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STRATEGIES FOR MOLECULAR DESIGN BEYOND THE MILLENNIUM 

James P. Snyder and Forrest D. Snyder 

Department of Chemistry, Emory University 
1515 Pierce Drive, Atlanta, GA 30322 
e-mail: snyder@euch4e.chem.emory.edu 

INTRODUCTION 

When asked to open the 12th European Symposium on QSAR with some 
projections into the years ahead, I was immediately drawn to the words of 
Niels Bohr who changed the face of science so many years ago. 

“Predictions are difficult, especially about the future.” 

Bohr, of course, was awarded the Nobel Prize in 1922 for work on the 
quantum model of atomic structure; work performed in the city of our 
gathering, Copenhagen, Denmark. The complementary fields of molecular 
modeling and QSAR are amply summarized elsewhere. Rather than attempt 
a comprehensive survey, I decided to tell a few stories as representative of 
current developments that may have a strong influence in the field for the 
decade ahead. Thus, four themes will be touched in the paragraphs to follow: 
1) Receptor structure - molecular detail; 2) Molecular design and re-design; 3) 
Bioavailability and other imponderables; 4) The human factor. To test Bohr’s 
proposition, at the end of each theme, a set of near-future predictions will be 
ventured. 

1 

RECEPTOR STRUCTURE - MOLECULAR DETAIL 

At the present time there are four experimental methods that provide 
2 atomic resolution for molecules of biological interest: X-ray crystallography, 

Molecular Modeling and Prediction of Bioactivity, edited by Gundertofte and J0rgensen. 
Kluwer Academic / Plenum Publishers, New York, 2000. 3 



3 4 neutron diffraction, nuclear magnetic resonance spectroscopy and high 
resolution electron microscopy, also referred to as electron crystallography. 
The latter differs from X-ray spectroscopy by deconvoluting electron diffraction 
rather than X-ray diffraction patterns. Complementary methodologies for 
protein structure that depend on knowledge of the structure of a related protein 
are homology modeling and threading. While the three-dimensional 
structures of more than 7600 soluble proteins, protein-nucleotide aggregates 
and protein-ligand complexes are known, the X-ray crystal structures of only 
ten different types of membrane bound proteins have been solved to date 
(Table 1). 
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Table 1. X-ray crystal structures of proteins with a membrane embedded domain 

Protein R,' Year of publication 

Bacteriorhodopsin8 

Bacterial photoreaction centers 

Light harvesting complexes 

Photosystem I 

Porins 

Alpha-hemoly sin 

Prostaglandin synthase-I 

Prostaglandin synthase-I1 

Cytochrome c oxidase 

Cytochrome bcl complex 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1997 m r  
L.3 

2.2-3.1 

2.5 

4.0 

1.8-3.1 

1.9 

3.5 

2.5-3.0 

2.8 

2.8-3.0 

1984,1986,1993,1994,1996 

1995,1996 

1996 

1991,1992,1994,1995,1997,1998 

1996 

1993 

1996 

1995 

1996,1997,1998 

a Table adapted from P. C. Preusch, J. C. Norvell, J. C. Cassatt, M. Cassman, Ink. Union Cryst. 

Nerosletter 1998,6,19; Literature citations in REFERENCES, ' Structure resolution. 

Each of these crystal structures provides exquisite detail. An illustrative 
example is the cytochrome c oxidase complex (CcO) located at the terminus of 
the electron transport chain in the oxidative phosphorylation pathway. The 
structure reveals the domains of the enzyme within the mitochondria1 inner 
membrane as well as those projecting on both sides of it. The location of both 
hemes and the two copper sites (CuA and CUB) provides a clear spatial picture 
of the relay of electrons from the external and mobile cytochrome c to the first 
metal center (Cu,), which passes them to the heme iron of cytochrome u.  

4 



Finally, the electrons are delivered to the third metal center containing a 
closely associated iron-heme (cytochrome 1 z 3 )  and a ligated copper atom. It is 
here that O2 is converted to water with concomitant priming of the proton 
pump responsible for production of ATP. Among many other things, the 
structure resolved a long standing problem as to precisely how many copper 
atoms occupy the CuA site; two. 

This level of molecular detail is eagerly sought for proteins that form 
unique membrane spanning structures arising from multiple passage across 
the bilayer. Examples include the 24-strand sodium channel a-subunit, a 14- 
strand anion transport protein and the 12-strand a-factor and the doparnine 
transport protein. The structure in each case is believed to consist of 
membrane-embedded a-helices. By contrast, the 16-strand E. coli. transport 
protein, PhoE, which employs 0-sheets as membrane spanners. At present, the 
somewhat less complex 7-transmembrane G-protein coupled receptors that 
transmit the messages of numerous polypeptide hormones and other small 
molecules such as acetylcholine, dopamine and serotonin are of prime interest. 
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Electron Crystallography - The Tubulin Dimer 

The question posed here is whether high-resolution electron microscopy 
can provide 7-TM GPCR structure in the near future. Generally, one thinks of 
EM as a tool for observing small whole organisms in great detail: insect eyes, 
blood cells, bacteria and viruses to name a few. During the past decade or so, 
however, a number of developments have converged to increase the 
resolution of EM to below 5 A. Small well-ordered molecular crystals can yield 
structures to 1-2 A resolution. A spectacular example is the structure of the 
inorganic solid Tillsee which has been solved to an accuracy of 0.02 A 
resolution. At this level of accuracy, the technique is justifiably referred to as 
electron crystallography (EC). While many large biomolecular aggregates have 
been solved in the at 10-40 A range, the structures of three proteins have been 
obtained at < 4 A resolution: bacteriorhodopsin (3.5 A), spinach light- 
harvesting complex (3.4 A)23 and the a,P tubulin dimer (3.7 A).24 The first two, 
bR and LHC respectively, are membrane-bound proteins. EC would appear to be 
a natural technique for the latter as it requires the preparation of 2-D crystals for 
which extended lipid layers are eminently suitable. The third soluble protein, 
the primary constituent of microtubules, is three times larger than bR and four 
times larger than LHC. Determination of the tubulin dimer structure 
including molecules of bound GDP and GTP is a landmark for both biology and 
electron crystallography. 

Apart from the raw size of the a,@ tubulin dimer, another aspect of the 
structure justifies discussion. The 2-D crystal used in the EC analysis was 

19 

20 

21 

22 

5 



stabilized by taxol, a marketed drug that arrests a variety of cancers presumably 
by blocking the depolymerization of microtubules during cell division. The 
Nature report that describes the dimer structure includes the I small X-ray 
structure of a taxol surrogate, taxotere, docked in the taxol binding site. 
Unfortunately, the electron density of the ligand is insufficient to define the 
conformation of the three taxol side chains. As part of a collaboration with the 
Berkeley EC group, we have assembled nearly two dozen empirically viable 
conformations of taxol derived from pharmacophore mapping, 2-D NOE NMR 
analysis and the small molecule X-ray crystallographic literature. These were 
individually fitted to the partial electron density in the taxol-tubulin EC 
structure and ranked for goodness of fit. Only one of the conformers matches 
the density, a molecular shape distinct from previous proposals for the 
bioactive conformation of taxol. An important lesson from this study is the 
possibility for determining binding site ligand conformation in favorable cases 
by combining the results of a high resolution EC protein-ligand structure with 
those from small molecule modeling. Were electron crystallography to be 
successful in solving 7-TM GPCR structure at 3-4 A resolution, a similar 
synergy between structure determination and modeling can be anticipated. 
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SAR by NMR 

A separate but tantalizing recent development in spectroscopy is SAR by 
NMR, a creation of the Abbott NMR group." In principle, the technique is 
simple. Both the 
location of the binding site and the corresponding KD is sampled by I5N NMR. 
The ability to treat compounds binding in the low potency pM-mM range is a 
highlight of the method. Once a pair of suitable molecules are located i n  
contiguous sites, linkers are introduced synthetically. Discovery of nonpeptide 
inhibitors in the low nM range for stromelysin,28' a matrix metalloproteinase, 
and the FK506 binding protein has been achieved in this manner.28b The 
NMR-based approach has its counterparts in the area of purely 
computationalde no u o  design. MCSS/HOOK,29 LUD?' and Agouron's 
approach whimsically labeled "virtual SAR by NMR"31 all operate by docking 
small molecules in a protein binding site, ranking them with a free-energy 
scoring function, connecting them with appropriate. spacers and reevaluating 
the composite structures for improved binding affinity. While the Agouron 
workers have succeeded in mimicking the Abbott results entirely within the 
computer, the de nouo  approaches have yet to make a substantial impact o n  
the drug candidate pipeline. 

A library of small molecules is presented to a protein. 
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Predictions 

0 2-D Crystals of proteins in planar lipid films will become routinely 
accessible. Electron crystallography will employ novel 2-D crystal 
preparations to provide an increasing number of membrane-bound protein 

Electron crystallography in combination with small molecule 
conformational analysis will provide ligand conformation for membrane- 
bound proteins. 

0 SAR by NMR will become a widely used technique for protein-bound ligand 
conformer analysis and ligand design. 
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structures, including 7TM GPCRs. 

MOLECULAR DESIGN AND RE-DESIGN 

Sequences for numerous G-protein coupled receptors are now known, as 
is the influence of an impressive amount of point mutation data on ligand 
binding. Many molecular models of the GPCRs have been constructed by 
homology with bR, a protein uncoupled to a G-protein. Justification follows 
from the bR 7-TM motif and knowledge that mammalian opsins, true 
members of the GPCR family, may form an evolutionary link between bR and 
the ligand-binding GPCRS.~* Independently, the SAR of chiral small-molecule 
drug leads has stimulated the development of pharmacophores that include 
both weak and potent ligands. 

One approach to understanding drug action at structurally ill-defined 
macro-molecular receptors combines the features of modeled proteins and 
pharmacophores. The unified methodology provides novel design 
opportunities by borrowing the strengths of each of the latter. To my 
knowledge this concept was first presented by the Uppsala group.35 In the 
following, two separate stories are intertwined to illustrate a pathway from 
GPCR sequence to semi-quantitative structure-based design. 
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Mixed Dopamine Antagonists and Serotonin Agonists 

The first thread in the weave takes its inspiration from studies by the 
Groningen group. The just printed Ph.D. thesis of Evert Homan explores 
drug remedies for schizophrenia by focusing on atypical antipsychotic agents. 
In particular, attempts to prepare mixed dopamine D2 receptor antagonists and 
serotonin 5-HT1, agonists sprung from hybrids of substituted benzamides (D2 
antagonists) and 2-aminotetralins (5-HT1, agonists). Enantiomers (R)-1 and 
(S)-l, among others, were shown to exhibit the relevant biology. 

36 
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Using M a ~ r o m o d e l ~ ~  and APOLL039 software and a carefully selected set 
of active compounds, Homan developed independent pharmacophores for the 
D and 5-HT receptor subtypes (Figure 1). The unexceptional pharmacophores 
are complemented by the placement of water molecules at sites where the 
protein ligand side chain atoms of the putative biological receptor would 
interact with individual bound ligands. 

Figure 1. Superposition of several dopamine agonists in their pharmacophore derived 
dopamine D, receptor binding conformations. The water molecules mimic 
putative amino acid residues from the receptor capable of forming hydrogen 
bonds with the ligands. 



In a second modeling exercise, helices for the two 7TM receptors were 
constructed by sequence alignment and homology with bR and subsequently 
rhodopsin by means of Sybyl ~oftware.~ '  These were then docked around the 
pharmacophores by employing the conserved residues in both receptors as 
anchor points. For example, the conserved Asp114 located on TM3 in the D, 
receptor was positioned to replace the pharmacophore water molecule 
coordinated to the aromatic OH groups. Similarly, TM5 was positioned to 
permit Ser193 and Ser197 to replace the remaining pharmacophore receptor site 
waters as shown in Figure 2. 

Seri94 

TM3 TM5 

TM5 

Serl84 
TM3 

Figure 2. Illustration of the stepwise construction of the dopamine D, receptor model. The 
diagram at left shows the positioning of TM3 and TM5 helices with the aid of the 
pharmacophore water molecules. The diagram at right offers a top-to-bottom view 
of the relative positions of TM3, TM4 and TM5. The TM4 location was guided by the 
formation of a disulfide bridge between Cysll8 inTM3 and Cys168 in TM4. TM 
domain backbones are displayed as line ribbons. 

A consistent build-up procedure led to the D, and 5-HT1, 7TM models 
illustrated in Figure 3. While details of synthesis, biotesting and modeling can 
be found in the original Groningen publications, it's clear that the receptor 
ligand complexes derived by the hybrid procedure are substantially different 
from the bR model, but similar to the Herzyk-Hubbard rhodopsin model.42 
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TM2 

TM1 

T 

TM4 

TM2 

TM4 TM1 

TM7 

5 

Figure 3. Topological arrangements of the TM domains of the final 7TM models of the 
dopamine D2 (left) and serotonin 5-HT1, (right) receptors. Backbones of the TM 
domains are displayed as line ribbons. 

Additional ligands including (R)-1 and (S)-1 were docked into the 7TM 
receptor. The entire binding pocket including ligands and interacting receptor 
side chains was subsequently extracted and transferred to the PrGen software 

binding site minireceptor models are illustrated in Figure 4. Both enantiomers 
enjoy identical hydrophobic and hydrogen-bonding interactions with the 
receptor side chains, a result achieved by the molecules’ adoption of 
diastereomeric conformations near the stereogenic carbon. The modeling 
outcome is consistent with the observation that both compounds are nearly 
equipotent agonists at this receptor subtype. 

for optimization of the individual ligand-receptor interactions. 43 Final 5-HT1, 

Figure 4. (S)-1 and (R)-1 in the optimized 5-HT1, minireceptor binding site model. 
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The same mirror image molecules at the modeled D2 receptor provide a 
qualitatively different picture. The (S)-1 agonist participates in four clear-cut 
hydrogen bonds and a series of hydrophobic contacts (Figure 5). By contrast, 
the (R)-1 antagonist differs by failing to present a hydrogen bond from its 5- 
methoxy group on the left side of the diagram. Is this configurationally and 
conformationally determined difference responsible for the transition from 
agonist to antagonist in l? It would be difficult to judge unless the binding site 
were coupled dynamically to a molecular-based signal transducing mechanism. 
Nevertheless, the Groningen modeling exercise is remarkably faithful to the 
types of variations in nonbonded ligand-receptor interactions expected to be 
responsible for stabilization of receptor conformations representing active and 
inactive 7TM forms. 

Figure 5. (S)-1 and (R)-1 in the optimized D2 minireceptor binding site model. The bold arrow 
a t  left indicates the additional hydrogen-bond established by the S-enantiomer. 

The minireceptors depicted in Figures 4 and 5 are suitable for 
exploitation by methods germane to structure-based design, namely 3-D 
database searching and de no D O  design. While these lead-seeking activities 
were not pursued in the Groningen study, we shift targets to show how refined 
minireceptors could have served this purpose here and can do so in other 
therapeutic areas. 

Vasopressin Antagonists 

The second thread in the weave was stimulated by work at Emory 
University. The peptide hormone arginine vasopressin (AVP) operates in the 
central nervous system, the cardiovascular bed and the kidney. In the latter 
organ AVP serves to regulate water balance by causing GPCR-activated 
synthesis of CAMP, the deposition of aquaporins (water channels) in the cell 
membrane and the subsequent reabsorption of water on its way to the urinary 
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tract. Blockade of V2 receptors may prove useful in treating disorders 
characterized by excess renal absorption of water. Congestive heart failure, 
liver cirrhosis and CNS injuries are among them. 

Accordingly, a V, receptor pharmacophore was developed and 
augmented by constructing the corresponding PrGen optimized antagonist 
minireceptor without resorting to a preliminary 7TM model. In turn, the 
minireceptor was further refined to provide a semiquantitative correlation of 
empirical and calculated binding free energies. The training set K,'s span 
seven orders of magnitude (from low mM to sub nM) corresponding to a 
AAGblnd range of 6.5 Kcal/mol (R = 0.99, rms = -0.41 Kcal/mol). So far, the 3-D 
QSAR model has been utilized in two ways. First, a close collaboration between 
synthetic chemists and computational chemists has led to the intuitive and 
interactive conception of several novel series of analogs. Each candidate for 
synthesis has been subjected to a full conformational analysis, conformer 
screening and K, prediction by the model. A set of candidate antagonists with a 
predicted K, 2 10""-8 were synthesized and challenged by three separate i n  
vitro bioassays. Although the work is still preliminary, more than 50% of the 
22 compounds tested proved to be strong V2 antagonists at low n M  
 concentration^.^^ Further work is underway to demonstrate selectivity and to 
incorporate favorable ADME (absorption, distribution, metabolism, 
elimination) properties. 

Second, the V2 minireceptor has been subjected to a flexible 3-D search of 
the Chapman Hall Database of natural products by means of the Tripos Unity 
software. Of the 83,000 compounds sampled in this database, forty-five 
simultaneously matched the pharmacophore spatial characteristics and the 
minireceptor occupied space. The next phase of the project will subject the 
best candidates to the K, prediction protocol to select further structures for 
synthesis and assay. We expect the project to iterate several times and to 
incorporate combinatorial library steps before a selective, bioavailable 
development candidate is designated for toxicity screening. 

44 

40,46 

Generalization 

The dopamine/serotonin and vasopressin ligand vignettes illustrate a 
general problem and a powerful solution when one is confronted with a 
molecular design challenge for a structurally undetermined receptor protein 
target. The problem, of course, is the lack of 3-D atomic coordinates for the 
protein. The solution is either to combine a rough 7TM GPCR model with a 
pharmacophore or to construct an ad hoc minireceptor around the 
pharmacophore. In either case, the optimized ligand-based binding pocket 
offers the potential to generate a predictive Ki /AGind correlation. With both 
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the latter and a binding site model, the tools of structure-based design can now 
be employed in what formerly was a receptor mapping context. To be sure, a 
largely empirical combinatorial library approach can generate novel leads and a 
useful SAR.47 Some research centers are gambling that the same combinatorial 
methods will provide refined development candidates without intervention of 
the modeling/QSAR/design steps. In this context, the computational chemist’s 
priorities are naturally shifted entirely to the task of virtual library design. 
Only time will tell if such ”combinatorial” optimism is warranted. 

Predictions 

0 Complex pharmacophores will be developed routinely by expert systems 
utilizing genetic algorithms and neural networks. 
Problem oriented but structurally diverse 3-D databases will be scanned and 
sorted for leads and backups by employing highly accurate docking methods 
and much improved Ki /AGind scoring functions. De ~ O U O  design 
technology will mature. 
Computers and robots will be linked to analyze SAR, develop hypotheses 
and synthesize/screen iteratively on massively parallel computer chips. 
The first lead-finding step, but not subsequent steps in drug discovery, will 
be fully automated. 
The Sea’s natural products will succeed in supplying novel and 
therapeutically useful molecular structures far beyond previous yields from 
the forests and soil sample microorganisms. 48 

DRUG ORAL ACTIVITY 

Bioavailability can be defined as the dissemination of a drug from its site 
of administration into the systemic circulation. For effective oral delivery the 
agent must be absorbed across the GI tract’s small intestine, traverse the portal 
vein and endure the liver‘s ‘first pass’ metabolism. Only then does it enter the 
b l o o d ~ t r e a m . ~ ~  The drug discovery and refinement methods described above 
are focused almost entirely on compound potency once the drug arrives at its 
site of action. Much needed are early predictors of absorption, distribution, 
metabolism and elimination (i.e. ADME), the vital pharmacokinetic factors 
that govern movement of drug from application site to action site. One very 
recent attempt to devise a broadly applicable guideline during the lead 
generation phase is the ”Rule of 5”.50 Developed by Pfizer researchers, the 
measure suggests that poor absorption of a drug is more likely when its 
structure is characterized by i) MW > 500, ii) log P > 5, iii) more than 5 H-bond 
donors expressed as the sum of NHs and OHs, and iv) more than 10 H-bond 
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acceptors expressed as the sum of Ns and 0 s .  The data supporting this simple 
analysis was taken from 2200 compounds in the World Drug Index, the 
“USAN/INN” collection. Since each of the substances had survived Phase I 
testing and were scheduled for Phase 11 evaluation, it was assumed that they 
possess desirable oral properties. Statistical analysis of the collection scored by 
the Rule of 5 demonstrated that less than 10% of the compounds show a 
combination of any two of the four parameters outside the desirable ranges. 
With the exception of substrates for bio-transformers, the Pfizer group 
recommended the following to their colleagues: “Any designed or purchased 
compound that shows two undesirable parameters be struck from the priority 
list for synthesis to assure downstream solubility and bioavailability.” To be 
sure, compounds that pass this test do not necessarily show acceptable 
bioavailability. The purpose of the rule is to eliminate weak candidates from a 
larger collection of potential leads and backups. In this way the prospects for 
oral activity through enhanced solubility and permeability are improved 
simultaneous with potency increases designed to achieve the same goal. 

While the Rule of 5, if applied judiciously, is certain to be of value, the 
need for protocols to make specific and accurate predictions of aqueous 
solubility, permeability and ADME factors is still great. Lipophilicity 
predictions as measured by log P, though not perfect, are highly developed. A 
number of schemes for estimating aqueous solubility have been devised, but 
none in the open literature appear to treat complex drug structure accurately. 
In the present meeting a number of promising schemes based both o n  
descriutor derivation and uhvsical chemical urinciules offer uossibilities for 
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I I I . ‘  
53,54,55,56 permeability, 5334,55 addressing some of the key issues: solubility, 

intestinal absorption, 57,553 oral bi~avai labi l i ty .~~ Only application in a vigorous 
program of molecular design, synthesis and bioassay can elicit a judgment o n  
the predictability and durability of the evolving methods. 

Predictions 

Reliable methods for estimating drug absorption and permeability (e.g. as 
measured by CaCo-2 cells) will appear shortly. The current limitation is 
insufficient data. 

0 A combination of computers, synthesis robots, high capacity screening and 
design feedback loops should furnish potent lead compounds with optimal 
bioavailability qualities. Thus, auto-combinatorial methods will expand 
beyond potency screening. 

0 Metabolism and toxicity are more difficult, though modest progress has 
been made.“ In the near future, experiments focused on specific lead 
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compounds and lead series will continue to be a necessity. The next h u rn a n 
generution will enjoy useful correlations and accurate predictors. 

THE HUMAN FACTOR 

Eight years ago I wrote of the need for a tight couple among chemists, 
biologists and computational scientists in order to create a seamless 
interdisciplinary interface and to heighten the chances for discovery of new 
therapeutic agents. 

It was concluded that "At the level CADD groups are presently integrated 
throughout industry, there is little chance they will make a fundamental 
impact on drug discovery in the short term." However, a note of con&%ima\ 
optimism was sounded. "If management and synthetic chemists with decision- 
making responsibility commit to a true, collaborative integration of CADD into 
the research process, the current peripheral emphasis can be redirected with 
potential major consequences for the drug industry." 61 

The results have been spotty. To be sure, compounds reaching 
development can be identified as having their roots in collaborative 
encounters. However, in spite of the fact that the great majority of 
pharmaceutical firms maintain a CADD group, "major consequences" have yet 
to materialize. Part of the reason, of course, is that computational models, like 
all models, are born with flaws and wide-ranging assumptions. Imaginative 
and effective use requires a deep knowledge of all aspects of the chemistry and 
biology of a project, superior judgement and persistence. Individual CADD 
practitioners can be faulted for the former. Anecdotes from industry suggest 
that persistence, follow-through and the necessary iteration are still hampered 
to a large degree by skepticism from experimentalists concerning the potential 
of modeling-based molecular design. Such skepticism combined with weak 
project management is, of course, self-fulfilling. In some quarters, modeling 
groups have consequently been diverted from the molecular design function 
and refocused on the fabrication of virtual combinatorial libraries. 
Simultaneously, a cottage industry providing libraries-for-sale has sprung up. 
The new companies, many supporting the larger pharmaceutical firms with 
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full development and clinical resources, likewise employ computational 
chemists. Although it is still too early to tell, it may be here that CADD 
researchers prove to be a major driving force in the discovery effort. 

Predictions 

Given the natural tension between components of human behavior that 
regulate competition on the one hand and sharing on the other, and the 
lack of full-fledged management efforts to channel it, not much change i n  
multidisciplinary molecular design collaboration can be expected in the 
short term. 
Possible except ions  The Scandinavian countries, small well-managed 
biotech start-ups, exceptionally well-coordinated units in large pharma and 
the emerging combinatorial library industry. 
Introduction of individual interactive audio & visual communication 
across computer networks may introduce new variables into the sharing 
process. 

CONCLUSIONS 

In spite of the world economies’ present and uncertain struggle with 
global capitalism, Europe’s tentative feints toward unification and the lingering 
annoyance of Y2K, the twenty-first century ought to be anticipated with 
optimism. Our technical future appears very bright, indeed. Deconvolution of 
the human genome will provide uncountable opportunities for drug therapy, 
immune system regulation and “quality of life” experimentation. Discrete 
genes will provide protein sequences, which can be expected, in turn, to rapidly 
yield 3-D structures for both soluble and membrane-embedded entities. Thus, 
the number of health-related targets will increase as will information-rich 
intervention strategies. Tools of the QSAR and pharmaceutical trades will be 
exquisitely sharpened to permit accurate predictions of structure, potency, 
efficacy, selectivity, resistance, bioavailability and, ultimately, metabolism and 
side-effects sometime during the coming century. 

One is reminded of “Ancient Man”, an impressive late-eighteenth 
century painting by the British painter-poet, William Blake. Created at a 
moment of emergence for modern science, the work depicts ancient man 
“compelled to live the restrained life of reason as opposed to the free life of 
imagination. The colossal figure holds the compass down onto the black 
emptiness below him, perhaps symbolizing the imposition of order o n  
chaos.”h4 Clearly, in the twenty-first century the imposition of control over 
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biological and other events will require the exercise of both reason and 
imagination. 
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Abstract 

The last decade has witnessed much progress in how to characterize and describe 
chemical structure, how to synthesize large sets of compounds, how to make simple and 
fast in-vitro assays, and how to determine the structure (sequence) of our genetic material. 
The possible consequences of this progress for drug design are great and exciting, but also 
bewilderingly complicated. 

Fortunately, the last decade has also seen progress in how to investigate and model 
complicated systems, of which relationships between chemical structure and biological 
activity provide typical examples. These relationships are central in drug design and some 
related areas, notably combinatorial chemistry and bioinformatics. 

The essential steps in the investigation of complicated systems include the following: 

1. The appropriate quantitative parameterization of its parts (here the varying parts of the 
chemical structures / biopolymer sequences). 

2. The appropriate measurements of the interesting properties of the system (here the 
”biological effects”). 

3. Selecting a representative set of molecules (or other systems) to investigate and make 
the following measurements. 

4. The analysis of the resulting data. 
5. The interpretation of the results. 

The use of multivariate characterization, design, and modelling in these steps will be 
discussed in relation to drug design, combinatorial chemistry (which compounds to make 
and test, and how to deal with the biological test results), and bioinformatics (how to 
parameterize and analyze biopol ymer sequences). 
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1. Introduction 

Much of chemistry, molecular biology, and drug design, are centered around the 
relationships between chemical structure and measured properties of compounds and 
polymers, such as viscosity, acidity, solubility, toxicity, enzyme binding, and membrane 
penetration. For any set of compounds, these relationships are by necessity complicated, 
particularly when the properties are of biological nature. To investigate and utilize such 
complicated relationships, henceforth abbreviated SAR for structure-activity relationships, 
and QSAR for quantitative SAR, we need a description of the variation in chemical 
structure of relevant compounds and biological targets, good measures of the biological 
properties, and, of course, an ability to synthesize compounds of interest. In addition, we 
need reasonable ways to construct and express the relationships, i.e., mathematical or other 
models, as well as ways to select the compounds to be investigated so that the resulting 
QSAR indeed is informative and useful for the stated purposes. In the present context, 
these purposes typically are the conceptual understanding of the SAR, and the ability to 
propose new compounds with improved property profiles. 

Here we discuss the two latter parts of the SAWQSAR problem, i.e., reasonable ways 
to model the relationships, and how to select compounds to make the models as "good" as 
possible. The second is often called the problem of statistical experimental design, which 
in the present context we call statistical molecular design, SMD. 

1.1 Recent Progress in Relevant Areas 

In the last decades, we have made great progress in several areas of relevance for the 
SAR problem. The advances include improvements in our ability to determine the 
structures of substrates and receptors in any reaction occurring in living systems, as well as 
the quantitative description, parameterization, of these structures. Also the actual synthesis 
of interesting molecules has been simplified and partly automated, leading to the creation 
of large ensembles of compounds, libraries, being routinely synthesized in so-called 
combinatorial chemistry. Finally, a field of great interest in the present context is the 
determination of the structure (sequence) of the genetic material of both humans and 
various other organisms of interest, e.g., viruses, bacteria, and parasites. Also here the last 
few years have seen an enormous acceleration of technology and ensuing results, and 
today many millions of sequence elements (amino acids or base pairs) are determined per 
day in laboratories all over the world. 

1.2 Some Nagging Difficulties 

These advances undoubtedly are ground for a great enthusiasm and optimism. But, 
interestingly, these advances are also causing great difficulties due to the huge amounts of 
resulting quantitative data, the "data explosion". These difficulties are similar to those in 
other fields of science and technology, exemplified by process engineering (multitudes of 
process variables measured at ever increasing frequencies), geography (satellite images), 
and astronomy (several types of spectra of huge numbers of stars and galaxies). For 
science, these vast amounts of data present great problems since all theory and most tools 
for analyzing data were developed for a situation when the data were few and arrived at a 
comfortable pace of, say, less than one number an hour. Consequently we continue to think 
of one molecule or process sensor or galaxy at a time, and pretend that our deep 
understanding in some miraculous way will be able to cope with the large numbers of 
events and items that we have not considered. 
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1.3 A Possible Approach 

Besides organizing data in data bases, we need proper tools to get some kmd of 
"control" of these data masses and utilize their potential information. The only tools of any 
generality that substantially can contribute to this objective are those of (computer based) 
modelling and data analysis, coupled with the proper selection of items (here molecules) to 
constitute the basis for the analysis. The latter selection problem is called sampling if the 
items already exist, and experimental design if the "items" do not (yet) exist. 

If an appropriate selection of items is made and a proper model is developed, this 
model may cover a large chunk of the data mass. Hence, with a few well selected loosely 
coupled models, the whole data mass may be brought under "control". 

We shall below discuss this approach and its consequences in the areas of QSAR, 
combinatorial chemistry, and bioinformatics. 

2. Investigation of Complicated Systems (Modelling) 

The more complicated the studied system is, the more approximate are, by necessity, 
the models used in the study. This because we are unable to construct "exact" models for 
any system more complicated than that of three particles, exemplified by He' and Hzf . 
Hence, for any molecular system of interest in the present context, with over a thousand 
electrons and atomic nuclei, models are highly approximate. This is so regardless if the 
models are derived from quantum or molecular mechanics, or if they are "empirical" linear 
models based on measured data. Consequently, there are deviations between the model and 
the observed values and the models need to have an element of statistics. 

Another interesting property of complicated systems is their multivariate nature. 
Consider a typical organic compound with 20 to 50 atoms of type C, H, N, 0, S, and P. 
This may also be a short peptide or a short DNA or RNA sequence. As chemists we like to 
think of compounds in terms of "atom groups", such as rings, chains, functional groups, 
"substituents", amino acids, and nucleic bases. Each such group is characterized by at least 
5 properties; lipophilicity, polarity, polarizability, hydrogen bonding, and size. The latter 
may need sub-properties such as width and depth to be adequately described. 
Consequently, the investigation of a structural "family" by means of varying the structure 
of this "mother compound" corresponds to the variation of up to 50 -70 "factors". The 
modelling of resulting measurements made on this structural family must therefore also 
cope with a multitude of possible "factors"; the modelling must be multivariate. 

2.1 Parameterization 

One of the first problems to solve in the present context is the parameterization of the 
items investigated, here molecules and polymers. This parameterization must of course be 
consistent with chemical and biological theory. However, since this theory is highly 
incomplete with respect to SAWQSAR, we must take recourse also to measured data as 
the basis for parameterization. Traditionally, the QSAR field has used single parameters 
derived from measurements on model systems, for instance 0, n, M R ,  and Es [ 11. For more 
complicated "atomic groups", it is very difficult to find measurement systems that result in 
"clean" parameters, and instead some kind of multivariate parameterization is easier. Thus, 
multiple measurements and calcuiations are made on compounds of interest, and then 
"compressed" by means of principal component analysis (PCA) or a similar multivariate 
analysis to give some kind of descriptor "scales". Examples of this approach are the amino 
acid "principal properties" of Hellberg et. al. [2-51. Fauchkre et. al. have published a 
similar approach [6]. Carlson, Lundstedt, et. al. [7-111, and Eriksson et. al. [12-151 have 
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published numerous examples of this approach with application specific "scales" for, e.g., 
amines, ketones, and halogenated aliphatic hydrocarbons. Martin, Blaney, et. al. [ 161 have 
applied this approach in the combinatorial chemistry of peptoids. 

Other approaches to structure parameterization include the use of molecular 
modelling (CoMFA, GRID, etc.), "topological" indices, fragment descriptors, simulated 
spectra, and more. We do not here have time or space to discuss the merits of various kinds 
of parameterization, but just point out that there is no general agreement of how to 
adequately describe the structural variation in SAWQSAR problems. 

However when the parameterization is done, the result is an array of numbers, 
"structure descriptors", for each compound included in the investigation. We denote the 
array of the i:th compound by xi. In CoMFA [17] and GRID [18-201, these arrays may 
have more than a hundred thousand elements, while in a simple Hansch model they may 
have two or three elements. 

2.2 Specification and Measurement of the Biological "Activity" 

Any model needs a "compass" to indicate which events or items that are "better" and 
which are "worse" with respect to the stated objectives of the investigation. Here, this 
compass is constituted by the values of the biological properties of the investigated 
compounds, the so called responses, Y. These responses have to be relevant, i.e., indeed 
give information about the stated objective, for instance anti-inflammatory activity or 
calcium channel inhibition. The responses should also be fairly precise so one can 
recognize the effect of a change of structure as clearly as possible. 

The importance of a relevant and fairly precise Y matrix is so evident that we often 
do not even think about this point. However, in combinatorial chemistry, somewhat 
discussed below, the immense possible size of the data set with hundreds of thousands of 
compounds, prohibits the measurement of a relevant Y-matrix, and instead fast and crude 
so called HTS measurements are made (HTS = high throughput screening) [21]. The 
resulting low information content of the response matrix, Y, makes the success of this 
approach highly uncertain. Only the selection of a much smaller subset of compounds 
makes it possible to measure a "good" Y. This will be further discussed below. 

2.3 

The second necessary step in any modelling is the selection of the set of items, 
molecules, on which the model is to be "calibrated". This set is usually called the "training 
set". In SAWQSAR this is a neglected issue, with resulting melancholically poor models 
and serious difficulties for the interpretation and use of the resulting models. This will be 
discussed in more detail below, illustrated by some examples. 

Compound Selection (Sampling or Statistical Experimental Design) 

2.4 
The purpose of SAWQSAR modelling is to find the relationship between chemical 

structure and biological activity. We can hypothesize that there is a fundamental "truth" 
which relates the "real structure" expressed as a N x K matrix Z to the N x M biological 
activity matrix, Y, for the N compounds under investigation. This "truth" is expressed as: 

The Mathematical Form of the Model 

Y = F(Z) + E 

Here the residuals, E, express the error of measurement in Y. 
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However, we have little knowledge about the real form of the function F, and 
hence instead use a serial expansion of it, usually a polynomial, here denoted by 'Polyn'. 
Also, we do not know exactly how to express the structure as Z. We therefore use a 
simplified version, X, which reflects our present "belief" about Z. Usually we do not know 
the relative importance of the different "factors" in X. Hence we also introduce a 
parameter vector, b, the values of which can be changed to make the model "fit" the data. 
The use of a serial expansion instead of F, and of X instead of Z introduces further 
"errors", 6 ,  giving our model: 

Y = Polyn(X, p) + 6 + E 

2.5 

In a given investigation we have now decided (a) which biological responses to 
measure, (b) which class of compounds to investigate, (c) how to express the structural 
variation, and (d) the general form of their relationship. We then select the compounds to 
synthesize (or get our hands on them in some other way) and then subject the compounds 
to the biological testing. After this is done, we have data constituting an N x K "structure" 
matrix, X, plus an N x M "activity" matrix, Y. Then a phase of data analysis follows, 
where the model is "fitted" to the data by finding optimal values of the parameters in the 
vector p. However, this phase involves much more than that, including the appropriate 
transformation of the data to make them suitable for the analysis, the search for outliers 
and other heterogeneities in the data that would make the resulting model misleading, the 
investigation of the "noise" which is a combination of 6 and E (see above), the estimation 
of the uncertainties of the parameters, and often, the prediction of Y for new hypothetical 
compounds with the structure descriptors Xpred . 

Provided that the data set has been well selected and measured, and that the modelling 
and estimation have been done properly, the resulting model can finally be interpreted, i.e., 
related to our theory of chemistry and biology. This is perhaps the most important part of 
the modelling, but will not be much discussed here, where we are mainly concerned with 
the prerequisites for a good and useful model, i.e., relevant data. 

Estimating the Model From Data, and Interpreting the Results 

3. Some Examples 

Below we show a few examples chosen to illustrate some aspects of modelling, 
notably the selection of a relevant set of compounds, statistical molecular design, SMD, 
and multivariate analysis. 

3.1 . A "QSAR" 

In any issue of medicinal chemistry, molecular biology, or bio-organic chemistry 
journals, or in almost any book in one of these subjects, one finds data sets similar to the 
one shown in Table 1 below. The present example was published some time ago, but the 
reference is not given to avoid possible embarrassment. The objective was to develop an 
anti-inflammatory compound with the general structure Z-Phenl-D-Phen2. Here D 
symbolizes a constant connecting chain, and Z is a constant pharmacophore. A number of 
different compounds (N=12) were made with different substituents in the two phenyl rings 
(see Table 1). 

An in vivo test of the decrease of the volume of an animal joint for a given dose was 
measured as "activity". High values correspond to "good" activity. Quantum chemical 
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calculations were used to estimate the charge excess in the two phenyl rings, and the 
conclusion was that the charge on ring 2 (column 4 in Table 1) was a good predictor of the 
(logarithmic) activity. 

Inspection of Table 1 shows a typical "L-design" where first the substituents on ring 1 
are changed, then the ones on ring 2 are changed, and finally a few compounds are made 
where some changes are made in both rings. "L-design" stands for the resulting 
configuration in an abstract space in the shape of an "L". This is also often called a 
"COST" design for Changing One Site at a Time. 

Table 1. Substituents on phenyl rings 1 and 2, calculated charge on phenyl ring 2, and logarithmic activity of 
N=12 compounds Z-Phenl-D-Phen2. 

No Phenl Phen2 Charge 2 Log Activity 

1 H H 0.635 1.415 
2 4-Me H 0.040 0.000 
3 5-Me H 0.559 1.041 
4 6-Me H 0.056 0.301 
5 H 2-c1 0.809 1.342 
6 H 3-C1 0.856 1.176 
7 H 4-CI 0.792 1.462 
8 H 2,4-C12 0.740 1.568 
9 H 3,4-C12 0.723 1 .ooo 
10 H 4-Me 0.870 1.230 
11 5-F 4-C1 0.79 1 1.568 
12 5-Me 4-C1 0.790 1.505 

Plotting the "model" of log activity vis charge 2 gives Figure 1. Although the model 
has an apparently "significant" R2 of 0.84 and a Y-residual SD of 0.22, the plot shows that 
there are actually only two clusters, only two degrees of freedom. With the typical error of 
measurement of k 0.3 log units, there are actually only two points in this plot. 

0 1 

Charge 2 

Figure 1. Y = log activity (vertical) plotted against charge in ring 2 (horizontal axis). 
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Hence, this data set gave little information about the posed question. The reason is the 
uninformative selection of compounds according to the "COSTly L-design". Due to the 
small resulting degrees of freedom, the conclusions are at best doubtful. 

4. Statistical Molecular Design - SMD 

The selection of a set of compounds corresponds to the selection of a set of points in a 
multidimensional space where the number of axes equals the number of factors varied in 
the investigation. In example 1 above there are three substituent sites on each ring (no. 
4,5,6 and 2,3,4 respectively) that are to be varied. In each we can put a large or small 
substituent, which is lipophilic or not, etc. Restricting ourselves to five factors per site - 
size, lipophilicity, polarity, polarizability, and hydrogen bonding -- we can see the 
selection of compounds for a linear model to be equivalent to the variation of 30 factors (3 
+ 3 sites times 5 factors). Each of these factors has a smallest and largest possible value, 
and hence we can see this problem as one of putting points in a rectangular 30-dimensional 
box. 

In the inirial phase of an investigation, linear models and corresponding linear designs 
are normally used since this allows the screening of many positions and factors. Once the 
dominating positions and factors are identified, one may use more detailed models where 
interactions (synergisms / antagonisms) between positions, curvature (quadratic terms), 
etc., may be of interest and therefore a corresponding quadratic design is then needed. 

Without a formal design protocol, one usually ends up with a selection similar to that 
shown in Figure 2a. This was the case in the first example where clustering is seen in the 
XY plot, Figure 1. Instead one should use an objective selection tool. These selections 
efficiently cover the structural space, and hence provide the maximal degrees of freedom 
for the data analysis and interpretation. 

4 

Size Size 

Lipoph. Lipoph. 

Figure 2. a) and b) shows the distribution of compounds resulting from a lack of SMD (left) and from the 
use of SMD (right). 

This results in selections shown in Figure 2b. Although the boxes in Figure 2 have only 
three axes, one can mathematically construct and work with higher dimensional boxes. 
With 30 factors, one would need at least 35 compounds to get information about the 5 
factors in the 6 substituent sites. If we have prior knowledge about the problem, we may be 
able to reduce the number of factors, stating, for instance, that only lipophilicity is 
important in all 6 positions, size in positions 4 and 6 on ring 1, polarity only in positions 
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2,3, and 4 on ring 2, etc. If this reduces the number of factors from 30 to 15, the number of 
compounds needed in an initial design is reduced to 20. 

A difficulty with design of compounds is that the things that are changed - structural 
features - are not the same as the factors in the design and the model. Rather, the change 
of a substituent at a given site corresponds to the change of possibly five to seven factors. 
Hence, the design is first constructed in terms of these structural factors, and thereafter one 
identifies substituents or fragments with the correct profile of the factors. With the use of 
D-optimal design, this is accomplished by having a list of available substituents at each 
varied position together with their values of the pertinent “factors” (size, lipophilicity, 
etc.). The D-optimal selection procedure then searches for a combination of substituents at 
the different sites that gives the best coverage of the multidimensional factor space. 

This use of statistical experimental design for the selection of informative set of 
compounds, we call statistical molecular design, SMD. Typical design types used in SMD 
include D-optimal [22] designs with center points and space-filling designs [23]. 

Statistical design goes back to Hansch and Craig [24] who showed how to select one 
substituent to investigate both lipophilicity and polarity (“pi-sigma plots”), and Hansch and 
Unger [25] who looked for clusters in the structure descriptor space and then selected one 
compound from each cluster. This was followed by Austel who introduced formal design 
in the QSAR area [26], and Hellberg et. al., who developed multivariate design based on a 
combination of PCA and design [2,3]. The latter will be used in example 2 below. 

4.1 A Better “QSAR” 

In the second example we show the use of SMD in the investigation of the toxicity of 
non-ionic technical surfactants recently published by Lindgren et. al. [27, 281. Here N=36 
surfactants were characterized by K=19 descriptors, e.g., logP, M W ,  the “Griffin” and 
“Davis” hydro-lipophilicity balances, and the length of the alcohol part. These 19 
descriptors are correlated and cannot be independently manipulated. Therefore, a PCA (see 
below) was made of the 36 x 19 X-matrix to find the underlying “latent factors”. This PCA 
gave A=4 component model, i.e., indicating 4 “latent factors”. These are shown in Figure 3 
a and b. 

a) 

- 4 - 3 . 2 - 1  0 1 2  3 4 5 -3 -2 -1  0 I 2 3 
tl  4 

Figure 3. The first four PC scores (t. ) of the N=36 surfactants times 19 descriptors X-matrix. X was mean 
centered and column-wise scaled to unit variance before the PCA. Bold-faced numbers indicate training set 
members selected by the D-optimal design for testing and Quantitative Structure-Property Relationship 
(QSPR) PLS model development. Left a): tl vs t2. Right b): tg vs t4. 
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4.1.1. Toxicity of the Surfactants 
The aquatic toxicity of the selected N=18 surfactants was measured towards two 

freshwater animal species, the fairy shrimp, Thamnocephalus platyurus and the rotifer 
Brachionus calyciflorus. The activities are defined as the logarithm (base ten) of the LC50 
values, i.e. the lethal concentration at 50 % mortality after 24 hours. A large log LCSO 
value, close to 2.0, corresponds to low toxicity. 

4.1.2. 

The scores of PCA of a matrix X provide an optimal summary of all the variables 
(columns) in X. Hence, these scores (t, ) can be used as design variables for the selection 
of "spanning rows" of X, i.e., for the selection of a set of compounds that well represents 
the structural variation expressed by X. 

To allow a model whose results are (almost) interpretable in terms of the original 19 
descriptors, it was decided to select N=18 compounds for the training set. A D-optimal 
design in the four components scores (Figure 3 a and b) give the selected ntrain = 18 
compounds. 

Selection of a Representative Training Set of Surfactants 

4.1.3. 

A PLS model (see below) was developed for the N=18 observations, comprising 
K=19 descriptor variables (X) and two activity values (toxicity), Y. The model has A=2 
significant components according to cross-validation (CV). It explained R2 = 89.3 % of the 
Y-variation, and can predict Q2 = 80.3 % of this variation according to the CV. 

The important structure descriptor variables in this model are the hydrophobicity 
(logP), the number of atoms in the hydrophobic part (C), the hydrophilic-lipophilic balance 
according to Davis, and the critical micelle concentration (CMC). 

The Analysis of the Data 

4.1.4. Prediction of the Remaining Compounds 

In Figure 4 we see the predicted and observed values of all the surfactants, both the 
18 training set compounds and the 18 in the prediction set. Both sets are seen to be well 
distributed over both axes, and the prediction set compounds are well predicted. 
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Figure 4. Observed versus predicted and calculated values for y = log LC50 of the N=18 + 18 training (filled 
diamonds) and prediction set surfactants (open squares). a) Thamnocephalus platyurus and b) Brachionus 
calycijlorus. 
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4.1.5. Conclusion of the Surfactant Example 

The excellent predictions of the remaining n=18 surfactants from their K=19 structure 
variable values ( x k )  demonstrates the possibility for constructing predictive QSAR / QSPR 
models. The selection of the model training set according to a design makes the results 
interpretable and the model having predictive power over the whole structural domain of 
the given 36 compounds. 

5. 
In the previous example (surfactants) the structure descriptor matrix X of dimension 

36 x 19 was compressed to a (36 x 2 )  dimensional matrix, T. This was done to have an 
adequate representation of the compounds for the selection of a training set, ie., the 
statistical molecular design (SMD). The compression was made using a method of 
multivariate projection, the so called principal component analysis (PCA), further 
discussed below. These projections can be understood geometrically in terms of a K- 
dimensional space where each object (row of X) is represented as a point, and hence the N 
x K data table is a swarm of N points. 

By means of perturbation theory it can be shown that as long as there is some degree 
of similarity between the objects - corresponding to the rows in the data table, X - then the 
data swarm can be well approximated by a low dimensional plane or hyper-plane in this 
space. And the greater the degree of similarity, the fewer dimensions (components, latent 
factors) are needed for this hyper-plane to have a given faithfulness of approximation [29]. 

In the present context we use two variants of multivariate projections, namely 
principal component analysis (PCA) and projections to latent structures using partial least 
squares (PLS). The former, PCA, projects a matrix X to a matrix T in an optimal way, i.e., 
makes T summarize X as well as possible according to the least squares criterion. The 
latter, PLS, is used when besides the data matrix X, there is also a response matrix Y. PLS 
then makes a projection of X to T with two objectives, namely that (a) T provides a good 
summary (not quite optimal) of X, and (b) that T is well correlated with the response 
matrix Y. 

Multivariate Analysis by Means of Projections 

X I  

Figure 5. Multidimensional space where each object is a point, and a plane gives a good approximation of 
the data (the N object points in X). Each object is projected onto the plane, giving the coordinate values = 
score values (t, and tz), which when plotted, gives a picture of X. 
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With both PCA and PLS, the resulting "score matrix" T is a linear combination of the 
original X-variables. The number of columns of T (A) is small, usually two to four, and 
they are orthogonal, i .e.,  completely independent. 

PCA is useful to compress a matrix of structure descriptors to a few "principal 
properties", PP's - the columns of T [ 2 ] .  These PP's can then be used as the basis of a 
statistical molecular design (SMD), i e . ,  for the selection of a minimal set of compounds 
that well represent the total set of molecules of a given investigation. 

5.1 Principal Component Analysis (PCA) 

The principles of PCA are very simple. Pertinent reviews are given by Jackson [30] 
and Wold et. al. [31]. The N row vectors of the NxK data matrix X (e.g., K descriptors of' 
N compounds) are represented as a swarm of points in a K-dimensional space. The axes of 
this space are usually normalized to the same length (UN, i .e. ,  unit variance of each 
variable). This is accomplished by dividing each column in X by its standard deviation. 
Also, the data are usually centered before the analysis, i .e. ,  the mean value is subtracted 
from each column. 

Due to correlations between the K variables (columns of X) the point swarm is not 
round, but rather looks like an elongated pancake. And the more similar the objects (here 
compounds) are, the more closely the data lie to this elongated pancake, an A-dimensional 
hyper-plane (Figure 5) .  

Algebraically, this corresponds to the modelling of the (centered and scaled) N x K 
matrix X by the product of an N x A matrix T and an A x K matrix I" plus an N x K 
residual matrix, E. 

X = T P ' + E  

The score matrix, T, optimally summarizes the information about the objects 
(compounds), and are hence often called the matrix of principal properties, PP's. 
Analogously, the loading matrix, P, summarizes the information about the variables. 
Objects (index i) that are similar will have similar values of the row vectors ti', and objects 
that are dissimilar will have dissimilar values of these row vectors. Hence these row 
vectors can be used to select a set of "diverse" compounds as those with as dissimilar row 
vectors, ti' , as possible. This is the basis of SMD based on principal properties (PP's). 
Analogously, variables (index k) with similar values of their loading vectors, pk, will have 
a similar information, they are strongly correlated. Vice versa, variables with dissimilar 
loading vectors are dissimilar, have different information content. 

We shall here use this property of the T matrix of summarizing X to select "diverse" 
sets of compounds that provide an optimally "diverse" (spanning) information for a given 
objective. Interestingly, this means that the library size in combinatorial chemistry can be 
reduced to a few hundreds of compounds without loss of structural infomation. Hence, a 
much deeper and broader biological testing can be made making the total resulting 
information about the combination of structure and activity vastly superior to that of a 
large library that is crudely tested by HTS. 

5.2 A Combinatorial Chemistry Application 

This example is presented as a small but fairly realistic illustration of a reasonable 
approach to solve the "combinatorial curse of testing", i .e.,  the inability to make an 
adequate biological testing of a large combinatorial library of compounds. The recourse to 
a HTS (high throughput screening) testing of all compounds in a large library has many 
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serious problems, the most serious in our view being the very low information content in 
the resulting test data about the "real" clinical activity, toxicity, bio-availability, uptake 
properties, etc. Hence, a selection of compounds based on their HTS results is highly risky 
in that it is based on very limited information. 

To get around the "combinatorial curse of testing", we recommend the obvious 
approach to make and test only a small set of selected compounds which adequately 
represents the structural variation of the whole potential library. By basing the selection on 
small sets of representative building blocks, one arrives at surprisingly small numbers of 
compounds needed to be made and tested. Hence, this small set of compounds can be 
tested much broader and deeper, thus providing a much more reliable biological basis of 
data for the following step of compound selection. This approach has been presented in 
several recent papers [16, 32-35], and much of the present example is taken from ref. [35].  

Consider a combinatorial library consisting of the products of the reaction between a 
primary aliphatic amine and an aromatic aldehyde. And let us assume that we have access 
to building block libraries of nl = 35 primary amines and n2 = 44 aromatic aldehydes. The 
full combinatorial library would comprise 35 x 44 = 1540 products. We can now ask 
weather all these really are needed. And can we really test them ? 

We shall use SMD (statistical molecular design) to select a small but representative 
set of amines (with 3 members) and a second small but representative set of aldehydes 
(with 5 members). Finally, we shall combine the two sets to a small library with only nfinal 

= 9 compounds. This is small enough to allow an extensive biological testing of all its 
members. 
This approach involves a number of steps, namely (1) characterizing the candidate 
structures, (2 )  making a compact representation using PCA, and (3) selecting spanning 
compounds, and finally (4) making the final design of the library of combined building 
blocks. 

To allow a selection of compounds, a quantitative description of their structures must 
first be made. Lundstedt et. al. investigated amines for synthetic objectives [9] and 
described nl = 35 primary amines by means of K1 = 11 descriptors, including their pK,, 
molecular weight and volume, and logP. A PCA of the resulting 35 x 11 matrix (centered 
and scaled to unit variance) gave one significant component. Hence, the selection of 
primary amines can be considered as a one dimensional problem, and three compounds 
would suffice to give a representative set; one with a low, one with a medium, and one 
with a high score value. The PC score values and the selected compounds are shown in 
Figures 6 a and 7 a. 

22 t t2 

0 

42 
I 

14 I 
Figure 6. a) (left) shows a bar chart of the score values resulting from the PCA of the 35 x 11 amine 
descriptor matrix with the three selected compounds indicated on the line plot under the bar chart. 
Analogously, b) (right), shows the plot of the two PC scores of the 44 aromatic aldehydes together with the 
five selected compounds (rings). 
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Similarly, the 44 aromatic aldehydes are characterized by K=54 descriptors by means 
of simple quantum chemical and molecular mechanical calculations [36]. Here the PCA of 
the resulting 44 x 54 matrix (centered and scaled to unit variance) gave two significant 
components. Hence, five compounds selected according to a factorial design plus a center 
point in the two PC scores would suffice to give a representative set. The PC score values 
and the selected compounds are shown in Figures 6 b and 7 b. 

?To- ?$ 

Figure 7. Building block libraries of the a) amines and b) aldehydes. 

Finally, when sets of building blocks have been selected, these are combined to give 
the final library. Also this step can be made by means of statistical design, making the final 
library a representative subset of the full set of all combinations of the building blocks. 
This is done by considering each coordinate in the building block libraries (one in the 
amines and two in the aldehydes) as a quantitative variable in the final design. A linear 
model including interaction terms would have 7 terms (one constant, three linear "scores" 
and 3 cross-terms, interactions), and hence a final library with nfinal = 9 would constitute a 
minimal design. This is indicated in Figure 8. 

Aldehyde 2 

Aldehyde 1 Aldehyde 1 

Figure 8. The final design of the library is a combination of the building block coordinates (here PC scores) 
according to a sparse design. The full set of combinations of the two building blocks (left) gives an 
unnecessarily large library. A designed combination of each sets of building blocks gives a representative, 
spanning, library (right picture). 
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With this small example we have demonstrated that a surprisingly small subset of 
compounds (here nfinal = 9) will suffice as representative of the whole combinatorial library 
(here ntotal = 1540). In more complicated examples, the clustering of each building block 
library must be taken into account, but the resulting dramatic decrease in the numbers of 
final library compounds remains the same also in this situation [32,35]. 

After testing the resulting final library in a broad and deep set of biological tests, one 
can finally use the resulting data to construct a model relating the variation in structure (X) 
to the variation in biological activity (Y). This typically done using PLS as discussed in the 
next section. With the PLS model one can then predict interesting directions in the 
structural space for further exploration, thus having a rational basis for drug design. 

5.3 Projections to Latent Structure by Partial Least Squares (PLS) 

In sections 5 and 5.1, the idea of multivariate projections was briefly discussed. These 
projections (PCA and PLS) summarize a matrix X (here describing structure) to a few 
independent scores, t, (a=1,2,..,A). PLS differs from PCA in that it makes use of a 
response matrix, Y , to focus the PLS projection. Hence, the resulting score vectors (ta) 
differ from those of PCA, and are more correlated with the columns of Y. 

The advantages of PLS for relating a structure matrix X to an activity matrix Y are 
several compared with, for instance, traditional multiple regression. First, PLS can deal 
with very many structure descriptors even when N -- the number of compounds (rows in X 
and Y) -- is small. Second, PLS can deal with noise, missing data, and inadequacies in the 
descriptor matrix (X). Third, PLS can simultaneously model several or all responses in the 
activity matrix, Y, making the use and interpretation of the model simpler in comparison 
with the use of one model for each reponse. 

The resulting PLS model is interpretable by means of its loadings and weights (w, ) 
which show how the original structure descriptor variables are combined to form the 
scores, t,. Additional diagnostics include residuals and their summaries, both for X and for 
Y. 

PLS can be used also for classification. Then the Y-matrix is set up to contain column 
of ones and zeros corresponding to the class membership of the compounds and X contains 
a quantitative description of the structure. The scores resulting from the subsequent PLS 
analysis indicates the resolution of the classes, and the PLS-weights of the model indicates 
which variables that are important for the separation of the classes. 

The use of PLS for modelling structure - activity relationships has been reviewed in 
several recent articles [37-391. 

5.4 Some Bioinformatics Applications 

The emerging field of bioinformatics [40,41] concerns relationships between the 
polymer sequences in genetic material (DNA or RNA) and 'proteins and biological 
"properties" of interest. These "properties" may be properties of the polymers themselves 
(folding, binding of substrates or inhibitors, etc.) or of the organisms carrying the polymers 
(e.g., resistance to drugs, susceptibility to infection, genetically related defects, 
classification in genetic groups). 

We here point out the utility of SMD and multivariate models also in these 
application types. Several interesting results of the use of these tools have already 
emerged. The first is the translation of amino acid sequence or nucleotide sequence to a 
quantitative representation. Hellberg et. al. described the 20 coded amino acids by 29 
measured and calculated properties, and used PCA to derive three "principal property" 
(PP) scales ( Z I ,  z2. and 23) for the amino acids [2]. They also showed that these scales 
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could be used to get a quantitative representation of the sequences of peptides and proteins, 
and that indeed this description was strongly related to biological properties of families of 
peptides and proteins [3,4]. Similar results have been shown by Fauchere et. al. [6 ] .  
RecentIy, this work was extended by Sandberg et. al. [5]  to 87 amino acids (20 coded and 
67 others) and totally 5 scales where the first three strongly resemble the original PP 
scales. 

Hence, instead of describing peptide or nucleotide sequences by means of characters 
(Figure 9), we now have a pertinent quantitative description (X) which then can be related 
to measured properties (Y) for a family of sequences. Several examples are given in refs. 

Figure 9. The traditional way to 
describe sequences as strings of 
characters. Here a set of signal 
peptides from ref. [45]. 

[2,5,42-451. 

~~~TIIAGMIALAExTAMA 
MNTKGKALLAGLIALAFSNA 

MHKFTKALAAIGLAAVMSQSAMA 
"KKVLTLSAWSMLFGMAHA 

MFXTTLCALLITASCSTFA 

MKVMRTTVATWAATLSMSAFSVFA 
MKIKTGARILALSALTTKKFSASALA 

MNMKKLATLVSAVALSATVSANAMA 
MKKLFASLALAAWAPWA 
MIXFSATLLATLIAASWA 
MKLLQRGVALALLTTFTLASETALA 
MKSVLKVSLAALTLAFAVSSHA 
MKMNKSLIVLCLSAGLLASAPGISLA 
MKNRNRMIVNCVTASLMYYWSLPALA 

Second, the same group showed how to deal with sequences of varying length with 
tools borrowed from time series analysis, namely auto and cross-correlation spectra. These 
describe the variation of the PP's along the sequence of one polymer, and are 
translationally and alignment independent [44]. Sjostrom, Wieslander, et. aZ. applied this 
to the classification of signal peptides of different lengths [45] and recently to the 
quantification and visualization of all proteins in an organism (Figure 10). 

A 

A A  

fa 5 

0 

-5 

-1 0 -5 0 5 10 15 
tl 

Figure 10. All proteins in Mycoplasma pneumoniae . The genome was first translated to amino acids, .then each 
each position was translated to the three z-scale values. Auto and cross correlation spectra of the z-values along the 
sequences were calculated, and finally a PCA was made of the resulting matrix, X. The picture shows the first two 
PC scores of this analysis. 
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Finally, in a third "bioinformatics" example, we show the partial results of a PLS- 
discriminant analysis of two classes of bacteria -- E= eubacteria and A=archeabacteria. N= 
190 sequences of length 74 were translated to a numerical representation using the 
nucleoside scales recently developed by Sandberg et. al. [43]. Figure 11 shows the 
resulting discriminant scores and a clear separation between the two classes. The 
corresponding PLS weights indicate that the most important positions for the separation 
are 35-37 and 42-44, and that the principal property of importance in all these positions is 
the one of polarity. 
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t2 
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tl 

-10 

Figure 11. A PLS-DA was made of the aligned tRNA sequences (length= 74) of E= eubacteria and 
A=archeabacteria. Each RNA position was described by four values of the nucleotide principal property 
scales of Sandberg et. al. [40]. The figure shows the resulting X-scores (tl  and tz ) of the different bacterial 
strains. 

The tools of multivariate analysis - PCA and PLS - allow the development of a 
quantitative approach to bioinformatics. This starts with the translation of sequences to 
vectors of quantitative descriptors followed by modelling the relation between sequence 
and "biological properties" by means of PLS discriminant analysis for classification or 
ordinary PLS for the modelling of continuous properties. Whenever there is some kind of 
experimental control in the investigation, like for instance in site directed mutagenesis, one 
should use SMD for selecting representative molecules (peptides, proteins, nucleic acids, 
etc.) for the questions being asked. Thus, it would be impractical to modify one position at 
a time in these sequences. Only a planned modification of several positions in terms of a 
statistical design provides information about the joint influence of these positions on the 
properties of interest. 

When there is little possibility for experimental intervention, sampling aspects are 
more dominating than those of design. Sampling is analogous to design, but instead one 
samples in a space of time, geography, age and sex of patients, etc., in order to get 
representative and balanced data. Exactly the same principles as those used in design can 
be used to get a set of samples (objects, sequences, ..) that well span the abstract space of 
interest. 
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6. Conclusions 

The complexity of chemical / biological systems relative to our limited brains, makes 
modelling the only feasible approach to their investigation and (partial) understanding. 
This is especially clear after the works of scientific giants such as Heisenberg, 
Schrodinger, Bohr, Dirac, and Godel. Since all models are based on data (and theory), the 
quality and representativity of these data is essential for the reliability, usefulness, and 
interpretability of the models. The methodology to maximize quality and representativity 
of the X-data (here the structure descriptors) for a given modelling is called statistical 
experimental design. The only alternative to the use of design, is to have very large data 
sets, which is, at best, inefficient, and at worst confusing. Of course we also need good Y- 
data, i.e., good and representative and therefore multivariate, measurements of the 
biological properties of the investigated systems. This is usually well understood. However 
combinatorial chemistry and HTS constitute an exception to this understanding. 

When applied to the selection of molecules / polymers / this use of experimental 
design is called "Statistical molecular design", SMD. Without such design, modelling in 
the fields of Q S A R  and Combinatorial Chemistry is difficult to impossible. This is, in our 
view, a major explanation for the slow progress seen in these fields. 

In bioinformatics there is usually little possibility for experimental intervention, and 
hence sampling aspects are more dominating than those of design. We just emphasize that 
sampling is analogous to design, but instead one samples in a space of time, geography, 
age and sex of patients, etc., in order to get representative and balanced data. In this field, 
there is a great potential in making the models quantitative and multivariate, possibly 
along the lines outlined above. 

The difficulties with the methods of statistical design and multivariate analysis are 
that they in the beginning seem counterintuitive and too mathematical. Since they are not 
yet taught much in university chemistry and biology, they have to be learnt outside the 
curriculum. This takes much motivation and insight, and hence the spread of these 
methods is still slow. 
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INTRODUCTION 

Several QSAR methodologies have been developed which make use of hierarchical 
sets of molecular descriptors, coupled with multilinear regression analysis of physical or 
biological properties. Our procedures advance through enumerations of types of atoms and 
bonds (level l), rings and functional groups (level 2), larger structural fragments and steric 
interactions (level 3), and end by testing the addition of level 4 descriptors based on the 
results of semiempirical or ab initio molecular orbital calculations. Experimental properties 
(e.g., logP, boiling points, etc.) are an additional possible source of descriptors, not tested 
in the present work. In general, the levels of hierarchical structural descriptors are 
augmented and tested sequentially to obtain information regarding the lowest levels of 
description that are necessary for statistically significant rectification of a particular 
dependent variable property. High quality, structure/property and structure/activity 
relationships are normally found that use significant terms from several descriptor levels.'-5 
In previous work, we have also shown how various types of molecular structure codes or 
molecular descriptors can be used to calculate measures of molecular 

In this paper a more general, simpler protocol to obtain molecular similarity measures 
is outlined which can be used for arbitrary sets of compounds and descriptors, either 
globally or at any restricted level of molecular description. We then illustrate how the 
numerical values of similarity to particular compounds, chosen by statistical multilinear 
regression analysis, can function as independent variables in QSAR model equations. The 
methodology is tested by correlating a complex biological endpoint, consisting of results of 
animal studies of carcinogenic activities of polycyclic aromatic hydrocarbons containing a 
large variety of types of aromatic rings and hydrocarbon alkyl substituents. We also attempt 
to assess predictive capabilities of the overall protocol by using a robust modification of a 
cross-validation method in which the twelve most active and six least active compounds, 
i.e., 20% of the cases, are excluded from the QSAR model equation development. 
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PAH CARCINOGENIC ACTIVITIES 

The carcinogenic polycyclic aromatic hydrocarbons include a relatively large class of 
compounds which contain fused six-membered benzene rings and five-membered rings as 
well as alkyl substitutents. The abbreviations PAH and PAHs will be used to designate 
both the pure aromatic structures and their alkyl derivatives. A detailed review of the extant 
animal assay data for PAH carcinogenicities was ~ndertaken.~ These data were generally 
obtained from an examination of results abstracted in the series "Survey of Compounds 
Which Have Been Tested for Carcinogenic Activity." Public Health Service Publication 
No. 149, 15 volumes and two supplements, 1951-1992. All volumes from inception of 
publication were examined. 

Active PAHs consisted of 210 active compounds of 312 that were tested. An index of 
carcinogenicity was assigned to every compound where the latent period was measured (90 
compounds). The carcinogenicity index is defined analogous to the Iball index," 
proportional to the percent of animals developing cancer and inversely proportional to 
latent period. The proportionality factor was taken to be 100 and latent periods were 
measured in days. Values were averaged over all reported experiments. Studies using 
promoters were weighted using a factor of 0.5. The derived index (HZACT) for these 90 
compounds is the dependent variable in the QSAR analysis which is given below. The 
names of the compounds and their HZACT values are given in Table 1, sorted by activity. 

MOLECULAR DESCRIPTORS 

The lowest level of molecular descriptors, derived from molecular structure drawings, 
was comprised of counts of types of carbon atom groups based on the hybridization state of 
the carbon atom. Thus saturated carbon atoms were divided into the usual quarternary, 
tertiary, secondary, and primary groups. Aromatic sp2 CH and substituted C atoms were 
distinguished from olefinic sp2 atoms at this level. Indicator variables for 15 varieties of 
aromatic five and six-membered rings constituted the next level of parameters. Saturated 
aliphatic rings, few in number, were only represented by their level 1 constituent groups. 

Functional group indicator variables are not required for the PAHs. However, early in 
the course of this investigation, we discovered that indicator variables for classification of 
the aromatic ring systems corresponding to the unsubstituted prototype structures led to 
significant improvements in statistical correlations of the derived HZACT index. In fact, 
model equations developed solely with levels 1-3 atom and ring descriptors provided 
terrible correlations of the derived HZACT index. Thus the use of descriptors signifying the 
type of pi-system substructure, i.e. benz[a]anthracene, benz[e]pyrene, cholanthrene, etc., 
was mandatory for obtaining statistically significant (R2 > 0.5) rectifications of activities. 

The next descriptor level consisted of parameters derived from AM1 calculations using 
the QSAR keyword of the SPARTAN computational chemistry software package from 
Wavefunction, Inc. The descriptors used in this work were the calculated values of heats of 
formation, E(HOMO), E(LUMO), electronegativities, polarizabilities, hardness, molecular 
volumes, surface areas, ovalities, logP, and dipole moments. The Mulliken population 
analyses at particular bay-region atoms and bonds (charges and bond orders) were also 
coded but will not be used for the study reported here. 

The final level of descriptors was comprised of three preselected, less intuitive 
structural parameters, each of which turned out to be a significant factor in this QSAR 
study. The identification of these descriptors was based on the following. Many of the 
PAHs under consideration are highly nonplanar," due either to the presence of methyl 
groups in a bay-region or as a result of the molecule containing a benz[c]phenanthrene fjord 
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Table 1. Carcinogenicity activity indices for 90 PAHs (HZACT; See text for definition.) 

7,8,12-Trimethylbenz[a]anthracene 
Dibenzo[a,l]pyrene 
2,3-Dimethylbenzo[a]pyrene 
Benz[a]aceanthrylene 
6,7,8-Trimethylbenz[a]anthracene 
1,4-Dimethylbenzo[aIpyrene 
5,g-Dimethyl- 1,2-benzanthracene 
Dibenz[a,j]aceanthrylene 
Benzo[b]fluoranthene 
1,3-DimethyIbenzo[a]pyrene 
3,12-Dimethylbenzo[a]pyrene 
4,g-Dimethyl- 1,2-benzanthracene 
9-Methyl- 1,2,5,6-dibenzanthracene 
Dibenzo[a,h]pyrene 
22-Methy lcholanthrene 
9,12-Dimethyl-1,2-benzanthracene 
1 I-Methylbenzo[a]pyrene 
2-Methylbenzo[a]pyrene 
Dihydro-20-methylcholanthrene 
5,10-Dimethyl-1,2-benzanthracene 
4-Methylbenzo[a]pyrene 
1,2-DimethyIbenzo[a]pyrene 
Dibenzo[a,i]pyrene 
4,10-Dimethyl-l,2-benzanthracene 
3-Methylbenzo[a]pyrene 
12-MethyIbenzo[a]pyrene 
16,20-Dirnethylcholanthrene 
4,5,10-TrimethyIbenz[a]anthracene 
1,2,3,4-Tetrahydro-7,12-DMB [a) A 
20-Methylcholanthrene 
4,5-Dimethylbenzo[a]pyrene 
3-Methy lcholanthry lene 
5-Methylchrysene 
6,8,12-Trimethylbenz[a]anthracene 
23-Methylcholanthrene 
7,1l-Dimethylbenz[a]anthracene 
4,5-Dimethylbenz[a]anthracene 
Cholanthrene 
6,8-Dimethylbenz[a]anthracene 
6-Methylbenzo[a]pyrene 
Meso-dihydrocholanthrene 
2-Methyl-3,4-benzphenanthrene 
8,g-Ace- 1,2-benzanthracene 
1,6-Dimethylbenzo[a]pyrene 
3,6-Dimethylbenzo[a]pyrene 

146.5 . 6,7,12-Trimethylbenz[a]anthracene 36.2 
122.6 
117.7 
110.1 
104.2 
103.1 

102.0 
99.6 
99.0 
97.1 
91.8 
88.9 
78.8 
77.4 
76.8 
73.4 
73.4 
73.3 
72.7 
70.0 
69.5 
67.9 
64.9 
62.9 
60.4 
59.5 
57.7 
56.6 
56.1 
54.5 
54.4 
54.0 
52.3 
52.1 
52.0 
50.4 
49.0 
46.7 
45.0 
41.7 
41.6 
40.8 
40.5 
38.4 

102.6 

.. 

Benzo[a]pyrene 
Dibenz[a,h]anthracene 
7-Methyl-8,g-ace- 1,2-benzanthracene 
4H-Cyclopenta[deflchrysene 
7-Methylbenz[a]anthracene 
6,7-Dimethyl- 1,2-benzanthracene 
1,12-TrimethyIenechrysene 
7,14-Dimethyldibenz[a,j]anthracene 
4,lO-Ace- 1,2-benzanthracene 
1,3,6-TrimethyIbenzo[a]pyrene 
5,ll-Dimethyl-chrysene 
12-Methylbenz[a]anthracene 
1 ',g-Methylene- 1,2,5,6-dibenzanthra 
7,9,12-Trimethylbenz[a]anthracene 
7-Methylbenzo[a]pyrene 
5 ,6-Cyclopenteno- 1,2-benzanthracene 
8-Methylbenz[a]anthracene 
Dibenzo[a,e] aceanthrylene 
Benzo[a]anthracene 
Indeno[ 1,2,3-hi]chrysene 
Dibenz[a,j]anthracene 
Benzo[e]pyrene 
1 ,2-Cyclopenteno-5,10-aceanthrene 
1 ',2'-Dihydro-4'-methyl-3,4-benzpyren 
Dibenz[a,c]anthracene 
10-Methylbenzo[a]pyrene 
3'-Methyl- 1,2,5,6-dibenzanthracene 
Dibenzo[a,e]pyrene 
4-Methylbenz[a]anthracene 
Dibenzo[cd,lm]perylene 
7-Methylbenzo[pqr]picene 
10-Methyldibenz[a,c]anthracene 
Dibenzo[def,mno]chrysene 
5-Methylbenz[a]anthracene 
9-Methylbenz[a]anthracene 
Benzo[a]napho[ 1,2-k]chrysene 
Coronene 
Anthracene 
10-Methylbenz[a]anthracene 
1-Methylbenzo[a]anthracene 
Pyrene 
Perylene 
1,7,12-Trimethylbenz[a]anthracene 
3'-Methylcyclopentenophenanthrene 

33.8 
33.6 
33.3 
33.0 
31.4 
29.2 
26.2 
25.4 
22.6 
22.4 
21.8 
18.7 
17.7 
16.6 
16.4 
16.3 
14.3 
12.7 
12.3 
11.9 
11.6 
11.3 
11.0 
8.4 
7.1 
6.8 
6.5 
6.4 
5.0 
4.9 
4.2 
3.6 
3.4 
3.3 
3.1 
2.5 
2.1 
1.6 
1.3 
1.2 
1.1 
0.8 
0.7 
0.2 

substructure. Therefore, indicator variables denoting these structural features, BAYCl and 
NONPLANA, respectively, were included in the data matrix. The global descriptor 
DELTA21C, which has been identified in previous PAH carcingenicity was 
also included. This parameter is the absolute value of the difference, 21 minus the number 
of carbon atoms. The importance of this parameter in the previous investigations has been 
postulated to be related to an optimum molecular size for expressing carcinogenicity. These 
parameters were introduced at two points in model equation development, first as data used 
in the similarity analysis (see below), and later as separate auxiliary parameters, highly 
significant for correlation of the PAH activity data. 
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MEASURES OF MOLECULAR SIMILARITY 

The starting point for the similarity analysis is the usual type of N-by-M data matrix, 
where N is the number of rows (compounds) and M is the number of columns containing 
numerical values of all descriptors. The Pearson correlation matrix of this data table is an 
M-by-M square matrix which describes the linear correlations of the descriptors with each 
other, based on the set of N compounds. In many previous applications, the Pearson 
correlation matrix has been utilized to select subsets of descriptors for use as trial 
independent variables in QSAR multilinear regression studies. 

The Pearson correlation matrix methodology can also be employed to define a 
(molecular) similarity matrix for the set of N compounds as follows. In the first step, the 
descriptor data matrix is standardized by subtracting means and dividing by the standard 
deviations for each one of the descriptor columns. This puts all the descriptors on a 
common standard scale by removing the undue influence of descriptors with large outlying 
numerical values. Then, for N compounds, an N-by-N similarity matrix is defined to be the 
Pearson correlation matrix for the transpose of the standardized matrix of the M molecular 
structure descriptors. Each column in the new similarity matrix represents painvise 
numerical values of similarity (positive values) or dissimilarity (negative values) to a single 
compound. Multilinear regression analysis is then used to identify statistically significant 
similarities and dissimilarities to a (small) set of reference molecules which correlate the 
activities of the entire set of PAHs. Thus, the similarities and dissimilarities to the reference 
molecules may provide independent variables for a quantitative similarity/activity model 
e q u a t i ~ n . ~ . ~  

Generality and ease of interpretation are two advantages of this approach for defining 
measures of molecular similarity. The general nature of the procedure is obvious and does 
not require amplification. To understand interpretation of the similarity values, it is 
sufficient to know that each pairwise Pearson similarity term is simply the slope of the 
linear regression equation relating the standardized descriptors of the two compounds. 

RESULTS, CORRELATION, AND PREDICTION 

The use of the original structural and AM1 descriptors to develop multilinear models 
which correlate the HZACT index leads to several moderately successful equations, with 
10 or more significant parameters, which will not be discussed due to the mandated space 
limitation. The focus of this report, use of the similarity measures as independent variables, 
gives improved correlation of the activity data with fewer parameters. However, we would 
also like to possess a knowledge of the predictive capabilities of the regression models 
developed in the present application and in several related studies under investigation. We 
understand that the use of multilinear regression models derived from large data sets of 
descriptors for prediction is q~estionable. '~, '~ In our opinion the use of the usual cross- 
validation procedures (leave-one-out, leave-many-out, or leave a random-sample-out) also 
don't really test predictive validity. 

A result will be presented below which employs an unusual type of cross-validated 
analysis, designed to provide a more stringent test of predictive capability. The model 
equation using similarity parameters as independent variables is obtained leaving out 12 
compounds with the highest activities (Table 1, HZACT > 90) and also leaving out the six 
compounds with HZACT lower than 1.5. The model for prediction is developed using the 
remaining compounds possessing the intermediate activities. We infer that this procedure is 
a more robust measure of predictive capabilities than other types of leave-out tests, and that 
the resulting calculated activities for the most active and least active compounds may 
constitute authentic predicted values of activity. 
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The result for the analysis of the 72 compound development set is given in Table 2. 
The first four parameters listed after the constant term are similarity measures to 
benz[a]pyrene, dibenzo[ah]pyrene, cholanthrene, and 6,8,12-trimethylbenz[a]anthracene. 
Stepwise regression allows inclusion of four additional terms in the final acceptable data 
rectification, the size and nonplanar terms mentioned previously, and the count of methyl 
groups attached to aromatic rings (CH3ARO). The results are illustrated in Figure 1 which 
is a plot of all 90 experimental HZACT values versus calculated values using the 72 
compound equation from Table 2. 

Table 2. Regression analysis using similarity measures and indicator variables 

DEP VAR : HZACT 
ADJUSTED SQUARED MULTIPLE R : 0.673 

N : 72 MULTIPLE R : 0.849 SQUARED MULTIPLE R : 0.721 
STANDARD ERROR OF ESTIMATE : 18.646 

VARIABLE 
CONSTANT 
S-BZAPYR 
S-DIBZP2 
S-CHOLAN 
S-TRMBA3 
CH3ARO 
NONPLANA 
BAYCl 
DELTA21C 

COEFFICIENT STD ERROR 
18.212 4.992 
22.967 6.365 
74.199 13.250 
37.829 14.824 
69.503 11 3 9  
12.635 2.936 
24.542 5.976 

-59.806 12.003 
-4.384 1.929 

T 
3.648 
3.609 
5.600 
2.556 
6.013 
4.304 
4.107 

-4.983 
-2.273 

P(2 TAIL) 
0.001 
0.001 
0.000 
0.013 
0.000 
0.000 
0.000 
0.000 
0.027 

ANALYSIS OF VARIANCE 
SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P 
REGRESSION 56898.232 8 6598.349 17.047 0.000 

100 c 

-25 ’ 1 I I I 1 1 
0 25 50 75 100 125 150 

HZACT 

Figure 1. Experimental and calculated indices of carcinogenicity. 
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Five of the twelve most active compounds are calculated to be somewhat less active 
than the most active compounds of the development data set. The most active compound 
(Table 1, HZACT = 146.5) is predicted to have moderatehigh activity (calculated HZACT 
= 82.0). One other high activity compound, #3 in Table 1, is also predicted poorly. The 
least squares quadratic line depicted in Figure 1 illustrates that the high activity compounds 
are generally predicted to have lower activities than observed. Six compounds with low 
activities, including two from the low activity validation set, have negative calculated 
activity indices, tantamount to prediction of inactivity. Mean deviations for the 72 
compound correlation data set and the 18 compound predicted data set are 12.8 and 18.5 
index units, respectively. One notes that predicted values are not as reliable as the 
correlated results. 

The main goal of this work was to demonstrate that molecular similarity parameters, 
I derived from a simple general similarity definition, could function as useful independent 

variables in QSAR studies. An ancillary, potentially useful finding is the modified cross- 
validation procedure employed in the analysis, which may be an effective tool for testing 
the predictive capabilities of QSAR model equations. 

It should be mentioned that the results reported in this paper are to be regarded as 
preliminary. Both aspects of this investigation are undergoing further detailed study. 
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INTRODUCTION 

Modern methods for computer-assisted drug design fall into two major families - the 
indirect ligand-based methods, e.g. CoMFA or GOLPE and the direct receptor-based 
methods including molecular dynamics (MD) simulation, free energy pertubation (FEP) and 
the various docking procedures. Nowadays the ligand-based methods are widely used since 
they are computationally not demanding. The main problem of the ligand-based methods is 
the alignment of the investigated compounds. On the other hand the direct approach yields 
important information concerning the exact position of the ligands in the binding pocket. 
Since the MD and FEP methods are computationally intensive, they cannot be applied to 
large data sets. The faster docking programs on the other hand are at the moment not able to 
predict correctly the biological activity. One possibility to overcome these problems seems 
to be the combination of both approaches - merging the accuracy of the receptor-based 
strategies with the efficiency of modern 3D-QSAR techniques. This strategy has recently 
successfully applied by several groups'. 

In the present study we report the application of such a combined approach to a 
series of aminopyridazine acetylcholinesterase (AChE) inhibitors2. AChE inhibitors are 
promising candidates for the treatment of Alzheimer's Disease, the fourth leading cause of 
death among the elderly in the industrial nations. Several AChE inhibitors are now 
undergoing clinical trials and recently, donepezil - a benzylpiperidine derivative - was 
introduced into therapy. 

The starting point for the development of AChE inhibitors in our laboratory was the 
finding, that the antidepressant minaprine (figure 1) shows weak inhibition of AChE. Since 
minaprine has an unique structure among the known AChE inhibitors, it was taken as 
promising lead compound. The synthesized inhibitors can be classified into six different 
families, examples from each family are shown in figure 1. 

Molecular Modeling and Prediction of Bioactivity, edited by Gundertofte and Jergensen. 
Kluwer Academic / Plenum Publishers, New York, 2000. 53 



Morpholine 
derivatives 

Piperidine Tetrahydroisoquinoline 
derivatives derivatives 

Benzylpiperidine 
derivatives 

Methylaminolbenzyl WQ-, 
derivatives 

Benzylpiperazine derivatives 

Figure 1. Examples of the investigated aminopyridazine A C E  inhibitors. 

RESULTS AND DISCUSSION 

The positioning of the molecules in a fixed lattice has been shown to be the most 
important input variable in comparative molecular field analysis. In order to obtain a 
realistic alignment of the investigated inhibitors we included the known crystal structures of 
AChE in our 3D-QSAR study. During the last few years four structures of AChE 
complexed with reversible inhibitors have been published (decamethonium, edrophonium, 
tacrine and huperzine). Unfortunately up to now no X-ray structure is available for AChE 
complexed with the potent benzylpiperidine inhibitors. Therefore we decided to use 
docking methods in order to determine the exact position of the inhibitors in the binding 
pocket . 

The detailed inspection of the four ACE-inhibitor X-ray structures yielded crucial 
information concerning the orientation of the inhibitors in the binding pocket. AChE shows 
a nearly identical three-dimensional structure in all known X-ray structures. The active site 
is located 20A from the protein surface at the bottom of a deep and narrow gorge. The only 
major conformational difference between the four complexes is the orientation of the 
phenyl ring of Phe330, a residue located in the middle of the gorge. Depending on the 
co-crystallized inhibitor this aromatic residue adopts a different conformation. However the 
positions of the four inhibitors in the binding pocket are quite different. It seems improbable 
that a ligand-based method would be able to predict this alignment correctly. 

In the next step we analyzed the binding pocket using the well-known program 
GRID. GRID generates a contour map of the interaction energy versus the three- 
dimensional position of the probe with respect to the crystal structure of the protein. This 
information can lead to the prediction of how various functional groups of the inhibitors 
will interact in a specific region within the active site. Several probes were used to analyze 
the active site of AChE. The results were compared with the positions of the co-crystallized 
inhibitors. We observed a nice agreement between the positions of the cationic head of the 
inhibitors and the contour maps obtained using the cationic trimethylammonium probe as 
well as between the location of the hydrophobic parts and the contour maps obtained using 
the hydrophobic DRY probe (figure 2). A detailed description of these results will be 
published elsewhere3. Encouraged by the good agreement between theoretically predicted 
and experimentally derived results we used the GRID contour maps as starting point for the 
docking of the aminopyridazine derivatives. 
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decamethonium 

30 

Figure 2. On the left side the predicted position of compound PCS1050 and the X-ray structure of 
decamethonium are shown. On the right side the favourable regions of interaction between the hydrophobic 
DRY probe and the active site are displayed for comparison (contour level -0.6 kcal/mol). 

We started our docking analysis using compound PCS 1050 - a potent and quite rigid 
inhibitor. First, a systematic conformational analysis was performed for this inhibitor. 
Second, program IXGROS, developed in our laboratory“, was applied in order to select the 
local minimum conformations. The resulting conformations were then docked individually 
into the binding pocket. The complexes were minimized keeping the protein atoms fixed 
and the complex with the most favourable energy was then taken as template for the 
docking of all the other inhibitors. 

Figure 2 shows on the left side the predicted position of PCS 1050 in comparison to 
the crystal structure of the complex with decamethonium. The hydrophobic parts of the 
inhibitors interact with an aromatic residue at the bottom of the gorge (Trp84), with three 
aromatic residues in the middle of the gorge (Phe330, Phe331 and Tyr334) and with two 
aromatic residues at the entrance of the gorge (Trp279 and Tyr70). No direct hydrogen 
bonds were observed for our inhibitors. It is possible that some water molecules bridge the 
distance between inhibitor and protein, as observed in the X-ray structure of AChE 
complexed with huperzine and tacrine. Electrostatic interaction appears mainly between the 
cationic head and Ser122 and Tyrl21. The right side of figure 2 shows the agreement 
between the GRID contour maps derived from the hydrophobic DRY probe and the position 
of the inhibitors. Similar results were obtained for the other inhibitors under study. 

The receptor-based alignment obtained by the docking procedure was further used as 
input for a comparative molecular field analysis. 48 aminopyridazine derivatives’ were 
included in a GRID/GOLPE5 analysis aimed to obtain information about the regions around 
the ligands which are important for the activity (see methods section for details). The model 
was validated using two randomly assigned groups of approximately the same size and then 
repeating the assignment 30 times. This cross-validation technique has been shown to yield 
better indices for the robustness and predictivty of a model than the normal leave one out 
method. To test the external predictivty we selected six newly synthesized inhibitors. 

Figure 3 shows a plot of the experimental against calculated values and the values of 
the squared correlation coefficients (r’) and of the squared coefficients (q2) for different 
model dimensionalities. Three components were found to be significant (4’ = 0.92 and 
SDEP = 0.33). The derived model is highly predictive and robust also indicated by the 
prediction of the external test set (SDEP,,,, = 0.13). 
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Figure 3. GRID/GOLPE results for the manually derived alignment. Calculated vs experimental activity 
(left). Cross-validated squared correlation coefficients (q') for different model dimensionalities (right). 

Since the three-dimensional structure of our target is known, we were able to 
analyze the quality of the developed model by comparing the PLS coefficient maps of the 
inhibitors with the architecture of the active site. The regions which the model indicates as 
important for the activity should be close to the residues present in the binding pocket. 
Figure 4 shows on the left side the negative PLS coefficient maps and on the right side the 
positive PLS coefficient maps. Since we used the water probe the positive contour maps 
indicate the areas where polar interaction decrease activity and the negative contour maps 
show the regions where polar interaction increase activity. We observed a nice agreement 
between the maps and the positons of important amino acid residues in the active site. The 
three main positive fields are close to the important aromatic residues in the gorge. The 
negative maps are more widely distributed, but also for these maps a clear correlation was 
found between the location of the maps and the position of polar amino acid residues. 

Figure 4. Comparison between the PLS coefficient maps and the location of important residues in the binding 
pocket (indicated by the arrows). 
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In the field of computer-aided drug design it is often recommended that a method 
can be applied to a large data set in a more or less unbiased automated way. Therefore, we 
started the development of a procedure able to automatically generate a 3D-QSAR model. 
The alignment of the compounds was performed using a combination of automated docking 
(AutoDock6 ) and geometry refinement (YETI force field7 ). Since most docking programs - 
including AutoDock - use simplified energy terms, the complex-ranking is not able to 
predict correctly the experimentally determined complex. Thus, a more sophisticated 
calculation method was chosen to refine the obtained protein-inhibitor complexes. We 
selected the YETI force field within PrGen since it has been shown to yield accurate results 
for protein-ligand complexes7. The complex possessing the most favourable interaction 
energy between protein and inhibitor was selected for the development of the inhibitor- 
alignment, 

Before we applied the method to our aminopyridazine compounds the approach was 
validated using the X-ray structures of the four AChE-inhibitor complexes. Various 
AutoDocWYETI calculations have been performed using different docking and refinement 
conditions. An excellent agreement between the calculated complexes and the crystal 
structures was observed when we considered six structurally conserved water molecules 
during our docking studies. Not only are the rmsd between theoretically predicted and 
experimentally determined positions quite low (tacrine: 0.28A; huperzine: 0.5 1A; 
edrophonium: 0.71A; decamethonium: l.l5A), but also the positions found in the X-ray 
structure are in all cases those with the best interaction energy. 

Encouraged by these results we applied the developed procedure to our data set of 
48 aminopyridazine inhibitors. The automatically determined alignment is quite similar to 
the manually derived one, concerning the conformation of the inhibitors and the position of 
the cationic head. Differences occur in the relative alignment of the flexible inhibitors. A 
detailed analysis of the results is beyond the scope of this paper and an article devoted to 
this subject is in preparation3. 

The automatically derived inhibitor-alignment was investigated using the already 
described GRID/GOLPE method. The resulting model shows a good correlation between 
experimental and predicted values. The q2 value - using the random group cross-validation 
is 0.86 and the SDEP is 0.45 using three components. Also the external predictivity is very 
good (SDEP,,,,, = 0.44). Since the position of each inhibitor in the active site was 
calculated automatically the virtual testing of new compounds - not synthesized so far - 
seems to be a promising method for the design of new acetylcholinesterase inhibitors. 

COMPUTATIONAL METHODS 

The crystal structure of minaprine retrieved from the Cambridge Structural Database 
was used as template to construct the inhibitors. All molecules were assumed to be mono- 
protonated under physiological condition and their molecular structures were generated 
accordingly using the SYBYL 6.3 software (Tripos Associates, St. Louis, USA). 

To investigate the interaction potentials of the protein and inhibitor structures we 
performed a series of GRID (Molecular Discovery, Oxford, UK) calculations. The 
calculations were performed in order to search for binding sites complementary to the 
functional groups of the inhibitors. 

The manual docking was performed using the SYBYL DOCK procedure taking into 
account the positions of the favourable GRID interaction fields in the binding pocket. No 
water molecules were considered during the manual docking. The resulting protein- 
inhibitor complexes were minimized keeping the protein atoms fixed. 

51 



The automated docking was performed applying the AutoDock program5. The 
obtained protein-inhibitor complexes were refined using the YETI force field within PrGen7 
(SIAT Biograph. Lab., Basel, Switzerland). The conformation of each inhibitor showing the 
most favourable interaction energy after the refinement was chosen for the inhibitor 
alignment. 

The 3D-QSAR studies were carried out using the GOLPE4.0 program (Multivariate 
Infometric Analysis, Perugia, Italy). The 48 inhibitors of the training set were considered in 
the conformation found by the docking calculations. The biological activities (IC50) were 
determined using AChE from Torpedo californica and lie in the range between 850 pM and 
20 nM. They were transformed into -1oglCSo values. The energy calculations were 
performed with the GRID14 program, using the water probe. The size of the box was 
defined in such a way that it extends about 4A from the structure of the inhibitors. A grid 
spacing of 1A and an energy cut-off of +5 kcal/mol were used throughout the calculations. 
The advanced pretreatment method within GOLPE was applied to the X matrix in order to 
delete the non-informative variables. The X matrix was analyzed by PLS and variables were 
selected using the SRD/FFD method to improve the predictivity. Variables were grouped 
using 700 seeds, a cut-off distance of 1A and a collapsing distance of 2A. 

CONCLUSION 

In this study the combination of ligand- and receptor-based methods has been 
successfully applied to a set of aminopyridazine derivatives with AChE inhibitor activities. 
We obtained highly predictive and robust models using a manually and an automated 
determined inhibitor-alignment. Besides the good predictivity, the models are also in close 
agreement with the known three-dimensional structure of the enzyme. The use of 
crystallographic data in the determination of the relative orientation of the studied inhibitors 
as an alignment tool is strongly supported by our results. The developed automated 
alignment-generation will be used in the future for the virtual testing of inhibitors not 
synthesized so far. 
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INTRODUCTION 

In all kinds of QSAR studies it is very important how the chemical structure is 
represented. Usually a set of structural properties, calculated or extracted experimentally, is 
considered as a structure representation vector when compared and correlated to a 
biological property. Numerous attempts to suggest different structure representations reflect 
the vital importance of the structural coding problem in all kind of modelling procedures. 
Just a few examples are given for illustration in referen~esl-~. One possible way of 
representing structures is by using a complete 3D structure information - atom type and co- 
ordinates. However, this representation suffers primarily from the lack of uniformity. 
Molecules containing different number of atoms N yield representations of matrices of 
various size (Nx3 or Nx4). Molecular descriptors originating from graph theory overcome 
the uniformity problem, they are also suitable because of their simplicity and often show 
good correlation with molecular properties’ but the 3-D structural properties of compounds 
are lost. With the new “spectrum-like” structure code developed by Zupan et aL6” the 3D 
representation is uniform, unique and reversible. 

METHODS AND DATA-SETS 

Molecular Descriptors 

The methods for calculation of molecular descriptors will be briefly described. 
Descriptors used in the present study are all calculated either from the information about 
the connections between the atoms or from atomic 3D co-ordinates and information about 
atomic electronic properties. A set of m descriptors in a vector form X(x, ... x,J is further on 
referred to ‘as a structure representation. 
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Topological descriptors are derived from the topological characteristics of mo- 
lecular graphs and describe the atomic connectivity in the molecule. All distances between 
arbitrary pairs of points in the graph are graph invariants independent of the numbering and 
links. One of the graph’s invariants, characterizing many topological descriptors, is the 
order of each point in the graph equal to the number of links leaving the point, i.e., 
expressing how many neighbours are linked to the point. Topological descriptors, used here 
as components of structure representation vectors for the purpose of QSAR modelling, 
reflect specific structural features like size, shape, symmetry, branching, and cyclicity of 
the compounds they represent. Only a few most frequently used indices are listed here. The 
Wiener index is expressed in terms of the distance matrix and equates to the half-sum of all 
distance matrix entries. Randic and Kier&HaN indices (order 0-3) are calculated from co- 
ordination numbers of or from values of atomic connectivity. Kier shape index (order 1-3) 
depends on the number of skeletal atoms, the molecular branching and the ratio of the 
atomic radius and the radius of carbon atom in the sp3 hybridisation state. The Kier 
flexibiliw index is derived from Kier shape index. The Balaban index is defined by the 
number of edges in the molecular graph, by number of vertices, cyclometric number, and 
by distance degrees obtained by summation of i-th row and i-th column of the distance 
matrix. The information content index and its derivatives (order 0-2) are based on Shannon 
information theory. Modifications of information contents index are: structural information 
content, complementary information content and bond information content. All mentioned 
indices used in this study were calculated by CODESSA software’ (for detailed description 
of indices see references in the CODESSA documentation). 

Geometric descriptors are one of the possible structure representations that are 
also tested in the present study. These descriptors require 3D-atomic co-ordinates. Different 
values contributing to the set of geometric descriptors are calculated from atomic co- 
ordinates: moments of inertia, shadow indices, molecular volume, molecular surface area, 
and gravitation indices’. 

Electrostatic descriptors in our investigation of QSAR models are added to the set 
of geometric descriptors. They reflect characteristics of the charge distribution of the 
molecule. The empirical partial charges are calculated by a method proposed by Zefirov’. 
Using partial charges, the following electrostatic descriptors are calculated: minimum and 
maximum partial charges in the molecule, minimum and maximum partial charges of 
particular types of atoms, and polarity parameter. 

3D descriptors for Spectrum-like representation of molecular structure, defined 
by 3D-co-ordinates of its atoms, are obtained by a projection of all atomic centres of a 
molecule onto a sphere of arbitrary radius. An oriented structure is placed into an arbitrary 
large sphere. The projection beam from the central point of sphere causes a pattern of 
points on the sphere, where each point represents a particular atom. Then each point on the 
sphere is taken as the centre of a “bell-shaped” function with intensity related to the 
distance between the co-ordinate origin and a particular atom. As “bell-shaped” function of 
atom i we have taken Lorentzian curve with the form: 

j = l , k  

A d  

k / 2  k i 2  
9 --, . . .- , . . .A; I = l , k /2  
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where si(qj,d,) is “spectrum intensity” related to atom i, while the parameters are: 
pi - distance between the center of the sphere and atom i, 
q i , d i  - polar and azimuthal angle of atom i, 
oi 
k - resolution of the representation (steps for indicesj and I ). 

- atomic charge (extended by 1)  on atom i, 

The total intensity related to the entire molecule is then the sum of intensities 
belonging to individual atoms: 

,atom 

i=l 
/2/ 

In practice the projections on three perpendicular equatorial trajectories rather than 
the projection on the entire sphere have been considered. In the case that the largest part of 
the skeletons of molecules in the study are planar only the projection on one trajectory (x-z 
plane) is taken into account. If Mulliken charges on atoms i are incorporated as oi+l in 
equation /1/ the reversibility is not lost, however, recovering of atom positions from the 
code is more computer intensive. 

Modelling 

Multiple Linear Regression (MLR) technique is successful in applications with 
linear relationship between the descriptors and the sought property. It is also effectively 
applicable for non-linear relations, if it is known which factors should be non-linear. The 
essence of MLR is to determine the coefficients at each factor to obtain the best overall 
relation of the real property and the property predicted by the linear equation (model). For 
the solution, one needs at least as many equations (objects with known properties) as there 
are factors, i.e. descriptors in each equation. In order to validate the obtained model with 
statistical parameters, more objects than factors must be available. In other words, the 
system has to be over-determined in order to be able to compare the errors due to the lack 
of fit (model errors) and experimental errors lo. 

Counterpropagation Artificial Neural Network (CP ANN)” modelling is based 
on a supervised learning method, although one part of the learning process involves 
elements of unsupervised learning. This means that for the learning procedure a set of 
input-target pairs (X,T,} is required. In the case of the structure-property correlation 
problem the input X, = (xs19 xS2 ... xSi ... xs,J is a structure representation of the s-th 
compound represented by m structural features or “variables”. The corresponding target 
as= (tsJ is a one-component vector indicating the studied property of s-th compound. After 
the learning procedure, the ANN responds for each input structure representation X, from 
the training set with the output Out, identical to the target T,. 

Data 

Two data-sets are used in the study. The first one is a small set of 28 flavonoid deriva- 
tives’*, inhibitors of the enzyme ~ 5 6 ’ “ ~ .  The other data-set is a large collection containing 
256 structurally diverse derivatives of 5-phenyl-3,4-diamino-6,6-dimethyldihydrotriazine 
inhibiting dihydrofolate red~ctase’~”~.  
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RESULTS 

Chemical structures in both data-sets were initially represented by 3D coordinates 
of all atoms in the molecules determined for their minimal energy state, and with the 
connection tables describing all connectivities between the atoms in each molecule. In 
order to obtain uniform, equally dimensional structure representation vectors for the 
modelling purpose the initial representations were transformed in four different ways 
producing sets of: 

0 topological indices 
0 geometric and electronic indices 
0 spectrum-like code intensities 

The two former representations are calculated by CODESSA software’, while the 
two latter ones are structural descriptors developed in the authors’ laboratory. 

Topological code of structure representation contains 3 8 descriptors, geometric + 
electrostatic code contains 87 descriptors, while both variations of spectrum-like 
representation of 28 flavonoid derivatives consist of 120 descriptors calculated with 
equation I l l  for the X Y  projection of molecular coordinates. The spectrum-like 
representation of the compounds from the second data-set consists of 180 descriptors, half 
of them are calculated for the XY and half for the XZ projection of molecular coordinates. 
With each of these four representations two modelling strategies were applied, i.e. multiple 
linear regression (MLR) and CP-ANN with Kohonen mapping strategy. 

MLR is performed using the same software (CODESSA) as for calculation of 
topological, geometric and electronic structure descriptors. For each type of structure 
representation the procedure called heuristic optimization is applied to determine the 
descriptors giving the best correlation of modelled properties with the experimental ones. 
MLR modelling results for the set of 28 flavonoid derivatives are shown in Table 1. 

spectrum-like code intensities modified by Mulliken charges 

Table 1. Prediction results of the best MLR models obtained for four different structure 
representations of the set of 28 flavonoid derivatives 

Structure representation MLR MLR MLR MLR 
F 2 r r2 CV*) S 

Topological indices 0.77a 0.55’ 0.107a 14.5’ 
0.90b 0.68b 0.061b 15.0b 

Geometric + electrostatic 0.82’ 0.69a 0.085a 19.6’ 
indices 0.91b 0.78b 0.052b 1 7.7b 

Spectrum-like structure 0.82a 0.71’ 0.084a 19.7’ 
representation 0.96b 0.84b 0.022b 45.4b 

Spectrum-like structure 0.94a 0.88a 0.027’ 7O.Oa 
representation + Mul. charges 0.98b 0.95b O.O1lb 90.6b 

1 

*Cross-validation using “leave-one-out” procedure 
a five-factor MLR model 
* ten-factor MLR model 

Comparison of the results from Table 1 shows that the use of spectrum-like 
structure representation enables better correlation between chemical structure and 
biological property of the studied compounds than the use of topological and geometrical 
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descriptors. It is also seen that electronic descriptors improve modelling results. Additional 
useful information results from the choice of the reduced sets of descriptors of the 
structure-representation vectors. It is interesting to see which are the chosen five or ten 
descriptors in each model, especially in the case of spectrum-like representation vectors. By 
checking only the descriptors of the best model, i.e. ten-factor MLR model using spectrum- 
like structure representation modified by Mulliken charges, we can see that those 
parameters indeed describe the directions in the flavonoid molecule where 3' or 4' and 5 ,  6 ,  
7, 8 substitutions'2 are located. In Figure 1 it is indicated in which directions the ten 
descriptors are chosen by the MLR procedure for reduction of representation parameters. 

Figure . Two spectrum-like structure representations of flavonoid derivatives (6-OH,5,7,4'-NH2 and 6- 
OH,5,7,4'-N02) (left) and X Y  projection (right) of one of them. The shadowed areas correspond 
to the directions covered by 10 most representative descriptors chosen in optimization procedure 
for reduction of parameters in MLR modelling. 

The next modelling approach applied in the present research is CP ANN. Only two 
of the four types of structure representations previously studied, i.e. spectrum-like structure 
representation and spectrum-like structure representation modified by Mulliken charges, 
were analysed. In order to compare the ANN results with those obtained by MLR models, 
the reduced sets of the same five and ten descriptors as determined in MLR study were 
used as structure representations. The parameters used for trainin the CP ANN were: 
leaming rate hax=0.4 km=0.05, 80 epochs, nontoroidal condition . As it was expected, 
higher correlation coefficients were obtained for predictions of training samples, i.e., all 28 
compounds from the data set. When the leave-one-out cross-validation procedure was 
performed, each compound was once excluded from the training set and the biological 
activity of this compound was then predicted on the basis of the model obtained with the 
rest ( n - I )  of the compounds. For evaluation of the models the correlations obtained by 
cross-validation are more relevant and reflect the possibility of generalization of the 
proposed models, at least in the sense of variations of substituents in the group of 
compounds with the same skeleton. 

The best model was obtained using ten-descriptors structure representation vector of 
spectrum-like structure representation modified by Mulliken charges. It has to be stressed 
that the selection of the descriptors for the reduced sets was not repeated in the ANN 
modelling approach. It was taken directly from the MLR optimization procedure. Correla- 
tion coefficient (r) between the experimental and predicted biological activity with leave- 
one-out test is 0.92, while direct predictions from the model (retrieved values) are 100% 
correct, which means that the model recognises without an error the properties of all 
objects from the training set. 

1B 
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The modelling results in the case of dihydrofolate reductase (DHFR) inhibitors 
reveal quite a different situation. First, the data-set is very diverse and therefore it is more 
difficult to obtain one general model. The best correlation coefficients obtained with an 
optimised set of topological, geometrical, electrostatic and quantum-chemical indices was 
0.84 for 30-factor MLR model and cross-validated correlation coefficient was 0.78. In the 
case of “spectrum-like” structure representation the correlation coefficient was 0.66 (0.56 
in leave-one-out cross-validation). Even lower correlation between predicted and 
experimental activities was obtained with artificial neural network models. Correlation 
coefficients obtained by ten-fold cross-validation were 0.56 for “spectrum-like” 
representation and 0.65 for representation with structural indices. But the networks were 
trained with the optimised sets of 30 parameters determined in MLR procedure, which 
could be the source of the worse performance of ANN models. We expect better 
predictions from ANN models if the selection of parameters is made using ANN. The 
optimisation of structure representation parameter set using genetic algorithm is now in 
progress in our laboratory. 

Acknowledgment 

obtained by the Projects: J1 - 8900 and J1 - 0291 is gratefully acknowledged. 
The financial support of the Ministry of Science and Technology of Slovenia 

REFERENCES 

1. 

2. 

3. 

R. Todescini, P. Gramatica: 3D Modelling and Prediction by WHIM Descriptors. Part 5. Theory 
Development and Chemical Meaning of WHIM, Quant. Struct.-Act. Relat., 16, 113-1 19, (1997). 
J.T. Clerc, A.L. Terkovics, Versatile topological structure descriptor for quantitative structure/property 
studies, Anal. Chim. Acta, 235, 93-102, (1990). 
J.H. Schuur, P. Selzer, J. Gasteiger, The Coding of the Three-Dimensional Structure of Molecules by 
Molecular Transforms and Its Application to Structure-Spectra Correlations and Studies of Biological 
Activity, J. Chem. Inf. Comput. Sci., 36, 334-344, (1996). 

4. S. Bauerschmidt, J. Gasteiger, Overcoming the Limitations of a Connection Table Description: A 
Universal Representation of Chemical Species, J. Chem. Inf. Comput. Sci., 37, 705-714, (1997). 

5. Y. Tominaga, I. Fujivara, Novel 3D Descriptors Using Excluded Volume: Application to 3D 
Quantitative Structure-Activity Relationships, J. Chem. Inf. Comput. Sci., 37, 1158-1 161, (1997). 

6. M. NoviE, J. Zupan, A New General and Uniform Structure Representation, Software-Entwicklung in 
der Chemie 10, Johann Gasteiger (Ed.), Frankfurt am Main, pg. 47-58, (1996). 

7. J. Zupan, M. NoviE, General Type of a Uniform and Reversible Representation of Chemical 
Structures, Anal. Chim. Acta, 348,409-418, (1997). 

8. M. RandiC, M. Razinger, On characterization of 3D molecular structure, in: From Chemical Topology 
to Three-Dimensional Geometry (A. T. Balaban, Ed.), Plenum Press, New York, (1997). 

9. A. R. Katritzky, V. S. Lobanov, M. Karelson, CODESSA 2.0, Comprehensive Descriptors for 
Structural and Statistical Analysis, Copyright (c) 1994-1996 University of Florida, U.S.A. 

10. D.L. Massart, B.G. M. Vandengiste, S.N. Deming, Y. Michotte and L. Kaufman, Chemometrics: a 
textbook, Elsevier, Amsterdam, (1988). 

11. R. Hecht-Nielsen, Counterpropagation Networks, Appl. Optics, 26, 4979-4984, (1987). 
12. M. Cushman, H. Zhu, L.R. Geahlen, J.A. Kraker, Synthesis and Biochemical Evaluation of a Series of 

Aminoflavones as Potential Inhibitors of Protein-Tyrosine Kinases p56, EGFr, p60. J. Med. Chem., 37, 

13. C. Silipo, C. Hansch, Correlation Analysis. Its Application to the Structure-Activity Relationship of 
Triazines Inhibiting Dihydrofolate Reductase, J. Am. Chem. SOC., 97, 6849, (1975). 

14. F.R. Burden, B.S. Rosewame, D.A. Winkler, Predicting Maximum Bioactivity by Effective Inversion 
of Neural Networks Using Genetic Algorithms, Chemometrics and Intelligent Laboratory Systems, 38, 

15. J. Zupan, M. Novit, I. Ruisinchez: Kohonen and Counterpropagation Artificial Neural Networks in 
Analytical Chemistry, Chem. Intell. Lab. System, 38, 1-23, (1997). 

3353-3362, (1994). 

127-137, (1997). 

64 



THE CONSTRAINED PRINCIPAL PROPERTY (CPP) SPACE IN QSAR - 
DIRECTIONAL AND NON-DIRECTIONAL MODELLING APPROACHES 

Lennart Eriksson,’ Patrik 
Maria Sandberg,’ and Svante Wold3 

Erik Johansson,’ Mats Tysklind,* 

‘Umetri Al3, POB 7960,907 19 Umeb, Sweden, www.umetri.se 
’Dept. Env. Chemistry, UmeH University, 901 87 Umeb, Sweden 
31nstitute of Chemistry, Umeb University, 901 87 UmeH, Sweden 

INTRODUCTION 

Multivariate design is useful for selecting informative training- and validation sets.’ 
The essence of this approach is (i) to describe the compounds with many descriptors, (ii) to 
summarize these descriptors by means of principal component analysis2 (PCA), and (iii) to 
create an informative multivariate design in the established PC-scores (“principal 
properties”, “PPs”). This approach has been used in many areas for selecting representative 
compounds, e.g., organic chemi~try,~ crystallization modelling: environmental chemistry5 
and QSAR,6 combinatorial chemistry,’ and biopolymer sequence m~de l l ing .~  

It is our aim to describe a limitation of the multivariate design approach in QSAR. 
This limitation arises when working with a biological response of a specific mechanism, 
which is elicited by a limited number of compounds distributed within a larger set of 
chemicals. In such a case, it is conceivable that the few biologically active compounds, 
with a specific combination of PPs, are grouped tightly together in the PP-space of the 
entire chemical class. This kind of constrained principal property (CPP) space is illustrated 
in Figure 1. Clearly, here only a limited portion of the PP-space is of relevance for QSAR, 
and it is not justifiable to select a training set covering the whole PP-space. Rather, it 
appears fruitful to select a training set located within the CPP-space. We shall discuss two 
procedures for doing this, which we call directional and non-directional modelling. 

ILLUSTRATION 

Our illustration to the CPP-problem deals with poly-chlorinated biphenyls (PCBs). 
PCBs are widespread in the environment and a number of toxic and biochemical responses 
have been identified. Recently, the entire series of 209 PCBs was multivariately 
characterized by 52 chemical descriptors.’-’’ By means of PCA, this battery of descriptors 
was subsequently converted to a four-dimensional PP-space. The relevance of selecting 
representative PCBs based on this parametrization has been proven repeatedly. 
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Figure 1. Schematic illustration of a principal property (PP) space defined by three principal properties. (left) 
A multivariate design, symbolized by the encircled compounds, laid out in the entire PP-space. (right) A 
constrained region of a PP-space, which is poorly mapped by a multivariate design of the foregoing type. A 
design adapted to the constrained portion of the PP-space better applies. 

In a recent article by Connor et al., the CYP2B activity of 18 tri- to octachlorinated 
PCBs in female rat, was published.” Interestingly, these 18 biologically tested congeners 
exhibit multiple-ortho substitution and are located in a constrained part of the PCB PP- 
space (see below). This means that these 18 compounds share a specific combination of 
principal properties, a fact indicating the structural specificity of the biological response. 
We call this part of the PCB PP-space the “CYP2B-region”. 

of compounds. We will do so by using multivariate analysis, and our goal is to understand 
(i) whether the 18 tested congeners are good representatives of the region, or (ii) whether 
they need to be supplemented with other PCBs to result in a better mapping of this region. 

It is of interest to further explore the shape of the CYP2B-region and its distribution 

MODELLING APPROACHES AND DATA ANALYTICAL METHODS 

The first analysis approach, non-directional modelling, is based on using the 
chemical data of the 18 tested PCBs. PCA of this data set is used for defining local PPs. 
The remaining 191 PCBs are then fitted to this local model and classified as members or 
non-members. Those compounds which are classified as model (“class”) members have a 
combination of PPs resembling the 18 tested PCBs. Hence, they may be used to propose a 
suitable mapping set of the CYP2B-region. With the term mapping set we mean a series of 
compounds which can be used to explore the size and shape of the CYP2B-region. 

The proposition of a mapping set corresponds to laying out a D-optimal design in 
the series of compounds fitting the local PCA model. This approach is non-directional in 
the sense that it allows the CYP2B-region to be explored in all directions for finding 
appropriate mapping set congeners. The reason for this non-directionality is that only 
chemical information of the PCBs are used in the modelling. 

We consider the non-directional approach to be useful when the goal is to find 
more potent compounds. Ideally, one would like to identify potent chemicals being as 
diverse as possible, because this would allow the discovery of local sub-optima in 
biological potency. This approach is also of relevance if the goal is to guard for possible 
“new” or “unwanted” responses or side effects. 

66 



The second analysis approach, directional modelling, is also based on using the 18 
tested compounds for training of a local model. However, in to contrast to the foregoing 
approach, chemical and biological data are now used simultaneously. Thus, partial least 
squares12 (PLS) regression is used for deriving a QSAR, accompanied by biological 
activity predictions for the 191 non-tested substances. Among the compounds which fit the 
QSAR, it is then possible to select appropriate compounds for a mapping set of the 
CYP2B-region. We realize that this approach is of a directional nature, because it allows 
the CPP-space to be investigated in a direction possibly encoding more potent CYP2B- 
inducers. With the directional approach, finding more potent compounds is the major goal. 
This strategy also works with several biological response variables. 

In order to accomplish these two mapping approaches, we use the PCA3 and PLS12 
methods, as implemented in SIMCA.13 In order to propose representative compounds for 
mapping of the CYP2B-region, we use D-optimal design14, as implemented in MODDE. l5 

RESULTS 

Initially, a reference PCA of the entire 209*52 (compounds*chemical descriptors) 
data matrix gave a four-component model with R2 = 0.78 (explained variation) and Q2 = 
0.70 (predicted variation according to cro~s-validation'~~'~). The first two components are 
dominant and account for 65% of the explained variation. A score plot of these is provided 
in Figure 2a. In this plot, the 18 tested congeners are highlighted with large triangles. 

can see that this region is embedded in the larger set of PCBs, and the question which 
arises is where lie the pertinent borders of the CYP2B-region? We wish to map this region 
according to the directional and non-directional modelling approaches, and produce an 
appropriate mapping set. The results of the two modelling approaches will be given below, 
and be graphically rendered in the PP-space of the 209 compounds. 

training set, that is, the 18 tested compounds. To make this mapping approach flexible 
three stoppage criteria were used, namely (i) retention of principal components (PCs) with 
an eigenvalue larger than 2, (ii) retention of PCs with an eigenvalue larger than 1, and (iii) 
cross-validation. As seen in Table 1, this leads to the use of 2 ,4  and 7 principal 
components. Subsequently, all compounds, that is, the 18 in the training set and the 191 in 
the prediction set, were fitted to the PCA models of varying complexity. 

The framing of the 18 tested PCBs indicate the extent of the CYP2B-region. We 

The non-directional approach was commenced by computing a local PCA of the 

Table 1; Summary of the non-directional mapping 

Expl. Var. Pred.Var. Classification D-optimal design 
Stop.Crit. #Comp R2 Q2 Train. Pred. Model #Cong #New Geff Cond No Figure 
i,EIG=2 2 0.68 0.44 18 (18) 79(191) Quadratic 8 5 80.1 5.5 2b 
ii, EIG = 1 4 0.82 0.54 17(18) 68 (191) Linear 12 6 76.2 2.4 2c 

iii, CV 7 0.93 0.62 17(18) 45 (191) Linear 13 2 75.3 2.9 2e 
ii, EIG=l 4 0.82 0.54 17(18) 68 (191) Interaction 18 11 71 7.9 2d 

Stop. Crit. = stopping criterion used in the PCA modelling. # Comp = number of components in PCA model. R2 = explained variation. 
(12 = predicted variation. Train. = number of compounds of PCA training set fining to the model 
Pred. = number of compounds of PCA prediction set fitting to the model. Model = selected model for D-optimal design. 
# Cong = number of PCB congeners selected by D-optimal design. # New = number of non-tested compounds among #Cong. 
Gefl = G-efliciency of D-optimal design. CondNo = condition number of D-optimal design. Figure = figure used in paper. 

In the next step, D-optimal designs were laid out using as candidate sets all 
compounds fitting to the various PCA models. Four D-optimal designs were constructed, 
one supporting a quadratic model in two PCs, one a linear model in four PCs, one an 
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interaction model in four PCs, and one a linear model in seven PCs. These are summarized 
in Table 1 and the distribution of selected compounds plotted in Figures 2b-2e. 

based on the 18 tested compounds. This model contained four components and gave R2 = 
0.97 and Q2 = 0.59. In the next step, predictions of biological activity of the 18 training set 
and 191 prediction set compounds were conducted. We note that one compound in the 
training set, #163, is extreme in biological activity (BA). Its existence may, partly, shed 
some explanatory light on the moderate Q2. The cross-validation procedure is unable to 
predict the behavior of #163, when omitted from model computation. 

region, which is summarized in Figure 2f. Again, the solid frame shows the distribution of 
the 18 tested PCBs. Seventeen of these compounds have a BA ranging from 4-102, and the 
BA for the extreme #163 is 195. Within the dotted area, prediction set compounds are 
found which (a) fit the model well and (ii) have a predicted BA above 105 and below 304. 
Predictions made inside the dotted area correspond to model interpolations. In addition, we 
have the seven encircled compounds, which did not fit the QSAR model. These are 
predicted to have a BA of 500+, and are thus substantially more potent than any of the 
actually tested compounds. The latter predictions correspond to model extrapolations.. 

Subsequently, the directional mapping was started by calculating a PLS model 

The obtained predictions can be used for a directional mapping of the CYP2B- 

-"1#11, ;r+i 
. . . . . . . . . . .  . . . .  't - 1. * I _  

;. ,;, ;,d':; ,.., -;:;.;U;:. " 

...... ., 
. . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

.,." ........ i .. "l.l.. ..... ~ . 
-..*,m, 

. . . . . . . . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . . . . . . . .  
........ _. ........ ,.,~ . I .". ...... - . .  

Figure 2. Overview of results of non-directional and directional mapping. (a, upper left) Score plot of the 
reference PCA model. Large triangles denote the 18 tested congeners. (b, upper middle) Distribution of 
mapping set of D-optimal design supporting a quadratic model in two local PPs of the 18 tested compounds. 
(c, upper right) Same as (b), but with a linear model in four PPs. (d, lower left) Same as (b), but with an 
interaction model in four PPs. (e, lower middle) Same as (b), but with a linear model in seven PPs. (f, lower 
right) PLS modelling results. Solid frame demarcates distribution of the 18 tested compounds. Dotted frame 
indicates distribution of compounds fitting the PLS model, predicted to be more potent than the tested 
congeners. Seven encircled compounds, not fitting the model, are predicted to have BA >500. 

DISCUSSION 

One interesting question in multivariate QSAR is how to formulate appropriate 
training- and validation sets. With a non-specific response, and with weak or no clustering 
of the compounds in a PP-space, it is often sufficient to lay out one single multivariate 
design. With a selective and specific endpoint, however, which usually correlate with a 
well-defined combination of PPs, the classical multivariate design approach ought to be 
modified. The reason for this is that such a response usually is elicited by a smaller set of 
compounds, which are grouped tightly within a larger PP-space. Hence, it is uninteresting 
to create a multivariate design in the entire PP-space, and a multivariate design adapted to 
the smaller, constrained part of the PP-space appears more appropriate. 
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We have here used a series of 18 PCBs to exemplify how biological performance 
may act as a constraining factor. If, in QSAR, these 18 PCBs were to be used for model 
training, one question of relevance would be to know their representativity of the CYP2B- 
region. There are different ways to probe the representativity of the 18 tested PCBs, and in 
this paper we have outlined two mapping approaches. 

Initially, a reference PCA on the whole data set was calculated, and the distribution 
of PCBs in the first two dimensions are portrayed in Figure 2a. The solid frame indicates 
the size and extent of the CYP2B-region, and the solid triangles represent the tested PCBs. 
Evidently, the tested compounds display and unbalanced distribution. Hence, it may be 
anticipated that they are not optimally representative of the constrained region. 

The non-directional mapping was based on PCA modelling of the 18 tested 
compounds. By means of three stopping rules, three alternative models of varying 
complexity were derived. One model had two components, one four, and one seven. In the 
next step, the remaining 191 congeners were used as a prediction set and were fitted to the 
three PCA models, the results of which are summarized in Table 1. We can see that in the 
case of seven components as few as 45 substances of the prediction set fit the model, 
whereas with two- and four-component models, 79 and 68 compounds fit, respectively. 

The obtained classification results indicate that with seven components the model 
fits the CYP2B-inducers “tightly” compared to the other cases. Accordingly, only the 
prediction set compounds which show the highest degree of chemical similarity with the 
tested PCBs, are classified as class members. As a consequence, the D-optimal design laid 
out in this case, allows for the most conservative mapping set (cf. Figure 2e). In principle, 
the shape of the CYP2B-region is not explored outside the framed area. This is because 
only two of the 13 identified compounds are biologically untested. 

Interestingly, it is possible to decrease the extent of chemical similarity and 
increase the extent of chemical diversity among the prediction set compounds which fit the 
various PCA models. This is accomplished by regulating the number of used principal 
components (PPs). Table 1 shows that when utilizing only two components, as many as 79 
prediction set congeners are categorized as class members, and hence as potential CYP2B- 
inducers. The created D-optimal design encodes the most optimistic mapping set (cf. 
Figure 2b). Here, five out of eight chosen compounds are biologically untested, and we can 
see that these allow for an exploration of the CPP-space well outside the framed area. 

Somewhere in between the two extremes portrayed in Figures 2b and 2e, we have 
the situations rendered in Figures 2c and 2d. The latter cases represent coverages of the 
CYP2B-region achieved by D-optimal designs in four PPs. Apparently, mapping sets are 
now proposed which allow for some extrapolation outside the framed area, but not as 
pronounced as in Figure 2b. Further, by tailoring the four factor D-optimal design towards 
a linear model (Figure 2c) or an interaction model (Figure 2d), it is possible to influence 
the investigation of the inner part of the CYP2B-region. A linear model in four factors 
seems more adequate than an interaction model, as the former gives a smaller mapping set. 

Figures 2b-2e summarize the non-directional mapping. It is clear that this approach 
permits the mapping of the CYP2B-region to expand in all directions of the PP-space. In 
contrast to this, we have the directional mapping procedure founded on PLS regression. 
Here, use is made of the y-data, as a pointer for finding the combination of chemical 
properties predicted to represent the most potent compounds. 

The PLS model was trained on the 18 tested compounds. In the ensuing step, the 
191 prediction set congeners were fitted to the model and their CYP2B-induction potency 
predicted. Figure 2f represents a summary of the acquired results. The solid frame shows 
the portion of the PP-space in which the biologically tested compounds are found. With the 
exception of PCB#163, these have a biological activity (BA) range of 4-102. Congener 
#163 has a BA of 195. The dotted frame indicates another region in which PCBs predicted 

69 



to be generally more potent lie, and these have BA in the interval 105-304. Observe that 
these predictions correspond to model interpolation. 

Furthermore, it is possible to consider predictions corresponding to model 
extrapolation. Such predictions are more uncertain than model interpolation forecasts, but 
may still be useful for identifying potent chemical structures. The seven PCBs encircled in 
Figure 2f are predicted to have a BA of 500+. These compounds occupy a small and 
narrow area, almost a curved line, in the PP-space, which strongly indicates that a specific 
combination of PCB PPs correlates with the investigated BA. 

It is of interest to conduct a chemical interpretation of the acquired PLS model. An 
inspection of the PLS model coefficients (no plot provided) indicates that molecular 
polarization is one key element towards more potent compounds, because descriptors 
reflecting polarizability dominate the model. This interpretation is also supported by the 
distribution of PCBs in Figure 2f. The compounds lying within the dotted frame, that is, 
compounds predicted to be more active than the tested ones, are moderately polarized. 
Many of these congeners display di-ortho 2,6-substitution and have chlorine substituents 
on both rings. Furthermore, the seven encircled compounds, predicted to be very potent, 
are strongly polarized. Again, there is mainly di-ortho 2,6-substitution, but with the 
difference that chlorination is now predominantly found on one ring only. 

In the light of this model interpretation, it is interesting to scrutinize what was made 
in the original publication (ref 11). Connors and coworkers concluded that di- and tri-ortho 
substituted PCBs exhibit the highest CYP2B-potency. But because they tested only one 
2,6-disubstituted PCB, they might have missed the importance of this structural element 
for the modelled biological activity. Therefore, the future use of an appropriately tailored 
mapping set seems highly motivated. 

REFERENCES 

1. T. Lundstedt, et al., Intelligent combinatorial libraries, in: Computer-Assisted Lead Finding and 
Optimization. Current Tools for Medicinal Chemistry. H. van de Waterbeemd, B. Testa and G. 
Folkers, eds., Wiley-VCH, Weinheim (1997). 

2. J.E. Jackson. A User’s Guide to Principal Componenfs, John Wiley & Sons, Inc., New York (1991). 
3. A. Nordahl and R. Carlson, Exploring organic synthetic procedures, Top. Curr. Chem. 166:l (1993). 
4. R. Granberg, Solubility and Crystal Growth of Paracetamol in Various Solvents, Ph.D. Thesis, Royal 

5. E.U. Ramos, W.H.J. Vaes, H.J.M. Verhaar, and J.L.M. Hermens. Polar narcosis: designing a suitable 

6. L. Eriksson, and J.L.M. Hermens, A multivariate approach to quantitative structure-activity and structure- 

Institute of Technology, Stockholm,,Sweden (1998). 

training set for QSAR studies, Environ. Sci. & Pollut. Res. 4:83 (1997). 

property relationships, in: The Handbook of Environmental Chemistry, Vol2H, Chemometrics in 
Environmental Chemistry, J. Einax, ed., Springer-Verlag, Berlin (1 995). 

7. M. Sandberg, L. Eriksson, J. Jonsson, M. Sjostrom: and S. Wold, New chemical descriptors relevant for 
the design of biologically active peptides, J.  Med. Chem. 4 1 :248 1 (1998). 

8. M. Tysklind, P. Andersson, P. Haglund, B. van Bavel, and C. Rappe, Selection of polychlorinated 
biphenyls for use in quantitative structure-activity modelling, SAR QSAR Env. Res.4:ll (1995). 

9. P. Andersson, P. Haglund, and M. Tysklind, The internal barriers of rotation for the 209 polychlorinated 
biphenyls, Environ. Sci. & Pollut. Res. 4:75 (1997). 

10. P. Andersson, P. Haglund, and M. Tysklind, Ultraviolet absorption spectra of all 209 polychlorinated 
biphenyls evaluated by principal component analysis, Fresenius J. Anal. Chem. 357: 1088 (1997). 

11. K. Connor, S. Safe, C.R. Jefcoate, and M. Larsen, Structure-dependent induction of CYP2B by 
polychlorinated biphenyl congeners in female Sprague-Dawley rats, Biochem. Pharm. 50: 1913 
(1995). 

aquatic toxicity data with PLS, Aquatic Sciences 57:217 (1995). 
12. L. Eriksson, J.L.M. Hermens, E. Johansson, H.J.M. Verhaar, and S. Wold, Multivariate analysis of 

13. SIMCA-P 7.0 and manual, Umetri AB, www.umetri.se. 
14. P.F. De Aguiar, B. Bourguignon, M.S. Khots, D.L. Massart, and R. Phan-Than-Luu, D-optimal designs, 

Chemom. Intell. Lab. Syst. 30:199 (1995). 
15. MODDE 4.0 and manual, Umetri AB, www.umetri.se. 

70 



Section I11 
The Future of 3D-QSAR 



HANDLING INFORMATION FROM 3D GRID MAPS FOR QSAR STUDIES 
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INTRODUCTION 

3D-QSAR is an interesting and expanding discipline'-*. Nowadays software for 3D- 
QSAR methodologies and efficient algorithms to describe molecules and to predict 
biological activity are more accessible and easy to  US^^.^. Progress were done on the 
numerical description of the biological systems which now are more precise and detailed6 

In the past, most efforts were devoted to improve the numerical performance of the 
statistical models. However, one weak point of the methodology resides on the model 
interpretation. All the 3D-QSAR methodologies benefit from the use of two-dimensional 
and three-dimensional plots. However, with so many descriptors, the interpretation of two- 
dimensional and three-dimensional plots becomes messy and the structure-activity 
relationships are often very difficult to understand. 

It is generally true that the interpretation phase is one of the most accurate validation of 
the model and that without a correct interpretation a model is completely useless. 

The degree of complexity of a 3D-QSAR model depends on the data set under study. 
Even in the case of a simple data set, the interpretation of the results is often difficult and 
demanding. In order to interpret a 3D-QSAR model, the user should be able to understand 
the chemical model, the statistical model and the link between them. Sometimes this goal is 
very difficult to achieve. Reference 1 reports about 400 papers on 3D-QSAR field published 
over the last four years. Only few of them report a deep discussion on the interpretation 
phase, demonstrating the actual difficulties in this important aspect. 

Interpretation is the only way we can improve our knowledge by our intelligence, that 
is much better than using only the artificial intelligence of the model. 

CHEMICAL MODEL: 3D GRID MAP 

A 3D grid map may be viewed as a 3D matrix the elements of which are the attractive 
and repulsive forces, mapped by color coding, between an interacting partner and a target 
molecule. The majority of properties related with molecular interactions can be represented 

Molecular Modeling and Prediction of Bioactivity, edited by Gundertofte and Jdrgensen. 
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in a 3D grid map and thus these maps are useful to visualize large amount of molecular data 
and chemical information in a simple and comprehensive fashion. 

The amount of information contained in a 3D grid map is related to the interacting 
molecular partners. Sometimes visual inspection is not sufficient since large amount of 
information is being coded and hidden in the sign and magnitude of the grid node forces, in 
the position of the grid nodes, in the grid nodes relationships and in other functional 
relationships. Specialized tools are required in order to help the user to interpret and to 
understand at best one particular problem. 

3D-ACC7 was proven to be an effective method for handling information from 3D grid 
maps of planar molecules. The method has the advantage to highlight the grid-nodes 
relationships, producing a new description which is practically independent from the 
location of the target molecules within the grid cage7. However, the new description 
produced by 3D-ACC is hard to understand. Although a 3D-QSAR model can be obtained, 
the usefulness of the model is limited by the difficult interpretation. 

The VolSurf method8-" can be a good alternative to 3D-ACC. VolSurf is a 
computational procedure to explore the physicochemical property space from 3D grid maps. 
The basic concept of VolSurf is to compress the information present in 3D grid maps into 
few numerical descriptors very simple to understand and to interpret. Compression of the 
information can be better made if chemical knowledge is added to the process. VolSurf does 
so by selecting the most appropriate descriptors and arameterization according to the type 
of map under study. In the standard procedure, GRID interaction fields with a water probe, 
a hydrophobic probe and a charged probe are used. However, other grid maps produced by 
different molecular mechanic or semiempirical methods can be used. VolSurf has the nice 
advantage of producing 2D descriptors using the 3D information embedded in the 3D maps. 
It is clear that not all the information can be transferred from 3D to 2D descriptors, but this 
is the only price to pay to obtain lattice independent descriptors. 

In the following example (see Figure 1) part of a 3D-ACC transformation and a 
VolSurf transformation of a glucose analogue molecule are reported for comparison. 
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Figure 1. 3D-ACC (a) and VolSurf (b) numerical transformations of a 3D map for a glucose analogue 
molecule. The black vector on the glucose moiety ring represents one of the integy moments calculated by 
VolSurf. 
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3D-ACC transformations are difficult to understand and not reversible: the spectra-like 
diagrams obtained cannot be transferred back into the original 3D grid map. Conversely, the 
VolSurf transformation is easier to understand, the descriptors have a clear chemical 
meaning and some of them can be projected back into the original 3D grid map from which 
they were obtained. 

VolSurf is a sort of interface between the graphical representation of 3D grid maps and 
our need to produce from these maps useful numerical descriptors. The usefulness of this 
simple procedure was demonstrated in its practical applications in the fields of QSAR, 3D- 
QSAR and membrane penetration8-". 

STATISTICAL MODELS 

Principal Components Analysis (PCA) and Partial Least Squares (PLS) are 
chemometric tools for extracting and rationalizing the information from a multivariate 
description of a biological system. The complexity reduction and the data simplification are 
two of the most important features of such chemometric  model^'^. PCA and PLS methods 
have the nice feature to condense the overall information into two smaller matrices, which 
in 3D-QSAR, show the molecule pattern (score plot) and the 3D descriptor pattern (loading 

However, while the interpretation of loading plots in classical QSAR analysis is simple 
and straightforward, in 3D-QSAR it becomes messy and apparently without a practical 
benefit. This is due to the huge amount of variables used in 3D-QSAR models and to the 
fact that the information in a 3D grid map resides in the actual position of each grid-node 
(variable) in the real 3D grid cage. The position-dependent information contained in each 
3D variable is lost in the standard loading plots and so does the spatial correlation between 
the grid-nodes (variables). Since it is the pairwise comparison of loading and score plots that 
makes chemometric methods so powerful, when one of the two plots is useless no pairwise 
comparisons can be properly made. 

In the following example, reporting the search for selectivity in Receptor-Based Drug 
Design15, a score plot and a loading plot were obtained. It should be noticed that all plots are 
linked to the actual 3D space of molecules by a PCA model. Any change in the position of a 
single object would produce changes in all the plots. 

Since the relationships between such plots are quite complex, special tools are required 
in order to help the user to interpret and to fully understand this particular case study. Our 
proposal for this kind of tools will be reported later on in this chapter. 

MULTIBLOCK METHODS 

Multiblock and hierarchical PCA and PLS methods have reported recently to be of 
interest for improving the interpretability of multivariate models in cases where the number 
of variables is large and there is some criteria which justifies the grouping into conceptually 
consistent blocks. This is the case in 3D-QSAR, where multiple blocks of 3D-descriptors 
are often produced. For example, the standard CoMFA procedure16 describes the 
compounds with two blocks of variables: the steric field descriptor block and the 
electrostatic field descri tor block. Similar descriptions are produced in other models which 
use of lipophilic field17- or GRID probes'*. 

In the field of ligand selectivity, in Structure-Based Drug Design, multiblock methods 
like the Consensus Principal Components Analysis CPCA can improve significantly the 
interpretability of multivariate  model^'^. 

Multiblock methods operate at two levels'': at the lower level each block of data is 
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treated separately, taking into account the variance of the field within each individual block. 
At the higher level the blocks are related to each other, retaining the independent 
information in each variable. The use of a two levels model allows to assess the importance 
of each grid-node within each descriptor block, while assessing simultaneously the relative 
importance of each block of descriptors. 

Multiblock methods produce also plots that are linked one another. This is a further 
case in which appropriate tools are required in order to understand and take full advantage 
of these sophisticated methods in the field of 3D-QSAR. 

INTERACTIVE PLOTS 

In all the different stages of 3D-QSAR modeling, the use of different kinds of plots can 
be very useful. Plots are used to visualize the molecules, to show the statistical relationships, 
to help the interpretation of the results. However, up to now, the plots were represented 
independently and not linked together at all. 

Interactive plots are couples of 2D and 3D representations of the model linked together 
interactively: the user can make selections of define virtual objects in one of the plots and 
see the effect of those actions reflected immediately in the linked plot. Interactive plots can 
be used to visualize how a change in a certain space (statistical space) is reflected in a 
different space (chemical space). For example, they can relate variables selected in a loading 
plot with the associated positions around the chemical structure or represent the field 
produced by a virtual compound placed somewhere in a PCA or PLS scores plot21-22. 

Interactive plots were developed in our research group and their first implementation is 
already present in GOLPE version 4.OZ3. In these, the user can interact passively, by 
selecting positions in the plots in order to see these positions in a different space, or 
actively, by introducing “virtual objects”, thus obtaining interactively the corresponding 
changes in the real 3D-space. With the help of those plots, important features of the 
chemicals can be easily highlighted, obtaining simple representations of the most important 
regions nearby the molecules. 

The hidden link between many different plots can be directly evidentiated with the 
help of interactive plots. For example, the relative contributions to activity or selectivity are 
immediately shown in the related 3D-space of chemicals. Moreover, interactive boundary 
translationsz1 from 2D to 3D plot can lead to better interpretation of all the plots, namely 2D 
loading plots or multiblock loading plots. 

Figure 2 shows the score, loading and 3D grid map plots for two varieties of 
dihydrofolate reductase DHFR enzymes interacting with 41 GRID chemical probes12. The 
score plot represents the chemical probes while the loading plot represents 3D-grid point 
interaction energies between the probes and the two enzymes. Although this is the simplest 
example of selectivity in Structure-Based Drug Design (only two proteins are used) the 
interpretation of the plots is not straightforward. There is no direct way to answer practical 
questions like: what is the chemical meaning associated to the principal components axes in 
these plots? How these plots can be used to enhance selectivity or affinity in a ligand 
molecule? Since interactive plots are a sort of blackboard where the user can actively 
interact, the action of moving a virtual object over the plot is perfectly allowed. For this 
reason the user can move an object in the score plot from positions near to the fluorine 
probe (labeled as F) at the top of the Figure 2a (high value in PC2), to the bottom of the 
Figure 2a (low value in PC2). Since the interactive plots are linked one another, the 3D grid 
map will change interactively. Some regions will change as a result of this modification of 
the PC2 thus being highlighted in the 3D grid map. 

At the same time the user can also draw in the loading plot a polygon enclosing 
interesting loading coefficients. Once more, immediately the 3D grid plots will update 
reporting together with the movement in the second PC axis the corresponding region linked 
to the loading plot. 
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Figure 2. Score plot (a), loading plot (b) and actual 3D grid map (c) for the dataset of selectivity in Structure- 
Based Drug Design. All the plots are linked together, so any change in one of the plots is reflected by a change 
in the others. 
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The movement of the virtual object from positions near to the fluorine probe to the 
final position at the bottom of the plot produces modifications in the 3D grid maps of the 
two enzymes which are reported in Figure 3. From this figure it can be seen that the 
highlighted regions are the same in the two grid plots, but the intensity of the interaction 
fields is different, thus showing that the second PC express mainly the different magnitude 
of the interaction energies. While the fluorine probe interacts weakly with both enzymes, the 
N2: probe interacts strongly with them. Clearly it is possible to conclude that PC2 reports 
affinity regions in which the probe are ordered according to their ability to interact with 
common parts in both enzymes. 

Figure 3. The movement of the object in the score plot of Figure 2 along the PC2 axis highlights the same 
regions in both proteins. The interaction fields are larger for probes in the lower part of the score plot. 

Conversely, if a virtual object near to the hydroxyl (OH) probe is moved from its 
position in the human DHFR on the left to a new position on the right of the plot along the 
PC1 axis, the corresponding modification on the actual 3D space of proteins will show 
different regions. Figure 4 represents those positions in the lattice binding site where the 
probes establish strong selective interactions. It is important to point out that the position of 
these selective regions depends on the chosen probe, as clearly demonstrated by interactive 
plots when different objects representing different probes are selected and moved in the plot 
along the PC1 axis. 

Figure 4. The movement of the object in the score plot of Figure 2 along the PCl axis highlights different 
regions in the proteins. These are selective regions of interaction. 



Gratteri et aLZ4 reported a data set consisting on ninety M1, M2 and M3 muscarinic 
antagonist compounds. Among them, the most diverse compounds were superimposed and 
described with GRID OH probe, producing a data matrix consisting on nineteen chemicals 
described by more than 14.000 interaction energy variables (X descriptor matrix) plus the 
biological activity against the three M1, M2 and M3 receptor subtypes (Y response matrix). 

The 3D-QSAR model was developed mainly to evidentiate the structural features 
required in a ligand in order to make a selective interaction with a specific receptor subtype. 
Figure 5 shows the interactive PLS partial weight plot and the corresponding 3D grid plot 
for such a data matrix. 

The mutual position of the three responses M1, M2 and M3 in the partial weight plot 
evidentiates that it is not possible to increase one of the three biological activities without 
simultaneously increasing the others. Probably this is the maximum amount of information 
which one can obtain from a plain PLS partial weight plot. However, more information can 
be extracted from interactive plots. In fact, with the interactive boundary translation 
procedure, some of the variables reported in the Wl-W2 plot of Figure 5 can be translated 
into the real space of chemicals. The user will decide the variables to be translated simply 
drawing a polygon enclosing them in the partial weight plot. In Figure 5, the two regions 
containing variables nearby M2 and M3 receptor subtypes will result in showing in the 3D 
space the corresponding two regions important for receptor selectivity. 

Figure 5. Partial weight plot and real 3D grid plot for a muscarinic antagonist compound. Interactive boundary 
translation highlights the two regions for M2 and M3 selectivity. 
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CONCLUSIONS 

Since the work of Cramer16 (CoMFA) the 3D-QSAR field has changed dramatically. 
New computational procedures were used to describe molecules like GRID", CoMSIA4, 

, COMPA~~,  HINTz6. New procedures were used to compute the statistical models 
like GOLPEz7 and SAMPLSz8 and new procedures were published for handling 3D regions 

. Successful attempts to obtain information from a 3D receptor structure in 3D-QSAR 
were developed (COMBINE)31-3z and new statistical tools for working with multiblock 
matrices were p r o d u ~ e d ' ~ - ~ ~ .  

These procedures have in common the fact that all of them use 3D grid maps of 
descriptors and plots to highlight the information contained in the data. In all the procedures 
interpretation is the crucial step. 

The present work addresses the important problem of the interpretation phase from 
two different aspects. When difficulties arise from the superposition phase a proper 
compression of the information from the 3D grid map into a condensed vector of 
descriptors, easy to use and to interpret, can be really advantageous. When the problem is 
mainly related with the model interpretation then interactive plots can be helpful to increase 
the amount of useful information extracted from any 3D-QSAR model. 

c ~ p 1 7 - 1 8  
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INTRODUCTION 

The number of protein structures available in the PDB' (7415 in July 22, 1998) is 
constantly growing and it is expected to increase even more rapidly in coming years.2 This 
tremendous body of information is certainly having an impact in ligand design and 
modelling where the knowledge of the crystal structure of the target protein, or a closely 
related protein, makes a significant difference in the process of ligand ~ptimization.~ When 
a crystal structure of the target protein is unavailable, ligand optimization must rely on 
indirect approaches based on the similarity between the structures of the ligands 
them~elves.~ However, if a three-dimensional structure of the target protein is available 
docking methods can be a ~ p l i e d , ~  which have the potential of providing important 
information on the interaction between the ligand and the residues of the given receptor site. 

Unfortunately, at the initial stages of a drug design project, availability of the target 
protein crystal structure is unlikely. Nevertheless, the PDB often contains several crystal 
structures of proteins related to the protein of interest. Comparative analyses between the 
available protein structures6 provide a means for revealing common structural features 
among the proteins of the family and, at the same time, identify those regions where the 
structures are more diverse. Previous studies have shown that the structural motif of a 
protein family is much better conserved than the amino acid sequence7 and that 
identification of conserved structural features can be used in deriving, by homology, a 
model structure of more distant members of a family.* The construction of a structural 
model of the target protein in conjuntion with a deep understanding of the similarities and 
dissimilarities with other members of the family is of key importance in ligand 
optimization. Such a model provides many clues for suggesting modifications to the ligand 
that can potentially enhance binding with the target protein and also improve selectivity and 
specificity with respect to other family members. 
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A similarity comparison of protein structures requires first finding the optimum 
three-dimensional alignment.' The difficulties in locating the optimum alignment between 
protein structures depending on their topology have been widely discussed and even the 
existence of a unique optimum alignment solution has been questioned." Moreover, it is 
evident that any derived structural alignment will ultimately depend on the measure used to 
quantify the similarity. The need to adequately address these many inherent ambiguities has 
lead to the continuous search for improved methods which produce sequence-independent 
means to identify and quantify protein-structure similarity. 

The aim of this contribution is to present the use of a Gaussian-based approach for 
assessing protein-structure similarity. A description of the methodological aspects is 
presented next, followed by a discussion on the potential uselfulness of performing not only 
rigid alignments but also flexible alignments between protein structures. 

METHODOLOGY 

The present approach is based on the use of Gaussian functions to represent the 
structure of proteins, as implemented in the program MIMIC." A Gaussian function, gk, 
centered at position Rk is given by 

where the coefficient, ak, and the exponent, Pk, determine the value of its maximum height 
at the origin and its decayment, respectively. In general, each atom, ai, can be represented 
by a number of Gaussian functions 

At this atomic level, the number of Gaussian functions, n, used to represent each atom will 
depend on the accuracy desired to reproduce the atomic electron density. Each amino acid, 
A,, in a protein is represented as 

N 

AXr) = ai(r) 
iE I 

(3) 

and depends on the number of Gaussian centers, N,  used to define the structure of each 
amino acid I .  Normally, at the amino acid level, the centers are taken as the positions of the 
atoms constituting the amino acid. In general, however, these centers need not to 
corrrespond atom positions. Such "off-center'' functions can still reproduce adequately the 
steric shape of an amino acid while reducing the number of Gaussian functions used. 
Finally, the structural characteristics of a protein, P, will be given by 

M 

P(r) = c AXr).  
I€ P 

(4) 
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At the protein level, M will normally correspond to the number of amino acids of the 
protein. However, in general, M could be optimized in order to obtain the minimum number 
of Gaussian functions that, placed strategically, still reproduce the structural characteristics 
of the protein. The final number of Gaussian functions employed will be a compromise 
between the level of structural detail desired and the amount of computing time required to 
evaluate the similarities. In this work, M will be the number of amino acids of the protein 
and a single-Gaussian amino acid approach (N=l) with each function centered at the 
positions of the C, carbons (n=l) will be used. An analysis of the dependency of the 
protein-structure similarity on the amino acid Gaussian representation can be found 
elsewhere.12 

Note that the use of a Gaussian-based representation to evaluate protein-structure 
similarities is in fact a resolution-based approach. For a given ak, different P k  parameters in 
eq. (1) will lead to different values of structural similarity. On one side, for very small P k  
values (low resolution) every protein structure would look almost alike, whereas on the 
other side, very large P k  values (high resolution) would result in no overlap at all between 
the structural representations and, thus, every protein structure would be essentially unique. 
In between these two limit cases there is a long range of possibilities and ultimately, P k  

values should be user-customizable. In the present study, the coefficient ak and the 
exponent Pk in eq. (1) are optimized for each atom to reproduce its van der Waals steric 
volume as originally implemented in the program MIMIC." 

Once a Gaussian representation of the protein structure is defined, for a given 
protein superposition the structural similarity between two proteins A and B, SAB, is assessed 
by evaluating the overlap integral, ZAB, between their respective Gaussian-based structure 
representations, PA and PB as defined by eq. (4), 

which can be then normalized using a cosine-like index 

The values of SAB in eq. (6) range from 0 to 1. A value of 1 is achieved only in the limit case 
of identity; any dissimilarity between the two proteins will be reflected in a value smaller 
than 1. Rigid alignments between pairs of protein structures are obtained by optimizing SAB 
in all translational ( t )  and rotational (8) degrees of freedom using standard gradient-seeking 
procedures.'2 In addition, flexible alignments can be performed by allowing PB to adapt its 
conformation to that of PA and, in this case all torsional angles in P g  (TB) will be included as 
degrees of freedom in the SAB optimization. Therefore, optimization of SAB through flexible 
alignment of PB to PA can be expressed as 
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FLEXIBLE ALIGNMENT OF PROTEIN STRUCTURES 

One of the advantages of a Gaussian-based representation of protein structures is 
that it provides a fuzzier representation of the spatial location of atoms, which conforms 
with the inherent uncertainty of atomic positions in protein crystallography. Such a fuzzy 
description provides a means for optimizing the alignment of protein structures without the 
need for specifying residue-by-residue correspondences. This is specially important when 
performing structural alignments between proteins with low sequence identity. In addition 
to the ability to optimize the alignment of rigid protein structures, one of the proteins can be 
allowed to relax its conformation thus providing a flexible alignment. The usefulness of 
performing unbiased sequence-independent flexible alignments between protein structures 
will be underlined in the remaining of the paper. 

The first application of flexible alignments is for the analysis of protein domain 
 movement^.'^ Most large proteins are built from domains whose movements provide 
excellent examples of protein flexibility. In most cases, the presence of a bound substrate 
promotes a closed conformation whereas its absence favors an open conformation. 
Therefore, analyses of domain movements can provide structural information that will lead 
to a better understand of the induced fit in protein recognition. As an illustrative example, 
Figure 1 shows the result of flexibly aligning two structures of P 4 5 0 ~ ~ 3  in its open and 
closed conformations (PDB codes are 2BMH and lFAG, respectively). The rigid alignment 
gave a structural similarity of 0.6496 (structures in black in Figure 1). From this alignment, 
constrained flexible alignments were performed to systematically increase similarities 
between the two conformations to 0.70, 0.75, 0.80, and 0.85 (structures in grey in Figure l), 
which can be taken as snapshots of the transition from one conformation to the other from a 
structural similarity point of view. Following this ‘similarity coordinate’ it is possible to 
analyze the movement that takes place at each stage and track the amino acids responsible 
for this movement. 

Figure 1. Flexible alignment between the ligand-free and the ligand-bound conformations of P45G~3. 
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A second promising use of flexible alignments is for automatically deriving 
structure-based sequence alignments between members of a given protein far nil^.'^ In cases 
where the structures of the different family members present conformational changes, even 
the availability of a global rigid alignment is not revealing enough to translate it into a 
structure-based sequence alignment and a great deal of visual inspection usually needs to be 
done. Identification of common structural patterns is normally required to translate 
structural alignments into sequence alignments. Flexible alignment of protein structures can 
potentially indeed identify common structural patterns between proteins, thus providing a 
simple means for deriving structure-based sequence alignments in an unbiased automatic 
manner. Once a structure-based sequence alignment has been obtained, sequence-structure 
consensus regions among the different members of a protein family can be identified. This 
type of information can be then used as a constraint criterion in homology modeling of 
other family members for which a crystal structure has not been resolved yet.’4 

In conclusion, Gaussian-based approaches to protein-structure similarity emerge as a 
promising non-biased sequence-independent method for, first, obtaining protein structure 
alignments and, second, for analyzing and maximally exploiting the similarity information 
contained in those alignments (both at the structure and sequence levels) towards the 
construction of protein homology models with a higher value of predictability. 
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INTRODUCTION 

The optimization of pharmacokinetic properties is still one of the greatest challenges in 
lead optimization, and for the most part it is based on trial and error. As pharmacokinetics is 
- h ~ s h y  %?K& .-i+h -$,-iykmbfimimL, ymptiesw,  wy5mntaL & s i q -  and agantitative 
structure-property modeling are key factors to systematically explore physicochemical 
property space and to establish stable, predictive models for lead optimization. However, 
experimental measurements of relevant parameters are often time-consuming, difficult and 
expensive. Furthermore, in vitro/in vivo approaches require the synthesis of compounds and 
cannot be used for the priorization of synthesis targets. 

Within this general context novel descriptors will be introduced which are derived from 
GRID' molecular interaction fields with the H,O and the hydrophobic DRY probe. These 
descriptors assign physicochemical attributes to a 3D structure and, therefore, are suitable to 
select physicochemically representative subsets from a pool of candidates. Three examples 
will be used to demonstrate how the information contents of these descriptors can be used to 
correlate the 3D structures of molecules with the intestinal absorption of drugs in humans, 
brain-blood partitioning and renal vs. hepatic clearance. A more detailed description will be 
given in a future publication. 

To be useful for (physicochemical) lead optimization a descriptor has to fulfill 3 
requirements : 

it must be applicable to various classes of compounds 
the result of a classification or quantitative structure-property relationship (QSPR) 
must be interpretable in structural terms 
the calculation of descriptors must not be a rate-limiting step in model building. 
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THE VOLSURF' DESCRIPTORS 

The interaction of molecules with biological membranes is mediated by surface 
properties such as shape, electrostatics, hydrogen-bonding and hydrophobicity. Therefore, 
the GRID' forcefield was chosen to characterize potential polar and hydrophobic interaction 
sites by the H,O and DRY probe, respectively, and to transform this information into a 
quantitative scale by calculating the volume of the interaction contours. As outlined in Table 
1, 28 descriptors from the H,O and 8 descriptors from the DRY probe are generated (they 
will be referred to as VolSur? descriptors). The first 4 parameters describe the size and the 
shape of the molecule, the descriptors 5-12 indicate polar interaction sites at 8 different 
energy levels and descriptors 21-28 calculate the concentration of polar interactions on the 
molecular surface. The "integy moment" (13-20) is defined in analogy to the dipole moment 
and describes the distance of the center of mass to the barycenter of polar interaction sites at 
a given energy level. If the integy moment is high, there is a clear separation between polar 
and hydrophobic interaction sites. If the integy moment is small, the polar moieties are 
either close to the center of mass or they are at opposite ends of the molecule and the 
resulting barycenter is close to the center of the molecule. Descriptors 29-36 indicate 
interactions with the hydrophobic probe at 8 different energy levels, which have been 
adapted to the energy range of the DRY probe. Summing up, the 3D structure is translated 
into physicochemically meaningful descriptors without the need for an alignment. Thus, 
size, shape, hydrogen-bonding and hydrophobicity can be quantitatively differentiated 
within a series of molecules. The resulting collinearity of descriptors is properly taken into 
account by multivariate statistics (principal component analysis3 (PCA), partial least squares 
projections to latent structures4 (PLS)). 

Table 1. Definition of VolSurf parameters. Descriptors 1-28 are generated with the H,O 
probe, descriptors 29 - 36 are calculated with the DRY probe 

numbering 
1 
2 
3 
4 
5 - 1 2  

13 - 20 

21 - 28 
29 - 36 

total volume (0.25 kcal/mol) 
total surface (0.25 kcaymol) 
total volume (V,,J / total surface (Stat) 
globularity (St0JSe; S,: surface area of equivalent sphere with V,,,,) 
V- for interactions with the HzO probe at 8 energy levels (-0.2, -0.5, -1.0, -2.0, -3.0, -4.0, -5.0, 
-6.0 [kcal/mol]) 
integy moment: proportional to distance between barycenter of S,,, and V- (at the above energy 
levels) 
capacity: V-/S,, (at the above energy levels) 
V- for interactions with the DRY probe at 8 energy levels (-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, -1.4, 
-1.6 [kcal/mol]) 

The physicochemical significance of the VolSurf descriptors was first determined by a 
comparison with the principal properties of amino acids (known as z-scales5), which were 
extracted by PCA from a multiproperty matrix containing 29 experimental measurements 
for each amino acid. The first principal component is interpreted as hydrophilicity, 22 is 
associated with steric bulk, and 23 describes electronic properties. For the calculation of 
VolSurf descriptors each amino acid in its neutral form was built in standard geometry and 
energy-minimized. The PLS analyses of each of the three z-scales as y-variable and the 

90 



VolSurf descriptors as X-matrix yielded one-dimensional models for the correlation of the 
VolSurf descriptors with zl  and 22. As it can be seen in the PLS t-u score plots and the 
corresponding loading plots (Fig. l), zl is positively correlated with capacity and polarity 
and negatively correlated with size, integy moment and dispersion (first energy level of the 
DRY probe). Large hydrophobic amino acids (W, F, I, L) are well separated from polar 
amino acids (E, D, S) in the score plot. In the case of 22, a correlation with size and 
hydrophobicity can be observed. In the corresponding score plot small amino acids (G, A) 
are separated from large amino acids (W, R). The correlation with 23 is quite low, but 23 
only explains a minor proportion of the original multiproperty matrix. In conclusion, the 
VolSurf parameters are very efficient descriptors of hydrophilicity, steric bulk and 
hydrophobicity as derived from the physicochemical characterisation of amino acids. 
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In the following, the application of the VolSurf descriptors for the multivariate 
modeling of phannacokinetic data will be demonstrated using 3 literature examples. For all 
the statistical calculations SIMCA-S6 was used. 

In the first example the calculation was performed for a series of passively absorbed 
drugs with reliable data on human intestinal absorption (%HIA) covering a range of 
absorption values from 0.3 - 100 %. This data set has recently been analyzed by Luthman et 
a1.’ using dynamical averaging of polar surfaces. The aim of the present study was to 
compare dynamical averaging with the use of single conformers and to examine how the 
treatment of ionizable groups (charged vs. neutral) impacts the statistical quality of the 
correlations. Furthermore, the question should be addressed if a standard 2D-3D conversion 
combined with energy minimization is sufficient or if a conformational search for a 
minimum energy conformation is required. 

As it can be seen in Table 2, the explained variance r2 and crossvalidated q2 
(determined by LOO-CV’) hardly differ between the various protocols, and the low 
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complexity of the models (maximum 2 components) allows for a straightforward 
interpretation. The multivariate modeling by the VolSurf descriptors is hardly influenced by 
conformational averaging and ionization of charged groups. Also the search for energetic 
minimum conformations only marginally improved the statistical quality. Taking into 
account computational efficiency, the protocol applying simple 2D-3D conversion and 
energy minimization of neutral molecules is filly sufficient and will be the basis for the 
following analysis. 

Boltzmann averaging 

minimum energy conformation 

2D-3D conversion followed by energy mi- 
nimization 

neutral charged 

q2 = 0.76 (A = 1); ? = 0.80 

q2 = 0.71 (A = 1); 3 = 0.8 

q2 = 0.73 (A = 2); ? = 0.86 

q2 = 0.80 (A = 2); 3 = 0.90 

q2 = 0.75 (A = 2); 3 = 0.89 

From the PLS t-u score plot (the Zogit transformation was applied to %HIA) and the 
corresponding partial weights plot (Fig. 2) it can be deduced that hydrophobicity and h g h  
integy moments are positively correlated with human intestinal absorption, whereas polarity 
and a high concentration of polar interaction sites on the molecular surface are detrimental 
to absorption. The high loadings of the integy moments can be tentatively associated with 
the anisotropy of biological membranes which have to be crossed during absorption. It must 
be stressed that the interpretation of this model is valid only within the physicochemical 
property space of this data set. The predictive power of the model is demonstrated in Fig. 3. 
Applying optimal, distance-based experimental design' in principal components space the 
data set was divided in a training set of 10 compounds (RMS error = 13.4 %) and an 
external prediction set of the remaining 10 molecules (RMS error = 16.0 X). Summing up, 
an excellent and easily interpretable model could be obtained with low computational 
requirements. 

Fig. 2. PLS score plot (tl vs. u l )  and the corresponding partial weights plot for the correlation of VolSurf 
descriptors with human intestinal absorption (%HIA). 
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Pig. 3. Comparison of observed with calculated %HIA. The external prediction set ranges from lactulose (La) 
to metoprolol (Me). 

In the case of brain-blood partitioning computationally efficient and predictive 
descriptors are of great importance, because the experimental determination is difficult, 
lenghty and expensive. For this study a data set was used which had originally been reported 
by Young" and has recently been analyzed via solvation free energy calculations by 
Lombardo" et al. The 30 Young'o compounds were included in the training set, and the 
same 6 compounds as in the publication by Lombardo" et al. were used as an external 
prediction set. In contrast to the work by Abraham" and Lombardo" compounds 5 and 12 
were not excluded as outliers. As it can be seen in the plot (Fig. 4) of the residuals of 
1ogCbmin/logCblood (logBB) 12 remains an outlier whereas 3 is well modeled using VolSurf 
descriptors. The standard error of the model is around 0.5 log units and compares very 
favorably to the computationally far more expensive calculation of solvation free energies. 
This also applies to the predictivity of the model as determined by the external prediction 
set. In addition, the VolSurf descriptors are far superior in interpreting the model in 
structural terms. As it can be deduced from the PLS score and partial weights plot (data not 
shown), a good brain penetration can be obtained with a high volume to surface ratio, 
dispersive interactions and high integy moments as exemplified by 8. If a compound is 
strongly separated in polar and hydrophobic regions with a small integy moment such as 19, 
logBB is greatly diminished. 

- 2  

Fig. 4. Comparison of the logBB residuals (difference between measured and calculated values) of the free 
energy calculations (marked by "DGw") and the VolSurf correlations. The external prediction set is formed by 
compounds 31 - 36. 

In the last example, the VolSurf descriptors will be used to explain the preference 
towards renal or hepatic excretion in physicochemical terms. Because drug candidates often 
fail due to fast elimination via excretion into the bile, the rational modulation of the 
excretion behavior is of great interest. The correlation of the percentage of renal and hepatic 
excretion and of the ratio renal vs. hepatic excretion (as published by Fleck and Bra~nlich'~) 
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with the VolSurf descriptors yielded a two-dimensional model. From the PLS score and 
partial weights plot of the first component it becomes evident that low molecular weight and 
high polarity favor renal excretion and high molecular weight and hydrophobicity result in 
hepatic excretion. This information can then be used to design molecules with modified 
properties in order to optimize the elimination route. 
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CONCLUSION 

Pharmacokinetic properties of a drug often depend on a variety of physicochemical 
parameters and, therefore, require a multivariate description. The novel VolSurf descriptors 
quantitatively characterize size, shape, polarity and hydrophobicity as determined with the 
GRID H,O and DRY probes and are independent of an alignment. Because the VolSurf 
parameters only encode physicochemical properties, they are not suitable if active transport 
or extensive biotransformation and metabolism are involved. However, if the 
pharmacokinetic phenomena to be modeled are linked with physicochemical properties, the 
VolSurf descriptors are ideally suited for lead optimization to explore physicochemical 
property space by experimental design and to interpret quantitative structure-property 
relationships in terms of molecular structure. A further application can be envisioned as 
virtual screen in library design. 
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INTRODUCTION 

A descriptor is a mathematical function which maps chemical structures into the set of 
real numbers or into a real-valued vector. When functions take on single values which 
characterize a molecule as a whole, they can be classed as one dimensional descriptors, as can 
substituent parameters used to partition physical chemical effects among the substructures 
of which the molecules being studied are comprised. Partition coefficients (e.g., logP and 
ClogP) and molar refractivity (MR) are examples of 1D descriptors. 2D descriptors such as 
atom pair and substructural fingerprints and connectivity indices explicitly incorporate 
contributions from molecular connectivity. 3D descriptors, in contrast, include contributions 
from effects (e.g. ,  through-space interactions) which are dependent on the conformation or 
the position of a molecule, or both. The most commonly employed 3D descriptors are 
molecular fields (COMFA).' 

Many descriptors have proven themselves useful over the years for delineating 
quantitative structure/activity relationships (QSARs). With the recent shift in pharma- 
ceutical and agrochemical discovery and development towards combinatorial chemistry and 
high-throughput screening, it has become necessary to examine the potential usefulness of 
established Q S A R  descriptors in light of the subtly different demands of diversity analysis. 
Where Q S A R  analysis seeks to define local relationships among a sharply delimited, more or 
less congeneric set of compounds, diversity analysis seeks to assess how well-dispersed a 
set of compounds is across a broad region of structural space. 

If it is to be useful in quantitating molecular diversity, a descriptor must exhibit a 
generalized neighborhood property with respect to biochemical properties - i.e., most 
compounds which look similar when "viewed" through the lens of the descriptor in question 
should be biochemically similar as well.* In other words, proximity in the descriptor space 
must be a sufficient condition for similarity in biochemical space. Note that there is no 
requirement that compounds which are proximal in terms of biochemistry map to the same 
areas in the descriptor space - structural similarity is a su8cient condition for biochemical 
similarity but not a necessary condition. 
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Both UNITY fingerprints2 and topomeric molecular fields3s4 have been shown to exhibit 
good neighborhood behavior, whereas several other Q S A R  descriptors examined do not 
consistently do  SO.^ Here we describe an extension of the method for determining the range 
over which a particular descriptor exhibits good neighborhood behavior (the neighborhood 
radius) and for assessing its statistical significance and report the reliminary results for the 

tained using inertial field orientation (IFO-COMFA).~ 
validation of molecular  hologram^,^ Eigen VAlue (EVA) profiles, g and molecular fields ob- 

DATASETS 

The datasets used here are expanded from three of the ten cited in the o r i d  neigh- 
borhood analysis paper.2 In particular, the two sets of melatonin antagonists from Garratt et 
al.', which were considered separately in the original, were consolidated into a single set of 
19 compounds (2a-j, 6a-h, and 6j). The seven oxazolidinone NK1 Substance P antagonists 
drawn from Lewis et al. were augmented with the other 14 compounds described therein.' 
Similarly, the six amidoisoxazole endothelin inhibitors' excluded from the original neigh- 
borhood validation study because they lacked the 3,4-dimethyl-5-amido core structure were 
included here. 

NEIGHBORHOOD PLOT ANALYSIS 

Rank Transform 

As neighborhood validation was originally formulated, painvise differences in bio- 
chemical activity were plotted against the corresponding intercompound distances (or dis- 
similarities). That diagonal was then identified for which the density of points below and to 
the right of the diagonal (i.e., in the lower right trapezoid (LRTrap)) was highest. An en- 
hancement and a $ score were calculated from the actual density of points below the line 
and the density expected were the points to be evenly distributed across the entire area 
covered by the plote2 If a descriptor exhibits good neighborhood behavior, there will be 
relatively few instances where small distances in the metric space are associated with large 
differences in biochemical activity. If so, the upper left triangle (ULT) will be underpopu- 
lated and a substantial enhancement (the ratio of the density of points in the LRTrap to an 
even distribution) will be observed. 

Some datasets give misleading statistics when processed in this way, however. Figure 
1A is a plot for just such a dataset - in this case, using UNITY fingerprints for the side 
chains from seven NKI anatagonists drawn from Lewis et al dataset. A large gap exists 
between the origin and the second smallest dissimilarity in the dataset, so only one data 
point shows up in the ULT. As a result, values for enhancement and ~2 (1.63 and 4.64, 
respectively) are obtained which are misleadingly high with respect to the corresponding 
significance thresholds (1.1 0 and 3.84). The method can be extended to handle such cases by 
applying a rank transform to the dissimilarity (or distance) axis (Figure 1B). This eliminates 
the gap along the ordinate axis, adding points to the ULT. To make the statistical estimates 
slightly more conservative, points on the line are assigned to the ULT (filled circles in Figure 

That limiting diagonal is chosen which has the highest x2 statistic. All points in the 
LRTrap were counted as "good" (open circles in Figure 1) in the on& method, whereas 
only those directly under the diagonal (in the lower right triangle, or LRT) count in the 
modified validation method; the datapoints to the right of the vertical are outside the 
neighborhood radius and are ignored (Figure 1B). This modification makes it possible to 
analyze datasets which include many quite dissimilar compounds but does not materially 
affect the conclusions for well-behaved datasets. 

1). 

96 



2.4 2.4 

d €4" 

d 

0 
0 e.4 0.7 1 5 $0 20 

~ ~ ~ ~ m i l ~ r ~ ~  ( 1 - T )  
Figure 1. Neighborhood plots for side-chain fingerprints. (A) Original neighborhood analysis with simple 
dissimilarity as ordinate. (B) Modified plot of the same data, using the rank of the distance as the ordinate. 

Plotting the square root of the rank weights the smallest distances most heavily, as is 
appropriate. It also gives a good linear "edge" to plots for most datasets and generates radii 
quantitatively consistent with those obtained using the original method. 

Distribution Factor 

In the original formulation of neighborhood analysis? an even spread of data points was 
used as the reference distribution when calculating the x2 statistic with respect to a random 
distribution. Subsequent experience has shown that this is often not appropriate. In fact, 
small distances and dissimilarities necessarily predominate when aZZ pairwise differences are 
considered. As a result, even a random distribution of points can produce a depopulated 
ULTfor some datasets, in which unrealistically high x2 values can be obtained. There is 
generally an offsetting effect when all painvise distances for the descriptor are used as well, 
but this is lost when the rank transform is applied. To counteract such possible distortions 
in the revised neighborhood analysis calculations, the fraction of the population expected to 
fall in the ULT is calculated directly for the actual distribution of differences in biochemical 
activity. This is accomplished by drawing chords through each actual difference in biochemi- 
cal activity and summing the fractions falling in the upper left triangle (ULT) (Figure 2) .  

Typical values for the distribution factor range from 13 to 28% versus the 50% distri- 
bution factor used previously. These are used to calculate the number of points expected to 
fall in the LRT (LRT,,), which yields more realistic x2 values. 

A side effect of this correction is that the enhancement statistic is no longer a meaningful 
statistic. An enrichment can be calculated instead, which is given by: 

enrichment = 1 - ULT / ULTeXp (1) 

The upshot for the dataset shown in Figure 1 is that the sample is simply too small to 
yield an accurate neighborhood radius, and the statistics reflect this fact: x2 is 0.05 instead of 
4.64, and enrichment is only 0.047 (vs the enhancement of 1.63 found using the original 
method2). Any enrichment over 0.300 is potentially useful. 
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Figure 2. Calculation of the distribution factor. Only the dark symbols have been included in the illustrative 
summation shown. 

Analysis of the fidl Lewis et al. dataset using the 2D fingerprints for each complete 
molecule, on the other hand, produces well-behaved, "classic" plots with both the original 
and the refined methods (Figure 3). 
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Figure 3. Neighborhood plots for whole-molecule UNITY fmgerprints from Lewis et a1.* 

This is generally the case - descriptor and dataset combinations which exhibit good 
distributions using the original method also give good results using the modified approach. 
Many combinations which were clearly problematic by visual inspection as analyzed 
originally, however, are handled cleanly by the modified method. 

The neighborhood radius (here, 0.08) is back-calculated from a rank for which the 
limiting difference in biochemical activity is 2 log units. Figure 3 shows that the limiting line 
drawn from the origin through the corresponding point when the data are graphed with 
simple dissimilarity as the ordinate is quite reasonable for such well-behaved datasets. 
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DESCRIPTORS 

A molecular hologram is an indexed, integer-valued vector in which each element is the 
count of all substructural fragments in a molecule which map to the corresponding index. 
The mapping index for any particular fragment is given by the modulus of its cyclic 
redundancy check (CRC) value with respect to the length of the hologram2 The length, 
range of fragment length considered, and criteria for distinguishing fragments - e.g., whether 
or not connecting bond types are considered - can all be varied. 

EVA profiles6 are obtained by convoluting gaussian envelopes centered about the normal 
mode vibrational frequencies calculated for the molecule in question using AM 1. For the 
analyses used here, profiles were obtained using a o of 10 cm-' and a sampling interval (6) of 
5 cm-' across the frequency range from 0 to 4000 cm-'. 

Topomeric alignments are done using common substructures: whereas inertial field 
orientations make use of the principal axes and dipole moments of each molecule! CON- 
CORD@ conformations were used as starting points for all compounds except for those 
from the Lewis et al. dataset, for which S-axial configurations were used for consistency. 

ClogP and CMR were calculated using software from BioByte Inc., Pomona CA. Atom 
pair and UNITY@ fingerprints were calculated using the Selector@ module of SYBYL@, as 
were molecular holograms, EVA profiles and molecular fields. Random descriptors were 
generated uniformly across the interval from 0 to 100. 

RESULTS 

All three datasets were evaluated with respect to a variety of descriptors, with the 
results shown in Tables 1 and 2. A "good" descriptor will give high values for both enrich- 
ment and $, and will have a radius large enough with respect to the natural scale of the 
descriptor to be useful. EVA distances in the Lewis et al. dataset, for example, range from 
0.35 to 1.0, so a radius of 0.54 gives reasonable resolution. The radius of 0.000 found for 
CMR when applied to the Krystek dataset is almost significant, but not very useful. 

Holograms generally perform very well regardless of how they are calculated, which is 
reasonable in that they are very high-resolution measures of structural similarity. Note that 
the maximum pairwise distances here range from 32 to 150, depending on length. 

Table 1. Neighborhood validation of molecular holograms 

dataset hologram length fragment lengths connections radius' enrichment x2  

Gk3lTl3tt 83 4-1 - I .4 0.191 10.91 
+ 1.5 0.880 15.28 

5 -10 - 12.9 0.941 17.71 
+ 12.5 0.946 19.63 

Krystek 91 5 - 9  + 30.2 0.651 16.14 
251 5 - 9  + 30.3 0.516 9.66 

Lewis 91 4 - 1  - 28.3 0.599 5.55 
5 -10 - 66.2 0.465 1.38 

Distance in bin counts corresponding to 2 log units difference in biochemical activity 

Trends for fingerprints and topomeric fields mirror those already reported: with the 
caveat that the compounds in the datasets analyzed here are relatively flexible and so are less 
than ideal subjects for these metrics. EVA and IFO-CoMFA have good, though not spec- 
tacular, statistical profiles; note, however, that both can be used in cases where topomeric 
CoMFA is inappropriate - e.g., when no common core structure is present. 
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Table 2. Neighborhood validation of other descriptors 

descriptor measure dataset radius' enrichment x2 
random Euclidean G m t t  0.245 0.569 0.37 
ClogP Euclidean GallBtt 0.139 0.179 1.07 

Krystek 0.164 0.198 3.18 
Lewis 0.519 0.320 1.96 

CMR Euclidean Garratt 0.078 0.1 12 0.01 
Krystek 0.000 0.41 1 3.54 
Lewis 0.369 0.086 0.10 

UNITY fingerprints Tanimoto G m t t  0.022 0.658 8.79 
Krystek 0.024 0.522 6.71 
Lewis 0.079 0.537 3.02 

Atom Pairs Tanimoto G m t t  0.036 0.597 8.22 
Krystek 0.208 0.106 0.88 
Lewis 0.168 0.630 6.74 

EVA Euclidean GallBtt 0.51 1 0.445 6.23 
Krystek 0.523 0.560 15.93 
Lewis 0.540 0.676 10.68 

Topomeric CoMFA Euclidean G m t t  79 0.362 5.03 
(sterics) Lewis 80 0.524 3.43 

IFO-CoMFA Euclidean G m t t  97 0.488 15.82 
(sterics) Krystek 115 0.488 5.94 

Lewis 153 0.554 3.38 

Radii are in units natural to each descriptor, e.g., kcal/.mol for molecular fields. 

In many respects, these 3D descriptors are complementary to holograms and to each 
other. In particular, they are more generalized and less structurae-specific than holograms or 
fingerprints, which makes it possible to identify important similarites between structurally 
distinct compounds. Note, too, the good performance of EVA on the Lewis et al. dataset, 
which is so diverse in structure that molecular fields have a difficult time, as do holograms. 
Clearly, it can be useful to consider both target and chemistry class when choosing a metric 
to use for a particular diversity analysis. 
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Introduction 

The interaction of a low-molecular weight ligand with a receptor protein is a process 
of mutual molecules recognition. This process, first defined by Jean-Marie Lehn in 1973 
serves in biological systems a particular purpose, e.g. an enzymatic transformation, a 
substance transformation, an allosteric regulation or a specific signal transduction. Drugs 
are a particular class of low-molecular weight ligands that try to interfere with such 
processes by means of a specific high-affinity binding to the protein receptor under 
consideration. They establish their biological function, e.g. as an enzyme inhibitor, an 
allosteric effector, a receptor agonist or antagonist, a channel blocker or as a competitor in 
a transportation or transduction process. Prerequisite for specific recognition at the receptor 
can be associated with a high geometrical complementarity of li and and binding site and 
with a strong negative free energy of binding in aqueous solution . 5 

Knowledge-based Approaches to Protein-Ligand Recognition Principles 

Over the last years we have witnessed a dramatic increase in the number of well- 
resolved protein-ligand complexes. They can be used as a knowledge base to learn about 
the fundamental principles of how proteins and ligands recognize each other. They provide 
multiple answers to questions such as: how do ligand-functional groups prefer to interact 
with particular active-site residues or which molecular building blocks are favorably 
accommodated in certain active-site cavities? Such queries can only be addressed to the 
known data if a computerized system is available that allows to retrieve such information. 
The recently developed ReliBase tool 3,4 makes protein and -1igand information 
simultaneously accessible. 

For example, one might be interested in short contacts between protein peptide 
groups and aromatic moieties in ligands. Amide groups are potent hydrogen-bond forming 
partners within the plane of the amide bond. A variety of structures can be found where the 
N-H bond dipole is oriented along the normal on the plane through the ligand’s phenyl 
group. In contrast, perpendicular to the amide plane, the amide bond shows mainly 
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hydrophobic properties. Accordingly, a slit-type groove, e.g. the opening between two 
parallel P-sheets, can accommodate aromatic groups of ligands. In other examples, one of 
the flanking amide groups is replaced by a cluster of neighboring aromatic moieties 
showing a preferred edge-to-face arrangement among the benzene rings. 

Besides the retrieval of recognition patterns between ligand moieties and protein 
building blocks the database can be used to compile contact preferences between ligand 
functional groups and protein residues ’. Docking and de-novo design methods try to 
predict the putative binding of novel molecules to a given protein binding pocket. This 
process requires information about possible interaction patterns between functional groups 
of ligands and active-site amino-acid residues. Ligands usually possess several rotatable 
bonds, accordingly they can adopt multiple conformations of nearly equal energy. 
Conformational transitions change the shape of molecules 6,7. As a consequence their 
recognition properties are altered. Accordingly, computational approaches to ligand 
docking and de novo design have to consider molecular flexibility. Information about both, 
conformational preferences and mutual functional group recognition patterns can be 
retrieved from crystal structures of protein ligand complexes. The results from these 
complexes are limited, either in the total number of examples available (presently about 
7000) and in the accuracy of the structure determination (resolution mostly beyond 
resolving individual atomic positions). For this reason the database of small organic crystal 
structures has been evaluated 5,829, however not without collecting in parallel evidence that 
results from small molecule data resemble those from protein ligand complexes ’. 

Recognition sites, favorable in space for ligand functional groups to interact with a 
protein, can be extracted from composite crystal-field environments lo. These are obtained 
as composite picture from many crystal packings by superimposing the common functional 
group together with the positions of every individual contacting group present in all 
examples. Meanwhile a comprehensive collection of these composite crystal-field 
environments can be found in IsoStar ’. 

Within the spatial regions indicated in these distributions, sets of discrete interaction 
centers are generated. These centers are subsequently exploited in the de novo design tool 
Ludi I ’  or in the docking program FlexX 1 2 .  Ludi has its strength in the search of small 
molecule fragments as initial ideas for possible lead structures. Since FlexX can consider 
full conformational flexibility, also larger ligands can be docked successfully into the 
protein binding site to suggest possible leads. Conformational flexibility is considered in 
FlexX by evaluating conformational library information derived from crystal data. Torsion 
angles exhibited by common molecular fragments in crystals correspond to conditions 
adopted in a structured molecular environment. These are similar to those present at the 
binding site of a protein. After placing the base fragment, FlexX follows an incremental 
built-up procedure to grow a ligand into the active site of a protein ”. 

Computer-based Lead Finding for t-RNA Guanosine Transglycosylase Inhibitors 

Tools such as Ludi and FlexX can be used as alternative strategy to experimental 
high throughput screening for lead discovery. The latter approach requires a well- 
established and reliable HTS assay and access to a large database containing prospective 
lead compounds. The search for inhibitors of t-RNA guanosine transglycosylase (TGT) is 
an example where neither an appropriate assay nor a sufficiently large database is available 
to us. However, the crystal structure of this enzyme has been solved to 1.8 A resolution 13.  

TGT plays a key role in shigella dysentery. This is a frequent infection in the third world 
causing the death of more than 500.000 infants per year 14. One way of therapy is the 
administration of antibiotics, however, resulting in a total loss of the entire intestinal flora 
and rapid resistance is acquired versus the established antibiotics. The infection is induced 
by shigella bacteria that are closely related to E.coli. They cause rapid inflammation of the 
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intestinal mucosa and receive their virulence via the transfer of pathogenity coding gens. It 
has been shown that strong reduction of virulence is achieved through the loss of activity 
of TGT I s ,  The enzyme is involved in quenosine biosynthesis. Quenosine is a modified 
guanine base that is introduced into t-RNA. For the development of a selective antibiotic 
the fact is important that quenosine biosynthesis is not essential for E.coli and shigella, 
however the latter loose pathogenity upon down regulation. 

Crystals of the apo-form of TGT could be soaked with preQI, a weak substrate 
analog inhibitor. To elucidate the outlined therapeutic concept, more potent and selective 
inhibitors are required. Accordingly, based on the preQ, structure we embarked into a 
computer screening for putative small molecule inhibitors as first ideas for possible leads. 
Using the program Ludi a variety of ligands is suggested, all with a scoring well in the 
range of try sin inhibitors of similar molecular weight proven to actually bind to this serine 
proteinase ’. Some of the proposed compounds could be purchased and assayed. They 
suggest inhibition of TGT. Successful cocrystallization with the enzyme has established 
binding of 2,3-dihydroxy benzoic acid, one of the Ludi hits suggested to accommodate the 
guanosine recognition site. The obtained binding geometry of this ligand will be a starting 
point for a subsequent design cycle to develop larger and more potent inhibitors. 

Scoring of Putative Hits in Lead Finding 

Crucial in all virtual computer screening experiments is the relative ranking of the 
suggested hits. In docking applications, as described above, the binding affinity has to be 
predicted correctly. This is a free energy quantity composed by an enthalpic and an 
entropic term ’. Whereas the former contribution mainly results from interactions between 
the molecules (including water!) involved, the latter quantity changes with the degree of 
ordering of the system. In any case, it has to be remembered that only differences in the 
inventory matter between the common bound state and a situation where all interacting 
partners are individually solvated. 

At best, such a required scoring function is developed from physics resulting in a 
master equation considering per se all contributing effects. Although being intellectually 
the most convincing approach, no satisfactory method has yet been reported that is precise 
enough and at the same time computationally affordable. 

More successful and explicitly incorporated into the above-mentioned design tools 
Ludi and FlexX are scoring functions resulting from regression analyses of experimental 
data. In such functions a number of empirically derived terms is fitted to a data set of 
experimental observations ‘ ,I7.  Usually the obtained scoring schemes are fast to evaluate 
and, as long as they are developed on .physical concepts, some fundamental understanding 
with respect to the binding process is provided. However, as common to all regression 
analyses, the derived scoring function can only be as precise and generally valid as the data 
used are relevant and complete to consider all contributing and discriminating effects. 

At first, this fact calls for precise experimental data to characterize the ligand binding 
process (s. below). However, a closer inspection of binding modes generated by docking 
tools such as FlexX or Dock Is, performed on test cases with experimentally resolved 
binding modes suggest the following: often enough binding geometries are generated 
closely approximating experiment however they are ranked higher than other obviously 
artificial solutions. This refers to a weakness in the scoring function derived only at 
experimental structures. Accordingly, penalty terms to reject computer-generated artifacts 
are missing. 

One possible way would be the development of selective filters to discard 
inappropriate binding modes. However, since again these filters learn at arbitrarily selected 
case studies, their general applicability is in question. As an alternative, we decided to 
develop a scoring function based on database knowledge. Following the ideas of an inverse 
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Boltzmann distribution, it is assumed that only those binding modes are favorable that 
agree to normal distributions of occurrence frequencies among particular interatomic 
contacts 19. 

For the analysis, contact distances of 1 .O A up to 8 A between distinct atom types in 
a ligand and a protein have been evaluated statistically using ReLiBase. Subsequently, the 
occurrence frequencies have been translated into statistical potentials. These distance 
dependent pair potentials have been calibrated to the total distance distribution considering 
all atom types. Significant deviations to shorter contacts from the mean all-atom 
distribution are observed for hydrogen-bonding groups whereas preferentially van der 
Waals contacting groups show reduced frequency and accordingly unfavorable potential at 
short distances. Besides, we have incorporated for each atom type a solvent accessible 
surface dependent potential considering ligand and protein to solvent interactions. This 
potential punishes the exposure of hydrophobic groups to the solvent or of polar functional 
groups to nonpolar counter parts. On the opposite, it favors mutual contacts between polar 
groups or tolerates unchanged solvation of polar ligand functional groups carried over from 
the solvated to the bound state. 

The derived scoring function is fast to compute. For a set of test examples with 
crystallographically determined binding modes all FlexX-generated geometries with small 
rmsd (with respect to the native binding mode) fall into a narrow window scored as 
favorable. With increasing geometric deviation also reduced affinity is suggested. This 
observation gives confidence that also docked geometries where no X-ray reference is 
known will be ranked as favorable. Hopefully they are reliable enough to describe the 
actual binding mode. 

Experimental Characterization of the Ligand Binding Process 

Nevertheless, as mentioned above, our present understanding of binding modes and 
the thermodynamics driving ligand binding is still rather scarce. Experimental approaches 
to learn more about the energetics are based on the temperature dependent evaluation of 
binding affinity. Assuming a temperature-independent binding enthalpy and entropy over a 
range of perhaps 40°C van't Hoff plots allow to separate enthalpic and entropic 
contributions. In such experiments all effects will cancel out that are comparable at the 
various temperatures. However, the assumed temperature independence will hardly be 
given 20. An alternative is isothermal titration calorimetry (ITC) 21. The heat produced upon 
binding is directly measured and the shape of the titration curve gives access to the 
dissociation constant KD 22. Using trypsin and thrombin as model systems, we titrated the 
binding of different ligands. Important enough, the dissociation constant obtained by ITC 
corresponds within the experimental errors to K, values resulting from photometric assays 
using chromogenic substrates. 

10.67 

COOH 
3.84 

HOOC-N 

10.12 HN 
I 

12.25 11.57 

Figure 1. Three different pKa values obtained for napsagatran (left) and CRC220 (right). 

106 



More difficult to interpret is the heat produced during the isothermal binding process. 
It contains the binding enthalpy, however, other phenomena involved in the binding 
process are overlaid. For example, we investigated the binding of napsagatran, a potent 
thrombin inhibitor from Roche 23, to trypsin and thrombin. Studying this inhibitor from 
different buffer solutions, a distinct amount of heat is produced. This effect can be 
explained by an imposed protonation step. Subsequent potentiometric titrations reveal 
three titratable groups with different pK, values in aqueous solution (Fig. 1). To better 
characterize the involved protonation step, the ethyl ester derivative of napsagatran has 
been studied. Titration data show that no comparable protonation step is involved. 
Accordingly, it has to be concluded that the carboxylate group of napsagatran takes up a 
proton u on thrombin binding. A related thrombin inhibitor CRC 220, developed by 
Behring '', has been studied. Compared to napsagatran, this inhibitor contains similar 
functional groups that could become protonated upon binding (Fig. 1). Especially the 
carboxylate group in the central aspartate moiety is sligtitly more basic compared to that in 
napsagatran in aqueous solution. Isothermal titration experiments with CRC 220 show that 
no protonation step parallels the binding step to thrombin. The deviating behavior of CRC 
220 and napsagatran can only be explained once their binding modes are compared in 
detail. As the crystal structure shows, the carboxylate of napsagatran is placed close to Ser 
195 toward the oxyanion hole in thrombin 23. In contrast, the aspartate in CRC 220 is 
oriented away from the binding site toward the surrounding solvent environment and likely 
it is hydrogen-bonded via its anti-lone pair to the NH of Gly 219 24. Accordingly, on a first 
glance, its local environment remains rather similar to bulk solvent conditions, In 
agreement, no protonation of its carboxylate is observed. The local dielectric conditions 
around the carboxylate in napsagatran are strongly modified upon binding. The partial 
negatively charged environment shifts the pK, substantially, in consequence protonation is 
observed. 

The obtained results are not surprising. Nature extensively exploits this concept of 
local pK, tuning of amino-acid residues to enable particular enzymatic mechanisms. 
However, the results leave the modeler in a quite uncomfortable situation. The prediction 
of protonation states is by no means satisfactorily solved. They are already difficult enough 
to handle under aqueous solution conditions. The described example points to substantial 
locally induced environment effects. On the long run, they have to be considered in 
computational methods since, e.g. in a docking experiment, the change from a hydrogen- 
donor functional group to an acceptor group could completely reverse the binding mode 
and perturb the relative affinity scoring. 

Correlation of Ligand Properties with Binding Affinity and Selectivity 

Often enough in relevant drug design projects the 3D structure of the target protein is 
not available, however, various ligands with deviating binding affinity are known. This 
discrimination in affinity is related to the capabilities of how these ligands can interact with 
an - unfortunately unknown - receptor. Accordingly, in order to compare such ligands - at 
least relative to each other - methods are required that can quantify and rank the putative 
interaction properties these ligands can experience at a binding site. At best, such methods 
provide tools to map the correlation results back onto molecular structure in order to 
elucidate where to alter a particular skeleton to improve binding affinity. This aspect is of 
special importance if 3D QSAR is used to assist the design of novel affinity-improved 
ligands 25.  

Comparative molecular field analyses are one approach to endure such comparisons. 
Prerequisite is a reasonable superposition model of the considered molecules that - at best 
- approximates the actually observed binding modes in the protein. For our study, we 
wanted to uncouple the conclusions resulting from the correlation model with effects 
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arising from uncertainties in the superposition model. Accordingly, we selected a data set 
of inhibitors binding with different affinities to the three related serine proteinases 
thrombin, trypsin and factor Xa 26. Since the crystal structures of the three proteins are 
known, a relative alignment of the ligands can be defined with high reliability. 

’ xNH2 pK,=4.1 2 pK,=6.1 
HN 

Figure 2. Contribution map of steric properties for factor Xa data. Steric occupancy of the 
white contoured region increases affinity whereas the gray contoured area should be 
sterically avoided. The weak binding inhibitor 1 places its COOMe group in the latter 
unfavorable region whereas 2 occupies the favorable area with its iPr group. 

Two different comparative field methods have been applied. In both approaches, 
molecular property fields are evaluated between a probe atom and each molecule of a data 
set at the intersections of a regularly spaced grid. The widely used CoMFA method 27 

calculates steric and electrostatic properties according to Lennard-Jones and Coulomb 
potentials. The alternative CoMSIA approach 28 determines molecular similarity 
considering various physicochemical properties in space. Both methods reveal significant 
correlation models with high q2 values and convincing predictive power. CoMSIA could 
be demonstrated to perform slightly better and to be of higher robustness. However, more 
important, the resulting contribution maps from the latter approach are much clearer and 
can be intuitively interpreted to map and pin down those features responsible for affinity 
and selectivity differences among the superimposed ligands. In Figure 2, the steric 
properties derived from the factor Xa affinity data are displayed. Areas indicated by white 
contours correspond to regions where steric occupancy with bulky groups will increase 
affinity. Areas encompassed by black isopleths should be sterically avoided, otherwise 
reduced affinity can be expected. Different contour diagrams are revealed for the two other 
enzymes. The black contour on the right (next to the catalytic center) is sterically 
unfavored in factor Xa. A favorable region is indicated in the distal pocket. Two 
molecules, displayed together with the latter map, occupy these regions differently. The 
less active 1 orients its methyl ester group into the disfavored region whereas the more 
active 2 fills the white contoured area by its p-isopropyl substituent (Fig. 2) .  

108 



0 
3 4 +Ln 

trypsin: 6.77 7.10 
thrombin: 8.38 5.58 f 7 

Figure 3. Steric contribution maps for thrombin (upper left), trypsin (upper right) and the 
selectivity discriminating map (center below). Steric occupation of the gray contoured area 
in the latter map indicates decreasing affinity towards thrombin. Inhibitor 4 with higher 
affinity towards trypsin places its terminal cyclohexyl moiety into this area. 

To better elucidate the selectivity-discriminating criteria operating in the data set 
under consideration, we performed an additional analysis with the thrombin and trypsin 
data. We used the affinity differences between thrombin and trypsin for all 72 inhibitors as 
dependent property in CoMSIA. The obtained correlation model is of convincing statistical 
significance and shows some predictive power. Subsequently, we consulted the 
contribution maps derived from these affinity differences. The steric “selectivity map” 
(Fig. 3) shows one area to be sterically avoided in order to discriminate selectivity toward 
enhanced thrombin binding. Fulfilling this criterion, binding affinity toward thrombin will 
increase relatively to trypsin. Two inhibitors are shown together with this map. The 
inhibitor 3 possesses higher affinity toward thrombin and leaves the indicated area 
unoccupied. The inhibitor 4 with higher affinity toward trypsin places its terminal 
cyclohexyl moiety into this affinity-discriminating area. Additional features can be 
extracted from the other property maps. Comparing the local shape differences of the 
thrombin versus trypsin binding site, it is interesting to note that both contours highlighted 
in the steric and electrostatic selectivity-indicating maps fall next to the 60 loop. This loop 
occurs as a special characteristic in thrombin, accordingly it is reasonable that areas where 
affinity between both enzymes is discriminated fall close to this 60 loop. Obviously, 
contour diagrams derived from a CoMSIA analysis based on binding affinity differences 
highlight plausible spatial characteristics associated with structural differences responsible 
for selectivity discrimination. 
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In a first report, we used the (( In Silico Screening )) rational design for the identification of a 
new immunosuppressive peptides. The molecule predicted to be best, coded as RDP1258, 
displayed an immunosuppressive activity approximately 1000 times higher than the lead 
compound: 30% of mice heart allografts survived for more than 100 days, with a dose 80 
times lower than that of the lead compound. 
Therapy with the rationally designed peptides described here also resulted in upregulation of 
HO-1 activity in vivo which was shown to inhibit several immune effector functions. 
However, a cyclized RDP1258 peptide while being able to inihibit HO-1 in vitro, had no 
effect on HO-1 expression in vivo. These data suggest that flexibility of the peptides is indeed 
required for immunomodulatory activity in vivo. 
In this study we have examined the correlation between the in vitro and in vivo data for the 
immunosuppressor peptide RDB1258. Our strategy was based on the use of a virtual 
combinatorial library combined to molecular dynamic simulations. The diversity of the built 
library was assessed by using the conformational autocorrelation method associated with 
cluster analysis method. A set of 9 different peptidic sequences were subjected to a molecular 
dynamics simulation study. The comparisons of the conformational spaces via the 
conformational autocorrelation method combined to the principal component analysis of the 
derived peptides to RDP1258 suggested that some of them are predicted to be in vivo active 
peptides, whereas some other peptides are predicted inactive. 
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Introduction 

In a first study, we successfully applied the In Silico Screening method to the rational 

design of the immunosupressive peptide RDP1258'. It was based on a peptide derived fiom 

the a 1  helix of HLA-B2702',34. This peptide was shown to prolong heart graft survival in 

mice. 

Recently, characterization of L- and D-isomers of 2702.75-84 derived peptides resulted 

in the identification of hemeoxygenase-1 (HO-l)5. also known as hsp32, as a receptor for 

these immunosuppresive peptides. The peptides inhibited HO-1 activity in vitro. In vivo 

administration of the peptide resulted in upregulation of liemeoxygenase activity, a 

phenomenon common to all HO-1 inhibitors. Upregulation of hemeoxygenase was shown to 

inhibit several immune effector functions including cell mediated cytotoxicity and cell 

proliferation, and to prolong mouse heart allograft survival'. Upregulation of HO-1 was also 

shown to inhibit an inflammatory response, while inhibiton of HO-1 increased such a 

response'**. Therapy with the rationally designed peptides described here also resulted in 

upregulation of HO-1 activity in vivo (Iyer and Buelow, unpublished results). However, a 

cyclized RDP1258 peptide while being able to inihibit HO-1 in vitro. had no effect on HO-1 

expression in vivo. These data suggest that flexibility of the peptides is indeed required for 

immunomodulatory activity in vivo. 

The rational design of the peptides described in the first study was based on activity in 

a mouse heart allograft transplantation model. In fact, upregulation of HO-1 following 

administration of 2702.75-84-derived peptides was only demonstrated upon completion of 

the described rational approach. The observation that the designed peptides are more potent 

inhibitors of HO-1 in vitro and more potent inducers of HO-1 expression in vivo, support the 

hypothesis that the peptides immunomodulatory activity is due to an interaction with HO-1. 

Upregulation of HO activity may therefore provide novel strategies to modulate immune 

responses in vivo. 
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The aim of this work was to design new peptides based on the structure of RDP1258 

peptide to study the interaction between Allotrap and HO-1 and to set up a predictive 

system for the in vivo activity of Allotrap. Some peptides derived from RDP1258 were 

designed by mutating systematically the sequence of RDP1258 from L to D forms. This was 

achieved by building a virtual combinatorial library and evaluating its diversity. Molecular 

dynamics simulations were applied to the selected peptides in order to compare their 

explored conformational spaces. 

Materials and Methods 

0 Molecular Modeling of the Combinatorial Set 

The combinatorial explosion was performed using Combex (Syntem, Nimes, France). All 

molecules were generated using the SMILES convention, and then converted into a 3D 

structure using Corina (Oxford Molecular Group, Oxford, UK). This was performed by 

mutating the nine positions of RDP1258 systematically to D forms. This has resulted in 512 

different structures. 

Vectorial Description of the Combinatorial Set 

Conformational description of the generated structures was performed by using the 

conformational autocorrelation method implemented in TSAR V3 software (Oxford Molecular 

Group, Oxford, UK). Each 3-D structure is associated to an ACV (Autocorrelation Vector). 

Clustering of the Combinatorial Set 

We applied cluster analysis and principal component analysis methods implemented in 

the TSAR software to classify the generated structures (i.e., their associated ACVs). The 

barycenter structures of the obtained clusters were extracted and compared with the structure 

of RDP1258. The distances between the average structures of each cluster and RDP1258 

structure were evaluated by using the nearest neighbor method implemented in TSAR 

software. 
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a Molecular Dynamics Simulation Protocols 

The MD simulations, performed using AMBER 4.1 1, used 1050 ps in duration for each 

peptide solvated with a box water with periodic conditions. The dielectric constant was set to 

the unit. The temperature of the system was first gradually increased from 10 to 300 K, during 

a time period of 20 ps and a constant temperature, during simulation, was maintained at 300 

I 0  K by coupling to an external bath with a relaxation time of 0.1 ps. The chosen time step 

was 1 fs. The computational time was approximately 0.5 hour per ps. A 10 angstroms 

residue-based cutoff was used for all non-bonded interactions. The non-bonded pair list was 

updated every 10 fs and the coordinates were collected every 1 ps during the trajectories 

resulting in a set of 1050 conformations for each trajectory. In all trajectories, no constraints 

were applied to the atoms. No cross terms were used in the energy expression. 

Trajectory analysis 

Each conformation is associated with a 3D-ACV'. A set of 3D-ACVs is calculated for each 

MD run, and then processed using multivariate statistics. In order to be able to compare the 

multiple 3D-ACVs representing the trajectories of the set of molecules to analyze, a principal 

components analysis is applied to each of these multiple 3D-ACVs in order to reduce the 

dimensionality of the data set to a smaller number (in our case, a mere 2D space) and also to 

project on to a common space all the trajectories of all the molecules". In this reduced space, 

each molecule is represented by a set of dots (i.e.. their conformations throughout the M D  

simulation), which is called its conformational space. Molecules can then be compared one to 

each other in terms of conformational spaces. These comparisons were validated by calculating 

the conformational radius of gyration during the trajectories. 
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Results and Discussions 

A set of 512 different structures were generated from RDP1258 by mutating the 

positions 1, 2, 3, 4, 5, 6, 7, 8, and 10 systematically from L to D forms. The molecular 

diversity of the generated structures were assessed by the 3-D ACV description combined to 

multivariate statistical analysis. 

Structural Diversity 

Cluster analysis was performed on the whole combinatorial set, at 25 % of maximal 

amalgamation distance in the conformation sample, we could easily distinguish 19 clusters. If 

the barycentres of each cluster are calculated, then the main conformational diversity obtained 

by the combinatorial building from RDP1258 reduce to a smaller number of structures or data. 

Table I shows the sequences of the calculated barycentres. 

Table I. Amnio acid sequences of cluster barycentres obtained from cluster analysis. NLE: 

Norleucin; capital letters: L-amino acid; small letters: D-amino acid 

BC-sym-1 
BC-sym-2 
BC-sym-3 
BC-sym-4 
BC-sym-5 
BC-sym-6 
BC-sym-7 
BC-sym-8 
BC-sym-9 
BC-sym-10 
BC-sym-11 
BC-sym- 12 
BC-sym- 13 
BC-sym- 14 
BC-sym-15 
BC-sym- 16 
BC-sym- 17 
BC-sym- 18 
BC sym-19 

Sequence 
R NLE NLE NLE R NLE NLE NLE G Y 
R NLE NLE NLE R NLE NLE nle G y 
r NLE NLE NLE R NLE NLE NLE G Y 
r NLE NLE NLE R NLE NLE nle G y 
R NLE NLE NLE R NLE NLE NLE G y 
R nle NLE nle R nle NLE nle G Y 
r nle NLE nle R nle NLE nle G Y 
r nle NLE nle R nle NLE nle G y 
r NLE NLE nle R nle NLE nle G Y 
r nle NLE nle . R nle NLE NLE G y 
R nle nle nle R nle NLE nle G y 
R nle nle nle R nle nle nle G Y 
R NLE nle NLE r nle NLE NLE G Y 
r NLE NLE NLE R NLE NLE nle G y 
r nle nle nle r nle nle nle G y 
r NLE NLE NLE r NLE NLE NLE G Y 
R nle nle nle R nle nle nle G Y 
r nle nle nle R nle nle nle G Y 
R nle nle nle R nle nle nle G y 
r NLE NLE NLE R NLE NLE NLE G Y 

The structural similarity between RDP1258 and the obtained barycenters was evaluated 

by their distances in the hyperspace of the whole 3-D ACV components. This was done by 

nearest neighbor method as implemented in TSAR software. We chose to keep as similar 
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structures all the barycenters with a distance to RDP1258 structure lower than 4 units. This 

resulted in 8 peptides whose sequences are summarized in table 11. 

Sequence 
R NLE NLE NLE R NLE NLE NLE G Y 
R NLE NLE NLE R NLE NLE nle G y 
r NLE NLE NLE R NLE NLE nle G y 
r nle NLE nle R nle NLE nle G y 
R nle nle nle R nle nle nle G Y 
r NLE NLE NLE r NLE NLE NLE G y .  
R nle nle nle R nle nle nle G Y 
R nle nle nle R nle nle nle G y 
r NLE NLE NLE R KLE NLE NLE G Y 

Table 11. Amino acid sequences of the most nearest peptides to RDP1258 

BC-sym-1 
BC-sym-3 
BC-sym-7 
BC-sym-11 
BC-sym- 15 
BC-sym-16 
BC-sym- 18 
BC sym-19 

Molecular Dynamics Simulation 

The selected 8 peptides were subjected to molecular dynamics simulation in order to compare 

their dynamic behavior to the in vivo active peptide, RDP1258. These comparisons were 

performed via the conformational autocorrelation method combined with principal component 

analysis as well as by the molecular radius of gyration calculated during the trajectories. 

Global Dynamic Behavior 

A simple examination of the 3-D ACV profile of the different trajectories (figure l), readily 

reveals differences or similarities between the trajectories. 

Within the same trajectory, the profile of the 3-D ACV may undergo considerable changes 

reflecting the conformational diversity explored by the peptide. Some trajectories are 

represented with 3-D ACV profiles undergoing reversible change (trajectories RDP1258, BC- 

sym3, BC-sym7, BC-syml 5 ,  and BC-syml6). The peptides simulated in these trajectories 

fluctuate between different conformations and may therefore be more flexible molecules. On 

the other hand, some trajectories show profile of their 3-D ACV representing an irreversible 

change from the half-time of the simulations (trajectories BC-syml 1 and BC-syml8). 
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BCI-nL BC-sym 1 

BC-sym7 BC-symll 

B C - S V W ~  

BC-syml5 

BC-syml6 ' BC-QW 18 BC-S~W 19 

Figure 1. Three-dimensional plots of 3-D ACVs associated with the conformations generated 

during RDP1258 and its peptide derivatives. X axis: Interatomic Distance (A), Y axis: 

Simulation Time (ps), and Z axis: Atom Pairs. 

Conformational Space Comparison 

Principal component analysis was performed on the 3-D ACVs associated with the 

conformations visited in the trajectory of RDP1258 peptide. The principal components (PCs) 

are arranged in the order of their contributions to the total variance, i.e. the first (PC1) 

contributes by 61.2 YO to the total variance, the second (PC2) 18.4 %, and the third (PC3) 8.9 

YO. Figure 2-1-A shows 3-D ACVs associated with RDP1258 trajectory projected into the 

plane defined by the first two PCs. Because PC1 and PC2 together contribute 79.6 Yo to the 

total variance, Figure 2-1-A must give a fairly accurate representation of the nature of the 

conformational space explored by RDP1258 peptide. This trajectory starts on the right-hand 
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side of the plane and ends on the left-hand side. A clear clustering effect is visible in the middle 

of the plane. Before the end of the trajectory, the molecule leaves the cluster and starts to form 

another one by taking an intermediate path. This transition is illustrated by the decrease of the 

molecular radius of gyration. 

BC1-nL1, 
BC-sym) 0 BC-sy Bcl-nt 3 

BC-sym + + , _ +  + 
BC1-nL 

*& ,' i . .... + ? i+ *++++ 
Figure 2-1. Conformational Space analyses of RDP12.58 (black cross) and its derivatives 

(blue cross). 

The projection of the cloud of points associated with trajectories of the RDP1258 

derivatives on the principal plane defined by the two first principal components is reported in 

figures 2-1 and 2-2. Globally, all the peptides followed the same trajectory as RDP1258. Some 

of them show conformational space which resemble RDP1258's one (trajectories of BC-sym3 

and BC-sym7) suggesting similar dynamic behavior. As RDP1258 peptide, BC-sym3 and BC- 

sym7 peptides show reversible transitions between stretched and compacted conformations 

according to their radius of gyration. The similarity of trajectories to BC-nL. is partially 
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existing for BC-syml 5, BC-syml8 and BC-syml9 (figure 2-2). On the other hand, trajectories 

of BC-syml 1 and BC-syml6 follow antagonist pathway by going rapidly to more compacted 

conformations as shown by the radius of gyration (figure 2- 1, figure 2-2). 

BC1-nL 1 

BC1-nL 

RC- 

Figure 2-2. Conformational Space analyses of RDPl258 (black cross) and its derivatives 

(blue cross). Snapshots correspond to the radius of gyration. 

These comparisons clearly show that BC-sym3 and BC-sym7 peptides explore a larger 

conformational spaces by presenting a high flexibility allowing them to make transitions 

between different conformations and reproducing consequently the dynamic behavior of 

RDP1258. On the other hand, BC-sym1 1 and BC-syml6 peptides present reduced flexibility 

and an antagonist dynamic behavior to RDP1258. 

119 



Through the comparison of conformational space of RDP1258 and its derivatives 

peptides, BC-syml, BC-sym3, and BC-sym7 are predicted to be in vivo active peptides, 

whereas BC-syml 1 and BC-syml6 peptides are predicted inactive. BC-syml5, BC-syml8, 

and BC-syml9 peptides could show intermediate in vivo activity. 

Conclusions 

In this study we have examined the effect of sterioisomeric point mutations on the 

dynamic behavior of the immunosuppressor peptide RDP1258. Our strategy was based on 

the use of the virtual combinatorial library combined to molecular dynamic simulations. 

The diversity of the built library was assessed by using the conformational 

autocorrelation method associated with cluster analysis method. A set of 9 different peptidic 

sequences (RDP1258, BC-sym-1, BC-sym-3, BC-sym-7, BC-sym-l l, BC-sym-15, 

BC-sym-16, BC-sym-18, and BC-sym-19 ) were subjected to a molecular dynamics 

simulation study. The comparisons of the conformational spaces via the conformational 

autocorrelation method combined to the principal component analysis of the derived peptides 

to RDP1258 suggested that BC-syml, BC-sym3, and BC-sym7 are predicted to be in vivo 

active peptides, whereas BC-syml 1 and BC-syml6 peptides are predicted inactive. BC- 

syml5, BC-syml8, and BC-syml9 peptides could exhibit intermediate in vivo activity. 
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INTRODUCTION 
The destruction of articular cartilage is a major pathological event in Osteoarthritis (I), 

ultimately leading to the loss of joint function. Proteoglycan aggregates (aggrecan) are the 
preferred cartilage components for proteolytic attack under pathological conditions. Different 
cleavage sites for MMP-3 and MMP-8 have been identified at the interglobular aggrecan 
region. These enzymes belong to the family of matrix metalloproteinases (MMPs) - zinc 
endopeptidases involved in tissue remodeling and turnover of cartilage and bone. In the 
pathological case the degenerative potential of MMPs against components of the extracellular 
matrix is not longer controlled by specific tissue inhibitors. Thus MMPs are attractive targets 
for the treatment of arthritis and tumor progression. 

While structure-based design is focussed on protein-ligand interactions, it does not 
always lead to predictive models. In contrast, 3D-QSAR models with acceptable statistical 
parameters do not necessarily reflect the topological features of the binding site. In t h s  study 
we successfully combined both approaches to understand biological activity and selectivity of 
90 nonpeptidic M M P  inhibitors ('). The availability of MMP-3 and MMP-8 x-ray structures 
('") led to the design of rigid 1,2,3,4-tetrahydroisoquinoline derivatives with appropriate 
hnctional groups complementary to the S1' pocket and hydroxamates or carboxylates as Zn2+ 
binding groups. Subsequently various 3D-QSAR models identified binding regions, where 
sterical, electronical or hydrophobic effects play a dominant role in protein-ligand interaction. 
In addition to this ligands' view, a technique based on PCA of multivariate GRID descriptors 
(') uncovered major differences of both protein binding sites ('). Those results led to a 
consistent picture allowing hrther prediction of novel, selective inhibitors. 

3D-QSAR FOR MMP-3 and MMP-8 AFFINITY 
For a reliable alignment, a reference compound was manually docked into MMP-8 and 

minimized, while treating sidechains within 5 A as flexible. Automatic docking with a genetic 
algorithm (FlexiDock ') produced similar results. All other compounds were superimposed 
onto this template and minimized using a rigid protein. This alignment produced consistent 
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models (CoMFA’, CoMSIA’, GRID/Golpe), which were confirmed by statistical methods and 
interpretation in terms of binding site topologies. Finally the binding mode was validated by a 
1.7 A X-ray structure of a reference compound in complex with MMP-8 (’), 

Table 1. Summary of 3D-QSAR models for MMP-3 and MMP-8 affinity a) 

q2 SD Comp r2 Validation 
MMP-I: 
CoMFA (2A) 0.569 0.685 5 0.905 2 CV , Randomize, Grid Var. 
CoMFA (1A) 0.516 0.726 5 0.911 
CoMSIA (2A) 0.478 0.763 7 10.924 2 CV , Randomize 
CoMSIA (1A) 0.447 0.786 7 0.924 
MMP-3: 
CoMFA (2A) 0.563 0.629 6 0.944 2 CV , Randomize, Grid Vat-. 
CoMFA ( 1 A) 0.432 0.717 5 0.917 2 CV , Randomize 
CoMSIA (2A) 0.413 0.738 8 0.957 2 CV , Randomize 
CoMSIA (1A) 0.382 0.757 8 0.954 
GOLPE-FFD 0.795 0.413 5 0.967 LTO,5RG 
GOLPE-SRD 0.789 0.419 5 0.964 LT0 ,5RG 
a) q2: crossval. r2 using leave-one-out; SD: standard dev. of error in leave-one-out; Comp.: optimal 
number of components; r2: non-crossval. regression coeff.; Validation 2 C V  crossval. using 2 random 
groups 100 times; Randomize: randomization of y-block; Grid Var.: shifting the alignment within 
f i e d  grid box; LTO: leave-two-out; 5RG: crossval. using 5 random groups 20 times. 

MMP-8 

MMP-8 

I 

$C%Q MMP-8: 2 nM 
@ 4~ IC5Q MMP-3:20 nM 

Figure 1. CoMFA steric and electrostatic std*coe#fields (< 85 %, > 15 % contnbution) for MMP-8 
(A,B) and MMP-3 (C,D) with a potent MMP-3/8 inhibitor. 

b 
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A CoMFA model for MMP-8 affinity with an ?(cv) of 0.569 (5  comp.) and an ? of 
0.905 (Table 1, CoMFA (2A)) was obtained. Changing the grid spacing*fiom 2 to 1 A 
produced similar results. Moreover, we investigated the effect of the alignment relative to the 
grid by moving all compounds in x,y and z direction. The resulting ?(cv) values show a minor 
dependence on the orientation (0.42 to 0.58). Randomizing biological activities revealed the 
significance of the original model: The mean *(cv) for 50 trials is -0.13 (S 
PLS analyses with two randomly chosen cross-validation groups and original activities lead to 
only a slightly lower mean ?(cv) value of 0.438 (SD: 0.08), suggesting a stable, predictive 
model. Similar results are observed with CoMSIA (table 1). 

CoMFA and CoMSIA models for MMP-3 affinity produced models of similar 
significance (only 85 compounds, table 11, the same validation techniques were used to 
support the finding of stable and predictive models, like a CoMFA model with an ?(cv) of 
0.563 (6  comp.) and an ?of 0.944. 

COMPARISON WITH RECEPTOR TOPOLOGY 
The steric and electrostatic std*coeflfields for MMP-8 (fig. lA, B) and MMP-3 (fig. 

lC, D) are similar, they are displayed with a potent inhibitor containing a hydroxamate and a 
biphenylether as main binding elements (IC5,, MMP-8: 2 nM; MMP-3: 20 nM). For steric 
fields (fig. lA, C) dark contours are related to favourable steric bulk, while light grey contours 
indicate regions, where bulk will lower the activity. In the electrostatic maps, dark contours 
represent regions, where positive charge is favourable. 

A B 

Figure 2. Comparison of CoMFA steric (A) and electrostatic (B) std*coefl fields to experimental 
MMP-I binding site topologies. Differing residues in MMP-3 are indicated. 

These models correspond to experimental binding topologies, as obvious fkom fig. 2 
with CoMFA derived steric (A) and electrostatic (B) contour maps mapped onto MMP-8. The 
residue numbering refers to MMP-8, mutations in MMP-3 are indicated. As results are similar 
to MMP-3,  the question arises, how to explain experimental selectivities. 
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Enhancing steric bulk in S1' increases affinity for both targets. A dark contour at the 
distal phenyl ring highlights a hydrophobic cleft formed by Tyr219, Leu193 and Vall94, 
which is filled with water in MMP-8 x-ray structures, when S1' is not completely occupied. 
Unfavourable steric interactions at the S1' entrance are indicated by light grey contours, while 
the steric requirements at the S1' bottom (Arg222) are obvious. The preferred geometry for 
zinc-binding can be deduced, showing that the optimal oxygens distance for zinc coordination 
is better realized in hydroxamates. Finally the decrease of activity, when inverting the C3 
chirality, is indicated by a light grey region at the upper side of the tetrahydroisoquinoline. 

Additional 3D-QSAR models were generated using interaction energies from ligands 
to a phenolic OH probe (GRID) with a GOLPE (Io) variable selection. The effect of individual 
variables on model predictivity based on a FFD design matrix points exactly to relevant 
variables (GOLPE-FFD, table 1). Moreover a method for grouping descriptors into regions of 
neighboring 3D variables with similar statistical and chemical information was applied to 
enhance chemical relevance of results ("). This "smart region definition" (SRD) procedure 
works by extracting a subset of highly informative X variables and partitioning the space 
around the molecules among them (GOLPE-SRD, table 1). Identified regions, containing 
single pieces of information, are used at a later stage for the FFD based variable selection. The 
final PLS model after SRD contained 1049 from initially 25740 variables, a ~"(cv) of 0.789 (5 
comp.) and an r" of 0.964 was obtained. This model was validated by leave-two-out (~"(cv): 
0.787) and 5 crossvalidation groups (?(cv) mean: 0.743). A model without SRD led to 
comparable results (table I), both models provide consistent insights into favourable 
interactions, which complement information obtained by interpreting CoMFA fields. 

UNDERSTANDING LIGAND SELECTIVITY 
Although previous models can explain MMP-8  and MMP-3 affinity, no relevant 

information was obtained for selectivity. However, 3D protein structures provide extremely 
valuable input, which we used to extract important ligand-protein interactions and selectivity 
regions. 3D structures for MMP-8 (ljap) and MMP-3 (Isln) were superimposed using an 
iterative procedure (rmsd of 0.41 for Ca  of 117 of 157 residues), their binding sites were 
characterized by interaction energies to functional groups using GRID. This matrix was then 
analysed using PCA on only favourable interactions. 

A 6 

Figure 3. 2D score (left) and loadings (right) plot of PCl versus PC2 for the fmal PCA model using 
grid interaction energies between various probes and both targets. 
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A significant two component model results for 38 probes, the first PC explains 33.5 % 
of the variance, the second 27.8 %. The score plot (fig. 3, left) represents objects in the X 
matrix - interactions of a GRID probe with a target. The clustering of objects into two groups 
indicates that PC1 discriminates between both proteins (MMP-3 negative PC1 scores, mp3; 
MMP-8 positive PC1 scores, mp8), while PC2 is related to non-selective ligand-protein 
interactions, ranking the probes by their ability to interact with common binding site regions 
(negative PC2 scores refer to stronger interactions). 

Variables with high absolute PC1 loadings (fig. 3, right) indicate binding regions with 
different interaction behaviour. The greater the horizontal spread of variables in PC1 is (fig. 3, 
right), the more relevant this variable is for discrimination. Several regions in the binding site 
can be identified: On the left the MMP-8 selectivity region with high PCl and PC2 scores 
points to strong, selective interactions (fig. 3, right). These variables circled in fig. 3 are 
located in the S1' pocket (fig. 4A). Similar variables in fig. 3 (right) point to less dominant 
MMP-3 selectivity regions. In contrast, low values for PC1 and PC2 indicate regions with 
weak, unselective interactions, while high PC2, but low PC1 values refer to strong, 
unselective interactions (fig. 4B). For designing selective compounds, it is preferable to use 
chemical groups with higher absolute PC1 scores. 

In fig. 4A, 3D loadings contour maps are indicating selectivity regions, where 
appropriate substituents would increase the desired property. Selectivity regions for MMP-8 
are indicated by dark contours, while substitutions in light grey regions would improve 
selectivity towards MMP-3. For interpretation a selective MMP-8 inhibitor is shown in fig. 4 
with a biphenylether S1' moiety and a p-cyan0 substituent at the distal ring MMP-8: 10 
nM; MMP-3: 1000 nM). 

A B 

Figure 4. 3D contour map of PC1 (A) and PC2 (B) loadings for the PCA model. PC1 highlights 
selectivity regions (dark MMP-8, grey: MM€'-3), PC2 explains affiiity regions. 

The CN group directly points to a dark MMP-8 selectivity region at the bottom of the 
S1' pocket close to Arg222. This preference is reflected by the position of a N:# (sp nitrogen 
with lone pair) probe in fig. 3 (right). Thus a discrimination between MMP-8 and MMP-3 can 
be achieved by adequate placement of functional groups in this and related regions according 
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to the ranking of functionalities in fig. 3 (left). In MMP-3, Arg222 is replaced by Leu226 and 
the S1' pocket is not occluded, which corresponds to substitutions in some inhibitors. Other 
highlighted S1' regions also suggest the chemical significance of this model to explain 
selective protein-ligand interactions. 

When comparing sequences for both M M P s ,  not only the bottom of the S1' pocket 
differs, but also Ile159 and Gly158 are replaced by Val and Asn, and Asn218 and Ala220 of 
the upper rim of S1' by Leu and His. As the sidechain of the Asn218-Leu222 replacement 
points to the outside of Sl', this is not a major selectivity regions, which corresponds to the 
3D contour maps. In contrast, the imidazole ring of His224 forms a part of the S1' pocket, 
changing the binding requirements for ligands, which is reflected by additional dark contours. 

In fig. 4B the regions for unselective strong ligand recognition are shown as contour 
maps (positive loadings from fig. 3, right), revealing that the S1' pocket plus the region left to 
Alal6 1 (Pro-Leu-Gly-NHOH binding region, unprimed P 1 -P2-P3) are of high importance for 
MMP-affinity. Those maps are in agreement with all results obtained from CoMFA and 
CoMSIA studies (see above), leading to a consistent picture explaining both affinity and 
selectivity of MMP-3 and MMP-8 inhibitors. 

CONCLUSIONS 
Protein-ligand interactions are difficult to describe, there is no single approach 

resulting in a complete picture of all forces. Some useful insights to this problem for M M P  
inhibitors are presented here: Our study combines structure-based design with 3D-QSAR to 
understand MMP-3 and MMP-8 affinity. As hydroxamates lead to more potent inhibitors than 
other zinc-binding groups, the latter require additional features for compensation. Our final 
3D-QSAR results are not only able to reveal the optimal zinc-binding geometry, but also the 
optimal S1' complementarity for MMP-3 or -8 inhibitors. Moreover a recently described 
method provided further understanding of different experimentally observed ligand 
selectivities. Detailed SAR information for these inhibitors is obtained, which is in agreement 
with all experimental data for binding site topologies, and thus provide clear guidelines and 
activity predictions for designing and optimizing MMP-3/8 inhibitors in related series. 
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INTRODUCTION 

Self consistent reaction field (SCRF) methods have been largely used to 
examine solvent effects in chemical interactions. These methods' are designed to 
determine solvation free energy, which is the reversible work necessary to transfer a 
molecule from gas phase to solution (considering the same reference states, typically 
1M). In SCRF methods such a work is computed (see Eq. 1) as the addition of three 
elemental contributions: i) the work necessary to build up the solute cavity in the 
solvent (cavitation term), ii) the work needed to generate the uncharged solute in the 
pre-formed cavity (van der Waals term), and iii) the work spent in generating the solute 
charge distribution in solution (the electrostatic term). 

A G S O ~ V  = A G C ~ V  + AGVW + ~ ~ e l e  (1) 

The steric contributions (cavitation and van der Waals) can be easily represented 
by means of empirical relationships with the surface, volume, or other size-related 
property of molecules.' The electrostatic contribution can be determined following 
different algorithms, all of them being based on the theoy of polarizable fluids. One 
of the most rigorous methods for the computation of AG"" was developed by Miertus, 
Scrocco and Tomasi (MST I ,* ) ,  and has been successfully used for the study of 
different systems in solution. Current versions of the MST method combined with 
suitable algorithms for the determination of the steric term leads to estimates of the free 
energy of solvation with errors below 1 kcdmol for different solvents including water 
(see Figure 1). 3-5 

According to the MST algorithm, AGeie is determined within the Quantum 
Mechanical (QM) framework as shown in Eq. 2, where the solvent-adapted 
wavefunction of the solute is determined by solving a non-lineal pseudo-Scroedinger 
equation (see Eiq. 3). The perturbational operator V, is determined by solving Laplace 
equation with suitable boundary conditions (see Eq. 4). 
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where the indexes sol and 0 refer to solution and gas phase, and V, stands for 
the perturbational operator representing the solvent reaction field generated by the solute 
charge distribution. 

where & is the dielectric constant of the solvent, 
surface element m, and the indexes Q and p refer to solvent and solute. 

n is the vector normal to the 

5 

0 

-5 
rms error 0.64 kcal/mol 
corr. coef. 0.98 
slope 1.00 

-1 n _ _  
-10 -5 0 5 

AGsol(experimenta1) 

Figure I. Correlation between MST 6-31G(d) and experimental free energies of 
hydration. 

In this paper we will present new ideas on the use of the MST method in 
molecular modeling studies. We will present firstly the use of a modified version of 
MST in docking studies in condensed phases. Secondly, we will shown a new method, 
based on the MST formalism for the fragmental description of the solvation properties 
of molecules. 

DOCKING IN CONDENSED PHASES 

The determination of the best possible arrangement of two molecules (for 
instance a drug and a receptor) is of major importance in molecular modeling studies. 
This justifies the tremendous effort focused on the development of docking algorithms, 
which are expected to determine the best fitting between two complementary molecules 
in the absence of experimental data. Docking programs generally incorporate Monte 
Car10 (MC) or Molecular Dynamics (MD) algorithms, which are used to sample 
extensively the inter-molecular configurational space. 

Docking programs are very valuable in molecular modeling studies, and provide 
often very reasonable results. However, they have two obvious shortcomings arising 
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from: i) the total or partial neglect of intramolecular contributions to binding, and ii) the 
total or partial neglect of solvent effects. The neglect of the effect of polar solvents like 
water in binding can lead to erroneous results. For instance, Figure 2 represents the H- 
bond dimerization of two formic acid molecules. High level QM calculations indicate 
that the interaction is favorable in the gas phase (AG= -2.5 kcdmol, at the G2 level). It 
is clear that any docking program will find that the structure at the right of Figure 2 is 
the most stable configuration of the formic acid dimer. However, when the same 
reaction is studied in aqueous solution, a free energy of dimerization of +5.3 kcdmol 
(from G2, SCW and MC-FEP calculations) is found. This demonstrates that H-bond 
dimerization of formic acid does not occur in water. 

0- H ”( ’<rH} - H<o F H  
H- 0 

Figure 2. H-bond dimerization of formic acid. 

In order to obtain suitable samplings of the configurational space accesible to 
dimers in solution we have developed a Monte Carlo-continuum model based on the 
MST algorithm and in classical force-fields (used to compute the inter-molecular 
energies). The method couples a Metropolis-Monte Car10 technique with a fast quasi- 
classical version of the MST algorithm, where in order to increase the computational 
efficiency, the electrostatic contribution to solvation is computed using Eq. 5 for each 
configuration. 

where indexes i and m refers to atoms and to small surface elements of the 
solute cavity, and indexes 0 and sol refers to the values of the charges in gas phase and 
solution. 

The MC-MST method allows us to obtain a complete sampling of the 
configurational space of dimers in gas phase or any solvent with higher efficiency than 
discrete methods which expend a lot of CPU time sampling solvent movements. The 
MC-MST method can be used with single o multiple copies strategies. The first strategy 
needs shorter equilibration periods, but the later guarantees a better and less biased 
sampling. The “multiple copies” approach is based in parallel MC runs using 20 copies 
of one monomer which are placed randomly around a central monomer. Each copy is 
allowed to interact with the central monomer and solvent, but not with other copies. 

As an example we analyzed the configurational space of 4-0x0-pyrimidine 
dimer in gas phase and aqueous solution (T=298K, 1M in both cases). Simulations 
were run using a multiple copy approach (20 copies) for a total of 200000 
configurations, both in gas phase and aqueous solution. ESP and ESPF charges were 
used to represent the electrostatic potential of the solutes, and empirical Lennard Jones 
parameters are used to represent their van der Waals properties. 

In the gas phase the most populated configurations are those corresponding to a 
double H-bond, while in solution such configurations are low populated. This is clear 
from inspection of Figure 3 which corresponds to the last snapshots of the multiple 
copies runs in gas phase and solution. It is also clear in the density maps shown in 
Figure 4, which represents the contours corresponding to regions of the space of large 
probability (15 times that expected for a 1M solution) to find a 4-0x0-pyrimidine 
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molecule (for a common reference system defined by the other monomer). It is clear 
that such changes are related to the disturbing effect of water which makes more 
difficult the formation of solute-solute H-bonds. 

0 

Figure 3. Representation of the last snapshot of the MC-MST simulation in the gas 
phase (left) and aqueous solution (right). 

.- 

Figure 4. Representation of the regions of large probability (15 times over the 
background) to find a 4-0x0-pyrimidine molecule. A common reference system defined 
by the central molecule has been used. Results in top of Figure are in gas phase, and 
those in the bottom refer to aqueous solution. 
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FRACTIONAL REPRESENTATION OF SOLVATION 

The determination of the the solvation,and transfer free energies of molecules is 
of major importance in drug design. This has led to the development of different 
approaches for the determination of solvatiodtransfer properties of molecules. * 
However, few methods allow the partition of solvatiodtransfer free energies into 
molecular fragments. Such information is very important for the determination of the 
hydrophobic pattern of molecules which is known to play a key role for a proper drug- 
receptor binding. 

We have recently developed a rigorous QM approach based on the MST 
algorithm which allows the partition of the total free energy of solvation into surface 
elements, which can be then grouped into molecular subunits. The method is based on 
the use of a first order perturbational treatment of the basic MST equations. ’ 
Accordingly, the electrostatic contribution to the free energy of solvation can be 
computed as shown in Eq. 6. 

(6) 
1 
2 AGele = < Yo I - Vsol(psol) I Yo > 

Eq. 6 allows for the rigorous partition of the electrostatic free energy of 
solvation in surface elements (M) as shown in Eq. 7. Calculation of fractional 
contributions to the total free energy of solvation is then simple (see Eq. 8) since the 
steric contribution is directly related to molecular surface areas. Furthermore, fractional 
contributions to transfer free energies can be also computed using Eq. 9. 

M M 

N N N 

A G ~ , ~  = C A G L ~ ~  + C A G ~ ,  + C AG;,, 

 AGE;;^^ = C A A G ~ ~ ~  + C A A G ~ ,  + C AAG;,, 

i= 1 i= 1 i=l 

N N N 

i= 1 i= 1 i=l  

where 

AAG = AG(7) - AG(o) 

The method can be used in combination with any QM approach, and a quasi- 
classical version of Eq. 7 has been also developed which allow a very fast calculation 
of the hydrophobickydrophilic pattern of molecules. 

The use of the fructionaZ-MST method allows us to obtain hydrophobic/ 
hydrophilic profiles like those shown in Figure 5. This type of information is very 
useful to determine the most polar/apolar regions of molecules, as well as to detect 
changes in hydrophobicity/ hydrophilicity in a given region of the space due to changes 
in other regions of the space. 
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Cimetidine 

Phenytoin 

Figure 5. Fractional contributions to the free energy of hydration of cimetidine and 
phenytoin. The darker the color, the larger the contribution to AGhYd. 
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INTRODUCTION 

Voltage-gated calcium channels (VGCC) are transmembrane proteins that mediate the 
calcium influx in response to membrane depolarization and thereby initiate cellular 
activities such as secretion, contraction, and gene expression. According to pharmacological 
and electrophysiological results they may be divided into the distinct L-, N-, PIQ-, R-, and 
T-type subfamilies. While all VGCC are composed of the pore-forming a, subunits, the 
disulfide-linked a$ subunits and the intracellular p subunits, only the skeletal muscle L- 
type channel has an additional transmembrane y subunit. A second special feature of L-type 
channels is their unique reaction to the calcium entry blockers such as 1 ,Cdihydropyridines 
(DHP), phenylalkylamines and benzothiazepines that are therapeutically used against 
hypertension, angina pectoris and supraventricular arrhythmias, and the exceptional DHP 
channel activators (Bay k 8644, RS30026, CGP 28392 or Bay y 5959). However it is not 
the unique L-type y subunit which is the physiological target of these compounds, but 
specific regions of the a, subunit. 

Regardless of antagonistic or agonistic effect, the receptor affinity of the modulators is 
dependent of the actual channel mode. While at polarized membranes (-70 mV to -90 mV) 
the channels are in the closed resting state, depolarization (starting at -30 mV for L-type 
VGCC) leads to an oscillation between the opened and the inactivated state. All DHP 
derivatives show lower affinity to their binding site in the resting state in relation to the 
opened or inactivated mode, but for DHP antagonists this behaviour is more pronounced in 
relation to the channel opening DHP activators. 

In order to find some reasonable explanations for this different binding behaviour of 
structural closely related DHP antagonists and agonists, the aim of the present study was to 
construct selective pseudoreceptor models of the resting as well as the inactivated state of 
L-type VGCC. 
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METHODS 

DHP Generation 

All investigated DHP derivatives were generated within the BUILDER module of the 
SYBYL software package (Tripos Associates, Inc.) and energy minimized applying the 
conjugate gradients algorithm. To consistently yield geometry optimized ligand and 
receptor molecules, all ligands were re-optimized within the PrGen software (Biographics 
Laboratory) applying the implemented YETI force field. A following semiempiric AM 1 
single point calculation was performed to yield accurate ESP atomic charges for all ligands. 

Pseudoreceptor Modelling 

The pseudoreceptor modelling software PrGen was used to generate atomistic binding 
site models for a series of pharmacologically active DHP derivatives. Within this routine, a 
coupling constant of 1.0 and a maximal allowed rms of 0.1 kcal/mol for the predicted 
versus experimental dissociation constants of all correlation-coupled receptor and ligand 
minimizations was chosen. The target rms deviation was limited to a maximum of 0,130 
kcal/mol. Both the training set and the test set structures were relaxed inside the receptor 
cavity without constraints applying 10 trails of a Monte-Carlo procedure. Solvation 
energies of all ligands were calculated according to Still et al. (1990) and entropy 
corrections were considered following Searle and Williams (1992). Biological binding data 
of the pure DHP enantiomers showing either antagonistic or agonistic activities were taken 
from Zheng et al. (1992). 

Taking into account the Gibbs-Helmholtz equation, conversion of experimental 
dissociation constants K,, to free energies of binding were calculated as follows: AGO = 
R*T*ln(K,) G 1.419 (kcavmol) lg(K,) at 37" Celsius. 

RESULTS AND DISCUSSION 

Pharmacophore Generation 

In order to construct a common pharmacophore of all 
investigated DHPs, we considered 34 X-ray structures 
from Cambridge Structural Database. Taking the X-ray 
structure of nifedipine as an example, the carbonyl 
oxygens of the almost coplanar arranged ester side 
chains may be oriented in a synperiplanar (Z)- 

ap 0' conformation (sp) or an antiperiplanar (E)-conformation 
(ap) relative to the double bonds of the boat-like DHP 
ring (Figure 1). Also for the relative spatial orientation of 
the 2'-nitro group and the hydrogen in position C4, the 

Figure 1. Nifedipine X-ray structure terms sp and ap are used if both are pointing to the same 
or opposite side, respectively. 

While the sp conformations for the left-hand side (C3) and the 4-phenyl substituent (C4) as 
the bioactive orientation are well established (Goldmann and StoltefuB, 199 l), the right- 
hand side is usually described in literature as non-essential. On the other hand there are 
known inactive lactone fused DHP with a frozen ap oriented C5 carbonyl oxygen (Kwon et 
al., 1989), whereas an unrestricted carboxylate at the same position shows full activity. This 

0 & 
SP 

H' 
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clearly demonstrates the essential sp orientation of the carbonyl oxygen also for the right- 
hand side of DHP. Therefore all molecules were superimposed over the common 1,4- 
dihydropyridine ring in a sp/sp/sp arrangement. 

Table 1. Investigated DHP derivatives with their corresponding experimentally determined 
(AG& and via pseudoreceptor modelling predicted (AGcdc) free energies of binding in the 
resting (r.s.) and the inactivated state (is.) in kcal/mol. Lower six compounds (*) represent 
the test set derivatives 

Derivative R’ R’ R3 AGap r.s. AGcple rs. AGexp i s .  AGCalE i s .  
nifedipine COOCH, 2’-NO, COOCH, -10.502 -10.381 

3CN COOCH: 3’-CN* COOCH: 
4C1 
111 
lv 
IX 
X 

XI11 
xlv 
H* 

30Me* 
I* 
11* 
XI * 
XII” 

COOCH; 

COOCH, 

H 

NO2 

NO, 

NO, 
NO, 

NO2 

NO, 

COOCH, 
COOCH, 

COOCH, 

H 

4’-C1 
2’-OCF,H 
2’-OCF,H 

2’-CF, 
2’-CF, 
2’-CF, 

2’-OCF,H 
H 

3’-OCH, 
2’-CF, 
2’-CF, 

2’-OCF,H 
2’-OCF,H 

COOCH; 
COOCH, 

H 
NO, 

NO2 
NO, 
NO2 

COOCH, 
COOCH, 
COOCH, 

H 
NO, 

NO2 

-9.708 
-8.209 
-9.571 
-9.264 
-6.967 
-7.364 
-8.256 
-7.817 
-8.576 
-7.819 
-9.704 
-8.803 
-7.860 
-7.422 

-9.784 
-8.176 
-9.660 
-9.161 
-6.949 
-7.375 
-8.453 
-7.718 
-12.083 
-12.767 
-9.566 
-9.294 
-6.965 
-7.158 

- 13.184 
-12.108 
-8.964 
-10.474 
-10.564 
-7.634 
-7.741 
-9.1 10 
-8.660 
-10.387 
-8.461 
-10.641 
-10.296 
-8.277 
-7.783 

- 13.058 
-12.294 
-9.021 
-10.499 
-10.430 
-7.583 
-7.867 
-9.216 
-8.471 
-14.25 1 
-14.877 
-10.432 
-11.284 
-7.795 
-6.509 

Pseudoreceptor Model of the Resting State 

To generate reasonable pseudoreceptor models we considered the experimentally 
detected amino acid residues crucial for high affinity binding at L-type VGCC. On the other 
hand, since the goal of this study was not to imitate the real binding cavity but to find 
minimum requirements for an accurate binding not only explicitly determined amino acids 
but also residues showing same characteristics were allowed. 

Taking the 4-aryl moiety as a mirror axis, all investigated DHP possess an almost 
symmetric construction Showing eitner a ~~ro-C)r^il-c~~~~~~~”S’~$itl“BC~,lCOtLr~~T\rlrU5. 
Therefore, residues of a hypothetical binding site might almost equally be positioned at 
either side. To overcome this dilemma a careful comparison of the effects caused by same 
substituents at opposite sides was carried out (Figure 2). 

Closer examination of the binding affinities of compounds IX and X in the resting 
state reveals the nitro group at the right-hand side to be more important for binding (X: AG 
-7.36 kcal/mol) than positioned at the opposite side (IX: AG -6.97 kcal/mol). The same 
tendency is observed by insertion of a second nitro group yielding compound XIII. 
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Following path X+XIII the binding energy increases by -0.89 kcal/mol while the way 
IX+XIII which generates the nitro group at the right-hand side yields an energy gain of 
-1.29 kcaYmo1. Even more striking are the changes from IX-I and X+II. While the 
additional methyl ester at C5 (I) increases the binding affinity by -2.74 kcaYmol, the same 
substitution at the left-hand side (11) yields only -1.44 kcaYmo1. To look at derivative XIII, 
exchange of a nitro group against the methyl ester at the right side (XIII+I; AG -1.45 
kcaYmol) and the left side (XIII+II; AG -0.55 kcaYmol), respectively, also indicates the 
importance of the C5 substituents for the resting state. 

0 9 N  &, 0 
0 4 ‘0 N p o  

11 

N N 

H 
/ / H  

\\ -1.45 -0.55 ,,‘ -8.80 ’‘\\ -1.44 ’\ 
-2.14 ,,’ -9.10 

-0.94 -0.27 ,,’ 

\) {,) B -1.29 -0.89 0 i,j 
-0.19 O/N Np0 -0.48 N*O 

I 
O ~ N  

f__-_-_-____-__-___ _________________- 
w XI11 X 

N N N 
I I I 

-6.91 
-0.66 

-8.26 
-0.85 

-7.36 
-0.38 

Figure 2. Comparative study of binding affinities. Upper values: free energies of binding in the resting state 
(below the structures); energy gain caused by different substitution in the resting state (arrows). Lower 
values: gain of binding energy after channel activation (inactivated/opened state) [all values in kcal/mol]. 

In the light of these observations, we placed a crucial threonine as hydrogen donor at 
the sp oriented right-hand side of the pharmacophore. The NH function of the DHP ring 
was saturated by a carbonyl oxygen of the glycine backbone. A methionine was located 
axially beside and a phenylalanine on top of the substituted 4-phenyl ring. Two additional 
tyrosines were placed below the 1,4-dihydropyridine ring and parallel to the 2’- and 3’- 
moieties, respectively (Figure 3). 

A receptor equilibration was carried out by minimizing all residues of the crude 
pseudoreceptor keeping the ligands of the training set fixed. In the following step a 
correlation-coupled receptor minimization followed by free ligand relaxation was used to 
obtain a satisfactory correlation of R=0.99 (rms=O.O97 kcaYmol) between experimental and 
predicted binding energies. To overcome local minima of the ligands a Monte-Carlo search 
was performed to find the best adjustment within the binding cavity. 

The quality of this pseudoreceptor model was validated by replacing the training set 
with the test set ligands followed by an unrestricted Monte-Carlo relaxation. Thereafter, 
free energies of binding were predicted for these ligands using the linear regression 
obtained with the training set yielding a rms of 2.5 1 kcal/mol (Table 1). As can be seen, the 
unsatisfactory result for the complete test set showing a deviation of more than one K, unit 
is mainly caused by the unsubstituted derivative H (-3.51 kcal/ mol) and the 3’-OMe DHP 
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(-4.95 kcaymol). Exclusion of those outliers yields a rms of 0.532 kcal/mol, representing an 
uncertainty factor (UF) of 2.37 (=10°.53U’.419). 

Tyr 

Figure 3. Pseudoreceptor model of the resting 
state. For clarity only NH and OH hydrogens are 
displayed (dashed lines indicate hydrogen bonds). 

Since H is the only unsubstituted 4-phenyl 
derivative and test set molecules usually may 
only be predicted correctly if there are related 
derivatives in the training set, receptor 
equilibration was repeated including H into 
the training set. But surprisingly no sufficient 
correlation was found (R=0.884), indicating 
once again the exceptional role of compound 
H. Closer inspection of the individual 
ligandlreceptor complexes revealed no 
detectable interactions to explain such high 
receptor affinities. This makes it difficult to 
understand why the only unsubstituted 
derivative H generates more attractive 
interactions in relation to the substituted 
derivatives, all the more if one considers that 
both tyrosines of the pseudoreceptor model 
generate strong attractive interactions to the 
4-phenyl substituents. 

To draw the conclusion from these findings, it is unlikely that PrGen really calculates 
to high interaction energies of the above mentioned outliers, but quite the contrary, that the 
programme is not able to accurately determine the binding energies of all other derivatives. 
In this case, at least one force must be relevant for ligand binding that is not recognized by 
the force field. Since all molecules of the first approach possess an electron withdrawing 
substituent inducing an electron impoverished 4-phenyl moiety, a natural suspicion of that 
“unrecognized force“ might be a charge transfer interaction. To proof this hypothesis, three 
separate complexes, composed of compound H/pseudoreceptor (WPR), 3’-CN/ 
pseudoreceptor (CNPR) and nifedipine/pseudoreceptor (nifPR), respectively, were 
extracted and used as input for quantum chemical AM1 calculations. Due to convergence 
problems in course of the computation, the model had to be reduced by the phenylalanine 
and one tyrosine residue. Computation of the HOMOs and LUMOs indicates striking 
differences between the complexes. While in all cases the HOMO is localized at the 
methionine that is placed beside the 4-phenyl ring, the LUMO of nifedipine, LUMO+l of 
CNPR and only LUMO+5 of HER -as the energetically most favourable unoccupied 
molecular orbitals- are localized in front of the HOMO at the 4-phenyl ring. Careful 
calculation of the orbital energies reveals significant distinctions yielding energy 
differences for corresponding HOMOs and LUMOs of 7.73 eV, 8.15 eV and 8.92 eV for 
nifPR, CNPR and WPR, respectively. Since small energy differences between HOMOs 
and LUMOs are essential for electron donor acceptor interactions, the results are in 
agreement with a charge transfer hypothesis. 

In order to proof the selectivity of the pseudoreceptor model representing the resting 
state, the whole receptor generation was repeated using the same ligand molecules but 
experimental data of the channel in the openedinactivated state (Table 1). In spite of a 
correlation of R=0.99 (rms=O. 1 15 kcal/mol) for the training set the prediction for the test set 
molecules with a rms of 5.928 kcal/mol demonstrated the inability of an accurate 
correlation. Again exclusion of derivatives H (AG -9.39 kcal/mol) and 3’-OMe (AG -8.83 
kcal/mol) yields a smaller deviation of 2.033 kcal/mol (Table 1). Nevertheless, compared to 
the results applying experimental data of the channel in resting state (rms 0.532 kcal/mol 
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vs. 2.033 kcaYmol) the uncertainty factor raises from 2.37 to 27.08, indicating a sufficient 
distinction between these channel modes. 

Pseudoreceptor of the Openedhactivated State 

In order to gain hints about the varied binding site characteristics induced by channel 
activation, a careful interpretation of figure 2 gives helpful information. Substitution of a 
nitro against a carboxylate group on the right-hand side (XIII+I) yields an energy gain of 
-0.08 kcal/mol in relation to the resting state. The same exchange at the left-hand side yields 
an additional energy of -0.64 kcal/mol. Insertion of a methyl carboxylate group at the right- 
hand (IX+I, MG=-0.27 kcal/mol) and the left-hand side (X+& MG=-I. 12 kcal/mol), 
respectively, reflects still more profoundly the essential meaning of the left-hand side for 
ligand binding in the inactivated state. 
Considering these observations, it 
seemed to be reasonable to place a 
hydrogen donor in form of a second 
threonine at that side for a simulation 
of this channel mode (Figure 4). 
And in fact, this simple variation yields 
a correlation of R=0.99 (rms=O,l23 
kcaumol) for the pseudoreceptor model 
of the inactivated state with a rms of 
0.848 kcal/mol (Uf: 3.96) for the 
prediction of the residual four test set 
derivatives. Naturally, also for this 
model the suspected charge transfer 
interactions were observed leading to 
deviations of -3.86 kcal/mol and -6.42 
kcal/mol for H and the 3 ’ - 0 ~ ~  DHp, 
respectively. 

Figure 4. Pseudoreceptor model of the channel in the 
inactivated state. For clarity only NH and OH hydrogens 
are displayed (dashed lines indicate hydrogen bonds). 

Even though a transfer of these theoretically derived findings to a realistic binding site is 
quite speculative, the observed motions of the channel during transition from the resting to 
the opened state could explain the generation of an additional contact region for DHP 
causing increased binding affinities. 
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INTRODUCTION 

The cytochromes P450 are a superfamily of isoenzymes that catalyse the metabolism 
of a large number of compounds of both endogenous and exogenous origins.’ Cytochrome 
P450 1A2 (CYPlA2) is a member of the CYPl family that is responsible for the 
metabolism of several planar highly conjugated compounds. 

Among the substrates of this cytochrome, there are several important substituted 
xanthines like caffeine,’ as well as heterocyclic aromatic amines (HCA) present in cooked 
food meat and fish. The metabolism of the HCA has biological importance because they 
exert a genotoxic activity after their N-oxidation by cytochrome P450 1 ~ 2 . ~  Other specific 
substrates are 7-ethoxyresorufin and phenacetin. On the other hand, several quinolones, 
which could be interesting in 

potent antibacterials, present 

competitive inhibitors of the 

cH11-cn2-o xJc,uo 
metabolism of other P450 HS CH) O . - p - : c i l . . . H  
therapeutics because they are ON-. e - c  % 

PHENACEnN the side-effect of being 7-ETHOXYRESORUFlN 

The 1A2 substrates P450 1A2 like substrates ~ a f f e i n e . ~  c ~ 3 - ~  &lu (y$; r>,’\N 

n/NC 
ENOXACIN 

CHI 

CAFFEINE 

exhibit a wide structural 
variability as it can be NH2 

observed in Figure 1. The 
main obiective of the present Figure 1. Some substrates of cytochrome P450 IA2 

study was to find veiled 
similarities between the mentioned compounds that could explain their common biological 
activity as substrates of the cytochrome P450 1A2. The study was carried out on the basis 
of the analysis of the molecular electrostatic potential (MEP) distributions of the 
compounds. 
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MOLECULAR ELECTROSTATIC POTENTIAL ANALYSIS 

The MEP distributions of the considered compounds were computed at the quantum 
mechanical level using the wavefunctions resulting from full geometrical optimisations 
using the GAUSSIAN software with the 3-21G basis set. The MEP distributions were 
computed and analysed with the MEPMIN module5 of MEPSIM package.6 MEPMIN 
detects the MEP minima of a molecule and finds the geometrical relationships between 
them. In the case of compounds with several low energy conformations that generated 
different MEP distributions (phenacetin and 7-ethoxyresorufin), they were analysed 
separately. The MEP maps of the considered compounds in their main molecular plane are 
shown in Figures 2-6. 

Figure 2. MEP map of MeIQ (the most active HCA). 

Figure 4. MEP maps of two low energy conformations 
of 7-ethoxyresorufin. . 

Figure 3. MEP map of caffeine. 

Figure 5. MEP maps of two low energy 
conformations of phenaceth. 
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Figure 6. MEP map of enoxacin. Figure 7. Scheme of the proposed pharmacophore 
for the substrates of cytochrome P450 1A2. 

The observation of MEP maps like those shown in Figures 2-6 allowed us to define 
the pharmacophore presented in Figure 7. It indicates that the CYP1.42 substrates have two 
deep zones of negative MEP located at opposite sides of the molecular structure and 
separated by a distance that ranges from 6.4 to 7.5 A. Furthermore, one of these zones is 
located at a distance of 2.2-3.1A of the group that is oxidated by the cytochrome P450 
1.42. The fitting of the above mentioned substrates on the basis of the pharmacophore is 
shown in figure 8. 

Figure 8. Fitting of CYPlA2 substrates on the basis of the proposed pharmacophore 
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Another procedure of analysing the similarity of MEP distributions is by means of the 
use of the MEPCOMP program,' which is also integrated in the MEPSIM package.6 
MEPCOMP performs an automatic search of the alignment of two compounds looking for 
a maximum of a similarity coefficient between the corresponding MEP distributions. It has 
to be pointed out that MEPCOMP takes into account the whole MEP distributions and not 
only the position of the minima as it happened in the MEPMIN approach. In the present 
study, we used the MEPCOMP program to test if the above mentioned relative positions of 
the compounds (see Figure 8) agreed with optimal alignments after MEPCOMP processes. 
Figures 9 and 10 show the alignments proposed by MEPCOMF in the comparisons of 
MeIQ with 7-ethoxyresorufin and phenacetin. In these two examples, MEPCOMF supplied 
relative positions that agreed with the manually proposed on the basis of the 
pharmacophore. 

Figure 9. Aligment proposed by MEPCOMP 
in the coinparison of MeIQ vs 7-ethoxyresorufn 

Figure 10. Alignment proposed by MEPCOMP 
in the comparison of MeIQ vs phenacetin. 

An additional challenge for the proposed pharmacophore was to observe if it could 
contribute to explain differences in activity within congeneric series of compounds. A first 
positive result on this issue arose from 
the comparison of the MEP maps of 
enoxacin (Figure 6) and ciprofloxacin. 
(Figure 11). two quinolonic 
antibacterials which are more and less 
active at the cytochrome P450 1A2 
respectively. In both cases it is possible 
to define the proposed pharmacophore, 
but in the case of ciprofloxacin it shows 
flawed features like the need of rotating 
the piperazine ring from its lowest 
energy conformation in order to reach 
the proposed distance between one of the 
MEP minima and the group to be 
oxidated. Another weak feature of 
ciprofloxacin is the fact that both 
minima are at the same side of the 
molecular structure, and the last defect is 
the smaller magnitude of the MEP 
minimum that is close to the oxidation site, in comparison to the rest of the compounds. 
This magnitude is 34.0 kcaliinol in the case of ciprofloxacin, whereas it is 48.5 kcah'mol in 
the case of enoxacin and even greater in the rest of the studied substrates. 

Figure 11. MEP map of ciprofloxacin. 
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k 

Trp-P-1 

Figure 12. Mutagenic heterocyclic ainines.’ Stars indicate the approximate locations of 
ituiiiinutn MEP zones. 

A second positive result that we  obtained on the same issue, relates with the food 
heterocyclic amines that are activated to mutagens by cytochrome P450 1A2 If w e  observe 
the MEP distributions of the series of such amines experimentally studied by Wakabayashi 
e t  al ,8 we can see that all of them have a deep zone of  negative MEP at the relevant 
distance (almost three h g s t r o m s )  of the amino group that is N-oxidated by the cytochrome 
(Figure 12) Furthermore, the three less active 
compounds (PhIP, AaC, MeAaC) lack of  the 
second proposed zone of minimum MEP, while 
the five most active molecules (MeIQ, IQ, 4,s- 
DiMeIQx, 7,8-DiMeIQx, MeIQx) possess both 
zones As an example of the MEP distribution 
of  a weakly active amine, Figure 13 shows the 
MEP map of PhIP It has to be pointed out that 
in this case, the MEP distribution not only lacks 
of  one of  the negative MEP zones but the one 
close to  the oxidation site is more extended that 
in the rest of studied compounds (see Figures 2- 

W e  have been successhlly using the 
present pharmacophoric model in other kinds of 
theoretical studies For instance, we  have used 
the minima positions as  possible solvation 
positions in docking simulations It has to be 
pointed out that we  have found interesting coincidences between the pharmacophore and 
the results of other approaches that we have been using to  study the same problem For 
instance, we have carried out docking simulations of the series of heterocyclic amines using 
the AUTODOCK 2 4” software and a 3D model of cytochrome P450 1A2 previously 
obtained The automatic docking processes generated two clusters of interaction positions 

I 

6) 

Figure 13. MEP map of PhIP. 
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that included the amines having two or only one minimum MEP zones respectively." 
Using the alignment of the 12 amines resulting of the AUTODOCK computations, we have 
performed COMBrNE'' and GRID/GOLPE13 analyses that yielded excellent predictive 
indexes (q2 approximately equal to 0.8 in two PC models)." 

CONCLUSIONS 

We have proposed a MEP-based pharmacophore that could facilitate the qualitative 
prediction of the capability of compounds to interact with cytochrome P450 1.42. This 
possible application has a notable interest in the drug development process. On the other 
hand, the agreement that we have found between the proposed model (MEP-based 
pharmacophore), and the results obtained using other approaches (docking simulations, 3D- 
Q S A R  studies) gives us an increased confidence 'in all of them. The control of the 
agreement between the results obtained using several independent methods should be a 
normal working strategy to increase the reliability of the theoretical models. 
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ABSTRACT 

As biological drug targets multiply through the human genome project and as the 
number of chemical compounds available for screening becomes very large, the expense 
of screening every compound against every target becomes prohibitive. We need to 
improve the efficiency of the drug screening process so that active compounds can be 
found for more biological targets and turned over to medicinal chemists for atom-by-atom 
optimization. We create a method for analysis of the very large, complex data sets coming 
from high throughput screening, and then integrate the analysis with the selection of 
compounds for screening so that the structure-activity rules derived from an initial 
compound set can be used to suggest additional compounds for screening. Cycles of 
screening and analysis become sequential screening rather than the mass screening of all 
available compounds. We extend the analysis method to deal with multivariate responses. 
Previously, a screening campaign might screen hundreds of thousands of compounds; 
sequential screening can cut the number of compounds screened by up to eighty percent. 
Sequential screening also gives SAR rules that can be used to mathematically screen 
compound collections or virtual chemical libraries. 

INTRODUCTION 

The basic techniques of drug discovery are rapidly changing. Many more targets 
are being identified through the human genome project and other genetic initiatives. Vast 
numbers of compounds are available for testing. A large pharmaceutical company has 
hundreds of thousands of compounds in inventory for this initial testing. Over one million 
compounds are available from commercial sources. Combinatorial synthesis is making 
additional millions of compounds available. Testing has also changed. Robots can rapidly 
deal with many, very small samples. Testing is giving rise to data sets with hundreds of 
thousands of biological results. 

Can we take advantage of all this data? The need is to relate chemical structural 
features to biological results. But the representation of chemical structures in a form 
suitable for analysis is complex. A molecule is a set of connected atoms. The connections 
can be complex and the atoms can take on different characteristics depending on which 
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and how other atoms are connected to them. It is possible to develop large numbers of 
structural descriptors, thousands to millions! Compounds typically contain rotatable 
bonds and are typically very flexible. They elicit their effect by binding to proteins that 
are also flexible. 

But, even more problematical, the various compounds can bind in different ways 
and even in different places to product their effects. We have a mixture problem. Analysis 
should take into account that compounds can act through different mechanisms; most 
analysis methods fail in these circumstances. To be successful we need to identify the 
different classes and the features important for each class. 

In this paper we describe how recursive partitioning, RP, can be extended to deal 
with very large data sets where each sample is described with a large number of bivariate, 
011, descriptors. We describe how RP can be used in sequential screening to improve the 
efficiency of the screening process. See Figure 1. 

’ initial 
Sample 

SCAM 
Model 

THE DATA 

Additional - 

We describe each chemical structure by determining the presence or absence of 
structural features, atom pairs [Carhart et al., 19861, topological torsions [Nilakantanet 
al., 19871, and atom triples in the structure, hydrogens omitted. Atom triples are an 
extension of atom pairs See Figure 2. 

Sample 
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N(3,0)-4-0 (2,l) N(2,0)-5- 0(1 .I) 

Becomes a vector -> [ 0, 1, 1, 0, 0, 0 ,1 ,0,  0, . . ., I ]  

Topological Torsion 

S 

Becomes a vector -> [ 0, 1 ,-I, 0, 0, 0, 1,0, 0, . . . , ' I]  

Becomes a vector -> [ O,-l, 1, 0, 0, 0, 1, 0, 0, . . _,  I] 

Figure 2. Examples of atom pairs, topological torsions and atom triples. Atoms are typed by their name, the 
number of non-hydrogen connections and the number of shared x electrons and the shortest path between 
the atoms. We describe each compound with vector, a bit string. A 1 indicates that a feature is present and 
a 0 indicates that it is not. 

An atom triple consists of three atoms characterized by their atomic number, the number 
of non-hydrogen connections and the number of 7~ electrons. Three topological distances 
are used, the shortest path between each pair of atoms in the triple. Redundant atom 
triples are eliminated and unique triples for the data set are enumerated. Each chemical 
structure is characterized by a bit string noting the presence and absence of each possible 
feature, atom pair, topological torsion, and/or atom triple, Figure 3 .  
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1 
Compounds 

c 1  
c2 
c 3  
c 4  
c 5  

CN 

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  

U I  

Figure 3.  For each compound there is a potency and a bit string indicating which features are present in the 
compound. A large data set can contain over one hundred thousand compounds and over two million features. 

We overcome two problems using these descriptors. These topological descriptors are 
invariant to molecular rotation and twisting. The descriptors are very exhaustive and do 
not require expert opinion for variable selection. But we are left with a new problem that 
the number of descriptors is massive and the old problem that a data set can have many 
observations, one hundred thousand is common. 

THE ANALYSIS METHOD: RECURSIVE PARTITIONING 

Recursive partitioning, RP, is a statistical technique capable of de-convoluting 
mixtures and finding complex interactions among many variables to predict a response 
[Kass, 1980; Hawkins and Kass, 19821. RP easily handles large numbers of cases. We 
extended RP to handle very large numbers of variables, tens of thousands to millions 
[Rusinko et al., submitted for publication]. Standard RP and Artificial Intelligence 
methods, CART and C4.5, [Breiman et al., 1984; Quinlan, 19931 are not designed to deal 
with problems of this size. 

Recursive partitioning consists of successively dividing the data set into groups 
where the groups are defined by the level of some feature, Figure 4. 

Figure 4. Rules are used to split the data set into progressively smaller subsets. All the data is present at the top of 
the splitting diagram. The feature that best separates the more active from less active compounds is used to split 
the data set. This splitting progresses until it is no longer possible to split the data. Each compound ends up in one 
terminal node and the rules that lead to the node define the features important for that class of compounds. 
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We chose to modify the FIRM method of Hawkins and Kass[1982] from multi-way splits 
to two-way splits using a two-group Student's t-test. The t-test with the smallest p-value 
is used for the split. Each daughter group is split until either the t-test is not significant, 
adjusted for multiple testing, or the sample size becomes too small. Splitting with a t-test 
is much faster than the RP algorithms of CART and C4.5. 

The matrix of descriptors can be very large, lOOk by 2M is not unusual (Several 
million t-tests are examined at each split!) We recognize that the descriptor matrix is 
sparse, mostly 0s so we store only where the 1s are located, saving storage. Once a group 
is split we can recursively compute summary statistics needed for the t-test from the 
parent node and the node with the smaller number of observations thus gaining speed. 
Our algorithms operate in real time on a UNIX workstation enabling interactive analysis. 
Also, attention is paid to multiple testing. We adjust the analysis to reflect the number of 
variables examined at each split to control the possibility of a false split. Our RP method 
determines molecular structural features associated with biological activity for each 
terminal node, de-convoluting the original mixture and finding the important molecular 
features for each. 

EXAMPLE 

We present an analysis of a set of 1650 compounds of widely varying structure 
tested for monoamine oxidase, MAO, inhibition [Brown and Martin,l996]. It is known 
that there are at least two types of compounds acting through completely different 
mechanisms. The activity of each compound was scored 0, 1, 2, 3 with 0 indicating no 
activity and 3 the most active. The analysis of this data set using atom triples as 
descriptors is given in Figure 5 .  

sd = 0.81 
SB = 0.02 

rP = 1.98e-87 

n = 1573 
svp = 0.23 
s d = 0 8 2  
se = 0.02 

rP = 3.70e-18 

Splitting 
Occurs 

L - 

n = 1613 
avg = 0.28 
sd = 0.72 
5e = 0.02 

rP = 8.79e-84 1 aP= l.?Oe-78 

C(1.2) -8- 
C(2.1) -6- 
C(l.0) -5- avg = 2.80 

s d = 0 7 0  

rP = 7.75e-19 

Figure 5. A recursive partitioning tree can be read in the following way. Each node gives summary statistics for 
the objects in the node, e.g., number of observations, average, standard deviation, standard error of the mean and 
two p-values for the splitting-the raw or unadjusted p-value and the p-value adjusted to reflect the number Qf 
variables examined. Below each node is the feature used to split the node. The nodes are named reflecting the 
binary splitting. Splitting stops when the adjusted p-value is not statistically significant. 
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Among all the atom triples, the triple, C( 1,2)-8-C(2,1)-6-C( 1,O)-5 splits off 37 
compounds with an average activity of 2.80, from the remaining compounds. Following 
node N1, two inactive compounds were split off giving 35 compounds with an average 
activity of 2.94. Node NO1 1 with 36 compounds also contains highly active compounds. 
By tracing the rules that give rise to the splits leading to a terminal node, chemical 
structural features are identified. Figure 6 gives a typical compound from nodes N110 and 
NO 1 1. These two compounds indeed act through different mechanisms, one binding to a 
co-factor of MA0 and the other binding to MAO. 

Figure 6 .  Compounds selected from two active nodes, N110 and NO 1 1. 

SEQUENTIAL SCREENING 

This method is being used as part of a sequential screening strategy. The number of 
compounds available for testing is exceedingly large. The idea is to select a small number 
of compounds for initial screening, analyze the results, and then predict which of the 
available, untested compounds should be screened next. To study the effectiveness of 
sequential screening we conducted extensive simulations using large data sets of tested 
compounds. 

But there are many questions about how to optimize sequential screening. How 
large should the initial screening set be? How should the compounds be selected? How 
should the compounds be described? (There are many types of descriptors other than atom 
triples.) What analysis method should be used? How many cycles of selection should be 
completed? We examined many factors using a factorial design [Box, Hunter, and 
Hunter,1978]. For example, we looked at initial sample sizes of 5,000 or 10,000, selected 
at random or selected to be chemically diverse. We looked at follow-up samples of size 
2,500 or 5,000. As a measure of effectiveness we formed a ratio of the number of good 
compounds found, the number in the top 100 or top 350 compounds from the -71,000 
compounds in the data set, relative the number of good compounds expected to be found 
by chance. 

We learned the general characteristics that give good results for sequential 
screening. The initial set should be five to ten thousand compounds. If the assay has good 
precision, then even smaller initial sets work well. Two cycles of selection work well. Etc. 

The most surprising result was that how the initial set of compounds was selected 
seemed unimportant. In particular, a random selection of compounds was as effective as a 
carefidly selected diverse set for starting the sequential screening process. In virtually all 
areas of experimentation, carehlly selecting the learningkraining set gives the most 
information relative to effort expended. It seemed reasonable to us that selecting 
compounds as different from one another as possible would sample more of the available 
chemical space and we would be less likely to miss an important region. Since our belief 
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was not confirmed, we decided to re-test the proposition in a second set of about fifty 
thousand compounds. Some of the results are given in Table 1. 

Table 1. The initial set of compounds for sequential screening was selected based on chemical 
diversity and at random. Given is the ratio of active compounds found by sequential screening 
relative to the number expected by chance. A ratio of one would indicate that sequential screening 
is no better than chance. We formed this ratio for the top 100 and top 350 compounds. And we 
repeated the experiment four times for each set of conditions. The four replicate values are 
ordered by size to facilitate comparisons 

Diversity Random 

ToplOO Top 350 ToplOO Top 350 

3.08 4.21 3.36 3.66 
3.14 4.31 3.36 4.33 
3.64 4.59 3.37 4.41 
3.66 4.64 - 3.40 4.42 

Average 3.38 4.44 3.37 4.21 

- 

We give the ratio of active compounds found by sequential screening relative to the 
number expected by chance. A ratio of one would indicate that sequential screening is no 
better than chance. We formed this ratio for the top 100 and top 350 compounds. And we 
repeated the experiment four times for each set of conditions. It is clear that sequential 
screening greatly improves the ability to find good compounds, compounds in the top 100 
or 350 in the collection. It is also clear that the performance of sequential screening is not 
improved by the selection of a diverse set of initial compounds. Why is diversity selection 
not better than random selection? Examine Figure 7. 

Figure 7. How important is the initial design? Should the compounds be well-spaced? And how well do they 
cover the space? 

Suppose that each compound covers only a small space, second figure versus the first. 
Then, random compounds are unlikely to overlap so the random compounds cover the 
same amount of space as the carefully selected compounds, third figure versus the second 
[Young et al., 19961. Since it can be difficult and time consuming to carefully select a 
diverse set of compounds, time and effort can be saved by taking a simple random sample. 

MULTIVARIATE SCAM 

Often, several response variables are measured on each compound. It would be 
useful to find structural features associated with the profile of responses of a compound. 
One interest is finding features associated with selective compounds. The Student t-test 
can be replaced with the Hotelling T2 to solve this problem. 
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CONCLUSION 

The big payoff of this work is that our modified version of recursive partitioning 
can be used to greatly increase the efficiency of drug discovery; by screening five to ten 
percent of a collection we can find thirty to fifty percent of the most active compounds. 
Important to the chemist is the fact that the method also gives the reasons for activity and 
that the method finds multiple classes of active compounds. The RP tree shows the 
chemist which features are important and which are not, so that atom-by-atom synthetic 
modification is efficient. The method also gives rules to search large structure data bases 
to suggest additional compounds for screening, either from actual collections or from 
virtual libraries. 

The term “data mining” is used to describe the process of examining large, 
amorphous data sets with the idea that useful information can be extracted. The data sets 
usually come from operations and were not collected for decision making. In business 
situations, billing records are an example. In our situation, compounds are screened and 
the usual practice is to simply note the few most active compounds and ignore the rest of 
the data. Data mining is difficult. We think our success comes from applying knowledge 
from three subjects, statistics, computer science, and the subject matter, chemistry. 

atents are pending on portions of this work. 

Data set and code availability 

Abbott Laboratory will make an electronic copy of this data set available; contact Daniel 
W. Norbeck, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500. 

A recursive partitioning code, FIRM, is available for nominal charge. Contact Dr. D. M. 
Hawkins, doug@stat.umn.edu. 
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ABSTRACT 

Novel ways of coding the structure of chemical compounds are presented and their use 
for correlating biological activity is explored. These structure codes take account of the 
three-dimensional arrangement of the atoms in a molecule, or consider molecular surface 
properties. These molecular representations have been studied with large datasets; various 
applications to biological activity studies and the definition of chemical diversity will be 
presented. 

INTRODUCTION 

Methods for the prediction of biological activity have to rely on prior information, and 
have to employ inductive learning methods to derive models for the relationships between 
biological activity and chemical structure from previous observations. The development of 
combinatorial chemistry and high-throughput screening serves nothing else but to more 
rapidly provide data on biological activity for a wider range of compounds. These data have 
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then to be analyzed by modeling techniques. The design of chemical libraries has to focus, 
sooner or later, on obtaining compounds exhibiting biological activity. 

Thus, in both approaches, rational drug design and combinatorial chemistry, the study 
.of the relationships between chemical structure and biological activity is of central 
importance. These relationships are sought to be unraveled by learning techniques such as 
statistical and pattern recognition methods or neural networks. In this endeavor, the 
representation of chemical structure plays a major role. 

HIERARCHY OF PRESENTATIONS 

Chemists have developed a variety of methods for representing and communicating 
structure information. The most widely used, international language is the structural formula; 
it is still the method of choice when representing chemical reactions. For a more in-depth 
analysis, three-dimensional molecular models are built, either by mechanical molecular model 
kits, or, increasingly by computer modeling. A variety of representations is available, from 
framework, through ball and stick, to space-filling models. An even more refined analysis of 
molecules, particularly when studying biological activity, has to consider molecular surfaces, 
surface properties, and molecular potentials and fields. 

AU these various representations of chemical structures have to be translated into a 
form amenable to computer manipulation. A further requirement set by the use of learning 
methods is that molecules have to be represented by the same number of descriptors, 
irrespective of their sue, the number of atoms in a molecule. Only then can datasets of 
different molecules be automatically processed by statistical methods or neural networks. 

In the following, we will present various techniques for encoding these different forms 
that the chemists use for structure representation. We will briefly mention the encoding of 
the constitution (topology) of a molecule but mainly concentrate on the representation of 3D 
structures and of molecular surfaces. These different encoding methods have been developed 
for the different requirements made by the intended applications. Furthermore, the kind of 
coding method to be chosen will also be strongly dictated by the size of the datasets that 
have to be studied. 

NEURAL NETWORKS 

Our group has a long history of applying chemometrics, such as statistical or pattern 
recognition methods, to understand chemical information. In recent years, however, we have 
largely concentrated on using neural networks for this purpose because of the great potential 
of neural networks for projection, clustering, and modeling.lS2 

A detailed discussion of neural networks clearly is beyond the scope of this 
presentation; a textbook on applications in chemistry is available.' Suffice to say that neural 
networks can do both unsupervised and supervised learning. For unsupervised learning we 
quite extensively use the self-organizing maps introduced by Kohonen. Kohonen networks 
are powerful similarity perception and clustering techniques. An overview of the use of 
Kohonen networks in drug design has recently a~peared.~ Basically, two types of uses of 
Kohonen networks in drug design have been developed, a 1: 1 and an n: 1 appli~ation.~ In the 
1:l approach, one molecule is mapped into one network; a typical example is the analysis of 
molecular surfaces by a Kohonen map. In the n:l approach, a set of n molecules is mapped 
into one network so as to study their similarity or diversity, or their different biological 
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activity (see following sections). Supervised learning is usually performed by feedforward 
networks with backpropagation learning or by counterpropagation networks.'' 

PHYSICOCHEMICAL PROPERTIES 

The binding of a ligand to its receptor may depend on a variety of physicochemical 
properties such as electrostatic potential, hydrophobicity, and hydrogen bonding potential. 
The coding of molecular structures should therefore incorporate these physicochemical 
effects. Methods for the calculation of a range of properties such as partial atomic  charge^?^ 
measures of the inductive effect: resonance? or polarizability effect' have been developed. 
These procedures are empirical in nature and are therefore quite rapid and can be applied to 
large datasets. These methods have been collected in the program package PETRA 
earameter Estimation for the Treatment of Reactivity Applications).' 

CODING THE CONSTITUTION 

The structural formula can be considered as a mathematical graph; graph theory has 
therefore played a major role in the computer handling of structure information. However, 
the representation of a molecule as a graph, as a list of atoms and bonds does not fuli% the 
requirement for a fixed number of descriptors irrespective of the size of a molecule. In many 
applications, molecules are represented by lists of fragments, in the form of bit strings, the 
presence or absence of a certain functional group indicated by a 1 or 0. Such representations 
of a structural formula are often called 2D descriptors, however, they do not carry any direct 
2D information; they are only a reflection of the constitution of a molecule, and therefore 
should be called topological descriptors, at most. 
We have sought for methods that allow one to encode various physicochemical properties of 
the atoms in a molecule, such as partial charges, polarizability, etc. Our approach rests on 
autocorrelation functions (eq 1) introduced for structure handling by G. Moreau quite some 
time ago? 

A value for the autocorrelation function A, at a certain topological distance (number of 
bonds), d, is calculated by summation over all products of a certain property, p, of atoms i 
and j having the required distance, d. 
A range of properties such as partial atomic  charge^?^ measures of the inductive effect6, 
resonance5, or polarizability effect7 were calculated by rapid empirical methods contained in 
the program PETRA (Parameter Estimation for the Treatment of Reactivity Applications).' 
With seven such properties, p, and seven topological distances, d = 2...8, each molecule was 
represented by a 49-dimensional vector. It could be shown that such a representation can 
distinguish between dopamine agonists and benzodiazepine agonists." 'The separation of 
these two types of molecules was even maintained after projection of this 49-dimensional 
space into two dimensions by a Kohonen neural network. Of even more importance is the 
fact that dopamine and benzodiazepine agonists could still be distinguished when contained 
in a datafile of more than 8,000 compounds of a chemical supplier catalog. 
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dopamine agonists collisions 

benzodiazepine agonists empty neurons 

compounds of unknown activity 
(Janssen Chimica catalog) 

Figure 1. Kohonen map of 40x30 neurons trained with the topological autocorrelation vector of 112 
dopamine agonists, 60 benzodiazepine agonists, and 8,323 structures from a chemical supplier catalog. 

Figure 1 shows that dopamine and benzodiazepine agonists could nearly completely be 
separated (there are only two neurons (collisions) obtaining both types of compounds). 
Furthermore, these compounds populate only a limited area of the entire range of organic 
compounds covered by the chemical supplier catalog (Janssen Chimica). The two types of 
compounds were found in limited and separated regions of a Kohonen map." Thus, this 
study showed where benzodiazepine and dopamine agonists have to be sought and in which 
region of chemical space no such activity is to be anticipated. 

3D STRUCTURE 

The study of the relationships between biological activity and the 3D structure of a 
molecule on a broad scale has been made possible by the advent of universal and efficient 
automatic 3~ generators." 
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The program system CORINA12*'3 developed in our group provides excellent 3D 
models as was shown by a comparison with X-ray str~ctures.'~ CORINA is applicable to 
large molecules and large datasets. Figure 2 shows a 3D model of a molecule containing 999 
atoms that was automatically built by CORINA from a connection tablet3 

To illustrate the broad scope of CORINA, the database of the National Cancer 
Institute that was recently made public was automatically converted by CORINA. Of the 
237,771 connection tables 99.8% could be converted into a 3D structure and all this took 
only 18,092s (0.08s / molecule) on an SGI R10000. Even the entire Beilstein file with nearly 
7 million structures has been converted into 3D, again with a conversion rate of over 99%. 

With a 3D structure accessible for practically any organic molecule, the problem is 
then, how to encode the 3D structure under the restriction of a fKed number of variables, 
independent of the number of atoms in a molecule. 

Building on equations used for obtaining the 3D structure of a molecule from electron 
diffraction experiments the encoding procedure embodied in eq 2 was developed!! 

In this equation, Z(s) is the intensity of the scattered electron beam at observation 
angles s, Ai and Aj are atomic properties such as atomic number, or partial charges, and rv is 
the distance between the atoms i and j ;  N is the number of atoms in the molecule. 
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In electron diffraction, the intensity is measured and the 3D structure as given by all 
distances rij is derived from the intensities on the basis of eq 2. In our approach, we have 
turned the equation around, inputting the 3D structure of a molecule in the form of the 
distances rij and calculating Z(s). Furthermore, these values of Z(s) are calculated only at 
discrete, equidistant values of s, providing a fixed, predefined number of values of Z(s) which 
are then used as an encoding of the 3D structure of a molecule. This molecular 
representation was called 3D-MORSE Code (3D Molecule _Representation of Structures 
based on Electron diffra~tion).'~ 

This 3D-MORSE code was mainly used for the simulation of infrared spectra. 
However, it could also be demonstrated that this code shows great promise for correlating 
structure with biological activity. Dopamine D1 agonists could be separated from dopamine 
D2 agonists on the basis of the 3D-MORSE code by a Kohonen network.15 Furthermore, 31 
steroids binding to the corticosteroid binding globulin (CBG) receptor could be clustered 
according to this activity in a Kohonen network. 

Recent work has shown that a structure code based on radial distribution functions 
which is quite similar to the 3D-MORSE code can indeed be transformed back into 3D 
space.16 This potential of a structure code for regaining the 3D structure opens exciting 
possibilities. 

CONF'ORMATIONAL FLEXIBILITY 

Indeed, biological activity is intimately tied to the 3D structure of molecules and 
therefore the goal in structure-activity studies should be to account for the 
3D structure of molecules. However, many studies of other groups have shown that quite 
often 3D descriptors do not offer additional benefits to topological descriptors. The reason 
for this is that most molecules are flexible, attaining a variety of conformations and one 
cannot be sure whether the conformation investigated actually is the one picked up at the 
receptor. The problem is aggravated in those cases where the 3D structure of the receptor is 
not known - and these are still the majority of the cases. It is our belief that one can derive 
knowledge on the structural requirements of a ligand for binding to a receptor through 
systematic investigation of a series of ligands binding to one and the same receptor. In one 
of such approaches we have developed a method that searches for the maximum common 
3D substructure (3D-MCSS) of a series of molecules through superposition of these 
molecules.16 This superposition is achieved by the combination of a genetic algorithm with a 
steepest descent optimizer, the directed tweak method." In this process, allowance is made 
for conformational flexibility in order to maximize the superposition. Figure 3 shows the 
superimposition of four ligands that inhibit the angiotensin II receptor. , 

162 



rms = 0.25 A 
size = 31 atoms 
rms = 0.25 A 
size = 31 atoms 

Figure 3. The superposition of four angiotensin I1 antagonists. Pharmacophore points are indicated by 
circles of broken lines. 

MOLECULAR SURFACES 

Molecules interact with each other at molecular surfaces. This is particularly true for 
the interaction of a ligand binding to its receptor. The investigation of molecular surfaces, 
the coding of surface properties, is therefore of primary importance. 

A 2D description of surface properties of a molecule was obtained by projection of 
molecular surfaces into a two-dimensional map by a Kohonen network." It was shown that 
such maps of the electrostatic potential on a molecular surface can be used to distinguish 
between muscarinic and nicotinic agonists?' 

The Kohonen network stores the three-dimensional coordinates of points on the 
molecular surface. It has been shown that such a network can be used for quantlfylng shape 
similarities in a series of compounds.21* 22 The Kohonen network of one molecule can be 
used as a template for shape comparison. Another molecule can be sent through this 
network to show the differences of the shapes of these two molecules. Figure 4 illustrates 
this for the comparison between the molecular surfaces of 3,20-allopregnandion and 3,20- 
pregnandion. 
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3,2O-Allopregnandion 3,20-Pregnandion 

Figure 4. Kohonen map of the molecular surface of 3,20-allopregnandion taken as template, and that of 
3,2O-pregnandion sent through this network. The areas where the shapes differ show up as white areas. 

Autocomelation can be used to encode surface properties. In an autocorrelation 
function, A(d), a summation is made over all products of a certain property p at a point x and 
a second point at a distance of d from x (eq 2).4 For the distance parameter, d, all distances 
within a certain range, e.g., between 3 and 4 A are collected in one autocorrelation value. L 
is the number of distances. 

We have shown that autocorrelation of the electrostatic potential on the van der Waals 
surfaces into 12 descriptors provides excellent descriptors for the modeling of affinity of 
steroids for binding to the corticosteroid binding globulin (CBG) receptor.23 In fact, the 
prediction of CBG binding affinity is better than the one achieved by the widely used 
CoMFA method. Figure 5 shows these results. 

In a similar manner, autocorrelation of the hydrophobicity potential of a series of 78 
polyhalogenated aromatic compounds can quantitatively model the binding of these 
molecules to the cytosolic Ah receptor.23 

The same encoding method, autocorrelation of the molecular electrostatic potential 
(MEP) into 12 descriptors was used for the definition of diversity and similarity of 
combinatorial libraries.24 As an application, the experiments of Rebek et aLZs searching for a 
trypsin inhibitor, were investigated. Reaction of dimethylxanthene, carrying four acid 
chloride substituents, with 19 different amino acids provided a library of a maximum of 
65,341 compounds. The same experiment with the cubane skeleton carrying four acid 
chloride residues provided up to 11,191 compounds. The autocorrelation of the MEP of 
these compounds showed that these two sets of structures have to be considered as diverse. 
On the other hand, a library of 11,191 compounds obtained from these 19 amino acids and 
adamantane carrying four acid chloride groups is, on the basis of the autocorrelation vector 
of MEP, highly similar to the library of cubane compounds." Figure 6 shows a Kohonen 
map of 50x50 neurons trained with 65,341 dimethylxanthene, 11,191, cubane, and 11,191 
adamantane derivatives. The dimethylxanthene compounds are quite well separated from the 
other molecules, whereas the cubane and adamantane libraries quite extensively overlap. 
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Figure 5. Predictive power of CBG activity by a feedfmard neural network trained with steroids 
represented by 12-dimensional autocorrelation descriptors. 
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Figure 6. Kohonen map of three different libraries showing both similarity and dissimilarity of compounds. 

This encoding method has also great benefits for planning a strategy for deconvolution 
 experiment^.'^ These investigations showed that with the methods developed here such large 
datasets can be handled with a moderate amount of computation times. 

SUMMARY 

Approaches to the encoding of molecular structures have been developed that allow 
the investigation of datasets of diverse molecules by learning methods. These structure 
representations form a hierarchy of increasing sophistication. The level used will largely be 
dictated by the size of the dataset to be investigated. Representations of the constitution will 
be applied to datasets comprising millions of structures, whereas representations of 
molecular surface properties can still be chosen for datasets comprising 100,OOO and more 
structures. 

Even with large datasets these methods are rapid enough to be performed on small 
workstations with computation times of a few hours. Consideration of conformational 
flexibility is presently limited to smaller sets of structures. 
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Introduction 
Lead structure identification in databases of substantial size is a difficult task in computer- 
aided drug design. Several approaches to this problem have been suggested in the literature 
[l], including fingerprints, substructure matching, rigid-body superposition, grid- and graph- 
based field overlay. and flexible fitting. Although 2D molecular descriptors outperformed their 
3D analogues in a comparative study [ 2 ] .  current research efforts focus on 3D approaches. 
Despite recent advances [3], especially the appropriate consideration of molecular flexibility 
remains a challenging problem. In general, two kinds of approaches have been used to tackle 
this problem. Either a multi-conformer database is compiled in a preprocessing step, at 
the expense of increased memory requirements, or conformers are generated on the fly at 
the expense of increased computational costs. However, both of these approaches are only 
compromises, since in any case only a limited number of conformers can be considered. We 
propose a novel strategy for database screening on the basis of molecular fragments. From 
the computational point of view, a fragment-based approach is especially effective for two 
reasons. First, fragments often comprise only a small number of atoms and the runtime 
usually depends linearly on this quantity. Thus, a fragment-based search should be quite 
fast. Second. fragments frequently show only limited flexibility. thus allowing to ignore the 
flexibility in a first order approximation. 
Klopman 141 demonstrated that fragment-based discrimination of active and inactive 
molecules is frequently possible. However, while Klopman employs substructure search and 
focuses on the combination of absent/present fragments in order to discriminate between ac- 
tive and inactive molecules, we focus on the similarity search on the basis of fragments. Since 
the physico-chemical characteristics rather than the atomic structure of a fragment deter- 
mines its activity. or contribution to an activity, it appears appropriate to rate activity on 
the basis of fragment similarity. 
The result of our fragment-based database screening is twofold: it comprises a similarity score 
and a structural alignment witnessing this score that is worthwhile to be analyzed separately. 
Our similarity approach called RIGFIT is based on a Fourier space alignment technique de- 
scribed previously [ 5 ] .  In a preliminary screening experiment we already demonstrated the 
usefulness of RIGFIT in two respects. First, the approach allows for a user-adjusted tradeoff 
between accuracy and efficiency. This allows for rapid processing at low resolution which is 
appropriate for screening experiments. Second, since RIGFIT optimizes rotation and trans- 
lation in two successive independent steps. the latter of which is extremely fast. it allows for 
dense sampling of starting points for translational optimization. This, in turn. is a prereq- 
uisite for successful fragment handling. Utilizing a computational shortcut known from Fast 
Fouraer Transform. we recently further increased the RIGFIT performance by about a factor 
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of three. RIGFIT superposes a fragment with another molecule in about 1 second/structure' 
on a common day workstation. An optional second screening step may be performed by our 
flexible superpositioning tool FLEXS [6]. FLEXS superposes pairs of molecules and takes full 
flexibility of one of the structures into account. The average computing time 6f FLEXS is in 
the range of 1 minute/structuret. RIGFIT is implemented as part of FLEXS which is available 
on the WWWJ. 

Methods 
Both our search engines are described in detail elsewhere [5 ,  61. The idea is to use these tools 
in a two-step screening approach. Here, we will focus on the rapid fragment-based screening 
that may be performed using RIGFIT. The application scenario we consider can be described 
as the following task. Given a ligand exhibiting a desired property and a 3D database to be 
screened, detect analogs to the query structure in the database. 

Fragment based screening 
RIGFIT optimizes the common volume of two molecules expressed by various Gaussian func- 
tions associated to different physico-chemical properties. The basic algorithmic idea in RIG- 
FIT originates from X-ray crystallography, and uses the concept of the Patterson functzon. 
One way to approach the well known phase problem in crystal structure determination is to 
consider Patterson densities instead of real space electron densities. Since the Patterson func- 
tion contains only information about interatomic distances, this description is independent of 
the translation of the molecule. By transforming the Gaussians to Fourier space and neglect- 
ing the phases artificially, we mimic the molecular replacement approach of X-ray structure 
determination and reveal a translation-independent description of the molecules. To compare 
two molecules, we evaluate the similarity measure proposed by Hodgkin [7] .  Since the mea- 
sure derived is invariant under translation, rotation can be optimized separately [8]. Thus, 
the six-dimensional search (as performed, e.g., in the SEAL system [9, lo]) is divided into two 
successive three-dimensional searches which inherently speeds up the optimization process. 
After determining the local optima of the rotation function, we optimize the translation in 
a second independent step. This optimization is carried out in Fourier space. utilizing the 
convolution theorem. and is extremely efficient. 
For the purpose of efficiency, we employ another concept originating from X-ray crystallog- 
raphy. We treat our molecules as being located in a virtually infinite lattice of replications. 
In this way, the Fourier transform of a real space density function becomes discrete, i.e. it is 
non-zero only for integral points in Fourier space (Laue vectors). Thus. the computation of an 
integral simplifies to the summation of function values for the Laue vectors. Furthermore. if 
not the entire set of Laue vectors but rather a spherical region around the origin is considered, 
the high-frequency contributions are removed from the Fourier series. As a consequence, the 
computational costs for the summation decrease and the scoring function becomes smoother. 
Thus, it is possible to trade off accuracy in the density description against computing speed. 
During objective function evaluation in Fourier space. it is necessary to calculate exponential 
terms ehx on a regular grid of Laue vectors h. Thus, effectively, one needs to evaluate 
e(ho+nAh)a: with a constant offset Ah (grid spacing). We transform 

E, := e(ho+nAh)s = ,hoz . r]: eAha: 

and precompute Eo := ehoz and A E  := eAhz. This enables us to substitute computationally 
expensive, successive exponential calculations by a single multiplication 

n 

En = En-1 . AE. 

Some computational overhead is necessary in order to provide a sequence of exponential 
calculations that best benefits from the novel incremental evaluation strategy. Note that 

*i.e , about 86,400 structures/day 
+ i . e ,  about 1440 structures/day 
fhttp://cartan.gmd.de/FlexS 
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enriched candidate set 1 

Figure 1. The two step screening strategy comprises RIGFIT as a first efficient filter, using fragment- 
based superpositioning. The optional second filter FLEXS is based on flexible alignment. The selection 
of a screening fragment (right hand side) may either be performed manually, automatically using a set 
of rules, or automatically based on the performance on a training set. 

in three dimensions at least three increments Ah,, Ah,, and Ahz have to be considered. 
However, for the usual range of numbers of Laue vectors that we consider (from 50 up to 
400), the computational savings amount to about a factor of three. 

Optional flexible fitting 
Our approach FLEXS follows a combinatorial approach to solving the ligand superposition 
problem [ll]. It allows to fit a flexible t e s t  ligand onto a rigid re fe rence ligand applying the 
following protocol: First, the flexible ligand is decomposed into small and relatively rigid 
portions (fragments). Second, an anchor fragment of the test ligand is selected. Third, using 
a discrete surface approximation, possible positions of the anchor on top of the reference 
molecule are determined. Finally, in an iterative incremental construction procedure, the 
anchor placements are extended by adding the remaining fragments of the test ligand step by 
step considering a discrete set of possible conformations for each fragment. The number of 
partial placements, generated in this way, grows exponentially with the number of added frag- 
ments. A greedy strategy is applied in each iteration to select a suitable subset of placements 
which is carried into the next iteration. 

Screening strategy 
A complete screening is carried out by the procedure illustrated in Figure 1. RIGFIT is 
used to superimpose a given fragment (or a set of fragments) onto every structure in the 
database. This results in a similarity score and a structural alignment. Sorting the structures 
by score (or any combination of scores for the different fragments) and applying a minimum 
threshold allows to filter out some fraction of the database. Supposedly, the molecules with 
similar fragment characteristics are top-ranking and subjected to a second screening step 
using FLEXS as the filter. Depending on the size of the database to be screened (cf. below), 
we extracted the 5 - 10% top ranking hits for the second filter. 

Determining a screening fragment 
We experimented with three different approaches to determining a screening fragment. First, 
the user may specify one or more fragments of the query structure. Second, the fragment 
selection may be performed automatically by the program. Finally, if a set of active molecules 
(training set) is available, a test-DB is utilized to train the automatic fragment selection pro- 
cedure, mentioned above, in order to suggest those fragments that discriminate best between 
the training set and the remainder of the test-DB. Subsequently, this selection of fragments 
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is processed as above. An illustration of the fragment selection procedure is given in the right 
half of Figure 1. 

Results 
We have used two databases for our tests. The first one is based on a data set assembled 
by Briem et al. [12]. It contains 972 ligands from the MDDR D B ~  which are grouped into five 
activity classes7 and a sixth class of randomly selected drug molecules. We augmented this 
data set with a set (RGD) of 12 fibrinogen receptor antagonists taken from the literature. 
The second database is the complete NCI database with 121,491 moleculesli. 
We performed six filter experiments on each of these databases, one for each of the activity 
classes RGD, ACE, 5HT3, HMG, PAF, and TX2. In each case we selected one reference 
molecule in the class and screened the database for molecules that are similar to the reference 
molecule. We tried this procedure with several reference molecules in each activity class. Here 
we report results on reference molecules that worked especially well. 
Table 1 summarizes the results of our tests. Column 1 of the table names the class and depicts 
the reference structure. The fragments of the reference molecule that are used to screen the 
database with RIGFIT have a white background. The remainder of the molecule is before a 
grey background. 
Columns 2 and 3 show enrichment factors achieved by using our screening procedure on the 
two databases. We calculate enrichment factors with the formula 

Here, N A ( ~ )  is the number of molecules of a certain activity class A among the top-ranking 
p% compounds of the database (hit-rate). N A  is the number of molecules of activity class A 
in the entire database and N is the size of the database. Thus, E A ( ~ )  counts the factor of how 
many more active molecules are found among the first p% of the database after screening, than 
according to a uniform distribution of the active molecules across the database. The charts 
in Table 1 display the enrichment factors achieved with RIGFIT (solid line), the enrichment 
factors achieved with the DAYLIGHT fingerprints** (short dashes), the maximum enrichment 
factor possible (dotted line), and the fraction of all active molecules contained in the respective 
portion of the database (long dashes). The y-axis on the left hand side shows the enrichment 
factor. The percentage level for the fourth curve is provided by the y-axis on the right hand 
side. Additionally, the decrease/increase in performance using FLEXS as a second filter is 
indicated by small arrows originating from the RIGFIT curve. The respective percentage 
fraction of the database considered is given along the z-axis. 
In addition to providing the charts, we calculated the median M A  of the ranks of the active 
molecules 

NA+l)ifN~odd,andM~=-(R~(-)+R~(-+l)) 1 ArA NA ifNAeven. 
M A  = RA(I 2 2 2 

Herein, RA(c) is the rank of the c-th active compound that we find in the list of all compounds 
as we go through it by decreasing rank. Thus, the median displays the rank by which 50% of 
the active molecules are covered. The changes in the rank of the median from using only the 
first to using both filters is provided in the upper right hand corner of each chart. In column 
4 we show an interesting new molecule, i.e. a molecule that we found by visual inspection of 
the high ranking structures that did not belong to the activity class from which the reference 
molecule was taken. 
It can be seen that in three cases the curve resulting from RIGFIT screens (solid lines) is 
above the curve corresponding to DAYLIGHT fingerprint based screening (short dashes), in 
two cases it is below (PAF, TXAQ), and in one case both methods perform similarly (HMG). 

§MDL Information Systems Inc., San Leandro, CA, USA. MACCS Drug Data Report (MDDR)  
(40 angiotensin-converting enzyme (ACE) inhibitors, 136 PAF receptor antagonists, 49 Thromboxane A2 

"Before conversion to SYBYL mo12 and validation of structures, the NCI DB release from 07/01/98 
(TXA2) recept antagonists, 114 HMG CoA reductase inhibitors, 52 5HT3 recept antagonists 

(http://epnwsl.ncifcrfgov:2345/dis3d/3ddatabase/pubstruc.html) contained 126,710 structures 
**DAYLIGHT Inc., Mission Viejo. California, USA. DAYLIGHT Software Manual, 1994 
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Table 1. Screening Results 

Reference structure Statistics on Interesting Hits 
Briems DB NCI DB 

The first column shows the reference molecule (one for each activity class) and the selected screening fragments (non- 
shaded region). Columns two and three display the overall result statistics on Briems dataset and our compiled version 
of the NCI database, respectively (see the text for a discussion of the different curves). The fourth column shows an 
interesing hit found during the screening experiments (sticks model) that does not belong to the original activity class, 
superposed by FLEXS onto the reference ligand (lines model). 

In the latter case, however, the performances are already close to their limit. Generally, the 
performance is quite high. The best enrichments are found with the RGD dataset. In this 
case, the selection of fragments has been performed manually and comprises two functional 
groups, carboxylate and guanidinum. However, also in the 5HT3 example the maximum 
performance is reached within the first percentile of the database. The weakest performance 
(with an enrichment of 13.7) was found in the TXA2 example. The best of all fragments (a  
benzol-sulfonamide group) in this case is still relatively unspecific and obviously not capable to 
display the key characteristic of this dataset. The top 100 hits of the RIGFIT screen have been 
subjected to flexible superpositioning onto the reference structure by FLEXS. The enrichments 
of the ACE and TXAZ examples dropped, while those on 5HT3 and HMG increased, and 
those on RGD and PAF remained almost unaltered. However, it is difficult to compare the 
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enrichments on the same scale here. The median of the ranks (provided in the upper right 
corner) of five out of six examples drops (indicated by the arrow). Thus, we reveal further 
enrichment even on this very small subset of 100 examples. We found that the structure 
containing the best screening fragment need not necessarily be the best possible choice of a 
reference structure for flexible superpositioning. 
Generally, results carry over convincingly to the large dataset. With 56.4, 38.1, 37.3, 25.0, 
12.6, and 9.1, respectively, remarkable enrichments are achieved. Of course, the maximum 
possible performance appears to be inaccessible here. However, the curves showing the ac- 
cumulated active hits found (long dashes), as well as the median indicate a comparatively 
high rate of active molecules within a fraction of the database that is small enough to allow 
for applying FLEXS. We performed the second filter step on two examples (ACE and RGD) 
using the 5,000 top ranking candidates. Again, the arrows indicate the increase/decrease in 
performance. It can be seen that the enrichments of the RGD example significantly increase. 
In both cases also the median decreases significantly, thus indicating for further substantial 
enrichment by the second filter. 
Among the hits not contained in the original activity classes (column 4 in the table) the most 
interesting one is part of the random set contained in Briems database. It ideally fits on 
top of the RGD reference structure. We found that this compound is labeled with ‘platelet 
aggregation properties’ in the MDDR and thus can be assumed to bind to the fibrinogen 
receptor. However, several other interesting hits have been found for the other examples 
showing the potential of our method to detecting analogs in a database. 

Conclusions and outlook 
Fragment-based database screening has proven to be fast and effective. So far, we did not 
exploit the positioning of a fragment provided by the RIGFIT approach. Also, we made only 
limited use of combining fragment scores. It is to be expected that both these options further 
increase the performance of our approach. Also, one could employ a standard basis set of 
fragments and use the RIGFIT scores as a fingerprint, thus coding the fragment characteristics 
of a molecule. 
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INTRODUCTION 

As the activity of synthesised bioactive compounds increases, it becomes more 
difficult to discover new chemical entities with substantial advantages. The average 
number of compounds synthesized in order to obtain a commercial candidate has risen 
from 10,000 to around 40-50,000. The recently-developed combinatorial methods greatly 
increase the numbers of compounds synthesized and tested but generate very large amounts 
of data. Clearly it has become very important to find new methods for extracting useful 
molecular design information from these large qauntities of structure-activity data. The 
data sets which derive from combinatorial chemistry and high throughput screening are 
often so massive that QSAR is the method of choice. The method, using multivariate 
statistics, was developed by Hansch and Fujita', and it has been successfully applied to 
many drug and agrochemical design problems 

QSAR has advantages of speed and simplicity and it can, in some cases, account for 
some transport and metabolic processes which occur once the compound is administered. 
Hence, the method is often applicable to the analysis of in vivo data. However classical 
QSAR has limitations in that it cannot handle stereoisomers, cannot correlate compounds 
where the base structure varies widely, cannot implicitly handle non-linear dependencies 
and interaction terms between the parameters, and QSAR analyses can be difficult to 
interpret in terms of mechanism at the molecular level. New QSAR methods have been 
developed recently which overcome some of these shortcomings. This paper discusses 
several of these novel molecular representations, the use of Bayesian regularised neural 
networks in SAR, and the application of these to bioactive compound design and the 
simulation of combinatorial discovery by the screening of large existing databases. Some of 
these are huge with up to 10l2 compounds though this may be only a small fraction of a 
combinatorial universe containing more than compounds. 

SIMPLE MOLECULAR REPRESENTATIONS 

Many types of molecular representation have been proposed, from Hansch 
parameters to chemical graph-based  method^^?^'^. Recently several new representations 
have been devised: atomistic counts5; molecular eigenvalues6; E-state fields'; topological 
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autocorrelation vectors'; various molecular fragment-based hash codesg'lO; and molecular 
holograms". These reprsentations may have advantages in speed of computation, in more 
accurately representing molecular properties most relevant to receptor activity, or in being 
more generally applicable to diverse chemical classes acting at a common receptor, than 
the traditional representations. 

Atomistic Representations 

In this deceptively simple approach5, molecules are represented simply by counting 
the numbers of atoms of specific elemental type, with specific numbers of connections (a 
measure of the hybridization). Although simple this representation is adequate to encode 
not only physicochemical parameters, such as lipophilicity and molar refractivity, but also 
biological activity (DHFR inhibition5) The fact that steric and lipophilic factors are often 
important in drug receptor interactions provides a partial explanation as to how such a 
simple representation may work. 

Molecular Eigenvalues 

A previous version of this eigenvalue index12 has been developed further by 
Pearlmann to become the BCUT (Burden, CAS, University of Texas) index13. In the 
present context the eigenvalue indices can be thought of as quantifying the most 
electronegative and electropositive atoms in the the moleculas. This comes about because 
the diagonal elements of the modified adjacency matrix have been ascribed atom specific 
values while the off-diagonal elements have values proportional to the bond orders. The 
diagonalization process in effect ascribes the bond electrons back to the atoms (the trace of 
the matrix remaining invariant). 

Molecular Multipole Moments 

Both of the above representations are simple to implement for very large numbers of 
compounds with diverse structures. However , a recent paper by Platt and S i l ~ e r m a n ' ~ ~ ' ~  
introduced a third general representation which is intuitively appealing. They generated the 
zero-, first- and second-order molecular multipole moments with respect to atomic mass, 
and atomic charge. We are currently working on a variant of Silverman & Platt's method 
which makes use of the principal pseudo-moments of inertia and associated axes (all atoms 
have unit mass) and also generating analogous 'lipophilic' molecular multipole moments 
(hydropoles), by utilizing the hydrophobic atom constant approach of Abraham and 
L~~ 1617  

Molecular Hologram Generation 

A very recent development is the molecular hologram, which is derived from a 
common strategy to increase the efficiency of database searching by translation of chemical 
structure representations into binary bit strings, known as fingerprints. Several approaches 
to fingerprinting have been implemented within commercial software". 

176 



The PLS technique is then used to generate a statistical model that relates the 
descriptor variables (occupancy numbers of the bins in the hologram) to an observable 
property, for example the biological activity expressed as -logIG50. The predictive power 
of the model is determined by using statistical cross validation using a number of cross 
validation groups. For the final model, the Q§AR analysis is redone with the number of 
components set to the optimal number of components 

Molecular holograms, eigenvalue descriptors, molecular multipole moments, 
chemical graph theory, and several other developments have significantly improved the 
mathematical description of molecules for use in SAR studies and rational design. 

BAYESIAN REGULANSED ARTIFICIAL NEURAL NETWORKS (BRANNs) 

Artificial neural networks are computer-based mathematical models developed to 
have analogous functions to idealised simple biological nervous systems. They consist of 
layers of processing elements (neurodes), which are considered to be analogous to the 
nerve cells (neurons) and these are interconnected to form a network which simulates a 
parallel computer3'. 

We have recently investigated the use of Bayesian regularization in artificial neural 
nets". Using Bayesian regularisation19 removes the need to supply a validation set since it 
minimizes a linear combination of squared errors and weights. It also modifies the linear 
combination so that at the end of training the resulting network has good generalization 
qualities. It has also been suggested that there is no need for a testing set since the 
application of the Bayesian statistics provides a network that has maximum generalisation. 
Our study used a network architecture with 3 hidden nodes which proved to be more than 
sufficient in all cases with the Bayesian regularisation method estimating the number of 
effective parameters. The concerns about overfitting and overtraining are also removed by 
this method so that the production of a definitive and reproducible model is attained, A 
minor problem of instability which is caused by the provision of randomised weights at the 
start of training which can be overcome by training a number of nets with different starting 
weights and selecting the best standard error of prediction. It has been found that those 
networks that converge to finite weights produce near identical answers. 

Simulation of Combinatorial Discovery 

The development of combinatorial chemistry, and the resultant large increases in the 
numbers of chemical entities screened for drug activity, has resulted in a paradigm shift in 
the way new drug leads are discovered. It is now possible to generate millions of chemical 
analogues in a relatively short time with greatly reduced effort. Rapid screening techniques 
have necessarily emerged to keep pace with the generation of new combinatorial libraries. 
It is now routine to carry out 40-50,000 screening events per week with a small number of 
staff?'. 

As powerful as these new methods of combinatorial and mass screening are, they are 
still only capable of accessing a very small region of the 'universe' of possible chemistries. 
Estimates of the 'universe' of chemical compounds that it is possible to synthesize by 
combinatorial methods range from 1060 - lO4Oo, numbers so vast that only a minute 
fraction could conceivably be generated and tested by combinatorial methods. This 
recognition is driving the quest for methods of simulation of combinatorial synthesis and 
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high throughput screening in silico. Methods to allow exploration of much larger region of 
combinatorial space would be of considerable interest in allowing a focusing of the 
combinatorial chemistry effort into chemical species with inherent novelty and receptor 
efficacy. 

Recently, Ho and Marshall2’ described a technique for generating very large 
databases, representing a ‘virtual’ combinatorial library, using a procedure they called 
DBMaker using permutations of SMILES strings. Tripos Associates have used an 
alternative approach which exploits simple chemistries and commercially-available 
building blocks to generate a 3D database. This ChemSpace” database contains 
approximately 1 trillion chemical structures for use in similarity and pharmacophore 
searches, approximately 50,000 times more than all the compounds in CAS. 

We have utilized the concept of a QSAR model as a ‘virtual receptor’ to allow rapid 
screening of these ‘virtual combinatorial libraries. We are working towards the 
development of computationally cheap, simple molecular representations for use in these 
studies involving large data sets which, coupled with developments in neural networks, will 
faciliate the generation of receptor surrogates with useful properties. Our implementation 
of virtual receptors involves a trained neural network and simple molecular representations 
which would be capable of rapidly evaluating large numbers of compounds for possible 
activity against the receptor type. Such virtual receptors would be useful screening 
paradigms for finding leads in large virtual databases. We have investigated this possibility 
using ANNs and found the approach feasible. More recently a number of different 
approaches to the library design and virtual screening have been reported24-29. Tropsha and 
his group have developed a method (Focus-2D) for searching virtual libraries for structures 
similar to biologically active compounds using simulated annealing and topological 
 descriptor^^^. Shi et a1 have used genetic function approximations to carry out QSAR 
studies in the NCI database which describe antitumour activity patterns25. Screening of 
virtual libraries using 3D steric and electronic grids has been reported by Lui et a126. 
H ~ r v a t h ~ ~  has automated the conformational analysis and active site docking of a 2500 
library of potential trypanothione reductase inhibitors. Vedani, Dobler and Zbinden28 have 
developed a quasi atomistic receptor model for use in screening of libraries which defines a 
pseudo receptor surface with properties which adapt to the requirements of the traing set. 
Polanski has used a self organizing map to derive a receptor-like neural network which 
could be used to screen virtual libraries. A flexible pharmacophore model of another 
receptor type has recently been described using a genetic algorithm approach29. 

The problem of defining a virtual receptor, once a suitable set of measurements of 
biological activity of compounds at the receptor is compiled, involves: generation of a 
suitable molecular representation for the compounds whose activity have been determined; 
mapping of molecular representation to biological activity. 

Benzodiazepine Virtual Receptor 

We applied some of the new molecular representations, and Bayesian regularised 
neural networks to the concept of virtual receptors. We used a combination of three simple 
representations (RKA): the atomistic representation5, which superficially appears to 
disregard much information such as topology and stereochemistry together with the 
Randi~*’~ and Kier & Hall4 indices. 
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A data set was compiled from the literat~re~'-~' which consisted of consisted of 300 
compounds of diverse structure: benzodiazepines, arylpyrazolo-quinolines, P-carbolines, 
imidazo-pyridazines, cyclopyrrolones. These were broken up into two sets: 30 compounds 
would serve as the test set, whilst the other 300 compounds would form the training set. 
The test set was chosen using a k-means clustering method to ensure a good representation 
of the total set. 

The standard error of predictions (SEPs) for the test set was 0134(scaled) with 
R=0734. Numerous ANN architectures were tested; the network with the lowest cross- 
validated SEP was deemed to be the optimal architecture. Rather surprisingly, the model 
does not suffer when positional information is removed from the representation (ie the 
position of substitution is ignored). Indeed, the best model using the atomistic approach 
was positionally-independent. The model obtained using the atomistic representation 
provides an SEP comparable to the model using the functional group representation. 

The resulting virtual receptor was used to screen a virtual combinatorial library 
simulated by 110,000 compounds from the NCI chemical database. Several compounds 
were predicted to have a higher affinity for the benzodiazepine receptor than any in the 
training or test sets, and their activity is currently under investigation. 

REFERENCES 

1. Hansch, C. and Fujita, T.,{rho}-{sigma}-{pi} analysis. A Method for the Correlation of Biological 
Activity and Chemical Structure. J.  Am. Chem. Soc. (1964) 86 1616 

2. Randic,M., On Characterisation of Molecular Branching. J.Amer. Chern.Soc. (1975) 97,6609 
3. Randic,M. and Trinajstic,N., In search of graph invariants of chemical interest. J.Molec.Struct. (1993) 

4. Kier,L.B. and Hal1,L.H. The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure- 
Property Modelling, Molecular Connectivity in Structure-Activity Analysis, J.Wiley and Sons, New York, 
1986. 

5.  Burden, F.R. Using Artificial Neural Networks to Predict Biological Activity from Simple Molecular 
Structural Considerations. Quant. Struct.-Acf. Relat. (1996) 15, 7-1 1 

6. Burden,F.R. A Chemically Intuitive Molecular Index Based on the Eigenvalues of a Modified Adjacency 
Matrix. Quant. Struct.-Act. Relat. (1997) 16,309-3 14 

7. Kier,L.B., Hal1,L.H. in Reviews in Computational Chemistry, K.B. Lipkowitz and D.B. Boyd (Eds.) VCH 
Publishers,NY (1995) Volume 2, p374 

8. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J., Gasteiger, J. Locating 
Biologically Active Compounds in Medium-sized Heterogeneous Datasets by Topological 
Autocorrelation Vectors. J. Chem. In$ Comput. Sci. (1996) 36, 1205-1213 

9. Winkler, D.A., Burden F.R.,Watkins, A. Atomistic Topological Indices Applied to Benzodiazepines 
using Various Regression Methods. Quant. Strue?.-Activ. Relat. (1998) in press. 

lO.Brown, R.D., Martin, Y.C. J., The Information Content of @d and #d Strucural descriptors Relevant to 
Ligand-Receptor Binding. Chem. In$ Comput. Sci. (1997) 37, 1-9 

11 .Winkler, D.A. and Burden, F.R. Holographic QSAR of Benzodiazepines. Quant. Struct.-Activ. Relat. 

12.Burden, F.R. Molecular Identification Number for Substructure Searches J.  Chem. In$ Comput. Sci. 

13.Pearlman, R. S.; Stewart, E. L.; Smith, K. M.; Balducci, R. Novel Software Tools for Combinatorial 
Chemistry and Chemical Diversity. Paper given at the 1997 Charleston Conference Advancing New Lead 
Discovery, Isle of Palms, SC (March 1997). 

14.Platt, D.E.; Silverman, B.D. Registration, Orientation, and Similarity of Molecular Electrostatic Potentials 
through Multipole Matching. J.  Computat. Chem. (1996), 17,358-66. 

15.Silverman, B.D; Platt, D.R. Comparative molecular moment analysis (COMMA): 3D - QSAR without 
molecular superposition. J.  Med. Chem. (1996) 39,2129-40 

300,551-571 

(1998b) 17,224-231 

(1989) 29,225-27. 

179 



16.Abraham, D.J.; Leo, A.J. Extension of the Fragment Method to calculate Amino Acid Zwitterion and 

17. Kellogg, G.E., Semus, S.F., Abraham, D.J - A New Method of Empirical Hydrophobic Field Calculation 

18.Tripos Associates, 1699 South Hanley Road, Suite 303, St. Louis, MO 63144.HQSAR Software v 1.0. 

19.MacKay,D.J.C. A Practical Bayesian Framework for Backprop Networks, Neural Computation, (1992) 4, 

20.Rouvray, D.H. Making the Right Connection. Chem. Brit.. (1993b) June, 495-498. 
21.H0, C.M.W. and Marshall, G.R. J. Cornput.-Aided Mol. Des. (1995) 9 65-86 
22.Rusink0, A,, Sheridan, R.P., Nilakanta, R., Haraki, K.S., Bauman, N., Venkataraghavan, R. J. Chem. Inf. 

Comput. Sci. (1989) 29 251-255. 
23 Maddalena, D. and Johnston, G.A.R., Prediction of Receptor Properties and Binding Affinities of Ligands 

to BenzodiazepineiGABAA Receptors Using Neural Networks. J.MedChem. 38,715-724 (1995) 
24. Zheng, W., Cho, S.J., Tropsha, A. Rational combinatorial library design. 1. Focus 2D: A new approach 

to the design oftargeted combinatorial libraries. J. Chem. Inf. Comput. Sci., 1998, 38, 251-258. 25.Shi, 
L.M., Fan, Y., Myers, T.G., O'Connor, P.M., Paull, K.D., Friend, S.H., Weinstein, J.N. J.  Chem. Inf 
Comput. Sci. (1998) 38, 189-99. 

26.Lui, D., Jiang, H., Chen, K., Ji, R. A new approach to design virtual combinatorial library with genetic 
algorithm based on 3D grid property. J.  Chem. Znf Comput. Sci (1998) 38,233-42. 

27. Horvath, D. A virtual screening approach applied to the search for trypanosome reductase inhibitors. 
J.  Med Chem. 1997,40,2412-2423. 

28. Vedani, A., Dobler, M., Zbinden, P. A bridge 
between 3-D QSAR and receptor modelling, I. Am. Chem. SOC. 1998,120,4471-4477. 

29. Polanski, J.J. The receptor-like neural network for modelling corticosteroid and testosterone binding 
globulins. J. Chem. Inf. Comput. Sci., 1997, 37, 553-561 

30.Zhang, W., Koehler, K.F., Harris, B., Skolnick, P., Cook, J.M., Synthesis of benzo-fused benzodiazepines 
employed a sprobes of the agonist pharmacophore of benzodiazepine receptors. J.  Med. Chem. (1994) 
37,745-757. 

31.Harrison, P.W., Barlin, G.B., Davies, L.P., Ireland, S.J., Matyus, P., Wong, M.G. Syntheses, 
pharmacological evaluation and molecular modelling of substituted 6-akoxyimidazo[ 1,2-b]pyridazines 
as new ligands for the benzodiazepine receptor. Eur. J. Med. Chem., (1996), 3 1, 651-662 

32.Davies, L.P., Barlin G.B., Ireland, S.J., Ngu, M.M.L.Substituted Imidazo[l,2-b]ptriazines. New 
Compounds with Activity at entral and peripheral Benzodiazepine receptors., Biochem. Phurmucol. 

33.BarIin, G.B., Davies, L.P., Davis, R.A., Harrison, P.W., Imidazo[ 1,2-b]pyridazines. XVII* Synthesis and 
central nervous system activity of some 6-(alkylthio and chloro)-3-(methoxy, unsubstituted and 
benzamidomethyl)-2-aryl-imidazo[ 1,2-blpyridazines containing methoxy, methylenedioxy and methyl 
substituents. Aust. J.  Chem. (1994) 47, 2001-2012. 

34.Fryer, R.I., Zhang, P., Rios, R., Gu, Z-Q, Basile, A.S., Skolnick, P., Structure-activity relationship studies 
Computer-aided molecular modelling, synthesis and biological evaluation of 8-(benzyloxy)-2- 
phenylpyrazolo[4,3-c]quinoline as a novel benzodiazepine receptor agomist ligand. 

35.Wang, C-G, Langer, T., Kamath, P.G., Gu, Z-Q, Skolnick, P, Fryer, R.I., Computer-aided molecular 
modelling, synthesis and biological evaluation of 8-(benzyloxy)-2-phenylpyrazolo[4,3-c]quie as a 
novel benzodiazepine receptor agomist ligand. J.  Med. Chem. (1995) 38, 950-957. 

36.Hollinshead, S.P., Trudell, M.L., Skolnick, P., Cook, J.M. Structural requirements for agonist actions at 
the benzodiazepine receptor: studies with analogues of 6-(benzyloxy)-4-(methoxymethyl)-b-carboline-3- 
CarboxylicJ. Med. Chem. (1990) 33, 1062-1069. 

37.Allen, M.S., Hagen, T.J., Trudell, M.L., Codding, P.W., Skolnick, P., Cook, J.M., Synthesis of novel 3- 
substituted b-carbolines as benzodiazepine receptor ligands: Probing the benzodiazepine pharmacophore 
J.  Med. Chem. (1988)31, 1854-1861. 

38.Yokoyama, N., Ritter, B., Neubert, A.D., . 2-Arylpyrazolo[4,3-c]quinolin-3-ones: Novel agonist, partial 
agonist and antagonist benzodiazepines, J.  Med. Chem. (1982) 25,337-339. 

Sidechain Partition Coefficients. Proteins: Struct. Funct. Genetics (1987), 2, 130-152. 

for CoMFA J. Cornput.-Aided Molecular Design. J.  Cornput.-AidedMol. Des. (1991) 5, 545-552. 

Tripos Associates: (http://www.tripos.com/products/hqsar.html) 

4 15-447 

Quasi-atomistic receptor surface models: 

(1992)44, 1555-1561. 

180 



Section VI 
Affinity and Efficacy 
Models of G-Protein 
Coupled Receptors 



5-EIT1A RECEPTORS MAPPING BY CONFORMATIONAL ANALYSIS (2D 
N O E S Y M )  AND TEIREE WAY MODELLING" (HASL, CoMFA, PARM) 

Maria Smtagati("), Arthur Doweyko(b), Andrea Santagati"), Maria Modica''), Salvatore 
Guccione(", Hongming Chen ('), Gloria Uccello Barredd) , Federica Balzanocd' 

Diprtimento di Scienze Farmaceutiche, Universitir di Catania, viale Andrea Doria 6, Ed 
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(b) Macromolecular Modeling-CADD, Bristol-Myers Squibb, Pharmaceutical Research 
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(d)Centro CNR di Studio per le Macromolecole Stereordinate ed Otticamente Attive, 
Universitir di Pisa,via Risorgimento 35, I-56126 Pisa, Italy 

The precise function of the 5-HT receptors remains undefined, and progress toward this has 
been hampered by the lack of selective ligands. 
Direct interactions with the 5-HTIA receptor via selective ligands may have beneficial 
effects in a large number of diseases including a number of neuropsychiatric disorders 
(anxiety and depression). 

The findings regarding the conformational analyses for a small set of 
[[(A1ylpiperazinyl)alkyl]thio]thieno[2,3-d]pyrimidinone derivatives as high-affinity, 
selective 5-HTIA receptor ligands are reported. These include NMR analyses and molecular 
modeling approaches which were complemented by the use of three 3D-QSAR 
methodologies: FARM (PseudoAtomic Receptor Model), HASL (Hypothetical Active Site 
Iattice), and CoMFA (Comparative Molecular Field Analysis). The use of PARM (see 
chapter:APl?LICATION OF PARM TO CONSTRUCTING AND COMPARING 5-HTIA 
AND (xl RECEPTOR MODELS) represents an introduction of a novel paradigm, which is 
compared and contrasted using the same traininghest set of 1518 thienopyrimidinones. 
All three methodologies were found to provide predictive models. 
A wide array of biologically active substances, including neurotransmitters, hormones and 
neuropeptides, produce their biological effects by interacting with receptors that couple 
with G proteins. The G proteins, or guanine-nucleotide-binding regulatory proteins are 
generally localized to the inner surface of the plasma membrane. Trimeric (cx, p, y) G 
proteins relay signals from transmembrane receptors to intraeellular enzymes and ion 
channels, thereby mediating vision, smell, taste and the actions of many hormones and 
neurotransmitters. 

Molecular Modeling and Prediction of Bioactivity, edited by  Gundertofte and Jdrgensen 
Kluwer Academic / Plenum Publishers, New York. 2000. 183 



Although there are, as yet, no three dimensional crystal structure data available for GPCRs, 
the generally accepted view is that GPCRs contain seven a-helical transmembrane domains 
linked by hydrophilic loops with an extracellular N-terminus and cytoplasmatic C- 

Serotonin modulates many processes in the mammalian peripheral and central nervous 
system through its interactions with at least 14 receptor subtypes, all but one (5-HT3 
subtype) of which are G protein (heterotrimeric GTP-binding protein)-coupled. 
The 5-HT3 subtype is a ligand-gated ion channel that shares functional and structural 
similarities with nicotinic acetylcholine receptors 3,4. 

The serotonin receptor subtype 5-HTlA has been cloned (genomic clone, G21, transiently 
expressed in monkey kidney cells) and is constituted by 42 1 amino acids arranged in seven 
helice?. 

To our knowledge only recently have reasonable ~ - H T ~ A  receptor models been reported6 and 
no HASL7*’ and PAR@ applications have been applied to 5-HTIA receptors. 

The aim of this work, based on a combination of comparative conformational analysis by 
molecular mechanics and NMR spectroscopy (2D NOESY) is to define those features most 
critical to the design of selective, high affinity ~ - H T ~ A  ligands, taking into consideration the 
anchoring role of the scaffold heteroaromatic portion” connected to the “canonical” 
pharmacophoric arylpiperazine moiety. In addition, it was of interest to compare these 
features in both ~ - H T ~ A  and uJpha receptors. 

Experimental 

NMR eonformational analysis 

Compounds 19,20,21(69,70,71 )lo have been characterized by 2D NOESY and HETCOR 
analyses. Their stereochemistry has been determined by analyzing the intermolecdar 
dipolar-dipolar interactions by means of 2D NOESY spectroscopy. 
In the case of compound 20, the methylene protons, belonging to the piperazine moiety, 
originate n.0.e.s on the aromatic protons of the o-methoxyphenyl substituent and on the 
chain methylene groups. Moreover, methoxy protons produce n.0.e. only on the aromatic 
proton adjacent to them and no dipolar interaction is originated by NH2 or methyl protons. 
Therefore, 20 assumes a conformation in which the chain linked to the sulfur atom is in a 
zig-zag planar arrangement, bringing the piperazine and aromatic rings far away from the 
thienopyrimidinone moiety. The two substituents linked to the two nitrogen of the 
piperazine ring mainly assume a pseudoequatorial arrangement which prevents any spatial 
proximity between the aromatic protons of the methoxyphenyl substituent at one nitrogen 
of the piperazine ring and the piperazine methylene directly linked to the other nitrogen. 
The aromatic moiety is mainly perpendicular to the plane of the piperazine ring and the 
methylene protons directly linked to the sulfur atom are far away from the amino group (Fig 
1). 
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Compd R1 R2 R3 R 4  
19 (69) Me Me Me 2-OMe-Ph 
20 (70) Me Me NH, 2-OMe-Ph 
21 (71) Me Me NH-Ph 2-OMe-Ph 

In brackets the number in the original paper (see ref. 10). 

6 .5  5 . 0  3.5  ppm 

Fig 1 'H NMR spectrum of compound 20 in CDC13 

to a rigid shcture 
Analogous NOESY analyses and I3G re1 
out on other related compounds (19, 21). Their S t e r ~ Q ~ ~ e ~ ~ c a ~  and dy 
similar to those already discussed for 20 (Pig 1-3). 

ions have been also carried 

I I I I 1 1 ' 1  I I I I 
60 1.0 4 0  1.0 1 0  PI" 

Fig 2 2D NOESY (300 MHz, CDC13, 25OC,t=O.6 s) Fig 3 2D NOESY (300 MHz, 
of compound 20 CDC13,25 "C, P0.6 S) 

of compound 20 a)methoxyl 
protons, b)He, c)Hd 
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IC50 Measurements 
The in vitro affinity for 5-HTIA and q-AR was evaluated by radioligand binding assay on 
hyppocampus and cortex of male CRL: CD(SD)BR-COBS rats weightng about 150 g 
respectively as previously described". 

Molecular Overlays. The 23 molecules" used in the present investigation were built using 
SYBYL and SPARTAN 5.03 molecular modeling The molecules were first 
geometry optimized using molecular mechanics (Tripos force field 5.0). Then each molecule 
underwent a systematic conformational search with each rotatable bond undergoing 10 
degree steps until a global minimum energy conformation was found. The lowest energy 
conformation and atomic partial charges of each molecule were determined using PM3 within 
the SYBYL MOPAC module. All molecules were superimposed upon molecule 20 acting as 
a common template (Fig 4 a,b). Fifteen molecules were selected to act as the training set, 
while the remaining eight were used as the test set. 

Fig 4 (a)The template molecule (ZS) ; (b) the overlays of all 23 molecule 

3D-QSAR 

CoMFA. Conventional CoMFAI3 (Comparative Molecular Field Analysis) 
was camed out using the Q S A R  option within SYBYL'' (Version 6.3) as configured on a 
SGI RlOOOO workstation (operating under lRIX64, release 6.4). Default settings were used 
except where otherwise noted. The steric and electrostatic energies were calculated using sp3 
carbon probes with a +1 charge. Grid spacing was set to 2.0 A within the defined region and 
extending beyond van der Waals envelopes of all molecules by at least 4.0 fL The CoMFA 
QSAR equations were determined using the PLS option with optimal number of 
components determined by a leave-one-out cross-validation procedure wherein the number 
of components yielding the lowest standard error of prediction were chosen. 

HA%. Hypothetical Active Site Lattice (HASL, version 3.30)',' computation 
was implemented on an SGI02 R5000 (IRIX6.3) and SGI RlOOOO workstation (IRIX6.4). 
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Default atom types were used (H=-l,O,+l) and the grid spacing was 1.5 A Models were 
iteratively solved to an average error in prediction of 0.001 log units activity. Several new 
programs were written to provide a graphical display of resulting lattice-based binding 
models within SYBYL. 

PARM. PARM is a program developed in-house which can build an atomic 
pseudo-receptor model by using a genetic algorithmg (see chapter:APPLICATION OF 

MODELS). 
Results and Discussions 

Preliminary investigations using CoMFA, HASL and PARM models derived 
from a 15-member training set to predict a 8-membered test set indicated that these models 
were essentially equivalent in their predictive strengths (Tables I and II). 

In order to fully investigate the structural properties most closely associated with 
activities, it was of interest to develop models utilising all 23 analogues. Coh4FA models 
were derivedusingthe full 23 compound data set: ~ - H T ~ A  (5-components, f = 0.991, ?cv = 

0.261) and CX~-AR (Ccomponents, f = 0.970, f,, = 0.652). In addition, a difference model 
was also developed wherein the difference, pIC5,,( ~ -HTIA) -~IC~O(  nl-AR), was correlated to 
structure: 5 components, 8 = 0.978. The cross-validated I2 in this analysis was very poor. 
Although the cross-validated correlation coefficient was low for the HT and difference 
models, this may not be a significant issue since the number of analogues is small, and it may 
well be that each molecule is a significant contributor to the model. Using the full 23 
compound data set, three models were developed using the HASL paradigm for ~-HTIA, al- 
AR and the difference data set at l . 5 &  in each case yielding models containing 427 lattice 
points iteratively solved to average errors in prediction < 0.001 units. In the PARM 
model building paradigm, the results of the test set were used to guide model selection. The 
fifteenth and fourth models were found to have the best predictions for the 5-HTIA and al- 
AR data sets, respectively. These two models were chosen to be analyzed (Fig 5 ). The 
computational results of these models for the two data sets are listed in chapter: 

PARM TO CONSTRUCTING AND COMPARING ~ - H T ~ A  AND C X ~  RECEPTOR 

APPLICATION OF PARM TO CONSTRUCTING AND COMPARING 5-HTlA AND 
(Xi RECEPTOR MODELS. 

HT Test Set Results 1 

5 6 7 8 9 10 
Actual lop ICSO 

1 5 6 7 8 9  

Fig 5 Graphs of the three models derived from 15 molecules predicting 8 

The CoMFA computational results of these models for the two data sets are listed in 
Tables I and II. 
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Table I Test set calculated statistics for €-IT,* receptors 

carbon hydrogen nltmgen oxygen sulphur 

Compd R1 R2 R3 R4 Actual PARM Error HASLl.5 Error CoMFA(5)’ Error CoMFA(3)’E~rror 

1 (43)* Me Me 2-CIPh H 6.337 7.62 1.283 7.11 0.773 7.43 1.093 7.27 0.933 

6 (SO)* -(CH&- 2-CIPh H 6.074 7.823 1.749 6.87 0.796 7.36 1.286 7.43 1.356 

9 (56)* -(CH2)4- I-naphtyl H 6.431 6.939 0.508 6.20 0.231 6.56 0.129 6.66 0.229 

10 (57)* -(CH2) +- 2-pyrimidinyl H 6.297 6.888 0.591 6.71 0.413 7.17 0.873 6.91 0.613 

15 (66)* -(CH2)4- Me 2-OMe-Ph 8.155 8.596 0.441 7.64 0.515 8.01 0.145 8.08 0.075 

16 (67)* -(CH2)4- NH2 2-OMe-Ph 8.886 8.76 0.126 9.13 0.244 8.42 0.466 8.50 0.386 

22 (72)* Me Me Me 2-pyrimidinyl 7.187 7.743 0.556 6.70 0.487 8.02 0.833 7.81 0.623 

24 (74)a * Me Me NH2 2-OMe-Ph 9.097 9.468 0.371 7.73 1.367 9.07 0.027 8.67 0.427 

SD* 0.860 0.700 0.750 0.690 

*In brackets the number in the paper (see ref. 10). 
‘The piperazine ring has been replaced by a piperidine nucleus. 
bNumber of components in PLS analysis. 



Table ZZ Test set calculatedstatisticsfor ~ l d R  

carbon hydlpgea nihagen oxygen sulphur 

Compd Rl R2 R3 R4 Actual PARM Error HASL1.5 Error CoMFA(5) Error 

1 (43)* Me Me 2-CIPh H 6.793 6.886 0.093 6.520 0.273 6.450 0,343 

6 (50)* -(CH2)4- 2-ClPh H 6.775 6.581 0.194 6.350 0.425 7.060 0.285 

9 (56)* -(CH2),- 1-naphtyl H 6.352 6.594 0.242 6.060 0.292 6.150 0.202 

10 (57)* -(CH2) 4- 2-pyrimidinyl H 5.741 6.830 1.089 5.820 0.079 6.120 0.379 

15 (66)* -(CH2)4- Me 2-OMe-Ph 7.194 7.919 0.725 7.470 0.276 7.530 0.336 

16 (67)* .-(CH2)4- NH2 2-OMe-Ph 7.409 7.924 0.515 8.350 0.941 7.980 0.571 

23 (72)* Me Me Me 2-pyrimidinyl7.444 8.217 0.773 6.770 0.674 7.050 0.394 

24 (74)a* Me Me NH2 2-OMe-Ph 8.398 7.893 0.505 7.710 0.688 8.280 0.118 

SD" 0.610 0.530 0.350 

*In brackets the number in the paper (see ref. 10). 
"The piperazine ring has been replaced by a piperidine nucleus. 
bNumber of components inPLS analysis. 

CoMFA (3) Error 

6.53 0.263 

7.22 0.445 

6.37 0.018 

6.16 0.419 

7.47 0.276 

8.00 0.591 

7.11 0.334 

8.26 0.138 

0.350 



In the 5-HTIA receptor model, for the training set, the conventional cumlation 
coefficient is 0.962, the cross-validated correlation coefficient is 0.906 and its prediction 
deviation to the test set is 0.860. On the other hand, for the (xl-AR receptor model, the 
conventional correlation coefficient is 0.977 and the cross-validated one is 0.945. Its test set 
prediction deviation is less than that of the 5-HTIA receptor model and it is only 0.61. So 
the computation results show that for the training set, both of the receptor models have a 
good correlation between the interaction energy and the bioactivity. They also have some 
predicting ability (based on test set performance), although the molecules in the prediction 
set were not involved in the process of building the model. 

The receptor models derived from PAIZM and HASL methods were converted to 
files compatible with SYBYL software in order to visualize their characteristics and make 
direct comparisons to CoMFA fields. The PARM models for 5-HTlA and orl-AR are shown 
in Figs 6 and 7, respectively. In those figures, the unconnected atoms distributed in the 
space represent a receptor model which simulates the receptor pocket. The ligands are 
docked in the middle of the receptor model in order to compute the interaction energy 
between ligands and receptor model. The colours of the pseudo receptor atoms are the same 
as those of atoms normally defined in SYBYL. The largest atom types having the smoke- 
grey colour in the receptor model represent the void space there. 

Fig 6 The PARh4 5-HTIA receptor model Fig 7 The PARM q-AR receptor model 

The colours of the pseudo receptor atoms are the same as those of atoms normally defined 
in SYBYL. The largest atom types having the smoke-grey colour in the receptor model 
represent the void space there. The molecule which is docked in the middle of the receptor 
pocket is the template molecule (20). At the region near the R3 position, there exist several 
negatively charged0 and N atoms. These pseudo-receptor atoms may act as hydrogen bond 
acceDtors in their interaction with the R3 Dosition of the limd 
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Fig 6 illustrates the ~ - H T ~ A  PAF2M receptor model. We can see that at the region 
near the R3 position, there exist several negatively charged 0 and N atoms. These pseudo- 
receptor atoms may act as hydrogen bond acceptors in their interaction with the R3 position 
of the ligand The molecule which is docked in the middle of the receptor pocket is the 
template molecule (20). The model further incorporates a large void space between the 
receptor atoms and the R3 substituent of molecule 20, suggesting that binding affinity can be 
improved by placing a bulky group which has positive charge in the R3 position. This is the 
same conclusion which we can draw from an analysis of the CoMFA and HASL 5-HTIA 
models illustrated in Fig 8. 

It is generally accepted that ~ - H T ~ A  receptor agonists and antagonists bind their 
protonated amino sites to the highly conserved aspartate (Asp 129) on transmembrane helix 
3 (TM3)5. 

In the R4 position, all the molecules have a substituted aromatic ring. In the P A M  model 
there is one positively charged hydrogen atom (proton) near the methoxy group of the 
phenyl ring to act as a hydrogen bond acceptor. This observation is consistent with the 
conclusion from the CoMFA contour map that a negatively charged group on position 2 of 
the aromatic ring will enhance affinity. Near the 3,4,5 positions of the aromatic ring, there 
exist some negatively charged N, 0 pseudo-receptor atoms which suggests, that in these 
positions, the ligands should have some positively charged groups to improve affinity. This 
observation is consistent with the CoMFA 5-HTIA analysis shown in Fig 9, but is not 
present in the HASL model. There are some differences between the PARM model and 
CoMFA, for example, some neutral pseudo-receptor atoms, the void space surrounding the 
R1 and R2 region and several negative atoms near R1. The relevancy of these differences is 
difficult to ascertain, as all the molecules have some neutral substitutions in these positions 
which may not have a direct effect on affinity. 

Fig 8 CoMFA and HASL ~ - H T ~ A  Models: CoMFA Steric Fields; HASL Neutral Atom 
Types. Substituted phenyl region is identified with strong positive steric effects by both 
methods, while the strongest HASL negative effects are found at extensions of the R1 and 
R2 regions. The steric extension into the R3 region is identified by CoMFA as positive, 
while HASL relegates it to a mild positive effect. 
Fig 9 CoMFA and HASL ~ - H T ~ A  Models: CoMFA Electrostatics ; HASL Electron-Rich 
Atom Types and Electron-Poor Atom Types. The HASL model indicates that both 
electron-poor and electron-rich atoms are found to positively enhance affinity at the R3 
region, while the CoMFA electron-poor field is also found significant at that position. 
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CoMFA Electrostatics and HASL electron-rich atom types are both found significant in the 
phenyl substituted region. 

The features of the al-AR PARM model are shown in Fig 7. Some differences between the 
5-HTlA and q-AR receptor models are apparent. As was observed in the ~ - H T ~ A  model, a 
negatively chargedatom near the R3 position is present, however, there are also two neutral 
C atoms here. Thus it would appear that the effect of an electrostatic interaction at this 
region in the PARM crl-AR model is not as important as indicated in the PARM ~ - H T ~ A  
receptor model. In the CoMFA analysis of the q-AR data set, the electrostatic regionis not 
present at the R3 position. In addition, there is a large void space between the ligand and 
receptor model which could include a sterically bulky group. These conclusions are further 
supported by the HASL q-AR model which illustrates a positive effect by bulky R3- 
substituents (Fig 10) and supports some mixed introduction of electron-rich/poor atom 
types at R3 (Fig 11). At the R4 position of the PARM al-AR model there is a positively 
charged hydrogen atom near position 2 of the phenyl ring, which would increase affinity 
with a negatively charged group there. Proximate to the methoxy group and the region near 
positions 3,4,5 of the aromatic ring, there are several negatively charged pseudo-receptor 
atoms. Thus, the ligand should have some positively charged group near that position in 
order to enhance affinity. In addition, two negatively charged atoms near the R1 and R2 
position exist which would complement a positive group there to increase affinity. This 
conclusion is Wher  supported by the CoMFA and HASL models. 

Fig 10 CoMFA and HASL or,-AR Models: CoMFA Steric Fields and HASL Neutral 
Atom Types. HASL yielded a similar dependence of affinity to steric bulk as identified in 
the ~ - H T I A  model, while positive contributions from CoMFA steric fields are now limited 
to the substituted phenyl region. 
Fig 11 CoMFA and HASL c+AR Models: CoMFA electrostatics and HASL Electron- 
Rich and Electron-Poor Atom Types (colors are defined as in Figure 9). HASL identified the 
R3 regon in a similar way as in the ~ - H T ~ A  model, however with less emphasis on the 
electron-rich effect. Parailel effects are once againobserved for the phenyl-substituted region 
as previously observed in the ~ - H T ~ A  model. 
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In conclusion, this investigation of modeled 5-HTIA and oll-AR receptor features based on 
analyses of 23 molecules illustrated the effective use of three 3D-QSAR methodologies na-, 
mely, PARM, Coh4FA and HASL . These methods were found to provide reasonable predi- 
ctive strength, and in addition, pointed to ligand features which were found to be significant 
to binding affinity. The comparison of a field-based method (CoMFA), an occupancy 
method (HASL) and the pseudo-receptor method (PARM) provided a number of consistent 
observations across the three paradigms. The use of more than one 3D-QSAR analysis was 
found to be an exceptionally useful approach to the identification of ligand features most 
likely to be significant in enhancing affinity, i.e. to uncover additional sites of interactions 
not apparent in single models (forthcoming paper). 
No information on the pharmacological activity of the subject 5-HTIA selective ligands 
[[(Arylpiperazinyl)l]thio]thieno[2,3-d]pyrimidinone derivatives by M Santagati et all0 
is still available to categorize the ligands as agonists or antagonists. Different alignments for 
agonists/antagonists, would lead to better discriminating models, provided that the statistical 
quality of our models is already satisfactory. 
Further pharmacological studies are ongoing to solve the problem. 
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INTRODUCTION 

Our ability to use rational design for the generation of useful peptides is depends on our ability 
to determine the specific relationships of molecular structure to biological activity. Opiates and 
opioid peptides display a large spectrum of biological activities, including analgesia, respiratory 
depression, euphoria, hypothermia, tolerance, physical dependence etc. There are at least three 
different receptor classes ( p, 6, K ) differing from one another in their structural requirements 
towards opioid ligands. In order to associate a particular receptor class with a distinct biological 
function, it is of great importance to develop opioid receptor ligands with high activity and 
selectivity for a particular receptor type. Unfortunately. none of the endogenous opioid peptide is 
very selective for a particular receptor class. The lack of selectivity observed with most naturally 
occurring opioid peptides and with many of their linear analogs is most likely due to their structural 
flexibility which permits conformational adaptation to more than one opioid receptor type. Flexible 
molecules of peptides assume many conformations in solution. One of the available conformation 
or closely related family of conformations is responsible for the biological activity of the peptide. 
To determine which conformations are important it is necessary to confine conformational space 
accessible to flexible peptides. The most drastic restriction of the overall conformation freedom can 
be achieved through peptide cyclization'. ', Cyclization through covalent linkage of two side-chains 
has been performed by disulfide bond formation or by amide bond formation. In particular. 
cyclization of enkephalin via side chains of appropriately substituted amino acid residues have 
been successful '-'. 

OH \ 
H-Tyr-D-Xxx-Gly-Phe-Yyy-NH2 

L-COJ 

Xm,\rty-diamino acids 

n =  1 , 2 , 3 , 4  

rn= 1,2,3,4 

Figure 1. Structural formulas of trial set of molecules. 
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In the present paper we describe an introductory prognosis of activity and selectivity of a series 
of cyclic enkephalin analogues in which ring formation was achleved via ureido group 
incorporating the side-chain amino groups of diamino acids (Fig. 1). 

METHODS 

The molecular structures were obtained using the Insight I1 package release 95 . O ' O  installed on 
Silicon Graphics computers. This package was also used for generating input data for Molecular 
Dynamics method in the Discover program'o. Simulations were conducted in vacuum in 300 K 
temperature for a period of 1 ns with 1 fs step. The standard Insight I1 force field c f B l  was chosen. 
Partial charges were calculated by the Gasteiger and Marsili method. Conformations were picked 
every 1 ps, that seems to be sufficiently long time period to assure the lack of correlation between 
subsequent conformations. All compounds appeared in the unprotonated form. None of 
conformations were minimized prior to cluster analysis. 

Cluster analysis were done with APEX-CLUST algorithm'" from Insight I1 package. 
Clustering was conducted for all reference and trial compounds. Due to a great conformational 
flexibility of the molecular structures the inter-cluster distance parameter was set to a rather large 
value of do = 3 A. Usually eight central conformers from best clusters were sufficient for all 
reference and test compounds. Conformations from weakly populated clusters consist mainly of 
higher energy structures and, therefore, should be rejected. APEX-3D module'" from Insight11 
package was used to construct models of p- and F-receptor ligand activities and determine activities 
of novel compounds. Despite of small number of conformers, a number of generated 
pharmacophores overwhelmed possibilities of the program to analyze them. 

Two methods were used to establish a relationship between structure of reference compounds 
and their biological activities (QSAR) and then estimate activity of test molecules: Molecular Field 
Analysis (MFA) and Receptor Surface Analysis (RSA) modules both in Cerius' package". Both 
methods require properly aligned set of molecules. As a reference set of molecules 24 cyclic peptide 
analogs were chosen (Table 1). All of them were minimized in the Universal Force Field'' in 
conjunction with the Charge Equilibration in Cerius2 package. All the molecules were fitted to the 
model of p-selective receptor pharma~ophore'~. l4 based on p-selective opiates such as PET (PEO). 

Table 1. A reference set of molecules; p and 6 activities taken from 3. 6, '. l 6  

H-Tyr-c["-D-A2pr-G1y-Phe-Leu-] H-Tyr-D-Pyn-Gly-Phe-L-Cys-NH2 H-Tyr-c[N'-D-Lys-Phe-Ala-] 

H-Tyr-cw-D-A2bu-Gly-Phe-Leu-] H-Tyr-D-Pen-Gly-Phe-D-Cys-NH2 H-Tyr-c[N6-D-Orn-Phe-Ala-] 

H-Tyr-c[N'-D-Orn-Gly-Phe-Leu-] H-Tyr-D-Pen-Gly-Phe-D-Cys-OH H-Tyr-cvD-A2bu-Phe-Ala-Leu-] 

H-Tyr-c[N"-D-Lys-Gly-Phe-Leu-] H-Tyr-D-Pen-Gly-Phe-L-CpOH H-Tyr-c[Ns-D-Om-Phe-Gly-] 

H-Tyr-D-Lys-Gly-Phe-G/u-NH2 H-Tyr-D-Pen-Gly-Phe-D-Pen-OH H-Tyr-D-Cys-Phe-Asp-Cys-Val-Gly-NH2 
H-Tyr-D-Op-Phe-App-NH2 H-Tyr-D-Pen-Gly-Phe-LPy-OH H-Tyr-D-Cys-Phe-Asp-PpVal-Gly-NH2 

H-Tyr-D-A7p-Phe-Opl-NH2 H-Tyr-D-Cys-Gly-Phe-D-Pen-OH H-Tyr-D-Pen-Phe-Asp-Pyn-Val-Gly-NH, 
H-Tyr-D-Lys-Phe-G!,u-NH2 H-Tyr-D-Cys-Gly-Phe-L-Pqn-OH H-Tyr-D-Py-Phe-Asp-Pyn-Nle-Gly-NH2 
H-Tyr-D-G~u-Phe-Lys-NH* H-Ty-D-Pyn-Phe-G1u-Pqn-Val-Gly-NH2 

For an alignment of reference as well as trial molecules a flexible fitting was used. We initially 
used default method - subgraph search. Ttus method initially uses rigid fitting to determine the best 
set of atom matches and then flexible fitting was executed using this set. At the end of the process 
manual fitting was employed. The conformer generated for each moving model was minimized 
after alignment has been complete. 

Molecular Field Analysis (MFA) quantifies the interaction energy between a probe molecule 
and a set of aligned target molecules in a QSAR. To generate an energy field (probe map), a probe 
molecules is placed at a random location then moved about a target molecule within a defined 3D 
grid. For each molecule two fields were generated: one with a proton probe (H+) and one with an 
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Figure 2. An alignment of trial set of molecules 

Figure 3. An alignment of reference set of molecules. 
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uncharged methyl probe (CH3). Each calculation uses a cubic grid with 2W-spacing. Only Molecular 
Field points with highest variance were used as molecular descriptors and Genetic Function 
Approximation (GFA) was used as a regression method. A major advantage of this approach is that 
a collection of diverse, small models is generated that all have roughly the same high predictibility. 

The second module - Receptor Surface Analysis - creates hypothetical models that characterize 
the active site of the receptor based on the construction of surfaces to represent spatial and 
electrostatic properties of a receptor active site. Molecules are minimized within the receptor 
surface model and interaction energies are calculated, which allows the evaluation of new candidate 
compounds. 

p- and &receptor models were created from seven most active ligands of p- and &receptor 
respectively. The interaction energy calculated by RSA module between a molecule and a receptor 
surface model were used to develop QSAR regression. RSA calculates molecule - receptor model 
interaction energies at a receptor surface, and these energies serve as input for the calculation of 
QSAR relationship. The default selection in RSA module (the same as in MFA) was used: 90% 
points with lowest variance were excluded from calculations A standard GFA method was used to 
perform statistical calculations. 

RESULTS AND DISCUSSION 

The aim of our investigations was to construct activity model of cyclic peptide analogs. and, on 
the basis of the model, try to predict of biological activity of array of analogs. As a reference set of 
molecules 24 cyclic enkephalins and deltorphins were chosen. Cyclic molecules have much less 
degrees of freedom than their linear analogs but still posses great deal of flexibility especially when 
linear long side groups are connected to macrocycle. Besides of flexibility there are many of 
possible pharmacophore atoms or groups in these molecules, so programs looking for potential 
pharmacophore sites generate too many of artificial pharmacophores. We tried with a program 
APEXJD in InsightII’’ package but over 50,000 of generated pharmacophores overwhelmed 
possibilities of the program to analyze them. 

We therefore decided to switch to the pharmacophore model developed by Brandt et al.’3.’4 for 
p-selective ligands based on p-selective opiates such as PET (PEO). The model was simplified to 
adapt to our reference set of molecules. Some of pharmacophore sites were excluded and four sites 
of well known great importance for activity were remained - two benzene rings of phenylalanine 
and tyrosine, nitrogen atom of an amino group of tyrosine and hydroxyl group in tyrosine. Both 
reference and trial set of molecules were generated and minimized with the same procedures as 
indicated in the Method section. All of them were fitted to the p-selective ligands receptor 
pharmacophore model based on mentioned above four pharmacophore sites with proper &stance to 
each other. After fitting procedure all molecules were minimized once again to acheve local 
minimum conformation closest to the fit found before. 

The conformations are shown in Fig. 2 and Fig. 3 for trial and reference set of molecules 
respectively. They are superimposed on PEO (fat stick model) to show their compact structures 
similar to opiate ligands. Besides, negative electrostatic potential of cyclic peptides is compatible to 
one generated by opiates (not shown). 

MFA method provided a QSAR regression with correlation coefficient R = 0.94 and least 
square error of prediction LSE = 0.27. Majority of the trial molecules were predicted to be 
p-selective ligands as w’ere known from preliminary experiments ”. 

Although the model was developed for p-selective ligands we tried to examine 6-selectivity 
based on the same model to check is it working. The only difference this time we used 6 activity 
values. The regression we obtained were characterized with R = 0.94, LSE = 0.19. Results indicated 
that trial molecules are not &selective in general and the model based on p-selectivity and 
simplified is working quite good. Some modifications are required to rearrange pharmacophore sites 
to more properly describe 6-selective receptor model in the future. 

The second method used was Receptor Surface Analysis (RSA). Both reference and trial sets 
of molecules were fitted to the p-selective ligands receptor pharmacophore model as for MFA 
method. But this time no minimization was conducted after fitting procedure. A receptor model 
surface was generated for seven most p active molecules from reference set. At each surface point 
the potentials were mapped based on complementarity between a respective molecule potential and 
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Figure 4. Receptor model for preceptor ligands. 

Figure 5. Receptor model for 8-receptor ligands 
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a surface point. The resulting receptor with seven ligands used to construction of the receptor is 
shown in Fig. 4 .  All molecules from reference and trial sets were minimized inside the receptor 
surface and total interaction energies at each surface points of the receptor were analyzed by 
statistical method. Resulting Q S A R  regression provided R = 0.86 and least square error of 
prediction LSE = 0.57. Rather low correlation coefficient suggests that further modifications of 
construction of the receptor are desirable. 

The same procedure was conducted for trial construction of &selective receptor model from 
seven most active &receptor ligands from reference set of molecules. The receptor surface together 
with seven ligands used for construction is shown in Fig. 5 .  The QSAR regression resulted in 
R = 0.85. LSE = 0.45. RSA method is more sensitive to inaccuracy in alignment than MFA and 
hence smaller correlation coefficients. 

Models of p and 6-receptors differ mainly in shape of a tail (left parts of Fig. 4 and 5 ) .  In case 
of preceptor the tail is constructed from hydrophobic residues of most potent p receptor ligands 
whereas in case of &receptor the hydrophilic extensive residues elongate the tail. It would means 
that either there are hydrophilic residues in that part of the receptor or that place is accessible by a 
solvent. In the latter case open model of the &receptors should be employed. To explain 
uncertainties in both models a greater set of reference molecules will be selected. 
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INTRODUCTION 

Despite their obvious structural dissimilarities, the cannabinoids and aminoalkylindoles 
(AAIs) are known to exhibit similar in vitro and in vivo cannabimimetic activities'-6. This body of 
evidence suggests that the cannabinoids and AAIs interact with the same cannabinoid receptor and 
share at least some regions in common when bound to the receptor to elicit the cannabinoid activity. 
In support of this hypothesis, binding studies have shown that they compete for the same binding 
regions of the CB1 cannabinoid receptor7. 

Structure-activity relationship (SAR) studies of the cannabinoids8-" and AAIs'*-14 have 
identified pharmacophoric elements common to both classes of compounds: (1) a lipophilic 
and/or sterically bulky group (i.e., the C3 side chain in the cannabinoids and the C3 aroyl group 
in the AAIs) that appears to be a structural prerequisite for cannabinoid activity"; ( 2 )  a polar 
oxygen atom (i.e., the C1 hydroxyl group of the phenolic A-ring in the cannabinoids and the C3 
carbonyl oxygen in the AAIs) that may form a hydrogen bond with the re~eptor '~;  and (3) the 
cyclic ring system (i.e., the cyclohexyl C-ring in the cannabinoids and the indole ring in the 
AAIs). 

In order to understand the similarity in cannabimimetic activity of the cannabinoids and 
AAIs in terms of their common pharmacophoric features, two superimposition models have been 

The Huffman r n ~ d e l ' ~ ,  developed by superimposing a structurally modified analog 
of WIN55212-2 with A'-THC (Figure l), assumes a similar functionality between the C3 side 
chain of the cannabinoids and the N1 aminoalkyl side chain of the AAIs. In this model, the 
benzene ring in the indole moiety of WIN55212-2 is not overlayed with any part of A'-THC, thus 
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implying that this benzene ring is unimportant. This decision may be unwarranted in light of the 
sharp decrease in both in vivo and in vitro activities of a series of pyrrole  analogue^'^ versus the 
corresponding AAI analogues. The Huffman model was 
information, and suffers from a lack of consideration of the 
aminoalkyl side chain of the AAIs3. 

derived without precise structural 
polar nature of the heterocyclic N1 

4 5  

A'-THC HHC CP55244 WIN552 12-2 

Figure 1. The cannabinoids and AAIs used for developing superimposition models. 

The Makriyannis model'* was derived by superimposition of HHC with WIN55212-2 
whose structure was ascertained from interpretation of 2D-NMR spectra and MD simulations. In 
this model, the C3 aroyl group of the AAI is superimposed on the C3 side chain of the 
cannabinoid, and the N atom of the N l  side chain of the AAI was positioned to nearly coincide 
with the hydroxyl group of the cyclohexyl C-ring of the cannabinoid. Nevertheless, the rationale 
for which specific atoms were fitted in the superimposition remains unclear. 

Although largely incompatible, the Huffman and Makriyannis models both align the C1 
hydroxyl group of the cannabinoids with the C3 aroyl oxygen of the AAIs .  This point of agreement 
suggests a common hydrogen-bonding interaction with the corresponding region of the receptor's 
binding site15. Eissenstat et al." recently proposed a model in which the C1 hydroxyl group of the 
cannabinoids overlays the N1 side chain of the A A I s ,  based on the observation that the C9 hydroxyl 
group of the cannabinoids functioned differently from the morpholino N in the pravadoline series14. 
As yet, however, no unified superimposition model for both cannabinoids and A A I s  has been 
generally accepted. 

In the present work, novel superimposition models were developed based on 3-D 
pharmacophore mapping of two highly potent CBI cannabinoid receptor agonists CP55244 and 
WIN55212-2. Initial conformations corresponded to those ascertained by Tong et al." and Shim 
et al.", respectively. CP55244 possesses an additional pharmacophoric element which is not 
found in the classical ABC tricyclic cannabinoids like A'-THC and HHC". The D-ring methanol 
extension (comparable to the hydroxypropyl in CP55940) forms a potential hydrogen bonding 
site which may confer the extremely high potency exhibited by CP55244. The superimposition 
models so derived confirm earlier speculation about certain key pharmacophoric elements 
common to both the cannabinoids and AAIs. 

COMPUTATIONAL METHODS 

The highly potent CP55244 (Ki = 0.1 1 nM) and WIN55212-2 (Ki = 1.1 nM) were selected 
to represent the cannabinoids and A A I s ,  respectively"~21. The conformations of the cannabinoids 
and AAIs were taken from our previously derived CoMFA modelszo9*'. For WIN55212-2, 
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additional conformations were explored by conducting a systematic search of the torsion angles 
ol(C2=C3-C=0) and 02(0=C-C1’-C2’). 

The DISCO module [DIStance COmparison (DISCO) t echn iq~e~~] ,  accessed through the 
molecular modeling program Sybyl (version 6.2)24, was employed to extract the common 
pharmacophoric elements from the cannabinoids and AAIs. DISCO generates superimposition 
models by matching common features after identifying certain predefined pharmacophoric 
features, i.e., hydrophobic center, donor site, acceptor site, donor atom, acceptor atom, for each 
compound. Based on these superimposition models, the corresponding pharmacophoric elements 
were identified. Superimposition models of CP55244 and WIN55212-2 were compared and 
evaluated using the following criteria: (1) root-mean-square (RMS) fit of corresponding 
pharmacophoric elements, (2) proper orientation and overlap of the C3 dimethylheptyl side chain 
of CP55244 with the C3 aroyl moiety of WIN55212-2 (which was deemed critical for tight 
binding), (3) the number of pharmacophoric elements, and (4) the degree of overlap of molecular 
volumes. The superimposition models were also chosen to ensure proper orientation and 
overlap of the C3 dimethylheptyl side chain. WIN55212-2 was used as the reference compound 
for fitting as it contains a greater number of pharmacophoric features than CP55244. The 
superimposition models selected by DISCO were further refined by fitting WIN55212-2 to 
CP55244 using the “field fit” option in Sybyl in which the partial atomic charges for the 
electrostatic interactions were calculated using the Gasteiger-Marsili formalism2’. To compare 
with the present superimposition models, the Huffman and Makriyannis models were 
reconstructed by superimposing CP55244 and WIN55212-2 in the conformations considered in 
the present report using the same alignment atoms as described in the respective original papers. 

RESULTS AND DISCUSSION 

Superimposition of CP55244 and WIN55212-2 

was employed to help identify the corresponding pharmacophoric elements in the 
cannabinoids (represented by CP55244) and the AAk (represented by WIN55212-2). DISCO 
found two separate low-energy AAI conformers, designated Z and C, that differ with respect to the 
torsion angle wl(C2=C3-C=0). The value of wl is -152.8’ in the Z form and 29.2“ in the C form 
(Figure 2). With WIN55212-2 in the Z form, DISCO identified five pharmacophoric features: (i) 
two around the C1 phenolic oxygen of CP55244 and the C3 carbonyl oxygen of WIN55212-2 
(oxygen as the acceptor atom and a donor site), (ii) one hydrophobic center for the C-ring of 
CP55244 and the benzene ring of the indole of WIN55212-2, and (iii) two around the D-ring 
hydroxyl group of CP55244 and the morpholino oxygen of WIN55212-2 (oxygen as an acceptor 
atom and a donor site). With WIN55212-2 in the alternative C form, DISCO identified three 
pharmacophoric features: (i) two around the C1 phenolic oxygen of CP.55244 and the C3 carbonyl 
oxygen of WIN55212-2 (oxygen as an acceptor atom and two donor sites), and (ii) one around the 
C9 hydroxyl oxygen of CP55244 and the morpholino nitrogen of WIN55212-2 as a donor atom. 
Both models displayed a high degree of overlap between the C3 side chain of CP55244 and the C3 
aroyl moiety of WIN55212-2, consistent with the notion that a hydrophobic moiety is important for 
cannabimimetic a c t i ~ i t y ’ ~ ~ ’ ~ - ’ ~ * ~ ~  . In addition, both models would predict that addition of 
hydrophobic substituents to the second ring of the naphthyl group (i.e., 6’ or 7’ position) in 
WIN552 12-2 enhances binding potency. 
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Figure 2. Illustration of the AAI WIN55212-2 in both the Z form (left) and C form (right). 

Analysis of the present two superimposition models (hereafter called the Z and C models) 
provides some interesting comparisons. The molecular volume overlap is only slightly larger for 
the Z model (156 A3) than for the C model (142 A3). In the Z model, the morpholino oxygen of 
WIN55212-2 is aligned with the D-ring hydroxyl group of CP55244. In the C model, the 
morpholino nitrogen of WIN55212-2 is aligned with the C-ring hydroxyl group of CP55244. 
The C model bears a likeness to the Makriyannis model18; however, the corresponding Z model 
shows no similarity to the Huffman model17. The C model better emphasizes the importance of 
the C-ring C9 hydroxyl group in the cannabinoids and its similarity to the morpholino nitrogen in 
the AAIs. However, the C9 hydroxyl group of the cannabinoids may be not essential for potent 

Furthermore, the cannabinoid C9 hydroxyl and the AAI morpholino nitrogen 
interact with different receptor binding sites". Noting that the sensitivity of Ki to the length of 
the lipophilic alkyl N1 substituent for a series of AAIs was similar to that observed for the 
cannabinoids with respect to variation in length of the lipophilic C3 alkyl side chain, Huffman et 
al.17 overlayed these two lipophilic groups in their superimposition model. This choice would 
imply that the hydrophilic side chain of the AAIs (e.g., the 0 atom in the morpholino ring of 
WIN55212-2) is not critical. However, the Z model could explain why AAIs with an N1 side 
chain of four to seven carbons exhibit high potency. Earlier workers have proposed that a 
specific hydrophobic region of the receptor borders the B and D rings of cannabin~ids '~ '" '~~.  
Consistent with this notion, the Z model superimposes the N1 side chain of the AAIs on the 
hydrophobic substituents attached to the B and D rings of the cannabinoids. By virtue of its 
ability to resolve this apparent inconsistency, the Z model may be superior to alternative 
superimposition models in terms of accommodating the structurally dissimilar cannabinoids and 
AAIs inside the same critical binding site of the CB1 cannabinoid receptor. 

Proposed Cannabinoid Receptor Map 

Based on our superimposition models and the known S A R  for the cannabinoid and AAIs, 
we have constructed a pharmacophoric map for the cannabinoid CB1 receptor appropriate to both 
the cannabinoids and AAIs (illustrated in Figure 3 for the Z model). Similar to the one proposed by 
Howlett et al." from the S A R  for bi- and tricyclic nonclassical cannabinoids, this receptor map 
depicts the pharmacophoric elements required for cannabimimetic activity including those common 
to both the cannabinoid and AAI compounds. The map also shows those pharmacophoric elements 
that are specific for each compound, such as a lipophilic receptor site near the benzene ring of the 
AAIs and a hydrophilic receptor site next to the C9 hydroxyl of the cannabinoids. Inspection of 
our proposed CBI cannabinoid receptor map reveals that WIN55212-2 could be accommodated 
inside the binding site in either the C and Z models. Both conformations of WIN55212-2 seem 
capable of satisfying those interactions with the receptor deemed necessary for tight binding. In 
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fact, the region of the receptor binding site in contact with the C and D rings of the cannabinoids 
and with the indole and N1 side chain of the AAIs appears to possess the proper distribution of 
hydrophilic and lipophilic sites with respect to the C6-C7 axis of the cannabinoids and the C3- 
C(carbony1) of the AAIs (i.e., complementary hydrophilic-lipophilic sites on top left and top right 
of Figure 3). So either conformation of WIN55212-2 could function accordingly. 

Figure 3. Putative pharmacophoric model of the CBI cannabinoid receptor showing possible interactions with both 
cannabinoid and AAI agonists (Z conformation). 
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INTRODUCTION 

Over the last few years much attention was paid to 3D-QSAR studies'" owing to the 
incorporation of information derived from molecular modelling techniques such as GRID3, 
CoMFA4 and many others into the chemometrics procedures aimed at deriving a statistical 
model. Our research group has contributed to the field by suggesting the GOLPE' approach, 
which is based on a severe validation criterion and on a region selection procedure6 in order 
to produce easily interpretable results and reliable predictions of the activity. Such studies 
are generally carried out on small molecules acting as ligands or enzyme inhibitors. On the 
contrary, relatively less attention was devoted to a quantitative description of the receptors. 

Since Wold and coworkers published the principal properties (PP.s) of aminoacids 
(AAs), peptide description in traditional QSAR studies has been done describing the 
structural variation within a series of related peptides by arranging the PP.s according to the 
AA sequence7. The PP.s of AA.s represented a great improvement in peptide QSAR since 
they permit both a quantitative description of peptides and the use of experimental design 
criteria using few orthogonal variables (2 scales in ref. 7), for selecting a few informative 
molecules in each series. The three PP.s used can be chemically interpreted as scales of the 
hydrophobicity (zl), size (22) and electronic properties (23). Accordingly, each peptide is 
described by a vector containing the triplets of PP.s for the AA sitting at positions 1, 2, etc., 
and therefore, peptides of different length require a different number of descriptors. 

However, each descriptor is considered as a single column in a QSAR table and 
continuity constraints arising by the AA sequence are not explicitly formulated. In order to 
overcome this traditional QSAR limitation, the same Authors have later suggested to 
describe the AA sequence in peptides by their auto and cross covariance (ACC) based 
description, which depends only upon the sequence of AA.s and not on the length of the 
peptide*. Our research group has already used the former technique for studying peptidesg 
and the ACC transforms for describing both peptidic fragments" and 3D structures". This 
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paper will attempt to describe 7TM receptors by such approaches and to check whether this 
description can be related to their biological behaviours. Indeed, it should be pointed out that 
the same description, either adding triplets of PP.s for each AA of the sequence7* or the 
ACC terns*' lo, can be used to characterize short peptides acting as ligands or long peptidic 
fragments of whole proteins. Of course in the former case the objective is to find out the AA 
sequence with optimal response, whereas in the latter the aim is detecting structural features 
that are common and/or that are important for modulating the response. 

Furthermore our group has developed a new generation of PP.s for AA.s12, obtained 
by a multivariate characterization on 3D and 2D data derived by GRID with the strategy just 
reported for heteroar~matics'~. The first PP can be taken as a measure of the side-chain 
polarity, the second describes hydrophobicity effects and the third one indicates hydrogen- 
bonding capabilities: positive values indicate polar, hydrophobicllarge and hydrogen-bond 
donor properties respectively. 

RECEPTOR DESCRIPTION 

Depth Description. In principle each seven helix trans membrane (7TM) receptor 
can be represented by a 3-mode array of data where the elements of the 3-way matrix are 
the PP values of AA.s and the modes represent: (1) the sequence of AA.s in each helix 
limited to 20 AA.s14, (2) the 7 helices, (3) the 3 PP.s. A set of receptors then constitutes a 4- 
mode data set. The order of AA.s for each helix follows the depth of each AA along the TM 
channel starting from the outer part of the cell: accordingly, while for the odd helices the 
order is that reported in the normal sequence, for the even helices the order is opposite to the 
usual sequence numbering. Figure 1 illustrates the organization of the data matrix with 
respect to AA.s and helices. The 3-way matrix can be thereafter deconvoluted into a vector 
of 420 elements, thus representing the receptor. 

1193 I 

Figure 1. Characterization of a 7TM receptor in terms of depth from the cell surface 

ACC Description. The idea of autocorrelation or autocovariance transforms of the 
data, together with Fourier transforms, have been developed to account for dependencies 
between consecutive observations. Wold et a1.' described peptides by the ACC functions 
along the sequence from NH to CO. On using two descriptors (PP scales) for each 
aminoacid one obtains four nearest neighbour ACC.s: the autocorrelation between PPl for 
AA(i) and PP1 for AA(i+l) and between PP2 for AA(i) and PP2 for AA(i+l), as well as 
the cross-correlations between PPl for AA(i) and PP2 for AA(i+l), which is different from 
PP2 for AA(i) and PPl for AA(i+I). With three descriptors the number of ACC terms 
becomes 9, while with a single descriptor there is a single ACC term. 
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These parameters account only for the nearest neighbour interaction, which is also 
called lag 1. The same transformation applied to the next nearest neighbour provides four 
chains belonging to the two aminoacids separated by one further aminoacid. The number of 
lags can be increased up to the length of the shortest peptide minus one. To simplify the 
description and calculations Wold and coworkers used the auto-and cross-covariance 
functions instead of auto-and cross-correlations, since they are the same after scaling. Their 
work has already shown advantages and drawbacks of modelling by ACC trasforms. On 
one side such a description is independent of length and alignment so that peptides of 
different length can be described in a congruent way. Moreover, ACC transforms permit to 
model consistent dependencies between neighbouring sequence positions, and therefore to 
find out the need for the simultaneous presence of certain structural features at some fixed 
distances. However, interpretation and understanding of ACC models may be quite difficult. 
In fact we suggested'* different modifications of the original application of ACC on 
biopolimers aimed at a better understanding of QSAR models. The interpretation of the 
original ACC models was difficult since the AC (Auto Covariance) and CC (Cross 
Covariance) terms were obtained as the sums of all possible AA.s interactions and it was not 
easy to interpret the results in terms of which interaction is the most important in a QSAR 
analysis. 

During our work with ACC transform for developing 3D-ACC.s" we came across a 
number of possible drawbacks with the original ACC approach, which might lead to unclear 
interpretation. The first point regards the different leverage that different ranges for each 
descriptor to the individual elements of the ACC vector. Normalizing each descriptor 
between -1 and +1, without any subsequent scaling of the QSAR table, gives a 
straightforward way of understanding the magnitude of each individual interaction. 

Table 1. Receptor affinities (pKi)16 

Receptor chlorpromazine halo peridol clozapine 
1 D1 7.49 8 7.07 
2 D2L 8.52 9.3 6.98 
3 D3 8.4 8.7 6.52 
4 D4 7.47 8.7 I .5 
5 D5 7.57 6.66 
6 5HTlA 5.44 5.71 6.06 
7 5HT2A 8.15 7.13 8.1 
8 5HT2C 7.92 5.24 7.92 
9 5HT6 8.4 <5.3 8.4 
10 M1 7.6 5.71 8.7 
11 M2 6.82 5.6 7.68 
12 M3 7.17 <5.52 7.89 
13 M4 7.4 5.57 7.92 
14 M5 7.38 5.74 8.43 
15 H1 5.44 8.22 
16 ctlB 8.3 7.34 8.15 
17 a2B 6.44 8.1 
18 p l  <5 <5 

The second, most important drawback with the original ACC is related to the use of 
the algebraic sums of all members for each element. The meaning of signs is chemically 
recognizable for each scale: a positive PP1 means polar, whereas a negative PP1 means non 
polar, a positive PP2 means large and hydrophobic and a negative PP2 means small and 
hydrophilic, a positive PP3 means H-donor and a negative PP3 H-acceptor. In the algebraic 
sum the positive-positive interactions are added to the negative-negative interactions, while 
the positive-negative interactions are subtracted to the sum. This approach might be 
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appropriate for handling time-dependent continuity constraints, but it mixes up chemically 
different interactions that should be kept well separated for the safety of chemical 
interpretation. Therefore, in order to have pure effects (the interaction hydrophobic- 
hydrophobic is PP2(+) * PP2(+)) we decided to keep disjoint the different kinds of 
interactions bearing the same chemical meaning: positive-positive, negative-negative, 
positive-negative and negative-positive for the auto covariance and the cross-covariance 
terms: using three descriptors for each lag we have 36 ACC terms: 12 for the AC and 24 for 
the CC terms. We suggested to call DACC (Disjoint Auto and Cross Covariance transform) 
this modified transformation. 

A third point regards the magnitude of each element of the original ACC vector: it 
should be noticed that each element is given by the average value of the individual products 
which constitute each term of sum. Because of this, the same value can be obtained either 
from several values of intermediate magnitude or from one large value and a number of 
small values. Describing a peptide in terms of the interactions between amminoacids in the 
sequence may be a useful tool for labelling the really strong interactions that the peptide can 
offer to bind to a receptor. To this end, the presence of one strong interaction is by far more 
important than the sum of several weaker interactions. On the other end, the presence of two 
such interactions means that there are two possibilities to bind to the receptor with the same 
strength. 

In view of these considerations it seemed appropriate to keep for each element of the 
ACC vector only the maximum term of the sum instead of their average. Consequently we 
suggested to use the MACC1 transformation (Maximum Auto and Cross Covariance in one 
direction). However, if a peptide can bind to a protein in two ways some of the ACC terms 
should be considered together, since they describe the same type of interaction. In particular, 
ACi+- and ACi-+, CCij-- and CCji--, CCij++ and CCji++, CCij-+ and CCji+-, and CCij+- 
and CCji-+ are equivalent. Consequently, in this shrinked description with three descriptors 
we have 21 terms, i.e. 9 AC and 12 CC terms for each lag and we suggested to call this 
modification MACC2 (two directions). 

RESULTS AND DISCUSSION 

Following our previous interest in the field15, we worked out a data set collected 
from literature regarding the binding activities of three molecules used in the treatment of 
schizophrenia16 (Table 1) towards all subtypes of dopamine and muscarinic receptors, plus a 
number of serotonine, histamine and adrenergic receptor ~ubtypes '~ .  We determined a few 
PCA and PLS models, both within and between receptor types, in terms of the 7TM 
description of AA depth (420 variables = 7 helices x 20 AA.s x 3 PP.s) and of the MACC2 
transform (588 variables = 7 helices x 21 MACC2 terms x 4 lags). Objectives of the study 
are comparing the two descriptions for distinguishing receptor subtypes and providing 
chemometric tools to find out common features and features responsable for modulating the 
binding affinities. 

PCA Results. Figure 2 illustrates the principal components results of the two 
descriptions. It is clear that in both cases there are clusters of subtypes belonging to the same 
receptor. However, the two descriptions are different as shown by the relative position of 
the five subtypes for both D and M receptors. 

PLS Analysis. All six PLS models (3 molecules x 2 descriptors) explain over 70- 
80% of the y variance by a single latent variable, although the clustering of objects prevents 
from performing a proper validation according to the GOLPE criteria. 

210 



DEPTH HI 

.M5 

I I 
first principal component (tJ 

D3 DZ MACCZ 
HI D4 

81 53 

Y5 
A1 

%3 w 

I" I D1 Dt 

first principal component (t,) 

Figure 2. PC score plots of receptors: a) depth model, b) MACC2 model. 

The interpretation of the latent variable allows to detect the structural features which 
are common for all receptor subtypes as well as those responsible for modulating the 
binding affinities. 

Depth Models. By the depth models it is possible to spot the AA.s sitting in the 
same position (because they show no variance): none throughout the series and four within 
the D receptor subtypes (Leu in positions 12 and 17 of helix 2, Ala in position 14 of helix 2 
and Pro in position 6 of helix 4). However from the PLS weights it is possible to recognize 
the most important AA.s responsible for ranking the affinities: AA5 of helix 4 (which is Val 
or Leu for D receptors and Ala for M receptors) for chlorpromazine and haloperidol, AA18 
of helix 2 (which is Asp or Ser for D receptors and Leu for M receptors) for haloperidol 
and clozapine, etc. Results are much clearer within a single series of subtypes: for the D 
subtypes it is always possible to detect a few AA.s distinguishing between the higher and 
lower affinities of each ligand. However, the results obtained by this type of description are 
strictly dependent upon the problem formulation and we know that this approach does not 
take into account the homology studies leading to the alignment of helices of different 
receptors. As in the latter case the chemometric results might be used to check the 
importance of the detected AA.s by site-directed mutagenesis. 

MACC2 Models. More suitable results are obtained by the MACC2 description 
which takes into account only the AA sequence, independently of alignment. Since the 
relative affinities of the different subtypes are roughly reversed for haloperidol and 
clozapine the relevant features are the same but with opposite signs. Particularly important, 
among others, appear to be several interactions at lag 2 and lag 4 in helix 3 and at lag 1 and 
4 in helix 4; significantly the same interactions exhibit high loading also in the 
chlorpromazine model. The detailed analysis limited to the D receptors focus on the 
differences between the highest and lowest affinities: for clozapine D4 differs from the 
others because of seven interactions in helices 1, 2 and 3, that are always lower than in the 
other subtypes; for chlorpromazine the pair D2D3 differs form the pair D1D4 because of 
eight interactions in helices 2, 3 and 4. 

CONCLUSIONS 

The paper has shown that both the depth and MACC2 description can be used to 
characterize receptor subtypes and to detect structural features responsible for the biological 
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activity. However none of them is completely satisfactory. 
In fact the depth description depends too heavily upon the way helices are aligned: 

our suggestion, i.e. starting the helix from the cell surface, is not in agreement with the 
widely recognized need for alignment according to homology criteria. Indeed our problem 
formulation may be inconsistent because it was by these criteria that it was postulated 
which is the AA starting the helix. Moreover, to the end of describing a whole 7TM 
receptor, it seems that the relative position of the seven helices of the same receptor should 
be much more important than aligning tha same helices of different receptors. 

On the other hand, the stability of the MACC2 models and the reasonable 
interpretations that can be extracted from them, render these results very stimulating. 
However, there is no reason why the AA interactions described by MACC2 should be 
restricted within each individual helix. 

Because of these reasons we will attempt in the near future to describe by the 
MACC2 transform the interactions among AA.s belonging to different helices. This 
procedure should turn out to be independent of alignment, taking into account only the 
relative position of the AA.s within the 7TM channel. We hope to report these results at the 
next QSAR Symposium and good, homogeneous, data sets are welcome in order to check 
the soundness of the new method. 
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INTRODUCTION 

A proper choice of molecular descriptors or molecular fingerprints is decisive for 
successful application of computational methods in QSAR and Lead Discovery. 1-3 

In the present study, we investigated the usage of molecular spectra as descriptors for the 
prediction of the biological activities of molecules. Several considerations suggested this 
choice: i) spectra are unique fingerprints of the chemical composition and structure of 
molecules; ii) spectra are observables, i.e., measurable properties of molecules; as such they 
are reproducible (under the same experimental conditions) and invariant to translations and 
rotations (in gas phase and solution); in simulations iii) no alignment of the molecular 
fragments are needed and iv) in comparison to many other descriptors, no calculations of 
charges are needed. 
A program, SpecMat; was developed which could read in spectra and transform them into 
matrices ready to be analysed by multivariate regression analysis techniques (PLS536) in 
SUBUL.7 A QSAR validation study on a congeneric set of progestagens was performed 
here by means of experimentally determined and simulated Infrared and 

C NMR spectra. The results were compared with CoMFA* results. 13 

METHODOLOGY 

A set of 45 progestagens was selected for this study.4 Care was taken that sufficiently 
diverse structures were present in the selection. For two compounds (ORG 1002, 959) the 
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corresponding a$ isomers (ORG L1310, OE59) were also considered. A total of 47 
progestagens was thus analysed. 

SpecMat Data Conversion 

Spectral data were obtained in several formats, i.e. GAUSSIAP? output fdes or in J- 
CAMP'' format. In all cases conversion was performed to present the data in the format 
required by SYBYL. The technical details of SpecMat, simulated Infrared and 13C NMR 
spectra, CoMFA (rigid alignment) and experimental Mass and 'H NMR spectra will be given 
somewhere else? 

RESULTS AND DISCUSSION 

A set of 45 progestagens was investigated by means of SpecMat and CoMFA. To 
avoid possible correlation problems, the two a$ isomers mentioned in the database 
selection section were used for predictions only. 
The models obtained by means of SpecMat and CoMFA on the whole set of 45 
progestagens are given in Table 1. 

Table 1. Comparison of SpecMat and CoMFA for a set of 45 progestagens 

In this study, simulated (SIM) Infrared and I3C NMR and experimental (EXP) Mass and 'H 
NMR spectra were considered as well as CoMFA (standard steric and electrostatic fields). 
The best statistics (q2 and s values) are provided by the SIM IR and the EXP 'H NMR and 
Mass spectra. CoMFA yield statistics comparable to the SIM 13C NMR spectra. 
In general, the different q2 and s values show that every descriptor provides a different 
description of the structure-activity relationship of this data set. 

Table 2. Comparison of SpecMat and CoMFA for a set of 38 progestagens (training set) 

We have also assessed the quality of the model by its predictive power. For this purpose the 
data set was split in two subsets, a training and a test set. The criterion followed in this 
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separation was extracting from the data set (training set) the most diverse compounds, i.e., 
compounds with unique substituents and/or features and placing them in the test set. This 
lead to a training set of 38 compounds and a test set of 7 compounds. These seven 
compounds are: ORG 3877,31399,31857,32259,33363,34162 and 34163. 
Statistics were repeated on the new training set and the resulting models were used to 
predict the activities of the test set. The results are given in Tables 2. Predictions of the test 
set are displayed in Figure 1. 
For all descriptors the statistics obtained on the training set improved with the exception of 
SIM I3C NMR which yield a 3 components model instead of 5 ,  but with a smaller value. 

2.5 
I%ck 

2 

1.5 

1 

0.6 

Figure 1. Descriptors predictions of the test set. Log(Act) is the decimal logarithm of in vitro binding 
affinities (EXP). 

Concerning the test set, on the average Mass EXP, IR SIM and CoMFA produce the best 
predictions for all molecules except one: ORG 31857 which is badly predicted by all 
descriptors except EXP ‘H NMR. 

Table 3. Descriptors Combinations: whole set (45 molecules) 

Orthogonal descriptors provide better statistics when they are used in combination than 
when they are used individually, as long as they are capable of describing the activities under 
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consideration." SpecMat and CoMFA, and spectra with spectra were therefore combined to 
verlfy how useful the combination of descriptors can be for this data set. The results for the 
whole set (45 compounds) are given in Table 3. The best models were obtained with the 
following combinations: CoMFA and 'H NMR, IR and 'H NMR and 'H NMR and 13C 
NMR. 
For these descriptors, statistics are significantly better than the statistics of the individual 
models. 

Isomers Predictions 

A further objective of this study was to investigate whether these descriptors could 
reproduce and distinguish between the activities of a, p isomers. Two pairs of isomers were 
available at the time of this study: ORG 1002 and L1310 differ by an a and p methyl 
substitution on position 10; ORG 959 and OE59 by an a and p methyl substitution on 
position 6.  ORG 1002 and 959 are active and are part of the training set, while the 
corresponding isomers are inactive and constitute the test set. 
As given in Table 4, ORG 1002 and 959, i.e., the isomers present in the model, were 
generally well predicted by all descriptors. In particular, 'H NMR, IR and Mass yield the 
best predictions. When descriptors were combined, the best combinations were given by: 
CoMFA and 'H NMR = IR and 'H NMR > Mass and 'H NMR. 

Table 4. Isomers predictions by SpecMat, CoMFA and descriptors combinations. ORG 1002 and 959 are 
part of the training set (model) and ORG L1310 and OE59 are the corresponding a, p isomers. Log(Act) is 
the decimal logarithm of in vitro bmding affinities (EXP) 

As the SpecMat and CoMFA predictions of activities of isomeric compounds were 
quantitatively not very accurate, we looked for predictions of the active-inactive 
experimental trends only. 
The experimental trend for ORG L1310 was not reproduced by any descriptor. This might 
well be due to the methyl a substitution of position 10 which involves a non negligible 
structural change in the steroidal skeleton and which is not known by the training set. For 
ORG OE59 the experimental trend was well reproduced by 'H NMR and the combination of 
'H NMR with TR, and especially with CoMFA. In this case the combination of 'H NMR and 
CoMFA is clearly superior to any other descriptor or combination of them. 
Although general conclusions cannot be reached because of the limited number of isomers 
considered, some trends can be identifid: when combined, 'H NMR and CoMFA seem to 
be the best descriptors to reproduce the experimental trends of isomers. The differentiation 
of a-P isomers in IR spectra is generally very difficult. In our simulated IR spectra, both 
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isomers have also identical intensity profiles, since no real intensities were calculated. The 
experimental Mass spectra of a-P isomers are different in intensities, but not in peaks 
positions. These differences, however, are clearly not sufficiently large to be picked up by 
PLS. 

CONCLUSIONS 

The objective of this study was an initial investigation of the use of spectra as 
molecular descriptors for activities predictions. Experimental Mass, 'H NMR spectra and 
simulated 13C NMR and Infrared spectra were used to predict the potency of a congeneric 
set of 47 progestagens, among which were 2 pairs of a, P isomers. The analyses show good 
statistical correlation's of the training sets and good predictions of the test sets. Bearing in 
mind the limited size of the data set considered, these descriptors were found to perform at 
least as well as CoMFA Descriptor's combinations and especially the combination of 'H 
NMR and CoMFA seem to be capable of predicting some differences between a, p pairs of 
isomers. 
Obviously, larger and more diverse data sets need to be investigated for further assessment 
of the approach. A non-congeneric data set of estrogens is currently under investigation. 
SpecMat predictions are fast and at least as reliable as CoMFA predictions. Moreover, 
SpecMat does not require molecular superposition. Therefore, SpecMat is very suitable for 
activity prediction and ranking of large series of compounds. It is less obvious at this point 
how a SpecMat model can be translated directly into chemical suggestions for structure 
optimization. For now, we see a real potential for SpecMat in Lead Discovery and to a 
lesser extent in Lead Opthisation. Exploiting this latter direction to its fullest potential will 
require further and extensive investigation. 
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Hydrogen bonding plays an important role in many chemical and biological processes, 
but this interaction is complex and has been difficult to quantify in correlation analysis. One 
of the better ways to describe hydrogen bonding strength is to use the thermodynamic 
parameters of H-bond formation: free energy (AG), enthalpy (AH), entropy (AS) and H- 
bond binding constant (K). These are connected to each other by the following 
relationships : 

AG = - RTln K = AH - TAS (1) 

It is possible to estimate the values of these parameters in the framework of a 
multiplicative approach based on equations (2) - (4)132: 

log K = kl'ap + k", 
(4) 

where C, and Cd are free energy H-bond acceptor and donor factors, E, and Ed are enthalpy 
H-bond acceptor and donor factors? and a and p are H-bond donor and acceptor binding 
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constants. Some limitations of this multiplicative approach inspired us to construct an 
overall H-bond acceptor scale on the basis of equation (5)3: 

The utility of eqs. (2) - ( 5 )  depends on the existence of vast, readily accessible 
experimental thermodynamic data, and a program to estimate thermodynamic parameters 
for new chemical compounds. HYBOT (Hydrogen Bond Thermodynamics), described in 
detail by Raevsky2, is such a database and program. 

On the basis of the previously noted factors, it is possible to construct QSAR 
descriptors for H-bonding. Table 1 summarizes information about such descriptors and 
identifies the computer programs that calculate and use those descriptors. These programs 
were created in the Department of Computer-Aided Molecular Design, Institute of 
Physiologically Active Compounds, Russian Academy of Sciences. 

Table 1. Hydrogen bond descriptors and the programs used to generate them. 

Symbol Type Descriptor Program 
Camax 2D Free energy factor for the strongest H-bond acceptor atom in the HYBOT-PLUS 

Cdmax 2D Free energy factor for the strongest H-bond donor atom in the HYBOT-PLUS 
molecule 

molecule 
CC, 2D Sum of C, values for all H-bond acceptors in the molecule HYBOT-PLUS, 

CCd 2D Sum of c d  values for all H-bond donors in the molecule HYBOT-PLUS 
SLIPPER 

HYBOT-PLUS CCad 

FRG 2D Fragments with classified H-bond factor values MOLDIVS 
HB++ 3D Interaction intensities of H-bond acceptors at (i) A MOLTRA 
HB-- 3D Interaction intensities of H-bond donors at (i) A MOLTRA 
HB++ 3D Interactions intensities of H-bond acceptor with donors at (i) A MOLTRA 
SIS++ 3D Similarity Indices of Spectra of H-bond acceptors interactions CONFAN 
SIS-- 3D Similarity Indices for the Spectra of H-bond donor interactions CONFAN 
SIS +- 3D Similarity Indices for the Spectra of H-bond donor and acceptor CONFAN 

2D Sum of absolute values for C, and Cd of all H-bond acceptors and 
donors 

Fig 1. Results for acebutolol calculated by HYBOT-PLUS. 
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H-bonds are not the only interatomic interactions; therefore, the program HYBOT-PLUS 
was created to calculate descriptors for steric and electrostatic forces. In all, the program 
calculates 15 molecular descriptors: molecular polarizability (a), maximal negative charge 

(qmax), maximal positive charge (qftnax), sum of negative and positive charges ( C q- and C 

addition it computes the polarizability, partial atomic charge and H-bond factor values for 
each atom in a molecule. The program uses the Structural Editor or MOL and SDF files for 
structural input, and Excel spreadsheets to report the results (Fig. 1). 

These descriptors together with acidbase parameters are valuable for predicting 
chemical properties of compounds (free energy of hydration, solubility in water and other 
solvents, lipophilicity and permeability). 

q+), CamaX, cdm% cca ,  ccd, CCad, c q-la, C Cc$a,  CCdIa and CCadIa. In 

Fig 2. The scheme of relationships physico-chemical parameters with chemicals properties, 

Examples of successful correlations are presented below. 

Free enerm of hydration 

Water solubilitv of liquid neutral compounds 

log S - 0.258 (*0.017) a + 1.08 (iO.10) C, - 0.20 (10.09)Ca ( ~ 1 4 2 ,  R=0.953, s = 0.38, F = 452) 
(7) 

L@ophilici@ 

log POCt.Watel = 0.266 (+0.030) a -1.00 (iO.lO)cC, ( ~ 2 8 5 0 ,  R=0.970, s=0.23) 
(8) 
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Permeability 
Human red cell basal permeability (BP) of alcohols, water, urea and thiouread: 

Permeation of non-electrolytes through celk of the alga Chara cercitophy1.h 4: 

log Per = 0.83 (M.57) + 0.59 (iO.12) c d  ( ~ 2 7 .  Y= 0.903, s = 0.49, Y,, = 0.885) 
(10) 

Human skinpermeability coe$icients (log kp) ofphemls 4 

logk,= - 8.72(*2.79) + 0.67 (M.15) c d +  2.47 (+1.28) IOg MW ( ~ = 1 7 ,  R=0.949, S=O.20, ~cv=O.915) 
(1 1) 

Caco-2 cellpermeability of drugs 5 : 

log k, = - 4.10 (3.57) + 0.005 (10,002) log MW - 0.20 (10.03) Cad ( ~ ~ 1 7 ,  R = 0.883) 
(12) 

Lec%hin Siposomes permeability ofphemls. 

log k p =  0.78 (10.79)+0.171(10.034)~-0.69(~0. 13)Ca -0.15(+0.13jCd ( r ~ 2 6 ,  R=0.947, s = 0.22, F = 63.3) 

(13) 

Because these new H-bond descriptors were successful in predicting lipophilicity and 
solubility, we were able to create the computer program SLIPPER (Sohbility, LIPophilicity , 
PERrneability) 6. The current version of the progam calculates complete compound proiYes 
of pKa-lipophilicity and pKa-water solubility on the basis of polarizability: H-bond factors 
and p Ka. 

In addition, these H-bond descriptors can be useful in QSAR correlations of various 
biological activities. For example, there is the case of tadpole narcosis (the biological data are 
taken from 7 ): 

log (l/C) = 0.98 (k0.22) + 0.221 (10.018) CX - 0.73 (iO.08) XCa (~=100, R=0.932, ~=0 .38 ,  P 3 2 3 )  
(14) 

Further QSAR models for toxicity to Daphnia magna are presented in equations (15-20). 
The biological data are taken from 8. 
Common narcotic models: 

log IiECja = 1.07 (k0.64) + 0.23 (k0.05) M (M = 35, /’ = 0.86, s = 0.34, F = 97) 
(15) 

log 1/ECso = 1.46 (*0.61) + 0.22 (k0.042) M - 0.31(+0.19j Ca ( ~ ~ 3 5 ,  R =0.90, ~ 0 . 3 0 ,  F = 69) 
(16) 

Non-Polar narcotic models: 

log l/ECro = 0.91 (k0.65) + 0.25 (k0.05) a ( M = 23, Y = 0.92, s = 0.30, F = 117) 
(17) 
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log 1iECjo = 1.36 (k0.84) + 0.23 (k0.05) O! - 0.57 (k0.72) C, ( ~ 2 3 ,  R=0.93, ~ 0 . 2 9 ,  F = 65) 
(18) 

Polar narcotic models: 

log liEC50 = 5.33 (k0.58) - l.Ol(k0.038) C, (n  = 12, R = 0.88, s = 0.25, F = 36) 
(19) 

log l/ECso = 4.17 (k1.51) + 0.07 (k0.09) O! - 0.87 (20.38) C, ( / ~ 1 2 ,  FF0.92, S= 0.23, F= 24) 

(20) 

These new physico-chemical descriptors also can be used as estimates for similarity 
among chemicals and diversity in databases by yet another new computer program: 
MOLDIVS (MOLecular DIVersity and Similarity) 9. 

To construct predictive QSAR models it is necessary to take the three dimensional 
properties of compounds into account. In 1987 Raevsky 10 proposed that 3D structures 
could be described by the spectra of interatomic interactions. In this approach each pair of 
atoms in a molecule gives a line in the spectrum for any type of interaction. A line's 
position corresponds to the distance between the two atoms while its intensity corresponds 
to the product of physico-chemical parameters associated with those atoms. Atomic 
vibrations transform lines into bands; thus spectra of interatomic interactions are 
superpositions of all such bands. The computer programs MOLTRA (MOLecular 
Transform Analysis) and CONFAN (CONFormation Analysis) calculate the following 
interaction spectra: van-der-Waals, positive charges between each other. negative charges 
between each other, positive charges with negative ones. H-bond acceptors between each 
other, H-bond donors between each other and H-bond acceptors with H-bond donors. 
Examples of these spectra are presented on the left side of Fig.3. In principle, each point of 
such spectra can be used as a 3D descriptor. For example. in a QSAR study on the 
inhibition of phosphorylation of polyGAT by a-substituted benzylidenemalononitrile-5-S- 
aryltyrphostins, it was found that the interactions of two H-bond donors at the distance 7.4 
A played an important role. 

log I/ICso = 0.64 (*1.88) + 1.74 (iO.10) LUMO + 0.39 (*O.lO) HB--7.4 ( n=12. R=0.912, ~=0.37, F=22.3) 
(21) 

Other valuable 3D H-bond descriptors can be estimated by quantitatively comparing 
the same type of spectra for all compounds in the training set. Any spectral region and all 
possible distances may be considered. For example, take the case of the inhibition of 
dihydrofolate reductase by the 15 most active 4,6-diamino-l,2-dehydro-2,2-dimethyl- 1 -@- 
pheny1)-s-triazines in a particular series. Comparing each compound using the Similarity 
Indexes of Spectra of H-bond acceptor interactions (SIS++) and other properties establishes 
the following relationships: 
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Fig.3. Spectra of interatomic interactions, Similarity Indexes of Spectra of interatomic interactions and H- 
bond potentials for any pair of compounds. 

log UK, = 13.7 (12.3) - 4.33 (11.43) log SISW (M = 15, r = 0.849, s = 0.50, F = 42.6) 
(22) 

log 1/K, = 14.6 (14.1) + 0.076 (Hl.040) C( - 6.06 (k2.05) log S I S H  ( ~ ~ 1 . 5 .  R = 0.940, s = 0.37, F = 45.5) 
(23) 

The right side of Fig. 3 shows molecular H-bond potentials for two compounds; 
Goodford's approach11 was used , However, here we used enthalpy H-bond factor values 
(eq. 3) of concrete atoms of two molecules which are interacting between each other. 

In summary, we have developed a method for the quantitative description of H-bonding 
that is founded on large databases of thermodynamic parameters and H-bond factors (the 
program HYBOT). Supplementing this are other programs. HYBOT-PLUS calculates H- 
bond descriptors, polarizabilities and partial atomic charges. SLIPPER estimates important 
properties as water solubility and the lipophilicity-pKa profile. Based on structural 
fragments, MOLDIVS affords a measure for similarities and diversities among a set of 
compounds. MOLTRA calculates 3D H-bond descriptors. CONFAN estimates similarities 
among H-bond donors and acceptors. These programs afford new and quantitative 
descriptors for H-bonding. Combined with two other important terms for interatomic 
interactions (steric and electrostatic forces) they can be used broadly in Drug Design and 
QSAR. 
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INTRODUCTION 
An important prerequisite for a drug to be active is that it is able to reach its site of 

action. The preferred and most widely used route of drug administration is the oral route, 
and by far the most common mechanism of absorption from the gastrointestinal tract is 
passive diffusion through the intestinal epithelial cells. This process depends heavily on 
the solute's ability to diffuse through the lipophilic phospholipids of the cellular 
membrane. If a new drug candidate - even with optimized potency and selectivity for a 
target molecule - lacks this ability, it has little chance of reaching the market place. As a 
consequence, the optimization of absorption properties of drug candidates has become 
integrated in the early stages of drug discovery during recent years. The aim is to be able 
to predict the absorptive properties as early as possible; preferentially by calculated 
molecular properties as that may obviate the synthesis of poorly absorbed molecules. 

The transport may be modelled as a partioning between an aqueous and a lipidic 
phase. The traditionally used log Poctanol value is mainly useful within homologous series, 
but has failed in a number of cases, e.g. P-blocking agents'.' and peptides3. Recently, more 
generalized computational methods using e.g. molecular surface properties or ab initio 
methods have been succesful in predicting the absorption of small molecule  drug^'^',^^^,^. 
However, in the case of peptides or peptide-like molecules the understanding of the 
molecular factors governing absorption is still somewhat lacking. From studies on 
homologous peptide series it is known, that reducing the number of potential hydrogen 
bonds e.g. by methylating the backbone amide increases absorption3. The socalled 
desolvation energy hypothesis explains this in terms of the hydrogen bonds between the 
solute and the surrounding water which must be broken before the solute can pass through 
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the lipophilic membrane. There is also evidence to suggest that solution conformation may 
play a r ~ i e ~ , ~  

Membrane partitioning may be described as a contribution fkom a cavity term, e.g. 
size of the solute and a polarity term including hydrogen bonding’. The overall charge is 
also of importance but may be accounted for by calculating the unionized fraction from the 
pKa value as it is generally accepted that only the unionized fiaction is capable of passing 
the membrane. Tentatively, the cavity term is calculated as the size of the total water 
accessible surface area (TWASA), the polarity term as the polar water accessible area 
(PWASA), and pKa for the charge. In previous studies on low molecular weight 
molecules, the polar surface area has been shown to be inversely correlated to 
a b s ~ r p t i o n ‘ ~ ~ ~ ~  and blood-barin barrier permeationg. As also suggested by these studies, the 
molecular surface area varies with conformation so it may be necessary to take that into 
account also in the case of peptides. 

So far, the understanding of peptide absorption has mainly been qualitative. 
Therefore, the overall aim of this study is to contribute to a more quantitative understandig 
of peptide absorption by a systematic study of the relationship between sequence, 
conformation and desolvation energy. More specifically, the aim was to test if calculated 
molecular properties of a peptide can be used to predict its interaction with phospholipids. 

MATERIALS AND METHODS 

Design of model peptides 

It was decided to vary the amino acid sequence of 20 tetrapeptides according to a 
statistical design plan. All four positions were varied simultaneously in order to avoid the 
pitfalls of changing one factor at a time. Furthermore, the effect of methylating the 
backbone amide nitrogen of residue 2 and 4 was tested. Considering only the 20 naturally 
occ&ng amino acids and the combinations of the two N-methylations, 640 000 
sequTces exist. From this large experimental space, 20 representative peptides were 
selected by means of D-optimal design”, which allowed to take into account a number of 
structural constraints. 

Each amino acid in the peptides was described by three orthogonal z-scale 
descriptors, 21-23”. These descriptors are an updated version of the z-scales previously 
published by Hellberg et al”, and now includes five principal properties (21-z5) for 87 
natural and unnatural amino acids. The interpretation of the three first properties is the 
same as before, i.e. z l  describes hydrophilicity, 22 size/polarizability and 23 is interpreted 
as electronic effects. 

A D-optimal algorithm is an exchange algorithm, whlch picks out experimental runs 
for which the determinant of the XX’ matrix is maximizedI2. The D-optimal algorithm was 
repeated several times and the training set with the best combination of high G-efficiency 
and well-distributed parameters for polar surface area and total size was selected (Fig. 1). 
The G-efficiency is the efficiency of the design compared to a factorial design which by 
definition is 100%. The obtained G-efficiency of 46.3% is slightly below 50% which by 
rule of thumb is acceptable for D-optimal designs. Nevertheless, this is the best design 
obtainable for this strongly reduced and constrained design problem. 
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FIG. 1. Distribution of PWASA (polar water accessible surface area) and van der Waal‘s volume 
for the training set. G-efficiency for this D-optimal design was 46.3 %. 

Synthesis 

The 20 peptides were synthesized by solid phase synthesis using Fmoc chemistry. 
Their identity was confirmed by LC-MS, PD-MS and amino acid analysis by standard 
procedures within Novo Nordisk. 

Peptide/phospholipid Interactions 

The ability of the peptides to interact with phospholipids was studied in two 
chromatographic systems with phospholipids as the stationary phase. System no. 1 was a 
commercially available Immobilized Artificial Membrane chromatography column 
(IAM.PC.DD.) 13,  consisting of silica particles with covalently linked phosphatidylcholine. 
System no. 2 was the technique of Immobilized Liposome (IL) chr~matography’~ in which 
liposomes are imbedded into the matrix of a chromatographic gel. The columns were 
mounted on a standard HPLC system and the retention time (Rt) of the peptides was 
recorded. The capacity factors, k’IAM and Ks were calculated as follows: 

k’lAM= (R$eptide - Rtcitric acid)/ Rtcihic acid 

Ks = (RGqtide - Rtdichromate)/(molar amount of phospholipids) 

Theoretical Characterization 

The polar as well as the total water accessible surface area for one extended, low- 
energy conformation of each peptide was calculated by means of Sav013’~. 

Statistical Analysis 

The Savol parameters and the z-scales were used as x-variables and were 
supplemented with indicator variables (04) for the N-methylations and for presence of 
positiveinegative charge at pH 7.4. The Y-matrix was the logarithmically transformed 
k’IAM and Ks values. Partial Least Squares Projection to Latent Structures (PLS) as 
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implemented in Simca-P@ was used to correlate the x-matrix to the y-matrix. The number 
of significant components was determined by means of cross-validation expressed as Q’. 

RESULTS 

In table 1, the results of the statistical analysis using the various parameter sets are 
listed. In all cases - except model 2 employing just the z-scales and the indicator variables 
- quite good, low-dimensional models are obtained with Rz-values around 0.8-0.95 and Q’- 
values around 0.75. 

Table 1. Statistical quality of the different models 

Model No Savol z-scales Ind N R2 Q’ 
1 X X 1 0.823 0.752 
2 
3 

X X 1 0.667 0.392 
(Expanded) x 2 0.911 0.723 

4 X X X 2 0.946 0.762 
Savol: PWASA. TWASA. PWASAITWASA 
z-scales: zl (hydrophilicity), 22 (size/polarizability), 23 (electronic effects) for each amino acid 
Ind: Indicator variables ( O D )  for N-methylation and +/- charge 
N: number of significant PLS components 
R’: Explanatory value 
Q’: Predictive value according to cross-validation (leave 1/7 out) 

In Figure 2, the PLS coefficients for model 1 are shown. The negative effect of 
PWASA and fraction PWASA is equally large and it is possible to use either of them in 
the model with only minor decreases in the predictive power Q’. Even though it is not 
possible to distinguish which is the most important factor, it can be concluded that the 
same factors (PWASA and fraction PWASA) previously shown to be goveming 

TWASA I 
FIG.2 PLS coefficients for log Ks in model 1. R’ = 0.823, Q‘=0.752. Legend TWASA = Total Water Accessible 
Surface Area, PWASA = Polar Water Accessible Surface Area, N-Me : N-methylation in position 2 or 4 as 
indicated. A similar coefficients ploat was obtained for log k’IAM. 

absorution in Caco-2 cells’.’ and humans4 also have major influence on the peptide- 
phospholipid interactions. 

As would be expected, a full charge has a negative impact on phospholipid 
interactions. Furthermore, a negative charge has a stronger effect than a positive one. A 
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similar observation was made by Pauletti et a1 l 6  studying IAM retention times of peptides 
carrying positive, negative or no charges. 

The effect of N-methylation in position 2 and 4 is modest, but, surprisingly, negative. 
However, in this one-dimensional model, these effects are mixed up with effects of the 
molecular size parameters and, therefore, a detailed interpretation should be cautious. It 
may be speculated that a positive effect of N-methylation is only seen when the 
neighbouring amino acids are lipophilic and/or the overall hydrophillicity of the peptide is 
low. In order to further elucidate the matter, a new, extended design with room to 
determine interaction effects should be made. 

When calculating the molecular size parameters for this model, no attempts were 
made to correct for the conformational variability of the parameters. The quality of the 
models is so good that it is d o u b t ~ l  if they can be improved significantly by doing so. The 
reason for this may be that the peptides of this study are overall too hydrophilic: no matter 
how they twist around they expose hydrophilic parts. 

Using the z-scales plus the indicator variables gives a very weak model (model 2 in 
Table 1). Thus, it was necessary to improve the model by including some interaction terms 
and squared terms (significance based on VIP - Variable Importance for the variation in 
the x- and the y-matrix) to obtain the much better model 3. The necessity for the term 
expansion points out that the information contained in the linear combination of the z- 
scales describing individual amino acids is not sufficient for describing the whole-peptide 
properties responsible for phospholipid interactions. The validity of the suggested 
interdependencies between sequence and N-methylation has to be tested by a new external 
validation set. 

If combining the Savol parameters and the 2-scales (model 4) the z-scale model needs 
only four square terms and it is thus, intuitively, easier to interpret. From this model it is 
possible to estimate the effect of an amino acid exchange if in the same time calculating 
the Savol parameter. From the PLS coefficients for model 4 (not shown) it can be inferred 
that in all four positions a positive zl  value, i.e. a hydrophilic amino acid, decreases the 
ability to interact with phospholipids. The absolute size, 22, of the individual amino acids 
is of minor importance as is 23, the electronic effects. However, the latter seems to be of 
largest importance in position 4, where also a quadratic term was found to be significant, 

It should be emphasized, though, that the models described here are not completely 
optimized. All main terms are included for illustrative purposes and we are thus running 
the risk of modelling “noise”. Probably the predictive power of the models could be 
improved by excluding some of the insignificant terms. 

Future absorption studies in Caco-2 cells will define the relationship between the 
measured lipophilicity measures and absorption which presumably is sigmoidal. Although 
not giving all the answers to the questions involved in peptide absorption it is a step on the 
way towards a more quantitative understanding of this process. 
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INTRODUCTION 

Combinatorial and parallel chemistry and genomics in combination with high- 
throughput screening (HTS) are capable in increasing the number of lead compounds 
identified in lead discovery programs. Successful application of high-throughput- 
technologies in biological screening demonstrates that lead identification itself is often not 
the time limiting step in drug development. Bottlenecks occur due to missing fast secondary 
assays as well as the lack of high speed and quality prediction tools. These tools might 
focus on many aspects of bioavailability such as absorption, protein binding, metabolic 
stability and toxicity. Although today screening for biological activity is fast, the entire 
process of lead optimisation is performed in the traditional serial way rather than in parallel 
(see Figure 1). Future drug discovery and development should preferably proceed with the 
application of parallel strategies. 

existing methodologies for experimental 
measurements of relevant properties as well as to identify new parameters that are closely 
correlated with relevant aspects of in vivo bioavailability. In addition to experimental 
methods, computational approaches have to be refined to give adequate estimation of 
relevant compound properties so that extensive compound sets can be assessed reliably 
prior to synthesis. 

It is therefore necessary to refine the 
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Figure 1. 
more modern parallel approach. 

Multidimensional optimisation strategies in lead discovery and development. Traditional versus 

MOLECULAR PROPERTIES AND BIOAVAILABILITY 

Several molecular properties are known to have major impacts on the bioavailability 
of a drug' ( see Table 1). Unfortunately, determinations of these properties by standard 
methods are time consuming and not suited for parallel HT-processing. Therefore computer 
programs have been developed which allow the fast calculation of relevant parameters. 
Computational tools can be applied prior to synthesis, so that the number of synthesised 
compounds can be reduced. Lipophilicity, size, solubility and ionisation constants of a 
molecule can be calculated by those programs. However there are limitations in the 
application of computational methods, due to inaccurate or incomplete parameterisation. 
This prevents correct calculations of important parameters such as distribution coefficients 
(log D) and pH dependent solubilities. Physicochemical High Throughput Screening (pC- 
HTS) can support the fast, standardised determination of molecular properties related to 
bioavailability for hundreds of compounds. pC-HTS can thus be considered to be an 
important factor in lead optimisation. 

Table 1. Molecular properties with impact on bioavailability 
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PHYSICOCHEMICAL HIGH THROUGHPUT SCREENING (PC-HTS) IN THE 
DESCRIPTION OF SPECIFIC ASPECTS BIOAVAILABILITY 

Several molecular properties have been identified which influence the absorption 
process of an orally administered compound. They include dissolution rate, solubility, 
ionisation (pKJ, lipophilicity, hydrogen bonding and membrane permeability. 
The octanol/water partition coefficient (log P/D) is often used as an estimate of drug 
permeation of barriers such as membranes. Parabolic/bilinear or hyperbolic/sigmoid 
relationships between permeation or absorption rates and lipophilicities have been 
described. Kubinyi2 could show that the bilinear relationship is a useful model in the 
description of passive transport behaviour of congeneric compound series. Optimal 
permeation rates of octanol barriers are found for lipophilicities around zero. Maximum 
permeation of membranes is generally observed in a more lipophilic range (log D 0.5 - 3.0). 
Nowadays these simple rules are applied in the pharmaceutical industry in the selection 
process of potential leads (http://www,glaxowellcome.co.uWscience/drugmet/chap7.html). 
The capability of a compound to pass an organic layer such as octanol, should per se help 
identify compounds which have a potential to be passively absorbed. For a structurally 
diverse compound set we have analysed the rates of permeation through an octanol layer at 
pH 7.4 (Table 2/ Figure 2) .  

Table 2. log D P ~  7.4 (octanol) values determined by our HT-lipophilicity assay, performed 
on microtiter plates, and permeation rates in % at pH 7.4 derived by the octanol permeation 
assay (OPA) 

We obtained a good correlation between flux values and log D from in house HT-log 'D 
partition coefficient measurements. Apart from the value for nitrendipine( 19),6 all log D 
values were in accordance with known literature values (Figure 2) .  The prediction of 
human absorption data and Caco-2 permeation rates by diffusion measurements through 
impregnated filters has been described by several The transfer of these 
procedures into an HT-assay allowing the measurement of hundreds of compounds a day is 
simple, and is schematically described in Figure 3. 
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Figure 2. Permeation of an octanol layer at pH 7.4 as a simple HT-assay for absorption prediction for a 
diverse set of compounds. The permeation of a compound through the octanol layer is described by the 
percentage permeation (% flux). The flux values were calculated considering the UV absorption of the 
acceptor compartment after 15 hours and that of a reference well with same concentration containing no 
membrane barrier. 
A: log D values determined by an in house HT-assay for lipophilicity (HT-log D) performed on a microtiter 
plate are depicted against results of permeation measurements through octanol. Human absorption rates (A%) 
as described in the literatt~re~'~ are included. 
B: Comparison of log D values (l i terat~re~.~) against values derived by a HT-assay for lipophilicity 
determination. 

96 well plate l i e d  with buffer microtiter filterplate 

impregnation EBmple reference 
.. .... _.. 

Figure 3. Schematic depiction of the Octanol Permeation Assay ( OPA). 

Due to the high solubility of water in octanol, the latter does not behave as a real barrier, so 
highly charged compounds can be mis-classified in their passive absorption by simple 
octanol permeation experiments. 

Artificial membranes allow a better determination of the permeation characteristics 
of such compounds. Thompson'o21' and co-workers could show that stable bilayers, so 
called micro-BLM (Black Lipid Membranes), can be formed on a specific filter material. 
These membranes can be used in drug transport studies, as recently shown in our 
laboratory12 (see Figure 4). First promising results demonstrate that such studies allow 
reasonable estimations of passive absorption capabilities. Passive transcellular transport is 
the focus of the parallel artificial membrane permeation assay (PAMPA)". Combination of 
our HT-screen with cell culture models for active and paracellular transport might be 
advantageous in the prediction of paracellular and active transport. 
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PAMPA flux at pH 6.5 versus human absorption. Reproduced with the permission from the 

An estimate of the amount of compound which partitions into the membrane can be 
derived by considering the mass balance in the donor and acceptor compartments of the 
artificial membrane permeation assay,. In Figure 5 the distribution of structurally and 
physicochemical diverse compounds in the different compartments of the PAMPA system 
is displayed. Compounds with log Doctanol between 0 and 3 show increased permeation 
rates. More lipophilic compounds show a strong affinity to the artificial membrane (see 
nitrendipine). 

Figure 5. 
(PAMPA) for a set of diverse compounds (pH 7.4, after 15 h). 

Compartment distribution derived by the Parallel Artificial Membrane Permeation Assay 

Solubility and the dissolution rate also have major impacts on the in vivo absorption 
process. At first sight, the experimental determination of aqueous solubility appears to be a 
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straightforward task. In practice however, there are many pitfalls that should not be 
overlooked. The crystal form of the solute, its particle size, the ionic strength and pH of the 
solvent are only a few parameters that may influence the result of a solubility measurement. 
These can make thermodynamic solubility measurements a tedious task. In a simplification 
of the correct solubility measurement, turbidity  determination^'^ can be applied as a first 
rough estimate of solubility. Although this method is not appropriate for the determination 
of high aqueous solubilities, compounds with low solubility can be easily identified. Small 
solubility differences can be detected, allowing the early identification and selection of 
compounds with a superior solubility profile (see Figure 6). 

0.5 

0.4 

0.3 

f 

1 

.e 0.2 .- 0 - .- 
n 

0 

Figure 6. Comparison of the results determined by the Parallel Incremental Solubility Assay (PISA- 
turbidity measurement) versus the corresponding solubility determined by a conventional method. The bar 
graph for warfarin, coumarin, hydrocortison, imipramin, and diltiazem reflect the maximum solubilities 
achievable under the selected test conditions for the turbidity measurement (final DMSO concentration 1 %, 
initial concentration of the stock solution 50 mM). The corresponding solubilities determined by the standard 
procedure are higher, as depicted for these compounds. 

The combined application of the above HT-screening technologies in the determination of 
molecular properties has a major impact on modern drug discovery. Significant reductions 
in time and costs in the development and optimisation of potential lead compounds may be 
realised. Beside the benefits of the application of physicochemical HT-screening for current 
discovery programs, a further advantage lies in the fast generation of large standardised 
datasets. In the long-term, data bases constructed from such datasets are a precondition for 
the development and improvement of high quality prediction tools. These databases will, in 
turn, provide the basis for enhanced virtual screening. 
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INTRODUCTION 

Since Meyer (1899) and Overton (1901) discovered a relationship between general 
anesthetic potency and oillwater partition coefficients, partition coefficients have been used 
as parameters in pharmacological and toxicological studies. The partition coefficient 
between n-octanol and water (log %,) has been used most often, occasionally referring to it 
as a surrogate for membrane/water partitioning. 

Nevertheless, recently we showed that the assumption that log K,,, is a good 
surrogate for membrane/water partitioning should be used cautiously (Vaes et al., 1997). 
Therefore, the aim of this contribution is twofold: -to gain insight in the interactions that are 
involved in membrane/water partitioning, -and to obtain information about the differences 
between n-octanollwater and membrane/water partitioning. For this purpose we developed 
structure-property relationships for a set of twenty-eight chemicals. 

METHODS 

This paper describes the methodologies that were developed to measure 
membrane/water partition coefficients. Subsequently, models are described that give insight 
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in the partition behavior, but also enable the prediction (or estimation) of membrane/water 
partition coefficients. 

Measurement of MembraneNVater Partition Coefficients 

Membrane/water partition coefficients were determined by a negligible depletion 
extraction method using solid phase microextraction (SPME). SPME was introduced by 
Arthur and Pawliszyn (1990) and uses polymer coated fibers as extraction device. In short, 
the SPME apparatus is placed in an aqueous sample, and the organic molecules partition 
from the aqueous phase to the polymeric coating. Subsequently, the polymer coated fiber is 
transferred from the solution to the injector of a gas chromatograph. In the injector, the 
chemicals are thermally desorbed from the fiber, after which they can be analyzed. SPME 
was used as a negligible depletion extraction, which means that the extracted amount from 
the sample is negligibly small to not disturb equilibria between the aqueous phase and, in this 
case, phospholipid vesicles (Vaes et al., 1997). Negligible depletion SPME was used to 
measure the freely available concentration of the compound of interest in a solution with and 
without phospholipid vesicles, from which the partition coefficients was determined. 

Calculation of Parameters to Develop Quantitative Structure-Property Relationships 

Three approaches were chosen to develop QSPRs for membrane/water partitioning. 
First, a model was derived based on only calculated descriptors. Second, a model was 
developed to correct the octanoVwater partition coefficient to obtain the membrane/water 
partition coefficients, based on quantum chemical descriptors. Last, structural fragment 
values were derived with the same purpose. 

Model I. Jin and Hopfmger (1996) described that membranes could be considered as 
consisting of three different phases. The interior of the membrane resembles alkane-solvents, 
close to the interface there is a region with high rigidity, while at the interface hydrogen 
bonding properties dominate. For these three regions, specific molecular descriptors were 
derived. The hexadecane solvation energy (AGS,& for the interior, the molecular volume 
(MV) for the rigid part, and hydrogen bonding parameters, as described by Cramer et al. 
(1993) (Q-, Q’, &HOMO, E L ~ M ~ ) ,  are compared to the aqueous solvation energy (AGS,Bq) by a 
PLS regression analyses, where membrane/water partition coefficients are used as the 
dependent variable. 

Model II. Hydrogen bonding parameters, described in the earlier section, were 
chosen to correct log Lw’s to obtain log Lw’s.  Log L,, Q-, Q’, &HOMO, ELMO were used as 
independent, and log K,, as dependent variables in this PLS regression. 

Model Ill. Structural fragments were chosen from the molecular structures, taking 
all polar fragments. Chosen structural fragments were alcohol (alOH), phenol (arOH), 
aliphatic amine (alNH3’), aromatic amine (arNHz), aromatic nitro-group (arNOz), aliphatic 
ester (alC(=O)O) and aromatic ester (arC(=O)O). Structural fragment values were entered 
in the data matrix as dummy variables counting the occurrence of each structural fragment in 
each molecule. The fragment values were derived using PLS regression on the dummy 
variables according to the following Free-Wilson analysis: 

log K,, - log KO, = bj X 
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where bj is the value of structural fragment j ,  where j runs over all structural fragments that 
occur X times in the molecule. 

RESULTS 

For the models, and a more complete discussion, see Vaes et al. (1998). 

Model I. (Rz= 0.87, Qz= 0.81) The autoscaled pseudo regression coefficient shows 
that AGS,C16 is the dominant factor in describing the membrane solvation energy and 
therefore the largest portion of partitioning is governed by the hydrophobic regions (mostly 
the inner zone and probably partly the intermediate zone). A negative coefficient for ELWO 

shows that good electron accepting capabihties of the solute (low increases the 
membrane-water partition coefficient. Additionally, the positive coefficient for Q' indicates 
that good proton donating capabfities (high Q') also interact favorably with the membrane, 
thereby increasing log Kmw. The negatively charged groups in the phospholipid, i.e. the 
carbonyl-groups and the phosphorous group, thus interact favorable with acidic protons of 
the solute. On the other hand, a highly negative Q' results in repulsions due to the highly 
negative charged groups in phospholipids, and decrease the membrane-water partition 
coefficient. Concluding, high membrane-water partition coefficients, result from 
hydrophobic chemicals (low AGSSCl6 and high AGsas) with good hydrogen bond donating 
capabilities (low ELUMO, high Q') and low hydrogen bond accepting capabilities (low absolute 
value of Q-). 

Model II. (R2= 0.97, Q2= 0.94) The model shows very clearly that the differences 
between n-octanol and phospholipid membranes are governed by hydrogen bonding 
interactions. A low cLm0 and a high Q' show a more favorable interaction with 
phospholipids than with n-octanol, while Q- interacts weakly and unfavorably with 
phospholipids. This implies that phospholipids are better electron donors than n-octanol, 
while the opposite is valid for the electron accepting capabilities. n-Octanol does carry an 
acidic proton which might interact favorably with negative groups on the solute. Since 
phospholipids do not have any acidic hydrogen that can be shared by electron donation of a 
solute, a positive sign of the coefficient of Q- makes sense. 

Model m. (R2= 0.91) Results from this model are in accordance with model 11. 
Some examples: -phenols are good hydrogen bond donors and thus have a positive 
contribution to log K,,, -esters have low hydrogen bond donor, but good accepting 
capabalities, therefore they have a negative contribution to log K,nw. 

CONCLUSIONS 

The partitioning behavior of organic chemicals to phospholipids can be modeled 
using physico-chemical and quantum-chemical descriptors that account for hydrophobicity 
as well as hydrogen bonding capabilities. Differences between the n-octanol-water and 
membrane-water partition coefficients can be almost completely explained by differences in 
hydrogen bonding capabilities of the solvents. The influence of one being a bulk phase and 
the other being a highly organized bilayer seems to be of minor importance. In addition, this 
study provides structural fragment values for adjusting log I&,, to obtain log K,, for phenol, 
aniline, nitrobenzene, alcohol, amine and ester groups. 
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INTRODUCTION 

Prediction of human intestinal absorption (HIA) is a major goal in the development 
of oral drugs. The application of combinatorial chemistry methods to drug discovery has 
dramatically increased the demand for rapid and efficient models for estimating HIA and 
other biopharmaceutical properties. While experimental methods for measurement of intes- 
tinal absorption have been developed and are used widely, computational approaches pro- 
vide an attractive alternative. 

Quantitative structure-property relationship (QSPR) methods have been used to 
model many chemical and biological properties of organic compounds. Computational 
models have also been reported for such biopharmaceutical properties as %HIA, blood- 
brain barrier, skin and occular permeation, pharmacokinetics, and m e t a b o l i ~ m . ' ~ ~ ~ ~  How- 
ever, these studies all involved sets of structural analogs, and models based on limited 
chemical space generally lack predictive value outside their structural classes. Broadly 
applicable QSPR models of biopharmaceutical properties must be built using compounds 
which cover both a wide range of the property being modeled as well as of chemical struc- 
ture space. 

The QSPR methodology used in this study consists of three main parts: representa- 
tion of molecular structure, feature selection, and mapping. The QSPR relationship is 
developed from a set of compounds with known %HIA values. The compounds are en- 
coded with calculated structural descriptors, which are mathematical representations of 
chemical structure. Once the structures have been encoded, the subset of descriptors that 
best encodes the property of interest is sought with feature selection methods employing the 
genetic algorithm (GA)4 coupled with computational neural  network^.^ Feature selection is 

Excerpted with permission from J. Chem. If: Comput. Sci. 1998, 38, 726-735. Copyright 1998 American 
Chemical Society 
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a necessary step because of the large numbers of descriptors available (more than one hun- 
dred per compound). Once a subset of descriptors is found, the descriptors are then mapped 
to the property of interest, using either a linear regression equation or a non-linear compu- 
tational neural network. These mapping methods effectively provide a mechanism for 
linking the chemical structures to their corresponding %HIA values. 

EXPERIMENTAL 

The computations for this work, with two exceptions, were performed at Penn 
State University on a DEC 3000 A X P  Model 500 workstation. Those calculations in- 
volving HyperChem,6 were performed on a Pentium PC. The 3-dimensional model- 
building, utilizing CORINA (Version 1.6)’ as well as the molecular fragment extractions 
and presencelabsence determinations, were performed on a SGI Challenge-L at Affymax 
Research Institute. The ADAPT software system was used for all computations except 
those discussed above and those involving computational neural networks. The neural 
network software was developed independently at Penn State University. 

Data Set 

The set of 86 drugs and drug-like compounds and their experimental %HIA val- 
ues were taken from literature sources. These compounds are listed in Table 1 of refer- 
ence 8 with their experimental %HIA values and literature references. Much of the lit- 
erature uses the term “percent absorbed” imprecisely to mean either percent intestinal ab- 
sorption (%HIA) or absolute oral bioavailability, which can be lower than % H A  due to 
first-pass hepatic metabolism. Therefore, each reference was reviewed to ensure that in- 
testinal absorption values were used in this modeling effort, and furthermore that these 
values were not dose-dependent and involved only healthy clinical populations. The sub- 
set of 64 compounds with %HIA less than 100% comprise all the literature examples we 
were able to find which met these criteria. The remaining 22 compounds, with 100% 
HJA, were randomly selected from the large number of publications on well-absorbed 
oral drugs. The proportion of 100% HIA compounds was kept low to lessen overloading 
the training set with high % H A  values. The data set contains a large amount of structural 
diversity. Of the 86 compounds, 22 absorb at loo%, 47 have absorption values at 90% or 
higher, and 71 compounds (or about 83% of the total data set) absorb at 50% or higher. 
Only 15 absorb below 50%. While the entire range spanned is 0-loo%, this data set is 
heavily biased towards large values of absorption given the tendency towards success- 
filly-developed orally active drug compounds. 

The 86 compounds were divided into a training set of 76 compounds and an ex- 
ternal prediction set of 10 compounds. The external prediction set spans the range of 5% 
to 100% HIA. The compounds in the external prediction set were never used during the 
model development process but were reserved to validate potential models. 

The structures of the 86 compounds were extracted from the ART database with 
ISIS and transferred to the DEC Alpha workstation where they were entered into 
ADAPT. CORINA was used to generate accurate 3-dimensional geometries. 

Descriptor Generation and Analysis 

A total of 162 descriptors was generated for each of the 86 compounds using 
ADAPT descriptor development routines. The descriptors fall into three general catego- 
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ries: topological, electronic, and geometric. Topological descriptors are derived fiom in- 
formation about the two-dimensional structure of the molecule. Graph theory was ap- 
plied to the 2-D structures to generate a multitude of topological indices. Other topologi- 
cal descriptors, such as atom counts, bond counts, and molecular weight, were also de- 
rived from the 2-D structural representations. Electronic descriptors were calculated with 
MOPAC using the AM1 Hamiltonian. Electronic descriptors include partial atomic 
charges and the dipole moment. Geometric descriptors, including moments of inertia, 
surface area, and volume, are derived from three-dimensional geometries of the mole- 
cules. An additional class of descriptors can be derived by combining electronic and 
geometric information to form hybrid descriptors. By combining the molecular surface 
area with partial atomic charges, charged-partial surface area (CPSA) descriptors can be 
calculated. The same can be done with certain atom types (H, N, 0, F, S )  to calculate hy- 
drogen bonding specific descriptors. Of the 162 ADAPT descriptors calculated, 84 were 
topological, six were electronic, 29 were geometric, and 43 were hybrid descriptors. 

In addition, a large number of substructure fragment descriptors were also gener- 
ated. These fragment descriptors were binary strings that indicated the presence or ab- 
sence of 566 important substructure features or fragments. A pool of more then 3200 
functional group fl-agments was excised from over 7000 drug and drug-like molecules 
found in MDL's Comprehensive Medicinal Chemistry database (CMC 97.1) using the 
first-order hnctional group extraction algorithm developed by Sello." These 3200 basis- 
set functional groups were made more general by changing all single bonds to single or 
aromatic bonds and all double bonds to double or aromatic bonds, respectively. A total 
of 566 fragments from the basis-set pool was found in at least one, but not all, of the 86 
compounds in the worlung set. The fragment descriptors were augmented to the pool of 
ADAPT descriptors. Thus, each compound was represented by 728 descriptors in all. 

Objective feature selection was used to discard descriptors which contained re- 
dundant or minimal information, reducing the pool to 127 members. Of these, there were 
61 fragment descriptors, 25 topological descriptors, 21 CPSA/H-Bonding descriptors, and 
20 geometric descriptors. 

Computational Neural Networks 

The neural network type most used for quantitative structure-property relation- 
ships is the three-layer, fully-connected, feed-forward neural network. This network con- 
sists of a multi-layer system of neurons, with each neuron in a given layer fully connected 
to all neurons in the two adjacent levels. The objective of a neural network is to map a 
set of input data to a particular set of output data. In this case, molecular structure de- 
scriptors, linearly scaled to the range (O,l), serve as input data, and the %HIA values 
serve as output data. The connections between neurons are known as weights. A neural 
network is trained to map a set of input data to a corresponding set of output data by it- 
erative adjustment of the weights. In this study, the networks were trained using a quasi- 
Newton optimization algorithm. Detailed discussions of the type of neural network and 
the training algorithm used in this study have been published previou~ly.~ 

A feature selection routine which combines the genetic algorithm with a neural 
network fitness evaluator'' was used for this study. The GMneural network routine se- 
lects subsets from the reduced descriptor pool that support good non-linear models by 
using neural networks to evaluate each potential subset. The genetic algorithm uses the 
rms error to find a good subset of descriptors. This forces the algorithm to find descriptor 
subsets that minimize the number of large outliers, at the possible expense of overall 
model quality. The genetic algorithm used in this study also incorporates the PRESS sta- 

25 1 



tistic to improve the chances of finding a general and predictive model. In any optimiza- 
tion procedure similar to the one described here, the starting conditions can greatly influ- 
ence the final results. Ths  is largely due to the multivariate nature of the problem. 
Therefore, it should not be surprising that the “best” subset of descriptors found by the 
GA will differ from run to run. It is also hl ly  expected that as more and more com- 
pounds are added to the training set, the GA will find different, but perhaps qualitatively 
overlapping, subsets of descriptors. 

RESULTS AND DISCUSSION 

The 127-member reduced pool of descriptors was fed to the GNneural network feature 
selection routine for the purpose of developing a non-linear model. The original regres- 
sion training set was split randomly into a neural network training set of 67 compounds 
and a cross-validation (CV) set of nine compounds. The original 10-member external 
prediction set was used to validate any neural network models. The CV set was used to 
monitor overtraining of the network, and the training set was used to actually train the 
network. The CV set and training set rms errors are used by the GA to determine a cost 
function that relates directly to the overall quality of a particular subset. 

To decrease the possibility of chance effects influencing neural network training, 
the ratio of observations to total adjustable parameters should be at or above 2.0.’’ A 
neural network consisting of six input neurons (descriptors), four hidden neurons, and one 
output neuron (target, %HIA), a 6-4-1 architecture, was used since it produced the maxi- 
mum number of adjustable parameters recommended for a data set of this size. For this 
6-4-1 architecture, the ratio of training set observations to adjustable parameters was 
67/33, or 2.03. 

Using this 6-4-1 network architecture, the GA routine searched the reduced de- 
scriptor pool for subsets that supported good models. Several models with good cost 
functions were found by the GA routine. The best subset of descriptors was then studied 
and further optimized for network performance. 

After the genetic algorithm runs were completed, several sets of weights and bi- 
ases were then found in separate CNN trainings. The set that produced the best training 
set and cross-validation set errors was then validated with the external prediction set. The 
six descriptors that comprised the best subset found by the GA are as follows: NSB, the 
number of single bonds; SHDW-6, the normalized 2-D projection of the molecule on the 
Y Z  plane; CHDH- 1, the charge on donatable hydrogen atoms; SAAA-2, surface area of 
hydrogen bond acceptor atoms divided by the number of hydrogen bond acceptor atoms; 
SCAA-2, surface area multiplied by the charge of hydrogen bond acceptors divided by 
the number of hydrogen bond acceptors; GRAV-3, the cube root of the gravitational in- 
dex. Of the six descriptors, one is a topological descriptor, three are hydrogen bonding 
descriptors, and two are geometric descriptors. Painvise correlations were calculated for 
the six descriptors, and the mean value is 0.21 and the highest correlation coefficient be- 
tween any two of these six descriptors is 0.63. The six descriptors span the following 
ranges: NSB (3 to 3 9 ,  SHDW-6 (0.36 to 0.76), CHDH-1 (0.00 to 1.30), SAAA-2 (3.91 to 
38.23), SCAA-2 (-0.28 to -18.38), GRAV-3 (8.76 to 15.75). Of the six descriptors in the 
final model, none were binary fragment descriptors. 

The descriptors in this model do not encode a causal relationship between struc- 
ture and %HIA. However, it is useful to examine qualitatively the possible meaning of 
each descriptor. The NSB descriptor is encoding single bonds, and this may be an indi- 
cation of the amount of structural flexibility. The SHDW-6 and GRAV-3 descriptors are 
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Figure 1. Plot of calculated percent human intestinal absorption (cHIA) versus observed %HIA for the 
training set, cross-validation set, and prediction set compounds. [Adapted from Figures 1 and 2 of J. Chem. 
I& Comput. Sci. 38:726 (1998) with permission of the American Chemical Society.] 

encoding molecular size, shape and bulk properties. These size descriptors may be im- 
portant with respect to the ability of the drug to penetrate cell membranes. The three re- 
maining descriptors are all hydrogen bonding descriptors. These can be thought of as in- 
dicators of the degree of the lipophobic and lipophilic character of a drug compound in 
biological environments. 

The training set rms error for this six-descriptor neural network model was 9.4 
%HIA units. The mean absolute error (mae) was 6.7 %HIA units. These values were 
calculated after all output values fiom the network greater than 100% or less than 0% 
were fixed at 100% or 0%, respectively. The CV set rms error was 19.7 %HIA units 
(mae 15.4 %HIA units). Figure 1 shows a plot of cHIA vs. observed %HIA for the 
training and cross-validation sets. There is a good fit to the 1 : 1 correlation line. Valida- 
tion of the model was performed using the 10-compound external prediction set. The rms 
error for the external prediction set was 16.0 %HIA units (mae 1 1 .O %HIA units), a good 
validation of the model. Figure 1 also shows a plot of cHIA vs. observed %HIA. It is 
likely that the overprediction of absorption values above 50% is mainly due to the origi- 
nal bias in the training set. 

Chance correlations can influence the development of QSPRs. To ensure that 
chance effects did not influence the current study, a randomized test was performed. The 
dependent variables of each of the compounds in the training set and cross-validation sets 
were scrambled randomly and the GA was run again. The prediction set rms error fiom 
the randomized model was 41.7 %HIA units, as opposed to 16.0 %HIA units from the 
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real model. The cost function for the scrambled data is 50% higher than that for the real 
data, which indicates that the model built from the real data was not based on chance. 

Intestinal absorption of drug compounds depends on complex biological processes 
(including passive membrane penetration, active transport mechanisms and metabolism 
in the gastrointestinal tract) and on compound physicochemical properties (including 
solubility, dissolution rate and dissociation constants). Therefore, we do not expect that a 
QSPR model derived from 76 diverse compounds will be a highly precise and rugged 
predictive tool. A much larger training set, presently unavailable in the published litera- 
ture, would be required to build a model based not only on structural diversity but also on 
diverse biological and physicochemical properties. This model is intended to serve as a 
tool for both individual and compound library design to significantly improve the likeli- 
hood of overall increased %HIA of compounds selected for synthesis. As shown in Fig- 
ure 1, this model does not produce an exact rank ordering, but it clearly differentiates the 
well-absorbed compounds fi-om the poorly-absorbed ones. 

CONCLUSIONS 

A six-descriptor non-linear computational neural network model has been devel- 
oped for the estimation of %HIA values for a data set of 86 drug and drug-like com- 
pounds. The six descriptors in the final model are varied measures of structure. The 
training set rms error was 9.4 %HIA units, and the CV set rms error was 19.7 %HIA 
units. Based on the rms errors of the training and CV sets, it is clear that a link between 
structure and %HIA does exist. However, the strength of that link is best measured by 
the quality of the external prediction set. With an rms error of 16.0 %HIA units, and a 
good visual plot, the external prediction set assures the quality of the model. Given the 
structural diversity and bias of the data set, this is a good first attempt at modeling human 
intestinal absorption using QSPR methods. 

A basic QSPR for estimation of %HIA values of drug and drug-like compounds is 
presented in this paper. The model can be used as a potential virtual screen, or property 
estimator. With a larger data supply less biased towards the high end values of %HIA, a 
more successful model could likely be developed. This study illustrates the potential of 
using QSPR methods to aid in the drug development process. 
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Tang et ~ 1 1 . l ’ ~  recently published brain dopamine receptor e t y  data of tetrahydroprotober- 
berine (THPB) derivatives (Table). These compounds contain only a small number of substituents 
in several positions of the parent molecule. For this type of data typically a Free-Wilson analysis is 
used for the derivation of QSARs. Meaninfl results can be obtained by this type of analysis only 
if the activity contributions of single substituents are independent fiom each other or, in other 
words, if the contributions are constant and additive. 

Inspection of the THPB data set showed that the substituent activity contributions seemed to 
be non-additive. This feeling was supported by a Free-Wilson (F-W) analysis (reference molecule: 
no. 6). Starting with 9 indicator variables the stepwise regression analysis resulted in an equation 
with only one remaining variable ( I R ” o ~ o ~ e )  that seemed to be statistically sigtllscant (~0 .583 ;  
Leave-one-out (LOO) cross-validation: ~0 .358) .  

To recognize whether this result was indeed due to non-additivity or s ip ly  due to large ex- 
perimental errors in the activity data a ’nonlinear Free-Wilson analysis’ was performed us ig  an 
Artiicial Neural Network (ANN) and the same 9 indicator variables as independent variable 

it was 
found that only 2 of the 9 binary descriptors did not contribute significantly to the descrip- 
tion of the THPB affinity data. Using a back-propagation neural network with 2 hidden layer 
neurons, 7 indicator variables and 13 network weights an excellent fit was obtained for the 
observed 15 affinity values (~0 .990) .  As 13 weight values had been determined from only 
15 compounds one has to consider that the network may be simply memorizing the observed 
data. To recognize whether the network indeed has predictive power a LOO cross-validation 
procedure was run using the same seven descriptors and ANN as before. A satisfactory cor- 
relation ( ~ 0 . 8 1 0 )  was found between observed and predicted activities. Thus the network 
was able to recognize that the simultaneous presence or absence of two or more substituents 
leads to high or low activity. 

A 3-D / 4-D plot (not shown) of calculated activities vs. indicator variables is able to 
show the variability / non-additivity of substituent effects. 

input. 
By applying different techniques for the reduction of the size of the 
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Brain dopamine D2 receptor atfinties @Ki) of tetrahydroprotoberberine derivatives 

talc. F-W calc.”ANN pred.” ANN R’ Rz R’ R4 R5 R6 Obsd.’’2 

1 OMe OMe OMe OH H H 6.19 5.81 6.14 6.14 

2 OH OMe OMe OMe H H 6.26 5.81 6.12 6.10 

3 OH OMe OMe OH H H 6.22 5.81 6.12 6.11 

4 OMe OH OMe OMe H H 6.00 6.68 6.26 6.30 

5 OMe OH OH OMe H H 6.75 6.68 6.72 6.59 

6 OMe OH OMe OH H H 7.07 6.68 6.99 6.77 

7 OMe OMe OMe OMe H H 6.06 5.81 6.12 6.14 

8 OMe OMe OH OMe OMe H 5.13 min. 5.81 5.01 5.03 

9 0-CH2-0 OMe OMe H H 6.13 6.68 6.26 6.26 

10 OH OH OMe OMe H H 6.22 6.68 6.13 6.11 

11 OH OH OH OH H H 6.13 6.68 6.16 6.38 

12 OMe OH H OH OMe C1 6.87 6.68 6.89 7.65 

13 OMe OMe OH OMe H C1 5.66 5.81 5.71 5.80 

14 OMe OMe OH OMe H Br 5.16 5.81 5.17 5.62b 

15 OMe OH OH OMe H C1 8.24 m, 6.68 8.17 6.96 

a calculated/predicted using 13 ANN weights; predicted without I R 6 w  (because of singularity) 
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INTRODUCTION 

y -Aminobutyric acid (GABA), an inhibitory neurotransmitter, binds to the GABA, 
(ionotropic) receptor, to regulate the central nervous system of vertebrates. Insects have 
similar ionotropic receptors with different pharmacological properties, and, as a result, their 
GABA receptors represent promising targets for insecticides. Recently, 3D-QSAR analyses 
for insecticidal activity (against houseflies) and competitive activity against the specific 
[35S]tert-butylbicyclophosphorothionate (TBPS) binding (to rat brain membranes) of some 
picrotoxinin-type GABA antagonists, including y -BHC, endosulfan, bicyclophophates, 
dioxatricyclododecenes (DTD) and related compounds, were carried out’ using comparative 
molecular field analysis (CoMFA). The CoMFA results showed that similarities and 
dissimilarities in sterically and electrostatically favourable and forbidden regions on the 
molecule were reflected in the insecticidal and rat-receptor binding activities. 

P i c rodendr in~~~~  are a series of terpenoids which have been recently isolated from the 
Euphorbiaceae plant, Picrodendron buccatum (L.) Krug & Urban. Some of these 
terpenoids have been reported’ to competitively inhibit the specific binding of the 
noncompetitive GABA antagonist [35S]TBPS to rat-brain membranes in a manner which is 
similar to the compounds previously used in CoMFk The structure of picrodendrin Q 
which is the most potent of these is shown in Figure 1. 

In this study, we examined the inhibition of the specific binding of [35S]TBPS and 
[3H]4’-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), the noncompetitive antagonist of 
GABA receptors, to rat-brain membranes as well as the binding inhibition of [3H]EBOB to 
houseflly-head membranes using QSAR methods. Based on the results obtained, we infer 
structural differences in the noncompetitive antagonist binding sites of mammalian and insect 
GABA receptors. 
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RESULTS AND DISCUSSION 

The Q S A R  analysis of inhibition of the binding of [3H]EBOB to housefly-head 
membranes for picrodendrins and related compounds, log [l/IC,,(M)], yielded Eq. 1. 

log [l/IC,,(M)] = -2.870 q(C16) - 1.419 (IdoH t I,,,) + 6.933 (1) 

n = 12 s = 0.427 r = 0.877 

where q(C16) is the atomic charge on the carbon atom 16, and I,,, and ISoq are indicator 
variables for the presence of the OH group at the 4- and 8-position, respectively. Eq. 1 
shows that the electronegativity of the carbon atom 16 and the presence or absence of the 4- 
and 8-hydroxyl groups are important determinants of the potency of nor-diterpenes in 
housefly receptors. In the case of rat receptors, the number of available active nor- 
diterpenes was not sufficient to perform a quantitative analysis. However, the negative 
charge on the carbon 17-carbonyl oxygen atom appeared to be important. These findings 
indicate that significant differences exist between the structures of the complementary 
binding sites in mammalian and insect GABA receptors. 

The superposition of picrodendrins onto GABA antagonists used for the previous 
CoMFA was carried out using the Superimpose and Field-fit procedures of SYBYL, Ver. 
6.4 to obtain 10 alignments. On the basis of those alignments, the inhibitory activity of the 
[35S]TBPS binding to rat-brain membranes was analyzed for picrodendrin A, B, M, 0 and 
Q along with a variety of GABA antagonists. A reliable CoMFA equation was obtained 
when one of the alignments was used. Picrodendrin Q and one of DTD compounds in the 
alignment are shown in Figure 2.  Picrodendrin B, in which the structure of the y -  
butyrolactone moiety is different from the others, was excluded from the equation because 
the measured activity was much higher than predicted. The equation showed contour maps 
which were similar to those drawn according to our previous CoMFA equation.' 

H 

Figure 1.  Structure of picrodendrin Q Figure 2.  Superposition of picrodendrin 
Q (black) and one of DTD compounds (gray) 
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Introduction 
The importance of lipophilicity in QSAR and drug design demands for the availability of 
quick, precise and reproducible experimental approaches to quantifjr this physico-chemical 
property. The Hansch group introduced the determination of log P in the octanol-water 
system as the standard. The need to derive lipophilicity data for steadily increasing numbers 
of compounds initiated the search for both experimental and computational alternatives to 
octanol-water partitioning. Calculation approaches are either atom-based or use fragments; 
in recent time attention is paid to the impact of 3D-aspects on lipophilicity. Application of 
calculation approaches demands a validity check with experimental data. In this study 2 
experimental (log Poct, R M ~ )  and 17 calculation approaches (fragmental, atom-based, based 
on molecular properties) are investigated by regression and principal component analysis 
(PCA) for 159 molecules including simple structures and more complex drugs. 

Materials and Methods 
Experimental data: log Poct values are from (1-4); chromatographic lipophilicity data were 
derived by RP-TLC, according to (5). For the simple compounds they were published. (6). 
Calculated data: lipophilicity was calculated with 17 programs; fragmental methods: Cf- 
SYBYL, CLOGP, PROLOGP-cdr, SANALOGP-EO, SANALOGP-ER, atom-bused 
methods: MOLCAD, Tsar 2.2,  PROLOGP-atomics, CHEMICALC-2, SMILOGP; methods 
bused on molecular properties: HINT, BLOGP, ASCLOGP. PROLOGP-comb combines a 
fragmental (Rekker) and an atom-based approach (GhoseKrippen). Statistical analysis: 
PCA was performed with GOLPE (7), version 3.1, on a Silicon Graphics workstation. The 
MREG option of SIMCA 3B (8) was used for regression analysis. 

Results 
PCA of the entire database exhibits a clustering of chemical groups, preciseness of clustering 
corresponds to chemical similarity (Fig. 1). Thus, diversity searching in databases might 
effectively be performed by PCA on the basis of calculated log P. 

Fig. 1. Score plot of a PCA 
with the reduced data set 
(n=153) Chemical groups 
are colour-coded and one 
can detect a clustering for 
imidazoles (dark-blue), halo- 
benzenes (magenta), benz- 
amides (grey) and phenothia- 
zines containing a piperazine 
side chain (dark-violet) or 
lacking this moiety (light- 
violet). 
For broadly defined groups 
such as aromatic acids 
(black) or neutral aromates 
(yellow) clustering is less 
pronounced. 
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The comparative validity check of experimental and calculative procedures by regression 
analysis and PCA was performed with a chemically balanced, reduced data set (n = 55) 
representing 11 chemical groups with 5 members, each. 
Regression of experimental data (log Po,, f) RM,J proves that RP-TLC values can be used as 
valid and equivalent substitutes for log P: 

RMw = 0.994 (k 0.03) log Poct - 0.009 (5 0.09); n = 55; r = 0.995; s = 0.169; F = 5710 
Regression of calculative versus experimental lipophilicity data exhibits a superiority of frag- 
mental over atom-based methods and approaches based on molecular properties, as indi- 
cated by correlation coefficients, slopes and intercepts. 
Present data indicate it worthwhile to unravel separate quality rankings for various chemical 
classes of interest; the KOWWIN program, shown to be excellent for drug molecules, 
exhibits a reduced predicitivity for simple organics. 
In addition, PCA (Fig. 2) revealed that fragmental methods (Rekker-type, K O W ,  
KLOGP) sense the compound ranking in log P to almost the same extent as experimental 
methods. For atom-based procedures and CLOGP, both the comparability of absolute values 
and the sensing of the compound ranking in the database are slightly less. This trend is more 
pronounced for the methods based on molecular properties, with the exception of BLOGP. 

* . -.. ...... . .._..... ..... a .-.- 2::;;:; ... 
, ~ ....... FyY --"! , .....-.*.- 

Fig. 2. PCA with the reduced, balanced set (n = 5 5 ) :  loading plot of the first versus the second com- 
ponent. The information content is twofold. The distance between the projection of the data points 
(arrow in the left scheme) for experimental and calculative procedures onto the first component 
indicates the similarity in absolute values for experiment and calculation. The deviation of the loading 
direction of a given variable from the direction of the first PC (angle a in the left scheme) reflects the 
similarity between a calculation procedure and the experimental approach in reflecting the compound 
ranking in log P data within a database. 
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In the classical 'Hansch-Fujita correlation analysis' properties of molecules under 
study are quantified with help of hydrophobic, electronic and steric substituent parameters. 
In actual calculations these parameters are usually manually extracted from various data 
tables'. This approach, however, has numerous disadvantages, most notably low quality of 
data for rare functional groups and unavailability of parameters for many important 
substituents. Therefore a web-based system enabling interactive calculation of important 
substituent parameters for any organic functional group was developed. Properties calculated 
include hydrophobic, electronic and steric ones. Hydrophobic properties are represented by 
octanol-water partition coefficient (x constant) and molar refractivity. Both these parameters 
are calculated according to the methodology of Ghose and Crippen3 based on the sum of 
atomic hydrophobicity contributions. Comparison of calculated and experimental' x 
constants for a set of 256 substituents yielded the following correlation (see also Fig. 1). 

neXp = 0.9916 * TC,,~, 
n = 256, r2cv = 0.794, r2 = 0.798, s = 0.540, av.abs.error = 0.410, F = 1005.6 

The electron-donating and withdrawing power of substituents is characterized by theoretical 
parameters compatible with the Hammett (T constants. These are calculated according to the 
methodology developed in-house4 from simple quantum chemical data. Comparison of 
calculated (T constants with experiment* for 368 organic substituent provided the correlation 
shown below (see also Fig. 1). qy and q6 are charges at the two terminal atoms of butadienyl 
probe attached to the substituent (for details of the methodology see4)). 

CT,,~, = 6.4274 + 14.9465 * qy + 20.4036 * q6 

n=368,r2cv=0.714,r2=0.722, ~=0.142,av.abs.error=0.101,F=474.3 

opara = 5.7509 + 9.8838 * qy + 20.8919 * q8 

n = 368, r2,, = 0.746, r2 = 0.752, s = 0.186, av.abs.error = 0.135, F = 553.7 
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Fig. 1. Calculated vs. experimental substituent’s n, omem and o,,, constants. 

Steric properties of substituents are represented simply by their topological size 
(number of nonhydrogen atoms) and maximal topological length. In our experience these 
parameters are sufficient to characterize steric requirements of substituents. The addition of 
more sophisticated parameters (e.g., STERIMOL), however, would be straightforward. 

Users interact with the system through the simple web interface5. In the entry part of 
the program the substituent for which data should be calculated is created with the help of 
our molecular editor written in Java. The editor creates a SMILES code for the substituent, 
which is passed to the CORINA6 3D geometry builder. Then AM1 calculation7 is run to 
calculate charges. Other in-house programs calculate the (r constants from them, and 
estimate other substituent properties. Despite this relatively complex processing, the 
response is very fast and data are delivered within 2 - 3 seconds. 

The processing engine behind the program may be called also directly (without the 
graphic interface) just by referencing to the address of the cgi script with substituent’s 
SMILES as a parameter. In this way it is possible to calculate data for a large number of 
substituents in a “batch” mode. By using this technique, data for more than 80 000 functional 
groups used in substituent similarity searches or in the design of targeted combinatorid 
libraries with desired properties has been generated. 

The module described here is a part of the Novartis web-based molecular modelling 
system’ which delivers powerful and easy to use modelling capabilities directly to the desk 
of synthetic organic chemist. Numerous successful application of calculated substituent 
parameters in pesticide design at Novartis indicate that these data are becoming a really 
powerful alternative to the classical substituent parameters originated from experimental 
measurements. 
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INTRODUCTION 

Specific binding of transcription factors to DNA is crucial for gene regulation. 
We have studied the specificity of binding of transcription factors ftom the nuclear 
receptor family to DNA using two QSAR methods: a) a Free-Wilson like method and b) 
Comparative Binding Energy (COMBINE)' analysis. 

We used the experimental data of Zilliacus at al (Zilliacus ef al., 1995b)' who 
studied how substitution of an amino acid at a single position of the DNA-binding 
domain (DBD) modulates DNA binding specificity. They measured the interaction of 20 
mutant glucocorticoid receptor DBDs, which differ in the amino acid at position 439, 
with 16 different response elements. 

RESULTS 

A Free-Wilson-like QSAR analysis was performed earlier3 on a smaller set of 
complexes of DNA and glucocorticoid receptor DBD mutants with three variable 
positions. We applied the same analysis to the present data set of 320 complexes. We 
then compared the results with those from COMBINE 3D-QSAR analysis which was 
used to obtain physical insight into the features important for binding. For this purpose 
inter- and intra-molecular interaction energies per residue, changes of surface area, fiee 
energies of solvation of amino acid side-chains and the mutated bases, and side chain 
rotational entropy upon binding were analyzed. 
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The most important features for binding specificity are: the change of the 
solvation free energy of the mutated bases and of the mutated amino acid residue and the 
electrostatic and the van der Waals interaction energies of the side chain of the mutated 
residue with the mutated bases, see Fig. 1. 

LV 1 LV3 

Figure 1. The partial weights plot for the X variables and the activity in the first two latent variables (left), 
and in the third and the fourth latent variables (right) obtained for the entire data set (320 objects) using the 
intermolecular interaction energies (van der Waals and electrostatic) and the free energies of solvation of 
amino acid side-chains and the mutated bases. Leeend: SC = side chain, B = base, v [. . .] and e [. . .] = the 
van der Waals and the electrostatic interaction energy, respectively between the groups specified in the 
brackets, AAG = the change of relative free energy of solvation of amino SC and the mutated bases. 

From the results obtained after the variable selection by the fractional factorial 
design, it seems that specificity of binding of transcription factor DBDs is not regulated 
solely by the residue at position 439, but also with the residues at some other positions, 
i.e. Lys-422 and Arg-427. The electrostatic interaction energies between these residues 
and mutated nucleotides appear as important descriptors of latent variables after the 
variable selection. However, it is clear that there are additional features important for the 
specificity of binding not included in this model, e.g. differences in interfacial hydration. 
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In any modelling including QSAR, it is very important to validate the resulting model. For this 
purpose one should consider the QSAR model's predictive ability. Several tools are available 
for QSAR validation. The most demanding manner is by (I) external validation which consists 
of making predictions for an independent set of compounds not available during model 
training. External validation, however is often difficult in QSAR because it takes time and 
money to make new compounds and alternatives to external validation are hence of great 
interest. The alternatives discussed here are (11) cross-validation, (111) splitting the data into a 
training and a test set where both are present at modelling, and (IV) response permutation 
tests. 

In the validation of a QSAR model it is essential to understand the nature of the data. Below, 
we will list four limiting cases of data structures. This classification is based on two principles, 
that is, whether the validation set compounds are (i) inside our outside the domain of the 
model (the training set) and (ii) inside or outside the biological activity range of the model 

Limiting case A: Inside Model, Inside Y range 
This limiting case is characterised by a known and closed set of compounds, e.g. 
polychlorinated biphenyls. It is also likely that a representative training set has been selected 
and we knowhelieve that our training set contains the least potent and the most potent 
compounds. This is a fairly uncommon situation in QSAR but is common in e.g. NIR 
calibrations. 

Limiting case B: Inside Model, Outside Y range 
Again, a known and closed set of compounds, e.g., polychlorinated biphenyls with a 
representative training set. Within this set of compounds, we want to find the most potent 
ones. This is a common situation that appears within toxicity and environmental studies'. 
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Limiting case C: Outside Model, Inside Y range 
The third limiting case might be a drug design study, where the goal is to make compounds for 
a patent. This patent should cover as many potent compounds as possible around a chosen 
candidate drug (CD), but these compounds need not be more potent than the CD. Here the 
structural domain is in principle endless and we want to make mild extrapolations*. 

Limiting case D: Outside Model, Outside Y range 
The last limiting case also occurs within pharmaceutical industry. This is the most demanding 
case and we want to make new and unique compounds that have a higher potency than any of 
the existing compounds. 

For limiting cases A and B, (11) cross validation and (111) splitting the data into a training and a 
test set, will be proper methods for QSAR validation. However for limiting cases C and D, 
when we extrapolate in the descriptor space, (11) cross validation and (111) splitting the data 
into a training and a test set, can be very misleading unless the training set is properly 
designed. The validation here requires a firm definition of the range of the model and 
assessment of the appropriateness of the validation set. The best way to define the scope and 
limitations of this approach is through the use of multivariate design. In addition for limiting 
case D we need to verify that we can predict outside the Y range. Therefore it is recommended 
that the two most active compounds are left outside the training set and placed in the test set. 

A major problem in all the four limiting cases is that (11) cross validation and (111) splitting the 
data into a training and a test set, are sensitive to clustering and might give incorrect results if 
the data are grouped or clustered. As chemical compounds are discrete entities we know that 
our data always are more or less clustered. This problem is most pronounced the smaller 
number of compounds that are left out for prediction and worst for leave one out cross- 
validation and leave one-out predictions. Response permutation tests (IV)3 is an additional 
validation tool that always should be employed as a complement as it has been found to give 
adequate warning for a number of clustered data sets. 
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INTRODUCTION 

Henry’s law constant (H) is the air-water partition coefficient, and as such is important 
in modelling the environmental distribution of chemicals. Several quantitative structure- 
property relationship (QSPR) studies have been made of Henry’s law constant; we recently 
@earden et al., 1997) developed such a QSPR for 294 diverse compounds from a 
consideration of the fkndamental processes occurring during air-water partitioning, and 
using only calculated parameters: 

lOgH=- 0.294 HBN - 0.957HB1- 1.86 llMR+ 0.998 10gP - 1.11 MR 
+ 0.356 BIdJl00 + 0.229 ‘xVp + 0.579 (1) 

n = 294 r2(adj) = 0.874 s = 0.769 F = 292.5 

where: HBN = total number of hydrogen (H) bonds that a molecule can form with water; 
HBI = sum of indicator variables for H-bond donation and acceptance; AMR = excess molar 
refractivity; log P = calculated logarithm of octanol-water partition coefficient; MR = 
calculated molar refractivity; BL, = Bonchev index; and ‘xVp = 4th order valence-corrected 
path molecular connectivity. 

Equation I, whilst giving reasonable predictions, has a rather high standard error, and 
our current work has been directed towards reducing this. We have used new quantitative 
hydrogen bonding parameters and also a parameter that reflects conformational entropy 
change, which is likely to be important for any process involving a phase change. 
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METHOD 

We used the same training set of 294 compounds and test set of 48 compounds as 
before (Dearden et al., 1997). Molecular conectivities were calculated using MOLCONN-X 
(Hall Associates, Quincy, MA) and the energy of the lowest unoccupied molecular orbital 
  ELM^) was calculated using MOPAC 6. Four H-bonding parameters (free energy, 
enthalpy, and Kamlet a and 0 values) were obtained from the HYBOT software (Raevsky, 
1997). The number of rotatable bonds per molecule (BR) was used as a measure of 
conformational entropy; these values were kindly calculated by Dr. R.S. Pearlman of the 
University of Texas. An in-house genetic algorithm program was used to select the best 
combination of parameters. 

RESULTS AND DISCUSSION 

The best seven-parameter equation that we could obtain was: 

log H = 2.3 1 4 ~ c  - 1.14 MR - 1 .OO HBI + 0.304 E L ~ O  ~ 1.76 a+ 0.137 Bg 
+ 1.09 log P - 0.44 

n = 294 ?(adj) = 0.907 s = 0.669 F = 400.4 

where: ‘xC = 4th order cluster molecular connectivity. 

This is a considerable improvement over equation 1, especially with regard to the 
standard error. Using our test set of 48 different compounds, equation 2 gave a good 
correlation between observed and predicted log H values; however, one compound, 
cis, trans-cyclohexadec-8-en- 1 -one, was an outlier, due probably to the fact that Pearlman’s 
program treated this compound as having no conformational flexibility. Removal of this 
compound gave: 

log &bd = 0.984 log Hpred - 0.120 (3) 

n = 47 ?(adj) = 0.928 s = 0.702 F = 576.8 

This is a better result than that obtained using Syracuse Research Corporation’s 
HENRYWIN software (Meylan and Howard, 1992). 
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INTRODUCTION 
Carnitine acyl transferases are a family of enzymes that differ with respect to subcellular 
localization and substrate specificity. Carnitine acetyl transferase (CAT) is mainly found in 
the mitochondria1 matrix where it is postulated to play a key role in stabilizing the CoA-SH 
/ CoA-SAC ratio.’ CAT catalyses the reversible reaction: 

Acetyl -L- carnitine + CoA-SH r L-carnitine + acetyl-CoA 
that has an equilibrium constant equal to 0.6. The kinetic enzymatic mechanism for CAT 
follows a random-order equilibrium reaction where Michaelis constant (K,) approximates 
true dissociation constant ( K s )  and binding of one substrate has little or no effect on binding 
of the second.2The aim of this work is to study a set of acyl-CoA derivatives that includes 
linear, branched and cycloalkyl, and unsaturated s u b s t i t u e n t ~ . ~ , ~ ~ ~  A QSAR approach is used 
to investigate the influence of such substituents on kinetic parameters, K, and V’mux. 

MATERIALS AND METHODS 
Kinetic parameters, K, and V’mux for a series of acyl-CoA derivatives - with linear (from 
C2 to ClO), branched (isovaleryl and isobutyryl), cycloalkyl (C3 and C4) and unsaturated 
substituents (acryloyl, sorboyl and pent-4-enoyl) are taken from with the 
exception of branched analogs that were tested in house as described by2. V’max are 
expressed as % with respect to the natural substrate, acetylCoA. 
The descriptors employed in this study originally included: Verloop, connectivity indexes, 
moments of inertia, 3D-shape properties - all generated using TSARTM software’- and 
electronic properties. In particular, energy values for the lowest unoccupied Il* molecular 
orbital (En.) and sum of squares of lT* coefficient on the carbonyl C (c2 n*), are calculated 
with the semi-empirical quantum mechanics method AM1 (Mopac software6) on R- 
(C=O)S-CH3 fragments. Classification analyses and multiple linear regression (MLR) 
methods, available in TSARTM software’, were employed to carry out this QSAR study. 
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RESULTS AND DISCUSSION 
QSAR equation could be obtained only for a subset of substrates with equal or very similar 
values, so branched and linear derivatives, with more than 8 C atoms in the alkyl chain, 
were excluded (K, >150 and 4 5  respectively).When the acylCoA chain length varies from 
C2 to C7, K, values are invariailt (38 f 6 yM) while V’max decreases 10-fold over the same 
length range with a logarithmic trend. 
The following regression equation shows the linear relationships between kinetic parameter 
and chain length, expressed as Verloop L, for substrates with close CAT affinity: 

Log (V’max) = - 0.18 L + 2.57 

N = 7 ,  s = 0.10, R2 = 0.96, Q2 = 0.92 
CAT seems to contain a hydrophobic region that interacts with the side chain of long linear 
acyl-CoA compounds. Furthermore, branching in a or p position to carbonyl might be 
responsible for steric hindrance. 
Cycloalkyl derivatives are well tolerated but their activity, expressed as V’mQx, is reduced. 
The parameter B3, one of the Verloop substituent size descriptors orthogonal to L, is 
necessary to describe cyclic derivatives: 

Log (V’max) = - 0.31 B4 - 0.92 B3 + 4.47 

N = 9 , s = 0.22, R2 = 0.88, Q2 = 0.65 
Similar equations can be obtained replacing B4 with L or B5: these descriptors are highly 
correlated for the set of substituents here considered. 
Non-conjugated unsaturated compound, pent-4-enoylCoA, do not require additional 
parameters to L to explain its V’max, while a$-unsaturated carbonyl derivatives require 
either a binary variable or an electronic descriptor in addition to L. 

Log (V’max) = - 0.20 L + 3.18 c2n* + 0.77 

N = 1 0 ,  s = 0.12, R2 = 0.97, Q2 = 0.88 
The velocity difference does not result from an inductive effect, since an a$-unsaturated 
carbonyl is more electophilic than a saturated one. So, on the basis of mesomeric effect, 
it has been speculated that an @-unsaturated carbonyl might undergo reversible conjugate 
addition, which would compete with acyl transfer thus lowering V’max. By the same token, 
the c2n* value for a,P-unsaturated carbonyl group is lower than the value for saturated 
carbonyl moiety, thus indicating a lower reactivity of the former one. 
The following equation can finally be obtained if linear, cyclic and unsaturated analogs are 
considered together: 

Log (V’max) = - 0.19 L - 0.87 B3 + 2.56 c2 n* + 2.74 

N = 12 , s = 0.20, R2 = 0.91, Q2 = 0.73 

1. 
2. 
3. 
4. 
5 .  
6. 
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1 

2 

In connection with studies on effects of plant products on bacterial physiology,’” 
minimal inhibitory concentrations (MICs) for -1 50 monohydroxy phenols and related com- 
pounds were obtained for planktonic monocultures of three physiologically and ecologically 
diverse oral bacteria: Forphyromonas gingivalis, Streptococcus sobrinus, and Selenomonas 
artemidis. MIC values indicate that “activity space” is thoroughly and regularly covered for 
P. gingivalis and Str. sobrinus, the least and most active compounds having neighbours 
with very similar MIC values, though the coverage is less good for S. artemidis. High bac- 
teriostatic activity is associated with (i) the basic phenol skeleton, (a) presence of a single 
non-polar bulky substituent in the ortho position, and (a) high hydrophobicity. A phenolic 
recognition site has been proposed consisting of a broad hydrophobic channel with a 
pocket ortho to the phenolic hydroxy moiety, and a vicinal hydrogen acceptor pointing 
away from the hydrophobic pocket4 

Phenolic “global” energy minima were obtained using GMMX 1.5,$ and structure- 
activity data fitted to four QSAR paradigms to try to obtain equations with good log ‘/MC 
predictivities and to elucidate the nature of the interactions between phenols and their target 
sites. Kier-Hall molecular connectivity indices produced statistically robust QSARs for 
F. gingivalis and Str. sobrinus where the first-order valence path index ‘x“ was the domi- 
nant variable, though results for S. artemidis were less sati~factory.~ Structure-MIC data 
were also examined using Hansch analysis (vide infia), Famini’s theoretical linear solvation 
energy relationships (TLSERS),~ and Todeschini’s weighted holistic invariant molecular 
(WHtM) descriptors.’ Again, satisfactory equations were obtained for P. ginpalis and 
Str. sobrinus, but not for S. artemidis.8 For the Hansch and TLSER QSARs the dominant 
descriptors are log P and Vmc (+ X I ) ,  respectively. ‘x”, V,,, and XI strongly correlate with 
log P, underscoring the importance of hydrophobicity for the antibacterial action of phenol- 
ics. The TLSER equations also suggest the importance of ligand transport to the relevant 

277 



cellular site vis-a-vis bioactivity.8 WHIM descriptors were the least satisfactory in terms of 
statistical quality and interpretability for our data sets (results not shown).' 

EVA analysis was also applied to the data sets. EVA is a descriptor derived from the 
Eigenulues of a classical normal coordinate analysi~.~- '~  GMMX-optimised structures 
were re-optimised using MOPAC 6.0 (AM1; EF optimiser, GNORM = 0.01, MMOK where 
necessary; separate runs for FORCE calculations). EVA models were obtained for a Gauss- 
ian kernel width (0) of 10 cm-' using unscaled frequencies. Data reduction was accom- 
plished using partial least squares (PLS), and the best, most parsimonious models chosen 
using jack-knife cross-validation. 

Robust Q S A R s  for P. gingivalis and Str. sobrinus were obtained with 5-6 latent vari- 
ables (LVs), though (not unexpectedly) results were less satisfactory for S. artemidis (vide 
inpa). The following information is noteworthy: (i) the finctional group stretching region 
(1600-2200 cm-') is underrepresented in the LVs, whereas the hydrogen stretching region 
(2700-3800 cm-l) is heavily weighted; (a) there is a heavy weighting of variables centered 
around 1400 cm-', an area populated by various C-H bending and scissoring vibrations as 
well as 0-H bending  vibration^."-'^ There is very much intra- and interstructural overlap of 
EVA Gaussians around 1400 cm-'. EVA descriptor values tend to be maximal in regions 
with high kernel overlap; this results in substantial univariate variance around 1400 cm-', 
which may explain the dominance of this region in the analysis. 

Efforts are underway to use path analysis for "reverse-engineering" EVA QSARs to 
guide the design of molecular entities with enhanced pharmaceutical properties. 

HANSCH ANALYSIS EQUATIONS 

P. gingivalis: log '/MC = 0.736 log P + 0.064 L/B1 + 0.015 polar S - 2.957 

VIF: 1.2 1.1 1.3 
n = 124 ?(adj) = 0.867 5 = 0.373 F = 267.29 R2jo.h = 0.859 

log '/MC = 0.61 1 log P - 0.106 B3 + 0.007 unsat'd S - 2.006 

VIF: 1.5 1.5 1.0 
n =  110* ?(a4, = 0,843 5 = 0.274 F = 195.84 Rzj0% = 0.837 

log 'IMc = 0.744 log P + 0.057 L/BI + 0.017 polar S - 3.263 

VIF: 1.2 1.0 1.2 
n =  111 ?(,di,=0.889 0=0.331 F=293.91 R250.,=0.S97 

(i0.027) (M.025) (*.OW) (*O. 182) 

8. artemidis 
(i0.029) (ic0.038) (iO.001) (*O. 146) 

Str. sobrinus: 
(M.026) (M.022) (i0.004) (iO.173) 

EVA RESULTS 

P. gingivalis: log ' I M C  = 1.709 LVI + 1.992 LV2 + 1.293 LV3 + 3.139 LV4 + 1.473 LV5 + 0.075 

%variances explained: LV, = 63.2; LV2 = 14.9; LV3 = 4.9; LV4 = 6.1; LV5 = 2.4 
(i 0.11 1) (fo.267) (fo.301) (fo.663) (2 0.491) (fo.053) 

n = 124 2(ad,) = 0.916 5 = 0.296 F = 268.38 R250% (3 LVS Only) = 0.799 

S. artem'dis: log 'Imc = 1.408 LVl + 1.285 LV2 + 1.011 LV3 + 2.527 LV4 + 1.021 LV5 - 0.139 

%variances explained: LV, = 53.5; LV2 = 15.1; LV, = 6.2; LV4 = 9.7; LVj = 2.6 
(k 0.131) (M.225) (39.274) (M.557) (M.432) (fo.045) 

n = 110* ?(,) = 0.871 5 = 0.238 F = 148.10 R2500h (3 LVS Only) = 0.658 
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Str. sobrinus: log '/MIC = 1.753 LV, + 1.786 LV2 + 1.425 LV3 + 3.250 LVd + 0.928 LV5 + 1.717 LVg 
(+- 0.084) (M.202) (M.233) (M.511) (k0.343) (30.602) 

- 0.188 
(m.039) 

Yovariances explained: LVI = 68.5; LV2 = 12.3; LV3 = 5.9; LVd = 6.5; LV5 = 1.1; 
LV6 = 1.3 

n =  111 +,, ,=0.956 0=0.209 F=396.97 R2j09/,(3LVsonly)=0.841 

log P = n-octanol/water partition coefficient; L, B1, B3 = STERIMOL parameters as per 
ref 8; S = molecular surface area; R250% = cross-validation statistic calculated as per ref. 8. 
*nb: 5 worst outliers omitted 
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INTRODUCTION 

Hydrogen bonding has been widely recognized as an important contributor to the 
forces binding a drug to its receptor, and also as one of the physical properties associated 
with lipophilicity and cell permeability. Until lately, H-bonding ability mainly has been 
described in QSAR problems by the use of indicator variables, e.g. the presence or absence 
of a H-bond donor (1 or 0). Over the past two decades, Raevsky and coworkers' have 
prepared a large database (>12,000 entries) of thermodynamic measurements on H-bonding 
systems. From these data, the Russian team developed a method to estimate the H-bond 
acceptor and donor strengths of various chemical moieties. Both the thermodynamic 
database and the method are available as software called HYBOT (Hydrogen Bond 
Thermodynamics). 

We will show here that H-bond acceptor and donor factors, C, and cd as calculated by 
HYBOT, are superior to indicator variables in QSAR analyses. One example concerns the 
ability of diverse compounds to penetrate skin2. Another deals with data related to certain 
cyclic ureas in their ability to inhibit HIV protease3. 

RESULTS AND DISCUSSION 

In an unpublished result, Lien4 found that skin penetration of 23 diverse compounds 
correlated with measured log P (MLOGP) and molecular weight (MW), (R2 = 0.96). He 
also considered the number of H-bond sites in each molecule (HB) and phenolic character 
(I, 1 or 0), but these played no role in the final outcome. To this same dataset we added the 
descriptors: sum of H-bond acceptor and donor factors [CC, and Ccd], and calculated molar 
refractivity and calculated log P (CMR and CLOGP, MedChem Software, Pomona College, 
Claremont, CA). When we used forward stepwise regression, we found skin penetration 
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correlated with MLOGP and CC, (R2 = 0.96); with backward stepwise regression it 
correlated with CLOGP, CLOGP2, CMR and CC, (R2 = 0.97). These results suggested that 
there was high collinearity among all the descriptors considered. Therefore, we analyzed 
the data by PLS. The PLS model (two components) gave a good correlation (R2 = 0.96), but 
more importantly the loadings plot showed clearly defined groupings of correlated 
descriptors: MW with CMR; MLOGP with CLOGP; CC, and CC, with HB; and a group of 
one, I. Hence, among these compounds, skin penetration depends on molecular size, 
lipophilicity, H-bonding capacity and phenolic character, a result in keeping with other 
permeability studies.’ 

Wilkerson et al.3 recently reported QSAR results on some symmetrical cyclic urea 
HIV protease inhibitors. The inhibitors were modified by varying R in two identical 
CONHR groups. When R was 2-pyridyl or an analog thereof, there was a dramatic increase 
in potency. It was hypothesized that a critical H-bond formed from the enzyme to the N 
atom in the heteroaromatic ring. Following the example of Wilkerson et a ~ ~ ,  we used an 
indicator variable (I) for this H-bond effect in 30 compounds and found the relationship: 

- log Ki = 0.09(+0.03)CLOGP? - 0.78(+0.32)CLOGP - 0.95(+0.39))mv 
- 0.006(10.002)MW + 1.47(+026)1+ 11.77 

n = 30 R2 = 0.68 s = 0.41 F5.24 = 10.1 1 p < 0.00003 

where Ki is the inhibition constant and mv is l i l  00th of the molecular volume. 
Because the CONHR group also has the potential to be a H-bond donating group and 

because of our interest in H-bond factors, we next used C,N to estimate the H-bond 
acceptor strength of the “2-pyridyl” N atom and C,NH for H-bond donating capacity of the 
amide group. These H-bond factors were determined for each of the 30 compounds by 
HYBOT. Regression analysis gave the following best outcome: 

- log Ki = 0.10(+0.02)CLOGP2 - 0.95(+0.26)CLOGP - 0.78(+0.31)mv 
- O.OOS(+O.O02)MW - 0.48(+0.12)C,NH + 0.51(+0.09)CaN +11.55 

n = 3 0  R2 = 0.80 s = 0.33 F6,23 = 15.52 p < 0.00000 1 

In this result the H-bond factors superseded I. Hence, a substantial improvement in the 
correlation between log Ki and its physical properties was obtained by using quantitative 
estimates of H-bond capacity at potential key H-bonding sites. 
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Variable selection is typically a time-consuming and ambiguous procedure in performing 
quantitative structure-activity relationship (QSAR) studies on over-determined (regressor- 
heavy) data sets. A variety of techniques including stepwise and partial least 
squares/principle components analysis (PLSPCA) regression have been applied to this 
common problem. Other strategies, such as neural networks, cluster significance analysis, 
nearest neighbor, or genetic (function) or evolutionary algorithms have also evaluated. A 
simple random selection strategy that implements iterative generation of models, but 
directly avoids cross-over and mutation, has been developed and is implemented herein to 
rapidly identify from a pool of allowable variables, those which are most closely associated 
with a given response variable. The FRED (fast random elucidation of determinants) 
algorithm begins with a population of offspring (models) composed of a fixed, or variable, 
number of randomly selected variables. Iterative elimination of descriptors leads naturally 
to subsequent generations of more fit offspring (models). In contrast to common genetic 
and evolutionary algorithms, only those descriptors determined to contribute to the genetic 
make-up of less fit offspring (models) are eliminated fiom the descriptor pool. After every 
generation, a new random increment line search of the remaining descriptors initiates the 
development of the next generation of randomly constructed models. An optional 
algorithm with eliminates highly correlated descriptors in a stepwise manner prior to the 
development of the first generation of offspring greatly enhances the efficiency of the 
FRED algorithm. A FRED analysis on a set of antifilarials published by Selwood (n=31 
compounds, k=53 descriptors) demonstrates the ability of the algorithm to rapidly identify 
determinants of biological outcome form a large collection of highly intercorrelated 
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variables (see Figure 1 .). A comparison of the results of a FRED analysis of the Selwood 
data set with those obtained using alternative algorithms reveals that this technique is 
capable of identifying the same “optimal” solutions in an efficient manner. 

0 5 10 15 20 25 

Generation 

Figure I .  Evolution of FRED-derived QSAR Models 
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INTRODUCTION 

There is now considerable concern about the accumulation of estrogenic sub- 
stances within the environment. In addition to proprietary steroidal hormones, a 
variety of structurally diverse chemicals are thought to mimic estrogens. These have 
been shown to have adverse reproductive effects on invertebrates, and hence perturb 
ecological dynamics. Since the array of potential estrogens in the environment is di- 
verse and it may not prove possible to assess all compounds in the laboratory, some 
way of assessing likely estrogenic potential is needed. Consequently, it  is desirable 
to formulate simple predictive models in order to direct experimental studies. 

METHODS 

Experimental da ta  for 20 polychlorinated biphenyls (PCBs) and 48 estradiol 
derivatives were taken from the The activity values for the group 
of estradiols were measured as RBA units. the ratio of test compound to labelled 
estradiol bound to the receptor. Activity values for the PCBs were also converted to 
RBA units. Starting structures were derived from crystallographic data4, and were 
assigned atomic charges using the QEq method5. Lowest energy conformations were 
established from molecular mechanics minimisation using the Dreiding field6, and 
the molecules were then superimposed using alignment of relevant 6-membered rings. 

Regression models were derived seperately for each group of compounds, based 
upon both molecular descriptors and molecular field analysis (MFA) data. Seventy- 
two descriptors were calculated for each molecule using the TSAR software package7, 
including electrostatic quantities, topological and connective indices, and parame- 
ters derived from atomic and molecular log P values. In addition, Cerius’ was used 
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to carry out molecular field analyses using a minimised hydroxyl probe within a 
2A spaced grid of suitable dimensions. 

After removing significantly correlated variables from both types of data, the 
molecular descriptors were used to construct seperate stepwise regression models 
for each group of compounds. In addition. this technique was used to predict ac- 
tivity values for groups of molecules containing both PCBs and estradiols. QSAR 
equations were also derived from the MFA data, using the genetic algorithm imple- 
mentation in Cerius2 and a partial least squares (PLS) regression for the seperate 
groups of PCBs and estradiols respectively. These two statistical tools are combined 
in the GPLS module of Cerius2 - the genetic algorithm selects a specified number of 
significant MFA descriptors to be incorpated into the PLS analysis. This algorithm 
was used to model the binding behaviour of the combined training group of PCBs 
and estradiols. Crossvalidation of the predictive equations for the training set was 
performed, and the models were also tested using external test sets (8 PCBs, 17 
estradiols) . 

RESULTS 

Stepwise regression models using the descriptor data for the seperate groups of 
molecules gave reasonable r2 values (20.721). The activity values of the combined 
training set of compounds were also successfully modelled using this regression tech- 
nique, with r2 = 0.853 (crossvalidated r2 = 0.779), and good predictions were also 
made for the combined test set (r2 = 0.954). It was observed that these QSAR 
equations gave more accurate predictions for the activity of the PCBs, reflecting the 
smaller group and relative structural simplicity of these compounds. 

Generally, models using MFA data were found to give r2 values slightly greater 
than those generated via stepwise regression. The GPLS algorithm was also used to 
construct a predictive QSAR equation using the combined sets of molecules, giving 
r2 values of 0.839 and 0.962 for the training and test sets respectively. Although 
these values are not significantly better than those obtained by stepwise regression, 
the operating parameters of the genetic algorithm aspect of this technique may be 
adjusted to include more of the MFA data in the PLS analysis, possibly improving 
the model. 
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INTRODUCTION 

In the course of our study of the antimutagenic activity produced by a, P-unsaturated 
carbonyl compounds such as curcumin and cinnamaldehyde, we found that benzalacetones(1) 
have an antimutagenic effect on UV-induced mutagenesis'. This finding prompted us to 
study quantitatively their structure-activity relationship. In this study, we performed the 
3DQSAR analysis of the antimutagenic potency of (I) to examine the sterically and 
electrostatically favorable regions for activity. 

MATERIALS AND METHODS 

Compounds: Compounds tested were (I) with X-substituents such as, H, halogens, 
alkyls, OR, CN, N02, OH, NMe2, and NMe3'. Among compounds tested, 22 compounds 
were active and subjected to the WAR analysis. The 2-0Me, 2-Me, 3-Me, 4-Me, 4-0Ac, 
and 4-NMe3' derivatives were not active, and the 4-NMe2 derivative was found to be 
mutagenic. Preparation of the compounds is described elsewhere.' 

log P values: The log P values of all compounds tested were measured by the shake- 
flask method.' 

Assay for antimutagenic activity: Bio-antimutagenic activity was assayed by 
observing mutagenesis induced by UV-irradiation at 254nm (1 J/m') in E. coli WP2s (uvrA- 
QE). The reverse mutations (M) and viable cells (V) irradiated were measured after the 
incubation at 37°C for 3 days using semi-enriched minimal agar plates with various amounts 
of test compound. The spontaneous revertants ( S )  and viable cells of untreated wer: 
measured simultaneously. The induced mutation frequency (IMF, Trp' revertantdl0 
cells) were calculated using the equation, IMF = lo7 (M - S)/105V. The Icso value, which 
represents the dose reducing the mutation frequency to 50% of the control values, was 
calculated from the results of assays at various sample concentrations. 

3D-QSAR: Structures of the 22 compounds were fully optimized by using the AM1 
method in the MOPAC 93 program package incorporated in an ANCHOR 11 modeling 
system (Fujitsu). For the optimized coordinates, the esp charges were calculated. Using the 
esp charges obtained, the pIC50 values were analyzed three-dimensionally using the 
comparative molecular field analysis (CoMFA) module of the SYBYL software package(Ver. 
6 . 4  ). The five atoms, 1-5, in (I) were superposed. 
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RESULTS AND DISCUSSION 

The analysis for all compounds yielded Eqa 1, 

PICSO = 3.298 + [CoMFA field terms] 

2 C N = 5 , n = 2 2 , s = 0 . 1 1 8 ,  r =0.950, s,=0.317,?,=0.639 
RCsteric = 0.341, RCelectro.  = 0.659 

where CN and RC are the number of components and relative contributions, respectively. 
The parameters with the subscript cv represent those from the leave-one-out cross validation. 
Interestingly, addition of log P term to Eq. 1 did not improve the correlation, presenting a 
striking contrast to the antimutagenic effect on y-induced mutagenesis in Salmonella 
typhimun'um TA2638 which was found to correlate well with log P (equation not shown). 
Eq. 1 indicates that the electronic factor is the most important. Figure 1 shows that electron- 
withdrawing substituents at the 4-position is favorable for activity. With the compounds 
used, clear steric requirements could not be obtained. 

Figure 1 

i 

^ *  . 

Figure 2 

Figure 1 , Orthogonal views of the electrostatic field map for (I) according to Eq. 1 with the 4-NO2 derivative 
inserted The contours surround regions where a negative (light gray lines) or positive (dark gray lines) 
electrostatic potential increases the activity. 
Figure 2 . Orthogonal views of the steric fieldmap for (I) according to Eq. 1, with the 3-NO2 derivative inserted. 
The contours surround regions where ahigher steric bulk increases (light gray lines) or decreases (dark gray lines) 
the activity. 
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P.O. Box 1016 
HR-10001 Zagreb, Croatia 

INTRODUCTION 

Depending on the mathematical approach used in the QSAR analysis, the final 
models may be quite different in their complexity, accuracy, stability and predictability. This 
comparative study is undertaken in order to see which of the most frequently used methods 
is most effective in searching for the 'best' models. A couple of problems we have to solve 
in QSAR modeling: the first is related to the selection of the most relevant descriptors, and 
the second is the generation of the most reliable models. Contrary to other methods, our 
procedure, which is based on multiregression (MR) analysis, solves both of these problems 
simultaneously. In the present study the Selwood data set, which has become a standard for 
testing QSAR, is used.' This data set was already used for the determination of QSAR 
models by applying the neural networks (NNs)? genetic algorithm (GA),3 and partial-least 
squares (PLS).4 Three types of MR models are generated: (1) the best possible MR models; 
( 2 )  the MR model with ordered orthogonalized decriptors; ( 3 )  the nonlinear MR models 
(take into account linear descriptors, their squares and cross-product terms). 

RESULTS 

The Selwood data set contains the series of 3 1 antifilarial antimycin analogues.' For 
each compound 53 physicochemical descriptors were calculated. The quality of models is 
indicated by the R, R,, (leave-one-out cross-validated correlation coefficient), S, S,, (cross- 
validated standard error), F and @. 

The best possible linear MR models (with the highest R and RCY) with 4, 5, 6, and 7 
descriptors were selected from the data set ofNdescriptors (Table 1, A). 

The best ordered orthogonalized MR model with 3 significant descriptors (Qjo, RS2, 
a,) was obtained by the orthogonalization of 7 descriptors (from the model in Table 1, A) in 
the following order: d38, d13, lo, dli, d48, djz, d4 (Table 1, B). This order was selected as the 
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best one, after the orthogonalization in all possible orderings was carried out. 
Nonlinearities were introduced through cross-product terms of the initial descriptors. 

These 1431 descriptors were considered with the initial 53 descriptors, and the best possible 
nonlinear MR models were selected. The statistical parameters of the best model with 4 
descriptors are given in Table 1, C. 

Table 1. Statistical parameters of multiregression, NN2, GA3 and PLS4 models. 
~ 

I "  R S Rcv Scv F e' descriptors 
A. The best possible linear MR models 

4 0.863 0.410 0.817 0.470 19.0 0.665 d12,&, dso, 4 2  

5 0.904 0.347 0.842 0.446 22.5 0.699 d4,d1i9 d39,dso, 4 2  

6 0.924 0.31 1 0.871 0.403 23.2 0.754 d4,di I ,  B s ,  d4s,dso, 4 2  

7 0.928 0.304 0.878 0.394 20.2 0.766 d4, dii, 4 3 ,  d3s9d4s, dso, 4 2  

B. The best ordered orthononalized MR model with 3 significant descriptors 

orthogonalization ordering: d38, d I3 ,  &, d l l ,  d48, ti5*, d4 
3 0.898 0.359 0.807 0 5 0 ,  0 5 2 ,  0 4  

C. The best possible nonlinear MR model (with cross-products) 
4 0.942 0.273 0.907 0.346 5 1.2 0.818 dd'dd,. ds'dm, di I'd,,. dw*dd, 

D. NN2, GA3 and PLS4 models, respectively 

3 0.919 0.866 d27, d38, dso 
6 0.920 0.849 22.0 d4,d5, d6, dii, Q9, 40 
10 0.910 0.376 24.0 0.694 d4, ds, dii, 4 7 ,  d36, d38, 4 9 ,  40, dso,dsi 

a Number of descriptors in the model 

CONCLUSIONS 

It is evident that the best MR models generated in this report are better and simpler 
(contain a smaller number of optimized parameters) than those obtained by NNs, GA and 
PLS. Especially important is the comparison between the nonlinear MR model (Table 1, C) 
and NN model (Table 1, D), which shows that by application of MR one can obtain better 
nonlinear QSAR model than with NNs. Additionally, the comparison with GA and PLS 
techniques shows that the MR based selection of descriptors produces better results. 
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STRUCTURE - ACTIVITY RELATIONSHIPS OF N I T R O F "  DERIVATIVES 
WITH ANTIBACTERIAL ACTIVITY 
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INTRODUCTION 

The antimicrobial activity of nitroaromatic compounds requires and is related to an 
enzymatic reduction of the nitro group in vivo, yielding toxic species'. In the present work, 
QSAR analysis of nine 5-X-substituted 2-(5-nitro-2-fUrfUrilidene)-3-0~0-2,3-dihydrobenzo- 
kanes,  (set I), were pedormed in order to gain an insight into their physico-chemical 
features which describe the antibacterial activities, evaluated for a Gram-positive and a Gram- 
negative bacteria: Staphylococcus aureus (ATCC-25923) and Caulobacter crescentus ("A 
1 000), respectively. In addition, five 5'-X-substituted 1 -(2-hydroxy-phenyl)-3-(5-nitro-2- 
furyl)-2-propen-l-ones, (set II), and their corresponding acetilated analogs, (set III), were 
included in the analysis to verify the role of the benzofuran ring on the activity. 

MATERIALS AND METHODS 

All the compounds (set I: X = -H; -CH3, -C2HS; -n-(CH2)2 CH3; -C1; -Br; -OCH3; -CN and 
-NO'; sets LT and III: X = -H -CH,; -C2H5; -C1 and -NO2) were prepared by methods found in 
literature and identified by their 'H-NMR and I3C-NMR spectra. The electronic, lipophilic, 
molar rehctivity-related and steric descriptors used in the analysis were, respectively: E, the 
reduction potential measured by cyclic voltametry; ELuMo, the energy of the lowest 
unoccupied molecular orbital, calculated by AM1 using MOPAC 6.0 (QCPE); (I Hammett or 
3 and 93 Swain-Lupton electronic substituent constants found in literature*; log Pdw, the 
logarithm of partition coefficient, obtained either by RP-HPLC3 measurements or by CLOGP, 
v 1 .O.O., Biobyte, Cop. (kindly provided by A.Leo, Pomona College); ?t and h4R substituent 
constants found in literature' and V, the molecular volume calculated by Sybyl 6.4. The 
indicator variable, I(,b1, has been introduced to indicate the presence (I+) or absence @=I) of 
the benzofuran ring in the structure. The biological parameter was chosen to be IC50. Besides, 
for Caulobacter crescentus the reduction of the nitrofuran derivatives by NAJJPH was 
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studied on aerobic conditions and catalysed by non-purified extracts. The data obtained were 
analysed using traditional QSAR, using the BILIN-program (kindly provided by H. Kubinyi, 
BASF-AG, Ludwigshafen). All the molecular modelling approaches were performed with 
Sybyl, 6.4. (Tripos Ass.) on an IRIS 2 - R10000. 

RESULTS AND DISCUSSION 

For set I, the QSAR models indicate a h e a r  and significative negative contribution of 
the electronic term (expressed either by o,, , E or by 3 and W ) for the antibacterial activity 
evaluated against S. auras, equation (1). Similar models have been derived for C. crescentus. 

n = 9, r = 0.941, s = 0.189, F = 54.062, rc? = 0.829, spwss = 0.231 
log(l/lCso) S. aureus = -1.304 (* 0.42) oP+ 3.427 ( f 0.17) (1) 

When the analysis is extended to more flexible analogs, the QSAR models reveal that the 
antibacterial activity, against S. aureus, is mainly described by two factors: the electronic one 
( expressed by either the 3 and W constant or by E ) and the steric and/or conformational one 
( expressed by the indicator variable I&) , equation (2). For C. crescentus, similar models 
have been derived. It was also observed that the increase of antibacterial activity is followed 
by a decrease of the nitrohan derivative reduction maximum rate. 

log(lACS0) S. aureus = -0.8 (* 0.4) 3 -1.6 (k 0.7) % - 1.0 (* 0.2) I& + 3.3 ( &  0.2) (2) 
n = 19; r = 0.970; s = 0.197; F = 78.429; 8 CV= 0.905; SPRESS = 0.246 

The lower activities (- 10 times) observed in sets IZ and lZ1, when compared with set Z, 
for S. aureus and C. crescentus, could be explained by conformational requirements not 
fulfilled for the former ones, considering that compounds in three sets with common 
substitutuents have only slightly varying reduction potential as well as the other studied 
physico-chemical descriptors, when they were analysed in pairs. The obtained MSA and 
CoMFA models reveal important structural features influencing the antibacterial activity and 
allow us to draw a physical interpretation of the indicator variable Iab derived by the 
traditional QSAR models. 
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Preliminary Principal Component Analysis (PCA), MultiDimensional Scaling (MDS) 
and cluster analyses with different linkages and distances were performed on 31 triazines and 
27 urea compounds (23 phenylureas sensu strict0 and 4 similar compounds) using several 
molecular descriptors (structural, topological, 3D-WHIM’). 
PCA shows that the second component (PC2) separates quite well triazines from phenylureas 
highlighting the capability of this approach to distinguish among these two different classes 
of chemicals. These results were confirmed using the two other approaches. 

QSAR models were then developed on toxicity data on algae, available for 15 
phenylureas and 18 triazines, using the whole set of 168 descriptors and the Genetic 
Algorithms approach to select the most relevant variables. The predictive capability of all 
models was tested by means of the leave-one-out and leave-more-out procedures with good 
results (Q2=92% and 87%). 

PCA, MDS and cluster analysis were finally performed using the independent variables 
of the best toxicity-models, allowing the highlighting of differences and similarities among 
substances, based on parameters significant in describing the toxic effect. By ths  approach, 
groups of similar compounds, with the same toxicological mode of action, were selected, in 
order to plan experimental assays to confirm the concept of additivity in the toxicity of 
mixtures. 
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INTRODUCTION 

Active carbon is the most universal adsorbent for organic vapours. A study with the following 

To identify important physical and chemical properties influencing the adsorption, and thus gain 
a better understanding of the adsorption process. 
To investigate the possibilities of developing predictive tools for filter performance under dry 
and humid conditions based on the physico-chemical properties of the adsorbate. 
Most earlier models that account for carbon capacity and break-through times were derived 

from adsorption isotherms and kinetic equations. Carbon capacity, and afiinity parameters (k or p), 
have also been modelled by structure and property related  descriptor^.'.^ Many previously developed 
models have involved compounds with a limited structural variation, i.e. homologous series.2, 

The first part of this work focuses on strategies for selection of training-sets. A totally empirical 
multivariate data analysis model, unbiased by physical laws, was developed. 

aims was initiated to aid in the design of optimum performance carbon filters: 

0 

METHOD 

Experimental filter performance data for 31 chlorinated hydrocarbons was selected for the 
The selection of a training-set was made based on different variations in physical properties 

of the adsorbate. The following 22 compound properties, were used as descriptors: 
Molecular weight (Mw) Log solubility in water (logs) 
Density (D) Diffusion coefficient (Diff) Log oiw partition coeff. (logP) 
Boiling point (Bp) -Log Henry’s law const. (pHL) 
Melting point (Mp) Viscosity constant (Vc) Vdw interaction (graphite) (Eint) 
Critical temperature (Tc) Ionisation potential (Ip) Molar volume (Mvol) 
Critical pressure (Pc) Refractive index (nD) Molar refractivity (Mref) 
Log vapour pressure (1gPv) Dipole moment (Dipm) 
Heat of vaporisation (dHv) Dielectric constant (Diel) 

The strategy was to select a minimum number of test compounds for modelling (a training-set); 
using the remaining compounds for model validation. Selection was based on principal component 
analysis’ of the descriptor data set. Three significant components (principal properties, PPs) were 
obtained accounting for 87.8 % of the variation in data, according to the cross-validation criterion. 

Heat capacity (Cp) 

Surface tension (St) 
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To investigate the influence of the selection of training-sets on the predictive power of the 
model, the following strategies were used: Fractional factorial design Q3-') with two centre points 
(Model l), the use of a homologous series, chloromethane to chlorohexane (Model 2), and a selection 
of six compounds with limited variation in the second PP (Model 3). Partial least squares (PLS)' 
models were calculated to establish a correlation between break-through data and the PPs for each of 
the training-sets. A prediction was done for the whole data set based on the three models (Table 1). 

RESULTS AND DISCUSSION 

The ability to predict break-through data is good and similar for Model 1 and 3 due to the 
dominant influence of the first principal component on break-through characteristics. The volume of 
liquid adsorbed at 100 % break-through is very well predicted for medium volatile compounds when 
using factorial design. A selection based on a homologous series shows very bad performance. 

Inspection of the PLS loading plot shows, as expected, that break-through time and adsorbed 
volume are highly influenced by the first principal component. Descriptors related to volatility (Bp, 
lgPv, Tc, dHv, Cp., etc.), molecular size (Mw, Mref and Mvol), other descriptors for intermolecular 
interactions (Eint, Vc, St, and Mp) as well as hydrophilicity (lgS and logP) are major contributors. 
Density, dipole moment, refractive index, dielectric constant, and ionisation potential dominate the 
second component. 

Table 1. Summary of experimental and predicted break-through performance a 

 EX^.^ Max 0.05 0.7 3.5 <0.001 0.001 0.009 
Min 110.3 132.3 160.6 0.507 0.564 0.698 

Model 1 R" 0.945 0.951 0.950 0.954 0.969 0.981 
Devd 10.21 12.51 15.30 0.053 0.043 0.048 

Model2 R 0.233 0.217 0.214 0.362 0.374 0.564 
Dev 63.35 71.64 63.03 0.321 0.347 0.231 

Model3 R 0.923 0.935 0,945 0.908 0.931 0.956 
Dev 10.90 11.53 13.34 0.055 0.056 0.055 

a Break-through times (t) at 1, 10, and 50 % and adsorbed volume (v) at 1, 10, and 100 % break-through. 

tl(min) t10 (min) t50 (min) vl ( d g )  v10 ( d g )  vl00 ( d g )  

Break-through times have been corrected for differences in carbon weight. 
Correlation coefficient 

dAverage absolute deviation from experimental value. 

CONCLUSIONS 

Predictive structure-affinity models can be established for break-through profiles and filter 
capacity for halogenated hydrocarbons based on physical properties of the adsorbate, provided that 
the training-set is selected according to a factorial design in principal properties. Important 
descriptors are: boiling point, critical temperature, vapour pressure, heat of vaporisation, molecular 
weight, molar refraction, diffusion coefficient, logP, vdW-interaction energy, hydrophilicity, density, 
refractive index, dipole moment, and dielectric constant. 

REFERENCES AND NOTES 

1. 
2. 
3. 
4. 
5. 
6.  
7. 
8. 
9. 

Nirmalakhandan, N.N. and Speece, R.E. Environ. Sci. Technol. 27, 1512 (1993). 
Prakash, J., Nirmalakhandan, N. and Speece, R.E. Environ. Sci. Technol. 28, 1403 (1994). 
Urano, K., Shigeaki, 0. and Yamamoto, E. Environ. Sci. Technol. 16, 10 (1982). 
Wood, G.O. Carbon 30,593 (1992). 
Harrison, B.H. and Narayan, S.B. Conference proceedings, CRDEC-SP-034, November 1990. 
Nelson, G.A. and Harder, C.A. Am. Znd. Hyg. Assoc. J. 35, 3 9 1 (1 974). 
Yoon, Y.H. and Nelson, J.H. Am. Ind. Hyg. Assoc. J. 53, 303 (1992). 
Compounds 20-33,36-41, and 43-53 were used in the study. 
Calculations were performed using Simca-S 6.0 from Umetri Al3, Umei, Sweden. 

294 



DESIGN AND QSAR OF DIHYDROPYRAZOLO[~,~-C]QUINOLINONES AS PDE4 
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INTRODUCTION 

The interest in therapeutic utility of PDE inhibitors is mostly focused on new agents 
which selectively inhibit the PDE4 family’. This subtype of phosphodiesterase is found in 
both respiratory smooth muscle and circulatory inflammatory cells. Its inhibition causes 
relaxation of the former as well as inhibition of the inflammatory response of the latter. 
Selective PDE 4 inhibitors, lacking adverse effects such as emesis, have potential utitity in 
asthma therapy2. 

Following our initial strategy based on the pharmacophore of compounds structurally 
related to nitraquazone3, new series of 2,5-dihydro[4,3-c]pyrazo~oquino~in-3-ones (DHPQ) 
have been designed and synthesized. The synthesis, SAR,  and the antiasthmatic potential of 
these new PDE 4 inhibitors has been recently described4. 

METHODOLOGY 

The Molecular graphics studies were carried out on an Alpha station 3000 using 
Chem-X software (Chemical Design Ltd, Oxford). Compounds included in this study were 
constructed of small fiagments fiom Chem-X library. All structures were initially 
optimized using steepest descents and conjugate gradient methods. Charge distributions 
were calculated after semiempirical optimization using the MOPAC/AMl method’ of 
version 6.00. 

QSAR studies were carried out using ChemStat module of Chem-X. The 2D 
descriptors, such as logP, Van der Waals volume, molar refiactivity and Verloop steric 
parameters6, were automatically assigned by the Substituent Database module. Quantum 
mechanic descriptors such as atom charges, fiontier orbitals coefficients (HOMO and 
LUMO), and superdelocalisabilities were calculated fiom the AM1 method . The LogP 
parameter was calculated by ChemLogP module that implements the method of Suzuki and 
KUIO~. 
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RESULTS AND DISCUSSION 

Several substitutions have been explored around the DHPQ moiety (Figure 1) 
obtaining three related chemical families: furing an n-butyl at Nz (N*-butyl-DHPQ) or 
furing at the N5 position a benzyl group (N5-&nzyl-DHPQ) or a cyclohexylmethyl group 
(N5-cyclo hexylmethy 1-DHPQ) . 

N2-butyl-DHPQ 

/-f & 
N 
I 

NXyclohexylrnethyl-DHPQ 
.R & 

I d 

Figure 1. Substitutions studied around the DHPQ moiety 

In order to investigate which kind of substitution may enhance PDE4 inhibition, a 
QSAR study around the DHPQ moiety, has been carried out selecting several classical 
QSAR and quantum mechanical descriptors (see methodology section). Steric and 
lipophilic properties have show good correlation with activity. No correlation was obtained 
with electronic and quantum parameters. 

The Nz-butyl DHPQ series (eq. 1) shows that activity depends on the length (L) and 
size (B 1) of the substituents. 

Log(lAC50) = -0.4037 L + 0.7607 B1+ 6.0334 n=8 R2=0.96 (1) 

The activities of the N5-benzyl (eq. 2) and N5-cyclohexylmethyl series (eq. 3) can be 
expressed in terms of steric (B3) and lipophilic (Log P) parameters. 

Log(l/ICso) = 0.2976 B3 - 0.5636 (Lo@)' + 3.116 Lo@ + 0.8425 n=13 Rz=0.89 (2) 

Log(l/ICso) = 0.3926 B3 - 0.4346 (LogP)2+ 3.360 LogP - 1.1408 n=10 R2=0.81 (3) 
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1 

2 

INTRODUCTION 

QSAR studies may rely upon the correctness of quantitative measurement of drug 
potencies, that generally starts with in vitro ~creening.''~ The screening of drugs using 
biological micr~calorimetry~-~ to derive quantitative biological potency values is a 
powehl  tool for such studies. Yet, the lipophilicity measurement through partition 
coefficient, using the diffusion process of Taylor-&is, log PTA, in the same cells used 
for the biological screening via biological micr~calorimetry~ has been carried out. 
Thus, in this paper we show an established QSAR between hydrazide potencies against 
Escherichia coli and Saccharomyces cerivisiae and log PTA. 

RESULTS AND DISCUSSION 

The equations (1) and (2) state that there is a linear relationship between 
logliDS0 and log P T ~  for Saccharomyces cerevisiae and Escherichia coli. A negative 
slope for SARs involving S. cerevisiae has not been found before, but it is common for 
Escherichia coli. It appears, possibly, that a hydrophilic interaction, instead of a 
hydrophobic one, could play a role in the partitioning process.', 

Linear dependence of log 1/D50, for Saccharomyces cerevhiae, versus log PTA. 

lOgl/D(so) s.e = -1.223 (k 0.67) log P TA(&) + 2.673 (k 0.49) 
(n = 8; r = 0.878; s = 0.141; F = 20.147; fi , = 0.532) (Equation 1) 

Linear dependence of log 1/D50, for Escherichia coli, versus log PTA. 
Logl/D(SO) Ec = -1.939 (& 1.03) L0gppAfl.c) + 1.468 (A 0.96) 

(n = 8; r = 0.883; s = 0.185; F = 21.132; fi, = 0.535) (Equation 2) 
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It is worthwhile recalling that the same set of compounds was used to derive 
the QSAR models presented in this paper. This prompted us to undertake a Wher  
development that is related to the relationship between the cell systems themselves. 
This is simply done by correlating the potencies for both cell systems, and Equation 3 
shows the result. 

Extrathermodynamic correlation between E. coli and S. cerevkiae 

log l/DS(Sc) = 0.489(H.l6)10g l/Dw(Ek) + 2.065(H.49) 
(n = 8, r = 0.951, s = 0.093, F = 56.44, ?m = 0.788) (Equation 3) 

Equation 3 states the existence of an extrathermodynamic relationship in the 
antimicrobial activity between the same series of compounds but Werent cellular systems, 
as taken from biological microcalorimetry. 

CONCLUSIONS 

For the furst time we have shown that log PTA and biological microcalorimetry can be 
used to derive QSARs. This seems to be a good alternative to the OctanoVwater 
system largely because the cell suspension is more “real” - a better representation of a 
natural system, and microcalorimetry is a promising tool for such QSAR studies. 
Overall, biological microcalorimetry is efficient, fast, and reproducible to better than 
3%. It can be used instead of other techniques like agar diffusion or tube assays (serial 
dilution). In vitro screening can be performed in complex and defined medium using 
frozen cells. Calorimetric output can reveal biocide and biostatic compounds directly, 
and this is very important in order to control drug doses. 
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INTRODUCTION 

According to a mechanism of inhibition of DNA-gyrase complex by quinolones 
proposed by Shen [ 13, the drug binds guanine base of a single stranded bacterial DNA. One 
of the consequences of this model is that binding energy depends on negative partial charges 
on O(4) and O(3) atoms (Fig.l), i.e. the greater negative charges the stronger will be the 
hydrogen bonds with guanine. We assume that introduction of N atom(s) into aromatic 
rings system of quinolones should affect partial charges on the O(4) and O(3). As positions 
3,4 and 7 in quinolones are usually substituted, the remaining positions for N substitution 
are 2,5,6 and 8 (Fig.1). Some of them exert significant effects on structural and electronic 
properties of the quinolone analogs. 

Figure 1. Representatives of prominent analogs of quinolones used as antibacterial agents: 
nalidixic acid (a), cinoxacin (b) and pipemidic acid (c). Also shown is numbering system. 

Methods. Calculations of the partial charges were performed with MOPAC (AMl) on an 
SGI computer for two carboxyl conformations; one with intramolecular hydrogen bond 
O(4) ... H-0 and the other one with parallel orientations of keto groups. Starting parameters 
were taken from crystal structures of nalidixic acid, pipemidic acid, cinoxacin (from litera- 
ture) and other cinnoline analogs, synthetized by Dr Stanczak (Medical Academy, Lodz) 
and determined in our laboratory. 
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RESULTS AND DISCUSSION 

Table 1. Changes (A) in partial charges at O(4) and O(3) atoms (x100) resulting 
from introduction of additional N heteroatom(s) in quinolone ring system. 
Parent quinolone is 1 -methyl-4-oxo- 1,4-dihydro-3 -quinolinecarboxylic acid 

Conformation Parent N2 N5 N6 N8 N2 N2 N2 N2 N2 N2 
of carboxylic quinolone N5 N6 N8 N5 N5 N6 
group N6 N8 N8 
withintramolecular O(4) -0.35 3 4 0 0 8 4 3 9 8 4 
hydrogen bond O ( 3 )  -0.35 6 0 0 0 7 7 6 7 7 7 
with parallel O(4) -0.29 1 5 1 0 5 1 1 2 6 6 
keto groups O ( 3 )  -0.33 0 1 1 0 1 1 1 1 1 1 

The introduction of additional N heteroatom(s) into positions 2 and 5 of the quinolone ring 
system decreases binding energy of quinolones with DNA. The introduction of N atom(s) 
into positions 6 and/or 8 does not change partial charges on O(4) and 0(3), which partici- 
pate in hydrogen bonds with DNA. The changes are significant in case of the O(4) atom and 
may accumulate up to 25% of the partial charge. 
This explains generally lower antibacterial activity of cinnoline analogs of quinolones. 

Table 2. Changes (A) in partial charges at O(4) and O(3) atoms (x100) resulting 
from typical substitutions in positions 6 and 7 of quinolone antibacterials 

Additional N atom Conformation of Parent 6-F 6-F, 
in positions carboxylic group quinolone 7-N(CH3)2 7-N(CH& 

with intramolecular O(4) -0.35 0 -2 -1 
hydrogen bond O ( 3 )  -0.35 0 -1 0 
with parallel O(4) -0.29 1 -1 0 
keto groups O ( 3 )  -0.33 0 0 0 
with intramolecular O(4) -0.32 1 -1 -1 

N2 hydrogen bond O ( 3 )  -0.29 0 0 -1 
with parallel O(4) -0.28 2 -1 -1 
keto groups O ( 3 )  -0.33 0 0 0 

Typical fluoroquinolones, i.e. 6-F, 7-amine derivatives, are characterized by a slight increase 
(or invariability) of partial charges at O(4) and O(3) atoms as compared with those in 
unsubstituted quinolones. Particularly important is amine-type substituent at the 7 position, 
which always generates additional negative charge at O(4). 
This agrees with the observation that 7-amine group (also morpholine, piperidine, pipe- 
razine, pyrrolidine) is advantageous for antibacterial activity. 
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JOINT CONTINUUM REGRESSION FOR ANALYSIS OF MULTIPLE 
RESPONSES 

Martyn G. Forda, David W. Saltab and Jon Malpassa 
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INTRODUCTION 

The rationale behind developing a multiple response algorithm for continuum 
regression (CR) is to provide the user with a method of investigating how any number of 
responses change simultaneously given one set of physico-chemical properties. The 
background behind multiple response algorithms is well documented with such algorithms 
available for ordinary least squares regression (OLS) often referred to as multivariate linear 
regression (MVLR), partial least squares regression (PLS), sometimes known as PLS2 and 
principal components regression (PCR). Furthermore, an algorithm has been proposed by 
Brooks and Stone [1994], named joint continuum regression (JCR), which maintains a 
number of the properties of their formulation of the single response continuum regression 
[Stone and Brooks, 19901. 

This report details the development of a multiple response continuum regression 
algorithm that maintains the pertinent features of the Portsmouth formulation of continuum 
regression [Malpass et al, 19951. The report addresses the algebra behind the method, 
highlights the equivalence with other methods and illustrates the utility of the multiple 
response algorithm. 

The Portsmouth Formulation of Joint Continuum Regression 

The strategy adopted for developing a Portsmouth formulation of JCR followed the 
approach adopted when CR-P was developed, viz. to maintain the essential structure of the 
GCF and the equivalence with MLR, PLS and PCR for a = 0,0.5 and 1 respectively. 

This can be achieved by taking the generic GCF 
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and then to reformulate the power terms, f(a) and g(a). Initially, the two terms used in 
CR-P were adopted, i.e. 

f (a) = 2 + 2a - 4a2, 
s(a) =-1+2a. 

However, the GCF-SB comprises a ‘covariance’ ( c’Ec ) term which is formulated such that 
the new component is squared, i.e. the value of f ( a )  for JCR needs to be 1 to achieve 
equivalence with it’s value in CR-SB, where it is fixed at the value of 2. If JCR-P is to be 
formulated such that the structure of the generic GCF is retained then the value of f ( a )  of 
equation 2. 

In the CR-P GCF the power of the covariance term varies continuously with a, so that it 
takes the value 2 for MLR and PLS and 0 for PCR. This means that we cannot directly 
apply the same formulation of the power terms of CR-P to JCR-P. However, if a common 
factor of 2 is taken out of equation 2 it is possible to achieve the necessary functions, i.e. 
f (a) becomes f (a)  = 2(1 +a - 2 a 2 ) .  By considering the generic GCF with this power, it 

can be seen that the common factor of 2 is already accounted for by the covariance factor, 
c’Ec . Hence, the Portsmouth formulation of Joint Continuum Regression can be achieved 
by using the two powers 

f(a)= 1+a-2a2 
g(a) =-1+2a 

so yielding the alternative GCF 

T = (c’Ec) (l;a-za*) (CfSC)(-1t2a) 

The formulation was implemented as a SAS macro and validated using simulated data 
sets generated to give all accessible combinations of low (r=O. l), medium (r=0.5) and high 
(r=0.8) correlation between the responses (ys), the predictors (XS) and their associations 
(yxs). The results suggest that the Portsmouth formulation of Joint Continuum Regression 
yields reliable prediction, particularly whenever the associations between the y and x blocks 
are medium to high. Multicollinearities within the responses (ys) and within the predictors 
(XS) are overcome by the construction of optimised components with maximum values for 
the criterion function. 
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INTRODUCTION 

In any study of structure/activity relationships based on computational chemistry, it is 
necessary to postulate an appropriate structure on which the study is to be based. Previous 
investigations have been based on low energy structures such as the experimentally 
determined crystal structure of a molecule, or a minimal energy structure calculated using 
molecular mechanics. Selection of these pharmacophores is somewhat arbitrary. In practice, 
a larger set of candidate structures should be considered in order to obtain the most 
appropriate structure. This is particularly true for flexible molecules such as pyrethroids for 
which a large number of conformations are possible. 

The present work aims to study the molecular motions of pyrethroid insecticides using 
molecular dynamics simulations. The simulations have been partially validated by 
comparing the preferred orientations of the torsional bonds with the results obtained using 
different force field (Hudson et. al.). The structures sampled are used to identify sub-sets of 
conformations for consideration as possible representations of the active conformation. The 
use of comparative molecular field analysis (CoMFA), which relates the steric and 
electrostatic properties of molecules to biological activity is investigated as a basis for 
choosing the most appropriate pharmacophore. 

CoMFA ANALYSIS OF PYRETHROID INSECTICIDES 

Although many factors are involved in drug-receptor interactions, the steric and 
electrostatic properties of the ligand are particularly important. The relationship between 
biological activity and steric and electrostatic effects can be investigated using CoMFA 
analysis. In the following study, the conformation of pyrethroids has been varied in an 
attempt to identify possible pharmacophoric structures. In order to achieve this objective, 
CoMFA was performed on 18 putative pharmacophores: 16 based upon the proposed 
preferred orientations of deltamethrin and a further two chosen to represent the major 
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clusters identified by the pooled cluster analysis for 40 pyrethroid insecticides. Each 
analysis has been performed on one of these putative structures using the 36 compounds for 
which killing activity was available or the 14 compounds for which knockdown activity 
was available. For the compounds for which knockdown activity was available, an 
additional 8 putative pharmacophores derived by including the additional orientation 
exhibited by T4 (as in QSAR1) were also investigated. This orientation is not accessed by 
the most active killing compound, deltamethrin, or by other potent Type 11 pyrethroids 
which possess an a-cyano substituent, but which possess poor knockdown activity. 

The results of the CoMFA analysis for 36 insecticidal compounds and the 14 
knockdown compounds are presented in Tables 3-25 and 3-26. The orientations of the 
torsion angles T1 -T5, the steric and electrostatic contributions to the model, the optimum 
number of crossvalidated (LOO) R2 are also given. 

PYRETHROID MODE OF ACTION 

The dynamic behaviour of a pyrethroid may act (1) to disrupt ordered domains within the 
bilayer, andor  (2) to induce a more ordered arrangement of phospholipid molecules in the 
more disordered domains. In this respect, the nature of the pharmacophores proposed for 
knockdown and killing are of some interest. These structures can interconvert by rotations 
about T2 and T4: furthermore, there is little evidence of correlated effects between these 
torsional movements. One consequence of such an interconversion is that the dipole 
associated with the carbonyl attached to the ester linkage is rotated through approximately 
120 degrees. 

A study undertaken by Zeneca and reported earlier at an SCI symposium on membranes 
held in London has shown that in artificial bilayers devoid of sodium channel protein, 
pyrethroids were able to induce a reversal of dipole potential across the membrane. This 
perturbation was considered to involve displacement of the 0-carbonyl of the glyceryl 
backbone of the phospholipid components of the membrane. The displacement may be 
caused by carbonyl-carbonyl dipole repulsion between the pyrethroid and the membrane. 
This would have two consequences, deformation (disordering) of the membrane and 
causing the pyrethroid to move through the vacuole created. As the pyrethroid moves, the 
process may be repeated as further phospholipid carbonyls are encountered and may 
therefore be a mechanism of transport to a receptor site. This has important consequences 
for the organisation of the bilayer, since rotations in this region of the phospholipids are 
known to increase or decrease their packing density within the bilayer and modify the 
ability of the phospholipid head groups to bind sodium or calcium (Houslay and Stanley). It 
is interesting to speculate, therefore, that pyrethroids act by inducing changes to the order 
of the bilayer as a result of interconversion between pyrethroid conformations with 
different dipole orientations at the carbonyl of the ester. Such interconversions would be 
expected to result in associated changes in the dipole orientation of the 0-carbonyl of 
phospholipids in order to minimise local dipole interactions. This would have profound 
effects on many membrane properties including freedom of motion of transverse ion 
channels such as sodium and calcium channels. 
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INTRODUCTION 

In the present study the correlation between chemical structures and inhibiting 
properties of 256 5-phenyl-3,4-diamino-6,6-dimethyldihydrotriazine derivatives, inhibitors 
of dihydrofolate reductase (DHFR), is investigated. The data-set has been studied by 
several researches in many different laboratories’”. In the first studies’, the linear regres- 
sion models were tested, and later on artificial neural network models were successfully 

In all mentioned studies, the compounds were represented on the same way, 
with physicochemical parameters: Hammett’s 0, Hansch’s n hydrofobicity parameter, 
molar refractivity MR, and additional indicator variables for presence or absence of 
specific structural features. In our study the chemical structures were represented by 
general codes, regardless of presumably important substituents’ sites. Molecular descriptors 
were: topological, geometrical, electrostatic, and quantum-mechanical indices calculated 
with CODESSA4 software package, and the “spectrum-like” structure representation5. 

RESULTS AND DISCUSSION 

The data set comprises 132 compound sub-set tested on DHFR from Walker 256 
carcinoma cells and the 113 compound sub-set tested on DHFR from L1210 leukemia 
tumors. The main skeleton: 

is common to all compounds, while the substituents R2, R3 and R., are varied. Eleven 
compounds contain non-hydrogen R2 substituent and were also included to the analysis. To 
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calculate molecular descriptors (topological, geometrical, electrostatic, and quantum- 
mechanical indices and “spectrum-like” structure representations) the optimised 3D 
structural co-ordinates and net atomic charges (for minimal energy state) were calculated 
by MOPAC software package. The descriptors employed in the study contain either the 
information about the connections between the atoms, symmetry, shape, branching, and 
ciclycity, or 3D co-ordinates and information about atomic electronic properties. 

The whole molecule was translated into a set of different descriptors. Multiple linear 
regression model (MLR) and counterpropagation artificial neural networks (CP ANN) were 
used as modelling techniques. The selection of optimal number of structural descriptors 
was based on the best prediction capabilities of MLR model. The evaluation of prediction 
capabilities of the developed models was done by ten-fold or leave-one-out cross-validation 
procedures. At the end our results were compared with the study in which the “spectrum- 
like” structural code was used for the structural representation. The results of prediction 
capabilities are gathered in Table 1. 

*MLR Str. code *MLR indices **CP ANN 
30 descriptors 30 descriptors Str. code 

30 descriptors 
r 0.57 0.78 0.56 
b 0.46 
RMS 0.58 0.3 11 0.74 

**CP ANN 
Indices 
30 descriptors 
0.65 
0.45 
0.72 

From MLR and ANN models it can be concluded, that the large and diverse data-set 
treated homogeneously can only give satisfactory results if the model is able to organise the 
data into local sub-models, which would theoretically be able to predict properties of 
compounds being active on the basis of different reaction mechanism. MLR model does not 
meet such requirements at all. On the other hand CP ANN has been shown as a powerful 
grouping tool and their prediction capabilities can be improved by using different 
optimisation criteria for the selection of best subset of structural descriptors (e.g. genetic 
algorithm). This part of the research is still not finished. 
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OBJECTIVES 

The study was intend to select physicochemical parameters associated with 
carcinogenic properties of the elements, and to evaluate carcinogenicity for nine elements 
of the fourth period. 

DATA AND METHODS 

The training set contains two groups of the elements. First group contains forty one 
elements without carcinogenic properties:'.2 Na , Mg, Al, K, Ca, V, Ga, Br, Rb, Sr, Zr, Nb, 
Mo, In, Sn, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Re, Os, 
Ir, Pt, Au, Hg, T1, Bi. Second group contains 4 elements: Be, Cr, Ni, As. These four 
elements or some their compounds are human  carcinogen^.'^^^^^^ Cr, Ni, As are elements of 
the fourth period. Carcinogenicity was evaluated for nine elements of the fourth period (Sc, 
Ti, Mn, Fe, Co, Cu, Zn, Ge, Se). 

Nineteen physicochemical parameters were used for selection of the predictors: 
Atomic radius, covalent radius, electronegativity (Pauling), electronegativity (Allred), 
electronegativity (Pearson), effective nuclear charge (Slater), effective nuclear charge 
(Clementi), effective nuclear charge (Froese-Fisher), thermal entropy, heat capacity, 
density of solid, thermal conductivity, molar volume, coefficient of linear thermal 
expansion, mass absorption coefficient(CuK,), mass absorption coefficient(MoK,), cross 
section for the thermal neutrons, electron affinity, ionization enthalpy. 

Graph of radar type and nonlinear mapping5 were used for selection of predictors. 
Nonlinear mapping was used for the evaluation of carcinogenicity. 
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Database program chosen for the study is Q&A for DOS (v.4). The data analysis 
programs are NS for Quattro Pro and SPSS for WIN (v.6.1). 

RESULTS 

Atomic radius, covalent radius, thermal entropy, mass absorption coefficient (CuK,) 
are predictors selected for the mapping. These four parameters were used for the mapping 
(see Figure 1). Every point on the graph corresponds to an element. The closer are the 
points the more similar are the elements according to four parameters. Ge is in the 
carcinogenic are. Sc, Ti, Zn are in the are of elements without carcinogenic properties. 

Carcinogenic 

0 
0 

Figure 1. Evaluation of carcinogenicity for nine elements of the fourth period by using nonlinear mapping. 

CONCLUSIONS 

1. Atomic radius, covalent radius, thermal entropy, mass absorption coefficient 

2. Ge was considered human carcinogen. 
3. Sc, Ti, Zn were considered noncarcinogenic in man. 

(CuK,) are associated with carcinogenic properties of the elements. 
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PARTITION COEFFICIENTS OF BINARY MIXTURES OF CHEMICALS: 
POSSIBILITY FOR THE QSAR ANALYSIS 
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Biological activity of both individual medical drugs and individual environmental 
contaminants may change if chemicals in mixtures. 

Acute toxicity of several binary mixtures was determined in the whole spectrum of 
their composition, that is from one pure component to the second pure component: 
benzene - ethanol (inhibition), benzene - aniline (potentiation), aniline - phenol 
(additivity) and aniline - nitrobenzene (additivity) 

Molar fraction (ratio) was used as a composition descriptor and R-plot for graphi- 
cal representation of the dependence biological activity - mixture composition.'' 23 

The inhibition of movement of Tubifex tubifex worms was measured as the acute tox- 
icity expressed in ED50 (mol/L).'34 The approach was inspired by the Rault law and 
its positive and negative deviations in behaviour of mixtures of ideal gases,5 Loewe 
and Muschnek isobols6 and Finney test of additi~ity.~ 

The results are summarised in the Figs. 1 - 4 for four binary mixtures of volatile 
organic compounds as indicated. The figures are composed from three sections: A - 
showing interrelation between composition (expressed as molar fraction R) of gase- 
ous (g) and liquid (1) phases, B - a plot of log R,/R,, representing a partition of the 
two compounds between the phases, against the composition of the gaseous phase 
(log Rg), C - a dependence of the acute toxicity of the mixture on their composition 
again represented by the molar fraction R concerning one of the compounds (Bz - 
benzene, An - aniline). 

A shape of the plots in the sections A and B indicate a nature of a dependence of 
the acute toxicity on a mixture composition shown in the section C: as far as the zero 
axis is crossed by the higher branch of the plot, an inhibition of the two compounds in 
their mixture occurs (Fig. 1) (it indicates also that the mixture possesses an azeotropic 
point), if not, a potentiation takes place (Fig. 2). The plots A and B regarding to the 
distribution of compounds between the phases are not clearly expressed if an additiv- 
ity exists in acute toxicity of the mixture. 
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The reproducibility of these phenomena was proved by a choice of the mixture tet- 
rachloromethane with ethanol from physicochemical tables'. This mixture possesses 
the azeotropic point and the same plots A and B as in the Fig. 1 benzene with ethanol. 
The measured acute toxicity plotted as in the section Cs correspond to the inhibition 
of acute toxicity of the compounds being in the mixture. 

Considering these results we suppose that besides metabolic reasons (interaction 
receptor - substrate, influence of the biotransformation, transport and distribution) for 
the deviation in activities of chemicals being in mixtures, a physicochemical interac- 
tion can be involved, too. 

All the plots are possible to be expressed as mathematical functions. There is a 
hope for using this methodology for predicting acute toxicity of binary mixtures 
knowing their composition and physicochemical properties like boiling point, Henry 
constant, etc. The next step will be a study of the aqueous solutions of the mixtures, 
thus, ternary mixtures with low concentration of the chemical components. The step 
presented supports the idea that QSAR methodology can be useful for predicting bio- 
logical properties of chemicals being in mixtures. 
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INTRODUCTION 

The grooves of the DNA double helix are the principal interaction sites for many 
molecules.’z2 The recognition is a global process that involves the overall structure and dynamics 
of the complex as well as hydrogen bonds, ion pairs, van der Waals and hydrophobic interactions. 

We have previously shown that the antileishmaniasis activity against Leishmania mexicana 
amazonensis can be modelled for a set of pentamidine analogues interacting with B-DNA through 
their isohelical pharmacophoric conf~rmation.~~ The most potent compounds must have a 
bioisosteric change fkom -0- to -NH-, as depicted by the electrotopological index, S(i). 
However, no rationalisation of the previous studies have dealt with the importance of the amidine 
groups themselves, within pentamidine analogues. In order to circumvent this and try to 
understand their role as a major group used in the B-DNA molecular recognising process we have 
carried out a 3D QSAR study by using Comparative Molecular Field Analysis, COMFA.~ 

Thus, this study reveals that for a set of 37 pentamidine analogues with antileishmaniasis 
activity, the receptor perturbational treatment is consistent with the hypothesis that a suitable 
sampling of the ligand steric and electrostatic interactions shall give an insight in the possible 
receptor interactions. 

METHOD 

The CoMFA analysis were as follows: (i) generating the needed conformation for each 
molecule (including Coulombic terms); (5) superposition; (iii) calculating the interaction energies; 
(iv) performing a PLS analysis and (v) graphical representation of the results. The Gasteiger- 
Marsili charges for 37 compounds were calculated using the physiological protonation state at the 
amidbe group. The molecules were aligned by molecular weighted extent based on size and 
charge weighting factors using the automated similarity package: (ASP). In order to carry out this 
alignment the “extended” X-Ray structure of pentamidine (Figure 1) and its “isohelical” 
conformation to B-DNA, (Figure 2), also fiom X-Ray structure, were used. The database were 
updated to explicitly describe similar conformations for all members into two separated data set. 
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Figure 1 : Pentamidine extended conformation. 

Figure 2. Isohelical pentamidine conformation to B-DNA 

RESULTS AND DISCUSSION 

The similarities for the isohelical spatial orientation for all the pentamidine analogues 
prevail over the extended ones.334 Nevertheless, it is quite plausible to assume that one must be 
cautious in the analysis of similarity matrices data. When the conformation at the receptor site is 
known, ASP similarity calculations seem to be a powerful way of describing it. However, the 
CoMFA analysis did not encompass these features when comparing both the isohelical and 
extended conformations. In spite of this, the h a 1  CoMFA model (r2 = 0.984, r',, = 0.5 14) shows 
the molecular features needed to describe the antileishmaniasis potencies as follows: (i) the 
amidme group can accommodate more bulk substituents; (ii) there is a need for more positive 
charge in the bisamidme linker, and (iii) the major contribution to potency is the steric field (70%). 

A comparison between these results with the classical QSAR studf, demonstrates the 
model's predictive power by confirming some of the previous characteristics, but most certain do 
reveal the above ones which were not earlier disclosed. 
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ANTILEISHMANIAL CHALCONES: 
STATISTICAL DESIGN AND 3D-QSAR ANALYSIS 
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Leishmaniasis is an often lethal disease caused by various species of the protozoan 
parasite Leishmania. We have shown that chalcones e.g. Licochalcone A cure leishmania 
infections in mice. Unfortunately the chalcones are slightly toxic as shown by the 
inhibition of lymphocyte proliferation. This work describes the statistical design of 
substituted chalcones and calculation of 3D-QSAR models for the antiparasitic and toxic 
effects of the chalcones. 

Table 1. Properties of the 3D-QSAR models. 

OH Var. R2 Q' 
H& @ \  @ 
Figure 1. Licochalcone A. 

Initial After pretreat. model 4077 39950 0.68 0.68 0.48 0.49 
CHs After varaible 1365 0.73 0.63 

selection 

2 

In order to get a comprehensive data-material for 3D-QSAR analysis a number of 
substituted chalcones were designed by statistical methods. Sixty-two substituents, which 
can be introduced at aromatic positions in the chalcone skeleton were described by the four 
parameters MR, op, 6, and n. Principal Components Analysis was performed and the two 
first principal components which explain 89 % of the variance in the 4 original parameters 
were used for the statistical design. Using factorial design 24 chalcones were designed. 

The biological data of these supplemented with data for 60 chalcones prepared for 
opening studies were used for the 3D-QSAR analyses (The antilymphocytic model are not 
described in detail here). Nine chalcones were chosen to form an external validation set. 

The interaction energies between the energy-minimized compounds and three different 
probes (water, methyl and ammonium ion) were calculated by using the GRID program 
employing a grid spacing of lp\ , which gave 57,200 variables for each compound. 
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The 3D-QSAR models were calculated by GOLPE. Using the Smart Region Definition 
procedure for variable preselection the number of variables were reduced to approximately 
10% without reducing the quality of the models (Table 1). Subsequent Variable Selection 
removes variables which do not contribute, in a positive way, to the predictivity of the 
models, giving models of high quality. This was confirmed by the predictions of the 
external validation set (Figure 2). 

2 -  

0.4 0.8 1.2 1.6 2 
logsIk) obsaved 

Figure 2 .  Observed and predicted antileishmanial activity; triangels represent validation set. 

The coefficient plots for the three probes used in the GRID calculations are almost 
identical indicating that the difference in activity between the chalcones is mainly due to 
steric interactions with the target. The interpretation of the model is thereby simplified since 
the coefficient plot for the methyl probe contains almost all relevant information. 

Antileishmanial model. The coefficient plots (Figure 3) show that substituents on the 
A-ring is mainly responsible for the difference in the antileishmanial activity of the 
chalcones. The negative coefficient regions around the 2’- and 3’-positions (ring A) indicate 
that substituents in these regions giving unfavorable interaction (positive interaction 
energies) with the methyl probe (e.g. bulky groups) will increase the activity of the 
compound. The positive coefficients illustrate regions around the molecule in which 
introduction of substituents are predicted to reduce the activity of the compounds. Thus, a 
bulky substituent in the 4’-position is predicted to reduce the antileishmanial activity of the 
compound. 

@ Q 

Figure 3. Negative (left) and positive (right) coefficients for the antileishmanial activity. 

Antilymphocytic model. In contrast to the coefficient plots for antileishmanial activity 
the plots for antilymphocytic activity shows that the antilymphocytic activity of the 
chalcones is influenced by substituents on the A as well as the B ring (data not shown). 
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INTRODUCTION 

It is well established that the quality of 3D Q S A R  experiments relies on one or 
multiple consistent 3D alignments for an ensemble of molecules as starting point for the 
calculations, especially when these molecules present a high degree of flexibility. Among 
the different pharmacophore identification techniques, the feature-based alignment 
methodology constitutes a useful approach [ 11. To illustrate this methodology, we used a 
training set of 24 platelet aggregation inhibitors [2]  (thromboxane A, receptor antagonists, 
TXRA / thromboxane synthetase inhibitors, TXSI) with affinities covering a range over 
four orders of magnitude for the receptor and two orders of magnitude for the enzyme. 

METHODS AND RESULTS 

All molecular structures were edited within the CATALYST software [3] and 
minimized to their closest local energy minimum. Poled conformations [4] were generated 
using an energy cutoff of 15 kcalimol. The molecules were then aligned according to the 
pharmacophore models generated using catHypo for TXRA. The H-bond acceptor, donor, 
hydrophobe, negative ionizable, and aromatic ring functions [5] were considered and only 
hypotheses containing five features were retained. All the other parameters were set to their 
default values. The TXSI training set suffers from i) a narrow activity range and ii) an 
unbalanced distribution of activity data. Therefore in this case the HipHop [6] method was 
used to generate the alignments, considering hypotheses containing a minimum of five 
features (negative ionizable, aromatic hydrophobes, hydrophobes and H-bond acceptor 
function). In this case, only the nine most active compounds were considered for model 
generation. All 24 molecules were then aligned on the generated pharmacophore models 
and then used as input for the 3D Q S A R  study. 

The alignments for TXRA and TXSI are shown in Figures 1. A CoMFA[7] was 
performed using the standard atom probes (C.sp3, charge +1). In order to determine how 
well the model predicts data, each predictive value was cross-validated using initially five 
components resulting in a determination of the optimum number of components. The 
results of CATALYST and CoMFA Q S A R  activity prediction as well as the statistical 
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evaluation is shown in Table 1. As can be seen from the results listed, use of three and 2 
components, respectively, is sufficient to obtain a satisfactory prediction. PLS analysis of 
the descriptors generated from the initial region without cross-validation afforded the final 
model with a conventional ? of 0.97 for TXRA and ? of 0.87 for TXSI together with a 
standard error of estimate of 0.2. The relative contribution of steric and electrostatic 
potential to the CoMFA regression equation was found to be 45.6 and 54.4 % steric and 
electrostatic, respectively. The standard deviation coefficient contour maps (Figures 2 and 
3) derived from the final model, display the 3D CoMFA contributions of steric and 
electrostatic potentials. These contour maps indicate where the changes in fields are 
correlated with changes in binding affinity. 

Table 1. Actual and predicted affinity data (PIC,,,) 

Compound TXRA TXRA TXRA TXSI TXSI 

Ridogrel 
162293 
PL176 
PL91 
PL138 
PL137 
14-35 
14-42 
14-75 
6-1R 
6-2s 
15-9 

PIC50 
5,77 
6,57 
5,22 
4,96 
5,82 
6,44 
7,92 
7,18 
6,64 
7,96 
8,OO 
7,03 

Catalyst 

5,51 
6,96 
5,72 
5,44 
5,72 
6,31 
7,19 
7,42 
6,39 
7,05 
8,31 
7,16 

CoMFA 
5,75 
6,76 
5,06 
5,04 
5,76 
6,37 
7,89 
7,19 
6,60 
7,73 
8,20 
6,81 

PICSO 
8,22 
7,32 
7,80 
8,lO 
7,41 
5,21 
8,40 
8,40 
8,40 
8,30 
8,46 
7,lO 

CoMFA 
7,79 
7,31 
7,75 
7,99 
7,54 
7,35 
8,13 
8,35 
8,74 
8,15 
7,55 
7,14 

Compoun TXRA TXRA TXRA TXSI TXSI 
d 

plC,, Catalyst CoMFA PIC,, CoMFA 
15-12 6,66 7,25 6,71 7,18 7,24 
15-14 7,44 7,52 7,43 7,OO 7,11 

13-14e 4,27 4,96 4,08 7,40 7,18 
13-14g 4,91 5,20 5,15 7,40 7,32 
13-23c 7,40 6,17 5,07 7,lO 7,02 
2-16 5,41 4,96 5,38 7,11 7,36 
2-23 5,37 4,96 5,35 7,30 7,37 
2-35 7,52 735 7,35 6,47 7,34 
16-7 6,64 7,39 7,17 7,59 7,93 
16-11 8,52 8,79 8,24 8,05 7,92 
16-12 5,95 6,57 6,15 8,15 8,23 

13-14b 433 4,96 4,87 6,77 6,90 

Figure 1. Alignment generated for TXRA (left) and TXSI (right) from CATALYST 

Whereas HipHop is only usable for a qualitative alignment generation based on 
common chemical features thus giving a suitable input for a further 3D Q S A R  analysis, 
catHypo itself represents a quantitative pharmacophore construction tool permitting to 
estimate the activity of molecules from their mapping on the hypothesis obtained (see 
Table 1). However, also in this case, the use of another 3D Q S A R  method (e.g. like 
CoMFA) gives additional and moreover complementary information on a given problem. 
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CONCLUSIONS 

The results of this work clearly indicate that CATALYST generated alignments are 
suitable inputs for the generation of 3D - QSAR models. Both CATALYST'S hypothesis 
generation algorithm and the CoMFA method yield predictive interaction models. As 
information provided by both methods is complementary the combined use of CATALYST 
and CoMFA 3D - QSAR appears to be a promising approach in drug design. 
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1 

INTRODUCTION 

Heterocyclic aromatic amines (HCA) present in cooked food, exert a genotoxic 
activity after metabolism (N-oxidation) by cytochrome P450 1A2l. Two different 3D- 
QSAR approaches (COMBINE2 and GRID/GOLPE3) have been applied to a series of 12 
HCAs showing different degrees of mutagenic activity (Figure 1). 

w : i H 3  

MdQ N q  
(5.821 NH2 

Q.CH3 H ~ @ ~ c ~ ~ H 3  H3c@Q H3C 7,8-DiMeIQx N=-( eCH3 
IQ N* 4,s-DiMelQx N q  

(5.62) NH? ( 5 2 6 )  N H ~  (5.21) NH, 

Tips-2 CH3 pc6. M e k C  
(5,OO) (2.47) (2.30) 

Figure 1. Chemical structures of the considered HCAs. Values within parenthesis are 
estimated m~tagenicities~ 

COMBINE AND GRID/GOLPE ANALYSES 

Solvated HCA-P450 1A2 complexes were obtained with AUTODOCK 2.45 using a 

* To whom correspondence has to be addressed 
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model of cytochrome P450 1A2 previously published.6 Ener ies of the complexes were 
obtained afier geometrical optimisation using AMBER 4.1. In order to carry out the 
COMBINE analysis2, energies were partitioned on a per residue basis. Energy with 
absolute values lower than 0.05 kcal/mol were zeroed. Variables with SD < 0.05 among the 
compounds were not taken into account. Block unscaled weights scaling was a plied.3 
After Fractional Factorial Design (FFD) variables selection, a two PCs model with != 0.90 
and q2 = 0.78 was obtained. Predictions were quite accurate with the exception of Glu-P-2. 
The most important residues involved in substrate-enzyme interactions were: Thrl15, 
Asp1 19, Thr124, Thr223, Asp313, Gly316, Thr321, Leu382, Pro383, Tyr495 and Arg456. 

In the GRIDlGOLPE analysis, the amines were aligned as in COMBINE. GRID 
computations were carried out using a phenolic OH probe and a 14xl7x16A box with 1 A 
grid spacing. Values greater than +5 kcallmol were cutoff to this value, and those absolute 
values lower than 0.1 were zeroed. 
Variables with SD < 0.1 and these taking 
only two or three values and having 
skewed distribution, were eliminated. 
Smart Region Definition' (critical distance 
= 2A, collapsing cutoff = 27.2 A) and two 
FFDs were used for variable selection. 
Considering the two first PCs, r2 = 0.96 
and q2 = 0.79 were obtained. Most 
important PLS coefficients are grouped in 
four regions (Figure 1). Dark zones 
indicate hydrogen bonds or electrostatic 
interactions in the most actives 
compounds. Light zones reveal the 
presence of hydrophobic groups in the 
most active compounds. 

CONCLUSIONS 

Figure 1. Contour map of PLS coefficients in the 
GRID/GOLPE model. MeIQ is shown. 

A clear coincidence of the results of both methodologies was obtained: the residues 
nearest to the regions including the largest PLS GRIDlGOLPE coefficients are those 
highlighted by the COMBINE model. Using a docking-guided alignment, GRID/GOLPE 
yields better fitting (0.96 vs 0.90 for r2 values), and slightly better predictive indexes (0.79 
vs 0.78) than COMBINE. COMBINE has the advantage of giving more detailed insight on 
which are the residues involved in the ligand-receptor interaction. 
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ABSTRACT 

Four-dimensional Quantitative Structure-Activity Relationship (4D-QSAR) analysis is a method 
developed recently to determine molecular similarity, diversity, and construct three-dimensional structure- 
activity relationships (3D-QSARs)’. 4D-QSAR analysis incorporates conformational and alignment freedom 
into the development of 3D-QSAR models for training sets of structure-activity data by performing ensemble 
averaging, the fourth “dimension”. The difference between 4D-QSAR and 3D-QSAR is that instead of 
examining a single conformation and alignment, an ensemble of conformations and alignments over a short 
period of time is examined. The descriptors in 4D-QSAR analysis are derived from measures of grid cell 
(spatial) occupancy of the atoms present in each molecule in the training set, realized from sampling of 
conformation and alignment spaces. Grid cell occupancy descriptor can be generated for any atom type, group, 
andor model pharmacophore. Serial use of partial-least squares, (PLS), regression and a Genetic Algorithm, 
(GA), is used to perform data reduction and identify the manifold of top 3D-QSAR models for the training set. 
The unique manifold of 3D-QSAR models is determined by computing the extent of orthogonality in the 
residuals of error among the most significant 3D-QSAR models generated by the GA. Additionally, a single 
“active” conformation can be postulated for each compound in the training set, which can be combined with 
optimal alignment for use in other molecular design applications, including other 3D-QSAR methods. The 
influence of the conformational entropy on the activity of each compound can also be estimated. 

Receptor independent (RI) 4D-QSAR was successfully applied to a set of 42 Prostaglandin, PGF,a, 
analogs, with antinidatory activity. 

Two (RI) 4D-QSAR studies were carried out. The Fist study has been described in reference (1) in 
great detail, and only the second study has been described here. 

METHODS 

The training set comprises of 42 Prostaglandin, PGF2a, analogs. Please see reference (l), for the 
structures of the compounds in the training set and the general method for performing a 4D-QSAR analysis. The 
methodology parameters and the Interaction Pharmacophore Elements (IPEs) considered in study 2 are shown 
below in Tables 1 and 2, respectively. 

# Research conducted at the University of Illinois at Chicago. 
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Table 1. Methodology Parameters of 4D-QSAR Analysis for Study 2 

Parameter Description Symbol Value 

Grid cell size [only cubic cells are allowed] s (’3 (40,40,40) 1.5 ? 
Temperature of the molecular dynamics simulation, MDS T 300 “K 
Reference molecule R None 
Size of ensemble sampling (number of distinct initial starting E m  40,000( 1) 
conformations in the sampling) 
Number of alignments N, 1 
Number of descriptors in the GA initial basis set N d  212 

Table 2. Interaction Pharmacophore Elements, IPEs, of (RI) 4D-QSAR Analysis 

IPE Description Symbol 

All atoms of the molecule 
Polar atoms of the molecule 
Non-polar atoms of the molecule 
Hydrogen bond donors 
Hydrogen bond acceptors 

RESULTS 

Best results were obtained when performing GFA analysis with 30,000 crossovers and a smoothing 
factor of 0.25. The optimum 3D-QSAR model for all 42 analogs for Study 2 is given by equation 1 ,  and the 
removal of outliers yielded equation 2. In the equations below, GC represents grid cell numbers. 

Equation 1. 
log (Rel. ED,,) = 1.52 - 2.93 GCl(np) - 1.84 GC2(a) + 5.08 GC3(a) + 2.42 GC4(np) - 1.11 GC5(a) + 

0.98 GC6(np) - 2.91 GC7(np) 

N = 4 2  R2 = 0.760 xv - Rz= 0.644 F = 15.6 

Removal of outliers (MD-021, MD-045, MD-058, and MD-059) resulted in equation 2. 

Equation 2: 
log (Rel. ED,,) = 0.97 - 2.86 GCl(np) - 1.68 GC2(a) + 6.08 GC3(a) + 2.31 GC4(np) - 1.08 GC5(a) + 

1.39 GC6(np) + 2.38 GC7(np) 

N = 3 8  Rz = 0.842 F = 22.8 
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Exploration of the systemic disposition of macromolecules in relation to their 
physicochemical properties, could be a strategy for designingtargeting system. 
This work deals with the investigation of the Vitamin D3 conformatiords in the 
phospholipid bilayer',2 in order to define a possible preferred binding site at the C=O- or 
P02-phospholipid moiety (structure-function studies) to be exploited into drug 
discovery efforts (forthcoming paper). 
NMR analysis 
1D-n.0.e. data were compliant to a s-trans conformation of the diene moiety with the 
proton H6 and Mela respectively bent towards Hg and the diene moiety (Fig 1). 
The presence of equilibrating conformers, and p (Fig Z), having the OH group 
respectively in equatorial and axial orientations, already well documented3, is also in 
agreement with the observation of almost equivalent interproton dipolar interactions 
between the proton HlgE and the protons Hla and Hlb, almost equivalent intern.0.e.s H6- 
H4a and H6-H4b were observed. Moreover, the observation of a dipolar interaction 
between H3 and H1, is an indication of the fact that such protons are in a &axial 
arrangement as in conformation OL, whereas the detection of a clear n.0.e. between the 
methyl protons Mell and H1g2, aside from the complete absence of n.0.e. between HIg2 
and H15 belongmg to the D ring, reveals the presence of a conformer in whch the 
unsaturated group is on the same side of the Mel8, outside the diene plane, as in 
conformation p. 13C T1 measurements revealed that the hypothesis of isotropic overall 
motion is nearly satisfied, indeed the methylene 13C Tls (0.55 s) of Vitamin D3, 
belonging to the A and CD rings were similar each other and correlated to the I3C T 1s of 
methine carbons (0.99 s). Thus, the same re-orientational time can be attributed to all the 
molecules and the ratios of the different interproton cross-relaxation rates sii, determined 
by proton selective relaxation rates measurements2, can be simply correlated to the ratios 
of the intemuclear distances (s&* = (r&$, eq. I), thus allowing a more precise 
definition of the stereochemistry. Hence, we determined the cross-relaxation rate S1gZ-lgE 
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for the proton pair 19Z-19E, corresponding to the fixed geminal distance ~ I ~ Z - I ~ E  (1.72 
A) and calculatedfrom equation 1 the distances rIg2-7 (2.31 A) and r6-9 (1.90 A). These 
were consistent with a conformation in which the diene moiety is preferentially coplanar 
with the C8-Cg-Hg fragment thus allowing a remarkable spatial proximity between the 
proton H6 and the pseudo-equatorial proton Hg and the unsaturated methylene group 
belonging to the A ring is outside the above plane. As far as the butadiene bridge is 
concerned, the cross-relaxation rate for the tightly coupled proton pair 6-7 allowed us to 
assign the diene moiety a s-trans conformation, being their distance over 3 A (Fig 3). 
Attempts to carry out the corresponding analysis in the cholecalciferol-lipid complex 
(containing 40 mol% of vitamin D3) are in progress, to overcome the problem coming 
from the remarkable broadening of vitamin D3 resonances, making them not 
distinguishable in the spectra. Y 

40 I 

Fig 1 1D n.0.e. difference spectra (300 MHz,  CDC13, 25 "C) corresponding to the 
irradiation of the following resonances of 1 : a) Mel8, b) H7. c) H6, d) H192, e) H 1 9 ~  

and f) H3a. 

Fig 2 (a) Graphical representation of the wconformer of Vitamin D3; (b) Graphical 
representation of the fhonformer of VitaminD3. 
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Fig 3 ‘H NMR (300 M H Z ,  CDC13, 25 “C) spectra of Vitamin D3, showing: a) the 
monoselective inversion of b) the biseiective inversion of Hlg2 and H,. 

Molecular modelling 
A conformational search (0-360 degrees with stepsize of 10 ) was carried out at the 
torsional angles of the C5-C8 sequence, starting from a Vitamin D3 fragment in the Sybyl 
Standard Library (Version 6.2)9 as configured on a SGI INDIGO 2 workstation 
(operating under JRIX 5.2).The energies of the different conformations were considered 
also computing the electrostatic charges (Pullmann’ s method). The two lowest energy 
conformers were selected and fixtherly optimized by minimization (gradient conjugate 
method without simplex with a convergence criterion of 0.05 kcal/mol). The fit of the 
two optimized structures as represented in black colour (1 37.5 degrees, 27.480 kcal/mol, 
rms 0.015; 286.4 degrees, 27.340 kcal/mol, rms 0.013) in comparison with that one 
coming from the S Y B n  library standard fragment9 (grey) is shown in Fig 4. There are 
two equzprobable different but isoenergetic conformations with the same substructure at 
the torsional angleof the C5-CS segment. 

Fig 4 Fit of the two optimized structures (137.5 degrees, 27.480 kcal/mol, 0.015 rms; 
286.4 degrees, 27.340 kcal/mol, 0.013 rms) as represented in black colour in 
comparison with that one coming from the SYl3YL library standard fragment’ of 
VitaminD3 (grey colour). 
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INTRODUCTION 

When a series of compounds of known biological activity is available and the structure 
of the receptor is unknown, the only rational drug design approaches applicable are 
Quantitative Structure-Activity Relationships (QSAR) .  On the other hand, when the 
structure of the receptor is known it is possible to use Structure-Based Drug Design (SBDD) 
techniques in order to gain insight into the ligand interaction. However, an increasingly 
common situation is that in which a full set of ligand-receptor complex structures is at hand. 

The challenge in this case is to rationalize the information contained in the structure of 
the complexes and use it to advantage for practical purposes, i.e. for the design of more 
potent or more selective compounds. Indeed, new methodologies are emerging to bridge 
SBDD and QSAR. Among them, a promising one is the Comparative Binding Energy 
(COMBINE) approach'.'. The essence of this technique is to partition the calculated 
interaction energy for a series of ligand-receptor complexes into per-residue van der Waals 
and electrostatic contributions. The energy variables obtained are then correlated with the 
biological activities of the ligands, using Partial Least Squares (PLS). So far, this technique 
has been successfully applied to three series of compounds. Unfortunately, in all cases the 
docking of the ligands into the receptor lacked direct experimental support, since the 
complexes were obtained by modeling. 

COMBINE ANALYSIS 

The work presented here describes for the first time an application of COMBINE 
analysis to a series of ligand-receptor complexes solved by X-ray crystallography. 

This series of 10 compounds is a carefully designed subset of the series of 54 glycogen 
phosphorylase inhibitors studied in a previous work4. Since the enzyme studied is quite 

329 



large all the calculations were carried out on a model of the active site consisting of a 12A 
shell of protein residues around the ligands. All the water molecules present in the 
complexes were removed except for 10 water molecules which were reported as very 
important for understanding the ligand-receptor interaction in a previous work4. Water 
molecules were considered as part of the ligands. The alternative approach of considering 
the water molecules as part of the receptor provided worse results and the interpretation of 
the model proved more difficult. Force field parameters for the ligands were obtained by 
interpolation, and charges were calculated by using ab-initio quantum mechanical methods 
at the 6-31** level and MEP fitting. The AMBER 4.14 force field was used to mildly refine 
the structures of the complexes and to compute the ligand-receptor interaction energies, 
which were partitioned into per-residue contributions. 

The matrix of ligand-receptor interaction energies was pretreated by replacing with 
0.00 any values smaller than 0.01 and removing any variables with a standard deviation less 
than 0.01. The PLS analysis of this matrix, after applying GOLPE variable selection, 
yielded a good model (r2=0.83, q2=0.65, cross-validated using 5 randomly formed groups 
and 20 randomizations). A histogram of the weighted PLS pseudo-coefficients obtained 
(Figure la) reveals the residues that are most important for explaining the differences in 
activity. 

n. 
12 24 37 49 62 74 86 99 I11 123 
sequential number of the residue 

PLP 112 +x 

b 

Figure 1. (a) PLS coefficients obtained in the COMBINE model, highlighting the most important ligand- 
residue interactions. (b) A simplified model of the binding site showing the most important residues, according 
to the COMBINE model and the PLS coefficients produced by the GRID/GOLPE model. 

Using the same series, a GRWGOLPE analysis was carried out under conditions 
similar to those described in ref 4. Both models showed a general agreement, as seen in 
figure Ib, but the COMBINE model provided complementary information which simplifies 
the interpretation and solves some ambiguities found in previous GRID/GOLPE models4. 
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INTRODUCTION 

QSAR models are of great importance in the rationalisation and prediction of the rela- 
tive bioactivities of sets of compounds.' Over the last decade, field-based 3D-QSAR tech- 
niques, such as COMFA,~ have proved to be an effective means of correlating shape-related 
features with bioactivity, provided that a suitable relative alignment of the structures con- 
cerned can be found. EVA, which is derived from IR-Raman-range vibrational frequencies, 
provides an alignment-free methodology which provides statistically robust QSARs gen- 
erally comparable to those obtained with CoMFA. The method is sensitive to 3D structure 
but the descriptor is invariant to the relative rotation and translation of the structures con- 
cerned. "Classical EVA" has been extensively validated using many different data  set^.^'^'^ 
Here we briefly report on work aimed at enhancing both the predictivity and interpretability 
of an EVA QSAR. This approach, referred to as EVA-GA, uses a genetic algorithm (GA) 
to drive the search for better models and has been shown to give models that are statistically 
superior to or at least as good as those obtained with "classical EVA". 

"CLASSICAL EVA" 

The "classical EVA" d e s ~ r i p t o r ~ , ~ , ~  is derived from fundamental vibrational frequencies 
of which there are 3N-6 (or 3N-5 for a linear compound such as acetylene) for an N-atom 
structure. The frequency values from a classical normal coordinate analysis (the EigenVAl- 
ues) are projected onto a linear bounded frequency scale (BFS) covering the range 1 to 
4,000 cm-' and then smeared out, and therefore overlapped, through the application of 
Gaussian kernels to each and every frequency value. The BFS is sampled at fixed intervals 
of L cm-'. The value of the EVA descriptor at a point, x, on the BFS is the sum of ampli- 
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tudes of the overlapped kernels at that point. This process is repeated for each dataset 
structure thus providing a descriptor of fixed dimension for all compounds. The final de- 
scriptor is high-dimensional consisting of 4 ,OOOL variables and, therefore, the Partial least 
squares (PLS) technique6 is used to provide a robust regression analysis. The aim of the 
EVA smoothing procedure is not to simulate an experimental IR spectrum (transition dipole 
data is not used and all kernels are of fixed maximum amplitude) but rather it is to apply a 
density function such that vibrations at slightly different frequencies in different com- 
pounds can be "overlapped" and thus compared with one another. The extent of this overlap 
is governed by B and the proximity of vibrations on the BFS. It is therefore the case that a 
range of different models need be derived using various B values334 and the best model 
taken to be that which provides the best crossvalidation andor test set scores; the optimal 
value of EVA B (oOpT) is thus dataset-dependent. 

EVA-GA 

In classical EVA the Gaussian kernels have a uniform fixed cs (i.e., equal width, height 
and shape) for all frequencies in all compounds being analysed. This is important because it 
means that each frequency ( i e . ,  each part of the spectrum) is equally weighted prior to 
regression. In EVA-GA7 the kernel standard deviation (0) is permitted to have localised 
values at different regions on the BFS. This approach permits the determination of an opti- 
mal or near-optimal overlap of kernels across the spectrum, where the quality of this over- 
lap is judged by the scores from subsequent PLS regression with the derived descriptor 
matrix. Equal weighting of frequencies prior to analysis is ensured by scaling the kernels 
such that they have unit maximum amplitude; the main difference between the kernels is 
thus their width and to a lesser extent shape. 

For EVA-GA the BFS is divided up into NBINS bins of equal size and a localised o 
linked with each bin. A frequency value falling within a bin range is thus expanded using 
the associated local B. A GA is used to drive the search for optimal combinations of local- 
ised o - a GA chromosome consists of a vector of NBINS B values. A typical value of 
NBINS is 100 giving a bin width of 40 cm-'. PLS leave-one-out crossvalidation (LOO CV) 
regression scores have been used as the fitness function to be optimised by the GA and the 
final solution(s) validated using an "unseen" test set of compounds. Results with EVA-GA 
have thus far been extremely promising7 with substantial improvements in both q2 and test 
set predictive-r2 (pr') scores with a set of melatonin ligands' (Table 1) and improvement in 
q2 but no change i n p 2  when applied to a benchmark steroid dataset (not shown). 

Table 1. Some "classical EVA" and EVA-GA results: melatonin receptor ligands' 

Training Set Test Set 
predictive-r2 

With I Without 
two outliers 

Method Comments LOOq' NLatent r2 

coMFA StericElectrostatic 0.69 
18, grid 

3 0.86 0.72 0.71 

EVA Best Fixed 
(r = 10 cm-' 

0.46 2 0.79 0.67 0.8 1 

EVA-GA Best of 10 GA runs 0.77 3 0.92 0.74 0.90 
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Whilst these results are very promising it has been found6 that a great deal of care is 
required to prevent training set overfit, even where LOO CV q2 is used as the GA fitness 
score. Current work is centred upon evaluating the effectiveness of alternative scoring 
functions such as, for example, leave-n-out CV, where n>l. In addition the GA maybe 
applied as a variable selection / deletion tool wherein a variable can be deselected when a 
localised o of zero is permitted (Note, that in the current version of EVA-GA a zero valued 
o is not permitted). Such variable selection may provide simplified models which in turn 
may provide greater opportunity to effectively back-tiack to structure from an EVA QSAR. 
Model interpretation is one of the most appealing features of the CoMFA method while at 
present such ready back-transformation is not available within EVA. With this purpose in 
mind we are also investigating the use of alternative techniques such as continuum regres- 
sion' (CR) and various variable selection procedures that in combination may provide 
appropriate reduced-variable models. 
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A dataset constisting of 91 MI, M2 and M3 muscarinic antag~nist"~ was considered in 
order to create a 3D-QSAR model able both to predict the activities of compounds not yet 
synthesized and to evidentiate the structural features of the ligands for a specific receptor 
subtype selectivity. For example, M2 selective antagonist could be very useful in the 
treatment of Alzheimer disease, a pathological state in which central cholinergic activity is 
reduced. In fact, a possible approach to increase the central cholinergic tone could be the 
blockade of the presinaptic autoreceptors, that modulate Ach release and probably belong 
to the MZ subtype. 

Recently we have reported on the synthesis and antimuscarinic properties of a new 
class of compounds of the general formula reported in Figure 1. 

.*/- 
R' 

R'=H,CH3 .+ x= 5 . 0  

Figure 1. Chemical structure of the molecules of the dataset 

The training set was generated firstly describing the overall dataset by the interaction 
fields derived from the Grid program using two different probes reflecting two different 
types of interactions. Then the 3D maps obtained were treated with the VolSurf program 
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and transformed in 36 2D descriptors. The PCA performed on the descriptor matrix 
(91x36) allowed the selection of the best rapresentative molecules (14) constituing the 
training set. 

The aligment of the fourteen molecules was performed on the basis of 
pharmacophoric crucial centers (in bold and marked by dotted lines in Figure 1). For the 
compounds containing the charged N-H group, the direction of the N-H bond was also 
taken into account. Grid program was then used on the training set for the generation of the 
molecular descriptors (probe OH) and the multivariate statistical analyses were performed 
using Golpe program. The mutual position of MI, M2 and M3 in the pls partial weights plot 
of Figure 2 shows that it is not possible to increase one of the three biological activities 
without simultaneously increase the others. 

I . n * _ o _ e w  rn w c a m <  

Figure 2. pls partial weights plot of the dataset 

However, M2 and M3 are almost independent, thus at least two regions exist in the real 
space of the molecules (Figure 3a and 3b) where a structural modification allows a stronger 
selective increase in M2 and M3. 

Figure 3. pls partial weights GRID plot relative to a) M2 response and b) M3 response 

From the analysis of the GRID fields correlated to M2 and M3 (bigger crosses 
variables in Figure 3a and 3b) it is possible to highlight two regions which favour M2 
selectivity located in proximity of the ammonium and in front of the ether oxygen atom. A 
ramification in N and a stronger actractive interaction with the lone pairs of the oxigen will 
give back to positive effect in M2 selective interactions. Other two regions exist which tend 
to favour M3 selectivity. These regions are located only close to the ammonium group. For 
M3 a N-CH3 derivative is better than both N-H and N-C2H5. 
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Somatostatin (SST), Gly-Ala-Cys-Lys-Asn-Phe6-Phe7-T~*-Lysg-Thr1o-Phe1'-Thr-Ser-Cys, is 
a pleiotropic regulatory hormone whose hnctions are mediated by a family of 5 G-protein 
coupled receptors (SSTR1-5). SST binds non-selectively to all five subtypes, and is unstable 
under physiological conditions. Numerous small, stable synthetic SST analogs that display 
varying degree of selectivity have been identified'. Detailed knowledge of the 3D-structure 
of the receptor recognition sites (pharmacophores) is necessary for rational design of new 
SST based drugs. 

We present here results of a computer-aided pharmacophore identification study 
using a learning Activity Prediction Expert System APEX-3D2 (MSI). The study was 
performed on the set of 11 small cyclic peptides whose binding activity to SSTR2 has been 
well established in different research groups. Pharmacophores were defined as spatial 
arrangements of Descriptor Centers (DC) common to all active compounds. The following 
atoms and groups were defined as DCs: C a  (any) of the peptide backbone, C a  of Trp and 
C a  of Lys (specifically) to represent the peptide backbone and facilitate a proper conformer 
alignment; N of amine (NH2), 0 of hydroxyl group (OH), C of methyl-group (CH3) and 
center of aromatic ring (CAR) .  300 conformers of each compound were generated by a 
Molecular DynamicsEnergy Minimization (INSIGHTII/DISCOVER) procedure starting 
from experimental structures. Conformers were clustered, and 3 5-45 conformers, each 
representing one cluster, were loaded into the Learning Structure Data Base (LSDB). 
Pharmacophores were identified and ranked, and the bioactive conformations of each LSDB 
compound, namely those best displaying the pharmacophore, were extracted. 

The Figure displays the two highest ranked (based on statistical criteria and 
molecule shape fit) pharrnacophores, which represent two possible shapes of the receptor 
recognition site - "pocket" and "flat". 
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a b 

Figure. LSDB "active" conformers superimposition on a - "pocket" shape and b - "flat" shape 
pharmacophores. Light spheres show the Descriptor Centers: 1-3 - Ca; 4-N(NH2); 5,6 -center of 
aromatic ring. 

The geometry of the "active" conformers found in our calculation for L363,301 and 
Sandostatin (compounds studied experimentally in most detail) is consistent with 
experimental  finding^^-^. Analysis of pharmacophoric superimpositions of all the LSDB 
molecules allowed us to formulate a new hypothesis of the receptor recognition site, which 
is different from the earlier proposed topological scheme4. Our recognition site model 
involves the aromatic residue in position 7 (Reso and is localized on the "back" of the 
peptide backbone, whereas the published model involves aromatic residue in position 11 and 
is localized "in the backbone fold". 

We tested our pharmacophores for prediction ability on the series of novel 
compounds with known binding activity to SSTR2. Rules for activity prediction for small 
cyclic peptides were formulated based on the presence of the three highest ranked 
pharmacophores and the shape of molecular volume. 3D-search queries were generated 
from these pharmacophores for MDL IS Data Base mining. MDDR-3D Data base search 
hits contained nearly all compounds registered in this Data base as somatostatin analogs, GH 
secretion inhibitors and GH secretion promotors along with many other compounds (most 
of them GPCR ligands), thus proving the informational value of the pharmacophores and 
providing new lead candidates for somatostatin based drug design . 
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3D QUANTITATIVE STRUCTURE-ACTIVITY 
IWLATIONSHIP (COMFA) STUDY OF HETERO- 
CYCLIC ARYLPIPERAZINE DERIVATIVES WITH 
5-HTIA ACTIVITY 

Ildik6 Magd6, Istvin Laszlovszky, Tibor Acs, Gyorgy Domany 

Gedeon Richter Ltd., H-1475 Budapest, P.O.B. 27, Hungary 
e-mail: imagdoarichter. hu 

INTRODUCTION 

Pharmacological treatment of schizophrenia has been traditionally dominated by 
dopamine Dz receptor antagonists, known to cause severe extrapyramidal side effects, 
which can be attributed to the blockade of Dz receptors in the striatum. Current 
antipsychotic research focuses on compounds with multireceptorial activity (different 
dopamine receptor subtypes, serotonine and adrenerg and muscarinic receptors has been 
sudied). Recent observations indicate, that control of both dopaminergic and 
serotoninergic systems is important for adequate antipsychotic therapy. It has been 
reported, that ~ - H T ~ A  receptor agonists reverse antipsychotic induced catalepsy. 

Our aim was to achieve compounds with combined 5-HTlA/DZ activity. We have 
synthesised and evaluated a series of novel arylpiperazine derivatives (see Fig. 1 .) several 
of them showing high affinity for the ~ - H T ~ A  receptor beside the D2 activity'. 

COMFA ANALYSIS 

We have performed a CoMFA analysis using the molecular modelling package 
SYBYL' in order to create a model with which the 5-HTlA activity can be predicted. 
Within the series of compounds with equal n (same chain length) the Q-Phe-OMe 
fragment of the molecules were aligned. The geometries were optimised and the charges 
were calculated with AM1 method using the MOPAC module of the package. 

The molecules were surrounded by a 3D grid of 2 A resolution extending 4 A beyond 
the union volumes of the superimposed molecules. The electrostatic and steric field was 
calculated at the gridpoints using the default C(sp3) probe atom with a +1 charge. The 
maximum cutoff values were set to +4 and +1 kcaVmo1 for the steric and the electrostatic 
fields respectively. 
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Figure 1. Evaluated heterocyclic arylpiperazine derivatives 

PLS analysis was performed using the leave one out cross validation technique to 
obtain the optimum number of components for the electrostatic field alone and for the 
electrostatic and steric field together. Addition of the streric field -as expected- did not 
improved the results significantly. 

The final CoMFA model obtained for the series of molecules with n=4 using 2 
components had r2 = 0.951, s = 0,168, F = 48.06. The predictive ability of the model was 
also good (R2,,=0.761). 

CONCLUSIONS 

We have succeeded to get a reasonable 3D QSAR (CoMFA) model for the 5-HT1* 
activity of a series of heterocyclic piperazine derivatives. According to the final model there 
is a strong correlation between the activity and the electrostatic field around the heterocycles 
(Q). By studying the PLS coefficient contour plots useful information can be gained for the 
synthesis of new potent compounds. 
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Molecular Similarity Analysis and 3D-QSAR of Neonicotinoid Insecticides 
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A number of neonicotinoid insecticides, such as imidacloprid and acetamiprid (Fig. 1), 
have been developed as agonists of nicotinic acethylcholine receptor (nAChR). In this 
study, a new method of molecular similarity analysis' was applied to the three-dimensional 
quantitative structure-activity relationship (3D-QSAR) of neonicotinoid insecticides. 

A novel electrostatic similarity IRA, was defined by Eq.1, where EA and EB are the 
vectors of electrostatic potentials (.cA1 and cBI) at each grid point i around the molecules A 
and B, respectively, when they are superimposed. In the same manner, a novel shape- 
similarity index IS, was defined by Eq.2. The grid values (SAl and SBi) which take unity 
when a grid point i is inside of the van der Waals surfaces of molecules A and B, 
respectively, and otherwise zero. 

(1) 

A whole series of rn molecules are compared with each other to give rn x 2rn similarity 
matrix. The biological activity (y; dependent variable) is expressed as a linear combination 
of the similarity indices in the matrix (Eq.3). The PI3 method was applied to analyze the 
correlation between the similarity indices and the activity. 

y =aAIR,  +a,IR, +...+ a,IR, +bAIS, +b,IS, +...+ b,IS, +Const. (3) 

The above method was applied to the QSAR of the neonicotinoid insecticies (Fig.l). The 
model molecules, in which the 6-chloro-3-pyridyl group was replaced by hydrogen, were 
used in the similarity analysis. The Eq.4 was obtained as a quantitative correlation model of 
the binding activity (pKi) against nAChR and the similarity indices. 

pKi = 8.862 + [ IRA, and IS,, terms ] 
n =12, A =3, r =0.945, Rpred =0.677, s =0.477, F =22.340 (4) 
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Fig. 1 Structure of neonicotinoid insecticides used in the analysis. 

The analysis only for shape or electrostatic similarity gave less significant results than 
Eq.4. This indicates that both the similarities in steric and electrostatic properties are 
important for the activity. In our previous study’, the binding activity was quantitatively 
correlated with the electrostatic-similarity index334 of each molecule compared with the 
most active compound. The result shown by Eq.4 coincides with our previous study, and 
should be more reliable to predict the activity since the obtained QSAR model is based 
upon the molecular similarity and dissimilarity of the whole series of compounds being 
compared. The obtained QSAR model is established on the basis of the direction and 
magnitude of the similarity vectors as shown above. Therefore, the contribution of similarity 
vectors can be calculated, and the ten grid points which contributed most significantly to 
the activity were shown by spheres in Fig.2. 

weferable reaion for 
negaiive electrostatic potential 

forbidden regions for 0 
molecular shape 

Fig.2 Spherical representation of structual requirements for the receptor-binding activity. 

Okazawa et al. recently performed the 3D-QSAR of neonicotinoids by CoMFA’, and 
their results looked similar to our results shown above. Lobato et al. have recently reported 
that the tequnique of quantumchemical and topological similarity indices gives comparable 
or better results than the one by the current 3D-QSAR procedures such as CoMFA6. The 
method of molecular similarity analysis presented in this study may become one of the 
useful tools in this aim. 
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3D-SAR STUDIES ON A SERIES OF SULFONATE DYES AS PROTECTION 
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INTRODUCTION 
Alzheimer's disease (AD), the most common form of dementia in elderly people, is 
characterized by the extracellular deposition of 39-43 amino acid peptide referred as 
amyloid P-peptide (AP). The mechanism by which AP elicits its toxicity is poorly 
understood, however the aggregation of the peptide into fibrils has emerged as a major 
factor in AP toxicity.' 
Congo Red (CR) is a sulfonated diazo dye that stains AP fibrils, inhibits the fibrillation of 
AP2 and attenuates the toxic effects of either AP (25-35) and AP (1-40).3 The protective 
effects of these compound may results from: 1. inhibition or reversal of AP aggregation, 2. 
inhibition of the peptide binding to cells or 3. blocking access of bound peptide to cell 
surface. A proposed model for the interaction of CR with AP involves a salt bridge between 
two sulfonate groups and positively charged lysine residues on different strands of the 
antiparallel P-pleated fibrils.* 
Herein we present 3D-SAR studies on a series of sulfonate dyes, taken from literature3 and 
from a selection on commercial catalogues, that were tested in vitro as protection agents 
against AP 1-40 neurotoxicity in rat adrenal pheochromocytoma PC12 cells. We identified 
specific descriptors that can locate active, less active and inactive dyes in separated clusters. 

MATERIALS AND METHODS 
Biological tests A set of 10 compounds were selected from commercial catalogues to be 
used for biological testing. 
Specific tests were carried out with the aim of studying the effect of test compounds on 
protection of toxicity induced by AP (1-40p and on inhibitory effects of AP (1-40) 
aggregati~n.~ 

342 



Modeling and 3D-SAR. A set of 10 compounds was chosen to span a range of distances 
between sulfonate groups from 5.4 A to 20.1 A. In particular, the corresponding distance 
for CR is 20.1 A. Another set of molecules was then selected from li terat~re.~ 
Minimun-energy conformations were generated (Discover @)5 performing a conformational 
search (CFF9 1 force field, conjugate gradient method, 60" rotor, dielectric constant 10). 
Charges for sulfonate anion were calculated by the quantum mechanics semi-empirical 
method AM1 (Mopac software6). Only conformers within 3 kcal/mol from the global 
minimum were considered. The structural descriptors that were measured for different 
conformers were: distance between the two S atoms of sulfonate groups (dl) and between 
corresponding adjacent C atoms (d2), the torsional angle S1-C1---C2-S2 (8) , the bond angle 
Sl-C1---C2 (al)  and angle S2-C2---C1 (a2). We also calculated the difference Id1 - d21, the 
difference la1 - a21 and the value of /dl - NINT (dl/D) * DI (A,,,), where: D = 4.7 A, the 
inter-strand distance in a Pauling's cross-@ fibril or D = 11 A, the distance of Lys residues 
facing each other on adjacent sheets, NINT is a function that returns the nearest integer. 
3D-SAR's were performed with TSARTM software '. 
RESULTS AND DISCUSSION 
The best 2D- classification map is obtained using 8 and Id1 - d2l descriptors. All inactive 
compounds are located on the right side of the plot with 8 > 80". Low activity structures 
are characterized by 8 < 60" and /dl - d2j < 1.5 A or > 2.5 A. The active ones have 8 < 40" 
and Id1 - d2l close to 2 A. Results of our classification analyses support the hypothesis that 
sulfonate groups, in CR or other molecules, must be on the same side of a given structure in 
order to face and interact with accessible positively-charged Lys residues. Such ionic 
interactions would compete and possibly disrupt specific salt bridges involving Lys 28 
residues and C-terminal carboxylic functions. The relevance of descriptor 8 is supported by 
experimental evidence and can be easily explained in terms of specific conformational 
requirements of sulfonated ligands. The same cannot be said about the other descriptor here 
reported, Id1 - d21. Although this descriptor is able to discriminate between low- and high- 
activity compounds, its significance is still doubtful. Other classification maps can be 
obtained using other descriptors based on the distance between sulfonate moieties (e.g. 
A4.7), but in all these cases only two classes are well separated: inactive compounds on one 
side and high- and low-activity ones on the other. Ongoing studies are trying to address 
these issues to further investigate and better understand interactions between sulfonated 
(andor carboxylated) compounds and A@ models. 
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A NEW MOLECULAR STRUCTURE REPRESENTATION: 
SPECTRAL WEIGHTED MOLECULAR (SWM) SIGNALS AND 
SPECTRAL WEIGHTED INVARIANT MOLECULAR (SWIM) DESCRIPTORS 

Roberto Todeschini, Viviana Consonni, David Galvagni and Raola Gramatica 

Milano Chemometric Research Group 
Dep. Environmental Sciences 
Milano University 
Via Emanueli, 15 
1-20126 Milano (Italy) 

A new molecular representation based on a semi-invariant decomposition of the 3D molecular structure is 
presented. The basic approach is the principal component analysis on the (x,y,z) atomic coordinates of a 
molecule, obtaining the atom projections on the three principal axes (the scores). The direction of each 
principal axis is uniquely defied, but not the versus. 

Whereas WHIM descriptors' are invariant statistical indices calculated on the scores, SWM signals are 
directly obtained by weighting the scores of each axis by the weights defied in the WHIM descriptors 
framework (mass, polarizability, Mullken atom charge, van der Waals volumes, electrotopological charges). 
Thus a molecule can be represented by a sequence of signals obtained from the weighted scores of three 
principal axes, giving a spectral representation: the signals are the scores along the axes and the signal 
intensities are the weights. 

Similarity analyses based on this representation have been performed on different sets of compounds using 
the Camberra distance. SWM signals appear a very encouraging approach in assessing similarity among 
molecules, being a semi-invariant molecular representation containing detailed information about 3D- 
molecular structures. 

New molecular descriptors can be also easily obtained by analyzing spatial autocorrelation of the SWM 
signals. Spectral Weighted Invariant Molecular (SWIM) autocorrelation descriptors obtained from each 
principal component can be calculated, together with cross-correlation descriptors between each pair of 
principal axes. For each WHIM weighting scheme, with a maximum lag of 5 ,  the total number of SWIM 
correlation descriptors is 90 (1 5 autocorrelation + 75 cross-correlation descriptors). 

The presence of some SWIM descriptors in a QSAR model indicates the molecular regions of interest for 
the considered activity/property. This allows the possibility of going from the model to the molecular structure, 
giving insight into the relationships between structure and activity/property. 
Due to the 3D local information provided by the SWIM descriptors, the combined use with the WHIM 
descriptors, containing global molecular information, is recommended. Preliminary applications of these 
descriptors in QSAR models seem to give very interesting results, not only for the high predictive capabilities, 
but also for the possibility to come back effectively from descriptors to local structure features, i.e. to perform 
a reversible decoding. 
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Introduction 

Prolyl4-hydroxylase (EC 1.14.1 1.2) is an important enzyme involved in collagen bio- 
synthesis. This enzyme catalyzes the formation of 4-hydroxyproline in collagens by the 
hydroxylation of certain proline residues in peptide linkages'. Due to the importance of 4- 
hydroxyproline for the thermal stability of collagenous triple helices, inhibition of this 
enzyme offers an attractive target for antifibrotic treatment. 

For a training set of 26 competitive inhibitors of prolyl 4-hydroxylase with affinities 
ranging from 55 nM to 4.4 mM, we used the program CATALYST2 to derive a three- 
dimensional pharmacophore hypothesis. 

Methods 

All molecules were minimized within CATALYST to the closest local minimum using 
molecular mechanics. Conformational models were generated which emphasize repre- 
sentative coverage over a 20 kcal energy range above the computed global minimum3. 
Using these conformational models, the training set was submitted to hypothesis gene- 
ration3 which aims to identify the best 3D spatial arrangement of chemical functions ex- 
plaining the activity variations among the training set. The chemical functions used in the 
hypothesis generation step include hydrogen bond donors and acceptors, hydrophobic 
groups and negative ionizable functions. 

The resulting model was validated with compounds outside the training set and by a 
subsequent C0MFA4 study. 

Discussion 

The best hypothesis proposed by CATALYST is characterized by 1 Negative 
Ionizable function, 2 H-bond Acceptor and 1 H-bond Donor feature. Figure 1 shows 0570 
(the most active compound of our training set) superimposed on the hypothesis. This 
compound maps all features of our model and its activity is properly estimated. 
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Figure 1. Alignment of 0570 to the prolyl4-hydroxylase hypothesis 

A set of 20 diverse prolyl4-hydroxylase inhibitors, different fkom the members of the 
training set, was chosen for activity prediction by our current hypothesis. The entire vali- 
dation set shows a good correlation between the estimated and experimental activities, pro- 
ving the predictive power of this model. 

All compounds of the training set were aligned to our hypothesis for a subsequent 
Comparative Molecular Field (2 A grid, steric and electrostatic fields; 30 
kcaYmo1 cutoff) to check the reliability of our model. The PLS analysis (minimum sigma 
cutoff of 2.0 kcal/mol) revealed a cross-validated R2 of 0.424 for five components. The 
CoMFA model explains the variance in the biological data for the 26 compounds within the 
training set reasonably well, indicating the relevance of the underlying hypothesis for the 
alignment of the inhibitors. Furthermore, the crossvalidated R2 of 0.424 suggests that the 
model should have acceptable predictivity for similar molecules not present in the training 
set. 

Conclusion 

Starting from a set of 26 competitive prolyl 4-hydroxylase inhibitors, we generated a 
four-feature hypothesis that well explains the affinities of the molecules. This model was 
validated by an external data set and by a subsequent CoMFA study. Both models were 
successfully applied in lead optimization of prolyl4-hydroxylase inhibitors. 
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INTRODUCTION 

Aromatase inhibitors are among the most actively studied compounds in the field of antitumour 
agents, because of their role in the treatment of breast cancer. Aromatase is a cytochrome P 450 
isozyme (P 450 XIX), that can be inhibited either competitively or non competitively by various 
classes of steroidal and non-steroidal compounds. 

Recently, we developed a CoMFA model for the aromatase inhibition by two series of non- 
steroidal agents (represented by the lead compounds 1 [S-fadrozole] and 2), that allowed us to define 
on a statistical basis the steric and electrostatic optimal requirements for inhibitors belonging to those 
classes.’ 

The need of building bridges 
between three-dimensional protein 
models and 3D-QSAR studies was 
recently pointed out by Kim, who 
showed how the two methods can 
act synergistically in providing 
usehl information towards the goal 

CN 

1 2 of ligand design2 

In order to investigate this issue in more depth, we built a three-dimensional model of 
aromatase and compared it with the results of our previous 3D-QSAR analysis. The first step was 
accomplished by means of a homology building procedure aimed at modeling the main features of 
the aromatase active site. Then, the steric and electronic characteristics of the space allowed for 
inhibitors as statistically defined by the CoMFA study were checked against the modeled enzyme 
active site. 
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COMPARISON BETWEEN THE HOMOLOGY BUILT AND COMFA MODELS 

Superimpositions of the aromatase active site with the CoMFA steric and electrostatic 
contours were examined. There is a general agreement between the position of the favorable and 
unfavorable steric and electrostatic CoMFA regions and the residues forming the active site cavity. 
The CoMFA sterically allowed area corresponds to an empty region of the active site, while the 
unfavorable volume partly overlaps with the side chain of Thr3 10 (helix I). The electrostatic CoMFA 
red contour surrounds Asp309 and, referring to the CoMFA model, the presence of the carbonyl 
group of 2 in that zone is unfavorable. This effect might originate from the interaction of the 
carbonyl fhctions of the inhibitors with the electron cloud of the C O O  of Asp309. 

One particular aspect that emerged after the docking simulations of 1 and 2 into the aromatase 
active site is that the inhibitors are mutually oriented in a somewhat different manner from the 
alignment used in the CoMFA analysis. This confirms that alignments leading to statistically 
significant CoMFA models do not need to reproduce the results of docking simulations or 
experimental determinations. 

DISCUSSION 

3D-QSAR and homology built protein models provide the drug designer with different kinds of 
information: it is possible (perhaps desirable) to compare the SAR derived from both the ligand- 
based and the target-based analyses and to verify the consistency of the conclusions. In the case of 
the non-steroidal aromatase inhibitors, we found a satisfying correspondence between the 
quantitative and the qualitative models in terms of the steric and electrostatic properties of both 
ligands and enzyme. 

Building a bridge between CoMFA and docking models allows one to take advantage of the 
strengths of both methods in view of a better comprehension of the enzyme-inhibitor interactions. 
The CoMFA contours are statistical artifacts which bear no physical meaning, but if they are 
overlapped onto the active site surface, they may eventually be understood in terms of the presence 
of aminoacid residues. In turn, a ligand-protein docking model is limited to the explanation of one 
compound’s structure-activity relationships and its integration with a 3D-QSAR model might expand 
the results of the analysis to a class of congeners. 

Checking a CoMFA alignment against a docking model based on a dynamics simulation also 
points out the issue of how different ligands should be oriented inside the enzyme active site. In the 
present case, a highly significant 3D-QSAR was obtained, despite an alignment not confirmed by the 
dynamics simulation. However, a CoMFA performed using the alignment suggested by the molecular 
dynamics gave comparable statistical results. 

REFERENCES 

1 .  M. Recanatini and A. Cavalli, Comparative molecular field analysis of non-steroidal aromatase 
inhibitors: an extended model for two different structural classes, Bioorg. Med Chem. 
6:377 (1998). 

crystallography and 3D-QSAR studies for ligand design, Persp. Drug. Des. Disc. 
12/13/14:233 (1998). 

2. H.K. Kim, Building a bridge between G-protein coupled receptor modelling, protein 

348 



IMIDAZOLINE RECEPTOR LIGANDS - MOLECULAR MODELING 
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15 years ago, studies aiming at developing new-line central a2 adrenergic drugs gave birth 
to the increasingly recognized concept of non-adrenergic imidazoline receptors [ 11. Two 
major subtypes of imidazoline receptors have been isolated at this time. I1 receptors, mainly 
central, whose activation brings about a reduction of elevated blood pressure. I1 receptors 
have been recognized as a target of centrally acting antihypertensives devoid of the intense 
side effects mediated by a2 receptors. However, conclusive evidence for their existence is 
still lacking. I2 receptors, in contrast to the I1 binding sites, have a much wider tissue 
distribution and can be subdivided into 12-A and 12-B sites. No definitive physiological role 
has yet been determined although their functional role is established, as mediators of 
neuroprotection in ischemic infarction. Further insights into the imidazoline receptor scope 
(topology, functionality, localization, distribution, and pharmaco-applications) include the 
development of more selective compounds. In this connection, a 3D-QSAR study using 
CoMFA is a powerful tool as it may produce a 3D pharmacophoric model of the ligands 
defming the spatial region where electrostatic, lipophilic and steric interactions may 
modulate the binding affmity. A 3D-QSAR CoMFA study was then carried out on in vitro 
I2 binding affmities of 109 2-substituted imidazoline compounds : an I2 3D-QSAR model, 
with good fitting and predictive abilities, is presented. 

Methodolopv of the 3D-OSAR CoMFA studv 

Hardware - Silicon Graphics Indy (R4600), Indigo2 (R4400) & 0 2  (R10000) 
Software - SYBYL v. 6.3 & 6.4 (Tripos Associates, St Louis, MO, USA) 

Ligands - The structural and biological data, provided by the laboratory and literature, were 
used to build a database containing 109 molecules. Representing about 10 chemical families 
(naphthalene, benzene, benzopyran, benzodioxane.. .), this database presents an essential 
homogeneity of the binding data (pIC50range: 4.3 to 9.2) as well as a very interesting 
molecular diversity for the robustness of the model. 

Conformational analysis - Ligands were modeled and optimized with SYBYL (6.3 and 
6.4) via a MOPAC semi-empirical calculation using the AM1 Hamiltonian. Each structure 
was then submitted to a Monte-Carlo conformational analysis implemented in SYBYL 
(Random Search): energy minimization, using TRIPOS force field, includes MOPAC 
partial atomic charges, which better account for the mesomery of the physiological 
protonated imidazoline ring. All the generated conformers, within a 70 kcaVmol energy 
range, were then screened through a SPL automatic fitting procedure onto the 
pharmacophoric elements of the template: the quality of the fit was assessed by RMS (Root 
Mean Squares). 

Determination of the 3D-pharmacophore - In order to select the local minimum 
conformer among several available after the Random Search procedure, benazoline [2] was 
chosen as a template because of its high I2 affinity and low conformational mobility. As an 
essential element for the CoMFA alignment step, the choice of the benazoline conformer 
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was covalidated by Random Search, Systematic Search and Simulated Annealing 
conformational analysis : among the 2 conformers covalidated, the template (1$=-42.6") was 
qualified via a RMS fitting procedure on 10 compounds with high affinity for 12. 

Molecular alignment - The different point-by-point alignment rules envisaged were 
applied with an SPL automatic fitting procedure onto the associated pharmacophoric 
elements of the template: for each alignment, the CoMFA table was then calculated and the 
PLS method run. 

A 3D-QSAR CoMFA model of I2 receptor - PLS is used as the regression method to 
develop the relationship between independent variables (steric, lipophilic & electrostatic 
potentials) and dependent variable (PICSO). First, the optimal number of components (ONC) 
and q2, measuring the predictive ability of the model, are determined using the Leave-One- 
Out cross validation technique. Second, PLS, using 

isocontour map is drawn, and r2, measuring the fitting 
ability of the model. The lipophilic field was i 
calculated by the MLP implemented in the CLIP [3] 1 

realized, the model yielding the best statistics, in uI ' 

lipophilic (52%) and steric (48%) fields: the associated isocontour maps indicate the regions 
where the variations in lipophilic and steric potentials of the 109 compounds are correlated 
with the variation of pICsO. 

t ~ n  

the ONC, gives the final model, from which the '0 ~ . * .  . :.,. 
(.. _ f  :. . FOG 8 . *?.' 

iao pJ4' 

. .  . . *  .. : . ... . . .  ... 
module of SYJ3yL. Among the different alignments . i .  

* I 0  ,I 7 0  (Lo ,* to> 
uirsrrnf. "du. terms of predictive ability (q2=0.57), is combining 

Conclusions and prospects - The CoMFA study on 12 in vitro binding affinity of a large 
series of 2-substibed imidazol-ine compounds is yielding an I2 3D-QSAR model presenting 
a good predictive ability and explained variance: the associated CoMFA isocontour maps 
revealed spatial regions where lipophilic and steric interactions may modulate the in vitro IZ 
binding affinity. Compared to other works [4] using the same template without lipophilic 
fields, this 12 3D-QSAR model, based on a much wider range of structurally diverse 
compounds, presents a slightly lower predictive ability. With the aim at improving this 
model, the determinant CoMFA alignment step is thoroughly explored with a genetic 
algorithm-based procedure. The CoMFA methodology is at the moment employed to 
develop I1 and a 2  3D QSAR models which, with the I1 model, could give access to 
physicochemical and structural requirements for Illa2, Ez/a2 and I1A2 selectivity. 
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REVERSIBLE INHIBITION OF MAO-A AND B BY DIAZOHETEROCYCLIC 

COMPOUNDS: DEVELOPMENT OF QSAWCoMFA MODELS 

Cosimo D. Altomare,' Antonio Carieri,' Saverio Cellamare,' Luciana Summo,' 
Angelo Carotti,' Pierre-Alain Carmpt? and Bernard Testa2 

'Dipartimento Fannaco-Chimico, Universiti di Bari 
via E. Orabona 4,I-70125 Bari 

'Institut de Chimie Therapeutique, Universitk de Lausanne 
BEP-Dorigny, CH-1015 Lausanne 

Monoamine oxidase (MAO, EC 1.4.3.4) is a FAD-containing enzyme of the outer 
mitochondria1 membrane that catalyzes the oxidative deamination of various 
neurotransmitters and dietary amines. MA0 exists in two forms (A and B), which differ by 
their amino acid sequence, substrate specificity, and sensitivity to inhibitors. MAO-A and 
MAO-B inhibitors are useful as antidepressant and coadjuvants in the treatment of 
Parkinson's disease, respectively.1 In previous studies,2 we described 5H-indeno[ 1,2-c] 
pyridazin-5-ones as reversible and competitive MAO-I3 inhibitors. A predictive 3D-QSAR 
model led to the design of compound 1 with nanomolar inhibition value (IC50 = 90 nM). 
To deepen our understanding of MAO-AA3 inhibitlon and selectivity, we synthesized and 
tested novel condensed pyridazines, pyrimidines and 1,2,4-triazines showing appreciable 
MAO-A inhibition. 

Various QSAR and CoMFA studies were performed using a set (n = 22) of diverse 
molecules, and the results revealed the physicochemical interactions mainly involved in 
enzyme-inhibitor complexation. The influence of lipophilicity in increasing inhibition of 
MAO-B (and not MAO-A) was demonstrated by QSAR Hansch-type analysis and CoMFA 
including the molecular lipophilicity potential (MLP). As for CoMFA results, lipophilic field 
alone led to the best one-field model (q2 = 0.585), whereas the best 3D-QSAR model was 
obtained by combining lipophilic and electrostatic fields (q2 = 0.653, O.N.C. = 4, r2 = 
0.969, s = 0.144). These results agree with and complement a recently published model of 
reversible MAO-B inhibi t i~n.~ In contrast, both QSAR and CoMFA did not yield reliable 
models for MAO-A reversible inhibition, where complexation between inhibitor and FAD 
appears as a critical event. This implies electrostatic interactions and charge transfer bonding 
as two major contributions to the complex stability.4 Thus, the molecular electrostatic 
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potentials (MEPs) of our MAO-A inhibitors were compared with the MEP of Hurmine, a 
potent reversible and selective inhibitor (pIC50 = 7.12), by using the MEPSIM package5 as 
computational tool. The electron density distribution included in the MEP calculations was 
obtained from ub initio wave functions (basis set STO-3G), whereas electrostatic similarity 
was assesed by calculating the Spearman rank correlation coefficient between the MEP 
values of each pair of molecules (Hurmine as the template) computed at grid common points. 
Preliminary results interestingly showed a relation between MAO-A inhibition and MEPSIM 
index. 

H 

H o y & q b  \ -qq Harmine Me 

MEPSIM index 0.57 0.70 1 .oo 
PIC50 (A) 4.79 5.63 7.12 

Finally, the importance of n-n stacking interactions in the modulation of MAO-A 
inhibition was assessed by measuring retention on a chromatographic stationary phase 
carrying dinitrobenzoyl group as a n-acceptor system. The above results, even if at a 
preliminary level, provided information which could aid the design of selective diazine MA0 
inhibitors. 
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MODELLING OF THE ~ - H T ~ A  RECEPTOR AND ITS LIGAND COMPLEXES 

Estrella Lozoya,’ Maria Isabel Loza’ and Ferran Sam1’* 

‘Research Group on Medical Informatics, Institut Municipal d’Investigaci6 
Medica (UAB), C/ Dr. Aiguader 80, E-08003 Barcelona (Spain) 
’Department of Pharmacology, Universidade de Santiago de Compostela, 
E-15706 Santiago de Compostela (Spain) 

INTRODUCTION 

Up to now, modelling of the GPCR is one of the most interesting but most difficult 
challenges in protein modelling. The difficulties arise from the lack of crystallographic data 
to be used in a standard homology approach. The first GPCR models that were published 
were based in the crystallographic data of bacteriorhodopsin, which is an inappropriate 
template because it is not a GPCR and it shows a very low homology degree with the 
GPCRs. More recently, a low resolution electron density map of rodhopsin’ is being used 
for the packing of the GPCR transmembrane helices (TMH). This history reflects the 
constant need of ameliorating the existing models by taking into account new experimental 
data or improved theoretical or computational tools. 

~ - H T ~ A  RECEPTOR MODEL BUILDING 

The receptor 3D model (Figure 1) was built considering the theoretical and 
experimental knowledge in 1997. The 
seven TMHs were packed taking into 
account: 1) the Baldwin proposal for 
GPCRs,’ 2) molecular biology experiments 
like this showing the proximity of an Asp 
of Hx I1 with an Asn of Hx VI13 (see Figure ,LuI 

l), and, 3) the lipophilicity profile of the 
helices, in such a way that the major part of 
the lipophilic residues are exposed to the 

refined by means of MM computations Figure I. Binding site of the proposed 5-wzA model 
using the Amber force field. The model 
passed the PROCHECK and WHATCHECK quality tests, and it was stable to MD 

* To whom correspondence has to be addressed 

fosfolipids. The model was geometrically ,hue 
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simulations. Furthermore, the model acceptably fits an improved version of the rhodopsin 
map recently p~bl ished.~ 

5-HTz.4 RECEPTOR MODEL DOCKING SIMULATIONS 

Docking of several ~-HTzA ligands (5-HT, a-Me-5-HT, DO1 and ketanserin) was 
automatically explored with the Affinity module of BIOSYM, taking into account the 
conformational flexibility of both receptor and ligands. Feasible complexes for all the 
considered ligands into the receptor binding site were found (Figures 2). These complexes 
show hydrogen bonds with residues that have been experimentally described as critical for 
ligand bindingss6. Interesting aromatic interactions also appear. Furthermore, the complexes 
exhibited stability during MD simulations. 

Figure 2. Models of the docking complexes of 5-H'I (a), a-Me-5-HT (b), DO1 (c), and ketanserin (d-e). 
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TOWARDS THE UNDERSTANDING OF SPECIES SELECTIVITY AND 
RESISTANCE OF ANTIMALARIAL DHFR INHIBITORS 

Thomas Lemcke,' Inge Thgger Christensen,2 and Flemming Steen Jorgensen2 

'Institute of Pharmacy, University of Hamburg, D-20146 Hamburg, Germany 
*Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 
DK-2100 Copenhagen, Denmark 

INTRODUCTION 

Malaria tropica is caused by Plasmodium fakiparum and it is most often lethal to the 
untreated patient. One of the targets of malaria therapy is the dihydrofolate reductase 
(DHFR) of P. falciparurn. Several DHFR-inhibitors (e.g. methotrexate, trimethoprim, pyri- 
methamine), which inhibit the DHFR of different species through selective binding to the 
enzyme, are known. Pyrimethamine is a selective inhibitor of the plasmodia1 DHFR, but 
due to rapid development of resistance against this drug, its use is limited. 

Figure 1. Pyrimethamine and folic acid 

RESULTS AND DISCUSSION 

DHFR from vertebrates, bacteria and fungi have a very high structural homology. 
Therefore, a three-dimensional model of P. fakiparum DHFR was constructed by 
homology building using a step-wise procedure (Lemcke el al., 1998). The model was 
based on a structural alignment of X-ray structures of DHFR from different species (human, 
chicken, E. coli, L. casei and P. cuuinii). By superimposing these structures, the structurally 
conserved regions were identified. The sequence of the pyrimethamine sensitive P .  
falciparurn clone 3D7 was aligned to the structurally aligned sequences of the five X-ray 
structures. The final model was geometry optimized using the AMBER force field and 
evaluated using the programs PROCHECK and PROSA. 
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Folk acid could be docked into the active site of the model in the same conformation 
as in the human enzyme. The pteridine ring is forming a bidentate hydrogen bond to the 
carboxylate sidechain of Asp54 and Glu30, respectively (Figure 2). The most pronounced 
difference is the replacement of Asn64 in the human with Phel16 in the plasmodial DHFR. 
It prevents the donation of a hydrogen bond to the carbonyl oxygen of the benzoic acid 
moiety of folic acid. However, this hydrogen bond is not essential for substrate binding, as 
it is not conserved among different species (e.g. yeast, fungi and bacteria). 

Pyrimethamine was docked into the active site in a way similar to the binding mode 
reported for other diamino-pyrimidine inhibitors (Blakley 1995). The phenyl ring is located 
in the region of the active site, that displays noticeable differences between the human and 
the plasmodial structure (Figure 2). Thus, according to our model, the chlorine atom in 
pyrimethamine is in vdW contact with Serl08 and Serll  1. 

Figure 2. Active site of human (left) and model (middle) with folic acid and model with pyrimethamine (right) 

Serl08, which is a threonine in most other structures, is reported to be related to 
building up of drug resistance against pyrimethamine (Sirawaraporn et al., 1997, Peterson et 
al., 1988). The S108N point mutant of plasmodial DHFR has a considerably reduced 
sensitivity to pyrimethamine. Consequently, in the mutant there might not be enough space 
for the inhibitor to bind to the active site. This observation is in consistance with the 
reported resistance of the S108N mutant. 

CONCLUSIONS 

A three-dimensional model of the DHFR domain from P. fakiparum has been 
obtained by homology building. The model was based on the X-ray structure of the human 
DHFR and a structural alignment of five DHFR structures. Based on the model we were 
able to explain the significance of the S 108N point mutation in relation to pyrimethamine 
resistance. 
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MODELING OF SURAMIN-TNFcx INTERACTIONS 

C .  Marani Toro', M. Mabilk*, F. Mancini', M. Giannangel?, C. Milanese' 

' Angelini Ricerche, P.le Stazione, I-00040 S .  Palomba, Rome, Italy 
S.IN - Soluzioni Informatiche, Via Salvemini 9,I-36100 Vicenza, Italy 2 

INTRODUCTION 

Suramin, a symmetrical polysulfonated urea derivative (1-2), promotes the 
dissociation of triieric Tumor Necrosis Factor a (TNFa) into inactive subunits, thus 
inhibiting the binding of TNFa with its cellular receptor (3 ) .  

The purpose of the present study is to investigate location and nature of likely suramin 
binding site(s) on TNFa by means of computer-aided molecular modeling techniques. 

RESULTS AND DISCUSSION 

In order to determine the rotational energy barriers for amidic and ureidic C-N bonds, 
MonteCarloEnergy Minimization (MCEM) (4) searches were carried out, under different 
conditions, on suramin fragments. Using the conformational preferences suggested by the 
above results, the whole suramin molecule underwent MCEM procedure. Being suramin a 
polyanion and m a  surface characterized by a high number of positively charged residues, 
interaction energies between suramin simplified models (1 -naphthalene monosulfonic acid, 
1,3-naphthalenedisulfonic acid, 1,3,6-naphthalenetrisulfonic acid) and protonated Arg and 
Lys were first evaluated to establish preferred interaction geometries and corresponding 
energy contributions. 

Subsequently, two different docking modes were examined using MCEM procedure 
and the Amber force field (5-6) (Kollman's united atom). First, charged suramin was 
docked onto the TNFa trimer surface in such a way that sulfonic groups could reach a 
putative binding region characterized by positively charged residues. Alternatively, suramin 
was docked inside TNFa trimer, along the three-fold axis, so that one of the aromatic rings 
of naphthalenetrisulfonic acid could reach the TNFa core region defined by tyrosie 
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residues 59, 119 and 151. The outcome of these simulations indicates that electrostatic 
interactions between sulfonated groups and charged residues seem essential for recognition, 
alignment and initial interaction of suramin, while a relatively long “linear” structure, such 
as suramin, might then be required to allow penetration in the channel centered on the 
TNFa trimer symmetry axis. 

Other polysulfonated compounds, structurally related to suramin such as trypan blue 
and Evans blue, were docked inside the trimer according to suramin orientation. These 
docking studies reveal that suramin, trypan and Evans may interact in a similar manner to 
m a .  

A specific immunoenzymatic assay (3) was developed on suramin and related 
compounds to confirm their capacity to inhibit TNFa /TNF-receptor binding. The results 
indicate that Evans blue and trypan blue have an activity comparable to suramin, in 
agreement with our theoretical models. 

To determine the minimum size of the pharmacophore for M a ,  also 1,3,6 
naphtalenetrisulfonic acid was tested. The fact that the naphtalenetrisulfonic acid does not 
affect TNFa binding to its receptor seems to indicate that electrostatic interactions alone 
are not sufficient to induce the trimer dissociation, thus suggesting that other kinds of 
interactions (e.g. dispersion forces) and molecular size/length might play an important role 
in this phenomenon. 
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DE NOVO DESIGN OF INHIBITORS OF 
PROTEIN TYROSINE KINASE pp60'"" 
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INTRODUCTION 

Protein tyrosine kinase (PTK) pp60c-"c is a new and promising target for the 
modulation of cell-proliferation.' In order to find new specific inhibitors for this enzyme 
we performed a two step computer aided ligand design study. First, a 3D QSAR model 
based on a training set of 25 known ligands was established using the CoMFA approach.2 
Second, a de novo approach using the x-ray coordinates3 of human PTK pp60""" (EC 
2.7.1.112) was applied using the LUDI software 

METHODS AND RESULTS 

CoMFA. A training set containing the structures of 25 ATP competitive inhibitors 
of PTK pp60c+rc covering an activity range of 0.1 - 1000 pM was selected. The alignment 
was generated by using a multistep docking and energy minimization procedure, the x-ray 
coordinates of the protein structure together with ATP were taken as a template. The model 
obtained was shown to be predictive as indicated by a 12," of 0.72 (spress = 0.66). The results 
of the final model is given in Fig. 1. 

Figure 1.  Sdev * coefficient contour plots and predicted against actual PIC,,, for inhibitors 
of PTK pp60c-"'c model as derived by CoMFA 

36 1 



From the interpretation of the Coh4FA contour plots, the following conclusions on 
successful modificati&s of training set molecules 

Elongation of the side 
chain with 6-with- f drawing substituents 

'R 
Removal of 
methyl groups 

LUDI de novo ligand design. The 
study was carried out in two consecutive 
steps: first, molecular structures fitting into 
the active site were selected from the LUDI 
standard fragment database. Compounds 
exhibiting the highest scores (estimated pKi 
values > 2.5) were selected, and in a second 
step side chains were added at multiple 
sites of the starting fragments. This 
procedure resulted in the determination of 
approximately 200 compounds. Molecules 
exhibiting an estimated pKi > 5 were 
finally docked into the active site in order 
to study the interaction pattern. An example 
of compounds designed is given in Table 1. 

Estimated pKi Statistics 

- 
may be drawn: 

0 

I - Me 

Compounds Designed 

tNo-HMroH \ OH 

Av7poH O H  

Predicted 
Affinity (pKi) 

7.4 

7.1 

6.5 

6.2 

5.8 

5.8 
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CONFORMER SAMPLING BY MOLECULAR DYNAMICS CALCULATIONS 
AND MOLECULAR OVERLAY 
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In computer-assisted drug design, it is very important to determine the 
conformation of the l i p d  molecules that bind to such proteins as receptors and 
enzymes, that is, the active conformation. For compounds binding to the same receptor 
or enzyme, same atomic groups in the compound occupy almost same three-dimensional 
spaces in the receptor or enzyme. Hence a lenient superposition of atomic groups 
between two molecules seems to be effective for the extraction of an active conformation. 
To estimate the active conformations of drugs, we developed a new procedure for 
superposing two molecules based on the physicochemical properties of the atomic 
groups in a molecule. The four types of physicochemical properties of the atomic 
groups within individual molecules -- hydrophobicity , presence of a hydrogen-bonding 
donor, presence of a hydrogen-bonding acceptor and presence of a hydrogen-bonding 
donorlacceptor -- were supposed and a score was given to every overlap. Each atomic 
group belonging to the types of physicochemical properties was approximated by a 
sphere with an appropriate radius and if any two spheres overlapped by even a little, 
they were treated as a target of a score. 

In order to systematically perform the superposition of two molecules, first, the 
center of mass of each molecule is translated to the origin of coordinates, and then the 
circumscribed rectangular boxes are calculated. The molecule with a large box-volume is 
fured, and then the center of mass for the molecule with a s d  box-volume is translated 
and rotated. The range of translation is the maximum distance that the small box can 
translate inside the large box The translational increment is 1 A and the center of mass is 
translated on the body-centered cubic lattice points made in the circumscribed 
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rectangular box of the large volume. The rotation is performed on each of the lattice 
points. The ranges of three Eulerian angles are 0 I cp, y~ I 350" and 0 I 8 I 180" and the 
rotational increment is 10". When the atomic groups with the same physicochemical 
properties were overlapped, points were added to the score, while, if the atomic groups 
with different physicochemical properties were overlapped, points were subtracted. The 
score is calculated on the orientations of all of superpositions, respectively, and the 
orientation with the highest value is adopted. If the highest value of the score is 
redundant, one with the smallest value of the root mean square deviation (rmsd) of the 
distance between atomic groups between every pair of inhibitors is conveniently 
selected. As a precaution, however, it might be required to check orientations with the 
same score. For further improving the score of the adopted orientation, three translations 
and three Eulerian angles are optimized by the simplex method using the rmsd as an 
objective function to determine the final orientation of superposition. 

We carried out the superposition of conformers sampled by the high temperature 
molecular dynamics (MD) calculation using the CAMDAS (Conformational Analyzer 
with Molecular Dynamics And Sampling) program' with respect to 12 pairs of 20 
enzyme inhibitors in order to check the effectiveness of the procedure. The 
superposition of each pair was compared with the superposition obtained from the X- 
ray crystallography of an enzyme-inhibitor complex which is derived by removing only 
the coordinates of the enzyme molecule after a least-squares fitting between the a-carbon 
atomic coordinates of the enzyme molecules in the enzyme-inhibitor complexes. The 
results showed that the best overlay for each inhibitor pair could successfully reproduce 
the superposition obtained from the X-ray crystallography. 

We next examined whether or not our superposing procedure was able to estimate 
the active conformation among many conformations. First, the high temperature 
molecular dynamics calculations for the thrombin inhibitors, MQPA, 4-TAPAP and 
NAPAP, were executed and 60000 conformers were sampled using the CAMDAS 
program. As a result, 457 conformers in 4-TAPAP, 1 13 conformers in NAPAP and 202 
conformers in MQPA were selected Superpositions of conformers sampled by the high 
temperature MD calculations with respect to the three inhibitors were performed, and 
13 sets of conformers having the best common overlay to the three inhibitors were 
selected. The resulting conformer sets contained the superposition of the active 
conformations derived from the X-ray crystallography of the thrombin-inhibitor 
complexes. It is suggested that the method in this workz is useful for elucidating a 
pharmacophore and finding the bioactive conformation among a lot of conformations of a 
drug obtained from computational calculations. 
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INTRODUCTION 

y-Aminobutyric acid (GABA) and (S)-glutamic acid are the endogenous receptor ligands for 
the GABA, and the AMPA receptor, respectively. The 3-isoxazolol and the 5-isoxazolol 
rings have been used as bioisosters for the carboxylic acid group in GABA and the distal 
carboxylic acid group in (3-glutamic acid leading to a wide range of semi-rigid analogues 
(Fig. 1). 

GABAAreceptor ligands AMPA receptor ligands 

&OH € 1 2 N Y o H  do H2N 

0' 
H2N 

1 2 3 4 
Icso fH1 GABA = o.oWM Ic50 f'H] GABA = 29 pM Icso f'H] AMPA = 0.27 @I Icso f'H] AMPA = 0.28 B M ~  

Fig. 1 GABA, and AMPA receptor ligands 

In the GABA, series a large difference in binding affinity exists for the 3- and 5- 
isoxazolol compounds, 1 and 2, whereas the corresponding compounds, 3 and 4, in the 
AMPA series exhibit essentially identical binding affiities (see Fig. 1). The different 
behaviours of the 3- and 5-isoxazolol compounds in the two series have been investigated by 
high-level ab initio calculations. 

RESULTS 

For the GABA, receptor, bidentate complexes between the 3- and the 5-isoxoazolol anions 
and a guanidium ion have been studied. For the AMPA receptor, monodentate as well as 
bidentate complexes between the isoxazolol anions and a methylammonium ion and/or 
methanol have been studied. 
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Complex A Complex B 

m , "  (ligand) 
Complex AMl/SM24 

(kcdmol) 
A -77.1 

Complex C 

E c o m  lexation 
MP4SDQl6-3 l+&**ll HFl6-3 1+G* 

(kcdmol) 
-4 1 .O 

Complex D 

B 
C 
D 

Fig. 2 Calculated complexes which best rationalize experimental relative affinities 

-69.9 -37.1 
-74.5 -58.6 
-67.3 -59.3 

The complexation energies have been calculated according to Eq. 1 and are listed in Table 1. 

- 
'complexation - 'complex - ('figand + Ecomplexing agent&) - AGso,v(ligand) (Eq. 1) 

Table 1 Calculated complexation and solvation energies 

CONCLUSION 

The calculations indicate that the GABA, agonists bind to the receptor forming a bidentate 
complex. The difference in complexation energy between Complex A and B (3.8 kcdmol) is 
in good agreement with the relative binding affinities. In contrast, the binding affininities for 
the AMF'A compounds can be explained by a monodentate binding. The difference in 
complexation energy between Complex C and D (0.7 kcdmol) is in good agreement with the 
relative binding affininities to the AMPA receptor. 
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STABILIZATION OF THE AMMONIUM-CARBOXYLATE 
ION-PAIR BY AN AROMATIC RING 
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INTRODUCTION 

A central feature in 7TM models of the binding of monoaminergic neurotransmitters to their 
receptors is an ammoniudcarboxylate ion-pair interaction between the protonated amine and 
an aspartate residue in helix m.' 

However, ab initio calculations on the amine/carboxylic acid vs. the ammonium 
ion/carboxylate anion complex show that the neutral amine/carboxylic acid complex is more 
stable in vucuo by 11.3 kcaYmol.2 Thus, the existence of an ion-pair binding requires a 
significant stabilization of the ion-pair complex. On the basis of the large attractive 
interactions between an ammonium ion and a benzene ring (AH = -19.3 kcal/m01)~, it has 
been argued that an ion-pair complex may be strongly stabilized by conserved aromatic rings 
in cationic neurotransmitter receptors.' Attractive interactions between aromatic rings and 
ammonium ions have been shown to be of importance for ligand binding in biological 
systems and to synthetic receptors." However, it has not previously been studied if such 
strong attractive interactions also are present in ion-pair complexes with aromatic rings. 

In the present study, we have calculated the complexation energy of the ammonium- 
carboxylate ion-paidbenzene complex A and compared it to the corresponding energy for the 
ammoniumhenzene complex B. 

Figure. C,, symmetric complexes of formate/ammonium/benzene (A) and ammonium/benzene (B). 

RESULTS 

The results for the C,, symmetric complexes A and B are shown in the Table. Calculations 
for the corresponding C, symmetric complexes have also been performed with very similar 
results . 
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Table. Calculated cumplexation energies for complexes A and B. 

computational level complex Aa complex Ba 

MP2/6-311G**/ 2/6-3116** -6.0 -19.1 
-5.2 -17.3 
-6.7 -19.8 MP2/6-3 1 1+G(2d92p)//MP2/6-3 1 1G** 

"MP4SDQ/6-3 1 l+G(2d,2p)"//MP2/6-3 1 1 G**b -5.9 -18.0 

MP4SDQ/6-311 b' **//MP2/6-311G** 

a Energies are in kcal/mol.b Correlation effects at the MP4SDQ/6-3ll+G(2d,2p) level were estimated by 
adding the calculated differences (MP4SDQ/6-311+G** - MP2/6-31 l+G**) to the calculated MP2/6- 
3 11+G(2d,2p) energies. 

The calculated results show that the large attractive interaction observed for the ammonium 
ion - benzene complex is drastically reduced by the presence of a carboxylate anion. The 
complexation energy for the ion-pairhnzene complex A is calculated to be less than one 
third of the corresponding energy for the ammonium/benzene complex B . Furthermore, the 
complexation energy decreases rapidly with N' - aromatic ring distance. Typical closest N+ - 
aromatic ring distances in 7TM receptor models are 4.5 - 6.5 A.5 At these distances, the 
stabilization energy of the ion-pair by the benzene ring is less than 2.5 kcal/mol. 

CONCLUSIONS 

The complexation energy between the ammonium/fonnate ion-pair and benzene is only one 
third of the complexation energy of the ammonium ion - benzene complex. 

The attractive interactions between an ammonium/carboxylate complex and an aromatic 
residue are not sufficiently strong to shift the equilibrium from predominance of the neutral 
amine/carboxylic acid complex to predominance of the ion-pair complex. Other sources of 
stabilization, e.g. hydrogen bonding to the carboxylate group are required to favor the ion- 
pair.6 
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INTRODUCTION 

Scientific interest in cannabinoids increased after the isolation of A’- 
tetrahydrocannabinol (A9-THC) and prompted a systematic re-evaluation of their use as 
therapeutical agents. The pharmacological activity of cannabinoids is mediated by two 
recently identified cannabinoid receptors: the CB1 receptor localized in specific brain areas 
and the peripheral receptor CB2. In 1992 anandamide, identified as an endogenous ligand for 
cannabinoid receptors, was shown to share with THC most pharmacological properties in 
both CNS and peripheral systems’. 

The striking analogies in the pharinacological activity of structurally different classical 
and non classical cannabinoids have not yet been rationalized Available 3D-QSAR studies’ 
consider only predominantly rigid compounds but not include anandamide and other 
derivatives characterized by great rotational freedom. 

Aim of this work was to study by 3D-QSAR a set of structurally different molecules 
in order to obtain general structural information about the CB1 receptor from the drug- 
receptor dissociation constants, which are known to be correlated to the potency. 

The modelled molecules were selected from literature data’ reporting the dissociation 
constants with respect to CB1 and CB2 receptors for three series of structurally different 
compounds: i) THC and derivatives, ii) anandainide and derivatives, iii) indole and 
derivatives. The dissociation constants for the selected set of 19 molecules, exhibiting a wide 
variation of both structure and activity, were all determined on the same cell line. 

RESULTS AND DISCUSSION 

The structures of all molecules were generated using Sybyl 6.4 molecular modelling 
package and energy minimized using Tripos force field. The structure of n9-THC was chosen 
as the alignment reference and conformational searches were performed in molecules with 
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rotational freedom. THC analogues were aligned to n9-THC by superimposing common 
groups, while for indole derivatives different alignments were considered. For anandamide 
and its analogues, the alignment was operated as proposed by Thomas et al.4 

The program GRID' was used to describe the previously superposed molecular 
structures. GRID is a computational procedure for detecting energetically favorable binding 
sites by calculating the interaction energy between small chemical groups (probes) and the 
target molecule as the sum of Lennard-Jones, electrostatic and hydrogen bond interactions. 

A CBI pseudoreceptor modelG proposes that aspartic acid and histidine are involved 
in the interactions with cannabinoids. Therefore the multi-atom carboxy anion (COO-) was 
chosen as aspartic acid probe and the sp3 amine NH cation (Nl+) as histidine probe. 

The GRID matrix for the COO- probe was correlated with the CBI dissociation 
constants by a PLS model. Removal of the noisy variables from the data set is needed in 
order to obtain a more stable model and better predictions. From the original 16147 grid 
variables, a set of 3903 was selected according to the advanced pretreatment in the GOLPE 
procedure and reduced to 1590 by a firther selection based on the recently reported smart 
region definition (SRD/GOLPE)7. The results of the PLS model are reported below. 

. 2  1 ~ ~ ~ c o m p .  I SDEC I r2 I SDEP I I 
1 
2 
3 

0.2895 0.9340 0.5558 0.7567 
0.1604 0.9797 0.4586 0.8343 
0.1009 0.9920 0.4603 0.833 1 

PLS models with different probes exhibit similar results, showing the validity of the 
alignment and the stability of the model. The first PCA score parallels the compound activity 
pointing out the relevance of the selected GRID variables. Accordingly, the first PLS 
component provides an excellent correlation with the Y values and satisfactory PLS 
predictions. 

The GRID plot of the partial weights (not reported here for the lack of space) allows 
to identify the regions in the space that contribute most to explain the CBI binding constants 
highlighting areas where a hydrophilic group can increase the dissociation constant and those 
where hydrophilic interactions decrease it. The above results indicate the pharmacophore 
structural requirements for binding to cannabinoid receptors for the considered different 
series of compounds and envisage the design of molecules with higher predicted activities. 
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INTRODUCTION 

The Selectin family of proteins comprises three carbohydrate binding proteins (E, 
P and L) involved in cell adhesion events'. In response to inflammatory stimuli, these 
proteins play a crucial role in the recognition of sialyl Lewis X (sLeX) and related 
carbohydrates present on the surface of neutrophils. Following recognition and binding 
the white blood cells are free to migrate to the sites of injury and infection2. In 
pathogenic states this sequence of events can lead to pain and inflammation. Blocking the 
binding of sLeX could potentially be of benefit in the treatment of inflammatory and 
autoimmune disorders such as, rheumatoid arthritis, asthma, psoriasis, IBD etc. 

A number of SAR studies have demonstrated that the key functional groups for the 
binding of sLex to E-selectin are the hydroxyl groups of the fucose unit and the 
carboxylic acid3 of the sialic acid unit. Clinical trials have been undertaken using some of 
these sLex analogues, however, the potency of these compounds is poor and they are 
largely carbohydrate in nature. There is a need, therefore, to develop compounds which 
are more potent and less susceptible to carbohydrate metabolism. 

PROCEDURE AND RESUET 

The focus of this study was to design and synthesise small molecule mimics of 
sLex which were reduced in carbohydrate character, to act as 

To assist the design process, the crystal structure of E-selectin was used (pdbcode 
IESL) along with rat mannose-binding protein (pdbcode 2MSB) which has a carbohydrate 
molecule bound to a key calcium ion. The s ~ ~ ~ ~ ~ t y  of the calcium sites of both proteins 
enabled a model of fucose bound to E-selectin to be constructed. Information regarding 
the NMR conformation of s h x  bound to E-selectin4 and suggestions from molecular 

itors of cell adhesion. 
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biology and molecular modelling studies that the carboxylic acid group on sLex binds to 
Arg 975 were combined to create a model of sLex bound to E-selectin. The model was 
subsequently minimised using QUANTA (MSI Inc.) (c.f. model of Kogan et a ~ ~ )  and was 
used to design sLex mimics incorporating a semi-rigid tetralin scaffold (Table 1) to hold 
the fucose and acid groups in the correct spatial orientations to bind to E-selectin. 

Synthetic feasibility was an essential design criteria and the compounds listed in 
Table 1 were made using palladium catalysed coupling reactions for key synthetic steps6. 

Table 1. Effect of compounds 1 to 6 on the adhesion of resting HL-60 cells to 
recombinant soluble E-selectin. 

No. R IC50 mM 
1.7 
> 5  

5 C=CC(CH,) ,COOH 1.7 
' 3 ' F 0 O H  OH 6 COOH 4.0 

1 CH2CH2CH2COOH 
2 CONHCH(CH3)COOH (R) 
3 CONHCH(CH,)COOH ( S )  > 5  
4 CH,CH,C(CH,) 2COOH 3.7 

OH 

Molecular modellin$ showed that the fucose and acid groups of compound 1 
overlapped well with sLe and this compound demonstrated good activity in the cell 
adhesion assay (Table 1). Indeed, the activity was comparable to sLeX (IC,o 2.6 mM). 
Compound 5 also showed the same level of potency, however, compounds 2 and 3 were 
inactive (Table 1). Follow up modelling studies will be required to explain the S A R  
observed. Interestingly, compound 6 showed moderate activity despite the shorter length 
between fucose and acid groups. Molecular modelling suggested that this molecule may 
also bind to Arg 97 by approaching the guanidine group from an alternative perspective. 

CONCLUSIONS 

This study has demonstrated the successful application of molecular modelling to 
the rational design of sLex mimics as inhibitors of E-selectin. The biological activity of a 
number of these compounds was comparable to the natural ligand, sLex. In addition, this 
study has also demonstrated a harmonious association between medicinal chemists and 
molecular modellers as well as providing a platform for future drug development. 
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Lack of stimulation of the estrogen receptors in the bones is the primary reason for 
postmenopausal osteoporosis. Replacement therapy has been used for years but, unfortunately, 
it has adverse effects in breast and uterus due to agonistic estrogen receptor effects in these 
tissues. 
NSERT's (Nonsteroid Selective Estrogen Receptor Therapeutics) or SERM's (Selective 
Estrogen Receptor Modulators) are compounds showing agonistic effect on estrogen receptors 
in the bones, more or less lacking the adverse effects in breast and uterus [ 11. 

io 
I xo 

/ 

o@o 

HO ' 

0 I JD 

ldoxifene Raloxifene Levorrneloxifene 

NSERT's are potentiel drugs against osteoporosis [ I  1 

Conformational analysis 
Molecular dynamics simulations on the three NSERT's were performed using the Tripos force 
field in Sybyl and the MM3* force field in Macromodel. In Macromodel both the water- 
solvation option and the no-solvation option were used. Sybyl has no water-solvation option, 
but a dielectric constant of 4 was chosen to implicitly take solvation into account [ 2 ] .  The 
molecular dynamics simulations covered the conformational space for all three NSERT's 
efficiently, making the conformational analyses reliable. 
All Conformations generated in the molecular dynamics simulations were energy minimized 
and compared. When the low-energy conformations were superimposed, the conformations 
were very similar for the three NSERT's, apart from the aliphatic sidechain containing the 
tertiary amine. Raloxifene and idoxifene each had two dominating enantiomeric conformations, 
while levormeloxifene was limited to just a single conformation apart from at the aliphatic 
sidechain. 
The conformational analysis revealed that all the low-energy conformations are very similar, 
hence only a negligible fraction adopts other conformations. Due to the high affinities of the 
three compounds, the receptor binding conformation must be one of the dominating 
conformations. 
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Superimposition 
Based on the crystal structure of the ligand binding 
domain [3], reviews on the subject [4] and on the 
similarities in chemical structure, the following 
pharmacophore elements were selected. 

Ring A is probably locked tightly in the receptor. 
By using two dummy atoms placed on the normal 
of the ring plane, it was possible to superimpose 
the ring planes. 
The substituent on ring A, which is a possible 
hydrogen bond donor, was also used. 
The relative positions of the aromatic rings are 
important and the ring centers of ring B and C 
were used for fit. 
The nitrogen atom is supposed to make a 
hydrogen bond to the receptor. Therefore, the 
ether oxygen was used in order to control the 
direction of the aliphatic sidechain. 

Conclusively, only one of the two enantiomeric 
conformations of raloxifene and idoxifene, 
respectively, fits well with the single dominating 
conformation of levormeloxifene. superimposition 

* 

4 

Atoms included in the 

Pharmacophore model 
Ring B is located 4.5-6.5 A from ring A and very 
close to the plane of ring A. Ring C is 6.2-6.4 A from 
ring Aand 3.6-4.4 A from ring B. The anchor points 
of the aliphatic sidechains are located very close in 
space. The maximum distance between two of the 
ether oxygens in the fit is 2.2 A allowing the nitrogen 
atom to occupy the same position for all the 
NSERT's. 
The pharmacophore model for the NSERT's may be 
used for studying SAR and for the design of potential 
drugs against osteoporosis. 

Superimposition of low-energy 
confornations of NSERT's 
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INTRODUCTION 

BBR3444 is a novel Phase I clinical agent based on a triplatinurn structure (Figure I), trans- 
p i s  (trans-diaminechloroplatinum(p-1,6-hexanediamine)}]diamineplatinum tetranitrate salt. Its DNA 
binding is characterized by a high percentage of interstrand cross-links and the ability to induce the B 
-- 2 conformation in poly(dG.dC).poly(dG.dC). To help characterize these novel DNA adducts 
hrther, we have begun a program to model the types of interactions and the ensuing conformational 
changes induced by covalent binding of BBR3464 to DNA. 

Figure 1 - BBR3444: a novel Phase I clinical agent based on a triplatinum structure 

In this preliminary study we present results of molecular mechanics and molecular dynamics 
calculations of different models of DNA in the 2 form'. Such form exists in the alternating sequence 
poly(dC-dG).poly(dC-dG) and is presumed to be the structure formed in solution in high salt (> 2.5 
M NaCl) conditions. 

Energy minimizations and molecular dynamics simulations are employed to investigate the 
conformational properties of 2-DNA and, in particular, to compare computer-generated and 
minimized models with x-ray experimentally-determined structures. 
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METHODS 

AU modeling studies employ the AMBER' force field implemented in Batchmin 6.0, part of 
MacroModels 6.0. Since the calculations are performed for the vacuum state, the following 
procedures are adopted to simulate the effect of counterions and shielding, as well as solvent effects: 

1. charges on phosphate groups are reduced so as to give a slightly negative charge on each 
nucleotide" 

2. a distance-dependent &electric of the form E = CRG is chosen so as to mimic the effects of 
solvent and shielding". 

Energy Minimizations. All 3D models are first minimized for 500 cycles with Steepest 
Descent and then refined with a Polak Ribiere Conjugate Gradient algorithm with the rms derivative 
convergence criterion set to 0.01 kcall&mol. 

Molecular Dynamics. Molecular dynamics simulations are started from energy-minimized 
structures. The Verlet algorithm is used with a time interval of 1 fs per step. Hydrogen atom bond 
lengths are constrained with the SHAKE algorithm and temperature is maintained by a thermal bath 
at a value of 300 K. The structures are equilibrated for 50 ps and then the constant temperature 
dynamics simulation is continued for 500 ps. This portion of the trajectory is then used for 
subsequent analysis by sampling a structure each 2 ps. 

RESULTS AND DISCUSSION 

Energy minimizations were first performed on the crystal structure of the self-complementary 
5'-purine start decamer d(GpCpGpCpGpCpGpCpGpC) in the Z-DNA conformation"' to establish 
how well the optimized structure thus obtained compares to the experimentally-determined one. A 
theoretical model, generated by MacroModel, of the same decamer was then energy minimized to 
check the consistency of calculated vs. experimental geometries. The minimization procedure led to 
two different minima, corresponding to Zn and Zr type of backbone conformation. The rms of the 
minimized model relative to the original x-ray structure is 1.13 b;. Though the two minimized 
geometries are very similar, their corresponding energy values are quite different, about 20 kcalimol. 

Molecular dynamics simulations starting from the x-ray and, respectively, the theoretical 
structures show a higher similarity between these two models, as opposed to the results obtained by 
energy minimization. The two molecules explore similar conformational space, so that the time- 
averaged geometries are close to the experimental structure (rms of about 0.8 A) and very similar to 
one another. The backbone canformation of both time-averaged structures is Zn. 

It is also worth noticing that the initial energy difference of 20 kcaVmol for the two minimized 
structures is now reduced to an average potential energy difference of 3.4 kcaVmol scaled to 300 deg 
K. Such an agreement is due to the transition - occurred during the equilibration period - of the 
theoretical structure from the Zr to Zn conformation. The good overlap of both structures, as 
observed via dynamics simulations, confirms the validity of 3D molecular models for subsequent 
platination studies. 
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INTRODUCTION 

The development of potent antiviral drugs against infection by human 
immunodeficiency virus (HIV), a causative agent of acquired immunodeficiency 
syndrome (AIDS), still remains an urgent need. An ideal specific target for the 
chemotherapeutic treatment of HIV is the virus encoded enzyme integrase. Integrase has a 
key role at the early stage of WIV infection, which is responsible for converting the 
integrase of the double-strained DNA transcriptase into the host genomene. Integrase acts 
in two steps, i.e. cleavage and integration steps. In in vitro assays a method for estimating 
the inhibition of HIV-1 integrase for both steps has been developed and used to identify 
classes of compounds with a potent inhibitory activity against HIV-1 integrase.' 
Flavonoids, like quercetin, were found to be one set of these compounds. 

Two QSAR studies have been published for a set of 15 active flavonoids against HIV- 
1 integrase. In a partial least squares (PLS) method with comparative molecular field 
analysis (CoMFA) parameters, a strong correlation was found between inhibitory activity 
of these flavonoids, and the steric and electrostatic fields around them.' Recently, Kier and 
Hall3 introduced electrotopological state (E-state) indices for molecular structure 
description in which both electronic and topological characteristics are combined together. 
Bualamwini et al.4 used 17 skeletal E-state indices common for all flavonoids as strktural 
parameters in a principle component regression (PCR) analysis. 

In our previous study E-state indices were found practical in the prediction of water 
solubility of structurally related drug compounds based on neural network m~del ing.~ The 
present study shows that the same indices can be successfully used to predict the activity 
for a set of 15 flavonoids. 
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METHODS 

Activities of the 15 flavonoids against HN-1 integrase were modified from Fesen et 
al.' and were expressed as negative logarithm values of IC,,, -logIC,,. Structural parameters 
were calculated by Molconn-Z software (Hall Associated Consulting, Quincy, MA). 17 E- 
state indices calculated for each analyzed compound were analyzed using multilinear 
regression (MLR) analysis and artificial neural networks (ANNs). The SPSS package was 
used to run the MLR analysis. The ANNs were conducted by NeuDesk program, and were 
fully connected, feed-forward back-propagation networks with one hidden layer and bias 
neurons. The Early Stopping over Ensemble method was used to accomplish the 
overfitting/overtraining problem and to improve generalization ability of neural networks.' 

RESULTS AND DISCUSSION 

Stepwise and backward methods were employed in the regression analysis. 
Satisfactory MLR models were detected for the 15 flavonoids containing 3 parameters (R 
= 0.88, q' = 0.73, s,,, = 0.35 for the step 1, and R = 0.89, q' = 0.52, s,,, = 0.5 1 for the step 
2), where cross-validated q2 and the standard deviation s,,, were calculated by leave-one- 
out method. The E-state indices for atoms 0 4 ,  C'4 and C'5 in cleavage step (step l), and 
for the atoms C5, C6 and C'5 in integration step (step 2)  were found the most significant 
in MLR analysis. 

Neural networks applied to analyze the same sets of 3 E-state indices calculated 
higher prediction ability for the 15 flavonoids (q' = 0.81, sLoo = 0.30 for step 1 and q2 = 
0.78, s,,,= 0.34 for step 2, ) .  No outliers were found in both MLR and ANN models. Their 
prediction ability for the set of 15 compounds was comparable with those found using 
other known methods, such as, PLS with CoMFA parameters (q  '= 0.81 for the step 1 and 
q '= 0.78 for the step 2) ,  and PCR with E-state indices (q2 = 0.51 for the step 1 and 4" = 
0.73 for the step 2) .  However, in both of these analyses one compound, 6-methoxyluteolin, 
was omitted as an outlier and the models were constructed for the remaining 14 
flavonoids. 

The structure-based design of the new integrase inhibitors relies often on QSAR 
analysis. The estimation of activity for a set of 15 flavonoids using MLR analysis and E- 
state indices is accurate and provides reliable -logIC,, predictions comparable with those 
obtained by other methods. The use of neural networks provides better predictive ability 
than the present MLR analysis, and the previous PLS and PCR methods. An advantage of 
the proposed approach is that the E-state indices can be quickly and easily estimated 
directly from the chemical structure of the analyzed compounds. Thus, the present 
approach introduces a fast and accurate method for the estimation of activity of chemical 
compounds to guide drug design. 
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INTRODUCTION 

Most protozoan parasites, such as Leishmania, Plasmodium, Toxoplasma and 
Trypanosoma, rely on a salvage pathway for their supply of purine ribonucleotides (Wang, 
1984). Inhibition of this pathway therefore presents an interesting approach in the fight 
against microbial infections. To explore the feasibility of this approach we have attempted 
to identify inhibitors of the essential purine salvage enzyme hypoxanthine-guanine-xanthine 
phosphoribosyl transferase (HGXPRTase) of the protozoan parasite Tritrichomonas foetus. 
This sexually transmitted parasite causes causes bovine trichomoniasis, which can lead to 
embryonic death and infertility in cows. T. foetus relies primarily on a single enzyme, 
HGXPRTase, to transfer ribose 5-phosphate from a-D-5-phosphoribosyl-1-pyrophosphate 
to the N9 nitrogen atom of hypoxanthine, guanine or xanthine (Wang et al., 1983). 
Selectivity with respect to the mammalian enzyme hypoxanthine-guanine-phosphoribosyl 
transferase (HGPRTase), that has 27 % sequence identity with the parasite enzyme, is 
important to avoid serious side effects. Currently available inhibitors are purine analogues 
with affinities in the millimolar range (Jadhav et al., 1979). Here we report the use of the 
molecular docking program DOCK 3.5 (Kuntz et al., 1982; Meng et al., 1993) for the 
discovery of more potent, novel inhibitors of HGXPRTase that are selective with respect to 
the human enzyme (Somoza et al., 1998). 
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METHODOLOGY 

Commercially available small molecules listed in the Available Chemicals 
Directory (MDL, San Leandro USA) were docked with DOCK 3.5 into the enzyme’s active 
site as observed in the 1.9 A crystal structure of T. foetus HGXPRTase (Somoza et al., 
1996). Since the active site is large and shallow (10 x 10 x 5 A), the DOCK 3.5 bump 
checking routines were modified such that ligand atoms protruding from the box used for 
grid-based scoring were counted as bumps. This modification forced ligands to fill the 
binding site region where GMP was observed to bind. Docked inhibitors were observed to 
be positioned in the guanine binding pocket, suggesting that these inhibitors should be 
competitive with GMP and guanine. On the basis of the hits found among compounds 
selected from the initial docking calculations, additional compounds were selected from the 
ACD by using substructure and similarity searches with Daylight v4.42 (Daylight Chemical 
Information Systems hc . ,  Santa Fe, NM) and minimization of docked inhibitors with Sybyl 
6.2 (Tripos Associates, St. Louis, MO) in the active site. 

RESULTS AND DISCUSSION 

Molecular docking of commercially available compounds yielded two active indol- 
2-one (isatin) (ICs0=240pM) and phtalic anhydride (ICso=300pM) deratives from 18 
compounds tested. Further improvement of the affinity was achieved by selecting 22 similar 
compounds of which 18 (82%) were active and 10 (45%) inhibited the enzyme with 
potencies equal to or higher than the original lead compounds (up to 22-50 pM). All 
compounds, except the original isatin derived lead, had ICsO’s for the human enzyme of 
over 1 mM. One of these compounds (4-[N-(3,4-Dichlorophenyl)carbamoyl]phthalic 
anhydride; IC50=50 pM) is a competitive inhibitor of HGXPRTase with respect to guanine 
(Ki=l3pM) and GMP (Ki=lOpM). The same compound inhibits in vitro growth of T. foetus 
with an ICsO of -40 pM. This inhibition could be reversed by adding hypoxanthine to the 
growth medium. Our results demonstrate that targeting the HGXPRTase enzyme of 
protozoan parasites presents a promising approach against microbial infection. Furthermore, 
it is shown that databases of commercially available compounds can be used to identify and 
perform a first optimization of selective enzyme inhibitors. 
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A 3D-PHARMACOPHORE MODEL FOR DOPAMINE D, RECEPTOR 
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INTRODUCTION 

Selective dopamine (DA) D4 receptor antagonists may be effective antipsychotics, without the 
extrapyramidal side effects which are well established for DA Dz antagonists. In order to 
facilitate the design of new selective DA D, receptor antagonists we are currently developing a 
DA D, 3D-phamacophore model. Previously, a 3D-pharmacophore model for DA D, 
antagonists has been developed'. This model rationalizes the high aff~ty of both 

2 enantiomers of octoclothepin (1) . 

RESULTS 

Both enantiomers of 1 are also high affiiity D, antagonists. An analysis of the calculated 
potential energy curves for superimposed (R)-1 and (S)-I2 indicates that the bioactive Dz 
conformation of (S)-1 may also be used as a template for D4 receptor antagonists, with 
respect to the pharmacophore elements A-D defined in Figure 1. 

A large number of structurally diverse DA D4 selective antagonists have been 
superimposed on the template molecule (S)-1 in low-energy conformations with low rms 
deviations. The average rms deviation is 0.27 A and the average conformational energy is 1 .O 
kcal/mol. All calculations were camed out with the MacroModel program3 using the MM3* 
force field and the GB/SA continuum model. 
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Substitutions at various positions in l-piperazino-3-phenylindans an - 1H-indoles give 
very similar effects on D, and D, affinities. In these systems, Dfl, selectivity can not be 
achieved by substitution in the indan or indole rings or the piperazino ring (excluding N- 
substituents). Our analysis indicates that the major contribution to D2/D, selectivity is to be 
found in the effects on the affinities of N-alkyl substituents. 

Figure 1. The suggested DA D4 bioactive conformation of (S)-1. Four pharmacophore 
elements are identified, the centre of the two aromatic moieties (A and B), a nitrogen (C) and 
a site point located 2.8 A from the nitrogen in the N lone-pair direction (D). 

CONCLUSIONS 

(S)-1 in its DA D, bioactive conformation may be used as a template for DA D, receptor 
antagonists. A broad selection of structurally diverse DA D, antagonists may be 
superimposed, in a low-energy Conformation and with low rms deviation, on the suggested 
bioactive conformation of (S)-1. The principal difference, and thus the main reason for 
selectivity between the DA D, and D2 antagonists, is most probably due to the different 
effects of the N-alkyl substituents. The development of an extended model incorporating the 
properties of the N-alkyl substituents is in progress. 
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INTRODUCTION 

Calcineurin (Protein Phosphatase 2B, or PP2B) is a Ca’+/calmodulin dependent protein 
phosphatase which plays critical rules in intracellular signaling processesl-3. An important 
role of calcineurin is its dephospholation function of NFAT(nuc1ear factor-activated T-cells), 
allowing NFAT to enter the nucleus and activate the transcription of T-cell specific genes. 
The inhibition of calcineurin by immunosuppressant drug (FK506 or cyclosporin A) disrupts 
the T-cell activation and leads to immunosuppressant effects. 

Calcineurin(CN) is a heterodimer composed of an A subunit (CNA) and a B subunit 
(CNB)4. CNA has four distinct functional domains: a catalytic domain, a CNB binding 
domain, a calmodulin(CAM) binding domain and an auto-inhibitory(AI) domain. The protein 
phosphatase activity of calcineurin is stimulated by Ca2+ binding to CNB and Ca2+-induced 
binding of CAM to CNA. The function of CAM is presumably to remove the AI and CNA 
interaction, enabling the access to the catalytic active site. The catalytic active site of CNA 
contains two metal ions (Fe and Zn) and is locally homologous to protein phosphatases PP 1 
and PP2A, yet calcineurin does not share substrate specificity with them, indicating 
importance of secondary structure recognition. 

Immunophilin and immunosuppressant drug complexes do not bind to the catalytic active but 
a region of CNA-CNB interface435, indirectly blocking access to the active site by 
physicological substrates(NFAT, etc.). Most immunosuppressant drug research efforts were 
toward the analogs of immunosuppressant FK506 or cyclosporin A where the mechanism of 
inhibition is mediated or coordinated by immunophilins FKBP or cyclophilin. The 
determinations of two X-ray crystal structures: a) calcineurin with a portion of the AI peptide 
and b) its complex with immunosuppressant drug FK506 provided an insight of calcineurin’s 
regulatory mechanism and offered a new opportunity in the design of potential immuno- 
suppressant drugs415. We summarize here the structure-based design and synthesis of 
calcineurin specific inhibitors targeted directly toward the catalytic active site, using molecular 
modeling techniques of binding mode predictions by ligand docking simulation6, X-ray 
crystallography, and binding energetics evaluations7. 
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INHIBITOR DESIGN AND MODELING STRATEGIES 

1. Build binding models of initial lead(1) by multiple docking simulation 
2. Validate and improve binding prediction method via S A R  and X-ray crystallography 
3 , Enhance binding affinity via ligand-protein hydrophobic interactions 
4. Address specificity to calcineurin through AI peptide recognition pocket 
5 .  Analyze and rank designed ligandsa priori using binding mode prediction and force field 

energy minimization(MacroModel/Batchmin) 

SUMMARY 

1. Novel calcineurin specific inhibitors were design and synthesized with application of 

2. Binding affinity was increased via hydrophobic interaction and conformational rigidity 
3. Specificity was improved by targeting to A1 recognition pockets 
4.  Binding mode prediction method was sensitive to a key protein sidechain conformation, 

but it could be improved with additional information (SAR and X-ray crystallography) 

molecular model techniques. 

Table 1. Improvement of inhibition and specificity to calcinuerin(PP28) 

Y a p p  (PM) Ki,app(PM) 

Compound Calcinuerin (PP2B) PP 1 

1 11.5 4.0 

0 

4.0 
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CONFORMATION AND RECEPTOR BINDING 

Protein-ligand interactions are essential for many biological processes. The ligands are 
flexible and may assume several conformations in solution. Once bound to the receptor, the 
ligand is assumed to occur in a so-called receptor bound or bio-active conformation. Some- 
times the solution conformation corresponding with this conformation is also given the name 
of bio-active conformation. The question is: how is the experimentally measured binding 
constant related to the diversity in (solution) conformations and to the bio-active conforma- 
tion? 

We are going to discuss a number of reactions and equations. These are summarised in 
Table 1. The notation Eq. 1 and Re. 1 refers to Equation 1 and Reaction 1 in this table and so 
on. 

The reaction which can be measured in solution is given by Re.1. L represents the li- 
gand in solution (in fact a whole collection of conformations), R the receptor (for simplicity 
we assume one solution conformation for the receptor), L*R denotes the drug-receptor 
complex in which the ligand is bound in a unique conformation. The AGoob of this reaction 
can be calculated from AGO& = - RTlnK (K is the measured association constant), see Eq.1. 

The ligand may assume several conformations in solution, each having its own energy 
level i, so Li denotes the ligand having a conformational energy E(Li). These energies have 
increasing values, E(L) indicating the lowest energy of the (lowest energy) conformation 
Lo. The reaction between 1 mol of Lo and the receptor, and the corresponding standard 
Gibbs free energy AGOo are given by Re.2 and Eq.2. This AGO0 includes enthalpy and entropy 
terms leading to the L*R complex, but these aspects are not discussed here. 

Let us next consider the binding of a higher energy conformation Li to R leading to the 
formation of the L*R complex (Re.3). The energy involved in this binding process can be 
calculated by first converting 1 mol of L, to the ground state. In this step an amount of en- 
ergy (or as frequently assumed: enthalpy) is released equal to E(L0) - E(Li). In the next step 
the binding of 1 mol of ligand now in the state Lo takes place. This results in an overall stan- 
dard free energy change given by Eq.3. Because AGoi is more negative than AGO0 , high en- 
ergy conformations bind more strongly than low energy conformations. It would be advan- 
tageous if only high energy conformation became bound to the receptor. However ligands 

386 



are distributed over the several energy levels according to the laws of statistical thermody- 
namics. The Boltzmann distribution law makes it possible to calculate the fraction fi of the 
free ligand molecules which have a conformational energy equal to Ei. This distribution is 
not influenced by the presence of receptors. This means that in the experimental process of 
binding of L to R, fi remains constant. If molecules should be selected by the receptor from 
one single energy level, a redistribution must occur in order to obey the Boltzmann distribu- 
tion law. Therefore the binding of 1 mol of L as given in Re. 1 means that fo mol of LO, fi mol 
of L1, etc. are bound. The amount of energy involved in the binding of fi mol of Li to R is 
given by fi AGoi (with AGO, defined in Eq.3). The experimental binding of 1 mol of L is there- 

Table 1. Survey of reactions and equations used in this abstract 

Reaction Reaction no. AGO of reaction Equation no. 
L t R o L * R  1 AGOob, = - RTlnK 1 
Lo + R w L*R 2 AGO, 2 
Li + R @ L*R 3 AGO, = AGO0 + EGO) - E(LJ 3 
L + R w L*R 1 AGoobs = AGO0 + E(L0) - E(L)," 4 
L* +R w L*R 4 AGO* = AGO0 + E(L0) - E(L=) 5 

L + R o L*R 1 AGoabs = AGO, + E(L*)- E(L)." 7 
L + R o L * R  1 AGoObs = AG'i + E(LJ - E(L)." 6 

fore given by AGo,b = ZifiAGOi. Realising that Zifi = 1 and that ZifiE(Li) is equal to the aver- 
age energy of the free ligand molecules, Eq.4 is easily obtained. We note that the observed 
(standard Gibbs) free energy of binding is more negative (the binding is stronger) than the 
free energy of binding of the lowest energy conformation. 

Eq.5,6 and 7 can be derived from the Eq.2,3 and 4. 

DISCUSSION 

The conclusion that higher energy conformations have a higher affinity than lower en- 
ergy conformations is independent of the conformation in which the ligand is bound to the 
receptor. This is because the term E(Lo) - E(Li) is independent of the energy of the receptor 
bound conformation. This conclusion has no further practical implication because this proc- 
ess can not be realised experimentally. On the other hand it is necessary to state this with 
some emphasis because remarks can be found in literature which suggest the opposite. 

Re.4 is a special case of Re.3. L* indicates the solution equivalent of the receptor bound 
conformation. Note also Eq.7. This kind of relations should be used when calculated inter- 
action energies are to be related with experimentally observed ligand binding constants. 

The view developed here is also relevant in considering the activity of a series of related 
compounds, where it may be assumed that differences in activity are more likely to be 
caused by differences in AGO0 than by differences in E(Lo) - E(L)av. 

A more detailed account of the views presented here has been published recently'. 
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INTRODUCTION 

The 0-turn is a common structural feature in peptides and proteins, consisting of 
four consecutive amino acids with a distance of less than 7a between the Gu atoms of the 
first and fourth amino acid (dU):' Since p-turns are often considered to be important for 
molecular recognition, they are interesting templates to use in the design and synthesis of 
peptidomimetics. It is important to know precisely which p-turn conformation(s) the 
peptidomimetic corresponds to. A classification scheme that is not dependent on the 
peptide backbone is necessary to classify both peptides and peptidomimetics. We analysed 
p-turn conformations geometrically and classified them according to the relationships 
between the directions of the characteristic bonds 1,2, 3 and 4 (see Figure la). 

a) 

I 

RI/~~'NH, COOH /Cu4-R4 

Figure 1. a) @-turn defmition. 
b) @-turn mimetic structure (X = CH2, CONH or CONHC(CH3)2CH2; Rz = H). 
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CONFORMATIONAL CALCULATIONS 

The tetrapeptide (Ac-Ala-Ala-Ala-Ala-NHMe) and the investigated P-turn- 
mimetics were built within MacroModeP and minimised with the Amber* force field using 
the GBiSA solvation model for water. To study the conformational preferences a 
systematic Monte Carlo search (SPMC) was performed. Only conformations with a da of 
less than 7A were kept for the tetrapeptide. All conventional fi-turn typesiJ.4 were 
identified in the resulting conformations, except turn type VI (since cis-prolin was not 
included in the tetrapeptide). The low energy conformations of the fi-tum mimetics were 
investigated by cluster analysis' in order to identify conformational families. 

GEOMETRICAL, ANALYSIS 

The following pseudo torsion angles were found to be interesting to characterise a p- 
turn (see Figure 1): x2 ( C ~ - C U ~ - C U ~ - C P ~ ) ,  x3 ( C U ~ - C U ~ - N ~ - C ~ ~ ) ,  B (Cl-Ca2-Ca3-N4)6 
and E (Cal-Cl-N4-Ca4). Based on x2, x3 and 0 24 different classes were defined. E was 
considered less important because of its correlation to B (B - 60" < E < B + 40"). Most 
conformations corresponding to one -tam type according to the conventional classification 
scheme were found in only one ofthe newly defined classes. En addition to "2, "3 and B also 
the distances dl (C1 - Ca2), d2 (Cu2 - Ca3), d3 (0x3 ~ N4), d4 (N4 - C1>, d, and the 
torsion angle E were considered to estimate the mimetic potential of p-tum mimetics. 

RESULTS AND DISCUSSION 

Based on the proposed classification scheme and the measurement of key atomic 
distances it is possible to estimate which p-turn a certain molecule might mimic. We have 
studied three different p-turn mimetics7 (see Figure 1b) which have the possibility to 
include different sidechains for residues 2 and 3, respectively. The distances were 
approximately in the range found for the peptide, but for some conformations a non- 
peptide like angle combination was discerned. Nevertheless, conformations, that could 
mimic a p-turn, were found for all three compounds. The distances and torsion angles may 
also be used for a data base search in order to find new B-turn mimetics. 
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Research Institute for Pharmacy and Biochemistry, Koufimska 17, 130 60 Praha 3, Czech 
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INTRODUCTION 

The compounds inhibiting the leukotrienes (LTs) biosynthesis and I or antagonizing 
their biological functions can be utilized in the antiastmatic therapy’22. We synthesized3 the 
series of 2,4-dihydroxyacetophenone derivatives 1 and 2 bearing carboxyl and their antileu- 
kotrienic activities have been determined. The distances D between carboxyl and lipophilic 
part of molecule were calculated for energetically optimized conformations using CHEM-X, 
Windows 95 programme. The initial geometry with all trans torsions in connecting chain 
between aromatic nuclei was confirmed in a solid state by the X-ray analysis of two selected 
derivatives 1. Lipophilicity of compounds was measured by the use of partitioning tlc and 
log P were calculated from log P - RM relationships. The analysis of quantitative relationships 
was performed using Statgraphic Programme vers. 4.2. 

rJ 

1 Y: (CHZ),,, CHZCH=CHCHz 
z:o, s 
R1: COOH, CHzCOOH 
Rz: H, C1 

RESULTS AND DISCUSSION 

2 Y: (CHz),, 

The following regression equations were calculated for compounds 1: 
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LTD4 receptor binding: 
Log (1/ICso) = 3.733D - 0.155 D' - 16.790 
n =  13, r = 0.804, s = 0.370, Fooos = 0.173 

Log(l/IC50) = 4.540 D - 0.193 D2 + 3.717 logP - 0.382 (logP)2 - 29.93 
n =  13,r=0.880,~=0.330,Foo~ =6.880,10gPop,=4.87.D,pt= 11.76 

Log (l/ICjo) = 3.155 D - 0.128 D'- 14.398 
n = 11, r = 0.766, s= 0.497, Fo 0; = 5.623 

n = 11. r = 0.930, s = 0.329, Fo 09 = 9.533, logPOpt = 5.26. Dopt = 11.94 

Log (l/ICjo) = 2.557D - 0.110 D' - 8.313 
n =  l l , r=0 .849 ,  s=0.188,Fo006=10.340 

Log (1/IC50) = 3.249 D - 0.141 D2 + 3.714 10gP - 0.344 (10gP)2 - 22.07 
n = 11, r = 0.926, s = 0.155, Fool = 9.020, logPopt = 5.40, Dopt = 11.52 

LTB4 receptor binding: 

Log (1ACjO) = 5.709 D 0.239 D2 + 13.39 10gP 1.272 (lo@)* 63.50 

Inhibition of LTB4 biosynthesis: 

For compounds 2 the following equations were derived: 
LTD4 receptor binding: 

Log (l/IC50) = 6.124 D - 0.214 D' - 38.449 
n = 8, r = 0.974, s = 0.134, Foooo6 = 46.50, Dopt = 14.31 

LTB4 receptor binding: 
Log (1/Icjo) = 5.991 D - 0.214 D' - 36.655 

n=8,r=0.897,s=0.228,Fo017=10.30,Do,t=14.00 

Log (lAC50) = 2.077 D - 0.062 D' - 11.132 
n =  8, r = 0.994, s = 0.070, F<OOOO~ - 226.2, Dopt = 16.75 

Inhibition of LTB4 biosynthesis: 

It can be stated from the QSAR analysis that antileukotrienic activities of compounds 1 and 2 
depend approximately parabolically on distances D between structural elements assumed4 for 
their interactions with LT receptors. The nonlinear relationships of antileukotrienic activities 
to lipophilicity in the series of compounds 1 also occur. In a mentioned series of compounds, 
the similar optimal values of D and log P respectively, were found for all antileukotrienic 
activities under study. The presence of double bond in flexible spacer infuences the affinity to 
LTB4 receptors and the inhibition of LTB4 biosynthesis by unexpected manner. The additional 
aromatic nucleus in compound 2 led to the elevation of optimal values Dopt accompanied with 
the decrease of corresponding antileukotrienic activities. 

CONCLUSIONS 

In the series of compounds 1, the derivative l e  (Y=(CH2);, Z=S, R'=H, R2=3-COOH) 
could be considered as a compound with the integrated antileukotrienic activities. In contrary, 
the series 2 does not offer such a compound, in accord with the differences among the 
regression relationships. The influence of distance D on antileukotrienic activities is more 
complex and the constrained and unconstrained energies of compound overlapping over 
leukotriene must be taken into account. 
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Introduction 
Therapeutic andor prophylactic efficiency of biologically active molecules depends of 

the control of drug delivery and targeting. Drug targeting may be performed using 
biodegradable nanoparticles for delivering therapeutic agents like liposomes or soluble 
macromolecular carriers. Methylidene malonate 2.1.2, i.e. ethyl-2- 
ethoxycarbonylmethylenoxycarbonyl acrylate (MM 2.1.2) have recently been studied in order 
to improve their ability to polymerize and to allow nanoparticles formation in an aqueous 
media'. Erosion and enzymatic bioerosion were suggested to occur at the nanoparticle surface, 
mainly because of the ester hydrolysis which generates free carboxyl groups and leads to 
soluble polymers. However this erosion process and its influence on nanoparticle are not well 
defined. In order to understand, at the molecular level, the influence of various parameters on 
their conformations, a molecular modeling study was started on Poly(methy1idene malonate 
2.1.2) (PMM 2.1.2) and derivatives. 

Method 
A considerable effort has been made in the past years to devise methods to simulate the 

behavior of polymer chains in solution'. Among various computational methods, molecular 
dynamics has proven to be a valuable tool for understanding the mechanism and for the 
evaluation of several time-dependent processes in polymeric systems. Following a preliminary 
work using an implicit solvation model (GB/SA method), we used here an explicit approach 
(periodic boundary conditions, NTV ensemble) in order to highlight the influence of the solvent 
polarity which can simulate polar (aqueous), or non-polar mediums (membranes). All the 
structures are studied in the molecular form. 

Protocol 
Oligomers with 5, 10 and 20 units were studied (n 

= 5 ,  10 or-20). For each one of them, we carried out the 
study of the native form and the completely eroded form. 
The eroded forms are obtained by hydrolysis of the 

eroded forms representing the first stage of the 0 

degradation of these compounds'. We also studied the 
influence of the tacticity with the isotactic (all the side 
chains with the same orientation) and the syndiotactic 
(regularly alternating) forms. 

longest side chain of the monomer (R1 to R l ) ,  these HO{C.$; OH 
R', E 4 

CH, 

All the calculations of molecular dynamics were carried out with the following protocol : 3,l ps 
heating and 100 ps equilibration-production at 310°K with a 1 fs timestep. During the 
equilibration-production step, we sampled conformations every picoseconds (ps). Using the 
integrated programming language SPL of Sybyl, we carried out calculations for various 
descriptors on all these conformations. 
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Results 
To define the behavior of these molecules, we have calculated several descriptors. Some 

Rg polymer chain 
Water 

Chloroform 

of these descriptors allow comparing polymers having same degrees of polymerization but 
having different degrees of erosion (radius of gyration of the chain, end-to-end distance). 
Others are specific to a given polymer (radius of gyration of the heavy atoms, surfaces, and 
volume). 

N-isotactic E-isotactic N-syndiotactic E-syndiotactic 
6,s 6 3  6 6  72 
6,s 6 2  6,s 72 

For the 5 units polymers, there are no notable differences between the isotactic and 
syndiotactic forms. Furthermore, the polarity of solvent does not have a great influence on 
molecular conformations. That means that these conformations are induced mainly by 
intramolecular interactions and not by the interactions with the solvent. The limited length of 
the polymer chain can explain this phenomena. 

End to end distance 
Water 

Chloroform 

For the 10 units polymers, it appears an obvious difference between the isotactic and the 
syndiotactic forms. The averaged values for the radius of gyration of the main chain and the end 

N-isotactic E-isotactic N-syndiotactic E-syndiotactic 
20,o 18,9 19,5 22,l 
20,8 17,9 20,7 22,9 

to end distance during the last 50 ps of the simulation are given in the table. For the native 
polymer, either isotactic or syndiotactic, the values are similar. They are slightly more 
important in chloroform than in water, the proof of a conformation slightly lengthen in an 
apolar solvent. For the eroded polymer the situation is more complex. The isotactic form is 
compacted, in comparison with the native form, and the value is bigger in water than in 
chloroform. But, for the syndiotactic form, these values are much more important and they are 
the proof of an important lengthening of the structure. Furthermore the difference for the two 
solvents is very small. All these results are good indices of a very important role of the tacticity 
for the eroded polymers. The absolute configuration of the carbon atoms of the chain has a 
great influence on the overall conformation. 

Conclusion 
Conformational study by molecular dynamics of the PMM 2.1.2. with explicit solvation 

permits to highlight some characteristics of these compounds. We showed the conformational 
insensitivity of the native PMM 2.1.2. forms compared to the solvent polarity. On the other 
hand, we highlighted the importance of the configuration for the completely eroded forms. 
Complementary studies are currently running for better defining these phenomena. 

1-  Lescure, F., Seguin, C., Breton, P., Bourrinet, P., Roy, D., Couvreur, P., Preparation and characterization 
of novel poly(methy1idene malonate 2.1.2.)-made nanoparticles. Pharm. Res! 11 (1994) 1270-1277. 
2- Lee, S. J., Park, K., Polymer-solvent interactions studied with computational chemistry ACS Symp. Ser., 
545(Polymeric Drugs and Drug Administration), (1994) 221-33. 
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A PEPTIDIC BINDING SITE MODEL FOR PDE 4 INHIBITORS 
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45, D-60314 Frankfurt, Germany 

INTRODUCTION 

Selective inhibitors of the isoenzyme phosphodiesterase 4 (PDE 4) have attracted 
increased interest in the last few years as potential drugs for the treatment of allergic 
diseases such as asthma"'. 

The pharmacophore requierements for inhibiting catalytic activity have been recently 
analyzed3. To further refine this pharmacophore model and define a peptidic model for 
PDE 4 inhibitors that has the ability to semi-qualitatively predict inhibitory activity we have 
used the programme PrGen4. The structures included in the training set were LAS-31025 
(LAS, IC50=5800 nM8), PDA-641 (PDA, IC50=50 nM9), RP-73,401 (RPR, IC50=0.27 
nM"), CDP-840 (CDP, IC50=49 nM"), GW3600 (GW3, Ic50=1 nM"), Ro 20-1724 (R01, 
IC50=1590 nM"), Napp (NAP, IC50=160 nM''), SB 207499 (SBA, IC50=92 nM'), Pfizer 
(PFA, ICsO=8l nMI3) as well as the structures shown in Tables 1, 2 (white part). The test 
set was composed of the structures in Tables 1, 2 (grey part) as well as rolipram (ROL, 
IC50=175 f i " ) .  

Table 1. Structures and in vivo activity of pyrido pyrazinones 
used in the training set (white) and in the test set (grey). 

R2.0a:q 
Code name R1 R2 ICSO (W 

A65 2-F-benzyl methyl 915 
A69 ProPYl cyclopentyl 1568 
A18 cvclobutvl methvl methvl 110 

t=" 

D37 - i l -  methyl 1745 

A85 isobutyl H 820 
W 8  ethyl methyl 414 
D70 methyl methyl 2480 
D88 prop\ 1 methyl 232 

A80 isobutyl methyl 90.5 

Table 2. Structures and in vitro activity of 5-oxyindoles used in 
the training set(white) and in the test set (grey) 

Codename R1 R3 Icso (a) 
A7 1 H 4-pyridyl 5060 
A8A methyl 3,5-di-C1-4-pyridyl 1170 
A98 H 3,5-di-C1-4-pyridyl 17.9 
A04 H 2,6-di-CI-phenyl 92.7 
A05 methyl 3,5-di-CI-4-pyridyl 921 
A1 1 methyl 3,5-di-C1-4-pyridyl 466 
A13 H 3,5-di-C1-4-pyridyl 6.38 
D52 H &pyridl/l . 364 
A8 1 H 3S-dX1-4-pyridyl 6.9 
A97 methyl 3S5-di-U4pyridy1 1010 
A07 H 3,5-&-CI4pylidyl 105 
A09 methyl 3,5-di-C14pyridyl 1266 
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RESULTS AND DISCUSSION 

All structures were fully optimized in their minimum conformation’ and were aligned to 
a first approximation by superimposing GRID-contours3. The PrGen method was employed 
as described by Zbinden et a14, with the exception of using ICSO values instead of KD’s. 

The equilibrated receptor model (r,,,=0.994) reveals three hydrogen bond donor binding 
sites represented by Trp, interacting with alkoxy oxygen (rolipram analogues, pyrido 
pyrazinones) or nitrogen (LAS) atoms, Tyr, interacting with imidazo nitrogen (pyrido 
pyrazinones) atoms, and His, interacting with carbonyl oxygen &AS, RPR, GW3, pyrido 
pyrazinones, oxyindoles) atoms. PDE 4 requires a divalent zinc ion for catalysis14. We have 
used a histidine coordinated Znf2 cation which interacts with carboxy groups (SBA, PFA), 
hydroxy ( N A P )  or carbonyl (PDA, R01) oxygen or pyridyl nitrogen (RPR, CDP, 
oxyindoles) atoms. The second Trp residue has been added to accomodate lipophilic 
interactions. The “shape” and “boundaries” of the receptor pocket has been modelled by 
means of a Van der Waals envelope of charged vitual particles as described in ref. 4. 

The resulting pharmacophore hypothesis includes the three potential receptor hydrogen 
bond donor sites and the lipophilic center described before3. In addition, there exists a 
specific interaction with the Zn” cofactor which appears to enhance the inhibitory activity 
of ligands. This is exemplified in paricular by compounds RPR, CDP, SBA, PFA and the 
oxyindoles, and to a lesser extent by NAP, PDA and R01. Furthermore, the hydrogen bond 
donor binding site represented by Tyr is probably specific to pyrido pyrazinones, and may 
not in general be necessary for PDE 4 inhibition. The correlation between experimental and 
calculated free energies of binding for the test set shows that with the exception of A09, 
A97 and D98 the model is capable of predicting these values to within 0.8 kacl/mol. 
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INTRODUCTION 

Gonadotropin-releasing hormone (GnRHJ is the naturally occuring agonist for the G- 
protein-coupled GnRH-receptor. GnRH stimulates the pituitary gland to produce lutei- 
nizing hormone (LH) and follicle stimulating hormone (FSH). Both GnRH agonists and 
antagonists are potentially useful in the treatment of hormone dependent ailments. 

The aim of the present modeling study is the generation of a 3D-model for the binding 
of GnRH agonists to the GnRH receptor in accordance with the available mutation data on 
the GnRH receptor and on other homologous receptors. For this purpose, the agonist trip- 
torelin is docked into a GnRH receptor model using a molecular dynamics protocol with 
carefully designed range distance restraint functions. At a second stage in the same mole- 
cular dynamics run, the possible conformational changes within the receptor after agonist 
binding are investigated by simulating hypothetical conformational changes of selected 
conserved amino acid side chains within the GnRH receptor. 

METHODS 

We used an alpha-carbon template for the transmembrane helices in the family A of 
GPCRs (Baldwin, 1997) as a basis for a model of the GnRH receptor. Starting structures 
for the intra- and extracellular loops were obtained with the loop search method in 
SYBL6.4 taking into account the two extracellular &sulfide bridges (C14-C200 and C114- 
G196, Davidson, 1997). To obtain more reliable low energy structures for the intra- and 
extracellular loop regions of the GnRH receptor we performed a simulated annealing (SA) 
method using the AMBER 4.1 FF in which the TM domains are restrained and the whole 
protein is solvated with explicit water molecules. 
The MD run presented here consists of two phases: in the first phase (0-80 ps) the GnRH 
analogue triptorelin is docked into the agonist binding site and in the second phase (80-200 
ps) the GnRH receptor rearranges to a hypothetical active conformation. During the whole 
MD, helical hydrogen bonds were restrained and the center of masses of proline residues 
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within the transmembrane domains were given postion restraints to keep the seven helix 
bundle intact. The MD simulation is performed in vucuo using the AMBER 4.1 FF. 

Triptorelin is biased to orient itself in the GnRH receptor pocket by applying carefully 
desig-ned restraint functions based on experimental information (Flanagan, 1994 , 
Davidson, 1996, Zhou, 1995). Like GnRH, the peptide hormones bombesin and endothelin 
also begin with pyroGlul, and, remarkably their receptors also contain an R or K in TM III 
at the same or nearly the same position as K121 in the GnRH receptor. We therefore 
assume in our simulation that pyroGlul interacts with K121. 

In the same molecular dynamics run, we simulated a hypothetical rearrangement of the 
GnRH receptor interior going from an inactive state to an active receptor state during 
ligand binding. For this purpose, the following residues were restraint at a close distance: 
Y323 to R139 and D319 to W280 in the inactive state, and Y323 to D319 and D319 to 
C279 in the active state. N53 and N87 were kept together in both receptor states. 

RESULTS 

From the simulations of triptorelin binding and subsequent GnRH receptor activation it 
can be concluded that the proposed interactions pyroGlul""K121, Arg8""D302 and 
(GlylO-NH2)""N102 are supported by our GnRH receptor model. The model supports the 
assumption that residue K121, observed in the GnRH receptor, is analogous to R in the 
bombesin and K (at position i+l) in the endothelin receptor, and that these strong H-donor 
residues interact with pyroGlu1 which is a common residue in the ligands for these 
receptors. 

A new interaction between T215 in the GnRH receptor and His2 of triptorelin was 
observed in our binding model. This residue may also play a role in GnRH receptor 
activation since the T215 position agrees with important residues for receptor activation in 
aminergic receptors (Wang, 1991, Gantz, 1992). 

It is possible to simulate the conformational change of a receptor going from an hypo- 
thetical inactive to an active state without losing essential structural properties of the 
receptor template. The main effects observed in the current activation model are small 
rotations of TM domains VI and VII and proline kinking in TM domains V and W. The 
orientation of TM Ill in the middle of the seven helix bundle remains largely unaffected 
upon receptor activation. 
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INTRODUCTION 

P-Lactamases are widespread bacterial enzymes that effectively cleave and inactivate the 
P-lactam families of antibiotics by catalyzing the hydrolysis of the amide group of the p- 
lactam ring via a serine-bound acyl intermediate. Therefore, it is important to elucidate the 
catalytic mechanism of the P-lactamases in order to design antibiotics with improved activity 
against p -1actamase-producing bacteria. 

Although the structure of the class C P-lactamase has been established by X-ray 
crystallography, the crystal structure of the complex of the P-lactamase with penicillin has 
still not been carried out. It is therefore important that the complex structure be built by 
molecular modeling and studied in detail for the purpose of the design of novel antibiotics 
and P-lactamase inhibitors. 

The inhibition constants (Ki) of foramidocillin (FOPC) and piperacillin (PIPC) with the 
class C p-lactamase from Enterobacter cloacue have been measured to be 10.8 pM and 1.0 
pM, respectively. We have built structures of the p-lactamase-FOPC (FOPC complex) and 
P-lactamase-PIPC complexes (PIPC complex) based on molecular modeling developed from 
the molecular dynamics (MD) simulation. 

We have analyzed the binding affinities of the two ligands, FOPC and PIPC, for the p- 
lactamase on the structure of the FOPC complex obtained from molecular modeling.' To 
calculate the relative binding affinity, we made use of the thermodynamic integration (TI) 
method, which involves changing the molecular mechanical parameters during the MD 
simulation and determining the free energy change for the process. The difference in the 
binding free energy for two ligands to the enzyme is MGbind = AG, - AG,. AG, (FOPC) and 
AG2 (PIPC) were determined from the Ki values and are - 7.04 kcal/mol and - 8.51 kcal/mol, 
respectively. As the free energy is a state function, the results of the computer simulations 
can be related to MG,,,, = AGint - AGSo1,. AGsolv is the change in free energy upon mutating 
FOPC to PIPC in water. AGint is the change in free energy for the same mutation with the 
ligand bound to the enzyme. AGso,v and AGint were calculated by the TI method and the 
difference, MGbind, was compared with the experimental value of AG, - AG,. 
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METHODS 

The starting structures for the simulations involving the enzyme were built using 
SYBYL v6.1. FOPC was docked into the binding site of the P-lactamase from Enterobacter 
cloacae strain P99 (the Brookhaven Protein Data Bank ref. 2BLT2) by reference to the 
hydrogen-bond information for P-lactam binding sites.’ The complex obtained by docking 
was optimized.The PIPC complex was generated substituting the 6a-NHCHO group and the 
two OH groups on the phenyl ring with hydrogens, followed by minimization. 

The MDRI calculations were performed with AMBER v4.1. To the starting structures 
was added a spherical cap of water molecules with a radius of 35 A at the center of binding 
site. The systems were equilibrated for 160 ps. In the solution simulations, FOPC was 
solvated by water molecules in a box, and was equilibrated for 60 ps. 

The TI calculations were performed using the window-growth procedure, and the free 
energies were averaged from the forward (h = 1 -> 0) and backward (h = 0 -> 1) directions. 
For both the solution and enzyme simulations, the total perturbation time was 202 ps. 

RESULTS AND DISCUSSION 

We obtained the model structures for the FOPC and PIPC complexes as averaged 
structures calculated from the trajectory during the last 30 ps. The binding mode of both of 
the penicillins seemed to be similar to that of the cephalosporin used as a reference.* 

We calculated the interaction energies of FOPC and PIPC with their surroundings in the 
0-lactamase. Since the total interaction energy of FOPC with the enzyme is - 262 kcdmol, 
whereas that of PIPC with the enzyme is - 258 kcdmol, we can conclude that FOPC 
interacts more favorably with the enzyme. Therefore, the binding free energies of FOPC and 
PIPC can’t be explained by the interaction energies of FOPC and PIPC with the P-lactamase. 

The average of the free energy changes (FOPC -> PIPC) in solution was 15.7 kcdmol. 
It is therefore clear that the desolvation of FOPC is much more difficult than that of PIPC. 
The average of the free energy changes in the enzyme system was 13.5 kcdmol. This result 
shows that FOPC interacts more strongly with the enzyme than PIPC, which agrees with the 
analysis of the interaction energy. 

The binding free energy change between the FOPC complex and the PIPC complex was 
- 2.2 kcdmol. The calculated value of the binding free energy change shows that the binding 
affinity of PIPC is greater than that of FOPC, and is in good agreement with the 
experimental value of - 1.5 kcdmol. 

The results indicate that the binding affinity of FOPC is lower than that of PIPC 
because of the greater difficulty of desolvation of FOPC upon binding to the enzyme. An 
understanding of both interaction energies and the solvation and desolvation of ligands is 
critical if the relative binding affinities of ligands and proteins are to be described. 

Our simulations by molecular modeling and MDRI methods predicted the structures of 
the Michaelis complexes of the P-lactamase with both FOPC and PIPC. Using the structures 
of the complexes built by molecular modeling without the X-ray crystal structures of the 
complexes, we were able to reproduce the experimental difference in the free energy of 
binding. 
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INTRODUCTION 

Protein engineering is the field of study involving the creation and modification of 
proteins (Cleland and Craik, 1996). It has great potential to provide significant advances in 
science, medicine, and industry. The successful engineering of a protein of interest requires 
design of protein mutants, their production and evaluation. Rational design of the protein 
mutants is preferably based on an available 3D structure. However, even with the 
knowledge of the tertiary structure it can still be very difficult to propose which structural 
modification of the protein will lead to the desired change in its properties (Atkins and 
Sligar, 1991). Theoretical approaches can be used in the systematic analysis of structure- 
function relationships and can assist in the design process. 

Two novel theoretical approaches applicable for the rational design of protein variants 
are discussed in this contribution. Quantitative Structure-Function Relationships 
(Damborslj, 1997) is the statistical approach for systematic analysis of the data from site- 
directed mutagenesis experiments and prediction of properties of the protein mutants. This 
analysis can be used in cases where the 3D structure of the protein under investigation is 
not known. The second approach, called 'computational site-directed mutagenesis' 
(Damborsky et al., 1998) is the molecular modelling procedure suitable for investigation 
of the catalytic properties of the protein mutants. These mutants are 'constructed' and 
evaluated using computational chemistry tools. A 3D structure of the protein under study 
has to be available. 

QUANTITATIVE STRUCTURE-FUNCTION RELATIONSHIPS 

Quantitative Structure-Function Relationships (QSFR) investigate and mathematically 
describes the effect of changes in structure of the protein on its catalytic activity. Trends in 
molecular properties of the amino acids which are varied, are related to protein activities by 
means of statistical analysis. Systematic changes in the protein structure, i.e. a number of 
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point substitutions at a certain position, are required for the statistical analysis. QSFR 
closely resembles the well known QSAR (Quantitative Structure-Activity Relationships). 
Figure 1 schematically shows the basic principles of both analyses. Changes in molecular 
structure are quantitatively expressed using physico-chemical or other molecular 
properties. Developed QSFR models can be used for the interpretation of data from site- 
directed mutagenesis experiments and for design of mutants with required properties. 

Q S A R  , Q S F R  

i l g a n d  ( s m a l l  o r g a n i c  m o l e c u l e )  c) m a c r o m o i e c u i e  ( r e c e p t o r ,  p r o t e i n )  

3 
st ructura i ly  v a r i e d  p a r t  ( s u b s t i l u e n t )  

s t ruc tura i ly  v a r i e d  p a r t  ( a m i n o  a c i d )  

Figure 1. Schematic representation of QSAR and QSFR analyses. QSAR is mainly concerned about the 
activities of small organic molecules (ligands), while QSFR explores the function of macromolecules 
(enzymes, receptors). Reproduced with permission from DamborsQ J, Protein Engineering 11: 21-30, 1998. 

QSFR analysis was applied to a set of 16 mutants in position 172 of haloalkane 
dehalogenase and a set of 19 mutants in position 222 of subtilisin (Damborsky, 1998). The 
activity data measured for the protein mutants were derived from the literature (Schanstra 
et al., 1996; Estell et al., 1985). A total of 402 molecular descriptors obtained from 
AAindex database (Nakai et al., 1988) were used to code the amino acid properties. The 
multivariate statistical method - partial least squares projection to latent structures, PLS 
(Hoskuldsson, 1988) was used to correlate descriptors with protein activities. Developed 
PLS models explained 82% of data variance (77% cross-validated) for haloalkane 
dehalogenase mutants and 86% of the data variance (81% cross-validated) for subtilisin 
mutants. Hydrophobic, steric as well as electronic properties of the substituted amino acid 
were important for the description of mutant activity. Current analysis of the single-point 
mutants can be extended to analysis of multiple mutants. 

COMPUTATIONAL SITE-DIRECTED MUTAGENESIS 

Computational site-directed mutagenesis is a theoretical technique in which a large 
number of protein variants are constructed and their properties evaluated using computer 
modelling. Initially an exhaustive set of substitutions is created using the 3D structure of 
the wild type protein. Calculation of binding energies andor mapping of reaction 
coordinates is used for estimation of protein properties - the binding affinities and kinetic 
properties, respectively. These calculations needs to be both reasonably accurate and 
considerably fast which means that a careful selection of the size of the system (only 
reacting residues, the active site, or the complete protein) and the computational technique 
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to be applied (molecular mechanics, semi-empirical quantum-chemical, or ab-initio 
quantum-chemical) has to be made. Only the protein mutants which show the desired 
properties in the calculation are subsequently experimentally prepared and tested. 

Computational site-directed mutagenesis was employed to mutate residue 172 in the 
haloalkane dehalogenase (Damborskf et al., 1998). An exhaustive set of single-point 
mutants in this position was constructed by homology modelling. The X-ray structure of 
Verschueren and co-workers (Verschueren et al., 1993) was used as the input structure. 
Reaction-pathways were mapped with microscopic models of the active sites for each of 
the mutant. A semi-empirical quantum chemical method was employed in this study 
(Damborslj et al., 1997) and several theoretical parameters (energies, point charges) were 
extracted for calculation of and comparison with the experimental activities reported by 
Schanstra and co-workers (Schanstra et al., 1996). Some of these parameters were 
significantly correlated with the experimental data making it possible to distinguish active 
mutants from inactives based on these calculations. The whole modelling procedure, 
including systematic construction of the protein mutants, preparation of the input files for 
quantum-chemical calculation, mapping of the reaction pathway and data extraction is 
currently being automated in the program Triton (www.chemi.muni.cz/lbsd/triton.html). 
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INTRODUCTION 

Amisulpride, sultopride and sulpiride (Figure 1) are antagonists of the D2-like 
dopamine receptors, which are members of a large family of receptors that interact with 
specific intracellular signalling pathways through coupling with G proteins. These 
compounds are substituted benzamides and present a high degree of selectivity for D2 and 
D3 versus D1 and D4 dopaminergic receptor subtypes. Amisulpride, sultopride and sulpiride 
respectively present decreasing in vitro affinities for the D2 receptor (IC50 = 27, 120 and 
18 1 nM) and the D3 receptor (IC50 = 3.6,4.8 and 17.5 nM). 

Compounds R1 R2 
amisulpride S02C2H5 NH2 
sultopride SOzC2H5 H 

R2 sulpiride S02NH2 H 

Figure 1. Molecular structures of amisulpride, sultopride and sulpiride. 
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RESULTS 

In the present study, we have compared the conformational and physico-chemical 
properties of amisulpride, sultopride and sulpiride in order to identify the molecular 
properties that could explain their in v i m  binding profile. 

Firstly, the conformational space of the S-enantiomers of amisulpride, sultopride and 
sulpiride was explored by 2D NOESY NMR spectroscopy and molecular mechanics. The 
resulting conformational families were compared to X-ray structures (Cambridge Structural 
Database). It was found that the conformational space of the three compounds is quite 
similar. Therefore it cannot be considered as a relevant property to account for the specific 
pharmacological profile of amisulpride. 

Secondly, we investigated the physico-chemical properties of an optimized common 
conformation of the drugs. Topology and energy of frontier orbitals (HOMO and LUMO) 
and molecular electrostatic potential (MEP), were calculated and compared. The topology 
of the Lowest Unoccupied Molecular Orbital (LUMO) is similar for the three compounds. 
The Highest Occupied Molecular Orbital (HOMO) of amisulpride is mainly localized on 
the nitrogen atom of the 4-amino group and on the C, carbon atom of the phenyl moeity 
whilst the HOMO of sultopride and sulpiride is principally localized on the oxygen atom of 
the 6-methoxy group and on the C, carbon atom of the phenyl moeity. The major difference 
observed between the three compounds is provided by the value of the minimium potential 
energy, localized on the oxygen atom of the amide function : -67.8, -63.7 and -61.3 
kcal/mole for amisulpride, sultopride and sulpiride respectively. The more potent attractive 
effect of the carbonyl group of amisulpride can be related to the topology of its HOMO and 
the presence of the 4-amino group on the benzamide moeity, which is conjugated with the 
amide function. 

Moreover, complementary properties, such as pKa and logP were measured. The 
basicity of the nitrogen of the pyrrolidine moeity is characterized by a pKa value of around 
9 for the three compounds. Amisulpride, sultopride and sulpiride present decreasing 
experimental values of lipophilicity (logP,crano,.watei = 1.6, 1.2 and 0.6 respectively). 
Switching from a sulfonamide function in sulpiride to an ethylsulfone group in sultopride 
may be responsible for the greater partition of sultopride in the lipophilic compartment. On 
the other hand, the total volume of amisulpride is expanded by the presence of the 4-amino 
group on the benzamide moeity and thus reinforces its hydrophobic character. 

CONCLUSIONS 

In the present study, we have shown that the conformational and physico-chemical 
properties of S-enantiomers of amisulpride, sultopride and sulpiride present some 
comparable features but that they are not identical. We have identified two factors which 
could be responsible for the specific pharmacological profile of amisulpride. 

The presence of the 4-amino group on the phenyl moeity of amisulpride could 
induce a stronger interaction between the oxygen of the carbonyl function and the 
receptor via hydrogen bonding. 

- The pharmacological specificity of amisulpride could be reinforced by the 
presence of an ethylsulfone group which allows additional interactions with an 
hydrophobic pocket of the receptor. 

As observed for all physico-chemical properties, sultopride behaves like an intermediate 
compound between amisulpride and sulpiride : this could explain the relative affinity level 
of each molecule. 

- 
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INTRODUCTION 

Entropy-driven binding which is characterized by I AH"I- 0 and AS"> 0 has so far been 
found in a number of important biochemical systems but explaining the mechanism of it has 
remained a challenge. An analysis of the experimental results on binding of p-AR 
antagonists', and on binding in several other systems2 led to the conclusion that a 
mechanism must exist, besides, e.g., large scale conformational changes or hydrophobic 
interactions. More recent experimental work3 strengthened the above conclusion, by 
revealing that entropy-driven binding can occur also when hydrophobic interactions are 
absent. A novel mechanism, entropic trapping, was therefore proposed', consistent with the 
experimental findings. In computer simulations the existence of the entropic trapping 
binding mechanism was established4. The difference in the entropy increase in binding of 
simple anethetics to membrane proteins3 is interpreted as an example. 

BINDING BY ENTROPIC TRAPPING 

Entropy-driven binding characteristically takes place in a hydrophobic, sterically constrained 
environment, e.g., in a hydrophobic channel or cleft. It can be assumed therefore that the 
thermodynamic binding constant kD then reflects the local equilibrium between the ligand in 
the binding pocket and in the sterically constrained neighbourhood of it. The assumption of 
internal nature of the binding constant is consistent with the fact that the temperature effects 
due to desolvation processes have not been observed'7235. The binding data of ,say, p-AR 
ligands may be rationalized by assuming that upon reaching the binding pocket deep in the 
transmembrane channel by a diffusion process, a 0-agonist forms a tight 'normal' bond (AH" 
< 0, AS" < 0), but a P-antagonist cannot form a tight bond (I AH"] -0) because of the 
structural properties. Due to the looseness of its bond in the binding pocket the phase space 
of rotations/internal rotations 'opens up', leading to AS," > 0. This entropy increase drives 
the binding in the systems in question. The changing of the AH" and AS' along the diffusion 
path reaching the binding pocket may be qualitatively presented as in Fig. 1 .The existence of 
the entropic trapping mechanism has been established in the computer experiments4 on the 
difision of polymers in random environments. 

406 



Figure 1. Shematic presentation of AH0 and ASo along a transmembrane channel in enthalpy-driven (2) and 
entropy-driven (3) complex formation. 

Preliminary qualitative studies show that the structural dependence of the observed ASo 
is consistent with the above mechanism. In the case of entropy-driven binding of the 
anesthetics halothane and propofol (Fig. 2) to two Ca2'-ATPases, integral membrane 

CH(CH3)z 

F-C-C-Br F H  I 1  q- 
CH(CHi)z 

i L I  

halothane propofol 

Figure 2. Aneshetics used in the studies of binding to Ca2+-ATPases3. 

proteins PMCA and SERCAl the present model reproduces quantitatively the differences in 
the binding entropies. Experimentally it was found4 for the two ligands dissolved in Me2S0 
at 25°C: A A G  E TAS"(propofo1) - TAS"(ha1thane) = -1.7 kcaVmol in PMCA, and -2.2 
kcaVmol in SERCAl. The entropic trapping model yields, assuming that AAS' arises 
primarily from the internal rotations of the two -CH(CH3)2 groups of propofol: AAG" E 
TAASP = 2.1 kcaVmol. A typical value of 3.5 e.u. was assumed here for one internal 
rotation. 
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INTRODUCTION 

Farnesyltransferase (FTase) farnesylates p21 ras on the Cys residue of the C-terminal 
consensus sequence referred to as a CAAX box (where C is cysteine, A is an aliphatic amino acid 
and X is any amino acid). This modification is required for membrane association and function of both 
normal and cell transforming ras activity. Transformed ras proteins are implicated in a number of 
human cancers including colon, pancreatic and lung carcinomas. Therefore selective inhibition of 
FTase could lead to a new class of potent and specific anticancer agents. 
This paper presents in the first section the computer modelling studies of corporate and competitor 
FTase inhibitors which led to the identification of the structural requirements necessary to obtain 
potent inhibitors. In the second section we report on the strategy adopted to replace the oxidisable 
thiol function of our in-house inhibitors with alternative Zinc chelating groups. This should hopefully 
lead to compounds with improved cellular activity. 
The peptidomimetic strategy has allowed the development of a series of inhibitors derived from a 
known peptidic inhibitor CVFM where the Valine and Phenylalanine were replaced by a naphthyl 
scaffold which forces an extended conformation (1). 

RESULTS AND DISCUSSION 

The FTase bound conformation of a competitive p21 pseudopeptide inhibitor (2), L739787 
(NH2-C-[VCH2NH]I[YCH2O]F-M-CH2OH) allowed us to better define the central portion of the FTase 
substrate binding pocket using the Naphthyl series. 

Hx (x=1-3) : Hydrophobic sites 
Table 1. SAR of Naphtyl series A 

,& M e l W H  

6 

I 
CysNH, 

CO,H Polar site h H 5  4 

Figure 1. L-739750 template FTase 
Bound Conformation 

Analysis of the Naphthyl series SAR (see table 1) revealed an excluded volume between H I  and H2. 
In all the active products the Naphthyl scaffold partially occupies the H2 pocket or fits to the peptidic 
main chain between H I  and H2. In the inactive products the Naphthyl scaffold occupies a position 
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between the H I  and H2 sites. This observation is important for determining the optimal position to add 
an extra hydrophobic group on the Naphthyl scaffold in order to better fill the H2 pocket. 
The template FTase bound conformation allows us to position the appropriate pharmacophores of 
RPR and competitor series in the correct spatial orientations. Earlier structural comparisons suggest 
that increased binding energy, specificity and hopefully bioavailability could be gained by increasing 
the size and hydrophobicity to fully occupy the central portion of the FTase substrate binding pocket. 
Several in-house and competitor compounds (3,4) have been used to generate a 5 point 
pharmacophore model with Catalyst. This model contains many of the features of Figure 1 and is 
shown below, Figure 2. These and similar models have been used to analyse a number of potential 
new series. 

Figure 2. superposition of Naphtyl 1,5 series and the Merck pseudo-peptide inhibitor. 
The different spheres represent polar and hydrophobic interaction sites. 

The bioavailability of the compounds may be improved by replacing the cysteine thiol group 
by other zinc chelating groups. To assist the chemists in the choice of reagents we have performed 
searches in several databases for potential complexing groups, taken from an analysis of the in- 
house Zn ligand database containing 919 Zinc binding groups extracted from the CSD and PDB. 
In the first step, ligands were sorted into monodentate, bidentate etc. and each list sorted by 
molecular weight. lSlS 2D searching was used to eliminate heavier groups containing the same core 
functionality interacting with the zinc. These unique cores were then used to search for acid, acid 
chloride and aldehyde precursors in commercial and corporate databases, with the results being 
loaded into a local lSlS database for visualisation by chemists. A number of these have been selected 
and synthesis and testing of these compounds is underway. Representative reagents selected from 
these lists are shown below. 

In house MFCD0000429.5 MFCD0000.5267 

CONCLUSION 

We have presented in this paper various strategies which have been or are currently being 
used in the design of p2lras CAAX mimics. The peptidomimetic approach led to initial lead series. 
These were optimised in chemistry and pharmacophore mapping strategies have enabled the 
generation of several models which help to understand the SAR in these series. Such models have 
also been used in the design of several potential new scaffolds. In-house derived databases of ligand- 
cation interactions have proved a valuable source of ideas for designing zinc chelating groups which 
mimic the cysteine residue. It is hoped that this approach will lead to compounds with a better 
bioavailability. 
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INTRODUCTION 

De novo drug design utilises site H-bonding atoms as anchor points to be spanned by a 
ligand. A problem frequently encountered is the need to select a subset of these points for use 
by the ligand. For example, there are 44 H-bonding regions in the HIV-protease binding cav- 
ity so if 5 points were required, there would be over lo6 possible selections. H-bonding 
hotspots are positions of ligand atoms that could simultaneously form H-bonds to more than 
one atom on the receptor. There are fewer hotspots than site atoms, so they could provide a 
solution to the combinatorial selection problem. A method for hotspot calculation (HOTSPOT) 
is presented and tested with HIV-protease and a wide variety of other PDB complexes. 

METHODS 

The binding cavity is calculated using an implementation of the SURFNET algorithm'. 
For each H-bonding group accessible from this cavity, CSD data2 are used to plot all possible 
complementary ligand-atom positions onto a 0.2 p\ grid. Gridpoints arising from more than 
one group are defined as hotspots, provided they satisfy angle criteria determined by a crystal 
survey of the CSD. These criteria determine whether an atom positioned there could orient 
its two H-bond valencies in the directions of the receptor atoms. Hotspots where a subset of 
regions from another hotspot overlap are removed. 

RESULTS 

HOTSPOT was run on the HIV-protease PDB3 complex 9hvp, generating 14 hotspots. The 
sites of 21 other HIV-protease complexes were superposed onto that of 9hvp, allowing the 
hotspots to be compared with the positions of heteroatoms of the 22 ligands (Figure 1). Of the 
14 hotspots, 4 are on the periphery of the cavity and can be discarded. The remaining hotspots 
are all occupied by either a ligand or water heteroatom in at least one of the 22 complexes. 
Interestingly, hotspot 8 is occupied by a methylene carbon atom in 19 complexes. 
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Figure 1. (a) Hotspots calculated for HIV protease complex 9hvp shown with inhibitor JG-365 (from 7hvp). (b) 
Close-up of hotspot 8, showing how methylene carbon atom could form H-bonds to Gly A 27 0 and Asp B 25 
OD2 of HIV-protease. Water atoms are shown as large crosses. 

HOTSPOT was run on a wide variety of PDB complexes and the hotspots compare very 
favourably with ligand and water heteroatom positions (Table 1). On average, the sites only 
make 33% of possible H-bonds but utilise 50% of possible hotspots. Furthermore, 50% of H- 
bonds made by ligands involve hotspots, showing their potential importance in drug design. 

Table 1. Number of ligand and water heteroatoms predicted to within 1 p\ by HOTSPOT for 
10 complexes. Close = number of hotspots close to either ligand or water atom 

PDB complex No. site H-bonds No. hotspots No. predicted 

ID Proteidigand Possible Made Total Close Ligand Water 

121p H-ras p21/5’-[P,y-Me] GTP 37 14 27 17 5 5 
labe L-arabinose-BP/L-arabinose 9 8 12 6 4 
lad1 Adipocyte lipid BP/Arachidonate 26 2 10 4 1 3 
lazm Carbonic anhydrase VATS 8 4 5 3 2 

1 bvc ApomyoglobinBiliverdin 20 4 6 5 3 2 

lfkb FK506 binding protein/Rapamycin 21 5 6 2 2 
ltpp p-trypsinPAPP 28 7 24 14 3 5 
3gst Glutathione S-transferase/GHD 33 10 15 6 4 1 

lbrn Barnasem-(CGAC) 50 15 33 18 9 6 

ldhi DHFRlMethotrexate 34 5 11 I 1 6 

In conclusion, H-bonding hotspots firstly reduce the number of sitepoints for selection, 
and secondly provide stronger anchor points for ligands than single hydrogen bonds. They 
therefore provide a means for reducing the complexity of site-directed drug design. 
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SUPERPOSITION OF FLEXIBLE LIGANDS TO PREDICT 
POSITIONS OF RECEPTOR HYDROGEN-BONDING ATOMS 

James E.J. Mills and Philip M. Dean 

Department of Pharmacology 
University of Cambridge 
Tennis Court Road 
Cambridge, UK, CB2 1QJ 

INTRODUCTION 

When the structure of a binding site is unknown, information is derived from the ligands 
known to bind there, which requires accurate ligand superposition, determined by the correct 
binding conformations. A novel program, SLATE, superposes ligands using a single point to 
represent each H-bonding group. The method is rapid enough to allow both of the ligands to 
flex during the superposition. SLATE is tested on thermolysin and o;-adrenoceptor ligands. 

METHODS 

H-bond-donor groups are represented by the optimum position for the complementary 
receptor atom, projecting the X-H bond to optimum H-bond distance (determined by crystal- 
survey data'). H-bond-acceptor groups are represented by the H-bond acceptor atom because 
the donor group on the receptor is assumed to be immobile, projecting to the same position 
for each ligand. Optionally, each aromatic ring is represented by a vector perpendicular to the 
ring and passing through its centroid. The points are superposed by minimising the sum of 
the elements of the difference distance matrix with simulated annealing,2 allowing changes 
in conformation of each ligand, selection of points for superposition and correspondence be- 
tween points. MATFIT3 is used to carry out the superposition. Multiple runs are ranked accord- 
ing to their H-bond (number of overlapping points and the rms between them) and steric 
(degree of overlap of surface volumes calculated by PLM4) properties, the best match having 
the lowest sum of the ranks. The overlapping H-bond regions5 of the superposed molecules 
represent the positions of receptor atoms to which more than one ligand could bind. 

RESULTS 

SLATE was used to flex 5 thermolysin ligands (PDB files ltmn, 2tmn, 3tmn, 5tln and 
6tmn) onto the crystal conformation of CCT (lthl), giving a more compact superposition than 
the crystal superposition. 5 receptor atoms were predicted to within 1 p\ by the overlapping 
H-bond regions (Figure 1). 
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Figure 1. (a) SLATE and (b) crystal superpositions obtained for 6 thermolysin ligands. (c) Overlapping H-bond 
regions compared with binding-site atoms of thermolysin (CCT is shown in black, making its H-bonds). 

SLATE was used to superpose the a,-agonists clonidine, guanfacine, guanabenz and a- 
methyl noradrenaline. The molecules were superposed pairwise, allowing each to flex freely 
during the superposition. Only one conformation of guanfacine was found to produce a good 
match with all the other ligands, so these results were used to generate the superposition 
shown in Figure 2. Clusters of overlapping H-bonding points defining the possible positions 
of 5 receptor atoms were generated. 

Figure 2. Centre shows SLATE superposition obtained for the q-adrenoceptor agonists (from top left, clock- 
wise) guanfacine, a-methyl noradrenaline, clonidine and guanabenz. 

In conclusion, SLATE has been validated as a means for superposing ligands that bind 
predominantly via H bonds and as such provides a new tool for ligand-based drug design. 
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COMPARATIVE MOLECULAR FIELD ANALYSIS OF 
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INTRODUCTION 
Pharmacological modulation of multidrug resistance, MDR, in tumor cells relates to the 

application of drugs able to block the function of the membrane-integrated P-glycoprotein, 
P-gp. P-gp is suggested to transport the antitumor agent out of the cells by an ATP- 
dependent efflux, decreasing in this way its intracellular concentration and the cytotoxic ef- 
fect. In general, the MDR modulators are considered to interact with the same binding sites 
as the antitumor agents. Different binding sites as well more than one interaction site are 
suggested in order to explain the extraordinarily structural variety of the P-gp substrates 
(antitumor agents) and inhibitors (MDR modulators) [ 1,2]. The absence of information 
about the binding site(s) requires identification of common space determinants of structurally 
different MDR reversing compounds and that is the purpose of the study. 

DATA AND METHODS 
The data used are: 21 phenothiazines, 16 thioxanthenes, 2 imipramines, 1 acridine, 22 

propafenones and 6 benzofurans. MDR reversal activity in doxorubicin resistant human car- 
cinoma cell line MCF-7DOX was used for phenothiazines and related drugs [3,4]. MTT 
assay of daunomycin cytotoxicity and inhibition of rhodamine-123 efflux in vincristine resis- 
tant T-lymphoblast cell line were used for the propafenone-type MDR modulators [5,6]. 
Different sets of compounds were extracted from the data for training and test purposes. 

Combined activity data of propafenone-type modulators were calculated by PCA. Mo- 
lecular modeling was done with SYBYL 6.3 using molecular mechanics (Tripos force field) 
and quantum chemistry (MOPAC AM1 and PM3). Hydrophobic fields used in CoMFA were 
calculated with HINT V.2.11. 

RESULTS AND DISCUSSION 
The starting conformations of the most active representatives in their classes were 

taken or built from x-ray structures available in the Cambridge crystallographic database. 
After the geometries were optimized and the charges calculated the molecules were aligned 
according to two main criteria: skeleton similarity and shape similarity. The skeleton similar- 
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The results outline the role of hydrophobicity as a structural characteristic of impor- 
tance for the activity studied. As no predictive correlations were obtained with the logP val- 
ues, they point to hydrophobicity as a space directed molecular property for explaining the 
differences in MDR modulating activity of the investigated compounds. 
Acknowledgment. The authors express their thanks to Deutsche Forschungsgemeinshaft 
and Bulgarian Science Fund for the financial support of the presented work. 
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PHARMACOPHORE MODEL OF ENDOTHELIN ANTAGONISTS 

Mitsuo Takahashi, Kuniya Sakurai, Seji Niwaand Seiji Oono 
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Ajinomoto Co., Inc. 
1-1 Suzuki, Kawasaki, Kawasaki, Kanagawa 210, Japan 

Introduction 

Endothelin (ET) is a 21-amino acid peptide, and its receptor belongs to a family of G- 
protein-coupled receptor. ET antagonist is expected to be a therapeutic agent for disease 
including myocardinal infarction, hypertension and restenosis. In an attempt to design new 
antagonists we have created a pharmacophore model using active antagonists with the 
consideration of conformational flexibility of molecules in which DISCO was applied. A 
new hydrogen bond donor site was identified in the model, and was utilized successfully in 
the design of highly active antagonists. 

Results and Discussion 

In modelling phannacophore the compounds used are selected carefully so that they can 
have some degree of structural similarity rather than a variety of structure and can be expected 
to bind to the ET receptor in a common binding mode. Selected a n t a g ~ n i s t s ~ ~ ~ ~ ~ ' ~  are shown in 
Fig. 1, and they have in common a carboxylic acid attached to a five membered ring in the 
middle, methoxy and methylenedioxy groups attached to the phenyl rings on both sides. 

H-bond 
5-104121 

Figure 1. Antagonists used in search of pharmacophore model (left and middle), and molecular alignment 
of SB-209670 (dark) and PD-159020 (gray) in the pharmacophore model (right). 
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It is rather trivial that these groups are expected to be pharmacophoric features in 
common. Our main focus is to find a new non-trivial pharmacophoric feature. We have 
assumed that a hydrogen bond donor site in the receptor side could make a hydrogen bond 
with an acceptor atom in the upper part of these antagonists. The important part in setup for 
pahrmacophore search is the selection of conformers and candidate features. The numbers of 
low energy conformers generated by sytematic search using Sybyl' are 50 for J-104121, 
SB-209670 and PD-159020, and 100 for A-127722 in which both of alternate sp3 
geometries of nitrogen in pyrrolidine ring are adopted. In the conformation search less 
important chemical groups were pruned for computational simplicity: for example butyl 
groups were changed to methyl groups in A-127722 and so on. 

In the default setup of features in DISCO there are a lot of candidate features in both 
ligands and receptor sides. However, we reduced features to focus on our assumption since 
the number of features is crucial for efficient pharmacophore search. The pharmacophore 
search using DISCO resulted with 65 candidate models, each of which has a different set of 
features and molecular alignment. With the inspection of molecular overlap in each model on 
graphic terminal a plausible model was finally selected, in which the distance tolerance was 
2.0 A and a new hydrogen bond donor site was detected. The molecular alignment of 
SB-209670 and PD-159020 in this model is shown in Fig. 1. 

The existence of this new feature could be verified also in the structure-activity 
relationship study, undertaken concurrently in the medicinal chemistry approach: the lead 
compound (1) shown in Fig.3 was modified to the compound (2) satisfying the 
pharmacophore requirement and having a higher activity. Based on this model further 
synthetic approach resulted with a highly active antagonist (3) which was synthesized through 
both the chemical optimization of linker, keeping the hydrogen bond acceptor property, and 
also the bioisosteric replacement for a carboxylic acid to a tetrazole. 

1 2 3 

Figure 2 .  Optimization &om the lead compound (1) to the compounds (2) and (3): PICSO'S for porcine 
heart ETA receptor are 5.9,7.3 and 8.6, respectively. 
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THE ELECTRON-TOPOLOGICAL METHOD (ETM): ITS FURTHER 
DEVELOPMENT AND USE IN THE PROBLEMS OF SAR STUDY 
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Among the distinguished features of the ETM there are the absence of the 
dependence on the compounds' structural skeletons, the most detailed (atomic) level of the 
compound description, mathematical backgrounds underlying the compound description 
language, high predictive ability, etc. The ETM-system uses as its input data a series to be 
investigated that includes both active and inactive molecules and is supplied with the 
corresponding activity values for every molecule. The core algorithm takes as its input the 
results of confonnational analysis and quantum-chemical computations applied to the series 
selected. 

It is well known that the choice of an appropriate CSDL is the primary source of 
success in any QSAR method. In contrast to other QSAR methods, the CSDL used in the 
ETM has the following useful properties. 
- The notion of molecular structure is given strict formal background. 
- The numerical values that are used as elements of the corresponding mathematical 
structures are exact and theoretically justified. 
- Well known mathematical techniques can be used for the CSDL processing, as the result 
of the said above. 

Every molecular structure has its mathematical counterpart, namely, three- 
dimensional matrix. Each layer of the matrix is an ordinary, n x n matrix called electron- 
topological matrix of contiguity (ETMC). Its triangular form is due to the symmetric nature 
of the chemical bonds and atomic distances. The values of its elements are defined by a 
definite atomic characteristic, if they are diagonal elements; for non-diagonal elements a 
property of chemical bonds (if the two atoms are chemically bonded), otherwise the 
distance are used. 

The ETM-system is a menu-based application with the ETM as an item of the main 
menu. To apply the method, two preliminary steps are to be done, namely, forming the 
ETMCs and setting parameters that control the active fragments selection. 
The core algorithm solves the same problem of the pattern recognition, as expert systems 
do. But it does not belong to the class of software; as soon as the objects of the investigation 
and their properties have been given a strict formal sense, the feature selection either gets a 
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mathematical (not logical) background. To select the molecular features causing the activity 
presence, we have to solve the task of searching the intersection of two complete graphs. 
When studying new compounds to predict their activity, we have to solve the task of their 
isomorphic inclusion. The most important is that one algorithm can manage both tasks plus 
to filter the matrix elements. 

The parameters setting pve-conditions for the activity features selection are the 
values of d l ,  d2 and d3 used for determining the relations of equivalence for atoms, bonds 
and distances, the threshold value of activity, Atrh, used to divide the compounds into two 
groups (activehactive or the most active and the rest) and a target compound. It is the most 
active one, when searching the features of activity, or inactive, when searching 'the breaks 
of activity'. The post-conditions that take decision on the procedure completion are minimal 
values of the probabilistic estimations P, and a, aiming in classifying the fragments 
obtained into 'good' and 'bad ones. The procedure can be repeated under different selections 
of the electronic characteristics, so as the pre- and post-conditions. 

Databases are important components of the software dealing with the QSAR 
problems. In contrast to the databases used normally in expert system, the local database 
(LDB) in the ETM is extendable and opened. Its tables possess different levels of the data 
access. To reduce the LDB size, the ETMCs for the series studied are not kept in memory. 
Instead, a special program manages the matrices formation. The services provided for the 
LDB management are to input, to extract and reformat the data that has arrived from 
different sources, to process users' queries and to communicate with remote databases. 

After processing ETMCs, we get the features of activity that belong to active 
compounds only. (Analogously, the features of inactivity, or "the breaks of activity", can be 
found"). The features of activities searched are submatrices of an ETMC of a compound 
taken as a target for comparison. 

As the example of a typical SAP, the task concerning the antitumor activity studied 
in the series of thiosemicarbazones can be demonstrated. The values of dl: dZ ~ d3 found are 
0.05, 0.10, 0.20, respectively. The level of prediction is 94% . 

- 0.21 + d ,  5.00 + d ,  

-0.15 +d ,  

5.10 + d ,  7.09 + d ,  

1.43 + d ,  2.90 + d ,  

0.11 +dl  2.34 + d 3  

XH, 

For the fragment shown at the picture the following rules are to be obeyed: 1) the fragment 
enters both the heteroaromatic ring and thiosemicarbazone being a part of the molecule. 2 )  
negatively charged atom X is bonded immediately with pyridine or isoquinoline. 3) 
chemically bonded N and C (0.05 A distanced), may belong to the heteroaromatic ring or 
thiosemicarbazone, to which belongs the 4th atom (N or S). 

To complete the SAP, some examples of the rules violation are given, causing the 
activity loss. If needed, the quantitative SAR model can be added, giving more exact 
activity estimations. 
Acknowledgments. This study was partially supported by INTAS-Ukraine grant 95-0060. 
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MOLDIVS - A NEW PROGRAM FOR MOLECULAR SIMILARITY AND 
DIVERSITY CALCULATIONS 
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At present molecular similarity and diversity calculations are the important tools for 
lead generation and optimization, especially in the fields of high-throughput screening and 
combinatorial chemistry. 

There are many approaches to this problem, which differ in descriptors used, similarity 
and diversity measures and compounds selection algorithms. 

Descriptors of different types (topological indexes, physical property descriptors, 2D 
and 3D structural keys) can be used for this purpose. It was shown,' that structural 2D 
descriptors perform better then others in their ability to distinguish between biologically 
active and inactive compounds. The discriminating power of these descriptors depends on 
the degree to which they encode information relevant to ligand-receptor binding 
(hydrophobic, dispersion, electrostatic, steric and hydrogen bonding interactions).' 

One of the approaches to this problem is to produce composite descriptors from 
structural and global physical property descriptors by means of principal component 
analysis and multidimensional ~ c a l i n g . ~  However this method is unable to handle sets of 
compounds of real sizes (10.000 - 1.000.000 compounds) because of computational 
limitations of multidimensional scaling required for transforming discrete structural 
descriptors to continuous variables. 

In this report we propose an alternative approach based on combination of structural 
fragments and local physicochemical property descriptors. 

On the basis of this approach the new program MOLDIVS (MOLecular DIVersity and 
Similarity) for Microsoft Windows 95/NT was created. MOLDIVS has friendly graphic 
user interface and it permits to perform the whole range of similarity and diversity 
calculation tasks on large sets of compounds. 

In this program it is possible to use the structural descriptor of two types: plain 
structural fragment and combined structural-physicochemical fragments. Both fragments 
are defined as atom-centered concentric  environment^.^ Fragment consists of a central atom 
and neighboring atoms connected to it within the predefined sphere size (number of bonds 
between the central and edge atoms). For each fragment the complete connection table is 
stored. For each atom in a fragment the information on the atom and bond type, charge, 
valency, cycle type and size is coded into fixed-length variables, which are subsequently 
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used to define a pseudo-random hash value for this fragment. The complete set of fragments 
with selected sphere size is created automatically and forms a fragments library. For each 
fragment in the library the frequency of occurrence is calculated. An unlimited number of 
fragments and sphere of any size can be used. 

In structural-physicochemical fragments each atom is characterized by three 
parameters: partial atomic charge,' polarizability6 and H-bond donor/acceptor factor' 
instead of atomic element type as in plain structural fragments. Adjustable ranges of these 
properties are used as atomic types. There are many examples when similarity based on 
plain structural fragments substantially differs from similarity based on structural- 
physicochemical fragments. In many cases structural-physicochemical fragments produced 
better separation of biologically active compounds because they explicitly encode 
information relevant to ligand-receptor interactions. 

The program permits an estimation of similarity of each molecule in the database with 
all other molecules sorting them on the value of similarity with the initial molecule. It is 
possible to use different molecular similarity coefficients: Tanimoto, Euclidean and Cosine. 

Different measures of diversity of the whole database A are available in this program: 

DIVERSITY (A) = SUMr, (DISSIMILARITY (T, 4) / Nz 

DIVERSITY (A) = SUM, (MIN, (DISSIMILARITY (TJ))) / N 

(1) 

(2) 

The program allows rapid estimation of diversity of the whole database according to 
equation (1) using the cosine similarity coefficient on the basis of the centroid algorithm.8 

Different compound selection algorithms for diverse subset formation (stepwise 
elimination and cluster   amp ling,^ number of maximum dissimilarity selection algorithms") 
are used in this program. 

The program was successfully tested on databases with biological and medicinal 
activity data and in real drug design work. The comparison of results obtained by 
MOLDIVS and other commercially available programs is camed out. 
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EASY DOES IT: REDUCING COMPLEXITY IN LIGAND-PROTEIN DOCKING 
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INTRODUCTION 

Computational methods in structure-based drug design are used in a number of 
applications, including prediction of the structure of ligand-protein complexes also known 
as the docking problem, estimation of ligand-protein binding affinity, and in de novo 
design. Depending on the level of detail incorporated into the model, as well as the number 
of times the calculation is performed, the computational demands of these studies range 
fiom a few seconds on a small workstation to months on dedicated supercomputers. In the 
pharmaceutical industry, the criterion for a useful computational technique is simple: it 
must provide information of sufficient quality to impact the discovery or optimization of 
lead compounds, and it must do so in a timely manner. 

In our work, we have found that a critical decision that governs the successful 
application of computational methods in structure-based drug design is the choice of the 
model used to represent the problem. Traditionally, computational chemists have 
developed highly detailed force fields to describe atomic interactions. While in principle 
such efforts provide accurate representations of chemical systems, there are two significant 
practical problems that arise in their application. First, it is difficult to obtain high-quality 
parameters for the force field in a rapid manner, and second, it is not possible to adequately 
sample the enormous conformational space of ligand-protein systems. As a consequence, 
the computational requirements of detailed atomic-level simulations are not compatible 
with the large number of molecules that are now available in commercial databases or in 
typical combinatorial libraries. As such, there is a need for methods that efficiently reduce 
the size and complexity of the problem, while still providing useful information. 

Previously, we have developed a method for the prediction of bound ligand-protein 
complexes based on a simplistic, short-ranged potential.' Because structure prediction is a 
much easier problem than free energy calculation, this potential, while not sufficiently 
accurate to estimate ligand-protein binding affinities, correctly predicts the bound 
conformation for a variety of ligand-protein complexes. Unlike detailed force fields, this 
potential yields a smoother energy landscape and is more compatible with high throughput 
computational database screening. More recently, we have extended this method to two 
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types of docking simulations where some features of the resulting ligand-protein complex 
are known a priori.2 In complexes where a covalent bond is formed between a nucleophilic 
cysteine or serine residue and an electrophilic ligand atom, constraints are placed on the 
location of the ligand. Likewise, when combinatorial libraries are developed that include a 
substructure whose bound conformation is the size of the available 
conformational space is reduced. 

RESULTS 

To validate the ability to identify leads &om a database, ligands containing ketones 
and esters were screened against the reactive enzyme porcine pancreatic elastase. A known 
inhibitor was ranked in the top one percent of all compounds that satisfied the screening 
criteria, which included a generalization of the LUDI scoring h c t i o n  to estimate binding 
af f in i t~ .~  In addition, the correct stereoisomer and binding mode for this compound were 
selected. Compounds unrelated to this inhibitor were also found, some of which form 
favorable hydrogen bonds in the active site, though none have been tested for activity. 

A virtual library was generated by direct alkylation of the pteridine ring in 
methotrexate with 7,677 compounds, each of which had a molecular weight less than 250 
and an mine  group with at least one hydrogen and one neighbor in an aromatic group. 
From this virtual library, only 516 satisfied the screening criteria, 7% of the original 
library. As anticipated, methotrexate was predicted to have the best binding energy, but a 
number of other compounds were generated that also form good hydrogen bond 
interactions within the active site. 

CONCLUSIONS 

In order to successfully apply computational tools in structure-based drug design, it is 
important to use all information about the system of interest prior to beginning the 
computational study. We have developed a simplified representation of ligand-protein 
interactions that provides a balance between accuracy and speed, and software that takes 
advantage of knowledge about the structure of certain types of ligand-protein complexes in 
order to reduce computational complexity. We have shown that the predicted structure of 
known inhibitors of dihydrofolate reductase and porcine pancreatic elastase correspond to 
the experimentally observed structure with increased probability compared to an 
unrestricted simulation. When combined with a simple estimate of binding affinity, these 
inhibitors were ranked favorably, thus enriching the hit rate of the targeted library. 
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STUDY OF THE MOLECULAR SIMILARITY AMONG THREE HIV 
REVERSE TRANSCRIPTASE INHIBITORS IN ORDER TO VALIDATE 
GAGS, A GENETIC ALGORITHM FOR GRAPH SIMILARITY SEARCH 

Nathalie MEURICE', Gerald M. MAGGIORA', Daniel P. VERCAUTEREN3 
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Street, Kalamazoo, MI 49007-4940 

INTRODUCTION 

The conception of potent therapeutical agents relies on the knowledge of the interaction 
mode between the ligands and their receptor sites. However, very often, the direct study of 
these interactions is difficult as the three-dimensional (3D) structure of the receptor sites is not 
completely known. Consequently, an indrect approach resides in the comparison of the 
ligands of interest on the basis of their physico-chemical properties, in such a way to deduce 
the nature of their common molecular sites involved in the binding to the macromolecule 
andor responsible for their particular activity. 

In this general framework, we have focused our efforts on the elaboration and 
improvement of an original genetic algorithm method, named GAGS (Meurice et al., 1997), 
for computing the similarity between ligands of biopharmacological interest, especially those 
whose receptor crystal structures have not been determined. 

In order to validate our GAGS approach, we study a system of ligands whose receptor 
structures are available and compare the molecular alignements to the available experimental 
(XRAY) and theoretical (MIMIC) models. 

STUDIED SYSTEM 

We have selected a set of three HIV Reverse Transcriptase Inhibitors (HIV RTI's), 
namely Nevirapine, a-APA, and TIBO. The crystal structures of these ligands bound to HIV 
Reverse Transcriptase (RT) are available. An (< experimental D model is thus obtained by 
superimposing the crystal structures of HIV RT with the bound inhibitor, and then removing 
the protein. 

TOPOLOGICAL ANALYSIS OF 3D SMOOTHED ELECTRON DENSITY 
MAPS 

Ab initio 3D electron density maps (EDW of the three selected ligands have been 
obtained using RHF/SCF/6-3 lG* calculations. Removal of the details contained in these 
maps using wavelet multiresolution analysis (Daubechies filter, 20 coefficients, 3 levels of 
smoothing) produces smoothed 3D grids. The information contained in such 3D smoothed 
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EDM can be further simplified into molecular graphs using topological analysis, which 
allows to locate the critical points of the electron density function, ie., peaks and passes in 
our study. Punctual values of the density and distances between critical points are set as the 
diagonal and non-diagonal elements of property matrices, respectively. As a result, the 
molecular graphs of TIBO, Nevirapine, and a-APA contain 6, 12, and 14 critical points, 
respectively. The three molecular graphs are then compared using our GAGS method. 

GAGS, GA FOR GRAPH SIMILARITY SEARCH 

GAS are optimization techniques inspired by the natural concepts of the Darwinian 
evolution. Within GAGS, the chromosomes are defined as 2D integer arrays where the first 
dimension is the number of ligands to be compared, and the second one is determined by the 
number of fitting points. In such a way, each chromosome is a hypothesis of subgraph match 
between the initial set of molecular graphs. The evaluation function measures an RMS value 
between the property matrices built from the evaluated subgraph match, and is thus 
minimized during the GA generations. An automated decoding process has been implemented 
in order to create molecular overlays corresponding to each of the solution chromosomes. 

The GAGS comparison leads to overlays in agreement with the ((experimental 
model B. When optimized in the MIMIC steric and electrostatic fields, the GAGS overlay 
converges towards the superimposition of the RTI’s that was obtained by the MIMIC model, 
with a similarity of 61% (Mestres et aZ., 1997). 

Figure 1- (a) GAGS, (b) experimental, and (c )  MIMIC superimposition models. 

CONCLUSIONS AND OUTLOOK 

This work allows to assess the GAGS approach as a valuable tool for the discovery of 
good ligand alignements. As a consequence, GAGS might be used as a powerful search 
engine as well and the resulting molecular overall superimpositions might then be quickly 
optimized in MIMIC fields in order to produce precise overlays and yield quantitative 
similarity indices. 
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A DECISION TREE LEARNING APPROACH FOR THE CLASSIFTCATION AND 

ANALYSIS OF HIGH-THROUGHPUT SCREENING DATA 

Michael F.M. Engels, Hans De Winter, Jan P. Tollenaere 

Dept. Theoretical Medicinal Chemistry, Janssen Research Foundation, Beerse, Belgium 

High-throughput screening (HTS) of large libraries of compounds is applied by drug 

companies to pick up active molecules. Besides this “fishing” part, HTS can also play 

an important role as a source for structure-activity analysis, which relates 

physicochemical or structural features to biological activity. The latter aspect, 

although of great importance, has hardly been explored over the last years due to i) the 

size and complexity of the data sets, ii) the lack of, or rather ignorance about, suitable 

mathematical tools, iii) the quality of the biological data - biological activity is 

frequently described by just two (active - not active) or three (active - medium active - 

not active) categories - and iv) the lack of appropriate molecule descriptors. 

In this study, decision tree learning (DTL) and rule induction’ (RI) have been used for 

the classification and structure-activity analysis of an in-house set of data on 27000 

compounds tested for dopamine D2 binding activity (biological activity indicated as 

either “active” or “not active”; around 1300 compounds were found to be active). 

Both, DTL and RI are machine learning methods for finding complex interactions 

between many variables which try to explain a distinct set of responses. Both methods 

are able to deal with large numbers of data (observations) and show good performance 

in analysing noisy data,2 as HTS data may be. Compounds have been represented 

either by a set of topological keys created by a customized Daylight program (Daylight 

Chemical Information Systems Inc.) which calculates all possible substructures 

consisting of up to four atoms, or by a set of 3D keys as implemented in the ChemX 

software. 

DTL identifies the descriptor with the strongest association with the biological 

activity. Using that descriptor, the set of data is split into two sets, one in which all 

compounds possess that feature, and one in which all compounds lack that feature. 

This procedure is repeated with all resultant subsets as long as the degree of 

association is above a given threshold criterion. Since sets of data are always split into 

’ Quinlan, J.R. “C4.5: Programs For Machine Learning”, Morgan Kaufmann Publishers, 1993. 
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two subsets, the procedure results in a binary decision tree. RI uses the resultant 

decision tree for extracting rules. Rendering the decision tree in a set of ‘rules 

packages’ creates another way to show the complex interactions in such a set of data. 

Application of the DTL method to the dopamine D2 data using topological keys 

resulted in a binary decision tree with 

some 200 terminal nodes. This is a 

drastic reduction of information in 

comparison to the original data. Figure 1 

shows two compounds, ocaperidone and 

risperidone, which are members of one 

class of compounds predicted to be 

“active” (89 terminal nodes have been 

classified as “active”). For such a large 

set of data, it is possible that groups of 

compounds will act in different ways. It 

Figure 1 : Ocaperidone and risperidone, two 
molecules classified as being active by the DTL 
method. Substructural fragments which are 
mandatory for activity are highlighted. 

can be discussed whether compounds in different terminal nodes bind in alternative 

modes or at different sites. 

When making use of the ChemX 3D keys the application of the RI method to the 

dopamine D2 set of data resulted in 84 sets of rules, 37 of which predict “active” 

compounds. Table 1 shows 

a typical example of such a 
Table 1 : Set of rules characterising ocaperidone, risperidone and 30 
other molecules as being “active”. 

set of rules. In comparison 

to the topological keys the 

interpretation of the set of 

rules using Chemx 3D 

keys is burdensome, 

however, in combination 

with systematic confor- 

[F 

THEN 
mational searching and ’ 

- molecule contains fluorine 
- contains one positive charge center 
- distance between two H-bond 

acceptor pharmacophore points is 
between 5.5 and 6 . 0  f i  

- distance between an aromatic group 
and one H-bond acceptor function 
is between 12 and 13 f i  

- not possible to bring one aromatic 
group and a positive charge centre 
in a distance range between 5.5 
and 6.0 f i  together 

class active 

molecular modeling, it turned out to provide valuable filters for pharmacophore 

modeling. 

* Mitchell, T.M. “Machine Learning”, McGraw-Hill, 1997. 
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APPLICATION OF PARM TO CONSTRUCTING AND COMPARING S'HT~A AND 
q RECEPTORMODELS 

Maria Santagda),  Hongming Chen (b5# ), Andrea SantagatiCa), Maria Modica("), Salvatore 
Guccione(a) , Gloria Uccello Barretta@) , Federica Balzano'') 
(a) Diprtimento di Scienze Farmaceutiche, Universitd di Catania, viale Andrea Doria 6, Ed 
12, I-95125 Catania, Italy 
(b)Laboratory of Computer Chemistry, Institute of Chemical Metallurgy, Chinese Academy of 
Sciences, P.O. Box 353 Beijing 100080, P. R China 
(')Centre CNR di Studio per le Macromolecole Stereordinate ed Otticamente Attive, 
Universita ' di Pisa, via Risorgimento 35, I-56126 Pisa, Italy 

Based on the Walters' s GERM (Genetic Evolved Receptor Model), PARM (PseudoAtomic 
Receptor Model) uses a combination of genetic algorithms and a cross-validation technique 
to produce atomic-level pseudo-receptor models starting from a set of known ligands. 
These putative pseudo-receptor models can be used to predict bioactivity of virtual 
molecules by aligning these molecules with the training set molecules, computing the interac- 
tion energy between each molecule and interpolating the computed interaction energy in the 
QSAR regression equation to obtain a predicted bioactivity, so reducing the trial-error 
procedure in the synthesis of new chemicalentities. 

Serotonin modulates many processes in mammalian peripheral and central nervous system 
through its interactions with at least 14 receptor subtypes, all but one (5-HT3 subtype) of 
which are G protein (heterotrimeric GTP-binding protein)-coupled. 
The 5-HT3 subtype is a ligand-gated ion channel that shares functional and structural 
similarities with nicotinic acetylcholine receptors. 

Aim of the present investigation is to create a 5-HTlA model capable of aiding the 
synthesis of new compounds with improved activities elucidating the possible role of 
heteroaromatic interactions'32 in the receptor binding, and to compare the predictive ability 
of the new paradigm PARM334 with two traditional 3D Q S A R  techniques such as 

@ Present address: Bayer AG, Pharma-Forschung, PH-R Structurforschung, D-42096, 
Wuppertal, Germany. 
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CoMFA’(Comparative Molecular Field Analysis) and HASL6 (Hypothetical Active Site 
Lattice), as reported in chapter: APPLICATION OF PARM TO CONSTRUCTING AND 
COMPARING ~ - H T ~ A  AND (xl RECEPTOR MODELS. In addition, worth of interest was 
mapping possible features underlying the ~ - H T ~ A  or urpha selectivity, as shown by some 
ligands in the investigated thienopyrimidinone series7. 

In the PARM3 computation, 15 kinds of pseudo-receptor atoms are defined first. 
Then, the molecules in the training set are superimposed on a specific pharmacophore model 
and a set of grid points is generated around the common surface of the superimposed ligands. 
Receptor models are made by placing atoms at these points in 3D space, to simulate a 
receptor active site. These atoms interact with the ligands and the interaction energy 
between each ligandand the receptor model is computed. By using a genetic algorithm and a 
cross-validation technique, a number of atomic-level pseudo-receptor models which have a 
high correlation between intermolecular energy and bioactivity can be built. A QSAR 
equation is constructed for each model in the linear form of Bioactivity = A + B*Ehe,. 
Energetic computation in PARM3 makes use of the TRIPOS 5.0 force field. 

PARM3 generates the receptor models in the MOL2 file, so that we can check the 
characteristics of the receptor model within the SYBYL software’. 

In this study, (forthcoming paper) the initial population of pseudo-receptors was 
set to 1500, the maximum generation to 2000, the number of grid points was set to 49 and 
the cushion distance (the distance between grid point and the closest ligandatom) was 0.5 fL 
PARM3 is allowed to run until a series of receptor site models with high conventional 
correlation coefficients and cross-validated R2 are obtained. Usually, the top 20 models are 
used to predict bioactivity and compared with a test set. 
Models fifteen and four (Table I and I0  were found to have the best predictions for the 5- 
H T ~ A  and q-AR data sets, respectively. 
These two models are analysed in Figs 1 and 2. See also Fig 6 and 7 of chapter ~ - H T ~ A  
RECEPTORS MAPPING BY CONFORMATIONAL ANALYSIS (2D NOESYMM) 
AND “THREE WAY MODELLING (HASL, CoMFA, PARM) . 

5069 
SDBB 6tW mw BBB(1 980% lW 

Fig 1 Analysis of the best predictive 5-HTIA model (model fifteen) 
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P W VI 

Table I P A W  computation results of tk HT,,- receptor model 

* 
carbon hydrogen nitrogen oxygen sulphur 

Compd Rl R2 R3 R4 Exp -log IC50 Calc -log IC50 Residual &te,(kcaVmol) 

2 (44) Me Me 3-C1Ph H 6.005 6.304 0.299 9.267 

3 (46) Me Me H 2-OMe-Ph 7.620 7.891 0.271 -3.306 

4 (48) Me Me H 1-naphtyl 6.450 6.312 -0.138 9.199 

5 (49) Me Me H 2-pyrirnidinyl 6.646 6.424 -0.222 8.314 

7 (53) -(CHI).+- H 2-OMe-Ph 7.229 7.681 0.452 -1.640 

11 (61) H Ph H 2-OMe-Ph 6.413 6.898 0.485 4.564 

12 (63 )  H Ph H 1 -naphtyl 5.697 5.609 -0.088 14.773 

13 (64) -(CH=CH)Z H 2-OMe-Ph 7.337 7.539 0.202 -0.519 

14 (65) H H NH2 2-OMe-Ph 8.921 8.325 -0.596 -6.740 

17 (68) Me Me NH2 Ph 8.481 8.616 0.135 -9.047 

19 (69) Me Me Me 2-OMe-Ph 9.523 9.119 -0.404 - 13.03 1 



f a 

Compd Rl 

20 (70) Me 

21 (71) Me 

22 (72) Me 

23 (73) Me 

1 (43)* Me 

R 2 R 3  

Me NH2 

Me NHPh 

Me Me 

Me NH2 

Me H 

6 (50)* -(CH,)4- H 

9 (56)* -(CH*)d- H 

10(57)* -(CH2)4- H 

15 (66)* -(CH1)4- Me 

16 (67)* -(CH2)9- NH2 

24(74)*' Me Me NH2 

25(78)*b - - NHZ 

S D*s 0.86 

Table I continued 

R4 Exg -log IC50 Calc -log IC50 Residual l$,,,,,,(kcaUmol) 

2-OMe-Ph 8.523 8.618 0.095 -9.068 

2-OMe-Ph 6.304 6.044 -0.260 11.323 

2-pyrimidiny l 8.167 7.697 -0.470 -1.770 

2-pyrimidinyl 9.301 9.540 0.239 -16.371 

-l0gIC50=7.474-0.126*E~,~~ $=1).962, R2cv=0.906 SDzD.353 

2-OMe-Ph 6.337 7.620 1.283 -1.156 

2-CI-Ph 6.074 7.823 1.749 -2.770 

1-naphtyl 6.431 6.939 0.508 4.236 

2-pyrimidinyl6.297 6.888 0.591 4.641 

2-OMe-Ph 8.155 8.596 0,441 -8.889 

2-OMe-Ph 8.886 8.760 -0.126 -10.193 

2-OMe-Ph 7.187 7.743 0.556 -2.137 

2-OMe-Ph 9.097 9.468 0.371 -15.801 

*In brackets the number in the paper (see ref 10). 
'Test set compounds 
*The piperazine ring has beenreplaced by a piperidine nudeus. 

The thiophene ring has been replaced by a benzenenudeus 



Table I1 PARM computation results of the q -AR model 

e 
4 

R1 * 

0 
carbon hydrogen n i t q e n  oxygen sulphur 

Compd Rl R2 R3 R4 Exp -log IC50 Calc -log ICSO Residual ILter(kcaUmol) 

2 (44) Me Me 3-C1Ph H 6.524 6.652 0.128 16.030 

3 (46) Me Me H 2-OMe-Ph 7.389 7.594 0.205 7.128 

4 (48) Me Me H 1 -naphtyl 6.053 6.136 0.083 20.900 

5 (49) Me Me H 2-pyrimidinyl 5.959 5.982 0.023 22.349 

7 (53) -(CH2)4- H 2-OMe-Ph 7.420 7.566 0.146 7.3930 

11 (61) H Ph H 2-OMe-Ph 6.650 6.697 0.047 15.601 

12 (63) H Ph H 1 -naphtyl 5.610 5.602 -0.008 25.945 

13 (64) -(CH=CH)z H 2-OMe-Ph 7.041 7.258 0.217 10.306 

14 (65) H H NH2 2-OMe-Ph 8.538 8.538 0.000 - 1.785 

17 (68) Me Me NH2 Ph 7.367 6.796 -0.571 14.669 

19 (69) Me Me Me 2-OMe-Ph 7.569 7.565 -0.004 7.407 



Compd Rl R2 R3 R4 Exp -log IC50 Calc -log IC50 Residual ILte,(kcaVmol) 

20 (70) Me Me NH2 2-OMe-Ph 8.137 7.962 -0.175 3.652 

21 (71) Me Me NHPh 2-OMe-Ph 7.495 7.403 -0.092 8.932 

22 (72) Me Me Me 2-pyrimidinyl 5.693 5.745 0.0522 4.588 

23 (73) Me Me NH2 2-pyrimidinyl 6.296 6.245 -0.051 19.865 

-l0gIC50=8.349.0.106*E,~,, r=0.975, R,,,2=0.941 SD=0.197 

Table 11 continued (Test set molecules) 

1 (43)" Me Me H 2-OMe-Ph 

6 (50). -(CH2)4- H 2-CI-Ph 

9 (56)* -(CH2)4- H 1-naphtyl 

10(57)* -(CH2)4- H 2-pyrimidiny l 

15(66)* -(CH2)4- Me 2-OMe-Ph 

16 (67)* -(CH2)4- NH2 2-OMe-Ph 

24(74)*' Me Me NH2 2-OMe-Ph 

25 (78)*b - - NH2 2-OMe-Ph 

SD*=0.61 

*In brackets thenumber in the paper (see ref 10). 
'Test set oompounds 
The piperazine ring has beenreplaced by a piperidine nucleus. 
bThe thiophene ring has beenreplaced by a benzenenucleus. 

6.793 

6.775 

6.352 

5.741 

7.194 

7.409 

7.444 

8.398 

6.886 

6.581 

6.593 

6.830 

7.919 

7.924 

8.217 

7.893 

0.093 

-0.194 

0.241 

1.089 

0.725 

0.515 

0.773 

-0.505 

13.811 

16.696 

16.578 

14.341 

4.063 

4.014 

1.251 

4.307 
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fl PREDICTING SET 

5ooo 5000 I 6000 7000 8000 9000 10000 

Fig 2 Analysis of the best predictive c+AR model (model four) 
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A NOVEL COMPUTATIONAL METHOD FOR PREDICTING 

COUPLED ANAPHYLATOXIN RECEPTORS, CSAR and C3AR 
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Introduction: The receptor C5aR (350 residues) is found in the membranes of 
polymorphonuclear leukocytes. When activated by its ligand, C5a, a very potent 
chemoatractant, an amplification of the inflammatory process occurs. C3aR (482 residues) is 
similarly associated with such events, although to a lesser extent. High levels of C5a (74 aa) 
and C3a (77 aa) were connected to inflammatory and autoimmunal diseases, such as 
Rheumatoid Arthritis and Adult Respiratory Disease Syndrome, that can even lead to death. 
The design and construction of potent antagonists to each of the two receptors is a major 
avenue that could lead to control of such conditions. C5aR and C3aR belongs to the 
superfamily of G Protein-Coupled Receptors (GPCR), which includes over 700 members, 
involved in many important biological activities. The structure of these proteins has not been 
determined yet and attempts to rationally design drugs for them are still limited. 

One of the very few membranal proteins whose structure was solved is 
bacteriorhodopsin, a membranal proton pump. It consists of seven transmembranal helices, 
connected by extra- and intra-cellular hydrophilic loops, an extra-cellular N-terminal and an 
intra-cellular C-terminal. Bacteriorhodopsin is not a GPCR and has no significant homology 
with this family, yet there is experimental evidence that demonstrates a similar topology. The 
structure of bacteriorhodopsin has been initially determined by electron microscopy at low 
resolutions parallel and perpendicular to the membrane (1BAD). More recently, X-ray 
structure of bacteriorhodopsin was determined at 3.5A resolution (2BRD). Due to the fact 
that the three dimensional structure of the GPCRs was not solved yet, constructing theoretical 
models for these receptors, in order to investigate their interactions with their ligands and 
their activation mechanism, has become very common. 

Method: We view the process of receptor assembly as a result of two different 
mechanisms: An equilibrium of helices between water and the membrane, governed by their 
hydrophobicity, followed by an association of helices which may be close to interactions in 
globular proteins. We employed a knowledge-based force field constructed from the Protein 
Data Bank (globular proteins), where all the interactions between pairs of amino acid residues 
have been evaluated according to their occurrence and the appropriate statistical weights 
(Miyazawa and Jerniganl ). Seven regions along the sequence, which are assumed to contain 
the seven transmembranal helices, were found by means of hydrophobicity profiles and 
multiple sequence alignment with other GPCRs, with the program HOMOLOGY. These 
regions are input to our program THREAD. Each region is longer than the sequence that is 
expected to reside in the membrane in a helical structure. The program suggests the limits for 
each helix. It threads the seven sequences simultaneously on the coordinates of 
bacteriorhodopsin, combining all the possible options for each helix. 

THREAD employs the template structure of 1bad.pdb or 2brd.pdb (or any other template) 
and "threads" a GPCR in order to find the best GPCR structure by using two methods: 
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1) Calculating the overall contact energy of the structure. Two residues, whose Ca-Ca 
distance is less or equal to 7A (for Gly - 6A) and whose CP-CP distance is less than their 
Ca-Ca distance, are considered to be in contact. The contact energy value for every pair is 
summed up for the whole protein.The lowest energy structures are retained for further 
processing. The detailed structure of side chains of residues are not taken into account at this 
stage. 

2) Summing up the hydrophobicity values in the membrane and outside. For every 
structure threaded, the hydrophobicity values of each residue in the membrane (i.e. in a helix) 
are summed. The program searches for the most hydrophobic structure. 

Side chains were added by two methods that employ a rotamer library. HOMOLOGY 

the sequence of addition. SCWRL2 adds side chains from a backbone-dependent library, and 
optimizes the results by identifying clashes and combining all clashing side-chains into a 
group, for which all combinatorics for the rotamers are tested. 

uses a backbone independent library of rotamers, and the side chains are added depending on 

Results: THREAD was first tested on the theoretical set of coordinates for 
bacteriorhodopsin, lbad. 9.3* 105 structures were threaded. The best result was obtained 
(table l), but for some helices other results had very close weights. The hydrophobicity 
method is least accurate in the case of helix B (A=two turns), which is more hydrophilic than 
other helices. Contact energy gave accurate results for most helices, with helix F being about 
one turn distant from experimental. 

Table 1. The beginnings of the helices of bacteriorhodowin 

For CSaR, 1.7*107 structures were checked. The two methods gave fairly close results 
(table 2). For helix C we got two possibilities for the beginning in the hydrophobicity 
method: residue 104 or residue 111. Helix G could begin at residue 281 or residue 284. In 
the contact energy method, helix C fluctuates between 107 and 109, helix F between 245 and 
241, and helix G between 281 and 284. The two best solutions for each method are depicted 
in table 2. However, quite a few other results with close energies exist. The results for C3aR 
based on lbad coordinates gives as helix starts: A, 24; B, 57; C, 98; D, 141; E, 342; F, 379; 
G, 410 (contact energy only). 

REFERENCES 
1. Miyazawa, S. and Jernigan, R. (1985). Macromolocules 18: 534-552. 
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INTRODUCTION 

Focused combinatorial libraries are a useful way of approaching structure-based drug 
design, but they may show unexpected bias in exploring the receptor site. One way to monitor 
this coverage is by assessing which hydrogen-bonding groups at the receptor site are used by 
each ligand in the library. In this communication, we present an analysis of the hydrogen 
bonds formed between inhibitor and enzyme in a set of HIV protease complexes. These data 
are a model for a larger combinatorial library, and have allowed us to develop methods for 
receptor-based diversity analysis. 

ANALYSIS OF HIV PROTEASE INHIBITORS 

The Brookhaven Protein Databank’ was searched for X-ray coordinates of HIV protease- 
inhibitor complexes with resolution better than 2.5 A, and 3 1 non-mutant entries were selected. 
The ligands were extracted, and hydrogen atoms were added semi-automatically, The active- 
site water molecule (sometimes labelled residue HOH 301) was considered as part of the 
protein site and relabelled consistently. Hydrogen bonds were identified between each in- 
hibitor and its enzyme using X-ray crystal criteria.’ These data were then indexed by the 29 
site atoms used by at least one ligand. In the cases where two orientations of the inhibitor 
are present in the complex, a hydrogen bond from either orientation was sufficient for the site 
atom to be marked as occupied. 

Each pair of ligands was then compared, in terms of the site atoms occupied, using 
two separate metrics: Tanimoto similarity coefficient and Euclidean distance. A similarity or 
distance matrix was constructed, and input to cluster analysis using Ward’s minimum variance 
method (see Figure 1). The number of significantly different clusters was determined with 
Mojena’s stopping rule? at a significance level of P < 0.05. 
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0.6 -1 P <0.05 

Figure 1. Dendrogram showing clustering of the hydrogen bonds formed by 3 1 ligands in their complexes using 
Euclidean distances. The thick line indicates the partitioning suggested by Mojena’s stopping rule. 

SELECTION OF REPRESENTATIVE LIGANDS 

An alternative to using Mojena’s stopping rule to select the number of clusters is to compare 
the diversity (mean inter-object distance) of a subset of objects with the entire set. The 
smallest number of clusters where the diversity of the representative ligands (those closest to 
the cluster centroid) is at least as large as that for all inhibitors should provide the smallest 
feasible set of representatives. For the example shown in Figure 1, the diversity was 0.26 and 
4 complexes (1 hiv, 1 hpx, 1 hbv, and 1 hvr) provide sufficient coverage. 

CONCLUSIONS 

Receptor-based diversity using site-point occupancy is a simple approach that provides a 
useful way to monitor differences between ligands when the binding mode is known. The 
methods outlined also allow the selection of a minimum subset of representative ligands 
without a reduction in overall diversity. 
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INTRODUCTION 

The interest for development of rational methods for investigation of relations 
between structure and activity of chemical compounds has essentially increased in the last 
years. Artificial neural networks have became one of the leading methods in this field.' 
However, there are some difficulties (such as limitation in speed, local minima, 
overfitting/overtraining problems,' etc.) with an application of these methods for analysis of 
data sets with a large number of input parameters and, particularly, three-dimensional 
electronic parameters of compounds generated by 3D Q S A R  approaches, such as CoMFA. 
The current study analyses a new method, i.e. neural networks with active  neuron^,'.^ that 
could be used in such QSAR studies. We also propose to combine this method with 
Kohonen's Self-organizing Maps (SOM) used for preprocessing of 3D Q S A R  data sets. 
The performance of new method is compared with that of fixed size neural networks. 

METHODS 

The neural network with active neurons consists of certain number of layers, each of 
which is composed of several computing modules. These modules are refer to as the active 
neurons.* The neurons at the same layer can differ one from another both in a set of input 
and output variables. The process of learning (self-organizing) of an active neuron consists 
in estimation of importance of inputs used to minimize the given objective function of the 
neuron. The choice of the optimal set of variables is realized by reduced sorting of possible 
sets of variables and the variables increasing the objective functions are eliminated. The 
choice of links by active neurons defines the structure of the whole network. It is important 
to note that the set of output variables in addition to the analyzed activity also includes input 
variables. Thus the number of active neurons in each layer is equal to number of variables 
given in initial data sampling. 

Each layer of active neurons acts similarly to the Kalman filter, i.e. the output set of 
variables repeats the input set but with filtration of noise. The output variables of previous 
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layers are used as secondary inputs for the neurons of next layer. The computing modules 
are united in a multi layered structure with the purpose to increase the algorithm accuracy by 
a more complete processing of the input information. 

The self-organization of active neurons was done using the analogues complexing (AC) 
a lg~r i thm,~  that is one of the approaches developed within framework of the Group Method 
of Data Handling (GMDH)  method^.^ This algorithm detects an analog of each analyzed 
molecule (i.e., the molecule that is the nearest neighbor of the analyzed molecule in the 
Euclidean space) and considers the activity of analog as the predicted value of the molecule. 

The total number of layers in neural network was restricted to 10. The analysis of 
CoMFA dataset included a preprocessing of input variables using SOM. We used the 
regularity criterion of minimum variance of the prediction error4 to calculate the optimal 
partitioning of the input parameter space. 

RESULTS 

The antifilarial activity of 53 antimycin analogues' and charge-transfer properties of 35 
monosubstituted benzenes' were analyzed. The both sets have a large number of input 
parameters. An optimization of inputs, e.g. by pruning algorithms, improved prediction 
ability of the fixed size neural networks applied to these data.'35 The CoMFA dataset 
included 82 benzylpiperidine derivatives with AchE inhibitory activity.6 

Table 1. The leave-one-out results calculated for analyzed QSAR examples 

t o t a l  neuronet with active neurons fixed-size neura l  ne twork  
d a t a  se t  p a r a m s  no1 first layer  best layer  a l l  p a r a m s  p r u n e d p a r a m s  
Antimycin analogues 53 6 0.74' (0.51)3 0.91 (0.81) 0.66 (0.43) 0.91 (0.67) 
Benzenes 31 2 0.74 (0.51) 0.95 (0.89) 0.89(0.78) 0.97 (0.95) 
Benzylpiperidines 188 4 0.86(0.71) 0.89(0.78) 0.56(0.55) 0.72(0.73) . . .  

(28224)4 
'cardinal number of the layer (the best layer) with the lowest error of the network; 'correlation coefficient R; 
'cross-validated q2; 4number of CoMFA parameters before preprocessing with SOM. 

The calculated results for antimycins and benzylpiperidines by neural networks with 
active neurons were better than results of back-propagation neural networks, while the 
opposite was true for benzenes. The further studies are required to provide a more objective 
comparison of the methods. 
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During the last years artificial neural networks (ANN) have been applied successfully 
in the QSAR field. It has been demonstrated that this new technique is often superior to the 
traditional Hansch approach, providing more accurate predictions. The advantage of ANN 
is that with the presence of hidden layers, neural networks are able to perform nonlinear 
mapping of the physicochemical parameters and of the corresponding biological activity. 

Here, a test series of 32 phenylpiperazines 1 with affinity for S-H.T~A and a1 receptors 
was subjected to QSAR analysis using artificial neural networks ( A N N s ) .  Our aim is to get 
insight into the structural requirements that are responsible for ~-HT~AIOII selectivity in 
order to design new ligands with high selectivity for the ~ -HTIA receptor. 

0 
X = -(CH&, -(CH&-; m= 0 , l ;  n= 3,4 
R = o-C&, o-OCH3, o-OBu, o-COOPr, 
o-OCONHPr, o-CN, m-CF3, m-NH2, 
m-NHCOP$, m-Br (selected by 
EDISFAR program) 

LvN*N%N# - 
I 0 

The data set used was the in vitro ~ - H T ~ A  and a1 receptor affinities (expressed as pKi 
values). Each compound was parametrized with six physicochemical descriptors (F, R, V,, 
Vm, no, nm) and three indicator variables (IA = 1 or 0 for X = -(CH&- or -(cH2)3-, IB = 1 or 
O f o r m = l  o r0 ,1n=10rOforn=40rn=3) .  

The neural network employed for this modeling was a filly connected three layer 
network (input, hidden, output) trained by back-propagation of error. Initially the number 
ofneurons in the input layer was equal to the number of molecular descriptors and indicator 

446 



variables, whereas the output layer had only one neuron. The number of neurons in the 
hidden layer was determined by trial and error. The best ANN models are shown in Table I. 

Table I. ANN Models 

Receptor Non significant Parameters Architecture r 1.2 S 

R, .xm 

R 
7-2-1 0.983 0.966 0.149 
8-2-1 0.991 0.982 0.136 

The dependence of biological activity on the physicochemical parameters was 
illustrated in 3-D diagrams. On the basis of the obtained plots, the 5-HT1* affinity has a non 
linear dependence with F, V,, Vm and no, nevertheless the nonlinear relationship is not far 
from the planar one. The a1 affinity has a clear nonlinear dependence with F, V,, Vm, no 
and Xm. 

A comparison of both analyses gives an additional understanding for 5-HTl~/al  
selectivity: (a) High F values increase the binding affinity for 5-HTla receptors and 
decrease the affinity for a1 sites; (b) The lipophilicity at the meta position has only 
influence for the a1 receptor; (c) The meta position seems to be implicated in the ~ - H T ~ A  
/a1 selectivity.' While the ~ - H T I A  receptor is able to accomodate bulky substituents (about 
60 A3) in the region of its active site, the steric requirements of the a1 receptor at this 
position are more restricted (between 0-22 A3). A way to improve ~ - H T ~ A / ~ I  selectivity 
would be the synthesis of long chain derivatives bearing bulky substituents with high F 
values and low x values at the meta position. Among the different groups that hlfill these 
requirements the m-NHS02Et was chosen (F = 0.419, xm = -0.64, Vm = 65.31). On this 
basis, the new ligand EF-7412 (X=-(CH&-, m=O, n=4, R=m-NHSOZEt) was designed and 
synthesized. This analog bound at ~-HTIA sites [Ki obsd (nM)=27.3&5.9; Ki calcd (nM)=36.7] 
and showed high selectivity over the a1 receptor (Ki obsd (nM)>lOOo; Ki calcd (nM)=2745). 
These results clearly reveal the predictive power of the ANN model and the importance of 
the nonlinear relationships mapped by the neural networks. 

This work was supported by DGICYT PB940289 and CICYT 960360. 

1: (a) Lopez-Rodriguez et nl., 2-[4-(o-Methoxyphenyl)piperazin-l-ylmethyl]- 1,3 -dioxoperhydroimidazo[ 1,5- 
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Rodriguez et nl., Synthesis and structure-activity relationships of a new model of arylpiperazines. 1. 2-[[4-(0- 
Methoxypheny1)piperazin- 1 -yl] methyl J - 1,3 -dioxoperhydroimidazo [ 1 3  -a]pyridine: 5 -HTI A 
receptor agonist, J.  Med. Chern. 39:4439 (1996). (c) Lopez-Rodriguez et al., Synthesis and structure-activity 
relationships of a new model of arylpiperazines. 3. 2-[w-(4-A1ylpiperazin-1-yl)alkyl]perhydropyrrolo[ 1,2- 
climidazoles and -perhydroimidazo[l,5-a]pyridines: study of the influence of the tenninal amide fragment on 
S-HTIA affinity/selectivity, J. Med. Chern. 40:2653 (1997). (d) Lbpez-Rodriguez et al., 1-[w-(4- 
Arylpiperazin-l-yl)alkyl]-3-diphenylmethylene-2,5-p~olidinediones as 5-ml~ receptor ligands: study of the 
steric requirements of the terminal amide fragment on 5 - w l A  affinityhelectivity, Bioorg. Med Chem. Left 
8581 (1998). 
2. Lopez-Rodriguez ef  al., Synthesis and structure-activity relationships of a new model of arylpiperazines. 2. 
Three-dimensional quantitative structure-activity relationships of hydantoin-phenylpiperazine derivatives with 
affinity for 5-ml~ and al receptors. A comparison of CoMFA models, J.  Med. Chern. 40: 1648 (1997). 
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Introduction. 

Schizophrenia is a debilitating disease that effects approximately 1% of the population 
with the onset of the disease occurring usually in the mid 20's and persisting in many cases 
for the lifetime of the patient. Researchers have hypothesised that schizophrenia is due to 
excessive limbic dopaminergic function within the brain (Jaber et al 1996). 

Antipsychotic drugs may be defined as medications that alleviate delusions, 
hallucinations and some aspects of formal thought disorder that occur in a variety of 
illnesses, most notably schizophrenia. The mechanism of action of these drugs has focused on 
their interaction with the central nervous system (CNS) neurotransmitter dopamine (DA). 
However recent work strongly implicates the neurotransmitter serotonin (5HT) as a further 
target of action (Schmidt et a1 1995). Antipsychotic drugs are further loosely classified into 
typical or atypical, initially based on animal model tests. Nowadays it is on their reduced 
liability to produce extrapyramidal side effects (EPS) (Waddington and O'Callaghan 1997), and 
this has lead to hypotheses in terms of limbic selectivity and 5HTz/D2 ratios. 

Method 

A set of ligands ((R)- and (S)-octoclothepin, clozapine, Org5222, seroquel, olanzapine, 
sertindole, risperidone, ziprasidone, zotepine, remoxipride, loxapine) with high affinity for Dz 
and ~ H T z A  and classified as atypical and typical antipsychotics were selected for 
pharmacophore mapping. Further studies were carried out on sertindole, risperidone, 
zotepine, ziprasidone and haloperidol once a pharmacophore model had been established. The 
binding affinity data were gathered from Schotte et al. (1996) 

A conformational analysis using a systematic search method was performed for each 
compound in the set in order to identify low energy conformations for each active molecule. 
Sybyl 6.4 from Tripos with Tripos force field and charges assigned to each atom according to 
the method of Gasteiger and Marsili, was used in all calculations of initial conformations. 

Results 

Low energy conformations of the ligands were determined. Molecular superimposition 
techniques were used to identify which low-energy conformation from each set of molecular 
conformations was to be used in construction of the pharmacophore. The main criteria for 
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each conformation were that the selected pharmacophore elements superimpose within the 
set. 

The resulting conformations were then run through the program GRID using a variety of 
probes to predict the points with the best interactions (Goodford 1984). This produces an 
array of energy values that can be used to generate three-dimensional contour surfaces at 
selected energy levels which gives additional information as to other possible areas of 
interaction. 

Discussion 

All initial modelling was undertaken using the lone pair off the distal nitrogen and a 
region of hydrophobic interaction, such as a phenyl ring, as essential criteria (Petcher). The 
electron rich substituent off the phenyl ring is an optional substituent that increases activity 
as a Dz antagonist. In the case of clozapine versus iso-clozapine where the electron rich 
substituent is moved from the non-interacting position 2 on clozapine to the interactive 
position 8 in iso-clozapine, the Dz antagonist binding affinity changes from 330nM to 13nM 
respectively (Liao et al.). The position of the nitrogen lone pair from the atypical antipsychotic 
Org5222 also fits with the proposed pharmacophore. The GRID probe contours helped 
establish other areas of possible interaction. The mirror image of this proposed 
pharmacophore is also a viable pharmacophore. 

Future Directions 

The quantitative aspect of electrostatic potential of the hydrophobic region in question, 
in relation to Dz antagonist binding affinity will be investigated. A Neural Network approach 
to mixed receptor interaction of atypical antipsychotics is currently being examined, with a 
resultant atypical receptor ratio profile to be established. 

Y D U  
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Hydrophobic Regbn 
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Introduction 

We are currently studying several distinct families of molecules with pesticide properties 
including cinnamic acids and anthranilates, which are used as bird repellents, and 
organophosphate insecticides. Experimental activity measurements were accurately 
obtained and have been used for QSAWMFA studies. The genetic function algorithm 
(GFA) method was used and QSAR equations derived for each dataset that accurately 
reproduced the activity of the compounds. In each case the correlation and cross 
correlation coefficients were higher (r2 > 0.90) than those from conventional techniques, 
but problems of overfitting and statistical validity remain. Here, the optimum methodology 
is developed for using the GFA in developing successful QSARs. 

Technique, Results and Discussion 

For each set of compounds, conformational analyses were done by comparison to known 
crystal structures, and by the use of conformational analysis in Quanta97'. Charge 
calculation was done with Ga~ssian94~. Without knowing the active conformation, lowest 
energy conformations were used. Geometry optimization at the ab initio level was done in 
Gaussian94 in some cases to ensure maximum accuracy. 

Over 100 molecular, substituent and electronic descriptors were calculated via Cerius2l, 
TSAR, and single point Gaussian94 calculations in the 6-3 11G* basis set. For descriptors 
cross-correlating over 70%, the one correlating least with the dependant variable was 
removed. This removed 75% of the descriptors to ensure minimal co-linearity. 

For MFA, manual matching of key structural features was done to overlay all molecules, 
then some 2000 field points calculated for H+/OH'/CH3' probes, distributed randomly at 
approximately 1 A intervals. Analysis of the correlation matrix removed descriptors 
containing a high degree of co-linearity. The GFAPLS method was used to select the 
optimum set of descriptors for use in multiple linear regression, but even when high rz and 
r2(cv) values were obtained, there is still the possibility of chance correlation occurring. 

It is not the number of terms in the derived QSAR equation that is the concern in 

453 



validating an equation, but more the number of descriptors originally screened to derive the 
equation3. The more descriptors used, and the fewer the observations in the training set, 
then the higher the mean r2 value, i.e.: larger probability of a chance correlation occurring. 
When deriving equations with powerful genetic a1 orithms, over-fitting of data becomes a 
large concern. Traditional statistical tests such as r (cv) are very useful4, but do not always 
pick up poor equations, and further validation must be done. 

4 

Table 1. r2 and r2(cv) for best equations found in organophosphate QSAIUMFA studies 

GFA rz I rZ(cv) GFAPLS rz I rZ(cv) Data Set 
0.943 I 0.905 QSAR data 

Scrambled activity, and QSAR data 0.907 I 0.826 
MFA data 0.939 I 0.896 0.992 I 0.869 
Scrambled activity, and MFA data 0.918 I 0.852 

In our first study we successfully derived a GFNQSAR for the repellent activity of 14 
cinnamic acids. The resulting four-term linear regression equation was based on electronic 
descriptors, confirming a Hammett-style relationship previously seen to work. We also 
report here (Table 1) the results from an QSAFUMFA study of 20 organophosphates, taken 
from a previous study6, which had been unable to predict their activity using one equation. 
Using the GFAPLS method we have successfully derived a spline function equation using 
4 descriptors with an r2=0.943 and r2(cv)=0.905. No equation has yet been derived which 
predicts organophosphate activity so well, but we originally screened some 30 descriptors 
for only 20 observations so how do we know this relationship is not due to chance. It is 
suggested3 that for 20 observations you only need 14 variables to get a chance correlation 
of >0.9, though this may be a little lower in practice. This probability statistic is for linear 
regression, but a spline function may increase the probability of a chance correlation. As 
seen from our results, confidence in our final equation is only gained by considering the 
highest derived chance equation, and by using the GFAE'LS technique. 

Thus we have found activity data scrambling, and using external data sets to validate 
training set derived QSARs, extremely important verification techniques. Our equation is 
really only valid if r2 and r2(cv) values are distinctly higher than the mean calculated values. 
We also stress the importance of considering the descriptors used, to assess why they are 
working as predictors. We must consider what information we can glean from them as 
chemists, as opposed to using them as a blind prediction tool. Confidence increases if the 
descriptors used are describing properties expected to control activity. In some cases it may 
be more appropriate to use several smaller predictive equations to explain large variation in 
a training-set rather than turning to more powerful QSAR analysis and searching 
techniques. This is seen for the organophosphates, which are successfully described with 
partitioning of descriptors rather than trying to find more complex descriptors or 
techniques, which has so far been unsuccessful. 

0.943 I 0.905 
0.944 1 0.888 

0.953 I 0.933 
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PROPERTY PATCHES IN GPCRS: A MULTIVARIATE STUDY 

Per Kallblad and Philip M. Dean 

Drug Design Group, University of Cambridge, Department of Pharmacology 
Tennis Court Road, Cambridge CB2 lQJ, United Kingdom 

The human genome project has accumulated primary sequence data for several hundred 
members of the G-protein-coupled receptor (GPCR) superfamily. The lack of structural 
information forces the development of new ways to obtain functional and structural 
knowledge directly from protein sequences. An attempt is described here to convert multiple 
sequence alignments into more easily interpretable property data. The main aim of the study 
was to find residues on adjacent secondary structures that share principal properties and 
might therefore be involved in inter-helical contacts. 

194 GPCR sequences from 10 rhodopsin-like receptor sub-families including amine, 
peptide and nucleotide receptors were retrieved from Release 35.0 of the SWISS-PROT 
database' (Table 1). Rhodopsin is the closest relative for which structural data are available 
and is included because of its importance as a reference for homology modellers. The inter- 
helical loop regions are unlikely to be part of the common 3D architecture shared by 
rhodopsin-like receptors and were therefore excluded from the analysis. Multiple sequence 
alignments were produced using CLUSTALW3 and thereafter edited manually to exclude non- 
helical regions, eliminate gaps in transmembrane regions and ensure the correct positioning 
of all conserved residues. The helical regions selected for each helix are adapted from 
Baldwin et ale2. 

Table 1; Families included in the study 

5ht aar acm ade bar dr hh nyr our ssr rho 

No. sequences 43 22 16 17 15 17 9 15 16 16 8 

No. sub-types 13 6 5 4 3 6 2 5 4 5 1 

26 physico-chemical variables were used to describe each amino acid4. The descriptors 
were scaled to unit variance and compressed through Principal Components Analysis (PCA) 
to give 5 principal properties. The principal properites roughly correspond to hydrophobicity 
(l), steric (2) and electronic properties (3-5) and explain 91% of the variation in the original 
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physico-chemical descriptor set. A property matrix was generated for each alignment by 
substituting every amino acid with its descriptors. Each matrix was compressed through PCA 
to give the final matrix to be used for the alignment position classification (Table 2) .  

Table 2. PCA results 

5ht aar acm ade bar dr hh nyr opr ssr rho 

No. PCs 13 8 6 8 7 8 6 9 6 7 6 
R2X(cum)' 0.87 0.93 0.94 0.87 0.94 0.95 0.91 0.84 0.90 0.88 0.98 

'R2X(cum) is the cumulative sum of squares of all the variables in the original data matrix (X) 
explained by the principal components (PCs). 

Clustering using the fuzzy c-means algorithm5 was performed to find groups of 
alignment positions that share similar properties. In fuzzy clustering the different objects are 
assigned membership values between 0 and 1 for each cluster and can hence belong to more 
than one cluster. This type of clustering was chosen for its advantage in clustering hybrid 
objects which is the case for multiple sequence alignment positions. The calibration of 
fuzziness and distance measure was made through Partial Least-Squares projection to Latent 
Structures (PLS) between the original sequence property matrix and the cluster membership 
values of the different alignment positions. A fuzziness factor of 1.10 together with the 
Mahalanobis distance was chosen to obtain maximal chemical significance. The use of 8 
clusters gives a separation of biochemically conserved positions into relevant groups and 
enables the identification of positions with a high level of property variation as non-members. 
Non-members are defined as objects with membership values below 0.50 in all of the clusters. 
Using 8 clusters, the fraction of non-members varies from 1 % to 20% depending on the size 
of the alignment. Property class membership values of alignment positions were projected 
onto the suggested 3D structure for examination of spatial distribution (Figure 1). 

Figure 1. Examples of cluster membership values displayed on the C a  atoms of the proposed 3D structure of 
rhodopsin2. The members of the main hydrophobic cluster are shown for helices 5 , 6  and 7 (right to left) for six 
of the alignments. The colours range from dark grey (membership value = 0) to light grey (membership 
value = 1). Backbone atoms are included in very light grey. The view is from inside the helical bundle. 
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The quality of the clustering was validated through PLS between the original sequence 
property matrices and the cluster membership matrices of the different alignments (Table 3). 
The PLS also enabled identification of alignment positions with poor fit to the statistical 
model. A further biochemical validation was performed by extracting the alignment positions 
of each cluster and comparing them with those of the other alignments. It was observed that 
the clusters from the different alignments share properties and conserved members. 

Table 3. PLS results 

5ht aar acm ade bar dr hh nyr opr ssr rho 

No. PCs 7 7 7 5 6 7 6 1 7 7 5  
R2X(cum) 0.68 0.87 0.90 0.84 0.89 0.81 0.82 0.77 0.92 0.88 0.98 
R2Y (cum) 0.66 0.64 0.55 0.66 0.59 0.62 0.57 0.66 0.69 0.65 0.56 
Q2(cum)’ 0.57 0.57 0.51 0.59 0.52 0.54 0.51 0.58 0.59 0.55 0.50 

‘Q2(cum) is the fraction of the total variation in the two data sets that can be predicted by the prin- 
cipal components (PCs). 

The method developed enables identification of groups of multiple sequence alignment 
positions with a fine level of property variation that is difficult or impossible to detect through 
“sequence-gazing”. Projected onto the proposed 3D structure, the cluster membership values 
provide a way of displaying biochemical properties conserved throughout a multiple 
sequence alignment and may help in the identification of contact points between different 
sub-units. 
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A STOCHASTIC METHOD FOR THE POSITIONING OF 
PROTONS IN X-RAY STRUCTURES OF BIOMOLECULES 

M. Glick and Amiram Goldblum 
Department of Medicinal Chemistry, School of Pharmacy, Hebrew University of Jerusalem, 

Jerusalem, ISRAEL 91120 

Introduction: Inclusion of all hydrogen atoms in protein and nucleic acid models is 
necessary for a more accurate representation of biological systems during molecular dynamics 
simulations, and for understanding molecular recognition. This is especially important for 
polar hydrogens that play a critical role in determining secondary structure through hydrogen 
bonds. At present, X-ray crystallography is still not efficient for locating the proton positions. 
Neutron diffraction studies that can locate the protons are quite rare and only a few combined 
x-raysheutron diffraction studies have been deposited in the protein data bank (PDB). 

Most molecular modeling packages places hydrogens in a non specific manner and any 
subsequent step suffers from the multiple minima problem. Another method (Brunger and 
Karplus) employs an iterative process of energy minimizations applied to the torsion angle of 
each polar hydrogen in its environment. This method is suitable for systems in which close 
contacts between hydrogens are absent. A third method suggested by Ornstein et al. divides 
the system into groups of interacting hydrogen bond donors and acceptors called networks. 
The algorithm maximizes the number of hydrogen bonds in each network and minimizes the 
total distance between donors and acceptors. The number of comparisons scales with the 
factorial of the number of elements in the network-A fact that limits the calculation to small 
networks. In addition, this approach is not based on energy evaluation criteria. As a result, the 
output might contain high energy interactions between the located hydrogens and their 
environment. 

We present a novel energy based method for the location of polar hydrogens. It 
requires the division of the full system into networks, but has the following advantages: Each 
network is evaluated by energy criteria, and the code can handle large biological systems 
defined as one huge network. The code was designed so it can easily be modified to handle 
any force field. 

Method: Coordinates are read from a PDB file. Hydrogens and lone pairs which are 
to be added are divided into two categories: (1) Trivial hydrogens/lone pairs-those that may be 
located using the hybridization of heavy atoms. (2) Non trivial hydrogendlone pairs: those 
that have rotational degrees of freedom, such as Ser, Thr and Tyr hydroxyls, water, etc. Non 
trivial hydrogens and lone pairs are divided into ensembles: groups which interact among 
themselves. Each ensemble is treated separately. The energy criterion used to evaluate the 
quality of each combination is a non bonded energy function with Lennard-Jones (6-12) and 
coulombic interactions. With a large ensemble cutoff, the user can force the program to handle 
the system as one huge ensemble. 

It is obvious that in case of a large biological system constituting a single ensemble, 
we face a very large combinatorial problem. In trypsin (lNTP), for example, there are 
5.84* lo3’ alternative combinations. To reduce the size of the problem, we developed a 
unique stochastic approach. For each non trivial hydrogen or lone pair there are usually a few 
alternative locations, but only one would give the lowest energy. 

Let X=(X1, X2, ...Xdo) be a configuration of do segments in one ensemble. For each 
configuration X, the energy E=E(X) is calculated. The objective is to find the configuration 
which minimizes E. Since it is impossible to evaluate all the alternative configurations due to 
the large number of combinations, we follow the steps: 1. Sample at random n configurations 
out of the large population of combinations X1=(x1iy x12, ... , XldO), ... , Xn=(Xnl, xn2, 
... , XndO). Compute the corresponding energy values: E l  = sigma (elj) (i = 1, do) for 
configuration X1, En = sigma (enj) (i = 1, do) for configuration Xn; 2. Construct the 
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distribution F E ~ .  F E ~  is an assembly of energies that corresponds to n sampled 
configurations. Define cutoff points H and L in mn. H contains all the configurations that 
satisfy the condition: Ei 2 en (1-0,) where F E ~  (a) is the a-th percentile of F E ~ ,  and L 
contains all configurations satisfying Ei s mn (a). The number of configurations in each of 
H and L is no=n*a; 3. Construct vectors h and 1 for the positions in configurations 
corresponding to the energies in H and L, respectively. The vector h is the element-wise 
intersection of all the configurations in H: if all configurations in H share the same value, say 
5->1, at component j, (corresponding to Xnj of configuration Xn) then hj=5->1; otherwise, 
hj=O (no common position for segment j in all high energy configurations) The vector 1 is 
constructed similarly from L. Using values of n=1000 and a=0.004 was chosen as a 
reasonable compromise that satisfies the probability of obtaining excellent results with 
relatively short computation times; 4. Compare h and 1. If both hj and lj have a similar vector 
component, j, it will remain as a viable configuration for that segment, because it contributes 
also to low energy values. However, if hj # lj, than the corresponding segment component hj 
will be evicted from subsequent iterations; 5. Repeat steps 1 to 4 for the reduced location- 
space until the number of possible configurations is smaller than a user defined threshold; 6. 
Compute exhaustively all the remaining configurations to find the best one. 

Results and discussion: We tested our algorithm on four high resolution crystal 
structures: Bovine Pancreatic Trypsin Inhibitor (Brookhaven Protein Data bank file SPTI), 
RNAse-A (file SRSA), Trypsin (file lNTP), and Insulin (file 3INS), for which the neutron 
diffraction structures are available. We tested our program both as a minimization and polar 
hydrogen addition tool. We removed all the hydrogens (and deuterium atoms) from the PDB 
file and activated the algorithm to reconstruct their location. Each system was treated by two 
variations of the method and was compared to a "self consistent" approach. Energy criteria 
were applied in all three variations. 1. Combined "Ensemble-stochastic approach": All 
possible combinations in an ensemble are evaluated, and the one with the lowest energy is the 
result. In ensembles with a very large combinatorial demand the "stochastic approach" was 
activated to reduce the number of combinations. The calculation on 3INS by this method is 
interactive on a Silicon Graphics RlOOOO machine and takes about 30 seconds. However, this 
approach requires an approximation of distances between non trivial hydrogens lone pairs in 
different ensembles and the accuracy is thus somewhat reduced. 2. Pure "stochastic 
approach": This approach suffers from a large CPU demand: The calculation on 3INS takes 
about 15 minutes on a Silicon Graphics RlOOOO machine. Results are however better than 
with the other methods (lower minimal energy values). 3. Self consistency: Rotations of 
consecutive separate segments to the minimum of each. This approach has the lowest CPU 
demand of the three methods. The calculation is then reiterated from beginning to end until self 
consistency is achieved. It may start with another segment rather than the first. The results are 
higher in energy than the other two methods. 

RMS values (theoretical vs. experimental) are low (0.3-0.65 for the different 
proteins). The overlaying of predicted on experimental structures reveals that most of the 
inconsistent results stem from rotatable hydroxyls on the surface of the proteins, where water 
molecules plays a role in determining their positions, but these waters were not included in the 
PDB structure. 
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MOLECULAR FIELD TOPOLOGY ANALYSIS (MFTA) AS THE BASIS FOR 
MOLECULAR DESIGN 

Eugene V. Radchenko, Vladimir A. Palyulin, Nikolai S .  Zefirov 

Department of Chemistry, Moscow State University 
Moscow 119899 Russia 

Modern studies of quantitative structure-activity relationships (QSARs) for organic 
compounds seek to reveal the structural features responsible for the interaction of molecules 
of an active compound (ligand) with a biological target. From the viewpoint of both the 
ligandharget fit and the possible design of new structures, it is clear that location of these 
features with respect to the molecule is as important as their character. A number of 
approaches taking into account the location of such features based on the topological as 
well as the spatial representation of structures was suggested in literature. However, all of 
them have some drawbacks with respect to generality and/or applicability to 
conformationally flexible compounds. 

Recently we proposed’’2 as the generalization of the previous approaches the 
Molecular Field Topology Analysis technique which may be considered as a ’topological 
CoMFA analogue’. Our previous investigation of some datasets suggests that the f d l  3D set 
of parameters is often redundant and might introduce additional noise. Thus, the topological 
alignment is employed in MFTA method which leads to models that are often comparable 
or even superior in quality to those based on other widely used QSAR approaches. The 
method could be regarded as complementing the existing techniques such as CoMFA. It is 
especially suitable for solving the problems where the analysis of 3D structure is either 
unnecessary or complicated. 

In the framework of MFTA for the structures of the training set the molecular 
supergraph (a not necessarily minimal graph such that any structure of the set can be 
represented as its subgraph) is constructed. Crucial structural features can be quantitatively 
represented as the local physico-chemical parameters of the compound, that is, various 
characteristics of atoms and bonds. One might expect that the distribution pattern of these 
parameters for active compounds would reflect the complementary features of a target. 
Generally, the interaction cannot necessarily be attributed to a few key positions within a 
ligand molecule due to the correlation between the parameters in the neighbouring 
positions, possible involvement of the entire regions and the ability of the system to 
accommodate to certain variations. The technique allows the use of the open descriptor set. 
Currently implemented descriptors include electrostatic and steric parameters as well as the 
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characteristics of lipophilicity, hydrogen bonding, atom and bond presence. 
The mapping procedure employed in a supergraph generation and descriptor vector 

formation is very flexible and allows taking into account the atom type, valence state, 
stereochemistry, bond type and order and special user requirements as well as the similarity 
of local properties distribution over the structure. Thus the mechanistically sound rather 
than formal mapping can be achieved. One of the algorithms combines the features of 
vertex-by-vertex expansion approach and the algorithm of searching for maximum cliques 
(complete subgraphs) of the module graph product and efficiently finds the maximum 
connected graph intersections. As another option, the non-deterministic (genetic) algorithm 
is also used to search for the graph intersections. During the construction of the MSG, the 
structures from the training set are processed sequentially. At each step, the intersection 
between the MSG constructed by this time (originally empty) and the next structure of the 
set is determined. Then, the MSG is augmented by the atoms and bonds that do not occur in 
the intersection, and the values of local properties are updated for all the MSG vertices. 

The descriptor vector for the compound is then formed by taking, for each position in 
the supergraph, the values of the local descriptors on the corresponding atom in the 
compound. It is possible to select the best of several mappings or use the averaged 
descriptor vector on the basis of the descriptor difference between the current and reference 
(most potent) structure. Since the number of descriptors is rather large (though much 
smaller than in CoMFA), the partial least squares (PLS) regression is used to analyze the 
descriptor-activity relationships. As a result, the quantitative characteristic of the influence 
of each descriptor in each position, including common structural fragments, on activity can 
be determined. Subsequent selection of variables based on their impact on model output or 
predictivity is possible, enabling the rational identification of key structural features for the 
design of potentially more active structures and for use as anchor points in 3D alignment. 
The application of the method to a number of well-known ‘benchmark’ cases often leads to 
the models comparable or superior in terms of fitting and prediction quality to both 
conventional and 3D QSAR techniques. 

Several approaches to the design of novel potentially active structures based on the 
MFTA models can be formulated. First, we can perform an exhaustive structure generation 
from a common fragment and the substituents built from a number of elementary fragments 
that are present in the training set and/or can be easily introduced synthetically. Then, the 
structures with the desired activity values are selected using the predictive model. 
Alternatively, it is possible to construct the prospective structures directly from the MFTA 
molecular supergraph and substructural templates taking into account the effect of local 
descriptors on the activity. The activity value €or the complete structure is subsequently 
verified by predicting it from the model. The third option is based on the fact that any 
structure for which the reliable prediction can be expected may be represented as a 
subgraph of the MSG. Thus, we can use the genetic algorithm to propose the optimal 
structures by searching for the optimal labeling of MSG vertices and edges. 
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Research and Russian Federal Program “Development of new drugs by means of chemical 
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RANK DISTANCE CLUSTERING - A NEW METHOD 
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University of York, Heslington, York YO1 5DD, UK 
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INTRODUCTION 

'Embedded activity data describes the situation where active compounds cluster 
together, with inactives dispersed. There is thus a centre of activity and moving away from 
this centre results in a decrease in activity. This may be observed, for example, in a plot of 
molecular weight against log P where, to retain activity, compounds must fall in a specific 
size and hydrophobicity window. From our experience, embedded relationships tend to 
occur in complex biological test systems such as cellular or in vivo assays. 

2D embedded relationships are readily detected using 2D plots for all pairs of 
descriptors. The situation becomes more complex in wide multivariate data sets and those 
sets requiring more than 2 properties to define the active cluster. Methods such as Cluster 
Significance Analysis (CSA)' or SIMCA2 have been applied to such problems where the 
activity data is classified as active or inactive. 

More recently, we have described several novel methods developed to extend the 
variety of situations in which embedded relationships can be detected and which allow the 
activity data to be a quantified measure rather than an activehnactive classification. One 
class of methods, Single Class Di~criminat ion,~ '~.~ identifies informative latent axes in the 
data set, while the other class, consisting of extensions to CSA,6 identifies individual 
descriptors or low dimensional descriptor combinations which result in clustering of active 
compounds relative to the data set as a whole. 

RANK DISTANCE CLUSTERING 

A potential drawback of the existing CSA algorithms for large datasets is the 
amount of computing required, because of the necessity of generating the permutation 
distribution to approximate probability values for the various models. This problem is 
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overcome in Rank Distance Clustering (RDC) by using a different way of testing for 
statistical significance, based on the ranks of distances rather than their actual values. Like 
CSA, RDC is used to identify low dimensional descriptor sub-spaces in which active 
compounds cluster. Although the distances are replaced by their ranks in RDC, the 
properties of Euclidean distance - in particular Pythagoras’ theorem - lie behind the method 
as it stands. Thus considerations of scaling and the like affect RDC in much the same way 
as they do CSA. RDC is currently restricted to the analysis of classified activity data. 

BRIEF OUTLINE OF THE RDC METHOD 

Both an all-combinations and a forward stepwise algorithm have been developed 

1. Optional scaling (e.g. autoscaling) of descriptors 
2. Determine the means of the descriptors for the active set 
3. Centre the data matrix to this mean 
4. Construct the inter-sample squared distance matrix 
5. Rank distances in ascending order 
6. Sum the ranks of the active class 
7. Use a Mann-Whitney test to see whether the sum of ranks of the actives is 

signijkantly smaller than expected 
8. Determine the marginal significance of adding a new term to the model 

- the Z-score (forward stepwise method only) 

and programmed in SAS. The algorithm proceeds as follows : 

The new method is significantly faster than CSA as it is not dependent on generating 
random permutations to test for significance. It is also better suited to handling large 
datasets and may prove more robust to outliers than CSA as it uses ranks rather than 
Euclidean distances directly. 
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Introduction 
The prediction of carcinogenicity based on chemical structures is one of the most challeng- 
ing problems in predictive toxicology. This task is extremely difficult, because carcinogens 
act by many different mechanisms and they do not share common structural attributes. 

Information about the chemical structures can be provided as structural fragments 
( c g .  functional groups, structural alerts) or as physical or chemical properties (e.g. vol- 
ume, mass, logP, HOMO, LUMO ...). Previous approaches have focussed on one of these 
representations only. The purpose of this work was to evaluate the suitability of machine 
learning programs for the prediction of complex toxicological effects and to perform a sys- 
tematic comparison of different sets of descriptors within a single framework. Structural 
Regression Trees (SRT), an algorithm from the field of Machine Learning, can handle both 
representations easily and is therefore especially suited for this comparison. 

Met hods 
c. aicmogenicity .: classifications for rodents (rats and mice) were obtained from the NCI/NTP 
part of the Carcinogenic Potency Database (CPDB) compiled by Gold et a1.[1]. Compounds 
without defined chemical structures (e.g. mixtures) were excluded from this study. 

The structural information (connectivity) for the CPDB compounds was derived from 
SMILES strings and encoded as Prolog facts. Physical/chemical properties and shape 
indices were calculated with MOPAC and TSAR (Oxford Molecular). 
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Striictural Regression Trees SRT [a] was used to induce general theories (about factors 
iiff‘ecting the carcinogenicity of compounds) from the given CPDB examples. The SRT 
theories were quantitatively validated by 10-fold cross-validation, and summarized in terms 
of predictive accuracy. 

structural fragments physical/chemical 

65.4% 67.3% 

Results 

combined 

75.2% 

Table 1 summarizes the predictive accuracies for both descriptor sets after 10-fold cross val- 
idatlion. The combination of physical/chemical and structural fragment descriptors led to 
i i ,  significant improvement of the predictive accuracy of the SAR model. The performance 
of t,his model was better than the performance of other carcinogenicity structure-activity 
relationships for noncongeneric compounds reported in the literature (typical predictivity: 
G0-70oi’o). This is an indication, that both types of descriptors should be used in SAR 
models for noncongeneric compounds. The Inductive Logic Programming algorithm SRT 
provides a flexible framework with the ability to  use relational information (e.g. chemical 
st,ructures). I t  generates regression trees which are, in terms of predictive accuracy, com- 
petitive t#o other types of SAR models. In contrast to  other regression or neural network 
models, SRT provides rules for which are easily interpretable by toxicological experts, and 
m a y  therefore lead towards a better understanding of the mechanisms of rodent carcino- 
genicity. 
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INTRODUCTION 

In the last years the artificial neural networks (ANN) are becoming an important 
tool in chemistry-related non-linear modelling. In a presented contribution we applied 
ANN with counter-propagation (CP) learning strategy. CP ANN learning strategy 
represents an extension from unsupervised (Kohonen) to supervised learning strategy. 
Details are given by Hechf-Nielsen' . CP ANN seem to be a proper tool in quantitative 
structure-property rklationship (QSPR) studies particularly when this relationship is weak. 
This is certainly true for the structure-carcinogenic potency relationship. The 'carcinogenic 
potency', which is given as a dose where a particular compound' causes a cancer, defines 
just a biological endpoint, but barely describes the mechanism of cancer on biochemical 
level. The data sets taken for modelling usually consist of diverse compounds that cause a 
cancer by different mechanisms. It seems, that for modelling with compounds acting over 
different mechanisms the ANN are superior to linear methods. 

DATA DESCRIPTION 

Set of 58 compounds was treated in this study. All of compounds are amino 
derivatives, most of them have a benzene ring as a common substructure. (The compounds 
are: 2-chloro-p-phenylendiamine; 2,6-dichloro-p-phenylendiamine; 2-nitro-p- 
phenylendiamine; 2,4-xylidine.HC1; 2,5-xylidine.HC1; 2,4,6-trimethylaniline.HCl; 2- 
acetylaminofluorene; 2-aminoanthraquinone; 2-aminodiphenylene oxide; af2; 2-amino-4- 
(5-nitro-2-hryl)thiazole; aniline.HC1; methotrexate; azobenzene; benzidine.2HCl; 
chloramben; chlorambucil; 4-chloro-m-phenylendiamine; p-chloroaniline; 4-chloro-o- 
phenylendiamine; m-cresidine; 3-chloro-p-toluidine; 2,4-diaminoanisole sulfate; 
pyrimethamine; 3-(3,4-dichlorophenyl)-l, 1-dimethylurea; p-nitrosodiphenylamine; 2,4- 
dimethoxyaniline.HC1; C.I.Disperse yellow 3; formic acid 2-[4-(5-nitro-2-hryl)-2- 
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thiazolyllhydrazide; fluometuron; 5-nitro-2-hraldehyde semicarbazone; hrosemide; 2- 
hydrazino-4-(p-aminophenyl)thiazole; 2-hydrazino-4-(5-nitro-2-firyl)thiazole; melphalan; 
melamine; 1-amino-2-methylanthraqinone; 4,4'-rnethylenebis(2-~hloroaniline).2HC1; 4,4'- 
methylene- dianiline.2HCl; metronidazole; 4,4'-methylenenbis(N,N-dimethyl)benzenamine; 
5-nitro- acenaphthene; 5-nitro-o-anisidine; N-[4-(5-nitro-2-hryl)-2-thiazolyl]formamide; 
nitrophen; nithiazide; o-anisidine.HC1; o-aminoazotoluene; o-phenylendiamine.2HCl; p- 
cresidine; p-phenylendiamine.2HCl; proflavine.HC1 hemihydrate; N-nitrosodiphenylamine; 
2,2'-5,5'-tetrachlorobenzidine; 2,4-diaminotoluene.2HCl; m-toluidine.HC1; o-toluidine.HC1; 
mexacarbate.) Carcinogenic potency values given as TDso dose for mice were taken fiom 
CPDB'. 

MODELS AND RESULTS 

Three models (A, B, C) built with different descriptors are compared in this study. 
A) "Spectrum like representations of 3D structures3 with atomic charges" were taken as 
descriptors. 
B) "Spectrum like representations of 3D structures with atomic charges" plus calculated 
log D values were taken as descriptors. Log D values were calculated with HazardExpert4 
program. 
C) Model built with different physico-chemical descriptors included log D values. 

Models were tested with the one-leave-out cross validation method. The 
correlation coefficients (r) and the parameters of line predicted versus experimental values 
(bo,bl) are shown in Table 1. The results of all three models are similar, however, the best 
results were obtained with the model B. This is mostly due the fact that the model B gives 
good prediction values for some of compounds which are outliers in the models A and C. 
Such examples are 2-aminoanthraquinone (outlier in model A) and hrosemide (outlier in 
model C). It was shown that the quantities calculated with expert system (HazardExpert) 
can improve the quality of QSPR models5. 

Table 1. Statistical Darameters for models A B and C 
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INTRODUCTION 

Nowadays neither molecular model, no matter how elaborate it may be, is able to 
encompass all possible interactions, in which a real chemical/biological system is involved, 
as well as to take them properly into account. In this connection the problem of relating 
theoretically derived molecular characteristics with experimentally observed properties 
becomes very important. As a way of solving this problem, we see the use of a technique 
that would allow one to reveal nonlinear relationships of any complexity between 
theoretically derived characteristics of molecules and observed experimental properties. As 
the most promising candidate for that, we consider the use of artificial neural networks, 
since only this approach allows to find relationships of any complexity between parameters 
without the need to know in advance or guess its generic form. 

MAIN RESULTS 

In this study, artificial neural networks were used to correlate parameters derived 
from semiempirical quantum-chemical treatment of specially designed model compounds 
(which consist of some common fragments with substituents attached to them) with the 
values of substituent constants (cm, cp, F, R, E,) over a wide range of diverse substituents. 
Model compounds were formed by attaching a substituent to some common molecular 
fragment (hydrogen, methyl, phenyl, para-nitrophenyl, para-oxyphenyl, ortho- 
dialkylphenyls). All model compounds were treated with the PM3 method with full 
optimization of geometry. Computed heats of formation, HOMO and LUMO energies as 
well as charges on certain atoms were used as descriptors. Neural networks were simulated 
using the NASAWIN program developed at Moscow State University. 

In order to control predictive performance of neural network, a database consisting 
of 160 substituents was splitted at random into two parts: training and validation sets. The 
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R M S  error of predicting values of the cm constants is 0.06 on the training set (correlation 
coefficient 0.969) and 0.13 on the validation set. The RMS error of predicting values of the 
cp constants is 0.10 on the training set (correlation coefficient 0.959) and 0.16 on the 
validation set. The R M S  error of predicting values of the F constants is 0.07 on the training 
set (correlation coefficient 0.940) and 0.14 on the validation set. The RMS error of 
predicting values of the R constants is 0.13 on the training set and 0.15 on the validation set. 
And, finally, the RMS error of predicting values of the E, constants is 0.66 (correlation 
coefficient 0.980) on the training set and 0.40 on the validation set. The results of the study 
outperform results of analogous studies aimed at predicting substituent constants reported in 
literature so far. 

Preliminary studies also show that both the use of substructural or topological 
descriptors instead of quantum-chemical ones as well as the use of multiple linear regression 
instead of the artificial neural networks results in a sharp deterioration of the predictive 
performance. 

CONCLUSIONS 

The results of the study show that the combined use of molecular modelling and 
artificial neural networks may constitute a reliable basis for predicting various parameters of 
substituents and through them the biological activity of organic compounds. 
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INTRODUCTION 

The logarithm of the partition coefficient between octanol and water, logP, is a useful 
parameter to correlate transport properties of drug molecules, interactions between drugs 
and receptors, and changes in the structure of drugs with various biochemical or toxic 
effects of these compounds.' The measurement of logP through synthesis of the. compound 
and its subsequent experimental determination is time consuming and expensive. Hence, 
there is a strong interest in the structure-based prediction of logP for rational drug design. 

Among several approaches for computing logP there are two essentially empirical 
methods for the estimation of logP: Rekker's f constant method,' and Leo and Hansch's 
fragment a p p r ~ a c h . ~  Both methods divide a compound into basic fragments and calculate its 
logP by the summation of the hydrophobic contributions of each fragment. However, the 
difficulty of these methods is how to fragment a molecule, especially large drug molecules, 
into basic fragments. Usually these methods use some correction factors for complex 
structures to compensate the interactions between functional groups. 

Recently, Kier and Hall4 introduced electrotopological state (E-state) indices for 
molecular structure description in which both electronic and topological characteristics are 
combined together. The E-state can be used in a group contribution manner and has been 
found to be useful in structure-property relationship studies, i.e. to predict the boiling points 
and critical temperatures for a set of heterogeneous organic  compound^,^ estimations of 
aqueous solubility, logs, of drug C O ~ ~ O U ~ ~ S . " '  The present study shows that the same 
indices can be successfully used to estimate logP. 

METHODS 

326 compounds from different structural classes were randomly selected from the 
Hansch-Leo compilation.8 The partition coefficients of these compounds were represented 
as logarithm values, logP, and were in the range -2.11 to 5.90, corresponding to urea and 
thioridazine respectively. This data set was divided into a training set of 300 compounds and 
a test set of 26 compounds (selected at random). An additional test set of 19 compoundsg 
was included in the present study to compare our approach with currently available ones. 

Structural Darameters were calculated bv Molconn-Z software (Hall Associated 

470 



for each analyzed compound were analyzed using multilinear regression (MLR) analysis and 
artificial neural networks (ANNs). The SPSS package was used to run the MLR analysis. 
The ANNs were fully connected, feed-forward back-propagation networks with one hidden 
layer. The Early Stopping over Ensemble method was used to accomplish the 
overfitting/overtraining problem and to improve generalization ability of neural networks. l o  

RESULTS AND DISCUSSION 

Stepwise and backward methods were employed in the regression analysis. A 
satisfactory statistical model was detected for the training set containing 19 parameters (R  = 
0.93, q2 = 0.83, sLoo = 0.71), where cross-validated q2 and the standard deviation sLoo were 
calculated by leave-one-out method. The prediction ability of these parameters for the test 
sets was R = 0.93, s = 0.73 (n  = 26) and R = 0.91, s = 0.69 (n  = 19). 

Neural networks applied to analyze all descriptors calculated similar prediction ability 
for the training test (q2 = 0.83, sLoo = 0.70) but higher for the test sets R = 0.95, s = 0.60 
(n  = 26) and R = 0.93, s = 0.58 (n  = 19). Their prediction ability for the set of 19 
compounds was comparable with that found using other known methods, such as CLOGP 
( R  = 0.97, s = 0.42), XLOGP ( R  = 0.94, s = 0.52), Moriguchi’s method (R  = 0.93, s = 
0.53) and was better than that of the Rekker’s method (R  = 0.92, s = 0.77). The analysis of 
residuals showed that in the test sets some compounds, i.e. loratidine and flufenemic acid, 
had particularly large errors for ANN regression. Both these compounds have logP values 
near the highest value (5.90) in the training set. These findings indicate that the training set 
should be extended by including more compounds with high logP values. 

The most important advantage of the present approach is that only 33 parameters and no 
correction factors were used for coding each molecule and calculation of logP, while other 
methods required hundreds of parameters. The prediction of partition coefficients using 
neural networks and atom-type E-state indices is accurate and provides reliable logP 
estimations comparable with those obtained by other methods. An advantage of the 
proposed approach is that the atom-type E-state indices can be quickly and easily estimated 
directly from chemical structure of analyzed compounds. Thus, the present approach 
introduces a fast method for estimation of logP of chemical compounds. 
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INTRODUCTION 

Recently there has been a growing interest in the application of neural networks in the 
field of QSAR. It was demonstrated that this method is often superior to the traditional 
approaches.' Other studies have shown that prediction ability of such methods can be 
substantially improved if the number of input variables for neural networks is optimi~ed.'.~ 

The neural networks used in the previous studies usually were characterized by fixed- 
size architectures (FNN), i.e. the number of hidden neurons, the number of connection 
weights and the connectivity amid layers were all fixed. The capacity and accuracy of a 
network mapping is determined by the number of free parameters (typically weights) in the 
network. Neural networks that are too small (underfitting) cannot accurately approximate the 
desired input-to-output mapping, while too large networks can have a lower generalization 
ability because of the overfitting/overtraining problem.4s5 Thus, an incorrect selection of the 
topology can decrease the performance of this method. 

Some other algorithms, so called topology-modifying6 neural network algorithms, are 
able to automatically determine an optimal neural network architecture that is pertinent to the 
analyzed problem. These algorithms start with a small network and add weights or/and 
nodes until the problem has been solved. These methods are of considerable interest for 
practical applications because of their ability to solve some tasks (e.g., the two-spirals 
problem7) which represent substantial difficulties for the training of fixed-size neural 
networks. The current study introduces pruning algorithms for one of the most popular 
topology-modifying algorithms -- the Cascade Correlation neural network (CCN).7 

METHODS AND DATASETS 

The original version of the CCN7 was incorporated in Neural Network Ensemble 
software (C++). Several pruning methods that were found to be most efficient for FNN' 
were programmed for this algorithm as described elsewhere.8 

" http://www.lnh.unil.ch 

412 



The performance of the developed algorithms was verified using a set with linear and 
two sets with non-linear dependencies between inputs and the output. The QSAR examples 
used to better access generalization ability of the pruning methods included 51 
benzodiazepine derivatives with anti-pentylenetetrazole activity, 37 2,5-bis( 1-aziridiny1)-p- 
carboquinones with antileukemic activity, 74 2,4-diamino-5-(substituted benzy1)- 
pyrimidines (inhibitors of dihydrofolate reductase from MB 1428 E. coli) and 3 1 antimycin 
analogues with antifilarial activity.*,* 

RESULTS 

An application of the pruning algorithm for simulated datasets calculated results that 
were in perfect agreement with theoretical expectations as well as with previous results 
calculated by fixed-size neural networks. All methods were able to correctly estimate the 
order of sensitivity for analyzed input parameters with and without noise in the input data. 

Table 1. Leave-one-out cross-validated q2 coefficients calculated for the QSAR examples 

analyzed dataset  n all inputs optimized inputs 

Benzodiazepines 51 0.64k0.02 0.6410.03 0.66k0.01 0.67k0.02 
CCN FNN C C N  F N N  

Carboquinones 37 0.76-+0.02 0.79k0.03 0.78i0.02 0.85k0.02 ' 

Pyrimidines 74 0.37k0.05 0.40k0.03 0.68i0.01 0.65i0.02 
Antimycin analogues 31 0.32k0.03 0.3210.03 0.6750.01 0.67k0.01 

The calculated results suggest that the elaborated pruning methods can be successfully 
used to optimize the set of variables for QSAR studies. The use of variables selected by the 
elaborated methods improves neural network prediction ability compared to that calculated 
using the unpruned sets of variables. The results calculated by FNN and CNN are similar 
on average, however the CNN is considerably faster particularly since no optimization of 
topology is required for this method. 
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INTRODUCTION 

The pharmaceutical industry is concerned with identifying drugs for safe treatment for 
human disease. Searching for these bio-active compounds is like looking for a needle in a 
haystack. The aim of this research is to develop a methodology for searching large 
databases for lead compounds using similarity, and chemical libraries for high throughput 
screening (HTS) using diversity. In this study, similarity has been calculated using the 
Tanimoto Index (TI) and diversity has been derived as (I-TI), 

Compounds can be defined in terms of the three property classes which may be termed 
structural, chemical and biological. These classes contain information on which to base 
similarity and diversity measurements, but only a fraction of the available information 
needs to be used to search for lead compounds. Much of the available information is 
irrelevant and is useless for identifying hits, and some of the information is redundant as it 
is shared by more than one variable or source of data. Furthermore, information can be 
described as nominal data (categorical), ordinal data (e.g. ranks) and continuous data. Any 
of these data types can be used to describe the properties of molecules and hence form a 
basis for determining molecular similarity and/or diversity. 

Bitstrings are appropriate for representing all of these types of properties and, because 
they are exact and unique, they provide an efficient means of coding data for use in 
computer database searches. Bitstrings based on structural data, e.g. Daylight fingerprints, 
are commonly used for searching for molecular similarity or diversity. However, these 
fingerprints are abstract descriptions of chemical structure that are multidimensional in 
character. The information that they contain is often obscure and highly redundant. As a 
result, interpretation of the nature of the sets of molecules obtained from database searches 
using this type of bitstring can be difficult, even confusing, What is required is a more 
explicit form of representation. Furthermore, it is often useful to take account of other 
descriptors, e.g. chemical and biological properties that lead to more focussed searches in 
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lower dimensional space than can be achieved with fingerprints, or properties, e.g. 
compound availability and cost, that might influence the cost-effectiveness of the drug 
design process. 

For use in database searching for lead compounds, bitstrings should contain enough bits 
to encode diversity of information to an acceptable precision, yet ensure that the density of 
bits on is appropriate. For use with the Tanimoto Index, too high a density results in too 
many false positives (non-hit lead compounds categorised as hits) being identified, 
whereas too low a density leads to too many false negatives (true lead compounds 
categorised as non-hits). We report a coding system that meets these requirements and 
maintains an appropriate balance between the diversity and the density of the bitstring. 

BAND CODING 

The code adopted was first described by Albus (1975), is derived for control theory and 
provides a mapping from decimal variable to binary equivalents. Studies undertaken at 
Portsmouth have demonstrated the utility of this coding system for accurate and rapid 
manipulation of continuous, ordinal and categorical data. An advantage of this coding 
procedure is that it allows the precision of the mapping to be adjusted to meet user 
requirements. Each source or type of data is encoded by the procedure of Albus to create a 
field of bits of fixed length and density. These fields may then be appended to produce 
bitstrings of appropriate length and containing the required diversity of information. In this 
way, structural data (e.g. chemical fingerprints) may be combined with molecular or 
biological properties, compound cost and availability. 

Band codes have been constructed for an MSI database containing 75 active compounds 
covering 14 activity classes (containing at most five active compounds per class) and 
characterised by 4 descriptors (number of rotatable bonds, MW, logP and molecular 
refractivity). The Tanimoto Index has been formulated in terms of the Band Coding 
parameters - N (the length of the bitstring) and b (the number of bits set on) - and used to 
search for hits based on similarity to target molecules representing the 14 activity classes. 
The results showed that, almost without exception, bitstrings comprising structural, 
chemical and biological information, outperformed those based on chemical fingerprints 
alone. The number of compounds that had to be sampled during a search (the run length) in 
order to extract five lead compounds (where possible) was reduced by increasing the 
diversity of information contained in a string. Thus, the average run length fell from 42 for 
the MSI property set and 36 for the Daylight chemical fingerprints alone, to 27 when these 
sources of information were combined in a single binary Band Coded bitstring. The mean 
run lengths obtained for the MSI, Daylight and pooled MSUDaylight bitstrings, diverged as 
the number of hits found increased. This suggests that there could'be considerable benefit in 
using extended Band Coded bitstrings with very large databases. 
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RODENT TUMOR PROFILES INDUCED BY 536 CHEMICALS CARCINOGENS: 
AN INFORMATION INTENSIVE ANALYSIS 

R. Benigni, A. Pino and A. Giuliani 

Lab. Comparative Toxicology and Ecotoxicology 
Istituto Superiore di Sanith 
Rome - Italy 

The rodent carcinogenicity bioassay, generally considered the most reliable 
predictor of human cancer hazard, provide a wealth of data and information collected in 
large databases. The use of computerized data analysis techniques suitable for the 
exploration of these databases makes its investigation much more fruitful, and its results 
more reliable. In the past years, interrogation of such databases has focused mainly on: a) 
the relationship between mutagenicity and carcinogenicity; b) the role of toxicity and 
cellular proliferation on the chemical carcinogenesis; c)the organ specificity for the tumors 
induced by mutagens and nonmutagens, respectively; d) the relationship between chemical 
structure and biological activity. 

The aim of this work was to consider the carcinogenicity database and to find a 
formalization of the carcinogenicity activity - usually simplified in a -/+ - appropriate for 
SAR and QSAR studies. We also present a preliminary analysis of the relationship between 
type of tumor profile and chemical class/mode of action. 
The total number of rodent carcinogens was 536 derived from the NCUNTP' (185 
chemicals) and the Gold et a1.* database (351 chemicals). Each carcinogen was associated 
with the information on the induction of 44 tumor types (target organs) for a total of 176 
variables (44 tumor types x 4 experimental groups: male and female rat, male and female 
mouse). The final data matrix contained 536 rows (chemicals) and 176 variables (tumor 
types); the values of the variables were 1 (induction of tumor) and 0 (non induction). The 
analysis of the data was performed with the Kohonen Self-organizing Map3 (SOM) 
artificial Neural Network, that constructs maps of similarities among statistical units. 

From a preliminary comparison of the tumor distribution in the two subsets under 
study (chemicals bioassayed from NTP and the whole dataset) we can observe that the 
ratio of the tumors induced to number of chemicals was identical in the sets of the 
database, thus pointing to similar average characteiistics. In addition the relative 
distribution of tumors in the four experimental groups remained unchanged, so that the 
major characteristics are preserved. The main types of tumors are the same in the two 
sections (for example L -Liver, LU-Lung, UB-Urinary Bladder, ZG-Zymbal's Gland). This 
evidence of similarity is important to show that the NTP chemical carcinogenicity database 

416 



available at present is quite representative of the general trends of organ, species and sex 
specificity of chemical carcinogenicity. For most of these tumor there is a clear species 
specificity with L, LA (Liver Adenomas), and LU more frequent in mouse, whereas LN 
(Liver Nodules, MG (Mammary Gland), K (Kidney), are more frequent in rat. 

To visualize and quantify the relationships among patterns and tumor types, the 536 
x 176 data matrix was analyzed with SOM. First, the subset of 185 chemicals with 
complete NTP experimentation was analyzed; then, with a further SOM application, the 
remaining 351 chemicals were allocated in the map based on their similarity to the above 
carcinogens. In this way, each carcinogen (tumor pattern) was assigned two quantitative 
parameters (kl and k2).To highlight the structural features of the map, representatives of 
different zones (n=9 ) were sampled. Then the 176 types of tumor were considerd as 
statistical units, and the 185 NTP chemicals with complete experimentation as variables. 
We can observe that most often species specificity overcomes organ specificity. 

The possibility of practically applying the above results to QSAR studies has been 
examined in two preliminary analyses. In the first analyses we checked the hypothesis that 
similar structures would induce similar tumors profiles in the experimental animals. We 
selected from the 536 compounds, the chemicals belonging to three chemical/mode of 
action classes (among the most studied, numerically well represented and mechanistically 
well understood): a) aromatic ammines; b) natural electrophilic/alkylating agents; c) 
nitroarenes. From the observation of the distribution of the carcinogens within the three 
classes, based on the induction tumor profiles, appears that no obvious association exists 
between chemical/mode of action class and tumor profiles, while the three classes 
homogeneously span the entire space of tumor profiles. 

In summary this work produced a quantitative classification of tumor profiles, 
suitable for further QSAR studies and pointed to complicated relationships between 
chemicals clasdmode of action and tumor profiles. 

1. J.K. Selkirk and S.M. Soward. Compendium of abstracts from long-term cancer studies reported by the 

2. L.S. Gold , T.H. Slone, N.B. Manley, G. B. Garfinkel, E.S. Hudes, L. Rohrbach and B.N. Ames, The 
National Toxicology Program from 1976 to 1992, Environ. Health Perspect. 101 (1993) 

carcinogenic potency database: analyses of 4000 chronic animal cancer experiments published in the 
general litarature and by the U.S. National Cancer InstituteNational Toxicology Program, Environ. 
Health Perspect. 96:ll-15 (1991). 

3. T. Kohonen, Selforganization and Associative Memory, Springer-Verlag, New York, (1988) 
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COMPARISON OF SEVERAL LIGANDS FOR THE 5-HTID RECEPTOR 
USING THE KOHONEN SELF-ORGANIZING-MAPS TECHNIQUE 

Joachim PETIT, Daniel P. VERCALJTEREN 

Laboratoire de Physico-Chimie Informatique, Facultis Universitaires Notre- 
Dame de la Paix, Rue de Bruxelles, 61, B-5000 NAMUR (Belgium) 

INTRODUCTION 

The purpose of this present work is to improve our knowledge of the 5-HTID receptor, 
an important therapeutic target for the treatment of migraine. Actually, we wish to determine 
the required structural features to understand the behaviour of the ligandreceptor system, 
i.e., why some ligands present a high activity and a great selectivity. 

As in numerous biochemical systems, the three-dimensional (3D) structure of the 
receptor is still not well known and consequently Structure/Activity Relationships (SAR) 
studies of ligand candidates constitute a necessary and amenable approach to the problem. In 
order to characterize our set of ligands, we have chosen the molecular electrostatic potential 
(MEP) evaluated on the van der Waals (VDW) surface, which is well-known to be one of the 
responsible factor for the binding of a substrate molecule at the active site of the biological 
receptor. However, the 3D nature of the MEP contours makes difficult to visualize 
simultaneously their spatial distribution and values; hence, we can easily understand the 
advantage of the Kohonen self-organizing-maps (SOM) technique, which permits to tackle all 
the information at the same time. 

The presented results consist in the calculation of the Kohonen's maps for our set of 
ligands, which will be used further in order to perform SAR studies. 

SET OF STUDIED MOLECULES 

We collected, from the literature, a set of 13 ligand candidates for the 5-HTID receptor, 
for which we know the activity and selectivity (in comparison with the 5-HT, receptor) 
values. These molecules are as different as: 

"a 
TN'H (b) 

H o d ' s  o).,.p 'CH, F h - N A  o% 

H 

TN'H (b) 

Figure 1- Structural formulae of (a) 5-hydroxytryptamine, (b) methysergide, and (c) ketanserin. Figure 1- Structural formulae of (a) 5-hydroxytryptamine, (b) methysergide, and (c) ketanserin. 
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COMPUTATION AND MAPPING OF THE MEP 

The conformations of the molecules were optimized with the TRIPOS force field (they 
are not necessarily the most stable ones but are superimposable on the reference rigid 
template: methysergide). 

We generated points on the VDW envelope (with a density of 5 points per Angstrom') 
using the in-house KEMIT software, as shown for the 5-hydroxytryptamine (Fig. 2a). 

The MEP values were calculated at the RHF/SCF/6-31G** level of theory with the 
Gaussian94 software (tight SCF convergence criteria). The obtained results are visualized 
with KEMIT (Fig. 2b). 

The 2D maps of the 3D MEP contours were obtained using an adaptated version of the 
K-ctr (K=Kohonen, ctr=counter-propagation) program of Prof. J. Zupan of the Nat. Inst. of 
Chem. of Ljubljana. Based on the Kohonen's SOM technique, this program can perform a 
non-linear projection (mapping) of a data set of high dimension (3D, i . e . ,  the three Cartesian 
coordinates of points in our case) to a 2D space, conserving the topology of the information. 
We have opted for a toroidal mapping space, because of its continuous character. The 
visualization and color-coding, according to the MEP values, are obtained using Data 
Explorer (IBM) (Fig. 2c). 

(a) (b) (c) 

Figure 2- (a) Selected points at the VDW surface, (b) MEP values, and (c) mapping of the MEP, for 5- 
hydroxytryptamine. 

COMPARISON OF MAPS 

Applying the procedure described above to the entire set of molecules and and tiling the 
obtained maps, we can easily notice the real interest of that technique. Structurally different 
molecules, presenting similar behaviours regarding to the 5-HT,, and 5-HT2, receptors, lead 
to maps reproducing similar features. 

CONCLUSIONS AND OUTLOOK 

Here, we explained the procedure that we have settled in order to obtain MEP 2D-maps 
of several 5-HT1, candidate molecules. We have emphasized the real capabilities of the 
Kohonen SOM theory to facilitate the visualization and comparison of 3D-properties. 

Our future plans consist in developing a systematic and automated comparison method 
in order to bring to the fore the similarities and dissimilarities of the generated maps without 
preliminary superimposition of the molecules. 
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BINDING ENERGY STUDIES ON THE INTERACTION BETWEEN BERENIL 
DERIVATIVES AND THROMBIN AND THE B-DNA DODECAMER 
D(CGCGAATTCGCG)z 

Jfilio C. D. Lopes, Ramon K. da Rocha, Andrelly M. Jose, and Carlos A. 
Montanari 

NEQUIM - Departamento de Quimica - ICEx/UFMG 
Av. Ant8nio Carlos, 6627 - 3 1.270-901 Belo Horizonte, MG - Brazil 
E-mail: jlopes@dedalus.lcc.ufing.br 

INTRODUCTION 

An important mechanism for some drugs action is by their interaction with genetic 
material of infecting agent. The formation of drug-DNA complex obstructs the transcription 
as well DNA replication, inhibiting the multiplication of cell and production of hdamental 
proteins for its survival. One way for interaction is the drug insertion inside B-DNA's minor 
groove and for this a complementary isohelic conformation to DNA is necessary.' The 
diamidines like berenil show high aikity for AT rich sequences offering, thus, special 
interest in antiviruses, antitumor and antiprotozoal drug development. Recent studies show 
that pharmacological activity of these substances is correlated to their DNA-binding 
affinity.233 However, diamidines like pentamidine have an expressive effect on the blood 
coagulation system by thrombin inhibiti~n~,~, and berenil is a parabolic competitive thrombin 
inhibitor.6 Our goal is to propose new synthetic drugs with higher affinity towards DNA and 
lower one for thrombin. 

METHODOLOGY 

We have an on-going project on the study of drug-receptor interaction to suggest the 
synthesis of new drugs with higher potency against Leishmania sp.',' In order to obtain new 
derivatives of berenil that present higher a f i t y  for its receptor (DNA) we have performed 
binding energy calculations for some berenil analogues with DNA. In order to reduce the 
side effect of berenil the binding energy calculations for the same berenil analogues with 
thrombin have also been carried out. 

In the present communication our calculations followed a molecular mechanics 
approach making use of the AMBER force field within INSIGHTIIDISCOVER (MSI). 
The crystallographic structure of berenil complex with the dodecanucleotide 
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d(CGCGAATTCGCG)2 (PDB: 2DBE) and the crystallographic structure of a complex with 
a-thrombin and benzamidine (PDB: 1DWB) were used as starting point for calculations. 
Berenil and analogues studied are showed in Figure 1. 

Figure 1 .  Structure of the study compounds. A: Berenil R = H 1, ethynilic derivative R = CCH 2, ethylic 
derivative R = CH2CH3 3, perfluoroethylic derivative R = CF2CF3 4 and acetonylic derivative R = 
CH2COCH3 5. B: Dihydroimidazolic derivative 6. 

There are sixteen planar conformations for each analogue 2-5 that have been 
constructed and docked into DNA and thrombin. After minimization of the complexes, 
DNA (or thrombin) and drug were minimized separately. The interaction and binding 
energies were calculated using the method showed below. 

) Einteraction- Ecomplex (Ereceptor-complex conformation + Eligand-complex conformation 
- 

Ebinding= Ecomplex (Ereceptor-global minimum + Eligand-global minimum ) 

RESULTS 

All derivatives displayed more negative interaction energy than berenil itseE toward 
DNA. The derivatives that have the more negative binding energy were 5 < 6 < 4 < 1 < 3 < 
2. All derivatives have more positive interaction energy than berenil itself, toward thrombin. 
The binding energy in thrombin complexes were positives for all derivatives. The derivatives 
that showed the more positive binding energy were 3 > 2 > 5 > 6 > 1 > 4. 

The derivatives 5 and 6 showed higher af€inity to DNA in relation to the berenil. On 
other hand the same derivatives showed poorer affinity for thrombin in relation to the 
berenil. We concluded that the derivatives 5 and 6 are the more suitable to encompass our 
objectives. Nowadays, we are working on the synthesis of these new berenil derivatives. 
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A COMPARISON OF AB ZNZTZO, SEMI-EMPIRICAL, AND MOLECULAR 
MECHANICS APPROACHES TO COMPUTE MOLECULAR GEOMETRIES AND 
ELECTROSTATIC DESCRIPTORS OF HETEROATOMIC RING FRAGMENTS 
OBSERVED IN DRUGS MOLECULES 

G. Longfils', F. Ooms', J. Wouters', A. Olivier2, M. Sevrin', P. George2, F. 
Durant' 

'Laboratoire de Chimie MolCculaire Structurale, FacultCs Universitaires 

2CNS Research Department, SynthClabo Recherche, 3 1, Av. Paul Vaillant 
Notre-Dame de la Paix, Namur, Belgium 

Couturier, 92200 Bagneux, France 

INTRODUCTION 

In order to compare physico-chemical properties of a set of heterocycles (figure l.), 
four parameters have been calculated for each heterocyclic rings. These variables were 
selected on the basis of their potential involvement in the molecular drug-receptor 
recognition. Dipole moment, atomic charges, orbital energies (especially the HOMO and 
LUMO energies) and molecular electrostatic potential (PEM) were selected to determine 
the most appropriate calculation methods acceptable for this purpose. Moreover, the 
geometry optimization procedure was also investigated. 

Furan Pyrrole Thiophene lsoxazole Imldazole Thiazoie Oxazolidone Thioxotetra- Tetrazoie Pyridine Pyrimldine Pyrazine Benzoluran 
hydrooxazole 

Figurel. Representation of the heterocycles used in this study. 

RESULTS 

Optimization geometries procedures 

The optimization procedure has been investigated by ab initio (STO-3G, 3-21G, 6- 
31G and 6-31G* basis set), semi-empirical (CNDO, MNDO and AM1) and molecular 
mechanic (CFF95 forcefield ) methods. In order to determine the method giving the best 
compromise between the accuracy of the results and the calculation time, we used 2- 
oxazolidone for which X-ray results were available for comparison. Bond lengths and 
angles of oxazolidone were determined by these three methods and compared to the 
crystallographic structure. 
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The analysis of the bond lengths (A) and angles (") shows that semi-empirical 
methods as well as the STO-3G basis set are less appropriate to optimize the geometry 
correctly. This fact is clearly shown by the hybridization of the nitrogen atom of the 
oxazolidone. This atom adopts an sp2 hybridization in the X-ray structure as given by the 
sum of the bond angles (359,4") while with the semi-empirical and ab initio STO-3G 
(335,s") basis set, the N atom adopts an sp3 hybridization. On the other hand, the bond 
lengths and angles obtained by the ab initio 3-21G, 6-31G and 631G* basis set are very 
close to those obtained experimentally. Results obtained by molecular mechanics are also 
very close to the X-ray structure. 

Similar results are observed for the other heterocycles studied. 

I 2 1  

2 + + * + +  2 1 6 8 ,  

O 1  P 

Properties calculation procedure 

2 4 0 8 1  

O Z  + 

0 2 4 6 8 1 0  

Figure 2. Representation of molecular property versus basis set: MNDO ( l ) ,  CNDO (2), AM1 (3), STO-3G 
(4), 3-21G (3, 4-31G (6), 6-31G (7), 6-31G* (8), (left) of the HOMO energies of thiophene, (middle) the 
dipole moment of pyrrole and (right) the ChelpG charge on the N of the pyridine 

The HOMO energies (left) and dipole moment (middle) are similar from 3-21G until 
6-31G*. The semi-empirical methods as well as STO-36 are less suitable for the 
calculation of those properties (figure2). This is demonstrated by the fact that the 
properties obtained with these methods are quite different when compared with more 
sophisticated basis set (6-31G"). For the charges (right), the ab initio methods present a 
slight minimum for the 4-31G and 6-31G basis set. Similar results are obtained for the 
other heterocycles studied here. 

That observation suggests that the 6-31G* basis is a good method for the calculation 
of electrostatic properties. The choice of this basis set is also necessary for compounds 
containing a heavy atom like thiophene do. Moreover; these results are also convenient for 
the determination of properties such as the topology of the MEP. 

For bigger systems the 3-21G(*) basis set is suitable to derive such properties. 

CONCLUSIONS 

This study has shown that: 
-Geometry optimization with molecular mechanic (CFF95 forcefield) and the 3- 

21G(*) or 6-31G(*) ab initio methods give results similar to those observed in the X-ray 
structure. 

-6-3 1G* basis is the most appropriate method to calculate electronic properties like 
HOMO -LUMO energies, MEP, dipole moment and charges. 

Further studies will be performed on larger sets of molecules using molecular 
mechanics (CFF95) which is the most rapid and accurate method for optimization and 
6-3 1G* for properties calculation. 

483 



ELABORATION OF AN INTERACTION MODEL BEWEXN ZOLPIDEM AND THE 

MUTAGENESIS 
O, MODULATORY SITE OF GABA, RECEPTOR USING SITE-DIRECTED 

Qlivier A.l, Renard S2, Even Y.2, Besnard F.2, Graham D.2, Sevrim M.', 
George P.' 

Synthelabo Recherche, 3 1, Avenue Paul Vaillant-Couturier 92220 Bagneux 
' CNS Research Department 

Genomic Biology Department 

INTRODUCTION 

Molecular cloning experiments have revealed the existence of five dierent families (a,,, 
Y , - ~  8, and p,-b of subunits which constitute the GABA, receptor complex. The functional 

brain receptor is an oligomer composed of a combmaison of a, p and y subunits. The 
pharmacology of GABA, receptor subtypes critically depends on the particular a subunit 
isoform that is present in the complex. The aim of this work was to elaborate a model of 
interaction between zolpidem, an o1 selective ligand (high anity for the a,p2y2 subunit 
combination versus a5p2y2 ) and the a, subunit of the o modulatory site present on the GABA, 
receptor complex. 

Two kind of approaches were used to elaborate this model : 
1) Evaluation of physico-chemical properties of zolpidem implicated in the interactions 

2) Sequence analysis of the a subunits and point mutations on the a5 subunit. 
with its target 

STEREOELECTRONIC AND CONFORMATIONAL PROPERTIES OF ZOLPIDEM 

In addition to NMR conformational studies of zolpidem, I3C NMR shifts of 4-phenyl 
substituted carbon atoms were identified as an index of the a b i i  of the 2-phenyl to be involved 
in a 7t-H interaction. These studies led to a better understanding of the physico-chemical 
properties of zolpidem and allow us to propose a pharmacophoric model for zolpidem. This is 
composed of four zones : two hydrogen acceptor sites, one localized on N, of zolpidem and 
the other on the carbonyl of the acetamide side chain. This latter is localized at 2A above the 
plane of the heterocycle, close to the pyridine ring and is implicated in the selectivity of 
zolpidem for the o1 site ; an hydrophobic interaction zone on the pyridine ring and a charge 
transfer interaction as IT-IT or x-H localized on the phenyle moeity in position 2. 
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ELABORATION OF AN INTERACTION MODEL 

In order to identifl those amino acids of the a, subunit that interact with zolpidem, 
sequence alignment of GABA, receptor a-subunits was realized. This analysis suggested two 
regions localised between the Cys-Cys loop and the first transmembrane segment that varied 
from one subunit to another, in particular between the a1 and a5 subunits and which could 
account for the selectivity of zolpidem for the a, subunit. To evaluate this hypothesis, chimaeric 
receptors were constructed with aJal subunits coexpressed with p2 and y2 subunits and the 
ailimty of zolpidem was evalwtd. From the binding profile of zolpidem to chimaeric receptors, 
it was observed that mutation of at least two amino acid residues of the a, subunit are necessary 
to endow the mutated receptor with a high-affinity for zolpidem. These studies allow us to 
propose a hypothetical interaction model between zolpidem and the o1 modulatory binding site 
(Figure 1). The interaction model for zolpidem and ol site is base on the following 
hypotheses : aI histidme 101 and a, serine 204 interact respectively with the N, of imidazole 
ring and the carbonyl of the acetamide side chain ; hydrophobic aminoacids in the region around 
a1 threonine 162 could interact with pyrimidine ring of zolpidem ; and finally aminoacids of y2 
could interact with the phenyl in position 2 of the heterocycle of zolpidem. 

Figure 1. Interaction model between zolpidem and the 0, moctulatory site. 
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SLIPPER - A NEW PROGRAM FOR WATER SOLUBILITY, LIPOPHILICITY 
AND PERMEABILITY PREDICTION 

0. A. Raevsky, E. P. Trepalina, and S .  V. Trepalin 

Institute of Physiologically Active Compounds of Russian Academy of Sciences 
142432, Chernogolovka, Moscow Region, Russia 

It is well-known that chemicals absorption, pharmacokinetics, protein binding, uptake in 
the brain and to certain extent hydrophobic drug-receptor interactions depends on 
lipophilicity, aqeous solubility and liposome permeability of compounds. That is why 
there are many approaches and commercially available programs for prediction these 
values. The major part of such approaches is based on fragmental or atom-based 
procedures. 
It has been proposed that lipophilicity encodes two major structural contributions: a 
volume-related term (describing steric bulk effects) and a term reflecting such interactions 
as dippole-dipole and hydrogen bonding. This approach has been laid by us in the basis of 
quantitative description of water solubility, octanol-water partition and permeability. First 
our researches in this field have been published in 2-4. 
The distribution coefficient octanol-water logP is predicted on the basis of the following 
formula: 

where CCaO is the sum of overall free energy H-bond factors for all acceptor atoms in 
molecule, a is a molecular polarizability, calculated in accordance to 5 .  
Prediction of solubility is carring out by using the equation (joint research with Dr. K.-J. 
Schaper, Borstel Research Institute, FRG): 

where CCd is the sum of free energy H-bond factors for all donor atoms in molecule. 
A new program SLIPPER (Solubility, LIPophilicity, PERmeability) may be used for 
calculation aqeous solubility, lipophilicity and permeability. These properties depend on 
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pH of solvents and so in addition to the prediction all of these properties for neutral 
structures SLIPPER calculates these parameters for ionized structures participating in 
equlibtria and complete pH-dependent profiles of solubility and lipophilicity (by using 
corresponding formula for acid-bases equilibria 6, . 
Here we present the main features of the program SLIPPER briefly. For calculation pH- 
dependent octanol-water partition coefficient and water solubility profiles user should 
create a chemical structure of interest in the Structure Editor of the program or import it to 
a designated library using *.sdf file. The logP and logsw for neutral forms are calculated 
upon closing the Structure Editor and then exiting the Data window or upon completion the 
Import procedure ( if in *.sdf file was only neutral form). In the Data window you can also 
add the other information: e.g., name, pKa values (when it is known or easily estimated) 
then after saving this information and closing the window SLIPPER will also calculate both 
values of lipophilicity and solubility for ionized forms. User may also get this information 
as a plot of logD-pH dependence (see fig.). By sliding the cursor along the profile curves 
the corresponding values of logP or logSw at any pH will be obtained. 

Fig. pH-dependent profiles of lipophilicity and water solubility for pheniramine. 

Next version of the program SLIPPER will also predict pKa values and liposome 
permeability. 
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CORRELATION OF INTESTINAL DRUG PERMEABILITY IN HUMANS (IN VIVO) WITH 
EXPERIMENTALLY AND THEORETICALLY DERIVED PARAMETERS 

Anders Karlkn', Susanne Winiwarter', Nicholas Bonham', Hans Lennernas', 
Anders Hallberg' 

Dept of Organic Pharmaceutical Chemistry and 
Dept of Pharmacy, Uppsala Biomedical Centre, Uppsala University, 
SE-751 23 Uppsala, Sweden 

INTRODUCTION 

The extent of intestinal drug absorption, often described by the fraction of drug 
absorbed (Fa), is governed by several different processes: (a) doseldissolution ratio, (b) 
chemical degradation and/or metabolism in the lumen, (c) complex binding in the lumen, 
intestinal transit, and (d) effective permeability (Pea across the intestinal mucosa. In many 
cases Pefj is considered to be the rate-limiting step in the overall absorption process and is 
therefore an interesting parameter in bioavailability studies. 

However, due to experimental difficulties, very few correlation studies have been 
performed using Peffvalues of drugs and nutrients determined in vivo in the human intestine. 
As part of constructing a Biophmaceutical Classification System for oral immediate-release 
products the human jejunal Peff values for 22 compounds have been determined using a 
recently introduced experimental technique which enables direct estimation of the local 
absorption rate in humans. 

The aim of the present investigation was to derive a QSAR equation by use of 
multivariate modelling which, based on these human in vivo Peff values and relevant 
physicochemical descriptors of the above set of compounds, will allow for the prediction of 
passive absorption of drugs in the human intestine. 

METHODS 
Two compound data sets were used in this study: Data set I consists of 22 

compounds for which human Peff values have been determined. At least three different routes 
of transportation exists for these drugs. Fifteen of the compounds are passively absorbed and 
these form the basis for this study. Data set 2 consists of the 22 drugs from data set 1 
combined with a set of 136 drugs derived from an internet database of the Pomona College 
Medicinal Chemistry Project (http://clogP.pomona.edu/medchemlchemlclogp/) giving 
altogether 158 compounds. 
Data set 2 was used in the molecular diversity study in order to ensure that the molecules in 
data set 1 are representative of drugs in general. 

Lipopholicity measurements. Determinations of pKa, log P and log Pion values for 
the com ounds in data set 1 were performed by use of the Sirius PCAlOl potentiometric 
system ?Based on these experiments log D values were calculated at pH 5.5, 6.5 and 7.4. 
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Theoretical molecular descriptors. The 22 drugs in data set 1 were built in their 
neutral form in an extended conformation using SYBYL ’. All structures were minimized 
with the AM1 method4 using the keywords PRECISE, X Y Z  and NOMM. Fourteen 
theoretical descriptors were used in this study: molecular weight ( M W ) ,  molecular volume 
(V), molecular surface area (S), ovality (0), NATOM (number of atoms), E-HOMO, 
E-LUMO, hardness (H), dipole moment (DM), polar surface area (PSA), hydrogen bond 
donors (HBD, number of hydrogens connected to N- and 0-atoms) and acceptors (HBA, 
number of 0- and N-atoms in an appropriate functional group). The sum of HBD and HBA 
was denoted HB. ClogP values for the molecules in data set 1 were obtained from the drug 
compendium in Comprehensive Medicinal Chemistry (eds Hansch, Sammes and Taylor, 
1990). 

STRATEGY 

The following strategy was used to obtain statistically sound models that can be 
used to predict passive absorption of drugs in human from physicochemical data: 

1. Characterization of the physicochemical properties of the compounds in data set 1 with 
experimentally determined log P and log D values and theoretically calculated molecular 
descriptors. 

2. Calculation of the theoretical molecular descriptors also for the compounds in data set 2 
and performance of a Principal Component Analysis (PCA) using SIMCA’ on all 
theoretical data in order to check the molecular diversity of the 22 compounds of data set 
1. 

3 .  Selection of a training and a test set of compounds from the passively absorbed 
compounds in data set 1 according to statistical design principles based on the PCA 
above. 

4. Investigation of the relationship between physicochemical variables and human in vivo 
permeability data of the training set compounds by PLS analysis. 

5 ,  Evaluation of the resulting PLS models by use of the test set of compounds. 
6. Calculating final models based on both test and training set compounds. 

RESULTS 

We were able to determine the pKa values for 18 and log P values for 15 of the 22 
compounds by use of the potentiometric method. In addition to these experimentally 
determined values 14 theoretical descriptors were calculated. Based on the score plot obtained 
from the PCA it could be shown that the 22 compounds of data set 1 are reasonably well 
separated implying that they are representative of drugs in general (step 2) .  Based on 
statistical design principle a training (n=5) and a test (n=8) set of passively absorbed 
compounds were selected (step 3). Several PLS models with good R2 and Q2 values could be 
developed by use of the training set compounds (step 4). These models were also evaluated 
by predicting log Pefffor the test set compounds and determining the mean residuals for each 
model (step 5). Three models were selected as especially interesting and final models were 
calculated based on the 13 passively absorbed compounds for which all data existed (step 6). 
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A CRITICAL APPRAISAL OF LOGP CALCULATION PROCEDURES USING 

COEFFICIENTS AND HPLC CAPACITY FACTORS FOR A SERIES OF INDOLE 
EXPERIMENTAL OCTANOL-WATER AND CYCLOHEXANE-WATER PARTITION 

CONTAINING DERIVATIVES OF 1,3,4-THIADIAZOLE AND 1,2,4-TRIAZOLE 

Athanasia Varvaresou, Anna Tsantili-Kakoulidou, Theodora Siatra-Papastaikoudi 

Department of Pharmacy, Division of Pharmaceutical Chemistry, University of Athens, 
Panepistimiopoli , Zografou, 157 7 1, Athens, Greece 

INTRODUCTION 

The accumulation of several heteroatoms in hybrid molecules may affect the safe 
prediction of lipophilicity, while such compounds may differentiate in their hydrogen 
bonding capability, also important in the manifestation of drug action. The title 
compounds, which belong to the general types 1,2,3,4 (Figure 1) have shown CNS and 
antimicrobial activities.''2 In this study their lipophilicity was investigated and compared to 
the values obtained by different calculative procedures. Their hydrogen bonding capability 
was also assessed through the AlogP approach. 

N CH3 n H 
I 

R 
1 2 3 4 

Figure 1. Structures of the investigated compounds 

MATERIAL AND METHODS 

High Performance Liquid Chromatography was applied for the determination of 
extrapolated logkw values as lipophilicity in dice^.^ Partition coefficients in octanol-water 
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(logP,,t) and cyclohexane water (logPC,,) were directly measured by the shaking flask 
method. Calculations of octanol-water logP (logP,,~,) were performed according to: 
modified Rekker’s (logPcdr), modified Ghose-Crippen (logPK) and Broto’s (logPB, only 
for triazole derivatives) systems, implemented in the program PrologP, Suzuki-Kudo 
system <logPsK) using Chemicalc-2 and ClogP (only for thiadiazole derivatives). 

RESULTS AND DISCUSSSION 

Extrapolated logk, values are found practically to coincide with octanol-water logP 
values. In both sets of data a lower than expected lipophilicity was observed for triazoles 
when R is napthalene, due to conformation effects. This effect cannot be considered by any 
of the calculation systems. Compounds of type 3 and 4 show the same or slightly lower 
lipophilicity than compounds of type 1 and 2. This observation is correctly reflected in 
logPm and 10gPSK. In Rekker’s, ClopP and Broto’s systems the presence of the extra CH3 
group and the hydrogen on the indole nitrogen considerably raise the lipophilicity. In 
Suzuki-Kudo system the thiadiazole derivatives are underestimated. Introduction of 
appropriate indicator variables leads to very good correlations between logk, (or logP,,) 
and logP,d, with r > 0.96 for all calculation systems. Omitting the napthalene derivatives of 
the triazoles, the regressor coefficients of logP,d, shift towards 1 for all calculation 
systems, the intercept however remains relatively large in most cases. 

Partially calculated logPcyc according to Rekker’s available fragmental constants are 
generally higher than the experimental values. AlogP values are - 0.5 for the triazole 
derivatives. However, when X is -N02, AlogP increases reaching the value of 2. For the 
thiadiazole derivatives AlogP is higher than for the corresponding triazoles, with values - 
1, due to the presence of the aromatic -NH group. 
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DETERMINATION OF ACCURATE THERMODYNAMICS OF BINDING FOR 
PROTEINASE-INHIBITOR INTERACTIONS 
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Marbacher Weg 6,35032 Marburg/Germany 

The affinity of a low-molecular weight ligand to a macromolecular target protein is 
usually described by the binding constant Ki that typically corresponds to a negative free 
energy of binding of 10-80 kJ/mol in aqueous solution. It comprises enthalpic and entropic 
contributions that arise from several underlying phenomena. To better understand and 
subsequently describe the binding process detailed measurements of these quantities are 
required. 

The temperature-dependent measurement of K, allows one to elucidate thermodynamic 
properties via van’t Hoff plots, however since heat capacity is likely to change with 
temperature also AH and AS will be temperature-dependent.’ As an alternative, isothermal 
titration calorimetry (ITC) provides direct access of the heat produced during the binding 
process.’ The shape of the titration curve unravels the dissociation constant K D . ~  We 
performed several measurements of KD with various ligand binding either to thrombin, 
trypsin or thermolysin. In all cases we could demonstrate that KD’S obtained by ITC 
correspond within the experimental errors to Ki values in literature resulting from 
photometric assays. We altered buffer and salt conditions, however no effect of affinity 
could be detected. 

The integrated heat measured during an ITC experiment comprises all changes in 
enthalpy, among them the enthalpy of binding. The binding of napsagatran (1) to trypsin 
and thrombin shows considerable differences in AH depending on the buffer conditions 
used. Three different buffers, tris, hepes and pyrophosphate have been applied. They show 
decreasing heat of protonation. Buffer dependence points to the release or capture of 
protons upon ligand binding. Potentiometric titrations of the three protonatable groups 
reveal three different pKa values (Fig. 1). Most likely the carboxy group uptakes a proton 
during binding. To verify this assumption, the ethyl ester of napsagatran has been studied 
and obviously no protonation step occurs during binding. The related thrombin inhibitor 
CRC 220 ( 2 )  also comprises three functional groups likely to be involved in protonation 
steps. Similar pKa values have been detected. However, no buffer dependence is observed 
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for this ligand. This surprising difference in behavior of (1) and (2) can be explained with 
respect to their distinct binding modes to thrombin. According to the crystal structure of 
napsagatran, the carboxy group is binding towards Ser 195 and the oxyanion hole.4 Thus, it 
is fully buried into the binding site and hydrogen-bonded to His 57, Ser 195 and a 
neighboring water molecule. The captured proton is used in this H-bonding network. In 
contrast, the aspartate of CRC 220 orients to the rim of the binding pocket and remains 
largely solvent exposed only forming a hydrogen bound to the NH of Gly 219.5 The local 
dielectric conditions experienced by the carboxy groups in the two inhibitors induce in the 
case of napsagatran such strong pKa shifts that protonation occurs. This shift spans several 
orders of magnitude since under aqueous conditions with a pKa of 3.40 napsagatran will be 
clearly deprotonated at a buffer pH of 7.8. 

Figure 1. Potentiometric titration of napsagatran (1, left) and CRC 220 (2, right) reveal three different pKa 
values for the protonable groups 

The present results demonstrate that lTC ligand binding studies require measurements 
from different buffer conditions in order to detect protonatioddeprotonation along with 
ligand binding. This is a first step to decompose the measured integral heat into different 
contributions comprising among others the enthalpy of binding. 
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