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Preface 

Multivariate statistical methods have become commonplace in the Earth Sciences, 
What was once an exclusive area of activity is now within the reach of Everyman, 
owing to the ubiquitousness of mini-computers and the ready availability of software 
for doing the computing. In the days when one was required to do one's own 
programming, it was necessary to acquire considerable proficiency in linear algebra 
and one or more programming languages. Today, the vast majority of the people 
who use multivariate methods to analyse geological data have little or no idea 
of the matrix operations underlying a particular method, nor, for that matter, what 
the program is actually supposed to be doing. This situation can be both good 
and bad. It can do no harm if everything goes according to schedule, the program 
being used is competently constructed, which, alas, is far from being the general 
case, and there are no strong deviations from standard statistical theory in the data 
under examination. It is bad if the data do not fit the theoretical requirements 
of  a particular method and even worse if the method of computat ion used is 
inappropriate. It is an inescapable and sad fact of life that much geological and 
biological material deviates in some manner or other from the theoretical require- 
ments of a multivariate statistical procedure. The immediate relevance of this obser- 
vation is that there are many sources of error in doing an analysis of geological data 
by means of standard statistical software. 

The spread of multivariate statistics in the Natural Sciences has, therefore, taken 
place at a c o s t -  the risk of doing something quite wrong and yet never knowing 
that a mistake can have been committed, or worse, that a blunder is even possible. 

Books on multivariate statistics aimed at all levels of sophistication abound, from 
abstruse algebraically loaded treatises, through practically oriented texts, to volumes 
of computing recipes such as are profusely available for biologists. The special 
justification for this book is that it is concerned with the elementary consideration 
of the special types of multidimensional problems that occur in Geology and which 
are never, or are only summarily, considered in other places (e.g., textbooks dealing 
with multivariate statistics) and which cannot always be correctly analysed by com- 
mercially available software. There is an attached compact disk of compiled 
programs and trial data for doing the most commonly occurring computations, 
the files for running Graph Server and a file summarizing the steps involved in 
activating the various routines, but we lay no claims to perfection nor to elegance 
in the appearance of the computational output. There will be a www-site at the State 
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University of New York at Stony Brook for updates and corrections to the contents 
of the CD, thanks to the generosity of Professor F. James Rohlf. In two recent 
multivariate texts of RAR, the accompanying programs are written in copyrighted 
code, which means that the user is required to acquire the means of accessing this 
code. We have desisted from this practice, since it would defeat the main practical 
purpose of the book. We supply our own compiled FORTRAN and C programs 
with instructions for entering data; each method is illustrated by one or more sets 
of observations typical for the class of problem treated with an emphasis on the 
peculiarities of geological data. The programs have been constructed outgoing from 
our own research commitments. Note, however, it is not our intention to provide a 
self-contained, hierarchical system such as offered by F. James Rohlf's NTSYSpc. 
The compiled programs have mainly a didactic purpose-  a simple means of illus- 
trating the ideas expressed in the text. The important aspect of graphical presen- 
tation has been the province of Enrico Savazzi, whose new language Graph 
Server (GS) for displaying plots forms an integral part of the enterprise. 

We have not provided more than a few introductory notes on the elements of 
matrix algebra, deeming that the basic manipulations required for being able to 
use the primer can be most effectively introduced at the appropriate points in 
the text. References to introductory manuals presenting the elements of linear 
algebra are provided wherever we have thought it necessary. 

The idea for writing this introduction for geologists stems from more than 35 years 
of experience of RAR in teaching statistics to geologists and biologists in many parts 
of the world. This accumulated experience has convinced us that no matter how well 
people seem to be grasping a course in multivariate applications, and despite a maxi- 
mum of teaching effort, the number of the participants who will really stay with the 
subject is small indeed. This is no reflection on the value of the discipline, but rather 
an indication of the difficulty experienced by the tyro in understanding what can 
be asked of statistical methods and how powerful multivariate methods are when 
applied in an appropriate manner. Frustrations occasioned by the incorrect use 
of techniques, including the "loyalty syndrome" with respect to a particular one (e.g. 
Correspondence Analysis among francophones) is a major source of disaffection. 
The main reason for this unfortunate situation is that when the average student 
has been cast out to swim on his own he will drown unless he hasa  lifebuoy with 
him. Only time can tell if this modest text is that lifesaver. 

We wish to make it clear that the primer is not concerned with multivariate 
modelling of geological processes, regionalized variables, etc. Cluster-analysis as 
a specially delimited topic is likewise not taken up, notwithstanding that some 
of the techniques that have come to be associated with the concept of "clustering" 
are made use o f - f o r  example, the minimum spanning tree, similarity coefficients 
and Q-mode latent roots and vectors. (An easy introduction to clustering analysis 
is available in the book by Everitt (1974).) It is solely concerned with the simple 
application of standard methods of multivariate statistical analysis to geological 
data in the form of arrays of measurements and compositional data (e.g. chemical 
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determinations). Consequently, we have not taken up advanced special methods of 
multivariate analysis such as M-estimators, robust methods, nor such interesting 
though relatively difficult procedures as the generalization of "biplots", notwith- 
standing that biplots are doubtless destined to play an increasingly important role 
in the future (cf. Gower and Hand, 1996). The full implementation of that subject 
is, moreover, still in the relative early phases of development. Where desirable, 
we provide references to more advanced statistical texts. 

We are grateful to Professor John C. Davis, Geological Survey of Kansas and 
University of Kansas for a valuable and well reasoned criticism of the first version 
of the text from the geological standpoint. Professor John Aitchison, Department 
of Statistics, University of Glasgow, is thanked for precious advice on aspects of 
the analysis of compositions in connexion with a very early version of some of 
the chapters of the text as well as the current one. Dr. Allan Gordon, Department 
of Mathematics and Statistics, University of St. Andrews, kindly read the entire 
manuscript and furnished us with many thoughtful suggestions for improvements. 
Dr. Vera Pawlowsky-Glahn, Universidad Polit6cnica de Cataluna, Barcelona like- 
wise read the entire text from the geomathematician's viewpoint and provided 
us with valuable suggestions and advice. For answers to various questions from 
Professor Leslie F. Marcus, Queen's College, New York and Professor F. James 
Rohlf, Department of Ecology and Evolution, State University of New York at 
Stony Brook, we are thankful. Professor Rohlf and SUNY are also thanked for 
making forthcoming updates available via the Internet. The updates will be made 
available by F(ile) T(ransfer) P(rotocol) at life.bio.sunysb.edu/morphmet. 

We are well aware that some will react against the mode of presentation we adopt 
here, regarding it as "condescending", "non-academic" (because of the use of the 
first person rather than "the present authors" or the like, or the occasional use 
of phrases more appropriate to the spoken language than the written). This has been 
done with a definite purpose in mind. Multivariate geostatistics is not generally per- 
ceived as being an enthralling subject. A heavy "nuts-and-bolts" mode of presen- 
tation would have done little to help better matters. 

The compact disk accompanying the primer contains the computer programs and 
teaching sets of data in two sub-directories, an HTML file explaining their use (being 
a summary of what is said in the main text), the files needed for using Graph Server 
and some files containing general information in a separate directory. 

Finally, we wish to stress that this is a text for the IBM Personal Computer system 
(and clones). We have no plans for releasing a version for Macintosh machines. 
However, any Mac-adept with programming skills should be able to produce his 
own set of programs from the information provided in the text. 

Uppsala and Stockholm, June 1999 
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Chapter 1 

Introduction 

AIMS AND SCOPE OF THE BOOK 

In today's Geology, there is no shortage of quantitative information. Almost any 
kind of activity in the Earth Sciences generates data, often in quantities that surpass 
any possibilities of comprehension by inspection. A vast amount of the data 
accumulated is, however, never used for any meaningful purpose, being acquired 
automatically as the outcome of an administrative decision in the past, the reasons 
for which may have long lapsed into obscurity. 

This text aims at introducing the geologist concerned with analysing multivariate 
observations to the appropriate methods of statistical analysis, at the introductory 
level. Our purpose is to demonstrate some of the more prominent multivariate 
statistical techniques for extracting the main features of relationships submerged 
in the data. We have not provided extensive background development of the 
methods, having, instead, made reference to standard statistical texts in which 
the algebraic aspects are given. In keeping with the spirit of the work, we have 
given questions dealing with deviations from the normal statistical situation par- 
ticular prominence. Such data abound in the Geosciences, but are less common 
in biology and other areas of the natural sciences. This particular aspect of 
geological data is the most serious and common cause of flawed results in 
publications in the Earth Sciences. 

A very large part of the multivariate data accumulated in geological work derives 
from analyses of rocks of various origins and complexity. These are usually chemical 
in nature, but sedimentology is also a frequent source of multidimensional 
observations. Let us consider some kinds of data encountered by geologists: 

1 Chemical analyses of rocks. 
2 Petrographical determinations of rock compositions. 
3 Grain-size classes of sediments. 
4 Frequencies of fossil species. 
5 Frequencies of mineral species in a sediment. 
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6 Content of ore minerals in a mining sample. 
7 Observations on physical properties of the crust. 
8 Measurements made on fossils, pebbles, mineral grains. 

Six of these categories have a property in common that is not shared by the seventh 
and eighth. All are multidimensional, but the row-entries for the first six sum to a 
constant. This is the principal feature of much multivariate data in Geology, namely, 
that the data-matrix is constrained, or closed, so as to have rows that sum to the same 
constant. It may not be immediately obvious to you what this ingredient of "closure" 
implies for statistical analysis. Suffice it here to say that constrained data must be 
treated in a manner that is different from what pertains for "usual" data. The sixth 
category is more elusive. The components of ore in a mining sample are not evidently 
constrained. However, the content of minerals is always expressed in relation to 
some measure of weight or volume, and it is this that imposes the constraint; 
the data are in terms of relative, not absolute, magnitudes and hence with ratios 
of components. The same situation arises in, for example, pollen analysis where 
counts on frequencies of species are made on samples of constant weight, constant 
volume, constant total of grains of all species counted, or samples that are reduced, 
by a simple division, to a constant standard of reference. 

BASIC COMPUTING REQUIREMENTS 

We have endeavoured to make our text "transparent", yet self-contained. There are 
certain technical requirements for using the text to your best advantage. Those that 
seem important to us are listed below. Well aware of the extremely rapid develop- 
ment in the personal computer these days, it is not possible for us to foresee what 
the capacity of machinery will be even in the next six months. 

1 You will need an IBM compatible personal computer configured to operate 
under Windows NT, Windows 95, or Windows 98 in order to use the compiled 
programs and Graph Server. The programs will not run in earlier versions of 
Windows. The programs are 32 bit compilations which means that they will not 
run unless you have installed the appropriate operational medium, i.e., Windows 
N T  or Windows 95, 98. This might seem to be an unfriendly act and we thought 
long and hard about the implications for the user. An undeniable advantage offered 
by 32-bit technique is that it greatly speeds up computations. Moreover, innovations 
in programming languages, such as C++ and FORTRAN 90, are developed so as to 
run exclusively in a 32-bit environment. 

2 The machine will need to be of the category 386, or higher in order to cope with 
the computations and the requirements of the Microsoft FORTRAN 90 and 
Microsoft C++ compilers. 

3 You will need to have a CD-disk-reader attached to your machine. 
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4 Your PC will need to have a so-called mathematical coprocessor for the 
programs to work. A "math-chip" is standard equipment on 486 machines, 
Pentium-processor machines, and higher. 

5 For larger applications, you can run into trouble if you lack extended memory. 
For most calculations, 8 Mb of RAM will prove sufficient, albeit slow. However, for 
the graphical work, Graph Server requires more random access memory. We rec- 
ommend at least 32 Mb of RAM. (The computer programs were compiled and tested 
with 100 Mb of RAM.) 

HIERARCHY OF METHODS 

In the interests of simplicity, the methods are ordered according to the number of 
populations sampled in a particular connection and not according to theoretical 
statistical principles. The main structuring is as follows: 

One Population: Principal Component Analysis* 
Jack-knifed principal components 
Principal Coordinate Analysis* 
Q-R-mode combined analysis 
Multivariate Normality 

Two Populations: Linear Discriminant Function* 
Quadratic Discriminant Function* 
Generalized Statistical Distance* 
Hotelling's T 2. 

Many Populations: Canonical Variate Analysis* 
Multivariate analysis of variance* 
"Discriminant Coordinates"* 
Common Principal Component Analysis* 
Shrunken estimators for canonical vectors 

Between-sets 
Single Sample: 

Canonical Correlation Analysis* 
Multiple Regression 

(Categories marked with an asterisk denote that the standard multivariate proce- 
dure is accompanied by a compositional counterpart.) Additionally, questions of 
accuracy, such as stability of estimations and robustness are reviewed where called 
for, which you will soon learn is quite often in much routine geological work. It should 
be mentioned that a grasp of the elements of statistical inference is required of the 
reader if the best use is to be made of this volume. We can recommend J. C. Davis 
(1988), which provides a coverage of most subjects of interest to geologists at a level 
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easy of assimilation. A comprehensive reference of applied multivariate analysis is 
provided by the volume by Seber (1984). The text by Reyment and J6reskog (1993) 
gives a detailed presentation of methods for analysing geological data drawn from 
a single statistical population. Of necessity, we have assumed the user to have a certain 
acquaintanceship with statistical principles. A handy reference for he who wishes to 
brush up on his knowledge is the book by Harris (1975). Although in some aspects 
a little outmoded, it contains much sensible information not always easily available 
in standard textbooks. The volume on multivariate trends edited by Krzanowski 
(1995) is another important reference for more advanced concepts. Mardia, Kent 
and Bibby (1979) contains many useful pieces of advice for the budding multivariate 
analyst. Lastly, an absolute necessity for the geochemist and the petrologist is the 
monograph by Aitchison (1986) on compositional data-analysis. 

The last part of the text introduces a few "case-histories", that is, examples selec- 
ted more or less randomly from the literature and which are here analysed, briefly, 
by appropriate methods in order to show the reader how a multivariate statistical 
analysis can be composed and to what extent the results yielded by the appropriate 
technique differ from or agree with those published in the original article, where 
applicable. 

Anybody conversant with the theory and practice of multivariate statistics will 
quickly perceive that the subject matter of the text contains little that is new or 
controversial. All of the methods are well known and most of them have been used 
in geological research a great number of times. The only novel feature, perhaps, 
is that computing problems of particular relevance for geological situations occupy 
a prominent place. The appropriate methods for doing such analyses are generally 
not available elsewhere in standard "packages", many of which have been produced 
for applications in the Social Sciences and which, understandably, are not of unre- 
stricted value in the Earth Sciences. 

A knowledge of linear algebra will prove useful, if not enlightening for many 
applications. There are several books we can recommend. A very readable intro- 
duction is that of P. J. Davis (1965). Searle (1966) gives a well-illustrated account 
of biostatistically oriented matrix algebra. Reyment and J6reskog (1993) contains 
a chapter on linear algebra (Chapter 2) illustrated in geological terms. For those 
with more advanced tastes, the two volumes by Gantmacher (1965) can be 
recommended. The Appendix in Anderson (1984) is another useful source of 
information. If you should want to go ahead and try your hand at programming 
matrix manipulations, we can personally strongly recommend Zurmfihl (1964). 

In practice, multivariate data in the Earth Sciences seldom conform with neat 
theoretical requirements. Whereas it may not be possible to provide tailored sol- 
utions to every kind of problem that can occur, much can be done to improve 
the scientific quality of an analysis by assessing and 'ferreting out' divergent 
specimens, such as are liable to distort the statistical interpretation of results, 
and to recognize the most efficient means of dealing with a particular problem. 
Divergent specimens are not necessarily wrong. There is a dichotomy of reasoning 
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involved here in that an atypical observation may deviate in the statistical sense by 
differing markedly from its fellows, but it may be perfectly good in the geological 
or biological sense. For example, measurements on good specimens of fossil (and 
living) organisms may need special treatment owing to the occurrence of 
shape-polymorphism. 

For practical purposes, statistical methods may be considered to fall into one of 
the two categories, descriptive and inferential. Descriptive techniques are those that 
make statements about a given set of data, whether it be a single sample or a com- 
plete population, with the end in view of providing data analyses or graphical 
representations of the data. The inferential category encompasses procedures that 
take the analysis a stage further by making statements about the population from 
which the sample was drawn and in connection with which, probability plays a 
prominent role. For the most part, we shall here be concerned with descriptive 
aspects of statistical analysis, such as occur in multivariate exploratory data 
analysis. It is, nonetheless, important to keep the above distinctions in mind. Many 
examples of geological data analysis cannot be extrapolated to the general case 
in the manner in which the analyses were done. Instances of this "fixed-mode 
category" will be encountered further on (cf. Reyment and J6reskog, 1993). 

Some examples of problems in statistical geology 

1 A particular kind of statistical constraint is provided by orientational data: 
dips, strikes, palaeocurrents, etc. The most common way of expressing such obser- 
vations is by means of a so-called Rose Diagram, a sort of circular histogram 
(Hoorn, 1994, p. 10). Much more information can be extracted if such material 
be subjected to appropriate statistical analysis (cf. Reyment, 1971). Hoorn's study 
is for fluviatile environments in the Amazonas Basin. One of the diagrams shows 
pronounced bimodality and the data would have profited from numerical analysis. 

The same paper brings to light one of the more common fallacies occurring in 
geological publications. A strong product-moment correlation is reported for the 
number of taxa in relation to the sum of recovered pollen grains. Inspection of 
the accompanying figure (Hoorn, 1994, Fig. 15) indicates that this high correlation 
is largely due to the fact that the observations are heterogeneously distributed over 
two well-separated and disjunct fields. Such a circumstance will unfailingly give rise 
to spuriously high correlation coefficients. 

2 Giresse et al. (1994) take up the interpretation of late Quaternary 
palaeo-environments in Lake Barombi Mbo (Cameroun). Correlations are com- 
puted for percentages, without regard for the constraint and ratios are plotted 
against a component of that ratio. This is common procedure in petrology but 
one that must be decried, despite its hoary status, not least if correlations between 
such composites are computed (a part is being correlated with itself). Pearson (1897) 
in his classical paper on spurious correlations warned against this type of procedure. 
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Rao and Jayawardane (1994) analysed major minerals with respect to elemental 
and isotopic compositions in modern temperate shelf carbonates in Eastern 
Tasmania, Australia. Their data consist of proportions for which correlations were 
calculated and unspecified "factor analysis" was carried out without taking the con- 
straint into consideration. Some of the results thus invite suspicion, for example, 
those reported in their Figs. 4, 5, 6 and 7. 

3 Tribollivard et al. (1994) presented results obtained for the study of organically 
rich cycles in the Kimmeridge Clay of Yorkshire in relation to conditions of 
oxidation and reduction and determined for an Upper Cycle and a Lower Cycle. 
Again, we meet compositional data (the determinations are in weight percent) which 
were analysed without recourse to the appropriate statistical model (cf. Aitchison, 
1986). This is a didactically instructive case and it will be reviewed in some detail. 
The parts considered in the present connection are SiO2 (1), A1203 (2), Fe (3), S 
(4), Total Organic Content (5) and CaCO3 (6). The observations made on these 
oxides are termed the components, that is, the numerical proportions in which indi- 
vidual parts occur. The correlation between SiO2 and A1203, cited in the text, is 
roughly the same for both the constrained version and the "open" version and 
it might be argued that there is little to be gained by being correct. This is, however, 
fortuitous. Table 1 contains latent vectors for the Lower Cycle obtained by the 
appropriate model (using the centred log-ratio covariance matrix) and contrasted 
with the inappropriate one obtained from the raw data via the product-moment 
correlation coefficient. The strong differences between the two categories are in part 
due to heterogeneity in the data-set for the Lower Cycle, which was one of the points 
arrived at by a graphical appraisal by Tribollivard et al. (1994). The more homo- 
geneous Upper Cycle displays, however, marked divergences as well between the 
results obtained by the inappropriate and appropriate procedures. 

4 Series in time occur frequently in geological work, particularly those that deal 
with stratigraphical material. It is commonplace to find comparisons of curves used 
to illustrate regional correlations, for example, comparisons of pollen sequences, 
borehole logs, and like observations. "Eye-bail ing" such graphs is not a trustworthy 

TABLE 1 
Latent vectors for the Lower Cycle correlations (Tribollivard et al., 1994) 

Parts First latent vector Second latent vector 

Constrained Constraint ignored Constrained Constraint ignored 
version version version version 

SiO2 0.42 -0.50 -0.45 0.14 
A1203 0.40 -0.47 -0.51 0.33 
Fe 0.40 0.41 0.25 0.11 
S -0.45 0.38 0.03 0.50 
Total organic -0.44 0.31 -0.20 0.56 
CaCO3 0.33 0.35 0.65 -0.54 
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approach, and the often-invoked method of cross-correlation is not a sound pro- 
cedure in geological work (the technique comes from econometrics and requires 
exactly specified time-intervals). Reyment (1991) promoted the method of " slotting" 
which provides a reliable basis for correlating series in time. Moreover, Bookstein 
(1987) pointed out the important fact that a single "evolutionary sequence" cannot 
be claimed to represent a genuine trend unless certain specific requirements are 
met (Feller's coin-tossing paradox) because it could well have arisen as a simple 
random walk in time. Bookstein and Reyment (1992) give a further example of trend 
versus random walk in the analysis of geological data. 

Remarks: These few, brief reflections serve to show that the correct use of 
statistics, particularly multivariate statistics, in the Earth Sciences requires a level 
of proficiency and technical understanding that is seldom to be found among 
geoscientists. A major contributing cause to this lies with moribund university 
curricula and the internationally prevailing dearth of competent instruction in stat- 
istical methods in the Earth Sciences. It is therefore gladdening to observe that 
the International Association for Mathematical Geology has recently (1997), albeit 
belatedly, realized that something must be done and has initiated a series of excellent 
international symposia on the subject of appropriate methods of analysing com- 
positional data. It has taken a very long time to get the geological community 
to begin to accept that vast sums of money are being expended on research projects, 
the statistical treatment of which is gravely flawed - it is, after all, almost 20 years 
now since Professor John Aitchison took up the subject in detail! 

NOTES ON THE RELATIONSHIPS BETWEEN MULTIVARIATE METHODS 

Multivariate methods should not be regarded as a heterogeneous collection of 
isolated procedures. One may gain that impression, however, owing to the fact that 
they have been developed as specialized answers to specific practical problems 
(Reyment, 1996). It is only fairly recent practice to present the multivariate stat- 
istical corpus in a wider context. 

Many of the most frequently used methods were developed in the 1930s. There 
were many controversies at the time in connection with some of them, the strangest 
of which was that concerning the Pearsonian "Coefficient of Racial Likeness", 
the Mahalanobis generalized statistical distance, D 2, and Hotelling's T 2. It was 
finally recognized that Pearson's coefficient is just Mahalanobis' distance for zero 
correlations and that Hotelling's measure is the conversion that expresses the stat- 
istical significance of a generalized distance, that is, can be used to test hypotheses 
about a generalized distance. 

Very many practical problems are concerned with analysing a single sample drawn 
from a population (which is defined as the total number of specimens in existence of 
the category). The early statisticians had to rely on very large samples for their work 
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in order to approximate the properties of the theoretical population. An important 
development came in 1908 when W. S. Gosset, a statistician with Guinness 
Breweries, Dublin, put forward his celebrated "Student's" t-test, for comparing 
two univariate means on small samples. 

The generalization of the algebra appropriate for univariate samples is achieved 
via linear algebra, the algebra of two or more variables considered simultaneously. 

Much routine multivariate statistical work consists of some form of principal 
component analysis. The original idea for this came from Karl Pearson who, at 
the turn of the century, was concerned with lines and planes of closest fit to points 
in space. He was ledto the problem though dissatisfaction with the concept of depen- 
dent and independent variables in regression analysis. Pearson's argument was 
developed in geometric terms with reference to the principal axes of an ellipsoid 
(which represent the  principal components) and the regression lines fitted to the 
points encompassed by the hull of the ellipsoid. 

Principal component analysis is concerned with the space spanned by the p 
variables; it is referred to as an R-mode method (from the use in psychometry 
of the correlation matrix as the starting point for factor analysis - the common 
symbol for the sample correlation matrix is R). The need to examine data from 
another point of entry was felt at a fairly early stage in psychometric work. The 
way in which this was solved at first was by computing the principal components 
for the space spanned by the N specimens of the sample (which thus took over 
the role of the variables of the usual mode of analysis). This procedure became 
known as Q,mode factor analysis and, indeed, many special techniques were 
borrowed from psychometric factor analysis in the R-mode, albeit clandestinely. 
The methodology was placed on a sound footing by J. C. Gower (1966) under 
the name of Principal Coordinate Analysis (also termed principal coordinates analy- 
sis - we prefer the term without an's '  for grammatical reasons). He also put forward 
a universal similarity coefficient (Gower, 1971) which encompasses quantitative, 
qualitative and dichotomous variables. 

Many applications in Geology and Biology perpetuate a misconception when they 
speak of Factor Analysis. The mathematical model appropriate to true factor analy- 
sis is almost exclusively the domain of psychometrics. That which is called Factor 
Analysis in the natural sciences is in reality an extension of principal components 
upon which some of the techniques of the psychometricians have been superimposed. 

In summary, it may be said that in terms of the Data Matrix, principal com- 
ponents treat the columns (the variables) and principal coordinates the rows (the 
number of specimens on which the variables have been measured). There is an 
algebraic relationship between R-mode and Q-mode, based on covariances, which 
is expressed by the singular value decomposition of a matrix. This is known as 
determining the "basic structure of a matrix" in psychometrics, where the technique 
first achieved prominence in statistical work (although it has long been known to 
mathematical physicists). By means o f  a scaling procedure, R- and Q-mode 
representations of a data matrix of frequencies can be depicted on the same figure. 
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Such figures are referred to as biplots, the best known of which is referred to as 
Correspondence Analysis (Benz6cri, 1973), which is a special case of the Gabriel 
biplot. 

What can be done if each set of observations consists of, say, measurements on one 
kind of property and a second set on another kind? Such data arise in environmetrics 
where one set may consist of measurements on the morphological variation of a 
species and the second set might be a set of chemical determinations. The appro- 
priate technique for such data is known as Canonical Correlation Analysis, whereby 
the one set is correlated with the second one. Canonical correlation can be gener- 
alized to more than two sets. When this is done, and the scaling procedures of cor- 
respondence analysis are incorporated, the ecologically useful method of 
Canonical Community Analysis results (ter Braak, 1987). We introduce canonical 
correlation in the following, but not canonical community analysis, largely because 
of its predominantly environmetric flavour. There is a well constructed computer 
program CANOCO available from Dr. C. J. ter Braak (Wageningen) that does 
the computations to which we refer anybody who becomes involved in advanced 
ecological research. 

If the specimens have been sampled from more than one population, several 
avenues of interest lie open. In the case of Two Populations, the Linear Discriminant 
Function of R. A. Fisher is a fitting procedure. In its original form, the discriminant 
function was designed for sorting objects, with a minimum of error, according 
to the original populations from which they came, under the necessary assumption 
that they really derived from one of two populations. The method was first applied 
to anthropometric data and then to a problem in plant taxonomy. Just prior to 
Fisher's discovery, P. C. Mahalanobis invented a measure of multivariate statistical 
distance for anthropometric work in India, the Generalized Statistical Distance, 
known widely as the D 2. The significance of the generalized statistical distance is 
assessed by a variance ratio, known as Hotelling's T 2, which was introduced as 
a type of multivariate generalization of Student's t. 

When there are more than two populations, the generalization takes several forms, 
often united under the name Canonical Variate Analysis. A complete such analysis 
incorporates: 

1 A comparison of the multivariate means by a generalized one-way analysis of 
var iance-  M A N O  VA, the acronym for multivariate analysis of variance. This test 
is to ascertain whether the k samples could have come from one and the same 
population. 

2 A set of discriminant functions for allocating specimens, with a minimum of 
risk, to the appropriate populations. The computation of this function proceeds 
by extracting latent roots and vectors and is therefore superficially similar to 
principal component analysis. For just two populations, the same discriminant func- 
tion as would have been yielded by the two-sample computations (which do not 
resort to latent roots and vectors) is yielded. 
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3 There is usually a graphical display of discriminant function scores. One says 
that the scores are ordinated. This is often considered to be the main reason for 
wanting to do the analysis, particularly at the exploratory level. 

4 A complete canonical variate study should also include the generalized dis- 
tances between samples, the associated values of the Hotelling T 2, and the corre- 
sponding variance ratios. 

The correct use of multivariate statistical procedures should have as its guiding 
light the selection of the appropriate technique or techniques for solving a particular 
problem. All too often, it is the ready availability of some method or other that 
generates a search for research materials that are considered to fit the assumptions 
of that method. 

THE MULTIVARIATE SAMPLE 

Some basic concepts and definitions 

An array of data consisting of N specimens on which p characters have been 
measured is called a data-matrix, denoted here as X. Thus, each row of X is con- 
stituted by a vector of observations containing p components. You will seldom find 
this convention in strictly statistical texts where the discussion is couched in terms 
of a p-dimensional vector of random observations. The data-matrix is, however, 
a very convenient concept in applied multivariate analysis, including geostatistical 
practice. 

When the information contained in the matrix is analysed so that the p variables 
are compared to each other, which is the most common approach, the analysis 
is said to be in the R-mode. If the alternative way is chosen, namely, to analyse 
the data-matrix so that one specimen is compared to another, the analysis is said 
to be in the Q-mode. In other words, R-mode applies to the treatment of the p 
columns of the data-matrix and Q-mode is specific to its N rows. As already 
mentioned, the letter R comes from the standard representation of the sample cor- 
relation matrix, which forms the foundation of many analyses in psychometrics. 
The letter Q has no other significance than that it precedes R in the alphabet. This 
usage also comes from the field of Psychometrics. It is possible to unite both modes 
into a single graphical representation, referred to as a Q-R-mode figure, although 
not without certain reservations, according to Gabriel (1995a, 1995b), the inventor 
of the Biplot. There seems to be some confusion about how the R-Q-mode design 
is to be employed. For example, Laenen et al. (1997) used what they referred to 
as a Q-R-mode factor analysis, without supplying adequate information concerning 
which Q-R-technique was used. It is clear that factor analysis was not involved, 
though, possibly, correspondence analysis was meant. There is an additional issue 
arising from the analysis of a table of frequencies, namely, that ratios of parts were 
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used in place of the parts themselves; this is a practice that is proscribed by pro- 
fessional statisticians, dating from the early works of Karl Pearson and Francis 
Galton a hundred years ago. The reason is that false correlations easily arise. Karl 
Pearson (1897) was most emphatic about the risk of computing spurious correlations 
and, in particular, the need to avoid attempts at interpreting correlations b e t w e e n  

ra t ios  the n u m e r a t o r s  a n d  d e n o m i n a t o r s  o f  wh ich  con ta in  c o m m o n  pa r t s .  

The mean vector is the vector composed of the means of each of the p variables. It 
is then the sum of all the rows of that data-matrix, X, divided by N. It forms the 
centroid or barycentre of an empirical distribution. 

The eovarianee matrix is a square p x p array formed from the variances and 
covariances of the p variables. The sample covariance matrix is usually written 
as S. It has the p variances ranged along its diagonal, the sii (i = 1 . . . . .  p )  and 
the covariances, sij in the off-diagonal positions. That is, 

sij = sji (i = 1 . . . .  , p; j = 1 . . . .  , p )  

which means that the matrix is a square symmetric matrix. The covariance matrix 
can be thought of as being a generalization of the variance of univariate statistics. 
By way of comparison, the data-matrix is neither symmetric nor square, other than 
by pure chance. 

The m a t r i x  o f  co r re la t i ons  corresponding to S is written R.  It has ones down the 
diagonal and correlations rij (i r in the off-diagonal positions. It is, then, also 
a square symmetric matrix. 

These quantities enter into almost all of the methods considered in the following 
pages. Before going any further, we should mention two conventions. The first con- 
cerns Greek letters for parameters. This was introduced by R. A. Fisher in order 
to make it easy to distinguish between theoretical, population quantities (Greek 
letters) and their sample estimates (Roman letters). Most statisticians tend to follow 
this but not even Fisher himself could be relied on to do so always. The second 
convention concerns the use of bold lettering. It has become more and more 
widespread, although by no means universal, to use bold type to denote vectors 
(lower case) and matrices (upper case) and to reserve normal italicized type for 
scalars. 

In addition to the covariance and correlation matrices, another type of represen- 
tation of covariation appears in some connections, namely, various kinds of Assoc i -  

a t ion  M a t r i c e s .  These are square symmetric matrices, the elements of which 
express degrees of "association" or concordance in pairs of categories. In the present 
text, such matrices are employed in the Q-mode method of principal coordinates 
(Gower, 1966). It is quite possible to regard the correlation matrix as a particular 
variety of an array of associations. In some fields of quantitative work in biology 
and geology, particularly those that are concerned with what is known as 
"Classification", the study of association matrices is given much prominence. A 
handy reference is the book by Gordon (1981). 
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We shall start by introducing a simple program for computing a covariance 
matrix, its correlation matrix, and a mean vector. It is called covmat. Type 

covmat 

at the DOS-prompt. The program will ask for an input file. This is the data-matrix, 
specified as follows, and provided on the disk under the name of haiticvt.dat, a 
set of chemical analyses for the celebrated Cretaceous/Tertiary bolide glass impact 
near Haiti, given great prominence in the ongoing speculation about the demise 
of the dinosaurs, ammonites, belemnites, etc. (Sigurdsson et al., 1991; Reyment 
and J6reskog, 1993, p. 281). The chemical parts are the oxides SiO2, A1203, MgO, 
CaO, Na20, K20, and SO3. Note, that we say "parts", not "variables". The reason 
for making this distinction is taken up later on. Suffice it here to say that compo- 
sitions are not variables in the statistical sense of the term. Moreover, compositions 
are concerned with relative, not absolute magnitudes. 

Line 1: N, p 

N is the number of columns (i.e., the number of objects); the comma here is import- 
ant - it is a requirement of the C-language (there is no corresponding punctuation 
mark in FORTRAN) 
p is the number of variables 

lines 2 and following, the data-matrix. 

Type in haiticvt.dat 

then press "Enter". 

The program provides firstly the covariance matrix, then the mean vector, with 
each element numbered, and finally the correlation matrix of the data-matrix stored 
in the file haiticvt.dat. You might find this little routine useful for doing simple pre- 
paratory work. 

Simple arithmetic operations with matrices 

Addition and subtraction are carried out in the same manner as in usual or scalar 
arithmetic. The only difference is that there are more quantities, p x p, to be precise, 
where p denotes the dimensionality of the matrix. 
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Multiplication and inversion are, however, not direct equivalents of their scalar 
counterparts. 

The formula for multiplying matrices Aik (i rows and k columns) and Bk9 (k rows 
and j columns) is 

C o = AikBkj. 

This is a relatively simple calculation. Matrix inversion is a more complicated 
procedure. 

You can gain an idea of these basic matrix operations by means of the two small 
programs provided. The first is called matops. Type matops at the DOS-prompt. 
You will be asked to provide a matrix for analysis. Start with the file called 
matops.dat. There are further examples in data-files matops2.dat, matops3.dat 
and matops4.dat. These are matrices that are added, subtracted and multiplied 
and the results listed. Some of the matrices are square and can be added, subtracted 
and multiplied. Those pairs that are not square and have different numbers of rows 
can be multiplied in the examples provided. 

For matrix inversion, use the program matinv. Run the file matinvl.dat, a cor- 
relation matrix, then the file matinv2.dat. The second data-set is the inverse corre- 
lation matrix you have just used. Its inverse should (approximately) restore the 
original matrix. When you inspect the outputs, it will become obvious that inverting 
a matrix is not just a matter of writing down the reciprocal of each element for matrix 
inversion involves a recognition of interrelationships between elements. 

This is all on the topic of elementary matrix manipulations for the moment. The 
subject is broached again in the introduction to the section on principal component 
analysis in Chapter 3. 

Reification 

One of the main interests in doing a multivariate analysis is to interpret the results in 
specific terms. This method of obtaining insight is called reification (which in the 
present connexion just means explaining and comes from the Latin root "res" 
= a thing) and it is more the domain of the scientist than the statistician, who cannot 
be expected to have an a priori notion of what is reasonable for a particular scientific 
problem. Reification is more an art than a skill and it usually requires considerable 
scientific talent to be able to unravel what the calculations have produced. It is also 
a source of dangerous conclusions and it is necessary to be aware of this and 
not try to squeeze out more " information" than can be reasonably yielded by a 
set of observations. 



14 Introduction 

Kinds of variables 

A few words need to be expended on the way in which multivariate data occur. The 
most common class of variables is the continuous variable, that is, one that can take 
all values over a certain range. Examples of continuous variables are lengths, dis- 
tances, weights, temperatures, pressures, etc. A discrete variable is one that takes 
integer values such as, 1, 2, 3, 4 etc. (i.e. whole numbers). As an example of one 
type of this category, we can cite the number of spines on a fossil shell, the number 
of ribs on a bivalve, and the number of sedimentary bands in a formation. The nom- 
inal scale of measurements is one in which there are several mutually exclusive cat- 
egories of equal rank. As an example, we can take 'type of rock', with mutually 
exclusive categories limestone, granite, shale, etc. Another variety of discrete obser- 
vations is rank, or ordinal, data which arise when there is a hierarchy of states, such 
as in the grade of metamorphism, or Mohr 's scale of hardness for minerals. Typical 
of such data is that the steps between successive states are not equal. 

Binary variables are a special case in which the observations can take only one of 
two values 0 or 1, plus or minus, present or absent. This kind includes dichotomies 
such as males and females, presence or absence of a feature, such as the presence 
or absence of mineral species in a petrological sample, or of fossil species in a 
sediment, the presence or absence of an ornamental feature on a fossil. 

Qualitative variables are sometimes of interest. These have no natural number 
associated with them, but can be arbitrarily coded in a manner amenable to 
data-analysis. Hues of soils and rock-types can be treated in this way, subjective 
estimates of degree of metamorphism, and so on. 

Gordon (1981) has provided a concise and well presented review of the classes of 
variables in statistics to which we refer you for further remarks and references. 

COMPOSITIONAL DATA 

The most common type of observations occurring in the geosciences are compo- 
sitions of various kinds for which reason we present a relatively detailed account 
of their properties. The significant aspect of compositions is that the data are in 
the form of frequencies, proportions or percentages, all of which have the common 
property that the rows of the data-matr ix sum to the same constant. This may 
not strike you as being much of an obstacle, but rest assured, there is no other area 
of data-analysis in which more incorrect applications of statistical methods have 
been perpetrated, and not only by non-specialists. Until Aitchison (1986) 
monographed the algebra of the unit-sum constraint, the only avenues open to any- 
one wanting to try to get around the difficulty were to ignore it entirely, to wish 
it would go away, or to devise some totally inappropriate statistical analysis. In 
many cases, disastrous consequences have resulted. Surprisingly enough, even highly 
competent professional statisticians have done all the above listed wrong things, not 
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just natural scientists. The otherwise so comprehensive volume on multivariate 
analysis by Jackson (1991) glosses over the entire problem posed by compositional 
data in just two pages! 

"Closed data" require special methods for their correct analysis. Notwithstanding 
this sweeping declaration, you should be aware that the last word concerning the 
analysis of compositional data may not yet have been spoken. We shall try to dem- 
onstrate the motivation for saying this to you in a later section. A recent article 
by Barcel6 et al. (1996) casts light on some of the practical difficulties still remaining 
in the analysis of constrained observational vectors. 

An awareness of the need for the appropriate way of dealing with compositional 
data is beginning to spread throughout the geological community, albeit at a 
gastropodous pace. There is widespread bewilderment evident in petrological 
publications at what the essential characteristics of compositional data-analysis 
are and how various challenges are to be met. Fortunately, in an increasing number 
of publications, the need for the log-ratio covariance matrix in the multivariate 
analyses of rock analyses is coming to the fore. 

Definition of compositional data 

In order to clarify matters, we review below the nature of compositional data. 
Geology does not have sole right to the problem of "c losure"-examples abound 
in medical statistics, serology, psychometrics, ecology, zoology, sociometrics, 
economics, etc. We, as geologists, can, however, preen ourselves in the knowledge 
that we at least know about the problems involved and are starting to do something 
about t h e m -  other disciplines are still in a state of blissful ignorance. The study 
of compositions is essentially concerned with the relative magnitudes of ingredients 
rather than their absolute values, such as is the case for, say, measurements on some 
object such as a fossil specimen. These ingredients are parts and not variables in the 
real sense of that term in statistics. That is why chemical data were not cited above 
as being an example of "variables". Making this distinction may seem to be pure 
"hair-splitting", but a moment's reflection should convince you that there is a very 
real, and important, difference between variables and parts. 

Any vector x with non-negative elements 

X1 -Jr- . . .  + XD = 1 (1:1) 

is subject to the unit-sum constraint. This condition is referred to as being a com- 
position x composed of D parts summing to 1. Obviously, the components of eqn. 
(1:1) cannot be independent since they sum to one. 
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As geologists, we meet such data in geochemistry, petroleum chemistry, 
sedimentology, rock-analysis, palynology, palaeoecology, oceanography, 
environmetrics, etc. In fact, it could almost be claimed that "closed data" are 
the most commonly occurring forms of measurements in general geology. Alluding 
to biology, we note that all serological data are of this kind, e.g. blood-group 
frequencies, observations on species occurrences, quantitative ecological 
observations, and many more. One hundred years ago, Karl Pearson and Francis 
Galton warned against attempting to interpret correlations between ratios, the 
numerators and denominators of which contain common parts. It should not be 
necessary to alert geologists to this danger today, but this is unfortunately not true 
and some petrologists still base much of their work on such fallaciously compounded 
data. For example, Noll et al. (1996) based an intricate succession of arguments 
concerning the role of hydrothermal fluids in the production of subduction zone 
magmas on bivariate plots involving ratios. Some of these plots feature values 
in which one axis consists of a second chemical element divided by the element for- 
ming the other axis. Other plots (Noll et al. 1996, p. 596) express bivariate 
regressions, and correlations, for ratios in which the same element enters into 
the "dependent" variable and the "independent" variable. It is difficult, yea perilous, 
to relate such analyses to statistically valid concepts. 

The characteristic features of a compositional data-set are: 

(a) each row of the data-matrix corresponds to a single specimen (i.e. rock 
sample); this is known as a replicate (=  a single experimental or observational 
unit). 

(b) each column of the data-matrix represents a single chemical element, a min- 
eral species, in short, a part; 

(c) each entry in the data-matrix is non-negative; 
(d) each row of the data-matrix sums to 1 (proportions), respectively, 100 

(percentages). (N.B. you will sometimes find another row-constant, owing to some 
manipulation or other on the part of the analyst); 

(e) correlation coefficients change if one of the variables is removed from the 
data-matrix and the rows made to sum to 100 again. This is the property of 
variable-dependent correlation. The same effect is also produced if a new component 
is added to the study. 

Property (e) provides part of the key to the predicament attendant on com- 
positional data. By way of comparison, correlations computed for 
non-compositional data-matrices are invariant to the number of variables included 
in the matrix. That is, if you delete one or more variables from the data-set, this 
action has no effect on the correlations between the remaining variables. Concerned 
petrologists have worried over ways of attacking the constant-sum problems and 
many suggestions, all fallacious, abound in the literature. The most recent try at 
finding a simple solution is the constant-weight artifice. 
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The constant weight stratagem 

Whitten (1995) advocates the use of constant-weight samples in order to "break out 
of the constraint". By realizing this intention, the rows of a data-matrix of chemical 
parts will not necessarily sum to a constant. There is, however, a constraint resident 
in the data in that the parts are interrelated in the same manner as if the observations 
were expressed as percentages of a whole. This will only be of immediate conse- 
quence for a particular rock-analysis if a subcomposition is selected subsequent 
to the construction of the data-set, Removal of one or more parts alters the weight 
of the sample (row) in an unforeseeable way and hence the relationships between 
parts. The constant-weight stratagem can be considered as a fixed-mode procedure 
(Reyment and J6reskog, 1993) insofar as the results obtained for a certain 
data-matrix apply for that set of observations alone, although, without 'rending 
asunder' the constraining relationship in any wise. Aitchison (1997) has pointed 
out several fallacies in the constant-weight stratagem. Statistical extrapolations 
are normally not permissible in the fixed mode other than on an ad hoc basis. 
Whitten (1993) advocated g/100cc of rock rather than weight-percent for studying 
spatial chemical variability. The volumes were obtained by the familiar 
V = M i d  relationship where M is the weight percentage and d denotes the 
whole-rock specific gravity; it was, however, pointed out that whole-rock specific 
gravities are notoriously fickle. 

A point that is overlooked consistently by petrologists is that their data were not 
singled om to be pilloried exclusively by Aitchison (1986). Such observations belong 
to a much wider world of compositional data which encompasses not only rock 
analyses, but such diverse material as analytical chemistry, serological 
determinations, time and motion study analyses, analytical petrochemistry, 
econometrics, etc. The vernacularized and, frequently, emotionally charged termin- 
ology used in some geological literature is indeed unfortunate ,and a source of more 
than a mite of misunderstanding. 

The simplex 

A restricted part of real space, the simplex, constitutes the basic concept for the ~ 
treatment of compositional data. Theessential point you need to grasp at this stage 
is that although the vector x in(1:1) consists of D parts, the composition it represents 
is completely specified by the d components of  a d-part subvector, defined as 
d - D -  1. Hence, 

XD -- 1 -- Xl - - . . .  - X d .  (1:2) 
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A D-part composition is therefore, to all intents and purposes, a d-dimensional 
vector. If you know the sizes of these d parts, XD can be found by simple subtraction 
from the row-constant. The concept of the space of compositional data can then be 
simply defined as the d-dimensional simplex embedded in D-dimensional space. 

A convenient working definition of the simplex can be made in the following 
words: The d-dimensional simplex embedded in D-dimensional real space is the 
set defined by 

S d = {(Xl . . . . .  XD):  Xl > . . . . .  x D > 0; Xl -Jr-. . .  -~- XD = 1}. 

In this manner, S d is defined as being embedded in a real space of higher dimension, 
R D" 

This condition can be exemplified by a simple geologically relevant illustration, the 
compositional triangle. S 2 is an equilateral triangle, a two-dimensional subset, within 
R 3. It is the triangle associated with the familiar ternary diagram of petrology, 
sedimentology and physical chemistry. 

There is, additionally, the problem of the graphical display of constrained data. 
Aitchison (1986. p. 51) summarized some of these and noted that the Harker diagram 
of petrology, in which SiO2 is chosen to be the component against which all other 
major oxides are compared, is a case of this, particularly if interpretations in 
the usual framework of correlation and regression are attempted. 

Bases and compositions 

A basis w of D parts is a D x 1 vector of positive components (Wl, . . . ,  wD), all on the 
same scale. The constraining operator �9 of Aitchison (1986) offers a convenient 
means of representing the transformation between bases and compositions. It trans- 
forms each vector w of D positive components into a unit sum vector w/jWw, where j 
denotes the unit vector (i.e. a vector the components of which are all ones). 

Every basis w has a unique size, namely, the sum of its components: 

t -- (wl + . . .  + WD) -- jTw (1:3) 

and 

composition x = C(w) = w/t. 

This is a very neat way of expressing the relationship between base and com- 
position. 
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Subcompositions and amalgamation 

1 Subcompositions 

The formation of a subcomposition is not merely a matter of deleting a part from 
each composition in a manner analogous to what is appropriate for usual variables 
(e.g. deleting one or more distances from a set of craniometric traits). The process 
of selection of a particular subcomposition may be conveniently described in the 
following terms. If S is any subset of the parts 1, . . . ,  D of a D-part composition 
x, and Xs is the subvector formed from the corresponding components of x, then 
C(xs) is called the subcomposition of the parts S. We can illustrate the pithiness 
of this terse formulation by considering a simple example for 5 parts, x = 
(xl, . . . ,  xs) from which parts Xl, x4, x5 are selected to form a subcomposition. 

(S1, $2, $3) = C(x l ,  x4, x5). 

Geometrically, this is a transformation from the original sample space S 4 to a new 
simplex S 2. The pertinent matrix multiplication is (note the r61e of the ones in 
the C x D premultiplying matrix): 

1 0 0 0 
0 0 0 1 
0 0 0 0 

Xl 
0)  X2 
0 x3 
1 x4 

X5 

An important property of compositional data is that the ratio of any two com- 
ponents of a subcomposition is the same as the ratio of the corresponding two com- 
ponents in the full, original composition. Hence, 

Si/Sj = Xi/Xj, 

which is the property of"preserved ratio relationships". We stress, again, a matter of 
computational logic here, namely, that if it is desired to reduce the dimensionality of 
an analysis, the reduction must be carried out by the appropriate procedure for 
subcompositions and not by the simple expedient of lopping off part of the data. 
Aitchison's (1997) enlightening discussion of this subject should make the rationale 
quite clear. 

2 Amalgamation 

Amalgamated data-sets are often of interest in geological work. The original data 
may, for example, be in the form of oxides of Na20, K20, Fe203, FeO, but sub- 
sequent interest is concerned with total alkalis and total iron-content, thus leading 
to an amalgamation of parts. Amalgamation is defined as follows. If the components 
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of a D-part composition are separated into C (<D) mutually exclusive subsets and 
the parts constituting each subset are added together, the resulting C-part compo- 
sition is termed an amalgamation. The addition of components is expressed by 
the matrix operation: 

t (c) = Ax (D). 

An amalgamating matrix A is one of order C x D with D elements equal to 1 (one in 
each column) and at least one in each row; the remaining ( C -  1)D elements are equal 
to zero. 

Covariances and correlations in simplex space 

The usual covariance matrix, when computed for a D-part composition, runs into 
interpretational difficulties. Some of these are: 

1 Negative bias. The correlations are not free to range over the interval (-1,  + 1). 
This becomes obvious in the case of two variables for which 

corr(xl, x2) = - 1. 

Hence, the product-moment correlation coefficient is constrained to taking a speci- 
fied value, which is, of course, quite unacceptable. 

2 There is no relationship between the product-moment correlations of a 
subcomposition and those of the full composition. As the dimensionality of a 
subcomposition is decreased, so do the crude covariances (correlations) between 
two specific parts fluctuate in sign. This is hardly a useful property. The inadvertency 
noted here is in part due to the incoherency of the correlation coefficient in simplex 
space. 

3 The way in which null-correlation is manifested is a further bugbear. A value 
of zero computed for the raw correlation coefficient of two parts of a composition 
is almost always an untrue representation of the real situation expressed by the 
appropriate correlation in simplex space. Aitchison (1986, p. 56) reviewed the 
various attempts that have been made to come to grips with the difficulty of null 
correlation, including the construction of "imaginary bases" (sometimes called 
the "open set"). This approach seems to have arisen by false analogy with true 
factor analysis. The "open set" is interpreted as being the "hidden" relationship 
between parts from which the observed compositions, the "closed set", could have 
arisen. This manipulation introduces a construction, the imaginary basis, which 
for truly compositional data does not exist. The whole idea of "opening up" 
a compositional relationship is based on a logical non sequitur, as shown by 
Aitchison (1986, p. 58). The concept of the zero correlation does not have 
the same meaning with respect to independence as is the case for "usual data". 
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Attempts have been made in the past, such as the Chayes-Kruskal method, to 
produce a null correlation by some kind of manipulative "opening procedure". 
However, the whole idea of null correlation for compositional data is spurious 
(Aitchison, 1986, 1997). 

It is possible to formulate an hypothesis of independent compositions in the 
following terms. A composition has complete subcompositional independence if 
the subcompositions formed from any partition of the composition form an inde- 
pendent set. Hence, for additive log-normal compositions, the properties of complete 
subcompositional independence, and of being log-ratio uncorrelated, are essentially 
equivalent. 

Subcompositional coherence 

This vital concept can be best illustrated by a simple example. Consider two studies 
on deep-sea sediments. One investigator has dried his samples and then determined 
three oxides, A, B and C. A second investigator has samples from the same source, 
but has made his oxide determinations on the undried sediments and will, therefore, 
have results for not only A, B and C, but also H20. It will only take a brief moment 
to realize that product-moment correlations computed between the parts will be 
different for the two sets of analyses, but not the ratios between A, B and C. Hence, 
the product-moment correlation coefficient is subcompositionally incoherent for 
data involving parts, but as long as our statements are couched in terms of ratios, 
subcompositional coherence is maintained. 

Aitchison (1997) gives a simple though telling illustration of what 
subcompositional coherence implies. Consider again the above example, this time 
backed up by figures provided by Aitchison: 

Full compositions (x(i), i = 1 . . . . .  4) Subcompositions (s(i), i = 1 . . . . .  3) 

0.1 0.2 0.1 0.6 0.25 0.50 0.25 
0.2 0.1 0.1 0.6 0.50 0.25 0.25 
0.3 0.3 0.2 0.2 0.375 0.375 0.25 

The product-moment correlation coefficient between the first two parts for the full 
set is 0.5. The scientist computing the correlation for the same two variables in the 
subcomposition would report a value o f - 1 .  There is thus incoherence of the 
product-moment correlation between raw components as a measure of dependence. 
However, if attention is directed towards the ratio of two components, it will be 
found that this remains unchanged for full compositions and subcompositions. Con- 
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sequently, 

si /s j  = x i / x j  

because compositions expressed in terms of ratios are subcompositionally coherent. 

Zero  data values and composi t ional  stat ist ics 

An uneasy aspect of compositional data analysis is the conceptual difficulty posed by 
zero observations and the taking of logarithms, an essential step in log-ratio 
multivariate analysis. Aitchison (1986) suggests various ways of circumventing this 
aspect. Here are some suggestions: 

1 Check whether the problem can be solved by amalgamation. For example, it 
may be possible to proceed via the sum of alkaline oxides, rather than taking indi- 
vidual oxides separately. Consequently, if the content of Na20 were zero, and that 
of K20 were some small quantity in a few of a set of observational vectors, it might 
be deemed acceptable to pool sodium and potassium in the data set as "total alkalis". 

2 Can an extremely small "mock-value" be entered? Some trace elements occur 
in close to negligible amounts such that in some samples, a "not-present result" 
is registered even though there may be minute quantities in the specimens. It is 
not an uncommon experience to find that trace elements previously registered as 
absent, come to light with the advent of vastly improved instrumentation. Devel- 
opments in atomic absorption photo-spectrometry is a case that springs readily 
to mind. 

3 Some very small quantity can be added to all the parts. This has the effect that 
all values are increased by the same minute amount and zero observations are made 
to disappear. 

A word of warning is not misplaced here. If there are many "empty cells" in a data 
set it can be expected that a multivariate analysis, e.g. principal components, will 
exaggerate the contribution of the part concerned. 

The log-rat io variance 

The most useful solution to the multivariate analysis of compositions proposed so far 
is that of Aitchison (1986, 1997). The covariance structure of a D-part composition x 
is completely specified by the ldD log-ratio variances, where d - D -  1" 

rij = var{ log(x i /x j ) }  (i = 1 . . . . .  d; j = i + 1 , . . . ,  D) (1:4) 
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The corresponding means are: 

#ij = E{log(xi/xj)} (1:5) 

The inadvertency introduced by the log-ratio variance is, as just recorded, that the 
logarithm of zero does not exist, so if there are such observations in the data, and 
they are not uncommon in geochemical work, special procedures must be devised 
to deal with this situation. The most direct way of dealing with the question is 
by "preventative surgery", that is, to see whether the part giving rise to zeros is 
necessary to the project; if not, one could consider excluding it from the array before 
starting the analysis. We have all no doubt seen many a table of chemical analyses in 
which one component is always zero - it was analysed for, but found to be lacking in 
all samples. A second alternative is, as noted above, to add some minute number to 
all the entries in the crude data-matrix which is, however, not a good procedure. 
Such data are often referred to as BDL (which stands for below detection limit) 
observations. Other, more advanced, procedures are discussed in Chapter 11 of 
the book by Aitchison (1986). 

THE LOG-RATIO DATA-MATRICES 

It is frequently useful to have access to the log-ratio data matrices as a starting point. 
The program logmat performs the required calculations and stores the matrices for 
subsequent use. 

Instructions for using the program logmat 

Line 1: 1 the number of parts (number of columns) 
2 the size of the sample (number of rows) 
3 if the centred log-ratio data matrix is required, enter a 1 here. If the 

log-ratio covariance matrix is of interest, enter a 0. In this latter case there will 
be a second line containing the part to be used as a divisor, indicated by number. 
This, if the first part (entries in the first column of the data-matrix) is to be used 
as a divisor, a 1 is entered. 

Thereafter follows the data-matrix in free format. The matrices are saved in the file 
loggamma.dat for the centred log-ratio data matrix and in logsigma.dat for the 
log-ratio data matrix. The trial data are in file hongited.dat. 
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MATRIX REPRESENTATIONS 

The three representations now presented, the variation matrix, the log-ratio 
covariance matrix and the centred log-ratio covariance matrix may seem to be very 
different on first encounter, but they are in fact equivalent and each of them 
can be derived from either of the others by simple matrix operations (Aitchison, 
1986, Chap. 4). 

1 The variation mat r ix  T 

TDxD - -  ( 'C i j )  - [var{log(xi/xj); i , j  = 1 , . . . ,  D] (1:6) 

This matrix is symmetric with a diagonal of zeros. Although it is not in the form of a 
covariance matrix it has certain computational advantages in that it treats the parts 
of a composition symmetrically (i.e. all parts are included on an equal footing). 
For many purposes in compositional data-analysis, the variation matrix is to be 
preferred. 

2 The log-ratio covariance matr ix  ]g 

53dxd --- [COV{Iog(xi/XD), Iog(xj/XD) ( i , j  = 1 . . . . .  d) (1:7) 

The log-ratio covariance matrix is the covariance matrix of a d-dimensional ran- 
dom vector y - Iog(x_D/XD). (Note, that this vector is in space 8~d.) Part D is held 
fixed, which means that the last component of the vectors of parts in the present 
representation, XD, becomes the common divisor of all the log-ratios. 

Yi -- Iog(xi/XD). 

The complication posed by negative bias is eliminated by this transformation at the 
cost of a new difficulty in that one part is arbitrarily removed as a result of division 
by the common divisor XD,; this matrix does not, therefore, treat all parts of a com- 
position symmetrically. Aitchison (1986, p. 92) proves that the order of parts, 
and the choice of a component divisor, does not influence the outcome of a 
multivariate analysis. The log-ratio covariance matrix is positive definite, which 
means, that it has a normal inverse. 

3 Centred log-ratio covariance matr ix  F 

A symmetric treatment of all D parts of a vector of compositions may be achieved by 
replacing the single component divisor XD by the geometric mean of all D 
components. 
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For a D-part composition x, the D x D matrix 

F - c o v  log , log i , j  = 1 . . . . .  D (1:8) 

is termed the centred log-ratio covariance matrix. This matrix is one that is useful 
for some multivariate analogues of full-space statistics. It is easy to interpret in that 
it has the advantage of being symmetric with respect to all parts. The drawback 
is that it is s ingular  (which means that its determinant is zero, its rows sum to zero, 
and it does not possess a normal inverse) which places a particular (though not 
insurmountable) restriction on practical multivariate computational aspects. 

The centred log-ratio covariance matrix (1:8) is the covariance matrix of the 
D-dimensional random vector: 

z = log{x/g(x)} 

where g(x) is the geometric mean of the parts, i.e., 

g(x) = (Xl .. .  XD) 1/D 

The singularity of this covariance matrix is due to the fact that z is confined to 
d-dimensional linear subspace and hence lacks the "freedom" of full space R D. 

The most immediate obstacle in the path of many a multivariate analysis is how to 
obtain an inverse of the centred log-ratio covariance matrix (and correlation matrix). 
A generalized matrix inverse can be computed from the spectral relationship 

F -  - )~ l la la~ + . . . - k -  )cdlada~. (1:9) 

Equation (1:9) indicates that one computes the latent roots and vectors of F, then 
performs the reconstitution indicated for the reciprocals of the d latent roots that 
are greater than zero. 

The three matrices just introduced are mutually interchangeble in the sense that 
one can pass from any of them to any other by a simple matrix manipulation 
(Aitchison, 1986, pp. 82-83). 

SOME NOTES ON THE COMPUTATION OF SUBCOMPOSITIONS 

From the point of view of manipulating subcompositions, the variation matrix T, 
defined in formula (1:6) on p. 23, is to be recommended because of its uncomplicated 
structure. It may not be immediately evident as to why an array of variances should 
be equivalent to the two covariance matrices introduced there, but the fact is that 
the specification of the variation matrix depends on variances of two-component 
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log-ratios. Hence, the variation matrix appropriate to any subcomposition requires 
only the extraction from T of the elements in the rows and columns corresponding 
to the parts constituting the subcomposition. 

If Ts denotes the variation matrix of the resulting subcomposition, S is the 
selecting matrix, of order C x D, C is the dimensionality of the subcomposition, 
D is that of the full composition), then the matrix operation involved is: 

Ts = STS T. 

The operations germane to subcompositions of the log-ratio covariance matrix 
and centred log-ratio covariance matrix are more complicated by far. In the latter 
case, not only the appropriate rows and columns of F must be selected but also 
the common log-ratio divisor must be changed from the geometric mean of all 
D compositions to that of the C selected parts. Construction of the log-ratio 
covariance matrix Zs is more intricate still, since all will depend on whether D is 
part of the subcomposition or not. 

CONSTRUCTING A LOG-RATIO COVARIANCE MATRIX 

The program logcov performs the steps required for producing log-ratio covariance 
matrices, namely, the log-ratio covariance matrix expressed by eqn. (1:7) and 
the centred log-ratio covariance matrix given by eqn. (1:8). The corresponding cor- 
relation matrices are also provided as well as the matching matrices for the crude 
data in order to permit comparisons to be made. It may be used as an alternative 
to the program logmat, introduced earlier on in this chapter. 

The product-moment correlation coefficient has traditionally played an important 
part in geological analyses. However, in the case of the theory of compositional data, 
its relevance is much reduced owing to the deficiency known to statisticians as 
"incoherency". A reflection of this is that Aitchison (1986) hardly mentions it, con- 
fining his developments almost entirely to covariances. Our advice is to avoid 
thinking in terms of full-space correlations when dealing with compositions. 

Instructions for using the program logcov 

A set of trial data, encompassing five chemical parts, is located in the file 
hongitln, dat, a set of fictitious data constructed for illustrative purposes by Aitchison 
(1986). The input details for the observations to be run in the program are as follows: 

Line 1: The number of samples to be treated. 
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Line 2: 
Line 3: 

The title of the job. 
1 The number of specimens, 

then, 

2 the number of parts, 

Line 4 and following: the listing of the data-matrix of parts. 

If there is a second sample, the steps denoted above as "lines 2, 3 and 4" are 
repeated, but not line 1. 

The input is in free format, which has the practical consequences that (a) you do 
not have to match up your data to fit some pre-ordained format, but (b), you must 
leave a space between each separate entry on the rows of the data-matrix. 

For this first statistical computing example, it may be useful to explain how 
data-files are linked to a compiled statistical program, The recommended procedure 
is to type the following instructions on the command line. The D O S  command is then 

c: ~rogram < infile > outfile 

where infile is the name of your data-set, arranged as explained above, and outfile is 
the name you wish to give to a file in which the results are saved. Please note 
careful ly that you cannot act ivate the program by cl icking on the m o u s e -  you must 
TYPE the instructions. More explicitly, if the input file is called cheman.dat and the 
output is to go into a file you call cheman.out, then the appropriate command would 
be: 

c:\logcov < cheman.dat > cheman.out 

You can then conveniently work on the file cheman.out by means of the editing 
facility EDIT of D O S  5 (and higher), or Wordpad in Windows 95 or Graph Server. 
Our advice is to you is to make full use of the Microsoft editing facilities for viewing 
the output of the set of programs and for preparing your own data for analysis. Both 
covariance matrices computed here are useful, as will become apparent as you 
encounter the multivariate techniques introduced further on. 

The arrays for centred log-ratio correlations and log-ratio correlations and the 
corresponding raw correlations are listed in BOX 1: We have already stated that 
the correlation coefficient for compositional data lacks direct relevance and the 
material presented in BOX 1 is provided merely for comparative reasons and 
not as a recommendation for use in interpreting comparisons with the discredited 
raw correlations of parts. A case can often be made in some work, however, for 
examining correlations between log-ratios of parts. 
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Box 1" Computing the log-ratio and centred log-ratio covariance 
matrices, corresponding correlations and comparison with the results 
using the procedure appropriate to full space. Data from Aitchison 
(1986). The log-ratio correlation matrices are shown for general infor- 
mation and are not to be construed as an uncondit ional recommendat ion 
for general use. The reasons for this statement are set out in the main text. 

Program" logcov 
Data" hongit ln.dat 

Hongite N -  25, a constructed data-set (Aitchison, 1986, p. 354) 
R o w s -  25 columns (par ts ) -  5 

The log-ratio covariancematrix 

1 2 3 4 
0.1386 0.2642 -0.2317 0.1214 
0.2642 0.6490 -0.7132 0.1444 

-0.2317 -0.7132 0.9627 0.0020 
0.1214 0.1444 0.0020 0.1871 

The centred log-ratio covariance matrix 

1 2 3 4 5 
1 0.0661 0.1813 -0.2497 0.0164 -0.0140 
2 0.1813 0.5557 -0.7416 0.0290 -0.0244 
3 -0.2497 -0.7416 0.9993 -0.0485 0.0405 
4 0.0164 0.0290 -0.0485 0.0496 -0.0465 
5 -0.0140 -0.0244 0.0405 -0.0465 0.0445 

The log-ratio correlation matrix 

1.0000 0.8809 -0.6344 0.7541 
0.8809 1.0000 -0.9023 0.4144 

-0.6344 -0.9023 1.0000 0.0047 
0.7541 0.4144 0.0047 1.0000 

The centred log-ratio correlation matrix 

1 1.0000 0.9460 -0.9719 0.2867 -0.2587 
2 0.9460 1.0000 -0.9951 0.1748 -0.1553 
3 -0.9719 -0.9951 1.0000 -0.2178 0.1921 
4 0.2867 0.1748 -0.2178 1.0000 -0.9909 
5 -0.2587 -0.1553 0.1921 -0.9909 1.0000 
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These two log-ratio correlation matrices are perforce different because 
they are correlating different log-ratios. However, their parent 
covariance matrices can be simply transformed from the one to the other. 
Note the two matrices differ in dimensionality. 

Crude covariance matrix 

1 29.7579 33.0209 -60.5583 
2 33.0209 139.8515 -144.8595 
3 -60.5583 -144.8595 185.0991 
4 0.6607 -13.8257 9.7125 
5 -2.3299 -16.9022 15.9816 

-0.6607 -2.3299 
-13.8257 -16.9022 

9.7125 15.9816 
5.5458 -1.2630 

-1.2630 6.3579 

Crude correlation matrix 

1 1.0000 0.5118 -0.8159 -0.0514 -0.1693 
2 0.5118 1.0000 -0.9003 -0.4964 -0.5668 
3 -0.8159 -0.9003 1.0000 0.3031 0.4658 
4 -0.0514 -0.4964 0.3031 1.0000 -0.2126 
5 -0.1693 -0.5668 0.4658 -0.2126 1.0000 

N.B. As we have already stressed, the "full-space" correlation counter- 
parts are here shown solely for comparative and instructive reasons. We 
do not want this misconstrued as meaning that we want you to actually 
use them in your work. 

The variation mat r i x  and subcomposi t ions 

As observed on p. 24, the most efficient manner of dealing with subcompositional 
data is to proceed via the variation matrix. We shall now demonstrate this by means 
of two short programs, one for construction a variation matrix, aitehvar, the other 
for producing a subcompositional variation matrix, snbeomp. 

The trial-data for use with aitehvar are in hongitel .dat.  The output consists of the 
appropriate variation matrix T. Save the result for later use in a file you may call 
hongite.sbc. 
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Instructions for using the program aitchvar 

Line 1: 1 sample size 
2 number of parts 

Line 2+: The data as an array of parts. 

The resulting variation matrix provides the input to the next program, subcomp, 
which computes the product 

Ts = STS T 

The program also provides Aitchison's (1997) finite scale transformation of the vari- 
ation matrix (which goes part of the way in replacing the correlation matrix of full 
space). 

Input details for subeomp: 

Line 1: 1 Number of parts in the full composition (D) 
2 Number of parts in the subcomposition (C) 

Lines 2+: The full variation matrix T. 

Lines 3+: The selecting matrix S. 

The selecting matrix (p. 26) requires care in its formulation. It is of order C x D, 
that is, it has C rows and D columns. Each row contains a single element equal 
to one, and at most one in each column. Examine the display in file hongite.sbe 
with the output just obtained. There has been a reduction from the five-part variation 
matrix to the one appropriate for the subcomposition (xl, x4, xs). A little 
experimenting with the selection matrix will make you familiar with the use of 
the program. Note, that the compositional variance matrix always has zero diagonal 
elements. 

Checking a data-matrix for constant sum 

Usually, you will be able to see by simple inspection whether or not a data-matrix is 
constrained. In cases where this is not obvious (very large data-matrices, for 
example) you can check for "closure" by running the program propmat. This pro- 
gram returns row-sums and column-sums. If either of these yields a constant sum, 
row-by-row, or column-by-column (the data-set can be in transposed form), then 
you have constrained data of the most common type. The program will not, of 
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course, unveil the constraint imposed on observations made on samples of "constant 
weight", nor data-matrices of frequencies of objects produced by counts to a con- 
stant total. 

Instructions fo r  using the program Propmat 

The input specifications for running the program are: 

Line 1: the number of variables/parts (=  columns) (comma)then the number 
of specimens (=rows).  In the trial example, called boxitprp.dat, this instruction 
reads 

5,10 

Line 2, and following: the data-matrix. 

Sometimes the row-sums will not be exactly the same. There are several valid 
reasons for this. Chemical determinations often contain an error component, which 
can cause slight deviations from 100%. (This topic is well covered in Aitchison's 
book.) Also, some minor component, or components, may have been omitted from 
a published table of values. An example is the file haiticvt.dat in which some minor 
parts have been deleted. Sometimes the analyst may have subtracted values from 
his data in the widely held though completely mistaken belief that this will "open 
up the constraint" (frequently referred to dramatically as "breaking open the data" 
or "shattering the constraint"). The constraint is, however, incorporated into 
the covariance structure and, hence, it is not possible to remove its effects just 
by leaving out one or more of the variables. 

To use the program, typepropmat  at the D O S  prompt. You will be asked to supply 
the name of the file containing the data-matrix to be examined. The output shows 
each row-sum in turn then the column-sums. The data for the fictitious rock-type 
"boxite" sum nicely to 100, as they were made to do by their inventor. 

An application to a constant sum matr ix 

It can be instructive to look at the output yielded by the program propmat applied to 
a real situation. We have chosen some data from the Ocean Drilling Project series of 
volumes. Usui (1992) studied hydrothermal manganese minerals in cores from Leg 
126 of the Ocean Drilling Programme in the Japanese region. Among the published 
data, we selected the analyses listed in his Table 2 to exemplify the problem of ana- 
lysing compositional data. The compositions of manganese minerals included in 
the project by Usui are the oxides of Mn, Fe, Na, K, Ca, Mg, Ba, Si and A1, being 
nine in all. Programpropmat shows that the rows do not sum to 100% (the quantities 
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are cited in weight percent) and something more than water (said by Usui to be 
around 7% lost on heating) must have been excluded from the published table. This 
example is enlightening because it illustrates the dangers lurking neath an 
inappropriate statistical application. This was, alas, not realized by Usui, who based 
his interpretations on the usual (--crude) correlation coefficient between parts. 

Geological compositional data tend to deviate from the multivariate Gaussian 
state with respect to kurtosis and skewness and more extreme divergencies from 
theory can influence stability in the compositional covariances; it is therefore advis- 
able to carry out the appropriate tests of normality as a first step to a serious analysis 
and to check the data for atypicalities. This topic is further considered in a later 
section. 

Compositional analogue of the correlation coefficient 

For "normal" (=  full-space) data, there can be no confusion in the choice of the 
appropriate product-moment correlation coefficient- there is only one available. 
Matters are less simple for compositional data in that there are two ways of express- 
ing a matrix of covariances, but neither of these leads to a sensible correlation matrix 
in product-moment terms. Aitchison (1986, p. 105) considered this situation from the 
viewpoint of validity of log-ratio-uncorrelated compositions and provided a set of 
criteria for general guidance. 

A prime preoccupation among petrologists/geochemists is the desire to express 
relationships between pairs of elements or oxides. In many publications, the only 
statistical steps taken are the computation of product-moment correlations. 
Aitchison (1986, 1997) has demonstrated that the concept of zero correlation 
has n o  meaning in simplex space. The question arises then as to whether there is 
some possible analogue to the concept of correlation for compositional data. Let 
us summarize some of the relevant properties of compositions: 

1 For compositions, the sizes of the specimens are irrelevant. The composition of 
a rock is dimensionless and scale-invariant. 

2 Any meaningful function of a composition can be expressed in terms of ratios 
of the components of the composition. 

3 Compositions are concerned with relative values- therefore with ratios of 
components, and not with absolute magnitudes. 

4 The property of subcompositional coherence. Subcompositional coherence is 
lacking for product-moment correlations of raw components. 

5 The Variation Matrix, T, (cf. eqn. 1:6) is an appropriate summarizing measure of 
dispersion and dependence. It cannot, however, be expressed as a conventional 
covariance matrix of some vector (although Z, F, and T are equivalent). The nearest 
one can come to the product-moment correlation is the relative variance, 
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var {log(xz/xj)}. Thus, for example, zij = 0 means that there is a perfect relationship 
between xi and xj in the sense that their ratio is constant (remember, the diagonal 
elements of the variation matrix are all zero). In other words, the concept of perfect 
correlation between variables is replaced by that of perfect  proport ional i ty between 
parts. The greater the value of z ij, the greater is the departure from perfect pro- 
portionality: moreover, as this value approaches infinity, the condition of a complete 
lack of proportionality is neared. 

To make the idea of proportionality more accessible to the average practitioner, 
Aitchison (1997) introduced a finite scaling transformation, exp(-4ffij), as a 
measure of the relationship between two parts. This scale runs from 0, which signifies 
a lack of proportional relationship, to 1, that corresponds to a perfect proportional 
relationship. (N,B. It requires at least three parts for the computation of the 
proportionality measure.) A simple example appears in Box 2. This transformation 
is not in any way meant to be the compositional counterpart of the full-space cor- 
relation coefficient. It does, however, provide a way of expressing strength of 
relationship between two parts though, unfortunately, without identification of a 
negative or positive association. 

Additionally, more direct hypotheses of independence can be formulated in terms 
of the independence of subcompositions (Aitchison, 1997, eqn. 19). 

Box 2: Interpretation of the Variance Matrix: the hongite constructed 
data-set. There are 5 "oxides" and 25 specimens. 

The variance matrix 

1 2 3 4 5 
0.0000 0.2593 1.5647 0.0828 0.1386 
0.2593 0.0000 3.0381 0.5473 0.6490 
1.5647 3.0381 0.0000 1.1458 0.9627 
0.0828 0.5473 1.1458 0.0000 0.I871 
0.1386 0.6490 0.9627 0.I870 0.0000 

The lowest degree of proportionality occurs for combinations with part 3 
and the highest for combinations with part 4. 
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Aitchison's finite scale transformation 

1 2 3 4 5 
1 1.0000 0.6010 0.2863 0.7499 0.6892 
2 0.6010 1.0000 0.1750 0.4772 0.4468 
3 0.2863 0.1750 1.0000 0.3429 0.3749 
4 0.7499 0.4772 0.3429 1.0000 0.6489 
5 0.6892 0.4468 0.3749 0.6489 1.0000 

The finite scale transformation can almost be claimed to emulate a cor- 
relation profile. Be not deceived, however, the interpretation rests on dif- 
ferent grounds. We can see, however, that the highest level of 
proportionality is for the pairing part 1/part 4 and the lowest for the 
pairing part 2 with part 3. 

AN APPROXIMATION FOR COMPOSITIONAL VARIATION ARRAYS 

Can anything be done to make the host of inappropriate analyses of petrological and 
geochemical data accessible for modern analytical procedures? There is a possibility, 
providing that the published material contains a fully reported set of results. With 
access to the crude covariances (or crude correlations and crude standard deviations) 
and the crude means, a good to fairly good approximation to the log-ratio means and 
covariances can be obtained by applying the theory of standard approximations for 
means and covariances of functions of random variables (Cram6r, 1946, Aitchison, 
1986). The program appr performs the requisite calculations. The trial-data are 
in the file boxapp.dat. 

Instructions for using the program appr 

Input 

Line 1: The dimensionality of the input matrix of raw covariances. 

Lines 2+: The raw covariance matrix. 

Last line: The means. 
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Output 

A matrix containing the compositional means in the lower triangle and the com- 
positional variances in the upper triangle. A specimen of the output is given below. 
It is for the boxite data of Aitchison (1986). The input data was obtained by 
performing a standard (inappropriate) computation of covariances and means 
on the raw data. 

Approximate log-ratio means and variances computed from raw variances and 
covariances and the raw means for the boxite data. 

lower triangle = means, upper triangle = variances 

1 2 3 4 5 
0.0000 0.1360 0.0555 0.0875 0.0319 
0.4055 0.0000 0.1958 0.1896 0.1310 
0.9931 0.5876 0.0000 0.1085 0.0542 
1.1573 0.7518 0.1642 0.0000 0.0588 
1.7011 1.2956 0.7080 0.5438 0.0000 

THE BOX-COX TRANSFORMATION 

Barcel6 et al. (1996) have raised some important points concerning the 
transformation of compositional data and the identification of "outliers". The basis 
of this contribution lies with results of Aitchison (1986), but because of the theor- 
etical unattractiveness of the methods evoked, Aitchison did not make much use 
of them in his book. One of these, the Box-Cox transformation, has the advantage 
that it can often provide a better fit than a logarithmic transformation, but suffers 
from theoretical complications and the fact that it is greatly affected by the divisor 
chosen for computing it. The second method considered by Barcel6 et al. (1996) 
is the additive log-ratio transformation (Aitchison, 1986, p. 113), which is 
permutation invariant (the choice of divisor does not disrupt multivariate 
normality). The need for the robust estimation of multivariate parameters is 
underlined which is a subject that has been taken up by many authors, including 
Gnanadesikan (1977), Campbell (1980), Campbell and Reyment (1980), Gordon 
(1981), Hadi (1992) and Hampel et al. (1986). 

The identification of types of "outliers" has been given careful consideration by 
Krzanowski (1987a, 1987b). For the purposes of our primer, we have found this 
approach that uses a jackknife technique, useful for many practical purposes. 
For a recent appraisal of "bootstrapping" and "jackknifing", see Efron (1992). 
Probability plotting offers a useful means of making a preliminary appraisal of 
the normality status of a sample, but it cannot supplant an analytical evaluation 
of the properties of a data-set. 
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MULTIVARIATE NORMALITY 

Mardia (1970) derived large-sample tests for deviations from multivariate skewness 
and kurtosis, which were applied in geological connections by Reyment (1971, 1991). 
Briefly, the measures of skewness and kurtosis were defined by Mardia as follows. If 

grs -- (Xr -- 1~)8 -1 (Xs - x)  

the measure of multivariate skewness is 

1 ~ 3 ( 1 " 1 0 )  31,p - - -~ ~ grs" 
r,s:l 

The measure of multivariate kurtosis is 

1 
b2,p L 2 (1" 11) --  - grr " 

/1 r=l 

These moments are invariant under a f f i ne  transformations, b2,p picks up extreme 
behaviour in the Mahalanobis generalized distances of objects from the sample 
centroids. Note, that these are large sample tests and cannot really give a decisive 
answer for sample-sizes of less than 50 specimens (Seber, 1984). A simple example 
will suffice to demonstrate the capabilities of the program m u l t n o r m . e x e . T h e  trial 
data are in i v u n a . d a t  and consist of chemical analyses on carbonates in CI chondrites 
(Endress and Bischoff, 1996). The study of chondrites forms part of the field of 
meteorite research. All CI-chondrites are regolith breccias consisting of various 
types of chemically and mineralogically distinct mineral and lithic fragments. 
The chemical components determined on a chondrite from Ivuna are CaO, MgO, 
MnO, FeO, and CO2. The two authors were concerned with correlation problems. 
Apart from the fact that they did not use the appropriate form of the correlation 
coefficient, inspection of the tables suggests that there could be marked 
non-normality in the data. This was borne out by the analysis for multivariate 
normality, the results of which are summarized below. 

multivariate skewness bl,p - 4 0 . 1 6 8  

multivariate kurtosis b2,p - 61.928 

S i g n i f i c a n c e  resu l t s  

Multivariate skewness chi-square - 234.31 for 35 degrees of freedom. 

Significance level for chi-square (95% level) - 49.52 

BETA for multivariate kurtosis is - 9.52 
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Significance may be assessed from a table of the standard normal variate 
(available in all books of statistical tables, for example, Rohlf and Sokal, 1969). 
Clearly, the data deviate markedly from multiviariate normality both with respect 
to skewness as to kurtosis. With this result in hand, the analyst would be well advised 
to probe further the properties of his data. 

Instructions for using the program multnorm 

Input 

Line 1: contains the number of variables, then the number of observations 

Line 2: the data-matrix 

Output 

Intermediate steps are listed, including the sample mean vector, the covariance 
matrix and its inverse. The skewness and kurtosis statistics follow, together with 
the results of the tests for significance. The trial-data are in ivuna.dat. 

SUMMARY 

1 Definitions of statistical entities 
2 Basic matrix operations. 
3 Compositional data and the log-ratio transformation. 
4 Basic matrices for compositions 
5 Multivariate normality 
6 Programs and associated training sets 

covmat haiticvt, dat 
matops matopsl.dat 
matinv matinvl.dat 
logmat hongited.dat 
logcov hongitln.dat 
aitchvar hongite 1 .dat 
subcomp hongite.sbc 
propmat boxitprp, dat 
appr boxapp.dat 
multnorm ivuna.dat 
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Chapter 2 

Graph Server, the GS Language and Graph 
Wizard 

INTRODUCTION 

This chapter describes the use of graphic software available on the CD-ROM 
accompanying this book. An on-line version of this documentation is available 
on the CD-ROM in the form of HTML files. These files can be viewed by using 
a web browser. If you have a web browser correctly installed on your machine, 
double-clicking on an HTML file in Windows Explorer will launch the browser 
and load the file. The table of contents of the HTML documentation is located 
in the file \Graph Server\Documentation\default.html on the CD. 

The documentation on the CD-ROM contains information on how to install 
Graph Server and Graph Wizard (read the file readme.txt or the HTML 
documentation). The documentation on the CD-ROM contains also updated infor- 
mation on the use of these programs. 

This chapter is organized into six sections: 

Section 1. Using Graph Server. Graph Server is a program which interprets a 
sequence of graphic commands and generates a corresponding display. Generated 
displays can be saved as files or printed. 
Section 2. The GS Language. GS is an interpreted language built into Graph Server. 
A library of functions built into GS provides low-level graphic primitives and a few 
higher-level functions useful when drawing graphs. This section describes the syntax 
and scope of the GS language and contains a complete reference of the GS functions. 
Section 3. Debugging facilities of Graph Server. Graph Server allows you to inspect 
the GS function calls and symbolic constants it received from client programs. These 
facilities can be used to debug GS code. 
Section 4. A GS Tutorial. Provides several examples of how to write GS code. 
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Section 5. Graph Wizard. Graph Wizard guides the user through a series of 
interactive steps to generate a scatter plot from a data file. Once the procedure 
is complete, Graph Wizard generates the corresponding GS code and sends it to 
Graph Server. 
Section 6. Frequently Asked Questions. This section concentrates on questions 
likely to arise during the practical use of Graph Server. 

SECTION 1. USING GRAPH SERVER 

Software requirements 

Graph Server runs under Windows 95 and Windows NT (Workstation or Server) 
version 4.0 or later. There is no functional difference in Graph Server when running 
under Windows 95, Windows 98 and Windows NT, but graphs generated under 
Windows 95/98 may show small differences in details (e.g., in the way vertices 
of zigzag lines are drawn) with respect to the same sequence of GS commands issued 
under Windows NT. This is due to the fact that there are small differences in the 
graphic libraries built into either operating system. As a whole, Windows NT version 
4.0 behaves more predictably than Windows 95/98. 

Graph Server does not run under DOS, Windows 3.1, Windows for Workgroups 
3.11, Win32s and versions of Windows and Windows NT earlier than those 
mentioned above. 

There are no versions for other operating systems. 

Hardware requirements 

Graph Server runs on all Intel and Intel-compatible processors of the x86 family that 
are supported by Windows 95 / 98 and Windows NT 4.0. Graph Server has no built-in 
limitations with respect to the CPU type, but machines with an Intel Pentium II, 
Celeron or higher processors are recommended because of speed considerations. 
At least 64 MB of RAM are recommended, and larger amounts may yield faster 
processing. Each graph displayed on the screen is contained in a separate instance 
of Graph.exe, which uses a few MB of memory. Therefore, on a system with limited 
memory you should close all graph windows once they are no longer necessary. 

There are no versions for other CPU types. 

Installation of Graph Server 

Graph Server consists of the files Graph.exe, GraphClient.dll and Graph Client. ini. 
These three files should be copied to your Windows directory. On most Windows 
95 and Windows 98 machines, this is C:\ Windows. On most Windows NT machines, 
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the Windows directory is C.'\ Winnt. You should also edit GraphClient.ini so that the 
Graph = statement points to the complete path to the location of Graph.exe. For 
instance, on most Windows 95/98 machines, this line should read: 

G r a p h  = C : \ W i n d o w s \ G r a p h . e x e  

Note that GraphClient.ini contains alternative Graph= statements for typical 
Windows 95/98 and Windows NT, but only one such statement should be active. 
Inactive statements begin with / / (two consecutive forward slashes). Note also that 
the [Settings] heading should be located at the beginning of the file. 

Graph Wizard is a program available on the book CD, but is not, strictly speaking, 
a part of Graph Server. Instead, it is an application program that uses Graph Server 
to generate graphs (see below). You can copy Graph Wizard. exe from the CD to any 
location you like (a subdirectory of C:\Program Files\ or C:\Programs\ is most 
suitable). Subsequently, from Windows Explorer you can create a shortcut to Graph 
Wizard. One way of doing this is: 

�9 Right-click on GraphWizard.exe in its new location, and select Create Shortcut 
from the menu. This creates a shortcut, named Shortcut to Graph Wizard.exe, 
in the same directory. 

�9 Drag the shortcut to a suitable location, e.g. the desktop. 
�9 Left-click on the shortcut name twice (do not double-click, just click twice with a 

short pause between clicks). This allows you to edit the shortcut name. 
�9 Write a new name for the shortcut (Graph Wizard is most appropriate). 
�9 Remove the focus from the shortcut name by clicking something else. 

Now you can double-click on the shortcut whenever you want to start Graph 
Wizard. 

Scope of Graph Server 

At the outset of this project, we decided to add modern graphic capabilities to a set of 
programs that were originally written as research tools. Although scientifically 
sound, and efficient from a computational point-of-view, these programs were 
not designed to run under the Microsoft Windows family of operating systems. 
In fact, most of these programs lacked any graphic capability. Since the scope 
of this book is to enable scientists to use the mathematical methods discussed in 
the text, and since using these methods often means, in practice, incorporating them 
into one's own program, it was not feasible to re-write the programs for the Windows 
environment. 

The principal problem with the above approach (in addition to the effort necessary 
to convert all these programs) is that Windows programs are event-driven. Their 
source code lacks the structure most non-professional programmers are familiar 
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with. For instance, a Windows program written in C does not have a main() 
entry-point. Functions relating to the graphic or user interface are not called by 
other parts of the program. Instead, different portions of the program communicate 
with each other, and with the user, by retrieving and replying to messages at the 
request of the operating system. The operating system stores messages in queues 
and dispatches them to the proper software units. 

Since readers cannot be expected to learn to program for the Windows 
environment, it was decided to follow a different approach. It was necessary to iso- 
late the programmers from the drudgery of the Windows internal workings. 
Although it was not possible to create a complete abstraction from the design of 
the operating system, a measure of device-independence could be achieved. Instead 
of communicating directly with Windows, a program can be written to issue a series 
of graphic commands to a server, which in turn displays their result in graphic 
format. Thus, even a DOS-mode program can produce graphic output in a separate 
display window. Graph Server is designed to achieve this goal. 

Graph Server is not a stand-alone graphic program that works interactively with 
the user. Instead, input to Graph Server is provided by another program that gen- 
erates numeric data and issues graphic commands. Therefore, users cannot directly 
"edit" a chart on-screen. Instead, they can modify and re-run the program that issues 
the graphic commands. Editing of a graph, in the sense of cropping it, masking 
portions of it, changing colours and adding labels, can be done as a post-processing 
stage, by saving the graph and loading it into a graphic editor. 

Several commercial programs provide many of the charting facilities needed by 
scientists. These programs are either stand-alone products, or add-ons to generic 
spreadsheet packages. We felt that it was unnecessary to duplicate the capabilities 
of these programs, and instead decided to leave the user in complete control of 
the graph being generated. In practice, this means that the user is responsible 
for the placement of each element composing a graph from the reference axes 
and ticks to the data points. This involves more work on the part of a programmer. 
On the other hand, the end-result is limited only by the display capabilities intrinsic 
in Windows and in the graphic hardware. 

Because of its inherent flexibility, Graph Server is not limited to graphs, and can be 
used as a graphic-display module for programs that are not written for the Windows 
programming interface. 

Architecture of Graph Server 

Graph Server is implemented as a client-server system. The charting program sensu 
stricto is a server that receives commands from a client program (i.e., a program 
written by the user), parses and processes them, builds a graphic representation 
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of the chart, and displays it (printing it or saving it as a file upon request). Several 
client programs may use Graph Server simultaneously. Each client controls a sep- 
arate instance of Graph Server. 

There are two ways to use Graph Server. The most comfortable way is to make 
your program use GraphClient.dll, which is a file containing all the code necessary 
to communicate with Graph Server. An alternative is to make your program save 
all graphic commands to a text file. Subsequently, this file can be sent to Graph 
Server directly (see below) or by the SendFile.exe utility. This causes graphic 
commands to be routed directly to the server. The second alternative may be con- 
venient at an early stage in the development of your program, or if your compiler 
does not support the interfacing to dynamic-link library (DLL) files. 

Graph Server is a state machine: the effects of commands are stored internally as 
settings that remain valid until changed by a subsequent command. In practice, sub- 
sequent processing by the server continues to overlay graphic elements to the image, 
until a command to clear the image is issued. The server also stores internally the 
complete sequence of commands issued by the client during a session. Clearing 
an image causes the stored sequence to be erased. 

Running Graph Server 

You don't  need to start Graph Server before using it. It will start automatically 
whenever a program will call the functions contained in GraphClient.dll (see below). 
In the present version, you also can start Graph.exe from a DOS box or from the 
Start--~ Run menu and provide a file name on the same command line. Graph.exe 
will read the file (which should contain GS statements; see below) and display 
the corresponding graph. In addition to the file name, you can specify the - d  switch 
to delete the input file after reading it, and/or  the -1 switch to create a log file. These 
features may change in future releases. 

Introduction to the use o f  DLLs  (Dynamic Link Libraries) 

A DLL file is a compiled library of functions that are linked to a program at run-time 
(as opposed to static linking, which permanently embeds a library in the program's 
executable file). The main advantages of using a DLL are: 

�9 Several programs can simultaneously share the code in a DLL, while only one 
copy of the DLL needs to be present. 

�9 The DLL code is not embedded in the executable file, which reduces its size. 
�9 Upgrading a DLL does not require recompilation of the programs that use it. 

Only the D LL file needs to be changed. 
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The trade-off of using a DLL is that calling its functions is slightly more com- 
plicated than calling those in a statically-linked library. Examples of this procedure, 
which is language- and compiler-specific, are given in the next section. 

Writing a program that uses GraphClient.dll 

Client programs communicate with Graph Server by using code in a dynamic-link 
library located in the file GraphClient.dll. This file is included in the software 
accompanying this book. You should copy the file to one of the following locations: 

�9 The Windows directory (typically C: \WINDOWS in Windows 95, or C: \WINNT 
in Windows NT). 

�9 The system directory (typically C: \WINDOWS\SYSTEM or 
C:\WINNT\SYSTEM32). This is the preferred location for DLL files. 

�9 The directory containing your executable file that links to GraphClient.dll. 
�9 A directory specified in the PATH environment variable. 

There is no functional disadvantage in having two or more copies of a DLL file in 
the locations listed above. However, a reason for not doing so is that, should the 
DLL be upgraded to a later version, some of the older copies may be left over, with 
unpredictable results. DLLs placed in a directory other than those listed above can- 
not be found by the operating system. 

Programming interface 

GraphClient.dll contains three functions that can be called by the client program. 
Their prototypes (as contained in the source code of the library) are: 

extern "C"_declspec(dllexport) BOOL Connect(); 
extern "C"_declspec(dllexport) const char* Communicate(char* pData); 
extern "C"_declspec(dllexport) void Disconnect(); 

The non-ANSI keywords and macros that precede each function declaration tell the 
compiler that the functions must be made accessible to external programs using the 
DLL. Since the DLL is written in C++, the empty argument lists in the Connect0 
and Disconnect() prototypes imply that the functions take no argument (as opposed 
to any argument in C). The type BOOL is defined (in the include file windows.h) as an 
unsigned int. A BOOL can take the values TRUE (non-zero) or FALSE (zero). 
Removing the compiler- and system-specific parts, and converting to C, yields pro- 
totypes more familiar to C programmers: 

unsigned int Connect(void); 
const char* Communicate(const char* pData); 
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void Disconnect(void); 

Connect() must be called when the client program wishes to connect to Graph 
Server. The function returns a non-zero value if it succeeds, zero otherwise. Your 
program should check this value before proceeding, and act accordingly. A failure 
to connect means that no further command can be issued to the server (except 
for a new attempt to connect. 

Communicate() is called to send a string containing a GS command to Graph 
Server. This function takes as argument a pointer to a null-terminated string. 
Commands must follow the syntax of the GS language (see section 2 of this chapter). 
If the command or statement is successfully sent to the server and the server replies, 
the function returns a pointer to a null-terminated string containing the server's 
reply. This function returns a pointer to the string "OK"  if the command is sent 
to Graph Server successfully (this only means that  Graph Server received it, not 
necessarily that it parsed and executed it without errors). If something prevents com- 
munication, the function will return a null pointer. Therefore, your program should 
check that the pointer is not nul l  before attempting to read the server's reply. 
Attempting to use a null pointer will cause your program to crash. 

A communicat ion session with Graph Server typically consists of a large number 
of calls to Communicate0. 

Disconnect0 should be called once your program has finished sending commands 
to the server. You cannot call Communicate() after calling Disconnect0. Note that 
calling Connect0 after disconnecting will not  resume the previous session. Instead, 
it will create a new instance of the server program and draw the new graph in another 
window. There is no built-in mechanism to allow a single client to use two or more 
s i m u l t a n e o u s  instances of the server. 

The recommended (but not the only) way of calling the DLL functions from 
Microsoft C and C++ is shown below. Depending on the language and compiler 
you are using, there may be other ways. This is an example of a C program that 
connects to the server, issues a single instruction and disconnects. 

-~include ~windows.h~ //contains function and type definitions 
/ /necessary to use DLLs 
void main(void) 
{ 

HINSTANCE hDll; / / you  can regard this as a handle to the DLL 
// we declare pointers to the DLL functions 
BOOL (FAR* pConnect) 0; 
const char* (FAR* pCommunicate) (char* pData); 
void (FAR* pDisconnect) 0; 
/ / th is  variable will contain the return value of Connect() 
BOOL bRet; 
/ / th is  variable will contain the server's reply 
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const char* pReply; 
/ / l oad  the DLL into memory 
if(hDll = LoadLibrary(" GRAPHCLIENT.DLL")) 
{ 

// get pointers to the DLL functions 
pConnect = (BOOL(FAR*)0) GetProcAddress(hDll, "Connect"); 
pCommunicate = (const char*(FAR*)(char*)) GetProcAddress(hDll, 
"Communicate"); 
pDisconnect = (void(FAR*)()) GetProcAddress(hDll, "Disconnect"); 
// call the DLL functions (see discussion below) 
if(bRet = (*pConnect) 0)  
{ 

pReply = (*pCommunicate) ( " / /Th is  is a command. "); 
/ /Your  program should check whether 
// Graph Server replies with "OK". 
(*pDisconnect) 0; 

The code used to declare and call the DLL functions may look baffling to C 
programmers who have not yet mastered pointers (which is usually regarded as 
the Great Divide between the beginner and experienced levels). However, the appar- 
ent complexity of the code is easily explained. The principal point to note is that the 
DLL functions are declared as pointers to functions, n o t  as function prototypes. 
In simplified terms, a pointer to a function can be thought of as the address in mem- 
ory where the function's code is stored. The declaration of a pointer to a function 
must enclose the indirection operator * and the function name within parentheses, 
lest the compiler applies the indirection to the function return type. 

These pointers are subsequently initialized by calling GetProeAddress0, which 
returns the values of pointers to the corresponding DLL functions. The casts to 
a function pointer with specific return and argument types are necessary to convert 
the return value of GetProcAddress(), which is a generic function pointer. 

In order to call the functions, the pointers must be indirected by using the operator 
�9 . The notation used in the function calls, therefore, parallels the notation used to 
indirect pointers to variables: 

char* p; 
*p = "Hello"; 

where p is a pointer to a char, and *p is a char variable. Similarly, pConnect is a 
pointer to a function, and *pConnect can be viewed as the corresponding function. 
Lastly, the indirected function pointer must be enclosed within parentheses, because 
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the parentheses enclosing the arguments of a function have a higher associativity 
than the indirection operator. As with pointers to variables, alternative notations 
can be used to declare and use pointers to functions, but none of them offers sub- 
stantial advantages over the others. 

If you feel you do not completely understand the above discussion, try to write 
your code exactly as shown in the example. It should work without problems. 

A slightly simplified version of the source code of SendFile.exe, a utility that uses 
GraphClient.dll, is shown below as an example. 

Source code o f  SendFi le.exe 

// SendFile.c 

=~include <windows.h> 
~include <stdio.h> 

void main(int argc, char** argv) 
{ 

HINSTANCE hDll; / /handle to DLL 
BOOL (FAR* pConnect) 0; / / D L L  function prototypes 
const char* (FAR* pCommunicate) (char* pData); 
void (FAR* pDisconnect) 0; 
BOOL bRet; 
char pMsg[32000]; // buffer for message 
const char* reply; 
int i; 
FILE* pFile; 

/ / load  the dll 
if(!(hDll = LoadLibrary("GraphClient.dll"))) 
{ 

puts("Cannot load GraphClient.dll"); 
return; 

} 

/ / ge t  the pointers to the dll functions 
pConnect = (BOOL(FAR*)0) GetProcAddress(hDll, "Connect"); 
pCommunicate = (const char*(FAR*)(char*)) GetProcAddress(hDll, 

l ,  "Communicate ); 
pDisconnect = (void(FAR*)0)GetProcAddress(hDll, "Disconnect"); 

/ / ca l l  the dll functions 
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if(!(bRet = (*pConnect)0)) 
{ 

puts(" Cannot initialise Graph Server"); 
return; 

} 

pFile = fopen(argv[l], "r"); 
if(!pFile) 
{ 

puts("Cannot find or open the input file."); 
return; 

} 

do 
{ 

i = -1; 
do 

i++; 
if(!fread(pMsg + i, 1, 1, pFile)) 
{ 

*(pMsg + i) = '\0'; 
break; 

} 
} while(pMsg[i] != ' \n'  && pMsg[il != '\0'); 
*(pMsg + i) = '\0'; 
if(!strlen(pMsg)) 

break; 
puts(pMsg); 
reply = (*pCommunicate)(pMsg); 
if(strcmp(reply, "OK")) 
{ 

puts("Error while communicating with GraphServer."); 
goto cleanup; 

} 
} 
while(TRUE); 

cleanup: 
(*pDisconnect)0; 

} 
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A note is necessary to explain why direct access to the internal operation of 
GraphClient.dll and Graph.exe is not provided. These programs contain the routines 
to implement the actual communication between client and server. The communi- 
cation mechanisms have changed radically several times during the development 
stage of Graph Server, and may change again in future releases. Since these 
mechanisms are completely isolated from users, user-written programs that call 
the interface functions in GraphClient.dll will need no change in order to run with 
different versions of Graph Server. The only necessary change will be the installation 
of the new Graph Server files. 

Writ ing a p rogram that uses SendFi le .exe 

In case you should find it impossible or impractical to use GraphClient.dll with code 
generated by your compiler, you can still use Graph Server. As a first step, your 
program must write the GS instructions to a text file. Each instruction should 
be placed in a separate line. Then, run the program SendFile.exe (included with 
the software accompanying this book), specifying the name of the text file on 
the command line. If the name of the text file contains spaces, enclose it within 
quotation marks. For example: 

SENDFILE "C:\data\my file.txt" 

SendFile.exe reads one GS instruction at a time from the file, displays it on-screen 
and sends it to the server. 

SendFile.exe is provided principally as a stopgap measure. Whenever possible, you 
should use GraphClient.dll from within your program, because in this way your 
program communicates directly with the server. Incidentally, SendFile.exe uses 
GraphClient.dll to communicate with GraphServer. 

Viewing a graph 

Once Graph Server has received a complete set of GS statements and the client has 
disconnected, the graph is displayed. Initially, the graph fills the display window. 
You can use the View -+ Zoom In and View --+ Zoom Out menu items (or the cor- 
responding buttons on the toolbar) to inspect details in the graph. You can use 
the View --+ Zoom to Fit menu item to return to a full view of the graph. You 
may use this button also if you lose track of where in the graph you are scrolling, 
and want to return to a full view. 

In order to scroll a graph, place the mouse cursor on the window surface. The 
cursor will change to an open hand. Press and hold down the left mouse button. 
The hand will close. Drag the cursor in the direction you want to scroll to. The 
graph will scroll once you release the mouse button. This mechanism is especially 
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effective if you place the cursor on top of a graph element, press the left button and 
drag the mouse to a new location where you want the element (and the whole graph 
surrounding it) to be moved. 

It is possible to scroll a graph also when it fits entirely within the window. This may 
be useful if you suspect that you have misplaced a graph element, so that it lies 
somewhere in the area outside the graph frame. 

Each graph is contained in a separate instance of graph.exe, i.e., a self-standing 
program that runs in its own memory space. Therefore, depending on the amount 
of RAM available in your computer, there may be a practical limit to the number 
of graph windows that can be left open simultaneously. 

Printing a graph 

Graph Server allows you to print a graph. This command is available under the 
File--+ Print menu item. 

Setting the page margins 

Before you print a graph, you may wish to set its size. This is done in the Page Setup 
dialog box, which is displayed when you select the File-+ Print menu item. This 
dialog box (below) displays a small preview of the page margins. Note that the graph 
displayed in this preview is not your graph, but just a standard icon. The only pur- 
pose of this preview is to give you a visual impression of the size of the margins. 

You can enter the numerical value of the size of the margins in the appropriate 
controls. Your graph will be made to fit the available print area (i.e., the page area 
within the margins). Note that the aspect ratio (i.e., the ratio of height to width) 
or your graph will not be altered. In other words, the graph will not become vertically 
or horizontally "squashed". 

Printing the graph 

Once you are satisfied with the margin settings, you can press the OK button in the 
Page Preview dialog box. This displays the Print dialog box (below), in which 
you can set the number of copies and access other printer settings. As a rule, 
the availability of these settings depends on the type of printer you are using. 

Once you press the OK button, Graph Server will send the current graph to the 
printer. 
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Fig. 1 

Fig. 2 
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Previewing the printout 

You can use the File ~ Print Preview menu item to examine the appearance of your 
graph as it will appear once printed on paper. 

The preview image may differ in some details from the image displayed in Graph 
Server's document window. For instance, if your printer cannot print in colour, text 
will be displayed in black, regardless of its original colour in the graph. Other graphic 
elements, instead, will retain their colour in the preview window, even though the 
printer may not be able to print in colour. These differences reflect the standard 
characteristics of print previews as implemented in all Windows applications. 

Saving a graph 

Graph Server allows you to save a graph to a file, and to choose between two types of 
file. The first type is a bitmap, i.e., a rectangular matrix of pixels. The second type is a 
metafile, and consists of a sequence of graphic commands. Unlike the GS code 
accepted as input by Graph Server, the Windows Enhanced MetaFile format used 
to save a graph is a standard understood by several graphic editors (see below). 

Fig. 3 
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Which format to choose? 

The choice between bitmap or metafile format depends on the use you intend to make 
of the file. If you are planning to use the graph as a finished illustration, you can save 
it as a bitmap. The same thing applies if you are going to add a few things to the 
graph, like text labels, a title or a banner, but you are planning no change to pre- 
-existing elements. It is practical to do this type of editing with a graphic editor. 
On the other hand, it is not possible to scale (i.e., change the size in pixels) of a 
bitmap without some loss in quality. If you reduce the size (in pixels) of a bitmap, 
some elements of the graph may disappear, become fuzzy, or become thinner o r  
thicker than other elements. The exact result depends on the algorithm used to 
change the bitmap size, but there are no "perfect" algorithms. If you increase 
the size of a bitmap, some elements may become thicker or thinner than others 
and the whole graph may look "blocky" if observed from a close distance. 

All graphic programs that can read images in Windows Bitmap format should 
yield the same results when displaying or printing the image at its original size 
(allowing for limitations of the output device, e.g., the number of available colours). 

In conclusion, you should save a bitmap at the size determined by the use you 
intend to make of the graph. For instance, if you are planning to use the graph 
as an illustration 50 mm wide, and you know that the publisher will use a resolution 
of 1200 dpi (dots-per-inch), then you should save the bitmap with a width of 1200 
* 50 / 25.4 = 2362 pixels. 

A further limitation of the bitmap format is that Graph Server is limited to the 
range of colours that can be displayed on the screen of the computer. This applies 
also when saving a graph to a bitmap file. If your computer can display only a limited 
range of colours (e.g., 16 or 256) and you desire a broader range of colours in your 
graph, you must run Graph Server on a computer with better graphic capabilities, 
and save the bitmap on this computer. 

The metafile format is not size- or resolution-dependent, and can be scaled freely 
without loss of precision. This format is often used to store libraries of ready-to-use 
images, generally referred to as clip-art. As a consequence, the metafile format 
is better known, among non-technical users, as clipart format. There are two metafile 
formats: an old one, called Microsoft Windows Metafile, inherited from Windows 
3.1, which generally uses the .wmf file extension, and a more recent one, called 
Enhanced Windows Metafile, which uses the .emf file extension. Graph Server uses 
the latter format, because it stores more information about the original picture. 
The metafile format has the same colour limitations as a bitmap file (see above). 

From the above discussion, it would seem that the metafile format is more flexible, 
and therefore preferable to a bitmap. However, although the metafile format is 
standard, graphic editors differ widely in the amount of information they extract 
from a metafile, and in the faithfulness of their rendering of a metafile. As shown 
below, the results can be extremely different. For instance, when confronted with 
a metafile generated from the graph at the left, a popular commercial program pro- 
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Fig. 4 

duced the figure at the centre. Another popular program did considerably better, and 
produced the figure at the right. Note, however, that some details still differ from the 
original. 

In conclusion, the advantages of a metafile are that (1) its file size is considerably 
smaller than a bitmap, (2) it can be scaled, and (3) once imported into a graphic 
program, its elements can be edited. For instance, it is possible to move or erase 
some of the elements in the foreground, thus making it possible to see underlying 
elements. Similarly, the contents of text labels can be edited, and the labels them- 
selves can be moved. On the other hand, the disadvantage of metafiles is that it 
may be difficult to find a graphic editor that displays all graph elements in an accept- 
able way. 

Saving as a bitmap 

This option is available under the File -+ Save as Bitmap menu item. This command 
displays the following dialog box: 

Fig. 5 
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You should enter the desired vertical or horizontal size of the bitmap, expressed in 
pixels. When you enter a horizontal size, the corresponding vertical size is automati- 
cally computed, and vice versa. This prevents the bitmap from becoming "squashed" 
in the vertical or horizontal direction. By default, Graph Server will propose a hori- 
zontal size of 1000 pixels 

The Convert to monochrome check-box is used to generate a monochrome bitmap. 
This is useful when a graph is to be used as a line illustration. All colours are 
eliminated, and converted to either black or white. In particular, light colours 
are converted to white, and dark colours to black. If the results do not match your 
expectations (i.e., some areas that should be white are rendered as black, and vice 
versa), try to lighten or darken the colour you are using for these elements (or make 
them black or white as appropriate). 

Converting a large bitmap graph to monochrome reduces its file size, and allows 
other programs to load and process it more quickly. 

Subsequently, Graph Server displays a standard Save As dialog box. You can use 
this dialog to "navigate" to the desired directory, and to specify a file name. If a file 
with the same name already exists, you will be prompted to specify whether you 
want to overwrite it. 

After you press the Save button, Graph Server will prepare a copy of the bitmap in 
memory, and then save it to the specified file. If the bitmap is large, the process can be 
lengthy, and can fail to complete on computers with an insufficient amount of 
memory. The bitmap is saved to a file in the Windows Bitmap (.blnp) format. This 
format yields quite large files, but has the advantage of being universally understood 
by graphic editors. 

Fig. 6 
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Saving as a metafile (clipart) 

This option, available under the File-+ Save as Clipart menu item, requires you to 
specify a file name and directory in a Save As dialog box. There are no other settings, 
because the metafile format is resolution-independent. See the above discussion on 
other merits and drawbacks of the metafile format. 

SECTION 2. THE GS L A N G U A G E  

Scope of the GS language 

The GS (acronym for Graph Server) language is the logical interface between Graph 
Server and programs written by users. Client programs run separately from Graph 
Server, and access its graphic capabilities by connecting to the server and issuing 
GS instructions. The user-interface of Graph Server allows users only to view, save 
and print the generated graphs. All other operations are performed through GS 
commands. 

Design philosophy 

The GS language wraps the Windows GUI in a device- and display-size-independent 
layer, thus avoiding the need to re-compute graphs when display sizes and output 
devices are changed. For instance, this allows Graph Server to view a graph on 
a colour screen, and subsequently print it on a high-resolution monochrome printer, 
without needing additional communication from the client. 

GS is designed to provide a simplified, but still powerful interface to the Windows 
graphical engine. Most of the low-level graphic commands native to the Windows 
GUI are accessible through this interface. In addition, GS expands the range of 
low-level graphical functions available in Windows (in particular by allowing the 
use of relative co-ordinates in addition to absolute ones), and adds a few high-level 
functions that are especially useful in graphing. GS is further enhanced by the capa- 
bility of declaring and using symbolic values in addition to numerical and literal 
ones. 

Scope of GS settings 

Graph Server is a state-machine that stores all current settings internally. This 
means, for instance, that it is sufficient to set the colour, thickness and style of 
the drawing pen, and then use the pen for a series of drawing commands, without 
specifying the pen settings before each command. 
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The scope of settings is limited to the current graph. Settings are not stored 
between sessions, and do not affect the settings used by other clients that are simul- 
taneously connected to Graph Server. 

At the beginning of each session, all settings default to the values used by Windows 
device contexts. If you are in doubt about these values, you should state the settings 
explicitly at the beginning of each session. 

GS units 

Graph Server attempts to be device- and resolution-independent. All numerical 
values are stored in floating-point format. Therefore, it is possible to specify, for 
instance, a line thickness of 1.5 units. GS units are dimensionless, and their actual 
size in a displayed or printed graph depends on the size of the current viewport (see 
below). In a viewport with a size of 150 by 150 units, a line thickness of 1.5 cor- 
responds to 1% of the viewport size. The actual size of a printout can be set in absol- 
ute units, or as a fraction of the page size. You can think of GS units as the 
measurement units you are familiar with. For instance, you may start by planning 
a graph size of 100 by 50 mm, and setting the viewport to 100 by 50 units. Major 
lines used in the graph can have a thickness of 0.5 mm, and minor ones 0.25 mm 
(consequently, you can use a line thickness of 0.5 and 0.25 units, respectively). 
Co-ordinates are Cartesian, and the y co-ordinate increases in the upward direction 
(not downward as in the Windows GUI). 

The viewport 

The viewport can be regarded as a rectangular window on the plotting surface used 
to draw a graph. While the plotting surface is infinite, the viewport spans the surface 
expressed by the co-ordinates of two points corresponding to opposite vertices of the 
viewport rectangle. Only the portion of plotting surface comprised within the 
viewport can be seen. The viewport can be changed at any time during a session 
without affecting a graph (except for changing which portion of it is visible). Con- 
sequently, the viewport can be used, for instance, to pan a window across a graph 
and display or print selected regions of it. This is the suggested way to split a graph 
across multiple printed pages. 

The viewport is not the same as the document window in Graph Server. The 
document window can show the whole viewport, or part of it. While the viewport 
can be changed only through the client program, the document window can be sized 
and scrolled on the viewport only within Graph Server. The size and magnification of 
the document window do not affect printouts, while the viewport settings do. 
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Precision of  displayed, printed and saved graphs 

The equipment you are using may be unable to display graphic elements with the 
chosen attributes. When the chosen colour cannot be matched exactly by the display, 
the closest approximation compatible with the equipment (as decided by the 
Windows interface) will be used. 

When the size of a graphic element cannot be displayed exactly, its closest approxi- 
mation (as chosen by the Windows graphical engine) is used. When the closest 
approximation would be zero pixels, however, Graph Server forces the graphic 
element to take the size of one pixel. This prevents sub-pixel-sized elements, like 
very thin lines, from becoming invisible. A trade-off is that thin lines may be 
rendered differently when displayed on-screen and printed (because screen resol- 
ution is typically lower than a printer's). You must be aware that this is a limitation 
of screen displays and/or printers, not of Graph Server. You can make thin lines 
appear of the correct size on paper (within the limitations of the printer) by stating 
the appropriate line thickness in the GS commands. 

Graphs saved to a file may have different (and typically lesser) restrictions on 
colours and sizes than those displayed on screen or printed on paper. Colours 
are always saved to a file with values of their red, green and blue components 
expressed as integers ranging from 0 to 255 (which accommodate about 16 million 
colours). The size in pixels of a saved image can be specified before saving, and 
can be different from the size of a displayed and printed image. 

Computing and saving images at high resolution (e.g., 4000 by 4000 pixels and 
above) may be a slow process, and may require large amounts of RAM and disk 
space. 

The placement of graphical elements by Graph Server is constrained by the error 
implicit in single-precision, floating-point variables. 

Graph Server has no built-in limits to the size of a graph, other than the range of 
values that can be specified by single-precision floating-point values (approximately 
3.4.10 -38 to 3.4.10-38). On the other hand, Windows NT and Windows 95 have 
different limits in the range of co-ordinates (expressed in logical units, i.e. pixels) 
they can accept. Windows NT uses 32-bit integers, which accommodate a value 
range of 0 to approximately 4.2.109. Windows 95 at present uses 16-bit integers, 
with a range of 0 to 65,535. You should be aware that this last range is small enough 
to cause problems on high-resolution devices, if a large printout size is used. For 
instance, on a photo-setter with a resolution of 4800 DPI (dots-per-inch), the maxi- 
mum printout size under Windows 95 will be less than 35 by 35 cm. 

Text labels displayed at a small size in a graph window may be incorrectly 
positioned on the page, and/or incorrectly sized. This is a limitation of the Windows 
graphical engine, not of Graph Server, and is particularly apparent at small text sizes 
and/or on low-resolution displays. As a rule, zooming-in on the text will correct this 
problem. The same graph, displayed in the Print --+ Preview window, is generally 
displayed more correctly. Text in a printed graph is correctly sized and scaled. 
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There is a limit (about 32 KB) to the length of a statement which can be sent to 
Graph Server. You are unlikely to reach this limit in normal usage, but you must 
be aware of it if you try to create a very long string, or to declare a very large array 
of constants. 

Structure o f  the GS language 

GS is used by client programs to communicate with Graph Server. This language is 
not meant for generic programming. Therefore, all numerical processing must take 
place within the client program. However, Graph Server stores both data and func- 
tion calls before carrying out the graphic commands, and GS provides syntactical 
elements to use this capability. This is the principal source of flexibility in Graph 
Server. For instance, screen displays and printers typically possess different 
resolutions and graphic capabilities. Switching from one type of device to the other 
requires Graph Server to re-compute a graph. Since Graph Server stores data 
and commands, switching output format (or changing display size and position) 
is accomplished without a need for the client to re-issue the whole series of 
commands. 

The syntax of GS partly resembles that of the C programming language. However, 
GS is much simpler in that it possesses no mathematical operators, conditional con- 
structs or user-definable functions. Users can extend the capabilities of GS by adding 
compiled libraries of functions. This requires familiarity with the C (or, preferably, 
C++) programming language and with the internal workings of Graph Server. 

GS processes two categories of instructions: statements and comments. 

GS statements 

A GS statement consists of an alphanumeric string containing GS syntactical 
elements and ending with a semicolon. A GS statement must be completely specified 
in a single instruction. Instructions containing an incomplete statement, as well as 
instructions containing multiple statements, are regarded as syntax errors. 

Leading and trailing spaces, tabs and carriage returns, as well as multiple spaces, 
tabs and carriage returns within statements, are ignored. Multiple spaces are 
retained, however, when they occur within string constants (see below). Spaces 
are not significant, and can be absent, between syntactical elements. The only excep- 
tions to this rule are declarations of symbolic constants (see below). A space must be 
present between the type and the name of the constant, because this is the only way to 
tell the parser where one element ends and the next begins. The same rule applies to 
variable declarations in C and C++. Spaces are not allowed within a syntactical 
element. 
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GS comments  

GS allows the use of comments within statements. Comments are ignored by Graph 
Server, but may be useful to document a sequence of instructions. A comment starts 
with the character pair / / and  continues to the end of the instruction. A comment can 
be the only content of an instruction: 

/ /  this whole instruction is a comment 

Leading spaces preceding a comment are ignored. A comment can also be appended 
to a statement: 

MoveTo(O, 0); / / t h i s  is a comment appended to a statement 

An instruction containing no character o_r only spaces is regarded as a comment. 

Numer ica l  constants 

GS accepts numerical constants expressed in all common decimal formats. All 
following examples are acceptable: 

-10 
2.5E-1 
.01 
0.01 

Str ing constants 

String constants are alphanumeric strings enclosed within quotation marks: 

"Hel lo world!" 

Characters that cannot be directly typed as part of a string constant (e.g., quotation 
marks) are entered by using escape sequences. Like in C and C++, escape sequences 
are character pairs starting with a backslash. The following escape sequences are 
defined in GS: 

this escape sequence evaluates to 

\n carriage return 
\ t  tab 
\ \  \ 
~, '  t, 

\ '  
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If a backslash is followed by an undefined escape character, the backslash is ignored 
and the character that follows it is entered in the string. 

Special attention must be paid when writing a C or C++ program which sends a 
string containing escape sequences to Graph Server (see below). 

Symbolic constants 

In addition to numeric and string constants, GS allows the use of symbolic, i.e., 
named constants. These are constants associated with an alphanumeric name. Once 
declared and initialized, symbolic constants can be referred to by their name. This 
is especially useful with arrays (see below). 

An important difference between GS and typical programming languages is that 
all symbolic names in GS are associated to constants, rather than variables. 
Therefore, the numerical or string values associated with a symbolic name cannot 
change once initialized. This is a consequence of the fact that GS is not meant 
to perform data processing. 

The GS language provides three types of symbolic constants: 

v a l -  a floating-point value. 
p o i n t -  a point in two-dimensional space, expressed as an (x, y) co-ordinate pair of 
floating-point values. 
s t r i n g -  an alphanumeric string of characters. 

Symbolic constants must be declared and initialized within a single statement: 

val i = 0; 
val pi = 3.1415; 
point centre = 10, 10; 
/ /  note the comma separating the (x, y) values 
string MyName = "whatever you want"; 

In the argument lists of function calls (see below), the two numeric values con- 
tained in a point constant can be individually accessed as centre.x and eentre.y. 
In this context, the point character is called member operator. Readers familiar with 
the C or C++ languages can regard the point type as a structure containing two 
floating-point members, x and y. 

The general rules for symbol names are: 

�9 Names must start with a letter character. 
�9 Names can contain letter and number characters. 
�9 Names cannot contain other characters (e.g., spaces, - ,  [ , _  ). 
�9 Names are case-sensitive: the names num, NUM,  Num are regarded as different. 
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�9 Names of commands, symbolic constants, data types and functions must be 
unique. It is not possible to create a symbolic constant with the name used 
for a command, function or type, or with the name of another constant (of 
any type) that has already been declared. 

Symbolic constants are accepted in place of numerical constants as arguments of 
function calls (see below). However, symbolic constants cannot be used to initialize 
other symbolic constants. 

It is illegal to change the value associated with a symbolic constant, and to skip the 
initialization of a symbolic constant in its declaration. Each of the statements 

val i; / /  no ini t ial isat ion, value is undefined 
i = 10; / /  at tempt ing to change the value of a constant 

constitutes an error in GS. 

Arrays 

Array declarations in GS are similar to declarations of the corresponding simple 
types, but the values used to initialize the array must be enclosed within braces. 
Unlike in C and C++, it is not necessary to specify the number of elements contained 
in the array being initialized. The number of elements is computed from the number 
of available initialization values. 

val a = {1.0, 2.0, 3.0}; 
point pt = {0, 1, 2, 3}; 
/ /  the values are: ptlOl.x = O, pt[O].y = 1, p t [ l l .x  = 2, p t l l l .y  = 3 

All elements of an array are initialized in the array declaration. Therefore, the 
declaration of a point array must contain an even number of initialization values. 
Arrays must contain at least one element. GS provides for arrays of val and point 
constants. String arrays are not implemented. 

In function calls (see below), an element of an array can be accessed by enclosing 
its index within square brackets and appending it to the constant name (e.g., b[l]). 
Specifying the name of an array without index (e.g., b) indicates that the whole array 
is used (note that this aspect of the GS syntax differs from C and C++ array 
notation). 

Element indices start at 0. Therefore, an array of 10 elements contains elements 
with indices ranging from 0 to 9 inclusive. Indices are integer values, and cannot 
be negative. It is an error to use an index exceeding the actual number of elements 
contained in an array. Array indices must be expressed in numerical form. Symbolic 
constants cannot be used as indices. 
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Functions 

Functions are symbolic names that indicate an operation to be performed. 
Syntactically, a function consists of a name followed by a list of zero or more 
arguments enclosed within parentheses. Optional spaces can separate the function 
name from its argument list. Arguments are separated by commas and, optionally, 
spaces. Function names are case-sensitive. Examples: 

Viewport (0, 0, 100, 50); 
Title( "My graph" ); 

GS accepts values expressed as numeric constants, or string constants delimited by 
quotes (see examples above). Graph Server stores all numeric values (except for 
array indices) as single-precision floating-point numbers. 

GS provides several tens of built-in functions. Function names follow the same 
syntactical rules of symbolic constant names. All built-in function names have capi- 
tal initials, and it is recommended that the same rule be followed when expanding 
GS. Thus, using constant names with a lowercase initial avoids conflict with function 
names. In the following discussion, function prototypes identify the function 
arguments by type (in a manner analogous to C and C++ function prototypes). Type 
names are not used when calling functions. For instance, the function prototype of 
Viewport0 can be written as: 

Viewport(val x l ,  val y l ,  val x2, val y2); 

This means that the function should be called with four arguments of type val. 
In the above prototype, the arguments are given names that help to identify their 

usage in the description of the function. In actual use, you may call this function 
as:  

Viewport(0, 0, 1, 1); 
val a = 0; 
valb = 1; 
Viewport(a, a, b, b); 
Viewport(a, 0, 1, b); 

A function prototype with an empty argument list means that the function does 
not take any argument (e.g., PushSettings();). The parentheses, however, must still 
be used in the function call, 

GS implements two forms of function overloading. Function overloading is 
missing in C, where a function must be called with a set of arguments of  predefined 
number and type (the only built-in way to change this behaviour involves completely 
defeating the type-checking mechanism). As implemented in C++, function over- 
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loading allows two or more functions to have the same name. Each of these functions 
accepts a different set of arguments, and the code of each function must be written 
separately. C++ compilers decide which overloaded function to call on the basis 
of the type and number of arguments specified in the function call. 

Function overloading in GS, on the other hand, behaves differently. An 
overloaded GS function can be called with different numbers and types of 
arguments, but the same function is called in all cases. For instance, as discussed 
above, Viewport needs four vals as arguments. It is also possible to provide the 
arguments as two points, a point and two vals, an array of four vals, an array 
of two points, or any other combination of numeric and symbolic constants that 
can be reduced to four va|s. It is illegal, however, to pass a string as an argument 
to Viewport. It is also an error to pass fewer or more than four va|s. 

The second form of overloading allows GS functions to accept a variable number 
of arguments. This is expressed in their prototypes with the use of ellipses that follow 
the minimum number of arguments. For instance, the prototype 

LineTo(val xl, val yl, ..); 

indicates that the function LineTo accepts two or more vals. Since this function 
accepts co-ordinate pairs, it is an error to use an odd number of arguments. 
Therefore, it is desirable to express this limitation in the function prototype. This 
can be done by using constants of type point, rather than val, as arguments: 

LineTo(point pl, ..); 

Function reference 

This part of the documentation contains the description of all GS functions. On the 
CD-ROM,  the function reference can be searched by categories of functions or 
alphabetically by function name. Examples of the use of most functions can be found 
in the GS tutorial (section 3 of this chapter). 

General settings 

Viewport 

Viewport(point pl, point p2); 

Sets the position and size of the viewport with respect to the current origin (see 
below). The viewport co-ordinates are expressed as the opposite vertices of a rec- 
tangle. See the discussion in "Settings, units and the viewport". 
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VScale 

VScale(val f); 

Sets the vertical scaling factor. All input y co-ordinates are multiplied by factor f 
before being displayed. This function is used to set-up an anisometric xy co-ordinate 
system. The default value of the vertical scaling factor is 1. 

This function can be used to correct the distortion introduced by output devices 
that use rectangular, rather than square pixels. 

Graphic settings 

The functions listed below specify graphic settings. The settings remain valid until 
changed, and are used by all graphic functions. 

PenThickness 

PenThickness(val t); 

Specifies the thickness of points and lines drawn with the current pen. A thickness 
lesser than or equal to 0 produces a line with a thickness of one pixel. 

PenColor 

PenColor(val red, val green, val blue); 

Specifies the colour of the current pen. The colour is expressed by three values cor- 
responding to the red, green and blue components of the colour. The value of each 
component can vary from 0 (darkest) to 1 (lightest). Values higher than 1 are 
set to 1. Values lesser than 0 are set to 0. The following examples show some common 
colours. 

components colour name 
(0, O, O) black 
(1, 1, 1) white 
(1, O, O) red 
(0, 1, O) green 
(0, 0, 1) blue 
(1, 1, 0) yellow 
(0.5, 0.5, 0.5) medium grey 
(0.14, 0.38, 0.11) olive green 
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PenColorBytes 

PenColorBytes(val red, val green, val blue); 

Specifies the colour of the current pen. This function accepts red, green and blue 
colour components with values ranging from 0 to 255. These value ranges are 
the same used internally by Windows and by most graphic software. This function 
behaves like PenColor. 

LineEndRound, LineEndSquare, LineEndFlat 

LineEndRound0; 
LineEndSquare(); 
LineEndFlat0; 

These functions set the appearance of the extremities of line segments drawn by 
LineTo and LineBy. LineEndRound draws a semicircle centred on the end-points 
of the line. LineEndSqunre draws a half-square centred on the end-points of the 
line. LineEndFlat causes the end-points to be drawn with a straight border perpen- 
dicular to the line direction. The default is LineEndRound. 

LineJoinRound, LineJoinBevel, LineJoinMiter 

LineJoinRound0; 
LineJoinBevel0; 
LineJoinMiter0; 

These functions set the appearance of vertices drawn with LineTo, LineBy, 
Rectangle, Polygon, Chord, Pie and Marker. LineJoinRound rounds the convex 
side of vertices. LineJoinBevel bevels the convex side of vertices (i.e., uses a 
straight-line segment to "cut out" the corner). LineJoinMiter miters the convex 
side of vertices (i.e., renders vertices as sharp corners). If the miter exceeds 10 pixels 
in length, the convex side is beveled. The default is LineJoinRound. 

FillColor 

FillColor(val red, val green, val blue); 

Sets the fill colour (used, for instance, to fill a polygon). The colour components are 
expressed as values ranging from 0 to 1. 
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FillColorBytes 

FillColorBytes (val red, val green, val blue); 

Similar to FillColor(), but accepts values ranging from 0 to 255. 

PenStyle 

PenStyle(val onl, val offl, ..); 

Sets the style of the current pen. The argument only specifies that initially the pen will 
draw a segment of the specified length. Then the pen will be lifted for the length 
specified by offl, and so on. When all arguments have been used, the pattern repeats. 

Call PenStyle with just one argument (of any value) to draw continuous lines. This 
is the default style. 

ModeDefault, ModeNot, ModeOr, ModeAnd, ModeXor, ModeMerge 

ModeDefaultO; 

Sets a drawing mode in which new elements replace the pre-existing ones they 
overlap. This is the default mode. Other modes are set by the functions: 

ModeNotO; 

ModeOrO; 

ModeAndO; 

ModeXorO; 

ModeMergeO; 

colour components of the overwritten elements are 
inverted. 
colour components of the existing and new 
elements are logical OR-ed. 
colour components of the existing and new 
elements are logical AND-ed. 
colour components of the existing and new 
elements are logical XOR-ed. 
colour components of the existing and new 
elements are merged. 

Simple graphic functions 

The functions in this group draw lines and points with the current pen colour, 
thickness and style, or move the current drawing position. 
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MoveTo 

MoveTo(point p); 

Moves the current drawing position to the specified co-ordinates. It is equivalent to 
moving a pen while holding its tip lifted from the paper. 

LineTo 

LineTo(point pl, ..); 

Draws a line segment with the current pen from the current drawing position to the 
specified co-ordinates. If several co-ordinate pairs are specified, each successive point 
is joined to the preceding one by a segment. 

LineBy 

LineBy(point pl, ..); 

Similar to LineTo, but co-ordinates are relative to the last current position. For 
instance, the statement 

LineBy(10, 0, 0, 10); 

draws a straight line segment from the current position to a position 10 units to the 
right, then another segment from the new position to one 10 units upward. 

Arc 

Arc(point pl, point p2, point pStart, point pEnd); 

Draws an elliptical arc. The ellipse is defined by the opposite vertices of its bounding 
rectangle (pl, p2). The starting and ending points are specified as the co-ordinates of 
points lying on ellipse radials (pStart, pEnd). The arc is drawn in the 
counter-clockwise direction. 

Point 

Point(point pl, ..); 

Draws one or more points with the current pen at the specified co-ordinates. 
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PointBy 

PointBy(point pl, ..); 

Similar to Point, but co-ordinates are relative to the last-used ones. 

Pixel 

Pixel(point pl, ..); 

Draws one or more pixels with the current pen colour at the specified co-ordinates. 
Pixel always paints a single pixel at the specified co-ordinates, and does not use 
the current pen thickness. This is the only GS function that uses device-dependent 
units. 

Filled shapes 

The functions in this category use the current pen colour, thickness and style to draw 
a shape's border, and the current fill colour and fill mode to fill its inside area. 

Rectangle 

Rectangle(point pl, point p2); 

Draws a rectangle specified by two opposite vertices. 

Polygon 

Polygon(point pl, point p2, point p3, ..); 

Draws a polygon with the vertices specified as arguments. The first and last vertices 
specified in the argument list are automatically joined with a line segment. 

Ellipse 

Ellipse(point pl, point p2); 

Draws an ellipse specified by two opposite vertices of its bounding-rectangle. 
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Pie 

Pie(point pl, point p2, point pStart, point pEnd, val direction); 

Draws an ellipse sector (or pie slice). The ellipse is specified by two opposite vertices 
of its bounding-rectangle (pl, p2). The start and end points of the pie along the 
perimeter of the ellipse are specified as the co-ordinates of two points located on 
ellipse radials (pStart, pEnd). If direction has a value of zero, the pie is drawn 
in the counter-clockwise direction, clockwise if non-zero. 

Chord 

Chord(point pl, point p2, point pStart, point pEnd, val direction); 

Similar to Pie, but draws a shape enclosed between an elliptic arc and its chord. 

Advanced graphic functions 

These functions are specifically designed to help in the creation of graphs. 

Marker 

Marker(point pl, point p2, ..); 

Draws a polygon with the vertices specified by the argument list. The co-ordinates in 
the argument list are interpreted as relative to the pen position at the time the func- 
tion was called (not as relative to those of the preceding vertex). 

This function is useful for displaying a symbol or figure at the current drawing 
position. By using an array constant as the argument to Marker  and alternating 
calls to Marker  with calls to MoveTo, it is easy to repeatedly draw a figure at 
the co-ordinates of each data point in a set. For instance the statements: 

point square = {-1, 
MoveTo(0, 0); 
Marker(square); 
MoveTo(5, 0); 
Marker(square); 
MoveTo(10, 0); 
Marker(square); 

-1,-1, l, 1, 1, l,-1}; 
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draw three squares with a side of 2 units at the co-ordinates (0, 0), (5, 0) and (10, 0). 
The first and last points of a marker 's sequence of vertices are automatically joined, 
and the polygon is filled with the current fill colour. To draw an open, non-filled 
line, use the MarkerL ine function. 

MarkerLine 

MarkerLine(point pl, point p2, ..); 

Similar to Marker ,  but draws an open, non-filled line. The first and last vertices are 
not automatical ly joined. If you want to draw a figure consisting of two or more 
disconnected series of segments, you can call MarkerL ine multiple times. You 
can use the same method to draw a symbol consisting of intersecting lines. For 
instance, a '+ '  symbol can be drawn as: 

MarkerLine(0, 0, 1, 0); 
MarkerLine(.5, -.5, .5, .5); 

Alternatively, you may retrace your path back to the intersection of two segments 
and continue from there in a new direction: 

MarkerLine(0, 0, .5, 0, .5, .5, .5,-.5, .5, 0, 1, 0); 

Tex t  f u n c t i o n s  

The following functions control the appearance of text. A detailed discussion and 
examples are provided in the tutorial (section 3 of this chapter). 

FontName 

FontName(string name); 

The font specified by the argument becomes the current font. A run-time error occurs 
if a font with this name is not installed, and the current font is not changed. 

FontHeight 

FontHeight(val s); 
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Sets the current font size in GS units. The font size corresponds to the distance 
between the top of an uppercase letter and the bottom of a descender letter (i.e., 
a letter, like 'g' and 'q', that descends below the text baseline). In practice, font size 
is often defined as the difference in height between the top of an uppercase 'M' 
and the bottom of a lowercase 'g'. The actual size of a displayed font is an 
approximation, dictated by limitations of the Windows GUI and/or of the current 
font. 

Font sizes are commonly expressed in points. A point is approximately 1 /72 inch, 
or .35 mm. Since GS font sizes, like all other sizes, are based on dimensionless GS 
units, the actual size of a font depends on the size of a printed or displayed graph 
(see the section entitled "Settings, units and the viewport"). 

FontNormal, FontBold, FontItalic, FontUnderline, FontStrikeOut 

FontNormal0; 
FontBold0; 
Fontltalic0; 
FontUnderline0; 
FontStrikeOut(); 

These functions control the style of the current font. FontNormal resets all attributes 
to normal (i.e., non-bold, non-italic, non-underlined, non-stroked-out). The remain- 
ing functions set the attribute indicated by their name. You can combine two or more 
attributes by calling the appropriate functions consecutively. 

FontAlignTop, FontAlignBase, FontAlignBottom 

FontAlignTop0; 
FontAlignBase0; 
FontAlignBottom0; 

These functions cause text to be vertically aligned with respect to the current drawing 
position. FontAlignTop0 aligns text in correspondence of the top of a bounding-box 
containing the text string. FontAlignBase0 aligns text in correspondence of its base- 
line (i.e., the bottom of a line of text that does not contain descenders like p and g). 
FontAlignBottom0 aligns text in correspondence of the bottom of its bounding-box 
(i.e., the bottom of the lowest descender). 

FontAlignLeft, FontAlignCenter, FontAlignRight 

FontAlignLeft0; 
FontAlignCenter0; 
FontAlignRight0; 
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These functions align text horizontally with respect to the current drawing position. 

FontAlignUpdate, FontAl ignNoUpdate 

FontAlignUpdateO; 
FontAlignNoUpdateO; 

FontAlignUpdateO causes the current drawing position to be moved to the end of 
displayed text. This allows new text to be output as a continuation of the same line. 
FontAlignNoUpdateO restores the default condition, in which text output does 
not change the current position. 

FontInclination 

Fontlnclination(val a); 
Rotates text counter-clockwise by angle a, expressed in degrees. 

Text 

Text(string t); 

Displays a string at the current drawing position. The text is aligned with the 
lower-left corner of its bounding-box at the current drawing position. 

SECTION 3. D E B U G G I N G  FACIL IT IES OF G R A P H  SERVER 

You can examine the statements and symbolic constants stored by Graph Server at 
any time during a session. To examine the symbolic constants, select the menu item 
View--+ Data.  This displays a window containing a list of five items (Fig. 7). 

Each item corresponds to a data type. If a small square button containing a + 
symbol appears at the left of an icon, one or more constants of the corresponding 
type have been declared during the current session. To expand a list, click with 
the left mouse button on the corresponding + symbol. When a list is expanded, 
the symbol in the button turns to a - .  Click on this symbol to collapse the list. 

The items contained in a data-type list contain the symbolic name of the data item. 
Each data item contains a list of the numerical or string values associated with the 
data item (Fig. 8). 

To examine the stored function calls, select the menu item View --+ Funct ion Calls. 

This displays a window containing a list of the stored function calls (Fig. 9). 
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Fig. 7 

Fig. 8 

Each function call contains a list of the numerical or string data received as 
arguments of the function. Note that symbolic arguments are translated to their 
numerical or string values in this list (Fig. 10). 

If a run-time error is detected, the icon of the corresponding statement changes to 
a crossed-out tag, and the list associated with the offending statement contains an 
error message, in addition to the function arguments. 

Note that the original GS statements are not stored by Graph Server, so comments 
and blank lines do not appear in the list of function calls. 
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Fig. 9 

Fig. 10 

SECTION 4. A GS TUTORIAL 

This section provides a step-by-step introduction to using the GS language. This 
tutorial assumes that you already know how to interface your program to 
GraphClient.dll or, alternatively, that your program saves a sequence of GS 
commands to a text file, for later use by SendFile.exe. Both techniques are described 
in section 1 of this chapter. 
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When you intend to manually draw a graph on paper, you start by deciding the 
type of diagram you want (e.g., scatter-plot, histogram, or pie). Subsequently, 
you decide how big your diagram will be on the paper, and which range of values 
to use for the axes (a program can decide the last item by examining the data 
set it will plot). You then draw the axes, tick-marks, and data points (or other 
graphical objects representing the data), and finally add labels, captions and other 
text. The process with Graph Server is largely similar, but there are two fundamental 
differences between the two methods (see below). Both manual drawing and the use 
of Graph Server require careful planning. 

The first difference with manual drawing is that Graph Server gives you freedom 
on the size and placement of the graph on the drawing surface. For practical 
purposes, you can consider a graph generated by Graph Server as an object that 
has been drawn on a paper sheet of infinite size. You can magnify any portion 
of a graph without loosing detail (within the precision limits of the constants used 
by Graph Server). The display or print area is a rectangular "window" on the graph 
that you can freely change during and after the graph is being generated. 

The second difference is that Graph Server may require you to draw graph 
elements in an order that differs from the procedure used for drawing manually. 
Normally, when Graph Server draws a graph element, it erases all previous elements 
occupying the same position (i.e., earlier elements are "overwritten"). Therefore, if 
your graph contains overlapping objects, you must arrange the corresponding 
GS statements in the appropriate sequence. Advanced users can force Graph Server 
to behave differently, and use a number of logical operators to combine the new 
element with pre-existing ones (see the Mode .... 0 functions in the GS language 
reference, in the preceding section). 

Text labels in the illustrations of this section may appear "soft" or "fuzzy". This is 
a consequence of the fact that the illustrations are bitmaps captured from the screen 
display. Windows NT (and Windows 95 with add-on software) can use anti-aliasing 
in order to obtain a better visual presentation of on-screen fonts. This results in 
soft edges of the font characters. Text on printouts, on the other hand, is not 
anti-aliased but uses the resolution of the printer, which is typically high enough 
to make aliasing effects (i.e., stair-step effects on oblique edges) unnoticeable. 

Examp le  1 - Drawing a histogram 

In the following discussion, we solve the task of drawing a bar diagram, discussing 
the successive steps of the procedure. We assume that we want to draw a histogram 
containing four data classes (i.e., four bars). The numerical (i.e., height) values 
for the bars are 16, 48, 36, 12. Each bar will be filled with a different colour. 
The outline of each bar will be drawn with a thin black line. The y-axis will have 
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Fig. I 1 

external tick marks at the values 10, 20, 30, 40, and 50, Each tick-mark is to be 
flanked by a label with the corresponding numerical value. The x-axis will carry 
the labels A, B, C, D, located directly beneath the axis, in correspondence of the bars. 

The desired graph is shown as Fig. 1 I. 

Drawing the axes and tick marks 

Except where noted otherwise, the following discussion shows the GS statements 
that should be sent to Graph Server, but does not deal with the problem of how 
to generate these statements. Normally, GS statements are n o t  manually written 
and issued one-by-one to Graph Server (although this approach does work). It 
is up to you to write a program, in the language of your choice, that generates 
the required statements. If your program is carefully written, it will require little 
or no modification to deal with different data sets. 

At this stage, we set the origin of the plot at the (10, 10) co-ordinates, in order to 
leave space for the labels at the left of and below the axes. We do not use a scaling 
factor (i.e., we let Graph Server use the default scaling factor of 1). The y-axis will 
therefore range from I0 to 60 GS units. A suitable thickness for the axes is 1 unit. 
We start by setting the pen colour to black and the pen thickness to 1. 

PenColor(O, O, 0); 
PenThickness(1); 

We move the pen to the origin, and subsequently draw a line from the origin of the 
axes, i.e., (10, 10) to co-ordinates (10, 60): 
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MoveTo(10, 10); 
LineTo(10, 60); 

The tick-marks are supposed to be external, i.e., to project from the left side of the 
axis. The pen is now located at the last-used position, i.e., (10, 60). From there, 
we will draw the topmost tick in the left direction. A length of 2 units is reasonable. 
Now we can draw the topmost tick-mark: 

LineTo(8, 60); 

Subsequently, we draw the other tick-marks: 

MoveTo(10, 50); 
LineTo(8, 50); 
MoveTo(10, 40); 
LineTo(8, 40); 
MoveTo(10, 30); 
LineTo(8, 30); 
MoveTo(10, 20); 
LineTo(8, 20); 

For the sake of efficiency, your program can generate repetitive statements within a 
loop. For instance, a C program can generate the required ticks as: 

int y; 
char c[256]; 
int left = 8, right = 10; 
for(y = 20; y <= 60; y += 10) 
{ 

sprintf(c, "MoveTo(%d, %d);\n", left, y); 
send(c); 
sprintf(c, "LineTo(%d, %d);\n", right, y); 
send(c); 

where the function send() issues commands to Graph Server (via GraphClient.dll), 
or saves them to a file for subsequent transmission. 

Drawing the coloured bars 

We decide to use a width of 10 units for each histogram bar, and to use a length of 45 
units for the x-axis. In this way, the x-axis will project slightly from the rightmost end 
of the set of bars. We can now draw the x-axis: 

MoveTo(10, 10); 
LineTo(55, 10); 
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It is better to use a different line thickness for the outline of the bars, in order to set 
them off from the axes. We can use a thickness of 0.5. 

PenThickness(0. 5); 

The first bar will be filled with red. 

FillColor(1, 0, 0); / /Red 

Since the bar is a rectangular shape, we can draw it with the Rectangle() command. 

Rectangle(10, 10, 20, 26); 

We subsequently draw the remaining bars, specifying a new colour for each. 

FillColor(1, 1, 0); //Yellow 
Rectangle(20, 10, 30, 58); 
FillColor(0, 1, 0); // Green 
Rectangle(30, 10, 40, 46); 
FillColor(0, 0, 1); / /Blue 
Rectangle(40, 10, 50, 22); 

Adding text  labels 

We are now ready to add the text labels. GraphServer uses the same text alignment of 
the Windows graphical engine. This means that text is written to the left of and below 
the current drawing position. 

We further decide to use the Arial typefont with a bold style. Lastly, we need to set 
a font height (i.e., size). In the Microsoft Windows environment, font sizes are speci- 
fied in points (1 point = 0.353 mm). Font size is defined as the height between the 
tallest ascender (e.g., the topmost portion of a capital A) and the lowest descender 
(the lowermost reach of a lowercase g). Graph Server, instead, uses GS units to 
measure font height (1 point = 0.353 GS units). This means that the font size 
of text labels as displayed on-screen or printed on paper depends on the scaling factor 
used for viewing a graph (i.e., text in a GS graph is scaled up or down, together with 
all other graph elements). If you must use a precise font size, you should plan in 
advance carefully, so that the scaling factor does not need to change to accommodate 
for bigger- or smaller-than-expected graphs. Alternatively, you can generate a graph 
without labels, and subsequently import it into a graphic editor for manual addition 
of the text labels. 

A font height of 5 units (i.e., 10% of the height of the diagram) is appropriate for 
the labels. 
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FontName("Arial"); 
FontHeight(5); 

The text labels alongside the tick marks can be added at this point. Since characters 
are 5 units high, it is necessary to place the current drawing position 2.5 units higher 
than the tick marks (remember that text is drawn to the left o f  and below the current 
drawing position). In a font with a height of 5 units, characters are, on average, 
roughly 3 units wide: as a rule, characters are slightly higher than wide, although 
the width of characters varies within the same fonts (e.g., compare the relative widths 
of the characters M and I). Since the y-labels consist of two digits, we can assume a 
total width of about 6 units. Therefore, we can add to this width one more unit 
(to provide a space between label and tick mark, and place the current drawing 
position 7 units from the left extremity of the tick mark (i.e., 9 units from the y-axis). 

MoveTo(1, 22.5); 
Text("10"); 
MoveTo(1, 32.5); 
Text("20"); 
MoveTo(1, 42.5); 
Text("30"); 
MoveTo(1, 52.5); 
Text("40"); 
MoveTo(1, 62.5); 
Text("50"); 

The text labels under the data bars are to be formatted in italics. Since these labels 
consist of a single character, we place the current drawing position 1 unit below 
the x-axis, and 2.5 units to the left of the centre of the corresponding histogram 
bar (we can assume a character width of 4-5 units, instead of 3, because italic 
characters are slanted). 

FontStyleItalics0; 
MoveTo(I2.5, 9); 
Text("A"); 
MoveTo(22.5, 9); 
Text("B"); 
MoveTo(32.5, 9); 
Text("C");  
MoveTo(42.5, 9); 
Text("D");  
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Choosing a viewport andd isp lay ing  the ~ graph 

Finally, before we can display the graph we must specify a viewport, i.e., the size and 
placement of an observation window onto the infinitely large graphing-surface. We 
know that the graph, including its axes, extends between the co-ordinates (10, 
10) and (55, 60). Allowing for the labels anda white margin around the whole graph, 
we set: 

Viewport(0, 0, 70, 70); 

At this point, we are ready to inspect the graph. We issue the command 

Disconnect.(); 

to detach our client program, from Graph Server and allow the latter to generate the 
graph. The result is visible below. 

Correct ing the  errors 

This is the graph generated by the GS commands discussed in the previous 
sections: 

Fig. 12 
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Fig. 13 

A careful inspection of the graph shows that everything is as expected, with one 
exception: the colour fillings of the histogram bars partly overlap the x- and y-axes 
of the graph. This is especially visible when the graph is observed with a high 
zoom-ratio. In particular, the lowermost portion of the diagram is as shown in 
Fig. 13. 

Compare the thickness of the y-axis above and below the top of the red bar. Unless 
a high zoom-ratio is used, this type of problem is likely to become apparent only 
when a graph is printed on a high-resolution device. 

An examination of the GS statements above shows that the bars are drawn after 
the axes. Since the outline of the bars is thinner than the axes (0.5 versus 1 units), 
the colour filling of the bars partly overwrites the x- and y-axes. This can be corrected 
by re-arranging the sequence of GS statements in order to draw the axes after the 
bars. The final sequence, which corrects the above problem, will look like this: 

Viewport(0, 0, 70, 70); 
PenColor(0, 0, 0); 
//draw the colour-filled bars 
PenThickness(0. 5); 
FillColor(1, 0, 0); 
Rectangle(10, 10, 20, 26); 
FillColor(1, 1, 0); 
Rectangle(20, 10, 30, 58); 
FillColor(0, 1, 0); 
Rectangle(30, 10, 40, 46); 
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FillColor(0, 0, 1); 
Rectangle(40, 10, 50, 22); 
/ / d r a w  the y-axis 
PenThickness(1); 
MoveTo(10, 10); 
LineTo(10, 60); 
// draw the tick marks 
LineTo(8, 60); 
MoveTo(10, 50); 
LineTo(8, 50); 
MoveTo(10, 40); 
LineTo(8, 40); 
MoveTo(10, 30); 
LineTo(8, 30); 
MoveTo(10, 20); 
LineTo(8, 20); 
/ /  draw the x-axis 
MoveTo(10, 10); 
LineTo(55, 10); 
/ / d r a w  the y-labels 
FontName("Arial"); 
FontHeight(5); 
FontStyleNormal0; 
MoveTo(1, 22.5); 
Text(" 10"); 
MoveTo(1, 32.5); 
Text("20"); 
MoveTo(1, 42.5); 
Text("30"); 
MoveTo(1, 52.5); 
Text("40"); 
MoveTo(1, 62.5); 
Text("50"); 
/ /  draw the x-labels 
FontStyleItalics0; 
MoveTo(12.5, 9); 
Text("A"); 
MoveTo(22.5, 9); 
Text("B"); 
MoveTo(32.5, 9); 
Text("C"); 
MoveTo(42.5, 9); 
Text("D"); 



84 Graph Server, the GS Language and Graph Wizard 

As a rule, the process of designing a new graph will be, in part, a trial-and-error 
procedure. The amount of work involved in programming a client application 
for Graph Server can be reduced by allowing your program to be flexible (e.g., 
by automatically choosing the plotting interval on the basis of the available data 
set). In this way, client programs can reuse common "building-blocks" that generate 
frequently-used types of diagrams. 

Example 2 -  A scatter diagram 

We assume that we must generate a scatter diagram containing the following data 
points, identified by their (x, y) co-ordinates: 

(12, 34) (41, 37) (25, 17) (8, 18) 

Unlike the preceding example, we place the origin of the graph at the (0, 0) 
co-ordinates. In this way, we can directly use the co-ordinates of the points to 
be plotted. We can include the origin (0, 0) in the diagram. The maximum range 
of the co-ordinates used by the data points is (41, 37). We can therefore extend 
the axes to the co-ordinates (45, 40). To allow for labels at the left of and below 
the axes, and for a margin above and to the right of the diagram, we set the viewport 
at: 

Viewport(0, 0, 50, 55); 

Since the data points are far from either axis, we can draw the axes at this point. 

PenColor(0, 0, 0); 
PenThickness(1); 
// draw the axes 
MoveTo(0, 40); 
LineTo(0, 0); 
LineTo(45, 0); 

We decide to mark each data point by drawing a marker centred at the co-ordinates 
of the point. We will use the same marker (a blue square with a yellow fill-colour) 
for all points. Therefore, we can define a marker shape, and subsequently re-use 
it. To do this, we store the co-ordinates of the corners of a square, centred about 
the origin, in an array, to which we assign the symbolic name square. 

point square={-1,-1, 1,-1, 1,1,-1,1}; 
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We subsequently set the style of line joints to miter (e.g., sharp corners): 

LineJoinMiter0; 

Now we are ready to display the markers. 

Pen Thickness( 0.5); 
PenColor(0, 0, 1); 
FillColor(1, 1, 0); 
MoveTo(12, 34); 
Marker(square); 
MoveTo(41, 37); 
Marker(square); 
MoveTo(25, 17); 
Marker(square); 
MoveTo(8, 18); 
Marker(square); 

If we open the View--+ Data window in Graph Server, we can verify that the 
symbolic constant square has been stored (Fig. 14). 

Similarly, the View--+ Function calls window shows all the above function calls. 
Note that the arguments of the calls to Marker() have been changed to the numeric 
values associated with the symbolic constant (Fig. 15). 

Fig. 14 
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Fig. 15 

Fig. 16 

The graph is displayed as Fig. 16. 
An unexpected feature of this graph is that half of the thickness of the axes is 

missing. This is due to the fact that the axes start at the (0, 0) co-ordinates. Therefore, 
half of the axes thickness lies in regions where either x or y (or both) are negative. 
These regions are not displayed because the lower-left corner of the viewport is 
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located at the co-ordinates (0, 0). Therefore, the margins of the viewport bisect the 
axes along their length. We can correct this problem by choosing a viewport that 
includes negative values: 

Viewport(-5,-5, 50, 55); 

At this point, we could add scale-marks and labels as discussed in the preceding 
example. However, GS provides better text facilities than those used so far. This 
is the subject of the next example. 

Example 3 -  Advanced text facilities 

As discussed above, GS conforms to the default Windows behaviour when dis- 
playing text. However, it is possible to change this behaviour. In graphs, it is often 
useful to display text that is aligned to an axis different from the horizontal. 
For instance, the label of a y-axis is conveniently rotated 90 from the horizontal. 
Text rotation is achieved by the Fontlnclination0 function. The figure below dis- 
plays the result of the following GS code: 

FontName("Arial"); 
FontHeight(10); 
MoveTo(50, 50); 
PenThickness(3); 
Point(50, 50); 
Text("text"); 
FontInclination(90); 
Text("text"); 
F ontlnclina tion(180); 
Text("text"); 
Fontlnclination(270); 
Text("text"); 

Fig. 17 

In the above example, text is plotted at the current drawing position, which is marked 
by a black dot (generated by the Point0 function). Note that rotation is measured in 
degrees, and in a counter-clockwise direction. Note also that the current drawing 
position is not changed by successive calls to the Text() function. 

In the first example of this tutorial, text labels were positioned with respect to 
other elements of a graph by estimating the height and width of the text. GS provides 
a better way (albeit not a perfect one). In the following examples, the current drawing 
position is marked by the intersection of two red lines. 

The function FontAlignTopO aligns text with the top of a bounding-box surround- 
ing the text at the current drawing position. This is the default alignment (Fig. 18). 
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Fig. 18 

Fig. 19 

The function FontAlignBottomO aligns the bottom of the bounding-box to the 
current drawing position. Note that the bounding-box is high enough to contain 
descenders, i.e., characters, like p and g, that descend below the baseline of the text 
(Fig. 19). 

FontAlignBase(), on the other hand, aligns the baseline of the text to the current 
position (Fig. 20). 

FontAlignLeft0 (which is the default), FontAlignCenter0 and FontAlignRight0 
control the horizontal alignment of text (Fig. 21). 

A legitimate question is how alignment is set for text that has been rotated. The 
answer is that the result is equivalent to rotating the displayed text about the 
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Fig. 20 

Fig. 21 
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Fig. 22 

current position. The figure below shows the effects of rotating left- and 
bottom-aligned text, and centre- and bottom-aligned text, respectively, by varying 
amounts (Fig. 22). 

Unfortunately, the Windows graphical engine does not provide a simple way to 
centre text vertically (principally because there are many different ways to define 
this operation, i.e., centring about uppercase versus lowercase text, including or 
excluding ascenders and/or  descenders). Doing so in GS does require the user to 
estimate the height of the text, and to choose one of the above ways to centre text 
vertically. The simplest way is probably to halve the nominal height of the text font. 

We encounter another problem when we want to place two or more text labels to 
form a single line of text. This may be desirable when we must write a line of text 
that contains one or more symbols (or other characters that necessitate a change 
of font). For instance, we want to write ~z = 3.14. The symbol ~ is contained in 
a different font (e.g., Microsoft Symbol) than normal text. The function 
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Fig. 23 

FontAlignUpdate0 provides a way to solve this problem. Once this function is 
called, each call to Text() moves the current position to the end of the displayed 
text. The following example shows the result of the code (Fig. 23): 

FontName("Symbol"); 
FontHeight(10); 
MoveTo(30, 50); 

PenColor(0,0,0); 

FontAlignUpdate0; 
Text("p"); 

F ontN ame(" Ari al" ); 
Text(" = 3.14"); 

Note that the symbol rc must be written, in GS code, as its equivalent character (i.e., 
the character that occupies the same position'in the font table, and has the same 
ASCII value) in a normal font. Without the call to FontAlignUpdate(), the result 
would be as shown in Fig. 24. 

Because the current drawing position would not move after drawing the rc symbol. 
This would have to be corrected by estimating the width of the symbol, and moving 
the current drawing position by an appropriate amount. The effect of 
FontAlignUpdate0 is reversed by FontAlignNoUpdate0. 

Text can be formatted by using the functions FontItalies0, FontBold0, 
FontUnderline0 and FontStrikeOut0. All these functions can be combined together 
by calling them consecutively. The function FontNormal0 cancels all their effects. 

Fig. 24 
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This sequence of calls: 

FontName("Arial"); 
FontHeight(6); 
PenThickness(1); 
MoveTo(5, 50); 
PenColor(0,0,0); 
FontAlignBottom0; 
FontAlignLeft0; 
FontAlignUpdate0; 
Text("normal "); 
FontUnderline0; 
Text( " underlined "); 
FontNormal0; 
FontStrikeOut0; 
Text("struck-out "); 
FontUnderline0; 
Text("both"); 
MoveTo(5, 40); 
FontNormal0; 
FontBold0; 
Text("bold "); 
FontNormal0; 
FontItalics0; 
Text("italics "); 
FontBold0; 
Text("bold italics "); 
FontUnderline0; 
FontStrikeOut0; 
Text(" all"); 

generates the following text: 

Fig. 25 
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Fig. 26 

Example 4 -  An assortment o f  graphic and text effects 

The above graph (Fig. 26) contains an assortment of graphic and text effects. This is 
the GS code that generates this graph: 

Viewport(0, 0,100,120); 
LineEndRound0; 
LineJoinRound0; 
Pen Thickness(. 5); 
PenColor(1,0,0); 
FillColor(.5,.5,1); 
//examples of rectangles 
Rectangle(15,10,30,45); 
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PenColor(0,.2,,2); 
FillColor(.8,.8,0); 
PenThickness(4); 
Rectangle(35,75,45,90); 
LineJoinMiter0; 
Rectangle(35,45,45,60); 
LineJoinBevel0; 
Rectangle(35,15,45,30); 
// axes with ticks 
PenThickness(1); 
PenColor(0,0,0); 
MoveTo(10,90); 
LineTo (10,10,90,10); 
PenThickness(.5); 
MoveTo(10,20); 
LineTo(12,20); 
MoveTo(10,40); 
LineTo(12,40); 
MoveTo(10,60); 
LineTo(12,60); 
MoveTo(10,80); 
LineTo(12,80); 
MoveTo(20,10); 
LineTo(20,12); 
MoveTo(40,10); 
LineTo(40,12); 
MoveTo(60,10); 
LineTo(60,12); 
MoveTo(80,10); 
LineTo(80,12); 
/ /pie slices 
PenColor(.5,1,.5); 
FillColor(1,.5,1); 
Pie(60,80,95,45,100,85,70,85,1); 
FillColor(.5,.5,.5); 
PenColor(0,.5,1); 
Pie(60,95,95,60,100,100,70,100,0); 
PenColor(0,0,0); 
//re-trace the rim of a pie with a pen of different color 
Ar c(60,95,95,60,100,100,70,100); 
//free-form color-filled polygon 
PenColor(0,0,1); 
Fill Color (1,1,0); 
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Polygon(50,30,90,30,60,15,70,40,80,15); 
//ellipses and chords 
Ellipse(15,50,30,90); 
FillColor(1,0,0); 
Chord(15,50,30,90,10,70,30,50,0); 
//rectangle with rounded corners 
PenColor(0,0,0); 
PenThickness(.01); 
FillColor(1,1,1); 
RoundRect(50,50,80,55,3,5); 
//markers and rounded dots 
PenThickness(.2); 
FillColor(1,1,0); 
PenColor(0,0,1); 
val square= {-1,-1,1,-1,1,1,-1,1 }; 
MoveTo(55,90); 
Marker(square); 
MoveTo(55,85); 
Marker(square); 
MoveTo(55,80); 
Marker(square); 
val star={-1,-1, 0,-.5, 1,-1, .5,0, 1,1, 0,.5,-1,1,-.5,0}; 
MoveTo(65,90); 
Marker(star); 
MoveTo(65,85); 
Marker(star); 
MoveTo(65,80); 
Marker(star); 
val starl={-1,-1, 0,-.5, 1,-1, .5,0, 1,1, 0,.5,-1,1,-.5,0,-1,-1}; 
MoveTo(70,90); 
MarkerLine(star 1); 
MoveTo(70,85); 
MarkerLine(st ar 1); 
MoveTo(70,80); 
MarkerLine(st ar 1); 
Pen Thickness( 2); 
Point(60,90); 
Point(60,85); 
Point(60,80); 
PenThickness(0); 
MoveTo(58,92); 
LineTo(62,92,62,78,58,78,58,92); 
/ / text  
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FontName("Arial"); 
FontHeight(5); 
MoveTo(10,1 t0); 
Text("Normal"); 
MoveTo(27,110); 
FontBold0; 
Text("Bold"); 
MoveTo(40,110); 
FontNormal0; 
FontItalics0; 
Text("Italics"); 
FontNormal0; 
FontInclination(45); 
MoveTo(45,100); 
Text("45 degrees"); 
FontN ame (" Symbol "); 
MoveTo(65,110); 
FontInclination(0); 
PenColor(1,0,0); 
Text(" abcdefgh"); 
FontName("Arial"); 
FontHeight(1); 
MoveTo(10,100); 
Text("very small typefont"); 
Title(" gr aph. txt" ); 

If you are running Windows 95/98, some details may differ from the above picture. 

SECTION 5. :GRAPH W I Z A R D  

Graph Wizard is a program which guides the user through a succession of steps to 
generate a scatter-plot. Once all the necessary data have been entered by the user, 
Graph Wizard generates an appropriate sequence of GS commands and sends it 
to Graph Server. 

Before you start Graph Wizard you need to have your data available in a text file. 
In this file, numerical values can be written as integers or floating, point values. The 
data should be arranged as a matrix of rows and columns. Individual values must 
be separated by one or more spaces or tabs, but do not need to be padded with 
extra spaces in order to be visually aligned in vertical columns. Other requirements 
of the input data file are discussed below. Graph Wizard cannot read files in which 
data has been stored in non-text format (e.g., binary representation of data). 
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Each step in a series corresponds to a different dialog box in Graph Wizard, Before 
you can  proceed to the next step, you must supply Graph Wizard with needed 
information. You can do so by filling the available text fields and o ther  controls. 
In some cases, you can move back one or more steps without losing any of the data 
you  already entered (you will be reminded whenever you are about to lose data 
by stepping backwards). 

Graph Wizard displays help and hints at each step. Therefore, the following dis- 
cussion will concentrate on the general meaning of each step, rather than describing 
the details of each operation. Each step is indicated by the title which appears 
in the corresponding dialog box. 

The documentation on the CD contains illustrations of each of the following steps. 

Graph W iza rd -  Introduction 

This is an introductory screen which describes the scope of Graph Wizard, the 
characteristics it expects from the data contained in the input file, and the general 
way in which the program operates. This step requires no input. You can proceed 
to the next step by pressing the Next  button. 

Graph Wizard - Input file 

Here you must enter the complete path (e.g., C ' \dn tn \g rnph l . t x t )  of the input file. 
As an alternative, you can use the Browse button to display the Open Data File 
dialog, which uses the "Explorer" interface familiar to Windows 95 /98 /NT users. 
You can use this dialog to navigate to an appropriate file, and subsequently 
double-click on its name or press the Open button. By default, this dialog ~ displays 
files with .TXT, .ASC and .DAT names. You can choose All files in the Files 
of type list if you want to display also files with different extensions. Once you have 
the file path written in the Input file text box, press the Next button. 

Graph Wiza rd -  Select data 

At this step you can select the data you intend to use. The purpose of this step is to 
eliminate any rows containing titles, comments, labels and any data which is not 
arranged as a matrix. At this stage, you ean select also redundant rows of data (i,e., 
data which you do not intend to plot), as long :as they are arranged in a matrix 
format. If your entire file satisfies the above criteria, you can select the whole file 
with the Select All bu t ton.  Press the Next key when you are finished with this 
operation. 
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Graph W i z a r d - E d i t  the data to plot 

This step has two separate purposes. In the Data yon selected from the input file text 
box, you can inspect the data you selected during the previous step. Data items 
displayed in this box are separated by tabs. At the present stage, you can edit 
the data in this box in any way you wish, as long as adjacent data items are separated 
by one or more spaces or tabs. It is not necessary that the data items remain aligned 
in columns. It is necessary, on the other hand, that the number and ordering of data 
items per line remains consistent. The two radio buttons located below the text 
box allow you to choose if categories in your data are to be grouped by the vertical 
column or by the horizontal row. 

Graph W i z a r d -  Choose the data to plot 

Here you have one more chance to inspect your data, displayed in a text box and 
grouped into rows or columns according to your earlier choice. You can no longer 
edit the data at this stage, but you can use the Back button if you need to do so. 

This step also displays an empty text box under the heading These are the defined 
data sets. Before you can continue, you must select at least one data set from your 
data. Each data set will be displayed as a cluster of points in the scatter plot. 
All points belonging to a data set will be represented with the same symbol in 
the graph. Press Add a new data set to the list to continue. Once you are finished 
creating data sets (see the following step) press the Next button to proceed. 

Graph W iza rd -  Add a new data set 

This step is displayed as a new dialog box overlapping the preceding one. You can 
move the present dialog in order to see both. In this dialog, you will choose from 
which rows (or columns, depending on your earlier choice) to extract the x- and 
y-values to plot. You will also choose a marker, which will be displayed in the graph 
in correspondence of each data point belonging to this set. 

You can choose among twenty types of geometric markers (which will be the same 
for all data points in a set), or an alphanumeric marker. The latter option needs some 
explanation. The "123" marker (as identified by its icon) will print a progressive 
number, starting from 1 and incrementing at each successive data point in the set. 
Similarly, the "ABC" and "abc" markers produce a succession of uppercase or 
lowercase characters, respectively, starting with "A"  or "a". Upon reaching "Z"  
or "z", the sequence restarts from the beginning. 

The "1" marker, on the other hand, assigns the same number (which corresponds 
to the number of the data set) to all data points in a set. Thus, the first set will have 
all data points marked as "1", the second as "2", and so on. Note that this applies 
also if other data sets use different markers. Thus, if the first data set uses a geometric 
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symbol and the second the "1" marker, all points of the second set will be marked as 
"2". Similarly, the "A" and "a" markers yield an alphabetic identification of data 
sets. 

Pressing the OK button will create the corresponding data set and return you to 
the preceding step, where you can create additional sets and/or delete 
previously-created ones. Pressing the Caneel button will return you to the preceding 
step without creating a data set. 

Graph Wizard-  General data settings 

Here you can choose which co-ordinate range will be included in the graph. By 
default, Graph Wizard proposes a range sufficient to contain the data points 
and to allow for a "clean" margin all around the graph area. If you wish, you 
can choose a smaller or larger area. You can also choose the interval between tick 
marks placed along the axes. By default Graph Wizard chooses an interval appro- 
priate to display 10 tick marks along the longest axis (the shorter axis receives 
proportionately fewer tick marks). 

As a result of the above process, the tick marks may correspond to fractional 
values of measurement units. If you are planning to display the numerical values 
of measurement units alongside with the tick marks, you should probably change 
the spacing of the tick marks so that their associated numerical values are 
reasonable. For example, Graph Wizard may place the origin of the x-axis at 
co-ordinate 0.06 and place tick marks at co-ordinates 1.07, 1.902 and so on. If 
you wish to display the numerical values of the co-ordinates of tick-marks, it is 
reasonable to move the origin 

Graph Wizard will not scale measurements differently along the x and y axes. If 
you want to "compress" a graph along the vertical or horizontal axis, you must 
do so by altering the input data. 

Graph Wizard-  General graph settings 

These are settings that control the graphic appearance of the output. The first 
settings (area of the graph) control the co-ordinates of the plotting surface of 
the graph (excluding labels and text), expressed in GS plotting units. In most cases 
you do not need to alter these settings. 

The next settings control whether the axes are drawn, and their thicknesses (also 
expressed in GS units). A thickness of 0.5 (the default) to 1 units is generally 
adequate. 

Finally, you can choose whether tick marks are plotted along the axes, and their 
length and placement relative to the axes. The setting "inside axes" means that 
the tick marks will protrude into the plotting area, "outside axes" in the opposite 
direction. 
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Graph Wizard- Text settings 

Here you may enter a text to be displayed along the axes (i.e., below the x-axis and to 
the left of the y-axis). The text along the y-axis is rotated 90 ~ counter-clockwise 
relative to the horizontal axis. You can also choose the size of the text (i.e., its 
approximate height, expressed in GS units) and the font to use. 

The dialog that allows you to choose a font displays all the fonts available on your 
system. This list may therefore vary from machine to machine. In addition to the font 
name, the dialog allows you to choose several other settings. None of these additional 
settings has any effect in Graph Wizard. They are displayed because Graph Wizard is 
using a font dialog that is part of the Windows operating system. 

Graph Wizard Finish 

At this stage, you may choose whether to send the graph to Graph Server. As an 
alternative or additional option, you may save the graph to a file. The graph will 
be saved as a text file containing a sequence of GS statements. 

You may additionally specify whether to write a log to a text file and/or  display it 
in a window. The log contains a list of all GS statements issued to Graph Server and 
its corresponding replies. Possible replies include successful processing of the 
statement, detection of a syntax error, and explanatory messages returned by Graph 
Server. A log is not generated when the graph is sent only to a file. 

SECTION 6. FREQUENTLY ASKED QUESTIONS 

Other versions of Graph Server 

Q - Is there a version of Graph Server for the Macintosh? Will a version of Graph 
Server for the Macintosh be released in the future? 
A -  No. There are no versions of Graph Server for computers, processors and 
operating systems, other than those specified in the section on hardware and soft- 
ware requirements. No new versions are planned. 

Programming interface 

Q - My compiler does not support calls to functions in DLL files. Can I still use 
Graph Server? 
A -  Yes (albeit in a slightly more awkward way). You can use the utility 
SendFile.exe. In the present version of GraphServer, you can also run Graph.exe 
from the command prompt, and provide a file name as an argument. This may 
change in future releases. 
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Q - Graph Server complains about spurious characters being present at the end of 
each statement. Why? 
A - Your program is probably appending a carriage return (or one or more other 
characters) at the end of each instruction, before sending it to Graph Server. Make 
sure that the last character of each statement is a semicolon. 

If your compiler insists in appending illegal characters at the end of an instruction, 
try adding an empty comment (i.e., the character pair //) at the end of each 
statement. 

Q -  I want to display a label containing the string "C:\Windows" in a graph. In order 
to make GS accept the backslash character, I wrote the string as "C:\\Windows" in 
my program. However, GS displays it as "C:Windows". What should I do? 
A -  You must take into account the escape sequences required by the language you 
are using to write your program, in addition to those required by GS. If you 
are writing your program in C or C++, you must enter each backslash as a 
double-backslash sequence. Each pair is turned into a single backslash by your 
compiler, and GS, in turn, will turn a backslash-pair into a single backslash. 
Therefore, you should write the string as "C:\ \ \ \Windows" in the source code of 
your program. 

Graphic output 

Q -  I am drawing a set of parallel lines spaced 5 units apart from each other. Pen 
thickness is set at 5 units. I expected the edges of adjacent lines to touch each other, 
but some of the lines are separated from each other by 1-pixel-wide gaps. While 
I resize the document window, 1-pixel gaps alternately appear and disappear 
between adjacent lines. How can I make sure that no gaps appear between adjacent 
lines? 
A -  If you must avoid gaps between adjacent lines, use the Rectangle or Polygon 
functions (with the appropriate fill colour and a pen thickness of 0) to draw thick 
lines, instead of the LineTo function. Alternatively, use LineTo with a line thickness 
sufficient to cause the edges of adjacent lines to overlap slightly. 

Gaps between adjacent lines are due to the fact that line thickness is expressed as a 
floating-point value in GS, but is approximated to an integer (which depends on 
several factors, including the sizes of the viewport and document window) when 
a graph is displayed. Consequently, line thickness can only be approximated in 
a display. This is especially evident in screen displays. As a rule, the sizes specified 
in the Rectangle function can be approximated in a better way than those specified 
in PenThiekness and other functions. 

Q -  Thick lines are displayed with rounded ends and vertices. How can I draw a sharp 
vertex instead? 
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A -  By default, GS rounds the ends and the convex vertices of lines. If you need sharp 
vertices, call LineJoinMiter.  Call LineJoinBevel to display bevelled vertices (i.e., 
vertices with a triangular region of the tip cut-off). If you need square or flat line 
ends, call LineEndSquare or LineEndFlat. 

Q - I want to draw a large colour-filled rectangle that encloses a number of smaller 
figures. However, when I draw the rectangle, it covers everything that was previously 
drawn in the same area. How can I avoid this? 
A -  When drawing a new graphic element, GS replaces everything that existed pre- 
viously in the same area (or, if Mode is not set to default, performs logical operations 
between pre-existing and new elements). Therefore, you must plan your graph so 
elements that must lie in the "background" are drawn earlier, and elements in 
the "foreground" later. 



Chapter 3 

Methods for analysing a sample drawn from a 
single population 

INTRODUCTION 

All methods considered in this section are concerned with analysing a multivariate 
sample, drawn from a single population, from several conceptual standpoints. 
At the basic level of application, it is assumed that the data are multivariate normally 
distributed and interest is directed towards charting the geometrical and statistical 
properties of the sample. This is, however, not the only use that can be made of 
these methods and they can be profitably employed for seeking out the occurrence 
of heterogeneities in a data-set. This latter approach is often referred to as explora- 
tory data-analysis. Another popular application is for reducing the dimensionality 
of a problem. 

The subject of the multivariate analysis of single samples is an important one and 
there are several recent texts available on the subject. Jolliffe (1986) claims to be 
concerned with principal component analysis, but actually treats several other topics 
and his book could be categorized as presenting the application of the algebra of 
latent roots and vectors to the covariance matrices of single samples. Jackson (1991) 
is likewise directed towards the application of principal components, but also most 
other methods that treat a single multivariate sample find a place. Preisendorfer 
(1988) is mainly concerned with principal component applications in meteorology 
(with a specialized terminology) and is not directly accessible to geoscientists. 
Reyment and J6reskog (1993) preferred to develop the subject in a wider context, 
with emphasis on identification of the model with respect to the concepts of fixed 
mode and random mode. 

Fixed models dominate in geological work and, for that matter, in the Natural 
Sciences as a whole. 
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PRINCIPAL COMPONENT ANALYSIS 

This method is probably the most commonly used one in applied multivariate 
statistics; it is, in many respects, also fundamental to the whole concept of 
multivariate statistics. Among its many applications, one of the most widely found 
is its use as a means of reducing the dimensionality of a problem without the loss 
of too much information: the new (and fewer)dimensions resulting from the 
principal component transformation are l inear combinations of the observed 
variables. In its most elementary form, the method of principal component analysis 
consists of the extraction of the latent roots and vectors of either the covariance 
matrix or the correlation matrix. The treatise by Jackson (1991) is recommended 
for all who wish to gain a deeper insight into the many ramifications of the method, 
notwithstanding that it roams off into all sorts of other fields and is regrettably 
deficient in its treatment of developments in applications in the Natural Sciences. 
Principal component analysis is a so-called R-mode procedure. We have used 
the term "latent" above with respect to the roots and vectors of a matrix. Other 
terms used for latent roots and vectors are eigenvalues and eigenvectors, proper 
values and vectors, and characteristic roots and vectors, which latter amalgamation 
may just have priority over the designation chosen by us. Eigenwert is the German 
translation of characteristic root, which, in a period of anglophonic linguistic 
decline, was back-translated as the truly horrible hybrid "eigenvalue", widespread 
in North American publications, and, lamentably, beginning to infect British 
literature. Valeur propre is the French rendition of latent root, which also wandered 
back home as "proper value", which is quite silly in English, but sensible, of course, 
in French. The algebra of latent roots and vectors is rather complicated. If you wish 
to learn the basic principles, Reyment and J6reskog (1993) have a section on the 
subject. Of the more technical accounts, Bellman (1960) and Gantmacher (1965) 
are mines of information. 

The application of latent roots and vectors in physics, astronomy, engineering and 
chemistry is widespread and the step to statistics was not all that of a big one to take 
some 60 years ago. Closely related computationally (though not conceptually) to 
principal component analysis is Factor Analysis. The subject of Factor Analysis 
in the Natural Sciences has recently been treated by Reyment and J6reskog (1993). 
It is considered only briefly in a later section. 

The basic features of principal component analysis (but not the theoretical 
derivation thereof) depend on the extraction of the latent roots and vectors of a 
square symmetric matrix. Consider a real, square symmetric matrix, R (the corre- 
lation matrix, for example). A latent vector u of R is given by the relationship 

Ru = u2 (3: 1) 

where 2 is a scalar, called the latent root, to be estimated. Equation (3:1) can also be 
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written, by rearrangement, as 

( R -  2I)u = 0 (3:2)  

where I is the identity matrix, a matrix with ones down its diagonal and zeros in all 
other positions, and 0 is the null vector, a vector with all its components equal 
to zero. 

The first step in finding u and 2 is to solve the determinantal equation 

I R -  2II = 0 (3:3)  

This expands to a polynomial with as many roots as there are dimensions for a 
full-ranking matrix R. The lambdas of (3:3)enter into a diagonal matrix where they 
constitute the diagonal elements, all other positions being zero. 

Thus, 

21 0 0 .. .  0 

A -  0 /~2 0 . . .  

o o o . . .  # 

(3:4) 

with the lambdas ranged in descending order of magnitude. That is 

~1 > /]'2 > . . .  > '~p. (3:5) 

By the same token, the latent vectors corresponding to the lambdas are found by 
solving the simultaneous equations (cf. 3:2) 

(R - 2I)u = 0 

for each lambda in turn. These vectors, when standardized to have unit length, can be 
grouped into a matrix U. This is an interesting, and useful, matrix because its 
columns are mutually orthogonal. In statistical terms, the latent vectors are linear 
combinations of the original p variables that are uncorrelated with each other. 
It comes sometimes as a surprise that the components of a latent vector are all 
negative, or that different programs return latent vectors with 'mirrored' signs 
on their components. This is an expression of the fact that the sign of a latent vector 
is indeterminate. Summing up what has been done, we have that in the most general 
form, 

RU -- UA (3:6) 

which, by rearrangement of terms, is equivalent to 

R = UAU T (3:7) 
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Let us ponder over this result for a moment. There are four important things to 
notice. 

1 Equation (3:7) shows that a square symmetric matrix can be decomposed into 
two equal orthogonal matrices and a diagonal matrix. The superscript " T "  attached 
to the second U indicates that it is t ransposed-  it is lying on its side, as it were. An 
equivalent, and more widely used, symbol is a dash placed after the symbol for 
the matrix to be transposed which we have avoided in the present text, owing to 
the ease with which it can be overlooked on a word-processor. 

2 The non-zero elements of A lie along a diagonal. The sum of these diagonal 
elements is exactly equal to the sum of the diagonal elements of R, which is a most 
valuable property. For one, it shows that the sum of the diagonal elements of A 
is equal to the sum of the variances of the original matrix. This sum is known 
as the trace or spur ( =  German for 'trace') of a matrix. The relationship implied 
is written: 

trA = trR 

3 Each diagonal element of R has a corresponding vector, a linear combination 
of the original variables. Hence, the rotat ion engendered in the principal component 
transformation makes p new uncorrelated variables, linear combinations of the p 
original, correlated ones. This is again a valuable property and one that can be used 
in many connexions in multivariate statistical analyses. Nothing has been altered, 
added or changed. All we have done is that we have transformed, by the rotation 
of axes, a set of correlated variables into an equivalent, new set of uncorrelated 
variables. The practical significance of this manipulation is far-reaching in many 
aspects of statistical work in which data-reduction is a prime concern. 

4 The product of the diagonal elements of A yield the numerical value of the 
matrix, its determinant.  This is still another useful attribute in that this determinant 
is the same as that obtained from finding IRI directly. If you already have the latent 
roots of R, it becomes a trivial matter to compute its determinant, a task that is 
onerous for larger matrices by the classical method. For more details, we refer 
you to Chapters 2 and 3 in Reyment and J6reskog (1993). 

5 There is a further point we shall briefly mention now and return to later; it is a 
very critical one. The rank of a square symmetric matrix is equal to the number 
of non-zero latent roots of that matrix. This is of consequence when dealing with 
compositional data. (Note, the mathematical use of the word " rank"  is not the same 
as that in the "computerese" of FORTRAN-90 programming.) 

6 Although the correlation matrix is the popular choice in principal component 
analysis, it is necessary to point out that there are fewer significance tests available 
for correlations than for principal components computed from covariances. It 
is for this reason that we advocate the use of the logarithmic transformation of 
the data wherever possible and reasonable. The logarithmically transformed data 
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yield a result that differs little from that produced by standardized observations and 
there is the added advantage that all appropriate tests are available. In essence, the 
steps outlined above form the basis of the programs relevant to this chapter. Fig- 
ures are often more persuasive than symbols which is why we shall now look 
at a simple example for four variables. You can run it just by typing pcompl  
at the D O S  prompt. The salient features of the results of the calculations are dis- 
played in Box 3. The matrix to be decomposed by pcompl  is the quadrivariate 
covariance matrix supplied as the first array in Box 3. The data are located in 
a file called pcomp.dat. 

Box 3: A simple example of the extraction of latent roots and vectors in 
statistics 

Program: pcompl 

Data: pcomp.dat 

var 1 var 2 var 3 var 4 
var 1 0.26643 0.08518 0.18290 0.05578 
var 2 0.08518 0.09847 0.08265 0.04120 
var 3 0.18300 0.08265 0.22082 0.07310 
var 4 0.05578 0.04120 0.07310 0.03911 

This starting matrix, which we shall call R, is square and it is 
symmetric. The diagonal elements, printed in bold type, are the 
(univariate) variances of the four variables in turn. The output takes 
the form annotated below. 

The program begins by identifying the number of variables in the 
exercise. (N.B. the number of decimals is an artefact of the program 
and not meant to imply, necessarily, that level of accuracy in the 
calculations.) 

dimensionality of the problem = 4 

simple principal component analysis for  covariance matr ix 

latent roots = principal component variances (the lambdas of the main 
text): 

0.48788 0.07238 0.05478 0.00979 
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latent vectors = principal component loadings (UT): 

component 1 
0.68672 0.30535 0.62366 0.21498 

component 2 
-0.66908 0.56748 0.34333 0.33530 

component 3 
-0.26510 -0.72961 0.62717 0.06367 

component 4 
O. 10228 -0.22892 -0.31597 0.91504 

The latent roots are the lambdas found by solving eqn. (3:3). The latent 
vectors are the u's obtained from eqn. (3:2), but with something extra 
done to them. The vectors, as computed, must be constrained so as 
to make them compatible from sample to sample since there is no unique 
solution to (3:2). This implies that if u is a solution, so is cu a solution, c 
being any scalar, and so on. The way out of this awkward situation 
is to make the vectors have unit length and this has been done here 
(it is sometimes referred to as normalizing the vectors). Hence, the four 
latent roots are the diagonal elements of A and the four rows of latent 
vectors are the columns of U. We have output the matrix in this form 
to show you what the transpose of U looks like. 

If you add up the diagonal elements of R, and the four lambdas, you 
will get the sum 0.62482 in both cases. Another thing you can check 
is the sum of the squares of the components of the latent vectors. 
You should get a one, within rounding limits, in each case. A second 
instructive exercise is to multiply and add corresponding components 
in any two vectors and then take the cosine of this. The result should 
be 90 ~ , within the limits of rounding, thus proving that the vectors 
are at right angles to each other, i.e. orthogonal, and hence, uncorrelated 
with each other. 

Scaling the latent vectors 

We have called the latent vectors in the foregoing examples principal components. 
This is a common enough usage, but in many applications, the principal components 
are taken to be the latent vectors scaled by multiplication with the square root of the 
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corresponding latent roots. This amounts to scaling each latent vector so that its 
squared length equals the matching latent root. This manipulation in no wise 
changes the sense of direction of the vectors, since all vectorial elements retain 
the same proportionality. If A denotes the scaled latent vectors, the appropriate 
formula for producing these is: 

- UA 1/2 (3"8) 

What this step implies can be shown by invoking the program pcaident in the 
following manner. 

C: \pcaident (matinv2. dat 

Look now at the listing from this presented in Box 4. 

Box 4: Illustrating the concept of scaling of principal components 

Program" pcaident 
Data: matinv2.dat 

(N.B. The five decimals in the results are not meant to imply that level of 
accuracy, but are an artefact of the computations made by the program.) 

The input: 

The covariance matrix 

3.268 -0.912 -0.645 -1.464 
-0.912 3.211 - 1.160 -0.914 
-0.645 -1.160 2.403 -0.169 
-1.464 -0.914 -0.169 2.916 

The latent roots 

4.64516 4.26062 2.57664 0.31558 
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The latent vectors 

1 2 3 4 

m 

-0.69800 0.40113 0.30349 0.50969 
-0.16537 -0.83253 -0.13739 0.51056 

0.23696 0.37311 -0.75683 0.48151 
0.65521 0.08227 0.56234 0.49769 

The principal components (vectors scaled by square-root of lambda) cf. 
eqn. (3:8). 

1 2 3 4 

-1.50437 0.82799 0.48716 0.28633 
-0.35641 -1.71845 -0.22053 0.28681 

0.51071 0.77015 -1.21485 0.27049 
1.41216 0.16981 0.90267 0.27959 

Principal components (vectors scaled by inverse square-root of lambda) 
cf. eqn. (3:9). 

1 2 3 4 

-0.32386 0.19434 0.18907 0.90730 
-0.07673 -0.40333 -0.08559 0.90885 

0.10995 0.18076 -0.47149 0.85713 
0.30401 0.03986 0.35033 0.88595 

Further notes on scaling o f  latent vectors 

It is appropriate at this point to consider some further properties of square sym- 
metric matrices insofar as they apply to the scaling of latent roots and vectors. 
In principle, there are three ways of scaling the vectors, of which we have already 
learned two. To summarize, these are: 

1 The vectors are scaled to unity. That is nothing is done to them other than to 
normalize them. These are the "raw" latent vectors obtained from the covariance 
or correlation matrix as in eqn. (3:7). 
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2 The most commonly used scaling is the one we have just considered in this 
section, that is, the one that produces the results displayed in Box 4 and which 
is expressed by the multiplication of eqn. (3:8). 

3 There is a third method of scaling that is seldom found in applications in 
biology and geology, but which is widely used in quality control in industrial con- 
nexions (cf. Jackson, 1991). This is the scaling produced by dividing the elements 
of the latent vectors by the square root of the corresponding latent root. 

1 

W = UA 2 (3:9) 

This method is also illustrated in Box 4. 
These three scaling relationships bring to light some interesting identities of prac- 

tical significance in statistical work, not least with respect to programming of com- 
putational procedures. 

The product 

ATA = A 

which is the diagonal matrix of latent roots, where A is as defined in eqn. (3:8). 
The product 

AA T = S 

returns the covariance matrix S with which we started out. 
The product 

w T w  = A -1 

which is the diagonal matrix of reciprocal latent roots. Here, W is as defined in eqn. 
(3:9). 

The product 

WW T - S -1 (3" 10) 

produces the inverse of the matrix with which we started. This latter identity can be 
put to good use in some programming situations requiring a (not too accurate) 
matrix inversion, and in particular, the Moore-Penrose generalized inverse, which 
achieves prominence in the analysis of compositional data in situations in which 
singular matrices must be inverted (i.e. a square symmetric matrix with a zero 
determinant). For convenience, this inverse is now presented. This pseudo-inverse 
of the centred log-ratio covariance matrix by the Moore-Penrose algorithm is 
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defined as in eqn. (3:11): 

F-  - 2] - lala] r + . . .  + 2d 1adam" ( 3 : 1 1 )  

The d-th term, adad T is zero owing to the singularity of the log-ratio covariance 
matrix. 

If you use the inverse matrix as input to pcaident.exe you should obtain the 
following result on comparing the output obtained by analysing S and its reciprocal, 
S-1: 

(a) The latent roots are different in that the diagonal of one matrix is exactly the 
reciprocal of the other. 

(b) The latent vectors for both matrices are the same. 
(c) The z-score vectors for one become the y-score vectors for the other, and vice 

versa. 

z-scores and y-scores 

The second method of scaling, the one that leads to z-scores, and which is the type 
used in this book, leads to the scores defined by the relationship: 

2 i - -  I l T [ x -  X] ( 3 "12 )  

where x denotes any of the multivariate observations in the sample, :~ is the mean 
vector of the sample and the U i are the latent vectors. The principal components 
on z-scores have a practical advantage in geochemistry, for example, inasmuch 
as they are in the same units as the original variables. That is, grams per litre remain 
grams per litre. 

The variances of the scores are the squares of the corresponding latent roots, 
because by eqn. (3:8) 

A T S A  = A 2 

The scores produced by the third type of scaling are computed as 

- wi T Ix - i ] .  ( 3 . 1 3  

The attractive feature of these scores for quality control (which, of course, includes 
ores) is that the variance is 

w T s w  = I 

the identity matrix. Hence, all variances are unity. 
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As demonstrated by the program peaident.exe, there is a simple relationship 
between the two kinds of scores, to wit: 

zi 
y i -  

and 

zi -- ~ i  Yi 

PRINCIPAL COMPONENT FACTOR ANALYSIS 

For many years now, it has been customary to rotate the scores obtained from a 
standard principal component analysis of the correlation matrix by some appropri- 
ate technique, albeit with the benefit of some minor adjustments. The idea comes 
from the realm of early psychometry, but has now been largely supplanted by more 
adequate models. This is usually known as "factor analysis" in geological and bio- 
logical work, although it is more correctly designated as principal cornponentfactor 
analysis, or principal component analysis with rotation of the axes to some kind 
of simple structure (Reyment and J6reskog, 1993). There is a considerable theor- 
etical difference between the aims and methods of true factor analysis, as appro- 
priate in psychometrical work, and almost all applications occurring under that 
name in the natural sciences. An example of true factor analysis in oceanology 
is given in Reyment and J6reskog (1993) (see the Ivorian oceanographical study). 

In general terms, the technique of principal component factor analysis can be said 
to be concerned with sample quantities and there is no attempt at trying to estimate 
the population counterparts, such as pertains in true factor analysis in psychometry. 
Hence, the results obtained can only be interpreted at the level of the sample on 
which the calculations were performed. This is the fixed mode model as opposed 
to the random mode model (Reyment and J6reskog, 1993, Chapter 4, section 4.2). 
The principle of fixed mode multivariate analysis was introduced earlier on (p. 
17) in relation to the "constant weight stratagem"). 

The procedure of rotating a principal component solution has in orthodox stat- 
istical spheres long been regarded as the ultimate manifestation of charlatanism. 
However, over the last decade, many professional statisticians have seen the 
usefulness in doing this in some practical connections and it is no longer considered 
poor form to rotate the axes of a principal component analysis in the search for 
analytical enlightenment (Seber, 1984; Jackson, 1991; Preisendorfer, 1988). The pro- 
gram pcomp2.exe, now to be introduced, allows the varimax rotation of axes as an 
option. 
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You should be aware of one thing at least if you plan on rotating the principal 
component axes. The uniqueness of the latent vectors is achieved by the descending 
order of importance of the associated latent vectors. Rotation of axes upsets the 
variance-maximization criteria of principal component analysis. 

AN EXPANDED PROGRAM FOR PRINCIPAL COMPONENTS 

The program pcomp2.exe provides a more complete principal component analysis 
than either of the two routines with which you have already been familiarized. 
The scores output by the program are placed in files for subsequent graphical exam- 
ination in Graph Server. An example of the graphical output of the scores for 
the principal components is shown in Fig. 27(a). Note that this plot yields unequivo- 
cal evidence of heterogeneity in the data, including three strongly atypical values. 
Fig. 27(b) displays the rotated principal component factor scores for the same 
set of data and for the same latent vectors. There is little difference in the two figures 

Fig. 27(a). Plot of the first two columns of principal component scores for the Afrobolivina foraminiferal 
data. Three points plot at a considerable distance from the main cluster. These are for observations on 

megalospheric specimens of the species. 
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Fig. 27(b). Plot of the first two columns of the varimax rotated principal component factor scores for the 
Afrobolivina foraminiferal data. This graph does not differ in any essential manner from Fig. 27(a). 

and we conclude that rotation of the axes was a needless manoeuvre. It can also be 
added here that a reification of the components of the latent vectors would be quite 
unjustifiable. 

Principal component analysis is the most universally available of all multivariate 
methods, the reason for this being that it provides a satisfactory way of describing 
the geometrical configuration of a cluster of points. In tri-dimensional space, a 
cluster of perfectly multivariate-normally distributed points will appear as an ellip- 
soid something like a rugby football hovering in space. The principal components 
are, in simple geometrical terms, therefore no more than the principal axes of this 
ellipsoidal body (hence the origin of the name of the method). The first, and largest, 
component is just the major axis of the ellipsoid. The next longest, the second 
principal component, is the second principal axis (or largest of the minor axes), 
and the third is the shortest of the three axes. The principal component coefficients, 
the latent vectors, are the algebraic specifications of the principal axes of the 
ellipsoid, the direction cosines of these lines. The length of each axis is proportional 
to the corresponding latent root. So much for the solid geometry, but how can this 
be transformed into statistical terms? 
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1 The location of the latent vectors along the principal axes of the hyperellipsoids 
(the appropriate geometrical term when p > 3) in effect positions them so as to 
coincide with the directions of greatest variance. The latent vector associated with 
the second greatest latent root locates the direction of maximum variance at right 
angles to the first, and so on. 

2 The location of latent vectors can be interpreted as a rotation or 
transformation. The original axes, which are given in terms of the original, cor- 
related variables, are rotated to new positions, and thus to a "new set" of 
uncorrelated variables, which account for the variance of the data in decreasing 
order of importance (i.e. expressed by the magnitudes of the latent roots). It can 
often prove useful to be able to reduce the dimensionality of a problem to a few 
"'new" variables, particularly in such geological connections as superimposing 
trends on maps, borehole analysis, and in palaeoecology. 

3 A latent root of zero indicates that the corresponding minor axis is of zero 
length which, in turn, is good evidence for assuming that the rank of the data matrix 
is less than its dimensionality. This is a situation we have met in the case of con- 
strained variables. 

Instructions for using the program pcomp2 

Line 1: The dimensionality of the problem. 

Line 2: The title of the job 

Line 3 :1  Size of the sample 
2 1 for covariances, 0 for correlations 
3 1 for logarithms, 0 for raw data 
4 1 for principal component scores, else 0 
5 1 for correlations between the principal components and the original 

variables, else 0 
6 1 for a principal component factor analysis 

Line 4: The data-matrix in free format. 

The trial data are in the file afrobol.dat, being measurements on seven dimensions 
observed on the test of the Campano-Maastr icht ian bolivinid foraminifer 
Afrobolivina afra from the subsurface of coastal Nigeria. They are length of the 
test, maximum breadth of the test, heights and breadths of the last two chambers 
and the diameter of the proloculus. The first five of these variables appear in the 
analysis summarized in Box 5. The principal component scores are stored in the 
file penseore If you requested a principal component factor analysis, the pertinent 
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scores are located in the file facscore. These files are for subsequent use with Graph 
Server. A simple step-by-step account of how to use Graph Server in its most 
unsophisticated mode is given at the end of this chapter (on p. 153). 

The more important features of the work done by the program are now 
summarized in Box 5. We have asked for a principal component factor analysis 
and for the calculations to be made on the correlation matrix. 

Box 5: Principal component analysis of foraminiferal data: part of the 
program output. 

Program: pcomp2 
Data." afrobol.dat 

Principal component factor analysis requested 

Principal components for correlations 

THE AFROBOLIVINA AFRA DATA 

Number of dimensions = 5 

Sample-size = 70 

vector of means 

73.516 31.306 25.241 15.980 14.543 

standard deviations for each variable 

21.167 4.542 4.182 3.047 3.169 

Covariance matrix 

1 2 3 4 5 
1 448.0267 65.3602 72.4797 31.3497 37.8573 
2 65.3602 20.6253 15.5819 7.8943 9.9415 
3 72.4797 15.5819 17.4868 7.8499 9.5386 
4 31.3497 7.8943 7.8499 9.2863 4.0687 
5 37.8573 9.9415 9.5386 4.0687 10.0431 

trace of covariance matrix = 505.4682 
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Correlation matrix 

1 2 3 4 5 
1 1.0000 0.6799 0.8189 0.4860 0.5644 
2 0.6799 1.0000 0.8205 0.5704 0.6907 
3 0.8189 0.8205 1.0000 0.6160 0.7198 
4 0.4860 0.5704 0.6160 1.0000 0.4213 
5 0.5644 0.6907 0.7198 0.4213 1.0000 

Correlations used for computations 

Latent roots 

3.58375 0.60007 0.43854 0.25816 0.11948 

percentages of the total variance represented by the latent roots 

71.67 12.00 8.77 5.16 2.39 

latent vectors by columns 

1 2 
1 0.4476 0.1431 
2 0.4741 0.0840 
3 0.5010 0.0677 
4 0.3777 -0.8739 
5 0.4257 0.4518 

3 4 5 
-0.7153 0.3113 0.4131 

0.1108 -0.8260 0.2715 
-0.1647 -0.0060 -0.8469 

0.2097 0.1927 0.1115 
0.6364 0.4286 0.1612 

Latent vector times the square root of the latent roots 

1 2 
1 0.8473 0.1109 
2 0.8975 0.0651 
3 0.9485 0.0525 
4 0.7151 -0.6770 
5 0.8058 0.3500 

3 4 5 
-0.4737 0.1582 0.1428 

0.0733 -0.4197 0.0938 
-0.1090 -0.0030 -0.2927 

0.1389 0.0979 0.0385 
0.4214 0.2178 0.0557 

Scores for latent vector times square root of latent root 

1 -3.0307 0.6170 -1.1292 -0.2096 0.3218 
2 3.6989 -0.7273 -0.5064 0.1791 0.1549 
3 1.1683 -0.2103 -0.5978 0.0416 -0.1877 
4 3.0721 -0.3349 -0.0784 -0.4145 0.1582 
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67 -0.0771 -0.6995 0.0024 -0.2038 -0.1066 
68 -0.9388 -1.1072 -0.0608 0.1525 -0.0338 
69 -1.4781 -0.4973 -0.0421 0.1947 0.0252 
70 0.0776 0.2862 -0.1702 0.4889 0.0571 

Test for isotropy of the last m - 1 latent roots of the correlation matrix 
(i.e. equality of the last r n -  1 latent roots). 

Chi-square - 37.81 for 9 degrees of freedom. The hypothesis of isometry 
is rejected. 

Principal component factor analysis by varimax rotation 

Varimax factor matrix 

Vat Comm. 1 2 
1 0.7302 0.7859 -0.3355 
2 0.8097 0.8058 -0.4005 
3 0.9024 0.8433 -0.4373 
4 0.9696 0.2713 -0.9466 
5 0.7719 0.8718 -0.1086 

variance 56.24 27.44 
Cum. Var 56.24 83.68 

Varimax factor score matrix 

1 -0.2051 1.3155 -1.2534 -1.6342 -1.4335 
2 0.2721 -1.5685 0.6597 1.5161 0.1443 
3 0.1024 -0.4675 0.8988 0.2363 -0.4868 
4 0.4542 -0.9165 0.4205 0.8598 0.1443 

67 -0.6114 -0.9927 0.1814 0.6629 -0.6446 
68 -1.1640 -1.4554 -0.2490 1.0895 -0.8024 
69 -0.7766 -0.5037 -0.4882 0.3347 0.4868 
70 0.2613 0.3996 -0.0577 -0.1575 0.4598 
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The plot of the first two columns of the matrix of principal component 
scores, using Graph Server is illustrated in Fig. 27(a). 

Zero latent roots 

What do we do with latent roots that are zero (for reasons other than, for example, 
the closure constraint), or almost zero? Should they be reified? The answer is 
yes because such roots are connected with invariant linear relationships in the orig- 
inal variables. The significance of such a reification in quantitative petrology is that 
the invariant association can disclose the existence of a ratio relationship between 
parts such as are much favoured by petrologists; there is an example in Reyment 
(1978b). The implication is, for z-scores for example, that 

Zi - -  u T [ x -  i~] - -  0 for any x.  

P R I N C I P A L  COMPONENTS A N D  CROSS V A L I D A T I O N  

One of the aims of principal component analysis is to achieve a "parsimonious 
description" of a multivariate data-set. There is, therefore, a decision required 
as to how many principal components are to be retained in any given situation. 
There is no hard and fast rule for this, although at least one "rule-of-thumb" exists. 
Compute the cumulative percentage variance contribution for successive values 
of the number of latent roots extracted. The appropriate level at which to stop 
extracting roots is usually taken at the point at which 95% of the trace of the 
covariance (correlation) matrix has been accumulated (Reyment and J6reskog, 1993, 
p. 98). Another, less popular, rule is to retain all latent vectors that are at least as 
variable as the original variables, namely, equal to or greater than 1 for standardized 
variables (correlation matrix). There is also the "screes" method which indicates a 
cut-off for significant roots at a point where the graph of latent root against order 
falls off flatly (like the screes of d6bris on a mountain slope). 

Applications of principal component analysis in chemometrics have shown that an 
ad hoc technique known as cross-validation can prove useful for obtaining answers 
to such practical questions as: 

(a) How many principal components should be retained in an analysis? 
(b) How many, if any, variables can be considered to be redundant (and could 

eventually be excluded from subsequent studies)? 
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(c) Do any of the specimens in the sample deviate statistically from the others? 

You will probably recognize the scope of cross-validation as being 
sample-oriented. Cross-validatory analysis is an exploratory technique that looks 
for interesting relationships in the sample. It is often found to be most useful 
as a first step towards making a complete multivariate analysis. Analytical 
chemists seem to be completely convinced of the worthwhile nature of 
cross-validation in their work and it is therefore surprising, not to say alarming, 
that inorganic geochemists have not adopted the technique to any extent as 
far as we are aware. The literature on organic geochemistry (including 
geochemistry) does, on the other hand, contain many applications of cross 
validation; unfortunately, the authors of these applications seem to be unaware 
of the special requirements imposed by compositional data such as are of wide 
occurrence in chemical data. 

Krzanowski (1987a,b) produced a synthesis of methods for obtaining an answer 
to the questions enumerated above, as well as other, more complicated ones and 
it is his combination of techniques that we employ here. The present concept 
of cross-validation derives from a paper by Lachenbruch and Mickey (1968) 
in which a technique designated as 'leave-one-out' was promulgated for 
improving a discriminant analysis. There are other ways of going about a com- 
prehensive cross-validation analysis, as is shown in the pages of the journal 
Chemometrics, but in all essential aspects, these do not differ from the procedure 
used here. 

We introduce the topic via the program furnished for doing the calculations. 
The program pcvalid.exe performs the necessary computations and is a Fortran 
90 restructuring of Professor Wojtek Krzanowski's original pilot program in 
FORTRAN IV (written in 1987). This is a "computer-intensive" technique that 
makes use of the iterative procedure known technically as "jackknifing", one 
of John Tukey's folk-humouristic fanciful terms (the likeness comes from comp- 
aring the "opening" and "closing" of the data-set to remove and replace an 
observational vector to the opening and shutting of a patent knife). A related 
computer-intensive technique was given the equally whimsical name 
"bootstrapping" by D. Efrom, the likeness being based on comparing the com- 
putational exertion required with the expression "to pull oneself up by one's 
bootstraps (=  shoelaces)". 

Instructions for using the program pcvalid 

Line 1: The title of the job. 

Line 2: In free format, the following; 
1 sample size 
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2 number of variables 
3 0 if the analysis is to be made on the covariances or 1 if the correlation 

matrix is to be employed. 

Line 3: Order in which the variables are to appear in the analysis. This will usually 
be in the "natural" order, but some other ordering might be of interest. 

Line 4: Data-matrix in free format 

Output Details 

The output encompasses the following features: 

1 An evaluation of the role of each variable. Variables contributing little to the 
analysis can be deleted in a new round of calculations. 

2 The effect of successively deleting observations can be ascertained. This step 
discloses the presence of influential and, or, atypical observations that might other- 
wise have been missed in a routine appraisal of the data. The columns headed 
by positive integers are largely dominated by variances, the columns headed by nega- 
tive integers are more the domain of the covariances. 

3 The third special result yielded by the program concerns the logical number of 
principal components to retain. 

There is a discussion of the technique, with an oceanological example, in Reyment 
and J6reskog (1993, pp. 115-121). A geochemical example (analyses of alkaline 
rocks) will serve to introduce the main features of the synthesis of techniques. 
The data were selected from a compilation in treatise format made by Sorensen 
(1974) for alkaline eruptive rocks, the details for which are given in Box 6. Note, 
that we have gone ahead of the next section in that these data are constrained 
to have row-sums of 100%, for which reason an appropriate log-ratio transformation 
of the data-matrix has been used. Note also, on this occasion we have used the latent 
roots and vectors of the correlations - remember that these data are now in the form 
of ratios, not raw observations. Look now at Box 6. 

You can do the analysis yourself by typing at the DOS prompt 

C: \pcvalidr dat 
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Box 6: Constrained cross-validational log-contrast principal component 
analysis for the chemical composition of alkaline rocks (Sorensen, 1974). 

Program" pcvalid 

Data: alkaval.dat 

******** KRZANOWSKIS cross-validation principal components 

(N.B. The following text is part of the print-out from the program; it is 
not meant to imply that the number of decimals listed reflects the actual 
accuracy of the program.) 

The log-ratio data for Canary Islands, southern South Atlantic, 
Pacific, northern South Atlantic 

All 12 parts (oxides) are included in the analysis: 

1 2 3 4 5 6 7 8 9 10 11 12 
Si Ti A1 Fe +++ Fe++ Mn Mg Ca Na K H20 P 

PCA by JACK-KNIFING procedure 

Number of parts = 12 

No of samples - 59 

Computed for the correlation matrix 

Latent roots of correlation matrix 

6.5918 1.4132 1.0640 1.0107 0.7818 0.3664 0.2420 0.2002 0.1541 0.1092 0.0667 0.0 

Here the 12th latent root is nought because of the compositional 
constraint 

Principal components 
(These are the latent vectors, listed vector by vector.) 

Component 1 
-0.32840 0.30261 -0.31562 0.07515 0.25594 -0.20567 0.35618 0.34939 -0.34781 -0.35357 -0.17861 0.24634 

Component 2 
0.29777 -0.03447 0.21027 0.18956 0.50628 0.41518 -0.04966 0.19759 0.09642 -0.10350 -0.56151 -0.15649 
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Component 3 
-0.08963 -0.23213 -0.21756 0.91252 -0.01724 -0.16889 -0.08483 -0.04143 0.08858 0.07939 0.06041 -0.05032 

Component 4 
0.20963 -0.04417 0.03676 -0.02856 0.28406 -0.18673 0.16280 0.23439 -0.17252 -0.11761 0.48792 -0.68795 

Component 5 
-0.07725 -0.50162 -0.33378 -0.06351 0.09750 0.63456 0.14103 -0.09543 -0.22147 -0.14883 0.30029 0.15630 

Component 6 
0.02377 -0.54230 0.30444 -0.12628 0.37817 -0.46163 -0.12193 0.00502 0.10678 -0.23551 0.08255 0.38991 

Component 7 
-0.47137 0.17943 0.48885 0.14828 -0.04150 0.27318 -0.45422 0.25750 -0.13237 -0.20268 0.27706 0.01811 

Component 8 
-0.31764 0.08008 -0.43515 -0.21315 0.49085 -0.02817 -0.41840 0.07095 0.24015 0.41237 0.05992 -0.06907 

Component 9 
0.07582 -0.04530 0.19403 0.05682 0.15424 -0.07401 -0.06989 -0.13854 -0.76787 0.54075 -0.08174 0.09619 

Component 10 
0.34486 0.44378 -0.12270 0.10770 0.26726 0.01287 -0.27525 -0.54561 -0.08956 -0.35036 0.23131 0.16780 

Component 11 
-0.52158 0.01662 0.27157 0.01706 0.24966 0.02124 0.40248 -0.58938 0.11828 0.00679 -0.08488 -0.24547 

Effect of deleting each variable in turn (with subsequent replacement) 
Residual sums of squares - Procrustean fit of new scores to old scores 
(Sch6nemann and Carroll, 1970) 

Sizes of principal component-spaces being compared 

Principal Components 
Variable removed 1 2 3 4 5 

1 3.7433 8.6082 11.6615 5.7798 5.0430 
2 3.3670 3.4288 9.1491 6.6865 11.6057 
3 3.5357 5.9242 14.7361 7.5780 7.1046 
4 0.3301 2.7166 117.3480 98.9210 58.5938 
5 3.2215 28.9328 29.0100 20.0120 11.0449 
6 2.1750 13.0345 18.0285 15.1400 26.1473 
7 3.1939 3.2612 5.3869 4.0386 3.6655 
8 3.5202 5.2118 5.8039 4.9386 3.9302 
9 3.3299 3.6423 5.8753 5.0689 4.1797 

10 3.2335 3.4663 4.9023 3.8141 3.6935 
11 1.8154 29.6918 30.2174 55.5264 24.0940 
12 2.8730 4.6231 4.8953 72.1241 21.2257 

Critical angles obtained from deletion of specimens 
Relationship between new and old principal component spaces 
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Table of maximum angles 

Sizes of principal component-spaces being compared 

Deleted sp. 1 2 3 4 5 - 5  - 4  - 3  - 2  - 1  

1 1.5908 3.2128 7.2555 5.1506 2.0890 3.8902 5.8600 1.5556 1.0527 0.0021 

2 1.5686 2.2621 5.7630 23.4789 13.6442 18.0808 18.0881 57.7248 9.4676 0.0134 

3 0.5817 3.2488 87.4599 2.8391 2.5573 11.4107 5.0989 4.9712 1.8952 0.0031 

4 0.4784 1.5645 1 6599 1.6585 1.0231 3.0706 2.3138 1.8227 0.7489 0.0001 

5 0.3800 0.8275 3.2435 1.1234 0.6012 1.1611 1.7366 1.7850 1.2713 0.0003 

6 1.9603 4.6155 5 5704 5 4175 5.6286 23.1992 21.2229 11.8830 8.3691 0.0012 

7 0.3009 3.5184 6.9671 0.8292 0.7040 1.0662 0.6104 0.6062 0.6286 0.0001 

8 0.6863 3.5296 4.5290 3.6101 3.0986 4.3707 4.4058 6.5037 6.4948 0.0002 

9 0.7992 1.7786 3.6186 5.6193 2.5075 3.6488 1.1529 1.042 1.0063 0.0005 

10 0.4243 0.8003 4.0181 1.7125 1.4761 2.2863 1.7196 1.1254 1.0058 0.0002 

11 0.4726 4.4871 5.2266 2.4627 1.5212 1.1872 0.7364 0.6416 0.4640 0.0020 

12 1.5253 9.5355 9.5235 6.3116 4.7465 7.7424 8.7651 6.5108 2.7165 0.0016 

13 0.8737 2.5095 6.3870 2.5784 2.4663 3.2160 2.4897 1.9326 1.8631 0.0012 

14 0.7969 0.9989 3.1994 1.3997 1.3108 1.2129 1.2127 1.4007 0.4549 0.0002 

15 0.1448 0.2482 0.8359 0.2391 0.2236 0.7535 0.6354 0.5532 0.5730 0.0002 

16 0.2588 2.3910 2.3974 5.8733 1.6616 1.7194 2.8208 4.8985 0.9732 0.0003 

17 0.4865 2.8202 25.1987 3.2744 1.0921 2.4773 1.5171 0.8185 0.0103 0.0002 

18 0.7304 3.4189 3.4228 3.9027 3.3790 5.0986 5.0264 3.8483 3.7252 0.0003 

19 0.2801 0.9363 3.5418 4.6230 1.0181 1.1445 1.1446 1.9684 2.1318 0.0005 

20 0 0797 0.7663 1.1245 1.8452 2.7690 4.8304 5.4719 0.4495 0.4186 0.0002 

21 2.4032 6.4225 11.7925 5.5467 2.2921 2.4468 3.3636 7.8417 1.7412 0.0047 

22 0.1830 0.5033 2.5656 0 7626 0.6295 4.1040 2.4367 2.4476 1.9303 0.0001 

23 1.0223 1.6283 3.3571 3.2367 3.3521 4.3473 2.6473 2.5399 1.4751 0.0011 

24 3.5182 8.8203 22.1810 11.2810 4.6884 4.7136 3.4227 3.1152 3.1667 0.1123 

25 0.2229 1.6120 4.3890 2.0263 1.6123 6.7302 4.0682 3.6053 3.6523 0.0007 

26 1.2558 3.5837 21.8839 7.8848 4.3694 4.9650 3.6506 3.3997 1.6287 0.0021 

27 0.1532 1.9414 12.3133 1.4477 1.4003 2.3248 4.6629 1.7438 0.8307 0.0002 

28 0.1894 1.8064 1 9352 1.0988 1.0861 0.4809 0.4806 0.3745 0.3701 0.0001 

29 0.2576 1.4304 1.4422 0.5978 0.5846 1.0647 1.0246 1.0382 1.3478 0.0001 

30 0.2502 0.4109 0.4901 0.4844 0.4543 1.2196 1.2808 1.3800 1.0116 0.0002 

31 1.2712 7.3396 9.5403 6.1540 4.1594 19.5048 15.7921 11.0968 7.4479 0.0005 

32 0.3756 1.3096 1.5373 1.5311 0.6834 0.7892 1.0068 0.6714 0.0093 0.0001 

33 0 2072 0.4765 5.7465 2.7584 1.1676 0.9506 1.0170 1.0593 0.8959 0.0001 

34 0.2955 13.0945 17.1742 20.6944 4.0841 8.1681 4.3779 0.4830 0.0410 0.0005 

35 0.1548 1.0741 4.1129 3.3843 1.7347 2.3784 2.1976 2.1938 0.3935 0.0002 

36 0.4638 1.9974 4.8330 1 5610 0.9779 3.9604 1.7490 1.6149 1.7117 0.0005 

37 0.2953 0.4886 2.0731 1.7096 1.2030 2.5375 2.6545 1.0328 1.0088 0.0001 

38 1.0873 13.3962 69.1480 7.2624 4.8548 5.1207 7.1037 6.0903 6.4151 0.0016 

39 0.0083 2.1585 88.2503 27.6896 8.3310 8.0970 5.4737 5.4481 3.2655 0.0010 

40 0.4138 0.7267 5.7499 2.5725 1.8444 5.7836 5.7788 7.0171 3.8826 0.0005 

41 0.9061 3.3968 60.6235 3.3278 2.3667 5.1386 3 8495 0.6575 0.1969 0.0003 

42 1.4955 1.7821 3.9543 5.3184 3.7518 5.5258 4.0333 3.0189 1.7480 0.0025 

43 0.2409 0.3982 1.1812 0 3016 0.2945 0.6033 0.5892 0.7086 0.6480 0.0000 

44 0 2033 0.6675 0.8236 0.6480 0.6388 2.2593 2.6266 4.2227 1.I270 0.0003 

45 0.6340 6.5090 14.9786 4.3535 4.2687 9.6270 8.6271 8.4441 1.4786 0.0003 
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1.8692 7.1263 21.2527 7.0744 3.9054 4.2437 3.5442 3.4068 3.5985 0.0032 

6.8539 14.4927 16.5609 54.4452 23.2224 27.4320 46.0720 25.0455 7.0583 0.0373 

0.8738 1.5658 17.9321 8,1964 2.7369 4.6130 3.3343 2.4730 2.1876 0.0006 

0.0719 1.5354 3.7623 2.1407 1,0222 1.9874 1.9684 2.7471 4.7665 0.0006 

1.9263 21.3416 55.5568 9.4406 8.1376 7.2997 6.7427 0.9579 0,9356 0.0007 

0.7806 14.0884 28.7306 6.6604 3.5118 6.6920 9.0549 5.9537 2,8295 0.0006 

0.5825 1.3240 3.0940 1.8149 2.1371 5,5217 5.5195 7.3392 5.9416 0.0003 

0.4810 2.0632 4.2836 1.5774 1.4205 1.8587 1.8878 2.1553 2.5047 0.0004 

0.5057 1.1981 1.7068 1.1105 0.9332 2.0221 3.1628 3.4793 3.9325 0.0027 

1.1209 3.6414 14.9532 2.0780 1.6322 1.9096 2.0274 4.8757 2.5982 0.0038 

1.6358 1.6369 12.8123 3.4369 3.0728 6.3302 6,3301 7.4174 7.0121 0.4057 

0.8420 8.6290 9.3205 3.8377 3.8332 13.5762 12.7051 14,0230 5.7960 0.0010 

1.8343 3.5481 44.5644 12.1577 9.8031 31.6801 47.5234 72.6773 40.2543 0.0108 

0.9305 6.3396 42.1425 7.7512 4.5383 27.1968 15.9725 4.4247 0.2028 0.0013 

Jackknifed estimates of latent roots 

6.4125 1.1965 0.7027 1 . 1 9 4 1  1.1225 0.3970 0.2199 0,2454 0.2270 0.1668 0.1155 

Estimates of standard errors of latent roots (jackknifed) 

1.1795 0.2215 0.1247 0.2466 0.3005 0.0684 0.0344 0.0580 0.0621 0.0292 0.0400 

Jackknifed estimates of component coefficients 

Component 1 
-0.33741 0.31162 -0.32069 0.07121 0.25218 -0.21385 0.36196 0.35240 -0.35367 -0.35750 -0.17918 0.25448 

Component 2 
0.36213 -0.06663 0.24157 0.22621 0.62066 0.59795 -0.06793 0.21135 0 12496 -0.12927 -0.75148 -0.11439 

Component 3 
0.01450 -2.07811 -1.52413 6.82681 0.90732 -1.69271 -0.11070 0.51690 0.02723 0.15365 2.15907 -2.68128 

Component 4 
1.00823 -1.23640 -0.43474 3.52506 1.72502 -2.12225 0.56681 1.33273 -0.65839 -0.41043 3.30619 -4.50453 

Component 5 
-0.77104 -1.21413 -1.24770 -0.15508 -0.12194 2.13222 0.17946 -0.42092 -0.51854 -0.17150 0.51853 1.09372 

Component 6 
0.16829 -0.64668 0.34542 -0.16538 0.47896 -0.68472 -0.09574 0.00686 0.15534 -0.26250 0.07839 0.39265 

Component 7 
-0.89312 0.27512 0.65934 0.11492 0.13871 0.30865 -0.95880 0.49513 0.09988 -0.35192 0.51159 0.08157 

Component 8 
-0.64074 0.07364 -1.23321 -0.49128 0.97513 -0.07733 -0.63926 0.10573 0.65446 1.04550 -0.03426 -0.21095 

Component 9 
-0.09473 -0.70722 0.99403 0.14206 -0.20951 -0.12946 0.26146 0.53848 -2.21854 1.81069 -0.47172 -0.07691 

Component 10 
1.10051 1,03394 -0.01345 0.35004 0.72111 0.00057 -0,93013 -1.12392 -1.16744 -0.37562 0.65104 0.45047 

Component 11 
-1.45555 -0.10435 1.48202 0.12017 0.57964 0.00037 1.15968 -1.59988 -0.36179 0.11712 -0.26671 -0.54620 
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S t a n d a r d  e r ro rs  o f  c o m p o n e n t  coeff ic ients ( jackkn i fed)  

C o m p o n e n t  1 
0.03655 0.05024 0.03791 0.06034 0.06947 0.05740 0.02546 0.04611 0.02413 0.02013 0 04686 0.09835 

C o m p o n e n t  2 
0.10931 0.16325 0.11629 0.53625 0.15503 0.18173 0.09595 0.11013 0.09596 0.08992 0.20064 0.27603 

C o m p o n e n t  3 
0 42421 0.64985 0.49364 2.13458 0.68544 0.86993 0.29637 0 53234 0.32152 0.19836 1.33288 1.81504 

C o m p o n e n t  4 
0.24339 0.90966 0.64152 2.13749 0.50195 0.97111 0.22076 0.34911 0.32864 0.23599 1.06038 1.15444 

C o m p o n e n t  5 
0.51127 0.55857 0.70452 0.56258 0 24155 1.21649 0.15860 0.29080 0.27092 0.19702 0.40894 0.73006 

C o m p o n e n t  6 
0.32229 0.11586 0.23648 0.18404 0.13834 0.21520 0.24726 0.12683 0.18476 0.15773 0.14579 0.15344 

C o m p o n e n t  7 
0.33654 0.18646 0.47900 0.23937 0.48591 0.19010 0.40222 0.14751 0.37485 0.47274 0.12075 0.15502 

C o m p o n e n t  8 
0.45309 0.28935 0.52246 0.27263 0.15469 0.20951 0.41603 0.30591 0.97160 0.61165 0.29560 0.09511 

C o m p o n e n t  9 
0.67770 0.40210 0.17807 0.52245 0.16141 0.58695 0.59117 0.54871 1.04015 0.45586 0.20951 0.58177 

C o m p o n e n t  10 
0.70459 0.31504 0.30967 0.19202 0.37687 0.09954 0.52065 0.53279 0.95290 0.40891 0.25326 0.41362 

C o m p o n e n t  11 
0.89157 0.15320 0 95364 0.09451 0.34998 0.07333 0.70907 0.98544 0.24690 0 18076 0.16623 0.35502 

E s t i m a t e  of  n u m b e r  o f  s ta t is t ica l ly  s igni f icant  l a ten t  roo ts  

No .  c o m p o n e n t s  = 0 P R E S S  = 0.9831 test  

No .  c o m p o n e n t s =  1 P R E S S  = 0.5363 test  

No .  c o m p o n e n t s  = 2 P R E S S  = 0.5320 test  

No .  c o m p o n e n t s  = 3 P R E S S  = 0.5779 test  

No .  c o m p o n e n t s  = 4 P R E S S  = 0.5116 test  

No .  c o m p o n e n t s  = 5 P R E S S  = 0.4409 test  

stat.  = 0.0000 

stat.  = 7 .5712 

stat.  = 0.0671 

stat.  = - 0 . 6 0 5 7  

stat.  = 0.8885 

stat.  = 0.9767 

The  cu t -o f f  comes  here  

No .  c o m p o n e n t s  = 6 P R E S S  = 0.4143 test  

No .  c o m p o n e n t s  = 7 P R E S S  = 0.4115 test  

No .  c o m p o n e n t s =  8 P R E S S =  0.3905 test  

No .  c o m p o n e n t s =  9 P R E S S =  0.3744 test  

No .  c o m p o n e n t s  = 10 P R E S S  = 0.3591 test  

No .  c o m p o n e n t s  = 11 P R E S S  = 0.3420 test  

stat.  = 0.3386 

stat.  = 0.0306 

stat.  = 0.1961 

stat.  = 0.1190 

stat.  = 0.0802 

stat.  = 0.0478 
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Interpretation of the cross-validational analysis 

The main things to notice in Box 6 are: 

1 There are 11 latent roots, because of the constraint. You will see that the final 
value in the line for latent roots is zero. For this reason, there is no twelfth principal 
component (although the computational routine produces one). Inspection of the 
array of latent vectors shows that aluminium and water are unimportant in the first 
principal component. In the second principal component Ti, Mn and Ca are near 
zero, whereas water is strongly represented. In the third principal component, ferric 
iron dominates completely. The first principal component is associated with most 
of the variation in the sample, with the second, third and fourth components being 
of minor importance and roughly equal in magnitude. 

2 The part that lists the residuals for "variables removed" shows what happens 
when each variable, in turn, is deleted from the analysis in the first four principal 
components. This gives a good idea of whether some particular measure is really 
bringing essential information to the study. In the present example deleting the oxide 
of ferric iron (4) affects four of the principal components strongly, and in particular, 
components 3, 4 and 5. Removal of the oxide of Mn (6) affects the third principal 
component strongly, as also does H20 (11). Removal of P (variable 12) has a pro- 
nounced effect on the fourth principal component. 

3 The section headed "maximum angles" lists the residuals when each specimen 
of the sample is deleted in turn. The table refers to five principal components, 1 
through 5. The columns headed by integers with a negative sign usually indicate 
atypical observations that influence the pattern of correlations (i.e. those that lie 
"to the side of'' the main ellipsoidal body represented by the cloud of points). 
The columns headed by positive integers show observations, the deletion of which 
from the sample has an influence on the variance pattern (i.e. those that lie along 
the paths of principal axes, but beyond the ellipsoidal hull). The rule-of-thumb 
to be applied is that those observations that cause a marked increase in the 
magnitude of the residuals can be expected to be atypical, and, or, influential. Such 
observations are not always easy to detect in scatter plots of the raw data. This 
array of angles is quite informative. Firstly, it tells us that most of the atypicality 
in the sample is due to correlations, to wit, specimens 47 and 58. Specimens 2 
and 6 influence both variances and covariances. 

4 The section dealing with the number of principal components likely to con- 
tribute useful information indicates that five is a reasonable decision. This is also 
a rule-of-thumb technique, the rule being that values of the Prediction Sums of 
Squares (acronym PRESS) should at least be approximately one for a latent root 
to be accepted as significant. In the present example, however, the third PRESS 
value is very low and a case could be made for drawing the separation here. 
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In conclusion, we have obtained much useful information about the sample of 
alkaline rocks. Firstly, that all variables contribute valuable information, and that 
a few of them are more informative than others (the variable exclusion exercise). 
Secondly, we have identified several observations that exert an undue influence 
on the analysis (and hence the stability of the principal component elements). 
The investigator would be well advised to pay special attention to these divergent 
observations and eventually repeat the analysis without them. Thirdly, the 
cross-validational synthesis gives a effective indication as to the number of principal 
components that can be assumed to be useful. In the present case, there are five such 
roots. Fourthly, "jackknifed estimates" of the standard deviations for the latent 
roots and vectors are supplied. 

Stable estimates and atypicality 

The computational method of repeating a multivariate calculation many times with 
the exclusion of one or more observational vectors (with posterior replacement) 
is a useful exploratory technique for exposing lack of stability in estimates. The same 
data set can differ markedly from one jackknifing to the other owing to the presence 
of a value or values that deviate in some aspect from their fellows. This can be of 
quite considerable consequence if the investigator wants to reify latent vectors, 
or to insert them into some geometrically based procedure. For example, if the latent 
vectors are not stable, a latent vector with an almost zero latent root could not be 
expected to reflect any special algebraic relationship imposed on parts. We shall 
now briefly demonstrate the way in which the values can fluctuate under jackknifed 
sampling. 

The program jknfpca, exe computes iteratively jackknifed estimates of latent roots 
and vectors of a covariance matrix or its associated correlation matrix. The trial data 
are in the file Keyella.dat. These are four standard measures on the carapace of the 
living ostracod species Keijella bisanensis from Tokyo Bay, Japan, collected in 
August, 1985. 

Input details 
Line 1 :1  the number of variables 

2 the size of the sample 

Line 2 :1  type 0 for covariances, or 1 for correlations 
2 type 0 for raw data, or 1 for the logarithmic transformation 

Line 3+ The data-matrix in its usual format. 
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Output 

T h e r e  are as m a n y  i t e ra t i ons  as there  are spec imens  (less one)  in the sample .  F o r  each  

i t e ra t i on ,  the j a c k k n i f e d  s ta r t i ng  m a t r i x  is d isp layed ,  t hen  its l a ten t  r oo t s  a n d  l a ten t  

vec to rs .  A p o r t i o n  o f  the o u t p u t  f r o m  the Kei jel la d a t a  is s h o w n  in Tab le  3. 

TABLE 3 

Exemplification of the jackknifed estimates for the ostracod species Keijella bisanensis 

The characters measured are length of carapace, height of carapace, distance from the antero-dorsal angle 
to the postero-dorsal angle, and posterior vertical height. 

Jackknifed PCA for variables = 4, specimens = 20 

Computations on covariances 

iteration = 1 

Latent roots 
1 7.1885 
2 3.1461 
3 1.1552 
4 0.0008 

Latent vectors 

1 2 3 4 
1 0.09122 -0.41553 -0.54955 0.71903 
2 0.74530 0.48299 0.25705 0.38103 
3 -0.47267 0.76587 -0.38141 0.21105 
4 -0.46129 -0.08659 0.69746 0.54154 

iteration = 2 

jackknifed covariancematrix 

1 2 
1 0.91348 -0.38700 
2 -0.38700 4.69250 
3 -0.89284 -1.07876 
4 -0.60116 -2.39117 

3 
-0.89284 
-1.07876 

2.85354 
0.87660 

4 
-0.60116 
-2.39117 

0.87660 
2.15083 

Latent roots 
1 6.6474 
2 2.8471 
3 1.1157 
4 0.0001 

Latent vectors 

1 
0.05353 
0.79137 

-0.35238 
-0.49668 

2 
-0.45449 

0.39940 
0.79586 
0.02275 

3 
-0.52393 

0.25968 
-0.44884 

0.67572 

4 
0.71838 
0.38311 
0.20242 
0.54423 

iteration = 3 
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jackknifed Covariancematrix 

1 2 3 4 
1 0.95307 -0.31149 -1.07360 -0.62532 
2 -0.31149 4.66008 -1.58082 -2.25165 
3 -1.07360 -1.58082 3 .55231  1.15041 
4 -0.62532 -2.25165 1 .15041 1.97132 

Latent roots 
1 7.0820 
2 2.9821 
3 1.0710 
4 0.0016 

Latent vectors 

1 2 3 4 
1 0.09665 -0.44558 -0.52393 0.71945 
2 0.73254 0 .52109  0.21555 0.38130 
3 -0.50344 0.72553 -0.41847 0.21223 
4 -0.44788 -0.05940 0.70987 0.54034 

etc. 

PRINCIPAL COMPONENT ANALYSIS OF COMPOSITIONAL DATA 

The calculat ions proceed in the same manner  as out l ined in the section on principal 
componen t  analysis, but using now the centred log-rat io covar iance matr ix  or its 
corre lat ional  counterpar t ,  in t roduced earl ier on. One may also use the log-rat io 
covar iance matr ix ,  but for the present purpose, the former  presents in terpretat ional  
advantages and is indeed the version p romoted  by Ai tchison (1986). In many  pub- 
l ished geochemical  appl icat ions, the "c rude"  covar iances or correlat ions are used, 
but this approach  suffers f rom the crippl ing defect associated with interpret ing crude 
covar iance structures in a statist ical ly appropr ia te  way. 

Log-contrast of  a D-part composition 

The log-l inear contrast  of the components  of the composi t ion x is any combinat ion 

aa log xl + . . .  + aD log xD (3:14) 

= a T log x. 

Note,  that  

al + . . .  + a D  - a T j -  0. 
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This latter property ensures that a log contrast can always be expressed as a linear 
combination of log-ratios with a common component divisor (j denotes the unit 
vector). For example, 

a T log x = a T log{x/g(x)}. (3:15) 

Two log-contrasts, a T log x and b w log x, are orthogonal if aTb = 0. 
The appropriate formulation of the principal component solution for com- 

positional data is then to find the latent roots and vectors satisfying 

(F - 2il)ai -- 0 (3 : 16) 

where F is the centred log-ratio covariance matrix. 
w The log-contrast vector a i log x is called the i-th log-contrast principal 

component. For the purposes of constrained principal components, Aitchison (1986) 
recommends the use of the centred log-ratio covariances and this is what we use here. 
We shall now look at a simple example, the Haitian bolide data again. 

Try now the program pcaconst.exe with data on bentonites stored in the file 
haitipc.dat. You do this by typing at the DOS-prompt: 

C: \pcaconst (haitipc. dat 

This program performs a constrained principal component analysis on a specified 
number of parts. It also provides a principal component analysis of the raw data in 
order to indicate what happens when the inappropriate method is used. The trial 
data in haitipc.dat are chemical elements determined on impact glass samples from 
the Late Cretaceous bolide impact on Haiti (Sigurdsson et al., 1991) and already 
introduced. The data are determinations on the oxides of Si, A1, Mg, Ca, Na, K 
and S. 

Instructions for using the program peaeonst 

Line 1: Specify the dimensionality of the problem (i.e. the number of parts) 

Line 2: The title of the job 

Line 3: sample size 

Line 4 and following: the data-matrix. 
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Output details 

Save the Haitian example, and get it up on the monitor screen. The output of 
immediate interest begins with the centred log-ratio data-matrix, followed by the 
centred log-ratio covariances. The latent roots and vectors for the constrained 
and raw principal component analyses and the scatter diagrams of the scores for 
the former are computed by the program. There are hardly any differences between 
the first principal components of the raw and constrained analyses. There are some 
differences in the second latent vectors, but it is not until the third latent vector 
that substantial conflicts begin to appear. 

There are six non-zero latent roots (remember that the constraint made one of 
them zero since the rank of the centred log-ratio covariance matrix is one less than 
the number of parts). Hence, the seventh latent vector is to be excluded. In the case 
of the raw data-matrix, the smallest latent root is almost zero. The small value 
obtained is due to rounding errors. 

There is a second data-matrix for you to try, to wit, atlant.dat, a set of chemical 
analyses of alkaline rocks, also used in an earlier example in Box 6 (data from Borley, 
1974; Sorensen, 1974). As an exercise in reification, compare the two sets of answers 
you will be given by the program, one for the appropriate model, and one for the 
inappropriate one. 

Q-MODE ANALYSIS 

The next class of methods to be illustrated is that of Q-mode analysis (Q comes 
before R in the alphabet, hence the seemingly cryptic designation the usage derives 
from the early psychometricians). A Q-mode analysis is concerned with probing 
relationships between the objects of a sample. The reason for wanting to do this 
has not always been well understood, nor appreciated by statisticians, who have, 
in the past, tended to regard it as a furtive procedure, best left unsung. This attitude 
has begun to change and there are few statisticians today who would negate the 
usefulness of "inverted factor analysis" for some aspects of data-analysis. The pro- 
cedure we recommend here is that of Principal Coordinate Analysis, developed 
by Gower (1966) in an attempt to provide a mathematically sound treatment of 
the associations between columns in a data matrix. We usually rely on this method 
because John Gower specifically designed it to accommodate the three classes of 
variables: quantitative, dichotomous, and qualitative. In this particular respect, 
it is superior to its competitors, at least in geological and biological work, since 
rival techniques do not possess this quality. Reyment and J6reskog (1993) provide 
an account of the area of Q-mode analysis (Chapter 5 in that book) to which 
you are referred for a more complete coverage than we aim at here, including what 
is rather inaccurately known as Q-mode factor analysis, and its appurtenances, 
but which is a variant that enjoys considerable popularity in geochemical circles. 
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It may be necessary to stress that it is not a legitimate procedure to attempt to 
interpret, that is, reify, the "loadings" of a Q-mode analysis, although we are well 
aware that this verges on being common practice in geochemistry and petrology. 
Examples have been occurring in recent biological literature. The otherwise well 
conceived paper by Thiede et al. (1997) is based on inappropriate reifications of 
Q-mode analyses. They used a computer program often invoked in bio-oceanology, 
but the scientific basis for which is by no means unchallengeable We shall briefly 
examine the issues involved. The article deals with oceanic surface conditions on 
the sea floor of the southwest Pacific Ocean. Thiede et al. (1997) analysed more than 
180 surface samples of sediments from the southwest Pacific Ocean with respect to 
their contents of foraminifers, opaline material and sedimentary types. The aim 
of the study was to attempt to unravel oceanic conditions at the surface of the 
sea above the sampling sites. 

The 'statistical' evaluation of the data was made using a method known as Q-mode 
factor analysis with varimax rotation. This is a fixed-mode method of data-analysis 
(cf. Reyment and J6reskog, 1993 for a description of the method). It is not factor 
analysis in the true sense and can be most conveniently described as inverted 
principal component analysis (that is the extraction of the latent roots and vectors 
of a matrix of associations in the space of the objects) followed by a rotation of 
the axes. As a purely graphically device, Q-mode factor analysis can be expected 
to give a reasonable representation of the relationships between the objects of a 
data-set. As is, however, often the case in geology, Thiede et al. (1997) went on 
to reify the elements of the 'factor matrix', which is neither advisable nor statistically 
permissible as has already been pointed out. Among the many objections that can be 
raised, the following may be mentioned: 

The high probability of instability of the latent vector elements under repeated 
sampling. This source of potential inaccuracy could probably have been somewhat 
minimized if the estimates had been based on some method of repeated sampling, 
such as jackknifing the input and repeating the computations. Cross-validation 
is a suitable procedure for achieving this goal. Whichever amelioration is used, there 
is no altering the fact that Q-mode factor analysis is not a statistical method but 
rather a fixed-mode data-analytical proxy applicable solely to the sampled material 
for which it was computed. All is not lost, however. The method used by Thiede 
et al. (1997) could easily be updated into a statistically valid procedure. 

Gower 's  Assoca t ion  Measu re  

Gower's measure of similarity between objects i and j is defined as the absolute dif- 
ference between them for variable p, divided by the range of the variable and 
the sum for each variable subtracted from one (Digby and Kempton, 1987, p. 20). 
In a situation where all variables are of the same kind and the association is of 
the correlation matrix kind, the Eckart-Young theorem, to be introduced below 
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on p. 141, applies and there may be no real advantage that makes one mode more 
effective than the other in constructing an ordination. In cases where the variables 
are mixed, and product-moment correlations are not applicable, the singular value 
decomposition cannot be applied and the usual method of extracting latent roots 
and vectors must be employed. 

For our present purposes, the essential features of the method can be summarized 
in the following words: 

The usual situation is that given a set of N points in p-dimensional space (i.e. the 
R-space spanned by the variables), with coordinates given by the rows of the 
data-matrix for each of the points, the squared Euclidean distance d o between 
any pair of points, Pi and Pj, is expressed by eqn. (3:17): 

P 

d O. - Z ( X i k  - Xjk) 2 (3"17) 
k = l  

The situation addressed by principal coordinate analysis is the converse of that 
described by eqn. (3:2) in that, if you have a set of Nvalues that represent the squared 
distances within a set of N points in some Euclidean space (the Q-space spanned by 
the observations), how do you go about finding the coordinates of these points? 
The idea is by no means new, having been around since 1935 (Schoenberg, 1935) 
under various designations (Gordon, 1981). It was, however, Gower (1966) who 
made the method more generally known. The steps for doing the calculations are: 

1 Make the centroid of the points lie at the origin of the coordinates. 
2 Transform the matrix D of squared distances into a matrix A of inner products 

aij - -  - 4 . -  d j  + d..]. (3:18) 

3 Obtain the values of the coordinates xij from the distances d o. by a standard 
principal component ex t rac t ion-  i.e. a standard extraction of latent roots and 
vectors. This can be done, since A is a real symmetric matrix and can therefore 
be diagonalized 

A = VAV x (3:19) 

4 The columns of the orthogonal matrix V contain the latent vectors (V1, V2, .-., 

VN) corresponding to the latent roots (21, 22, ..., 2y). 
5 The matrix of coordinates X is found by computing 

X = VA 1/2 (3:20) 
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6 Usually only the first 2 to 3 coordinates attract much interest (that is, k = 2 or 
3). The sum of the remaining latent roots, expressed as a percentage of the trace 
(the sum of all of the latent roots) supplies an indicator of how well the analysis 
has succeeded in preserving distances between points. If the residual is very large, 
then caution is advisable on interpreting the ordination obtained, as there is much 
random variation in the data. The usual method of computing principal coordinates 
is to be found in the program entitled pcoord.exe. There are a great number of 
alternatives in applying this program, owing to the comprehensiveness of the field 
it attempts to cover. 

Instructions for  using the program pcoord 

Line 1: The title of the job 

Line 2: information to be supplied 
1 size of the sample (maximum of 240 specimens) 
2 number of variables 
3 number of latent roots (maximum of 9) 
4 number of "quantitatives" = continuous variables 
5 number of qualitative variables 
6 number of dichotomous variables (presence-absence data) 

These entries are only valid for Gower's metric below; if it is not selected, enter 
noughts here. 

7 0 gives Gower's metric 
1 gives the usual correlation coefficient 
2 gives Lance's metric 
3 gives the Euclidean metric 

8 1 for a listing of the data-matrix, otherwise 0. 
9 0 if the data matrix is in the usual form of N, p. If it is available as anp, N 

matrix, type 1 
10 1 for the minimum spanning tree. Please note that the minimum spanning 

tree is only really useful for relatively few observations, say around 30 at 
the most. If you have a large sample, the superimposition of the tree will 
not be enlightening owing to cluttering of the graph. 

Line 3: If dichotomous data occur the default entry for such data is +1 for a 
character that is present and 1 if it is absent. 
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Lines 4 and following contain the data-matrix 

There are several similarity and dissimilarity coefficients available. One of these 
by Lance is mentioned but not exemplified; any text on classification will tell 
you more about it should you be interested (Lance and Williams, 1965; Anderberg, 
1973). 

The example presented in Box 7 is run by invoking the program pcoord to be used 
in conjunction with the data-set afrocrd.dat, the set of seven 'quantitatives', the 
dimensions of the test of the Nigerian Campano-Maastrichtian foraminiferal 
species, Afrobolivina afra REYMENT, also used for exemplifying principal 
component analysis. These variables are all of the quantitative class (as opposed 
to qualitative and dichotomous). 

Box 7: Principal coordinate calculations for Afrobolivina afra 

Program: pcoord 

Data: afrocrd.dat 

The Afrobolivina afra data 

Variables = 7 Individuals = 70 

Gower's Principal Coordinate Analysis 

Latent roots (first nine) of transformed association matrix 

5.6550 
1.9199 
1.4091 
1.1559 
0.8573 
0.7597 
0.5595 
0.5025 
0.4603 
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These are the first nine latent roots of the 70 x 70 association matrix. 
Note that the first root is very much larger than the others, but the fall-off 
thereafter is rather slow. There are "only" nine listed latent roots, 
because this is the greatest number saved by the program. There is absol- 
utely no point in computing and saving all the roots in a Q-mode 
procedure. Generally speaking, if the fall-off is slight for all roots, then 
it is likely that there is much random variation in the data. This indicates 
that a Q-mode analysis is not going to be useful. 

Specimen Coordinates 

1 -0.28348 0.01638 -0.05021 0.25522 -0.15939 0.00604 -0.02993 -0.04272 -0.11962 

2 0.25865 0.00721 -0.23345 0.05159 -0.23134 0.20498 0.11087 0.07184 -0.03053 

3 0.09120 0.04029 -0.09914 0.05119 -0.11538 -0.13960 -0.10735 0.10258 -0.03324 

4 0.28823 -0.10363 -0.02184 -0.09206 -0.03907 -0.01850 -0.06515 -0.10187 -0.12495 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

69 -0.15529 0.25355 0.09627 -0.22640 0.05898 0.01644 -0.14754 -0.04719 0.08388 

70 0.01783 0.26671 0.19010 -0.01661 0.08717 0.08301 -0.18257 -0.01753 0.07600 

These values are the principal coordinates to be plotted by means of 
Graph Server. They are stored in the file prerd. 

The primary and perhaps sole interest in doing a principal coordinate 
analysis lies with the graphical representation of relationships between 
objects. (N.B. in some geochemical applications of inverted principal 
component analysis - known as Q-mode factor analysis, attempts are 
made at reifying (interpreting) the elements of the latent vectors; please, 
never be tempted to anything so utterly meaningless, even in the face 
of peer-pressure.) 

An example of the plot produced by Graph Server for principal 
coordinates is displayed in Fig. 28. These data are the same as were used 
for exemplifying the output from the program for principal components 
(Fig. 27(a) and (b)). Note that the plot brings out more evidence of struc- 
ture in the data-set than did the principal component results. Fig. 28 
brings to the fore the main merit of Q-mode analysis, notably, the possi- 
bility offered of uncovering meaningful grouping in a data-set. The result 
illustrated in Fig. 28 could be used for subdividing the data into cat- 
egories for subsequent detailed analysis. 
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Fig. 28. Plot  of  the first two principal coordinates for the Afrobolivina afra fo ramin i fe ra l  data. The points 
do not fo rm a tight cluster (70 specimens) which is due to polymorphism in the size of the proloculus and 

attendant morphological differences. There are at least three natural groups represented. 

P R I N C I P A L  C O O R D I N A T E S  F O R  C O M P O S I T I O N A L  D A T A  

A log-contrast principal coordinate analysis can be obtained as the dual of 
logcontrast principal components for compositional data. The concept of distance 
between two compositions X l and x2 is defined as 

D 

~ ( [ l o g ( x l i / g ( x l  )) -- log(x2i /g(x2)])  2 
i =1  

This rendition of principal coordinates only takes into account statistical 
"distances", i.e. the "quantitatives" of Gower (1966, 1971). Gower's "qualitatives" 
and "dichotomies" would seem to be available without difficulty should this be 
found necessary in a particular study such as could occur in environmetrics. 
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Aitchison (1986) advocates the centred log-ratio covariance matrix for use with 
principal coordinates. We provide here a modification of this suggestion by means 
of the centred log-ratio matrix of associations of Gower (1971), judging this to 
be more in sympathy with the original intentions of the author of the method. This 
is available in the program pcrdcons.exe, an adaptation of program pcoord.exe, 
and applies only to a data matrix of parts. The instructions for using this program 
are: 

Instructions for using the program perdeons 

Line 1: The title of the job. 

Line 2 :1  the number of rows in the compositional data-matrix; 
2 the number of columns in the matrix (the number of chemical parts); 
3 the number of latent roots (at least 3, at most 9); 
4 1 for symbols if required for line-plots (and full output) 
5 1 for full output, otherwise 0 

Line 3 and following, the data-matrix arranged as rows by columns (the usual format 
of a table of chemical compositions). 

Output 

The full output from the program provides the matrix of associations, latent roots 
and vectors (the coordinates) and pairwise plots of the coordinates. The residuals 
after fitting two, then three, coordinate representations of the distances between 
points are listed at the end of the output. Large residuals are indicative of a poor 
fit. You can try an example. Type: 

pcrdcons ( canary, dat 

which is an analysis of chemical determinations on alkaline rocks from the Canary 
Islands, used already several times (Sorensen, 1974). The coordinates are saved 
in a file called aitprerd for insertion into Graph Server. 
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MORE ON R- AND Q-MODE METHODS 

A fundamental  theorem of mult ivar iate analysis is the singular value decomposition, 
first enunciated in 1889 by the celebrated English mathemat ic ian J. J. Sylvester, 
expanded in scope by L. Autonne in 1913, and generalized to rectangular matrices 
by Eckart  and Young (1936) (Eckart was a physicist, Young a psychometrician). 
It is the key to the analysis of QR-mode relationships in the mult ivar iate population. 
In statistics, the term often used (at least in psychometrics) is the basic structure of a 
rectangular matrix (cf. Reyment  and J6reskog, 1993). 

Let X be a given data-matr ix  of order N by p, where N > p, and let r be the rank of 
X. In most cases, r - p ,  but we have already learned that the log-ratio data matr ix is 
of rank r = p - 1. The singular value decomposit ion of X states that 

X --  V F U  T ( 3 : 2 1 )  

where V(N,r ) is a matr ix with or thonormal  columns, U(p,r) is or thonormal,  and F(r,r) is 
a diagonal matr ix  with r positive diagonal elements 7a > 72 > ... > 7r. These gammas 
are called the singular values of X. 

Interpretation of the singular value decomposition 

1 The product XX T of a data-matr ix  by itself is sometimes referred to as the 
major product moment. It is of order N by N and has r positive latent roots 72, ..-, 
72 and ( N -  r) zero latent roots. The corresponding latent vectors are vl, ..., yr. 

2 The alternative mult ipl icat ion of a data matr ix by itself, xTx ,  called the minor 
product moment, in the terminology extant in factor analysis, is of order p by p. It has 
r positive latent roots, 72, ..., 72. These are the same as for the major product 
moment.  There are (p - r) zero latent roots. The latent vectors corresponding to 
the positive latent roots are u l, ..., Ur. 

3 If  u is a latent vector of XX T and u m is a latent vector of xTx ,  both corre- 
sponding to the latent root 7 2 , then the following relationships hold: 

Vm --  (1/Tm)Xl lm ( 3 : 2 2 )  

and 

Um = ( l /Tm)XTVm . ( 3 : 23 )  

Thus, there is an easy path from the Q-mode state to the R-mode one. 
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4 More generally, 

V = XUF -1 

and 

U = XTVF -1. (3:24) 

The singular value decomposition of a rectangular matrix is the best method for 
programming Correspondence Analysis and the biplot (see Chapter 4). The biplot 
is rather like the idea embodied in correspondence analysis but is more general 
in scope (Gabriel, 1995a,b). Gabriel (1971) proposed it originally for continuously 
distributed variables but the method has since then been vastly expanded so as 
to encompass data in the form of contingency tables (Gabriel, 1995a,b). It was orig- 
inally exemplified by climatological data in Gabriel's paper, which clearly betokens 
its geoscientific importance. 

As indicated by condition (3:24) above, you can work on very large data-matrices, 
on which relatively few variables have been determined, by the following algorithm: 

1 Compute the minor product moment, xTx. This is p by p and p < N. 
2 Compute the positive latent roots of the minor product moment and the cor- 

responding latent vectors. 
3 Compute then the vectors V from the first part of condition (3:24). 

These vectors are of interest in Q-mode analysis in that they constitute the 
coordinates sought for ordinating sample points. 

It can be very instructive to see how the singular value decomposition actually 
works on a data-matrix. We have a little program that demonstrates this succinctly 
to which we shall now introduce you. 

Type singval at the DOS-prompt, and follow the instructions that appear on the 
monitor. This program operates on the data sets in matrx3.dat. 

We shall first inspect some of the output. You can do this yourself just by typing: 

C: \singval)output.sav 

and then going through the file output.sav, using an editing facility. Look now at the 
contents of Box 8. 

Box 8: Exemplification of the singular value decomposition 

Program" Singval 

Decomposition of data-matrices: 



More on R - a n d  Q-mode methods 143 

Original matrix: 

117.3 99.8 97.3 
93.3 81.8 81.1 
76.6 71.3 71.8 
62.3 59.7 59.9 
42.1 42.5 42.5 

(matrix taken from Reyment and J6reskog, 1993, p. 5; please note that 
the following listings reproduce the computer output with respect to 
number of decimals and no such literal accuracy is implied) 

Matrix U 

-0.6152 0.6035 0.3958 
-0.5008 0.1517 -0.4129 
-0.4286 -0.3649 -0.5275 
-0.3546 -0.4575 0.1013 
-0.2474 -0.5199 0.6199 

Diagonal matrix 

295.9917 8.5579 0.6758 

Matrix V T 

[ J 
-0.6224 -0.5561 -0.5507 

0.7727 -0.3247 -0.5454 
-0.1245 0.7650 -0.6318 

Check product against original matrix: 

Product U D V  T 

117.3 99.8 97.3 
93.3 81.8 81.1 
76.6 71.3 71.8 
62.3 59.7 59.9 
42.1 42.5 42.5 

What we have now done is decompose the input matrix with five rows and 
three columns into 
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1 a diagonal matrix, 
2 a 5 x 3 matrix U of orthogonal vectors, and 
3 a 3 x 3 matrix of orthogonal vectors, V. 

The former is the Q-mode part of the decomposition (that is, relevant to 
the sample size) and the latter is the R-mode part, relevant to the number 
of variables. It is easy to see that V contains the principal components of 
the data matrix, and U the "principal coordinates". The next step pro- 
vides a check on whether the computations are correct or not. The prod- 
uct of the three matrices should bring back the original data-matrix. 

Check product against the input matrix: 

Product UDVT: 

117.3 99.8 97.3 
93.3 81.8 81.1 
76.6 71.3 71.8 
62.3 59.7 59.9 
42.1 42.5 42.5 

A second extract from the same source as the foregoing example should 
suffice to bring home the great value of the singular value decomposition 
in applied multivariate statistics. You will also appreciate, no doubt, that 
by an appropriate method of scaling axes, such as is achieved in Corre- 
spondence Analysis, the properties of a data-matrix can be elegantly 
exposed in just a few diagrams. 

Matrix U 

-0.4913 0.7135 0.3864 0.0129 -0.3164 
-0.4625 0.2379 -0.4173 -0.0001 0.7451 
-0.4883 -0.2836 -0.5249 0.3861 -0.5065 
-0.4348 -0.3814 0.1052 -0.8040 -0.0892 
-0.3423 -0.4566 0.6244 0.4520 0.2830 

Diagonal matrix 

270.9985 63.1665 7.8758 0.0000 0.0294 
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Matrix V T 

-0.6779 -0.3325 -0.3776 -0.3499 -0.4061 
0.6942 -0.4993 -0.1561 -0.4395 -0.2263 

-0.1779 -0.2537 0.9084 -0.2525 -0.1223 
0.1612 0.5641 0.0806 -0.0000 -0.8058 
0.0292 -0.5075 0.0365 0.7878 -0.3458 

The complete set of test-data is housed in the file matrx3.dat. If you want to use the 
program singval.exe for experimenting on matrices of your own, just insert your 
material into a file you call matrx3.dat, using exactly the format you encounter 
in that file and invoke the program as before. Before doing this, however, we suggest 
you copy the original file matrx3.dat into another subregister. 

ANALYSIS OF CORRESPONDENCES 

The rather cryptic designation is the inaccurate English rendition of "Analyse des 
Correspondances". A more exact translation would have been "Analysis of 
Associations". Since the Analysis of Correspondences was developed as a graphical 
technique (Benz~cri, 1973) much has happened. For example, Greenacre (1984) gave 
a more general treatment of the subject, including practical applications. Recently, 
Gabriel (1995a,b) has placed Simple Correspondence Analysis and Multiple Cor- 
respondence Analysis (Hill, 1974) in the same context as the Biplot and shown that 
they must now be regarded as less efficient procedures for analysing contingency 
tables. Gabriel (1995a, p. 210), advocating discontinuation of the use of the 
technique, concluded that the plots obtained from multiple correspondence analysis 
fail to portray important features of the data and that they do not display the associ- 
ation between objects and categories reliably. In a second article (Gabriel, 1995b), it 
was pointed out that the superimposition of two sets on the same plot in simple 
correspondence analysis is not warranted because there is no row-to-distance 
interpretation that can be justified and that this practice should therefore be dis- 
continued. The joint display of points on the same graph has no virtues over 
and above those of the separate row-based and column-based plots, according 
to Gabriel's researches. Gabriel's several arguments appear convincing and it 
remains to see how the future fate of correspondence analysis will unfold. In the 
present connection, we confine interest to an example of simple correspondence 
analysis, sensu Benz~cri (1973). An important and very comprehensive reference 
for the broader field of correspondence analysis is the book by Greenacre (1984). 
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The program benzee.exe can now be invoked for doing a correspondence analysis, 
using the original formulation proposed by J.-P. Benz6cri (1973). The trial data are in 
the file fenantrn.dat, which are 36 samples of oils from the North Sea (Norway), 
upon which 13 phenanthrene compounds have been determined (Telnaes et al., 
1987). 

Instructions for using the program benzee 

Line 1: The title of the job. 

Line 2 :1  number of variables (<= 50) 
2 number of observations (<= 440) 
3 put 0 for raw data 

1 for loge transformation of the data 
4 0 lists the input data 

1 suppresses listing of the data 

Line 3+: The data-matrix then follows in free format. 

Last line: For requested data listing, supply symbols for the variables (one letter or 
number per variable). 

Output details 

1 The similarity matrix 
2 Sums of rows and columns 
3 Latent roots and vectors 
4 Coordinates of the correspondence analysis for variables and specimens. This 

output is saved in the file bencrd for insertion into Graph Server 
A succession of bivariate plots showing the variables and specimens located on the 

same plot is the principle aim of the analysis. You can see some of the output by 
consulting Box 9. Type the following at the DOS-prompt. 

c:\benzec<fenantrn.dat 

Box 9: Example of correspondence analysis 

Program: benzec 

Data: fenantrn.dat 
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The phenanthrene data from Telnaes et al. (1987) analysed by correspon- 
dence analysis. The data consist of 11 phenanthrene determinations made 
on 36 samples of North Sea oils, to wit, monomethyl phenanthrenes (4 
species), dimethyl phenanthrenes (6 species) and phenanthrene. 
The sums of the rows are all about 100; this is quite in order for the 
requirements of correspondence analysis, since the method was specifi- 
cally devised for the analysis of contingency tables, the entries in which 
may be interpreted as probabilities, and hence have a constant sum. 
One latent root is lost because of the effects of the contingency table and 
the effect of scaling (there is an analogy in principal coordinate analysis). 

No. Latent root percent cumulative percent 
2 0.42829E-02 47.877 47.877 
3 0.18375E-02 20.540 68.417 
4 0.13171E-02 14.723 83.140 
5 0.46818E-03 5.234 88.373 
6 0.41020E-03 4.586 92.959 
7 0.30684E-03 3.430 96.389 
8 0.14440E-03 1.614 98.003 
9 0.10267E-03 1.148 99.151 

variable projections 

1 -0.000 -0.071 0.004 -0.019 -0.006 0.020 -0.006 0.002 
2 0.080 -0.022 -0.036 0.023 -0.034 -0.023 0.006 0.008 
3 0.047 -0.013 0.026 0.002 0.014 -0.019 0.000 -0.002 
4 -0.055 -0.002 -0.066 0.008 0.021 0.004 0.009 -0.004 
5 -0.085 -0.027 0.042 0.022 0.003 -0.017 -0.009 -0.002 
6 0.201 -0.015 0.059 -0.004 0.025 0.014 0.037 -0.019 
7 0.136 0.055 -0.007 0.048 0.033 0.031 -0.033 0.008 
8 0.004 0.053 -0.010 -0.020 -0.022 0.003 -0.006 -0.005 
9 -0.009 0.043 0.018 -0.033 0.026 -0.015 0.005 0.023 

10 -0.027 0.033 0.023 -0.004 0.003 -0.010 -0.004 -0.022 
11 -0.092 0.050 0.059 0.038 -0.025 0.038 0.024 0.011 

sample projections 

1 -0.092 -0.017 0.018 -0.004 -0.003 -0.030 -0.001 -0.007 
2 -0.085 -0.017 0.029 -0.008 -0.008 -0.024 -0.006 -0.001 
3 0.015 -0.030 -0.010 0.019 0.027 -0.002 -0.009 0.007 
4 0.007 -0.034 0.023 -0.007 -0.021 -0.017 -0.007 -0.012 
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34 -0.110 0.043 -0.000 0.019 -0.001 -0.032 -0.010 0.009 
35 -0.087 -0.020 -0.006 0.030 -0.007 0.020 0.026 0.014 
36 -0.078 -0.002 0.005 0.015 0.007 0.004 -0.020 0.006 

This listing is just the values for variables and specimens combined. It is in this 
form the results are saved for plotting in the file bencrd. Please note that the use 
of the word 'variables' in the present connection is not quite correct for all situations 
that can occur in that in cases where we are not dealing with absolute measurements, 
the correct designation is 'parts', but you already know this. 

Interpretation of the correspondence analysis of the phenanthrenes 

The mode of interpretation of correspondence analysis is entirely graphical in that 
the reason for doing the analysis is to 

(a) Look for clustering in the data; 
(b) Look for a relationship between the variables (parts) and the data-points. 

It is this pairing of aims - variables coupled to observations - that justifies the 
designat ion- QR-method. 

When you run the test-data, you should think about examining the printout of the 
simple scatter diagrams for such relationships. That is, you should look for 
groupings of specimens that occur in proximity to one or more variables - this 
is interpretable as indicating to what extent parts have an effect on certain specimens. 
The scaling procedure was constructed to place specimens influenced by particular 
variables in the immediate vicinity of them. 

THE BIPLOT 

Although the biplot of Gabriel (1971) may seem to be just a simple variant of cor- 
respondence analysis due to the use made in both cases of the singular value 
decomposition, it is, in effect, not. As already mentioned, Gabriel (1995a,b) has 
shown the biplot to be a more general way of treating the rows and columns of 
a contingency table. Biplots provide graphs of the N observations as well as the 
relative positions of the p variables, superimposed in the same figure. As originally 
conceived (hence the name) the technique was meant to be applied to just a single 
two-dimensional plot, under the assumption that the data-matrix had rank 2 (or 
almost rank 2). However, the extension to further dimensions was quickly made 
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by the innovator of the method. The usefulness of the original concept of the biplot is 
that the results are easy to interpret and it can be easily incorporated into a wider 
field of multivariate analysis (Gordon, 1981). 

The basic concept in the formulation of the biplot is the fact that the 
decomposition of the (rectangular) data-matrix can be done in two ways. Firstly, 
there is the application of the singular value decomposition in the manner already 
demonstrated in Box 8. 

X = V F U  T. 

The second way is by the breakdown into a non-unique product of two matrices 

X = GH T (3:25) 

where G is N x r and H is p x r. Here, N is the sample size (the number of rows in the 
data-matrix, p is the number of variables, and r is the rank of the data-matrix. In 
computing the biplot, it is convenient to "standardize" X so that the mean on each 
variable is 0. 

If the rank of X is exactly 2, the vectors constituting G and H, gi and hi, 
respectively, yield the biplot. If r > 2, the singular value decomposition can be 
invoked to construct a matrix X2 of rank 2 which is the best approximation to 
X in the sense that the sum of squares of the elements of (X - X2) is a minimum. 
The indeterminacy in G and H can be removed by replacing each of the vectors 
forming G by a point located at the end of them. A further manipulation can 
be made which ensures that the distance between the i-th and j-th points in the 
geometrical representation is equal to the "distance" between the objects in the i-th 
and j-th rows of X. This is done by defining G as 

C_~ T - -  X 2 M X  T (3"26) 

where the matrix M specifies the metric used on the rows of X 2. 

If M = I 2 ,  the identity matrix, the distance between the points at the end of each 
pair of g-vectors corresponds to the Euclidean distance. 

If M = $2 -a, the inverse of the sample covariance matrix for the reduced 
data-matrix X2, then the Euclidean distance between the points of each pair of 
g-vectors corresponds to the Mahalanobis generalized statistical distance between 
the corresponding objects in X2. (The Mahalanobis distance is defined in the next 
chapter.) 

These two special properties of Gabriel's biplot make the technique attractive in 
theoretical advancements, for example, in the spline-based image-analytical studies 
of shape-variation, and other developments in multivariate statistics. 
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The standard deviation of the k-th variable is given by the length of hk and the 
correlation between any two variables is expressed by the cosine of the angle between 
them. More detailed discussions of the biplot and its many applications are to be 
found in Gordon (1981), Jackson (1991), Jolliffe (1986) and Gabriel (1995a,b). 

Instructions for using the program Gabriel 

Line 1:1 sample size 
2 number of variables 
3 if full output is required, type 0 

if only the graphical output for later plotting is needed, type 1 

Line 2: The title of the job 

Line 3 and following, the data-matrix in its usual free format 

The file biplots contains the output for graphing by means of Graph Server. If the 
full-output option has been chosen, the program also gives a screen-plot as a guide. 

The simple example in Box 10 illustrates the output from program gabriel.exe 
using data in the file gabriel.dat. An interpretation of the results is given in the box. 

There is a more comprehensive example for you to try at leisure. The file is for data 
on the environmetric analysis of the Leptocythere sp. ostracod data in the file des- 
ignated as leptobip.dat, this being occurrences of that ostracod observed at three 
stations (see Box 13 for further details regarding the nature of the chemical vari- 
ables). The full account of the analysis appeared in the journal Environmetrics 
(Reyment, 1996). 

Finally, we shall check that we have really done what we started out to do, namely, 
the decomposition expressed by equation (3.25), 

X = GH T. 

To do this, we have given you a little matrix multiplication program (which you can, 
of course, use in any other connexion requiring the multiplication of matrices). 

Type multest at the DOS-prompt. You will be asked to supply the name of an 
input file. Type multest.chk. You should be rewarded with the matrix with which 
you started the biplot computations. What has been done is that G and H T have 
been multiplied together. 

Box 10: Simple example to illustrate the biplot (cf. Gordon, 1981) 

Program: gabriel 



The biplot 151 

Data: gabriel.dat 

Root = 0.11663 

W(j) -8.78297 0.10833 19.08065 -15.47840 

V(T) 

-0.0276 0.0283 -0.0003 -0.0615 0.0499 
-0.2817 0.2886 -0.0036 -0.6269 0.5086 

0.9346 -0.9573 0.0118 2.0798 -1.6871 
-0.1342 0.1374 -0.0017 -0.2986 0.2422 
-0.1684 0.1725 -0.0021 -0.3747 0.3040 

Canonical weights 

columns -0.008135 0.000587 0.032807 -0.019543 

rows -0.027648 -0.281734 0.934615 -0.134185 -0.168378 

data for plotting in file biplots 

The points arranged for plotting ease 

Points for Variables 
point 1 0 .6177-0 .1048  -0.1391 -0.0127 
point 2 0.2511 -0.0764 0.0475 0.0002 
point 3 0.4610 0.0717 -0.0128 0.0276 
point 4 0.5243 0.1617 0.0379 -0.0224 

Points for Specimens 
point 5 0.2364 -0.2651 -0.8334 -0.0223 
point 6 0.4220 -0.3211 0.4113 -0.2273 
point 7 0.3455 0.0145 0.0888 0.7539 
point 8 0.8711 -0.2521 0.0424 -0.1082 
point 9 0.4789 0.8621 -0.0922 -0.1358 

These two matrices, in the order of firstly H to which is appended G are 
stored in the file biplots for graphical appraisal. 
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PROGRAM MULTEST 

Instructions for  using the program mnltest 

Line 1:1 number of rows in the first matrix, 
2 number of columns in the first matrix, 
3 number of columns in the second matrix 

Line 2 and following contain the matrices 

The "commas" in line 1 - a C-requirement- are necessary here. Note also that the 
number of columns in the first matrix (here G) is the same as the number of rows in 
the transpose of H. You can see how to set up the input file by consulting multest, chk. 

Practical Note: The graphs yielded by the biplot can be made more useful by a few 
simple constructions. Find the centre-point and from it draw lines to the points 
denoting the variables, which should be labelled, of course. Try then to find plausible 
connections between the locations of the variables and the objects. 

SUMMARY 

1 Principal Component analysis and the R-mode. 
2 Principal component factor analysis. 
3 Cross validation. 
4 Stability of estimates. 
5 Log-contrast principal components for compositions. 
6 Principal coordinate analysis and the Q-mode. 
7 Log-contrast principal coordinates for compositional data. 
8 Singular value decomposition. 
9 Simple analysis of correspondences. 

10 The Gabriel biplot. 
11 Programs and associated training sets 

pcompl pcomp.dat 
pcomp2 afrobol.dat 
pcaident matinv2, dat 
pcvalid alkaval, dat 
jknfpca keyella.dat 
pcaconst haitipc, dat 
pcoord afrocrd.dat 
pcrdcons canary.dat 
singval matrx3.dat 
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benzec fenantrn.dat 
gabriel gabriel, dat 

leptobip.dat 
mult e st mul test. chk 

12 Appendix: Step-by-step account of how to apply Graph Server to a data-set of 
coordinates in a very simple manner. Please note that this example only makes 
use of very few of the available functions of Graph Server and Graph Wizard. 
Details on how to use these programs are given in chapter 2. 

1 Double-click on the file Graph Wizard (or on its shortcut, if you created one 
previously). 

2 Click on button NEXT and then select BROWSE. 
3 Find the data to be processed. 
4 Select the file. 
5 Click on Select all (or manually select the data to process, if the file contains 

extraneous data you want to discard). Click on NEXT. 
6 Select the proper organization of the data, e.g., 'columns contain coordinate 

values'. Click on NEXT. 
7 Click on add new data-set For instance, you may want to examine the plot of the 

scores on the first two axes. Therefore, select columns '1' and '2' and then as a 
marker, choose, say, NUMBERS. Press NEXT. 

8 Adjust the ranges of the coordinates and insert a scale marking. In most cases, 
you need to adjust the range values. For instance, when Graph Wizard proposes 
to display the range between 31.20 and 58.47 with tick marks every 9.25 units, 
you can safely round these values to 30.60 and 10, respectively. You may need 
to indulge in a sequence of trials in order to arrive at the optimum result 
for the neatest graph. Press NEXT. 

9 Select the appropriate graph-settings. You may need to experiment with differ- 
ent settings at this stage as well. 

10 Type in the labels for the ordinate and abscissa, and choose appropriate fonts 
and font sizes. NEXT. 

11 Tick one or more of the boxes if you want to save the graph for later use, or just 
press F INISH to start Graph Server and display the graph. 

Your processed plot will now appear on the screen. A good quality print can then 
be easily obtained by following the appropriate procedure (see chapter 2). 
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Chapter 4 

Comparing samples from two populations: the 
discriminant function 

INTRODUCTION 

It is no more than a matter of practical convenience to give the subject of comparison 
of samples drawn from two populations a chapter of its own. There is, nonetheless, a 
certain practical advantage in this since some of the most widely invoked 
multivariate statistical procedures belong, directly or indirectly, to this category. 

One of the earliest multivariate statistical methods to appear was the Linear Dis- 
criminant Function, devised by R. A. Fisher to provide a quantitative expression 
of the multivariate difference residing in samples drawn from two populations, 
the procedure being based on analogy with multiple regression. The original pro- 
posal was made in reference to a taxonomic problem, the celebrated case of the 
species of Iris. The method was, however, quickly adopted for a wide range of other 
classes of data. Actually, Fisher got ahead of himself by helping an Australian 
doctoral candidate, Miss M. Barnard, to analyse her measurements on Egyptian 
skulls (Barnard, 1935) by his newly conceived method. This application, though 
biologically very unsound, is still interesting for people concerned with developing 
models for linking time-differentiation to discrimination. Discriminant functions 
are well covered in many statistical textbooks. A good reference is Hand (1981), 
another is Anderson (1984). 

The sample linear discriminant function is computed from the covariance matrix 
formed by pooling the covariance matrices of each of the samples to yield matrix 
Sw and the difference d between the respective mean vectors of the samples. The 
equation for finding the p coefficients f of the linear discriminant function is simply: 

f -  S~ld (4" 1) 

There is a structural similarity to multiple regression here, which is sometimes 
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exploited as a means of providing approximate standard deviations for the 
coefficients of discrimination by analogy with multiple regression coefficients. A 
simple example is presented in Box 11. 

The program disfun.exe computes the example in Box 11. It also provides the 
generalized statistical distance corresponding to (4:1), the associated test of signifi- 
cance (the Hotelling T2), and the discriminant function scores with an assessment 
of how well the two sets of data have been separated by the function. This method 
of computing efficiency of the function is a somewhat subjective procedure, however, 
being based on the assignment of the individuals of each sample on the basis of the 
discriminator computed from them. In cases where the two covariance matrices 
are very different, it may be more appropriate to proceed by some method that 
can absorb such a difference. One such procedure is the quadratic discriminant 
function, another way of treating heterogeneous data is offered by the generalization 
of a technique of univariate statistics for unequal variances. 

Rao (1949; 1952) made several important observations about the workings of the 
discriminant function and the generalized distance. One of these concerns the value 
or demerit of adding more and more variables to a study in the hope that separation 
will be bettered. If the increase in the generalized distance is not appreciable, the 
reduction in errors of misidentification by adding more characters is negligible. 
The presentation given here does not embrace more recent specialist results. If 
you wish to read further, we can recommend the book by Krzanowski and Marriot 
(1995). 

Instructions for using the program Disfun 

Line 1: The dimensionality of the problem 

Line 2: Title of the job 

Line 3 :1  size of first sample 
2 size of second sample 
3 1 if extra observational vectors are to be compared 

0 for default (no extra vectors) 
4 1 for input as a data-matrix (organized as below) 

0 if data as pre-computed covariance matrices and means 
5 1 if full output from the program is desired 

0 for just the essential results 
6 1 if logarithms of the input vectors are to be taken 

0 for raw data 

[line 3 applies only if item 4 contains a "1": i.e. extra vectors can only be read in the 
case of the data-matrix option] 
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Line 3: For matrix input 
covariance matrices first 
corresponding mean vectors next 

or, 

Line 3: For input as the data-matrix 

Line 4: The title of the sample 

Line 5+: The sample 

The taking of logarithms in Line 6 is perhaps more appropriate for divergent bio- 
logical data which are to be brought into conformity with the multivariate normal 
distribution. The discriminant function scores are stored in files disscore, for the 
linear discriminant function, and quadscor for the quadratic discriminant function. 
These files are useful for making histograms by means of Graph Server. However, 
the program yields a set of printer plots of histograms of the discriminant function 
scores which often prove useful for quick appraisals. 

Example of discrimination 

A specimen of how to set up the file for computing the discriminant function in 
disfun.exe is given in echindfn.dat. This data-set presents measurements on five 
morphological characters of the carapace for two species of the Eocene ostracod 
genus Echinocythereis (length and height of the shell, anterior height, posterior 
height, length of the posterior process). Further details are to be found in Reyment 
(1985). 

Some of the output generated by the program is listed in Box 11. 

Box 11: Example of the discriminant function program disfun applied to 
the data for evolution in species of Echinocythereis from the Eocene 
of Aragon, Spain. Data from Reyment (1985). 

Program: disfun 

Data" echindfn.dat 
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These data consist of a sequential sample (an evolutionary series) of 
means for Echinocythereis isabenana on which five characters are 
available, to wit, measurements on length and three heights of the 
carapace, plus the length of the posterior process (the older suite) 
and the younger suite, for Echinocythereis posterior, likewise composed 
of sequentially ordered means. 

The pooled covariance matrix 

1 2 3 4 5 
1 0.00211 0.00097 0.00152 0.00115 0.00012 
2 0.00097 0.00062 0.00073 0.00054 0.00010 
3 0.00152 0.00073 0.00126 0.00087 0.00013 
4 0.00115 0.00054 0.00087 0.00086 0.00007 
5 0.00012 0.00010 0.00013 0.00007 0.00013 

Pooled correlation matrix 

1 2 3 4 5 
1 1.0000 0.8472 0.9324 0.8576 0.2372 
2 0.8472 1 . 0 0 0 0  0.8249 0.7394 0.3526 
3 0.9324 0.8249 1.0000 0.8395 0.3100 
4 0.8576 0.7394 0.8395 1.0000 0.2137 
5 0.2372 0.3526 0.3100 0.2137 1.0000 

As is so often the case for crustaceans, some distance-measures are highly 
integrated. Here, the length and three heights display evidence of high 
correlation. The posterior process can be seen to be much less strongly 
bound to those variables. 

Pooled standard deviations 

0.046 0.025 0.035 0.029 0.011 

The mean vectors 

vector 1 
0.9840 0.5627 0.7 509 0.5976 
vector 2 
0.7954 0.4679 0.6132 0.4841 
difference mean vector 
0.1885 0.0948 0.1377 0.1135 

0.1294 

0.1075 

0.0219 
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Disc coeff. Stand. coeff. Classical coeff. 
1 63.160 2.900 14.715 
2 26.058 0.651 6.071 
3 -23.242 -0.824 -5.415 
4 47.655 1.395 11.103 
5 84.073 0.958 19.587 

Three ways of expressing discriminant function coefficients are illustrated 
in the foregoing array. The first column contains the directly computed 
values, the second column holds the standardized coefficients, and the 
third column has the classically derived coefficients of Fisher (1936). 
The efficiency of the discriminant function can be verified by a test based 
on the generalized statistical distance (the test is usually known as the 
Hotelling T2). 

D 2 = 18.42, D = 4.29, F = 89.34 with 5 and 96 degrees of freedom. Prob- 
ability that the samples are from same distribution <0.0001. 

probabil ity of misidentification = 0.0159 based on D/2  

unbiased D 2 =  17.12, unbiased D = 4.1377 

unbiased misidentification probability - 0 . 0 1 9 3  

Unbiased D 2 is slightly lower than the biased value, which seems to be 
commonly the case in many investigations. 

The value obtained of the generalized statistical distance is highly 
significant, as indicated by the figure for the variance ratio, computed 
from the Hotelling T 2. There is, therefore, a low probabil ity of making 
a wrong assignment of a specimen. This can be gauged approximately 
by running the original observations through the discriminant function 
and seeing how the specimens are assigned. 

discriminant mean 1 98.711 

discriminant mean 2 80.287 

Identifications for Sample 1 

46 correct, 0 wrong for a percentage of 0.0 % wrong 
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This line in the output says that all 46 specimens of the older sample were 
correctly identified by the internal process of passing the data through the 
discriminant function computed from them. If you have access to more 
material, and know it to be correctly identified, it would be more to 
the point to see how it was treated by the computed discriminant 
function. 

Identifications for Sample 2 

56 correct, 0 wrong for 0.0 % wrong 

Again, for the second sample, all specimens were correctly picked out by 
the linear discriminant function. 

The file disscor, generated by the program, can be inserted into Graph 
Server to illustrate how efficient the discriminant function is. This is dem- 
onstrated in Fig. 29. The plot shows that the discriminant scores for the 
two samples are completely separated, thus attesting to the efficiency 
of the function for distinguishing between the two categories. 

Fig. 29. Plot of the discriminant scores against sample origin for the Eocene ostracod data. The separation 
of the two species is very good and it may be concluded that the linear discriminant function is efficient. 
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Quadratic discriminant analysis 
The Box test for homogeneity of covariance matrices yields 

chi-square = 62.78 for 15 degrees of freedom. 

A test for homogeneity of covariance matrices gave the above result, 
namely, that there is significant heterogeneity in the dispersions. There 
is therefore motivation for a specific test, which is done by means of 
the quadratic discriminant function. 

Quadratic discriminant scores 

sample 1: 2.17% wrong of 46 specimens 
sample 2: none wrongly assigned (of 56 specimens) 

In this case, the result was not as good in that a specimen of the first 
sample was incorrectly identified. 

In conclusion, it can be claimed that there can be little doubt that the 
samples are drawn from statistical populations that differ greatly from 
each other with respect to the characters measured. 

QUADRATIC DISCRIMINATION 

When the covariance matrices are unequal, and or, the distributions are non-normal, 
recourse can be made to a quadratic discriminant function. Briefly, a quadratic dis- 
criminant function can be constructed as follows (Seber, 1984, p. 297): 

Qs(x) - �89 $21/1S1 [ -  (x - IK1)TSll ( X -  X1) -~- X -  IK2)Ts21(X- 1K2) ) (4:2) 

The effect of applying eqn. (4:2) is exemplified below in Box 12. 

Box 12: Example to exemplify quadratic discrimination. 

Terebratella retusa versus T. septentrionalis 
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The traits measured on two species of brachiopods are length, height and 
width of the shell, two lengths on the foramen, and the weight of the shell, 
six characters in all (Endo et al., 1995). Firstly a standard linear dis- 
criminant function is computed then a quadratic discriminant function, 
which is compared with the linear discriminant function. 

D 2 -- 5.31, D = 2.30 
F = 21.38 with 7 and 111 degrees of freedom. 

The probability that the samples are not from same distribution is less 
than 0.00001. It is therefore quite clear that the two species are very dif- 
ferent on the grounds of the characters determined. However, the prob- 
ability of wrongly assigning individual specimens is relatively high, as 
indicated by a direct test as illustrated below. 

Probabil ity of misidentification - 0.125 (based on 1 D) 

D 2 = 4.71, D = 2.17 

misidentification probability = 0.139 
Assignment results for Sample 1 

mean = 15.38; standard deviation = 2.19 

51 specimens correctly assigned, 7 wrong; i.e. 12.1% wrongly assigned 

Assignment results for Sample 2 

mean = 20.69; standard deviation = 2.40 

54 correctly assigned, 7 wrong; i.e. 11.5% wrongly assigned 

Quadratic discriminant analysis o f  the same data set as above 

Homogeneity test for matrices Sa and 8 2 

chi-square = 79.25 for 28 degrees of freedom 

This value is significant and it may be concluded that there is significant het- 
erogeneity in the covariance matrices on the criterion used. However, the data also 
diverge from multivariate normality and it is therefore interesting to see what 
the quadratic discrimination method discloses. Briefly, the assignment results are 
as follows: 
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sample 1 
sample 2 

10.34% wrong of 58 specimens 
8.20% wrong of 61 specimens 

Hence, the quadratic discriminant function brings about a slight 
improvement in the diagnostic ability of the discrimination process. 

Discussion of the quadratic discrimination example 

The quadratic discriminant classification in Box 12 has produced a slight though 
important improvement in the efficiency of the discrimination. Granted that the 
covariance matrices are heterogeneous, the improvement could possibly also be 
due to non-linearity in the data. The method of quadratic discrimination provides 
a means of proceeding when the covariance matrices are heterogeneous. It is only 
safe to use it when large samples are available, at least 50 specimens in each of both 
groups. If one variate has a very small variance and, or, several variates are highly 
correlated, spurious discrimination can sometimes result. 

THE GENERALIZED DISTANCE AND HETEROGENEOUS DISPERSIONS 

We shall now introduce a program that is more explicitly designed to treat data that 
differ in the configuration of the sample hyperellipsoids. For most purposes, 
disfun, exe is perfectly adequate; however, where interest lies with dissecting the anat- 
omy of the differences between samples, the present procedure is recommended. 
Note, however, that it is solely structured for dealing with linearly related variables. 
The program het.exe provides, as an initial step, a univariate appraisal of the data, 
including tests of univariate skewness and kurtosis. The statistical method utilized 
in the program is based on the Anderson-Bahadur T 2 for heterogeneous covariance 
matrices, from which a corresponding generalized distance can be readily obtained 
as well as the appropriate discriminant function (Anderson and Bahadur, 1962). 

Instructions for using the program Her 

The data are entered in free format. 

Line 1:1 Number of variables 
2 Size of the larger sample 
3 Size of the smaller sample 

1 specifies pre-processed data 
4 1 specifies that logarithms are to be taken 
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0 is for raw observations 
5 1 specifies that the usual discriminant function is to be computed no 

matter what the program decides is the better solution. 
Default is 0 

Line 2: The title of the job. 

Line 3: The data in the form specified by item 4 on line 2. 

The specifications 2 and 3 need only be applied if sample sizes are very different 
(for geometrical reasons or stability with respect to orientations of distributions) 
for the comparisons). In the ensuing example, the sample sizes are of roughly 
the same order of magnitude. An abridged listing of the results obtained by inserting 
the file brachhet.dat into program het now follows. These data are measurements on 
brachiopod shells of the genus Terebratella (cf. Endo et al., 1995). It is interesting to 
see what a specifically constructed analysis of the geometry of the empirical 
distributions can disclose. The data of brachhet.dat are logarithmically transformed. 
The main results of the computations are reproduced in Box 13. 

Box 13: Example of discrimination and generalized distances for unequal 
covariance matrices using data on two species of brachiopods of the 
genus Terebratella (Endo et al., 1995). 

Program: her 

Data: brachhet.dat 

T. retusa versus T. septentrionalis 

The characters measured are length of the ventral valve (1), width of the 
shell (2), height of the shell (3), density of ribbing (4), length of the for- 
amen (5), width of the foramen (6) and weight of the shell (7). The full 
treatment of the data is in Endo et al. (1995). The reason for doing 
the analysis was to see how well the standard measurements could dis- 
tinguish between species established on purely biological grounds. 

"reference" sample size is 61 specimens 

comparison sample size is 23 specimens 
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Distribution details for reference sample 
Variable Skewness t-value Kurtosis t-value 
1 -0.1739 -0.5679 0.1983 0.32 
2 -0.4455 -1.4546 0.4955 0.82 
3 0.0987 0.3221 0.3400 0.56 
4 -1.2171 -3.9738 2.3354 3.86 
5 -0.3634 -1.1865 -0.6391 -1.05 
6 -0.4223 -1.3789 0.0274 -0.04 
7 0.8553 2.7927 0.1691 0.28 

Distribution details for comparison sample 

Variable Skewness t-value Kurtosis t-value 
1 0.0318 0.0660 -0.8836 -0.94 
2 0.3663 0.7610 -0.7418 -0.79 
3 0.7305 1.5177 -0.1174 -0.12 
4 -0.1688 -0.3506 -1.2563 -1.34 
5 1.0052 2.0883 1.1591 1.23 
6 0.6692 1.3902 -0.0629 -0.06 
7 0.5933 1.2326 -0.7978 -0.85 

These univariate tests show that most variables are univariate normally 
distributed. Variable 4 for the first sample deviates both with respect 
to skewness as to kurtosis. For the second sample, variable 5 is signifi- 
cantly skewed at the 5% level. 

The program outputs covariance matrices and their connected latent 
roots and vectors for purposes of analysing the orientations of the dis- 
persion ellipsoids in relation to each other. The following results pertain 
to the non-central chi-square distribution and a specific test for hetero- 
geneity in covariances, and for which a special set of tabulated values 
is required for their interpretation. It is, however, an easy matter to trans- 
form the non-central chi-square parameters to standard values of 
chi-square; this is carried out automatically by the program. 

B 2 =  73.19 

f12__ 3.44 

These data transform to a standard chi-square of 64.20, which for 28 
degrees of freedom is highly significant (the tabulated value is 41.33). 
The conclusion to be drawn here is that the covariance matrices of 
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the samples for the two species of brachiopods are indeed very different 
from each other. We shall now see in what manner these differences 
are manifested. 

As noted, the foregoing result points to there being strong heterogen- 
eity in covariances. We shall test whether this can be ascribed to differing 
orientations of the hyperellipsoidal axes. Note that in the following, a )~ 
value of 12.59 indicates significance at the 5% level. There are only three 
axes of interesting length; the remaining four were rejected by the 
decision process in het.exe. 

Orientations of  ellipsoidal axes 

vector chi-square df 
1 16.77 6 
2 47.21 6 
3 44.06 6 

The test of significance for these three axes indicates them to be signifi- 
cantly rotated in relation to each other. This indicates at least one source 
to the heterogeneity in dispersions (Anderson, 1963; Reyment, 1969). 

Statistical distance for heterogeneous covariances 

The following discriminant vector (i.e. the coefficients of the linear dis- 
criminant function) was obtained by the Anderson-Bahadur iterative 
procedure. 

Estimate of discriminant vector 
1 -3.60 
2 2.83 
3 0.24 
4 -0.11 
5 8.28 
6 -21.40 
7 27.77 

Most of the discriminatory power lies with variables 5, 6 and 7. (The 
program outputs a histogram of the discriminant scores. This is not 
reported here.) 



The generalized distance and heterogeneous dispersions 167 

Chernoff's separation T-criterion 

In probing the properties of a generalized distance, it can be useful to 
determine how much of the distance is due to differences in the centroids 
and how much is to be put down to differences in the covariance matrices. 
A useful (though little known) partitioning procedure is that of Chernoff 
(1973), which is included in the calculations performed by het.exe. Note, 
please, that this T is not the same as the generalized Student's t of 
Hotelling. Hand (1981) gives an illuminating account of the use and 
interpretation of the Chernoff criterion. 

distance-separation due to means = 2.08 
distance-separation due to unequal covariances = 3.11 

Chernoff's separation Tc 2 = 5.19 

This analysis suggests that a somewhat greater part of the statistical dis- 
tance between the two populations of brachiopods is due to inequality 
in covariances. 

Results for Mahalanobis D 2 

D D 2 

2.60 6.76 

significance for D 2 and T 2 

T 2 = 1 1 2 . 9 3  

F 7 , 7 6  - -  14.95 

Discussion of  the analysis in Box 13 

The covariance matrices have been shown to differ in their geometrical properties, 
which means that the computations for producing a generalized distance and 
accompanying discriminant function should proceed via some appropriate method, 
such as the Anderson-Bahadur generalization of the Behrens-Fisher problem (one 
of the classical problems of mathematical statistics) for heterogeneous variances 
in the univariate analysis of variance. It is a moot point whether this step can always 
be justified in practical situations since the improvement in the result is usually rather 
slight. It is for this reason, we have, as an exploratory measure, made the program 
bet include a standard calculation of the generalized distance in order to provide 
a means of comparing how useful the Anderson-Bahadur step really is for a par- 
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ticular problem. You can read more about the theory underlying the test in Anderson 
(1984). The details of the Chernoff procedure can be consulted in Chernoff (1973). 
Briefly, Chernoff's criterion represents the sum of two terms. One may be regarded 
mainly as a Mahalanobis distance corresponding to a weighted average of the 
two covariance matrices. This term gives an expression for the distance between 
the means. The second term is mainly a measure of the information contributed 
by the differences between the two covariance matrices. 

DISCRIMINANT ANALYSIS FOR COMPOSITIONS 

Aitchison (1986) demonstrated that the usual arsenal of multivariate methods is 
available for compositional data with but few modifications. For most purposes, 
the sample log-ratio covariance matrices S(i)dxd are suitable vehicles for computation 
of a linear discriminant function, following the steps given above. As you already 
have been told, the log-ratio covariances entail a loss of one part and the 
dimensionality of the discrimination problem becomes D - 1 = d. The computation 
of a compositional Mahalanobis generalized statistical distance follows on directly. 
The advantage of using the log-ratio covariance matrices lies with their being posi- 
tive definite and can, therefore, be inverted by standard procedures. The generalized 
likelihood ratio test requires a little more effort in order to make its use valid for 
compositional data. The test can be constructed in order to provide an answer 
to either of two questions. The first of these is the test: 

)~2f __ N1 log(]Sc]/ISl I) + N2 log(]Sc]/]S2]) (4:3) 

The terms in (4:3) are defined as follows. If Sp denotes the pooled sample 
covariance matrices, and m(i~ (i = 1,2) the appropriate compositional sample mean 
vectors, then, 

Sc - Sp + (N1 -1-- N 2 ) - 2 N 1 N 2 ( m l  - m2)(ml  - m2) T. (4:4) 

Equality of means and covariance matrices is tested on degrees of freedom 
ld(d + 3), where d is D - 1. The second construct is for testing equality of covariance 
matrices alone; here, d f -  �89 + 1) and the appropriate chi-square formulation is: 

X 2 -- N1 log(]Spl/IS1] + N2 log( ISpl / IS2]) .  (4:5) 

When the covariance matrices are significantly different, the standard procedure for 
the multivariate Behrens-Fisher solution is available (see procedure presented in the 
foregoing example in Box 13). 

A major preoccupation of petrologists is assigning specimens to a priori estab- 
lished rock-types. The original semi-quantitative methods of classical petrology 
are gradually being ousted by automated procedures. Crude linear discriminant 
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functions have been widely applied to allocating specimens (LeMaitre, 1982), a pro- 
cedure that is clearly open to critical evaluation, but which is still being used in 
petrological work with the justification that any transformation (such as is engen- 
dered by the computation of the log-ratio) of data must necessarily distance the 
analyst from the problem and, hence, Science. This is a further case of the existence 
of the need for a broad and well balanced information campaign in the field of stat- 
istical geochemistry. 

The "training set technique" for establishing allocation criteria in discriminant 
analysis introduces resubstitutional bias, as is well known to statisticians, and as 
has already been mentioned (see also Krzanowski and Marriot, 1995). 

The linear discriminant function, as presented in the foregoing section, is available 
for compositional data in two forms in that either the log-ratio covariance matrix 
can be used, or the centred log-ratio covariance matrix. In the latter case, a 
pseudo-matrix-inversion will be necessary, for example, by invoking the 
Moore-Penrose method, which exploits the spectral decomposition: 

F- -/~l lal  aT -nt-.../~dlad aT __t_ 0aD aT 

The 2 i a r e  the latent roots obtained from the covariance matrix by any standard 
method and the ai are the associated latent vectors. There can, of course, only 
be d non-zero latent roots, owing to the constraint. 

The program dfnconst.exe, which is essentially an appropriately adjusted version 
of program disfun.exe, uses the log-ratio covariance matrix for producing a simple 
discriminant function analysis; the calculations also include the corresponding 
quadratic discriminant function. An example is given in Box 14. This treats the data 
for chemical determinations on the shell of a species of the ostracod Leptocythere 
observed at two stations, Roscoff and in the Baltic Sea (Bodergat et al., 1993; 
Reyment, 1996) in an environmetric study. The pertinent data-file is called 
leptodfn.dat. There are 12 elements to consider, but the problem reduces to one 
of 11 dimensions since the one part enters into the common divisor used for 
producing the log-ratio covariance matrices. In a foregoing section it was pointed 
out that the usual method of computing linear discriminant functions will not work 
with compositional data because of the problem occasioned by the inversion of 
a singular covariance matrix. This difficulty is obviated by the use of the log-ratio 
transformation (Aitchison, 1986). 

Instructions for using the program dfnconst 

Line 1: The dimensionality required (i.e. the number of parts). 

Line 2:1 size of first sample 
2 size of second sample 
3 1 for full output; 0 is default (reduced output) 
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Line 3: Title of the job 

The data sets now follow, each preceded by its title. 

Output details 

The use of the log-ratio covariance matrix requires division by one of the parts 
(where relevant, usually SiO2). As already noted earlier on, this manipulation 
reduces the dimensionality of the problem by one. The program computes basic 
statistics for each of the samples. It provides the coefficients of the linear dis- 
criminant function in three slightly different variants, depending on adjustments 
for the variability of parts and "normalization". The Mahalanobis generalized dis- 
tance and the associated test for significance are computed, both for biassed and 
unbiassed D:. 

Plottable data are stored in dfnscore for the linear discriminant scores, and 
quaddfn for the quadratic discriminant scores. These files can be used for making 
histograms of the separation. 

Box 14: Example of compositional discriminant analysis. 

Program: dfneonst 

Data: leptodfn.dat 

Linear discriminants for compositions 

Leptocythere psammophila sampling stations: elements determined are: 
Ca Ba C1 S Sr Fe Mn Na Mg A1 Si P, 12 in all. The common log-ratio 
divisor is Si and there are 12 parts, but the dimensionality of the analysis 
is 11. 

Discriminant function for compositional data 

Disc coeff. Stand. coeff.  Classical coeff 
1 37.077 4.352 8.434 
2 12.207 2.713 2.777 
3 2.637 1.684 0.600 
4 21.075 5.207 4.794 
5 -52.130 -7.891 -11.858 
6 1.467 0.872 0.334 
7 3.348 1.274 0.762 
8 0.910 0.432 0.207 
9 -27.403 -5.477 -6.233 

10 -0.866 -0.542 -0.197 
11 -2.901 -2.853 -0.660 
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Not unexpectedly, most of the discriminatory power lies with parts Ca, S, Sr and 
Mg. 

D 2 =  19.33 and D = 4.40 
F = 7.57 with 11 and 16 degrees of freedom. 

The probability that samples are from same distribution is 0.0002. There 
is therefore a clearly manifested difference between the two samples. 

Result for first sample 

14 correctly allocated by function, 0 wrongly assigned. 

Result for second sample 

14 correctly allocated by function, 0 wrongly assigned. 

Total N = 28, wrongly assigned = 0%. 

Quadratic discriminant analysis 

The Box test of homogeneity for covariance matrices 

chi-square = 178.81 for 66 degrees of freedom 

which is significant at the 5% level at least. This is, however, not serious 
enough to influence the efficiency of the linear discriminant function, 
as is exposed by the results for the quadratic calculations listed below. 

sample 1 
sample 2 

0 percent wrong of 14 
0 percent wrong of 14 

In the present example, the log-linear discriminant function succeeds in providing 
efficient discrimination between samples. Remember, however, that the example 
recycles the input data and this, you will recall, tends to give an over-optimistic 
view of the efficacy of the computed function for making correct assignments. 
You will also see that the quadratic discriminant function is an unnecessary codicil 
to the analytical protocol in that it made little improvement to the discrimination. 
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D•criminant analysis of spectroscopic data 

We make here brief mention of the use of cross-validation in discrimination, but do 
not provide a program for doing the calculations. Mertens (1998) has presented 
a combination of techniques, based on cross validation principal component analysis 
and discrimination for the analysis of spectroscopic data. Such data are usually 
high-dimensional for which very few samples are available. The procedure 
advocated by Mertens uses exact principal component influence theory and a 
new class of influence measures based on ratios of Euclidean distances in orthogonal 
spaces. 

SUMMARY 

1 Linear discriminant function 
2 Quadratic discriminant function 
3 Generalized statistical distance and heterogeneous dispersions 
4 Chernoff's separation criterion 
5 Discriminant analysis for compositions 
6 Programs and associated training sets 

disfun echindfn.dat 
het brachhet.dat 
dfnconst leptodfn.dat 



Chapter 5 

Analysis of several groups: canonical variate 
analysis 

INTRODUCTION 

If you want to analyse several groups of observations, that is, samples drawn from 
more than two statistical populations, then the method of canonical variates is 
an appropriate choice. In some respects, it can be represented as being a 
generalization of the linear discriminant function, just reviewed, in others it can 
be thought of as a kind of generalized principal components model. It has, of course, 
its deficiencies, as do many multivariate methods. These drawbacks are mainly con- 
cerned with: 

1 The fact that the information supplied is in the form of a priori delineated 
groups (that is, groups recognized by the analyst), which creates a tendency to 
reinforce the segregation already implied by the structured nature of the input. This 
is not a fatal fault and if there are really undecided specimens in the material, they 
are usually efficiently disclosed and correctly allocated to the appropriate group. 

2 It is a popular exercise to attempt to reify the canonical vectors by analogy with 
widely (though not generally) accepted procedure often employed in connection with 
principal component analysis. This can only done with extreme caution owing to the 
fact that the components of the canonical vectors tend to be unstable under repeated 
sampling. This condition is particularly noticeable when there are high 
between-groups correlations, such as occur in morphometrical work. Campbell 
(1979, 1980) has devoted special attention to aspects of stability in applied canonical 
variate analysis. A useful summary of Campbell's results is given by Seber (1984). 
There is a related condition of stability of coefficients in multiple regression analysis, 
a fact that seems to have been first noticed by Campbell (1980), in detail at least. 
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In algebraic terms, the first canonical variate is that linear combination which 
maximizes the ratio of between-groups sums of squares to the within-groups sums 
of squares for a one-way multivariate analysis of variance of the canonical variate 
scores. For k groups and p variables we have the canonical variate scores 

yij - CTx• (5" 1) 

where xij denotes the i-th of N observations for the j- th group. The first canonical 
vector is derived so as to maximize the ratio 

f = cTBc/cTWc (5:2) 

where B is the between-groups matrix of sums of squares and cross products and W is 
the within-groups matrix of sums of squares and cross products. These matrices are 
formed as follows: 

1 Compute T, the matrix of sums and squares and cross products for all the 
groups pooled into a single data-matrix. 

2 Compute W by adding together the matrix of sums of squares and cross prod- 
ucts for each group. 

3 Find then the difference B = T - W 

The canonical vectors c and the canonical rootsfsat isfy eqns (5:3) and (5:4) below: 

(B - f W ) c  = o (5: 3) 

and 

IB - f W l  = 0 (5:4) 

The canonical vectors are usually scaled so that 

cTWc = Nw (5:5) 

where Nw is the within-groups degrees of freedom. 
There are min(k - 1, p) non-zero canonical roots to the solution of the 

determinantal eqn. (5:4). If there is closure in the data, there may be less than p 
non-zero roots when p < k. This topic is taken up on p. 182. The expression "min" 
says that whichever is smaller, k - 1 or p, indicates the number of non-zero canonical 
roots. The program for canonical variate analysis is an updated version of the one 
originally published in Blackith and Reyment (1971). In addition to the steps out- 
lined above, the following computations are done by the program eva.exe. 

1 Generalized statistical distances between all pairs of groups together with the 
relevant tests of statistical significance. These are the Hotelling T2-values, trans- 
formed to the appropriate variance ratios. 
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2 Q-Q-probability plotting for each group, if asked for. This can be a useful step 
in exploratory work in that it provides a graphical means of assessing one aspect of 
multivariate normality in a sample. Although a serviceable tool, Q-Q probability 
plots are no more than advisory in nature and they should always be accompanied 
by a more comprehensive analysis before it is decided to suppress observations 
in the interests of approximating the multivariate Gaussian condition. These plots 
do not actually prove anything. The plot is made using the generalized statistical 
distances computed for each specimen in the sample. If there are strongly divergent 
specimens in the data, these will show up as isolated points at the top of the graph. 
The data for doing a Q-Q probability plot are stored in the file qdist. The file is 
composed of sets of coordinates, one for each of the groups, with the pertinent 
identifications. Q-Q stands for Q(uantile)-Q(uantile) A general account of the con- 
cept of probability plotting is given in Hoaglin et al. (1985, pp. 432-441). Briefly, 
in order to make a graphical comparison between two distributions, or between 
two samples, or between a sample and a distribution, the quantiles of the one 
are plotted against the corresponding quantiles of the other. When the two 
distributions are exactly the same, the plotted points will lie on a straight line with 
a slope of 1 and which passes through the origin for many but not for distributions 
that have the same shape but which differ in location and scale (for example,the 
Gaussian distributions). Deviations show up as (a) outlying points at the 'top' 
of the plot and sinuosities in the 'line'. The method of calculation programmed here 
is that of Ramberg and Schmeiser (1972) and used in a geological connexion by 
Campbell and Reyment (1980). 

3 Basic statistical summary for each group, if asked for. This comprises means, 
standard deviations, both with their confidence intervals, and the covariance and 
correlation matrices. 

4 The latent roots and vectors of the covariance and correlation matrices for each 
sample, if asked for. 

5 Scores for producing selected plots on canonical variate axes. These are saved 
in two files. The file canplotl contains the 'raw' transformations, that is the tran- 
sformed values unadjusted for the variances. The file canplot2 contains the same 
set of values but standardized to unit variance. 

6 The minimum spanning tree (often associated with the name of Prim, an early 
worker in the field) between sample centroids. The centroids (multivariate mean 
values) are saved in the file eanmeans. The table of linkages displayed in the output 
can be drawn into the diagram produced by Graph Server by means of some such 
facility as MSPAINT or CORELDRAW. 

7 A one-way analysis of variance. 
8 A choice of performing the computations in either the space of the 

covariances or that of the correlations. The latter has the often-beneficial effect 
of standardizing the variances and transforming the original data to spheroidal 
rather than ellipsoidal distributions. The spherical transformation is often success- 
ful for achieving a stable analysis and for that reason is widely used in Campbell's 
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imaginative contributions to multivariate statistical analysis. The correlational 
alternative produces a file of values named cam that are in a format suitable 
for use with shrinkev.exe. 

Input Information for using eva 
Line 1: The title of the job 

Line 2 :1  number of variables 
2 number of groups 
3 0 for input as 'processed' matrices 

1 for input as data matrices 
4 If the computations are to be made in the space of the covariances, type 0, 

for the space of the correlations, type 1 
5 1 for Q-Q-probability plots 

The data-matrices for each sample now follow in free format. 
Ahead of each of the data-matrices, the following information is to be provided: 

Line 1:1 sample size 
2 1 if data to be log-transformed 

0 if not (i.e. "raw" data to be used). 
3 1 for full output (see below) 
4 1 if the principal component reductions of the covariance and correlation 

matrices are wanted, otherwise put a zero here. 
5 A scale-factor may be needed. This may be required for reducing the data 

to standard form, such as microns, as is the case for measurements on 
microfossils made under the microscope to some micrometer scale or 
other. Some processors baulk at a non-entry in free format, so it this 
happens and you do not have a scale-factor to take into account, type a 
1 o r a 0 h e r e .  

Line 2: The name of the group. 

Line 3, and following lines, the data-matrix in its usual form (rows by columns). 

The trial data are in the file gastcva.dat. These data consist of a set of observations 
on three species of the North American mid-Cretaceous ammonite genus, 
Neogastroplites, to wit, four derived shape expressions for the shell, using 
Bookstein's (1991) method of relative warps, and counts of rib-densities. The three 
species are N. americanus, N. cornutus, and N. muelleri, all described in a publication 
by Reeside and Cobban (1960) and Reyment and Kennedy (1998). Admittedly, the 
data-set is not very appealing, but it does represent the type of material often con- 
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fronting the geologist. The primary aim of the original analysis was to establish 
whether the specific assignment on classical palaeontological grounds could be 
upheld by morphometric analysis, granted that all three species are highly 
polymorphic with the appearance of varieties that, superficially at least, seem to 
be identical in all three taxa. 

Output information 

The salient features of the analysis of the ammonite data are presented in Box 15. 

Box 15: Canonical variate analysis of three species of the ammonite genus 
Neogastroplites from the Cretaceous (Cenomanian) of the United States 
and Canada. 

Program: eva 

Data: gastcva.dat 

The variables consist of four expressions of shape-variability, obtained 
by the methods of Bookstein (1991) and counts on rib densities. The 
shape-descriptors are denoted as sh_l. sh_l, etc. 

Shape descriptors for 27 ammonite specimens with rib-frequencies 

The correlation space was chosen here owing to the marked difference in 
properties of the shape expressions as opposed to the rib-counts. The 
correlation format reduces the variances to a common basis. The shape 
indicators were obtained by the method of relative warps of Bookstein 
(1991), being based on points (landmarks) located at four diagnostic sites 
across the diameter of the shell. Granted that the stability of canonical 
variates is sensitive to deviations from multivariate normality, the pro- 
gram encompasses Q-Q-probability plotting for each component 
sample. Example for the first and third samples is illustrated in Fig. 30(a) 
and 30(b). 

Canonical Variate Analysis for Groups = 3 
Number of variables = 5 
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Fig. 30(a). Q-Q-probability plot for the first sample of the ammonite data. There are no markedly 
divergent specimens and hence no indication of deviation from multivariate normality in this sample. The 

points lie reasonably close to a straight line. 

Fig. 30(b). Q-Q-probability plot for the third sample of the ammonite data. The first 10 points are 
approximately linearly located. Point 11 is an obvious outlier. 
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Sample Sizes and Mean Vectors 

Sh_l Sh..2 Sh_3 Sh_4 
1 11. 0.000 0.000 0.001 0.002 
2 5. -0.001 -0.001 -0.001 -0.010 
3 11. 0.001 0.001 0.001 0.002 

Ribs/whorl  
26.636 
21.000 
21.636 

Within-groups matrix standardized to correlations 

1.00000 -0.14359 -0.24583 -0.40210 0.39033 
-0.14359 1.00000 -0.28893 0.21614 0.43688 
-0.24583 -0.28893 1.00000 -0.31328 -0.26212 
-0.40210 0.21614 -0.31328 1.00000 -0.03954 

0.39033 0.43688 -0.26212 -0.03954 1.00000 

Between groups matrix standardized to correlations 

0.04154 0.05318 0.01929 0.14646 -0.02982 
0.05318 0.07040 0.02644 0.15379 -0.06756 
0.01929 0.02644 0.01028 0.04256 -0.03602 
0.14646 0.15379 0.04256 1.00658 0.32199 

-0.02982 -0.06756 -0.03602 0.32199 0.39366 

The ANOVA indicates that the first three shape indicators do not differ 
significantly from species to species (P > 60% for all), whereas the fourth 
indicator is greatly different (P = 0.003). The difference in means of 
rib-counts is likewise significant, with P = 0.18). 

Generalized statistical distances 

D 2 above diagonal, D below: 

1 2 3 
1 0.000 11.929 4.371 
2 3.454 0.000 12.916 
3 2.091 3.594 0.000 

The generalized distances between species 1 and 2 and 2 and 3 are much 
greater than that between species 1 and 3. 

Canonical Root 1 1.9334 
Canonical Root 2 0.9915 
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Canonical Vectors of W-aB 
1 2 

1 0.783 0.775 
2 0.170 0.903 
3 0.660 0.212 
4 1.199 0.012 
5 0.012 1.224 

Normalized Canonical Vectors 

1 2 

1 0.494 0.450 
2 0.107 0.525 
3 0.416 0.123 
4 0.756 0.007 
5 0.008 0.712 

In very approximate terms, one may claim that the first canonical variate 
is representative of relationships in shape-indicators 1, 3 and 4. The den- 
sity of the ribbing is without significance here. The second canonical vari- 
ate expresses relationships between two shape-indicators, 1 and 2, and the 
density of the ribbing. This is as far as one dares venture as regards 
reif ication of the canonical vectors. 

Canonical means for axes one and two 

0.041 -3.77 
-0.046 3.13 
-0.020 2.35 

Coordinates for plotting canonical means are stored in file canmeans, 
generated by the program. 

Significance of latent roots 

Canonical Root 1 = 1.765 
Chi-square - 38.83 for 10 degrees of freedom 

Probabil i ty < 0.00001 

Canonical Root 2 = 0.689 
Chi-square = 15.16 for 4 degrees of freedom 
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Probability - 0.0046. 

Both canonical variates are statistically significant, as indicated by the 
foregoing specific test. This result is important for assessing the relation- 
ship between ribbing and shape. 

M A N O V A  test of equality of means 

Wilks Lambda - 0.1712 
Chi-square - 31.77 with degrees of f r e e d o m -  10 and p robab i l i t y -  
0.0005. 

Here, we have a clear indication of the separation of the three species with 
respect to the characters being analysed. The canonical variate scores for 
up to three canonical roots are stored in the file canplotl. Fig. 31 illus- 
trates the plot of the scores on the first two canonical variate axes. 
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Fig. 31. Graph Server-generated plot of the first two canonical variate scores for the ammonite data. There 
is a tendency for the three species to be segregated into their respective natural groups. Note that 

specimens 1 to 11 are concentrated in the lower right section of the plot, specimens 12 to 16 to its left, and 
specimens 17 to 27 in the upper right section. 
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Conclusions: The canonical variate analysis shows that the species are 
well differentiated with respect to shape as expressed by the geometric 
morphometric criteria. N. americanus appears to be the more clearly 
divergent form. The full analysis is given in Reyment and Kennedy (1998). 

CANONICAL VARIATE ANALYSIS OF COMPOSITIONS 

Aitchison (1986) has shown that the standard model for 'usual' data can be applied 
without hindrance to compositions. The computations are preferably based on 
the log-ratio covariance relationships. Log-contrast canonical variates are, as to 
be expected, uncorrelated. In contrast with compositional principal components, 
in compositional canonical variate analysis, the centred log-ratio covariance F speci- 
fication has no advantage over the log-ratio covariance matrix, l~. The modification 
of our program for computing constrained canonical variates is called cvaconst.exe. 
The common divisor is taken to be the last entry in the vector of parts. Aitchison 
(1986) showed that it is immaterial which of the parts is selected for the division, 
unless there is a wish to reify the canonical vectors, which is a procedure of doubtful 
validity at best (Campbell, 1979). 

Input information for evaeonst 

Line: 1 The title of the job. 

Line: 2 
1 number of parts, 
2 number of groups 
3 type 1 for Q-Q-probability plotting, otherwise 0 

Line: 3 Heading each of the groups 
1 size of the sample, 
2 principal component analysis requested = 1, otherwise = 0. 

Title of the sample on a separate line 

Output details 

The canonical variates for one less than the number of input parts, canonical roots, 
Mahalanobis generalized distances with associated tests of significance, the data 
for Q-Q-probability plots, stored in the file aitqdist, the canonical variate means, 
stored in aitmeans, the unstandardized transformed observations, stored in aitcval 
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and the standardized transformed observations stored in aitcva2. The appropriate 
analysis for constrained data-sets follows on in the same manner as is done for 
log-contrast principal component analysis. Let us look at an example of canonical 
variate analysis. Compositional data observed on alkaline rocks sampled from 
mid-oceanic ridges are used to illustrate the procedure. The specimens come from 
the Middle and South Atlantic ridges and a Pacific Ocean ridge (Sorensen, 1974). 
The oxides of the elements determined are of Si(1), Ti(2), Al(3), Fe+++(4), Fe++(5), 
Mn(6), Mg(7), Ca(8), Na(9), K(10), water(11), and P(12), in that order. The analysis 
was made on the raw data, that is, without accounting for the constraint. The data 
are located in the file alkalicv.dat and a summary of the results is presented in 
Box 16. Although we start with 12 parts, the requirements of the log-ratio 
transformation necessitate the "loss" of one part and hence a reduction in the 
dimensionality of the problem to 11 parts. 

Box 16: An example of canonical variate analysis for compositional data 
data on alkaline rocks from the Atlantic Ocean (Sorensen, 1974). 

Program: cvaconst  

Data: alka l icv .dat  

Canonical Variate Analysis for Groups = 3 
Number of parts = 12 (specified above in the main text) 

Output for generalized latent roots and vectors 

Canonical Root 1 2.272 
Canonical Root 2 0.483 

Canonical Vectors of W-1B 
1 2 

1 -0.360 -0.277 
2 -0.038 0.000 
3 -0.314 0.570 
4 0.235 0.154 
5 -0.975 -0.068 
6 0.488 -0.033 
7 0.100 -0.109 
8 0.714 0.152 
9 0.134 -0.490 
10 0.062 0.288 
11 0.082 -0.035 
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Normalized Canonical Vectors 
1 2 

1 -0.254 -0.312 
2 -0.027 0.000 
3 -0.221 0.641 
4 0.165 0.173 
5 -0.685 -0.076 
6 0.343 -0.037 
7 0.070 -0.122 
8 0.502 0.171 
9 0.095 -0.551 
10 0.044 0.323 
11 0.058 -0.040 

The coordinates for plotting the canonical variate scores in Graph Server 
are in files aitcval and aitcva2, these being the values for the unscaled and 
scaled canonical variate axes respectively. If you are interested in 
safeguarding geometrically relevant relationships in the plot, then the 
scaled axes are to be selected. For purposes of ordination of points 
without particular regard to the geometry, then the unscaled axes can 
often give a more informative diagram. 

Significance of latent roots 

Canonical Root 1 = 1.579 
Chi-square = 56.07 for 24 degrees of freedom 

Probability = 0.0002 

Canonical Root 2 = 0.394 
Chi-square = 13.99 for 11 degrees of freedom 

Probability = 0.2327 

Manova test of equality of means 

Wilks Lambda = 0.206 

Chi-square = 41.067 with degrees of freedom = 22, Probability = 0.0082 
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DISCUSSION OF THE CANONICAL VARIATE EXAMPLE 

The alkaline rock data 

The results listed above are an abridged account of what is provided by the program 
cvaconst, exe. A few comments will help to guide you through the multitude of details 
in the output. 

The ANOVA, the one-way analysis of variance for each part on four samples, 
shows that only the mean of one component differ significantly, to wit, potassium 
(10). 

The first canonical root dominates completely in magnitude over the other one 
(note that the rank of the problem is 2, one less than the number of groups and 
there are, therefore, only two valid canonical roots). If we confine attention to 
the first canonical vector (those listed for W-1B), it will be seen that components 
(1), (5), (6) and (8) are influential. There is a rule of thumb (cf. Reyment and 
J6reskog, 1993) that says that the vector component, when squared, should be 0.1, 
or greater. (N.B. the elements of a vector are referred to as its "components".) 
The second canonical vector contains only two influential parts, namely, com- 
ponents (3) and (9). 

The significance of the canonical roots is tested. In our present example, only the 
first canonical root passes the test for statistical significance. The last part of the 
output is concerned with testing for homogeneity in multivariate means. In the 
example, the MANOVA (acronym for the multivariate one-way analysis of 
variance) indicates all mean vectors to differ highly significantly. 

A CASE-HISTORY FOR CANONICAL VARIATES: A STUDY IN ENVIRONMENTAL 

CHEMISTRY 

Chemical composition of the shell of the ostracodspecies, Leptocythere psammophila 
from Northern Europe 

Bodergat, Carbonnel, Rio and Keyser (1993) studied the influence of environmental 
chemistry on the composition of the shell secreted by Leptocythere psammophila 
(= the sand-loving leptocytherid). To this end, 41 live individuals were collected 
from the Baltic Sea (Kieler F6rde), North Sea (Sahlenburg/Cuxhaven) and the 
English Channel (Roscoff). The Baltic locality is one complicated by the possible 
effects of industrial pollution. The sampling was carried out in Spring (April, 1987), 
Summer (September, 1988) and Winter (December, 1988). Unfortunately, the 
sample sizes are very small. 

Thirteen elements were determined by electron microprobe analysis, to wit, Ca, 
Ba, C1, S, Sr, Fe, Mn, Na, Mg, A1, Si, P, and O. Thirty analyses were made on 
each carapace at points situated according to a predetermined pattern. The results 
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for each individual (being the average of 30 values for each element) were expressed 
as "element atomic percent." This is a vital piece of information which you need 
to keep in mind for what now follows. 

The main findings reported by Bodergat et al. (1993) were: 

(a) There are no significant differences between chemical compositions of 
carapaces from the different stations. 

(b) There are strongly manifested seasonal differences due, it was surmised, to the 
facilitated incorporation of Mg during the winter months. 

(c) The chemical composition of summer individuals was interpreted as being due 
to the influence of salinity fluctuations on the shell and to the supply of terrigenous 
sediment. 

The data were analysed by multivariate statistical methods, namely, discriminant 
functions and "normalized principal component analysis". The latter procedure 
does not seem to be principal component analysis, as is usually conceived, but rather, 
some kind of Q-R-mode application of latent roots and vectors. A quick appraisal of 
the results shows, moreover, that an inappropriate model for covariances was used 
with the consequence that the interpretations arrived at by Bodergat et al. (1993) 
are not unchallengeable. A full analysis of these data has appeared in the journal 
Environmetrics (Reyment, 1996). 

The Data 

The data are expressed as percentages, but if you examine, say, the data in the file 
leptocva.dat, you will observe that although the rows, each with 12 entries, have 
a constant sum, this is not 100. You can test each of the three samples with the 
program propmat.exe. The reason why the data to not sum to the expected 100% 
is that they have been "doctored". There are 12 entries but more elements were 
actually determined. The missing entries are for oxygen and, possibly, also carbon. 

Now that we have established the fact that the data are compositional, the next 
step is to establish rules for an appropriate multivariate model. This is where 
the analysis published by Bodergat et al. (1993) goes awry insofar as the vital con- 
sideration of "closure" does not seem to have been taken into account. Eliminating 
variables from a compositional data-set does not help things, since the parts con- 
stituting such data are related in a complicated manner that does not exist for "free" 
variables. 

Principal component analyses 

One of the problems bothering the original analysts was the difference in variability 
from variable to variable. The following computations were therefore made on 
the log-ratio correlation matrix, which has the effect of "stabilizing" the variation. 
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We consider first the constrained model for the Spring data. There are 13 
observational vectors and 12 parts. 

The analysis for the log-ratio transformed data 

latent roots 

5.4706 1.9393 1.6030 1.1547 0.7117 0.5702 0.2946 0.1610 0.0747 
0.0149 0.0053 

latent vectors 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0.40614 -0.06614 0.10312 0.09289 -0.17667 0.11051 0.00725 0.41703 -0.12384 0.29717 0.67922 0.17040 

2 0.38510 -0.16283 -0.00639 -0.00982 0.29110 0.07343 -0.27674 -0.30185 -0.69693 -0.09298 -0.13656 0.23284 

3 -0.22007 0.08412 -0.55893 0.26318 0.23596 0.21639 -0.44218 0.29850 0.15282 -0.18952 0.06291 0.33537 

4 0.19997 0.56158 -0.13943 0.23220 -0.10786 0.17762 0.00823 -0.52712 0.18048 0.43034 -0.00936 0.17979 

5 0.32422 -0.36225 0.08414 -0.09055 -0.36666 0.02361 -0.36844 0.13378 0.34175 0.22301 -0.49645 0.21621 

6 0.08124 -0.03148 -0.56010 -0.50552 0.08327 -0.50053 0.22699 0.01740 -0.01625 0.25464 0.02306 0.21958 

7 -0.05869 0.25699 0.47629 -0.49807 0.50412 0.13808 -0.13810 0.09651 0.23162 0.08195 0.03698 0.30374 

8 -0.06288 -0.59251 0.01179 0.30488 0.41028 0.13911 0.39264 -0.22342 0.25933 0.20855 0.05555 0.21515 

9 0.38964 0.04876 0.10544 0.13777 -0.00217 -0.42373 -0.00741 -0.21144 0.36176 -0.60701 0.21234 0.21673 

10 -0.28033 0.16304 0.29867 0.42574 -0.01983 -0.51617 0.05246 0.22857 -0.23263 0.19445 -0.21177 0.40717 

11 -0.34947 -0.09696 0.03804 -0.24632 -0.49880 0.27969 0.18502 -0.21151 -0.13405 -0.24220 0.12220 0.55568 

12 0.35591 0.24285 -0.08903 0.04912 0.06075 0.30051 0.57465 0.38587 -0.04600 -0.22852 -0.39955 0.13006 

Bodergat et al. (1993) attempted to ordinate the 41 specimens by the principal 
component scores of the three samples pooled. This is inappropriate for the problem 
at hand given that in addition to the difficulty implied by the constraint, the data are 
not homogeneous with respect to variances and covariances; hence, any form of 
"communal principal component analysis" (i.e. principal components on the pooled 
within-groups matrices) is unsuitable. 

Log-contrast canonical variate analysis and generalized distances 

The recommended procedure is to use Aitchison's (1986) log-ratio transformation of 
the data matrix by means of the program cvaconst.exe. You can run the two sets of 
computations now, firstly for the data grouped according to the seasons at which 
they were sampled and, secondly, according to the sites. The two data sets are 
in files 

leptall.dat for the seasons, and, 
leptostn.dat for the three sampling sites. 

The computations are made on the covariances. 
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Comments on the analyses 

You should first obtain the full set of results for both seasons and stations (sites) after 
which perusal of the following notes will probably prove useful. 

1 Look at the generalized statistical distances. These all yield significant values of 
T 2, thus indicating that there are genuine differences between samples; that is, for 
both seasons as well as sites. This is formally confirmed by the results for the 
multivariate analysis of variance (listed in the output as "test of equality of means"). 

2 The plots of the canonical variate scores (note, that there are only two canoni- 
cal vectors, since there are only three groups) show excellent group-ordination. 
In the case of the seasons, there is no overlap between groups, whereas for the sites, 
there is slight overlap between the North Sea and the English Channel. Note, that 
this aspect of canonical variate analysis is, in effect, a multiple discriminant function 
analysis. 

3 The pooled principal component analyses for the correlations and covariances 
and for both groupings of the data, do not yield an informative result. The points 
plotted for the different categories merge over the whole field of the graph. 

4 One of the findings made by the original analysts was that the chemical com- 
position of the shell is influenced by salinity (Na, C1), terrigenous components (Si, 
A1, Fe) and the metabolic role of Mg. This may well be true, but the segregation 
into functional components that should be apparent in the appropriately formulated 
chemometric approach does not appear in the clear-cut manner claimed by Bodergat 
et al. (1993). You can check this yourselves by examining the first principal com- 
ponents provided as an appendage to the canonical variate analysis. Furthermore, 
if you test the vectors for collinearity, you will find that the angles formed between 
vectors are relatively small, thus illustrating that the first latent vectors of the cor- 
relation matrices are roughly collinear. Use the program eompvee.exe and the data 
file leptovee.dat. This program asks you to type in the name of the file in a box 
that comes up on the screen. When you have done this, it will ask for a name 
to be given to a file to hold the results. The data-file consist of pairings of the first 
latent vectors of the relevant correlation matrices. The smallest angle of 9.36 ~ is 
for the comparison between summer and winter, but this is not due to close agree- 
ment in Mg-loadings alone, since that for Spring is about the same. We have 
not concerned ourselves with the lesser latent vectors, not only on account of 
the small samples, but also because of the instability in coefficients usually associated 
with such non-Gaussian data. 
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Conclusions 

We are now in a position to examine the validity of the conclusions arrived at by the 
original investigators. The element Ca was excluded from the original work owing to 
its "dominance" and, presumably, because it was felt that eventual environmental 
differences would be more specifically addressed by the minor elements. It was 
retained for present analytical purposes. You can test what happens if Ca is 
eliminated from the analyses. We found that the results were essentially the same 
with respect to the question of the ordinations, although these were less sharply 
manifested. 

1 Each season sets its stamp upon the shell-chemistry o f  the species. This is borne 
out by the present analysis, and even more persuasively than in the original study. 

2 There are no significant differences between the samples taken f rom the three 
localities. This is false. The canonical variate analysis shows quite clearly that 
the three samples are indeed different. This is supported by the MANOVA and 
by the generalized statistical distances, all of which transform to highly significant 
values of T 2. 

We have underscored the importance of selecting an apt statistical model for ana- 
lysing compositional data, and this has been indeed one of the main themes 
pervading this tract. What happens in the case of canonical variate analysis if 
one just stumbles ahead by way of the inappropriate procedure. You can test this 
yourselves by running the untransformed data in cva.exe. You will find that as 
before, the ordination for sites gives excellent separation, in fact, slightly better than 
before. Moreover, the generalized statistical distances are highly significantly 
different. The separation for seasons is also excellent. This brings out an important 
practical point, namely, the robustness of the ordination aspect of the method 
of canonical variates. No matter whether you use the right procedure or the "wrong" 
one, the relationships between individual points will not be much altered by an analy- 
sis concerned with but a few groups. If you are also interested in the indications 
provided by the canonical vectors, then it is important to select the appropriate 
procedure. In the present example, the original authors used a low-grade ordinating 
method (and an inappropriate statistical model) which accounts for their failure 
to identify fully the differentiation so well manifested in their material. 

There are many more points of analytical interest, but we leave their elucidation to 
your newly acquired skills. The case history briefly reviewed here is an example of the 
rapidly growing field of geological environmetrics. 
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MULTIPLE GROUP PRINCIPAL COMPONENT ANALYSIS 

Introduction 

One of the newer methods of multivariate analysis to emerge is known as Common 
Principal Component Analysis (Flury, 1984, 1988, 1995), a procedure for the sim- 
ultaneous principal component analysis (PCA) of several groups. Although common 
principal components can be computed both for covariance and correlation 
matrices, the computations for large-sample standard errors of the latent roots 
and vectors apply only in the former case. 

Standard PCA is normally a one-sample method, apart from one special case 
shortly to be mentioned. However, a variety of ad hoc applications to data-analysis 
in the geological and biological sciences abound in which this fact is not understood 
or just conveniently glossed over. The following account has been made fairly com- 
prehensive, owing to the fact that the method is new and as yet cannot be consulted 
in commonly available handbooks. 

Basis o f  common principal component analysis 

The method of common principal components can be introduced in relation to 
similarities in covariance matrices. 

1 Firstly, there is the simplest case when all covariance matrices are equal. 
2 The second degree in this hierarchy is when the covariance matrices are 

involved in a proportionate relationship; i.e. 

~i  -- fti~-~i, i = 2 . . . . .  k (5:6) 

for some positive constant c~i for k groups. 
3 The third category encompasses the CPC model, now to be introduced. 

Although the method of CPCA is quite general, it is best introduced in terms of the 
two-group situation. Let there be two samples of an object on which multivariate 
observations have been made. The question asked is whether a unique common 
transformation for both groups can be estimated? The reason for wanting to try 
such an analysis is that slight differences in covariance matrices could well be 
due to sampling variation and, therefore, lack intrinsic analytical significance. A 
standard principal component analysis, with comparisons of latent vectors would 
then not be really appropriate. The model for two samples can be expressed simply 
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as 

~1 = flAlfl T 

~2 -- flA2fl T (5"7) 

where the /~i a r e  diagonal and the ]~i a r e  positive definite. 
The relationships in eqn. (5:7) are, in effect, saying that the two dispersion 

ellipsoids are identically oriented, but differently inflated. Geometric realizations 
of this, and related situations, are given in Reyment (1969, Fig. 1). This is a special 
case of heterogeneity in covariance matrices, the general case being that not only 
are the dispersion ellipsoids differently inflated but their major axes are not parallel. 
It is important to keep in mind that this latter situation is not germane to the com- 
mon principal component model. The interpretational relevance of the CPC rep- 
resentation is that there may be some interesting proportional relationship 
between covariance matrices, such as can occur in biological work. 

By a theorem for the simultaneous decomposition of two positive definite sym- 
metric matrices (Bellman, 1960) there exists a non-singular p x p matrix B such that: 

BTY21B- Ip 

and 

BT]E2 B = A (5:8) 

where A is a diagonal matrix. Hence 

]Ell]E2B-- BA (5:9) 

That is, the columns of B are the latent vectors of the matrix product ~11]~2 and the 
diagonal of A contains the corresponding latent roots. (N.B. eqn. (5:9) exposes 
why compositional data will not fit the normal CPC model with its requirement 
of positive definite matrices.) The statistical implication of the simultaneous 
decomposition theorem is that it provides a convenient vehicle for obtaining 
uncorrelated variables in two populations. Thus if 

U = BTx (5 : 10) 

then the covariance matrix of U is Ip in the first population and A in the second 
population. This is almost but not quite exactly a generalization of principal 
component analysis to two groups. The catch is that B is, in general, not exactly 
orthonormal and hence the definition of the principal component transformation 
as a rotation of the coordinate system does not invariably apply to the multiple 
group situation as expressed in the CPC formulation. 
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There are some special situations for two groups in which the latent vectors of 
N]-11~2 are orthogonal. For example, the simple circumstance where the latent vectors 
of both covariance matrices are identical, the latent vectors of l~i-ll~2 are mutually 
orthogonal, where the product ~211~22 is symmetric, and where ~21~2 = ~2~21 �9 

The solution for two groups extends simply to several groups. The hypothesis of 
common principal components for p variables and k positive definite covariance 
matrices (each based on ni observations) is defined as: 

HcPc:  ]~i = BAiB T (i -- 1, . . . ,  k) (5:11) 

B is an orthonormal matrix and Ai is diagonal. Hence, the CPC transformation can 
be interpreted as being a rotation that produces new variables that are as 
uncorrelated as possible. The special circumstance referred to above in which a stan- 
dard multiple group PCA, using the pooled within-group covariances, is appropriate 
occurs when all covariance matrices are equal. 

Assessing the adequacy of the cpc model 

Using the maximum likelihood estimates of the B, the sample CPCs may be defined 
as 

U - I~TX (5" 12) 

The sample covariance matrix of U in group i (eqn. (5:12)) is 

F / -  (5"13) 

and 

Ai = diag Fi (5:14) 

holds. 
An effective way of judging the suitability of the common principal component 

model is to examine the corresponding sample correlation matrices obtained from 
(5:13). 

R / -  X- /2F/X ( i -  1,..., (515) 

The off-diagonal elements of these correlation matrices (5:15) are expected to be 
close to nought, that is, the matrices should approximate the identity matrix lp under 
the hypothesis Hcec. Marked (significant) deviations from zero correlation indicate 
that the CCP model is likely to be inappropriate. 
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Flury (1988) also indicated how to compute large-sample standard errors for the 
latent roots and latent vectors of common principal component analysis, based 
on results of Anderson (1963). The standard error for latent roots is given as (cf. 
Anderson, 1963, 1984): 

s(2ij) -- (2/ni)l/22ij (5"16) 

where the ni denote individual sample sizes. There will, therefore, be a set of standard 
errors for the latent roots computed for each sample. On the other hand, there is only 
one set of standard errors for the principal components B, as indicated by eqn. (5:13), 
since these are common to all k groups. If desired, confidence intervals can be easily 
obtained for the latent roots (Anderson, 1963). 

The large-sample standard errors for the common principal component 
coefficients are yielded by the following equations numbered (5:17) and (5:18). 

(~ p )1/2 
S(flmh)-- E O' h~m,'2 

i=1 
(j r h) (5.17) 

where Ojh is the harmonic mean of 

( i )_ (n  (~ij~ih)) 
( j  5~ h) (5" 18) 

Equation (5:17) is the sum over p variables of the product of the harmonic mean of 
the product of latent roots divided by their differences and the square of the common 
principal components. 

The log-likelihood ratio statistic for testing Hcec is the well known test for 
homogeneity of multivariate Gaussian populations (see, for example, Seber, 1984), 
to wit, 

k 
Z rti log(det ~i) - n log(det S)) (5"19) 
i=1 

which is a large-sample chi-square on (k - 1)p degrees of freedom. Here, the Ei are 
obtained from eqn. (5:11) and matrix S is the pooled sample covariance matrix 
defined as in the following equation: 

k 
S - n -1 Z niSi 

i-1 
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The adequacy of the CPC model HcPc is tested by means of the covariances Fi on 
(k - 1)p(p - 1) / 2 degrees of freedom (eqn. 5:20). 

k det(diag Fi) 
Z2 - Z ni log . (5"20) 

i - -  1 det F~ 

This statistic provides a measure of how well the k covariance matrices can be 
subjected to simultaneous diagonalization. 

Common principal component analysis requires careful attention to detail. It is 
necessary to keep a close watch on what is happening as the analysis progresses 
and to make sure that the model is really appropriate to the problem and the data. 
Box 17 summarizes simple applications of common principal component analysis. 
The program for doing the computations cpca.exe, is based on code generously sup- 
plied by Professor B. Flury; it is accessed as follows: 

Instructions for using the program cpca 

Line 1: Number of covariance matrices in problem (up to a maximum of 10) 

Line 2: The sample-sizes corresponding to these matrices. 

Line 3+ The matrices to be analysed, sequentially ordered. 

Output details 

1 A standard principal component analysis for each matrix. 
2 A test for a valid common principal component situation. 
3 The matrices F and corresponding correlations, R. 
4 Standard errors for the common principal component latent roots and vectors. 
5 Homogeneity of covariance matrices test. 

Obtaining the matrix input for running CPCA 

The program covpc.exe computes the input matrices for the common principal 
components. The input information for using covpc is 

Line 1:1 the number of samples 
2 the number of variables 
3 type 1 for logarithms of the data otherwise type 0 
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Line 2: the sample size (this is to be supplied in front of each matrix) and the 
data-matrix. 

The relevant output from covpc for insertion into cpca is stored in file cpcinput in a 
form that permits immediate insertion into the latter program. There is a set of 
trial-data in the file gerris.dat, consisting of morphometric measurements on species 
of gerrids (water-striders) and taken from Klingenberg (1996). 

The data used in the following illustration for interpreting common principal com- 
ponents are available in the file cyprid, dat, being three measures on the carapace of 
the living freshwater ostracod species Cypridopsis vidua (M/iller). 

Box 17: An example of common principal component analysis 

Program: cpca 

Data: cyprid.dat 

The best way to understand what CPCA tries to do is by means of a 
worked example. The main steps are introduced in the form of an 
environmetric problem, extracted from Reyment and Brfinnstr6m (1962). 

Environmental effects on Cypridopsis vidua (Miiller) 

This example demonstrates a case in which the CPC model is appropriate. 
The data consist of log-transformed measurements on the length (L), 
height (H) and breadth (B) of the carapace of the freshwater ostracod 
species, Cypridopsis vidua (Miiller), taken on samples of individuals 
reared in three different environments, to wit, an environment with nor- 
mal freshwater conditions (N - 36), an environment enriched in calcium 
carbonate (N = 53), and a stagnant environment (N = 30). One of 
the aims of the study undertaken by Reyment and Brannstr6m (1962) 
was to see in what manner the morphology of the ostracod carapace dis- 
plays evidence of reaction to environmental conditions. The covariance 
matrices and the corresponding usual principal component results for 
the three samples are listed consecutively below: 

1 Normal environment 

E ] 
0.1234 0.0778 0.1117 
0.0778 0.1235 0.0929 
0.1117 0.0929 0.1964 
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Standard latent roots 

0.34381 0.060212 0.03927 

Standard latent vectors 
1 2 3 

L 0.52545 -0.04548 0.84960 
H 0.48138 -0.80747 -0.34095 
B 0.70154 0.58814 -0.40239 

2 Calcareous environment 

E j 
0.9244 0.4640 0.8419 
0.4640 0.4066 0.5395 
0.8419 0.5395 0.8677 

Standard latent roots 

2.04523 0.14108 0.01238 

Standard latent vectors 

1 2 3 
L 0.65061 -0.63279 -0.41987 
H 0.39730 0.75481 -0.52193 
B 0.64719 0.17275 0.74249 

3 Stagnant environment 

I 0.1534 0.0705 0.0630 1 
0.0705 0.1001 0.0740 
0.0630 0.0740 0.1365 

Standard latent roots 

0.26974 0.08271 0.03754 

Standard latent vectors 

1 2 3 
L 0.62801 -0.73311 -0.26103 
H 0.51533 0.14044 0.84540 
B 0.58312 0.66544 -0.46600 
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The first latent vectors for the three-covariance matrices do not differ 
greatly from each other, whereas the second and third vectors are quite 
different. This indicates that a CPC model could only be expected to 
be reasonable for the first principal component. This could be interpreted 
as fitting the CPC "one-vector" allometric model of Klingenberg (1996) 
for multiple groups (see also Hopkins, 1966). 
The log-likelihood test for a valid CPC model yields a value of ) f2  = 10.52 
for 6 degrees of freedom. For comparison, the 95% quantile of chi-square 
on 6 degrees of freedom is 12.59, which indicates a reasonable fit of the 
model (the value does not attain statistical significance). Comparing 
the CPC model with that for equality of all covariance matrices, the value 
of the statistic (5:19) is a highly significant chi-square of 95.588 for 9 
degrees of freedom, a result that provides additional backing for the 
CPC model (the 95% quantile is 16.92). The explanation of this result 
can be seen from inspection of the ordinary principal components 
and corresponding variances which indicates that the differences between 
dispersion ellipsoids lie with differing inflations along the principal diag- 
onal (cf. Reyment, 1969, Fig. 1) for the normal and calcareous 
environments and that the order of the latent vectors for the stagnant 
environment is reversed such that vector 3 corresponds to the second 
vector of the other two samples. A reasonable explanation of this is 
the occurrence of sphericity in these two roots (thus leading to a for- 
tuitous reversal in the order of the latent vectors). 
Notwithstanding that the tests for Hcec do not lead to the rejection of a 
CPC model, it is instructive to examine the correlations defined in 
equation (5:15) between estimated CPCs. These are listed below: 

1 Normal environment 

I 1.0000 0.2629 0.1086 1 
0.2629 1.0000 -0.1380 
0.1086 -0.1380 1.0000 

2 Calcareous environment 

I 1.0000 -0.1444 -0.0003 -] 

J -0.1444 1.0000 -0.0001 
-0.0003 -0.0001 1.0000 

3 Stagnant environment 

I 1.0000 0.1035 -0.1667 
0.1035 1.0000 0.3465 

-0.1667 0.3465 1.0000 
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The only relatively high correlation, 0.3465, occurs for the stagnant 
environment (0.26 is not high from a practical viewpoint). It could be 
argued that the higher values could derive from atypical observations, 
but such is not the case, for the distributions are multivariate Gaussian 
(Reyment and BrS.nnstr6m, 1962). 

The common principal component vectors were computed to be 

1 2 3 
L 0.6239 -0.6591 -0.4198 
H 0.4280 0.7377 0.5219 
B 0.6537 0.1459 0.7424 

and the CPC latent roots, sample by sample, are 

1 0.33931 0.05612 0.04786 
2 2.04200 0.14432 0.01238 
3 0.26689 0.06382 0.05928 

The latent values are quite close to the ordinary principal component 
counterparts, which is a further indicator of the usefulness of the 
CPC model for these data. 

The standard errors of the common principal component coefficients 
(by eqns (5:17) and (5:18)) are 

1 2 3 
L 0.01584 0.03586 0.01960 
H 0.01933 0.03552 0.02339 
B 0.02519 0.02305 0.03336 

These values are small and of the same order of magnitude, thus 
suggesting that the principal component coefficients are probably rela- 
tively stable. 

The standard errors for each set of CPC latent roots by eqn. (5:16) are 

Normal environment 
Calcareous environment 
Stagnant environment 

1 2 3 
0.07998 0.03230 0.01128 
0.39667 0.00240 0.02804 
0.06891 0.01648 0.01531 

A final exercise that is usually of interest concerns the reconstitution of 
the input covariance matrices and examining residuals, since this pro- 
vides additional information on how well the CPC model can be applied 
to the data. The results of the relevant calculations are: 
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1 N o r m a l  env i ronmen t  

Reconstructions Residuals 
L H B L H 

L 0.1627 0.0796 0.1163 -0.0393 -0.0018 
H 0.0796 0.1035 0.0783 0.0200 
B 0.1163 0.0783 0.1769 

B 
-0.0046 

0.0146 
0.0195 

2 Ca lca reous  env i r onmen t  

L H B L H 
L 0.8598 0.4779 0.8152 0.0646 -0.0139 
H 0.4779 0.4561 0.5822 -0.0495 
B 0.8152 0.5822 0.8827 

B 
0.0267 

-0.0427 
-0.0150 

3 S t a g n a n t  env i ronmen t  

L H B L H B 

L 0.1409 0.0564 0.0832 0.0125 0.0141 -0.0202 
H 0.0564 0.0985 0.0563 0.0016 0.0177 
B 0.0832 0.0563 0.1505 -0.0140 

Agreement with the input covariance matrices is reasonably satisfactory, 
the most divergent sample being that for the calcareous environment. 

COMMON PRINCIPAL COMPONENT ANALYSIS FOR COMPOSITIONAL DATA 

It has already been pointed out that the usual form of the CPCA model (Flury, 1988) 
will not support compositional data (i.e. multivariate observations, each vector of 
which has a constant and identical sum) owing to the singularity of the covariance 
matrices and the obstacle inherent in eqn. (5:9). A suitable adaptation of CPC can, 
however, be constructed using the log-ratio covariance matrix, the elements of which 
are, defined as (cf. p. 24) and Reyment (1997)" 

-- [COV{Iog(xi/XD), Iog(xj/XD)}];  i , j  -- 1 . . . . .  d 

where D denotes the number of parts (i.e. ingredients) in the composition and d -  
D - 1; l~ is the covariance matrix of a d-dimensional random vector 

Yi -- log(x i /XD)  (i = 1 . . . . .  d) 
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The advantage of having a symmetric positive definite matrix is obtained at the 
cost of the loss of one of the parts, which results from the fact that the ingredients 
of a composition are not treated symmetrically. The centred log-ratio covariance 
matrix is of full dimensionality, but that matrix is singular, which constitutes a 
difficulty in the computation of common principal components. The log-ratio 
covariance matrix l~ has no restrictions on it other than the standard requirement 
of non-negative definiteness. 

Based on the results of Aitchison (1986, p. 192), a log-contrast CPCA can be 
constructed using k log-ratio covariance matrices as in the usual situation as outlined 
in the foregoing. 

Instructions for using the program epeeonst 

Program cpcconst.exe computes a constrained common principal component analy- 
sis for up to 10 samples simultaneously and 20 variables. It uses the log-ratio 
covariance matrix. The matrices, in suitable format, are obtained from eovpc 
(p. 194). 

Line 1: Number of samples and number of parts on the same line. 

Line 2: Title of the job. 

Line 3: Number of rows in the data matrix 

Line 4: The data-matrix of compositions 

Steps 2 to 4 are repeated for each sample. 

The training set is in file aitchcp.dat, which comprises the two fictitious data-sets of 
hongite and kongite (Professor Aitchison was for many years Professor of Math- 
ematical Statistics at the University of Hong Kong, hence the choice of names). 

A COMPOSITIONAL EXAMPLE 

The following briefly expounded example is based on constructed data, obtained 
from Aitchison (1986). The observations consist of five fictitious mineral species 
determined on 25 samples each of Boxite and Coxite (a whimsical allusion to a classi- 
cal paper of mathematical statistics by G. E. P. Box and D. R. Cox). An initial test of 
equality of covariance matrices gave a highly significant value. 
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The "standard"  principal component analysis for Boxite yields the following 
latent roots and vectors (i.e., we have extracted the latent roots and vectors of 
the respective matrices without recourse to the common principal component 
model). 

Standard latent vectors 
1 2 3 

1 -0.2408 0.4028 -0.5572 
2 -0.6395 0.2552 0.6988 
3 0.7252 0.4462 0.4103 
4 -0.0836 0.7572 -0.1809 

4 
0.6849 
0.1935 
0.3263 

-0.6219 

Standard latent roots 

1.44589 0.30508 0.01014 0.00429 

The corresponding results for Coxite are: 

Standard latent vectors 

1 2 3 4 
1 -0.1924 0.3621 0.8092 0.4205 
2 -0.6024 0.3796 -0.5438 0.4440 
3 0.7745 0.3931 0.2219 0.4429 
4 -0.0080 0.7550 0.0008 -0.6555 

latent roots 

1.66174 0.34193 0.01022 0.00014 

The two sets of results are quite close with respect to the elements of the latent 
vectors, whereas the corresponding first two latent roots for Coxite are greater. 
There is therefore a reasonable indication that a common principal component 
model is worth considering. The pro forma correlation matrices obtained under 
the CPC assumption are: 

Boxite 
1 1.0000 -0.3037 -0.0198 0.2414 
2 -0.3037 1.0000 -0.1506 -0.0944 
3 -0.0198 -0.1506 1.0000 -0.0946 
4 0.2414 -0.0944 -0.0946 1.0000 
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Coxite 
1 1.0000 0.0226 0.0194 -0.2387 
2 0.0226 1.0000 0.0230 0.0144 
3 0.0194 0.0230 1.0000 0.0928 
4 -0.2387 0.0144 0.0928 1.0000 

The data for Coxite clearly fit the model better than do those for Boxite; the largest 
pro-forma correlation is -0.3,  which is not a very serious deviation. 

The test for equality of covariance matrices yields a chi-square of 54.3 which, with 
16 degrees of freedom, is highly significant; this result, therefore, does not reject the 
CPC model. The log-likelihood test for a valid CPC model gives a chi-square of 
6.3697, which for 6 degrees of freedom, is not significant and hence indicates agree- 
ment with the CPC model. 

The common principal component coefficients (i.e. latent vector elements), listed 
by columns, are 

1 2 3 4 
1 -0.2143 0.3868 0.7908 0.4231 
2 -0.6199 0.3223 -0.5622 0.4422 
3 0.7532 0.4233 -0.2397 0.4425 
4 -0.0480 0.7531 -0.0307 -0.6553 

and the corresponding latent roots are" 

Boxite 1.44227 0.30792 0.00992 0.00530 
Coxite 1.65799 0.34502 0.01088 0.00014 

The standard errors for the common principal component coefficients are as 
follows" 

1 2 3 4 
1 0.03314 0.02719 0.01430 0.01842 
2 0.02733 0.05309 0.01511 0.01316 
3 0.03494 0.06230 0.01745 0.00598 
4 0.06196 0.00482 0.02485 0.00312 

Standard errors for latent roots; Boxite 

0.40794 0.08709 0.00281 0.00150 

Standard errors for latent roots; Coxite 

0.46895 0.09759 0.00308 0.00040 
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The matrix of residuals obtained by subtracting the reconstituted covariance 
matrix f fomthe input matrix is for Boxite: 

1 2 3 4 
1 0.0191 0.0241 -0.0158 0.0185 
2 0.0241 0.0259 -0.0035 0.0182 
3 -0.0157 -0.0035 -0.0518 -0.0308 
4 0.0185 0.0182 -0.0308 0.0067 

That for Coxite is: 

1 2 3 4 
1 -0.0214 -0.0232 0.0123 -0.0212 
2 -0.0232 -0.0211 0.0025 -0.0272 
3 0.0123 0.0025 0.0470 0.0410 
4 -0.0212 -0.0272 0.0410 -0.0044 

The elements of these two matrices are relatively small and, on the whole, quite 
similar. In conclusion, it may be suggested that a common principal component 
analysis is justified and that the result indicates a simplification to the first two 
principal components without loss of important descriptive variability in the 
material. 

CONCLUDING REMARKS 

The method of common principal component analysis provides an interesting 
alternative in the analysis of some types of problems in geobiology. The use of CPCA 
requires close attention to statistical detail and it is not likely that it will prove appli- 
cable to a great number of situations in the Earth Sciences. At present, the main 
geological sphere of interest for CPCA lies with palaeontology, and its practical 
applications, palaeoecology and evolutionary studies. An important field is that 
of allometry on the Hopkins (1966) model (Klingenberg, 1996). An advantage 
of the CPC model is that it provides an attractive possibility for comparing and 
contrasting graphs of multiple group scores, as is well illustrated by Klingenberg 
in the above-cited publication. 

In summary, the main points to be kept in mind on examining a likely candidate 
data-set for CPCA are: 

1 Test the covariance matrices for equality. If the covariances are found to be 
equal, then a multiple group principal component analysis (i.e. a standard principal 
component analysis) can be made on the pooled covariance matrices. In this case 
the CPC model is obviously not appropriate. 
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2 If the CPC correlations tend to be rather large, this could be due to the presence 
of atypical and influential observations in the original data set (Krzanowski, 1987a, 
1987b; Reyment, 1991). Usually (but not invariably), graphical scanning of the data 
will uncover such observations. 

3 It is useful to reconstitute the covariance matrices under the CPC model and 
compare these with the original input matrices. Large residuals indicate that the 
model does not fit well. The third example for compositional data yields small 
residuals and is therefore a good fit to the model. 

4 Be on the watch for the presence of multiple roots, that is, simultaneous 
sphericity in two or more principal components. If identical roots occur, the con- 
nected latent vectors will be poorly defined. 

The question of assessing stability in CPC latent vectors has still to be probed. The 
procedures available for robust estimation of principal components (Campbell, 
1980, 1984; Seber, 1984) are not yet directly applicable, nor are shrunken estimators 
as used in robust canonical variate analysis (Campbell and Reyment, 1978); there is 
clearly an opening for further developments here. In the meantime, the wisest course 
to take is to restrict CPC to multivariate Gaussian data sets. Atypical and influential 
observations should be isolated from each sample in turn by graphical means and by 
some such technique as Krzanowski's (1987a, 1987b) cross-validation. 

The examples presented are realistic case studies which illustrate the kinds of prob- 
lems likely to confront the analyst. 

STABILITY IN CANONICAL VECTOR ELEMENTS 

In canonical variate analysis (the two-group specification of which is the familiar 
discriminant function) ascertaining the efficiency of variables in discriminating 
between groups can be a problem. In discriminant analysis, it can be shown that 
high correlation within groups, combined with between-group correlation of the 
opposite sign, leads to greater group separation and a more powerful test than when 
the within-groups level of correlation is low. There is a strong formal connection 
between discriminant analysis and multiple regression and, as suggested by 
Campbell (1980), the instability associated with highly correlated regressor variables 
carries over to canonical variate analysis. This implies that any interpretations based 
on the relative magnitudes of the elements of canonical vectors can be misleading. In 
short, when the sum of squares between the means along a particular latent vector of 
the within-groups dispersion matrix is small, and the corresponding latent root is 
also small, instability of the coefficients will probably result. 

Notwithstanding that the reification of canonical elements has been largely 
discredited, it is still of interest to compare such vectors in connexion with the 
regional validity of analytical findings. 
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Description of the method of shrunken canonical estimators 

The within-groups sums of squares and cross products matrix W on nw degrees of 
freedom, and the between-groups sums of squares and cross products matrix B, 
are computed in the usual manner of canonical variate analysis. Although not 
necessary for the application of the method, it is usually advisable to standardize 
W to correlational form (whereby dispersion hyperellipsoids become hyperspheres), 
with the same scaling for B. 

W *  = S-1WS -1 
(5"21) 

B* --  S - 1 B S  -1 

The latent roots E and vectors U of W* are then computed 

W* = UEU T (54: 22) 

The latent vectors are then scaled by dividing them by the square root of their 
corresponding latent roots. Shrunken estimators are formed by adding shrinkage 
constants ki to the latentroots before carrying out the scaling to produce matrix 
U*.  

U* = U ( E  n t- K)  -1/2 (5:23) 

The next step is to construct the between groups matrix G in the space of the 
within-groups principal components: 

G = U*TB*u * (5:24) 

The i-th diagonal element of G is the between-groups sum of squares for the i-th 
principal component. If no shrinkage constants have been inserted, the latent roots 
and vectors of G are the usual canonical roots f and vectors, A. Where shrinkage 
constants have been inserted (5:23), shrunken (or generalized ridge estimators) C 
are yielded by: 

C = U*a (5:25) 

With respect to the selection of shrinkage constants, an "infinitely large value" 
confines the canonical solution to the subspace orthogonal to the vector, or vectors, 
affected by the addition. As a rule of thumb, one may say that when the 
between-groups sum of squares is small (say, less than 5% of the total variation 
between groups), and the corresponding latent root is also small (say, less than 1-2% 
of the trace of W), then shrinking of the principal component will probably be of 
analytical value. 
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Campbell and Reyment (1978) gave a worked example for the shrinkage treatment 
of a Late Cretaceous foraminifer, Afrobolivina afra, already introduced on p. 116. 

The program is called shrinkcv.exe, the operating details for which now follow: 

Instructions for using the program shrinkcv 

Line 1:1 number of dimensions 
2 number of groups 
3 number of shrinkage constant vectors supplied 
4 total number of observations summed for all samples. 

Line 2: the within-groups matrix in correlational form, as specified in eqn. (5:21) 

Line 3: the between groups matrix in the space of the within-groups correlations, as 
specified in eqn. (5:21) 

Line 4: the shrinkage vectors 

Putting all entries to zero will give the same result as a straight canonical variate 
analysis. Putting an entry equal to 10 is sufficient to approximate "infinity" for 
the purposes of the program and hence the suppression of that direction. 

Exemplification of the method 

Practical experience shows that situations likely to profit from shrinking are rather 
uncommon. In geological work, they occur occasionally in palaeontology and, most 
particularly, in the study of arthropods and molluscs, two groups in which a high 
level of morphological integration can exist. The example we offer below is for 
Veenia rotunda, a mid-Cretaceous ostracod species from the Atlas Mountains, 
Morocco (cf. Reyment, 1978a). The data comprise five measurements on the 
carapace of the shell, length, height, distance of the adductor tubercule from the 
anterior margin, the length of the dorsal margin and the length of the posterior 
margin. The results of the analysis are presented in Box 18. The data are stored 
in file verotshr.dat. 

Box 18: Application of Campbell's shrinkage technique to a Cretaceous 
ostracod species Veenia rotunda (Morocco). 

Program: Shrinkcv 

Data: verotshr.dat 
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Trial Number = 1 

latent roots of W* 

3.70278 0.79270 0.28300 0.14867 0.07284 

latent vectors of W* 

1 2 
1 0.4823 -0.2729 
2 0.4519 0.2544 
3 0.3354 0.8136 
4 0.4621 -0.4301 
5 0.4870 -0.1180 

3 4 5 
0.3598 0.1563 -0.7342 

-0.7965 0.2837 -0.1276 
0.4470 0.0585 0.1495 
0.1700 0.4123 0.6345 

-0.0865 -0.8495 0.1406 

The "smallest" latent root contains two large elements (variables 1 and4) 
with opposite signs. This makes this 'direction'a possible candidate for 
elimination with the likelihood that stability in the canonical vectors will 
result. 

The input shrinkage constants 

0.00 0.00 0.00 0.00 0.00 

This line indicates that none of the between-groups directions is to be 
suppressed; i.e. a standard canonical variate computat ion will be made. 

Between groups sums of squares for principal components 

0.45415 0.03330 0.75174 0.39589 0.17378 

The smallest between-groups sum of  squares is the second entry. The next 
smallest is the fifth entry. However, this last value is greater than what 
usually causes stability problems. 

Usual canonical variate results 
1 2 3 4 

0.0552 -2.0511 -1.3387 -0.1174 
0.9082 0.5896 -1.1792 0.7479 

-0.5879 -0.3898 0.1151 -0.0495 
-1.1205 1.8717 0.0521 -0.9954 

1.1430 -0.1604 1.9476 -0.3151 
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Usual canonical roots 

1.5422 0.1960 0.0707 0.0000 

Trial Number = 2 

The input shrinkage constants 

0.00 10.00 0.00 0.00 0.00 

This line indicates that the second between-groups direction is to be 
suppressed. 

Generalized shrunken (= ridge) estimators 

1 2 3 4 
0.0688 2.2596 -1.4783 0.1125 
0.8926 -0.7213 -1.1327 0.4324 

-0.6537 0.0835 0.1861 -0.1698 
-1.0834 -1.8523 0.1114 -0.6908 

1.1551 0.2880 1.9250 -0.1862 

Canonical roots for estimators 

1.53423 0.17367 0.07013 0.0000 

Shrinking the second principal component makes very little difference to 
the canonical variate analysis and it may therefore be interpreted as a 
redundant direction. 

Trial Number --- 3 

The input shrinkage constants 

0.00 0.00 0.00 0.00 10.00 

Generalized shrunken (ridge) estimators 

1 2 3 4 
-0.5398 -0.0433 -0.3902 -0.4828 

0.8389 1.2750 -0.3904 0.6384 
-0.4959 -0.7507 -0.8038 0.2575 
-0.6300 0.7259 -0.5351 -0.6051 

1.2751 -1.4226 1.1144 -0.2609 
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C-roots for estimators 

1.47696 0.11850 0.04088 0.00001 

Elimination of  the smallest principal component perturbs all vectors and 
canonical roots. Its removal is therefore not motivated. 

Campbell (1982) has devoted considerable attention to other aspects of stability in 
canonical variate analysis, including the method of M-estimation, which consists 
of down-weighting deviating observations and making the computations on the 
new data-matrix thus constructed. The details of these rather complicated analyses 
lie outside the scope of the present text. In addition to the above reference, the 
interested reader can consult Campbell (1984), Campbell and Reyment (1980), 
Krzanowski (1988), Reyment (1991), and Seber (1984). If you are contemplating 
doing canonical variate analyses in the face of divergent data sets, we strongly 
recommend study of Campbell's publications. 

SUMMARY 

1 Canonical variate analysis. 
2 Q-Q-probability plots. 
3 Canonical variate analysis for compositional data. 
4 A study in environmental chemistry. 
5 Multiple group principal component analysis. 
6 Compositional multiple group principal component analysis. 
7 Stability in canonical vector elements. 
8 The method of shrunken canonical variate estimators. 
9 Programs and associated training sets. 

cva gastcva.dat 
cvaconst alkalicv.dat 
cpca cyprid.dat 
covpc gerrids.dat 
cpcconst aitchcp.dat 
shrinkcv verotshr.dat 
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Chapter 6 

Correlating between sets 

INTRODUCTION 

Relatively early in the history of multivariate analysis, interest was directed towards 
trying to quantify the association between sets of variables having a joint dis- 
tribution. Most earlier research in multivariate analytical applications was con- 
cerned with the social sciences and this initial involvement has left an indelible 
mark on thinking and practice, even in work done in quite different fields. Hotelling 
(1936) wanted to correlate between sets of different kinds of observations on the 
learning ability of schoolchildren. He called his procedure canonical correlation, 
pursuing in his presentation, a vague analogy with principal component 
interpretations. A suite of correlations is extracted from the data, analogously 
to the latent roots of principal components, but it is the interpretation of the results 
that has been the stumbling block ever since the method was introduced and even 
to this today, and despite numerous attempts at revamping the mode of reification 
of the results, canonical correlation remains something of a "maverick method" 
in the minds of many practitioners. We proceed now to a quick and far from com- 
prehensive presentation of the method in order to show that in its mathematical 
structure, at least, canonical correlation is of the same form as canonical variate 
analysis of the previous section. 

Just as in the case of the method of canonical variates, the problem is one of the 
simultaneous reduction of two symmetric matrices to diagonal form. As we saw 
before in the case of canonical variate analysis, the two matrices we start with 
are T, the total sum of squares and deviations, and W, the within-groups sum 
of squares and deviations. These matrices are symmetric positive definite. Their 
difference, defined as B = T - W, is positive semidefinite. (This means that the 
determinants of T and W are positive, whereas that of B is nought.) We saw 
how the required canonical roots and vectors of canonical variate analysis are 
obtained from the solution of the determinantal eqn (5:4). Harris (1975, p. 141) gives 
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a proof of the formal mathematical relationship between canonical variates and 
canonical correlations. Another valuable reference is that of Anderson (1984, 
pp. 480-502). 

The mathematical structure of canonical correlation analysis is, then, based on the 
simultaneous reduction of two symmetric matrices to diagonal form (known 
technically as the Weierstrass diagonalization for the eminent German mathema- 
tician K. T. W. Weierstrass), although the input is not the same in that the sample 
is assumed to be from one and the same statistical population, not several, as in 
canonical variates. In principle, we consider two sets of variates with a joint dis- 
tribution. Consider now a correlation matrix R (the covariance matrix can be used 
instead if you wish, but in that case, the variances of the variables encompassed 
should not be too different) consisting of correlations computed betweenp variables. 
Imagine now that these variables are of two kinds, say, q morphological dimensions 
in one set and r physical measures in the other. Such a matrix can be partit ioned as 
follows: 

l i _ ( R l l  R12) 
R21 R22 

All the correlations pertinent to the morphological variates are sequestered into 
Rl l ,  all of those relating to the physical variables into R22. The matrix R a2 - R~ 
contains the correlations between the variables of the two sets, i.e. the associations 
between morphological and physical traits of the sample. In this representation, 
T and W of canonical variate analysis are replaced respectively by R ll and 
Rll  - R12R~lR21 �9 

The roots of the equation are the squares of the required canonical correlations 
between two new variables. Corresponding to each of these correlations there 
are two sets of coefficients, one matching to the one set for q variables and the other 
matching to the other set for r variables, that is, a new coordinate system in the space 
of each set of variates. These are the linear combinations of variables in each set that 
have maximum correlation and which are the first coordinates in the new system of 
coordinates. Then a second linear combination in each set is sought such that 
the correlation between these is the maximum of correlations between such linear 
combinations as are uncorrelated with the first linear associations. The process 
is continued until the two new coordinate systems are completely specified. Diffi- 
culties begin to arise when an attempt is made to reify these coefficients and all 
too often, the results seem to lack scientific sense. There is also a difficulty with 
respect to the canonical correlations themselves. They do not represent successively 
smaller portions of the total correlation between sets, as one might expect from what 
is achieved by the partit ioning of variance in principal component analysis. In fact, it 
is not uncommon that a very high canonical correlation can be associated with a very 
minor virtual relationship between sets. Cooley and Lohnes (1971) tried to rectify 
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this situation by a rather complicated, and to a certain extent perhaps, arbitrary 
redundancy analysis. Personal experience indicates that fuzzy results with confusing 
interpretations can be expected when: 

1 The data deviate markedly from multivariate normality. 
2 There are very high correlations in R12, a condition that was forecast by 

Campbell (1979). 
3 There is great disparity in the types of variables included in one or both of the 

sets. 
4 Variances are greatly different. 

There are things that can be done in order to iron out some of these difficulties, 
including a suitable transformation of the data before analysis (not forgetting 
the need to attend to compositional data in the right manner, which subject is con- 
sidered further on in this chapter), and to scan the data for atypical observations, 
etc. In this latter respect, it can be useful to precede a canonical correlation analysis 
by scrutinizing the data-matrix, using Krzanowski's (1987a,b) methods for 
cross-validational principal components to ferret out atypical and influential 
observations. The analysis can then be repeated with such observations removed 
from the data-matrix and the results compared with the original analysis. 

The vector correlation coefficient 

People often ask if there exists a way of expressing the correlation between sets of 
variables by means of a single number, given the interpretational problems attaching 
to canonical correlation coefficients. Escoufier (1973) proposed a generalization of 
Pearson's "coefficient of determination", the square of the correlation coefficient, 
which he called the coefficient of vector correlation, and which he denoted R V. 

It is simply defined as 

Trace(Sl2S21) 
R V =  (6:1) 

~Trace(S21)Trace(S22) 

This statistic is output by the program provided. As one might expect, Escoufier's 
coefficient ranges between 0 and 1. 

The program provided here is called cancorr.exe. The input details for using it now 
follow: 

Instructions for using the program cancorr 

Line 1: Title of the job 
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Line 2 :1  
2 
3 
4 

number of variables in larger set 
number of variables in smaller set 
size of the sample 
1 for a set of principal component analyses 
0 is default 

5 1 if logarithms are to be taken 
0 is default 

6 1 for multiple correlations, regression coefficients, partial correlations 
0 is default (only available if the canonical correlations are computed for 
the correlation matrix). 

7 1 for input as a processed covariance or correlation matrix. Type 0 for 
input as a data matrix 

8 1 for a listing of the data matrix, 0 for no listing 
9 1 if the covariance matrix is to be analysed, 0 if the correlation matrix is to 

be used (data-matrix input). 

Line 3 and following: the data. 

Output details 

The program computes standard univariate statistics, multiple correlations, multiple 
regressions (for the correlations option), and produces scores, placed in the file 
ccrplot for subsequent insertion into Graph Server. The main output presents 
the full set of canonical correlations together with the redundancy equivalents. 
Normally, the redundancy analysis will only be really useful in the case of the cor- 
relation option. 

A simple example now follows. It consist of three measurements, length, height 
and breadth, on the carapace of an Eocene ostracod species of the genus 
Echinocythereis from Aragon, Spain and three chemical parts determined on the 
same samples, to wit, vanadium, bromium and chromium. The material derives from 
petroleum exploration by ELF (Pau), to which organization RAR expresses his 
thanks for access to this valuable material. The data file is called canco2.dat. Some 
of the output will now be commented upon. Note that the program also provides, 
if asked, a full set of partial and multiple correlations and multivariate regression 
coefficients. A set of principal component analyses of the correlation matrix and 
the submatrices can also be obtained by following the foregoing instructions. Look 
now at the results listed in Box 19. 

Box 19: Example of canonical correlation analysis: 
palaeoenvironmental data 

the Spanish 

Program: c a n c o r r  
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Da ta :  canco2.dat 

variables in left set = 3 (length, height and breadth of the ostracod 
carapace) 
variables in right set = 3 (boron, chromium, vanadium) 

(It is convenient to make the "left hand set" the one containing the 
greater number of variables" there is no special statistical significance 
involved.) 

number of observations = 10 

Variable Mean Standard deviation 
1 0.264 0.1886 
2 0.658 0.1821 
3 0.075 0.0481 
4 0.360 0.0789 
5 0.424 0.0389 
6 0.248 0.0385 

Correlation matrix for all variables 

1 1.0000 
2 -0.9670 1.0000 
3 0.2142 -0.0355 
4 -0.5147 0.3837 
5 0.5546 -0.5490 
6 -0.0951 0.1308 

1.0000 
0.6058 1.0000 

-0.1008 -0.4270 
-0.1798 -0.2047 

1.0000 
-0.4830 1.0000 

Correlations for the left-hand set 

These values are for the shell-dimensions. There is a very high negative 
correlation between length and height of the carapace. The other cor- 
relations are very small. 

1 1.0000 
2 -0.9670 
3 -0.2142 

1.0000 
-0.0355 1.0000 

Correlations for right-hand set 

1 1.0000 
2 -0.4270 
3 -0.2047 

1.0000 
-0.4830 1.0000 
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The correlations between the chemical factors are moderate to low. 

Correlations between sets 

1 -0.5147 0.5546 -0.0951 
2 0.3837 -0.5490 0.1308 
3 0.6058 -0.1008 -0.1798 

This set of correlations is interesting in that it exposes several sources of 
likely interaction between shell-morphology and the chemical factors. 

Latent Root  1 0.58702 
Latent Root  2 0.21062 
Latent Root  3 0.06503 

Percentage for Latent Root  1 = 68.05 
Percentage for Latent Root  2 = 24.41 
Percentage for Latent Root  3 = 7.54 

Latent vectors 
Number 1 Number 2 Number  3 

1 0.8155 0.8750 0.4931 
2 -0.3108 1.3233 0.4940 
3 -0.1322 0.4419 1.2539 

Squared canonical correlation 1 = 0.587 
Canonical correlation 1 = 0.766 

Coefficients for the right set 

0.8155 -0.3108 -0.1322 

Coefficients for the left set 

5.2845 5.7917 2.0544 

Scores for canonical correlation 1 

The scores are saved in file ccrplot for plotting. The results for plott ing 
are listed below: 
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Specimen LeR-hand scores Right-hand scores 
1 -1.8319 -1.7508 
2 -0.8613 -0.6072 
3 0.2173 -0.1462 
4 1.0349 0.0814 
5 1.2008 1.6321 
6 -0.3354 0.7699 
7 -0.0726 -0.6958 
8 0.4115 -0.4240 
9 -0.8884 -0.1250 

10 1.1251 1.2660 

Redundancy analysis for correlations between original variables and new 
canonical variables 

Correlations between original left-hand set and the new variables 

-0.7563 0.6085 0.7167 

Correlations between original right-hand set and the new variables 

0.9753 -0.5951 -0.1491 

Note: It is often found that these two vectors give a more understandable 
reification of a canonical correlation analysis using the correlation matrix 
as starting point than the canonical variate vectors, from which they are 
computed in a manner reminiscent of the techniques of factor analysis. 
A more striking example occurs in Chapter 7. 

Proportion of variance of left set 
explained by canonical correlation 1 = 0.4853 

Proportion of variance of left-hand set explained by 
canonical correlation 1 of the right set = 0.2849 

Proportion of variance of right set 
explained by canonical correlation 1 = 0.4425 

Proportion of variance of right-hand set explained by 
canonical correlation 1 of the left set = 0.2598 

Note: This lopsidedness in variance partitions is an outcome of the 
"asymmetry property" of redundancy analysis. 
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Vector of correlations between original left-set variables and canonical 
variates of right set variables 

-0.5795 0.4662 0.5491 

Vector of correlations between original variables and canonical variates 
of left-set variables 

0.7472 -0.4559 -0.1142 

The canonical correlation scores can provide useful visual information 
about the correlation structure linear relationships of a sample. 

Discussion of the canonical correlation analysis 

This simple little example presents several points of importance for 
understanding the way in which a canonical correlation analysis appears 
in practical work. The directly computed canonical vectors differ rather 
strongly from the corresponding redundancy vectors due no doubt to 
the fact that the data do not fit the multivariate normal distribution very 
well and the sample-size is small. Both do, however support the view 
that the first component of each vector is important in establishing 
the observed correlation. The example also brings out a sad fact of 
geostatistical life, to wit, that geological data usually deviate from theor- 
etical nicety for which reason it can sometimes be very difficult to get 
much sense out of the canonical correlation analysis of a set of analyses. 
A further training set is, which illustrates the capabilities of the program. 
This is in the file canco4.dat. 

The method of redundancy analysis is an attempt by Stewart and Love 
(1968) to clarify the interpretation of the results yielded by canonical 
correlation analysis. The redundancy is defined as the proportion of 
the variance extracted by the canonical factor Rdx multiplied by the 
proportion of shared variance between the factor and the corresponding 
canonical factor of the other set. It expresses the amount of overlap 
between the two sets that is contained in the first canonical relationship, 
and so on (Cooley and Lohnes, 1971, p. 170). The feeling that one is 
not doing something quite "kosher" with all the seemingly subjective 
juggling with matrix multiplications, has created a good deal of hesitancy 
on the part of many practitioners in adopting the method. Gleason 
(1976) has, however, shown that the procedure is statistically, and 
mathematically, correct. Providing the data are not too different from 
the multivariate normal condition, the results yielded by the 
unembellished canonical correlation computations should prove satisfac- 
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tory for most geological purposes. There is a geological example in 
Reyment (1991, p. 68) in which the redundancy vectors are reified to 
a scientifically appealing result and an analysis of the occurrence of lead 
and zinc in an earlier article (Reyment, 1972). The method has not caught 
on very well and Jackson (1991), for example, noted it as well as its com- 
petitors, but did not exemplify the procedure. 

LOG-CONTRAST CANONICAL CORRELATION ANALYSIS 

Among the many exciting innovations made by Aitchison (1986), we find a version of 
compositional canonical correlation analysis. This adaptation of canonical corre- 
lation analysis for use with compositional data is a moderately uncomplicated sub- 
stitution of the usual covariances for those of the centred log-ratio covariance 
matrix. Hence, the log-contrast canonical correlation between a C-part composition 
X l and a D-part composition x2 is computed in the usual manner, using the appro- 
priately partitioned log-ratio covariance matrix ~. It is defined as the maximum 
correlation between two log-contrasts a]r log xl and a~ log X 2 (known as the 
log-contrast canonical components when standardized by the appropriate unit vari- 
ance constraints). Thus, the method of determination is 

(~)~21 ~)~217 ]~12 --/~2]~22)b2 -- 0 (6:2) 

from which 

bl - 2 -112]-~ 1212b2. (6" 3) 

For present purposes, we use the arguments developed by Aitchison (1986, pp. 
190-191) to adopt also the symmetric version by which the centred log-ratio 
covariance matrix replaces the log-ratio covariance matrix of (6:2) and (6:3). 

Instructions for using the program ccrconst 

This program is a suitably modified version of cancorr.exe for computing com- 
positional log-contrast canonical correlations by means of the centred log-ratio 
covariance matrix, respectively, the associated log-ratio correlation matrix. There 
will therefore be a full complement of parts in the analysis. Following Aitchison's 
(1986, pp. 203, 329-331) implied recommendation, we suggest the computations 
be made on the covariances although there are many cases in which the log-ratio 
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correlation version can provide interesting information. Anderson (1984) gives a 
trim account of the connection between canonical correlations obtained by 
covariances in relation to those derived from the correlations. 

Input details 

Line 1: The dimensionality of the problem; hence, if there are ml parts in the first set 
and m2 parts in the second set, the dimensionality supplied here is the sum of 
these. 

Line 2: Title of the job 

Line 3 :1  Number of parts in the "left" set 
2 Number of parts in the "right" set 
3 Total number of specimens 
4 Type 1 for log-ratio covariances, or 0 for log-ratio correlations 
5 Type 1, if a set of principal component analyses is desired, else put = 0 
6 Type 1, if the input data-matrix is to be listed, else type 0 

Line 4: The data-matrix 

The coordinates for plotting in Graph Server are stored in concrplt. 
As an example of the output, we shall consider the brief analysis of data on the 

composition of bentonites in the file bentccr.dat, and displayed in Box 20. 

Box 20: Chemical Composition of Bentonites 

Program: ccrconst 

Data: bentccr.dat 

Total number of parts = 11 

Our aim is to compute canonical correlations for centred log-ratio data 
with 9 left-side parts and 2 right-side parts forming the bentonite data, 
taken come from an article by Cadrin et al. (1996) on isotopic and chemi- 
cal compositions of bentonite as palaeoenvironmental indicators of the 
Cretaceous Western Interior U.S.A. 

Variables in left set - 9 

These are the parts Si, A1, Fe, Mn, Mg, Ca, K, Na and H20. 
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Variables in right set - 2 

These are two determinations on oxygen isotopes. 

Number  of observations = 14 

Variable Mean Standard deviation 
1 2.954 0.2191 
2 1.907 0.2386 
3 -0.749 0.7764 
4 -6 .172 2.0926 
5 0.327 0.3021 
6 -0 .705 0.8185 
7 -1.911 0.6720 
8 -2.415 0.9116 
9 1.096 0.2477 

10 3.621 0.2027 
11 2.045 0.3069 

We note here that part  4 is out of phase with the other parts in that its 
standard deviation is much greater than any of the others. This suggests 
the possibility of an atypical observation in the data-set. 

Wilk's test o f  canonical correlations 

Lambda one = 0.0001 

Chi-square = 73.62 

Degrees of freedom = 18. 

Lambda two = 0.200 

Chi-square = 13.21 

Degrees of freedom = 8. 

The tests indicate one definitely significant canonical root and a possible 
second significant root. 

Squared log-contrast canonical correlation 1 = 0.9995 

Canonical Correlat ion 1 = 0.9997 
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The first canonical correlation is almost 1 and is, therefore, very high 
indeed (canonical correlations run from 0 to 1). 

Coefficients for right set 

0.5164 0.5164 

Coefficients for left set 

-0.1357 -0.5247 -1.3975 -3.7639 -0.5915 -1.4554 
-1.1580 -1.6744 -0.4568 

The scores are preserved in the file concrplt for subsequent plotting. 

MULTIPLE REGRESSION 

Multiple regression may be conveniently regarded as a special case of canonical 
correlation where one of the sets consists of a single variable (Draper and Smith, 
1966). The program for computing canonical correlation produces a multiple 
regression analysis by default if one of the sets contains just one variable; however, 
granted that parts of the output may be difficult to interpret, we have provided 
a simple procedure for computing multiple regression. This program is called 
multregr.exe. 

Instructions for using the program multregr 

Input details 

Line 1: Title of the job. 

Line 2 :1  Number of variables 
2 Number of observations 

Line 3: The data-matrix in free format; note, that the dependent variable must be 
placed last - i.e., the last column of the data matrix. 

Output details 

Means, standard deviations, covariances, correlations, multiple correlation 
coefficient, regression coefficients and the linear intercept of the regression. The 
output also includes a comparison between the values of the dependent variable 
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and those computed by the regression and, hence, the residuals resulting from the 
multiple regression, that is, the difference between each observed value of the depen- 
dent variable and the estimated value of it, obtained from the multiple regression 
equation. This is useful information because it lets you know how well your 
regression fits the data and, moreover, points to individuals that deviate from 
the main body of the material. A simple example is now presented in Box 21. It 
concerns a data set of 38 specimens of the three mid-Cretaceous ammonite species 
Neogastroplites americanus, N. cornutus and N. muelleri from the Cenomanian 
of northwestern USA and five variables. The independent variables are four 
determinants of shape (obtained by Bookstein's (1991) method of relative warps) 
and the dependent variable is counts on rib frequencies. 

Box 21: Multiple regression analysis of Neogastroplites spp. Three 
Cretaceous ammonite species from the Cenomanian of North America. 

Number of variables = 5; observations = 38 

Correlation matrix 

1 2 3 4 5 
1 1.0000 -0.1979 -0.1055 0.0310 0.5253 
2 -0.1979 1.0000 0.2736 -0.0379 -0.1981 
3 -0.1055 0.2736 1.0000 0.3135 -0.1518 
4 0.0310 -0.0379 0.3135 1.0000 -0.0037 
5 0.5253 -0.1981 -0.1518 -0.0037 1.0000 

The first m - 1 variables are the predictor (independent) variables. 
The value of multiple R square is = 0.2907, the square root of which 

yields the multiple correlation coefficient, which is 0.5392. 
F4,33 for ANOVA on the multiple R-value is 3.3818, which is significant 

on the 5% level. 
The beta weights (coefficients) for the multiple regression equation are: 

1 27.9615 
2 -2.9039 
3 -2.3470 
4 0.0595 

The associated intercept constant is 21.947. 
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Observed dependent fitted response residuals variable (the lateral ribs) 

21.000 19.898 1.102 

33.000 27.144 5.856 
21.000 19.898 1.102 

There are two very poor fits. The analyst would be advised to check the 
associated specimens for clerking errors and, or, deformation of the 
specimens. In a full analysis, one would not stop here, the next step being 
to perform graphical studies. Various plots of residuals can help model 
improvement. Useful guides for doing this are Atkinson (1985) and Cook 
& Weisberg (1982). 

As an exercise, see what you can make of the data-set multregr.dat. This consists of 
seven distance-measures determined on the carapaces of 70 individuals of the 
ostracod species Veenia rotunda (Cretaceous, Morocco). A subset of these data 
appeared in Box 18. The characters are length of carapace, maximum height over 
the anterodorsal angle, distance from the eye tubercle to the posteroventral corner, 
maximum height over the posterodorsal angle, distances of the adductor tubercle 
from the anterior and ventral margins and the length of the posterior margin of 
the carapace. 

SUMMARY 

1 Canonical correlation analysis. 
2 Redundancy analytical model. 
3 Escoufier's vector correlation coefficient. 
4 Log-contrast canonical correlation analysis. 
5 Multiple regression. 
6 Programs and associated training sets 

cancorr canco2.dat 
ccrconst bentccr.dat 
multregr multregr, dat 
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Some problems in petrology and geochemistry 

INTRODUCTION 

It should by now be apparent to you that multivariate data abound in everyday 
geology, particularly geochemistry, petrology and palaeontology. In fact, if a stat- 
istical survey were to be carried out it would probably be found that most 
multivariate situations in geology (excluding palaeontology) arise in the study of 
the compositions of rocks of various kinds. It is, however, here that most errors 
in statistical applications occur, as has been well exposed by Aitchison (1986) in 
his fundamental monograph. 

THE SAUDI-ARABIAN RIFT VALLEY VOLCANICS 

The examples presented in this chapter are rather typical of their genre. We shall 
begin with a study of volcanic rocks. Demange et al. (1983) studied a recent 
N-S trending volcanic chain, the Jabal al Abyad, located along a fractural axis, 
classified by those authors as a rift-valley, the rocks of which have evolved from 
mildly alkaline basalts to phonolites under certain structural conditions, and to com- 
endites under others. The analyses of the chemical data were made using simple 
graphs of ratios, the statistical soundness of which type of procedure is not 
unchallengeable. Chemical and mineralogical variations were explained as manifes- 
tations of fractional crystallization. There is an unexpected complication to under- 
standing the importance of a major part of the publication in that there is no 
explanation of the symbols used in the graphs (the Fig. 4 of the authors lacks 
the key to which that figure and several others refer). 

The data listed in the filejabal.dta consist of determinations made on 11 samples of 
the major elements, expressed as oxides, SiO2, TiO2, A1203, Fe203, FeO, MnO, 
MgO, CaO, Na20, K20, P205 and an unspecified residue. The trace elements 
assessed were V, Cr, Co, Ni, Cu, Zn, Li, Rb, Sr, and Ba. There are 11 major elements 
and 10 trace elements in the data-matrix. It is quite obvious that the first set of 
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determinations consists of parts which sum to a constant. What is the situation for 
the trace elements? Although there does not seem to be an obvious constraint 
involved, there is, however, indeed. These data are expressed as parts per million 
and are no more or no less than the "parts" we met in the first chapter. 

Although Demange et al. (1983) did not compute any statistics for their data, 
other than a very few simple univariate ones, they did perform some graphical oper- 
ations having a statistical import. We need only to consider the use of ratios. It is 
rather common praxis in petrology, it seems, to attempt to arrive at meaningful 
ordinations of data by plotting ratios that are interpreted as possessing special diag- 
nostic significance. One such graph used in the study examined here is the ratio 
Ca/Sr plotted against St. Another is the graph of the ratio K/Ba plotted against 
Ba. The statistical, and logical, objection that comes to the fore here is that the same 
component enters into both axes of the graph; strontium is being compared with 
itself and barium likewise with itself. This is a questionable procedure at best 
and was decried by Karl Pearson more than a hundred years ago. It is also difficult 
to desist from concluding that some aspects of petrological classification bear 
the stamp of arbitrariness and the names applied to rock compositions depend 
on time, place, person and chance (see also Sorensen, 1974). 

Suggested analytical approach 

The principal value of the data-set lies with the possibility it offers of finding natural 
groupings in the samples, and hence, the rock-types subjected to chemical analysis. 
The first problem to be overcome is that there are more variables than samples, 
namely, 21 chemical parts and only 11 samples. This indicates that a Q-mode strat- 
egy is going to be required, using a rather special arrangement of the data with 
the variables taking the role usually played by the specimens. It is, as it were, as 
though we had inverted the space occupied by the data. A good method with which 
to begin is that of principal coordinates. We shall apply the method to the raw 
data-matrix and then to its log-ratio equivalent as a start. 

The second area of interest centres about the relationship between major elements 
and trace elements. Canonical correlation analysis supplies a possible means of 
assessing this but, owing to the paucity of observations available, it will be necessary 
to cull the number of variables so as not to invalidate the covariance matrix. In 
reducing the dimensionality of the problem, we have relied on the elements 
betokened as being diagnostic in the article by Demange and his coworkers. 

Principal coordinate analyses 

The salient results obtained by applying the program pcoord, exe to various versions 
of the data-matrix for the samples of igneous rocks from the Saudi rift-valley 
(Demange et al., 1983) are displayed in Boxes 22 and 23. It is a good example 
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of the power of Q-mode ordination for resolving a difficult problem. The first box 
contains an abridged version of the results obtained for the computations applied 
to the raw data-matrix. The second of these boxes presents a summary of the same 
computations implemented for the log-ratio data-matrix. 

Box 22: Principal coordinate analysis of the raw data-matrix for the 
Saudi rift-valley data 

(a) The data-matrix in terms of the 11 rock-samples 
Data in file: j a b a l l l . d a t  

Data from Demange et al. (1983) for the oxides SiO2, TiO2, A1203, 
Fe203, FeO, MnO, MgO, CaO, Na20, K20, P205 

The minimum spanning tree 

Connected to by the distance 

hawaiite_l basalt 1.5929 
hawaiite__2 hawaiite_l 2.5447 
mugearite hawaiite_2 1.3812 
benmoreite mugearite 3.6931 
quartz trachyte benmoreite 2.3830 
trachyphonolite quartz trachyte 1.2421 
alkaline phonolite trachyphonolite 1.3468 
phonolite alkaline phonolite 1.3999 
comend, trachyte alkaline phonolite 1.5294 
comendite comend, trachyte 0.7943 

Length of tree = 17.91. 

The minimum spanning tree is a useful, almost essential, tool for making 
an ordination comprehensible. Points that may seem to be close neigh- 
bours in the bivariate scatter plot may well be really quite distant from 
each other, particularly if, say, the third latent root is almost as large 
as the second latent root (and hence represents important spatial infor- 
mation not accessible in a bivariate plot). 
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Latent roots (largest three) of transformed association matrix 

1.9010 
0.5767 
0.3747 

Specimen Coordinates 
1 0.6113 -0.3959 0.0591 
2 0.5505 -0.2772 0.0122 
3 0.5192 0.2356 -0.2369 
4 0.4226 0.4131 -0.1033 
5 0.0172 0.1759 0.5023 
6 -0.2689 0.1725 -0.0353 
7 -0.3612 -0.0180 0.0114 
8 -0.4007 0.0037 -0.0745 
9 -0.2354 0.0189 0.1158 

10 -0.4269 -0.1392 -0.1239 
11 -0.4276 -0.1894 -0.1269 

These points are saved in the file prcrd for plotting by means of Graph 
Server. 

Values of residuals 
Roots exceeding Percentage residual 
2 35.42 
3 25.68 

Discussion of results in Box 22 

The minimum spanning tree, superimposed on the plot of the first two principal 
coordinates, gives a clear indication of progression in chemical properties as a func- 
tion of time from basaltic rocks to phonolitic in reasonable accordance with the 
deductions of Demange et al. (1983). There is a high degree of integration in the 
data which explains the quite low residuals obtained. This condition is a favourable 
one in a Q-mode analysis, since it preserves distances between objects. Its statistical 
effects are further manifested in the concluding section of this chapter. 

We now pass to the principal coordinate analysis of the log-ratio data-matrix of 
oxides, summarized in Box 23. 
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Box 23: Principal coordinate analysis of the constrained data-matrix for 
the Saudi rift-valley 

The Saudi rock sequence in log-ratio principal coordinate analysis using 
program pcrdcons. 

Data in file: jaba l l  11.dat 

Variables = 11 Individuals = 11 

Minimum spanning tree 
Connected to by distance 

hawaiite_l basalt 1.1414 
hawaiite_2 hawaiite_l 1.8417 
mugearite hawaiite_2 0.6344 
benmoreite mugearite 2.9021 
quartzose trachyte benmoreite 2.3247 
trachyphonolite quartzose trachyte 1.0122 
comenditic trachyte trachyphonolite 1.8021 
phonolite comenditic trachyte 1.5801 
hyperalk, phonolite comenditic trachyte 1.6877 
comendite hyperalk, phonolite 2.1694 

Length of tree = 17.096 

Latent roots (largest three) of transformed association matrix 

1.782 
0.476 
0.311 

Specimen Coordinates 
basalt -0.5181 0.1877 
hawaiite_l -0.5179 0.1227 
hawaiite_2 -0.4636 0.1008 
mugearite -0.4010 0.0202 
benmoreite -0.1500 -0.3496 
trachyphonolite 0.1651 -0.2301 
phonolite 0.3568 -0.1278 
hyperalk, phonolite 0.4656 0.2005 
quartzose trachyte 0.1096 -0.2549 
comenditic trachyte 0.4092 -0.0135 
comendite 0.5441 0.3438 

-0.2161 
-0.2188 

0.2734 
0.3130 

-0.1836 
0.0287 
0.0537 
0.0203 

-0.0164 
0.0190 

-0.0733 
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These points are saved in the file prcrdplt for plotting. 

Values of residuals 
Roots exceeding Percentage residual 
2 35.71 
3 26.85 

These residuals are relatively small and it may therefore be concluded that the 
principal coordinate solution fits the data well. 

Discussion of the constrained principal coordinate analysis 

Although the general form of the results seems to be much the same as was obtained 
with the raw data-matrix, and the relatively small residuals are closely comparable, 
there are, nonetheless, some significant deviations that are worth noting. If you 
examine the plot of the points in the plane of the first two coordinates you will 
observe that the first two thirds of the path traced out by the minimum spanning 
tree (constructed from the log-ratio data) is the same up to the location of the sample 
of trachyphonolite. Thereafter, the ordering of the samples differs, to end up, 
however, in both cases with comendite. The ordination for the log-contrast principal 
coordinates, with the minimum spanning tree superimposed, is shown in Fig. 32. 

Whichever of the two results makes the best scientific sense requires expertise in 
petrological interpretation. The salient feature of the present analysis is that the 
statistically correct model leads to a somewhat different outcome from that yielded 
by the unsophisticated one. However, in both cases, the high correlations occurring 
between variables guarantee that the distances between objects are well preserved 
in the plane of the first two principal coordinates. 

Discussion of the Saudi Rift data 

The foregoing set of analyses indicates that the main conclusions arrived at by 
Demange et al. (1983) are supported by the multivariate analysis, albeit with certain 
minor reservations. Even a cursory perusal of the input material discloses that there 
are very pronounced trends in the observations and it is therefore not surprising 
that such obvious numerical structure shows up in almost any kind of quantitative 
appraisal. At the statistical level, the results achieved with the aid of the appropriate 
model in terms of compositional parts do not greatly differ from the inappropriate 
model for the Q-mode analysis. The treatment of the data summarized in the present 
chapter can be expanded so as to include a correspondence analysis and analyses of 
subsets (i.e. appropriately constructed subcompositions) of the data. 
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Fig. 32. Ordination of alkaline rock categories by log-contrast principal coordinate analysis with the 
minimum spanning tree superimposed on the plot. KEY: 1 Basalt; 2 Hawaiite-1; 3 Hawaiite-2; 4 
Mugearite; 5 Benmoreite; 6 Trachyphonolite; 7 Phonolite; 8 Hyperalkaline Phonolite; 9 Quartzose 

Trachyte; 10 Comenditic Trachyte; 11 Comendite. 

A PALAEO-OCEANOGRAPHICAL EXAMPLE 

Introduction 

Cadrin et al. (1996) studied the isotopic and chemical compositions of bentonites as 
possible palaeo-environmental indicators of the Cretaceous Western Interior Sea- 
way of Northern America. The bentonites were collected from the 
Cenomanian-Turonian of the Greenhorn cycle and the Campanian of the Claggett 
sequence. A principal objective of their investigation was to attempt to find out 
why oxygen and hydrogen isotopic compositions of the volcanic ash do not always 
agree with those inferred for the seas themselves, as assessed from well preserved 
fossils. The deviations from theory were attributed to alteration of the bentonites 
after they had been deposited. 
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The Cretaceous Period was a time of great episodic epicontinental flooding, the 
most important of which took place in the Cenomanian to Turonian. This is 
one of the mondially registered tectono-eustatic, or Suessian type, transgressions. 
The next in time, though generally less extensive, was that of the 
Campanian-Maastrichtian. The issue taken up by Cadrin et al. (1996) is one of prac- 
tical significance in palaeogeography in that chemical constituents of sediments can 
be expected to provide evidence of past oceanographical conditions. 

The Data 

In the following, the chemical analyses listed in Tables 1 and 2 of Cadrin et al. (1996) 
are analysed by two multivariate methods. These are log-contrast principal 
component analyses of the oxides of major elements, using the centred log-ratio 
covariance matrix and constrained canonical correlation analysis of the oxides with 
the two isotopes, using the log-ratio covariance matrix. The major element oxides 
are SiO2, A1203, Fe203, MnO, MgO, CaO, K20, and H20, all expressed as 
weight-percent oxide and hence compositional. The two isotopes are 6D in ppm 
and 60 in ppm. The published analytical data does not sum exactly to 100 and 
it must be assumed that some components were not included in the printed table. 

There are four samples of the Cenomanian marker bed, known as the 
"X-bentonite", from the Belle Fourche Member of the Big River Formation. This 
marker can be traced over two thirds of the Western Interior Basin. Notwithstanding 
the synchrony of this ash-fall, the occurrences display considerable variation in 
mineralogy, a condition that is ascribed by many workers to post-depositional 
processes. Samples 5 and 6 are from the Cenomanian of Manitoba. There are four 
Turonian samples, two each from Duck Mountain, respectively, Riding Mountain, 
Manitoba. Two Turonian samples come from Montana, from localities at Billings, 
respectively, Great Falls. The data also contain two samples of Campanian age, 
both from Riding Mountain, Manitoba. 

The Problem 

It is generally surmised that the northern part of the Western Interior Basin con- 
tained cool waters that moved southwards to meet warmer waters from the south 
at the instant of union of the two arms in Late Cenomanian time. It is reasonable 
to expect that there would have been variations in water chemistry. There is some 
uncertainty about how long it would take for a homogeneous chemical system 
to develope or, even, whether such a system could be expected to appear over 
the time during which the epicontinental sea was at a maximum. If, then, the appro- 
priate ordinations of sampling sites indicate the likelihood of randomness in the 
distributions of points obtained by the usual procedures, it may be inferred that 
homogeneous conditions were quick to become established. The opposite result 
would speak for continued heterogeneity in marine conditions. Cadrin et al. (1996) 
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made no statistical analyses of any of their data; however, a bivariate plot of the 
oxygen and hydrogen isotopes was taken to indicate a difference to exist between 

the Cenomanian and Turonian material.  

Log-contrast principal component analysis 

The results of the log-contrast principal component  analysis are shown in Box 24. 

Box 24: Principal component  analysis of eight major  oxides; the Nor th  
Amer ican Cretaceous bentonite data. 

Al though we have said this before, we repeat it here again: you cannot set 
great store by correlat ions in simplex space and there is probably little to 
gain by a 'one-to-one' compar ison of simplex and raw correlat ion 
coefficients. Aitchison (1997) makes this point quite clear. 

Latent  roots 

3.9190 1.5653 1.2006 0.8188 0.3490 0.1302 0.0173 

Percentages of the total variance (trace) 

Latent Root  1 = 48.98 
Latent Root  2 = 19.57 
Latent Root  3 = 15.00 
Latent  Root  4 = 10.23 
Latent Root  5 = 4.36 
Latent Root  6 = 1.63 
Latent Root  7 = 0.22 

Latent vectors 
1 2 3 4 5 6 7 

1 0.4715 0.1628 0.1826 0.1610 0.1205 -0.2895 -0.7559 
2 0.4551 0.1738 0.1789 0.1373 -0.3779 -0.4962 0.5508 
3 -0.1720 0 .5699 -0.3891 0.4752 0.1275 0.1533 0.0769 
4 0.3956 -0.2749 0 .2536  0.1557 0.6730 0.2946 0.3156 
5 0.1772 -0.4975 -0.5976 -0.2598 -0.0851 -0.1484 -0.0520 
6 -0.2705 -0.4103 0.4394 0 .4316 -0.4168 0.1836 -0.1178 
7 -0.3264 0 . 2 4 4 4  0.4070 -0.5763 0.1926 -0.1969 0.0307 
8 0.4162 0.2591 0.0547 -0.3450 -0.3939 0.6819 -0.0444 
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We venture here, as a didactic exercise only, a reification of the latent 
vectors. The important contributors to the first latent vector are Si, 
A1, Mg and water. The second latent vector represents significant 
responses from Fe, Ca, and K. The third vector contains significant 
loadings for Fe, Ca, K and Na. The "invariant latent vector", the 
seventh, represents covariation in Si and A1 (termed "invariant" because 
it corresponds to the smallest latent root and, hence, that linear combi- 
nation of the parts that expresses the least variability in the data-set). 
The complete output for this problem is obtained from analysing the data 
in the file benteon.dat. Note that part 4 gives very high variances and 
covariances owing to the fact that we were obliged to use the 
'add-a-minute value' to several of the observational vectors because 
of thevirtual redundancy of that part. You may perhaps wish to compare 
the values for the constrained and "usual" latent vectors. The points for 
plotting are saved in the file aitchplt. 

Log-contrast canonical correlation analysis 

Aitchison (1986) proposed an adaption of classical canonical correlation analysis for 
use with compositional data; this topic was reviewed in Chapter 6. The canonical 
correlation between a c-part composition and a d-part composition is computed 
in the usual manner from the appropriately partitioned log-ratio covariance matrix. 
In Chapter 6, the centred log-ratio covariance matrix was used, which is Aitchison's 
preference. By way of contrast, we here invoke the log-ratio covariances. This was 
done by combining the program for computing standard canonical correlations 
eaneorr.exe with the appropriate log-ratio data-matrix for the major oxides. 

As pointed out above, the appropriate model for constrained data in a canonical 
correlation analysis is that obtained by the log-ratio variances and covariances. 
As defined on p. 219, the analysis is therefore in terms of log-contrasts. SiO2 
was selected as the common divisor, leaving thus seven components for the major 
oxides. The two right-hand variables are the content of the isotopes of hydrogen 
and oxygen. 

Our aim is to ascertain to what degree the oxides are correlated with the isotopes. 
The data are in the file benteer.dat. 

The log-ratio canonical correlations for Cadrin's bentonites 

Number of observations = 14 
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Variable Mean Standard deviation 
1 -1.048 0.0787 
2 -3.703 0.7995 
3 -2.627 0.2021 
4 -3.659 0.8118 
5 -4.865 0.7438 
6 -5.369 0.9175 
7 -1.859 0.1488 
8 1.081 0.0941 
9 0.226 0.0381 

The oxides are entries 1-7 and the isotopes, entries 8-9. 

Array for covariances of the left-set (the oxides) 

1 0.0062 
2 0.0069 0.6392 
3 -0.0069 -0.0859 0.0408 
4 0.0069 -0.1459 0.0525 0.6590 
5 0.0192 0.0460 0.0382 -0.0170 
6 0.0137 0.1912 -0.0341 -0.2255 
7 0.0056 0.0222 -0.0077 0.0301 

0.5532 
0.2878 0.8418 
0.0125 0.0675 0.0222 

Array for covariances of the right-set (the isotopes) 
1 0.0089 
2 0.0018 0.0015 

Array for the covariances between sets 
1 -0.0036 -0.0016 
2 -0.0124 -0.0159 
3 0.0032 0.0016 
4 -0.0115 0.0061 
5 -0.0054 -0.0182 
6 -0.0515 -0.0246 
7 -0.0110 -0.0025 

Weierstrass Diagonalization 

Latent Root 1 = 0.9326 

Latent Root 2 = 0.6797 

Percentage for latent root 1 = 57.84 
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Percentage for latent root 2 = 42.16 

Wilk's lambda-test of canonical roots 

Lambda one = 0.0216 

Chi-square = 34.518 

Degrees of freedom = 14. The significance level is 23.40 for 14 degrees of freedom 
and the canonical correlation is statistically secure. 

Lambda two = 0.3203 

Chi-square - 10.247. For 6 degrees of freedom, this value is not statistically 
significant. 

Canonical Correlation 1 - 0 . 9 6 5 7  

Hotell ing canonical coefficients for right set (the isotopes) 

4.73 18.27 

Hotelling canonical coefficients for left set (the oxides) 

-8 .44 -0.59 -2.61 0.08 0.22 -0.66 - 1.01 

These values indicate that the between-sets correlation is largely due to the oxygen 
isotope with the log-ratio of the aluminium oxide and water. 

Scores for canonical correlation 1 

Specimen Le~-hand scores Right-hand scores 
1 19.802 6.873 
2 21.068 8.360 
3 21.209 8.407 
4 21.505 9.232 
5 21.424 9.224 
6 22.503 9.804 
7 22.520 9.826 
8 22.837 9.899 
9 23.088 10.772 

10 23.703 10.615 
11 22.371 9.490 
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12 22.070 9.494 
13 21.384 8.745 
14 21.403 8.767 

Stewart-Love redundancy analysis 

Correlations between original LEFT-set variables and the new left-side canonical 
variates 

-0.0482 -0.3608 0.0455 0.0582 -0.3706 -0.7177 -0.1021 

Correlations between original RIGHT-set variables and the new right-side canonical 
variates 

0.0753 0.0352 

The redundancy analysis places more emphasis on the log-ratios of the oxides of Fe, 
Ca and K. 

Correlations between original variables of one set with the canonical variates of 
the other set. 

Correlations between original LEFT-set variables and canonical variates of 
RIGHT set 

-0.0466 -0.3484 0.0440 0.0562 -0.3578 -0.6931 -0.0986 

Correlations between original RIGHT-set variables and canonical variates of 
LEFT-set 

0.0728 0.0340 

The indication of these relationships is that the two isotopes are about equally as 
important in the canonical correlation with mainly the log-ratios of A1, Ca and 
K as important contributing major oxides. It is important to remember that these 
relationships are not necessarily the most important part of the correlation. They 
merely signify that there is a statistically significant combination of the above form 
in the data. 

The figure yielded by the plot of the canonical correlation scores for the first cor- 
relation produces a vague subdivision into Cenomanian and Turonian fields. 
The Campanian values are here, as elsewhere, anomalously situated. 

Conclusions: The results of the two multivariate analyses under the log-contrasted 
model suggest that there is a slight indication of time-controlled discrimination 
in the distributions of sample values for the Cenomanian and Turonian, but this 
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indication is by no means unequivocal in that there is overlap between the two. The 
Campanian samples fail to distinguish themselves as being compositionally 
different. The data-set of just 14 samples is hardly sufficient to allow of any definite 
conclusions, but the multivariate results obtained cannot be claimed to yield strong 
support for the time-oriented shift in properties suggested by Cadrin et al. (1996). 

SUMMARY 

1 The Saudi-Arabian rift-valley. 
(a) Data-files: jabal.dta, jaball 1.dat, jaball 11.dat. 
(b) Programs employed: pcoord, pcrdcons, cancorr, logcov. 
(c) Minimum spanning tree exemplified. 
(d) Methods: principal coordinates, canonical correlations. 

2 A palaeo-oceanographical study. 
(a) Data-files: bentcon.dat, bentccr.dat. 
(b) Programs employed: pcaconst, logcov, cancorr. 
(c) Methods: log-contrast principal components and log-contrast canonical 

correlations. 



Chapter 8 

Miscellaneous Examples 

In this chapter we present a collection of miscellaneous examples with the intention 
of covering briefly a variety of the kinds of problem that can arise in geological 
work. The methods and results are no more than sketched out, our wish being that 
you try you hand at performing the full analyses, using the concepts already 
imparted to you. The first of these case histories concerns the analysis of the 
time-ordered ranking of species of Eocene ostracods (cf. Reyment, 1985). 

EVOLUTION IN ECHINOCYTHEREIS (OSTRACODA, CRUSTACEA) 

There are 102 sampling levels and the data consist of quinquevariate means on the 
classical morphological carapace traits of length and height of carapace, diagonal 
distance from the eye-tubercle to the posteroventral angle, posterior height, and 
the length of the posterior margin. The aim of the analysis is to see whether the 
time-ordered sequence is correlated with location in time on the basis of evolution 
in the dimensions of the carapace. The dependent variable is just the ordination 
according to stratigraphical position. The results are displayed in Box 25. 

Box 25: Multiple regression study of the Echinocythereis data. An evol- 
utionary sequence of ostracods from the Eocene of Aragon, Spain. 

Program: multregr 
Data: echinreg.dat 

Number of variables = 6; observations = 102 
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Correlation matrix 
1 2 3 4 5 6 

1.0000 0.9686 0.9863 0.9714 0.6991 0.8831 
0.9686 1.0000 0.9629 0.9447 0.7326 -0.8695 
0.9863 0.9629 1.0000 0.9666 0.7195 -0.8662 
0.9714 0.9447 0.9666 1.0000 0.6877 -0.8401 
0.6991 0.7326 0.7195 0.6877 1.0000 -0.6314 

-0.8831 -0.8695 -0.8662 -0.8401 -0.6314 1.0000 

The multiple R 2 - 0.790, the square root of which yields the value of 
multiple correlation coefficient, which is - 0.889. F5,96 for ANOVA 
on the multiple correlation coefficient is 72.23, which is highly significant. 

Regression equation - predictors 

Beta weights (the coefficients) for the multiple regression equation 

1 -311.01 
2 -142.00 
3 66.01 
4 143.74 
5 28.55 

Intercept constant 280.54. 

Discussion of  Box 25 

Firstly, we note that the time-constituent is highly negatively correlated with the 
carapace dimensions. Inasmuch as these dimensions are largely a measure of size, 
there is here an indication that the evolutionary sequence is characterized by a 
decrease in size of the carapace. The multiple correlation coefficient is highly 
significant, which result provides support for the conclusion of size-reduction over 
time. The coefficients of the multiple regression equation are interesting in that they 
afford a glimpse into the morphological development accompanying the evolution- 
ary process. This equation shows that most of the change in the carapace through 
time lies with the length and anterior and posterior maximum heights of the 
carapace. The shells seem to have become more "squarish" with time. 

The results of the multiple regression provide a preliminary insight into a complex 
multidimensional relationship. In order to probe this relationship further, a principal 
component analysis may be performed on the sequence. 
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Principal component analysis of the ostracod data 

The results of the principal component analysis of the 102 sequentially ordered levels 
of the species of Echinocythereis are displayed in Box 26. The same five variables as 
before, measures on traits of the carapace, were subjected to analysis by means 
of the program pcomp2.exe. The analysis was made on the covariance matrix 
and both simple principal components and principal component factor analysis were 
applied to the data in file echinpca.dat. 

Box 26: Principal component analysis of the Echinocythereis data. 

Program: pcomp2 

Data: echinpca.dat 

Covariance matrix 
1 2 3 4 5 

1 0.0110 0.0054 0.0080 0.0065 0.0012 
2 0.0054 0.0029 0.0040 0.0032 0.0006 
3 0.0080 0.0040 0.0060 0.0048 0.0009 
4 0.0065 0.0032 0.0048 0.0041 0.0007 
5 0.0012 0.0006 0.0009 0.0007 0.0002 

Correlation matrix 
1 2 3 4 5 

1 1.0000 0.9686 0.9863 0.9714 0.6991 
2 0.9686 1.0000 0.9629 0.9447 0.7326 
3 0.9863 0.9629 1.0000 0.9666 0.7195 
4 0.9714 0.9447 0.9666 1.0000 0.6877 
5 0.6991 0.7326 0.7195 0.6877 1.0000 

There are several very high correlations, and all are highly significantly 
different from nought. This is not an unusual situation for crustaceans 
in which the various dimensions of the carapace are often very highly 
integrated. 

Latent vectors 

0.02358 0.00020 0.00015 0.00012 0.00008 
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Corresponding percentages of the trace 

97.681 0.837 0.634 0.515 0.333 

The high correlations are accompanied by the natural outcome that 
almost all of the variation in the material is concentrated to the first latent 
root. 

Latent vectors by columns 
1 2 3 4 5 

1 0.6802 0.0442 -0.4781 0.2903 -0.4718 
2 0.3402 0.5598 0.4775 0.4704 0.3485 
3 0.5002 0.1197 -0.1712 -0.6880 0.4825 
4 0.4074 -0.7482 0.5206 0.0515 0.0214 
5 0.0735 0.3323 0.4930 -0.4674 -0.6501 

The overwhelmingly dominant variational criterion is that of size, as is 
shown by the first principal component vector. The vector connected 
to the smallest latent root is also interesting in that it represents an almost 
invariant linear combination in the material. 

Factor loadings matrix 
1 2 3 4 5 

1 0.1045 0.0006 -0.0059 0.0032 -0.0042 
2 0.0522 0.0080 0.0059 0.0052 0.0031 
3 0.0768 0.0017 -0.0021 -0.0077 0.0043 
4 0.0626 -0.0106 0.0064 0.0006 0.0002 
5 0.0113 0.0047 0.0061 -0.0052 -0.0058 

Confidence intervals for latent roots of covariance matrix 

Bounds of confidence intervals for the latent roots 

Lower bound for root 1 = 0.0185 

Upper bound for root 1 = 0.0325 

Lower bound for root 2 = 0.0001 

Upper bound for root 2 = 0.0002 

Lower bound for root 3 = 0.0001 
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Upper bound for root 3 = 0.0002 

Lower bound for root 4 = 0.0001 

Upper bound for root 4 = 0.0002 

Lower bound for root 5 = 0.0001 

Upper bound for root 5 = 0.0001 

Confidence intervals can be computed in the case of the covariance 
matrix. There is, as yet, no corresponding theory for finding confidence 
intervals for the principal components obtained from the correlation 
matrix. An approximate solution can, however, be achieved by means 
of a jackknifing technique, such as we have exemplified for 
cross-validation principal component analysis (p. 123). 

Principal component factor analysis with varimax rotation 

A principal component factor analysis is, as the name implies, a principal 
component analysis embellished with certain factor-analytical 
appurtenances. It is not to be confused with " t rue" factor analysis of 
modern psychometrics (cf. Reyment and J6reskog, 1993). 

Varimax factor matrix 

Var 1 2 
1 0.0822 0.0645 
2 0.0364 0.0383 
3 0.0597 0.0484 
4 0.0560 0.0299 
5 0.0060 0.0106 

Variance 0.30 0.18 

Discussion of the principal component analysis 

The principal component analysis yields further evidence for differentiation in size as 
a function of time of the lineage. The plot of the scores for the first two principal 
components shows there to be two groupings of the points. The plot of the 
varimax-rotated scores causes the groupings to appear in sharper relief. The logical 
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next step in the analysis is to contrast these two groups by some suitable method, 
such as the discriminant function. The sequence under consideration is believed 
to have encompassed three species with Echinocythereis isabenana (Oertli) at the 
base, then E. aragonensis (Oertli) and, finally, E. posterior at the summit. For 
the purposes of the analysis displayed in Box 28, there are 46 observational vectors 
in the older sample and 56 in the younger one. 

CARBONATES IN CI CHONDRITES: CLUES TO PARENT BODY EVOLUTION 

Introduction 

Endress and Bischoff (1996) were concerned with interpreting the history of forma- 
tion and evolution of the parent bodies of a type of chondrites known as CI 
chondrites- other categories are CM, CO, CV, and CR chondrites. This branch 
of research on meteorites encompasses a very restricted body of data, notably 
six falls in the gm to kg range, of which only two exceed 1 kg in weight. These two, 
the falls at Alais and Orgueil, have been given most attention by various specialists 
and there has been a tendency to extrapolate results obtained for them to the other 
falls. The work of Endress and Bischoff was directed towards assessing the generality 
of this assumption. They used material from four of the meteorites, to wit, Orgueil, 
Ivuna, Alais and Tonk. The following case-history makes use of the published data 
in the article by Endress and Bischoff; however, examination of the scatter diagrams 
indicates that the sample sizes used for making these were greater than indicated by 
the tables of determinations - for example, the figures for Orgueil, which has meant 
that the treatment of the data could not be as complete as it undoubtedly merits. 

CI chondrites are regolith breccias, consisting of various types of chemically and 
mineralogically distinct mineral and lithic fragments. They differ greatly with 
respect to degree of brecciation and intensity of aqueous alteration, which conditions 
appear to be linked to each other. The Ivuna material was inferred to incorporate 
four lithologies, two of which were identified in the Orgueil fall, although in different 
proportions. These lithologies are characterized by their mineralogies and by com- 
positional differences in included dolomites (Endress and Bischoff stated that each 
lithology can be distinguished by the Fe and Mn contents of dolomites). Other 
characteristics were studied as well, such as the different origins of carbonate grains 
and fragments and the presence of the carbonates breunnerite, siderite and calcite. 
It was concluded that there were several episodes of alteration on the CI parent 
body, physicochemical conditions during carbonate formation were different among 
CI chondrites, and CI carbonates were formed at low temperatures in equilibrium 
with surrounding fluids. Lithology I is distinguished by a relatively high proportion 
of carbonates - up to 10%. Lithology II is typified by sulphates (pyrrhotites), 
lithology III contains phyllosilicate aggregates, and lithology IV is relatively rich 
in olivines. 
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Endress and Bischoff relied solely on plots of the data obtained from 18 
thin-sections of the chondrites for assessing the eventual statistical properties of their 
results. Our present task is to see what can be extracted from the tabulated analyses 
by means of appropriate multivariate procedures. 

The data 

The components determined by Endress and Bischoff (1996) are CaO, MgO, MnO, 
and FeO. The tables also contain CO2, which was obtained by subtraction from 
100. There is, therefore, no doubt that we are dealing with compositional data. 
Moreover, the scatter diagrams in Fig. 10 of Endress' and Bischoff's article disclose 
the presence of atypical observations in some of the data. For the most part, 
however, the points are relatively tightly grouped. The chemical compositions of 
the carbonate minerals involved have a bearing on the interpretations of the results. 
Thus, dolomite is a calcium magnesium carbonate, breunnerite is a magnesium 
ferromanganese carbonate, and calcite is just calcium carbonate. The vast majority 
of the carbonate grains consist of dolomite, with breunnerite in second place. Calcite 
is reported to be rare. 

We can expect spurious correlations to occur in the data, of the same kind as 
occur, for example, in tables of the A B O alleles of serology. The graphs in Fig. 
10 of Endress and Bischoff indicate the presence of a few atypical observations. 
Appropriate controls made by Krzanowski's cross-validation program and 
Q-Q-probability plots failed to pick out atypical values and we conclude that 
the reduced sets published in the tables accompanying the paper forming the basis 
of the present analysis do not contain these observations. 

The statistical analyses 

The main points of interest for our case history pertain to examining the following 
aspects: 

1 Do the individual samples display heterogeneities; i.e., are there distinct 
groupings visible in the data? This is in response to the indication that several 
lithologies occur. 

2 How well do the compositions agree between chondrites and within chondrites? 
The conclusions of Endress and Bischoff point to a far-reaching degree of 
heterogeneity. 

Methods 

The relevant procedures for the problem at hand are principal coordinate analysis 
and log-ratio canonical variate analysis. Principal coordinate analysis is useful 
for disclosing heterogeneities in a sample, and hence, the viability of the lithological 
groupings in the Ivuna sample. Canonical variate analysis will be used to contrast 
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the data for three meteorites. A constrained discriminant function analysis rounds 
off the multivariate appraisal of the data for Ivuna, Alais and Orgueil (the published 
analyses for Tonk are too few for useful statistical appraisal). 

The question arises as to the appropriate form of the Q-mode procedure, principal 
coordinates. There seems to be a general unawareness that even Q-mode methods are 
affected by the constant-sum constraint. Aitchison (1986) made this amply apparent, 
but as far as we are aware, his indications have yet to elicit any reactions from the 
geostatistical consumer community. You can judge matters yourself by analyzing 
the data in the file ivunapcd.dat by the program for constrained principal com- 
ponents and comparing it with the graphs of the results yielded by the same program 
in its unconstrained version. 

The Q-mode analysis- relationships between specimens 

The data for the Ivuna meteorite (file ivunapcd.dat), were analysed by principal 
coordinate analysis (using Gower's similarity coefficient) and the program 
pcrdcons.exe. The fit of the plane formed by the first two coordinate axes is good 
- the residual is 40.31%. The plot of the first two coordinate axes suggests reasonable 
agreement with the conclusions of Endress and Bischoff in that the points largely 
group according to the proposed lithological categories (note that data for lithology 
II are not included because carbonates are completely absent). There is one group 
encompassing all of lithology IV, one sample of lithology III and one of lithology 
I. The second grouping contains mainly lithology III, one specimen of lithology 
I and two of lithology IV. The largest grouping is composed of most of the 
determinations on lithology I, plus all of the category referred to as "carbonate 
fragments". This category also contains dolomitic material, but was not classified 
with any of the lithological units. The present analysis does, however, indicate that 
on the data available, at least, "carbonate fragments" fall in line with lithology 
I. The carbonate fragments are said to derive from former carbonate veins, and 
in contrast to individual carbonate grains, are not considered to be linked to the 
lithological units. The statistical result probably indicates a chemical though not 
a genetic agreement and may, therefore, be fortuitous. As an exercise, you can 
see what the unconstrained version of principal coordinate analysis yields. There 
is a difference! 

Relationships between groups 

Constrained canonical variate analysis by means of the log-ratio covariance matrix, 
using program cvaconst.exe and the data in file chondcva.dat, provides useful 
insights into the statistical relationships between meteorites Ivuna, Alais and 
Orgueil. The log-ratio transformation "consumes" one variable- in the present case, 
it was considered expedient to let the divisor be the category "CO2". 
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A one-way analysis of variance indicates significant differences in means for CaO, 
MgO, and MnO, but not FeO. This result is reflected in the one-way multivariate 
analysis of variance, which yields 1:2 - 22.9 for 10 degrees of freedom, which cor- 
responds to P = 0.01. The canonical log-contrast discriminant functions are 

zl = -7.52CAO + 13.61Mgo - 0.12MnO - 0.12FeO 

z2 = 17.37CAO + 6.22MGO § 0.10MnO § 0.46FeO 

Obviously, all the discriminatory power lies with CaO and MgO, the dolomite 
components. 

The appearance of the plot of the scores for the first two canonical variates is 
somewhat unexpected in the light of the published conclusions. We should expect 
Ivuna and Orgueil to overlap, but this is not so. Orgeuil forms a closely-knit group 
of its own. Ivuna plots heterogeneously, forming three to four sub-groups. Alais 
overlaps with part of the points for Ivuna; its values are more closely grouped than 
those of Ivuna. 

Comparison between Ivuna and Alais 

The foregoing results motivate a closer examination of the relationship between 
meteorites Ivuna and Alais. This may be conveniently done by a constrained dis- 
criminant function study using the program dfnconst.exe and the data in file 
chonddfn.dat. The linear discriminant function is completely dominated by MgO. 
The likelihood of both samples deriving from the same statistical population is 
emphatically rejected by P = 0.016. However, this is not the whole story, for a direct 
assessment of likelihood of misidentification indicates that this is fairly high, with 
P =0.3.  

The "internal" test of allocation shows that 25.7% of the Ivuna observations are 
misidentified and 9.5% of those for Alais. The covariance matrices are not homo- 
geneous ()~2 _ 66.35 for 20 degrees of freedom), which motivates computation 
of the quadratic discriminant function (note, that the "coefficients" of quadratic 
discrimination cannot be reified in any meaningful manner). This resulted in an 
improvement in classificatory performance with 17.14% of the Ivuna observations 
being wrongly assigned and 4.76% of those for Alais. 

Conclusions 

As far as the present analysis can be related to the study of Endless and Bischoff (who 
made no statistical tests), the identification of several lithological categories seems 
reasonable, though with the suggestion that the carbonate fragments could be 
reconsidered as being close to lithology I, rather than distinct. Certain reservations 
remain about the graphical representations and it would be useful if these could 
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be compared and contrasted with those obtainable from the corresponding log-ratio 
transformed data-matrix. It should be noted that the published lists of analyses 
permit no more than a gross assessment of the properties of the samples. A full 
statistical analysis would require access to the chemical determinations on each 
of the individual components. 

The conclusion arrived at by Endless and Bischoff (1996) that there are com- 
positional differences among dolomites between and within CI chondrites is upheld 
by the statistical study. 

CHEMICALLY INDUCED VARIATION IN THE SANTONIAN OSTRACOD VEENIA 

FA WWARENSIS  

Introduction 

This example is an illustration of how palaeontology and geochemistry can be united 
to yield a useful palaeoenvironmental analysis. Ostracods are well known to exhibit 
marked variability in features of the carapace, some of which are ecophenotypic, 
that is, the outcome of the influence of chemical factors on the morphology of 
the shell. The data analysed by Abe et al. (1988) consists of measurements made 
on the carapace of Veeniafawwarensis HONIGSTEIN from nine levels in a quarry 
at Shiloah, Jerusalem. The carapaces show an interesting variation in shape, which 
could be largely related to the content of magnesium in the limestone. The three 
levels selected here for the first part of the study come from the initial part of 
the sequence in which the chemical conditions seem to have been more stable than 
in younger beds. The aim of the analysis is to see whether this presumed stability 
is reflected in the variability of the carapaces. If the hypothesis is correct then 
the data should display evidence of homogeneity for that part of the sequence in 
which the magnesium content is low, but significant heterogeneity where the content 
of Mg exceeds the normal level. The method of common principal component analy- 
sis offers a unique means of not only checking the data for homogeneity but also for 
obtaining information on covariance relationships. 

The measurements made on the carapaces are: (1) the length of the carapace; (2) 
the height of the carapace; (3) the distance from the eye-tubercle to the adductorial 
boss; (4) the distance from the adductorial boss to the posteroventral angle; (5) 
the distance from the posterodorsal angle to the posteroventral angle; (6) the dis- 
tance from the eye tubercle to the posterodorsal angle; and (7) the maximum breadth 
of the carapace. 

The full data-set is in the file israelpc.dat from which the appropriate com- 
binations of matrices were selected by hand after processing of the observations 
by means of covpc.exe which yielded the three covariance matrices listed below. 
They were analysed by means of the program for common principal component 
analysis, cpca.exe. 
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Findings 

C o m m o n  p r i nc ipa l  c o m p o n e n t  ana lys is  fo r  V e e n i a  f a w w a r e n s i s  

T h e  f irst t h ree  levels 

G r o u p s -  3; d i m e n s i o n s -  7; N -  79. 

T h e  i npu t  cons is ts  o f  t h r e e  c o v a r i a n c e  ma t r i ces .  T o  i l l us t ra te  the c o m p a r i s o n s  

f o l l ow ing  on  in the ana lys is ,  one  o f  these  is l is ted be low.  

U s u a l  p r i nc ipa l  c o m p o n e n t  resu l ts  f o r  f i rst samp le  

Standard latent roots 
223.41739 66.40113 31.51319 14.44023 7.62932 

Standard latent vectors 

4.70702 4.02932 

272.42235 46.43150 19.26334 9.65157 3.98853 1.94177 1.23534 

Standard latent vectors 

t 2 3 4 5 6 7 
1 0.4518 0.2892 -0.0467 0.1044 0.3246 -0.7388 0.2189 
2 0.2162 -0.0848 0.1759 -0.4275 -0.5072 0.0088 0.6893 
3 0.3704 -0.8474 -0.2254 -0.1832 0.1420 -0.1049 -0.1707 
4 0.3672 0.2746 0.1241 -0.3480 -0.4516 -0.1188 -0.6596 
5 0.4143 0.2671 0.0104 -0.3709 0.5455 0.5636 0.0645 
6 0.4993 0.0737 -0.3797 0.-6157 -0.3330 0.3232 0.0820 
7 0.2371 -0.1972 0.8697 0.3675 0.0693 0.0826 -0.0427 

The input matrix No. 3 

1 57.8367 12.7128 29.9954 48.6790 38.9729 69.4328 8.9896 
2 t2.7128 11.1'034 27.5848 9.4820 12.9943 18.0854 8.6065 
3 29.9954 27.5848 105.8183 12.1167 31.6062 48.6308 8.6924 
4 48.6790 9.4820 12.1167 47.9749 33.3990 56.9120 9.3373 
5 38.9729 12:9943 31.6062 33.3990 40.0647 41.3932 14.0254 
6 -69.4328 18.0854 48.6308 56.9120 41.3932 96.5092 7.9927 
7 8.9896 8.6065 8.6924 9.3373 14.0254 7.9927 28.2548 

Usual principal component results 

U s u a l  p r i nc ipa l  c o m p o n e n t  resu l ts  fo r  s e c o n d  samp le  

Standard latent roots 

1 2 3 4 5 6 7 
1 0.4435 -0.1.206 -0.1337 0.0650 -0.6841 0.4427 -0.3204 
2 0.2061 0.0151 0.2762 -0.3182 0.5367 0.6962 -0.0840 
3 0.1946 0.9252 0.2314 -0.0159 -0.1711 -0.0269 0.1492 
4 0.3993 -0.2473 0.0165 -0.0665 -0.0969 0.0304 0.8743 
5 0.4952 -0.1064 0.1192 -0.6019 0.0447 -0.5349 -0.2807 
6 0.5016 0.1418 -0.5802 0.4225 0.4445 -0.0822 -0.0938 
7 0.2581 -0.1913 0.7079 0.5908 0.0763 -0.1572 -0.1265 
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Standard latent roots 

250.97120 83.55588 32.59253 13.59158 3.63751 1.92377 1.28952 

Standard latent vectors 

1 2 3 4 5 6 7 
1 0.4494 0.2595 -0.0447 -0.1133 0.2364 -0.6107 0.5358 
2 0.1528 -0.1696 0.1636 0.1039 -0.4731 0.4412 0.7013 
3 0.4262 -0.8459 -0.0860 -0.0518 -0.0857 -0.2258 -0.1855 
4 0.3633 0.3822 0.0758 -0.1507 -0.7273 -0.1574 -0.3738 
5 0.3347 0.0469 0.3884 -0.6709 0.3285 0.4108 -0.0897 
6 0.5827 0.1998 -0.3546 0.4919 0.2495 0.4074 -0.1567 
7 0.0979 -0.0119 0.8255 0.5088 0.117I -0.1479 -0.1202 

Correlation matrices of  common principal components 

Sample No. 1 

1 1.00000 -0.08524 0.15852 -0.02433 0.11389 0.09944 -0.20749 
2 -0.08524 1.00000 0.28976 0.16055 0.00680 -0.14289 -0.07784 
3 0.15852 0.28976 1.00000 0.18079 0.03848 -0.08825 0.13203 
4 -0.02433 0.16055 0.18079 1.00000 -0.14522 0.01301 0.21061 
5 0.11389 0.00680 0.03848 -0.14522 1.00000 0.11214 -0.09656 
6 0.09944 -0.14289 -0.08825 0.01301 0.11214 1.00000 -0.05341 
7 -0.20749 -0.07784 0.13203 0.21061 -0.09656 -0.05341 1.00000 

Sample No. 2 

1 1.00000 -0.11910 -0.04563 0.14504 0.01360 0.21191 -0.21717 
2 -0.11910 1.00000 0.02558 0.14932 0.10007 -0.11506 -0.28638 
3 -0.04563 0.02558 1.00000 -0.07482 -0.19059 -0.00135 0.10573 
4 0.14504 0.14932 -0.07482 1.00000 -0.28991 -0.29437 -0.15001 
5 0.01360' 0.10007 -0.19059 -0.28991 1.00000 0.12816 0.01936 
6 0.21191 -0.11506 -0.00135 -0.29437 0.12816 1.00000 0.27175 
7 -0.21717 -0.28638 0.10573 -0.15001 0.01936 0.27175 1.00000 

Sample No. 3 

1 1.00000 0.07112 -0:13436 -0.06484 -0.03250 -0.23092 0.33792 
2 0 . 0 7 1 , 1 2  1.00000 -0.20491 -0.19617 -0.15519 0.13943 0.23449 
3 -0.13436 -0.20491 1.00000 -0.12073 0.18646 0.10910 -0.34712 
4. -0.06484 -0.19617 -0.12073 1.00000 0.32423 0.21561 -0.07686 
5 -0.03250 -0.15519 0.18646 0.32423 1.00000 -0.18435 0.05220 
6 -0.23092 0.13943 0.10910 0.21561 -0.18435 1.00000 -0.09900 
7 0.33792 0.23449 -0.34712 -0.07686 0.05220 -0.09900 1.00000 

All three correlation matrices contain small to relatively small entries thus evidencing to the satisfactory fit 
of the common principal component model to the data. 
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Sample The CPCA latent roots, sample by sample 

1 5.10176 8.79927 218.44039 67.16904 4.70165 14.10178 33.82372 
2 5.22716 2.20728 271.81620 44.38965 1.61215 10.52390 19.15807 
3 4.36570 2.33852 243.65097 82.80153 1.84278 14.15826 38.40424 

The log-likelihood test for a valid CPC model 
Chi-square = 49.1976 for df = 42 (the 5% significance for computed chi-square is 57.8397). 

This result shows that the common principal component model is not contravened. This is, however, not 
supported by the following test for equal covariance matrices. 

Test for equality of covariance matrices 

Covariance matrices chi-square = 31.2451 for df = 49. The 5% significance for computed chi-square is 
66.0544. 

This result is not truly indicative of a CPC model. We shall however, continue the illustration of the 
calculations. 

Ordered latent roots for common principal components 

218.44039 67.16904 33.82372 14.10178 8.79927 
271.81620 44.38965 19.15807 10.52390 5.22716 
243.65097 82.80153 38.40424 14.15826 4.36570 

5.10176 4.70165 
2.20728 1.61215 
2.33852 1.84278 

Common latent vectors 

1 2 3 4 5 6 7 
0.4593 0.2293 -0.1338 -0.0463 -0.6000 0.1902 -0.5659 
0.1921 -0.1034 0.2362 -0.1181 0.4601 -0.5518 -0.6054 
0.3408 -0.8967 -0.0130 -0.0957 -0.2197 -0.0394 0.1438 
0.3822 0.3273 0.0213 -0.1145 -0.2528 -0.6502 0.4965 
0.4191 0.1481 0.2200 -0.6366 0.3482 0.4419 0.1796 
0.5175 0.0492 -0.4878 0.5286 0.4371 0.1170 0.0879 
0.2159 0.0349 0.7996 0.5262 -0.0623 0.1613 0.0774 

Standard errors of common principal component coefficients 

1 2 3 4 5 6 7 
1 0.0219 0.0469 0.0569 0.0911 0.0765 0.3006 0.1202 
2 0.0181 0.0456 0.0466 0.0864 0.1175 0.3134 0.2828 
3 0.0667 0.0275 0.1316 0.0653 0.0402 0.0840 0.0392 
4 0.0267 0.0366 0.0623 0.0675 0.1229 0.2530 0.3282 
5 0.0241 0.0625 0.0911 0.0650 0.1142 0.1157 0.2291 
6 0.0268 0.0885 0.0769 0.0874 0.0798 0.0934 0.0866 
7 0.0373 0.1213 0.0691 0.1044 0.0894 0.0627 0.0912 

Reconstituted covariance matrix No. 1 

1 2 3 4 5 6 7 
1 55.1022 15.3312 21.2406 42.7439 41.8546 52.1056 18.5114 
2 15.3312 15.9984 19.3925 13.5159 19.0256 17.7813 13.3984 
3 21.2406 19.3925 80.0427 9.8376 22.4014 34.2523 13.0468 
4 42.7439 13.5159 9.8376 43.1804 37.6041 41.9201 18.2995 
5 41.8546 19.0256 22.4014 37.6041 49.3987 41.1586 21.5714 
6 52.1056 17.7813 34.2523 41.9201 41.1586 72.4272 15.1353 
7 18.5114 13.3984 13.0468 18.2995 21.5714 15.1353 35.9879 
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Corresponding matrix of residuals 
1 2 3 4 5 6 7 

1 -4.6508 2.2633 -9.7134 -1.8840 6.0164 -3.0605 5.6100 
2 2.2633 1.8767 -8.2548 4.4755 5.9928 0.0456 1.5816 
3 -9.7134 -8.2548 -12.7295 -6.8848 -6.5572 -8.6872 -8.7025 
4 -1.8840 4.4755 -6.8848 -0.2666 7.8620 -0.8746 7.1479 
5 6.0164 5.9928 -6.5572 7.8620 13.4966 7.9492 6.4286 
6 -3.0605 0.0456 -8.6872 -0.8746 7.9492 -0.1148 3.0238 
7 5.6100 1.5816 -8.7025 7.1479 6.4286 3.0238 2.3885 

Reconstituted covariance matrix No. 2 

1 2 3 4 5 6 7 
1 61.5350 21.7713 3,3.6194 50.2785 53.3818 65.5491 25.1704 
2 21.7713 14.3663 21.7175 19.8228 21.8885 23.9453 13.4693 
3 33.6194 21.7175 67.5101 22.8572 33.2949 45.3516 17.8941 
4 50.2785 19.8228 22.8572 47.3524 44.9876 53.0617 22.1731 
5 53.3818 21.8885 33.2949 44.9876 55.2382 54.2988 25.0101 
6 65.5491 23.9453 45.3516 53.0617 54.2988 80.8934 25.9442 
7 25.1704 13.4693 17.8941 22.1731 25.0101 25.9442 28.0389 

Corresponding matrix of residuals 

1 2 3 4 5 6 7 
1 -0.3548 2.6256 0.9025 -2.4490 0.7248 -3.0179 0.9132 
2 2.6256 2.6707 2.9915 2.9266 1.9814 2.0888 2.5252 
3 0.9025 2.9915 4.6506 3.3749 -1.2126 2.4156 9.3950 
4 -2.4490 2.9266 3.3749 -4.2726 -0.03'58 -4.6953 -0.2339 
5 0.7248 1.9814 -1.2126 -0.0358 -2.0372 0.3142 -1.6018 
6 -3.0179 2.0888 2.4156 -4.6953 0.3142 -5.6464 1.4066 
7 0.9132 2. .5252 9.3950 -0.2339 -1.6018 1.4066 4.9898 

Reconstitutedcovariance matrix No. 3. This is to be checked against the third input matrix, listed above. 

1 2 3 4 5 6 7 
1 58.0563 17.9211 21.3672 48,2442 48.6826 60.3911 20.5058 
2 17.9211 14.7120 23.3642 16.2079 20.5129 18.5765 15.6334 
3 21.3672 23.3642 95.1691 7.9507 24.3502 38.6227 14.2460 
4 48.2442 16.2079 7.9-507 47.1116 42.9501 47.7515 20.4983 
5 48.6826 20.5129 24.3502 42.9501 53.3938 45.1621 24.7676 
6 60.3911 18.5765 38.6227 47.7515 45.1621 79.0544 16.3501 
7 20.5058 15.6334 14.2460 20.4983 24.7676 16.3501 40.0648 

Corresponding matrix of residuals 

1 2 3 4 5 6 7 
1 -0.2196 -5.2083 8.6282 0.4348 -9.7097 9.0417 -11.5162 
2 -5.2083 -3.6086 4.2206 -6.7259 -7.5186 -0.4911 -7.0269 
3 8.6282 4.2206 10.6492 4.1660 7.25.60 10,0081 -5.5536 
4 0.4348 -6.7259 4.1660 0.8633 -9.5511 9.1605 -11.1610 
5 -9.7097 -7.5186 7.2560 -9.5511 -13.3291 -3.7689 -10.7422 
6 9.0417 -0.4911 10.0081 9.I605 -3.7689 17.4548 -8.3574 
7 -11.5162 -7.0269 -5.5536 -11.1610 -10.7422 -8.3574 -11.8100 
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The effect of Mg on the shell becomes apparent when the samples from all nine levels are considered. The 
following results extracted from that analysis indicate that to be so. Sampling level 7 has the highest 
content of Mg being two and a half times that of the adjacent sampling levels. 

Correlation matrices of common principal components 

Sample No. 4 

1 1.0000 0.5088 0.0840 -0.4225 -0.2013 0.1198 0.0575 
2 0.5088 1.0000 0.1001 -0.0760 0.1063 -0.1440 -0.2064 
3 0.0840 0.1001 1.0000 -0.3227 -0.1317 -0.2591 0.0598 
4 -0.4225 -0.0760 -0.3227 1.0000 0.3968 0.0586 -0.5327 
5 -0.2013 0.1063 -0.1317 0.3968 1.0000 0.1025 -0.3324 
6 0.1198 -0.1440 -0.2591 0.0586 0.1025 1.0000 0.1893 
7 0.0575 -0.2064 0.0598 -0.5327 -0.3324 0.1893 1.0000 

There are some large residual correlations here and also in the residual correlations for sample 7. 

Sample No. 7 

1 1.0000 -0.3377 -0.0625 0.2122 -0.0254 -0.4871 0.0178 
2 -0.3377 1.0000 -0.1290 -0.5105 0.1692 0.1145 0.0327 
3 -0.0625 -0.1290 1.0000 -0.0367 0.1979 0.0t44 0.1008 
4 0.2122 -0.5105 -0.0367 1.0000 0.0727 -0.0835 -0.2228 
5 -0.0254 0.1692 0.1979 0.0727 1.0000 -0.0540 -0.0661 
6 -0.4871 0.1145 0.0144 -0.0835 -0.0540 1.0000 0.2529 
7 0.0178 0.0327 0.1008 -0.2228 -0.0661 0.2529 1.0000 

The log-likelihood test for adequacy of the common principal component model 
yields a value of chi-square = 230.58 for 168 degrees of freedom which, when com- 
pared with the 5% significance level of 198.96, is significant and therefore does 
not support the common principal component model. The test for equality of 
covariance matrices gives a value of chi-square = 136.54, which for 49 degrees 
of freedom exceeds by far the 5% significance level of 66.05. This result does 
not contravene the CPC model. 

Conclusions 

The common principal component analysis of the ostracod data supports an hypoth- 
esis of ecophenotypic response in the shell morphology in relation to the content of 
magnesium in the original seawater. The CPC model is hardly appropriate for ana- 
lysing the low-Mg levels, but more adequate for the levels in which the content 
of Mg is relatively elevated. Although one can hardly be adamant about the reason 
for this, without more extensive sampling, one possible suggestion that arises is that 
the effect of excess magnesium in the environment has been to exaggerate variability 
in the carapace. 
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MORPHOMETRICAL RELATIONSHIPS BETWEEN SCAPHITID MACROCONCHS AND 
MICROCONCHS 

Introduction 

One of the best known heteromorphic ammonite groups are the Scaphitidae. The 
scaphitids display sexual dimorphism of the type commonly interpreted as such 
in ammonites. Dimorphs are referred to as maeroeonehs and mieroeonehs, the 
(arbitrary) convention being that the macroconchs are said to be females and 
the microconchs males. The dimorphs are usually claimed to be distinguishable 
at maturity by differences in the shape of the body chamber. In macroconchs, 
the body chamber increases gradually in width and abruptly in height. In 
microconchs, the body chamber increases gradually in size through the shaft 
and then decreases slightly towards the aperture. In average, adult macroconchs 
are larger than adult microconchs. 

Well preserved scaphitids occur in the Upper Cretaceous (Maastrichtian) Fox 
Hills Formation in South Dakota, U.S.A. Landman and Waage (1993) studied 
the ontogeny of several species. In the present case history, we report on those 
referred to the genera Discoscaphites and Hoploscaphites. 

Our analysis is concerned with searching for multidimensional differentiation 
between microconchs and macroconchs of the same species and to compare and 
contrast eventual differences between species of the same genus. Landman and 
Waage concluded that macroconchs tend to be more sharply differentiated between 
species than are microconchs. We shall also test that hypothesis. 

The data 

Landman and Waage supplied their monograph with many tables of measurements 
on the dimensions commonly observed on ammonites, to wit: shell diameter, 
whorl-width, whorl-height and diameter of the umbilicus. From Appendix II 
(Landman and Waage, 1993, p. 248) we have extracted measurements on 
ontogenetic series for the following species: 

Hoploscaphites nicolletti (Morton) 
H. comprimus (Owen) 
Discoscaphites conradi (Morton) 
D. rossi (Landman and Waage) 
D. gulosus (Morton) 
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The data-sets are in the form of measurements made through the ontogeny of 
adult dimorphs. Hence each 'sample' is made up of four variables observed over 
the coiling history of the specimen. These quadrivariate series form the building 
blocks of our analysis. 

The statistical method 

The method of canonical variate analysis is the appropriate procedure for testing our 
hypotheses. The program eva.exe produces, as subsidiary computations, principal 
component analyses, a multivariate analysis of variance and the full set of 
Mahalanobis distances and associated significances. The graphical analysis centres 
around the plot of the canonical variate means and the superimposed minimum 
spanning tree for indicating nearest neighbour relationships. It is often necessary 
to remind oneself that a two-dimensional plot of multivariate scores can yield a 
spurious picture of true relationships between points. Think of stars in the sky. 
Two stars that seem to be near each other to the eye in a two-dimensional frame 
may actually lie very widely apart in the third dimension. 

FINDINGS 

The first data-set contains the observations on two species of Discoscaphites. The 
data are stored in the file Diseose.dat. 

The aim of the analysis is to ascertain whether macroconchs and microconchs 
differ, on average, with respect to the four standard distance-measures. The appro- 
priate method of analysis is to apply canonical variate analysis to the logarithmically 
transformed observations; the transformation tends to reduce the ontogenetic 
size-differences. There are nine samples, each comprising a suite of observations 
on stages in the ontogeny of the ammonite shell. It is instructive to begin with 
an examination of the principal components of a macroconch and a microconch 
selected at random from the groups. 

Summary for principal components of macroconchs for D. conradi 

Latent Roots 
1.0586 0.0125 0.0005 0.0002 

Percentage for root 1 = 98.76 
Percentage for root 2 = 1.17 
Percentage for root 3 = 0.05 
Percentage for root 4 = 0.02 
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The first latent root accounts for almost 98% of the total variability in the 
observations. The third and fourth latent roots are almost zero. This result indicates 
that the covariance matrix is very close to being of rank 2, which is a normal con- 
dition in cephalopod shells. It is a result of the rigid regime imposed by the logar- 
ithmic growth spiral. Turning now to the first latent vector, we see that there 
appears to be an allometric relationship between the umbilical diameter and the 
three other variables. There is some further information to be extracted from 
the latent vectors. The fourth latent vector is connected to an almost zero root 
and it can therefore be interpreted as representing an invariant linear combination 
of the variables in which the umbilical diameter plays no significant part. 

Principal component loadings 
1 2 3 4 

1 0.5376 -0.1055 -0.5623 -0.6195 
2 0.4390 -0.1953 0.8145 -0.3251 
3 0.6216 -0.3108 -0.1271 0.7077 
4 0.3632 0.9242 0.0652 0.0986 

The microconchs yield a somewhat different result. The latent roots are, as only to 
be expected, similar: 

Latent roots for microconchs of D. conradi 

1.231295 0.014642 0.001600 0.000282 

Percentage for 1 = 98.68 
Percentage for 2 = 1.17 
Percentage for 3 = 0.13 
Percentage for 4 = 0.02 

Principal component loadings 

1 2 3 4 
1 0.5379 -0.1269 -0.1123 -0.8258 
2 0.4109 -0.0532 -0.8233 0.3879 
3 0.6017 -0.4660 0.5158 0.3934 
4 0.4239 0.8740 0.2085 0.1135 

The elements of the first latent vector are roughly equal which does not suggest the 
presence of allometric relationships. The pattern for the invariant vector also differs 
from that of macroconchs. These results are echoed by the other samples. 
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Sample sizes and corresponding mean vectors 

1 10. 0.524 0.217 0.149 -0.059 
2 11. 0.635 0.306 0.266 0.026 
3 10. 0.627 0.278 0.253 0.047 
4 9. 0.601 0.283 0.242 -0.032 
5 10. 0.617 0.257 0.271 0.009 
6 8. 0.465 0.144 0.118 -0.155 
7 8. 0.461 0.144 0.099 -0.098 
8 12. 0.763 0.483 0.398 0.170 
9 12. 0.742 0.477 0.350 0.206 

A univariate one-way analysis of variance yields the result that samples are homo- 
geneous with respect to means for all species and dimorphs considered in the same 
connection. 

Output for canonical variate latent roots and vectors 

Canonical  Roo t  1 1.0939 percentage 90.71 
Canonical  Roo t  2 0.0642 percentage 5.32 
Canonical  Roo t  3 0.0386 percentage 3.20 
Canonical  Roo t  4 0.0092 percentage 0.76 

As to be expected, the first canonical root  dominates greatly over the other three. 
The four th root  is close to zero. 

Canonical  Vectors 

1 2 3 4 
1 1.1633 -3.4302 -2.6118 -0.2912 
2 -2.2359 0.9657 -0.2428 -0.1278 
3 0.6819 2.2671 1.7398 0.5265 
4 -0.1143 0.1187 1.1721 -0.0028 

The greatest loadings in the first canonical vector are for length and height of the 
shell. The r61e of  the umbil icus is insignificant. 

Variance-weighted canonical variate coefficients 

1 2 3 4 
1 10.4698 -30.8715 -23.5061 -2.6207 
2 -20.1232 8.6911 -2.1853 - 1.1502 
3 6.1373 20.4039 15.6580 4.7382 
4 - 1.0289 1.0687 10.5485 -0.0252 
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D-squa re  above  d iagona l ,  D be low d iagona l  

1 2 3 4 5 6 7 8 9 
1 0 . 0 0 0 0  0 .0610 0.3808 0 .0872 0 .9357 0 .7859 0.5509 2 .5972 4.0455 
2 0 . 2 4 7 0  0 .0000 0.2795 0 .1106 0.9791 0.9811 0 .7680 2.6755 4.0695 
3 0 .6171  0 .5287 0 .0000 0.5957 0.4858 0.9203 0.5699 4 .2795 5.7518 
4 0 . 2 9 5 3  0.3325 0 .7718 0 .0000 1.0330 0.7143 0 .7306 2 .6340 4.2980 
5 0 . 9 6 7 3  0 .9895 0 .6970 1.0164 0.0000 0 .3057 0 .2302 5.9813 8.1953 
6 0 . 8 8 6 5  0.9905 0 .9593 0.8451 0 .5529 0 .0000 0.2573 5.4967 7.9321 
7 0 . 7 4 2 2  0 .8764 0.7549 0.8548 0.4798 0 .5072 0.0000 4 .6082 6.5915 
8 1.6116 1.6357 2 .0687 1.6230 2 .4457 2.3445 2.1467 0 .0000 0.3528 
9 2 . 0 1 1 3  2.0173 2 .3983 2 .0732 2 .8627 2 .8164 2 .5674 0 .5940 0.0000 

Minimum spanning tree 
OTU connected to OTU distance 

2 1 0.06102 
4 1 0.08720 
3 2 0.27948 
5 3 0.48585 
7 5 0.23018 
6 7 0.25730 
8 1 2.59718 
9 8 0.35279 

( O T U  is an a c r o n y m  for Ope ra t i ona l  T a x o n o m i c  Uni t ,  a te rm b o r r o w e d  f rom 

numer i ca l  t axonomy . )  

Ho te l l i ngs  T 2 test of  signif icance 

F- ra t io  for D -squa re  and  assoc ia ted  probab i l i t ies  

1 2 3 4 5 6 7 8 9 
1 0 . 0 0 0 0  0.0769 0.4583 0 .0994 1.1263 0 .8409 0 .5894 3 .4104  5.3123 
2 0 . 9 8 6 0  0.0000 0.3524 0.1318 1.2347 1.0939 0.8563 3 .6967  5.6227 
3 0 . 7 6 8 5  0.8427 0 .0000 0.6793 0.5848 0 .9846 0.6098 5 .6195  7.5528 
4 0 .9791  0 .9672 0.6113 0 .0000 1.1780 0.7283 0 .7450 3 .2611  5.3214 
5 0 . 3 5 0 6  0.3030 0 .6776 0.3271 0 .0000 0.3271 0.2463 7 .8542 10.7615 
6 0 . 5 0 5 5  0.3661 0 .5779 0.5780 0 .8597 0 .0000 0.2478 6 .3517  9.1660 
7 0 . 6 7 4 3  0 .5040 0.6598 0.5669 0.9101 0 .9093 0 .0000 5 .3250  7.6168 
8 0 . 0 1 2 8  0 .0085 0 .0006 0.0160 0 .0000 0 .0002 0.0009 0 .0000  0.5096 
9 0 . 0 0 0 9  0 .0006 0 .0000 0.0009 0 .0000 0.0000 0.0000 0 .7316  0.0000 

The above  a r ray  shows tha t  on average m a c r o c o n c h s  and m ic roconchs  of  D. con- 
radi and  D. rossi do no t  dif fer wi th  respect  to the charac te rs  m e a s u r e d  on them.  

Howeve r ,  the m a c r o c o n c h s  and m ic roconchs  of  bo th  of  these species dif fer h igh ly  

s igni f icant ly f rom m a c r o c o n c h s  and m ic roconchs  of  D. gulosus. A n o t h e r  in teres t ing  

resu l t  is tha t  m a c r o c o n c h s  and m ic roconchs  of  all three species do no t  dif fer sig- 
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nificantly from each other. Interesting information is available in the Graph Server 
plot of the generated file canmeans. Superimposition of the minimum spanning tree 
on the plot for the first two transformed mean vectors locates one of the microconch 
individuals for conradi and the macroconch and microconchs for rossi on the same 
branch. The conradi macroconchs join to conradi microconchs, although the latter 
are separated. The gulosus means are located on a separate branch. 

Significance of canonical roots 

Root No 1 = 0.8483 
Chi-square = 69.98 for 32 degrees of freedom. 
Probabil ity = 0.0001 

Root No 2 = 0.1093 
Chi-square = 9.01 for 21 degrees of freedom. 
Probabil ity - 0.989 

The test for significant roots indicates that there is only one that is statistically dif- 
ferent from nought. Hence, practically all of the discrimination between groups lies 
with the first canonical variate. 

MANOVA test of equality of means 

Wilk's Lambda - 0.428 
Chi-square = 67.448 with degrees of freedom = 32; probabil ity = 0.0003. 

The result of this test, which compares all centroids against each other, is that they 
are highly significantly different. A standard test for homogeneity of covariance 
matrices yields a value of chi-square of 147.93, which for 80 degrees of freedom 
is highly significant, thus pointing to pronounced heterogeneity in the covariance 
matrices. 

We shall now examine the material of Hoploscaphites. The data are in the file 
hoplo.dat. A selection taken from the suite of principal component analyses is 
included below to demonstrate that there is a slight difference in relation to the data 
for Discoscaphites. This resides mainly in the approximately isometric growth 
relationship in the first (and completely dominating) principal component. 

H. nicolletti macroconchs 1 

Summary for principal components 

Latent roots 
1.20713 0.02496 0.00011 0.00002 
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Percentage for 1 = 97.96 
Percentage for 2 = 2.03 
Percentage for 3 = 0.0085 
Percentage for 4 = 0.0016 

Principal component loadings 
1 2 3 4 

1 0.5283 -0.1517 -0.4447 -0.7072 
2 0.4374 -0.2563 -0.5045 0.,6989 
3 0.5603 -0.3821 0.7339 0.0390 
4 0.4644 0.8748 0.0956 0.0991 

The almost invariant, fourth latent vector expresses a fixed relationship between 
length and height of the shell. 

H. nicolletti macroconch 2 

Summary for principal components 

Latent roots 

0.95368 0.00350 0.00018 0.00005 

Percentage for 1 = 99.61 
Percentage for 2 = 0.37 
Percentage for 3 = 0.018 
Percentage for 4 = 0.005 

Principal component loadings 

1 2 3 4 
1 0.5274 -0.1434 -0.2023 -0.8126 
2 0.4356 -0.2261 =_0.7134 0.5002 
3 0.5728 -0.3906 0.6662 0.2747 
4 0.4517 0.8808 0.0794 0.1180 

H. nicollOtti microconch 1 

Summary for principal components 

Latent roots 

1.04956 0.00680 0.00054 0.000005 
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Percentage for 1 = 99.30 

Percentage for 2 = 0.64 

Percentage for 3 = 0.05 

Percentage for 4 = 0.0005 

Principal  componen t  loadings 

1 2 3 4 
1 0.5220 -0.0842 -0.2368 -0.8151 
2 0.4282 -0.3859 0.8135 0.0778 
3 0.5636 -0.3470 -0.5135 0.5460 
4 0.4759 0.8506 0.1361 0.1773 

H. nicolletti microconch  2 

Summary  for pr incipal  components  

Latent  roots  

1.04305 0.00590 0.00029 0.00003 

Percentage for 1 = 99.4069 
Percentage for 2 = 0.5625 
Percentage for 3 = 0.0277 
Percentage for 4 = 0.0030 

Principal  componen t  loadings 

1 2 3 4 
1 0.5197 -0.1062 -0.2799 -0.8002 
2 0.4204 -0.4373 0.7932 0.0536 
3 0.5579 -0.3099 -0.5058 0.5804 
4 0.4918 0.8376 0.1915 0.1413 

A general  observat ion  for Hoploscaphites is that  the covar iance matr ices are very 
near ly of  rank  1. Moreover ,  the covar ia t ion pa t te rn  is to all intents and purposes 

the same for macroconchs  as for microconchs.  

Sample sizes and cor respond ing mean  vectors 

1 10. 0.719 0.379 0.374 0.088 
2 9. 0.672 0.332 0.311 0.110 
3 10. 0.685 0.351 0.320 0.103 
4 10. 0.692 0.347 0.326 0.113 
5 10. 0.547 0.180 0.155 0.042 
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6 10. 0.511 0.154 0.117 0.007 
7 8. 0.784 0.385 0.443 0.180 
8 9. 0.727 0.352 0.391 0.107 
9 10. 0 . 6 7 2  0.264 0.268 0.197 

10 10. 0.588 0.216 0.209 0.036 

Just as for Discoscaphites, the univar ia te analysis of  var iance does not  disclose any 
signif icant differences in means.  

Ou tpu t  for CVA latent roots and vectors 

Canon ica l  Roo t  1 1.3682 percentage 76.47 

Canonica l  Roo t  2 0.3834 percentage 21.43 

Canon ica l  Roo t  3 0.0220 percentage 1.23 

Canon ica l  R o o t  4 0.0153 percentage 0.86 

We have however  here a ra ther  surpr is ing result in that  the first canonical  root  is 
relat ively much  smaller, and the second canonical  root  is relat ively very much  
greater,  than in the case of the mater ia l  for Discoscaphites. Another  p roper ty  of  
the present  mater ia l  is that  the first and second canonical  vectors reflect covar ia t ion 
in length, height  and breadth  of the test. As before, umbi l ical  d iameter  is not  
impor tan t .  

Canon ica l  vectors 

1 2 3 4 
1 -6.7326 -5.3306 -4.8843 0.1915 
2 4.2987 - 1.9317 0.5882 0.0100 
3 2.3941 5.8711 2.8666 -0.1465 
4 0.6854 0.6944 1.4551 0.1771 

Var iance-weighted canonical  var iate coefficients 

1 2 3 4 

1 -62.4375 -49.4328 -45.2943 1.7762 
2 39.8657 -17.9130 5.4550 0.0929 
3 22.2027 54.4446 26.5837 -1.3583 
4 6.3568 6.4395 13.4939 1.6426 

D-square  above diagonal ,  D below d iagonal  

1 2 3 4 5 6 7 8 9 10 
1 0.0000 0.2964 0.5573 0.6237 5.5949 5.2175 4.0590 2.5236 11.4563 5.4548 
2 0.5444 0.0000 0.4658 0.4209 4.5103 4.1830 3.7041 2.4688 9.8496 4.7438 
3 0.7466 0.6825 0.0000 0.1733 5.2232 4.7552 5.5472 4.3076 10.0121 5.4148 
4 0.7898 0.6488 0.4163 0.0000 3.5331 3.1619 3.9783 3.1768 7.7224 3.6627 
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5 2.3654 2.1238 2.2854 1.8796 0.0000 0.0220 1.8154 3.0204 1.3469 0.1448 
6 2.2842 2.0452 2.1806 1.7782 0.1484 0.0000 1.9630 3.0557 1.4822 0.1736 
7 2.0147 1.9246 2.3552 1.9946 1.3474 1.4011 0.0000 0.3754 5.4171 1.4603 
8 1.5886 1.5712 2.0755 1.7823 1.7379 1.7481 0.6127 0.0000 7.9417 2.6276 
9 3.3847 3.1384 3.1642 2.7789 1.1606 1.2175 2.3275 2.8181 0.0000 1.6308 

10 2.3355 2.1780 2.3270 1.9138 0.3805 0.4166 1.2084 1.6210 1.2770 0.0000 

Minimum spanning tree 

OTU connected to OTU distance 
2 1 0.29637 
4 2 0.42093 
3 4 0.17334 
8 2 2.46877 
7 8 0.37543 

10 7 1.46026 
5 10 0.14480 
6 5 0.02201 
9 5 1.34694 

Length of spanning tree -- 6.78 

Hotellings test of significance 

F-ratio for D-square and associated Probabilities 
1 2 3 4 5 6 7 8 9 10 

1 0.0000 0.3387 0.6724 0.7525 6.7497 6.2944 4.3527 2.8843 13.8208 6.5806 
2 0.8520 0.0000 0.5323 0.4811 5.1549 4.7808 3.7852 2.6805 11.2571 5.4217 
3 0.6159 0.7152 0.0000 0.2091 6.3012 5.7366 5.9485 4.9232 12.0786 6.5324 
4 0.5618 0.7522 0.9309 0.0000 4.2623 3.8145 4.2661 3.6307 9.3162 4.4186 
5 0.0001 0.0010 0.0002 0.0036 0.0000 0.0266 1.9467 3.4520 1.6249 0.1747 
6 0.0002 0.0017 0.0005 0.0069 0.9969 0.0000 2.1050 3.4924 1.7881 0.2094 
7 0.0032 0.0073 0.0003 0.0036 0.1094 0.0867 0.0000 0.3837 5.8090 1.5659 
8 0.0273 0.0370 0.0014 0.0091 0.0118 0.0111 0.8214 0.0000 9.0765 3.0031 
9 0.0000 0.0000 0.0000 0.0000 0.1747 0.1380 0.0004 0.0000 0.0000 1.9674 

10 0.0001 0.0007 0.0002 0.0029 0.9484 0.9308 0.1901 0.0229 0.1062 0.0000 

T h e  c o m p a r i s o n s  b e t w e e n  the m a c r o c o n c h s  o f  H. nicolletti all g ive non -s ign i f i can t  

v a r i a n c e  ra t ios ,  a n d  is a g r e a t e r  n u m b e r  o f  s ign i f i cant ly  d i f f e ren t  c o m p a r i s o n s  t h a n  

fo r  the f i rst species.  E x a m i n e  the p lo t  o f  the  c a n o n i c a l  m e a n s  a n d  d r a w  in the min i -  

m u m  s p a n n i n g  n e t w o r k  as an  exerc ise.  T h e  s u p e r i m p o s i t i o n  o f  the  m i n i m u m  span-  

n ing  t ree on  the  p lo t  fo r  the  f i rst  two  c a n o n i c a l  v a r i a t e  m e a n s  pu ts  al l  f ou r  

m a c r o c o n c h s  o f  nicolletti on the  s a m e  b r a n c h ,  w h i c h  jo ins  to  the b r a n c h  w i t h  

the  two  spec imens  o f  m a c r o c o n c h  comprimus. T h e  m i c r o c o n c h  spec imens  fo r  b o t h  

species are  l o c a t e d  on  the  s a m e  b r a n c h .  

S ign i f icance o f  l a ten t  r o o t s  

R o o t  N o  1 -  1.2238 

C h i - s q u a r e  - 107.69 fo r  36 deg rees  o f  f r e e d o m  

P r o b a b i l i t y  < 0.0001 

R o o t  N o  2 - 0.36-17 

C h i - s q u a r e  - 31.83 fo r  24 deg rees  o f  f r e e d o m .  

P r o b a b i l i t y  - 0 . 1 3 1  
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There is one clearly significant canonical root (as was also found for the other 
genus) and one that is not significant, but which is connected to a fairly large value 
of chi-squared. Harris (1975, p. 108) has pointed out that the "test for subsequent 
roots" in canonical variate analysis is conservative. 

MANOVA test of equality of means 

Wilk's Lambda = 0.294 

Chi-square = 104.02 with degrees of freedom = 36 and P < 0.00001. Hence, the ten 
centroids differ significantly. 

The test of homogeneity of covariance matrices yields a chi-square of 184.93, 
which for 90 degrees of freedom, is highly significant; P < 0.00001. 

CONCLUSIONS FOR THE SCAPHITIDS 

The foregoing analysis shows that there are subtle differences between 
macroconchs and microconchs (for the dimensions available for study), but these 
are not as extreme as would seem to be inferred by the descriptive account 
of Landman and Waage (1993). The multivariate analysis succeeded in accessing 
information on variational patterns in the macroconchs and microconchs which 
seem to be species-specific. Perhaps the most valuable information derives from 
the minimum spanning tree in relation to the plot of the first two canonical variate 
means. These graphs express clearly the discrimination between macroconchs and 
microconchs. 

A 225 KYR RECORD OF DUST SUPPLY FOR THE N O R T H E R N  ARABIAN SEA 

Introduction 

Reichart et al. (1997) have been concerned with interpreting the history of 
monsoonal circulation in the Indian Ocean. Previous work in the western Arabian 
Sea had shown that the analysis of proxy records for the productivity of surface 
waters and the input of dust revealed that past variations in the summer insolation 
of the northern hemisphere, changes in climatic boundary conditions and glacial 
cycles caused variations in monsoonal intensity. Sediments from the northern edge 
of the Arabian Sea, collected by the Netherlands Ocean Programme in 1992 from 
the Murray Ridge were thought to be a useful adjunct in that they derive from 
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open-sea conditions and out of the range of turbidity. The data studied by the Dutch 
group were obtained from a 15 m long sediment core which encompasses more than 
two complete glacial cycles. The dust originates from the bounding deserts, being 
transported by the Shamal winds that blow from the Arabian Peninsula at times 
of the year. 

The chemical  mater ia l  

The sedimentary sequence consists largely of a succession of alternating dark green 
to light green hemipelagic muds. The weighed samples were dried and then deter- 
mined with respect to the elements A1, Ba, Be, Ca, Fe, K, Mg, Mn, P, S, Sr, Ti, 
Y, Zn and Zr. The chemical data, published in Appendix A of the article under 
review, were analysed statistically by principal component analysis with varimax 
rotation of the latent vectors (we are not told this by the authors, but a control 
of the published information shows that this must have been the case in their study). 
The principal components were extracted from the raw correlations, notwithstand- 
ing the fact that the data are compositional in nature. Inasmuch as the 
palaeoclimatological interpretation of the sedimentary relationships is based on 
the reification of the results of the rotated principal component analysis, it can 
be of interest to compare and contrast the original conclusions with the findings 
yielded by an appropriately formulated analytical procedure. We point out that 
in spite of the data being quoted in percent and ppm, they can be easily treated 
in the same connection when adjusted to fit the same scale, granted that they were 
obtained in the same suite of analyses and are therefore not an example of joint 
variability, such as occurs when the determinations are made on separate 
sub-samples. The data are in the file reiehpea.dat. 

Discussion 

The first matter arising from the compositionally oriented analysis of the data con- 
cerns the correlations. The centred log-ratio values are listed in Table 4. We have 
used the log-ratio correlations for comparative reasons, but remind the reader about 
the reservations pertaining to the incoherency of product-moment correlations in 
simplex space. This array is to be compared with Table 2 in Reichart et al. (1997) 

- noting that the order of the entries in that table is not the same as that used 
in the rest of that paper. 
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T A B L E  4 

The ~Arab ian Sea dust  data .  Cen t red  log- ra t io  co r re la t ion  coeff ic ients 

Centred log-ratio correlation matrix 

A1 Ba Be Ca Fe K Mg Mn P S Sr Ti Y Zn Zr 

1 1.000 -0.337 0.917 -0.422 0.510 0.974 0.609 0.762 -0.538 -0.636 -0.347 0.957 
2 -0.337 1.000 -0.299 0.177 -0.190 -0.393 -0.657 -0.578 0.425 -0.152 0.043 -0.458 
3 0.917 -0.299 1.000 -0.424 0.572 0.878 0.561 0.697 -0.471 -0.580 -0.397 0.864 
4 -0.422 0.177 -0.424 10.000 -0.717 -0.336 -0.184 -0.245 0.411 -0.285 0.937 -0.483 
5 0.510 -0.190 0.572 -0.717 1.000 0.443 0.245 0.308 -0.478 0.003 -0.675 0.501 
6 0.974 --0.393 0.878 -0.336 0.443 1.000 0.699 0.813 -0.572 -0.659 -0.251 0.940 
7 0.609 -0.657 0.561 -0.184 0.245 0.699 1.000 0.712 -0.470 -0.336 -0.078 0.652 
8 0.762 -0.578 0.697 -0.245 0.308 0.813 0.712 1.000 -0.616 -0.445 -0.147 0.798 
9 -0.538 0,425 -0.471 0.411 -0.478 -0.572 -0.470 -0.616 1.000 0.002 0.379 -0.606 

10 -0.636 -0.152 -0.580 -0.285 0.003 -0.659 -0.336 -0.445 0.002 1.000 -0.299 -0.519 
11 -0.347 0.043 -0.397 0.937 -0.675 -0.251 -0.078 -0.147 0.379 -0.299 1.000 -0.402 
12 0.957 -0.458 0,864 -0.483 0.501 0.940 0.652 0,798 -0.606 -0.519 -0.402 1.000 
13 0.536 0.359 0.522 -0.042 0.192 0.455 -0.105 0.160 0.035 -0.695 -0.149 0.440 
14 0.170 0.506 0.193 -0.247 0.298 0.067 -0.293 -0.245 0.180 -0.290 -0.314 0.111 
15 0.834 -0.397 0.687 -0.251 0.246 0.874 0.645 0.710 -0.510 -0.598 -0.174 0.861 

0.536 0.170 0.834 
0.359 0.506 -0.397 
0.522 0.193 0.687 

-0.042 -0.247 -0.251 
0.192 0.298 0.246 
0.455 0.067 0.874 

-0.105 -0.293 0.645 
0.160 -0.245 0.710 
0.035 0.180 -0.510 

-0.695 -0.290 -0.598 
-0.149 -0.314 -0.174 

0.440 0.111 0.861 
1.000 0.553 0.381 
0.553 1.000 0.043 
0.381 0.043 1.000 

Food for thought is provided by the results for the varimax rotated principal 
components, since these constitute the very basis for the scientific discussion of 
Reichart et al. (1997). Application of the program peaeonst.exe to the data yielded 
the results summarized in Table 5. These varimax rotated principal components 
are to be compared with the figures supplied in Table 3 of the Arabian Sea paper. 
The values for the inappropriate principal component analysis listed in Table 5 
approximate closely those in Table 3 of Reichart et al. (1997). Comparison of 
the two sets of results in Table 5 for three factors disclose several major discrepancies 
to occur, these being of such magnitude as to place the factor-analytical conclusions 
of the published work in question. 

T A B L E  5 

C o m p a r i s o n  o f  v a r i m a x  fac to r  mat r i ces  us ing l og -con t ras t  p r inc ipa l  c o m p o n e n t s  and  the usua l  m e t h o d .  

L o g - c o n t r a s t  P C A  fac tors  Usua l  P C A  fac tors  

1 2 3 1 2 3 

A1 0.8360 0.2496 - 0 . 4 6 4 7  0.9573 0.1126 0.0495 

Ba - 0 . 8 1 5 8  - 0 . 2 6 5 4  0.4926 0.0688 0.9703 - 0 . 0 2 7 2  

Be - 0 . 8 1 3 4  - 0 . 2 4 4 1  0.4930 0.8912 0.1705 - 0 . 0 7 0 5  

Ca  0.8266 0.2395 - 0 . 4 7 9 0  - 0 . 7 3 0 6  0.1536 0.1547 

Fe - 0 : 8 2 3 5  - 0 . 2 5 0 4  0.4669 0.6962 0.3007 - 0 . 4 8 8 4  

K - 0 . 6 8 8 7  - 0 . 2 2 1 5  0.6291 0.9625 0.0547 0.0694 

M g  0.8763 0.3353 - 0 . 1 9 2 8  0.6954 - 0 . 2 7 5 5  - 0 . 1 3 1 0  

M n  - 0 . 8 0 6 2  - 0 . 2 4 3 2  0.5062 0.8705 - 0 . 1 8 1 7  0.0099 

P 0.7435 0.1914 - 0 . 4 0 2 3  - 0 . 1 0 6 2  0.3698 - 0 . 2 3 4 7  

S 0.5150 0.3356 - 0 . 7 7 5 7  - 0 . 0 8 2 4  0.0377 - 0 . 9 8 0 7  

Sr - 0 . 7 8 8 4  - 0 . 2 8 3 6  0.4522 - 0 . 5 4 8 5  - 0 . 0 4 4 9  0.1497 

Ti 0.8263 0.2482 - 0 . 4 5 9 1  0.9530 0.0403 - 0 . 0 4 6 0  

Y - 0 . 8 1 4 0  - 0 . 2 5 1 5  0.4987 0.6712 0.5293 0.0145 

Zn  0.8368 0.2283 - 0 . 4 5 5 7  0.4969 0.5748 - 0 . 2 4 1 0  

Zr  0.2618 0.9438 - 0 . 1 8 4 5  0.9064 0.0180 0.0742 
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Remarks 

The analysis briefly reported here indicates that the evidence for "clusters of 
variables" reported by Reichart et al. (1997, p. 153), and provided with causal 
interpretations, is not free of blemishes for two reasons. Firstly, and most seriously, 
the constant-sum constrained has not been taken into account which can be expected 
to lead to pronounced distortions in the elements of the latent vectors, and this is 
indeed indicated by the differences in many of the elements obtained by the two 
sets of calculations. Secondly, the r61es of the parts in the interpretation of functional 
relationships depend on a reification of the rotated principal components, which is an 
exercise that cannot be undertaken without risk (reification of the principal 
component factor matrix is, as already noted, the mainspring of the published 
study). The examination of the centred log-ratio data matrix by cross-validation 
indicates several atypical and influential values to occur. This is also the case if 
the cross-validation exercise is carried out on the inappropriate matrix. The course 
of action open to the investigator in such a situation is to either delete the offending 
observations (in the interest of achieving stability in the latent vectors) or to use 
a method of robust estimation for principal components (cf. Reyment and JOreskog, 
1993). The plots of the relevant principal component scores clearly expose the 
presence of atypicalities in the data. The plots for the first two axes obtained by 
appropriate procedure is shown in Fig. 33. Inspection of this graph indicates that 
the points are widely spread in a manner such as to imply a considerable degree 
of heterogeneity in the sample. 

zx ~A ~ @ A  a a  a 
A A A /X A 

a ~ zx Z ~  
A a A A  Z~ x A 

A A A 

I 

Fig. 33. Plot of the first and second principal component scores for the compositional principal component 
analysis of the dust data. It is obvious that there is much heterogeneity in the data. 
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SUGGESTED PROTOCOL FOR MULTIVARIATE ANALYSES OF GEOLOGICAL DATA 

1 Inspect the array of observations by graphical means. Graph Server was con- 
structed for such a purpose. Look for obviously atypical values since more marked 
deviations will in most cases distort results with respect to variances and, or, 
covariances. Check for heterogeneity in the dispersion pattern. 

2 Are your data compositional in nature? Do the rows of the data-array have a 
constant sum; for example, frequencies sum to unity and percentages to 100. If 
so, you should use a method which is appropriate to simplex space. It is by no means 
uncommon to encounter data sets the multivariate analysis by the "usual procedure" 
of which gives about the same answer as the appropriate compositional method. 
However, there is no guarantee that this is always going to be the case and this 
variety of Russian Roulette is most emphatically not recommended. 

3 If atypical observations are suspected (and in Geology this is rather the rule 
than the exception), then a cross-validatory analysis can then be undertaken in order 
to identify more closely atypical values and influential observations (that is, obser- 
vations that are not obvious deviates, but which influence the stability of results. 
Jackknifing latent roots and vectors can be a very good means of diagnosing insta- 
bility in estimates of canonical decompositions. 

4 For most purposes, a simple R-mode principal component analysis will provide 
much valuable information. Alternatively, the inverted Q-mode analysis, such as is 
obtained by principal coordinates, can be tried. The pair-wise plots of the coordinate 
values are useful for disclosing discontinuities in the data. These methods are 
described in detail in Reyment and J6reskog (1993), along with R-Q-mode pro- 
cedures. Other multivariate analyses follow on naturally from this step. 

5 If you believe you have trending data, be sure to test for a random walk 
(Bookstein, 1987) before drawing elaborate conclusions about evolutionary change 
in a fossil lineage, environmental tendencies manifested in borehole analyses and 
the like. For comparing complicated stratigraphical curves, cross-correlation is 
not a reliable technique for data which can not be located to accurately designated 
time-intervals. Gordon's (1973) method of slotting is preferable (see also Reyment, 
1991). 

SUMMARY 

1 Evolution in Echinocythereis 
Data: echinreg.dat 
Program: multregr 
Data: echinpca.dat 
Program: pcomp2 

2 Carbonates in CI chondrites 
Data: ivunapcd.dat, chondcva.dat, chonddfn.dat 
Programs: pcrdcons, cvaconst, dfnconst 
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3 Chemically induced variation in the Santonian ostracod Veenia fawwarensis 
Data: israelpc.dat 
Programs: covpc, cpca 

4 Morphometrical relationships between scaphitid macroconchs and 
microconchs 
Data: discosc.dat, hoplo.dat 
Program: cva 

5 A 225 km record of dust supply for the northern Arabian Sea. 
Data: reichpca.dat 
Program: pcaconst. 

6 Suggested protocol for multivariate analyses of geological data 
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Glossary of computer program procedures 

A I T C H V A R :  Computes the variation matrix for compositional data and the cor- 
responding finite scale transformation of the variation matrix. 

APPR: Computes approximate log-ratio means and variances from crude 
covariances and means. 

BENZEC:  Computes a simple correspondence analysis for a two-way contingency 
table (= a table of frequencies or proportions). This is a practical application 
of the singular value decomposition. Its main value lies with the exploitation 
of its graphical output. 

CANCORR:  Performs simple canonical correlation analysis and multivariate 
regression analyses. Useful for studying associations between sets of variables, 
such as occur in environmental work. The program provides simple canonical 
correlations as well as the Stewart-Love redundancy analysis, which is useful 
in cases where the data are not truly multivariate Gaussian and it is desired 
to reify the canonical coefficients. 

CCRCONST:  This program is the counterpart of cancorr for compositional data 
using the log-contrast canonical correlation. 

CO VMAT:  Computes covariance and correlation matrices for 'open' and 'closed' 
data. 

CO VPC: Computes covariance matrices in a form suitable for input into the pro- 
gram for common principal components, CPCA. 

CPCA: Common principal component analysis, a method designed for treating data 
with orientationally homogeneous covariance matrices (with respect to the 
axes of the ellipsoids of dispersion,but which may be differently inflated. 

CPCCONST:  Common principal component analysis for compositional data; the 
compositional counterpart of CPCA. 

CVA: Carries out a canonical variate analysis encompassing generalized dis- 
criminant functions, a multivariate analysis of variance, generalized 
(Mahalanobis) statistical distances, tests of significance and the minimum 
spanning tree for canonical variate means. 

CVA CONST:_The counterpart of cva for compositional data. 

DFNCONST:  Discriminant function analysis for compositional data. The counter- 
part of disfun. 
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DISFUN: Computes the linear and quadratic discriminant functions for two 
covariance matrices, the associated generalized distances and the Hotelling 
T 2 test of significance. 

GABRIEL: The biplot for a rectangular matrix. A practical application of the 
singular value decomposition 

HET: Computes the linear discriminant function and generalized distances for het- 
erogeneous covariance matrices by the Anderson-Bahadur method and the 
Chernoff distance-decomposition criterion. 

JKNFPCA: Computes jackknifed estimates of latent roots and vectors for 
covariance matrices or their associated correlation matrices. 

LOGCO V: Computes the log-ratio covariance matrix. 
MATINV:  Illustrates the inversion of a square symmetric matrix. 
MATOPS:  Examples of some basic matrix operations 
MULTEST:  Routine for checking matrix multiplications with particular reference 

to the Biplot. 
M U L T N O R M :  A procedure for testing for multivariate skewness and kurtosis. 
MULTREGR:  Multiple regression analysis. 
PCAIDENT: Demonstrates the usual (three) methods for scaling principal 

components. 
PCACONST:  Principal component analysis for compositional data. This is the 

counterpart of pcomp2. 

PCOMPI:  A simplified principal component analysis. 
PCOMP2: A full principal component analysis with an option for principal 

component factor analysis and the Varimax rotation of the principal 
component factor axes. 

PCOORD: Principal coordinate analysis with options for several kinds of associ- 
ation matrices, but favouring that of Gower (1971). 

PCVALID: Program for principal component analysis using cross-validation tech- 
niques and jackknifed estimates of components and their standard errors 
and supplying an indication of the number of statistically interesting latent 
roots. 

PCRDCONS: Constrained principal coordinate analysis, the counterpart ofpcoord 
for compositional data. 

PROPMAT:  Program for testing a data-matrix for the constant-sum constraint. 
SHRINKCV:  Shrunken canonical variate analysis for achieving stability in canoni- 

cal roots and vectors by Campbell's (1979) method. 
SING VAL: Computes a singular-value decomposition (= computes the Basic 

Structure) of a rectangular matrix, such as a data-matrix, thus providing, 
simultaneously, the principal axes of the matrix (= the R-mode solution) 
and the projections of the sample points onto these axes (the Q-mode solution). 
The R-mode solution corresponds to the columns of the rectangular matrix and 
the Q-mode solution to its rows. 
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S U B C O M P :  Program for computing subcompositions for compositional data. An 
essential in any multivariate statistical analysis requiring a reduction in the 
number of parts to be treated. 

N.B. The Compact Disk contains a file in Netscape Hypertext in which the input 
information for most of the programs is summarized, together with specimens 
of the input files. 
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