CHART SHOWING THE CHEMICAL RELATIONSHIPS IN THE MINERAL KINGDOM PALMER COSSLETT PUTNAM, M.S. 1967 er an 50 ther an ## A CHART SHOWING THE CHEMICAL RELATIONSHIPS IN THE MINERAL KINGDOM # A CHART SHOWING # THE CHEMICAL RELATIONSHIPS IN THE MINERAL KINGDOM PALMER COSSLETT PUTNAM, M.S. NEW YORK JOHN WILEY & SONS, INC. LONDON: CHAPMAN & HALL, LIMITED 1925 Copyright, 1925 BY PALMER COSSLETT PUTNAM PRESS OF BRAUNWORTH & CO. BOOK MANUFACTURERS BROOKLYN, N. Y. ## CONTENTS | | PAGE | |---|------| | THE PURPOSE OF THE CHART | . 1 | | (A) For economic or scientific consultation | | | (B) In determinative Mineralogy | | | (C) As a stimulus to speculation | . 1 | | THE SCOPE OF THE CHART | . 1 | | The elements | . 1 | | The minerals | . 2 | | The Mechanics of the Chart | . 2 | | The coördinates | | | The data | | | | | | THE ACCURACY OF THE CHART | . 4 | | (A) Probable errors in original data | . 4 | | 1. Typographical | . 4 | | 2. Analytical | . 4 | | I. Of omisson | . 6 | | (B) Probable errors in interpretation of data | . 6 | | (C) Probable errors in transcription of data | . 7 | | Recapitulation | . 8 | | | | | THE USES OF THE CHART, WITH EXAMPLES | | | (A) | . 8 | | (B) | . 10 | | (C) | | | Notice of a Determinative Scheme | . 12 | | References | . 13 | | INDEX I.—THE MINERALS, LISTED ALPHABETICALLY | . 14 | | INDEX II.—THE MINERALS, LISTED NUMERICALLY | . 23 | | THE CHART | . 32 | ### A CHART SHOWING THE CHEMICAL RELATION-SHIPS IN THE MINERAL KINGDOM #### THE PURPOSE OF THE CHART The purpose of the chart is three-fold: (A) To serve as a ready reference aid to the man who would know quickly, whether for an economic or a scientific purpose, the answer to such questions as: "How many and what are the minerals containing germanium, and what are their compositions?"; or, "Does silver occur with oxygen in any mineral?"; or, "Do phosphides or silicides occur as minerals?". (B) To serve as an aid in Determinative Mineralogy, especially in the case of rare minerals, where either the small amount of the unknown substance, or the lack of laboratory facilities (as when in the field), precludes the possibility of making more than a few specific tests. It may also serve as a complement to microchemical methods in the laboratory, and as a reminder to verify the presence or absence of minute quantities of certain interesting replacing elements.^a (C) To form a mechanical stimulus to speculation upon the chemistry of the earth, by affording upon one sheet a statistical survey of the affinities and the antipathies which hold sway in the mineral kingdom. #### THE SCOPE OF THE CHART (A) The Elements—The eighty-four major active elements are listed. The eight omitted include: three of the five inert noble gases, krypton, xenon and neon, known only in traces in the atmosphere; polonium and actinium, whose presence may be assumed whenever uranium is reported; the little known rare-earth, celtium; and two of the unknown elements, numbers 85 and 87, which quite possibly are mere transitional atomic configurations, whose stability is of a low order even in terms of actinium C. (Numbers 43 (eka-manganese), 61, and 75, elements as yet awaiting their discoverer, have been supplied with columns.) The thirty or more known products of radio-active disintegration are not listed, but are assumed to be present whenever the respective parents of the three most important series are reported, and are included in the subscript "etc." to U, Th and Ra respectively. The latter, though but a stage in the U series, is so important as to justify its emphasis by specific mention. The eight common inorganic radicals are listed. The water molecule is listed. Neodymium, (Nd), and praseodymium, (Pr), always occur together, and are inclusively symbolized by Di, the abbreviation for "didymium," their former joint name. Save in the case of iron, no differentiation is made between the various valencies. (B) The Minerals.—A mineral is here understood to be an aggregate of atoms whose physical state is the solid, whose crystallographic and optical constants vary within specific limits, whose chemical composition varies within specific limits, and which has been formed in nature under cosmic, atmospheric or telluric conditions of electro-chemical equilibrium. All minerals described before July, 1924, in the literature mentioned under "References," are entered. This includes a number of sub-species, a number of doubtful species, many varieties based upon chemical composition, and the liquid, native mercury. Optical and crystallographic data, so far as possible, were the criteria of the individuality of a given mineral. The minerals are sixteen hundred and eleven in number. #### THE MECHANICS OF THE CHART #### (A) The Coördinates: 1. The right- and left-hand vertical margins; i.e., the termini of the horizontal columns. Here is included: - I. Each element, (and the ammonium radical), which occurs in nature as the *dominant electro-positive* constituent of a mineral. (Ca in calcite, CaCO₃). - II. Each element which occurs uncombined, but in mineral form. (Pd in allopalladium, Pd.) - 2. The top and bottom horizontal margins; i.e., the termini of the vertical columns: Here are included: I. All the elements, (and the ammonium radical), occurring in nature in the *electro-positive* state, but as *minor* constituents of minerals. Since every active electro-positive element occurs in subordinate amount in at least one mineral, all are here entered. ^a Exceptions to this are the elements Hg, He, and A. Mercury is the sole constituent of the metallic liquid, native mercury; helium is a gaseous product of radio-active disintegration, found in many minerals; and the gas argon, also possibly a disintegration product, is known in a few minerals. ^b With the obvious exception of thirty or forty hardened colloid gels. - II. Those elements occurring in nature as the electronegative constituents of minerals, whether dominantly or subordinately so. (Te, dominant, S, subordinate, in sulfurous tetradymite, Bi (Te, S)). - III. The common electro-negative radicals. - IV. The water molecule. - V. Three of the unknown elements, entered by their atomic numbers. - VI. A column designated "Nat. El," for the native elements. In effect, then we have the *dominant electro-positive* elements plotted against *all* the *electro-positive* elements and *all* the *electro-negative* elements, and against the *common radicals*. #### (B) The Data: - 1. Each number refers to a mineral. The numbers are chosen arbitrarily, and are listed numerically in Index II. - 2. The minerals are entered in the chart according to their composition. A hydrous neutral ferrous sulfate, FeSO₄·7H₂O, (No. 536), is entered in the horizontal Fe'' column, in the SO₄ box and in the H₂O box. An aluminum silicate, Al₂SiO₅, (No. 236), is entered, in the horizontal Al column, in the Si_zO_y box. - 3. Complex minerals are entered as follows: A mineral containing more than one electro-positive element, as a ferro-magnesian silicate, is entered in the horizontal column of the dominant electro-positive element; i.e., that one present in the greatest percentage weight. Should the analysis, (No. 1592), record 31% Fe' and 32% Mg, the mineral would be entered in the horizontal Mg column, and would pick up Fe' in the Fe' box, and silica in the Si_xO_y box. 4. Certain oxygenated radicals, not specifically listed as coördinates, (the arsenates, antimonates, borates, tellurites, mellates, etc.), are indicated thus: In the case of a ferric tellurite, Fe₂TeO₅, (No. 1233), the mineral is entered in the horizontal Fe'' column, in the O box and in the Te box. In other words, if there is any oxygen in a mineral not accounted for in a specific radical, as the SO_4 or Si_zO_y radical, an entry is made in the O box of the appropriate horizontal column. 5. It will be noted that certain of the radicals are written with x and y as subscripts, in lieu of numerals. This is to indicate that more than one acid is represented. Si_zO_y , for instance, indicates that SiO_2 is the salt of not merely H_2SiO_3 , but of one or more acids in addition. #### THE ACCURACY OF THE CHART The sources of error may be divided into three groups: - (A) Errors in original data. - 1. Typographical. - 2. Analytical. - I. Of omission. - II. Of commission. - (B) Errors in interpretation of original data. - (C) Mechanical errors in transcription of these data. #### (A) Probable Errors in Original Data: 1. Typographical. Although cross references were used, few typographical errors in analytical data were detected, and in most cases it could be determined which was the correct information. 2. Analytical. These fall into two groups: I. Errors of Omission. The analyst either failed to weigh one or more oxides, as shown by the fact that his results fell short of 100 by an amount greater than his experimental error, or he unwittingly precipitated two or more oxides together, but weighed them as one, obtaining an apparently satisfactory analysis. Errors of the first type are not common, since the curiosity of the investigator usually did not permit the discrepancy to remain long a puzzle. Errors of the second type were fairly common prior to 1886, but after this date they were practically confined to two groups of elements, the radio-active and the rare-earth groups. It has been possible largely to correct for the errors of omission occurring in these two groups. The correction has been made as follows: Radio-active Group: Whenever uranium was reported, Radio-active Group: Whenever uranium was reported, the presence was assumed of radium and helium. The other fifteen or more products of disintegration were also present, but are grouped under the subscripts "etc." Uranium lead was also undoubtedly present, but unless in quantity sufficient to be detected analytically, has not been reported, in order not to confuse the determinative work.
Whenever thorium was reported, the presence of the commercial mesothorium, along with the other ten or more products of this series, was assumed, and is indicated in the subscript "etc." Rare-earth Group: Where the phrase "Ce₂O₃ etc." occurred in the analysis, it was assumed that all the elements of this group were present. Where the phrase "Yt₂O₃ etc." occurred, the same assumption was made for this group. Where oxides of one group only were reported, it was assumed that members of the other group were not present. This is not strictly so, since the two groups merge into one another through the medium of the Terbium group, and since scandium is known to occur, once at least, solely with the yttrium earths. Until more accurate analytical data are available, however, this assumption, in conjunction with the following classification of the elements, would appear to be the closest approximation to the truth: | Cerium Grou | p | Yttrium Gre | пир | |--------------|---------|-------------|-------| | Cerium | Ce | Celtium | Ct e? | | Europium | Eu e | Dysprosium | Dy | | Gadolinium | Gd c | Erbium | Er | | Lanthanum | La | Holmium | Но | | Neodymium | Nd Di d | Lutecium | Lu | | Praseodymium | Pr Di | Terbium | Tb e | | Samarium | Sm | Thulium | Th | | Seandium | Se | Ytterbium | Yb | | | | Yttrium | Yt | ^a Thortveitite, No. 813. ^c These are sometimes grouped together as the Terbium group. $^{\rm e}$ The recent discovery of hafnium, atomic number 72, has made the position of celtium obscure. The latter is known only spectroscopically, while some zircons contain 14% Hf. ^b The author is not a student of rare-earth chemistry, and borrowed this classification from Browning's "Introduction to the Rarer Elements." The original articles containing the analyses were not consulted in most instances, and, had this been done, more satisfactory data might have been obtained. ^d These two elements, before differentiation, were considered to be one element, "didymium." Since they invariably occur together, and to save space, they are here grouped together under their former symbol, (Di). #### II. Errors of Commission Especially in certain of the older analyses, when mechanical methods of separation were not highly developed, products of alteration and adventitious material probably were present in a regrettably large amount. This error is large, indeterminate, but nearly negligible so far as the virtue of this chart is concerned, and has been partially rectified, as indicated in the next paragraph. #### (B) Probable Errors in the Interpretation of Data: It is hoped that the author's interpretation of doubtful data minimized rather than augmented the indigenous errors. When the chart was first made, in 1920, only those elements occurring in a formula as given in the standard works were included, and only about 900 minerals were plotted. When the chart was expanded to include all minerals described up to July, 1924, many of the replacing elements were included. The criteria of the legitimacy of the rôle played by a minor constituent were developed as follows: An arbitrary distinction was made between two types of element, which we may designate the "aluminum" type and the "indium" type, respectively. To the former type belong such common elements as Na, K, Mg, Ca, Al, O, Fe", Fe" and, to a certain extent, Si, Ti and Mn. To the latter type belong such mineralogically rare and interesting elements as A, N, Li, Rb, Cs, Cd, Sc, Ga, In, Tl, Ge, Zr, Sn, Cr, Co and Ni, the isotopes of Pb, and the significant He. A great many analyses, especially of non-metallics, show the presence of one or more of the *first* type in amounts ranging from a trace to two or three per cent. In general these quantities have been assumed to be adventitious and have been *disregarded* unless: 1. There is evidence that the analysis was of exceptionally pure material. Example: (Rare.) 2. That the occurrence was consistent in a number of analyses from different localities. Example: Small quantities of Ni in serpentine. 3. That the element was an isomorphous replacement of one with which it is often associated. Example: Small quantities of Na in orthoclase. Many of the second type, however, are only to be detected spectroscopically and their relationship to their host is not certain. In the case of A and He, they are certainly uncombined and in the gaseous state, yet their occurrence in minerals is so rare, and their significance so great, that they have been duly entered where recorded in the literature. As for such elements as In and Ga, we note their wide diffusion in nature, (few spectrographs of minerals lack the In lines, for instance), and we also note their great reluctance to concentrate themselves into palpable organizations. But the important and interesting phenomenon is, that they are not promiscuous in their associations, but do concentrate themselves slightly in certain favored hosts. So whatever the rôle of indium within the atomic aggregation which we are pleased to call sphalerite, for instance, it has been duly entered as a minor constituent and thus with other similar elements, though perhaps only present spectroscopically. The differentiation between minor elements actually entering into the chemical structure of the mineral, those that are adsorbed, those that are occluded, those that are inert, and yet owe their existence to some radioactive parent in the mineral, and those that are merely mechanically adventitious, was assuredly not complete, and is therefore a source of error of indeterminate magnitude. A source of error of a different sort is the differentiation between O, H, OH, and H₂O. The significance of H and OH is, except in certain obvious cases, purely academic. A complex formula is often written as an algebraic expression, with no indication of molecular structure. When the term "basic" is then applied to such a formula, it is not clear whether it is the oxygen ratio in the acid from which the given salt was derived which is referred to, or the actual presence of the OH radical. The term "acid" leads to the same confusion. And in many cases (cf. the zeolites), the structure is still a matter for discussion. In general, entries have been made in the H₂O column when water is lost below a red heat, and in the O and OH columns when lost only above a red heat. Entries have been made in the H column when the water given off, (below a red heat), is acid and in the OH column when basic, in addition to the entry in the H₂O column. #### (C) Probable Mechanical Errors in Transcription of Data: Errors from this source are largely due to astigmatism; to the entry of a number in a box immediately contiguous to the proper box. The chart was checked back to original sources in part six times, in part four times and, in part, only twice. Each one of these checkings revealed errors, progressively fewer. It is believed that the error due to this source is not greater than about 0.1%, and probably less. This amounts to not more than ten individual entries. Further, it is an error usually quite obvious. #### Recapitulation. It is believed that the chart fairly faithfully represents the author's interpretation of the data in the literature; that errors of omission in a few of the older analyses are fairly common; that these latter have in part been corrected in the chart; that errors of commission were somewhat more common in certain of the older analyses; that the corrections of this type of error were probably not so effective as of the former type; that the greatest source of error, therefore, lies in this type of analysis and in the author's interpretation of it. The total percentage error is undoubtedly greater than it will be after a revision, but it is thought that its present accuracy is such that the chart may begin to function. #### THE USES OF THE CHART These are indicated on p. 1, and are largely self-explanatory, yet a few examples might not be amiss. #### (A) The chart serves the first purpose as follows: Example 1.—It is desired to know the occurrence of germanium, and its associations. Inspection of the right-hand margin reveals that Ge is not known to occur as a dominant electro-positive constituent of a mineral, and therefore occurs always as an accessory. Turning, then, to the vertical column headed by Ge, one thumbs down the chart and notes that the following minerals always or usually contain Ge: In the Ag box, numbers 55, 146; In the Cu box, number 1291; In the Fe" box, numbers 208, 795; In the Pb box, number 1116; In the Sn box, number 157; In the Yt box, numbers 297, 306, 327, 717; In the Zn box, number 764. Turning to the numerical index, these numbers are found to refer respectively to: | Argyrodite, (55) | Cassiterite, (157) | |---------------------|--------------------| | Canfieldite (146) | Euxenite, (297) | | Germanite, (1291) | Fergusonite, (306) | | Columbite, (208) | Gadolinite, (327) | | Tantalite, (795) | Samarskite, (717) | | Ultrabasite, (1116) | Sphalerite, (764) | ^a A line under a chemical symbol indicates that it is the horizontal column of that element which is referred to, and not its vertical column, in which case there is no underline. To find the complete composition of each of these, including other rare constituents not usually recorded in mineralogical texts, inspect to the right and left of each number for further entries. This is facilitated by the arrangement of all the numbers of a given box in numerical order. Thus 55, for instance, is found to appear only in the S box, in addition to its entry in the Ge box. Since these entries are in the Ag horizontal column, it follows that argyrodite is a silver germanium sulphide, the silver dominating the germanium in percentage weight. Example 2.—What minerals, if any, contain thallium as a major constituent? Inspection of the right-hand margin shows that Tl does form the dominant electro-positive constituent of some minerals, and running along this
horizontal column we find: In the Ag box, number 912; In the As box, numbers 508, 866, 912; In the Pb box, number 912; In the S box, numbers 508, 866, 912; In the Sb box, number 866. In the numerical index, these numbers refer to: Lorandite, (508) Vrbaite, (866) Hutchinsonite, (912). If information is desired concerning the occurrence of Tl as an accessory constituent, one proceeds as with Ge and finds that: In the \underline{Al} box, numbers 26, 487; In the \underline{Au} box, number 787; In the \underline{Cu} box, numbers 98, 175, 226; In the $\underline{Fe''}$ box, numbers 523, 672; In the $\underline{Fe'''}$ box, number 388; In the \underline{K} box, number 149; In the \underline{Mn} box, number 125; In the \underline{Zn} box, number 764; have been reported to carry traces or more of Tl. In the numerical index, these numbers refer to: | Alunite, | (26) | Marcasite, | (523) | |---------------|-------|-------------|-------| | Lepidolite, | (487) | Pyrite, | (672) | | Sylvanite, | (787) | Hematite, | (388) | | Berzelianite, | (98) | Carnallite, | (149) | | Chalcopyrite, | (175) | Braunite, | (125) | | Crookesite, | (226) | Sphalerite, | (764) | (B) The use of the chart as an aid to Determinative Mineralogy is illustrated by the following two examples: Example 1.—A minute quantity of a yellow, earthy incrustation on barite was to be tested. A fine closed-tube test was run. Vapours of iodine, and possibly of other halogens, were given off. Inspection showed: Ag box 431 Iodobromite 432 Iodyrite 555 Miersite Ca box 258 Dietzite 1393 Lautarite Cu box 1437 Marshite Pb box 732 Schwartzembergite to be the iodides occurring in nature. A reference to a descriptive text often will give physical data which may aid in eliminating some of these minerals, and thus further reducing the number of microchemical or blow-pipe tests required to determine the mineral or to suggest that it is a mixture or a new species. In the case under discussion, the physical data were inconclusive. In order to prove the unknown to be one of these iodides, tests had to be run for Ag, Cu, Ca and Pb. The tip of the C. T. was pulverized and introduced into a three-inch test-tube. Warmed with a few drops of 6N·HNO3, the assay went completely into solution with no effervescence. Addition of NH₄OH produced no ppt. nor the formation of a distinctive colour. The NH4OH was gently expelled and some (NH₄)₂C₂O₄ added. No CaC₂O₄ was formed. A few drops of HCl were added, and no ppt. formed immediately, suggesting the absence of Ag. After six hours' standing, a fine white ppt. formed. Upon heating, it went back into solution, ruling out AgCl, but, in the cold, it recrystallized. Under the glass the crystals were seen to be fine prismatic needles, with adamantine luster, and were presumably PbCl₂. Thus schwartzembergite was indicated qualitatively, and later checked optically. Example 2.—During the course of a preliminary geological survey of Uganda¹⁴, Wayland and his assistants had occasion to determine a mineral occurring in and on fossilized wood from the Mount Elgon (Pliocene?), volcanic series. Their laboratory facilities being scanty, they were able to make only limited qualitative tests. "..., but the behaviour of the acicular mineral associated with the wood seems to indicate that it must be a true mineral substance and not a mixture. "Some of the patches of acicular crystals are pure white but mostly they are a dirty yellowish colour. They occur in tufts thickly covering the cavities and rest on a massive incrustation of the same composition. In cold dilute HCl they are only slightly acted upon, but on warming, they are soluble with effervescence of CO₂. On putting aside after five or six hours the whole solution sets to a jelly. On heating in the closed tube the crystals become opaque, transparent ones becoming white and the vellowish ones becoming black. Water is evolved and this water vapour when it condenses on the tube gives an alkaline reaction with litmus paper. Heated in a tube with lime, ammonia is evolved and a good alkaline reaction is obtained. In the blowpipe the crystals are fusible at the ends to an enamel. With fusion mixture (sic) on charcoal and then cobalt nitrate a strong blue aluminum colour a is given. A flame test for calcium could not be obtained. The tests above given show the presence of Aluminum, a Ammonium, a Carbonate and Silicate, with hydroxyl, and the mineral species to which such a compound can be referred is doubtful. It is not clear that a hydrous silicate can enter into combination with a carbonate." These data applied to the chart, yield the following results in two or three minutes: 1. There are six hydrous silicates known to contain carbonate: Al 1037 Cancrinite · 1038 Sulfatic cancrinite 1214 Davyne Ca 806 Thaumasite 1539 Plazolite Yt 164 Cenosite - 2. Though these hydrous silicates contain carbonate, no one of them contains ammonium. - 3. Ammonium occurs with water, but not in the presence of hydroxyl, carbonate, or silicate. - 4. Ammonium occurs with carbonate, but not in the presence of silica, water, or hydroxyl. Thus, were the "acicular mineral," (as tested), truly homogeneous, it would be a new mineral; but it would not only be a new mineral; it would represent a new chemical type; and not only one new type, but three new types! The probability that the material tested was a mixture is thus strongly emphasized. ^a Most fusible or fluxed silicates and many other fusible minerals give a good blue colour when heated with Co(NO₃)₂, in addition to those infusible numerals whose blue colour is a specific test for aluminum compounds or the zinc silicates. (C) The mechanical presentation upon one sheet of the affinities and antipathies which hold sway in the mineral kingdom is instructive, and aids in emphasizing many interesting inter-relationships which it might prove difficult to grasp in another way. The array of numbers in the Al Si_xO_y box, for instance, emphasizes visually the importance of such minerals in the scheme of things. The great affinity of Ca for Al in the presence of Si_xO_y is brought out, as also the even greater (statistical) affinity of Na for Al under the same conditions. Many other suggestive relationships among less common elements are indicated. There is no need of enumerating them here. These relationships are only crudely quantitative, since the entries were made by percentage weight, and not by molecular proportions, and since the individual minerals have not been weighted according to their occurrence in the earth's crust. Further, this method of presentation serves to emphasize in a clearcut manner the distinction between elements of the "indium" type, which, above a certain low saturation point, prefer the company of others to that of themselves, and those of the "aluminum" type, which show greater development of the herd instinct, for, when present at all, they are usually present in large quantities. #### NOTICE OF A DETERMINATIVE SCHEME It is obvious that a determinative scheme, embracing the mineral kingdom, and developed on the plan of successively testing for specific elements, by blowpipe and wet chemical methods, would be the logical complement to this chart. Such a scheme was indeed developed during the winter and spring of 1920, for use by the author in the elementary course of mineralogy given by Dr. Warren at the Massachusetts Institute of Technology. It included about 350 of the common minerals. In the summer of 1920, it was made to include about 900 minerals, and in 1923 was submitted as partial fulfilment of the requirements for the degree of Bachelor of Science. It has since been in use by the author, in the laboratories of the Department of Geology at the Institute, and in 1924 was tested out under the supervision of Dr. Lindgren. It is now being further revised, and expanded so as to include all minerals. Some refinements in the specific tests for elements are being tried out, and it is hoped to bring the entire scheme to completion within a year. BINGHAM CANYON, Aug. 23, 1924. #### REFERENCES 1. "A System of Mineralogy." Dana. 1892. 2. "Appendices I, II, and III" to "A System of Mineralogy." Thru 1915. 3. "Microscopic Determination of the Non-opaque Minerals." Larsen. 1921. 4. "Dana's Textbook of Mineralogy." Ford. 1922. 5. "The Mineralogy of the Rarer Elements." Cahen and Wootten. 1916. 6. "Introduction to the Rarer Elements." Browning. 1919. 7. "Interpretation of Radium." Soddy. 1920. 8. "The Chemistry of the Rarer Elements." Hopkins. 1924. 9. "A Treatise on Inorganic Chemistry." Mellor. 1924. 10. "The American Mineralogist." 1920–July, 1924.11. "The Mineralogical Magazine." 1920–July, 1924. 12. "Chemical Abstracts." Jan.-July, 1924. 13. "The American Journal of Science." August, 1924. 14. Wayland, E. J. "Annual Rept. Geol. Dept. Uganda Protectorate." Pp. 51-52. 1921. Printed by Govt. at Entebbe, 1921. #### ALPHABETICAL INDEX Acanthite, 2 Acmite, 3 Actinolite, 4 Adamite, 5 Adelite, 6 Adularia, 940 Aegirite, 7 Aegirite-augite, 941 vandadiferous, 942 Aenigmatite (enigmatite), 8 Aeschynite (eschynite), 9 Agnolite, 11 Agricolite, 12 Aguilarite, 13 Aikinite, 14 Akermanite, 943 Akrochordite, 945 Alabandite, 15 Alaite, 946 Alamosite, 16 Albertite, 948 Albite, 17 Alisonite, 64 Allactite, 950 Allanite, 19 Allemontite, 951 Allopalladium, 952 Allophane, 21 Almandite, 22 Almeriite, 953 Aloisite, 954 Alshedite, 956 Altaite, 23 Alumian, 24 Aluminite, 25 Alunite, 26 Alunogen, 27 Alurgite, 957 Alvite, 363. Amalgam, 28 Amarantite, 29 Ambatoarinite, 1356 Amblygonite, 30 Amesite, 959 Amethyst, oriental, 1590 Ammiolite, 960 Ampangabeite, 32 Analcite, 33 Anapaïte, 1044 Anatase, 962 Ancylite, 34 Andalusite, 35 Andesine, 36 Andorite, 37 Andradite, 38 Anemousite, 964 Angaralite, 965 Anglesite, 39 Anhydrite, 40 Ankerite, 41 Annabergite, 42 Anorthite, 43 Anorthoclase, 44 Anthophyllite, 45 hydrous, 90 Anthracite, 968 Antigorite, 969 Antimony, 46
Antlerite, 970 Aphrosiderite, 971 Aphthitalite, 48 Apjohnite, 49 Apophyllite, 50 Aragonite, 51 Arakawaite, 972 Arcanite, 973 Ardennite, 52 Arduinite, 974 Arfvedsonite, 53 Argentite, 54 Argentojarosite, 975 Argyrodite, 55 Arizonite, 56 Armangite, 976 Arquerite, 977 Arsenic, 57 Arseniopleite, 58 Arseniosiderite, 59 Arsenobismite, 978 Arsenoferrite, 60 Arsenolite, 61 Arsenopyrite, 62 nickeliferous, 1172 Artinite, 63 Asbolite, 979 Ascharite, 980 Astrolite, 982 Astrophyllite, 65 Atacamite, 66 Atelestite, 67 Attacolite, 983 Auerlite, 984 Augelite, 985 Augite, 68 Aurichalcite, 69 Autunite, 70 Babingtonite, 74 Backströmite, 986 Baddeleyite, 75 Badenite, 76 Bakerite, 77 Barbierite, 988 Baricalcite, 989 Barite, 78 Barkevikite, 990 Barobismutite, 992 Barrandite, 79 Barsowite, 991 Barthite, 928 Barylite, 993 Barysilite, 994 Barytbiotite, 1609 Barytocalcite, 80 Barytocelestite, 565 Basobismutite, 961 Bassanite, 996 Bassetite, 997 Bastite, 998 Bastnäsite, 81 Batchelorite, 999 Bathvillite, 1000 Bavenite, 963 Baumhauerite, 82 Bayldonite, 927 Bazzite, 84 Beaverite, 85 Bechilite, 86 Beckelite, 87 Becquerelite, 1001 Beegerite, 88 Beldongrite, 1002 Bellite, 89 Belonesite, 1287 Bementite, 91 Benitoite, 92 Beraunite, 93 Berlinite, 1003 Berthierite, 94 Berthonite, 1004 Bertrandite, 95 Bervl (emerald), 96 Beryllonite, 97 Berzelianite, 98 Berzelite, 1005 Avaite, 1538 Awaruite, 72 Axinite, 71 Azurite, 73 Betafite, 99 Beudantite, 100 Beyrichite, 1007 Bieberite, 101 Bilinite, 1008 Bindheimite, 102 Biotite, 104 Bisbeeite, 1009 Bischoffite, 1010 Bismite, 105 Bismuth, 106 Bismuth gold, 1011 Bismuthinite, 107 Bismutite, 108 Bismutoplagionite, 1012 Bismutosmaltite, 1013 Bismutospherite, 109 Bituminous coal, 1015 Bityite, 1016 Bixbyite, 110 Blödite, 111 Blomstrandine, 1018 Blomstrandite, 10 Bobierrite, 112 Boléite, 113 Bolivarite, 1019 Boothite, 114 Boracite, 115 Borax, 116 Borickite, 117 Bornite, 118 Bort, 1020 Botryogen, 119 Boulangerite, 120 Bournonite, 121 Boussingaultite, 122 Bowlingite, 1021 Brackebushcite, 123 Brandisite, 1575 Brandtite, 124 Brannerite, 1022 Braunite, 125 Bravoite, 1023 Breithauptite, 126 Breunnerite, 1025 Brewsterite, 127 Britholite, 1026 Brochantite, 128 Bromcarnallite, 1024 Bromlite, 129 Bromvrite, 130 Brookite, 132 Brostenite, 1017 Brucite, 133 Brugnatelite, 1027 Brunsvigite, 1028 Brushite, 134 Bunsenite, 135 Bushmanite, 1029 Bustamite, 1030 Bytownite, 1031 Cabrerite, 136 Cacoxenite, 137 Cadmium oxide, 1033 Calamine, 138 Calaverite, 139 Calciobiotite, 1032 Calcioceletite, 351 Calcioferrite, 140 Calciovolborthite, 141 Calcite, 142 Calcium lazulite, 1034 Caledonite, 143 Callainite, 144 Calomel, 145 Campylite, 1035 Camsellite, 1036 Canbyite, 314 Cancrinite, 1037 Canfieldite, 146 Cappelenite, 1040 Caracolite, 147 Carbonado, 1042 Carminite, 148 Carnallite, 149 Carnotite, 151 Carpholite, 152 Carphososiderite, 153 Carrollite, 154 Caryinite, 155 Caryocerite, 156 Cassiterite, 157 Catapleite, 160 Catoptrite, 1334 Cebollite, 161 Celadonite, 162 Celestite, 163 Celestobarite, 575 Celsian, 1047 Cenosite, 164 Cerargyrite, 165 Cerite, 166 Cerium sulfate, 1547 Ceruleite, 1048 Cerusite, 167 Cervantite, 168 Cesarolite, 1050 Chabazite, 169 Chalcanthite, 170 Chalcedony, 171 Chalcocite, 172 Chalcolamprite, 1053 Chalcomenite, 1054 Chalcophanite, 173 Chalcophyllite, 174 Chalcopyrite, 175 Chalcosiderite, 176 Chalcostibite, 177 Chalmersite, 178 Chathamite, 1056 Chenevixite, 179 Chiastolite, 1057 Childrenite, 181 Chilenite, 1058 Chillagite, 1059 Chinkolobwite, 1557 Chiolite, 182 Chiviatite, 183 Chloanthite, 184 Chlor-apatite, 1061 Chloralluminite, 1062 Chloritoid, 185 Chlormanganokalite, 1060 Chloromagnesite, 1063 Chloromelanite, 1064 Chloropal, 186 Chlorospinel, 1591 Chloroxiphite, 1347 Chondradite, 187 Christobolite, 1065 Chrome-clinochlore, 1066 Chrome-diopside, 1067 Chromite, 188 Chromitite, 1069 Chromohercynite, 1070 Chrysoberyl, 189 Chrysocolla, 1071 Chrysotile, 1072 Churchite, 191 Cimolite, 192 Cinnabar, 193 Cirrolite, 194 Claudetite, 196 Clausthalite, 197 Cleavelandite, 1068 Cleveite, 1073 Cliachite, 83 Cliftonite, 1074 Clinochlore, 198 Clinoclasite, 199 Clinoenstatite, 1075 Clinohedrite, 200 Clinohumite, 201 Clinoptilolite, 1276 Clinozoisite, 202 Cobalt chalcanthite, 1077 Cobaltiferous gahnite, 1107 Cobaltiferous lampadite, 1081 Cobaltite, 203 Cobaltnichelpyrite, 204 Cobaltoadamite, 1078 Cobaltocalcite, 1079 Cobaltomenite, 1080 Cocinerite, 1082 Coeruleofibrite, 1049 Coeruleolactite, 1083 Cohenite, 1084 Colemanite, 205 Colerainite, 1085 Collophanite, 1086 Collyrite, 206 Coloradoite, 207 Columbite, 208 Columbium, 1087 Conichalcite, 209 Connarite, 1089 Connellite, 210 Cookeite, 211 Copalite, 1090 Copiapite, 212 Copper, 213 Coquimbite, 214 Cordierite, 1091 Cordylite, 215 Corkite, 1586 Cornetite, 1614 Cornuite, 1092 Cornwallite, 216 Coronadite, 1093 Corundophilite, 217 Corundum, 218 Cosalite, 220 Cotunnite, 221 Covellite, 1094 Crandallite, 1095 Crednerite, 222 Creedite, 1096 Crestmorite, 1097 Crocidolite, 223 Crocoite, 224 Cronstedtite, 225 Crookesite, 226 Crossite, 1098 Cryolite, 227 Cryolithionite, 228 Cryophyllite, 231 Cryptohalite, 1099 Cumengite, 1200 Cuprite, 1201 Cuproadamite, 1202 Cuprobismutite, 230 Cuprogoslarite, 1203 Cupromagnesite, 1204 Cuproplumbite, 1205 Cuproscheelite, 1206 Cuprotungstite, 233 Cuprozincite, 1207 Curite, 1208 Cuspidine, 234 Custerite, 235 Cyanchroite, 237 Cyanite, 236 Cyanotrichite, 238 Cylindrite, 239 Cyprine, 987 Cyprusite, 240 Dahllite, 1210 Daiton-sulphur, 594 Danaite, 1211 Danalite, 241 Danburite, 242 Dannemorite, 1212 Darapskite, 243 Datolite, 244 Daubreeite, 245 Daubreelite, 246 Daviesite, 1213 Davyne, 1214 Dawsonite, 247 Dechenite, 1215 Deckeite, 248 Delessite, 1216 Delorenzite, 1217 Delvauxite, 1218 Descloizite, 249 Destinezite, 1597 Deweylite, 250 Dewindtite, 1219 Diabantite, 1220 Diabolite, 1369 Diadochite, 252 Diallage, 1221 Diamond, 253 Diaphorite, 254 Diaspore, 255 Dickinsonite, 256 Didymolite, 257 Dietrichite, 1222 Dietzeite, 258 Dihydrite, 1223 Diopside, 259 Diopside-jadeite, 1224 Dioptase, 1225 Dixenite, 1226 Dolerophanite, 260 Dolomite, 261 cobaltiferous, 1076 ferriferous, 1014 manganiferous, 981 zinc ferrous, 1227 Doughtyite, 1228 Douglasite, 1229 Dravite, 1231 Dufrenite, 263 Dufrenoysite, 264 Duftite, 799 Dumortierite, 265 Dundasite, 1232 Durangite, 266 Durdenite, 1233 Dysanalite, 1234 Dyscrasite, 267 Dysluite, 1235 Dysodile, 1236 Ecdemite, 268 Echellite, 1238 Ectropite, 1239 Edingtonite, 269 Egglestonite, 270 Eguérte, 1250 Eguelite, 271 Eichbergite, 272 Elaterite, 1240 Elbaite, 1243 Electrum, 273 Ellsworthite, 1555 Elpidite, 1241 Embolite, 274 Emerald, oriental, 1589 Emery, 276 Emmonsite, 1244 Emplectite, 277 Empressite, 278 Enargite, 279 Endeiolite, 1245 Endlichite, 1246 Enstatite, 280 Eosphorite, 281 Epiboulangerite, 282 Epidesmine, 1248 Epididymite, 283 Epidote, 284 Epigenite, 285 Epistilbite, 286 Epistolite, 230 Epistolite, 1249 Epsomite, 287 Erikite, 1251 Erinite, 288 Errite, 1562 Erythrite, 290 Erythrosiderite, 1252 Ettringite, 291 Eucairite, 292 Euchroite, 293 Euclase, 294 Eucolite, 1255 Eucolite-titanite, 1256 Eucryptite, 1257 Eudialyte, 295 Eudidymite, 1258 Eulytite, 296 Euxenite, 297 Evansite, 298 Fairfieldite, 299 Falkenhaynite, 300 Famatinite, 301 Faratsihite, 302 Faujasite, 303 Fayalite, 304 Felsöbanyite, 305 Ferberite, 1259 Ferganite, 1260 Fergusonite, 306 Fermorite, 1261 Fernandinite, 307 Ferrazite, 1262 Ferrierite, 995 Ferritungstite, 308 Ferroanthophyllite, 1264 Ferrocalcite, 1266 Ferrocobaltite, 1267 Ferrocolumbite, 1269 Ferrogoslarite, 1268 Ferronatrite, 1263 Fibroferrite, 310 Fichtelite, 1270 Fiedlerite, 1271 Fillowite, 311 Finnemanite, 1272 Fischerite, 312 Flagstaffite, 1274 Flajolotite, 1275 Flinkite, 313 Florencite, 315 Fluellite, 316 Fluocerite, 317 Fluorite, 318 Fluormanganapatite, 1280 Fluor-meionite, 621 Forbesite, 319 Foresite, 704 Forsterite, 320 Fowlerite, 1278 Franckeite, 321 Francolite, 1279 Franklinite, 322 Fredricite, 1281 Freibergite, 323 Freieslebenite, 324 Freirinite, 684 Fremontite, 325 Friedelite, 326 Frieseite, 1282 Frigidite, 706 Fuchsite, 1283 Fuggerite, 1284 Furnacite, 1285 Gadolinite, 327 Gageite, 328 Gahnite, 329 Gajite, 330 Galena, 331 argentiferous, 1455 Galenobismutite, 332 Ganomalite, 333 Ganophyllite, 334 Garnierite, 1286 Gaylussite, 335 Gearksutite, 336 Gedrite, 1288 Gehlenite, 337 Geikielite, 338 Gel-cerargyrite, 1629 Gel-variscite, 1631 Genthite, 339 Geocerite, 1289 Geocronite, 340 Georgeixite, 1290 Georgiadesite, 1292 Gerhardtite, 1293 Germanite, 1291 Gersdorffite, 341 Geyerite, 1294 Gibbsite, 342 Gillespite, 1296 Gilpinite, 1298 Gilsonite, 1299 Gismondite, 343 Glauberite, 344 Glaucodot, 345 Glaucochroite, 1300 Glauconite, 1301 Glaucophane, 346 Globosite, 1302 Glockerite, 347 Gmelinite, 348 Goethite, 349 Gold, 350 cupriferous, 797 Goldschmidtite, 352 Gonnardite, 1303 Goslarite, 353 Goyazite, 354 Graftonite, 355 Grahamite, 1304 Grandidierite, 1305 Graphite, 356 Greenalite, 1306 Greenockite, 357 Greenovite, 1307 Griffithite, 1308 Griphite, 1309 Grossularite, 358 Grothine, 359 Grothite, 1310 Grünerite, 1311 Grünlingite, 360 Guadalcazarite, 1312 Guanajuatite, 361 Guarinite, 362 Guitermanite, 364 Gummite, 1313 Gypsum, 365 Gyrolite, 1314 Hacklite, 1409 Hackmanite, 1315 Haidingerite, 366 Hainite, 367 Halite, 368 Halloysite, 369 Halotrichite, 370 Hambergite, 371 Hamlinite, 372 Hancockite, 373 Hanksite, 374 Hannayite, 1316 Hardystonite, 375 Harmotone, 376 Harstigite, 1317 Hartite, 1318 Hastingsite, 1320 Hatchettite, 1319 Hatchettolite, 377 Hauchecornite, 378 Hauerite, 379 Hausmannite, 380 Hautefeuillite, 381 Hauynite, 382 Hedenbergite, 383 Heintzite, 384 Hellandite, 385 Helvite, 386 Hemafibrite, 387 Hematite, 388 Hematolite, 390 Hematostibiite, 1322 Henwoodite, 1323 Hercynite, 391 Herderite, 392 Herrengrundite, 393 Hessite, 394 Hessonite, 1324 Hetaerolite, 1325 Heterogenite, 1601 Heteromorphite, 1326 Heterosite, 1332 Heubachite, 1607 Heulandite, 395 Hewettite, 396 Hexahydrite, 397 Hibschite, 398 Hieratite, 1329 Higginsite, 1330
Hillebrandite, 399 Hinsdalite, 400 Hiortdahlite, 401 Hisingerite, 402 Histrixite, 1333 Hjelmite, 1328 Hodgekinsonite, 403 Hoelite, 850 Högbomite, 1335 Hollandite, 405 Holmquistite, 1295 Homilite, 1338 Hopeite, 406 Hornblende, common, 407 Hörnesite, 1336 Horsfordite, 1339 Hortonolite, 408 Howlite, 409 Huanatajayite, 1340 Huebnerite, 410 Hügelite, 1341 Hulsite, 1343 Humboltine, 1342 Humite, 411 Huntilite, 1344 Hureaulite, 412 Hutchinsonite, 912 Hyalophane, 414 Hyalosiderite, 1592 Hyalotekite, 415 Hydroboracite, 416 Hydrocerusite, 417 Hydroclinohumite, 1345 Hydrocuprite, 1630 Hydrocyanite, 418 Hydrogiobertite, 419 Hydromagnesite, 420 Hydronephelite, 421 Hydrophilite, 1348 Hydrotalcite, 422 Hydrothomsonite, 1349 Hydrotroilite, 1628 Hydrozincite, 423 Hypersthene, 424 Ice, 1351 Iddingsite, 1352 Idrialite, 1353 Hesite, 426 Illsemannite, 1337 Ilmenite, 427 Ilmenorutile, 1354 Ilvaite, 428 Impsonite, 1355 Inesite, 429 Invoite, 430 Iodobromite, 431 Iodyrite, 432 Iridium, 434 Iridosmine, 435 Iron, meteoric, 549 terrestrial, 436 Iron-copper-chalcanthite, 1606 Iron-pyrochroite, 955 Irvingite, 1357 Ishikawite, 1358 Isoclasite, 437 Ivaarite, 1359 Jacobsite, 438 Jadeite, 439 Jalpaite, 1360 Jamesonite, 440 Jarosite, 441 Jefferisite, 1361 Jeffersonite, 1362 Jeremejevite (eremeyevite), 443 Ježekite, 444 Joaquinite, 1585 Johannite, 1364 Johnstrupite, 445 Jordanite, 446 Josčite, 913 Josephinite, 1365 Jurupaite, 1366 Kaersutite, 1367 Kainite, 447 Kalicinite, 1368 Kalinite, 158 Lariophilite, 449 Kamacite, 1372 Kamarezite, 1370 Kämmererite, 1371 Kaolin(ite), 450 Kasolite, 1373 Katangite, 47 Kayserite, 1374 Keelyite, 1375 Kehoite, 1376 Keilhauite, 451 Kempite, 1429 Kentrolite, 452 Kermesite, 453 Kertschenite, 1377 Kierserite, 455 Kischetimite, 1346 Klaprotholite, 457 Kleinite, 458 Knebelite, 459 Knoprite, 1385 Knoxvillite, 460 Kobellite, 461 Kochite, 1413 Köchlinite, 462 Koettigite, 465 Könenite, 1378 Kongsbergite, 1379 Koninckite, 463 Koppite, 1381 Kornerupine, 464 Kotschubite, 1382 Kreittonite, 1383 Kremersite, 1384 Krennerite, 466 Kreuzbergite, 1386 Kroehnkite, 467 Krugite, 605 Kurskite, 1388 Laavenite, 1394 Labradorite, 470 Lacroixite, 471 Lagonite, 1389 Lambertite, 1391 Lampadite, 1390 Lanarkite, 472 Langbanite, 468 Langbeinite, 469 Langite, 473 Lansfordite, 474 Lanthanite, 475 Larderellite, 1410 Lassallite, 1412 Laubanite, 1392 Laumontite, 476 Laurionite, 477 Laurite, 478 Lautarite, 1393 Lautite, 479 Lavrovite, 1395 Lawrencite, 1396 Lawsonite, 480 Lazulite, 481 Lazurite, 482 Lead, 483 Leadhillite, 484 Lechatelierite, 1486 Lecontite, 485 Lehrbachite, 486 Leifite, 1397 Lengenbrachite, 914 Lepidolite, 487 Lepidomelane, 488 Leuchtenbergite, 1399 Leucite, 489 Leucochalcite, 490 Leucopetrite, 1400 Leucophanite, 491 Leucophoenicite, 492 Leucopyrite, 493 Leucosphenite, 494 Leverrierite, 1401 Levynite, 495 Lewisite, 1402 Liebethenite, 1403 Liebigite, 496 Lignite, 1404 Lillianite, 497 Limonite, 498 Linarite, 499 Lindackerite, 500 Linneite, 501 Liroconite, 502 Liskeardite, 1405 Lithargite, 915 Lithiophilite, 503 Livingstonite, 504 Loellingite, 505 cobaltiferous, 1610 Loeweite, 506 Loewigite, 507 Lorandite, 508 Lorenzenite, 509 Lorettoite, 901 Lossenite, 510 Lubeckite, 1408 Lucinite, 1406 Luckite, 1407 Ludlamite, 511 Ludwigite, 512 Luenebergite, 513 Mackensite, 1123 Mackintoshite, 1411 Magnesiochromite, 1618 Magnesioferrite, 515 Magnesioludwigite, 1414 Magnesite, 516 Magnetite, 517 magnesian, 1387 Malachite, 518 Malacon, 1415 Malinowskite, 1417 Mallardite, 519 Manandonite, 520 Manganandalusite, 1039 Manganapatite, 1419 Manganbrucite, 1420 Manganchlorite, 1422 Manganese-chalcanthite, 1421 Manganfayalite, 1423 Manganhedenbergite, 1424 Manganite, 521 Manganmagnetite, 1425 Manganocalcite, 1426 Manganocolumbite, 1427 Manganophyllite, 1428 Manganosite, 522 Manganostibite, 1431 Manganotantalate, 1432 Manganpectolite, 1433 Mangan-vesuvianite, 1434 Mansjöite, 1435 Marcasite, 523 arsenical, 1192 Margarite, 524 Margarosanite, 967 Marialite, 525 Mariposite, 1598 Marmatite, 1436 Marshite, 1437 Marsjatskite, 1438 Martinite, 526 Martite, 1439 Mascagnite, 527 Maskelynite, 1440 Massicotite, 528 Matildite, 529 Matlockite, 530 Maucherite, 531 Mauzeliite, 1441 Mazapilite, 1442 Meionite, 532 Melanocerite, 533 Melanovanadite, 1443 Melanterite, 536 Melilite, 537 Meliphanite, 538 Melite, 539 Mellite, 1444 Melnikovite, 1445 Melonite, 540 Menalotekite, 535 Mendelyeevite, 1446 Mendipite, 541 Mendozite, 542 Meneghinite, 543 Mercury, 544 Merrillite, 921 Merwinite, 1447 Mesitite, 1448 Mesolite, 545 Messelite, 1449 Metabrushite, 546 Metacinnabarite, 547 Metahewettite, 548 Metastibnite, 1450 Metatorbernite, 219 Metavoltaite, 1451 Meyerhofferite, 550 Miargyrite, 551 Microcline, 552 Microlite, 553 Microsommite, 554 Miersite, 555 Milarite, 556 Millerite, 557 Millosevichite, 1452 Miloschite, 1453 Mimetite, 558 calciferous, 620 Minasite, 1454 Minasragrite, 559 Minguetite, 560 Minium, 561 Mirabilite, 562 Misenite, 920 Mixite, 563 Mizzonite, 564 Moissanite, 1456 Molengraafite, 566 Molybdenite, 567 Molybdite, 568 Molybdomenite, 1457 Molybdophyllite, 569 Molybdosodalite, 1458 Molysite, 1459 Monazite, 570 Monetite, 571 Monimolite, 572 calciferous, 1623 Montanite, 573 Montebrasite, 1461 Monticellite, 574 Montroydite, 576 Moravite, 577 Mordenite, 578 Morencite, 1462 Morenosite, 579 Morinite, 1463 Mosandrite, 1464 Mosesite, 580 Mossite, 1465 Mossottite, 180 Motlocite, 1479 Mottramite, 1466 Mullanite, 1468 Müllerite, 1467 Muromonite, 456 Muscovite, 583 Muthmannite, 582 Nadorite, 584 Naegite, 1469 Nagyagite, 585 Nantokite, 586 Napalite, 1470 Narsasukite, 1472 Nasonite, 587 Natroalunite, 1473 Natrochalcite, 588 Natrodavyne, 1474 Natrojarosite, 1475 Natrolite, 589 Natron, 590 Natroncatapleite, 1534 Natrophilite, 591 Naumannite, 592 Nemalite, 1476 Nemaphyllite, 232 Neotantalite, 1477 Neotocite, 1478 Nephelite, 593 Nepouite, 595 Neptunite, 596 Nesquehonite, 597 Newberyite, 1480 Newtonite, 598 Niccolite, 599 Nicholsonite, 1481 Nickel-skutterudite, 1482 Niter, 600 Nitrobarite, 1484 Nitrocalcite, 916 Nitroglauberite, 917 Nitromagnesite, 918 Nocerite, 1485 Nordenskiöldine, 601 Nordmarkite, 1487 Northupite, 602 Noselite, 603 Offrétite, 1488 Okenite, 606 Oldhamite, 607 Oligoclase, 608 Oliveiraite, 929 Olivenite, 609 Olivine, 448 Onofrite, 610 Opal, 612 Orientite, 1491 Orpiment, 613 Orthoclase, 614 Oruetite, 1492 Orvillite, 1297 Osmiridium, 1493 Otavite, 1494 Owyheeite, 1497 Oxammite, 1495 Ozocerite, 1496 Pachnolite, 615 Pageite, 1498 Palaite, 616 Palladium, 1499 Palmerite, 1500 Palmierite, 1501 Paracoquimbite, 1503 Paraffin, 617 Paragasite, 1512 Paragonite, 618 Parahopeite, 619 Paralaurionite, 1505 Paraluminite, 1506 Paramelaconite, 1507 Parasepiolite, 1508 Paraurichalcite, 1504 Paravauxite, 1510 Paravivianite, 1509 Paredrite, 1511 Parisite, 1587 Parsettensite, 1051 Parsonsite, 1515 Partschinite, 622 Pascoite, 623 Paternoite, 1513 Patronite, 1514 Pearceite, 624 Peckhamite, 1516 Pectolite, 625 Peganite, 626 Penfieldite, 627 Penninite, 628 Pentlandite, 629 Percylite, 630 Periclase, 631 Perovskite, 632 Petalite, 633 Petzite, 634 Pharmacolite, 635 Pharmacosiderite, 636 Phenacite, 637 Phenicochroite, 640 Phillipite, 1517 Phillipsite, 638 Phlogopite, 639 Pholidolite, 1519 Phosgenite, 641 Phosphoferrite, 1520 Phosphophyllite, 1521 Phosphosiderite, 642 Phosphuranylite, 643 Picite, 1523 Pickeringite, 1524 Picotite, 1525 Picrochromite, 867 Picroepidote, 1526 Picromerite, 1527 Picropharmacolite, 1528 Picrotephroite, 1565 Picrotitanite, 1529 Piedmontite, 644 Pigeonite, 1530 Pilbarite, 1533 Pinakiolite, 645 Pinnoite, 646 Pintadoite, 1531 Pirssonite, 647 Pisanite, 934 Pistomesite, 1532 Pitticite, 648 Plagionite, 649 Planchéite, 1535 Planerite, 1536 Planoferrite, 1537 Platinite, 923 Platinum, 650 magnetic, 1046 Plattnerite, 651 Plazolite, 1539 Pleonaste, 1605 Plessite, 1540 Plumbocalcite, 1541 Plumboferrite, 1612 Plumbogummite, 652 Plumbojarosite, 1542 Plumboniobite, 922 Plumosite, 1543 Pöchite, 1544 Podolite, 1545 Polianite, 653 Pollucite, 654 Polyargyrite, 655 Polybasite, 656 Polycrase, 657 Polydymite, 658 Polyhalite, 659 Polylithionite, 262 Polymignite, 660 Polysphaerite, 1546 Porpezite, 1548 Posepnyte, 1549 Powellite, 661 Prehnite, 662 Priceite, 1551 Priorite, 1552 Prizbramite, 1550 Prochlorite, 663 Prolectite, 1483 Prosopite, 664 Proustite, 665 Pseudoboléite, 275 Pseudobrookite, 666 Pseudomesolite, 1593 Pseudowavellite, 1566 Psilomelane, 667 Ptilolite, 669 Pucherite, 1558 Purpurite, 670 Pyrargyrite, 671 Pyrite, 672 Pyroaurite, 1559 Pyrobelonite, 1560 Pyrochlore, 673 Pyrochroite, 674 Pyrolusite, 675 Pyromorphite, 676 arseniferous, 514 chromiferous, 1 Pyrope, 677 Pyrophyllite, 678 Pyrosmalite, 679 Pyrostilpnite, 680 Pyroxmangite, 681 Pyrrharsenite, 1563 Pyrrhotite, 682 nickeliferous, 1418 Quartz, alpha, 683 beta, 1006 Quisqueite, 1568 Racewinite, 1052 Ralstonite, 685 Rammelsbergite, 686 Ramsayite, 1490 Raspite, 687 Rathite, 1569 Realgar, 688 Reddingite, 689 Redingtonite, 1570 Reinite, 690 Remingtonite, 691 Retzian, 692 Rezbanyite, 693 Rhabodophanite, 694 Rhagite, 695 Rhodium gold, 1045 Rhodizite, 696 Rhodochrosite, 697 calciferous, 1615 cobaltiferous, 1616 ferriferous, 949 magnesic, 1621 zinciferous, 195 Rhodolite, 1571 Rhodonite, 698 ferriferous, 893 Rhomboclase, 1572 Rhönite, 1573 Richellite, 1574 Richterite, 699 Rickardite, 700 Riebeckite, 701 Rinkite, 702 Rinneite, 703 Risörite, 705 Riversideite, 1576 Roeblingite, 707 Roemerite, 709 Roepperite, 708 Romeite, 1577 Rosasite, 1578 Roschérite, 1579 Roscoelite, 710 Roselite, 711 Rosenbuschite, 1580 Rosiéresite, 712 Rothoffite, 1581 Rowlandite, 1582 Rubber-sulphur, 581 Rubidium-microcline, 1209 Rubidium-orthoclase, 1518 Ruby, oriental, 1588 Rumpfite, 1556 Rutherfordine, 1553 Rutile, 714 Safflorite, 715 Salammonite, 716 Salmite, 389 Salmonsite, 404 Samarskite, 717 Samirésite, 718 Samsonite, 719 Sandbergerite, 1331 Sanguinite, 1253 Saponite, 720 Sapphire, 791 Sapphirine, 721 Sarcolite, 722 Sarcopside, 1617 Sarkinite, 723 Sartorite, 724 Sassolite, 725 Scacchite,
1247 Schafarzikite, 1195 Schapbachite, 726 Scheelite, 727 Scheererite, 1196 Schefferite, 728 Schertelite, 1197 Schirmerite, 729 Schizolite, 1198 Schneebergite, 668 Schoepite, 425 Schorlite, 1619 Schorlomite, 730 Schreibersite, 1188 Schroeckingerite, 1620 Schroetterite, 731 Schwartzembergite, 732 Schwartzite, 733 Scolecite, 734 Scorodite, 735 Searlesite, 736 Selenium, 737 Selensulfur, 1184 Selen-tellurium 738 Seligmannite, 924 Sellaite, 739 Senaite, 1179 Senarmotntie, 741 Sepiolite, 742 Serendibite, 1180 Serpentine, common, 454 Serpierite, tohimor Serpierite, 1181 Seybertite, 744 Shanyavskite, 1182 Shattuckite, 1183 Sheridanite, 1185 Sicklerite, 745 Siderite, 746 calciferous, 1416 magnesian, 1277 manganiferous, 938 Sideronatrite, 747 Siderotil, 1489 Siegenite, 1186 Silicomagnesiofluorite, 1187 Sillimanite, 748 Silver, 749 auriferous, 1627 cupriferous, 1554 Simonellite, 1189 Sincosite, 1190 Sipylite, 750 Sitaparite, 1193 Skemmatite, 751 Skutterudite, 752 Smaltite, 753 Smaragdite, 1194 Smithsonite, 754 cupriferous, 611 ferriferous, 31 manganiferous, 150 Sobralite, 1168 Soda-glauconite, 1169 Soda niter (nitratite), 755 Soda-sarcolite, an hypothet. mol., 1594 Sodalite, 756 Soddite, 1170 Sommer: 757 Soumansite, 757 Spadaite, 758 Spangolite, 759 Spencerite, 1171 Sperrylite, 760 Spessartite, 761 Sphalerite, 764 mercurial, 413 stanniferous, 442 Sphenomanganite, 1191 Spherite, 762 Spherocobaltite, 763 Spheromangite, 1632 Spinel (normal "ruby"), 713 Spodiophyllite, 1173 Spodiosite, 1174 Spodumene, 766 Spurrite, 767 Stannite, 768 Stasite, 1175 Staszicite, 1176 Staurolite, 769 Steenstrupine, 1177 Stellerite, 1178 Stephanite, 770 Semsevite, 740 Stercorite, 771 Sternbergite, 772 Stevensite, 1622 Stewartite, 1157 Stibiconite, 773 Stibiocolumbite, 1158 Stibiotantalite, 774 Stibnite, 775 Stichite, 1159 Stilbite, 776 Stilpnomelane, 777 Stoffertite, 1160 Stokesite, 1161 Stolzite, 778 Strengite, 779 Strigovite, 1162 Stromeyerite, 1163 Strontianite, 780 Strontianocalcite, 1164 Strüverite, 1165 Struvite, 781 Stuetzite, 1166 Styloptypite, 782 Succinite (amber), 1167 Sulfatic-cancrinite, 1038 Sulfoborite, 783 Sulfobalite, 784 Sulfur, monoclinic, 159 Sulfurite, 785 Sulvanite, 1153 Sussexite, 786 Svabite, 1154 Svanbergite, 1155 Sychnodymite, 1156 Sulvanite, 787 Sylvanite, 787 Sylvite, 788 Symplesite, 789 Symplesite, 789 Synadelphite, 790 Syngenite, 792 Szaibelyite, 1327 Szmikite, 793 Szmolnokite, 251 Tachyhydrite, 1135 Tachiolite, 1136 Taenite, 1137 Tagilite, 1138 Talc, 794 Talctriplite, 1139 Tallingite, 1140 Tamarugite, 1625 Tantalic ochre, 947 Tantalite, 795 Tantalum, 796 Tapiolite, 1141 Taramellite, 1142 Tarapacaite, 1624 Tarbuttite, 930 Tarnowitzite, 1143 Tartarkaite, 1144 Tasmanite, 1145 Tavistockite, 931 Tawmawite, 1146 Taylorite, 932 Teallite, 933 Tellurite, 1147 Tellurium, 798 Tellurobismutite, 1148 Tengerite, 1584 Tennantite, 800 bismuthiferous, 966 Tenorite, 1149 Tephroite, 801 Terlinguaite, 802 Termierite, 1150 Teschermacherite, 803 Tetradymite, 804 sulfurous, 1151 Tetrahedrite, 805 cobaltiferous, 1199 Thalenite, 1152 Thaumasite, 806 Thenardite, 807 Thermonatrite, 808 Thomsenolite, 809 Thomsonite, 810 Thorianite, 811 Thorite, 812 Thorogummite, 1132 Thortveitite, 813 Thulite, 1133 Thuringite, 814 Tiemannite, 815 Tilasite, 816 Tilkerodite, 1380 Tin, 817 Tinzenite, 1230 Titanhydroclinohumite, 1134 Titanite, 818 Titanolivine, 1626 Topaz, 819 oriental, 1101 Torbernite, 1119 Torendrikite, 1120 Törnebohmite, 1121 Törnebohmite, 1121 Tourmaline, alkali, 604 chromic, 820 iron, 1122 magnesian, 1502 Trechmanite, 1124 Tremolite, 821 Trevorite, 1611 Trichalcite, 822 Tridymite, 823 Trigonite, 1125 Trimerite, 824 Triphylite, 825 Tripkeite, 925 Triplite, 826 Triploidite, 827 Tripuhyite, 1126 Tritomite, 828 Troegerite, 829 Troilite, 830 Trolleite, 1127 Trona, 831 Troostite, 1128 Tscheffkinite (chevkinite), 832 Tschermigite, 1129 Tsumebite, 833 Tungstenite, 1130 Tungstite, 834 Turanite, 1131 Turquois, 836 Turyte, 835 Tychite, 837 Tyrolite, 838 Tysonite, 839 Tyuyamunite, 1118 Uhligite, 1117 Ulexite, 840 Ullmannite, 841 Ultrabasite, 1116 Umangite, 1115 Uraconite, 1114 Uranochalcite, 1604 Uranocircite, 843 Uranophane, 844 Uranopilite, 845 Uranosphite, 1113 Uranospherite, 926 Uranospinite, 846 Uranothallite, 847 Urbanite, 848 Uranothallite, 847 Urbanite, 849 Uvanite, 851 Uvarovite, 852 Vanadic ochre, 1430 Vanadinite, 854 Valentinite, 853 Vanthoffite, 1112 Variscite, 855 Vashegyite, 856 Vauquelinite, 857 Vauxite, 1613 Vegasite, 1111 Velardeñite, 1110 Vermiculite, 858 Vernadskite, 1109 Vesuvianite, 859 Veszelyite, 860 Vilateite, 1108 Villiaumite, 1106 Viridine, 1105 Vivianite, 861 Voelckerite, 1104 Voglianite, 1103 Voglite, 862 Volborthite, 863 Volchonskoite, 1603 Voltaite, 864 Voltzite, 865 Vonsenite, 1102 Vrbaite, 866 Vredenburgite, 1100 Wagnerite, 869 Walpurgite, 870 Wapplerite, 871 Wardite, 872 Warickite, 874 Wattevillite, 1602 Wavellite, 875 Wehrlite, 20 Weibullite, 944 Weibyite, 1242 Weinbergerite, 18 Weinschenkite, 873 Wellsite, 876 Wernerite, 877 Weslienite, 190 #### ALPHABETICAL INDEX Whewellite, 919 Whitneyite, 878 Wiikite, 879 Wilkeite, 880 Willemite, 881 Willyamite, 882 Witherite, 883 Wittichenite, 884 Wodanite, 1608 Woehlerite, 885 Wolfachite, 886 Wolframite, 887 Wollastonite, 888 Wulfenite, 889 Wurtzite, 890 Xanthochroite, 868 Xanthoconite, 891 Xanthophyllite, 892 Xanthoxenite, 1043 Xenotime, 894 Xonotlite, 1596 Yttergranat, 911 Yttrialite, 939 Yttrocerite, 895 Yttrocrasite, 1600 Yttrofluorite, 937 Yttrogummite, 936 Yttrotantalite, 896 Yukonite, 897 Zaratite, 898 Zebedassite, 1595 Zepharovichite, 899 Zeunerite, 900 Zeyringite, 935 Zinc, 1321 Zincaluminite, 902 Zincite, 903 Zincocalcite, 229 Zincosite, 131 Zinc-copper-chalcanthite, 765 Zinc-copper-melanterite, 743 Zinkenite, 904 Zinnwaldite, 905 Zippeite, 103 Zircon, 906 Zirkelite, 907 Zoisite, 908 Zorgite, 909 Zunyite, 910 #### NUMERICAL INDEX 1. Pyromorphite, chromifer-2. Acanthite 3. Acmite 4. Actinolite 5. Adamite 6. Adelite 7. Aegirite 8. Aenigmatite (enigmatite) 9. Aeschynite (eschynite) 10. Blomstrandite 11. Agnolite 12. Agricolite 13. Aguilarite 14. Aikinite 15. Alabandite 16. Alamosite 17. Albite 18. Weinbergerite 19. Allanite 20. Wehrlite 21. Allophane 22. Almandite 23. Altaite 24. Alumian 25. Aluminite 26. Alunite 27. Alunogen 28. Amalgam 29. Amarantite 30. Amblygonite 31. Smithsonite, ferriferous 32. Ampangableite 33. Analcite 34. Ancylite 35. Andalusite 36. Andesine 37. Andorite 38. Andradite 39. Anglesite 40. Anhydrite 41. Ankerite 42. Annabergite 43. Anorthite 47. Katangite 48. Aphthitalite 49. Apjohnite 52. Ardennite Apophyllite Aragonite 44. Anorthoclase 45. Anthophyllite 46. Antimony 53. Arfvedsonite 54. Argentite 55. Argyrodite 56. Arizonite 57. Arsenic 58. Arseniopleite 59. Arseniosiderite 60. Arsenoferrite 61. Arsenolite 62. Arsenopyrite 63. Artinite 64. Alisonite 65. Astrophyllite 66. Atacamite 67. Atelestite 68. Augite 69. Aurichaleite 70. Autunite 71. Axinite 72. Awaruite 73. Azurite 74. Babingtonite 75. Baddeleyite 76. Badenite 77. Bakerite 78. Barite 79. Barrandite 80. Barytocalcite 81. Bastnäsite 82. Baumhauerite 83. Cliachite 84. Bazzite 85. Beaverite 86. Bechilite 87. Beckelite 88. Beegerite 89. Bellite 90. Anthophyllite-hydrous 91. Bementite 92. Benitoite 93. Beraunite 94. Berthierite 95. Bertrandite 96. Beryl (emerald) 106. Bismuth 107. Bismuthinite 108. Bismutite 109. Bismutospherite 110. Bixbyite 111. Blödite 112. Bobieerite 113. Boléite 114. Boothite 115. Boracite 116. Borax 117. Borickite 118. Bornite 119. Botryogen 120. Boulangerite 121. Bournonite 122. Boussingaultite 123. Brackebuschite 124. Brandtite 125. Braunite 126. Breithauptite 127. Brewsterite 128. Brochantite 129. Bromlite 130. Bromyrite 131. Zincosite 132. Brookite 133. Brucite 134. Brushite 135. Bunsenite 136. Cabrerite 137. Cacoxenite 138. Calamine 139. Calaverite 140. Calcioferrite 141. Calciovolborthite 142. Calcite 143. Caledonite 144. Callainite 145. Calomel 146. Canfieldite 147. Carocolite 148. Carminite 149. Carnallite 150. Smithsonite, manganiferous 151. Carnotite 152. Carpholite 153. Carphosiderite Carrollite Carvinite 156. Caryocerite 157. Cassiterite 97. Beryllonite 99. Betafite 101. Bieberite 102. Bindheimite 103. Zippeite 104. Biotite 105. Bismite 100. Beudantite Berzelianite 98. | 158. | Kalinite | |------------------------------|--| | 159. | Sulfur, monoclinic | | 160. | Catapleiite | | 161. | Cebollite | | 162. | Celadonite | | 163. | Celestite | | 164. | Cenosite | | 165. | Cerargyrite | | 166. | Cerite | | 167. | Cerusite | | 168. | Cervantite | | 169. | Chabazite | | 170. | | | 171. | Chalcedony | | 172. | Chalcocite | | 173. | Chalcophanite | | 174. | Chalcophyllite | | 175. | Chalcophynite | | | Chalcopyrite
Chalcosiderite | | 177 | Chalcostibita | | 177. | Chalcostibite
Chalmersite | | | | | | Chenevixite | | 180. | Mossottite | | 181. | | | 102. | Chiolite | | 180. | Chiviatite | | 184. | Chloanthite | | 180. | Chloritoid | | 180. | Chloropal | | 187. | Chondrodite
Chromite | | 188. | Chromite | | | Chrysoberyl | | 190. | Weslienite | | 191. | Churchite | | 192. | | | 193. | Cinnabar | | 194. | Cirrolite | | 195. | Rhodocrosite, zinciferous | | 196. | Claudetite | | | Clausthalite | | 198. | Clinochlore | | 199. | Clinoclasite | | 200. | Clinohedrite | | 201. | Clinohumite | | 202. | Clinozoisite | | 203. | Cobaltite | | 204. | Cobaltnickelpyrite | | 205. | Colemanite | | 206. | Collyrite | | 207. | Coloradoite | | 208. | | | | Conichalcite | | 210. | Conellite | | 211. | Cookeite | | 212. | Copiapite | | 213. | Copper | | 214. | Coquimbite | | 215. | Cordylite | | 216. | Cordylite
Cornwallite | | 217. | Corundophilite | | 218. | Corundum | | 219. | Meta-torbernite | | 220. | | | | Cosalite | | 221. | Cotunnite | | 221.
222. | Cotunnite
Crednerite | | 221.
222.
223. | Cotunnite
Crednerite
Crocidolite | | 221,
222,
223,
224. | Cotunnite
Crednerite
Crocidolite
Crocoite |
 221.
222.
223. | Cotunnite Crednerite Crocidolite Crocoite | | 226. | Crookesite | |----------------|--| | 227. | Cryolite | | 228. | Cryolithionite | | 229. | Zincocalcite | | 230. | Cuprobismutite | | 230.
231. | Cryophyllite | | 232. | Nemaphyllite | | 233. | Cuprotungstite | | 234. | Cuprotungstite
Cuspidine | | 235. | Custerite | | 236. | Cvanite | | 237. | Custerite Cyanite Cyanochroite Cyanotrichite | | 238. | Cyanotrichite
Cylindrite | | 239. | Cylindrite | | 240. | Cyprusite | | 241. | Danalite | | 242. | Danburite | | 243. | Darapskite | | 244. | Datolite | | 245. | Daubreeite | | 246. | Daubreelite | | 247. | Dawsonite | | 248. | Deeckeite | | 249. | Descloizite | | 250. | Deweylite | | 251. | Szmolnokite | | 252. | Diadochite | | 253. | Diamond | | 254. | Diaphorite | | 255. | Diaspore | | 256. | Dickinsonite | | 257. | Didymolite | | 258. | Dietzeite | | 259. | Diopside | | 260. | Dolerophanite | | 261. | | | 262. | Polylithionite | | 263. | Dufrenite | | 264. | Dufrenoysite | | 265. | Dumortierite | | 265. | Durangite | | 267. | Dyscrasite | | 268. | Ecdemite | | 269. | Edingtonite | | $270. \\ 271.$ | Egglestonite | | 272. | Table Is I wanted | | 273. | Eichbergite | | 274. | Electrum
Embolite | | 275. | Pseudoboléite | | 276. | Emery | | 277. | Emplectite | | 278. | Empressite | | 279. | Enargite | | 280. | Enstatite | | 281. | Eosphorite | | 282. | Epiboulangerite | | 283. | Epididymite | | 284. | Epidote | | 285. | Epigenite | | 286. | Epistilbite | | 287. | Epsomite | | 288. | Erinite | | 289. | Erionite | | 290. | Erythrite | | 291. | Ettringite | | 292. | Eucairite | | 293. | Euchroite | | | | | | | | | 295. | Eudialyte | |-----|--------------|-----------------| | | 296. | Eulytite | | | 200. | Euxenite | | | 201. | Euxemie | | - 1 | 298.
299. | Evansite | | | 299. | Fairfieldite | | | 300. | Falkenhaynite | | | 301.
302. | Famatinite | | | 302. | Faratsihite | | | 303. | Faujasite | | | 304. | Fayalite | | | | Felsöbanyite | | | 306. | Fergusonite | | | 307. | Fernandinite | | | 308. | | | | | Ferritungstite | | | 309. | 727 6 1 | | | 310. | Fibroferrite | | | 311. | Fillowite | | - 3 | 312. | Fischerite | | | 313. | Flinkite | | | 314. | Canbyite | | | 315. | Florencite | | | 316. | Fluellite | | | 317. | Fluocerite | | | 318. | Fluorite | | | 319. | | | | 320. | | | | 991 | Forsterite | | | 321. | Franckeite | | | 322. | | | | 323. | Freibergite | | | 324. | Freieslebenite | | | 325. | Fremontite | | | 326. | Friedelite | | | 327. | Gadolinite | | | 328. | Gageite | | | 329. | Gahnite | | | 330. | Gajite | | | 331. | Galena | | | 332. | Galenobismutite | | | 333. | Ganomalite | | | | | | | 995 | Ganophyllite | | | 335. | | | | 336. | Gearksutite | | | 557. | Gehlenite | | | 338. | | | | 339. | Genthite | | | | Geocronite | | | 341. | Gersdorffite | | | 342. | Gibbsite | | | 343. | Gismondite | | | 344. | Glauberite | | | 345. | Glaucodot | | | 346 | Glaucophane | | | 347 | Glockerite | | | 348. | Gmelinite | | | | Goethite | | | | Gold | | | 350. | | | | 351. | Calciocelestite | | | 352. | Goldschmidtite | | | 353. | Goslarite | | | 354. | Goyazite | | | 355. | Graftonite | | | 356. | Graphite | | | 357. | Greenockite | | | 358. | Grossularite | | | 359. | Grothine | | | 360. | Grünlingite | | | 361. | Guanajuatite | | | | Guanajuatite | | | | | 294. Euclase | | Microsophic Co. | |------|--| | 362. | Guarinite | | 363. | Alvite | | | Guitermanite | | 365. | Gypsum | | 366. | Haidingerite | | 367. | Hainite | | 368. | Halite | | 369. | Halloysite
Halotrichite | | 370. | Halotrichite | | 371. | Hambergite | | 372. | Hamlinite | | 373. | Hambergite Hamlinite Hancockite Hanksite Hardystonite Harmotome Hatchsttolite | | 374. | Hanksite | | 375. | Hardystonite | | 376. | Harmotome | | 377. | Hatchettolite | | 378. | Hauchecornite | | 379. | Hatchettolite
Hauchecornite
Hauerite
Hausmannite | | 380. | Hausmannite | | 381 | Hautefeuillite | | 382 | Haïvnite | | 383 | Haushame
Haushereilte
Haushereite
Heintzite | | 384 | Heintzite | | 385 | Hellandite | | 386 | Helvite | | 387 | Hemafibrite | | 388 | Homatite | | 380 | Hematite
Salmite
Hematolite | | 300 | Hometalita | | 301 | Hercynite | | 302 | Herderite | | 303 | Herrengrundite | | 204 | Hossita | | 305 | Haulandita | | 306 | Hessite Heulandite Hewettite Hexahydrite Hilbschite Hillebrandite | | 307 | Hovehydvita | | 206 | Hibsahita | | 300 | Hillebrandite | | | EDITOR OF THE PARTY PART | | 401 | Hiertdehlite | | 402 | Hinsdalit Hiortdahlite Hisingerite Hodgekinsonite Salmonsite | | 102. | Hadralinsonita | | 404 | Calmanaita | | 404. | Hodgekinsonite
Salmonsite
Hollandite | | 400. | Hollandite | | 400. | Howklands someon | | 407. | Hopeite Hornblende, common Hortonolite Howlite Huebnerite Humite | | 400. | Hortonome | | 410 | Howate
Haraba suits | | 411 | Humite | | | | | 412. | Hureaulite
Sphalerite, mercurial
Hyalophane | | 410. | Sphalerite, mercuriai | | 414, | Hyalophane | | | Hyalotekite | | 416. | | | 417. | Hydrocerusite | | 418. | Hydrocyanite | | 419. | Hydrogiobertite | | 420. | Hydromagnesite | | 421. | Hydronephelite | | 422. | Hydrotalcite | | 423. | Hydrozincite | | 424. | Hypersthene | | 425. | Schoepite | | 426. | Ilesite | | 427. | Ilmenite | | 428. | Ilvaite | | 429. | Inesite | | | N | UMERICAL INDEX | |---|--------------|---| | | 430 | Invoite | | | 431. | Iodobromite | | | 432. | Iodobromite
Iodyrite | | | 199 | | | | 434. | Iridium
Iridosmine
Iron, terrestrial
Isoclasite | | | 435. | Iridosmine | | | 430. | Iron, terrestrial | | | 438. | Jacobsite | | | 439. | Jadeite | | | 440. | Jamesonite | | | 441. | Jarosite | | | 442. | Sphalerite, stanniferous | | | | Jeremejevite (eremeyevite)
Ježekite | | | 4.4.5 | T - L | | | 446. | Jordanite | | | 447. | Kainite | | | 448. | Olivine | | | 449. | Kaliophilite | | | 450. | Kailhauita | | | 452 | Kentrolite | | | 453. | Kermesite | | | 454. | Serpentine, common | | | 455. | Kierserite | | | 456. | Muromonite | | | 457. | Klaprotholite | | | 459. | Knebelite | | | 460. | Knoxvillite | | | 461. | Jordanite Kainite Olivine Kaliophilite Kaolin(ite) Keilhauite Kentrolite Kermesite Serpentine, common Kierserite Muromonite Klaprotholite Kleinite Knebelite Knoxvillite Köchlinite Köchlinite Kornerupine Koettigite Krennerite Kroehnkite Langbanite Lahradorite Lanrkite Langite Langite | | | 462. | Köchlinite | | | 463. | Koninckite | | | 465 | Kontrigite | | | 466. | Krennerite | | | 467. | Kroehnkite | | | 468. | Langbanite | | | 469. | Langbeinite | | | 470. | Labradorite | | | 471. | Lacroixite | | | 473. | Langite | | | 474. | Lansfordite | | | 475. | Lanthanite | | | 476. | Lansfordite
Lanthanite
Laumontite
Laurionite | | | 4/1. | Laurionite | | | 479 | Laurite
Lautite | | | 480. | Lawsonite | | | 481. | Lazulite | | | 482. | Lazurite | | I | 483. | Lead | | ı | 484.
485. | Leadhillite
Lecontite | | ı | 486. | Lehrbachite | | ı | 487. | Lepidolite | | ı | 488. | Lepidomelane | | | 489. | Leucite | | | 490. | Leucochalcite | | | 491.
492. | Leucophanite
Leucophoenicite | | 1 | 493. | Leucopyrite | | | 494. | Leucosphenite | | | 495. | Levynite | | | 496. | Liebigite | | 1 | 497. | Lillianite | | | | | | 3 | 498. | Limonite | |-----|---------|--------------------------| | П | | | | | 499. | Linarite | | | 500. | Lindackerite | | - 1 | 501. | Linneite | | - 1 | 502. | Liroconite | | - 1 | 503. | Lithiophilite | | - 1 | | | | | 504. | Livingstonite | | | 505. | Loellingite | | 1 | 506. | Loeweite | | П | 507. | Loewigite | | | 508. | | | | 509. | | | | |
Lorenzenite | | | 510. | Lossenite | |) | 511. | Ludlamite | | | 512. | Ludwigite | | | 513. | Luenebergite | | 1 | 514. | Pyromorphite, arsenifer- | | | 014. | | | Н | 222 | ous | | | 515. | Magnesioferrite | | н | 516. | Magnesite | | | 517. | Magnetite | | | 518. | Malachite | | ы | | | | | 519. | Mallardite | | П | 520. | Manandonite | | | 521. | Manganite | | И | 522. | Manganosite | | | 523. | Marcasite | | | | | | | 524. | Margarite | | | 525. | Marialite | | | 526. | Martinite | | | 527. | Mascagnite | | | 528. | Massicotite | | | | Matildita | | | 529. | Matildite | | | 530. | Matlockite | | П | 531. | Maucherite | | | 532. | Meionite | | | 533. | Melanocerite | | | | TACIANO CONTO | | - 1 | 534. | 3.5.1 | | 1 | 535. | Melanotekite | | -1 | 536. | Melanterite | | -1 | 537. | Melilite | | П | 538. | Meliphanite | | П | 539. | Melite | | П | 44 1 40 | | | П | 540. | Melonite | | П | 541. | Mendipite | | П | 542. | Mendozite | | П | 543. | Meneghinite | | П | | Mercury | | ч | 545. | | | | | | | И | 546. | Metabrushite | | 1 | 547. | Metacinnabarite | | П | 548. | Mefahewettite | | П | 549. | Iron, meteoric | | и | 550. | Meyerhofferite | | н | | | | П | 551. | Miargyrite | | п | 552. | Microcline | | 4 | 553. | Microlite | | | 554. | Microsommite | | | 555. | Miersite | | | 556. | Milarite | | 1 | | | | | 557. | Millerite | | 1 | 558. | Mimetite | | 1 | 559. | Minasragrite | | | 560. | Minguetite | | | 561. | Minium | | | | | | | 562. | Mirabilite | | | 563. | Mixite | | 1 | 564. | Mizzonite | | | | | | | | | | 20 | | |--------------|---| | 565. | Barytocelestite | | 566. | Molengraaffite | | 567. | Molybdenite | | 568. | Molybdenite
Molybdite
Molybdophyllite | | 569. | Molybdophyllite | | 570. | Monazite | | 571. | Monetite | | 572. | Monimolite | | 573. | Montanite | | 574. | Monticellite | | 575. | Celestobarite | | 570. | Montroydite
Moravite
Mordenite | | 570 | Mordonito | | | | | 579.
580. | Mosesite | | 581. | Rubber-sulphur | | 582. | Muthmannite | | 283 | VITISCOVITA | | 584. | Nadorite | | 585. | Nagyagite | | 586. | Nantokite | | 587. | Nasonite
Natrochalaita | | 588. | Natiochaicite | | 589. | Natrolite | | 590. | Natron | | 591. | Natrophilite | | 592. | Naumannite | | 593. | Nephelite
Deiter sulphur | | 594.
595. | Daiton-sulphur
Nepouite | | 596. | Neptunite | | 597. | | | 598. | Newtonite | | | Niccolite | | 600. | Niter | | 601. | Nordenskiöldine | | 602. | Nordenskiöldine
Northupite
Noselite | | 603. | Noselite | | 604. | Tourmaline, alkali | | 605. | Krugite | | 606. | Okenite | | 607. | Oldhamite | | | Oligoclase | | | Olivenite
Onofrite | | | Smithsonite, cupriferou | | 612. | Ора | | 613. | Orpiment | | 614. | Orpiment
Orthoclase
Pachnolite | | 615. | Pachnolite | | OTO | Talane | | 617. | Paraffin | | 618. | Paragonite | | 619. | Parahopeite | | 620. | Mimetite, calciferous | | 621. | Fluor-meionite | | 622. | Partchinite
Pagasita | | 623.
624. | Pascoite
Pascoite | | 625. | Pearceite
Pectolite | | 626. | Peganite | | 627. | Penfieldite | | 628. | Penninite | | 629. | Pentlandite | | 630. | Percylite | | 631. | Periclase | | 632. | Perovskite | | | | | I | 633.
634. | Petalite
Petzite | |---|--------------|-----------------------------| | | 635. | Pharmacolite | | | 636. | Pharmacosiderite | | П | 637. | Phenacite | | Г | 638. | Phillipsite | | | 639. | Phlogopite | | ľ | 640. | Phenicochroite | | | 641. | Phosgenite | | | 642. | Phosphosiderite | | | 643. | Phosphuranylite | | | 644. | Piedmontite | | | 645. | Pinakiolite | | | 646. | Pinnoite | | | 647. | Pirssonite | | | 648. | Pitticite | | | 649. | Plagionite | | | 650. | Platinum | | | 651. | Plattnerite | | | 652. | Plumbogummite | | | 653. | Polianite | | | 654. | Pollucite | | | 655. | Polyargyrite | | | 656. | Polybasite | | | 657. | Polycrase | | | 658. | Polydymite | | | 659. | Polyhalite | | | 660. | Polymignite | | | 661. | Powellite | | | 662. | Prehnite | | | 663. | Prochlorite | | | 664.
665. | Prosopite | | | 666. | Proustite
Pseudobrookite | | | 667. | Psilomelane | | | 668. | Schneebergite | | | 669. | Ptilolite | | | 670. | Purpurite | | | 671. | Pyrargyrite | | | 672. | Pyrite | | | 673. | Pyrochlore | | | 674. | Pyrochroite | | | 675. | Pyrochroite
Pyrolusite | | | 676. | Pyromorphite | | | 677. | Pyrope
Pyrophyllite | | | 678. | Pyrophyllite | | | 679. | Pyrosmalite | | | 680. | Pyrostilpnite | | | 681. | Pyroxmangite | | | 682. | Pyrrhotite | | | 683. | Quartz, alpha | | | 684. | Freirinite | | | 685. | Ralstonite | | | 686. | Rammelsbergite | | | 687. | Raspite | | | 688. | Realgar | | | 689. | Reddingite | | | 690. | Reinite | | | 691. | Remingtonite | | | 692. | Retzian | | | 693.
694. | Rezbanyite | | | | Rhabdophanite | | | 695.
696. | Rhagite
Rhodizite | | | | Rhodochrosite | | | 697. | Rhodonite | | | 699. | Richterite | | | 700. | Richardite | | | 6 UU. | The real caree | | 702. | Rinkite | |------|--| | 703. | Rinneite | | 704. | Foresite | | 705. | Risörite
Frigidite | | 706. | Frigidite | | 707. | Roeblingite | | 708. | Roeblingite
Roepperite
Roemerite | | 709. | Roemerite | | 110. | Roscoente | | 711. | Roselite | | 712. | Rosiérésite | | | Spinel (normal "ruby") | | 714. | Rutile | | 715. | Safflorite | | 716. | | | F17 | nite) | | | Samarskite | | 710. | Samirésite | | 720 | Samsonite
Saponite | | 791 | Sapolite | | 799 | Sapphirine
Sarcolite | | | Sarkinite | | 724 | Sartorite | | 725 | Sassolite | | 726. | Schapbachite | | 727. | Scheelite. | | 728. | Schefferite | | | Schirmerite | | 730. | Schorlomite | | 731. | Schroetterite | | 732. | Schwartzembergite | | 733. | Schwatzite | | 734. | Scolecite | | 735. | Scorodite | | 736. | Searlesite | | 131. | Selenium | | 738. | Selen-tellurium | | 740 | Sellaite
Semseyite | | 741 | Sensemberita | | 749 | Senarmontite
Seniolite | | 743 | Sepiolite
Zinc-copper-melanterite | | 744 | Seybertite | | | Sicklerite | | | Siderite | | | Sideronatrite | | 748. | Sillimanite | | 749. | Silver | | 750. | Sipylite | | 751. | Skemmatite | | 752. | Skutterudite | | 753. | Smaltite | | 754. | Smithsonite | | | Soda niter | | 756. | Sodalite | | 757. | Soumansite | | 758. | Spadaite | | 759. | Spangolite | | 760. | Sperrylite | | 761. | Spessartite | | 762. | Spherite | | 763. | Spherocobaltite | | 764. | Sphalerite
Zinc-copper-chalcanthite | | | Zinc-copper-chaicanthite | | 765. | C. J. J. L. | | 766. | Spodumene
Spurrite | 701. Riebeckite | 768. | Stannite | |--------------|--| | 769. | Staurolite | | 770. | Stephanite | | 771. | Stercorite | | 773 | Sternbergite
Stibiconite | | 774 | Stibiconite
Stibiotantalite | | (10. | Stibnite | | 776. | Stilbite | | 777. | Stilbite
Stilpnomeiane
Stolzite | | 778. | Stolzite | | 779. | Strengite
Strontianite | | 780. | Struvite | | 782. | Styloptypite | | 783. | Sulfoborite | | 784. | Sulfohalite | | 785. | Sulfurite
Sussexite | | 786. | Sussexite | | 700 | Sylvanite | | 780 | Sylvite
Symplesite | | 790. | Synadelphite | | 791. | Sapphire | | 792. | Syngenite | | 793. | Szmikite | | 794. | Talc
Tantalite | | 795. | Tantalite
Tantalum
Gold, cupriferous | | 797 | Gold, cupriferous | | 798. | Tellurium | | 799. | Duftite | | 800. | Tennantite | | 801. | Tephroite | | 802. | Terlinguaite Teschemacherite Tetradymite | | 804. | Tetradymite | | 805. | Tetrahedrite | | 806. | Thaumasite | | 807. | Thernardite | | 808. | Thermonatrite | | 809. | Thomsenolite | | 810.
811. | Thomsonite
Thorianite | | 812. | Thorite | | 813. | Thortveitite | | 814. | Thuringite | | 815. | Tiemannite | | 816. | Tilasite | | 817. | Tin | | 810 | Titanite Topaz Tourmaline, chromic | | 820. | Tourmaline, chromic | | 821. | Tremolite | | 822. | Trichalcite | | 823. | Tridymite | | 824. | Trimerite | | 825.
826. | Triphylite
Triplite | | 820. | Triplite
Triploidite | | 828. | Tritomite | | 829. | Troegerite | | 830. | Troilite | | 831. | Trona | | 832. | Tscheffkinite (chevnikite) | | 833.
834. | Tsumebite Tungstite | | 835. | Tungstite
Turyite | | 000. | - m J 110 | | N | UMERICAL INDEX | |--------------|------------------------------------| | 836. | Turquois | | 837. | Tychite | | 838. | Tyrolite | | 839. | Tysonite
Ulexite | | 840. | Ulexite | | 841. | Ullmannite | | 842. | Uraninite | | 843. | Uranocircite | | 844. | Uranophane | | 845. | Uranopilite | | 846. | Uranospinite | | 847.
848. | Uranothallite
Urbanite | | 849. | Ussingite | | 850. | Hoelite | | 851. | Uvanite | | 852. | Uvarovite | | 853. | Valentinite | | 854. | Vanadinite | | 855. | Variscite | | 856. | Vashegyite | | 857. | Vauquelinite | | 858. | Vermiculite | | 859. | Vesuvianite | | 860. | Veszelyíte | | 861. | Vivianite | | 862. | Voglite | | 863. | Volborthite | | 864, | Voltaite | | 865. | Voltzite | | 866. | Vrbaite | | 867. | Picrochromite | | 868. | Xanthochroite | | 869. | Wagnerite | | 870. | Walpurgite | | 871.
872. | Wapplerite
Wardita | | 873. | Wardite
Weinschenkite | | 874. | Warwickite | | 875. | Wavellite | | 876. | Wellsite | | 877. | Wernerite | | 878. | Whitneyite | | 879. | Wiikite | | 880. | Wilkeite | | 881. | Willemite | | 882. | Willyamite | | 883. | Witherite | | 884. | Wittichenite | | 885. | Woehlerite | | 886. | Wolfachite | | 887. | Wolframite | | 888. | | | 889. | Wulfenite | | 890. | Wurtzite | | 891.
892. | Xanthoconite | | | Xanthophyllite | | 894. | Rhodonite, ferriferous
Xenotime | | 805 | Vttrrogomto | | 896. | Yttrotantalite
Vulconita | | 897. | Yukonite | | 898. | Zaratite | | 899. | Zaratite
Zepharovichite | | 900 | Zeimerite | | 901. | Lorettoite | | 902. | Lorettoite
Zincaluminite | | 903. | Zincite | | | | | | 71 | |--------------|---| | 904. | Zinkenite | | 905. | Zinnwaldite | | 906. |
Zircon | | 907 | Zirkelite | | 908. | Zoisite
Zorgite | | 909. | Zorgite | | 910. | Zunyite | | 911. | Yttergranat | | 912. | Hutchinsonite | | 913. | Josëite | | 914. | Lengenbrachite | | 915. | Lithargite | | 916. | Nitrocalcite | | 917. | Nitroglauberite | | 918. | | | | Whewellite | | 920. | | | 921. | Merrillite | | 922. | Plumboniobite | | 920. | Platinite | | 924. | Seligmannite | | 920. | Tripkeite | | 027 | Uranospherite | | 020 | Bayldonite | | 020 | Barthite
Oliveiraite | | 020 | Tarbuttita | | 930. | Tarbuttite | | 931. | Tavistockite | | 932.
933. | Taylorite | | 024 | Teallite
Pisanite | | 025 | Zarmingita | | 026 | Zeyringite | | 027 | Yttrogummite
Yttrofluorite | | 038 | Siderite, manganiferous | | 030 | Vttrialita | | 040 | Yttrialite
Adularia | | 941. | Aegirite-augite | | | Aegirite, vanadiferous | | 943. | Akermannite | | 944 | Weibullite | | 945 | Akrochordite | | 946. | Alaitel | | 947 | Tantaic ochre | | 948 | Albertite | | 949 | Albertite
Rhodocrosite, ferriferous | | 950 | Allactite | | | Allemontite | | 952. | Allopalldadium | | 953. | Almeriite | | 954. | Almeriite
Aloisite | | 955. | Iron pyrochroite | | 956. | Alshedite | | 957. | Alurgite | | 958. | A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | Amesite | | | Ammiolite | | 961. | Basobismutite | | | Anatase | | 963. | Bavenite | | 964. | Anemousite | | | Angaralite | | 966. | Tennantite, bismuthifer- | | | ous | | | | | 967. | Margarosanite | | 967.
968. | Margarosanite
Anthracite | | 968. | Margarosanite
Anthracite
Antigorite | | | . Aphrosiderite
. Arakawaite | | Manganandalusite
Cappelenite | 1107. | Cobaltiferous gahnite
Vilateite | |---------------------|---------------------------------|-------|---------------------------------|-------|------------------------------------| | | Arcanite | 1041. | Cappeternic | | Vernadskite | | | Arduinite | | Carbonado | | Velardenite | | | . Argentojarosite | | Xanthoxenite | 1111. | Vegasite | | | . Armangite | | Anapaïte | 1112. | Vanthoffite | | | . Arquerite | | Rhodium gold | 1113. | Uranospathite | | | . Arsenobismite | | Platinum, magnetic | 1114. | Uraconite | | | . Asbolite | | Celsian | 1115. | Umangite | | | . Ascharite | 1048 | Ceruleite | 1116. | Ultrabasite | | | Dolomite, manganiferous | | Coeruleofibrite | | Uhligite | | | . Astrolite | | Cesarolite | 1118. | Tyuyamunite | | | . Attacolite | 1051. | Parsettensite | 1119. | Torbernite | | | . Auerlite | 1052. | Racewinite | | Torendrikite | | - B. S. S. S. S. S. | . Augelite | | Chalcolamprite | 1121. | Törnebohmite | | | . Båckströmite | | Chalcomenite | 1122. | Tourmaline, iron | | | . Cyprine | 1055. | | 1123. | Mackensite | | | . Barbierite | 1056. | Chathamite | 1124. | Trechmanite | | | . Baricalcite | | Chiastolite | 1125. | Trigonite | | 990. | . Barkevikite | 1058. | Chilenite | 1126. | Tripuhvite | | 991. | . Barsowite | 1059. | Chillagite | 1127. | Trolleite | | | . Barobismutite | 1060. | Chlormanganokalite | 1128. | Troostite | | 993 | . Barylite | 1061. | Chlor-apatite | 1129. | Tschermigite | | 994 | . Barysilite | 1062. | Chloralluminite | 1130. | Tungstenite | | 995. | . Ferrierite | | Chloromagnesite | 1131. | Turanite | | | . Bassanite | | Chloromelanite | 1132. | Thorogummite | | | . Bassetite | | Christobolite | 1133. | Thulite | | | . Bastite | | Chrome-clinochlore | 1134. | Titanhydroclinohumite | | | . Batchelorite | | Chrome-diopside | 1135. | Tachyhydrite | | | . Bathvillite | 1008. | Cleavelandite | | Taeniolite | | | . Bacquerelite | 1009. | Chromitite | 1107. | Taenite
Tagilite | | | . Beldongrite | 1070. | Chromohercynite
Chrysocolla | 1120 | Taletriplite | | | . Berlinite
. Berthonite | 1071. | Chrysotile | 1140 | Tallingite | | | . Berzeliite | | Cleveite | 1141 | Tapiolite | | | . Quartz, beta | | Cliftonite | 1142. | Taramellite | | 1007 | . Beyrichite | | Clinoenstatite | 1143. | Tarnowitzite | | | . Bilinite | | Dolomite, cobaltiferous | | Tartarkaite | | | . Bisbeeite | 1077. | Cobalt chalcanthite | 1145. | Tasmanite | | | . Bischoffite | 1078. | Cobaltoadamite | 1146. | Tawmawite | | 1011 | . Bismuth, gold | 1079. | Cobaltocalcite | 1147. | Tellurite | | 1012 | . Bismutoplagionite | | Cobaltomenite | 1148. | Tellurobismutite | | 1013 | . Bismutosmaltite | | Cobaltiferous lampadite | 1149. | Tenorite | | | . Dolomite, ferriferous | | Cocinerite | 1150. | Termierite | | 1015 | . Bituminous coal | | Coeruleolactite | 1151. | Tetradymite-sulfurous | | 1016 | . Bityite | | Cohenite | 1152. | Thalenite | | | . Brostenite | | Colerainite | | Sulvanite | | | . Blomstrandine | | Collophanite | | Syabite | | | . Bolivarite | | Columbium | 1150. | Svanbergite
Sychnodymite | | | . Bort | 1088. | | | | | | . Bowlingite | 1000 | Connarite | 1150 | Stewartite
Stibiocolumbite | | | . Brannerite | | Copalite | | Stichtite | | 1020 | . Bravoite
. Bromcarnallite | 1001. | Cordierite
Cornuite | | Stoffertite | | 1024 | . Breunnerite | 1002. | Coronadite | 1161 | Stokesite | | | . Britholite | | Covellite | 1162 | Strigovite | | | . Brugnatelite | | Crandallite | | Stromeyrite | | | . Brunsvigite | | Creedite | | Strontianocalcite | | | . Bushmanite | | Crestmorite | | Strüverite | | | . Bustamite | | Crossite | 1166. | Stutzite | | | . Bytownite | 1099. | Cryptohalite | | Succinite (amber) | | | . Calciobiotite | 1100. | Vredenburgite | 1168. | Sobralite | | 1033 | . Cadmium oxide | 1101. | Topaz, oriental | 1169. | Soda-glauconite | | | . Calcium lazulite | 1102. | Vonsenite | 1170. | Soddite | | | . Campylite | 1103. | Voglianite | | Spencerite | | | . Camsellite | 1104. | Voelckerite | 1172. | Arsenopyrite, nickelifer- | | | | | | | | | | Cancrinite Sulfatic cancrinite | 1105. | Viridine
Villiaumite | 1179 | ous
Spodiophyllite | | | Spodiosite | 1241. Elpidite | 1308. Griffithite | |-------|---------------------------|---|-------------------------------------| | | Stasite | 1242. Weibyite | 1309. Griphite | | 1170. | Staszicite | 1243. Elbaite | 1310. Grothite | | 11770 | Steenstrupine | 1244. Emmonsite | 1311. Grünerite | | 1170 | Stellerite
Senaite | 1245. Endeiolite | 1312. Guadalcazarite | | | | 1246. Endlichite
1247. Scacchite | 1313. Gummite | | 1100. | Serendibite
Serpierite | | 1314. Gyrolite | | 1189 | Shanyavskite | 1248. Epidesmine
1249. Epistolite | 1315. Hackmanite | | 1183 | Shattuckite | 1250. Eguéïte | 1316. Hannayite
1317. Harstigite | | | Selensulfur | 1251. Erikite | 1318. Hartite | | | Sheridanite | 1252. Erythrosiderite | 1319. Hatchettite | | 1186 | Siegenite | 1253. Sanguinite | 1320. Hastingsite | | 1187. | Silicomagnesiofluorite | 1254. | 1321. Zinc | | 1188. | Schreibersite | 1255. Eucolite | 1322. Hematostibiite | | | Simonellite | 1256. Eucolite-titanite | 1323. Henwoodite | | 1190. | Sincosite | 1257. Eucryptite | 1324. Hessonite | | | Sphenomanganite | 1258. Eudidymite | 1325. Hetaerolite | | 1192. | Marcasite, arsenical | 1259. Ferberite | 1326. Heteromorphite | | 1193. | Sitaparite | 1260. Ferganite | 1327. Szaibelyite | | 1194. | Smaragdite | 1261. Fermorite | 1328. Hjelmite | | 1195. | Schafarzikite | 1262. Ferrazite | 1329. Hieratite | | 1196. | Scheererite | 1263. Ferronatrite | 1330. Higginsite | | 1197. | Schertelite | 1264. Ferroanthophyllite | 1331. Sandbergite | | | Schizolite | 1265. | 1332. Heterosite | | 1199. | Tetrahedrite, cobaltifer- | 1266. Ferrocalcite | 1333. Histrixite | | | ous | 1267. Ferrocobaltite | 1334. Catoptrite | | 1200. | Cumengite | 1268. Ferrogoslarite | 1335. Högbomite | | 1201. | Cuprite | 1269. Ferrocolumbite | 1336. Hörnesite | | 1202. | Cuproadamite | 1270. Fichelite | 1337. Illsemannite | | 1203. | Cuprogoslarite | 1271. Fiedlerit. | 1338. Homilite | | 1204. | Cupromagnesite | 1272. Finnemanite | 1339. Horsfordite | | 1205. | Cuproplumbite | 1272. Finnemanite | 1340. Huanatajayite | | 1206. | Cuproscheelite | 1273. | 1341. Hügelite | | | Cuprozincite | 1274, Flagstaffite | 1342. Humboltine | | 1208. | Curite | 1275. Flajolotite | 1343. Hulsite | | | Rubidium-microcline | 1276. Clinoptilolite | 1344. Huntilite | | | Dahllite | 1277. Siderite, magnesian | 1345. Hydroclinohumite | | 1211. | Danaite
Dannemorite | 1278. Fowlerite | 1346. Kischetimite | | 1212, | Dannemorite Daviesite | 1279. Francolite | 1347. Chloroxiphite | | | Davyne | 1280. Fluormanganapatite | 1348. Hydrophilite | | 1915 | Dechenite | 1281. Fredricite
1282. Frieseite | 1349. Hydrothomsonite
1350. | | | Delessite | 1283. Fuchsite | 1351. Ice | | | Delorenzite | 1284. Fuggerite | 1352. Iddingsite | | | Delvauxite | 1285. Furnacite | 1353. Idrialite | | | Dewindtite | 1286. Garnierite | 1354. Ilmenorutile | | | Diabantite | 1287. Belonesite | 1355. Impsonite | | 1221. | Diallage | 1288. Gedrite | 1356. Ambatoarinite | | 1222. | Dietrichite | 1289. Geocerite | 1357. Irvingite | | 1223. | Dihydrite | 1290. Georgeixite | 1358. Ishikawite | | 1224. | Diopside-jadeite | 1291. Germanite | 1359. Ivaarite | | 1225. | Dioptase | 1292. Georgiadesite | 1360. Jalpaite | | 1226. | Dixenite | 1293. Gerhardtite | 1361. Jefferisite | | 1227. | Dolomite, zinciferous | 1294. Geyerite | 1362. Jeffersonite | | 1228. | Doughtyite | 1295. Holmquistite | 1363. Jet | | 1229. | Douglasite | 1296. Gilespite | 1364. Johannite | | 1230. | Tinzenite | 1297. Orvillite | 1365. Josephinite | | | Dravite | 1298. Gilpinite | 1366. Jurupaite | | | Dundasite | 1299. Gilsonite | 1367. Kaersutite | | | Durdenite | 1300. Glaucochroite | 1368. Kalicinite | | | Dysanalite | 1301. Glauconite | 1369. Diabolite | | | Dyshuite | 1302. Globosite | 1370. Kamarezite | | | Dysodile | 1303. Gonnardite | 1371. Kämmererite | | 1237. | F-1-104 | 1304. Grahamite | 1372. Kamacite | | 1258. | Echellite
Ectropite | 1305. Grandidierite
1306. Greenalite | 1373. Kasolite | | 1990 | | | | | 1239. | Elaterite | 1307. Greenovite | 1374. Kayserite
1375. Keelvite | ## NUMERICAL INDEX | 1976 |
Kehoite | 1444. Mellite | 1512. Pargasite | |-------|--------------------------------|---|--| | | Kertschenite | 1445. Melnikovite | 1513. Paternoite | | | Könenite | 1446. Mendelyeevite | 1514. Patronite | | 1379. | Kongsbergite | 1447. Merwinite | 1515. Parsonsite | | | Tilkerodite | 1448. Mesitite | 1516. Peckhamite | | | Koppite | 1449. Messelite | 1517. Phillipite | | | Kotschubeite | 1450. Metastibnite | 1518. Rubidium-orthoclase | | | Kreittonite | 1451. Metavoltaite | 1519. Pholidolite | | | Kremersite | 1452. Millosevichite | 1520. Phosphoferrite | | 1385. | Knopite | 1453. Miloschite | 1521. Phosphophyllite | | 1386. | Kreuzbergite | 1454. Minasite | 1522. | | 1387. | Magnetite, magnesian | 1455. Galena, argentiferous | 1523. Picite | | | Kurskite | 1456. Moissanite | 1524. Pickeringite | | 1389. | Lagonite | 1457. Molybdomenite | 1525. Picotite | | 1390. | Lampadite | 1458. Molybdosodalite | 1526. Picroepidote | | 1391. | Lambertite | 1459. Molysite | 1527. Picromerite | | 1392. | Laubanite | 1460. | 1528. Picropharmacolite | | 1393. | Lautarite | 1461. Montebrasite | 1529. Picrotitanite | | | Laavenite | 1462. Morencite | 1530. Pigeonite | | | Lavrovite | 1463. Morinite | 1531. Pintadoite | | | Lawrencite | 1464. Mosandrite | 1532, Pistomesite | | | Leifite | 1465. Mossite | 1533. Pilbarite | | 1398. | | 1466. Mottramite | 1534. Natroncatapleite
1535. Planchéite | | | Leuchtenbergite | 1467. Müllerite | | | | Leucopetrite | 1468. Mullanite | 1536. Planerite
1537. Planoferrite | | | Leverrierite | 1469. Naegite
1470. Napalite | 1538. Avaite | | | Lewisite | 1470. Napante
1471. | 1539. Plazolite | | | Liebethenite
Lignite | 1472. Narsasukite | 1540. Plessite | | | Liskeardite | 1473. Natroalunite | 1541. Plumbocaleite | | | Lucinite | 1474. Natrodavyne | 1542. Plumbojarosite | | | Luckite | 1475. Natrojarosite | 1543. Plumosite | | | Lubeckite | 1476. Nemalite | 1544. Pöchite | | | Hacklite | 1477. Neotantalite | 1545. Podolite | | 1410. | Larderellite | 1478. Neotocite | 1546. Polysphaerite | | | Mackintoshite | 1479. Motlocite | 1547. Cerium sulfate | | 1412. | Lassallite | 1480. Newberyite | 1548. Porpezite | | 1413. | Kochite | 1481. Nicholsonite | 1549. Posepnyte | | 1414. | Magnesioludwigite | 1482. Nichel-skutterudite | 1550. Prizbramite | | | Malacon | 1483. Prolectite | 1551. Priceite
1552. Priorite | | | Siderite, calciferous | 1484. Nitrobarite
1485. Nocerite | 1553. Rutherfordine | | 1417. | Malinowskite | 1486. Lechatelierite | 1554. Silver, cupriferous | | 1418. | Pyrrhotite, nickeliferous | 1487. Nordmarkite | 1555. Ellsworthite | | 1419. | Manganapatite
Manganbrucite | 1488. Offrétite | 1556. Rumpfite | | 1420. | Manganese-chalcanthite | 1489. Siderotil | 1557. Chinkolobwite | | 1422 | Manganchlorite | 1490. Ramsayite | 1558. Pucherite | | | Manganfayalite | 1491. Orientite | 1559. Pyroaurite | | 1424. | Manganhedenbergite | 1492. Oruetite | 1560. Pyrobelonite | | | Manganmagnetite | 1493. Osmiridium | 1561. Pyrophanite | | 1426. | Manganocalcite | 1494. Otavite | 1562. Errite | | 1427. | Manganocolumbite | 1495. Oxammite | 1563. Pyrrharsenite | | 1428. | Manganophyllite | 1496. Ozocerite | 1564. | | 1429. | Kempite | 1497. Owyheeite | 1565. Picrotephroite | | 1430. | Vanadic ochre | 1498. Pageite | 1566. Pseudowavellite | | | Manganostibite | 1499. Palladium | 1567. | | | Manganotantalite | 1500. Palmerite | 1568. Quisqueite | | | Manganpectolite | 1501. Palmierite | 1569. Rathite
1570. Redingtonite | | | Mangan-vesuvianite | 1502. Tourmaline, magnesian | 1570. Rednigtonite | | | Mansjöite
Marmatita | 1503. Paracoquimbite
1504. Paraurichalcite | 1571. Rhodolite
1572. Rhomboclase | | | Marmatite
Marshite | 1505. Paralaurionite | 1573. Rhönite | | | Marshite
Marsjatskite | 1506. Paraluminite | 1574. Richellite | | | Martite | 1507. Paramelaconite | 1575. Brandisite | | | Maskelynite | 1508. Parasepiolite | 1576. Riversideite | | | Mauzeliite | 1509. Paravivianite | 1577. Romeite | | | Mazapilite | 1510. Paravauxite | 1578. Rosasite | | | Melanovanadite | 1511. Paredrite | 1579. Roschérite | | | | | | ## NUMERICAL INDEX | 1580. Rosenbuschite | 1598. Mariposite | 1615. Rhodocrosite, calciferous | |--------------------------------|---------------------------------|---------------------------------| | 1581. Rothoffite | 1599. | 1616. cobaltiferous | | 1582. Rowlandite | 1600. Yttrocrasite | 1617. Sarcopside | | 1583. | 1601. Heterogenite | 1618. Magnesiochromite | | 1584. Tengerite | 1602. Wattevellite | 1619. Schorlite | | 1585. Joaquinite | 1603. Volchonskoite | 1620. Schroeckingerite | | 1586. Corkite | 1604. Uranochalcite | 1621. Rhodocrosite, magnesic | | 1587. Parisite | 1605. Pleonaste | 1622. Stevensite | | 1588. Ruby, oriental | 1606. Iron - copper - chalcan- | 1623. Monimolite, calciferous | | 1589. Emerald, oriental | thite | 1624. Tarapacaite | | 1590. Amethyst, oriental | 1607. Heubachite | 1625. Tamarugite | | 1591. Chlorospinel | 1608. Wodanite | 1626. Titanolivine | | 1592. Hyalosiderite | 1609. Barytbiotite | 1627. Silver, auriferous | | 1593. Pseudomesolite | 1610. Löllingite, cobaltiferous | 1628. Hydrotroilite | | 1594. Soda-sarcolite, an hypo- | 1611. Trerorite | 1629. Gel-cerargyrite | | thet. mol | 1612. Plumboferrite | 1630. Hydrocuprite | | 1595. Zebedassite | 1613. Vauxite | 1631. Gel-variscite | | 1596. Xonotlite | 1614. Cornetite | 1632. Spheromangite | | 1597. Destinezite | | | ## BLANK NUMBERS The following numbers had been assigned to minerals which were later, for one reason or another, stricken from the chart. They do not now appear upon the chart, and appear in the Numerical Index followed by a blank. 271, 309, 433, 534, 958, 1041, 1055, 1088, 1237, 1254, 1265, 1273, 1350, 1398, 1460, 1471, 1522, 1564, 1567, 1583, 1599. 8. | THE | CHEMICAL | RELATIONSHIPS I | N THE | MINERAL KINGDOM | |-----|----------|-----------------|-------|-----------------| |-----|----------|-----------------|-------|-----------------| | 43 61 75 | 5 H ₂ 0 | Si _x O _y | SO ₄ SO ₃ P _x O ₅ | , NO ₃ CO ₃ Zr | Zn Yt | Yb W V | U _{ETC} Tm | Tl Ti There | Te Tb Ta | Sr Sn Sm | Si Se Sc | Sb S R | u Rh Rb Raste | Pt Pd Pb F | Os Ni | 1 | N Mo Mn | | | K Ir | | Hf He | Gl Ge Gd | Ga Fe" | Fe''' F E | u Er D | y Di Cu | Cs Cr Co C | Cl Ce Cd | Cb Ca C | | 3 Au As | Al Ag. A | н он | O NAT.EL | |----------------------|--|--|---|---|--|---|---|--|--|---|---|---|--|--|--|---
---|---|---|--|---|--|--|---|--|--|--|--|---|--|--|---|--|--|--| | Ag | 19 231 338 621 856 1032 1743 1474 | 17 248 439 578 744 974 1150 1413 | | | | | | | 394
582
639
(166 | 146 | 15 | 551 719 13 655 726
655 749 54 656 770
656 770 55
665 1124
665 146 671 1163
671 551 680 1253 | | 749 587
591
726 | | | 719 | | | | 831
432
555
927
1379 | | 55.
146 | | | | 555 1340
624 1554
636
1163 | 165
274
431
1629 | | | | 394
582 624 1124
634 656 1253
1627 665 1344
671 | | | 977
1379
1354
1627 | | A1
As | 25 755 430 438 875 807 1281 1482 25 757 476 645 876 1097 1293 1392 20 27 786 488 648 8292 1052 1393 1592 30 285 487 678 829 1052 1393 1592 30 285 487 678 829 1052 1393 1592 378 49 302 507 704 910 1093 1349 1254 83 303 520 712 953 1022 1376 1536 376 376 522 731 957 1027 1378 1556 127 372 539 734 955 1029 1386 1575 127 312 539 734 955 1029 1386 1575 158 343 577 762 398 1164 1405 1578 158 343 577 762 398 1155 1406 1598 149 139 149 149 149 149 149 149 149 149 149 14 | 17 248 439 578 744 974 1150 1413 19 257 449 583 7748 988 1178 1440 21 267 449 583 7748 988 1178 1440 21 267 449 583 7758 991 1180 1453 33 265 446 553 765 995 1209 1458 35 285 464 553 765 995 1201 1474 35 289 476 603 776 1016 (230 1487 34 392 483 609 1031 723 140 160 34 396 483 609 1031 723 140 160 35 303 487 614 870 1037 1724 150 157 354 499 618 877 1039 1233 1556 169 348 520 633 892 1052 1253 1573 185 369 524 635 938 905 1057 1309 1575 192 382 532 653 898 905 1057 1309 1575 192 382 532 653 899 10 1068 1315 1598 206 395 556 677 970 1099 1349 1608 211 398 552 678 957 1059 1349 1608 211 398 552 678 957 105 1357 213 414 564 731 364 1133 1401 | 24 1155 30 875 1
25 1722 144 899 1
26 1728 298 983 1
27 1473 312 985 1
158 1524 315 1019
305 1624 315 1019
305 1624 315 1019
307 1624 335 1034
319 344 1125
507 666 290
507 67 174 660
507 757 1776
603 762 1386
603 762 1386
603 855 1656
1029 855 1656
1029 855 1656
1029 877 1443 | 500 247
535 556
566 1037
1038
1214
1476 | 1107 19
1222 1366
1176 | 19 1566 | 19 1566 4 | 26 407 19
187 1367
1512
1573
1608 | 19 1544 | 117 1367 19
372 135
353 1133
376 11290
1566 1566 | 19
315
1139
1239
1566 | 482
1315 | 158
231
482
482
583
584
766
1016
1209
1518 | 712 | Sto : | 17. 382 554 766 1068 152 153 506 30 407 578 810 183 151 530 407 578 810 183 151 530 407 578 810 183 151 530 407 578 810 183 151 530 407 578 810 183 151 530 407 508 508 508 508 508 508 508 508 508 508 | 1 (455) 19 112 49 122 49 1222 13 152 1230 13 152 1230 13 152 1230 13 152 1230 13 152 152 152 152 152 152 152 152 152 152 | 19 663 1107 1575
185 677 1122 (598 1556
127 685 1133 1603
128 744 1164
157 769 1180
346 870 1272
389 897 1273
398 997 1275
459 997 1275
459 997 1378
524 1023 1412
532 1037 1412
532 1037 1572
554 1039 1472
532 1037 1572
564 1034 1572
564 1044 1556
671 1091 1573 | 30 1231
96 1243 15
211 1257 315
221 1295 1133
242 1357 1290
246 1461 1566
325 1518
446
497
499
530
533
533
533
533
766
905
910
1016 | 17 470 669 (056 9958 19 487 668 122 1668 12 1668 12 1668 12 1668 12 1668 12 1668 12 1668 12 1668 12 1668 12 1668 12 168 1 | 19 1556 | | 19 19 315 315 754 1120 1200 1566 | 346 (052 248 370 (064 37 389 (051 389 (051 340 340 340 340 340 340 340 340 340 340 | 6-77, 1305
6-96 1386 30 819
7-44 1405 711 875
836 1457 1267 935
836 1457 1267 935
836 1457 1267 935
1566
1566
1576 1573
1576 1573
1576 1573
1576 1573
1576 1573
1576 1573
1576 1573
1577 1573
1577 1573
1577 1573
1577 1573
1577 1573
1578 1577
1577 1573
1577 1573
1577 1573
1577 1573
1577 1573
1577 1573
1577 1573
1577 1577
1577 1577
157 | 15 19
1566 1566 | 19 576
315 712
1155 136
1799 1323 | 96 677 1107 392
198 820 488
231 1283 515
447 1443 555
431 1598 556
656 600
756
1209 791
1057
1157
1157
1158 | 19
315
1130
1130
1566 | 17 398 589 908 115 1512 105 116 107 107 107 107 107 107 107 107 107 107 | 57 127 24
414 372 44
414 57
876 67
1156 117
118 118
112 124
1156 125
117
118 125
117
118 125
117
118 125
117 | 6 | 57 | 127 247 910 248 353 286 298 1019 289 312 1228 303 315 1357 335 325 1374 421 342 1405 475 595 444 575 595 444 575 595 444 575 595 595 595 595 595 595 595 595 595 | 83 1444
28 1588
255 1589
266 1930
276 1608
443
520
660
790
791
819
1101
1107
1182
1374
1374
1376
1376
1376
1405 | | | 725 | | | | | | | 787 | 139
352
466
787 | | | 555 | 1045 | 1548 | | | | | | | | | | 350 | | | 797 | | | | 1911 | | 139 466
273 787
350
352 | | 773 1045
3550 1548
797
1011
B | | Ba | | 92 376 993 1142
269 494 1047 1296
12
296 | 78 575 (202 | 1684 80 893 494
129 108 992
109 991 | | 1558 | 370
926 | 92 494 | 20 913
105 1143
35 3149
35 31492
304 | 575 | 361 1151
804
915
923
946 | 277 27 729 1333
272 106 360 915 1697
1333 107 361 923
230 657 946
272 529 1151
1145
1236
1598 | 370
976 | 9529
729
729
923
944 | | 78 376
494 | 462 | | | 376 494 | | 105
270
226 | | 1142 1296 1142
107
272
1539 573 | 2 | | 107 277
130 457
177 1333 | | | 78 80 129 | | 67 870
106 978
635 | 269 393
376 1047 70 729
230
529 | | Ba B | | | 6 330 548 806 III£ I453
59 336 550 805 II44 I434
77 366 605 855 II46 I435
77 366 605 855 II60 I449
86 356 606 871 II87 I491
I24 399 615 895 II90 I553
I34 409 623 916 II98 I551
I64 I46 625 919 I210 I559
200 430 635 961 I238 I551
200 437 641 I044 I226 I556
244 476 655 I088 I779 I556
244 476 676 I058 I374 I662
29 536 707 I036 I566
29 536 707 I036 I566 | 38 337 566 859 1187 1366 30 358 374 880 1194 1392 46 359 406 885 1188 1393 47 375 464 391 1224 (43) 77 399 662 941 1224 (43) 77 399 662 941 1224 (43) 500 409 722 956 1276 1499 234 445 728 963 1284 1310 235 451 730 987 1307 1539 242 491 767 1067 1314 1576 244 537 306 1997 1338 1595 245 538 818 110 1359 1596 278 356 852 1464 1362 | 40 707 47 (044) 291 70 1061 365 134 1086 605 124 1097 806 32 123 1104 808 32 123 1104 936 411 1139 1096 516 1261 511 1279 880 1280 921 1188 921 1189 931 1463 | 545 316 41 1086
545 316 143 401
142 1164 445
180 1210 85
225 1227 117
251 1265
327 1328
006 1426
880 1481
935 1539
981 1541
389 1553
1016
1076 | 200 284
729 362
375 465
1217 651
1652 553
1481 624
8 88
8 95
911
937
956
1134
1756 | 247
284 553 396
362 661 548
445 727 623
451 1206 118
553 1206
624 1843
818 995
911
937
937
938
1234
1234 | 70 242
70 284
553 347
618 415
651
652
664
818
805
911
337
956
1234
1236 | 68 1307
362 1339 445
601 1385 673
445 1401
451 1441
356 1955
637
700
710
710
710
717
717
7134 | 747
284 553
362 1134
453 553
452 453
553 452
674 777
818 895
911 937
256 1734 | 180 553 284 1798
1164 601 362 1234
1261 956 465 1256
451 1358
553 1385
634 673
727
885
885
985
937
1046 | 126 1134
352 11256
645 1336
651 1365
652 1664
673
818
885
937
1064
1198 | 150
548
1005
1601
1441
1555
1577 | 70
555
11/4 | 155
707
1145
1441
1541 | 935 | 69 777 1756
161 809 1776
190 840 1726
401 859 1338
419 951 1338
411 956 1438
431 987 1697
537 1047
538 1194
555 1194
555 1736
673 1238 | 661 38 772 139 777 41 816 147 77 78 180 142 71 859 143 74 943 143 114 955 149 135 981 156 729 387 159 239 1405 338 1191 2471 1220 556 1307 664 1362 | 4 41 565 1005 1434 362
68 574 1014 1435 451
3 71 605 1067 1449 553
4 659 1076 1485 632
1 155 711 1174 1528 644
3 161 728 1187 1530 818 | 284 (256
342 (358
451 (388
451 (580
553
632
644
673
818
885
985
1192
1234 | 50 937
58 1047
45 1027
49 1026
537 1026
538 1434
556
1602
566
605
605
605
605
605
605
605 | 258 242 1256
1993 284 1985
362
451
451
593
632
644
818
895
895
1937
956
1234 | 401 70
465 553
825 1118
1117
1756 | 39 2 284 1234
491 362 1256
538 451338
451336
553 1580
652
644
673
818
885
935
937
1044
1198 | 38 574 1194 1585 38
41 632 1198 1595 68
68 673 1221 71
71 728 1224 74
74 730 1234 73
150 685 1265 286
150 685 1266 31
287 91 1338 386
189 685 1266 31
287 91 1338 386
189 687 1266 35
131 131 131 468
131 131 131 131 131 131 131 131 131 131 | 284 11
1 516 1355 47 673 1388 362 1
952 1424 50 809 1434 489 1
911 25 889 1441 551
911 25 889 1441 551
919 241 318 395 (485 432
9 546 336 937 644
9 7 987 322 987 673
11086 401 1086 727
11146 485 1086 818
1146 485 1086 818
1146 1244 583 1261
1148 553 1279 1064
1157 1057 115 1280 | 256
318
242 1234
248 1256
368 362 1385
451
451
451
451
451
451
451
45 | 34 184 1198 180
56 362 1214 987
55 445 1256 1205
553 1365
553 1365
621 1580
644
613
727
818
885
895
995
997
1044 | 259 711 47
852 1076 318
1067 1079 90
1146 1341 | 284 1234
352 1256
445 1338
451 1385
553 1580
632
643
613
818
885
995
937
1044
1198 | 555
671
885
1234 | 9 989 7
8 24
24 34
4 4
4 5
5 6
6 9 9
133 | 11 | 38 537 1067 1539
58 556 1035
71 356 1035
101 615 1036
105 1036
105 1036
105 1036
105 1036
105 1036
107 1036 | 134 71 1261
135 136 137 1461
205 137 1461
205 137 1461
205 137 1461
205 137 1461
206 2336
546 3336
546 347
546 347
571 392
606 437
635 471
871 859
1097 872
1316 885
322
1096 | 14-5 13-55 6 553 1104 1531' 18 6 601 1117 1551 18 5 631 1145 1552 18 5 631 1154 1575 19 63 1154 1575 19 63 1154 19 63 1154 19 63 1154 19 64 17 11338 39 727 1385 409 730 1313 415 18 6401 451 18 71 1445 548 919 1455 550 1055 1578 | | СЬ | 858
34 1123
156 1177
157 1253
337 1245
634 1456
832
1026 | 07 1121
136 1177
186 1245
333, 1251
327, 1262
202
832
1016 | 1567 151
579
694
1026
1251 | 1679
1694
34 3 1 3 12
115 87 13
1701 156 166
1346 166
1597 533
570 660 | 45 9 702
45 34 832
91 87 1177
44 156 1644
166 1597
317
533
570 | 9 702
34 832
87 1177
156 1464
166 1637
317
513
513
510 | 9 701
34 832
37 1177
156 1656
166 1597
317
533
570 | 9 9 1177
9 34 1251
660 51 1381
702 155 1645
832 166 1587
1664 535
533
570 | 9 702
34 832 156
07 1177 523
156 1464 650
165 1567 1177
317
533
570 | 35 660 2 570 1145
1142 81 694 134
17 702 1381
156 832 1454
166 839 1587
191 1076
215 1121 | 9 570 124
38 650 175
81 694 134
87 702 138
156 632 1464
191 1025
275 1121
377 1177 | | | | | 533
702
1026
1177
1245
1251
1361 | 553
9177 | 9 6 34 6 57 7 156 8 166 10 317 11 533 14 | 550 9 570 124
550 34 560 125
594 81 594 134
702 97 701 185
832 159 832 144
705 166 539 167
77 191 1026
154 715 1121 | 15 1381
51 1381
64 1654
81 81
81 81
87 | 9 560
34 694
87 702
156 832
166 1177
317 1454
533 1537 | 9 1245
87 1361
156 1464
166
533
570
660 | 9 570 1745
34 660 1251
81 694 1346
97 702 1381
156 632 1456
166 539 1757
191 1026
215 1121 | 9 533
6 165 666
560 1177
8 832 1245 | 13 34 1026 35 6
10 81 1232 81 6
10 81 1232 81 6
17 156 1245 75 75 156 1245 156 8
17 1331 156 156 8
17 133 156 191 10
17 12 157 215 12 15 | 70 1745
60 1721 9 600 9 66
994 1736 34 634 34 65
902 1731 87 702 87
192 1646 156 832 156 81
193 1567 166 117
126 317 1464 317 14
21 531 5597 533 155 | 9 570 1245
50 34 650 (751
94 81 694 1346
02 87 70 1381
12 155 832 1464
77 165 839 1587
64 93 1026
87 215 1121 | | 1 | | 215 15 | | 1126
1177
1177
1251 | 149.6
3.6
166 | 1097 Cb 1093 Cd 19156 1177 6606 11915 Ce | | | 101 1601
200 1607
691
1017 | 1603 | 101 | 691
763 | 694 | 694 | 594 | 832 | 694 | 533 1747 | 533 1242 | 882 203 753
345 382
501 1156 | | | 76 715 1607
154 753
290 882
501 1156 | | | | 533 1742 | | ,,, | 1021 | 533. 1242 | 76 501 1155
203 715 1267 1607
290 753
345 1013 | 533 12 | 142 | 533 1242
154 1156
501
715
753 | | | | 1013 76 | 76 715 1267
203 752
290 753
345 1013 | 1570 | | 1990
1980
1601
1607
Co | | Cs | 47 716 502 863 1932 1498
114 738 563 936 1039 1517
141 723 563 936 1039 1517
141 723 568 972 133 1535
170 323 884 1039 1384 1639
174 447 757 1048 1160
179 473 822 1054 1133
209 430 838 1071 1204
210 500 860 1081 1370 | 654
47
1009
1071
1092
1183
1225
1291
1535 | 114 500 199 1403
123 588 209 1614
170 759 216
210 934 502
238 970 550
250 1109 833
393 1191 850
418 1204 972
447 13170 1139
473 1517 1223 | 1293 73
518
1207
1504
1578
1614 | 209 1181
373 1199
733 1107
768 (731)
300 1331
805 1417
859 1504
966 1573
972
1176 | 233 161
1291 209
969
1131
1153
1291 | 2 | 93 1291
175
126 | 730 | 769
1291 | 291 98
175
226
292
1054
11(5 | 245 177 805 66 301 324 1231 213 966 115 323 966 1351 279 1004 172 473 1004 1417 306 1041 175 706 1041 301 1199 177 733 1082 323 1231 178 788 1034 706 1331 213 782 1153 733 1339 279 900 1199 782 (417 283 805 1205 300 884 1281 | | 51
933
924
1294
1205
1281
1291
1031
1417 | 500
706
1231 | 554
457
589
684
129) | 1231 141
722
1081
1231
1408 | 144 | 654
1291 | | 1731 1437 213
738 | | 1791 | 129 118 706 1041 179
172 733 1081 238
175 735 109 1517
178 792 (28)
178 792 (28)
179 905 1331
235 934 1417
323 956 | 9 8 7 7 | | | 1091 66
1199 210
1291 586
1408 759
1408 1144 | (29) | (4) 1330
209
233
333
694
863
1176
1181 | 213 853
553 1291
884
965
1199
1291 | 174 101 821 1176
175 177 479 838 1193
1291 199 439 860 1781
215 501 924 1319
215 501 924 1319
216 561 931 1311
279 609 964 1614
288 800 1049
239 809 1167 | 1554
178 172 895
218 175 1082
502 213 1199
759 226 128
1048 292 129
313 1417
733
782 | 47 66 293 833 1207
47 73 393 818 1223
1225 128 473 653 1225
141 450 270 1231
141 502 1029 330
142 502 1029 330
120 548 1108 1402
120 548 1108 1402 | Cs. 107 113 1141 288 077 1081 115 174 293 998 1131 115 174 293 998 1131 119 450 980 1196 110 709 502 995 1706 110 709 502 995 1706 110 110 110 110 110 110 110 110 110 110 | | | 973
65 777 1108 1489
104 789 1187 1498
181 814 1165 1509
773 861 1270 1510
721 864 1270 1510
721 864 1270 1510
721 864 1270 1510
721 1604 1375 1520
731 1004 1375 1504
736 1702 1353 1613
757 1028 1497 1628 | 8 424 954 1266
72 429 971 1288
53 459 990 1366
65 594 1021 1311
104 679 1028 1423
223 631 1162
241 708 1169 | 151 | 750
746 G5
938 Z08
1277 795
1416
1532 | 750
873
241
208
708
795 | 750
873 750
208 690 1023
795 937
1259 | 750 759
873
208 55
795 6 | 3 65
772 104
427
596
990
1165
1179 | 759 759
873 209
795 755
1141
1165
1445
1477 | 759
208
539
735
1141
1343
1453
1498 | 672 967 | 94 52 530 1545
1125 94 1023 1510
1275 204 1035 1628
241 1172
523 1192
622 1211
672 1222 | 750
875 | 1179 11 | 204 H72
436 H88
549 H65
629 H572
672 H418
1023 1540
1056 | 1 999
33 1169
55 1477
104
273
596
325 | 8 459 1070
22 549 1108
65 596 1139
181 679 1141
203 691 1179 | 750 87
1425 8 708 1167 1570
1477 22 777 1169 1521
1509 65 814 12/2 1525
1509 164 954 12/2 1525
1570 104 954 12/2 1525
1571 23 971 1264 1537
1617 383 990 1277 1618
428 1021 1288
424 1028 1343 | 75 750 | 8 (677
9 1921
65 104
223
590
864 | 750 873
672 208
746 795 | 750 759
65
209
795 | 750 750
241 208
795 | 517 22
572 53
65 | 750
426 1169
517 1220 104
777 1343 1139
814 1397 1617
864 1425
971 1498
990
1008 | 750 750 87
208 795 795 | 73 750
435
549
672
1606 | 188 204 67:
549 436 139
1070 349
1975 672
1618 1056
1094
1211 | 750
9
6 | 750 208 8 428 1523 100 795 22 681 1617 134 1141 33 954 1165 65 990 1289 124 1139 1465 181 12128 1477 33) 1188 | 94 1521 11
42 13 | 92 672 62 1610
43 493
98 505
789 1056
1192
1192
1211 | 8 777 1264
22 814 1289 772
53 864 1510 1282
65 971 1521
104 950 1525
18 613 1613
383 1070
391 1162 | . 181
511
534
1521 | 750 En 188 1070 1275 1529 436 208 1102 1342 1618 549 391 1126 1345 1137 421 1146 1345 11357 421 1146 1345 11357 500 1179 1465 799 1211 1477 775 1259 1499 | | | 679 1024 1407 1628
18 140 257 441 648 1173 1577 1523
29 153 263 460 703 1218 1384 1537
59 162 308 463 735 123 1389 1546
79 176 310 448 747 1244 1438 1555
39 185 314 458 779 1256 1442 1573
100 217 347 556 385 1301 1457 1576
117 214 349 560 387 1302 1457 1586
112 225 402 636 975 1352 1457 1587
157 240 464 642 1643 1352 1455 | 3-4-7/1-1210
3-5-8-1-1220
3-4-02-1120-14-52
7-4-88-1123-14-67
18-5-60-1173-15-64
102-701-1301-15-81
186-8-8-1320
122-5-9-62-15-52
314-10-98-1-3-98 | 1909
1509
1509
1509
1509
1509
160 441 1503
161 460 1537
162 460 1537
162 460 1537
162 460 1537
162 460 1537
175 460 1537
176 462 153
176 1218
176 1218
176 1218
176 1218
176 1218 | | | 398 | .5 (| 88 56 488
386
666 | 1233
| | 1233
1744 | 6.87 1274
772 1418 | | 100
148
510
1542
356
1617 | 1137 | 869
954
3 843 475
7 942
13 1098
441 1120
488 1173
701 1320
747 1458 | 383 887 (28)
408 939 (142)
428 930 (142)
3 (33)
7 (37)
100 (143)
404 (544)
498 (55)
349 | 477 1070 1987
459 1102 1423
5 536 1139 1509
7 460 1098 1509
18 498 1120 1539
119 512 1173
162 560 1320
225 848 1370
388 342 1438
402 1043 1462 | | 3 701
7 1098
18 1173
18 1173
18 1301
441 1394
418 1035
540 1475 | | | | 3 512 1173 427
3 512 1173 427
7 560 1377
19 701 1438
162 704 1612
215 709
203 942
402 1043
400 1098 | 1028
1102
1162
1302
1574 | | 100 176 | 460 138-
1059 1451 | | 7 701 1302
18 848 1320
59 897 1438
117 942 1442
140 1043 1574
271 1098 1591
498 1250 | 5 13 | 1296
59 1442
60
89 100
148
510
636
648
735
897 | 7 186 1043 1452
7 186 1043 1452
16 214 1040 1045
53 240 1089 1503
79 271 1123 1574
162 468 1250 1581
176 962 1531 | 53 252 636 157
93 763 897
117 721 1250
137 310 1377
140 460 1442
153 428 1542
212 510 1559 | 887 1259 1525
574 56 388 735 1439
59 498 835 1442
100 510 837 1574
119 512 1069 1612
148 656 1233
308 646 1244
349 646 1349 | | G1
H | 95
580 | 95 637 | 310 1452 263 1502
458 580 | | 1312 | | | | 207 | | 610 1312 | 504 960 193 547 815 1312
504 960 193 547 815 1312 | | | 4 | 59 | | | | | | | | 488 1120 | | | 950 | 145 | 458 807
580 | | 3 | | 189 | 371 | 199 371 G1
1351 H
270 602
576 960 544 Hg | | V I I | 149 1229 1527
237 1252 | | 48 970 1527 | 600 1368 | - | | 14 | 19 | | | 915 | 1504 610 350 | 5 434
5 495
11 ⁷³ 0 | \$34
435
434
538
(538 | 435 | 12 48 788 (45)
703 932 | 1060 | 149 1527 | | | | 145 | | 703 1451 (25 | 52 1329 | | 237 | 149 1624 149
149 1624 447 | 1060
1229 | 792 | 703 | | 1 | 920 | 434
435 Ir | | La | 447 (1568
792 (45)
828
63 411 742 (074 (308 (508
90 419 758 (027 (316 (519 | 818 | 447 973
792 1451 | 475 828
918 63 | 928 | 828 | 828 | 338 | 618 818 | 475 828 | 475 828 | | | | 339 E | | 1297 90 | 828 | 475
1136 250 | 384 | 328 | 828 | 475 828
250 | 828
4 628 1075 1516
45 631 1066 1519
90 699 1072 1571 454
187 713 1134 1592 515
198 720 1216 1005 528 | 400 | 328 320 928 | 475 828
250 742 | 713 115 | 928
250 | 828
4 1447
90 1526 | 1024 1609 3 | 15 | 4 821 1361
45 858 1371
90 867 1382 | 878
455
63 1027
133 1134 | La. | | Mg | 112 420 781 1036 1327 1526
112 427 283 1066 1356 1555
188 454 794 1072 1345 1627
231 476 858 1035 1361
750 513 918 134 1371
275 513 918 134 1371
275 597 369 1155 1382
361 628 880 1156 1395
362 464 989 1155 1382
397 720 1016 1216 1480 | 45 454 595 1345 1526
90 618 998 1351 1571
187 635 1066 1371 1592
198 699 1072 1382 1535
201 729 1075 1399 1609
232 721 1085 1422 1522
250 742 1134 1447 1626
220 758 1136 1483
310 794 1155 1508
411 621 1216 1516 | 287 341
397 513
455 781
669 369
783 (316) | 470
470
470
516
597
1025
1025
1159
1448 | 173 | 200 40 50 | | 874
1134
1335
1345
1345
1626 | 609 (477 | 427 | | 440. 13 | 500 | 56 | 7.42
794
969
107Z | 15 6 99 718 1136 1509 | 438
631
633
1620
1420
1427
1603
1626 | S7 186 láze - 4an | 755 | 639
720
1024
1135
1609 | 502 | | 18 | 201 721 1309 1605 770
232 794 1365 658
250 821 1361 969
320 858 1371 1027
338 867 1359 1066
411 874 1422
448 365 1448 1216
454 998 1476 | 1414 739
81526 869
81591 1134
71605 1345
61609 1483
4 1609 | (2) | 1389 | 999 1016
1066 1066
1159
1377
1382 | 4 | 391
699
77.0
821
859
998
1135
1216
1308 | 6 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 46
83
74
80
36
27
44
413 | 198 959 1399
232 998 1422
422 1066 1519
454 1072 1526
628 1085 1571
659 1116 1591
713 1185 1595
720 1216 1605
721 1308 1609
794 1355 | 7-58 187 1159 7-69 201 134.5 7-83 411 1420 14-90 14-91 14-76 420 14-93 422 425 47-6 7-69 | 394 1287
513 1327
515 1335
531 1336
646 1414
713 1515
783 1591
867 1605
874 | | Mn Mo | 11 326 429 675 979 1421
55 328 519 689 1002 1428
91 334 521 723 1051 1429
173 387 616 751 1157 1478
256 390 667 786 (23) 1562
281 412 670 793 1309 1579
311 426 674 945 1390 | 11 386 801 1399 1278 52 429 824 1278 1361 97 468 899 1300 1562 125 492 1030 1317 1565 326 622 1031 1324 328 498 1168 1334 334 761 1226 1428 | 426 256 670 15
519 281 689
793 311 745
6621 412 256
93 187
93 187
(66 1309 | 79 195
697
349
(615
1616
1621 | 175 692
128
426
492
786
501
1278 | 592 410 54 | 092 | | 1432 | 1452 | | 1922 379
1934 396
1431 557 | (| 1003 | | 316
305
591
1309
6428 | 405
645 | 59 790 1478
128 801 1555
339 945 1621
438 1165
645 1517
761 1524 | 311
503
591
667
745 | 567
1478 | 100 | | 590 874 | 281 616 949 1478 58
311 6472 1168 1579 390
186 689 1309 405
410 761 1322 45
412 891 1374 670
476 824 1334 745
688 826 1427 751
503 827 1431 761 | 5 1324
8 1334
0 1478
5 1478 | 676 626 | 1320 | 1616 124 | 9 | 1632 58 801 1509
25 826 1317
311 826 1334
429 1030 1334
692 1168 1579
761 1193 1615 | 405 6
667 7 | 86 | 281 1317
334 1324
330 1324
50 1334
622 1428
761 1579
790 | 412 311 945
1317 387 950
1428 492 986
692 1276
790 1579
795 | 313 522 786 1193
380 645 780 1226
387 655 945 1322
390 667 950 1334
405 674 957 1334
405 674 976 1390
410 675 979 1627
438 692 1002 1629 | | | 111 135 590 808 982
116 485 667 831 1249
245 506 786 849 1249
283 362 771 917 1245
H97 1610 1495 | 160 849 1397 1594
283 982 1472
393 1239 1439
736 1256 1554 | 111 512 (169) 97 121 784 97 121 784 97 122 897 123 897 124 897 125 897 127 1197 127 127 127 127 127 127 127 127 | 243 374 331 160
755 390 837 599
917 602 1534
647
734
803 | 1490 | 1490 | 1490 | 509
1249
1672
1490 | 1490 | 1490 | 1490 | 126 184 856
341 1007
376 378 1186 | | | 4 7 | 55
71 | | 111 1112 1490
595
602
837
1197 | 228 1490 | 485
736
997 | 1490 | 160
503
1534 | 97
183
1752 | 982 981
1472 1261
716
72 686 1481
184 1185 161 | 12 182 1249 1490
227 1397
278
1105 | 1490 1490 | 1690 | 716
60°
78
134
716
42 599
72 658
136 686 | 9 1490
2 4
4 0 0 | 1249 160
335
344
647 105 | 95 14 | 15 16 17 18 18 11 12 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 227
228
849
992
1337 | 150
1771
1534
111
1534
803 1197 | 116 Na 1410 1495 NH ₄ 42 72 135 | | Ni
Os | 130 1087
319 1087
319 1286
579 | 1035 | | | | | | | | | | 599 557
841 599
885 658
841 1493 | 1 1493 | 193 | | | | 535
1286 | | 1493 | | | | 341
599
658 | | | 14 440 | 184 1186
319 1409
341 1482
378 | SR7 1213 | | 14 | 136 531 1403
184 599 1482
319 686 | 37 497 | | 136
319
1611 1493 Os | | Pb | 95 927 1560
102 1050
113 111
275 115
373 1200
400 1208
484 1232
569 1241
650 1373
652 1315 | 16 (375) 333) 373 415 452 535 569 587 967 994 | 35 1 1035
85 749 1515
163 400 1546
147 514
400 538
472 670
484 652
499 676
1111 854
1501 857 | 167
417
494
691
(231 | 749
331
440
1341 | 697 123
278 954
1959 854
1845
1841
1466
1560 | 1209
1373
1515 | 1 | 23
585
1915 | 373 239
490 311
933 | 331
322
485
393
1380
1457 | 97 446 1012 14 322 649 1465 102 461 1161 37 324 639 1497 120 481 1326 82 331 724 1543 121 497 1375 88 332 740 1549 239 549 1468 120 340 904 224 545 121 340 904 225 581 136 183 440 933 331 585 1585 120 446 1012 331 585 1585 120 446 1012 331 758 168 340 934 249 136 944 497 136 340 944 491 491 491 491 491 491 491 491 491 | 1208
1373
1515 | 199 | | 147 | 289 123 1560
1059 249 1673
333
373
452
572
967
994
1050
1125 | 569
394 | | 415
(50) | 732 486 | 1209
1373
1515 | 415 1116 | 123 85
234 377
321 521
521 521
572 1375
1623 | 15 415
173
181
1 | | 14 440
85 499
113 543
121 630
143 799
183 857
224 990
245 927
255 927
255 927
257 927
331 1200
332 1258
340 1347 | 146C 89 147
224 221
640 268
857 275
1285 477
514
530
541
559 | 629 1246
627 1271
630 1272
641 1292
651 1347
676 1359
732 1505
854 1546
901
1035 | 1 1546
33 1623
379
415
587
600
889
967
994 | 331
332
461
497
693
1012 | 15 331 82 670 1272
58 89 724 1285
24 79 99 1292
124 99 1292
125 900 1595
146 994
364 927
446 1935
516 1125
556 1746 | 85 88 724
373 113 914
400 220 1116
652 254 1455
1232 764 1495
1244 331
332
440
461
483 | 113 927
143 1732
147 1347
249 1369
415 1466
417 1505
477
499
587
799 | 89 559 799 1709 1546 483 102 551 684 129 1500 113 572 687 1215 1500 113 572 687 1215 122 246 620 901 127 129 627 915 1272 1266 630 937 1282 1275 660 1035 1291 114 651 1050 1341 528 687 1059 1347 530 732 1125 1457 | | Pt Ru S | | | | | | | | | 785 | | 785
1184 | 478
478
453 1450 | | | 650
1046
1046
478 | | | | | | | | | 650
1846 | | | 650 | | | | | 785 | 46 | 773 | Ru 159 785 581 1184 S 158 741 774 1158 45 SL | | Sb
Sc
Se
Si | 612 | 24 913 | | | | 513 | 813 | | 813 | 94 | 84 | | | | | | | 813 | 84 | | 813 | | 9.4 | 84 | 7 | 913 919 | | | | | 565 | | | | Sc 737 893 Sc 737 Se 171 693 1006 1486 Si 157 817 Sn | | Sr
Ta
Te
Th | 812 384 /132 | aiz 1132 | | 811 984 | B12
1132 | 912
1152
1152
714
| 511 H32 817
812 H32 | | 1132 | SII SII 1132 | 738
758
611 1132
812 | | 811 1132
812 | S11 1132
S12 | | | 3310 | 812 113 | 014 | | 812 (132 | | 1356
811 1132
812 | | 11 811
17 812
14 1354 | 1356 1356
1132 812 812
1132 1137
1310 1310 | 811 H32 | | | 796 | 505 | | 1310 | | 947 796 Ta 1147 738 Te 811 Th 132 962 1511 Ti | | TI | 1511
10 84T 1073 1364
93 843 1103 1411
103 844 1112 1535
151 885 1114 1355 | \$44
1170
1513
1611 | 103 219
845 643
1103 843
1104 997 | 496 842
862 1073
1555 1411 | 32
99
377
841
1022 | 32 377 151
39 351
317 862
1022 | 32
99
377
842 | 10 32
32 99
99 842
718 1022
1022 1073 | 32 10
99 32
377 99
842 377
1022 718 | 99 32
317 99
718 377
718 319
842
1555 1073 | 32
99
377
718
847
1073 | 865 308 312
866 | 37 244 1114 1533
99 845 1119 1533
100 846 1100 1555
151 847 1175 1557
219 551 1219 1604
377 852 1230 1620
475 900 1230 | 912
99
425
718
842
1073
1175 | | 1298 | 842 1358
1073 | 1358 37
99
97
842
1073 | 1356 32
99
377
718
842
1073 | 151 | 32
99
377
942
1022 | 714 37 844 1114 12 9842 99 845 1116 12 1073 105 246 1170 11 111 151 847 1175 12 121 851 112 13 377 852 1266 1 | 1535
1553
1553
1555
1557
1577
1504
1604
1600
1600
1600
1600
1600 | 10 3
377 9
377 9
716 84
1022 (0)
1288 131 | 10 1555 32 1559 39 99 177 773 3 162 1673 | 32 32
99 99
317 317
842 842
1022 1022
1073 0133 | 32 219
99 902
317 900
317 119
719 1298
642 1364 | | 32
99
377
718
942
1073 | 10 10 997
32 32 1022
99 99 1073
327 327 1113 | 843
1313 | 508 917
866
219
819
846
900
1119 | 912
32
99 (10 | z a | T1 10 900 32 1001 93 1119 151 1250 | | | 10 84T 1073 1364 93 943 1103 1411 103 944 1112 1353 151 845 1114 1355 151 845 1114 1355 151 847 1170 1620 452 851 1175 494 852 1219 643 300 1250 718 997 1270 1829 1001 1313 | 1557 | 1298 1113
1364 1119
1604 1175
1219 | | 1073
1558
1511
1446 | 1073
1359
1411
1446 | 1073
1359
1411
1446 | 1625 1411 | 1073 1358
1358 1535
1411
1446 | 1411 | 1358
1411
1446 | 1514
1130 | 495, 997, 1913
5-63, 1001, 1558
718, 1022, 1364
829, 1073, 1391
8-52, 1073, 1441
8-53, 1173, 1446 | 1313
1411
(446
1533
(555 | | | 710 | 1073
1358
1411
1445 | 1411 | 710 | 1975
1355
1411
1445 | 219 851 (119) 377 867 1250 (475) 475 900 (1286) 496 997 1813 (643) 643 (001 1538) 778 1822 1554 (825) 829 (873 189) (643) 843 1813 1446 | 1352
14(1
1446 | 1446 | 1373
1359
1411
1445 | 1959 1559
1411 1411
1446 1445 | 1073
1359
1411
1446 | | 1358
1411
1446 | 718 496 1119 11588 842 1313 1446 844 1359 1455 845 1446 846 1555 847 1604 862 307 710 | | | 710 | 559 | 219 1358
377 1391
718 1446
829 1555
842
846
851
307 1430
946
834 | | Yt | 164 879 1600
297, 896
306 395
327 1018
385 1157
657 1328
705 1552 | 164 1152
327 1582
335
456
879
939
1060 | 094 | 164 297 101
1584 306
436
657
717
879
894 | 8 300
320
450
657
701
871
895 | 7 896 1982
6 322 1584
7 705 1690
7 1060
1928
1928
1600
1812
1812
1812
1812
1812
1812
1812
18 | 297 936 164 879 1217
306 939 297 894 1318
657 1018 306 896 1952
705 1217 327 922 1952
717 1318 365 336 1584
679 1552 456 933 1600
894 1600 657 1018
896 705 1048
922 717 1152 | 297 297 939 657 306 1018 705 327 1552 894 1500 936 | 164 879 1217 306 1600 1797 894 1328 557 306 896 1557 705 327 922 1552 717 355 935 150 1600 657 1018 705 1040 717 1152 1328 | 0 396 297 894 1600
705 306 895
717 327 935
894 345 339
895 456 1018
1018 557 1040
1217 705 1328
1328 717 1552
1552 879 1584 | 797 894
306 896
327 336
385 939
456 1040
705 1328
717 1552
879 1584 | 413 890 | 2 97 896 1557
306 872 1800
657 336
705 939
717 1018
879 1217
894 1578 | 705
894
912
936
1018
1600 | | 327
385 | 705 327
922 365
936 717
1018
1328
1552 | 164 57
797 89
106 89
327 97
185 93
456 93
657 101
705 104 | 79 1217 | 0 385 | 166 879 1217
797 504 1328
306 896 1551
327 922 1582
385 396 1584
456 539 1600
657 109
705 1060
717 1152 | 797 10(8 306 939 306 657 1157 456 705 1217 657 717 1328 879 1552 879 894 895 922 | 277 894 160
327 797 306 895
456 306 327 936
1594 327 385 939
717 456 1618
657 1649
70 1328
717 1552
579 1584 | 797 879 32
306 895 38
327 922 70
455 1018 93
657 1217 753 128
717 1552 | 27 297 396
85 327 395
95 325 395
95 4840
96 657 705
717 879 | 854 1600 164 879 1217 165 6
696 297 834 1329 137 939 395 306 866 1552 136 6
939 395 306 896 1552 136 6
939 327 922 1582 127 108 108 306 306 306 306 306 306 306 306 306 306 | 879 1217 297 894 1600
894 1138 306 896
895 1552 37 396
922 1952 395 313
939 1600 657 1040
939 1600 657 1040
1040 717 1552
879 1584 | 465 | 797 894 1600
366 896
327 936
385 939
456 1018
657 1040
705 1328
717 1552 | 306 1552 64.8 996
657 1600 306 922
705 306 922
717 396 1018
717 396 1018
717 397 105 1238
996 717 1552
991 1600 | 1040 16 | 5 1202 | 327
385
456
705 | C 902 1202 | 297 922
306 936
657 1019
705 1328
717 1551
679 1600
936 | | Zn Zn | 353 612 928 1325
403 743, 1171
405 755, 1203
465, 302 1758
229 1297
1241 1415 | 295 1053 1394
363 1241 1415 | 131 902
353 1203
743 1269
765 | | 295 1255
363 1469
906 | 295 1255
363 1469
907 | 295 1255
907 363 1469
1469 906
907 | 367 363
307 906
919 907
1394 1469 | 295 1255
363 1469
306
307 | 295 1053
363 1255
367
907 | 295 1053
363 1295
367
907 | 442 1436
764 1550
865 | 907 | 307 | 465 | 795 1755
367 1394
1053
1241 | 150 881 1325
322 903
403 1128
764 1235
295 1394
1255 | 906
907
1258 | 295 1053
363 1255
367
907 | | 754
764
295 1255
363 1469
906
907 | 75 906 1741 1415
235 907 1725 1469
363 929 1727
367 1059 1394 | 764
785 1059
367 1255
367
307 | 31 764 1168 33
754 353 1178 1935 135
764 353 1178 1936 133
743 1235 235
295 1255 9
907 13 | | 1053 795 1255 795
1255 353 1469 3363
1256 906 906
907 907 | | 1078 | | 754
1051
1394 295 907 1255
1469 367 1053 1394 | | 764 465
928
1078 | 329 1735
902 1383
764 | 69 978
978 138 236
473 1078 | 5 865 1202
372 903 1235
373 978 1335
465 1078 1393
15 929 1469
907 1053 Zr | | 43 61 75 | | Si _x O _y | SO ₄ SO ₃ P _x O _y | NO ₃ CO ₃ Zr | Zn Yt | Yb W V | Uerc Tm T | l Ti There | Te Tb Ta | Sr Sn Sm | i Se Sc | Sb S Ru | Rh Rb Ra etc F | Pt Pd Pb P | Os Ni N | H ₄ Na | N Mo Mn | Mg L | u Li La | K Ir | In I Ho H | Hf He | Gl Ge Gd | | | | | Cs Cr Co | Cl Ce Cd | Cb Ca C | Br Bi Ba I | B Au As | Al Ag A | Н ОН | O NAT.EL |