5 —b
THiA
—b |
~ a
a
mat 0,y,z and 2 at O,y,% generate ... at ...
3) 4)
m at x,%,zand at %,y,z m at é,y,zzmd 2at %,U,L
generate ... at ... generate ... at ...
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Exercise 6.5.

Which of the 14 Bravais lattices are each of the following?

a)

b)

ag=by=cp
a=p=y=90° ag#by#co#2
a=y=90° f>90°
c) d)
#by#cy#
ag # by # ¢y # 2y Zozﬂi io%:o
atfEy+ta  af,y+90° r=
e) f)
3 =Dbo #¢p a=bg#¢co
a=f=y=90° a=f=90° y=120°
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Exercise 6.6.

a)

b)

<)

d)

Draw the unit cells of each of the following lattices as a projection on x,y,0, or, in
the monoclinic case, on x,0, z. Use a scale of 1A =1cm.

Monoclinic P: ap—5.5, by =4.0, co=4.0A; f-105°
Orthorhombic P: a,—3.0, by—4.5, co=4.0 A
Tetragonal P: ap=4.0, ¢,=3.0 A

Hexagonal P: a,=4.0, co=3.0 A

Trigonal R: ap=4.5,¢c=3.0 A

Determine the symmetry operations of lattices you have drawn, and plot the sym-
metry elements on the projection of the lattice.

Now use a coloured pen to colour the symmetry elements, using colours so that sym-
metry elements have the same colour if they belong to the same symmetry direction
(i.e. one of the various symmetry directions used in the space group symbol).

Give the space group symbol for each lattice, making use of the colours of symmetry
elements you have chosen in (c).

Exercise 6.7. Derive the three centred orthorhombic lattices (cf. Section 6.3).

a)
b)

O]

What is the symmetry of a lattice point in the orthorhombic P-lattice?

Which points in the unit cell of the P-lattice have the same symmetry as the lattice points?
Give their coordinates.

Bring a lattice plane, parallel to (001) into a position such that a lattice point comes into
coincidence with each of the positions you have determined in (b). Repeat the above
exercise with two planes.

Exercise 6.8. Similarly, derive the centred tetragonal lattices.
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7 The Seven Crystal Systems

In the various lattices, the vectors @, b and € must be chosen and associated
with a system of suitable crystallographic axes, a,b,c. This is not done
arbitrarily. Generally, so far as is possible, the choices are made so that the
direction of rotation axes, rotoinversion axes and the normals to mirror
planes are parallel to a,b,¢ and to a,b,c:

a,b,c; a,b,c//X,X, normal to m.

It is possible to distinguish six axial systems (systems of crystallographic
axes), which are given in Figs. 6.7¢-6.13¢c and which correspond to the six
primitive lattices. These axial systems naturally apply equally to the centred
lattices. On this basis, we may define a crystal system:

All lattices, all crystal structures and all crystal morphologies which can be
defined by the same axial system belong to the same crystal system.

This definition distinguishes six crystal systems. It is, however, usual to
separate the system of crystallographic axes based on a=b#c¢, a=£=90°,
y=120° into a hexagonal and a trigonal crystal system. The hexagonal system
is characterised by the presence of 6 or 6, while the trigonal is characterised
by 3.

In Table 7.1, the seven crystal systems are listed along with the restrictions
onthe axial system. It is important to remember, however, that equivalence of
crystallographic axes and special values of the angles are simply a conse-
quence of the underlying symmetry. Those symmetry elements which cause
equivalences to arise between crystallographic axes are listed. A full list of
the symmetry elements characterising the various crystal systems is given in
Table 8.9.

The space groups of the lattices themselves have the highest symmetry
which can occur in that crystal system (cf. Table 6.4). Symmetry elements in
each crystal system can only be orientated in certain directions with respect to
one another, since it is not those symmetry elements alone, but they and all
their combinations which must be in accordance with the properties of the
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Table 7.1. The seven crystal systems

Equivalences of
Figure crystallographic
axes caused by:

Restrictions on the

Crystal .
rystal system axial system

Triclinic a#b#c a#f#y*? 6.7¢
Monoclinic a#b#c a=y=90° [>90° 6.8¢c
Orthorhombic a#b#c a=f=y=90° 6.9c

a=b#c a=f=y=90°

Tetragonal (a,— 2, %) 6.10c 4,4//c
Trigonal® 6.12¢ 3//c
a=b#c a=f=90°, y=120°
(aj—ay#c¢) _
Hexagonal 6.12¢ 6,6//c
Cubic a=b=c a=f=y=90 6.13¢c | 3//a11)

(aj=ay=as)

2 As usual, the signs =and # are to be read as must be equivalent and need not be equivalent
respectively as a consequence of symmetry.

® An alternative definition divides the hexagonal and trigonal systems differently, giving a
hexagonal and a thombohedral system. The rhombohedral system (see Fig. 6.11b) has the
restrictions on its axial system: a’=b’=c’; a’'=f"=y".

space lattice. The symmetry of the lattice automatically determines all the
angles which the symmetry elements of the particular crystal system may
make with one another.

The symmetry directions in crystal systems are summarised in Table 7.2.
These symmetry directions are used for point groups (Chap. 8) and, in most
cases, for space groups (Chap. 9). Symmetry directions are defined differently
for each crystal system. For some subgroups, a symmetry element does not
necessarily exist in the second and/or third position of the symmetry
directions (cf. Table 8.10).
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Table 7.2. Symmetry directions in the seven crystal systems

Position in the international symbol

1st 2nd 3rd
Triclinic -
Monoclinic b
Orthorhombic a b c
Tetragonal c (a) (110)
Trigonal c (a) -
Hexagonal c (a) (210)
Cubic (a) 111y (110)

110



8 Point Groups

8.1 The 32 Point Groups

As has been noted, the space groups of the Bravais lattices are those with the
highest possible symmetry for the corresponding crystal systems. When the
lattice points are now replaced by actual atoms, ions or molecules, they must
themselves possess at least the full symmetry of the lattice point if the space
group is to remain unchanged. Now the symmetry of a lattice point is easily
determined from the space group; it consists of all of the point symmetry
elements of the space group that pass through the point (X, X, m) or lie on it
(D). In each crystal system, only the space group of the P-lattice or, in the
trigonal system the R-lattice, need be considered (see Figs. 6.7d-6.13d), since
the centred lattices in each system define identical points. Lattice translations,
the most important of all the symmetry operations for space groups, are now
discarded, and the set of symmetry elements remaining is called a point group.
The symmetry elements of these point groups and their stereographic

Table 8.1. Correspondence of one of the space groups of highest symmetry in each crystal
system with the point group of highest symmetry in that crystal system

Crystal system Space group Point group Fig.
Triclinic P1 -1 6.7d,e
Monoclinic P2/m - 2/m 6.8d,e
Orthorhombic P2/m2/m2/m - 2/m2/m2/m 6.9d,e
Tetragonal P4/m2/m2/m — 4/m2/m2/m 6.10d,e
Trigonal R32/m - 32/m 6.11d,e
Hexagonal P6/m2/m2/m — 6/m2/m2/m 6.12d,e
Cubic P4/m32/m - 4/m32/m 6.13d,e
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projections are set out in Figs. 6.7e-6.13e, and the conversion from space
group to point group in Table 8.1. There is a great deal of useful information
in the diagrams, and it is worth taking the trouble to study them carefully.

The point groups are made up from point symmetry operations and
combinations of them. Formally, a point group is defined as a group of point
symmetry operations whose operation leaves at least one point unmoved. Any
operation involving lattice translation is excluded. The symmetry directions
have the same relationship to the symmetry elements of the point group as
they do to those of the space group (Table 7.2). Those point groups derived
from the space groups of the lattices are also the highest symmetry possible
for the particular crystal system.

These point groups of highest symmetry in each crystal system all contain
the symmetry elements of one or more point groups of lower symmetry
(subgroups). These will be developed below for some crystal systems:

a) Triclinic. The only subgroup of 1 is 1. Starting from the space group PI
(Fig. 6.16), all points which do not lie on inversion centres have the point
symmetry 1.

b) Monoclinic. 2/m has the subgroups 2, m,1 (cf. Symmetry rule1) and 1.
Since T and 1 belong to the triclinic system, only 2 and m are monoclinic
point groups (cf. Fig. 6.8f). They possess sufficient symmetry to define the
monoclinic system: m L b in the a,c-plane, and 2 parallel to b and normal
to the a,c-plane. In the space group P2/m (Fig. 6.8d), the point 0,0,0 has
the point symmetry 2/m, while any point on x,3, z has point symmetry m,
and any point on the line 1,y,1 has point symmetry 2 (cf. Fig.9.13)

¢) Orthorhombic. If inversion symmetry is removed from point group
2/m 2/m 2/m, each 2/m must be reduced either to 2 or to m (Symmetry
rule 1). The possible orthorhombic subgroups are thus mmm, mm2 (or m2m
or 2mm), m22 (or 2m2 or 22m) and 222. The symmetry elements of mmm are
given on the stereogram in Fig. 8.1. By Symmetry rule 2 (m L m = > 2), 2-fold
rotation axes are formed at each intersection of planes, and the point group
2/m 2/m 2/m has been reformed. Similarly, the combination 22m also
regenerates 2/m 2/m 2/m (cf. Fig.8.2). The orthorhombic subgroups of
2/m 2/m 2/m are thus 222 and mm?2 (Fig. 6.9f). As an example, in the space
group P2/m 2/m 2/m, all points on 3,1,z (z#0 or §) have point symmetry
mm?2.

In a similar way, the other crystal systems may be treated, giving in total 32
point groups or crystal classes, which are summarised in Table 8.2. They are
called the crystallographic point groups.
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Fig. 8.1. The three mutually perpendicular
mirror planes of mmm showing with
dashed outline the automatically developed
2-fold axes (Symmetry rule 2). Thus mmm
is in fact 2/m 2/m 2/m and is used as an
abbreviated symbol for it

Fig. 8.2. The symmetry elements of m22
(fully drawn in) on the stereogram, auto-
matically generate (Symmetry rule 2) the
other symmetry elements shown with
dashed outline, generating 2/m 2/m 2/m.
Thus, m22 is in fact identical with

2/m2/m 2/m
Table 8.2. The 32 point groups
Symmetry
. and stereograms
Crystal system Point groups of the point groups
in Fig.
Triclinic 1 1
Monoclinic 2/m m, 2 6.8¢,f
Orthorhombic | 2/M %m?2/m  mm2,222 6.9¢,f
(mmm)
4/m2/m2/m 42m, 4mm, 422
Tetragonal (4/mmm) 4/m. 4, 4 6.10e,f
. 32/m 3m, 32,3, 3
Trigonal (3m) 6.11e,f
6/m2/m2/m 6m2, 6mm, 622
Hexagonal (6/mmm) 6/m. 6, 6 6.12¢,f
Cubic 4/m 3 2/m 43m, 432, 2/m3, 23 6.13e.f
(m3m) (m3)

All crystallographic point groups are subgroups of either 4/m 3 2/m or

6/m 2/m 2/m or both. The hierarchy of the subgroups is illustrated in Fig. 8.3.

Some point groups have overdefined symbols, as we have seen for
2/m2/m 2/m (Fig. 8.1). In some of these cases, the symbol is abbreviated; the
abbreviated symbols are shown in round brackets in Table 8.2. These
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Number of faces in the general crystal form

26T

Fig. 8.3. The crystallographic point groups and their subgroups, after Hermann [18]. The
circles corresponding to the highest symmetry group of each crystal system are outlined in
bold. Double or triple lines indicate that the supergroup is related to the subgroup in two or
three inequivalent settings. Connecting lines between point groups of the same crystal
system are bold, all others are plain or dashed. The presence of a line of any sort indicates that
the lower group is a subgroup of the higher. On the ordinate is given the order of the point
group, i.e. the number of faces in the general crystal form
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Table 8.3. The Schonflies symbols for the point groups with the equivalent International

symbols

C,: n-fold rotation axis; identical with X

Ca

C1 C2 C3 C4 C6

X

1 2 3 4 6

C,i: odd-order rotation axis and inversion centre i = X (odd)
C,: (s for German Spiegelebene) = mirror plane;
S.: n-fold rotoreflection axis (only S, and S¢ used)

G C, C3i=S, Ss
X 1 @=) 3 3
m
Cay: n-fold axis normal to mirror plane = X/
Cun Ca Ca Can Cen
X/m 2/m (3/%1 =) 4/m 6/m
C,,: n-fold axis parallel to n mirror planes = Xm
Cnv CZV C}v C4v nyv
Xm mm?2 3m 4mm 6mm

abbreviated forms are also used for space groups (Chap. 9). They are called
short symbols to distinguish them from the full symbols.

Up to now, symmetry symbols have always been used in relation to the
symmetry directions. The symbol on its own, however, clearly shows the
relative orientation of the various symmetry elements. Thus:

X2:

rotation axis X and 2-fold axes perpendicular to it, e.g. 42(2)
(Fig. 6.10f).

rotation axis X and mirror planes parallel to it, e.g. 3m (Fig. 6.11f).
rotoinversion axis X and 2-fold axes perpendicular to it, e.g. 42(m)
(Fig. 6.101).

rotoinversion axis X and mirror planes parallel to it, e.g. 6m(2)
(Fig. 6.12f).

rotation axis X and mirror planes both parallel and perpendicular to
it, e.g. 4/mm(m) (Fig. 6.10f).
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Table 8.3 (continued)

D,: n-fold axis normal to n 2-fold axes = X2

Dn D2 D] D4 D()

X2 222 32 422 622

D,g: as D, plus mirror planes bisecting 2-fold axes

Dnd D2d D3d

Xm 42m 3m

Don: as D, plus mirror plane normal to n-fold axis

DY Do Dy, Dy Dg,
(3/mm =)
X/mm mmm Em?2 4/mmm 6/mmm

T (tetrahedral) and O (octahedral) groups

T Th O Td O h

23 m3 432 43m m3m

The symbols we have been using so far for space groups and point groups are
known as the International or Hermann-Mauguin symbols. In physics and
chemistry, the older Schonflies symbols are widely used. Unfortunately,
Schonflies symbols are impossible to adapt as useful space group symbols.
Although they are adequate to define point groups, there is no particular
advantage to using them. Table 8.3 gives the International equivalents of all
the Schonflies symbols for the crystallographic point groups.

8.2 Crystal Symmetry

A space group reveals the entire symmetry of a crystal structure. When we
consider only the morphology of a crystral, the lattice translations which
characterise the space group are no longer relevant, and what is left is the
point group which is implied by that space group. If the crystal is bounded by
plane faces, the symmetry of its morphology will be the symmetry of that
point group.
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Fig.8.4a-d. A galena crystal in point group 4/m 3 2/m.

! ! !

(a) (111) (110)
In a, only those symmetry elements which relate to the a-axis
and equivalent directions (i.e. the b- and c-axes) have been
drawn in (4/m — (a)); in b, only those relating to the [111]
and equivalent directions (3 — (111)); in ¢, only those relating

M0 {6 the [110] and equivalent directions (2/m — (110)). The

a d)  stereogram of the symmetry elements is given in d

Figure 8.4 illustrates the symmetry of a crystal of PbS (galena) (cf.
Fig.4.1). The symmetry elements which are apparent in the crystal are
summarised on the stereographic projection. The point group of the crystal is
4/m 3 2/m. In Table 8.11, examples of crystals in various point groups are
given in the right-hand column.

8.2.1 Crystal Forms

In Chapter 4.2, crystal form was provisionally defined as a set of “equal”
faces. We are now in a position to give an exact definition.

When the symmetry operations of a point group are applied to a crystal
face, a number of equivalent faces will be produced. Thus, as shown in the
stereographic projection in Fig. 8.5a, application of the symmetry operation
of the point group 4 on the pole of a face produces a tetragonal pyramid. Such
a set of equivalent faces is called a crystal form. Exercise 5.1b gives a
manipulation which will always result in the production of the stereogram of
a crystal form.

The individual faces of the tetragonal pyramid in Fig.8.5a have been
indexed, i.e. assigned the values of their Miller indices. A scheme for indexing
the faces of tetragonal crystals will be given later (Fig. 8.8). A crystal form is
identified by the indices of one of the faces belonging to that form. In the case
of a form, the indices are placed in braces, thus: {hkl}, in order to distinguish
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Fig. 8.5a,b. Stereograms of point group 4. a General form, tetragonal pyramid {hkl}.
b Limiting form tetragonal prism {hk0} of general form tetragonal pyramid {hkl1}

between a face and a form. The relationship between (hkl) and {hkl} is the
same as that between [uvw] and (uvw).

Each face of the tetragonal pyramid in Fig. 8.5a is itself unsymmetrical, as
there is no symmetry element normal to it. On its own, it thus has face
symmetry 1.

Three types of crystal forms must now be distinguished: a general form, a
special form and a limiting form. A general form is a set of equivalent faces,
each of which has face symmetry 1. In other words, when the poles of the faces
of a general form are placed on a stereogram of the symmetry elements, they
do not lie on any of them. General forms have general indices {hkl}. The
tetragonal pyramid {hkl} in Fig. 8.5a is such a general form. The poles of the
faces of a general form have two degrees of freedom, shown as arrows in the
figure. The face can be displaced in two directions without causing the
tetragonal pyramid to cease to be a crystal form. All that happens is that the
inclination of the faces to one another is altered.

The variation of the indices {hkl} gives rise not to only one, but to an
infinite number of general crystal forms. In some point groups, care must be
taken with the signs of the indices. In any case, the possibility of infinitely
many crystal forms is only of theoretical interest, since in practice, crystals
rarely have faces with large values of h, k or 1.

A special form is a set of equivalent crystal faces which themselves have a
face symmetry higher than 1. In a stereogram of the symmetry elements, the
poles of the faces of a special form lie on at least one of them. Figure 8.6a
shows the stereogram of the symmetry elements of the point group 4mm. If
the pole of a face (hhl) is entered, the application of the symmetry elements
gives a tetragonal pyramid {hhl}. This is a special form, as the faces lie on a
symmetry element, and each has face symmetry ..m. The symmetry is given as
..m with reference to the order of the symmetry directions used for point
groups of the tetragonal system: ¢, {(a), (110). The mirror planes with which we
are concerned here are those normal to (110). The poles of the faces of this
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Fig.8.6a,b. Stereograms of point group 4mm. a Special form, tetragonal pyramid {hhl}.
b Limiting form, tetragonal prism {110} of special form, tetragonal pyramid {hhl}

special form have only a single degree of freedom. The form will remain a
tetragonal pyramid only as long as the pole remains on the mirror plane ..m.
Should the pole move until it coincides with the 4-fold axis, another special
form arises, the pedion {001} with face symmetry 4mm. This form no longer
has any degree of freedom. A special form always has indices which are a
special case of {hkl}, such as {hhl}, {hOl} or {100}.

A limiting form is a special case of either a general or a special form. It has
the same number of faces, each of which has the same face symmetry, but the
faces are differently arranged. Consider the situation in Fig. 8.5a if the pole
moves to the periphery of the equatorial plane of the stereographic
projection. The result is a tetragonal prism {hk0} which is the limiting form of
the general form tetragonal pyramid {hkl} with face symmetry 1. A similar
movement of the pole {hhl} in Fig.8.6b, along the mirror plane to the
periphery of the equator gives rise to the tetragonal prism {110}, the limiting
form of the special form {hhl} with face symmetry ..m.

Each point group has characteristic forms. What follows is a description
of those of the point group 4/mmm, the point group of highest symmetry in
the tetragonal system. Figure 8.7a is a stereogram of the symmetry elements
of this point group. A single, asymmetric face unit is shown hatched in
Fig.8.7a. The asymmetric face unit of a point group, in terms of its
stereographic projection, is the smallest part of the surface of the sphere which,
by the application of the symmetry operations, will generate the entire surface of
the sphere. This particular asymmetric face unit is bounded by m.., .m. and
..m. The vertices have face symmetry 4mm, m2m. and m.m2. If a pole is
entered in the asymmetric face unit on the stereogram and operated on by the
symmetry, the result is a ditetragonal dipyramid, {hkl}, shown in Fig.8.7a.
This form has two degrees of freedom. A ditetragonal dipyramid will be
generated as long as the pole does not move onto one of the symmetry
elements which constitute the boundary of the asymmetric face unit. The
ditetragonal dipyramid is a general form (face symmetry 1, two degrees of
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Fig. 8.7a-g. Crystal forms of point group 4/mmm, with their face symmetries. A stereogram
of the symmetry elements is given, with the asymmetric face unit and stereograms of each

form
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freedom, {hk1}). The size of the asymmetric face unit is simply the ratio of the
surface area of the sphere to the number of faces in a general form.

fsurface area of the sphere

number of faces in the general form

f‘asymA face unit ~

In this case, the number of such faces is 16, so the asymmetric face unit shown
hatched in Fig. 8.7a is & of the total surface area of the sphere. An asymmetric
face unit of a point group contains all the information necessary for the complete
description of the crystal forms in this point group. (This definition may be
compared with that of the asymmetric unit on p. 193.)

If the general pole (hkl) is moved onto the mirror plane m.., this pole, and
all the others in the general form {hkl} will undergo a change. As the poles
approach this mirror plane, the angle between (hkl) and (hkl) becomes
progressively smaller, and is equal to 0 at the mirror plane. At this point, the
two faces (hkl) and (hkI) have coalesced into a single face (hk0). As shown in
Fig. 8.7b, the ditetragonal dipyramid has become a ditetragonal prism {hk0}.

Figure 8.8 shows the stereographic projection of a ditetragonal prism
{hk0} and the indices of the poles of its faces. In the stereogram, a section
through the ditetragonal prism is shown in bold lines which are extended
(dashed lines) to show the intercepts on the axes better, (hk0)=(210).

A pole of a face on the mirror plane .m. gives, after the application of the
symmetry operations, a tetragonal dipyramid, {h0l}, shown in Fig.8.7c. A
pole of a face on ..m gives a tetragonal dipyramid {hhl}, shown in Fig. 8.7d.
The three forms {hk0}, {h01} and {hhl} all have eight faces, i.e. half of the
number of faces of the ditetragonal dipyramid. These three forms each have
one degree of freedom. Each form retains its identity so long as the pole
remains on the appropriate edge (m) of the asymmetric face unit.

Fig. 8.8. Section through a ditetrago-
nal prism (outlined), in the equatorial
plane of a stereographic projection,
with the poles of the relevant faces
and their indices, {hk0} (={210})
shown. The dashed lines serve to
indicate the intercepts of the faces
on the axes
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Fig. 8.9. Stereogram of the poles of the faces of all crystal forms of 4/mmm, the point group
of highest symmetry in the tetragonal system. The stereogram shows the position and the
indices for each face in each form. Poles of faces with negative values of I are not included.
The spherical triangle with vertices (001), (100) and (110) is an asymmetric face unit of the
point group 4/mmm

The poles of faces on the vertices of the asymmetric face unit have no
degree of freedom. The application of the symmetry operations to a pole with
face symmetry m2m. gives a tetragonal prism {100} (Fig. 8.7¢). Similarly the
pole with face symmetry m.m?2 gives a tetragonal prism {110} (Fig. 8.7f), while
that on 4mm gives a pinacoid {001} (Fig. 8.7g).

The forms {hk0}, {hOl}, {hhl}, {100}, {110} and {001} have the face
symmetries given in Fig. 8.7 and are thus special forms.

Figure 8.9 shows a stereogram with the poles of the crystal forms of point
group 4/mmm, the highest point symmetry of the tetragonal system. The
poles of the faces with negative indices I are not shown. The heavy lines divide
the surface into the 16 asymmetric face units of the point group 4/mmm.
Those poles which lie on the corners of the asymmetric face unit have no
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degree of freedom. Those on the edges of the asymmetric face unit have one
degree of freedom, and represent all other poles lying on the same edge. The
poles lying within the asymmetric face unit have two degrees of freedom and
represent all faces whose poles lie in this area. In every case, taken together,
these faces produce ditetragonal dipyramids.

If the poles of the faces of a ditetragonal prism {hk0} (Fig. 8.8) are split and
moved an equal amount in the directions of (001) and (001), a ditetragonal
dipyramid {hkl} will be formed. The indexing of the faces of this form arise
from the {hkO0} of the ditetragonal prism by the replacement of 0 with 1 and 1,
as in Fig. 8.9, the indices of all 16 faces of the ditetragonal dipyramid can be
read from the stereogram in Fig. 8.9, as can the indices for the faces of all of
the tetragonal forms.

In 4/mmm, there are n=16 poles for faces of the general form, and
2n+2=34 poles for faces of special forms, each type of form being
considered only once. The same relationship between the numbers of faces for
the general form and the total number of faces for all special forms also
applies to the point group of highest symmetry in the orthorhombic,
hexagonal and cubic systems.

Starting from the point group of highest symmetry in a crystal system, the
subgroups can be developed - see Section 8.1. There is a similar relationship
between the general crystal form of the point group of highest symmetry and
those of its subgroups belonging to the same crystal system. These may be
illustrated by starting from the stereogram of the crystal forms of 4/mmm in
Fig. 8.9 and developing those of the subgroup 4mm.

Place a piece of tracing paper over the stereogram in Fig. 8.9, choose
suitable symmetry directions and mark on it those symmetry elements which
belong to 4mm. A possible asymmetric face unit for this point group is a
region bounded by the pole faces (001), (100), (001) and (110). Because half of
this asymmetric face unit lies in the southern hemisphere, it is shown checked
in Fig. 8.10a. It is twice the size of the asymmetric face unit of 4/mmm, and is
made up by combining two such asymmetric face units.

Now enter on the tracing paper the pole of the general face (hkl), and allow
the symmetry operations of 4mm to act on it. The result is eight poles which
define a ditetragonal pyramid {hkl} (Fig.8.10a;). The pole (hkl) which
belongs to the same asymmetric unit as (hkl) in 4mm gives a second
ditetragonal pyramid {hkI} (Fig. 8.10a,). Thus, the ditetragonal dipyramid
which is the general form in 4/mmm reduces to two ditetragonal pyramids in
4mm. The doubling of the size of the asymmetric face unit results in a halving
of the number of faces in the general form.

In the same way, the general forms of the other tetragonal point groups
may be developed. The relevant asymmetric face units are given in Table
8.4.
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a Ditetragonal pyramids, I, {hkl} (1) and {hkl} (2)
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b Tetragonal pyramids, .m., {hOl} (1) ¢ Tetragonal pyramids, ..m, {hhlj (1)

and {hol} (2) and {hhl} (2)

4 Pedion, 4mm, {001} and {001}

Fig. 8.10a-d. Crystal forms of point group 4mm, in so far as these differ from those in point
group 4/mmm (Fig.8.7), with their face symmetries. A stereogram of the symmetry
elements is given, with the asymmetric face unit and stereograms of each form.

The general form of point group 4/m is a tetragonal dipyramid. The poles
(hkl) and (hkl) both give tetragonal dipyramids, {hkl} and {hkl}, by the action
of the symmetry operations, and these two dipyramids may be distinguished
by their positions. Figure 8.11 shows the square cross-sections of {hkl} and
{hkl}. Taking them together, and ignoring the dashed lines, they make up the
cross-section of the ditetragonal dipyramid {hkl} of 4/mmm.

The general form of 42m is the tetragonal scalenohedron, and of 422 the
tetragonal trapezohedron [Table 14.1.2 (13) and (11)]. The combination
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Fig. 8.11. Square cross-sections through the tetragonal dipyramids {hkl} and {hkl}, general
forms in point group 4/m. Together, they make up the fully outlined ditetragonal cross
section of the ditetragonal pyramid. The same relationship holds for the four tetragonal
pyramids {hkl}, {hki}, {hkl} and {hkl}, general forms in point group 4

of {hkl} and {hkl} regenerates in both point groups the ditetragonal
dipyramid.

The asymmetric face unit for 4 and 4 is four times the size of that of
4/mmm (Table 8.4). In 4, the ditetragonal dipyramid is split into four
tetragonal pyramids, {hkl1}, {hkl}, {hkl} and {hkI}, while in 4, it becomes four
tetragonal disphenoids, {hkl}, {hkl}, {khl} and {khl} [Table 14.1.2 (9)].

The special forms of point group 4/mmm in Fig. 8.7 are given in Table 8.4
with their face symmetries.

With the help of the stereogram in Fig. 8.9, we may derive the limiting and
special forms of point group 4mm. As in 4/mmm, the pole of the face (hk0)
gives rise to the ditetragonal prism {hk0} (Fig. 8.7b). This ditetragonal prism
is the limiting form of the general form ditetragonal pyramid {hkl}. These
forms both have face symmetry 1 and a total of eight faces.

Application of the symmetry operations 4mm to the pole of the face (h0l)
results in a tetragonal pyramid {hOl} (Fig. 8.10b;), having point symmetry
.m., a special form. Similarly, {hOl} is a tetragonal pyramid (Fig. 8.10b,).
These pyramids are distinguished only by their settings, and their combi-
nation gives the tetragonal dipyramid {hOl} of point group 4/mmm. The
tetragonal prism {100} is a limiting form of the special form tetragonal
pyramid {h01}, also having face symmetry .m., and a total of four faces.

Tetragonal pyramids are also generated by {hhl} and {hhl} (Fig.8.10c),
this time with face symmetry .. m. These forms combine to give the tetragonal
dipyramid {hhl} of 4/mmm. The tetragonal prism {110} is a limiting form of
the special form tetragonal pyramid {hhl}. Finally, the pole of the face (001)
gives the pedion {001}, with face symmetry 4mm. All of the forms of the point
group 4mm are given in Table 8.4.
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The special and limiting forms of the rest of the tetragonal point groups
are also to be found in Table 8.4. It will be seen that the various forms of the
point groups of lower symmetry are greatly simplified. For point group 4, for
example, all that remains beside the general form tetragonal pyramid is a
single limiting form, the tetragonal prism, and a single special form, the
pedion.

In Table 8.4, the general forms and their limiting forms are separated from
special forms by heavy lines, while dashed lines are used to separate the
general forms from their limiting forms. Equal forms with the same face
symmetry are collected together, as is also done in Tables 8.5-8.7.

The face symmetries in Table 8.4 are always derived from a three-
component symbol for the point group, which is expanded as required, e.g.
4/m(1) (1). Thus, the face symmetry in {hk0} is given as m.., and that in {001}
is given as 4.. . The same expansion is used for those point groups in other
crystal systems which have symbols with only 1 or 2 components, e.g. 3m(1),
23(1), etc.

Crystal forms in the other crystal systems can be developed in the same
way to that we have done for the tetragonal system. In the following pages,
the crystal forms for the hexagonal (trigonal), cubic and orthorhombic
systems are set out to show their interrelationships and to provide an aid in
the indexing of faces. The crystal forms are first given for each system (Tables
8.4-8.7), and Table 14.1 gives a summary of the 47 fundamental forms. The
names used here are those in the International Tables for Crystallography [14].

Crystal Forms in the Hexagonal and Trigonal Systems

In each crystal system, an axial system a, b, ¢ must be chosen which is
appropriate for the symmetry. For the hexagonal and trigonal systems, in
addition to the unique c-axis, it is convenient to choose three equivalent axes
a), a, and a; (cf. p.89 and Fig. 6.22) and to use the Bravais-Miller indices
(hkil). The index 1 corresponds to the a; axis. The indices h, k and i are not
independent, but are related by h + k +i-0 or h + k =i. The application of this
relationship can be seen in Fig. 8.12. Joint consideration of the hexagonal and
trigonal systems is useful since all of the trigonal forms may be derived from
the dihexagonal dipyramid, the general form of 6/m 2/m 2/m, the highest
symmetry point group of the hexagonal system (see Figs. 8.12 and 8.13 and
Table 8.5). The trigonal and hexagonal crystal forms are all set out in Table
14.1.3.

Crystal Forms in the Cubic System

The cubic crystal forms are collected in Table 14.1.4; see also Figs. 8.14 and
8.15 and Table 8.6.
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Fig. 8.12a,b. Section through a hexagonal prism {hki0} (a) and {khi0} (b), in the equatorial
plane of a stereographic projection, with the poles of the relevant faces and their indices
indicated. The dashed lines serve to indicate the intercepts of the faces on the axes
[(hki0) = (2130); (khi0) =1230)]

ikhl 2110

[ J
/ihkl
hl [ ]

2hhhl

ihk0

7100

hhol

- kiho

hiko

1700 0170

\khil
[ ]

hkil 1439 khio

Fig. 8.13. Stereogram of the poles of the faces in all crystal forms of the point group of
highest symmetry in the hexagonal system, 6/m 2/m 2/m. The stereogram shows the
positions and the indices of all hexagonal and trigonal forms. The poles of faces with
negative 1 are excluded. The spherical triangle with vertices (1010), (0001), (1120) is an
asymmetric face unit for the point group 6/m 2/m 2/m
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Fig. 8.14. Indices for the cubic faces belonging to the form {hk0} (= {210}). If these are shifted
from their special position so that their poles move toward the pole of the (111) face, faces
will be obtained with general indices {hkl} in the point group 4/m 3 2/m (cf. Fig. & 15)

In the cubic, hexagonal (including trigonal) and tetragonal systems, all
crystal forms except the pinacoid and the pedion are characteristic of the
system.

Crystal Forms in the Orthorhombic, Monoclinic and Triclinic Systems

All of the “rhombic” forms are listed in Table 14.1.1, see Fig.8.16 and
Table 8.7.

Only relatively simple forms occur in the monoclinic system. The general
form in 2/m is the rhombic prism; in m and 2, the general forms are both
dihedra: a dome in m and a sphenoid in 2 (Table 14.1.1). The pinacoid and the
pedion are special or limiting forms.

The triclinic system gives only the pinacoid (1) and the pedion (1).

The symmetry of a crystal form can be considered in two separate ways. A
tetragonal pyramid is generated by the symmetry operations of 4; that is its
generating symmetry. On the other hand, a tetragonal pyramid actually
displays the symmetry of 4mm; that is its eigensymmetry'. In Table 8.8, these
eigensymmetries and generating symmetries are given for all tetragonal
forms.

Normally, crystals are not characterised by a single form but by a
combination of forms, which must, of course, all conform to the point group
of the crystal. The rutile crystal in Table 8.11.25 is a combination of a
tetragonal dipyramid {111}, and two tetragonal prisms, {100} and {110}.

! eigen (German) = own
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Fig. 8.15. Stereogram of the poles of the faces in all crystal forms of the point group of
highest symmetry in the cubic system, 4/m 3 2/m. The stereogram shows the positions and
the indices of all cubic forms (hk0) = (310), (hkk)=(311), (hhk) =(221), (hkl) =(321). The
poles of faces with the third index negative are excluded. The spherical triangle with vertices
(100), (110), (111) is an asymmetric face unit for the point group 4/m 3 2/m

8.3 Molecular Symmetry

Point symmetry is a very great help in the description of molecules, by which
term we include polyatomic ions of any charge. Figure 8.17a shows a
molecule of H,O, on which the symmetry elements, two mirror planes and a
2-fold rotation axis, have been drawn. The point group mm?2 (C,,) is shown
on the stereogram in Fig. 8.17b.

In Table 8.11.1-37 (left hand column) molecular examples are given for
several point groups. The stereogram for the point group is in most cases in
the same orientation as the example molecule.
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Fig. 8.16. Stereogram of the poles
of the faces in all crystal forms of
the point group of highest sym-
metry in the orthorhombic system,
2/m 2/m 2/m. The stereogram
shows the positions and the indices
of all orthorhombic forms. The
poles of faces with negative | are
excluded. The spherical triangle
with vertices (100), (010), (001) is

| an asymmetric face unit for the

a point group 2/m 2/m 2/m

Ok1@—010 —b

Table 8.8. Eigensymmetry and generating symmetry of the tetragonal forms

Eigensymmetry Generating symmetry
Tetragonal pyramid 4mm 4, 4mm
Tetragonal disphenoid 42m 4,42m
Tetragonal prism 4/mmm 2’2?‘1’,4‘{/{?“’:13“2’ 4mm
Tetragonal trapezohedron 422 422
Ditetragonal pyramid 4mm 4mm
Tetragonal scalenohedron 42m 42m
Tetragonal dipyramid 4/mmm 4/m, 422, 42m, 4/mmm
Ditetragonal prism 4/mmm 422, 4mm, 42m, 4/mmm
Ditetragonal dipyramid 4/mmm 4/mmm

The point groups of molecules are not limited to the 32 crystallographic
groups. They may contain such symmetry elements as 5-fold axes which are
incompatible with a crystal lattice. Table 8.11.33-37 and Fig. 11.6b give a few
examples of important non-crystallographic point groups with molecular
examples.
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Fig. 8.17a. Point symmetry (mm2 - C,,) of
the H,O molecule. b Stereogram of the
symmetry elements of this point group

Fig. 8.18a-e. Equivalence within
molecules. Equivalent atoms
b have the same letter symbols;
equivalent bonds have the same
b i b b b pair of letters. a Benzene and
a P d d b coronene (6/mmm - Dg,);
¢ naphthalene and d pyrene
a a (mmm - D,,); e phenanthrene
d) c (mm2-Cy,)

The point group of a molecule indicates which atoms and which bonds
are equivalent. Thus, in benzene, C¢Hg, with point group 6/mmm - Dy, all
C-atoms and all H-atoms are equivalent, as are all C—H and C—C bonds
(Fig.8.18a, and also Table 8.11.27). Coronene, C4H 5, also belongs to point
group 6/mmm - Dg,. In Fig. 8.18b, equivalent carbon atoms are indicated by
the letters a, b and c, and all bonds between pairs of similarly labelled atoms
are equivalent. There are thus four symmetry independent C—C bonds in
coronene (a-a, a-b, b—c and c—c). Further examples are naphthalene, C,,Hj,
and pyrene, C;sH;y, both (mmm-D,,) (Fig.8.18c), and phenanthrene,
C4H o, (mm2 - C,,) (Fig. 8.18¢). The equivalences can be particularly clearly
shown by copying the stereogram of the appropriate point group (Table
8.11.7, 8 and 27) onto transparent paper and superimposing it on the
molecules in Fig. 8.18.

137



\ \\ 7 Fig.8.19a,b. The PFs molecule (a) has point group
[\ % 6m2 (D3;,) (b). All atoms marked F, are equivalent, as
are all marked Fy, but F, and F, are not equivalent to

/.5_ a) one another

In PFs, phosphorus is surrounded by five fluorine atoms. Were this a
planar pentagonal molecule, all F-atoms and all P-F bonds would be equiv-
alent (point group 5/mm2 (10m2), Table 8.11.35). In fact, the molecule has
the shape of a trigonal dipyramid (Fig. 8.19) with the P-atom at the centre,
and point symmetry 6m2 (D3, ). Thus, the two atoms labelled F, are equivalent,
as are the three labelled Fy, but F, and F,, are not equivalent to one another.

If one of the methyl groups of an ethane molecule is rotated about the C—C
bond through 360° with respect to the other, various different conformations
will be generated. These are illustrated in Fig.8.20 together with the
stereograms of the respective point groups. Conformations are the spatial
arrangements of the atoms of a molecule which result from rotation about a
chemical single bond.

“TT~ "
DN A 'ap
#,)Q - O > O
q» Y |y
— \~,|b// \\dl>-//
a) b) d)

Fig. 8.20a-d. Conformations of ethane. a Eclipsed: ¢ =0 or 120 or 240°: (6m2-Dyy).
b Skew: 0 <@ <60°, 120 <@ <180° or 240 <¢ <300°: (32-D;). ¢ Staggered: ¢ =60 or
180 or 300°: (3m - D4). d Skew: 60 < @ <120°, 180 < ¢ <240° or 300 < ¢ < 360°: (32-D5).
The conformations in b and d are enantiomorphs
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8.4 Determination of Point Groups

Before the determination of the point group of a crystal (or a molecule having
a crystallographic point group), it should be assigned to one of the seven
crystal systems. For this, it is necessary to know the characteristic symmetry
elements of the crystal systems; these are given in Table 8.9, and can be derived
from the symmetry information given in Table 8.10.

In determining the point group of molecules or crystals, it is in general not
necessary to find each and every symmetry element. Using Tables 8.9 and
8.10, it may generally be done by answering a few, well-chosen questions. In
practice, it is best to consider first an important property of rotation axes. All
rotation axes are polar. This means that they have distinct properties in
parallel and antiparallel directions. Various other symmetry elements can
destroy this polarity, viz.:

@)1 (b) mLX () 21X

Table 8.9. Characteristic symmetry elements of the seven crystal systems

Crystal . 2 Characteristic
Point groups
system symmetry elements
. 4/m 3 2/m
Cubic 3m, 432, 2/m3, 23 4A
6/m2/m2/m
Hexagonal 6m2, 6mm, 622, [ @
6/m, 6,6
4 2
4/m 2/m2/m Imorl@
Tetragonal 42m, 4mm, 422, 3Wor 3@ = cubic)
4/m,§,ﬂ ( or 3@ = cubic
5 1A
Trigonal 3 3324"3 3 (remember that m normal
2M, 22, 2, 2 to 3 gives 6 = hexagonal
. 2/m2/m2/m 2 and/or m
Orthorhombic mm?2, 222 in three orthogonal directions
Monoclinic 2/m . 2 and/.or m
m, 2 in one direction
- 1 -
Triclinic I L or1only

®

Characteric symmetry elements are underlined.
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The 2 in Fig. 8.17 and the 3 in Table 8.11.19 are examples of polar rotation
axes. The ends of polar axes are represented in symmetry diagrams and
stereograms by one solid and one open symbol (cf. Figs. 6.8f-6.13f).

Questions to use for point-group determination:

1. Are rotation axes higher than 2 present (3, 4, 6)?

2. Are these axes polar? or
Is an inversion centre present?
(crystals with an inversion centre are characterised by sets of parallel faces
opposite one another.)

Point group determination will be illustrated by two examples:

a) The methane molecule (CH,) (Table 8.11.31). It is easily seen that a polar
3-fold axis lies on each C—H bond. As there are four of these, the point
group must belong to the cubic system, and it must be one with polar
3-fold axes (indicated in Table 8.10 by a subscript p by the graphical
symbol (e.g. A,). This indicates either 23 or 43m (Table 8.10). These are
readily distinguished, since only 43m has mirror planes. These planes are
readily seen in CH,, so the point group is 43m.

b) A crystal of magnesium (Table. 8.11.27). The crystal contains a 6-fold
rotation axis, and so must belong to the hexagonal system. An inversion
centre is also easily found. This limits the point group to 6/m and 6/mmm
(Table 8.10). These may be distinguished by the mirror planes parallel to 6
in 6/mmm and not in 6/m. Since these planes are evident in the crystal, the
magnesium crystal may be assigned to point group 6/mmm.

Determination of the symmetry of a crystal is not always unambiguous.
For example, the cube (hexahedron) occurs as a form in all five cubic point
groups (Table 8.6). Determining the symmetry of a cube will naturally lead
to the point group of highest symmetry, m3m (Table 8.11.32). The mineral
pyrites, FeS, (point group m3) has cube-shaped crystals. The cube-faces,
however, frequently have characteristic striations which indicate the lower
symmetry (Table 8.11.29).

In other ambiguous cases, “etch-figures” will indicate the true symmetry of
a crystal face and hence of the entire crystal. These figures are bounded by
faces with high Miller indices and arise from the action of a solvent on a
crystal face. Crystals of the mineral nepheline (Table 8.11.21) have a
morphology (a hexagonal prism and a pinacoid) which indicate the point
group 6/mmm. The etch figures show that the true symmetry is only 6.
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8.5 Enantiomorphism

The point group 1 (C,) is asymmetric. All other point groups with no
symmetry other than rotation axes are called chiral or dissymmetric. The
relevant point groups are:

X: (1),2,3,4,6 Co: (C)), Cs, Cs, Cy, Co
X2: 222,32, 422, 622 D,: D,, Ds, Dy, Dg
X3: 23,432 T, O

Asymmetric and dissymmetric crystals and molecules are those which are not
superimposable on their mirror images by rotation or translation. These
mirror images are said to be the enantiomorphs of each other. In Fig. 5.9 and
Table 8.11.3 and 18, examples are given of enantiomorphic crystals and
molecules. Enantiomorphic molecules are also called enantiomeric.

8.6 Point Groups and Physical Properties

We shall now examine a few properties of molecules and crystals which are
related to their point groups, or whose effects may be traced back to specific
symmetry considerations.

8.6.1 Optical Activity

Optical activity refers to the ability of certain crystals and molecules to rotate
the plane of polarised light. It can only arise in those point groups which are
enantiomorphic (cf. Sect. 8.5 and Table 8.10). Two sorts of optical activity
may be distinguished:

a) Optical Activity as a Property of a Crystal. The crystal is optically active,
and this acitvity is lost when the crystal is melted or dissolved. Examples
include MgSO, - TH,0, SiO; (low-quartz), NaClO; (Table 8.11.6, 18 and 28).
Not only the morphology but also the crystal structures exist in two
enantiomorphic forms. The “left” form rotates the plane of polarised light to
the left, and the “right” form an equal amount to the right.

b) Optical Activity as the Property of Molecules. Some molecules are
themselves enantiomeric, and both their solutions and the crystals they form
are optically active. Well-known examples of this type of optical activity are
the crystals of D- and L-tartaric acid (Table 8.11.3). In contrast, the
“racemate” DL-tartaric acid is optically inactive and gives crystals with point
group 1(C;). Molecules of the isomeric form meso-tartaric acid (I, (G;), Table
8.11.2) are centrosymmetric and hence optically inactive.
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Optical activity is not limited to the 11 point groups in which enantiomor-
phism occurs (Sect. 8.5). It can also occur in crystals in the point groups
m(C,), mm2(Cy,), 4(S4) and 42m(Dyy), cf. Table 8.10.

8.6.2 Piezoelectricity

Some crystals, when subjected to pressure or tension in certain directions
develop an electric charge; this property is called piezoelectricity. This effect is
clearly seen in plates of quartz (point group 32), cut normal to the a-axis or
any polar 2-fold rotation axis (Fig. 8.21). The direction of the applied pressure
or tension must be along a polar axis. Polar axes are those which have distinct
physical properties in the parallel and antiparallel directions. These direc-
tions must thus not be themselves related by symmetry. It follows that within
the crystal there will be an asymmetric charge distribution along polar axes.
The opposite faces, normal to the polar axis, develop electric
charges when a pressure is applied along the axis. The direction of this electric
field is reversed when the pressure is replaced by a tension.

Piezoelectricity is only observed in crystals which have polar axes. Polar
directions only exist in point groups without a centre of symmetry. There are
21 such point groups, as is shown in Table 8.10. The point group 432 is also
excluded, as the symmetry is too high for the effect to develop.

The piezoelectric effect is reversible. If an electric field is applied in the
direction of the polar axis of a quartz plate, the crystal will undergo
compression or expansion. The application of an alternating field will cause
the crystal to vibrate.

Other crystals which show piezoelectricity include D- and L-tartaric acid
(2-C,), Table 8.11.3; tourmaline (3m - C,,), Table 8.11.19; NaClO; (23-T),
Table 8.11.28; ZnS (sphalerite) (43m - Tg), Table 8.11.31.

Piezoelectricity has many technical applications, including ultrasonic
generators, amplifiers, microphones and quartz time-pieces.

Fig. 8.21a~c. The piezoelectric effect in a quartz plate arising from pressure along a polar
axis, here parallel to the a; axis
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8.6.3 Pyroelectricity

When a crystal of tourmaline (Table 8.11.19) is heated, the polar ends of the
crystal develop electric charges. Heating causes the positive end of the c-axis
to become positively charged relative to the negative end, and cooling has the
opposite effect. This effect results from the fact that tourmaline has a
permanent electric dipole. The charge which builds up is soon dissipated by
conduction into the surroundings. Changes in temperature change the size of
the electric dipole.

The dipole moment is a vector. Pyroelectricity can only arise when the
point group has no symmetry operations which alter the direction of this
dipole. The vector must remain unchanged by all the symmetry operations.
Point groups having this property include those with only a single rotation
axis: 2(C,), 3(C3), 4(C4) and 6(Cg) as well as those which have only these axes
plus mirror planes parallel to them: mm2(C,,), 3m(C;,), 4mm(C,,) and
6mm(Cg,). The dipole-moment vector lies in the rotation axis. The conditions
for the presence of a dipole moment are also found in the point groups m (for
all directions parallel to the mirror plane) and 1 (for every direction), cf. Table
8.10.

Knowledge of the symmetry gives only a qualitative indication of the
possible presence of pyroelectricity. It does not indicate the size of the dipole
moment or the directions of the positive and negative ends.

Sucrose, C;H» 041, (2—C;) and hemimorphite, Zn,[(OH),/Si,0,]- H,O
(mm2 — C,,) are examples of crystals showing pyroelectricity.

8.6.4 Molecular Dipole Moments

Many molecules have an asymmetric distribution of electric charge and hence
an electric dipole moment. The relationship between the point group of a
molecule and the direction of its dipole is the same as that developed above
for the pyroelectricity of crystals (cf. Sect. 8.6.3).

The measurement of a dipole moment can give important information
about the shape of a molecule. PF; has a dipole moment, while BF; does not.
Molecules of the formula AB; may have the shape of an equilateral triangle
with A at the centre [6m2(Dsq)] or a triangular pyramid with A at the apex
[3m(Cs,)], cf. Table 8.11.19 and 26. The shape of BF;is thus the former, while
PF; is the latter.
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Table 8.11. Examples of molecules and crystals for the point groups

Molecules Point group Crystals
PN !
£|?r
!
1
\
\
AN L
F CH;
1-C, SrH,(C4H40¢), - 4H,0
CaS,0;- 6H,0
COOH 2
H. OH o~ —
HO H
HOOC o A
K
HO \ COOH
\\\ T_c, CH,(COOH), (Malonic acid)
/ _C\\\\
\\\
HooC OH H;BO;, CuSO,+ 5H,0
H MnSiO; (Rhodonite)
Meso-Tartaric acid NaAlSi;O5 (Albite)
3
m
HOOC COOH
H OH | HO, H
H OH | HO H
HOOC COOH

The enantiomers of tartaric acid

Tartaric acid

Li,SO,-H,0
C3H,0y; (Sucrose)
C4H|o (Phenanthrene)
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Table 8.11 (continuation)

Molecules Point group Crystals
Cl
NOCI m-C,
K;,S40¢
CuSO;- 3H,0
Cl
N4 >
C C\
/ g
¢l A
Trans-1,2-Dichloroethene 2/m—-C,, KClO,
CaS0O,-2H,0 (Gypsum) Fig. 5.6
FeSO,:7H,0
KAISi;Og (Sanidine), S
C,oHs, Ci14H)o (Anthracene)
(COOH), - 2H,0
. vl
’ oo
/ : \\
OO |4
i /
\\ 1 /
Diphenylethine ~ \L —
222-D, \

MgSO,: 7H,0 (Epsomite)

Vitamin B,, (Fig. 1.1b)
KNaC,H,04- 4H,0
(Rochelle salt)
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Table 8.11 (continuation)

Molecules

Point group

Crystals

H H

\__/
Cl/ \CI

J

)

2-C . i
Cis-1,2-Dichloroethene mm > NH.MgPO, - 6H;0 (Struvite)
CsH4(OH), (Resorcinol)
Ag3Sb (Dyskrasite)
FeAlO;
@ 8
H, H
C C
H H /
Ethene mmm —D,,
CaCO; (Argonite)
CaSO, (Anhydrite), KCIO,
BaSO, (Barytes), S
(COOH), (Oxalic acid), C¢Hg, I,
’ 2+ ’
T =
‘Nz P
SHTD : CH3 / \\ !
\ [ \
H N:eeeee Cu-NH \ B ) ‘ %'
4L D \ K
€HD kS CoHs AN y
R -~__ -
= F 4-C, PbMoO, (Wulfenite)
(CH;CHO), (Metaldehyde)
0 { v 10
R\ o ST
O—*"}—O\ | )
/ \
O b | :
-~ s Cay[AsO,/B(OH),] (Cahnite)
— 94
C—(S—CH,), BPO,, BAsO,

C(CH,OH), (Pentaerythritol)
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Table 8.11 (continuation)

Molecules Point group Crystals
11
T 2+
8 =
- \%/ H\C,HZ
H /
N seeeer Cu .“N\
/o Hy
Ty -0, :
H™N z T
W \’3/
5 4/m~Cyp CH,OH - (CHOH), CH,0H
(Isoerythritol)
CaWO, (Scheelite)
NaJO,* BaMoO,
g g
jan) s}
tHD O - v CH, 12
N \z/ O
H—O\ /C-H /ﬂ\\ I /\\ / ‘ \
H N
,N-- A.C.u AAAAAA N\A ’._-_ — \ '
H-D C-H \X/ | \/
o R AR - m CC1,COOK - CCl,COOH
Ve < AN -D, -
9 o NiSO, - 6H,0
/
Tetrachlorocyclobutane Diaboleite Pb,Cu(OH),Cl,
14
H H v
H H _ Hg(CN
32m-D,, &(CN),
KH,PO,,
CO(NH,), (Urea)
C;H, (Allene) CuFeS, (Chalcopyrite)
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Table 8.11 (continuation)

Molecules Point group Crystals
15
PtCl;
4/mmm — D,
TiO, (Rutile)
SnO, (Cassiterite)
TiO, (Anatase)
ZrSiO4 (Zircon)
16
H
o] —
ol N
/ \
¢ Lt / Y
H H / A
t N
CH,CCly 3-C, NalO, - 34,0
T1,S
17
@] \
a T ,I (©)
o1k ST
) o / N\
/ » \
2 A
< » \ /
W % N /
A o, 4 ~
»
O = - \'O =

CaMg(CO;), (Dolomite)

FeTiO; (Ilmenite)
Be,Si0,4 (Phenacite)
Li,BeF,
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Table 8.11 (continuation)

Molecules Point group Crystals
HH
& ,\
NN
A,
H H N
H H \\( N\ _/
C,Hg (Skew conformation) 32-D,
L- R-
Low-quartz SiO,
AIPQ,, Se, Te, HgS, K,S,0¢
(C6H5CO)2 (Benzil)
19
~ T
[
\ )
A\
/
105, Se02", AsO3 N
3m-—C,,
: Tourmaline
Ag;SbS; (Pyrargyrite)
NiS (Millerite)
LiNaSO,
20

C¢Hj, Cyclohexane (Chair-form)

CaCO; (Calcite)

As, Sb, Bi, CdCl,, NaNO;
Al,0; (Corundum)
Fe, 05 (Haematite)
Mg(OH), (Brucite)
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Table 8.11 (continuation)

Molecules Point group Crystals
5 ™ ‘:LE) v o 21
) QA VY
A5 N v N
2 [Ny a // \\
® /:
Ne] » \
RS % N
3 ! -
A8 < 6—C,
Q KNaj;(AlSiO,), (Nepheline) with
etch-figures
CHFCI = R
LiKSO,
Hexa-R-Benzene CHI,
o 22
H —~
v/
0— B\ Li,0,
@)
'Sr/ -
6-C
B(OH), 3
23
6/m —Cg,
Hexaazacorone Cas[F/(PO,);] (Apatite)
CCQ(SO4)3 M 9H20
24
<Tr
ﬂ\\ \\ | // //\i’
&// AN SN
/o \,\‘/
622 — Dy

Hexaphenylbenzene

KAISiO, (Kaliophilite)
SiO, (High-quartz)
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Table 8.11 (continuation)

Molecules Point group Crystals
. 25
léé
BrH,C CH,Br \w
BrH,C CH,Br Agl
CHoBr ZnS (Wurtzite), CdS
Hexabromomethylbenzene ZnO, BeO
26
NOj;, CO3~ BaTi(Si;00)
(Benitoite)
27
Benzene 6/mmm — Dg,, Mg
Be, Zn, CuS, NiAs,
Be; Al SigOy5 (Beryl)
C (Graphite), MoS,
C,Hs
28

Tetramethylmethane

s
NS
AV
SN NS
AT /
N N/ Yy
\}//

23-T

Left-NaClO,

NaBrO,
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Table 8.11 (continuation)

Molecules Point group Crystals
7 29
Oy 0{\\‘
¢ \ N—""
N, LA
| N Ci e\ \‘
LN G
0<t‘0 Neey FeS, (Pyrite) with Striations on
/, 7 m3I-T, the cube faces
0
[Co(NO,) ]~ Alums (e.g. KAI(SO,), - 12H,0)
30
CH, . -
CH,
Ch, AL R
CH, /)*q»/*
AEES
\
CH, CH, X \<|P /* /
CH, h, \#’ SiO, (Melanophlogite)
Octamethylcubane 432-0 Ag;AuTe,
31
Methane ZnS (Sphalerite)

CuCl, CuBr, Cul
Al(POs);, Ag; PO,

C;gH; (Cubane)

m3m-0,

32

NaCl, KCI, CaF,, MgO

PbS (Fig. 4.1), CsCl
Garnet (Fig. 1.1a)

Cu, Ag, Au, Pt, Fe, W, Si
C (Diamond)
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Table 8.11 (continuation)

A few non-crystallographic point groups

Molecules Point group Crystals
An oco-f h infi ?
n co-fold rotation axis with infinitely many
O e mirror planes parallel to it. .
Impossible
CO, HCI, CN~
com — Doy
34
Oo—0O
H, An co-fold rotation axis with infinitely many
0, mirror planes parallel to it and infinitely
Cl, many 2-fold axes normal to it, a mirror plane
normal to it .
Impossible
Oo—e——O oo/mm — Dey,
CO,
C,H,
35
. Fe
Impossible
. 5/mm2 (T0m2) — Dy,
Ferrocene
(eclipsed conformation)
36
b
O) Impossible
f -
Sg
Ceo 2/m335-1, 37
(Fig. 11.6a) (Fig. 11.6b) Impossible
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Exercise 8.1.

a) What is meant by a polar rotation axis?

b) Which symmetry elements can compensate the polarity of a rotation axis? The arrows in
the diagram represent X-fold polar rotation axes, X,,. The polarity will be compensated
by a symmetry operation which reverses the head of the arrows. Draw in the location of
symmetry elements which can do this.

c) How can polarrotation axes be recognised in symmetry diagrams and in the stereograms
of point groups?

Exercise 8.2. Are there polar rotoinversion axes? If so, specify which; if not, state why
not.

Exercise 8.3. Combine the operations 1+1, 2+1, 3+1, 4+1, 6+1. Which point groups
result? Give their symbols.

Exercise 8.4. Combine the operations (A) 2 + 2, (B) m + m and (C) 2 + m, where the elements
intersect at angles of 30, 45, 60 and 90°. Take the direction of m to be the direction of its
normal.

Complete the stereographic projections shown in Table 8.12. Which symmetry elements
are generated? What are the resultant point groups? Give the symbols for each.

Copy the stereograms of the point groups in columns A, B or Cinto column D, and add 1.
Which new point groups are generated? Give their symbols.

For each point group, choose an axial system and assign each point group to a crystal
system.

The solution of that part of the exercise will explain the following symmetry rules:

A) The combination of two 2-fold axes at an angle of % produces an X-fold axis

. . . . . . 360°
through their point of intersection perpendicular to their common plane. X = .

B) The combination of two mirror planes at an angle of % produces an X-fold axis
along their line of intersection. X = 360 .
€
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Table 8.12

AorB
orC

2+m

m+m

2+2
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C) The combination of a 2-fold axis with a mirror plane at an angle of% produces an

X axis through the point of intersection of the axis with the normal to the plane and
perpendicular to the common plane of the axis and the normal. X = 360 .
e

Since only X=1,2,3,4and 6 or X=1,2=m, 3,4 and 6 are permitted, —g— can only

have the values 30, 45, 60, 90 and 180°. The combinations at an angle of 180° are not
included in Table 8.12.

Exercise 8.5. Combine the operations of (E) 2 + 3, (F) 4+ 3 and (G) 4 + 3, where the elements
intersect at an angle of 54.73° (the angle between the edge and the body diagonal of a cube).

Complete the stereographic projections shown in Table 8.13, and give the symbols for the
resultant point groups. Copy the stereograms in E, F and G into H, T and K and add 1 to
them. Give the symbols of the point groups which now result.

Table 8.13
2+3 4+3 4+3
< /INON AN VAR
NN | SN | O
AN NN AT AN KT N
// \+/ 1N Q/ I/\\ /+\/_\ N
I | S | S
\ AT K /N e N "/
<N/ > NN Y NN
S ~ -
E F G
R~ H A~ H A~ H
Y2 NN AR L /71N D>
AN l\// \ /\\/ \\\(/\ / \\Ji,_;_\\/ \
(N7 | LR L SANVAR
€A | K | K
\\/l\/// \\\/|\/// \\/Iy///
> \ TS 3L
\\/>\T4|—//<\/ 7\ | AN % \T//\\/
\\\_\14/// \\NL/// \\SIL//
H / K
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Exercise 8.6. Starting from the point of highest symmetry in the trigonal system 3 2/m,
develop its trigonal subgroups.

Exercise 8.7. Colour the circles of the point groups in Fig. 8.3, using the same colour for all
point groups belonging to the same crystal system.

Exercise 8.8.

a) How is it possible to identify the crystal system of a point group from its International
symbol?

b) For each crystal system, give the characteristic point-symmetry elements, and, if
necessary, the number of such elements or their relationship to one another. Mark the
position these elements occupy in the International point-group symbol, and give an
example for each crystal system.

Characteristic Position of
symmetry elements characteristic
Crystal system number and symmetry element(s) | Example
relationship in the symbol
to one another 1st ‘ Ind | 3rd
Triclinic
Monoclinic
Orthorhombic
Tetragonal
Trigonal
Hexagonal
Cubic
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Exercise 8.9. Determine the International symbol for the point groups whose symmetry
elements are illustrated in the following stereograms:

a) First, find the symmetry elements that charcterise the crystal system.

b) Indicate the crystallographic axes a, b, ¢ on the stereogram, bearing in mind the
orientation of the symmetry directions for the crystal system.

¢) Give the International symbol and, in brackets, the Schénflies symbol.

1)

2) T~

- ~
// \\
/ \
S ]
\ /
\\ _,//
3) l’_\ 4)
// \\ // \
/
VAV,
/ N/
N>
5) 6)
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Exercise 8.10. In the stereograms below, indicate the symmetry elements for the given point

group:

a) Determine the crystal system.

b) Draw the appropriate axial system on the stereogram. The c-axis should always be
perpendicular to the plane of projection.

c) Analyse the point group symbol with respect to the symmetry directions.

d) Finally, draw the symmetry elements on the stereogram. Remember that rotations and
rotoinversion axes, as well as the normals to mirror planes are arranged parallel to their
symmetry directions.

222 //_\\ 2/m //—\
\ / \
L) |
AN // \\ /

—_ —_

4mm //\\ Bm2 //—lr\\
/ \ /«\\.'| //)\\

\ /) (<//l\\

|

—T T~
3 2/m : \>\ 43m /(>),(/_L\ A
(3m) ~U L7 \ - ,:l /_\\_7\

1IN N

TN \ S

N NP
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Exercise 8.11. Determination of point groups

Determine the point groups of the molecules and ions given below, using the method
described in Section 8.4. Give the International symbol and the Schénflies symbol, and draw
the symmetry elements on the stereographic projection.
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11

12

13

14

SF

SF_X

SF X

SF.X
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15

16

17

20

21

Chloromethane

CHSCl

Dichloromethane

CH2L‘,12

Chloroform

CHCl3

Carbon tetrachloride
CCla

,::’jfy:_‘i:::” -~ = AN
b C )
i .
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Cyclopropane
22 C.H
36
Monochlorocyclopropane
23 c 3 H5 Cl
Dichlorocyclopropane
L‘3 H 4[:l 2
24
25
26
27
Trichlorocyclopropane
c 3 H3 Cl 3
28

OSSN 0 S S S
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29

30

31

32

33

34

35

Trichlorocyclopropane

C3H3C13

chair form

Cyclohexane

[ H : ;
boat form

o
=k
X
=

\\ //
/ N

)
\ /
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36

37

38

39

40

41

42

Cyclobutane

Tetrachlorocyclobutane

€4

CAHB

"y

Cl4

EEEEEES
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Tetrachlorocyclobutane Ve ~ \
43 C4HaCly >i%< ( \l
I \ /
~ //
- —
/ \
44 ( /\
7
\\_ //
// \\\
45 ! ( |
\ /
~ //
-~
/7 N\
46 ( . \)
P \ /
~__~
Y — \\
. r )
7 |
d \ /
AN /
N
\
48 ‘
7 \ /
\___//
TN
v ()
49 \ ]
’ \ /

a) Which isomers of tetrachlorocyclobutane are enantiomers?
b) Which molecules possess a dipole moment?
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Exercise 8.12. What information about the spatial arrangement of the atoms in the following
molecules can you infer from the point group symmetry?

N
H3

H2C=C=CH2

Allene

PFg
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Exercise 8.13. Rotate one of the CH,Cl groups of a 1,2-dichloroethane molecule about the
C—C bond stepwise through 360° with respect to the other. Which symmetry distinct
conformations are encountered? Give their point groups, and compare them with the
corresponding conformations of ethane in Fig. 8.20.

clj|ct

Exercise 8.14. Will measurements of their dipole moments distinguish the cis and trans
forms of dichloroethene?

N__/ ”\C___/
/N K

Exercise 8.15.

cl

a) Determine the point groups of the following crystals with the help of Table 8.10 and
crystal models such as those illustrated in Exercise 4.4. Draw the symmetry elements on
the stereogram, and give the International symbol for the point group.

b) Indicate the position of the crystallographic axes on the stereograms and the crystal
diagrams.

c) Estimate by eye the positions of the crystal faces, and enter the poles on the stereogram,
using different colours for different forms.

d) Index the crystal forms.
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/7 A\
\ /
~_ / ~N -
Rhombic Tetragonal
prism prism
— ~ TN
~N
4 N\

/
J AN
N ~ -
Trigonal Hexagonal
prism prism
/ \
\ /
S - A ~
Rhomb?c Tetragonal
pyramid .
pyramid
—_— P
T / ~
\
N s ~ //
~—
Trigonal Hexagonal
pyramid pyramid
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Rhombic
dipyramid

Tetragonal
dipyramid

\/ \\\// \\’//
Trigonal Hexagonal
dipyramid dipyramid
13 14
T T
/ N / N
| / \
. / \ J
Hexahedron
Octahedron
15 16
—
s 4
\\ /
Tetrahedron Rhombohedron
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Exercise 8.16. Which of the crystals in Exercise 8.15 might, on the basis of its crystal forms,
show the piezo-electric effect? Mark the appropriate diagrams “Piezo-elect.”

Exercise 8.17. There is a simple relationship between the numbers of faces, edges and vertices
of a polyhedron. Work out what it is.

Exercise 8.18. The figure shows the cross-section of a ditetragonal prism on the equatorial

plane of a stereographic projection, together with the corresponding poles. The dashed lines
have been added to point out the axial intercepts of the faces.

— bla,)

0(01)

a) Index all the faces of the crystal form {hk0} or {210}.

b) If the faces of a ditetragonal prism are inclined by a given angle in the direction of the
positive and negative c-axis, the poles of the faces move a corresponding amount away
from the periphery in the [001] and [001] directions. What is the resulting crystal form?
Index all the faces of this form.
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Exercise 8.19. The figure shows the cross-section of a hexagonal prism on the equatorial
plane of a stereographic projection, together with the corresponding poles. The dashed lines
have been added to point out the axial intercepts of the faces.

a)
b)

Index all the faces of the crystal form {hki0} or {2130}.

If the faces of a hexgonal prism are inclined by a given angle in the direction of the
positive and negative c-axis, the poles of the faces move a corresponding amount away
from the periphery in the [0001] and [0001] directions. What is the resulting crystal form?
Index all the faces of this form.

Exercise 8.20. Derive the crystal forms of the following point groups:

a)
b)
<)

d)
e)

f)
2)

Use the characteristic symmetry elements to determine the crystal system (cf. Table 8.9).
Look up the stereogram of the poles of the forms for the point group of highest
symmetry in that system: Fig. 8.16 for orthorhombic, Fig. 8.9 for tetragonal, Fig. 8.13
for hexagonal or trigonal, and Fig. 8.15 for cubic.

Place a piece of tracing paper over the stereogram, and draw in the symmetry elements
for the point group, appropriately orientated to the crystallographic axes.

Indicate the asymmetric face unit.

Draw in first the poles for the faces of the general form. What is it called? Index all the
faces.

If the general form has limiting forms, draw these in and name and index them.
Draw in the special forms and their limiting forms (if any). Name and index them and
give the point symmetry of their faces.

(It is a good idea to use several pieces of tracing paper!)

D

3)
4

42m 5) 6/mmm
4 6) 622
mmm 7) 3m
mm?2 8) m3m
9) 43m
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Exercise 8.21. In International Tables for Crystallography, Vol. A, for the point group
4/m 3 2/m, the trapezohedron (or deltoidicositetrahedron), is given as the special form
{hhl}, |h|<]|l] and the trisoctahedron for {hhl}, |h|>|l|. In Table 8.6, however, the
trapezohedron is given for {hkk} and the trisoctahedron for {hhk}. Explain this apparent
inconsistency.

Exercise 8.22. Which special forms in the hexagonal and trigonal systems have limiting
forms?
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9 Space Groups

9.1 Glide Planes and Screw Axes

The 32 point groups are the symmetry groups of many molecules and of all
crystals, so long as only the morphology is considered. Space groups give the
symmetry not only of crystal lattices, but also of crystal structures.

In Table 6.4 are given the space-group symbols for the 14 Bravais lattices;
the space-group symbol does not in general enumerate all the symmetry
elements of the space group. In particular, the space groups of centred lattices
contain new symmetry operations. These are compound symmetry opera-
tions which arise through reflection and translation (1) and rotation and
translation (2) (cf. Chap. 5.4 and Table 5.1).

1. In the orthorhombic C-lattice, reflection through a plane (—— —) at1,y,z,
followed by a translation of % moves the lattice point 0,0,0 to §,1,0

(Fig.9.1a). This symmetry operation is called a glide reflection, and the
corresponding element is a glide plane (in this case, a b-glide plane).

2—— & b
Fig.9.1. a Location of a b-glide
__________ ‘ plane in an orthorhombic C-lattice.
o @) 9% o b Position of 2-fold screw axis in an
orthorhombic I-lattice. (® lattice
point with z= %)
a) b)

2. In the orthorhombic I-lattice, a 180° rotation about an axis (‘) ati iz,

111

followed by a translation of %, moves the lattice point 0,0,0 to 3,3, 5

(Fig.9.1b). This symmetry operation is called a screw rotation, and the
corresponding element is a screw axis (in this case, a 2-fold screw axis).
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9.1.1 Glide Planes
The compound symmetry operation “glide reflection” implies:

A) a reflection and
B) a translation by the vector g parallel to the plane of glide reflection where
|g| is called the glide component.

Figure 9.2 contrasts the operation of a mirror plane with that of a glide
plane on a point lying off the planes.

© ©

b

. O .
C 51 Q
. \
Qs
a” a”
—b E —b
OO0 2010
| |
a) a b) a

Fig.9.2a,b. Operation of a mirror plane m (a) and of a glide plane ¢ (b) on a point shown in
perspective and as a projection on (001)

A second application of the glide reflection brings one to a point identical
to the starting point, i.e. g is one-half of a lattice translation parallel to the glide
plane, |g| =3|7|. Glide planes are developments of mirror planes, and can
only occur in an orientation that is possible for a mirror plane.

For this reason, in the orthorhombic system, glide planes only occur
parallel to (100), (010) and (001). Compare the space group P2/m 2/m 2/m in
Fig. 6.9d with the point group 2/m 2/m 2/m in Fig.6.9e. Since the glide
component |g| must be half of a lattice translation parallel to the glide plane,
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o]

11(001)

o

i

a
Cc

b
" g
¢ 1(070)
, 11(100)
d

Fig. 9.3. Glide planes in the orthorhombic system

in an orthorhombic space group the only possible glide planes parallel to
(100) will have glide components }|b|, 3|¢|, }|b+¢| and §|b +</|, and this last
type will only occur in centred lattices, where ;| b+C| can be half of a lattice
translation. In Fig. 9.3, these cases are illustrated, together with those parallel
to (010) and (001).

Glide planes are designated by symbols indicating the relationship of their
glide components to lattice vectors a, b and ¢. Those with axial components:
11|, i|b| or 3|C| are given the symbols a, b and ¢ respectively, those with
diagonal components 3|7, +7,| have the symbol n, while those with the
component 1|7, = T,|, known as diamond glides, have the symbol d.

Since glide planes play so important a role in space groups, the operation
of a few examples will be given in an orthorhombic cell projected on x,y,0. In
these projection diagrams, only a single glide plane is shown - see Chapter
14.2 for an explanation of the graphical symbols.

a) In Fig.9.4a, an a-glide is shown at x,3,z. Reflection of a point x,y,z in
this plane gives x,1—y,z, called an “auxiliary” point and the translation 3a
then moves this auxiliary point to §+x,3 -y, z.
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N~

a a-glide at x,;" z

)

—
= e
XY,z xL+y,Z

xyz i xlylez

b b-glide at x,y,0

B bbbz
Q-

!
r3

¢ c-glide at x

z

d n-glide at x,y,% with glide component
lja+bj

e n-glide at 0,y,z with glide component
b+l

Fig. 9.4a-e. Operation of glide planes on a point. In each case, only a single glide plane is
shown projected on x,y,0 in an orthorhombic cell.
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b) The b-glide plane at x,y,0 in Fig.9.4b reflects a point x,y,z to the
auxiliary point x,y,Z, which the translation of b then moves to x,5+y,Zz.

¢) The c-glide plane at x,3, zin Fig. 9.4c reflects a point X, y, z to the auxiliary
point, x,1—y,z which the translation of 3¢ then moves to x,1—y,i+z.

d) The n-glide plane at x,y, ; in Fig. 9.4d is parallel to the a, b-plane, and thus
has a glide component |3 + b|. It reflects a point X, y,z to the auxiliary point
X,¥,3—z, which the translation of §(a + b) then moves to 3 +X,3+y,3—Z.

e) The n-glide plane at 0,y,z in Fig. 9.4¢ has a glide component b+¢|. It
reflects a point Xx,y,z to the auxiliary point X,y,z, which the translation of
3(b+7<) then moves to X, +y,1+z.

9.1.2 Screw Axes
The compound symmetry operation “screw rotation” implies:

(o]

; (X=1,2,3,4,6)and

A) a rotation of an angle &=

B) a translation by a vector s parallel to the axis, where |s| is called the screw
component.

For rotation axes and rotoinversion axes, the direction of rotation was
unimportant. This is not the case for screw axes; for a right-handed axial
system, X,Y,Z (Fig. 9.5, see also Chap. 2.3) a rotation about an axis on Z
from the X-axis toward the Y-axis is linked with a positive translation along
Z. This is the motion of a right-handed screw, which corresponds to the
motion of advancing the thumb of the right hand in the direction of the vector
S as the fingers of this hand point in the sense of rotation.

Figure 9.6 shows the operation of a 6-fold screw axis (¢ = 60°) on a point
lying off the axis. The points 1, 2, 3 ... are arranged like the treads of a spiral
staircase. After X rotations (X = 6) through the angle ¢ (X - ¢ = 360°), the point
1 will return to its starting point. In this case, however, the rotations have been
accompanied by a translation of X-§, and the point 1’ has been reached,
which is identical to the starting point. The vector 1-1" is not necessarily a
single lattice translation 7, but may be any integral multiple o of 7.

X-|s|=0|T| or

- g .
Is|=—-171.
X

Since |S| <|7|, 0 <X and can have the following values:

0=0,1,2,...X-1
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Fig. 9.5. The handedness of a screw axis

\’,____;4*4

A

Fig. 9.6. Operation of a 6-fold screw axis 6, on a e
point lying off the axis \g

- 1 . - -
and 810, ~ 2], 2 2], oo 2 7]
X X X
since the screw component
- O
s|=—17],
N XI |

screw axes are designated X, =X, X;, X5, ... Xx 1.

For X=4, 6=0, 1, 2, 3. The resulting screw axes are 4, (a 4-fold
rotation axis), 4,, 4, and 43, with screw components 0, 1|7, 2|7| and }|7]|.
(Note that the screw component is directly derivable from the symbol, by
inverting it and considering it as a fraction, e.g. 4, —3.) The 4-fold rotation
and screw axes are compared in Fig.9.7. Successive operations of the 4-fold
screw axes on a point lying off the axis move point 1 to 2, 3 and 4. A lattice
translation of 7 generated the points 1’, 2’, 3’ and 4’. The operations of the
screw axes are also illustrated in Fig.9.7b by projection of the points
within a single lattice translation onto the plane normal to the axis. Note
that the sets of points generates by 4, and 4; are mirror images of one
another, i.e. they are a pair of enantiopmorphs. Since 4, represents a right-
handed screw, 4; may be described as a left-handed screw with a screw
component |s’| =3|7] also.

Figure 9.8 shows all of the other screw and rotation axes possible for
crystals (see also Chap. 14.2). The enantiomorphous pairs are 3; and 3,, 4,
and 4,, 6; and 65, and 6, and 6,.

Screw axes can only occur in crystals parallel to those directions which are
possible for rotation axes in the corresponding point group.
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Fig.9.7a,b. Operation of a 4-fold rotation axis and the three 4-fold screw axes on a point
lying off the axes. a shows perspective views and b projections on x,y,0

9.2 The 230 Space Groups

The 32 crystallographic point groups have been derived from the point
groups of highest symmetry in each crystal system (see Table 8.2). All of the
space groups can be derived in a similar manner. Starting from the space
groups of highest symmetry in each crystal system, i.e. those of the 14 Bravais
lattices (see Table 6.4), it is possible to derive an analogous scheme for
determining all of their subgroups. It must, however, be borne in mind that
screw axes can replace rotation axes, and glide planes mirror planes thus:

22

3« 31, 32
4—4,4,, 4,

6« 61, 62, 63, 64, 65
m—a,b,c,n,d
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Fig. 9.8. Operation of rotation and screw axes on a point lying off them. The enantiomor-
phous pairs 3,-3,, 6,-65 and 6,-6, are given together. 4, 4,, 4, and 4; are shown in Fig. 9.7
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Fig. 9.8 (continued)

The space groups of the monoclinic system will be derived as an example for
all crystal systems. We start from the two monoclinic space groups of highest
symmetry; P2/m and C2/m (Fig.9.9). Additionally, in C2/m, there are a-
glide planes at x,3,z and x,3,z, and 2;-axes at 1,y,0; L,y,3; 2y,0 and 3,y,3.

The monoclinic subgroups of the point group 2/m are m and 2. The point-
symmetry elements 2 and m can be replaced by 2, and a glide plane
respectively. Since m is parallel to (010), only a-, c- and n-glides are possible.
However, a different choice of the a and ¢ axes will convert either an a- or an
n-glide into a c-glide (Fig. 9.10). Thus, only the c-glide need be considered.

Replacement of 2 and m by 2, and c¢ results in the 13 monoclinic space
groups shown in Table 9.1 as subgroups of P2/m and C2/m.

The sets of symmetry elements for these space groups are shown in
Fig. 9.9, in the same order as Table 9.1, as projections on x, y, 0. Additionally,
a- and n-glide planes occur in C-centred space groups. Thus it can be seen that
the pairs of symbols C2/m and C2;/m, C2/c and C2,/c, and C2 and C2,
represent only a single space group each, cf. exercise 9.4.

In the same way, inspection of the other crystal systems leads to the entire
230 space groups. These 230 space groups are listed in Table 9.2, sorted by
crystal system and point group. Only the standard abbreviated symbols
(short symbols) are given.

In every case, the point group is easily derived from the space group
symbol. The screw axes are replaced by the corresponding rotation axis, the
glide planes by a mirror plane, and the lattice symbol is omitted, the result
being the point group to which the space group belongs.

It would be useful to revise the space groups of the Bravais lattices, which
are given in Figs. 6.7d-6.13d.
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Fig. 9.9 a-c. The monoclinic space groups projected on x, y, 0. The c-axis is not normal to the
plane of projection, but is tilted such that §>90°.
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Table9.1. The point and space groups of the mono-
clinic crystal system

Point groups Space groups
P2/m C2/m
P2,/m -4
2/m P2/c c2/e
P2,/c b
Pm Cm
m Pc Cc
P2 C2
2 P2, -

@ C2,/m=C2/m, ° C2/c=C2/c, °©C2,=C2

Table 9.2. The 230 Space groups

Point
Crystal system group Space groups
triclinic 1 P1
1 Pl
monoclinic 2 P2 P2, C2
m Pm Pc Cm Cc
2/m P2/m P2,/m C2/m P2/c
P2,/c C2/c
orthorhombic 222 P222 P222, P2,2,2 P2,2,2,
C222, C222 F222 1222
12,2,2
mm?2 Pmm2 Pmc2, Pcc2 Pma2
Pca2, Pnc2 Pmn2, Pba2
Pna2, Pnn2 Cmm?2 Cmc2,
Cec2 Amm?2 Abm?2 Ama2
Aba2 Fmm2 Fdd2 Imm2
Iba2 Ima2
mmm Pmmm Pnnn Pccm Pban
Pmma Pnna Pmna Pcca
Pbam Pcen Pbcm Pnnm
Pmmn Pbcn Pbca Pnma
Cmcm Cmca Cmmm Ccem
Cmma Ccca Fmmm Fddd
Immm Ibam Ibca Imma
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tetragonal 4 P4 P4, P4, P4,
14 14,
4 P4 I4
4/m P4/m P4,m P4/n P4,/n
[4/m 14,/a
422 P422 P42,2 P4,22 P4,2,2
P4,22 P4,2,2 P4;22 P4;2,2
1422 14,22
4mm P4mm P4bm P4,cm P4,nm
P4cc P4nc P4,mc P4,bc
I[4mm I4cm I4;md I4,cd
42m P42m P42c P42;m P42,c
P4m2 P4c2 P4b2 P4n2
14m2 I4c2 142m 142d
4/mmm P4/mmm  P4/mcc P4/nbm P4/nnc
P4/mbm  P4/mnc P4/nmm P4/ncc
P4,/mmc  P4p/mcm  P4,/nbc P4,/nnm
P4,/mbc P4,/mnm  P4,/nmc P4,/ncm
[4/mmm 14/mcm I4,/amd 14,/acd
trigonal 3 P3 P3, P3, R3
3 P3 R3
32 P312 P321 P3,12 P3,21
P3,12 P3,21 R32
3m P3ml P31m P3cl P31c
R3m R3c
3m P31m P3lc P3ml P3cl
R3m R3c
hexagonal 6 P6 P6, P6s P6,
P6, P6;
6 P6
6/m P6/m P63/m
622 P622 P6,22 P6522 P6,22
P6,22 P6322
6mm P6mm Pé6cc P6;cm P6smc
6m2 P6m2 P6c2 P62m P62¢
6/mmm P6/mmm  P6/mcc P6;/mcm  P6;/mmc
cubic 23 P23 F23 123 P23
12,3
m3 Pm3 Pn3 Fm3 Fd3
Im3 Pa3 Ia3
432 P432 P4,32 F432 F4,32
1432 P4332 P4,32 14,32
43m P43m F43m 143m P43n
Fd3c 143d
m3m Pm3m Pn3n Pm3n Pn3m
Fm3m Fm3c Fd3m Fd3c
Im3m Ia3d
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Fig.9.10a-c. In the monoclinic system, a-, c-, and n-glide planes parallel to (010) are all
possible. These are shown in a, b and ¢ respectively. Suitable alteration of the choice of axes
will convert a- and n- into c-glides

The International (Hermann-Mauguin) symbols thus indicate the symmetry
of each space group clearly. Schonflies symbols, on the other hand, merely
assign an arbitrary number to each space group within a given point group.
Thus, for point group m(C;), we have:

Pm: (C)), Pc:(C2), Cm:(C3), Cc:(CH.

This is the main reason that Schonflies symbols are rarely used in
crystallography.

9.3 Properties of Space Groups

It is certainly not necessary to study each of the 230 space groups individually,
but a general knowledge of how space groups differ from one another is
useful. For this reason, the properties of a few space groups will be explored in
detail.

Figure 9.11 gives the symmetry elements for the space group Pmm?2. The
application of the symmetry operations to a point x,y,z will generate the
points X, ¥,z; X,y,z and X, ¥, z, as well as equivalent points such as x,1—y, z;
1-x,y,z and 1—x,1—y,z. The number of equivalent points in the unit cell
is called its multiplicity, in Fig. 9.11a, the position is “4-fold”, or said to have a
multiplicity of 4. This position has no restrictions on its movement; it has
three degrees of freedom, and, as long as it does not move onto a point
symmetry element, it continues to have a multiplicity of 4. Such a position is
called a general position, i.e. a set of equivalent points with point symmetry (site
symmetry) 1. It is asymmetric, and this is indicated in Fig. 9.11 by the tail on
the circle. The figure is, of course, not really asymmetric, as it is unchanged on
reflection in the plane of the paper, but it is sufficiently unsymmetrical for our
present purpose!
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xyzb dzyz b d

—b
X
X,z X,z x,1-yz
24 p y . Ay p q Fig.9.11a-c. Symmetry elements
of space group Pmm?2 in projec-
tion on x,y,0. a The general
b d b d position X, Y, z. b the special
I-xy,z T-x]-42 position %, y,z. ¢ The special
position 5,%, z
a) a
1 1 11
syz PR 4 55,2
1y 27 27 ]P_ d W 2727
Lyzp g ®
b) 0
Table 9.3. Positions of the space group Pmm?2
N Degrees Multi- Site Coord}nates )
Position of licit symmetr of equivalent Fig.
freedom phetty y y points
general 3 4 1 %35 X 5.5 9.11a
X,y,z, X,¥,Z
[ R
2 m »VT 59,2 9.11b
2 m 0,y,z 0,y,z
2 2 m X, %, z; X, %, z
2 m x,0,z; X,0,z
special
1 mm2 Lz 9.11c
1 mm?2 %,O,Z
1 i
1 mm?2 0,52
1 mm?2 0,0,z

191




If the point in the general site x,y,z is moved on to the mirror plane at
1,¥,z, the point 1—x,y,z comes into coincidence with it; the two points
coalesce at the mirror plane to a single point 1,y,z. At the same time, the
points x,1—y,z and 1-x,1—y,z coalesce to the single point 3,1-y,z
(Fig.9.11a, b). From the 4-fold general position, we have obtained a 2-fold
special position. The multiplicity of a special position is always an integral
factor of the multiplicity of the general position. Special positions are not
asymmetric; they possess site symmetry higher than 1, and in Fig. 9.11, the site
symmetry is m. A special position is a set of equivalent points with point
symmetry (site symmetry) higher than 1. This particular special position has
two degrees of freedom. As long as the point remains on the mirror plane, its
multiplicity is unchanged. Other similar special positions arise from the
mirror planes at x,0,z; x,3,z and 0,y,z. A special position arises from the
merging of equivalent positions.

If a point on },y,z moves onto the 2-fold axis at 3,1,z the two points
1,v,z and },1—y,z coalesce to 3,3,z This special position retains only a
single degree of freedom. The point symmetry of the position rises to mm?2,
and the multiplicity falls to 1. The positions 0,0,z; 3,0,z and 0,1,z are
similar to 3,3,z. Some space groups have special positions with no degrees
of freedom, an important case of this being a point on an inversion centre
(see Table 9.4).

The general and special positions in space group Pmm2 are set out in

Table 9.3.
[ —b
o @ ; |
| ; b @
I
! ® d
l 1

@ xy.z, @ t+xi-yz ® i-xi+yi+z @ t-x1-yi+z
a

® x4z, @ i+xiz ® i-xii+z, 1-x34+z
Fig. 9.12. Symmetry elements of the space group Pna2, in projection on x,y,0 showing the
general position x,y,z (1). Even if a point lies on the a-glide plane at x, i, z (1), this does not

reduce its multiplicity. Glide planes and screw axes, unlike point-symmetry elements, do not
reduce the multiplicity of a position which lies on them
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q x.y.z K q 2 x1-y.z p

Fig.9.13. Space group P2/m shown in projection on x,y, 0 with the general position x,y,z
and the special positions on m, 2 and 2/m

Another space group in point group mm2 is Pna2;, shown in Fig. 9.12. The
space group symbol indicates that the unit cell is orthorhombic, with n-glide
planes normal to the a-axis with a glide component }|b+¢|, a-glides normal
to the b-axis, and 2;-screw axes parallel to the c-axis. The general position,
X,V,Z, as shown in Fig. 9.12, is again 4-fold. When, however, the point moves
onto the a-glide at x,1, z, the multiplicity is unchanged. A special position
does not arise, since glide planes and screw axes do not alter the multiplicity of
a point. As a result, the space group Pna2, has no special positions.

Figure 9.13 shows the projection of the space group P2/m on x,y,0. In
addition to the general position, there are special positions with m, 2 and 2/m
site symmetry. Table 9.4 shows these points, and gives the degrees of freedom,
the multiplicities, and the site symmetries of each type of position. Note that
as the site symmetry rises, the multiplicity falls.

The asymmetric unit of a space group is the smallest part of the unit cell from
which the whole cell may be filled exactly by the operation of all the symmetry
operations. Its volume is given by:

Vunilcell
multiplicity of the general position

Vasym. unit —
and it has the property that no two points within it are related to one another

by a symmetry operation, cf. the asymmetric face unit of a point group in
Chapter 8.2.1.
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Table 9.4. Positions of the space group P2/m

Position Degrees Multi- Site Cfoord.maltest
of freedom|  plicity symmetry of equivalen
points
| X,Yy,Z
! x,1-y,z
gnet 1 Q . ) ! 1-x,y,1-2
| 1-x,1-y,1-2
' x L2
| Q 2 2 m 1-x, %, 1-z
special ' q 1 X 5 %’ v, %
! 1191
» »3
.
111
| u 0 ! 2/m 23
|

An asymmetric unit contains all the information necessary for the complete
description of a crystal structure. An asymmetric unit of the space group P2/m
is the volume limited by 0 <x <3; 0 <y <}; 0 <z< 1. Its volume is one quarter
of that of the unit cell, so the equation above is fulfilled, as the multiplicity of
the general position is 4.

The tetragonal space group P4,/mnm will be described in Section 9.4. The
general position in the hexagonal space group P6; is illustrated in Fig. 9.14.
We shall now consider, as an example of the cubic system, the space group
P4/m 3 2/m. This is the space group of the cubic P-lattice, which has already
been introduced in Fig. 6.13d. That diagram of the space group P4/m 3 2/m
is incomplete. It was, however, adequate for the introduction of symmetry
relationships, and is also entirely suitable for the application of this space
group, as we shall see later. M. J. Buerger [6] developed projections of the
cubic space groups which have been included in the third edition of the
International Tables [14]. Figure 9.15 shows such a projection on x, y, 0 of the
space group P4/m 3 2/m. In order to include those symmetry elements which
are parallel to (110) and (111) in the diagram, Buerger used an orthographic
projection’, and representations of the oblique rotation- and screw-axes. In

In the orthographic projection, a pole in the northern hemisphere is projected parallel to
the N-S direction. This contrasts with the stereographic projection, in which the projection
is along the line connecting the pole to the south pole. Compare the stereogram of
4/m 3 2/m in Fig. 6.13¢ with the orthographic projection in Fig. 9.15.
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Fig.9.14. a Operation of a 6,-screw axis at 0,0,z on a point in a general site x,y,z.
b Displacement of the points originated in a by lattice translation into the unit cell (general
position). ¢ Space group P6,

order to understand the relationship of the various symmetry elements, it is
useful to study Fig. 9.15 and Fig. 6.13d, to see that they are representations of
the same thing.

Even for so complex a space group as P4/m 3 2/m, it is relatively easy to
describe a general position. Figure 9.16a shows a section of a cubic unit cell. A
3-fold rotation axis lies along the body-diagonal of the unit cell x, X, X, but it is
not shown here. Starting from a point x,y,z (x=0.3, y=0.2, z=0.1), the
operation of the 3-fold axis generates the points z,x,y and y, z, x (Fig. 9.16a).
Figure 9.16b shows the projection of these three points on x,y,0. The
application of the mirror plane at x, X,z to these points converts them to a set
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Fig. 9.15. Space group P4/m 3 2/m [6], [14] projection on x,y,0

of six points in a planar ring (Fig. 9.16 c). The further application of the 4-fold
axis at 0,0,z converts this ring to a set of four rings (Fig. 9.16d). Finally, the
mirror plane at x,y,0 reflects these rings downwards and produces the full set
of points for this 48-fold position. The coordinates of all 48 of these points are
givenin Fig. 9.16d, if each triple is taken to imply one with a minus sign on the
third co-ordinate as well. These 48 equivalent points are generated entirely by
the symmetry of 4/m 3 m!

There is a simple relationship between the number of faces in the general
form of a crystal of a particular point group and the multiplicity of the general
position of a space group in that point group (cf. Table 9.2). For space groups
with a P-lattice, the multiplicity of the general position is equal to the number
of faces in the general form for the point group. For space groups with C-, A-
and I-lattices, the multiplicity of the general position is twice as great as the
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Fig.9.16a—d. The 48-fold general position of space group P4/m 3 2/m.

a Section of a unit cell showing the operation of the 3-fold rotation axis at x, x, x (not drawn)
on a general point x,y,z with x = 0.3,y = 0.2, z=0.1. b Projection of the equivalent points in
a on x,y,0. ¢ The operation of the mirror plane at x,x,z on the points in b generates six
equivalent points in a planar, 6-membered ring. d The operations of the 4-fold axis at 0,0,z
and the mirror plane at x,y,0 on the points in ¢ complete the full set of 48 equivalent points
of the general position. Only those points lying above the plane of the paper are shown. The
rest may be generated by giving a minus sign to the third co-ordinate of each triple
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number of faces, and for those with an F-lattice four times. The general form
of the point group mm?2 is the rhombic pyramid (cf. Exercise 8.15(5)) with
four faces. The multiplicity of the general position in Pmm?2 (Fig.9.11a) or
Pna2; (Fig.9.12) is 4, while for Cmm2, Aba2, Imm2 or Ima2 it is §, and for
Fmm?2, it is 16.

If the point group includes an inversion centre, all the corresponding
space groups will be centrosymmetric, cf the monoclinic space groups in
Fig.9.9.

Consider now the space group P4,/n 2,/c 2/m. Removing the lattice
symbol and converting all glide planes and screw axes to the corresponding
point symmetry elements (4, — 4; 2, — 2; n, ¢ — m) gives the point group of this
space group: 4/m 2/m 2/m.

9.4 International Tables for Crystallography

Many of the most important properties of the 230 space groups are collected
in International Tables for Crystallography, Vol A.[18],[17],[14]. These tables
are very useful. The information they contain may be illustrated with respect
to the space group P4,/mnm (Fig. 9.17).

(1) Short space group symbol, Schonflies symbol, point group, crystal
system, number of the space group, full space group symbol.

(2) Projection of the symmetry elements of the space group on x,y,0; a points
down the page, b across to the right, and the origin is in the upper left
corner.

(3) Projection of a general position on X, y,0; the axial directions are as in (2),
O represents a point, O a point projecting on top of another, while ®
implies that one of the points is derived from the other by a reflection or
rotoinversion operation. The z-coordinate is indicated.

(4) Information about the choice of origin, here at an inversion centre at the
intersection of three mutually perpendicular mirror planes. Since thisis a
tetragonal space group, the symbols 2/m 1 2/m imply the symmetry
directions, c, (a), (110).

(5) The asymmetric unit:

Vunitccll
multiplicity of the general position

Vasym. unit =
(6) The symmetry operations of the space group.

>
Fig.9.17. Space group P4,/mnm, from International Tables for Crystallography, Vol. A. [14]
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o Pdy/mnm

No.

136

14

4h 4fmmm Tetragonal
P4z/m 21/" 2/m
& &
*@— +GD_
_®+ —®+
o 5
RO
%*GD%_%_
o 9 6
+®— +(D_
Bk -0
8 ® o

(4) Origin at centre (mmm) at 2/m 12/m

(5) Asymmetric unit

m1

0<x<4; 0<y<4; 0<z<4; x<Ly
(6) Symmetry operations

) 2(0i0) Lyt
“ 0,0,0
(13) n(}Oi) x4,z

(7) Positions

Multiplicity,

Wyckoff letter,
Site symmetry

16 &

[ I S R R N
au

(22 0,0,z (3) 4*(0,0,4) 0,4,z (4) 4(0,0,4) 4,0,z
6) 2(4,0,0) x,i,4 ™ 2 x,x0 ® 2 x,%0
(10) m x,y,0 (11) 4* 4,0,z; 4,0, (12) 4 0,4,z; 0,4,
(14) n(0,4,4) t,y,2 (15 m x,%,z (16) m x,x,z
Coordinates

(D) x,y,z (2) %,5.2 Q) g+ x+i,z+4  (4) y+i,8+4,2+4
(5) g+, y+4,7+4 (6) XH J+4,2+44 (D y.x2 8 7.%.z
) £.5,2 $2%4 (1) y+4,2+4,2+4 (12)?+i x+4,7+4
(13) x+4,5+4,z+1 (14) X+} y+i,z+4 (15) §,%,2 (16) y,x,z
..m X,X,2 £,%,2 F+ix+iz+d x+) R+4,z+4
T+ix+4,244 x+ R+ 2+ xx2 x,%,2
m. x,y,0 £,5,0 FHix+i,4 y+iR+44
f+iy+d xtbg+id yx0 y.%,0
2.. 0,4,z 0,4,z+% 4,0,2+4 40,2
04,2 04,74 4,0,z+4 10,2
m.2m  x,%0 £x,0 x+ix+i,4  F+E,8+44
m.2m  x,x,0 X£%0 f+ix+4,4  x+i,8+4,4
2.mm 00,z 44,z+% $42+44 00,2
i.. 0,4, 04,7 4,04 1,02
2/m.. 0,40 04,4 404 4,00
m.mm 00,4 1,4,0
m.mm 000 44 199



(7) General and special positions.
Col. 1: the multiplicity of the position.
Col. 2: the Wyckoff letter assigned to this position; the letter furthest
down the alphabet, here k, represents the general position.
Col. 3: thesite symmetry (point symmetry of the position), in the order c,
(a), (110).
Col. 4: the coordinates of equivalent points in the position.

9.5 Space Group and Crystal Structure

In Chapter 3, we defined a crystal structure as lattice + basis. It is thus possible
to describe it as a geometrical arrangement of atoms. Table 9.5A gives the
lattice and the basis for the rutile (Ti0,) structure. The perspective drawing
and the projection on x,y,0 in Fig. 9.18 are derived from these data.

Every crystal structure can be similarly described by its space group and the
occupation of general or special positions by atoms. The crystal structure of
rutile is in space group P4,/mnm. The titanium atoms occupy the position a,
and the oxygen atoms the position f with x =0.3 (cf. the page of International
Tables in Fig. 9.17). The special position a is 2-fold, implying 0,0,0 and 3,3, 1;
f is 4-fold: x,x,0; 3+X,3—X,3;3 —X,3+X,3 and %,%,0 (Table 9.5B). 0,0,0
and x,x,0 (x=0.3) lie in a single asymmetric unit of space group P4,/mnm,
cf. Fig.9.17. Substituting 0.3 for x in the coordinates for the O-atoms gives
the specific coordinates listed for the basis in Table 9.5 A. The description of
a crystal structure in terms of the space group is much simpler than that
in terms of the basis when positions of high multiplicity are involved. In
addition, the space group shows clearly which atoms are related to one
another by the symmetry elements of the space group. This relationship is

Table9.5. Description of the crystal structure of rutile TiO,

A B
Lattice Basis Space group Positions of the atoms
tetragonal P| Ti: 0,0,0 P 4,/mnm al Ti: 0,0,0
111 111
2733 2232
a=459A | 0:0.3,03,0 ag=4.59 A f| O: x,x,0
_ X 1 ,, R 1 1 1
cp=2.96 A 0.8,0.2,? cp=2.96 A ?+x,§lvx,]§ X=0.3
0.2,0.8,5 37X 51X, 5
0.7,0.7,0 X, X,0
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Fig.9.182a,b. The crystal structure of rutile, TiO,, shown: a in a perspective drawing, b in
projection on x,y,0

particularly important for positions with one or more degrees of freedom.
Any movement in x (cf. position f in Fig. 9.17) alters the relationship of all the
related atoms; for example, an increase of x results in the movement of the
O-atoms indicated by the arrows in Fig. 9.18b.

201



Exercise 9.1. For the two- dimensional “Knockel” structures given below, indicate:

a) The unit mesh.
b) The symmetry elements, paying particular attention to glide planes.
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Exercise 9.2. Glide planes and screw axes. In the projections below of a unit cell onto x,y,0,
only a single symmetry element is given. Allow this symmetry element to operate on an
asymmetric point (in a general site) at x,y,z and give the coordinates of the equivalent
point(s) generated.

a)

N

c)

N

e)

9)

m in x,y,%

a in x,y,%

eseseresssesscccssee

. 1
e in x,7,2

n in x,y,0

b)

d)

f)

h)

. 1
moin X,742

b in %,y,z

— - o mp s e ¢ amm ¢ cum ¢ w=n o w» oo

n in %,y,z

n in x,0,z
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i) 3)

0 &— —
P 1
2 in z,y,l] 21 in -2—,0,1
k) 1)
1l — -1
4 4
. 1 |
21 in D)sz 2 in i
m) n)
4, in 0,0,z 3, in 0,0,z

1

Exercise 9.3. The figures show the operation of a glide plane and a 2,-axis on a point. The
arrangement of the points appears to be the same in the two diagrams. Discuss this apparent
contradiction.

1
P =

9
ol o
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Exercise 9.4. Show that (a) C2,/c=C2/c, (b) C2;/m =C2/m, and (c) C2, =C2.

Start from the projections of the space groups (a) P2,/c, (b) P2;/m and (c¢) P2, as
given in Fig.9.9. Place a point at x,y,z and another at %+x,%+y,z (C-centring), and
allow the symmetry elements to operate on them. This will give the general positions for:
(a) C2,/c, (b) C2;/m and (c) C2,. Using these general positions, the complete symmetry
of the space groups can be determined. Using Fig.9.9, show the correspondence of
(a) C2,/c with C2/c, (b) C2,/m with C2/m, and (c) C2, with C2, moving the origin of the
diagram as necessary.

Exercise 9.5. Determine the symmetry of the orthorhombic C- and I-lattices. Indicate the
symmetry elements on a projection of the lattice onto X,y,0, and give the space group
symbol.

Exercise 9.6. Draw the symmetry diagram of space group Pmm?2 on a piece of graph paper.
Enter points in the general positions 0.1,0.1,0.1; 0.1,0.4,0.1; 0.25,0.25,0.1; and
0.4,0.4,0.1 and those points resulting from the operation of the symmetry elements on them.

Exercise 9.7. The symmetry diagrams for seven space groups are given below as projections
on x,y,0.

a) Enter oneach diagram a point in a general site x,y, z, and allow the symmetry to operate
on it.

b) Give the coordinates of the points equivalent to X,y, z.

¢) What is the multiplicity of the general position?

d) Work out the space group symbol. (The graphical symbols for symmetry elements are
given in Chap. 14.2).

e) Indicate a special position - if there are any - and give its multiplicity.
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Exercise 9.8. Make a tracing of the projection of a hexagonal unit cell on x,y,0 (Fig.9.14)
and place at 0,0,z (a) a 6,-axis, (b) a 6s-axis.

1. Allow the symmetry elements to operate on a point in a general site, and give the
coordinates of the resulting equivalent points.

2. Draw in the other symmetry elements of the space group in the unit cell.

3. Which symmetry elements are contained within 6, and 6;?

Exercise 9.9. Consider the space group P4/m 3 2/m (Figs. 9.15 and 9.16). In a projection on
X,Y,0, draw in the special positions (a) x,x,z, (b) x,X,Xx, (c) x,0,0.

Give the coordinates of the equivalent points and the multiplicities and site symmetry of
the positions.

Exercise 9.10. Draw a projection of the symmetry diagram for the space groups P2,/c,
Pna2,, Pmna, Pbca, and P422.

Exercise 9.11. Criticise the symbol Pabc.
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10 The Interrelationship of Point Groups and Space Groups

When point groups and space groups are compared and contrasted with one
another, various relationships between them become clear. Table 9.2 shows
the 230 space groups arranged according to the corresponding point groups.
Table 10.1 contains a comparative summary of properties of point groups and
space groups.

The only forms which can occur on a crystal are those which belong to the
point group resulting from the space group of the crystal structure. The rutile
structure, for example (Fig.9.18) has the space group P4,/mnm, and
consequently point group 4/mmm. Point group 4/mmm includes only those
forms given in Fig. 8.7. Of these, the crystal in Table 8.11.15 has developed
only {111}, {110} and {100}.

Molecules are also characterised by point groups. What is the role of
molecular symmetry when equal molecules associate with one another in a
crystal? Hexamethylenetetramine molecules belong to point group 43m
(Fig.10.1a). These molecules form crystals with space group I43m
(Fig. 10.1b), in which the molecules occupy positions with the site symmetry
43m. Unfortunately, this correspondence is far from common!

Ethylene molecules (point group 2/m 2/m 2/m (mmm) Fig. 10.2a), give
crystals with space group P2,/n 2;/n 2/m (Pnnm) in which they occupy
positions with site symmetry 2/m only (Fig. 10.2b).

Similarly, benzene molecules, which have the very high point symmetry of
6/mmm, give orthorhombic crystals (space group Pbca) in which they occupy

a) b)

Fig.10.1a,b. Symmetry of hexamethylenetetramine (C¢H ,N,). a molecule: 43m. b crystal
structure: I43m. (After [2])
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Table 10.1. Comparison of point groups and space groups

Point group

Space group

A group of point symmetry
operations whose operation leaves at
least one point unmoved. Any oper-
ation involving lattice translations is
excluded.

A group of symmetry operations
including lattice translations

(o R N S
QN AW g =1

11

2m 2;a,b,c,n,d
33 3,3

44 4,4, 4

66 6,6, 63,64, 65

lattice translations

a,b,c
a, B,y

ay, by, ¢
a B,y

Order of the symmetry directions

e.g.4/m2/m2/m
| | |
c (a) (110)

Order of the symmetry directions

e.g. P4,/m 2,/n 2/m

| [
¢ (ay (110

General form

Set of equivalent faces with
face symmetry 1

General position

Set of equivalent points with
site symmetry 1

fasym. face unit —

fsur[’ace area of the sphere

VasynL unit =

Vunil cell

number of faces in the general form

multiplicity of the general position

Number of faces in the general form
of a point group

Multiplicity of the general position for
all space groups with P-lattice,
belonging to the point group

Special form

Set of equivalent faces with
face symmetry >1

Special position

Set of equivalent points with
site symmetry > 1

positions with site symmetry 1 only (Fig. 10.3). Here the symmetry of the free

molecule is higher than that of the crystal structure.

Molecules octasulphur, Sg (Table 8.11.36), have the non-crystallographic
point group 82m. These molecules associate to give orthorhombic crystals,

with space group Fddd.
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Fig.10.2a,b. Symmetry of ethylene (C,H,). a Molecule: 2/m 2/m 2/m b Crystal structure
P2|/n 21/[1 2/m

Fig.10.3a,b. Symmetry of benzene
(C¢Hg). a Molecule: 6/mmm.
b Crystal structure: Pbca

There is no simple relationship between molecular and crystal symmetry.
The crystal structure that is adopted depends on many factors, including the
type of chemical bonding, the shape and the packing possibilities of the
molecules.

Exercise 10.1. In each of the space groups PI (Fig.6.7d), Pm and P2/m (Fig.9.9) and
P2/m 2/m 2/m (Fig. 6.9d), place an atom A at the origin (0,0,0) and a different atom B
at a general position x,y,z (x,y,z<}1).

a) What is the chemical formula of this structure?

b) What is the value of Z, the number of formula units per cell?

c) Describe the shape of the resulting molecule.

d) Give the point group of the molecule.

¢) What is the site symmetry of the molecule in the crystal structure?
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11 Fundamentals of Crystal Chemistry

Crystal chemistry is concerned with the crystal structure of the elements and
of chemical compounds. It attempts to explain why particular types of crystal
structures arise under specific conditions. It is, however, still only possible to
understand how relatively simple crystal structures arise from the atoms that
make them up.

A fundamental concept in crystal structures is the idea of sphere packing.
In this approach, the atoms or ions of which the structure is composed are
regarded as hard spheres which pack with one another. Goldschmidt and
Laves summarised this approach in three principles:

1. The Principle of Closest Packing. Atoms in a crystal structure attempt to
arrange themselves in a manner which fills space most efficiently.

2. The Symmetry Principle. Atoms in a crystal structure attempt to achieve an
environment of the highest possible symmetry.

3. The Interaction Principle. Atoms in a crystal structure attempt to achieve
the highest coordination (Sect. 11.1), i.e. the maximum possible number of
nearest neighbours with which they can interact.

Chemical bonding is a very important factor in crystal chemistry, as it is
concerned with the forces holding the atoms together in the structure. The
atoms of a structure are held together in a characteristic order by the chemical
bonding. This bonding arises from interaction of the electron shells of the
atoms, and is conventionally divided into:

a) metallic bonding

b) van der Waals bonding

c) ionic or heteropolar bonding and
d) covalent or homopolar bonding.

They are illustrated schematically in Fig.11.1. Actual compounds rarely
correspond exactly to one of these types. In most cases, the bonding is a
mixture of two or more types, which should be regarded only as limiting
cases.

It is beyond the scope of this book to discuss the theory of chemical
bonding. We shall restrict ourselves here, so far as bonding theory is
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Fig. 11.1a-d. Schematic summary of bonding types in crystals.

a Metallic bonding. Valence electrons of the metal atoms are delocalised in an “electron
cloud”. This negatively charged cloud encloses the positively charged atom cores and holds
them together.

b Van der Waals bonding. This arises from random variations in the charge distributions of
the atoms and is very weak. The atoms and molecules tend toward a closest packing.

¢ Jonic bonding. In an ionic crystal, the positively and negatively charged ions are held
together by electrostatic forces.

d Covalent bonding. This represents the four sp>-orbitals in the diamond structure

concerned, to a small number of principles on which further study may be
based.

The principles stated above work well in rationalising the structures of
metallic and ionic materials. They also have some application to molecular
crystals, those held together by van der Waals forces. For covalent structures,
the principles of closest packing and of high coordination are rarely fulfilled.
This results from the fact that covalent bonding is directional in nature.

11.1 Coordination

In crystal chemistry, the immediate neighbourhood of each atom and the
forces which bind it to its neighbours play a leading role in the explanation of
the overall geometry of the crystal.

The number of nearest neighbours of a central atom or ion is called its
coordination number, and the polyhedron formed when the nearest neigh-
bours are connected by lines is called its coordination polyhedron.

Some important coordination polyhedra are given in Table 11.1 along
with actual examples. The coordination number, in square brackets, can be
inserted in the chemical formula as a superscript, and thus add significant
crystal-chemical information to the formula.

Ideally, coordination polyhedra have a high point symmetry. However, a
coordination polyhedron is nothing like so sharply defined as a crystal form
(Chap.8.2.1). Even atoms of the same element coordinated to the same
central atom are not necessarily equivalent. Strictly speaking, cubic (m3m),
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Table 11.1. Important coordination polyhedra

Coordination
Configuration

Polyhedron or polygon

Ra/Rx*

Examples

a)

b)

(12]

OG> ¢

‘é‘ Cuboctahedron

4o

7

Disheptahedron

Cubic
closest
packing

of spheres
(Cu, Ne,etc.)

Hexagonal
closest
packing

of spheres
(Mg, He,etc.)

<)

(8]

Cube

0,73

Cst®ICl
Casz

d)

e)

(6]

Trigonal prism

AIBLI®

Octahedron

2)

[4]

Square

0,41

Nal¢!Cl
Ti®0,
PteICI2~

Pt™ICIZ~

Tetrahedron

0,23

Zn*1g
Si*I0,
S[4loi -

h)

3]

Equilateral
triangle

0,15

ctI03-
NGOy
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octahedral (m3m) and tetrahedral (43m) symmetries can only arise in the
cubic system. Coordination polyhedra are often more or less distorted. The
cubic coordination in cubic CsI (Fig. 3.4) and the octahedral coordination in
NaCl (Fig. 11.17) are strictly regular, while the octahedral coordination in
tetragonal rutile (Fig. 9.18) is distorted, cf. Exercise 11.10.

11.2 Metal Structures

A simple picture of metallic bonding is that the valence electrons of the metal
atoms are delocalised in an “electron cloud” (Fig.11.1a). This negatively
charged cloud encloses the positively charged atom cores (not ions) and
shields them from one another. The bonding forces are not directional; they
are equal in all directions.

In a metal, one can consider the atoms as spheres. Each atom attempts to
associate itself with the maximum number of similar atoms. This can be
achieved for 12 nearest neighbours in two different arrangements (coordi-
nation polyhedra), shown in Figs.11.2a and 11.3a, and also Table 11.1a
and b. Starting from these coordination polyhedra as nuclei, crystal growth
will result in the formation of two distinct crystal structures. These structures
can be described as stackings of closest packed layers of spheres, and they
differ in the layer squence.

II

>w O
> W e

Structure I may be described by a cubic unit cell, with a cubic F-lattice, and
is called the Cu-type, while structure II has a hexagonal unit cell, and is
called the Mg-type. The two structures are thus called cubic and hexagonal
closest packing respectively, abbreviated to ccp and Acp. Examples of each
structure are given in Table 11.2. Some metals occur with both structure
types, e.g. Ni.

The atoms of the Cu or ccp structure are all related by simple lattice
translations, and are thus identical. In the Mg or hcp structure, atoms in the

Footnotes to Table 11.1

* The limiting value of the radius ratio R, /R is that at which spherical coordinating atoms
X just touch one another, and the central atom A fits precisely into the resultant hole.
b Cf. exercise 3.2.

215



Fig. 11.2a-c. Cubic closest packing of spheres (Cu-type). a Coordination polyhedron [12]
(cuboctahedron) as a perspective representation, using spheres reduced in size, and as a
projection of the spheres on a close-packed layer. b The crystal structure. One of the layers
parallel to (111) is shown together with the layer sequence ABCA. ¢ A unit cell (cubic
F-lattice). The spheres are reduced in size, and their correspondence to the stacked layers is
indicated. The unit cell is also sketched in b

A-layers are all identical, as are atoms in the B-layers. The A- and B-atoms
are, however, equivalent but not identical to one another. This is shown by
the positions given in Table 11.2.

If the lattice constant is known, the radius of a sphere (the atomic radius)
may be calculated. Figure 11.2b,c shows the diagonal of a (100) face of the
cubic unit cell of the ccp-structure. Its length is equal to four sphere radii
(B-2C-A). Thus R =ia0\/§. In the hcp-structure, R =}a, (cf. Fig. 11.3b, ¢).
Radii of metal atoms are given in Table 11.3.

It is possible to fill spaces completely by packing equal cubes, or, indeed,
equal general parallelepipeds. This is not possible with spheres. In both types
of closest sphere packings, there are interstices remaining of specific
coordination; these are usually called “holes”. These may be bounded by four
spheres (tetrahedral holes) or by six (octahedral holes), (Fig.11.4) and are
examples of tetrahedral and octahedral coordination (Table 11.1).

216



Fig. 11.3a-c. Hexagonal closest packing of spheres (Mg-type). a Coordination polyhedron
[12] (disheptahedron) as a perspective representation, using spheres reduced in size, and as a
projection of the spheres on a close-packed layer. b The crystal structure. One of the layers
parallel to (0001) is shown together with the layer sequence ABA. ¢ A unit cell. The spheres
are reduced in size, and their correspondence to the stacked layers is indicated. The unit cell
is also sketched in b

The packing efficiency is defined as the ratio of the sum of the volumes of
the spheres making up a unit cell to the volume of the unit cell. If the spheres
are equal in size, it is given by

Z-inR3

Vunil cell

. 4R
As we have seen, in the ccp structure, R=1a, \ﬁ Thus apg= and

V2

V=16R3+/2. Since Z =4, the packing efficiency is thus %\/5= 0.74. The

corresponding calculation for the hcp structure gives the same result.
. c . . .
For the hcp structure, the ideal =% ratio may be calculated, since ¢ is
Qo
the height of two coordination tetrahedra of edge 2R = ay, sharing a common
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Table 11.2. Data for the three most important metal structure types, Cu, Mg and W, and
for a-Po

Cu Mg w a-Po
ccp hep bee sc
Lattice Cubic F Hexagonal P Cubic I Cubic P
+ ________________________________________
basis 0,0,0 0,0,0,2,11 0,0,0 0,0,0
Space group F4/m 32/m P6;/m2/m2/c | 14/m32/m P4/m 32/m
S Y [P S P
Positions (c)
oceupied (2)0.,0,0 000201 | @000 | @000
Coordination
number [12] (8] [6]
Atomic radii }‘ a0 V2 % ay % a0 \/3 % a
Packing 0.74 0.68 0.52
efficiency
Mg (1.62)
Ag, Au Ni (1.63) Mo, V
Further Ni, Al Ti (1.59) Ba, Na
examples Pt, Ir Zr (1.59) Zr, Fe -
Pb, Rh Be (1.56)
Zn (1.86)

agge
D &
A

Fig.11.4. a Tetrahedral [4]
holes. b Octahedral [6]
holes in closest packed
arrays of spheres

vertex (cf. Fig.11.3¢). This gives a value for S0 of 3 \/6=1.63. In Table
o

c . .
11.2, the =% values for several metals are given; they tend to lie between
A

1.56 and 1.63. The value for Zn is considerably larger.
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a)

Fig.11.5a,b. Crystal structure of tungsten. a With atomic radii shown to scale. b Showing
only the centres of gravity of the atoms

In addition to the two types of closest packing, a further structure adopted
by some metals is the W-type, with a cubic I-lattice, usually simply called
body-centred cubic, and abbreviated bcc (Fig.11.5). In this structure, the
body-diagonal of the unit cell consists of four sphere radii, i.e. R=}a, V3.

The packing efficiency of this structure is 2 \/3=0.68. The coordination

number is [8], and the coordination polyhedron is a cube.

An arrangement of metal atoms in a cubic P-lattice occurs only for
a-polonium (Fig.2.1, Table 11.2). It has a packing efficiency of 0.52, a
coordination number of [6] and an octahedron as its coordination poly-
hedron.

Considering the above data for the hcp and ccp structures, the Gold-
schmidt and Laves principles are very well fulfilled:

1. The packing efficiency is 0.74, the highest possible for the packing of equal
spheres.

2. F4/m 3 2/m is one of the highest symmetry space groups of the cubic
system, and P6;/m 2/m 2/c is one of the highest symmetry space groups of
the hexagonal system.

3. [12]is the highest possible coordination number for spheres of equal size.

The W-type or bcce structure has a packing efficiency of only 0.68 and its
coordination number, [8], is smaller than that of the closest packed
structures, but its symmetry, I4/m 3 2/m is also high.

The a-Po structure also has a high symmetry (P4/m 3 2/m), but its packing
efficiency and coordination of 0.52 and [6] respectively are very small. This is
certainly the reason for a-Po being the sole example of this structure.

Metals attempt to achieve a high symmetry and a high packing efficiency.
The great majority of metals crystallise in one of the first three given structure
types.
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Metals have many characteristic properties which are related to their
structure and bonding:

a) Electrical and Thermal Conductivity. Metals are good conductors of both
heat and electricity. These properties arise from the fact that the electron
clouds between the atom cores can move freely.

b) Plastic Deformation. Plastic deformation in a metal is a shearing parallel to
closest packed layers. This property is most prominent for metals with cubic
closest packing in which four equivalent (111)-planes can undergo shear
efficiently. These metals are generally soft, malleable and ductile. Gold, for
example, can be beaten to a thin foil that weakly transmits green light.
Crystals with hexagonal closest packing of the atoms are less malleable, since
they have only one shear plane, parallel to (0001). Body-centred cubic metals
are yet more brittle.

11.3 Structures of Noble Gases and Molecules

In noble gas and molecular structures, the molecules or atoms are held
together by van der Waals forces. These forces are very weak. This is apparent
from the very low melting points of such crystals, e.g. neon: -247.7°C,
ethylene: -170°C, benzene: 5.5°C and phenyl salicylate 43°C.

Noble gas atoms can also pack together as spheres, having a noble gas
electron configuration. The bonding forces, like those in metals are non-
directional, and the same sphere packings occur:

a) cubic closest packing (cf. Fig. 11.2): Ne, Ar, Kr, Xe, Rn.
b) hexagonal closest packing (cf. Fig.11.3): He.

Molecular structures are characterised by the fact that the energy holding
the atoms in the molecules together (covalent bonding) is large, while that
holding one molecule to another is very weak. Most molecular compounds
are organic, inorganic examples include sulphur (cf. the Sg molecule in Table
8.11.36) and Cg, see below.

Three molecular structures were introduced in Figs.10.1-10.3 (hexa-
methylenetetramine, ethylene and benzene). As was made clear in Chapter 10,
there is no simple relationship between crystal symmetry and molecular
symmetry. Although molecules are not spherical in shape, they do attempt to
pack as closely as possible in crystals. The hexamethylenetetramine structure
(Fig.10.1), for example, has a packing efficiency of 0.72. In the crystal
structure of CO,, the C-atoms occupy the positions of a cubic closest packing,
the linear molecules being parallel to (111).
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a) b)

Fig.11.6a,b. The Cg-molecule forms an almost spherical cage with 20 six-membered rings
and 12 five-membered rings (a) ([41]). The non-crystallographic point group 2/m35 (I,) of
the molecule (b) ([14])

Since the forces holding the molecules together are weak, it follows that
the lattice energies of organic compounds are, in general, low. Nonetheless,
the great majority of organic compounds can be crystallised. Even “giant”
molecules with very large unit cell dimensions have been crystallised, for
example:

1. vitamin Blzl C63H33N14014PCO, P212121, ap= 25.33 A, b() =22.32 A,
co=15.92A, Z =4 (cf. Fig. 1.1b)
2. pepsin: M~40000, P6,22, a,— 67 A, co=154 A, Z=12.

A recent discovery is a new series of molecules containing only carbon, the
main one of which has the molecular formula Cg. In this molecule, the atoms
form an almost spherical cage, made up of 20 six-membered rings and 12 five-
membered rings. The structure is that of a soccer ball (Fig.11.6a). The
molecule has the non-crystallographic symmetry 2/m35(1) (Fig. 11.6b), and
for this reason, all atoms are equivalent.

Cgo molecules have been crystallised with a ccp structure (ao—14.17 A).

11.4 Ionic Structures

Tonic crystals are built from positively and negatively charged ions, and the
bonding energy is Coulombic forces, which are non-directional and equal in
all directions. The strength of a bond is related to the charge on the ions, e,
and the distance, d, between them:

(S )

Coulomb’s Law: K =
d2
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Each cation seeks to maximise the number of neighbouring anions, while
each anion equally seeks to maximise its neighbourhood of cations
(Fig.11.1c). The formation of ionic structures is thus another packing
problem, but now the spheres are ions of opposite charge which generally are
also different in size. The relative sizes of the radius of the cation, R, and that
of the anion, Ry, the radius ratio Rp/Ry, can suggest the appropriate
coordination polyhedron and thus the crystal structure (Sect. 11.4.2-11.4.4).

11.4.1 Ionic Radii

Table 11.3 gives ionic radii as a function of atomic number.
The size of an ion, considering an ion as a sphere, depends on the charge on
the nucleus and on the number of electrons.

a) Within a column of the periodic table, the ionic radius generally rises with
the increasing nuclear charge.

Li' =0.70A F =133A
Na' =0.98 A Cl =181A
K~ =1.33A Br -=196A
Rb' =1.52A I =220A
Cs” =170 A

b) For isoelectronic ions, an increase in the nuclear charge results in a
lowering of the ionic radius.

Na' Mg?’ A% Si4* ps S6* car
098A  065A 057A  039A 034A 029A  026A

¢) For a particular element, the ionic radius falls as the positive charge rises:
Cf. S(16) or Mn(25) in Table 11.3.

11.4.2 Octahedral Coordination [6]

The octahedron as a coordination polyhedron is illustrated in Table 11.1e.
The limiting value for the radius ratio R,/Ry for this coordination may be
determined by considering an octahedron composed of spherical anions
which touch one another, and placing a cation precisely in the hole in its
centre. Figure 11.7 shows a section through such an octahedron. It can be
seen that Ry + Ry =Ry \/2, or Ra/Rx =+/2—1=0.41. Octahedral coordina-
tion is only stable if R5/Ry is greater than or equal to 0.41 (Fig. 11.8a, b). A
section through an unstable octahedron is shown in Fig. 11.8c.

Octahedral coordination occurs in the Nal/Cl (Figs.11.9 and 11.17)
and rutile Ti0, (Fig. 9.18) structure types. The NaCl structure type can be
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Y
Fig. 11.7. Cross-section through a coordination octahedron
(19)
a) 0.54 b) 0.41 c) 0.25

Fig.11.8a-c. Section through a coordination octahedron, with the corresponding radius
ratio, Ro/Rx. The arrangements in (a) and (b) are stable; that in (b) shows the limiting case
with Ry/Rx =0.41, and that in (c) is unstable

Fig. 11.9. Nal®/Cl structure, Fm3m
Lattice:  cubic F
Basis: Na’ at 0,0,0; Cl" at %,0,0

considered as a cubic closest packing of anions with cations in the octahedral
holes. For LiCl (Rp/Rx=0.43), the ideal radius ratio for octahedral
coordination is almost achieved. By contrast, NaCl itself has a radius ratio of
0.54 (Fig. 11.8a).

The spinel structure Mg A1,¢10, is based on a cubic closest packed array
of oxide ions. The Mg?" ions occupy tetrahedral holes and the Al®' ions
octahedral holes. Let us consider how many of the octahedral and tetrahedral
holes are occupied.

Considering the NaCl structure as a cubic closest packing of Cl~ ions
(Fig. 11.9), it will be noted that all octahedral holes are occupied by Na * ions.
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In NaCl, the ratio C17: Na"' is 1:1, thus each sphere in a ccp array (Cl )
corresponds to an octahedral hole (Na ‘). Figure 11.11 shows the “antifluor-
ite” structure. The sulphide ions are in a ccp array (Fig.11.11a), and the Li"
ions occupy all tetrahedral holes. In Li,S, the ratio Li': S>~=2:1, so each
sphere in a ccp array (S?°) corresponds to two tetrahedral holes (Li*). The
relation 2[4], 1[6] per sphere applies equally to both closest packings.

Returning now to the spinel structure, Mg*!ALIY1O,, we can see that § of
the tetrahedral holes are occupied by Mg?2* and ; of the octahedral holes by
AP,

In the Nil¥As (niccolite) structure (P6;/mmc), the As atoms are arranged
as a hexagonal closest packing and the Ni atoms occupy all of the octahedral
holes (Ni:As=1:1, Fig.11.18). The O? -ions of the corundum, AL 1Q;,
similarly form a hexagonal closest packing. The Al* ions are in octahedral
holes. From the above relationship,  of the octahedral holes are occupied. In
corundum, every third octahedral hole is vacant, but in the ideal structure, all
holes are equivalent. This results in a lowering of the space group symmetry to
R3c. Thus, corundum is trigonal, while in NiAs, the symmetry of the
hexagonal closest packing (P6;/mmc) is retained.

The O%-ions in forsterite, Mg,[*'Si¥!O,, also are arranged as a hexagonal
closest packing. The Si*' ions occupy ; of the tetrahedral holes, and the Mg?'
ions half of the octahedral holes. The symmetry is lowered to Pnma.

The atoms or ions in tetrahedral or octahedral holes are not statistically
disordered. In most cases, they are ordered in the structure.

11.4.3 Cubic Coordination [8]

As the radius ratio increases, there should be a range in which the trigonal
prism, with limiting R, /Ry =0.53, is stable (cf. Table 11.1d). In fact, for ionic
structures, the stable structure becomes cubic [8]-coordination, cf. Table
11.1c. Making use of Fig.11.10, which shows a section through a cube
parallel to (110) (cf. Fig.3.4), the limiting value for R,/Rx for cubic co-
ordination can be calculated: R, + Rx=Rx* \/§, so Ry/Rx= \/37 1=0.73.

Fig. 11.10. Section parallel to (110) through a
coordination cube [8] (cf. Fig. 3.4a)
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Fig.11.11a,b. The fluorite or Cal*F, structure, and the “antifluorite” structure (e.g.
Li,S), space group Fm3m
Lattice:  cubic F
Basis: Ca% or $* at0,0,0;
F orLi at i,i,%; %,i,i (a)
Structure drawn with F~ at 0,0,0 in order to emphasise the cubic coordination (b)

This implies that octahedral coordination is stable for the range
0.41 <R, /Ry <0.73, while cubic coordination is preferred for R, /Rx >0.73.

Cubic coordination is found in structures of the Cs®®ICl-type, and for the
fluorite or Cal® F,-type (Fig. 11.11). Cs®'I (Fig. 3.4) has the Cs®ICl structure
with an almost ideal radius ratio of 0.75.

In Fig. 11.11 b the CaF, structure has been drawn with an F "-ion at 0,0,0.
This makes the cubic coordination of the Ca?* more evident. Ca’* ions
occupy every second cubic hole. The Cl~ ions have the same arrangement in
the CsCl structure; in that case, every cubic hole is occupied by Cs'. The
fluorite structure is found for SrF,, BaF,, SrCl,, UO, etc., and also for a
number of alkali metal sulphides, e.g. Li,S, Na,S, K,S etc. As is indicated by
the chemical formulae, in these sulphides, the positions of the cations and the
anions must be reversed, i.e. S2~ ions occupy the Ca?* positions and the alkali
metal cations occupy the F-positions. This structure is called the “antifluor-
ite” structure. Init, the S? “ions form a ccp array, and the cations occupy all of
the tetrahedral holes.

In Table 11.4, a number of AX and AX, compounds are listed, arranged
according to structure type. The radius ratio values are also given. The
agreement between theory and experiment is reasonable, considering that the
use of radius ratios makes the assumption that ions are hard spheres.

11.4.4 Tetrahedral Coordination [4]

Table 11.1 g shows the tetrahedron as a coordination polyhedron. A suitable
radius ratio can also be calculated for tetrahedral [4]-coordination. In
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Fig.11.12a,b. Coordination
tetrahedron AX,, inscribed in

a cube (a); (110)-section through
b) v a coordination tetrahedron
derived from sphere packing (b)
Fig. 11.13. Zn'*S-structure (sphalerite Fig. 11.14. Zn!¥S-structure (wurtzite).
or zinc blende). Space group F43m Space group P6;mc
Lattice: cubic F Lattice: hexagonal P
Basis:  Sat0,0,0; Znatj, 1,1 Basis: S at0,0,0; g, ;,;,

Zn at 0,0, 517 3,3, (zzé)

Fig.11.12a, a coordination tetrahedron is shown inscribed in a cube. Figure
11.12b shows a section through the cube and tetrahedron parallel to (110),
with the radii of ions drawn to scale. Since R+ Ry is half the body
diagonal of the cube (1a+/3) and Ry is half of the face diagonal (1a+/2),
(Ra +Ryx)/Rx=/3/V/2, and Ry /Ry =+/3—1=0.225.

This implies that tetrahedral coordination will have a range of stability for
0.225 <Rao/Rx <0.41. Important examples of this coordination are the
sphalerite or zinc blende (ZnS) structure (Fig. 11.13), the wurtzite (Zn[“S)
structure (Fig. 11.14) and all modifications of SiO, except stishovite. Figures
11.15 and 11.24 show the structures of different modifications of Si™JO,. The
Si0O, tetrahedra build a framework structure through the sharing of vertices.
The radius ratio for SiO, is 0.29.

The bonding in both Zn IS structures is, in fact, largely covalent in nature.
If, however, the geometry alone is considered, the S-atoms in the sphalerite
structure occupy the positions of a cubic closest packing, and in the wurtzite
structure those of a hexagonal closest packing. In both structures, the Zn-
atoms occupy half of the tetrahedral holes.
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Fig. 11.15. Structure of high cristobalite, Si*0,,
Fd3m

How, then, do the basic principles for the formation of ionic structures
work out in practice?

1. Ingeneral, ionic structures have space groups of high symmetry, e.g. CsCl:
P4/m 32/m; NaCl and CaF,: F4/m 3 2/m. Structures based on the closest
packing of anions retain the space groups of those arrangements when the
interstices of a particular type are completely filled, e.g. Nal®lCI:
F4/m32/m (Fig.11.9). When the interstices are only partly filled, the
symmetry may be lowered, e.g. ALO;: R3c.

2. The packing efficiency of ionic structures is usually high: for the ideal CsCl
type, with R, /Rx =0.73, it is 0.73; for the NaCl type with R, /Rx =0.41, it
is 0.79. As the radius ratio increases for a particular structure type, the
packing efficiency decreases. For the structure of the NaCl type, for
example, with R, /Rx =0.54 (cf. Fig. 11.8a) it is 0.66.

3. In ionic structures, the commonly occurring coordination numbers, [8],
[6], and [4], are dependent on radius ratio and are relatively small. A better
correlation is obtained if only the coordinations of the anions are
considered, e.g. NaCl and Al,Os: Coordination number [12].

Finally, the linking of coordination polyhedra in ionic compounds
should be considered. Linking by shared vertices is favourable. The sharing
of edges, and in particular the sharing of faces lowers the stability of a
crystal structure. This effect is greatest when a cation has a high charge or a
low coordination number: Pauling’s third rule. In Fig11.16, the linking of
pairs of tetrahedra and octahedra through a vertex, an edge and a face is
shown. Taking the distance between cations in the vertex-sharing polyhedra
to be 1, the values in Fig. 11.16 show the decrease in cation-cation distance in
the edge- and face-sharing cases. Note that it is more severe for the linked
tetrahedra (0.55, 0.38) than for the linked octahedra (0.71, 0.58). The closer
the cations come to one another, the greater is the Coulombic repulsion, and
the lower the stability of the structure. The effect is greater when the cations
have higher charge.
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Fig. 11.16a,b. Linking of pairs of tetrahedra (a) and octahedra (b) through a vertex, an edge
and a face. The numbers give the relative distances apart of the two coordinated cations, after

[35]

Fig.11.17. The NaCl structure,
showing the edge-sharing coordination
octahedra. Every edge is shared by two
octahedra

The SiOj~ tetrahedra of numerous silicate structures, and of SiO,
structures, share vertices (cf. the Sit!O, structures in Figs. 11.15 and 11.24).
There are a few exceptions; stishovite, Sil®lO,, for example, has the rutile
structure. In the fluorite structure (Fig. 11.11 b), the coordination cubes share
edges.

In the NaCl and NiAs structures, the cations have octahedral coordi-
nation. This coordination is indicated on the structures in Figs11.17 and
11.18. In NaCl, the octahedra share edges, in NiAs, they share faces.

Comparison in this respect of the Nal®’Cl and Cs®Cl structures favours
the NaCl structure, since the Cs* ions have a cubic coordination in which all
cube faces are shared.
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Fig. 11.18a,b. Nil® As structure, P6;/mmc
Lattice:  hexagonal P
Basis: As 0,0,0; 2,1

Ni L21.123

Py Py
a Perspective drawing. b As projection on
(0001). The As-octahedra are face-sharing

The coordination octahedron of the rutile structure (Fig. 9.18) shares two
edges. This becomes clear when the unit cells above and below that shown are
considered. Two other forms of TiO,, brookite and anatase, have coordi-
nation octahedra which share three and four edges respectively. The rutile
structure is thus the most stable form of TiO,, and, unlike brookite and
anatase, its structure is adopted by many compounds.

11.5 Covalent Structures

Covalent or homopolar bonding, will be illustrated by the diamond structure,
which consists entirely of carbon atoms. The outer shell of a carbon atom is
occupied by 2s22p2-electrons. In free space, there will be one electron in each
of a 2s, 2p,, 2p, and 2p, orbitals. We may consider these mixed to form a set of
four sp? orbitals, pointing to the corners of a tetrahedron (Fig. 11.1d). Each
C-atom can form bonds with a maximum of four other C-atoms. This results
in the formation of a crystal structure, based on tetrahedra (Fig. 11.19), which

Fig. 11.19. Diamond structure, Fd3m
Lattice:  cubic F
Basis: C at 0,0,0 and 1,11
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has the same overall ordering of atoms as the sphalerite type in Fig. 11.13.
Each C-atom is surrounded by a tetrahedron of four other C-atoms.

In this case, the picture of bonding as sphere-packing is inapplicable as the
main forces are due to the directional bonding of overlapping atomic orbitals.
The packing efficiency of the C-atoms in diamond is not high. The bonding in
diamond is exceptionally strong, resulting in its great hardness.

11.6 Isotypes, Solid Solutions and Isomorphism

Crystals which have the same crystal structure are said to belong to a
structure type or to be isotypes. Isotypes are generally characterised by having
the same space group, analogous chemical formulae, and the same coordi-
nation polyhedra occupying the same sites. Neither the absolute size of the
atoms nor the type of chemical bonding is important; ionic NaCl and metallic
PbS crystals are isotypes, as are metallic Cu and van der Waals Ar crystals.

The relationship between isotypic structures becomes closer if atoms in
one structure can replace those in the other. The following experiment will
illustrate this. Two single crystals of the isotypic structures Au and Ag are
pressed together as the temperature is raised, but kept below the melting point
of either crystal. By diffusion, silver atoms pass into the gold crystal and
occupy the places vacanted by gold atoms, while gold atoms similarly diffuse
into the silver crystal. This diffusion can proceed to such an extent that
eventually, in some parts of the mass, an atomic ratio Au:Ag of 1:1 is
reached. The single crystal nature of the starting materials is apparently lost.
In some regions, arrangements of atoms like that in Fig.11.20 will occur.
Figure 11.20a shows the initial situation, with separate crystals of Agand Au,
while Fig 11.20b gives the situation after the diffusion process. The diffusion
process has distributed the Au and Ag atoms statistically over the sites of the
crystal structure.

Crystals in which one or more positions are occupied by a statistical
distribution of two or more different atom types are called mixed crystals or
solid solutions. The reciprocal exchange of atoms in crystals is referred to as
diadochy or replacement. Solid solutions in which one atom directly replaces
another are called substitutional solid solutions.

The chemical formula is also an indication that a crystal structure is
actually a solid solution. Interchangeable atoms are written together in a
chemical formula, separated by a comma. The solid solution described above
would be written as Ag, Au. K(Cl, Br) describes a solid solution in which Cl -
and Br “replace one another. In olivine, (Mg, Fe),SiO,, the oxide ions form an
hep array. The Mg?* and Fe?" ions are statistically distributed over specific
octahedral holes.
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Fig. 11.20. a Single crystals of Ag and Au pressed against one another. b The resultant solid
solution Ag, Au resulting from diffusion of one metal into the other. Only a single layer
at x,y,0 is shown

Solid solutions form most commonly when the replaceable atoms or
groups of atoms are most similar in chemical properties and size. A rule of
thumb for solid solution formation is that the radii of the interchangeable
atoms should differ by no more than 15%. Silver and gold are miscible in all
proportions (R, =1.44 A, Ry, =1.44 A, difference 4 ~0.0 %). Ag, Au solid
solutions are generally formed by slow cooling of a mixture of melts of the
two components.

Copper and gold are only miscible in all proportions at high temperatures
(Rea=1.28A, 4 =11%). During slow cooling the (Cu, Au) solid solution is
converted to ordered structures, called superstructures. The superstructures
with composition CusAu and CuAu are given in Fig. 11.21. Note that CuAu is
tetragonal, and no longer cubic.

Gold and nickel 4 =14 %) are also miscible at high temperature. At lower
temperature, the solution separates into Ni-rich and Au-rich solid solutions.
The separation can be essentially complete, so that only pure Ni and Au
domains remain.

Plagioclases are solid solutions whose limiting compositions are
NaAlSi;Og and CaAl,Si,Og. Here, the formation of a solid solution occurs

234



ON |

Cu Au b)

Fig.11.21. a The CuAu structure. b The CuAu; structure as superstructures of the Cu, Au
solid solution

through the simultaneous substitution of Ca for Na and Al for Si, or vice
versa. In order to keep the charges balanced Na* +Si*' = Ca?' + Al*",

When crystals of the same structure type (isotypic crystals) form solid
solutions with one another, the structures are said to be isomorphous. As the
following examples will show, however, solid solution formation is no
criterion for isotypes.

ZnIS (sphalerite-type, Fig. 11.13) and FeS (Nil® As-type, Fig.11.18) are
clearly not isotypic. In sphalerite, however, a (Zn,Fe) substitution up to
about 20% is possible. Fe?* and Zn?" are bivalent ions with almost equal radii
of 0.74 A. A substitution (Fe,Zn) in FeS does not occur. The occurrence of
substitution is thus not only dependent on the size of the atoms but also on the
properties of the crystal structures.

AglBr (NaCl-type) and AglI (sphalerite-type) show limited solid
solution formation. In AgBr, a (Br/I) substitution of up to 70% 1 " is possible,
while in Agl, substitution of Br occurs only very slightly.

Li%Cl (NaCl-type) and MgCl, (CdCl,-type, a layer structure) have not
only different crystal structures, but also different chemical formulae. In both
cases, the Cl~ ions form ccp arrays, and Li‘ and Mg?' occupy octahedral
holes in these arrays. All octahedral holes are occupied in LiCl, while in
MgCl,, only every second hole is occupied. When solid solutions are formed,
a Mg?' ion occupies one Li" site in LiCl, and causes another Li" site to be
vacant. Similarly, when a Li* ion occupies a Mg?' site, another Li* ion will
occupy one of the empty octahedral holes in MgCl,.

11.7 Polymorphism
Under different conditions, many solid substances can produce different
crystal structures of the same chemical constitution. This phenomenon is

known as polymorphism.
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Nickel crystallises in both the Cul*?-type (ccp) and the Mg!Z-type (hep),
zirconium in both the Mg!?-type (hcp) and the WEB-type (bec), and ZnIS in
both the sphalerite and wurtzite types. CaCOj; can give crystals of both the
calcite-type (Cal®!CO;) and the aragonite-type (Cal’’CO;). These CaCO;
structures naturally produce different morphologies (cf. Table 8.11.8 and 20).

The interconverison of polymorphs, also called structure transformations,
can proceed in a variety of ways. Buerger [5] distinguished the following types
of transformation:

1. Transformations of First Coordination

The transformation alters the coordination numbers, and thus the arrange-
ment of nearest neighbours. The new structure thus has new coordination
numbers.

a) Dilatational Transformations. Cs®ICl is converted, above 445°C to the
Nal®lCl type. The CsCl structure (Fig.11.22a) is converted to the NaCl
structure by a dilatation along a body diagonal of the cube (Fig.11.22b).
From the cubic arrangement of the C1~ ions (a cube is a special rhombohed-
ron with a 90° angle) arises a rhombohedral arrangement with a 60° angle. A
rhombohedral P-cell with ¢ =60° is a cubic F-lattice (cf. Chap.6.4). The
movement of the Cl~ ions causes the Cs ' ions to lose two neighbours, and the
cubic coordination is transformed to octahedral. Dilatational transforma-
tions are rapid.

b) Reconstructive Transformations. Cal®’CO; (aragonite) is converted about
400°C to Cal¥ICO; (calcite). The coordination number falls from [9] to [6].
The bonds between Ca?* and CO;2 " are broken and reformed. Another
example of this type of transformation is the conversion of Zr from the Mg!'?-

b)

Fig. 11.22a,b. Dilatational transformation in the first coordination. The Cs®!Cl structure
(a) is converted by means of a dilitation along the body diagonal of the cube into the Nal®ICl
structure (b). (After [5])
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Table 11.5. The occurrence of the calcite and aragonite structures as a function of cation
radius.

Structure type Formula Cation radius (&) Coordination number
MgCO; 0.66
FeCO; 0.74
. ZnCO; 0.74
Calcite MnCO, 0.80 [6]
CdCO;, 0.97
CaCO;, 0.99
CaCO;, 0.99
. SrCO 1.12
Aragonite PbCOi 1.20 [9]
BaCO, 1.34

type (hep) to the WEBltype (bcc). Reconstructive transformations are very
slow.

In Table 11.5, examples are given of compounds crystallising in the calcite
and aragonite structure types, with the radii of the cations. Rcp2-=0.99 A is
the limiting radius for the two types. Smaller cations fit well into the [6]-holes
of the calcite structure, while larger ones fit better into the [9]-holes of the
aragonite structure. Ca?' ions can form both structures. Raising the tem-
perature favours the conversion of Cal®’COj; (aragonite) to Ca®'CO; (calcite),
while raising the pressure converts calcite to aragonite. These observations
may be summarised by the rules: higher temperatures favour lower coordi-
nation numbers; higher pressures favour higher coordination numbers.

2. Transformations in secondary coordination

In these cases, the arrangement of nearest neighbours, i.e. the coordination, is
unchanged. The arrangement of next-nearest neighbours is changed. Figure
11.23 shows such a change diagrammatically. The three structures are all
made up of planar AB, “polyhedra” which are interconnected in different
ways.

a) Displacive Transformations. These involve a direct conversion of (a)
into (b) (Fig. 11.23). The polyhedra undergo rotation only, and no bonds are
broken. An angle A-B-A which is less than 180° in (a) becomes equal to 180°
in (b). The density falls and the symmetry rises.

Low- and high-quartz structures, Si'JO, are three-dimensional networks
of SiO, tetrahedra, which share vertices with one another. In right-handed
low-quartz (P3,2) (cf. Table 8.11.24), these tetrahedra form a helix about a
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Fig. 11.23a-c. Transformations in
the secondary coordination sphere
for structures based on square AB,
coordination.

a«<b is displacive,

b < c is reconstructive. (After [5])

3,-screw axis, parallel to the c-axis. In right-handed high-quartz (P6,22), this
becomes a 6,-screw axis. Figure 11.24 gives a projection of both structures
onto (0001). At 573°C, a displacive transformation between low- and high-
quartz occurs. The two structures are very similar; only a small rotation of
one tetrahedron relative to another has occurred. The conversion of low- to
high-quartz lowers the density from 2.65 to 2.53 gcm .

b) Reconstructive Transformations. Consider the conversion of (b) to (c) in
Fig.11.23. For this to occur, the bonds in b must be broken, so that the
4-membered rings of (b) may be rebuilt into the 6-membered rings of (c).
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P6,/mmc

P6,22

573°C displacive

Fig. 11.24a—c. Transformations
in the secondary coordination
of Sil¥O, structures shown as
projections on (0001).

a+<b Displacive: right-handed
low-quartz (P3,2) < right-
handed high-quartz (P6,22).

b < ¢ Reconstructive: right-
handed high-quartz (P6,22) <
high-tridymite (P6;/mmc).

a, b after [39]
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When high-quartz is heated above 870°C, it undergoes a reconstructive
transformation to high-tridymite (P6;/mmc, Fig.11.24c). The tridymite
structure consists of 6-membered rings of SiO, tetrahedra, which are packed
above one another, normal to the c-axis.

The transformation between sphalerite and wurtzite is also reconstructive.

Displacive transformations require little energy and are relatively rapid;
reconstructive ones require more energy and are very slow.

3. Order-Disorder Transformations

Copper and gold are miscible in all properties at high temperatures. In the
(Cu, Au)-solid solution, the Cu and Au atoms are statistically distributed over
the sites of the ccp crystal structure (disorder). On cooling, there is an ordering
through the formation of the CuAu and CusAu superstructures (Figs. 11.20
and 11.21, cf. Sect. 11.6)

4. Transformations Involving Changes in Type of Bonding

Carbon occurs as diamond (Fig. 11.19), graphite (Fig. 11.25) and the various
fullerenes (e.g. Cgo, Fig.11.6a). In diamond, the bonding throughout the
crystal is covalent. In graphite and in the fullerenes, covalent bonds hold the
atoms in the layers or molecules while van der Waals forces hold layers and
molecules together. Transformations of this sort are very slow.

In the graphite structure, the carbon atoms are ordered in 6-membered
rings in the layers. The coordination “polyhedron” in this case is an
equilateral triangle [3] (Table 11.1h). The layer stacking can repeat itself at

1 3
2 2
1 a) 1 b)

Fig. 11.25a,b. Polytypes of graphite structure. a 2H; b 3R. After [37]
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intervals of either two or three layers (Fig. 11.25). Both of these structures
have been observed. This special form of polymorphism is called polytypism.
In these polytypic structures, (a) gives a hexagonal unit cell and (b) a
rhombohedral. The structures are thus labelled as the 2H- and the 3R-
polytypes of graphite, respectively.

11.8 Literature on Crystal Structures
Further information about specific crystal structures is obtainable from

many sources. The following references are particularly recommended: [29],
[43]-[45], [51].

241



Exercise 11.1. Calculate the ideal radius ratio Ry/Rx for the coordination polyhedra:
trigonal prism [6] and equilateral triangle [3] (cf. Table 11.1).

Exercise 11.2. Give a description of the following structures in terms of lattice + basis:

a) a-Polonium (cubic P-lattice), cf. Fig. 2.1.

b) Tungsten (cubic I-lattice), cf. Fig. 11.5.

c) Magnesium (hexagonal closest packing) cf. Fig.11.3.

d) Copper (cubic closest packing) cf. Fig. 11.2.

e) Draw four unit cells of the Mg-structure in projection on (0001). Find those symmetry
elements which characterise the structure as hexagonal.

Exercise 11.3. Calculate the radii of the atoms in the structures in Exercise 11.2, using the
following lattice parameters:

a) a-Po: ay=3.35 A.
b) W:  a,=3.16A.
c) Mg a;=3.21 A, c=521A.
d) Cu:  a,=3.61A.

Compare these values with those given in Table 11.3.
Exercise 11.4. Calculate the ideal co/a, ratio for hexagonal closest packing.

Exercise 11.5. The packing efficiency is the ratio of the sum of the volumes of the atoms
making up a unit cell to the volume of the cell itself. Calculate the packing efficiencies of:

a) a-Polonium (cubic P-lattice).
b) Tungsten (cubic I-lattice).

¢) A hexagonal closest packing.
d) A cubic closest packing.

Exercise 11.6. The diamond structure has:
lattice: cubic F, ag=3.57 A
basis: C:0,0,0; 1,11

CPPw
a) Draw a projection of the structure on x,y, 0. Sketch tapered C-C bonds with colours
indicating the height (use green for 0 <z <% and red for % <z<1)

Atoms with
O z=0
IR . ¢
> -1
Q =i
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b) Calculate the length of a C—C bond.

¢) What is the value of Z?

d) Describe the structure.

e) Compare the diamond structure with that of sphalerite (Fig. 11.13).

Exercise 11.7. The graphite (2H) structure has
lattice: hexagonal P: ag=2.46 A; ¢y =6.70 A.

is: . . L 120,211
basis:  C: 0,0,0; 0,0,5; 3,3,0; 5,35

a) Draw a projection on four unit cells on x,y,0. Join each C-atom to its three nearest
neighbours with the same z-coordinate with coloured lines (z=0 green, z:% red).

b) Calculate the length of a C C bond.

c) What is the value of Z?

d) Describe the structure. How large is the inter-layer spacing?

e) Calculate the densities of diamond and graphite and comment on the difference.

Exercise 11.8. LiCl (NaCl-type; ag=5.13 A) has an arrangement of Cl ions which is cubic
closest packed (Rx/R =0.43). Calculate the ionic radii of Cl and Li* and the packing
efficiency of the LiCl structure.

Exercise 11.9. Draw the ions on the x,y,0-plane of the NaCl (ag = 5.64 A), LiCl (ag=5.13 A)
and RbF (ao=5.64 A). The ionic radii can be taken from Table11.3.

Exercise 11.10. Calculate the Ti—O distance in the coordination octahedron of the rutile
structure (cf. Table 9.5). Which distances are equivalent by symmetry, and hence required to
be equal?

Exercise 11.11. The pyrites structure (FeS,) has:

a) Space group Pa3 (P2,/a3)

. 3 .0llL1lpg 1g]l
Fe: 4a3 0,0,0; 0,5, 3,3,0; 3,0,3.
St 8c3 XXX 4TX,1-XX X itx4 X ioxXi4x
—_— 1 - 1.1 1 (x=0.386).
EX 5 X531 X,X X5 X5+ X, 537 X,X,5—X

b) Lattice constant: ag=5.41 A.

Draw the structure as a projection on x,y,0 (let ag =10 cm).
Describe the structure.

What is the value of Z?

Calculate the shortest Fe—S and S—S distances.

Draw the symmetry elements on the projection.

A
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Exercise 11.12. A compound of NH,/Hg/Cl has:

a) Space group P4/mmm.

b) Lattice constants: ay=4.19 1°\, co=7.94 A.

c) Positions: Hg:  0,0,0
NH,:
Cl(D): 33,
Cl(2): +(0,0,z) z=0.3

Draw a projection of the structure on 0,y,z (1 A= lcm).

2. Give the chemical formula of the compound, and the value of Z.

3. Describe the coordination of Hg and NH,, giving the coordination number and the
coordination polyhedron.

4. Calculate the shortest Hg—Cl and NH,—ClI distances.

— ol

1
2>
1

O Mot

[

Exercise 11.13. The crystal structure of BaSOy has:

a) Space group Pnma with special and general positions:
(4o) +(x,3,2; 3+x,51-2)
Bd) £(y.2 XFHNZ 15X Y,172 j7%.5,512)
b) Lattice constants: ag=8.87 A, by=5.45 A, ¢;=7.15 A.
¢) Occupation of positions:

Position multiplicity X y ,
and Wyckoff letter
Ba (4c) 0.18 i 0.16
S (4¢c) 0.06 }‘ 0.70
o(l) (4¢) -0.09 : 0.61
0(2) (4¢c) 0.19 % 0.54
0(3) (8d) 0.08 0.03 0.81

1. Draw a projection of the structure on x, 0, z.
2. What is the value of Z?
3. Determine the coordination of O atoms around S.
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12 Studies of Crystals by X-Ray Diffraction

Since the wavelengths of X-rays and the lattice parameters of crystals are of
the same order of magnitude, X-rays are diffracted by crystal lattices. It was
from the discovery of this effect in 1912 by Max von Laue that we may date the
beginning of modern crystallography. Only then did it become possible to
determine the structures of crystals.

We shall only describe here one X-ray method, the Debye-Scherrer
technique, in detail, because it is a very important research tool for the
scientist. Also, a brief description will be given of how a crystal structure
may be determined.

For a fuller description of X-rays and their properties, the reader is
referred to textbooks of crystallography or physics.

12.1 The Bragg Equation

The diffraction of X-rays by crystals can be formally described as a reflection
of X-rays from sets of lattice planes. Assume that a parallel, monochromatic
beam of X-rays (i.e. one characterised by a single wavelength 1) falls on a
set of lattice planes with a spacing of d, making a glancing angle of 8 with
them (Fig.12.1). The waves I and II will be reflected at A; and B, and will

u

be Q —ete- Q. —o

a)

Fig. 12.1. a Diffraction (“reflection”) of an X-ray beam by a set of lattice planes. b Inter-
ference of waves reflected by a set of lattice planes (I"'=121)
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thus undergo interference. At the point A;, the waves will have had a
path difference I'=BA;—A;B’=BA;—-BC=CA;, since BA,=BA; and
B’A;=BC. Thus,
sinf=—
2d
An interference maximum will be observed when I"is an integral multiple n of
A, or T'=n4, where n is the order of the interference. This gives rise to the
Bragg equation:
nA=2dsiné.

12.2 The Debye-Scherrer Method

In the Debye-Scherrer method, a fine powder of a crystalline substance is
irradiated with monochromatic X-rays. According to the Bragg equation, a
set of parallel planes (hkl) will reflect X-rays with certain characteristic
glancing angles 6 (Fig. 12.2a). Since the crystallites are randomly arranged in
a fine powder, there will always be a large number of crystals orientated in
such a way that a given set of planes (hkl), which make an angle 6 with the
X-ray beam can cause reflection to occur. These planes are tangent to the
surface of a cone with a cone-angle of 2. The beams reflected by these planes
lie on the surface of a cone with a cone angle of 46 (Fig. 12.2b). Figure 12.2¢
shows the reflection cones of a few different sets of planes.

In the Debye-Scherrer method, a cylindrical camera is used with the
powdered specimen, contained in a thin tube mounted along the cylinder axis.
The cones of reflection intersect the film in Debye-Scherrer lines (Fig. 12.2¢,d).
The angle between pairs of lines originating from the same cone is 46. Thus

S 40
27R 360°

where R is the radius of the camera. For R =28.65 mm (27 R =180 mm), the
measured value of S in mm is thus equal to the value of 26 in degrees.

In order to obtain information from X-ray photographs, it is necessary to
index the reflections, i.e. to determine which set of lattice planes gave rise to
the observed interference. Since the value of 6 is easy to read from the
photograph and 4 is known, the Bragg equation allows d, the spacing of the
lattice planes, to be calculated.

How are these d-spacings related to (hkl)? The plane lying next to the
one which passes through the origin in Fig. 12.3 intercepts the orthorhom-
bic axes at the point m00 (a-axis), On0 (b-axis) and 00 (c-axis), cf. Chapter
2.4.3.
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Fig. 12.2. a Relationship between the primary beam and a ray diffracted by the lattice planes
(hkl). b Possible orientations of the set of planes (hkl) in a crystalline powder. The result of
the random orientation of the planes giving a glancing angle of 6 is a cone with a generating
angle of 46. ¢, d The rays diffracted from the various lattice planes lie on concentric cones
about the primary beam. Their intersections with the film give rise to the “lines” of the
powder diagram. (After [11])
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Fig. 12.3. Relationship between the Miller indices
of a set of lattice planes and the spacing of the
planes d

For a set of planes (hkl):

COoS @, = d =d-L
m-

2N ao

CoSs P, = d :d-L
n'bo bo
cos @, = d =d-—.
P Co Co

Squaring these and adding them together gives:
h?2 k2 12
cos?@, + cos’py, + cos’p. =d?+ —2+—2—+1— -1
aj  bj ¢
1
h? k2 12

dhkl =

a; by o

this relationship applies to the orthorhombic system. In the cubic system, it

simplifies to
g

Vh2+k2+12
Substituting this equation for the d-spacing into the Bragg equation and
squaring gives:

dhkl =

2
sin20:/1—- (h2+k2+12%).
4a}

The right-hand side of this equation is the product of a constant factor 12/4a3
and an integer (h?+k? +1?). The values of sin?# for individual reflections are
thus related to one another as integers.

The powder pattern for tungsten in Fig.12.4 was taken with Cuk,
radiation, 4 =1.54 A. Table 12.1 shows the calculations for this photograph.
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6 7 8 7 6 5 4 3 2

N

Fig.12.4. Powder diagram of tungsten (reduced to 0.65 of original size)

Note that this table includes the reflections 200, 220 and 400, which
contravene the definition of Miller indices as they do not represent the
smallest integral multiples of the reciprocals of intercepts on the axes. In
fact, they are Miller indices multiplied by the factor n, the order of
diffraction. In other words, 200 may be regarded as the second order of
diffraction from the (100) planes. These hkl triples, written without brackets,
are called Laue symbols, and their use makes the factor n of the Bragg
equation unnecessary.

From the constant factor 12/4a3 =0.0592, the lattice parameter ag— 3.16 A
may be determined. Z; the number of formula units per unit cell, can also be
determined (cf. Chap. 3)

7 o V- NA
M
7 19.3-3.163-10724+6.023-10%
183.86
Z~2.

A cubic structure of an element with Z =2 can only occur if the substance has
a cubic I-lattice, cf. Fig. 11.5.

In Table 12.1, 100, 111 and 210 do not occur. Such absences occur in
structures which have centred lattices or contain glide planes or screw axes.

The absent reflections are said to be extinct. Those reflections which do
occur in Table 12.1 obey the rule h + k +1=2n, where n is an integer, and this
is characteristic for all structures with an I-lattice.

The number of reflections which can be observed on an X-ray photograph

is limited. In the Bragg equation sin = % ,—1<sinf<+1. Thus ?/1(1_ <+1

and dz%. Diffraction can only arise from those sets of lattice planes for

which dz%. For CuK, radiation, 1=1.54 A, the limiting value for d is
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Table 12.1. Interpretation of the powder pattern of tungsten

2
Fe?lngtion msm degélee Sinza:’jT%' (h?k?+41) hkl dna A
1 40.3 20.15 0.1187 =0.0594-2 110 2.24
2 58.3 29.15 0.2373=0.0593-4 200 1.58
3 73.2 36.60 0.3555=0.0592-6 211 1.29
4 87.1 43.55 0.4744=0.0593-8 220 1.12
5 100.8 50.40 0.5937=0.0594-10 310 1.00
6 115.0 57.50 0.7113=0.0592-12 222 0.91
7 131.2 65.60 0.8294 =0.0592- 14 321 0.85
8 154.2 77.10 0.9502=0.0592-16 400 0.79

thus 0.77 A. The pattern for tungsten contains no reflections with a d-value
<t _07A.
2

The greatest use of the Debye-Scherrer method is in the identification of
crystalline substances. Every sort of crystal produces a pattern of lines with
characteristic positions and intensities. The intensity is roughly proportional
to the blackness of a photograph. The American Society for Testing Materials
published an index (the ASTM index) containing data for all crystalline
inorganic and organic substances which have been studied by X-ray
diffraction. This index is now administered by the Joint Committee for
Powder Diffraction Standards (JCPDS) at the International Center for
Diffraction Data in Swarthmore, USA. Every substance has an index card
which contains the d-values and the relative intensities for individual
reflections, as well as many other crystallographic data. The PDF-card for
tungsten is given in Fig. 12.5. For the identification of an unknown substance,
use is made of the lines with the strongest intensities, which are given in
tabular form. Naturally, the file is now normally accessed by computer.

12.3 The Reciprocal Lattice

Crystals are three-dimensional systems. A stereographic projection, which
gives a useful summary of the arrangements of the crystal faces with respect to
one another, can be derived simply from a consideration of the morphology
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4-806 JCPDS-ICDD Copyright © 1991 Quality:*

dA Int. [ h k1
w
2.238 100 |1 10
Tungsten 1.582 15200
1.292 23 (211
1.1188 81220
1.0008 111310
Rad: CuKat Lambda: 1.5405 Filter: ‘Ni dsp:
Cutoff: Int: Diffractometer 1/Icor: 18.00 0.9137 41222
Ref: Swanson, Tatge, Natl. Bur. Stand. (U.S.), Circ. 539, 1 28 (1953) 0.8459 18 13 2 1
0.7912 21400
Sys: Cubic S.G.: Im3m (229)
a: 3.1648 b: c: A: C:
A: B: C: Z:2 mp:
Ref: Ibid.
Dx: 19.262 Dm: SS/FOM: F8 = 108 (.009.8)
ea: nwB: ey: Sign: 2V:
Ref:
Color: Steel-gray to tin-white
Pattern at 26 °C. Sample prepared at Westinghouse Electric Corp. CAS no.:
7440-33-7. Analysis of sample shows Si0, 0.04%, K 0.05%, Mo, AL, and 0.01%
each. Merck Index, 8th Ed., p. 1087. W type. Also called: wolfram. P§C: clZ. Mwt:
183.85. Volume [CD]: 31.70.

IStrong lines: 2.24/X 1.29/2 1.58/2 0.85/2 1.00/1 1.12/1 0.91/1 0.79/1

Fig.12.5. PDF (formerly ASTM) index “card” for tungsten, as a computer printout

of a crystal. As described in Chapter 4.4, the normals to the crystal faces are
used for this purpose.

An alternative system for representing the lattice planes was proposed by
P. P. Ewald to discuss the scattering of X-rays by the crystal lattice. Since, as is
described in section 12.1, the diffraction of X-rays can be interpreted as the
reflection of the rays by sets of parallel lattice planes, it was important to
devise an aid to illustrate both the orientations of the lattice planes and their
diffraction. This aid is the “reciprocal lattice”. Each set of lattice planes in the
crystal is represented by a point in the reciprocal lattice. The construction of a
“reciprocal lattice” from the corresponding “direct lattice” may be performed
as follows: For each set of lattice planes (hkl), the normal is drawn from the

origin with a length d* =——, where d is the lattice spacing and C is a pro-
hicl
portionality constant.

The construction of the reciprocal lattice corresponding to the projection
on (010) of a direct monoclinic P-lattice is shown in Fig. 12.6. The normal to
the set of lattice planes (001) is drawn from the origin and assigned a length
d* = ¢ .

doos
set of (100) planes gives the point Pf,. The points Pg; and P, represent the
relative orientations of the (001) and (100) lattice planes.

The resulting point is called Pg};. A similar construction for the
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(100)

Fig. 12.6. Monoclinic P-lattice as a projection on (010) with the points P, and P{%. Pio, Pgh:
and P define a lattice, the reciprocal lattice

Making use of the three points P, Pt and Pg);, a two-dimensional lattice
can be constructed. This reciprocal lattice plane is indicated by dashed lines in
Fig. 12.6. It must now be shown that the reciprocal lattice points correspond-
ing to all sets of lattice planes with indices (hOl) fall on this same plane.
Figures 12.7-12.9 show the relevant constructions for the sets of (101), (201)
and (102) planes. When all relevant points are added to the drawing, its
lattice-like nature is apparent (Fig.12.10). This construction does not,
however, lead to all of the points required by the reciprocal lattice. For
example, Pgh,, P and P, are missing since lattice planes with indices such as
(002), (200) and (202) contravene the definition of Miller indices given in
Chapter 2.4.3. It is, of course, possible to define a set of “lattice planes” (002)

. . d .
with a spacing d=%. In these “lattice planes”, only half of the planes
intersect points of the direct lattice. Furthermore, the Bragg equation (Sect.
2.1) can be written in the form l=29—sin 0. 1If this is done, every n-th

n
order diffraction with a plane spacing of d can be replaced by a first-order
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Fig. 12.7 Fig.12.8

Fig. 12.7. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes
(101) and the point P, of the reciprocal lattice

Fig.12.8. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes
(201) and the point P, of the reciprocal lattice

TR,
\\ \\ \\
\ \ \
\ \ \
zmc\*"”""TmQ?"_""60'1q
\ \ \ &
\ \ \
\\ \\ n:\b
00 w0 & 000
Fig. 12.10

Fig.12.9

Fig.12.9. Monoclinic P-lattice as a projection on (010) with the traces of the lattice planes
(102) and the point P}, of the reciprocal lattice

Fig.12.10. Reciprocal lattice (a*c*-plane) corresponding to the monoclinic P-lattice of
Fig.12.6
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. . . . d o
diffraction from planes with a spacing of —. P, describes in the same way
n

a second-order diffraction from the planes (001), P; a third order, and so on.
The same sort of reasoning applies to the points Py, Pj,, etc. (see also
Sect. 12.2).

The rule for constructing the reciprocal lattice given above (p. 251) is thus

incomplete and should read: ... with a length d* =£, and all integral mul-
ki
tiples thereof, where d is the lattice spacing . ...

The reciprocal lattice, like the direct lattice, is defined by six lattice
parameters:

5%| —ai— 1 :bocosina
dq100) \Y

|B*|:b3<: 1 :aocosinﬁ
do10) Vv

| :c{)":L: agbgsiny
don Vv

V =agbyco V1 —cosa — cos?f —cos?y+2 cos acos fcos y

(Volume of the unit cell)

cos fcosy—cos a

a*=b*AC* cosa*= —
sin fsiny

fr—G*AE¥  cosfF = cosacosy—cosf

sin ¢ sin y
oy 3 cos & cos f§ — cos
p*=a*Ab*, cosy*= - ﬂ Y
sin asin 8

The use of the reciprocal lattice allows an elegant discussion of the
application of the Bragg equation to the diffraction of X-rays by a lattice.
Figure 12.11 shows a section through a reciprocal lattice. The direction of the
primary beam is indicated by a straight line through the point Pg,. A sphere

(which in Fig. 12.11 becomes a circle) with a radius of% and a centre at
the point M on the line is then constructed so that the surface of the sphere

intersects the origin of the reciprocal lattice, Pg. This sphere is known as the
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Fig. 12.11.
) The Ewald construction

sphere of reflection. In general, no point of the reciprocal lattice other than
P lies on the surface of the sphere. By choosing the direction of the primary
beam appropriately, however, it may be possible to cause another point Py
to lie on the surface of the sphere of reflection, as in Fig. 12.11. In this case, the
condition for the Bragg equation n4 =2d sin @ is fulfilled precisely for the set
of planes (hkl). Diffraction occurs, and the diffracted beam has the direction
MPy;. The orientation of the planes (hkl) is shown in Fig. 12.11 by a dotted
line. It is obvious that the diffracted beam with a glancing angle equal to # can
equally well be described as a reflection from the lattice planes (hkl). It will be
1

noticed that for the triangle Pji;MT, sin 6 = 2d % , fulfilling the Bragg
1

A

condition. This geometrical construction is known as the Ewald construction.

If a single crystal is rotated about an axis which is perpendicular both to
the primary beam and to a selected plane of the reciprocal lattice, then the
reciprocal lattice itself rotates about an axis through Pgj,. During this
rotation, other points of the reciprocal lattice will pass through the surface of
the sphere of reflection, and the corresponding lattice planes will come into
the diffracting position. These relationships are the basis of rotating crystal
methods.

The precession method of M. Buerger produces an undistorted represen-
tation of the reciprocal lattice. In this technique, an axis of the crystal
precesses about the primary beam. The resulting picture is of the reciprocal
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Fig. 12.12. Precession photograph of f-eucryptite, LiAlISiO, (space group P6422): a*b*-
plane (Photograph A. Breit)

lattice plane perpendicular to this axis. A precession photograph of f-eucryp-
tite, LiAISiO, (space group P6,22) is shown in Fig.12.12. It represents the
a*b*-plane. The reciprocal lattice of a hexagonal lattice is itself hexagonal, as
is shown 1n Fig. 12.13 which should be compared with Fig. 12.12.

12.4 Laue Groups

In general, the intensity of an X-ray beam diffracted from one side of a set of
lattice planes is equal to that diffracted from the other. A diffraction pattern is
thus centrosymmetric. It follows that instead of 32 point groups only the 11
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Fig.12.13. a*b*-plane of a hexagonal reciprocal lattice,
cf. Fig.12.12

which contain an inversion centre can characterise a diffraction pattern.
These 11 point groups are known as Laue groups (cf. Table 8.10).

As an example, the Laue groups of the tetragonal system will be explained.
An inversion centre is added to each point group:

Laue group 4/m

4+1—-4/m (Symmetry rulel)
4+1—4/m (cf. Fig.5.13) The operation of an inversion centre on the 4
array in (a) results in the 4/m array in (b).

Laue group 4/m 2/m 2/m (4/mmm)

422 +1—4/m 2/m 2/m (Symmetry rule 1)
4mm +1—4/m 2/m 2/m (Symmetry rule 1)
42m+1—4/m 2/m 2/m (4 +1=4/m as above and symmetry rule 1).

Consideration of the first Symmetry rule together with the relationships
3+1=3 and 6 +1=6/m will allow the Laue groups of the other crystal
systems to be derived from each point group (cf. Table 8.10).

12.5 The Determination of a Crystal Structure

Powder diffraction patterns allow the determination only of relatively simple
structures. Techniques have been developed which make use of measure-
ments of the intensities of the reflections of sets of lattice planes from single
crystals. Study of relationships among intensities and “systematic absences”
in the diffraction pattern can lead to the determination of the space group.
Measurement of the density of the crystals gives Z (cf. Sect. 12.2), the number
of formula units in the unit cell. The intensity of the individual reflections
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depends on the extent to which the sets of lattice planes are occupied by
atoms. Since different sets of lattice planes will vary greatly in both the
number of atoms occupying them and the “heaviness” (in terms of electrons)
of those atoms, the intensities of a very large number of reflections can allow
the determination of the arrangement of atoms in the unit cell.

For simple crystal structures, it is possible to make useful structural
conclusions from only a small amount of data.

Exercise 12.1. Draw the (100)- and the (001)-lattice planes of the rutile structure (cf. Fig. 9.18
and Table 9.5). Using the introduction in Section 12.3, construct the a*c*- and the a*b*-
planes of the reciprocal lattice.

Exercise 12.2. For the crystal structure of thallium, the lattice parameters are
ag=by=cy=3.88 A, a=f=y=90°, and the density is 11.85 gcm 3. Determine the crystal
structure, and draw it, projected on x,y, 0.

Exercise 12.3. An AX-structure has been determined to have the space group Fm3m with
Z =4. Describe the structure.

Exercise 12.4. A crystal being studied gives the following data:

1. Lattice parameters: ay=4.59, ¢y =2.96 A.
2. Space group P4,/mnm (cf. Fig.9.17).

3. Chemical formula TiO,.

4. Density=4.26gcm °.

The ionic radii Ti* =0.64 A and 02~ =1.32 A may be taken from Table 11.3.

a) Determine the value of Z.

b) Select those sites (positions) which are formally possible for Ti and O.

¢) Making use of the ionic radii of Ti** and O?", propose a crystal structure for this
compound.
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13 Crystal Defects

A crystal with a volume of 1cm? will contain about 10 atoms. Lattice
theory requires in principle that all of these atoms occupy a regular lattice.
The array of atoms must conform to one of the 230 space groups. The
equivalent points of a position of a space group must be fully occupied by
atoms of the same type. This theoretical model is only achieved concep-
tually, by an ideal crystal.

The observation of a large number of crystals will show that they in fact
have cracks and fissures, and that crystal faces are often not really flat. At
cleavage surfaces, crystalline domains are often displaced with respect to one
another. Inclusions occur in crystals, which may themselves be crystalline,
liquid or gas. In practice, a real crystal deviates considerably from the ideal
model described above.

All deviations from ideal crystalline behaviour are described as crystal
defects. Many important properties of crystals derive from defects, including
luminescence, diffusion, mechanical properties, etc. Nevertheless, the ideal
crystal structure is the starting point for all studies of crystals.

Individual defects make themselves apparent in many ways. They can be
categorised in terms of their dimensionality (Table 13.1).

Table 13.1. Types of crystal defects

13.1 Point defects 13.2 Line defects 13.3 Plane defects

a) Substitution defects a) Edge dislocations a) Small angle

b) Solid solutions b) Screw dislocations grain boundaries

¢) Schottky and Frenkel b) Stacking faults
defects c¢) Twin boundaries
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13.1 Point Defects
Point defects are concerned with atomic dislocations.

a) Substitution Defects. An ideal crystal must consist entirely of the substance
to which its formula refers, and this situation never occurs. As there are about
10% atoms in 1cm?® of a crystal, even a purity of 99.99999% implies the
presence of some 10'¢ foreign atoms! These foreign atoms will in general be
larger or smaller than the atoms they replace. Furthermore, the foreign atoms
may have different bonding capacities. This can result in the propagation of
further irregularities in the crystal which may no longer be of the point-defect
type.

In some cases, crystals with specific impurities are actually required. It is
such impurities which control the electrical conductivity of many semicon-
ductors.

b) Solid Solutions. The statistical distribution of atoms in solid solutions (cf.
Chap. 11.6) can also give rise to point defects.

c) Schottky- and Frenkel Defects. Every crystal contains voids. These are
places in a crystal where the expected atoms do not occur. If these missing
atoms have “wandered” to a surface of the crystal, the result is called a
Schottky defect, while if they have moved to places between other atoms
(interstitial sites), the result is called a Frenkel defect. Both of these types are
illustrated for an ionic crystal in Fig. 13.1. The concentration of faults in a
crystal is in thermal equilibrium, and increases with rising temperature. The
type of fault which occurs depends on the structure itself, its geometry and its
bonding type. In alkali halides, Schottky defects predominate, while Frenkel
defects predominate in silver halides. Measurement of the density of a crystal
gives an indication of the defect type, since Schottky defects decrease the

® 0 ® 0 0 ®O0O®O0® ®0O0060 06
©® 0 ® 0 cooe®o o066 0o
©c®0®0 0 ®O0 0O ®00O006
©O®O 000 00000 O0000O0
D ® 0 ®@ 0 O WO O ® 0 ® g0 0 0 @

Fig. 13.1a-c. Schottky defects (a) and Frenkel defects (¢) in an ionic crystal (O void); (b) the
ideal crystal
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density (more volume for the same mass) while Frenkel defects leave the
volume and hence the density unchanged.

Wouestite (NaCl-structure type) does not have the ideal stoichiometry FeO,
because the Fe* ions in some places are replaced by Fe3*. This unbalanced
charge results in a corresponding number of cation vacancies, giving a
formula Fe,_,O.

The occurrence of these faults gives rise to a number of properties. The
defects make possible the diffusion of ions through the crystal. If a gold
crystal and a silver crystal are pressed firmly against one another as the
temperature is raised, Ag-atoms diffuse into the gold crystal, and Au-atoms
into the silver, forming solid solutions (cf. Fig.11.20). At sufficiently high
temperatures, ionic crystals, such as NaCl, show a small electrical conduc-
tivity. This does not result from electronic conduction, as in metals, but is
brought about by ionic movement. Without crystal defects, this would not
occur.

Solid-state reactions are almost always propagated by crystal defects. The
heating of a mixture of finely powdered ZnO and Fe,O; crystals to a
temperature well under their melting points brings about a reaction yielding
crystals of the spinel zinc ferrite, ZnFe,Q,4. The rates of solid-state reactions
are much less than those taking place in the gas or liquid phase. They do,
however, rise with temperature as the concentration of crystal faults and the
rates of diffusion rise.

13.2 Line Defects
This type of defect forms along a line, the line of dislocation.

a) Edge Dislocations. The upper portion of the crystal in Fig. 13.2a has been
displaced by the vector BC (=B’C’)in the plane ABA’B’ relative to the lower
portion in such a way that the line AA’ (the line of dislocation) marks the limit
of the displacement. Figure 13.2b shows the structure of a plane normal to the
line of dislocation AA’. The displacement vector, which amounts to a
displacement (= BC) is known as the Burgers vector b, and is normal to the
line of dislocation AA’.

b) Screw Dislocations. The crystal in Fig.13.3 contains a screw dislocation
which arises from a displacement in the plane ABCD with the line of
dislocation AD. In the region of the line of dislocation, the crystal does not
consist of neatly stacked lattice planes, but of an arrangement of atoms which
repeat through the structure in a helical manner (screw dislocation). In this
case, the Burgers vector b is parallel to the line of dislocation.
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Fig. 13.2a, b. Edge dislocation; pictorial (a), structural representation (b) (L end of the line
of dislocation)

Fig.13.3. Screw dislocation ([38])

Edge- and screw dislocations, as described here, are only limiting cases;
intermediates also occur. Dislocations are important in the plastic defor-
mation of metals (Chap.11.2) (movement of dislocations).

Screw dislocations also play an important role in crystal growth. The
deposition of atoms on a step of the helix is always energetically favourable,
and these steps persist during the growth of the crystal, permanently.

Dislocations are active regions in crystal faces, and etching gives rise there
to characteristic etch-figures (cf. Table 8.11.21). By etching, the concentration
of dislocations per cm? can be estimated. This varies from virtually zero in the
most perfect single crystals of germanium (semiconductor) to 10'2 per cm? in
the most strongly deformed metals.

“Whiskers”, or ultrathin, needle crystals, often form with the screw
dislocation parallel to the needle axis. They display remarkable mechanical
properties. For example, the breaking strength of a NaCl-whisker of 1um

diameter is as much as 110 kP mm 2.
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13.3 Plane Defects

a) Small Angle Grain Boundaries. It frequently occurs that different domains
of a single crystal are tilted by a small angle with respect to each other. Their
boundary faces are small angle grain boundaries, and are built up by a series
of dislocations. A small angle grain boundary, consisting entirely of step
dislocations, is illustrated in Fig.13.4. The inclination angle 6 which the
crystal domains make with each other, may be calculated from the Burgers
vector b and the separation of the displacements D, since

6=

UlG"l

Fig.13.4. Small angle grain boundary formed from edge
‘ [ e e dislocations (6 =inclination angle)
a

chI

b) Stacking Faults. Stacking faults are disturbances of the normal layer
sequence in the building of a structure. They are most frequently observed in
metals (ccp and hcp, Figs. 11.2 and 11.3) and in some layer structures (e.g.
graphite, Fig.11.25). Cobalt crystallises with both cubic and hexagonal
closest packing, and it also occurs that both stacking sequences (ABCA....
and ABA...) may alternate irregularly. Such an array is only periodic in two
dimensions and thus does not qualify to be called a crystal.

¢) Twin Boundaries. A twin is the regular growing together of crystals of the

same sort. The crystals lie in a symmetric relationship to one another. The
commonest twinning symmetry elements are 2 and m. Twins can arise during
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L] () () L] L]
(101)
L) L] L) [ ] L]
() L] L] ()
L) L) L)
() [ ]
. Fig. 13.5. Twin with twin-plane (101)

crystal growth (growth twins) or through mechanical stress (deformation
twins). In Fig.13.5, the twin element is a mirror plane parallel to (101).

In general, because of the occurrence of small angle grain boundaries, a
crystal may be thought of as being built up of small mosaic blocks, which are
only slightly displaced relative to one another. Figure 13.6 shows such a
mosaic formation, with the inclination angles grossly exaggerated.

Fig. 13.6. Plane of a real crystal with mosaic
blocks. ([1])
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14 Appendix

14.1 Symbols for Crystallographic Items

a,b,c Crystallographic axes
a, aj; aj, a5, a3 Symmetrically equivalent crystallographic axes

(a) Set of symmetrically equivalent crystallographic axes
(ar, a; ay, ay, a3)

a, b, ¢ Lattice vectors of the unit cell
|§ | =ao
|b] =byg Lengths of vectors
IS =cp Lengths of cell edges .
= Lattice parameters

a=bAc

=aAC Interaxial angles
y=aAb

Crystallographic “triples”

X,V,Z Coordinates of the vector T =xa + yE +zC
Coordinates of a point in the unit cell, 0 <x,y,z<1

uvw Coordinates of the lattice translation vector
T=ua+vb+wc
Coordinates of a lattice point, integers and integers +3, 3, 3

[uvw] Indices of a set of parallel lattice lines. Indices of a zone axis
or parallel crystal edges

(uvw) Indices of a set of symmetrically equivalent lattice lines or
directions
(hkl) Muiller indices: Indices of a crystal face or of a set of parallel

lattice planes

(hkil) Bravais-Miller indices: indices of a crystal face, or of a set of
parallel lattice planes, for the hexagonal axes a;, a,,as,c
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{hkl} Indices of a set of symmetrically equivalent crystal faces
(crystal form) or lattice planes

{hkil} Indices of a set of symmetrically equivalent crystal faces
(crystal form) or lattice planes, for the hexagonal axes
ap,4as,as, C

hkl Laue symbol (indices): indices of a X-ray reflection from a
set of parallel lattice planes (hkl)

a* b*, c* Vectors of the unit cell in the reciprocal lattice

|a*| =af

|b*| =b¢ Lengths of vectors

|c*] =cf Parameters of the

a*=b*ACT* reciprocal lattice

Br=a*acCH Interaxial angles

y*:a*/\b*

14.2 Symmetry Elements

a) Symmetry elements (planes)

Glide Graphical symbol
Symmetry element component | Symbol
|g] 1 Plane of || Plane of
projection projection®

Mirror plane B
Plane of symmetry m -

Glide plane i
with axial By a —— - l I
glide component

b

B b | ===

c

> e | eeeeees cerereens

If the z-coordinate is not 0 or %, its value is given.

® In tetragonal and cubic systems only.

a
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Glide Graphical symbol
Symmetry element component | Symbol
121 1 Plane of || Plane of
projection projection®
Glide plane a+b
with diagonal 2 I
glide component
a+c
2
n
b+¢
2
a+b+ch
2
“Diamond” i+b lN
glide plane 4 3 I 3
a+c
4
B+E d Y
4 oo - -
at+b+ch
4
b) Symmetry elements (axes)
Screw Graphical
Symmetry element component [5] Symbol symbol
Onefold rotation axis = identity - 1
Inversion centre = N
- 1 o)
Centre of symmetry
1L Plane of
projection
Twofold rotation axis - 2
—
|| Plane of
projection®
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Symmetry elements (axes) (continued)

Screw Graphical
Symmetry element component [3] Symbol symbol
1 Plane of
projection
Twofold screw axis 7 2
-
|| Plane of
projection®
Threefold rotation axis - 3 A AN
Threefold rotoinversion axis - 3 A
L) 3, A
Threefold screw axes
7] 3 A
Fourfold rotation axis - 4 | N
Fourfold rotoinversion axis - 4
- —
i 4 -
]
Fourfold screw axes %|f| 4, ‘
3= ! ‘—
;|T| 4; -,
Sixfold rotation axis - 6 e
Sixfold rotoinversion axis - 6 &
o 61 o
o 6 ot
Sixfold screw axes %c(, 63 I .
) 64 s
6s =

c) Symmetry directions in the seven crystal systems, cf. Table 7.2.

d) Characteristic symmetry elements in the seven crystal systems, cf. Table 8.9.
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14.3 Calculation of Interatomic Distances and Angles
in Crystal Structures

Specific interatomic distances (e.g. bond lengths) and the angles between the
corresponding vectors (bond angles) are often of great interest.

Interatomic Distances. The distance 1 between atoms A (x;,y;,z;) and B
(X2,¥2,Z,) may be calculated by use of the following formulae:

Crystal system 1

{(4x)%al+(dy)*b2+(4z)*c + 2 4xdyagbycos y +

Triclinic
+24xAz2a5cocos f+24yAzbycy cos a} /2

Monoclinic {(4x)?a2 +(4y)?bl + (4z)*c2 + 24xdzaycy cos B} /2
Orthorhombic {(4x)*a3 +(4y)’b2 + (42)*c2}"?
Tetragonal {(4%)?+(dy)hak+(4z)*c2}?

Trigonal or hexagonal {(4%)?+(4y)? — dxdy)al+(4z)*c3}

Cubic {(4%)*+ (dy)*+(42)*)ad} "

Fig. 14.1. The triangle formed by atoms, A, B and C

Angles. The angle w, relating the atoms A, B and C (Fig. 14.1) may be readily
calculated by calculating the lengths of the three edges, 1, 1, and 15 of the
triangle ABC and applying the cosine rule:

B-13+13
21,1

CoOSw =
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14.4 Crystal Forms (Table 14.1)

Table 14.1. The 47 crystal forms

Triclinic, monoclinic and orthorhombic systems

1. Pedion -
(Monohedron)

2. Pinacoid
(Parallelohedron), Fig.8.7g /
3. Dihedron A
(Sphenoid (2), Dome (m))
4. Rhombic disphenoid m 3)

5. Rhombic pyramid,
Exercise 8.15(5)

6. Rhombic prism,
Exercise 8.15(1)

7. Rhombic dipyramid,
Exercise 8.15(9)

The tetragonal system

8. Tetragonal pyramid,
Fig.8.10b, ¢

9. Tetragonal disphenoid

10. Tetragonal prism,
Fig.8.7¢, f

11. Tetragonal
trapezohedron

®

12. Ditetragonal pyramid,
Fig.8.10a

.'i,';.-_._--

13. Tetragonal
scalenohedron

14. Tetragonal dipyramid, an
Fig.8.7¢c, d

15. Ditetragonal prism,
Fig.8.7b

16. Ditetragonal dipyramid,
Fig.8.7a

1 Pedion
2 Pinacoid Some crystal forms after Niggli [32]
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The hexagonal (trigonal) system

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Trigonal pyramid,
Exercise 8.15(7)

Trigonal prism,
Exercise 8.15(3)

Trigonal trapezohedron
Ditrigonal pyramid

Rhombohedron,
Exercise 8.15(16)

Ditrigonal prism

Hexagonal pyramid,
Exercise 8.15(8)

Trigonal dipyramid,
Exercise 8.15(11)

Hexagonal prism,
Exercise 8.15(4)

Ditrigonal scalenohedron
Hexagonal trapezohedron
Dihexagonal pyramid
Ditrigonal dipyramid
Dihexagonal prism

Hexagonal dipyramid,
Exercise 8.15(12)

Dihexagonal dipyramid

1 Pedion
2 Pinacoid

(19)

AN

(27

(22)
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The cubic system

33.

34,

35.

36.

37

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Tetrahedron,
Exercise 8.15(15)

Hexahedron (cube),
Exercise 8.15(13)

Octahedron,
Exercise 8.15(14)

Tetartoid (Tetrahedral
pentagon-dodecahedron)

. Pyritohedron

(pentagon-dodecahedron)

Deltoid-dodecahedron
(deltohedron)

Tristetrahedron

Rhomb-dodecahedron,
Fig.1.1a

Diploid
(disdodecahedron)

Trisoctahedron

Trapezohedron
(deltoid-icositetrahedron)

Gyroid

Hexatetrahedron
(hexakistetrahedron)

Tetrahexahedron
(tetrakishexahedron)

Hexaoctahedron
(hexakisoctahedron)
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15 Solutions to the Exercises

The solutions to a few exercises are incomplete, as the drawings would require
too much space.

Chapter 1

1.1 22.41 (the molar volume)/6.023x10% (the Avogadro number, N,)
=37191 A3, which corresponds to a cube with an edge of 33.4 A.

1.2 0.046%.

1.3 No glass can be a crystal, nor any crystal a glass!

Chapter 2
22 (a)(b)

(c) (112).
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2.3

(b) [001].
2.4 (111), (102), (120), (111)
[111], [101], [210], [012].
25 a) f=y=90°
b) ag=by; a=L£=90°
) ag=bo=co; a=f=y
2.6  (hkl) and (hkl) belong to the same set of parallel planes; [uvw] and
[G¥W] are opposite directions.

Chapter 3
31 (a)

(b) Cu,0,Z -2, (c)%“\/izl.ssix, (d) 6.1g/cm”.

@ OOPO
3293

o223 (s (6)237A  (c)3.20g/cm>

3.2

3.3 Allcombinations of 0, 3, and 1 from 0,0,0, to 1,1,1. Figure 2.5 includes
a partial solution; see also p. 83
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34 x,0,0; 0,y,0; 0,0,z
x,1,0; 1,y,0; 1,0,z
x,0,1; 0,y,1; 0,1,z
x,1,1; 1,y,1; 1,1,z

35 x,5,0; x,0,z; 0,y,z
xy,1; x,1,z; 1,y,z

1, 1 . 11
3'6 X,y,Z, Xaiaza XaiaZ'

Chapter 4
4.2 (1)+(2)=Fig.4.11a (lower part).

B) =~ @) ,——~~,
4 \ / ™
/ \ / \
. e O o . . ® .
\ / \ /
\\.// \\-.//
4.3 (1)=Exercise 4.4 (4) (2) = Exercise 4.4 (10).
4.4
1 4 7 10
N I N I N I g N
// \ // N // \ // \ LN
\ ® . \ 4
. ° ° —— ——@———-—o
AR R I R S
\ / \ / \ / NN
\\. ./ N 7 N . N \,”
2 5 8 11
- T /\\ TN
d . o\\ // . N / e N\ 4 . LEERN
/ \ |/ N V| \
\ o) ||l e 0 s+ © | [« © *
/ |\ /
\ . . . \ . / \ o . /
\\\_/// \\\_/// \\_,// N7
3 6 9 12
CTTN < N T
e @ N\ | ATTelTN | / @\ | o o\
/ \ / \\// : N \ / \ [
l\ || o8- ] \ @ )1\ @ ®
[ s
e o /| N LN o,/ |\ @ © /
N — \\// \_/
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4.5  Cf. Exercise 4.4 (6) and (10).

4.6 1. Trigonal pyramid and pedion.
2. Tetragonal dipyramid.
3. Hexahedron, tetragonal prism and pinacoid, rectangular box,
orthogonal axes.
4. Hexagonal prism and pinacoid, hexagonal axes.

4.7 They lie in a plane, perpendicular to the zone axis.
4.8 Cf. Fig. 6.13f (432).

4.9 Cf. Fig.4.10. The stereograms in Exercises 4.8 and 4.9 are geometrical-
ly equivalent.

4.10 (720)

(170) (710)

(711)

010)

(011) (011)
(o01)

(171) (111)
(101)

(170) (110)

(100)

Chapter 5
5.1 Cf pp.277 and 278.

52 S 1
Sz><i =m

S, 3
53
S, 6
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5.3

Trigonal, tetragonal, hexagonal pyramid; trigonal dipyramid.

5.4 Rhombus!, equilateral triangle, square, regular hexagon.

55 X(odd):1,3...

5.6 Cf. Fig.4.21.

Chapter 6

6.1 Cf. Figs.6.6 and 5.5b.

6.2 (1) (2) Cf. Fig. 6.6a, (3) Cf. Fig. 6.6¢,
4) (5) Cf. Fig. 6.6d, (6) Cf. Fig.5.5b,

- - =
' om o

(9) No symmetry except lattice translation.

! Solids with rectangular or parallelogram cross-sections are not prisms in the crystallogra-
phic sense as their faces are not all equivalent (cf. Chapter 8.2.1).
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6.3

6.4 (a) Cf. Fig. 6.9f (right) and Fig. 8.11.7
(b) (1) 2in x,3,3, () minx,y,s,
3)2in3,3,z, (4) minx,0,z.
6.5 (a) cubic P, (b) monoclinic P, (c) triclinic P, (d) orthorhombic P,
(e) tetragonal P, (f) hexagonal P.
6.6 (a) Cf. Fig.6.7a-6.12a,
(b) Cf. Fig. 6.7d-6.12d,
(c) and (d) Cf. Figs. 6.18-6.23.
6.7 (A),B),CLFE
68 L
Chapter 8
8.1a The directions parallel and antiparallel to a polar axis have distinct
physical properties.
8.1b (1)1, (2)m L X, (3)2 L X [also valid for 4 and 6].
8.2 No. Rotoinversion implies rotation through an angle followed by
inversion. The two ends of the axis remain equivalent.
8.3 1,2/m, 3, 4/m, 6/m.
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g (1)21inx,3,0, Q) minx,y,3,
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8.4

8.5

8.6
8.7
8.8
8.9
8.10
8.11

8.12
8.13

8.14

622 6mm 6m2 6/m 2/m 2/m
422 4mm 42m 4/m 2/m 2/m
32 3m 32/m 32/m

222 mm?2 mm?2 2/m2/m2/m

Cf. also Figs. 6.9¢,f-6.12¢,f.

23 43m 432

2/m 3 4/m 32/m 4/m 3 2/m

Cf. also Fig. 6.13e,f.

3m, 32, 3, 3.

Cf. Table 8.4.

Cf. p.139.

(1) 42m, (2) m, (3) 32, (4) 6mm, (5) mm?2, (6) 43m.

Cf. Figs. 6.8¢,f-6.13¢,f.

(1) 6/m 2/m 2/m, (2)~(4) mm?2, (5)+(6) 2/m 2/m 2/m, (7) mm2,

(8) m, (9) 4/m 3 2/m, (10) 4mm, (11) 4/m 2/m 2/m, (12) mm2,

(13) 3m, (14) mm2, (15) 43m, (16) 3m, (17) mm2, (18) = (16),

(19)=(15), (20) 3m, (21) +(22) 6m2, (23) m, (24) mm2, (25) m, (26) 2,

(27) 2, (28) 3m, (29) m, (30) +(31) 1, (32) 3 2/m, (33) mm2, (34) 2,

(35) mm2, (36) 4/m 2/m 2/m, (37) 4mm, (38) 42m, (39) 2/m 2/m 2/m,

(40) mm?2, (41) 2/m, (42) +(43) m, (44) + (45) 2, (46)-(49) 1

(a) Enantiomers: (26)-(27), (30)-(31), (44)-(45), (46)-(47), (48)-(49).

(b) Polar molecules: (2)-(4), (7), (8), (10), (12), (14), (16)-(18), (20),
(23)-(31), (33)~(35), (37), (40), (42)-(49)

(1) Bent, (2) pyramidal, (3) Table 8.11.14, (4) Fig.8.9.

mm?2 (0°); 2 (0° < ¢ <180°);

2/m (180°); 2 (180° < ¢ < 360°).

Yes; mm2(+); 2/m(0).
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8.15

8.16
8.17
8.18

8.19

8.20

8.21

8.22

282

(1) 2/m 2/m 2/m, (2) 4/m 2/m 2/m, (3) 6 m2, (4) 6/m 2/m 2/m,

(5) mm2, (6) 4mm, (7) 3m, (8) 6mm, (9) 2/m 2/m 2/m,

(10)4/m 2/m 2/m, (11) 6 m2, (12) 6/m 2/m 2/m, (13) +(14) 4/m 3 2/m,
(15)  3m, (16) 3 2/m.

(3), (5), (6), (1), (8), (11), (15).
Faces + vertices = edges + 2 (Euler).

a) Cf. Fig.8.8.
b) Ditetragonal dipyramid; from (hk0) arise (hkl) and (hk]) etc., or
from (210) arise, for example, (211) and (211) etc.

a) Cf. Fig. 8.12a.

b) Hexagonal dipyramid; from (hki0) arise (hkil) and (hkil) etc. or
from (2130) arise, for example, (2131) and (2131).

(1), (2): Table 8.4; (3), (4): Table 8.7;

(5), (6), (7): Table 8.5; (8), (9): Table 8.6.

001

010

113®(hhl, |h| < |1])

111%c(hhl, |h| = Illl)

221W(hhl, |h| > |1])

3 110

«
100
(Part of Fig.8.15)

The pole (113) corresponds to the crystal form trapezohedron or

deltoid icositetrahedron {311} or {hkk}. (311) lies in the asymmetric
face unit.

6m2: (m..);ditrigonal prism {hki0}: hexagonal prism {1120}
32/m: (.m.); thombohedron {hOhl}: hexagonal prism {1010}
6mm: (.m.); hexagonal pyramid {hOhl}: hexagonal prism {1010}

(..m; hexagonal pyramid {hh2hl}: hexagonal prism {1120}
3m:  (.m.), trigonal pyramid {hOhl}: trigonal prism {1010}.



Chapter 9
9.1

92 @xyl-z 0)%:-v.2 (©:+%Y:-2 (d)i-X3+Y,2,
© %3-Y,3+2 01X 14,542 (8)3+X3+Y,Z,
(h) %+X,y,%+l, (i)%_x,Yaz, (J) 1—X,y,%+l, (k) )'(,%-%y,%-l,
D 3-%3-y,2, (M) §,X,5+ 2 %,5,5+2, 7,53 +2, (0) §,X—y,5 +Z

X+y, % i+z

9.3  The difference between the operation of a glide plane and a 2, is only
evident when a “fully asymmetric point” is considered. An example is
the asymmetric pyramid in the following figure.
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9.3
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9.5

‘12/m2/m2/m

9.6
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9.7 o o 0

d/”

(@) (2Q)x.y.z:%.¥.7,>(3) 2, (4) P1, (5) on all 1, one-fold.

o o

M

®) )XY,z %,5,2,5+X,3-Y,2,3+X,3+Y,2, (3) 4, (4) Cm,
(5) on m, 2-fold.

¢ T
_O |
-
- |
' |
|
Q_ |
| | O
1 4 1 1)

© @xXY.7:+%:-Y,21 %31, %,2, (3) 4, (4) Pba2,
(5) on 2, 2-fold.

% Coordinates are given as in International Tables [18] [17] [14], i.e. instead of 1 —x, 1 —y,
1—zis written X, §, Z.
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M

d)  QxYy,zX3-Y,3+%X3+Y.3+2% X, 3,2, (3) 4, (4) Pnc2,
(5) on 2, 2-fold.

O

(e) (2) Xayaz;X’%7Y7Z;%Ax,y,%ﬁ»Z;%*X’%;y,%jLZ;
x ity itz iex, 9.0+ %54y, 2, %, 9, 2. (3) 8, (4) Ibm2,
(5) on 2, 4-fold.

(f) (2) X,Y,Z; %7X7%7Z; 12+X’y’15*2; XaYaz; X’y7z; %*X,?,%‘FZ;
14X, 9,442,%,9,2,(3) 8, (4) P2/m 2/n 2,/a, (5) on m and 2, 4-fold,
on 1, 2-fold.
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M

© OXY.%%5,2 0.3+ Y8342 3+ X3 Y, 35— X3+,
oy -x3+z5+y,5+x,5+2 (3) 8, (4) Pd,be, (5) on 2, 4-fold.

2

98 a)l x,y,zX%V,ZX—V,X, Z+3; X+y,X,z+3;
}‘l,x—y,z+§;y,)‘(+y,z+§
2. 2in},0,2;4,3,2,0,3,2,3,in 3,1, 21,3,z
3. 3,2
b) L X,9,27,X—Y,2 X+Yy,%,2 X~ Y,X,Z+3;
X,y,z+%;y,)’(+y,z+%
2. 2,in3,0,2;3,3,2,0,3,2,3in%,3,2; 4,2,z

3. 3,2
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O z,x,x
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9.10 P2,/c (Fig.9.9a), Pna2, (Fig.9.12), Pmna (Exercise 9.6f).

9.11 This is absurd: an a-glide plane cannot be normal to the a-axis ...
<
9.9 Coordinates are not given for those points which are reflected by m to

locations below the plane x,y,0. The third coordinate of each triple
must be taken to have both a plus and a minus sign.
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Chapter 10

(a) AB,, (b) Z=1, (c) linear,
(d) o/mm, (e) 1.

(a) AB,, (b)Z=1,
(¢) bent, (d) mm?2, (¢) m.

(a) AB,, (b) Z=1, (c) planar
[4]-coordination
(rectangular),

(d) 2/m 2/m 2/m, (e) 2/m.

(a) ABg, (b) Z=1,

(c) [8]-coordination
(rectangular parallelepiped),
(d) and (¢) 2/m 2/m 2/m.
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Chapter 11

11.1 Cf. Table 11.1d and h.

11.2 (a) cub. P; Po: 0,0,0
(b) cub. I; W:0,0,0
(c) hex. P; Mg: 0,0,0;3,5,3
(d) cub. F; Cu: 0,0,0
(e) 65in1,%2,2,6in0,0,z
11.3 (a) 1.6754, (b) 1.37A, (c) 1.605 A, (d) 1.28 A.
114 1.63.
11.5 (a) 0.52, (b) 0.68, (c) 0.74, (d) 0.74.

11.6 (a) Cf. Fig.11.14

(b) 1.546 A, (c) 8, (d) each C is tetrahedrally coordinated by 4C.
(e) The two structures have the same geometry.

11.7 (a) Cf. 11.15a

(b) L42A, (c) 4, (d) 3.35A, (d) op=3.50g/cm?;
06=2.27g/cm?.

11.8 Li*:0.76A; Cl:1.814;0.79
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11.9

NacCl

5

LiCl

e

RbF

11.10

i3

1.95 A (distances indicated by thick lines), 1.97 A (distances indicated
by thin lines), cf. Fig.9.18.
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The 3 are orientated parallel to (111).

-
@

(3) 4, (4) Fe—S: 2.27 A; S—S: 2.06 A.

(2) HgNH,Cls, Z =1, (3) Hg!*! (octahedron), NH*! (cube),
(4)Hg-Cl: 2.38 A; 2.96 A, NH,—Cl: 3.36 A.
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(2) 4, (3) S is tetrahedrally coordinated by 40.

Chapter 12

[

12.1

==
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12.2 Z =2, W-type (Fig. 11.5).
12.3 NaCl-structure.
12.4 (a) Z~2,(b) Ti: (a) and (b), O: (c)—(g), (c) cf. Fig.9.18.
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Tristetrahedron 132,272

Tungsten 219, 248

Twin boundaries 263

Twofold rotation axis 50

132,173
132, 272
132,272

Unitcell 9

Unit mesh 9, 68
uvw 10

[uvw] 11,23, 265
(uvw) 87,265

Van der Waals bonding 212
Vitamin By, 2,221

W-type 218,219
Whisker 262
Wulfenite 149

Wulff net 35
Wurtzite-structure 229
Wyckoff 200

X-ray 7
Y-ray diffraction 245
x,y,z 20, 265

ZnS 155,229, 235

Zonal equation 15
Zone 27,32
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The Wulff Net (reproduced by kind
permission of Carl Zeiss, Oberkochen)
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