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Problem A.1
@ AB {1 1o 4}:[1
2 1)1 3] |1
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1 1|1 3] |1 7
(© A+B:_1 _+_0 4_:_1
2 1] [1 3] |
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(d) A—B:_ IRk 3_:_
det A= (D)D) - (D)(2) =1
©  detB = (0)(3)-1)(4) =4
. 1 -1
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@ A _detA{ 2 —1}
Verify: AlA= -1
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Problem A.2

(a)

12 3 1

A=[3 2 1| b=|2| detA=-8
101 3
1231
D=[Ab]=|32 1 2
1011

subtract row 1 from row 3

1231
D={3 21 2 det A=-8
0-2-2 0

multiply row 1 by 3 and subtract from row 2

1 2 3 1
D=0 -4 -8 -1 det A=-8
0-2-2 0

multiply row 2 by % and subtract from row 3

1 2 3 1

D=|0 -4 -8 -1 det A=-8
0O 0 2 1/2

Thus,

1 2 3][x][ 1

0 4 -8||x|=-1

0 0 2||x 1/2
2x3:1:>x3:E
2 4

—4X, —8X; =—4xX, —8(1/4) =—1=x, =-1/4
X, +2X%, +3%, =% +2(-1/4)+3(1/4) =1



=x =3/4
x=[3/4 -1/4 1/4]

() x=A'
2 2 27
2 -2 2
i 4 8 4 -1/4 1/4 1/2
Alzgjtﬁ:_ 8_ | v4 14 -1
¢ B 14 —1/4 1/2
-1/4 1/4 1/2][1 3/4
x=| 1/4 1/4 -1 = |-1/4
1/4 -1/4 1/2] |1 1/4
1 2 3] 6
() x=[2 2 1|+detA = — = 3/4
1 0 1]
2
X, =13 2 1|+detA = = " -1/4
_l -
1 2 1] ,
X, =3 2 2|«detA = —= =1/4
10 1 -
Problem A.3
2, =3X% + X%
301
Z,=X+X,+%X; orz=Ax ,A={1 1 1
021

Z, =2%, + X,

Solve x, =17 -3x
Z,=X+X+2—-3X =X, —2X +2,



1 1 1 1 3
Xy ="Z,— "X ="2,— -7, +- X
2 2 2 2 2

1 1 3
Then z, :523—;zl+;x1—2x1+zl

X, =2,—-22,+1,
Now X, =2 —-3x =2 —-3(z,-22,+1,)

Xy, =—22, +62, - 37,

1 1
and, X, =-2Z;—-X,
2 2

X, =2,—32,+22,

1 =2 1
or, X=|1 -3 21z
2 6 -3
Also, x=Az
A 1 1 27 [1 =2 1
A*:[—Z‘tA}: 2 3 6| =| 1 -3
e
1 -2 3 2 6 -3
—1

This checks with the result obtained using algebraic manipulation.

Problem A.4

‘xuz(xTx)

X[ (12 412+ 22 )l/2 =6=245

1/2

X, = (22 +07+22 ) =\5=224

1
x'X,=[112]/0|=5



XX, =|1[102]=

N R e
o o o
NG O

1 0 0]t
x]Ax, =[112]l0 2 0|[1|=[128]1|=19
0 0 42

;
Let x3:[x§ X x§] . Then XX, = X5+ X +2x5
Let x;=X; =1. Then x/X,=0=x; =-1

x; =[1 1 —1]" is orthogonal to x,.

1 1 1
det [x,ix,ix;]=detf1 0 1|=3 (=0)
2 2 -1

X, X, and x, are linearly independent.

Problem A.5
1 1 2
A=-1 0 1
-2 -3 1

Using minors of the second row,

2 2

det A= (-D)(-"| | [+ OCD™?) 1‘
1
D _3‘

=1(1+6)+0+(-1)(-3+2)=8

Using minors of the third column,



-1 0 1 1
det A= (2)(-D)** 1)(-1)**
tA=@0" _3‘+(>( | _3‘
11
1 _13+3
HOED™) O‘

=2(3+0)+(-D(-3+2)+(D)(0+1) =8

Problem A.6

(a) A:{O 1} A—M:{_’1 1}
1 4 1 4-2

(b)

det(A— A1) =—A(4— 2)—1= A2 —41-1=0
Eigenvalues are 4, =2++/5 and 2, = 2—+/5.

The eigenvector v, =[ v} v} T corresponding to 4, is given by

0 1]v v Let v, =1 1
L 4} |=(2+5)| 2 PN
Vi Vi | =v2=2+45 2++/5

The eigenvector v, :[vi v§]T corresponding to 4, is

0 1]v; v, Let v,=1 1
R e

1 4|2 V2| =vi=2-5 2-\5

2
A=|0 det(A— A1) =(2-A)B-A)(2-1) =0
0

o w o
N O O

—=eigenvaluesare 4, =2,4,=3
and A, =2.

The eigenvector v, correspondingto 4, =2 is



0] |v V) 2v; = 2v; = v, =arbitrary

0 [V =2 |V |= 3/ =2/ =V =0

2| |V 2v; =2v? = v} =arbitrary
T

Say v, =[10 1]

The eigenvector v, correspondingto 4, =3 is

0l v, v, 2v; =3v, =V, =0
0| |V5|=3|V)|= 3V:=3v.= V. =arbitrary
2 2v; =3V =V =0

Say v, =[010]

The eigenvector v, corresponding to A, =2 is (by comparison with v,), v;,v; arbitrary,
and v2=0. Say v,=[101]".

Problem A.7

A 2x2 symmetric matrix has the form {a“ aﬂ}

a12 a22

The eigenvalues are the roots of the equation

(ﬂ’_ail)(ﬂ_azz)_aﬂz =0, or
A% - (au + azz)/ﬁt +8,,3,, _a122 =0

The discriminant of this quadratic equation is
D = (8, +8y,)" —4(ayd, —ay,) =(a, —a,)" +ay

Since D is the sum of the squares of two real numbers, it cannot be negative. Therefore

ay, aiz}

the eigenvalues are real. Consider the asymmetric matrix {
a21 a22

Its eigenvalues are the roots of the equation

(A—ay)(A—ay,)—a,8, =0, or



A% —(ay, +8y,)A+a,,8, —a,8, =0

The discriminant of this quadratic equation is

D = (a, +a,)° —4(a,d,, —3,3;,)
= (ay —ay,)* +4a,3,

For the eigenvalues to be complex, we must have D < 0. Thus an asymmetric matrix
whose elements satisfy the condition

(ay —a,,)" +4a,3, <0

has complex eigenvalues.
Problem A.8

The LU decomposition algorithm used here is from B.A. Finlayson, “Nonlinear Analysis
in chemical Engineering,” McGraw Hill, NY, 1980.

1
A=|2
1

o w P
=)

Multiply row 1 by —2 and add to row 2, and multiply row 1 by —1 and add to row 3.
Then,

1
AY=10 1 1
0 -1 1

Multiply row 2 by 1 and add to row 3. Then,

1
A® =10
0

o Kk
N PO

Now,



U=A®@=0 1 candL=[2 1
0 1 -1
- 2 3" [100
El:%%Tj: 1 1l =|—2 10
e
0 0 311
1
1 0 0][1 1
b=L"=-2 1 0||1|=|-1
31 1]|2 0
(1 1 0] [x 1
Ux=b=|0 1 1]||x,|=|-1
0 0 2] |x 0

Fromrow 3, 2X,=0=x,=0
Fromrow 2, X, + X, =-1=Xx,=-1
Fromrow 1, X, +X, =1=x =2

x=[2 -1 0]
Problem A.9
91:)(12"')(22_8: 92:X1X2_4

. 09, /0% 09,10%, | 2% 2%,
Clog, /o agylax, | [ % %

Starting point x" = [O l]T. Note: superscript denotes iteration number.

Iteration 1:



gi:_7 Jt= 0 2 JAXE = — 911
g, =—4 10 0,

= AX =4, AX; =35

AC =X+ A =4 X2 =X+ A =45

Iteration 2:
gf:28.25 32 8 9 J2 A5 = gf

= AX} =-26/17, AX; =-30.25/17
X2 =X+ Ax? = 2.47059x; = X2 + Ax; = 2.72059

Iteration 3:

07 =5.50541 35 494118 5.44118
03 =2.72145 2.72059 2.47059

AX} =-0.46475, AX; =-0.58976
x} =2.00584, x; =2.13083

Iteration 4:

g/ =0.56383 54 4.01168 4.26166
g7 =0.27410 ~12.13083 2.00584

AX! =-0.03594, Ax’ =-0.09847
x® =1.96990, X; =2.03236

Iteration 5:

g° =0.01099
g° =0.00355

We stop now because g; and g; are “small enough”. The solution is
x =[1.96990 2.03236]' . The exact solution is [2 2] .

10



If x'=[4 4]T is the starting point, then

8 8 .
le{4 4} . Inthis case Ax; and Ax;

cannot be uniquely determined. Thus, [4 4]T cannot be used as a starting point for the
Newton-Raphson method.

11



SOLUTIONS MANUAL

CHAPTER 1

Problem 1.1

Minimize: f(x,y) = xy

Subject to: (x-8) (y-12) = 300
Total no. of variables = 2

No. of equality constraints = 1
No. of degrees of freedom =1

Independent variable: y

Solution:
Eliminate x using the equality constraint

Xy —12x—-8y+96 =300

X_204+8y
y-12
8y* +204
fry) =22
y-12

of _ (16y+204)(y —12)—(8y* +204y) _

Scm

4em

300 om?

4em

6cm

A

0

oy (y-12)°

(16y +204)(y —12) — (8y? +204y) =0

8y* —192y 2448 =0
y=33.21cm,-9.21cm

Neglecting the physically unrealizable negative value,

y =33.21cm

- _ 204-8(3321)
33.21-12

X =22.14 cm

A




Alternative Solution:
Minimize:
St. wz = 300

area =wz+ 8z+ (2w + 96)

=300 +8z12 (#j +96

d(area) = 0=28+ 3600 (?j =0
72 = 450
7'=+21.21
w'=14.14

X"=8+14.14=22.14
y' =12 +21.21=33.21

area=(w+38) (z+12)

4> K4

e——mn—

€o~3)

e— W—

Ke

Problem 1.2

Since thickness is uniform, we just need to minimize the surface area of the inside of the

box.

Minimize: f=Db? + 4bh
Subject to: b*h = 1000

Total no. of variables = 2
No. of equality constraints = 1
No. of degrees of freedom =1
Independent variable = b

Solution:

Eliminate h using the equality constraint

1000

th

f =p2+ 220
b

:T\b
|
|
e e — - N
\
N
AN
fe b |
b>0
h>0



oy, 4000
db b

2b®—4000=0
b=12.6 cm

2
{ib: =2+8000/b*>>0ath =12.6}(n0t reqd.) = minimum.
b"=12.6 cm

. 1000

 (12.6)?
h"=6.3 cm

Note: Another viewpoint. Let At = thickness of material. If by material, the volume is
used, then the volume of a side is (b) (At) (h) and of the bottom is (b) (At) (b) so that the

objective function would be Alt'

Problem 1.3
Maximize: A =bh 4

2
Subject to: h = 10-(b/2)? and (-gj

Total no. of variables = 2
No. of equality constraints = 1 T
No. of degrees of freedom =1 h
Independent variable: b l
< J + %
T b )
Solution:

A=Db(10-(b/2)*)=10b-b*/4
dA/db=10-3b*/4=0
b =3.65
{dzA/db2 =-6b/4<0ath = 3.65} (not reqd.) = maximum
h"=10-(3.65/2)* =6.67
A" =(3.65)(6.67) = 24.35
Note: It is easier to maximize ¥ of the rectangle as it is symmetric, and b>0, h > 0.




Problem 1.4

Let X, =X, +h, X,=%+2h
Let f=B,+B,(X—X))+B,(Xx=X)(X=%)
(%) = fo =By + B (X — %) + B, (X = %) (% — %)

B, =f,
f(x1): Bo+Bl(X1_X0)+Bz(X1_Xo)(X1_X1): fl
B = fl_BO _ fl_fO
X, — X%, h

f (Xz) = Bo + Bl(XZ _Xo) + Bz(xz _Xo)(xz _X1) = fz

fz_Bo_Bi(Xz_Xo) _ f2_2f1+ fo

B, = >
(Xz - Xo)(xz - X1) 2h

Problem 1.5

Minimize d = X2 +y? Y
Subject to y =2x*+3x+1
Total no. of variables = 2

No. of equality constraints = 1

No. of degrees of freedom =1 N
Independent variable: x

To avoid using the square root, minimizing d is the same as minimizing

D=d?=x"+y?=x*+(2x* +3x +1)

=4x* +12x% +14x% +6x +1

dD/dx =16x® +36x> +28x+6=0
8x°3 +18x° +14x+3=0



You need solutions of a cubic equation (Ref: R.H. Perry and C.H. Anilton, “Chemical
Engineers Handbook™, 5" ed., p.2-9, or use a computer code.

A cubic equation has the form x* +a,x* +a,x+a, =0
Let p=(3a,-a°)/3, q=(27a,—9aa, +2a,’)27

and R=(p/3)%+(q/2)°. If R>0, then the cubic equation has one real root and two
complex conjugate roots. The real root is x, = A+B—a, /3 where

A=3(—q/2)+VR
B=3/(-q/2)+VR

For our problem, a, =18/8=2.25,
a,=14/8=1.75, a,=3/8=0.375
p=0.0625, q=-0.09375, R =2.2063 x10™°

Since R > 0, there is one real root.
A =0.4544355 , B = -0.0458311.

X =-0.341and y" =0.209
d’D/dx? =48x* + 72x + 28 =9.03 at X =—0.341= minimum.

(-0.341, 0.209) is closest to the origin.

Note: You can use a least squares method too. If we have f =C,+C,x+C,x’, this is

equivalent to C, =B, —BX, +B,X,%
Cl = Bl_BZ(XO_'_Xl)
C,=B,

df /dx =B, +B,[(X— X))+ (x—%)]=0

Total no. of variables = 1
No equality constraints
No. of degrees of freedom =1

X*:(X0+X1)Bz_Blzxo+X1_h fl_fo
2B, 2 f,—2f _f,



d?f /dx? = 2B,.

f hasamaximumat x" if B, <0; f hasa minimumat x" if B, >0.

Problem 1.6
Maximize: V =11r’h

Subject to:
r=Rcos @
h=2Rsin ¢
0<ob<m/2

Total no. of variables = 3
No. of equality constraints = 2
No. of degrees of freedom =1
Independent variable =

Solution:

Eliminate r and h using the equality constraints.
V =211R%cos’ dsin @

dv/dB = 2mrR°® [Zcosesin 0(-sin ) + cos® 0] =0
~2c0s@sin® @ +cos’d =0
—2c0s@(1—cos’ @) +cos’ @ =0
cosd(—2+3cos’*6) =0

cos@ =0 and sin =1, or

cos@=+/2/3 and sin@ =+/1/3

dV /d&* = 211R?(2sin® § —7 cos® Bsin )
At cos@ =0,sind =1,

dV /d&* =411R® > 0= minimum
At cosezx/m,sinez\/ll_&

dV /d6% = —8rR%/+/3 <0 = maximum

w2 )




Problem 1.7
O0<xx<l1
)
() 20 2 3 4 s
O \\\ ®
@ X
Problem 1.8

Let na = no. of trucks of type A
ng= no. of trucks of type B
nc = no. of trucks of type C

Obijective function

Minimize f = 2100na + 3600ns + 3780nc (ton-mile/day)
Constraints

1. 10,000 na + 20,000 ng + 23,000 nc < 600,000 ($)

2. Na+ 2ng + 2nc < 145 (drivers)

3. na+ng+nc <30 (trucks)

4. nn>20 ng > 0 nc>0 (physical requirement)
Problem 1.9

Minimize

f(x) = 19.4x114" + 16.8x%,7%¢ + 91.5x5303°



Constraints

0<x3<0.05 Xo > X1 > X2 > X3

Problem 1.10
Minimize: f(X)=4x —x 12

Subjectto:  25-x’—x?=0
10x, — X7 +10x, — x> —34>0
(x,—3)*+(x,~1)* >0
Xy X, 20

No. variables:; 2 X1 and X2

One equation reduces the number of independent variables to 1, say x1 (Or x2).

Problem 1.11

1. Obijective function. Maximize Cs

2. Variables Ci, C, Cs (dependent)  Ca is in the objective function
61, 6, 63, 6, (independent)

3. Equality constraints
V|
D>V, =20 sothat .6, = Z

Material balances

71



C,=C,+0,kC,
C,=C,+0,kC,"
C,=C, +0,kC,"

4. Inequality constraints

6.>0 C, > possibly

Problem 1.12

1. Objective function
Minimize F = p™4° + (350 — T)**

Variables p*, T p = p* since water condenses

Constraints:

* * * 2 O
P _D" <001 and p* inequality
pr Ny T 20
. 1750.286 .
log,, p =8.10765— S 0T £ 27315 equality

Let pr = 14.7 psia
1. One technigue of solution would be to apply NLP to the above statement.

2. Another technique would be to assume p* is at its bound so that p* = 0.01(14.7) psia.
Introduce this value into the Antoine eq., solve for T, and then calculate F. (This
procedure implies 2 equality constraints exist as the problem has no degrees of
freedom).

Problem 1.13

@ The independent variable is not time but temperature (via the k’s). Think of the
solution of the two ODE’s -- t is fixed.



(b)
(©)
(d)

(€)

The dependent variables are A and B.
Equality constraints are the 4 equations (including initial conditions).
The inequality constraint is T < 282°F.

Also implicitare T>0
A>0
B>0
t>0

Any answer is ok, as for example:

- get analytical solution of A and B vs T and minimize

- convert ODE’s to difference equations (constraints) and minimize
- approximate solution via collocation (constraints) and minimize

- introducing the following transformations:

A B u?
Yi=— Yo=— u:kl ) _:kz

A A 2
simplifies the optimization problem to:

Maximize: Y, (1.0)

A =—(u+u2/2)y1
Y, =uy;

yl(o) =1, yz(o) =0

0<u<hb

Subject to:

Note that the control variable u(t) is the rate constant ki1, and directly corresponds to
temperature. This insight eliminates the exponential terms and simplifies the structure of
the problem.

Problem 1.14

(a)

The problem consists of (at constant T and p)

10



Minimize: G = (4’ +RT Inp+RT Inx)n,

=RTInp {Zy{’ +RTY In xi}(ni)
constant i i
0 T
SRTINK, %=l
n )
subject to the element balances:

Z a;n; =b, for each of the elements k=1 ... M

and inequality constraints

n=0
Ny Ng
with n, = xn. ForC+D—>A+B KX:nTnT
Ne Np
N Ny
(b) The element balances are based on
At start (by) At equilibrium
C H (0) C H (0)
CO 1 1 n*CO - n*co
H20 - 2 1 - 2n*, 5 ™0
CO, - - - N*co, - 2n*,
H> - - - - 2n*, 0
Total moles = 2 Total moles n* =

As variables use x; or n; (either are ok)

C balance: 1= ng +ne,
O balance: 2=2ny, +ng+n,,
H balance: 2= 2n, +n,,

N'co +NHao +N'H, +N'co,

11



K — Xco, Xu, _ ncozNH2

X

XcoXn,0  Neo N, ,0

ni
X; =— sothat nT cancels
nT

Problem 1.15

dw _kRV, | k-1(p, ) ¥( 1) k-1(p,)*
dP, k-1 k (p o) K

[%i]i@‘[%im—é}"

1/k 1 7—2

P, plkil - p k Pk =

1 1

7_1 -
(p7) =(pups)c”
p22 = P.Ps

P, = PP =/)(4) =2atm

Problem 1.16

(@ C=50+ mm@ ($/1obl)

dc _ ;. 9000

=0
dP p?

P =300 bbl/day



() f :300—50—0.1P—&POO ($/bbl)

f=(300—50—0.1P—Mji Pobl
P Jbbl| day

g—f:300—50—0.2P—0:O
© P

p* = 29 _ 1950 bbi/day
02

(d) They are different because you can sell more

Problem 1.17
Basis: 1 hr

Heat balance for the gas:

g= m Co AT
= (3000) (0.3) (195—90) =9.45 x10° Btu/hr
Heat balance for cooling water

q
=m(1 —80) =m(T_—80) Btu/hr m=
q=m(1) (T, ~80) = m(T, ~80) som=- "

For the heat exchanger

q=UAAT,,, =8AAT,,, Btu/hr

where so A=
8AT,,,

AT, = (195-T,)-(90-80) . o
n[195-T,
90-80

Basis: 1 yr.

Annual cooling water cost (3$)

13



4
_(9.45x10 ( 1 j{ 0.2 )(24)(365)
T,-80 )\ 62.4 )\ 1000

_ 2.6533 x10°
T, —80

Annual fixed charges for the exchanger ($)

5.9063x10°
AT\,

[9.45x104

8AT,,, j(O'S) -

4 1 5¢,0%L-0.081C,m°p?LD® =0
dD

0.1538
DOPt — 0638[&J m0.4615p—0.3077

1

For 12 =1cP(2.42 Ib/ft hr) , p =60 Ib/ft®,
D* =0.366ft.

Problem 1.18

(@ C=CD“L+C,mAP/p

where
AP =2pV?L/Df
- 0.046 %2
DO.2v0.2p0.2
V =4m/ H,oD2

Substituting the expression for f and V into that for AP, we get
AP =0.1421p 'm* 2D 4L

The cost function in terms of D is now

C =C,D*L+0.1421C, p2m?® 1, °?D 8L

j—; =1.5C, DL -0.682C, 0 °m**1,**D>*L =0

14



Solving this equation for D, we get

1

C 0.1587
Dopt — 0882[_2J p—0.317m0.4441u0.03l7

From this,

C 0.3174
V opt — 16367 [C_lj p—0.366m0.112ﬂ—0.0634

2

0.8413 ~ 0.1587 — _
Copt — 0828C1 C2 p 0.4755m0.666ﬂ 0.0476

+ 0-2596C10.7618C20.2382p—04784m0.6688lu0.0478L

C, =1.42363 x10°° $/hr ft**

b
) C, =2.7097 x10°* $hr?/ft?Ib

}for C in $/hr

For u =1cP(2.42 Ib/ft hr), p = 60 Ib/ft®
D' =0.384ft, V™ =1151.5ft/hr

For 1 = 0.2cP(0.484 Ib/ft hr), p =50 lo/ft®
D =0.387ft, V" =1363.2ft/hr

For 12 =10cP(24.2 Ib/ft hr), p =80 Ib/ft’
D" =0.377ft, V" =895.6ft/hr

Problem 1.19

0.1587
Dopt — 0882(_2j p—0.317m0.444ﬂ0.0317

1

15



din D"

Spt = =0.444
dnm ) o
opt
som | dIn D ~0.1587
dnC, ) .

Copt — O.828C10-8413C20-1587p—0.4755m0.666/u0.0476L

+ 0-2596C10.7618C20.2382p—0.4784m0.6688’u0.0478L

opt
5 o = 0InC J = 10pt (—0.4755T, —0.4784T,)
6p 4,m,Cy C
opt
g, con - 2 €T J - 10m (0.476T, +0.0478T,)
olnp )

(0.666T, +0.6688T,)

S Copt _ aln COpt — 1
" olnm . opt

opt
g e _[AnC — L (0.1587, +0.2382T,)
2 ancC, ) . C%

Where Tl _ 0.828C10.8413C20.1587p—0.4755’u0.0476m0.666

and T2 _ O.2596C10.7618C20.2382p—0.4784ﬂ0.0478m0.6688L
For p = 60Ib/ft* and 2 =1cp(2.42 Ib/ft hr)

s¢” = —0.476
S, = 0476
s¢” = 0.666
s¢” = 0.163
Problem 1.20

The variables selected could be times, but the selection below is easier to use.

Let Xij be the number of batches of product i (i = 1, 2, 3) produced per week on unit j
( =A,B,C). We want to maximize the weekly profit.



Obijective function: Units: ($/batch) (batch/week) = $/week:
Maximize: f(X)=20(X,+ Xz + X)) +6(X,5 + Xog + X0 ) +8( X5 + Xag + Xoe)

Subject to: Sales limits. Units: batch/week
Xap+ Xgg+ X <20 (none on 1 and 2)
Hours available on each unit

(0.8hrj(x batchj
batch week
UnitA 0.8X,,+0.2X,, +0.3X;, <20 hrweek

04X, +0.3X,, <10
0.2X,¢ +0.1X,. <5

and non-negativity constraints

xij>0 ,i=1,2,3 ,j=AB,C

Problem 1.21

We have to minimize the pumping rate subject to the constraint that the basin cannot
overflow.

l J Aumedl drea, A (i)
L Q (in*/hr)

irenfprimdment t:] g* P (in3/hr)
plamt

Let rain fall for T hours at a stretch (T should be specified). The volume of rain during
this period is

A(a+bT?) in
The maximum amount of water that can be treated during a time period T is

PmaXT in3

17



Thus,
A@+bT?)-P_T <V

The minimum Pmax is therefore given by
A@@+bT?)-P_ T =V

or P X:_Il_{A(a+bT2)—V}

Of course, we must have Pmax >0

Problem 1.22
Assume: (i) first order reactive, (ii) flat velocity profile

Objective function:
.. 1
maximize IO rx(r,L,8)dr

Equality constraints:

Q_D_Aflﬁ(rﬁ}uv %—kf (1-x)+k,x=0
ot R ror\ or 0z

oxlor=0atr=0, all z,t (symmetry)
ox/or=0atr=1 all z,t (impenetrable wall)
X=X, atz =0, all r,t (feed conversion)
X=x(r,z) =0 (initial conversion profile)

c 5_T+V68_T_£1£[

P ot 0z R%ror

oT

rEJ—(AH)[kf(l—x)—er]

dT/dr=0atr=0, all z,t (symmetry)

—koT /or-U(T -T,)=0atr =1, allz,t (heat transfer to jacket)
T-T,=0atz=0, all r,t (feed temperature)

T=T(r,z)att=0 (initial temp. profile)

Inequality constraints:

18



x>0 allr,zt
T>0 allr,zt

T.x—T =0atallr,zt
T, 2T,

omin

T, <T

Oomax

Problem 1.23
C= ClD1'5L+C2mAP/p

where
AP =(2pV°L/D)f
f =0.005
V =4m/11pD°

Substituting the expressions for AP, f and V into the cost function, we obtain C in terms

of D:
C=C, D“L + 0.016C2m3 p DL

9€ 1 5c,0°L-0.081C,m°p?LD* =0
dD

c 0.1538
04615 _-0.3077
| m

D% = 0.638(—2
C

1

For u=1cP(2.42 Ib/ft hr) , p =60 Ib/ft?,

D°P'=0.366 ft.

Problem 1.24

C = 7000 + 2500%° L + 200 DL

(a) Z—S =250L(2.5)D"*® +200L is the absolute sensitivity

19



aC
L 15 D ; ; FIER
D =250L(2.5) D +200L is the relative sensitivity

2000+ 250D*° +200DL

D

(b)  The relations for sensitivity are the same; the constraints limit the feasible region
of application.

Problem 1.25

InC=a,+a, InS+a,(InS)*> (a)

dC ds ds
dnC=—=a, —+a,(2)(InS)—
C ~ag ,(2)(In S) 5

dC C C
—=0=a,—+2a,—(nS b
&S &5 28( ) (D)

or a=-2aInS or &l s—eanm

2a, S

dC/C

—  —=a,+2a,InS

ds/s Atk

Problem 1.26

Refer to Section 1.7 of the text.
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CHAPTER 2
Problem 2.1

(@  The model is linear if the ratios h /S,p,Cp, and h / p,Cp,S, plusV are
independent of temperature. If they are not, then the model is nonlinear.

(b) If D is independent of concentration, then the model is linear. Else, it is
nonlinear.

Problem 2.2

@ Nonlinear
(b) Linear if vy is independent of vy; otherwise, nonlinear

Problem 2.3

2.1 (a) Unsteady state
(b) Unsteady state

2.2 (a) Steady state
(b) Steady state

Problem 2.4

2.1 (a) Distributed
(b) Distributed

2.2 (a) Lumped
(b) Distributed

Problem 2.5
@ A distributed parameter model would be best. A plug flow mode is also possible.
(b) Steady state (except on start up and shut down)

(c) Linear

Problem 2.6

Total variables (2 streams + Q): 2(C+2)+1 = 2C+5



Constraints:

independent material balances: C
energy balance o1
no. of degrees of freedom = 2C+5-(C+1) =C + 4

Conventional specifications are the variables in the entering stream (C+2) and the
temperature and pressure of the exit stream. In some instances, Q may be specified rather
than the temperature of the exit stream.

Problem 2.7
X Y X Y
1 5 2 94.8
2 7 5 879
3 9 8 81.3
4 11 1 74.9
14 68.7
Y vs. x linear 17 64.0
12 Y vs. X linear
10 - ’
8 ) . 100
> & BesT 80 ‘\‘\.\’\’.\‘
4 y=2x+3 -~ 60
o RZ=1 40 y =-2.0762x + 98.324
0 , 20 R?=0.9968
0 1 2 3 4 0 !
5 10 15 20
X
X
Y vs. x 2nd power
. Y vs. x 2nd polynomial
10 100 .
’ pod N
> 6 o, 60
4 y = 4,9023x" %% 40 y =0.025x% - 2.5512x + 99.924
2 R?=0.993 20 R? = 0.9996
0+ t : : { 0 ' i *
0 1 2 3 4 0 5 10 15 20
X X
exponential .
Y vs. x Y vs. x exponential
12 100
10 T
8 80 + ’\‘\0\.\’_\‘
6 - 60
> 4 y= 3.9886002817x 40 y= 100.2¢ 00265
2
2 R? =0.9865 ® R2 = 0.9994
0+ ¢
0+ + + t — 0 5 10 15 20
0 1
2 3 4 X
X




Alternative Analysis

(a)

A WN PP IX

y
5
7
9

11

Since Ay/Ax is a constant, a linear fit is best:

y=ax+Db

(b)

y
94.8
87.9
81.3
74.9
68.7
64.0

A

’%
>

N DNDN

Alog y/Ax

-0.0109
-0.0113
-0.0115
-0.0125
-0.0102

Since 4 log y/Ax is nearly constant, a good functional relation is

y=ab*
(c)

Since 4 log x/A log y is nearly constant,
y=ax’

is a good functional relationship.

0.0245
0.0370
0.0570
0.0855
0.1295
0.2000
0.3035

Alog x/Alog y

1.68
1.60
1.71
1.67
1.59
1.66




Problem 2.8

X,EPLLL+90882- =X X

002 o5l 00't 050 ogdPs o
t } + t M* 000
1818°0=4 050
81510 +XxL1180=4 3
00t
. 05t
002
X "SA AU| h
2VX.P-9501'6 + X,£-956°G - 296042 = X . xg98v0'0 + ¥859°0- = X
X X
002 0s't 00t 050 000 002 051 ool 050 ow%m.o.
b + t+ + 4 000 — ; ' : 000
66660 =4 . 65660 = ]
61000 + xmmmwm.o =A 0s0 _ ¥860°0 + X1£56°0 = A 050 =
0wt 3 ot <
05t 05t
®
002 00¢
X "SA AU| X "SA AU|
ge'Gl 8811 9.vS | 0£°91 L0y | L2'6S¥. | 0000646 | 000Sce 10V 00SS | 8689} {04 LSl 05l | wng
g5} 99°L 0€'St 16'€ 96'L | 8L'€68F | 0000529 | 000ScCH 8L 00S2 98'.6 96’} 80°L 0S
82’} cr'y 19°Ct 69'€ 02t | 2L'Siel | 00009SC 000t9 62} 009} 88’ LY oc't €€ oy
960 e JASN NS ov'e 290 25'85S 000018 00042 080 006 2981 290 98’} 0€
150 690 .68 00¢ 220 yv'c6 00009+ 0008 2g0 00¥ f4: 24 €20 9@t 0c
92 0- 000 0€'S 0€?e 10°0 000 0000} 0001 LL'0- 00} 000 000 00} 0}
eX  [(AuruifgvO) ui] (xup || 2X | AulLegvx tvX EvX 1X ZvX | AULX | AUl A X




Problem 2.9

A plot of the date looks like:

[¢] : 1 . 4 1 1

e

0 400 go0 12,00 1606

X
Since the data seems to lie on a straight line after the transformation, a good model is

InNY =a+ px
orY =e#

E= D) (a+px-InY,)

OE/8a=2) (a+px—-InY,)=0
OE/0B=2) X (a+p%—InY;)=0

o Y x ] [Zhy,
in inz}{ﬂ} ={inln YJ
T8 7200 Y[a] [ -11.074
| 7200 8160000}{ ﬂ} B {—12777.698}
a=0.1217, B=-0.001673
Y =exp (0.1217—-0.001673)




Problem 2.10

(@ Tofind C,, C, and C,

4
E= Z(CO +Ce¥ +Ce ™ —y)?
i=1

4
OE/8C,=2> (C,+Ce¥ +Ce™™ —y,) =0

i=1

4
OE/8C, =2 e (C, +Ce™ +C,e ™ —y,) =0

i=1

4
PE/8C, =2 e (C,+Ce™ +Ce ™ —y,) =0

i=1

n Xe¥ Ye|C, >y,
Z eSXi z eri n Cl — Z e3xi yi
Ye™ n Xe™|[C,| |[XeMy,

n=4

Ye* =8527.6

> e® =65823128
Ye ¥ =1.0524

Y e =1.00248
2y, =6

Ye¥y. =8951.11
ey =1.10466

Solution of the set of 3 linear equations gives

Co = 2.0552
C1=-1.302 x10*
Cz--1.0551

If Co is set equal to zero, then

E=>(Ce™ +Ce ™ —y,)?
OE/0C, =2Ye¥ (Ce™ +C,e ™ —y,)=0
oE /8C2 = zze_axi (CleSXi + Cze_3Xi - yi) =0



> e n C, _ Ye™ Yi
n Ze—fixi C2 - Ze—3xi y,

Solution of this set of equations gives

(b)

Ci1=1.3592 x10*
C2=1.101385

If y, =axe ™", then

Iny, =Ina, +Inx —a,x

Let Ina, =b,. Then

E= ) (b+Inx—ax—-Iny,)’

OE/db =23 (b +Inx —a,x —Iny)=0
OE/da, =-22xi(b,+Inx, —a,x, —Iny,)=0

n =Ex (b ] [ Zny-ZInx
Ix -Xx |8, | [ ZxIny -Zxinx
(4 —6[b] [ 13.41005
6 -14]|a,| |-2.6026759

b, =10.167834 = a, = 26051.595
az = 4.5435487




Problem 2.11

4 L ],,‘ T 1 T 177 T 17 17T [ T [Tl]I_L,T.l,[,LL»L—.l_[_,!__l_L~l_‘
- o
3.5 ¢ E
3 .
25 E —;
> - :
2 L -]
1.5 © ° E
1 E ]
0.5 :l 11 l‘llllll!Illlllllllll'llll[llllz
0 05 1 15 2 25 3 35
X
Problem 2.12
4 PT T T T T T T 1 T T 1 7T [I T 1 T T T 1 T I T T 1 1 T T T I:
3.5 F e
3 C .
2.5 F =
> - ]
2 ° =
1.5 [ ° E
10 ]
0.5 —l ! 1 |‘I j l 1 1 1 1 1 1 L1 1 [ 1 1 1 1 l 1 1 1 1 l 1 1 1 L:
0 0.5 1 {5 2 25 3 3.5
X

Y = 0.384431 + 0.686198x + 0.0731065 x*



o

}_ T T ‘; T T T T ] T T 7T T ] T T T T T T T T T T T T T T T T ]
3.5 - =
3 - =
25 & .
> : z
2 ]
1.5 & .
1 = -
O . 5 : | S T 1 1 1 1 l 1 11 1 ! I 1 | 1 1 1 1 l 1 11 1 ’ 1 1 1 1 :
0 0.5 1 1.5 2 2.5 3 3.5
X
Y = 0.87157 + 3.77758x - 1.83175 x? + 0.325737x°
Problem 2.13

Apply least squares as the objective function
Minimize Z (Yexp — by — D™ )2
Subjectto x >0

1. Form the objective function

2. Apply a NLP code

Problem 2.14

F= > (p-a-133c)?

S—F =22(p, —a—1.33C,)(-1) =0 solve to get
a



Y p,—1.33%c,  29.94-1.33(15.04)
5

=1.98

optimal value of a =

or introduce the data into the equation and sum 5 linear equations squared, and then
differentiate, set the derivative = 0, and solve the same equation for o; o =1.98

Problem 2.15

X"xb = x"x
b=(x"x)"x"y

P Yx Xx*] 11 31 111
X'x=|3x >x* Xx}|=|31 111 451
Y Yx® Yx| |111 451 1959

>y 105.6
X'y=|2xy |=|3601
_Z x2y 1460

8.24
b=|-2.93
0.95

y=0.95x*-2.93 x + 8.24

Is the Design Orthogonal?

No, the design is not orthogonal. You need two independent variables to even obtain an
orthogonal design. Our problem has only one (x).

10



Problem 2.16

b=(x"x)"x"Y

Use a computer to get

e e =

o

160
160
160
160
200
200
200
200

N

N N RPN R R oXx

10
11
24
26
35
38

-91.33
b=|0.5813
1.4588

Problem 2.17

E :i(a+ﬁxi _yi)2

€,
oo

noc+ﬁ’zn:xi —Zn:yi =0
i=1 i=1

Zn:(a_g_ﬂxi—yi):()

11



Problem 2.18

X, — 260
20

Let p = XiT_g' and p, =

When the Y values for a given ( p,, p,) are averaged, we get

P1 P2 Y
-1 -1 24
1 -1 44
-1 1 4
1 1 20

For y=p0,+/5.p+5,p,, wehave

noXp 2P |[B] [XY
z P, z p12 Z P. P, ﬁl = 2 plY
Zp, Tpp, Zp |LA] LZRY

4 0 0][B] [92
0 4 0| |=|36
00 4|4 | |44

Bo =23, p =9, f,=-11
Y =23+9p,-11p,
Y =152.5+4.5x, —0.55x,

Problem 2.19

y X1 X2
96.0 1 0
78.7 0.5 0.866
76.7 -0.5 0.866
54.6 -1 0
64.8 -0.5 -0866
78.9 0.5 -0.866
91.8 0 0

The last point has a weight of 4 because it is the average of 4 data points.

Y= ﬂo +131X1 +132X2 +ﬂ3X12 +ﬂ4X22 +185X1X2

N L



Then,

7
Min E = ZWi (By +B% + B Xy, +ﬂ3X12i +,B4X22i

i=1

+Bs %X _Yi)2

The answer is

S, =918
S, =16.483
S, =3.378
P, =-16.5
p,=-17.2
S =—6.986
E =106.68
Problem 2.20
(8 E=X(C,+Cxx,+Cys-Y,)?
' n Xx, Xsfc,] |2,
YXe TXS XX |[C =] XX,
| Zs Xsx, >s® || C, XsY,
3 03 90 |[C, 1.0
03 009 0 ||C, |=|0.06
190 0 4500 || C, 39
C,=0.1, C,=0.3333, C,=0.00667
In this case, one can also solve three equations in the three unknowns, without a
least-squares fit.
(b) If Y, =0forx,=s=0, thenC,=0.

E=>(Cx,+C,5-Y)?

13



OE/0C, =22 X,(Cx,+C,s—-Y)=0
OE/6C, =2Y.5(Cx, +C,5-Y) =0

Tx7 TX,s {Q}{ZXAY}
| 2x,s Xt |Gy [XsY

[0.09 0 ][c,] [0.08
| 0 4500]|C,| |39

C, =0.667, C, =0.008667

Problem 2.21

Assume that the feed is a single phase stream, and not the same as any of the other
streams. Total variables (5 streams + Q) : 5 (C+2)+1

=5C+11
Constraints:
independent material balances : C
energy balance : 1
equilibrium relationships C
T same in each phase 1
P same in each phase 1
2c+3
No. of degrees of freedom = (5¢c+11) — (2c+3)

=3c+8

Problem 2.22

There are six components. Therefore, the total number of variables is (3 streams + Q):
3(C+2)+1 =25

Constraints:

@ matl. balances (C, H, O, N) : 4
2 energy balance : 1
(3)  fixed O2/N: ratio in air ; 1
4 zero concentration of components in
fuel : 4
air 4



(5)
(6)
(7)

flue gas
specification of % excess air
specification of % N2 in fuel
specification of three temperatures

No. of degrees of freedom = 25-20 = 5.
Three pressures must be specified, and one extensive variable — either feed, air or flue gas
flowrate. The last variable would be the CO/COz ratio.

S|
Slwrk kK

Problem 2.23

Total no. of variables for 7 streams: 7(C+2) = 35

Constraints:

1)
(2)
©)

(4)

3 independent material balances for
each piece of equipment :
one energy balance for each

piece of equipment

specification of F;,w, W, ,W,

and Fs/F4

P-V-T relationship for each stream

No. of degrees of freedom = 35-28 = 7.

N

& |
I~ o1

Problem 2.24

Objective function:

Minimize total cost per year

Ctot = (Cs + Ct)r + Cop
or minimize present value of total costs

N
Ctot = Cs +Ct +(ZC°PJ F
i=1

where r = capital recovery factor
F = discount factor

15



Subject to:

C, =2.5W,

W, =T1DzL, p,

D =P(n, +1)dia. of shell for triangular pitch
P =1.25d, pitch

an-1 1/2
5
3

C,_150A,
A, =nd,nL

hr $
C,p = {W,AP, /(10277 )(3600)} (840070067 )

W, = 25000 kg/hr
AP, = 1.5V%pg N fLV?pg

29 2gd,
f=10.023
Y = 4Wg /(3600 p,11d,"n)
Pg =273MW /[22.4(273+Tg)]
Q =U0A)ATin
Q :Wng(Tz _Tl)
U, =0.95h,
h, =h(d; /d,)
hd; /k =0.023(36000,Vd; / 12)°*(C e/ k)™
C,=0.24 kcal/kg°’C
u=014 kgm/h
k =0.053 kcal/(m)(hr)(°C)

AT (To _Tl)_TO _Tz)

" /n TO _Tl

To _Tz
T, =1200°C
T, =350°C

16



CHAPTER 3
Problem 3.1

P = 100,000 and the present value of the sum of future payments must equal 100,000

{ 1@+ i)’ }P{O'l(llgl)m}aoooom
iy -1| | @y)P-1

= $16274.54 for each payment each year

Fl I:2 I:10
T 2ttt oo
@+i)y @+ @+i)

or use P =100,000 =

The schedule of interest and payments is:

Amount Paid Year ending
Year annually ($) principal balance ($) Interest ($)
1 16274.54 100000.00 10000.00
2 16274.54 93725.46 9372.55
3 16274.54 86823.47 8682.35
4 16274.54 79231.28 7923.13
5 16274.54 70879.87 7087.99
6 16274.54 61693.32 6169.33
7 16274.54 51588.11 5158.81
8 16274.54 40472.38 4047.24
9 16274.54 28245.08 2824.51
10 16274.54 14795.05 1479.51




Problem 3.2
lo =$10000, i=12%

Year (@) (b)
1 -1000 -800
2 -1000 -1400
3 -1000 -1200
4 -1000 -1000
5 -1000 -1000
6 -1000 -1000
7 -1000 -900
8 -1000 -900
9 -1000 -900
10 -1000 -900
NPV = -5650 -5779

Problem 3.3
10,000 — 5,000 (1+i)® =0

which yields i =9.05%

Problem 3.4

Split the problem into three parts: the present value of $550,000 received at the
end of 5 years, the expense of $25,000 at the end of year 2 (a negative amount), and 5
dividends each of $15,000 received at the end of each year for 5 years.

15,000 15,000 25,000 15,000 15,000

P + - + +
1.15 (1.15)° (1.15)° (1.15)° 1.15)*

15,000 550,000
+ + —
(1.15)° (1.15)°

=$304,825.94

(1.15)° -1 25000 550,000

or P=15,000 = - >+ :
0.15(1.15) (1.15) (1.15)

=$304,825.94




Problem 3.5

The time line is

3,000

5,000 4,000

10,000

Answer -$980.52. The improvement should not be implemented.

Problem 3.6
F=17
0 1 2 3
200 350 250

F, = 200(1+0.005)® = 200(1.1967) = 239.34
F, =350(L+0.005)* = 350(1.127) = 394.50
F, = 250(1+0.005)" = 250(1.0617) = 265.42

Answer: $899.27

1=0.06

1 —0.005
12

Problem 3.7

This is a problem in which the payments are not uniform

F=Y F@+i)"™" applies
k=1



An iterative solution is needed. The interest is charged and the payments made 24 times
a year. The answer given is 58 payments (29 months). You can split the problem into
one initial payment of $775 and a subsequent series of equal payments of $50, and add

the two parts to get the answer.

Problem 3.8
The time line is 60,000
FV
;=975
2
l l e l j — 1
, 15X2
PMT
PV ?
3,200
Answer: $717.44
Problem 3.9
JULY 1 AUG1 SEPT1 OCT1 NOvV1l DECI1
[
11 1]

-3600 -3600 -3600  -3600 -3600

Payments
Date Payment Interest Principal ~ 40% of the interest paid is a
benefit, but the benefit is
Aug  $3600 $1400.00 $2200.00  received at end of the year only
Sep 1374.33 2225.67  $6740.32 (.40) = 2696.13
Oct 1348.37 2251.63 F $2696.13
Nov 132210 227790 Py T wonnrye oA
Dec 1295.52 2304.48
$6740.32
Problem 3.10

The statement is true for the same interest rates. For example:



@ For a $1000 mortgage at 10% paid over 30 years (F is the annual payment)

(b) For 15 years

30
1000=F,o[ 2207~ ) £ _106.04
0.10(L.10)
15
1000=F| 2271 1 B _13141
0.10(L.10)

From the values of F you can split each payment into interest and principal, and find that
the sum of the interest payments over the 30 years is higher than that over 15 years.

Problem 3.11

You borrow $300,000 for 4 years at an interest rate of 10% per year. You plan to pay in
equal annual end-of-year instaliments. Fill in the following table.

Balance Due at Principal Interest Total
Year Beginning of Payment Payment Payment
Year, $ $ $ $
1 $300,000 $64,641 $30,000 $94,641
2 $235,359 $71,105 $23,536 $94,641
3 $164,253 $78,216 $16,425 $94,641
4 $86,037 $86,037 $8,604 $94,641
Problem 3.12
Plan A:
0 i 1 @+i)"-1
l l .. FOR —(1+i)" i+
30YEARS 112 20 1
2200 2200 = (.12)7 -1
0.12(1.12)®
160,000

NPV of 30 year costs = -160000 + >

2, 2200
~(1.12)

7= $-177,721




Plan B:

Tssoo Tseoo T 5600

l l4500 llo yrs l 20 yrs 30 yrs
34,000 34,000 34,000
plus
l ¥2500  yfor 30 yrs
58,000

NPV of 30 year costs =

—34000+ (_13112;)1? + (_13;12)028 (capital costs)

<, 4500 | & 4500 & -4500
D TIPS

+ — + . . (operating costs)
= (1.12)) 3 @12) @12y

+5600  +5600  +5600

+ + + salvage value
112)° ' 112° 112" (salvage value)

30 _
+(~58000) + > | 2500 (ditch costs)
= (L.12)’
= $-160,288
Plan B is favored because its NPV of costs is higher (less negative) than that for
plan A
Problem 3.13

The total annual cash flows for each reactor, and the present values of the cash flows and
total costs are tabulated below:



GLASS LINED
4000

l I A

2400 2400 560 900

24,000 +

230
CAST IRON
800 800 800
A A
¢ ¢ 4 ¢ 8 ¢ 10
1400 1400 1400 1400
+ + v + v +
7200 130 730 7200 730 7900 730

Glass-lined reactor: (all flows in $) Note: -2400 + 1700 = -700

Year Operating costs PV (i=0.1) PV (i=0.2)
1 -700 -636 -583
2 -930 -769 -646
3 -700 -526 -405
4 -700 -478 -338
5 -1260 -782 -506
6 -1600 -903 -536
7 -1600 -821 -447
8 -1600 -746 -372
9 -1600 -679 -310
10 +2400 +925 +388

(including salvage value)
-5415 -3755



With the installed cost included, the value of all costs at the initial time is

fori=0.1, -5415-24000= $- 29415} PV

fori=0.2, —3755-24000= $-27755| for 10 years

Cast iron reactor: (all flows in $) Note: -1440-730=-2170; -2170 + 800 = -1370

year Operating costs PV (i=0.1) PV (i=0.2)
1 -2170 -1973 -1808
2 -2170 -1793 -1507
3 -2170 -1630 -1256
4 -1370 -936 -661
-6332 -5232

With the installed cost included, the value of all costs at the initial time is

fori=0.1, -6332-7200= $-13532

. for 4 years
fori=0.2, -5232-7200= $-12432

You have to calculate operating costs for another 4 year period followed by a 2 year
period for a total of 10 years, but you can see that adding roughly (1.5) (6000) = 9000 to
13,500 gives a value smaller than that for the gas lined reactor.

The cast iron reactor is favored for either interest rate.

Problem 3.14

Project A has the largest rate of return, because most of the cash flow is returned early in
the life of the project, and is discounted less.

Problem 3.15

For after tax profits of $10,000 per year,

20
>, 10000 100000 =0 = i=7.75%

= (1+i)]

For after tax profits of $12,000 per year,

20
S 1200 100000=0 = i=10.39%

= (L+i)



For after tax profits of $8,000 per year,

20
z 8090- -100000=0 =i=4.98%
= 1+ i)’
Relative sensitivity = A'—/'
AsS/s

For a + 20% error,

(10.39-7.75)/7.75

" 12000-10000)/10000

Problem 3.16

Installed capital cost = $200/hp
Operating cost = $0.04 / kwhr
n =70%

i =10%

Basis: 8000 hr/yr operation
Assume life = 5 years

Then, r =0.264

Basis: 1 hp

Installed capital cost = $200

Assume the pump efficiency corrects the $0.04 to actual cost.
Operating cost

$0.04 | 8000hr | 5yr | 0.746kw |  lactual power

Kwh ‘ yr | | 1 hp | 0.7theo. power

PV of capital cost 200

- = =0.031
PV of operating cost 6460

Operating costs are more substantial.

| .264

= $6460




Problem 3.17

n+m+1 C

,Zn;l @+i)’

Theratiois R =

where | = initial investment
C = annual cash flow
n = no. of years to build the facility
m = life of facility (years)

6
R=l= 0 -11.0%
3 150000

~ (1+i)]

Forn=2,

10° .
Rele— =0 i —9.6%
128: 150000 °

(1))

Forn=3,

10° .
Rele— =0 i —8.5%
129: 150000 °

= A+

Problem 3.18
Let n be the payback period.

PV of initial investment = $10,000

n j
PV of maintenance costs = Z$300(—108)
~  (1.15)!

- j
PV of savings = Zw

< (L15)

To find the payback period, we solve the following equation for n:



n j n i
1OOOO+Z3OO(1.O$) _23760(1.08) 0
~ (115 & (115)

10000~y 2200 __
 (1.0648)’

(1.0648)" -1
(0.0648)(1.0648)" |

10000 — 3460{

10000 —-54925.715 {1— L 0

(1.0648)" |

n = 3.2 years.

Problem 3.19

Obijective function:

Basis : 100 ft?
C = Annual cost = -Energy savings + Capital Costs (in $/yr)

(b) (@)
Installation cost

$0.75  [100ft2  |[tin.
(ft%) (in) | | =75t

@ Capital cost per year. (75t) (0.30) =215t %

Heat loss savings are Q without insulation minus Q with insulation

2 ‘ _ o
AU Btu ‘ 100 ft (500-70)°F 43,000 AUBY

AQ= (hr) (ft))(°F) ‘ } hr

Overall heat transfer coefficient change gives AQ

11



AU =
=025+0278t|( 1 1
0.25 0.25+0.278t

Lt
(12)(0.30)

with:

without: =0.25

Nk, M

1
u
1
u

Heat savings per year

(b)

$0.60
10°Btu

(8700)(43,000) 1.11t Btu
(0.25+0.278t) ) yr

_ $2492t
0.25+0.278t yr

Constraints

t>0 C>0

To get optimal t, minimize C so set %—ct: =0

—69.28t 249.2
>+ -215=0
(0.25+0.278t)° (0.25+278t)
t=7.02in
Problem 3.20

(a)

In this problem recognize that an exchanger of infinitely large area will maximize
the energy recovery in the stream but at an exorbitant cost. Hence we expect
there to be a trade-off between capital cost and energy savings. The variables to
be optimized include T> and A as well as the amount of steam generated, Wsteam.
First determine if any equality constraints exist in the problem. The energy
balance for the steam generator is

WG (400-T)— UA(400-T,) (a)
0il ™ py 2 |n[150 /(T2 - 250)]

or

12



UA

WoiICpD” = (b)
In[150/(T, — 250)]
The water converted to steam is obtained from
WoilcpoiI (400 _TZ) = AHstteam (C)

where AHy, = 950 Btu/Ib and wsteam = Ib/h. Recognize that Eq. (b) relates the
variables T» and A, hence they are not independent. In addition, Eq. (c) relates T»
and wsteam. Therefore we can express all costs in terms of T» and with the aid of
Egs. (b) and (c). The capital cost is (dropping the “oil” subscript):

1, = (25)(A) = e In[ 150 ) )

100 T,-250

The annual credit for the value of the steam is

F- {2x106 {i}ch (400—T2){%}H8000L}
Btu P h year

F = [0.0lG]{WCp(400 —Tz)i} (€)
year

Note that wC,, for the oil appears in the expressions for both F and I, and thus
cancels. The profitability ratio is therefore

F  0.064(400-T,)
I In[150/(T, - 250)]

0

ROI =

()

The maximum value of ROI must be found numerically because of the
complicated expressions appearing on the right-hand side of (f). The optimum is
at T2 = 400°F, which is the same temperature as at the inlet, corresponding to A —
0. Atthe optimum an extremely high rate of return occurs (r = 9.6), which can
be found by applying L Hopital’s rule to the above expression for ROI when T, =
400°F. This outcome, of course, is an unrealistic answer, since it suggests the
optimum return consists of an exchanger with infinitesimal area! Why does this
result occur? The difficulty with using ROI as an objective function is that
nothing in Eq. (f) constrains the area to be above a minimum size; in fact, as T»
— 400°, the investment |, is decreasing faster than is the numerator, leading to a
maximum value at T, = 400°. If T2 > 400°, the rate of return becomes negative.

From the above example, you can see that the ratio of F/l, may yield unrealistic
results for an optimum. This occurs here because 1o — 0 for T, — 400. Consider

13



reformulating the problem using the net present value (NPV) of before-tax profits as an
alternative objective function. Use of NPV means that a rate of return on the capital is
specified.

or

(b)

NPV = {—(1_+ ) _1} Fl,
i@+i)"

NPV =T 1
r

Since r is fixed by the assumptions about i and n, an equivalent criterion is
r-NPV=F-—rl,

Note that this modified objective function (r- NPV) is equivalent to the use of the
annualization factor (repayment multiplier) to obtain the capitalization charge. In
problems in which you seek to minimize only costs rather than maximizing profit
because there is no stated income, then F is negative. An example arises in
optimizing pipe size to minimize pump operating costs and pipe investment costs.
Instead of maximizing r- NPV, you can minimize (—r-NPV).

Let us use the net present value analysis to determine the optimum value of Ta.
Assume an interest rate for capital of 15 percent and a period of 10 years. The
objective function for net present value (to be maximized with respect to T») is

f=F-rl, _
=2x10° wC, (400-T,)(8000) —r-25- A($/ year) 0
By elimination of A in terms of T2 Eq. (b) gives:
f = (0.016)WC. (400-T,) — 25r b 150 )
' P ? U T,-250

Note that wC;, is a common factor of the two terms and will not be involved in
calculating T2. We can differentiate Eq. (k) and set df/dT, = 0:

i=0=E 1 —-0.016 Q)
dT 100 T,-250
T, =250+15.62r (m)

14



Ifr=0.2 (n =10, i =15 percent in Table 3.1), then T, = 253.1°F, a 3.1° approach
(somewhat lower than the normal approach temperatures of 5 to 10°F
recommended in design manuals). The optimal approach temperature, according
to the analysis in this example, depends on U, r, and the ratio of the value of
steam to the cost-per-unit area for the heat exchanger.

To calculate the annual profit before taxes, we compute the value of

F = (2 x 10%)(WC;)(400 — T2)(8000), which would be $176,280. The optimum
value of A is 2905 ft2, so the original investment is $72,625. The payout is,
therefore, less than one year. Remember that while higher values of ROI can be
obtained by selecting T> closer to 250°F, maximization of ROI leads to the
meaningless solution obtained previously.

While the rate of return on investment (F/lo) did not lead to meaningful results,
there are some conditions under which this criterion can be employed effectively to obtain
a reasonable value for the optimum. For example, if the heat transfer area costs were
assumed to be Io = I’o + 25 A (I’ is the fixed installation cost for the exchanger), then
maximizing F/lowould yield a more realistic result for T,. Note that at T, = 400°F, ROI =
0.0, rather than 9.6 obtained earlier for Eq. (f). Another case which gives a meaningful
answer for ROI occurs when several projects are considered simultaneously with a
constraint on total capital expenditure. 1f $100 million is to be invested among three
projects, then an overall rate of return for the three projects, defined as (F! + F? + F3)/(I* +
12 + 13), can be formulated. The optimum, when calculated, should be meaningful because
it is guaranteed that $100 million will be committed to plant investment. In fact, I + 12 +
I3 in this case is a constant value ($100 million), hence we simply optimize F* + F? + F3,

Decisions made on the basis of the internal rate of return often favor investment in
smaller facilities rather than large plants because the ratio of profit to investment is
optimized.

Problem 3.21

The last sentence is not clear, but in general the statement is correct.

Problem 3.22

Refer to P3.5. Set P = 0. The answer is 10.13%.

Problem 3.23

The payback period is calculated as follows:

15



cost of investment

PBP = :
cash flow per period

$30,000
$1000

=30 months

Problem 3.24

The return on investment in percent is calculated as follows:

_netincome (after taxes)
cost of investment

$5000_ ;5 — 1006
$50,000

ROI 100

Problem 3.25

Since all alternatives have acceptable individual IRR’s, start with the one with the
lowest-investment (A) and look at the incremental return on incremental investment in
going to the next-larger investment alternative (B). This would be $12,000 investment
with annual return of $3,100. The incremental IRR of this is 22.4%. This calculation can
be done either with sequential cash flow entry or by trial-and-error solving the equation
NPW = $12,000 + $3,100(P/A,i%,10) = 0. Because 22.4%>18%, B becomes the preferred
case. You then calculate the IRR of the incremental investment of $5,000 going from B to
C; this is 42.7% so C becomes the preferred case. Going from C to D costs $5,000 but the
return of $500 per year is insufficient to justify that investment; C remains the preferred
case. Going from C to E involves an investment of $15,000 that generates $2,900 per
year. The IRR of this is 14.2%, which you reject because it is less than 18%. Thus C is
the preferred alternative.

Problem 3.26

All of the outflows are negatives. Choose Alternative D3 because it has the lowest
negative PV.

Problem 3.27

net savings  $162,000 0.162

investment  $1,000,000 or 16.2%

@) Return an investment (ROI) =

16



10 .
(b) |RR:ZM:106ZPV i:E__;
= (L+1) I, @+i)"-1

162,000  i(L+i)"®

— =———————=I=.162 50 1 =10% from Table 3.1
10 @+1)" -1

Problem 3.28

Find the present value of each option (use cost as the criterion). For depreciation
use the MACR table or just 10% per year. Interest is .15 per year under one assumption:

Oil
TAX SAVINGS @ .34 (188,800) = $64,192 ON DEPR.
A
0__ EACH YEAR FOR 10
10 YEARS
v
-$1,888,000 -$188,800 DEPRECIATION
+
-$188,800 FIXED CHARGES
+
-$1,261,000 FUEL COST
10 1 .
PV, =1,888,000+1,574,000> —— i=.15
i (L+1)
of costs
1 1
From Table 3.1 r=0.200s0 ==» ——=5.00
r @+
PV, =$9,758,000 (cost)
Rotary Air

17



TAX SAVINGS @ .34 ($242,000) = $82,280

A
0 __ EACH YEAR FOR 10
10 YEARS
v
-$2,420,000 -$242,000 DEPRECIATION
+
-242,000 FIXED CHARGES
+
$1,068,000 FUEL COST
+

-48,185 POWER COST

10
PV =2,420,000+1,517, oooz% i=15 1500
ia (L+1) r

PV,_$10,000,000
Too close to choose
Alternate Solution
Assume return on investment means ROI as in text

net income after taxes ($/yr)-assumed constant

ROl = ——
initial investment ($)
NI netincome sales B costs
l initial investment initial invesment initial investment

If sales are fixed, the smallest costs/initial investment will have the biggest ROI

Oil
NI _ $1,570,000 083
I, $1,888,000
Rotary Air
NI = w =0.63 smallest
I $2,420,000

(o]
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ROI may be < 15% depending on sales.

Another solution: Calculate the interest rate given present value and payments.

Problem 3.29

@) What is the PV of your base case? $43,087.
PV =-$140,000 + $40,000 + $25,000 = -$140,000 + $12,745 + $170,342

(b) You calculate the PV of —-50% annual savings to be -$42,084 and the PV for +50%
annual savings to be $128,257. The PV at -50% life is -$8,539. What is the PV at
+50% life? $72,229.
PV = -$140,000 + $40,000 + $25,000 = -$140,000 + $7,194 + $205,035

(c) Sketch the PV sensitivity diagram for these two variables below. To which of the
two variables is the decision most sensitive? Savings.

—@— SAVINGS

—il— LIFE
150000
100000
50000
0] T |
_500001% BASE 50%
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CHAPTER 4

Problem 4.1
@) continuous over —oo < X < o

(b) discrete

(©) continuous over 0 <xs<1and 0 <xp < 1 if xsand xp are mole fractions.

Problem 4.2

In all cases, i is a continuous variable, and n is a discreet variable.

Problem 4.3

n may be treated as a continuous variable when small changes in n do not affect the
average unit cost significantly. This happens when:

Q) n is very large, so that average unit cost = V (limit n — )

(i) F is very small (limit F — 0).

Problem 4.4

R =100(1-t)

=100(1—t)

[S—(V+F/n)] [Sn—(Vn+F)]
I/n I

dR _100(L-t)(S-V)

# function of n
dn I

Thus, R increases linearly with n and there is no stationary maximum. The same is true
when n is discreet.

Problem 4.5

X
@) Minimize: f(x)=[321]|x,| orf(x)=a"x
XS



Subject to:

X
(x) = 231 xl > 10 org(x)=Dx>c
IW=1113] 2] 7 |15 ==

XS
X
(b)  Maximize: f(x)=[51012]|x,| orf(x)=a'x
XS
Subject to:
—200
-15 -10 -10 0
gx)=| 1 0 0 ||X |2 0
0 2 0 || %
0
| 0 0 3 |
X
h(x)=[10 25 20]| x, |=300
X3
g(x)=Dx>c
or
h(x)=Ex=d
Problem 4.6

The function has the form
f(x)=a+x"b+x"cx

Let a=3
« = X b 2 - 2 1
X, 3 1 6

2
[xlle{ } Dl}[(leﬂzxxlwxl)]{f

|



= 2%, + XX, + X Xy + 6,

3 1 3/2||1
fO)=[1x %] 1 2 1 |x
32 1 6 | x

or

Problem 4.7

(2)

/
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=z

X2

(LW 1S FEASIBLE AND
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\
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[£=3 BOUNDARY



(b)
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Problem 4.8
f(X) = 2% +%,° +X X, +4%X, +3

of (X
% = 6% +2XX%, +4%,=0 (1)

XX _ o, +2%7%, +4% =0 (2)
OX,
2%,
2 X, =—
(2) 2= T
2% Y 2

3 3%’ T (| S )
(3) X +X1[1+X12] (1+X12J

X, (3x15 +6%" +3x" +4x° —4x, —4x13) =0
X, (3% +6x°+3x —4)=0
=0 Xx,=0 is one solution

(4) 3x’ +6x°+3x =4

Only one other solution exists. The Newton-Raphson method was used to check
the roots of the Equation (4) from different starting points (0.01,05,1. They all go
to x1 = 0.65405 100)

Values of right hand
X1 side of
equation
0.6541 4.000632
0.65405 3.99996
0.654053 4.0000003

X2 =-0.9161783

. |0 . | 0.654053
Thus, x, =| |andXx, =
0 -0.9161783



Next, check the Hessian matrix.
For x"=0
H | 12X+ 2x,°  AxX, +4
A X, +4  2X*+2

0 4
= L 2} Is not positive or negative define, hence x is a saddle point.

The eigenvalues are  (0—A1)(2—4)-16=0

A2 -22-16=0
+
,1:4—— \/4;4(16):2i«/1+16

one is positive and one is negative.

. | 0.654053
For X~
{—0.916173}

[ 5274 1.60308
11.60308 2.85557

}is positive definite

hence this x is a local minimum that is the global minimum

An alternate solution is to plot f(x) vs. x1 and x2, and use the graph to reach a
conclusion. The contours in the x1=x> plane will yield the results calculated above.

Problem 4.9

x=[5 2 107"
@ bzl
g, to g, satisfied

5(15) + 10(2) + 10(10) =195< 200 g: satisfied
10(5) + 25(2) + 20(10) =300  h; is satisfied

(a) is a feasible point
(b) is an interior point

2 x=[10 2 75T



g2 to g4 satisfied
15(10) +10(2) + 10(7.5) = 245 > 200, g: is not satisfied

(a) hence not a feasible point
(b) is an exterior point

B8) x=[000]
g2 to g4 satisfied (boundary points)

(a) h1 is not satisfied, hence not a feasible point
(b) g1 =0 hence is a boundary point, not an interior or exterior point

Problem 4.10

(a)

BOYNDARY
// Po\NT

7
W/

9(X) X,+X7_£2

/
/
/
4




(b)

/§1+2X il8//////¢/

e inrerior 7/ |
reh ion s to the m%hf

7 nt (1,1) 18 not

(©)

/fecm( le and 15
#}“ﬁ%}%
v %

{feasible “region is
e(on cury Pas‘i’

L1 is exterior

oint
X _ 1 o« - P
X3 X7

S X

feasible re%ion 5
shaded




Problem 4.11

(a)

h(x)= X, + X, ~3=0
hg(&)’ 2)(,")(2 +1=0
\Xz
N Feasible region i1s a point
M4 of fhe l'nfer:?ecﬂon: P |
(33,2 ')
t / +—t —t—+
-4 2 P 2 6 X,
» ..-Z
2%, =X, +1=0 x,+x2-3 =0
) h(X)=x"+%"+% =0
h(X)=X+X,+% =0
Feasible region is the origin
(C) gl(x)le_XZZ_ZZO
0,(x) =%, —%,+420
92=0
AN
4N 9220
N / 9
N T2
N N
™ N\
K(Q\\ 2 N
-2——
FEAS\BLE REGION
o SHADED
-4 1




h(x)=x"+x%"=3
(d) 0, (X)=%—-X%+220

9,(X) =% 20

9;(X) =%, 20

91(X) =X "X TL Z ©

N SN INN N

Problem 4.12

For the first constraint:

h,(x') = (0.947)* +2(0.207)* +3(-0.0772)* ~1=0?  max
=3.9x10" ok

hl(Xz) =(0.534)% +2(0.535)* +3(-0.219)* =1=0? min
=1.5x10° probably ok

For the second constraint:

h,(x") = 5(0.947) +5(0.207) —3(-0.0772) —6 =0? max
=1.6x10° ok
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h, (x?) = 5(0.534) +5(0.535) ~3(-0.219) ~6 =0? min
=2x10° probably ok

Problem 4.13

The point (1, 1) can be proven to be a local minimum by the methods described in
Chapter 8. The question is: how can it be shown to be the global minimum for the
problem? Some ways are:

(1)  Start a numerical search from several starting points.

2 Plot the contours of f(x), an ellipse, in the x;:-x2 plane along with the
function g(x) = x:? + x2?, a circle, and locate the local minimum at x”" =
[1 1]". Then ascertain if any other minimum exists by examining the
graph.

Problem 4.14
If the problem is a convex programming problem, that is if
f(x) is convex
g(x) are concave (form a convex set)

Another possibility is if f(x) is unimodal in the feasible region.

Problem 4.15

f =2x7+2%X, +3X," + 7% +8X, + 25
a 4X, +2X, +7 4 2
@ vf | T H=
2%, +6x,+8 2 6

4 2
6 and 4 are> 0, 26" 20>0 = H is positive definite

Thus, f is both convex and strictly convex.
X =[-1.3 —0.9]" (not required)
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f =e* Vf =5e°*,V*f = 25>

o

Vif >0for —o< X<

f is both convex and strictly convex.
Problem 4.16

f=(04—%) +%

(a) i :{Z(M—Xz) } V2 f :{ 2 _2} is pos. def.
—2(X, — %,) + 2%, -2 4

strictly convex

2 2 2
f=x"+X%"+Xx

(b) 2%, 2 00
Vfi=|2x,| V?’f=/0 2 0| ispos.def.
2%, 00 2

strictly convex

f=e"+e*

e e”

strictly convex in the finite plane

C ! X
© Vi =[e } v f ={eo (X) } is pos. def. in the finite plane

Problem 4.17

f =e +e*
gh 4
gk 0 e*

H is positive definite, because e* > 0 everywhere on the finite real axis. Thus, f is
strictly convex over finite values of x; and X2, and thus convex.

12



Problem 4.18

(a)

(b)
(©)

(d)

We will show that

[1—0)x, +0%,| < (1—0) |x|+6]|x,|
forall x;,x,, and 0<6<1

Let f_ =|(1—0)x, +6x,| and f; = (1-0)|x|+6|x,|
X, 20, X, >0. This means that
(1-0)x, +6x, = f_ = f; = function is convex.

X, =0, X, >0. We have f, =6x, = f; = f is convex
X <0, X,>0. We have (1-8)x, <0and 6x,>0.

fo = (L-0)|x|+0|x,| = @—6)(—x) +OX,. fL must be less than fr because the term

(1-8)x1+ @x2 involves subtraction of (1-8) |x1| from @x2. Thus fL < fgr, and f is
convexfor0< 4 <1.

For =0, f, =|1-6)x|=([1-0)|x|= fq

For 0 =1, f_ =|(0x,)|=6)|x,| = f;

fis convex for 0 < #<1.

% <0, X, 0. f, =|1-6)x +6%,|=|-T1-6)(—x) +0(~x,)]|
f, —(1-0)(—x) +6(—x,).

fo = (L-0)|x|+0|%,| = A-6)(—x) +0(~x,) = f..

f is convex.

13



Problem 4.19
72, (2,2) All the constraints are linear, and thus
concave functions. The region is thus
convex. Itis also a closed region as seen
from the figure.

Problem 4.20

9, =—(x°+%°)+920, g,=—%—X%+1>0

—2X% ) -2 0| . L o
Vg, = oy Vg, = 0 2 eigenvalues are —2, -2 = gx, is strictly concave; go is
2

concave because it is linear. Thus, the two constraints form a convex region.

Problem 4.21

9, =% —% +9>0

-2 -2 0
Vo, ={ le} H, :{ } eigenvalues are -2, -2 = ga is strictly concave.
—2X, 0 -2

g, =X —X +1>0

-1 0 O
Vg, = H, = eigenvalues are 0, -2 = @ is concave.
g, {—ZXJ 2 {O _2} g 02

0;=—X%—-%X+1>0

-1 00
Vg, = LJ H,= {0 O} eigenvalues are 0, 0. = g3 is concave and convex.



Thus, the region is convex. That it is closed can be seen from the figure.

A

Problem 4.22

f(x)=Inx +Inx, Inx isnot defined for x, <0

1 JER
Vi () = )il Heo=|
el 0 -
X2 X22

For any x, =0, H(X)is neg. def. At x =0, H(x)is undefined, but the conclusion
is that f(x) is concave.

15



Problem 4.23

REGION TN
X1+X2-120 %2 "SEZncd2 -x, 20

L 1y

LY

1
RS
i
(o]
T
N

/

__lé

aTe A CLOSED
REA\ON

b)Y 1T 15 convex
THE CONSTEMINTS
ARE CONCANE

Xz Z0

Problem 4.24

If the region is convex, all the constraints must be concave, i.e., the Hessian
matrix must be neg. def.

(@  h(X)=x>+x-9

oh_, o
' ox

ch _, oh_

Moy, M oy
%, Xlax2 ?

2 0
H= {O 2} is pos def. And hence h(x) is not

concave (it is convex).

16



Answer:
No. cOmEX
ReEGaioN \

Problem 4.25

The Hessian of the each term of y () is pos def. or pos. semi-def. If the term is
convex. The Hessian of a sum of convex terms is the sum of the individual Hessians,
hence the matrix of  (X) is convex. For example:

f(X)=%"+%"

> ol
H of the first term alone is
_O 0_
. [0 0]
H of the second term alone is 0 2
) 2 0
and the sum of the two H’s is 0 2|
Problem 4.26

Note the solution is wrong if x = 0.
Determine if f{x) is convex and g,(x) <0 is convex.

The Hessian matrix of f{x) is

17



400 200
3 2
X X
H(x) = )(21002 XZO(Z) is f{x) convex?
2,2

XX XX

The principal minors are

MEEIEESR
Xl X2 X1X2 Xl X2

X%
% and 4? >0 for x, >0 sof{x)is convex
X1X2 = X1 Xz

Is the constraint g < 0 convex?

The Hessian matrix of g(x) is

600 300

3 2, 2
X X, X

H, (x) = X X, )
300 600

2, 2 3
Xi XZ XlXZ

5 _ 4
dot H, {3.6x104 49x10 }20
X, X,
600
XX,

>0 forx >0 ﬂogzomrxizo
XX

so that g(x) is convex

The x >0 are convex functions. Consequently, the problem is a convex

programming problem for X, >0. as X, =0, g — oo, but the function asymptodically is
convex.

18



Problem 4.27

10
a ositive definite
(a) 0 J p

1 1
b neither
(b) 1 J

[oil 0O
(©) 3 J not symmetric hence change to{

3/2 1

oil  3/2|which is not positive definite,
so that neither is the answer

@ | ° _2} {b }neither
2 1] le-4=-3<0

Problem 4.28
111
A=11 1
110

Use principal minors:
det A=0

11
delete 1% col. and row A = L 0}

The elements on the main diagonal are positive: 1, 1, 0
Thus, none is the answer

Or Use eigenvalues

1-6 1 1
det| 1 (@-8) 1 |=0
1 1 (0-9)

Q- [~ A)(0-2) -1 -0~ 2) ~1+1[1- (L~ A)] =0
A =0

A, =2.73 »same conclusion
A, =-0.73

19



Problem 4.29

f(D,h)=nDh+ D
~ [(h+D)
Vf(D,h)_n{D }

11
H(D,h) = H[l O} H is not pos. def. so no minium exists (except at co limits).

145 1-+5
2 2

The eigenvalues of H are , hence one is +

and the other is -.

Based on the above

a. neither
b. is continuous
C. neither
d. does not
e. The trivial constraints (bounds) are linear and concave
g=2D%h-400>0
4 n|2h 2D| h>0
H=-—
| 2Dh 42D 0 |but0=0
Vg=—
4| D?
det H = -4D? and is negative always
so that H is concave
Thus, the constraints do form a convex region (they all must be concave).
Problem 4.30

Basis: 1 Ib mol feed
Income: 50 (0.1 + 0.3xa + 0.001S + 0.0001 xaS)(1) [$]
Expenses: Assume the cost of the additive is $/1b mol feed, not additive

Additive: (2.0 + 10xa + 20xa%) (1) [$]

20



Steam: (1.0 + 0.003S + 2.0 x 10°5?) (1) [$]

f = (5 + 15xa + 0.05S + 0.005XaS) — (2.0 + 0.003S + 2.0x10%S?)
-(2.0 + 10xa + 20xa%)

(@  f=1+5xa—20xa? +0.047S — 2.0 10552 + 0.005xS

— (5—40x, +0.005S)
| (047 -4.0x107°S +0.005x,,)

) —-40 0.005
Vif=H-= "
.005 -4.0x10
(b) H is negative definite, hence concave.
The eigenvalues are —40 and —3.375x10® (almost zero but not zero).
(c) The search region is linear because the constraints
O0<xa<1

S>0

are linear, hence concave, and form a convex region.

Problem 4.31
f — (P2 / Pl)O.286 + (P3 / P2)0.286 + (P4 / P3)0.286
with P1=1 atm and P4 = 10 atm, this becomes

f =P % L pO#P, % 4+1.932P, %

of /0P, =0.286P, " —0.286P," P,

0°f 19P,* = —-0.2042P, " +0.3678P,"* P, ***
of /0P, =0.286P,*™*P, **® —0.5526P, %

0°f 10P =—0.2042P, P, *** +0.7106P, ***
0° f 16P,0P, = —0.0818P, P, **



o*f1oP?  8%*f |0POP,
H=
O*fIoPoR, 8 f /0P

For convexity, must have 0°f / 6P22 >0 (as well as some other conditions also).
0% f 10P," =—0.2042P, ™ +0.3678P," P, ***

P, (0% f 10P,%) = -0.2042+0.3678P,"*P, "

This has its lowest value at P, =10 atm, P, =1 atm.

P (6% f 10P}?) =—-0.1057 <O.

Therefore, H is not positive semi-definite over the range 1< P, <10, 1<P, <10, and fis
not convex over this entire range.

Problem 4.32

200

(@) f (x) =100x, +

2

400 200
3 2,2
X, X X
H(x) = 1 X XX
200 400
7.2

XX XX3

wor=| (R e )
X )L’ ) %" ',

4003 >0 and 420 > for x, >0 and asymptodically as x, — 0. f(x) is convex (a)
XX XX
(b) g(x):2x2+300 -1>0
2
600 300
+ X13X + X12X 2
VZ X) = 2 2
909 N 300 . 600
X% XX
+ 6?0 >0 and+ 6003 >0 forx, >0and asymptodically as x, — 0.
X X XX

so that g(x) is convex

22



concave
Also x, >0are

convex

but the constraint region is not a convex region because g(x) >0 has to be a concave
function for the region to be convex. The following figure (with 300/ x,x, changed to
30/ x,x, to reduce the scale) illustrate the surface for g(x)=1. Note that the region
above g(x)=1is not convex. InP.4.26 g(x)<1.

Problem 4.33
of (X) 3 of (X) 01 (x) )
bl A0 AV =2 =3x"-1
(a) %, X =X ox, X, axiz X
2 2
8f(2x):_2 6f(x):0
oX, XX,

23



f (x) is not a convex function for all x, hence the answer is no.
(b) no: h,(x)is not satisfied 1+1 =4

() yes: x'=[2 2] lies in the interior of the inequality g,(X)=x —X,-2<2

Problem 4.34

f =14720(100 - P) +6560R —30.2PR +6560—30.2P +19.5ny° + 23.2y* where y =
5000R — 23PR + 5000 — 23P

Differentiation gives

0° f | oP? =529(—4.875ny ° —5.46592y " *)(R +1)?

0°f 1 0POR = —30.2+ (112.125ny **° +125.71616y “*)(R+1) x
(5000 — 23P) — 224.25ny *° —330.832y

0°f /oPon =—224.25y°°(R+1)

o°f 10R* = (—4.875ny ** —5.46592y %) (5000 — 23P)?

o° f 1 6Ron =9.75y°*(5000—23P)

o’ flon* =0

For P=99, R=8 and n=55, we have

o’fl1oP?  o*floPoR 0*f /oPon
H=|0°f/0PoR 0o°floR*  0*f /0Ron
o’floPon  o*floRon 0% f lon?

-32 74 129
=| —74 -553.7 169.6
-129 169.6 0

For H to be positive definite, all diagonal elements must be positive, which is not the case
here. Thus f is not convex at P =99, R =8 and n = 55. It is therefore, not convex in
some small neighborhood of the optimum.
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Problem 4.35

7 If the search is started in the vicinity of
i point A, it is likely to terminate at point L
which is a local maximum. The global
I maximum is at point G. The region is not
% convex because the line segment AB does
not entirely lie within the region, even
I though the endpoints A and B lie inside the
region.
[¢]
[} A, 5
Problem 4.36

f(a) is a continuous function because it is the sum of continuous functions.

If f(x) is continuos for a<x <b and f '(x) is positive for a<x <b, then
f(b) > f(a). The corresponding fact occurs for f'(x) being negative. On the interval

X% <o < x®D  We have

f(a):_zn:\xm ~a

=(@—X)+(a=x)+---+ (a—xY)
+(x* —) + (xX*? —@) +---+ (X - )

ke -Y K+ 3 X0~ (1—K)a

i=1 i=k+1
Differentiation gives
f'(@)=k—(n-k)=2(k—n/2)

which is negative for k < n/2 and positive for k > n/2. f"(a) =0, hence f is convex.

Repeat the above analysis with ¢, in the sum. (Assume ¢, >0)




Problem 4.37

(@ f=-x"+x*+20
f'=—4x>+3x* =x*(-4x+3) =0
X =0, 3/4
f"=-12x*+6x
f"(0)=0 x =0 is a saddle point (inflection)
f"(3/4)=-225<0 x=3/4isamaximum

(b) f=-x*+3x>+x+5
f'=—3x2+6x+1=0 = x*=-1£+/2/3
f"=6x+6
f"(—l+«/ﬂ):4.9>0. x=—1+\/m IS a minimum
f"(—l—\/F:—4.9<0. x:—l—Misamaximum.

(© f=x'-2x"+1
f'=4x-4x=4x(x*-1)=0 =x=-1, 0, 1
fr=12x*-4
f"(-1)=8>0 x=-1isaminimum
f"(0)=-4<0 x=0isamaximum
f"1)=8>0 x=11isaminimum

(d) f=x"—8xx%+%
vi {2)(1_8)(2}:0: X =[0 0]
2X, —8X,
H {2 -8} Eigenvalues are (1—2)>—8° =0
-8 2 or A= -6, 10
H is indefinite, and x = [0 0]" is a saddle point.
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Problem 4.38
@ f=x"+2%+3%"+6X,+4
2%, +2 . |1
Vi = =0 =x=
6x, + 6 -1
20| _.
H= 06! Eigenvalues are 1=2, 6.

H is positive definite, and x =[-1 -1]T is @ minimum.

Problem 4.39

f(X)=2x %, —2%,° + X

of (X) ) o f o2 f
— 24X X, +3 =4 6 =4x
ox, X X, +0X axiz X, +0X 0%, 1
2 2
M:2x12—4x2 of = 4x, 0 ];:—4
OX, OX,0%, OX,
% §= -0t
/ =0
el // o
at (0, 0)

27



H - (4x, +6x,) 4% |00
{ 4x, -4 }{0—4}
A4=0 1,=-4

So that probably case 10 or 11 is the outcome. Evaluate f(x) on both sides of zero to see
how the value of f(x) changes.

x=[-1 0]" f(x)=-1] rising ridge toward x, — +o0
x=[0 1" f(x)=-2
x=[0 -1" f(x)=-2

x=[1 0" f(x)=1 }declining ridge toward x, — —oo,

Problem 4.40
f(x)=3%x,
2
Vi () {gxl EZ}
3%,

18x,x, 9%’

H(X){ )
9%, 0

:l principal minors: 18 X1 X2 is not always
definite unless xi > 0
det H = (18x1x2)(0)—81x14 (concave function)

Get eigenvalues

(18x,x, —A)(0— 1) —81x* =0

| —(-18%%,) +/(-18xx,)* ~4(1)(-81x,")
2

A

A depends on the values of x; and x2, but at the stationary point (0, 0)

X%, | .
(VE(x)=[0]= 3X13 yields x, =x, =0, or x, =0, x, =anything)

28



A, =0, hence some degenerate surface occurs

Problem 4.41

f(X) =10%, — x> —10%, — X, — XX, — % —34

2 _ —
VF (%) = 102X, — X, +3X, H(x):{( 2+ 6%, 1}
10-2x, — X, -1 =2
Find two eigenvalues (in terms of x1)
(-2+6x —-A)(-2-4)-1=0 A2 +(4-6x)A1+(4-12x)=0

_ —(4-6%)+4-6x)’ - 4(1)(4-12x,)

A
2

Solve for A in terms of x1; the value of A depends on the value of x;

Problem 4.42

o vo-sel(E 2]

at the stationary point

du

_ —0 = —
dr

- rl-

1/6
32(1] - - 7" o

=
12 6
—4e {156(%) %2—42(% 12}
r r r r

(i) >0aslongase>0
o

dZu
r2

(b)

r*



The Lennard-Jones potential has a minimum at r”

(©) u(r*)=4e{(%) —%} =—c

AN

UK

Lennard-Jones potential

Problem 4.43

The solution of y=(x—a)® =0, orx=a is misleading. The necessary condition is
dy/dx=2(x—-a)=0

that coincidentally corresponds to the solution of the equation. For
7=Xx>—4x+16, dz/dx=2x—-4=0

that differs from

X* —4x+16 =0.

X=2% jJ§ does not satisfy 2x—4 =0, and is thus not the minimum. x =2 is the
minimum.,

Problem 4.44

No. f(x) is not differentiable at x” =0 where the minimum of f(x) is located.
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Problem 4.45

(a)

(b)

f =6x"+X, +6XX, +3x,"

12x, +6X, . |0 1/2
Vi = ) =0 = x =| _|or
3x,” + 6%, +6X, 0] |1
12 6
H =
6 6x,+6

at x'=[00],H {162 2}

12 6
A, =12 and 6 are greater than 0 ; A, :[ 5 0} =36>0.

H is positive definite, and [0 0] is a minimum

At X =[1/2x -1]', H :{162 g}

12 6
A;=12and0; A, =

=-36<0.
0

H is indefinite, and [L/2 —1]" is a saddle point.

f =37 +6X + X, +B6XX, + X; + 2%, + XX + X,

6x, +6+6X, 4117
VI = 2X, +6x +X,+1|=0 = x =|-21/17
4%, + X, +1 1/17
6 6 0
H=/6 2 1
01 4
66 60 2
A =6,2, and 4 ;A, = =-24 =24, =7
62 04 14
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6 6 0
A, =6 2 1)=-102
01 4

H is indefinite, and
X" is a sadlepoint

(€)  f=agX +aX, +aX’ +aX, +a,%X
—28y8; + 8,8,
2
Vf = ay +2a,% +a,X, 0 oo 4a,a,—a,
a + 28X, +a, % —28,3, +3,3,
4a,a,—a,”
H ={Za2 a, }
a, 2a,
H must be pos. def. to get a minimum and neg. def. to get a maximum.
Otherwise, x” is a saddle point.
For X" to be a minimum, must have a, >0, a, >0, 4a,a,—a,” >0.
For X" to be a maximum, must have a, <0, a, <0, 4a,a,—a,” >0.
Problem 4.46

The necessary and sufficient conditions are

1)

2)

f(x) is twice differentiable

of
2= 2(x, -8

o (X, —8)

i=2(x2—5) ok

X2

2 2

2, P,

0% oX,

. 2(x,—8)=0) x, =8
vixy=o %78 }Xl ok
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3) H (x")is pos def.

2 0
H:{O 2} which is pos. def. ok

Problem 4.47

The stationary points of f(x) = % x* —% x* are obtained from f (x)=0=x*-1=0

Factor to get: x(x+1)(x-1)=0
Solutions: Xx=0, x=1 x=-1
To identify status of these points determine f"(x) at each point

Xx=0: 0-1=-1 amax
fr(x)=3x"-1 x=1: 3-1=2 amin
x=-1:3-1=2 amin

Problem 4.48

f(X) = 2%+ %, +X X, +4%X, +3



dar _ B6X,” +2%,X,” +4X,

;I_f = 2%, + 2X,X,” + 4%,

2

For an optimal solution

df

o 0 =6X%°+2XX, +4x,
df

d—X2 =0 = 2X2 + 2X2X12 +4X1

An obvious solution:  (x, x,) =(0,0)

Another solution: (X, X,) =(0.654,-0.916)

12x, +2x," 4 4
H(X)= X, +2X, X Xy +2
4 X, +4 242X
0 4
H(0,0) =
0-; 3|

(~a)2-a) -16=0 or a’-2a —16=0

The eigenvalues are

o= +24 A7 68 = T2ENTO8

2
@, =5.123 a,=-3.123

This is a saddle point
For the other point

9.53 1.60
H (0.654,-0.916) =
1.60 2.86

det(H) =24.7
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The eigenvalues are

(9.53—)(2.86—a)—2.56=0 or +a?—12.39a+24.70=0

_1239+7.40 _ 9.89

o

a,, a,>0  the function is strictly convex at (0.654, -0.916)

Problem 4.49
x> —0<x<0 -2x always+
f(x)=< x> 0<x<1 f'(x)={2x always+
et 1<x<w e** always +

Look at f'(x)and note that there is one minimum. Or, plot the function

£ )

f i
o | X

=1

In either case you can determine that the function is not unimodel.
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Problem 4.50

Is X" =[-0.87—-0.8]" a maximum of f(x)=x"—-12x,> —15x° —56x, +60

See if —f (x)is convex

_Vf(x):{(am 2—30x1>}

(36x,” —56)

_H(X):{lzxf—m o}
0 72X,

Apparently V7 f =0 at the proposed solution! Hence X" is not a maximum.

Introduce X” into H(X)

0 -57.6

CH(X) :_{—20.917 0 }

H(x") is neg. def., but Xx™ is not a maximum even if H is neg. def. at the point.

Problem 4.51

f(x) =[x
Differentiate f(x)
f'=3x* x>0
f'=-3x> x<0

f"= 6x x>0 f"= 6 x>0
fll

=-6X X<0 "=—6 x<0

But because the derivatives are decontinuous at X"= 0, even though the function is twice
differentiable, you cannot demonstrate that the necessary and sufficient conditions are
met because the derivative is not defined at X" = 0.
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CHAPTER 5
Problem 5.1

f(x)=e" —1.5x

f6&)

'
- ‘4‘
N

A local maximum occurs between x=0and x=1. Consequently if you start to bracket
the local minimum at values of x >1 and use reasonable step sizes, you can bracket the
local minimum, but if you start with values of x before the local maximum occurs, you
will most likely proceed to x — —oo (the global minimum).



Problem 5.2a

(a) f(x)=€" +1.5x

The minimum will be reached from any starting point.



Problem 5.2b

()  F(x)=0.5(x2 +1)(x+1)

No matter where you start, the minimum (at —oo) cannot be bracketed.



Problem 5.2¢

(c) f(x)=x>-3x

N-

-z x

Because both a local minimum and a global minimum (at —) exist, the remarks in P5.1
apply here.



Problem 5.2d

(d) f(X)=2x°(x—=2)(x+2)

s 7R

W

0.0l)p

-7.68

/

Because this function has two minima, and one maximum, various starting points and
step sizes will yield different results.



Problem 5.2¢

)  f(x)=0.1x*—0.29x% + 2.31x" —8.33%> +12.89x* —6.8x +1

\ -10 | x o

A large scale figure shows one minimum, but a small scale figure shows many minima

and maxima exist. Starting near x = 0 you would reach the local minimum shown in both
figures.



Problem 5.3

Use the analytical derivative to get the solution by which the numerical methods
can be checked.

Minimize: f = (x-1)*
f'=4(x-1)° x=1is asolution of f '=0
fr=12(x—1)
f "= 24(x—1)

The fourth derivative is an even number, so you have a minimumas f ™ is
positive. You can never have a maximum as f" is pos. def. at all x except x = 1.

fr=24

The figure for the second derivative looks as follows

T-1

Bracket the minimum

f =(x-1*



| 0 0.5 1 1.5 0.95 1.05

X
f \ 1 0.0625 0 0.0625 6.25x10°  6.25x10°
A bracketis: 0.95 < x < 1.05

@ Newton’s method (using finite differences instead of analytical derivatives)

If youuse h=0.5 and x° =0 at the start, the relation is:

[f(x+h)—f(x—=h)]/2h o [(0+0.5-1)* - (0-05-12)" |/(2)(0.5)

1,0

[f(x+h)—2f(x)+ f(x=h)]/h* _[(0+o.5—1)4—2(0+1)4+(0—0.5—1)4]/o.52

It is better to use a bracket value instead of x° = 0, say use x° =0.95

x' =0.9738
x> =0.9867
x® =0.99336
x* =0.9967
x° =0.99835
x® =0.99917
x" =0.99959
x® =0.9998
x? =0.9999
x'° =0.99995
etc.

) f=(x-1*
(b)  Secant (Quasi-Newton) method f1oa(x_1)
&y f'(x)
[f (x) - f '(xp)]/(xq -x")

x?=1.05 xP=0.95

4(1.05-1)°

x'=1.05— =1
[ 4(1.05-1)° ~ 4(0.95-1)° |/(1.05-0.95)




x? =1

The minimum Xmin = 1

Problem 5.4
f =6.64+1.2x—X>

The precise values at the solution will depend on the method used.

The final interval is [0.5917, 0.6049], and f = 6.9999 with x™ = [0.598 0.600]".

Problem 5.5
1. The problem has no minimum
2. It has a minimum but
a. A bracket on the derivative of f (+ and -) is not maintained.
b. Numerical and round off errors gives nonsense numbers.
C. The function was not unimodel.
3. The bracketing procedure at the start is not successful in bracketing a minimum.
Problem 5.6
f =(x-1*

o 1 {(xf ) 406" )+ (17 %) fs}
21 (X =x) FL+ (X% —x)f, +(x —x,) f;

x =00 f,=1.0
x,=05 f,=0.0625

x,=2.0 f,=1.0
Iter. Points used XOPt fort Point to be
discarded
! X, XX % =10 f,=0.0 X,

2 Xy, Xg, X, x, =0.833 f, =7.7x10™ X,



3 X5, X X %, =0.9194 f, =4.2x10"° Xs
4 X, X, X %, =0.9600 f, =2.6x10°° Xe
5 Xp, X, X, X5 =0.9800 f, =1.6x107" X,
6 X, X, Xg % =0.9900 f,=1.0x10"° Xg
7 X5, X X %, =0.9950 f,=6.2x10" X
8 Xg, X0 Xpo Xy =0.9975
X =0.9975
Problem 5.7
f=(x-1)"
g=4(x-1°

- :XZ{M
9,-0, +2w

}(Xz - 1)

z=3(f, - f,)I(x,—x)+0,+09,

W= (Z2 - 9192)1/2

X =0.5
X, =2.0

10



Iter. Points used XOPt Point discarded
1 X,y X, X, =1.2287 X,
2 X, Xs x, =0.8780 X,
3 Xs, X, X, =1.0494 X,
4 Xy, Xs X; =0.982 X,
S Xs, X X, =1.0084 Xs
6 X, X X =0.9905 X
7 X, Xg X9 = 0.9994 X,
8 X, Xg X10 = 1.0028 Xq
9 Xg, X0 X11 = 1.0009 X,
10 Xg, Xyy X12 = 1.0002 X,
x* =1.0002
Problem 5.8

f(x-1)*

x, =15 f, =0.0625

X, =3.0 f, =16.0

X, = 4.0 f,=81.0

X, =45 f, =150.0625

Fitting a cubic equation through these four points gives

f =9x% —54.75x%> +115.25x — 80
df /dx =27x*-109.5x +115.25=0

This quadratic equation does not have real roots, and the problem cannot be solved. The

difficulty arises because x,X,,X, and X, do not bracket the minimum.

Problem 5.9

Minimize:

f(x)=2x>-5x*-8

Information about the problem (not required)

11



f'(x) =6x* —10x
" . . 10
f"(x)=12x-10 is pos def. if x> o

f'(xX)=0=(6x-10)x yields as solutions x=0 and x= % =1.67,
the latter is a minimum for x >1
€)] Newton’s method

f(x°) _ . 6-10

X=X = 1- 2 _1-(-2)=3
f"(x%) 12-10 2
1 1
xeoxt-dX) _3 24508
fied) 26

(b) Secant (Quasi-Newton) method

At X, =2, 1'(2)=4positive use them as they bracket
Xg :13, f '(1.5) =—1.50 negative | the derivative value of 0

X =x"— Fec) =2- 1 =1.636
f(x°)-f'(x°%,) 4-(1-15)
Xn — Xg 2-15

f '(1.636) =—0.301 negative; keep x, =2,and let x; =—-0.301

1.30

4
2 _  — =
x* =1.636 4—(-0.304) Error caused by round off

2-1.636

(c) f(x)=2x*-5x*-8 x=>1

For polynomial approximation (use a quadratic function) start with 3 points possibly
evenly spaced that bracket the minimum

12



f(x)

Startatx =1 -11
X=2 -12
x=15 -12.5

Thus 1 < x < 2 brackets the min of f(x).

Step 1

Solve the quadratic f (x)=a+bx+cx? using the 3 above points

ll=a+bh+c
12.5=a+ 1.5b + 2.25¢
12 =a+2b+4c
minx=- 2 -_~18_18_ 63
2c 214 8
f(X) = 12,62 .
-12 T~
-13
1.00

Save x, =1.50, x, =1.63, x,=2.0  and repeat

&
x=15 -12.5
x=1.63, -12.63
X=2 -12.00

Solve

-125= a+ 1.5b+2.25c

-12.63=a+1.63b+2.66¢ ; solve for b and c, and get

—-12.00=a+2.00b +4c

13



and continue to improve the values of x".

Problem 5.10

f(x):1—8x+2x2—£x3—lx4+ﬂ s_Ly

X
6 6
f'=8+4x-10x* —x® +4x* —x* = (1+Xx)*(2-x)*

=0atx=—landx=2

a. f'=1-5x)1+x)(2-x)*> =0forx=—landx=2

f™=-2(2—x)(5+4x-10x*) =0 for x=-1, sox=—1 is a saddle point, but > =0 for x = 2

f ™ =—6(1—16x+10x%) is negative at x = 2, so X = 2 is a maximum.
b. Newton method
f'(x¥)
Xk+l — Xk _
F(x) 700)
T 16
X'=-2-——=-1910
2 -176
12.66

x* =-1.190+——=-1.104
146.7

Quadratic interpolation

14



108" X (6 =X ) 40 %)

(Xz _Xs) f1+(X3_X1) fz +()(1_)(2) fs

Starting with x, =-2, pick x, =0 and x, =2 arbitrarily.

f=1-8(-2)+2(-2° -

f,=1

10, 05 1, 0 4, o 1, .
(-2 +5 (-2 + £ (-2 -2 (-2)° =959

f, =1-8(2) +2(2)’ —%(2)3 +%(2)4 +g(2)5 —%(2)6 — 1473

x1:l

{(O2 —27)(95.9) +[2° - (-2)*1(1) +[(-2)* - 0°](~14.73) }

(0-2)(95.9) +[2—-(-2)](V) +[(-2) - 0](-14.73)

and repeat
Problem 5.11
() f =x*—6x+3
(i)  Newton’s method: x°=1; converges in one iterationto x" =3
(i) Finite differences Newton method: x° =1, h=0.001
Converged in one iterationto X" =3
(ili)  Quasi-Newton (Secant) method: x° =1, x' =5. Converged in one iteration to
X =3.
(iv)  Quadratic interpolation: Started with x' =1, x* =2, x> =5. Converged in one
iteration to X" =3.
(v) Cubic interpolation: Initial prints: 1, 2, 5, 6

x W h
3.047619

3.028532 0.599 12.583
3.00000 0 0

convergence is linear

Here

15



ka+l_ * HXkJrl_ N
” ||l ka —X H ” ||2 ka B X* 2
(b) f =sinx
(1 Newton’s method.
X e H
5.0
4.86369 0.526 1.83
4.71122 0.008 0.051
4.71239 0 0
The rate of convergence is superlinear.
(i) Finite difference Newton method.
X i3 L3
5.0
4.70419 0.029 0.100
4.71239 0 0
The rate of convergence seems to be quadratic, but there are two few points to be
certain.

(iii)  Quasi-Newton (Secant) method. Initial points were x' =3, x* =5

x W h
4.55457

4.71338 0.006 0.04
4.71238 0.010 3.06
4.71239 0 0

Rate of convergence is linear.

(iv)  Quadratic interpolation. Initial points were x' =3, x* =5, x> =5.5

X I, [,
4,65058

4.68558 0.433 7.02
4.71261 0.206 0.306
4.71247 0.364 0.165
4.71239 0 0

Rate of convergence is linear.

(v)  Cubic interpolation. Initial points were x' =3,x* =4, x> =5,x* =5.5.

16



(©)

. Hh He

4.74334

4.70481 0.245 7.91
4.71219 0.026 3.48
4.71239 0 0

Rate of convergence is superlinear.

f =x*—20x>+0.1x

(i)

(i)

Newton’s method.

X I, I,
20.0

18.312 0.662 0.132
17.191 0.661 0.200
16.448 0.661 0.302
15.956 0.660 0.456
15.631 0.660 0.691
15.416 0.659 1.05
15.275 0.660 1.59
15.181 0.657 2.40
15.119 0.656 3.64
15.079 0.661 5.60
15.052 0.654 8.38
15.034 0.647 12.7
15.022 0.636 19.3
15.015 0.667 31.7
15.010 0.643 45.9
15.006 0.556 61.7
15.004 0.600 120
15.003 0.667 222
15.002 0.500 250
15.001 0 0
15.001

The rate of convergence is linear.

Finite difference Newton method. h=0.001

X I, [,
20.0

16.667 0.333 0.067
15.278 0.167 0.100
15.010 0.036 0.129
15.000 0 0

The rate of convergence is quadratic.

17



(i)

(iv)

v)

Quasi-Newton (Secant) method. Initial points are x* =10, x> = 20.

X [, [,
12.000

13.421 0.526 0.175
14.240 0.481 0.305
14,652 0.457 0.602
14.845 0.444 1.28
14.931 0.442 2.87
14.970 0.426 6.27
14.987 0.414 14.3
14.994 0.417 34.7
14.997 0.400 80.0
14.999 0 0

The rate of convergence is linear.

Quadratic interpolation. Initial points are x* =10, x* =16, x* = 20.

X [, [,
14.031

14.920 0.08 0.085
14.957 0.53 6.72
14,995 0.10 2.27
14,998 0.25 62.5
14,999 0 0

The rate of convergence is linear

Cubic interpolation. Initial points are x' =10, x* =13, x* =16, x* =20

x ([
14.974

14.989 0.423 16.27
15.000 0 0

The rate of convergence is linear. There are not enough points to tell whether it is
superlinear.

18



Problem 5.12

$0.03
X

= 500+0.9x+@

X
4500

X2

C =$500+$0.9x +

(150000)

dC/dx=0=0.9-

x=70.71 hp.

Problem 5.13

At least squares fit gives

E =74.764—0.0853R +1.551x10°*R* - 7.613x10°R® +9.605x10 °R*

Coal cost =7 i xL fon xL £ x5
ton) 2240\ Ib 14000\ Btu

x 2544.43) BY | xgs50[ '] Z7284R /41,
hr.hp yr E

300R

X

Fixed cost = 14000 + 0.04R?> $/yr.

2
Total cost ( $ j: 7284(R/E)+14000+0.04R

yr-hp (5)(300)(0.01R)

~ 485.6 N 933.33
E

+2.67x10°R

C

Introducing the least squares expression for E into the expression for C and minimizing
gives

C =11.44
R" =244.09
E =697




Problem 5.14

t, =[AP. A’/ uM*c]x, exp(-ax, +b)
Letc, =APA’/ uM?c
Then:
tlf = Cl eXp(—aXc + b)(l_ axc)
tf =-ac (2 - axc) exp(_axc + b)

Newton’s method gives

X =xg = (t 1))

‘ 1-ax,

C t——
a(2—-ax,)

Substituting numerical values,

o1y, 1-3643x,

X
‘ ¢ 7.286-13.2714x,

X

C

0

0.1372
0.2332
0.2791
0.2884
0.2888
0.2888

o wWNE O IX

x, =0.2888, and
t, =1634 minimum

Problem 5.15

The authors of the paper cited report T™ = 453K, but several procedures in this book indicate that
the problem does not have a realistic solution to get the minimum cost as a function of T,
probably because the function for 3 is incorrect.

20



Problem 5.16

The comment is true

21



CHAPTER 6

Problem 6.1

If each step is 1/20 of the interval, then there are 21 values for each variable. The
number of function evaluations is

(21)° = 4084101

Problem 6.2

f(X) =X+ XX, + X, +3X,

Vf(x):{2x1+x2+3}:0 :X*:{—Z}
X 1

+ 2X,

(a)

21 .. .
H= [1 2} H is positive definite, so X™ is a minimum.

(b) Since f(x) has only one stationary point, it is a global minimum.

(©)

A
Y
b

X
)
T/":'

/
\

(d) A univariate search will be a good method because the function is quadratic and
well scaled. The search directions must be chosen appropriately.

(e)  Let A be the step-size. Then, starting from [0 0]T , the next point is [A O]T.

f=22+31
df /dA=24+3=0 =A1=-3/2



P =[3/2 O]
If we start from [0 4]7, and « is the step size, then P, =[a 4]

f=a’+4a+4*+3a=a’*+7a+16
df /da=2a0+7=0 = a=-7/2
P, =[-7/2 4]

(f) See the figure. A line joining P1 and P> passes through the optimum. This is
analogous to the method of conjugate directions.

Problem 6.3

We need a regular tetrahedron with each side 0.2 units long, and one vertex at (-1, 2, -2).
Let one face of the regular tetrahedron (an equilateral triangle) be parallel to the x-y plane
with one vertex at (-1, 2, -2). We may place the second vertex at (-1.2, 2, -2). By
symmetry, the x-coordinate of the third vertex, x, is—1.1. The y coordinate is given by

[(-1.0) - (D] +[y; - 2] =(0.2)?
y, =1.8628 or 2.1732

Select y3 = 2.1732. Thus, the equilateral triangle has vertices (-1, 2, -2), (-1.2, 2, -2) and
(-1.1, 2.1732, -2). The x and y coordinates of the centroid of this triangle are the x and y
coordinates.

X+ X, +X
X =177

1.1
! 3

y, =2ty 3{; s _ 20577

Then, the z-coordinate, zs is given by
[(-1.1) — (=) +[2.0577 —2.1732)* +[z, — (-2)]* =(0.2)°
z, =—2.1633 or —1.8367.

Say z4 =-2.1633. Then the required simplex has its four vertices at

(-1,2,-2), (-1.2, 2, -2), (-1.1, 2.1732, -2) and (-1.1, 2.0577, -2.1633)



Recall that regular polyhedrons in E" are simplexes. For example, as indicated in Fig 1,
for two variables a regular simplex is an equilateral triangle (three points); for three
variables, the regular simplex is a regular tetrahedron (four points), and so forth.

~ Three- varigble simplex

Regular simplexes for two and three independent variables. (1) indicates the highest
value of f(x). The arrow points in the direction of greatest improvement.

Coordinates for a Set of Simplex Vertices

n coordinates of each point

Point j 1 Cj Cs Caj G Cnj
1 0 0 0 0 0 0
2 p q q q q q
3 q p q q q q
n q q q q P q
n+1 g g g g g P

a
=——(Jn+1+n-1
P= 75 )

a
=——(vn+1-1
=73 )

a = distance between two vertices

Note: The table starts at (0, 0, 0); for another starting vertex such as (-1, 2, -1), you have
to translate these values.

For example, for n = 2 and a = 1, the triangle given in Figure 1 has the following
coordinates:



Vertex X, oy
1 0 0
2 0.965 0.259
3 0.259 0.965

The objective function can be evaluated at each of the vertices of the simplex, and a
projection made from the point yielding the highest value of the objective function, point
A in Figure 1, through the centroid of the simplex. Point A is deleted, and a new simplex,
termed a reflection, is formed, composed of the remaining old points and the one new
point, B, located along the projected line at the proper distance from the centroid.
Continuation of this procedure, always deleting the vertex that yields the highest value of
the objective function, plus rules for reducing the size of the simplex and for preventing
cycling in the vicinity of the extremum, permit a derivative-free search in which the step
size on any stage k is fixed but the direction of search is permitted to change.

Problem 6.4
x =M 1]T
X, =[1 2]T
Select x, sothat x,, x, and x, form an equilateral triangle. Say

X, =[1.8660 1.5]"

Stage 1: f(x,)=4.00
f(x,)=13.00
f(x;)=10.23
discard X, .
Stage 2: X, is the reflection of x, in the line joining x, and X,.

X, =[1.8660 0.5]"
f(x,)=4.23
discard X,.

Stage 3: X, is the reflection of X, in the line joining X, and X,.

X5 =[1 O]T



f(x)=1
discard X, .

Stage 4: X, Is the reflection of x, inthe line joining X, and X;.

X, =[0.134 0.5]
f(x;)=0.768
discard X;. 1
And so on. /""\@
%y, \\ \\:_/J /
o} ™~ s
e
x,
Problem 6.5

x,=[0 0 0 f(x)=4

X, =[-413 =1/3 -1/3]" f(x,)=7
X, [-1/3 —4/3 -1/3]"  f(x;)=10
x [-1/3 -1/3 4/3]" T(x)=5

X, is dropped. The next point, X, is the reflection of x, in the plane containing
X, X,and X,. The centroid of the equilateral triangle formed by X, X,, X, is

Xc :%(x1 +X, +X,)=[-0.556 —0.222 —0.556]"
X3+ Xg = 2%,

Xs = 2Xc — X
X, =[-7/9 8/9 -7/9]




Problem 6.6
@ s=[YVs s G

Let s,=[abc]

Then, for s, to be orthogonal to s,.

s;slzis(a—b—c)zo

B

Any values of a, b and ¢ which satisfy this equation gives s, orthogonal to s, .
Say, s,=[1 1 0]" (No unique solution)

() F(X)=%+2%"—XX,

1-x, 0 -1 0
VE(X)=| 4%, — X, H=-1 4 0
0 0 0 O

H is not positive definite, so s, cannot have a conjugate direction with respect to
H.

Problem 6.7

f(X) =X+ X" +2X; — XX,

2X, — X, 2 -10
VE(X)=| 2X, — % H=-1 2 0
4x, 0O 0 4

H is positive definite, and the stationary point [0 0 0] is a minimum.

Let xX°=[1 1 1" ands’=[1 O O0]". If s'isconjugate to s’with respect to H,
then

(s)"Hs*=0
s'=[1 2 0]" (say)

Step 1: start at x° and minimize f along the s° direction. The optimum step size is



40 _ VECEO)N's” 1
()" Hs 2
xX'=x°+2%"=[1/2 1 1T

Step 2: start at x* and minimize f along the s' direction. The optimum step size is

o IVt hH'st 1

O Hs 2
X*=x"+A's'=[0 0 1

The minimum is not reached in two steps. For a quadratic function of three independent
variables, three steps will be required to reach the minimum.

Problem 6.8
2 2 2
F(X) = X"+ XX, +16X," + X" — X, X, Xg

2%, 4 X, — X, Xg
VE(X) =] 32X, + X, — XX,
2X3 — X X,

2 1-%x; —X,
H(x)=|1-x 32 -X
=X =X 2

s' and s* are conjugate with respect to H(x) when
(s")" H(x)s*=0

The det H > 0, and all the principal minors must be >0, or all the eigenvalues must be
positive.

Insert the two given vectors to get an equation in x; that must be satisfied.

i.e. 2X, — X, +3%, +63=0
and H(x) has to be positive definite. Thus, x must lie on the above plane, and satisfy



T
<
5
~
N
A

<64 or —7<%<9
X, < 4 —2<X,<2

64 -8<x <8

<
IN

and 128 - 2x" —32%,” + 2% X, (1— X;) —2(1— X;)? > 0

Problem 6.9

f(X) =5%° +X,° +2XX, —12x, —4x, +8

Vi (x) = {mx1 +2X, —12}

2X, +2X, -4
10 2. - -
H= is positive definite
2 2
If s" is conjugate to s° =[1 O] (the x axle); then
2 2

10 2|1
First direction: (sH' [ MO} =10s; +2s; =0

Say s'=[1 —-5]"

For s® to be conjugate to s'

,|10 2| 1 ) )
S =-8s,=0, ors, =0
2 2||-5

Second direction: s=[1 0]" (say).

(Note that you get back the original direction for a quadratic function)

Problem 6.10

a. The conditions for orthogonality are



y'z=0 solve simultaneously. An example is
7'X =
Y1
[2/3 -1/3 =2/3]| y, |=2/3y, —1/3y, —2/3y, =0
Y3
Z1
[Y:Y2Ysl| 2, | = Ya2s + Y22, + Y52, =0
23
2/3
[z,2,2,]| -1/3 |=2/32,-1/32,-2/32, =0
-2/3

Let y, =1y, =1 theny, =1/2

2,+2,+1/22,=0

Let z, =1
2/3z,-1/3z2,-2/3z, =0

Then z,=-2 and z,=2

1 1

The vectors are y=|1 z=|-2| (notunique)
1/2 2

H=

H=

b. The two directions for conjugacy are



x"Hy =0
y'Hz=0 solve simultaneously to get a non unique solution. An example is:

z'Hx =0
210y Y1
[2/3 -1/3 -2/3]|1 2 1|y, |=0=[1 -2/3 -7/3|y,
01 3]y, Y
2 10|z Z
[yly2y3] 121 Z, :O=[(2y1+y2) (y1+2y2+y3) (y2+3y3)] Z,
01 3|z Zy
2 10} 2/3 2/3
[2,2,7,]|]1 2 1| -1/3| =0=[(22,+2,) (z,+22,+2;) (z,+32)] -1/3
01 3(-2/3 -2/3

Let y,=1Yy,=1Yy,=7. Then

3z +Ez +8z,=0
g Let z, =1 and solve for z, and z,.

22,-4/32,+4/32,=0
z, =—.826
z,=.677

Problem 6.11
f(X) = X+ XX, +X,- —3% —3X,

Vi (x) = B‘:Z);Z :ﬂ at (2,2) Vf (x) = m

H(x):[i ﬂ (pos. def.)

10



2 17]s] _ _ I
—-3- = glves a conjugate direction
3-8, S|l i|=0 d

i s,

_Sll 1
N © = — —9S, =
[-9-9]| | |=0 9s, —9s, =0

S
Lets'=1

thens, =-1

have two conjugate directions, and one was fixed by S,. The

values of elements in sare usually not unique.

} Direction is unique because for a quadratic function you can only

Problem 6.12
f(x)=(x+ X2)3 X3+ )(32)(22)(12

3(X, + X,)% Xy + 2X, X, Xy
VE(X) =| 30X + X%,)° X, + 2% X, X,

(% + %) +2%°%, 7,

at x=[1 11, Vf(x)=[14 14 10T

Problem 6.13
. 1 2
Max  f(X)=x+X, _E(Xl +2X,X, +2X,")

Startat x=[1 1]
1-x — -
1-x —2X, —2

2
S
A second search direction is [-1 —2][H ]{ ' }: 0

11



-1 -1
H { } IS neg. def.
1 -2

2

S

3 5]{ 12}0 or 3s’-5s," =0
Sl

Pick any s,°; determine s,

Problem 6.14

f(x)=10%" +x,’
o (25
x°=[1 1]

s =-Vf(x°)=[-20 -2

X=X+ 28" =[1-202, 1-24,]

f(x') =10(1-204,) + (1-24,)?

df /d 4, =80084, —404=0 Jy =0.05045

x' =[-8.991x10 0.8991]'

st =-Vf(x")=[0.1798 —1.798]

2 _ 1 1_[_ -3 _ T
x*=x"+ 4" =[-8.991x10° +0.17984, +0.8991 —1.798/, |

f (x*) =10(-8.991x10°° +0.17984,)* +(0.8991-1.798 1)

df /d4, =7.112168 4, —3.26549 =0 J, =0.459

x? =[0.07354 0.07382]'

12



This is not the optimum (x" =[0 0]"). Thus more than two iterations are
needed.

Note: The answer to the problem is easily obtained by first calculating the eigenvalues of
H, noting that they are positive, and stating that their ratio is 10, hence steepest decent
will take more than two iterations.

Problem 6.15

f(x) =€ —2e* +2e% +(xX,)’

Vf(x){

X, — 2™ + 2X1X22:|

X, 4 2€™ + 2x°X,

at x=[00]", Vf(x)=[-2 2]

Problem 6.16
f(X)=x+X,
Vf(x) =[2x, 2x2]T
Xga=[3 5] "
Vf (Xg0) =[6 10]"
Xoew =[3 5] —a[6 10]' =[3-6a 5-10a]
f (X0 ) = (3—6a)? +(5—10ax)’ =136a° —1360 + 34

df /da=27200-136=0 =a=1/2

Xoew =[0 0] which is the optimum

13



Problem 6.17

The direction of search calculated by the negative gradient does not point toward
the extremum in poorly scaled functions, hence steepest decent search directions will
require more iterations to reach the extremum than many other methods.

Problem 6.18

(a)

f(X)=3%"+x,°

VE(x)=[6x 2x,] H

23]

x*=[1 1]
' =-Vi(x")=[-6 -2

VT (x%)s°

)_O:
x, =[-0.07142 0.6428]'
Vf (x') =[-0.4285 1.2857]'

VTV (XY

_ — 004591
0TV OWVE(X)

s' = -V (x')+@,s° =[0.1530 -1.3775]'

V(XS

S~ 04608

A=

X% = X!+ 48" =[ ~1.203x107 —4.01x10°° |

This is very close to the true minimum, x™ =[0 0]T

14



() f(X)=4(x—5)*+(x,—6)’
o3 |
x*=[1 1]

v (x°) =[-32 -10]
s® =-Vf(x°) =[32 10]'

VT (x%)s°

20 =t
x' = x° + 2,8 =[5.2859 2.3393]'

VTV (XY

_ —0.05234
TV OV (X)

T

s' = —Vf (x}) +@,3° =[-0.6125 7.8446]

VT f(xH)s

A’l =
x? = x' + 2,s' =[5.0001204 6.0000262]"

This is very close to the true minimumat x =[5 6]'.

Problem 6.19

@ Fixed step gradient: The move from a point x* to the next point x*** is given by
Xt = x*+ oVf (x*). The gradient at x* gives the search direction. The step-
size, « is prespecified, and remains fixed from iteration to iteration.

(b) Steepest descent: This is similar to (a) in that the search direction is given by
VI (x¥), but « is determined at each iteration a unidimensional search to

minimize f.

15



(c) Conjugate gradient: The new search direction is a linear combination of the
gradient at the current point and the previous search direction. The weighting
factor depends upon the magnitude of the previous gradient. The step-size is
determined by a one dimensional search.

Problem 6.20

The solutionis: f=0at(1,1,1,1)

Problem 6.21

f(h,r)=——+2nrh+10nr?
nrh

Check to see if H is pos. def. forr >0, h >0

%: ;]i3+2nh+20nl’

I1

of -1

oh e et

o° f 6 o° f 2
=—_ 420 = 42

o urt ! oroh  nrh? !

ot _ 2 ., rt__2

ohor  nhzrd " oh?  nr’h

The elements on the diagonal of H are positive, and the determinant

6 2 2 ?
—4+20 — +2 >0 ?
{(n r“ “j(n r2h3 j} (n r3h2 n]

has to be positive for H to be positive definite. At (0.22, 2.16). The value is 112770,
hence Newton’s method will converge in the vicinity of (0.22, 2.16). If det H is not pos.
def. at some (r, h) during the search, Newton’s method may not converge.

Problem 6.22

No, but it must be positive definite at the minimum for the extremum to be a minimum.

16



Problem 6.23

Possible answers are:

Q) If more than one extremum exists, the Simplex method may converge to a better
local minimum than the Quasi-Newton (secant) method.

@) If the variables in the objective function are random variables as in
experimentation.

3 Simple method to understand (no complicated mathematics involved) and
program.

()] Requires only one function evaluation per search step.

Problem 6.24

They would both be equally fast, as far as the number of iterations is concerned,

because the search direction is the same for both, and both yield the optimum in one step.

Problem 6.25

(a)

(b)

You must consider both minima and maxima

f=1+x+X+(4/%x)+(0/x,)

Vf (x) = F— (4/%)
1-(9/%,%) |

8/x° 0
H=| ;
0 18/x, |

H is not positive definite or negative definite for all x, so Newton’s method is not
guaranteed to converge to minimum nor a maximum. From a positive starting

point. The search for a minimum can go to —co as x, — o.

f(X) = (X +5)% + (X, +8)2 + (X, + 7)2 + 2%, X, +4%,°X,’

17



2(X, +5) +4X. X, +8X.X,"
VE(X) =| 2(x, +8) +4%,°X,
2(X, +7) +8%°X,

2+4x%,°+8x,°  8xX,  16XX,
H(x) = 8X,X, 2+4x° 0
16%,X, 0  2+16x,°

It is hard to tell by inspection if H is positive definite for all X, so that Newton’s method
can be guaranteed to converge to the minimum. However, by inspection of f(x) you can
see that each term in the function is positive so that Newton’s method should reach a
local minimum. One exists at (-0.0154, 7.996, -6.993) with f = 24.92.

Problem 6.26

f(x)= X13 + XX, — )(22)(12

3% + X, — 2x1x22}

Vi (x) =
) L—lezxz

6x,—2x,° 1- 4x1x2}

H(x) ={ \
1-4xx, —2X,

at x =[11],

o4

H is not positive definite at x°, which is the probable reason why the code fails.

Problem 6.27

f(x)=2%"+2x,°

18



VE(x)=[4x  4x, ]T

e

The initial search direction is

4 0 _ 0
& ——HvE(x0y = 4 O[] H
0 1/4 4)(20 —X20

The step size is always A =1 for Newton’s method. Only one step is needed to
reach the minimum, because f is quadratic.

x'=x"+2s"=[0 0]T which is the optimum.

Problem 6.28

The Hessian matrix of f(x) is positive definite at the starting point, but does not
remain positive definite as the search progresses. Therefore Newton’s method does not
converge at all with A =1. Adjusting A in the search direction will not help much.

Problem 6.29

@ Newton’s Method
f(x) =8x” +4x.X, +5X%,°

VT (X) =[(16X, +4%,)(A0x, + 4x,)]"

200
at (10,10)  Vf =[ }
140

16 4
V2f(x) = }
4 10

X(l)_[lo‘ [16 4}1{200} 6 4T 1[16 -4
10] |4 10| |140 L 10} ZML 10}

19



(b)

or solve
200] [16 47(10-x'
+ =0
140] [ 4 10](10-x>

solution: x=[0 0]

Fletcher-Reeves Method

Use an algorithm code such as shown in the text. Start with

s°::—E7f(x°):-—{200}

140
o _[10]_ o[200
10 140
Minimize exactly in the s° direction to get A°
200
[200 140]
140 59,600

16471 [200]  L106x10°
410| |140

=0.05623

.
v f(x)s:+

A0 =
s"Hs

[200 140] {

Then
. |10 200| [10| [11.2460| |-1.2460
X = —0.05623 = - =
10 140 10| |7.8722 +2.1278
Next calculate f(x'), Vf(x") and calculate the next search direction

o VOV (X)

st=—Vf(x)+8"——= -
VT E (O (x°)

and continue. A computer program is needed to save user time.

20



Problem 6.30

@ From both starting points, Newton’s method converges to

*

X' =[-02 -02 -02 -02]", f'=06

(b) X" =[17.27 7.350 0.3483 0.7196]", f"=0.74x10°[1 0

Problem 6.31
(@) Sequential Simplex
Advantages:

Q) If more than one extremum exists, the Simplex method may converge to a
better local minimum than the Quasi-Newton (secant) method.

2 If the variables in the objective function are random variables as in
experimentation.

3 Simple method to understand (no complicated mathematics involved) and
program.

(@) Requires only one function evaluation per search step.

Disadvantages:

(¢D) Slow to converge

2 Not efficient for problems with many variables

3 Will not work for problems with constraints without modification
(b)  Conjugate gradient

Advantages:

(@D) Uses only first derivatives

2 Low storage required

21



(©)

Disadvantages:

Q) Have to reset directions after one cycle

2 Hessian may become ill-conditioned

Newton’s Method

Advantages:

1) Fast for reasonably scaled problems with one extremum

2 Simple algorithm

Disadvantages:

1) Can perform poorly on problems with multiple extrema

2 Converges to a local extremum (as opposed to a global algorithm)

3 Requires second partial derivatives for a strict Newton method.

Twenty independent variables makes a Simplex search not practical. The other two
methods would converge more slowly, but are not affected otherwise.

Problem 6.32

Let —[ f(x)=100—(10—x,)* - (5—X,)* | be maximized

f (x) =—100+ (10— %) + (5—x,)?

Vf(x):{

s

The maximum s at x =[10 5]

—2(10— xl)}

. 2 0
25-x,) H(x):{O 2} pos. def.

T

The minimumisat (0, 0)= 25

22



a. Simplex Method Pick a suitable sized triangle.

Point x1® x2® f (x®) f(x)

1 0 0 25 -25

2 1.9314 0.5174 -14.9 . _ 14.9

starting Simplex

3 0.5174 1.9314 -0.6 0.6
Drop Point No. 1

4 2.4488 2.4488 -26.5 26.5
Drop Point No. 3

5 3.8628 1.0348 -46.6 46.6

Or use a graphical procedure.

Newton'’s method Start at (0, 0) A=1
A an 1/2 0 |/-20| |10
AX® =—2HVf (x) =—(1) =
0 1/2]|-10 5
O — 0 . 10 _ 10
0 5 5
BFGS method
X = x® _ 20 (xOYWf (xO) Let H® =1
At (0, 0), f =-25.

23



s©

0 FLgiiLsgh (s is the negative gradient direction)
X =7 |Z 0

0 01 -10

Pick a A =1 or maximize in s=H™(x)Vf (x) direction to get 1.

For A=1: x®=- 1O} =20 )20
01| |-10 10

f (20, 10)=25

Alternately, pick A to maximize f(x) in the search direction

[-20 -10] 0
ot VTf(X(k))S(k) 3 -10 1
T 0T 0 20| =201 2
(STHTST 20 —10] 2
02|]|-10

x® ={0} —(lj [1 0} {_ZO} ={10} (This is the optimum)
0 2)101||-10 5

If XD were not the optimum, the next stage via BFGS gives the approximate H™

A A T
L axyax® (AW *Ag (ag)T[(AH®)” ]

(AXK)TAg® (Ag®)T(H®)*Ag®

(i)

but  VTf(10, 5)=[0 0] so Ax® will be 0 whatever (H®)™ is.

Problem 6.33

f (x) = x* —200x +10"

f'(x) =2x-200 hence a minimum exists at x = 100

f'(x)=2 (pos. def.)
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Bracket the minimum start at x = 0, and bracket the minimum for all methods.

Let A° =10
X+A f(x)

X = 0 10,000
0+10 8,000
10 + 20 4,900
30 + 40 900
70 + 80 2500

Newton’s Method

o _o 1O __—200_,
f'0) 2

_ £00) _, ,_ (200-200)

x® =100 =
f "(100)

=100

(one step for a quadratic function)
Quasi-Newton (Secant) Method

f'(0)
f'(@)-f'(p)
q-p

xP=0- Letp=0and q =150

200 200
100—(—200) 2
1500

x¥ =0 =100

At 100, 1" =0, hence can stop.

Quadratic interpolation

Pick 3 points, bracketing minimum

X f(x)

0 10,000



100 0

150 2500
Fit f(x)=a+bx+cx® with minat X" = —23
10*=a

0= a-+b(100) +c(100)> } b =-200

2500 = a+b(150) + ¢(150)° | c=1
=29 100
2(1)

Problem 6.34
f (x) = (x-100)°
f '(x) = 3(x—100)* so an extremum is at x = 100

f"(x)=6(x—100) atx =100, f"=0 (not pos. def.)
f " =6 hence x = 100 is an inflection.
The problem has a minimum at X =—o.

Startatx =0

a. Steepest descent
At x=0, f'(0)= —3x10°
x® =0+ A1(-3x10°)

Select 1 =1 . .

. or any other suitable choice
or  A=min f(x)
(-3x10°)(-3x10°) 1

Select A =— - — =
(—3x10°)(—600)(—3x10°) 600




x® =0+ i(—3x106 ) — _0.5x10™*
600

Select 1=1
x® =0+ (-3x10°) = -3x10°

Clearly x'goes to—o

Newton’s method

(0 -3x10°

= =—.5x10*
f "(0) —600

xP =0

Same result as for steepest descent

Quasi-Newton (Secant) method Let x* =0, x*=200
<O _ 0 f'(0) <O - -3x10° 3
f'(a@)-f'(p) 3x10° — (-3x10°)
q-p 200-0

At x =100, f'(100) =0. To maintain + and — bracket on f', you would have to
pick another x” and x%. The method will then proceed to —o for x.

Quadratic interpolation

Pick 3 points, bracketing minimum

X f(x)
0 —3x10°
100 0
200 —3x10°

df (x) _0orx

X

2

Fit f(x)=a+bx+cx with minimum at

—3x10° =a
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0 = a-+b(100) + c(100)? }c =3.123x10°%°

3x10° = a+b(200)+¢(200)2 | b =3x10°
4
X = —ﬂ% = —1x10" — —o0
3.123x10

Problem 6.35

f(X)=2%x"—2%,° — XX,

4x, — X, 4 -1
Vf(x):{—zlx fx} H:{—l 4}

H is not positive definite.

Let H =H + B1. Then, the eigenvalues of H are the roots of

det(H+,Blj:4+,B—;t -1 ‘:
-2l -1 —4+B-2
(f—-2)?*-17=0

A=p+\1T7, A4 =p-17

If >/17 , then 4, and 4, are positive, and H is positive definite and its inverse is
positive definite.

Alternate solution: Start with H™=[H + 1] and proceed as above, but you need to

calculate H?.

Problem 6.36

f(X)=2%" —4XX, + X,

7 (x) = 4x, —4x, - 4 -4
—4X, +2X, -4 2
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H is not positive definite, so f does not have a stationary point which is a

minimum. Thus, it is meaningless to use Marquardt’s method to find one. But a positive

4-B -4

definite approximation of H is H =[

for example g =-1. Or, get the eigenvalues of H and add to them to get a pos. def.
approximation.

} and choose 3 to make H pos. def. As

Problem 6.37

f(x)=2x"—6XX, +X,

(ay 2
Vi (x) =| &% _6)‘2}

| —6X, +2X,
[12x, -6
Vi (x) = _21 2} at x=[11]'

12 -6
H1 1=
-7
and det H =-12 so H is not pos. definite

B

0
Add {O ﬂ}to H (1, D)with g given by

@2+ p)(2+p)-36>0

_ 144 J142 - 4(1)(-12)

orat=0, [Z+145-12=0 B >

Another way: get the eigenvalues of H and calculate f;o, =14.81, o, =-.81

Problem 6.38

f(x)=u’+u,’ +u; u =1.5-x(1-x,)
u, =2.25-x(1-x,)
U, =2.625—x,(1-x,’)

29



[L5-%,@-%)][~@-%,)]+[ 225-%,@-x,7) || -@-%7) |+] 2625-x,1-%,") || -1 %) |

VF (x) =2 2 3 2
[15-% - %)][x]+| 225- % (1-%,") |(2x%,) +| 2625 %,(1-x,") |(3%x,")

Calculate H(x). Because H(x) is not positive definite:

@ At [0 1 ]T = X, add constants to the elements on the main diagonal of H(x) so

that H(x) becomes positive definite, or so that the eigenvalues of H(x) become
positive.

2 Or,at |01 s x, decompose Hinto LDL" =H =aee,’ +a,e,e,’ and change
1~1~1 2%2%2
all negative (¢, a,) to be positive.

Problem 6.39

@ False. The algorithm may initially use arbitrary search directions.
(b) True

() True

Problem 6.40

(@)  Maximize f(X)=—X+X —X, +X,+4

Instead of maximization of f(x), we minimize —f(x):
f(x) :X12_X1+X22_X2_4

by the BFGS method.

2x, -1
VE(x) =
09 {2X2—1:|
.17
If you set Vf(x)=0, you find x = > 5

Steps Pick x°=[1 1]". Pick s =-Vf(x°). s°QY)=[-1 -1]'.
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n 2 0
Pick H(’:H(l,l):{0 2} (pos. def.)
xt=x%+1s°
-1
11
oot _ VT (x*)s¥ . [ ] {—J 1
2

CO(SHTH(XM)sE 1 1] {2 o} {—1}
02| |-1

1 17
AX? = x' —x° {—— ——} (the solution)
2 2
0 1 -1
AQ° =Vf(x)-Vf(x°) = - =
o =v1e-w100= o] - 3] = |
n 1 3 AgO(AgO)T B |_AIOAX0(AXO)T I:|0
(Ag°)" (AX°) (AX®)THAX°

e R g

:11—1/2_ 1 11[2 of[-1/2
L - ]{—1/2} [_2 _2}{0 2}{—1/2}
11 11 Jo o
_L J - L J B {o o}
AXE = —AH Y (X VE (xH) =0

.
The solution is at X = E ﬂ (as shown analytically)

(b) (i) f(X)=xexp(x, %" ~10(x —X,)?)
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o) - (3% +%(-2%, 200, — ,)) | exp[ X, ~ % ~10(x, ~ x,)? |
X13 |:1+ 20(%, — X, )]exp[x2 _X12 —10(X1—x2)2}

xX=[117

N 10
Let H® =
01

vi(x9)=[-1 -1 7

S =—(H°)'vf(x)=[11]

x'=[+2) @) |

A search for A which minimizes f(x*) gives A = 0.5.
x'=[15 15 ]

Vi (x)=[15042 -1.5042 |

A =x'-x"=[05 05 |

Ag® = VT (x1)-Vf(x°) = [2'5942 }

~0.5942
h° = Ax® — (H°) " Ag® =[ -2.0042 1.0942 |'

A(RO)? = h®(Ax°)" + (Ax%)(h°)" B (h®)T Ag°Ax° (AX°)"
(Ag®)" AX [(AgO)TAx(’]T [Ago)T Axo]

[3.9889 55831
155831 7.177
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-1s 49889 55831
(H)" =
55831 8.177

(i) F(X)=x"+X%"+X% +X,°

The procedure is the same as for (i). H is invariant and positive definite

I
Il
I
I
N

The gradient of f(x) is

2%,

v (x)=| 2
|2

X3
2X,

andat (1, 1, 1, 2),vf =[2222] . Thens” is

' =-Vi(x")=[-2 -2 -2 -2]'

x'=x"+ s’ or if pickl:%

X 1 -2 0
1
X 1 -2 0
2 = +l = The solution.
! 1 2 0
3
PR 2] |o




Problem 6.41

k,opt =0.6630
k,opt =0.1546
¢ opt =1.717x10™*

0.800 _
i
8.400 }
M
sols L’/
. \I\ <.§ Vi v
-‘ e
0.000E+0 -
02000E+0 0. 0005+
1.502J
Ry
3.00 3280
Problem 6.42

The optimum is ki = 2.44277

ko = 3.13149
ks = 15.1593
¢ =4.355x10°

Problem 6.43

Let y = a(1-x?), a better approximation than y = a (1-x). This function satisfies the
boundary conditions. We want to find the value of a which minimizes
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From dF, / da = %a—% =0, wegeta =3/16, and F, =-0.0469.

If a more complicated function is chosen, say
y=a,(1-x*)+a,(1-x*)?, then
F, =1.333a° +1.219a,” —2.133a,a, —0.267a, —0.152a,

The minimum of this function is

a =05, a, =05, F, =—0.1048.

Since F2" < F1", we conclude that a more complicated function improves the
estimate of the minimum of the integral.

Problem 6.44

The optimum is
Expected risk =-0.12794 E11
and b*=-0.2993 E4

Problem 6.45

The solution is:
@ x°=[55] x=[42]  f=3428

® x°=[111] x'=[121] £ =0299

xX=[546] x=[421] ' =0464
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Problem 6.46

The solution is

@ x°+[21] x=[42] =348
xX=[22]  x'=[42]  f=3428

® x*+[211] x'=[221] f =02686
[2217] f'=02686

x°=[2 2 1]T X"

Problem 6.47
The optimum is

a” =0.94089
by =3.04917

b, = 0.47456
f* =896.719 (sum of squares of the errors)

Problem 6.48

The optimum is T~ = 446,927 kL
Q" = 179,840 bbl/day

C"=17.88 $/kL

The optimum is flat, and slightly different T and Q give the same C.
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CHAPTER 7
Problem 7.1

The yields are bbl product per bbl of crude expressed as a fraction. The problem
to maximize the profit.

Let x1 = volume of crude no. 1 used (bbl/day)
X2 = volume of crude no. 2 used (bbl/day)

Constraints:

Gasoline production 0.7x; +0.31x2 <6000 (@)
Kerosene production 0.06 x1+0.09 x> < 2400  (b)
Fuel oil production  0.24 x 1+ 0.60 x> <12000 (c)

profit = 1.00 x1 + 0.70 x> ($/day)
Also: x>0
X, 20
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Problem 7.2

Basis: 1 run ‘ x1 Ergies ‘ 1 run
hr

Units: Ergies produced | |

Let x1 = number of boxes of ERGIES per run
X2 = number of boxes of NERGIES per run

Maximize: profit Y = 0.50 x1 + 0.60 x2
Constraints:

blending time BT = (1/60) x1 + (2/60) x» < 14 hr
cooking time CT =(5/60) x1 + (4/60) xo < 40 hr
packing time PT = (3/60) x 1+ (1/60) x» < 15 hr
X1, X2 > 0
?(')_ 4
900

L AN .
0 300 . 600 900

optimum: X1 =192 boxes/run
X2 = 324 boxes/run
Y =290.4 $/run

=Y



Problem 7.3
Objective function:

y =$.60P, +$.30P, —$.40F
Equality constraints:

equality: F=F,+F +F;

P =F, (:40) + F, (.30) + F. (.50)
P, = F,(:60) + F,(.70) + F_(:50)

Inequality constraints:

F <10,000
F, <5,000
F, <5,000
F. <5,000
P, < 4,000
P, < 7,000

Problem 7.4

The graph is shown below and indicates that the optimal solution is at the extreme
point B where x1= 2, x2 = 4, and fmax = 10.
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Problem 7.5

Let Xjj be the number of batches of product i (i = 1, 2, 3) produced per week on
unitj (j = A, B, C). We want to maximize the weekly profit.

max: f(X) =20(X,, + Xz + X, ) +6(X 0 + Xyp + Xy ) +8( X + Xsg + Xae)

subject to:
sales limits: X,, + X35 + X, <20

hours available on each unit:

unit A 0.8X,,+0.2X,,+0.3X;,
unitB  0.4X;5 +0.3X,,

unitC  0.2X, +0.1X,c
and non-negativity constraints:

X;20 i=123 j=ABC

Problem 7.6

Leti designate the constituent index
j  designate the grade index
(A=1,B=2,C=3)

Xi designate a constituent
yj designate a grade

Xij  is bbl/day of constituent i in grade j

Objective function ($/day):

3
f =16.20y, +15.75y, +15.30y, —13.00>_x,,
j=1

i=1to4

j=1to3

3 3 3
~15.30)_%,; —14.60)_x,; —14.90> X,
j=1 j=1 j=1



Constraints:

3 3

> X; £3,000 > %;; < 4,000
= j=1
3 3

D" X,; <2,000 D" x,; <1,000
j=l j=1

X1 <015 X2 <010

Y, Y

X1 <040 X2 <0.10

VA Y,

Xa <050 X2 <0.20

Y, Y,

y; 2 0

X. >0

1

4

4 4
Y1 Z Xip Yoo Z Xz Ya Z Xi3
=) i1

i=1

Problem 7.7

The objective function is: Max: f(x) =5(P+ T+ F) -8F

The constraints are:

Viscosity requirement 5P+ 11T+ 37F>21(P+ T+ F).
Gravity requirement BP+7T+24F>12(P+T+F).
Material balances P +V =1000

T=0.8V
Also:
PV,F, T >0

Note: It would be also ok to let P + T + F = F~ (fuel oil)

profit f(x) = 5F" - 8F =5(P + T + F) -8F



viscosity: -16P -10T + 16F >0
gravity: -4P 5T +12F >0

material balanceson P +V =1000 T
L P+—=1000
viscosity breaker: T =0.8V 8

The number of equality constraints depends on the number of substitutions you make,
and the same is true with respect to the number of variables. You can delete F*, V.

Problem 7.8

After adding slack variable

X, —2X, 4+ X3 — X, =11
—AX +X, + 2% —%X =3
2%, — X, =-1

There is no basic feasible solution because with

X, =X =X%=0 ,Xx, =11but x, =—-3(not feasible).

Problem 7.9

@ Choose the largest positive coefficient in the bottom row, since this will decrease f
the fastest. x; should be increased first.

(b) Part (a) designated x; as the pivotal column. Check the ratios to find the limiting
constraint. Choose the smallest positive ratio from —3/2, 11/5 and 4/1. It is 11/5.

Therefore, X4 is the pivotal row, and “5” is the pivotal element.

(c) The limiting value of x: is found from the ratio test; it is 11/5.




Problem 7.10

Start with the following matrix:

X1 X2 X3 X4 X5 f b
X3 -2 2 1 0 0 0 3
X4 5 2 0 1 0 0 11
X5 1 -1 0 0 1 0 4
f 4 2 0 0 0 1 0
Let x1 replace x4 as a basic variable.
step 1: divide row 2 by 5
step 2: multiply row 2 by 2 and add to row 1
step 3: multiply row 2 by -1 and add to row 3
step 4: multiply row 2 by —4 and add to row 4
The next matrix is:
X1 X2 X3 X4 X5 f b
X3 0 14/5 1 2/5 0 0 7.4
X1 1 2/5 0 1/5 0 0 11/5
Xs 0 =715 0 -1/5 1 0 1.8
f 0 2/5 0 -4/5 0 1 -8.8

The basic variables are: xi1, X3, Xxs  The non-basic variables are: X2, X4

Problem 7.11

The constraints are:

X, —2X, + X3 <11 (a)
—AX, + X, +2X%, >3 (b)
2% — %X, =-1 (c)
Xpy X, X5 = 0.

From (c),get x, =2x, +1 d)

From (a) and (d) get 3x, —2x, <10 (e)
From (b) and (d) getx, >1, sayx.=1.

Then from (e), x1 <4, say X1 = 4



Then from (d), x3=09.

Therefore, x1 =4, x2=1, X3 =9 is a basic feasible solution, and thus, there exists a basic
feasible solution.

Problem 7.12

A phase | procedure can be used to obtain a feasible basic solution. Add an artificial
variable xs, to the second equality constraint. Now solve the LP

Minimize: Xe

Subject to: x, +2x, +2X,+ X, =8
X A, + X=X+ X =7
Xpyeees X5 20

The solution to this LP gives a feasible solution to the original LP provided x, =0. If
x, # 0, then the original LP does not have a feasible solution. In our case,
X =X, =% =% =0,% =1 %, =3. This is a feasible solution.

Problem 7.13

@ The basic variables have negative values: xs=-6 and x4 = -4. This violates the
non-negativity constraints.

(b) The constraints are

X —2X, +X; =7 X, —2X, <7
X —3X,+X, =4 or X —3X, <4
X, —3X,+f =0 f =x —-3x,



The problem is unsolvable, because the optimum is unbounded.

(c) X2 is the incoming variable. The ratio test says that either of xsand x4 can leave
the basic set. If x3 leaves the basic set, the final matrix is:

X1 X2 X3 X4 f b
X2 2 1 0.5 0 0 3
X4 0 0 -1.5 1 0 0
f -5 0 -1.5 0 1 -9
The solution is: %, =x, =x, =0, X, =3, " =-9
If x2 replaces x4, the final matrix is
X1 X2 X3 X4 f b
X3 0 0 1 -0.67 0 0
X2 2 1 0 0.33 0 3
f -5 0 0 -1 1 -9

*

The solutionis: x, =X, =x, =0, x, =3, f"=-9
Thus, the solution is unique.
(d) The given problem is already at an optional solution:

X, =X, =0, X, =7, %, =51 =0



We can also pivot around “3” (Xs row, X2 column) to get

X1 X2 X3 X4 f b
X3 0 0 0 -2/3 0 11/3
X2 2 1 0 1/3 0 5/3
f -1 0 1 0 1 0
X =X, =0, x, =5/3,x, =11/3, f" =0.
This means the any point on the line segment joining the points
(00757 and[05/311/3 0 | isoptimal
Problem 7.14
Add slack variables x;,x,,X; and x,. Now solve
Minimize: f =x +X,
Subjectto:  x, +3X, +X; =12
X, =X, +X, =1
2X, =X, + % =4
2%, + X, + X =8
Xjyey Xg 20
The beginning matrix is
X1 X2 X3 X4 X5 X6 f b
X3 1 3 1 0 0 0 0 12
X4 1 -1 0 1 0 0 0 1
Xs 2 -1 0 0 1 0 0 4
X6 2 1 0 0 0 1 0 8
f -1 -1 0 0 0 0 1 0

This is already at the optimal point!
x =X, =0, f =0

The Simplex method did not exhibit cycling.
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Problem 7.15

Problem 7.1 was

X3
X4
X5

X1
X4
X5

X2
X4
X5

Maximize: x, +0.7x,
Subject to: 0.7x, +0.31x, <6000

0.06x, +0.09x, <2400
0.24x, +0.60x, <12000

which is the same as
Minimize -x,

-0.7x,

Subject to: 0.7x, +0.31x, + X, = 6000

0.06x, +0.09x, + x, = 2400
0.24x, +0.60x, + x; =12000

where x;,X, and x; are slack variables. The initial matrix is (the origin is a
feasible solution):

X1 X2 X3 X4 X5 f b
0.7 0.31 1 0 0 0 6000
0.06 0.09 0 1 0 0 2400
0.24 0.60 0 0 1 0 12000
1 0.7 0 0 0 1 0
Now, use the Simplex method:
X1 X2 X3 X4 X5 f b
1 0.4428571  1.4285714 0 0 0 8571.43
0 0.0634285  -0.0857142 1 0 0 1885.71
0 0.4937143  -0.3428571 0 1 0 9942.86
0 0.2571429  -1.428571 0 0 1 -8571.43
X1 X2 X3 X4 X5 f b
2.2580647 1 3.2258067 0 0 0 19354.84
-0.1432256 0 -0.2903222 1 0 0 658.07
-1.1148388 0 -1.935484 0 1 0 387.10
-0.5806453 0 -2.2580647 0 0 1 -13548.39

f

This last matrix gives the optimal solution. At the optimum, X2 (crude # 2) is a basic
variable, and x1 (crude # 1) is a non-basic variable. Thus a small change in the profit
coefficient of x1 does not affect the optimum (Note that if the profit coefficient were 1.1,
its shadow price would still be negative, which implies that the optimum, x” and f* are

11




unchanged). A five percent increase in the profit coefficient of x. influences the
objective function the most. (Note: if the profit coefficient x> were 0.735 instead of 0.7,
the current X would still be optimal).

Problem 7.16

Start with the matrix that has been converted to standard canonical form by the
addition of slack variables, and has a basic feasible solution (with x; = x2 = 0):

X1 X2 X3 X4 Xs Constants
obj. function: 4 2 0 0 0 0
constraints: -2 2 1 0 0 3

5 2 0 1 0 11

1 -1 0 0 1 4
Next
@ Increase x: first as it has largest positive coefficient.

(b) Column no. is 1. Row no. comes from the first constraint that is encountered

Look at each one: b, —ax, =0

2" row 3-(-2)x1=0 X1 <0 ok to increase

d a 11 . -
3" row 11-5x: =0 SO X =% (is the limit)
4" row 4-x1 =0 S0 X1 = 4
Row no. to choose is 3 (2" constraint)

(c) Limiting value is x, :1—51 .

(d)  The next basis will be x, =0, X, =0; X, X;, X, will be non-basic.

(e) Use elementary operations to make the xi column a unit vector

12



X1 X2 X3 Xa X5 Constants

1 0 (2 8) 0 -4/5 0 -44/5
5
2 0 1 0
S I B
5 5 5
3 1 g 0 l 0 E
5 5 5
4 0 _Z 0 _l 1 4 11
5 5 5
Problem 7.17

An LP code gives

f(x)=6 x=0 Xx,=2 x,=0

Problem 7.18

To solve this problem, introduce slack variables x, >0 and x, >0 so that the
constraints become

2X, +2X, + X, + X, =16,
4X, +8X, + X; + X =40,
X, =20 forl<i<5s.

Now consider the following array

E, 2X +2X, + X+ X, =16
E, A% +8X%, +X; X =40
E, X +12X, +3X, -Z=0

Clearly, a basic feasible solution is given by

X =X, =X =0, X, =16, and x,; = 40.

13



According to the above algorithm we do not have an optimal solution because the
coefficient of each x. inequation E, is positive. Since 12 is the largest relative cost

factor, we choose column 2. Furthermore, since 16/a,, =8 and 40/a,, =5, we choose

row 2 and pivot about 8x,. This yields the following array:

E 1 1
E4:?2 EX1+X2+§X3 +§x5 =5,
E.=E -2E, X +%x3+x4—%x5 =6,
3 3 _
E, =E;,-12E, X, +§x3 —§x5—Z——60 :

This yields another basic feasible solution given by
X =X =% =0, X, =5 and x, =6

Since there are still positive cost factors (in E;), then we know that this solution is not

optimal. Since 3/2 is the largest relative cost factor we choose column 3 and observe that

we must pivot about (3/4) x,. Doing this, we obtain

4E 4 1
E =—2 =X, X +—X,—=X =8,
T3 3X1 3T 3T
1 1 1 1
E8:E4_§E7 §X1+X2 _EX4+€X5 =4,
3 3
EQZEG_§E7 —X; —§X4— Xx—2Z = =72

Continuing on until all the variables in the Z function have negative coefficients (so the
variables cannot be increased), the optimal solution is

=0 X=4 X=8 =72
In this case we obtain as a basic solution
X =X,=%=0,X=4,X=8 andZ =72.

This solution is optimal since all cost factors (in E,) are negative. Thus, the maximum
value of the objective function is 72.

14



Some comments are necessary with regard to the simplex algorithm as stated.
First, the problem must be feasible, and this is why the initial solution has to be feasible.
This suggests that it might be desirable to have some test of feasibility before applying
the algorithm unless it is known a priori that a physically realizeable solution must exist.
Second, the assumption was made that all b, are nonnegative. If any b, is negative, we

multiply each equation by —1 to obtain a positive constant on the right-hand side of the
inequality. In particular, if b, <0, then from the constraint Z';:laijxj <b, we obtain

_22:131 ;X; = —b,. To make this an equality, we must subtract a non-negative variable

X,,, from the left-hand side to obtain —Z?ﬂaﬁxj —X,,; =—D,. Inserting this equation

n+.

into the system of equations defined by the constraint inequalities shows that the basic
solution of the resulting canonical system is not feasible since we would have

X.., =0, <0 as part of the basic solution. Therefore, in order to apply the simplex
algorithm directly, we must perform at least one pivot operation to obtain a basic feasible
solution as a starting point. This requires, in general, a trial and error process that may
require considerable time before obtaining a suitable basic solution as a starting point.

Problem 7.19

You want to have all of the 5’s (the right hand sides of the inequalities) be
positive at the start. 1f you multiply the last two in equalities by —1, you change the
values of the 5 ’s to positive and reverse the direction of the inequalities, but f —o0. It

is better to translate x, and x, (by addition) to get new variables for which the origin is a
feasible point.

Problem 7.20

@ True
(b) True
(c) True

Problem 7.21

Let x; = tons/day of product from refinery i transported to customer j.

i=1,2andj=1,2, 3.

Capacity constraints:

15



X+ X, + %5 <1.6
Xp1 + Xy + X3 <0.8

Minimum demand constraints:

X, + Xy 20.9
X, + Xy 2 0.7
Xi3 + Xp3 = 0.3

Production cost = B, (X, + X, + X;3) +35(X,; +X,, +X,3)  ($/day)
where B =$30/ton if x;, + X, + X, < 0.5 ton/day
=$40/ton if x;, + %, + X5 > 0.5 ton/day

Transportation cost = 25x;, +60x,, + 75%,; +20X,, +50X,, +85x,;  ($/day)

Total cost = Production cost + Transportation cost
(to be minimized).

If we assume that P, =$30/ton , then the solution to the LP is
X, =0.9, X3 =0.3, X, =0.7, X,, X, X,; =0. But,
X, + X, + %5 =1.2 tons/day > 0.5 tons/day. So, we cannot use P1 = $30/ton.

If we use P, =$40/ton, then the optimum is
X, =0.8,%,=0.3,%,, =0.1,x,, =0.7, X, = X,, =0. Total cost = $151.50/day.
X, + X, + X =1.1ton/day. So, we used the correct value for P,. The solution is

x,, = 0.8 tons/day
X;; = 0.3 tons/day
X,, = 0.1 tons/day
X,, =0.7 tons/day

Xy Xp3 = 0.

Total cost = $151.50/day.

Problem 7.22

Let x; = bbl/day of stream i used to make product j

16



alkylate

cat cracked gas

S.r. gas

aviation gas A
aviation gas B
leaded motor gas
unleaded motor gas

1
Cro>vo>

Maximize:

profit ($/day) = 5.00 (Xus + Xca +Xsa) +5.50(Xp5 + Xcg + Xz ) +4.50(X . + %o +Xg1)
+4.50(X,, + Xy +Xgy)

Subject to:

(1) availability constraints
Xan + Xag + Xa + X,y <4000 bbl/day (a)

Xea +Xog +Xo, + %oy <2500 bbl/day  (b)
Xsp + X + X5 +Xg, <4000 bbl/day  (c)

(i) RVP constraints
S5Xpp +8Xca +4Xsp < 7(Xpp + Xea + Xsp)
5XAB +8XCB +4XSB < 7(XAB + XCB + XSB)

or
—2Xpp +Xep —3Xsp <0 (d)
—2Xpg +Xcg —Xg <0 (e)

(1ii))ON constraints
94X 5\ +84%, + 74X, = 80(Xpn + Xep + Xsp)

94X, +84x%, + 74Xy, = 91(X,, + Xy +Xgy)
108X 5 +94X5 +86Xs5 = 91X g + Xeg + Xsg)
108x,, +94x., +86Xg =87(X, +Xo +Xg)

or
14X 5 +4Xcp —6X5, =0 )
3Xpy + Xy —17%g, 20 (9)
17X, +3Xeg —5X55 20 (h)
21X, + 7%y —Xg, 20 (i)

(iv) Non-negativity constraints
all ;=0

17



Solution: X ,, =4000 bbl/day
X ., = 2500 bbl/day
X ¢, =4000 bbl/day
all other xi; =0 Xi; =0
Profit = $57750/day.

Problem 7.23

Let x, =100 Ib/day of material i produced or consumed i=A,B,C, E,F,G

Total income ($/day) = 4x, +3.3%; +3.8%,

Cost of raw material ($/day) = 1.5x, +2x, +2.5x,
Operating cost ($/day) = % X, +% X5 + Xg

From the material balances, we have

@:gm+g&+£&

3 37 2
X, =X, + x4 x, =1 x
2 34 35 66 3 36

Using these to eliminate x,x, and x, from the cost-of-raw material expression,

we get the cost of raw material ($/day) = §x4 +§x5 +1.92x,

The objective is to maximize the profit:
Profit = total income — raw material cost - operating cost

The LP is, therefore,
Maximize: 1.67x, +1.3x,+0.88x,

Subject to availability of raw materials:

§x4+§x5+%xG <40

%x4+%x5+%x6 <30

%xe <25

X4 X, X5 =0

18



X7
X8
X9

X4
X8
X9

An equivalent objective is

Minimize: —1.67x, —1.3x, —0.88x;
Introducing the slack variables x,,X;, X,. The inequalities are converted to
equality constraints:

2 2 1
§x4+§x5 +EXG+X7 =40

%x4+%x5+%xe+x8 =30

%x6+x9:25

X, =X = X, gives an initial feasible solution. The initial matrix is

X4 X5 X6 X7 X8 Xg f b
2/3 2/3 Y 1 0 0 0 40
1/3 1/3 1/6 0 1 0 0 30

0 0 1/3 0 0 1 0 25
1.67 1.3 0.88 0 0 0 1 0

X, is the incoming variable. x, leaves the basic set. The next matrix is

X4 Xs X6 X7 X8 X9 f b

1 1 7 3/2 0 0 0 60
0 0 -1/12 -1/2 1 0 0 10
0 0 1/3 0 0 1 0 25
0 -0.37 -0.37 -2.51 0 0 1 -100.2

This matrix gives the optimal solution

X, =60

X; =10

Xy =25

X5 X5 %, =0

The optimum distribution is to produce 6000 Ib/day of E, and no F and G.
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Problem 7.24
Crude a b C d e f g h i i

(profit or loss of each refinery cpb)

Required

Refinery M bpd

X1 -6 3 17 10 63 34 15 22 -2 15 30

X2 -11 -7 -16 9 49 16 4 10 -8 8 40

Y -7 3 16 13 60 25 12 19 4 13 50

z -1 0 13 3 48 15 7 17 9 3 60
Available

M bpd 30 30 20 20 10 20 20 10 30 10 200

Refinery X1

Py, = —6Xy, +3Xy, +17X, +10X,4 +63X,, +34X,, +15X,, +22X,, —2X; +15X;,
where P,, = net profit of Refinery X,
X,, =crude aused in X,
X,; =crude jused in X,
Refinery X,
Py =—11X,, =7 X5, —16 X, +9X,0 +49X,, +16X,, +4X,, +10X,, 8%, +8X,,
Refinery Y
R, =-T7Y, —3Y, —16Y, +13Y, +60Y, + 25Y, +12Y, +19Y, +4Y, +13Y,
Refinery Z
P,=—2,+13Z,+3Z, +48Z,+15Z +7Z,+17Z, +9Z; +3Z,
P, =P +P,+R +P, <«—objective function

Pot = —6X, +3Xy, +17 X, +10X 4 + 63X, +34 X +15X,, + 22X, —2X;; +15X;
—11X,, =7 X4, =16 X, +9X, +49X,, +16 X, +4X,, +10X,, —8X,; +8X,;
—7Y, +3Y, +16Y, +13Y, +60Y, +25Y, +12Y  19Y, +4Y, +13Y,

—Z,+0+13Z,+32,+48Z,+15Z +7Z +17Z, +9Z; +3Z,

20



Contraints
1) equality constraints:

Xpa + X+ KXo+ Xpg + Xpg + Xpp + Xy + X+ Xy + X, =30
Xaa+ KXo+ XKoo + Koy + Koo + Xy + Xy + Xgp + Xy + Xy, =40
Yo+ Yo +Ye+Yg +Y Y +Y, +Y, +Y 4, =50
L+, +Z + L3+ 2+ + L+ 2, + L+ L, =60

2) inequality constraints:

X+ X5, +Y,+2,<30
Xy +Xop +Y, +2Z, <30
X + X +Y, +2Z, <20
Xig ¥ Xpq +Yg+2Z4<20
X+ X, +Y, +2Z, <10
X+ X, +Y, +2, <20
Xig+ Xpg +Yg+2,<20
X + Xy, +Y, +2Z, <10
Xy + Xy +Y+2Z,<30
Xy + X5 +Y;+2,<10

Solved by Lindo:

P, =2540x10°




@max -6 X1A+3 X1B+17 X1C+10 X1D+63 X1E+34 X1F+15 X1G+22 X1H-2 X1I+15 X1J
=11 X2A-7 X2B-16 X2C+9 X2D+49 X2E+16 X2F+4 X2G+10 X2H-8 X2I+8 X2J
~7 YA+3 ¥YB+16 YC+13 YD+60 YE+25 YF+12 YG+19 YH+4 YI+13 YJ
~ZA+13 ZC+3 ZD+48 ZE+15 ZF+7 2ZG+17 ZH+9 ZI+3 2J

SUBJECT TO

2)
3)
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X1A+X1B+X1C+X1D+X1E+X1F+X1G+X1H+X1I+X1J=30
X2A+X2B+X2C+X2D+X2E+X2F+X2G+X2H+X2I+X2J=40
YA+YB+YC+YD+YE+YF+YG+YH+YI+YJ=50
ZA+ZB+ZC+ZD+ZE+ZF+2G+ZH+ZI+Z23=60
X1A+X2A+YA+ZA<=30

X1B+X2B+YB+ZB<=30

X1C+X2C+YC+ZC<=20

X1D+X2D+YD+ZD<=20

X1E+X2E+YE+ZE<=10

X1F+X2F+YF+ZF<=20

X1G+X2G+YG+2G<=20

X1H+X2H+YH+ZH<=10

X1I+X2I+YI+Z2I<=30

X1J+X2J+YJ+ZI<=10

LP OPTIMUM FOUND AT STEP 23

OBJECTIVE FUNCTION VALUE (Mde)

1) 2540.00000Q
VARIABLE VALUE REDUCED COST
XiAa .000000 11.000000
X1B .000000 3.000000
X1cC .000000 2.000000
X1iD .000000 10.000000
X1E .000000 .000000
X1F 20.000000 .000000
X1G 10.000000 .000000
X1H .000000 1.000000
X111 .000000 17.000000
X1J .000000 4.000000
X2A .000000 5.000000
X2B .000000 2.000000
X2cC .000000 24.000000
X2D 20.000000 .000000
X2E .000000 3.000000
X2F .000000 7.000000
X2G 10.000000 .000000
==MORE~--
X2H .000000 2.000000
X2T1 .000000 12.000000
X2J 10.000000 .000000
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YA .000000
YB 20.000000
YC 20.000000
YD .000000
YE 10.000000
YF .000000
YG .000000
YH .000000
YI .000000
YJ .000000
ZA 10.000000
zC .000000
ZD .000000
ZE .000000
ZF .000000
ZG .000000
ZH 10.000000
ZI 30.000000
zZJ .000000
ZB 10.000000
--MORE--

ROW SLACK OR SURPLUS
2) .000000
3) .000000
4) .000000
5) .000000
6) 20.000000
7) .000000
8) .000000
9) .000000

10) .000000

11) .000000

12) .000000

13) .000000

14) .000000

15) .000000

NO. ITERATIONS= 23

DO RANGE(SENSITIVITY) ANALYSIS?
-

9.000000
.00¢000
.000000

4.000000
.000000

6.000000
.00¢000

1.00c000

8.000000

3.000000
.000000
.000000

11.000000

9.000000

13.000000

2.000000
.000000
.000000

10.000000
.000000

DUAL PRICES
5.000000
-6.000000
2.000000
-1.000000
.000000
1.000000
14.000000
15.000000
58.000000
29.000000
10.000000
18.000000
10.000000
14.000000



Problem 7.25
Solution (via Berkely LP code on the web):

f = 19,000 x =200hr X, =300hr N=2

X =X, =% =0

Problem 7.26

Solution:

X =0
X, =0

w

X

N
Il
-

f=8

Problem 7.27

Solution:

x=[00700]"

Problem 7.28
@ Problem formulation:
Minimize
ZCij +2,Cl,
Subject to:

foreach j, 2,S;,2R;

iYij =

foreach i, XS, <Q

§ g
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and 21, <1 1, 1,..Linteger .

(b) Numerical solution:

Plant A Plant B
1 0
Fixed Charge A Fixed Charge B
700 0
AtoC AtoD BtoC BtoD
200 250 0 0
Cost AtoC Cost AtoD CostBtoC CostBtoD
200 750 0 0
Total cost
1650

Build only plant A.

Production A Production B

450

C
200

0

D
250
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The solution is:

Problem 7.29
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CHAPTER 8

Problem 8.1

Starting from the non-feasible point (10, 10), the numerical solution is (0, 0). By
substitution of x, =—x,", the objective function becomes
f=x

f =4x,> =0 yields x, =0 so that x, =0

Problem 8.2

Starting from the non-feasible point (2, 2), the numerical solution is (1, 0). By
substitution of x, =1-107°x,”, the objective function becomes

f :—2[1—10*5x22](—10*5)(2x2) =0 yields x, =0 or 1-10°x, =0 so that an
alternate solution is x, =10".
If x,=0,x =1. Ifx,=10°,x, =1-10".

Check f". Ifx, =0, f =4x10° (positive definite, a minimum).
If x,=10°, f =—6x10° (negative definite, a maximum).

Problem 8.3

Add to the LHS of the equation a variable that is always positive such as
X =[x,

2
X=X,

X=e™

Problem 8.4

The Lagrange function is

L(X,0) =X +X%, +©(2% + X, —2)



The necessary conditions are:

oL

—=2X+20=0
X, eliminate @

—4x = a
i:zxpuw:o 2%, —4x, =0 (@)
OX,

L oy +x,-2=0 (b)
Ow

Solve (a) and (b) to get x, =0.8 and x, =0.4. Then
o =-2x,=-0.8and f (x) =0.80.

Check to make sure the above solution is a minimum.
V2L must be pos. def.

2 0
ViL= {O 2} which is pos def.

Problem 8.5

1/2

F()=(x"+x%)
h(x) =5x" +6xX, +5%,- —8=0

L = (% +%,°)"2 + (5% +6XX, +5x,” —8)

L1 % == (%7 +%,2) Y2(2x,) +10eX, +6wX, =0 (a)
2
1,2 2\-1/2

OLI1oX, == (X" +X,") " °(2x%,) + 6ewx, +10wx, =0 (b)
2

oL/ 0w =5x +6%X, +5%, —8=0 (c)

Divide (a) by x, and (b) by x,, and equate the resulting equations.
From (a) and (b):

100X, X, +6wX,> =10wX,X, + 6wx’
X, = X, (d)

From (c) and (d):

5x,° +6x +5%°—8=0 X, =X, =+2



or  5x°—6x"+5x"-8=0 X, = X, = /2

1 1 j and (—% —iJ are closest to the origin (distance =1)
2

N 7z

and the points (v2, —+/2) and (—~/2 /2 )are the farthest (distance = 2).

The points (

Problem 8.6

L(%, X, @) = X12 + Xzz +60[(X1 _1)3 _XzzJ

oL/ ox, = 2% +3w(x —1)* =0 (a)
OL /10X, = 2X, —2wX, =2X,(1-®) =0 (b)
AL/ dw=(x~-1)°-x,’=0 (©)

If x"=[10 | satisfies eq. () but not eq. (a), w =1 satisfies eq. (b), but eq. (a) gives

2%, +3(x —1)* =0, x, is imaginary and eq. (c) will not be satisfied. x, =0 satisfies eq.
(b), but eq. (c) is not satisfied except for x, =1. Hence no @ exists.

Problem 8.7

f(C,T)=(C-C)*+T? C, is a constant.
h(C,T)=C,+e' —~C=0
g(C,T)=K—-C,>0

Eliminating C using he equality constraint, we may write the Lagrangian as

L(C,, T,w,0)=(C,+e" —=C.)* +T?+u(c” +C, —K)
oL/eC,=2(C,+e"—-C,)+u=0

OL/IOT =2(C,+€" ~C,)e" +2T =0
oL/ou=0?+C,—K =0

oL/0o=20u=0

If u =0, we have a saddle point; we are not interested in this case. Thus o =0.



K=C,=C, -2
e'(e"-2)+T=0

T =0524

C=C,+e'=C —2+e’

C-C, =e'-2=-0311

f =(-0.311)° +(0.524)> = 0.371

Alternate solution: Use 2 Lagrange multipliers, one for h and one for g, and the original
function for f.

Problem 8.8
a.

1. The objective function and constraints are twice differentiable at X

2. The gradients of the constraints are linearly independent, so that the
Lagrange multipliers exist.

3. The constraints are satisfied (the second constraint is 3.98 = 4.1 but close
enough).

4. The Lagrange multipliers for any inequality constraints are not involved in
the problem. They exist for the equality constraints.

5. To show that X" is at a stationary point where V, L =0, a set of 4
nonlinear equations obtained by setting the partial derivatives of L =0
must be solved for x” and @ . This problem is as difficult to solve as the
original NLP problem, and require the use of a nonlinear equation solver.

6. Additionally, you have to show that the Hessian matrix L is negative semi-
definite at X', i.e., that the eigenvalues of the H of L are negative or
zero.

b. The steps for part b are the same as Part a, except that the Hessian matrix of L

must be positive semi-definite. You can substitute for V into the objective
function, and get P in terms of x;. Then the necessary conditions for an
unconstrained function can be tested. A set of nonlinear equations obtained as in
Step 5 of Part a still has to be solved for x”.




Problem 8.9

(a)

(b)

The Lagrangian is

L(X,, Xy, @) = X, + Xy* + 4% X, + (X, + X, —8)

OL/OX =2X% +4X%, +o=0 (@)
OL/0OX, =2X,+4x +® =0 (b)
oL/0w=x+X,-8=0 ()

The solution to this set of equations is
X =4, X, =4, o =-24.

f" =96

AL _Af _
Ae Ae

AL = Af =—(~24)(0.01) =0.24
L=f =96.24

Problem 8.10

(a)

(b)

(©)

L(X,, Xy, @) = X, + Xy° +10X, + 20X, + 25+ (X, + X, )
oL/ox =2%+10+w=0 (@)
oL/0X, =2X%,+20+w =0 (b)
OL/0w=x+X,=0 ()

The solution to this set of equations is

X, =425, X, =25, @ =-15.
f*=125

A" = —w'Ae =—(15)(0.0) =0.15
f” increases by 0.15

P(X, %) =X +X,> +10X, + 20X, + 25+ (X, + X, )?
OP/0x, = 2%, +10+2r(x, +x,) =0
OP[0x, =2X, +20+2r(x, +X,) =0

Simultaneous solution of these two equations gives



_ 5r—10

5r-5
X, = =
2r+1

L or+1

and X,

As r —>o0, we have x, =2.5andx, =—2.5

(d) From parts (a) and (c), we have

@ =2r(X —X,)
. lim
= 2r (X, +Xx
w r—)oo|: (% + 2):|
2r+2 2r
© vp=|T"
2r 2r+2

Now, r >0 always and 2r+2>0. Also,
det ("?P)=4(2r+1)>0. P is convex, because V7°P is positive definite

Problem 8.11
6x, O
The Hessian of f(x) is { (;(1 8}

This is positive definite or indefinite depending upon the value of x,. Thus, this problem
IS not a convex programming problem which requires that f (x) be convex and the
equality constraint be concave. For convexity, you need the further specification that

X =0.

Problem 8.12

@ f(x), h(x), and g(x) are twice differentiable
(b) Are the gradients of the binding constraints independent?

2x, +1
Vh(x) ={ }

2X, +1



(©)
(d)
(e)
()
(9)

(h)

Va1 |

Is the only solutionat X" =[0 0 | of

2% +1 -1
C, +C, =0
2%, +1 2X,

C,=0andC,=07?

L 1 C,+(-1)C,=0s0C,=C,
Cl|:1:|+cz|:0 }:0 C,+0(C,)=0hence C, =0
soC,=0

Answer is yes.

The Lagrange multipliers exist because (b) is satisfied.

The constraints are satisfied

The Lagrange multipliers of the inequality constraint is non negative
u'g(0,0)=0 ok

Is VLx(0,0,w",u”) =0?

L= —1%+%" + (X +X + X +X%)—u(=X +X,)

S—L =2(x, - 1)+ w(2x +1)+u=0
X

1

S—L =2X, + 0(2X, +1) —u(2x,) =0

at (0, 0)

—2+w+u=0

w=0andu=2 so both (e) and (g) are satisfied
w-u(0)=0

Is the Hessian of L positive definite?



(242 0
VL= ( @) for o=0andu=2
0 —2u
2 __2 0
V., L= 0 -4 not pos def.  (nor neg. def.)
-2 0
Is v v>0 No, because
0 -4

[—1
v’ 0 }:O so V;(-1)+Vv,(0)=0 sov,=0

1
v }:o so Vv, +Vv,=0 hence v,=0
1

The answer to the problem is: No.

Problem 8.13
(h) f is not twice differentiable at x". Also g,,g, and g, are twice differentiable at
X
(i) All the four constraints are active
0 1 0 0
Vh={0| Vg,=|0| Vg,=|1| Vg,= |0|atx
0 0 0 1
but they are not linearly independent.
Thus, the point [O 00 ]T does not satisfy the necessary conditions for a
minimum. However, this is a problem with three variables and four active
constraints. Hence, their intersection, if unique, is the only feasible point, and it is
the minimum.
Problem 8.14
(1 The functions are twice differentiable at x”



(i)  The constraints are satisfied at x”

(iii)  hyis the only active constraint, and
S N .
Vh (x ):[2} is linearly independent

2
(iv) L=-x°x, +a)(x1x2+%—6)—u(xl+x2)

OL/0OX, =—2XX, + @X, + X% -Uu=0 =4w-u=8

AL/ ox, ==X +wx —-u=0 =20w-u=4

w=2, u=0.
v 2L = 2%+ —2X +o _ -2 -2
* —2X, + o 0 -2 0

V.’L is neither positive definite nor negative definite.
For the active constraint,

VIVh(X)=4v,+2v, =0 = v,=-2V,

For the inactive constraint

vVivg(x)=v,+v,>0 = v >0 = v, <0
-2 2|V

VTVZLV=[V1 vz] | >0? No.
-2 0]V,

We have not been able to show that v'V2Lv >0. Thus, X" does not meet the
sufficient conditions for a minimum.

Problem 8.15
Q) f, g and h are all twice differentiable at x.

(i) h is the only binding constraint, and
Vh = [1 -2 ]T is linearly independent



(iil)

(iv)

v)

(vi)

The constraints are satisfied at x”.

2

L= (% —2)% + (%, —1)* + W(x,_— 2, +1)-u(-x17— x,? +1)

OL/ox =2(X,—2)+wW+ux /2=0

oL/ox, =2(x,—1) —2w+2ux, =0

u = 0 because g is inactive. There is no w which satisfies the above two equations
at x". Thus L is not at a stationary point.

For the active constraint

VT{ 1}:O =V, =2V
_2 1 2

2 0flv
VIViLv=|v, v [ }{l}=2v2+2v220
[1 2:| O 2 VZ 1 2

For the inactive constraint

" [—0.41

. 82} =—(0.41v',+1.82v',) >0, and v’ =2v/,

v, <0; v <0
vTVALV'=2v' 2+ 2v' 7 >0

Because of (iv) the necessary conditions are not met. Because of (iv) and (vi), the

sufficient conditions are not met.

Problem 8.16
Q) The functions are all twice differentiable at x”.
(i) g is the only active constraint. Its gradient Vg, = [1 1 ]T is linearly independent.
(iif)  All the constraints are satisfied, g, is the only active constraint, so
u >0,u, =0, u, =0
(iv)  L=—Inl+x)—IN(L+X,)* =, (=X, — X, +2) —U,X, —U;X,

10



VL= -1/(0+x)+u, —u, 0
—2/(1+X,)+Uu, —u,

u =3/4>0

(v) Isv'Viv>0 ? >0?
For the active constraints

VT{_l_—O =
= =V, +Vv,=0

For the inactive constraints

VTF >0 >0
0|20 2wz

VT{O}>O >0
e =V, >

Thus, v, =v, =0

1U@d+x): 0
VZL{ ox1 21 2}
(1+x,)

Thus, V2L is positive definite, but v'V?Lv=0 as no non-zero v exists. Thus, the
sufficient conditions are not met.

Problem 8.17

Solutions:

p8.4 x"=[08 0.4 | f=0.80

p8.8 See problem 8.8 statement for the solutions.
p8.13 x"=[000] f=0

11



p8.24 X, =120
X:2:XI3=XZ3:X§1=X§2:O
Xy = 20
x;, =100
Xy, =170
f =$2.063x10" / year

Problem 8.18

Direct substitution

From h=x +x,—-8=0 we have x, =8-X,. Substituting into f,

f =64+16X, —2X,”

df /dx, =16-4x,=0and = Xx,=4sothat x, =4
d’f/dx’=-4 = [44 ]T is a maximum. " =96

Penalty function method:

(@)  P=x"+X"+4xX, +r(x +X,—8)
OP [ OX, =2X +4X, +2r(x, + X, —8)=0
OP[0X, =2X, +4x +2r(x,+X,—8)=0
Simultaneous solution gives

opt opt 16r

T B44r

) lim ( 16r j:4

r— oo\ 6+4r
Xlopt — Xzopt — 4

lim lim ? 2
port _ 6[ 16r j +r( 32r _SJ )
© row r—o (6+4r 6+4r =96

f opt

Problem 8.19

Lagrange multipliers:

12



L(X, Xy, W) = X,* =X +W(X" +X," —4)

OL/0ox, =—-2x, +2wx, =0
oL/0x, = 2X, +2wx, =0
oLlow=x"+x,"—4=0

Solution of these three equations gives four stationary points;

=2, X% =0, w=1
X=-2, X, = 0, w=1
x=0 X, = 2, w=-1
Xx=0 X, =-2, w=-1

Penalty function method:

Multiply (a) by x, and (b) by x,, and subtract one from the other to get

P=x,"—x_+r(x’+x, —4)?

rr— -

o
—_ =k —h —h

OP ] 0%, = —2% +4rx (x> +x,> —4) =0
OP [ 3%, = 2%, + 41X, (X" + X, —4) =0

4xx, =0

For x, =0, eqn (b) gives x, = +./4—(1/2r)

asr—oo, X, > *2

For x, =0, eqgn (a) gives x, = =4 —(1/2r)

asr —oo, x, > 12

minimum
minimum
minimum
minimum

(@)
(b)

The minimumis f =P=—-4 atx =+2,x,=0. There is one more case: x, =0and x, =0,
but this is not a feasible point.

Problem 8.20

(a) P(x,r):x12+6xl+x22+9+r[

(b)

Hessian matrix of P is

X

1 1)
_J’__

X;

13



In general V°P is not positive definite, so P is not convex. In the region x, >0,x, >0 it

always is. However, at the minimum of the original problem [0 0]T ,V°P

is not defined.

Problem 8.21
Ans:  Yes
Problem 8.22

@ Penalty function problems:

(1)  min  P(X)=2x"—2XX, +2X," —6X +6 +r(X +X, —2)?

(2)  min  P(x)=x"—3xX, +4+1,(-2x +X," —5)
+, [min {0, (5% +2Xx, —18}]2

Other penalty functions are possible — see text.
(b) Augmented Lagrange problems:

(1)  min  P(X,r,w)=2x"—2xX, +2X,” —6x, +6
FW(X, + X, — 2) + (X + X, —2)*

(2)  min  P(X,r,W,0) =% —3XX, +4+W,(=2X +X,” —5)+F,(—2%, +X,> —5)?

+w, (5%, +2X, —18 —0%)+1,(5% +2X, +18— ")

Problem 8.23

(a)

This formulation is called the method of moving truncations.

Advantages: (i) It will remain within the feasible region. (ii) parameter (“non
parameter’’) adjustment is automatic.

Disadvantages: (i) An initial feasible point must be located. (ii) There is a
possibility of overshooting the minimum — e.g. negating the pseudo constraint,
(1i1) An increased level of nonlinearity is introduced.

14



(b) and (c) These formulations differ only in the penalty term. We can examine the
difference in terms of the value of r needed.

-rving = —éVg =1Vg
V(r/g)=(-r/g*)vg=1,Vvg

Assume that g is a tight constraint. Because of complementary slackness, as
A, and A, approach the optimal solution, a much smaller value of r is required for the In g

term to satisfy g to within a given termination criterion. For example, assume A" =-1,
and that g is to be satisfied to within 10°.

~A4=rlg=1 =r=10°
-4, =rlg’=1 =r=10

Problem 8.24

Let X;; = million Ib/year of DAB made by producer i and shipped to customer j:

ij=1,2,3.
Production cost = B (X, + X, + X5) + P (X, + Xy, + Xo05) + B(Xgy + X, + Xg3)
where

45000-50(X X; ~100  100<¥ X, <120
) = ($/10°Ib)

44000+ 200(X X, ~120)  120< ¥ X, <170

P, =50000 ($/10° Ib)

39000-50(X X;; 120 120< ¥ X, <140
* 46000 +100(X X,; -140)  140< ¥ X,; <200

Transportation cost = 2000X,, +7000X,, +6000X,, + 7000X,, +3000X .,
+8000X,; +6000X,, +8000X,, +2000X,,

Constraints:
Capacity 100< X, + X, + X;;, <170

15



80< X, + X, + X,, <120
120 < X4, + X, + X45 < 200
Demand X, + X,, + X, =140
X, + X, + X5, =100
Xz + X3+ X433 =170
Non-negativity  all x; >0
Since the production cost is quadratic in the X, we shall linearize it about some nominal
set of XY%. This gives

Production cost = Q, +Q, +Q,

50000 % x°% —~50 % x%° + (50000 ~100% x°%; )(Z Ax, )
for 100 < Y. x% <120

200003 X% + 200 % X% + (20000 - 4003 x4 )(L AX, )
for 120 <Y x% <170

Q=

Q, =50000( X x2°; )+50000( £ Ax, )

330003 x%; +50 % %% + (33000 +100 % x%; ) (T Ax;)
for 120 <Y x%; <140

320003 x%; +100 X X;” + (32000+ 200 x%; ) (X A%, )
for 140 < Y x%; < 200

Q3=

The linearized transportation cost is

2000x,,° +7000x,,” +6000x,,” + 7000x,,° + 3000x,,’

+8000x,,° +6000x,,” +8000X,, + 2000x,,” + 2000x,,
+7000AX,, +6000AX,, + 7000X,, +3000X,,
+8000AX,, +6000AX,, -+8000AX,, +2000x,,

The linearized constraints are

100— X X" < X AX; <170 X x"%;

80—2X02j SZAXZJ- leO—Zxoz,-
120- X x%;j < X AXy; <200 X X’

16



Y. AX;; =140- X X%
ZAXJ-2 =100- Y x%;
ZAXJ3 =170-Y x%;

all X% +Ax; 20

In addition, to maintain feasibility, we require

all

|Ax| <h (some preset quantity).

We now consider the LP:

Minimize: (linearized production cost + linearized transportation cost)

Subject to: all linearized constraints are satisfied.

The solution strategy is as follows:

1)
)

©)
(4)

(5)

(6)

Assume a feasible x%; set.

Calculate numerical values for all the terms in the objective function and
constraint equations which involve the x%'s.

Solve the LP

If all the Ax; are very small (with respect to some preset tolerance), then the

current set x% is the optimal solution. If not, go to step 5.

Calculate the nominal x% 's for the next iteration using (X% ),e, = (X% )yq +
(Axij)

opt *

Go back to step 2.

For example, assume

X% =140, X% =100, x%; =170

X%z, X%a, X%1, X%s, X%1, X% =0

The LP is then:

17



Minimize: 2.097x10” +78000Ax,, +83000Ax,, +8200AX,, +57000AX,, +53000AX,,
+58000AX,; + 72000AX,, + 74000AX,, +68000AX,,

Subject to: —40 <> Ax; <30
—20<2Ax,; <20
—50< X Ax;; <30
2AX;, =0
XA, =0
2AX3=0
Ax,, >-140
X,, = —100
AXy =2 =170
Xy AXigy AXyyy AXpg, AXgy, AXy,, 20

all [Ax;|<20  (say)

The optimal solution is

Ax,; =20, AX,, =20
AXpy, AXpg, AXyyy AXog, AXgy, AXgy, AXgy =0

The new x% set is

X’ =120 X’ =0 X’13 =0
X’21 =20 X2 =100  x’3=0
X’ =0 X’ =0 X% =170

This set is used to recalculate the various coefficients in the LP. Repeated application of
steps 2 through 6 gives the final solution as

18



Cost = $2.063x10 /year.

Problem 8.25

Solution:
X = [0.91878,0.39476,0.11752,0.99307,0.91878,0.39476,0.11752,0.99307,—0.60445x10‘14 T

f” =0.86602

Problem 8.26

The known solution is at X = [1 20 T where f* =5,

Problem 8.27

@ Two local minima were obtained:

(1) x"=[-018 -243 -201 ]T, f*=-9.995

2 x=[0.16 262 -147 ]T, f*=-9.051

19



n
soln. #
f evals.

Vi evals.
h evals.

Vhevals.

(b) Six local minima were found:

(1)

)

©)

(4)

(%)

(6)

n
soln. #
f evals.

Vi evals.

h evals.

Vhevals.

2

2

642

014

169

64

581

559

175

64

458

501

141

o1

419

512

97

42

10

376

440

93
34

425

551

106
40

465

452

110

42

f*=0.07877 X*:[l.91 1.362 1.472 1635 1.679]T

f*=13.96

f*=27.45

f*=21.52

f*=86.52

f*=649.5

164

106

67

30

180

165

75

33

X" =[2.717 2.033 -0.8479 -0.4859 0.7359]'

X*

X*

X*

X*:[—2.701 —2.989 0.1719 3.847 —0.7401]T

6

1

254

427

101

43

8

2

520

1939

211

85

10

1

235

255

82

39

855

632

216

80

470

463

133
50

[-0.7661 2.666 —0.4681 —1.619 —2.610]T
[-1.247 2.422 1.174 -0.2132 —1.604]T

[0.9496 —2.666 0.5377 3.384 2.106]'

804

574

267

160

585

187

187

68

421

389

89
42

20

-10

477

439

131

48

-10

869

647

253
161



Problem 8.28

You must start at a feasible point. The point [ 011 ]T satisfies hy and h, as well as

X, %, %, 2 0. Thus, it is a feasible point. Let x, be the independent variable, and

X, and x, be the dependent variables (the choice is arbitary); x, = [xl X, T :

Phase 1:
T -1
dt ot [of Jlon](eh
dx, OX, | OXp | | OXp 8

1 171
= 2%, —[ (4%, —2X, - 4) (4x2—2xl—6)]{2x1 } {}

O

For the variable x,, the decent direction is -8.

Phase 2:
Find the minimum of the reduced objective function by an analytical approach to
get A:
Set dr =0
dﬂ’ (x+4A)

;—/1{2(0+8/1)2 +2(1+04)* +(1-84)> ~2(0+82)(L+04) —4(0+82) ~6(1-04)} =0

3841-64=0
A=1/6

X, :1+§(—8) =-1/3

Since X, has crossed its lower bound, set x3 = 0. Now hy and h are not satisfied.
So, with x3 = 0, solve hy and h for x1 and x.. i.e.
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X +X,—-2=0
X +5%,—5=0

using Newton’s method. The initial guess is X1 = 4/3 and x2 = 1. The solution is a
feasible point, and is used to start the next iteration. If Newton’s method does not
converge to a solution, replace xs as the independent variable by either x; or x> and repeat.

Problem 8.29

Both are true.

Problem 8.30

@ The solution is:
x, =3.5121
x, =4.0877
X, =2.4523
x, =4.8558

X =1.3922

(b) The solution is:
x =0
X, =0
X, =0
x, =0

X =0

(c) A reported solution is

*

x, =9.52267
X, =—6.588
X, =—20

(d) The solution is
x, =0.4812

f"=17286.1
X, =0.6432
X, =-3.4375
X, =—0.1518
X, =—3.9191
X, =-3.0243

f =128
X, =0
X, =0
X, =0
X, =0
X, =0
X, =0

*

f"=14672.826
x, =—20
X, =13.58267

X, =—6.51733

f"=17.80
x, =-0.6023
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X, =2.4962 x; =0.7514
x, =0.5263
R R * * T
(e)  The solution is f =0 X'=[11111 |
() The solution is f"=0.2415
x, =1.166 x, =1.506
x, =1.182 X; =0.6109
x, =1.380
(9) There are six reported solutions:
f Xl* XZ* X3* X4* XS*
0.07877 1.191 1.362 1.472 1.635 1.679
13.96 2.717 2.033 -0.8479 -0.4859 0.7359
27.45 -0.7661 2.666 -0.4681 -1.619 -2.610
27.52 -1.2467 2.422 1.173 -0.2132 -1.604
86.52 0.9496 -2.266 0.5377 3.384 2.106
649.5 -2.7012 -2.989 0.1719 3.847 -0.7401
Problem 8.31

Possible ways are

@ Minimize

(Z g, +Zhi2) where g

Change gi to equality constraints

9, >4-x"-%"+%x =0

g, > X +%, —16+x,°=0

and minimize X(h’+g,%)

from some reasonable starting point.

are the violated constraints only.
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Problem 8.32

Solution given in the problem.

Problem 8.33

Solution given in the problem.

Problem 8.34
The problem is
Minimize: C=C,AN+CHAN+C, +C; +C,+C _+C

X

Subject to:

Ly
D :I'_Nminll\I Dmin

A=K (L+D)
NENmin

With numerical values, this becomes (Nmin=5)

Minimize: C =50AN +0.7L+ 22,000 (@)
Subject to:
Lo 1000 N (b)
N-5
L+1000
= (©)
100
N>5 (d)
a. The variables are A, L, and N. Although N is an integer we will assume it to be a

continuous variable. A and L may be eliminated using equations (b) and (c) to get

a cost function in terms of N only (the independent variable):
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C =50N (:LO—N +10)+O.7(1’ 000N j+22,000
N-5 N-5

_1,000N? +20, 200N -110,000
N-5

Thus, N is the independent variable, and A and L are dependent variables. To
obtain the minimum,

dC _1,000N?—10,000N +9,000 _

g 0
dN (N —5)?

N=1or N=9
Because of constraint (d), select N =9

dC .. .
. =500>0. This is a minimum
dN N

b. C" =$38200

N™ =9 plates
L =2250 Ib/hr
A" =325 ft?
Problem 8.35
The solution is f*=267.5
X =2
y =75
=0
Problem 8.36
The solution is f" =-43.4945
X, =6.99958 E -3 X, =4.68197 E -4
X, =6.80709 E -2 X, =1.75768 E —2
x, =9.07223E -1 X, =2.90223 E -3
x, =3.56254 E -4 X, =1.51766 E —2

25



X, =4.90799 E -1 X, =4.19451E -2

Problem 8.37

The problem is

2

Minimize: f(a):i[p(a, Xi)_xim]

0 5
. 0 5
Subject to: <Wa<
0 5
0 5
W,'a=5
where
1 1 1 1 1
Wi=|8 64 512 4096 32768

27 729 19683 531441 14348907
64 4096 262144 16777216 1073742824

W," =[125 15625 1953125 244140625 30517578135 |

The solutionis  f(a) =1.110366

a, =0.36359 EO

a, =—0.16220 E -1
a, =0.32901 E—3
a, =—0.29062 E-5
a,=091722 E-8

Problem 8.38

The solution with unscaled constraints from starting points 1 and 3 is

f(x") =6.8408x10°°
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x, =0.2436x10* X, =0.5131x10"

x, =0.1788x10* x, =0 lower bound

X, =0.5795x10° X, =0.6019x10*

x, =0.3686x10"* X, =0.7214x10*

x; =0.1328x10° X, =0.1000x10* upper bound

Different codes gave slightly different results.

Problem 8.39

Case studies were used because local extrema were found. The best and second
best solutions were:

Best solution: S, =7 P, =3

Sz* =3 Plls* =5

83* =0 P133* =2

S, =0 P, =2

P111* =1 Pzzz* =3

Po =4 Py =2

P, =4 obj. func. = -$11.105 MM
The second best solution is:

Sl* =10 P132* =3

Sz* =0 P113* =5

83* =0 P123* =2

84* =0 P133* =2

P111* =1 P122* =3

P121 =2 P131 =4

P, =4 obj. func. = -$11.1031 MM
Problem 8.40
Let tons of fuel oil to generator 1

f, =
f, = tons of BFG to generator 1



g, = tons of fuel oil to generator 2

g, = tons of BGF to generator 2

X, = MW from generator 1 obtained using fuel oil
X, = MW from generator 1 obtained using BFG
X,, = MW from generator 2 obtained using fuel oil
X,, = MW from generator 2 obtained using BFG

The NLP is

Minimize: f,+0,

Subjectto:  f, =1.4609+0.15186x,, +0.00145x,*
f, =1.5742+0.1631x,, +0.001358x,,’
g, = 0.8008+0.2013X,, +0.000916x,,’

g, = 0.7266 + 0.2556X,, + 0.000778x,,"
18<x,+Xx,<30

14 <X, + X%, <25

f,+9,<10

Xy3 + X+ Xoy + X5, =50

Eliminate f, f,,g, and g, using equality constraints. Linearizing the objective function
and the constraints about some set x; (i, j =1,2), the NLP is converted to an LP:

Minimize: AAX, + BAX,, + F
Subjectto:  AX, +Ax, <30—x,’— X,

AXy, +AXyy < 25— X" — Xy,
—AX, —AX, <18+ X110 + X120
—AXy — AXyy < =144 X, + Xy,
CAx, + DAx, <E

AX11 - Axiz + AXZl + szz =50— X110 + X120 - x21O — Xy

0

where A=0.15186+0.0029x,,°
B =0.2013+0.001832x,,”
C =0.1631+0.002716x,,°
D = 0.2556 +0.001556Xx,,’
E =7.6992—0.1631x,,° —0.001358x,,” —0.2556X,," —0.000778x"2"
F =2.2617 +0.15186x,,° +0.00145(x")? +0.2013x,, +0.00916(x,)?
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Since the Ax's are unrestricted in sign, we introduce the new variables

AXy =Y =Y,
AXp = Y3 =Y,
AXpy = Y5 = Ve
Ay = Y7 = Ys

If we restrict the absolute values of the Ax's to be less than, say, h, the LP is now

Minimize: Ay, — Ay, +By, - By, +F
Subjectto: Y, — Y, + Y, — Y, <30—x," —x,°
Ys = Ys T Y7 Ys S25_)(210_X22
“YitY.—YstY, S_:1-8_)(1104‘X120

“YstYe — Y7t Vs S_:|-4_X210+X220

Cys_cy4+Dy7_Dy8 <E

Yi= Yot Ya= Yot Ys—Yet Y7~ Vs :50_X110_X120_X210_X22
Yi—Y, <h

Y=Y <h

Ys= VY4 <h

Ya—Ys <h

Ys = Ys <h

Ys = Y5 <h

Y7 Ys <h

Ye = Y7 <h

and all y; >0

0

0

The strategy is to assume values for x.,°,x,°, %, and x,,, and solve the LP. From the
optimal solution, calculate the Ax's and thus the new x% 's. Now solve the LP again

using these x%'s. This process is repeated until the Ax's are less than some specified
tolerance. The solution is

X, =7.7084
X, =22.292
X, =7.2382
X, =12.762
f*=5.0235

f,=2.718
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f, =5.885
g, = 2.306
g, =4.115

Problem 8.41

You can use AT rather than log mean AT to simplify the problem. The equations
for the heat transfer in the heat exchangers are those found in unit operations books:

Q =UAAT, =UAAT

Q=wC At
The solution is:

T, =180°F T, =295°F
A + A, + A, =7050ft* (minimum total area)
A =556 ft* A =1369ft* A =5125ft"
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CHAPTER 9
Problem 9.1

Define the variables as y;, j=1,2,...,6,where y; =1 means the jth project is
selected, and y; =0 means the jth project is omitted. The objective function to be
maximized is

f =100,000y, +150,000y, -+35,000y, + 75,000y, +125,000y, + 60,000y, @)

subject to the following constraints:
First year expenditure:

g, = 300,000y, +100,000y, + 0y, + 50,000y, + 50,000y, +100,000y, < 450,000 (b)
Second year expenditure:
g, =0y, +300,000y, + 200,000y, +100,000y, +300, 000y, + 200,000y, <400,000 (c)
Engineering hours:
g, = 4000y, + 7000y, + 2000y, + 6000y, +3000y, + 600y, <10,000 (d)
Production line is required:
9 =Yty <1 (€)
Automation is available only with new line:
95 =Y,~¥;20 ()
Waste recovery option:
Os=VYs+Ys =<1 (9)

The branch and bound analysis begins by solving the LP problem with no integer
restrictions on the variables with the following result:



y, =0.88
y, =0.12
y, =0.12
y, =0.40
Y, =1.00
Y, =0.00
f =$265,200

Note that several variables (y,,Y,,Ys,Y,) in this solution are not integers. The branch
and bound analysis can be carried out with Excel. The final (optimal) integer solution is:

y, =1

Y, =

y;=0

y4:O

s =1

Yo =

f =$225,000

This indicates that the project 2 with the highest net present value is not selected because
of the constraints in the problem. Note that the first noninteger solution achieves a larger
value of f than the integer solution, as is expected.

Problem 9.2
An algebraic formulation follows, using GAMS-like notation:
Indices: 1 = generator index (i=1,2,3), t = time period index (t = 1,2)

Data: cap(i) = capacity of generator i (MW), cp(i) = operating cost of generator i ($/MW)
Cs(i) = startup cost of generator i ($), d(t) = demand for power in period t (MW)

Decision variables: x(i,t) = power generated by generator i in period t (MW)
y(i,t) = 1 if x(i,t) > 0, zero otherwise.

Constraints:
Demand must be satisfied in each period:
Sum(i,x(i,t)) >= d(t), allt

y variables turn x variables on and off:



x(i,1) <= cap(i)*y(i, 1)
x(i,2) <= cap()*(y(i,1) + ¥(1,2))

The last constraint above insures that, if a generator is turned on in period 1, it stays on in
period 2.

Turn each generator on at most one time per day:

Sum(t, y(i,t)) <=1, all i

A spreadsheet model containing the optimal solution appears below. The optimal
solution turns generators 1 and 2 on in period 1, and does not use generator 3. This is
because generators 1 and 2 have the lowest operating costs, while 3 is much higher.
Further, generator 1 is used to capacity, because it has by far the lowest operating cost,
and 2 is used to satisfy the remaining demand. Even though generator 3 has the lowest
startup cost, its higher operating cost excludes it.

Data
Generator Fixed Cost per Generator Demand Demand
start-up MW capacity Period 1 Period 2

cost ($) in each
period
(MW)
1 2800 5 1900 2500 3500
2 2000 3 1700
3 1900 8 2900
Model
on-off MW on- on-off MW sum*ca
off*cap p
per 1 per 1 per 1 per 2 per 2 per 2
Gen 1 1 800 <= 1900 0 1800 <= 1900
Gen 2 1 1700 <= 1700 0 1700 <= 1700
Gen 3 0 0 <= 0 0 0 <= 0
Total MW 2500 >= 2500 3500 >= 3500
startup sum of
MW cost binarys
cost
Gen 1 13000 2800 1 <= 1
Gen 2 10200 2000 1 <= 1
Gen 3 0 0 objective 0 <= 1
Total 23200 4800 28000




Problem 9.3

DATA
Minimum
Year capacity
1 780
2 860
3 950
4 1060
5 1180

current capacity

Cost
10 MW

280
230
188
153
135

700

Cost
50 MW

650
538
445
367
300

Cost
100 MW

700
771
640
530
430
Total

Decision on Variables and Constraints

Year #0of 10 MW # of 50 MW

AW~
SO O OO

—_
o

size

Comments on Solution

S OO OO

(9
e

#0of 100
MW

=

new
capacity
200
0
100
100
100

Cost of
new
Generators
1400
0
640
530
430
3000

total
capacity
900
900
1000
1100
1200

No 10 or 50 MW generators are installed, because their cost per MW is much higher than
the 100MW. The first year two 100 MW generators are bought, because first year cost is
smaller than second year. The second year nothing is bought. In years 3 to 5 only one
100 MW generator is installed. Purchases in years 3 to 5 are deferred as long as possible

because costs are declining.

Problem 9.4.

A GAMS model for this problem and its solution follows.

Production and Inventory Planning with Setup Costs and Times

set definitions
4
5 Set p
9 t

model parameters

products
time periods

/ pl, p2 /
/ wkl, wk2, wk3, wkd /



13
14
16
18
19
20
21
22
23
24
26
27
28
29
30
31
32
33
34
35
36
37
38
40

Table pdata(*,p)

setup-time
setup-cost
production-time
production-cost
holding-cost
penalty-cost
selling-price
final-inventory

Table demand(t

wkl
wk2
wk3
wk4

Scalars tav
Parameter

Model Definition

product data

pl P2
6 11
250 400
0.5 0.75
9 14
3 3
15 20
25 35
0 0 ;
' P)
pl P2
75 20
95 30
60 45
90 30 ;
ail weekly time available(hrs) / 90 / ;
maxunits (p) ;
maxunits (p) = tavail/pdata ("production-time",p);

43 Variables prd(p, t) units of product p produced in week t

44 inv (p, t) units of inventory of product p at
end of week t

46 pinv (p,t) positive part of inventory

47 ninv (p, t) negative part of inventory

48 v(p,t) 1 if product p produced in wk t else
zZero

49 profit objective variable ;

50 Positive Variables prd,pinv,ninv ;

51 Binary variables % ;

52

53 Equations

54 invbal (p, t) inventory balance

55 finalinv (p) final inventory equal =zero

56 invsplit (p, t) defines positive and negative
inventory

57 maxtime (t) limit on production time

58 onoff (p, t) turn prd on or off with binary
variables

59 oneprod (t) at most one product produced in any
week

60 objective revenue minus all costs

61

62 invbal (p,t).. inv(p,t) =e= inv(p,t-1)+prd(p,t)-demand (t,p);

63

65 finalinv(p).. 1inv(p,"wk4") =e= O;

66 invsplit(p,t).. inv(p,t) =e= pinv(p,t)-ninv(p,t);

67

68 maxtime (t) .. sum(p, pdata("production-time",p) *prd(p,t)+

69 pdata ("setup-time",p) *y(p,t))=1= tavail ;

70



71 onoff(p,t).. prd(p,t) =1= maxunits (p)*y(p,t);

72
73 oneprod(t) .. sum(p, y(p,t)) =1= 1;
74
75 objective.. profit =e= sum((p,t), (pdata("selling-price",p)
76 -pdata ("production-cost",p)) *prd(p, t)
77 -pdata ("setup-cost",p) *y(p, t)
78 -pdata ("holding-cost",p) *pinv(p, t)
79 -pdata ("penalty-cost",p) *ninv(p, t)):;
80
81 Model prodplan / all / ;
83 Solve prodplan using mip maximizing profit ;
84

MODEL STATISTICS

BLOCKS OF EQUATIONS 7 SINGLE EQUATIONS 35
BLOCKS OF VARIABLES 6 SINGLE VARIABLES 41
NON ZERO ELEMENTS 121 DISCRETE VARIABLES 8
S OLVE SUMMARY
MODEL PRODPLAN OBJECTIVE PROFIT
TYPE MIP DIRECTION MAXIMIZE
SOLVER XPRESS FROM LINE 83
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 8 INTEGER SOLUTION
****x OBJECTIVE VALUE 5331.0000

This model breaks inventory into positive and negative parts as defined by the
variables pinv and ninv, and the equations invsplit, because the costs for positive and
negative inventory are different. The binary variables y turn the production variables prd
on and off through the constraints “onoff”. They are also used to incorporate setup times
into the maxtime constraints, and to include setup costs into the objective. The
“oneprod” constraints insure that at most one product is produced in any week.

The optimal solution produces product 1 in weeks 1 and 3, and product 2 in weeks
2 and 4. There is unsatisfied demand for product 1 in week 2 and product 2 in week 1,
because only one product can be produced in any week. This causes the penalty cost to
be incurred, but the backlogged demand is satisfied in the next week (The constraint that
inventory is zero at the end of week 4 insures that there is no backlogged demand after
the fourth week). All of the 90 available hours are used in week one, but fewer are
needed in subsequent weeks. If there are only 80 hours available per week, the problem
has no feasible solution. This model can be used to determine approximately how many
hours per week are needed to permit a feasible solution by solving it for different values
of the parameter “tavail”.




Problem 9.5
Max sum(l,(1+r(1))*x(I))
Subject to:

sum(l,x(1)) <= 100

x(1) <= 20y(l) all | (1)
x(1) >= 5y(1) all | )
x(1) >= 0 all |

Where y(I) is a binary variable which is 1 if x(1I) is positive and zero otherwise.
Constraints 1 and 2 insure that y(I) = 0 if and only if x(I) = 0, and y(I) = 1 if and only if
x(I) is between 5 and 20.

Problem 9.6
h!_Jx.:l.o
Hq = 0.506
X7z 0.934
Ap= 10
£= 1173 .84
7 \
5[ %=1 NIETEE
X,z 0.952 2, =
7(?)'—‘ 0 921 x3Z = 0.95)
Ag- | Hyz |
F=z n3.15 £=110.85
7] nq =i 6] g =1 4] xzzo/\Ej Xqz0
A, =0 Hy =1 X = | *3:=0
Xz =) A7 = O Az | Hy=
Hg =1 X4z 0.595 N4 20,264 Ny =)
F= 49 £z 100.64 | F= 36.72 £ =08




Problem 9.7

oz 2075
'XI:Q.'lS
£= 92.758
%23 A, § 2
}_J X, =3 _5’] A, = 2
Aq = 1.8 Ng = 2
£= 7.5 £- ¢
o0&, <!
\ Noke 5 s
_3;] X, =3.167

Aq = |

f-7.33 MMM
A,£3

'
_‘ﬂ X,=73

Xq =1

£=7

Problem 9.8

Xqp = Az O
Az =0 A3=0
K4 =0 X4 =21.67
f=4 £= 633
9‘13%/\1\5‘
4] % =2 BIEEE
Ay=0 Xy=0
Ag=o0 A3 - 0.33
Aypz2 Haz .67
f= 8.0 f-6¢7

Nodes 4 and 5 are fathomed. Node 2 gives the MIP optimum.




Problem 9.9

By inspection, one can see that plant 1 has to be in operation, because plant 2
cannot satisfy the demand by itself. Thus, there are only two possibilities:
y,=1y,=1andy, =1 y, =0. Explicit enumeration is easy in this situation.

Case I: Y, =1y, =1. The LP to be solved is
Minimize: f = (3%, + X, + X, +2)x10*
Subject to: X+ X%, =1

Xpp Xy =1

Xip + X, <2
Xp + X%, <1

The solution is Xfl = X;z =0, sz = le =1,
f” =3x10*

Case II: Y, =1y, =0. The LP to be solved in this case is:
Minimize: f = (3x, +x, +1)x10*
Subject to: X, =1
X, =1
Xy + X%, <2
The solution is X, =X, =1 X, =X, =0
f" =5x10*

Case I gives the optimal solution to the problem.

Problem 9.10

The solution can be obtained by inspection. To each extractor, assign the stream
with the least cost for that extractor. The optimum pairing is

Stream Extractor
1 4
2 2
3 3
4 1

cost =64




Problem 9.11

NEED
%y = 29/
£= 29
%22 A«fzﬂ
y:

_'Z.J‘M: 7(9 lJ A, =0
Az 2 7(2"3
f= 29.78 f= 33

£:= 3o
Xzs\/\xﬁz
_ij,zz _g_’ A, =)
')(1_: | 7(1'-'2
£=31 =32

Nodes 6 and 7 are fathomed. Node 5 gives the IP optimum.

Problem 9.12
x =0
X, =0
X, =1
f=8
Problem 9.13
N
X :[O 070 O]
f=7
Problem 9.14

(a) Problem formulation:

Minimize: 2C+2, Gl

10



Subject to:  foreach j, 2 S; >R,
foreach i, X;S; <0,

ij —
and X1, <1 I,,1,---1, integer.

(b) Numerical solution:

Plant A Plant B
1 0
Fixed Charge A  Fixed Charge B
700 0
AtoC AtoD BtoC BtoD Production A
200 250 0 0 450
Cost Ato C Cost AtoD Cost Bto C Cost BtoD C
200 750 0 0 200
Total cost
1650
Build only plant A.

Production B

0

D
250

11



Problem 9.15

The solution is:

Refinery 1
5000

X111
X112
X113
X121
X122
X123
X131
X132
X133
X211
X212
X213
X221
X222
X223
X231
X232
X233

Refinery 2
7500

b1l
b12
b13
b21
b22
b23
b31
b32
b33

500

1500
1.93E-13
5.806898
0.009896
0
2499.993
0.016408
0

0
2.76E-13
0
494.1931
1499.99
3000

0
1499.984
0.006911

M1
2000

500
1500
10000
500
1500
10000
500
1500
10000

M2 M3
5000 4000

Meet all Demand (2)
0j=1
0j=2
0j=3

Can’t Exceed Supply (3)
-494.17371=1
-1005.826 1 =2

con (4)
0j=1
0j=2
0j=3

con (5)
0j=1
0j=2
1999.993j =3

con (6)
-10000j=1
-7000j=2
-9999.993 =3

con (7)
0j=1
0j=2
0j=3

k1
0.08

112
113

122
123

132
133

Cl11
Cl12
Cl113
Cl121
C122
C123
Cl131
C132
C133
C211
C212
C213
C221
C222
C223
C231
C232
C233

OBJ

k2
0.06

k3
0.04

40

90
7.72E-15
0.464552
0.000594
0
199.9994
0.000984
0

0
1.66E-14
0
39.53545
89.99941
120

0
89.99902
0.000276

669.9997
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C-6.1 Process Description

Using HYSYS - Conceptual Design and HYSYS.SteadyState and Dynamic Design, a two-column extractive process is
modeled from conceptual design to dynamic simulation. In two distillation columns, the equimolar feed of Toluene and
Heptane is separated using Phenol as a solvent. HYSYS - Conceptual Design is used to calculate the interaction
parameters and carry out the preliminary design and optimization of the process. In HYSYS.SteadyState, the column is
set up and optimized, using the Spreadsheet to model economic factors. Finally, controls are added and various
disturbances are introduced to test the effectiveness of the design.

The objective is to maximize the purity of the Heptane and Toluene streams coming off the top of the first and
second column, respectively.

Using Hyprotech's process simulation software, we can develop a conceptual design, optimize the steady-state
process, and develop and test a control scheme. These are the steps:

1. Using HYSYS - Conceptual Design, calculate interaction parameters, and determine an appropriate Property
Package.

2. Using HYSYS - Conceptual Design, carry out the preliminary design and optimization, estimating/specifying key
process characteristics such as Reflux Ratios, number of stages, feed location, and product purities.

3. Using HYSYS.SteadyState, set up the column configurations in a single flowsheet, using the specifications
determined in the previous step.

4. Using HYSYS.SteadyState, use the Optimizer to further refine the extractive distillation process, taking into account
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the basic economics.

5. Using HYSYS.Dynamics, set up a candidate control scheme and evaluate dynamic operability.

Yapour-1
Condenser-1
To Condenser
Condenser1 Duty
Reflux-1 Condenser-2
—— L Heptane To Condenser-2
-_—p———
1 Reflux-2
2
-——
Phenal 3
Makeup Sokvent
. |
5
6 | 132
ﬁ-_}-
Feed 7
Reb-1 Duty » 8
i
9
Boilup-2
Boilup-1
To Reboiler-1 Rabgiler-1 Col-1 Bottoms To Rebailer-2
Column SubFlowsheet
C-6.2 Background

HYSYS - Conceptual Design could also be used to screen solvents based on their effect in increasing the relative
volatility of n-Heptane and Toluene.

Extractive distillation is used in the petroleum industry for the separation of aromatics from non-aromatic hydrocarbons.
In general, the presence of the solvent raises the vapour pressures of the key components to different degrees, so that
the relative volatility between these key components is increased. The more volatile component is removed in the
distillate, and the bottoms mixture (solvent and less volatile component) is separated in a second distillation column.

Toluene-"non-toluene" separation is well-documented. The non-toluene fraction is often a narrow mixture of saturated

hydrocarbons, and for the purpose of this study will be represented by n-Heptane. The objective of this process,
therefore, is to maximize the separation of n-Heptane and Toluene.
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|Reflux Ratio |No. of Stages

110 113
15 71
120 61

Reflux Ratio and number of stages for the non-extractive equimolar separation of nHeptane and Toluene, as
predicted by HYSYS - Conceptual Design (NRTL-Ideal). The distillate and bottoms molar purities are 0.99.

Phenol is commonly used as the solvent, due to its effect in significantly increasing the volatility ratio of n-Heptane and
Toluene. Unlike other potential solvents which can also increase the volatility ratio, phenol does not form azeotropes,
and is currently inexpensive. It is not particularly dangerous, although there is some concern as to its environmental
impact.

Since n-Heptane and Toluene do not form an azeotrope, the separation can theoretically be performed without the use
of a solvent. However, the number of stages and reflux ratio is excessive, as shown in the side table. This is due to the
fact that these components have similar volatilities.

This example is set up in five parts as outlined below. Some sections can be completed independently, without
referring to previous steps. For example, if you wish to do only the Steady-State design, you need only complete steps
3 and 4, using the interaction parameters and column design as predicted in steps 1 and 2.

C-6.3

PART | Calculating Interaction Parameters

Using experimental data from various sources, interaction parameters are generated using the NRTL and Peng
Robinson Property Packages. Interaction parameters for the three binary pairs are obtained separately and combined
in the binary matrix.

NRTL Interaction Parameters
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In earlier versions of HYSYS - Conceptual Design, you must have only two components in the Fluid Package in
order to view binary TXY and XY plots.

In HYSYS - Conceptual Design, open the Fluid Package Manager and add a new Fluid Package. The Fluid Package is
defined as follows:

" Property Package: NRTL-Ideal
“ Components: C7, Toluene, Phenol
Leave all other parameters (i.e. - Binary Coefficients) at their defaults.

Now we will look at the interaction parameters for the three component pairs and if necessary, regress new parameters
from experimental data.

n-Heptane-Toluene Interaction Parameters

The default interaction parameters are usually reliable, although it is important to ensure that they were regressed
under conditions similar to the current design. New interaction parameters can be regressed from experimental data
specifically chosen for the system conditions. Data can be entered manually, or can be automatically scanned from the
TRC libraries of VLE, LLE and Heats of Mixing data. The TRC database contains data for over 16000 fitted binaries.

Extensive TRC data is available for the C7-Toluene pair. Open a new Fluid Phase Experiment, select the TRC Import
button, and specify the following Scan Control options:

¢ Data Set Type — TXY

* Data Set Pressure — 101.32 kPa
* Data Set Temperature — 25 °C

* Pressure Tolerance — 10 kPa

e Temperature Tolerance — 10 °C

Search for all data sets which include the components C7 and Toluene:
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—| TRC
| |
~ Scan Control ~ Data Set Selection
Mumber of Foints Lermplyy Data Set Information Lz
Data =et Type kS TRC_WLE_1 Tywpe T=Y (Cte F) With 21 Point(s) L
Data Set Number <emphy> TRC_WLE_2 Twpe Ty (Cte P With 24 Pointis) L
Data Set Pressure 101.32 kFa TRC_WLE_3 Twpe TxY (Cie F) With 24 Point(s) C
Data Set Temperature 600C TRC_WLE_4 Twpe Ty (Cte P With 11 Pointis) L
FPressure Tolerance 10.00 kFa TRC WLE_E Twpe Ty (Cte F) With 13 Pointis) L
[Temperature Tolerance 1000 TRC_WLE_B Twpe Ty (Cte ) With 19 Point(s) L
. TRC_WVLE_? Type Ty (Cte P) With 13 Point(s) C
Component Selection: TRC_WLE_8 Type TXY (Cte P With 13 Point(s)| L
Cornponert MNarne Lse TRC_WLE_9 Type Ty (Cte PIWith 15 Point(s)] [
c?l B TRC_VLE_10 Type Ty (Cte P 'With 4 Point(s) C
Toluene| [ TRC_WLE_11 Twpe THY (Cte FiWith 8 Faintis) L
Search Cancel Read Selected Data ¢

For more information on the Herrington Consistency Test, see the HYSYS - Conceptual Design manual.

Check the Use box for each set, then select the Read Selected Data Sets button. These sets will be imported into the
current Fluid Phase Experiment. Next, check the Herrington Thermodynamic Consistency for each set by selecting the
Consistency page tab, and pressing the Calculate Consistency button. The Herrington parameters are calculated,
and the status of each data set is displayed:

~ Data Sets Thermodynamic Consistency Test
Mame Herrington D 3 Herrington J % Consistency

TRC WLE_SET_423 B.72 R.0O3 Consis
TRC WLE_SET_424 9.67 491 Consis
TRC WLE_SET_425 14.78 4497 Consis
TRC WLE_SET_427 /.66 4.93 Consis
TRC WLE_SET_428 4.33 4.91 Consis
TRC WLE_SET_430 8.35 492 Consis
TRC WLE_SET_434 15.71 424 Inconsis
TRC WLE_SET_435 24.97 453 Inconsis
TRC WLE_SET_7713 8.28 493 Consis
TRC WLE_SET_7714 13.38 243 Inconsis
TRC WLE_SET_7718 8.04 4495 Consis
Calculate Consi
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Set 428:

Rose, A.; Williams, E. T.

Ind. Eng. Chem., 1955, 47, 1528.
P =101 kPa

# of points = 13

Copyright (c) by the Thermodynamics Research Center

Note that Set 428 has Herrington parameters of 4.33% and 4.91% for D and J respectively, which is well under the
“consistency limit” for isobaric data (D - J £ 10%). This set has 13 points which is sufficient for our investigation.

If we were going to regress the interaction parameters to the experimental data, we would run the Optimizer. However,
we will instead compare the experimental data to the calculated data based on the default interaction parameters. On
the Summary page of the Fluid Phase experiment, highlight Set 428, then select the Edit button. Select the Calculate
button — the XY and TXY curves will be constructed based on the default interaction parameters, and the errors will be
calculated.

The calculated data in this case is the TXY or XY data calculated using the Property Package (and current
interaction parameters), which is displayed graphically on the Plots page of the Data Set view.

The TXY plot appears as follows:

1120

1100

108.0

L

106.0

104.0

1020

100.0

-

EBD T T T T T T T T T I T I T I T I T I T 1
oo 01 02 03 04 05 0B 0OF 08 058 10

Ligquid/apour Mole Fraction C7

The experimental and calculated points match remarkably well, and thus it is not necessary to regress the interaction
parameters for the C7-Toluene pair.

Toluene-Phenol Interaction Parameters
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The amount of data available for this component pair is considerably less than what was available for C7-Toluene. We
will, however, regress interaction parameters from the available TRC data set (6014).

Set 6014

P =101kPa

# of points = 23
Herrington D% - 21.87
Herrington J% - 28.01

Drickamer, H. G.; Brown, G.; White, R. R.
Trans. Amer. Inst. Chem. Eng., 1945, 41, 555.

Copyright (c) by the Thermodynamics Research Center

Open a new Fluid Phase Experiment, and select the TRC Import button.

—| TRC
—acan Control — Data Set Selection
Mumber of Foints Lermplyy Data Set Information Lz
Data Set Type kS TRC_WLE_1 Tywpe T=Y (Cle F) With 23 Point(s)
Data Set Mumber Lermplyy
Data Set Fressure 101.32 kFa
Data Set Temperature ch 00
Fressure Tolerance 10.00 kPa
[Temperature Tolerance 10000
Component Selection:
Component Name Usa
Toluene| [
Phenal| [
Search Cancel Fead Selected Data £

There is only one data set available for the Toluene-Phenol pair. Select it by checking the Use box, then choose the
Read Selected Data Sets button.

The Data Set Notes group box on the Summary page of the Fluid Phase Experiment displays important information
related to the data set. Note that this data, obtained at 101 kPa, has 23 points.
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Data Set Notes:

Drickamer. H. G.; Brown, G. G White, R, R,
Trans. Amer. Inst. Chern. Eng., 1945, 41, 555,
T/ -=[1]-%[1] -F/kPa =101 N =23

TRC Databases for Chemistry and Engineering
Copyright (c) by the Thermodynamics Fesearch Center
of the Texas Engineering Experimental Station,

+

http://www.hyprotech.com/support/examples/extract/extract.htm

Move to the Consistency page, and calculate the Herrington Consistency as you did for the C7-Toluene data.

This data set is consistent according to the Herrington test:

Marme

Hertington D *4Herrington J 4

Consistency

TRC VLE_SET_BG14 21.67 28.01

Consist

Now we will calculate new interaction parameters based on this experimental data.

Before running the Optimizer, compare the experimental data to the predictions made using the default interaction
parameters. Edit TRC_VLE_SET 6814 and select the Calculate button. By looking at the Plots page, it appears that
there is reasonably good agreement between the experimental data and calculated curves.

Temperatur

-
S

120.03

110.03

00 01 02 02 04 06 O 0OF 08 09 10
Liquid//apaur male fraction Toluene

% B Bub

- Cdc Bub

la—Eqp Dew

—Cdc Deﬂ

On the Errors page of the Fluid Phase Experiment view, note that the average and maximum temperature errors are
0.316% and -1.038% respectively.
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= Fluid Phase Experiment
—Data Sets Percentage Error Summary
®§Pressure,"TemperﬂturEfExcess Enthalpyi O Compo
Marne Active Weight Yariahle Type Awe W Errar | Max 2 Errar Faint #
TRC_WLE_SET 6814 [ 1.0000 Temperature 0.3k -1.038
[==T"1 =] ""\Summawﬁariables‘ﬂptimizerKCDnSiatency)EerrSKNDteaj
Delete Name: |Expl? Mot Optimized | Run Optimizer [

Now we will run the Optimizer in order to obtain improved interaction parameters for this data set. On the Summary
page of the Fluid Phase Experiment view, note that the default Objective Function is ActivityCoeff. Thus, the errors
will be minimized with respect to the components’ activity coefficients.

Tvpe Te
Dhjective Funchion ActivityCoeff
k& ctive in Optimization B4

eight In Experirment 1.0000

Move to the Variables page and “free* the parameters. For Matrix Pane bij (which for NRTL in HYSYS is equivalent
to 3 /cij), the parameters are initially locked.
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= Fluid Phase Experiment
Locked
— Fluid| |24
Avai
nrtl
Interaction Parameters: () Parameters (® Degrees of Freedom
Toluene Fhenal

Toluene Locked

Phenol Locked

[==T"1 =] ""\Summa@x)\‘\fariablesxﬂptimizerKCDnSiatenchErrura/(NDteaj

Delete Name: |Expl? Mot Optimized | Run Optimizer [

To “free” the parameters, select Matrix Pane bij from the drop down menu, choose the Degrees of Freedom radio
button, place the cursor on either cell containing the “Locked” message, and from the top drop down menu, select
Free. This allows the bij parameters to vary during the optimization process. Before running the optimizer, set up the
view so that you can observe the solution progress. This is best done from the Optimizer page, although you may
prefer to remain on the Variables page and watch the progress of the interaction parameters (ensure that the
Parameters radio button is selected; as well, it is probably more useful to observe the aij parameters). Once you start
the optimizer you cannot change pages until the calculations are complete.

For this example, we will observe the solution progress from the Optimizer page.

Choose the Optimizer tab, then select the Run Optimizer button.

= Fluid Phase Experiment
—Convergence Contol —————— [ Optimizer Progression——————— . ... )
Tolerance for Convergence Step # | Ohjecti i ©Tﬂhle <
] jective Function
0oooni 1 02071135
i 0.205343k
Maximum Number of terations 3 0.2063431
100 4 0.206A430
5 0.20RkA430
Step Size 5 0.2068420
0.o100 7 0.2063403
a 0.206E397
o 0 2NRAAAE
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Convergence is achieved quickly, and the errors are automatically calculated once the algorithm converges; the
average and maximum temperature errors are 0.313% and 1.061% respectively.

We may be able to get better results using a different Objective Function. The Maximum Likelihood function is the most
rigorous from a statistical point of view, but also is the most computer intensive. The convergence time increases when
we use this function, but the improved results may be worth it.

Activity Coefficients
a;,=8294

a21 = '60.2

b12 = b21 =0.146
Average Error = 0.313%
Maximum Error = -1.061%

Maximum Likelihood
ay, = 824.2

ay =-188.1

by, =by, =0.010
Average Error = 0.251%
Maximum Error = -0.934%

Change the Objective Function to Maximum Likelihood, and restart the optimizer. We obtain the following interaction
parameters:

Toluene Fhenal
Toluene 0.000 -188.1
Fhenol g24.2 0.000

The bij parameters are 0.01. The temperature errors are now 0.251% (average) and 0.934% (maximum). Note,
however, that while the toluene composition errors decreased, the phenol composition errors increased. Nevertheless,
we will use these interaction parameters for the Phenol-Toluene pair.

n-Heptane-Phenol Interaction Parameters

There is no TRC data for the Phenol-Heptane component pair. The following data (taken from Chang, Y.C., 1957 and
Kolyuchkina et al., 1972) is used:
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remperature (1C) X, (1= y, (1= |Temperature (°C) |X1 (1=Heptane) |y1 (1= Heptane)
Heptane) Heptane) 116.3 .090 .840

106.0 283 918 1124 112 932

1037 339 941 1126 120 1931

102.7 349 947 1071 186 .946

101.2 499 956 104.4 233 |.961

101.2 528 950 102.4 337 .960

11005 635 957 1008 535 .970

100.4 701 956 1100.6 585 .965

11002 736 962 1000 720 967

99.2 881 .960 199.6 816 961

198.6 929 .968 1995 837 |.964

I98.3 I.geo I.978 199.2 1900 .970

| | | |

TXY Data for Phenol-Heptane (Chang, 1957) | [TXY Data for Phenol-Heptane (Kolyuchkina et al., 1972)
Pressure = 740 mm Hg Pressure = 760 mm Hg

Open a new Fluid Phase Experiment, select the appropriate Fluid Package (C7-Phenol), choose the Add button, and
enter the data, as shown below for the first data set (Chang):
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= Fluid Phase Data Set: Exp16 : Chang
Type: Optimization Information :
. Objective Function: Weight |1.0000 Fluid Pkg: P
Basis: | Male Fraction |£I | haxLikelyhood |£| Active [¥] Property Pkg: NR
~ Experimental Data:
Murmber Foint/eight  |Exp Press Exp Temp TV _Fhenal Y _F
1.0000 1.0000 95.6556 106.0000 0.2830 07170 09180
2.0000 1.0000 95.6556 103.7000 0.3340 06610 0.9410
3.0000 1.0000 956586 102.7000 0.3440 0.6510 0.9470
4.0000 1.0000 45.6586 101.2000 0.4940 0.5010 09560
R.0000 1.0000 95.6556 101.2000 0.5280 0.4720 0.9500
B.0000 1.0000 95.6556 100.5000 0.6350 0.36A0 0.9570
7.0000 1.0000 956586 100.4000 0.7010 0.2940 0.9560
8.0000 1.0000 45.6586 100.2000 0.7360 0.2640 09620
8.0000 1.0000 95.6556 89.2000 0.8810 01140 0.9600
10.0000 1.0000 95.BhARE 83.6000 0.9230 0.0710 09630
11.0000 1.0000 956586 95.3000 0.9600 0.040a0 0.9730
Lemphy LEMmphy> LEmpty LEMpty LEM Pty Lempty LEMmphy>
[*=T T [=+] \Eiaaiu: DataKStatistical Data[ErruraXF"lutsXErrurPrupagatiun‘{[\lutea/
Delete Name: |Chang Calculated OK Calculate

The default interaction parameters are shown here:

aij

7

Fhenol

7

0.000

701.706

Fhenol

1120.082

0.000

bij

7

Fhenol

Y

0.000

0.293

Fhenol

0.293

0.000

1=C7
2 = Phenol
a, = 1120.082

a,, = 701.706
by, = by, =0.293

The interaction parameters are written as follows:

Various methods are possible for regressing the interaction parameters. In this example, the following schemes will be
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used:

1. With only the first data set active, optimize using the Activity Coefficients Objective Function.

2. With only the first data set active, optimize using the Maximum Likelihood Objective Function.

3. With only the second data set active, optimize using the Activity Coefficients Objective Function.

4. With only the second data set active, optimize using the Maximum Likelihood Objective Function.

5. With both data sets active, optimize using the Objective Function which results in the smallest error.

\Scheme 5 uses the Maximum Likelihood Objective Function.

The following table outlines the results of this analysis. In all cases, using the Maximum Likelihood Objective function
rather than the Activity Coefficients Objective function resulted in significantly smaller temperature errors, while in most
cases the composition errors increased slightly. In some instances, the average or maximum composition decreased
when the Maximum Likelihood Objective function was used (see Ave C7 and Max Phenol for Schemes 3 and 4).
Therefore, we conclude that the Maximum Likelihood Objective function results in a better fit.

\Interaction Parameters \Errors
Scheme (@15 asq b, |AvgT |MaxT |Ave C7 Max C7 |Ave Phenol Max Phenol
C=.157 |C=-.489 |C=.713 |C=2.83 |C=14.6 C=-317

Default {1120 |701.7 [.293
K =.868 [K=2.32 |K=1.87 |K=-5.34 |K=35.3 K=73.2

IScheme 11672 [1580 528 [C=.169 |C=.329 |C=.456 [C=1.98 |C=8.24  |C=-22.1
|Scheme 2(1362 1001 490 [C=.068 |C=.245 |C=540 [C=2.40 |C=106  |C=-26.9
IScheme 32052 (1125  [509 |K=581 |K=1.32 |K=1.75 |K=-4.12|K=29.8  |K=68.9
IScheme 41438 (1172 [460 |K=.125 |K=.199 |K=1.73 |K=6.41 K=30.2  |K=58.4
| C=.149 [C=-480 [C=.471 [C=2.44 [C=8.05  [C=-27.3

Scheme 5|1539 [1328  |.508

K=.192 |K=502 |K=1.82 |[K=6.59 K=31.3 K=65.4

We will use the interaction parameters obtained using Scheme 5.

For this component set, there is no liquid-liquid region. If a liquid-liquid region were predicted, then the Property
Package and/or interaction parameters would be unacceptable, because they predict physically incorrect behaviour.
A liquid-liquid region is not predicted with our interaction parameters.

Although we can be reasonably confident of these results, it is wise to regard the following:

1. Consider defining a weight of zero for outliers (data points which deviate significantly from the regressed curve).
2. Check the prediction of liquid-liquid regions.

The plots shown below are the TXY diagrams for Phenol-Heptane, comparing the experimental data to the points

calculated from the Property Package. The figure on the left plots the Kolyuchkina experimental data, while the figure
on the right plots the Chang experimental data.
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We can check the prediction of liquid-liquid regions from the Binary Coefficients page of the appropriate Fluid Package
view (ensure that you have entered the interaction parameters as shown below):

aij

() Toluene Fhenaol
7 o.ona 425193 1328.000
Tolugne -1R0.034 0.o0a -188.100
Fhenal 1539.000 824.200 0.00a
bij
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() Toluene Fhenaol
7 o.ona 030z 0.508
Tolugne 0302 0.o0a 0.oa
Fhenal 0.508 o.ota 0.00a

You can see the LLE ternary plot on the Binary Coeffs page of the Fluid Package view. This requires you to enter a
temperature and a pressure. You can see the VLLE ternary plot on the Setup page of the Ternary Distillation
Experiment view. Here, you only enter a pressure.

Select the Ternary plot radio button, transfer the three components to the Selected Components group, and enter a
temperature and pressure. Over a range of temperature and pressures, no liquid-liquid region is predicted.

Peng Robinson Interaction Parameters

Default interaction parameters are available only for the C7-Toluene pair (0.006). Unlike the NRTL interaction
parameters, only one PR interaction parameter matrix pane is available; as well, binaries are constructed such that

& = &,

Open the Fluid Package Manager and add a new Fluid Package:

* Property Package: PR
* Components: C7, Toluene, Phenol

Leave all other parameters at their defaults. As we did in the previous section, we will determine the Interaction
Parameters based on TRC and literature experimental data. The procedure is essentially the same, and is concisely
summarized below.

n-Heptane-Toluene Interaction Parameters

We will use the default interaction parameter 8= 8= 0.006.

Toluene-Phenol Interaction Parameters
Recall that only one TRC data set is available for this binary (Data Set #6814).
The Activity Coefficient Objective Function should not generally be used for Equations of State as results tend to be

mediocre for highly polar systems. When we use the Bubble Temperature or Maximum Likelihood Objective
Functions, we obtain an interaction parameter of 8= ay = 0.014. Note that you may have to decrease the tolerance or

step size in order to obtain adequate convergence in this order of magnitude.

The TXY plot (using this interaction parameter) is shown below, displaying a reasonably good fit.
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n-Heptane-Phenol Interaction Parameters
As before, we will use the data of Chang and Kolyuchkina et al.

The interaction parameters predicted using the Chang data is very different from the Kolyuchkina data. Chang predicts
q;= 0.045 (Maximum Likelihood), and Kolyuchkina et al. predicts 8= 0.010. When we combine both data sets, we

obtain 8= 0.03. The TXY plots (using an interaction parameter of 0.03) are below:
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\The figure on the left plots the Chang data and the figure on the right plots the Kolyuchkina data.

These plots show that the dew point curve does not match the experimental data very well, and they also indicate a
liquid-liquid region. This can be confirmed by looking at the ternary LLE or VLLE plot.

You can see the ternary LLE plot on the Binary Coeffs page of the Fluid Package view. This requires you to enter a
temperature and a pressure. You can see the VLLE plot on the Setup page of the Ternary Distillation Experiment
view. Here, you only enter a pressure.

The VLLE plot at a pressure of 18 psia is shown below.
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ool b
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Phenal Cy

We can avoid the prediction of a liquid-liquid region by setting the n-Heptane-Phenol interaction parameter to 0.007 or
less. However, the calculated curve still does not fit the experimental data very well, and we conclude that the
Peng-Robinson Property Package is not acceptable for this example.

Note that using the PRSV Property Package results in a better fit, although a two-liquid-phase region is incorrectly
predicted under certain conditions.
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Prediction of Azeotropes using NRTL

At 18 psia, NRTL does not predict any azeotropes. However, at higher pressures, an azeotrope between n-Heptane
and Phenol is predicted, as shown in the following table:

|Pressure (psia) \Azeotropic Composition
|23 \No azeotropes

24 C7=0.9993

130 C7=0.9923

140 C7=0.9825

It is important to remember that activity models generally do not extrapolate well with respect to pressure, so we should
therefore regard these results with caution. The point is that we should not allow the pressure to fluctuate excessively,
so that incorrect predictions/azeotrope formation will not be a problem.

Parameters used in this Example

For this example, we will use the NRTL Property Package with the following interaction parameters:

aij

() Toluene Fhenaol
7 o.ona 425193 1328.000
Tolugne -1R0.034 0.o0a -188.100
Fhenal 1539.000 824.200 0.00a
bij

() Toluene Fhenaol
7 o.ona 030z 0.508
Tolugne 0302 0.o0a 0.oa
Fhenal 0.508 o.ota 0.00a
C-6.4

PART 2 Ternary Distillation Design (NRTL)

First Column

HYSYS - Conceptual Design allows for single-column design. For the ternary distillation experiment, the column can
have two feeds, a sidestream, condenser, reboiler and decanter.

We will use the NRTL Property Package, and the Interaction Parameters as defined in the previous section.
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A trial-and-error type of procedure is required, as we must cycle between the two columns until the connecting
streams have roughly the same compositions and flowrates. The bottoms stream of the first column feeds the
second column, and the bottoms stream of the second column is the upper feed to the first column.

Open a Ternary Distillation Experiment, set a pressure of 18 psia (the average of the top and bottom pressures in the
column, 16 and 20 psia), and select the appropriate Fluid Package from the drop down list. The program will then
determine if there are any azeotropes or two-liquid regions:

= Ternary Distillation

~ Pressure
Toluene

124.1057 kPa 1.0
0.8

~ Fluid Package o
= 0.7
)

NRTL | =h

2]
cos]F

g

[

E 0.2
0.2
0.1

I:l_l:l J = ]

0001 02 02 04060607 08 00 1.0

¢ bale Fraction
mﬁ [}% Fhenal c7

[=T 1 =] \Setup[ﬁ?unfiguraﬂun ! SummaryKSpec Entry)(FIDws ¢ Stageslfl:"rufiles[l'emperatu

1 [ Delete Calculate [

There are no azeotropes or liquid-liquid regions at this pressure, as predicted by the NRTL Property Package (using
our new interaction parameters).

The first column (extractive distillation) has two feeds to it, the process feed (50% Toluene, 50% n-Heptane on a molar
basis), and the recycle stream from the second column. There is no decanter or sidestream.

The Configuration/Summary page will appear as follows:
= Ternary Distillation

Number of Feeds O Top Yapour O Distillate Distillate Decanter Type ~

O Single @ Double @ MNone O Sa
Sidestream Type ——
Q (® None
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Note that we have entered the specifications for the process feed stream (Lower Feed). The molar flow of the process

feed stream is 400 Ibmole/hr. For the remaining streams, we will enter the specifications on the Spec Entry page.

Before entering the specifications, set the Reflux Ratio to be 5. Later, we will do a sensitivity analysis in order to

estimate an optimum Reflux Ratio.

We know that the upper feed is primarily phenol. As an initial estimate, we will use the following specifications:

~ Stream Specifications

LIFeed kin. LIFeed LIFeed hax.
7 1.0000e-0k 1.0000e-0k 1.0000e-0R
Toluene 0.0010 0.00ma 0.001a
Fhenol 0.99490 0.59490 0.89990
Upper Feed Quality [1.0000
Upper Feed / Lower Feed ratio 27500
@ Upper Feed O Distillate
O Lower Feed O Bottoms

We have specified the C7 and Phenol mole fractions to be 1E-06 and 0.9990 respectively. With an Upper Feed/Lower

Feed ratio of 2.75, the Upper Feed flowrate is 1100 Ibmole/hr. Note that at this point, we do not know if this is the

optimum Upper Feed/Lower Feed ratio.

Next, specify a Distillate C7 mole fraction of 0.990. This restricts our range of choice for the remaining specifications.

Select the Bottoms radio button. You will see the following:
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~ Stream Specifications

Bott. Min. Bottoms Bott. ke
7 0.00a0 01333
Tolugne 0.1341 015449
Fhenol 07326 0.846A

@ Upper Feed ) Distillate
O Lower Feed @ Bottoms

It would be advantageous to maximize the phenol in the bottoms stream. Set the Phenol fraction to be 0.846. This
constrains the C7 mole fraction from 0 to 0.0007. Specify the C7 fraction to be 0.0006. The remaining mole fractions
will be calculated based on the overall mole balance. At this point, all that is left is to specify a reflux ratio. As an initial
estimate, set the reflux ratio to be 5.

Select the Calculate button. You will see the following message:

—| HYCON (1.0)

® Specify omega for middle profile in double feed distillation column

The optimum value for Omega (that which results in the lowest number of total stages) is automatically calculated; if
you simply press the Calculate button again, the number of stages will be determined using this optimum value.
Alternatively, you could set Omega to any value you wanted on the 2 Feed Omega page. We will always use the
optimum value in this example.

After you select the Calculate button, move to the Flows / Stages page:
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= Ternary Distillation
Distillate Flow Toluene
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1298.8 Male Fractio

| — Phenol

[=T 1 =] \Setupl((:unfiguratiun ! SummaryKSpec Entry)FIDws ¢ Stagea[E Feed DmegaKF"rD
Delete [

The total number of stages is excessively high. We could specify a lower heptane fraction in the bottoms — if we
define it to be 0.0001 for instance, 29 stages are required. As well, if we respecify the bottoms composition so that the
phenol fraction is lower, we will require less stages in this column.

Because we want to take relatively pure toluene off the top of the second column and relatively pure phenol off the
bottom, the heptane fraction in the bottoms coming off the first column must be small. Note that as we decrease the
phenol composition, we must increase the C7 composition. Also, below a certain point (phenol composition » 0.836),
the column profiles will not converge.

If we were to specify the heptane and phenol compositions to be 0.0065 and 0.84 respectively, 20 stages would be
required to achieve these bottom compositions.

Note that most of the toluene and heptane in the bottoms stream will exit in the distillate stream of the second column.
The toluene composition would be (1 - 0.84 - 0.0065) = 0.1535, and the toluene to heptane ratio about 24, which
means that if most of the toluene and heptane were to exit in the distillate stream of the second column, the best purity
we could obtain would be about 0.96. This is not adequate; therefore, the heptane composition must be even lower.

Specify the heptane and phenol compositions to be 0.0015 and 0.844. The Heptane to Toluene ratio is now 103, which
should allow the Toluene fraction off the top of the second tower to be about 0.99.

The results are shown here;
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We will now create a new ternary distillation experiment, transferring the bottoms specifications for the first column to

the feed for the second column.

Second Column

As before, set the pressure to 18 psia, and select the appropriate Fluid Package. Leave the settings on the
Configuration/Settings page at their defaults (Single Feed, No Decanter, No Sidestream).

\The Reflux Ratio for the second column will initially be set at 5.

The Feed specifications, taken from the bottoms stream off the first column, are shown here:

~ Stream Specifications
Feed Min. Feed Feed hax.
7 0.0015 0.0015 0.0015
Toluene 0.1545 0.1545 0.1545
Fhenol 0.5440 0.5440 0.8440
Feed Quality |1.0000
R () Distillate
Feed
®Feed ) Bottoms

At this point, it may take some experimentation to see what stream specifications will result in a converged column.
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~ Stream Specifications
Dist. kin. Distillate Dist. ke,
7 0.0101 0.0101 0.0101
Toluene 0.9300 0.8800 0.8800
Fhenal 0.00499 0.00499 0.0093
®Distillate:
F d NN
O ee O Bottoms
~ Stream Specifications
Bott. kMin. Bottorns Bott, ha
7 1.0000e-0k 1.0000e-06 1.0000e-06
Toluene 0.0100 0.0100 0.0100
Fhenol 0.9900 0.5900 0.9900
() Distillate
Feed i _
O Fee @®Bottoms

Note that we should be able to obtain a higher toluene purity. As well, the phenol composition off the bottoms had to be
adjusted to 0.99 (initially we had set the phenol composition in the recycle to 0.999).

At this step, 6 stages are required for the second column (where the sixth “stage” is the reboiler); the feed enters on

the fourth stage.

At this point, we must return to the first column, using the new recycle stream specs. In other words, we must use the
Bottoms specifications obtained here for the Top Feed of the first column.

First Column: Second Pass

The recycle stream flow (upper feed) is now 1106.3, which gives us a feed ratio of 2.766. If we keep the recycle
compositions as they are, the minimum number of stages required to obtain a heptane composition of 0.99 in the

distillate is high (about 29). Thus we will have to increase the phenol composition to compensate.

We now have the following composition specifications:

|Component \Mixed Feed \Solvent Feed \Distillate \Bottoms
ic7 05000  |le-6 099  [0.0015
Toluene ~ 0.5000 00050 0.0055 |0.1565
IPhenol  [0.0000  |0.9950 0.0045 |0.8420

Component fractions in boldface are specified; all other component fractions are calculated. The Flows/Stages page is
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shown below:
= Ternary Distillation
5.0000
Distillate Flow Toluene
200.09 e
0.8
i n=0 0.2
Upper Feed Flow - 5 0.7
1106.3 Reflux Ratio 0000 Pl
=l 3 sos]f
L o4
21 =
m- = 03]
400.00 02
Reboil Ratio |0.9188 o1 .
Lower Feed Flow - .
| 0.0 - -
25 Bottoms Flow 0001 02 03 0405 061
13063 Maole Fractio
| — FPhenal
[=T 1 =] \Setupl((:unfiguratiun ! SummaryKSpec Entry)FIDws ¢ Stagest Feed DmegaKPrD
I | Delete | Calculate [

Second Column: Second Pass

At this point, the solvent feed stream to the first column has the same composition as the bottoms stream of the second
column, and the feed to the second column has the same composition as the bottoms stream of the first column. The

specifications are shown below:

|Component \Feed \Distillate \Bottoms

c7 0.0015/0.0097 [1e-6

Toluene  0.1565(0.9900  |0.0050

Phenol  (0.8420(0.0003  (0.9950

The Flows/Stages page is shown below:
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Note that the flows between the columns do not match precisely, but this is acceptable considering that this is a
preliminary approximation. As well, there are inherent simplifications, such as the assumption of constant molal
overflow. Thus, the results obtained here will not exactly match those determined in HYSYS.SteadyState. Using these
results as a base case, the reflux ratio and product purities are now adjusted in order to determine an optimum

configuration.

Effect of Reflux Ratio, Reboil Ratio and Purities

We will adjust the Reflux Ratio and Purities, observing their effect on other column variables such as the Reboil Ratio
and the Number of Stages. Two configurations will be proposed, one which has lower purities (0.985/0.985), and one
with higher purities (0.99/0.99), at the expense of a higher number of stages and/or higher Reflux/Reboil ratios.

Higher purities (0.99

The Base Case constants and variables are tabulated below:

10.99)
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|Constant

|Recycle Composition

|1e-6 Toluene / 0.005 Heptane/ 0.995 Phenol

|Lower Feed Composition

|0.5 Toluene / 0.5 Heptane / 0 Phenol

|Variab|e

|Ref|ux Ratio, Column 1 |5
|Reboi| Ratio, Column 1 |0.9188
|Upper Feed Stage, Column 1 |13
|Lower Feed Stage, Column 1 |21
|Number of Stages, Column 1 |25

29of 90

|Heptane Fraction, Column 1 Distillate |0.99

|Ref|ux Ratio, Column 2 |5
Reboil Ratio, Column 2 11.0906
|Feed Stage, Column 2 |8
|Number of Stages, Column 2 |10

|To|uene Fraction, Column 2 Distillate |0.99

Reflux Ratio (Reboil Ratio) Column 1

Keeping other variables constant, the reflux ratio is adjusted. As shown in the table below, increasing the reflux ratio
above 5 gives no improvement in the number of stages required for the separation. Decreasing the reflux ratio below
five causes the number of stages to increase. We therefore conclude that a reflux ratio of 5 is optimum for the first

column.

RefluxRato 3 |4 5 |10 |20
|Upper Feed Stage |18 |15 |13 |11 |10
|Lower Feed Stage |26 |24 |21 |20 |20
|Number of Stages |30 |28 |25 |24 |25
IReboil Ratio 10.6126 (0.7657 |0.9188 1.6846 |3.2160

Heptane Fraction Column 1

As we increase the Heptane fraction in the distillate, the number of stages also increases. Although we would like a
high purity, the number of stages increases substantially as we increase the Heptane Fraction above 0.990. At a
Heptane fraction of 0.994, the number of stages is 58 which is much too high to be viable. We will go with a Heptane

fraction of 0.990, at the expense of some extra stages.

Heptane Fraction (0.985 |0.989 (0.990 [0.991 |0.992 (0.994

\Upper Feed Stage 7 |11 13 |16 |20 |46

|Lower Feed Stage |15 |19 |21 |24 |28 |54

|NumberofStages |19 |24 |25 |28 |32 |58

|Ref|ux Ratio (spec.) |5 |5 |5 |5 |5 |5

IReboil Ratio 10.9242 (0.9199 0.91880.9178 |0.9167 (0.9146
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Reflux Ratio (Reboil Ratio) Column 2

The number of stages in the second column is only somewhat sensitive to the reflux ratio, as shown below. A reflux
ratio of 5 is selected as the optimum. Decreasing the ratio to 4 is done at a cost of two extra stages, while increasing
the ratio to 10 reduces the number of stages by one.

RefluxRatio |4 5 |10 |20

|Feed Stage \10 \8 \8 |8
|Number of Stages \12 \10 \9 |9
IReboil Ratio 10.9088 [1.0906 1.9994 3.8171

Toluene Fraction Column 1

With this configuration, we cannot predict toluene fractions above 0.99. We will keep the toluene fraction of 0.990, even
though more stages are required.

Toluene Fraction |0.985 [0.989 (0.990
|Feed Stage \6 \7 \8
|Number of Stages \8 \9 \10
|Ref|ux Ratio (spec.) \5 \5 \5
IReboil Ratio 11.0972 [1.0919 1.0906

Upper/Lower Feed Ratio

Finally, the Upper/Lower Feed ratio was varied, and the effect on the number of stages in the first column observed:

UIL Ratio 2 [25[27[3 4
|Upper Feed Stage E E E m m
|Lower Feed Stage @ E E % %
|Number of Stages @%E@@

It appears that the U/L ratio that we used, 2.7, is reasonable in this case. Any increase in the ratio does not decrease
the number of stages significantly.

Results Using Optimized Values

These are the specs for the first (high purity) column configuration:
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|Reflux Ratio, Column 1 \5
|Reboi| Ratio, Column 1 \0.9188
|Upper Feed Stage, Column 1 \13
|Lower Feed Stage, Column 1 \21
|Number of Stages, Column 1 \25
|Heptane Fraction, Column 1 Distillate \0.99
|Reflux Ratio, Column 2 \5
IReboil Ratio, Column 2 11.0906
|Feed Stage, Column 2 \8
|Number of Stages, Column 2 \10

|T0Iuene Fraction, Column 2 Distillate \0.99

http://www.hyprotech.com/support/examples/extract/extract.htm

The temperature and liquid composition profiles for the first column are displayed below. Note that there are feed

streams at stages 13 and 21.
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The temperature and liquid/vapour composition profiles for the second column are shown below:
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Lower purities (0.985 / 0.985)

With lower purities, we require a smaller phenol fraction in the Recycle (0.993); as well, we have set the upper/lower
feed ratio to 2.75. As with the high purity case, we will start with a Reflux Ratio of 5 for both columns.

The Base Case constants and variables are tabulated below:

|Constant

|Recycle Composition

\1e-6 Toluene /0.007 Heptane/ 0.993 Phenol

|Lower Feed Composition

\0.5 Toluene / 0.5 Heptane / 0 Phenol
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|Variab|e

|Ref|ux Ratio, Column 1 \5
|Reboi| Ratio, Column 1 \0.9231
|Upper Feed Stage, Column 1 \7
|Lower Feed Stage, Column 1 \17
|Number of Stages, Column 1 \20
|Heptane Fraction, Column 1 Distillate \0.985
|Ref|ux Ratio, Column 2 \5
IReboil Ratio, Column 2 111015
|Feed Stage, Column 2 \8
|Number of Stages, Column 2 \10

|To|uene Fraction, Column 2 Distillate \0.985

We will optimize only the reflux ratios, leaving the purities at 0.985 for both columns.
Reflux Ratio (Reboil Ratio) Column 1

As before, we adjust the reflux ratio, and observe the effect on the number of stages. When we increase the reflux ratio
above 5, there is no improvement in the number of stages required for the separation. Decreasing the reflux ratio below
five causes the number of stages to increase. We therefore conclude that a reflux ratio of 5 is optimum for the first
column.

RefluxRato |4 |5 |10 |20
|Upper Feed Stage \8 \7 \7 |6
|Lower Feed Stage \19 \17 \17 |19
|Number of Stages \23 \20 \21 |20
IReboil Ratio 10.76930.9231 [1.6924 3.2310

Reflux Ratio (Reboil Ratio) Column 2

The number of stages in the second column is only somewhat sensitive to the reflux ratio, as shown below. A reflux
ratio of 4 is selected as the optimum.

|Reflux Ratio ﬁiﬁ%%
|Feed Stage E @ @ V @
|Number of Stages Emmﬁﬁ

Results Using Optimized Values

These are the specs for the second (lower purity) column configuration:
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|Reflux Ratio, Column 1 \5
|Reboi| Ratio, Column 1 \0.9231
|Upper Feed Stage, Column 1 \7
|Lower Feed Stage, Column 1 \17
|Number of Stages, Column 1 \20
|Heptane Fraction, Column 1 Distillate \0.985
|Ref|ux Ratio, Column 2 \4
|Reboi| Ratio, Column 2 \0.9187
|Feed Stage, Column 2 \8
|Number of Stages, Column 2 \10

|TOIuene Fraction,

Column 2 Distillate \0.985

The Stage Liquid Compositions are shown here for the first column:
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Also, the Liquid composition profiles for the second column are shown:
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C-6.5

PART 3 Building the Columns in HYSYS

In this section, we will construct the columns in HYSYS.SteadyState, and obtain a steady-state solution for both
column configurations.
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Note that the interaction parameters for the NRTL package can be exported from HYSYS - Conceptual Design to

HYSYS.SteadyStateor HYSIM using the Export to HYSIM button in the HYSYS - Conceptual Design Fluid
Package.

Define the Fluid Package as follows:

* Property Package — NRTL
* Components — n-Heptane, Toluene, Phenol

In HYSYS.SteadyState, the ¢ term is the alpha term.

In HYSYS - Conceptual De-sign, the b term is the alpha term.

Change the Interaction Parameters to match the regressed parameters obtained in Part 1 (or copy the .dat and .idx
files which you created in HYSYS - Conceptual Design to the Support directory).

rActivity Model Interaction Parameters
Coeff Matrix To View: CHAT  Bij > Alphaij  Cij
n-Heptane Toluene Fhenal
n-Heptane — 425193 1328.000
[Toluenea -160.034 — -188.100
Fhenol 1539.000 824,200 —
Activity Model Interaction Parameters
Coeff Matrix To View: O Alj < Bij ® Alphaij / Cii;
n-Heptane Toluene Fhenaol
n-Heptane — 0.302 0.508
[Toluene 0,302 — 0.010
Fhenol 0.508 0.010 —
\We require the phenol stream to “make up” for phenol lost in the toluene and heptane product streams.

In the Main Environment WorkSheet, specify the Feed and phenol makeup streams as follows:
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|Name |Feed |pheno| makeup
\Vapour Frac 0.0000 00000
Temperature [F] 220.0000  [220.0000
|Pressure [psia] 20.0000  [20.0000
|MOIar Flow [lomole/hr] |400.0000 |1.2000
IMass Flow [Ib/hr] 138469.1605 (94.1128

|Liq Vol Flow [barreliday] ~ [3448.3151 [6.1028
Heat Flow [Btu/hr] -1.5788e+07 |-60190.9080
|Comp Mole Frac [n-Heptane] |0.5000 |0.0000
|Comp Mole Frac [Toluene] [0.5000  |0.0000
|Comp Mole Frac [Phenol] |0.0000 |1.0000

High Purity Configuration

In HYSYS - Conceptual Design, the number of trays includes the reboiler. In HYSYS.SteadyState, the number of
trays does not include the reboiler. Therefore the number of trays in each column are 24 and 9, not 25 and 10, as
predicted in part 2. The Feed locations remain the same.

In the SubFlowsheet, add the Tray Sections, Reboilers and Condensers for the high purity setup:
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TRAY SECTION  [TS-1
(CONNECTIONS
24
Number of Trays |Feed (21)
Feeds (Stage) Solvent (13)
Liquid Inlet Phenol Makeup (13)
Vapour Inlet Reflux-1
Liquid Outlet Boilup-1
Vapour Outlet To Reboiler 1
To Condenser-1
IPARAMETERS

'TRAY SECTION  [TS-2
|CONNECTIONS

Number of Trays |9

Feeds (Stage) COL1 Bottoms (8)
Liquid Inlet Reflux-2

Vapour Inlet Boilup-2

Liquid Outlet To Reboiler-2
Vapour Outlet To Condenser-2
IPARAMETERS

|Tray Section Type |Standard

|Tray Section Type |Standard

'TOTAL CONDENSER |Condenser-1

'TOTAL CONDENSER |Condenser-2

(CONNECTIONS |CONNECTIONS

Feed To Condenser-1 | Feed To Condenser-2
Distillate Heptane Distillate Toluene
Reflux Reflux-1 Reflux Reflux-2
Energy COL1 Cond Q Energy COL2 Cond Q
IPARAMETERS IPARAMETERS

|Pressure Drop |0 psi |Pressure Drop |0 psi
IREBOILER Reboiler-1 \REBOILER Reboiler-2
(CONNECTIONS |CONNECTIONS

Feed To Reboiler-1 Feed To Reboiler-2
Boilup Boilup-1 Boilup Boilup-2

Bottoms Product |COL1 Bottoms Bottoms Product Solvent

Energy COL1RebQ Energy COL2Reb Q
IPARAMETERS IPARAMETERS

|Pressure Drop |0 psi |Pressure Drop |0 psi

The PFD will appear as follows:
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Yapour-1
Condenser-1
To Condenser
Condenser1 Duty
Reflux-1 Condenser-2
—— L Heptane To Condenser-2
B
1 Reflux-2
2
—————3m
Phennl 3
Makeup Sokvent
. |
5
6 | 132
ﬁ-_}-
Feed 7
Reb-1 Duty » 8
i
9
Boilup-2
Boilup-1
To Reboiler-1 Rabgiler-1 Col-1 Bottoms To Rebailer-2

Return to the Main Flowsheet, bring up the Column view, and enter the following specifications:

Pressures

Condenser-2 — 16 psia
Reboiler-2 — 20 psia
Condenser-1 — 16 psia
Reboiler-1 — 20 psia

Temperature Estimates

* Temperature Estimate Condenser-1 — 220 F
* Temperature Estimate Condenser-2 — 240 F

Solving the Column

Next, we will add the specifications.
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=| Column Specifications - T-100 [COL1]

_ Column Specification Types

Draw Rate
Component Fractions
Component Flow Rate
Component Ratio
Component Recowvery
Fump Around Specs
Tray Temperature
Tray NetWapour Flow Add Spec(s)...
Tray Net Liguid Flow
Draw Recovery

Duty

Duty Ratio

Feed Ratio

Cut Paint

Gap Cut Foint

Cold Propetty Specs
Fhysical Fropery Specs
Transport Property Specs
“apour Fressure Specs
Boil Up Ratio

=| Reflux Ratio Spec: Reflux Ratid -~ |
| | 2

M arme R eflux B atio
Stage Condenger-1
Flow B asziz kd alar
Spec Value 5.00

| Liht E

"\ Parameters -M

We want to solve to the following specifications:

Reflux Ratio = 5 (Reflux Ratio-1, Condenser-1, Molar, 5)

Reflux Ratio2 = 5 (Reflux Ratio-2, Condenser-2, Molar, 5)

Heptane Frac = 0.99 (Heptane Frac, Condenser-1, Mole Fraction, Liquid, 0.99, Heptane)
Toluene Frac = 0.99 (Toluene Frac, Condenser-2, Mole Fraction, Liquid, 0.99, Toluene)

It may not be possible to immediately solve to these specifications. There are several alternative methods you can use
to obtain a solution; the following two methods may work:
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1. Add the following Flow Spec:
* Toluene Flow =200 Ibmole/hr (Toluene Flow, Toluene, Molar, 200 lbmole/hr)

Activate the Reflux Ratio specs, the Toluene Frac spec and the Toluene Flow spec. Run the column. Once it solves,
replace the Toluene Flow spec with the Heptane Frac spec. Re-run the column (do not reset).

2. Add the following Toluene Recovery Spec:
* Toluene Recovery = 0.995 (Toluene Recovery, Toluene, Molar, 0.995)

Activate the Reflux Ratio specs, the Heptane Frac spec and the Toluene Recovery spec. Run the column. Once it
solves, replace the Toluene Recovery spec with the Toluene Frac spec. Re-run the column.

Whether a certain set of specifications will solve depends in part on the solution history, even if you have Reset the
solution.

You may have to “approach” a spec by choosing a conservative value for the specification, then successively
approaching the actual specification. Run (but do not Reset) the column after each change.

In any case, once you have converged, you will see a view similar to the following:
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= Column: T-100 [COL1] ME
| | 0
—Optional Checks —Profile
N - E 200 e
| Input Summany I | Yiew Initial Estimates._.. I o Temp 30 F,.
0.0
[ter Step E quilibrivrn Heat/Spec B © Press . ra I'[ f(
17 | 1.0000 0.000001 0.000164 O Flows 300 i =
18 | 1.0000 0.000000 0.000130 || pna —-
13 | 1.0000 0.000000 0.000032 zonn —
20| 1.0000 0.000000 0.000032 ||+ oo EoEmeEem W
—Specifications
Specified Y alue Current W alle W't Errar Active | |z Estimate
Fieflux Fatio 1 5.000 5.00 0.0000
Feflux Fatio 2 5.000 5.00 0.0000
Heptane Fraction 0.5300 0.930 0.0000
Taluene Fraction 0.9300 0.930 0.0000
Heptane Rate 2000 lbraalehr 200. 0.0003 [ ]
Taluene R ate 200.0 Ibrnaleshr 201. 0.0051 [ ]
Solvent Rate 750.0 Ibrialeshr 2. 20e+03 19380 [ [
Heptane Recovery 1.9550 0.991 -0.00:1 [ ]
Toluene Recovery 1.3550 1.395 0.0000 [ ]
apour-1 (0.0000 lbrmoledhr 1.51e-20 0.0000
apour-2 (0.0000 lbrmoleshr 1.53e-20 0.0000
| Yiew. I | Group Active I | Update Inactive I Degrees of Freedom EI
%, Monitor /Specs J(Params _‘(Pressures _‘(Est _.( Eff ,.(Summar_l,l _‘(Wurk Sheet _.(F'ru:ufiles _‘(Siders _‘( Connections _/’;";
| Parent Environment. _. I { i | Reszet I | Converged |
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Note the similarities in the temperature profile shown here with the profiles obtained using HYSYS - Conceptual

Design.

We obtain the following Condenser and Reboiler duties:

Column 1 Condenser — 1.64e+07 Btu/hr
Column 2 Condenser — 1.72e+07 Btu/hr
Column 1 Reboiler — 1.32e+07 Btu/hr
Column 2 Reboiler — 2.04e+07 Btu/hr

Note that we can further increase the distillate compositions to 0.994 and 0.993 (Toluene and Heptane, respectively).
This is an improvement over the specifications estimated using HYSYS - Conceptual Design.

At this point, you may want to save the first configuration in a separate file.

Low Purity Configuration

Rather than reinstalling the Tray Sections, Reboilers and Condensers, simply adjust the number of stages and feed

locations as follows:

T5-1

Name |T5-1

B
| +|

Liguid Inlet

R eflux-1

| 2]

Yapour Inlet

B oilup-1

| 2]

| Yapour Outlet

|T|:| Condenser | E

Mumber of Theo.
|1El | |Eustumize... I

.

Liguid Outlet

[To Reboier | [2]

—
Optional Feeds
Phenaol Makeup 7 T51 |+
Feed 17_T5-1 ||
Solvent 7 151 1%

% Connections § Parameters KPressures KSide Diraws _,émiu:s ||'II||='II

Cloze
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=| T5-2 [
| 2]
Name |T5-2 |
-
Liguid Inlet 4, | Yapour Qutlet
Reflux-2 | |T|:| Condenger-2 | E
Mumber of Theo.
|5 | | Customize. .. I
Yapour Inlet Liguid Outlet
Boilup-2 | [2] »f | [ToReboierz | [2]
——
Optional Feeds
Col1 Bottomsz 8 _T5-2
< Attach Feed »

% Connections § Parameters _‘(Pressures _‘(Side Diravs _,émiu:s i'";

Ensure that you are in the Main Flowsheet, then bring up the column view. The pressures and temperature estimates
will be defined as before:

Pressures

Condenser-2 — 16 psia
Reboiler-2 — 20 psia
Condenser-1 — 16 psia
Reboiler-1 — 20 psia

Temperature Estimates

* Temperature Estimate Condenser-1 — 220 F
* Temperature Estimate Condenser-2 — 240 F

The types of specifications are the same as before; therefore it is not necessary to add new specs. Simply change
the Heptane and Toluene Fracs to 0.985.

Solving the Column

We want to solve to the following specifications:

Reflux Ratio = 5 (Reflux Ratio-1, Condenser-1, Molar, 5)

Reflux Ratio2 = 5 (Reflux Ratio-2, Condenser-2, Molar, 5)

Heptane Frac = 0.985 (Heptane Frac, Condenser-1, Mole Fraction, Liquid, 0.985, Heptane)
Toluene Frac = 0.985 (Toluene Frac, Condenser-2, Mole Fraction, Liquid, 0.985, Toluene)

In this case, it is not possible to meet the specifications predicted by HYSYS - Conceptual Design. The following
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configurations for the low purity case are possible:

* Heptane Fraction 0.985

* Toluene Fraction 0.985

e Reflux Ratio Column 1=12
e Reflux Ratio Column2=4

or

* Heptane Fraction = 0.970
* Toluene Fraction = 0.985
e Reflux Ratio Column1=5
e Reflux Ratio Column2=4

The first configuration maintains the purity specs, while the second maintains the reflux ratio specs. The first
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configuration is more desirable despite the high Reflux Ratio; the solved column using these specifications appears as

follows:

Column: T-100 [COL1)

.
|vIA

| 3]

—Optional Checks —Profile
= e - 0.0
| Input Summarny I | Yiew Initial Estimates. .. I @ Temp 300 };
200
[ter Step E quilibriumm Heat'Spec |+ © Press A ul
53 [ 1.0000 0.000000 0.000076 < Flows 700 e
B0 | 1.0000 0.000000 Q.00006S || i —— -
B1 | 1.0000 0.000000 0.000056 0.0
62 | 1.0000 0.000000 0.000048 ||+ e
—Specifications
Specified Y alue Current W alue it Errar Active | |z Estimate
Fieflus Fatio 1 12.00 12.0 0.0000
Feflux Fatio 2 5.000 5,00 0.0000
Heptane Fraction 0.39350 0.935 0.0000
Toluehe Fraction (1.9850 0.935 -0.0001
Heptane Rate 202.0 Ibraale/hr 200. -0.0100 []
Toluene Rate 200.0 lbrolehr 201. 0.0081 []
S olvent A ate a70.0 lbrnole/hr aa1. n.023 []
Heptane Recovearny (1.9950 0.935 -0.0051 []
Toluene Recovery 0.09950 0.9591 0.4478 [ ]
apour-1 0.0000 Ibrolehr 7.86e-20 0.0000
apour-2 (1.0000 lbrmalehr 1.53e-20 0.0000 4]
rd Lemplys 3. 24e+07 <emphy
| Yiew. I | Group Active I | Update Inactive I Deagrees of Freedom EI

| Parent Environment. _. I

Beszet I |

%, Monitor /Specs _‘(Params _.(P'ressures _.(Est _‘( Eff _‘(Summar}l _‘(Wurk Sheet _‘(F'n:ufiles _,{Sidelilps i'";;;

Converged

)
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Although less stages are required for this configuration, the Condenser and Reboiler duties are much higher, and it
is unlikely that the reduced capital cost will compensate for the increased utility cost. This will be confirmed in the
next section.

We obtain the following Condenser and Reboiler duties:

Column 1 Condenser — 3.54e+07 Btu/hr
Column 2 Condenser — 1.72e+07 Btu/hr
Column 1 Reboiler — 3.34e+07 Btu/hr
Column 2 Reboiler — 1.92e+07 Btu/hr

C-6.6 Optimization

PART 4 Economics: Background

A Spreadsheet will now be set up in HYSYS.SteadyState to calculate the economics of the process. The methods
used here to calculate capital costs, expenses and revenue are relatively simple, but are sufficient to provide a
preliminary estimate. The benefit of these methods is that they are easy to implement, and as they are formula-based,
can be used in the optimization calculations.

This section is divided into the following parts:

* Raw Data — Data which is used in the calculation of capital costs, expenses, revenue and net present worth.

* Capital Cost — Initial equipment and related costs associated with the construction of the process, incurred at
time zero.

* Annual Expenses — Expenses associated with the operation of the plant, incurred at the end of each year.

* Revenue — Income obtained from the sale of the process products, namely Toluene and Heptane; incurred at
the end of each year.

¢ Net Present Worth — Economic calculation taking into account the Capital Cost and Gross Income, used to
obtain the net present worth.

* Nomenclature and Constants — A list of the nomenclature and constants used in the various expressions in
this section.

Raw Data

Some of the Economic, Material and Utility costs that are used in this simulation are shown below:

|Economic
|Cost Index 1996 to 1990 |1.07
|Tax Rate \28%

|Interest minus Inflation \7%
|Working Days/Year \300
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|Raw Material, Product and Utility Costs
|To|uene ($/gal) \0.76
|Heptane ($ /gal) \0.74
|Feedstock ($/gal) \0.58
IPhenol ($/1b) 0.41
|Water ($/1000 gal) \0.25
|Natura| Gas ($/1E6 Btu) \3.20
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In addition to these, the following variables are required from the Steady-State solution, and will be imported into the

Spreadsheet.

|First Condenser Duty

\Second Condenser Duty

\First Reboiler Duty

|Second Reboiler Duty

\Phenol Mass Flow

\Toluene Mass Flow

|Heptane Mass Flow

\Feed Flow

\TS 1 Liquid Mass Flow

|TS 2 Liquid Mass Flow

\Feed Standard Density

\Toluene Standard Density

|Heptane Standard Density \Number of Trays, Column 1 \Number of Trays, Column 2

Capital Cost

A percentage of delivered-equipment cost method is used to determine the total capital investment. That is, the

equipment (column tray sections, reboilers and condensers) are sized and priced; all additional costs, such as piping,
construction and so on are calculated as a percentage of the equipment cost.

Equipment Cost

|Equipment \Cost \Reference
EIC‘Q‘!’EI
i 1275 = <+ 9300
First Column Condenser T 1-373
gﬁ'ﬂ‘fﬂ
1275 = s+ 9300
Second Column Condenser T 1-373
£
First Column Reboiler 19.5 % o + 15000 1-373
i EIRES
Second Column Reboiler 192 % g +13000 1-373
exp(0.958 wIn(D_ =13 )+ 444 )= W
First Column Tray Section 1-712
= [ Frmen TUTTI0]
TRAT | VT Ea
exp(0058 win(D =12+ 444 e N
Second Column Tray Section 1-712
n I P gy W w1
TRAT2 ] B = l,‘-l:?

All expressions here are derived from a graph or table. The Reboiler and Condenser expressions are regressed
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linearly, while the Tray Section expression assumes a linear relationship on a log-log scale.

The sum of the costs of these six items is the Equipment cost (based on 1990 prices).

Direct and Indirect Costs

The costs of each item below is estimated as the Equipment cost multiplied by the respective Factor for that item.

Direct costs include Installation, Instrumentation, Piping, Electrical, New Building, Yard, Service and Land. Indirect
costs include Engineering /Supervision and Construction.

|Item \Factor \Reference
lInstallation 040 [1(171)

1(172);
Instrumentation 0.18

1(183)
|Piping 060 |1(173)
[Electrical 010 [1(174)
INew Building 020 [1(175)
|Yard 010 [1(182)
|Service \0.70 \1(182)
|Land 006 |1(182)
|Engineering I Supervision \0.33 \1 (182)
|Construction \0.30 \1(182)

Contracting and Contingency

These are applied based on the Equipment, Direct and Indirect Costs. Contracting is estimated to be 5% of the sum of
all Equipment, Direct and Indirect Costs, and Contingency (unforeseen events) is estimated as 10% of the sum of
these costs.

|Item \Factor \Reference
|Contracting \0.05 \1 (182)
|Contingency \0.10 \1 (182)

The total Fixed Capital Investment (FCI) is the sum of all Equipment, Direct, Indirect, Contracting and Contingency
costs, multiplied by the cost index factor of 1.07.

Working Capital
The working capital is estimated to be 15% of the Fixed Capital Investment.
Annual Expenses

The following table lists the expenses which are considered in the economic analysis of this plant.
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|Expense Annual Cost |Reference
1(197);
Cost of Phenol Fpg = Cpg =238
1(816)
Fpulpxla8l=24= N
Cost of Feedstock F AT 1(197)
Frop= M
Labour* exp[uzm x ln[[ e ] + 2344]] x Iooyr* N 1(198)
|Supervision and Clerical |Labour Cost x 15% |1 (202)
|Maintenance and Repairs |FCI X 6% |1 (203)
|Operating Supplies |Maintenance X 15% |1 (204)
|Lab Charges |Labour Cost x 15% |1 (204)
%245 N = 481 %
Condenser 1 Cooling Cranny 5o 1(815
Water 0 %624 ¥ 1000% Cp 2 (815)
. 2w W oY w0
Condenser 2 Cooling CoanD, XA C g0 1(815
Water 70 %624 % 1000% 2 (815)
QRE‘&[ w2 w M ox CGJ'LS’
Reboiler 1 Natural Gas T 1(815)
QREBz ® 24w N o= CGAS'
Reboiler 2 Natural Gas ¥ 1(815)
|Depreciation |FCI x 10% |1 (205)
|Loca| Taxes |FCI X 2% |1 (205)
|Insurance |FCI x 1% |1 (205)
Labour Cost + Supervision and Clerical Cost + Maintenance and Repairs
Plant Overhead 1(205)
Cost) x 60%
|Administrative |Labour Cost x 20% |1 (206)
|Distribution |Gross Income x 4% |1 (207)
Research and Gross Income x 4% 1(207)
Development

* Linearly Regressed from Graph

The individual expenses are totalled, and multiplied by a cost index factor (1.07) to account for 1990 to 1996 inflation.

Revenue
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|Revenue \Annual Cost \Reference
CTC'I. w24 N =TARl = FTC'I. HAT
Toluene T5T0 1(816)

CHEP 24 XNX?.*‘-E].XFHEP XxH

Heptane 1(816)

AH ST

The total gross revenue is the sum of the amount obtained from selling the products, multiplied by the cost index factor
(1.07).

Calculation of Net Present Worth
The following points outline the simplified calculation for net present worth:

¢ The total capital investment is the Fixed Capital Investment plus the Working Capital. This expenditure is the
total cash flow for year zero.

* [tis assumed that the life of the process is five years. The revenue and expenses are applied at the end of each
year, from years one to five.

* The Annual Operating Income is the Annual Income minus the Annual Costs.

* The Income after tax is the Annual Operating Income multiplied by one minus the tax rate.

* The Annual Cash Income is the Income after tax plus the Depreciation Expense, which was earlier discounted
as an annual expense.

e |tis assumed that there is no salvage value; the Annual Cash Income is exactly the same for years one to five.

* The Net Present Worth of the Annual Cash Income is determined using the following formula:

L + ! +...+ ! ]x Annual neome

PW:[m iy

This expression simplifies to:

* The Total Net Present Worth is the total capital investment (negative cash flow) plus the Net Present Worth of
the Annual Cash Income.

Nomenclature and Constants used in Economic Analysis
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Nomenclature

e s7p = Standard Density of Feedstock (Ib/ft3)

Iy sp = Standard Density of Heptane (Ib/ft3)

"TsTD ™ Standard Density of Toluene (Ib/ft3)

Cp. = Cost of Feedstock ($/gal)

Cgag = Cost of natural gas ($/1E6 Btu)

Cyjp0 = Cost of water ($/1000 gal)

C,4ep = Cost of Heptane ($/gal)
Cpy, = Cost of Phenol ($/b)

CpHZO = Heat Capacity of water (1 Btu/lb F)

Crop = Cost of Toluene ($/gal)

D1rayy = Diameter of First Tray Section (ft)

D1ray, = Diameter of Second Tray Section (ft)
FeoL = Feed Flow (Ib/hr)

FP = Phenol Flow (Ib/hr)

FroL = Toluene Flow (Ib/hr)

TRAYL = = Liquid Mass Flowrate for First Tray Section, from Stage 20 (Ib/h)

F
F

TRAY2, = = Liquid Mass Flowrate for Second Tray Section, Stage 1 (lb/h)

|| = Annual rate of interest (in this case, interest minus inflation)

|N = Number of working days/yr

Nrpayq = Number of Trays in First Tray Section

Nyrayo = Number of Trays in Second Tray Section

In = Life of project (y)
Qconpy = Duty, Column 1 Condenser (Btu/hr)

Qconpg = Duty, Column 2 Condenser (Btu/hr)

Qgrepy = Duty, Column 1 Reboiler (Btu/hr)

Qgeg, = Duty, Column 2 Reboiler (Btu/hr)

= Mole Fraction of Heptane in Heptane Product

= Mole Fraction of Toluene in Toluene Product
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|Constant Used in Expression |Unit

|24 |hours/day

7481 gallft

2000 Ibiton

|0.219 |Constant in Labour Cost Expression
|2.844 |Constant in Labour Cost Expression
|70 |F (DT Cooling Water)

|62.4 |Ib/ft3 (Density of water)

11000 INo units (Cost = $/1000 gal)

|1E6 |No units (Cost = $/1E6 Btu)

|0.25 |No units (Portion of formula for area)
|1/6 ft (Height of weir - 2")

|1/120 |hr (Residence time on tray - 1/2 minute)

Setting up the Spreadsheet

Note that the Spreadsheet we are constructing contains some information which is not used in this example, but
which may be of generic use.

Note that the Spreadsheet we are constructing contains some information which is not used in this example, but
which may be of generic use.

If you want to use this Spreadsheet as a template for other processes, it is a good idea to set it up as a template file,
then insert it as subflowsheet in the appropriate case. These are the steps:

1. Create a new template and enter Fluid Package data.
2. Add a Spreadsheet and enter the following information:

Note that the Spreadsheet we are constructing contains some information which is not used in this example, but which
may be of generic use.

¢ Simulation Data

* Economic Data

» Capital Cost Data

* Expense and Revenue Data

» Capital Cost Calculation

* Expense and Revenue Calculation
* Net Present Worth Calculation

3. Save the template.
4. Retrieve the process case, and add a subflowsheet, using the previously created file as a template.

5. Import data links into Spreadsheet.

50 of 90 2/24/99 10:22 AM



Application Example

51 of 90

Creating a New Template

From the file menu, select New Template.

Tools Window Help

Case

Ctrl+N

Open

Save Ctrl+5
Save s, Ctrl+S5hift+5
Sawve All...

Close Case Ctrl+Z2
Close All...

Print
Print Snapshot
Printer Setup...

Exit Alt-F4

Column
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As with creating a Case, it is necessary to define a Fluid Package. Select NRTL with components n-Heptane, Toluene

and Phenol. Enter the Main Environment.

Adding the Spreadsheet

Simulation Data

Column A lists the headings, while column B will contain the data imported from the case file, or the appropriate
formula. When we load this template into the case, we will then import the appropriate variables into this Spreadsheet.

Enter the headings as shown below.
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A,

1 SIMULATION DATA,

c Condenser Duty

a3 Condenser & Duty

4 Feboiler Duty

5 Febaoiler & Duty

E COL1 Bottoms Flaw

i COLT Bot Density

0 sabvent Flow

4 soblvent Density

10 Fhenal Flow

11 Taoluene Flaw

12 Heptane Flow

13 # Trans COLI

14 # Trays COLZ

15 Feed Flow

1k Feed StdDensity <amphy
17 CCCALC

18 1 Duty Lemphy
14 2 Duty Lemphy
20 F1 Duty <amphy
21 FZ Duty <empty
e Tray Section 1D Lemphy
23 Tray Section 2D Lemphy
24

25 Flow T3 1

26 Flow TS5 2

The formulae for cells B16 - B23 (excluding B17) are:

B16 |+((b15*24)/(b17*5.615))/c17*h17

B18 [ +b2

B19 [ +b3

B20 |+b4

B21 [+b5

B22 |+((h25)/(5*3.1415*h7))".5

B23 |+((h26)/(5*3.1415*h16))".5
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Although the Feed Standard Density could also be imported in HYSYS.SteadyState, HYSYS - Dynamic Design does
not accept the import, and it is necessary to enter the formula as shown in cell B16.

Economic and Annual Data

The Economic, Annual Expense and Revenue Data is shown below:
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[ O E
1 ECOMOMIC DATA, DF COST DATA,
z Cost Index/1340 1.07 Fhenal ($/1i) 0.41
3 Tax Rate 0.28 Feedstock ($/0al) 0.58
4 Interest-Inflation 0.07 Awe. Labor ($/hr) 20
5 Working Dayws'ear 300 | Sup/Cl-% of Op Lab 15
b hdaint - %5 of FCI B
7 FI<ED CHARGES Supplies - % of Maint 15
3 Dep (% of FCI 10 Lab - % of Op Lak 15
3 Local Tax (% of FCN 2| H20 (%1000 gal) 0.25
10 Insurance (> of FCI) 1 Gas ($/1e6 Bt 3.2
11
12 FLANT O%HD GEMERAL DATA,
13 % of Labaor & hain. 1] Admin (% Op Lak) el
14 Distribution (> G Inc) 4
15 Toluene ($/gal) 0.76 | R&D (% of Gross Inc) 4
16 Heptane ($/gal) 0.74
17

Enter all data exactly as shown. There are no formulae on this page.

Capital Cost Data

G H
1 CAP COST DATA,
¢ Install Factor 0.4
3 Instrument. Factor 0.18
4 Fiping Factor 0.k
b Electrical Factar 0.1
b Mew Building Factar 0.z
i “'ard Factor 0.1
i service Factor n.7?
4 Land Factor 0.06
10 Eng/Sup Factor 0.33
11 Canstruction Factar 0.3
12 Contracting Factaor 0.05
13 Contingency Factar 0.1
14 Work Cap (24 of FCI) 15
15
16 Taluene Density
17 Heptane Density
14 Toluene StdDensity Lemphy
19 Heptane StdDensity Lemphy

The Capital Cost Data is set up in columns G and H. There is also some additional Simulation Data in this area (H16 -
H19). The Toluene Density and Heptane Density will be imported into cells H16 and H17, respectively. Although the
Standard Densities could also be imported in HYSYS.SteadyState, HYSYS - Dynamic Design does not accept the
import, and we must use the following formulae:
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H18 |+((b11*24)/(h16*5.615))/i6*h16

IH19 [+((b12*24)/(h17*5.615))/i7*h17

Capital Cost Calculation
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The Capital Cost Calculation is performed in cells C18 - D30. Note that cells A18 - B26 have already been completed.

A B [ O
14 C1 Dty Lemphy Condenser1 Cost Lemphy
19 C2 Dty <amphy Condenser & Cost Lamphy
20 E1 Duty Lemphy Febaoiler 1 Cost Lemphy
21 F2 Duty Lemphy Feboiler & Cost Lemphy
e Tray Section 1D {empty T51 Cost Lempty
23 Tray Section 2 D <amphy TS E Cost Lamphy
24 SUBTOTAL Lampty
26 Flow TS 1 D&l Factors 3.02
2h Flow TS 2 SUBTOTAL {empty>
27 CAC Factars 0.15
28 TOTAL FCI ety
24 Adjusted FCI Lemphy
30 TOTALWCP {empty>

All of the cells in column D shown here are formulae - do not enter the values 3.02 and 0.15!

The formulae are listed below:

D18 [+12.75*118/9000+9300

D19 [+12.75*519/9000+9300

D20 [+h20*19.5/5300+15000

D21 [+h21*19.5/5300+15000

D22 |@exp(.958*@In(b22*12)+4.44)*h13

D23 |@exp(.958*@In(h23*12)+4.44)*h14

D24 |+d18+d19+d20+d21+022+d23

D25 |[+h2+h3+h4+h5+h6+h7+h8+h9+h10+h11+h12

D26 |+d24*(1+25)

D27 |[+h12+h13

D28 |+d26*(1+027)

D29 [+d2*d28

D30 [+d29%h14/100

Expense Calculation

The Total Expenses and Adjusted Expense (incorporating Cost Index Factor) are displayed in cells B50 and D50,
respectively.
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The Expenses are listed in column B, rows 32-49.

A, =] C O

k) Ann. PROD COSTS

32 Fhenal Lemphy
33 Feedstock Lemphy
34 Labor <empty
35 Super/Clerical <emphy
36 taintenance <emphy>
37 Dperating Lemphy
38 Lab Lemphy>
39 1 Cooling YWater <empty
40 2 Cooling YWater <empty
41 Fehbailer1 MNat. Gas Lemphy
a2 Fehailer 2 MNat. Gas <emphy>
43 Depraciation <empty
44 Local Taxes <emphy
45 Insurance <empty>
46 Flant Owverhead Lemphy
a7 Administrative <empty
AL Distribution Lemphy
49 F&D <emphy>
il TOTALEXFEMSES <emptyy  Adjusted Expense Lemphy

These are the formulae used:
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|B32 |+h10%2*24*d5

|B33 |+h15*13+24*7.481%d5/h16

B34 [+(@exp(.219*@In(b11*24/2000)+2.844))*F4*d5

B35 |+f5*h34/100

|B36 |+f6*d29/100

|B37 [+{7*136/100

|B38 |+f8*134/100

|B39 |+h2+24*d5+7.481*9/(70%62.4*1000)

B40 [+h3*24#5+7.48179/(70%62.4+1000)

|B41 |+h4*24*d5*110/(1e6)

|B42 |+h5+24*d5*110/(1e6)

|B43 |+d28*8/100

|B44 |+d28*d9/100

|B45 |+028%d10/100

B46 |+013*(034+b35+h36)/100

|BA7 [+f13*034/100

|B48 |+f14*(233+€34)/100

|B49 |+f15%(e33+€34)/100

|B50 [+h32+h33+h34+h35+h36+h37+h38+h39+h40+h41+h42+h43+hA4+hA5+hA6+hAT+bA8+hA9

D50 [+b50%d2

Revenue Calculation

The calculation of Revenue is shown below; the purities of the Toluene and Heptane in the respective distillates will be

imported to cells D33 and D34.

[ O E F
32 IMCORE Furity Annual Income Adjusted Income
33 Toluene <emphy> <emphy>
34 Heptane Lemphy Lemphy
35 TOTAL Lempty?
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|E33 | +d15+*24%d5*7.48*011*d33"1/h18
|E34 | +016*24*d5*7.48*012*d34"1/h19
F33 |+d2#e33
F34 |+d2*e34
|F35 |+33+34

Calculation of Net Worth

This is determined in cells E37 - F50, as shown below.
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E

37 FCl <emphy?
38 WC <empty
34 Capital Investment Lemphy
40

all Annual Income <emphy
42 Annual Cost Lemphy
43 Annual Op Income Lemphy
44 Incaome after tax <{emphy>
45 | Annual Cash lncome <emphy
46

a7 LIFE OF FROJECT ]
AL Capital Investment <amphy
44 Total Fresent Yalue Lemphy
a1l MET FresentWorth Lemphy

Note that cell F47 contains the constant 5, indicating the life of the project.

The formulae are listed below:

[F37 [+d29

IF38 [+d30

F39 [+f37+f38

F41 |+35

F42 |+d50

|F43 |+41-f42

F44 |+(1-d3)43

|F45 | +h43+f44

|F48 |+f39

[F49 [+((1-(U/(1+d4)"4T))/dd)*145

F50 [+f49-f48
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The template is now complete. Save it (e.g. - ECONANAL.TPL), and load the HYSYS case.

Importing Variables into Spreadsheet

First, add the subflowsheet; select the Read an Existing Template button when prompted to select the source for the

sub-flowsheet.
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=| Subflowsheet Option

Source for Sub-Flowsheet— ]

Read an Existing Template...

Stant With a Blank Flowsheet.__.

Cancel

Select the template from the list (in this case, we have called the template ECONANAL.TPL, and saved it in the
c:\nysys\template directory).

\HYSYS will create a new subflowsheet with the Spreadsheet you set up when you created the template.

=| Available Sub-Flowsheet Templates
r File Name ~ File Path
ECOMAMNALTPL c:\hysysitemplate'
FileName Build # Description E-] | ki
1 -8 -
' [-c]
[-ch]
[-&-]
(]
[-or]
[h]
[-]
[
[-rm-] +*
Full Description
E icAnalysis T [at it
conomic Analysis Template - OK
r Cancel

There are a large number of variables to import into the Spreadsheet. They are all listed below:
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~Imported Yariables

Cell Dhject Yariahle Description
BZ| Condenser-1 Duty Heat Flow
B3| Condenser-g Duty Heat Flow
B4 Feb-1 Duty Heat Flow
=] Reb-2 Duty Heat Flow
Bk Col-1 Bottoms bass Flow
=N Col-1 Bottomns bass Density
Bi Salhvent bdass Flow
B4 sohvent bass Density
B10 Fhenaol Makeup hass Flow
B11 Toluene bass Flow
B1z Heptane hdass Flow
B15 Feed bass Flow
B17 Feed baszs Density
Beh Ta-1 otage Lig Met bMass Flow (20__T3-1)
Beh To-e =tage Lig Metbass Flow (1__TS-2)
17 Feed Liguid “alume Flow
D33 Toluene Comp Mole Frac (Toluene)
D34 Heptane Comp Mole Frac (n-Heptane)
H1k Taluene bdass Density
H17 Heptane bass Density
NG Toluene Liguid Yalurme Flow
ny Heptane Liguid “alume Flow

There are two ways to import the variables to the Spreadsheet:

1. Importing From the Connections Page

To add an import, select the Add Import button, and choose the variable using the Variable Navigator (For more
information, see HYSYS Reference, Chapter 4 - Navigation). In the Cell column, type or select from the drop down
list the Spreadsheet cell to be connected to that variable. When you move to the Spreadsheet page, that variable will
appear in the cell you specified.

2. Importing Variables from the Spreadsheet Page (Browsing)

View Associated Object

Export Formula Result
Disconnect Import/Export

You may also import a variable by positioning the cursor in an empty field of the Spreadsheet and clicking the right
mouse button. You will see the menu shown to the right. Choose Import Variable, and using the Variable Navigator
(see HYSYS Reference, Chapter 4 - Navigation) select the flowsheet variable you wish to import to the Spreadsheet.

Note that you may also drag variables into the Spreadsheet.
Once you have imported all the variables, ensure that you are in the Main Flowsheet and that your column is solved.

Make sure that no cells read <empty>. If Cell F50 (Net Present Worth) has calculated, then your Spreadsheet is
complete.
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For the high purity configuration (RR1 =5, RR2 =5, Heptane Purity = 0.99, Toluene Purity = 0.99), the Net Present

Worth is $3.84 Million.

Comparison of Configurations

“Heptane Purity” refers to the Heptane composition in the first column distillate stream (Heptane). “Toluene Purity”
refers to the Toluene composition in the second column distillate stream (Toluene).

Present Worth increases to $4.41 Million.

Recall that we could improve the Toluene Purity and Heptane Purity to 0.994 and 0.993 respectively. The Net

First, we have the High Purity Configuration with the following specifications:

Column 1 Solvent Stage = 13
Column 1 Feed Stage = 21
Column 1 Number of Stages = 24
Column 2 Feed Stage = 8
Column 2 Number of Stages =9
Reflux Ratio 1 =5

Reflux Ratio 2 =5

Heptane Purity = 0.99

Toluene Purity = 0.99

The Net Present Worth is $3.84 Million.

For the Low Purity Configuration specify the following:

Column 1 Solvent Stage = 7
Column 1 Feed Stage = 17
Column 1 Number of Stages = 19
Column 2 Feed Stage = 8
Column 2 Number of Stages =9
Reflux Ratio 1 = 12

Reflux Ratio 2 = 4

Heptane Purity = 0.985

Toluene Purity = 0.985

In the Spreadsheet, set the number of stages in cells B13 and B14 to 19 and 9, respectively. Also, change the

first column stage on which the tray liquid molar flow is being measured to 16 (Cell B5).

The Net Present Worth is $1.72 Million.

Even though we could improve this figure, it is safe to say that the first configuration (high purity) is economically

superior. All further analysis will consider only the first configuration.

Optimization

We will use the following procedure in determining the optimum location of the feed streams:

1. Set the location of the feed stream.
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2. Solve the column to the following specifications:

First Column Reflux Ratio =5
Second Column Reflux Ratio =5
Toluene Purity = 0.99

Heptane Purity = 0.99

3. After the column solves, replace the First Column Reflux Ratio specification with the following spec:
* Solvent Rate = Current Value
4. Set up the Optimizer to Maximize the Net Worth by adjusting the Solvent Rate specification:

* On the Variables Page of the Optimizer, add the Solvent Rate specification as a Primary Variable:

=| Add Yariable to Optimizer
Flowsheet Object Yanable Yarniable Specifics
Feed [EREEMERET] [Reflux Ratio 1 ok |
T-100 [COL1) || Phenal Makeup Reflux Ratio 2 =
FLOM-1 [TFL1] || Reb-1 Dty Heptane Fraction “Ohiect Filter—
Reb-2 Duty Toluene Frachion ject Fiter
FLOW-1 Heptane R ate ® Al
Optimizer - Spreadzhs Toluene Rate ) Sheams
SPROSHT-1 .
Heptane Recovery 8 Unlt_l]ps
—Mavigator Scope— Toluene Recovery Logicals
@ Flowshest W apour-1 ) Custom
owshee “Yapour-2
O Case d
) Basis
{3 Utility
Variable Dezcription |S|:|ec: Walue [Salvent Fate] | LCancel I

Set low and high bounds of 0.06 and 0.150:
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'=i Optimizer | *I -

| B

—Adjusted[Primary] ¥arniables
Object Yarable Descrption itz Low Bound | Current Wal. |High Bound| Reszet Wal. | Enabled
T-100 | Spec Value [Salvent Bat 0.08000 0.09538 1.1500 <emphys []
| add.. || Edit. || Detete | | save || Reset |

% Wariables { Functionz K Parameters KMDnitDr 7
| Delete I | SpreadSheet I | Start I | Proceed | | Cloze l

* |mport the Net Worth from the Case Spreadsheet into Cell Al of the Optimizer Spreadsheet.

* On the Functions page of the Optimizer, specify the Objective Function Cell as A1 and select the Maximize
radio button:

'=i Optimizer | *I -
| E
—Objective Function

Cell A1) Minimize
Current W alus 4699779.24 | @ Maximize

—Constraint Funcltions

Add

Delete I

Functions # Parameters KMDnitDr 7
| Delete I | SpreadSheet. .. I | Start I | Proceed | Cloze I

* On the Parameters page, select the Mixed scheme, set the tolerance to 1e06, and reduce the Maximum
Change/lteration to 0.1000:
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'=i Optimizer | *I -

| | B

—Optimizer Parameters
Scheme ined
b ainiurn Function Evaluations 00
Tolerance 1.000e-06
kA ainnurn [terations 30
kd axiniurn Change/lteration 0.1000
Shift &, 1.000e-04
S hift B 1.000e-04

-=\ Variables K Functions 3 Parameters -‘EM
i | Delete I | SpreadSheet I | Start I | Proceed | | Cloze l

5. Select the Start button, allowing HYSYS to adjust the Solvent stream in order to Maximize the Net Worth of the
process.

Location of Feed Stream

We adjust the Solvent Rate for two reasons:

1. Itis a stable specification to adjust; that is, the Column will solve over an extensive range of Solvent Rates.

2. There is a point somewhere in the middle of the range of Solvent Rates where the Net Present Worth is
maximized. If, for example, we were to adjust a Reflux Ratio, the Net Present Worth would be maximized close to
the minimum Reflux Ratio for which the column solves, making that method inherently unstable. Similar logic applies
for the Toluene and Heptane Fractions.

First, adjust the location of the Solvent feed to the first column, using the Optimizer to maximize the Net Worth for each
feed configuration. The results are tabulated below.

|Stage \RRl \RRZ \Toluene \Heptane \Solvent Flow \Net Worth
13 [3939/5 (099 [0.99 (880 $4.69 M
12 [3776)5 099 [0.99 [807 $4.79 M
11 36415 (099 [0.99 [777 $4.86 M
10 381955 [0.99 [0.99 677 $4.83 M

From this point on, we will feed the solvent recycle on stage 11.

Next, we will adjust the location of the Mixed Feed to the first column:
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|Stage |RR1 |RR2 |TOIuene |Heptane |So|vent Flow
21 [36415 (099 [0.99 |77
20 (34145 (099 [0.99 |741
19 (34295 (099 [0.99 764
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From this point on, we will feed the process feed to stage 20 (minimum Reflux Ratio).

Finally, we adjust the location of the Feed to the second column:

|Stage |RR1 |RR2 |TOIuene |Heptane |So|vent Flow |Net Worth

8 34385 (099 [0.99 |716 $4.73 M
7 33505 (099 [0.99 |713 1$4.765 M
6 [3370)5 (099 [0.99 |698 $4.761 M

Optimization of Purities and Reflux Ratios

Several variations of the reflux ratios and purities are now tested, with the following results:

Toluene
Purity

Reflux
Ratio 2

Reflux
Ratio 1

Heptane

Case Description Purity

Solvent Rate
(Ibmole/hr)

Net
Present
Worth

Annual
Income

Capital
Investment

Base Case | 5 5 099  [0.99

12203

3.60 M L75M  [3.60 M

Maximize Net
Present Worth by
adjusting the Solvent
Rate and allowing the
Reflux Ratio for
Column 1 to vary.

3350 |5 0.99 0.99

713

2.98 M 189M 477 M

Maximize Net
Present Worth by
adjusting the Solvent
Rate and allowing the
Reflux Ratio for
Column 2 to vary.

1.347 ]0.99 0.99

648

2.71M 203M |5.60M

Maximize the
Heptane Purity,
which in turn 5 5
maximizes the Net
Present Worth.

0.994 0.99

1401

3.39M 182M |4.08M

Maximize the
Toluene Purity, which
in turn maximizes the
Net Present Worth.

5 0.99 0.996

2120

3.58 M 181M [3.86 M

IMaximize the | | | |
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Heptane Purity, then
maximize the Net
Present worth by
adjusting the Solvent
Flow and allowing
Reflux Ratio 2 to
vary.

4,038 0.994 0.99 1068 3.19M 189M |457M

Maximize the
Toluene purity, then
maximize the Net
Present Worth by
adjusting the Solvent
Flow and allowing
Reflux Ratio 2 to
vary.

1570 |0.99 0.996 782 2.78M 207M  |5.70M

The last results (bottom row of table) are the best up to this point. The search for the optimum result has gone to the
point where we have to include more primary variables and allow HYSYS to find the appropriate solution. The danger
with this approach is that we cannot simply input the maximum purities as the high limit and the minimum reflux ratios
as the low limit. There would be many combinations in this range which would not solve, due to the fact that we are
pushing the limits on the column feasibility. We therefore have to be cautious when we select the primary variable
ranges, and/or provide a small value for the Maximum Change/Iteration.

The Optimizer is set up as follows:

Primary Variable 1:

Source — T-100

Variable — T-100, Spec Value, Solvent Rate

Low Bound — 0.08
High Bound — 0.12

Primary Variable 2:

Source — T-100

Variable — T-100, Spec Value, Heptane Fraction
Low Bound — 0.985

High Bound — 0.994

Primary Variable 3:
* Source — T-100
* Variable — T-100, Spec Value, Toluene Fraction
¢ Low Bound — 0.985
* High Bound — 0.996 (set at the maximum)
Primary Variable 4:

* Source — T-100
* Variable — T-100, Spec Value, Reflux Ratio 1
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e |owBound —2.50
e High Bound — 5.00

It is important to ensure that the current (starting) values of these variables are within the bounds.

The Reflux Ratio for the second column will be allowed to vary while we attempt to find the maximum Net Worth. The
Optimizer Variables page is shown below, after an Optimum is found:

'=i Optimizer | *I -

| | B

—Adjusted[Primary] ¥arniables
Object Yarable Descrption itz Low Bound | Current Wal. |High Bound| Reszet Wal. | Enabled
T-100 | Spec Value [Salvent Bat (1.08000 0.09500 1.1500 <emphys
T-100 | SpecValue [Heptane Fr: 0.9350 10.9390 0.9340 <empys
T-100 | Spec'Value [Taoluene Frz 0.9350 10.9340 1.9360 <Empys
T-100 | Specalue [Reflux B atic 2800 4.205 5.000 LEmpys
| add.. || Edit. || Detete | | save || Reset |

% Wariables { Functionz K Parameters KMDnitDr 7

H | Delete I | SpreadSheet. .. I | Start I [ Optimum found [SmallDeltaX] | | ‘Cloze: l

Note that none of the Actual Values are at the Boundary limits. This is significant, as it means that a true maximum has
been found, rather than a maximum imposed by a boundary constraint.

The results are tabulated below:

IReflux Ratio 1 |4.205 |Solvent Rate 1757 Ibmole/hr
IReflux Ratio 2 [1.593 |Capital Investment |$2.65 M
|Heptane Purity \0.989 \Annual Income \$2.09 M
IToluene Purity (0.994 |Net Present Worth [$5.93 M

It is important to note that although this appears to be the optimum steady-state solution, it does not mean that this
configuration is controllable in dynamics. In the next section, we will study the dynamics of the process. The column
configuration is summarized below:

|First Column \Second Column

|Number of Stages — 24 \Number of Stages — 9

|Process Feed Stage — 20 \Feed Stage (from Column 1 Bottoms) — 7
|So|vent Recycle Stage — 11 \

|Ref|ux Ratio — 4.2 \Reflux Ratio — 1.6

|Heptane Fraction — 0.989 \Toluene Fraction — 0.994
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Note that the temperature profile for the second column is shown first. |

The Results are shown here;

Temperature Profile

360.0 ﬁ
|
|
|
|
|

340.0 #

J20.0

300.0

280.0 ;
260.0
2400 —W-ef?}

|
220.0 waﬂ s

Temperature

200.0

0 3 10 3 20 25 30 33 40

Stage Mumber

Temperature Profile, Column 2 (1-11) and Column 1 (12-37)

n-Heptane Toluene Fhenal
Condenser-2 0.005 0.934 9. 6k5e-04
1__T5-2 0.003 0.993 0.005
c__T3-2 0.002 0.9583 0.015
3__T5-2 0.007 0.952 0.047
q_T3-2 0.001 0.558 0.141
h__T5-2 5.544e-04 0.590 0.410
G__T3-2 1.5859e-04 0.251 0.749
7__T5-2 1.085e-04 0.133 0.867
o__T3S-2 6.570e-06 0.057 0.943
9__TS-2 4.959e-07 0.018 0.982
Febailer-Z 2.387e-08 0.004 0.996

Component Summary, Column 2
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Mame Reflux-1 Bailup-1 To Condenser Tao Reboiler-
apour Fraction 0.0000 1.0000 1.0000 0.0000
[Temperature [F] 214.8621 3085018 214.5507 280.9955
Fressure [psia] 16.0000 20.0000 16.0000 20.0000
bdolar Flow [larmole/hr] 545.7788 BEE.716R 1046.5953 16257845
bass Flow [Ib/hr] 54637 6254 G2049.0837 1048325.35814 151728.8534
Liguid %alume Flow [barrel/day] 8420.0659 4681.5682 104222653 107585323
Heat Flow [Bufhr] -7.4108e+07 7 0253e+06 -7.7486e+07 -4.3766e+07
Comp Mole Frac (n-Heptane) 0.9894 0.0170 0.95494 0.007a
Comp Mole Frac(Toluene) 0.0055 0.7242 0.0055 04222
Comp Mole Frac (Phenal) 0.0050 0.26383 0.0050 05702
Mame Fhenol Makeup Solvent Col-1 Bottoms Feb-1 Duty
apour Fraction 0.0000 0.0000 0.00a0 Lemphy
[Temperature [F] 220.0000 3771453 308.5018 Lemphy
Fressure [psia) 20.0000 20.0000 20.0000 Lemphy
Folar Flow [lbrmole fhr] 1.2000 /56,9845 957.0679 Lempty
bass Flow [Ib/hr] 112.9354 712354568 B9A7H.7997 {empty
Liguid “alume Flow [barral/ day] 73234 dh23.5221 E0YE.49642 <amphy
Heat Flow [Biu/fhr] /11206617 -3.8728e+07 -3.8480e+07 1.2314e+07
Comp Mole Frac (in-Heptane) 0.0000 2.3868e-08 0.0011 Lempty
Comp Mole Frac (Toluene) 0.0000 0.0043 0.2112 Lempty
Cormp Mole Frac (Fhenaol) 1.0000 0.9957 0.7877 {emphy
Column Worksheet
n-Heptane Toluene Fhenal

Condenser- 0.9584 0.006 0.005

1__ T3 0938 0.006 0.006

T3 0.986 0.0a7 0.003

3__T3A 0.933 0.0a7 0.003

4T3 0.981 0.008 0.011

h__ T34 04978 0.0083 0.014

E__ TS 0.4974 0.009 0017

7__ T3 0.970 0010 0.021

5__ T3 0962 0.010 0.027

< = 0.943 0.011 0.040

10__T5-1 0.9083 0.013 0.073

11__ TS 0313 0010 0677

12__ TS5 0.310 0.014 0676

13__ TS 0.304 0019 067G

14_ TS5 0.295 0.029 06?7

15_ TS 0278 0.044 0677

16_ TS 0.253 0.063 0.679

17__T5-1 0.215 ooz 0.R52

15_ TS 0171 0147 0632

19__ TS5 0139 0.200 0.661

20__ TS 0176 0326 0.497

= 0111 0.390 0.493

2Z__ TS 0.057 0.445 0.493
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Mame Heptane Feflux-d Bailup-2| To Condenser-?

apour Fraction 0.0000 0.0000 1.0000 1.0000
Temperature [F] 214.541 236.3411 3771483 236.6756
Fressure [psia) 16.0000 16.0000 20.0000 16.0000
Malar Flow [lhmole fhr] 2011166 315.6452 4676154 B18.7327
bass Flow [Ib/hr] 20137 7524 293741238 43972.15548 478134666
Liquid “olume Flow [barrel/day] 20021964 2314.7253 267515840 37681673
Heat Flow [Btu/hr] -1.7622e+07 3.5957e+06 -1.3649e+07 1.3236e+07
Comp Mole Frac in-Heptane) 0.9534 0.0050 1.2600e-0k 0.0050
Comp Mole Frac (Toluene) 0.0055 0.9540 0.03498 0.9540
Comp kale Frac (Fhenal) 0.0050 0.001a 0.9602 0.0010
Mame Condenser-2 Duty Taluene| Reboiler-2 Duty “apour-

apour Fraction Lemphy 0.0000 Lemphy 1.0000
[Temperature [F] Lempty 2363231 Lempty 214.8801
Fressure [psia) Lamphy 16.0000 Lemphy 16.0000
kalar Flaw [lbmaole/hr] Lemphyy 200.0834 Lemphy 5.4578e-20
Mass Flow [Ib/hr] Lempty 15444.3429 <empty 8.4696e-18
Liguid “alume Flow [barrel/ day] Lemphy 1453.4420 Lemphy 8.42452-14
Heat Flow [Btu/hr] 7.3830e+06 2. 2076e+06 9.3915e+06 -6.2677e-15
Comp Mole Frac in-Heptane) Lempty 0.0050 Lempty 0.9509
Comp Mole Frac (Toluene) Lempty 0.9540 Lempty 0.0050
Cormp hMole Frac (Fhenal) Lempty> 0.0010 {EMphy> 0.0040

Column Worksheet

As a point of interest, an attempt was made to reproduce the process as set up in the original HYSYS Reference
Manual (page 463). As in the example, the Peng Robinson Property Package was used (earlier shown to be
unacceptable) with the following results:

|First Column \Second Column

|Number of Stages — 20 \Number of Stages — 10

|Process Feed Stage — 13 \Feed Stage (from Column 1 Bottoms) — 10
|So|vent Recycle Stage — 6 \

|Ref|ux Ratio — 3.8 \Reflux Ratio — 12

|Heptane Fraction — 0.99 \Toluene Fraction — 0.985

* Solvent Rate = 1145 Iomole/hr
* Capital Investment = $4.04 M, Annual Income = $1.34 M
* Net Present Worth = $1.44 M

However, when the NRTL Property Package with the updated interaction parameters is used, the same specifications

could not be met. The Reflux Ratio for Column 1 was relaxed to 10, and the Heptane fraction was relaxed to 0.97. This
is clearly an unacceptable option, but the best possible using the same configuration. Nevertheless, the results are
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shown below:

|First Column \Second Column

|Number of Stages — 20 \Number of Stages — 10

|Process Feed Stage — 13 \Feed Stage (from Column 1 Bottoms) — 10
|So|vent Recycle Stage — 6 \

|Ref|ux Ratio — 10 \Reflux Ratio — 12

|Heptane Fraction — 0.97 \Toluene Fraction — 0.99

¢ Solvent Rate = 337 Iomole/hr
 Capital Investment = $4.50 M, Annual Income = $0.69 M
 Net Present Worth = ($1.65 M)

C-6.7

| PART S N\ _
Dynamics

In Dynamics, we require that Partial Condensers be used. If you installed your Condensers as Total Condensers,
change them to Partial Condensers as shown below:

'=i Condenser-1 >

| | B

Hame | Condenzer-1 |

-
Feeds Yapour
To Condenzer Y R
poLr
<Mew Feed: & | E
h'_\
Energy -
|Enndenser-1 Druky | E —i
- H-—

Beflux Disztillate

|F|ef|u:-:-'| | E Heptane | E

% Connections § Parameters ;(Wu:urk Sheet _,(Dynamiu:s ﬁe i"'i="'|l="'|l="'
H Delete I Fartial ¥ Cloze I H

Total
Three Phaze - Hpdrocarbon
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Call the Vapour streams Vapour 1 and Vapour 2. We will now have to provide two additional columns specifications.
We do not want any vapour flow off the condensers, so the specifications will be as shown:

=| Draw Spec: Yapour-1 Flow -4 I =-| Draw Spec: Yapour-2 Flow
| B |
Marme Yapour-1 Flow Marme Yapour-2 F
Drawy Yapour-1 Draw Yapol
Flow Basis baolar Flow Basis bt
Specalue 0.00 lhmolefhr Spechalue 0.00 kmole
[e_1[*] * Parameters ){Summar},ﬁ/ [e_I[*] * Parameters KSummary/
Delete Delete

Overview
Before we can run the process dynamically, there are several important steps:

* Sizing the Vessels — The Tray Sections, Condensers, and Reboilers must be appropriately sized based on
their respective liquid flowrates. Note that we already did some sizing calculations in the Steady-State portion of
this simulation.

* Adding the Controls — We require at least ten controllers, for both columns’ Reflux, Distillate, Bottoms,
Condenser Duty and Reboiler Duty. The control scheme (selection of Process Variable) and Tuning are very
important in ensuring a stable control configuration.

* Sizing the Valves — All of the valves must be sized, typically to span twice the steady-state value.

* Setting up the Strip Charts — We will track key variables while we run the simulation.

Setting the Dynamic Property Model Parameters — The proper choice of these parameters will ensure numeric
stability and accurate extrapolation.

Once we have completed these steps, we can run the process dynamically, introducing various upsets to the system to
ensure that our control system can adequately handle them.

Sizing the Vessels

It is important to correctly size the vessels in order to ensure a reasonable dynamic response. It is also imperative that
the Cooling Volume and Tower Volume (set in the Condenser) are accurate.

Tray Sections

In the economic analysis, we estimated the diameter of the first tray section as follows:
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D - B gy LT 2]
TRAY 023 ax{IT8) % &
where F1nay4 is the liquid volume flowrate on stage 20 of the first tray section.

The volume of the first tray section is:

_ #o X (11120)

&

7

TR Y

The factor (1/120) is the residence time, 1/120th of an hour or half a minute.
Using the Steady-State values, we have:

(1526 ES b 1 hr)(1 0120 Rr)

FTRAY1 = =
562200 1

3
VTRAY1 =248

When you enter this value on the Dynamics page of the Tray Section, the diameter is calculated to be 13.24 ft
(assuming a weir height of 0.16 ft).

For the second tray section, we have:

(2906F400 [ he)l F120 Be)

FTrRaY! = =
4242 10

4

The diameter is calculated to be 6.23 ft.
Condensers

The volume of the condensers are calculated as follows:

Holdup Tine = Flowrate
SP(% Full)

Vaohime =

For the first condenser:

¢1/6 homy) = (1048250 § b
(3808 IV ) =(50%)

Vobune =

Vohume = 920 fF

For the second condenser:
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(14 & honr) % (47218 I he)

Vaohime = =
(4248 T f17 ) =(50%5)

Vohume = 330 fF

The tower volume and cooling volumes are estimated as follows:

Wapour Vohme § Tray = (Liqud Yohume! Trayi= 10
Towrer Volhmme = (Vapour Wohime! Tray) x (Humber F Trays)
Cooling Wobime = CondenserWobume » 530%

For the first column:

Vapour Volmme / Tray= 22.6 ff 10 = 226 ff
Teonaray Wohmme = 226 fg wad= 5424 f?

Cooling Vabmme = 920 £F x 30% = 276 fF

For the second column;

Vapour Volme f Tray= 5 £ %10 = 506

Towrey Voheme = 50 6F %9 = 450 ff

Cooling Vabmme = 330 fF » 30% = 99 f

Reboilers

The volumes of the reboilers are calculated as follows:

Holdup Tine = Flowrate
SP(% Full)

Vaohime =

For the first reboiler;

{146 hour) > (1517294 / he)

Vohine = =
(5407 I £Y ) =(50%)
Vohume = 935 fF
For the second reboiler:
(16 hour) = (1152074 he)
Vohume =

(5678 I £t ) =(50%)
Volmme = 676 £

Adding the Controls and Sizing the Valves

Various approaches could be taken in the development of the control scheme. The control scheme which we will be
using is outlined here:
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Yapour-1

Condenser-1

To Condenser Cond 1 Pressure

Condenser-1 Duty

Feflux-1 | Condenser2
:; < ' =+ Heptane To Condenser-2
-—
2 =
10
Reflux-1 T3-1 (10} Heptane (Level) el
12
Ph—b-l—:- 13 -
Bno
Makeup 14 Sokvent Reflux2 T5-2 (2)
ey ”
18 e
T=-1 Stage 18
20 ; L@i
i Sohvent Flow T=-2
- » 217 75 (Cascade) TS-2 Stage B
Feed 22 ) age
Feb-1 Dt =
23 A2
24 COL-1 Bot. Level Boilup-2
Boilup-1
To Reboiler1  Rehailer-1 Cal-1 Bottoms To Rebailer-2

Control Scheme

One benefit of using HYSYS to develop a control scheme is that several different schemes could be considered, set up
and dynamically tested. Therefore, if you decided, for instance, that you did not want dual-point temperature control on
the two distillation columns but instead wanted ratio controllers to manipulate the reboiler duties, it would be fairly
straightforward to set it up. However, the comparison and fine-tuning of different control schemes is beyond the scope
of this paper; therefore, the control scheme as shown in this figure will be used. Note that fairly conservative tuning
parameters have been chosen for the controllers. As shown later, the dynamic response is reasonable, therefore no
effort is made to fine-tune the parameters.

Condenser Duty Controllers

For each column, we will have a Pressure Controller maintaining the Partial Condenser pressure by manipulating the
Condenser duty. The pressure of the condenser determines the pressure profile of the column, and it is therefore
important to closely control the condenser pressure. As noted in other examples, the tray temperature (PV of the
Reboiler Duty Controllers) and condenser pressure are interacting variables. We must ensure that the controllers are
tuned such that any adverse interaction is minimized. The Controller parameters are displayed below:
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|CONTROLLER |Cond 1 Pressure

|CONTROLLER |Cond 2 Pressure

(CONNECTIONS

(CONNECTIONS

PV Object Condenser-1
PV Vessel Pressure
OP Object Condenser-1 Duty

PV Object Condenser-2
PV Vessel Pressure
OP Object Condenser-2 Duty

|Contro| Valve

|Contro| Valve

|Duty Source |From Utility Fluid

|Duty Source |From Utility Fluid

|Min Flow |0 lbmole/hr |Min Flow |0 lbmole/hr
|Max Flow |10000 lbmole/hr |Max Flow |10000 lbmole/hr
IPARAMETERS IPARAMETERS

|PV Min & Max |10 & 20 psia |PV Min & Max |10 & 20 psia
|Action |Direct |Action |Direct
|Contro||er Mode |Auto |Contro||er Mode |Auto

'SP |16.0000 psia 'SP 116.0000 psia
TUNING TUNING

Kp 0.8 Kp 0.8

Ti 115 Ti 15

|Td |<empty> |Td |<empty>

For the Utility Fluid, set the Minimum and Maximum Flow to 0 and 10000 Ibmole/hr. Note that when you enter Dynamic

Mode, the utility fluid flowrate for each condenser duty stream will be calculated and displayed.
Reboiler Duty Controllers

By manipulating the reboiler duty, temperature control is achieved, which ultimately implies composition control.
Generally, we want to control the temperature of the tray where the temperature sensitivity is the highest.

To determine which tray has the highest sensitivity to temperature, we will do a steady-state sensitivity analysis which
varies the reboiler duty by a small amount, so that we can see where the change in temperature is the greatest:
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\The Case Study tool can be used to produce these plots.

As is apparent from the graphs, the greatest change in temperature in the first column occurs on Stage 18. We will use
the Stage 18 Temperature as the Process Variable for the first column. For the second column, we will use the Stage 8
Temperature as the PV. Although Stage 7 has a large % Change (roughly equal and opposite to Stage 8), it is not a
recommended practice to have a feed stage as the process variable for a controller.
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(CONTROLLER |TS-1Stage 18 | |CONTROLLER |TS-2 Stage 8
(CONNECTIONS (CONNECTIONS

PV Object TS-1 PV Object TS-2

PV Stage 18 Temp.| |PV Stage 8 Temp.
OP Object Reboiler-1 Duty| |OP Object Reboiler-2 Duty
|Contro| Valve |Contro| Valve

|Duty Source |Direct Q |Duty Source |Direct Q

|Min Available |0 Btu/hr |Min Available |0 Btu/hr

|Max Available |2.0e+07 Btu/hr |Max Available |2.0e+07 Btu/hr
IPARAMETERS IPARAMETERS

PV Min & Max (200 & 300 F PV Min & Max 300 & 400 F
|Action |Reverse |Action |Reverse
|Contro||er Mode |Auto |Contro||er Mode |Auto

'SP 2419 F 'SP 347.6

TUNING TUNING

Kp 0.8 Kp 0.8

Ti 115 Ti 15

|Td |<empty> |Td |<empty>

Column 1 Material Stream Controllers

The parameters for the Material Stream Controllers in the first column are displayed below:
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(CONTROLLER |Reflux 1 TS-1(10)

ICONTROLLER  |Heptane (Level))

ICONTROLLER |COL1 Bott. Level

(CONNECTIONS

(CONNECTIONS

(CONNECTIONS

PV Object TS-1 PV Object Condenser-1 PV Object Reboiler-1

PV Stage 10 Temp. | |PV Liquid Level PV Liquid Level
OP Object Reflux-1 OP Object Heptane OP Object Col-1 Bottoms
|Contro| Valve |Contro| Valve |Contro| Valve

|FIOW Type |MOIar Flow |FIOW Type |MOIar Flow |FIOW Type |MOIar Flow
|Min Flow |0 lbmole/hr |Min Flow |0 lbmole/hr |Min Flow |0 lbmole/hr
|Max Flow |1600 lbmole/hr |Max Flow |400 lbmole/hr |Max Flow |2000 lbmole/hr
IPARAMETERS IPARAMETERS IPARAMETERS

PV Min & Max (200 & 300 F

PV Min & Max |40 & 60%

PV Min & Max |40 & 60%

|Action |Direct

|Action |Direct

|Action |Direct

|Contro||er Mode |Auto

|Contro||er Mode |Auto

|Contro||er Mode |Auto

'SP 221.7F 'SP 150% 'SP 150%
TUNING TUNING TUNING

Kp 0.4 Kp 1.8 Kp 1.8

Ti 120 Ti <empty> Ti <empty>
|Td |<empty> |Td |<empty> |Td |<empty>

For the Reflux Stream, we use the temperature for Stage 10 (TS-1) as the Process Variable. This Stage is especially
sensitive to variations in the feed flowrate. Set the Control Valve range from 0 to 1600 lbmole/hr.

The Heptane stream will be set on Level control, so that the first Condenser is 50% full. We want the flowrate of this
stream to vary with changes to the Feed flowrate and composition. The Minimum and Maximum Flow are set at 0 and

400 Ibmole/hr.

The bottoms stream also has Level control; the first Reboiler's setpoint is a 50% Liquid Level. The Minimum and
Maximum Flow are set at 0 and 2000 Ibmole/hr.

Column 2 Material Stream Controllers

The parameters for the Material Stream Controllers in the second column are displayed below:
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ICONTROLLER |Solvent Flow
Reflux 2 (CONNECTIONS
CONTROLLER 7c 5 CONTROLLER [Toluene (Level))| /by Opject Solvent
[CONNECTIONS CONNECTIONS
PV Object TS-2 PV Object Condenser2 | [PV Molar Flow
PV Stage 2 Temp PV Liquid Level OP Object Solvent
i Cascaded SP SPRDSHT-1
OP Object Reflux-2 OP Object Toluene Source
|Contro| Valve |Contro| valve B3: Calculated
Flow Type Molar Flow [Flow Type Molar Flow Spreadsheet Cell |Solvent
|Min Flow |0 Ibmole/hr |Min Flow |0 Ibmole/hr |C0ntro| Valve
MaxFlow |80 Ibmolelhr MaxFlow 1400 Iomole/hr | [Flow Type [Molar Flow
IPARAMETERS PARAMETERS [Min Flow 0 lbmole/hr
[PV Min & Max_[200& 300 F PV Min & Max |40 & 60% Max Flow 11500 Ibmole/hr
[Action Direct Action Direct IPARAMETERS
|Contro||er Mode |Auto |Contro||er Mode |Auto PV Min & Max Iob& 1?(;?]
' 'TUNING Action Reverse
'TUNING
K 18 Controller Mode  |Cascaded SP
Kp 0.8 P - oG
T 15 i <empty> | |
Td <empty> Kp 0.8
|Td |<empty> |Ti |15
Td <empty>

Similar to the first Reflux control, we use the temperature for Stage 2 (TS-2) as the Process Variable for the second
Reflux control. This Stage is especially sensitive to variations in the feed flowrate. Set the Control Valve range from 0
to 800 Ibmole/hr.

The Toluene stream will be set on Level control, so that the second Condenser is 50% full. We want the flowrate of this
stream to vary with changes to the Feed flowrate and composition. The Minimum and Maximum Flow are set at 0 and
400 Ibmole/hr.

Finally, the bottoms stream (Solvent) has a cascaded set point. The Flowrate is chosen as the Process Variable, but
the “Calculated” rate of the Solvent will be the Set Point for this control. The Calculated Solvent rate is simply the
Column 1 Bottoms Flowrate minus the Toluene (Distillate) flowrate. Note that we must select Spreadsheet Cell B3
when setting up the Cascaded Control.

Create a new Spreadsheet in the Main Flowsheet and set it up as follows:
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=| SPRDSHT-1 |
~ Current Cell
Exportable ]
Variable: | | Angles in: I:IEI
&, B C B
1 ZOL1 Bottoms 9659.0871 lhmolefhr
2 Toluene 205.669 Ibrmalefhr
3 Fredicted Solvent 763.417 lbrmaolefhr
4 Actual Sokent 7h3.545 lhmolefhr
5
E
7
i
5
10
L = \CDnnemiDnS/{Parameters/{FDrmuIas\)\Spreadsheet/
Delete | Function Help... | Spreadsheet Only... | Close

S

* |mport the Column 1 Bottoms Molar Flow into cell B1.

* |mport the Toluene Molar Flow into cell B2.

* Enter the formula +B1-B2 into cell B3.

e |mport the Solvent Molar Flow into cell B4. In Steady-State, cell B3 will always equal cell B4. However, in
Dynamics, these cells will not necessarily be the same.

On the Parameters page, you may wish to enter a Variable Name for cell B3 so that it will be recognizable when you
set up your controller, which will be set up as follows:
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=.| Solvent Flow [Cascade] ITI
| [E—

Hame |Sn:n|ver'|t Flaw [Cascade] |

Process Yariable Source

Dbject: [Solvent | IW

Variable: [Molar Flow |

Pv oP
—
. 5P Output Target Object
Optional
Caszcaded 5P Source [Solvent |
| SPRDSHT-1 @Main | %] [ Sselectop... |

Spreadsheet Cell |
I
| B3 Salvent Malar FI|:||£I

% Connections § Parameters ;{Tuning 7

| OK |

| Delete I | Face Flate.__. I | Cloze I

Feed Stream Controllers
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If you wish, you may put Manual controllers on the Feed and Phenol streams. However, flowrates and compositions

may also be adjusted from the WorkSheet, so they are not crucial to the simulation.

Setting up the Strip Charts

Enter the following variables in the DataBook:

= | DataBook v
—Available Data Entries
Object Yanable
e E———
Toluehe Comp Male Frac [Tolugne]

Salvent kdalar Flow m
T5-1 Stage Temperature [18__TS5-1] _
T5-2 Stage Temperature [8__T5-2]

Condenzer-1 Wezsel Pressure

Condenzer-2 Weszel Pressure
SPROSHTA Fal: Met worth

“ Wariables / Process Data Tables _,( Strip Charts ;{ Data Recarder ;( Case Studies /
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We will be setting up two Strip Charts, each having four variables.
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The first Strip Chart will plot the Heptane and Toluene Molar Fractions, the Solvent Molar Flow rate, and the “Net

Worth”. Although the concept of an instantaneous Net Worth is of no practical use, it will be useful to see the effect of
certain variables on the bottom line.

StripChart1 SetUp —ml
| | E
Ohject Y ariahble Line Minimum | Current Yalue | Line Masimum | Initg
Heptane | Comp Male Frac [n-Heptal (1.9330 (1.9330 1.000
Toluene | Comp Mole Frac [Toluene 0.9320 1.3340 1.000
Solvent b clar Flow F00.0 a7k 200.0 Ibrnole ke
SPROSHT-1 @& Fa0: Met wWiorth 0.0000 h.531e+06 1.000e+07

Yiew Data Book.__ I

% Mumerical Line Pmperties/ [Graphical Line Properties _‘( Overall Chart Properties  /

In the Net Worth Analysis, certain variables such as the column diameter were dependent on key flowrates. In
Dynamics, you need to ensure that the initial capital cost does not fluctuate when there are changes in process

variables.

\Change cell D29 to the figure that is currently being displayed (2.3042e+06).

All that is required is to replace the formula in the cell which calculates the Adjusted FCI with the actual figure in that
cell, so that the FCI will not change as the simulation progresses.

The second Strip Chart contains the following variables:

StripChart2 SetUp —ml
| E
Ohject Y ariahble Line Minimum | Current Yalue | Line Masimum | Initg
T5-1 | Stage Temperature (18 2400 2487 2600 F
T5-2 | Stage Temperature [8_ T 3400 3471 3600 F
Condenger-1 Weszel Pressure 15.00 16.00 17.00 pEia
Condenger-2 Weszel Pressure 15.00 16.00 17.00 pEia

Yiew Data Book.__ I

% Mumerical Line Pmperties/ [Graphical Line Properties _‘( Overall Chart Properties  /
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The temperatures of the stages which are used as the Process Variables in the Reboiler Duty controllers are plotted,
along with the Condenser Pressures.

Setting the Dynamic Property Model Parameters
It is always important to ensure that appropriate parameters are used for the Dynamic Property Model.

In this case, the default parameters are sufficient:

=| Dynamic Property Model - Basis-1 - I

| | B

rRegression Parameters FlowSheet Yalues
>iManua I ® Automatic
K-value Methad deal Gas Prop Pkg NETL
apour Enthalpy Linear Madel hin T [F] 214.84
Liguid Enthalpy Cluadratic Model hao T [F] : 478.65
apour Entropy Linear Model hax P [psia)] 20.00
Liguid Entropy Linear hodel
bax F [psia] 34.70
rComponent Controls
Min Termperature Max Temperature Component Type
[F] [F]
h-Heptane 196.84 39465 standard
Toluene 196.84 39465 standard
Fhenaol 196.84 39465 standard
Close

If you were concerned that you were not achieving proper accuracy over a range of temperatures and pressures, you
might want to use the Property Package Method or Local Model in calculating the K-values, Enthalpies or Entropies.
However, this causes the integration to proceed at a much slower rate, and in this case, switching models does not
seem to be justified.

Dynamic Simulation

After switching to dynamics, and before running the integrator, ensure that the starting point of each controller is
correct, in order to avoid a large “bump” as soon as you start the integrator. This can be achieved by resetting each
controller by turning it off, then “on” again (to Auto or Cascade control, whichever is appropriate for that control).

The control FacePlates appear as follows:
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o Cond 1 Pressure =]

Cond 2 Pressure al T5-1Stage 18 o T5-2 Stage 8 =] Fieflus:
pvissorpsn || lvisomgse  |lvieaetr Pvsar a7
OETEERESEY || PRTR4c0% | OETEE: |

Auto | | Tuning

Auto tI Tuning

kdan |t| Tuning
=]

s

Auto (* | Tuning Auto [ ®

=] Feed Flow Solvent Flow =] Heptane [Level) = Toluene [Level] =] Fraflu;
% OEMSoERE: | |[CEEmEm: | |[OES00% || [BEESh

Off tI Tuning Casc (#|| Tuning Auto t||Tgning_ Auta | #| | Tuning I:IEI

Note that we have included a Feed Flow and Phenol Flow controller; however, these are turned off, and we will instead

be making changes from the WorkSheet.

Run the integrator. After a period of time, the process variables will line out:

=] StripChartl E
—-Heptane  ----- Toluene — —Solvent — - -Met worth
1.00 500.00  1.00e+07 1.00
1.00 780.00  B.00e+06 1.00
N80 TAD.OD. .5 OBeHAE T 0.9936
T~ ————— 758.8351
. eI O D | 5362621 69¢
e
o
» L 099 740.00  4.00e+06 0.99
0.99 72000 2.00e+06 0.99
e 0.9904
0.95 700.00 0.00 0.99
~50.00 0.00 530.00 60.00 50.00 120.00
Time
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= StripChart2 [«]=!
—T=-1(18)  ----- T5-2(8) — —Cond-1 P — - -Cond-2 P
360.00 17.00 17.00 260.00
386.00 16.60 15.60 286.00
352.00 16.20 16.20 252.00
e
o e LT TR T e e e 16.003F
348.00 15.80 15.80 2458.00
Er— L TR LT 34?;_’1822
344 .00 15.40 15.40 244.00
e 2418457
340.00 15.00 15.00 240.00
-30.00 a.oa 30.0a gO.00 80.00 120.00
Time
Now introduce a feed composition upset as shown below:
=| Input Composition for Stream: Feed
| | B
holeFraction ~Composition Basis
n-Heptane 0.4500 #® Mole Fractions
[Toluene 0.5500 o .
Phenol 0.0000 Mass Fractions
2 Lig Yolume Fractions
) Mole Flows
_> Mass Flows
' Lig Yolume Flows
) Preferences' Default
Composition Controls —
Erase
Mormalize
Cancel
T =
Total E.E
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As shown in the Strip Charts, the pressures and temperatures shift somewhat from their Set Points but eventually
return. The purities line out at different values, which is expected, since we have changed the composition of the
feedstock. As well, the Solvent Molar Flow lines out at a higher value.

=] StripChartl E
—-Heptane  ----- Toluene — —3Sokvent — - -Met Worth
1.00 1.00 500.00 1. 00e+07
1.00 1.00 780.00 8.00e+06
e VA U — T69.8234
) e B T
i R o0 1.:_‘ 7 099 TRO.0T &00e+06 095999
I TRt Y I T 5279591 FA<
~ -
0.99 peg T 740,00 4.00e+06
0.99 0.99 720.00 2 00e+06
——— 0.9911
- —
0.99 0.9a 700.00 0.00
£0.00 90.00 120.00 150.00 180.00 210.00
Time
= StripChart? [+~
—Ts-1(18)  ----- TS-2 (8) ——Cond-1P  —--Cond-2P
260.00 360.00 17.00 17.00
256.00 356.00 16.60 16.60
252 00 352 .00 16.20 16.20
:“.._.-..-_l‘:17""'_""'*"""' _._._‘.._._..,_.5_4..—‘_::::—_"_' ::__._-._: :_:‘:: :'_""‘;r Tyl R T - e 16']']@8
248 .00 348 .00 15.80 15.80
I R IS ——R—— SR - 3475070
244 00 344 00 15.40 15.40
[ /‘—\\x 241 5132
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Next, we will introduce a Feed Molar Flow upset. Change the Molar Flow of stream Feed from 400 to 360 Ibmole/hr.
The Strip Charts are shown here:

=] StripChartl E
—-Heptane ----- Taoluene — —Saolvent — - -Met YWarth
1.00e+07 1.00 1.00 800.00
Lo
g.00e+06 1o ! 1.00 750.00
I 1
R o [ S P -~ 0.9950
. T T — - \ L
Pl R FE . ' 1
e -G 00e+06 1&{ - 0.99 760.00
-------- ; e —  f——  789.1697
. e e (e
~, T R
T 4.00e+06 0.33 . 0.53 74000 . . 14131237 44¢

2.00e+08 0.99 0.99 72000 09914
0.00 0.99 0.93 F00.00
150.00 180.00 210.00 240.00 270.00 300.00
Time
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=] StripChart? [+~

—Ts-1(18) - TS-2(8) ——Cond-1P —--Cond-2P
17.00 260.00 360.00 17.00
16.60 256.00 356.00 16.60
16.20 252.00 352.00 16.20

R B e i IR PR R L E-EEE
15.80 245007 " TB45.00 15.80

N R SO T e e | 347 BEOD
15.40 244.00 344.00 15.40

S T ——— | 24175%
15.00 240.00 340.00 15.00

150.00 180.00 210.00 240.00 270.00 300.00
Time

At this point, we can safely conclude that our control scheme is reasonable. However, there is no doubt that the
scheme could be refined further. We also may be able to achieve better control with a different scheme.

Note that the Net Worth spikes as soon as we add the upset; this is because the cost of the Feed decreases suddenly,
drastically increasing the overall Net Worth. This is an example where this instantaneous Net Worth function is
certainly not realistic. However, the lined-out value is valuable. It is interesting to note that even though the purities on
the output stream increased, the Net Worth has actually decreased.

C-6.8 Summary and Conclusions

The use of HYSYS - Conceptual Design was crucial to this simulation, in that we could be confident that the
predicted VLE would closely match experimental behaviour. Without this assurance, one would probably end up
designing either an inefficient or an impossible column configuration.

HYSYS - Conceptual Design was used to estimate interaction parameters for the NRTL and Peng-Robinson Property
Packages. A good fit was obtained for the NRTL property package, but not for the Peng-Robinson and PRSV Property
Packages. Both Equation of State models incorrectly predicted liquid-liquid behaviour. Therefore, NRTL was used for
this simulation, applying the new interaction parameters regressed from experimental data.

HYSYS - Conceptual Design was used to obtain low-purity and high-purity column configurations. This step was
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important, as it gave a fundamental understanding of the separation process, allowing us to see the process limitations
and perimeters. The high purity configuration (0.99 Heptane, 0.99 Toluene) required more stages than the low purity
configuration (0.985 Heptane, 0.985 Toluene), but the Reflux Ratios were roughly the same.

HYSYS.SteadyState was used to build the two column configurations. For the high purity configuration, even higher
purities were possible than what was predicted using HYSYS - Conceptual Design (0.993, 0.994). For the low purity
configuration, the specifications could not be met, and one of the Reflux Ratios had to be increased in order to obtain a
solution.

The results were very similar between HYSYS - Conceptual Design and Steady State, and any differences could be
attributed to the fact that an approximate solution was obtained in HYSYS - Conceptual Design (i.e. - a solution in
which the passed streams between the two columns were similar, but not exactly the same; also, additional
assumptions were made, such as constant molal overflow).

The feed locations for both columns, the solvent feed location, the reflux ratios and product purities were all varied in
an effort to maximize the Present Net Worth.

An Economic Analysis Spreadsheet was set up in HYSYS.SteadyState, which calculated the Present Net Worth by
incorporating the Fixed Capital Cost, Annual Expenses, Annual Revenues and Economic and Plant Data. The high
purity configuration was shown to be superior (in terms of the Present Net Worth) to the low purity configuration.

The Optimizer was used to further refine the high purity configuration. Based on the preliminary economic data, it was
possible to obtain a Net Worth of $5.93 Million, with a $2.65 Million Capital Investment, indicating that this is an
economically viable process.

Finally, the process was set up in HYSYS.Dynamics. The vessels were sized, controllers were added, tuning
parameters were defined, valves were sized, strip charts were set up, and Dynamic Model parameters were checked.

The process was run dynamically. Feed composition and feed flow upsets were individually introduced, and key
variables were observed to ensure that the control system was adequate. The system responded reasonably to these
upsets, indicating that the control scheme was satisfactory, although it is acknowledged that further improvements are
certainly possible.

Perhaps most importantly, the setup of this process, from the definition of property package interaction parameters to

the dynamic system response were carried out entirely using HYSYS - Conceptual Design and HYSYS.SteadyState
and dynamics.
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