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INTRODUCTION.

THE immediate purpose of the science of Crystal-

lography, regarded as a branch of Mineralogy, is to

teach the methods of determining the species to

which a mineral belongs, from the characters of its

crystalline forms. But the science itself is also capa-
ble of being rendered more extensively useful.

The crystalline forms of pharmaceutical prepara-
tions will furnish a certain test of the nature of the

crystallised body, although it will not determine its

absolute state of purity. In chemical analysis, the

forms of crystals will frequently supersede a more

rigorous examination of the crystallised matter; and

commercial transactions in the more precious mine-

ral productions may frequently be guided by the

crystalline form, or by the character of the cleavage

planes, of those bodies.

It does not appear in the works hitherto published
that the connection between the crystal and the mine-

ral has been any where so systematically explained as

to enable the mineralogical student readily to connect

the one with the other.

The Abbe Haiiy's works on crystallography are the

only ones in which a truly scientific exposition of the

theory of crystals is to be found ;* but by designating

* An interesting volume on Crystallization, founded on the Abbe

Hauy's theory, was published in 1819, by Mr. Brochant de Villiers,

and will afford the reader a clear view of that theory, connected

with other interesting objects relating to the formation of crystals.
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most of their forms by separate names, he has pre-
sented those forms to the mind rather as indepen-
dent individuals, than as parts of such groups as

should render their relations to each other, and hence

their mineralogical relations, apparent.

I have been induced, therefore, to attempt such an

arrangement of the various forms of crystals, as will

indicate their constant relations to, or differences

from, each other, for the purpose of more readily re-

ferring from the crystal to the mineral ; and this ar-

rangement is contained in the Tables of Modifications

which will be found in the following pages.*
The best illustration of the manner in which some

of the forms of crystals may be conceived to be allied

to others, is afforded by the Abbe Haiiy's theory of

decrement. That theory appears, however, much
encumbered by his adoption of two kinds of molecules,
and by the forms which he has assigned to particular

molecules of one of those kinds ; in consequence of

this, I have ventured to propose a new theory, in re-

ference to several of the classes of primary forms,
which may in some respects be regarded as more

simple, and which forms the subject of the section

on molecules. t

* Since these tables were constructed I have learned from Mr. Konig
of the British Museum, that he had for some time entertained an inten-

tion of framing a set of tables nearly on the same principle: and he has

shewn me a considerable number of drawings of the figures of crystals

which were made partly with a view to this object, yet serving at the

same time as records of many of the crystalline forms of minerals con-

tained in that rich collection, upon which his attention is so constantly
and so assiduously bestowed.

+ The theory of spherical molecules which has been entertained by
some distinguished philosophers, has not been alluded to in this treatise,

as the laws of decrement appeared more readily explicable on the sup-

position of the molecules of crystals being solidb contained within plane

surfaces.
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I have also attempted to supply some rules for

studying the forms of crystals, and for what may be
termed reading them

; which, although they may not

enable the learner to trace at once the relation of the

different crystalline forms to each other, they will

certainly assist him in his examination of the minerals

themselves ;
and it is from an attentive study of these

that he must at last derive his best information.

From the very elementary nature of some of the

definitions, it is evident that the reader of the earlier

part of the volume is supposed to be unacquainted
with the first rudiments of geometry. By being thus

elementary I have been inclined to hope that crystal-

lography may be rendered more familiar, and its prin-

ciples be more easily acquired: and that the young-
collectors of minerals may be led by these first and

easy steps in the path of science, to make their collec-

tions subservient to the cultivation of higher sources

ofamusement.

The description of the principle and of the method
of using the reflective goniometer, has been mi-

nutely detailed on account of the importance of the

instrument to the practical mineralogist, and with a

view to remove the impression of its application to

the measurement of crystals being difficult.

The Abbe Haiiy has used plane trigonometry in

his calculations of the laws of decrement. The sub-

stitution of spherical for plane trigonometry in this

volume, was made at the recommendation of Mr.

Levy ; from whom I have also received many other

valuable suggestions relative to the methods of cal-

culation employed in the section on calculation ;

which it will be apparent to the reader, is little more
than an outline of a method which must frequently be

filled up by the exercise of his own judgment. In

this as well as in other respects the mathematical
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part of the volume differs much from the analytical

processes contained in the Abbe Haiiy's more com-

prehensive works.*

When I first began to examine the crystalline forms

of minerals I was much assisted by a large collection

of the drawings of crystals, which was very kindly
lent me by my friend Mr. William Phillips. The
number and variety of the figures contained in this

collection was the immediate cause of the attempt to

reduce the forms of crystals into classes, and of the

construction of the tables of modifications already al-

luded to. Since that period, and particularly during
the printing of this volume, Mr. Phillips has fre-

quently assisted me by his communications relative to

the forms, the cleavages, and the measurements of

crystals, which I had not other means cf immediately

acquiring.

During the course of my investigations I have fre-

quently found it necessary to consult larger collec-

tions of minerals than my own. On these occasions

I have generally referred to my friend Mr. Heuland,
and lam happy in the opportunity of acknowledging
the readiness and the liberality with which he has

invariably assisted my views, by permitting an access

at all times to his large and valuable cabinets, and

very frequently by contributing rare and interest-

ing specimens to mine which I could not otherwise

have acquired.
I have sometimes sought information from the ex-

tensive cabinet in the British Museum, and have

* Mr. Levy is at present engaged in an examination and description

of one of the finest collections of minerals in the kingdom, which be-

longs to C. H. Turner, Esq. The opportunity which this examination

will afford him of connecting a knowledge of the forms of crystals with

his well-known mathematical attainments, will enable him to convey
valuable instruction in this department of science to others, to which

object he intends to devote some portion of his time in future.
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always found the utmost facility afforded to research

by the habitual urbanity and friendly attention of Mr.

Konig. And I have frequently been indebted also te

Mr. G. B. Sowerby for illustrative specimens ofmine-

rals of unfrequent occurrence.

Since the committal of a considerable portion of

these pages to the hands of the compositor, and in-

deed subsequently to the printing a large part t>f the

volume, a new edition has appeared of the Abbe

Hairy 's treatise on crystallography; this event was

very soon followed by the decease of the learned

author; and subsequently to his decease three vo-

lumes of a new edition of his treatise on mineralogy
have been published : events so intimately connected

with the subject of this volume that I cannot well
.,!_ T

pass them over in silence.

I am perfectly disposed to concur in the public

eulogium which has been so deservedly passed upon
the deceased philosopher, for having been the first

to elevate crystallography to the rank of a science,

and to trace out a secure path to its attainment; but

I regret that I cannot agree in that unqualified ap-

probation of his recent works which some of his sur-

viving friends have so liberally bestowed upon them.

For those works will be found to contain errors of so

remarkable a character, as to excite our surprise

when we recollect the generally accurate and enlight-

ened judgment of the author.

Upon these, as criticism can no longer reach the ear

of the author, I shall offer but few remarks.

One of his sources of error may be discovered in an

apparently groundless notion which his theory em-

braces, that nature has imposed limits to the angles
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at which the primary planes of crystals incline to each

other. And some of the mistakes which originate

from this supposition are so important, as to cast a

shade ofdisconfidence over his determinations relative

to the primary forms of crystals.

His inaccuracy with respect to the angle of carbo-

nate of lime is a well known example of one of these

theoretic errors.

His inaccurate measurements of many of the angles

of crystals, have probably been occasioned by the

comparatively imperfect instrument with which those

measurements were taken. That he should have con-

tinued to prefer this, to the more perfect goniometer
invented by Dr. Wollaston, may possibly have been

owing to the decay of sight incident to his period of

life, and to that dislike to change which so frequently

accompanies advanced age.

But some of his inaccuracies are independent both

of his theory and his goniometer, and it would almost

appear that he had occasionally written from the dic-

tates of his fancy, without examining the minerals he

has described.

The resemblance he imagines to exist between the

crystals of bournonite and those of sulphuret of anti-

mony is an instance of this nature; and on some of

his figures, as those of wolfram, and some of those

which he has still retained as stilbite, although they

belong to a distinct species ofmineral to which I have

given the name of heulandite, he has placed imagi-

nary planes which have no existence on the crystals

themselves.

tlis persisting in the identity of the angles of the

primary forms of carbonate of lime, bitter spar, and
carbonate of iron, if he has really been deceived by
his goniometer, evinces a carelessness in the use of
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that instrument which must still further diminish our

confidence in his results.

Dr. Wollaston in the year J812 discovered that

these species differed from each other, and noticed

their differences in a paper published in the Philoso-

phical Transactions for that year. He found carbo-

nate of lime to measure 1055'

Bitter spar 10615'

Carbonate of iron 107

Notwithstanding the discovery of these facts, which'

have been so frequently verified by subsequent mea-

surements, the Abbe Haiiy has not only continued to

insist on the superior accuracy of his own measure-

ments, but discusses through several pages how
it could have happened that the iron should have dis-

placed the lime in the crystals of carbonate of iron,

which his original error has led him to regard aspseu-

domorphous I

With all the faults, however, which the late Abbe's

works contain, many of which we must in justice to

his better judgment ascribe to feelings of a personal

nature, those works present to the reader truly phi-

losophical views of the sciences of which they treat,

and they cannot be perused without frequently afford-

ing him both gratification and improvement.

riip
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CORRIGENDA.

The reader is requested to make the following corrections with the

most of which are important to the accuracy of the text.

The lines reckoned do not include the running titles, or the word Fig.

standing over the diagrams.

Page 39, line 8, for direction of c, ... read . ... e.

40, 1, line ..................... lines.

43, 21, tetrahedrons ............ tetrahedron.

80, 7 from the bottom, for class n ... class o.

92, 2, .for deduced ................. derived.

97, 2, together with ...... ..: and.

5, after symbols ..... add .. . . will follow the tables of

modifications.

107, 9, for 120 1 5/52".... read ....... 1258
15'52"

i.<.:113, 9, . 7031'43" ............... 70'31'44''

115, 15, 12015'52" ............... 12515>52"

177, 6, and a rhombic base ...... with a rhombic base.

181, 6 from the bottom, for F ....... E.

2(Mj 6,forF ....................... E.

207, ~. 6, after intersect .... add ...... two of.

209, 10, for* .... ......... read .... /.

213, 9 from the bottom, after diagonals, add, or edges.

218, 4, for m .......... ... read.... o.

257,- 5, <.,., ................... >
P i>

260, 3 from the bottom, for P ...... A
P P

270, S, forGp ..................... Gq
6, Bq ...................... Hq

277, 2, BpB/p ................. BpB/q
278, 19, C ..............\ ......... O
298, -- 13, if ...................... H.
SOI, 15, Ep ...................... Fp
810, 10 from the bottom, for B/qB^r... B'/qB'r
311, 9, after= ........ add ....... R.

12, - = ..................... R.
3 from the bottom, for B/qB'^ read B'/qB'r

Sl5, 12, for cos.Ag ................. cos. A 3

16,afersin.(l20 A 2 )..add.. :

316, at the bottom, after= in both formulae, add R,
S17, 9from the bottom, for alec read ab o d.

319, 3- after (78 /, ) add :

322, in both formulae, after =r... add R.

323, 10 from the bottom, fora ... read c.

324, 2, for
, and o, , ............... d, and J.

S2G, 5 from the bottom, for cos. /2 .. cot. 72
349, 5, fora ...................... c.

351, 6, -- 351 .................... 353.

11, in the formula, for sin. J t ... sin. /f

353, at bottom, for a e ... ........... ac.

354, 1, for a e ...... . ............ ac.

5, R..................... R:
6, after 1 ......... add . . ----- :

377^ _ at bottom, for tang. ( 7=45) read tang. (^1 45")

390, --- 39 2 /30'/= ........ 392'3O"~
391, 5 from the bottom, for 4I5'32" . . 4l5/33"

392, 4, for4'15'32"... ............... 415/S3/ '

6, 28 10>26" ................ . 210'27"



DEFINITIONS.
"'

THE object of the science of Crystallography,

regarded as a branch of mineralogy, is to trace and to

demonstrate those relations and differences between

the various crystalline forms of minerals, by means of

which we are enabled generally to discriminate the

different species of crystallized minerals from each

other.

A crystal^ in mineralogy, is any symmetrical mineral

solid, whether transparent or opaque, contained with-

in plane, or sometimes within curved surfaces.

These surfaces, as
, 6, c, fig. 1., are called planes

or faces.

Fig- I-

The exterior planes of a crystal as they occur in

nature, are called its natural planes.

Crystals may sometimes be split in directions

parallel to their natural planes, and frequently in

other directions.

The splitting a crystal in any direction, so as to

obtain a new plane, is termed cleaving it, and the

crystal is said to have a cleavage in the direction in

which it may be so split.

The planes produced by cleaving a crystal are called

its cleavage planes.

An edge, as d fig. 1, is the line produced by the

meeting of two planes.'

A
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A plane angle, or as it is more commonly termed,
an angle, is formed by the meeting of any two lines

or edges. The angles do e, dog, fig. 1. are formed

by the meeting of the lines do, oe, and do, og.
A solid angle is produced by the meeting of three or

more plane angles, as at o, fig, 1.

Fig. 2.

The measure, or, as it is sometimes termed, the

value of an angle, is the number of degrees, minutes,

&c. of which it consists ;
these being determined by

the portion of a circle which would be intercepted by
the two lines forming the angle, supposing the point
of their meeting to be in the centre of the circle.

For the purpose of measuring angles the circle is

divided into 360 equal parts, which are called degrees;

each degree into 60 equal parts, which are called

minutes ;
and each minute into 60 seconds

;
and these

divisions are thus designated; 360% 60', 60", the
'

signifying degrees, the '

minutes, the " seconds.

If | of the circle, or 90, be intercepted by the two
lines a o, ob, fig. 2, which meet at an angle a o b in

the centre, those lines are perpendicular to each

other, and the angle at which they meet is said to

measure 90, and is termed a right angle.
If less than | of the circle be so intercepted, as by

the lines ob,oc, the angle b o c will measure less than

90, and is said to be acute. If it measure more than

90, as it would if the angle were formed by the lines

a o, o c, it is called obtuse.
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The lines a o, o b, or a o, o c, or b o, o c, are sometimes

said to contain a right, an obtuse, or an acute angle.

In fig. I, the plane a, and that on which the figure
is supposed to rest, are called summits, or bases, or

terminal planes, and the planes b and c, with those

parallel to them, are termed lateral planes'.

The edges of the terminal planes, as d, e, m, n,

fig. I, are called terminal edges.

The edges/, g, h, produced by the meeting of the

lateral planes, are termed lateral edges.
The planes of a crystal are said to be similar when

their corresponding edges are proportional, and their

corresponding angles equal.

Edges are similar when they are produced by the

meeting ofplanes respectively similar, at equal angles.

Angles are similar when they are equal and con-

tained within similar edges respectively.

Solid angles are similar when they are composed of

equal numbers of plane angles, of which the corre-

sponding ones are similar.

Fig. 3.

An equilateral triangle, fig. 3, is a figure contained

within three equal sides, and containing three equal

angles.

Fig. 4.

An isosceles triangle, fig. 4, has two equal sides,

b, which may contain either a right angle, or an

A2
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acute, or obtuse angle. If the contained angle be

less than a right angle, the triangle is called acute,

but if greater, it is called obtuse. The line on which

c is placed is called the &ase of the triangle.

Fig. 5.

A scalene triangle, fig. 5, has three unequal sides,

and contains three unequal angles.

Fig. 6.

A square, fig. 6, has four equal sides, containing
four right angles.

Fig. 7.

A rectangle, fig. 7, has its adjacent sides, a and b,

unequal, the four contained angles being right angles.

Fig. 8.

A rhomb, fig. 8, has four equal sides, but its ad-

jacent angles, a and b, unequal.
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Fig. 9.

An oblique angled parallelogram,* fig. 9, has its

opposite sides parallel, but its adjacent sides
, b, and

its adjacent angles, c, d, unequal.
Where certain forms of crystals are described with

reference to the rhomb as the figure of some of their

planes, they are termed rhombic.^"

A parallelopiped is any solid contained within three

pairs of parallel planes.

Crystals are conceived to be formed by the aggre-

gation ofhomogeneous molecules., which may be again

separated from each other mechanically, that is, by

splitting or otherwise breaking the crystal.

These molecules, which relate properly to the crys-

tal, must be carefully distinguished from the elemen-

tary particles of which the mineral itself is composed.

Sulphur and lead are the elementary particles,

which, by their chemical union, constitute galena;
but the molecules of galena are portions of the com-

pound crystalline mass, and are therefore to be re-

garded as homogeneous, in reference to the mass itself.

* A parallelogram is any right lined quadrilateral plane figure, whose

ofifioiite
sides are equal and parallel.

f What is here called rhombic, most writers on this subject have, in

imitation of the French idiom, denominated rhomboidal; but as the term

rhomboid has been used in works on geometry to signify an oblique

angled parallelogram, and as the same term has also been already

appropriated in crystallography to a solid contained within six equal

rhombic planes, the application of the term rhomboidal to any other solid

seems to involve a degree of ambiguity. The term rhombic is, besides,

more conformable to the practice of our own language.
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AM minerals which are composed of similar ele-

mentary particles combined in equal proportions, and

whose molecules are similar in form, are said to

belong to one species.

The same species of mineral is frequently observed

to crystallize in a great variety of forms.

From among the variety of crystalline forms under

which any species of mineral may present itself, some

one is selected as the primary ,
and the remainder are

termed secondary forms.

A primary form is that parent or derivative form,

from which all the secondary forms of the mineral

species to which it belongs, may be conceived to be

derived according to certain laws.

The primaryforms are at present supposed to con-

sist of only the following classes.

Fig. 10.

The cube^ fig. 10, contained within six square

planes.

Fig. 11.

The regular tetrahedron, fig. 11, contained within

four equilateral triangular planes. The solid angle
at #, is sometimes called its summit.
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Fig. 12.

The regular octahedron, fig. 12, resembling
1 two

four-sided pyramids united base to base. The planes

are equilateral triangles, and the common base of the

two pyramids (which will hereafter be denominated

the base ofthe octahedron) is a square.

Fig. 13.

The rhombic dodecahedron, fig. 13, contained with-

in twelve equal rhombic planes, having six solid

angles, consisting each of four acute plane angles,

two opposite ones as a, b, being sometimes called the

summits, and eight solid angles consisting each of

three obtuse plane angles.
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An octahedron with a square base, fig. 14, contained

within eight equal isosceles triangular planes ; the

bases of the triangles constitute the edges of the base

of the octahedron.

When the plane angle at a measures less than 60%
the octahedron is called acute.

When the angle at a is greater than 60 , the octa-

hedron is called obtuse.

The square base serves to distinguish this class from

the two which follow, it. The isosceles triangular

planes distinguish it from the regular octahedron.

Fig. 15.

d

An octahedron with a rectangular base, fig. 15. The

planes of which are generally isosceles triangles, but

not equal. The plane angles at c and d of the planes
a and a' being more obtuse than those of the planes b

and b''; and the planes a, and a', inclining to each

other at a different angle from that at which those

marked b] and b', meet.
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Fig. 16.

An octahedron with a rhombic base, fig. 16, contained

within eight equal scalene triangular planes.

The solid angles at a, b, fig. 12 and 14, and c, d9

fig. 15 and 16, are sometimes called the summits of

the octahedron.

Fig. 17.

A right prism with a square base*, fig. 17, or right

square prism, the edge, a, being always greater or

less than b : if a, and b, were equal, the figure would

be a cube.

Fig. 18.

A right prism with a rectangular base, fig. 18, or

right rectangular prism, whose three edges a, b, c, are

unequal. For if any two of those were equal, the

prism would be square.

* A prism is a solid whose lateral edget are parallel, and whose terminal

planet are also parallel.

Those prisms which stand perpendicularly when resting on their base,

are called right prisms. Those which incline from the perpendicular >
are

called oblique prisms.

B
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Fig. 19.

A right rhombic prism, or right prism whose base is

a rhomb, fig. 19, and whose lateral planes a, b, are

equal These planes may be either square or rectan-

gular.

Fig. 20.

A right oblique-angled prism, or right prism whose

base is an oblique-angled parallelogram, fig. 20, and

whose adjacent lateral planes a, b, are unequal. One
of these planes must be rectangular, the other may
be either a square or a rectangle.

Fig. 21.

An oblique rhombic prism, or oblique prism whose
base is a rhomb, fig. 21, and whose lateral planes d, e,

are equal oblique-angled parallelograms if they were

equal rhombs the solid would be a rhomboid.
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Fig. 22.

A doubly oblique prism, fig. 22, whose bases and

whose lateral planes are general!?/ oblique-angled paral-

lelograms. The only equality subsisting among these

planes, is between each pair of opposite or parallel
ones.

Fig. 23.

The rhomboid, fig. 23, a solid contained within six

equal rhombic planes, and having two of its solid

angles, and only two, as a, b, composed each of three

equal plane angles ; these are sometimes called the

summits.

Fig. 24.

The regular hexagonal prism, fig. 24, or right prism
whose bases are regular hexagons.

The secondaryforms of crystals consist of all those

varieties belonging to each species of mineral, which

differ from the primary form.

These, although extremely numerous, may be re-

duced to a few principal classes, as will appear in the

sequel.

B 2
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tig. 25.

A line, as 06, or c tf, fig. 25, drawn through two

opposite angles ofany parallelogram, and dividing the

plane into two equal parts, is called a diagonal of

that plane.

In the oblique rhombic prism, the doubly oblique

prism, and the rhomboid, fig. 21, 22, and 23, the line

a c, which appears to lean from the spectator, will be

termed the oblique diagonal, and the line fg of the

oblique rhombic prism, and df of the rhomboid, the

horizontal diagonal.
The line dfof the doubly oblique prism, may also

for the sake of distinction be termed its horizontal

diagonal; although from the nature of the figure,

that line must be oblique when the lateral edges are

perpendicular.

The diagonal plane of a solid, as a b c d, fig. 25,

is an imaginary plane passing through the diagonal
lines of two exterior parallel planes, dividing the

solid into two equal parts.

The axis of a crystal, generally, is an imaginary
line passing through the solid, and through two oppo-
site solid angles.

In prisms, this may be termed an oblique axis, to

distinguish it from another line which passes through
the centres of their terminal planes, and may be

termed a prismatic axis.

The axis of a pyramid, passes through its terminal

point and through the centre of the base.
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Fig. 26.

In the cube, an axis passes through the centre and

through two opposite solid angles, a
, fig. 26 ; from

the perfect symmetry of its form, the cube has a simi-

lar axis in four directions, or passing through its

centre and through each pair of opposite solid angles.

Fig. 27.

The axis of the regular tetrahedron passes through
the centres of the summit and base as a b, fig. 27, and

it has a similar axis in four directions in consequence
of the symmetrical nature of its form.

Fig. 28.

In all octahedrons the axis passes through the two

summits and through the centre of the base, as a b,

fig. 28; the regular octahedron, having all its solid
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angles similar, may be said to hare a similar axis

in three directions.

But the lines c d, e f, joining the opposite lateral

solid angles of irregular octahedrons, may be called

the diagonals oftheir base.

Fig. 29.

The rhombic dodecahedron has two dissimilar sets of
axes passing through its centre ; one set, as a b, fig, 29,

passes through the pairs of opposite solid angles,
which consist each of four acute plane angles, and

may be called the greater axes ; another set, as c d,

passes through the solid angles which consist of three

obtuse plane angles each, and may be called the lesser

axes of the crystal.

Fig. SO.

Fig. 31.

The right square, and right rectangular prisms,

have each an axis in four directions similar to a b,

fig. 30 and 31, but as prisms they have an additional

prismatic axis, c d.
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Fig. 32.

Fig. 33.

The right rhombic prism, fig. 32, and right oblique

angled prism, fig. 33, have each two greater and two
lesser axes. The greater axis, a b, passes through the

solid angles which terminate the acute edges of the

prism, and the lesser, c d, through those which ter-

minate the obtuse edges of the prism. They have also

the prismatic axis, ef.

Fig. 34.

The oblique rhombic prism has, besides the pris-

matic axis, i k, fig. 34, a greater, a lesser, and two

transvere axes. The greater axis is that which passes

through the two acute solid angles of the prism a, b ;

the lesser that which passes through the two obtuse

solid angles of the prism c, d, and the tranverse,

those which pass through the lateral solid angles,
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Fig. 35.

The doubly oblique prism has four unequal axes

passing through the pairs of opposite solid angles,

a by &c. fig. 35 ; it has also the prismatic axis i A*.

Fig. 36.

The line a b, fig. 36, which passes through the

summits of the rhomboid, may be called the perpen-
dicular axis, and those lines, c d, e /, g h, which

pasa through the opposite pairs of lateral solid angles

may be termed the transverse axes. But the lines

a by and c d, are sometimes called the greater and

lesser axes of the rhomboid.

Fig. 37.

The line a b, fig. 37, passing through the opposite
solid angles of the hexagonal prism, may be termed

an axis ; but the prismatic axis, c d of this form, is

that which is most generally regarded as its axis.



DEFINITIONS. 1^
t

The diagonals and axes of crystals are imaginary
lines, by means of which the secondary planes of crys-
tals may frequently be described with greater pre-
cision than could be attained without their assistance;

they also facilitate the mathematical investigations
into the relations which subsist between the primary
and secondary forms.

The diagonal planes are imaginary planes of a

similar character.

A crystal is said to be in position, when it is so

placed, or held, as to permit its being the most easily
and precisely observed and described.

For this purpose tetrahedrons are made to rest on
one of their planes, as in the figure already given.

Octahedrons are supposed to be held with the axis

vertical, and in this position the plane angles at a

and 6, fig. 28, are called the terminal angles, and the

edges a c, a d, a e, afy
the terminal edges, or edges of

the pyramid.
The edges e d, df, &c. may be termed edges of the

base ; and the angles a e d, a df, lateral angles.
The angles of the base are the angles c e d, or e df>
The cube stands on one of its planes, and allprisms

on their respective bases.

Rhombic dodecahedrons are supposed to be held

with a greater axis vertical, as in the former figure.

The rhomboid is also supposed to be held with its

perpendicular axis vertical,

Crystals are supposed to be first formed by the

aggregation of a few homogeneous molecules, which

arrange themselves around a single central molecule

in some determinate manner
;
and they are conceived

to increase in magnitude, by the continual additions

of similar molecules to their surfaces.
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In these additions, the molecules appear to arrange
themselves so as to form laminae, or plates, which

successively, either partially, or wholly, cover each

other.

These plates are theoretically supposed to be either

single, that is, of the thickness of single molecules, or

to be double, treble, &c. that is of the thickness oftwo,

three, or more molecules.

Fig. 38.

Fig. 38 represents a single plate of molecules,

Fig. 39.

X^x / / y >r ,.'

Fig. 39 represents a double plate.

Fig. 40.

When such additions envelope the whole of a

smaller crystal, its original form is preserved through

every increase of size.

Fig. 40 represents a right rectangular prism which

has increased in magnitude without change of figure.

When the additions do not cover the whole surface

of a primary form, but there are rows of molecules

omitted on the edges, or angles of the superimposed

plates, such omission is called a decrement.
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The terra decrement has been adopted to express
these omitted rows of molecules, because, in conse-

quence of such omissions, the primary form on which

the diminished plates are successively laid, appears
to decrease as it were, on the edge or angle on which

such omissions take place.

Decrements are said to begin at, or to set outfrom,
the particular edge or angle at which the omission of

molecules first takes place ;
and to proceed along that

plane on which the defective plate of molecules is

conceived to be superimposed. And they are said to

take place either in breadth or in height.

Decrements in breadth are those which result from

the reduction of the superficial area of the super*

imposed plate, by the abstraction of rows of molecules

from its edges or angles.

Decrements in height relate to the thickness of the

plate from which the abstraction of rows of molecules

takes place.

Fig. 41.

Let c d fig. 41, represent an edge of a primary

form, and let a b represent an edge of a double plate

of molecules, from which one row has been abstracted
;

the decrement, or omitted portion of this superimposed

plate, would be stated to consist of one row in breadth,

or one row omitted upon the terminal surface of the

primary crystal, and two rows in height, signifying

that the omitted row belonged to a double plate of

molecules \abcd would be the position of the new

plane produced by this decrement.
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Fig. 42.

Decrements have been divided by the Abbe Haiiy
into three principal classes simple, mixed, and inter-

mediary. The simple and mixed may however, in

strictness, be regarded as varieties of the same class.

Simple decrements are those which consist in the

abstraction of any number of rows, in breadth of single

molecules, or of single rows, belonging to plates of

two or more molecules in thickness.

Fig. 42 exhibits a simple decrement by one row in

breadth on the edge c d of the primary form.

Fig. 43.

Fig. 43 exhibits a simple decrement by one row in

breadth, on the angle c of the primary form.

For the sake of rendering the expression rows

of molecules generally applicable to decrements both

on the angles and edges of a primary form, the term

row is applied to express the single molecule first

abstracted from the angle of any plate.

Fig. 44.

In fig. 44, the single molecule a, b, is regarded as

the first row to be abstracted from the angle of the
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imaginary plate; the two molecules c, rf,
as the second

row; the three molecules e,/J as the third row, and so

on.

Fig. 45.

Fig. 45 shews a simple decrement by two rows in

height on the edg-e of the primary form.

Fig. 46.

Fig. 46 shews a simple decrement by two rows in

height on the angle of the primary form.

It is observable in these figures, that each successive

plate is less by one row of molecules than the plate

on which it rests. It is by this continual recession of

the edges of the added plates, that the crystal appears
to decrease on its edges or angles, and that new planes
are produced. The edges of the new planes which

would be produced by the four preceding decrements,
are shewn by the lines a b c d, fig. 42 and 45, and

by the lines a b c, fig. 43 and 46.*

A mixed decrement is one in which unequal numbers

of molecules are omitted in height and in breadth,
neither of the numbers being a multiple of the other

^

such as three in height and two in breadth, or four in

* The molecules of crystals are so minute, as to render those in-

equalities of surface imperceptible which are occasioned by decrements.
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height and three in breadth ; for if either number

were a multiple of the other, as would be the case if

the supposed decrement took place by two rows in

height and four in breadth, or three in height and six

in breadth, the new plane thus produced would be

perfectly similar to that which would result from a

decrement by one row in height and two in breadth,

and would therefore belong to the planes produced by

simple decrements.

Fig. 47.

Fig. 47 shews a mixed decrement on an edge of the

primary form by two rows in breadth and three in

height, and the lines abed mark the position of the

new plane produced by this decrement.

It has been found convenient to express mixed

decrements by fractions, of which the numerator, or

upper Jigurt, denotes the number of molecules in

breadth, and the denominator, or lower figure, the

number in height, abstracted from the edge or angle
of the superimposed plates; thus, a decrement by |

would imply a decrement by three molecules in

breadth and four in height.

Intermediary decrements affect only the solid angles
of crystals, and may be conceived to consist in the

abstraction of rows of compound molecules from the

successively superimposed plates, each compound mo-

lecule containing unequal numbers of single molecule*
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in length, breadth, and height. Thus if we suppose the

compound molecule abstracted in an intermediary
decrement to belong to a single plate, it must consist

of some other numbers of molecules in the directions

d, and e, fig. 48.*

Fig. 48.

In fig. 48 the compound molecule consists ofa single
molecule in height, two on the edge d, and three on
the edge e, producing the new plane a b c.

Fig. 49.

Fig. 49 exhibits an intermediary decrement in

which the compound molecule consists of three single
molecules in height, four on the edge d^ and two on

the edge e, producing the new plane a b c.

In the simple and mixed decrements upon an angle,

as shewn in fig. 43 and 46, the number of molecules

* It may be remarked that the planes produced by simple and mixed

decrements, intersect one or more of the primary planes in lines parallel

to one of their edges or diagonals. The term intermediary has been used

to express this third class of decrement, because the line at which the

secondary plane produced by it, intersects any primary plane, is never

parallel to either an edge or diagonal of that plane, but is an intermcdiatt

line between the edge and the diagonal, as may be observed by com-

paring the figures 42, 43, and 48.
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abstracted in the direction d, will always be equal to

the number abstracted in the direction e. Thus if it

be a simple decrement by one row in breadth, one

molecule will apparently be omitted on each of the

edges cf, and e, as in fig 43. But in an intermediary

decrement, the numbers are obviously unequal in the

direction of those edges, and the number in height

will also differ from both the numbers in the direction

of the edges, as in fig. 48 and 49.

The new planes produced by decrements are deno-

minated secondary planes, and the primary form, when

altered in shape by the interference of secondary

planes, is said to be modified on the edges or angles
on which the secondary planes have been produced.
And such edges or angles are sometimes also said to

be replaced by the secondary planes.

The law of a decrement is a term used to express
the number of molecules in height, and breadth,
abstracted from each of the successively superimposed

plates, in the production of a secondary plane.

When an edge, or solid angle, is replaced by one

plane, it is said to be truncated. When an edge is

replaced by two planes, which respectively incline on
the adjacent primary planes at equal angles, it is

bemlled.

If any secondary plane replacing an edge, and being

parallel to it, incline equally on the two adjacent primary
planes, or if replacing a solid angle, it incline equally
on all the adjacent primary planes, it is called a tangent

plane.
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The instruments used for measuring the angles at

which the planes of crystals meet, or, as it is frequently

expressed, incline to each other, are called goniometers.

Let us suppose the angle required at which the

planes a, and Z>,
of fig. 50, incline to each other.

The inclination of those planes is determined by the

portion of a circle which would be intercepted by two

lines ed, e f, drawn upon themfrom any point e of the

edge formed by their meeting, and perpendicular to

that edge the point e being supposed to stand in the

centre of the circle.

Fig. 51.

Now it is known that if two right lines as gf, d h,

fig. 51, cross each other in any direction, the opposite

angles def, geh, are equal.
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If therefore we suppose the lines gf, dh, to be very
thin and narrow plates, and to be attached together
by a pin at e, serving as an axis to permit the point

/ to be brought nearer either to d, or to h; and that

we were to apply the edges e d, ef, of those plates, to

the planes of the crystal fig. 50, so as to rest upon the
lines ed, ef, it is obvious that the angle g e h, of
the moveable plates fig. 51, would be exactly equal to
the angle def of the crystal fig. 50.

Fig. 52.
Fig. 53.

The common goniometer is a small instrument cal-

culated for measuring this angle geh, of the move-

able plates. It consists of a semi-circle, fig. 53,

whose edge is divided into 360 equal parts, those

parts being half degrees, and a pair of moveable

arms dh, gf> fig. 52. The semicircle having a pin at

i,
which fits into a hole in the moveable arms at e.

The method of using this instrument is, to apply the

edges de, ef, of the moveable arms, fig. 52, to the

two adjacent planes of any crystal, so that they shall

accurately touch or rest upon those planes in directions

perpendicular to the edge at which they meet. The
arm dh, is then to be laid on the plate m n of the

semicircle fig. 53, the hole at e, being suffered to drop
on the pin at /, and the edge nearest to h of the arm

ge, will then indicate on the semicircle, as in
fig. 54,

the number of degrees which the measured angle
contains.
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Fig. 54.

When this instrument is applied to the planes of a

crystal, the points d and/, fig. 52, should be previously

brought sufficiently near together for the edges e?e,

efy to form a more acute angle than that about to be

measured. The edges being then gently pressed upon
the crystal, the points d, and /, will be gradually

separated, until the edges coincide so accurately with

the planes, that no light can be perceived between

them.

The common goniometer is however incapable of

affording very precise results, owing to the occasional

imperfection of the planes of crystals, their frequent

minuteness, and the difficulty of applying the instru-

ment with the requisite degree of precision.

The more perfect instrument, and one of the high-
est value to Crystallography, is the reflective gonio-
meter invented by Dr. Wollaston, which will give the

inclination of planes whose area is less than To^Vso
of an inch, to a minute of a degree.

This instrument has been less resorted to, than

might, from its importance to the science, have been

expected, owing* perhaps to an opinion of its use

being attended with some difficulty. But the ohserv-

ance of a few simple rules will render its application

easy.

D 2
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The principle of the instrument may be thus ex-

plained.

Let us suppose a b c, fig. 55, to be a crystal, of which

one plane only is visible in the figure, attached to a

circle, graduated on its edge, and moveable on its

axis at o ; and a and b the two planes whose inclina-

tion we require to know.

And let us further suppose the lines o e, og, to be

imaginary lines resting on those planes in directions

perpendicular to their common edge, and the dots at i

and
7z,

to be some permanent marks in a line with the

centre o.

Let us suppose the circle in such a position, that

the line o e would pass through the dot at h, if ex-

tended in that direction as in fig. 55.

Fig. 56.

If we now turn round the circle with its attached

crystal, as in fig. 56, until the imaginary line o g, is
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brought into the same position as the line o e is in

fig. 55, we may observe that the No. 120 will stand

opposite the dot at t.

This is the number of degrees at which the planes
a and b incline to each other. For if we suppose the

line og, extended in the direction oz, as in
fig. 56, it

is obvious that the lines oe, oz, which are perpen-
dicular to the common edge of the planes a and 6,

would intercept exactly 120 of the circle.

Hence an instrument constructed upon the principle

of these diagrams, is capable of giving with accuracy
the mutual inclination of any two planes, if the means

can be found for placing them successively in the

relative positions shewn in the two preceding figures.

Fig. 57.

When the planes are sufficiently brilliant, this pur-

pose is effected by causing an object, as the line at /w,

fig. 57, to be reflected from the two planes ,
and &,

successively, at the same angle.

It is well known that the images of objects are

reflected from bright planes at the same angle as that

at which their rays fall on those planes; and that

when the image of an object reflected from a horizon-

tal plane is observed, that image appears as much
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below the reflecting surface, as the object itself is

above it.

If therefore the planes #, and b, fig. 57, be suc-

cessively brought into such positions, as will cause

the reflection of the line at
??z, from each plane, to

appear to coincide with another line at n, both planes
will be successively placed in the relative positions
of the corresponding planes in figs. 55 and 56.

Fig. 58.

To bring the planes of any crystal successively into

these relative positions by the assistance of the reflec-

tive goniometer, the following directions will be

found useful.

The instrument, as shewn in the sketch fig. 58,

should be first placed on a pyramidal stand, and the

stand on a small steady table, placed about 6 to 10 or

12 feet from ajlat window.

The graduated circular plate should stand perpen-

dicularly from the window, the pin x being horizontal^
with the slit end nearest to the eye.

*

Place the crystal which is to be measured, on the

table, resting on one of the planes whose inclination is

" This goniometer is sometimes drawn with the pin x in the direction of

its axis, in which position of the pin, the instrument may be regarded

as nearly useless.
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required, and with the edge at which those planes

meet, the farthest from you, and parallel to the win-

dow in your front.

Fi- 69.

Attach a portion of wax about the size of d, to one

side of a small brass plate e, fig. 59 lay the plate on

the table with the edge/ parallel to the window, the

side to which the wax is attached being uppermost,
and press the end of the wax against the crystal until

it adheres
;
then lift the plate with its attached crys-

tal, and place it in the slit of the pin jr, with that

side uppermost which rested on the table.

Bring the eye now so near the crystal, as, without

perceiving the crystal itself, to permit your observing

distinctly the images of objects reflected from its

planes; and raise or lower that end of the pin ,r

which has the small circular plate affixed to it, until

one of the horizontal upper bars of the window is

seen reflected from the upper orjirst plane of the crys-

tal, which corresponds with plane , fig. 55 and 56,

and until the image of the bar is brought nearly to

coincide with some line below the window, as the

edge of the skirting board where it joins the floor.

Turn the pin x on its own axis, if necessary, until

the reflected image of the bar of the window coincides

accurately with the observed line below the window.

Tutn now the small circular plate a on its axis,

andfrom you, until you observe the same bar of the

window reflected from the second plane of the crystal

corresponding with plane &, fig. 55 & 56, and nearly
coincident wiili the line below

;
and having, in adjusting
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the first plane, turned the pin x on its axis to bring the

reflected image of the bar of the window to coincide

accurately with the line below, now move the lower

end of that pin laterally, either towards or from the

instrument, in order to make the image of the same

bar, reflected from the second plane, coincide with the

same line below.

Having assured yourself by looking repeatedly at

both planes, that the image of the horizontal bar

reflected successively from each, coincides with the

same line below, the crystal may be considered as

adjusted for measurement.

Let the 180 on the graduated circle be now brought

opposite the o of the vernier at c, by turning the

middle plate b ; andwhile the circle is retained accurately
in this position, bring the reflected image of the bar

from the Jirst plane to coincide with the line below,

by turning the small circular plate a. Now turn the

graduated circle from you, by means of the middle

plate b, until the image of the bar reflected from the

second plane is also observed to coincide with the same

line below. In this state of the instrument the ver-

nier at c will indicate the degrees and minutes at

which the two planes incline to each other.



SECTION I.

GENERAL VIEW.

THE regularity and symmetry observable in the

forms of crystallized bodies, must have early attracted

the notice of naturalists ; but they do not appear to

have become objects of scientific research, as a branch

of natural history, until the time of Linnaeus. He
first gave drawings and descriptions of crystals, and

attempted to construct a theory concerning them,
somewhat analogous to his system of Botany.
We are indebted however to Rome de L'Isle for

the first rudiments of crystallography. He classed

together those crystals which bore some common

resemblance, and selected from each class some sim-

ple form as the primary, or fundamental one ; and

conceiving this to be truncated in different directions,

he deduced from it all its secondary forms
; and it

was he who first distinguished the different species

of minerals from each other by the measurements of

their primary forms.

The enquiries of Bergman were nearly contem-

poraneous with those of the Abbe Haiiy, and both

these philosophers appear to have entertained at the

same time nearly the same views with regard to the

structure of crystals ; both having supposed that

the production of secondary forms might be explained

by the theory of decrements on the edges or angles of

the primary.
E
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Here, however, Bergman's investigation appears
to have terminated, while the Abbe Haiiy proceeded
to complete this theory, by determining the forms and

dimensions of the molecules of which he conceived the

primary forms were composed, and by demonstrating

mathematically the laws of decrement by which the

secondary forms might be produced.
He also established a peculiar nomenclature, to

designate individually each of the observed secondary
forms of crystals; the nomenclature consisting of

terms derived from some remarkable character or

relation peculiar to each individual form. But the

disadvantage accruing to the science from encumber-

ing each individual crystal with a separate name,
must be immediately apparent, when it is considered

that the rhomboid of carbonate of lime alone is capa-
ble of producing some millions of secondary crystals

by the operation of a few simple laws of decrement.

The number of names requisite to designate all

these, if they existed, would form an insuperable
obstacle to the cultivation of the science of crystal-

lography, even if it were practicable to devise some

sufficiently short and simple terms for the purpose.
To obviate the inconvenience arising from the use

of so many individual names, the Gomte de Bournon

adopted a much simpler method of denoting the

secondary forms. He numbered all the individual

modifications he had observed, from one onwards,
and as the secondary forms are produced either by a

single modification, or by the concurrence of two or

more single modifications, any secondary form what-

ever might, according to his method, be expressed by
the numbers which designate all the particular modi-

fications which it is found to contain.

Mr. Phillips has adopted this method in his papers
on oxide of tin, red oxide of copper, &c. published in
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the Transactions of the Geological Society, and has

thus proved its utility for the purpose of crystallo-

graphical description.

The descriptive system of the Comte de Bournon,
with some alterations, will be adopted in this volume,
as well as the theory of decrements which constitutes

the basis of the Abbe Haiiy's System of Crystallo-

graphy.
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MOLECULES.

The homogeneous molecules which are aggregated

together in the production of crystals, are supposed
to be minute, symmetrical, solid particles, contained

within plane surfaces. They are also conceived to be

again separable from each other by mechanical divi-

sion, which however stops very short of the separa-
tion of single molecules from the mass which has been

formed by their union.

For, however minutely we may divide a piece of

carbonate of lime, we cannot imagine that we have

ever obtained any single portion or molecule contain-

ing only one atom or proportion of carbonic acid, and

one atom or proportion of lime.

This effect of mechanical division merely implies

that the molecules are separated at their surfaces by

cleavage, and are not divided or broken. And it thus

serves to distinguish them from the elementary par-
ticles or atoms which enter into their composition,

and which cannot be separated from each other but

by chemical agency.*

*
Although it is not immediately connected with Crystallography,

I am induced to state an observation here which has occurred to me
relative to the forms of the homogeneous molecules of minerals, when com-

pared with the forms of the atoms ,
or elementary particles,

of which those

molecules are composed.
We certainly know nothing of the forms of the atoms of those elemen-

tary substances which do not occur crystallized, such as oxygen, hydro-

gen, and many others. But we infer from analogy that the atoms of

sulphur, carbon, the metals, and such other elementary substances as
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The figures of the solid molecules require to be

explained in reference to each of the five following
classes of primary forms.

1. The cube and all the other classes of parallelo-

pipeds, or solids contained within six planes.

2. The regular octahedron and all the other classes

of octahedrons.

3. The regular tetrahedron.

4. The rhombic dodecahedron.

5. The hexagonal prism.

If we attempt to fracture a piece of galena, it will

split into rectangular fragments. But we find by

observing the secondary forms of galena, that its

primary crystal may be a cube, and we know also

that by supposing this cube to be composed of cubic

molecules, the angles at which the secondary planes

incline upon the primary, may be computed and de-

termined with mathematical precision. We are there-

fore led to infer, that if the rectangular fragments ob-

tained bij cleavage could be reduced to single molecules
,

those molecules would be cubes.^

are found crystallized, are similar in form to the molecules of other crys-

tallized substances which present similar primaryforms.

Now according to two suppositions, the first being that entertained

by the Abbe Haiiy, the other arising out of a theory which will be pre-

sently stated, the molecule of sulphur may be an irregular tetrahedron, or a

right rhombic prism ,
and the molecule of silver a regular tetrahedron^ or a cute.

But the compound of sulphur and silver crystallizes in the form of a cuke.

Hence the molecule of sulphuret of silver, arising out of the chemical

union of irregular tetrahedrons with the regular tetrahedrons or cubes t accord-

ing to one supposition, or of right rhombic prisms and cubes y according to

the ether supposition, performs thefunction of a cube. If this subject were

pursued it might be shewn that the cubic function is performed by
molecules very variously composed.

f Whether these little cubes would consist of one or more atoms of

lead and of sulphur, or how these elementary particles would be com-

bined in the production of a cubic molecule, are circumstances not im-

mediately relating to Crystallography, however interesting they may
be as separate branches of enquiry.
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If we reduce a crystal of carbonate of lime to frag-

ments, the planes of those fragments will be found to

incline to each other at angles which are respectively

equal to those of the primary rhomboid. We there-

fore infer that the molecule of carbonate of lime is a

minute rhomboid similar to the primary form.

Sulphate ofbarytes may be split into right rhombic

prisms, whose angles are respectively equal to those

of the primary crystal. It is therefore supposed that

the primary crystal and the molecules of this substance

are similar prisms.

Having thus found that crystals belonging to seve-

ral of the classes of parallelepipeds may be split into

fragments resembling their respective primary forms;

and having assumed that these fragments represent
the molecules of each of those forms respectively, it

has been concluded that the primary forms and the

molecules of all the classes of parallelepipeds are

respectively similar to each other.

This similarity does not however exist between the

other classes of primary forms and their respective

molecules.

Fig. 60. Fig. 61.

If a regular hexagonal prism of phosphate of lime

be split in directions parallel to all its sides, it may
be divided into trihedral prisms whose bases are equi-
lateral triangles ; these may be regarded as the mole-

cules of this class of primary forms.

Fig. 60 shews the hexagonal prism composed of
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trihedral prisms; and fig. 61 shews the trihedral

prism separately.

Fig. 62.

If we reduce a cube ofjluate of lime to fragments,
we shall find that it does not split in directions paral-
lel to its planes as galena does, but that it splits

obliquely. If we suppose fig. 62 a cube of fluor, and
we apply the edge of a knife to the diagonal line a b

y

and strike it in the direction of c, we may remove the
solid angle a b e c.

Fig. 63.

If we again apply the edge of the knife to the same

line a b, and strike it in the direction off, we may
remove another solid angle a bfd; applying the

knife again in the direction of the line c
c?,

and strik-

ing successively in the directions g, and h, we may
remove two other solid angles.
The new solid produced by these cleavages is re-

presented by fig. 63.
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Fig. 64.

If we apply our knife again to the line i A*, k I, I m,
m 2, fig. 64, and strike in the direction of n, we may
remove the remaining solid angles of the cube, and

we shall then obtain the regular octahedron iklmno.

Fig. 65.

The position of this octahedron in the cube is

shewn by fig. 65.

This octahedron is the primary form of Jluate of
limey and it may obviously be cleaved in a direction

parallel to its own planes.

Fig. 66.

To illustrate more perspicuously the relation we
are about to trace between the octahedron and tetra-
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hedron, it will be convenient to place the octahedron

of fluor, which we have just obtained, in the position

represented in fig. 66, resting on one of its planes.

Fig. 67.

In this position of the crystal, if we suppose the

three lines a b, c d, e f^ to be drawn through the

centre, and parallel to the edges, of the now upper-
most plane, and if we apply our knife to the line a b,

we may cleave the crystal parallel to the plane g,
and may detach the portion a b g /, fig. 67.

Fig. 68.

By cleaving again from the lines c d, and ef, paral-
lel to the plane ^, and to the back plane of fig. 66,

and by also cleaving parallel to the plane on which

the figure rests, beginning at the line i k, we shall

obtain a regular tetrahedron as seen in fig. 69. In

fig. 68 this tetrahedron is exhibited in the position

which it occupied in the octahedron.
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The tetrahedron thus obtained, may be reduced

again to an octahedron, as shewn in fig. 69, by

removing a smaller tetrahedron, as a b c d, from each

of its solid angles.

And all the fragments separated from the octa-

hedron by the cleavages just described, may also be

reduced, by cleaving in the proper directions, to

regular octahedrons and tetrahedrons.

In this case two distinct solids are obtained from the

cleavage of an octahedral crystal ; and the Abbe Hauy
has chosen to assume the tetrahedron as the molecule of
the octahedral crystal, upon the supposition that if the

cleavage were continued until only single molecules

remained to be separated, these molecules would be

tetrahedrons ; and the octahedron is, according to his

theory, conceited to be composed of tetrahedral solids

united by their points, and octahedral spaces.
*

From considerations analogous to these, the Abbe

Haiiy has concluded that the tetrahedron, when it

occurs as a primary form, is constituted also of tetra-

hedral molecules and octahedral spaces.

* The same imaginary structure has also been supposed by the Abbe

Haiiy to exist in every class of octahedrons, the molecules peculiar to

each being distinct irregular tetrahedrons, varying in their angles and

relative dimensions in each particular case.

But it will be attempted to be shewn presently that this imaginary
structure does not belong to the octahedron, and that the tetrahedral solid dees not

rtprestnt the molecule of thatform*
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The regular dodecahedron may be cleaved into

obtuse rhomboids, obtuse octahedrons, and irregular

tetrahedrons, as will be shewn in the section on clea-

vage. Of these the Abbe Hauy has chosen the irregu-

lar tetrahedron for the molecule of the dodecahedron,

and he has supposed that the decrements on this form
are produced by the abstraction, not ofsingle molecules,

but ofmasses ofsingle molecules packed into the figure

of those obtuse rhomboids which are produced from its

cleavage.*
The very complicated system of molecules which

the Abbe Haiiy has, by this view of the structure of

the octahedron and dodecahedron, introduced into

his otherwise beautiful theory of crystals, arid the

apparent improbability that the molecules of the

cube, the regular octahedron, tetrahedron and dode-

cahedron, among whose primary and secondary forms
so perfect an identity subsists, should really differ from

each other, have induced me to propose a new theory
of molecules in reference to all the classes of octa-

hedrons, to the tetrahedrons, and the rhombic dode-

cahedron, which 1 shall now state.

Fluate of lime, as we have seen, has for its primary
form a regular octahedron, under which it sometimes

occurs in nature ;
but it is generally found in the

form of a cube, and sometimes as a rhombic dodeca-

hedron, and it has a cleavage in the direction of Us

primary planes.

Galena, whose primary form is a cube, is also found

under the forms of an octahedron, and rhombic dode-

cahedron, with a cleavage parallel to its cubic planes.

* Under the head of cleavage I shall endeavour to explain the nature

of the relation which the different solids obtained by cleavage from the

tetrahedron, octahedron, and rhombic dodecahedron, respectively bear

to those primary forms, and to each other; and to shew that they da not

in eithtr case represent th: molecules of those farms.



44 MOLECULES.

Grey copper, whose primary form is a tetrahedron,
occurs under the forms of the cube, octahedron, and
rhombic dodecahedron.

Blende is found sometimes, though rarely, crystal-
lized in cubes, sometimes in octahedrons, tetrahedrons,
and rhombic dodecahedrons.

Fig. 70.

If we attempt to fracture a cube of blende, we find

it will split in directions parallel only to its diagonal

planes. These cleavages will truncate the edges of

the cube, and if continued until all the edges are

removed, and the face of the cube disappear, a rhom-

bic dodecahedron will be produced, which has been

considered the primary crystal of blende.

If a cube of blende, fig. 70, be cleaved in directions

parallel to its diagonal planes, beginning at the lines

a b, c d, fig. 71 will be produced.

Fig. 71.

If fig. 71 be further cleaved in directions corres-

ponding to a b c d e, so as to remove all the perpen-
dicular edges, and to obliterate the remainder of the

perpendicular planes of the cube, fig. 72 will remain.
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Fig. 72.

i'jfo:

Fig. 73.

Fig\ 73 exhibits the dodecahedron contained in

fig. 72 ;
this may be obtained by cleavages in direc-

tions corresponding with the lines a df, fig. 72, which

will remove the solid angles of the base on which fig.

72 and 73 rest.

Fig. 74.

Fig. 74 shews the position of the rhombic dodeca-

hedron in the cube.

Having thus observed that the cube, the regular

tetrahedron and octahedron, and the rhombic dodeca-

hedron are common as primary or secondary forms to

different crystallized substances, we may reasonably

infer that they are produced in each instance by mole-
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cules of a form which is common to all; and let us

suppose this common molecule to be a cube.

Fig. 75, 76, 77, and 78, shew the arrangement of

the cubic molecules in each of these forms.

Fig. 75.

Fig. 75 in the cube.

Fig. 76.

Fig. 76 in the tetrahedron.

Fig. 77.

Fig. 77 in the octahedron,
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Fig. 78.

47

Fig. 78 in the rhombic dodecahedron.

These arrangements of cubic molecules cannot be

objected to on account of any supposed imperfection
of surface which would be occasioned by the faces of

all the primary forms, except the cube, being con-

stituted of the edges, or solid angles, of the molecules*

For as we observe that the octahedral and dodeca-

hedral planes of some of the secondary crystals of

galena, which are obviously composed of the solid

angles, or edges, of the cubic molecules, are capable
of reflecting objects with great distinctness, it is

evident that the size of the molecules of galena is

less than the smallest perceptible inequality of the

splendent surface of those planes, and hence we in-

fer generally that there will be no observable difference

in brilliancy between the surfaces of the planes obtained

by cleavage parallel to the sides of molecules, and of
those which would expose their edges or solid angles.

This theory may be reconciled with the cleavages
which arefound to take place parallel to the primary

planes of the tetrahedron, the octahedron, and the rhom-

bic dodecahedron, as well as to those of the cube, if we

suppose the cubic molecules capable of being held to-
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gether with different degrees of attractive force in dif-

ferent directions. *

I shall call this force molecular attraction.

Fig. 79.

When this attraction is least between the planes of
the molecules, they will be more easily separated by

cleavage in the direction of their planes, than in any
other direction, as shewn in fig. 79, and a cubic solid

will be obtained.

Fig. 80.

When the attraction is least in the direction of the

axis ofthe molecules, they will be the most easily se-

parated in that direction, as in fig. 80, and the octa-

hedron or tetrahedron will be the result of cleavage.

*
It is possible to conceive that the nature, the number, and the par-

ticular forms, of the elementary particles which enter, respectively, into

the composition of these three species of cubic molecules, may vary so

much as to produce the variety of character which I have supposed to

exist.
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Fis . 81.

And if the attraction be least. in the direction of its

diagonal planes, the edges will be most easily sepa-

rated, as in fig. 81, and a rhombic dodecahedron will

be the solid produced by cleavage.
This supposition of greater or less degree of mole-

cular attraction in one direction of the molecule than

in another, is consistent with many well known facts

in Crystallography.

-

The primary form both of corundum, and of car-

bonate of lime, is a rhomboid
;
and the crystals of

these substances may be cleaved parallel to their pri-

mary planes, the carbonate of lime cleaving much

more readily than the corundum. But the corundum

may also be cleaved in a direction a 6, fig. 82, perpen-
dicular to its axis, which carbonate of lime cannot be.

This cleavage would either divide the rhombic mole-

cules in half, or,' the cleavage planes would expose the

terminal solid angles of the contiguous molecules.

G
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But it is contrary to the nature of molecules that

they should be thus divided, and we may therefore

infer from this transverse cleavage that the molecular

attraction is comparatively less in the direction of the

perpendicular axis of the molecules of corundum,
than it is in the same direction of those of carbonate

of lime. And from the greater adhesion of the planes
of corundum, than of those of carbonate of lime, we
infer that the attraction is comparatively greater be-

tween the planes of the molecules of the corundum,
than between those of carbonate of lime.*

This supposition of the existence of a greater or

less degree of molecular attraction in one direction of

the molecule than in another, appears to explain the

nature of the two sets of cleavages which occur in

Tungstat of lime : one of these sets is parallel to the

planes of an acute octahedron with a square base,

which we will call the primary crystal ; the other set

would produce tangent planes upon the terminal

edges of that crystal. If we suppose the molecules to

consist of square prisms whose molecular attraction is

greatest in the direction of their prismat^p axis, and

nearly equal in the direction of their diagonal planes ,

and of their oblique axes, thefirst set of cleavages may
be conceived to expose the edges of the molecules, and

the second set to expose their solid angles.

*
I am aware of an objection that may be made to this view of the

subject, by supposing all the cleavages which are not parallel to the

primary planes of a crystal, to be parallel to some secondary plane, and

to be occasioned by the slight degree of cohesion which frequently sub-

sists between the secondary planes of crystals and the plates of mole-

cules which successively cover them during the increase of the crystal

in size; but althpugh the second set of cleavages may sometimes be

connected with the previous existence of a secondary plane, it may also

be explained! according to the theory I have assumed.

Those cleavage planes which would not expose the planes, edges or

solid angles of the molecules, must be considered to belong always to
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This theory may, by analogy, be extended to the

form of molecules of every class of octahedron.

For we may conceive the molecules of all the irre-

gular octahedrons to be parallelepipeds, whose least

molecular attraction is in the direction of their diagonal

planes.
Thus the molecules of octahedrons with a square, a

rectangular, and a rhombic base, would be square,

rectangular, and rhombic prisms respectively; the

dimensions of such molecules being proportional re-

spectively to the edges of the base and to the axis of
each particular octahedron.

According to the view here taken, the following
table will exhibit the form of the molecules belong-

ing to each of the classes of primary forms.

The cube

rhombic dodecahedron ,J
all quadrangular prisms molecules, similar prisms.

-\ Proportional
r i i

in dimensions

octahedron with a square base 5
mo e

?
u e> a

to the edges

rectangular C molecule, a rectan- I ^ !L ^

S

^'
base I gular prism f , , -

rhombic base $
lecule,a rhombic ^ocSe-

t Pnsm
dron,respec-

J lively.

rhomboid molecule, a similar rhomboid

, . C molecule, an equilateral triangular
hexagonal prism }

.

Having thus advanced a new theory of molecules

in opposition to one that had been long established,

and possibly without a much better claim to general

the class of /danes of composition, a term which Mr. W. Phillips has

plied to those cleavage planes which result from cleavages parallel

secondary planes only.
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reception than the former theory possessed, I cannot

avoid observing that the whole theory of molecules and

decrements, is to be regarded as little else than a series

of symbolic characters, by whose assistance we are

enabled to investigate and to demonstrate with greater

facility the relations between the primary and second-

ary forms of crystals. And under this view of the

subject, we ought to divest our notions of molecules,

and decrements, of that absolute reality, which the

manner in which it is necessary to speak of them in

order to render our illustrations intelligible, seems

generally to imply.
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STRUCTURE.

THE structure of crystals, or the order in which

their molecules are arranged, may be inferred from

an experiment with common salt. If we dissolve a

portion of this salt in water, and then suffer the water

to evaporate slowly, crystals of salt will be deposited
on the sides and bottom of the vessel. These will at

first be very minute, but they will increase in size as

the evaporation proceeds; and if the quantity of salt

dissolved be sufficient, they will at length attain a

considerable bulk. If the forms of the small crystals

be examined, they may be found to consist of en-

tire, or modified cubes. If we continue to observe

any of these cubic or modified crystals during their

increase in bulk, we may find that the forms of some

of them undergo a change, by the addition of new

planes, or the extinction of some that had previously
existed. But we shall also frequently find that both

the cube, and the modified crystal, when enlarged,

preserve their respective forms. The increase of a

crystal in she appears therefore to be occasioned by the

addition of molecules to some, or all. of the planes of
the smaller crystal, whether these planes be primary or

secondary.
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Fig. 83.

,7 7t

If we apply the edge of a knife to the surface of

any one of these cubic crystals of common salt, in a

direction parallel to an edge of the cube, as at a b,

fig. 83, the crystafmay, by a slight blow, be cleaved

parallel to one of its sides.

If we apply a knife in the same manner successively

to the other lines c d, e f, g h, and to the other sur-

faces of the crystal, so that its edge be parallel in

each instance to the edge of the cube, we shall find

that there are cleavages parallel to all the planes of

the cube; and if the crystal be split with perfect

accuracy, a cubic solid may be extracted ; and the

rectangular plates which have been removed by
these cleavages, may be also subdivided into smaller

cubes.

From these circumstances we infer that the mole-

cules which have successively covered the planes of
the small crystals, are cubes, and that they are so

arranged as to constitute a series of plates, as shewn

in p. 18. And we further conclude that the molecular

attraction is least, in common salt, between the sur-

faces of the molecules.

This regular structure is supposed to belong to all

regularly crystallized bodies.

It frequently happens that the regular crystal-

lization of bodies has been prevented by some dis-
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turbing cause, in which case the crystalline mass will

be curved or otherwise irregular, or it may even

present a granular character. This granular cha-

racter would be presented if the solution we have

supposed of common salt were rapidly evaporated
and suddenly cooled.
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CLEAVAGE.

The spilling a crystal in the manner already des-

cribed, is, in the language of Mineralogy, termed

cleaving it.

The direction in which the crystal can be split is

called the direction of the cleavage ,
or the natural

joint of the crystal.

The direction of the natural joints may depend,

according to the preceding theory, upon the com-

parative degrees of molecular attraction existing in

the different directions of the molecules. This may
be so proportioned in different directions, as to occa-

sion other cleavages than those which are parallel to

the planes which we may assume as the primary

planes, as in the instances already cited of the corun-

dum, and tungstat of lime.

When this occurs the crystal is said to possess two

or more sets of cleavages. Those which are parallel
to the planes of the primary form, are called the

primary set, and those which are not parallel to those

planes are termed supernumerary sets.

The oxide of tin, described by Mr. Phillips in the

Geological Transactions, has three sets of cleavages ;

one parallel to the planes of an obtuse octahedron

with a square base, which is considered the primary
set, and two others which are sitperminierftr?/, and
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are parallel to the edges, and to the diagonals, of

the square base, being at the same time perpendicular
to the plane of that base.

If all the planes of any primary form be similar, as

those are of the cube, rhomboid, and some other

forms, the primary cleavages will generally be ef-

ected with equal facility in the direction of each of

those planes, and the new planes developed by this

cleavage will be similar in lustre and general cha-

racter. This may be illustrated by cleaving galena
and carbonate of lime.

Where the planes of a primary form are not all

similar, as in all prisms, and some octahedrons, the ..

primary cleavage is not effected with equal facility in

all directions, nor do the new planes all agree in

their general characters. Hence the cleavage planes
of a mineral will frequently enable us to determine

what is not its primary form, by their similarity or

dissimilarity; but, as will be seen in the section on

primary forms, the cleavage is not sufficient to deter-

mine what the primary form really is.

Felspar, cyanite, and sulphate of lime, afford in-

stances of the greater facility with which a cleavage
takes place in one or two directions than in any
other.

The Abbe Haiiy has supposed that these unequal

cleavages are occasioned by the unequal extension of

the different primary planes. The broader planes,

presenting more points of contact than the narrower

ones, may, he imagines, be held together with greater
force than the narrower ones are. This may possibly
be the cause of the observed inequality of cleavage,
or possibly where the planes are unequal, the degree
of attraction between point and point is unequal
also.
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There are among minerals some substances which

yield readily to mechanical division in one or two

directions, but do not admit of distinct cleavage in a

third direction, so as to produce a regular solid.

This circumstance has introduced into mineralogy
the terms single cleavage, or double, triple, fourfold,
&c. cleavage, which are sometimes perplexing to a

learner, as they may be confounded with the different

sets of cleavages before spoken of.

But these terms single, double, triple cleavage, &c.

are intended to refer strictly to the sets of primary
cleavage only.

When a mineral can be split in only one direction,

the cleavage is said to be single ; when in two direc-

tions, which may be conceived to give four sides of a

prism, it has a double cleavage.
When there is a cleavage in . three directions, such

as to produce either the lateral planes of the hex-

agonal prism, or a solid bounded by six planes which

are parallel when taken two and two, it is termed a

triple cleavage.

A four-fold cleavage, or one in four directions, will

produce a tetrahedron, an octahedron, or a perfect

hexagonal prism ;
the two latter solids consisting of

four pairs of parallel planes, lying in as many dif-

ferent directions.

The rhombic dodecahedron possesses six pairs of

parallel planes lying in different directions, and may
be said therefore to have a sixfold cleavage.

Sometimes the natural joints of a crystal may be

perceived by turning it round in a strong light, al-

though it cannot be cleaved in the direction of those

joints.

Different specimens of the same substance will also

yield to the knife or hammer with unequal degrees of

facility; and even carbonate of lime, which splits
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readily in general, will sometimes present a con-

choidal fracture.*

As a crystalline solid cannot be contained withinplanes

lying in less than three directions, it is obvious that it

cannot be produced by a single or double cleavage.
The solids obtained by cleavage may therefore,

according to what has preceded, consist either of

primary forms produced by triple, fourfold, or sixfold

primary cleavages, or of other forms resulting from

the supernumerary cleavages, either alone or com-

bined with the primary.
But another class of solids may also result from

cleavage when that takes place parallel to some only
of the primary planes of those forms which possess

fourfold or sixfold cleavages.
From a primary triple cleavage it. is clear that only

a single solid can be produced, that solid being a

parallelepiped . But from either afourfold or sixfold

primary cleavage, more than one solid may result,

according as the cleavage takes place parallel to all,

or only to some, of the primary planes.

* Some practice is necessary in order to cleave minerals neatly, and

some experience in the choice of the instruments to be used for this

purpose.

In many instances, the mineral being placed on a small anvil of iron

or lead, a blow with a hammer will be sufficient for dividing it in" the

direction of its natural joints ; and sometimes a knife or small chissel

may be applied in the direction of those joints, and pressed with the

hand, or struck with a hammer; or the crystal may be held in the

hand and split with a small knife; or it may be split, by means of a pair

of small cutting pincers whose edges are parallel.

A small short chissel, fixed with its edge outward in a block of wood,
is a convenient instrument for resting a mineral upon which we are

desirous of cleaving.
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Fig. 81.

If we cleave an octahedron parallel to six only of

its planes, omitting any two opposite ones, as b and e,

fig. 84, and if we continue the cleavage until only
the central points of the planes b and e remain, a

figure of six sides will evidently be produced.
This figure is a rhomboid whose plane angles are

60 and 120.

Fig. 85.

Fig. 85 shews the position of this rhomboid in the

octahedron, from which it is evident that the cleavage

would be continued as far as the lines f k, I m, n o,

and those which are parallel to them on the opposite

plane.
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Fig. 86 exhibits the same rhomboid separately, the

planes being marked with the same letters as are

placed on such planes of the octahedron as are pa-

rallel to those of the included rhomboid.

Fig. 87.

Our rhomboid may thus be regarded as an imperfect

octahedron, two of its planes being concealed, or covered

by small tetrahedrons p r s, and t u x, as in figure

86. These tetrahedrons consist of masses of cubic

molecules, and by their removal, as in fig. 87, we
shall obviously reproduce the perfect octahedron.

Fig. 88.

If we now cleave the octahedron parallel to any

four alternate planes, as c d, ef, fig. 84, and continue

the cleavage as far as the lines i k, I m, no, fig, 88,

and until only the central points of the four planes

a, b, g, h, remain, we shall produce a regular tetra-

hedron, as shewn by the interior lines in the figure.
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Fig. 89.

Fig. 89 exhibits this tetrahedron separately, its

planes being marked with the same letters as appear
on the planes of the octahedron, fig. 84, which are

parallel to those of the included tetrahedron.

*

*

The tetrahedron thus obtained may be regarded as

an imperfect octahedron, four of its planes being con-

cealed, or covered by smaller tetrahedrons, p q r s,

p q u t, u q x T, q x r #, as in fig. 90, and it is

capable of being reduced again to the perfect octa-

hedron by the removal of those masses of cubic

molecules which constitute the tetrahedrons by which
the concealed planes are covered.

The tetrahedron and octahedron have thus ob-

viously the same set of cleavages, and if the tetra-

hedron be the primary form, the octahedron may be

regarded as an imperfect tetrahedron, requiring cer-

tain additions to complete that form.*

* The student is advised to trace the relation of the octahedron to

the acute rhomboid and tetrahedron, by means of an octahedron of

fluor produced by cleavage or otherwise. Let him place this on a

table, and by the assistance of a small hammer and a knife, he may
procure from it, by well observing the figures as he proceeds, the

acute rhomboid, a#d tetrahedron, and from them he may re-produce
the octahedron.
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Fig. 91.

If the rhombic dodecahedron, fig. 91, be cleaved

parallel to the planes, , 6, c, d, and to the four

planes opposite to these, until the four remaining

planes of the dodecahedron disappear, an obtuse octa-

hedron will be produced.

Fig. 92.

Fig. 92 exhibits this octahedron separately, the

planes being marked by the same letters as appear
on the corresponding planes of the dodecahedron.

Fig. 93.

If the cleavage be effected parallel only to the

planes 0, d, e, and
7z, b, k

9
until the other primary

planes disappear, an obtuse rhomboid will result, as

seen in fig. 93; this rhomboid measures 120 over

the edges at which the planes #, and e, meet.
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Fig. 94.

If the cleavage take place parallel only to the

planes c d and i k, and be continued until only the

four cleavage planes remain, an irregular tetrahedron,

fig. 94, will be produced, whose planes meet at an

angle of 90 at the edges n o, p q, and at an angle
of 60 at the other edges.
Thus an obtuse octahedron, d on m, fig. 92, mea-

suring 60 % an obtuse rhomboid of 120", and an"

irregular tetrahedron
,
obtained by partial cleavages

from the rhombic dodecahedron, may be regarded as

imperfect dodecahedrons, to which figure the?/ may be

reduced, by detaching from each solid the portions of
cubic molecules which respectively cover the obscured

dodecahedral planes.

But it is very obvious that these imperfect forms

may be obtained as well by cleaving at once through
the interior of the crystal, in directions parallel to 8 to

6 or to 4 only of the primary planes, as by beginning
to cleave from the outside, and arriving by degrees at

the new figure in the manner already described.

Hence it appears that a dissection of the octahedral

and dodecahedral crystals by cleavages, parallel to some

only, of the primary planes, will yield only the imper-

fect solids above described, not any of which will

represent the molecules of which the crystals are com-

posed.*

* Blende will afford the student an opportunity of producing, by
cleavage, the solids represented by fig-. 91 to 94.
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The relation of the tetrahedron to the octahedron

in reference to the theory of cubic molecules, may be

explained in the following manner.

The Abbe Haiiy's theory, it will be recollected,

supposes that if the tetrahedron obtained by cleavage

from the octahedron, were to be successively reduced

to an octahedron and four still smaller tetrahedrons,

we should at length arrive at a tetrahedron consisting

of four single tetrahedral molecules enclosing only an

octahedral space, instead of an octahedral solid.

But according to the structure assigned to the

octahedron by the theory of cubic molecules, that

figure is an entire solid; and the smallest tetra-

hedron that can be imagined to exist, will contain

an octahedral solid, and would be reduced to an

octahedron by the removal of four cubic molecules

from its four solid angles, and not of four tetrahedrons.

Fig. 95.

Fig. 96.

Let fig. 96 be supposed to represent the smallest

octahedron that can be imagined to exist, formed of

seven cubic molecules, and let fig. 95 represent a

i
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tetrahedron containing this minute octahedron. The
tetrahedron would obviously be reducible to the oc-

tahedron, as other tetrahedrons are, by the removal

of all its solid angles.

But it is apparent that the solid angles to be re-

moved in this instance, are the small cubes a e g t,

and by their removal the octahedral solid shewn in

fig. 96 will remain.

This octahedron is supposed to rest on one of its

planes, and the molecules b c, c h, /c, c d, may be

conceived to constitute four of its edges.
Thus the necessity of adopting the tetrahedron as

the molecule of the octahedron is removed, and in

consequence a more simple theory of the structure

of the octahedron, may be substituted for that which

has been established upon the adoption of tetrahedral

molecules.

By a similar mode of reasoning, the compatibility
of the cubic molecule with the solids obtained by

cleavage from the rhombic dodecahedron, might be

shewn; and by adopting the cubic molecule, a more

simple theory of decrement, in relation to the rhom-

bic dodecahedron, may be substituted for that which

has been established upon the assumption of the

irregular tetrahedron as the integrant molecule, and

the obtuse rhomboid as the subtractive molecule.
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DECREMENTS.

Decrements have been already defined to be either

simple, mixed, or intermediary ; and the simple decre-

ments have been divided into two classes, according
as they take place in breadth, or in height : see Defi-

nitions, page 19.

The manner in which all the classes of decrements

operate in the production of new planes, has also

been explained.

Simple and mixed decrements take place either on

the edges of crystals, or on the angles, and produce
new planes which intersect one at least of the primary
planes, in lines parallel to one of its edges or diagonals.

Fig. 97.

If either a simple or mixed decrement take place on

the edge a b, of any primary form whatever, a new

plane is produced, whose intersection c d, with the pri-

mary plane along which the decrement may be conceived

to proceed, is parallel to the edge a b, from which it

may be said to begin or set out.

Fig. 97 shews the character of the secondary plane

produced by a simple or mixed decrement on the edge
of a rectangular prism.

i 2
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Fig. 98 shews the character of a similar plane on

the edge of a tetrahedron.

Fig. 99.

Fig. 99 shews the character of a similar plane on

the edge of an octahedron.

If a simple or mixed decrement take place on the

angle of a tetrahedron or octahedron, one new edge
c' d', of the secondary plane, will be always parallel
to an edge a b, of the primary form, as shewn in

figures 98 and 99.

If either a simple or mixed decrement take place on
the angle of any primary form, except the tetrahedron

and octahedron, a new plane is produced, whose in-

tersection with the primary plane, along which the
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decrement may be conceived to proceed, is parallel
to the diagonal ofthat plane.

Fig. 100.

Fig. 100 exhibits a plane produced on the angle of

a rectangular prism, by a simple or mixed decrement;
the edge c d, of the secondary plane, being parallel to

the diagonal a b, of the primary form.

Fig. 101,

Intermediary decrements may be said to take place

only on the solid angles of crystals, by the omission of

unequal members of molecules in the direction of the

edges which meet at such solid angle. And a plane
is thus produced, none of whose lines of intersection,

a by c b, ac, with the primary planes, are parallel to

any edge, or diagonal of those planes.

Fig. 101 shews the position of a plane produced by
an intermediary decrement on the angle of a rectan-

gular prism.
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Fig. 102.

Fig. 102 contains a similar decrement on the angle
of a tetrahedron.

Fig. JOS.

Fig. 103 shews the effect of a similar decrement on

the angle of an octahedron.

In the illustrations hitherto given of the nature of

decrements, and of the characters of the secondary

planes produced by them, we have considered the

effect produced upon only a single edge or angle of
the primary form. But as decrements generally take

place equally on all the similar edges and angles of

any primary form, it will be necessary now to enquire
into the manner in which these similar edges and

angles are affected, when they are all operated upon
at the same time, by any given decrement.

From the definition already given in page 3, of the

nature of similar edges and angles, it will appear that

in the rectangular prism, those edges only are similar
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which arc parallel to each other. And if we refer to

the tables of modifications of that form, which will be

found in a subsequent section, we shall observe it is

only the parallel edges which are affected by the

modifications 6, c and d.

Fig. 104.

Let us now suppose a modification belonging to

the class c to have taken place on a right rectangular

prism, and let us suppose the secondary crystal pro-
duced by this modification represented by fig. 104.

The upper part of this figure shews the manner in

which the new planes are conceived to be produced,

by the continual abstraction of single rows of mole-

cules on both the edges a 6, and c, of each of the

superimposed plates, until the last plate consists of

only one row, forming the new edge of the secondary

crystal.

Fig. 105.

The square prism has all its terminal edges similar^

and 'all its terminal angles also similar, and con-
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sequently when one of those edges or angles is affected

by any decrement, they will generally all be so.

Fig. 105 exhibits modification c, of the square

prism, the upper part of the figure shewing the man-

ner in which the secondary planes are conceived to

be generated, by the continual abstraction of single

rows of molecules from each edge of each of the suc-

cessively superimposed plates.

Fig. 106.

Fig. 106 exhibits the effect of a decrement by one

row of molecules on the angle of a square prism,

producing a secondary form belonging to the class a

of the modifications of that figure. See tables.

The cube has its three adjacent edges similar, and

consequently they are all affected equally by decre-
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ments upon the edge of that form, except in some

particular cases which will be referred to in a future

section.

Fig\ 107 shews the effect of a decrement by one

row of molecules on the edges of a cube ; producing
the planes of the rhombic dodecahedron.

Fig. 108.

Fig. 108 shews the manner in which an inter-

mediary decrement, taking place at the same time

upon the three adjacent angles of the cube, is con-

ccived to produce six planes on the solid angle.

The causes which occasion decrements do not ap-

pear at present to be understood : crystals so minute

as to be seen only by the aid of a microscope, are

found variously modified
;
hence the circumstance,

whatever it may be, which occasions the modifica-

tion, begins to operate very soon after the crystal has

been formed.

Perhaps it may influence the arrangement of the

first few molecules which combine to produce the

crystal in its nascent state ; and as we find that crys-

tals during their increase in magnitude, sometimes

undergo a change of form, by the extinction of some

modifying planes, or the production of others, it is

evident that the cause which occasions a decrement,

may be suspended, or may be fii'st brought into ope-

ration, at any period during the increase of a crystal
in size.
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For the purpose, however, of affording a clearer

illustration of the theory of decrements, it has been
found convenient to imagine that the primary form

of any modified crystal had attained such a magni-
tude, before the law of decrement had begun to act

upon it, as to require for the completion of the mo-
dified crystal, the addition of only those defective

plates of molecules by which the modifying planes
were produced. A primary form of this magnitude,
is evidently the greatest that could be inscribed in

the given secondary form. And a primary form so

related to the secondary, is in theory termed the nu-

cleus of the secondary form.

This nucleus may frequently be extracted from the

secondary crystals by cleavage.
If we take a crystal of carbonate of lime of the

variety called dog-tooth spar (the metastatique of

the Abbe Haiiy,) and begin to cleave it at its sum-

mit, we shall first remove those molecules which

were last added in the production of the crystal ;
and

by continuing to detach successive portions, thus pro-

ceeding in an order the inverse of that by which the

modified crystal has been formed, we may remove
the whole of the laminae, which enclose or cover the

theoretical primary nucleus.

As far as we have proceeded with the theory of

decrements, we have supposed the diminished plates

of molecules to be laid constantly upon the primary

form, in order to produce the modifications which

are found to exist in nature. But from a comparison
of the angles at which some secondary planes incline

on the primary, and on each other, it is probable
that the decrements sometimes take place on second-

ary crystals. Thus, for example, we may conceive

decrements to take place on any secondary rhomboid
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of carbonate of lime by the abstraction of secondary
molecules similar in form to that secondary rhomboid.

These secondary molecules would consist of certain

numbers of primary ones arranged in the same order

as they would be in the production of the entire

secondary crystals, and they would in fact be minute

secondary crystals.

There is an interesting paper on this subject by
the Abbe Haiiy, in the 14th vol. of the Annales du

Museum, p. 290, where, in order to express the laws

of decrement in as low numbers as possible, he has

in several instances conceived the decrements to take

place on secondary forms.

Another circumstance apparently influenced by a

cause in some degree similar to that which produces

decrements, is the colour which occasionally covers

some of the modifying planes of a crystal while the

other planes remain uricoloured.

A specimen of carbonate of lime, from St. Vincent's

rocks near Bristol, which now lies before me, affords

an instance of this.

Fig. 109.

In this specimen the planes , ,
of some of the

crystals and those planes only^ are covered with par-
ticles of, I believe, oxide of iron, upon which no

molecules of carbonate of lime appear to have been

subsequently deposited; but a thin plate of that sub-

stance is observed on some crystals as at c, to cover
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part of the coloured plane, having apparently begun
to form at the edge </,

and to have proceeded from

that edge over part of the coloured plane #, but

scarcely touching the colouring matter.

Mr. Beudant has collected together many facts

relative to the influence which particular circum-

stances are supposed to exert upon the formation of

crystals in the laboratory; but these facts are insuf-

ficient to explain the causes which determine the

particular crystalline form of a mineral, or to account

for its modifications. His memoirs, however, are

interesting, and may be found in the Annals of Phi-

losophy, vol. xi. p. 262; and in the RoyaHnstitution
Journal.

Decrements appear to be sometimes influenced, as

will appear in the next section on the symmetry of

crystals, by the capacity of a body to become electric

by heat, but I am not aware that any explanation
has been given of the manner in which this influence

is exerted.
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SYMMETRY.

AMONG the definitions will be found an explana-
tion of what is meant by similar edges , angles and

planes of a crystal.

It has been discovered, by the observation of a

great number of secondary forms of crystals, that

when a modification takes place on any one edge or

angle of any primary form, a similar modification

generally/ takes place on all the similar edges or

angles. And this has been observed to occur so fre-

quently, as to induce the conclusion of its being the

effect of a general law, which the Abbe Haiiy has

called the law of Symmetry. This law however does

not act universally with regard to all such similar

edges or angles as are included under the definitions

already given. The tourmaline will present an in-

stance of deviation from this law. The primary form

of the tourmaline is a rhomboid, and the three edges

terminating in
, fig. 36, are similar to the three ter-

minating in 6; the six lateral
edges,

as well as the

six lateral solid angles, are also respectively similar.

Yet it is found that the three edges terminating in

,
are sometimes truncated, while those terminating

in by are not. It is also observed that sometimes only

the alternate three of the lateral solid angles are mo-

dified, the three others remaining entire; but the

tourmaline is pyro-electric, that is, capable of becom-

ing electric by heat, and many other substances which
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are endued with a similar property, appear equally

subject to a similar interference with the general law

of symmetry.
But other substances which are not pyro-electric,

as, for example, iron-pyrites, afford instances of de-

viation from that kind of symmetrical modification

by which the cube of galena is affected. Pyro-elec-

tricity is not therefore the only disturbing cause which

influences the deviation from the general law of sym-

metry.
With all the known exceptions however to this

law, there are still so many substances influenced by

it, that the character it confers on crystals is generally

serviceable for determining the class of primary form

to which any secondary crystal belongs.
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PRIMARY FORMS.

THE derivative or parent form, from which the

secondary forms of any crystallized mineral may be

conceived to be derived by the operation of certain

laws of decrement, has been denominated the primary

form of such mineral.

It may be added that the primaryform ofa mineral

should not be inconsistent with its known cleavages, and

it should generally be such also as would produce the

secondary forms of the species to which it belongs by

thefezvest and simplest laws of decrement.*

It is for the sake of rendering our notions of a

primary form more precise, that we give this limiting,

and in some degree arbitrary, definition of the term.

Our purpose throughout this treatise is, to find the

shortest and most direct road from the secondary

crystal to the mineral species to which it belongs.
But as we must travel first from the secondary to

the primary form, it is essential that our ideas of that

figure which we agree to call the primary form, should

be as precise as possible.

The primary forms of crystals may sometimes be

developed by cleavage.

* The term primary, so defined, is merely relative, being used in con-

tradistinction to secondary. It appears therefore preferable to the term

primitive, which has been generally used to designate this original or

parent form, and which seems to imply something more intrinsic, and

absolute, than is required by the science into which it is introduced.
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Thus a hexagonal prism of carbonate oflime, which

is one of the secondary forms of that mineral, may
be cleaved in a direction parallel to the planes of a

rhomboid, which is its primary form.

Fig. 110.

When the prism results from a decrement pn the

inferior angle of the rhomboid, as shewn in the tableO '

of modifications of the rhomboid class e, this cleavage

will take place parallel to the three alternate terminal

edges of the prism, as shewn in fig. 110.

Fig. 111.

But when the prism results from a modification

on the inferior edges of the rhomboid, corresponding
with modification class n, the cleavage will take place
on the alternate solid angles of the prism as in fig. 111.

A similar prism of phosphate of lime, zMch is the

primary form of that substance, cannot be cleaved in

any other direction than parallel to its own planes.

But cleavage alone cannot be relied on for deter-

mining the primary form of a mineral. For if, as it



PRIMAKY FOJtMS. 81

frequently happens, two or more solids can be ex-

tracted from a crystallized mineral by cleavage, we
must refer to its secondary forms, in order to deter-

mine which of those solids ought to be adopted as its

primary form. And if the secondary forms can be

derived from one of such solids by the operation of

single decrements, while it would require two or more

decrements to operate simultaneously on the other,

in order to produce the same secondary forms, that

solid will be adopted as the primary, from which the

secondary forms belonging to the species might be

derived by the single decrement.

A case however may occur in which two different

solids may be produced by cleavage, from either of

which, the secondary forms of the particular species
of mineral in which it occurs, may be derived by laws

of decrement equally simple. Whenever this hap-

pens we shall be at liberty to adopt either as the

primary, and we should probably adopt that which

predominates most among the secondary forms.

In the section on cleavage we have seen that the

same set of cleavages will produce either a regular

tetrahedron, or a regular octahedron, or a particular

rhomboid, one only of which is to be regarded as the

primary form of the species in which such cleavages
occur.

In this case the secondary forms of the mineral we
are supposed to be examining, can alone enable us

to determine which to adopt.
The secondary forms of a rhomboid differ so much

from those of the octahedron and tetrahedron, as to

admit no doubt in the instance of fluor, that the pri-

mary form of this substance is not a rhomboid.

According to the law of symmetry, the modifications

of a regular octahedron should equally affect all its
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edges or angles, and tend equally to the extinction of

all its planes, while the modifications of the tetra-

hedron, regulated by the same law, would affect only
some of the edges or angles of a crystal containing all

the octahedral planes.

It may be observed by examining the crystals of

spinelle and red oxide of copper, that the solid angles
are sometimes replaced by four planes resting on the

primary planes.
This change of figure results from a single modifica-

tion ofthe octahedron belonging to class b. See tables.

But in order to produce four similar planes on each

of the solid angles of the octahedron, regarded as a

secondary form of the tetrahedron, two modifications of

the tetrahedron must concur. We must suppose each

of the solid angles of the tetrahedron to be replaced by
three planes resting on its edges, at the same time that

its edges are bevilled.

The octahedron will therefore, under the definition

I have given of a primary form, be adopted as the

primary form of spinelle and red oxide of copper, and

of such other minerals as present secondary forms of

a similar character.

I shall cite only one other instance of the insuffi-

ciency of cleavage alone to determine the primary
form of a mineral, although many more might be

adduced.

Fig. 112.

The petalite has two sets of cleavages, one in the

direction of a b, c d, fig. 112, at right angles to each
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other, and another ef, g h, such that the angle e o g,

measures about 100 and the angle g of, about 80.

Now these cleavages are respectively parallel to

the sides of either a rectangular, or a rhombic prism,

and either of these may therefore be the primary form

of petalite. But there is no cleavage which indicates

with certainty whether the prism, whichever of the

two we may adopt, be right or oblique.

We cannot therefore determine the primary form

of petalite, without a reference to crystals possessing
their natural terminal planes, or such modifications

of those planes as will shew whether the primary

crystal be right or oblique.

If we discover from the crystal of petalite that the

primary form is a right prism, we should still be at

liberty to take either the right rectangular or right

rhombic prism.
But as the angles at which the planes of the rhom-

bic prism incline to each other, are those by which

the particular species of mineral would in this case

be distinguished, we should at once adopt the rhom-

bic prism as the primary form.

It has been observed in the section on cleavage,
that the character of the planes developed by cleavage
sometimes afforded indications of the primary form.

The striae on the natural surfaces of the secondary

planes of crystals have been also considered to afford

indications of primary form. As those which are

parallel to the shorter diagonal of the dodecahedral

planes of the aplome, have been regarded as indica-

tions of the, primary form being a cube, as it appears
to be from its cleavage.
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Fig. 113.

But this circumstance cannot be relied upon in all

instances for determining the primary form of a mi-

neral. For the cubic planes of iron pyrites, which

are found by cleavage to be the primary planes, are

striated in such directions, as might lead us to sup-

pose them secondary planes, and its primary form to

be a pentagonal dodecahedron. And the cubic crys-

tals of blende are frequently striated parallel to the

alternate diagonals, as shewn in
fig. 113, which would

indicate a tetrahedral primary form. But the cleavage
is parallel, as we have seen, to all the diagonal planes
of the cube, producing a rhombic dodecahedron, and

not parallel to the planes a b /, as it should be if the

tetrahedron were the primary form and consequently
were to be produced by cleavage.

Fig. 114.

To illustrate the relation of these stria? to the sup-

posed tetrahedron, we shall derive that figure from a

cube by cleavage, and to do this we may again have



PRIMARY FORMS. 85

recourse to a cube of fluor. Let fig. 114 represent
this cube. If we apply a knife to the diagonal a

ft,

and detach successively the two solid angles a b c,

a b d, and then place the crystal with the edge a ft,

downwards, and remove the solid angles c d a, c d
ft,

the figure we shall obtain will be the regular tetra-

hedron.

Each of the classes of primary forms contained in

page 6 to 11, except the cube, the regular tetrahedron,

octahedron, and rhombic dodecahedron, comprehends

many individual forms belonging to as many species of
minerals; which individualforms differfrom each other

in some of their angles, or in the relative lengths of
some of their adjacent edges.
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SECONDARY FORMS.

THE secondary forms of crystals are either simple
or compound. The simple consist of modifications

of the primary forms, produced by single decrements.

The compound consist of several modifications occur-

ing together on one crystal, produced by as many
decrements operating simultaneously upon it. The
cube with the solid angles truncated or replaced by
three or six planes, is an instance of a simple second-

ary form produced by a single modification
;
but if

the edges be also truncated, or bevilled, or the solid

angle be both truncated and replaced by three or six

planes, it will aftbrd an example of a compound
secondary form.

The secondary planes frequently obliterate entirely

the primary ones, and produce a new form apparently

belonging to another class of primary forms, as in

the instance of the rhomboid being converted into a

six-sided prism by the truncation of all its solid

angles, or of its terminal solid angles and its lateral

edges.
Particular secondary forms sometimes predominate

in particular species of minerals, as the cube in fluate

of lime, whose primary form is an octahedron. Par-

ticular modifications of primary forms are also found

to affect particular districts of country.



SECONDARY FORMS. 87

Thus the dodecahedral variety of carbonate of

lime, commonly called dog-tooth spar, occurs the

most frequently in Derbyshire.
In Cumberland, the most common variety is a six-

sided prism terminated by the planes of an obtuse

secondary rhomboid.

In the Hartz, the entire six-sided prism occurs

more frequently than in other places.

Particular secondary forms are found to occur con-

stantly among some species of minerals, and rarely

among other species belonging to the same class of

primary forms.

Thus the regular hexagonal pyramids, which occur

constantly among the secondary forms of quartz,

rarely occur in carbonate of lime.

The causes of these peculiar habitudes of minerals

have not I believe been investigated, nor do I appre-
hend that the investigation would lead to any satis-

factory result. They appear to belong to that class

of facts, which our limited knowledge of the opera-

tions of nature does not enable us at present to com-

prehend.
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HEMITROPE AND INTERSECTED
CRYSTALS.

BESIDES the secondary forms referred to in the

preceding- section, there is another class of crystals

which were denominated macks by Rome de 1'Isle,

but which the Abbe Haiiy has called hemitrope crys-

tals^ having assigned the term made to a species of

mineral more generally known by the name of chi-

astolite.

The term hemitrope has been derived from the

resemblance of this class of forms to crystals which

might be conceived to have been slit in a particular

direction, and then to have had one half partly

turned round on an imaginary axis, passing through

the centre of, and perpendicular to, the planes of

section.

This kind of structure may be readily understood

from one or two examples.

Fig. 115.

If we conceive an octahedron a b c d e /, fig. 1 15,

to be cut through in the direction g //,
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Fig. 116.

and if we suppose the half b d f, partly turned

round as in fig. 116, until b is opposite to c, and d

opposite to e, a hemitrope crystal would be produced,

resembling one of the varieties of the common spi-

nelle.

Fig. 117.

Again, if we suppose a right prism, whose base is

an oblique angled parallelogram, fig. 117, to be cut

through its centre and parallel to its lateral planes ;

Fig. 118.

and if we then conceive the portion marked a r,

turned round until the edges b and c
? again become

parallel as in fig. 118, we shall have a form of hemi-

trope crystal not of unfrequent occurrence in sulphate
of lime.

These examples are sufficient to illustrate the man-

ner in which hemitrope crystals may be conceived to

be produced. But we cannot for a moment imagine
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that they are so produced. The arrangement of the

molecules in so apparently capricious a manner, is

doubtless the consequence of some law operating on
the structure of the crystal from the commencement
of its formation, and analogous to those laws by
which other secondary forms are produced.

Hemitrope crystals consist of portions of either

unmodified primary forms, or of secondary forms;
and the plane of the imaginary section is found to be

parallel either to the primary planes, or to some

secondary plane which would result from some regu-
lar decrement.

Oxide of tin, as shewn in Mr. Phillips's paper on

that substance in the 2nd vol. of the Geological

Transactions, exhibits a considerable variety of this

species of secondary form. It is very common also

in felspar, in rutile, and sphene, and it occurs in

many other substances.

One character by which hemitrope crystals may
generally be known, is the re-entering angle produced

by the meeting of some of their planes. This is very
obvious in the figures 114 and 116. But even where

this re-entering angle does not appear, there is gene-

rally some line, or some other character, which in-

dicates the nature of the crystal.

Crystals are frequently found intersecting each other

with greater regularity than can be ascribed to acci-

dent, and forming a class very analagous to hemi-

tropes, and probably governed in their structure by
the same general laws to which those forms owe their

existence.
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'

Fig. 119.

The staurotide affords a good example of this

variety of form.

The primary form of the staurotide is a right

rhombic prism, fig. 119.

Fig. 120.

Two of these prisms frequently cross each other at

right angles as in fig. 120.
.

Fig. 121.

And sometimes at an oblique angle as in
fig. 121.

In other minerals it is sometimes observed that

three, four, or more crystals, intersect each other in

this manner, and produce figures apparently remote

M 2
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in character from the primary forms to which they

belong, and from which they could not be deduced

by any ordinary law of decrement. This class of

combined or intersecting crystals generally occurs in

arragonite : such forms also frequently occur in car-

bonate of lead, in sulphuret of copper, and in other

species of minerals.



SECTION X.

EPIGENE AND PSEUDOMORPHOUS
CRYSTALS.

IN addition to the variety of crystals already des-

cribed, there are others whose forms are not natural

to the substances in which they occur.

To one class of these the Abbe Haiiy has applied
the name of Epigene, where a chemical alteration has

taken place in the substance of the crystal subsequently
to itsformation.
Thus crystals of blue carbonate, and of red oxide

of copper, are frequently found converted into green
carbonate. Sulphuret, and carbonate, of iron, are

changed into oxides, without losing their peculiar

crystalline forms; and the same alteration takes place
in other substances.

Another class of crystals, not belonging to the

substances in which they occur, have been denomi-

nated Pseudomorphous. These have been formed

either within cavities from which crystals ofsome other

substance have been previously removed by some natu-

ral cause., probably by solution, or upon crystals of

some other substance which have subsequently dis-

appeared; the space they occupied either remaining
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a void, or having been afterwards filled with some
other matter.

Both these classes of crystals, particularly the first,

may present some little difficulty to the young mine-

ralogist, but this will be overcome by an improved

acquaintance with the minerals in which they occur.



SECTION XI.

ON THE TABLES OF MODIFJ CATIONS.

THE preceding sections have explained the theory
of crystals in reference to

The forms of their molecules.

The manner in which those molecules are aggre-

gated in the production of crystals, and to

The nature of decrements, or the manner in

which the secondary forms of crystals may
be conceived to be produced.

The most important practical purpose of this theory

is, to enable the mineralogist to determine the species

to which any crystallized mineral belongs, from an

examination of any of its crystalline forms.

Minerals which differ in species, may belong either

to different classes, or to the same class, of the pri-

mary forms. If several species belong to the same

class, they will be found, with the exception of such

as crystallize in cubes, regular tetrahedrons, regular

octahedrons, and rhombic dodecahedrons, to differ

from each other, sometimes in the angles at which their

primary planes incline to each other, and sometimes in

the comparative lengths ofsome of their primary edges.

Thus the general class of square prisms may con-

sist of any number of particular prisms, belonging to

as many different species of minerals; and these indi-
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vidual or particular prisms may be conceived to differ

from each other in the relation of their respective

heights to the length of the edge of their square base.

The class of rectangular prisms may be supposed to

contain many particular prisms, which vary from each

other in the relative dimensions of their planes.
The individuals of the class of rhombic prisms may

vary from each other in their relative heights, and in

the angle at which the lateral planes incline to each

other. Those of the class of rhomboids will differ in

the angles at which their planes incline respectively
to each other

; constituting a series of particular

rhomboids, of which the most acute, and the most

obtuse, will be the two extremes
;
and similar dif-

ferences may be imagined to exist among the indi-

viduals belonging to such of the other classes of pri-

mary forms as admit of analagous variations.

But crystals rarely present themselves under their

respective primary forms ; they are usually modified

by new planes, producing secondary crystals, from

which the primary forms are to be inferred.

And although, as we have already seen, we may,
to a certain extent, be guided by cleavage in our

attempts to discover the primary forms of minerals,

those forms cannot in general be determined without

a reference to the secondary crystals.

Hence the relations between the various secondary

forms ofcrystals, and their respective primary forms,
constitute a highly important feature in the science, of
which we are treating.

The secondary forms of crystals have been ex-

plained to consist of modifications of the primary,
occasioned by decrements on some of their edges or

angles.
The character of the modifying planes, and their

geometrical relations to the primary form, as con-
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nected with the theory of decrements, will be ex-

plained in the Appendix, together with a system of

notation connected with the same theory, and capable
of expressing the figure of any secondary form by
means of certain symbols.
But there are many who form collections of mi-

nerals as an amusement, who are not in the habit

of mathematical investigations, and who cannot avail

themselves of the theory of decrements, for the pur-

pose of tracing the relations between the secondary
and primary forms of crystals ; and I am not aware

of the existence of any published work unconnected

with that theory, which attempts to point out these

relations so as to enable the mineralogist to trace

in a secondary crystal the characters of the primary
to which it belongs.*

I have attempted to supply this desideratum by the

following tables of modifications of the primary forms,
and by the explanations which follow them. And

although these may not furnish the young enquirer
with all the assistance he desires, but may leave him
still to encounter some difficulty in his pursuit, he

will certainly derive advantages from the opportunity
the tables will afford him, of comparing all the classes

of simple secondary forms, belonging to the several

* A systematic method of describing crystals was taught by Werner ;

but that method has been found inconvenient even for the purpose of

dcsfription y
and it supplies no rules for deducing the primary form of a

crystal from any of its secondary forms. The system of Mohs has not

yet been sufficiently developed to the English reader, to enable him to

judge fairly of its merits; but from what has been published here, it

appears that the purpose I have attempted to effect, may also be

effected by his system, although by a less direct course.

The consideration of infinite lines which he has introduced into his

system, and his notation founded on this character, are parts of his

theory which will probably render its public reception less general than

it might have been from its merits in other respects.
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classes of primary ones, with each other, and with

their respective primary forms ; as he will thus obtain

a general view ofthe entire series of simple secondary
forms belonging to all the known classes of the pri-

mary.
In these tables, not merely the observed modifications

of'crystals ,
but all the numerous modifications of which

each class of primary form is susceptible, while in-

fluenced by the law of symmetry, are reduced into

classes, and arranged in an orderly series and I have

added some of the observed instances of departure
from this law, in the production of peculiar and

anomalous secondary forms.

From a general view of the tables, it will be seen

that the first classes of modifications are those on the

solid angles of the primary form
; these being suc-

ceeded by the modifications upon the edges, beginning
in all cases with the simplest change of form.

It has been already stated, that each of the classes

ofprimary forms, may comprise many individualforms

"belonging to as many different species of minerals
;

which individual forms, with the exception of such

as belong to the cube, the regular tetrahedron and

octahedron, and rhombic dodecahedron, will be found

to differ from each other in the measurement of some

of their angles, or in the ratios of some of their

edges.
Each of the classes of modifications, excepting those

which produce tangent planes, and which consequently
admit of no variation, may also comprise a series of
individualmodifications; which individual modifications

will be found to differ from each other, in the angles
at which the modifying planes incline on the adjacent

primary planes.

Thus the series of modifying planes which would

be comprehended under class b, in the table of modi-
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fications of the cube, may be conceived to be com-

prised within two natural limits ; the one being the

primary plane of the cube, and the other the plane a.

For it is obvious that the inclination of b on P may

approach nearly to 180
,
but it can never reach that

limit. And it may pass from such an obtuse angle,

through an almost unlimited series of planes inclining

less and less on P, until at length the inclination

would be nearly the same as that of a on P ; but it is

apparent that it can never attain this limit, there

being only the one plane ,
which can incline to the

primary planes at that angle.

The series of planes belonging to class c of the

cube, are limited within the planes a and e. The

angle at which the planes marked c incline to each

other, may be conceived to increase, until it ap-

proaches very near to 180; the three planes would
then very nearly become one, and similar to

,
but

they can never reach that limit. And they may also

be conceived to incline more and more upon the edge,
until at length they would very nearly coincide with

the plane e, but they could never exactly coincide

with that plane.
This may be readily comprehended if we refer to

the tables, and remark that each of the series of new
solids which would result from the series of planes

belonging to class c, would be contained within 24

planes, while only one single solid contained within

8 planes could be produced from class
,
and only

one other by class
,
contained within 12 planes;

neither of which therefore could fall within the series

resulting from class c.

The series of individual modifications belonging
to class d of the cube, may be conceived to lie within

several limits, according to the direction in which the

change of position of the modifying planes may be
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supposed to take place. The angle at which the two

planes d, resting on P', meet, may be supposed to

increase until those planes would nearly approach to

one plane, corresponding with class b or the angle
at which the two planes d, which meet at the edge of

the cube, incline to each other, may approach nearly
to 180, when those two planes would nearly become

one analogous to class c. Or if the two planes d,

which meet at the edge of the cube, be conceived to

incline more and more on that edge, they will at

length approach nearly to the position of the planes
of class fy

but they can never coincide with those

planes.

These remarks on the nature of the differences

which may be conceived to exist among the individual

modifications belonging to some of the classes con-

tained in the following tables, might be easily ex-

tended to all. But it will not be difficult for the

reader to apply them himself to all the other variable

classes contained in the tables. The nature of the

variation, however, in many of the classes, will be

pointed out in the tables.

When the sets of new planes, resulting from the

individual modifications belonging to any one of the

classes, are so much extended as entirely to efface

the primary planes, a series of entirely new solids

will result. The planes of these new solids will

generally possess one common character throughout
the series ;

that is, their planes will generally be all

triangular, or all quadrilateral, or all pentagonal, or

be of some other polygonal form
;
but the planes be^

longing to each individual of the series, will differ

from those belonging to every other individual, in

their angles, or the relative lengths of some of their

edges.

But although it is general/^/ true that the planes of



ON THE TABLES OF MODIFICATIONS. 101

the entire series of secondary forms, resulting from

any given class of modifications, are similar through-
out the series, it is not invariably so. Among the series

of secondary forms resulting from particular classes

of modifications of the rhomboid, there are some con-

tained within scalene triangular planes, and others,

belonging to the same class, contained within isos-

celes triangular planes. These differences will gene-

rally be pointed out in the tables.

The series of new solids, or complete simple second-

ary forms, resulting from each of the classes of modi-

fications, will be described in the tables under the

appellation of newfigures.
It is to be observed that very few of the individual

modifications belonging to the several classes, have

yet been found to exist among crystals. And it is

doubtful whether all the classes even have been

hitherto noticed.

The figures of the primary and secondary forms,

given in the following tables, are not to be regarded
as representations of crystalline forms of any par-

ticular minerals, but as exhibiting a type, or general

character, of each of the classes of primary forms, and

of the modifications belonging to each of those classes.

A position is chosen for the figure of each of the

primary forms, which is supposed to be constant

throughout the series of modifications belonging to

each. The position of the greater number will be

readily comprehended from the figures themselves,

but there are a few which require a short explanation.

The figure of the right rectangular prism has its

greater edge horizontal, and its largest plane is sup-

posed to be a terminal one.*

* The horizontal lines here referred to, are those which are parallel

to the upper or lower edjjei of the page,
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The figure of the octahedron with a rectangular

base, has the greater edge of its base horizontal.

The figures of the right rhombic prism, and of the

octahedron with a rhombic base, have their greater

diagonals horizontal.

The figure of the right oblique-angled prism, has

its greater diagonal horizontal, and the greater lateral

plane of the prism standing opposite the right hand of
the spectator.

Thus where the angles of the base of a primary

form are right angles, four of its terminal edges, as

seen in the figures, are horizontal. But where the

angles of the base are not right angles, the figure is

drawn with its greater diagonals horizontal, and all its

terminal edges are oblique lines.

1 conceive that an advantage will attend the placing
the figures of crystals of different minerals, belonging
to the same class of primary forms, always in the

same position. The crystals of different substances

may be then more easily compared with each other,

and their peculiar characters be more readily ob-

served. Euclase, and sulphate of lime, are right

oblique-angled prisms; but the figures of euclase

which accompany the Abbe Haiiy's description of that

substance, are made to rest on one of the lateral

planes of the primary form, as it is exhibited in p. JO,

while his primary form of sulphate of lime is made to

rest on its base as that figure does.

On each of the primary forms, it will be observed,
that certain letters are placed, which are intended to

designate the angles, edges, and planes, of crystals,

and to denote their similarity or dissimilarity.

We are indebted to the Abbe Haiiy for the adapta-
tion of letters to these purposes, and in a future

section the manner will be explained in which they
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are applicable in describing the secondary forms of

crystals.

Some, or all, of the vowels A E 1 O, are used to

designate the solid angles ;
some of the consonants,

B C D F G H, to designate the primary edges ;
and

P M T to designate the primary planes of crystals.

The same letter is repeated where the angles, edges.,

or planes are similar; and different letters are used

where those angles, edges, or planes are dissimilar,

'according to the definitions of similar angles, #c. given
in p. 3.

Thus the letter A is repeated on all the angles of

the cube, these being all similar; while A and E are

placed on the alternate angles of the right rhombic

prism, to shew that there, the opposite angles only
are similar.

So in the cube, the letter P is repeated on all the

planes because they are all similar.

In the right rhombic prism, the letter P stands only
on the terminal plane, the lateral planes having the

letter M placed upon them. This implies that the

lateral planes are not similar to the terminal plane;
but the letter M being repeated on both the lateral

planes, denotes that these are similar to each other.

In the right oblique-angled prism, the lateral planes
are distinguished from each other by the letters M,
and T, implying that they are dissimilar to each other,

as both are to the terminal plane which is designated

by P.

The ' and " added to some of these letters, serve

merely to distinguish two or more similar planes from

each other.

Thus, by carefully observing the position of the

edges of the base of any figure, as it is explained in

p. 101 and 102, and the letters used to designate the
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planes, as explained above, we may immediately dis-

cover the class of primary form to which the figure

belongs.

The front planes exhibited in the drawing of any

crystal are generally one half the number belonging to

it ; hence it is obvious that if these be described, the

parallel planes of crystals being always similar to

each other, the planes which are parallel to those

shewn in the drawing, may be conceived to be des-

cribed also.

It may be remarked that the modifying planes of

the series of forms contained in the tables, are pro-
duced by cutting off portions of the figure of the

primary crystal and thus reducing its bulk. It is

almost unnecessary, after what has been already said

on the formation of crystals, to observe, that nature

proceeds by building up the secondary forms instead

of thus truncating the primary. And we may, if we

please, imagine, that the secondary figures given in

these tables, have been produced by additions to

primary crystals of smaller relative dimensions than

those placed at the head of the several tables.

The inclination of any two planes to each other, as

a and P, modification a of the cube, or the angle at

which they meet, is commonly expressed in this man-

ner, a on P so many degrees and minutes.
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Primary form. The cube.

Modifications.

Class a. Solid angles replaced by tangent planes.
The modifying planes are equilateral triangles.

When the modifying planes are so extended as to

efface the primary planes, a regular octahedron will

be produced.
Plane a on P, P' or P", 1209 15' 52".

Class b. Solid angles replaced by three planes

resting on the primary planes.

Each of the series of new figures produced by this

class, would be contained within 24 equal trapezoidal

planes. But the trapezoidal planes belonging to each

figure of the series would differ in their angles from

those belonging to every other figure of the same

series.

Obs. A trapezoid is a four-sided figure whose

opposite edges are unequal^ and in which, if lines be

drawn through the angles a, and 6, c, and
rf, they

o2
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will intersect each other at right angles, as in the

following figure.

Fig. 133.

Class c. Solid angles replaced by three planes

resting on the edges of the cube.

The series of new figures resulting from this class,

would be contained within 24 isosceles triangular

planes.

Class d. Solid angles replaced by six planes.

The new figures would be contained within 48

triangular planes.

Class e. Edges replaced by tangent planes.

The new figure would be the rhombic dodecahedron.

Plane e on P or P', 135.

Classy*. Edges replaced by two planes.

This class would produce a series of four- sided

pyramids on the planes of the cube. The planes of

the rhombic dodecahedron, and those of the cube,
will evidently be the limits of this series.
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Class h.
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The following modifications do not accord with the,

law of symmetry as defined in p. 77.

Class g. Alternate solid angles replaced by tan-

gent planes.

A regular tetrahedron would result from this

modification.

Class h. Alternate solid angles replaced by three

planes resting on the primary planes.

The series of new figures resulting from this class,

would be similar to those produced by class c of the

tetrahedron.

Class i. Solid angles replaced by three planes,
each of which inclines unequally on the three adjacent

primary planes.

The unequal inclination of each of the modifying

planes on the three adjacent primary planes, distin-

guishes this class from class 6, ea,ch plane of which

inclines equally on two of the adjacent planes, and

unequally on the third plane.
The character of this class is similar to that of

class
tf,

if we suppose the alternate three only of the

modifying planes to be produced on each solid angle.

Class k. Edges replaced by single planes inclining
at unequal angles on the adjacent primary planes,

and bearing the same analogy to class f, that class i

does to class d.

A series of dodecahedrons with pentagonal planes
would result from this class of modifications, but



112 THE CUBE, AND

THE REGULAR TETRAHEDRON, AND

Primary form.

Modifications.

Class a.

Class b.



ITS MODIFICATIONS. 113
t

there is only one of the series known to exist among
crystals.

It appears that in all these irregular modifications,

only one half the number of modifying planes is pro-

duced, which would be required by the law of sym-

metry.

ITS MODIFICATIONS.

Primary form. The regular tetrahedron

Plane P on P', 70 31' 43".

Modifications.

Class . Solid angles replaced by tangent planes.
When the modifying planes first touch each other on

the edges of the tetrahedron, a regular octahedron is

produced.
When the primary planes are entirely effaced, the

new figure is a tetrahedron similar to the primary.
Plane a on P or P', 109 28' 16".

Class b. Solid angles replaced by three planes

resting on the primary planes.

The new figures would be dodecahedrons, gene-

rally with trapezoidal planes ;
but one individual

modification belonging to this class produces the

rhombic dodecahedron.
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Class c. Solid angles replaced by three planes

resting on the primary edges.
The new figures would be dodecahedrons with

triangular planes.
The planes resulting from classes b, and c, would

produce a great variety of dodecahedral solids ; not

any of which, except the rhombic dodecahedron, can

be derived from the octahedron according to the law
of symmetry.

Class d. Solid angles replaced by six planes.
The new figures would be contained within 24

triangular planes.

Class e. Edges replaced by tangent planes.
Produces the cube.

Plane e on P or P', 120 15' 52".

Class/. Edges replaced by two planes.
The new figures would be dodecahedrons with

triangular planes, appearing as three-sided pyramids
on the planes of the tetrahedron.

if 2
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Primary form. The regular octahedron.

Plane P on P', or P", 109' 28' 16".

Modifications.

Class a. Solid angles replaced by tangent planes.

The new figure resulting from this modification is

the cube.

Class b. Solid angles replaced by four planes

resting on the primary planes.
The new figures would be contained within 24

trapezoidal planes.

Class c. Solid angles replaced by four planes

resting on the primary edges.
The new figures would be contained within 24

isosceles triangular planes.
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Class d.

Class e.

Class/
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Class d. Solid angles replaced by eight planes.
The new figures would be contained within 48

triangular planes.

Class e. Edges replaced by tangent planes.
The new figure would be the rhombic dodecahedron.
Plane e on P or P', 144' 44' 8".

Class/. Edges replaced by two planes.
The new figures would present a trihedral pyramid

on each primary plane.

It has been already stated that the cleavages of the

octahedron and the tetrahedron are perfectly similar,

and that it is only by means of the secondary planes
of each, that we can discriminate these primary forms

from each other.

The octahedron may be distinguished as a primary
form from the tetrahedron, according to the rules

laid down in a former section, by such of its single

modifications as could be produced on the tetra-

hedron only by the simultaneous operation of two or

more separate modifications.

But it is obvious that all the modifications of the

octahedron, except mod. a and
(/,

would require a

double decrement for their production, supposing the

tetrahedron were the primary form.
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This may be easily conceived, if we recollect that

the octahedron itself is a figure resulting from the

modification a of the tetrahedron; and that the edges
of the modifying plane 0, of the tetrahedron, are not

affected by modification e, or fy which replace the

primary edges of the tetrahedron ; and that the pri-

mary edges of the tetrahedron are not affected by the

modifications
,
and c, which would replace the edges

of the modifying plane a. Three classes of modifica-

tion must therefore concur upon the tetrahedron, to

produce most of the secondary forms of the octa-

hedron.

ITS MODIFICATIONS.

Primary form. The rhombic dodecahedron.

Plane P on P', 90.

P on P", 120.

For the sake of avoiding a frequent repetition of

the description of the two kinds of solid angles of this

figure, those contained within four acute plane angles
will be called the acute solid angles, and those con-

tained within three obtuse plane angles, will be called

the obtuse solid angles.

Modifications.

Class . Acute solid angles replaced by tangent

planes.

The new figure would be the cube.

Plane a on P, 135.
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Class b. Acute solid angles replaced by four planes

resting on the primary planes.

The new figures would be contained within 24

isosceles triangular planes.

Class c. Acute solid angles replaced by four planes

resting on the primary edges.

The new figures would be contained within 24

trapezoidal planes.

Class d. Acute solid angles replaced by eight

planes.

The new figures would be contained within 48

triangular planes.

Class e. Obtuse solid angles replaced by tangent

planes.

The new figure would be the regular octahedron.

Plane e on P 144 44' S".
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Class/. Obtuse solid angles replaced by three

planes resting on the primary planec.
The new figures would be contained within 24

isosceles triangular planes.

Class g. Obtuse solid angles replaced by three

planes resting on the primary edges.
The new figures would be contained within 24

trapezoidal planes.

Class //. Obtuse solid angles replaced by six

planes.

The new figures would be contained within 48

triangular planes.
.-

_,,

Class t. Edges replaced by tangent planes.
The new figures would be contained within 24

trapezoidal planes.
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Class k. Edges replaced by two planes.

The new figures would be contained within 48

triangular planes.

It may be remarked that the secondary forms be-

longing to the four preceding classes of primary

forms, are nearly similar to each other. And, with

the exception of the tetrahedron, each primary form

is found to be also a secondary form to each of the

other primary.
The table of secondary forms, which will be found

at the end of the tables of modifications, exhibits the

relation to each other of each of the preceding classes

of secondary forms.

BASE, AND ITS MODIFICATIONS.

Primary form. The octahedron with a square base.

The individuals belonging to this class will differ

from each other in the inclination of P on P", and

consequently of P on P'.

Modifications.

Class a. Terminal solid angles replaced by tan-

gent planes.

As this modification contains only two parallel

planes, those planes can never efface the primary
planes and produce a solid. The same observation
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Class b.

Class c.

Class d.
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will apply to all those classes which produce only two,

or four', parallel planes upon the primary form. In

these cases, as no entire secondary form can result

from the secondary planes alone, no new figure is

described.

Class b. Terminal solid angles replaced by four

planes resting on the primary planes.

The new figures would be more obtuse octa-

hedrons.

Class c. Terminal solid angles replaced by four

planes resting on the primary edges.

Another series of octahedrons more obtuse than

the primary would result from this class.

Class /. Terminal solid angles replaced by eight

planes.

The new figures would be double eight-sided pyra-
mids united at a common base, and measuring un-

equally over the two pyramidal edges of each of the

planes. The surfaces of the new planes would

generally be scalene triangles.
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Class e. Solid angles of the base replaced by tan-

gent planes.

This modification would produce only four sides of

a prism.

Class/. Solid angles of the base replaced by two

planes resting on the edges of the summits.

This modification would produce a series of octa-

hedrons more acute than the primary.

Class g. Solid angles of the base replaced by two

planes resting on the edges of the base.

n 2
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Class h.
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Class h. Solid angles of the base replaced by four

planes resting on the primary planes, and having their

edges parallel to the edges of the pyramids.

Class i. Solid angles of the base replaced by four

planes inclining more on- the terminal edges than

modification h.

Class k. Solid angles of the base replaced by four

planes inclining more on the edges of the base than

modification h.

A series of double eight-sided pyramids might
result from class h

y ,
and

, analogous to those re-

sulting from class d, but more acute.
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Class /. Edges of the pyramids replaced by tan-

gent planes.

The new figure resulting from this modification

would be an octahedron with a square base, but more

obtuse than the primary.

Class m. Edges of the pyramids replaced by two

planes.

Class m would produce eight-sided pyramids simi-

lar in character to those resulting from class d.

Class n. Edges of the base replaced by tangent

planes.
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Class o. Edges of the base replaced by two planes.
The new figures would be octahedrons, more acute

than the primary.

The character, and number, of the modifications of

this, and some other of the following classes of pri-

mary forms, arise from the dissimilarity between the

edges and angles of the summits, and those of the

base, in the octahedrons ;
and between the angles of

the terminal planes, or the terminal and the lateral

edges of the prisms, and sometimes between the la-

teral edges themselves.

The primary crystals belonging to this class of

primary forms, are distinguishable from regular octa-

hedrons by the unequal inclinations of the plane P
on P', and P on P''

;
and the secondary forms may be

distinguished by the modifications taking place on

some only of the edges or angles, and not on all, as

they do on the regular octahedron. If two of its

edges measure over the summit more than 90, the

octahedron of this class is called obtuse ; if less than

90, it is called acute. In the regular octahedron the

edges measure exactly 90 over the summit.

The secondary octahedrons belonging to this class,

have, like the primary, square bases.
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Primary form. An octahedron with a rectangular
base.

In this figure the broad planes P P', meet at the

edge of the base at a more obtuse angle than the nar-

row ones MM 7
. The edge D may therefore be

denominated the obtuse edge of the base, and the

edge F the acute edge; or they may be termed the

greater and lesser edges of the base.

The individuals belonging to this class of primary
forms will differ from each other in the inclination

of Pon P', or ofM on M'.

Modifications.

Class . Terminal solid angles replaced by single

planes.

Class b. Terminal solid angles replaced by two

planes, resting on the broad planes.
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Class d.
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Class c. Terminal solid angles replaced by two

planes, resting on the narrow planes.

Class d. Terminal solid angles replaced by four

oblique planes.

The new figures would be octahedrons with

rhombic bases.

Class e. Solid angles of the base replaced by

single planes, whose edges are parallel to the edges
of the pyramids.

Class f. Solid angles of the base replaced by

single planes, inclining on the greater edges of the

base more than those of modification e.
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Class g.

Class h.

Class i .

Class L
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Class g. Solid angles of the base replaced by

single planes inclining more on the lesser edges of

the base than those of modification e.

Classes e/and g, would give the lateral planes of

a series of right rhombic prisms.

Class h. Solid angles of the base replaced by two

planes, one edge of each new plane being parallel

to a pyramidal edge of the broad primary planes.

Class t. Solid angles of the base replaced by two

planes, one edge of each new plane being parallel to

a pyramidal edge of the narrow primary planes.

Class k. Solid angles of the base replaced by two

planes, neither of whose edges are parallel to any

edge of the primary form.
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Class m.

Class n.

Class o.
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Class /. Edges of the pyramids replaced by single

planes.

A series of octahedrons with rhombic bases would

result from Classes h, i, k, and /.

Class m. Greater edges of the base replaced by

single planes.

Class n. Greater edges of the base replaced by
two planes.

Class <?. Lesser edges of the base replaced by

single planes.
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Class p. Lesser edges of the base replaced by two

planes.
This species of octahedron has been adopted here

as a primary form, in conformity with the opinions
entertained by the Abbe Haliy of its belonging to

certain species of minerals. But it is probable that

the right rhombic prism is really the primary form,
of most, if not of all, those species, and that there is

not any mineral whose crystals are strictly referable

to this class of octahedrons.

BASE, AND ITS MODIFICATIONS.

Primary form. An octahedron with a rhombic base.

It has been already observed that this figure is

drawn with the greater diagonal of the base horizontal.

Hence the primary planes meet at the edge B, at a

more acute angle than at the edge C. The edge B
will therefore be denominated an acute edge of theO

pyramid, and the edge C, an obtuse edge of the pyra-
mid. The solid angle at E will be termed the acute

lateral solid angle, and that at I the obtuse lateral

solid angle.

The individuals belonging to this class will differ

from each other in the inclinations of P on P' and

on P".

T 2
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Modifications.

Class a. Terminal solid angles replaced by tangent

planes.

Class b. Terminal solid angles replaced by two

planes, resting on the obtuse edges of the pyramids.

Class c. Terminal solid angles replaced by two

planes, resting on the acute edges of the pyramids.

Class d. Terminal solid angles replaced by four

planes, resting on the primary planes.
The edges of the planes c?,

which intersect the

primary planes, are parallel to the edges of the base.
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Class e. Terminal solid angles replaced by four

oblique planes, inclining on the obtuse edges of the

pyramids.

Class/". Terminal solid angles replaced by four

oblique planes, inclining on the acute edges of the

pyramids.
Modifications e, and f, may be distinguished from

modification d, by the edges of the modifying planes
which intersect the primary planes, not being parallel

to the edges of the base.

Classes d, e, and/J would produce a series of octa-

hedrons with rhombic bases, more obtuse than the

primary.

Class g. Obtuse lateral solid angles replaced by

tangent planes.
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Class h.

Class i.

Class



BASE, AND ITS MODIFICATIONS. 153

Class h. Obtuse lateral solid angles replaced by
two planes, resting on the edges of the pyramids.

Class i. Obtuse lateral solid angles replaced by
two planes, resting on the edges of the base.

Planes i might be the lateral planes of a right

rhombic prism.

Class k. Obtuse lateral solid angles replaced by
four planes, resting on the primary planes.

The edges produced by the intersection of the

planes of this modification with the primary planes,
are parallel to the primary edges of the pyramids.
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Class I. Obtuse lateral solid angles replaced by
four oblique planes, inclining on the obtuse edges of

the pyramids.

Class m. Obtuse lateral solid angles replaced by
four oblique planes inclining on the edges of the

base.

The edges of planes /,
and m, intersect the primary

planes in lines which are not parallel to the primary

edges of the pyramids.
The new figures resulting from classes #, I and m,

would be octahedrons, more acute than the primary,
with rhombic bases.

Class n. Acute lateral solid angles replaced by

tangent planes.
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Class o. Acute lateral solid angles replaced by
two planes, resting on the edges of the pyramids.

If we suppose the octahedron to be placed with its

axis horizontally, the planes of classes 5, c, h, or o,

might be the lateral planes of right rhombic prisms.

Class p. Acute lateral solid angles replaced by
two planes, resting on the edges of the base.

Planes p might be the lateral planes of a right
rhombic prism.

Class q. Acute lateral solid angles replaced by
four planes, resting on the primary planes, and inter-

secting those planes in lines parallel to the edges of

the pyramids.
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Class r. Acute lateral solid angles replaced by
four oblique planes, inclining on the edges of the

pyramids.

Class s. Acute lateral solid angles replaced by
four oblique planes, inclining on the edges of the base.

The planes r, and s, intersect the primary planes
in lines which are not parallel to the edges of the

pyramids.
The new figures resulting from class q, r, and s,

would be octahedrons, more acute than the primary,
with rhombic bases.

Class t. Obtuse edges of the pyramids replaced

by tangent planes.



160 THE OCTAHEDRON WITH A RHOMBIC

Class u.

Class v.

Class x.

Class y.
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Class u. Obtuse edges of the pyramid replaced by
two planes.

Class v. Acute edges of the pyramid replaced by

tangent planes. /

<IXA ^MglHIKi VTWDIH 3IIT
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Class x. Acute edges of the pyramid replaced by
two planes.

The new figures produced by class u, and
or, would

be octahedrons, more obtuse than the primary, with

rhombic bases.

Class
2/. Edges of the base replaced by tangent

planes.

Planes y might be the lateral planes of a right
rhombic prism.
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Class z. Edges of the base replaced by two planes.
The new figures would be more acute octahedrons,

with rhombic bases.

The unequal angles at which the primary planes
incline to each other at the edges B and C, sufficiently

distinguish this class of octahedrons from the pre-

ceding classes.

ITS MODIFICATIONS.

Primary form. A right square prism.

The individuals of this class will differ from each

other in the comparative length of the edges G and B.

Modifications.

Class a. Solid angles replaced by single planes
whose edges are generally isosceles triangles.

But they are not necessarily always so.

For if the decrements in height be to those in

breadth in exactly the same ratio that the terminal

edge of the prism bears to its height, the truncating

planes on the angles will be equilateral triangles,

and those on the edges of the summit would, under

similar circumstances, be tangent planes.
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It is however extremely improbable that this pre-

cise relation between the dimensions of the prism and

the law of decrement should ever exist. The charac-

ter of the modifying planes, as given above, may
therefore be considered to exist in all the prisms

belonging to this class.

Modification a would produce a series of four-

sided pyramids on each summit, resting on the lateral

edges of the prism. And if the modifying planes
were so enlarged as to efface the primary planes, a

series of octahedrons with square bases would result.

The planes produced by this modification incline

equally on M and M', but at a different angle from

that at which they incline on P. This character of

the plane ,
will distinguish it from plane a of the

cube; and its equal inclination on M and M', will

distinguish it from plane a of the right rectangular

prism.

Class b. Solid angles replaced by two planes.

The new figures produced by this class would be

eight-sided pyramids, similar to those produced by

rf, h, i, 7c and m of the octahedron with a square base.

MA ,M8W1 A3(J3HKr33ft.
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Class c. Edges of summit replaced by single

planes not forming equal angles generally with the

adjacent terminal and lateral planes.

Produces a series of four-sided pyramids resting
on the lateral planes of the prism ; and by an exten-

sion of the modifying planes, a series of octahedrons

with square bases would result.
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Class d. Edges ofprism replaced by tangent planes.

The equal inclination of the planes d, upon the

adjacent primary lateral planes, distinguishes these

secondary forms from those of the right rectangular

prism.

Class e. Edges of prism replaced by two planes*

The modifications of the terminal edges alone, or

the lateral edges alone, will tend to distinguish the

secondary crystals belonging to this class of prisms,

from those derived from the cube.

A close resemblance may be remarked between the

primary and secondary forms of this class of prisms,

and those of the octahedron with a square base
; and

it is only from the cleavage that we are enabled to

decide which of these forms is to be regarded as the

primary, in reference to such secondary forms as are

common to both.

ITS MODIFICATIONS.

Primary form. A right rectangular prism.

The individuals belonging to this class will differ

from each other in the comparative length of the

three adjacent edges C, B, and G.
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Modifications.

Class a. Solid angles replaced by single scalene

triangular planes, which incline on the three adjacent

primary planes at unequal angles.
The new figures which would be ultimately pro-

duced by this class of modifications, would be a series

of octahedrons with rhombic bases.

Class b. Greater terminal edges replaced by single

planes.

Class c. Lesser terminal edges replaced by single

planes.

The new figures which would be produced by a

combination of modifications b and c, would be a

series of octahedrons with rectangular bases.

Class d. Lateral edges of the prism replaced by

single planes.

A series of right rhombic prisms would result from

this class of modifications.

If more planes than one be found modifying any
one of the edges or angles of this form, they are sup-

posed to result from as many individual modifications,
as there are planes upon the particular edge or angle
on which they occur.

The planes produced by modifications class by c,
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and dy will generally incline on the adjacent primary

planes at unequal angles.

The occurrence of modification b, alone, or modifi-

cation c, alone, or the unequal inclination of plane d,

or M, and T, will tend to distinguish the crystals

belonging to this class of prisms from those of the

square prism or cube.

ITS MODIFICATIONS.

Primary form. A right rhombic prism.
The solid angles at A will be termed the obtuse,

and those at E the acute solid angles, of this class of

prisms. The edge G will be called the acute, and the

edge H the obtuse, lateral edges of the prisms.
The individuals belonging to this class will differ

from each other in the inclination of M on M', or in

the ratio of the edge H to the edge B.

Modifications.

Class . Obtuse solid angles replaced by single

planes which intersect the terminal plane parallel

to its greater diagonal.

When the planes a, increase so much as to meet

above the terminal plane, the resulting figure may
be an octahedron with a rectangular base, as shewn

in fig. 228.

Fig. 228.
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Class b. Obtuse solid angles replaced by two

planes.

This modification would produce a series of four-

sided pyramids, replacing- the terminal plane, and

the new figures would be octahedrons with rhombic

bases.

Class c. Acute solid angles replaced by single

planes, which intersect the terminal plane parallel

to its short diagonal.

An octahedron with a rectangular base, as shewn

in fig. 231, may result from this class of modifications

also, but reversed in its position when compared with

that produced by modification a.

Fig. 231.

Class d. Acute solid angles replaced by two planes.
This class produces octahedrons with rhombic bases,

differing from those which might result from class .

only in the relative inclination of the secondary planes
to each other.
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Class e. Terminal edges replaced by single planes.

This modification would produce a series of four-

sided pyramids replacing the terminal planes, and the

new figures would be octahedrons with rhombic bases.

. Obtuse lateral edges replaced by tangent

planes.

Class g. Obtuse lateral edges replaced by two

planes.
When the primary lateral planes are effaced by

the planes g, a series of secondary right rhombic

prisms would be produced.

Class h. Acute lateral edges replaced by tangent

planes.
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Class t. Acute lateral edges replaced by two planes.

This modification would produce another series of

right rhombic prisms.
A general analogy may be observed to prevail be-

tween these secondary forms, and those of the octa-

hedron and a rhombic base, and it is only from

cleavage that we are enabled to refer the secondary
forms to either of these primary ones.

AND ITS MODIFICATIONS.

Primary form. A right oblique-angled prism.

The angles and edges of this class of prisms may
be designated as those of the right rhombic prism
have been, calling the solid angles at A the obtuse,

those at E the acute solid angles ;
the lateral edges

at H the obtuse, those at G the acute lateral edges ;

the edges B may be called the greater, and C the

lesser terminal edges.
The individuals belonging to this class of prisms

will differ from each other in the inclination of M on

T, and in the relative lengths of the edges C, B,

andH.

Modifications.

Class a. Obtuse solid angles replaced by single

planes.
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Class 6. Acute solid angles replaced by single

planes.

The planes of both these modifications are scalene

triangles.

Class c. Greater terminal edges replaced by single

planes.

Class d. Lesser terminal edges replaced by single

planes.

The relative dimensions of the terminal edges can

be ascertained only from some modification which is

supposed to indicate the direction of one of the diago-

nals of the terminal plane ; from this the angle which

the diagonal makes with an edge of the same plane

may be deduced, and thence the ratio of the terminal

edges may be known.

Class e. Obtuse edges of the prism replaced by

single planes.
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Class /. Acute edges of the prism replaced by

single planes.
Modifications e, and /, incline unequally on the

adjacent lateral planes.

The characters which distinguish this class of

prisms from right rhombic prisms, are, first, the un-

equal inclinations of any secondary lateral plane on

the two adjacent lateral primary planes ; and secondly,
the occurrence of similar modifying planes upon two

only of the terminal edges.
There is a remarkable general character ofobliquity

in the planes resulting from modifications c, and </,

which tends to distinguish the secondary forms be-

longing to this class of primary forms from those

belonging to the right rectangular prism.

Epidote affords a good illustration of this character.

ITS MODIFICATIONS.

Primary form. An oblique rhombic prism.

The figure is supposed to be oblique in the direc-

tion O A, so that the terminal plane forms an obtuse

angle with the edge H. The planes M M', may meet

at an acute, or an obtuse angle. For the convenience

of description, the solid angle at A, will, in either

case, be called the acute solid angle ;
that at O, the

obtuse solid angle ; and those at F, the lateral solid

angles.

The edges B will be called the acute terminal edges,
and those at D the obtuse terminal edges. The edge
H, and its opposite, are the oblique edges oftheprism^
and G and (J' the lateral edges of the prism.
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The individuals of this class will differ from each

other in the inclination of M on M', and in the ratio

of the edge H to the edge D.

Modifications.

Class a. Obtuse solid angles replaced by single

planes.

Class b. Obtuse solid angles replaced by two

planes.

Class c. Acute solid angles replaced by single

planes.
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Class d. Acute solid angles replaced by two

planes.

Class e. Lateral solid angles replaced by single

planes.

This class would produce a series of octahedrons

analogous to those resulting from modification c of

the right rhombic prism, but whose bases instead of

being rectangles, would be oblique-angled parallelo-

grams.

Class/. Obtuse terminal edges replaced by single

planes.

2 A
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Class g. Acute terminal edges replaced by single

planes.

Class h. Oblique edges of the prism replaced by
tangent planes.

Class i. Oblique edges of the prism replaced by
two planes.

2A2
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Class k. Lateral edges of the prism replaced by

tangent planes.

Class /. Lateral edges of the prism replaced by
two planes.

Classes
/, and /, would produce other oblique rhom

bic prisms, varying from the primary, and from each

other, in the angles at which their lateral planes
would meet.

In this class of primary forms the cleavage planes,

parallel to one of the lateral planes, are sometimes

brighter than those parallel to the other planes, which

is not the general character of symmetric cleavage.
This class of prisms may generally be distinguished

from rhomboids, by the unequal angles at which the

adjacent planes incline to each other at a terminal

edge, and at an adjacent lateral oblique edge; but if

these planes should respectively meet at equal angles,
as it is possible they may do, the distinction then would

arise from the lateral edge being greater or less than

the terminal one. For it is possible that the in-

clination of P on M, or M'
3
should be equal to that of

M on M', but in this case the edges D would be

greater or less than the edges H, and this prism
would then bear the same analogy to the rhomboid,
that the square prism does to the cube.
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Primary form. A doubly oblique prism.
*

'

This class of prisms may be supposed to stand in

the same relation to the right oblique-angled prisms,

that the oblique rhombic prism does to the right

rhombic prism ; and the following modifications will

be better understood, by supposing a right oblique-

angled prism to become oblique from an acute or

an obtuse edge of the prism. This form will then be

readily perceived to vary from the oblique rhombic

prism, in the dissimilarity of its plane angles A, E,

I, and O, of its acute terminal edges B C, and of its

obtuse terminal edges D and F.

The edges and angles of this class of prisms may
be designated by the same terms as have been used

for the corresponding ones of the oblique rhombic

prism.
The individuals belonging to this class will differ

from each other in the inclination of P on M, P on T,
and M on T, and in the ratios of the edges D, H,
and F.

Modifications.

Class o. Obtuse solid angles O, replaced by single

planes.
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Class b.

Class c.

Class d.

Class c.
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Class b. Acute solid angles A, replaced by single

planes.

Class c. Lateral solid angles E, replaced by single

planes.

Class d. Lateral solid angles I? replaced by single

planes.

Class e. Acute terminal edges B, replaced by
single planes.
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Class/.

Class g.

Class h.

Class f .

M
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Classy. Acute terminal edges C, replaced by single

planes.

Class g. Obtuse terminal edges D
? replaced by

single planes.

Class h. Obtuse terminal edges F, replaced by

single planes.

Class i. Oblique edges of prism replaced by single

planes.

2 B
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Glass k.

THE REGULAR HEXAGONAL PRISM, AND

Primary form.

W P

M II*
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Class k. Lateral edges of prism replaced by single

planes.

From the dissimilarity of any two adjacent edges
or angles of this class of primary forms, the modi-

fications, it will be remarked, are all single planes ;

some of the compound secondary forms belonging to

this class, are among the most difficult crystals to be

understood.

ITS MODIFICATIONS.

Primary form. A regular hexagonal prism.

The planes M on M', measure 120. M on d, 150".

The individuals belonging to this class will differ

from each other in the ratio of the edge G to the

edge B.

Modifications.

Class a. Solid angles replaced by single planes.

Produces a six-sided pyramid on each summit,

resting on the edges of the prism.

The new figures would be a series ofdodecahedrons

with isosceles triangular planes.
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Class b.

Class c.

Class d.

Class e.
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Class b. Solid angles replaced by two planes.

The series of new figures would be contained

within 24 triangular planes.

Class c. Terminal edges replaced by single planes.
Produces a regular hexagonal pyramid on each

summit, resting on the planes of the prism.
The new figures would be dodecahedrons with

isosceles triangular planes.

Class d. Lateral edges replaced by tangent planes.

Class e. Lateral edges replaced by two planes.

The primary and secondary forms of this class, are

similar in character to some of the secondary forms

of the rhomboid ; and it is only by their respective

cleavages that they can be distinguished from each

other.
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Primary form.
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Primary form. A rhomboid.

It is found convenient to designate the edges and

angles 'of this figure as follows.

The angle at A is the superior angle of the plane P ;

that at O is the inferior angle ;
those at F are the

lateral angles ;
the edges B are the superior edges ;

those at D the inferior edges.

The solid angle at A may also be called the termi-

nal solid angle, or solid angle of the summit. The

edges B the terminal edges, or edges of the summit.

The solid angles at E, the lateral solid angles, and

the edges D, the lateral edges.
The individuals belonging to this class are usually

distinguished from each other by the inclination of P
on P'. When P on P' measures more than 90, the

rhomboid is called obtuse ; when less, it is called

acute.

The angle P on P', is limited between 180 and 60,
but it is obvious it can never reach either of those

limits
;

for the axis must vanish, before the planes P
and P 7 would reach 180, or become one plane, and
it must be infinite, before these planes could incline

to each other at an angle of 60; in either of which

cases the figure would cease to be a rhomboid.
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Modifications.

Class a.

Class b.

Class c.
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Modifications.

Class a. Terminal solid angles replaced by tangent

planes.

Class b. Terminal solid angles replaced by three

planes resting on the primary planes.

Class c. Terminal solid angles replaced by three

jlanes resting on the primary edges.

Modifications b, and c, would produce a series of

homboids more obtuse than the primary.
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Class d.

Class e.

Class/.
L-

:

v*il
'



ITS MODIFICATIONS.

Class d. Terminal solid angles replaced by six

planes, producing, ultimately, a series of dodeca-

hedrons whose planes are generally scalene triangles*

Class e. Lateral solid angles replaced by single

planes parallel to the perpendicular axis of the

rhomboid.

Planes e, are the lateral planes of a regular hex-

agonal prism.

Class f. Lateral solid angles replaced by two

planes, meeting at an edge which is parallel to the

perpendicular axis of the rhomboid.

Planes f represent the lateral planes of a series of

dodecahedral prisms.
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Class g.

Class 7i,

Class i.
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Class g. Lateral solid angles replaced by single

planes inclining* on the superior edges.

Class h. Lateral solid angles replaced by two

planes, which intersect each other at an edge that

inclines on the superior edges; and which also in-

tersect the adjacent primary planes parallel to their

oblique diagonals.

Class i. Lateral solid angles replaced by two

,planes, which like those of class h, intersect each

other at an edge that inclines on the superior edges,

but do not intersect the adjacent primary planes

parallel to their oblique diagonals.
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Ciass A.

Class /.

Class in.



ITS MODIFICATIONS. 209

Class k. Lateral solid angles replaced by single

planes inclining on the primary planes.

Modifications g, and Ic, will produce a series of

rhomboids more acute than the primary, except one

variety of class g, which produces a rhomboid similar

to the primary.

Class /. Lateral solid angles replaced by two

planes, which intersect each other at an edge that

inclines on the primary planes.
Modifications h, i, and &, lead to a series of dode-

cahedrons whose planes are generally scalene tri-

angles.

Class m. Superior edges replaced by tangent

planes.

Produces a rhomboid more obtuse than th'e pri-

mary.
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Class n.

Class o.

Class p.
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Class n. Superior edges replaced by two planes.

A series of dodecahedrons may result from this

modification, whose planes are generally isosceles

triangles.

Class o. Lateral edges replaced by tangent planes.
Planes o are the lateral planes of a regular hex-

agonal prism.

Class p. Lateral edges replaced by two planes.

From this modification there results a series of

dodecahedrons, whose planes are generally scalene

triangles.
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. The modifications of (he rhomboid, and the second-

ary figures to which they lead, are generally dis-

tinguishable from those of the oblique rhombic prism.

But those which mark the distinction with the great-

est certainty, are modifications a, e, g*, A", and m, of

the rhomboid. In the oblique rhombic prism, modifi-

cation c, corresponding with a on the rhomboid, is

not a tangent plane ;
and modification e of the prism,

corresponding in position to some of the planes of

modification e, g*, k, and m, of the rhomboid, affects

only four solid angles of the prism instead of the six

which are simultaneously modified on the rhomboid.

The three edges of the rhombic prism which meet

at the solid angle A, are not generally all modified

at the same time, as those of the rhomboid are ; nor

are the edges G and D modified together as the cor-

responding edges are in class m of the rhomboid.

When the primary planes of the rhomboid are

effaced, it is frequently only by observing the direc-

tion of the natural joints, or cleavage planes, that

we are enabled to determine the classes of modifi-

cation to which its secondary forms belong.

Several of the preceding classes of primary forms

stand in certain relations to each other, which it has

not fallen within the scope of the tables to point out.

If we imagine the lateral edges of the cube to be

lengthened or shortened, a square prism would be

produced. If while the lateral edges are lengthened,

or shortened, we conceive four parallel terminal

edges to be lengthened or shortened also, but in a

different ratio to the remaining edges of the cube

from that in which the lateral edges have been varied,

we shall then have the right rectangular prism.
It will facilitate our description of the relation of

some of the primary forms to certain others, if we
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conceive the edges to represent wires, united at the

solid angles by universal hinges or joints, and capable

of being moved in every direction ; and, together

with the axes, capable also of being lengthened or

shortened.

If we conceive one of the axes of the cube to be

lengthened, the resulting figure would be an acute

rhomboid. If we suppose the axis shortened by

pressing at the same time upon the two opposite

solid angles through which the axis to be shortened

passes, an obtuse rhomboid would be produced.
If two opposite lateral edges of the square prism

be supposed to be gradually pressed together, so as

to shorten one of the diagonals of the terminal plane,

and to lengthen the other, the resulting figure would

be a right rhombic prism.
If we now suppose pressure applied to an acute or

an obtuse solid angle of this rhombic prism^ and the

prism to be forced from its perpendicular in the

direction of one or other of the diagonals of its ter-

minal plane, an oblique rhombic prism would be pro-

duced.

Iftwo opposite lateral edges ofthe right rectangular

prism be pressed more or less towards each other, a

right oblique-angled prism would be produced.
And if this right oblique-angledprism were slightly

forced from its perpendicular position, in the direc-

tion of either of its diagonals, a doubly oblique prism
would result.

So if the vertical axis of the regular octahedron

were to be lengthened or shortened, an octahedron

with a square base would be produced. And if two

opposite angles of that square base were pressed

together so as to shorten one of its diagonals, and, to

lengthen the other, the resulting figure would be the

octahedron with a rhombic base.

,
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IT may be observed in the preceding tables of

modifications, that many of the secondary forms of

crystals, are similar to some of the classes of the pri-

mary. And it may also be remarked, in many in-

stances, that the secondary forms when complete, or

the new figures, as they are termed, are different from

all the primary forms.

The following table exhibits the relations of both

these descriptions of secondary forms to the several

classes of the primary from which they might be pro-

duced; and it may thus be regarded as a kind of

index to the tables of modifications.

The first column contains a list of the secondary

forms, several of which are exhibited in their com-

plete state, or as they would appear if they were

contained within the modifying planes only.

The second column contains the references to the

classes of primary forms, and of modifications, from

which the figures in the first column might respec-

tively result.

A single example will sufficiently illustrate the use

of this table.

If we desire to know from what primary form a

right square prism may be derived, we find that it

may result from its own modification d; or from an

octahedron with a square base, by the concurrence,

on one crystal of that form, of the modifications a and

e, or a and w, when those modifications efface the pri-

mary planes. And if we turn to those modifications

of the octahedron with a square base, we shall observe

that modification a would produce the terminal
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planes, and e, or w, the lateral planes of a right

square prism.

Secondaryforms. How they may be derived.

1. CONTAINED WITHIN FOUR
PLANES.

The regular tetrahedron . From the cube. Mod. g.

2. CONTAINED WITHIN six

PLANES.

The cube

The right square prism

The right rectangular

prism

From the regular tetrahedron.

Modification e.

regular octahedron.

Modification a.

rhombic dodeca-
hedron. Modification a.

, right square prism.
Modification d. The octa-

hedron with a square base,

by a concurrence of Modi-
fications a and e, or a and ,

on the same crystal.

, octahedron with a

rectangular base, by the

concurrence of Modifica-

tions a, w, and o, on the

same crystal.
...... octahedron with a

rhombic base, by the con-

currence of Modifications

, ,, and w, on the same

crystal.
, right rhombic

prism, if Modifications f
and h occur on the same

crystal, and efface the la-

teral primary planes.
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Secondary forms.

The right rhombic prism .

The right oblique-angled

prism

How they may be derived.

From the octahedron with a

rectangular base, by the

concurrence of Modifications

a and e, or a and /?
or a

and g, on the same crystal ;

or of b and o, or n and o, in

which case o would appear
a terminal plane ; or of c

and m,or p and m, appear-

ing then as the terminal

plane.
octahedron \vith a

rhombic base, by the con-

currence of Modifications

a and i
9 or a and p, or a

and #, on the same crystal;
or of b and w, or h and w,
or t and n ; or of c and

g-,

or o and
g-,

or v and g ; but
in these latter combina-

tions, n and g would ap-
pear as terminal planes.

right rectangular

prism. Modification c?; or

Modification &, or c, if we
suppose the planes &, or c,

to have effaced four of the

primary planes, and the

figure then rest on the plane
MorT.

right rhombic prism,
Modification g, or i.

oblique rhombic

prism, by the concurrence

of Modifications h and
A:,

on

the same crystal, and by
supposing the secondary
form to rest upon the plane
A:. In this position the

planes k would appear as

the terminal planes of the

new figure, and plane P as

one of the lateral planes.
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Secondary forms.

The rhomboid

CONTAINED WITHIN EIGHT
PLANES.

The regular octahedron.

The octahedron with a

square base

The octahedron with a

rectangular base ......

The octahedron with a

rhombic base

How they may be derived.

From the rhomboid, Modi-

fication, by c, g, &, or m.

From the cube, Mod. a.

........ regular tetrahedron.
Modification o, when the

secondary planes first touch
each other on the edges of
the tetrahedron. In this

state of the figure, four of
the octahedral planes are

obviously the primary
planes of the tetrahedron.

rhombic dodeca-

hedron. Modification e.

octahedron with a

square base, Modification

...... right square prism,
Modification u, or c.

right rectangular

prism, by the concurrence
of Modifications b and c.

the right rhombic

prism, when Modification

,
or c, is combined with

four of the primary planes.

octahedron with a

rectangular base, Modifi-
cation A, , A:,

or /.

octahedron with a

rhombic base, Modification

or z.

right rectangular

prism, Modification a.

right rhombic prism^
Modification # rf or e.
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Secondary forms.

The hexagonal prism ....

How they may be derived.

From the rhomboid, by a
combination of Modifica-

tions a and e, or a and m.

hexagonal prism.
Modification d.

right rhombic prism
of 120, Modification h.

4. CONTAINED WITHIN
TWELVE PLANES.

a. The planes being isosceles

triangles.

Fig. 289. From the regular tetrahedron,
Modification c.

cube, Modification

Fig. 290. From the regular tetrahe-

dron, Modification/.
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Secondaryforms. How they may be derived.

Fig. 291,

b. The planes being sca-

lene triangles.

Fig. 292.

c. The planes being
rhombs.

The rhombic dodecahe-

dron

From the rhomboid, particu-
lar planes of Modification

d, h, i, I,
or n.

hexagonal prism.
Modification a, or c.

, rhomboid, Modifi-

cation d, h
y i, /, w, orjp.

cube, Modification

, regular tetrahedron,

particular Modification be-

longing to class b.

,...,.. regular octahedron,
Modification e.
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Secondaryforms.

d. The planes being tra-

pezoids.

Fig. 293.

e. The planes

tagons.

Fig. 294.

pen-

5. CONTAINED WITHIN SIX-

TEEN TRIANGULAR PLANES,
which are generally sca-

lene, but may be isosceles

triangles.

Fig. 295.

How they may be derived.

From the regular tetrahedron.
Modification b generally.

, cube, Modification

k.

regular tetrahedron,

particular Modification be-

longing to class d.

From the octahedron with a

square base, Modification

d, ^, ?, &, or m.

right square prism,
Modification b.
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Secondary forms.

CONTAINED WITHIN TWEN-
TY-FOUR PLANES.

a. The planes being isos-

celes triangles.

Fig. 296.

I. The planes being equal

trapezoids.

Fig. 298.
x

'How they may be derived.

From the cube. Modification

regular tetrahedron,
Modification d.

regular octahedron,
Modification c,

rhombic dodecahe-

dron, Modification b.

cube, Modification

regular octahedron,
Modification f.

rhombic dodecahe-

dron. Modification/.

cube, Modification

b.

regular octahedron,
Modification b.

rhombic dodecahe-

dron, Modification c, g, or
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Secondary forms.

7. CONTAINED WITHIN FORTY-
EIGHT TRIANGULAR PLANES.

Fig. 299.

How they may be derived.

From the cube, Modification

d.

regular octahedron.
Modification d.

rhombic dodecahe-

dron. Modification
</, A, or

K*



SECTION XII.

ON THE APPLICATION OF THE TABLES
OF MODIFICATIONS.

THE preceding- tables of modifications are adapted

principally to two purposes. The first is, by the re-

marks they contain upon the comparative characters

of the secondary forms belonging to the different

classes of the primary, to assist the mineralogist in

determining the primary form of any mineral from an

examination of its secondary forms. And the second

is to enable him to describe any secondary crystal,

whose primary form is known. An attempt is thus

made to supply a language, by means of which the

secondary forms of crystals may be described inde-

pendently of the theory of decrements, and without

the assistance of mathematical calculation.

The remarks upon the comparative characters of

the secondary forms, may not however be sufficient

to lead the observer from the secondary to the pri-

mary form of a mineral, without the assistance of a

few general rules.

And although I cannot flatter myself that the slight

outline I am about to trace of the method of reading

crystals, will enable a person at once to refer any

given secondary crystal to its primary form, it will

nevertheless afford him a useful clue to the discovery

of that form.

The first step in the process of determining the

mineral species to which any given secondary crystal
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belongs, is, as we have already seen, to determine

the class ofprimary forms to which it belongs. And
if the individuals of that class differ from each other

in the mutual inclination of some of the primary

planes, the goniometer must be resorted to for deter-

mining that inclination in the crystal we are ex-

amining.
It happens, however, not unfrequently, that all the

primary planes of a crystal are obliterated, and that

the secondary form consists of an entirely new figure.

In this case the observer will encounter a difficulty

in his attempt to deduce the characters of the pri-

mary form from the secondary crystal, unless the

secondary crystal can be referred to one of those

entire secondaryforms described in the table of second-

ary forms ; but in any case this difficulty will be in

some decree overcome, by a habit of examining and

comparing crystals with each other, although it pro-

bably cannot be entirely removed. For if any rules

could be given for determining a primary form from

the inspection of a secondary form, on which no trace

of the primary planes remain, and where no assistance

is afforded by cleavage, they must be too numerous
and complicated to be serviceable to the young
mineralogist, for whose use these pages are princi-!

pally designed.
In the few rules, therefore, which I propose to give,

I shall suppose, generally, that the secondary crystal
which is to be examined retains some portion of the

natural primary planes, or of cleavage planes which
are parallel to these.*

* The planes of the regular tetrahedron, and of all the octahedrons,
and of the rhombic dodecahedron, may be easily recognised from the

figures in the preceding tables, and they will not therefore be par-

ticularly noticed here. And the different varieties of octahedrons are

distinguishable from each other by the angles at which their several

planes respectively meet.
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To ascertain the class of primary forms to which

such secondary crystal belongs, we should first ob-

serve whether there be on the crystal any series of

planes whose edges are parallel to each other. If we

observe such a series of planes, we should then hold

the crystal in such a manner, that the series of

parallel edges may be vertical.) or upright. And while

it is in this position, we should observe whether there

be any plane at right angles to the series of vertical

planes we have noticed.*

But on examining the secondary forms of crystals,

we may sometimes find that there are two sets of

parallel edges, either of which being held upright,
the crystal would present a series of vertical planes.
We should in this case endeavour to ascertain whether

the planes belonging to one set, are not so symmetric

cally arranged with respect to those of the other, as

to possess the character of modifications of the ter->

minal edges of a primary form
;

if we find them so,

we should not make that the vertical series.

. If there be a series of verticalplanes, and a horizontal

plane, we should observe whether any of the vertical

planes are at right angles to each other, and whether

there be any oblique planes lying between some of

the vertical planes, and the horizontal plane.

We should remark the equality, or inequality, of

the angle at which any of the vertical or oblique

planes incline on the several adjacent planes.

We should notice whether there be any such sym-
metrical arrangement of the vertical planes, or of

the oblique planes, if there be any, as would induce

* When the series of planes with parallel edges are held verii^Uyn

the plane at right angles to them will of course be horizontal. These

may therefore be called the vertical and horizontal planes ;
all other planes

ivill be termed oblique ; and the edges of the horizontal and vertical planes,

will be termed horizontal and vertical
edges.

SF
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us to refer our crystal to any particular class of

primary forms ; and by comparing the characters we
thus observe with those described in the tables, we
shall probably discover the class of primary forms to

which our crystal belongs.

Let us now suppose our crystal to be contained within

any series of vertical planes, and to be terminated, not

by a horizontal plane, but by a single oblique plane,

the crystal may then belong to the class of oblique

rhombic prisms, doubly oblique prisms, or rhomboids.

If there be four oblique planes, inclining to each

other at equal angles, the crystal may belong to the

class of square prisms, or of octahedrons with square

bases.

If there be four oblique planes, each of which in-

clines on two adjacent planes at unequal angles, the

crystal will probably belong to the class of right

rectangular prisms, right rhombic prisms, or octa-

hedrons with rectangular or rhombic bases.

If the series ofvertical planes consist of 6, 9, 12, or

some other multiple of 3, and if there be a single hori-

zontal plane, the crystal may belong to one of the

classes of right prisms, rhomboids, or hexagonal

prisms.

If there should be three oblique planes, the primary
form is a rhomboid.

But if the termination consists of six oblique

and equal planes, the crystal may belong to the class

of rhomboids or hexagonal prisms.

Crystals not falling within any of the preceding

descriptions, may yet be found to resemble some of

the secondary forms given in the tables.

Those which belong to the class of doubly oblique

prisms, are sometimes very difficult to be understood;

and the relation between the primary and secondary

forms of this class, can be learned only by a coin-
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parisoii of the crystals themselves with each other,

assisted by the tables of modifications already given.

A circumstance, which has not yet been alluded to,

will also frequently render it very difficult to read a

crystal. This is the unequal extension of some of its

parallel planes. A very remarkable instance of this

character prevails in copper pyrites, and has been

the occasion of the erroneous opinions entertained

until very lately, respecting the primary form of that

substance.

In all the works on mineralogy, except that by
Professor Mohs, its primary form is stated to be a

regular tetrahedron. Mohs, however, discovered that

its form was an octahedron with a square base. The
two following figures, for the drawings of which,

made from crystals in his own possession, I am obliged
to Mr. W. Phillips, exhibit crystals containing equal
numbers ofsimilar planes ; fig. 300 having these planes

regularly placed on the primary form, and fig. 301

representing the same crystal as it frequently occurs

in nature, with some of its planes considerably enlarged.

The same letters are placed on the corresponding

planes of each.

Fig. 300. Fig. 301.

Mr. Phillips had discovered from the cleavage of

this substance, before the publication of Professor

Mohs's book, that its primary form was not a tetra-

2 F2
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hedron, as appears by a paper in the Annals of Phi-

losophy, new series, vol. 3. p. 297.

When crystals of this irregular character occur, it

is generally, only by cleavage, and by using the

goniometer, that we can be led to an accurate deter-

mination of their true forms.

Having ascertained the class of primary forms to

which our supposed crystal belongs, our next step

would be to measure the angles of its primary or

secondary planes, in order to determine the species

to which the mineral itself belongs.

If the crystal belongs to one of the four regular

solids, whose angles, when the forms are similar, are

always equal, its hardness, or specific gravity, or some

other character, will the most readily lead to a de-

termination of its mineral species.

But it may happen that the secondary crystal we
are examining, may be referred with equal propriety
to either ofthe two, or more, classes of primary forms.

If we turn to the modifications of the octahedron

with a square base, and to those of the square prism,
and imagine the modifying planes of the square prism
much enlarged, we shall observe such a resemblance

between them, that either form may be taken as the

primary, in reference to the secondary forms of both.

The same remark will apply to the octahedron with

a rectangular or a rhombic base, and the right rect-

angular, or rhombic prism.
In these cases it has been usual to adopt that as

the primary form which is developed by cleavage.
But if there be no practicable cleavage, or if there

be two sets ,of cleavages, parallel to the planes of

two primary forms, we are then at liberty, as it has

been already stated, to adopt either of these, and
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our choice would probably fix on that which was

most predominant among the secondary forms.

If a crystal is to be described by the assistance of the

preceding tables, we must suppose the primary form

to be known ;
this must be first described according

to its class, and if necessary by its angles also.

Its modifications, if they are single, may then be

denoted by the letters under which they are arranged
in the tables. But as each ofthe classes ofmodifications,

except those which consist of tangent planes, compre-
hends an almost unlimited number of individual modi-

fying planes, differingfrom each other in the angles at

which they respectively incline on the primary planes, it

becomes necessary to add to the tabular letter which

expresses the modification, the value of the angles at

which the plane we have observed inclines on the

adjacent primary planes.

We have already seen that modification a of the

right rectangular prism, comprehends a considerable

number of planes varying in their relative inclinations

on P, M, and T. Let us suppose the crystal we are

examining, to belong to the class of right rectangular

prisms, and to be modified by a plane a, and let the

inclination of the plane we have observed, on P, M,
and T, be called m, n*^ and o", these letters signifying

any number of degrees and minutes whatsoever.

A crystal containing the primary planes of the

right rectangular prism, and a set of planes belong-

ing to modification a might then be thus described.

Right rectangular prism, Modification a, m on P.

n M.
o T.

The character of the plane being thus established,
Vve may in future, in order to avoid the repetition of
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the measurements, describe the plane as Modification

c, plane 1, and it may be marked in the figure of the

crystal as a 1.

Let us now suppose we find on another crystal,
another plane modifying the same solid angle, and

inclining on P, M, and T, at j?', 9, and r% and a

third plane, also modifying the same solid angle, and

inclining on P, M, and T, at s, t*
9 v, we should de-

scribe these planes as we did the first, by
Modification a, p on P

plane 2.

p on Jf ^'-M
\\

r' T J
Modification c, s* P

plane 3.

r r >

r-M I
tf T J

And having thus recorded the character of the planes,
we may in future describe them as

Modification a 2,

Modification a 3.

This method of description may be applied, whe-

ther the three planes have occurred on the same

crystal, or on different crystals.

The inclination of the modifying plane on too of

the primary planes, is generally sufficient, when a

solid angle is modified, for determining ttye law of

decrement; but the third inclination serves as a

check upon the accuracy of the other two.

If the edge of any prism be modified by one or

more planes, it will be sufficient to give the incli-

nation of each plane, on either of the primary planes,

where the inclination of the primary planes to each

other is known, as the inclination on the other pri-

mary plane may be readily ascertained. But when

an edge is modified, of any crystal whose adjacent

primary planes do not meet at a right angle, and

when their mutual inclination is unknown, the in-
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clination of the modifying plane on both the primary
should be given.

This method of description maybe readily extended

to all the classes of primary forms ; and although it

may sometimes be rather tedious in its application, it

will convey an accurate description of the planes to

which it is applied.
It may frequently happen that we are examining a

crystal whose primary form is unknown to us, and

whose secondary planes do not enable us to deter-

mine that form; we can in such case describe the

crystal only by giving a drawing of it, accompanied,

by the inclinations of its several planes to each other.

It will perhaps be found convenient, where it can

be done, to number the observed planes, belonging
to each class of modifications, in some certain order;

when there is a series of secondary planes whose

edges are parallel, that plane may be denoted by
No. 1, which forms the most obtuse angle with thq

primary plane to which the series may be referred.



SECTION XIV.

ON THE USE OF SYMBOLS FOR
DESCRIBING THE SECONDARY FORMS

OF CRYSTALS.

IN Section 11, p. 102, it vyas stated that certain

letters had J)een appropriated by the Abbe Haiiy, as

symbols, to designate the similar and dissimilar edges,

angles, and planes of each of the classes of primary
forms. And in the tables of modifications, these let-

ters are placed on the figures of the primary forms,
to denote in each its similar, and dissimilar, edges,

angles, and planes.

The order in vyhich they are placed on the figures

is obviously that of the alphabet ; and they are ar-

ranged also according to the ordinary method of

writing, beginning at the upper part of the figure,

and then proceeding from left to right until the seve-

ral parts of the crystal are marked by the appropriate
letters.

This will be very apparent, if we refer to the pri-

mary form of the doubly oblique prism.

The letters P M T are retained to designate the

primary planes of crystals, although the term primir

tive, from which those letters were derived, is not

used in this treatise.

The letter A is, by the Abbe Hauy, placed, gene-

rally, on an obtuse angle of the primary form ; but

according to the positions in which the primary forms
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are drawn in the preceding tables, the letter A will

not necessarily stand on an obtuse angle, excepting
on the rhombic dodecahedron, the right rhombic, the

right oblique-angled, and the hexagonal prisms.

The edges and angles of that terminal plane of the

prism, on which the figures appear to rest, and the

edges and planes which constitute the back ofthefigures,
are supposed to be denoted by a series of small letters,

corresponding with the capitals, by which the diametri-

cally opposite edges, angles, and planes, exhibited in

thefront ofthejigure, are designated.

The representation of the secondary forms of crys-

tals by means of these symbols, is effected by annex-

ing numbers, expressive of the particular laws of

decrement by which the secondary planes are con-

ceived to have been respectively produced, to the

letters which denote the edges or angles on which

the decrements have taken place.

These numbers will be termed the indices of the

secondary planes, and will generally be represented by
the letters p q r s.

Before we proceed, however, to explain the man-

ner in which these symbols may be applied to the

representation of the secondary forms of crystals, we
shall for a moment consider the theory of decrements

more particularly in reference to the descriptive cha-

racter it affords.

As this character is to be regarded as little else

than a symbol, indicating the change of figure which

the primary form has undergone, if there be two laws

of decrement which will equally well express this

change of figure, we are obviously at liberty to adopt
either law, as the generator of the new plane by
which the figure of the primary form is altered ; but it

will be found convenient to be guided by some rule

in our choice.
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Fig. 302.

If, for example, we find a secondary plane, such as

a b, fig. 302, on the terminal edge of any prism, pro-
duced by the abstraction of three rows of molecules

in the direction of the lateral edges, and of one row in

the direction of the terminal edges, such a plane

might be conceived to be produced by a decrement

proceeding along the plane a c, consisting of three

molecules in height and one in breadth, or of three

molecules in breadth, ifwe suppose it to proceed along
the planes b d; and the symbol denoting either of

these decrements, might therefore with equal pro-

priety be used to describe the new plane; and it

would be indifferent, as far as the descriptive charac-

ter of the symbol is regarded, which of the two we
should adopt.
The rule which it will be more convenient to fol-

low, is, to suppose all planes on the terminal edges of

prisms, to be produced by decrements proceeding

along the terminal planes ;
and the planes replacing

the lateral edges of prisms, and the edges of all the

other classes of primary forms, may be conceived to

result from decrements proceeding along those planes

in the direction of which the greatest number of

molecules appear to have been abstracted. And any

intermediary decrement may be conceived to proceed
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along that plane in the directions of whose edges the

greatest number of molecules have been abstracted.

It may not be useless to remark, that when two or

more planes replace the solid angle of a crystal, if

an edge at which the secondary planes intersect each

other be parallel to the edge at which one of them

intersects the primary plane, they will generally both

result from simple or mixed decrements.

Intermediary decrements however sometimes pro-
duce a series of planes whose intersecting edges are

parallel to each other, and when this happens, the

symbols of those planes will have two of their corre-

sponding indices in the same ratio to each other.

The edges of such secondary planes as replace the

edges of crystals, and which result from simple or

mixed decrements, are always parallel.

From what has been already stated it will appear,
that if we are about to describe a secondary crystal,

belonging to any species of mineral whose primary
form is known, and upon several of whose edges, or

angles, similar decrements have produced similar

planes, it will be sufficient, generally ,
to describe one

only of the new planes, produced upon one of those

edges or angles.

And if two or more laws of decrement have con-

curred in the production of any secondary crystal, we
should be required, generally',

to describe only one

of the planes produced by each particular law. For

the change of figure which any primary form has

undergone would be, generally, thus indicated. And
in drawing the crystal we might construct planes,

similar to those which are described, upon all its

similar edges or angles.
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As it sometimes, however, occurs that all the simi-

lar edges or angles of crystals are not similarly

modified, it will riot be sufficient in all cases to indi-

cate the decrement which has taken place on one

edge or angle, but our representative symbol should

also indicate the absence of the modifying plane from

some other edge or angle, where according to the

law of symmetry, it might be expected to appear.
This necessity of distinguishing the symmetrical

modifications of crystals, from those which are not

so, will render the symbols rather more complicated
than they would be otherwise.

The new theory of molecules which has been in-

troduced into this treatise, will render it necessary to

vary the character of some of the symbols employed
by the Abbe Haiiy in reference to the tetrahedron, to

all the classes of octahedrons, and to the rhombic

dodecahedron ; and as these changes will occasion

some other slight deviations from his system of no-

tation, it will conduce to perspicuity if we consider

the application of the symbols to each of the classes

of the primary forms separately. This will be done

in a table subjoined to this section, where the order

of the primary forms will correspond with that

adopted in the tables of modifications.

The general nature of this system of notation will

be best illustrated by its application to one of the

least regular of the primary forms.

Let us suppose that we are about to represent a

secondary crystal belonging to the class of doubly
oblique prisms, according to the theory of decre-

ments, and by means of the symbolic letters already
alluded to, the primary form being known, and the

law of decrement by which the secondary plane has

been produced, having been also ascertained.
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The crystal is supposed to be held with the plane
marked P, horizontal, and with that edge or angle

nearest to the eye on which the decrement we are

about to describe has taken place.

Let us suppose this crystal to be modified by an

individual plane, belonging to the series of modifi-

cations of that figure comprehended under class b.

The planes belonging to this class of modifications,

may incline more or less on either of the adjacent

primary planes, and may result from a decrement on

either of the adjacent plane angles which constitute

the solid angle on which O is placed.

If the modifying plane be produced by a simple or

mixed decrement, beginning at the angle O, and

proceeding along the terminal plane, consisting of

one row of single molecules, it should be expressed

thus, O, and be read, one over O, signifying that the

abstraction of molecules from the superimposed plates

took place above, or receding from O, in the direction

O A. If the decrement be simple, and by two rows

of molecules in breadth, it would be expressed by

O, and if it be a mixed decrement by three rows in

4
breath and two in height, it would be denoted by O,
and so of any other decrement acting in that di-

rection.

Jf the modifying plane be occasioned by a simple
or mixed decrement, beginning at the angle of the

plane M adjacent to O, and proceeding along the

plane M, by p rows of molecules, p signifying any
whole number or fraction, it would be denoted by
r
O, and be read p on the left of O.

If the new plane were produced by a simple or

mixed decrement by p rows on the angle of the plane

T, adjacent to O 5 and proceeding along that plane, it
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would be denoted by O p
,
and be read p on the right

ofO.

In either of the preceding cases, the intersection of

the new plane with the primary plane along which

the decrement is conceived to proceed, will, as we
have already seen, be parallel to the diagonal of that

plane.
Let us now suppose an intermediary decrement to

have taken place on the angle O, of such a nature,

that the mass of molecules abstracted should belong
to a double plate, or be two molecules in height, or

as it might be otherwise expressed, 2 molecules in

the direction of the edge H, 3 in the direction of the

edge D, and 4 in the direction of the edge F.

The appropriate symbol to denote such a decre-

ment, ought obviously to represent this threefold

character ; which it does by combining the indices

expressive of the particular law of decrement, with

the letters which represent the edges and angles af-

fected by it, in this manner, (D3 H2 F4). This

symbol is placed in a parenthesis to distinguish it

from a combination of three simple or mixed decre-

ments, and it would be read thus, 3 on the edge D,
2 on the edge H, 4 on the edge F.*

Jf instead of the angle marked by O, we no\v

imagine the solid angle on which A is placed to be

modified simlarly to that denoted by O ;
before we

describe the modifications of A, the crystal is con-

ceived, to be turned round, until the angle on which

* This mode of representing intermediary decrements differs from that

adopted by the Abbe Haiiy, in referring the decrement to the adjacent

edges ; whereas he refers them to two edges and the angle they include.

But the form of the symbol here given will best accord with the results

obtained by the methods of calculating the laws of decrement, which

will be given in the Appendix.
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A is placed is nearest to the eye; or we may be sup-

posed to pass round the crystal, until we place our-

selves opposite the angle at A
;
and while the eye and

that angle are in these relative positions, we should

proceed to describe the new planes, as we did those

on the solid angle at O.

If two or more planes, resulting from simple or

mixed decrements, are found modifying the same
solid angle of any crystal, the symbols representing
them are to be placed immediately following each

other. Thus if the three planes we have supposed on
the angle O, should occur on the same crystal, its

change of figure would be thus represented,

po 6 op
.

These symbols not being placed in a parenthesis, are

understood to represent three separate planes.
If three intermediary decrements should occur on

the same solid angle, their symbols would also be

placed following each other, thus,

(D3 H2 F4) (Dl H3 F2) (D4 HI F3).

Here, each of the three sets of characters being
included within a separate parenthesis ,

three varieties

of intermediary decrement are implied ; and as they
stand singly ,

it is implied that they are independent of
each other-, and they are evidently produced by dif-

ferent laws ofdecrement.

Let us now suppose we are about to describe a

decrement on a terminal edge of a doubly oblique

prism. The prism is again supposed to be placed or

held with that edge nearest to us, the plane P con-

tinuing horizontal.

And first let us suppose a terminal edge F to be

replaced by a plane resulting from a decrement by p
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rows of molecules proceeding along the plane P ; p,

meaning^ as before, any whole number or fraction.

The symbol to denote this decrement, would be F,
and be read as before, p over F.

If the decrement be supposed to have proceeded

along- the plane T by three rows of molecules, as in

figure 303, the general symbol used to represent the

new plane would still be F, but p would in this case

represent the fraction y, and the particular symbol
T

would be F.

If we suppose p to be a fraction ,
it is evident from

what has been already slated, that the numerator of that

fraction may be either greater or less than the denomi-

nator^ according as the decrement in breadth exceeds or

falls short of that in height.
'

If either of the other terminal edges be modified,
the modified edge is supposed to be the nearest to

the eye, when the modifying plane is described.

This change of position must be understood to

take place in every instance where the position of

the modified edge or angle requires it.

If two dissimilar planes occur on the same terminal
p P

edge of a crystal, the symbol is repeated thus F F,
which expresses the coexistence of the two planes on

one edge.
If the lateral edge H of a doubly oblique prism be

modified, and if it has been found that the decrement

producing it has proceeded along the plane M, by p
rows of molecules, its characteristic symbol would be
1}

H, and it would be read^? on the left of H.
If the decrement appears to have proceeded along

the plane T by p rows of molecules, its symbol would
be H p

,
or p on the right of H ; p being either a
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whole number or fraction, expressive of the particu-

lar law of decrement, in reference to each plane

respectively, as it is supposed to have been ascer-

tained by calculation.

If the two planes occur on the same crystal, they
would be denoted by the two symbols being used to-

gether, thus,
PH Hp

.

If it should be required to describe any decrement

acting upon an edge or angle of the lower plane of

the crystal, upon which the small letters are supposed
to be placed, the crystal is imagined to be turned

with that plane upwards, the edge or angle on which

the decrement has taken place is to be brought the

nearest to the eye, and we are then to describe the

plane or planes in the manner already directed, only

using the small letter, instead of the capital, to indi-

cate the edge or angle which is modified. And if it

should be necessary to describe a decrement upon
the back planes of the crystal, we are supposed to

pass round it, and to substitute small letters in the

symbol for the capitals which designate the cor-

responding front planes.3

The preceding explanations will render sufficiently

intelligible the general method of representing the

secondary planes of crystals by means of symbolic
characters. Before we proceed, however, to apply
this method to the different classes of primary forms,

it will be necessary to separate the secondary forms

of the crystals to be represented into three principal

classes.

1. Those which are strictly symmetrical, as modifi-

cation
, , c, d, e, or f, of the cube, where

similar decrements take place on similar edges
or angles, and proceed along similar planes.
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2. Those which are partially modified, or on which
the same modification does not occur on all

the similar edges or angles ; as in modification

g, h, i, A:,
of the cube.

These may be termed defective modifications,
and they may be again subdivided into two

portions.

a. Those in which an edge or angle is replaced

by only half the number of planes which the

law of symmetry would require.
b. Those in which only one of two similar edges

or angles is modified, while the other remains

entire.

3. Those in which two or more similar edges or

angles are affected by different laws ofdecrement.

And the symbols, to be perfect, ought to represent
each of these divisions clearly and perspicuously.

In the table subjoined to this section, which will

point out the relation of the theory of decrements to

the different classes of modifications, the various

modes ofadopting the symbols to particular cases will

be fully explained. Whence it will not be necessary
here to give more than an outline of the general

principle which will regulate their application.

To represent the secondary forms belonging to the

first of these divisions, it may not appear strictly

necessary to do more than indicate the character of a

single plane belonging to any set of similar planes

occurring upon the same crystal ; but it may tend to

prevent ambiguity if we construct our symbol so as

to indicate that the secondary planes occur sym-

metrically on certain edges or angles of the crystal.

We may here remark, that the sets of planes which,

in the tables of modifications, replace the solid angles

'!

:
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of the cube, tetrahedron, and rhomboid, and rest, as

it is said, upon the planes of those primary forms, are

distinguished from those which are said to rest upon
their edges. But in reference to the theory of decre-

ments, both these sets ofplanes are similar in character,

and resultfrom simple or mixed decrements on an angle

of the primary form.
The planes which are said to rest upon the primary

planes, are produced by decrements in which the

number of molecules abstracted in breadth, is greater

than the number in height, while those which are said

to rest upon the edges, result from decrements where-

in the number in height exceeds the number in breadth.

The numbers or fractions expressing ihejirst of these

sets will be always greater than unity, as 2, 3, 4, -f, f,

&c. ; those expressive of the latter set, will be al-?

ways less than unity, as
, -f, f, &c. ; and the planes

in this latter case are conceived to be carried, as it

were, over the solid angle, and made to replace a

portion of the adjacent edge.

Let us now suppose a cubic crystal, modified on

the angles by three planes belonging to class b of the

modifications of that form ; and let us suppose that

the modifying planes result from a decrement by two

rows in breadth on the angles of the cube. The sym

bol denoting these planes would be 2A% and if this
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be unaccompanied by any other symbol, it would be

implied that all the solid angles were similarly mo-

dified. The symbol representing class C might be

The planes of modification a of the cube might be

denoted thus. A, but for the sake of uniformity with

the preceding symbol, they will be represented by
i

the symbol
*A *

.

The planes belonging to class i of the cube, do not

differ from those belonging to class d, except in being
three single similar planes, instead of three pairs of

similar planes, as there are in class d. To distinguish

class d therefore, by its symbol, it will be requisite

that the symbol should represent one of the pairs of

planes, and not merely a single plane, as might have

been sufficient if class i had not existed.

Suppose an individual modification belonging to

class d is to be denoted, and if the decrement pro-

ducing it be by three molecules on the edge B, one

on the edge B',* and two in height on the angle A, the

symbol would be

(B3 B'"2 B'l : Bl B'"2 B'3),

which would imply a pair of planes resting on the

plane P. And the two symbols being both included

within a parenthesis, and separated from each other

by two dots, implies that both the planes represented
result from the same law of decrement, but acting in

two different directions.

If two similar planes belonging to classf of the

cube, resulting from a decrement by three rows in

breadth, occur on all the edges of a cubic crystal, the

symbol B will be used to denote their existence on

one of the edges ; and their existence on the other

*
B*, B", &c. is read B dash

t
B two dash, &c.
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edges is implied, unless their absence be denoted by
the characters which will be presently given and ex-

plained. This symbol implies that the edge B is

replaced by two planes, one of which results from a

decrement by three rows in breadth proceeding along
the terminal plane, and the other by three rows in

breadth proceeding along the lateral plane. The

symbol B might be sufficient to denote the planes of

modification e, but fur the sake of conformity with

the general system of notation, it should be written
i

B.
i

When the lateral edge of a prism is modified by
two similar planes, the symbol representing them

will be PGP
. The G standing single, implies that

the symbol refers to a single edge.

The planes belonging to class d of the modifications

of the right rectangular prism, may be readily con-

ceived to result from decrements proceeding along
either of the planes M or T. If along the plane M 5

the symbol would be G /p PG ;
but if the decrement

be supposed to have proceeded along the plane T,
its symbol would be PG' Gp

.

The Tetrahedron.

Fig. 304.

Simple and mixed decrements on the angles of the

tetrahedron producing planes belonging to class b,
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are supposed to proceed along the plane P ; and the

symbol by which they are to be represented is

PAP

p

The symbol representing a pair of planes of any

particular modification belonging to class d would be

(BP B'q B"r : BP B'r B"q)

The edges of this primary form are neither per-

pendicular nor horizontal, and the decrements by
which they become modified might therefore be ex-

pressed by the symbols which represent the modifi-

cations upon either the terminal or lateral edges of

prisms. But as the edges of the tetrahedron are

more analagous to the lateral, than to the terminal

edges of prisms, the symbol
PBP will be used to de-

note the modifying planes belonging to classy.

The Octahedrons.

The laws of decrement which produce the modify-

ing planes of the octahedrons, are, according to the

Abbe Haiiy's theory, supposed to take place on paral-

lelepipeds, which would be formed by adding two
tetrahedrons to two opposite planes of the octahedron.

In the appendix to this treatise, rules will be given
for determining directly the laws of decrement on the

octahedrons, independently of these added tetra-

hedrons. And the symbols representing the secondary

planes will therefore vary from those adopted by the

Abbe Haiiy.



ON THE USE OF SYMBOLS. 247

The regular Octahedron.

Fig. 305.

The simple and mixed decrements on the angles,

which would produce the planes belonging to class b,

may be represented by the symbol
PAP

; which im-

plies that similar planes occur on the three adjacent

angles, and consequently on the fourth:

The intermediary decrements are of two kinds,

1. Those which produce the planes compre-
hended under class c.

The general symbol to represent these would

be (Bp B'q b'q br).

2. Those which produce the planes compre-
hended under class d.

The general symbol to represent these would

be\B P B'q b'r b s : B P B'r b'q b s).

These symbols denote the abstraction of
/?. <y, r, or

s, molecules from some of the edges B, B', b', and b,

in the production of the planes belonging to classes

c
9
or d.

The Rhombic Dodecahedron.

The modifications on the edges of this primary

form may be denoted by the general symbol
PBP

.

Those on the acute solid angles may be represented
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by symbols analogous in character to those used for

the octahedron.

The modifications on the obtuse solid angles may
be represented by symbols resembling in character

those used for the tetrahedron.

The Rhomboid.

The modification on the superior edges may be

represented by the general symbol
PBP

,
and those on

the inferior edges by the general symbol
PDP

.

The modifications
, b, c, e?, may be represented by

symbols of the same character as those adopted for

the tetrahedron.

The remaining modifications, on the lateral solid

angles, may very obviously be conceived to result

from decrements upon either the angles at
,
or

the angle at O. For if we refer to any of the modi-

cations from e to
/:, we may perceive that the planes

which replace the angles at E, are similar to those

which replace the angle at O, but are in an inverted

position. It is therefore indifferent, as far as the

representative character of the symbol is concerned,
whether we refer the planes belonging to any of those

modifications, to the angle at E or at O. Jn either

case, the symbols will be similar in character to those

which relate to the solid angles of some other paral-

lelepipeds.

In the following tables, both these classes of sym-
bols will be again alluded to, and their differences

pointed out in reference to several of the classes of

modifications.

In the examples which we have given of the appli-

cation of symbols to represent the secondary forms of
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crystals, we have supposed those forms to have been

strictly symmetrical, or to have resulted from similar

modifications on all the similar edges or angles of the

primary form.

It remains now to point out the methods of dis-

tinguishing by appropriate symbols, those secondary
forms in which similar planes do not occur on all the

similar primary edges and angles.

1st. Let us consider the case where an angle or

edge is only partially modified. See cube, fig. 303,

p. 243.

In class i of the modifications of the cube, the solid

angles are replaced by only three planes, which are

found to correspond with the alternate planes of

class d.

But the symbol representing class
c?,

is such as to

imply that there are three pairs of planes on each

solid angle. We should therefore construct the sym-
bol which is to represent class

?",
so as to indicate the

existence of only three single planes on each solid

angle ;
and it should denote the relative positions of

the analagous planes on the solid angles at A', and

at A.

The three planes at A' may be represented by the

following symbol, in which q is supposed to be

greater than r ;

(B'q Bp B"r)(B"q B'p Br)(B'r B"p Bq).

And the three planes at A by the following ;

(Bq B"'p B'r)(B'"q B'p Br)(B'q Bp B'"r).

If these symbols be attentively regarded, they will

be observed to express the relative positions of the

corresponding planes on each of the solid angles.

And by substituting in them b and b' for B and B',

the planes on the lower solid angles might also be

represented, and thus the entire figure would be

implied.

2 i
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The planes belonging to class &, which may be said

to modify the edges partially, may be thus denoted.
j_

B B' B"p PB '".

The index not being repeated below, and on both sides

ofthe letters B, #c. affords an indication that the planes
are single upon each edge ; in which respect only,
does class k differ from classy.

2. Let us suppose some angles or edges of a crystal

to be modified, while others, which are similar, re-

main entire.

From what has preceded, it will be apparent, that

the character representing these differences may be

generally conferred on the symbol, by introducing
into it the letters which denote the unmodified edges
or angles, and by substituting cyphers in appropriate

positions near those letters, for the indices of the

symmetrical modifying planes.

.An example derived from the defective modifica-

tions of the cube, will sufficiently illustrate the cha-

racters of these particular forms of symbols ; and ia

the following tables they will be further explained
in reference to the different classes of primary forms

in which irregular secondary forms occur.

The angles of the lower plane of the cube, cor-

responding with those marked A and A' of the upper

plane, are, as it has been already stated, supposed
to be denoted by a and a7

. The planes belonging to

class h may be represented by the following symbol.
p o p o

PAP A/0 pa'p V.
This implies the occurrence of the modifying planes

on the alternate solid angles only.

If, as it sometimes happens, one of the terminal

solid angles of a rhomboid is replaced by a tangent
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plane, while the other remains entire, the symbol

representing the change of figure would be

3. When different decrements take place on two

similar angles or edges, the number expressing the

law of one of them may be represented by ^?, and the

number representing the law of the other, may be

substituted for the o, by which we have proposed to

denote the unmodified angles or edges. Thus, if one

terminal solid angle of a rhomboid were replaced by
a tangent plane, and the other by three planes be-

longing to class &, resulting from a decrement by two

rows in breadth, the symbol would become
'A 1 2a 2

.

1 2

It will be convenient when we describe the second-

ary forms of crystals by means of these symbols, to

observe some certain order in their arrangement into

what may be termed the theoretical image of the

crystal. The Abbe Haiiy places the symbols re-

presenting the lateral edges of prisms, first; then

those which represent the terminal edges; and lastly,

those which represent the solid angles. As it is evi-

dently indifferent whether they be taken in this order

or in any other, as far as their descriptive character

is concerned, I shall observe the same order of ar-

rangement that he has given ; although if that had

not been established, I should have reversed it, for

the sake of conformity with the order in which the

modifications are placed in the tables.

The Abbe Haiiy has also proposed to designate the

secondary planes by small letters, and to place these

under the respective symbols of the planes they refer

to. And in order to render the character of the sym-
bol more complete, he repeats the letters which

designate the primary planes, among those which
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denote the secondary ones, as in the sollowing ex-

ample.

Thus, if a right rhombic prism should be found

containing the modifying planes belonging to the

classes
, c, e, h, and g, and also containing the pri-

mary planes, the representative symbol might be this.

, . 4
G 1 M H 2 B E A P
h M g e c a P

Here the laws of decrement producing the second-

ary planes are represented by the upper series of

characters ;
and the lower series consists of the let-

ters which are placed on the figure of the crystal, to

distinguish the secondary pjanes.



ON THE RELATION OF THE LAWS OF
DECREMENT TO THE DIFFERENT

CLASSES OF MODIFICATIONS.

THE following tables, which exhibit these relations,

will illustrate fully the uses of the symbols we have

just described.

It may be remarked, that the letters placed on the

figures of the primary forms contained in these tables,

differ from those which stand on the corresponding

primary forms placed at the heads of the several

tables of modifications; and that some new letters

have also been added to them.

These changes have been introduced for the pur-

pose of indicating more explicitly, by means of sym-

bols, the changes of figure which any modified pri-

mary form may have undergone.
The letters p, q, r, s, are used as the general indices

of the different classes of modifying planes, and thus

represent any numbers whatever ; but they will re-

present different numbers, in relation to the different

individual planes belonging to each of the classes.

When these letters are used as the indices of the

modifying planes produced by intermediary decre-

ments, they represent whole numbers only. But when

p denotes the law of a simple or mixed decrement, it

may represent any whole number or fraction.
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This whole number or fraction may be either

greater than 1, which may be thus denoted p ^> 1 ;

equal to J, . p 1 ;

or less than 1, p <^ ].

The mark ^> signifying greater than,

= . . . equal to,

<^ . . . less than.

The letter p will generally be used to denote the

greater edge of the defect, the letter q the next, and

r the least, when there are only three edges to be

denoted. But when the symbol represents a modifi-

cation on the solid angle of an octahedron, s is intro-

duced to denote the fourth and least edge of the

defect. Hence the relative values of p, q, r, and s,

may be thus expressed, p ^> q ^> r ^> s.

The Cube.

Fig. 306.

1. Symmetrical modifications.

Simple and mixed decrements on the angles, produce
the planes belonging to modifications , b, and c.

The general symbol to represent these is

PAP
.
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Ifp ^> 1, class b is represented, and as the value

of p increases, the planes b

incline more and more on the

primary planes.

p 1, mod. a is represented.

p <^ 1, class c is represented, and as the value

of p diminishes, the planes c

incline more and more on the

primary edges.

Intermediary decrements produce the planes be-

longing to class d.

The general symbol representing these, is

(Bp B'q B'"r : Bq B'p B"'r).

Decrements on the edges, produce the planes be-

longing to the classes e and /.

The general symbol representing these is

fi

p

If p = I, class e is represented.

p ^> 1, classfis represented.

2. Modifications not strictly conformable with the law

ofsymmetry ; or, such as have been termed defective

modifications.

The following are the symbols representing these

classes.

o
04/0A' 'A 1 'a" a represents class g.

A' PAP V a . . . . class h.

(B'q BP B//

r)(B"q B'p Br)(B'r B"P Bq) represents
the planes at A' belonging to class i.

(Bq B'"P B'r)(B'"q B'p Br)(B
;

q BP B //7

r) represents
the planes at A belonging to the same class.
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When the symbolic character is not accompanied

by a figure of the crystal, both the preceding- symbols
should be given ;

but when there is a figure, it will

be sufficient to use the second only.

P *
B B' B//p PB'" is the symbol representing class /:.

The regular Tetrahedron.

Fig. 307.

Simple and mixed decrements on the angles.

General symbol
PAP

.

p

Ifp ^> 1, the symbol represents class b.

p zz 1, mod. a.

p < 1, class c.

Intermediary decrements.

General symbol, (BP B'q B"r)(BP B'r B"q ) repre-

sents class d.

Decrements on the edges.

General symbol,
PBP

.

1, the symbol represents mod. e.

p ^> 1, class f.
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The regular Octahedron.

Fig. 308.

Simple and mixed decrements on the angles.

General symbol,
PAP

.

p

Ifp 1, the symbol represents mod. a.

p <^ 1, class b.

Intermediary decrements

Are of two kinds, and require two general symbols.
1st. (Bp B'q b'q br) represents class c;

Id. (BP B'q bV bs : Bp B'r b'q bs) represents class d.

Decrements on the edges.

General symbol,
PBP

.

Ifp zz 1, the symbol represents mod. e.

P > 1, class/.

The planes belonging to classes a and k of the cube,

sometimes occur on the same crystal, and when the

planes a are much enlarged, the secondary form pre-

sents the figure of the octahedron modified by two

only of the planes c of that figure. The secondary

crystal may however be referred properly to the cube,
so long as it retains any portion of the planes A*.
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The rhombic Dodecahedron.

Fig\ 309.

Simple and mixed decrements on the obtuse solid angles.

v

General symbol
PAP

, represents the classes e,f,&g.
Ifp^> 1, the symbol represents class f.

p = 1, . mod. e.

p < 1, . . . . . . . . class g.

Intermediary decrements on the obtuse solid angles

produce the planes of class h, which class may be

generally represented thus :

(B'P B q B"r : B'q Bp B"r).

Simple and mixed decrements on the acute solid

angles, produce the planes belonging to classes a

and b.

General symbol
PEP

.

p

Ifp zz: 1, the symbol represents mod. a.

p > 1, class b.

Intermediary decrements on the acute solid angle
consist of two kinds, producing the planes of classes

c and d.

The general symbol representing class c, is

(BP B'q b'q br).

The general symbol representing class d, is

(Bp B'q b'r bs : BP B'r b'q bs).
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Decrements on the edges, may be represented by the

general symbol
PBP

,

Ifp 1, the symbol represents mod. i.

p ^> 1 class k.

Some of the secondary crystals of Blende are pro-
duced by defective modifications of this primary form,
and are such as might result from regular modifi-

cations of the tetrahedron.

The Octahedron with a square base.

Fig. 310.

Simple and mixed decrements on the terminal edges.

General symbol,
PAP

.

p

Ifp =. 1
?
the symbol represents mod. a.

p ^> 1, class b.

Intermediary decrements on the terminal solid angles.

These are of two kinds, and require two general

symbols.
1st. (Bp B'q b'q br) represents class c ;

2d. (BP Bx

q b'r bs : BP B'r b'q bs) represents class d.

Simple or mixed decrements on the lateral angles.

General symbol
PEP

.

1, the symbol represents class e.

p > 1, . class h.
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Intermediary decrements on the lateral solid angles.

These are of three kinds, and require three general

symbols.
1st. (Bp D q D'q B"r) represents class f.

2d. (Dp B q B"q D'r) .... class g.

3d. (B P D q D'r B"s : B P Dr D'q B"s) represents

class i when p ]> q;

The same symbol represents class k when p <^ q.

Decrements on the edges of the pyramids.

General symbol
PBP

.

Ifp zz 1, the symbol represents mod. I.

p ^> 1
3 ....... class m.

Decrements on the edges of the base.

P

General symbol D
p

Ifp = J, the symbol represents mod. n.

p ^> 1, ../... class o.

The Octahedron with a rectangular base.

Fig. 311.

Simple and mixed decrements on the terminal angles of
the planes P.

p

General symbol P.

Ifp 1, the symbol represents mod. a.

p ^> 1, class b.
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Simple and mixed decrements on the terminal angles of

planes M.

General symbol
PAP

.

Ifp I,
mod. a is again represented, because

plane a results from a decre-

ment by one row on all the ter-

minal angles.

p ^> 1, class c is represented.

Intermediary decrements on the terminal solid angles.

General symbol (B P B'q b'r bs) represents class d.

Simple and mixed decrements on the lateral angles of
the plane P.

General symbol E /p PE.

l?p zn 1, the symbol represents mod. e.

p ^> 1, class h.

Simple and mixed decrements on the lateral angles of
the 'plane M.

General symbol
PE' Ep

.

If p =: 1, mod. e is again represented.

p ^> 1, class i is represented.

Intermediary decrements on the lateral solid angles.

These are of two kinds.

1. Such as produce the single planes on each

angle, which are comprehended under class

gi or class f.

The general symbol is (D P B q Bf'q Fr).

Ifp ^> r, the symbol represents class f.

I>O - class g.

2. Such as produce two planes on each angle

belonging to class k.

General symbol (D P B q B"r Fs.)

In this symbol, the particular values of either of
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the indices may be greater or less than either of

the others, in reference to particular modifying

planes.

Decrements on the terminal edges.

The planes produced by these decrements are all

comprehended under class
/, although they may be

said to consist of three varieties.

Jst. When the decrements proceed along the

plane P.

2d. When the edge at which the planes / inter-

sect each other at the base, is parallel to a

diagonal of that base.

3d. When the decrements proceed along the plane
M.

The general symbol of the 1st, is B'p PB.

2d, 'B'.

Decrements upon the edge D of the base.

P

General symbol D.
p

Ifp zz 1, the symbol represents mod. m.

p > 1, ....... class n.

Decrements upon the edge F ofthe base.

General symbol F.
p

Ifp zz 1, the symbol represents mod. o.

p > 1, ....... class p.
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The Octahedron with a rhombic base.

Fig. 312.

Simple and mixed decrements on the terminal angles.

Genera] symbol
PAP

.

p

Ifp =z I, the symbol represents mod. a.

p ^> 1, class d.

Intermediary decrements on the terminal solid angles.

These are of four kinds, and require four general

symbols.
We suppose the edges of the upper pyramid, which

are opposite to those marked with B and C, to be

denoted by b and c.

Class b is represented by (Op Bq b p c r ).

Class c (B P Cq c q br).

Class e . . . (CP Bq br c s : CP Br b q c s ).

ClaSSf . . . (BpCqCr bs : Bp CrCq bs).

Simple and mixed decrements on the angle E at the base.

General symbol ^E 1
'.

If p m 1, the symbol represents mod. n.

p ^> 1
,

class q.
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Intermediary decrements on the acute solid angle at E.

These are of four kinds, and require four general

symbols.
Class o is represented by (BP d'q Dq B'r).

Class p ...... (Dp B'q Dq d'r).

Class r . . (Bp Dq d'r B's : BP d'q I)r BV).

Class rWj . (Dp B'q Br d's : DP B'r Bq d's).

i

Simple and mixed decrements on the angle 1 at the base.

General symbol
p
l
p
.

If p
~

1, the symbol represents mod. g.

p ^> 1, . . ..... class k.

Intermediary decrements on the obtuse solid angle at I.

These are of four kinds, and require four general

symbols.
Class h is represented by (CP Dq D'q C'r).

Class i . ..... (Dp Cq C'q D'r).

Class I . . (CP Dq D'r jC
;
s : CP D'q Dr C's).

Class m . . (Dp Cq C'r D's : DP C'q Cr D's).

Decrements on the acute terminal edges.

General symbol
PBP

.

If p 1, the symbol represents mod. v.

p ^> I, ....... class x.

Decrements on the obtuse terminal edges.

General symbol
PCP

.

1
?
the symbol represents mod. t.

p ^> 1, ....... class u.

Decrements on the edges of the base.

P

General symbol D.
p

Ifp 1, the symbol represents mod. y.

p ^> 1, ....... class z.
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The right Square Prism.

Fig. 313.

Simple and mixed decrements on the terminal angles.

General symbol A, represents class a generally.

In this symbol p may be ^> 1.

or= 1.

or<1.
Ifp =z I, an individual plane belonging to the

class is represented, whose three

edges would be respectively parallel
to the diagonals of the adjacent pri-

mary planes. This plane may, from,

its station in the series, be denomi-

nated the middle plane.

p ^> 1, the planes represented would incline

more on P than the middle plane does.

p <^ 1, the planes represented would incline

more on the edge G.

Simple and mixed decrements on the lateral angles.

General symbol
PAP

, p being ^> 1.

This symbol represents a series ofplanes belonging
to class by whose intersections with the planes M and

M', are parallel to the diagonals of those planes.
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Intermediary decrements.

General symbol (BP Gq B'r : Br Gq B'P), repre-
sents the remainder of the series of planes belonging
to class b.

Decrements on the terminal edges.
p

General symbol B.

Ifp =. 1, an individual plane belonging to class c

is represented, which may be termed

the middle plane of the series com-

prehended under that class ; and it

would intersect the lateral planes in

lines parallel to one of their diagonals,

p ^>1 3
the symbol would represent that part
of the series of class c, which inclines

more on the terminal plane than the

middle plane does.

p <^ 1, the same symbol would represent that

part of the series which inclines more

on the lateral plane than the middle

plane does.

Decrements on the lateral edges.

General symbol
PGP

.

Ifp =: 1, mod. d is represented.

p^> 1) class e is represented.
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The right Rectangular Prism.

Fig. 314.

M

Decrements 'on the angles.

The planes belonging to class a, comprehend the

following varieties.

1st. Those which result from simple and mixed

decrements on the
P

terminal angles, of which the general symbols is A.

angles of plane M, PA.

angles of plane T, A 1
'.

Ifp = 1, in either of these symbols, the same

individual plane belonging to the

class is represented by each
;

the

three edges of which are, respective-

ly, parallel to the diagonals of the

planes P M and T. This may be

termed the middle plane of the series.

p ^> 1, the planes represented will incline on

the plane P, or M, or T, more than

the middle plane does.

p <^ 1, the plane represented will incline less

on the respective primary planes than

the middle plane does.
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2d. Those which result from intermediary decre-

ments, which may be represented by this

general symbol,

(Cp Gq Br).

in which p, q, and r, will vary relatively to

each other as the decrements proceed along
the plane P, M?

or T.

Decrements on the terminal edges.

p

General symbols, C represents class b.

p

B . . class c.

Ifp == 1, in either of these symbols, a middle

plane will be represented belonging
to each class respectively. And the

planes of each class would respec-

tively incline more on the terminal,
or on the lateral plane, than its cor-

responding middle plane does, as

p is ]> 1, or <^ 1.

Decrements on the lateral edges, producing the planes

of class d.

These are of three kinds, and require three general

symbols.
1. G/p P

G, when the decrement proceeds along
the plane M.

2. PG' Gp
,
when the decrement proceeds along
the plane T.

3. When p zz 1, in either of the two preceding

symbols, the middle plane of the series

will be represented.
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The right Rhombic Prism.

Fig. 315.

269

\

M

Simple and mixed decrements on the acute terminal

angles.

General symbol E, represents class c, generally.

Ifp i=i 1, the symbol represents the middle plane
of the series.

p ^> 1. or <^ 1
?
the planes represented incline

more on plane P, or on the edge G,
than the middle plane does.

Simple and mixed decrements on the obtuse terminal

angles.
P

General symbol A represents class a generally,
i

Ay represents the middle plane.

Simple and mixed decrements on the lateral angles.

1. On those adjacent to E.

General symbol
PEP

, represents one series of

planes belonging to class d, which intersect

the lateral planes parallel to one of their

diagonals.
2< On those adjacent to A,

General symbol
PAP

, represents a similar series

of planes belonging to class b.
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Intermediary decrements on the acute and obtuse solid

angles.

General symbol (B'P Gq Br : B'r GP BP) repre-

sents a further series of planes

belonging to class d.

(BP Hq B'r : Br Bq B'p) repre-

sents a further series of planes

belonging to class b.

Decrements on the terminal edges.

p

General symbol B, represents class e, generally.
i

B
5 represents its middle plane.

Decrements on the lateral edges.

1. On the acute edges.
*G* represents mod. h.

*G V .... class i.

2. On the obtuse edges.
1H 1

represents mod. f.
PHP

. . . class g.

The exposition which has been given, in reference

to the preceding classes of primary forms, of the re-

lations of the laws of decrement to the several classes

of modifications, will, it is presumed, have been suf-

ficiently full, to render more than an outline of those

relations unnecessary, in reference to the classes of

primary forms which are to follow.
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The right Oblique-angled Prism.

Fig. 316.

Decrements on the acute solid angles, are all comprised
within class b.

1. Simple and mixed.

E represents the middle plane.

E . . the planes which intersect the

plane P parallel to a diagonal.
PE . . . the planes which in the same

manner intersect the plane T.

Ep M.

2. Intermediary. General symbol (BP Gr Cq).

Decrements on the obtuse solid angles are all comprised
within class a.

The symbols representing the planes corresponding
in character with those above described, are,

A.

A.

PA.

Ap
.

(Cp Hr Bq).
.
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Decrements on the terminal edges.

C, symbol of middle plane 1

C, general symbol . . J

B, symbol of middle plane 1

B, general symbol . . J

of class c.

Decrements on the lateral edges.

1G1

symbol of middle plane "\

'gp
; ; ; }

other planes J
of class

1H 1
. . . middle plane ~\

*W '. '. '. }
other planes

The Oblique Rhombic Prism.

Fig. 317.

Decrements on the acute solid angles.

1. Simple and mixed decrements on the angle A,
P

The general symbol A, represents class c.
i

A represents the middle plane of that class.

PAP
represents part of the series of class d.
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2. Intermediary.

(B'p h q Br : BP h q B'r) represents another

part of the series of class d.

The corresponding decrements on the obtuse solid

angles are,
P

O.
i

O.
pop

.

(D'p Hq Dr : D'r Hq Dp).

Decrements on the lateral solid angles, are all com-

prised within class e.

1 . Simple and mixed.

i

E represents the middle plane of the class.

E is the symbol, when the intersection of the

planess e and P, is parallel to the oblique

diagonal of P.

When the lateral planes are intersected

by the planes e, parallel to a diagonal,

the symbol will.be either PE or Ep
.

2. Intermediary. General symbol (Bp Gq Dr).

In this symbol the comparative values of p, q^

and r, will vary according to the positions

of the planes represented.

Decrements on the acute terminal edges.
\

B represents the middle plane of class g.
P

B is the general symbol of that class.

2 M
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Decrements on the obtuse terminal edges.

D represents the middle plane of clas'kf.
P
D is the general symbol of that class.

i Decrements on the edges ofthe prism.

1. On the lateral edges G.O
1G 1

represents mod. k.

rGp .... class I.

2. On the oblique edges H.
1H 1

represents mod. h.

H P
. . class ?'.

The doubly Oblique Prism.

Fig. SIS.

Decrements on the solid angles.

The planes comprehended under class a, may b^

represented by the following* symbols.
P

O, when the decrement proceeds along the plane P.

PO . M.

Op T.

(Dp Ilq Fr) is intermediary.
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The corresponding planes belonging to the other

classes, may be represented as follows.

Class ^ A. Class c, E. Class d, I.

PA. PE. p
l.

Ap
. Ep

,
P.

(Bp llq Cr). (Bp Gq Dr). (Fp G'q Cr).

Decrements on the edges may be expressed as follows.

P P Class i,
PH.

Class e, B. Class g, D. H p
.

p P

Class f> C. Class //, F. Class k,
PG.
Gp

.

Hexagonal Prism.

Fig. 319.

Decrements on the angles.
i

A represents the middle plane of the series be-

longing to class a.
P
A ... the other planes belonging to that

class.

PAP
. . . those planes belonging to class b,

whose edges intersect the planes
M parallel to a diagonal.
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(Bp Gq BV : Br Gq B'p) represents those planes
of class b which are produced by

intermediary decrements.

13 represents class c.

1G 1
. . . mod. d.

PGP
. . . class e.

In some crystals of phosphate of lime, the planes

belonging to class b occur singly. If they result from

simple or mixed decrements, their symbol would be

AP or PA, according as they lie on the left or right

of the modified angle. And if they are produced by

intermediary decrements, their symbol might be

(Bo Go B'o : Bq GP B'r.)

The Rhomboid.

Fig. 320.

Simple and mixed decrements on the superior angles.

General symbol
PAP

.

p

Ifp n: 1, the symbol represents mod. a.

p ^> 1, . . . . . . . . class b.

p <^ J, class c.
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Intermediary decrements on the superior angles.

(B'p Bq B"r : BP B'p B"r) represents class d.

The inferior plane angle at O, and the lateral plane

angle at E, both belong to the lateral solid angles, all

of which are similar, according to the definitions

already given.

The planes modifying the angles at E are therefore

similar to those modifying the angle at O, but are

reversed in their position on the crystal. The laws

of decrement producing both are consequently simi-

lar. But if we refer the decrements producing the

planes belonging to any of the classes e, J\ g, h, i, k,

/, to the solid angle at E, the symbols representing
them will differ from those which would represent
the same planes, if we refer the decrement to the solid

angle at O.

A single example will sufficiently illustrate this

observation. Let us imagine the lateral solid angles of

a rhomboid to be modified by two planes, which inter-

sect the primary planes parallel to their oblique diago-

nals. If the decrement producing these planes were

referred to the angle at E, it would appear as a sim-

ple or mixed decrement, and its symbol would be

E/p PE. But if it be referred to the angle at O, it

might be regarded either as a simple or mixed, or as

an intermediary decrement, of which latter the symbol
would be (D'P Dq b/;

P : Dp D'q b /;

P ). If we regard
these symbols with a little attention, we shall per-
ceive that the variation in their form, does not alter

the identity of their character, which is derived from

the parallelism of one edge of each of the secondary

planes to an oblique diagonal of the primary. But

this character is implied in the supposition of a sim-

ple or mixed decrement, which the first symbol
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represents; and it is directly indicated in each branch

of the second symbol, by those indices which denote

the abstraction of equal numbers of molecules in the

direction of the edges D' b", and D b".

The Abbe Hauy has referred some of the planes
which modify the lateral solid angles, to the angle at

E, and others to the angle at Q. It may therefore be

convenient to possess the symbols representing those

planes, in reference to both angles, and they will

accordingly be given below. The symbol on the left

represents the modification when the decrement is

referred to the angle at O, and that on the right

represents the same modification when the decrement

is referred to the angle at E.

1. Simple and mixed decrements on the lateral solid

angles.

1. Producing one plane on each solid angle.

General symbols.

In reference to angle C.

q

In reference to angle E.

(Dp Bq D"p).

If p zz 2 q, in either of these symbols, mod. e is

represented.

P <C ^ #> cfaw

J. Producing two planes on each solid angle.

General symbols.
PO 1J

.

or, Ep
\Jly

(D'P b"P Dq : Dp b"p D'q).

These symbols represent the series of planes be-

longing to class h.
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2. Intermediary decrements on the lateral solid angles.

The general symbols to represent the modifications

produced by these, are,

(D'P b"r Dq : D'q b"r Dp).
| (Dp D"q Br : Dq D% Br).

Ifri=j9, the symbol represents the planes be-

longing to class h, as described above,

r ^> p, the planes of class i are represented.

r <^ p, the planes of class I, and classf, are

represented.

Although these two classes are represented by a

common symbol, there is this distinction between

them ;
that the edge produced by the intersection

of the planes belonging to class/, is always paral-

lel to the vertical axis of the rhomboid ; and that

their indices p, q^ and r, are in a constant ratio to

each other, as will be shewn in the appendix; while

the planes belonging to class k do not intersect

each other parallel to the axis of the rhomboid, nor

is there any constant ratio between their indices.

Decrements on the superior edges.

General symbol
PBP

.

Ifp =z 1, the symbol represents mod. m.

p ^> 1, class n\

Decrements on the inferior edges.

General symbol
PDP

.

Ifp 1, the symbol represents mod. a.

p ^> 1, class p.

It may be remarked, that several of the classes of

modifications on the angles of some of the primary
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forms, comprise planes which are produced by very
different laws of decrement. And it may possibly

appear to some of my readers, that different classes

ought to have been established for the planes pro*
duced by the several varieties of laws. But this would
have rendered the tables of modifications less gene-

rally applicable to the description of secondary forms,

independently of the theory of decrements, than they
are at present. This will become very obvious if we
refer to the classes a, &, c, or J, of the modifications of

the doubly oblique prism. All that can be known
of any individual plane belonging to either of these

classes, independently of calculation, is that it be-

longs to such a class, and inclines on two of the

adjacent primary planes at particular angles ; and this

enables us to record the particular plane.

If we refer to p. 274, we may perceive that the

planes belonging to either of those classes might be

produced by four different kinds of decrement.

Let us suppose that we have observed a plane upon
a doubly oblique prism produced by one of those

decrements. As it replaces the solid angle O, we
refer it without hesitation to our present class, a.

But if class a had been divided into four classes,

we could not, without previous calculation, know to

which of those the observed plane ought to be re-

ferred ;
and the measurement of the crystal would

not in such case, enable us to describe the secondary

form, by the assistance of the tables only.

The symbols used in this volume to represent

planes produced by intermediary decrements, contain

indices which are always whole numbers ; whereas the

symbols used by the Abbe Haiiy to represent similar

planes, frequently contain fractional indices.
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Fig. 32L

There is, however, no real difference in the charac-

ter conferred on the plane by the two methods of

representing it.

The only difference between them consists in this ;

the indices used in this volume simply give the cha-

racter of the compound molecule by whose continual

abstraction the new plane is produced, while the

Abbe Hatty's symbol supposes this molecule com-

pounded of several other compound molecules.

This will be readily understood by a reference to

the above figure, which we shall suppose a doubly

oblique prism, with an intermediary decrement on

the solid angle at O.

Let dec represent a compound molecule consisting

of three molecules in height, four in the direction a d,

and six in the direction b c, and let us suppose this

the molecule abstracted from the first plate super-

imposed on the terminal plane, and let us also sup-

pose that two of these would be abstracted from the

second plate, and so on, as explained in p. 22 and 23.

The edge d a, in the above figure, corresponds
with the edge D of the primary form, b e with F, and

c/with H.

The symbol we should use to represent the plane

produced by this decrement, would be (D4 H3 F6),
2N
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X

but the Abbe Haiiy's symbol would be (D2 O F3),
and would be understood to imply that the compound
molecules abstracted in the production of the new

plane, consisted of smaller compound ones, each of

these being three molecules in height, and two in

breadth, repeated twice on the edge D, and three

times on the edge F.

From this exposition of the difference between the

two symbols, it will be readily perceived that if in

the Abbe Haiiy's symbol, we substitute for the letter

denoting the angle on which the decrement is con-

ceived to take place, that which denotes the edge

upon which the angle of the new plane may be said

to rest, and place the number used by him to express
the decrement in height, which is in this case the

denominator of his fraction, after it as its proper
index ; and if we multiply at the same time his other

indices by the number he uses to express the decre-

ment in breadth, which is in this case the numerator

of his fraction, the new symbol will be similar in

character to those which are contained in this volume.

This method of converting the form of the one

symbol into that of the other, may be considered

general, and by reversing the process, the symbols

given in the preceding pages, may be converted into

the form of those which he has used.
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APPENDIX.

CALCULATION OF THE LAWS OF
DECREMENT.

IN the preceding sections, some general rules have

been given for determining the class of primary forms

to which any given secondary crystal belongs, and

for describing the secondary crystal by means of the

position of its secondary planes, and of the angles at

which those planes respectively incline on the pri-

mary.
The following is an outline of the method of apply-

ing the theory of decrements to determine the rela-

tions between the secondary and primary forms of

crystals.*

The application of this theory will embrace the

following problems.

First, To determine the law of decrement by which

any secondary plane is produced, the elements

ofthe primaryform being known, and the angles
at which the secondary plane inclines on the

adjacent primary planes, being also known.

* The reader of this appendix is supposed to be acquainted with th*

elements of plane and spherical trigonometry, and with the use of the

tables of logarithms.
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Second, To determine the angles at which the

secondary plane inclines upon the adjacent pri-

mary planes, the elements of the primaryform,
and the law ofdecrement by which the secondary

plane is produced^ being known.

Or, to determine the particular values of the gene-
ral indices given in the tables at p. 254, the

inclination of the secondary planes to the pri-

mary being known ; and to determine those in-

clinations when the indices are known.

The elements of the several classes of primary forms

consist of

1st. The angles at which the primary planes in-

cline to each other. These may be ascertained by
means of the goniometer, if not already known.

2d. The plane angles of the primary planes. When
these angles cannot be ascertained by other means,

they may be deduced by spherical trigonometry, from

the known inclination of the primary planes to each

other.

3d. The comparative lengths of the primary edges,

and of such other lines upon or within any crystal

as maybe required for facilitating our calculations of

the laws of decrement, or for delineating its primary
or any of its secondary forms. The methods of de-

ducing: such of these elements as cannot be ascer-O
tained by measurement of the crystal, will be des-

cribed where the elements of the several classes of

primary forms are described.

In the tables at p. 254, &c. the letter p is used to re-

present any whole number
',
orfraction. But it will be

more convenient for our present purpose to represent

simple and mixed decrements by the general fractional

index fL; p expressing the decrements in breadth, and

q

q the decrements in height.
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It has been already remarked, thai one half the

number of planes by which any crystal is bounded,
are generally shewn in front of the engraved figure

of that crystal. And as we know that the opposite

angles, edges, and planes, which are supposed to form

the back of the engraved figure, are respectively

similar to those which appear on its front, if the

decrements on these be described, the decrements on

the hidden or back planes may be conceived to be

described also. And again, as the law of symmetry

requires that all similar angles and edges shall be

similarly modified, if among the modified angles and

edges, which are supposed to be in front of the

figure, there be two or more, similar to each other, it

is obviously sufficient to investigate the decrement

upon one of these, in order to determine the character

of the modifying planes upon the others.

Decrements, as we have already seen, take place

on the ^edges or angles of crystals, and are of two

principal kinds ;
one of which produces planes inter-

secting the primary planes, in lines, of which one

at least, is parallel to an edge or diagonal of one of

those planes ; and the planes produced by the other

intersecting the primary planes in lines, not any of

which are parallel to an edge or diagonal of any of

those planes.

The effect of both these classes of decrements upon the

primary form, is similar to that which would take

place, if we conceive the enlarged crystal to have been

completed, and the whole of the omitted molecules to

have been then removedfrom it in one, mass.

This will be readily perceived, if we refer for an

example to modification a of the rhomboid. Let

us conceive a rhomboid of a given dimension to

hare been formed; and during its further increase in



288 APPENDIX CALCULATION OF THE

bulk, a row of molecules to have been abstracted

at the angle A of the primary form, from the first

plate of molecules added to the plane P, and an

additional row to have been abstracted from each

succeeding plate.

As the three plane angles which concur to produce
the solid angle at A, are similar, a similar abstraction

of molecules would take place simultaneously from

the plates superimposed on each of the three adjacent

planes, and the result would be the production of a

tangent plane, presenting at its surface the terminal

solid angles of the molecules belonging to those

plates which had been added to the smaller rhomb-

oid.*

Let us next suppose that instead of any abstraction

of molecules from the superimposed plates, those

plates had been added entire, and a perfect enlarged
rhomboid had been produced.

* It will be recollected that the molecules are so small, as to occasion

no perceptible difference iu the character of the secondary plane,
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We may conceive it possible to reduce this entire

rhomboid to the state of the modified one, by remov-

ing, in one mass, the triangular pyramid of molecules

d c f g, fig. 322, in which the supposed modified

crystal is deficient.

The mass of molecules, therefore, in which any

secondary form is deficient) when compared with its

primary form, is equal to the number of molecules

abstracted in the production of that secondary form,

arranged in the same order as they would have been, if

they had completed the enlarged primaryform.
This mass, so arranged, being all the addition to

the secondary form which would be required to com-

plete the primary, will be called the defect of the

primary form, and it will be shewn presently that

the edges of this defect may be used in every instance,

to determine the decrement by which the secondary

plane is produced.

Fig. 323.

For the purpose of
illustrating this proposition

further, let us observe the change which would have
taken place, ifa parallelepiped ofany kind, either right
or oblique, as a b c d e, fig. 323, had been modified
on one of its edges, by a decrement consisting of a

single row of molecules.

whether that plane exposes the edges, solid angles, or planes of the

molecules.
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Let us suppose the edge i
A*,

of the primary form,

to be to the edge i d, in the ratio of m to n, m and n

being any numbers whatsoever.

It follows from what has been before stated, that

the ratios of the corresponding edges of the molecules

which compose this form, will also be as m to n; and

consequently that the primary edges are composed of

equal numbers of edges of molecules, and may there-

fore be regarded as multiples of m and n, by some

indefinite whole number.

Let us further suppose that the decrement had

begun to act at the edge a b, and had proceeded along
the plane a b c.

In the first plate of molecules superimposed on

that plane, the row 1 would have been omitted. In

the second plate, the additional row 2. In the third

plate, the additional row 3, and so on.

Now the evident result of these abstractions from

the several superimposed plates, would have been

the production of a new plane, a b g f, replacing the

edge h
,
of the enlarged crystal ;

and the triangular

prism, whose base is the triangle b if, represents the

defect of the primary form occasioned by this decre-

ment.

But it is obvious from the figure, that the ratio of

the lines i f to i b of the defect, is as 3 m to 3 n, or

as m to n. Hence when a decrement by 1 row of

molecules takes place on the edge of any parallele-

piped, the ratio of the edges of the defect, correspond-

ing to if, i b, is similar to the ratio of those edges of

the primary form, of which these are respectively

supposed to be portions. And as the edge b f, of the

new plane, coincides with a diagonal of the molecules,

it is evidently parallel to a diagonal of the plane d i k e.
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Fig. 324.

Let us now suppose a decrement by 2 rows in

breadth to have taken place on the edge of a similar

parallelepiped. If we imagine the first plate of

molecules which is superimposed on the primary

plane to be deficient in two rows of single molecules ;

and if we imagine two additional rows of molecules

abstracted from the second plate, and so on, the plane
i k would be produced, and the lines i g, g &, would
be the edges of the defect of the primary form occa-

sioned by this decrement.

But it is evident that the line g k is to the line g /,

as 4 m is to 2
ft,

or as 2 m to
??, this being the ratio

which the number of molecules abstracted in the

direction g f, bears to the number deficient in the

direction of g d.

From these examples we find that whenever a

decrement takes place on the edges of any parallele-

piped, replacing that edge by a plane, the edges of

the defect will be to those edges of the primary form,
of which they are respectively parts, in the ratio of

the numbers of molecules abstracted from each su-

perimposed plate in the direction of the same edges

respectively; and that such ratio will express the

law of decrement by which the new plane has been

produced.

2o2
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We may perceive from the figures 323 and 324,
that if we had conceived the new plane to be pro-
duced by the superposition of a single plate of mole-

cules, the edges of the defect would still be in the

same ratio to each other as if the new plane were

produced by a series of decreasing plates. We may
therefore express the character of this plane by the

ratio of the edges of the defect of the first plate of

molecules, consisting of one or more molecules in

thickness, according to the nature of the decrement.

Fig. 325.

Let us derive another illustration of this propo-r

sition from a decrement on the angle of a parallel o-

piped ; and, to render the example more general, let

us suppose an intermediary decrement acting on that

angle to have produced a plane a b c, fig. 325, by the

abstraction of a compound molecule, consisting of

three molecules in height, two in the direction of i h,

and four in the direction of i k. If we suppose the

lines i #, and i d, to be to each other in the ratio of

m to n, and the line i h, to be as o, the corresponding

edges of the compound molecules would consequently
be in the same ratio, and the edges, i c, i b, i a, of the

defect, would be as 4 m
9 3 n, and 2 o, and would,

when divided by m, n
9
and o, express the law of de-

crement by which the new plane is produced.
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From these examples it appears that the edges of
the defect of the primary form are multiples of the cor-

responding edges of the molecules / and the ratios of
the edges of the defect are consequently multiples of the

ratios ofthe corresponding edges of the primaryform.
For let the ratio of i k : id, which is that ofm :

/z,

be represented by the fraction -
n

and the ratio of i b : i c being that of 4 m : 3 n, be

represented by the fraction t??.
a n

It is evident that the ratio is a multiple of
o n

by t
n

7

3

Hence the problem of ascertaining the law of decre-

ment producing any secondary plane, is reduced to that

of ascertaining the ratios of the edges of the^ defect of
the primary form occasioned by such decrement, and

dividing these ratios by the ratios of the correspond-

ing edges of the primary form.

We may also discover the law of decrement in

some particular case?, by dividing the ratios of the

edges of the defect, by the ratio of an edge to some

other line upon the crystal.

Whatever ratio we may use for this purpose, will

be termed the unit ofcomparison.
This unit of comparison is, generally, the ratio of

certain edges or other lines, either on the surface, or

passing through the interior of crystals, of which, pro-

portional parts would be intercepted by any new plane,

resultingfrom a decrement by one row of molecules.

According to the theory already explained, the

molecules of all parallelepipeds are similar parallejo-

pipeds, and their edges are consequently propor-
tional to the corresponding edges of the primary form.
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Hence, when through the operation of a decrement

on an edge of any parallelepiped, a single row of

molecules is abstracted, the parts which are removed
from the two edges adjacent to that on which the

decrement has taken place, will be proportional to

those edges respectively ; and the ratio of those edges

may therefore constitute the unit of comparison for

decrements on the edges of parallelepipeds.
If a decrement take place by one row on an angle

ofa parallelepiped, a single molecule is first abstracted

from its solid angle; and the parts thus abstracted

from the three edges which meet at the solid angle,
are respectively proportional to those edges.

The ratios of the three adjacent edges of any paral-

lelopiped, therefore, may be taken as the units of

comparison for determining the various laws of de-

crement on the angles of that class of primary forms.

And, by analogy, we may take the ratios of the three

orfour edges adjacent to the solid angles ofany class of

primary forms, to express the ratios of the edges of

the defect occasioned by a decrement by one row of

molecules.

But other lines may be traced on some of the

classes of primary forms, proportional parts of which

will also be intercepted by decrements by one row of

molecules.

The ratios of these may therefore be taken as the

units of comparison, if we find them more convenient

for our calculations than those of the primary edges.

When the edges, or other lines, from which the unit

of comparison is to be derived, are equal, their ratio

will be = I, and in this case the lowest whole numbers

which will express the ratios ofthe edges of the defect of
the primaryform, will also express the law of decrement.

And whenever an edge of any primary form is re-

placed by two similar secondary planes, as in
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of the cube or regular octahedron, or g, or
i, of the

right rhombic prism, &c. the lines whose ratio con-

stitutes the unit of comparison in such cases, will

always be equal.

And the units of comparison for determining any
law of intermediary decrement, will always be the ratios

of the edges which meet at the solid angle on which the

decrement has taken place.

Fig. 326.

To ascertain the ratio of the edges of the defect of
the primary form, when a decrement takes place
on an edge of any parallelepiped, fig. 326, we must

suppose the inclination of the primary planes to each

other to be known, and the inclination of the modi-

fying plane a b cf, to the primary planes P and T.

Fig. 327.

Now to determine the ratio which the line i
,

bears to i c, we require the angles of the plane tri-

angle i b c. These may be obtained by means of a

spherical triangle, fig, 327, whose angle A is the
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supplement of the inclination of P on the plane
a b c fy the angle B the inclination of P on T, and

the angle C the supplement of the inclination of T
on the plane a b cf.

From this spherical triangle we deduce the side
,

containing the required angle i b c, by the known
formula

sin, i - R -t /-cos. \ (A+B+C). cos. \ (B-fC=A)
y sin. B. sin. C

Fig. 328.

and by applying the same formula to a second

spherical triangle, fig. 328, whose angle
C is similar to that of the preceding,
B is the inclination of M on T,
A the supplement ofM on the plane a b c f\

derived from actual measurement, or deduced from the

known inclination of P on the plane a b c /, and of P
on M, we may again obtain the sidec, which contains

the other required angle, i c b.

Having thus determined the two plane angles,
i be, i c by the ratio of i b to i c is known from the

analogy between the sines of the angles of triangles,

and the sides subtending those angles, thus,

i b : ic : : sin. \y i c b : sin. \/ i

'

b c.*

Let us suppose i k : id:: m : n ; m and n being

any whole numbers whatever, and being already
known by means which will be pointed out in a later

part of this appendix.

* This mark V ' s used to denote the word angle.
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If the new plane has resulted from a decrement on

the edge h
', by one row of molecules, the lines i 6,

f c, must also be to each other as m to n, and we
should then have

sin. \/ icb : sin. \/ i'b c :: m : n.

But if the new plane has resulted from a decrement

by unequal numbers of molecules in height and

breadth, the ratio of i b to i c, should be as p m to

q n ; the letter p representing the number of mole-

cules abstracted in the direction of the edge i k, and

q representing the number abstracted in the direction

of the edge i d.

The ratio of p m : q w, may be expressed by the

fraction of P m. which is evidently the product of

qn
'

jf _ 1 We may therefore obtain the values of p
q

'

n

and q, whatever may be the particular values of

ff
m

and
z

,
if we divide P m

, which expresses the

q n n q n

ratio of the edges of the defect by ,
which expresses

the ratio of the corresponding edges of the molecules,

or, which is the same thing, of the corresponding

edges of the primary form.

There are two methods by which this division may
be effected,

Thejirst is by finding the absolute values of m and

w, and ofp m and q n^ by means of the tables of na-

tural sines, &c. and then reducing those ratios to

their lowest denominations in whole numbers; and

after dividing the one fraction by the other, reducing
the quotient to its lowest denomination in whole

numbers. The quotient so reduced would express
the law of decrement.
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As an example of this method, let us suppose
we have found

i k : id :: 11 : 8

therefore = i!.
n 8

And let us suppose the ratio of

ib : ic :: sin. y icb : sin. \/ ibc :: 33 : 16;

then we should have P m zz .

q n 16

If we divide the second fraction by the first, the

quotient will be
|?

X ~ = ~ = -, which would

give a law of decrement by three rows in breadth, or

in the direction of i k, and two in height, or in the

direction of the edge i d.

If we now suppose the edges i k, and if, to be

equal, it is evident that becomes equal to 1.

n

Under this supposition the ratio of i b to ic might

be expressed by a fraction of the form . .

q
Let us now imagine the ratio of i b : ic to have

been found as 1 : 3.

This would indicate a decrement proceeding along
the terminal plane by 3 rows of molecules in height.

If we find i b : i c : : 4 : 3, the law of decrement

producing the plane from which that ratio is deduced,

is by 4 rows in breadth, and 3 in height, on the termi-

nal plane.

The second method of dividing the proposed frac-

tion -J? by is by means of the logarithms of the

q n n

quantities from whence those ratios are deduced.
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Let us suppose we have found i k : i d : : R : sin. a,

we should then have m
n

and . . . Log. = Log. R Log. sin. a.
n

Let us also suppose ib : ic *: s'm.\/icb :\/sin.ibc,

then P m = shl ' V ' c b

q n sin. N/ ib-c;

and Log. ?_???_ Log. sin. Y/ 2 c ^ Log. sin.yf 6 c.

qn

The division of J!? by is effected by sub-

q n n

tracting the logarithm of the latter fraction from

that of the former. And the natural decimal number

corresponding to the resulting logarithm, will bear

the same ratio to 1-0, 1-00, 1-000, &c. according to

the number of decimal planes in the number found,
as the decrement in breadth bears to that in height.

Examples of the application of this method of

deducing the values of p and q, will occur in the

course of this appendix.

Fig. 329.

Let us now enquire how we may determine the

ratios of the three edges, i
ft,

i c, i
, fig. 329, of the

defect^ occasioned by a decrement on one of the angles
of a parallelepiped.

2 p 2
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We are supposed to know the inclination of the

primary planes to each other, and let

P on M be called I-

P T . . . /,
M T . . . J

3

We may from these readily deduce the plane angles
at t by means of a spherical triangle ; and having
measured the inclination of the plane a b c on P,

M, and T, we may discover the plane angles at
, #,

and c, by means of the three spherical triangles
marked on

fig. 330.

Fig. 330.

In these triangles we known only the angles, which

are those at which the primary planes incline to each

other, and the supplements of those at which the

secondary plane inclines on the adjacent primary

planes.

The plane angles at 0, b, and e, being found, we

may readily discover the ratios of ib : i c, and ib : ia,
which will give the law of decrement by which this

modifying plane has been produced.
Let us still suppose, i k : i d : : m : n

y

and i k : i h :: m : o,

our units of comparison here would be - and
n <>

and let i b : i c : : p m : q n

i b : i a :: p m : r o.
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After effecting our division of P-2H by ,
and of

q n n

,
we should find

r o o

i b = p,
I c = q,

i a =. r,

which would imply a decrement by p molecules in

the direction of i k, q molecules in that of i
rf,

and

r molecules in the direction of f h.

If we suppose fig. 329 to be a doubly oblique prism,
the letter to denote the edge

i h would be D,
ik . / . F,
id . . . H,

and the symbol of the plane a b c, would then be

(Dr Ep Hq).

It may be remarked here, that tangent planes are

generally the result of a decrement by 1 row of

molecules, whether they replace the angles or edges
of those classes of the primary forms in which they
occur.

By this general method of proceeding we may,
when we know the inclination of the primary planes
to each other, and of the secondary plane on one or

more of the primary, discover the law of decrement

by which any secondary plane has been produced on

any of the classes of parallelepipeds ;
and it may be

adapted also to all the other classes of primary
forms.

We shall now apply it to the several classes of

those forms in succession, and the calculation will be

found to become much more simple in its application
to many of those classes.
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As it will not be necessary to repeat even the for-

mulaB in all the cases which are to follow, it may not

be useless again to observe that when a law of decre-

ment producing any plane is to be determined, the

general symbol of that plane is to be first discovered,

and then the particular values of its indices to be

found.

In simple or mixed decrements^ these values are

deduced from the ratio of radius to tangent a, or of

sin. a to sin. &, as we have already seen
; a and b

representing the particular angles in each particular

case.

The following may be regarded as the general pro-

cess for determining the law of an intermediary decre~

ment.

1st. To measure the inclination of one of the

secondary planes on two of the adjacent

primary planes.

2d. To determine the two plane angles at the ter-

mination of the greater edge of the defect

of the primary form occasioned by the plane
we have measured.

3d. From a knowledge of these plane angles, and

of the plane angles of the primary planes, to

deduce the ratios of the edges of the defect.

4th. When the primary edges are unequal, to divide

these ratios by the ratios of the correspond-

ing edges of the primary form, and thus to

deduce the law of decrement.

5th. If the intermediary decrement has taken place
on an octahedron, to determine the fourth

edge of the defect by a method which will

be described when we apply our calculations

to the regular octahedron.
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It will be recollected that in framing the general

symbol of any secondary plane, we are generally to

consider p^> #> r> s.

By carefully observing the position of the plane
we have measured, and whose law of decrement we

require to know, we shall feel no difficulty in adapt-

ing an appropriate symbol to it. And having found

our general symbol, we may readily find the particu~
lar values of these indices by the methods already

described, or by such as will be detailed in the suc-

ceeding part of this appendix.

From what has preceded, the method will be rea-

dily perceived by which we may determine the ratios

of the primary edges of crystals, if we assume some

observed secondary plane replacing an edge of those

forms whose terminal edges are equal, or replacing

an angle of those whose terminal edges are unequal,

to have been produced by some given law of decre-

ment.

If we assume that a plane replacing an angle or

edge of any primary form, has resulted from a decre-

ment by one row of molecules, we determine the

ratio of the primary edges by discovering the r^tio of

the edges of the defect occasioned by that plane. And
if we assume any other law of decrement to have

produced the given plane, the ratios of the primary

edges may evidently be determined, by dividing the

ratios of the edges of the defect by the assumed law

of decrement.
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THE CUBE.

Its elements.

The inclination of any two adjacent planes at their

common edge zz 90.

Plane angles rz 90.

Edges all equal.

Inclination of an edge to an axis 54 44' 8/;
.

Ratio of an edge : \ a diagonal : : 2 : VcJ

an edge : an axis : : 1 : Vg t

Its units of comparison.

In reference to decrements on the edges, the unit

is nz 1.

..... simple and mixed decrements on

Vo I

the angles, it is = _ =
y=.

Simple and mixed decrements on the angles.

The law of a simple or mixed decrement on any

angle of a cube, may be computed by means of an

edge of the primary form, and half a diagonal of one

of its planes. The diagonal being used to measure

the decrements in breadth, and the edge those in height*

Ing. 331.

Let us suppose a cube represented by figure 331,

and let us jmaginc a simple decrema|it to have taken
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place by 1 row of molecules on the angle afb. The

edges of the defect of the primary form, would, in

this case, be, as we have already seen, proportional
to the corresponding edges of the primary form, and

might consequently, if the secondary plane were suf-

ficiently enlarged, be equal to those edges. The edges
of the new plane might therefore coincide with the

lines a b, a c, b c.

If we now draw the diagonal g /",
on the terminal

plane, we shall observe that one half of it is inter-

cepted at the point /*, by the edge a b of the second-

ary plane.

As a decrement by 1 row therefore intercepts the

half diagonal fh, at the same time that it intercepts

the whole of the edges f a,fb,fc, the ratio offh :fc

may be assumed as the unit of comparison for deter-

mining the law of a simple or mixed decrement on

the angle afb.
For let us suppose a decrement to have taken place

on that angle, by 2 rows in breadth ;
if this decrement

be conceived to be continued until the edges af, and

b f, are again intercepted by the new plane, it is

obvious from what has been already stated, that only
one half of the edge/c would be intercepted by the

same plane.

Here then the law of decrement would be ex-

pressed by the ratio offh : |/c, or 2fh : fc; and

iff h : fc be represented by m : n, the ratio of

fh : f d, should be as 2 m : n, and would thus give
the required law of decrement by 2 rows in breadth

on the angle afb.
But the ratio of fh :fd, is that of radius : tang, of

the angle fhd-} yuidjh d is the supplement of the

2Q
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CUBE.

angle g h d, the inclination of the primary to the

secondary plane.

The planes belonging to classes b and c of the

modifications of the cube, result from simple and

mixed decrements.

Let the inclination of P on the plane b adjacent to

it, or on the plane c which rests on the edge between

P' and P",* be measured and called /, .

Ifp, as before, be used to represent the decrement

in breadth, and q the decrement in height, then

p- R
q tang. ( ISO -/, )

Intermediary decrements.

The general symbol representing a single plane

belonging to class d, would be (BP B //7

q B'r). And
the law of decrement producing a particular plane
of that class, would be discovered by finding the

values of
/>, q, and r, in relation to that particular

plane.
Let us suppose q ^> r.

If we refer to the tables of modifications, we shall

observe that two of the planes which have the d

placed upon them, rest on the edge between P and P7
.

Let that which inclines most on P', be measured on

P and P'.

Let Pond /2 .

P1 ..d = I
3

.

Let the plane angle of the defect corresponding to

i a c, fig. 329, be called A
, ,

and that corresponding
to i a b of the same fig. be called A z .

* See the tables of modifications whenever the classes are referred to.
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Tir i IT i. & COS. (180 /2 )We shall have cos. A, = :
i =-?

sin. (180 /
3 )

A R. COP. (180 /,)and cos. A 2 = _ -A ^
sin. (180 /2 )

The plane angles being thus found, we have

a i : i c : : p : q : : R : tang. A l

a i : i b : : p : r : : R : tang. -4 2 .

We may determine these particular values of the

ratios of p : q, and p : r, by means of the tables of

natural tangents, or by logarithms.

Decrements on the edges ofthe cube.

Let the inclination of the plane P on the plane/,
or &, adjacent to it, be called /

4 .

?= *-
q tang. (180/4 ).

Throughout the remainder of this appendix, when

the law ofa simple or mixed decrement is expressed by

^, the letter p will always be understood to denote the

decrement in breadth, and q the decrement in height.
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THE REGULAR TETRAHEDRON.

Fig. 332.

Its elements.

The mutual inclination of any two adjacent planes
at their common edge zz 70 31' 44", and may
be called /,.

Plane angles zz 60, and may be denoted byA t
.

Edges all equal.
Inclination of an edge a do a perpendicular,
a b = 54 44' 8", and may be called A 2 .

Inclination of an edge to an axis zz 35 15' 52",
and may be called A

3
.

Inclination of a perpendicular a b to an axis

zz 19 28' 16", and may be called A
4

.

Ratio of a perpendicular

a b : an edge a c : : ^3 '

2.

Its units of comparison.

Vg
The unit is zz

,
in relation to simple or mixed

decrements on the angles.

. . . . zz 1, in relation to decrements on the

edges.
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REGULAR TETRAHEDRON,

Simple and mixed decrements on the angles.

To determine the law of a simple or mixed decre-

ment on an angle of the regular tetrahedron, we may
assume as the unit of comparison, the ratio to an

edge a c, of a perpendicular a b upon the base, fig. 332,

drawn from the angle . The line a b measuring the

decrement in breadth, and the edge a c measuring
the decrement in height.

The ratio of ab : ac is known, from the relation

of the tatrahedron to the cube, to be as *3 : 2.

Let/g-, fig. 332, represent a secondary plane be-

longing to class &, whose inclination to the primary

plane, which is obviously equal to the angle b d e,

has been determined by measurement; we may call

this angle f2 .

In the triangle a d e, we have the following angles,

\/ ade=(lSO /,),

V d a e zz (90 |I t ) nr 54 44' 8", which we have

called A,.

V aed (/a Aj.
Whence
ad : ae :: sin. (72 A z ) : sin. (180 72 ) :: pm : qn.

In the fraction !?,
- represents .

qn' n 2

Dividing therefore
sin * f-[J^_^) by _JL we shall
sin. 180 /.). g'

find the values ofp and gs jp, representing the decre-

ment in breadth on the angle a, proceeding along the

plane a b, and q the number of molecules in height

corresponding to the line a e.

If the inclination on P, of any plane belonging to

class c, which rests on the edge between P' and the
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REGULAR TETRAHEDRON.

back plane of the figure, be known and called J
3 ,

the

preceding formula will give the law of decrement

producing that particular modification.

Intermediary decrements.

Fig. 333.

The law of an intermediary decrement on an angle
of the tetrahedron, is determined by the ratios of the

defect or intercepted portions ae, af, a g, of the three

primary edges a b, a c, a d.

Let efg, fig. 333, be one of the six planes pro-
duced by a modification of the tetrahedron belonging
to class d.

The general symbol representing a single plane

belonging to this class is (BP B'q B"r), p representing
the number of molecules contained in af, q the num-
ber contained in a g, and r the number contained

in ae.

To determine the ratios of a e : af : a g, we re-

quire the plane angles af e, afg; from which, as we
know the angles e af, f a g, we may deduce the

angles a ef, a gf.
To obtain the plane angles afe, afg, we may

have recourse to a spherical triangle.
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The plane representing class d, on the figure in

the tables of modifications, which corresponds to the

plane e fg of fig. 333, is that which rests on the edge
between P and P' and inclines on F'.

Let the inclination of this plane on P be called /
4

.

........ V . . .1,.
and let the plane angle afe be called A

5 .

....... afg . . . A 6 .

we shall have sin. | A, ==L O

V
-J

4)+(180-/ 5 ) ]cos4[ I

sin. /n sin. /4

and sin. A 6 =z

^ /
I/ sin. /, sin. 1 5

Having from these formula deduced the angles
A

5
and A 6 , we have

/: a g :: p : q :: sin, (120 A 6 )
: sin. A 6

sin. A 6

sin. (120 A 6 )

a f: a e :: p : r :: sin. (120 yl/
5 ) : sin. A

5

..
I

.
sin.^

5
*

sin. (120" J
5 )

Hence the particular values of p, <y,
and r, being

found, and substituted for those letters in the general

symbol (BP B'q B"r),

we shall obtain a symbol representing the particular

plane we have observed.
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REGULAR TETRAHEDRON.

Decrements on the edges.

Fig. 334.

The law of any decrement on an edge of the regu-
lar tetrahedron, may be ascertained by means of the

two lines a 6, a c, drawn from the angles b and c,

perpendicularly on the edge jfg, on which the decre-

ment is supposed to take place.
The primary planes of this figure being equilateral

triangles, the lines a 6, and a c, which are perpen-
dicular to the edgeyg*, are equal.

The angle b a c, is that at which the adjacent pri-

mary planes incline to each other, and is already
known and called /, .

Let the new plane d e, be one of the planes belong-

ing to mod. /of the tetrahedron, and inclining on the

primary plane P' at an angle which we shall call J6 .

And let d a, a e, be the portions of the lines a b, a c,

intercepted by the new plane.
In the triangle dae, the angle aed, is =(180 76 ),

and consequently the angle a d e, is (/6 /,).

Wherefore,
a e : a d :: p : q :: sin. (/6 /,) : sin. (180 >T6 ).

We may determine p and q, those being the lowest

whole numbers which will express that ratio, by the

means of either the natural sines, or their logarithms ;

and when determined, they will express the law of

decrement by which the new plane has been pro-

duced.
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REGULAR OCTAHEDRON.

Fig. 335.

Its elements.

The inclination of any two adjacent planes at their

common edge 109 28' 16", may be called /, .

Plane angles = 60, may be called A
t

.

Edges all equal.

Inclination of edge to edge measured over the

solid angle 90.

Inclination of plane to plane measured over

the solid angle = 70 31' 44", and may be

called J2 .

Ratio of a perpendicular

a b : an edge af : : ^3 i 2.

. . . an edge : | an axis :: ^2 : 1.

Its unit of comparison

Is 1, in reference to simple and mixed decrements

on the angles, and also to decrements on the edges.

Simple and mixed decrements on the angles.

The law of a simple or mixed decrement on the

angle of a regular octahedron may be determined by
means of the perpendiculars a b, a f, drawn from the

angle a upon the edges of the base : which perpen-
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REGULAR OCTAHEDRON.

diculars are, from the nature of the figure, equal.
We know the angle b a c, which we call J2 ,

and we
are supposed to know the angle b d e, which is the

inclination of one of the planes of class b to the adja-
cent primary planes. This inclination we shall call

/
3 ,

and from these angles we may deduce the angle
d e a, which we may call /

4
.

Hence we have

a d : a e : : sin. /
4

: sin. (180 /
3 ) : : p :

<?,

which gives the law of decrement by p rows in
breadth^

and q rows in height, on the angle 3 proceeding along
the plane a b.

Intermediary decrements.

The intermediary decrements of the regular octa-

hedron are, as we have already seen, of two kinds;

the one producing the modifications class c
?
and the

other class c?
3
of that form.

Fig. 336.

In the modifications class c9 the general symbol

representing which is (Bp B'q b'q br), the edges

e, a g, of the defect of the primary form, are equal,
a h is less than a e, or a g, and ajf greater.

It will be sufficient therefore to determine the

ratios of af to either a e or a g, and to a h. For
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this purpose let us imagine the defect of the primary
form to be divided by a plane passing through the

edges a h, af, and let a hfg represent one halfof this

defect.

The inclination is known of P on P'5
and called /,,

and of the new plane on P', which we shall call 1
5

.

Hence from a spherical triangle whose angles are

90, I /!, and (180 /
5 ), we may deduce the plane

angles afg, af h, which we shall call^ 2 and^ 3
.

The formulae for this purpose are the following :

sin. i
,

we know the anglefa g n: 60

fah=:90
whence we deduce

af: a g :: sin. (120 A z ) sin. A
sin A

. _
sin. (120 A z )

and af: a h :: R : tang.^ 3

:: p :

:: P ' r

and by substituting for p, q, and r, in the general

symbol of the class of modifications to which this

plane belongs, these particular values, we shall obtain

the symbol of the particular plane we have observed.
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Fig. 337.

The law of an intermediary decrement producing

any modification belonging to class d, may be thus

discovered.

Let/ o- h i, fig. 337, be one of the planes of that

class, and let its inclination on P, and on P', which

is supposed to be known, be called I6 and I
7

.

The symbol to represent this plane would be

(BP b'q B'r bs).

p representing the number of molecules contained

in the line a g of the above fig.

q .... ah,
r ..../,
v . . . . a i.

The spherical triangle marked on the fig. at P P',

will give the plane angles a gf and a g h, which we

may denote byA 4
'and A

5 , by means of the following
formulae.

sin. f A^ =
^i4[(180 / 6)+Jj -f(18(F--/ 7 ) 3 cos4[ (180 / 6 )+/,--(180 J

7 )]

sin. (180 J 6 ) sin./,.

1/ sin. (180 /
7 ) sin. /
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Whence we may deduce the particular values of p, q,

and r, from the ratios of a g : a h, and a g : af.
a g : ah:: sin. (120 A

5 ) : sin A
5

01 r //

sin. (120 A
5 )

a g : af :: sin. (120 ^
4 ) : sin

:: p:q.

1
Sl11 ' -"4

sin. (120 A,)
The value of s may be found from the following-

equation,

I^I+I^i
s q r p

This equation may be thus derived.

Fig. 338.

Let a i e c, fig. 338, represent a section passing

through the axis of any octahedron whose terminal

edges are equal, and through four of those edges.

And let the lines g i, hf, be equal to lines which

might be drawn on the plane/*g-
h

i, fig. 337, from g
to

2,
and from h tof. Both these lines will evidently

cut the axis at the same point, which we may call m.

If we draw g n parallel to a i, we have

g n z= g a : a i :: an a m : a m.
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But from the structure assigned to the octahedron,
it is evident that the axis a o represents double the

number of molecules that are represented by an edge
a by and we may therefore in relation to the numbers
of molecules represented, consider

a n 2 g a.

Hence g a : a i : : 2 g a a m i am.
and g a-\-a i : a i :: 2 g a : a m.

From this ratio we find

a m = gg* ai

g a + a i.

And by a similar proceeding we shall find

m =
h a -f af.

Therefore 8g ' - *** "/
g a-\-ai h a -\- af.

And 2 g a . a i : g a -f- a i

'

:: 2 h a . af ; h a -\- af

I + ^Z
ha

1 : J. + _L::1:L + _I
cri g / A a

Therefore 1 +-! = 1 + JL
at g a af h a

1 1,1 1

and, =: +
a z af ha ga

whence _ ~ _ 4- --- .

^ r q p *

* This formula was mentioned to me in conversation by Mr, Levy,
some months before it occurred to me as the result of the investigation

given in the text. But it was mentioned without any allusion to the

means l3y which it had been obtained; and these, I since learn from

Mr.L., were different from those employed above.
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Decrements on the edges of the regular octahedron.

Fig. 339.

The inclination of one of the planes of class fa on

the primary plane adjacent to it, being- known and

called /8 ,
the angle a e d

y fig. 339, becomes

(180 J8 ).

andfle : ad :: sin. (78 /) sin. (180 /8 ) :: p : q,

which will give the law of decrement producing the

particular plane we have measured.
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THE RHOMBIC DODECAHEDRON.

Its elements.

The inclination of any two adjacent planes at their

common edge zz 120, to be called /,.

Obtuse plane angles zz 109 28' 16", may be

called A t
.

Acute plane angles zz 70 31' 44", may be

called A z .

Edges all equal.

Inclination of edge to edge measured over the

summit = 109 28' 16", may be called A 3 .

Inclination of plane on plane measured over

the summit zz 90.

Inclination of an edge to the adjacent lesser

diagonal zz 125 15' 52", may be called A
4

.

Ratio ofan edge : ^a greater diagonal ::*3 :*%.

an edge : \ a lesser diagonal :: *3 : 1.

an edge : greater axis :: ^3:4.
an edge : lesser axis :: 1 : 2.

greater diagonal : greater axis : : ^2 : 2.

lesser diagonal : lesser axis :: 1 : ^3.

Its units ofcomparison.

For simple and mixed decrements on the acute

angles, or on the edges, the unit is zz 1.

For simple or mixed decrements on the obtuse

angles, it is
, being the ratio of \ a lesser diagonalV3

to an edge.
After the ample illustration which has been given

of the methods proposed for determining the laws of

decrement, it will not be necessary in future to do
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much more than to indicate the results of their appli-
cation to new cases.

This may generally be effected, by giving the gene-
ral symbol of each particular class of planes, and the

formulae which are required for determining the par-
ticular values of the general indices of each class

respectively.

Fig. 340.

Simple and mixed decrements on the obtuse angles.

General symbol q

~q q~

Let the inclination of P on a plane of class f adja-
cent to it, or on the upper of the three planes on

which g is placed, be known and called /2 ,
and

pm sin. (/a A^)

q n sin. /2

If we divide $ by-^, being the particular value of
qn V3

in this case, we shall obtain the particular values
n

ofp and q, and hence the law of decrement producing
the plane we have measured.
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Intermediary decrements on the obtuse solid angles.

On referring to class h of the modifications of this

form, we shall perceive that two planes rest on the

edge between P and P".

Let the plane which inclines most on P be mea-

sured on P and on P". Call its inclination on P, /3 ,

onP"./
4

.

The symbol representing this plane would be

(Bp B'q B"r).

To determine /?, <?,
and r, we must, as we have

done for the tetrahedron, find the two plane, angles
of the defect, which we shall call A . and A 6 , by the

formulae

sin. i A
5
=

Y sin. (180 J 3 )sin. /,

sin. A fi =

V-CQ8.K (180*-J4)+J +(180"-13 ) ]co8.ft[ (180-J 4 )+1 , -(180-J 3 ) ]

J
4 )sin. /,

Whence^ : q :: sin. [180 (A v -\-A 5 )~\
: s\n.A

5

p : r :: sin. [180_(y/ 1 -j-^ 6 )] : sin.^ 6

And the particular values of p, q, and r thus found,

being substituted for those letters in the above gene-
ral symbol, we shall obtain the particular symbol of

the observed plane.
It thus appears that the formulae used for deter-

mining the laws of decrement on the obtuse solid

angles of this figure, are similar in character to those

applied to the determination of decrements on the

solid angles of the tetrahedron.

This results from an analogy which subsists between

these solid angles in the two forms. For the lines
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gh.g t,
h i, in fig. 340, may be regarded as edges of

the base of an irregular tetrahedron, of which the

obtuse solid angle would be the summit.

Simple and mixed decrements on the acute angles.

An analogy similar to that which subsists between

the obtuse solid angle of this form and the solid angle

of the regular tetrahedron, will be found to subsist

between its acute solid angle and the terminal solid

angle of an octahedron. For the lines da, af, may
be regarded as edges of the base of an irregular octa-

hedron, and obviously of one with a square base.

Let the inclination of P on an adjacent plane of

class &, be known and called I
5

The inclination of P on P' is 90.

whence %L
R

q tang. (180"-/5 )

Intermediary decrements on the acute solid angles.

These, like those on the octahedron, are of two

kinds, and produce the planes of mod. c and d.

Let P on one of the planes belonging to mod. a be

measured, and its angle called I6 .

Its symbol might be (BP B'q b'q br), and those

indices may be determined by the method adapted to

the corresponding plane on the regular octahedron ;

observing, however, that as the plane angles, and the

mutual inclination of the primary planes, vary from

those of the regular octahedron, there will be a cor-

responding variation in the terms of the ratios which

give the values of/?, <?,
a"d r.

2 s 2
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The symbol representing the upper plane belong-

ing to class by of the two on which b is placed, and

which rest on the edge between P and P", is

(BP B'q br b's)-

Let the inclination of this plane on P be called I
7

P" . /8

A spherical triangle will give the values of angles

corresponding to A^ and A
5

of the regular octa-

hedron, and from these, the particular values of p,

q, r, and s, may be deduced by the methods pointed
out in reference to the analagous decrements on that

form.

Decrements on the edges.

Let the inclination of plane P on one of the planes

k
9 adjacent to it, be called /

9
.

and P =
*

5 sin. (180 I,)
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Its elements.

The inclination of the planes at the terminal edges
will differ in different minerals, and may be

represented generally by /,.

Inclination of the planes at the edges of the

base will also vary in different minerals, and

may be called J2 .

Plane angles at the ?ummit will also vary, but

they may be denoted generally by A l9 and

may be thus deduced,

A R. cos. 45
cos. \A V

-

It is by means of the upper spherical

triangle marked on the fig. that we are

enabled to determine the angle A,.
For if d k represent f the axis, d e a per-

pendicular on the base, and h k j a diagonal
of the base, the angles of the spherical tri-

angle will be 90, 45, and* /,. And thence

the angle e d h, which we have called \
lA t

is deduced.
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The plane angles at the base are consequently
=. 90" -J

A
, , and may be called A 2 .

Terminal edges are all equal.

Edges of the base are all equal.
Ratio of a terminal edge : an edge of the base

:: sin. A 2 : sin. A,.
Ratio of an edge d h : a perpendicular on the

base, d e, : : R : cos. | A l
.

Inclination of an edge on the axis may be

called A^ and may be thus found.

cos. A
3
=r cos. | /,

The same spherical triangle from which

we have determined the angle A^ maybe
used to determine A^ which in the above

fig. is the angle k d h^ and is the hypothe-
nuse of that triangle.

The known formula to determine A
z

is

,, cot. \ I, cot. 45"
cos. ~

But as cot. 45 R, this evidently becomes

cos. A
9

cot. | /, .

Inclination of edge on edge over the summit

will consequently be 2A
3

.

Ratio of \ a diagonal of the base : \ the axis

:: tang. A 3
: R.

The relation of/,. /2 ,
and^4 2 , may be thus ex-

pressed,

cos. i J 2
= cos. ^ g tang, if,

We may observe that the angles of the

spherical triangle marked at the base of the

fig. are 7 /,, | 7 15 and 90", and that the side

d h c, wjiich we have called A 2 ,
is the hypo-
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thenuse of the triangle ;
and hence results

the relation we have given.
From which, if any two of these angles be known,
the third may be immediately found.

Hence it is apparent that the angle /, being

known, all the other elements of the form may be

known also.

Its units ofcomparison.

The unit of comparison is zz 1 in reference to the

following decrements.

1st. Those which affect the terminal angles, the

four edges of the pyramid being equal.

2d. Simple and mixed decrements on the lateral

angles ;
these being measured by the pro-

portions intercepted of the equal lines h
*,

h i. drawn from the angle h perpendicularly
on the edges afand d c.

3d. All decrements on the terminal edges, which

are measured by the proportions intercepted
of the equal lines b a, b e.

4th. Those on the edges of the base, which are

measured on the lines c d, ef.

But in relation to intermediary decrements on the

lateral solid angles, the unit is constituted of the

ratio of the terminal and lateral edges ;
which is evi-

dently that of sin. A
v

: sin. A z .

Simple and mixed decrements on tht terminal angles.

If we measure the inclination of P to the adjacent

plane belonging to class &, and call the angle /3 ,
we

have

sin. (180 /J
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Intermediary decrements on the terminal solid angles.

If we measure the inclination of one of the planes
of class c, on P, or of class d on P and P', we may
determine its law of decrement by means of formulae

similar to those which have been used for the analo-

gous modifications of the regular octahedron.

The calculations relative to decrements on the

lateral angles of this form, require a little additional

illustration.

Fig. 342.

Let the inclination on P of the plane k I m, fig. 342,

which represents one of the planes of class/, be de-

noted by /4
.

A spherical triangle will give the plane angle of

the defect a k
I, which we may call A

& , by means of

the formula

cos. A
5
= cot. |/ t

cot. (180 /
4 ).

R
whence a k \.al :: p : q may be readily found, and

a m =2 r may be thus determined.

I- ?_- I
r
"

q p
Let n op s represent a plane belonging to class g,

whose inclination on P is known and called /
5 .
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We now require the plane angle o n t of the defect,

which being denoted by A 6) may be thus found,

cos. A 6 cot, i /2 . cot. (180 J
5 )

~R~
From this angle and o t ft, which we have called

A z ,
the ratio may be found of t n : t o :: p : q,

and r may be determined as before.

The planes of class h result from simple and mixed

decrements on the lateral angles. Let /^ represent
the inclination on P of one of the planes h adjacent
to it, and the law ofdecrement may be thus determined,

P _ sin. (/ t -}-7 6 180")

q

"

sin. (180 1 6 )

Let q r p s, fig. 342, represent a plane belonging
to class i or /:,

whose general symbol would be

(BP Dq D'r B"s : BP Dr D'q B"s )

and its inclination on P be called /
7 ,

and on P', /8 .

A spherical triangle will give the plane angles r t q,

r t p, and hence the following ratios are known,
t r : t q :: p m : q n

t r : t p :: p m : r n

And if we divided and ^ by
sin
'^% the par-

q n r n sin. A
,

ticular values of p, q, and r will be found.

The fourth index s, may also be known from the

equation,

L = 1 + I I
s q r p

The decrements on the edges may be determined

by the general methods applied to analagous decre-

ments on the regular octahedron.
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Fig. 343.

Its elements.

The inclination of the planes at the terminal edges

may be denoted by /
t .

inclination of the plane P on P'
3 may be

called /2 .

..... . . . M on M', . . . /
3

.

Plane angle dfb, fig. 343, may be called A^
and may be thus known,

Plane angle b f e, being called A z , may be

thus determined,

8 K
The first of these equations is thus derived.

The angle hfb in the above fig. represents

M*.
hfg ...... 90--I/..

bfi ....... -M*.

gf* ...... 90-i/3
.

But/g :fh :: R : sec. (90 | /,)

fg: hb = gi::R: tang.(90'_l/3 )
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Whence

fh : hb :: sec.(90 f/2 ) : tang.(90-4/3 )

and/A : hb :: R : tang. \A^
Therefore

tang. \ A, : R :: tang. (90 1/3 )

: sec. (90 f 7a )

A R. tang. (90-4 J",)
tang, f^f, =- _>--|__1L

sec. (90 | I.)

r, , R COS
But as -- _

,

sec. R
and tang. 90 a = cot. a,

the equation becomes

cot.i/3

R
The second equation must evidently be simi-

lar in its character to the first, but substituting

J
3
and /a for /2 and 7

3
.

The terminal edges equal.

Ratio of a terminal edge : a perpendicular on

the base of plane P :: R : cos. \A,.
Ratio of a terminal edge : a perpendicular on

the base of plane M :: R : cos. |^ 2 .

Ratio of a terminal edge : a greater edge of

the base : : R : 2 sin. \ A ,
.

Ratio of a terminal edge : a lesser edge of

the base :: R : 2 sin. \ A z .

Edge d b of the base : edge be:: cot. \ I3
:

cot.i/2 .

For gi = %db :: gh~ b e

:: tang. (90 M 3 ) : tang. (90- i 7.)

:: cot. \ 1
3

: cot. | I z
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The inclination of a terminal edge to the axis may
be called A

3 ,
and may be thus found,

If we suppose a spherical triangle to be

represented by a segment kg bfof the octa-

hedron, it would obviously be right angled
at h

;
and we know the side

Whence we find cos. y g fb, which we call

A
3 , by the known formula

cos A cos.(90 1/ 2

~R
sin. | 7 2 cos.

Ratio of I a diagonal of the base

: ^ the axis :: sin. A
3

: cos. A
3

.

The relation between 7,, 7 2 ,
and 7

3 may be thus

discovered,

cos. 7 zz
~cos'2^2 cos. |7 3

If we suppose the angle h b i rr 90, to be

the side of a spherical triangle, the angles
of the same triangle would be 7,, i7 , and

1/3-
A general equation to discover 7

,
would be

cos. 7,
~

cos.\/hb i. sin.i7 2 .sin.|7 3
cos.-7 2 . cos.^/ 3

* But as cos. V h b i
~

o, the equation be-

comes that which has been given.

From which formula, any two of the angles

being known, the third angle may be found.
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Its units of comparison.

The unit is z= 1 in reference to all decrements on

the terminal angles, and to decrements on the edges
of the base.

For simple or nvxed decrements on the lateral

angles, the unit will be the ratio of the perpendiculars
b

7t,
b /, drawn from the angle at b perpendicularly

on the edges fd and e m. The ratio of those lines

may be thus determined.

fb : k b :: R : sin. V kfb = A,
b m fb i b I :: R : sin. \J b m I zz A t

whence . . . k b : b I :: sin. A
,

: sin. A a

When the decrement is conceived to proceed along

the plane P. the unit of comparison will be ?3- L

sin. A %

but when the decrement proceeds along the plane M,
the decrement in breadth will evidently be measured

by the line b I, and the unit will then become
sin 3

sin. A
t

.

Fig. 344.

The laws of decrement on the terminal edges may
be determined from the lines b a, b c, drawn perpen-
dicular to the edgef 6, on which a decrement is sup-

posed to have taken place, and meeting the edges
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C) produced to a and c. These lines are to each

other as tang. A t
: tang. A 2 .

When the decrement proceeds along the plane P,

the unit of comparison is ^1
L, but when it is

tang. A,
conceived to proceed along the plane M, the unit

becomes ?! - .

tang. A ,

Knowing the elements of the primary form, the

unit of comparison, and the symbol of any plane
whose law of decrement we require, we are to mea-

sure the inclination of that plane on one or more of

the primary planes, and then to adapt such formulae

to the particular case, as will give the particular

values of the general indices of the plane in question.

-
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Fig. 345.

Its dements.

The inclination of the planes at the obtuse ter-

minal edges may be called /, .

Inclination of the planes at the acute terminal

edges may be called /,.

Inclination of the planes at the edges of the

base may be called /
3

.

Plane angles at the summit, being called A tj

may be thus found,

cot-^ cot.
cos A =

R
A spherical triangle is marked on the

upper part of the above figure, the angles
of which are 90, \ 1 ^ and \ / 2 ,

and of

which the required side b a c is the hypo-

thenuse, which is found by the preceding
formula.

The two spherical triangles marked at

the base of the figure, will give the follow-

ing formulae; the required side being in

each instance the hypothenuse of the as-

sumed triangle.
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The greater lateral plane angle a c 6, may be

called A zj and may be thus known,

cos. A, = cot.U. cot.iJ3

K
Most acute of the lateral plane angles, a b c,

may be called A^ and may be thus found,

cos. A
3
= coMf._cot.jJ.

Angles of the rhombic base may be thus deter-

mined. Let the lesser angle be called A^ and

cos.-M 4
= R cos " * L>

sin.i/
3

The required angle \ A^ is the angle
e b c of the above figure, and is that side of

the spherical triangle nearest to b, which is

opposite the angle \ I 2 ;
and hence the for-

mula which is given.

Ratio of \ the greater diagonal of the base

: \ the lesser diagonal :: R : tang. \ A .

Obtuse terminal edges are equal.

Acute terminal edges are equal.
Inclination of the obtuse terminal edge to the

axis being called A
5 , may be thus found,

A r, COS. \ I 9
cos. A, = R i i

sin. /,

Inclination of the acute terminal edge to the

axis may be called A 6 ,
and may be thus found,

. T, cos. \ I,
cos. A 6 R -i-

sin. i/ 2

The angles A 5
and A 6 ,

are those sides of

the upper triangle marked on the figure,

which subtend the angles \ I I
and \ J2 . And

hence the formulae for their determination.
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The ratio of an obtuse terminal edge
: an acute terminal edge :: sin. A

3
: sin. A z .

Ratio of \ the axis : | the greater diagonal of

base :: R : tang. A 6

\ the axis :
* the lesser diagonal of

base :: R : tang. A 5

-|
the axis : the obtuse terminal edge
:: cos. A

5
: R.

\ the axis : the acute terminal edge
:: cos. A 6 : R.

obtuse terminal edge : perpendicular
a /':: R : sin. A 2 .

acute terminal edge : perpendicular

af:: R : sin.A
3

.

Its units of comparison.

The unit is rz 1, in reference to the following de-

crements.

1. Simple and mixed on the terminal angles, pro-

ducing mod. b.

2 obtuse lateral angles,

producing mod. k.

3 acute lateral angles,

producing mod. q.

4 . obtuse terminal edges.O 7

producing mod. u.

5 acute terminal edges,

producing mod. x.

6. edges of the base,

producing mod. z.
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The units of comparison for determining- the laws

of intermediary decrements will be the ratios of

those edges, of which portions are intercepted by the

particular plane we are examining.

Having determined the unit, and the symbol, and

measured the inclination of the modifying plane on

one or more of the primary planes, we may proceed
to discover the law of decrement by some of the

methods already described.
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Its elements.

The inclination of any two adjacent planes at their

common edge nr 90.

Plane angles 90.

Terminal edges equal.
Lateral edges equal.

Its units ofcomparison.

Fig. 346.

Let the terminal edge be to the lateral edge as

mini this will be the unit of comparison for decre-

ments on the terminal edges. For simple and mixed
decrements on the angles of the terminal planes,
the ratio of a b : af becomes the unit, which is

V<2 m 2 m
" ~~

nVo 9
and f r similar decrements on

the lateral angles the ratio of a e, being \ the diagonal
of the lateral plane, to the terminal edge a d, may be

regarded as the unit. But we cannot immediately
determine the ratio of the intercepted portions of the

lines a e, ad, from the inclination of the secondary

plane on the lateral primary plane. It must be

deduced from the ratio to the edge a d, of a perpen-
dicular a c upon the diagonal mf.

It is very obvious that this perpendicular possesses
the character assigned to those lines from which the
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unit of comparison may be derived. For it would be

wholly intercepted by a decrement by 1 row, when
the edge a d is so intercepted. And the propriety of

adopting this unit will be apparent, if we recollect

that the inclination of two planes to each other is

measured upon lines perpendicular to their common

edge.
Let the lines i h, h c, be perpendicular to the edge

of the secondary plane at the point h. The angle
i h c is all that can be known from actual measure-

ment of the crystal ; but from this we know the angle
i h a, and hence the ratio of a h to a i. The constant

relation of a c to a d, may be readily found.

We are supposed to know the ratio of a m to af',

and a m : a f :: R : tang. \/ a m f
call \J a mj] A^ ;

And because a c is perpendicular upon fm, we have

a c : a m or a d :: sin A
,

: R.

Hence 55! ' becomes the unit of comparison in
R

reference to simple and mixed decrements on the

lateral angles of the prism, the symbol representing
which would be PAP

.

For decrements on the lateral edges the unit is

= 1, and for intermediary decrements, the unit will

be the ratios of the particular edges affected by each

law of decrement.

The general methods adopted for determining the

laws of decrement on the cube, may be applied to

this prism ; observing however the differences in the

several units of comparison afforded by the two
forms.
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Its elements.

The inclination of any two adjacent planes at their

common edge
~ 90.

Plane angles zz 90.

Parallel edges are always equal.
Three adjacent edges always unequal.
This inequality cannot be determined but by
the means of secondary planes.

Its units of comparison.

Fig. 347.

Let us suppose the edge o a : o b :: m : n

o a : o c :: m : o

will evidently be the unit of comparison for deter-
o

mining the laws of decrement producing the planes
of class b.

,
for those of class c.

o

,
for those of class d, whose symbol is G p PG.

n

" PG Gp

m
It has been shewn in p. 267, that the planes com-

prehended under class #, might be produced by four
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different kinds of decrement, of which the general

symbols would be

A,
P
A, Ap

, and(Cp G q Br).

The unit of comparison will be different in each of

these cases.

Let a b, a c, b c, fig. 347, be three diagonals, and

o d, oj\ o e, three perpendiculars drawn from those

diagonals to the angle o.

The edges a b, a c, be, might be the edges of a

plane produced by a decrement by 1 row of mole-

cules, which plane would intercept the three edges
o a, o by o c> together with the three perpendiculars
drawn on the diagonals. The ratios of those perpen-
diculars to the edges may therefore be assumed as

the units of comparison for simple and mixed decre-

ments on the angles. Thus for decrements on the
p

angle a o h, whose symbol is A, our unit will be

o d : o c. For those on the angle a o c, whose symbol
is P

A, the unit is of : o b. And for those on the

angle b o c, whose symbol is Ap
,
the unit is o e : o a.

To find a constant ratio between these perpen-
diculars and the primary edges, let us suppose m, n,

and o known, and from these quantities, the plane

angles o a b being also known and called A
v

o a c A t

o b c A
3

we have o a : o d : : R : sin . A
l

o a : o c :: R : tang. AI
.-. o d : o c :: sin.A

l
: tang. A z

We also find of : o b :: sin. A z : tang. A l

o e : o a :: sin. A
3

: tang. (90 A^)
The units for intermediary decrements are the

ratios of ?w, w, and o, and the methods for deter-

mining the several laws of decrement will be similar

to some of those already employed.
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Its elements.

The inclination of terminal to lateral planes r= 90'.

Inclination of lateral planes to each other

varies in different minerals; call the greater

angle at which they meet /, .

Terminal plane angles being equal to the

angles of the prism, are consequently /,,

and (180 I
t ). But being plane angles, we

shall designate the greater by A
t ,

and the

lesser by A z .

Half the greater diagonal of the terminal plane
: half the lesser diagonal :: tang. \ A l

: R.

Lateral plane angles 90.

Terminal edges equal.
Lateral edges equal.

Ratio of a lateral to a terminal edge is deter-

minable from secondary planes only.

Its units ofcomparison.

Fig. 348.

The unit of comparison for determining the dif-

ferent laws of decrement by which this class of pri-

mary forms may be affected, will be different for

nearly all the different classes of modifications.
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Let the ratio of the terminal to the lateral edgeo
be known and expressed by the ratio of m : n or of

\:
n
-.
m
The general expression of the unit of comparison

will become

s * T - in reference to simple or mixed decre-
n R

ments on the terminal angle A of the pri-

mary form. This is evidently derived from

the ratio

" A
>

,

it

ef:fl:: 1 : !L
m

hence

:: m cos. \A^ : n R.

m sin.
T^I^ jn reference to similar decrements on

n R
the angle E of the primary form.

For let

R

R m
: n R.

The ratios of the edges may be used as the units for

determining the laws of decrement producing the

planes belonging to the classes b and d of the modi-

fications of this form.
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Fig. 349.

The unit of comparison for decrements on the

terminal edges, is the ratio of the line fg, fig. 349,

toy/; fg being perpendicular to i k, and conse-

quently to a b. For the law of decrement is to be

determined from the inclination of the plane abed,
to one of the primary planes, let us suppose to JP,

which inclination would be measured on the lines

P* fi fi f[t& *

It is evident that the line fg falls within the de-

scription already given of the lines from which the

unit of comparison may be derived
; for, whatever

the law of decrement may be which produces the

new plane abed, we must have

fh :Jb :: fg : fk.
The ratio offg to f I may be thus discovered. We

are supposed to have found

fk : fl :: m : n .: 1 : -

and knowing the angle efk, which we have called

A,, we known the angle gf k =^4
l

90.

hence fk:fg::R: cos. (^,90)
1

cos. (^,-90).
~TT~

wherefore fg:fl ::
cos. (^,-90") .

n

:: m cos. (A , 90
n

) : n R.
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The required unit is therefore
* cos. (^ t 90')

n R
For decrements on the lateral edges of the prism,

the unit is 1.

The methods of applying these several units to

the determination of the laws of decrement, will be

similar to some of those already described.

Fig. 350.

-

If we require the law of decrement producing the

plane d e, fig. 350, and we know the angle a d e,

which is the inclination of a primary plane on the

plane d e, and may be called /
3 , we shall find the

ratio of the edges of the defect,

bd\be :: sin. (/3 ^J : sin. (180 7
3 ) :: p : q,

which gives the required law of decrement.
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Its elements.

The inclination of terminal on lateral planes nz 90*

Inclination of lateral planes to each other

varies in the different individuals belonging to

the class. Call the greater angle at which

they incline to each other, /, .

Terminal plane angles are consequently Il9

and (ISO /,), but they will be called A,
and A z .

Lateral plane angles
~ 90.

The adjacent edges unequal. Their ratio, and

that of the diagonals of the terminal planes,

can be known from secondary planes only.

Its units of comparison.

Fig. 351.

When the edges of any plane of class a or &, of the

modifications of this form, which intersect the plane

P, are parallel to a diagonal of that plane, the modi-

fying plane results from a simple or mixed decre-

ment.

The unit of comparison for determining the laws

of simple or mixed decrements belonging to class a,
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is the ratio of b d, a perpendicular on the diagonal,
to the edge bf^ which may be thus found.

Let the ratios of the edges be as follows,

b c : b a :: m : n :: 1 :-
m

b c : bf : : m ; o : : I :

ba: bf:: n: o ::l :-
n

The angle a b c has been called A
t

b c m A z

From the ratios of the edges and the angles A l
and

A z ,
we may find the angles

b a c m a c m, call this A
3

abm ~ b m c, . . ^
4

thus . . b a : b d :: R : sin A
3

:: 1 :

Sin ' A
*

R

therefore b d : bf:: - 2 : :: n sin.^
3

: o R.
R n

The unit for determinining the laws of simple and

mixed decrements belonging to class b is the ratio of

e c, a perpendicular on the diagonal, to an edge c w,

or bf.

We have m c
~ a b : e c :: R : sin.A

4
:: 1 :

R̂
and because c n zz 6 /, we must have

e c : b f:: - i : :: n sin. A. : oR.
R n

The ratios of the primary edges may be assumed

as the units for determining the decrements producing
the remainder of the planes belonging to class a and

b
; and they should be so adapted to each particular
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case, as to give the particular values of the indices

of each individual plane.
The following are the units of comparison for de-

termining the laws of decrement on the edges.

Fig. 352.

For those which produce the planes 0, the unit is

the ratio of the perpendicular g b, fig. 352, to an

edge b /; and for those which produce the planes cf,

the unit is the ratio of a perpendicular b h, to an edge

To find b g : bf, we have

ba : bg::R :sm.A 2 :

H

and as . . . . b a : bf : : I :

n

we must have b g : bf :: n sin. A z : o R.

To find b h : bf> we have

R

be :bf:i 1 : -
m

b h\ bf :: m sin. A t : o R.
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For decrements on the lateral edges, where the

symbol is

PG the unit is -

G" . . -
m

m

The application of these units to the determination

of the several laws of decrement, will be similar to

many of the examples already given.
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Its elements.

Fig. 353.

The inclination of P on M, or M', fig. 317, varies

in different minerals ; call it /,.

Inclination ofM on M' also varies in different

minerals, and may be called / 2 .

Plane angle/*a d, fig. 351, may be called A
v
.

Let g a e, g a
c?,

d a e, be the three sides

of a spherical triangle, whose angles would

be 90, /,, and \ I2 . The side g a d, which

is \ A i9 may be thus found,

sm. \ v

Plane angley a e, or d a e, may be called A 2 .

This angle is the hypothenuse of the tri-

angle from which we have derived the pre-

ceding formula, and may therefore be thus

known,
cot 7 cot 7*

cos A -CObya 2

Terminal edges equal.

Lateral edges equal.

11
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The inclination of the oblique diagonal a g, to an

edge a e, being called /
3 , may be thus found,

cos. I = cos "

sin. i

The angle g a c is the third side of the

triangle already used.

Ratio of a terminal to a lateral edge can be

known only by means of secondary planes.

Its units ofcomparison.

Let us suppose the ratio of y : ae :: m : n :: 1 :

m
The unit of comparison in reference to the decre-

ments producing the planes of classes a and c, is the

ratio of half an oblique diagonal a h to a lateral edge
a e, which may be thus found.

/_._T> T A i cos. -^ A ,

Ji

Therefore a h : a e :: m cos. \ A v
: n R.

Fig. 354.

The unit for determining the decrements producing
those planes belonging to class e, of which the repre-

sentative symbol is E, is the ratio of \ a horizontal

diagonal^"h to the linear drawn from the solid angle

atyperpendicularly on r m
;
the line r m being paral-
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lei to the diagonal g ,
and touching the solid angle

at m. For the line fr is evidently in a plane per-

pendicular tofd, and if the modifying planes we are

considering were to be produced, they would cut fm
and/r proportionally. The ratio offh tofr, is thus

found.

R
m sin. | ^ t

: cos. (/3 90").

Fig. 355.

The unit for determining the laws of decrement

producing the planes of classes/and g is the ratio of
a b to a e, fig. 355, when the anglefa d is obtuse, or

2 Y
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of a b' to a e, when that angle is acute
; a #, or a b 1

being perpendicular on the edge g d, and a e perpen-
dicular on the edge e c.

This ratio may be thus deduced.

i 90")

The unit is equal to 1, in relation to decrements

producing the planes i and /.

The units for determining the several laws of de-

crement producing the planes of classes b and d, and

such of class e as are not represented by the symbol

E, are the ratios ofthe primary edges ;
and the methods

of determining the laws of decrement producing any
modification of this form, will be analogous to some

of those already described.
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Its elements.

The inclination of the primary planes is unequal at

an?/ three adjacent edges, and is different in

different minerals.

Three adjacent plane angles unequal.
Three adjacent edges unequal, and the ratios

of these inequalities are to be deduced only
from some secondary planes.

The laws of decrement which produce the modify-

ing planes of this class of primary forms, may be

determined by the general methods already described

at p. 295, and the units of comparison will then be

the ratios of the primary edges.
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Its elements.

The inclination of the adjacent lateral planes to

each other =: 120.

Inclination of the terminal on the lateral planes
= 90.

Plane angles of the summit = 120.

Lateral plane angles z= 90.

Ratio of the terminal to the lateral edge of

each particular prism can be deduced only by
means of some secondary plane.
Let us suppose it known, and expressed by

m : n~ or by 1 :

m
Its units of comparison.

For decrements on the angles ofthe terminal plane,

the unit is ; and for decrements on the terminal
2 n

edges it is ^8

"L60, as will be ghewn below .

wR
For decrements on the lateral edges it is = 1.

Fig. 356.

The diagonals drawn on the terminal plane divide

that plane into six equilateral triangles.

The law of any simple or mixed decrement on an

angle of the prism is deduced from the ratio of
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ef\ eg, but efis half an edge of either of the equi-
lateral triangles b i c or h i c, whence

ef : e g : : \ m : n : : m : 2 n
y

which thus becomes the unit of comparison for simple
or mixed decrements on the angles of this prism.

The laws of intermediary decrements may be deter-

mined by means of spherical triangles adapted in the

manner already described.

Decrements on the terminal edges.

A decrement by I row on the edge b e, fig. 356,

would intercept proportional parts of the edges b d,

b c, and consequently if the whole of b d were inter-

cepted by the new plane, the whole of b c, e
g',

and

e //, would be intercepted also, and d h would be the

edge of the new plane d h c g. And we observe that

the entire of the line b
,
which is perpendicular to

d h, would also be intercepted by the same plane.

The ratio of b a : b c may therefore be taken as the

unit of comparison for determining the laws of decre-

ment on the terminal edges of the hexagonal prism.
But b a is perpendicular to d i

9
the base of the

equilateral triangle d i b
;

whence d b : b a :: R : sin. 60 :: 1 :

Sin * 60

R

But . . db -.be :: 1 : -

m
Therefore b a : b c :: m sin. 60 : n R.

The law of decrement on the lateral edges of the
c5

prism, will be represented by the units contained in

the ratio of the edges of the defect occasioned by such

decrement.
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The individual or particular prisms belonging to

the seven preceding classes are, as we have seen,

distinguishable from each other by the comparative

lengths of two or three of their adjacent edges, or by
the particular values of some of their plane angles.

These plane angles may be determined by means

of spherical trigonometry from the inclination of the

primary planes to each other; and this inclination

may be ascertained by measurement with the gonio-
meter.

But the comparative lengths of the edges can be

deduced in no other manner than from some second-

ary plane, which, for that purpose, must be supposed
to have been produced by a given law of decrement.

If for example we assume that, any known second-

ary plane has been produced by a decrement by 1 row
of molecules, the ratio of the edges of the defect of

the primary form would, as we have already seen, be

equal to the ratio of those edges of the primary form

of which they are respectively portions.

If therefore we determine the ratio of the edges
of the defect occasioned by the interference of the

secondary plane, which we suppose to have been pro-
duced by a decrement by 1 row of molecules, we

shall, if our supposition be correct, evidently obtain

the ratio of the corresponding primary edges.
But it may happen that the plane which we have

supposed to result from a decrement by 1 row of

molecules, is really produced by some other law of

decrement.

The only method we possess of discovering whether

we have determined the true dimensions of the prism,
is to use those dimensions for ascertaining the laws

of decrement producing other secondary planes ; and
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if, when so applied, we find that the laws of decre-

ment producing those planes are simple, we may
conclude that we have determined the dimensions of

our prism rightly ; but if the ratios we have assigned
to the primary edges, suppose those planes produced

by irregular and extraordinary laws of decrement,
we may conclude that the plane which we have first

observed, has resulted from some other law than by
1 row of molecules, and we must proceed to assign

new dimensions to the prism, in conformity with the

new law, by which we now suppose the plane first

observed to have been produced.
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THE RHOMBOID.

In this fig. df is the oblique diagonal,
a b . . . horizontal diagonal,
d i ... axis.

If we imagine a b, a c, b c. to be edges of a plane

passing through the solid, that plane would be per-

pendicular to the axis, and the line en e drawn upon

it,,
would consequently be perpendicular to the axis.

But the point e at which this perpendicular touches

the plane d afb, is the middle of the diagonal d f.

If therefore we draw/o parallel to e n, we shall have

o n HZ H d. ButjTo zz c w, and/ i d c ; therefore

i o n d ~ on. Hence perpendiculars upon the

axis of a rhomboid, drawn from two adjacent lateral

solid angles, divide the axis into three equal parts.

Its elements.

The inclination of the adjacent planes at the su-

perior edges will be different in different

minerals, but may be designated generally by
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This angle is supposed generally to be

measurable by the goniometer; but it may
sometimes require to be deduced from the

inclination of secondary planes to each other

or to the primary. If two planes modifying
the edge itself be used to determine the

angle / we must know the inclination of

those planes to each other, and that of one

of them on the adjacent primary plane ; and

hence the inclination of the primary planes
is known.

If we know the inclination of the plane a

of the modification of the rhomboid, to the

plane P, and call it /, we may determine /,

from the following equation,

, j j . _ cos. 30. sin. (ISO /)"

~ll~
It is apparent from the above fig. that if

(180 /) and | I, be taken as two angles
of a spherical triangle, the third angle must

be 90, and the side subtending the angle

| /, must be 30. and hence the given equa-
tion is derived.

If we know the inclination to the plane

P, of that plane of mod. e which replaces

the inferior angle of the plane P, we may
still deduce /, from that inclination, by the

preceding formula. For plane e on P is

obviously 270 /, and consequently
1 270 (e on P).

The inclination of the adjacent planes at the in-

ferior edges will consequently be (180 /
t )

and may be called J 2 ,
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The superior plane angles may be called^,, and

may be thus found,

The angle f A l
is one of the sides of the

spherical triangle marked on fig. 357, whose

angles are evidently 90, 60, and | /,. The

general formula to determine \ A l
is

cos. i A. = "I^OL
sin. * /,
O

but as cos. 60 ~
,
the formula becomes

2 sin. |/ t

Lateral plane angles will be (180
n

A,) and

may be called A a .

Inclination of the superior edge to the axis

may be called A^ and may be thus found,
The angle b dn, fig. 357, is the inclination

required, and is the hypothenuse of the tri-

angle already used, whence

nn. * - C0t - CQ1 C0t - J J .

R
Inclination of the oblique diagonal to the axis

may be denoted by A 4 ,
and may be thus fo md,

The angle e d n which we call A
4 ,

is the

third side of the triangle marked on the

figure, and may consequently be determined

from the formula,

cos. A .

' CQS>
T- -

sin. 60

Sum of the two preceding angles, being the

inclination of an oblique diagonal to a superior

edge, when measured over the summit, may
be denoted bv A f .
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The inclination of an oblique diagonal to an adja-
cent edge, measured over the inferior angle,
would be 180 A

5 ,
and may be denoted by

A*
Ratio of a perpendicular upon the axis drawn

from a lateral solid angle, to the axis itself, is

as -

tan.?. 4 3
: R.

We have already seen that d n is y of the

axis d
,

and d n : n b :: R : tang. A 3

Therefore d i 3dn : a b :: 3R : tang. A s

Ratio off the oblique diagonal, to f the hori-

zontal diagonal, as R : tang. \ A^.
Ratio of y of the axis : f half the oblique dia-

gonal :: cos. A
4

: R.

Ratio of
-3-
of the axis : f the horizontal dia-

gonal :: cot. A^ : tang. 60.

For d n : n e :: tang. (90
1

Aj : R
:: cot.^

4
: R

and e b : n e :: tang. 60 : R
Therefore dn : e b :: cot. A^ : tang. 60'.

Ratio of \ an oblique diagonal : an edge
:: cos. \A, : R.

Ratio of \ a horizontal diagonal : an edge
:: sin. A : R.

2 2
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Its units ofcomparison.

Fig. 358.

d

The following are the units of comparison in rela-

tion to the decrements producing the several classes

of modifications contained in the tables.

Class b. c, e, g, A*,
unit

cos '

J -, being the ratio
K,

of | an oblique diagonal
: an edge.

Class h* the unit is
stn> T

^ ', when the rhomboid
sin. A

5

is acute.

sin. \ A l

and

,

when it is obtuse.
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Fig. 359.

This unit is the ratio of e b : b n, fig. 398 and 399,

b n being perpendicular on g w, which is parallel to

df. Fig. 398 represents an acute rhomboid,

in which e b : b f, or b g :: sin. \ A, : R
bn : bg :: cos. (90 A

5 )
: R :: m\.A

&
: II

therefore e b : b n :: sin \ A, : sin. A
5

.

Fig. 399 represents an obtuse rhomboid,

in which e b : b g :: sin. \A^ : II

b n : b g :: cos. (A'5 00) : R
and . . . e b : b n :: sin. \A V

\ cos. (A 5 90).

If in fig. 358 we suppose cp a portion of the oblique

diagonal produced, and in both 398 and 399, d p

parallel to b w, the assumed value of b n will be

readily perceived.
The unit of comparison, in relation to decrements

producing the classes e^/J z, and /,
is the ratio of the

edges and is consequently zn 1.

In relation to class w, it is that of two equal per-

pendiculars / , / c, on a superior edge, drawn from

two lateral angles; and in relation to class p, it is

that of two equal perpendiculars h a, h A, on an in-

ferior edge, drawn from the parallel superior edges,
and it is consequently in both cases ~ 1.

The determination of the laws of decrement affect-

ing the rhomboid, and the developement of the
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various relations between that primary form and its

numerous secondary forms, occupy a considerable

portion of the Abbe H ally's crystallographical re-

searches. Some, however, of the relations he has

demonstrated, though curious in themselves, are not

immediately useful to the mineralogist for deter-

mining the mineral species to which a given crystal

belongs.
Little more will be attempted here than to give an

outline of a method of determining the laws of decre-

ment, similar to that which has been applied to the

other classes of primary forms; and it is hoped that

this will supply the mineralogist with as much assist-

ance as his purposes will generally require.

Simple and mixed decrements on the superior and

inferior angles.

The planes produced by these are contained in the

classes b, c, e g, and k.

Let us be supposed to have measured the incli-

nation of one of the planes b on an adjacent primary

plane, or of one of the planes c, over the summit on

a primary plane, and if we call the measured angle
/

3 ,
the ratio of the portions of the oblique diagonal

and edge contained in the defect, would be as

sin. (I3
A

& ) : sin. (180 /
3 ),

and if we divide this ratio by
c
__fLj

L, we shall
R

obtain the law of decrement producing the plane we
have measured.

Let us suppose the inclination of one of the planes

belonging to the classes e, g-,
or k

9
on that primary

plane which i&. intersected by the modifying plane
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parallel to its diagonal, to be called /
4 ,

the ratio of

the edges of the defect will be as

sin. (/4
A & ) : *in. (ISO

1 7
4 ).

This being divided as before by cos. \A l
: R, will

give the law of decrement producing the plane we
have measured.

Simple and mixed decrements on the lateral angles.

Let us suppose the inclination known of the pri-

mary plane P, to one of the adjacent planes of mod. A,

and let this be called 1
5

. The angle measured,
would be in the plane e b w, fig. 358. And as e b is

perpendicular to b n, the ratio of the edges of the

defect would be as radius to tang, of the supplement
of the measured angle; and this beii g divided by
cos. \Ai : R, will give the required law of decrement.

Intermediary decrements on the terminal solid angles.

The general symbol representing a single plane of

mod. d is (B P B'q B"r).

The values of the indices
/?, q, and r may be dis-

covered from the inclination of the particular plane

represented by that symbol, on the two adjacent pri-

mary planes, by means of a spherical triangle, and

the plane triangles, adapted in the manner already
described.

Intermediary decrements on the lateral solid angles*

These, as we have already seen in our account of
the symbols representing the planes produced by
them, may be referred to the angle at O, or to that

at E. Let the plane from which we are about to
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deduce our required law of decrement be one of those

which appears on the angle at O.

There are, as may be seen in the tables, three

classes of modifications produced by these decre-

ments, being classes f, z, and I.

The distinction between these three classes has

been already pointed out in the table of modifications

of the rhomboid, and in p. 279, where their several

relations to the theory of decrements are given.
The general symbol representing one of the planes

at the angle O, belonging to either of these modifi-

cations, is (D'q b"r Dp), and the particular value of

the indices may be discovered, in relation to any

particular modification belonging to either class, by

measuring the inclination to the two primary planes

adjacent to the edge b", of the plane represented by
the above symbol ;

and finding the plane angles of

the defect adjacent to the edge b", by means of a

spherical triangle, and thence deducing the ratio of

the edges of the defect in the manner already de-

scribed.

The indices of the individual modifications belong-

ing to classy will be found in a constant ratio to each

other. This results from the condition that the edge
at which the modifying planes "intersect each other

shall be parallel to the axis of the rhomboid.

Let the index p be > 7, and q ^> r.

The relations between p, q^ and r, may be thus

stated,

p = q (7-1) = q r.

a = 1+ V *H-1 _ P
2

'

r'
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And the manner of deducing these may be given as

an example of one of the methods* of analysis appli-

cable to these investigations.

The general equation of a plane in relation to

three co-ordinate axes, is known to be

A#+By-f C * + D = o.

Let the distances from the origin at which the

plane cuts the three axes, be represented by p, q,

and r.

We shall then have the following equations of the

points where the axes are cut by the plane.

For the point on the axis x we have x nz
j?,

y y </>

To find the values of the co-efficients A B C D, in

function of the quantities p, q, and r, with a view to

substitute those quantities in the general equation
for the co-efficients A, B, C, and D,

Let y o, z zz o, and x

x zz o, s = o, . . y

A
--D
IT
D
C

Therefore ~
p, whence A =z

A p

~B~
' q'

~Y~
D c _ D
C r

* This method of determining the relations that may exist among
crystals, has been used in a paper published by Mr. Levy in the

Edinburgh Philosophical Journal, relative to another object which will

be referred to in a later part of this Appendix.

3 A
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The general equation may therefore be thus ex-

pressed,

P <1

or, dividing all the terms by D, it may be reduced

to this general form,

Fig. 360.

Let the plane a d e, fig. 360, represent one of the

planes belonging to class
jfo

whose indices are p, q,

and r ;
and let

o e
~

p.

o d =
,

o a =. r;

the equation of this plane will then be,

But as the line 0/at which the two planes of mod./
intersect each other, is parallel to the axis of the

rhomboid, and passes through one of its superior

edges, it might obviously be on the surface of some
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plane belonging to mod. e. The equation of this

plane may be thus expressed,

+ y. + 1 = i.

p'
^
pf r

From the character of the planes of mod. e, the

index p' is always =z 2 r.

Knowing the relation of p' tor, we may discover

the relations of/? and q to r, by finding their relations

to p' ; and these relations may be known from the

equations of the traces of the two planes on the plane
of the x y, when referred to the points/I

The equations of these traces are obtained by

making s = o in the two preceding equations, whence

the equation of the trace d e, is -\-
&- 1 (1)

P 9

and of b c ....... + = 1 (2)
pf pf

But as both traces pass through the point /^ tfce

values ot\r and of^y must be equal in both equations.

Hence from equation (1), y q
^ 'r

P

(2), y = pf jr

Therefore . . q *LE = j/ x

P

x =
1

j?

3 A ^?
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In the like manner we may find

1
But at the point/, x y,

therefore . . . f^^J. = Pf ~ P

1-2. i -P
p 1

whence . . .

' = ^ 1

p+q

q =
2pp'

As we know that p' 2 r, and that r cannot be

less than 1, p' cannot be less than 2 ; and it must, in

relation to any particular plane of mod. e, be either

2, 4, 6, 8, or some greater even number, according
to the number of molecules supposed to be contained

in the defect occasioned by that plane.

It may be easily seen that when p' z= 2, we must

have
2

But as the indices of planes produced by inter-

mediary decrements must be whole numbers, it fol-

lows that the planes a b c, and a d c, cannot both

pass through the point f, unless p' be greater than 2.

Let p' 4. and 4 =

whence z= *

?-2
If we regard the figure 360, we may perceive that

if o b, which we have called/?', be considered equal
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to 4, the line o d, which we have called g, must be

greater than 2; for as the line b c is equally divided

at the pointj^ if d o z= d
/>,

the line d f would be

parallel to o c.

Therefore when p' zz: 4, we must have q zz: 3, and

consequently p zn 6.

And as r = .

,
-if we suppose the value of q to be

successively increased to 4, 5, u, &c. we shall have

the following series of indices to represent the series

of planes of class /.

From what has been stated in the preceding pages,
it will be readily perceived, that when, in addition to

the inclination of the primary planes to each other,

we know the unit of comparison, and the inclination

of the secondary plane to the primary plane along
which the decrement is conceived to proceed, we

may immediately determine the law of decrement.

For we can from these data directly deduce the ratio

of the lines of the defect corresponding with those

from whence we derive our unit; and if we divide this

ratio by our assumed unit, we obtain, as we have

before observed, the law of decrement producing the

plane we have measured.
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The preceding sketch of the methods of discovering
the laws of decrement, will, it is hoped, be generally
found sufficient for that purpose, wK" the angles at

which the secondary planes incline on the primary
are known, and where the ratios of the edges or

other lines already described are also known.

But it very frequently happens that the whole of

the primary planes are obliterated by such an ex-

tension of the secondary planes, as.produces an entire

secondary crystal. In these cases we must recur to

cleavage for determining the relative positions of the

primal^ and secondary planes, and for measuring
the angle at which they meet. The cleavage planes
which we may adopt as the primary set, if more than

one set be discoverable, should be those which are

most compatible with the observed secondary forms.

Having thus given an outline of the solution of our

first problem, by shewing how the laws of decrement

may be determined from certain data, we shall pro-

ceed to examine the second, and to ascertain how the

angles may be determined at which the secondary

planes incline on the primary, the elements of the pri-

mary form., and the law of decrement, being known.

The methods used for determining these angles,

will be nearly similar to those already described for

determining the laws of decrement.

The plane triangles which have been used for

determining- the laws of decrement, have been both

right-angled and oblique.

Where a law of decrement is expressed by means

of the ratio of the sides of a right-angled triangle, the

angles are readily found by reducing the ratio to that

of radius, and tangent of the required angle.
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Fig. 361.

Let fig. 361 represent a section of any crystal whose

planes af, a
g',

are perpendicular to each other, and

let the lines b c, b d, b e^ be sections of planes modify-

ing the edge or angle g a f.

Thus let us suppose that we have the law of decre-

ment given by which the plane b c has been produced ;

and let the required angle g c b be called /.

Let the ascertained ratio of the edges a g, a f, be

as 5 : 4, and the law of decrement producing the

plane b c, be 1 row of molecules.

It follows that a c : a b :: 5 : 4 :: 1 : -.
5

But we also have a c : a b :: R : tang. (180 /)

therefore - = '8 = tang. (ISO /)
5

and &, in the table of natural tangents, is the tang,

of angle 38 40' nearly, = ISO /;

therefore / ISO (38 40') = 141 20'.

If we suppose b d the section of a plane resulting

from a decrement by 2 rows in breadth, we should

obviously have

adiab :: 10:4 :: 5 : 2 :: 1 : -.
5

And if we call the angle g d b, /', we must have

a d : a b :: R. tang. (180 /')
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whence - = 4 = tan (ISO /') = 21 48' nearly,
5

hence /' = 180 (2 i 48') = 158 12'.

By this method we may in all similar cases deter-

mine any required angle, whatever may be the ratio

ofag: af.

Where the planes a c, a b, are not at right angles

to each other, the angle c a 6, may be either acute

or obtuse. In either case knowing the angle c a 6,

and the particular values of a c and a b, deduced

from the known ratio of m : n, and from the given
law of decrement, we may obtain the angle a b c from

the formula

i , d'. tanff. \ s

tang. \d
-f~

where d =z difference of required angles,

d' z= difference of given sides,

s zz sum of required angles zz: 180 given

angle.

s
1

zz: sum of given sides.

Where spherical triangles have been used for de-

termining the law of decrement, they may also be

used for determining the angles of the secondary

planes with the primary, the law of decrement being
known ;

with this difference however, that where in

the former examples we have sought the sides of

those triangles, knowing the angles, we have now to

determine the angles from the given sides : and the

sides are known from the plane angles of the primary

crystal, and from the ratio of the edges of the defect

of the primary form, as deduced from the ratios of

the corresponding primary edges, and the law of de-

crement.



LAWS OF DECREMENT. 377

The preceding parts of this section suppose the

angles known at which the secondary plane whose

law of decrement is required, inclines on one or

more of the primary planes. But it may sometimes

occur that the inclination of the secondary on the

primary planes cannot be directly obtained. In cer-

tain cases, where this happens, the laws of decrement

may be deduced from the inclination of the secondary

planes to each other.

We shall suppose in the following examples of one

or two particular and simple cases of this nature, that

the unit of comparison is expressed by ,
and the

n

ratio of the edges or other lines of the defect by

P m
. Whence will express the law of decre-

qn q
ment by p molecules in breadth and q molecules in

height.
It has been already stated that where an edge is

replaced by two similar planes, m will always be

found to equal n^ and the fraction P
y
or its equi-

q n

valent
,
when reduced to its lowest terms in whole

?

numbers, will express the ratio of the edges of the

defect.

1. Let us suppose the edge of a cube replaced by
2 similar planes as in mod. f, or the lateral

edge of a right square prism, as in mod. e.

And let the inclination of the secondary planes
to each other be called /. We shall find

p_ _,.. R
q

~ ~

tang. (| I&5)
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and the inclination of either of the new planes
on the adjacent primary plane would be

= 225 f /.

2. Let the lateral edges of the right or oblique
rhombic prism, or any edge of the rhomboid

be modified by 2 similar planes, and let the

inclination of the primary planes to each other

zr /, and that of the secondary planes to each

other 1 '.

Then = sn - -
q sin. (I /'-i /)

And the inclination of either of the new planes
on the adjacent primary planes would be

\r.

The following application to a particular case of

the proposed methods of calculation, will probably
be sufficient to illustrate their general use.

It will be found convenient, if we have to deter-

mine the laws of decrement producing secondary

planes upon any primary form, to determine in

the first place the particular values of such of the

elements of that form as we may require for ascer-

taining those laws of decrement; and the values

so determined may be reserved for any future occa-

sion.

Let it be required to determine the elements of

the rhomboid of carbonate of lime :
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Here the angle -

/, = 105 5'

7 2 = 74 55'

A. 101 55'.

We have seen that cos. * A =.
2 sin. i I

I

By means of the tables of logarithms we find the

angle A
l , thus,

* ......... = 20*-
log. 2 ..... = 0-3010300

log. sin. /, =
log. sin. 52 32' 30" = 9-8997088-- 10*2007388

Therefore . . . log. cos. f^, 9-7992612

Therefore f A t
= 50' 57' 30", and consequently

A? 101 55'.

A 2 =78 5'

A
3 =63 44' 45", which may be found thus from the

formula. . cos. A = cot 60 cot - * 7 *

R
= cot - 60 cot. 52 32' 30'

;

log. cot. 60 . . . = 9.7614394

log. cot. 52 32' 30'
; = 9.8843264

19.6457658

log. R .... 10.

log. cos. A
3

. . . = 9.6457658

Therefore angle A 9
= 63 44' 45/;

.
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A
4
rr 45 23' 26", which may be thus found.

cos A = R ' cos ' 7> R ' cos> 5r 32/
4
~

sin. 60 sin. 60

log. R . . . . = 10-

log. cos. 5V 32' 30" = 9-7840353

19-7840353

log. sin. 60" . . = 9-9375306

s . cos.^
4

. . = 9-8465047

Therefore angle A 4
= 45 23' 26".

A
5

109 8' 11".

A 6 =i 70 51' 49".

The following ratios may be known from the tables

of natural sines, &c. when we require the nearest

whole numbers by which they may be represented;
or their logarithms may be taken from the tables,

when we use logarithms only in our calculations.

Perpendicular on axis drawn from lateral solid

angle : axis :: tan.^
3

: R :: i tang. 63 44' 45" : R
:: i 2*0274279 : 1 :: -6758093 : 1.

This may be reduced with sufficient accuracy to

its lowest equivalent terms in whole numbers, by
means of a common sliding rule, and will be found

as 23 : 34 very nearly.

Or if the logarithms be required, we have

log. tang. 63 44 ; 45" = 10-3069454

log. 3 ...-. 0-4771213

9-2298241

log. R =10

0-0701759
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\ oblique diagonal : \ horizontal diagonal :: R
: tang. \A, :; R : tang. 50 51' 30" :: 1 : 1-2330626

:: 17 : 21 very nearly.

or log. R . . . . = 10-

log. tang-. 50-57' 30" =: 10-0909851

0-0909851

3-
axis : \ oblique diagonal :: cos. A

3
: R

:: cos. 63 44' 45" : R :: '4423539 : 1 :: 31 : 70 very

nearly.

or log. cos. 63 44' 45" = 9-6457698

log. R .... =10-

- ""0-3542302

$ axis : \ horizontal diagonal :: cos. \ A 3
: tang. \A ,

:: cos. 31 52' 22" : tang. 50 37' 30" :: -849227

: 1*2330626 :: 11 : 16 nearly,

or log. cos. 31 52' 22" = 9-9290216

log. tang. 50 57' 30" == 10-0909851

0-1619635

\ oblique diagonal : edge :: cos. \ A t
: R

:: cos. 50 57' 30" : R :: '6298254 : 1 :: 12 : 19 nearly,

or log. cos. 50" 57' 30" = 9-7992615

log. R . . . . rz 10-

02007385

\ horizontal diagonal : edge :: sin. \ A^ : R
:: sin. 50 57' 30" : R :: -7766881 : 1 :: 7 : 9 nearly,

or log. sin. 50 57' 30" = 9-8902466

log.R .... = 10-

0-1097534
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i horizontal diagonal : perpendicular b n (fig. 358 & 9)

:: sin. \ A, : cos. (^ 5 90) :: sin. 50 57' 30"

: cos. 19 8' 11" :: '7766881 : -9447409 :: 46 : 56 nearly.

or log. sin. 50 57' 30" = 9-8902466

log. cos. 19 8' 11" = 9-9753128

0-0850662

Having thus determined the elements of the

rhomboid of carbonate of lime, which we may re-

mark are all deduced from the single angle /,, we

may proceed to determine the laws of decrement

producing any of its observed secondary planes.
Let us now suppose that we have measured the

inclination to the plane P, of a plane belonging to

class b of the rhomboid, and that we have found it

143 28'.

We have already seen in p. 366, that the ratio of

those lines of the defect occasioned by the planes ,

from which the law of decrement is to be deduced,

may be expressed by the fraction

sin. (Ia A.)
sin. ( 180 /

3 )

In relation to the plane we have measured we find

/
3
= 143 28'

and we have found . A
&
= 109 8' 11"

therefore I
3
A

5
. . = 34 19' 49"

and 180 7
3

is evidently zn 36 32'.

The ratio of those lines of the defect from which
the law of decrement may be deduced, is therefore

in this particular case

sin. 34" 19' 49"

sin. 36 32 ;
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If we recur to the tables of natural sines, we shall

find the numbers constituting this ratio to be nearly
1

,
which fraction being reduced to its lowest

18
terms will be

This, as we have already shewn, is to be divided

by the unit of comparison ; which in this instance is

the ratio of \ the oblique diagonal to an edge, and

12
has been found equal to _.

X. \J

But to divide by ,
we must invert the terms

of the latter fraction, and then multiply the first

by it.

18 19 18 3 , . , . crience x zz zz
,
which gives a law or

decrement by 3 rows in breadth and 2 in height pro-

ceeding along the plane P.

If however instead of using the natural sines, &c.

we use only logarithms, the law of decrement may be

thus determined.

log. sin. 34 19' 49" = 9-7512503

log. sin. 36 32' zz 9-7747288

- 0-0234783

To divide this by the unit of comparison, we must

subtract the logarithm of that unit, which is given in

p. 381, from the above logarithm of the ratio of the

edges of the defect; this may be done' by the ordi-

nary method of subtracting algebraic quantities, by

changing the sign of the quantity to be subtracted

and then adding ;

.
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hence if to 0-0234783

we add . . 0-2007385

we have -f 0' 1772602 as the logarithm

of the natural number which is to determine the law

of decrement.

But the natural number corresponding to 0*1772602

is 1*504, and which, if we disregard the last figure,

4, may obviously be expressed by the fraction

15 3
- ~

,
a result similar to that which has been

already found by means of the natural sines.

Fig. 362.

Let us next require the law of an intermediary
decrement producing a particular modification of the

rhomboid belonging to class d. And let us suppose
that we have measured the inclination to Pand P', of

that plane with the letter d upon it, which rests

on P', see fig* p. 204.

Let d on P be found 132 13'

d.. P' . . . . = 145" 57'

Hence 180 132 13' = 47 47', which we may call /6

and 180 145 57 34 3' 7
7

/, it will be recollected is 105*5'.
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We first require the plane angles ef d, dfg> fig.

362, which may be thus found.

sn.

R -J/-COS. I (/ I+/
?
+ f

y ) COS. I (J t+/ 6_/
si. insin. Jt sin. I

R I"cos> $ (/i+-*7+*6) cos. | (/.+/, /6 )

sin. /! sin. 7
7

But /, = 105 5'

76 = 47 47'

152 52'+ J7 ,
34 3' z=186 55', i of which

is 93 27' 30

and ... 152 52' 34 3'= 118 49', | of which

is 59 24' 30

Again /, r= 105 5 ;

I
7
= 3V 3'

139 8'+/6 ,
473 47'i=186 55' \ ofwhich

is 93 27' 30"

and .... 139 8' 47 47'= 91 2P,iof which

is 45 40' 30".

The preceding general formulae therefore become,

sin. I V efd

R 4 /cos. 93 27 7 30" cos. 59' 24 7 3077
~"

sin. 105 5' sin. 47 47'

sin. J v <*fg =
R 4/COS. 93 27' 30" cos. 45 40' 30^

sin 105 5' sin. 34 3'

These equations may be resolved by the assistance

i in

3c

of the table of logarithms in the following manner.
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log-. cos. 93 27'3G"zzl. cos. 86 32' 30" 8-7804792

log. cos. 59 24' 30" = 9-7066463

18-4871255

log. sin. 105 5'=1. sin.74 55'zz9-9847740

log. sin. 47 47' .... =9-8695891
19.8543631

To extract the square root of this quotient, 1.3672376

divide it by 2, and f is 0-6836188

log. R 10-

log. sin. |V ef d = 9-3163812

therefore \ y efd = 11 57' 28", and consequently

V efd = 23 54' 56".

log. cos. 93 27' 30"r=l. cos. 86 32' 30" = 8.7804792

log. cos. 45 40' 30" = 9-8443079

18-6247871

log. sin. 105 5 /=].sin.74 55'z=:9-9847740

log. sin. 34 3' .... =9-7481230
- 19-7328970

divide by 2 . . MOS1099

and J is ... 0-5540549

log. R ;
=10-

log. sin. | V dfS = 9-4459451

Therefore J V dfg = 16 12/ 49/
',
and consequently

V dfg 32 25' 38".

Now as we know the angle e df fdg = 101 55'

we therefore know the angle d ef 45 10' 4"

and dgfi=45 39' 22"

and hence dfide :: sin. 54 10' 4" : sin. 23 54' 56"

:: 8107 : 4054

:: 4 : 2
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and . . df: d g :: sin.45 39' 22" : sin. 32 25' 38"

.: 7152 : 5360

:: 4 : 3

If we again dispense with the use of natural sines,

we may still derive the same result by means of the

logarithms of those sines.

For log. sin. 54 10' 4" = 9-9088794

log. sin. 23 54' 56" = 9-6078695

0-3010099

The natural number corresponding to this result-

ing log. is 2 very nearly, which may be represented
2 4

by the fraction zz

And log. sin. 45 39' 22" = 9-8544077

log. sin. 32 25' SS" =: 9*7293493

0-1250584

The natural number corresponding to this resulting

log. is 1-3337 =. ]l
3337 = i, which gives the same

law of decrement as that already found.

The general symbol to represent the plane e f g,
would be (B'r BP B"q ), and its particular symbol
will be found by substituting in this general symbol,
for the letters p, q, and r, the particular values of

the indices as we have just found them. We shall

then have the symbol (B'2 B4 B"3), which repre-
sents this particular plane, and signifies that the

compound molecule abstracted in the production of

this plane belongs to a treble plate, or is 3 molecules

in height, 2 in the direction of the edge B', and 4 in

the direction of the edge B.

3 c 2
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Let us now require the inclination to the primary

planes, of the planes whose law of decrement we

havejust determined.

And first of the plane e i c, fig. 362, whose symbol
is A.

4
The inclination of this plane to the primary is equal

to the angle a b c, fig. 362; to obtain which we must

first know the angle d b c.

The law of decrement being 3 molecules in breadth

and 2 in height, and the decrement in breadth being
measured by f an oblique diagonal and an edge, it

follows that the ratio of the lines of the defect may
be thus expressed,

db : dc :: 3 half oblique diagonals : Sedges.
But we have before seen that

\ oblique diagonal : edge :: 12 : 19

we have therefore db : dc :: 3x12 2x19 - 36 : 38.

The sum of the sides d b, d c, of the triangle d b c

is therefore 38 -j- 36 zz 74 ; and their difference is

38 36 = 2.

The angle d b c which we require, is evidently the

greater of the two angles d b c and d c b

Now the sum of these two angles is

180 A
5
= 180 109

1

8' 11" = 70 51' 49" of which

\ 35 25' 54".

But to find the greater angle, we must also know
their difference, which we may discover by means of

the general formula given in p. 376.

tang, \ d = d> ian
,

- H
$

which formula in relation to this particular case be-

comes

tang, i d =
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From the tables of logarithms we find

log. 2 . . . ; . 0-3010300

log. tang. 35 25' 54" = 9-8521719

10-1532019

log. 74 .... 1-8692317

log. tang. \ d . . 8-2839702

Therefore

^difference of the angles dbc and deb I
9

6' 6"

and \ their sum being 35 25' 54"

the greater angle dbc == 36 32'

and v c b a is consequently 180 36* 32 /=143 28'.

If we turn to p. 382, we may observe that this

angle is the same we are supposed to have found by
measurement, and from which we have deduced the

law of decrement.

We shall now deduce the inclination of the plane

efg to each of the adjacent primary planes, from

the known law of decrement producing it, and from

the known angles'/, and A
t

.

The symbol of this plane being as we have already
seen (B'2 B4 B"3), the edges de, df, d g, of fig. 362,

are as follows,

de 2

df 4

dg
- 3

The angle c d /, or f d
g*, corresponds to A

t ,
which

has been found 101 55'.

Consequently the sum of the unknown angles dfe
and d ef, or d /"g and d gf, is zz 78 5'.
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We require the plane angles dfe, and dfg, which
are evidently less than d e^and d g f.

1. To find the angle dfe, from the formula

tang, i d = d> tan -

s

we have df-\-de = 4 + 2 = 6

<// de = 4 2 = 2

and | the sum ofthe unknown angles=392'30"

therefore tang. * d = 2ta"S- 39 2>3 "

6

log. 2 . . . . = 0-3010300

log. tang. 39" 2' 30" = 9-9090149

102100449

loff. 6 = 0-7781513

long. tang. \d . = 9-4318936

Therefore | the difference of the unknown

angles zn 15 7' 38"

and consequentlyV4A=39 '
2/ SO77

15 7 ; 38/;

=23 54' 52".

2. To find the angle dfg,
we have df-\-fg 4 + 3 = 7

dffg =4 3 = 1

and } 5 as before = 39 2' 30''

therefore tang. -| rf ^ tang. 39 2' 30' 7

log. tang. 39 2' 30" = 9-9090149

log. 7 . . . . = 0-8450980

log. tang,
i rf . . = 9-0639169

therefore | df = 6 36' 31"

and v </=392'30"=636/ 31'/=3225' 59;/

.
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Having thus found the plane angles d f e, dfg,
which may be regarded as the sides of a spherical

triangle, we may from these and the angle / deduce

the values of the angles subtended by these sides.

Let us call the angle subtended by the side dfg,
/6 ,

and that subtended by dfe, I
7

.

We have y dfg + V df e ^ ^ 59"+23 54' 52"

56 20' 51"

v dfg \/dfe3^
a
25' 59" 23 54' 52"

= 8 31' 7"

and \ 56 20' 51" = 28 10' 25"

\ 8 SI
1 7"= 4 15' 33"

\ I, = 52 32' 30".

Having thus two of the sides and an angle, of a

spherical triangle, whose other angles are I6 and J
7 ,

we may find | the sum, and | the difference, of the

angles J6 and/7 ,
and thence the value of each, in

the following manner.

1. Tofnd \ their sum.

T . cot. 52 32' 30" cos.4 15' 33'
tang. i(/6+/7 ) = ______
log. cot. 52 32' 30" = 9-8843264

log. cos. 4 15' 32 9-9987989

19-8831253
x

W. cos. 28 10' 25" = 9 9452316

log. tang. \ (/6+/7
= 9-9378937

Therefore \ (/6+/7 ) = 40 55' 2".
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2. Tofind \ their difference.

tang. |(/6-/7 ) = t.^32'30"sin.4'15'33'

sin. 28 10' 25"

log. cot. 52 32' SO" z= 9-8843264

log. sin. 4 15' 32" 8-8707728

18-7550992

log. sin. 28' 10' 26" z= 9 6740791

log. tang,
i (/6 /

7 ) = 9 0810201

Therefore f (76 /
7 ) = 52' 18"

Therefore

/6 = 40 55' 2" -f 6 52' 18" 47 47' 20"

I
7
= 40 55' 2" 6 52' 18" = 34 2' 44"

and the inclination of the plane efg is con-

sequently
on P = 180 47 47' 20" = 132 12' 40"

F 18034 2' 44" 145 57' 16"

which are very nearly the angles we are sup-

posed to have found by measurement of the

crystal, as given in p. 384, and from which we
deduced the l^w of decrement we have here

supposed to be known.

The instances here selected to illustrate the me-

thods of calculation previously described, are among
the most complicated that are likely to occur: and

they have been so selected, because they contain more

of the varieties of formulaB than will commonly pre-
sent themselves during our researches.



ON THE DIRECT DETERMINATION OF
THE LAWS OF DECREMENT FROM THE
PARALLELISM OF THE SECONDARY
EDGES OF CRYSTALS.

THE resources of crystallography for determining
the laws of decrement by which secondary planes are

produced, are not limited to the methods already

explained. In certain cases those laws may be deter-

mined, independently of the angle at which the

secondary plane inclines on the primary, by means of

the parallelisms which are observed to exist between

two of the edges of the secondary plane, and two
other known edges of the crystal ; or sometimes one

known edge, and a diagonal of the primary form.

One of the simplest instances of the distinctive

character conferred on a secondary plane by the paral-

lelism of its edges, is that by which the planes

produced by simple or mixed decrements are dis-

tinguished from those produced by intermediary
decrements.

We may also refer for an illustration to the tables of

modifications of the right square prism. The paral-

lelism of the lateral edges of the plane c?,
to the

lateral edge of the prism, implies that plane d is pro-

3D
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duced by a simple or mixed decrement on a lateral

edge of the prism ;* and the parallelism of the diago-

nal of the terminal plane, to the edge at which the

secondary plane d intersects that plane, indicates a

decrement by 1 row on the lateral edge of the prism ;

for it is obvious that the edges of the defect are here

proportional to the primary edges.

Cases however of a much more complicated nature

may be determined by means of the parallelism of

the edges of crystals.

We are indebted to the Abbe Haiiy for the earliest

observations which occur on this subject. He re-

marked, among other instances, that whenever the

terminal edges, and the solid angles, of the hex-

agonal prism, were replaced at the same time, if

the decrement in breadth on the edge happened to

be double that on the angle, the opposite edges of

the plane replacing the solid angle would be paral-

lel, and the figure of that plane would be a rhomb.

A memoir by Mr. Monteiro, on the determination

of the law of decrement producing a new variety of

carbonate of lime, was inserted in No. 201 of the

Journal des Mines for September 1813, and an out-

line of it is given here as an example of the method

used to determine that law. This memoir illustrates

the utility of this method of determining the laws of

decrement, by its application to a case where the

angle could not be measured at which the secondary

plane whose law of decrement was required, inclined

on the primary, or on any other plane} whose rela-

tion to the primary was known.

*
It is apparent that the plane d is parallel to the edge it replaces ;

and it may be observed generally, that whenever the edges of a

secondary plane are parallel, the plane itself is parallel to the edge it

replaces.
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Fig. 363.

Mr. Monteiro had undertaken to describe a new

crystal of carbonate of lime, as exhibited in fig. 363,
the planes o of which were so imperfect, .that they
could not be subjected to the goniometer, and con-

sequently the law of decrement by. which they were

produced, could not be determined by the ordinary
methods. Two parallelisms of their edges, however,
enabled Mr. M. to determine that law geometrically,
without knowing the inclination to any other plane,
of the secondary planes in question.

The planes /, /', were found to correspond with

mod. / of the rhomboid, and were observed to be stri-

ated, as those planes frequently are, in the direction

of their oblique diagonals; this direction being pa-
rallel to the superior edges of the primary rhomboid.

The position of the planes /, and /', relatively to the

edge of the primary form being thus known, it was

readily perceived that the plane e corresponded with

mod. e of the same rhomboid, and the planes o, with

some particular modification belonging to class o.

SD
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Fig. 364.

Let fig. 364 represent the primary rhomboid of

carbonate of lime. The plane /', fig. 363, is known
to result from a decrement by 1 row on the superior

edges of that rhomboid. The lines i /, I m, would

therefore represent the intersections of the plane
/' with the primary planes, the points /, and m, being
the middle of the edges df> and//.
From the middle of the edge d $, draw h b, hf,

and the triangle b h f would represent the position
on the primary form, of the plane e, fig. 363.

The planes /' and e are thus observed to intersect

each other at the points c and w, and consequently
the line cw, would correspond with the common edge
of the planes /, and e, if that edge were visible in

fig. 363.

The first parallelism observed by Mr. Monteiro

was between the line of intersection of the planes
o' and /. and the striae on the plane /. The plane o' on

some of the crystals he examined, was so much broader

than the plane o, as to exhibit this parallelism dis-

tinctly.

But as the striae are parallel to an edge of the pri-

mary form, the edge at which the plane o
1

intersects

the plane /, must be parallel to an edge of the pri-

mary form, and evidently to the edge a b of fig. 64.

The second parallelism observed was between those
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edges of the plane o', which are produced by its in-

tersection with tile planes /' and e. From this paral-

lelism, as it has been already remarked, it is known

that the plane o' is itself parallel to the edge at which

the plane I and e meet.

We have thus obtained two conditions, which en-

able us to place the plane o' on the primary form.

First an edge of that plane is parallel to the edge
a b of

fig*. 364, and secondly the plane itself is paral-
lel to, and consequently may coincide with, the line

c w, which represents the edge at which the planes /

and c meet.

If therefore we draw the line q r, parallel to a 6,

and passing through the point c, and the line ojt?,

parallel to q r, and passing through the point w, we

shall, by joining o 7, and p r, obtain the position on
the primary form of the plane o'.

And the ratio of q d to d o, will evidently give the

law of decrement by which the plane o
1

has been pro-
duced.

This ratio Mr. Monteiro says is easily deduced,
but he does not point out the method of discovering

it; it is however very obvious.

Fig. 365.

Let the plane dfs t be represented by fig. 365.

Produce df, and from the point h, draw h D, parallel

to I m, whence d v m If; and because the triangles

vfh, Iffy are similar, nf is evidently T of hf\ and
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if we draw n ,r, parallel d /*, the triangles xjn, dfh
are similar, and x n = d o is of d h.

But dh m dg-3 fig. 364. The plane o' is produced
therefore by a decrement, consisting of 3 rows in

breadth, on the plane d b af.
This demonstration, it may be remarked, is purely

geometrical, and limited in its application, to this

particular case. The same method might however
be adapted to other cases; but the problem would

frequently become extremely complicated, and diffi-

cult of solution by the aid of geometry alone.

Perceiving this difficulty, and the limited nature of

the method itself, Mr. Levy has generalised the pro-
blem by giving it an algebraical form, and has pub-
lished an interesting paper on the subject in the 6th

vol. of the Edinburgh Philosophical Journal, p. 227.

In this paper, Mr. L. has given formulae for deter-

mining the law of decrement, by which any secondary

plane, modifying any parallelopiped, is produced,
whenever two of the edges of that plane, not being

parallel to each other, are parallel to two known

edges of the crystal.

The following brief abstract of Mr. Levy's paper
is inserted here, for the purpose of affording the

reader a more immediate reference to the formulae it

supplies ;
and as an additional example of a method of

investigation, which may be advantageously applied

to other points of crystallographical research.

To derive these formulae, Mr. Levy has first sup-

posed the edges of the primary form to be represented

by three co-ordinate axes, and the primary planes,

consequently, to correspond to the three co-ordinate

planes. He has then found the equations of all the

planes concerned in the solution of the problem;

and by combining these equations, has obtained the
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equations of the projections upon one of the co-

ordinate planes, -of those intersections of the known

planes, to which the edges of the new plane are

respectively parallel. And from the necessary rela-

tion subsisting among the co-efficients of some of

the terms of these equations, the following equations
are derived.

Let ,, <7 r ,
r be the unknown indices of the new

.1 5
"

i 5' 5 '

plane, which we chall call plane 5. Let /?,, </,, r,,

andp 2 , ^2, r 2 ,
be the known indices of two planes

to whose intersection one edge of plane 5 is parallel.

And let p 35 ^ 3 ,
r
3 ,

and p 4 , <? 4 ,
r
4 ,

be the known
indices of two other planes, to whose intersection

another edge of plane 5 is parallel. The particular-

values of the indices of the planes 1, 2, 3, and 4

being substituted for the general indices of those

planes in the following equations, the particular

values of the indices of plane 5 will be obtained.

n v*i p 2 r 2 pj \q, r A r^qj
(I)

P* =
i_ _JL \

2 p 4 p 3 yJ

i \ / i i \

_ \fi ^ 2 ^ 2 ^ t

r
5 / 1 1

+f --LW x - !

Hp^, ss! WTT: ^77;

J L) f_L_-_L\
i <[* P 2 <ti' \!j'i

^
4 ^4 ^

ro/
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The two preceding equations are the .most general

that can be imagined.
If the known planes I and 2, be parallel to a diago-

nal of the terminal plane of the primary form, the

plane 5 will be parallel to the same diagonal ;
in

this case p ,
=. q l9 and p t q*i and the values of

^J and i* become equal ;
and by reducing the above

r
5

r
&

equations, after the necessary substitutions are made,

the followin will result.

(3) & = ! =
r. r. - }+( -

3
r
4

r
3 qJ Vpj r

4

T
3 p

The indices of the planes I and 2, it will be re-

marked, have disappeared from this formula, since

the condition of planes 5 being parallel to a diagonal
of the primary form, does not depend upon any

secondary plane.

If we now suppose the planes 1 and 2 parallel to a

lateral edge of the primary plane, the plane 5 will

be parallel to the same edge ; then r and r a ,
become

infinite, and the values of 2|, ?J, become infinite
r
s

r
s

also. But if, instead of substituting the infinite in

equations 1 and 2, for the indices of planes 1 and 2,

we divide the first equation by the second, we shall

obtain a new equation which does not contain the

indices of planes 1 and 2, and which gives the values

of the indices p s
and q^ in function of the indices

of planes 3 and 4.

1 1

PS _ ?7% ^7?4

9 5

"
L L_

Pl JP 4
r
5
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The first, second, and third of these formulae are

complicated from the generality which has been

given to them. They are all remarkable too, for not

containing the values of the primary edges, which

were used in the preliminary equations.
The linear dimensions of the primary form are not

therefore necessary to determine the laws of decre-

ment of such planes as those we have been consider-

ing. Nor can the dimensions of the primary form be

deduced from any observation of parallelism between

the edges of a secondary crystal.

It is necessary to add that if any of the planes 1 to

5, should cut one of the co-ordinate axes on the nega-
tive side, its index referring to that axis must be

taken negatively in the preceding formulae.

As this short abstract is given merely to introduce

the formulae, the reader will more thoroughly com-

prehend the author's views, by consulting the paper
itself.



ON THE METHODS OF DRAWING THE
FIGURES OF CRYSTALS.

THE representation of surfaces, or of solid bodies,

upon a plane, is the object of the art of perspective.
The theory upon which this art has been founded,

supposes an imaginary transparent skreen to be inter-

posed between the eye of the observer and the object
to be represented ; and it supposes also that the rays

of light which pass from the object to the eye through
the skreen, should become, as it were, fixed at its sur-

face, so that when the object is removed, its figure
or representation should still remain apparent on the

skreen. And the rules of perspective teach the

methods of delineating the figures of objects upon
a plane, in such a manner, as to resemble the appear-
ance they would present to the eye if seen through the

plane on which they are delineated, supposing that

plane to be transparent, and held between the object

represented and the eye.

A more familiar conception of the nature of a per-

spective representation may be derived from looking
at a building, or along a street, through a piece of

glass, and marking lines on the surface of the glass

coinciding with the lines of the object we are

observing through it. These lines, if accurately

traced, will evidently represent the object to the eye,

such as it appeared when seen through the glass.
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Fig. 366.

If we look along a street, and imagine that we are

seeing it through a transparent skreen, the upper and

lower edges of the fronts of the houses, which we
know to be nearly if not accurately parallel, appear
to converge at the remote end of the street, forming
a series of lines on the skreen something like that

shewn in fig. 366*

And it is obvious that if this mass of houses were

a single solid body, and even if it were very much

reduced in dimensions, it must still be represented

on a plane surface by lines some of which must con-

verge, as those representing the upper and lower

edges of the supposed fronts of the houses do in the

above figure.

But a representation of the figures of crystals in

this manner would not convey a sufficiently precise

notion of their forms, and it would be extremely
difficult to understand the figures of complicated

secondary crystals, if they were thus traced.

In order to retain in the drawings of crystals the

apparent symmetry of their forms, another kind of

perspective has been used, which is known by the

name of orthographic or geometrical projection, or

simply by that of projection.

In this kind of perspective, the object to be repre-
sented is supposed to be removed to an infinite dis-

tance from the eye ; in consequence of which all the

lines which are parallel in the figure would appear
3 E2
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parallel upon our supposed transparent skreen, and

not converging as they do in the above diagram.*
The method of representing crystals in projection

may be thus explained. Let us for a moment forget
the abstract notion of the object being removed to an

infinite distance from the eye, and let us imagine it

distinctly within our view.

Fig. 367.

Let the figure to be represented, be a cube ;
and

let us imagine this cube to be resting upon a hori-

zontal surface, and the eye to be placed opposite one

of its planes, and in the direction of a line drawn

perpendicularly through the centre of that plane.

In these relative positions of the eye and the crys-

tal, only that plane opposite to the eye will be visi-

ble; and if a transparent skreen were interposed

between the eye and the crystal, and held parallel to

the plane which is seen, the only linear traces which

could be marked on the skreen would be the edges of

the observed plane, as represented in fig. 367.

* This theoretical notion of the
infinite

distance of the object, is bor-

rowed from mathematical considerations of the nature of infinite lines ;

and may be taken here merely to imply what is stated in the text, that

the edges, or other lines, which are parallel on the crystals, are to be

represented by parallel lines in the drawing.
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Fig. 368.

t. . J_
I

If we now suppose the eye and the skreen to be

moved horizontally toward the right of the spectator,

the skreen retaining its parallelism to the plane F',

the rays proceeding from the edges of that plane,

may be conceived to pass obliquely towards the

skreen in its new position, and the edges of the plane
P" will now be visible, and may be traced on the

skreen as in iig. 368. If we suppose the eye and the

interposed skreen to move round the crystal, the

skreen retaining its perpendicular position, but ceas-

ing to be parallel to any plane of the cube, excepting
at some particular points of its progress, it will be

obvious, that while the eye and the skreen continue

to move in the same horizontal plane^ the vertical

planes of the crystal, and those only, will become
visible in succession

;
but the terminal plane will

not be perceived. To see the terminal plane we
must suppose the eye and the skreen to be raised

;

or, if the eye retain its position, the back of the crys-

tal must be elevated.
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Fig-. 369.

It will be more consistent with most of the follow-

ing explanations of the methods of drawing" the

figures of crystals, to suppose the position of the eye

fixed, and the back of the crystal to be elevated.

In this new relative position of the crystal and the

eye, the figure traced on the interposed skreen,
would resemble that exhibited in fte. 369.O

It is evident from the preceding explanation, that

the relative positions of the eye, the object, and the

skreen, may be varied at pleasure, so as to produce
in the drawing, such a representation of the object
as best suits the illustration it is intended to afford.

And although, as it has been stated in p. J02, an

advantage will generally attend the placing the

figures of crystals belonging to the same class of

primary forms always in the same position, there

may nevertheless be exceptions to this rule when the

position of the modifying planes on the secondary

crystal, is such, as to require some new position for

their more perfect exhibition. The position chosen

by the Abbe Haiiy for the crystal of felspar, is per-

haps the best that could be adopted for exhibiting

advantageously the secondary planes of the crystals

of that substance ; yet the front lateral planes of his

figure correspond to the back planes of the doubly

oblique prism as it is given in the tables of modi-

fications.
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Having- thus given a brief outline of the theory of

geometrical projection, we shall proceed to shew
how the forms of crystals may be accurately deli-

neated, without entering into any further general

explanation of the means which will be employed for

this purpose.

To draw a Cube.

, Fig. 370.

On the line a 6, describe the square abed. Let

the line e k be parallel to a b.

From the points a b c d, draw the lines c e, a r, df>
b #, and let these lines be more or less oblique, as

the side h f m i is to be rendered more or less

visible.

Draw the perpendiculars e o, r
<?, fp9

k v. Take
e g equal ef, and draw g h parallel to ef, and e g hf
is consequently a square.

For the purpose of shewing the plane g I m h of

the cube, the back of the figure is supposed to be a

little elevated.
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To represent this elevation take some portion, as

1
/r,

of the line k a, and draw f i ; the portion i k

may be greater or less according as more or less of

the plane g I m h is required to be seen.

Draw e w, g /,
h m, parallel to fi ;

and / m, n z,

parallel to g h, and the figure represents a cube.

To draw a Square Prism.

The square prism differs from the cube only in its

comparative height.

Let us suppose we have to represent a square

prism, whose terminal edge is to its lateral edge as

2 to 3; we may divide the terminal edge e f in

two parts, and make e o equal to three of those

parts, and then complete the figure as represented in

the diagram. And we may, by a similar proceeding,
make the lateral edge of the prism bear any given

proportion to the terminal edge.

To draw a Right Rectangular Prism.

To draw a right rectangular prism, make the lines

a c, c d, of the preceding figure, proportional to the

corresponding terminal edges of the particular prism
we wish to represent; and having proceeded to draw
and elevate the base of the figure as for the cube,

make e g proportional to the third dimension, or

height of the prism, and then complete the figure by

drawing the parallel lines as before.

It has been already stated that when the angles of

the base of a prism, or octahedron, are right angles,
the figure of the crystal is drawn with one of the

edges of its base horizontal
;
but where those angles

are not rignt angles, the diagonal of the base is hori-

zontal in the figure, and the terminal edges are

described by oblique lines.
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To draw a Right Rhombic Prism.

Fig-. 371.

Let a b represent the greater diagonal of a right
rhombic prism, and let the rhomb a c b d represent
the base of the particular prism we are about to de-

lineate.

The angle a d b of the prism is supposed to be

known, and that angle of the figure may be made

equal to it, by adjusting the arms of the common

goniometer to the required angle, and using them as

a rule to draw the lines a d, d b.

Draw e h parallel to a b
;
and also the oblique lines

af> c g9 dh, b
/,

these being, as before, drawn more

or less oblique, according as we wish to exhibit a

greater or less difference between the two lateral

planes of the prism shewn in the front of the figure.

To elevate the back part of the prism in order to

exhibit the terminal plane, take i i' equal toff; and

draw h i', hf, and their parallels.

Let the lateral edge h k be drawn in such proportion
to the terminal edge a d, as it has been found by cal-

culation on the particular crystal we are delineating ;

and draw the upper terminal edges parallel to the

lower ones.

3 F
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To draw a Right Oblique-angled Prism,

Fig. 372.

The right oblique-angled prism may he drawn in a

similar manner, keeping the diagonal a b horizontal,
and making the angle a d

,
and the ratios of the

edges d a, d 6, and g m y
such as they are found in the

prism of which we propose to give the figure.
' The oblique rhombic prism may be drawn in a man-
ner similar to the two preceding prisms, but it should

have a little more elevation given to the back of the

figure, in order to render the character of obliquity
of the prism more conspicuous.
From the necessity of elevating the back of right

prisms for the purpose of shewing the terminal plane,
it is apparent that the character of obliquity cannot

be conferred on a figure so drawn, otherwise than

by elevating the back of it rather more than that of

the right prism.

To draw the Doubly-oblique Prism.

The double obliquity given to the figure of this

primary form in the tables of modifications, is too

slight to convey an accurate notion of its general
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character; that obliquity is therefore considerably
increased in the" following figure.

Fig. 373.

As the lateral angles of this form are not right

angles, its base obviously cannot rest on a horizontal

plane, while its lateral edges are perpendicular.
To obtain its horizontal projection therefore, while

its lateral edges are perpendicular, we may suppose
those edges produced until they touch the horizontal

plane i m, over which the figures appears to stand.

The area of the horizontal projection is clearly
less than the base of the figure, and may be known
from the ratio of the terminal edges, and from the

plane angles of the lateral planes ; which elements

are supposed to have been previously determined.

SF2
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Fig. 374.

Let as suppose the edge k1

m', fig. 373, to be to the

edge k' i'", as 7 to 4, and to the edge k' k" as 7 to 6.

Let the line a b, fig, 374, be the length we may
determine upon for the greater terminal edge of the

prism ; divide this into 7 equal parts, and 4 of those

parts will be the length of the edge k 1

i
1

", fig. 373,
and 6 of them will give the height of the prism.
Let the inclination of P on M, fig. 373, be known

and called /,,

P..T ....... /
M..T J

3
.

And let the plane angle i'" k 1

k", be also known and

called A t9

ki'k'm', A z .

And let us suppose A v
an acute, and AI an obtuse

angle.

It is evident that if the solid angle at wz', of such a

figure, be supposed to touch the horizontal plane

m, the lateral edges being kept perpendicular, the

solid angle at k 1 must stand above the plane, and the

solid angle at i
1"

still more above it. The elevation

of the point at k' may be known by drawing the arc

afj fig. 374, with a radius a b, and drawing a second

radius bf, making the angle a bf= A 2 90.

The perpendicular a g dropped on the linef b,

will be the required height of the point k 1 above the

horizontal plane, and the line g b will be the length

of the horizontal projection of the greater terminal

edge of the prism.
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The increased elevation of the point at i'", fig. 373,

may also be determined by drawing the arc c d,

fig. 374, with a radius c b equal to of b, and

making the angle c b d equal to 90 A
t

. The per-

pendicular c e will be the increased elevation of the

point at '", fig. 373, and the line e b will be the

horizontal projection of the lesser terminal edge of

the prism.

Having thus obtained the horizontal projections

of the terminal edges of the prism, we may find the

vertical projections of the lateral edges in the fol-

lowing manner.

Let the horizontal projection of the greater diago-
nal of the terminal plane be supposed parallel to the

line i m, fig, 373, and the diagonal g e of the plan

g b e h
9
must be parallel to the same line.

Fig. 375.

The edges of this plan are known from the figure

374. The length of the line g e may be determined

by simply cutting a card so that the angle g b e, fig.

375, shall be equal to /
3 ,

and making b g, equal to

b
g-, fig. 374, and b e, equal to b e of the same figure.

The point b of the card being laid on the point b of

fig. 373, the edge ge may be made parallel to i ra, by
means of a parallel ruler, and the lines g b, be, being

traced by a pencil, their parallels h
,
h g, may be

drawn to complete the plan.
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The length and position of the line g e may be also

very easily determined geometrically.

Make b p, fig. 375, equal to b g, fig. 374, and b n

equal to b e of the same figure. From b as a centre,

describe the semicircle n o, and the segment p g.

Take n e equal to the arc of 90 /
3 ,

and p g equal
to the same arc, and ge will obviously be the greater

diagonal of the horizontal projection of the base of

the prism.

Knowing the horizontal projection g b e 7i, we

may proceed to the projection of the prism ; elevating
i

i'j
m m', sufficient to exhibit the terminal plane,

and taking k k1

equal to a
f, fig. 374, and i" i'" equal

to c e of the same figure.

To draw a Rhomboid.

Fig. 376.

The ratio of the axis, to a .perpendicular drawn
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upon it from one of the lateral solid angles of the

particular rhomboid we are about to delineate, is

supposed to have been ascertained.*

We should then determine the height our proposed

figure is to be, which height will be the length of

its axis. Our next step is to find a line which

bears the same ratio to that which we have fixed on

for the axis of our figure, as the perpendicular upon
the axis of the crystal, does to the axis itself. This

may generally be done with sufficient precision, by

dividing the line we have assumed for our axis into

such a number of equal parts, as will give the length
of the required line in some other number of those

parts. If, for example, we have found, that the per-

pendicular upon the axis, is to the axis itself, in the

ratio of 7 to 10, and if we determine that our figure

shall be an inch high, the required line will be evi-

dently & of an inch.

If, however, we are desirous of still greater accu-

racy, we may draw a perpendicular line equal to that

which we have fixed on for the height of our rhomb-

oid, and from the upper extremity of this line draw

a second, inclining to it at the same angle that the

axis does to a superior edge of the rhomboid we are

about to represent; and if we now divide our first

line into three equal parts, and from the upper point

of section, draw a perpendicular to it which shall

pass through the second line, the portion intercepted

by the second line will be the required length of the

perpendicular upon the axis.

With a radius equal to this line, which is, in the

case we are supposing, ^ of an inch, describe the

circle abed ef> fig. 376.

* The method of ascertaining this ratio has been already pointed out

in p. 363.
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Divide the circumference of this circle into six

equal parts, by the points a b c d f /, as in the figure,

and draw the lines a d, / 6, g o, e c, within the circle.

Draw k I parallel to f b. Draw the oblique lines

shewn in the figure, from the several points on the

circumference of the circle, and from its centre, to

the line k /; and from the several points in that line

where it is cut by the oblique lines, raise the per-

pendiculars as they appear in the figure. On the

middle perpendicular line, take a portion 3' 3', equal
to the length we have determined on for the axis of

the rhomboid, and after dividing this portion into

three equal parts, draw the lines m n
: p q^ r s, through

the upper point 3, and through the points of division,

and parallel to the line k I.

The oblique lines are to be drawn more or less

obliquely, according as we would have the rhomboid

appear more or less turned round. To elevate the

back of the rhomboid, so as to render a plane trun-

cating its terminal solid angles visible, draw d i

parallel to e c, and join a i. The line d i is the quan-

tity of elevation intended to be given to the solid

angle a 1 of the rhomboid; and the lines 12, 3, 4 5.

are the proportional quantities which the other solid

angles require to be elevated in order to preserve
the symmetry of the figure. This imaginary elevation

of the back of the figure, is thus produced in the

drawing. On the perpendicular lines 4', i
1

,
and

4', which pass through the line m n, take V a! equal
to di\ and 4' jf, 4' b', each equal to the line 4 5.

On the perpendiculars, I' and I', which pass through
the line p <?,

take 1' e, 1' c', each equal to the line

1 2. And on the perpendicular 3', which passes

through the lines k
/, and r s, take 3' 0', and 3' 0",

each equal to the line 3 0. From the several points
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thus obtained, and from the point d1

,
draw the lines

requisite to complete the figure.

To draw the Hexagonal Prism.

Fig-. 377.

The size of the figure should be first determined.

Draw the lines a b, and if, parallel to each other.

From the point o in the line if, describe a circle

with a radius equal to the line h' g', which is to be

the front edge of the prism. Draw the chords
jfg-, gh,

&c. and from the points e, f, g, h, i, k, draw the

oblique lines to the line a b ;
and from the termination

of the oblique lines at that line, raise the several

perpendiculars shewn in the figure. To elevate the

back of the prism, take some quantity i
1

/, f'

m, on

the perpendiculars at i' and/
7

; draw the lines h1

/, and

g' m, and complete the base by drawing parallels to

these and to k' e
f

, as shewn in the figure. Let us

suppose the height of the prism to be to its edge as 5

to 7; divide the edge h' g' into 7 equal parts, and

make hf h" equal to 5 of those parts. Then complete
the figure by drawing the upper terminal edges paral-

lel to the edges of the base.

SG
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To draw the Tetrahedron.

Fig. 378.

~f" FT^
/ * *f I A

Draw a b of the length which is intended to be

given to the dotted edge a" b" of the figure, and draw

p q parallel to a b.

On a b construct the equilateral triangle a b c, and

through its centre h draw d c, which will be perpen-
dicular to a b. From the points , &, c, and

/?, draw

the oblique lines to p q^ and from the points where

they cut that line at a', &', h!
9
draw the perpendiculars

shewn in the figure. Having determined the quan-

tity of elevation to be given to the back of the tetra-

hedron, make k d, on the line a b, equal to that

quantity, and join k c ; and through the centre h

drawfg parallel to a b. On the perpendiculars from

a' and &', take a' a", and b 1

b", each equal to k d, and

by drawing the lines c' a", c' b", and a" b 11

, the base

of the figure will be delineated. To complete the

figure we require the line o m, which is the height
of the crystal. To obtain this we must have recourse

to the following geometrical construction.
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We may observe that the angle m o n of the upper

figure is a right angle, and that the line m n is equal
to the line d c of the lower figure. But two lines

drawn from the extremities of the diameter of a

circle, and touching each other at the circumference,
meet at a right angle. It is therefore obvious, that

if we describe a semicircle on the line d c as a dia-

meter, and draw the chord d i equal to n o, or, which

is the same thing, to d h, the line i c will be the re-

quired height of the figure. On the perpendiculai
from the point h' on the line p <?,

take h' o equal to

/ h of the lower figure, and take o m equal to i c.

Join m a"i m c', m b", and the figure is completed.

To draw the regular, or any of the irregular

Octahedrons.

Fig. 379.

Draw the square, rectangular, or rhombic base,

of the octahedron, in the same manner as the bases of

the prisms of those forms are directed to be drawn.

Then find the centre of the base a b c, by drawing
3 G 2
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the two diagonals; and through that centre draw a

line d e, perpendicular to the edge, if the base be

square or rectanglar, or perpendicular to the hori-

zontal diagonal, if the base be a rhomb* On this

perpendicular, and on each side of the base, take \

the length of the axis of the particular octahedron

we are delineating, and draw lines from the extre-

mities of these semi-axes, to the angles of the base.

In the regular octahedron, which is the figure

above represented, the semi- axis is equal to \ the

diagonal of the horizontal projection of the base.

To draw the Rhombic Dodecahedron.

Fig. 380.

The easiest method of drawing this figure is to

project the cube as shewn above, and through its

centre and perpendicular to its planes, to draw the

lines a &, c d, ef.

Those lineis are parallel respectively to the edges
of the cube. Take on each line, and in each direc-

tion from the point in the centre of the cube, where

the lines intersect each other, a quantity equal to

that edge of the cube to which the particular line is

parallel, and draw lines from the extremities of those
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portions of the lines, to the solid angles of the cube.

The resulting figure will be the rhombic dodeca-

hedron.

In the preceding pages the rules of projection

have been applied to the delineation of only the

primary forms of crystals ;
but they may also be ap-

plied to the delineation of some of the secondary
forms

;
these may however be more easily drawn

either by truncating the figures of the primary forms,

or by circumscribing those primary forms with the

planes of the secondary crystal.

When the secondary form, whether it be simple or

compound, is to be exhibited in its entire state, with

all the primary planes effaced, the best method will

be to delineate a small primary form, and to envelope
that with the secondary planes ;

but when parts of

the primary planes are also to be shewn in the figure

of the secondary crystal, a larger primary form may
be drawn, and then be truncated, or cut down, in the

same manner as the modifications in the tables are

drawn.

The fidelity of the representation of any secondary

form, must obviously depend upon the accuracy of*

the positions of the secondary planes relatively to the

nrimary and to each other. And as it is by the in-

tersections of those planes with the primary or with

each other, that their positions are rendered appa-

rent, the accurate construction of a secondary form,

must depend upon the accuracy with which those

intersections are determined.

Hence the rules for drawing the secondary forms

of crystals, will apply chiefly to the means of finding

the intersections of the secondary planes.

There are two principal methods which may be

used for this purpose ; the one is to divide the edges
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of the primary figure we are about to truncate, into

such a number of equal parts, as may enable us to

construct the required secondary planes by finding

the intersections within the same figure ;
the other,

and, generally, the better method, is to produce the

primary edges, and to obtain the intersections either

within or without the figure, as may be most con-

venient.

Fig. 381.

As an example of the first of these methods, let us

suppose we have to represent a square prism modified

on its terminal edges by planes belonging to class c

of the tables of modifications, resulting from a de-

crement by one row of molecules, and whose symbol

would consequently be B.

Let a square prism be drawn in pencil, of the

relative dimensions of the prism to be represented.

Divide the terminal edges into any number of equal

parts, let us suppose into 7 parts, and at a distance

from the angle, of two, or any other number of

those parts, draw the lines a 6, c d, and their parallels

on the upper and lower planes of the figure. Draw

bf9
and c/, parallel to the diagonals of the planes

on which they are drawn, and e f, f g, and their

parallels, on the lateral planes. The line hf, is one

of the intersections of the modifying planes, and is

consequently a new edge of the secondary figure.
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The other corresponding secondary edges being

drawn, a secondary form will result, as exhibited by
the dark lines in the above figure.

Fig. 382.

Let it be required to draw a right rectangular

prism, with two planes belonging to class a modi-

fying each of the solid angles. The dimensions of

the prism are supposed to have been ascertained,

and a prism is to be drawn in pencil corresponding
in relative dimensions with our observed crystal.

We shall suppose the symbols of the two secondary

planes to have been found,

(2 Gi 63) and (Ci G$ 62).

Let each of the edges be divided into 7 equal

parts ; the plane represented by the first symbol
would be traced by the lines a #, a c, b c, and that

represented by the second would be traced by the

linesfh) h g. But it is apparent that the two planes
would intersect each other in the line d e, and that

only the portions a d e c, and d e h, of the new planes,
would be visible upon the secondary crystal. The
same process being repeated on the other solid

angles, the modified form, as shewn by the inner lines

of the figure, would be produced.
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Fig. 383.

Iff!

But it would frequently be inconvenient, if not

impracticable, when several modifications are to

be represented on the same crystal, to trace the

requisite intersections within the crystal, on account

of the minuteness of the secondary planes, and the

number and proximity of the lines which must be

drawn in order to exhibit them. We may, under

such circumstances, resort to a construction, of the

character of that exhibited in fig. 383. Let us sup-

pose we have to draw a doubly-oblique prism modi-
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fied on the solid angle at O of fig. 318, bj two planes
whose symbols are (D2 H3 Fi), and O 2

. If we pro-
duce the edge i d to a, so that i a is equal to twice

i d, and make i c zn 3 i k, it is evident that a b c

might be the position of the first plane upon an

enlarged primary form. And if we make i e =. 2 i b,

and if zz 2 i
,
d ef will represent the second plane

upon the same enlarged primary form. But the

edges of the two planes intersect each other at the

points g and h; and the line g h is consequently
the secondary edge at which the planes intersect

each other. Having found this intersecting line on

No. 1, as well as the positions of the intersections of

the primary with the secondary planes, we may pro-
ceed to construct the secondary figure, No. 2. To
do this, we should first draw a primary form in pen-

cil, similar and parallel to d i b k of No. 1, and taking

any point ,
in the edge i d, draw a c parallel to a c

No. 1. Take some point e in the edge i b, such that

the part exhibited of the plane d ef, should be pro-

portional in some measure to the part exhibited of

the plane a b c.

This proportion must depend on circumstances, and

on the particular illustration our figure is intended to

afford. For we may evidently give any comparative
extension we please to the two planes, by taking one

of the points a or e, No. 2, nearer to d or b.

Having fixed on the points a arid e, No. 2, we may
draw a g, g e, g h^ c h, parallel to the correspond-

ing linos of No. 1
;
and drawing

1 the lines at the back

of the figure parallel to those on the front, the

secondary form will be completed.
In the future part of this section, the planes analo-

gous to a b c, and d e
jf,

will be termed directing

planes ;
and their edges and intersecting lines, direct-

ing lines.

3 n



426 APPENDIX ON DRAWING THE

Fig. 384.

We shall now proceed to delineate the secondary

form of a right rhombic prism, whose symbol would

be

iGi M B E (Bi Hi B'2 : 62 Hi B'I)
h M e c bi

(Bi H 3 B'2 : E2 H 3 B'I) P
l)^ P

Thig, although a more complicated figure than the

receding, may be produced with equal accuracy, by
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finding successively, the intersections of all the se-

condary planes with each other and with the pri-

mary.
Let the primary forms, No. 1 and 2, fig. 384, be

drawn in pencil,* and on No. 2 draw u v parallel to

the short diagonal of the terminal plane, and from

the points u and v, draw u o, v p, parallel to the

lateral edges. The plane h would evidently be re-

presented by u v op. Let the line a a' be drawn on

the plane /z,
and through the diagonals q r, s t.

The plane c should next be placed on the second-

ary figure, which plane must obviously lie between

h and P. The law of decrement from which we

have supposed this plane to result, is by 2 rows

in breadth. If therefore we produce two of the pri-

mary terminal edges of No. 1 to c and c', so that q c,

and q c', shall each be double the edge that is pro-

duced; and if we join c c', the plane a c c', will

represent the plane c, the line c c' will touch the

primary form at the solid angle d, and the line da
will pass through the middle of the plane a c c'.

We may call d a, therefore, the directing line,

which enables us to place the plane c between h and

P, by taking some point d, in the diagonal q r, No. 2,

and drawing d a parallel to d
,
No. 1. Through d

and 0, we may now draw the lines g /*',
i k, parallel

* When two or more figures are to be drawn in the relation to each

other in which these stand, their dimensions should be similar, and

their corresponding edges or diagonals should either be parallel or ih

the same line, according to the relative positions of the figures.

In the above figures, the corresponding lateral edges are in the same

right lines, and the terminal edges are respectively parallel. These
< ot responding positions are always implied when two or more analo-

gous figures arc jnveii.

3 u 2



428 APPENDIX ON DRAWING THE

to u v; and as it is evident that the line a d passes

through the middle of the plane g h 1

i
/*,

that plane
will represent the required plane c. By drawing
lines parallel to g 7z',

and i
A:,

at corresponding dis-

tances from the diagonals q r, s t, and from the points

<7, r, s, and 5
the figure with the planes h and c upon

it may be completed, and may be traced separately

in pencil as in No. 3, preparatory to the addition of

the planes e.

To produce these planes, having first drawn k x^

we require the position of the intersection k /, of the

planes c and e. This intersection is shewn in No. 1

by the line a c ; the points a and c being common to

the plane a c e e', which corresponds to e, and a c c',

which, as we have already seen, represents c.

If, therefore, from the point /j, No. 3, we draw k I

parallel to a c, No. 1, and from the point I
1 we draw

Iy parallel to k x, the plane k I y x will be one of

the required planes e. The other planes e may be

drawn in a similar manner, or by parallels, or by

finding the relation of the point / to some known

point of the crystal.

The planes e are purposely left incomplete in the

front and back of No. 3, where the planes b are to

be placed.
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Fig. 385.

Having thus produced the planes d^ c, and e, we

rnay add the planes />, and b*, by tracing No. 3,

fig. 384, .on a separate paper, as No. 5, fig. 385, and

above it draw an entire primary form, as shewn by
No. 4.

To place the planes hi and * on the figure, we

require their intersections with
<?, P, and M, and

with each other.
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The directing planes b b'" b*, and b' b" b*, No. 4,

represent the 2 planes b^ b'*, No. 5 ;
and b b'" b *,

I)' b" bz, No. 4, represent #*, which are marked only

by the number 2 in No. 5 ; and n % b" 1

s'
?
No. 4, is

evidently parallel to plane e, No. 5.

The intersection of b b"' b*
9
with n % b"' s', is the

line n b'" ; its intersection with P is b b'"; with M, it

is b b i
;
and with b' &" 6 1

,
it is & m.

If, therefore, from the point I, No. 5, we draw the

line 1 6, parallel to n V", No. 4 ; 6 5, to b b'"
; and

13, to b b* 9
we shall obtain three of the edges of

plane b*. From the point 5. No. 5, draw the inter-

section of b and b' *
, parallel to m b i

,
No. 4 ; and by

drawing on No. 5, 3 4, parallel to b b*, No. 4, and

the intersection of 2 and a', No. 5, parallel to m b*
9

No. 4, we shall delineate the planes Z> and 2
; ob-

serving that those planes intersect each other in a line

parallel to the intersection of bi and P. The posi-

tions of b'i and 2 may be obtained by a similar

method of proceeding, and the other corresponding

planes may be drawn by a similar process, or by

parallel lines, or by finding the relation of their

edges, or angles, to some known points on the

crystal.

We shall give our next illustrative example from

the rhomboid. Let us suppose an obtuse rhomboid

is to be represented, modified by planes belonging to

classes g, ??z
3 o, and p, and whose symbol is

iDi 2D2 iBi 6 P.

o p m g P



FIGURES OF CRYSTALS.

Fig. 386.

431

Let P, P' P", represent the primary planes.

The planes o maybe added, by merely lengthening
the primary axis, drawing at its two extremities the

three upper and three lower primary planes of the

rhomboid, and joining their angles by six vertical

lines, which will then constitute the vertical edges
of the plane o.

To add the planes m, take any points c c', on the

two adjacent edges of the rhomboid, such that a line

passing through both should be parallel to the hori-

zontal diagonal of the plane P"
;
and from these

points draw lines on the planes P and P', parallel to

their common edge.
The intersection of the planes m with each other,

is parallel to a line passing through two opposite
solid angles, and through the axis.

Fig. 387.

This is apparent from fig. 387, in which if the
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directing planes 1234, and 1654, be taken to re-

present two planes w, their intersection will be the

line 1 4, bisecting the axis at o.

Having drawn the edges of the planes m on the

primary planes in fig. 386, we may find their inter-

sections with o and o'. by taking a' b', on the vertical

edges of o, equal to the portion a b of the ajtis, cut

off by the terminal edges of the planes m, and join-

;': : c //, c' b'.

Fig. 388.

X? /

Our next step should be to add the planes/?. As

wo shall have subsequently to add the planes ',
it is

not strictly necessary to find any other intersections

of the plane/?, than those which correspond toff,
fig. 388, J\o.2. But for the sake of an additional

illustration, we shall find the intersections of/;, with

/, and their adjacent intersection with each other.
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If we recollect that the planes p result from a decre-

ment by 2 rows in breadth, it will be apparent that

the directing plane/? ppf of No. 1, corresponds to p
of No. 2, and p" p" p" f of No. 1, top" of No. 2.

But the intersection of'p p pf, and p" p" p" f, is the

directing line//'.
If therefore we take any point f in the vertical

edge of No. 2, and draw//', parallel to//' No. 1,

/' No. 2 being the intersection of the new edge with

an oblique diagonal, and if from the points / and

/' we draw lines parallel to the inferior primary

edges, we shall obtain a representation of the planes

p and p".
The intersection ofp and m, No. 2, is shewn by the

directing line p p, No. 1
; and that ofp

1 and m, No. 2,

by p' h, No. 1
;
and the intersection ofp andp', No. 2,

is parallel to the line pf, No. 1.*

It now remains only to add the planes g to -our

figure. For this purpose we may trace in pencil, as

at No. 4, fig. 389, an accurate copy of No. 2, fig. 388 ;

and above it draw the primary form, and the direct-

ing planes shewn by No. 3.

We observe here that g g' g", No. 3, corresponds
to plane g9

No. 4. The intersection of this plane
with m is parallel to the horizontal diagonal of P",

and its intersections with P and P' are parallel to

g g', and g g", No, 3. Its intersections with p and

^/, are parallel to the directing lines i I and i V, No. 3;

the points /,
and /', being the only ones at which the

edges of the planes p, p', and g, intersect each other,

and the point i being common to the three planes.

The intersections of g with o and o' are the lines

i k, i k'. For the planes o, and o', might evidently

*
It may he observed that there are three dotted lines terminating at

, No. 1, fig. 388; one of these has p at its other extremity, another

has/, and the reader is requested to add/i' to the third.

3i
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intersect the primary planes P' and P, parallel to their

oblique diagonals. If therefore two planes corres-

ponding to o and o', No. 4, be conceived to pass

through the oblique diagonals of No. 3, and to be

produced until they cut the edges g g
f and g g", it

is obvious that they would cut those edges at the

points k and &', and the point i would then be common
to the three planes.

Assuming any point in the front vertical edge of

No. 4
3
we may draw those lines of plane g which

intersect o and o', then those which intersect p and

p', and P and P'
5
and finally the intersection with m,

to complete the figure.

Fig. 389.
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In drawing the secondary forms of crystals, it very

frequently happens that the law of decrement will

suggest some relation between the position of the

secondary edges or angles, and some known points or

lines of the primary form, which will supercede the

necessity of any directing diagram. One instance of

this will be seen if we turn to p. 420, where the

rhombic dodecahedron is derived from the cube,

through a previous knowledge of the relation of the

two forms to each other.

And many expedients will probably occur to those

who are accustomed to draw crystals, which will

greatly abridge the laborious processes just described.

These will, however, form particular cases, and will

depend on the degree of attention and ingenuity

employed in framing the diagrams.
The following figure will supply another example

of the delineation of a secondary form, from ascer-

taining its relation to the primary.

Let it be proposed to circumscribe a cube with a

figure contained within 24 trapezoidal planes, be-

longing to mod. class b of the cube, the law of decre-
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2

ment being expressed by
2 A a

. The fig. No. 1, has

the necessary directing planes drawn upon it, from

which it appears that the lines e a, e b, e c, represent
three intersections of the secondary planes with each

other. If on No. 2 we draw the lines p p', q q', &c.

through the middle of the diagonally opposite edges,
and from the solid angle at e, draw lines parallel to e a,

e b, e c, of No. 1, those lines will be the edges of the

new figure, and they will cut the lines p p', &c. at a

distance from the edges of the cube equal to -- of its

diagonal. This will be apparent if we suppose the

central point e of No. 1, to represent the solid angle
e of No. 2 ;

for the line e a evidently cuts a diagonal
of the cube at a distance from its middle point equal
to of its whole length.

The plane a a' b, No. 1, represents one of the

secondary planes, through the middle of which, if we
draw the line a' a", that line will pass through the

centre of the cube, and will consequently bisect its

prismatic axes. A line drawn, therefore, from the

solid angle at e, fig. 2, through the produced pris-

matic axisyg*, will cut that axis at a distance from

the surface of the cube equal to | the length of the

axis itself, and will pass through the middle of the

secondary plane.

Having thus found the points at which the lines

p p'-> q #'? & c> andy*g*5 ^ ?
?
and k i) are cut y tne

secondary edges, we may readily complete the figure.

We shall give only one further illustration to com-

plete this branch of our subject. In several of the

preceding examples, the directing planes and lines

have been drawn on separate, parallel, figures, for

the purpose of exhibiting more distinctly the described

methods of drawing. We may, however, in very



FIGURES OF CRYSTALS, 437

many cases dispense with the second figure, and draw

the directing- planes in pencil, on the same figure

which we purpose either to build upon, or to trun-

cate. If there should be many planes to be placed

on the secondary form, it will be found expedient

sometimes to draw the directing lines with the point

of a needle only, as the thickness of even a fine pen-

cil line may become a source of error.

Fig. 391.

Let us suppose an octahedron with a square base,

derived from a square prism, mod. a, required to be

drawn, so as to envelope the prism from which it is

derived; this being the method, as it has been already

explained, by which nature is supposed to build up

secondary forms. And let the law of decrement pro-

ducing the plane, be by 2 rows in breadth, and 3 in

height, on the terminal angle. Its symbol would

consequently be A.

First draw a small prism of the proportional dimen-

sions of the prism we propose to represent; and

through the middle of the lateral planes draw the

lines h k
y

i m, parallel to the terminal edges, and
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also draw the prismatic axis,//. The dimensions

of the circumscribing- figure should be such, that

its planes should touch the solid angles of the con-

tained prism.

The directing plane, b c d, evidently represents a

plane derived from the modification we have sup-

posed ;
and the line e d passes through the middle of

the plane. If, therefore, we draw gfparallel to d e,

and touching the solid angle of the prism at
, we

obtain the pointy, at which the secondary plane cuts

the prismatic axis. From the middle of the axis at o,

take o I, equal to o/, and draw /
?z, touching another

solid angle of the prism. The point n will evidently
be on an edge of the secondary figure, which edge
we know must be parallel to a diagonal of the ter-

minal planes of the prism.

Through the point n, therefore, draw h i parallel

to one of those diagonals ; from the points h and i

draw h m, i
,
and join k m to complete the base of

the figure. And the terminal edges being drawn, the

entire figure will result, as shewn by the dark lines

in the engraving.



ON MINERALOGICAL ARRANGEMENT.

THERE appears to be a degree of difficulty felt by
most collectors of minerals, with regard to the ar-

rangement of their cabinets, and particularly when
new minerals occur, concerning which little more is

known than their names.

This difficulty arises partly from the want of an

accurate distribution of minerals into natural species,

and partly from not attending sufficiently to a dis-

tinction, which has been hitherto regarded with less

notice than it deserves, between this distribution into

species, which constitutes the basis of a natural clas-

sification of the objects of any branch of natural

history, and their artificial arrangementfor some pur-

pose of illustration, of convenience, or as objects of

taste; which artificial arrangement may be regarded
as analagous to the order in which words are placed
in a dictionary for the convenience of reference.

This distinction will be rendered sufficiently ap-

parent if we refer to some other branches of natural

history for its illustration.

The botanist may perhaps place his specimens of

dried plants in his portfolio, according to some pre-

conceived notion of natural alliance; but when he

arranges the plants themselves in his garden or his

conservatory, their natural order is disregarded, the

natural families are dispersed, and the situation

assigned to each plant is determined by its habitudes,
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its necessities, or its peculiar character in reference

to the pleasure it is capable of affording to some of

the organs of sense.

Disparity in size also, among individuals belong-

ing even to the same species of objects of natural

history, will be another and a frequent cause of

variance between their arrangement for purposes of

amusement or use, and their natural classification.

And examples will probably occur to the reader, of

deviation from natural classification in the cabinet

arrangement of minerals, where that arrangement has

been intended to afford some particular illustration.

The cabinet of Leske, described by Kirwan, con-

tained several separate collections, arranged for the

illustration of distinct objects. One among these,

exhibited in a regular series the distinctive external

characters of minerals as taught by Werner ;
a second

contained his systematic arrangement of most, if not

of all, the mineral species then known ; and a third

exhibited the mineral substances used in various arts

and manufactures, and was thence denominated the

economical collection.

The collection of English minerals in the British

Museum, is arranged according to counties^ the sub-

ordinate arrangement of the minerals of each county

being, however, systematic.

When, therefore, the question relates to the ar-

rangement of a mineral cabinet generally, we should

enquire into the object of the collector in forming

his cabinet. In some few instances, it is possible

that specimens may have been collected merely as

objects of taste, and their selection may have de-

pended merely on their rarity, or on the beauty of

their forms or colours. The arrangement best adapted
to a cabinet of this description, must evidently be

such as would best exhibit the forms and colours of
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the specimens, and must be, regulated by their size

and character, according- to the taste of the possessor.

But the views of those collectors by whom the

greater number of cabinets are formed, are, probably,
to derive from their specimens, an acquaintance with

those general external characters of minerals
, by

which they are commonly discriminated from each

other.

I would recommend to this class of collectors, an

arrangement of their cabinets in nearly an alphabetical

order., which, as it will greatly facilitate the reference

to particular specimens, will afford them more ready
means of comparing different specimens with each

other ; and every new substance that occurs, to which

a name has been assigned, will also find an immediate

place in the collection under its proper letter, if its

precise station under any other leading name has not

been previously determined.

The alphabetical series here recommended, is that

which is distinguished by roman capitals in the alpha-
betical list which follows this section.

In this list I have endeavoured to collect and

arrange all the mineral species at present known,
with such of their synonyms as are not merely trans-

lations out of one language into another; and with

the addition of such of the primary forms of those

which are regularly crystallised, as appear to be accu-

rately known.

Most of these forms have been determined from an

examination of the substances themselves, and their

angles have been measured, principally by the reflec-

tive goniometer, both by Mr. W. Phillips and myself ;

but from Mr. Phillips's greater precision in the use

of that instrument, I have generally relied on his

measurements where they have differed from my own ;

and in several instances, I have been indebted to

3 K
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Mr. P. for the forms and measurements of crystals

which I had not myself previously examined.

Following this alphabetical list, will be found a

second table of primary forms, arranged according to

their classes.

The synonyms have been collected chiefly from

Leonhard's Handbuch der Oryktognosie, published
in 1821, and corrected from such other sources as I

have had an opportunity of consulting. The choice

of a specific name among many synonyms, has been in

some degree arbitrary, but I have generally been

influenced in this choice by the previous adoption in

this country of the name I have selected. On refer-

ing to the list, the word Abrazite will be found at its

head, with a reference to Zeagonite, that being the

name under which the mineral, also called Abrazite

and Gismondin, had been previously known here.

For this reason I have retained many of the old

names, as Chiastolite, for example, instead of Made,
the name assigned to the same mineral by Hatty. In

many instances, it will be perceived, I have adopted
the names given by Haiiy, either because they have

already become familiar to the English mineralogist,

as Peridot, instead of Chrysolite, or because they
have comprehended several of the older species under

a single name, as Amphibole, which includes the

Hornblende, Tremolite, and Actynolite of the Wer-

nerian school.

Although the basis of the proposed arrangement of

minerals is alphabetical, it is to a certain extent

founded on their chemical distinctions.

But a difficulty presents itself when we attempt a

purely chemical classification of minerals, which

arises out of the uncertainty of our knowledge rela-

tive to the essential constituents of many species. For

however accurately these may have been analysed by
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the skill of modern chemistry, we are yet unable to

determine which of their component parts are essen-

tial to the composition of the substance analysed,

and which are but accidental mixtures. In the in-

stance of the crystallised sandstone from Fontain-

bleau, no doubt can be entertained that either the

carbonate of lime, or the grains of sand, must be

regarded as accidental mixture, and foreign to the

constitution of the species, accordingly as we chuse to

consider the specimens, as arenaceous quartz agglu-

tinated bj/ carbonate of lime, or as carbonate of lime

inclosing grains of quartz.

It would, however, present little difficulty to the

chemist, to determine that the silex and lime are not

chemically combined in the sandstone : but there are

numerous other instances, in which even the sagacity
of a Berzelius has probably failed in discriminating
the matter accidentally present in several of the

species of minerals which have been analysed, from

that which is essential to the composition of each

particular species.

These doub'ts are suggested by the observed fact,

that the crystalline form of the Fontainbleau sand-

stone is similar to one of the secondary forms of car-

bonate of lime ; and from remarking, that among the

minerals which chemical analysis would raise into

distinct species, there are several which appear to

agree in their crystalline forms.

Now if we regard the Fontainbleau sandstone as a

variety of carbonate of lime, enveloping grains of

quartz ; and as we observe that the crystalline form

of the carbonate of lime is not altered by the presence
of this siliceous mixture, we may infer that the crys-
talline character of minerals is not affected by the

accidental presence of foreign matter in their com-

position, and consequently that minerals differing

3*2
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widely in their chemical character, may really belong
to one species.

These considerations appear to confirm the pro-

priety of the Abbe Haiiy's definition of a mineral

species, as given in p. 6. For although it might have

been sufficient, theoretically, to comprise within the

terms of this definition, such individual minerals as

are composed of similar particles united in equal

proportions, yet in the present imperfect state of our

knowledge of the true constituent elements of many
minerals, it appeared practically necessary to super-
add to this definition the condition that, if they be-

long to the same species, theform of their molecules,

or, which is the same thing in effect, their primary

forms should also be similar.

Hence when we find different minerals agreeing in

their crystalline forms, and varying in their chemical

composition, we shall probably determine their spe-
cies more accurately from their crystalline than from

their chemical characters.

I say probably, for the 6rystallographical cha-

racter has its uncertainties also. The natural planes
of crystals are generally too imperfect to give mea-

surements which may be said to agree very nearlv

with each other; the differences among such as belong
to the same species of mineral, amounting frequently
to nearly a degree ;

and the cleavage planes, which

generally afford better corresponding results, cannot

always be obtained; but if they could, the angles
of mutual inclination even of those, are not always

alike, owing probably to an interposition of foreign
matter between the laminae of the crystal, and being
there unequally dispersed. Nor do we know that

the difference of the angles under which the primary

planes of different species of minerals meet, is not

Jess than our best goniometers can distinguish. I(
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demands great precision of hand and eye to obtain

the true measurements of angles to a minute only,

and we cannot say that a difference of species may
not exist, with a difference of only a few seconds

in the angles of inclination of their planes.

We know that the greater angle of a right rhombic

prism must lie somewhere between 90 and 180. If

the angle were 90 ,
the prism

would be square, and

180 would reduce the prism to a plane. But be-

tween 90 and 180, we do not know how many
different prisms may exist.

If they differed by degrees only, their number

could not exceed 89. If the difference consisted of

minutes, there might be 5399 such prisms, all dis-

tinguishable by the goniometer ; but if the differences

consisted of seconds only, there might evidently be

323999 rhombic prisms, of which no more than 5399

could be distinguished by the ordinary goniometric
instruments.

But with all the uncertainties and difficulties at-

tendant upon the crystallographical determination of

a mineral species, the goniometer is probably the

most accurate guide we at present possess to lead us

to that determination. And it is almost the only one

of whicfi the practical mineralogist can at all times

avail himself.

It appears almost unnecessary to state, that where

a mineral is defective in crystalline character, or its

chemical composition is unknown, it must be pro-

visionally distinguished from other minerals by some

other of its physical characters, as its specific gravity,

hardness, fracture, &c.

Instances have been already alluded to where

chemistry would separate minerals from each other,

which, crystallographically, belong to the same

species ; of which the Amphiboles, and the Pyrox-
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enes, afford examples. But there are a few cases

also, in which minerals differing in their crystalline

form, are similar in their chemical composition; as

appears to be the case with the common, and white,

iron pyrites. These anomalies will however, probably,
be reconciled by the future investigations of science.

Dr. Brewster has, with that attachment which we

usually evince towards a favorite pursuit, given a

preference to the optical characters of minerals, as

the surest means of determining their species. See a

memoir by Dr. Brewster, in the Edinb. Phil. Journ.

vol. 7. p. 12.

This memoir relates to a difference in the optical

characters of the Apophyllites from different locali-

ties, upon which Dr. Brewster proposes to erect a

particular variety into a new species under the name

of Tesselite. Berzelius, as it appears from a paper,

preceding that by Dr. Brewster. in the same volume

of the Journal, has, at Dr. Brewster's desire, ana-

lysed the Tesselite, and found it agreeing perfectly

in its chemical composition with the Apophyllites from

other places. Chemically, therefore, the Tesselite

does not appear a distinct species.

A few days before Dr. Brewster's paper was pub-

lished, it happened that I had been measuring the

angles of the Apophyllites from most of the localities

in which they occur, all of which I found to agree
with each other more nearly than different minerals

of the same species frequently do. The Tesselite

is not therefore, crystallographically, a separate

species.* But when chemistry and crystallography

* I have found several crystals of this substance corresponding in a

remarkable manner in their general form of flattened four-sided prisms,

terminated by four-sided pyramids with truncated summits, but with

their corresponding planes dissimilar. The planes which appear as the

summits of some of these prisms, being only the lateral planes of very
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concur so perfectly as they do in this instance, in

determining the species to which a mineral belongs,,
it will be difficult to admit a variation of optical

character, as a sufficient ground to alter that deter-

mination.

A paragraph published by Dr. Brewster in the 6th

volume of the same Journal, p. 183, relative to the

crystalline form of the sulphato-tri-carbonate of lead,

furnishes an additional motive to believe that the

connection between the optical characters of minerals

and their crystalline forms, is not yet sufficiently

understood.

Dr. Brewster admits what I believe is not liable to

question, that " the crystals of this substance are
" acute rhomboids" But he adds,

"
Upon examining

" their optical structure, I find that they have two
" axes of double refraction, the principal one of
" which is coincident with the axis of the rhomb.
" The sulphato-tri-carbonate, therefore, cannot have
" the acute rhomboid for its primitiveform, but must
"

belong to the prismatic system ofMohs"
But it appears from the " Outline of Professor

Mohs's new system of Crystallography," published
in vol. 3 of the same Journal, that a rhomboid cannot

belong to his prismatic system. For it is stated in

p. 173, that " The rhomboid^ and thefour-sided oblique"
" based pyramid^" (the fundamental form of tlje pris-

matic system)
" are forms which cannot by any means

" be derived from each other / the (two) groups of

short and otherwise disfiroportioned crystals ; so that a line passing through
these, in the direction of their greatest length, would in fact be per-

pendicular to the axis of the primary form. Sections perpendicular to

the axes of these apparently similar prisms, would certainly present

very different optical phenomena. But it is not probable that the prac-
tised eye of Dr. Brewster should have been misled by their apparent

similarity, and the differences he has observed will still remain to be

explained.
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a
simple forms )

as well as their combinations, must
" each be always distinctfrom the (other).'''

If therefore in the hands of Dr. Brewster, the use

Of optical characters cannot at present be relied upon
for the determination of a mineral species, it may be

doubted whether they can be successfully employed

by less accurate and less intelligent observers.

The proposed arrangement in the following alpha-

betical list, is, as it has been already observed, to a

certain extent, chemical ; several species, to which

separate specific names have been given, being ar-

ranged frequently under one head or genus, in the

alphabet. And there are, probably, many other

species which now stand singly in their alphabetical

order, which in the opinion of some of my readers

might, with equal propriety, be collected into other

chemical groups.
This collection of species into groups or genera,

has not been regulated by any very precise rule.

The leading principles, however, upon which they
have been formed, are either the simplicity of com-

position of the species of which they consist, or the

apparent certainty with which that composition has

been determined; some few species may, however,
be considered as rather arbitrarily included under

particular genera.
In most of the genera, the first and second of these

principles are apparent; an example of the third may
be seen under the head of Cerium, where the Yttro-

cerite is placed, although it contains a greater pro-

portion of Yttria than it does of the oxide of Cerium.

The species which are left in their alphabetical

order, are generally those which are denominated

earthy minerals, and are composed of Alumine, Lime,

Magnesia, Silex, &c. in various proportions, which
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are probably not as definite as they hav^ been some-

times considered.

The proposed alphabetical arrangement will appear
to deviate the less from natural classification, if we
recollect that there is not any one strictly exclusive

natural order to supercede this arrangement, and re-

quiring that Zircon should be placed before or after

the siliceous genus; or that Lead should precede, or

follow, Iron or Copper. There may be conceived

to be as many natural classifications of minerals, as

there are natural properties common to the sub-

stances which are to be arranged. Thus, the metals

(not including the bases of the alkalies and earths)

might be arranged according to their fusibility, or

their specific gravity, or their ductility, &c. Either

of these characters might be adopted as the basis of

a natural classification ,
and the order of the substances

thus classed, would vary according to the generic
character we might adopt.

The primary forms of most of the crystallised

minerals contained in the following alphabetical list,

are indicated in italics. The measurements there

given, are the most accurate I have been able to

obtain ; but although they have been taken with much

care, and probably do not vary much from the truth,

they are to be regarded in strictness only as approxi-
mations to the true angles at which the planes of the

crystals incline to each other.

I have added where I could, to the square, rectan-

gular, and hexagonal prisms, the measurement of a

primary plane on some modifying plane, which fre-

quently occurs on the crystals ; and the class of

modifications to which the modifying plane belongs,
is indicated by its appropriate letter.

3 L
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It does not fall within the scope of my plan to give
more than a mere list of minerals and of theirprimary

forms. Descriptions of the minerals themselves, and

figures of their secondary forms, as they occur in

nature, will form the substance of a volume on

Mineralogy by Mr. W. Phillips, which is now in the

press.



AN ALPHABETICAL ARRANGEMENT
OF

MINERALS,
WITH THEIR

SYNONYMES AND PRIMARY FORMS.

Abrazit, see Zeagonite.

Achirite, see Copper, carbonate, siliceous.

Actinolite, see Amphibole.
Actinote, see Amphibole.
Adamantine spar, see Corundum.

Adularia, see Felspar, crystallised.

Aehrenstein, see Barytes, sulphate.

Aequinolite, see Spherulite.

Aerolite, see Iron, native, meteoric.

Aerosite, see Silver, sulphuret, antimonial.

AGALMATOLITE ; Bildstein
; Figure-stone ; Koreite ; Lardite ;

Pagodite.

Agaphite, see Alumine, hydrate, compact.

Agaric mineral, see Lime, carbonate, spongy.
Agate, see Quartz.

Agustite, see Emerald, var. Beryll. v

Akanticone, see Epidote.

Alabaster, see Lime, sulphate.

Alalite, see Pyroxene.

Albin, see Apophyllite.

Albite, see Cleavelandite.

Allagite, see Manganese, carbonate, siliceous.

Allanite, see Cerium, oxide, ferriferous.

Allochroite, see Garnet.

Allophane, see Alumine, silicate.

Almaudine, see Garnet.

Alum, see Alumine, sulphate.
3 L 2
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ALUMINE.

hydrate.

crystallised ; Diaspore. A doubly oblique prism,
P on M, 108 30'; P on T, 101 20' ; M on T,
65, as measured and described by W. P.

stalactitic ; Gibbsite.

compact ; Agaphite ; Calaite ; Johnite ; Turquoise,

earthy,

phosphate.

crystallised ; Devonite ; Hydrargillite ;
Lasionite

;

Wavellite. A light rhombic prism, M on M',
about 122 15'.

silicate; Allophane. Cleavage parallel to the planes
of a square or rectangular prism.

sub-sulphate; Aluminite ; Hallite; Websterite.

sulphate of, and potabh ; Alum,

crystallised.
fibrous. A regular octahedron.

sulphate of Alumine and Potash ; Alum,

crystallised,
fibrous. A regular octahedron.

,
siliceous. Alum-stone.

crystallised. An obtuse rhomboid, P on P', 92 50',

as measured by W. P.

amorphous.

Aluminite, see Alumine, sub-sulphate.

Amalgam, see Mercury, argentiferous.

Amausite, see Felspar, compact.

Amazon-stone, see Felspar, green.

AMBER; Bernstein; Karase; Succin.

AMBLYGONITE. Cleavage parallel to the lateral planes of a

prism of about 105 45', with indistinct traces of

cleavage oblique to the axis of the prism. I am in-

debted to Mr. Heuland for the loan of the specimen I

have measured.

Amethyst, see Quartz.

Amianthinite, see Amphibole, Amianthoide.

Amianthoide, see Amphibole.
Amianthus, see Asbestus.

AMMONIA.
muriate ; Sal ammoniac.

crystallised. A regular octahedron.

stalactitic.

earthy.

sulphate ; Mascagnin.
stalactitic.

earthy.
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AMPHIBOLE.

crystallised. An oblique rhombic prism ,
P on M or M'

3

103 15'; M on M', 124 30'.

fibrous,

amorphous.

The following varieties appear, from the measure-

ment of their angles, to belong to this species.
Common Hornblende, colour dark green or greenish

black; Keniphyllite ; Keratophyllite.

Carinthin, in colourless, yellowish, and greenish crys-
tals.

Basaltic Hornblende.
The foliated Augite of Werner.
The blue Hyperstene of Giesecke.

The green Diallage of Haiiy ; Smaragdite ; Lotalite.

Pargasite, in short green crystals.

Actynolite; Actiuote; Strahlite ; the crystals green,

slender, and sometimes radiating.
Tremolite ; Grammatite ; the crystals colourless or

green, or pink, or brownish and generally imbedded
in Dolomite; frequently fibrous; and sometimes ra-

diated.

A transparent and colourless variety occurs with

the white Pyroxene at New York.

Several specimens sent me as white pyroxene were
all amphibole except one, which contained two or

three imbedded crystals of pyroxene.
Amianthoide ; Amianthinite ;

Asbestiiiite ; Byssolite ;

two separate fibres of this substance have afforded

the measurement of 124 30.'

Amphigene, see Leucite.

ANALCIME ; Cubicite. A cube.

the crystals red ; Sarcolite.

Anatase, see Titanium, oxide.

ANDALUSITE; Micaphyllite ; Stanzaite. A right rhombic

prism, M on M', 91 20', as measured by W. P.

Andreasbergolite, see Harmotome.

Anhydrite, see Lime, sulphate, anhydrous.
ANTHOPHYLLITE. Cleavage parallel to the lateral planes of

a rhombic prism of 125, and to both its diagonals ; and

another cleavage apparently perpendicular to the axis

of the prism. The bright plane which is generally
visible in the specimens, is parallel to the greater

diagonal of the prism.

Anthracite, see Coal.

Anthracolite, see Coal.
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Anthraconite, see Lime, carbonate, columnar.
ANTIMONY.

native. Cleavage parallel to the planes of an obtuse

rhomboid-, P on P', about 117, but the measure-
ment of different fragments does not agree within
more than 2 degrees, owing to the dulness of the

planes, and apparently to their being more or less

curved. The rhombic planes are striated hori-

zontally, and the bright planes, which are gene-
rally conspicuous in the specimens of this substance,
are perpendicular to the axis of the rhomboid.

arseniferous.

oxide ; White antimony.

crystallised. A right rhombic prism ; M on M',
137; the broad bright planes of the crystals

being parallel to the short diagonal of the

prism.

fibrous, radiating,

earthy.

....... sulphuretted ; Red antimony.

crystallised ; probably a right square prism ; Mr.

Phillips having found one of the thin fibrous

crystals measure on the lateral planes 90, and
135.

fibrous.

earthy ; Tinder ore. (Leonhard.)

sulphuret ; Grey antimony.

crystallised. A right rhombic prism ,
M on M', very

neaily 90. Its secondary planes shew that

the prism belongs to the rhombic class and is

not square,
fibrous,

compact.

Apatite, see Lime, phosphate.

Aphrite, see Lime carbonate, nacreous.

Aphrizite, see Tourmaline.

APLOMB. A cube.

APOPHYLLITE; Albin ; Fish-eye-stone; Icthyopthalmite.
A right square prism ; M on a plane belonging to mod.
class 0, 128 10'.

Aquamarine, see Emerald, var. Beryll.

Arendalite, see Epidote.

ARFWEDSONITE; Ferriferous hornblende; see Annals of

Philosophy for May 1823. Cleavage parallel to the

lateral planes and to both the diagonals of a rhombic

prism of 123 55'.
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Argentine, see Lime, carbonate, nacreous.

Arkticite, see Scapolite.

Armenite, is said to be either Quartz or Carbonate of lime

coloured by blue Carbonate of copper.
*

Arragonite, see Lime, carbonate.

ARSENIC.

native.

oxide. A regular octahedron.

sulphuret.
red ; Realgar.

crystallised. An oblique rhombic prism ;

P on M or M', 104 6' ; M on M', 74 14'.

amorphous
yellow ; Orpiment.

crystallised. A right rhombicprism ; M on M',
100. Form determined and measured

by W. P.

foliated.

Asbestinite, see Amphibole.
Asbestoide, see Amphibole.
ASBESTUS.

common, the fibres parallel,

lying in many directions, and as it

were matted together, forming
mountain paper

leather

cork

wood.

flexible; Amianthus.

Asparagus-stone, see Lime, phosphate.
Asphaltum, see Bitumen.

Astrapyalite, see Quartz, sand-tubes.

Atacamite, see Copper, muriate.

Atlaserz, see Copper, carbonate, green.

Atramentstein, see Iron, sulphate, decomposed.
Augite, see Pyroxene.
Augustite, see Lime, phosphate.
Automolite, see Zinc, oxide, aluminous.

Avanturine, see Quartz, amorphous.
Axe-stone, see Jade.

AXINITE; Thumerstone
; Thumite ; Yanolite. This sub-

stance does not readily yield to cleavage, so as to afford
a determination of its primary form from cleavage planes.
The primary form best agreeing with those secondary
forms under which it generally occurs, is a doubly oblique
prism, P on M, 134 40' ; P on T, 115 17' ; M on T,
135 10', as measured by W. P.
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Azabache, see Coal, Jet.

AZURITE; Klaprothite ; Tyrol i te
; Voraulite.

crystallised.
A right rhombic prism ;

M on M',m 30'. I am indebted to the kindness of Mr.
Heuland for the very rare specimen which has

enabled me to determine this form,

compact.

B
Baikalite, see Pyroxene.
Baldogee, see Green-earth.

Bardiglione, see Lime, sulphate, anhydrous.
BARYTES.

carbonate ; Barolite
; Witherite.

crystallised. A right rhombic, prism, M on M',
118 30", as measured by Mr. W. Phillips.
The ordinary hexagonal crystals probably
result from the intersection of threq of the

primary crystals,
fibrous,

sulphate; Baroselenite.

crystallised. A right rhombic prism, M on M',
101 42'.

columnar.

radiated ; Bolognian spar ; Litheosphore.

granular,

compact ; Ca\vk.

acicular, diverging, and imbedded in some
other substance ; Aehrenstein.

earthy,

hepatic.

sulphate of Barytes and Strontian.

Basanite, see Quartz.

Baudisserite, see Magnesia, carbonate, siliceous,

Beilstein, see Jade.

Bell-metal ore, see Tin, sulphuret of Copper and Tin.

BERGMANITE; Spreiistein. No crystalline form discoverable,
nor any analysis, that I can find published. Is referred

by Leonhard to Scapolite, but on what authority does

not appear.

JJERGMEHL, Mountain meal.

Bernstein, see Amber.

Beryll, see Emerald.

Berzelite, see Petalite.

Bildstein, see Agalmatolite.

Bimstein, see Pumice.
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BISMUTH.
carbonate.*

native.

oxide.

sulphuret.

cupriferous.

plumbo-cupriferous ; Needle-ore.

plumbo-argentiferous ; Bismuthic silver.

Bitter-spar, see Lime, carbonate, magnesian.
BITUMEN.

liquid; Naphtha.
viscid

; Petroleum.

solid, elastic ; Elaterite.

compact; Asphaltum.
earthy ; Maltha.

Dapeche, brought by Humboldt from South America,
and probably does not beJong to the mineral king-
dom.

Fossil copal; Highgate resin.

Retinasphaltum.

Blattererz, see Tellurium, native, plumbo-auriferous.

Bleiniere, see Lead arseniate.

Bleischweif, see Lead, sulphuret, compact.
Blende, see Zinc, sulphuret.

Blizsinter, see Quartz, sand-tubes.

Bloedit, see Magnesia, sulphate of and Soda.

Bloodstone, see Quartz, calcedony.

Bohnerz, see Iron, oxide, hydrous.
BOLE ; Lemnian earth ; Terra de Siena ; Terra sigillata.

Bolide, see Iron, native meteoric.

Bolognian spar, see Barytes, sulphate,

BoRAcicAciD; Sassolin.

Boracite, see Magnesia, borate.

Borax, see Soda, borate.

Borech, see Soda, carbonate.

Botryolite, see Lime, borate, siliceous.

Bournonite, see Lead, triple sulphuret.
BREISLAKITE.

BREWSTERITE. si right oblique-angledprism, M on T, about
93 40'.

Brongniartin, see Soda, sulphate of Soda and Lime.

BRONZITE; fibrous Diallage metalloide. Cleavage parallel
to the planes and to both the diagonals of a rhombic

prism,) of about 93 30', with indications of another

cleavage perpendicular to the axis of the prism. See

Hypersthene.
3n-
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Brown spar; see Iron, carbonate. And see Pearl-spar.

Brucite, see Condrodite.

Brunon, see Titanium, oxide, siliceo-calcareous.

BUCHOLZITE ;
two different substances appear to have been

included under this name, viz. a mineral from the Tyrol,
called Fibrous Quartz by Werner, and a fibrous sub-

stance frequently found accompanying Andaluzite.

Byssolite, see Amphibole.

C
Cacholong, see Quartz, opal.

CADMIUM, a metal found in combination with Zinc in seve-

ral of its ores.

Calaite, see Alumine, hydrate.

Calamine, see Zinc, carbonate,

oxide,

silicate.

Each of these species having passed under the common

appellation of Calamine.

Calcedony, see Quartz.

Cantalite, see Quartz, yellowish-green.
CARBONIC ACID.
Carinthin ; see Amphibole.
Carnelian, see Quartz, calcedony.

Cascalhao, clay indurated by Iron and Quartz, and frequently

inclosing grains of Quartz, found in rolled fragments at

the diamond mines in Brazil.

Catseye, see Quartz.

Cawk, jsee Barytes, sulphate, compact.

Celestine, see Strontian, sulphate.

Cerauniansinter, see Quartz, sand-tubes.

Ceraunite, see Jade, nephrite.
CEREOLITE.

Cerin, see Cerium.

Cerite, see Cerium.

CERIUM.
fluate.

sub-fluate.

fluate of Yttria and Cerium.

fluate of Yttria Cerium and Lime ; Yttro-cerite. Clea-

vage parallel to the planes of a right rhombic prism
of about 97, by the common goniometer.

oxide, siliceous, red ; Cerite ; Ochroite.

ferro siliceous, black ; Cerin ; Allanite. A right

square prism,) as determined by W. P.

CHABASIE. An obtuse rhomboid, P on P'
? 94 46'.
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Chalcolite, see Uranium, phosphate.

Chalcosiderite,- see Iron, green earth, fibrous.

Charcoal, mineral, see Coal.

Chelmsfordite, possesses the external characters of Scapolite,
and crystallises in square prisms. See Scapolite.

CHIASTOLITE; Crucite ; Macle. Probably a right square or

rectangular prism.

Chlorite, see Talc.

Chlorophane, see Lime, fluate.

CHLOROPH^ITE, described by Dr. Mac Culloch.

Chondrodite, see Condrodite.

CHROME, oxide.

CHRYSOBERIL; Cymophane. Aright rhombicprism, Mon M',
97 12'. The plane P is generally bright and striated.

Chrysocolla, see Copper, carbonate, siliceous.

Chrysolite, see Peridot.

Chrysoprase, see Quartz, calcedony.

Chusite, see Peridot, granular, decomposing.
CIMOLITE.

Cinnabar, see Mercury, sulphuret.

CINNAMON-STONE; Essonite ; Hyacinth; Romanzovite.

crystallised. A rhombic dodecahedron. The cleavage

planes afford measurements of about 90 in one

direction, and about 120 in one or two others,

amorphous.
CLEAVELANBITE ; Albite; Siliceous spar from Chesterfield

in Massachusetts. See Annals of Philosophy for May
1823.

crystallised. Cleavage parallel to the planes of a doubly
oblique prism, P on M, 119 30' ; P on T, 115;
M on T, 93 30'.

laminar.

COAL.
carbon nearly pure ; Anthracite ; Anthracolite ; Gean-

trace.

compact,
columnar,

slaty,
bituminous.

compact ; Cannel coal,

columnar.

foliated ; Common coal,

friable ; Mineral charcoal,

ligniform. Wood coal.

compact; Azabache ; Jet.

fibrous ; Bovey coal ; Surturbrand.

SL 2
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foliated ; Dysodile ; Paper coal,

earthy,

peat.
COBALT.

arseniate. Aright oblique-angled prism. M on T, 124.
arsenical.

grey. A cube with regular modifications.

white. A cube with irregular modifications similar

to those of Iron pyrites,

oxide, black.

ferriferous, brown,

yellow,

sulphate.
stalactitic.

sulphuret.

botryoidal.

amorphous.

Coccolite, see Pyroxene, granular.

Cockle, of the Cornish miners, see Tourmaline.

COLLYRITE, or Kollyrite.

Colophonite, see Garnet.

Columbite, see Tantalite.

COMPTONITE. A right rectangular prism. M on a plane

belonging to mod. class
</,

135' 30'.

CONDRODITE, or Chondrodite. No crystalline form discover-

able in any specimen I have seen.

Conite, see Lime, carbonate, magnesian.

Copal, fossil ; Highgate resin, see Bitumen.

COPPER.
arseniatc.

octahedral ; Linsenerz. An obtuse octahedron with

a rectangular base', Pon P', 72' 22 ; M on M',
61, as measured by W. P.

prismatic.

right; crystallised; Olivenit. A right rhombic

prism )
M on M', about 111.

fibrous ; Wood copper,

compact,

oblique. An oblique rhombic prism ,
P or M

or M', 95; M on M', about 56.

rhombic; Copper mica. An acute rhomboid^ Pon P',

69 30', as measured by Mr. W. Phillips on

some bright planes.
arseniate of Copper and Iron ; Skorodite. A right

rhombic prism, M and M', 120*.
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carbonate.'

blue.
-

crystallised. An oblique rhombic prism, P on
M or M', 91 30 ; M on M', 99.

fibrous,

compact,

earthy,

green. Malachite.

crystallised ; an oblique rhombic prism,
P on M or M 7

,
112 52'; M on M',

107 20'. All the crystals I have seen

are hemitrope. The plane of junction of

the reversed halves being parallel to the

great diagonal of the prism,

fibrous; Atlaserz.

compact,

epigene, having the form of the crystals of

blue carbonate, or of red oxide,

siliceous ; Achirite ; Dioptase. An obtuse rhomboid,
P or P', 126 17', as measured by W. P.
on cleavage planes,

anhydrous, reddish brown
?
massive,

hydrate.
siliceous ; Chrysocolla.

muriate.

crystallised. A right rhombic prism, M on M',
97 20', as deduced from the measurement of

secondary planes ; the primary planes whose

positions are indicated by cleavage, not ap-
pearing on the crystals.

arenaceous. Atacamite. Green sand of Peru,

native.

crystallised. A cube.

fibrous,

laminar,

compact.
combined with Arsenic and Iron ; White copper,

oxide.

black.

earthy,
red.

crystallised. A regular octahedron.

fibrous.

The longitudinal planes of the fibres are

generally those which would result from the

replacement of the edges of the base of the
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octahedron, the axis perpendicular to this

base being very disproportionately length-
ened.

earthy. Tile ore.

phosphate.

anhydrous.

crystallised. In the absence of distinct clea-

vage, a right rhombic prism may be

regarded as the primary form, M on M',
95 20'.

compact,

hydrous.

crystallised. An oblique rhombic prisrn^
P on M or M', 97 30' ; M on M', 37 30'.

The planes of the crystals I have mea-
sured are not sufficiently perfect to afford

very accurate measurements.

The difference between the forms of

these phosphates was I believe first ob-

served by Mr. Levy,
fibrous,

seleneuret.

of Silver and Copper. Eukairite.

sulphate. A doubly oblique prism^ P on M, 127 30' ;

PonT, 108; M on T, 123.

sulphuret. Glance copper.

crystallised. The form under which the crystals

usually occur is that of a regular hexago-
nal prism^ with its terminal edges re-

placed. Mr. Levy found that the solid

angles of the prism might be removed by
regular cleavage, exhibiting thus an ana-

logy to Quartz. The primary form may
therefore be an acute rhomboid., P on P',
71 30'; as measured by W. P.

compact.
From the published analyses there

appear to be two different sulphurets,
in which the proportions of copper and

sulphur differ. The form indicated here

is that of the Cornish sulphuret.
of Copper and Bismuth.

of Copper and Silver.

of Copper and Iron. Copper pyrites ; yellow

copper ore.
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crystallised. An octahedron with a square
* P on P', 102 14' ; P on P", 125 15'.

mamellated.

amorphous.

purple Copper; Buntkupferez. Differing from

yellow copper in the proportions of its

constituent elements.

crystallised. A regular octahedron^ as deter-

mined hy W. P. from cleavage.

amorphous.
of Copper and Antimony.

..... of Copper, Iron, and Antimony. Colour, dark

..................... . . < . Arsenic. Colour, bright
steel grey.

Both these varieties are termed Grey
copper; Fahlore.

crystallised. A regular tetrahedron.

amorphous.
Platiniferous grey copper.

........ of Copper, Iron, and Arsenic, but differing in

the proportions from the preceding.
Tennantite.

crystallised. A regular tetrahedron. The regular
octahedron is considered as the primary
form by Mr. W. Phillips, but some of the

modifications accord better with the

tetrahedron.

undetermined species.
blue fibrous Velvet ore ; Sammterz.

green foliated ; Kupferschaum.
Corallenerz, see Mercury, sulphuret^ hepatic.

Cordierite, see Dichroite.

CORUNDUM.
blue ; Sapphire ; Telesie.

red; Oriental ruby ; Telesie.

yellow ; Oriental topaz.

purple ; Oriental amethyst.
common ; Adamantine spar.

crystallised. An acute rhomboid, P on P', 86 4'.

granular.

compact.
ferriferous; Emery.

COUZERANITE. The crystalline form is said by Leonhard to

be aright rectangular prism.
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Crichtonite, see Titanium.

Crispite, see Titanium, Rutile.

Crocalite, see Mesotype, red, globular radiated.

CRUNSTEDIT, is said by Leonhard to crystallise in hexagonal

prisms.

Crucite, see Chiastolite.

CRYOLITE. Cleavage parallel to the planes of a square or

rectangular prism.

Cubicite, see Analcime.

CYANITE ; Disthene ; Kyanite ; Rhetizite ; Sappare. A
doubly oblique prism, P onM, 93 15'; P onT, 100 50';

M on T, 106 15', measured by W. P. on cleavage

planes.

Cymophane, see Chrysoberil.

D
Datholite, see Lime, borate, siliceous.

Daurite, see Tourmaline, red.

Dapeche, see Bitumen.

Delphinite, see Epidote.

Deodalite, see Pitchstone.

DESMINE.

Devonite, see Alumine phosphate.
Diallage.

geeen, see Amphibole.
metalloide, foliated, see Schiller spar.

fibrous, see Bronzite.

Dialogite, see Manganese, carbonate.

DIAMOND. A regular octahedron.

Diaspore, see Alumine, hydrate.

DiciiRoiTi:; Cordierite; Jolite ; Peliome ; Steinheilite.

crystallised. A regular hexagonal prism. M on a

plane of mod. c, 137 46', as measured by W. P.

Diopside, see Pyroxene.
Dioptase, see Copper, carbonate, siliceous.

DIPYRE; Leucolite. From a very minute crystal in my
possession, I suppose the primary form to be a regular
hexagonal prism, but the planes are too imperfect to

determine this point by measurement.

Disthene, see Cyanite.

Dolomite, see Lime, carbonate, magnesian.

Dragonite, see Quartz, crystallised.

Dysodile, see Coal.
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E
Edelite, see Mesotype, red, earthy.

Egerane, see Idocrdse.

Egyptian pebble, see Quartz, Jasper.

Eiseukiesel, see Quartz, ferruginous.

Ekebergite, see Scapolite.

Elaeolite, see Fettstein.

Elaterite, see Bitumen, elastic.

Electrum, see Gold.
EMERALD

green.

transparent, precious Emerald,

opaque, common.
blue and yellow of various shades, and colourless; Berjll.

blue from Siberia; Agustite.

greenish blue from Brazil ; Aquamarine.
A regular hexagonal prism, P on a plane belonging

to class a, 135.

Emery, see Cortmdum.
Endellione, see Lead, triple-sulphuret of Lead, Copper, and

Antimony.
EPIDOTE; Akanticone; Arendalite; Deiphinite; Illuderite;

Pistazite; Thallite.

crystallised, A right oblique-angled prism, M on T,
115*40'.

amorphous,
granular; Scorza.

Ercinite, see Harmotome.

Esmarkite, see Lime, borate, siliceous.

Essonite, see Cinnamon-stone.

EUCHYSIDERITE, see Pyroxene, fusible.

EUCLASE. A right oblique-angled prism, M on T, 130 50'.

The axis of the prism being perpendicular to the bright

cleavage plane.
EUDYALITE.

crystallised. An acute rhomboid, P on P', about 74 30'.

I am obliged to Mr. Heuland for the loan of

the crystal I have measured, which is large and

nearly perfect ; but the planes are not sufficiently
brilliant to afford a very accurate measurement by
the reflective goniometer,

amorphous.

Eukairite, see Copper, selenuret.

3 N
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F
Fahlore, see Copper, sulphuret, arsenical.

FAIILUNITE. Two substances differing in their external cha-

racters have passed under this name. The Triklasite,

analysed by Hisinger, agrees nearly in its external

character, and in its composition, with the Gieseckite.

The hard Fahlunite, which has been analysed by Stro-

meyer, may remain here as a separate species, unless

it be referred to Dichroite, to which Stromeyer appears
to think it belongs.

Fassaite, see Pyroxene.
FELSPAR; Orthose.

crystallised, a doubly oblique prism, P on M, 90 ;

P on T, 120 15' ; M on T, 112 45', as measured

by W. P.

transparent, or translucent ; Adularia.

with bluish opalescence ; Moon-stone.

glassy; Sanidin.

opaque.
common,
blue.

green; Amazon stone,

variously opalescent ; Labrador felspar,

fetid; Necronite.

compact ; Amausite ; Felsite ; Felstein ; Hornstone,
fusible ;

Lemanite ; Lodalite ; Saussurite.

globular. Giving its peculiar character to the rock

called Napoleonite, and to another termedVariolite.

decomposd ;
Kaolin.

Felstein, see Felspar, compact.

FETTSTEIN; Elaeolite; Sodaite. Cleavage parallel to the

planes of a prism of 112 and 68, but no transverse

cleavage to determine the class to which the prism

belongs : measured by W. P. A red variety has been
called Lythrodes.

blue, from Laurwig in Norway, see Glaucolite.

FIBROLITE.

Figure-stone, see Agalmatolite.

Fiorite, see Quartz.

Fish-eye-stone, see Apophyllite.

Flint, see Quartz.

Flockenerz, see Lead, arseniate.

Flos-ferri, see Lime, Arragonite, coralloidal.

Fluor spar, see Lime, fluate.

Fossil copal, see Bitumen.
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Franklinite, see Iron oxide.

Frugardit, reddish Idocrase containing Magnesia.
Fulgurite, see Quartz, sand-tubes.

FULLERS-EARTH.
FUSCITE. A square prism. Is referred by Leonhard to

Scapolite, but it is not stated upon what authority.

G
GABBRONITE.
GADOLINITE.

crystallised. An oblique rhombic prism ,
P on M or M',

about 96 30' ; M on M', about 115.

amorphous.

Gahnite, see Zinc, oxide, aluminous.

Galena, see Lead, sulphuret.

Gallizenstein, see Zinc, sulphate.

Gallizinit, see Titaniunij oxide, rutile.

GARNET.

crystallised. A rhombic dodecahedron.

black, Melanite.

---- ,
from the Pyrenees ; Pyreneite.

greenish, from the Baikal ; Grossularia.

yellow ; Topazolite.

granular.
red ; Pyrope.

yellow; Succinite.

brownish yellow ; Colophonite.
amorphous.

transparent; Precious Garnet; Almandine; Green-
landite.

opaque and greenish ; Allochroite.

Berzelius has, in his System of Mineralogy, chemically
divided the Garnets into 13 species.

Almandine.
Garnet from Broddbo.
.......... Finbo.

...... oriental.

...... from Syria.

.......... Swappavara.

.......... Thuringia.

.......... Dannemora.

.......... Longbanshyttan.
Melanite.

Grossularia.

Colophonite.
3s 2
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Allochroite.

But it is probable that most, if not all of these dis -

tinctions, may be referred to accidental mixtures, which

chemistry cannot at present distinguish from the essen-

tial constituents of the pure garnet.

Geantrace, see Coal.

GEHLENITE ; Stylobat. A square or rectangular prism. No
secondary forms to determine which of these is the

primary.

Geyserite, see Quartz.

Gibbsite, see Alumine hydrate.
GIESECKITE.

crystallised. A regular hexagonalprism. The Trikla-

site agrees very nearly with this species in its

chemical composition, and possesses the same

crystalline form, with nearly the same external

characters.

Girasol, see Quartz, opal.

Gismondin, see Zeagonite.
Glance copper, see Copper sulphuret.
Glauberite ; see Soda, sulphate of Soda, and Lime.

Glaucolite, a mineral so named by Fisher of Moscow, which
resembles in colour and general appearance the blue

Fettstein from Laurwig in Norway. The Norway
mineral has cleavages parallel to the planes of a rhombic

dodecahedron.

The only specimen I have seen of Glaucolite is in

the possession of Mr. Heuland.

GOLD, native.

crystallised. A regular octahedron.

fibrous .

granular.

amorphous.

argentiferous ; Electrum.

crystallised,

amorphous.

Gothite, see Iron, oxide, hydrous.

Giammatite, see Amphibole.
Grammite, see Lime, silicate.

Graphic ore, see Tellurium.

GRAPHITE; Plumbagine ; Plumbago; occurs in thin hexa-

gonal plates, or crystals, which are sometimes striated

parallel to their edges.

Grenatite, see Staurotide.

GREEN-EARTH ; Baldogee.

Greenlandite, see Garnet.



SYNONYMES, AND PRIMARY FORMS. 469

Gregorite, see Titanium, oxide, ferriferous.

Grossularia, see Garnet.

Gummistein, see Quartz, Hyalite.

Gurhofian, see Lime, carbonate, magnesian, compact.

Gypsum, see Lime, sulphate.

H
Hallite, see Alumine, sub-sulphate.

Hallotricum, see Magnesia, sulphate.

HAHMOTOME; Andreasbergolite ; Andreolite ; Ercinite.

A right rectangular prism. M on a plane belonging to

class 6, 150.
HAUYNE ; Latialite. A rhombic dodecahedron. Another

blue mineral from Vesuvius has been also called Haiiyne,
but it appears to be of a different species, to which, for

the purpose of placing it in this alphabetical series, I

have given the name of Napolite.
HAYDENITE.
HEDENBERGITE. Is said to have cleavages parallel to the

planes of an obtuse rhomboid similar to that of carbon-

ate of lime, of which it contains only about 5 parts in

100. If this be really so, it will afford an instance of

the near approach of two rhomboids, belonging to dif-

ferent species oi minerals, and will offer another exam-

ple of the influence of a small portion of carbonate of

lime to determine the form of the mass.

Heliotrope, see Quartz, calcedony.
Helviu ; see Manganese, silicate.

Dr. Wollaston has kindly supplied me with the che-

mical character of this substance, and has thus enabled
me to place it in its proper station in the list.

Hematite, brown, see Iron, oxide, hydrous.

red, , anhydrous.

Hepatite, see Barytes.
HEULANDITE ; foliated Stilbite. A right oblique-angled
prism-, MonT, 130 30'.

Highgate resin, see Bitumen.
HISINGERIT.

Hogauite, see Mesotype.
HOLMITE.

Honey-stone, see Mellite.

Hornblende, see Amphibole.
ferriferous, from Greenland, see Arfwedsonite.

Hornstone, fusible, see Felspar, compact,

infusible, see Quartz.

Humboldite, see Lime, borate, siliceous.
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HUMITE. A right rhombic prism ; M on M', 120.

Hyacinth, a name sometimes applied to a red variety of

Zircon, and sometimes to Cinnamon-stone.

Hyalite, see Quartz.

Hydrargillite, see Alumine, phosphate.

Hydrophane, see Quartz, opal.

Hydropite, see Manganese, silicate.

HYPERSTENE, blue from Greenland, see Amphibole.
from Labrador; Paulite. Cleavage parallel to the

planes, and to both the diagonals of a rhombic prism^
of 93 307

. The bright plane which is apparent in

the specimens of this substance, is parallel to the

short diagonal of the prism. There is no cleavage
that I can perceive transverse to the axis of the prism,
but I have a fragment of a crystal which indicates an

oblique termination inclining upon the acute edge of

the prism.
The Bronzite and Schiller spar have cleavages

similar to the Hyperstene, and measure very nearly
the same ; but the Bronzite is much softer than the

Hyperstene, and the Schiller spar softer than the

Bronzite, and are probably therefore distinct minerals.

IJ
JADE. Axe-stone. Beilstein.

Nephrite. Ceraunite.

Jargon, see Zircon.

Jasper, see Quartz.
ICE-SPAR. A right oblique-angledprism', MonM', 129 40',

as measured by W. P.

Ichthyopthalmite, see Apophyllite.
IDOCRASE ; Egeran ; Vesuvian ; Wiluite.

crystallised. A right square prism; P on a plane

belonging to mod. class a, 142 50'.

red, containing Magnesia ; Frugardite.

greenish yellow, containing Manganese ; Loboite.

amorphous.
JEFFEUSONITE.

crystallised. The crystals resemble one of the opaque
varieties of Pyroxene. The cleavages are parallel

to the terminal and lateral planes, and to both the

diagonals of an oblique rhombic prism^ of about

87 and 93, oblique from an acute edge. These

angles are nearly those of Pyroxene, to which

species this mineral will probably be found to

belong. .

amorphous.
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JENITE ; Ilvaite ; Lievrit.

crystallised.
* A right rhombic prism ; M on M'

3
112*.

fibrous radiated,

amorphous.

Jet, see Coal.

Igloite, see Lime, carbonate, Arragonite.

Illuderite, see Epidote.

Ilvaite, see Jeoite.

INDIANITE, cleavage parallel to the planes of a prism of

about 95 15', which is the angle of Silicate of lime.

Indicolite, see Tourmaline, blue.

Inolite, see Lime, carbonate, stalactitic.

Johnite, see Alumine, hydrate.

Jolite, see Dichroite.

IRIDIUM, native, alloyed with Osmium. A regular hexagonal
prism.

IRON.
arseniate. A cube, the modifications of which are

sometimes defective, and such as might result from
the tetrahedron as a primary form,

arsenical, see Sulphuret, arsenical,

carbonate; Brown spar; Stahlstein.

crystallised. An obtuse rhomboid', P on P, 107.
fibrous.

the fibres parallel.

radiating and forming a mammellated
surface. Spherosiderite.

chromate.

crystallised. A regular octahedron.

amorphous,
native.

meteoric ; Aerolite ; Bolide ; Meteorite.

steel.

oxidulous; Magnetic.
crystallised. A regular octahedron.

fibrous.

amorphous.
with oxides of Manganese and Zinc. Frank-

linite. This mineral crystallises in regular
octahedrons ; and the Manganese and Zinc
are probably only accidental mixtures with

the Iron,

oxide.

anhydrous.

crystallised ; Oligiste Iron ; Specular Iron.

An acute rhomboid', P o P', 86 10'.
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foliated ; Micaceous.

scaly ; Iron froth.

fibrous ; red hematite.

compact ; red hematite.

earthy ; red ochre.

red siliceous Iron-stone.

red clay-Iron-stone,

compact,
columnar,

earthy,

hydrous.

crystallised. A right rhombicprism ;
M on M',

130 40'. Cleaves easily in the direction,

of the short diagonal of the base. Crystals
of this substance occur at St. Just in

Cornwall, and with crystallized quartz
at St. Vincent's rocks near Bristol. Those
from St. Vincent's rocks have been for-

merly supposed to be Wolfram.
red scaly ; Gothite ; Pyrosiderite ; Rubin-

glimmer.
fibrous ; Lepidocrokite.

fibrous brown hematite, containing a greater

proportion of water than the crystallised

variety.

compact brown hematite ; Stilpnosiderite.

earthy; brown ochre.

brown clay-iron-stone,

globular ; pea ore.

lenticular,

compact,

earthy ; Umber.

yellow clay-iron-stone
fibrous,

compact.

earthyj[; Yellow ochre.

mixed with clay, and sometimes sand; Bog,

Meadow, &c. ;
Iron ore. Limonite.

phosphate.

crystallized; Vivianite. A right oblique-angled

prism', Mon T, 125 15'.

earthy,

sulphate ; Melanteria.

green crystallised. An oblique rhombic prism ;

P on M or M', 99 20' ; M on M', 82 20'.

fibrous.
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red.

decomposed. The Atramentstein and Misy, and
the red sulphate are, according to Leonhard,
related to this species, but their composition
is not given,

sub-sulphate, resinous ; Pittizite.

earthy.

sulphuret ; Iron pyrites,
common.

crystallised. A cube, the modifications of

which are frequently defective, and such

as might occur if the pentagonal dodeca-

hedron were the primary form,

auriferous,

fibrous.

in hexagonal prisms, probably pseudomor-
phous.

arsenical ; arsenical Iron
; Mispickel ; Marcasite.

crystallised. A right rhombicprism ; M on M ;

111 12'.

amorphous.

, argentiferous.

magnetic ; cleavage parallel to the planes of a

regular hexagonal prism.
white.

crystallised. Aright rhombicpriam ; M on M',
106.

scheelate of Iron and Manganese ; Wolfram,

crystallised. A right oblique-angled prism ;

M'on T, 117 22' as measured by W. P.

fibrous,

amorphous,
undetermined species,

green Iron earth.

fibrous.

, containing Lime and Copper ;

Chalcosiderite.

Iserine, see Titanium, oxide, ferriferous.

K
Kali, see Potash.

Kaolin, see Felspar, decomposed.
KARPHOLITE. Occurs in fibrous crystals radiating from a

centre, but those which I have seen are too imperfect
to admit a determination of their forms.

Karstenite, see Lime, sulphate, anhydrous.
3o
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Karstin, see Schiller spar.
KEFFEKILMTE.

Keraphyllite, see Amphibole.
Keratite, see Quartz, hornstone.

Keratophyllite, see Amphibole.
KILLENITE.

Kil, see Magnesia, siliceous.

Killkeff, see Magnesia, siliceous.

Klaprothite, see Azurite.

Knebelite.

Kollyrite, see Collyrite.

Konite, see Conite.

Koreite, see Agalmatolite.

Koupholite, see Prehnite.

Kupferschaum, see Copper.

Kyanite, see Cyanite.

L
Lapis lazuli, see Lazulite.

Lardite, see Agalmatolite.

Lasionite, see Alumine, phosphate.

I^atialite, see Haiiyne.
LAUMONITE. An oblique rhombic prism ; P on M or M',

11 3 30'; MonM', 86 15'.

LAVA compact,
vesicular,

fibrous,

earthy.
LAZULITE ; Lapis lazuli. A rhombic dodecahedron. The

Azurite has also been termed Lazulite.

LEAD.
arseniate ; Bleiniere ; Flockenerz.

crystallised. A regular hexagonalprism.
acicular.

filamentous,

compact, mamellated.

arsenite, fibrous,

carbonate.

crystallised. A right rhombic prism y
M on M ;

;

117 18'.

columnar,

acicular.

compact, mamellated.

earthy.
.
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chromate. An oblique rhombicprism ; P on M, 99 10';

M oiTM', 93 30'.

. .
,
of Lead and Copper : Vauquelinite.

molybdate. An octahedron with a square base;
P on P', 99 46' ; P on P", 131 15'.

murio-carbonate. A right square prism..
native.

oxide, red ; Native minium,

yellow.

hydro-aluminous ; Plombgomme.
phosphate ; Polychrome ; Pyromorphite.

crystallised. An obtuse rhomboid; P on P',

110 5', as measured by W. P.

fibrous.

phosphato-arseniate. A regular hexagonal prism.
This species occurs at Johangeorgenstadt in yellow

hexagonal prisms with the terminal edges replaced,
and in small yellow hexagonal prisms at Beeralston.

sulphate, crystallised. A right rhombic prism ; M on M';
103 42'.

earthy compact,

sulphato-carbonate. A right oblique-angled prism ;

M on T', 120 45'.

sulphato-tri-carbonate. An acute rhomboid ; P on P';

72 30'.

cupreous sulphato-carbonate. A right rhombic prism ;

M on M', 95.

cupreous sulphate. A right oblique-angled prism ;

M on T, 102 45'. This substance occurs at Linares

in Spain, and has been described as cupriferous
carbonate.

sulphuret; Galena.

crystallised. A cube.

lamellar.

granular. Steel-grained.
of Lead and Antimony.

crystallised. A cube.

compact ;
Bleischweif.

of Lead and Arsenic.

. .of Lead, Antimony and Silver; white Silverore.

; grey Silver ore,

containing less silver than the preceding.
of Lead, Antimony, and Copper ;

Bournonite ;

Endellione.
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crystallised. A right rectangular prism ;M on a plane belonging to mod. class
</,

1 36. 5(X.

of Lead, Bismuth, and Silver. Bismuthic
silver,

scheelate.

crystallised, apparently in right square prisms. The
only crystallised specimen I have seen is in

Mr. Heuland's cabinet.

LEELITE.

Lemanite, see Felspar, compact.
Lemnian earth, see Bole.

LJ:NZINITE ; Wallerite.

LEPIDOLITE ; Lillalite.

crystallised. A regular hexagonal prism.
lamellar.

Lepidokrokite, see Iron, oxide, hydrous.
LEUCITE ; Amphigene. A cube.

Leucolite, see Dipyre.

Lievrite, see Jenite.

LIGURITE, said by Leonhard to be an oblique rhombic prism ;

Pon M', 146; M on M', 140. I have not seen the

substance.

Lillalite, see Lepidolite.
LIMBILITE.

LIME.
arseniate ; Pharmacolite.

borate, siliceous,

crystallised.
from Norway ; Datholite ; Esmarkite, A right

rhombic prism ; M on M, 103 40'.

from the Tyrol ; Humboldite. An oblique
rhombicprism ; P on M, 91 25'; M on M',
115 45

,
as determined by Mr. Levy;

see his paper in the Annals of Philosophy
for Feb. 1823. This variety probably
differs from the Norway Datholite in the

proportions of its elements,

fibrous, botryoidal. Botryolite.
carbonate.

crystallised. An obtuse rhomboid'., PonP', 105 5'.

nacreous ; Scheiffer spar.

crystallised, in thin crystals belonging to

mod. a of the Tables*

laminar; Aphrite.
scaly.
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columnar; Madreporite.
fibrous.*

laminar.

lamellar.

compact. Marble and common Limestone.

slaty, containing shells ; Lumachella.

globular; Oolite.

earthy; Chalk.

spongy ; Agaric mineral.

pulverulent ; Fossil farina.

stalactitic; Inolite.

botryoidal.
tubercular.

globular; Pea-stone; Pisolite,

incrusting; Tufa; Ostrecolla.

sedimentary. Travertino.

arragonite; Igloite.

crystallised. A right rhombic prism ; M on M',
116 10', measured on cleavage planes,

acicular, radiated,

fibrous.

coralloidal ; Flos ferri.

compact.

magnesian carbonate: Anthraconite ; Bitterspar; Mie-
mite; Muricalcite; Pearl spar; Picrite ; Tharan-
dite.

crystallised. An obtuse rhomboid ; Pon P', 106 15';
the crystals are frequently pearly with curved
surfaces.

granular; Dolomite,
flexible.

compact; Conite; Gurhofian; Magnesian limestone,
fetid.

bituminous,

aluminous. Marl.

compact.

earthy,
fluate.

crystallised. A regular octahedron.

laminar, straight,

curved.

stalactitic.

compact.

earthy. Ratoffkitt.

quartziferous.

aluminiferous
; in single cubes, Derbyshire.

chlorophane.
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nitrate.

acicular.

earthy,

phosphate ; Apatite ; Augustite.

crystallised. A regular hexagonal prism ;
M on a

plane belonging to mod. class c, 130 10'.

the crystals yellow ; Asparagus stone.

bluish ; Moroxile.

fibrous; Phosphorite,

botryoidal ; Phosphorite,

compact.

pulveiulent ; Terre de Marmarosch.

quartziferous.

silicate; Grammite ; Schaalstein; Tabular spar ;
Wol-

lastonite.

crystallised. A doubly oblique prism ; P on M,
126 ; P on T, 93 40' ;

M on T, 95 15'.

fibrous,

sulphate; Gypsum.
crystallised; Selenite. A right oblique-angled

prism; M on T
3
113 8'.

foliated.

fibrous; Gypsum,
scaly ; niviform Gypsum,
compact ; Alabaster,

earthy.
calcareous ; Plaster stone,

anhydrous ; Anhydrite ; Bardiglione ; Karstenite ;

Muriacite.

crystallised, A right rectangular prism.
fibrous.

contorted, pierre de trippes.

compact.

quartziferous ; Vulpinite.
scheelate ; Tungsten.

crystallised. An octahedron with a square base',

P on P', 100 40' ; P on P", 129 2'.

Limonit, see Iron, oxide.

Linsenerz, see Copper arseniate.

Lipalite, see Quartz, flint.

Litheosphore, see Barytes, sulphate, radiated.

LITHOMARGE; Steinmark.

Liver ore, see Mercury.
Loboite, see Idocrase.

Lodalite, see Felspar, compact.

Lotalite, see Ampin-bole, var. green diallage.
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Lumachella, see Lime, carbonate.

Lydian-stone, see -Quartz.

Lythrodes, see Fettstein.
.

M
Made, see Chiastolite.

Maclurite, probably Condrodite.

Madreporite, see Lime, carbonate.

MAGNESIA.
borate ; Boracite. A cube. Some of the secondary

forms are however such as might result from the

regular modifications of a tetrahedron,

carbonate.

crystallised, from New Jersey, but the crystals I

have seen are too imperfect to admit of a

determination of their forms,

pulverulent.
of Magnesia and Iron ; yellow Bitterspar from

the Tyrol.

crystallised. An obtuse rhomboid', P on P',

107 30'. See Annals of Philosophy for May
1823.

Jrs>. ....... siliceous, compact ; Baudisserite ; Magnesite.
The silica probably not essential to the species,
which may be merely a carbonate mixed with

silex.

pulverulent; Razoumoffskin.

fluate ?

hydrate, siliceous ; Meerschaum ; Myrsen ; Kil ; Kill-

keffe.

of Magnesia and Soda ; Bloedit.

sulphate.

crystallised. A right square prism ; M on a plane

belonging to class c, 129.
fibrous,

earthy.
of Magnesia and Soda.

of Magnesia and Iron ; Hallotricum.

Magnetic iron, see Iron, oxydulous.

Malachite, see Copper, carbonate.

Malacolite, see Pyroxene.

Maltha, see Bitumen.

MANGANESE.
carbonate.

crystallised. An obtuse rhomboid^ P on P', about

107* 20', but the planes of the only specimen
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I have seen are too much curved to admit of

a very precise measurement,
foliated ; Dialogite.

compact ; Rhodochrosite.

siliceous.

anhydrous ; Allagite ; Photizite.

hydrous ; Rhodonite,

hydrate,
oxide.

crystallised. A right rhombic prism, M on M'
,

100.

compact,

earthy.
Wad.

fibrous,

frothy,

earthy,
silicate ; Red manganese ore. .....

foliated,

compact.

Helvin, which see.

Hydropite.

, ferriferous, in octahedrons from Piedmont.

hydrous.
The precise differences between the preceding

varieties cannot be accurately stated, there being
no exact descriptions of the different minerals

analysed, except of the Helvin.

phosphate of Iron and Manganese,
sulphuret.

Marble, see Lime, carbonate, compact.

Marekanite, see Obsidian.

Markasite, see Iron, sulphuret, arsenical.

Marl, see Lime, aluminous.

Mascagnin, see Ammonia, sulphate.

Meerschaum, see Magnesia, hydrate, siliceous.

METONITE. A right square prism^ mod. d. on a plane

belonging to class
,
122. This species nearly corres-

ponds in measurement and chemical composition with

Scapolite.

Melanite, see Garnet, black.

Melanteria, see Iron, sulphate.
MELLILITE. A right square prism ; determined by W. P. .

from measurement of lateral primary, and secondary
planes.

MELLITE ; Honeystone. An octahedron with a square base,
P on P', 93 7; P on P", 118" 31'.
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Menachanite, see Titanium, oxide.

Menilite, see Quartz, opal.

MERCURY.
muriate. A right squareprism, M on a plane belong-

ing to mod. class c, 158.
native.

argentiferous; Native amalgam. A rhombic

dodecahedron.

sulphuret ; Cinnabar.

crystallised. An acute rhomboid, P on P', 72".

fibrous,

pulverulent,

compact,

slaty.

hepatic ;
Corallenerz ; Liver ore.

MESOLE. See Edinb. Phil. Jour. vol. 7. p. 7.

MESOLINE. See Edinb. Phil. Jour. vol. 7. p. 7.

MESOLITE.

MESOTYPE.

crystallised. A right rhombic prism-) M on M', 91* 10'.

red, globular radiated ; Crocalite.

.... earthy ; Edelite.

yellow, globular radiated, or reddish orwbite ; Hogauite;
Natrolite.

Meteorite, see Iron, native.

MIASZITE.
MICA. The crystalline form of the brpwn Mica from Vesu-

vius is an oblique rhombic prism, P on M or M', 98 40';
M on M', 100, as determined by W. P, from measure-
ment of some brilliant crystals. From the analyses of

different substances which have been denominated Mica,
it appears probable that different species of minerals

have been comprehended under that name, and that

among these there may be different crystalline forms.

One of these varieties appears, from the direction of

some of its cleavages, to crystalline in right prisms,
which are probably hexagonal.

Micaphyllite, see Andalusite.

Micarelle ; Finite and Scapolite have both passed under this

name.

Mieraite, see Lime, carbonate, magnesian.

Mispickel, see Iron, sulphuret, arsenical.

Misy, see Iron, sulphate, decomposed.

Mocha-stone, see Quartz, Agate, dendritic.

Molarite, see Quartz, buhrstone.

3P
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MOLYBDENUM, oxide, fibrous.

pulverulent.

sulphuret. The form of the only crystals I have seen

is a regular hexagonal prism ,
which is probably

the primary form.

Moon-stone, see Felspar.

Moroxite, see Lime, phosphate.

Mountain, cork, leather, wood, see Asbestus.

Mountain meal, see Bergmehl.
MOUNTAIN SOAP.

Miillers glass, see Quartz, hyalite.

Muriacite, see Lime, sulphate, anhydrous.

Muricalcite, see Lime, carbonate, magnesian.

Mundic, a name given by the Cornish miners to Iron pyrites.
MURIATIC ACID.

Mussite, see Pyroxene.

Myrsen, see Magnesia, hydrate, siliceous.

N
Naphtha, see Bitumen.

Napoleonite, see felspar, globular.
NAPOLITE. A blue mineral from Vesuvius, see Annals of

Philosophy, vol. 7. p. 402. I have called it Napolite
for the purpose of distinguishing it by name from Hauyne
with which it has been classed, but to which species it

appears not to belong.

Natrolite, see Mesotype.

Natron, see Soda.

Necronite, is probably Felspar. It has two cleavages pro-

ducing bright planes at right angles to each other, and
an indistinct oblique cleavage, and has the same lustre

and hardness as Felspar.
Needle ore, see Bismuth, sulphuret.
NEEDLE-STONE ; Scolezite.

crystallised. A right rhombicprism ,
M on M', 91 20'.

The Needle stone from Iceland, and that from

Faroe, afford the same measurements by the re-

flective goniometer. Dr. Brewster regards them
however as distinct species,

acieular.

pulverulent ; Mealy stilbite.

Neopetre, see Quartz, hornstone.

NEPHELINE ;
Sommite. A regular hexagonal prism^ M on

a plane belonging to mod. class c, 134
The Nephelines from Monte Somma and from Capo.di

Bove, afford an instance of chemical discordance in rela-

tion to minerals having the same crystalline form.
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Nephrite, see Jade.

NICKEL, arseniate.

colouring clay or some other substances ; Pimelite,

arsenical.

,
antimonial

oxide ; black.

sulphuret of Nickel, Arsenic and Iron.

Nickel, Antimony and Arsenic,

Nigrine, see Titanium.

Nitre, see Potash, nitrate.

Nosin, see Spinellane.
NOVACUUTE ; Turkey stone,

O
OBSIDIAN ; Volcanic glass.

in small rolled fragments ; Marekanite.

fibrous.

amorphous.

Ochre, see Iron, oxide.

Ochroite, see Cerium, oxide.

Octahedrite, see Cerium, oxide.

ODERIT ; probably Black mica.

Oisanite, see Titanium, oxide, anatase.

Oligiste Iron, see Iron, oxide.

Olivenit, see Copper, arseniate.

Olivin, see Peridot.

Omphazit, appears from the specimens sent here, to be a

mixture of Garnet, and that variety of Amphibole called

by Haiiy Green diallage, and probably Cyanite.

Onegite ; perhaps an ore of Titanium.

Oolite, see Lime, carbonate.

Opal, see Quartz.

Ophite, see Serpentine.

Orpiment, see Arsenic, yellow sulphuret.
ORTHITE.

Orthose, see Felspar.
OSMIUM ; occurs alloyed with Indium, which see,

Osteocolla, see Lime, carbonate, incrusting.

Otrelite, see Schiller spar.

P
Pagodite, see Agalmatolite.

PALLADIUM, native.

Paran thine, see Scapolite.

Pargasite, see Amphibole.
Paulite, sec Hyperstene.

OP 2
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Pearl-spar, see Lime, carbonate, magnesian. There has been
much uncertainty in the use of the terms Brown spar and
Pearl spar ; the first of these having been applied to

carbonate of Iron, and also to those varieties of Pearl

spar, or Magnesian carbonate of Lime, which are of a

brown colour, and probably to some other of the car-

bonates, of Lime, and of Manganese.
PEARL STONE.

Peat, see Coal.

Pechuran, see Uranium, oxide, ferriferous.

Peliome, see Dichroite.

Pentaclasite, see Pyroxene.
PERIDOT.

crystallised ; Chrysolite A right rectangular prism ,

M on a plane belonging to mod. class </, 141 30'.

granular; Qlivine.

,
in a decomposing state ; Chusite.

PETALITE ; Berzelite. Cleavage parallel to the planes of a

prism of 100 and 80, and to both its diagonals ; with

indications of a cleavage oblique to its axis.

Petroleum, see Bitumen.

Petro-silex, a name applied sometimes to compact Felspar,
and sometimes to a compact variety of Quartz.

Petuntze, a Chinese name for one of the substances used in

the manufacture of their porcellain, which is probably
Quartz.

jPharmacolite, see Lime, arseniate.

Phengite, referred by Leonhard both to Anhydrite and

Topaz.

Phosphorite, see Lime, phosphate, fibrous.

Photizite, see Manganese, carbonate, siliceous.

Physalite, see Topaz.

Picotite, see Tourmaline.

PICROLITE, a fibrous radiating substance found in the Ser-

pentine at Taberg in Sweden.

Picrite, see Lime, carbonate, magnesian.

Pictite, see Ttirnerite.

Pimelite, see Nickel, oxide.

PINITE. A regular hexagonalprism.
A very soft substance from Pinistollen has passed

under the name of Pinite, but from analysis as well as

external character, it appears to be a separate species.

Pisolite, see Lime, carbonate.

Pistazite, see Epidote.

Pitchblende, see (
T

ranium, oxide, ferriferous.

PITCHSTONE : Deodalite ; Pyraphroitte ; Retinitc.
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Pittizite, sec Iron, sub-sulphate.

Plasma, see Quartz, calcedony.

PLATINA, native.

alloyed with other metals.

black, containing a larger quantity of the
ore of Iridium than the common Platina does.

Pleonaste, see Spinelle.

Plombagine, see Graphite.

Plomb-gomm, see Lead, oxide, hydro-aluminous.
Plumbago, see Graphite.

Polishing slate, see Quartz, earthy.

Polychrome, see Lead, phosphate.
POLYHALLITE.
Porcellain Jasper, see Quartz, Jasper.
POTASH ; Kali.

nitrate; Nitre,

fibrous.

Potstone, see Talc, compact.
Pounxa, see Soda, borate.

Prase, see Quartz.
PREHNITE.

crystallised. A right rhombic prism, M on M', 100*.

the crystals tabular and very thin ; Kocepholite.
fibrous,

compact.
PUMICE; Bimstein.

Pycnite, see Topaz.

PYRALLOLITE, from a small fragment with which I have
been favored by M. Nordenskiold, its discoverer, I find

that there are cleavages parallel to the lateral planes and
to the diagonals of a rhombic prism. But the planes are

too imperfect to determine the angles of the prism.

Pyraphrolite, see Pitchstone.

Pyrenaite, see Garnet, black*

Pyrgom, see Pyroxene.
Pyrites, see Iron, sulphuret ; and Copper, sulphuret.

PYRODMALITE; Pyromalite. A regular hexagonal prism.
Pyromorphite, see Lead, phosphate.
Pyrope, see Garnet.

Pyrophysalite, see Topaz.
PYRORTHITE.

Pyrosiderite, see Iron, oxide, hydrous.

Pyrosmalite, see Pyrodmalite.
PYROXENE.

crystallised ; Alalite ; Augite ; Baikalite ; Diopside ;

Fassaite; Malacolite; Mussite ; Peutaclasite ;
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Pyrgom ; Sahlite ; Vulcanite ; the green prisms
which accompany the Jenite from Elba, and which
have been called Hornblende ; the white Pyroxene
from New York ; and Bournon's yellow Topaz from

Vesuvius. An oblique rhombic prism, P on M
orM', 101; M oa M, 87 5.'

Several of these varieties, particularly the Sah-

lite, have a cleavage transverse to the axis of the

prism, which the others have not. But this cleav-

age appears to take place only where some foreign
matter is interposed between the laminae of the

crystals ; for the same crystals which may be sepa-
rated at one of these apparent junctions, cannot

be cleaved in the same direction in other parts of

the prism.

granular; Coccolite.

amorphous.
fusible. The cleavages and the angles of this variety

are similar to those of Pyroxene, as nearly as can

be determined by the reflective goniometer, from

planes which are not very bright; yet from its

ready fusibility, it may possibly be a distinct

species. I have observed this variety differing in

colour and external appearance from two localities,

from Sweden, imbedded in Quartz ; Euchysiderite.

Greenland, accompanying Eudyalite.

Q
QUARTZ.

crystallised. An obtuse rhomboid, P on P', 94 15'.

colourless ; Rock crystal ; Dragonite.
black.

brown
; Smoky quartz.

red ; Compostella quartz ; Ferruginous quartz.

yellow ; transparent.

opaque, ferriferous ; Eisenkiesel.

violet to purple ; Amethyst.
green ; prase,

laminar ; milky.
rose.

acicular radiated.

iibrous.

granular.

yellowish green ; Cantalite.

arenaceous.

. flexible.
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earthy, mixed with other substances,

slaty ; Polishing slate,

compact; Rotten stone ; Trepoli.

amorphous ; common,
blue ; Siderite.

greasy.

avanturine, containing numerous minute fissures,
or scales of mica,

iridescent,

pseudomorphous.
penetrated by Asbestus ; Cats-eye. .

fetid,

black opaque: Basanite ; Lydian -stone.

.^ slaty.

jasper; common,
red ; Sinople.

spotted.
Ribbon jasper.
Porcellain jasper,

agate.

calcedony.

crystallised. The crystals are pseudomor-
phous, and probably have taken the form
of Fluate of lime. I have found the
mutual inclination of the planes to be
90 by the reflective, goniometer,

stalactitic.

blue,

pale green, coloured by Arseniate of nickel ;

Chrysoprase.
dark green ; Plasma.

with red dots ; Bloodstone ;

Heliotrope.
Carnelian. .

white,

yellow,
red.

brown ; Sardonyx.
spheroidal, in concentric layers, or bands ; Agate,
in parallel layers or bands ; Onyx,
veined.

dendritic ; Moss agate ; Mocha stone,

breccia agate.
wood agate.
mixed with clay ;, Jasper.

Egyptian pebble.
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flint.

swimming Quartz.
carious Quartz ;

Buhr stone
; Molarite.

hornstone, infusible ; Keratite ; Neopetre.

crystallised, in pseudoraorphous crystals.

Woodstone.

opal.

precious.

girasol.

hydrophane.
common.

semi-opal.

opal Jasper.
Wood opal.
aluminiferous ; Cacholong.

chloropal.
menilite.

hyalite; Gummistein ; Mullersglass.
fiorite.

recent deposit from hot springs ; Siliceous sinter.

Geyserite.

botryoidal.

compact,

pulverulent.

tufaceous, enclosing grass, leaves, &c.

earthy.

Azorite, from St. Michael's.

fibrous,

sand tubes ; Astrapyalite ; Biizsinter ; Cerauniansinter ;

Fulgurite.

R
Rapidolite, see Scapolite.

Ratofkit, see Lime, fluate, earthy.

Razoumoffskin, see Magnesia, carbonate, siliceous,

vRealgar,
see Arsenic, sulphuret.

Retinasphaltum, see Bitumen.

Retinite, see Pitch-stone.

Reussite, see Soda, sulphate of and Magnesia.

Rhetizite, see Cyanite.

RHODIUM, native ; alloyed with Platina.

Rhodochrosite, see Manganese, carbonate.

Rhodonite, see Manganese, carbonate, siliceous.

Romanzovite, see Cinnamon-stone.

Rotten-stone, see Quartz, earthy.

Rubellite, see Tourmaline.
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Ruhin glimmer, see Iron, o\ide, hydrous.

Ruby, see Spiriell.

oriental, see ( orundum.

Rutile, see Titanium, oxide.

S

Sagenite, see Titanium, oxide, Rutile.

Sahlile, see Pyroxene.

Sal-ammoniac, see Ammonia, muriate.

Salt, common, see Soda, muriate.

Sanidin, see Felspar.

Sappare, see Cyanite.

Sapphire, see Corundum.

SAPPHIRINE, appears from analysis to be a distinct species,
but I cannot ascertain its crystalline form.

Sarcolite, see Analcime.

Sardonyx, see Quartz agate.

Sassolin, see Boracic acid.

Saussurite, see Felspar, compact.
SCAPOLITE; Arktizit ; Chelmsfordite ? Ekebergite ; Paran-

thine ; Rapidolite ;
Wernerite.

crystallised. A right square prism^ mod. d. on a plane

belonging to mod. class
,
122 5'.

amorphous.

Schaalstein, see Lime, silicate.

Scheelium ; Tungsten.
oxide.

calcareous, see Lime, scheelate.

ferriferous, see Iron, scheelate.

plumbiferous, see Lead, scheelate.

Schieffer-spar, see Lime, carbonate, nacreous.

SCHILLER-SPAR; Diallage metalloide, foliated; Karstin ;

Otrelite. Cleavage parallel to the planes and to both

the diagonals of a rhombic prism of about 93 307

,
and

86 30', but uncertain whether right or oblique. Se*

Hyperstene.

Schorl, see Tourmaline.

Scorza, see Epidote, granular.

Selenite, see Lime, sulphate.

Selenium, see Copper, selenuret.

Semeline, see Titanium, oxide, siliceo-calcareous.

SERPENTINE.

precious ; Ophite.
common.

Siberite, see Tourmaline, red.
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Siderite, see Quartz, blue. The Siderite of Kirwan is Phos-

phate of Iron.

SlDEROCLEPTE.
SlDERO-GRAPHITE.

Silex, see Quartz.
Siliceous spar of Haussman, occurs with the Tourmaline at

Chesterfield in Massachusetts, see Cleavelandite.

SILVER.

carbonate,

muriate.

crystallised. A cube.

mamellated.

amorphous,
native.

crystallised. A cube.

capillary,
massive.

. . . .antimonial.

crystallised,

granular,
massive.

.... arseniferous.

sulphuret.

crystallised. A cube.

amorphous.
of Silver and Antimony ; Red silver.

impure or decomposed ; Black silver.

Its colours are light red.

dark red.

crystallised. An obtuse rhomboid, P on P',
109 56'.

amorphous,

scaly, from Colivan in Siberia ; Aerosite.

of Silver and Antimony, but probably differing
in the proportions from those which constitute

Red silver. This variety was described by
Rome de 1'Isle under the name of u Mine
d'Argent grise antimoniale." It has since

been called Bournonite from Freyberg. A
right rhombic- prism, M on M', 100, as mea-
sured by W. P. on cleavage planes.
of Silver, Antimony and Iron ; Brittle silver.

All the crystallised specimens denominated
Brittle silver, which I have seen, appear to be

Red silver. Some of those specimens have been

transparent and red, and others distinctly red
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in the fracture, although opaque; and the

measurements of all agree with those of Red
silver. The Iron would appear therefore to

be an accidental ingredient of the specimen
analysed.
of Silver and Iron ; Flexible sulphuret. A
right oblique-angled prism ; M on T, 125*.

Sinople, see Quartz, jasper.

Skolezit, see Needle-stone.

Skorodite ; see Copper, Arseniate of Copper and Iron.

Skorza, see Epidote, granular,

Smaragdite, see Amphibole.
SOAPSTONE.
SODA ; Natron.

Borate; Borax; Pounxa ; Swaga; Zala; Tincal.

crystallised. An oblique rhombic prism^ P on M
or M', 101 30' ; M on M', 133 30', as mea-
sured by W. P,

carbonate ; Borech.

fibrous,

earthy.
muriate ; common Salt,

crystallised. A cube.

fibrous,

amorphous,
nitrate,

sulphate,
fibrous,

earthy.
of Soda and Lime ; Brongniartin; Glauberite.

An oblique rhombic prism ; P on M or M',
104 15'; M on M 7

, 83 30'.

, of Soda and Magnesia ; Reussite.

Sodaite, see Fettstein.

SODALITE, from Greenland. A rhombic dodecahedron.

from Vesuvius. A rhombic dodecahedron^ but is

probably a distinct species, as it is ranked by
Berzelius.

Sommite, see Nepheline.
SoilDAWALJTE,

Speckstein, see Steatite.

Specular iron, see Iron, oxide, anhydrous. \

SPHEROLITE.

Aequinolite, supposed to belong to this species,

Sphero-siderite, see Iron, carbonate,

Spheiie, see Titanium, oxide, siliceo-calcareous.

3 Q 2
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SPINELLANE; Nosin. A rhombic dodecahedron. W. P.

SFINKLLE; Ruby. A regular octahedron.

if black, dark blue, greenish ; Pleonaste.

Spinelline, see Titanium, oxide, siliceo-calcareous.

Spinthere, see Titanium, oxide, siliceo-calcareous.

SPODUMENE; Triphane. Cleavage parallel to the planes,
and to both the diagonals, of a rhombic prism of 93"

and 87; the bright cleavage plane being parallel to the

short diagonal of the prism. No cleavage planes to

determine whether the crystal is right or oblique.
Two substances from the Tyrol have been called

Spodumene; one of these resembles the Spodumene
from Uto, the other is Zoizite.

Spreustein, see Bergmanit.

Stahlstein, see Iron, Carbonate.

Stanzaite, see Andalusite.

Staurolite, see Staurotide.

STAUROTIDE; Grenatite ; Staurolite. A right rhombic prism ,

M on M', 129 30'.

STEATITE; Speckstein.
in Pseudomorphous crystals,

amorphous.

Steinheilite, see Dichroite.

Steinmark, see Lithomarge,
STILBITE.

foliated, see Heulandite.

radiated. A right rhombic prism, M on M' 101' 36.

This mineral cleaves parallel to the lateral planes
of a right rectangular prism, but there is no clea-

vage parallel to the terminal planes of Gucha prism.
There are, however, in some crystals, indications

of cleavage parallel to the planes of a rhombic

prism, which have induced me to adopt that as the

primary form.

Stilprio-siderite, see Iron, oxide, hydrous.

Stralite, see Amphibole.
Stromnite, see Strontian, carbonate, barytiferous.
STRONTIAN.

carbonate.

crystallised. A right rhombic prism, M on M',
117^ 32'.

fibrous.

barytiferous ; Stromnite.

sulphate ; Celestine.

crystallised. A right rhombic prism, M on M',
104".

iibrous.
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Stylobat, see Gehlenite.

Succin; Amber.

Succinite, see Garnet, yellow, granular.
SULPHURIC ACID.

SULPHUR.

crystallised. An octahedron with a rhombic base,
P on P'

5
106 20' ;

P on P", 143 25'.

stalactitic.

amorphous.

Surturbraud, see Coal.

Swaga, see Soda, borate.

Sylvan, see Tellurium.

T
Tabular spar, see Lime, silicate,
TALC.

crystallised, in hexagonal plates.

amorphous.
From the analyses of the different minerals which

have been brought together under this name, it

appears that several have been included which

probably do not belong to the same species. It has
been made to comprehend

Chlorite.

Potstone.

Venetian talc.

French chalk, and other substances.

TANTALITE ; Columbite.

crystallised. A right rectangular prism; T on a plane

belonging to mod. class c, 150. It is through the

liberality of Mr. Heuland that I am in possession
of the crystal which has afforded me the measure-
ment here given.

Yttro-tantalite.

black.

dark brown,

yellow.

Telesie, see Corundum.
TELLURIUM ; Sylvan ore.

native. A regular hexagonal prism; M on a plane

belonging to mod. class c, 147 15'.

auro-argentiferous ; Graphic ore. A right
rhombic prism ; M on M', about 107 44', as mea-
sured by W. P.

auro-plumbii'crous ; White tellurium. A right
rhombic prism ; M on M', 105 30'.
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native plumbo-auriferous ; Blattererz ; foliated Tellu-

rium. A right square prism ; P on a plane belong-

ing to mod. class c, 110".

Tennantite, see Copper, sulphuret of Copper, Iron and
Arsenic.

Terra de Siena, see Bole.

Terra sigillata, see Bole.

Thallite, see Epidote.

Tharandite, see Lime, carbonate, magnesian.
THOMSONITE. A right rectangular prism ; M on a plane

belonging to class
rf,

135 10'.

THULITE. Cleavage parallel to the planes of a prism of

92 30', and 87 30', but not any distinct cleavage
transverse to the axis of this prism.

Thumerstone, see Axinite.

Thumite, see Axinite.

TIN.

oxide, crystallised. An octahedron with a square base.

V on P, 133 30'; P on P", 67 52', as measured by
\V. P.

compact.
fibrous ; Wood tin.

sulphuret of Tin and Copper ; Bell-metal ore.

Tinder-ore, see Antimony.
Tinkal, see Soda, borate.

TITANIUM, is found pure, and crystallised in small copper-
coloured cubes, in the iron slag from Merthyr
Tydvill. Discovered by Dr. Wollaston.

oxide; Anatase; Octahedrite; Oisanite. An octahedron

with a square base, P on P', 98; P on P",
136 12'.

..... .Rutile ; Crispite ; Gallizinite ; Saginite. A right

square prism, with a cleavage parallel to its

diagonals and to its lateral planes. P on a

plane belonging to mod. class c, 132 32'. It

is from a very perfect crystal belonging to Mr.

Heuland, that I have been able to ascertain

this form. Hauy gives it as a rectangular

prism ; but the measurement of Mr. Heuland's

crystal, and the modifications it contain;;,

leave no doubt of its being what I have des-

cribed,

chromiferous.

ferriferous ; Gregorlte ; Iserine j Menachanite ;

jVigrine.
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crystallized. A regular octahedron.

granular,

amorphous.
siliceo-calcareous

; Semel'me ; Sphenc ; Spinthere ;

Spinelline An oblique rhombic prism ;

M on M', 76 2'; P on M, 93 1', accord-

ing to the measurements of Rose,

chrichtonite; An acute rhomboid', Pon P'Gr.SO'.

TOPAZ; Physolite; Pycnite ; Pyrophysalite. A right
rhombic prism ; M on M', 124 23'.

yellow of Bournon, from Vesuvius, see Pyroxene.
Topazolite, see Garnet, yellow.

Torberite, see Uranium, phosphate.

Touch-stone, see Quartz.
TOURMALINE

; Electric schorl. An obtuse rhomboid', Pon P'.

133 20'.

black from the Hartz ; Aphrizite.
blue ; Indicolite.

red to purple, and sometimes colourless ; Apyrite ,

Daurite
; Rubellite

;
Siberite.

dark brown acicular crystals are termed Cockle by the
Cornish miners.

acicular crystals from the Pyrenees ; Picotite.

Travertine, see Lime, carbonate, sedimentary.

Tremolite, see Amphibole.
TRIBLLASITE

; Fahlunite.

crystallised. A regular hexagonalprism.
amorphous*

Is probably the same substance as Gieseckitc.

Triphane, see Spodumene.
Tripoli, see Quartz, earthy.

Tungsten, see Lime, scheelate. Both the tnetal, and the
ore in which it is combined with Lime, have been called

Tungsten, which tends to confuse the description of one
or the other of those substances. As an oxide has been

lately discovered, I have preferred adopting the term
Scheelium for the metal.

Turkey-stone, see Novaculite.

Turquoise, see Alumine, hydrate.
TUUNERITE ; Pictite. An oblique rhombic prism ; P on M or

M', 99 40'
; M on M', 96 10'. See Annals of Phi-

losophy, April 1823.

Tyrolite?
see Azurite.
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V
Variolite, see Felspar, globular.

Vauquelinite, see Lead, chromate of, and Copper.
Vesuvian, see Idocrose.

Vivianite, see Iron, phosphate.
Umber, see Iron, oxide, hydrous.
Volcanic glass, see Obsidian.

Voraulite, see Azurite.

Uranite, see Uranium, phosphate.
URANIUM.

oxide, ferriferous ; Pechuran ; Pitch bleude ;
Uraii

Pitch ore.

phosphate ; Chalcolite ; Torberit ; Uraiiit. A right

square prism,

Vulcanite, see Pyroxene, var. Augite.

Vulpinite, see Lime, sulphate, anhydrous.

W
Wad, see Manganese, oxide, earthy.

Wallerite, see Lenzinite.

Wavellite, see Alumine, phosphate.

Websterite, see Alumine, subsulphate.

Wernerite, see Scapolite.

Wiluite, see Jdocrase.

Witherite, see Barytes, carbonate.

Wolfram, see Iron, scheelate of Iron and Manganese.
Wollastonite, see Lime, silicate.

Wolnyn, is probably crystallised Alum-stone.

Y
Yanolite, see Axinite.

YELLOW-EARTH.

YTTRIA, see its combinations with Cerium, &c.

Yttro-cerite, see Cerium.

Yttro-columbite, see Tantalite.

Yttro-tantalite, see Tantalite.

Yu, supposed to be Prehnite, which see.

Z
Zala, see Soda, borate.

ZEAGONITE; Abrazjte ; Gismondin. An octahedron with a

square base:, P on P', 122" 54' ; P on P", 85 2'.

Zeolite, see Analcime.

Chabasie.

Heulandite.

Mesotypp.
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Natrolite.

Needle-stone.

Stilbite,

ZINC.

carbonate.

crystallised. An obtuse rhomboid:, P on P',
107 40' ; measured by Dr. Wollaston.

botryoidal.

earthy.

3
cadmiferous.

oxide.

manganesian ; red oxide- A regular hexagonal

prism, as determined by W. P. from cleavage.
aluminous ;

Automolite ; Gahnite.

crystallised. A regular octahedron.

granular.
silicate. A right rhombic prism^ M on M', 102 35'.

sulphate ; Gallizenstein,

crystallised,
fibrous,

earthy,

sulphuret ; Blende.

crystallised. A rhombic dodecahedron.

amorphous,
cadmiferous.

fibrous,

compact.
ZIUCON ; Hyacinth ; Jargon. An octahedron with a square

base ; P on P', 123 20' ; P on P", 84 20'.

ZOIZITE, has been considered by the Abbe Haiiy as a variety
of Epidote, an error into which he has probably been
led by the crystals of Epidote which are found in the

Zoizite from Carinthia. It is however a distinct species,

having for its primary form a rhombic prism^ M on M',
116 30'. There is apparently a cleavage transverse to

the axis of the prism, but not sufficiently distinct for

measurement, which indicates that the prism is oblique
from an obtuse edge.

Zurlite, or Zurlonite.

ZURLONITE.
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ARRANGED ACCORDING TO THEIR CLASSES.

Cube.

Analcime.

Aplome.
Arsenical Cobalt.

Native Copper.
Arseniate of Iron.

Iron Pyrites.
Leucite.

Galena.

Boracite.

Muriate of Silver.

Native Silver.

Sulphuret of Silver.

Muriate of Soda.

Regular Octahedron.

Alum.
Muriate of Ammonia.
Oxide of Arsenic.

Red Oxide of Copper.

Purple Copper.
Diamond.
Native Gold.
Chromate of Iron.

Magnetic Iron.

Fluate of Lime.

Spinelle.
Menachanite.

Automolite.

Regular Tetrahedron,

Grey Copper.
Tennantite.

Kelvin.

Rhombic Dodecahedron.
innamon-stone.

Irarnet.

laucolite ?

laiiyne.
jazuiite.

Vative Amalgam.
Sodalite

pinellane.
blende.

Octahedron with a square
base.

P on P.
Anatase 98

Molybdate of Lead . 99 46'

Tungsten 100 40

Copper Pyrites 102 15

Zeagonite 122 55

Zircon .123 20
Oxide of Tin . ..133 30

Octahedron zcith a rectangular
base.

P on P'.

Arseniate of Copper 72 22'.

Octahedron with a rhombic

base.

P on P'.

Sulphur 106 20'.
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Right Squqre prism.
Red Antimony ?

Apophyllite.
Aliaiiite.

Chiastolite ?

Fuscite.

Idocrase.

Mu no-carbonate of Lead.

Scheelate of Lead.

Sulphate of Magnesia.
Meionite.

Mellilite.

Muriate of Mercury.

Scapolite.
Foliated Tellurium.

Rutile.

Phosphate of Uranium.

Right Rectangular prism.

Comptonite.
Couzeranite ?

Harmotome.
Bournonite.

Peridot.

Sulphate of Potash.

Tantalite.

Thomsonite.

Anhydrite.

Uncertain whether square or

rectangular prism.
Gehlenite.

Cleavageparallel to theplanes

of a Square or Rectangular

prism.

Allophane.

Cryolite.

Right Rhombic prism.
M on M'

Sulphuret of Antimony
nearly 90

Mesotype 91 10'

Needle-stone 91 20
Andalusite . . 91 20

Cupreous Sulphate-
carbonate of Lead. 95

Anhydrous Phosphate
of Copper . . , 95 20

Yttro-cerite . . 97
Yellow Sulphuret of

Arsenic '.". ... 100
Oxide of Manganese 100
Prehnite 100

Sulphuret of Silver

and Antimony . . .100
Stilbite 101 36

Sulphate of Barytes .101 42
Silicate of Zinc 102 35
Datholite 103 40

Sulphate of Lead 103 42

Sulphate of Strontian 104
White Tellurium . . . 105 30
White Iron Pyrites . 106

Graphic Tellurium. . 107 44
Arseriiate of Copper 111

ArsenicallronPyriteslll 12
Jenite 112

Arragonite 116 10

Carbonate of Lead. .117 18
Carbonate of Stron-

tian 117 32
Carbonate of Barytes 1 1 8 30
Humite 120
Arseniate of Copper

and Iron ........ 120
Azurite 121 30
Wavellite 122 15

Topaz.... 124 23
Staurotide 129 30

Hydro-oxide of Iron 130 40
White Antimony ... 137

Right Oblique-angled prism.
MonT.

Brewsterite 93 40'

Cupreous Sulphate of

Lead 102 45

Sulphate of Lime. . .113 8

Epidote ..115 40
Wolfram . .117 22

3n 2
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Sulphate-carbonate
of Lead 120 45'

Arseniate of Cobalt . 124
Flexible Sulphuret of

Silver 125

Phosphate of Iron. . 125 15

Heulandite 130 30
Euclase ., ,.130 50

Oblique Rhombic prism.

Obliquefrom an acute edge.
M on M'.

Hydrous Phosphate
of Copper 37 30'

Arseniate of Copper. 56

Realgar 74 14

Sphene 76 2

Sulphate of Iron 82 20
Glauberite 83 20
Laumonite 86 15

Pyroxene ......... 87 5

Oblique from an obtuse edge.M on M'.
Chromate of Lead . . 93 30'

Turnerite 96 10
Blue Carbonate of

Copper 99
Mica from Vesuvius . 100
Green Carbonate of

Copper .107 20
Gadolinite 115
Humboldite 115 45
Zoizite. 116 30

Amphibole 124 30

Ligurite ? . . 140

Doubly Oblique prism.

Diaspore P on M 108 30'

PonT 101 20
MonT 65

Axinite ..... P onM 1 34 40
PonT 115 17

MonT 135 10

CleavelanditePonM 11 9 20'

PonT 115
MonT 93 30

Sulphate of

Copper. . .P onM 127 30
PonT 108
MonT 123

Cyanite ....PonM 93 15
PonT 100 50
MonT 106 15

Felspar PonM 90
PonT 120 15

MonT 112 45
Silicate of

Lime PonM 126

P on T 93 40
MonT 95 15

Cleavageparallel to the planes

of a Rhombic prism, but

uncertain whether right or

oblique.
M on M'.

Spodumene 93

Bronzite 93 30'

Hyperstene 93 30
Schiller spar 93 30
Petalite 100

Anthophyllite ..125

Cleavage parallel to the

planes of a prism whose
other characters are not

known.
The greater angles.

Thulite 9230'
Indianite 95 15

Amblygouite 105 45
Fettsteiu.. ..112

Regular hexagonalprism*
Cronstedit ?

Dichroite.

Dipyre ?

Emerald,
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Gieseckite.

Graphite.
Indium and Osmium.

Magnetic Pyrites.
Arseniate of Lead.

Phosphato-arseniate of Lead.

Lepidolile ?

Phosphate of Lime.

Sulphuret of Molybdenum.
Nepheline.
Finite.

Pyrodmalite.
Talc ?

Native Tellurium.

Triklasite.

Red Oxide of Zinc.

Acute Rhomboid.
P on P'.

Crichtonite 61 20'

Arseniate of Copper. 69 3o
Sulphuret of Copper. 71 30
Cinnabar 72

Sulpiiato-tri-carbonate
of Lead 72 30

Eudyalite 74 30

Corundum 86 4

Oligiste Iron 86 10

Obtuse Rhomboid.
P on P'.

Crystallised Alum-
stone 92 50'

Quartz 94 15
Chabasie 94 46
Carbonate of Lime. . 105 5

BHter Spar 106 15
Carbonate of Iron ..107
Carbonate of Man-

ganese 107.20
Carbonate of Iron and

Magnesia 107 30
Carbonate of Zinc . . 107 40
Red Silver 109 56

Phosphate of Lead . .110 5

Dioptase 126 17
Tourmaline * 133 20

Cleavageparallel to the planes
of an Obtuse Rhomboid.

P on P'.

Hedenbergite 105 5'

Native Antimony. . . 1 17
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A
Angle, plane, defined, 2. its measure, or value, how deter-

mined, 2. right, 2. acute, 2. obtuse, 2.

Angle, solid, defined, 2. said to be replaced by secondary
planes, 24. if replaced by 1 plane, is truncated, 24.

Angles, at which the planes of crystals incline to each other,
how determined, 25. how measured by the common

goniometer, 26. and by the reflective goniometer, 30.

similar, defined, 3.

Arrangement of minerals, 439. must vary with the object
of the collector, 440 an alphabetical arrangement pro-

posed, 441. and given, 451 to 497. a chemical basis

considered, 442. an optical, 446.

Attraction, molecular, 48. may differ indifferent directions

of the molecules, 48.

Axis of a crystal, defined, 12. oblique, 12. prismatic, 12.

of a cube, 13. of a tetrahedron, 13. of octahedrons,
13. of a rhombic dodecahedron, 13. of prisms, 14,

-

15, 16. of a rhomboid, 16.

B

Barytes, sulphate, molecule similar to primary form, 38.

Bergman's theory of crystals, 33.

Bevelled edge, defined, 24.

Bournon, Comte, first described crystals by their modifica-

tions, 34.

C
Calculation of the laws of decrement, general method, 285

to 303. applied to the cube, 304. to the regular te-

trahedron, 308. to the regular octahedron, 313. to

the rhombic dodecahedron, 320. to the octahedron

with a square base, 325. to the octahedron with a

rectangular base, 330. to the octahedron with a rhom-
bic base, 335. to the right square prism, 339. to the
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right rectangular prism, 341.- to the right rhombic

prism, 343. to the right; oblique-angled prism, 347.

to the oblique rhombic prism, 351. to the doubly
oblique prism, 355. to the hexagonal prism, 356.

to the rhomboid, 360. applied to a particular case,
378.

Carbonate of Lime, see Lime, carbonate.

Cleavage, the direction in which a crystal may be split, 1.

on what its direction is supposed to depend, 56. two
or more sets of, may exist in the same crystal, viz.

primary set, supernumerary sets, 56. planes, generally

similar, when the primary planes to which they are

respectively parallel, are similar, 57. more easy in

one direction of the crystal than another, when the

primary planes are not similar, 57. primary set may
lie in one, two, or more different directions, hence the

terms, single cleavage, double, threefold, &c. 58.

solids produced by, do not necessarily represent the

molecules of crystals, but are sometimes imperfect

primary forms, 59 to 65. how it might ultimately pro-
duce an octahedron from the tetrahedron, by the remo-
val of cubic molecules, 65. primary form may some-
times be developed by, 79.

Cleaving a crystal, is splitting it, 1.

Crystal, A, defined, 1.

Crystals, may be split in different directions, 1. formed by
aggregation of homogeneous molecules, 5. when said

to be in position, 17. how supposed to increase in size,
17. by added molecules arranged in plates, 18. which
are entire or defective, 18. when defective, the de-

fect is termed a decrement, and a secondary plane is

produced, 19. and the crystal is then said to be

modified, 24. their formation attempted to be explained

by Mr. Beudant, 76. hemitrope and intersected, 88.

epigene and pseudomorphous, 93. differing in spe-
cies may belong to the same class or to different classes

of primary forms, 95. the nature of the differences in

relation to different classes, 96. method of reading

them, 223. how to describe them, 229. methods of

drawing the figures of, 402 to 438.

Crystallography, its object, 1.

Cube, defined, 6. its axisj 13. its molecule a cube, 37.

its relation, as shewn by cleavage, to the regular octa-

hedron, 39, 40. to the rhombic dodecahedron, 44.

to the regular tetrahedron, 84. its modifications, 107.
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D
Decrements, defined, 18. in breadth, 18. in height, 18.

simple, 20, 67. mixed, 21, 67. produce planes some
of whose edges are parallel to some edge or diagonal of

the primary form, 67. intermediary, 22, 69, produce
planes, none of whose edges are parallel to any edge or

diagonal of the primary form, 69. produce secondary

planes, 24. examples of the manner in which they

produce secondary forms, 71. the causes by which

they are occasioned not yet understood, 73. may
possibly take place on secondary crystals, 74. influ-

enced by the pyro-electricity of bodies, 76. their des-

criptive character in relation to secondary forms, 234.

theif relations to the different classes of modifications,
253 to 382, Calculation of the laws of, see CALCU-
LATION. their effect explained in modifying crystals,
288 the laws of, determined from the parallellism of

the edges of crystals, 393.

Diagonal, of a plane, defined, 12. oblique, 12. horizonal,
12.

Diagonal plane of a solid, defined, 12.

Dodecahedron, rhombic, defined, 7. its relation to the

cube as shewn by cleavage, 44. its relation to cubic

molecules, 47. its cleavages explained, 63. solids

produced by cleavage do not represent its molecules,
64. its modifications, 120.

Drawing the figures of crystals, methods of, 402, 438 the

principle explained, 403 to 406.

E
Edge of a crystal defined, 1.

Edges of a crystal, terminal, defined, 3 lateral, defined, 3

similar, defined, 3 if replaced by 1 plane, are trun-

cated, 24 if by 2 planes, bevelled, 24.

Elementary particles, defined, 5.

Elements of a primary form, 286.

Epigene crystals, 93.

F
Fluate of Lime, see Lime, fluate.

Form, primary, defined, 6, 79 may sometimes be deve-

loped by cleavage, 79 frequently requires the aid of

secondary forms for its determination, 81 how deter-

mined from cleavage or from secondary forms, 81.
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Forms, primary,, divided into classes, 6 consist of the cube,
6 the regular tetrahedron, 6 regular octahedron, 7
rhombic dodecahedron, 7 octahedron with a square

base, 8 rectangular base, 8 rhombic base, 9 right

square prism, 9 right rectangular prism, 9 right
rhombic prism, 10 right oblique-angled prism, 10

oblique rhombic prism, 10 doubly oblique prism, 1 1

hexagonal prism, 11 rhomboid, 11 how distinguish-
ed by letters, 103 alphabetical arrangement of, 497 to

498 arranged according to classes, 498 to 501.

Forms, secondary, defined, 11, 86 are simple or compound
86 produce new figures when they envelope the pri-

mary, 86 causes producing them not understood, 87
table of, 215.

G
Galena, see Lead, sulphuret.

Goniometer, common, described^ 26 reflective, 27.

H
Haiiy's theory of crystals, 34 its disadvantages, 34.

Hemitrope crystals, 88.

Indices, of secondary planes, 233.
Intersected crystals, 88.

L
Lead, sulphuret, its cleavage, 37.

Lime, carbonate, its cleavage, 38 fluate, how it may be

cleaved, 39.

Linneus gave the first descriptions of crystals, 33.

M
Mineral species defined, 6.

Minerals, on the arrangement of, 439 primary forms of,

arranged alphabetically, 451 to 497 primary forms of,

arranged according to classes, 498 to 501.

Modification of a crystal, the alteration of form occasioned

by secondary planes, 24 Comte de Bournon first des-

cribed crystals by their modifications, 34 the same
method adopted by Mr. Phillips, 34.

Modifications, introduction to tables of, 95 are divided
into classes, 98 each class may consist of many indi-

vidual or particular modifications, 98 their differences

explained, 99 may produce new figures, 100 how
related to decrements, 253 to 282 of the cube, 107

3s
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of the regular tetrahedron, 112 of the regular'octahe-

dron, 116 of the rhombic dodecahedron, 120 -of the

octahedron with a square base, 126 of the octahedron

with a rectangular base, 138 of the octahedron \v ith a

rhombic base, 146 of the right square prism, 162 of

the right rectangular prism, 166 of the right rhombic

prism, 170 of the right oblique-angled prism, 176
of the oblique rhombic prism, 180 of the doubly
oblique prism, 190 of the hexagonal prism, 196 of

the rhomboid, 200 on the application of the tables of,

223.

Molecules, are homogeneous, 5 distinguished from elemen-

tary particles, 6 arrange themselves around a single
central molecule in the first formation of a crystal, 17

are afterwards added to the surfaces of the small crystal,
in plates, 18 are separable at their surfaces by mecha-
nical division, 36 their forms, in relation to the differ-

ent classes of primary forms, 37 of parallelepipeds,
are similar parallelepipeds, 38 of the hexagonal prism,
are triangular prisms, 38 of the regular tetrahedron,

regular octahedron, and rhombic dodecahedron, are

cubes, 51 of the irregular octahedrons, are particular

prisms, 51 Haiiy's theory of, relatively to the tetra-
'

hedron and all octahedrons, 42 and to the rhombic

dodecahedron, 43 objection to Haiiy's theory of, 43
new theory of, proposed, 45 of the cube, regular

tetrahedron, regular octahedron, and rhombic dodeca-

hedron, 46 new theory of, reconcileable with known

cleavages, 47 explained in reference to cleavages, 48
are so minute as to occasion no sensible diminution in

the brilliancy of planes constituted of their edges or

solid angles, 47.

N
Natural joint of a crystal is the direction of its cleavage, 56.

-Nucleus defined, 74 how obtained by cleavage, 74.

O
Octahedron, regular, defined, 7 its axis, 13 its relation

to the cube as shewn by cleavage, 40 its relation to the

tetrahedron *ts shewn by cleavage, 40 to 42 its relation

to cubic molecules. 46 its cleavages explained, 60
the solids produced by cleavage do not represent its

molecules, 64 how it might be ultimately produced
from the tetrahedron, by the removal of cubic mole-

cules, 65 its modifications, 116.
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Ociahedron witb a square base, defined, 8 its axis, 13

its modifications, 126.

Octahedron with a rectangular base, defined, 8 its axis, 13

its modifications, 138.

Octahedron with a rhombic base, defined, 9 its axis, 13

its modifications, 146.

P
Parallellogram, defined, 5.

Parallelopiped, defined, 5.

Planes of crystals, natural, defined. 1 cleavage, 1 termi-

nal, 3 lateral, 3 similar, 3 tangent, 24.

Position of crystals, 17.

Primary form, see Form, primary.

Prism, defined, 9 right, 9 oblique, 9.

Prism, right square, defined, 9 its axis, 14 -its modifica-

tions, 162.

Prism, right rectangular, defined, 9 its axis, 14 its modi-

fications, 166.

Prism, right rhombic, defined, 10 its axis, 15 its modifi-

cations, 170.

Prism, right oblique-angled, defined, 10 its axis, 15 its

modifications, 176.

Prism, oblique rhombic, defined, 10 its axis, 15 its mo-

difications, 180.

Prism, doubly oblique, defined, 11 its axis, 16 its modi-

fications, 190.

Prism, hexagonal, regular, defined, 11 its axis, 16 its

molecule a triangular prism, 30 its modifications, 196.

Projection, orthographic, explained, 403.

Pseudomorphous crystals, 93*

Pyro-electricity, 76 sometimes influences the modifications
of crystals, 76.

R
Rectangle, defined, 4.

Rhomb, defined, 4.

Rhombic dodecahedron, see Dodecahedron, rhombic.

Rhomboid, defined, 11 how produced by cleavage from
the hexagonal prism of carbonate of lime, 80 its mo-

difications, 200.

Rome de L'Isle produced the first rudiments of crystallo-

graphy, 33.
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s

Secondary form, see Form, secondary.

Secondary planes produced by decrements, 24 said to re-

place angles or edges, 24.

Similar edges, angles and planes, defined, 3.

Species, mineral, defined, 6.

Square, defined, 4.

Structure of crystals, or the order in which their molecules

are arranged, illustrated by an experiment with com-
mon salt, 53 this regular order supposed to belong to

all regularly crystallised bodies, 54 ofthe cube, regular
tetrahedron and octahedron, and rhombic dodecahedron,
explained, in relation to the theory of cubic molecules,
46 & 47 ultimate relation ol tetrahedron and octahe-

dron, 65.

Sulphate of Barytes, see Barytes, sulphate.

Symbols, how applied to distinguish primary forms, 103

their character, 232 how applied to denote secondary

forms, 236 to 252 arranged in tables, 252 to 279

denoting intermediary decrements, compared with those

used by Haiiy, 281.

Symmetry, general law of, 77 is sometimes suspended by
the pyro-electricity of bodies, 77 and by other causes,
78.

T
Tangent plane, defined, 24.

Tetrahedron, regular, defined, 6 Its axis, 13 its relation

to the regular octahedron as shewn by cleavage, 40 to

42 its relation to the cube, 84 its relation to cubic

molecules, 46 its modifications, 112.

Triangle, equilateral, defined, 3 isoceles, defined, 3

scalene, defined, 4.

Truncated edge or angle, defined, 24.

FINIS.

London : Printed by W. Phillip*,

George Yard, Lombard Street.
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