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Appendix A 

 

Problem A.1 

 

(a) A  B  = 
1 1 0 4 1 7

2 1 1 3 1 11

     
     

     
 

 

 B  A = 
0 4 1 1 8 4

1 3 2 1 7 4

     
     

     
 

 

 A  B     B  A 
 

(b) T
1 2 0 4 2 10

1 1 1 3 1 7

     
      
     

A B  

 

(c) 
1 1 0 4 1 5

2 1 1 3 3 4

     
        

     
A B  

 

(d) 
1 1 0 4 1 3

2 1 1 3 1 2

     
        

     
A B  

 

(e) 
det (1)(1) (1)(2) 1

det (0)(3) (1)(4) 4

  

   

A

B
 

 

(f) 
  1 1

adj 
2   1

 
  

 
A   

  3 4
adj 

1   0

 
  

 
B    

 

(g) 1 1
1   1 3/ 4 1adj adj 

     
  2 1   1/ 4 0det det

 
    

      
   

A B
A B

A B
 

 

 Verify:  1
1   1 1 1 1 0

  2 1 2 1 0 1


     

      
     

A A  

 

   1
3/ 4 1 0 4 1 0

  1/ 4 0 1 3 0 1


     

      
     

B B  
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Problem A.2 

 

(a) 

1 2 3 1

3 2 1     2      det 8

1 0 1 3

   
   

   
   
      

A b A  

 

  

1   2   3 1

3  2  1  2

1  0  1 1

 
 

 
 
  

D A b  

 

subtract row 1 from row 3 

 

1   2   3   1

3   2   1   2      det 8

0 2 2   0

 
 

  
 
   

D A  

 

multiply row 1 by 3 and subtract from row 2 

 

1      2      3     1

0  4  8  1      det 8

0  2  2     0

 
 

     
 
   

D A  

 

multiply row 2 by ½ and subtract from row 3 

 

 

 

1      2      3       1

0  4  8   1      det 8

0     0     2   1/2

 
 

     
 
  

D A  

 

 Thus, 

 

 

1   2   3

0 4 8

0   0   2

 
 

 
 
  

1

2

3

x

x

x

 
 
 
  

=

   1

1

1/ 2

 
 

 
  

 

 

 3 3

1 1

2 4

2x x    

 2 3 2 24 8 4 8(1/ 4) 1 1/ 4x x x x           

 1 2 3 12 3 2( 1/ 4) 3(1/ 4) 1x x x x        
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  1 3/ 4x   

  
T

3/ 4   1/ 4    1/ 4 x  

 

(b) 1x A b  

 

T

1

  2 2 2

2 2   2

4   8 4adj 

det 8



  
 
 
 
    



A
A

A
 

1/ 4    1/ 4 1/ 2

  1/ 4    1/ 4  1

  1/ 4 1/ 4 1/ 2

 
 

 
 
  

 

 

 

1/ 4    1/ 4 1/ 2 1   3/ 4

  1/ 4    1/ 4  1  2   1/ 4

  1/ 4 1/ 4 1/ 2 1   1/ 4

     
     

   
     
          

x  

 

 

(c) 1

1 2 3
6

2 2 1 det     3 / 4
8

1 0 1

x

 
 

   
  
  

A  

 

 2

1 1 3
2

3 2 1 det     1/ 4
8

1 1 1

x

 
 

    
  
  

A  

 

3

1 2 1
2

3 2 2 det     1/ 4
8

1 0 1

x

 
 

   
  
  

A  

 

 

Problem A.3 

 

1 1 33z x x   

2 1 2 3

3 0 1

   or   , 1 1 1

0 2 1

z x x x

 
 

    
 
  

z Ax A  

3 2 32z x x   

 

Solve 3 1 13x z x   

 2 1 2 1 1 2 1 13 2z x x z x x x z        
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 2 3 3 3 1 1

1 1 1 1 3

2 2 2 2 2

x z x z z x      

 

Then 2 3 1 1 1 1

1 1 3

2 2 2

2z z z x x z      

 
1 1 2 32x z z z    

 

Now 
3 1 1 1 1 2 33 3( 2 )x z x z z z z       

 

 
3 1 2 32 6 3x z z z     

 

and, 2 3 3

1 1

2 2

x z x   

 
2 1 2 33 2x z z z    

 

or, 

1 2   1

1 3   2

2   6 3

 
 

 
 
  

x z  

 

Also,  1x A z  

 
T

1

1 1   2   1 2   1
adj 

  2   3 6   1 3   2
det

1 2   3 2   6 3

                                   1



     
     

          
         



A
A

A  

This checks with the result obtained using algebraic manipulation. 

 

 

Problem A.4 

 

 
1/ 2

Tx x x  

 
1/ 2

2 2 2

1 1 1 2 6 2.45    x  

 
1/ 2

2 2 2

2 1 0 2 5 2.24    x  

 

 T

1 2

1

1 1 2 0 5

2

 
 

 
 
  

x x  
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 1 2

1 1 0 2

1 1 0 2 1 0 2

2 2 0 4

T

   
   

 
   
      

x x  

 

   T

1 1

1 0 0 1 1

1 1 2 0 2 0 1 1 2 8 1 19

0 0 4 2 2

     
     

  
     
          

x Ax  

 

Let 
T

1 2 3

3 3 3 3  x x x   x .  Then T 1 2 3

1 3 3 3 32x x x  x x  

 

Let 1 2

3 3 1 x x .  Then T 3

1 3 30 1   x x x  

 

  
T

3 1  1 1 x  is orthogonal to 1x . 

 

det    1 2 3

1  1   1

det 1  0   1 3   0

2  2 1

 
 

  
 
  

x x x   

 

1 2 3,   and x x x  are linearly independent. 

 

 

Problem A.5 

 

 

  1   1  2

1   0  1

2 3  1

 
 

 
 
   

A  

 

Using minors of the second row, 

 

1 2 2 2
  1 2   1 2

det ( 1)( 1) (0)( 1)
3 1 2 1

     
 

A  

 

 3 2
  1   1

(1)( 1)
2 3

 
 

 

 

 1(1 6) 0 ( 1)( 3 2) 8         

 

Using minors of the third column, 
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1 3 2 3
1   0   1   1

det (2)( 1) (1)( 1)
2 3 2 3

 


   
   

A  

 

 3 3
  1 1

(1)( 1)
1 0

 


 

 

 2(3 0) ( 1)( 3 2) (1)(0 1) 8          

 

 

Problem A.6 

 

(a) 
0 1 1

     
1 4 1 4






   
     

   
A A I  

 

 2det( ) (4 ) 1 4 1 0            A I  

 Eigenvalues are 1 22 5 and  = 2 5    . 

 The eigenvector 
T

1 2

1 1 1 v v   v  corresponding to 1  is given by 

 

 
11 1
11 1

12 2 2
1 1 1

    1      Let   10 1
2 5    

1 4 2 5   2 5

vv v

v v v

       
        

           
v  

 

The eigenvector 
T

1 2

2 2 2 v v   v  corresponding to 2  is 

 

 
11 1
22 2

22 2 2
2 2 2

    1    Let    10 1
2 5    

1 4 2 5   2 5

vv v

v v v

       
        

           
v  

 

 

(b) 

2 0 0

0 3 0   det( ) (2 )(3 )(2 ) 0

0 0 2

I   

 
 

      
 
  

A A  

   eigenvalues are 1 22, 3    

        and 3 2  . 

 

 The eigenvector 1v  corresponding to 1 2   is 
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1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

3 3 3 3 3

1 1 1 1 1

2 0 0 2 2 arbitrary

0 3 0  2  3 2 0            

0 0 2 2 2 arbitrary

v v v v v

v v v v v

v v v v v

       
    

        
            

 

 

 Say  
T

1 1 0 1v  

 

 The eigenvector 2v  corresponding to 2 3   is 

 

 

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

3 3 3 3 3

2 2 2 2 2

2 0 0 2 3 0                       

0 3 0  3  3 3 arbitrary            

0 0 2 2 3 0                      

v v v v v

v v v v v

v v v v v

       
    

        
            

 

 

 Say  
T

2 0 1 0v  

 

The eigenvector 
3v  corresponding to 

3 2   is (by comparison with 1)v , 1 3

3 3,v v  arbitrary, 

and 2

3 0.v    Say  
T

3 1 0 1v . 

 

 

Problem A.7 

 

A 2x2 symmetric matrix has the form 
11 12

12 22

a a

a a

 
 
 

 

 

The eigenvalues are the roots of the equation 

 

 
2

11 22 12( )( ) 0,a a a      or 

 
22

11 22 11 22 12( ) 0a a a a a       

 

The discriminant of this quadratic equation is 

 

 D = 2 2 2 2

11 22 11 22 12 11 22 12( ) 4( ) ( )a a a a a a a a       

 

Since D is the sum of the squares of two real numbers, it cannot be negative.  Therefore 

the eigenvalues are real.  Consider the asymmetric matrix 
11 12

21 22

a a

a a

 
 
 

 

 

Its eigenvalues are the roots of the equation 

 

 11 22 12 21( )( ) 0,  ora a a a      
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 2

11 22 11 22 12 21( ) 0a a a a a a       

 

The discriminant of this quadratic equation is 

 

 D = 2

11 22 11 22 21 12( ) 4( )a a a a a a    

     = 2

11 22 12 21( ) 4a a a a   

 

For the eigenvalues to be complex, we must have D < 0.  Thus an asymmetric matrix 

whose elements satisfy the condition 

  

 2

11 22 12 21( ) 4 0a a a a    

 

has complex eigenvalues. 

 

 

Problem A.8 

 

The LU decomposition algorithm used here is from B.A. Finlayson, “Nonlinear Analysis 

in chemical Engineering,” McGraw Hill, NY, 1980. 

 

 

1 1 0

2 3 1

1 0 1

 
 


 
  

A  

 

Multiply row 1 by –2 and add to row 2, and multiply row 1 by –1 and add to row 3.  

Then, 

 

 (1)

1  1 0

0  1 1

0 1 1

 
 


 
  

A  

 

Multiply row 2 by 1 and add to row 3.  Then, 

 

 (2)

1 1 0

0 1 1

0 0 2

 
 


 
  

A  

 

Now, 
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 (2)

1 1 0 1   0 0

0 1 1 , and 2   1 0

0 0 2 1 1 1

L

   
   

  
   
      

U A  

 

 
T

1

1 2 3   1 0 0
adj 

0   1   1 2 1 0
det 

0   0   1 3 1 1

                                1



    
   

   
   
      

L
L

L  

 

 

1

  1 0 0 1   1

ˆ 2 1 0  1 1

3 1 1 2   0



     
     

    
     
          

b L b  

 

1

2

3

1 1 0   1

ˆ 0 1 1  1

0 0 2   0

x

x

x

     
     

   
     
          

Ux b  

 

From row 3, 3 32 0 0x x    

From row 2, 2 3 21 1x x x       

From row 1, 1 2 11 2x x x     

 

  
T

2  1   0 x  

 

 

Problem A.9 

 

 2 2

1 1 2 8,g x x    2 1 2 4g x x   

 

 
1 1 1 2 1 2

2 1 2 2 2 1

/ / 2 2

/ /

g x g x x x

g x g x x x

      
    

      
J  

 

Starting point  
T1 0 1x  .  Note:  superscript denotes iteration number. 

 

Iteration 1: 
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1 1

1 1 11 1

1 1

2 2

0 27
          

1 04

g g
J J x

g g

    
      

     
 

 

 1 1

1 24,   3.5x x     

 

 2 1 1 2 1 1

1 1 1 2 2 24  , 4.5x x x x x x        

 

Iteration 2: 

 

 
2 2

2 2 21 1

2 2

1 2

8 928.25
          

4.5 414

g g

g g

   
     

    
J J x  

 

 

2 2

1 2

3 2 2 3 2 2

1 1 1 2 2 2

26 /17,    30.25 /17

2.47059 2.72059

x x

x x x x x x

     

       
 

 

Iteration 3: 

 

 
3

31

3

2

4.94118 5.441185.50541
     

2.72059 2.470592.72145

g

g

  
  

  
J  

 

 3 3

1 20.46475,    0.58976x x       

 4 4

1 22.00584,    2.13083x x   

 

Iteration 4: 

 

 
4

41

4

2

4.01168 4.261660.56383
     

2.13083 2.005840.27410

g

g

  
  

  
J  

 

 4 4

1 20.03594,    0.09847x x       

 5 5

1 21.96990,    2.03236x x   

 

Iteration 5: 

 

 

5

1

5

2

0.01099

0.00355

g

g




 

 

 We stop now because 5

1g  and 5

2g  are “small enough”.  The solution is 

  
T

1.96990  2.03236x .  The exact solution is  
T

2 2 . 
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If  
T1 4 4x  is the starting point, then 

 

1
8 8

4 4

 
  
 

J  .  In this case 1 1

1 2 and x x   

cannot be uniquely determined.  Thus,  
T

4 4  cannot be used as a starting point for the 

Newton-Raphson method. 



 1 

SOLUTIONS MANUAL 
 

CHAPTER 1 

 

Problem 1.1 

 

Minimize: f(x,y) = xy 

Subject to:  (x-8) (y-12) = 300 

Total no. of variables = 2 

No. of equality constraints = 1 

No. of degrees of freedom =1 

Independent variable:  y 

 
 

Solution: 

 

Eliminate x using the equality constraint 

 

12 8 96 300xy x y     

204 8

12

y
x

y





 

28 204
( , )

12

y y
f x y

y





 

2

2

(16 204)( 12) (8 204 )
0

( 12)

f y y y y

y y

    
 

 
 

 
2(16 204)( 12) (8 204 ) 0y y y y      

28 192 2448 0y y    

33.21 cm, 9.21 cmy    

 

Neglecting the physically unrealizable negative value, 

 

 * 33.21 cmy   

 

 
* 204 8(33.21)

33.21 12
x





 

 

 * 22.14 cmx   



 2 

 

Alternative Solution: 

 

Minimize: area = (w + 8) ( z + 12) 

 

St. wz = 300 

 

area = wz + 8z + (2w + 96) 

 

 = 300 + 8z 12 
300

z

 
 
 

+96 

d(area) = 0 = 8 + 3600 
1

z

 
 
 

 = 0  

z2 = 450 

 z* = + 21.21 

 w* = 14.14 

 

x* = 8 + 14.14 = 22.14 

y* = 12 + 21.21 = 33.21 

 

 

Problem 1.2 

 

Since thickness is uniform, we just need to minimize the surface area of the inside of the 

box. 

 

Minimize:  f = b2 + 4bh 

Subject to:  b2h = 1000 

 

Total no. of variables = 2 

No. of equality constraints = 1 

No. of degrees of freedom = 1 

Independent variable = b  
b > 0 

h > 0 

 

Solution: 

 

Eliminate h using the equality constraint 

 

 
2

1000
h

b
  

 

 
2 4000

f b
b

   



 3 

 

 
2

4000
2 0

df
b

db b
    

 

  
32 4000 0

12.6 

b

b cm

 


 

2
3

2
2 8000 / 0 at 12.6 (not reqd.)

d f
b b

db

 
     

 
minimum. 

 

 

*

*

2

*

12.6 cm

1000

(12.6)

6.3 cm

b

h

h







 

 

Note:  Another viewpoint.  Let t = thickness of material.  If by material, the volume is 

used, then the volume of a side is (b) (t) (h) and of the bottom is (b) (t) (b) so that the 

objective function  would be 
f

t
. 

 

 

Problem 1.3 
 

Maximize:  A = bh 

Subject to:  h = 10-(b/2)2 and 

2

2

b 
 
 

 

Total no. of variables = 2 

No. of equality constraints = 1 

No. of degrees of freedom = 1 

Independent variable: b 

 
Solution: 

 2 3(10 ( / 2) ) 10 / 4A b b b b     

 2d / d 10 3 / 4 0A b b    

 * 3.65b   

  2 2 *d / d 6 / 4 0  3.65 (not reqd.)A b b at b    maximum 

 * 210 (3.65/ 2) 6.67h     

 * (3.65)(6.67) 24.35A    

Note:  It is easier to maximize ½ of the rectangle as it is symmetric, and b>0, h > 0. 
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Problem 1.4 

 

 Let  
1 0 2 0,   2x x h x x h     

 Let  
0 1 0 2 0 1( ) ( )( )f B B x x B x x x x       

 
0 0 0 1 0 0 2 0 0 0 1( ) ( ) ( )( )f x f B B x x B x x x x        

  
0 0B f  

 1 0 1 1 0 2 1 0 1 1 1( ) ( ) ( )( )f x B B x x B x x x x f        

  B1 = 1 0 1 0

1 0

f B f f

x x h

 



 

  

 
2 0 1 2 0 2 2 0 2 1 2( ) ( ) ( )( )f x B B x x B x x x x f        

 

  2 0 1 2 0 2 1 0
2 2

2 0 2 1

( ) 2

( )( ) 2

f B B x x f f f
B

x x x x h

    
 

 
 

 

 

Problem 1.5 

 

Minimize 
2 2d x y   

Subject to 22 3 1y x x    

Total no. of variables = 2 

 No. of equality constraints = 1 

 No. of degrees of freedom = 1 

 Independent variable: x 

 
 

To avoid using the square root, minimizing d is the same as minimizing 

 

 
2 2 2 2 2 2

4 3 2

(2 3 1)

   4 12 14 6 1

D d x y x x x

x x x x

      

    
 

 

 
3 2

3 2

d / d 16 36 28 6 0

            8 18 14 3 0

D x x x x

x x x

    

   
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You need solutions of a cubic equation (Ref: R.H. Perry and C.H. Anilton, “Chemical 

Engineers Handbook”, 5th ed., p.2-9, or use a computer code. 

 

 A cubic equation has the form 3 2

1 2 3 0x a x a x a     

 

Let 
2 3

2 1 3 1 2 1(3 ) / 3,   (27 9 2 )27p a a q a a a a      

 

and 3 2( /3) ( / 2) .R p q    If R>0, then the cubic equation has one real root and two 

complex conjugate roots.  The real root is 1 1 / 3x A B a    where 

 

 

3

3

( / 2)

( / 2)

A q R

B q R

  

  

 

 

For our problem, 1 18/8 2.25,a    

2 314/8 1.75,   3/8 0.375a a     

30.0625,  0.09375,  2.2063 10p q R x      

 

Since R > 0, there is one real root. 

A = 0.4544355 , B = -0.0458311. 
* *0.341 and 0.209x y    
2 2 2d / d 48 72 28 9.03 at 0.341D x x x x       minimum. 

 

(-0.341, 0.209) is closest to the origin. 

 

Note:  You can use a least squares method too.  If we have 2

0 1 2f C C x C x   , this is 

equivalent to  0 0 1 0 2 0 1C B B x B x x    

   1 1 2 0 1( )C B B x x    

   2 2C B  

 

 1 2 0 1d / d ( ) ( ) 0f x B B x x x x       

Total no. of variables = 1 

No equality constraints 

No. of degrees of freedom = 1 

 

* 0 1 2 1 0 1 1 0

2 2 1 0

( )

2 2 2 _

x x B B x x f f
x h

B f f f

    
    

 
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2 2

2d / d 2 .f x B  

 

f  has a maximum at *

2  0;x if B f  has a minimum at *

2  0.x if B   

 

 

Problem 1.6 

 

Maximize:  2V r h  

 

Subject to: 

 r = R cos  

 h = 2R sin   

 0 <  < / 2   

 

Total no. of variables = 3 

No. of equality constraints = 2 

No. of degrees of freedom = 1 

Independent variable =   

 

Solution: 

 

 Eliminate r and h using the equality constraints. 

 3 22 cos sinV R    

 

 
3 3d / d 2 2cos sin ( sin ) cos 0v B R            

 

2 3

2 3

2

2cos sin cos 0

2cos (1 cos ) cos 0

cos ( 2 3cos ) 0

  

  

 

  

   

  

 

 

 
cos 0 and sin  1,  or

cos = 2/3 and sin 1/ 3

 

 

 


 

 

 2 2 3 3 2d / d 2 (2sin 7cos sin )V R      

 At cos 0,sin 1,    

  2 2 3d / d 4 R 0V      minimum 

 At cos 2 / 3,sin 1/ 3,    

  2 2 3d / d 8 / 3 0V R     maximum 

  * 3 2 1
2

3 3
V R

  
      
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  * 34

3 3
V R  

 

 

Problem 1.7 

 

0 < x < 1 

 

f(x) > 0 

 

 
 

 

Problem 1.8 

 

Let nA = no. of trucks of type A 

      nB= no. of trucks of type B 

      nC = no. of trucks of type C 

 

Objective function 

 

Minimize f = 2100nA + 3600nB + 3780nC  (ton-mile/day) 

 

Constraints 

 

1. 10,000 nA + 20,000 nB + 23,000 nC < 600,000   ($) 

 

2. nA + 2nB + 2nC  < 145  (drivers) 

 

3. nA + nB + nC  < 30  (trucks) 

 

4. nA > 20  nB  >  0  nC > 0 (physical requirement) 

 

 

Problem 1.9 

 

Minimize 

 

f(x) = 19.4x1
-1.47  + 16.8x2

-1.66 + 91.5x3
-0.30 
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Constraints 

 

0 < x3 < 0.05  x0 > x1 > x2 > x3 

 

 x2 > 0 

 

 x1 > 0 

 

 

Problem 1.10 

 

Minimize: 2

1 2( ) 4 12f x x x    

 

Subject to: 2 2

1 225 0x x    

   

2 2

1 1 2 2

2 2

1 2

1 2

10 10 34 0

( 3) ( 1) 0

, 0

x x x x

x x

x x

    

   



 

 

No. variables: 2 x1 and x2 

 

One equation reduces the number of independent variables to 1, say x1 (or x2). 

 

 

Problem 1.11 

 

  
 

1. Objective function.  Maximize C4 

 

2. Variables C1, C2, C3 (dependent) C4 is in the objective function 

   1, 2, 3, 4 (independent) 

 

3. Equality constraints 

 20iV   so that 
20

71
i

Vi

q
  


  

 Material balances 

 



 9 

  

1 2 2 1

2 3 3 2

3 4 4 3

n

n

n

C C kC

C C kC

C C kC







 

 

 

 

 

4. Inequality constraints 

 

 0      possiblyi iC    

 

 

 

 

Problem 1.12 
 

1. Objective function 

 

Minimize F = p*1.40 + (350 – T)1.9 

 

Variables     p*, T    p = p* since water condenses 

 

 

Constraints: 

 

 

* *

*

* 0
0.01     and    inequality

0T T

pp n

Tp n


 

  

 

   *

10

1750.286
log 8.10765    equality

235.0 273.15
p

T
 

 
 

 

  Let pT = 14.7 psia 

 

1. One technique of solution would be to apply NLP to the above statement. 

 

2. Another technique would be to assume p* is at its bound so that p* = 0.01(14.7) psia. 

Introduce this value into the Antoine eq., solve for T, and then calculate F. (This 

procedure implies 2 equality constraints exist as the problem has no degrees of 

freedom). 

 

 

Problem 1.13 

 

(a) The independent variable is not time but temperature (via the k’s).  Think of the 

solution of the two ODE’s -- t is fixed. 
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(b) The dependent variables are A and B. 

 

(c) Equality constraints are the 4 equations (including initial conditions). 

 

(d) The inequality constraint is T < 282F. 

 

Also implicit are T > 0 

            A > 0 

          B > 0 

            t > 0 

 

(e) Any answer is ok, as for example: 

 

- get analytical solution of A and B vs T and minimize 

- convert ODE’s to difference equations (constraints) and minimize 

- approximate solution via collocation (constraints) and minimize 

- introducing the following transformations: 

 
2

1 2 1 2

0 0

        ,  
2

A B u
y y u k k

A A
     

 

 simplifies the optimization problem to: 

 

 Maximize: 2 (1.0)y  

 Subject to: 

2

1 1

2 1

1 2

( / 2)

(0) 1  , (0) 0

          0 5

y u u y

y uy

y y

u

  



 

 

 

 

Note that the control variable u(t) is the rate constant k1, and directly corresponds to 

temperature.  This insight eliminates the exponential terms and simplifies the structure of 

the problem. 

 

 

Problem 1.14 

 

(a) The problem consists of (at constant T and p) 
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 constant

Minimize:  (  l n  l n )

                      = RT ln p  + ln ( )

                                                                 

                               

o

i i i

i

o

i i i

i i

G RT p RT x n

RT x n





  

 
 

 

 



 

x      RT ln K   i i

i

n n

n n



 

subject to the element balances: 

 

 ik i k

i

a n b  for each of the elements  k = 1 … M 

and inequality constraints 

 0in   

with .i in x n   For C + D  A + B  

A B

T T
x

C D

T T

n n

n n
K

n n

n n

  

 

(b) The element balances are based on 

 

                    At start (bk)             At equilibrium   

   

 C   H O  C H O 

CO 1  1  *COn  - *
COn  

        

H2O - 2 1  - 
2

2 *H On  
2

*H On  

        

CO2 - - -  
2

*COn  - 
2

2 *COn  

        

H2 - - -  - 
2

2 *Hn  0 

 

Total moles = 2     Total moles n* = 

       2 2

* * * *
2CO H H COOn n n n    

 

As variables use xi or ni (either are ok) 

 

C     balance: 1 = 
2CO COn n  

O     balance: 2 =
2 2

2 CO CO H On n n    

H     balance: 2 = 
2 2

2 H H On n  
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2 2 2 2

2 2

  so that  cancels

CO H CO H

x

CO H O CO H O

i

x x n N
K

x x n N

ni
x nT

nT

 



 

 

 

Problem 1.15 

 

 

1 1

31 1 2

1 2

2
1

k k

k kPkPV P
W

k P P

  
              
  

 

 

 

1 1

3 31 1 2

2

2 1 1 2 2

d 1 1 1
0

d 1

k kp pW kPV k p k

P k k p p k p p

  
                            

  

 

 

 

 

1 1

3 32

2

1 1 2 2

1
0

k kp pp

p p p p

 

       
        

       
 

 

 
1 1 1

1/ 1 1 2

2 1 3 2 0
k

k k kp p p p
   

   

 

    
1 11 12

2 1 3
k kp p p
 
  

 

 
2

2 1 3p p p  

 

 2 1 3 (1)(4)   = 2 atmp p p   

 

 

Problem 1.16 

 

(a) 
9000

50 0.1  ($ / bbl)C P
P

    

 

 
2

d 9000
0.1 0

d

C

P P
    

   

  * 300 bbl/dayP   
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(b) 
9000

300 50 0.1   ($ / bbl)f P
P

     

 

 
9000 $ bbl

300 50 0.1
bbl day

P
f P

P

  
      
   

 

 

(c) 
*

d
300 50 0.2 0 0

d

250
        1250 bbl / day

0.2

f
P

p

P

    

 

 

 

(d) They are different because you can sell more 

 

 

Problem 1.17 

 

Basis: 1 hr 

 

Heat balance for the gas: 

  q =    m       Cp        T 
4(3000) (0.3) (195 90) 9.45 x10 Btu/hrq     

Heat balance for cooling water 

(1) ( 80) ( 80) Btu/hro oq m T m T           so 
70 80

q
m 


 

 

 

 

For the heat exchanger     
  

 LM LM 8  Btu/hrq UA T A T     

 

where      so 
8 LM

q
A

T



 

 

 0

LM

(195 ) (90 80)
 in F

195
ln

90 80

o

o

T
T

T

  
 

 
 

 

   

 

Basis: 1 yr. 

 

Annual cooling water cost ($) 
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4

3

9.45 10 1 0.2
(24 x 365)

80 62.4 1000

2.6533 x10

80

o

o

x

T

T

   
    

    




 

 

Annual fixed charges for the exchanger ($) 

 

 
4 3

LM LM

9.45x10 5.9063x10
(0.5)    

8 T T

 
  

  
 

 

0.5 3 2 6

1 2

d
1.5 0.081 0

d

c
C D L C m LD

D
      

 

 

0.1538

0.4615 0.30772

1

0.638opt C
D m

C
  

  
 

 

 

 

3For 1 (2.42 lb/ft hr) ,  60 lb/ft ,

      0.366ft.opt

cP p

D

  


 

 

 

Problem 1.18 

 

(a) 1.5

1 2 /C C D L C m P     

 

where 

  

2

0.2

0.2 0.2 0.2

2 /

0.046

P V L Df

f
D V







 


 

  24 /V m D  

 

 Substituting the expression for f and V into that for P, we get 

 

  1 1.8 0.2 4.80.1421P m D L     

 

 The cost function in terms of D is now 

 

 1.5 2 2.8 0.2 4.8

1 20.1421C C D L C m D L     

 

 
0.5 2 2.8 0.2 5.8

1 2

d
1.5 0.682

d

c
C D L C m D L

D
     = 0 
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 Solving this equation for D, we get 

 

 

0.1587

0.317 0.444 0.03172

1

0.882opt C
D m

C
  

  
 

 

 From this, 

 

 

0.3174

0.366 0.112 0.06341

2

1.6367opt C
V m

C
   

  
 

 

 

 

0.8413 0.1587 0.4755 0.666 0.0476

1 2

0.7618 0.2382 04784 0.6688 0.0478

1 2

0.828

      0.2596

optC C C m

C C m L

 

 

 






 

 

(b) 

3 2.5

1

13 2 2

2

1.42363 10  $ / hr f
for  in $/hr

2.7097 10  $hr /ft lb

C x t
C

C x





 


 
 

 
3For 1 (2.42 lb/ft hr), 60 lb/ft

      0.384ft,   1151.5ft/hropt opt

cP

D V

  

 
 

 

 

3For 0.2 (0.484 lb/ft hr), 50 lb/ft

      0.387ft,   1363.2ft/hropt opt

cP

D V

  

 
 

 

 

3For 10 (24.2 lb / ft hr), 80 lb/ft

      0.377f ,   895.6ft/hropt opt

cP

D t V

  

 
 

 

 

 

Problem 1.19 

 

 

2

0.1587

0.317 0.444 0.03172

1

opt

, ,

0.882

dln D
0.317

dln p

opt

Dopt

m C

C
D m

C

S



  
  

 

 
   
 

 

 

2, ,

d ln  
0.317

d ln

opt
Dopt

m C

D
S




 
  
 
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2, ,

dln 
0.444

dln 

opt
Dopt

m

C

D
S

m
 

 
  
 

 

 

2

2 , ,

dln 
0.1587

dln 

opt
Dopt

C

m

D
S

C
 

 
  
 

 

 

  

0.8413 0.1587 0.4755 0.666 0.0476

1 2

0.7618 0.2382 0.4784 0.6688 0.0478

1 2

0.828

      0.2596

optC C C m L

C C m L

 

 








 

 

  
2

2

1 2

, ,

1 2

, ,

 ln 1
( 0.4755 0.4784 )

 ln 1
(0.476 0.0478 )

 ln 

opt
Copt

opt

m C

opt
Copt

opt

m C

C
S T T

p C

C
S T T

C










 
    

 

 
   

 

 

 

2

2

1 2

, ,

1 2

2 , ,

ln 1
(0.666 0.6688 )

ln 

ln 1
(0.1587 0.2382 )

ln 

opt
Copt

m opt

C

opt
Copt

C opt

m

C
S T T

m C

C
S T T

C C

 

 

 
   

 

 
   

 

 

 
0.8413 0.1587 0.4755 0.0476 0.666

1 1 2

0.7618 0.2382 0.4784 0.0478 0.6688

2 1 2

where 0.828

and 0.2596

T C C m

T C C m L

 

 








 

3For 60lb/ft  and 1cp(2.42 lb/ft hr)    

 

2

 0.476

 0.476

 0.666

 0.163

opt

opt

opt

opt

C

C

C

m

C

C

S

S

S

S





 







 

 

 

Problem 1.20 

 

The variables selected could be times, but the selection below is easier to use. 

 

Let Xij be the number of batches of product i (i = 1, 2, 3) produced per week on unit j 

(j = A,B,C).  We want to maximize the weekly profit. 
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Objective function:  Units:  ($/batch) (batch/week) = $/week: 

 

Maximize: 
1 1 1 2 2 2 3 3 3( ) 20( ) 6( ) 8( )A B C A B C A B Cf X X X X X X X X X        X  

  

Subject to:  Sales limits.  Units:  batch/week 

      
3 3 3 20A B CX X X        (none on 1 and 2) 

Hours available on each unit 

 

  
0.8hr X batch

batch week

  
  
  

   

 

    

1 2 3

1 2

1 3

Unit A    0.8 0.2 0.3   20 hr week

               0.4 0.3                  10

               0.2                0.1   5

A AA

B B

C C

X X X

X X

X X

  

 

 

 

 

 

 and non-negativity constraints 

 

  xij > 0   , i = 1, 2, 3   , j = A, B, C 

 

 

Problem 1.21 

 

We have to minimize the pumping rate subject to the constraint that the basin cannot 

overflow. 

 

 

 
 

 

 

 

Let rain fall for T hours at a stretch (T should be specified).  The volume of rain during 

this period is 

 

   2( )A a bT   in3 

 

The maximum amount of water that can be treated during a time period T is 

  PmaxT      in3 
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Thus, 

  2

max( )    A a bT P T V    

 

The minimum Pmax is therefore given by 

 

  2

max( )   A a bT P T V    

or   2

max

1
( )P A a bT V

T
    

 

Of course, we must have Pmax > 0 

 

 

Problem 1.22 

 

Assume: (i) first order reactive, (ii) flat velocity profile 

 

Objective function: 

 

 maximize   
1

0
( , , )rx r L dr  

 

Equality constraints: 

 

AB

2

1
(1 ) 0f r

x D x x
r V k x k x

t R r r r z

    
      

    
 

 

0

i

/ 0 at 0,  all ,  (symmetry)

/ 0 at 1,  all ,  (impenetrable wall)

 at  = 0, all  (feed conversion)

( ) = 0    (initial conversion profile)

x r r z t

x r r z t

x = x z r,t

x = x r,z

   

   
 

 

2

1
( ) (1 )p f r

T T k T
C VG r H k x k x

t z R r r r

    
             

 

 

/ 0 at 0,  all ,   (symmetry)T dr r z t    

/ ( ) 0 at 1,  all ,    (heat transfer to jacket)ok T r U T T r z t        

in 0 at 0,  all ,   (feed temperature)T T z r t    

( , ) at 0   (initial temp. profile)iT T r z t   

 

Inequality constraints: 
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0   all , ,

0   all , ,

x r z t

T r z t




 

 

max

min

max

0 at all , ,

o o

o o

T T r z t

T T

T T

 





 

 

 

Problem 1.23 

 
1.5

1 2 /C C D L C m P     

 

where 

 

2

2

(2 / )

0.005

4 /

P V L D f

f

V m D





 





 

 

Substituting the expressions for P, f and V into the cost function, we obtain C in terms 

of D: 

 

 1.5 3 2 5

1 20.016C C D L C m D L    

 

 0.5 3 2 6

1 2

d
1.5 0.081 0

d

C
C D L C m LD

D
      

 

 

0.1538

0.4615 0.30772

1

0.638opt C
D m

C
  

  
 

 

 

For 31 (2.42 lb/ft hr) , 60 lb/ft ,cP    

 

 Dopt = 0.366 ft. 

 

 

Problem 1.24 

 

 

 C = 7000 + 25002.5 L + 200 DL 

 

(a) 
1.5250 (2.5) 200

C
L D L

D


 


 is the absolute sensitivity 
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 1.5

2.5
250 (2.5) 200

2000 250 200

C

DC
L D L

D DLD

D



 
   

   
 is the relative sensitivity 

 

(b)     The relations for sensitivity are the same; the constraints limit the feasible region 

         of application. 

 

 

Problem 1.25 

 

 

 2

0 1 2ln  ln (ln )      (a)C a a S a S    

 

1 2dln (2)(ln )
dC dS dS

C a a S
C S S

    

 

 1 2

d
0 2 (ln )     (b)

d

C C C
a a S

S S S
      

 

or 1 2/ 21
1 2

2

1
2 ln      or    ln  or    

2

a aa
a a S S e

a S

     

1 2

d /
2  ln 

d /

C C
a a S

S S
   

 

 

 

Problem 1.26 

 

Refer to Section 1.7 of the text. 
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CHAPTER 2 

 

Problem 2.1 

 

(a) The model is linear if the ratios 1 1 1 1 1 2 2 2/  and /  plus h S Cp h Cp S V   are 

independent of temperature.  If they are not, then the model is nonlinear. 

(b) If D is independent of concentration, then the model is linear.  Else, it is 

nonlinear. 

 

 

Problem 2.2 

 

(a) Nonlinear 

(b) Linear if vx is independent of vy; otherwise, nonlinear 

 

 

Problem 2.3 

 

2.1 (a)  Unsteady state 

(b)  Unsteady state 

2.2 (a)  Steady state 

      (b)  Steady state 

  

 

Problem 2.4 

 

2.1 (a)  Distributed  

(b)  Distributed 

2.2 (a)  Lumped  

(b)  Distributed 

 

 

Problem 2.5 

 

(a) A distributed parameter model would be best.  A plug flow mode is also possible. 

 

(b) Steady state (except on start up and shut down) 

 

(c) Linear 

 

 

Problem 2.6 

 

Total variables (2 streams + Q):  2(C+2)+1 = 2C+5 
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Constraints: 

 

 independent material balances:  C 

 energy balance                        :  1 

no. of degrees of freedom = 2C+5-(C+1) = C + 4 

 

Conventional specifications are the variables in the entering stream (C+2) and the 

temperature and pressure of the exit stream.  In some instances, Q may be specified rather 

than the temperature of the exit stream. 

 

 

 

Problem 2.7 
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Alternative Analysis 

 

(a)  x y y/x   

  1 5 -   

  2 7 2   

  3 9 2   

  4 11 2   

 

Since y/x is a constant, a linear fit is best: 

 

   y = ax + b 

 

(b)  x y log y/x   

  2 94.8 -   

  5 87.9 -0.0109   

  8 81.3 -0.0113   

  11 74.9 -0.0115   

  14 68.7 -0.0125   

  17 64.0 -0.0102   

 

Since  log y/x is nearly constant, a good functional relation is 

 

   y= a bx 

 

(c)  x y log x/log y   

  2 0.0245 -   

  4 0.0370 1.68   

  8 0.0570 1.60   

  16 0.0855 1.71   

  32 0.1295 1.67   

  64 0.2000 1.59   

  128 0.3035 1.66   

 

Since  log x/ log y is nearly constant, 

 

   y = a xb 

 

is a good functional relationship. 
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Problem 2.8 
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Problem 2.9 

 

A plot of the date looks like: 

 

 

 
 

Since the data seems to lie on a straight line after the transformation, a good model is 

 

  
    ln 

or x

Y x

Y e 

 


 


 

 

E = 
2( ln )i ix Y    

 

 

/ 2 ( ln ) 0

/ 2 ( ln ) 0

i i

i i i

E x Y

E x x Y

  

  

     

     




 

 

2

ln 

ln 

8 7200 11.074

7200 8160000 12777.698

0.1217,   0.001673

      exp  (0.1217 0.001673 )

i i

i ii i

n x Y

x Yx x

Y x









 

    
    

     

     
     

     

  

 


 
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Problem 2.10 

 

(a) To find 
1 2,   and oC C C  

 

E = 
4

3 3 2

0 1 2

1

( )i ix x

i

i

C C e C e y




    

 
4

3 3

0 0 1 2

1

4
3 3 3

1 0 1 2

1

4
3 3 3

2 0 1 2

1

/ 2 ( ) 0

/ 2 ( ) 0

/ 2 ( ) 0

i i

i i i

i i i

x x

i

i

x x x

i

i

x x x

i

i

E C C C e C e y

E C e C C e C e y

E C e C C e C e y









 



      

      

       







 

 
3 3

0

3 6 3

1

3 6 3

2

i i

i i i

i i i

x x

i

x x x

i

x x x

i

n e e C y

e e n C e y

e n e C e y



  

      
     
        

           

 

 

n = 4 
3 ix

e   = 8527.6 
6 ix

e  = 65823128 
3 ix

e


  = 1.0524 
6 ix

e


  = 1.00248 

iy  = 6 
3 ix

ie y  = 8951.11 
3 ix

ie y


  = 1.10466 

 

Solution of the set of 3 linear equations gives 

 

 C0 = 2.0552 

 C1 = -1.302 x10-4 

 C2 - -1.0551 

 

If C0 is set equal to zero, then 

 

 

3 3 2

1 2

3 3 3

1 1 2

3 3 3

2 1 2

( )

      / 2 ( ) 0

     / 2 ( ) 0

i i

i i i

i i i

x x

i

x x x

i

x x x

i

E C e C e y

E C e C e C e y

E C e C e C e y





 

  

      

      


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36

1

36
2

ii

ii

xx

i

xx

i

C e ye n

C e yn e


     
     

     
 

 

Solution of this set of equations gives 

 

  C1 = 1.3592 x10-4 

  C2 = 1.101385 

 

(b) If  2

1
ia x

i iy a x e


 , then 

1 2ln ln ln i i iy a x a x    

Let 1 1ln a b .  Then 

E = 
2

1 2( ln ln )i i ib x a x y    

1 1 2

2 1 2

/ 2 ( ln ln ) 0

/ 2 ( ln ln ) 0

i i i

i i i

E b b x a x y

E a xi b x a x y

       

        
 

  

 
1

2

2

ln ln 

ln ln 

i i i

i i i i i i

n x y xb

x x x y x xa

      
    

       
 

 

 
1

2

4 6 13.41005

6 14 2.6026759

b

a

     
    

     
 

 

 1b  = 10.167834 1a  = 26051.595 

         a2 = 4.5435487 
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Problem 2.11 
 

 

 

 

Problem 2.12 
 

 
 

Y = 0.384431 + 0.686198x + 0.0731065 x2
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Y = 0.87157 + 3.77758x - 1.83175 x2 + 0.325737x3 

 

 

Problem 2.13 

 

Apply least squares as the objective function 

 

 Minimize  
2

exp 0 1( )icx
y b b e


   

  

 Subject to x > 0 

 

1. Form the objective function 

 

2. Apply a NLP code 

 

 

Problem 2.14 

 

 

F = 
2( 1.33 )i ic    

 

2 ( 1.33 )( 1) 0i i

dF
C

d
 


        solve to get 
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 optimal value of 
1.33 29.94 1.33(15.04)

1.98
5 5

i ic


   
    

 

or introduce the data into the equation and sum 5 linear equations squared, and then 

differentiate, set the derivative = 0, and solve the same equation for ;   = 1.98 

 

 

Problem 2.15 

 

1( )

T T

T T

x xb x x

b x x x y




 

 
2

2 3

2 3 4

11 31 111

31 111 451

111 451 1959

T

x xP

x x x x x

x x x

    
   

       
        

 

 

2

105.6

3601

1460

T

y

x y xy

x y

   
   

     
      

 

 

 

8.24

2.93

0.95

b

 
 

 
 
  

 

 

y = 0.95 x2 –2.93 x + 8.24      

 

Is the Design Orthogonal? 

 

No, the design is not orthogonal.  You need two independent variables to even obtain an 

orthogonal design.  Our problem has only one (x). 
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Problem 2.16 
 

 1( )T Tb x x x Y  

 

0 1 2

0

1

2

x x x
4

1 160 1
5

1 160 1
10

1 160 7
11

   1 160 7    
24

1 200 1
26

1 200 1
35

1 200 7
38

1 200 7

b

b b x Y

b

 
  
  
  
  

    
      
    
     

  
  
  
   

  

 

 

Use a computer to get 

 

 

91.33

0.5813

1.4588

b

 
 


 
  

 

 

 

Problem 2.17 

 

2

1

( )
n

i i

i

E x y 


    

 

1

2 ( ) 0
n

i i

i

E
x y 

 


   


  

 

 
1 1

0
n n

i i

i i

n x y 
 

     

 
1 1

1 n n

i i

i i

y x
n

 
 

 
  

 
   
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Problem 2.18 

 

Let 1
1

3

2

x
p


  and 2

2

260

20

x
p


  

 

When the Y values for a given ( 1 2,p p ) are averaged, we get 

 

 p1 p2 Y   

 -1 -1 24   

 1 -1 44   

 -1 1 4   

 1 1 20   

 

For 
0 1 1 2 2y p p     , we have 

 

1 2 0

2

1 1 1 2 1 1

2
2 22 1 2 2

n p p Y

p p p p p Y

PYp p p p







      
     
         
           

 

 

0

1

2

4 0 0 92

0 4 0 36

0 0 4 44







    
    


    
        

 

 

 

0 1 2

1 2

1 2

23,  9,  11

23 9 11

152.5 4.5 0.55

Y p p

Y x x

     

  

  

 

 

 

Problem 2.19 

 

y x1 x2 x 

96.0 1 0 1 

78.7 0.5 0.866 1 

76.7 -0.5 0.866 1 

54.6 -1 0 1 

64.8 -0.5 -0866 1 

78.9 0.5 -0.866 1 

91.8 0 0 4 

 

The last point has a weight of 4 because it is the average of 4 data points. 

 

 
2 2

0 1 1 2 2 3 1 4 2 5 1 2Y x x x x x x            
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Then, 

 Min E = 
7

2 2

0 1 1 2 2 3 1 4 2

1

(i i i i i

i

w x x x x    


     

 

   2

5 1 2 )i i ix x Y   

 

 The answer is 

 

 

0

1

2

3

4

5

91.8

16.483

3.378

16.5

17.2

6.986

106.68E



















 

 

 



 

 

 

Problem 2.20 

 

(a) E = 
2

0 1 2( )A pC C x C s Y     

 

0

2

1

2

2

A p

A A A A p

A p

n x s YC

x x x s C x Y

s sx s C sY

      
    

        
           

 

 

0

1

2

3 0.3 90 1.0

0.3 0.09 0 0.06

90 0 4500 39

C

C

C

    
    


    
        

 

 

0 2 30.1,  0.3333,  0.00667C C C    

 

In this case, one can also solve three equations in the three unknowns, without a 

least-squares fit. 

 

(b) If 00 for 0,  then 0p AY x s C    . 

 
2

1 2( )AE C x C s Y    
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1 1 2

2 1 2

/ 2 ( ) 0

/ 2 ( ) 0

A A

A

E C x C x C s Y

E C s C x C s Y

      

      
 

 
2

1

2
2

1

2

1 2

0.09 0 0.06

0 4500 39

   0.667,  0.008667

AA A

A

C x Yx x s

C sYx s s

C

C

C C

      
     

     

    
    

    

 

 

 

 

Problem 2.21 
 

Assume that the feed is a single phase stream, and not the same as any of the other 

streams.  Total variables (5 streams + Q) : 5 (C+2)+1 

                                                                  = 5 C+11 

 

Constraints: 

 

 independent material balances :     C  

 energy balance            :     1 

 equilibrium relationships   :     C 

 T same in each phase    :     1 

 P same in each phase    :     1   

        2c+3 

No. of degrees of freedom = (5c+11) – (2c+3) 

          = 3c + 8 

 

 

Problem 2.22 

 

There are six components.  Therefore, the total number of variables is (3 streams + Q): 

3(C+2) + 1  = 25 

 

Constraints: 

 

(1) matl. balances (C, H, O, N)  :   4 

(2) energy balance   :   1 

(3) fixed O2/N2 ratio in air  :   1 

(4) zero concentration of components in 

fuel  :   4 

air  :   4 
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flue gas :   1 

(5) specification of % excess air  :   1 

(6) specification of % N2 in fuel  :   1 

(7) specification of three temperatures :   3 

       20 

 

No. of degrees of freedom = 25-20 = 5. 

Three pressures must be specified, and one extensive variable – either feed, air or flue gas 

flowrate.  The last variable would be the CO/CO2 ratio. 

 

 

Problem 2.23 

 

Total no. of variables for 7 streams: 7(C+2) = 35 

 

Constraints: 

 

(1) 3 independent material balances for  

            each piece of equipment  : 12 

(2) one energy balance for each 

piece of equipment   :   4 

(3) specification of 
40 00 , , ,A A AF w W W   

 and F5/F4     :   5 

(4) P-V-T relationship for each stream :   7   

       28 

No. of degrees of freedom = 35-28 = 7. 

      

 

 

Problem 2.24 

 

Objective function: 

 

 Minimize total cost per year 

 

  ( )tot s t opC C C r C    

 or minimize present value of total costs 

 

  
1

N

tot s t op

i

C C C C F


 
    

 
  

 where r = capital recovery factor 

          F = discount factor 
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Subject to: 

 

0

2.5

( 1)dia. of shell for triangular pitch

1.25  pitch

s s

s s s

p

C W

W DzL

D P n

P d







 



 

 

1/ 2
4 1

3
p

n
n

 
  
 

 

0

0 0

150tC A

A d nL




 

 
hr $

/(102 )(3600) (8400 (0.06 )
yr

op g g gC W P
kwh

   

25000 kg/hrgW   

221.5

2 2

s
g

i

fL V gV g
P

g gd


    

f = 0.023 
2

4 /(3600 )g iY Wg d n   

 273 / 22.4(273 )Pg MW Tg   

0 0 inQ U A T   

2 1( )gQ W Cp T T   

0 0.95 ioU h  

( / )io i i oh h d d  
0.8 0.4/ 0.023(3600 / ) ( / )i i g i ph d k Vd C k    

o

o

0 1 0 2

0 1

0 2

0.24     kcal/kg

0.14      kg /

0.053    kcal /(m)(hr)( )

( ) )

p

n

C C

m h

k C

T T T T
T

T T
n

T T









  
 

 
 

 

 

 
O

1

O

2

1200

350

T C

T C




 

 



 1 

CHAPTER 3 

 

Problem 3.1 

 

P = 100,000 and the present value of the sum of future payments must equal 100,000 

 
10

10

(1 ) 0.1(1.1)
(100000)

(1 ) 1 (1.1) 1

n

n

i i
P

i

   
   

     
 

 

= $16274.54 for each payment each year 

 

 
 

or use 101 2

1 2 10
100,000

(1 ) (1 ) (1 )

FF F
P

i i i
    

  
 

 

The schedule of interest and payments is: 

 

 

Year 

Amount Paid 

annually ($) 

Year ending 

principal balance ($) 

 

Interest ($) 

1 16274.54        100000.00         10000.00 

2 16274.54 93725.46 9372.55 

3 16274.54 86823.47 8682.35 

4 16274.54 79231.28 7923.13 

5 16274.54 70879.87 7087.99 

6 16274.54 61693.32 6169.33 

7 16274.54 51588.11 5158.81 

8 16274.54 40472.38 4047.24 

9 16274.54 28245.08 2824.51 

10 16274.54 14795.05 1479.51 
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Problem 3.2 

   Io = $10000 , i = 12% 

 

 Year (a) (b)  

 1 -1000 -800  

 2 -1000 -1400  

 3 -1000 -1200  

 4 -1000 -1000  

 5 -1000 -1000  

 6 -1000 -1000  

 7 -1000 -900  

 8 -1000 -900  

 9 -1000 -900  

 10 -1000 -900  

         NPV = -5650 -5779  

 

 

Problem 3.3 

 

    10,000 – 5,000 (1+i)8 = 0 

 

   which yields  i = 9.05% 

 

 

Problem 3.4 

 

 Split the problem into three parts:  the present value of $550,000 received at the 

end of 5 years, the expense of $25,000 at the end of year 2 (a negative amount), and 5 

dividends each of $15,000 received at the end of each year for 5 years. 

 

2 2 3 4

15,000 15,000 25,000 15,000 15,000
                

1.15 (1.15) (1.15) (1.15) (1.15)
P       

 

5 5

15,000 550,000
        $304,825.94

(1.15) (1.15)
    

 

or 
5

5 2 5

(1.15) 1 25,000 550,000
15,000            $304,825.94

0.15(1.15) (1.15) (1.15)
P


     
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Problem 3.5 
 

 The time line is 

 

 
 

Answer   -$980.52.  The improvement should not be implemented. 

 

 

Problem 3.6 

 

 

i = 0.06 

0.005
12

i
  

 

 
36

0

24

1

12

2

200(1 0.005) 200(1.1967) 239.34

350(1 0.005) 350(1.127) 394.50

250(1 0.005) 250(1.0617) 265.42

F

F

F

   

   

   

 

 

Answer:  $899.27 

 

 

Problem 3.7 

 

 This is a problem in which the payments are not uniform 

 

1

1

(1 )
n

n k

k

k

F F i  



   applies 
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An iterative solution is needed.  The interest is charged and the payments made 24 times 

a year.  The answer given is 58 payments (29 months).  You can split the problem into 

one initial payment of $775 and a subsequent series of equal payments of $50, and add 

the two parts to get the answer. 

 

 

Problem 3.8 
 

The time line is 

 
Answer:  $717.44  

 

 

 

Problem 3.9 

 

 

                          

 

i = 14.0% 

 

 

  Payments  

Date Payment     Interest    Principal 40% of the interest paid is a 

benefit, but the benefit is 

Aug 

Sep 

Oct 

Nov 

Dec 

$3600 

  

$1400.00 

  1374.33 

  1348.37 

  1322.10 

  1295.52 

$6740.32 

$2200.00 

  2225.67 

  2251.63 

  2277.90 

  2304.48 

received at end of the year only 

$6740.32 (.40) = 2696.13 

5

$2696.13
$2544.21

(1 ) (1.0117)n

F
P

i
  



 

 

 

Problem 3.10 

 

 The statement is true for the same interest rates.  For example: 
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(a) For a $1000 mortgage at 10% paid over 30 years (F is the annual payment) 

 
30

30 3030

1.10 1
1000      106.04

0.10(1.10)
F F

 
  

 
 

 

(b) For 15 years 

 
15

15 1515

1.10 1
1000      131.41

0.10(1.10)
F F

 
  

 
 

 

From the values of F you can split each payment into interest and principal, and find that 

the sum of the interest payments over the 30 years is higher than that over 15 years. 

 

 

Problem 3.11 

 

You borrow $300,000 for 4 years at an interest rate of 10% per year.  You plan to pay in 

equal annual end-of-year installments.  Fill in the following table. 

 

 

Year 

Balance Due at 

Beginning of 

Year, $ 

Principal 

Payment 

$ 

Interest 

Payment 

$ 

Total 

Payment 

$ 

1 $300,000 $64,641 $30,000 $94,641 

2 $235,359 $71,105 $23,536 $94,641 

3 $164,253 $78,216 $16,425 $94,641 

4   $86,037 $86,037   $8,604 $94,641 

 

 

Problem 3.12 

 

Plan A: 

 

30

1

30

30

1 (1 ) 1
            

(1 ) (1 )

(1.12) 1
           

0.12(1.12)

n

n n

i

i i i

 


 





 

 

NPV of 30 year costs = -160000 + 
30

1

2200

(1.12) j
j


  = $-177,721 
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Plan B: 

 

 

 
     5600                     5600                         5600 
                                                              
 
                             4500                                   10 yrs                     20 yrs                 30 yrs      

          34,000                                                  34,000                 34,000 

 

                                                                     plus 

                 2500          for 30 yrs 

  

                                                                             58,000 

 

NPV of 30 year costs = 

 

10 20

34000 34000
34000

(1.12) (1.12)

 
     (capital costs) 

 
10 20 30

1 11 21

4500 4500 4500

(1.12) (1.12) (1.12)j j j
j j j  

  
      (operating costs) 

 

10 20 30

5600 5600 5600

(1.12) (1.12) (1.12)

  
     (salvage value) 

 
30

1

2500
( 58000)

(1.12) j
j


      (ditch costs) 

 

= $-160,288 

 

Plan B is favored because its NPV of costs is higher (less negative) than that for 

plan A 

 

 

Problem 3.13 

 

The total annual cash flows for each reactor, and the present values of the cash flows and 

total costs are tabulated below: 
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Glass-lined reactor:  (all flows in $) Note:  -2400 + 1700 = -700 

 

Year Operating costs PV (i = 0.1) PV (i = 0.2) 

1 -700 -636 -583 

2 -930 -769 -646 

3 -700 -526 -405 

4 -700 -478 -338 

5 -1260 -782 -506 

6 -1600 -903 -536 

7 -1600 -821 -447 

8 -1600 -746 -372 

9 -1600 -679 -310 

10            +2400 
(including salvage value) 

+925 +388 

  -5415 -3755 
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With the installed cost included, the value of all costs at the initial time is 

 

for 0.1,    5415 24000    $ 29415

for 0.2,    3755 24000    $ 27755 for 10 years

i PV

i

     


     
 

 

Cast iron reactor:  (all flows in $)  Note: -1440-730=-2170; -2170 + 800 = -1370 

 

year Operating costs PV (i = 0.1) PV (i = 0.2) 

1 -2170 -1973 -1808 

2 -2170 -1793 -1507 

3 -2170 -1630 -1256 

4 -1370 -936 -661 

  -6332 -5232 

 

 

With the installed cost included, the value of all costs at the initial time is 

 

for 0.1,    6332 7200    $ 13532
for 4 years

for 0.2,    5232 7200    $ 12432

i

i

     


     
 

 

You have to calculate operating costs for another 4 year period followed by a 2 year 

period for a total of 10 years, but you can see that adding roughly (1.5) (6000) = 9000 to 

13,500 gives a value smaller than that for the gas lined reactor. 

 

 The cast iron reactor is favored for either interest rate. 

 

 

Problem 3.14 

 

Project A has the largest rate of return, because most of the cash flow is returned early in 

the life of the project, and is discounted less. 

 

 

Problem 3.15 

 

For after tax profits of $10,000 per year, 

 
20

1

10000
100000 0    7.75%

(1 ) j
j

i
i

   


  

 

For after tax profits of $12,000 per year, 

 
20

1

12000
100000 0    10.39%

(1 ) j
j

i
i

   


  
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For after tax profits of $8,000 per year, 

 
20

1

8000
100000 0    4.98%

(1 ) j
j

i
i

   


  

 

Relative sensitivity = 
/

/

i i

s s




 

 

For a + 20% error, 

 

RS = 
(10.39 7.75) / 7.75

1.70
12000 10000) /10000





 

 

 

Problem 3.16 

 

Installed capital cost = $200/hp 

Operating cost = $0.04 / kwhr 

  = 70% 

i = 10% 

Basis: 8000 hr/yr operation 

Assume life = 5 years 

Then, r = 0.264 

Basis:  1 hp 

Installed capital cost = $200 

 

Assume the pump efficiency corrects the $0.04 to actual cost. 

 

Operating cost 

 

$0.04 8000 hr 5 yr 0.746 kw 1 actual  power   

= $6460 Kwh yr  1 hp 0.7 theo. power .264 

 

 

 

 of capital cost 200
0.031

 of operating cost 6460

PV

PV
   

 

 Operating costs are more substantial. 
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Problem 3.17 
 

The ratio is 
1

1 (1 )

n m

j
j n

I
R

C

i

 

 






 

 

where I = initial investment 

 C = annual cash flow 

 n = no. of years to build the facility 

 m = life of facility (years) 

 

 
6

17

2

10
1           11.0%

150000
   

(1 ) j
j

R i

i

  




 

  

 For n = 2, 

 

  

 
6

18

3

10
1           9.6%

150000
   

(1 ) j
j

R i

i

  




 

 

 For n = 3, 

 

 
6

19

4

10
1           8.5%

150000
   

(1 ) j
j

R i

i

  




 

 

 

Problem 3.18 

 

Let n be the payback period. 

 

PV of initial investment = $10,000 

 

PV of maintenance costs = 
1

$300(1.08)

(1.15)

jn

j
j

  

 

PV of savings =  
1

$3760(1.08)

(1.15)

jn

j
j

  

 

To find the payback period, we solve the following equation for n: 
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1 1

300(1.08) 3760(1.08)
10000 0

(1.15) (1.15)

j jn n

j j
j j 

     

 

 
1

3460
10000 0

(1.0648)

n

j
j

   

 

 
(1.0648) 1

10000 3460 0
(0.0648)(1.0648)

n

n

 
  

 
 

  

 
1

10000 54925.715 1 0
(1.0648)n

 
   

 
 

 

  n = 3.2 years. 

 

 

Problem 3.19 

 

Objective function: 

 

C = Annual cost = -Energy savings   Capital Costs (in $/yr)

(b) (a)



2
Basis : 100 ft

 

 

 Installation cost 

 

    $0.75 100 ft2 t in.   

  (ft2) (in)     = 75 t  

 

(a) Capital cost per year.  (75t) (0.30) = 21.5 t 
$

yr
 

 

 Heat loss savings are Q without insulation minus Q with insulation 

  





Q = 

 

U Btu 

 

   100 ft2 

 

(500-70)F 

 

= 43,000 U
Btu

hr
 

(hr) (ft2)( F)    

    

 

Overall heat transfer coefficient change gives Q 
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1 1
with:        0.25 0.278 1 1

4 (12)(0.30)
0.25 0.25 0.278

1 1
without:                        = 0.25

4

U
t

t
U

t

U

 


       
 




 

 

Heat savings per year 

 

 
6

$0.60 (8700)(43,000) 1.11 Btu

10 Btu (0.25 0.278 ) yr

t

t

 
 

 
 

 

(b)                  = 
$249.2 $

0.25 0.278 yr

t

t
 

 

Constraints 

 

 t > 0 C > 0 

 

To get optimal t, minimize C so set 0
dC

dt
  

 

  

 2

69.28 249.2
21.5 0

(0.25 0.278 ) (0.25 278 )

     7.02in

t

t t

t


  

 



 

 

 

Problem 3.20 

 

 

(a) In this problem recognize that an exchanger of infinitely large area will maximize 

the energy recovery in the stream but at an exorbitant cost.  Hence we expect 

there to be a trade-off between capital cost and energy savings.  The variables to 

be optimized include T2 and A as well as the amount of steam generated, wsteam.  

First determine if any equality constraints exist in the problem.  The energy 

balance for the steam generator is 

 

   2
2

2

(400 )
(400 )

ln[150 /( 250)]oiloil p

UA T
w C T

T


 


   (a) 

 

 or 
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2ln[150 /( 250)]oiloil p

UA
w C

T



     (b) 

 

  The water converted to steam is obtained from 

 

   2(400 )
oiloil p v steamw C T H w        (c) 

 

 where Hv = 950 Btu/lb and wsteam = lb/h.  Recognize that Eq. (b) relates the 

variables T2 and A, hence they are not independent.  In addition, Eq. (c) relates T2 

and wsteam.  Therefore we can express all costs in terms of T2 and with the aid of 

Eqs. (b) and (c).  The capital cost is (dropping the “oil” subscript): 

 

   o

2

25 150
(25)( ) ln

100 250

pwC
I A

T

 
   

 
    (d) 

 

  The annual credit for the value of the steam is 

 

  6

2

$ Btu h
2x10 (400 ) 8000

year
pF wC T

Btu h

       
       

      
 

 

  2

$
[0.016] (400 )

year
pF wC T

 
  

 
     (e)  

 

 Note that wCp for the oil appears in the expressions for both F and Io and thus 

cancels.  The profitability ratio is therefore 

 

  2

o 2

0.064(400 )
ROI

ln[150 /( 250)]

F T

I T


 


     (f) 

 

  The maximum value of ROI must be found numerically because of the 

complicated expressions appearing on the right-hand side of (f).  The optimum is 

at T2 = 400F, which is the same temperature as at the inlet, corresponding to A  

0.  At the  optimum an extremely high rate of return occurs (r = 9.6), which can 

be found by applying L’Hopital’s rule to the above expression for ROI when T2 = 

400F.  This outcome, of course, is an unrealistic answer, since it suggests the 

optimum return consists of an exchanger with infinitesimal area!  Why does this 

result occur?  The difficulty with using ROI as an objective function is that 

nothing in Eq. (f) constrains the area to be above a minimum size; in fact, as T2  

 400, the investment Io is decreasing faster than is the numerator, leading to a 

maximum value at T2 = 400.  If T2 > 400, the rate of return becomes negative.  

 

 From the above example, you can see that the ratio of F/Io may yield unrealistic 

results for an optimum.  This occurs here because Io  0 for T2  400.  Consider 
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reformulating the problem using the net present value (NPV) of before-tax profits as an 

alternative objective function.  Use of NPV means that a rate of return on the capital is 

specified. 

 

   
(1 ) 1

NPV
(1 )

n

on

i
F I

i i

  
  

 
      

 

or 

 

   NPV o

F
I

r
   

 

 Since r is fixed by the assumptions about i and n, an equivalent criterion is 

 

   
oNPVr F rI    

 

 Note that this modified objective function ( NPV)r  is equivalent to the use of the 

annualization factor (repayment multiplier) to obtain the capitalization charge.  In 

problems in which you seek to minimize only costs rather than maximizing profit 

because there is no stated income, then F is negative.  An example arises in 

optimizing pipe size to minimize pump operating costs and pipe investment costs.  

Instead of maximizing NPVr  , you can minimize ( NPV)r  . 

 

(b) Let us use the net present value analysis to determine the optimum value of T2.  

Assume an interest rate for capital of 15 percent and a period of 10 years.  The 

objective function for net present value (to be maximized with respect to T2) is 

 

  
o

6

2   2x10 (400 )(8000) 25 ($ / year)p

f F rI

wC T r A

 

    
   (j) 

 

 By elimination of A in terms of T2 , Eq. (b) gives: 

 

  2

2

150
(0.016) (400 ) 25 ln

250

p

p

wC
f wC T r

U T
  


   (k) 

 

 Note that wCp is a common factor of the two terms and will not be involved in 

calculating T2.  We can differentiate Eq. (k) and set df/dT2 = 0: 

 

   
2

d 25 1
0   0.016

d 100 250

f r

T T
  


    (l) 

 

   2 250 15.62T r        (m) 
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 If r = 0.2 (n = 10, i = 15 percent in Table 3.1), then T2 = 253.1F, a 3.1 approach 

(somewhat lower than the normal approach temperatures of 5 to 10F 

recommended in design manuals).  The optimal approach temperature, according 

to the analysis in this example, depends on U, r, and the ratio of the value of 

steam to the cost-per-unit area for the heat exchanger. 

 

 To calculate the annual profit before taxes, we compute the value of 

 F = (2 x 106)(wCp)(400 – T2)(8000), which would be $176,280.  The optimum 

value of A is 2905 ft2, so the original investment is $72,625.  The payout is, 

therefore, less than one year.  Remember that while higher values of ROI can be 

obtained by selecting T2 closer to 250F, maximization of ROI leads to the 

meaningless solution obtained previously. 

 

 While the rate of return on investment (F/Io) did not lead to meaningful results, 

there are some conditions under which this criterion can be employed effectively to obtain 

a reasonable value for the optimum.  For example, if the heat transfer area costs were 

assumed to be Io = I’o + 25 A (I’o is the fixed installation cost for the exchanger), then 

maximizing F/Io would yield a more realistic result for T2.  Note that at T2 = 400F, ROI = 

0.0, rather than 9.6 obtained earlier for Eq. (f).   Another case which gives a meaningful 

answer for ROI occurs when several projects are considered simultaneously with a 

constraint on total capital expenditure.  If $100 million is to be invested among three 

projects, then an overall rate of return for the three projects, defined as (F1 + F2 + F3)/(I1 + 

I2 + I3), can be formulated.  The optimum, when calculated, should be meaningful because 

it is guaranteed that $100 million will be committed to plant investment.  In fact, I1 + I2 + 

I3 in this case is a constant value ($100 million), hence we simply optimize F1 + F2 + F3. 

 

 Decisions made on the basis of the internal rate of return often favor investment in 

smaller facilities rather than large plants because the ratio of profit to investment is 

optimized. 

 

 

Problem 3.21 

 

 The last sentence is not clear, but in general the statement is correct. 

 

 

Problem 3.22 

 

 Refer to P3.5.  Set P = 0.  The answer is 10.13%. 

 

 

Problem 3.23 

 

 The payback period is calculated as follows: 
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cost of investment

PBP
cash flow per period

  

 

  
$30,000

30 months
$1000

  

 

Problem 3.24 

 

 The return on investment in percent is calculated as follows: 

 

  

net income (after taxes)
ROI 100 

cost of investment

$5000
            (100) 10%

$50,000





 

 

 

Problem 3.25 

 

 Since all alternatives have acceptable individual IRR’s, start with the one with the 

lowest-investment (A) and look at the incremental return on incremental investment in 

going to the next-larger investment alternative (B).  This would be $12,000 investment 

with annual return of $3,100.  The incremental IRR of this is 22.4%.  This calculation can 

be done either with sequential cash flow entry or by trial-and-error solving the equation 

NPW = $12,000 + $3,100(P/A,i%,10) = 0.  Because 22.4%>18%, B becomes the preferred 

case.  You then calculate the IRR of the incremental investment of $5,000 going from B to 

C; this is 42.7% so C becomes the preferred case.  Going from C to D costs $5,000 but the 

return of $500 per year is insufficient to justify that investment; C remains the preferred 

case.  Going from C to E involves an investment of $15,000 that generates $2,900 per 

year.  The IRR of this is 14.2%, which you reject because it is less than 18%.  Thus C is 

the preferred alternative. 

 

 

Problem 3.26 

 

All of the outflows are negatives.  Choose Alternative D3 because it has the lowest 

negative PV. 

 

 

Problem 3.27 

 

(a) Return an investment (ROI) = 
0.162net savings $162,000

or 16.2%investment $1,000,000
   
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(b) 
10

6

1

162,000
IRR : 10 PV

(1 )k
k i

 


   
(1 ) 1n

o

F i
i

I i
 

 
 

 

 
10

6 10

162,000 (1 )
.162 so 10% from Table 3.1

10 (1 ) 1

i i
r i

i


   

 
 

 

 

Problem 3.28 

 

 Find the present value of each option (use cost as the criterion).  For depreciation 

use the MACR table or just 10% per year.  Interest is .15 per year under one assumption: 

 

Oil 

 

 
 

10

1

1

1
PV 1,888,000 1,574,000      .15

(1 )k
k

i
i

  


  

of costs 

 

 

1

1 1
From Table 3.1     0.200 so 5.00

(1 )

PV $9,758,000   (cost)

k
r

r i
  






 

 

Rotary Air 
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10

1

1 1
PV 2,420,000 1,517,000      = .15    5.00

(1 )k
k

i
i r

  


  

 2PV $10,000,000  

 

Too close to choose 

 

   Alternate Solution 

 

 Assume return on investment means ROI as in text 

 

 
net income after taxes ($/yr)-assumed constant

ROI
initial investment ($)

  

 

0

NI net income sales costs
    

initial investment initial invesment initial investmentI
    

 

 If sales are fixed, the smallest costs/initial investment will have the biggest ROI 

 

Oil 

 

 
o

NI $1,570,000
  0.83

$1,888,000I
   

 

Rotary Air 

 

 
o

NI $1,517,000
0.63   smallest

$2,420,000I
   
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 ROI may be < 15% depending on sales. 

 

 Another solution:  Calculate the interest rate given present value and payments. 

 

 

Problem 3.29 

 

(a) What is the PV of your base case?  $43,087. 

 

PV = -$140,000 + $40,000 + $25,000 = -$140,000 + $12,745 + $170,342 

 

(b) You calculate the PV of –50% annual savings to be -$42,084 and the PV for +50% 

annual savings to be $128,257.  The PV at –50% life is -$8,539.  What is the PV at 

+50% life?  $72,229. 

 

PV = -$140,000 + $40,000 + $25,000 = -$140,000 + $7,194 + $205,035 

 

(c) Sketch the PV sensitivity diagram for these two variables below.  To which of the 

two variables is the decision most sensitive?  Savings. 
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CHAPTER 4 

 

Problem 4.1 

 

(a) continuous over – < x <  

 

(b) discrete 

 

(c) continuous over 0 < xs < 1 and 0 < xD < 1 if xs and xD are mole fractions. 

 

 

Problem 4.2 

 

In all cases, i is a continuous variable, and n is a discreet variable. 

 

 

Problem 4.3 

 

n may be treated as a continuous variable when small changes in n do not affect the 

average unit cost significantly.  This happens when: 

 

(i) n is very large, so that average unit cost   V (limit n  ) 

 

(ii) F is very small (limit F  0).  

 

 

Problem 4.4 
 

   ( / ) ( )
100(1 ) 100(1 )

/

S V F n Sn Vn F
R t t

I n I

   
     

 

100(1 )( )
  function of 

dR t S V
n

dn I

 
   

 

Thus, R increases linearly with n and there is no stationary maximum.  The same is true 

when n is discreet. 

 

 

Problem 4.5 

 

(a) Minimize: 

1

T

2

3

( ) [3 2 1]     or ( )

x

f x f

x

 
 

 
 
  

x x a x  
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 Subject to: 

 

 

1

2

3

2 3 1 1 0
( )           or ( )

1 1 3 1 5

x

x x

x

 
    

       
     

g g x Dx c  

 

(b) Maximize:  

1

T

2

3

( ) [5 10 12]     or ( )

x

f x f

x

 
 

 
 
  

x x a x  

 

Subject to: 

 

1

2

3

200
15 10 10

0
( ) 1 0 0

0
0 2 0

0
0 0 3

x

x

x

 
         

     
    
     

   

g x  

 

1

2

3

( ) [10  25  20] 300

x

x

x

 
 

 
 
  

h x  

 

or 
( )

( )

 

 

g x Dx c

h x Ex d
 

 

 

Problem 4.6 

 

 

The function has the form 

 
T T( )f   x a x b x cx  

 

Let a = 3 
 

 
1

2

2 2 1
      

3 1 6

x

x

     
       

    
x b c  

 

 
1 1

1 2 1 2 1 1

2 2

2 1
[ ]  [(2 )( 3 )]

1 6

x x
x x x x x x

x x

    
      

     
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2 2

1 1 2 1 2 22 6x x x x x x     

 

or 

  1 2 1

2

3 1 3/ 2 1

( ) 1  1 2 1

3/ 2 1 6

f x x x

x

   
   


   
      

x  

 

 

Problem 4.7 

 

(a)  
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(b)  

 
 

(c) 
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Problem 4.8 

 
3 2 2 2

1 2 1 2 1 2( ) 2 4 3f x x x x x x    x  

 

 

2 2

1 1 2 2

1

2

2 1 2 1

2

( )
6 2 4 0     (1)

( )
2 2 4 0     (2)

f
x x x x

x

f
x x x x

x


   




   



x

x

 

 

(2)  1
2 2

1

2

1

x
x

x
 


 

 

(3)  

2

2 1 1
1 1 2 2

1 1

2 2
3 2 0

1 1

x x
x x

x x

   
     

    
 

  

   5 4 2 3 3

1 1 1 1 1 1 13 6 3 4 4 4 0x x x x x x x       

 

   5 3

1 1 1 13 6 3 4 0x x x x     

 

  1 20     0x x      is one solution 

 

(4) 
5 3

1 1 13 6 3 4x x x    

 

Only one other solution exists.  The Newton-Raphson method was used to check 

the roots of the Equation (4) from different starting points (0.01,05,1.  They all go 

to x1 = 0.65405 100) 

 

 Values of 

     x1 

right hand 

side of 

equation 

   

 0.6541 4.000632    

 0.65405 3.99996    

 0.654053 4.0000003    

 

 

x2 = -0.9161783  

 

Thus, 1 2

0 0.654053
and 

0 0.9161783

   
    

   

* *x x  
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Next, check the Hessian matrix. 

 

For * 0x  

  

2

1 2 1 2

2

1 2

12 2 4 4

4 4 2 2

x x x x

x x x

  
  

  
H  

 

       = 
0 4

4 2

 
 
 

 is not positive or negative define, hence x is a saddle point. 

 

 The eigenvalues are (0 )(2 ) 16 0      

               

2 2 16 0

4 4 4(16)
2 1 16

2

 



  

 
   

 

 

 one is positive and one is negative. 

 

 For *
0.654053

0.916173

  
 
 

x  

 

   
.5274 1.60308

is positive definite
1.60308 2.85557

 
  
 

H  

 

 hence this x is a local minimum that is the global minimum 

 

 An alternate solution is to plot f(x) vs. x1 and x2, and use the graph to reach a 

conclusion.  The contours in the x1=x2 plane will yield the results calculated above. 

 

 

Problem 4.9 

 

(1) 
T

2 4

[5  2  10]

 to  satisfiedg g

x
 

 

5(15) + 10(2) + 10(10) = 195 < 200 g1     satisfied 

 

10(5) + 25(2) + 20(10) = 300     h1 is satisfied 

 

(a) is a feasible point 

(b) is an interior point 

 

(2) x = [ 10    2    7.5)T 

 



 7 

  g2 to g4 satisfied 

 

 15(10) + 10(2) + 10(7.5) = 245 > 200 , g1 is not satisfied 

 

(a) hence not a feasible point 

(b) is an exterior point 

 

(3) x = [ 0  0 0]T 

 

 g2 to g4 satisfied (boundary points) 

 

(a) h1 is not satisfied, hence not a feasible point 

(b) g1 = 0 hence is a boundary point, not an interior or exterior point 

 

 

Problem 4.10 
 

(a) 
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(b) 

 
 

  

 (c)  
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Problem 4.11 

  

(a) 

 
 

(b) 

2 2 2

1 1 2 3

2 1 2 3

( ) 0

( ) 0

h x x x x

h x x x x

   

   
 

 

 Feasible region is the origin 

 

(c) 
2

1 1 2

2 1 2

( ) 2 0

( ) 4 0

g x x x

g x x x

   

   
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(d) 

2 2

1 1 2

1 1 2

2 1

3 2

( ) 3

( ) 2 0

( ) 0

( ) 0

h x x x

g x x x

g x x

g x x

  

   

 

 

 

 

 
 

 

Problem 4.12 

 

For the first constraint: 

 

 
1 2 2 2

1

-4

( ) (0.947) 2(0.207) 3( 0.0772) 1 0?     max

          = 3.9x10     ok

h      x
 

 

 

2 2 2 2

1

-3

( ) (0.534) 2(0.535) 3( 0.219) 1 0?    min

           =1.5x10    probably ok

h      x
 

 

For the second constraint: 

 

 
1

2

-3

( ) 5(0.947) 5(0.207) 3( 0.0772) 6 0?    max

           =1.6x10   ok

h      x
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2

2

-3

( ) 5(0.534) 5(0.535) 3( 0.219) 6 0?    min

           =2x10   probably ok

h      x
 

 

 

Problem 4.13 

 

The point (1, 1) can be proven to be a local minimum by the methods described in 

Chapter 8.  The question is:  how can it be shown to be the global minimum for the 

problem?  Some ways are: 

 

(1) Start a numerical search from several starting points. 

 

(2) Plot  the contours of f(x), an ellipse, in the x1-x2 plane along with the 

function g(x) = x1
2 + x2

2, a circle, and locate the local minimum at x* =  

[1 1]T.  Then ascertain if any other minimum exists by examining the 

 graph. 

 

 

 

Problem 4.14 

 

If the problem is a convex programming problem, that is if 

 

  f(x) is convex 

 

  g(x) are concave (form a convex set) 

 

Another possibility is if f(x) is unimodal in the feasible region. 

 

 

Problem 4.15 

 

(a) 

2 2

1 1 2 2 1 2

1 2

1 2

2 2 3 7 8 25

4 2 7 4  2
   

2 6 8 2  6

f x x x x x x

x x
f

x x

     

    
     

    
H

 

 

6 and 4 are
4  2

0, 20 0  is positive definite
2  6

    H  

Thus, f is both convex and strictly convex. 
* [ 1.3  0.9]    (not required)T  x  
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(b) 
5 5 2 5

2

, 5 , 25

0 for 

x x xf e f e f e

f x

    

     
 

f is both convex and strictly convex. 

 

 

Problem 4.16 
 

(a) 

22

1 2 2

1 2 2

1 2 2

( )

2( ) 2 2
      is pos. def.

2( ) 2 2 4

f x x x

x x
f f

x x x

  

    
    

     
 

 

strictly convex 

 

(b) 

2 2 2

1 2 3

1

2

2

3

2 2 0 0

2     0 2 0   is pos. def.

0 0 22

f x x x

x

f x f

x

  

   
   

 
   
     

 
 

strictly convex 

 

(c) 

1 2

1 1

22

2 0
      is pos. def. in the finite plane

0

x x

x x

xx

f e e

e e
f f

ee

 

   
    

  
 

 

strictly convex in the finite plane 

 

 

Problem 4.17 

 
1 2

1 1

22

0
   

0

x x

x x

xx

f e e

e e
f

ee

 

   
    

  
H  

 

H is positive definite, because ex > 0 everywhere on the finite real axis.  Thus, f is 

strictly convex over finite values of x1 and x2, and thus convex. 
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Problem 4.18 
 

 

 We will show that 

 

  
1 2 1 2

1 2

(1 ) (1 )

for all , ,  and 0 1

x x x x

x x

   



    

 
 

 

1 2 1 2Let (1 )  and (1 )L Rf x x f x x          

(a) 1 20,  0.x x    This means that 

1 2(1 ) L Rx x f f       function is convex. 

 

(b) 1 2 20,  0.  We have  is conveL Rx x f x f f x      

 

(c) 1 20,  0.x x    We have 1 2(1 ) 0 and 0x x    . 

1 2 1 2(1 ) (1 )( ) .Rf x x x x            fL must be less than fR because the term 

(1- )x1 +  x2 involves subtraction of (1- ) |x1| from  x2.  Thus fL < fR, and f is 

convex for 0 <   < 1. 

For 1 10,  (1 ) (1 )L Rf x x f         

For 2 21,  ( ) )L Rf x x f       

f is convex for 0 <  <1. 

(d) 1 2 1 2 1 20,  0.  (1 ) [(1 )( ) ( )]Lx x f x x x x               

  1 2(1 )( ) ( ).Lf x x       

 1 2 1 2(1 ) (1 )( ) ( ) .R Lf x x x x f             

 f is convex. 
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Problem 4.19 
 

 

All the constraints are linear, and thus 

concave functions.  The region is thus 

convex.  It is also a closed region as seen 

from the figure. 

 

 

Problem 4.20 

2 2

1 1 2 2 1 2( ) 9 0,    1 0g x x g x x           

1 2

1 1

2

2 2 0
  

2 0 2

x
g g

x

    
    

   
   eigenvalues are –2, -2  g1, is strictly concave; g2 is 

concave because it is linear.  Thus, the two constraints form a convex region. 

 

Problem 4.21 

2 2

1 1 2 9 0g x x     

1

1 1

2

2 2 0
   

2 0 2

x
g

x

    
     

   
H eigenvalues are –2, -2  g1 is strictly concave. 

 
2

2 1 2 1 0g x x     

  

2 2

2

1 0 0
   

2 0 2
g

x

   
        

H  eigenvalues are 0, -2  g2 is concave. 

  

 3 1 2 1 0g x x      

 

 3 3

1 0 0
   

1 0 0
g

   
     

   
H  eigenvalues are 0, 0.  g3 is concave and convex. 
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Thus, the region is convex.  That it is closed can be seen from the figure. 

 

 

 
 

 

Problem 4.22 

 

 1 2( ) ln ln      ln  is not defined for 0i if x x x x x    

 

 

2

1 1

2

2 2

11
0

( )      ( )
1 1

0

x x
f x x

x x

  
  
    
  

  
   

H  

 

 For any 0, ( )ix  H x is neg. def.  At 0, ( )ix  H x is undefined, but the conclusion 

is that  f(x) is concave. 
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Problem 4.23 

 

 
 

 

Problem 4.24 

 

 If the region is convex, all the constraints must be concave, i.e., the Hessian 

matrix must be neg. def. 

 

(a) 
2 2

1 2( ) 9h x x x    

 
2 2

1 2 2 2

1 2 1 2

2 2  2 2
h h h h

x x
x x x x

   
   

   
 

 

2   0

0   2
H

 
  
 

is pos def. And hence h(x) is not 

concave (it is convex). 
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Answer:  

No. 

 
 

 

 

Problem 4.25 
 

 The Hessian of the each term of  (x) is pos def. or pos. semi-def. If the term is 

convex.  The Hessian of a sum of convex terms is the sum of the individual Hessians, 

hence the matrix of   (x) is convex.  For example: 

 

 
2 2

1 2( )f x x x  

 

 H of the first term alone is  
2 0

0 0

 
 
 

 

 

 H of the second term alone is  
0 0

0 2

 
 
 

 

 

and the sum of the two H’s is  
2 0

0 2

 
 
 

. 

 

 

Problem 4.26 
 

Note the solution is wrong if x = 0. 

 

Determine if f(x) is convex and 1( ) 0g x   is convex. 

 

The Hessian matrix of f(x) is  
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3 2 2

1 2 1 2

2 2 3

1 2 1 2

400 200

( )
200 400

x x x x
H x

x x x x

 
 
 
 
 
 

 is f(x) convex? 

 

The principal minors are 

 

 det H = 
3 3 2 2 2 2

1 2 1 2 1 2 1 2

400 400 200 200

x x x x x x x x

      
      

       

 > 0 

 

  

 
3

1 2

400

0x x 
  and  

3

1 2

400
0

x x
   for 0ix     so f(x) is convex 

 

Is the constraint g < 0 convex? 

 

The Hessian matrix of g(x) is 

 

 

3 2 2

1 2 1 2

2 2 3

1 2 1 2

600 300

( )
300 600

g

x x x x
H x

x x x x

 
 
 
 
 
 

 

 

 det 
5 4

4 4

1 2

3.6x10 9x10
0gH

x x

 
  
 

 

 

 
3 3

1 2 1 2

600 600
0 for 0     0 for 0i ix x

x x x x
     

 

so that g(x) is convex 

 

 The 0 are convex functionsix  .  Consequently, the problem is a convex 

programming problem for 0.  as 0,  ,i ix x g    but the function asymptodically is 

convex. 
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Problem 4.27 

 

(a) 
1 0

0 1

 
 
 

    positive definite 

 

(b) 
1 1

1 1

 
 
 

     neither 

 

(c) 
oil 0

3 1

 
 
 

  not symmetric hence change to
oil 3/ 2 which is not positive definite, 

3 / 2 1 so that neither is the answer

 
 
 

  

 

(d) 
1 2 1

     neither
2 1 (1 4) 3 0

    
  

       
 

 

 

 

Problem 4.28 

 

 

1 1 1

1 1 1

1 1 0

A

 
 


 
  

 

 

 
Use principal minors:

det A = 0
  delete 1st col. and row 1

1 1

1 0
A

 
  
 

 

 

 The elements on the main diagonal are positive: 1, 1, 0 

 

 Thus, none is the answer 

 

Or Use eigenvalues 

 

 

1 1 1

det 1 (1 ) 1 0

1 1 (0 )

 
 

 
 
  

 

 

(1 )[(1 )(0 ) 1] 1[1(0 ) 1 1[1 (1 )] 0                

 

1

2

3

0

2.73 same conclusion

0.73







 


 
  
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Problem 4.29 

 

 2( , )
2

f D h Dh D


   

 

 
( )

( , )
h D

f D h
D


 

   
 

 

 

 
1 1

( , )
1 0

D h 
 

  
 

H  H is not pos. def. so no minium exists (except at  limits). 

The eigenvalues of H are  
1 5 1 5

,   ,
2 2

 
 hence one is + 

and the other is -. 

 

Based on the above 

 

a. neither 

b. is continuous 

c. neither 

d. does not 

e. The trivial constraints (bounds) are linear and concave 

 

2

2

400 0
4

2

4

g D h

Dh
g

D





  

 
   

 

   
2 2 0

2 0 but 0 04

h D h

D

  
  

 
H  

   det H = -4D2 and is negative always 

   so that H is concave 

 

Thus, the constraints do form a convex region (they all must be concave). 

 

 

Problem 4.30 

 

Basis: 1 lb mol feed 

 

Income:     50 (0.1 + 0.3xA + 0.001S + 0.0001 xAS)(1) [$] 

 

Expenses:  Assume the cost of the additive is $/1b mol feed, not additive 

 

Additive:  (2.0 + 10xA + 20xA
2) (1)  [$] 
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Steam:      (1.0 + 0.003S + 2.0 x 10-6S2) (1)    [$] 

 

f = (5 + 15xA + 0.05S + 0.005xAS) – (2.0 + 0.003S + 2.0x10-6S2) 

 -(2.0 + 10xA + 20xA
2) 

 

(a) f = 1 + 5xA – 20xA
2 + 0.047S – 2.0 x10-6S2 + 0.005xAS 

 

 

6

(5 40 0.005 )

(.047 4.0x10 0.005 )

A

A

x S
f

S x

  
  

  
  

 

2

6

40 0.005

.005 4.0x10
f



 
   

 
H  

 

 

(b) H is negative definite, hence concave. 

 

The eigenvalues are –40 and –3.375x10-6 (almost zero but not zero). 

 

(c) The search region is linear because the constraints 

 

0 < xA < 1 

 

S > 0 

 

are linear, hence concave, and form a convex region. 

 

 

Problem 4.31 

 
0.286 0.286 0.286

2 1 3 2 4 3( / )  ( / )  ( / )f P P P P P P  
 

with P1 = 1 atm and P4 = 10 atm, this becomes 

 
0.286 0.286 0.286 0.286

2 3 2 31.932f P P P P
 

    
0.714 0.286 1.286

2 2 3 2/ 0.286 0.286f P P P P
 

     

2 1.714 0.286 2.2862

2 2 3 2/ 0.2042 0.3678f P P P P
 

      
0.714 0.286 1.286

3 3 2 3/ 0.286 0.5526f P P P P
  

     
2 1.714 0.286 2.2862

3 3 2 3/ 0.2042 0.7106f P P P P
  

      

0.714 1.2862

2 3 3 2/ 0.0818f P P P P
 

      
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22 2

2 2 3

22 2

2 3 3

/ /

/ /

f P f P P

f P P f P

     
  

      

H  

 

For convexity, must have 
22

2/ 0f P    (as well as some other conditions also). 
2 1.714 0.286 2.2862

2 2 3 2/ 0.2042 0.3678f P P P P
 

      
1.714 2 0.286 0.5722

2 2 3 2( / ) 0.2042 0.3678P f P P P


      

This has its lowest value at 
2 310 atm, 1 atm.P P   

1.714 22

2 2( / ) 0.1057 0.P f P      

Therefore, H is not positive semi-definite over the range 
2 31 10,  1 10,P P     and f is 

not convex over this entire range.  

 

 

Problem 4.32 
 

(a) 1

1 2

200
( ) 100f x x

x x
   

 

3 2 2

1 2 1 2

2 2

1 21 2

400 200

( )
200 400

3

x x x x
x

x xx x

 
 
 
 
 
  

H  

 

det (H) = 
3 3 2 2 2 2

1 2 1 2 1 2 1 2

400 400 200 200

x x x x x x x x

      
      

       

 

 

3 3

1 2 1 2

400 400
0 and  for 0ix

x x x x
    and asymptodically as 0.ix  ( ) is convex     (a)f x  

 

(b) 2

1 2

300
( ) 2 1 0g x

x x
   x  

 

3 2 2

1 2 1 22

2 2 3

1 2 1 2

600 300

( )
300 600

x x x x
g

x x x x

 
  

 
 
  
 

x  

3 3

1 2 1 2

600 600
0  and 0  for 0ix

x x x x
     and asymptodically as 0.ix   

so that g(x) is convex 
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Also 
concave

   0 are 
convex

ix
 

  
 

 

 

but the constraint region is not a convex region because ( ) 0g x  has to be a concave 

function for the region to be convex.  The following figure (with 1 2300 / x x  changed to 

1 230 / x x to reduce the scale) illustrate the surface for ( ) 1g x .  Note that the region 

above ( ) 1g x is not convex.  In P. 4.26 ( ) 1.g x  

 

 
 

 

Problem 4.33 

 

(a) 
2

3 2

1 1 2 12

1 2 1

( ) ( ) ( )
     2      3 1

f f f
x x x x

x x x

  
     

  

x x x
 

 

 
2 2

2

1 22

( ) ( )
2                                    0

f f

x xx

 
  

 

x x

 

 
2

13 1 0
( )

0 2

x 
  

 
H x  
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( )f x  is not a convex function for all x, hence the answer is no. 

 

(b) no: 1( )h x is not satisfied     1 + 1 4  

 

(c) yes: T [2  2]x  lies in the interior of the inequality  *

2 1 2( ) 2 2g x x   x  

 

  

 

Problem 4.34 

 
.5 .6214720(100 ) 6560 30.2 6560 30.2 19.5 23.2f P R PR P ny y         where y = 

5000R – 23PR + 5000 – 23P 

 

Differentiation gives 

 
2 2 1.5 1.38 2/ 529( 4.875 5.46592 )( 1)f P ny y R        
2 1.5 1.38/ 30.2 (112.125 125.71616 )( 1)f P R ny y R         x 

  0.5 0.38(5000 23 ) 224.25 330.832P ny y     
2 0.5/ 224.25 ( 1)f P n y R       
2 2 1.5 1.38 2/ ( 4.875 5.46592 )(5000 23 )f R ny y P        
2 0.5/ 9.75 (5000 23 )f R n y P      
2 2/ 0f n    

 

For 99,   8  and  55,  we haveP R n    

 

 

2 2 2 2

2 2 2

2 2 2 2

/ /

/ /

/ /

2

f P f/ P R f P n

f P R f/ R f R n

f P n f/ R n f n

        
 

         
         

H  

 

 

3.2 74 12.9

74 553.7 169.6

12.9 169.6 0

   
 

  
 
  

 

 

For H to be positive definite, all diagonal elements must be positive, which is not the case 

here.  Thus f is not convex at P = 99, R = 8 and n = 55.  It is therefore, not convex in 

some small neighborhood of the optimum. 
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Problem 4.35 

 

 

 

If the search is started in the vicinity of 

point A, it is likely to terminate at point L 

which is a local maximum.  The global 

maximum is at point G.  The region is not 

convex because the line segment AB does 

not entirely lie within the region, even 

though the endpoints A and B lie inside the 

region. 

 

 

Problem 4.36 

 

f() is a continuous function because it is the sum of continuous functions. 

 

If f(x) is continuos for  and '( )a x b f x  is positive for ,a x b   then 

( ) ( ).f b f a   The corresponding fact occurs for '( )f x  being negative.  On the interval 
( ) ( 1)k kx x   .   We have  

( )

1

( )
n

i

i

f x 


    

   

           
(1) (2) ( )( ) ( ) ( )kx x x          

                     
( 1) ( 2) ( )( ) ( ) ( )k k nx x x           

           
( ) ( )

1 1

( )
k n

i i

i i k

k x x n k 
  

       

 

Differentiation gives 

 

'( ) ( ) 2( / 2)f k n k k n       

 

which is negative for k < n/2 and positive for k > n/2.  "( ) 0,f    hence f is convex. 

 

 Repeat the above analysis with ic in the sum.  (Assume 0ic  ) 
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Problem 4.37 

 

 
4 3

3 2 2

*

2

(a)   20

      ' 4 3 ( 4 3) 0

               0,   3 / 4

     " 12 6

    "(0) 0        0 is a saddle point (inflection)

    "(3/ 4) 2.25 0      3 / 4 is a maximum

f x x

f x x x x

x

f x x

f x

f x

   

      



  

 

   

 

 

 
3 2

2

(b)   3 5

       ' 3 6 1 0    * 1 2 / 3

      " 6 6

     "( 1 2 / 3) 4.9 0.      1 2 / 3 is a minimum

    "( 1 2 / 3 4.9 0.     1 2 / 3 is a maximum.    

  

f x x x

f x x x

f x

f x

f x

    

        

 

      

       

 

 
4 2

3 2 *

2

(c)   2 1

       ' 4 4 4 ( 1) 0   1,   0,   1   

      " 12 4

     "( 1) 8 0     1 is a minimum

     "(0) 4 0     0 is a maximum

    "(1) 8 0         1 is a minimum    

  

f x x

f x x x x x

f x

f x

f x

f x

  

       

 

    

   

  

 

 
2 2

1 1 2 2

1 2 * T

2 1

2 2

T

(d)   8

2 8
           [0 0]

2 8

2  -8 Eigenvalues are ( 2) 8 0
         =

-8  2 or = 6,   10

         is indefinite, and  [0 0]  is a saddle point.

f x x x x

x x
f

x x





  

 
     

 

   
 

 



0 x

H

H x
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Problem 4.38 

 

 

2 2

1 1 2 2

1 *

2

T

(a)   2 3 6 4

2 2 1
      0      

6 6 1

2 0
      .  Eigenvalues are =2,  6.

0 6

       is positive definite, and -1 -1  is a minimum.  

f x x x x

x
f

x



    

    
       

   

 
  
 



x

H

H x

 

 

 

Problem 4.39 

 

 
2 2 3

1 2 2 1( ) 2 2f x x x x  x  

 

2

1 2 1

1

( )
4 3

f
x x x

x


 



x
   

2

2 12

1

4 6
f

x x
x


 


 

2

1

2 1

4
f

x
x x




 
 

 

2

1 2

2

( )
2 4

f
x x

x


 



x
   

2

1

1 2

4
f

x
x x




 
  

2

2

2

4
f

x


 


   

  

 

 
 

at (0, 0)     
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2 1 1

1   

1 2

(4 6 )  4 0   0
 

4    4 0 4

        0     4

x x x

x

 

   
       

  

H
   

 

So that probably case 10 or 11 is the outcome.  Evaluate f(x) on both sides of zero to see 

how the value of f(x) changes. 

 

 
T

1

T
1

declining ridge toward ,[1   0] ( ) 1

rising ridge toward [ 1   0] ( ) 1

xf

xf

 


    

x x

x x
 

 

T

T

[0    1]      ( ) 2

[0  1]     ( ) 2

f

f

  

   

x x

x x
 

 

 

 

Problem 4.40 

 

  
3

1 2( ) 3f x xx  

 
2

1 2

3

1

9
( )

  3

x x
f

x

 
   

  

x  

 
2

1 2 1

2

1

18 9
( )

9 0

x x x

x

 
  
  

H x  principal minors:  18 x1 x2 is not always 

definite unless xi > 0 

 

 det 
4

1 2 1(18 )(0) 81  (concave function)x x x H  

 

Get eigenvalues 

 

 
4

1 2 1(18 )(0 ) 81 0x x x      

 

 

  

42

1 2 1 2 1( 18 ) ( 18 ) 4(1)( 81 )

2

x x x x x


     
  

 

  depends on the values of x1 and x2, but at the stationary point (0, 0) 
2

1 2

3

1

9
( ( ) [ ]

  3

x x
f

x

 
    

  

0x  yields 1 2 1 20,  or  0,  anything)x x x x     
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 0i  ,  hence some degenerate surface occurs 

 

 

Problem 4.41 

 

 
2 2 3

1 1 2 2 1 2 1( ) 10 10 34f x x x x x x x      x  

 

 

2

1 2 1

2 1

10 2 3
( )

10 2

x x x
f

x x

   
   

  
x   

1( 2 6 1
( )

1 2

x   
  

  
H x  

 

 Find two eigenvalues (in terms of x1) 

 

 1( 2 6 )( 2 ) 1 0x           2

1 1(4 6 ) (4 12 ) 0x x       

 

 

2

1 1 1(4 6 ) 4 6 ) 4(1)(4 12 )

2

x x x


     
  

 

 Solve for  in terms of x1; the value of  depends on the value of x1 

 

 

Problem 4.42 

 

(a) 

12 6

( ) 4u r
r r

     
      

     

 

 

at the stationary point 

 

 
* *

12 6

* * * *

1 1
0     4 12 6 0

r r

du du

dr dr r r r r

     
          

     

 

 

 

1/ 6

*

1
   

2r

  
  
 

  * 1/6  2   r   

 

 

(b) 
*

12 62

22 * *2 * *

1 1
4   156 42

r

d u

dr r r r r

     
      

     

 

 

 
23

72
   0 as long as > 0

2 

 
   

 
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 The Lennard-Jones potential has a minimum at 
*r  

 

 

(c)  

2

* 1 1
( ) 4   

2 2
u r

  
      

   

 

 

 

 

 

 

 

 

Lennard-Jones potential 

 

 

 

 

Problem 4.43 

 

The solution of 2( ) 0,  or y x a x a     is misleading.  The necessary condition is 

/ 2( ) 0dy dx x a    

that coincidentally corresponds to the solution of the equation.  For 
2 4 16,   / 2 4 0z x x dz dx x       

that differs from 
2 4 16 0.x x    

2 3x j   does not satisfy 2 4 0,x  and is thus not the minimum.  2x   is the 

minimum. 

 

 

Problem 4.44 

 

No. ( )f x  is not differentiable at * 0x   where the minimum of ( )f x  is located. 
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Problem 4.45 

 

(a) 
2 3 2

1 2 1 2 26 6 3f x x x x x     

 

1 2 *

2

2 1 2

12 6 0 1/ 2
    or

0 13 6 6

x x
f

x x x

     
         

      
0 x  

 

2

12 6

6 6 6x

 
  

 
H  

 

at  
T*

12 6
0 0 ,

6 6

 
   

 
x H  

 

2

12 6
12 and 6 are greater than 0  ; 36 0.

6 0
i

 
      

 
 

H is positive definite, and [0 0]T is a minimum 

 

At  
T*

12 6
1/ 2    1 ,  

6 0
x

 
    

 
x H  

2

12 6
12 and 0 ;  36 0.

6 0
i        

H is indefinite, and   
T

1/ 2   1  is a saddle point. 

 

 

(b) 
2 2 2

1 1 2 1 2 3 3 2 3 23 6 6 2f x x x x x x x x x x         

 

1 2

*

2 1 3

3 2

6 6 6 4 /17

2 6 1     21/17

1/174 1

x x

f x x x

x x

    
   

        
   
       

0 x  

 

6 6 0

6 2 1

0 1 4

 
 


 
  

H  

 

2

6 6 6 0 2 1
6,2,  and 4  ; 24    24,     7;

6 2 0 4 1 4
i         
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3 *

6 6 0
 is indefinite, and

6 2 1 102   
 is a sadlepoint

0 1 4

   
H

x  

 

(c) 
2 2

0 1 1 2 2 1 3 2 4 1 2f a x a x a x a x a x x      

 

0 3 0 4

2

0 2 1 4 2 2 3 4*

1 3 2 4 1 0 2 0 4

2

2 3 4

2

2 4
0    

2 2

4

a a a a

a a x a x a a a
f

a a x a x a a a a

a a a

  
                 
 

 

x  

 

2 4

4 3

2

2

a a

a a

 
  
 

H  

 

H must be pos. def. to get a minimum and neg. def. to get a maximum.  

Otherwise, x* is a saddle point. 

 

For x* to be a minimum, must have 
2

2 3 2 3 40,  0,  4 0a a a a a    . 

 

 For x* to be a maximum, must have 
2

2 3 2 3 40,  0,  4 0a a a a a    . 

 

Problem 4.46 
 

 

The necessary and sufficient conditions are  

 

1) f(x) is twice differentiable 

 

1

1

2

2

2 2

2 2

1 2

2( 8)

2( 5) ok

  2     2

f
x

x

f
x

x

f f

x x


  

 
 

  
 

 
 

  

 

 

2) 

*

1 1*

*
2 2

2( 8) 0 8
( )        

2( 5) 0 5

x x
f

x x

   
   

   

0x  ok 
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3) *( )is pos def.H x  

 

2 0

0 2

 
  
 

H  which is pos. def.   ok 

 

 

 

Problem 4.47 
 

 

The stationary points of 4 21 1
( )

4 2
f x x x   are obtained from ' 3( ) 0 1 0f x x     

 

Factor to get: ( 1)( 1) 0x x x    

 

Solutions: 0,   1,  1x x x     

 

To identify status of these points determine "( )f x  at each point 

 

*"( ) 3 1f x x     

0 :    0 1 1  max

1:    3 1 2    min

1:  3 1 2   min

x a

x a

x a

   

  

   

 

 

 
 

 

Problem 4.48 

 
3 2 2 2

1 2 1 2 1 2( ) 2 4 3f x x x x x x    x  
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2 2

1 1 2 2

1

6 2 4  
df

x x x x
dx

    

 

2

2 2 1 1

2

2 2 4  
df

x x x x
dx

    

 

For an optimal solution 

 

2 2

1 1 2 2

1

0 6 2 4
df

x x x x
dx

     

 

2

2 2 1 1

2

0 2 2 4
df

x x x x
dx

     

 

An obvious solution: 1 2( , ) (0,0)x x   

 

Another solution: 1 2( , ) (0.654, 0.916)x x    

 
2

1 2 1 2

2

1 2 1

12 2 4 4
( )

4 4 2 2

x x x x
x

x x x

  
  

   

H  

 

0 4
(0,0)

4 2

 
  
 

H  

 

 ( )(2 )  16 0          or    2 2  16 0     

 

The eigenvalues are 

 

2 68
2 4 64

2


  
      

 

1 5.123    2 3.123    

 

This is a saddle point 

 

For the other point  

 

9.53 1.60
(0.654, 0.916)

1.60 2.86

 
   

 
H  

 

 det( ) 24.7H  
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The eigenvalues are 

 

 (9.53 )(2.86 ) 2.56 0       or  2 12.39 24.70 0      

 

1

12.39 7.40
9.89

2



   

 

2 2,  0    the function is strictly convex at (0.654, -0.916) 

 

 

Problem 4.49 

 
2

2

1 1

0 2   always+

( )    0 1    '( ) 2    always

1  alwaysx x

x x x

f x x x f x x

e x e 

    
 

     
    

 

 

Look at '( )f x and note that there is one minimum.  Or, plot the function 

 
In either case you can determine that the function is not unimodel. 
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Problem 4.50 

 

 

Is * T[ 0.87 0.8]  x  a maximum of 
4 3 2

1 2 1 2( ) 12 15 56 60f x x x x    x  

 

See if ( )is convexf x  

 

 

3

1 1

2

2

(4   30 )
( )

(36 56)

x x
f

x

 
   

  

x  

 

 

2

1

2

12 30 0
( )

0 72

x

x

 
    

 
H x  

 

Apparently f  0 at the proposed solution!  Hence x* is not a maximum.  

 

 Introduce x* into H(x) 

 

 *
20.917 0

( )
0 57.6

 
    

 
H x  

 

 H(x*) is neg. def., but x* is not a maximum even if H is neg. def. at the point. 

 

 

Problem 4.51 

 
3( )f x x  

Differentiate ( )f x  
2' 3    0f x x   

          2' 3    0f x x    

 
"   6     0        '''   6     0

 " 6     0         " 6     0

f x x f x

f x x f x

   

     
 

 

 

But because the derivatives are decontinuous at x*= 0, even though the function is twice 

differentiable, you cannot demonstrate that the necessary and sufficient conditions are 

met because the derivative is not defined at x* = 0. 
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CHAPTER 5 

Problem 5.1 

 

 
* 2( ) 1.5f x e x   

 

 
 

A local maximum occurs between 0x  and 1x  .  Consequently if you start to bracket 

the local minimum at values of 1x   and use reasonable step sizes, you can bracket the 

local minimum, but if you start with values of x before the local maximum occurs, you 

will most likely proceed to  x  (the global minimum). 



 2 

 

Problem 5.2a 

 

(a) * 2( ) 1.5f x e x   

 

 
 

 

The minimum will be reached from any starting point. 

 

 



 3 

 

Problem 5.2b 

 

 

(b) 2( ) 0.5( 1)( 1)f x x x    

 

 
 

No matter where you start, the minimum (at  ) cannot be bracketed. 

 



 4 

Problem 5.2c 

 

 

(c) 3( ) 3f x x x   

 

 
 

Because both a local minimum and a global minimum (at  ) exist, the remarks in P5.1 

apply here. 



 5 

Problem 5.2d 

 

 

(d) 2( ) 2 ( 2)( 2)f x x x x    

 

 
 

Because this function has two minima, and one maximum, various starting points and 

step sizes will yield different results. 

 



 6 

Problem 5.2e 

 

 

(e) 6 5 4 3 2( ) 0.1 0.29 2.31 8.33 12.89 6.8 1f x x x x x x x        

 

 
 

 

A large scale figure shows one minimum, but a small scale figure shows many minima 

and maxima exist.  Starting near x = 0 you would reach the local minimum shown in both 

figures. 

 



 7 

 

Problem 5.3 

 

 Use the analytical derivative to get the solution by which the numerical methods 

can be checked. 

 

 

4

3

2

Minimize : ( 1)

                 ' 4( 1)         1 is a solution of ' 0

                 " 12( 1)

                ''' 24( 1)

f x

f x x f

f x

f x

 

   

 

 

 

The fourth derivative is an even number, so you have a minimum as ""f  is 

positive.  You can never have a maximum as "f  is pos. def. at all x except x = 1.  

 

   "" 24f   

 

 The figure for the second derivative looks as follows 
 

 

 
 

Bracket the minimum 

 

 4( 1)f x   
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 x 0 0.5 1 1.5 0.95 1.05  

 f 1 0.0625 0 0.0625 6.25x10-6 6.25x10-6  

 

A bracket is: 0.95     1.05x   

 

(a) Newton’s method (using finite differences instead of analytical derivatives) 

 

If you use 00.5  and  0h x   at the start, the relation is: 

 

 
 

1 0

2

( ) ( ) / 2

( ) 2 ( ) ( ) /

f x h f x h h
x x

f x h f x f x h h

  
 

   
 

4 4

4 4 4 2

(0 0.5 1) (0 0.5 1) /(2)(0.5)
0

(0 0.5 1) 2(0 1) (0 0.5 1) / 0.5

       
        

 

 

It is better to use a bracket value instead of x0 = 0, say use 0 0.95x   

 

 

1

2

3

4

5

6

7

8

9

10

min

0.9738

0.9867

0.99336

0.9967

0.99835

0.99917

0.99959

0.9998

0.9999

0.99995

etc.

1

x

x

x

x

x

x

x

x

x

x

x























 

 

(b) Secant (Quasi-Newton) method 

4

3

( 1)

' 4( 1)

f x

f x

 

 
 

 

 * '( )

'( ) '( ) /( )

q
q

q p q p

f x
x x

f x f x x x
 

   

 

 

    1.05     0.95q px x   

 

 
3

1

3 3

4(1.05 1)
1.05 1

4(1.05 1) 4(0.95 1) /(1.05 0.95)
x


  

     
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 2 1x   

 

 The minimum xmin = 1 

 

 

Problem 5.4 

 
26.64 1.2f x x    

 

The precise values at the solution will depend on the method used. 
 

The final interval is [0.5917, 0.6049], and f = 6.9999 with x* = [0.598  0.600]T. 

 

 

 

Problem 5.5 

 

1. The problem has no minimum 

 

2. It has a minimum but 

a. A bracket on the derivative of f (+ and -) is not maintained. 

b. Numerical and round off errors gives nonsense numbers. 

c. The function was not unimodel. 

 

3. The bracketing procedure at the start is not successful in bracketing a minimum. 

 

 

Problem 5.6 

 
4( 1)f x   

 
2 2 2 2 2 2

2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

( ) ( ) ( )1

2 ( ) ( ) ( )

opt x x f x x f x x f
x

x x f x x f x x f

     
  

     
 

 

1 1

2 2

3 3

0.0      1.0

0.5     0.0625

2.0     1.0

x f

x f

x f

 

 

 

 

 

 Iter. Points used       xopt       fopt Point to be 

discarded 

 

 1 
1 2 3, ,x x x  4 1.0x   4 0.0f   1x   

 2 
2 3 4, ,x x x  5 0.833x   4

5 7.7x10f   2x   
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 3 
3 4 5, ,x x x  

6 0.9194x   5

6 4.2x10f   5x   

 4 
3 4 6, ,x x x  

7 0.9600x   6

7 2.6x10f   6x   

 5 
3 4 7, ,x x x  

8 0.9800x   7

8 1.6x10f   7x   

 6 
3 4 8, ,x x x  

9 0.9900x   8

9 1.0x10f   8x   

 7 
3 4 9, ,x x x  

10 0.9950x   10

10 6.2x10f   9x   

 8 
3 4 10, ,x x x  11 0.9975x      

 

  * 0.9975x   

 

 

Problem 5.7 

 
4

3

( 1)

4( 1)

f x

g x

 

 
 

 

2
2 2 1

2 1

( )
2

opt g w z
x x x x

g g w

  
   

  
 

 

1 2 2 1 1 2

2 1/ 2

1 2

1

2

3( ) /( )

( )

0.5

2.0

z f f x x g g

w z g g

x

x

    

 




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 Iter. Points used       optx        Point discarded  

      

 1 
1 2,x x  

3 1.2287x   2x   

 2 
1 3,x x  4 0.8780x   1x   

 3 
3 4,x x  

5 1.0494x   
3x   

 4 
4 5,x x  

6 0.982x   4x   

 5 
5 6,x x  

7 1.0084x   
5x   

 6 
6 7,x x  

8 0.9905x   
6x   

 7 
7 8,x x  x9 = 0.9994 

7x   

 8 
7 9,x x  x10 = 1.0028 

9x   

 9 
9 10,x x  x11 = 1.0009 

10x   

 10 
9 11,x x  x12 = 1.0002 

11x   

 

  x* = 1.0002 

 

 

Problem 5.8 

 

 4( 1)f x  

 

1

2

3

4

1.5

3.0

4.0

4.5

x

x

x

x









 

1

2

3

4

0.0625

16.0

81.0

150.0625

f

f

f

f









 

 

Fitting a cubic equation through these four points gives 

 
3 2

2

9 54.75 115.25 80

/ 27 109.5 115.25 0

f x x x

df dx x x

   

   
 

 

This quadratic equation does not have real roots, and the problem cannot be solved.  The 

difficulty arises because 1 2 3, ,x x x  and 4x  do not bracket the minimum. 

 

 

Problem 5.9 

 

Minimize: 3 2( ) 2x 5x 8f x       1x   

 

Information about the problem (not required) 
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2'( ) 6 10

10
"( ) 12 10     is pos def. if 

12

f x x x

f x x x

 

  
 

 

  '( ) 0 (6 10)f x x x     yields as solutions  0x   and 
10

1.67;
6

x    

  the latter is a minimum for 1x   

 

(a) Newton’s method 

 
0

1 0

0

'( )

"( )

f x
x x

f x
   =  1 - 

6 10
1 ( 2) 3

12 10


   


 

 
1

2 1

1

'( ) 24
3 2.08

"( ) 26

f x
x x

f x
      

 

(b) Secant  (Quasi-Newton) method 

 

At 

2,    '(2) 4 positive
use them as they bracket 

 1
 the derivative value of 01 ,   '(1.5) 1.50 negative

2

A

B

x f

x f

  



   


   

 

 

 

0

1 0
0 0

4'( )
2 1.636

4 (1 1.5)'( ) '( )

      2 1,5                    

A

A B

A B

f x
x x

f x f x

x x

   
 



 

 

 '(1.636) 0.301 negative;    keep 2,and let 0.301A Bf x x      

 

 
2

4
1.301.636

4 ( 0.304)

  2 1.636   

x  
 



   Error caused by round off 

 

(c) 3 2( ) 2 5 8     1f x x x x     

 

For polynomial approximation (use a quadratic function) start with 3 points possibly 

evenly spaced that bracket the minimum 
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          f(x)    

 

Start at x = 1       -11 

 x = 2       -12 

 x = 1.5       -12.5 

 

Thus 1 < x < 2 brackets the min of f(x). 

 

Step 1 

 

 Solve the quadratic 2( )f x a bx cx    using the 3 above points 

 

  -11 = a + b + c 

  -12.5 = a + 1.5b + 2.25c 

  -12 = a + 2b + 4c 

 

 min x = - 
13 13

1.63
2 214 8

b

c


     

 

( ) 12.62f x    

 
 

Save 1 2 31.50,  1.63,  2.0x x x    and repeat 

  

                  ( )

1.5 -12.5

1.63    -12.63

2 -12.00

f x

x

x

x

 


 
 

 

 

 Solve 

 

  

12.5     1.5 2.25

12.63 1.63 2.66

12.00 2.00 4

a b c

a b c

a b c

    


    
    

  solve for b and c, and get 
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  *

2

b
x

c
   

  

 and continue to improve the values of *x . 

 

 

 

Problem 5.10 

 

2 3 4 5 210 1 4 1
( ) 1 8 2

3 4 6 6
f x x x x x x x        

 
2 3 4 5 2 3' 8 4 10 4 (1 ) (2 )f x x x x x x x          

 

0 at 1 and 2x x     

 

a. 2" (1 5 )(1 )(2 )    0 for 1 and 2f x x x x x         

 

 2"' 2(2 )(5 4 10 )f x x x      0 for 1,  so 1x x      is a saddle point, but f” = 0 for x = 2 

 
2"" 6(1 16 10 )f x x     is negative at x = 2, so x = 2 is a maximum. 

 

b. Newton method 

 

 

1 '( )

"( )

k
k k

k

f x
x x

f x

    

 

1 16
2 1.910

176
x     


 

 

2 12.66
1.190 1.104

146.7
x       

 

 

c. Quadratic interpolation 
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2 2 2 2 2 2

* 2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

( ) ( ) ( )1

2 ( ) ( ) ( )

x x f x x f x x f
x

x x f x x f x x f

     
  

     
 

 

Starting with 1 2x   , pick 2 0x   and 
3 2x   arbitrarily. 

2 3 4 5 6

1

10 1 4 1
1 8( 2) 2( 2) ( 2) ( 2) ( 2) ( 2) 95.9

3 4 5 6
f                

 

2 1f   

 

2 3 4 5 6

3

10 1 4 1
1 8(2) 2(2) (2) (2) (2) (2) 14.73

3 4 5 6
f           

 
2 2 2 2 2 2

1 1 (0 2 )(95.9) [2 ( 2) ](1) [( 2) 0 ]( 14.73)

2 (0 2)(95.9) [2 ( 2)](1) [( 2) 0]( 14.73)
x

        
  

        
 

 

and repeat 

 

Problem 5.11 

 

 

(a) 2 6 3f x x    

 

(i) Newton’s method:  0 1;x   converges in one iteration to * 3x   

(ii) Finite differences Newton method:  0 1,  0.001x h   

Converged in one iteration to * 3x   

(iii) Quasi-Newton (Secant) method:  0 11,  5.x x    Converged in one iteration to 
* 3.x   

(iv) Quadratic interpolation:  Started with 1 2 31,  2,  5.x x x    Converged in one 

iteration to * 3.x   

(v) Cubic interpolation:  Initial prints: 1, 2, 5, 6 

 

x   
1
   

2
  

 

3.047619     

3.028532  0.599  12.583 

3.00000  0  0 

 

convergence is linear 

 

Here 
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1 *

1 *

k

k

x x

x x

 
 


 and 

1 *

22 *

k

k

x x

x x

 
 


 

  

(b) sinf x  

 

(i) Newton’s method. 

 x   
1
   

2
  

  5.0 

4.86369  0.526  1.83 

4.71122  0.008  0.051 

  4.71239  0  0 

  The rate of convergence is superlinear. 

 

(ii) Finite difference Newton method. 

x   
1
   

2
  

5.0 

4.70419  0.029  0.100 

4.71239  0  0 

The rate of convergence seems to be quadratic, but there are two few points to be 

certain. 

 

(iii) Quasi-Newton (Secant) method.  Initial points were 1 23,  5x x    

           

x   
1
   

2
  

4.55457 

4.71338  0.006  0.04 

4.71238  0.010  3.06 

4.71239  0  0 

Rate of convergence is linear. 

 

(iv) Quadratic interpolation.  Initial points were 1 2 33,  5,  5.5x x x    

 

x   
1
   

2
  

4.65058 

4.68558  0.433  7.02 

4.71261  0.206  0.306 

4.71247  0.364  0.165 

4.71239  0  0 

Rate of convergence is linear. 

 

(v) Cubic interpolation.  Initial points were 1 2 3 43, 4, 5, 5.5.x x x x     
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x   
1
   

2
  

4.74334 

4.70481  0.245  7.91 

4.71219  0.026  3.48 

4.71239  0  0 

Rate of convergence is superlinear. 

 

(c) 4 320 0.1f x x x    

 

(i) Newton’s method. 

x   
1
   

2
  

20.0 

18.312   0.662  0.132 

17.191   0.661  0.200 

16.448   0.661  0.302 

15.956   0.660  0.456 

15.631   0.660  0.691 

15.416   0.659  1.05 

15.275   0.660  1.59 

15.181   0.657  2.40 

15.119   0.656  3.64 

15.079   0.661  5.60 

15.052   0.654  8.38 

15.034   0.647  12.7 

15.022   0.636  19.3 

15.015   0.667  31.7 

15.010   0.643  45.9 

15.006   0.556  61.7 

15.004   0.600  120 

15.003   0.667  222 

15.002   0.500  250 

15.001   0  0 

15.001 

The rate of convergence is linear. 

 

(ii) Finite difference Newton method.  0.001h   

x   
1
   

2
  

20.0 

16.667   0.333  0.067 

15.278   0.167  0.100 

15.010   0.036  0.129 

15.000   0  0 

The rate of convergence is quadratic. 
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(iii) Quasi-Newton (Secant) method.  Initial points are 1 210, 20.x x   

x   
1
   

2
  

12.000 

13.421   0.526  0.175 

14.240   0.481  0.305 

14.652   0.457  0.602 

14.845   0.444  1.28 

14.931   0.442  2.87 

14.970   0.426  6.27 

14.987   0.414  14.3 

14.994   0.417  34.7 

14.997   0.400  80.0 

14.999   0  0 

The rate of convergence is linear. 

 

(iv) Quadratic interpolation.  Initial points are 1 2 310,  16,  20.x x x     

x   
1
   

2
  

14.031 

14.920   0.08  0.085 

14.957   0.53  6.72 

14.995   0.10  2.27 

14.998   0.25  62.5 

14.999   0  0 

The rate of convergence is linear 

 

(v) Cubic interpolation.  Initial points are 1 2 3 410,  13,  16,  20x x x x     

x   
1
   

2
  

14.974 

14.989   0.423  16.27 

15.000   0  0 

The rate of convergence is linear.  There are not enough points to tell whether it is 

superlinear. 
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Problem 5.12 
 

 

2

$0.03
$500 $0.9 (150000)

4500
  500 0.9

4500
/ 0 0.9

70.71 hp.

C x
x

x
x

dC dx
x

x

  

  

  



 

 

 

Problem 5.13 

 

At least squares fit gives 

 
3 2 6 3 9 474.764 0.0853 1.551x10 7.613x10 9.605x10E R R R R        

 

Coal cost = 
$ 1 ton 1 lb

7 x x x5
ton 2240 lb 14000 Btu

     
     
     

 

   

    
300 Btu hr

x  x 2544.43  x8550
hr.hp yr

R

E

   
   
   

 7284  $ / yr.
R

E
  

 

    

Fixed cost = 14000 + 0.04R2   $/yr. 

 

Total cost 
2$ 7284( / ) 14000 0.04

yr hp (5)(300)(0.01 )

R E R

R

   
 

 
 

 

 3485.6 933.33
2.67x10C R

E R

    

 

Introducing the least squares expression for E into the expression for C and minimizing 

gives 

 

 

*

*

*

11.44

244.09

69.7

C

R

E






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Problem 5.14 

 
2 2

2 2

1

[ / ] exp( )

   Let /

f c c c

c

t P A M c x ax b

c P A M c





   

 
 

 

Then: 

 

'

1

"

1

exp( )(1 )

(2 )exp( )

f c c

f c c

t c ax b ax

t ac ax ax b

   

    
 

 

Newton’s method gives 

 

 1 ' "( / )k k

c c f fx x t t    

  
1

(2 )

k c
c

c

ax
x

a ax


 


 

Substituting numerical values, 

 

 1 1 3.643

7.286 13.2714

k k c
c c

c

x
x x

x

 
 


 

 

 k  
cx  

0 0 

1 0.1372 

2 0.2332 

3 0.2791 

4 0.2884 

5 0.2888 

6 0.2888 

 
*

0.2888cx  , and 
*

1634ft   minimum 

 

 

Problem 5.15 

 

The authors of the paper cited report * 453T K , but several procedures in this book indicate that 

the problem does not have a realistic solution to get the minimum cost as a function of T, 

probably because the function for  is incorrect. 
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Problem 5.16 

 

The comment is true 



 1 

CHAPTER 6 

 

Problem 6.1 

 

 If each step is 1/20 of the interval, then there are 21 values for each variable.  The 

number of function evaluations is 

 

  (21)5 = 4084101 

 

 

Problem 6.2 

 

(a) 

2 2

1 1 2 2 1

1 2 *

1 2

( ) 3

2 3 2
( ) 0   

2   1

f x x x x x

x x
f x

x x

   

     
       

   

x

x
 

2 1

1 2

 
  
 

H   H is positive definite, so x* is a minimum. 

 

(b) Since f(x) has only one stationary point, it is a global minimum. 

 

 

(c) 

 
 

 

(d) A univariate search will be a good method because the function is quadratic and 

well scaled.  The search directions must be chosen appropriately. 

 

(e) Let   be the step-size.  Then, starting from  
T

0 0 , the next point is  
T

 0 . 

 
2 3f     

/ 2 3 0    3/ 2df d         



 2 

T

1 [3/ 2  0]P  

 

If we start from T[0 4] , and   is the step size, then T

2 [  4]P  

 
2 2 2

T

2

4 4 3 7 16

/ 2 7 0     7 / 2

[ 7 / 2  4]

f

df d

    

  

      

     

 P

 

 

(f) See the figure.  A line joining P1 and P2 passes through the optimum.  This is 

analogous to the method of conjugate directions. 

 

 

Problem 6.3 

 

We need a regular tetrahedron with each side 0.2 units long, and one vertex at (-1, 2, -2).  

Let one face of the regular tetrahedron (an equilateral triangle) be parallel to the x-y plane 

with one vertex at (-1, 2, -2).   We may place the second vertex at (-1.2, 2, -2).  By 

symmetry, the x-coordinate of the third vertex, 
3  is 1.1x  .  The y coordinate is given by 

   

   
2 2 2

3( 1.1) ( 1) 2 (0.2)y       

 

3 1.8628 or 2.1732y   

 

Select y3 = 2.1732.  Thus, the equilateral triangle has vertices (-1, 2, -2), (-1.2, 2, -2) and 

(-1.1, 2.1732, -2).  The x and y coordinates of the centroid of this triangle are the x and y 

coordinates. 

 

 1 2 3
4 1.1

3

x x x
x

 
    

 

 1 2 3
4 2.0577

3

y y y
y

 
   

 

Then, the z-coordinate, z4 is given by 

 
2 2 2 2

4[( 1.1) ( 1)] [2.0577 2.1732] [ ( 2)] (0.2)z          

 

 4 2.1633 or 1.8367.z     

 

Say z4 = -2.1633.  Then the required simplex has its four vertices at 

 

 (-1, 2, -2), (-1.2, 2, -2), (-1.1, 2.1732, -2) and (-1.1, 2.0577, -2.1633) 



 3 

 

Recall that regular polyhedrons in En are simplexes.  For example, as indicated in Fig 1, 

for two variables a regular simplex is an equilateral triangle (three points); for three 

variables, the regular simplex is a regular tetrahedron (four points), and so forth. 

 
 

Regular simplexes for two and three independent variables.  (1) indicates the highest 

value of f(x).  The arrow points in the direction of greatest improvement. 

 

Coordinates for a Set of Simplex Vertices 
 

n coordinates of each point 
 

Point j 
1, j  2, j  3, j

  4, j   
1,n j   ,n j  

1 0 0 0 0  0 0 

2 p q q q  q q 

3  q p q q  q q 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

  

n q q q q  p q 

n+1 q q q q  q p 

 

   1 1
2

a
p n n

n
     

 

   1 1
2

a
q n

n
    

 

  a = distance between two vertices 

 

Note:  The table starts at (0, 0, 0); for another starting vertex such as (-1, 2, -1), you have 

to translate these values.  

 

For example, for n = 2 and a = 1, the triangle given in Figure 1 has the following 

coordinates: 
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  Vertex 
1,i

x  2,ix    

  1 0 0   

  2 0.965 0.259   

  3 0.259 0.965   

 

The objective function can be evaluated at each of the vertices of the simplex, and a 

projection made from the point yielding the highest value of the objective function, point 

A in Figure 1, through the centroid of the simplex.  Point A is deleted, and a new simplex, 

termed a reflection, is formed, composed of the remaining old points and the one new 

point, B, located along the projected line at the proper distance from the centroid.  

Continuation of this procedure, always deleting the vertex that yields the highest value of 

the objective function, plus rules for reducing the size of the simplex and for preventing 

cycling in the vicinity of the extremum, permit a derivative-free search in which the step 

size on any stage k is fixed but the direction of search is permitted to change. 

 

 

Problem 6.4 

 
T

1

T

2

[1  1]

[1  2]





x

x

 

 

 Select 
3x  so that 

1 2 3,  and x x x  form an equilateral triangle.  Say 

 

 T

3 [1.8660 1.5]x  

 

Stage 1: 1( ) 4.00f x  

  
2

3

( ) 13.00

( ) 10.23

f

f





x

x
 

  discard 2x . 

 

Stage 2: 4x  is the reflection of 2x  in the line joining 1x  and 3x . 

 

  

T

4

4

3

[1.8660 0.5]

( ) 4.23

discard .

f





x

x

x

 

 

Stage 3: 5x  is the reflection of 3x  in the line joining 1 4 and .x x  

 

  T

5 [1   0]x  
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5( ) 1f x  

  discard 2x . 

 

Stage 4: 
6x  is the reflection of 2x  in the line joining 1x  and 

5x .  

   

   

 T

6 [0.134   0.5]x  

 
6( ) 0.768f x  

 discard 1x . 

 And so on. 

 
 

 

 

Problem 6.5 

  
T

1 1

T

2 2

T
33

T
44

[0   0   0] ( ) 4

[ 4 / 3 1/ 3 1/ 3] ( ) 7

( ) 10[ 1/ 3   4 / 3 1/ 3]

( ) 5[ 1/ 3   1/ 3    4 / 3]

f

f

f

f





 

    

  

 

x x

x x

xx

xx

 

 

3x  is dropped.  The next point, 5x , is the reflection of 3x  in the plane containing 

1, 2 x x and 4x .  The centroid of the equilateral triangle formed by 1 2 4, ,x x x  is 

 

 
T

1 2 4

1
( ) [ 0.556 0.222 0.556]

3
C       x x x x  

 

 

3 5

5

T

5

2

2

[ 7 / 9   8 / 9   7 / 9]

C

C s

 

 

  

x x x

x x x

x

 

 

 



 6 

Problem 6.6 

 

(a) 1    
1 1 1

 3    3  3/ / /  
 

s  

 

Let T

2 [   ]a b cs  

 

Then, for 2s  to be orthogonal to 1s . 

 

2 1

1
( ) 0

3

T a b c   s s  

 

Any values of a, b and c which satisfy this equation gives 2s  orthogonal to 1s . 

Say, T

2 [1   1   0]s   (No unique solution) 

 

(b) 
2

1 2 1 2( ) 2f x x x x  x  

 

2

2 1

1 0 1 0

( ) 4      1 4 0

0 0 00

x

f x x

    
   

    
   
     

x H  

 

H is not positive definite, so 1s cannot have a conjugate direction with respect to 

H. 

 

Problem 6.7 

 
2 2 2

1 2 3 1 2( ) 2f x x x x x   x  

 

1 2

2 1

3

2 2 1 0

( ) 2      1 2 0

0 0 44

x x

f x x

x

    
   

    
   
     

x H  

 

H is positive definite, and the stationary point [0  0  0]T is a minimum. 

 

Let 0 T 0 T[1   1   1]  and [1   0   0] x s .   If 1s  is conjugate to 0s with respect to H, 

then 

 
1 T 0( )  H 0s s  

1 T[1   2   0]s   (say) 

 

Step 1: start at 0x  and minimize f along the 0s  direction.  The optimum step size is 
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0 T 0

0

0 T

[ ( )] 1

( )  2

f



   

x s

s H s
 

 

 1 0 0 0 T[1/ 2    1    1]  x x s  

 

Step 2: start at 1x  and minimize f along the 1s  direction.  The optimum step size is 

 

  
1 T 1

1

1 T 1

[ ( )] 1

( )  2

f



   

x s

s H s
 

 

 2 1 1 1 T[0   0   1]x x s    

 

The minimum is not reached in two steps.  For a quadratic function of three independent 

variables, three steps will be required to reach the minimum. 

 

 

Problem 6.8 
 

 
2 2 2

1 1 2 2 3 1 2 3( ) 16f x x x x x x x x    x  

 

 

1 2 2 3

2 1 1 3

3 1 2

2

( ) 32

2

x x x x

f x x x x

x x x

  
 

   
 
  

x  

 

 

3 2

3 1

2 1

2 1

( ) 1 32

2

x x

x x

x x

  
 

  
 
   

H x  

 

 1 2 and s s  are conjugate with respect to ( )H x when 

 

  1 T 2( )  ( ) 0s H x s  

 

The det H > 0, and all the principal minors must be >0, or all the eigenvalues must be 

positive. 

 

Insert the two given vectors to get an equation in ix  that must be satisfied. 

 

i.e. 1 2 32 3 63 0x x x     

and ( )xH  has to be positive definite.  Thus, x must lie on the above plane, and satisfy 
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2

3 3

2

2 2

2

1 1

(1 )   64  or  7 9

            4       2 2

          64        8 8

x x

x x

x x

    

   

   

 

 

and 
2 2 2

1 2 1 2 3 3128 2 32 2 (1 ) 2(1 ) 0x x x x x x        

 

 

Problem 6.9 

 

  
2 2

1 2 1 2 1 2( ) 5 2 12 4 8f x x x x x x     x  

 

 
1 2

1 2

10 2 12
( )

2 2 4

x x
f

x x

  
   

  
x  

 

 
10 2

2 2

 
  
 

H  is positive definite 

 

 If 
1s  is conjugate to 0 T[1   0]s  (the 

ix  axle); then 

 

First direction:  1 T 1 1

1 2

10 2 1
( ) 10 2 0

2 2 0
s s s

   
     

   
 

 

   Say 1 T[1 5] s  

 

   For 2s  to be conjugate to 1s  

 

   2 2 2

2 2

10 2 1
8 0,  or 0

2 2 5
s s

   
      

   
s  

 

Second direction: 2 T[1   0]s   (say). 

 

(Note that you get back the original direction for a quadratic function) 

 

 

Problem 6.10 

 

a. The conditions for orthogonality are 
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T

T

T

0

0

0




 


 

x y

y z

z x

 solve simultaneously.  An example is 

 

1

2 1 2 3

3

[2 / 3 1/ 3 2 / 3] 2 / 3  1/ 3  2 / 3 0

y

y y y y

y

 
 

     
 
  

 

 

1

1 2 3 2 1 1 2 2 3 3

3

[ ] 0

z

y y y z y z y z y z

z

 
 

   
 
  

 

 

1 2 3 1 2 3

2 / 3

[ ] 1/ 3 2 / 3 1/ 3 2 / 3 0

2 / 3

z z z z z z

 
 
    
 
  

 

 

Let 1 2 31, 1,  then 1/ 2y y y    

 

1 2 3

1 2 3

1/ 2 0

2 / 3 1/ 3 2 / 3 0

z z z

z z z

   


   
 Let 1 1z   

 

Then 2 2z    and 
3 2z   

 

The vectors are 

1 1

1  2

1/ 2 2

   
   

  
   
      

y z  (not unique) 

 

2   1   0

1   2   1

0   1   3

 
 


 
  

H  

 

2   1   0

1   2   1

0   1   3

 
 


 
  

H  

 

b. The two directions for conjugacy are   
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T

T

T

0

0

0




 


 

x Hy

y Hz

z Hx

 solve simultaneously to get a non unique solution.  An example is: 

 

1 1

2 2

3 3

2   1   0

[2 / 3 1/ 3 2 / 3] 1   2   1 0 [1 2 / 3 7 / 3

0   1   3

y y

y y

y y

    
    

     
    
         

  

 

 
1 1

1 2 3 2 1 2 1 2 3 2 3 2

3 3

2   1   0

[ ] 1   2   1 0 (2 )  ( 2 )  ( 3 )

0   1   3

z z

y y y z y y y y y y y z

z z

    
    

     
    
         

 

 

 

 1 2 3 1 2 1 2 3 2 3

2   1   0 2 / 3 2 / 3

[ ] 1   2   1 1/ 3 0 (2 )  ( 2 )  ( 3 ) 1/ 3

0   1   3 2 / 3 2 / 3

z z z z z z z z z z

     
     

       
     
           

 

 

Let 1 2 31, 1, 7.y y y     Then 

 

1 2 3

1 2 3

16
3 8 0

3

2 4 / 3 4 / 3 0

z z z

z z z


   


   

 Let 1z  = 1 and solve for 2 3 and .z z  

    
3

2

.826

.677

z

z

 


 

 

 

Problem 6.11 

 

 
2 2

1 1 2 2 1 2( ) 3 3f x x x x x x    x  

 

 
1 2

2 2

2 3 3
( )      at (2,2)  ( )

2 3 3

x x
f f x

x x

    
      

    
x  

 

 
2 1

( )    
1 2

 
  
 

H x (pos. def.) 
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1

1

1

2

2 1
[ 3 3] 0

1 2

s

s

  
    

    

  gives a conjugate direction 

 

 

1
1

1
2

[ 9 9]
s

s

 
   

 
= 0  

1

1 29 9 0s s    

 

     
1

1

2

Let 1

then 1

s

s

 


  
  Direction is unique because for a quadratic function you can only 

 have two conjugate directions, and one was fixed by so.  The 

 values of elements in s are usually not unique. 

 

 

Problem 6.12 

 

 
2 2 23

1 2 3 3 2 1( ) ( )f x x x x x x  x  

 

 

2 22

1 2 3 1 2 3

2 22

1 2 3 1 2 3

2 23

1 2 1 2 3

3( ) 2

( ) 3( ) 2

( ) 2

x x x x x x

f x x x x x x

x x x x x

  
 

    
 

   

x  

 

 at T T[1  1  1] ,   ( ) [14   14   10]f  x x  

 

 

Problem 6.13 

 

Max 
2 2

1 2 1 1 2 2

1
( ) ( 2 2 )

2
f x x x x x x    x  

 

 Start at [1   1]x  

 

 
1 2

1 2

1 1
(1,1)

1 2 2

x x
f

x x

     
     

    
 

 

 A second search direction is  
2

1

2

2

[ 1 2] 0
s

s

 
   

  

H  
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1 1

1 2

  
  

  
H  is neg. def. 

 

  
2

1

2

1

3  5 0
s

s

 
 

  

 or  
2 2

1 23 5 0s s   

 

 Pick any 
2 2

1 2;  determine s s  

 

 

Problem 6.14 

 
2 2

1 2( ) 10f x x x  

1

2

20
( )

2

x
f

x

 
   

 
x  

 
0 T[1   1]x  

 
0 0 T( ) [-20   -2]f  s x  

 

 
T1 0 0

0 0 01 20    1 2      x x s  

 
1 2 2

0 0( ) 10(1 20 ) (1 2 )f     x  

 

0 0/ 8008 404 0df d      0 0.05045   

 
T

1 38.991x10   0.8991   x  

 

 1 1( ) 0.1798  1.798f   s x  

 
T

2 1 1 3

1 1 18.991x10  0.1798  +0.8991 1.798         x x s  

 
2 3 2 2

1 1( ) 10( 8.991x10 0.1798 ) (0.8991 1.798 )f      x  

 

1 1/ 7.112168 3.26549 0df d      1 0.459   

 

  

 
T2 0.07354   0.07382x  
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This is not the optimum * T( [0   0] ).x   Thus more than two iterations are 

needed. 

 

Note:  The answer to the problem is easily obtained by first calculating the eigenvalues of 

H, noting that they are positive, and stating that their ratio is 10, hence steepest decent 

will take more than two iterations. 

 

 

Problem 6.15 

 

 1 2 1 2 2

1 2( ) 2 2 ( )x x x xf e e e x x   x  

 

 
1 2 1

1 2 2

2

2 1 2

2

1 1 2

2 2
( )

2 2

x x x

x x x

x e e x x
f

x e e x x

  
   

   

x  

 

 at    
T T

0 0 ,   ( ) 2   2f   x x  

 

 

Problem 6.16 

 

    
2 2

1 2( )f x x x  

 

     
T

1 2( ) 2  2f x x x  

 

   T

old 3   5  x  

 

  
T

old( ) 6   10f x  

 

      
T T T

new 3   5 6   10 3 6    5 10      x  

 

 2 2

new( ) (3 6 ) (5 10 )f     x  2136 136 34     

 

 / 272 136 0    1/ 2df d        

 

  
T

new 0   0x  which is the optimum 
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Problem 6.17 

 

 The direction of search calculated by the negative gradient does not point toward 

the extremum in poorly scaled functions, hence steepest decent search directions will 

require more iterations to reach the extremum than many other methods. 

 

 

Problem 6.18 

 

(a) 
2 2

1 2( ) 3f x x x  

 

 
T

1 2( ) 6   2f x x x   
6  0

0  2

 
  
 

H  

 

 
T0 1   1x  

 

 
T0 0( ) 6  2f    s x  

 
0 0

0 0 T 0

( )
0.1785

( )

T f



  

x s

s Hs
 

 

 
T

1 0.07142   0.6428 x  

 

 
T1( ) 0.4285    1.2857f  x  

 
T 1 1

0 T 0 0

( ) ( )
0.04591

( ) ( )

f f

f f


 
 
 

x x

x x
 

 

 
T1 1 0

0( ) 0.1530  1.3775f     s x s  

 
T 1 1

1 1 T 1

( )
0.4666

( )

f



  

x s

s Hs
 

 
T

2 1 1 7 8

1 1.203x10   4.01x10        x x s  

 

This is very close to the true minimum,  
T* 0   0x  
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(b) 2 2

1 2( ) 4( 5) ( 6)f    x x x  

 

1

2

8( 5) 8 0
( )   

2( 6) 0 2
f

   
     

   

x
x H

x
 

 

 
T0 1   1x  

 

 
T0( ) 32 10f   x  

 

 
T0 0( ) 32  10f  s x  

 
T 0 0

0 0 T 0

( )
0.1339

( )

f



  

x s

s Hs
 

 

 
T1 0 0

0 5.2859  2.3393  x x s  

 
T 1 1

0 T 0 0

( ) ( )
0.05234

( ) ( )

f f

f f


 
 
 

x x

x x
 

 

 
T1 1 0

0( ) 0.6125  7.8446f     s x s  

 
T 1 1

1 1 T 1

( )
0.4666

( )

f



  

x s

s Hs
 

 

 
T2 1 1

1 5.0001204  6.0000262  x x s  

 

This is very close to the true minimum at  
T* 5   6x . 

 

 

Problem 6.19 

 

(a) Fixed step gradient:  The move from a point kx  to the next point 1kx  is given by 
1kx  =  kx + ( )kf x .  The gradient at kx  gives the search direction.  The step-

size,   is prespecified, and remains fixed from iteration to iteration. 

 

(b) Steepest descent:  This is similar to (a) in that the search direction is given by 

( )kf x , but   is determined at each iteration a unidimensional search to 

minimize f. 
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(c) Conjugate gradient:  The new search direction is a linear combination of the 

gradient at the current point and the previous search direction.  The weighting 

factor depends upon the magnitude of the previous gradient.  The step-size is 

determined by a one dimensional search. 

 

 

Problem 6.20 

 

  The solution is:  0f   at (1, 1, 1, 1) 

 

 

Problem 6.21 

 

 
2

2

1
( , ) 2 10f h r rh r

r h
 



    

Check to see if H is pos. def. for r > 0, h > 0 

 

 
3

2
2 20

f
h r

r hr
 



 
  


 

 

 
2 2

1
2

f
r

h r h




 
 


 

 

 
2

2 4

6
20

f

r r





 


  

2

3 2

2
2

f

r h r h





 

 
 

 

 
2

2 3

2
2

f

h r h r





 

 
  

2

2 2 3

2f

h r h





 

 

The elements on the diagonal of H are positive, and the determinant 

 

 

2

4 2 3 3 2

6 2 2
20 2 0  ?

r r h r h
 

  

     
        

     
 

 

has to be positive for H to be positive definite.  At (0.22, 2.16).  The value is 112770, 

hence Newton’s method will converge in the vicinity of (0.22, 2.16).  If det H is not pos. 

def. at some (r, h) during the search, Newton’s method may not converge. 

 

 

Problem 6.22 

 

No, but it must be positive definite at the minimum for the extremum to be a minimum. 
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Problem 6.23 
 

 Possible answers are: 

 

(1) If more than one extremum exists, the Simplex method may converge to a better 

local minimum than the Quasi-Newton (secant) method. 

 

(2) If the variables in the objective function are random variables as in 

experimentation. 

 

(3) Simple method to understand (no complicated mathematics involved) and 

program. 

 

(4) Requires only one function evaluation per search step. 

 

 

Problem 6.24 

 

 They would both be equally fast, as far as the number of iterations is concerned, 

because the search direction is the same for both, and both yield the optimum in one step. 

 

 

Problem 6.25 

 

 You must consider both minima and maxima 

 

(a) 1 2 1 21 (4 / ) (9 / )f x x x x      

 
2

1

2

2

1 (4 / )
( )

1 (9 / )

x
f

x

 
   

  

x  

 
3

1

3

2

8/ 0

0 18/

x

x

 
  
  

H  

 

H is not positive definite or negative definite for all x, so Newton’s method is not 

guaranteed to converge to minimum nor a maximum.  From a positive starting 

point.  The search for a minimum can go to   as .ix   

 

(b) 
2 2 2 22 2 2

1 2 3 1 2 1 3( ) ( 5) ( 8) ( 7) 2 4f x x x x x x x       x  
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2 2

1 1 2 1 3

2

2 1 2

2

3 1 3

2( 5) 4 8

( ) 2( 8) 4

2( 7) 8

x x x x x

f x x x

x x x

   
 

    
 

   

x  

 
2 2

2 3 1 2 1 3

2

1 2 1

2

1 3 3

2 4 8 8 16

( ) 8 2 4 0

16 0 2 16

x x x x x x

x x x

x x x

  
 

  
 

  

H x  

 

It is hard to tell by inspection if H is positive definite for all x, so that Newton’s method 

can be guaranteed to converge to the minimum.  However, by inspection of f(x) you can 

see that each term in the function is positive so that Newton’s method should reach a 

local minimum.  One exists at (-0.0154, 7.996, -6.993) with f = 24.92. 

 

 

Problem 6.26 

 

 
3 2 2

1 1 2 2 1( )f x x x x x  x  

 
2 2

1 2 1 2

2 2

1 1

3 2
( )

2

x x x x
f

x x x

  
   

  

x  

 
2

1 2 1 2

2

1 2 1

6 2 1 4
( )

1 4 2

x x x x

x x x

  
  

   

H x  

 

at  * 1  1x , 

 

*
  4   3

( )
3      2

 
  

 
H x  

 

H is not positive definite at x0, which is the probable reason why the code fails. 

 

 

 

Problem 6.27 

 

 

 
2 2

1 2( ) 2 2f x x x  
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  
T

1 2( ) 4    4f x x x  

 

 
4   0

   
0   4

 
  
 

H  

 

 The initial search direction is 

 

 

0 0

1 10 1 0

0 0

2 2

41/ 4    0
( )

  0   1/ 4 4

x x
f

x x


    

         
        

s H x  

 

 The step size is always 1   for Newton’s method.  Only one step is needed to 

reach the minimum, because f is quadratic. 

 

  
T1 0 0 0   0  x x s  which is the optimum. 

 

 

Problem 6.28 

 

 The Hessian matrix of f(x) is positive definite at the starting point, but does not 

remain positive definite as the search progresses.  Therefore Newton’s method does not 

converge at all with 1  .  Adjusting   in the search direction will not help much. 

 

 

Problem 6.29 

 

(a) Newton’s Method 

 
2 2

1 1 2 2( ) 8 4 5f x x x x  x  

 

 
TT

1 2 2 1( ) (16 4 )(10 4 )f x x x x   x  

 

at (10, 10) 
200

140
f

 
  
 

 

 

2
16 4

( )
4 10

f
 

  
 

x  

 
1

(1)
10 16 4 200

10 4 10 140



     
      
     

x
  

1
16 4 16 41

4 10 4 10144


   

   
   
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or solve 

 

 

1

1

2

1

10200 16 4
0

140 4 10 10

x

x

    
            

 

 

solution:  
T

0  0x  

 

(b) Fletcher-Reeves Method 

 

Use an algorithm code such as shown in the text.  Start with 

 

0 0
200

( )
140

s f
 

     
 

x  

 

1 0
10 200

10 140


   
    
   

x  

 

Minimize exactly in the 0s  direction to get 0  

 

 

 

T
0

T

200
200  140   

140( )

164 200
200  140     

410 140

f


 
 

     
   
   
   

x s

s Hs
 = 

6

59,600
0.05623

1.06x10
  

Then 

 

1
10 200 10 11.2460 1.2460

0.05623
10 140 10 7.8722 2.1278

         
             

         
x  

 

Next calculate 1 1( ),   ( )f fx x  and calculate the next search direction 

 
T 1 1

1 1 0

T 0 0

( ) ( )
( )

( ) ( )

f f
f

f f

 


 
  

x x
s x s

x x
 

 

and continue.  A computer program is needed to save user time. 
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Problem 6.30 

 

(a) From both starting points, Newton’s method converges to 

 

 
T* *0.2  0.2  0.2  0.2 ,   0.6f     x  

 

(b)  
T* * 1017.27  7.350  0.3483  0.7196 ,    0.74x10 0f  x  

 

 

 

Problem 6.31 

 

(a) Sequential Simplex 

 

Advantages: 

 

(1) If more than one extremum exists, the Simplex method may converge to a 

better local minimum than the Quasi-Newton (secant) method. 

 

(2) If the variables in the objective function are random variables as in 

experimentation. 

 

(3) Simple method to understand (no complicated mathematics involved) and 

program. 

 

(4) Requires only one function evaluation per search step. 

 

 Disadvantages: 
 

(1) Slow to converge 

 

(2) Not efficient for problems with many variables 

 

(3) Will not work for problems with constraints without modification 

 

(b) Conjugate gradient 

 

Advantages: 

 

(1) Uses only first derivatives 

 

(2) Low storage required 
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 Disadvantages: 

 

(1) Have to reset directions after one cycle 

 

(2) Hessian may become ill-conditioned 

 

(c) Newton’s Method 

 

Advantages: 

 

(1) Fast for reasonably scaled problems with one extremum  

 

(2) Simple algorithm 

 

Disadvantages: 

 

(1) Can perform poorly on problems with multiple extrema 

 

(2) Converges to a local extremum (as opposed to a global algorithm) 

 

(3) Requires second partial derivatives for a strict Newton method. 

 

Twenty independent variables makes a Simplex search not practical.  The other two 

methods would converge more slowly, but are not affected otherwise. 

 

 

 

Problem 6.32 
 

Let 
2 2

1 2( ) 100 (10 ) (5 )f x x       x  be maximized 

 

 2 2

1 2
ˆ( ) 100 (10 ) (5 )f x x     x  

 

 
1

2

2(10 )ˆ( )
2(5 )

x
f

x

  
   

  
x  

2   0
ˆ ( )

0   2

 
  
 

H x   pos. def. 

 

 0
0

0

 
  
 

x  

 

 The maximum is at  
T

10   5x . 

 

 The minimum is at ˆ (0,   0)   25f   
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a. Simplex Method  Pick a suitable sized triangle. 

 

 

 

Point  x1
(k)   x2

(k)  ( )ˆ( )kf x    f(x) 

 

1 0 0 25 25

2    1.9314 0.5174 14.9 14.9
                                                       starting Simplex          

     

3    0.5174 1.9314 0.6 0.6




 






 

           Drop Point No. 1 

 

4           2.4488        2.4488      -26.5       26.5 

  

           Drop Point No. 3 

 

5           3.8628        1.0348      -46.6       46.6 

 

 

Or use a graphical procedure. 

 

 

b. Newton’s method  Start at (0, 0)  1   

 

 (0) -1
1/ 2   0 20 10ˆˆ ( ) (1)
0    1/ 2 10  5

f
     

           
     

x H x  

 

 (1)
0 10 10

  
0  5  5

     
       
     

x  

 

 

c. BFGS method 

 

  

 ( 1) ( ) ( ) 1 ( ) ( )ˆˆ ( ) ( )k k k k kf   x x H x x   Let (0)ˆ H I  

 

 At (0, 0), f = -25. 
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(0)

(1) (0)

                                 

0 1  0 20

0 0  1 10


     
      

     

s

x
  ( (0)s  is the negative gradient direction) 

 

 Pick a 1   or maximize in 1( ) ( )s f H x x  direction to get  . 

 

 For (1)
1  0 20 20

1:       
0  1 10 10


     

        
     

x  

 

 ˆ(20,  10) 25f    

 

 Alternately, pick   to maximize ˆ ( )f x  in the search direction 

 

 

 

 

T ( ) ( )

T( ) ( ) ( )

20
20  10   

10( ) 1

ˆ 2  0 20 2(
20  10   

0  2 10

k k
opt

k k k

f


 
   

       
   

     
   

x s

s H s
 

 

 (1)
0 1  0 20 101

    
0 0  1 10  52

        
          

        
x  (This is the optimum) 

 

 If x(1) were not the optimum, the next stage via BFGS gives the approximate 1ˆ H   

 

 
T

( ) 1 ( ) ( ) T ( ) 1
( ) ( )

1

T ( ) ( ) T ( ) 1 ( )

ˆ ˆ( ) ( ) ( )( )ˆ     
ˆ( ) ( ) ( )

k k k k
k k

k

k k k k k

 




        
   

H g g Hx x
H

x g g H g
 

 

but  
TT (10,  5) 0  0f   so (1)x  will be 0 whatever (1) 1ˆ( )H  is. 

 

 

Problem 6.33 

 

 

 2 4( ) 200 10f x x x    

 

 '( ) 2 200f x x   hence a minimum exists at x = 100 

  

 ''( ) 2f x   (pos. def.) 
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Bracket the minimum  start at x = 0, and bracket the minimum for all methods. 

 

 Let 0 10   

 

  x     ( )f x  

 

 x =          0   10,000 

   0 + 10     8,000 

  10 + 20   4, 900 

  30 + 40       900 

  70 + 80     2500  

 

Newton’s Method 

 

 
(1) '(0) 200

0 100
''(0) 2

f
x

f


      

       

 
(2) '(100) (200 200)

100 100 100
''(100) 2

f
x

f


      

 

(one step for a quadratic function) 

 

Quasi-Newton (Secant) Method 

 

 (1) '(0)
0

'( ) '( )

f
x

f q f p

q p

 




  Let p = 0 and q = 150 

 

 (1) 200 200
0 100

100 ( 200) 2

150 0

x


   
 



 

 

 At 100,  f’ = 0, hence can stop. 

 

 

Quadratic interpolation 

 

 

 Pick 3 points, bracketing minimum 

 

  x  f(x) 

 

  0  10,000 
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  100  0 

 

  150  2500 

 

Fit 2( )f x a bx cx    with min at *

2

b
x

c
   

 

 104 = a  

 

 

2

2

     0 (100) (100)    200

12500 (150) (150)

a b c b

ca b c

    


   
 

 

  
* 200

100
2(1)

x


    

 

 

 

 

Problem 6.34 

 

 3( ) ( 100)f x x   

 

 2'( ) 3( 100)f x x    so an extremum is at x = 100 

 

 ''( ) 6( 100)f x x   at x = 100, '' 0f   (not pos. def.) 

           ''' 6f   hence x = 100 is an inflection. 

           The problem has a minimum at .x   

 

 Start at x = 0 

 

a. Steepest descent 

 

At 60, '(0)   3x10x f    

 
(1) 60 ( 3x10 )x     

 

Select 1
or any other suitable choice

or       min ( )f x





 


 
 

 

Select 
6 6

6 6

( 3x10 )( 3x10 ) 1

( 3x10 )( 600)( 3x10 ) 600

opt
 

  
  
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 (1) 6 41
0 3x10 0.5x10

600
x       

 

Select 1   

 

 (1) 6 60 ( 3x10 ) 3x10x       

 

Clearly *goes tox   

 

 

b. Newton’s method 

 
6

(1) 4'(0) 3x10
0 .5x10

''(0) 600

f
x

f


     


 

 

Same result as for steepest descent 

 

c. Quasi-Newton (Secant) method  Let 0,   200p qx x   

 

(1) '(0)
0

'( ) '( )

f
x

f q f p

q p

 
 
 

 

  
6

(1)

6 6

3x10
100

3x10 ( 3x10 )

200 0

x


  
 



 

 

At x = 100, 'f (100) = 0.  To maintain + and – bracket on ',f  you would have to 

pick another  and .p qx x   The method will then proceed to  for .x  

 

 

d. Quadratic interpolation 

 

Pick 3 points, bracketing minimum 

 

            x   f(x)    

 

0 63x10  

 

100    0 

 

200   63x10  

 

 Fit 2( )f x a bx cx    with minimum at 
( )

0
df x

dx
  or *

2

b
x

c
   

 

 63x10 a   
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2 15

6 2 4

0 (100) (100) 3.123x10

3x10 (200) (200) 3x10

a b c c

a b c b

   


   
 

 

  
4

* 19

15

3x10
1x10

3.123x10
x


      

 

 

Problem 6.35 

 

 
2 2

1 2 1 2( ) 2 2f x x x x  x  

 

 
1 2

2 1

4 4 1
( )    

4 1 4

x x
f

x x


    
    

    
x H  

 

 H  is not positive definite. 

 

 Let ˆ  H H I .  Then, the eigenvalues of Ĥ  are the roots of 

 

 det 
4 1

0
1 4

  

  

    
  

     

H I

I
 

 

 2( ) 17 0     

 

1 217,    17        

 

If 17  , then 1 2 and    are positive, and Ĥ is positive definite and its inverse is 

positive definite. 

 

Alternate solution:  Start with  
11ˆ 
  H H I  and proceed as above, but you need to 

calculate H-1. 

 

 

Problem 6.36 

 

 
2 2

1 1 2 2( ) 2 4f x x x x  x  

 

 
1 2

1 2

4 4 4 4
( )    

4 2 4 2

x x
f

x x


    
    

    
x H  
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 H is not positive definite, so f does not have a stationary point which is a 

minimum.  Thus, it is meaningless to use Marquardt’s method to find one.  But a positive 

definite approximation of H is 
4   4

ˆ
4   4





  
  

  
H  and choose   to make Ĥ pos. def.  As 

for example 1.     Or, get the eigenvalues of H and add to them to get a pos. def. 

approximation. 

 

 

Problem 6.37 

 
3 2

1 1 2 2( ) 2 6f x x x x  x  
 

2

1 2

1 2

6 6
( )

6 2

x x
f

x x

 
   

  
x  

 

 
112 6

( )
6 2

x
f

 
   

 
x   at  

T
1  1x  

 

     
12 6

(1,  1)
6 2

 
  

 
H  

     and det H = -12  so H is not pos. definite 

 

 Add 
0

to (1,  1)with  given by
0






 
 
 

H  

 

  (12 )(2 ) 36 0      

  

 or at = 0, 2 14 12 0      
214 14 4(1)( 12)

2


   
  

 

 Another way:  get the eigenvalues of H and calculate 1 2; 14.81,   .81      

 

 

Problem 6.38 

 
2 2 2

1 2 3( )f u u u  x    1 1 21.5 (1 )u x x    

     
2

2 1 22.25 (1 )u x x      

     
3

3 1 22.625 (1 )u x x    
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  

  

2 2 3 3

1 2 2 1 2 2 1 2 2

2 3 2

1 2 1 1 2 1 2 1 2 1 2

1.5 (1 ) (1 ) 2.25 (1 ) (1 ) 2.625 (1 ) (1 )
( ) 2

1.5 (1 ) 2.25 (1 ) (2 ) 2.625 (1 ) (3 )

x x x x x x x x x
f

x x x x x x x x x x x

                     
         

           
    

x

 

Calculate H(x).  Because H(x) is not positive definite: 

 

 

(1) At 
T

0  1 ,    x  add constants to the elements on the main diagonal of H(x) so 

that H(x) becomes positive definite, or so that the eigenvalues of H(x) become 

positive. 

 

 

(2) Or, at 
T

0  1 ,    x  decompose  H into 
T TT

1 1 1 2 2 2   LDL H e e e e  and change 

all negative ( 1 2,  ) to be positive. 

 

 

Problem 6.39 

 

(a) False.  The algorithm may initially use arbitrary search directions. 

(b) True 

(c) True 

 

 

Problem 6.40 

 

(a) Maximize 
2 2

1 1 2 2( ) 4f x x x x     x  

 

 Instead of maximization of ( ),f x  we minimize –f(x): 

 

 
2 2

1 1 2 2( ) 4f x x x x    x  

 

 by the BFGS method. 

 

 
1

2

2 1
( )

2 1

x
f

x

 
   

 
x  

 

 If you set ( ) ,f  0x  you find 

T

* 1 1
  

2 2

 
  
 

x  

 

Steps Pick  
T0 1  1x .  Pick  

T0 0 0( ).  (1,1) 1  1f    s x s . 
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 Pick  0
2 0

ˆ (1,1)
0 2

 
   

 
H H  (pos. def.) 

 

1. 1 0 0 x x s  

 

T

T

1
1,  1   

1( ) 1

ˆ 2 0 1 2( ) ( )
1  1     

0 2 1

k k
opt

k k k

f


 
           

   
           

x s

s H x s
 

 
T

1
1 11 1 1

      
1 12 2 2

     
            

x  

 
T

0 1 0 1 1
  

2 2

 
      

 
x x x   (the solution) 

 

0 1 0
0 1 1

( ) ( )      
0 1 1

f f
     

           
     

g x x  

 
0 0 T 0 0 0 T 0

1

0 T 0 0 T 0 0

ˆ ˆ( ) ( )ˆ       
ˆ( ) ( ) (Δ ) x

   
 

  H

g g H x x H
H

g x x
 

 

 

 

1

1
1  1

1ˆ
1/ 2

1  1
1/ 2

 
  

  
 

   
 

H

  

2 0 1/ 2 2 01 1
  

0 2 1/ 2 2 2 0 2

2 0 1/ 21 1
  

2 2 0 2 1/ 2

      
              

    
            

 

 

1 1 1 1 0 0
    

1 1 1 1 0 0

     
       
       

 
1 1 1 1 1ˆ ( ) ( )f      0x H x x

 
 

T

* 1 1
The solution is at     (as shown analytically)

2 2

 
  
 

x

  

 
3 2 2

1 2 1 1 2(b)  ( )  ( ) exp( 10( ) )i f x x x x x   x
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 2 3 2 2

1 1 1 1 2 2 1 1 2

3 2 2

1 1 2 2 1 1 2

3 ( 2 20( )) exp 10( )
( )

1 20( ) exp 10( )

x x x x x x x x x
f

x x x x x x x

        
   

             

x

 

 

 

T
0 1  1   x

 
 

 

0
1  0

ˆLet  
0  1

 
  
 

H

  

 

 

T
0( ) 1  1f      x

 
 

 

T
0 0 1 0ˆ( ) ( ) 1  1f       s H x

 
 

 

T
1 (1   (1 )      x

 
 

 A search for  which minimizes f(x1) gives  = 0.5. 

 

 

1 1.5  1.5   x

 
 

 

T
1( ) 1.5942  1.5942f     x

 
 

 

T
0 1 0 0.5  0.5      x x x

 
 

 

0 1 0
2.5942

( ) ( )
0.5942

f f
 

      
 

g x x

 

 

 

T
0 0 0 1 0ˆ( ) 2.0942  1.0942        h x H g

 
 

 

0 0 T 0 0 T 0 T 0 0 0 T
0 1

T0 T 0 0 T 0 0 T 0

( ) ( )( ) ( ) ( )ˆ( )
( ) ( ) )

h x x h h g x x

g x g x g x

      
  

           

H

 

 

  

3.9889 5.5831

5.5831 7.177

 
  
   
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1 1
4.9889 5.5831

ˆ( )
5.5831 8.177

  
  
 

H

 

 
2 2 2 2

1 2 3 4( )   ( )ii f x x x x   x

 
 

 

ˆThe procedure is the same as for ( ).  is invariant and positive definitei H 

  

  

2

ˆ 2

2

   2

0

0

 
 
 
  
 
 
  

H H

 

 

 The gradient of f(x) is 

 

  

1

2

3

4

2

2
( )

2

2

x

x
f

x

x

 
 
  
 
 
  

x

 

 

 

 
T 0and at (1,  1,  1,  1), 2 2 2 2 . Then  isf  s

 
 

 

 
T0 0( ) 2 2 2 2f      s x

 
 

 

1 0 0 1
,or if pick 

2
   x x s

 
 

 

1

1

1

2

1

3

1

4

1 2 0

1 2 01
       The solution.

1 2 02

1 2 0

x

x

x

x

       
       

                
       
        
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Problem 6.41 

 

 

1

2

4

opt 0.6630

opt 0.1546

 opt 1.717x10

k

k

 





  

 

 

 

 

 

Problem 6.42 

 

The optimum is  k1 = 2.44277 

   k2 = 3.13149 

   k3 = 15.1593 

     = 4.355x10-5 

 

 

Problem 6.43 

 

 Let y = a(1-x2), a better approximation than y = a (1-x).  This function satisfies the 

boundary conditions.  We want to find the value of a which minimizes 
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21

2 2

1

0

4 1
2   

3 2

dy
F yx dx a a

dx

  
     

   


 

 

 

*

1

8 1
From / 0,  we get 3/16,  and

3 2
dF da a a   

 

*

1 0.0469.F  

 
 

 
2 2 2

1 2

If a more complicated function is chosen, say

      (1 ) (1 ) ,  theny a x a x   
 

2 2

2 1 2 1 2 1 21.333 1.219 2.133 0.267 0.152F a a a a a a    

  

 The minimum of this function is 

 

 

* * *

1 2 20.5,   0.5,   0.1048.a a F   

  

 Since F2
* < F1

*, we conclude that a more complicated function improves the 

estimate of the minimum of the integral. 

 

 

Problem 6.44 

 

 The optimum is 

 Expected risk = -0.12794 E11 

and  b* = -0.2993 E4 

 

 

Problem 6.45 
 

The solution is:

 T T
0 * *(a)     5  5         4  2          3.428f        x x

 
 

T T
0 * *(b)     1  1  1       1  2  1       0.299f        x x

 
 

T T
0 * *5  4  6       4  2  1      0.464f                x x

 
 

 



 36 

Problem 6.46 
 

The solution is 

 
T T

0 * *

T T
0 * *

(a)     2  1          4  2          3.428

         2  2          4  2         3.428

f

f

        

        

x x

x x  

 
T T

0 * *

T T
0 * *

(b)     2  1  1       2  2  1    0.2686

         2  2  1       2  2  1    0.2686

f

f

        

        

x x

x x  

 

 

Problem 6.47 

 

The optimum is 

 
*

*

1

*

2

*

0.94089

3.04917

0.47456

896.719 (sum of squares of the errors)

a

b

b

f









 

 

 

Problem 6.48 

 

 The optimum is T* = 446,927 kL 

     Q* = 179,840 bbl/day 

     C* = 17.88 $/kL 

 

 The optimum is flat, and slightly different T and Q give the same C. 
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CHAPTER 7 

 

Problem 7.1 

 

 The yields are bbl product per bbl of crude expressed as a fraction.  The problem 

to maximize the profit. 

 

 Let x1 = volume of crude no. 1 used (bbl/day) 

       x2 = volume of crude no. 2 used (bbl/day) 

 

 Constraints: 

 Gasoline production 0.7x1 + 0.31 x2      < 6000 (a) 

 Kerosene production 0.06 x 1+ 0.09 x 2  <  2400 (b) 

 Fuel oil production 0.24 x 1+ 0.60 x 2  < 12000 (c) 

  profit = 1.00 x 1 + 0.70 x 2      ($/day) 

 

  Also:  1 0x   

   2 0x   
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Problem 7.2 

  

 Basis:  1 run  

hr 

x1 Ergies 1 run  

 Units: Ergies produced    

  

 Let x1 = number of boxes of ERGIES per run 

       x2 = number of boxes of NERGIES per run 

 

 Maximize:  profit  Y = 0.50 x1 + 0.60 x2 

Constraints: 

   blending time BT = (1/60) x1 + (2/60) x 2   <  14  hr 

   cooking time CT = (5/60) x 1 + (4/60) x 2   <  40  hr 

   packing time  PT = (3/60) x 1+ (1/60) x 2    <  15  hr 

   x 1, x 2 > 0 

 

 
optimum: x1 = 192  boxes/run 

  x2 = 324 boxes/run 

  Y = 290.4 $/run 
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Problem 7.3 

 

Objective function: 

 

 1 2$.60 $.30 $.40y P P F    

 

Equality constraints: 

 

 equality :   A B CF F F F    

 

  
1

2

(.40) (.30) (.50)

(.60) (.70) (.50)
C

A B C

A B

P F F F

P F F F

  

  
 

 

Inequality constraints: 

 

 

1

2

10,000

5,000

5,000

5,000

4,000

7,000

A

B

C

F

F

F

F

P

P













 

 

 

Problem 7.4 

 

 The graph is shown below and indicates that the optimal solution is at the extreme 

point B where x1 = 2, x2 = 4, and fmax = 10. 
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Problem 7.5 

 

 Let Xij  be the number of batches of product i (i = 1, 2, 3) produced per week on 

unit j (j = A, B, C).  We want to maximize the weekly profit. 

 

 
1 1 1 2 2 2 3 3 3max : ( ) 20( ) 6( ) 8( )A B C A B C A B Cf X X X X X X X X X        x  

 

 subject to: 

 
3 3 3   sales limits:  20A B CX X X    

    hours available on each unit: 

 

 

1 2 3

1 2

1 3

      unit A     0.8 0.2 0.3    20

      unit B     0.4 0.3                   10

      unit C     0.2                0.1    5

A A A

B B

C C

X X X

X X

X X

  

 

 

 

    and non-negativity constraints: 

 

 0   1,2,3   , .ijX i j A B C    

 

 

Problem 7.6 

 

 Let i  designate the constituent index  i = 1 to 4 

  

       j  designate the grade index    j = 1 to 3 

 

   (A = 1, B = 2, C = 3) 

 

      xi  designate a constituent 

      yj  designate a grade 

     xij  is bbl/day of constituent i in grade j 

 

Objective function ($/day): 

 

 
3

1 2 3 1

1

16.20 15.75 15.30 13.00 j

j

f y y y x


      

 

  
3 3 3

2 3 4

1 1 1

15.30 14.60 14.90j j j

j j j

x x x
  

      
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Constraints: 

 

 
3

1

1

3,000j

j

x


   
3

3

1

4,000j

j

x


  

 

 
3

2

1

2,000j

j

x


  
3

4

1

1,000j

j

x


  

 

 11

1

0.15
x

y
   12

2

0.10
x

y
  

  

 21

1

0.40
x

y
   22

2

0.10
x

y
  

 

31

1

0.50
x

y
   13

2

0.20
x

y
  

 

0

0

j

ij

y

x




 

 
4 4 4

1 1 2 2 3 3

1 1 1

      i i i

i i i

y x y x y x  

  

    

 

 

Problem 7.7 

 

The objective function is: Max: f(x) = 5(P + T + F) –8F 

 

The constraints are: 

 

 Viscosity requirement  5P + 11T + 37F > 21(P + T + F). 

 

 Gravity requirement  8P + 7T + 24F > 12(P + T + F). 

 

 Material balances   P + V = 1000 

 

      T = 0.8V 

 Also: 

 P, V, F, T   > 0 

 

Note: It would be also ok to let P + T + F = F* (fuel oil) 

 

 profit f(x) = 5F* - 8F  =5(P + T + F) –8F 
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viscosity:  -16P –10T + 16F > 0 

 

gravity:  -4P –5T + 12F > 0 

 

 
material balances on     1000

1000
viscosity breaker:       0.8 .8

P V T
P

T V

  
 

 
  

 

The number of equality constraints depends on the number of substitutions you make, 

and the same is true with respect to the number of variables.  You can delete F*, V. 

 

 

Problem 7.8 

 

After adding slack variable 

 

 

1 2 3 4

1 2 3 5

1 3

2           =11

4 2      3

2                       = 1

x x x x

x x x x

x x

  

    

 

 

 

There is no basic feasible solution because with 

 

 1 2 3 4 50   , 11 but 3(not feasible).x x x x x       

 

 

Problem 7.9 

 

 

(a) Choose the largest positive coefficient in the bottom row, since this will decrease f 

the fastest.  x1 should be increased first. 

 

(b) Part (a) designated x1 as the pivotal column.  Check the ratios to find the limiting 

constraint.  Choose the smallest positive ratio from –3/2, 11/5 and 4/1.  It is 11/5.  

Therefore, x4 is the pivotal row, and “5” is the pivotal element. 

 

(c) The limiting value of x1 is found from the ratio test;  it is 11/5. 
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Problem 7.10 

 

Start with the following matrix: 

 

 x1 x2 x3 x4 x5 f b 

x3 -2 2 1 0 0 0 3 

x4 5 2 0 1 0 0 11 

x5 1 -1 0 0 1 0 4 

f 4 2 0 0 0 1 0 

 

Let x1 replace x4 as a basic variable. 

 

step 1:    divide row 2 by 5 

step 2:    multiply row 2 by 2 and add to row 1 

step 3:    multiply row 2 by –1 and add to row 3 

step 4:    multiply row 2 by –4 and add to row 4 

 

The next matrix is: 

 

 x1 x2 x3 x4 x5 f b 

x3 0 14/5 1 2/5 0 0 7.4 

x1 1 2/5 0 1/5 0 0 11/5 

x5 0 -7/5 0 -1/5 1 0 1.8 

f 0 2/5 0 -4/5 0 1 -8.8 

 

The basic variables are:  x1, x 3, x 5 The non-basic variables are: x 2, x 4 

 

 

Problem 7.11 

 

The constraints are: 

 

 

1 2 3

1 2 3

1 3

1 2 3

2 11               (a)

4 2 3            (b)

2 1                     (c)

, , 0.

x x x

x x x

x x

x x x

  

   

  



 

 

3 1From ( ),get 2 1               (d)c x x   

 

1 2From ( ) and ( ) get 3 2 10   (e)a d x x   

 

2From ( ) and ( ) get 1,   b d x   say x2 = 1. 

 

Then from (e),   x1 < 4,            say x1 = 4 
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Then from (d),   x3 = 9. 

 

Therefore,  x1 = 4,  x2 = 1,  x3 = 9 is a basic feasible solution, and thus, there exists a basic 

feasible solution. 

 

 

Problem 7.12 

 

 

A phase I procedure can be used to obtain a feasible basic solution.  Add an artificial 

variable x6, to the second equality constraint.  Now solve the LP 

 

 Minimize:    x6 

 

 

1 2 3 4

1 2 3 5 6

1 6

Subject to:  2 2 8

                   3 4 7

                   ,..., 0

x x x x

x x x x x

x x

   

    



 

 

The solution to this LP gives a feasible solution to the original LP provided 
*

6 0x  .  If 

*

6 0x  , then the original LP does not have a feasible solution.  In our case, 
* * * * * *

1 4 5 6 2 30,  1,  3x x x x x x      .  This is a feasible solution. 

 

 

Problem 7.13 

 

(a) The basic variables have negative values:  x3 = -6 and x4 = -4.  This violates the 

non-negativity constraints. 

 

(b) The constraints are 

 

1 2 32 7x x x     1 22 7x x   

 1 2 43 4x x x    or 1 23 4x x    

 

 1 23 0x x f     1 23f x x   
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The problem is unsolvable, because the optimum is unbounded. 
 

 

(c) x2 is the incoming variable.  The ratio test says that either of x3 and x4 can leave 

the basic set.  If x3 leaves the basic set, the final matrix is: 

 

 x1 x2 x3 x4 f b 

x2 2 1 0.5 0 0 3 

x4 0 0 -1.5 1 0 0 

f -5 0 -1.5 0 1 -9 

 

The solution is:   
* * * * *

1 3 4 20,   3,  9x x x x f       

 

If x2 replaces x4, the final matrix is 

 

 x1 x2 x3 x4 f b 

x3 0 0 1 -0.67 0 0 

x2 2 1 0 0.33 0 3 

f -5 0 0 -1 1 -9 

 

The solution is: 
* * * * *

1 3 4 20,   3,   9x x x x f       

 

Thus, the solution is unique. 

 

(d) The given problem is already at an optional solution:  

 

 
* * * * *

1 2 3 40,   7,  5,  0x x x x f      
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We can also pivot around “3” (x4 row, x2 column) to get 

 

 x1 x2 x3 x4 f b 

x3 0 0 0 -2/3 0 11/3 

x2 2 1 0 1/3 0 5/3 

f -1 0 1 0 1 0 

 
* * * * *

1 4 2 30,  5 / 3, 11/ 3,  0.x x x x f      

 

This means the any point on the line segment joining the points 

 
T T

0  0  7  5  and 0  5 / 3  11/ 3  0        is optimal 

 

 

Problem 7.14 

 

 Add slack variables 3 4 5 6, ,  and x x x x .  Now solve 

 

 

1 2

1 2 3

1 2 4

1 2 5

1 2 6

1 6

Minimize :    

Subject to:    3 12

                    1

                    2 4

                    2 8

                    ,..., 0

f x x

x x x

x x x

x x x

x x x

x x

 

  

  

  

  



 

 

The beginning matrix is 

 x1 x2 x3 x4 x5 x6 f b 

x3 1 3 1 0 0 0 0 12 

x4 1 -1 0 1 0 0 0 1 

x5 2 -1 0 0 1 0 0 4 

x6 2 1 0 0 0 1 0 8 

f -1 -1 0 0 0 0 1 0 

 

This is already at the optimal point! 

 
* * *

1 2 0,  0x x f    

 

The Simplex method did not exhibit cycling. 
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Problem 7.15 
 

Problem 7.1 was 

 

 Maximize:  1 20.7x x  

 

1 2

1 2

1 2

Subject to:  0.7 0.31 6000

                   0.06 0.09 2400

                   0.24 0.60 12000

x x

x x

x x

 

 

 

 

 

 which is the same as 

 Minimize    1 20.7x x   

 

 

1 2 3

1 2 4

1 2 5

Subject to: 0.7 0.31 6000

                  0.06 0.09 2400

                  0.24 0.60 12000

x x x

x x x

x x x

  

  

  

 

 

 where 
3 4 5,  and x x x  are slack variables.  The initial matrix is (the origin is a 

 feasible solution): 

 

 x1 x2 x3 x4 x5 f b 

x3 0.7 0.31 1 0 0 0 6000 

x4 0.06 0.09 0 1 0 0 2400 

x5 0.24 0.60 0 0 1 0 12000 

f 1 0.7 0 0 0 1 0 

 

 

Now, use the Simplex method: 

 

 x1 x2 x3 x4 x5 f b 

x1 1 0.4428571 1.4285714 0 0 0 8571.43 

x4 0 0.0634285 -0.0857142 1 0 0 1885.71 

x5 0 0.4937143 -0.3428571 0 1 0 9942.86 

f 0 0.2571429 -1.428571 0 0 1 -8571.43 

 

 x1 x2 x3 x4 x5 f b 

x2 2.2580647 1 3.2258067 0 0 0 19354.84 

x4 -0.1432256 0 -0.2903222 1 0 0 658.07 

x5 -1.1148388 0 -1.935484 0 1 0 387.10 

f -0.5806453 0 -2.2580647 0 0 1 -13548.39 

 

This last matrix gives the optimal solution.  At the optimum, x2 (crude # 2) is a basic 

variable, and x1 (crude # 1) is a non-basic variable.  Thus a small change in the profit 

coefficient of x1 does not affect the optimum (Note that if the profit coefficient were 1.1, 

its shadow price would still be negative, which implies that the optimum, x* and f* are 
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unchanged).  A five percent increase in the profit coefficient of x2 influences the 

objective function the most.  (Note:  if the profit coefficient x2 were 0.735 instead of 0.7, 

the current x* would still be optimal). 

 

 

Problem 7.16 

 

 Start with the matrix that has been converted to standard canonical form by the 

addition of slack variables, and has a basic feasible solution (with x1 = x2 = 0): 

 

 x1 x2 x3 x4 x5 Constants 

obj. function: 4 2 0 0 0 0 

constraints: -2 2 1 0 0 3 

 5 2 0 1 0 11 

 1 -1 0 0 1 4 

 

Next 

  

(a) Increase x1 first as it has largest positive coefficient. 

 

(b) Column no. is 1.  Row no. comes from the first constraint that is encountered 

 

Look at each one:  0s s sb a x   

 

2nd row  3-(-2)x1 = 0  x1 < 0  ok to increase 

 

3rd row  11–5x1 = 0  so 1

11

5
x   (is the limit) 

 

4th row  4-x1 = 0  so x1 = 4 

 

Row no. to choose is 3 (2nd constraint) 

 

(c) Limiting value is 1

11

5
x  . 

 

(d) The next basis will be 2 4 1 3 40,  0;  , ,x x x x x   will be non-basic. 

 

(e) Use elementary operations to make the x1 column a unit vector 
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 x1 x2 x3 x4 x5 Constants 

1 0 8
2

5

 
 

 
 

0 -4/5 0 -44/5 

2 0 2
2

5

 
 

 
 

1 2

5
 

0 22
3

5

 
 

 
 

3 1 2

5
 

0 1

5
 

0 11

5
 

4 0 7

5
  

0 1

5
  

1 11
4

5

 
 

 
 

 

 

Problem 7.17 

 

 An LP code gives 

 

  
1 2 3( ) 6     0     2     0f x x x   x  

 

 

Problem 7.18 

 

 To solve this problem, introduce slack variables 4 50 and 0x x   so that the 

constraints become 

 

  
1 2 3 4

1 2 3 5

2 2 16,

4 8 40,

x x x x

x x x x

   

   
 

    0     for 1 5.ix i    

 

 Now consider the following array 

 

1E   1 2 3 42 2x x x x     = 16 

 

2E   1 2 3 54 8      x x x x     = 40 

 

3E   1 2 37 12 3x x x            -Z = 0 

 

Clearly, a basic feasible solution is given by 

 

 1 2 3 4 50,  16,  and 40.x x x x x      

 



 14 

According to the above algorithm we do not have an optimal solution because the 

coefficient of each 
ix  in equation 

3E  is positive.  Since 12 is the largest relative cost 

factor, we choose column 2.  Furthermore, since 12 2216 / 8 and 40 / 5a a  , we choose 

row 2 and pivot about 28x .  This yields the following array: 

 

2
4

8

E
E    1 2 3 5

1 1 1
            5,

2 8 8
x x x x     

 

5 1 42E E E       1 3 4 5

3 1
            6,

4 4
x x x x     

 

6 3 412E E E      1 3 5

3 3
              Z= 60 

2 2
x x x    . 

 

This yields another basic feasible solution given by 

 

 1 3 5 2 40,  5,  and 6x x x x x      

 

Since there are still positive cost factors (in 6E ), then we know that this solution is not 

optimal.  Since 3/2 is the largest relative cost factor we choose column 3 and observe that 

we must pivot about (3/4)
3x .  Doing this, we obtain 

 

5
7

4

3

E
E     1

4

3
x  3 4 5

4 1
        8,

3 3
x x x     

 

8 4 7

1

8
E E E     1 2

1

3
x x 4 5

1 1
          4,

6 6
x x    

 

9 6 7

3

2
E E E     1x   4 5

3
            72

2
x x Z      

 

Continuing on until all the variables in the Z function have negative coefficients (so the 

variables cannot be increased), the optimal solution is 

 

  1 2 30     4     8     72x x x z     

 

In this case we obtain as a basic solution 

 

  1 4 5 2 30,  4,  8,  and 72.x x x x x Z       

 

This solution is optimal since all cost factors (in 9E ) are negative.  Thus, the maximum 

value of the objective function is 72. 
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 Some comments are necessary with regard to the simplex algorithm as stated.  

First, the problem must be feasible, and this is why the initial solution has to be feasible.  

This suggests that it might be desirable to have some test of feasibility before applying 

the algorithm unless it is known a priori that a physically realizeable solution must exist.  

Second, the assumption was made that all 
ib  are nonnegative.  If any 

ib  is negative, we 

multiply each equation by –1 to obtain a positive constant on the right-hand side of the 

inequality.  In particular, if 1 0,b   then from the constraint 1 11

n

j jj
a x b


  we obtain 

1 11
.

n

j jj
a x b


     To make this an equality, we must subtract a non-negative variable 

1nx 
 from the left-hand side to obtain 1 1 11

.
n

j j nj
a x x b

      Inserting this equation 

into the system of equations defined by the constraint inequalities shows that the basic 

solution of the resulting canonical system is not feasible since we would have 

1 1 0nx b    as part of the basic solution.  Therefore, in order to apply the simplex 

algorithm directly, we must perform at least one pivot operation to obtain a basic feasible 

solution as a starting point.  This requires, in general, a trial and error process that may 

require considerable time before obtaining a suitable basic solution as a starting point.   

 

 

Problem 7.19 

 

 You want to have all of the b’s (the right hand sides of the inequalities) be 

positive at the start.  If you multiply the last two in equalities by –1, you change the 

values of the b’s to positive and reverse the direction of the inequalities, but f  .  It 

is better to translate 1 2 and x x  (by addition) to get new variables for which the origin is a 

feasible point. 

 

 

Problem 7.20 

 

(a) True 

(b) True 

(c) True 

 

 

Problem 7.21 

 

 Let ijx  = tons/day of product from refinery i transported to customer j. 

      

 i = 1, 2 and j = 1, 2, 3. 

 

 Capacity constraints: 
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11 12 13

21 22 23

1.6

0.8

x x x

x x x

  

  
 

 

 Minimum demand constraints: 

 

 

11 21

12 22

13 23

0.9

0.7

0.3

x x

x x

x x

 

 

 

 

 

 Production cost = 
1 11 1 13 21 22 232
( ) 35( )P x x x x x x          ($/day) 

      where  
1 11 12 13$30/ ton if 0.5 ton/dayP x x x     

      
11 12 13   $40/ ton if 0.5 ton/dayx x x     

 

 Transportation cost = 
11 12 1325 60 75x x x   +

21 22 2320 50 85x x x      ($/day) 

   

 Total cost = Production cost + Transportation cost 

 (to be minimized). 

 

 If we assume that 1 $30 / tonP  , then the solution to the LP is 

1 13 22 12 21 231
0.9,  0.3,  0.7,  , 0.x x x x x x      But, 

11 12 13 1.2 tons/day  0.5 tons/day.x x x      So, we cannot use P1 = $30/ton. 

 

 If we use 1 $40 / ton,P   then the optimum is 

11 13 21 22 12 230.8, 0.3, 0.1, 0.7, 0.x x x x x x        Total cost = $151.50/day.  

11 12 13 1.1 ton/day.x x x    So, we used the correct value for 1P .  The solution is 

 

 

*

11

*

13

*

21

*

22

* *

12 23

0.8 tons/day

0.3 tons/day

0.1 tons/day

0.7 tons/day

0.

x

x

x

x

x x











 

  

Total cost = $151.50/day. 

 

 

Problem 7.22 

 

 Let ijx  = bbl/day of stream i used to make product j 
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 i =  A alkylate 

  C cat cracked gas 

  S s.r. gas 

 j = A aviation gas A 

   B aviation gas B 

   L leaded motor gas 

   U unleaded motor gas 

 

 Maximize: 

 

 profit ($/day) = 5.00 ( )AA CA SAx x x   5.50( ) 4.50( )AB CB SB AL CL SLx x x x x x       

    4.50( )AU CU SUx x x    

 

 Subject to: 

 

(i) availability constraints 

  4000    bbl/dayAA AB AL AUx x x x     (a) 

  2500    bbl/dayCA CB CL CUx x x x     (b) 

  4000    bbl/daySA SB SL SUx x x x     (c) 

 

(ii) RVP constraints 

  5 8 4 7( )AA CA SA AA CA SAx x x x x x      

  5 8 4 7( )AB CB SB AB CB SBx x x x x x      

  or 

  2 3 0AA CA SAx x x       (d) 

    2 3 0AB CB SBx x x       (e) 

 

(iii)ON constraints 

  94 84 74 80( )AA CA SA AA CA SAx x x x x x      

   94 84 74 91( )AU CU SU AU CU SUx x x x x x      

   108 94 86 91( )AB CB SB AB CB SBx x x x x x      

   108 94 86 87( )AL CL SL AL CL SLx x x x x x      

   or 

   14 4 6 0AA CA S A
x x x      (f) 

   3 7 17 0AU CU SU
x x x      (g) 

   17 3 5 0AB CB S B
x x x      (h) 

   21 7 0AL CL S L
x x x      (i) 

 

(iv) Non-negativity constraints 

  all 0i j
x   
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Solution: * 4000 bbl/dayABx   

     * 2500 bbl/dayCBx   

     * 4000 bbl/daySBx   

     all other * 0i jx   * 0i jx   

     Profit = $57750/day. 

 

 

Problem 7.23 

 

 Let 100 lb / day of material ix i  produced or consumed     i = A, B, C,   E, F, G 

 

 Total income ($/day) = 
4 5 64 3.3 3.8x x x   

 Cost of raw material ($/day) = 
1 2 31.5 2 2.5x x x   

 Operating cost ($/day) = 4 5 6

2 1

3 3
x x x   

 

 From the material balances, we have 

 

 1 4 5 6

2 2 1

3 3 2
x x x x    

 2 4 5 6

1 1 1

3 3 6
x x x x       3 6

1

3
x x  

  

 

 Using these to eliminate 
1 2 3,  and x x x  from the cost-of-raw material expression,  

 we get the cost of raw material ($/day) = 4 5 6

5 5
1.92

3 3
x x x   

 The objective is to maximize the profit: 

      Profit = total income – raw material cost - operating cost 

 

The LP is, therefore, 

  Maximize:  4 5 61.67 1.3 0.88x x x   

      Subject to availability of raw materials: 

 

      4 5 6

2 2 1
40

3 3 2
x x x    

      4 5 6

1 1 1
30

3 3 6
x x x    

6

1
                   25

3
x   

4 5 6, , 0x x x   
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An equivalent objective is 

Minimize: 
4 5 61.67 1.3 0.88x x x    

Introducing the slack variables 
7 8 9, ,x x x .  The inequalities are converted to 

equality constraints: 

 

4 5 6 7

2 2 1
40

3 3 2
x x x x     

4 5 6 8

1 1 1
30

3 3 6
x x x x     

                 6 9

1
25

3
x x   

4 5 6x x x   gives an initial feasible solution.  The initial matrix is 

 

 x4 x5 x6 x7 x8 x9 f b 

x7 2/3 2/3 ½ 1 0 0 0 40 

x8 1/3 1/3 1/6 0 1 0 0 30 

x9 0 0 1/3 0 0 1 0 25 

f 1.67 1.3 0.88 0 0 0 1 0 

 

4x  is the incoming variable.  
7x  leaves the basic set.  The next matrix is 

 

 x4 x5 x6 x7 x8 x9 f b 

x4 1 1 ¾ 3/2 0 0 0 60 

x8 0 0 -1/12 -1/2 1 0 0 10 

x9 0 0 1/3 0 0 1 0 25 

f 0 -0.37 -0.37 -2.51 0 0 1 -100.2 

 

This matrix gives the optimal solution 

 

4 60x    

8 10x    

9 25x   

5 6 7, , 0x x x   

The optimum distribution is to produce 6000 lb/day of E, and no F and G. 
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Problem 7.24 
 

Crude a b c d e f g h i j 

 
    (profit or loss of each refinery cpb) 

 

 

Refinery 

          Required 

M bpd 

X1 -6 3 17 10 63 34 15 22 -2 15 30 

X2 -11 -7 -16 9 49 16 4 10 -8 8 40 

Y -7 3 16 13 60 25 12 19 4 13 50 

Z -1 0 13 3 48 15 7 17 9 3 60 

Available 

M bpd 

 

30 

 

30 

 

20 

 

20 

 

10 

 

20 

 

20 

 

10 

 

30 

 

10 

 

200 

 

Refinery X1 

 

1 1 1 1 1 1 1 1 16 3 17 10 63 34 15 22X a b c d e f g hP X X X X X X X X          12 15i ijX X   

 

where 1XP  = net profit of Refinery 1X  

 

 
1aX  = crude a used in 1X  

 

 1 jX  = crude j used in 1X  

 

Refinery 2X  

 

2 2 2 2 2 2 2 2 211 7 16 9 49 16 4 10X a b c d e f g hP X X X X X X X X           2 28 8i jX X   

 

Refinery Y 

 

7 3 16 13 60 25 12 19 4Y a b c d e f g h iP Y Y Y Y Y Y Y Y Y           13 jY  

 

Refinery Z 

 

13 3 48 15 7 17 9 3Z a c d e f g h i jP Z Z Z Z Z Z Z Z Z           

 

1 2  objective functiontot X X Y ZP P P P P      

 

1 1 1 1 1 1 1 1 1 16 3 17 10 63 34 15 22 2 15tot a b c d e f g h i jP X X X X X X X X X X            

    2 2 2 2 2 2 2 2 2 2    11 7 16 9 49 16 4 10 8 8a b c d e f g h i jX X X X X X X X X X           

         7 3 16 13 60 25 12 19 4 13a b c d e f g h i jY Y Y Y Y Y Y Y Y Y          

          0 13 3 48 15 7 17 9 3a c d e f g h i jZ Z Z Z Z Z Z Z Z           
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Contraints 

 

1) equality constraints: 

 

1 1 1 1 1 1 1 1 1 1 30a b d e f g h i jc
X X X X X X X X X X           

 2 2 2 2 2 2 2 2 2 2 40a b d e f g h i jc
X X X X X X X X X X           

 50a b c d e f g h i jY Y Y Y Y Y Y Y Y Y           

 60a b c d e f g h i jZ Z Z Z Z Z Z Z Z Z           

 

2) inequality constraints: 

 

1 2 30a aa a
X X Y Z     

1 2 30b bb b
X X Y Z     

1 2 20c cc c
X X Y Z     

1 2 20d dd d
X X Y Z     

 1 2 10e ee e
X X Y Z     

 1 2 20f ff f
X X Y Z     

 1 2 20g gg g
X X Y Z     

 1 2 10h hh h
X X Y Z     

 1 2 30i ii i
X X Y Z     

 1 2 10j jj j
X X Y Z     

 

Solved by Lindo: 

 

 3

max 2540x10P   
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Problem 7.25 

 

 Solution (via Berkely LP code on the web): 

 

 f = 19,000  1 200hrx   2 300hrx   N = 2 

 

    
3 4 5 0x x x    

 

 

Problem 7.26 

 

 Solution: 

 

 

1

3

2

0

0

1

8

x

x

x

f









 

 

 

Problem 7.27 

 

 Solution: 

 

 

 
T

0 0 7 00  

7

x

f





 

 

 

Problem 7.28 

 

(a) Problem formulation: 

 

Minimize 

 

 i i i ij
C C I   

 

Subject to: 

 

for each ,     i i jj
j S R   

 

for each ,     j i ij
i S Q   
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and 1iI   
1 2, .... integeriI I I . 

 

(b) Numerical solution: 

 
    Plant A       Plant B 

        1             0 

 

Fixed Charge A Fixed Charge B 

700           0 

 
   A to C        A to D  B to C      B to D Production A   Production B 

      200            250      0          0         450                    0 

 

Cost A to C Cost A to D     Cost B to C   Cost B to D          C                   D 

       200            750       0          0         200                 250 

 

Total cost 

    1650 

 

Build only plant A. 
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Problem 7.29 
 

 The solution is: 

 

 
 



 1 

CHAPTER 8 

 

Problem 8.1 

 

 Starting from the non-feasible point (10, 10), the numerical solution is (0, 0).  By 

substitution of 
4

1 2x x  , the objective function becomes 

  

4

2

3

2 2 1

' 4 0 yields 0 so that 0

f x

f x x x



   
 

 

 

Problem 8.2 

 

 Starting from the non-feasible point (2, 2), the numerical solution is (1, 0).  By  

substitution of 
25

1 21 10x x  , the objective function becomes 

 

  
2

25

21 10f x   
 

 

 

 
25 5

2 2

' 2 1 10 ( 10 )(2 ) 0f x x      
 

 yields 2 0x   or 5

21 10 0x   so that an 

alternate solution is 5

2 10 .x   

  

 If 5 5

2 1 2 10, 1.  If 10 , 1 10 .x x x x      

 Check 5

2".  If 0,  4x10f x f   (positive definite, a minimum). 

 If 5 5

2 10 ,   6x10x f    (negative definite, a maximum). 

 

 

Problem 8.3 

 

 Add to the LHS of the equation a variable that is always positive such as 

 

  

4

4

2

4

x

x x

x x

x e







 

 

 

Problem 8.4 

 

 The Lagrange function is 

 

 
2 2

1 2 1 2( , ) (2 2)L x x x x     x  

 



 2 

 The necessary conditions are: 

 

1

1

1 2
2

2

2 2 0
eliminate 

2 4 0
2 0

L
x

x

x xL
x

x






 
    


    

 

  (a) 

 

1 22 2 0
L

x x



   


    (b) 

 

Solve (a) and (b) to get 1 20.8 and 0.4x x  .  Then 

 22 0.8 and ( ) 0.80x f     x . 

 

Check to make sure the above solution is a minimum. 
2L x  must be pos. def. 

2
2  0

0  2
L

 
   

 
x  which is pos def. 

 

 

Problem 8.5 

 

 

2 2 1/ 2

1 2

2 2

1 1 2 2

( ) ( )

( ) 5 6 5 8 0

f x x

h x x x x

 

    

x

x
 

 

 
2 2 2 21/ 2

1 2 1 1 2 2( ) (5 6 5 8)L x x x x x x       

 
2 2 1/ 2

1 1 2 1 1 2

1

2

/ ( ) (2 ) 10 6 0L x x x x x x          (a) 

2 2 1/ 2

2 1 2 2 1 2

1

2

/ ( ) (2 ) 6 10 0L x x x x x x          (b) 

2 2

1 1 2 2/ 5 6 5 8 0L x x x x           (c) 

 

Divide (a) by 1x  and (b) by 2x , and equate the resulting equations. 

From (a) and (b): 

 

     
2 2

1 2 2 1 2 110 6 10 6x x x x x x           

     1 2x x         (d) 

From (c) and (d): 

 
2 2 2

1 1 15 6 5 8 0x x x     1 2
1

2x x    
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or 
2 2 2

1 1 15 6 5 8 0x x x     1 2 2x x    

 

The points 
2 2 2 2

1 1 1 1
,  and ,  

   
    

   
are closest to the origin (distance =1) 

and the points 2 2 2 2( , ) and (    )are the farthest (distance = 2). 

 

 

Problem 8.6 

 

 
2 2 23

1 2 1 2 1 2( , , ) ( 1)L x x x x x x       
 

 

 

 2

1 1 1/ 2 3 ( 1) 0L x x x          (a) 

 2 2 2 2/ 2 2 2 (1 ) 0L x x x x           (b) 

 
23

1 2/ ( 1) 0L x x           (c) 

 

If 
T 1 0   x  satisfies eq. (c) but not eq. (a), 1   satisfies eq. (b), but eq. (a) gives 

2

1 1 12 3( 1) 0,  x x x    is imaginary and eq. (c) will not be satisfied.  2 0x   satisfies eq. 

(b), but eq. (c) is not satisfied except for 1 1x  .  Hence no   exists.  

 

 

Problem 8.7 

 

 2 2( , ) ( )rf C T C C T     0C  is a constant. 

 T

0( , ) 0h C T C e C     

 0( , ) 0g C T K C    

 

Eliminating C using he equality constraint, we may write the Lagrangian as 

 
T 2 2 2

0 0 0( , , , ) ( ) ( )rL C T C e C T u C K          
T

0 0/ 2( ) 0rL C C e C u        
T T

0/ 2( ) 2 0rL T C e C e T        
2

0/ 0L u C K       

/ 2 0L u      

 

If u = 0, we have a saddle point; we are not interested in this case.  Thus 0.   
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0

T T

T T

0

2 2

2

( 2) 0

0.524

2

2 0.311

( 0.311) (0.524) 0.371

r

r

T

r

K C C

e e T

T

C C e C e

C C e

f

  

  



    

    

   

 

 

Alternate solution:  Use 2 Lagrange multipliers, one for h and one for g, and the original 

function for f. 

 

 

Problem 8.8 
 

a. 

1. The objective function and constraints are twice differentiable at x* 

 

2. The gradients of the constraints are linearly independent, so that the 

Lagrange multipliers exist. 

 

3. The constraints are satisfied (the second constraint is 3.98  4.1 but close 

enough). 

 

4. The Lagrange multipliers for any inequality constraints are not involved in 

the problem.  They exist for the equality constraints. 

 

5. To show that *x  is at a stationary point where  ,L  0x
 a set of 4 

nonlinear equations obtained by setting the partial derivatives of L = 0 

must be solved for * * and x  .  This problem is as difficult to solve as the 

original NLP problem, and require the use of a nonlinear equation solver. 

 

6. Additionally, you have to show that the Hessian matrix L is negative semi-

definite at  *,x  i.e., that the eigenvalues of the H of  L are negative or 

zero. 

 

b. The steps for part b are the same as Part a, except that the Hessian matrix of L 

must be positive semi-definite.  You can substitute for V into the objective 

function, and get P in terms of xi.  Then the necessary conditions for an 

unconstrained function can be tested.  A set of nonlinear equations obtained as in 

Step 5 of Part a still has to be solved for x*. 
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Problem 8.9 

 

(a) The Lagrangian is 
2 2

1 2 1 2 1 2 1 2( , , ) 4 ( 8)L x x x x x x x x        

1 1 2/ 2 4 0L x x x          (a) 

2 2 1/ 2 4 0L x x x          (b) 

1 2/ 8 0L x x         (c) 

 

The solution to this set of equations is 
* * *

1 2

*

4,   4,   24.

96

x x

f

   


 

 

(b) 
L f

e e


 
  

 
 

 

( 24)(0.01) 0.24

96.24

L f

L f

      

 
 

 

 

Problem 8.10 

 

(a) 
2 2

1 2 1 2 1 2 1 2( , , ) 10 20 25 ( )L x x x x x x x x         

1 1/ 2 10 0L x x          (a) 

2 2/ 2 20 0L x x          (b) 

1 2/ 0L x x         (c) 

 

The solution to this set of equations is 

 
* * *

1 2

*

2.5,   2.5,   15.

12.5

x x

f

     


 

 

(b) * * (15)(0.01) 0.15f e        
*f  increases by 0.15 

 

(c) 
2 2 2

1 2 1 2 1 2 1 2( , ) 10 20 25 ( )P x x x x x x r x x        

1 1 1 2

2 2 1 2

/ 2 10 2 ( ) 0

/ 2 20 2 ( ) 0

P x x r x x

P x x r x x

      

      
 

 

Simultaneous solution of these two equations gives 
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1

5 5

2 1

r
x

r





 and 2

5 10

2 1

r
x

r





 

 

As r  , we have 
* *

1 22.5 and 2.5x x    

 

(d) From parts (a) and (c), we have 

 

1 22 ( )r x x    

 

*

1 2

lim
2 ( )r x x

r
    

 

 

(e) 2
2 2 2

2 2 2

r r
P

r r


 
  

 
 

 

Now, 0r   always and 2 2 0.r     Also, 

det 2( ) 4(2 1) 0.P r      P is convex, because 2P  is positive definite 

 

 

Problem 8.11 

 

The Hessian of 
16 0

( ) is 
0 8

x
f

 
 
 

x  

 

This is positive definite or indefinite depending upon the value of 1x .  Thus, this problem 

is not a convex programming problem which requires that ( )f x  be convex and the 

equality constraint be concave.  For convexity, you need the further specification that 

0ix  . 

 

 

Problem 8.12 

 

(a) ( ),  ( ), and ( )f h gx x x  are twice differentiable 

 

(b) Are the gradients of the binding constraints independent? 

 

1

2

2 1
( )

2 1

x
h

x

 
   

 
x  
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2

1
( )

2
g

x

 
   

 
x  

 

Is the only solution at 
T 0 0x      of 

  

 
1

1 2

22

2 1 1
0

22 1

x
c C

xx

    
    

   
 

 

1 20 and 0?C C   

 

 1 2

1 1
0

1 0
C C

   
    

   
  

1 2 1 2

1 2 1

2

( 1) 0 so 

0( ) 0 hence 0

so 0

C C C C

C C C

C

   

  



 

 

Answer is yes. 

 

(c) The Lagrange multipliers exist because (b) is satisfied. 

 

(d) The constraints are satisfied 

 

(e) The Lagrange multipliers of the inequality constraint is non negative 

 

(f) u*g (0, 0) = 0 ok 

 

(g) Is * *(0,0, , ) 0?Lx w u   

 
2 2 2 22

1 2 1 2 1 2 1 2( 1) ( ) ( )L x x x x x x u x x           

 

1 1

1

2( 1) (2 1) 0
L

x x u
x




     


 

 

2 2 2

2

2 (2 1) (2 ) 0
L

x x u x
x




    


 

 

 at (0, 0) 

 

2 0
0 and 2

(0) 0

u
u

u






    
 

  
 so both (e) and (g) are satisfied 

 

(h) Is the Hessian of L positive definite? 
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2 ( 2 2 ) 0

0 2
x L

u

  
   

 
  for 0 and 2u    

 

2 2 0

0 4
x L

 
   

 
  not pos def. (nor neg. def.) 

 

Is 
2 0

0
0 4

Tv v
 

 
 

  No, because 

 

1
0

0

Tv
 

 
 

 so 1 2( 1) (0) 0v v    so 1 0v   

 

1
0

1

Tv
 

 
 

 so 1 2 0v v   hence 2 0v   

 

The answer to the problem is:  No. 

 

 

Problem 8.13 

 

(h) f is not twice differentiable at *

1 2 3.  Also ,  and x g g g  are twice differentiable at 

*.x  

 

(ii) All the four constraints are active 

 

*

1 2 3

0 1 0 0

0     0     1     0  at 

0 0 0 1

h g g g   

       
       

   
       
              

x  

 

but they are not linearly independent. 

 

Thus, the point 0 0 0  
T does not satisfy the necessary conditions for a 

minimum.  However, this is a problem with three variables and four active 

constraints.  Hence, their intersection, if unique, is the only feasible point, and it is 

the minimum. 

 

 

Problem 8.14 

 

(i) The functions are twice differentiable at *x  
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(ii) The constraints are satisfied at *x  

 

(iii) h1 is the only active constraint, and 

 

*

1

4
( )

2
h x

 
  
 

 is linearly independent 

 

(iv) 
2

2 1
1 2 1 2 1 2

2
( 6) ( )

x
L x x x x u x x        

 

1 1 2 2 1/ 2 0  4 8L x x x x x u u              

 
2

2 1 1/ 0  2 4L x x x u u            

 

    2,   0.u    

 

2 2 1

1

2 2 2 2
  =  

2 0 2 0

x x
L

x

 



        
         

x  

 
2
L x  is neither positive definite nor negative definite. 

 

For the active constraint, 

 
T *

1 2 2 1( ) 4 2 0      2v h v v v v      x  

 

For the inactive constraint 

 
T *

1 2 1 1( ) 0      0      0v g x v v v v         

1T 2

1 2

2

2 2
    > 0?       No.

2 0

v
v Lv v v

v

    
          

 

 

We have not been able to show that T 2 0.v Lv    Thus, x* does not meet the 

sufficient conditions for a minimum. 

 

 

Problem 8.15 

 

(i) f, g and h are all twice differentiable at x*. 

 

(ii) h is the only binding constraint, and 
T

1  2h       is linearly independent 
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(iii) The constraints are satisfied at x*. 

 

(iv) 
2

22 2 1
1 2 1 2 2

4
( 2) ( 1) ( 2 1) ( 1)

x
L x x w x x u x            

1 1 1/ 2( 2) / 2 0L x x w ux        

2 2 2/ 2( 1) 2 2 0L x x w ux        

u = 0 because g is inactive.  There is no w which satisfies the above two equations 

at x*.  Thus L is not at a stationary point. 

 

(v) For the active constraint 

T

1 2

  1
0   2

2

 
   

 
v v v  

 

2 21T 2

1 2 1 2

2

2 0
  2 2 0

0 2
L

  
        

   

v
v v v v v v

v
 

 

(vi) For the inactive constraint 

 

 T

1 2 1 2

0.41
' 0.41 ' 1.82 ' 0,   and ' 2 '

1.82

 
     

 
v v v v v  

  2 1' 0;   ' 0 v v  
2 2T 2

1 2' ' 2 ' 2 ' 0L   v v v v  

 

Because of (iv) the necessary conditions are not met.  Because of (iv) and (vi), the 

sufficient conditions are not met. 

 

 

Problem 8.16 
 

(i) The functions are all twice differentiable at x*. 

 

(ii) g1 is the only active constraint.  Its gradient 
T

1 1  1g       is linearly independent. 

 

(iii) All the constraints are satisfied, 1g  is the only active constraint, so 
* * *

1 2 30,  0,  0u u u    

 

(iv) 2

1 2 1 1 2 2 1 3 2(1 ) (1 ) ( 2)L ln x ln x u x x u x u x            
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1 1 2

2 1 3

1

1/(1 )
0

2 /(1 )

        3 / 4 0

x u u
L

x u u

u

    
   

    

 

 

 

(v) Is T 2 0  ?   0?v Lv    

 

For the active constraints 

T

1 2

1
0   0

1
v v v

 
    

 
 

 

For the inactive constraints 

  T

1

1
0   0

0
v v
 

   
 

 

 

T

2

0
0   0

1
v v

 
   

 
 

 

Thus, 1 2 0v v   

 
2

2 1

2

2

1/(1 ) 0

0 2 /(1 )

x
L

x

 
   

 
 

 

Thus, 2L  is positive definite, but T 2 0v Lv   as no non-zero v exists.  Thus, the 

sufficient conditions are not met. 

 

 

Problem 8.17 

 

Solutions: 

 

p8.4  
T 0.8  0.4   0.80f   x  

 

p8.8  See problem 8.8 statement for the solutions. 

 

p8.13   T 0 0 0    0
T

f x  
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*

11

* * * * *

12 13 23 31 32

*

21

*

22

*

33

p8.24              120

                       0

                       20

                       100

                       170

                      $2.063x1

x

x x x x x

x

x

x

f



    







 70 / year

 

 

 

 

Problem 8.18 

 

Direct substitution 

 

 From 1 2 8 0h x x     we have 1 28x x  .  Substituting into f, 

 
2

2 264 16 2f x x    

 2 2 2 1/ 16 4 0 and      4 so that  4df dx x x x       

 
T22

2/ 4       4  4d f dx        is a maximum.  f* = 96 

 

Penalty function method: 

 

(a) 
2 2 2

1 2 1 2 1 24 ( 8)P x x x x r x x       

1 1 2 1 2/ 2 4 2 ( 8) 0P x x x r x x         

2 2 1 1 2/ 2 4 2 ( 8) 0P x x x r x x         

Simultaneous solution gives 

1 2

16

6 4

opt opt r
x x

r
 


 

 

(b) 
lim 16

4
6 4

r

r r

 
 

  
 

   1 2 4
opt opt

x x   

 

(c) 

2 2
lim lim 16 32

6 8
6 4 6 4

opt r r
P r

r r r r

   
     

       = 96     = optf  

 

 

Problem 8.19 

 

Lagrange multipliers: 
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2 2 2 2

1 2 2 1 1 2( , , ) ( 4)L x x w x x w x x      

1 1 1

2 2 2

2 2

1 2

/ 2 2 0

/ 2 2 0

/ 4 0

L x x wx

L x x wx

L w x x

     

    

     

 

 

Solution of these three equations gives four stationary points; 

 

 

1 2

1 2

1 2

1 2

  2,        0,       1,    4      minimum

2,        0,       1,    4      minimum

  0,        2,     1,      4      minimum

  0,      2,     1,      4      minim

x x w L f

x x w L f

x x w L f

x x w L f

     

      

     

       um

    

   

Penalty function method: 

 

 
2 2 2 2 2

2 1 1 2( 4)P x x r x x      

 
2 2

1 1 1 1 2/ 2 4 ( 4) 0P x x rx x x          (a) 

 
2 2

2 2 2 1 2/ 2 4 ( 4) 0P x x rx x x      
  (b)  

Multiply (a) by 2x  and (b) by 1x , and subtract one from the other to get 

 1 24 0x x   

 For 1 20,   eqn (b) gives 4 (1/ 2 )x x r     

     2as , 2r x   

 For 2 10,   eqn (a) gives 4 (1/ 2 )x x r     

     1as , 2r x   

 

The minimum is 1 24 at 2, 0.f P x x        There is one more case: 1 20 and 0x x  , 

but this is not a feasible point. 

 

 

Problem 8.20 
 

(a) 
2 2

1 1 2

1 2

1 1
( , ) 6 9P x r x x x r

x x

 
      

 
 

(b) Hessian matrix of P is 
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3

12

3

2

2
2 0

2
0 2

r

x
P

r

x

 
 

  
 

 
 

 

 

In general 2P  is not positive definite, so P is not convex.  In the region 1 20, 0x x   it 

always is.  However, at the minimum of the original problem  
T 20  0 , P  

 is not defined. 

 

 

Problem 8.21 

 

Ans: Yes 

 

Problem 8.22 

 

(a) Penalty function problems: 

 

(1) min 
2 2

1 1 2 2 1( ) 2 2 2 6 6P x x x x x    x 2

1 2( 2)r x x    

(2) min 
3 2 2

1 1 2 1 1 2( ) 3 4 ( 2 5)P x x x r x x      x  

    
2

2 1 2min 0,   (5 2 18r x x      

 

Other penalty functions are possible – see text. 

 

(b) Augmented Lagrange problems: 

 

(1) min 
2 2

1 1 2 2 1( , , ) 2 2 2 6 6P r w x x x x x    x  

  
2

1 2 1 2( 2) ( 2)w x x r x x     
 

(2) min     
3 2 2 2

1 1 2 1 1 2 1 1 2( , , , ) 3 4 ( 2 5) ( 2 5)P r w x x x w x x r x x           x   

  2 1 2(5 2 18w x x     2 2 2

2 1 2) (5 2 18 )r x x       

 

 

Problem 8.23 

 

(a) This formulation is called the method of moving truncations. 

Advantages: (i) It will remain within the feasible region.  (ii) parameter (“non 

parameter”) adjustment is automatic. 

Disadvantages: (i) An initial feasible point must be located.  (ii) There is a 

possibility of overshooting the minimum – e.g. negating the pseudo constraint, 

(iii) An increased level of nonlinearity is introduced. 
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(b) and (c)  These formulations differ only in the penalty term.  We can examine the 

difference in terms of the value of r needed. 

 

  
1

2

2

ln 

( / ) ( / )

r
r g g g

g

r g r g g g





      

     

 

 

 Assume that g is a tight constraint.  Because of complementary slackness, as 

1 2 and    approach the optimal solution, a much smaller value of r is required for the ln g 

term to satisfy g to within a given termination criterion.  For example, assume * 1   , 

and that g is to be satisfied to within 610 . 

 

  

6

1

2 2

2

/ 1     10

/ 1   10

r g r

r g r





    

    
 

 

 

Problem 8.24 

 

Let ijX  =  million lb/year of DAB made by producer i and shipped to customer j:

 i,j = 1, 2, 3. 

 

Production cost = 1 11 12 13 2 21 22 23 3 31 32 33( ) ( ) ( )P X X X P X X X P X X X         

 

where 

 

 1

45000 50( 100    100 120

44000 200( 120)   120 170

ij i j

ij ij

X X
P

X X

     
 

     

     6($ /10 lb)  

 

 6

2 50000     ($/10  lb)P   

 

 
3 3

3

3 3

39000 50( 120    120 140

46000 100( 140)    140 200

j j

j j

X X
P

X X

     
 

     

 

 

11 12 13 21 22Transportation cost 2000 7000 6000 7000 3000X X X X X      

23 31 32 338000 6000 8000 2000X X X X     

 

Constraints: 

11 12 13Capacity  100 170X X X     
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21 22 23

31 32 33

 80 120

120 200

X X X

X X X

   

   
 

11 21 31

12 22 32

13 23 33

Demand  140

               100

               170

X X X

X X X

X X X

  

  

  

 

Non-negativity     all 0ijx   

 

Since the production cost is quadratic in the ijX , we shall linearize it about some nominal 

set of 0
ijX .  This gives 

 

Production cost = 
1 2 3Q Q Q   

 
20 0 0

0

1 20 0 0

0

50000 50 (50000 100 )( )

                    for 100 120

20000 200 (20000 400 )( )

                    for 120 170

ij ij i j i j

ij

ij ij i j i j

ij

x x x x

x
Q

x x x x

x

       

   

 
      


  

 

 

   0

2 250000 2 50000j j
Q x x     

 
20 0 0

3 3 3 3

0
3

20 0 0
3 3 3 3

0
3

33000 50 (33000 100 )( )

                     for 120 140
3

32000 100 (32000 200 )( )

                     for 140 200

j j j j

j

j j j j

j

x x x x

x
Q

x x x x

x

       


  
 

      


  

 

 

The linearized transportation cost is 

 
0 0 0 0 0

11 12 13 21 222000 7000 6000 7000 3000x x x x x     

0 0 0 0

23 31 32 33 118000 6000 8000 2000 2000x x x x x      

12 13 21 227000 6000 7000 3000x x x x       

23 31 32 338000 6000 8000 2000x x x x        

 

The linearized constraints are 

 
0 0
1 11100 170j jjx x x      

0 0
2 2280 120j jjx x x      

0 0
3 33120 200j jjx x x      
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0

11

0
22

0
33

140

100

170

ij

jj

jj

x x

x x

x x

  

  

  

 

 

all 0 0ij ijx x    

 

In addition, to maintain feasibility, we require 

 

all ijx h   (some preset quantity). 

 

We now consider the LP: 

 

   Minimize: (linearized production cost + linearized transportation cost) 

 

   Subject to: all linearized constraints are satisfied. 

 

The solution strategy is as follows: 

 

(1) Assume a feasible  0
ijx  set. 

 

(2) Calculate numerical values for all the terms in the objective function and 

constraint equations which involve the 0 ' .ijx s  

 

(3) Solve the LP 

 

(4) If all the ijx  are very small (with respect to some preset tolerance), then the 

current set 0
ijx  is the optimal solution.  If not, go to step 5. 

(5) Calculate the nominal 0 'ijx s  for the next iteration using 0

new( )ijx  = 0

old( )ijx  + 

opt( )ijx . 

(6) Go back to step 2. 

For example, assume 

 

0 0 0
11 22 33

0 0 0 0 0 0
12 13 21 23 31 32

140,  100,  170

,  ,  ,  ,  ,  0

x x x

x x x x x x

  


 

The LP is then: 
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7

11 12 13 21 22

23 31 32 33

Minimize:   2.097x10 78000 83000 +8200 57000 53000

                 58000 72000 74000 +68000

x x x x x

x x x x

        

      
 

1

2

3

1

2

3

11

Subject to:  40 30

                   20 20

                   50 30

                   0

                   0

                   0

                   140

       

j

j

j

j

j

j

x

x

x

x

x

x

x

   

   

   

 

 

 

  

22

33

12 13 21 23 31 32

            100

                  170

                  ,  ,  ,  ,  ,  ,  0

x

x

x x x x x x

 

  

     

 

        all 20ijx   (say) 

The optimal solution is 

11 21

12 13 22 23 31 32 33

20,  20

,  ,  ,  ,  ,  ,  0

x x

x x x x x x x

    

       
 

The new 0
ijx  set is 

0
11 120x   0

12 0x   0
13 0x   

0
21 20x   0

22 100x   0
23 0x   

0
31 0x   0

32 0x   0
33 170x    

This set is used to recalculate the various coefficients in the LP.  Repeated application of 

steps 2 through 6 gives the final solution as 
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opt

11

opt

12

opt

13

opt

21

opt

22

opt

23

opt

31

opt

32

opt

33

120

0

0

20

100

0

0

0

170

x

x

x

x

x

x

x

x

x



















 

Cost = 7$2.063x10 /year.  

 

Problem 8.25 

Solution:
T

* 140.91878,0.39476,0.11752,0.99307,0.91878,0.39476,0.11752,0.99307, 0.60445x10x    

 * 0.86602f    

 

Problem 8.26 

The known solution is at 
T

*  1 2 0   x  where * 5.f   

 

Problem 8.27 

(a) Two local minima were obtained: 

 

(1) 
T

* *0.18  -2.43  2.01 ,   9.995f      x  

(2) 
T

* *0.16  2.62  1.47 ,   9.051f     x  
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n 2 4 6 8 10 -2 -4 -6 -8 -10 

soln. # 2 2 1 1 1 1 2 2 2 2 

 evals.f  642 581 458 419 376 425 465 470 585 477 

 evals.f  514 559 501 512 440 551 452 463 187 439 

h evals. 169 175 141 97 93 106 110 133 187 131 

h evals. 64 64 51 42 34 40 42 50 68 48 

(b) Six local minima were found: 

(1)  
T** 0.07877  1.91  1.362  1.472  1.635  1.679f  x  

(2)  
T** 13.96      2.717  2.033  0.8479  0.4859  0.7359f    x  

(3)  
T** 27.45      -0.7661  2.666  0.4681  1.619  2.610f     x  

(4)  
T** 21.52      1.247  2.422  1.174  0.2132  1.604f     x  

(5)  
T** 86.52      0.9496  2.666  0.5377  3.384  2.106f   x  

(6)  
T** 649.5      2.701  2.989  0.1719  3.847  0.7401f     x  

 

n 2 4 6 8 10 -2 -4 -6 -8 -10 

soln. # 1 1 1 2 1 6   4 3 4 

 evals.f  164 180 254 520 235 855  804 421 869 

 evals.f  106 165 427 1939 255 632  574 389 647 

h evals. 67 75 101 211 82 216  267 89 253 

h evals. 30 33 43 85 39 80  160 42 161 
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Problem 8.28 

You must start at a feasible point.  The point 
T

0 1 1    satisfies h1 and 2h  as well as 

1 2 3, , 0.x x x    Thus, it is a feasible point.  Let 
3x  be the independent variable, and 

1 2 and x x  be the dependent variables (the choice is arbitary); 
T

1 2 D x x 
 

x . 

Phase 1: 

 

T 1

3 3 3

h

D D

df f f h

dx x x



       
      
        x x

 

         
1

3 1 2 2 1

1

1 1 1
2 (4 2 4)    (4 2 6)

2 5 0
x x x x x

x



   
         

  
 

        

1
1 1 1

2 6  2 8
0 5 0



   
         

   
 

  

For the variable 
3x , the decent direction is -8. 

 

Phase 2: 

 

 Find the minimum of the reduced objective function by an analytical approach to 

get :  

 

 Set 
( )

0
x

df

d   

  

 

 2 2 22(0 8 ) 2(1 0 ) (1 8 ) 2(0 8 )(1 0 ) 4(0 8 ) 6(1 0 ) 0
d

d
      


              

  

 
3

1

6

384 64 0

1/ 6

1 ( 8) 1/ 3x





 



    
 

 Since 3x  has crossed its lower bound, set x3 = 0.  Now h1 and h2 are not satisfied.  

So, with x3 = 0, solve h1 and h2 for x1 and x2. i.e. 
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1 2

2

1 2

2 0

5 5 0

x x

x x

  

  
 

 

using Newton’s method.  The initial guess is x1 = 4/3 and x2 = 1.  The solution is a 

feasible point, and is used to start the next iteration.  If Newton’s method does not 

converge to a solution, replace x3 as the independent variable by either x1 or x2 and repeat. 

 

 

Problem 8.29 

 

Both are true. 

  

 

Problem 8.30 

 

(a) The solution is:  * 17286.1f   

 
*

1 3.5121x     
*

6 0.6432x   

 
*

2 4.0877x     
*

7 3.4375x    

 
*

3 2.4523x     
*

8 0.1518x    

 
*

4 4.8558x     
*

9 3.9191x    

 
*

5 1.3922x     
*

10 3.0243x    

 

(b) The solution is:  * 12.8f   

 
*

1 0x      
*

6 0x   

 
*

2 0x      
*

7 0x   

 
*

3 0x      
*

8 0x   

 
*

4 0x      
*

9 0x   

 
*

5 0x      
*

10 0x   

     
*

11 0x   

 

(c) A reported solution is  * 14672.826f   

 
*

1 9.52267x     
*

4 20x    

 
*

2 6.588x      
*

5 13.58267x   

 
*

3 20x      
*

6 6.51733x    

 

(d) The solution is   * 17.80f   

 
*

1 0.4812x     
*

4 0.6023x    
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*

2 2.4962x     
*

5 0.7514x   

 
*

3 0.5263x   

 

(e) The solution is   * 0f     
T

* 1 1 1 1 1x       

 

(f) The solution is   * 0.2415f   

 
*

1 1.166x     
*

4 1.506x   

 
*

2 1.182x     
*

5 0.6109x    

 
*

3 1.380x    

 

(g) There are six reported solutions: 

 

f* *

1x  
*

2x  
*

3x  
*

4x  
*

5x  

0.07877 1.191 1.362 1.472 1.635 1.679 

13.96 2.717 2.033 -0.8479 -0.4859 0.7359 

27.45 -0.7661 2.666 -0.4681 -1.619 -2.610 

27.52 -1.2467 2.422 1.173 -0.2132 -1.604 

86.52 0.9496 -2.266 0.5377 3.384 2.106 

649.5 -2.7012 -2.989 0.1719 3.847 -0.7401 

 

   
 

Problem 8.31 
 

 

Possible ways are 

 

(1) Minimize  2

i ig h   where ig  are the violated constraints only. 

 

       Change gi to equality constraints 

 
2 2 2

1 1 2 34 0g x x x      

2 2 2

2 1 2 416 0g x x x      

 

and minimize 
2 2

( )i ih g   

 

from some reasonable starting point. 
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Problem 8.32 

 

Solution given in the problem. 

 

 

 

Problem 8.33 

 

Solution given in the problem. 

 

 

Problem 8.34 

 

The problem is 

 

Minimize: p s f d b L xC C AN C HAN C C C C C        

 

Subject to: 

 

 
minmin

1

1 /

L L

D N N D

   
   

   
 

 

 A = K (L + D) 

 

 N > Nmin 

 

With numerical values, this becomes (Nmin = 5) 

 

Minimize: 50 0.7 22,000C AN L      (a) 

Subject to: 

 

 
1000 

5

N
L

N



      (b) 

 

 
1000

100

L
A


       (c) 

 

 N > 5       (d) 

 

a. The variables are A, L, and N.  Although N is an integer we will assume it to be a 

continuous variable.  A and L may be eliminated using equations (b) and (c) to get 

a cost function in terms of N only (the independent variable): 
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10 1,000
50 10 0.7 22,000

5 5

N N
C N

N N

   
      

    
 

 

    =
21,000 20,200 110,000

5

N N

N

 


 

 

Thus, N is the independent variable, and A and L are dependent variables.  To 

obtain the minimum, 

 
2

2

1,000 10,000 9,000
0

( 5)

dC N N

dN N

 
 


 

 

N = 1  or  N = 9 

 

Because of constraint (d), select N = 9 

 
2

2

9

500 0.
N

d C

dN


    This is a minimum 

 

b. * $38200C   
*N 9 plates 

*L   = 2250 lb/hr 
*A  = 32.5 ft2 

 

 

Problem 8.35 

 

 The solution is  * 267.5f   

    * 2x   

    * 7.5y   

    * 0z   

 

 

Problem 8.36 

 

The solution is   * 43.4945f    

 
*

1 6.99958 3x E    
*

6 4.68197 4x E   

 
*

2 6.80709 2x E    
*

7 1.75768 2x E   

 
*

3 9.07223 1x E    
*

8 2.90223 3x E   

 
*

4 3.56254 4x E    
*

9 1.51766 2x E   
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*

5 4.90799 1x E    
*

10 4.19451 2x E   

 

 

Problem 8.37 

 

 The problem is  

 

 Minimize: 

210
1/3

1

( ) ( , )i i

i

f P x x


  
 a a  

 

 Subject to: 
1

0 5

0 5

0 5

0 5

   
   
    
   
   
   

W a  

 

  
T

2 5W a  

 

where 

W1 = 

1 1 1 1 1

8 64 512 4096 32768
            

27 729 19683 531441 14348907

64 4096 262144 16777216 1073742824

 
 
 
 
 
 

 

 

2 125  15625  1953125  244140625  30517578135
T

   W  

 

The solution is     ( ) 1.110366f a  

 

1 0.36359  0a E  

2 0.16220 1a E    

 3 0.32901  3a E   

 4 0.29062  5a E    

 5 0.91722  8a E   

 

 

Problem 8.38 

 

 The solution with unscaled constraints from starting points 1 and 3 is 

 

        * 3( ) 6.8408x10f x  
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* 4

1 0.2436x10x     
* 4

6 0.5131x10x   

 
* 4

2 0.1788x10x     
*

7 0x     lower bound 

 
* 2

3 0.5795x10x     
* 4

8 0.6019x10x   

 
* 4

4 0.3686x10x     
* 4

9 0.7214x10x   

 
* 3

5 0.1328x10x     
* 4

10 0.1000x10x     upper bound 

 

Different codes gave slightly different results. 

 

 

Problem 8.39 

 

 Case studies were used because local extrema were found.  The best and second 

best solutions were: 

 

Best solution:  
*

1 7S     
*

132 3P   

   
*

2 3S    
*

113 5P   

   
*

3 0S    
*

133 2P   

   
*

4 0S    
*

221 2P   

   
*

111 1P    
*

222 3P   

   
*

121 4P    
*

223 2P   

   
*

112 4P    obj. func. = -$11.105 MM 

 

The second best solution is: 

 

   
*

1 10S    
*

132 3P   

   
*

2 0S    
*

113 5P   

   
*

3 0S    
*

123 2P   

   
*

4 0S    
*

133 2P   

   
*

111 1P    
*

122 3P   

   
*

121 2P    
*

131 4P   

   
*

112 4P    obj. func. = -$11.1031 MM 

  

 

Problem 8.40 

 

Let 1f   = tons of fuel oil to generator 1 

 2f  = tons of BFG to generator 1 
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 1g   = tons of fuel oil to generator 2 

 2g  = tons of BGF to generator 2 

 11x  = MW from generator 1 obtained using fuel oil 

 12x  = MW from generator 1 obtained using BFG 

 21x  = MW from generator 2 obtained using fuel oil 

 22x  = MW from generator 2 obtained using BFG 

 

The NLP is 

 

 Minimize: 1 1f g  

 

 Subject to: 
2

1 11 111.4609 0.15186 0.00145f x x    

   
2

2 12 121.5742 0.1631 0.001358f x x    

   
2

1 21 210.8008 0.2013 0.000916g x x    

   
2

2 22 220.7266 0.2556 0.000778g x x    

   11 1218 30x x    

   21 2214 25x x    

   2 2 10f g   

   11 12 2 221
50x x x x     

 

Eliminate 1 2 1 2, ,  and f f g g  using equality constraints.  Linearizing the objective function 

and the constraints about some set ( , 1,2),ijx i j   the NLP is converted to an LP: 

 

Minimize: 11 21A x B x F     

Subject to: 
0 0

11 12 11 12  30x x x x      

  
0 0

21 22 21 22 25x x x x      

  
0 0

11 12 11 1218x x x x       

  
0 0

21 22 21 2214x x x x       

  12 22C x D x E     

  
0 0 0 0

11 12 21 22 11 12 21 2250x x x x x x x x          

 

where 
0

110.15186 0.0029A x   

 
0

210.2013 0.001832B x   

 
0

120.1631 0.002716C x   

 
0

220.2556 0.001556D x   

 
0 2 0

12 12 227.6992 0.1631 0.001358 0.2556E x x x     
20

220.000778x  

 
0 00 2

11 11 212.2617 0.15186 0.00145( ) 0.2013F x x x     0 2

210.00916( )x  
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Since the 'x s  are unrestricted in sign, we introduce the new variables 

 11 1 2x y y    

 
12 3 4x y y    

21 5 6x y y    

22 7 8x y y    

If we restrict the absolute values of the 'x s  to be less than, say, h, the LP is now  
 

Minimize: 
1 2 5 6Ay Ay By By F     

Subject to: 
0 0

1 2 3 4 11 1230y y y y x x       

  
0 0

5 6 7 8 21 2225y y y y x x       

  
0 0

1 2 3 4 11 1218y y y y x x         

  
0 0

5 6 7 8 21 2214y y y y x x         

  3 4 7 8Cy Cy Dy Dy E     

  
0 0 0 0

1 2 3 4 5 6 7 8 11 12 21 2250y y y y y y y y x x x x             

  1 2y y h   

  2 1y y h   

  3 4y y h   

  4 3y y h   

  5 6y y h   

  6 5y y h   

  7 8y y h   

  8 7y y h   

  and all 0iy   

 

The strategy is to assume values for 
0 0 0

11 12 21, ,x x x  and 
0

22x , and solve the LP.  From the 

optimal solution, calculate the 'x s  and thus the new 0 'ijx s .  Now solve the LP again 

using these 0 'ijx s .  This process is repeated until the 'x s  are less than some specified 

tolerance.  The solution is 

 

  
*

11 7.7084x   

  
*

12 22.292x   

  
*

21 7.2382x   

  
*

22 12.762x   

  * 5.0235f   

 

  1 2.718f   
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  2 5.885f   

  1 2.306g   

  2 4.115g   

 

 

Problem 8.41 

 

 You can use T rather than log mean T to simplify the problem.  The equations 

for the heat transfer in the heat exchangers are those found in unit operations books: 

 

  
ln

p

Q UA T UA T

Q wC t

   

 
 

 

 The solution is: 

 

  
* 0

1 180T F   
* 0

2 295T F  

  2

1 2 3 7050ftA A A    (minimum total area) 

  2

1 556 ftA   2

2 1369 ftA      2

3 5125 ftA   
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CHAPTER 9 

 

Problem 9.1 

 

 Define the variables as , 1,2,...,6, where 1j jy j y   means the jth project is 

selected, and 0jy   means the jth project is omitted.  The objective function to be 

maximized is 

 

1 2 3 4 5 6100,000 150,000 35,000 75,000 125,000 60,000f y y y y y y         (a) 

 

subject to the following constraints: 

 First year expenditure: 

 

1 1 2 3 4 5 6300,000 100,000 0 50,000 50,000 100,000 450,000g y y y y y y          (b) 

 

 Second year expenditure: 

 

2 1 2 3 4 5 60 300,000 200,000 100,000 300,000 200,000 400,000g y y y y y y        (c) 

 

 Engineering hours: 

 

3 1 2 3 4 5 64000 7000 2000 6000 3000 600 10,000g y y y y y y           (d) 

 

 Production line is required: 

 

   4 1 2 1g y y           (e) 

 

 Automation is available only with new line: 

 

   5 2 3 0g y y           (f) 

 

 Waste recovery option: 

 

   6 5 6 1g y y           (g) 

 

 The branch and bound analysis begins by solving the LP problem with no integer 

restrictions on the variables with the following result: 
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1

2

3

4

5

6

0.88

0.12

0.12

0.40

1.00

0.00

$265,200

y

y

y

y

y

y

f















 

 

Note that several variables 
1 2 3 4( , , , )y y y y  in this solution are not integers.  The branch 

and bound analysis can be carried out with Excel.  The final (optimal) integer solution is: 

 

   

1

2

3

4

5

6

1

0

0

0

1

0

$225,000

y

y

y

y

y

y

f















 

 

This indicates that the project 2 with the highest net present value is not selected because 

of the constraints in the problem.  Note that the first noninteger solution achieves a larger 

value of f than the integer solution, as is expected. 

 

 

 

Problem 9.2 

 

 An algebraic formulation follows, using GAMS-like notation: 

 

Indices: i = generator index (i=1,2,3), t = time period index (t = 1,2) 

 

Data: cap(i) = capacity of generator i (MW), cp(i) = operating cost of generator i ($/MW) 

 Cs(i) = startup cost of generator i ($), d(t) = demand for power in period t (MW) 

 

Decision variables: x(i,t) = power generated by generator i in period t (MW) 

          y(i,t) = 1 if x(i,t) > 0, zero otherwise. 

 

Constraints: 

  Demand must be satisfied in each period: 

  Sum(i,x(i,t)) >= d(t),  all t 

 

  y variables turn x variables on and off: 
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  x(i,1) <= cap(i)*y(i,1) 

  x(i,2) <= cap(i)*(y(i,1) + y(i,2)) 

 

The last constraint above insures that, if a generator is turned on in period 1, it stays on in 

period 2. 

  Turn each generator on at most one time per day: 

  Sum(t, y(i,t)) <= 1,  all i  

 

 A spreadsheet model containing the optimal solution appears below.  The optimal 

solution turns generators 1 and 2 on in period 1, and does not use generator 3.  This is 

because generators 1 and 2 have the lowest operating costs, while 3 is much higher.  

Further, generator 1 is used to capacity, because it has by far the lowest operating cost, 

and 2 is used to satisfy the remaining demand.  Even though generator 3 has the lowest 

startup cost, its higher operating cost excludes it.   

 

Data         

Generator Fixed 

start-up 

cost ($) 

Cost per 

MW 

Generator 

capacity 

in each 

period 

(MW) 

Demand 

Period 1 

Demand 

Period 2 

   

1 2800 5 1900 2500 3500    

2 2000 3 1700      

3 1900 8 2900      

 

Model         

 on-off MW  on-

off*cap 

on-off MW  sum*ca

p 

 per 1 per 1  per 1 per 2 per 2  per 2 

Gen 1 1 800 <= 1900 0 1800 <= 1900 

Gen 2 1 1700 <= 1700 0 1700 <= 1700 

Gen 3 0 0 <= 0 0 0 <= 0 

Total MW  2500 >= 2500  3500 >= 3500 

         

  startup  sum of     

 MW 

cost 

cost  binarys     

Gen 1 13000 2800  1 <= 1   

Gen 2 10200 2000  1 <= 1   

Gen 3 0 0 objective 0 <= 1   

Total 23200 4800 28000      
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Problem 9.3 

 

DATA      

 

Year 

Minimum 

capacity 

Cost 

10 MW 

Cost 

50 MW 

Cost 

100 MW 

Cost of 

new 

Generators 

1 780 280 650 700 1400 

2 860 230 538 771 0 

3 950 188 445 640 640 

4 1060 153 367 530 530 

5 1180 135 300 430 

Total 

430 

3000 

current capacity 700    

 

Decision on Variables and Constraints 

 

Year # of 10 MW # of 50 MW # of 100 

MW 

new 

capacity 

total 

capacity 

1 0 0 2 200 900 

2 0 0 0 0 900 

3 0 0 1 100 1000 

4 0 0 1 100 1100 

5 0 0 1 100 1200 

size 10 50 100   

 

 

 

 

Comments on Solution 

 

No 10 or 50 MW generators are installed, because their cost per MW is much higher than 

the 100MW.  The first year two 100 MW generators are bought, because first year cost is 

smaller than second year.  The second year nothing is bought.  In years 3 to 5 only one 

100 MW generator is installed.  Purchases in years 3 to 5 are deferred as long as possible 

because costs are declining. 

 

 

Problem 9.4. 

 

A GAMS model for this problem and its solution follows. 
 

 Production and Inventory Planning with Setup Costs and Times 

set definitions 

   4 

   5   Set p    products             / p1, p2 / 

   9       t     time periods        / wk1, wk2, wk3, wk4 /   ; 

 

model parameters 
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  13 

  14   Table  pdata(*,p)  product data 

  16                       p1        p2 

  18   setup-time          6        11 

  19   setup-cost          250      400 

  20   production-time     0.5      0.75 

  21   production-cost     9        14 

  22   holding-cost        3        3 

  23   penalty-cost        15       20 

  24   selling-price       25       35 

  26   final-inventory     0        0               ; 

  27 

  28   Table  demand(t,p) 

  29 

  30                     p1       p2 

  31   wk1               75       20 

  32   wk2               95       30 

  33   wk3               60       45 

  34   wk4               90       30                  ; 

  35 

  36   Scalars     tavail   weekly time available(hrs) /  90 /   ; 

  37   Parameter         maxunits(p)   ; 

  38                  maxunits(p) = tavail/pdata("production-time",p); 

  40 

Model Definition 

 

  43   Variables   prd(p,t)       units of product p produced in week t 

  44               inv(p,t)       units of inventory of product p at   

end of week t 

  46               pinv (p,t)     positive part of inventory 

  47               ninv(p,t)      negative part of inventory 

  48               y(p,t)         1 if product p produced in wk t else 

zero 

  49               profit         objective variable ; 

  50   Positive Variables prd,pinv,ninv   ; 

  51   Binary variables   y   ; 

  52 

  53   Equations 

  54              invbal(p,t)     inventory balance 

  55              finalinv(p)        final inventory equal zero 

  56              invsplit(p,t)   defines positive and negative 

inventory 

  57              maxtime(t)      limit on production time 

  58              onoff(p,t)      turn prd on or off with binary 

variables 

  59              oneprod(t)      at most one product produced in any 

week 

  60              objective          revenue minus all costs               

  61 

  62     invbal(p,t)..  inv(p,t)  =e= inv(p,t-1)+prd(p,t)-demand(t,p); 

  63 

  65     finalinv(p)..  inv(p,"wk4") =e= 0; 

  66     invsplit(p,t)..  inv(p,t) =e= pinv(p,t)-ninv(p,t); 

  67 

  68     maxtime(t).. sum(p, pdata("production-time",p)*prd(p,t)+ 

  69                  pdata("setup-time",p)*y(p,t))=l= tavail ; 

  70 
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  71     onoff(p,t).. prd(p,t) =l= maxunits(p)*y(p,t); 

  72 

  73     oneprod(t).. sum(p, y(p,t)) =l= 1; 

  74 

  75     objective..  profit =e= sum((p,t), (pdata("selling-price",p) 

  76                  -pdata("production-cost",p))*prd(p,t) 

  77                  -pdata("setup-cost",p)*y(p,t) 

  78                  -pdata("holding-cost",p)*pinv(p,t) 

  79                  -pdata("penalty-cost",p)*ninv(p,t)); 

  80 

  81     Model prodplan  / all / ; 

83   Solve prodplan using mip maximizing profit ; 

  84 

 

MODEL STATISTICS 

 

BLOCKS OF EQUATIONS       7     SINGLE EQUATIONS       35 

BLOCKS OF VARIABLES       6     SINGLE VARIABLES       41 

NON ZERO ELEMENTS       121     DISCRETE VARIABLES      8 

 

 

               S O L V E      S U M M A R Y 

 

     MODEL   PRODPLAN            OBJECTIVE  PROFIT 

     TYPE    MIP                 DIRECTION  MAXIMIZE 

     SOLVER  XPRESS              FROM LINE  83 

 

**** SOLVER STATUS     1 NORMAL COMPLETION 

**** MODEL STATUS      8 INTEGER SOLUTION 

**** OBJECTIVE VALUE             5331.0000 

 

 

 

 This model breaks inventory into positive and negative parts as defined by the 

variables pinv and ninv, and the equations invsplit, because the costs for positive and 

negative inventory are different.  The binary variables y turn the production variables prd 

on and off through the constraints “onoff”.  They are also used to incorporate setup times 

into the maxtime constraints, and to include setup costs into the objective.  The 

“oneprod” constraints insure that at most one product is produced in any week. 

 

 The optimal solution produces product 1 in weeks 1 and 3, and product 2 in weeks 

2 and 4.  There is unsatisfied demand for product 1 in week 2 and product 2 in week 1, 

because only one product can be produced in any week.  This causes the penalty cost to 

be incurred, but the backlogged demand is satisfied in the next week (The constraint that 

inventory is zero at the end of week 4 insures that there is no backlogged demand after 

the fourth week).  All of the 90 available hours are used in week one, but fewer are 

needed in subsequent weeks.  If there are only 80 hours available per week, the problem 

has no feasible solution.  This model can be used to determine approximately how many 

hours per week are needed to permit a feasible solution by solving it for different values 

of the parameter “tavail”. 

 

 



 7 

Problem 9.5 

 

 Max sum(I,(1+r(I))*x(I)) 

 

 Subject to: 

 

  Sum(I,x(I)) <= 100 

 

  x(I) <= 20y(I) , all I     (1) 

 

  x(I) >= 5y(I)  all I     (2) 

 

  x(I) >= 0  all I 

 

Where y(I) is a binary variable which is 1 if x(I) is positive and zero otherwise.  

Constraints 1 and 2 insure that y(I) = 0 if and only if x(I) = 0, and y(I) = 1 if and only if 

x(I) is between 5 and 20. 

 

 

 

Problem 9.6 
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Problem 9.7 

 
 

 

Problem 9.8 

 

 
 

Nodes 4 and 5 are fathomed.  Node 2 gives the MIP optimum. 
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Problem 9.9 

 

 By inspection, one can see that plant 1 has to be in operation, because plant 2 

cannot satisfy the demand by itself.  Thus, there are only two possibilities:  

1 2 1 21,  1 and 1,  0.y y y y      Explicit enumeration is easy in this situation. 

 

Case I:  1 21,  1.y y    The LP to be solved is  

Minimize: 4

11 12 22(3 2)x10f x x x     

Subject to: 11 21 1x x   

  12 22 1x x   

  11 12 2x x   

  21 22 1x x   

The solution is * * * *

11 22 12 210,  1,x x x x     

  * 43x10f   

 

Case II: 1 21,  0.y y    The LP to be solved in this case is: 

Minimize: 4

11 12(3 1)x10f x x    

Subject to: 11 1x   

  12 1x   

  11 12 2x x   

The solution is * * * *

11 12 21 221,   0x x x x     

 * 45x10f   

 

Case I gives the optimal solution to the problem. 

 

 

Problem 9.10 

 

 The solution can be obtained by inspection.  To each extractor, assign the stream 

with the least cost for that extractor.  The optimum pairing is 

 

   Stream  Extractor 

       1       4 

       2       2 

       3       3 

       4       1 

  cost = 64 
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Problem 9.11 

 
 

 

Nodes 6 and 7 are fathomed.  Node 5 gives the IP optimum. 

 

 

Problem 9.12 

 

 

1

3

2

0

0

1

8

x

x

x

f









 

 

 

Problem 9.13 

 

 
 

T
0 0 7 0 0

7

x

f




 

 

 

Problem 9.14 

 

(a) Problem formulation: 

 

 Minimize: ij i i iC C I   
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 Subject to: for each ,    i ij jj S R   

   for each ,    j ij ii S O   

   and 
1 21          ,i iI I I I   integer. 

 

(b) Numerical solution: 

 
Plant A 

1 

 

Plant B 

0 

    

Fixed Charge A 

700 

 

Fixed Charge B 

0 

    

A to C 

200 

 

A to D 

250 

B to C 

0 

B to D 

0 

Production A 

450 

Production B 

0 

Cost A to C 
200 

 

Cost A to D 
750 

Cost B to C 
0 

Cost B to D 
0 

C 
200 

D 
250 

Total cost 

1650 

     

 

Build only plant A. 
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Problem 9.15 

 

 The solution is: 

    
Refinery 1 Refinery 2             M1    M2      M3                k1             k2            k3 

5000  7500                2000    5000      4000                          0.08          0.06 0.04 

  

X111 500     

X112 1500  Meet all Demand (2) 112 1 

X113 1.93E-13   0 j = 1 113 1 
X121 5.806898   0 j = 2   

X122 0.009896   0 j = 3 122 1 

X123 0   123 1 

X131 2499.993  Can’t Exceed Supply (3)   

X132 0.016408  -494.1737 1 = 1 132 1 

X133 0  -1005.826 1 = 2 133 1 

X211 0     

X212 2.76E-13  con (4)   

X213 0    0 j = 1 C111 40 

X221 494.1931   0 j = 2 C112 90 

X222 1499.99   0 j = 3 C113 7.72E-15 
X223 3000   C121 0.464552 

X231 0  con (5) C122 0.000594 

X232 1499.984   0 j = 1 C123 0 

X233 0.006911   0 j = 2 C131 199.9994 

      1999.993j = 3 C132 0.000984 

    C133 0 

   con (6) C211 0 

         -10000 j = 1 C212 1.66E-14 

 b11     500         -7000 j = 2 C213 0 

 b12   1500  -9999.993 j = 3 C221 39.53545 

 b13 10000  C222 89.99941 

 b21     500 con (7) C223 120 
 b22   1500                0 j = 1 C231 0 

 b23 10000   0 j = 2 C232 89.99902 

 b31     500   0 j = 3 C233 0.000276 

 b32   1500    

 b33 10000  OBJ 669.9997 
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C-6.1 Process Description

Using HYSYS - Conceptual Design and HYSYS.SteadyState and Dynamic Design, a two-column extractive process is
modeled from conceptual design to dynamic simulation. In two distillation columns, the equimolar feed of Toluene and
Heptane is separated using Phenol as a solvent. HYSYS - Conceptual Design is used to calculate the interaction
parameters and carry out the preliminary design and optimization of the process. In HYSYS.SteadyState, the column is
set up and optimized, using the Spreadsheet to model economic factors. Finally, controls are added and various
disturbances are introduced to test the effectiveness of the design.

The objective is to maximize the purity of the Heptane and Toluene streams coming off the top of the first and
second column, respectively.

Using Hyprotech's process simulation software, we can develop a conceptual design, optimize the steady-state
process, and develop and test a control scheme. These are the steps:

1. Using HYSYS - Conceptual Design, calculate interaction parameters, and determine an appropriate Property
Package.

2. Using HYSYS - Conceptual Design, carry out the preliminary design and optimization, estimating/specifying key
process characteristics such as Reflux Ratios, number of stages, feed location, and product purities.

3. Using HYSYS.SteadyState, set up the column configurations in a single flowsheet, using the specifications
determined in the previous step.

4. Using HYSYS.SteadyState, use the Optimizer to further refine the extractive distillation process, taking into account
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the basic economics.

5. Using HYSYS.Dynamics, set up a candidate control scheme and evaluate dynamic operability.

Column SubFlowsheet

C-6.2 Background

HYSYS - Conceptual Design could also be used to screen solvents based on their effect in increasing the relative
volatility of n-Heptane and Toluene.

Extractive distillation is used in the petroleum industry for the separation of aromatics from non-aromatic hydrocarbons.
In general, the presence of the solvent raises the vapour pressures of the key components to different degrees, so that
the relative volatility between these key components is increased. The more volatile component is removed in the
distillate, and the bottoms mixture (solvent and less volatile component) is separated in a second distillation column.

Toluene-"non-toluene" separation is well-documented. The non-toluene fraction is often a narrow mixture of saturated
hydrocarbons, and for the purpose of this study will be represented by n-Heptane. The objective of this process,
therefore, is to maximize the separation of n-Heptane and Toluene.
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Reflux Ratio No. of Stages

10 113

15 71

20 61

Reflux Ratio and number of stages for the non-extractive equimolar separation of nHeptane and Toluene, as
predicted by HYSYS - Conceptual Design (NRTL-Ideal). The distillate and bottoms molar purities are 0.99.

Phenol is commonly used as the solvent, due to its effect in significantly increasing the volatility ratio of n-Heptane and
Toluene. Unlike other potential solvents which can also increase the volatility ratio, phenol does not form azeotropes,
and is currently inexpensive. It is not particularly dangerous, although there is some concern as to its environmental
impact.

Since n-Heptane and Toluene do not form an azeotrope, the separation can theoretically be performed without the use
of a solvent. However, the number of stages and reflux ratio is excessive, as shown in the side table. This is due to the
fact that these components have similar volatilities.

This example is set up in five parts as outlined below. Some sections can be completed independently, without
referring to previous steps. For example, if you wish to do only the Steady-State design, you need only complete steps
3 and 4, using the interaction parameters and column design as predicted in steps 1 and 2.

1. Calculating Interaction Parameters - HYSYS - Conceptual Design - page 4 

2. Ternary Distillation Design - HYSYS - Conceptual Design - page 15

3. Building the Columns in HYSYS - HYSYS.SteadyState - page 26

4. Optimization - HYSYS.SteadyState - page 33

5. Dynamic Simulation - HYSYS.Dynamics - page 55

 

C-6.3

Calculating Interaction Parameters

Using experimental data from various sources, interaction parameters are generated using the NRTL and Peng
Robinson Property Packages. Interaction parameters for the three binary pairs are obtained separately and combined
in the binary matrix.

NRTL Interaction Parameters
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In earlier versions of HYSYS - Conceptual Design, you must have only two components in the Fluid Package in
order to view binary TXY and XY plots.

In HYSYS - Conceptual Design, open the Fluid Package Manager and add a new Fluid Package. The Fluid Package is
defined as follows:

¨ Property Package: NRTL-Ideal

¨ Components: C7, Toluene, Phenol

Leave all other parameters (i.e. - Binary Coefficients) at their defaults.

Now we will look at the interaction parameters for the three component pairs and if necessary, regress new parameters
from experimental data.

n-Heptane-Toluene Interaction Parameters

The default interaction parameters are usually reliable, although it is important to ensure that they were regressed
under conditions similar to the current design. New interaction parameters can be regressed from experimental data
specifically chosen for the system conditions. Data can be entered manually, or can be automatically scanned from the
TRC libraries of VLE, LLE and Heats of Mixing data. The TRC database contains data for over 16000 fitted binaries.

Extensive TRC data is available for the C7-Toluene pair. Open a new Fluid Phase Experiment, select the TRC Import
button, and specify the following Scan Control options:

Data Set Type — TXY 
Data Set Pressure — 101.32 kPa 
Data Set Temperature — 25 °C 
Pressure Tolerance — 10 kPa 
Temperature Tolerance — 10 °C 

Search for all data sets which include the components C7 and Toluene:
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For more information on the Herrington Consistency Test, see the HYSYS - Conceptual Design manual.

Check the Use box for each set, then select the Read Selected Data Sets button. These sets will be imported into the
current Fluid Phase Experiment. Next, check the Herrington Thermodynamic Consistency for each set by selecting the
Consistency page tab, and pressing the Calculate Consistency button. The Herrington parameters are calculated,
and the status of each data set is displayed:
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Set 428:
Rose, A.; Williams, E. T.
Ind. Eng. Chem., 1955, 47, 1528.
P = 101 kPa
# of points = 13 

Copyright (c) by the Thermodynamics Research Center

Note that Set 428 has Herrington parameters of 4.33% and 4.91% for D and J respectively, which is well under the
“consistency limit” for isobaric data (D - J £ 10%). This set has 13 points which is sufficient for our investigation.

If we were going to regress the interaction parameters to the experimental data, we would run the Optimizer. However,
we will instead compare the experimental data to the calculated data based on the default interaction parameters. On
the Summary page of the Fluid Phase experiment, highlight Set 428, then select the Edit button. Select the Calculate
button — the XY and TXY curves will be constructed based on the default interaction parameters, and the errors will be
calculated.

The calculated data in this case is the TXY or XY data calculated using the Property Package (and current
interaction parameters), which is displayed graphically on the Plots page of the Data Set view.

The TXY plot appears as follows:

 

The experimental and calculated points match remarkably well, and thus it is not necessary to regress the interaction
parameters for the C7-Toluene pair.

Toluene-Phenol Interaction Parameters
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The amount of data available for this component pair is considerably less than what was available for C7-Toluene. We
will, however, regress interaction parameters from the available TRC data set (6014).

Set 6014
Drickamer, H. G.; Brown, G.; White, R. R.
Trans. Amer. Inst. Chem. Eng., 1945, 41, 555.
P = 101 kPa
# of points = 23
Herrington D% - 21.87
Herrington J% - 28.01 

Copyright (c) by the Thermodynamics Research Center

Open a new Fluid Phase Experiment, and select the TRC Import button.

There is only one data set available for the Toluene-Phenol pair. Select it by checking the Use box, then choose the
Read Selected Data Sets button.

The Data Set Notes group box on the Summary page of the Fluid Phase Experiment displays important information
related to the data set. Note that this data, obtained at 101 kPa, has 23 points.
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Move to the Consistency page, and calculate the Herrington Consistency as you did for the C7-Toluene data.

This data set is consistent according to the Herrington test:

Now we will calculate new interaction parameters based on this experimental data.

Before running the Optimizer, compare the experimental data to the predictions made using the default interaction
parameters. Edit TRC_VLE_SET_6814 and select the Calculate button. By looking at the Plots page, it appears that
there is reasonably good agreement between the experimental data and calculated curves.

On the Errors page of the Fluid Phase Experiment view, note that the average and maximum temperature errors are
0.316% and -1.038% respectively.
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Now we will run the Optimizer in order to obtain improved interaction parameters for this data set. On the Summary
page of the Fluid Phase Experiment view, note that the default Objective Function is ActivityCoeff. Thus, the errors
will be minimized with respect to the components’ activity coefficients.

Move to the Variables page and “free“ the parameters. For Matrix Pane bij (which for NRTL in HYSYS is equivalent 

to aij /cij), the parameters are initially locked.
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To “free” the parameters, select Matrix Pane bij from the drop down menu, choose the Degrees of Freedom radio
button, place the cursor on either cell containing the “Locked” message, and from the top drop down menu, select
Free. This allows the bij parameters to vary during the optimization process. Before running the optimizer, set up the
view so that you can observe the solution progress. This is best done from the Optimizer page, although you may
prefer to remain on the Variables page and watch the progress of the interaction parameters (ensure that the
Parameters radio button is selected; as well, it is probably more useful to observe the aij parameters). Once you start
the optimizer you cannot change pages until the calculations are complete.

For this example, we will observe the solution progress from the Optimizer page.

Choose the Optimizer tab, then select the Run Optimizer button.
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Convergence is achieved quickly, and the errors are automatically calculated once the algorithm converges; the
average and maximum temperature errors are 0.313% and 1.061% respectively.

We may be able to get better results using a different Objective Function. The Maximum Likelihood function is the most
rigorous from a statistical point of view, but also is the most computer intensive. The convergence time increases when
we use this function, but the improved results may be worth it.

Activity Coefficients
a12 = 829.4

a21 = -60.2

b12 = b21 = 0.146

Average Error = 0.313%
Maximum Error = -1.061%
Maximum Likelihood
a12 = 824.2

a21 = -188.1

b12 = b21 = 0.010

Average Error = 0.251%
Maximum Error = -0.934%

Change the Objective Function to Maximum Likelihood, and restart the optimizer. We obtain the following interaction
parameters:

The bij parameters are 0.01. The temperature errors are now 0.251% (average) and 0.934% (maximum). Note,
however, that while the toluene composition errors decreased, the phenol composition errors increased. Nevertheless,
we will use these interaction parameters for the Phenol-Toluene pair.

n-Heptane-Phenol Interaction Parameters

There is no TRC data for the Phenol-Heptane component pair. The following data (taken from Chang, Y.C., 1957 and
Kolyuchkina et al., 1972) is used:

12 of 90 2/24/99 10:21 AM

Application Example http://www.hyprotech.com/support/examples/extract/extract.htm



Temperature (°C)
x1 (1 =

Heptane)

y1 (1 =

Heptane)

106.0 .283 .918

103.7 .339 .941

102.7 .349 .947

101.2 .499 .956

101.2 .528 .950

100.5 .635 .957

100.4 .701 .956

100.2 .736 .962

99.2 .881 .960

98.6 .929 .968

98.3 .960 .978

   

TXY Data for Phenol-Heptane (Chang, 1957)
Pressure = 740 mm Hg

Temperature (°C) x1 (1 = Heptane) y1 (1 = Heptane)

116.3 .090 .840

112.4 .112 .932

112.6 .120 .931

107.1 .186 .946

104.4 .233 .961

102.4 .337 .960

100.8 .535 .970

100.6 .585 .965

100.0 .720 .967

99.6 .816 .961

99.5 .837 .964

99.2 .900 .970

   

TXY Data for Phenol-Heptane (Kolyuchkina et al., 1972)
Pressure = 760 mm Hg

Open a new Fluid Phase Experiment, select the appropriate Fluid Package (C7-Phenol), choose the Add button, and
enter the data, as shown below for the first data set (Chang):
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The default interaction parameters are shown here:

aij

bij

The interaction parameters are written as follows:
1 = C7
2 = Phenol
a12 = 1120.082

a21 = 701.706

b12 = b21 = 0.293

Various methods are possible for regressing the interaction parameters. In this example, the following schemes will be
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used:

1. With only the first data set active, optimize using the Activity Coefficients Objective Function.
2. With only the first data set active, optimize using the Maximum Likelihood Objective Function.
3. With only the second data set active, optimize using the Activity Coefficients Objective Function.
4. With only the second data set active, optimize using the Maximum Likelihood Objective Function.
5. With both data sets active, optimize using the Objective Function which results in the smallest error.

Scheme 5 uses the Maximum Likelihood Objective Function.

The following table outlines the results of this analysis. In all cases, using the Maximum Likelihood Objective function
rather than the Activity Coefficients Objective function resulted in significantly smaller temperature errors, while in most
cases the composition errors increased slightly. In some instances, the average or maximum composition decreased
when the Maximum Likelihood Objective function was used (see Ave C7 and Max Phenol for Schemes 3 and 4).
Therefore, we conclude that the Maximum Likelihood Objective function results in a better fit.

 Interaction Parameters Errors

Scheme a12 a21 b12 Avg T Max T Ave C7 Max C7 Ave Phenol Max Phenol

Default 1120 701.7 .293
C=.157 

K =.868 

C=-.489 

K=2.32

C=.713 

K=1.87

C=2.83 

K=-5.34

C=14.6 

K=35.3

C=-31.7 

K=73.2

Scheme 1 1672 1580 .528 C=.169 C=.329 C=.456 C=1.98 C=8.24 C=-22.1

Scheme 2 1362 1001 .490 C=.068 C=.245 C=.540 C=2.40 C=10.6 C=-26.9

Scheme 3 2052 1125 .509 K=.581 K=1.32 K=1.75 K=-4.12 K=29.8 K=68. 9

Scheme 4 1438 1172 .460 K=.125 K=.199 K=1.73 K=6.41 K=30.2 K=58.4

Scheme 5 1539 1328 .508
C=.149 

K=.192

C=-.480 

K=.502

C=.471 

K=1.82

C=2.44 

K=6.59

C=8.05 

K=31.3

C=-27.3 

K=65.4

We will use the interaction parameters obtained using Scheme 5.

For this component set, there is no liquid-liquid region. If a liquid-liquid region were predicted, then the Property
Package and/or interaction parameters would be unacceptable, because they predict physically incorrect behaviour.
A liquid-liquid region is not predicted with our interaction parameters.

Although we can be reasonably confident of these results, it is wise to regard the following:

1. Consider defining a weight of zero for outliers (data points which deviate significantly from the regressed curve).
2. Check the prediction of liquid-liquid regions.

The plots shown below are the TXY diagrams for Phenol-Heptane, comparing the experimental data to the points
calculated from the Property Package. The figure on the left plots the Kolyuchkina experimental data, while the figure
on the right plots the Chang experimental data.
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We can check the prediction of liquid-liquid regions from the Binary Coefficients page of the appropriate Fluid Package
view (ensure that you have entered the interaction parameters as shown below):

aij

bij
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You can see the LLE ternary plot on the Binary Coeffs page of the Fluid Package view. This requires you to enter a
temperature and a pressure. You can see the VLLE ternary plot on the Setup page of the Ternary Distillation
Experiment view. Here, you only enter a pressure.

Select the Ternary plot radio button, transfer the three components to the Selected Components group, and enter a
temperature and pressure. Over a range of temperature and pressures, no liquid-liquid region is predicted.

Peng Robinson Interaction Parameters

Default interaction parameters are available only for the C7-Toluene pair (0.006). Unlike the NRTL interaction
parameters, only one PR interaction parameter matrix pane is available; as well, binaries are constructed such that
aij = aji.

Open the Fluid Package Manager and add a new Fluid Package:

Property Package: PR 
Components: C7, Toluene, Phenol 

Leave all other parameters at their defaults. As we did in the previous section, we will determine the Interaction
Parameters based on TRC and literature experimental data. The procedure is essentially the same, and is concisely
summarized below.

n-Heptane-Toluene Interaction Parameters

We will use the default interaction parameter aij = aji = 0.006.

Toluene-Phenol Interaction Parameters

Recall that only one TRC data set is available for this binary (Data Set #6814).

The Activity Coefficient Objective Function should not generally be used for Equations of State as results tend to be
mediocre for highly polar systems. When we use the Bubble Temperature or Maximum Likelihood Objective
Functions, we obtain an interaction parameter of aij = aji = 0.014. Note that you may have to decrease the tolerance or

step size in order to obtain adequate convergence in this order of magnitude.

The TXY plot (using this interaction parameter) is shown below, displaying a reasonably good fit.
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n-Heptane-Phenol Interaction Parameters

As before, we will use the data of Chang and Kolyuchkina et al.

The interaction parameters predicted using the Chang data is very different from the Kolyuchkina data. Chang predicts
aij = 0.045 (Maximum Likelihood), and Kolyuchkina et al. predicts aij = 0.010. When we combine both data sets, we

obtain aij = 0.03. The TXY plots (using an interaction parameter of 0.03) are below:
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The figure on the left plots the Chang data and the figure on the right plots the Kolyuchkina data.

These plots show that the dew point curve does not match the experimental data very well, and they also indicate a
liquid-liquid region. This can be confirmed by looking at the ternary LLE or VLLE plot.

You can see the ternary LLE plot on the Binary Coeffs page of the Fluid Package view. This requires you to enter a
temperature and a pressure. You can see the VLLE plot on the Setup page of the Ternary Distillation Experiment
view. Here, you only enter a pressure.

The VLLE plot at a pressure of 18 psia is shown below.

We can avoid the prediction of a liquid-liquid region by setting the n-Heptane-Phenol interaction parameter to 0.007 or
less. However, the calculated curve still does not fit the experimental data very well, and we conclude that the
Peng-Robinson Property Package is not acceptable for this example.

Note that using the PRSV Property Package results in a better fit, although a two-liquid-phase region is incorrectly
predicted under certain conditions.
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Prediction of Azeotropes using NRTL

At 18 psia, NRTL does not predict any azeotropes. However, at higher pressures, an azeotrope between n-Heptane
and Phenol is predicted, as shown in the following table:

Pressure (psia) Azeotropic Composition

23 No azeotropes

24 C7=0.9993

30 C7=0.9923

40 C7=0.9825

It is important to remember that activity models generally do not extrapolate well with respect to pressure, so we should
therefore regard these results with caution. The point is that we should not allow the pressure to fluctuate excessively,
so that incorrect predictions/azeotrope formation will not be a problem.

Parameters used in this Example

For this example, we will use the NRTL Property Package with the following interaction parameters:

aij

bij

C-6.4 

Ternary Distillation Design (NRTL) 

 

First Column

HYSYS - Conceptual Design allows for single-column design. For the ternary distillation experiment, the column can
have two feeds, a sidestream, condenser, reboiler and decanter.

We will use the NRTL Property Package, and the Interaction Parameters as defined in the previous section.
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A trial-and-error type of procedure is required, as we must cycle between the two columns until the connecting
streams have roughly the same compositions and flowrates. The bottoms stream of the first column feeds the
second column, and the bottoms stream of the second column is the upper feed to the first column.

Open a Ternary Distillation Experiment, set a pressure of 18 psia (the average of the top and bottom pressures in the
column, 16 and 20 psia), and select the appropriate Fluid Package from the drop down list. The program will then
determine if there are any azeotropes or two-liquid regions:

 

There are no azeotropes or liquid-liquid regions at this pressure, as predicted by the NRTL Property Package (using
our new interaction parameters).

The first column (extractive distillation) has two feeds to it, the process feed (50% Toluene, 50% n-Heptane on a molar
basis), and the recycle stream from the second column. There is no decanter or sidestream.

The Configuration/Summary page will appear as follows:
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Note that we have entered the specifications for the process feed stream (Lower Feed). The molar flow of the process
feed stream is 400 lbmole/hr. For the remaining streams, we will enter the specifications on the Spec Entry page.

Before entering the specifications, set the Reflux Ratio to be 5. Later, we will do a sensitivity analysis in order to
estimate an optimum Reflux Ratio.

We know that the upper feed is primarily phenol. As an initial estimate, we will use the following specifications:

We have specified the C7 and Phenol mole fractions to be 1E-06 and 0.9990 respectively. With an Upper Feed/Lower
Feed ratio of 2.75, the Upper Feed flowrate is 1100 lbmole/hr. Note that at this point, we do not know if this is the
optimum Upper Feed/Lower Feed ratio.

Next, specify a Distillate C7 mole fraction of 0.990. This restricts our range of choice for the remaining specifications.

Select the Bottoms radio button. You will see the following:
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It would be advantageous to maximize the phenol in the bottoms stream. Set the Phenol fraction to be 0.846. This
constrains the C7 mole fraction from 0 to 0.0007. Specify the C7 fraction to be 0.0006. The remaining mole fractions
will be calculated based on the overall mole balance. At this point, all that is left is to specify a reflux ratio. As an initial
estimate, set the reflux ratio to be 5.

Select the Calculate button. You will see the following message:

The optimum value for Omega (that which results in the lowest number of total stages) is automatically calculated; if
you simply press the Calculate button again, the number of stages will be determined using this optimum value.
Alternatively, you could set Omega to any value you wanted on the 2 Feed Omega page. We will always use the
optimum value in this example.

After you select the Calculate button, move to the Flows / Stages page:
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The total number of stages is excessively high. We could specify a lower heptane fraction in the bottoms — if we
define it to be 0.0001 for instance, 29 stages are required. As well, if we respecify the bottoms composition so that the
phenol fraction is lower, we will require less stages in this column.

Because we want to take relatively pure toluene off the top of the second column and relatively pure phenol off the
bottom, the heptane fraction in the bottoms coming off the first column must be small. Note that as we decrease the
phenol composition, we must increase the C7 composition. Also, below a certain point (phenol composition » 0.836),
the column profiles will not converge.

If we were to specify the heptane and phenol compositions to be 0.0065 and 0.84 respectively, 20 stages would be
required to achieve these bottom compositions.

Note that most of the toluene and heptane in the bottoms stream will exit in the distillate stream of the second column.
The toluene composition would be (1 - 0.84 - 0.0065) = 0.1535, and the toluene to heptane ratio about 24, which
means that if most of the toluene and heptane were to exit in the distillate stream of the second column, the best purity
we could obtain would be about 0.96. This is not adequate; therefore, the heptane composition must be even lower.

Specify the heptane and phenol compositions to be 0.0015 and 0.844. The Heptane to Toluene ratio is now 103, which
should allow the Toluene fraction off the top of the second tower to be about 0.99.

The results are shown here:
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We will now create a new ternary distillation experiment, transferring the bottoms specifications for the first column to
the feed for the second column.

Second Column

As before, set the pressure to 18 psia, and select the appropriate Fluid Package. Leave the settings on the
Configuration/Settings page at their defaults (Single Feed, No Decanter, No Sidestream).

The Reflux Ratio for the second column will initially be set at 5.

The Feed specifications, taken from the bottoms stream off the first column, are shown here:

At this point, it may take some experimentation to see what stream specifications will result in a converged column.
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The following specifications work for the distillate and bottoms:

 

Note that we should be able to obtain a higher toluene purity. As well, the phenol composition off the bottoms had to be
adjusted to 0.99 (initially we had set the phenol composition in the recycle to 0.999).

At this step, 6 stages are required for the second column (where the sixth “stage” is the reboiler); the feed enters on
the fourth stage.

At this point, we must return to the first column, using the new recycle stream specs. In other words, we must use the
Bottoms specifications obtained here for the Top Feed of the first column.

First Column: Second Pass

The recycle stream flow (upper feed) is now 1106.3, which gives us a feed ratio of 2.766. If we keep the recycle
compositions as they are, the minimum number of stages required to obtain a heptane composition of 0.99 in the
distillate is high (about 29). Thus we will have to increase the phenol composition to compensate.

We now have the following composition specifications:

Component Mixed Feed Solvent Feed Distillate Bottoms

C7 0.5000 1e-6 0.99 0.0015

Toluene 0.5000 0.0050 0.0055 0.1565

Phenol 0.0000 0.9950 0.0045 0.8420

Component fractions in boldface are specified; all other component fractions are calculated. The Flows/Stages page is
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shown below:

Second Column: Second Pass

At this point, the solvent feed stream to the first column has the same composition as the bottoms stream of the second
column, and the feed to the second column has the same composition as the bottoms stream of the first column. The
specifications are shown below:

Component Feed Distillate Bottoms

C7 0.0015 0.0097 1e-6

Toluene 0.1565 0.9900 0.0050

Phenol 0.8420 0.0003 0.9950

The Flows/Stages page is shown below:
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Note that the flows between the columns do not match precisely, but this is acceptable considering that this is a
preliminary approximation. As well, there are inherent simplifications, such as the assumption of constant molal
overflow. Thus, the results obtained here will not exactly match those determined in HYSYS.SteadyState. Using these
results as a base case, the reflux ratio and product purities are now adjusted in order to determine an optimum
configuration.

Effect of Reflux Ratio, Reboil Ratio and Purities

We will adjust the Reflux Ratio and Purities, observing their effect on other column variables such as the Reboil Ratio
and the Number of Stages. Two configurations will be proposed, one which has lower purities (0.985/0.985), and one
with higher purities (0.99/0.99), at the expense of a higher number of stages and/or higher Reflux/Reboil ratios.

Higher purities (0.99 / 0.99)

The Base Case constants and variables are tabulated below:
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Constant

Recycle Composition 1e-6 Toluene / 0.005 Heptane/ 0.995 Phenol

Lower Feed Composition 0.5 Toluene / 0.5 Heptane / 0 Phenol

Variable

Reflux Ratio, Column 1 5

Reboil Ratio, Column 1 0.9188

Upper Feed Stage, Column 1 13

Lower Feed Stage, Column 1 21

Number of Stages, Column 1 25

Heptane Fraction, Column 1 Distillate 0.99

Reflux Ratio, Column 2 5

Reboil Ratio, Column 2 1.0906

Feed Stage, Column 2 8

Number of Stages, Column 2 10

Toluene Fraction, Column 2 Distillate 0.99

Reflux Ratio (Reboil Ratio) Column 1

Keeping other variables constant, the reflux ratio is adjusted. As shown in the table below, increasing the reflux ratio
above 5 gives no improvement in the number of stages required for the separation. Decreasing the reflux ratio below
five causes the number of stages to increase. We therefore conclude that a reflux ratio of 5 is optimum for the first
column.

Reflux Ratio 3 4 5 10 20

Upper Feed Stage 18 15 13 11 10

Lower Feed Stage 26 24 21 20 20

Number of Stages 30 28 25 24 25

Reboil Ratio 0.6126 0.7657 0.9188 1.6846 3.2160

Heptane Fraction Column 1

As we increase the Heptane fraction in the distillate, the number of stages also increases. Although we would like a
high purity, the number of stages increases substantially as we increase the Heptane Fraction above 0.990. At a
Heptane fraction of 0.994, the number of stages is 58 which is much too high to be viable. We will go with a Heptane
fraction of 0.990, at the expense of some extra stages.

Heptane Fraction 0.985 0.989 0.990 0.991 0.992 0.994

Upper Feed Stage 7 11 13 16 20 46

Lower Feed Stage 15 19 21 24 28 54

Number of Stages 19 24 25 28 32 58

Reflux Ratio (spec.) 5 5 5 5 5 5

Reboil Ratio 0.9242 0.9199 0.9188 0.9178 0.9167 0.9146
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Reflux Ratio (Reboil Ratio) Column 2

The number of stages in the second column is only somewhat sensitive to the reflux ratio, as shown below. A reflux
ratio of 5 is selected as the optimum. Decreasing the ratio to 4 is done at a cost of two extra stages, while increasing
the ratio to 10 reduces the number of stages by one.

Reflux Ratio 4 5 10 20

Feed Stage 10 8 8 8

Number of Stages 12 10 9 9

Reboil Ratio 0.9088 1.0906 1.9994 3.8171

Toluene Fraction Column 1

With this configuration, we cannot predict toluene fractions above 0.99. We will keep the toluene fraction of 0.990, even
though more stages are required.

Toluene Fraction 0.985 0.989 0.990

Feed Stage 6 7 8

Number of Stages 8 9 10

Reflux Ratio (spec.) 5 5 5

Reboil Ratio 1.0972 1.0919 1.0906

Upper/Lower Feed Ratio

Finally, the Upper/Lower Feed ratio was varied, and the effect on the number of stages in the first column observed:

U/L Ratio 2 2.5 2.7 3 4

Upper Feed Stage 23 13 13 11 10

Lower Feed Stage 30 22 21 20 20

Number of Stages 35 26 25 24 23

It appears that the U/L ratio that we used, 2.7, is reasonable in this case. Any increase in the ratio does not decrease
the number of stages significantly.

Results Using Optimized Values

These are the specs for the first (high purity) column configuration:
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Reflux Ratio, Column 1 5

Reboil Ratio, Column 1 0.9188

Upper Feed Stage, Column 1 13

Lower Feed Stage, Column 1 21

Number of Stages, Column 1 25

Heptane Fraction, Column 1 Distillate 0.99

Reflux Ratio, Column 2 5

Reboil Ratio, Column 2 1.0906

Feed Stage, Column 2 8

Number of Stages, Column 2 10

Toluene Fraction, Column 2 Distillate 0.99

The temperature and liquid composition profiles for the first column are displayed below. Note that there are feed
streams at stages 13 and 21.
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The temperature and liquid/vapour composition profiles for the second column are shown below:

 

Lower purities (0.985 / 0.985)

With lower purities, we require a smaller phenol fraction in the Recycle (0.993); as well, we have set the upper/lower
feed ratio to 2.75. As with the high purity case, we will start with a Reflux Ratio of 5 for both columns.

The Base Case constants and variables are tabulated below:

Constant

Recycle Composition 1e-6 Toluene / 0.007 Heptane/ 0.993 Phenol

Lower Feed Composition 0.5 Toluene / 0.5 Heptane / 0 Phenol
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Variable

Reflux Ratio, Column 1 5

Reboil Ratio, Column 1 0.9231

Upper Feed Stage, Column 1 7

Lower Feed Stage, Column 1 17

Number of Stages, Column 1 20

Heptane Fraction, Column 1 Distillate 0.985

Reflux Ratio, Column 2 5

Reboil Ratio, Column 2 1.1015

Feed Stage, Column 2 8

Number of Stages, Column 2 10

Toluene Fraction, Column 2 Distillate 0.985

We will optimize only the reflux ratios, leaving the purities at 0.985 for both columns.

Reflux Ratio (Reboil Ratio) Column 1

As before, we adjust the reflux ratio, and observe the effect on the number of stages. When we increase the reflux ratio
above 5, there is no improvement in the number of stages required for the separation. Decreasing the reflux ratio below
five causes the number of stages to increase. We therefore conclude that a reflux ratio of 5 is optimum for the first
column.

Reflux Ratio 4 5 10 20

Upper Feed Stage 8 7 7 6

Lower Feed Stage 19 17 17 19

Number of Stages 23 20 21 20

Reboil Ratio 0.7693 0.9231 1.6924 3.2310

Reflux Ratio (Reboil Ratio) Column 2

The number of stages in the second column is only somewhat sensitive to the reflux ratio, as shown below. A reflux
ratio of 4 is selected as the optimum.

Reflux Ratio 3 4 5 10 20

Feed Stage 9 8 8 7 8

Number of Stages 11 10 10 9 9

Results Using Optimized Values

These are the specs for the second (lower purity) column configuration:
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Reflux Ratio, Column 1 5

Reboil Ratio, Column 1 0.9231

Upper Feed Stage, Column 1 7

Lower Feed Stage, Column 1 17

Number of Stages, Column 1 20

Heptane Fraction, Column 1 Distillate 0.985

Reflux Ratio, Column 2 4

Reboil Ratio, Column 2 0.9187

Feed Stage, Column 2 8

Number of Stages, Column 2 10

Toluene Fraction, Column 2 Distillate 0.985

The Stage Liquid Compositions are shown here for the first column:

Also, the Liquid composition profiles for the second column are shown:
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C-6.5 

Building the Columns in HYSYS

In this section, we will construct the columns in HYSYS.SteadyState, and obtain a steady-state solution for both
column configurations.

Note that the interaction parameters for the NRTL package can be exported from HYSYS - Conceptual Design to
HYSYS.SteadyStateor HYSIM using the Export to HYSIM button in the HYSYS - Conceptual Design Fluid
Package.

Define the Fluid Package as follows:

Property Package — NRTL 
Components — n-Heptane, Toluene, Phenol 

In HYSYS.SteadyState, the c term is the alpha term.
In HYSYS - Conceptual De-sign, the b term is the alpha term.

Change the Interaction Parameters to match the regressed parameters obtained in Part 1 (or copy the .dat and .idx
files which you created in HYSYS - Conceptual Design to the Support directory).

We require the phenol stream to “make up” for phenol lost in the toluene and heptane product streams.

In the Main Environment WorkSheet, specify the Feed and phenol makeup streams as follows:
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Name Feed phenol makeup

Vapour Frac 0.0000 0.0000

Temperature [F] 220.0000 220.0000

Pressure [psia] 20.0000 20.0000

Molar Flow [lbmole/hr] 400.0000 1.2000

Mass Flow [lb/hr] 38469.1605 94.1128

Liq Vol Flow [barrel/day] 3448.3151 6.1028

Heat Flow [Btu/hr] -1.5788e+07 -60190.9080

Comp Mole Frac [n-Heptane] 0.5000 0.0000

Comp Mole Frac [Toluene] 0.5000 0.0000

Comp Mole Frac [Phenol] 0.0000 1.0000

High Purity Configuration

In HYSYS - Conceptual Design, the number of trays includes the reboiler. In HYSYS.SteadyState, the number of
trays does not include the reboiler. Therefore the number of trays in each column are 24 and 9, not 25 and 10, as
predicted in part 2. The Feed locations remain the same.

In the SubFlowsheet, add the Tray Sections, Reboilers and Condensers for the high purity setup:
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TRAY SECTION TS-1

CONNECTIONS

Number of Trays 

Feeds (Stage)

Liquid Inlet

Vapour Inlet

Liquid Outlet

Vapour Outlet

24 

Feed (21)

Solvent (13)

Phenol Makeup (13)

Reflux-1

Boilup-1

To Reboiler 1

To Condenser-1

PARAMETERS

Tray Section Type Standard

TRAY SECTION TS-2

CONNECTIONS

Number of Trays 

Feeds (Stage)

Liquid Inlet

Vapour Inlet

Liquid Outlet

Vapour Outlet

9 

COL1 Bottoms (8)

Reflux-2

Boilup-2

To Reboiler-2

To Condenser-2

PARAMETERS

Tray Section Type Standard

TOTAL CONDENSER Condenser-1

CONNECTIONS

Feed 

Distillate

Reflux

Energy

To Condenser-1 

Heptane

Reflux-1

COL1 Cond Q

PARAMETERS

Pressure Drop 0 psi

TOTAL CONDENSER Condenser-2

CONNECTIONS

Feed 

Distillate

Reflux

Energy

To Condenser-2 

Toluene

Reflux-2

COL2 Cond Q

PARAMETERS

Pressure Drop 0 psi

REBOILER Reboiler-1

CONNECTIONS

Feed 

Boilup

Bottoms Product

Energy

To Reboiler-1 

Boilup-1

COL1 Bottoms

COL1 Reb Q

PARAMETERS

Pressure Drop 0 psi

REBOILER Reboiler-2

CONNECTIONS

Feed 

Boilup

Bottoms Product

Energy

To Reboiler-2 

Boilup-2

Solvent

COL2 Reb Q

PARAMETERS

Pressure Drop 0 psi

 

The PFD will appear as follows:
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Return to the Main Flowsheet, bring up the Column view, and enter the following specifications:

Pressures

Condenser-2 — 16 psia 
Reboiler-2 — 20 psia 
Condenser-1 — 16 psia 
Reboiler-1 — 20 psia 

Temperature Estimates

Temperature Estimate Condenser-1 — 220 F 
Temperature Estimate Condenser-2 — 240 F 

Solving the Column

Next, we will add the specifications.
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To add a specification, select the Add button on the Specs Page, then select a specification from the list: 

As an example, the Reflux Ratio spec is shown here:

We want to solve to the following specifications:

Reflux Ratio = 5 (Reflux Ratio-1, Condenser-1, Molar, 5) 
Reflux Ratio2 = 5 (Reflux Ratio-2, Condenser-2, Molar, 5) 
Heptane Frac = 0.99 (Heptane Frac, Condenser-1, Mole Fraction, Liquid, 0.99, Heptane) 
Toluene Frac = 0.99 (Toluene Frac, Condenser-2, Mole Fraction, Liquid, 0.99, Toluene) 

It may not be possible to immediately solve to these specifications. There are several alternative methods you can use
to obtain a solution; the following two methods may work:
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1. Add the following Flow Spec:

Toluene Flow = 200 lbmole/hr (Toluene Flow, Toluene, Molar, 200 lbmole/hr) 

Activate the Reflux Ratio specs, the Toluene Frac spec and the Toluene Flow spec. Run the column. Once it solves,
replace the Toluene Flow spec with the Heptane Frac spec. Re-run the column (do not reset).

2. Add the following Toluene Recovery Spec:

Toluene Recovery = 0.995 (Toluene Recovery, Toluene, Molar, 0.995) 

Activate the Reflux Ratio specs, the Heptane Frac spec and the Toluene Recovery spec. Run the column. Once it
solves, replace the Toluene Recovery spec with the Toluene Frac spec. Re-run the column.

Whether a certain set of specifications will solve depends in part on the solution history, even if you have Reset the
solution.

You may have to “approach” a spec by choosing a conservative value for the specification, then successively
approaching the actual specification. Run (but do not Reset) the column after each change.

In any case, once you have converged, you will see a view similar to the following:
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Note the similarities in the temperature profile shown here with the profiles obtained using HYSYS - Conceptual
Design.

We obtain the following Condenser and Reboiler duties:

Column 1 Condenser — 1.64e+07 Btu/hr 
Column 2 Condenser — 1.72e+07 Btu/hr 
Column 1 Reboiler — 1.32e+07 Btu/hr 
Column 2 Reboiler — 2.04e+07 Btu/hr 

Note that we can further increase the distillate compositions to 0.994 and 0.993 (Toluene and Heptane, respectively).
This is an improvement over the specifications estimated using HYSYS - Conceptual Design.

At this point, you may want to save the first configuration in a separate file.

Low Purity Configuration

Rather than reinstalling the Tray Sections, Reboilers and Condensers, simply adjust the number of stages and feed
locations as follows:
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Ensure that you are in the Main Flowsheet, then bring up the column view. The pressures and temperature estimates
will be defined as before:

Pressures

Condenser-2 — 16 psia 
Reboiler-2 — 20 psia 
Condenser-1 — 16 psia 
Reboiler-1 — 20 psia 

Temperature Estimates

Temperature Estimate Condenser-1 — 220 F 
Temperature Estimate Condenser-2 — 240 F 

The types of specifications are the same as before; therefore it is not necessary to add new specs. Simply change
the Heptane and Toluene Fracs to 0.985.

Solving the Column

We want to solve to the following specifications:

Reflux Ratio = 5 (Reflux Ratio-1, Condenser-1, Molar, 5) 
Reflux Ratio2 = 5 (Reflux Ratio-2, Condenser-2, Molar, 5) 
Heptane Frac = 0.985 (Heptane Frac, Condenser-1, Mole Fraction, Liquid, 0.985, Heptane) 
Toluene Frac = 0.985 (Toluene Frac, Condenser-2, Mole Fraction, Liquid, 0.985, Toluene) 

In this case, it is not possible to meet the specifications predicted by HYSYS - Conceptual Design. The following

42 of 90 2/24/99 10:22 AM

Application Example http://www.hyprotech.com/support/examples/extract/extract.htm



configurations for the low purity case are possible:

Heptane Fraction 0.985 
Toluene Fraction 0.985 
Reflux Ratio Column 1 = 12 
Reflux Ratio Column 2 = 4 

or

Heptane Fraction = 0.970 
Toluene Fraction = 0.985 
Reflux Ratio Column 1 = 5 
Reflux Ratio Column 2 = 4 

The first configuration maintains the purity specs, while the second maintains the reflux ratio specs. The first
configuration is more desirable despite the high Reflux Ratio; the solved column using these specifications appears as
follows:
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Although less stages are required for this configuration, the Condenser and Reboiler duties are much higher, and it
is unlikely that the reduced capital cost will compensate for the increased utility cost. This will be confirmed in the
next section.

We obtain the following Condenser and Reboiler duties:

Column 1 Condenser — 3.54e+07 Btu/hr 
Column 2 Condenser — 1.72e+07 Btu/hr 
Column 1 Reboiler — 3.34e+07 Btu/hr 
Column 2 Reboiler — 1.92e+07 Btu/hr 

C-6.6 Optimization

Economics: Background

A Spreadsheet will now be set up in HYSYS.SteadyState to calculate the economics of the process. The methods
used here to calculate capital costs, expenses and revenue are relatively simple, but are sufficient to provide a
preliminary estimate. The benefit of these methods is that they are easy to implement, and as they are formula-based,
can be used in the optimization calculations.

This section is divided into the following parts:

Raw Data — Data which is used in the calculation of capital costs, expenses, revenue and net present worth. 
Capital Cost — Initial equipment and related costs associated with the construction of the process, incurred at
time zero. 
Annual Expenses — Expenses associated with the operation of the plant, incurred at the end of each year. 
Revenue — Income obtained from the sale of the process products, namely Toluene and Heptane; incurred at
the end of each year. 
Net Present Worth — Economic calculation taking into account the Capital Cost and Gross Income, used to
obtain the net present worth. 
Nomenclature and Constants — A list of the nomenclature and constants used in the various expressions in
this section. 

Raw Data

Some of the Economic, Material and Utility costs that are used in this simulation are shown below:

Economic

Cost Index 1996 to 1990 1.07

Tax Rate 28%

Interest minus Inflation 7%

Working Days/Year 300
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Raw Material, Product and Utility Costs

Toluene ($/gal) 0.76

Heptane ($ /gal) 0.74

Feedstock ($/gal) 0.58

Phenol ($/lb) 0.41

Water ($/1000 gal) 0.25

Natural Gas ($/1E6 Btu) 3.20

In addition to these, the following variables are required from the Steady-State solution, and will be imported into the
Spreadsheet.

First Condenser Duty Second Condenser Duty First Reboiler Duty

Second Reboiler Duty Phenol Mass Flow Toluene Mass Flow

Heptane Mass Flow Feed Flow TS 1 Liquid Mass Flow

TS 2 Liquid Mass Flow Feed Standard Density Toluene Standard Density

Heptane Standard Density Number of Trays, Column 1 Number of Trays, Column 2

Capital Cost

A percentage of delivered-equipment cost method is used to determine the total capital investment. That is, the
equipment (column tray sections, reboilers and condensers) are sized and priced; all additional costs, such as piping,
construction and so on are calculated as a percentage of the equipment cost.

Equipment Cost

Equipment Cost Reference

First Column Condenser 1-373

Second Column Condenser 1-373

First Column Reboiler 1-373

Second Column Reboiler 1-373

First Column Tray Section

 

1-712

Second Column Tray Section

 

1-712

All expressions here are derived from a graph or table. The Reboiler and Condenser expressions are regressed
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linearly, while the Tray Section expression assumes a linear relationship on a log-log scale.

The sum of the costs of these six items is the Equipment cost (based on 1990 prices).

Direct and Indirect Costs

The costs of each item below is estimated as the Equipment cost multiplied by the respective Factor for that item.
Direct costs include Installation, Instrumentation, Piping, Electrical, New Building, Yard, Service and Land. Indirect
costs include Engineering /Supervision and Construction.

Item Factor Reference

Installation 0.40 1 (171)

Instrumentation 0.18
1 (172); 

1 (183)

Piping 0.60 1 (173)

Electrical 0.10 1 (174)

New Building 0.20 1 (175)

Yard 0.10 1 (182)

Service 0.70 1 (182)

Land 0.06 1 (182)

Engineering / Supervision 0.33 1 (182)

Construction 0.30 1 (182)

Contracting and Contingency

These are applied based on the Equipment, Direct and Indirect Costs. Contracting is estimated to be 5% of the sum of
all Equipment, Direct and Indirect Costs, and Contingency (unforeseen events) is estimated as 10% of the sum of
these costs.

Item Factor Reference

Contracting 0.05 1 (182)

Contingency 0.10 1 (182)

The total Fixed Capital Investment (FCI) is the sum of all Equipment, Direct, Indirect, Contracting and Contingency
costs, multiplied by the cost index factor of 1.07.

Working Capital

The working capital is estimated to be 15% of the Fixed Capital Investment.

Annual Expenses

The following table lists the expenses which are considered in the economic analysis of this plant.
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Expense Annual Cost Reference

Cost of Phenol
1 (197); 

1 (816)

Cost of Feedstock 1 (197)

Labour* 1 (198)

Supervision and Clerical Labour Cost x 15% 1 (202)

Maintenance and Repairs FCI x 6% 1 (203)

Operating Supplies Maintenance x 15% 1 (204)

Lab Charges Labour Cost x 15% 1 (204)

Condenser 1 Cooling
Water

1 (815)

Condenser 2 Cooling
Water

1 (815)

Reboiler 1 Natural Gas 1 (815)

Reboiler 2 Natural Gas 1 (815)

Depreciation FCI x 10% 1 (205)

Local Taxes FCI x 2% 1 (205)

Insurance FCI x 1% 1 (205)

Plant Overhead (Labour Cost + Supervision and Clerical Cost + Maintenance and Repairs
Cost) x 60%

1 (205)

Administrative Labour Cost x 20% 1 (206)

Distribution Gross Income x 4% 1 (207)

Research and
Development Gross Income x 4% 1 (207)

* Linearly Regressed from Graph

The individual expenses are totalled, and multiplied by a cost index factor (1.07) to account for 1990 to 1996 inflation.

Revenue
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Revenue Annual Cost Reference

Toluene 1 (816)

Heptane 1 (816)

The total gross revenue is the sum of the amount obtained from selling the products, multiplied by the cost index factor
(1.07).

Calculation of Net Present Worth

The following points outline the simplified calculation for net present worth:

The total capital investment is the Fixed Capital Investment plus the Working Capital. This expenditure is the
total cash flow for year zero. 
It is assumed that the life of the process is five years. The revenue and expenses are applied at the end of each
year, from years one to five. 
The Annual Operating Income is the Annual Income minus the Annual Costs. 
The Income after tax is the Annual Operating Income multiplied by one minus the tax rate. 
The Annual Cash Income is the Income after tax plus the Depreciation Expense, which was earlier discounted
as an annual expense. 
It is assumed that there is no salvage value; the Annual Cash Income is exactly the same for years one to five. 
The Net Present Worth of the Annual Cash Income is determined using the following formula: 

This expression simplifies to:

The Total Net Present Worth is the total capital investment (negative cash flow) plus the Net Present Worth of
the Annual Cash Income. 

Nomenclature and Constants used in Economic Analysis
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Nomenclature

rF,STD = Standard Density of Feedstock (lb/ft3)

rH,STD = Standard Density of Heptane (lb/ft3)

rT,STD = Standard Density of Toluene (lb/ft3)

CF = Cost of Feedstock ($/gal)

CGAS = Cost of natural gas ($/1E6 Btu)

CH2O = Cost of water ($/1000 gal)

CHEP = Cost of Heptane ($/gal)

CPH = Cost of Phenol ($/lb)

Cp
H2O = Heat Capacity of water (1 Btu/lb F)

CTOL = Cost of Toluene ($/gal)

DTRAY1 = Diameter of First Tray Section (ft)

DTRAY2 = Diameter of Second Tray Section (ft)

FFOL = Feed Flow (lb/hr)

FPH = Phenol Flow (lb/hr)

FTOL = Toluene Flow (lb/hr)

FTRAY1, = Liquid Mass Flowrate for First Tray Section, from Stage 20 (lb/h)

FTRAY2, = Liquid Mass Flowrate for Second Tray Section, Stage 1 (lb/h)

i = Annual rate of interest (in this case, interest minus inflation)

N = Number of working days/yr

NTRAY1 = Number of Trays in First Tray Section

NTRAY2 = Number of Trays in Second Tray Section

n = Life of project (y)

QCOND1 = Duty, Column 1 Condenser (Btu/hr)

QCOND2 = Duty, Column 2 Condenser (Btu/hr)

QREB1 = Duty, Column 1 Reboiler (Btu/hr)

QREB2 = Duty, Column 2 Reboiler (Btu/hr)

xH = Mole Fraction of Heptane in Heptane Product

xT = Mole Fraction of Toluene in Toluene Product

 

49 of 90 2/24/99 10:22 AM

Application Example http://www.hyprotech.com/support/examples/extract/extract.htm



Constant Used in Expression Unit

24 hours/day

7.481 gal/ft3

2000 lb/ton

0.219 Constant in Labour Cost Expression

2.844 Constant in Labour Cost Expression

70 F (DT Cooling Water)

62.4 lb/ft3 (Density of water)

1000 No units (Cost = $/1000 gal)

1E6 No units (Cost = $/1E6 Btu)

0.25 No units (Portion of formula for area)

1/6 ft (Height of weir - 2”)

1/120 hr (Residence time on tray - 1/2 minute)

Setting up the Spreadsheet

Note that the Spreadsheet we are constructing contains some information which is not used in this example, but
which may be of generic use.

Note that the Spreadsheet we are constructing contains some information which is not used in this example, but
which may be of generic use.

If you want to use this Spreadsheet as a template for other processes, it is a good idea to set it up as a template file,
then insert it as subflowsheet in the appropriate case. These are the steps:

1. Create a new template and enter Fluid Package data.
2. Add a Spreadsheet and enter the following information:

Note that the Spreadsheet we are constructing contains some information which is not used in this example, but which
may be of generic use.

Simulation Data 
Economic Data 
Capital Cost Data 
Expense and Revenue Data 
Capital Cost Calculation 
Expense and Revenue Calculation 
Net Present Worth Calculation 

3. Save the template.

4. Retrieve the process case, and add a subflowsheet, using the previously created file as a template.

5. Import data links into Spreadsheet.

50 of 90 2/24/99 10:22 AM

Application Example http://www.hyprotech.com/support/examples/extract/extract.htm



Creating a New Template

From the file menu, select New Template. 

As with creating a Case, it is necessary to define a Fluid Package. Select NRTL with components n-Heptane, Toluene
and Phenol. Enter the Main Environment.

Adding the Spreadsheet

Simulation Data

Column A lists the headings, while column B will contain the data imported from the case file, or the appropriate
formula. When we load this template into the case, we will then import the appropriate variables into this Spreadsheet.

Enter the headings as shown below.
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The formulae for cells B16 - B23 (excluding B17) are:

B16 +((b15*24)/(b17*5.615))/c17*b17

B18 +b2

B19 +b3

B20 +b4

B21 +b5

B22 +((b25)/(5*3.1415*b7))^.5

B23 +((b26)/(5*3.1415*h16))^.5

Although the Feed Standard Density could also be imported in HYSYS.SteadyState, HYSYS - Dynamic Design does
not accept the import, and it is necessary to enter the formula as shown in cell B16.

Economic and Annual Data

The Economic, Annual Expense and Revenue Data is shown below:
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Enter all data exactly as shown. There are no formulae on this page.

Capital Cost Data

 

The Capital Cost Data is set up in columns G and H. There is also some additional Simulation Data in this area (H16 -
H19). The Toluene Density and Heptane Density will be imported into cells H16 and H17, respectively. Although the
Standard Densities could also be imported in HYSYS.SteadyState, HYSYS - Dynamic Design does not accept the
import, and we must use the following formulae:
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H18 +((b11*24)/(h16*5.615))/i6*h16

H19 +((b12*24)/(h17*5.615))/i7*h17

Capital Cost Calculation

The Capital Cost Calculation is performed in cells C18 - D30. Note that cells A18 - B26 have already been completed.

All of the cells in column D shown here are formulae - do not enter the values 3.02 and 0.15!

The formulae are listed below:

D18 +12.75*b18/9000+9300

D19 +12.75*b19/9000+9300

D20 +b20*19.5/5300+15000

D21 +b21*19.5/5300+15000

D22 @exp(.958*@ln(b22*12)+4.44)*b13

D23 @exp(.958*@ln(b23*12)+4.44)*b14

D24 +d18+d19+d20+d21+d22+d23

D25 +h2+h3+h4+h5+h6+h7+h8+h9+h10+h11+h12

D26 +d24*(1+d25)

D27 +h12+h13

D28 +d26*(1+d27)

D29 +d2*d28

D30 +d29*h14/100

Expense Calculation

The Total Expenses and Adjusted Expense (incorporating Cost Index Factor) are displayed in cells B50 and D50,
respectively.
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The Expenses are listed in column B, rows 32-49.

These are the formulae used:
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B32 +b10*f2*24*d5

B33 +b15*f3*24*7.481*d5/b16

B34 +(@exp(.219*@ln(b11*24/2000)+2.844))*f4*d5

B35 +f5*b34/100

B36 +f6*d29/100

B37 +f7*b36/100

B38 +f8*b34/100

B39 +b2*24*d5*7.481*f9/(70*62.4*1000)

B40 +b3*24*d5*7.481*f9/(70*62.4*1000)

B41 +b4*24*d5*f10/(1e6)

B42 +b5*24*d5*f10/(1e6)

B43 +d28*d8/100

B44 +d28*d9/100

B45 +d28*d10/100

B46 +d13*(b34+b35+b36)/100

B47 +f13*b34/100

B48 +f14*(e33+e34)/100

B49 +f15*(e33+e34)/100

B50 +b32+b33+b34+b35+b36+b37+b38+b39+b40+b41+b42+b43+b44+b45+b46+b47+b48+b49

D50 +b50*d2

Revenue Calculation

The calculation of Revenue is shown below; the purities of the Toluene and Heptane in the respective distillates will be
imported to cells D33 and D34.

E33 +d15*24*d5*7.48*b11*d33^1/h18

E34 +d16*24*d5*7.48*b12*d34^1/h19

F33 +d2*e33

F34 +d2*e34

F35 +f33+f34

Calculation of Net Worth

This is determined in cells E37 - F50, as shown below.
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Note that cell F47 contains the constant 5, indicating the life of the project.

The formulae are listed below:

F37 +d29

F38 +d30

F39 +f37+f38

F41 +f35

F42 +d50

F43 +f41-f42

F44 +(1-d3)*f43

F45 +b43+f44

F48 +f39

F49 +((1-(1/(1+d4)^f47))/d4)*f45

F50 +f49-f48

The template is now complete. Save it (e.g. - ECONANAL.TPL), and load the HYSYS case.

Importing Variables into Spreadsheet

First, add the subflowsheet; select the Read an Existing Template button when prompted to select the source for the
sub-flowsheet.
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Select the template from the list (in this case, we have called the template ECONANAL.TPL, and saved it in the
c:\hysys\template directory).

HYSYS will create a new subflowsheet with the Spreadsheet you set up when you created the template.

There are a large number of variables to import into the Spreadsheet. They are all listed below:
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There are two ways to import the variables to the Spreadsheet:

1. Importing From the Connections Page

To add an import, select the Add Import button, and choose the variable using the Variable Navigator (For more
information, see HYSYS Reference, Chapter 4 - Navigation). In the Cell column, type or select from the drop down
list the Spreadsheet cell to be connected to that variable. When you move to the Spreadsheet page, that variable will
appear in the cell you specified.

2. Importing Variables from the Spreadsheet Page (Browsing)

You may also import a variable by positioning the cursor in an empty field of the Spreadsheet and clicking the right
mouse button. You will see the menu shown to the right. Choose Import Variable, and using the Variable Navigator
(see HYSYS Reference, Chapter 4 - Navigation) select the flowsheet variable you wish to import to the Spreadsheet.

Note that you may also drag variables into the Spreadsheet.

Once you have imported all the variables, ensure that you are in the Main Flowsheet and that your column is solved.
Make sure that no cells read <empty>. If Cell F50 (Net Present Worth) has calculated, then your Spreadsheet is
complete.
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For the high purity configuration (RR1 = 5, RR2 = 5, Heptane Purity = 0.99, Toluene Purity = 0.99), the Net Present
Worth is $3.84 Million.

Comparison of Configurations

“Heptane Purity” refers to the Heptane composition in the first column distillate stream (Heptane). “Toluene Purity”
refers to the Toluene composition in the second column distillate stream (Toluene).

Recall that we could improve the Toluene Purity and Heptane Purity to 0.994 and 0.993 respectively. The Net
Present Worth increases to $4.41 Million.

First, we have the High Purity Configuration with the following specifications:

Column 1 Solvent Stage = 13 
Column 1 Feed Stage = 21 
Column 1 Number of Stages = 24 
Column 2 Feed Stage = 8 
Column 2 Number of Stages = 9 
Reflux Ratio 1 = 5 
Reflux Ratio 2 = 5 
Heptane Purity = 0.99 
Toluene Purity = 0.99 

The Net Present Worth is $3.84 Million.

For the Low Purity Configuration specify the following:

Column 1 Solvent Stage = 7 
Column 1 Feed Stage = 17 
Column 1 Number of Stages = 19 
Column 2 Feed Stage = 8 
Column 2 Number of Stages = 9 
Reflux Ratio 1 = 12 
Reflux Ratio 2 = 4 
Heptane Purity = 0.985 
Toluene Purity = 0.985 
In the Spreadsheet, set the number of stages in cells B13 and B14 to 19 and 9, respectively. Also, change the
first column stage on which the tray liquid molar flow is being measured to 16 (Cell B5). 

The Net Present Worth is $1.72 Million.

Even though we could improve this figure, it is safe to say that the first configuration (high purity) is economically
superior. All further analysis will consider only the first configuration.

Optimization

We will use the following procedure in determining the optimum location of the feed streams:

1. Set the location of the feed stream.
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2. Solve the column to the following specifications:

First Column Reflux Ratio = 5 
Second Column Reflux Ratio = 5 
Toluene Purity = 0.99 
Heptane Purity = 0.99 

3. After the column solves, replace the First Column Reflux Ratio specification with the following spec:

Solvent Rate = Current Value 

4. Set up the Optimizer to Maximize the Net Worth by adjusting the Solvent Rate specification:

On the Variables Page of the Optimizer, add the Solvent Rate specification as a Primary Variable: 

Set low and high bounds of 0.06 and 0.150:
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Import the Net Worth from the Case Spreadsheet into Cell A1 of the Optimizer Spreadsheet. 
On the Functions page of the Optimizer, specify the Objective Function Cell as A1 and select the Maximize
radio button: 

On the Parameters page, select the Mixed scheme, set the tolerance to 1e06, and reduce the Maximum
Change/Iteration to 0.1000: 
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5. Select the Start button, allowing HYSYS to adjust the Solvent stream in order to Maximize the Net Worth of the
process.

Location of Feed Stream

We adjust the Solvent Rate for two reasons: 

1. It is a stable specification to adjust; that is, the Column will solve over an extensive range of Solvent Rates.
2. There is a point somewhere in the middle of the range of Solvent Rates where the Net Present Worth is
maximized. If, for example, we were to adjust a Reflux Ratio, the Net Present Worth would be maximized close to
the minimum Reflux Ratio for which the column solves, making that method inherently unstable. Similar logic applies
for the Toluene and Heptane Fractions.

First, adjust the location of the Solvent feed to the first column, using the Optimizer to maximize the Net Worth for each
feed configuration. The results are tabulated below.

Stage RR1 RR2 Toluene Heptane Solvent Flow Net Worth

13 3.939 5 0.99 0.99 880 $4.69 M

12 3.776 5 0.99 0.99 807 $4.79 M

11 3.641 5 0.99 0.99 777 $4.86 M

10 3.819 5 0.99 0.99 677 $4.83 M

From this point on, we will feed the solvent recycle on stage 11.

Next, we will adjust the location of the Mixed Feed to the first column:
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Stage RR1 RR2 Toluene Heptane Solvent Flow

21 3.641 5 0.99 0.99 777

20 3.414 5 0.99 0.99 741

19 3.429 5 0.99 0.99 764

From this point on, we will feed the process feed to stage 20 (minimum Reflux Ratio).

Finally, we adjust the location of the Feed to the second column:

Stage RR1 RR2 Toluene Heptane Solvent Flow Net Worth

8 3.438 5 0.99 0.99 716 $4.73 M

7 3.350 5 0.99 0.99 713 $4.765 M

6 3.370 5 0.99 0.99 698 $4.761 M

For the rest of the optimization, we will feed the solvent recycle to stage 11 of the first column, the process feed to
stage 20 of the first column, and the first column bottoms to stage 7 of the second column.

Optimization of Purities and Reflux Ratios

Several variations of the reflux ratios and purities are now tested, with the following results:

Case Description Reflux
Ratio 1

Reflux
Ratio 2

Heptane
Purity

Toluene
Purity

Solvent Rate
(lbmole/hr)

Capital
Investment

Annual
Income

Net
Present
Worth

Base Case I 5 5 0.99 0.99 2203 3.60 M 1.75 M 3.60 M

Maximize Net
Present Worth by
adjusting the Solvent
Rate and allowing the
Reflux Ratio for
Column 1 to vary.

3.350 5 0.99 0.99 713 2.98 M 1.89 M 4.77 M

Maximize Net
Present Worth by
adjusting the Solvent
Rate and allowing the
Reflux Ratio for
Column 2 to vary.

5 1.347 0.99 0.99 648 2.71 M 2.03 M 5.60 M

Maximize the
Heptane Purity,
which in turn
maximizes the Net
Present Worth.

5 5 0.994 0.99 1401 3.39 M 1.82 M 4.08 M

Maximize the
Toluene Purity, which
in turn maximizes the
Net Present Worth.

5 5 0.99 0.996 2120 3.58 M 1.81 M 3.86 M

Maximize the
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Maximize the
Heptane Purity, then
maximize the Net
Present worth by
adjusting the Solvent
Flow and allowing
Reflux Ratio 2 to
vary.

5 4.038 0.994 0.99 1068 3.19 M 1.89 M 4.57 M

Maximize the
Toluene purity, then
maximize the Net
Present Worth by
adjusting the Solvent
Flow and allowing
Reflux Ratio 2 to
vary.

5 1.570 0.99 0.996 782 2.78 M 2.07 M 5.70 M

The last results (bottom row of table) are the best up to this point. The search for the optimum result has gone to the
point where we have to include more primary variables and allow HYSYS to find the appropriate solution. The danger
with this approach is that we cannot simply input the maximum purities as the high limit and the minimum reflux ratios
as the low limit. There would be many combinations in this range which would not solve, due to the fact that we are
pushing the limits on the column feasibility. We therefore have to be cautious when we select the primary variable
ranges, and/or provide a small value for the Maximum Change/Iteration.

The Optimizer is set up as follows:

Primary Variable 1:

Source — T-100 
Variable — T-100, Spec Value, Solvent Rate 
Low Bound — 0.08 
High Bound — 0.12 

Primary Variable 2:

Source — T-100 
Variable — T-100, Spec Value, Heptane Fraction 
Low Bound — 0.985 
High Bound — 0.994 

Primary Variable 3:

Source — T-100 
Variable — T-100, Spec Value, Toluene Fraction 
Low Bound — 0.985 
High Bound — 0.996 (set at the maximum) 

Primary Variable 4:

Source — T-100 
Variable — T-100, Spec Value, Reflux Ratio 1 

65 of 90 2/24/99 10:22 AM

Application Example http://www.hyprotech.com/support/examples/extract/extract.htm



Low Bound — 2.50 
High Bound — 5.00 

It is important to ensure that the current (starting) values of these variables are within the bounds.

The Reflux Ratio for the second column will be allowed to vary while we attempt to find the maximum Net Worth. The
Optimizer Variables page is shown below, after an Optimum is found:

Note that none of the Actual Values are at the Boundary limits. This is significant, as it means that a true maximum has
been found, rather than a maximum imposed by a boundary constraint.

The results are tabulated below:

Reflux Ratio 1 4.205 Solvent Rate 757 lbmole/hr

Reflux Ratio 2 1.593 Capital Investment $2.65 M

Heptane Purity 0.989 Annual Income $2.09 M

Toluene Purity 0.994 Net Present Worth $5.93 M

It is important to note that although this appears to be the optimum steady-state solution, it does not mean that this
configuration is controllable in dynamics. In the next section, we will study the dynamics of the process. The column
configuration is summarized below:

First Column Second Column

Number of Stages — 24 Number of Stages — 9

Process Feed Stage — 20 Feed Stage (from Column 1 Bottoms) — 7

Solvent Recycle Stage — 11  

Reflux Ratio — 4.2 Reflux Ratio — 1.6

Heptane Fraction — 0.989 Toluene Fraction — 0.994
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Note that the temperature profile for the second column is shown first.

The Results are shown here:

Temperature Profile, Column 2 (1-11) and Column 1 (12-37)

 

Component Summary, Column 2
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Column Worksheet
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Component Summary, Column 1

Column Worksheet

As a point of interest, an attempt was made to reproduce the process as set up in the original HYSYS Reference
Manual (page 463). As in the example, the Peng Robinson Property Package was used (earlier shown to be
unacceptable) with the following results:

First Column Second Column

Number of Stages — 20 Number of Stages — 10

Process Feed Stage — 13 Feed Stage (from Column 1 Bottoms) — 10

Solvent Recycle Stage — 6  

Reflux Ratio — 3.8 Reflux Ratio — 12

Heptane Fraction — 0.99 Toluene Fraction — 0.985

Solvent Rate = 1145 lbmole/hr 
Capital Investment = $4.04 M, Annual Income = $1.34 M 
Net Present Worth = $1.44 M 

However, when the NRTL Property Package with the updated interaction parameters is used, the same specifications
could not be met. The Reflux Ratio for Column 1 was relaxed to 10, and the Heptane fraction was relaxed to 0.97. This
is clearly an unacceptable option, but the best possible using the same configuration. Nevertheless, the results are
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shown below:

First Column Second Column

Number of Stages — 20 Number of Stages — 10

Process Feed Stage — 13 Feed Stage (from Column 1 Bottoms) — 10

Solvent Recycle Stage — 6  

Reflux Ratio — 10 Reflux Ratio — 12

Heptane Fraction — 0.97 Toluene Fraction — 0.99

Solvent Rate = 337 lbmole/hr 
Capital Investment = $4.50 M, Annual Income = $0.69 M 
Net Present Worth = ($1.65 M) 

C-6.7 

Dynamics

In Dynamics, we require that Partial Condensers be used. If you installed your Condensers as Total Condensers,
change them to Partial Condensers as shown below:
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Call the Vapour streams Vapour 1 and Vapour 2. We will now have to provide two additional columns specifications.
We do not want any vapour flow off the condensers, so the specifications will be as shown:

 

 

Overview

Before we can run the process dynamically, there are several important steps:

Sizing the Vessels — The Tray Sections, Condensers, and Reboilers must be appropriately sized based on
their respective liquid flowrates. Note that we already did some sizing calculations in the Steady-State portion of
this simulation. 
Adding the Controls — We require at least ten controllers, for both columns’ Reflux, Distillate, Bottoms,
Condenser Duty and Reboiler Duty. The control scheme (selection of Process Variable) and Tuning are very
important in ensuring a stable control configuration. 
Sizing the Valves — All of the valves must be sized, typically to span twice the steady-state value. 
Setting up the Strip Charts — We will track key variables while we run the simulation. 

Setting the Dynamic Property Model Parameters — The proper choice of these parameters will ensure numeric
stability and accurate extrapolation.

Once we have completed these steps, we can run the process dynamically, introducing various upsets to the system to
ensure that our control system can adequately handle them.

Sizing the Vessels

It is important to correctly size the vessels in order to ensure a reasonable dynamic response. It is also imperative that
the Cooling Volume and Tower Volume (set in the Condenser) are accurate.

Tray Sections

In the economic analysis, we estimated the diameter of the first tray section as follows:
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where FTRAY1 is the liquid volume flowrate on stage 20 of the first tray section.

The volume of the first tray section is:

The factor (1/120) is the residence time, 1/120th of an hour or half a minute.

Using the Steady-State values, we have:

When you enter this value on the Dynamics page of the Tray Section, the diameter is calculated to be 13.24 ft
(assuming a weir height of 0.16 ft).

For the second tray section, we have:

The diameter is calculated to be 6.23 ft.

Condensers

The volume of the condensers are calculated as follows:

For the first condenser:

For the second condenser:
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The tower volume and cooling volumes are estimated as follows:

For the first column:

For the second column:

Reboilers

The volumes of the reboilers are calculated as follows:

For the first reboiler:

For the second reboiler:

Adding the Controls and Sizing the Valves

Various approaches could be taken in the development of the control scheme. The control scheme which we will be
using is outlined here:
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Control Scheme

One benefit of using HYSYS to develop a control scheme is that several different schemes could be considered, set up
and dynamically tested. Therefore, if you decided, for instance, that you did not want dual-point temperature control on
the two distillation columns but instead wanted ratio controllers to manipulate the reboiler duties, it would be fairly
straightforward to set it up. However, the comparison and fine-tuning of different control schemes is beyond the scope
of this paper; therefore, the control scheme as shown in this figure will be used. Note that fairly conservative tuning
parameters have been chosen for the controllers. As shown later, the dynamic response is reasonable, therefore no
effort is made to fine-tune the parameters.

Condenser Duty Controllers

For each column, we will have a Pressure Controller maintaining the Partial Condenser pressure by manipulating the
Condenser duty. The pressure of the condenser determines the pressure profile of the column, and it is therefore
important to closely control the condenser pressure. As noted in other examples, the tray temperature (PV of the
Reboiler Duty Controllers) and condenser pressure are interacting variables. We must ensure that the controllers are
tuned such that any adverse interaction is minimized. The Controller parameters are displayed below:
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CONTROLLER Cond 1 Pressure

CONNECTIONS

PV Object 

PV

OP Object

Condenser-1 

Vessel Pressure

Condenser-1 Duty

Control Valve

Duty Source From Utility Fluid

Min Flow 0 lbmole/hr

Max Flow 10000 lbmole/hr

PARAMETERS

PV Min & Max 10 & 20 psia

Action Direct

Controller Mode Auto

SP 16.0000 psia

TUNING

Kp 0.8

Ti 15

Td <empty>

 

CONTROLLER Cond 2 Pressure

CONNECTIONS

PV Object 

PV

OP Object

Condenser-2 

Vessel Pressure

Condenser-2 Duty

Control Valve

Duty Source From Utility Fluid

Min Flow 0 lbmole/hr

Max Flow 10000 lbmole/hr

PARAMETERS

PV Min & Max 10 & 20 psia

Action Direct

Controller Mode Auto

SP 16.0000 psia

TUNING

Kp 0.8

Ti 15

Td <empty>

For the Utility Fluid, set the Minimum and Maximum Flow to 0 and 10000 lbmole/hr. Note that when you enter Dynamic
Mode, the utility fluid flowrate for each condenser duty stream will be calculated and displayed.

Reboiler Duty Controllers

By manipulating the reboiler duty, temperature control is achieved, which ultimately implies composition control.
Generally, we want to control the temperature of the tray where the temperature sensitivity is the highest.

To determine which tray has the highest sensitivity to temperature, we will do a steady-state sensitivity analysis which
varies the reboiler duty by a small amount, so that we can see where the change in temperature is the greatest:
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The Case Study tool can be used to produce these plots.

As is apparent from the graphs, the greatest change in temperature in the first column occurs on Stage 18. We will use
the Stage 18 Temperature as the Process Variable for the first column. For the second column, we will use the Stage 8
Temperature as the PV. Although Stage 7 has a large % Change (roughly equal and opposite to Stage 8), it is not a
recommended practice to have a feed stage as the process variable for a controller.
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CONTROLLER TS-1 Stage 18

CONNECTIONS

PV Object 

PV

OP Object

TS-1 

Stage 18 Temp.

Reboiler-1 Duty

Control Valve

Duty Source Direct Q

Min Available 0 Btu/hr

Max Available 2.0e+07 Btu/hr

PARAMETERS

PV Min & Max 200 & 300 F

Action Reverse

Controller Mode Auto

SP 241.9 F

TUNING

Kp 0.8

Ti 15

Td <empty>

 

CONTROLLER TS-2 Stage 8

CONNECTIONS

PV Object 

PV

OP Object

TS-2 

Stage 8 Temp.

Reboiler-2 Duty

Control Valve

Duty Source Direct Q

Min Available 0 Btu/hr

Max Available 2.0e+07 Btu/hr

PARAMETERS

PV Min & Max 300 & 400 F

Action Reverse

Controller Mode Auto

SP 347.6

TUNING

Kp 0.8

Ti 15

Td <empty>

Column 1 Material Stream Controllers

The parameters for the Material Stream Controllers in the first column are displayed below:
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CONTROLLER Reflux 1 TS-1(10)

CONNECTIONS

PV Object 

PV

OP Object

TS-1 

Stage 10 Temp.

Reflux-1

Control Valve

Flow Type Molar Flow

Min Flow 0 lbmole/hr

Max Flow 1600 lbmole/hr

PARAMETERS

PV Min & Max 200 & 300 F

Action Direct

Controller Mode Auto

SP 221.7 F

TUNING

Kp 0.4

Ti 20

Td <empty>

CONTROLLER Heptane (Level))

CONNECTIONS

PV Object 

PV

OP Object

Condenser-1 

Liquid Level

Heptane

Control Valve

Flow Type Molar Flow

Min Flow 0 lbmole/hr

Max Flow 400 lbmole/hr

PARAMETERS

PV Min & Max 40 & 60%

Action Direct

Controller Mode Auto

SP 50%

TUNING

Kp 1.8

Ti <empty>

Td <empty>

CONTROLLER COL1 Bott. Level

CONNECTIONS

PV Object 

PV

OP Object

Reboiler-1 

Liquid Level

Col-1 Bottoms

Control Valve

Flow Type Molar Flow

Min Flow 0 lbmole/hr

Max Flow 2000 lbmole/hr

PARAMETERS

PV Min & Max 40 & 60%

Action Direct

Controller Mode Auto

SP 50%

TUNING

Kp 1.8

Ti <empty>

Td <empty>

For the Reflux Stream, we use the temperature for Stage 10 (TS-1) as the Process Variable. This Stage is especially
sensitive to variations in the feed flowrate. Set the Control Valve range from 0 to 1600 lbmole/hr.

The Heptane stream will be set on Level control, so that the first Condenser is 50% full. We want the flowrate of this
stream to vary with changes to the Feed flowrate and composition. The Minimum and Maximum Flow are set at 0 and
400 lbmole/hr.

The bottoms stream also has Level control; the first Reboiler’s setpoint is a 50% Liquid Level. The Minimum and
Maximum Flow are set at 0 and 2000 lbmole/hr.

 

Column 2 Material Stream Controllers

The parameters for the Material Stream Controllers in the second column are displayed below:
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CONTROLLER Reflux 2
TS-2(2)

CONNECTIONS

PV Object 

PV

OP Object

TS-2 

Stage 2 Temp.

Reflux-2

Control Valve

Flow Type Molar Flow

Min Flow 0 lbmole/hr

Max Flow 800 lbmole/hr

PARAMETERS

PV Min & Max 200 & 300 F

Action Direct

Controller Mode Auto

SP 239.9 F

TUNING

Kp 0.8

Ti 15

Td <empty>

CONTROLLER Toluene (Level))

CONNECTIONS

PV Object 

PV

OP Object

Condenser-2 

Liquid Level

Toluene

Control Valve

Flow Type Molar Flow

Min Flow 0 lbmole/hr

Max Flow 400 lbmole/hr

PARAMETERS

PV Min & Max 40 & 60%

Action Direct

Controller Mode Auto

SP 50%

TUNING

Kp 1.8

Ti <empty>

Td <empty>

CONTROLLER Solvent Flow

CONNECTIONS

PV Object 

PV

OP Object

Cascaded SP
Source

Spreadsheet Cell

Solvent 

Molar Flow

Solvent

SPRDSHT-1

B3: Calculated
Solvent

Control Valve

Flow Type Molar Flow

Min Flow 0 lbmole/hr

Max Flow 1500 lbmole/hr

PARAMETERS

PV Min & Max 0 & 1500
lbmole/hr

Action Reverse

Controller Mode Cascaded SP

TUNING

Kp 0.8

Ti 15

Td <empty>

 

Similar to the first Reflux control, we use the temperature for Stage 2 (TS-2) as the Process Variable for the second
Reflux control. This Stage is especially sensitive to variations in the feed flowrate. Set the Control Valve range from 0
to 800 lbmole/hr.

The Toluene stream will be set on Level control, so that the second Condenser is 50% full. We want the flowrate of this
stream to vary with changes to the Feed flowrate and composition. The Minimum and Maximum Flow are set at 0 and
400 lbmole/hr.

Finally, the bottoms stream (Solvent) has a cascaded set point. The Flowrate is chosen as the Process Variable, but
the “Calculated” rate of the Solvent will be the Set Point for this control. The Calculated Solvent rate is simply the
Column 1 Bottoms Flowrate minus the Toluene (Distillate) flowrate. Note that we must select Spreadsheet Cell B3
when setting up the Cascaded Control.

Create a new Spreadsheet in the Main Flowsheet and set it up as follows:
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Import the Column 1 Bottoms Molar Flow into cell B1. 
Import the Toluene Molar Flow into cell B2. 
Enter the formula +B1-B2 into cell B3. 
Import the Solvent Molar Flow into cell B4. In Steady-State, cell B3 will always equal cell B4. However, in
Dynamics, these cells will not necessarily be the same. 

On the Parameters page, you may wish to enter a Variable Name for cell B3 so that it will be recognizable when you
set up your controller, which will be set up as follows:
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Feed Stream Controllers

If you wish, you may put Manual controllers on the Feed and Phenol streams. However, flowrates and compositions
may also be adjusted from the WorkSheet, so they are not crucial to the simulation.

Setting up the Strip Charts

Enter the following variables in the DataBook:
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We will be setting up two Strip Charts, each having four variables.

The first Strip Chart will plot the Heptane and Toluene Molar Fractions, the Solvent Molar Flow rate, and the “Net
Worth”. Although the concept of an instantaneous Net Worth is of no practical use, it will be useful to see the effect of
certain variables on the bottom line.

In the Net Worth Analysis, certain variables such as the column diameter were dependent on key flowrates. In
Dynamics, you need to ensure that the initial capital cost does not fluctuate when there are changes in process
variables.

Change cell D29 to the figure that is currently being displayed (2.3042e+06).

All that is required is to replace the formula in the cell which calculates the Adjusted FCI with the actual figure in that
cell, so that the FCI will not change as the simulation progresses.

The second Strip Chart contains the following variables:
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The temperatures of the stages which are used as the Process Variables in the Reboiler Duty controllers are plotted,
along with the Condenser Pressures.

Setting the Dynamic Property Model Parameters

It is always important to ensure that appropriate parameters are used for the Dynamic Property Model.

In this case, the default parameters are sufficient:

If you were concerned that you were not achieving proper accuracy over a range of temperatures and pressures, you
might want to use the Property Package Method or Local Model in calculating the K-values, Enthalpies or Entropies.
However, this causes the integration to proceed at a much slower rate, and in this case, switching models does not
seem to be justified.

Dynamic Simulation

After switching to dynamics, and before running the integrator, ensure that the starting point of each controller is
correct, in order to avoid a large “bump” as soon as you start the integrator. This can be achieved by resetting each
controller by turning it off, then “on” again (to Auto or Cascade control, whichever is appropriate for that control).

The control FacePlates appear as follows:
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Note that we have included a Feed Flow and Phenol Flow controller; however, these are turned off, and we will instead
be making changes from the WorkSheet.

Run the integrator. After a period of time, the process variables will line out:
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Now introduce a feed composition upset as shown below:
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As shown in the Strip Charts, the pressures and temperatures shift somewhat from their Set Points but eventually
return. The purities line out at different values, which is expected, since we have changed the composition of the
feedstock. As well, the Solvent Molar Flow lines out at a higher value. 
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Next, we will introduce a Feed Molar Flow upset. Change the Molar Flow of stream Feed from 400 to 360 lbmole/hr.
The Strip Charts are shown here:
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At this point, we can safely conclude that our control scheme is reasonable. However, there is no doubt that the
scheme could be refined further. We also may be able to achieve better control with a different scheme.

Note that the Net Worth spikes as soon as we add the upset; this is because the cost of the Feed decreases suddenly,
drastically increasing the overall Net Worth. This is an example where this instantaneous Net Worth function is
certainly not realistic. However, the lined-out value is valuable. It is interesting to note that even though the purities on
the output stream increased, the Net Worth has actually decreased.

C-6.8 Summary and Conclusions

The use of HYSYS - Conceptual Design was crucial to this simulation, in that we could be confident that the
predicted VLE would closely match experimental behaviour. Without this assurance, one would probably end up
designing either an inefficient or an impossible column configuration.

HYSYS - Conceptual Design was used to estimate interaction parameters for the NRTL and Peng-Robinson Property
Packages. A good fit was obtained for the NRTL property package, but not for the Peng-Robinson and PRSV Property
Packages. Both Equation of State models incorrectly predicted liquid-liquid behaviour. Therefore, NRTL was used for
this simulation, applying the new interaction parameters regressed from experimental data.

HYSYS - Conceptual Design was used to obtain low-purity and high-purity column configurations. This step was
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important, as it gave a fundamental understanding of the separation process, allowing us to see the process limitations
and perimeters. The high purity configuration (0.99 Heptane, 0.99 Toluene) required more stages than the low purity
configuration (0.985 Heptane, 0.985 Toluene), but the Reflux Ratios were roughly the same.

HYSYS.SteadyState was used to build the two column configurations. For the high purity configuration, even higher
purities were possible than what was predicted using HYSYS - Conceptual Design (0.993, 0.994). For the low purity
configuration, the specifications could not be met, and one of the Reflux Ratios had to be increased in order to obtain a
solution.

The results were very similar between HYSYS - Conceptual Design and Steady State, and any differences could be
attributed to the fact that an approximate solution was obtained in HYSYS - Conceptual Design (i.e. - a solution in
which the passed streams between the two columns were similar, but not exactly the same; also, additional
assumptions were made, such as constant molal overflow).

The feed locations for both columns, the solvent feed location, the reflux ratios and product purities were all varied in
an effort to maximize the Present Net Worth.

An Economic Analysis Spreadsheet was set up in HYSYS.SteadyState, which calculated the Present Net Worth by
incorporating the Fixed Capital Cost, Annual Expenses, Annual Revenues and Economic and Plant Data. The high
purity configuration was shown to be superior (in terms of the Present Net Worth) to the low purity configuration.

The Optimizer was used to further refine the high purity configuration. Based on the preliminary economic data, it was
possible to obtain a Net Worth of $5.93 Million, with a $2.65 Million Capital Investment, indicating that this is an
economically viable process.

Finally, the process was set up in HYSYS.Dynamics. The vessels were sized, controllers were added, tuning
parameters were defined, valves were sized, strip charts were set up, and Dynamic Model parameters were checked.

The process was run dynamically. Feed composition and feed flow upsets were individually introduced, and key
variables were observed to ensure that the control system was adequate. The system responded reasonably to these
upsets, indicating that the control scheme was satisfactory, although it is acknowledged that further improvements are
certainly possible.

Perhaps most importantly, the setup of this process, from the definition of property package interaction parameters to
the dynamic system response were carried out entirely using HYSYS - Conceptual Design and HYSYS.SteadyState
and dynamics.
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