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ADVERTISEMENT.

The Crystallographic Notation adopted in the fol-

lowing Treatise is taken, with a few unimportant

alterations, from Professor Whewell’s Memoir “On a

general method of calculating the angles of Crystals,”

printed in the Transactions of the Royal Society for

1825.

The method of indicating the positions of the faces

of a Crystal by the points in which radii drawn per-

pendicular to the faces meet the surface of a sphere,
was invented by Professor Neumann of Königsberg

(Beiträge zur Krystallonomie) and afterwards, together
with the notation, re-invented independently by Grass-

mann (Zur Krystallonomie und geometrischen Combi-

nationslehre). The use of this method led to the

substitution of spherical trigonometry for the processes

of solid and analytical geometry in deducing expressions

for determining the positions of the faces of crystals

and the angles they make with each other. The ex-

pressions which in this Treatise have thus been obtained,



are remarkable for their symmetry and simplicity, and

are all adapted to logarithmic computation. They are,

it is believed, for the most part new. For the conveni-

ence of calculation the position of one face with respect
to another is represented by the angle between normals

to the faces, or by the supplement of the angle be-

tween the faces, according to the commonly received

definition of the angle between two of the planes that

bound a solid.

Arts. 22—24, 28—31, may be omitted by those

readers who are satisfied with such a knowledge of the

subject as is sufficient for the
purpose of finding the

elements and the symbols of the faces of a given

crystal, or of determining the form and angles of a

crystal, having given its elements and the symbols of

its faces.
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ERRATA.

Page Link

36 8 after Let insert the.

39 8 from bottom, insert a comma after Octahedron.

39 6 from bottom, for p'e' read p',e'
50 2 for {4l0} read {430}
81 19 for (182) read (183).
86 6 after o, x, p, t insert belong.
86 8 for wanting read want.

87 5 from bottom, for 87 read 88.

88 7 from bottom, for ƙ read ơ.

92 11 for g read q.

107 10 from bottom, for Scheelale read Scheelate.

114 At the end of Art. 266, add The distance of the crystal from the eye of

the observer should be from one inch to two inches; the image of A formed by
reflexion at either of the faces p, q will then be seen clearly, while the crystal
itself remains unseen. It is essential that the signal B and the image of A should
be seen distinctly. When the distance of distinct vision of the observer’s eye differs

from AC or BC
,

the eye must be armed with a lens, or a small telescope having
a power of from one to three, capable of shewing the signals distinctly.



CRYSTALLOGRAPHY.

CHAPTER I.

GENERAL GEOMETRICAL PROPERTIES OF CRYSTALS.

1. Many natural substances and many of the results

of chemical operations occur in the form of solids which

are bounded by plane surfaces, and which commonly exhibit

a tendency to separate, when broken, in the directions of

planes, passing through any point within them, either parallel
to some of their bounding planes, or else making given

angles with them.

Solids of this description are called crystals. The planes

by which they are bounded are called their faces, and the

planes in which they have a tendency to separate, their

cleavage planes.

2. The mutual inclinations of the faces and cleavage

planes of a crystal are subject to a law which we now proceed

to enunciate.

Through any point O (fig. 1) within the crystal, let

planes be drawn parallel to each of its faces and cleavage

planes. Let OX, OY, OZ be any three intersections of those

planes, not all in one plane; and let any face or cleavage

plane meet OX, OY, OZ in A, B, C. Then, if any other

face or cleavage plane meet OX, OY, OZ in H, K, L, and

if we consider HO, KO, LO to be positive or negative

according as they are measured in the same directions as

AO, B0, CO, or in different directions, it will be found that

where h, k, l, may be any positive or negative whole numbers,

one or two of which may be zero

1

1 AO_ l BO ICO

h HO
~

k~KO
=

~l LO’



When one of the numbers h, k, l becomes zero, one of the

distances HO, KO, LO corresponding, becomes indefinitely

great, and, therefore, is parallel to the line along which that

distance is measured.

3. Since the positions of the faces and cleavage planes

are subject to the same law, it follows, that a cleavage plane

is always parallel to a plane which either is, or may he, a face

of the crystal. This being the case, in speaking of the faces

of a crystal, we shall always suppose the cleavage planes to

he included.

4. OX, OY, OZ are called the axes of the crystal,

O their origin; AO, B0, CO, or any three lines in the

same ratio, the parameters of the crystal; h, k, l the indices

of the face HKL. This face will he denoted by the symbol

(h k l), a negative index being distinguished by a minus sign

placed over it.

5. The indices h, k, l, which by taking different integral

values determine the positions of the different faces of the

same crystal, are seldom large. When the axes and par-

ameters are properly chosen the highest index does not com-

monly exceed six.

The inclinations of the axes and the ratios of the par-

ameters are the same, at a given temperature, for all crystals

of the same species. The symbols of the faces may
be dif-

ferent. Hence, the angles YOZ, ZOX, XOY, which the

axes make with each other, and the ratios of two of the

parameters AO, B0, CO to the third, are five elements by

which each crystalline species is characterized.

6. It will be sufficient for the present if we suppose

the law stated in (2) to hold when the axes are three given

lines in which the planes drawn through a point within the

crystal, parallel to its faces, intersect each other, and the

parameters are the portions of the axes cut off by a given

face. Hereafter we shall prove that, if through a point

within the crystal, planes be drawn parallel to all the

2



possible faces of the crystal, and that the law stated in (2)
hold when the axes are three given intersections of those

planes, and the parameters are the portions of the axes cut

off by a given face; it will also hold, when any
three inter-

sections are taken for axes, and the portions of them cut off

by any plane are taken for parameters.

7. The law enunciated in (2) may be put, as follows,
under a different form, which, though not quite so simple,

presents a clearer view of the relative positions of the faces

of a crystal.

Let OX, OY, OZ (fig. 2) be the axes of a crystal,

a, b, c its parameters.

b and c respectively. Then, any face of the crystal will be

parallel to a plane drawn through three points thus deter-

mined, one being taken in each of the three axes.

For if the face (h kI) meet the axes OX, OY, OZ in

H, K, L. Then (2)

But, according to the notation we have adopted,

these distances being measured towards X, Y, Z, or in the

opposite directions, according as the corresponding indices

h, k, I, are positive or negative;

3

In OX take OA =a, 0A
2
= 0A

3
= -Jj«,... towards X ;

OA_! =a, oA_
2
= a, OA_

3
—

-j a,... in the opposite direction,

and 0A
a =-a = oo in either direction. And let the points

B, B_
j,

B
v,

B
, i?j, B_

5
,...,

B
n, C, C_j, C 2, C_

2 ,

C
s , C_ s, ..., C

O,
be determined in the same manner from

i OA
_

i OB
__

L OC

kOH= k OK lOL '

OA
h
=-«, o#,. = -6, OC, =y c,

h K L

0A
h

0B
k

_

PC,

' OH OK OL
’



the face (h k l) is parallel to the plane passing through

the three points A
h ,

B
k ,

C
l

8. To find the ratios of the cosines of the angles which

a perpendicular to the face (h k l) makes with the axes of

the crystal, in terms of the indices of the face and the
para-

meters of the crystal.

Let the axes OX, OY, OZ, (fig. 3) meet the surface

of a sphere described round O as a center in X, Y, Z,

and let OP, drawn perpendicular to the face HKL, the symbol

of which is (h k l), meet HKL in p, and the surface of the

sphere in P. Then,

Therefore, substituting these values of HO, KO, LO

in (2), if we have

In all problems of Crystallography which may hereafter

present themselves, we shall refer the faces of crystals to

the surface of a sphere by means of radii drawn perpendicular

to the faces, and all our calculations will be performed by

spherical trigonometry applied to expressions deduced from

the above equations.

9. The sphere to the surface of which the faces of a

crystal are referred, will be called the sphere of projection.

The extremity of a radius of the sphere drawn perpendicular

to any face, will be called the pole of that face. A face

and its pole will be usually denoted by the same letter and

by the same symbol. The points in which the axes of the

crystal meet the surface of the sphere of projection will be

invariably denoted by X, Y, Z.

4

Op/HO = cos PX, Op/KO = cos PY, Op/LO = cos PZ

AO = a, BO = b, CO = c,

- cos PJ=-f cos PY= - cos PZ.

h k t



10. Let the axes of any crystal meet the surface of the

sphere of projection in X, Y, Z, (fig. 4). Let a, b, c be the

parameters of the crystal, ABC the polar triangle of XYZ.

∴ (8) A is the pole of (1 0 0). Similarly, B is the pole of

(0 1 0), and C is the pole of (0 0 1).

11. Let P be the pole of the face (hkl). Then, (8)

When P and A are on the same side of the great circle

BC, PX is less than a quadrant, therefore cos PX is posi-
tive. When P and A are on opposite sides of BC, PX is

greater than a quadrant, therefore cos PX is negative. Hence,
if we assume h to be positive in the former case, it will be

negative in the latter. In like manner k will be positive or

negative according as P and B are on the same or opposite
sides of CA. And l will be positive or negative according
as P and C are on the same or opposite sides of AB.

Hence, if diameters AA', BB', CC’, PP’ be drawn, the

symbols of the points A, B, C, P being A (100), B(010),

C(0 0 1), P(hkl), those of A’, B', C’, P’ will be A'( 10 0),

B’(010), C' (001 ), P' (hkl).

12. X, Y, Z (fig. 5.) are any three points on the surface

of a sphere; P, Q, R any three points in a great circle;

to find the relation between the distances of P, Q, R from

each of the points X
,

Y, Z.

5

Then, AY, AZ are quadrants, ∴cos AY = 0, cos AZ = 0;

- cos AX = - cos AY - cos AZ ■

1 0 0

- cos PX - cos PY = - cos PZ.
hkl

When P is in the great circle BC, PX is a quadrant,
therefore cos PX = 0 ; therefore h = 0. When P is in CA,

cos PY = 0, therefore k = 0. When P is in AB, cos PZ = 0,
therefore l = 0.



From the spherical triangles PQX, RQX, we have

Multiply the first equation by sin QR, the second by

sin PQ, and add, observing that

and that

The equation thus obtained, and two others deducible

from it by writing Y and Z successively in the place of X,

are

Whence, eliminating sin PQ, sin PR, sin QR, successively.

6

cos PX = cos QX cos PQ + sin QX sin PQ cos PQX,

cos RX= cos QX cos QR + sin QX sin QR cos R QX.

cos PQX + cos RQX = 0,

sin QR cos PQ + cos QR sin PQ = sin PR.

cos PX sin QR + cos RX sin PQ = cos QX sin PR,

cos PY sin QR + cos RY sin PQ = cos QY sin PR,

cos PZ sin QR + cos RZ sin PQ =cos QZ sin PR.

— [cos PX cos QY - cos PY cos QX]
sin PQ

= I cos PX cos RY cos PY cos RX]
sin PR

J

[cos QX cos RY cos Q Y cos RX 1,
sin QR

-——- [cos PZ cos QX - cos PX cos QZ1
sin PQ

= [cos PZ cos RX cos PX cos RZ I
sin PR

L J

= [cos QZ cos RX cos QX cos RZ],
sin QR

[cos PY cos QZ cos PZ cos t^Fl
sin PQ

=

.

-- [cos PY cos RZ - cos PZ cosiM
r

l
sin PR

= —— [cos Q F cos R Z cos QZ cos RF]
sin QR J



Eliminating two of the quantities sin PQ ,
sin PR, sin QR,

between two of the preceding equations, we obtain

13. Let X, Y, Z be the points in which the axes of

a crystal meet the surface of the sphere of projection;

P, R the poles (hkl), (pqr); a, b, c the parameters of

the crystal. Then (8)

Therefore eliminating cos PX, cos PY, cos PZ, cos RX,

cos RY, cos RZ between the above equations and the equation
at the end of (12), we have

where

14. The great circle passing through the poles (hkl),

(pqr), may be denoted by the symbol [uvw], where u, v, w

have the values assigned to them in (13). Since the poles

P, R may be denoted by the indices h, k, l; p, q, r, or

by any numbers proportional to h, k, I; p, q, r respectively,
it follows, that the great circle PR may be denoted by any

three numbers proportional to u, v, w. When u, v, w have

a common measure, it will be found convenient to employ as

indices, the lowest whole numbers in the required ratio.

15. Let [hkl], [pqr] be the symbols of two great

circles, each of which passes through the poles of
any two

faces not parallel to each other; and let the great circle

7

(cos PY cos RZ - cos PZ cos RY) cos QX

+ (cos PZ cos RX - cos PX cos RZ) cos QY

+ (cos PX cos RY - cos PY cos RX) cos QZ = 0.

-
cos PX = - cos PY = - cos PZ,

h k l

a h c.

- cos RX = - cos RY = - cos RZ.

V q r

u a cos QX + vb cos QY + wc cos QZ = O,

u = kr - lq, v = lp - hr, w = hq - kp.



[hkl] meet the great circle [pqr] in the point Q. Then,

since Q is a point in each of the great circles, (13)

Whence, eliminating cos QX, cos QY, cos QZ succes-

sively, we obtain

where

The indices h, k, 1, p, q, r are integers; ∴ u, v, w are

integers, and therefore (8) Q is the pole of the face (uvw).

Hence, it appears that a face may always exist having its

pole in the intersection of any two great circles, each of

which passes through the poles of
any two faces not parallel

to each other.

16. When three or more faces of a crystal have their

poles in the same great circle, they are said to form a zone.

The great circle passing through the poles of any two faces

not parallel to each other, and which, therefore, passes through

the pole of any other face in the same zone with them, will

be called a zone-circle. The diameter which joins its poles
will be called the axis of the zone. A zone and its zone-circle

will be denoted by the same symbol.

17. It appears from (13) that if [uvw] be the symbol
of the zone containing the faces (hk1), (pqr),

and from (13) that if (uvw) be the symbol of the face com-

mon to the zones [hkl], [pqr],

8

ha cos QX +k b cos QY + lc cos QZ =0,

pa cos QX +q6 cos QY + rc cos QZ =0.

a b c
- cos QX = - cos QY = cos Q/,
U V w

u = kr - lq, v = lp - hr, w = hq - kp.

u = kr - lq, v = lp - hr, w = hq - kp,

u = kr - lq, v = lp - hr, w = hq - kp,



or, that the expressions for u, v, w, in terms of h, k, I,

p, q, r, are precisely similar to the expressions for u, v, w,

in terms of h, k, 1, p, q, r.

We shall sometimes find it convenient to denote the

zone containing the faces (hkl), (pq r), by the symbol

[hkl, pq r], and the face common to the zones [hkl],

[pqr], by the symbol (hkl, pqr).

18. The intersections of the faces of a zone, or of the

faces produced, are parallel to the axis of the zone, and

therefore, to one another. In
many cases the parallelisms of

the edges resulting from the intersections of a series of faces

belonging to the same zone can be ascertained by simple

inspection. The method of determining by observation

whether a face does or does not belong to a zone contain-

ing two given faces, when it does not meet them, or when

the edges it makes with them are so short that their

parallelism is doubtful, will be described when we come to

explain the use of Wollaston’s Goniometer.

When, by observing the parallelism of the edges or other-

wise, it has been ascertained that a
face is in the same zone

with two given face?, and that it is also in the same zone with

two other given faces, the symbols of the two zones, and,

from these, the symbol of the face which is common to

them, may be found by the methods of (14) and (15).

19. The points in which
any two zone-circles intersect

are the opposite extremities of a diameter of the sphere of

projection. Hence, (11) the symbol of one point of intersection

is obtained from that of the other by merely changing the

signs of all the indices.

20. If [uvw] be the symbol of the zone-circle through
the poles (hkl), (pq r), it is easily seen that [uvw] will

be the symbol of the zone-circle through the poles (hkl ),

(pq r); and also that if the zone-circles [h kl], [pqr] in-

tersect (uvw), the zone-circles [hkl], [pqr] will intersect

9



in (uvw). Hence, if the zone-circles [hkl , pqr], [h'k'l',

p'q'r'], intersect in (uvw), the zone-circles [hkl, pq r],

[h'k'l', p'q'r'] will intersect in (uvw).

If the zone-circles [hkl, pqr], [h'k'l', p'q'r'] intersect

in (uvw ), it is manifest that [lhk, rpq ], [l'h'k', r'p'q']
intersect in (wuv ), and that [hlk, prq ], [h'l'k', p'r'q' ]
intersect in (uwv).

21. Let Q be the pole of a face (uvw), in the zone

[uvw]. Then, (13), (8)

This equation expresses the condition that the face

(uvw) may be in the zone [uvw]. Any whole numbers

which, when substituted for u, v, w, satisfy the above equation,

are the indices of a face in the zone [uvw]; and any three

whole numbers which, when substituted for u, v, w, satisfy
the same equation, are the indices of a zone containing the

face (uvw).

22. When the zone-circle [uvw] passes through the

pole (uvw), (2l)

Hence, in order to find the poles which lie in a given

zone-circle, or the zone-circles passing through a given pole,

we must find the integral values (one or two of which may

be zero), of x, y, z, which satisfy the equation

where a, b, c are the indices of the given zone-circle in the

former case, and of the given pole in the latter.

Let the coefficients
c, b be prime to each other. Trans-

form into a continued fraction, and let be the

10

ua cos QX + vb cos QY + wc cos QZ = 0,

cos QX = cos QY cos QZ ;

u v w

uu + vv + ww = 0.

uu + vv + ww = 0.

ax + by + cz = 0 ;

c / b c! / b'



last but one of the resulting converging fractions. Then,

by the rule for solving indeterminate equations of the first

degree, where the

upper or lower sign is to be taken, according as cb' is greater

or less than bc'. The value of x being assumed, the corre-

sponding values of y and z may be obtained by substituting
different positive or negative whole numbers for m.

23. If the zone-circle [hkl] passing through the poles

(hkl), (h'k'l'), intersect the zone-circle [pqr] passing

through the poles (pqr), (p'q'r'), in the pole {uvw) ; values

of h, k, l, h', k', l’, p, q, r, p ', q', r', can always be found,

such that the three indices of each pole shall be severally

numerically less than the indices u, v, w, or not greater than

unity.

The values of h, k, l, h', k', l', p, q, r, p',q', r' must

satisfy the equations

We have, therefore, to shew that if a, b, c be any whole

numbers, the equation may
be satisfied by

two sets of integral values of x, y, z, such that, if either of

them be α, β, γ, the equation may be

satisfied by two sets of integral values of x, y, z which are

severally numerically less than a, b, c, or not greater than

unity. The most unfavourable case is that in which the

largest of the three numbers a, b, c is prime to each of the

other two, and no two are equal. Let c be greater than b,

and b greater than a. Since a is less than b, x may have a

value which is either unity or some number less than a, and

which makes ax numerically less than by.

therefore y may
be made less than c, and the signs of ax,

by different. In which case, since will be less

than
b,

and the sign of cz different from that of by, and there-

fore the same as that of ax. Also, since

11

y= ± (c'ax - mc), z = ± (mb b'ax) ;

uh + vk + wl = 0, up + vq + wr = 0,

hh +kk + ll = 0, pp + qq + rr = 0,

hh'+ kk'+ ll'= 0, pp'+ qq' + rr'= 0.

ax + by + cz = 0,

αx + βy + γz = 0,

±
y = (c'ax mc),

- cz = by + ax, z

± z = (mb - b'ax ),



with either the same value of x
,

or a different value, which is

either unity or a number less than a, a value of z may be

found less than b, and making the signs of ax, cz different.

And therefore the corresponding value of y will be less than c.

Hence, if either of the above values of x, y, z be α, β, γ re-

spectively, α will be less than a, or unity, β less than c, and γ

less than b. In like manner, the equation may

be satisfied by two sets of values of x, y, z less than α, β, γ,

or not greater than unity, and therefore less than a, b, c, or

not greater than unity. Hence values of h, k, l, h', k', l',

p, q, r, p', q', r', can always be found capable of satisfying

the equations by which they are connected with u, v, w,

such that the three indices of each pole shall be lower

numbers than u, v, w, or not greater than unity.

24. It appears
from the preceding investigation, that the

pole of
any

face (uvw) is the intersection of two zone-circles,

each of which passes through the poles of two faces having

indices more simple than those of (uvw). In the same

manner, the poles of each of these faces is the intersection of

two zone-circles passing through the poles of faces having

indices still more simple, and so on, till at last we arrive at

the poles of four faces the indices of which are either unity

or zero.

25. Having given the distances between four poles in

the same zone-circle, and the symbols of three of them; to

find the symbol of the fourth.

Let P, Q, R, S, (fig. 6), be the four poles in one

zone-circle, and let their symbols be P (efg), Q(hkl),

R (pqr), S (uvw) ; X, Y, Z the extremities of radii drawn

parallel to the axes of the crystal; a, b, c the parameters of

the crystal. Then,

12

αx+βy+γz=o,

cos P.A” =
- cos PY = - cos PZ,

c _f g

cos QX~ cos f?)' - cos QZ
h k l



P, Q, R are in the same great circle, and PQ is less than

PR, therefore, (12),

P, S, R are in the same zone-circle, and PS is less than

PR, therefore, (12),

Whence, dividing each of the equations between sin PS,
sin SR, by the corresponding equation between sin PQ.

13

- cos RX = - cos RY = - cos RZ,
P q r

- cos SX =

h
cos SY = cos

U V w

—;
—- [cos PX cos QY - cos PY cos QAI

sin PQ

[cos QX cos RY cos QFcos RX],
sin QR

—■■ [cos PZ cos QX - cos PX cos QZ I
sin PQ

L

1

= ——- [cos QZ cos RX cos QX cos 72Z],
sin CilJt

t—[cos PY cos QZ - cos PZ cos QFI
sin PQ

J

= [cos QY cos RZ cos QZ cos 77F1.
sin QR

l J

———, [cos PX cos SY cos PFcos /YAH
sin PS J

= ——r— [cos SXcos RY - cos SYcos RX ],
sin SR J

-—[cos PZ cos (SAT cos PX cos SZ I
sin PS L J

1

= -—— [cos SZ cos RX - cos SX cos RZ I,
sin SR J

. 777, [cos PF cos SZ - cos PZ cos .S'FI
sin PS J

= ———- [cos SY cos RZ cos SZ cos FI.
sin P.S J



sin QR, and substituting for the ratios of the cosines the

values given above,

where

Sin PQ sin SR, sin QR sin PS must be to each other

as some whole numbers. Let

Whence,

When PS is greater than PR, we have

where

Whence

26. Having given the symbols of four poles in the

same zone-circle, and the distances between three of them ;

to find the fourth

14

[P, Q] [S, R ]
=

[Q, R]

sin PQ sin SK sin Qli sin PS
’

[P, Q]
_

fl-gk _gh- el
_

eh -fh £
[Q, P] hr -Iq Ip -hr hq -kp

’

_

r •

[P, S] fw - gvj gu-ewts ev-fu '^)

[S,R] vr —wq wp —ur uq —vp u-p 4
v 4

sin PQ sin SR m

sin QR sin PS n
’

[P, P] m id, R]
"

[P,S] n [P, Q]
’

u = me[Q, R] + np[P, Q],

v = mf[Q, R] + nq[P, Q],

w = mg[Q, R] + nv[P, Q].

[P, Q] [P, P]
_

[Q, P] [P. P]

sin sin PP sin QP sin PS
’

[P, P] fw-gv gu-ew ev-fu

[P, P] qw —rv ru —pw pv —qu

u = me[Q, P] - np [P, Q],

v = mf[Q, R] - nq[P, Q],

w = mg[Q, R] - nr[P, Q].



Let

27.

Therefore

28. The axes of
any three possible zones, not being

in one plane, may be employed as crystallographic axes.

Let X, Y, Z (fig. 7) be the points in which the axes

of the crystal meet the surface of the sphere of projection;
a, b, c the parameters of the crystal; X', Y', Z' the poles
of any three zone-circles intersecting in A, B, C; P the

pole of any face of the crystal; M the intersection of

CA, BP; N the intersection of AB, CP. Let the symbols
of the poles be A(efg), B(hkl), C(pqr), P(uvw),

M (λ,μ,ν), N(πρσ ). Then (14), (15),

ANB, AMC are great circles; therefore, writing
X', Y', Z' for X, Y, Z in (12), and dividing the equations
containing X', Y', Z' by the corresponding equations con-

taining X, Y, Z
,

we have

15

,
[-P, Q] [-S', P] sin QR

ta" e ‘

ro]
■

sin SR

—„7,
= tan 0,

sin PA

tan (PS - YPR) = tan IPR tan -0j .

Sin QR = sin PR sin PQ[cot PQ - cot PR],

sin SR = sin PR sin PS[cot PS
-

cot PR].

cot PS - cot PR [P, Q] [A', P]

cot PQ - cot PR
~

[Q, P] [P, A']
‘

λ = (re - pg) (hv - ku) - (pf - qe) (lu - hw),

ν = (qg - rf) (lu - hw) - (re - pg)(kw - lv ),

π = (gh- el)(pv - qu) - (ek - fh)(ru - pw).

ρ = (ek —fh)(qw— rv) - (fl - gk)(pv - qu).



But

Also

16

cos AX' cos NY' cos A Y' cos NX'

cos AX cos NY cos A Y cos NX

cos BY' cos NX' cos BX' cos NY'

cos BY cos NX- cos BXcos NY
’

cos AX' cos MZ' cos AZ' cos MX'

cos AX cos MZ cos AZ cos MX

cos CZ' cos MX' - cos CX' cos MZ'

cos CZ cos MX cos CX cos MZ

- cos AX = cos AY = cos AZ,
e f g

- cos BX = - cos BY = - cos BZ,
h k l

- cos CX = - cos CY = - cos CZ,
p q r

a b c

- cos MX = cos MY = cos MZ,
\ fj. v

a h c
- cos NX = - cos NY = - cos NZ,
tt p a

cos AY' =O, cos AZ' =O, cos BX'=O,

cos CX' = 0, cos MY' —0, cos NZ'= 0.

cos M.X' sin MB cosMZ' cos NX' sin NC cos NY'

cos PX' sin PB cos PZ'
’

cos PX' sin PC cos PY'
’

e {kir hp) cos AX' h{ep /tt) cos BY'

cos AX cos PX' cos BXcos PY' ’

e (r\ pv) cos AX' p(ev gX) cos CZ'

cos AX cos PX' cos CX cos PZ'
’



Where

Hence

where a, b’, c depend only upon the angles between the

old and new axes, and

u', v', w' are whole numbers, and therefore OX', OV, OZ'

may be taken for crystallographic axes.

The coefficients of u, v, w, in the expressions for u, v, w

are the indices of the zone-circles BC, CA, AB, their sym-

bols being BC [e f g], CA [h k l], AB [pqr].

29. To change the parameters of a crystal.

Let (h k/) be the symbol of a face P, with parameters

a, h, c; (fi k' l') the symbol of P, when referred to the

same axes,
with parameters a, h'

,
c.

Then

and

17

kπ - hρ = (fh - ek) [eu + fv + gw],

eρ - fπ = (fh - ek) [hu + kv + l w],

rλ - pν = (pg - re) [eu + fv + gw],

ev -g\ = (pg re) [p u +qv + rw].

e=kr lq, f=lp hr, g=hq kp.

h =qg-rf, k = re-pg, \=pf-qe.

p= fl - gk, q=gh el, r=ek fh.

cos PX' = cos PY' = cos PZ',
U V w

u' = e« + fv + gw,

v' = hu + k« + 1?/;,

w = p?t + qw + rw.

a h
„

c
- cos fT =

- cos PY = cos PZ,
h k l

cos PW = cos PY = cos PZ ;

A /r /

a a h' b e <;

h’ =A ’ /7 =A' ’ 7
=

r



30. P, Q, K, S are four poles in the same zone-circle.

When they are referred to a system of axes meeting the sur-

face of the sphere of projection in X, V, Z, their symbols

are P(efg), Q(hkl ) R\p qr), S(uvw). When they are

referred to a system of axes meeting the surface of the

sphere of projection in X’, Y', Z', their symbols are P{e fg),

Q(h'k'l'), li(p'q'r'), S{u v w). If

we have (25)

And if

we have

Let

whence

18

[P, Q] fl-gk gh -el ek -fh

[&R] =kr— lq Ip —hr hq—kp

[P, s*] fw-gv gu -ew ev-fu

[<S, P] vr-wq wp-ur uq-vjp

[ P, Q] [S, It]
=

[Q, P] [P, P]

sin PQ sin SR sin QR sin PS

\P', Q'] fV -gfc _qft - el’
_

ek'-fti

[P\ iT]
_

k'r - l'q
~

l'p - h'r ft q
- k'p

’

[7
y

, S'] f'w -gv g'u -
e'w'

_ev -gu

[S', /?]
=

Vr'-w'q'
~

w'p' - mV'
“

mV/' - «'p'
’

[P, Q'] [y, R']
_

[Q'. R'] [p, »y]

sin PQ sin SR sin QR sin PS

[PUT] [.S", P'] [QVRI [Iy
, S’]

[P, Q] [P, P] [Q, P] [A P]

[Q,P] [P,s] [P\ Q']
=

rn

[P, Q] [S,R] [QW] «’■

[P', .S'] rn

■■■

u=en + pm,
v' = f'n +q m,

w' =gn + r'm.



31. Having given the symbols of four poles P, Q, R, S,

ffig. 8.) when referred to each of two systems of axes

OX, OY, OZ; OX', or', OZ', and the "symbol of any

other pole referred to the axes OX, OY, OZ ; to find its

symbol when referred to OX', OY', OZY.

Let P, Q, R, S be the poles; ABC the polar triangle

of X' Y' Z'. Therefore the symbols of A, B, C, when

referred to OX', OY', OZ', will be A(l 0 0), B{o 1 0), C(0 0 1).

Let PQ, RS meet each other in T, and let them meet BC

in U, V. The symbol of T
may

be found when referred to

OX, OY, OZ and also when referred to OX', OY', OZ'-,

and the symbols of U, V may be found when referred to

OX', OY', OZ'. The symbols of P, Q, T when referred to

OX, OY, OZ, and to OX', OY', OZ', and the symbol of U

when referred to OX', OY', OZ', being known, the symbol
of U may be found when referred to OX, OY, OZ. In like

manner may be found the symbol of V when referred to

OX, OY, OZ. Hence may be found the symbol of the zone-

circle BC when referred to OX, OY, OZ. In like manner

may
be found the symbols of CA, AB referred to OX, OY,

OZ. Hence, the symbols of the zone-circles being known,

the symbol of any pole when referred to OX', OY', OZ'

may be found by (28).

32. In many crystals axes may be discovered which

make right angles with each other; in others, axes of which

one is perpendicular to the other two, and in others axes

making equal angles with each other. In the crystals with

equiangular axes, and in some of the crystals with rectangular

axes, equal parameters may
be found, and, among the remain-

ing crystals with rectangular axes, some which have two of

the parameters equal. Upon the differences in the positions

of the axes with respect to each other, and in the relation

between the parameters, above enumerated, is founded the

arrangement of crystals in systems.

1. In the Octahedral system the axes are rectangular

and the parameters equal.

19



2. In the Pyramidal system the axes are rectangular

and two of the parameters equal. In this system we shall

always suppose a
and b equal.

3. In the Rhombohedral system the axes make equal

angles with each other, and the parameters are equal.

4. In the Prismatic system the axes are rectangular.

5. In the Oblique-Prismatic system one axis is perpen-

dicular to each of the other two. We shall always suppose

the axis OY perpendicular to each of the axes OZ and OX.

6. The Doubly-Oblique-Prismatic system includes all

crystals which cannot be referred to either of the preceding

systems.

33. The different systems of crystallization are further

distinguished by the various kinds of symmetry observable

in the distribution of the faces of the crystals belonging to

them. For, if a face occur having the symbol (hkl), it

will generally be accompanied by the faces having for their

symbols certain arrangements of ±h, ±k, ±l, determined

by laws peculiar to each system, and which will be fully

explained when we come to describe each system separately.

34. “ A form ”in crystallography is the figure bounded

by a given face and the faces which, by the laws of symmetry
of the system of crystallization, are required to coexist with

it. A form will be denoted by the symbol of any one of its

faces enclosed in braces. Thus, the symbol {h kl} will be

used to express the form bounded by the face (hkl) and its

coexistent faces.

The “holohedral forms” of any system are those which

possess the highest degree of symmetry of which the system
admits. “Hemihedralforms” are those which

may
be derived

from a holohedral form by supposing half of the faces of

the latter omitted according to a certain law.

The figure bounded by the faces of
any

number of forms,

is called a “combination” of those forms.

20



35. The elements of
a crystal are the inclinations of the

axes YZ, ZX, XY, and the ratios of two of the parameters

a, b, c to the third. In the octahedral system, where the

axes are rectangular and parameters equal, all the elements

are determined. In the pyramidal system, where the axes

are rectangular and two of the parameters are equal, the

ratio of either of them to the third, is the only variable

element. In the rhombohedral system, where the axes make

equal angles and the parameters are equal, the angle between

any two of the axes is the only variable element. In the

prismatic system, where the axes are rectangular, the ratios

of two of the parameters to the third, are two variable

elements. In the oblique-prismatic system, where one of the

axes is at right angles to the other two, the inclination of

the two axes which are perpendicular to the third, and the

ratios of two of the parameters to the third, are three

variable elements. In the doubly-oblique-prismatic system,
the angles between the axes, and the ratios of two of the

parameters to the third, are all variable.

36. The angle between two faces, the symbols of which

are known, may be expressed in terms of the indices of the

faces, the inclinations of the axes, and the ratios of the

parameters. Therefore, one observed angle between two

known faces, in the pyramidal and rhombohedral systems;

two observed angles in the prismatic; three in the oblique

prismatic, and five in the doubly-oblique-prismatic system,

are sufficient to determine the variable elements in the re-

spective systems. In the three latter systems, however,

except in particular cases, the above direct method of find-

ing the elements of a crystal is impracticable on account of

the high dimensions of the resulting equations. Methods of

deducing the elements of a crystal from the requisite number

of angles between faces properly selected, adapted to each

particular system, will be given in the chapter devoted to

that system.
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CHAPTER II.

OCTAHEDRAL SYSTEM.

37. In the octahedral system the crystallographic axes

are at right angles to each other, and the parameters a, b, c

are all equal.

38. The holohedral form {hkl} is bounded by all the

faces having for their symbols the different arrangements
of ±h, ±k, ±l, taken three at a time. When h, k

, I are

all different, they afford the forty-eight arrangements con-

tained in the annexed table. When the values of
any two

of the indices are equal, or when one of them is zero, the

number of arrangements will reduce itself to twenty-four.
When two of the indices are equal, and the third is zero,
the number will be twelve. When the three indices are

equal, it will be eight, and when two indices are zero, it will

be six.

hkl klh lhk lkh khl hlk

hkl klh lhk lkh khl hlk

hkl hlh lhk lkh khl hlh

hkl klh lhk lkh khl hlk

hkl klh lhk lkh khl hlk

hkl klh lhk lkh khl hlk

hkl klh lhk lkh khl hlk

hkl klh lhk lkh khl hlk



If we suppose h to be the greatest, and l the least of the

three unequal indices h, k, l, fig. 9, will represent the dis-

tribution of the poles of the form k on the surface of

the sphere of projection. Fig. 10. exhibits tbe poles of the

forms obtained by substituting zero for one of the indices,

or by making two of them equal. Both figures shew the

poles of the forms {l 00}, {111} and {011}.

39. The form bounded either by all the faces of {h kl}
which have an odd number of positive indices, or by all the

faces of { hkl} which have an odd number of negative in-

dices, is said to be hemihedral with inclined faces, and will

be denoted by the symbol κ{hkl }, where (hkl) is the

symbol of
any one of its faces. The hemihedral form bounded

by the faces which have an odd number of positive indices,
is said to be direct. The form bounded by the faces which

have an odd number of negative indices, is said to be in-

verse. The upper and lower halves of the table in (38),
contain the symbols of the faces of the direct and inverse

forms respectively.

If the surface of the sphere of projection be divided

into eight triangles by zone-circles through every two of

the poles of the form {l00}, the poles of the direct hemi-

hedral form will be found in four alternate triangles, one

of which contains the poles of (111); and the poles of the

inverse hemihedral form will be found in the remaining four

alternate triangles

40. The form bounded either by all the faces of {hkl}
the indices of which stand in the order hklhk, or by all the

faces of {hkl } the indices of which stand in the order lkhlk,
is said to be hemihedral with parallel faces, and will be

denoted by the symbol π{hkl}, where (hkl) is the sym-

bol of
any one of its faces. The form is said to be direct

or inverse according as the numerical values of the indices

of one of its faces are in ascending or descending order.

The symbols of the faces of the direct and inverse forms are
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contained respectively in the right and left halves of the

table in (38).

If the surface of the sphere of projection be divided

into twenty-four triangles by zone-circles passing through

every two of the poles of the form {l11}, the poles of the

direct hemihedral form will be found in twelve alternate

triangles one of which is (l11) (010) (111), and the poles

of the inverse form will be found in the remaining twelve

alternate triangles.

41. Any number of holohedral forms may occur in

combination with each other, and with
any

hemihedral forms

with inclined faces, or with any hemihedral forms with

parallel faces. It is said that hemihedral forms with in-

clined faces have never been observed in combination with

hemihedral forms with parallel faces.

42. To find the position of the pole of any face.

Let the axes of the crystal meet the surface of the sphere

of projection in X, Y, Z, (fig. 11); and let P be the pole of

the face (hkl). The axes are rectangular; therefore YZ,

ZX, XY are quadrants, therefore

therefore X, Y, Z are the poles of the faces

(l00), (010), (00l) respectively. The quadrantal tri-

angles PYX, PYZ give

Add, observing that and that

and we have

The parameters are equal, therefore (8),

24

cos YZ = 0, cos ZX = 0,

cos XY = 0,

(cos PY) 2
= (sin PX) 2 (cos PXY)2

(cos PZ)2 = (sin PX)2 (cos PXZ)2.

(cos PXY)2 + (cos PXZ)2 = 1,

(cos PX)2 + (sin PX)2 = 1,

(cos PY)2 + (cos PY)2 + (cos PZ)2 = 1.

cos PX = cos PY = - cos PZ,
h k l



43. To find the distance between the poles of any two

faces.

Let P (fig. ll) be the pole of (hkl), Q the pole of (p qr).

Substituting this value of cos PXQ in the equation

and observing that

we get

But (42)

25

(cos PXf =

h%

h + Hr + r

]A

(cos PYf= ————

hr + k z
+ I-

(c“ ra>'-FTFT7-'

cos PXQ = cos PXYcos QXY + sin PXYsin QXY,

= cos PXYcos QXY + cos PXZ cos QXZ.

cos PQ = cos PX cos QX + sin PX sin QX cos PXQ ,

sin PX cos PXY = cos PY, sin QX cos QXY = cos QY,

sin PX cos PXZ = cos PZ, sin QX cos QXZ = cos QZ,

cos PQ = cos PX cos QX + cos PY cos QY + cos PZ cos QZ.

P r 2

(cos PZ)
2

=
,

(cos QZY = ; ;.v ’
tf +IP + P

v J
p* +9*+ r»

. po=
hp +kq+ lr

C ° S

+ /2) a/(P
2

+ 7
2

+ r2)



44. The three quadrantal triangles YPZ, ZPX
, XPY,

give

Whence

45. Let O be the pole of the face (111), (42),

whence (43),

and YZ, ZX, XY are quadrants.

Hence, the angles YOZ, ZOX, XOY are each equal to

120°, and OX, OY, OZ bisect the right angles YXZ,

ZYX, XZY. From the triangle POX we have

If we write Y, Z successively in the place of X, and sub-

titute for the trigonometrical ratios their values in terms

of h, k, l, we obtain

46. It appears from the form of the expressions in

(43), that the distance between the poles of the faces

(hkl), (pqr) is equal to the distance between the pole of

any face of the form {hkl}, and the pole of
any

face

26

cos PX = sin PY cos PYX = sin PZ cos PZX
,

cos PY = sin PZ cos PZY = sin PX cos PXY,

cos PZ = sin PX cos PXZ = sin PYcos PYZ.

tan PXY=-, tan PYZ =~, tan PZX
.

k I n

(cos OX)
2

=1/3, (cos OY)2 =l/3, (cos 0Z)2
= 1/3

(cos POY-
+ k + V

(COS ru)
3h.+¥ + p

-

OX = OY = OZ,

cot PX sin XO = cos XO cos OXP + sin OXP cot POX.

tan POX = v/3 ----

,v
2 h-k-V

tan POY = */3 ———

,v
2k-i- h

’

tan POZ = a/3
h k

.v
2l-h~k



of the form {pqr }, in the symbols of which the order

and signs of h,k,l are the same as the order and signs
of p,q,r.

47. It appears from the expressions in (42), that if

the symbols of two poles of the form {hkl} differ only
in the sign of h, the two poles will be equidistant from

(010) and also from (0 01), therefore the arc joining the two

poles will be bisected at right angles by the zone-circle

[0 10, 00l], Hence the poles of {hkl} are symmetri-

cally arranged with respect to the zone-circle [0 10, 001].
In like manner it

may
be shewn, that the poles of {hkl}

are symmetrically situated with respect to any one of the

three zone-circles that can be drawn through every two of

the poles of {100}.

48. It appears from (43), that if the symbols of two

poles of the form differ only in the arrangement
of the 2nd and 3rd indices, the poles will be equidistant
from (111) and also from (111), therefore the arc joining
the two poles will be bisected at right angles by the zone-

circle [111, 111 ]. Hence the poles of {hkl} are sym-

metrically arranged with respect to the zone-circle [111, 111 ].
In like manner it may be shewn, that the poles of {hkl}
are symmetrically arranged with respect to any one of the

six zone-circles that can be drawn through every two of the

poles of {111}.

49. If zone-circles be drawn through every two of the

poles of {100}, and through every two of the poles of

{111}, they will divide the surface of the sphere of pro-

jection into forty-eight right-angled triangles. The poles of

{hkl } are symmetrically arranged with respect to any side

of any one of the triangles. Hence the arrangement of the

poles will be symmetrical in
any two adjacent triangles, and

similar in any two alternate triangles.

50. If zone-circles be drawn through every two of the

poles of {100}, and through every two of the poles of
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{111} , the zone-circles of one set bisect symmetrically the

triangles formed by the zone-circles of the second set. Hence,

the poles of κ{hkl } are symmetrically arranged with respect

to the zone-circles drawn through every two of the poles of

{111}; and the poles of π{hkl} are symmetrically arranged
with respect to the zone-circles drawn through every two

of the poles of {100}.

51. If we examine the situations of the poles of two

hemihedral forms, either with inclined or parallel faces, de-

rived from the same holohedral form, one of them being
direct and the other inverse, we shall find that the two forms

are identical in all respects, position excepted, and that one

of them may
be brought into the position of the other by

making it revolve through a right angle round
any one of

its crystallographic axes. In like manner, the combinations

of a holohedral form with a direct and inverse hemihedral

form differ only in position. But in the combinations of
any

two hemihedral forms with inclined faces, or of
any two

hemihedral forms with parallel faces, with each other, the

poles of the two forms lie in the same or in different tri-

angles according as they are of the same or different deno-

minations. Hence a combination of two direct, or of two

inverse hemihedral forms, is essentially different from the

combination of the same hemihedral forms, when one of

them is direct and the other inverse.

52. If the distance between the poles of any two faces

of either of the forms {hkO}, { hkk } be given, and we ex-

press the cosine of the given distance in terms of the indices

of the faces, we obtain an equation from which the ratio of

the indices may be deduced.

53. If the distances between the pole of any face of

the form {hkl}, and the poles of each of two other faces

of the same form be given, and we express the cosines of

the given distances in terms of the indices of the faces, we

shall obtain two equations from which the ratios of the

indices may be readily found.
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54. To determine the figure and angles of the form

{hkl} ,
when h,k,l take particular values.

The angle between normals to any two faces, which is

measured by the angular distance between their poles, is

found by substituting the indices of the faces for h, k, l,

p, q, r in the expressions of (43). The letter placed upon

the edge resulting from the intersection of any two faces,

in the figures which accompany
the description of each

par-

ticular form, will be used to denote the angle between nor-

mals to the two faces. The same letter will be placed upon

all the edges at which equal angles are formed by the in-

tersecting faces. The relative positions of the poles of the

different forms are shewn in figs. 9, 10, and in fig. 37, which

is the gnomonic projection of one of the octants into which

the surface of the sphere of projection is divided by the

zone-circles through every two of the poles of the form

{100}. The number of faces of each holohedral form has

been already determined in (38).

55. The form {100} (fig. 12) has six faces, and is

called a cube.

Hence, the faces of the form {100} are parallel to those of

a cube.

56. The form {111} (fig. 13) has eight faces, and is

called an octahedron.

Hence, the faces of the form {111} are parallel to those of

a regular octahedron.

The cosine of the angle between normals to any face of

the octahedron and either of the adjacent faces of the cube

is 1/3√3. Hence, a normal to any face of the octahedron

makes an angle of 54°.44', 15 with the normals to each of the

adjacent faces of the cube, and an angle of 125°. 15',85 with

the normals to each of the three opposite faces of the cube.

29

cos F = 1, ∴ F = 90°.
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57. In the hemioctahedron with inclined faces κ{111}
(fig. 14),

Hence, the hemihedral form κ{ 111} is a regular tetrahedron.

58. The form {001} (fig. 15) has twelve faces, and is

called a dodecahedron.

If normals to any two alternate faces, meeting at their

acute angles, make an angle D with each other,

The cosine of the angle between normals to any face of

the dodecahedron and either of the adjacent faces of the

cube is 2. The cosine of the angle between normals

to any face of the dodecahedron and either of the faces of

the cube, not parallel to the two adjacent faces, is 0. Hence,

a normal to any face of the dodecahedron makes an angle

of 45° with the normals to each of the two adjacent faces

of the cube; an angle of 135° with the normals to each of

the two opposite faces, and an angle of 90° with the normals

to each of the two remaining faces.

The cosine of the angle between normals to any face of

the dodecahedron and either of the adjacent faces of the

octahedron is 1/3√6. The cosine of the angle between

normals to any face of the dodecahedron and either of the

faces of the octahedron, not parallel to the adjacent faces,

is 0. Hence, a normal to any face of the dodecahedron makes

an angle of 35°. 15',85 with the normals to each of the two

adjacent faces of the octahedron; an angle of 144º.44',15

with the normals to each of the two opposite faces, and an

angle of 90° with the normals to each of the four remain-

ing faces.

59. The form {hkO} (fig. 16) has twenty-four faces

and is called a tetrakishexahedron.

30
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The tangent of the angle between normals to any
face

of {hkO} and the nearest face of {100} is k/h.

60. In the hemitetrakishexahedron with parallel faces

π{Okh} (fig. 17), h being greater than k.
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61. The form {hkk} (fig. 18), A being greater than k,

has twenty-four faces, and is called an icositessarahedron.

62. In the hemiicositessarahedron with inclined faces

κ{hkk} (fig. 19),

63. The form {hhk} (fig. 20), h being greater than k,

has twenty-four faces, and is called a triakisoctahedron.
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64. In the hemitriakisoctahedron with inclined faces

κ{h hk } (fig. 21),

65. The form {h kl} (fig. 22) has forty-eight faces, and

is called a hexakisoctahedron.
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66. In the hemihexakisoctahedron with inclined faces

κ{hkl} (fig. 23),

67. In the hemihexakisoctahedron with parallel faces,

π{lkh } (fig. 24),
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68. Of the preceding forms, those which have the simplest
indices, the cube {100}, octahedron {111} and dodeca-

hedron {011} occur much more frequently than the others.

It does not appear that any cleavages have been observed

except parallel to the faces of one or more of the three forms

{100}, {111}, {011}.

Table of the distances between the poles of the common-

est forms, and the nearest poles of the forms {100},
{011}, {111}.

35

100 010 001 | 011 101 110 111

7

210

0 '

26.34
0 '

63.26
0 '

90. 0

0 '

71.34

0 '

50.46
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18.26
0 '

39.44

310 18.26 6l.34 90.0 77. 5 47.52 26.34 43. 5

320 33.41 56.19 90. 0 66.54 53.58 11.19 36.49

410 14. 2 75.58 90.0 80. 7 46.41 30.58 45.34

430 36.52 53. 8 90.0 64.54 55.33 8. 8 36. 4

520 21.48 68.12 90.0 74.47 48.58 23.12 41.22

540 38.40 51.20 90. 0 63.47 56.29 6.20 35.45

211 35.16 65.54 65.54 54.44 30. 0 30. 0 19.28

311 25.14 72.27 72.27 64.46 31.29 31.29 29.30

122 70.31 48.11 48.11 19.28 45. 0 45. 0 15.48

133 76.44 46.30 46.30 13.16 49.33 49.33 22. 0

321 36.42 57.41 74.30 55.28 40.54 19. 6 22.13
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Examples.

69. In a crystal of Tin-white Cobalt Pyrites, (fig. 25.)
the normals to the faces a, a', &c. make right angles
with each other, and a normal to any

of the faces d, d', &c.

makes an angle of 45° with a normal to either of the

adjacent faces a, a', &c. Hence, (55), (58), a, a ',
&c. are

the faces of the cube {110}
,

and d, d', &c. are the faces

of the dodecahedron {011}. Let symbols of the faces

be a (100), a' (010), a" (0 01). Therefore d (011),
d' (101), d" (110). O is in the zone ad, and also in

the zone a'd'. The symbols of these zones are ad [011],
a'd' [110 ] (14). Therefore (15) o is (111), therefore o is a

face of the octahedron {111}. Hence the crystal is a com-

bination of the forms {100}, {011}, {111}.

70. In a crystal of Fluor (fig. 26), normals to any two

adjacent faces o make with each other an angle of 70°. 31 1/2,
therefore (56) o, o', &c. are the faces of the octahedron { 111}.
A normal to any

face f makes an angle of 22° with a

normal to the adjacent face o. The edges in which any
two adjacent faces f meet each other and the adjacent faces

o are parallel, therefore the faces f are in the same zone

with two adjacent faces o. Let o be(111), o' (111), there-

fore the zone oo' will be [011], therefore (21) the symbol of

f will be (khh), and that of f(khh). If P, Q be the

Therefore f is a face of the triakisoctahedron {331} .

Hence the crystal is a combination of the forms {lll},
{331}. It is cleavable parallel to the faces of {111}.

71. In a crystal of Fluor (fig. 27), the angle between

normals to any two adjacent faces n arc alternately 35°. 57'

and 17°. 45', the angle between the normals to the faces

36

poles of f, f', PQ = 70°.31' 1/2 = 2.22° = 26°.31'
1/2,

and

‘2h2 k~
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that meet in a long edge being the greater of the two.

Let X, O be the poles of (100), (111); {hkl} the

symbol of the form bounded by the faces n ; P the pole
of (hkl), Q the pole of (khl) and R the pole of ( hlk).
Then PQ = 35°. 57', PR = 17º.45'.

Whence

Whence Hence

72. In a crystal of Boracite (fig. 28), normals to any

two adjacent faces a makes right angles with each other,

they are therefore the faces of a cube. Let their symbols
be a (100), a' (010), a" (0 01). A normal to d" makes

an

angle of 45° with a normal to either of the faces a, a',

therefore (58), d" is (110). Similarly d' is (101), and d

is (011). o is common to the zones ad, a'd', therefore (56)

o is(111). The number of faces o is four. But the ho-

lohedral form {111} has eight faces. Therefore o, o, &c.

are the faces of the hemioctahedron κ{111}. Hence the

crystal is a combination of the forms {100}, {110}, κ{111}.

73. In a crystal of Magnetic Iron Oxide, (fig. 29),
normals to any two adjacent faces o make with each other

an angle of 70°.31' 1/2. Therefore o, o', &c. are the faces of

the octahedron {111}. Let the symbols of the faces be

o (111 ), o' (111), o" (1 11 ), o"' (111). A normal to any
face d makes angles of 35°. 1 6' with normals to any two

adjacent faces o, therefore d, d', &c. arc the faces of the

37
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k = 2l, h = 41, l = l, k = 2, h = 4.

n, n', &c. are faces of the form {4 21}.



dodecahedron {011}, e is common to the zones oo"', do",

the symbols of which are oo'" [101], do" [2 11], therefore

(15), e is (131); therefore e, e', &c. are faces of the ico-

sitetrahedron {311} . Hence the crystal is a combination of

of the forms {111}, {011}, {3 1 1}.

74. In a crystal of Garnet (fig. 30), the normals to

any two adjacent faces d make with each other an angle
of 60°, therefore d, d', &c. are the faces of the dodecahedron

{011 }. Let their symbols be d (011), d' (101), d" (110).

e' is in the zone dd', and makes equal angles with d, d'.

The zone-circle [111, 111] bisects the arc dd' (48), there-

fore it contains the pole of e'. Therefore e' is (121).

Similarly e,
is (121). s is in the zone e' e,;

it is also in

the zone dd therefore (15), s is (123). Hence the crystal
is a combination of the forms {011}, {2ll}, {l23}. It

is cleavable parallel to the faces of {0 11}.

75. In a crystal of Silver-white Cobalt from Tunaberg

(fig. 31), normals to any two adjacent faces a make an

angle of 90° with each other, they are therefore the faces of

the cube. Let their symbols be a(1 00), a' (010), a" (001).
The angle between a normal to any face o and a normal to any

of the adjacent faces a is 54°. 44, therefore (56) o is (111).
The edges which d" make with a and a are parallel, therefore

d" is in the same zone with a
,

a'; therefore the symbol of d"

will be (hkO ). It is found that normals to a', d" make an

angle of 26°.34'. Therefore (42)

The number of faces d is twelve, the number in the holohe-

dral form {012} being twenty-four. Hence the crystal is

a combination of the forms {too}, π{012}. The

crystal is cleavable parallel to the faces of {100}.

76. In a crystal of Silver-white Cobalt (fig. 32), the

symbols of p, a, c, k are p (100), a (111), c (120), k (l40).

38
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i is in the zone ac, and normals to a, i make, according to

Phillips, an angle of 16°.33'. Let (hkl) be the symbol of i.

The symbol of the zone ac is [211], therefore (21)

Also (45) Whence very

nearly, therefore The number of faces

e, adjacent to a, is three, therefore e is a face of the form

π{7 11 15}.

77- In a crystal of Yellow Iron Pyrites (fig. S3), a is

a face of the cube, o a face of the octahedron. Normals

to s, a make with each other an angle of 57°.41, and normals

to s, o make with each other an angle of 22°. 13'. Let the

symbols of the faces be a (l 0 0), o (l 1 l), s (h k I) ; and let

Whence ∴s is (2 3 1).
In the holohedral form {l23}, and in the hemihedral form

with inclined faces, there are six faces on one angle of the

cube. In the present case there are only three. Hence

s, s', s" are faces of the direct hemihexakisoctahedron with

parallel faces π{123}. The crystal is cleavable parallel to

the faces of the forms {100}, {111}.

78. In a crystal of Yellow Iron Pyrites (fig. 34), p, p ', p"
are faces of the cube, d a face of the octahedron py" e" p',
p" sfo' s"e", p"f"y", pod, dfe are zones; and the normals

to p'e" make an angle of 26°. 34'. Let the symbols of p, p', p"
be (100), (010), (001), then d will be (111). e" is in the

zone pp', therefore its symbol will be of the form (hkO) ;

therefore if Y, P be the poles of p ',
e"

,

∴ e" is (12 0), In like

manner eis(201), and e is (012). O is common to the

39
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A, 0, S be the poles of a, o, s. Then SA = 57°.4l', SO =

22°. 1 S'.
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zones pd, p'e', therefore o is (211), s is common to the zones

pe, p" e"
,

therefore s is(124). f is common to the zones de,

p"e”, therefore f is (123). y is common to the zones pf, p' p",

therefore y is(023). There is only one face e, and one face y,

between every two adjacent faces of the cube; and only three

faces f, and three faces s, round each of the faces d ; therefore

e, q, f, s belong to hemihedral forms with parallel faces.

Hence, the crystal is a combination of the forms {111} ,

{100}, π{012}, π{0 23}, π{123 }, π{124}.

79. In a crystal of Fahlerz (fig. 35), f, f', f" are the faces

of the cube. Each of the faces d, d', &c. is in the same zone

with the two adjacent faces a, and makes equal angles with

them, therefore d, d'
,

&c. are faces of the dodecahedron. Let

f, f', f" be (100), (010), (001) respectively, therefore d, d',

&c. will be d (011), d' (101), d" (110), d
'
(101). p is com-

mon to the zones f'd', f"d', therefore p is (111). r" is com-

mon to the zones dd', f"d", therefore r" is (112). In like

manner we have r' (121), r' (2 11), r" (1 2 1). s is common to

the zones ff', r'r"
,

therefore s is (130). n is common to the

zones f"d", r'r" ,
therefore n is (332). The edges and solid

angles formed by r, r
',

r" are not truncated by any faces

corresponding to p, n, therefore p, n belong to hemihedral

forms with inclined faces. Hence the crystal is a combination

of the forms { 100}, κ{111}, {310}, {21 1},
κ{332}.
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CHAPTER III.

PYRAMIDAL SYSTEM.

80. In the pyramidal system the crystallographic axes

make right angles with each other, and two of the parameters,

a, b are equal.

81. The holohedral form {h kl } is bounded by all the

faces which have for their symbols the different arrangements

of ±h, ±k, ±l, in which I holds the last place. When

h, k, l are all different they afford the sixteen arrangements
contained in the annexed table. When one of the indices is

zero, or when h, k are equal, the number will be eight. When

l is zero and h = k, or when one of the indices h, k is zero, the

number will be four. When h and k are zero it will be two.

If we suppose h to be greater than k, fig. 38 will represent
the arrangement of the poles of the form {hk} on the surface

of the sphere of projection.

82. The form bounded either by all the faces of { hkl}

which have an odd number of positive indices, or by all the

faces of {hkl} which have an odd number of negative indices,

is said to be hemihedralwith inclined faces, and will be denoted

by the symbol κ{hkl}, where (hk l) is the symbol of any one

hkl khl hkl khl

hkl khl hkl khl

khl hkl khl hkl

khl hkl khl hkl



of its faces. The hemihedral form bounded by faces which

have an odd number of positive indices is said to be direct.

The form bounded by faces having an odd number of negative
indices is said to be inverse. The symbols of the direct form

are contained in the first and second columns, those of the in-

verse form in the third and fourth columns of the table in (81).

If the surface of the sphere of projection be divided into

eight triangles by zone-circles through the poles of {001} and

{100}, the poles of the direct form will be found in four

alternate triangles one. of which contains the pole of (111).

The pole of the inverse form will be contained in the remain-

ing four alternate triangles.

83. The pyramidal system admits of a second hemihedral

form with inclined faces, which is boundedby all the faces of

{hkl}, in which the order of h, k changes with the sign of

l, and which will be denoted by the symbol κ'{hkl}
,

where

(hkl) is the symbol of any one of its faces. The formis said to

be direct or inverse, according as the first index is greater or

less than the second, when the three indices have the same sign.
The symbols of the faces of the direct form are contained in

the first and fourth columns, those of the inverse form in

the second and third columns of the table in (81).

If the surface of the sphere of projection be divided into

eight triangles by great circles through the poles of {001}
and {110}, the poles of the direct form will be found in four

alternate triangles, one of which contains the pole of (101).
The poles of the inverse form will be found in the remaining

four alternate triangles.

84. The form bounded by all the faces of {hkl}
,

in

which the order of h, k is the same or different according as

h, k have the same or different signs, is said to be hemihe-

dral with parallel faces, and will be denoted by the symbol
π{hkl}

,
where (hkl) is the symbol of

any one of its faces.

The form is called direct or inverse according as the first index

is greater or less than the second, when the two indices have
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the same sign. The symbols of the faces of the direct form

are contained in the first and third columns, those of the in-

verse form in the second and fourth columns of the table in

(81).

If the surface of the sphere of projection be divided into

eight lunes by zone-circles through the poles of (001) and the

poles of {100}, {110} the poles of the direct hemihedral

form will be found in four alternate lunes, one of which is

(100), (110); and those of the inverse form in the remaining
four alternate lunes.

85. To find the position of any pole.

Let the axes of the crystal meet the surface of the sphere
of projection in X, Y, Z (fig. 39). Let a, a, c he the parame-

ters of the crystal; P the pole of (hkl). Since the axes

of the crystal are rectangular, YZ, ZX, XY are quadrants,
therefore therefore X,

Y, Z are the poles of (100), (010), (001), and the angles
at X, Y, Z right angles.

But

Whence

43

cos YZ = 0, cos ZX = 0, cos XY = 0,

cos PX = sin PY cos PYX = sin PZ cos PZX
,

cos PY = sin PZ cos PZY = sin PX cos PXY,

cos PZ = sin PXcos PXZ = sin PY cos PYZ.

cot PX = tan PZY cos PXY = tan PYZ cos PXZ
,

cot PY = tan PXZ cos PYZ = tan PZXcos PYX,

cot PZ = tan PYX cos PZX = tan PXYcos, PZY.

- cos PX = - cos PY = - cos PZ.
h k l

la la k
tan PXY = - -

,
tan PYX = - -

,
tan /’ZX= -

.

k c he h



86. The poles of {110} bisect the arcs joining any two

adjacent poles of {100}. For if N be any pole of {110};
X, Y the adjacent poles of {100}, it will be found that

therefore NX, NY are each 45°,

therefore N bisects XY.

87. It appears from the form of the expressions in (85),
that the distances of the poles of {hkl} from the nearest of

the two poles (001), (001) are all equal; and that the

angles subtended at (001) or (001) by the arcs joining any

pole of { hkl} and the nearest pole of {100} are all equal.

Hence, it may be easily shewn, that the poles of the form

{hkl} are symmetrically arranged with respect to each of the

five zone-circles that can be drawn through every two of the

poles of the three forms {001}, {100}, {110}.

88. If the surface of the sphere of projection be di-

vided into sixteen triangles, by the five zone-circles drawn

through the poles of
every two of the forms {001}, {100},

{110}, the poles of {hkl} will be symmetrically arranged
with respect to any side of any one of the triangles. Hence

the arrangement of the poles of {hkl} will be symmetrical,

in any two adjacent triangles, and similar in
any two alternate

triangles.

89. The poles of are symmetrically arranged
with respect to the two zonc-circles, drawn through the poles

44

cot PX = - cos PXY = - cos PXZ
,

k la

cot PY = - cos PYX cos PYZ,
h I a

cot PZ = - - cos PZX = - - cos PZF,
he he

„

c* A 8 +&8

(tan PZ)
2

= -
■

cot NX = 1, cot NY = 1,



of {001} and the poles of {110}. The poles of κ'{hkl}

are symmetrically arranged with respect to the two zone-circles

through the poles of {001} and the poles of {100}. The

poles of π are symmetrically arranged with respect to

the zone-circle passing through the poles of {100}. The

arrangement of the poles of π{hkl} will be similar in
any

two triangles on the same side of the zone-circle through the

poles of {100} , and symmetrical in
any two triangles on oppo-

site sides of it.

90. The direct and inverse forms differ only in position.

For, if the sphere of projection he made to revolve through
two right angles round any two opposite poles of {100}, the

poles of the direct form will change places with the poles of the

inverse form in the hemihedral form with parallel faces and in

the first hemihedral form with inclined faces. And, in the

second hemihedral form with inclined faces, if the sphere of

projection he made to revolve through two right angles round

any two opposite poles of {110} , the poles of the direct form

will change places with the poles of the inverse form.

91. In the form {hkO}, if the distance between two poles
be K, F or M, according as their symbols differ only in the

sign of k, the order of the indices h, k, or in the order of the

indices h, k, and sign of one of them, then (85)

92. In the form {hol} ,
if Lbe the distance between

two poles differing only in the sign of l, F the distance

between two poles differing only in the arrangement of h, o,

93. In the form \{h hl}, if K, L be the distances between

two poles differing only in the signs of h, l respectively,

45

tan \K = -

,
F = 90° - K, M = 90°.

h

tan \L =-
-, cos F - (sin ATT.

a h c

.

T

I a

tan \L =- - cos 45", cos K = (sin L\
h >'



94. Let H, K, L be the distances between any two poles
of the form {hkl}, differing only in the signs of h, k, l re-

spectively. Let F be the distance between any two poles

having the indices h, k in different order, and the signs of the

first, second and third indices in one, the same as the signs of

the first, second and third indices in the other. Let G be the

distance between
any two poles having the indices h, k in

different order, the signs of the first and second indices in one,

different from the signs of the first and second indices in the

other, and the sign of the third index the same in both; and

let M be the distance between any two poles differing only in

the order of the indices h
, k, and in the sign of one of them.

Then will be the distances of any

pole of {hkl} from the nearest two poles of {100} and the

nearest pole of {001}. F, G subtend at (001) angles of

respectively, where Φ is the angle subtended

at (001) by the distance of
any pole of {hkl} from the

nearest pole of {001}. M subtends an angle of 90° at (001).
Hence (85)

95. If the distance between two poles of either of the

forms [hk o}, {hol}, {hhl} be given, the distance between

the two poles, or its supplement, will be one of the arcs

F, K, L, whence, from the expressions in (91) —(93), the

ratio of the indices may be found.

96. If the distance between any pole of the form {hkl}
and each of two other poles of the same form be given, the

46

90° - 1/2H, 90º - 1/2K, 1/2L

90° - 2Φ, 90° + 2Φ

k la
it tan (b =-

,
tan bL = cos d>,

T
h

4
he '

sin = cos L sin (p, sin -1- H cos
iL cos <p,

sin 1/2G = cos 1/2L sin (45 + Φ),

sin 1/2F =cos 1/2L cos (45 + Φ).

cos M = (sin 1/2L)2.



three poles not being in a great circle, the given distances, or

their supplements, will be two of the arcs H, K, L, F, G, M,
which being known, Φ and L, and thence, from the expres-

sions in (94), the ratios of the indices may
be found.

97. Let P be the pole of (hkl ), Q the pole of (pqr)

Then (85)

Let Q be in the zone-circle PX. Then

therefore

Similarly, when Q is in the zone-circle PY,

And when Q is in the zone-circle PZ,

98. Let P be the pole of (hkl), Q the pole of (pq r),
Z the pole of (001). Then (85)

99. To find the distance between any two poles.

Let the axes of the crystal meet the surface of the

sphere of projection in X, Y, Z, therefore (85) X is the

47

tan PX = - cos PXY = -
- cos PXZ,

k I a

tan QX = cos QXY = -
- cos QXZ.

q r a

QXY = PXY,

QXZ = PXZ
,

h tan PX k I

p tan QX q r

k tan PY
_

I h

q tan QY r p

I tan PZ h k

r tan QZ p q

(.a„PzyX hX±,
a C a r

P (tan PZf
_

P(tan QZf

IP + IP p* + cf



pole of (100), Y the pole of (010), Z the pole of (001).
Let P, Q (fig. 39) be the poles of (hkl), (pqr) ; and let

PQ meet the zone-circle XY in M. Then, the symbol of M,

and the tangents of MZX, PZX, QZX, PZM, QZM may be

found in terms of h, k, l, p, q, r. PZ
may be found in

terms of a, c, h, k, l.

Whence PQ, which is either the sum or difference of PM,

QM, is known.

100. Having given the distance between
any two poles,

not both in the zone-circle [100, 010], to find the ratio

of the parameters a, c.

Let (hkl), (pqr) be the symbols of P, Q (fig. 39), and

let tan PZM, tan QZM be expressed in terms of h, k, l,

p, q, r. Then

The given distance PQ is either

PM, QM are both known.

PZ being known, the ratio of c to a is given by the equa-

tion

101. To find the indices of any face when referred to

the axes of the zones [110, 001], [110, 001], [100, 001]
as crystallographic axes.

The symbols of the three zones are [110 ], [110 ],

[0 01] respectively,

48

ZM = 90°, ∴ cos PM = cos PZMsin PZ,

tan QM : tan PM= tan QZM : tan PZM.

tan QM : tan PM= tan QZM : tan PZM, therefore

sin (QM + PM) tan QZM + tan PZM

sin (QM - PM)
=

tan QZM - tan PZM
’

QM + PM or QM - PM,

Cos PM = cos PZM sin PZ.

(t mPZ)’-i h'

a
' V

∴ (28) e=l, f=l, g=0, h=1, k= -l, l=0, p=0, q=0, r=l.



Hence, if u, v, w be the indices of any face when referred to

the original axes, u
', v', w' its indices when referred to the new

axes,

102. To determine the figure and angles of the form

{ hkl}, when h,k,l take particular values.

The angle between normals to any two faces is obtained

from the expressions in (91)...(94), and will be denoted by the

letter which, in the accompanying figure, is placed upon the

edge formed by the intersection of the given faces. The

arrangement of the poles of the different forms is shewn in

(fig. 38). The numberof faces is given in (81).

103. The form {001} has two faces (001), (0 01), which

are parallel to each other.

104. The form {100} (fig. 40) has four faces. Normals

to any two adjacent faces of {100} , and to either face of

{001} , make right angles with each other, therefore

105. The form {110} (fig. 41) has four faces.

therefore

A normal to any face of {110} makes an angle of 45°

with a normal to an adjacent face of {100}, and an angle of

90° with a normal to either face of {001} . For (85) the co-

tangents of the angles are 1 and 0 respectively.

106. The form {hko} (fig. 42) has eight faces.

49

u' = u + v, v' = u — v, w' = w.

F = 90°.

tan 1/2K=1,

K = 90°.

tan \K =
,

F = 90° K
h

In \9. 1 01, tan K = 53°. 7',8, F = 36°. 52',2.
3

In tan jS” = -

,
K = 36°.52',2, F -53n .7',8.



A normal to any face of {hko} makes with normals to

either face of {0 01}, and the nearest faces of {100}, {110},
angles of 90°, 1/2K, 1/2F respectively.

107. The hemihedral form with parallel faces π{hkO} is

bounded by the alternate faces of {hk o}, the normals to

which make right angles with each other.

108. The form {hOl} (fig. 43) has eight faces.

109. In the hemihedral form with inclined faces κ'{hOl}
(fig. 44),

110, The form {hhl } (fig. 45) has eight faces

111. In the hemihedral form with inclined faces κ{hhl }
(fig. 46),

112. Let P, Q be two adjacent poles of either of the

forms {hhl], {pOr}, equidistant from Z, the pole of (001) ;

50

12

In |3 2 o|, tanX=—, K = 67°.22',8, Z 1 = 22°. 37',2-

24

In {4 l o}, tan K=
—,

ZT = 73°.44',4, F = 16°.15',6.

5

In 1 5 1 o}, tan K=
,

K = 22°. 3?',2, F = 67°. 22',8.

15
In {5 3 o|, tan K = —-, K = 61°.55',7, Z=28°.4',3.

8

7
In {7 10}, tan ZT

=—, ZT= 16°.15',6, Z 1 = 73°. 44',4.

tan
,

cos Z 1 = (sin Z£) 2.

U = 180° - L, V = 180° - F.

tan 4Z = - - cos 45°, cos K = (sin 1Z)2
.

he A

IF= 180 0 -Z, T=\BQP-K.



and let the arc of the zone-circle joining P, Q, contain S, a

pole of the other form. Then SZ bisects the right angle

PZQ, and the angle PSZ is a right angle,

113. The form { hkl} (fig. 47) has sixteen faces.

114. In the first hemihedral form with inclined faces

115. In the second hemihedral form with inclined faces

116. In the hemihedral form with parallel faces π{hkl}

(fig. 50), the distance M subtends an angle of 90° at the pole
of (001), therefore

117. The cleavages, in crystals belonging to the pyrami-
dal system, are parallel to the faces of one or more of the forms

{001}, {100}, {110}, {hOl}, {hhl}.

51

∴ tan SZ = cos 45° tan PZ.

k la
If tan 0= -

,
tan =- - cos 0,

h he

sin \K= cos PL sin 0, sin F = cos L cos (45 + 0).

κ{ hkl} (fig. 48), T = 180°-H,

sin 1G ■= cos L sin (45 + 0), cos \T = cos L cos 0.

κ'{hkl} (fig. 49), V = 180° — G,

sin = cos cos 0, cos 77 = cos sin (45 + 0).

cos M = (sin \LY-



Examples.

118. In a crystal of Idocrase (fig. 51), the faces p, m, m'

make right angles with each other, dis in the zone mm
',

and makes equal angles with m, m;
therefore if m be (10 0),

m' (010), p(001), d will he (110 ). In like manner d’ will

be (110 ) ; c is in the zone pd, therefore its symbol will

be the form (hhl). Let the symbol of c be(111 ). Simi-

larly c' will be (111). v' is common to the zones pm', cm,

therefore (15) v' is (011). Similarly v is (101). s is com-

mon to dc', mc, therefore s is (311). w is common to

dv, mc, , therefore w is (211). b is common to wm', pc,

therefore his (221). e is common to mb, dc', therefore

e is(4 21). r is common to em', pc, therefore r is (441).

n is common to em', mc, therefore n is(411). a is common

to dv, cd', therefore a is (312). h is common to ps, mm',

therefore h is (310). f is common to pw, mm', therefore

f is (2 10). Hence the crystal is a combination of the forms

{001} ,
{100}, {111}, {110}, {210}, {310}, {211},

{3 11}, {411}, {221}, {441}, {321 }. It is cleavable

parallel to the faces of {001}, {100}, {011}.

Let m, p, c, &c. (fig. 52), be the poles of the faces

m, p, c, &c. pc = 37º.7'. The symbols of the poles are

p (001), m (1 00), c (111), d(1 10), f (210), h (310),
h (22 1), r (441), w (2 11 ), s (311), n (411), a (312),

52

e (4 21). Therefore (85), tan dm=l, tan fm= tan hm =

therefore dm = 45°, fm = 26°.34', hm = 18°.26". From (97)

we have tancp = ; bp=s6°.33
r

, rp=7l°A3'.

2 1

From (98) we have tan cp = tan wp = tan ep =

/g 2 12
—— tan vp = —-r tan ap =—— tan sp =— — tan cp.

2 y/ 5 y/ 5 -y/ 17

wp = 50°.6', ep = 67°.19', vp = 28°.9', ap = 40°. 14',

sp = 59°. 25'. From (85) we have cos cm -
sin cp cos 45°, cos hm



119. In a crystal of Anatase (fig. 53), the face c makes

equal angles with each of the four faces p, p ', p", p"', and

of these
any two adjacent faces make the same angle with

each other. We may
therefore assume c to be (001), p (111),

p' (111). v is in the zone cp, and sin the zone vp'. Let

c, p, p', v, s be the poles of the faces c, p, p', v, s. Then,

120. In a crystal of Copper Pyrites, (fig. 54), c, c', c", c"'

are the faces of a square pyramid. Let their symbols be

c (111), c' (111), c" (111), c"' (111). p is in the zone cc"'

and makes equal angles with c, c", therefore (87), p is also in

53

= sin bp cos 45°, cos rm = sin rp cos 45°, therefore cm =65°. 44 J>,

bm = 53°. sl', rm = 47°. 49', tan cm = 2 tan wm = 3 tan sm

= 4 tan nm (97)- wm 46°. 40', sm= 35°. nm = 27°.55'.

tan 6m = 2 tan », therefore em =34°.23'1. tamt>m'= 2tan&m',

therefore wm 69°. 56'. tan r«i'=l tan em = tan nm
,

em

= 65°.37'-!-, nm 77°. 14'.
e, s are in the zone-circle hp, hm

= 18°.26', cosam=sin«pcoslB°. 26', cosam'= sinapcos71 o<34',

cos sm! = sin sp cos 71
0.34', am 52°. 13', am 78°. 13', sm

= 74°. 12'. The distance between the poles of (0 01) and

(l 1 1) is 37°. Y, therefore (l 0 0), a, a
,

c being the parameters
of the crystal, if a = 1, c = 0,53511.

by measuring, it is found, that pc =68°.18', vc = 19°.45',
sc = 25°.30'. Let the symbol of v be (pqr), v is in the

zone-circle pc,

1 tan pc 1 1

(97) - =-= -

, p=l, f= 1, r=7; ••• vis(l 1 7).
r tan vc p q

. . ,
.

. ,

r
2(tan sc) 2 (tan pcY

Let sbe(p q r), (98) —=
,

V+ 7
*

26 r 2 = 861 (p
2

+ g 2). sis in the zone-circle vp', the symbol
of which is [3 4 I], therefore (21) 3p +4 q —r= 0. Whence

p= 5, q= 1, r = 19. Hence the crystal is a combination of

the forms )o 0 1 |l 1 1 {l 1 ?}, {5 1 19J. The crystal is

cleavable parallel to the faces of 1 1 11 (. The parameters of

the crystal being a, a, c, if a= 1, c = 1,777-



54

the zone [001] ;
therefore p is(101 ). Similarly p is

(011). b is common to the zones c'c"',pp'; therefore b, is

(112). There is no face of {101}, between c and c', in the

zone c c',
therefore p belongs to the hemihedral form with

inclined faces к'{101} . Hence the crystal is a combination

of the forms {111}, {112} , к{101}. It is cleavable pa-
rallel to the faces of the forms {111}, {001} .

If we change the axes by the rule in (101), the symbols of

the faces will become c (021), b
'

(101), p (111). By

changing the axes, the hemihedral form, of which p is a

face, becomes к{111} .

121. In a crystal of Scheelate of Lime, (fig. 55), p is(111},

n is(021). p, g, n, a are in one zone. If p, g, n, a be the

Let X, Y, Z be the poles of (100), (010), (001). Let

pn meet the zone-circle XY in m. Then m will be (110),
If (uvw) be the symbol of

any pole S in the

zone-circle pm, substituting p, n, m and their indices, for

P, Q, R and their indices, in (27), we have

manner a is(2 41). Of the faces g, a, those only occur which

have their poles in alternate lunes of the sphere of projection,
therefore g, a belong to the hemihedral forms with parallel
faces π{312}, π{241}.

poles of p, g, n, a, it is found by measuring that pg = 22°. 31',

pn = 39°.40', pa = 68°.6'.

and pm = 90°.

tanjo.S' v— w

tan pn w

V) 3

Hence, if (u vw) be the symbol of g, we have —= -

.
The

w 2

symbol of the zone-circle pm is [i i 2], .-. (21) u—v+2w = 0.

Whence u=—l,v= 3, w = 2; therefore gis(l 3 2). In like



CHAPTER IV.

RHOMBOHEDRAL SYSTEM.

122. In the rhombohedral system the axes make equal

angles with each other, and the parameters are equal.

123. The holohedral form {hkl} is bounded by all the

faces which have for their symbols the different arrangements
of +h, +k, +l , together with those of —h, -k, -l. When

h, k, l are all different, the number of arrangements will be

twelve, as shewn in the annexed table, except when the indices

are 0, —l, 1. In this case, and also when two of the indices

are equal, the number will be six, and when all three are equal,
the number will be two.

If h be algebraically the greatest, and l the least of three

unequal indices h, k, l, fig. 56 will represent the arrangement
of the poles of the form {hkl} on the surface of the sphere
of projection.

124. The form boundedeither by all the faces which have

for their symbols the different arrangements of + h, + k, + l
,

or by all the faces which have for their symbols the different

arrangements of —h, —k, - l, is said to be hemihedral with

inclined symmetric faces, and will be denoted by the symbol

к{hkl}, where (hkl) is the symbol of
any one of its faces.

A form is said to be direct or inverse according as the alge-

hkl lkh hkl lkh

klh khl klh khl

lhk hlk lhk hlk



braic sum of its indices is positive or negative. When the

sum of the indices is zero, the form will be called direct or

inverse according as the largest index is positive or negative.
The symbols of the faces of the direct form are contained in

the first and second columns, those of the inverse form in the

third and fourth columns of the table in (123).

If the surface of the sphere of projection be divided into

two hemispheres by the zone-circle through the poles of

{011}, the poles of the direct form, when the sum of its

indices is finite, will be found in the hemisphere which con-

tains the pole of (111), and the poles of the inverse form in

the other hemisphere. When the sum of the indices is zero,

if the surface of the sphere of projection be divided into six

lunes by great circles through the poles of {111} and those of

{011}, the poles of the direct form will be found in three

alternate lunes, one of which contains the pole of (100), and

the poles of the inverse form will be found in the remaining
three alternate lunes.

125. The form boundedeither by all the faces of {hkl},
the indices of which stand in the order hklhk, or by all the

faces of {hkl}, the indices of which stand in the order lkhlk,
is said to be hemihedral with parallel faces, and will be de-

noted by the symbol π{hkl}, where (hkl) is the symbol of

any one of its faces. The symbols of the faces are contained

either in the first and third, or in the second and fourth

columns of the table in (123).

If the surface of the sphere of projection be divided into

twelve lunes by zone-circles through the poles of {111}, and

those of each of the forms {2ll}, {011}, the poles of

π{hkl} will be found in six alternate limes, except when the

algebraic sum of two of the indices is equal to twice the third.

And if the sphere of projection be divided into twelve triangles

by zone-circles through every two of the poles of {111},

{211} , the poles of π{hkl} will be found in six alternate

triangles, except when the sum of the indices is zero.
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126. The form bounded either by all the faces of {h kl}

which have for their symbols the arrangements of +h, +k, +l,

which stand in the order hklhk, and those of —h, —k, —I,

which stand in the order lkhlk, or by all the faces which

have for their symbols the arrangements of +h, +k, +l

which stand in the order lkhlk, and those of —h, —k, —l

which stand in the order hklhk, is said to be hemihedral

with inclined asymmetric faces, and will be denoted by the

symbol where (hkl) is the symbol of any one of

its faces. The symbols of the faces are contained either in

the first and fourth, or in the second and third columns of

the table in (123).

If the surface of the sphere of projection be divided into

six lunes by zone-circles through the poles of {111} and

those of {211} ,
the poles of a{hkl} will be found in three

alternate lunes.

127. To determine the position of any pole.

Let the axes of the crystal meet the surface of the sphere
of projection in X, Y, Z, (fig. 57), let O be the pole of (111),

P the pole of (hkl). Since ois the pole of (111), and
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a = b = c, cos OX = cos OY = cos OZ,∴ OX = O Y = OZ.

The axes make equal angles with each other, therefore YZ =

ZX = XY. Hence YOZ, ZOX, XOY are each equal to

120°;

cos POY - cos POZ, = √3 sin POX
,

cos POY + cos POZ = - cos POX.

cos PX = cos PO cos XO + sin PO sin XO cos POX
,

cos PY = cos PO cos YO + sin PO sin YO cos POY,

cos PZ = cos PO cos ZO + sin PO sin ZO cos POZ.



Whence

P is the pole of (hkl), therefore

Whence

Similarly

and

128. Let A, B, C be the poles of (100), (010), (001).
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cos PY - cos PZ = √ 3sin PO sin XO sin POX,

cos PY + cos PZ = 2 cos PO cos XO - sin PO sin XO cos POX,

cos PX + cos PY + cos PZ = 3 cos PO cos XO,

3 sin PO sin XO cos POX = 2 cos PX - cos PY cos PZ.

cos PX = cos PY = - cos PZ.
h k l

k ~ I
tan POX = /v/3

,v
2h-k-l

2h k I
tan PO tan XO cos POX = .

h+k + I

tan POY = -v/3
—~—~—,v
2k-l-h

c2k —I h
tan PO tan YO cos POY

,

h+k + I

tan POZ = */3
,V

9,1 -h
- k

r,

2 1 h k
tan PO tan ZO cos POZ =

h+k + I

, h 2 + k 2 + P kl ~ Ih hk

(tmponunjroy.i
(iThTTf

'

Then (127) tan AOX = 0, tan BOY = 0, tan COZ = 0,

tan AO tan XO = 2, tan BO tan YO = 2, tan CO tan ZO = 2.

Therefore A, B, C lie in the great circles OX, OY, OZ,

OA = OB = OC, and the expressions in (127) become



129. If M, N be any poles of the forms {2 11}, {011};
A any pole of {100}, O a pole of {111}, the expressions in

(128) shew that MO, NO are quadrants; that MOA is a mul-

tiple of 60°, and that NOA is an odd multiple of 30°. Hence

the poles of {211} are six equidistant points in which a zone-

circle having (111) for one of its poles, is intersected by the

zone-circles through the poles of {ill} and those of {100};
and the poles of {011} bisect the arcs joining every two

adjacent poles of {2 11}.

130. From the form of the expression for tan PO
,

it

appears that the distances of the poles of {hkl}
,

which have

the indices + h, + k, + l, from (111), and of those which

have the indices -h, -k, —l, from (111), are all equal,

By interchanging the indices h, k, l, and changing their signs
in the expressions for tan POA

,
tan POB, tan POC, it appears

that the angles subtended at (111), by the arcs joining any

pole of {hkl} and the nearest pole of {100}, arc all equal.

Hence, the poles of {hkl} are symmetrically arranged with

respect to each of the three zone-circles passing through the

poles of {111} and those of {211 }.•
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k I
tan POA = a/3

,V
2h— k I

2h k I,
2 tan PO cot A 0 cos POA =

~

,

h+k + I

tan POB =

2 tan PO cot BO cos POB =
,

h+k + I

_.h k
tan POC = a/ 3

,v
2 1-h-k

9.1- h- k
2 tan PO cot CO cos POC =

,

h+k + I

/tan PO\
3

fil +k~ +C-kl-Ih-hk

Uan AO) {h + k + l)~



131. If the surface of the sphere of projection be divided

into twelve triangles, by zone-circles through every two of the

poles of {111} and {211}, the arrangement of the poles of

{hkl } will be symmetrical in
any two adjacent triangles on

the same side of the zone-circle [211,112], or in any two

alternate triangles on different sides of it; and similar in any

two adjacent triangles on different sides of the zone-circle

[211,11 2], or in any two alternate triangles on the same

side of it.

132. The arrangement of the poles of к{hkl} will be

symmetrical in any two adjacent lunes, composed of two adja-
cent triangles on different sides of [211 , 112], and similar in

any two alternate lunes. The arrangement of the poles of

π{hkl} in
any two triangles is similar or symmetrical, accord-

ing as the triangles are on the same side of the zone-circle

[2ll, 112] or on different sides of it. The poles of a{h kl}

are similarly arranged in each of the triangles in which they
occur.

133. If P be the pole of any face, and if in PO produced

OQ be taken equal to OP, a face may always exist of which Q

is the pole.

We have from (127)

Hence, if (hkl) be the symbol of P,
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2 cos QX - cos QY - cos QZ = 3 sin QO sin OX cos QOX,

cos QX + cos QY + cos QZ = 3 cos QO cos OX,

cos QZ - cos QY =√3 sin QO sin OXsin QOX,

sinQO = sinPO, cosQOX = - cosPOX, sin QOX = - sinPOX.

2 cos QX cos QY - cos QZ 2 h —k I

cos QX + cos QY + cos QZ h + k + I
’

cos QZ - cos QY l k

cos QX + cos QF+ cos QZ h + k + /'



Whence

where

p, q, r are whole numbers, therefore a face may exist of

which Q is the pole.

134. When h, k, l, p, q,
r are connected by the equations

and, therefore, the arc joining the poles (h k l), (p q r), is

bisected by (l 1 1), the forms {hkl }, {pqr} are said to be

transverse with respect to each other. In certain crystals be-

longing to the rhombohedral system, combinations of pairs of

transverse forms occur frequently. Such a combination is

termed dirhombohedral. The arrangements of its poles is

shewn in fig. 58.

135. If the surface of the sphere of projection be di-

vided into twenty-four triangles by zone-circles through every

two of the poles of {111}, {011}, {211}, the poles of the

dirhombohedral combination {hkl }, {pqr}, or к{hkl} ,

к{pqr}, will be symmetrically arranged in any two adjacent

triangles, and similarly arranged in any two alternate triangles.
The poles of the dirhombohedralcombinationπ{hkl}, π{pqr}
will be similarly or symmetrically arranged in any two tri-

angles, according as the triangles are on the same side of the
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S cos QX h + 2 k + 2 1

cos QJC + cos QY + cos QZ h+k + I

3 cos QY 2A —k+ 2l

cos QX + cos QY + cos QZ h+k + I
’

3 cos QZ 2h + L2k - /

cos QX + cos Q Y + cos QZ h + k + I

I I 1

cos QX = - cos QY = - cos QZ,
p q r

p = - h + 2k + 2l, q = 2h - k + 2l, r =2h + 2k - l.

p = - h + 2k c + 2l, q = 2h - k + 2l , r = 2h + 2k - l,



zone-circle [211, 112 ], or on different sides of it. The poles

of the dirhombohedral combination a{hkl} , a{pqr} are simi-

larly arranged in all the triangles in which they are found.

136. In the hemihedral forms with parallel faces, and in

the hemihedral forms with inclined asymmetric faces, the faces

of different forms of the same kind occasionally occur in zones.

If MQM' (fig. 59) be the zone-circle of one of these zones;

MLM' the zone-circle through the poles of {211}, and QML

an acute angle, the zone is called direct or inverse, according as

the poles of its faces lie nearer to Mor M'. The zones in a

combination of hemihedral forms with parallel faces are direct

on one side of the zone-circle through the poles of {211} ,
and

inverse on the other side of it. In a combination of hemihe-

dral forms with inclined asymmetric faces, the zones are either

all direct or all inverse, and the combination is named accord-

ingly.

137. The direct and inverse hemihedral forms with in-

clined symmetric faces, and the two hemihedral forms with

parallel faces differ only in position. For if the sphere
of projection be made to revolve through two right angles

round any two opposite poles of {011}, the poles of one half

form change places with those of the other half form. The

direct and inverse hemihedral forms with inclined asymmetric
faces are essentially different.

138. Let P, A be any two adjacent poles of {hkk},

The signs of tan T, tan D, will be the same or different ac-

cording as the directions in which PO, AO are measured from

O are the same or different.
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{100} , O the nearest pole of {111}. Then (128) tan POA=0,

therefore P, A, O are in one zone-circle. Let PO =T, AO =D.

Therefore, making l = k in (128), we have

h k
tan T = tan I).

h + 2k



If V be the distance between any two of three poles of

{hkk} which have the indices h, k
,

k, V subtends an angle
of 120° at (111); and the two sides that include the angle of

120° are each equal to T, therefore

The distance between any two adjacent poles one of which

has the indices +h, +k, +l, and the other the indices

—h, —k, - l
,

will be 180° -
V.

140. Let the arc joining any two poles of {1 k /}, having
the indices +h, +k, + l, be H, K, Lor V, according as

h, k, I or neither of the indices holds the same place in the

symbols of the two poles; T the distance of either of the poles
from (ill); D the distance of any pole of |l oo} from the

nearest pole of {ill}; 20, c 2(p, Zxj, the angles subtended at

(l 11)byH, K, L. The angle subtended by V will be 120°.

Then (128)
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sin -1 V = sin 60 sin T.

139. If P be any pole of \{hkl} ,
where h+k+l =0,

A the nearest pole of {100}, PO = 90º (128). Therefore, if

if be the distance between any two adjacent poles of {hkl}
having the indices h, k, l, 1/2H = POA, therefore

tan = v/g ——-

2 V
?Ji _ k

_
l

,

rri\o
h 2 k 2 -{■ l~ —kl—lh hk

(,” r) -

(sTiTij-

„k - I
tan 9=a/ %

, ,V
2 je-k-l’

/l ~ h
tan 0 = \/3

V V
2k- I

-
h

,h k
tan \lr = a/ 3

—.Y v
2 l-h-k



The triangles having the vertex (111), and bases H
,

K,
L

,
V are isosceles, therefore

141. If V, the distance between
any two of three equi-

distant poles of {hkk }, be given, we have

the
upper or lower sign being taken according as T and D are

measured from (111) in the same, or in different directions.

Whence, m being known, the ratio of h to k may be found.

tance between any two poles, not a multiple of 60°, being-

known, we can find the distance of one of them from the

nearest pole of {211}. If this distance be θ,
the ratios of

h, k, l
may

be found from the equations

143. If the distances between any pole of the form

{hkl} and each of two other poles of the same form be

given, the three poles not being in one zone-circle, the given

distances, or their supplements, will be two of the arcs H, K,

L, V. By eliminating T between the equations for determin-
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sin 1H = sin 9 sin T, sin IK = sin (p sin T,

sin IL sin \p sin T, sin IV = sin 60° sin T.

sin \ V sin 60° sin T, tan T = m tan D
,

(h —k) = im(h + 2k) (138),

142. In the form {hkl}, where h+k+l= 0, the dis-

k-l
tan 0 = a/3 , h+k+ 1 = 0,

v
2 h-k-l

ing H, K
, L, Vin (140), observing that φ - θ = 60°, ψ + θ = 60°,

we have

tan 6 tan (K -L) sin 9 sin 4H

tan 60° tan (K +L)
’

sin 60" sin IV
’

tan (p tan i{L+ H) sin <p sin -1K

tan 60' 1 tan (Z- - II)
’

sin 60° sin IV ’

tan \|/ tan (A' - //) sin \f/ sin },L

tan 60° tan (K +H)
’

sin 60° sin IV



Two of the four distances H, K, L, V being known, T

and one of the angles θ, θ, ψ may be found; and then the

ratios of the indices may be found from the equations

144. To find the distance between any two poles.

Let P, Q (fig. 60) be the poles of (hkl), (pqr) ; O, A

poles of {100}. Let PQ meet the zone-circle

[011, 101]in M. Then, the symbol of M, and the tangents
of MOA

,
POA, QOA, POM, QOM may be found in terms

of h, k, l, p, q, r ; and PO
may

be found in terms of AO,

h, k, l. MO is a quadrant, therefore

Whence PQ, which is either the sum or difference of

PM, QM, is known.

145. Having given the distance between any two poles,
not both in the zone-circle [011, 101], to find D, the dis-

tance of any pole of {100} from the nearest pole of {111},

Let P, Q (fig. 60) be the given poles, (hkl), (pqr)
their symbols, then, retaining the construction in (144), let

tan POM, tan QOM be expressed in terras of h, k, l, p, q, r.
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/i /
k I 2h k I

_

tan 9 = -v/S ,
2 tan T cos 0 = tan Z>,v

2 h-k-l’ h+k + l

, ,

l-h
rri

2k -1 - h
tan (h = a/3 -

,
2 tan F cos (b = tan Z>,r v

2k-l-h Y h+k + l

,

h k 9.1 - h - k
tan \lr = a/ 3

,
2 tan T cos \ls = tan I).

r v
9.1 -h - k ’

h+k + I

cos PM = cos POM sin PO
,

tan QM tan QOM

tan PM tan POM

tan QM tan QOM

tan PM tan POM
’



therefore

One of the arcs is the given distance

PQ, therefore PM, QM are both known.

PO being known, D is given by the equation

146. To determine the position of any pole, having

given its distances from two of three equidistant poles of any

form.

Let P (fig. 6l) be the given pole; A, B, C three equidis-

tant poles of any
known form; O the pole of (111). Let

AB meet the zone-circles [011, 101], CO in M, E, and let

PM meet CO in N. AB is bisected in E ; and ME, MN are

perpendicular to EO.

Whence, PE, PN being known, NE and therefore NO

may be found.
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sin (QM + PM) tan QOM + tan POM

sin (QM -PM)
~

tan QOM -
tan POM'

QM - PM, QM + PM

cos PM = cos POM sin PO.

,
h 2 + k 2 + I 2 kl

-
Ih hk

pof
(iTiTfF

’

sin AE = sin 60° sin AO, tan EO = cos 60° tan AO,

cos PA = cos AE cos PE + sin AE sin PE cos PEA,

cos PB = cos BE cos PE + sin BE sin PE cos PEB.

If we express cos PA - cos PB, cos PA + cos PB in terms

of products of trigonometrical ratios, observing that BE = AE,

cos PEB = cos PEA = sin PEN, and that sin PN = sin PE

sin PEN, we obtain

sin AE sin PN sin 1/2(PB + PA) sin 1/2(PB - PA),

cos AE cos PE = cos1/2(PB + PA) cos 1/2{PB - PA).

cos PO = cos PN cos NO, cot PON = sin NO cot PN.
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147. To find the indices of
any

face when referred to the

axes of the zones containing the faces (h k k), (k h k), (k k h),
as crystallographic axes.

The indices of the three zones reduced to their simplest
terms are

u, v, w be the indices of any face when referred to the

original axes, u
', v', w', its indices when referred to the new

axes,

148. To determine the figure and angles of the form

{hkl} , when h, k, l take particular values.

The angle between normals to any two faces of the same

form may
be computed by the formulae in (138), (139), (140),

and will be denoted by the letter placed upon the correspond-

ing edge of the accompanying figure. The arrangement of

the poles, when the three indices are unequal, is shewn in

fig. 56. The poles of {hkk} lie in zone-circles through the

poles of {111} and those of {211 }. The number of faces

is given in (123).

149. The form {111} has two parallel faces, A normal

to the faces makes equal angles with the three axes.

150. The hemihedral forms κ{111 }, κ{111 } consist of

the faces (111 ), (111), respectively.

151. The form {hkk} has six faces, and is called a

rhombohedron. The three poles which have the indices

+ h, + k, + k arr equidistant from each other, and are dia-

h +k, - k,-k; -k, h+k, -k;-k, -k, h+k;

therefore (28), e=h +k, f=- k, g=- k, h=- k, k=

h+ k, l=- k, p=- k, q=- k, r=h+k. Therefore, if

u' = (h + k)u - kv - kw,

v'= - ku + (h + k) v - kw,

w' = - ku - kv + (h + k)w.



metrically opposite to the three poles having the indices

—h, -k, -k. Hence, a rhombohedron is bounded by three

pairs of parallel faces making equal angles with each other.

Let T be the distance of
any pole of { hkk} from the nearest

pole of { 111}; V the distance between two adjacent poles

equidistant from (111); W the distance between two adjacent

poles not equally distant from (111), and D the distance of a

pole of {111} from the nearest pole of {111}. Then (138)

The position of the rhombohedron {hkk} is said to be

parallel or transverse according as tan T, tan D have the

same or different signs, that is, according as T, D are mea-

sured from (111) in the same direction or in different direc-

tions.

If we take fig. 62 to represent {100} , then {011}, which
is in transverse position, will resemble fig. 63. In {011},

The poles of {011} bisect the arcs join-
ing the adjacent poles of {100}.

In {211} which is in parallel position,
The poles of {211} bisect the arcs joining the adjacent poles
of {011}.

In {311}, which is in parallel position,

In {122} which is in transverse position,

Hence, position excepted, the form of {122 } is the
same as

that of {100}.

In {111} (fig. 64), which is in transverse position,
The poles of {100} bisect the arcs join-

ing the adjacent poles of {111}.

In {311 }, which is in parallel position,
The poles of {111} bisect the arcs joining the adjacent poles
of {311}.
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h-k
tan T = tan /),

h+ 2 k

sin 1/2V = sin 60° sin T, W= 180º - V.

tan T = 1/2tan D.

tan T = 1/4 tan D.

tan T = 2/5 tan D.

tan T= - tanD.

tan T = - 2 tan D.

tan T = 4 tan D.



152. The hemihedral form with inclined symmetric faces

κ{h kk}, has the three faces having the indices + h, + k, + k,

and which make equal angles with each other. The other

half form, has the three faces with the indices -h, —k, -k.

153. Let P, Q, R be three poles of a rhombohedron,

equidistant from O, the pole of (111); and let the zone-

circle through P
, Q, contain S, a pole of another rhombohe-

dron. S is in the zone-circle RO which bisects the angle

154. The form {211} has six faces, the poles of which

(129) are the six equidistant points in which a great circle,

having (111), (111) for its poles, is intersected by the zone-

circles through the poles of {111}, and those of {100}.
Therefore the distance between any two adjacent poles of

{211} is 60°.

155. The hemihedral form with inclined symmetric faces

κ{211 } is bounded by the alternate faces of {211} . The

distance between any two of its poles will be 120°.

156. The form {0 11} has six faces the poles of which

(129) bisect the arcs joining every two adjacent poles of

{211}. The distance between any two adjacent poles of

{011} is 60°.

157. The form {hkl}, where (fig. 65)
has twelve faces, the poles of which lie in the zone-circle

through the poles of {211}.

If H be the distance between any two poles adjacent to

a pole of {211}, h the largest index,

The distances of
any pole from the adjacent poles of {211},

{011} are 1/2H, 1/2G respectively.
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POQ, and the arc PQ. POQ = 120°, therefore POS = 60°;

PSO = 90°. Whence tan PO = 2 tan SO.

h + k + l = 0,

k L
tan \H = -»/ 3

,
G = fit)' 1 //•

2 V
2 h-k-l



158. In the hemihedral form with inclined symmetric

159. The hemihedral form with parallel faces π{hkl}, is

bounded by the alternate faces of {hkl}. The distance be-

tween any two adjacent poles is 60°.

160. The form {hkl} (fig. 66) has twelve faces. Let

h, l be algebraically the greatest and least of the three indices.

Then (140), if T, D be the distances of any poles of {hkl },
{100} respectively from the nearest poles of {111},

G, F will be respectively equal to the greatest and least of the

two angles
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In {213} tan -w*> H =- OjO, 47', 2.

In {3 1 tan =

s'
H == 32°. 12',3.

In {4 1 5}, tan -~WS
>

# == 38°. 12',8.

In {3 2 5}, tan jH=
.

// == 13°. io',4.

In {B1 6}. tan =

y \Z3> H = = 42°. 6', 4.

In {5 2 7}, tan \H ==

y \/3, H --= 27°. 47',7-

In {7 1 8}, tan =

T \/3
’

H --

O'II 49',6.

faces κ{hkl} , where h + k + l = 0, the distances between the

poles of two adjacent faces, are alternately H and 120° - H.

.
k’+ W+ I’ -kl --

(~nT y *

(/,'+/, +v
(t“

>

„/*“ I

,I- h

.h k
tan \|/ = a/3

,1 V
2 l-h-k’

sin1/2H = sin θ sin T, sin 1/2K = sin ϕ sin T, sin 1/2L = sin ψ sin T,

H, L, and W = 180º - K.



When the algebraic sura of two of the indices is equal to

twice the third,

161. The hemihedralform with inclined symmetric faces

κ{hkl }, has the faces of one of the two pyramids which,

joined base to base, constitute the holohedral form {hkl}.

162. The hemihedral form with parallel faces π[hkl}
is bounded by the alternate faces of which occur in

three parallel pairs making equal angles with each other. If

the distances between two adjacent poles equally and unequally
distant from (111) be V, W,

163. In the hemihedral form with inclined asymmetric
faces a{hkl} , if the distance between adjacent poles equally

distant from (111), be V ; and if the distances between ad-

jacent poles enequally distant from (111) be U, W,

164. The cleavages, in crystals belonging to the rhombo-

hedral system, are parallel to the faces of forms which have

two or all of their indices equal.
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θ = ψ, therefore G F.

V = sin 60° sin T, W = 180° - V.

sin 1/2V = sin 60° sin T, U = 180 — H, W = 180 — K.



Examples.

165. In a crystal of Calc Spar (fig. 67), the faces p, p ',

p" are parallel to three cleavage planes, the poles of which are

distant 74°. 55' from each other. Let p be (100), p' (010),

p" (001). Let p, p', &c. (fig. 70), be the poles of p, p', &c.

g' is in the zone-circle pp", and bisects the arc pp"; there-

fore g' is in the zone-circle p'o, o being the pole of (111),
therefore g' is (101). c' is one of six faces in a zone, the

axis of which makes equal angles with normals to p, p ', p".

c' is also in the zone p'g', therefore c' is (1 2 1). In like man-

ner c is(211). Let f be the pole of (hkk), then f' will be

the pole of (khk ), and the zone-circle ff will intersect the

zone-circle cc' in e', the pole of (110). p" is in the zone-

circle ff', therefore f' is the intersection of e'p", p'g', there-

fore f' is (111). cp', pp", intersect in r, therefore ris(201 ).

g’c", pp' intersect in t, therefore tis (310), t’ (301). tt',

p"c" intersect in ϕ", therefore ϕ" is (33 2). Hence the crystal
is a combination of the forms {100}, {011}, {111}, {211},
{332}, { 310 }, {201}.

166. In a crystal of Calc Spar (fig. 68) the faces p, p', p"

are parallel to the three cleavage planes. Let pbe (100),

p' (010), p" (001); and let p, p ',
&c. (fig. 70) be the poles

ofp, p', &c. o is equidistant from p, p',p", therefore (128),

o is the pole of (111). and c" is in the zone-

circle op", therefore c is (112 ). c is (2 11). cp', pp"
intersect in r, therefore r is (2 01). r' is (21 0) ,

and r" is

(021). rr', po intersect in m, therefore m is (3 11).

mc", pp" intersect in
σ,

therefore σ is(4 03).

167. In a crystal of Calc Spar (fig. 69), p is (100),

p' is (010), p" is (001), c is (211), and
c"

is (112).

p, p' &c. (fig. 70) being the poles of p, p', &c. cp', pp" in-

tersect in r, therefore r is (201). r" is (02l). rr', cp

intersect in m, therefore m is (311). Let y be(hkl), then

y' will be (hlk). yy', cc" intersect in e", the pole of (011)-
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oc" = 90°,



m is in the zone-circle yy', therefore y is in the zone-circle

me", y is also in the zone-circle pr, therefore y is (302).

z, z' are in the zone-circle yy'. zz'= 37°. 8', therefore

168. To determine the positions of the following poles
of a crystal of Calc Spar.

Let p, p', p" be the poles of (100), (010), (001) ;

o the pole of (111), and let the poles in op' and the

sector coc
; ,

op" and the sector c'oc
;
,

be distinguished by one

73

n (2 1 1), g (0 1 1), f (1 11). m (3 l l), l (l 3 3),φ (2 3 3),
d (5 3 3), h (4 5 5), v (3 2 0), t (3 1 0), w (4 1 0),λ (4 0 1),
r ( 2 0 I), y (3 0 2), σ (1 0 5), θ (6 0 5), z (15 1 9),x (2 1 2),
δ (3 1 s),b (7 3 5),q (5 3 5).

mz = 18º. 34'. sin mo tan zm cot zom. Whence tan zom =

1 h -1 1
-

,
••. ,= -. But xis in the zone-circle my, the

5 2A -k-l 5
■

symbol of which is [2 3 3], therefore (21) 9,h +Sk+Si = 0.

Whence h = 15, k = —1, I = —9, therefore « is (15 1 g).

and two accents respectively. pp" = 74º. 55', pop"= 120°.

og' bisects pp" and pop", therefore, since po = p"o,

= sin 60°sinpo. Whence po = 44°. 36',6. Tan go =- 1/2tan po
(138), therefore go =26°. 15'. Sin 1/2g'= sin 60° sin go, there-

fore gg’= 45°. 3'. In like manner no =
13°. 52', nn'= 23°. 56';

fo = 63°. 7', ff= 101°. 9'; mo = 75°. 47', mm'= 114°. 10'; lo =

38°.17, ll'=64°. 53'; ϕ = 50°. 58', ϕϕ’= 84°. 33’; do =82°. 47',
dd'= 118°. 27'; ho = 55°. 57', hh'= 91º.42'. eo = 90°, ec'= 90°,
therefore eg'= 90, pg'= 37°. 27',5, pe = 52°. 32',5. Let (uvw)
he the symbol of

any pole S in the zone-circle pp", between

e and g'. Therefore, substituting e, p, g' and their indices

for p, q, r and their indices in (27), we have tan Se =

u + w

tanpe. Whence, since θ, σ, y, r, λ, w', t', v' are in
u - w

the zone-circle pp", θe = 6°. 46', σe = 10°. 34', ye = 14°. 38',

re =23º. 3l', λe = 33°. 8', w'e= 65°. 19', t'e = 69°. 2', v'e = 81°. 17',

pe is known, therefore the distances of θ, σ, &c. from p may

be found by subtraction.



169. In a crystal of Tourmaline, the two ends of which

are represented in figs. 71, 72, c, p, p', p" are (111),

(100), (010), (001) respectively. n" is common to the

zones pp', cp", therefore n" is (110). Similarly n' is(101),
and n is(011). s is common to the zones pp", nn", there-

fore s is(101). Similarly s" is (011), and s’ is (110).
lis common to the zones ss

1

, cp, therefore lis (2 1 l). In

fig. 72. p, p', p" are respectively parallel to p, p ',
p", there-

fore p is (100), p'
(010), p" (001). g is common to the

zones sp’, s'p", therefore g is (111). The faces parallel to

c, l, g are wanting, therefore (124) c, l, g belong to hemihe-

dral forms with inclined symmetric faces. Hence the crystal is

a combination of the forms {100}, {011}, κ{211} , κ{011},
κ{111}.

170. p, mx, &c. (fig. 74), are the poles of the faces

p, m, x, &c. of a crystal of Apatite (fig. 73). Let x, x', x"

be the poles of (100), (010), (00l) respectively; and let

p be the pole of (111). xx', px" intersect in r
3, therefore

r3 is (110). In like manner r2 is (101), and r1, is (011).

m is in px, and therefore (129) m is(211). m' is

(12l), m
"

is (11 2), and m3 is (1l2). mx', px" intersect

in x3, therefore x3 is (22l). mr3, px' intersect in r, therefore

r is (114). xx", mm' intersect in e, therefore e is (101).

ex', px" intersect in z3 therefore z3 is (111). m'z
3, px in-

tersect in z, therefore z is (511). mx', xm
3

intersect in

s, therefore s is (412). xx', mx" intersect in u', therefore
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112

(Tan ho)9- = (tan PO )
2 (128), therefore bo 64°. 24',5.

25

tan hop = %y/s (128), therefore hop = 40°. 53',6, sin =

sin 6op sin ho, therefore bb'= 72°. 22',5, = ig°.6',4,
whence 66" = 34°. 20'. In like manner, #o = 76°. 32', mop =

Iff. 6',4, %%’ = 37°. B'. r/, a?, d, /" are in the zone-circle

ep , ep'= 90°, of" 34°. 25', 5. If (uvw) be the symbol
of any pole (S' in the zone-circle ep', then (27) tan ,SV; =

tanef". Whence ge= 22°. 2l', a7e=lB°.ss', Se =l2°. 52'.
w

pm = 90°,



u' is (210). mz3, xm3
intersect in u, therefore u is (524).

pu, mm' intersect in c, therefore c is (5 4l). The arcs rr
',

zz
',

uu. are bisected in p, therefore (134) the forms

to which the faces r, x, &c. belong are dirhombohedral.

If twelve lanes be formed by zone-circles through p and

each of the poles m, e, the poles c, c', u, u',in the alter-

nate lunes are wanting, therefore (125) c, c' &c. belong to

hemihedral forms with parallel faces. Hence the crystal (fig.

73) is a combination of the forms

{100}, {122}, {011 }, {411} , {111}, {111}, {511}, {4l2},
π{210}, π{(524}, π{541}. It is cleavable parallel to the

faces of the forms {111},{211}. The faces u, s, x form

an inverse zone.

The symbols of the other poles shewn in (fig. 74) are

a (5 21 ), d (71 5), f (31 2), b (212 ), b’ (841 ).

171- r, p, z, &c. (fig. 7 6) are the poles of the faces

r, p, z, &c. of a crystal of Quartz (fig. 75). The distance

between any two adjacent poles r, r
2,

r
3,

&c. is 60°. The

arcs pr, p'r', p"r
"

are each 38º. 13', and are perpendicular
to rr2, therefore they pass through o, the pole of r r

2
, There-
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The expressions in (128) give tan epm= 1/3 √3 there-
fore the zone-circle pasde makes an angle of 30° with pm.

tan cpm =
i -\/3, therefore the zone-circle cuppuc makes an

angle of 40°. 53', 6 with pm. tan bpm = f \/3, therefore the

zone-circle hpb makes an angle of 46°. & with pm. If xp=D,
2

we have from (128), tan D= 2 tan rp = tan zp =—— tan ap

V
3

1111
=—— tan sp = tan dp = tan up = —- tan bp.
V 3 2V 3 V? V l3

mpm3
= 60°, .-. epm3

= 30°, upm3
= 19°, 6',4, hpm 3

= 13°. 4'.

Sin ap = cos a'm
3 e = tan 60° cot xm 3

= tan 30° cot sm
3

= tan 19°.6',4 cot um
3
= tan 13°. 4' cot bm■. = tan 40°. 53',6’ cot um.

Sin sp = cos s'm
3e = tan 60° cot zm

3
= tan 30° cot dm

3.

Cos rm
3
= cos 60° sin rp, cos am

3
= cos 30° sin ap.



in the alternate lunes formed by zone-circles through o and

each of the poles r, therefore (126) s, at, x belong to hemi-

hedral forms with inclined asymmetric faces. Hence the crys-

tal (fig. 75) is a combination of the forms {211}, {100},
{12 2}, {311 }, {755}, {421}, a{22l}, a{8 10 5}. The

zone formed by the faces p, s, x, n, r2 is direct.

The symbols of the other poles shewn in (fig. 76) are

b (13 2 2), b (788), m (722), m
'

(5 44), e (l6 5 5), e' (4 3 3),
c (5 2 2), c' (13 8 8), W (5 4 2), y (7 8 4), t (3 4 2).
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fore, if pbe (l 0 0), p (0 1 0), p" (0 0 l), o will be (l I 1),
r (2 1 I), r' (1 2 1), r" (1 1 2). rp, r'p intersect in

therefore %' is (22 l). rp, r'p intersect in s, therefore s

is (4 2 l). ar = 18°. ll', therefore tan ao = 4 tan po, therefore

(138) ais(3 1 1). ar
t
-ar

,
therefore ao =ao, therefore

(133) a
/

is (755). n, at are in the zone-circle pr.2 . atr2

18°. 2cf, nr 2
= 12°. If (uvw) be the symbol of any pole S

in pr2, substituting r
2, p, %" and their indices for P, Q, R,

and their indices in (27), and observing that cotsfV
2
= cotpr2,

we have (2m - sv) tan Sr2
= (2« +v) tan pr2.

The symbol
of the zone-circle pr2

is [0 1 2], =O, tan pr2

= 7tan xr
2,

.‘.as is (2 2 l), tanpr 2
=l3 tan nr2, nis(s To 5).

pss, aa
/

are bisected in o, therefore (134) p, a belong to

dirhombohedral combinations. There are no poles s, at, n



CHAPTER V.

PRISMATIC SYSTEM.

172. In the prismatic system the axes make right angles
with each other.

173. The holohedral form {hkl} is bounded by all the

faces having for their symbols the different combinations of

±h, ±k, ±l, each index having always the same place.
When h, k

,
l are all finite, the form will have the

eight faces

When one of the indices is zero, the number of faces will be

four. When two of the indices are zero, the number of faces

will be two.

The arrangement of the poles of {h k l} on the surface

of the sphere of projection is shewn in fig. 77.

174. The form bounded by all the faces of {hkl} which

have either an odd number of positive indices, or an odd

number of negative indices, is said to be hemihedral with in-

clined faces, and will be denoted by κ{h kl} where h k l is

the symbol of any one of its faces. The forms are said to

be direct or inverse according as they have an odd number

of positive or of negative indices, and their symbols are con-

tained respectively in the upper and lower lines of the table

above.

If the surface of the sphere of projection be divided into

eight triangles by zone-circles through every two of the poles

h k l h k l h k l h k l

hkl hkl h k l hkl



of (100), (010), (001), the poles of the direct form will

be found in four alternate triangles, one of which contains

(111), and those of the inverse form in the four remaining

triangles.

175. The form bounded by all the faces of { hkl}
,

in

the symbols of which the sign of one of the indices re-

mains unchanged, is said to be hemihedral with symmetric

faces, and
may be denoted by prefixing to {hkl }, where

(hkl} is the symbol of one of its faces, σ1, σ2 or σ3,
accord-

ing as the first, second or third index preserves its sign

unchanged, and may be called direct or inverse according as

that index is positive or negative.

The poles of the hemihedral form with symmetric faces

will be found in one of the hemispheres into which the sur-

face of the sphere is divided by a zone-circle through two

of the three poles (1 0 0), (0 1 0), (0 0 1).

176. To determine the position of any pole.

Let the axes of the crystal meet the surface of the sphere
of projection in X, Y, Z (fig. 78). Let a, b, c be the

parameters of the crystal. P the pole of {hkl).

Since the axes of the crystal are rectangular, YZ, ZX,

XY are quadrants,
therefore X, Y, Z are the poles of (l 0 0), (0 1 0), (0 0 1),
and the angles at X, Y, Z right angles.
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cos YZ = 0, cos ZX = 0, cos XY = 0,

cos PX = sin PY cos PYX = sin PZ cos PZX
,

cos PY = sin PZ cos PZY = sin PX cos PXY,

cos PZ = sin PX cos PXZ = sin PY cos PYZ.

cot PX = tan PZY cos PZY= tan PYZ cos PXZ,

cot PY = tan PXZ cos PYZ = tan PZXcos PYX,

cot PZ = tan PYXcos PZX = tan PXYcos PZY.



But

Whence

177. It appears from (176), that the distance of
any pole

of { hkl} from the three nearest poles of {100}, {010},
{001} are respectively equal to the distances of any other

pole of {hkl} from the three nearest poles of {100}, {010},
{001}. Hence the poles of {hkl} are symmetrically ar-

ranged with respect to each of the three zone-circles through
every two of the poles of the forms {100}, {010}, {001}.

178. The arrangement of the poles of {hkl}, and of

σ{hkl}, will be symmetrical in
any two adjacent triangles

formed by zone-circles through every two of the poles of

{100}, {010}, {001}, and similar in
any two alternate

triangles. The arrangement of the poles of κ{hkl} will be

similar in each of the triangles in which they occur.

179. In either of the hemihedral forms, the poles of the

direct and inverse forms may be made to change places with

each other, by causing the sphere of projection to revolve

through two right angles round the poles of one of the forms

{100 }, {010 }, {001}.

79

- cos PX = - cos PY - cos PZ.
h k l

tan PXY =
- -

,
tan PYZ=-~, tan PZX = - -

.

Ac la hh

cot PX = -

-
cos PXY =

-
- cos PXZ

,
A; « la

cot PY = -
- cos PFZ =

-
- cos PYX,

lb h h

Ia I h
cot PZ = -- cos PZX = -

-
cos PZY.

he k c



180. In the form {Okl}, if L be the distance between

two poles differing only in the sign of l,

181. In the form {hOl} ,
if Lbe the distance between

two poles differing only in the sign of l,

182. In the form if H be the distance between

two poles differing only in the sign of h.

183. In the form {hkl}, if H, K, L be the distances

between any two poles, the symbols of which differ only in the

signs of h, k, l respectively,

184. Let P be the pole of {hkl}, Q the pole of {pqr}.
Then as in (97), when Q is in the zone-circle PX,

When Q is in the zone-circle PY,

When Q is in the zone-circle PZ,
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, r
I h

tan = - -

.

* k c

It-
I a

tan i,L =— .

z
he

,TT
h h

tan\H = - - .
* k a

k a
,

r

la ,
if tan d> =- -

,
tan YL =- - cos d>,

r hh
* he

T

sin 1/2K = cos 1/2L sin φ, sin 1/2H = cos1/2L cos φ.

h tan PX k I

p tan QX q r

k tan PY I h

q tan QY r q

I tan PZ h k

r tan QZ p q



185. To find the distance between any two poles.

Let P, Q (fig. 78) be the poles of (hkl), (pqr) ; X, Y, Z

poles of the forms {001}, {010}, {100}. Let PQ meet

the zone-circle of which Z is a pole in M. Then the tangents
of MZX, PZX

, QZX can be found in terms of h, k, l, p, q, r

and of two of the parameters a, b, c; therefore PZM, QZM

are known. PZ can be found in terms of h, k, l, and of the

parameters a, b, c. MZ is a quadrant, therefore

Therefore, PM, QM being known, PQ which is their sum or

difference is known.

186. If the distance between any two poles of either of

the forms {O kl}, {h 0l }, {hko] be given, the ratio of the

indices may be obtained from the expressions in (180)...(182).

187. In the form {h k l}, the distances between any pole
and each of two others, or their supplements, will be two of the

arcs H, K, L ; therefore two of the arcs H, K, L being known,

φ and thence the ratios of h, k, l may
be found from (182).

188. The ratios of the parameters may be found from

the expressions in (180)...(182), having given the distances

between the poles of two of the forms {Okl}, {hOl};
or from the expressions in (183), having given the distance

between any pole of {hkl}, and each of two others not all in

the same zone-circle.

189. The ratios of the parameters may
also be found

from the distances between three given poles in one zone-

circle.

Let P, Q, R (fig. 79) be the three poles. Let PR meet

YZ, ZX, XY in L, M, N respectively. Then, the symbols
of P, Q, R being known, the symbols of the poles L, M, N
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cos PM = sin PZ cos PZM,

tan QM tan QZM

tan PM tan PZM



may be found by (17). Therefore, PL, PM, PN
may

be

found by (27). Therefore the distances between L, M, N

are known.

Hence, the places and symbols of L, M, N being known, the

ratios of a, b, c may be found by (l80)...(l82).

190. To determine the figure and angles of the form

{hkl}, when h, k, l take particular values.

The angle between normals to any two faces of the same

form is obtained from the expressions in (180)...(183), and

will be denoted by the letter which, in the accompanying figure,
is placed upon the edge formed by their intersection. The

arrangement of the poles is shewn in fig. 77. The number

of faces is given in (173).

191. The three forms {100} , {0 10}, {001} , have each

two parallel faces, the faces of
any one form being perpen-

dicular to those of each of the other two.

Either of these forms may become hemihedral according to

the second law.

192. The form {Okl} (fig. 80), has four faces
perpen

dicular to the faces of {100} .

193. The form {hOl} (fig. 81), has four faces perpen

dicular to the faces of {010}.

194. The form {hkO} (fig. 82) has four faces perpen-

dicular to the faces of {001}.

82

tan LY tan NL tan MZ tan LM tan NX tanMN

tan LZ tan LM
’

tan MX tan MN’ tan NY tan NL

Tan \L = - -

,

k c

Tan l-L=-~, II= 180°-L.
he

Tan 1H=-~, K= ISO0
- H.

A k a



195. Either of the preceding forms may become hemi-

hedral with symmetric faces. The half-form will consist of

any two adjacent faces.

196. The form {hkl } (fig. 83) has eight faces.

197. The hemihedral form with inclined faces κ{hkl}
is an irregular tetrahedron, the edges of which are parallel to

the faces (100), (010), (0 01). If normals to the faces

that meet in these edges make with each other the angles

T, V, W respectively,

198. The hemihedral form with symmetric faces consists

of four faces which make one of the solid angles of fig. 83.
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T ,
, k a la

II tan <i> =
,

tan -kL =- - cos cp,
T

hb he
r

sin 1/2K = cos 1/2L sin φ, sin 1/2H = cos 1/2L cos φ.

T = 180°- H, V = 180°- K, W = 180°- L.



Examples.

199. Let m, k, p, &c. (fig. 85), be the poles of the faces

m, k, p, &c. of a crystal of Aragonite (fig. 84). It is found

that the zone-circles mm', kk' intersect at right angles in h,

and that the poles of the faces are symmetrically arranged
with respect to each of the circles mm', kk' and a circle YZ

which intersects mm', kk' at right angles in Y, Z. Let h be

(100 ), k(10 1), to (110 ). Then Y, Z will be (010), (001)

respectively. It appears from the symmetrical arrangement
of the poles with respect to the great circles mm', kk', YZ,

that pp", pp" pass through Y, Z respectively, k, m are in

pp", pp" respectively. Hence p is the intersection of Yk,

Zm, thereforep is (111). s is the intersection of hp, mk,
therefore s is (211). s" is (211), s'" is (211). i is the

intersection of hk, ss'", therefore i is(201). n is the inter-

section of pk, ss", therefore n is (212). x is the intersection

of mn, hk, therefore x is(102 ). Hence the crystal is a com-

bination of the forms {100} , {101 }, {201 }, {102} , {110} ,
{111}, {211}, {212}. The crystal is cleavable parallel to

the faces of { 100}. { 101 }, { 110} .
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It is found that mm'= 63°. 50', k k'= 71°. 34', very nearly.
Therefore mh=58°. 5', kh=54°. 13'. tan kh= 2 tan ih =

1/2 tan x h

(183). Hence ih= 34°. 45', xh= 70°. ll'. kZ=35°. 47', cos pZk=

tan kZ cotpZ, sin kZ=cotpZk tan pk. Whence pZ =53°. 44', 5,

pk = 43°. 11',5, therefore pp"= 107°. 29', pp" 86°. 23'. cos ph =

cos mh cos pm, therefore ph = 64°. 46', pp 50°. 28'. tan nY =
2 tan pY, tan ph = 2 tan sh (183), therefore n Y=64°. 51', nk =

25°. 9', sh = 46°. 42'. tan pZh= 2 tan sZh (175), therefore sZh

= 38°.45',5. sin iZ = tan si cot sZh, cos sZh tan i Z cot sZ,

therefore si = 33°. 24',5, sZ=6l°. 35'. tan sZ=2tannZ (183),
thereforenZ = 42°. 45', cos nh = cos nk cos kh, therefore nh,

58°. 2',5.

Let a, b, c be the parameters of the crystal. Then, since

p is the pole of (111 ), and h the pole of (100 ), a cos ph =

b cospy = c cos pZ. Therefore a, b, c are proportional to



sec ph, sec pY, sec pZ, or to the numbers 2,3457, 1,4610,

1,6908 respectively.

If we change the parameters by the rule in (29) so that s

may be (111), the symbols of the other faces will be h (100),

m (120), i (101), k (102), x (104), p (122) n (112).
The new parameters will be proportional to the numbers

1,1728, 1,4610, 1,6908.

200. In a crystal of Sulphate of Magnesia with seven

proportionals of water (fig. 86), the zones which serve to deter-

mine the symbols of the faces are nlte, vlsp, mil", nsm, vtm.

e is (100), p(010), n(011), v (101). Therefore (17) the

symbols of the remaining faces are l (111), l" (111 ), m (110),

t (211), s (121), q (021), r(201). The forms to which s, t

belong want the faces which have their poles in the alternate

octants formed by the zone-circles through every two of the

poles (100), (010), (001), therefore (173) they are hemihe-

dral with inclined faces. Hence the crystal is a combination

of the forms {100}, {010}, {011}, {101}, {110}, {111},
{021} , {201}, к{211}, к{121}. It is cleavable parallel to

the faces of {100}.

The form to which the faces I belong is frequently hemi-

hedral with inclined faces.

If e, m, l be the poles of the faces e
, m, l,
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em = 45°. 15',

ml= 51°.

201. In a crystal of Topaz (fig. 87), the zones which

serve to determine the symbols of the faces are ulmm
',

/ / n n n / / r /// /// nr »// nt n

ynpny ? mosps o m
, mosps o m

,
mnx o m

,

m'oxnm", uoriu', uo'y1

,
lxpx"l", xss'x'. pis perpendicular

to the faces of the zone mm
,

therefore if p be (0 0 l), the

faces (l 0 0), (0 10) will belong to the zone mm. Let obe

(l 1 l), o' (1 1 1). Then o" will be (1 ] 1), o'" (1 1 l). m, m

will be (l 10), (T 10) respectively, n will be (2 0 1), u(3 1 0),

y (4 0 l). If m, m,1,1’ be the poles of the faces m, m
, I, t

,

it is found that tan \U' —
2 tan |b«', therefore I is (2 10).

Hence xis(4 2 8), x (4 2 3)> s(2 2 3). Hence the crystal



is a combination of the forms {001}, {110}, {210},
{310}, {201}, {401}, {111}, {223}, {423}. The

crystal is cleavable parallel to the faces of {001}, {201},

{021}.
The forms of Topaz are sometimes hemihedral with

sym-
metric faces (174). Thus the forms to which O, x, p, t(t is

common to the zones OO "', nn
',

its symbol is (101)) occa-

sionally wanting the faces on one side of the zone mm'; and

the form of which i is a face (i is common to the zones

mo', m’o, its symbol is (021)), has been observed to want the

faces on one side of the zone nn'.
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If m, u, p, &c. be the poles of the faces m, u
, p, &c.,

mm'= 55°. 4l', ll'=93°. 8', uu'= 115°.29', pn = 43°. 30',5,

py = 62°. 13', po = 45°. 27',5, ps =34°. 7', px=
41°. 4'.



CHAPTER VI.

OBLIQUE PRISMATIC SYSTEM.

202. In the oblique prismatic system one axis OY, is

perpendicular to each of the other two axes.

203. The holohedral form {hkl} is bounded by all the

faces which have for their symbols the different combinations

of ±h, ± k, ±l , in which each of the three indices has always

the same place, and the first and second indices are taken with

the same signs. When k is finite the form has the four faces

When k is zero, or when each of the other two indices are zero

the number of faces will be two.

204. The hemihedral form which we shall denote by

σ{hkl}, where (h k l) is the symbol of one of its faces, is

bounded by the faces of {hkl} in the symbols of which k

has the same sign.

The poles of the two half-forms lie on different sides of the

zone-circle [100, 001].

205. To determine the position of any pole.

Let the axes of the crystal meet the surface of the sphere

of projection in X, Y, Z (fig. 87). Let C be the pole (001),
A the pole of (100), P the pole of (h k l).

The axis OY is perpendicular to each of the other two

axes,
therefore XY, YZ are quadrants;

h k l h k l h k l h k l

therefore cos XY = 0,

cos ZZ = 0. Therefore Y is the pole of (010). cos CX = 0,



But

206. The arc joining two poles of {h kl}
,
the symbols of

which differ only in the sign of k, is manifestly bisected at

right angles by the zone-circle [001, 100]. Hence, if the

surface of the sphere of projection be divided into two hemi-

spheres by the great circle [001, 100 ], the arrangement of

the poles of { hkl} in the two hemispheres will be symmetrical.

The arc joining the two poles ofк{hkl} will be bisected

in a pole of the form {010}.

208. To find the distance between any two poles.
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cos CY = 0, cos AZ = 0, cos AY = 0. Therefore CX, CY,

AZ, AY are quadrants. Therefore C, A are in the great

circle ZX, and CA + ZX= 180°.

cos PX = sin PY cos PYX =
sin PY sin PYC,

cos PZ = sin PY cos PYZ = sin PF sin PYA.

- cos PX =
- cos PY =

- cos PZ ;
h k l

- sin PYC = -
sin PYA, if tan d = - -,

hi la

tan 1/2 (PYC
-

PYA) = tan 1/2 CA tan (45°- θ).

cot PY = - - sin PYC = - ~ sin PYA
hb I b

cos PA = sin PY cos PYA,

cos PC = sin PYcos PYC.

207. Let Pbe the pole of {h k l), Q the pole of (p q r),
and let Q be in the zone-circle PY. Then PYC = QYC,

PYA = QYA, therefore (205).

Jc tan PY I h

q tan QY r p



Let P, Q (fig. 89) be the poles of (h k l), (p q r), A, Y, C

the poles of (1 0 0), (0 1 0), (0 0 1). Let PQ meet CA in M.

Then the symbol of M
may be found, and MYA, PYA, QYA,

PY may be found in terms of h, k, l, p, q , r, a, c and the

angle between the axes. MY is a quadrant, therefore

whence, PM, QM being known, PQ is known

209. Having given the distances of the pole of (hkl)
from the poles of (1 0 0), (0 1 0), (0 0 1) ; to find ZX, and

the ratios of a, b, c.

Let P, A, Y, C (fig. 88) be the poles of (hkl), (1 0 0),

(0 1 0), (0 0 1). Then (205)

Whence PYA, PYC, and, therefore, AC and ZX become

known. The ratio of atoc is given by the equation

and the ratio of b to a or c by the equations

210. P, Q, R (fig. 90) are three poles in the zone-circle

CA, C, A being the poles of (0 0 1), (1 0 0); T, T' are two

poles of the
same form. Having given PQ, QR, TT', and

the symbols of P, Q, R', T, to find the inclination of the axes

and the ratios of the parameters.

Let TT' meet PQR in S. P, Q, R, S, A, C are in the

same zone-circle, and their symbols are known, therefore (26),
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cos PM = cos PYM sin PY,

tan Q3I tan QYM

tan PM tan PYM
’

cos PA = sin PY cos PYA,

cos PC = sin PY cos PYC.

-

sin PYC = - sin PYA ;
h i

cot PY
-

- sin PYC = sin PYA.

hb lb



the distances of S, C, A from P and R may be found.

Whence, CA being known, the inclination of the axes is

known. Y bisects TT', therefore, TY, CS, AS being known,

TC,
TA

may
be found, and the ratios of the parameters

determined as in (209).

211. M,M' (fig. 91) are the poles of two faces of any

form equidistant from Y ; N, N' are the poles of two faces

of any other form, also equidistant from Y. Having given

MM', NN', MN; to find the inclination of the axes, and

the ratios of the parameters.

Let MM', NN', MN meet CA in P, Q, R, C, A being

the poles of (0 0 1), (1 0 0). The symbols of M, N being

known, those of P, Q, R
may

be found. MN, YM, YN be-

ing known, PQ, which measures the angle MYN, may
be

found.

Whence, knowing PQ, PR, QR are found. PQ, QR be-

ing known, the places of C, A, and the ratios of the parameters

may
be found by the methods of (209) and (210).

212. P, Q, R (fig. 92) are three poles in the same zone-

circle, T, T' two poles of the same form equidistant from Y.

Having given PQ, QR, TT', and the symbols of P, Q, R, T ;

to find the elements of the crystal.

Let PR meet ZX in M and TY in S ; and let TY, RY,

PY meet ZX in s, r, p. Then the symbols of M, S, p, r, s

can be found. PQ, PR and the symbols of M, P, Q, R, S,

are known, therefore NP, MR, SP, SR may
be found by (26).

RY, RM determine RMY. RMY, PM, RM, SM determine

pM, rM, sM. Whence, knowing the symbols of p, r, s,

the places of C
,

A can be found by (210), the elements of the

crystal may
then be found by the methods already given.
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sin PR = cot R cot YM, sin QR = cot R cot YN,

tan 1 (PR - QR) sin (NY - MY)

tan 1 (PR + QR)
~

sin (NY + MY)
'



213. To find the indices of
any

face when referred to

the axes of the zones [e og, 010 ], [0 0 1, 1 0 0], [p 0 r, 0 1 0]
as crystallographic axes.

The symbols of the three zones are [r Op], [0 1 0], [gO e],
therefore (28)

Hence, if u, v, w be the indices of
any face when referred to

the old axes, u', v', w' its indices when referred to the new

axes,

214. The form {010} has two parallel faces.

215. The form \{hol} has two faces parallel to each

other, and perpendicular to the faces of {010}.

216. The form {hkl } has four faces. Normals to two

faces adjacent to (0 1 0) make with each other an angle

217. The hemihedral form σ{hkl} has two faces, normals

to which make with each other an angle

91

e = - r, f = 0, g =p, h = 0, k = 1, l = 0, p =g, q = 0, r = - e.

u' = pw—ru, v'= v, w'=gu- ew.

180° - K,

where 90º 1/2 K = PY.

180° - K.



Examples.

218. In a crystal of Epidote (fig. 93), the zones which

determine the symbols of the faces are metlrm',mkoo'k'm',

tuzz'u't', lyqq'y'l’, lnz'l', rnn'r’, mdzqnxm, muym',

ryzox'r', tynod't', edd'e. Let m be (100), l (001),
n (111), n'(111). Therefore (17) the symbols of the faces

will be r (101 ), q (011 ), z (111), t (101), o (2 1 0), y (0 1 2),

X(8 1 l), i (10 S), u(2 1 2), k(4 1 0), d(3 1 1), e(3 0 1). In

some crystals a face f has been observed common to the zones

mt, un'; a face s common to the zones mt, ky, and a face b

common to the zones mo, lg. Therefore f is (103), s is

(201), and h is (010). The crystal is cleavable parallel to

the faces m, t.

Let m, l, r, &c. (fig. 94), be the poles of the faces

m, l, r, &c.

to find the positions of the remaining poles.

Let (uvw) be the symbol of
any pole S in the zone-circle

rtm ; then, substituting r, t
,

m and their indices for P, Q, R

and their indices in (27),

If the zones which intersect in f, s, had not been found,

the distances of f, s from the poles of some known face in mt

would have been requisite in order to determine their symbols.
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Having given rt=5l°. 4l', tm = 64°. 36', nn' =

70°. 33';

tan rS tan run 2 w

tan rt tan rm u+ w’

∴ (u +w) tan rS =2 w tan rt +(u— w) tan rm.

Whence lr= 2s°. 44',5 ; fr=34°. 55'5 ; er=Bl°. 34; ir=29°- 21',5 ;

sr = 18°. 6'. If nml <p, tan nr = tan (p sin mr, tan iv =

tan (p sin mi. Whence iv = 41°. 39
,

,5, vv'— 96°. 41'. In like

manner qq = 64°. 46', ssss'= 70°. 9', dd'= 96
o.lo'. If ntr = \js,

tan nr = tan\p sin tr, tan 0m = tan \l/sin tm. Whence orn

58°. 26', oo'= 63°. B'. Tan by = 2tan bq (207), therefore =

5l". 45', yy'= 103°. So'. Tan hu = 2tan 6#, tan 6/c = 2 tan6o.

Whence bu=s4?. 33', m«'= 109°. 6', f;A;=50
0

. 51',5, kk'=lol°. 43'.



To find the inclination of the axes OZ, OX, and the

parameters.

To find the symbols of the faces referred to the axes of

the zones zz', mt, OO' as crystallographic axes. The symbols
of the zones zz', mt, OO', when referred to the old axes, are

[101], [010], 001] respectively. Therefore (28), if (uvw)
be the symbol of any face referred to the old axes, (u' v' w')

219. In a crystal of Felspar (fig. 95), the zones which

determine the symbols of the faces are tzmz't', pqxyp,

pnmn'p, xomox
, qoznq, potp, yonty, m is perpendicular

to the faces p, q, x
, y, therefore m is (010). Let tbe

(110), t' (110), o (111). Then (17) the symbols of the

remaining faces will be p (0 0 1), n (0 2 1), y (2 0 1), x (1 0 1),

z (13 0), g (2 0 3). Hence the crystal is a combination of

the forms {010} , {0 0 1}, {110 }, {130}, {021}, {2 01},

{101}, {203}, {111} . It is cleavable parallel to the faces

of the forms {001}, {110}, {010}.
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Suppose tf, ts had been measured, and that we had found

tf = 19°. 37', ts = 69°. 47'. We have tr = 51°. 4]', rm!= 63°. 43'.

Therefore, substituting t, r, m and their indices for P, Q, R

and their indices, and f for *S' in (27), if (u v w) be the symbol
of f, u=l, v= 0, iv =3. Therefore fis (103). In like

manner s will be (2 0 l)-

Let OZ, OX meet the surface of the sphere of projection
in Z, X. Then, since Iis(0 0 1) and mis(l 0 0), mZ = 90°,

IX = 90°. ml = 90°. 32',5, therefore ZX = 89°. 27',5. The axis

OF meets the surface of the sphere of projection in b. If the

parameters of the crystal be a, b, c, since u is (212),

=b costib = LccosmZ. Sec uX = sec ut cosec tl, sec uZ

sec ut cosec tm. Therefore a, h, c are proportional to 2 sec ut

cosec tl, sec üb, sec ut cosec tm.

its symbol when referred to the new axes, u'= u —w, v —v,

w'= w. If the new axes OZ’, OX' meet the surface of the

sphere of projection in Z', X', Z'X'= 180" mt = 115°. 24'.



Having given tt', pt, px, t, p, x, &c. (fig. 96), being the

poles of the faces t, p, x, &c., to determine the positions of

the poles q, y, n, o, z.
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Let tt', px meet in a. Then a will be (10 0). mt =

\tt', cos pt = sin mt cos pa. The right-angled triangles

xpo, apt, having a common angle at p, give sin pa cot om =

sinpx cottm. 2 cot pq = 3 cot px cot pa, 2 cot py cot px

+ cot pa (27). Tan mt = 3 tan mz (207). The right-angled

triangles tya, riyp, having a common angle at y, give
sin ay cot mn'= sin p'y cot mt. If tt'= 118°. 49

;

, pt = 67°. 44',

px = 60°.20', we shall have
pa = 63°. 53

1

,
om = 63

n
. 7', pq =

34°. 13’, py = 80°. 23', mx = 29°. 25', mn = 45°. S'.

220. In a crystal of Oxalic acid (fig. 97), the zones

pacp, peep' have their axes at right angles to each other.

aemd, cemc are zones, p, a, c, &c. being the poles of the

faces p, a, c, &c. pa = 50°. 40', pc = 76°-45, mm = 63°. o'.

If the zone-circles pa, mm meet in d, it appears from ap-

proximate measurements that 2 cot pd = cot pa cot pc (27).
Whence pd 73°. 43'. The right-angled triangles ecp,

mod, having a common angle at c, give sin pc cot pe =

sindccotmd. Whence pe = 72°. 44', ee'= 34°. 32'. It fre-

quently happens that there are no faces parallel to the faces

e, e'
.

In this case (204) the form to which the faces e be-

long is hemihedral.



CHAPTER VII.

DOUBLY OBLIQUE PRISMATIC SYSTEM.

221. In the doubly oblique prismatic system the form

{hkl} has the two faces (hkl) (hkl).

222. To determine the position of any pole.

Let the axes of the crystal meet the surface of the sphere
of projection in X, Y, Z (fig. 98). Let A, B, C be the poles
of (100), (101), (001), P the pole of {h kl}. XYZ, ABC

are supplemental triangles.

But

Whence

where

cos PX = sin PBC sin PB = sin PCB sin PC,

cos PY =sin PCA sin PC = sin PAC sin PA,

cos PZ = sin PAB sin PA = sin PBA sin PB,

- cos PX = - cos PY = - cos PZ.
h k l

h c
- sin PAC = - sin PAB,
k I

- sin PEA = -
sin PEC,

I h

7
sin PCB = - sin PCA,

h k

∴ tan 1/2 (PAB - PAC) = tan 1/2BAC tan (45 -θ),

n
C

tan 0 =

7 ft
’



where

where

Whence, knowing the angles A, B, C, the segments into

which they are divided by PA, PB, PC become known.

223. Let PX, PY, PZ meet the sides of ABC opposite
to A, B, C, in x, y, x. The angles at x, y, z are right

angles, therefore

Whence the segments, into which the sides of ABC are

divided by perpendiculars Px, Py, Pz, become known.

224. Let PA, PB, PC meet the sides of ABC in H, K, L.

The symbols of the points thus determined will be (O k l),

(h O l), {h k O).
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tan 1/2 (PBC - PBA) = 1/2tan CBA tan (45 φ),

.la
tan <p = ;

he

tan 1/2 (PCA - PCB) = tan 1/2ACB tan (45 - ψ),

h b
tan \ls =

.

' k a

sin-B# sin Cos sin Cy sin Ay sin Ax sin Bx

cot PBC cotPCB’ cotPCA cotPAC’ cotPAB cot PBA

WD
sin (PCB-PBC)

.

tan 1 (S.» - Ca?) = - cot 4 SC,2 v '
sin (PCS + PBC)

2

,

sin (PAC -
PCA)

tan \ (Cy -Ay) = . - —— cot I CA,
sin (PAC + PC A)

sin (PBA - PAB)
tan \ (Ax - B%) =

.
ww =-r cot \Aß.

*
sin (PBA + PAB) *

cot PA = cos PAB cot Az = cos PAC cot Ay,

cot PB = cos PBCcot Bx cos PBA cot Bz,

cot PC = cos PCA cot Cy = cos PCB cot Cx.



whence

Similarly

and

Therefore

where

where

where

Having determined the segments into which H, K, L

divide the sides of ABC
, by means of the preceding equations,

we can find AH, BK, CL.
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cos HY sin HC sin C sin HC sin AB

cos HZ sin HB sin B sin 118sin CA
’

k sin HB I sin HC

b sin AB c sin CA

I sin KC h sin KA

c sin BC a sin AB

h sin LA k sin LB

a sin CA h sin BC

tan \ {HB - HC) = tan \BC tan (45 - a),

kc sm CA
tan a =

,

I b sin AB

tan 1/2 (KC - KA) = tan 1/2 CA tan (45 - β),

la sin AB
tan p = - -

-——,

h c sin BC

tan 1/2{LA - LB) = tan 1/2 AB tan (45 - λ),

h h sin BC
tan r

y =
;———

k a sin CA

sin AP sin APC = sin AC sin PCA,

sin HPsin HPC = sin HC sin PCB,

sin AP sin APB = sin AB sin PBA,

sin HP sin HPB = sin HB sin PBC.

- sin PCB = - sin PC A, -
sin PBA = 7 sin PBC.

h k I h



Whence

Similarly

and

Therefore

where

where

where

Whence the segments into which AH, BK, CL are divided

by P become known.

In the preceding investigations we have supposed the

indices of P, and of the nearest poles of the forms {100},
{010}, {010}, {001} to be all positive. Therefore, when

any of

the indices of P are negative, we must change their signs and

the signs of the corresponding indices in the symbols of the

other poles of the crystal.

225. To find the distance between any two poles.

Let P, Q be the two poles. Then, having found the

distances of P, Q from one of the angles of the triangle ABC,

and the angles these distances make with one of the adjacent
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sin PH h h sin HC h c sin HB

sin PA k a sin CA I a smAB

sin PK k c sin KA k a sin KC

sin PB I b sin AB h h sin BC
’

sin PL I a sin LB I b sin LA

sinPC h c sin BC k c sin CA

tan 1/2 (PA - PH) = tan 1/2 HA tan (45 -ω),

h h sin JIC he sin HB

tan tv =
; ; ;

k a sin CA I a sin AB

tan 1/2(PB - PK ) = tan 1/2 KB tan (45 - ρ),

k c sin KA kasm KC
tan p = - = -

————;
I h sin AB I h sin BC

tan 1/2 (PC - PL) = tan 1/2 LC tan (45 - σ),

I a sin LB I b sin LA

tan a=- - - -

=j—.
- ■

h c sin BC k csm C A



sides of ABC, and, therefore, the angle they make with each

other, we have two sides of a spherical triangle and the in-

cluded angle, from which the third side PQ may be found.

226. To determine the inclinations of the axes and the

ratios of the parameters.

When the distances of A, B, C, the poles of (100),

(010), (001), from each other, and the distance of
any two

of them from P, the pole of (hkl), are known, the distance

of the third from P, as well as the angles which PA, PB,
PC make with the sides of the triangle ABC may

be found.

Cos PX, cos PY, cos PZ may then be found in terms of

PA, PB, PC, and of the angles into which A, B, C are divided

by PA, PB, PC. The ratios of the parameters are then

given by the equations

The triangles ABC, XYZ are supplemental to each other;

227. Having given the symbols of four poles D, E, F, G

(fig. 99); and five of the arcs DF, FE, EG, GD, DE, FG ;

to find the inclinations of the axes and the ratios of the

parameters.

Let A, B, C be the poles of (1 0 0), (0 1 0), (0 0 1). Let

DE, FG intersect in H, and let them meet the sides of

ABC respectively opposite to A
,

B, C in L, M, P, Q, R, S.

Five of the arcs DF, FE, EG, GD, DE, FG being known,

we are enabled to calculate the sixth, and also the arcs DH,

HE, FH, HG, and the angles they make with each other.

The symbols of D, E, F, G, A, B, C being known, the sym-

bols of H, L, M, P, Q, R, S may be found by (17). Hence

DH, HE, GH, HF being known, we can find HL, HM,

HP, HQ, HR, HS, and thence the sides of the triangle

ABC, and the distances of H from its angles. This being
done, YZ, ZX, XY, and the ratios of a, b, c may be found

by (226).
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a h o
- cos PX

- cos PY = - cos PZ.
h k l

∴ YZ = 180° -A, ZX= 180° —B, XY = 180º - C.



Examples.

228. In a crystal of Axinite (fig. 100), the following
zones have been observed; mpdfem ', mltvwm', mrsxycm',

mgom ', focwnf', fgyvf
',

fxtf', fslf', ecqve', pyqwp',

pxvnp ',
pstp', prlp'.

Let m be (100), f (010), v(0 0 1), x (111). Then

(17), y will be (0 1 1), t (1 0 1), p(1 1 0), e (1 1 0), s (211),

l(2 0 1), r(3 1 1), q(1 1 2), c (1 1 1), w (101), n(111),

o (1 2 1), g(0 2 1). If the distances between m, p, d, f, the

poles of the faces m, p, d,f, be measured, it will be found

Let m
, t, p, &c. (fig. 101) be the poles of the faces

m, t, p, &c.

to determine the places of

the remaining poles.

In the triangle ymv, the sides of which are known, we find

The

formula expressing the relation between the distances of four

poles in the same zone-circle (27) gives

100

that cot md - cot mf= 2 (cot mp - cot mf). Therefore (27),
if (uvw ) be the symbol of d, u= 2, v= 1. d is in the zone-

circle mf, therefore w = 0 ; therefore d is (120).

Having given mx = 49°. 32', xy = 29°. 52', mt =

44°. 35', tv = 32°. 55', yv = 40°. 51';

ymv = 44°. 41',5, yvm = 88°. 10',5. xm, tm
,

xmt give xtm =

84°. 14',5. tv, fvt, ftv give fv = 97°. 36'.
vm, fvm

give vfm = 97°-58',5, fm = 89°. 55'.
mx, vmx give

= 44°. 44'.
xvm, vmp give mp 45°. 12'.

cot fe' = 2 cot fm - cot fp ; cot mw = 2 cot mv - cot mt ;

cot mc = 2 cot my cot mx. Whence fe'= 135°. 12', mw =

119°. 50', mc 115°. 35'.
mw, mp, wmp give pw = 115°. 50',5.

my, mp, ymp give py = 58°. 53'. 2 cot pq = cot pw + cot py;

2 cot md = cot mf + cot mp ; cot me = 2 cot mf - cot mp ;

cot fg = 2 cot fy - cot fv ; cot ms = 2 cot mx - cot my ;

cot mr = 3 cot mx - 2 cot my ; cot ml = 2 cot mt - cot mv ;

4 cot mk = 5 cot mt - cot mv. Whence pq = 86º. 35', md =

63°. 34', me = 134°.43', fg = 34°. 53',5, ms = 33°. 20',5, mr =

25°. 27', ml = 28°. 57', mk = 39°. 30'.



if the axes meet the surface of the sphere of projection

in X, Y, Z, mfv will be the polar triangle of XYZ, and

YZ, ZX, XY will be the supplements of the angles fmv,

vfm, fvm (226); fv, vm, mf give Hence

To find the symbols of the faces when referred to the

zones mp, pt, tm as crystallographic axes.

The symbols of the three zones when referred to the old

axes are [001], [111], [010]. Therefore (28), if u, v, w be

the indices of
any

face when referred to the old axes, u', v' , w'

m (010), t (100), v (110), w (120), l (110), p (0 0 1),

e (021), o (142), y (121), c (131), x (111), s (101),

r(l 1 l), n(l 1 1), q(2 4 1), g ( 13 2), d(0 1 2).

229. In a crystal of Blue Vitriol (fig. 103) the zones are

mntrm', rvkoqwr ', rxpr', mpvm', npkn’, tpot', txvt'.

Let k be (001), n (0 1 0), v (1 0 1), m (1 1 0). Then (17)

r will be (1 0 0), and p will be (0 1 1). If the distances be-

tween the poles of r, v, k, o, q, w be measured, it will be

found that, r, v, k
, &c. being the poles of the faces r, v, k, &c,

and w is (301). Hence (17) t is (110), x(2 1 1). h, s, z

(fig. 104) are the poles of faces which do not occur in the crystal

(fig. 103). Their symbols are h(2 1 0), s (111), z(311 ),

101

vfm = 78°. 16'.

YZ = 82°. 1',5, ZX = 101°. 44', XY = 91°. 49',5.

Let a, b, c be the parameters of the crystal. Then, since

x is (1 1 1), a cos xX=b cos xY= c cos xZ. cos xX= sin xv

sin xvf, cos xY = sin xv sin xvm, cos xZ sin xm sin xmf.

Whence

2,023 1,976 1,580

a b c

its indices when referred to the new axes, u'= w, v'= —u+v+w,

w’=v. Hence the symbols of the faces will be f (011),

cot rv cot r k = (cot ro cot rk) = J-(cot rq cot rk) =

I-(cot rw -
cot rk). Therefore (27) ois(1 0 l), <7 is (2 0 l),
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Having given nt, tr, nk, pt, pr to find the positions of

the remaining poles.

rt, rn give rh (26) or (27). pt, tr, rp give ptr and prt.

pt, tn, ptr give pn and pnt. kn, rn, pnt give kr and krn.

krn, ptr, tr give rn. kr, rh, krn give khr. khr, prt, rh

give rx. rx, rp give rs, rz (26) or (27). In like manner,

rk, ro give rv, rq, rw. The values of the five distances

which we have supposed to be used in calculating the places of

The three zone-circles rt, rp, rk pass through all the

poles of the crystal. The angles which the zone-circles make

with each other, and the distance of each pole from r are

known. Therefore the distance between
any two poles, being

one side of a spherical triangle of which two sides and the in-

cluded angle are known, may be easily calculated.

If the axes meet the surface of the sphere of projection
in X, Y, Z,

the poles are nt = 30°. 51', tr = 69º.50', nk = 109º. 38', pt=
52°. 20', pr = 76°. 33'.

YZ = 180°- nrk, ZX = 180°— knr, X = 180°— nkr.

Let a, b, c be the parameters. Then since t, p are (1 1 0),

(011) respectively, a cos tX = b cos tY, h cospY = c cospZ.
costX = sin tn sin tnp, cos tY = sin tr sin trk, cos p Y = sin pr

sin prk, cos pZ = sin pr prt. Whence

1 sin tr sin trk 1 1 sin prk

a sin tn tnp b c sin prt



CHAPTER VIII.

TWIN CRYSTALS.

230. A twin crystal is composed of two crystals joined

together in such a manner that one would come into the posi-

tion of the other by revolving through two right angles round

an axis which is perpendicular to a plane which either is, or

may be, a face of either crystal. The axis will be called the

twin axis, and the plane to which it is perpendicular the twin

plane.

231. Let the poles of the two crystals be projected upon

the same sphere (fig. 104). Let T, T' be the extremities of

a diameter perpendicular to the twin plane. Let P, p be the

poles of any corresponding faces of the two crystals, p the pole

opposite to p. Since p may be made to coincide with Pby

turning the crystal through 180° round TT', P Tp must be

an arc of a great circle bisected in T. In like manner if

Q, q be the poles of any
other corresponding faces of the two

crystals, Qq will be bisected in T. Hence the arcs joining the

poles of any corresponding faces of two crystals forming a twin

crystal, are bisected by the poles of the twin face. Ifp. q be

the poles of the faces opposite to p, q respectively, it is mani-

fest that Pp ', Qq' are bisected at right angles by the great

circle MN having T, T' for its poles. Hence the poles of the

opposite faces of the two crystals are symmetrically arranged

with respect to a great circle the plane of which is parallel to

the twin face.

232. In order to find the twin axis in any given twin

crystal, when it cannot be done by simple inspection, we must

determine by measurement or by the observation of zones, the



intersection of two great circles each of which passes through
the poles of corresponding or opposite faces of the two crystals.
If the intersections of the circles be the poles of corresponding
faces of the two crystals, they will be the poles of a twin plane.
Let P, Q (fig. 104) be the poles of any two faces of one crystal;

p, q the poles of the corresponding faces of the other, p', q' the

poles of the faces opposite to p, q ; T, T' the intersections of

the great circles pPp ', qQq'. Then, if T be the pole of

corresponding faces of the two crystals, the triangles PTQ,

p Tq are equal and similar, and therefore p, q may
be made to

coincide with P, Q by turning the crystal to which p, q be-

long through 180° round TT'. Hence T, T' are the poles of

the twin plane.

233. When the twin plane, and the angles between the

faces of one of the crystals are given, the angle between any

faces of each of the two crystals can be readily determined.

Examples of Twin Crystals belonging to the Octahedral System.

234. In twin crystals belonging to the octahedral system,
the twin axis is either perpendicular to a face of {111} or to

a face of {011}.

235. In a twin crystal of Magnetic Iron Oxide (fig. 105),
the two octahedrons are joined in such a manner that the face

o of one crystal is parallel to the face o
t

of the other, and the

faces o, o', o", o
/

belong to the same zone. One crystal will

evidently come into the position of the other by revolving
through 180° round an axis perpendicular to the faces o, o,

and which is, therefore, the twin axis, o, o', o’, o
'

being the
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Let P, P' be the poles of opposite faces of the two crystals.
Then PT = PT', therefore PP'= 180°- 2PT. When PT is

greater than 90º, the faces P, P' will form a re-entering angle.

Let P, Q’ be
any

faces of each of the two crystals, PT, QT,

PQ being known, PTQ may be found. TQ’ = 180° TQ.

PT, Q' T, PTQ being known, PQ' may be found.



236. In a twin crystal of Zinc Blende (fig. 106), the indi-

viduals are dodecahedrons. Six faces of one crystal coincide

with six faces of the other. One crystal will come into the

position of the other by revolving through 180° round a line

parallel to the intersection of d, d', and which is perpendicular
to a face of the form {111}. Hence this line is the twin axis.

237. In a twin crystal of Fluor (fig. 107) the individuals

are cubes.

238. In a twin crystal of Gold (fig. 108), the individuals

are the icositessarahedrons {3 1 1}. The zones pr, sq of one

crystal coincide with the zones p'r', s'q' of the other. But the

face of the octahedron adjacent to the faces m, r, s is
common

to the zones pr, qs. Therefore the great circle through the

poles of p, p' intersects the great circle through the poles of

q, q', in o, the pole of that octahedron, a normal to which is,

therefore, the twin axis. Then, p, q, p', q' being the poles of

239. A twin crystal of Diamond (fig. 109) is composed of

two hemioctahedrons, the faces of which are parallel to the

alternate faces of the same octahedron. One half form comes

into the position of the other by revolving through 1 80° round

a normal to a face of the form {0 1 1}, which is therefore the

twin axis.
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poles of the faces denoted by the same letters, oo' = 70°. Si',7,

«'o/ = 180°-200'=38°.56',5, o"o= 109°. 28',S, o"o "=lBo°-2oo''=

38°. 56',5. The faces o", o
"

form a re-entering angle.

If a, a'
,

a", a
;
,

a',a
"

be the poles of the faces

denoted by the same letters, it is found that aa'—'aa’,
a'a" = 1 09

n
.

The arcs a«, aa' joining the poles of cor-

responding faces of the two crystals intersect in o, the bisec-

tion of the arc a" a". oa"=s4°. 4-4', 8, and oa" evidently bisects

the angle a a"a. Therefore o is the pole of a face of the

octahedron. Therefore the twin axis is a normal to that face

of {ill} which truncates the solid angle formed by the faces

a, a', a".

the faces p, q, p’, q', we have pp' = 180º - 2po =
20°. 4',

qq' = 20°. 4'. The faces qq' form a re-entering angle.



240. A twin crystal of Yellow Iron Pyrites (fig. 110) is

composed of two hemitetrakishexahedrons, the faces of which are

parallel to the faces of the same holohedral form. It is easily

seen by inspecting fig. 10, that the poles of one form will coin-

cide with those of the other after revolving through 180° round

any two opposite poles of {011}. Therefore the twin axis

is a normal to any face of {011}.

241. In the first four of the preceding examples we have

found the twin axis to be perpendicular to a face of the octa-

hedron. This is perhaps the only way in which the individuals

of this system composing twin crystals are united. Twins

analagous to the last two examples, in which the twin axis is

perpendicular to a face of {011}, can only be produced by
the union of hemihedral forms. In such crystals, (Mohs

Naturgeschichte des Mineralreichs 154—158), the crystallogra-

phic axes of one of the presumed individuals are parallel to

those of the other, and the cleavages of one are parallel to those

of the other, or continued into it without interruption. We

cannot therefore determine with certainty whether such crystals

are to be considered as twins or as single crystals the faces of

which are repeated with a
certain degree of regularity.

Examples of Twin Crystals belonging to the Pyramidal System.

242. In twin crystals belonging to the pyramidal sys-

tem, the twin axis is perpendicular to a face of one of the

forms {100}, {110}, {hOl }, {hhl}.

243. In a twin crystal of Oxide of Tin (fig. ill), the

two pyramidal faces s, s' of one crystal are respectively pa-

rallel to the corresponding faces s', s
;

of the other. One

crystal comes into the position of the other by making a

half revolution round an axis perpendicular to the face which

belongs to the zone ss’, and makes equal angles with the

faces s, s'. This line, therefore, is the twin axis. Let c be
the pole of (0 0 1), t the pole of the face which truncates

the edge formed by s, s', whence (112) ct =
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cs = 43°. 38';



If we assume the symbols of the faces s,
s' to be (l 1 1),

(111), the symbol of t will be (101). If we assume s, s'

to be (1 0 1), (011), t will be (112).

244. In a twin crystal of Copper Pyrites (fig. 112), the

zone pp coincides with the zone p,p ', and the face p is

parallel to the face p. In this case the twin axis is mani-

festly perpendicular to p, a face of the form {111} .

245. The individuals composing a twin crystal of Copper

Pyrites (fig. 113) are square pyramids, having a hemihedral

character in consequence of the very unequal size of their

alternate faces. The large faces of one crystal are parallel to

the small faces of the other. One crystal will evidently come

into the place of the other by revolving through 180°, round an

axis perpendicular to any one of the faces of a square prism

truncating the edges pp, p'p' .
The twin axis will, therefore,

be a normal to a face of {100} or {100}, according as we

consider p to be a face of {101} or of {111}.

246. In a twin crystal of Scheelale of Lime (fig. 114), the

individuals are similar to the crystal represented in fig. 55,
and are joined so that the faces p of the two crystals coincide

with each other. One crystal will come into the place of the

other by revolving through 180° round an axis perpendicular
to any one of the faces of a square prism truncating the edges
pp, pp', or nn. Hence the twin axis is a normal to a face of

either of the forms {100},{110}.

247. In the last two examples the axes and cleavage

planes of the two crystals are parallel. The propriety of con-

107
33°. 59', is = 29°. 12', ts"= 71”. 23', tg = 63°. 35', tg"= 119°. 12'.

Whence
gg = 52°. 50', g”g''= - 58°. 12', ss

/=
121°. 36',

37°. 14'.

If p, p , p", &c. be the poles of the faces p, p , p", &c.,

pa = 34°. 20', pp"= 108°.40', pp'= 70°. 7', pp"= 109°. 53', ph =

29°. 45', pc = 39°. 5',5. Hence aa = 71°. 20', ;/';>/'= - 37°. 20',

p'p'= 39°. 46', p'"p”’= - 39°. 46', 66 = 20°. so', cc = 109”. 11'.



sidering them twin crystals is, therefore, doubtful. On the

other hand, in the last example, the hemihedral forms are dis-

similar, and strife, which run parallel to the intersection of

a with p, meet in a line which divides the faces pp',
p'p' into

two parts each of which appears to belong to a differentcrystal.

Examples of Twin Crystals belonging to the Rhombohedral System.

248. In twin crystals belonging to the rhombohedral

system, the twin axis is either perpendicular to a face of

{111}, or to a face of one of the rhombohedrons.

249- In a twin crystal of Calc Spar (fig. 115), the in-

dividuals of which are combinations of the forms {011} (g),

{112} (c), the faces c of the two crystals coincide with each

other. One crystal comes into the position of the other by

revolving through two right angles round a line parallel to

the intersection of c, c'. But this line is perpendicular to

the face (111), and is, therefore, the twin axis.

250. The individuals composing the twin crystal of

Calc Spar (fig. 116), are rhombohedrons, the faces of which are

parallel to the cleavage planes. The two obtuse angles which

the faces of one crystal make with those of the other are

equal; and the angle between normals to the two faces
p, p

'

is equal to twice the angle between a normal to p, and a nor-

mal to the face (111). Hence one crystal will come into the

place of the other by revolving through two right angles
round a normal to (111), which, therefore, is the twin axis.

251. The individuals composing the twin crystal of Calc

Spar (fig. 117), are combinations of the forms {111} (o),

{112} (c). The zone co coincides with the zone

Let the arcs cc
, c'c', through the poles of opposite

faces of the two crystals meet in t, t'.

Therefore t is the pole of a face of the

form {011}. Hence the twin axis is perpendicular to a face

of the form {011}.
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cc =

52°. 30',5.

t'c = 90 1/2cc' = 63°. 45'.

ot = 90°— t'c = 26°. 15'.



252. In the twin crystal of Calc Spar (fig. 118), the indi-

viduals of which are combinations of {112} (c), {201} (r),

{110} (g), {111} (f), the zone gc in one crystal coincides

with the zone g'c
'

in the other, and the distance between the

Let t be the intersection of the

circles gg',
rr' drawn through the poles of opposite faces of

the two crystals. therefore t is

the pole of a face of the cleavage rhombohedron {100}. Hence

the twin axis is perpendicular to a cleavage plane.

253. The individuals composing a twin crystal of Calc

Spar (fig. 119) have the form {201}. The faces r, r' of one

crystal are respectively parallel to the faces r, r' of the other.

The places of r, r' are interchanged, and one crystal comes into

the position of the other by revolving through two right angles
round a normal to a face of {111}, the pole of which bisects

the arc joining the poles of r, r' . Hence the twin axis is per-

pendicular to that face of {111} which truncates the edge
formed by r, r'.

254. In a twin crystal of Ruby Silver (fig. 120), the

faces z, z' of one crystal coincide with the faces z
,

z' of

the other. One crystal will therefore come into the place of

the other by revolving through two right angles round a per-

pendicular to a face, the pole of which bisects the arc joining the

poles of z, z'. The poles of % bisect the
arcs joining the ad-

jacent poles of the cleavage planes. If we make

the cleavage rhombohedron {100}, z,
z' will be poles of the

form {011} and the twin axis will be perpendicular to a face

of {211}.

Examples of Twin Crystals belonging to the Prismatic System.

255. In a twin crystal of Aragonite (fig. 121), the zone

mm' of one crystal coincides with the zone mm’ of the other,
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poles of g, g' =
38°. 16',4.

Then tg =90º- 1/2gg'= 70°. 51',8,

c, g, r, f being the poles of the faces 0, g, r, /, tc

45°. 23',4, therefore cc
;
= 89°. 13',2. tc =68°. 57', therefore cc'=

42°. 6'. tg =S7°. 27',5, therefore gg’= 105°. s'. tf= 107°. 44',

thereforeff= 35°. 28'. tf'=so°. 34',5, thereforeff[=78°. Si'.

zz'= 42°. 21'.



and the faces m, m
'

of the two crystals are parallel. Hence

one crystal will come into the place of the other by revolving

through two right angles round a normal to m, which is,

therefore, the twin axis.

m, h, k being the poles of the faces m, h, k, we have

256. In a twin crystal of Staurolite (fig. 122), the zone

o r of one crystal coincides with the zone or
of the other, and

the distance between the poles of

From these data it
appears that, if we make

o (100), p (0 0 1), m (1 1 0), r (011), a point in the great

circle oo', 90° from the bisection of oo', and therefore 120°. 18'

from o, in the zone-circle or, will be the pole of (3 2 2).
Hence the twin axis is perpendicular to the face (3 2 2).

Let t be the pole of the twin face, m, p, r the poles of

the faces m, p, r,

257. In a twin crystal of Staurolite (fig. 123), the zone

po of one crystal coincides with the zone p o of the other, and

the distance between the poles of Hence

a point bisecting the arc joining the poles of o, o
',

and there-

fore 45°. 48' from o, in the zone-circle po, is the pole of (3 0 2).
Hence the twin axis is perpendicular to the face (3 0 2).

Examples of Twin Crystals belonging to the Oblique Prismatic System.

258. In a twin crystal of Felspar (fig. 124), the zones

mt, py of one crystal coincide with the zones mt, p/ y/

of

the other. Hence one crystal will come into the place of

the other by revolving through two right angles round an

axis perpendicular to a face common to the zones mt, py,

which, therefore, is the twin axis.
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mm'= 63°. 50', mh=s B°. s', hk=s4t°. 13'. cos mk= cos mh cos hk,

therefore mk = 71°. 59,5, mk’— 108°. 0',5. Whence mm'—

52°. 20', hh = 62°. 50', kk = 36°. l', k’k'=
- 36°. l'.

00~ 60°. 36'. mm =50°. 40',

pr 55°. 22'.

tm = 64°. 46', tm = 115°. 14', tp = 60°. 37',

tr = 30°. 18'. Whence mm = 5o°. 28', m'm’=—so°. 28', pp,=

58°. 46', rr= 119°. 24'.

o, o= - 88°. 24'.



Let a be the pole of the face to which the twin axis is

perpendicular, p, y the poles of the faces p, y.

259. In a twin crystal of Felspar (fig. 125), the zone mt

of one crystal coincides with the zone mt of the other. The

distance between the poles of m, m, opposite faces of the

two crystals, is 121°. 10'. Therefore a point in the great
circle tt,, 90° distant from the bisection of tt

,
is distant

29°. 25' from the pole of m, and therefore is the pole of the

face z (fig. 95). Hence the twin axis is perpendicular to

the face z.

260. In a twin crystal of Felspar (fig. 126), the zones

pm, oy of one crystal coincide respectively with the zones

pm ,
o

j y l
of the other. Therefore one crystal will come into

the position of the other, by revolving through two right angles
round an axis perpendicular to the face n (fig. 95), common to

the zones pm, oy, which is therefore the twin axis.

p, t, m, n, being the poles of the faces p, t, m, n, we have

pp
/

is found to be very

nearly 90°, and therefore mn very nearly 45°. The difference

between this and the value of mn given above, is probably due

to a small error in the determination of
some of the angles

from which mn was computed.

261. In a twin crystal of Felspar (fig. 127), the faces m,p

of one crystal are respectively parallel to the faces m
, p

/

of

the other. One crystal will come into the position of the other

by revolving through two right angles round a normal to p,

which, therefore, is the twin axis.

p, t, z, x being the poles of the faces p, #, a?, we
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Then ay =

35°. 44',5, ap = ll6°. Therefore yy = 108°.31', pp= 52°.14'.

zt = 29°. 59', sst'= 91°. IT, a t"= 88°. 49', zp = 102°. 29',

zy = 66°.31. Therefore tt = 130°. 2', t't'= 2°. 22', t"t”—

2°. 22', pp = -
24°. 58', yy=

46°. 58'.

pn = 44°. 56',5, tn 84°. 46', mn = 45°. 3',5. Therefore pp =

90°. 7', 28', mm = S9
0

.

53'.

have px = 50°. 19', pt = 112°. 16', px
- 102°. 29'- Therefore

XV = 79°. 22', tt = - 44®. 32', zps = -24°. 58'.
/

7
/

7
/



Example of a Twin Crystal belonging to the Doubly Oblique System.

262. In a twin crystal of Cleavlandite (fig. 128), the zone

Imt of one crystal coincides with the zone l
t
m tof the other,

and the faces m, m are parallel. Hence one crystal will come

into the position of the other by revolving through two right

angles round a normal to m, which, therefore, is the twin axis.

263. Occasionally several crystals are joined together in

such a manner that every two adjacent crystals are united

according to the law stated in (230). In many twin crystals,

as the preceding examples shew, faces of the two individuals

make with each other re-entering angles. The occurrence,

however, of such angles is not always to be taken for a

character of a twin crystal; for two or more faces of a simple

crystal may
be repeated, and thus form a re-entering angle.

In some instances the faces are repeated several times, forming

a corresponding number of parallel grooves, which, when the

faces are very narrow, produce the striae observed
upon the

faces of certain forms of some crystals.
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Let p, m, t, l be the poles of the faces p, m, t, l
,

the faces

p, rn being parallel to the two most perfect cleavages. It is

found that mt = 62°. Y, ml= 60°. B', mp = 93°. 36'. Therefore

tt = 54°. 56', ll = 59°. 44', pp= - 7°. 12'.



CHAPTER IX.

GONIOMETERS, &c.

264. Carangeau’s Goniometer consists of two small metal

rulers (fig. 129), fastened together by a pin so as to move

stiffly on each other. In order to measure the mutual inclina-

tion of two faces of a crystal, the rulers are placed with then-

edges touching the faces of the crystal in lines perpendicu-

lar to the intersection of the faces. The rulers are then

applied to a graduated semi-circle (fig. I30), without altering

their position with respect to each other, so that the intersec-

tion of their edges may coincide with the center of the gradu-

ation. The portion of the graduated arc, contained between

the edges of the rulers, will then measure the inclination of

the planes, or the supplement of the distance between their

poles. This instrument is obviously incapable of affording

accurate results.

265. The Reflective Goniometer of Wollaston is repre-

sented in fig. 131. A graduated circle L, the divisions of

which may be read off to minutes by means of a vernier N,

is fixed on a hollow axle which may be turned round by

the milled head M. An axle CS passing through the hol-

low axle of L, and which either turns with the circle L, or

may be turned independently by means of the milled head

at S, carries a crooked arm CF. The part FG is connected

with CF by a joint which permits it to turn round an axis

perpendicular to CS, passing through CS produced, and has

a collar at G in which the pin HK turns and slides with

its axis perpendicular to the axis of FG, and passing through

the point in which SC produced intersects the axis of FG.

The crystal is fastened by means of a soft cement to a thin

plate of metal, fixed in a slit at K.



266. To measure the angle between two faces of a

crystal.

Let p, q be two faces of a crystal, (p,q) the angle be-

tween lines drawn from any point within the crystal perpen-

dicular to p, qrespectively, or the distance between the poles
of p, q. Make the intersection of p, q parallel to the axis

of the circle, and as nearly coincident with it as possible, by

means of the angular motion of FG, and the angular and

sliding motion of HK. Place the instrument upon a firm

stand; and let A, B (fig. 132) be two signals in a plane pass-

ing through a point C in the intersection of the faces p, q,

and perpendicular to the axis of the circle. Turn the circle

till the image of one of the signals A, seen by reflexion in

the face p, coincides with B viewed directly, and read off

the arc at which zero of the vernier stands. Now turn the

circle till the image of A, seen by reflexion in q, coincides

with B seen by direct vision, and read off the arc at which

zero of the vernier stands. The difference of the two read-

ings will measure the angle (p,q), and will, therefore, be the

supplement of the angle between the faces p, q, according to

the usual definition of the angle between two planes that

bound a solid.

For, if CE be drawn bisecting ACB, and CD perpen-
dicular to CE in the plane ACB, CD will be perpendicular

to pat the first observation, and to qat the second. Hence

the crystal, and, consequently, the circle to which it is at-

tached, must have been turned in the interval between the

observations through the angle (p,q) contained between per-

pendiculars to the faces p, q.

267. If a face r belong to the zone of p, q, it will be

parallel to the axis of the circle, and, therefore, in some one

position of the circle, the image of A seen by reflexion in

T will coincide with B seen directly. Hence in order to find

the faces which belong to the zone containing two given faces,

we must adjust the crystal as for the purpose of measuring
the angle between those faces, and then, while the circle makes
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one revolution, observe the faces that afford by reflexion im-

ages of A passing through B.

268. In order to make ABC, the plane through the two

signals and the crystal, perpendicular to the axis of the circle,

turn the stand of the instrument, or move A, till the image
of A seen by reflexion in the plane surface of the circle, or

in any bright plane surface fixed parallel to it, coincides with

a point A' seen directly, the distance of which from A, in

a line parallel to the axis, is equal to twice the distance of

the crystal from the plane of the circle, or from the reflect-

ing surface. Let a solid having two bright parallel surfaces be

fixed in the place of the crystal, and adjusted till the image
of A seen by reflexion in either surface, describes the same

path while the circle revolves, and place the lower signal
Bin the path traced out by the image of A. Having
thus made the plane ABC perpendicular to the axis of the

instrument, the intersection of the faces p, q is known to be

parallel to the axis, when, on turning the milled head S,

the images of A, seen by reflexion in p, q, are observed to

pass through B. The adjustment of the edge p, qis most

easily made by cementing the crystal to the plate K with

one of the two faces, p for example, nearly parallel to the

plate, which is to be fixed in the slit at the end of HK,

so that intersection of p, q may be nearly perpendicular to

HK, and, therefore, HK nearly perpendicular to CS. By

turning HK round its axis, the path of the image of A seen

in p, may
be made to pass through B ;

and then by turning

FG on its axle at F, the path of the image of A seen in q

may be made to pass through B. Should the latter adjust-

ment disturb the former, the process must be repeated.

269. The distances of the two signals from the crystal

should be nearly equal, and not less than six or eight feet.

The upper signal, when the observations are made in the

day time, may be a narrow black bar, placed in the upper

part of a window, parallel to the axis of the circle; and the

lower signal, a white line on a black ground also parallel
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to the axis of the circle. In some cases an image of the

sun formed by a lens of short focal length, or a small round

hole in a screen through which the light of the sky is seen,

may be used with advantage for the upper signal. In ob-

serving at night, two narrow slits in screens, through one of

which is seen the flame of a candle, and through the other

a sheet of paper illuminated by a candle placed behind it,

answer extremely well for the
upper and lower signals re-

spectively.

270. When the points of p, qat which the reflexions

take place are not equally distant from the axis of the circle,

the angle through which the circle revolves between the two

observations will differ slightly from the angle between nor-

mals to p, q.

Let A, B (fig. 133) be the two signals; PE, QE the lines

in which p, q meet a plane through A, B perpendicular to

the axis of the circle at the first and second coincidences of

B with the reflected image of A; P, Q the points at which

the reflexions take place; (p,q) the angle between normals

to the faces; V the angle, not greater than 180°, through
which the circle revolves between the two observations. Then,

where the upper or lower

sign is to be taken according as the circle is turned in the

direction PQE or QPE.

When one of the points P, Q is within the angle which

AB subtends at the other, we have difference be-

tween PAQ, PBQ.

271. To eliminate the error arising from the excentricity
of the points P, Q at which the reflexions take place.

Let A, B be equidistant from C, the point in which the

axis of the circle meets the plane through A, B perpendicular

116

if PEQ = E, we have (p,q)= V=f E,

Let AP, BQ meet in D, then 2 PEQ = 2 FED + 2 QED =

2 EPA - QEDA 4- 2 EQB - 2 EDB = APB - ADB + AQB -

ADB = PBQ + PAQ; PEQ =

L
sum of PAQ, PBQ.

PEQ = 1/2



to it. When the crystal is on the left of the circle, let Vhe

the angle through which the circle has revolved between the

two observations; E the error; P, Q the points at which the

reflexions take place. Turn the instrument half round in

azimuth so that the crystal may be on the right of the circle,
and repeat the observations. Let V' be the angle through
which the circle revolves; E' the error; P', Q' the points at

which the reflexions take place. We shall now have PQ, PQ'

very nearly equal, and equally inclined to EC, but in contrary
directions. and, there-

fore, E, E’ are very nearly equal. Now the directions in which

the circle is turned in its first and second positions are opposed
to each other, therefore E, E' will have different signs, there-

fore V, V are one greater and the other less than (p,q).

When either of the faces is large, it should be blackened

over, except at the point where it is intended the reflexion should

take place. If this precaution were neglected, we should not

be at liberty to assume that

equally inclined to CE. Any error that may arise from im-

perfect centering of the circle, will be eliminated, if the obser-

vations at a given face, in the two positions of the instrument,
be made with zero of the vernier at points distant nearly 180°

from each other.

When AC, BC are equal.

272. In
many crystals, not belonging to the octahedral

system, Mitscherlich discovered that the angles between certain

faces vary slightly with the temperature of thecrystal; thus the

directions of the cleavages of Calc Spar, which, at the ordinary

temperature of the atmosphere, make angles of 105°, 5' with

each other, become more nearly right angled by 8',5, when the

temperature of the crystal is increased 100° C. For the same
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Hence FAQ = P’BQ’, PBQ =P’AQ’,

Hence if (p,q) =V=p E, (p,q ) = E'. Therefore, since

E, E
'

are very nearly equal, (p,q) =P(V+ V) very nearly.

PQ = P'Q', and that PQ, P'Q' are

AC = EC cos
IACB nearly ;

therefore, if PQ make an angle 9 with EC, AC sin PEQ =

PQ cos jjACB sin 0.



increase of temperature a line perpendicular to the face (l 11)

expands 0,00286, and a line parallel to the face (ill) contracts

0,00056 of its length. The distance between the poles of the

faces m, m of a crystal of Aragonite (fig. 84), is diminished

2',8, and the distance between the poles of the faces k, k' is in-

creased 5',5 by increasing the temperature of the crystal 100° C.

In a crystal of Gypsum, which belongs to the oblique pris-

matic system, the angle between the two axes to which the

third axis is perpendicular, and the ratios of the parameters,

vary with a change of temperature.

273. To find the plane angles of a face of a crystal.

Let the face p meet the faces q,
r ; and let P, Q, Rbe the

poles of the faces. The edges in which p meets q, r are per-

pendicular to the planes of the great circles PQ, PR. There-

fore the plane angle formed by the edges in which p intersects

q, r is the supplement of the angle QPR. The lengths of the

edges are not subject to any known law.

274. The system to which any given crystal belongs, is

best determined by observing the kind of symmetry that pre-

vails in the distribution of the poles of its faces. When the

crystal is transparent, its optical properties frequently help to

determine its system. Hauy ascertained that crystals belong-

ing to the octahedral system have no double refraction.

Sir David Brewster discovered that crystals belonging to the

pyramidal system have one optic axis parallel to the crystallo-

graphic axis OZ, which is perpendicular to the axes along
which the two equal parameters are measured: that crys-

tals belonging to the rhombohedral system have one optic

axis which makes equal angles with the crystallographic axes;

and that crystals belonging to the three remaining systems

have two optic axes. In crystals belonging to the prismatic

system, the optic axes lie in a plane through two of the
crys-

tallographic axes, and the angle they make with each other is

bisected by one of the crystallographic axes. In crystals be-

longing to the oblique prismatic system, the optic axes are

either in the plane of the two crystallographic axes OZ, OX
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which are perpendicular to the third OY, or in a plane passing

through OY, and make equal angles with OF.

Thus in Idocrase the optic axis is perpendicular to the

face p (fig. 51). In Calc Spar the optic axis is perpendicular
to the face o (fig. 68). In Apatite it is perpendicular to the

face p (fig. 73). In Quartz it is parallel to the intersec-

tion of the faces r. A crystal of Quartz which has faces of

a hemihedral form in the zones containing two adjacent faces

p, z, is found to he optically right-handed or left-handed

according as
the zones are direct, as in fig. 75, or inverse.

(Transactions of the Cambridge Philosophical Society, Vol. i.

p. 43. Vol. iv. p. 79.) Aragonite has two optic axes perpendi-

cular to the axis of the zone kk' (fig. 84), making angles of

9°. 7' with the axis of the zone mm'. In Sulphate of Magnesia
the optic axes are perpendicular to the axis of the zone mm

(fig. 86), and make angles of 25°. 50' with a normal to the face

e. In Saxon Topaz the optic axes make angles of 31°. 9' with

a normal to p, in a plane through a normal to p and the axis

of the zone mn'. In Epidote the optic axes are perpendicular

to the axis of the zone mt (fig. 93); one makes an angle of

5°. ll' with a normal to r towards anormal to l ; the other makes

an angle of 18°. 5' with a normal to m towards a normal to t.

In Felspar the optic axes are parallel to the face p (fig. 95), and

make angles of about 58° with a normal to the face m. In

Oxalic Acid the optic axes are perpendicular to the axis of the

zone pe (fig. 96), and make angles of 56° with a normal to p.

Axinite and Blue Vitriol have each two optic axes, the posi-
tions of which with respect to the faces of the crystals have not

been well ascertained.

275. The geometrical description of a crystal may be

considered complete when we have given—The angles its axes

make with each other; the ratios of its parameters: the

symbols of the simple forms of which it is a combination, and

the symbols of the cleavage forms. We may substitute for

the inclinations of the axes and ratios of the parameters certain

angles from which the position and mutual inclination of the
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faces of a crystal may be more readily calculated. In the

pyramidal system, the distance of the pole of (0 0 1) from the

pole (111) or that of (101), may
be given instead of the ratio

of the parameters. In the rhombohedral system, the distance

between the poles of (100) and (1 11) may be given instead of

the inclination of the axes. In the prismatic system, the dis-

tance of the pole of (111) from the poles of two of the three

faces (100), (0 1 0), (0 0 1), may
be given instead of the ratios

of the parameters. In the oblique prismatic system, the dis-

tance between the poles of (1 1 1) and (0 1 0), and the angles
which this distance makes with the zone-circles through the

pole of (0 1 0) and the poles of (0 0 1) and (1 0 0), may be

given instead of the inclination of the axes OZ, OX, and the

ratios of the parameters. In the doubly oblique system, the

distances between the poles of every two of the three faces

(1 0 0), (0 1 0), (0 0 1), and of any two of them from the pole
of (111), may be given instead of the inclinations of the axes

and ratios of the parameters.

276. It has been proved in (23) that any given pole,

which has an index greater than unity, is the intersection of

two zone-circles passing through poles that have lower indices

than the given pole. The following table shews how the posi-
tion of

any pole, having no index greater than 7, may be

determined by the successive intersections of zone-circles drawn

through poles having lower indices, commencing with the poles

(111), (111), (111), (111 ). If we suppose the pole T to
be the intersection of the zone-circles PQ, RS, the first column

will contain the symbol of T, the second and third columns

will contain the symbols of P, Q,
and the fourth and fifth

those of R, S. When the three indices of T are numerically

the same as the three indices in any line of the table, but their

order and signs different, the symbols of P, Q, R, S may be

found from the symbols given in the table by the application
of the rules in (20).
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100 111 111 111 111 5 5 4 1 1 1 0 0 1 1 2 1 2 1 1

1 1 0 1 0 0 0 1 0 111 00 1 6 1 o 1 0 0 0 1 0 2 0 1 2 1 2

2 1 0 1 1 1 101 100 0 1 0 6 1 1 1 1 1 100 3 1 0 o11

2 1 1 1 0 1 1 1 0 111 100 62l 1 0 0 021 011 2 0 1

221 001 111 1 0 0 021 6 3 1 001 2 1 0 1 1 0 2 1 1

3 1 0 001 0 1 0 101 2 1 1 632 001 2 1 0 1 1 0 212

3 1 1 1 1 1 100 111 1 1 0 6 4 1 111 1 1 0 0 1 1 2 1 0

320 100 0 1 0 111 2 1 1 643 0 1 0 201 111 2 0 I

321 1 0 1 1 1 0 111 1 0 1 6 5 0 100 0 I 0 2 1 1 023

322 1 1 1 1 00 1 20 1 0 1 651 1 1 0 1 0 1 2 1 1 021

3 3 1 1 1 1 100 120 1 1 1 652 1 1 0 102 2 1 1 0 2 1

332 1 1 1 001 1 2 1 1 I 0 653 1111 0 2 0 1 0 2 0 1

4 I 0 100 0 1 0 101 2 1 2 6 5 4 1 I 1 1 0 1 2 1 1 021

4 1 1 1 1 1 100 011 2 1 0 6 5 5 1 1 1 1 0 0 012 2 2 1

421 1 1 1 1 1 0 001 2 1 1 6 6 1 1 1 1 0 0 1 120 2 2 1

430 1 00 0 1 0 111 2 1 2 6 6 5 111 001 2 1 1 221

431 1 0 1 1 1 0 111 102 7 1 0 100 0 1 0 201 I 1 3

432 1 1 1 1 0 1 0 1 0 2 1 1 7 1 1 111 100 2 1 0 1 2 1

4 3 3 1 1 1 100 011 2 2 1 720 1 0 0 0 1 0 102 3 1 T

441 1 1 1 0 0 1 2 0 1 1 2 1 721 1 00 1 2 1 1 1 1 121

443 1 1 1 001 021 2 1 1 7 2 2 111 100 1 1 2 2 1 0

5 1 0 100 0 1 0 1 1 2 201 730 100 0 1 0 2 1 1 103

5 1 1 1 1 1 100 1 1 1 2 1 0 7 3 1 1 0 1 2 1 0 100 1 3 1

3 2 0 100 0 1 0 2 1 1 102 732 111 1 1 0 101 1 1 2

5 2 1 100 1 2 1 1 0 1 1 1 1733 111100 111 230

3 2 2 1 1 1 100 120 2 0 1 740 100 0 1 0 1 0 2 3 2 1

530 100 0 1 0 2 1 1 1 1 2 7 4 1 111 1 0 1 1 2 1 2 1 1

5 3 1 111 101 111 1 1 0 742 100 1 2 1 1 1 1 2 1 1

532 1 0 1 1 1 0 1 1 1 201 743 1 1 0 1 0 1 1 2 1 210

5 3 3 111 100 1 I 1 2 2 1 7 4 4 111 100 102 1 2 3

540 100 0 1 0 2 2 1 1 02 750 1 0 0 0 1 0 113 22l

5 4 1 1 0 1 1 1 0 111 2 1 0 751 111 1 1 0 1 1 1 1 2 1

542 100 021 1 1 0 102 752 1 1 0 1 0 1 1 1 1 3 1 0

543 111 101 1 0 1 1 2 0 753 111 101 1 1 1 1 2 0

5 4 4 111 1 0 0 120 1 I 2 754 1 I 1 1 1 2 1 2 1 1 1 0

5 5 I 111 00 1 2 1 1 120 7 5 5 111 100 1 2 I 113

552 111 001 3 2 1 1 I 0 760 100 0 1 0 1 0 3 221

553 1 1 1 001 1 2 1 210 761 1 0 11 1 01 2 1 3 1 1



If we commence with (111), (1 0 0), (0 1 0), (0 0 1), from

which the positions of the poles of crystals belonging to the

rhombohedral system are most obviously deducible, we must

substitute for the first two lines of the table

277- Tables for converting the symbol of any form in

different systems of crystallographic notation into the equiva-
lent symbol in the notation used in the preceding pages. If

the indices, when expressed in numbers, appear as fractions,

they must be multiplied by the least common multiple of

their denominators.

1. Modified notation of Hauy employed by Mr Brooke,

(Enc. Metropolitana, Art. Crystallography). The same table

serves also to translate the notation of M. Levy, (Description
d’une Collection de Mineraux formée par M. H. Heuland),

the indices of which have the same ratios as in the preceding

notation, but often differ in magnitude.

Octahedral System.
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7 6 2 1 1 0 1 0 2 1 2 1 2 0 1 772 1 1 1 0 0 1130 2 1 1

763 100 1 2 1 1 1 1 1 0 3 773 1 1 1 0 0 1 2101 3 1

764 100 032 1 1 1 2 1 I 774 1 1 1 0 0 1 1 2 1 310

765 1 11 1 0 1 1 2 1 201 775 1 1 1 0 0 1 1 2 1 311

766 111 100 2 2 1 1 0 3 776 1 1 1 0 0 1 1 2 1 2 3 1

77 1 1 1 1 001 131 3 2 1

1 1 011 1 0 011 0 0 0 1 0

1100 1 1 1 0 1100 0 1 0

1110 0 1 1 1 010 0 0 1 1

P |) 00}
V

B j v 1 0 \

A {v 1 1 } b
p
b;b, \qr,rp,pq\



Pyramidal System,

Rhombohedral System.

Prismatic System,
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Oblique Prismatic System.

Doubly-oblique Prismatic System.

The first, second and third indices become respectively

negative when E, I and A are substituted for O.

2. Notation of Mohs.
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M {110} A {«+!» ®-l, -1}

P fool} E* {«-!,« + !, 1}
V

0 {2v, 0, if ,E {l -15, 1 + V, 1}
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Octahedral System,

Pyramidal System
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H |100} B, {3 3 2}

0 {111} c. {211}
D {011} C

2 {311}
A {320} 'I\ {23 1}

A {210} T, {531}

A {310} t
3 {42 l}

B, {22 1}

[P+x] |100}

P- CO I 001 ?

P + X } 1 1 0}
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Rhombohedral System

If Q be a

pole of
any rhombohedron, (Q) its symbol in the notation of

Mohs or Naumann ; D an adjacent pole of {011}; S a pole of

adjacent to Q and D, O a pole of {111};
T the intersection of QD, OS, the symbol of T, in the

notation of Mohs or Naumann, will be

Prismatic System,

Oblique Prismatic System.

Let (P) denote the symbol, according to Mohs, of the

form {hkl} in the prismatic system.

will be {hkl, {h k l} respectively, in the oblique prismatic

system. When the form {hkl} has the same number of faces

in either system the 2 in the denominator is omitted.
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K
- X Ini} R {10 0}

R + X {a 11} pin {m + 1 ,0, 1 - m }
P + X |oT 1} {P + X )’" { 3m + 1,-2, 1 — 3m}

P + n {2%2",l}

m + 1) P + n {(w. + 1)2", (m + 1)2",2)

+ 1) Pr + n { 0, {m + 1)2*, 2}

m + 1) Pr + n \{m + 1)2",0,2)

(P + n)
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{k +/, —k, ~
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m = (k + 2l) -f- 3k.
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-
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,
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Doubly-oblique Prismatic System

Let (P) he the symbol, according to Mohs, of the form

{h k l} in the prismatic system.

in the doubly-

oblique system. When \hkl\ has twice as many faces in one

system as in the other the denominator is changed to 2, and

when it has the same number of faces in either system it is

omitted.

3. Notation of Naumann.

Octahedral :S> stem

Pyramidal System,

Rhombohedral Sxstem.
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Prismatic System.

Oblique Prismatic System.

Doubly-oblique Prismatic System,

P |m}; 'P {111}? P, {111}; f {lll}. The

symbols of the other faces are derived from P', 'P, P, P as

in the prismatic system.

4. Notation of Weiss.

Octahedral System.

Pyramidal System.

Rhombohedral System.

Prismatic System.

p {11 mPn

OP {OOlf Pn {l nn\

00 P {110}
KJ

mPn [mn,m,n\

mP \mml\ Pn in I»!,

0 P {001} - rn Pn | — mn,m,n

p {111} Pn {n 1 n{

mP \mm 11 (mPn) '
m,mn,n{

—
mP | — m m 1 1 {Pn) \lnn^.

mPn \mn,m,nl

1 J 1
,

-a : - a : - a \hk
h k l

l
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%"
:

l
c !**'}•

c
'

h + k + I

a a a
\hkl\

h + fc - 9,1 h
— 2 Ic + I — 2 h + k + /
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CHAPTER X.

DRAWING CRYSTALS AND PROJECTIONS.

278. The figures of crystals are usually projections, upon

a plane, of the edges in which their faces intersect, by lines pa-

rallel to a given straight line. Since the lengths of the edges
of a crystal are not subject to any known law, the edges in the

figure need not be either equal or proportional to the projec-
tions of the edges of any given crystal. In the rhombohedral

system the plane of projection is generally parallel to one axis,

and makes equal angles with each of the other two axes. In

the remaining systems the plane of projection is generally

parallel to two of the axes. The following rules for drawing

crystals will not require any demonstration.

279. To draw the axes of a crystal.

When a plane of projection is parallel to the axes OZ, OX

draw ZOZ', XOX' (fig. 135), making with each other an angle

equal to the angle between the corresponding axes of the crys-

tal, and any line YOY'making finite angles with ZOZ', XOX'.

Then, the three lines XOX’, YOY’, ZOZ' will represent the

three axes of the crystal.

If in OZ, OX, we take OC, OA proportional to the

parameters c, a respectively, and OB of any magnitude, OA,

0B, OC will represent the parameters of the crystal.

In therhombohedralsystem, make the angle ROC (fig. 136)

equal to the angle between a normal to (111) and either of

the axes of the crystal. Draw CRS perpendicular to OR,

making Through S draw ASB making any

angle with CS, and in ASB take A, B at any equal distances

RS = 1/2CR.



from S. Then, the three straight lines OA, 0B,
OC will

represent the axes, and the distances OA, 0B, OC will re-

present the parameters.

When the position of the plane of projection with respect

to the axes is arbitrary, the axes may be represented by any

three lines meeting in one point.

280. To draw lines parallel to the intersections of the

plane of the face (h k1) with the planes through the axes.

Let OA, 0B, OC (fig. 135.) represent the parameters of

the crystal. Take OH, OK, OL respectively proportional

Then KL, LH, HK will be parallel

to the lines in which the plane of the face (hkl) intersects the

planes YOZ, ZOX, XOY.

When one of the indices h, k, l is zero, the corresponding
axis will be parallel to two of the intersections.

281. Let the sides of the triangles HKL, PQR (fig. 137.)
be parallel to the intersections of the planes of two given faces

with the planes YOZ, ZOX, XOY. Let the intersections

with YOZ, ZOX, XOY meet in U, V, W respectively. Then

a line through any two of the three points U, V, W, will pass

through the third, and will be parallel to the projection of the

edge formed by the intersection of the two given faces.

If we draw lines, by the above method, parallel to the

projections of all the edges of a crystal, meeting each other

in the order in which the edges meet, the figure thus obtained

will be the figure of the crystal.

282. To draw the axes of a twin crystal.

Construct fig. 138. so that OU, OV, OW
may be propor-

tional to the parts of the axes of either crystal cut off by the

twin plane, and VOW, WOU, UOV equal to the angles YOZ,

ZOX, XOY respectively. From the points 0 draw lines per-

pendicular to the adjacent sides of the triangle UVW, meeting
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to
- OA, - 0B, -

OC.

h k l



in T, and draw the lines UTu, VTv, WTw. Let OX, OY, OZ

(fig. 139.) represent the axes of one
of the crystals; U, V, W

the points in which they are intersected by the twin face.

Divide two of the sides of UVW into segments proportional
to the corresponding sides of UVW (fig. 138.), and let the lines

through the points of division and the opposite angles intersect

in T. Then OT represents a perpendicular on the plane
UVW. Then O'U, O’V

,
O'W will re-

present the axes of the second crystal. Let (uvw) be the

symbol of the twin face.

then O'A', O'B', O'C will represent the pa-

rameters of the second crystal. The axes and parameters

having been projected, the faces of the two crystals may
be

drawn by the rules already given.

283. No representation of a crystal is capable of exhi-

biting the relative positions of its faces, the zones which they
form, and the kind of symmetry with which they are arranged,
so clearly as the figure of a sphere having the poles of the faces

of the crystal laid down upon its surface. This method of

representing a crystal, which was invented by Professor Neu-

mann of Königsberg, possesses the additional advantage of

enabling us to investigate all the geometrical properties of

crystals by spherical trigonometry alone, without the aid of

either solid or analytical geometry.

When the figure of the sphere is either its stereographic or

gnomonic projection, many problems of crystallography may

be very expeditiously solved by simple geometrical construc-

tions. On this account the following investigation of the

principal properties of the stereographic and gnomonic pro-

jections has been given.

284. In the stereographic projection, points and circles

upon the surface of a sphere are referred to the plane of a

great circle of the sphere, called the primitive, by lines drawn

to one of the poles of the great circle. To an eye placed in

this pole of the primitive, the projection of any point will

be the picture of that point on the plane of the primitive.
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Take 00'= 2 07k

Take O'A— u
.
OU, o'B'=v.o'V,

o'C'= w. O'W;



285. Let O (fig. 140) be the center of a sphere which is

to be projected stereographically; E, C the poles of the pri-

mitive, the eye being at E ; P', Q' any two points on the

surface of the sphere. The straight line EC meets the plane

of the primitive in O; ois the projection of C. Draw

the straight lines EP', EQ' meeting the plane of the primitive
in P, Q ; P, Q are the projections of P', Q'. Let r be the

radius of the sphere.

The angles QOP, Q'CP' are manifestly equal.

A straight line drawn from E to any point in the great
circle CP

1 will meet the plane of the primitive in OP. Hence

a great circle passing through the poles of the primitive is

projected into a straight line passing through the center of

the primitive.

286. Let Q' be any point in a circle of which P' is the

farther pole; P, Q the projections of P', Q'. Then

whence,

Therefore Q is a point in a circle having its center in OP.

287. Let the given circle meet CP’ in M', N'
; and let

M, N be the projections of M', N’. Then M'N will be a

diameter of the projection of the circle.

Let K be the center of the circle MQN. Then

When Q' is a point in a great circle, P'Q' is a quadrant.

Therefore
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Then OP = r tan OEP = r tan -1 CP-

In like manner OQ = r tan 1 CQ'.

cos P'Q' = cos P'C cos Q'C + sin P'C sin Q'C cos Q'CP'

Q f)" 00

= cos P'C -
2

- -- + 2 sin P'C -

-
COS QOP;

r + Q(r r + QO

(cos P'Q' + cos P'C) QO
2

2r sin P'C cos QOP. QO

+ r* (cos P'Q' cos P'C) = 0.

2 KQ = r tan 1 (P'Q' +CP) + r tan i (P'Q' - CP'),

2.K0 = r tan 1 (P'Q' + CP') - r tan 1 (P'Q' - CP').

KQ = r sec CP, KO = r tan CP'.



When Q' is a point in a small circle the pole of which

is in the primitive, CP' is a quadrant. Therefore

A circle passing through E, the place of the eve, will

manifestly be projected into a straight line.

288. To draw the projection of a great circle through

two given points.

Let Q be the most distant of the two points P, Q (Eg. 141);

O the center of the projection. Draw OE perpendicular to

OQ meeting the primitive in E ; EQ meeting the primitive in q;

q O meeting the primitive in s ; Es meeting QO in S. A circle

through QRS will be the projection of a great circle. For QS

is the projection of an arc equal to qs ; .-. Q, A are the projec-
tions of opposite points of the two extremities of a diameter of

the sphere. Therefore the circle projected into QRS is a

great circle.

289. Having given the projection of a great circle; to

find the projection of its pole.

Let GMH (fig. 142) be the projection of a great circle,

meeting the primitive in G,H, and, therefore, GH a diameter

of the primitive. Through O, the center of the primitive,
draw MO perpendicular to GH. Draw GM meeting the

primitive in m. Make mp a quadrant ; and draw Gp meet-

ing MO in P. Then P will be the point required. For MP

is the projection of a quadrant mp,
and G, H are the poles

of the circle projected into MP. Therefore GMH
,

P are

the projections of a great circle and its pole.

290. If a great circle and its pole be projected into GQH

and P (fig 143) ;
and if straight lines PQ, PR be drawn

meeting the primitive in q, r, the arc qr will be equal to the

arc projected into RQ. For PQq, PRr are the projections

of small circles passing through the pole of the circle projected
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KQ - r tan P'Q’, KO = r sec P'Q'



into GQH and through the place of the
eye,

which is one

pole of GqH. But two small circles drawn through the poles
of two equal circles manifestly intercept equal arcs of the

equal circles. Therefore rq is equal to the arc projected
into RQ.

291. To find the angle between two great circles;

having given their projections.

Let GR, LR (fig. 144) be the projections of two great

circles intersecting in R. Let the poles of the circles be

projected into P, Q. Draw the straight lines RP, RQ meet-

ing the primitive in p, q. The angle between the circles

projected into GR, LR is measured by pq. For Ris the

projection of the pole of the great circle projected into PQ.
Therefore pq measures the distance between P, Q, the poles of

the circles projected into GR, LR, and therefore it measures

the angle between the circles which are projected into GR,

LR.

292. Let o be the center of the primitive MN (fig. 145) ;

MQ the projection of a great circle MQ' ; K its center; C

the farther pole of the primitive; CQ’ a great circle meeting
MQ' in Q' and the primitive in N. Then the straight line

OQ will be the projection of CQ' ;

The spherical tri-

angle MNQ' is right-angled at N. Whence

Hence, when the arc CQ' and the angle MQ’C are given,
if we make

and draw LK perpendicular to ON ; the circle MQ described

round K as a center, with the radius KQ, will be the
pro-

jection of MQ'.
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OQ = r tan 1 CQ' ;

KQ = r sec Q'MN ; KO = r tan Q'MN.

KO
sin KQO = sin KOL = sin cos MN = cos MQ'N.

KQ

LO KO sin MN = r tan Q'MN sin MN = r tan NQ 1.

OQ = r tan
1 CQ 1 ; OL = r cot CQ' ; OQK = 90° - MQ'C,



293. Let SQ be the projection of any other great circle

S'Q' passing through Q', R its center. Then

But

Therefore the angle between
any two great circles is equal

to the angle which their projections make with each other

at the point in which they intersect.

204. When a crystal belongs to the octahedral system,
the projection of the sphere, upon which its poles are laid

down, may
have either the zone-circle through two adjacent

poles of {011}, or the zone-circle through two adjacent poles
of {100}, for its primitive. When the crystal belongs to

the pyramidal or prismatic system, it will be found convenient

to take the zone-circle through the poles (1 0 0), (0 1 0) for the

primitive. When the crystal belongs to the rhombohedral

system, the primitive should be the zone-circle containing the

poles of {011} When the crystal belongs to the oblique-

prismatic system, the primitive should be the zone-circle

through (001) and (100). When the crystal belongs to

the doubly-oblique system, any
zone-circle

may be taken for

the primitive.

295. To draw the stereographic projection of the poles of

a crystal of Axinite (fig. 100), having given

Let the zone-circlemp (fig. 101) be taken for theprimitive;
and let O be its center, r its radius.

describe circles intersecting in x. Draw the circles mxm',

pxp', fxf'. Draw OM perpendicular to Om, meeting mxm'

in M ; m' M meeting the primitive in M'; take M'N' a quad-

rant, and draw m'N' meeting OM in N. In mpm' take

and draw the straight line NY meeting
maim in y. Draw pyp', and fyf' meeting pxp in v. Draw
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OQR = 9o° - S'Q'C.

OQK = 90° - MQ'C ; .-. KQR = MQ’S"

mp = 45°. 12',

pf = 44°. 43', moo = 49°. 32', my 79°-24', foo = 64°. s?'.

Make mj> = 45°. 12', pf =

44°.53', and draw diameters mOm, pOp, fOf. In Of take

OK r sec 64°.57
7

,
and in Om take OL=r sec 49°. 32', and

with centers K,L and radii Kx=r tan 64°. 57', L,v = r tan 49°.32'

■r= 79°. 24',



mvm' meeting fxf' in t, and pyp' in w ; fwf' meeting mxm'

in c, and pxp' in n, and ptp' meeting mxm' in s. Draw

OT perpendicular to Ot meeting the primitive in T ; draw

TU perpendicular to t T meeting Ot in U, and draw the

circle Uyt meeting mpm' in e, and fwf' in o. Draw eve'

meeting pyp' in q ; fsf' meeting mvm' in l; plp' meeting

mxm' in r, and mom meeting fyf' in
g.

Then m, p, x, &c.

will be the projections of the poles of the faces m, p, x, &c.

296. In the gnomonic projection of the sphere, points

upon the surface of the sphere are referred to a plane touching
the sphere by lines drawn through them from the center of

the sphere. To an eye placed in the center of the sphere,

the projection of any point will be the picture of the point

upon
the plane of projection.

297. Let O (fig. 146) be the center of a sphere; C the

point in which the sphere touches the plane of projection, and

which is termed the center of the projection; P, Q any two

points on the sphere. Draw straight lines OP', OQ
'

meeting
the plane of projection in P, Q. Therefore P, Q are the

projections of P, Q'. Let r be the radius of the sphere.
Then

The plane of every great circle passes through 0, and

intersects the plane of projection in a straight line. Hence

the projection of a great circle is a straight line.

Let PQ be the projection of a great circle P' Q' having

its poles in the great circle CP'. Then, since the planes CPQ
,

OPQ are perpendicular to the plane CPO, their intersection

PQ will be perpendicular to CPO, and, therefore, PQ will be

perpendicular to CP.

298. Let O (fig. 147) be the center of the sphere; C the

center of the projection ; Q'R' an arc of a great circle; QR

its projection. Draw ECB perpendicular to QR. Make

QR is perpendicular to BE and B0,

and Whence Therefore

QER measures the arc Q'R'.
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CP = r tan CP, CQ = r tan CQ', and QCP = Q’CP .

DB = CO, EB = CD.

BE = CD = B0. QER = QOR.



Hence we can measure the arc of a great circle projected
into a given straight line; or cut off a portion of a given
straight line, which shall be the projection of a given arc of

a great circle.

299. Let C (fig. 148.) be the center of the projection ;

O the center of the sphere; CQ, PQ the projections of two

great circles CQ', P'Q'; CP' perpendicular to CQ', and, there-

fore, ECP perpendicular to CQ.

Hence we may
either find the angle between two great

circles of which the projections are given; or, having given
the angle between two great circles, the projection of one of

them may be drawn through a given point in the projection
of the other.

When CQ' is small, the above method of comparing the

angle between two great circles with the angle between their

projections is not so accurate as the following.

300. Let C (fig. 149) be the center of the projection ;

CQ, PQ the projections of two great circles CQ', P'Q'. Draw

HQ perpendicular to CQ, and make HQ equal to the radius

of the sphere. Make bisect HK in L, and let

PQ meet HK in P.
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Tl_

CP tan CP'
,

,
,

tan PQC = ~=

—,
= cos CQ tan CQ P'.

CQ tan CQ

Take CE = CO. Draw CF perpendicular to QE, and

make CG = CF. Then, CG = CQ cos CQ', tan PQC = cos CQ'

tan CGP. Therefore CGP = CQ'P'.

KQ = CH;

rr
KP HQ KP

,
KP

tan PQC = tan K - = = cos CQ
HP KQ HP *HP

TT n,
KP HL -LP

Hence tan Q = = ;
HP HL +LP

LP 1 tan Q'
,

TFT=
~

-, = tan (45° - Q).
HL l + tan Q

v '



If

For the purpose of facilitating the above construction

sectors are provided with a scale called “inclination of

meridians,” in which the distance between the divisions

and with a scale called “lati-

tudes,” in which the distance between the divisions 0°, lº

of meridians, describe a circle cutting CQ in K. Then, it will

of meridians, MQ will be the projection of a great circle that

makes an angle of m° with the great circle projected into CQ.

301. The gnomonic projection may be used with ad-

vantage in projecting the poles of a crystal belonging to either

of the three systems in which the three axes make right angles
with each other. The plane of projection is most conveniently
situated when it meets the three axes at equal distances from

their intersection. The axes YZ
, ZX, XY will then be pro-

jected into the three sides of an equilateral triangle.

When the crystal belongs to the rhombohedral system,
the plane of projection may be parallel to a face of {111}, or

of {211}. When the crystal belongs to the oblique prismatic

system, the plane of projection may be parallel to the faces of

{010}; and when it belongs to the doubly-oblique system,
the plane of projection may be parallel to any face.

302. To draw the gnomonic projection of the poles of

a crystal of Topaz (fig. 87) on a plane meeting the axes at

equal distances from their intersections
;
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1° = 90°- CQ', = sin I°, HQ = .
KQ y/ |l + (sin Z 0)2!

o°, m° = c{l - tan (45° - m°) |,

2 c sin 1°

v 7 + (sin

Let rad. sphere =CQ tan I°. Draw QH perpendicular to

CQ, making QH = (o°, Z°) of the line of latitudes. With

center H, and radius lIK = (o°, fjO' 1) of the line of inclination

be easily seen that, if KM = (o°, m ) of the line of inclination

having given r?< =

22°. 15', rl = 43°.26', rm = 62°. 10', pn = 43°.30', py = 62°. 13',

po = 45°. 27'.



Let f be the pole (0 1 0). Then r, f, p will coincide with

X, Y, Z, and the arcs joining the poles of r, f, p will be pro-

jected into the equilateral triangle r, f, p (fig. 134). Let Che

the middle point of the triangle. Draw fC, pC meeting pr,

rf in M, N. Let obe the centre of the sphere. Then OC

will be perpendicular to the plane rfp.
With centre C and radius Nr describe

a circle cutting Nr in Q. CN is common to the triangles

meet pm in s ; and let fo meet pr in t. Then p, r, m, &c. will

be the projections of the poles of the faces p, r, m, &c.

THE END.
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Or = Of, and r of=

90°, whence ON = Nr.

QNC, OCN, QC = NO. QNC = OCN, therefore OC = QN.
In Np take NR = Nr, and make nllr = 32°. 15', IRr =

43°.26', mRr = 62°. to'. In Mf take MS = Nr, and make

nSp = 43°.30', ySp = 62°. IS'. Draw CT perpendicular to pm.

In Tp take TU=OC. In TC take TV = UC, and make

oVp = 45°.27'- Let «o meet pi in oc
and pf in i. Let rue
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