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A CONTEIBUTION TO THE STUDY OF THE DIAMOND
MACLE.

With a Note on the Internal Structure of Diamond.

By J. E. Sutton, M.A., Sc.D., F.E.S.S.A., Hon. Memb. E.Met.S.,

Hon. Memb. S.A.S.C.E.

** Composite crystals often occur, in which the several portions have-

different orientations governed by regular and definite laws. When the

crystallisation of a substance held in solution is hurried by rapid evapora-

tion of the solvent, the crystals usually grow together in groups, in which

the arrangement of the several members is purely accidental. But it was

observed at a very early date that crystals of certain minerals, in particular

those of cassiterite and spinel, are joined together in a regular and constant

manner to form a well defined individual. .

" Eome de I'lsle was the first to attempt an explanation of the composite

character of the crystals of spinel and cassiterite, and he introduced the

word made to denote a kind of composite crystal which we now call a twin.

Werner employed the word zwilling (= a twin), at present used by Grerman

crystallographers, and later on Haiiy introduced the word hemitrope (from

vifii —half, and rpoiroq = a. turn) , for he perceived that the orientation of the

two portions of every well-defined twin known to him is given by the

following law : A complete crystal, bounded by the forms observable on the

twin, is divided along a central plane which is parallel to a possible face
;

and the half on one side of the plane is then turned through 180° about the

normal, the two halves remaining in contact to form the twin. This law

gives in very many cases the relative orientation of the two portions united

together in a twin crystal ; it offers no suggestion as to the cause of

twinning, and supplies no explanation of the growth of the twin " (Lewis,.

* Crystallography,' 1899, p. 461).

It is rarely, however, that a diamond made is equivalent to two halves

of a complete crystal, or that the length of an edge is 1*225 times the

thickness between two opposite triangular faces, or that its " central plane

is a plane at all. Mostly it is of tabular habit, and its aspect is pretty
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much what would be obtained if two rough flakes, not necessarily of equal

thickness —one from each of two opposite faces of an octahedron, or one

from each of two opposite corners of a rhombic dodecahedron —were rotated

60° or 180°, either way round, and joined together. At the same time the

opposite faces tend to accurate parallelism. Since very few diamonds have

sharp edges it can be understood why the majority of diamond macles have-

not indented (swallow-tail) corners, the indentations having disappeared

in the process which rounded the edges. Hence the corners of most of these

macles are blunt
;

though not a few, and especially those with dodecahedral

characteristics, taper gradually with a lenticular section to a sharp edge.

An uncommon sort of made is known in which the central plane is not a

hexagon but a perfect triangle larger than the parallel faces, and every-

where falling outside the orthogonal projection of the faces ; and in this

case (which is difficult to understand) the edge faces meet in fairly sharp

edges and carry the usual facial triangular indentation (see Fig. 1).*

Pretty often one of the halves of a made projects beyond the other, as

though the two halves had worked to combination planes of different size, or

as though a flake from one diamond had been joined at random, excepting

as to orientation, to a flake from another larger one. Fig. 2 is an illustra-

tion of a Wesselton made of this kind. In Fig. 2 (a), CB and CF are the

two halves seen edgewise. The projecting portion AD of the twinning plane

is indented with shallow triangles standing the opposite way to those on

the outer face EF, as shown in plan in Fig. 2 (b). That is to say, the lower

half CF in Fig. 2 (a) partakes of the character of a proper octahedral

tabular crystal. Weshould infer from this that either half may have grown

independently of the other to some extent.

Fig. 3 shows an edge of a Bultfontein made of a type intermediate

between those of Figs. 1 and 2.

Frequently the edges of glassy macles are deeply indented with pyramidal

terraced depressions, the triangles of one half being opposed base to base

to those of the other half. Quite as often, however, only one of the halves

has these depressions, the other half being quite independent of them.

* According to current theories this specimen would be regarded as a macled form

of the plus and minus tetrahedron. Cf. Spencer, ' Ency. Brit./ 1910, art. " Crystal-

lography "
; and Eutley's ' Mineralogy/ 1916, p. 70.

Fig. 1. —Wesselton glassy made, enlarged six times.
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Composite types and irregular forms are common:
Ex. 1. —A nearly complete Bultfontein crystal with rounded edges and a

shield " face not indented with triangles. On a cleavage plane roughly

^ (a) Side view.

(b) Plan.

Fig. 2. —Wesselton made, enlarged.

parallel to the shield a thin flake had grown macling the diamond. This

flake was much less rounded than the rest and had numerous triangular

indentations on its face.

Fig. 3. —A Bultfontein made.

The dimensions of the diamond were :

Length of edge, 7*6 mm.
Thickness of whole diamond perpendicularly to the twinning plane,

6'3 mm.
Thickness of macling flake, 0*8 mm.
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Ex. 2. —A made with one half dodecahedral, the other half inclining to

octahedral.

Length of edge, 6*5 mm.
Thickness, 3'8 mm.
Ex. 3. —In tli3 case of many Dutoitspan macles the combination plane is

almost circular in plan even when the faces are flat.

Ex. 4. —In the case of many Koffyfontein specimens, especially those of

dodecahedral affinities, the combination plane is isosceles. Others are^

scalene. The spread dodecahedral macles from Jagersfontein often show

the same irregularity.

The diamonds found in the principal mines of Griqualand West and the

Orange Free State may be classified for convenience into two holohedral

groups, namely octahedral and dodecahedral, albeit there is no hard and

fast demarcation between them. Practically every octahedron carries

Fig. 4. —A typical large yellow diamond from Dutoitspan.

dodecahedral striations more or less developed, and nearly all dodecahedra

show traces of an octahedral lineage ; and this is so even when the

dodecahedron declines into the tetrahexahedron, as in Fig. 4. From the

infrequent octahedron on the one hand almost to the cube on the other there

is an unbroken gradation. There are curious intermediate combinations, in

which the edges of the rhombic dodecahedron, or tetrahexahedron, invade

the faces of the octahedron, the said edges existing in embryo side by side

with the (evanescent) triangular indentations belonging to the octahedron.

These combinations have been mistaken for triakis- and hexakis-octahedra.

Of the made the same may be said : There is the same unbroken pro-

gression from the one group to the other, including the illusory triakis- and

hexakis-octahedra.

Generally speaking, swallow-tail corners on macles are a function of

thickness. The thicker a made relatively to the length of its edges, the

greater the chance that the twinning plane is truly hexagonal. Otherwise

the swallow-tails are only seen on macles whose octahedral characteristics

are the most pronounced. Such macles will then have fourteen more or less-



A Contribution to the Study of the Diamond Made. 157

perfect faces. Oscillation types may have two octahedral faces and three

rounded edges. Dodecahedral types may have no more than six, or twelve

usually somewhat arched faces. These last are met with often enough at

Jagersfontein, and occur also at Wesselton and Bultfontein, where they are

most common in the smaller sizes.

Fig. 5. —Made, showing flawed edges.

The fracture of a made is curious. A smashed diamond crystal, not

macled, nearly always shows conchoidal fracture dominated by the so-called

perfect cleavage. But in the case of the made perfect cleavage scarcely

counts, for it breaks easily enough parallel to an edge, and still more easily

at right angles to an edge. In the first case the fracture is somewhat

irregular and conchoidal ; in the second it is remarkably direct, showing,

moreover, a herring-bone " grain." Many spotted glassy macles have flawed

Fig. 6. —Herring-bone grain of made.

edges, the flaws indicating the directions of easy breakage perpendicularly to

the edges. Fig. 5 depicts a Wesselton made with flawed edges, and Fig. 6

the grain of a made broken at right angles to an edge.* It may be noted

here that the straight breakage surface of a made at right angles to an edge

reveals much better than a natural edge does that the twinning plane is not

necessarily a true plane at all, but rather an irregular surface, or at best a

series of small planes on different horizons approximating to parallelism:

with the triangular faces of the made.

* See the " Note on the Internal Structure of Diamond," below.
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Among diamonds the macle-forming tendency does not appear to be

strong, though some mines have it more than others. Some test-countings

gave the following proportions by weight which macles bear to the total

yield

:

Bultfontein . . about 1 per cent.

Wesselton . . ,,1^ „

Dutoitspan . . at least 3 ,,

De Beers and Kimberley 5

The low percentage shown by Bultfontein is remarkable, that being the

mine above all others where groups and clusters of diamonds abound, and

where irregular twinning is so prominent a feature as to be almost a

nuisance to the diamond merchant. The above percentages suggest, though

they may not prove, that where regular twinning is most in evidence there

irregular twinning will be least.

The most striking peculiarity of the diamond made is of course its

prevailing tabular habit. Untwinned crystals are pretty often flattish, and

now and then, particularly at Bultfontein, tabular octahedra —the " portrait

stones "* of the diamond market —are met with. These, saving that they

-are nearly always elongated, are equivalent to octahedra from which opposite

facial blocks have been cleaved off, so that they have hexagonal faces.

Measurements of four of these Bultfontein portrait stones gave the following

"dimensions

:

Length. Breadth. Thickness.

1. 110 6-0 2*5 mm.
2. 6-9 40 1-8 „

3. 97 ? 2-3 „

4. 77 ? 2-2 „

As articles of merchandise they are m.uch to be preferred to macles, but

iheir philosophical interest is incomparably less. Superficially the chief

differences between tabular crystals and macles are

:

(1) The triangular indentations of the two opposite faces of a tabular

crystal are oriented in opposition from any one point of view, whereas

those of the made are oriented the same way. This difference is very

pleasingly shown if the crystal and the made are held up to the light, side

by side.

(2) The crystal breaks normally, the made symmetrically.

(3) The crystal is glassy with a shining lustre, the made not charac-

teristically so.

(4) The made is peculiarly tabular, the tabular crystal is rare.

The last clause is perhaps the most important. The ordinary crystal is

by preference a regular solid whose axes are equal in length. And it seemed

worth while to attempt to determine whether there is a standard of dimen-

* So called because they serve as glazing for small miniatures.
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sions to wliicli macles also tend to conform. Clearly there is no hard and

fast necessity that a made should be tabular seeing that now and then one

comes across a made which is made up exactly of two halves of a regular

octahedron ; but it is a question whether such a one is to be regarded as

representing a standard from which all others are departures or whether it

is itself a departure from whatever the standard may be. If it be the

standard, then although the average spread (i. e. the ratio of length of edge

to thickness) of all together may be much greater than its own, yet the

actual numbers of the thinnest ones (ratio large) will be less than the

actual numbers of the thickest ones (ratio small).

With the object of determining, first, the average spread, and, second,

whether that average signifies a standard dimensional ratio or is merely

a numerical median value, measurements of diamond macles of good

geometrical symmetry have been made as opportunity offered. The results

are set forth in the tables below.

Table 1.

—

Octahedral Macles.

Mine.

Edge shorter than 5 mm. Edge from 5 to 7*9 mm. Edge 8 mm. and longer.

No.
Average

edge.
Spread

E/T. No.
Average

edge.
Spread

E/T. No.
Average

edge.
Spread

E/T.

Koffyfontein .

Jagersfontein .

Dutoitspan
Bultfontein
Wesselton

8
1

3

50
9

mm.
3- 4
4- 5
4-1

3-6

3-6

2-28

1- 64
304
2- 74
2-86

4
5

10
40
27

mm.
6-3

6-4

6-5

6-5

6-6

2-38

2-15

2-55

2-82

266

1

3

6
]5
31

mm.
8- 2

13-7

13-5

9- 3
9-9

3-73

1- 82
2- 55
2-49

2-57

Total 71 3 6 2-70 86 6-5 2-68 56 ]0-3 2-53

Table 2.

—

Bhombic-dodecahedral Macles.

Mine.

Edge shorter than 5 mm. Edge from 5 to 7"9 mm. Edge 8 mm. and longer.

No.
Average

edge.
Spread

E/T. No.
Average

edge.
Spread

E/T. No.
Average

edge.
Spread

E/T.

Koffyfontein .

Jagersfontein .

Dntoitspan
Bultfontein
Wesselton

8

4
3

25
23

mm.
4-3

4-4

3-8

3-4

3-8

2-16

2-15

1- 85
2- 06
2-32

6
9

7
36
30

mm,
6-0

6-8

6-5

6-2

6-4

2-68

2-44

2-23

2-30

2-42

6

6
3

13

mm.

9-6

12-4

8- 9
9- 3

2-33

1-99

1- 97
2- 50

Total 63 3-7 2-18 88 6-3 2-38 28 100 2-30

Table 1 gives, for five mines, particulars of the ratio of length of edge

(E) to thickness (T) of macles of prevailingly octahedral character, arranged

in three sets according to length of edge.
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Table 2 gives corresponding particulars for macles of prevailingly

rliombic-dodecahedral character.

From Tables 1 and 2 we gather that, on the whole, the smaller octahedral

macles appear to have a slightly greater spread than the larger ones, the

opposite being the case for the dodecahedral ones. Measurements of a very

much larger number of specimens, however, would be required to definitely

prove that it is so. What is clear is that the octahedral types have a larger

spread than the dodecahedral ; for the 213 macles of Table 1, with an

average edge of 6*5 mm., have an average spread of 2'65, whereas the

179 macles of Table 2, with an average edge of 6 mm., have an average

spread of 2*30. This is partly (but only partly) to be accounted for by

the fact that the thicknesses in Table 1 are measured from face to face,

whereas many of those of Table 2 had to be taken between two opposite

coigns.

Table 3.

—

Number of Octahedral Macles of Given Spread.

E, T under 2. 2 to 2-99. 3 to 3-99. 4 to 4*99. 5 to 5-99. 6 upwards.

Koffyfontein 6 3 4
Jau^ersfontein 4 5

Dutoitspan . 4 10 5

Bultfontein 17 52 28 6 1 1

Wesselton . ]2 36 17 2

Totals . 43 106 54 8 1 1

For the whole 392 macles measured the average edge was 6*3 mm. and

the spread 2 49. Whence it would appear that the average thickness

of a made is very closely one-half that of the regular octahedron standing

on an equal base. The question now is, Has this ratio anything more than a

chance significance ? To test this query we must determine the actual

number of specimens of given ratios in our list. Table 3, therefore, gives

the numbers of octahedral macles in ascending grades of spread (E/T),

and Table 4 gives corresponding particulars for the dodecahedral types.

A comparison of Tables 3 and 4 confirms the evidence of Tables 1 and 2

to the effect that, excepting at Jagersfontein, octahedral macles have a larger

spread than dodecahedral ones. Indeed, in the case of two Bultfontein

specimens included in the numbers of Table 4 the thickness was actually

greater than the length of edge; and out of sixty-four Bultfontein dodeca-

hedral macles no less than eight had a spread-ratio less than 1"5.

Again, of the whole number measured (= 392), considerably more than

half had a spread-ratio between 2 and 3, whereas only about a quarter had

a lesser spread. Thus it is proved that the average spread, 2'49, deduced
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above is the spread to which the diamond made tends to conform, and

therefore that the standard made is not rightly to be regarded as consisting

of two halves of the standard octahedron. More than that, a made which is

equivalent to two halves of an octahedron is as much abnormal as a made
of four times its spread.*

It is a curious circumstance that although dodecahedral stones are

common at Bultfontein, where quite a half of the yield is prevailingly of

this type, and that Wesselton is a mine of stones inclining to the octahedral,

yet more glassy and octahedral macles are found at the former place than

at the latter. In fact, of the whole 169 Bultfontein macies dealt with in

Tables 1 and 2, 105 (= 62 per cent.) were of the octahedral type, whereas

only about a half of the Wesselton macles were so. Bultfontein octahedral

macles, however, average smaller than Wesselton ones do—at any rate

among diamonds exceeding one-tenth of a carat each.

Ta:6LE 4.

—

Number of Dodecahedral Macles of Given Spread.

E/T under 1. 1 to 1-99. 2 to 2-99. 3 to 3-99. 4< to 4-99. 5 upwards.

Koffyfontein 2 11 1

Jagersfonteiti 4 15
Dutoitspan

.

8 7 1

Bultfontein 2 27 26 8 1

Wesselton . 15 41 10

Totals . 2 56 100 20 1

The greatest spread-ratio hitherto observed by me is 6'37 (E = 51 mm.,
T = 0*8 mm.) on a glassy made from Bultfontein. Spread-ratios of 5 on

Bultfontein macles are not uncommon.

A Note on the Internal Structure of Diamond.

The grain which appears in herring-bone pattern on a broken made is

sometimes shown in straight pattern on a broken simple diamond crystal.

This will be when the fracture happens to lie at right angles to an octahedron

edge, i. e. parallel to a dodecahedral plane of symmetry. This grain is

parallel to the plane of a continuous line of edges of the hexakisoctahedron
;

it is parallel to a plane joining any two opposite edges of the cube, or what
is the same thing, to a plane joining any two opposite shorter diagonals of

* I am unable to say how this result compares with the average twin of spinel.

Lewis (p. 467) observes that the twin of spinel often "acquires a more or less strongly-

marked tabular habit by the disproportionate development of the faces parallel to the

combination plane." An excellent little twin of Burma spinel in my possession has a

spread-ratio of 1"40.
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the rhombs of the dodecahedron. The grain, therefore, is equally inclined

along six planary directions of the three rectangular axes.

Taking any complete set of six planary directions

:

(1) They meet a face of the octahedron in two sets of three each, of

which one set is at right angles to the face, the otlier inclined 54°

44' to the normal. The grain of the first set is inclined 35° 16' to

the normal ; that of the second runs parallel to the surface.

(2) They meet a face of the rhombic dodecahedron, one of them at

right angles, the grain being also parallel to the shorter diagonal

of the rhomb, one flush, as also the grain, with the longer

diagonal, and four inclined at 30° to the normal, while the

I'espective grainings of these are inclined at 54° 44' to the edges.

(3) They meet a face of the cube, two being at right angles to this,

themselves intersecting at right angles, the grain of each being

parallel to a diagonal of the face, and four at equal inclinations of

45°, as also their grainings.

Hence, having regard to these planary directions, if a diamond crystal-

lises in dependent grained parallel laminae, then the octahedron, the rhombic

dodecahedron and the cube, are the regular forms most likely to occur.

Transition forms such as the triakis- and hexakis-octahedron, if there be

such things, would be due to accelerated growth in the central parts of the

planary directions cutting the faces of the octahedron ; but there is no

obvious reason why diamonds alleged to be of such forms shoulddiave the

exquisite symmetry assigned to them in treatises on crystallography.

The geometrical patterns displayed on the faces of diamonds appear to

be due to the grainings which run parallel to a face. Thus are derived the

shallow triangular indentations on the faces of the octahedron —shallow,,

because their sides are normally parallel to similarly oriented dodecahedron

faces, and the square indentations on the faces of the cube, these squares

being apparently mostly confused by the intrusion of the grainings which

meet the faces aslant. Again, the parallel striations appear whenever the

grain of a planary direction runs flush with a face, as in the rhomb of the

dodecahedron, and across a bevelled edge of the cube.

Rounded forms are entirely a dodecahedral efl'ect. To be quite precise,.

there is no such thing as a rounded octahedron, though the term may pass

for the sake of convenience. An octahedron can only be thicker through

the middle of opposite faces than at the edges when its edges are terraced by

the imposition, step upon step, of smaller and smaller triangular slices —the

form which for some reason has been classed as a tetrahedral twin.* The

* The tetrahedral theory introduces much mental complexity into the study

of the crystallisation of diamond. And although it may be invoked with some

appearance of justification to explain a single-grooved edge to a diamond (cf. Lewis,

p. 481), or a made such as Fig. 1, it is less satisfactory when there are many groovea

(and these with striated, not smooth edges), as is usually the case.
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rounding arises solelj from the per sal turn curtailment of the areas of

superimposed grained laminae on the rhombs of the dodecahedron, as can be

easily seen under magnification : Imagine a number of tiny parallel rivulets,

some a little stronorer than others, of viscous matter to run from the middle

each way nearly to the edge of a rhombic plane and to solidify ; then a

second lot to overflow them in the same direction though not so far
;

then a

third lot, and a fourth, and so on, each lot in succession having a weaker

driving **head." In the end we shall have a somewhat irregular-terraced

sulcate elevation, rounded if the " head " has diminished at an increasing rate,

sloping uniformly upwards to a ridge if the " head " has diminished

uniformly. And this is about what the rippled, or sulcate surface of a

typical Dutoitspan yellow dodecahedron looks like under the microscope.

The rivulets here are actually due to the exposed grain of the diamond ; the

rounded elevation is that of the rounded dodecahedron ; the uniform rise to

a ridge is that of the tetrahexahedron,

Brewster seems to have been the first to detect the internal grain of a

diamond. He noticed that the flat surface of a certain plano-convex lens

of diamond was covered with minute parallel bands, and he concluded, not

quite correctly, that **all the bands were tiie edges of veins or laminae whose

visible terminations were inclined at different inclinations not exceeding two

or three seconds [of arc] to the general surface." He added that had this

surface been an original face of the crystal there would have been nothing

surpi.-] ng in its structure" ('Phil. Trans.,' 1841). If, however, my
argument above is sound, then the plane face of Brewster's lens must have

been cut parallel to a face of the rhombic dodecahedron. Parallel bands,

would not have been seen on a plane cut in any other direction.*

The term " grain " is used in the diamond-cutting industry, yet not

quite in the same sense as here. Eg. Cattelle (' The Diamond,' 1911) says,.

** Cut with or against the grain of a diamond, and the wheel makes little

impression; it must be cut across the grain" (p. 114). Again, "Imper-

ceptible as it is to an inexperienced eye, diamonds have a grain along which

they can be split as wood is split, only much more evenly and exactly.

This grain is parallel with the faces of the octahedra" (p. 126). Mineralo-

gists have tried to say much the same of crystals in general in less homely

language. Rutley (p. 41), e.g., says that "In the plane of cleavage the

molecules composing the mineral are closely packed together, whilst at

right-angles to this plane the packing is not so close. This last direction is,

* Evidently Brewster's lens could not have been polished up to the vitreous stage

so as to have acquired the " flowed layer of amorphous phase " which Beilby has

suggested may be produced by purely mechanical means on the hardest crystal.

Occasional dodecahedra from De Beers and Koffyfontein have an amazingly fine

natural polish. Possibly their surfaces are in the vitreous stage. Boutan Le
Diamant/ 1886, p. 37) ascribes the bands seen on Brewster's lens to multiple macling..

I hope to return to this matter again in a future paper.
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therefore, a direction of least cohesion, and hence splitting or cleavage easily

occurs along it." Also P. von Grroth (' B. A. Eeport,' 1904) tells us that

those planes which are parallel to the greatest density of structure —what-

ever that term may be supposed to mean precisely —are identical with the

cleavage planes. Of course, what these authorities really mean to say is

that the molecules are probably most closely packed in some given direction

because a cleavage plane runs that way. By saying the other thing they

put the cart before the horse. But it would seem that a diamond is most

readily cleavable parallel to an octahedron face because the grain of each

of three planary directions runs parallel to a face. It is not so easily

cleavable parallel to the faces of the cube, because only the grain of each of

two planary directions is parallel to a face, and it is still less easily

cleavable parallel to a rhomb of the dodecahedron because the grain of only

one planary direction runs that way ; so that in the last case it is only

across the thin edge of a made that we should expect to get this sort of

cleavage to the best advantage. All the same, it is surprising how good

such cleavage from a simple crystal may be on occasion. Plates of cleavage

parallel to a dodecahedral plane of symmetry are met with on the sorting

tables in which both cleavage faces are as nearly parallel to each other as

the faces of a portrait stone, and, moreover, are almost as natural looking

as a face of the dodecahedron itself. Fractures parallel to a cube face are

much less elegant as a rule.

Wemay summarise the last paragraph by saying that there 'isilld-Qvee

orders of diamond cleavage :

First, that parallel to an octahedron face
;

Second, that parallel to a cube face
;

Third, that parallel to a dodecahedron face
;

whence the cleavage of diamond is not so much a question of " density

of structure," or concentration of molecules, as it is of array of molecules.

It may be of interest to note here that the great Eobert Boyle failed to

distinguish between the true grain of a diamond and the " grain " as under-

stood by diamond cutters. He had observed the thin plates exposed on the

broken surfaces of " New English Granats,'' " and to try whether this

observation would hold even in the hardest Stones, I had recourse to a

pretty big Diamond unwrought, which being plac'd in a Microscope, shew'd

me the Commissures of the Flakes I look'd for, whose Edges were not so

exactly dispos'd into a plain, but that some of them were very sensibly

extant like little Ridges, but broad at the Top above the level of the rest.

And these Parallel flakes together with their Commissures, I could in a

somewhat large Diamond plainly enough discern even with my unassisted

Eyes. And for further satisfaction I went to a couple of Persons, whereof

the one was an Eminent Jeweller, and the other an Artificer, whose Trade

was to cut and polish Diamonds, and they both assur'd me upon their
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repeated and constant Experience, and as a known thing in their Art, that

'twas almost impossible (though not to break, yet) to split Diamonds, or

cleave them smoothly cross the Grain (if I may so speak) but not very

difficult to do it at one stroke with a Steeled Tool, when once they had

found out from what part of the Stone, and towards what part the splitting

Instrument was to be impell'd : By which 'tis evident that Diamonds them-

selves have a grain, or a flaky Contexture not unlike the fissility, as the

Schools call it, in Wood" (*An Essay about the Origine and Virtues of

•Gems,' 1672, p. 21).

If the grain of a diamond, as revealed either by a fracture at right angles

to an edge of the octahedron or by the natural face of the dodecahedron,

represents lines of crystal growth (as seems not unreasonable as a first

assumption), then it follows that the proximate primitive form of diamond

is not an octahedron but a six-rayed figure defining cubical space —each ray

joining the mid points of pairs of opposite edges of the cube and delineating

tlie respective directions of accretion. Thus let AG-, Eig. 7, be a cubical ray

space (or space lattice), a, h, c, d . . . , the mid points of the respec-

tive edges. Then am, hn, cJc, dl, eg,fh, are the directions of the rays. The

crystallisation may be supposed to proceed by successive symmetrical

impositions, edge to edge, of
,

like cubical spaces containing the rays, each

cubical ray space being surrounded by twelve others, that is, a second ray

space A' G' will be applied to AG in such a way that E' E' lies along DC,

a third A" G" so that A" B" lies along HG, and so on. The overall outline

of the first 13 ray-spaces will define a cubical space equal to 27 primitive

cubes of which 14 are empty. The addition now of a ray space opposite

each face of the central one gives an octahedron of 17 ray spaces. If,

further, we may venture to regard a, b, c, d . . . , each as indicating

the place of a carbon particle, then each particle in a diamond crystal will be

surrounded symmetrically by six others b, n . . . , at equal distances

p

(where _p is the length of an edge of the cube), in directions db, dn . . .,

parallel to the edges of the cube
;

by eight others a, c, h, e . . . , at

equal distances ^/t/ 2, in directions da, de, dh, de, . . . ,
parallel to the

edges of the octahedron
;

by twelve others, R, S, . . . , at equal

distances v/3 p in directions c?E, dS, dT', dJJ' . . . (where c^R, cZS pass

through P and Q the middle points of the cubic faces AE, DG; and dT\

dV, are parallel to BQ, BP) parallel to the edges of the rhombic dode-

cahedron. In short dn ( = p), dl (= \/2p),^ cZS (=\/ 3^), delineate in

magnitude and direction one edge of a cubical, octahedral, and dodecahedral

space respectively. Again each particle in the crystal of this proximate

structure is surrounded by 32 others, the whole forming a system of 33

contiguous particles. An interesting feature of the configuration is the

* dl = 2 da = 2 (p/n/2).

13
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fourfold grouping of six particles in a ring, bv which every particle is at a

corner of each of four hexagonal rings of six particles apiece in one plane, of

which d h mIf a is one.

Note. —For any assigned volume E : C : O = 118 : 105 : 100,

where E, is the surface of the rhombic dodecahedron,

where C is the surface of the cube,

where O is the surface of the octahedron.

This is perhaps as far as inference, based on mere eye observations of

fracture, can carry any theory of the internal structure of diamond ; and
such a theory could only be pi'oximate —in other words, it Could tell us

B
f)

-9-

a.

R

U E 'n H

Fig. 7. —Grouping of carbon particles in diamond.

nothing of why the carbon particles should spread in a six-rayed framework,

nor whether the particles may be regarded as ultimate atoms. A search for

outside evidence bearing on this point did not at first sight seem to hold out

much encouragement seeing that most published accounts of the diamond

are wrong in their facts and, therefore, not likely to be right in their

theories. Bragg's fundamentally important X-ray work on the structure of

the diamond (' B. A. Report,' 1913) proved, however, to contain the sort of

evidence that was required. It was perhaps unfortunate for me that owing

to various distractions, arising mostly because of the war, I had overlooked

his results before working out —and writing out as above —my own ; but

otherwise there is some satisfaction in finding that eye observations alone

can carry a theory so far as it does. Bragg deduces a somewhat more
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intricate grouping of atoms than that of the " particles " shown in Fig. 7.

He finds a primitive cube, and draws it so that the points C, D, H, Gr, of

Fig. 7 would be the mid points of its edges, and then deduces atoms

correspondingly with a, h, c, d, e, f, g, h, h, I, m, n, but finds another atom

point at the mid point of PQ, together with four others asymmetrically

placed. To quote his own words :
" When all the information is put

together we find that the element of volume of the diamond is a face-

centred cube ; a cube having, that is to say, a carbon atom at each corner

and one in the middle of each face. In the same cube are also four carbon

atoms at the centres of four of the eight small cubes into which the large

cube may be divided." In other words his cube coincides with mine

excepting that its outline is shifted aside by half an edge, and that it

contains five extra atoms which are not represented by particles in my
drawing, and which I have been unable to derive The spacing between the

planes of atoms parallel to the faces of the cube (100), the dodecahedron

(110) and the octahedron (111) is the same as for the " particles," namely

as 1 : t/2 : \/3, whether the five extra atoms are included or not.

By placing a particle at the origin (0) of the six-rayed figure, i. e. at the

centre of the cube in Fig. 7, we should have

dO : dbidg = pI^2 : p : \/3p/\/2

= 1 : \/2 : n/b:

In this case successive ray-spaces might be placed face to face, whence the

juxtaposition of adjacent halves of the ray-spaces would give a true lattice

of face-centred cubes. The outside halves, however, would be derelict and

the development of the octahedron not easily imaginable.

Eutherford seems to have had some difficulty Avith the structure found

by Bragg, for in describing it (' Ann. Rep. Smithsonian Inst.,' 1915) he

calls it cubical but complicated, and the " atoms are all equidistant, but the

general arrangement differs markedly from that of rock salt. It is seen that

each carbon atom is linked with four neighbours in a perfectly symmetrical

way, while the linking of six carbon atoms in a ring is also obvious from the

figure. The distance between the plates containing atoms is seen to

alternate in the ratio 1:3." But neither this account nor the picture of the

model made to illustrate it seems quite to agree with what Bragg said.


