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PREFACE

The purpose of this text is to provide an introductory treatment of thermodynamics
from a chemical-engineering viewpoint. We have sought to present material so
that it may be readily understood by the average undergraduate, while at the
same time maintaining the standard of rigor demanded by sound thermodynamic
analysis.

The justification for a separate text for chemical engineers is no different
‘now than it has been for the past thirty-seven years during which the first three
editions have been in print. The same thermodynamic principles apply regardless
of discipline. However, these abstract principles are more effectively taught when
advantage is taken of student commitment to a chosen branch of engineering.
" Thus, applications indicating the usefulness of thermodynamics in chemical
- engineering not only stimulate student interest, but also provide a better under-
“standing of the fundamentals themselves.
: The first two chapters of the book present basic definitions and a development
of the first law as it applies to nonflow and simple steady-flow processes. Chapters
°"3 and 4 treat the pressure-volume-temperature behavior of fluids and certain heat
flects, allowing early application of the first law to important engineering
problems. The second law and some of its applications are considered in Chap.
& A _treatment of the thermodynamic properties of pure fluids in Chap. 6 allows
_pplfcation in Chap. 7 of the first and second laws to flow processes in general
4nd in Chaps. 8 and 9 to power production and refrigeration processes. Chapters
0 thl:ough 15, dealing with fluid mixtures, treat topics in the special domain of
hen_ncal engineering thermodynamics. In Chap. 10 we present the simplest
p()_ssnble‘aescriptions of mixture behavior, with application to vapor/liquid equili-
fum. This is expanded in Chaps. 11 and 12 to a general treatment of vapor/liquid
uilibrium for systems at modest pressures. Chapter 13 is devoted to solution
ermoc-lynamics, providing a comprehensive exposition of the thermodynamic
mlib_ertles of fluid mixtures. The application of equations of state in thermody-
mic calculations, particularly in vapor/liquid equilibrium, is discussed in
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Chap. 14. Chemical-reaction equilibrium is covered at length in Chap. 15. Finally,
Chap. 16 deals with the thermodynamic analysis of real processes. This material
affords a review of much of the practical subject matter of thermodynamics.

Although the text contains much introductory material, and is intended for
vndergraduate students, it is reasonably comprehensive, and should also serve
as a useful reference source for practicing chemical engineers.

We gratefully acknowledge the contributions of Professor Charles Mucken-
fuss, of Debra L. Saucke, and of Eugene N. Dorsi, whose efforts produced
computer programs for calculation of the thermodynamic properties of steam
and ultimately the Steam Tables of App. C. We would also like to thank the
reviewers of this edition: Stanley M. Walas, University of Kansas; Robert G.
Squires, Purdue University; Professor Donald Sundstrom, University of Con-
necticut; and Professor Michael Mohr, Massachusetts Institute of Technology.
Most especially, we acknowledge the contributions of Professor M. M. Abbott,
whose creative ideas are reflected in the structure and character of this fourth
edition, and who reviewed the entire manuscript.

J. M. Smith
H. C., Van Ness

INTRODUCTION TO CHEMICAL
ENGINEERING THERMODYNAMICS




CHAPTER

ONE
INTRODUCTION

1.1 THE SCOPE OF THERMODYNAMICS

The word thermodynamics means heat power, or power developed from heat,
reflecting its origin in the analysis of steam engines. As a fully developed modern
science, thermodynamics deals with transformations of energy of all kinds from
one form to another. The general restrictions within which all such transformations
are observed to occur are known as the first and second laws of thermodynamics.
These laws cannot be proved in the mathematical sense. Rather, their validity
rests upon experience.

Given mathematical expression, these laws lead to a network of equations
from which a wide range of practical results and conclusions can be deduced.
The universal applicability of this science is shown by the fact that it is employed
alike by physicists, chemists, and engineers. The basic principles are always the
same, but the applications differ. The chemical engineer must be able to cope
with a wide variety of problems. Among the most important are the determination
of heat and work requirements for physical and chemical processes, and the
determination of equilibrium conditions for chemical reactions and for the
transfer of chemical species between phases.

Thergrodynamic considerations by themselves are not sufficient to allow
calculation of the rates of chemical or physical processes. Rates depend on both
driving force and resistance. Although driving forces are thermodynamic vari-
ables, resistances are not. Neither can thermodynamics, a macroscopic-property
formulation, reveal the microscopic (molecular) mechanisms of physical or
chemical processes. On the other hand, knowledge of the microscopic behavior

1
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of matter can be useful in the calculation of thermodynamic properties. Such
property values are essential to the practical application of thermodynamics;
numerical results of thermodynamic analysis are accurate only to the extent that
the required data are accurate. The chemical engineer must deal with many
chemical species and their mixtures, and experimental data are often unavailable.
Thus one must make effective use of correlations developed from a limited data
base, but generalized to provide estimates in the absence of data.

The application of thermodynamics to any real problem staris with the
identification of a particular body of matter as the focus of attention. This quantity
of matter is called the system, and its thermodynamic state is defined by a few
measurable macroscopic properties. These depend on the fundamental

dimensions of science, of which length, time, mass, temperature, and amount of - '

substance are of interest here.

1.2 DIMENSIONS AND UNITS

The fundamental dimensions are primitives, recognized through our sensory
perceptions and not definable in terms of anything simpler. Their use, however,
requires the definition of arbitrary scales of measure, divided into specific units
of size. Primary units have been set by international agreement, and are codified
as the International System of Units (abbreviated SI, for Systéme International).
The second, symbol s, is the SI unit of time, defined as the duration of
9,192,631,770 cycles of radiation associated with a specified transition of the
cesium atom. The meter, symbol m, is the fundamental unit of length, defined
as the distance light travels in a vacuum during 1/299,792,458 of a second. The
- kilogram, symbol kg, is the mass of a platinum/iridium cylinder kept at the
International Bureau of Weights and Measures at Sévres, France. The unit of
temperature is the kelvin, symbol K, equal to 1/273.16 of the thermodynamic
temperature of the triple point of water. A more detailed discussion of tem-
perature, the characteristic dimension of thermodynamics, is given in Sec. 1.4.
The measure of the amount of substance is the mole, symbol mol, defined as the
amount of substance represented by as many elementary entities (e.g., molecules)

Table 1.1 Prefixes for SI units

Fraction or

multiple Prefix Symbol
107*% nano n

10°¢ micro u

1073 milli m

102 centi c

10 kilo k

108 mega M

10° giga G

INTRODUCTION .

as there are atoms in 0.012 kg of carbon-12. This is equivalent to the “gram mole’
commonly used by chemists.

Decimal multiples and fractions of SI units are designated by prefixes. Those
in common use are listed in Table 1.1. Thus we have, for example, that 1 cm =
10°2m and 1kg =10 g,

Other systems of units, such as the English engineering system, use units tha
are related to SI units by fixed conversion factors. Thus, the foot (ft} is definec
as 0.3048 m, the pound mass (1b,,,} as 0.45359237 kg, and the pound mole (1b mol;
as 453.59237 mol.

1.3 FORCE

The SI unit of force is the newton, symbol N, derived from Newton’s second law
which expresses force F as the product of mass m and acceleration a:

F=ma

The newton is defined as the force which when applied to a mass of 1 kg produce:
an acceleration of 1 ms™; thus the newton is a derived unit representing
l1kgms™.

In the English engineering system of units, force is treated as an additiona
independent dimension along with length, time, and mass. The pound force (1b;
is defined as that force which accelerates | pound mass 32.1740 feet per seconc
per second. Newton’s law must here include a dimensional proportionalit;
constant if it is to be reconciled with this definition. Thus, we write

F= i ma
ge
whencet
1{lb;) = gi x 1(1b,,) X 32.1740(ft)(s) >
and

g. = 32.1740(Ib_ ) (ft)(Iby) ~'(s) >

The pound force is equivalent to 4.4482216 N.

Since force and mass are different concepts, a pound force and a pound mas:
are different quantities, and their units cannot be cancelled against one another
When an equation contains both units, (Ib,) and (lb,,), the dimensional constan
g. must«glso appear in the equation to make it dimensionally correct.

Weight properly refers to the force of gravity on a body, and is therefor:
correctly expressed in newtons or in pounds force. Unfortunately, standards o

T Where English units are employed, parentheses enclose the abbreviations of all units.
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mass are often called “weights,” and the use of a balance to compare masses is
called “weighing.” Thus, one must discern from the context whether force or
mass is meant when the word “weight” is used in a casual or informal way.

Example 1.1 An astronaut weighs 730 N in Houston, Texas, where the local acceler-
ation of gravity is g = 9.792 m s™2. What is the mass of the astronaut, and what does
he weigh on the moon, where g = 1,67 ms~2?

SOLUTION Letting a = g, we write Newton’s law as

F=mg
whence )
F 730N -1 2
m=s—-==——-= .
7 9792ms 7455 Nm™ s

2, this result simplifies to

m=74.55kg

Since the newton N has the units kg m s~

This mass of the astronaut is independent of location, but his weight depends on the
local acceleration of gravity. Thus on the moon his weight is

Froon = Mmoon = T4.55kg X 1.67 m s™*
or
=1245kgms2=1245N

Frnoon

To work this problem in the English engineering system of units, we convert the
astronaut's weight to (1by) and the values of g to (ft)(s) 2 Since 1 N is equivalent to
0.224809(1b;) and 1 m to 3.28084(ft), we have:

Weight of astronaut in Houston = 164.1(1b,)
OHouson = 3213 and  Gumoon = 5.48(ft)(s) 2
Newton's law here gives

_Fg. _ 164.1(1b,) x 32.1740(1b,, ) {ft) (Iby) ~'(s) ™2
g 32.13(ft)(s) >

or
= 164.3(Ib,}

Thus the astronaut’s mass in (lb,) and weight in (Ib;) in Houston are numerically
almost the same, but on the moon this is not the case:

F = Mmoo _ {164.3)(5.48)
meon g. 32.1740

= 28.0(1by)

1.4 TEMPERATURE

The most common method of temperature measurement is with a liquid-in-glass
thermometer. This method depends on the expansion of fluids when they are

INTRODUCTIGN §

‘ted. Thus a uniform tube, partially filied with mercury, alcohol, or some other
uid, can indicate degree of “hotness” simply by the length of the fluid column.
owever, numerical values are assigned to the various degrees of hotness by
arbitrary definition.

For the Celsius scale, the ice point {freezing point of water saturated with
air at standard atmospheric pressure} is zero, and the steam point (boiling point
;of pure water at standard atmospheric pressure) is 100. We may give athermometer
a numerical scale by i unmersmg it in an ice bath and making a mark for zero at
_the fluid level, and then immersing it in boiling water and making a mark for
100 at this greater fluid level. The distance between the two marks is divided into
100 equal spaces called degrees. Other spaces of equal size may be marked off
‘petow zero and above 100 to extend the range of the thermometer.

All thermometers, regardless of fluid, read the same at zero and 100 if they
are calibrated by the method described, but at other points the readings do not
usually correspond, because fluids vary in their expansion characteristics. An
arbitrary choice could be made, and for many purposes this would be entirely
satisfactory. However, as will be shown, the temperature scale of the SI system,
with its kelvin unit, symbol K, is based on the ideal gas as thermometric fluid.
Since the definition of this scale depends on the properties of gases, detailed
discussion of it is delayed until Chap. 3. We note, however, that this is an absolute
scale, and depends on the concept of a lower limit of temperature.

Kelvin temperatures are given the symbol T; Celsius temperatures, given the
symbol ¢, are defined in relation to Kelvin temperatures by

t°C=TK-273.15

The unit of Celsius temperature is the degree Celsius, °C, equal to the kelvin.
However, temperatures on the Celsius scale are 273.15 degrees lower than on the
Kelvin scale. This means that the lower limit of temperature, called absolute zero
on the Kelvin scale, occurs at —273.15°C.

In practice it is the International Practical Temperature Scale of 1968 (IPTS-68)
which is used for calibration of scientific and industrial instruments.t This scale
has been so chosen that temperatures measured on it closely approximate ideal-gas
temperatures ; the differences are within the limits of present accuracy of measure-
ment, The IPTS-68 is based on assigned values of temperature for a number of
reproducible equilibrium states (defining fixed points) and on standard instru-
menis calibrated at these temperatures. Interpolation between the fixed-point
temperatures is provided by formulas that establish the relation between readings
of the standard instruments and values of the international practical temperature.
The defining fixed points are specified phase-equilibrium states of pure sub-
stances,} ag given in Table 1.2.

T The English-language text of the definition of IPTS-68, as agreed upon by the International
Committee of Weights and Measures, is published in Metrologia, 5:35-44, 1969 see also ibid., 12:7-17,
1976. ,

% See Secs. 2.7 and 2.8,
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Table 1.2 Assigned values for fixed points of the IPTS-68

Equilibrium statet Tea/K tes/°C

Equilibrium between the solid, liquid, and vapor phases of equi-
librium hydrogen (triple point of equilibrium hydrogen) 13.81 —259.34
Equilibrium between the liquid and vapor phases of equilibrium

hydrogen at 33,330.6 Pa 17.042 —256.108
Equilibrium between the liquid and vapor phases of equilibrium

hydrogen (boiling point of equilibrium hydrogen} 20.28 —252.87
Equilibrium between the liquid and vapor phases of neon (boiling

point of neon) ‘ 27.102 —246.048
Equilibrium between the solid, liquid, and vapor phases of oxy-

gen (triple point of oxygen) 54.361 —218.789
Equilibrium between the liquid and vapor phases of oxygen

(boiling point of oxygen) 90.188 -182.962
Equilibrium between the solid, liquid, and vapor phases of water

(triple point of water) 273.16 0.01
Equilibrium between the liquid and vapor phases of water (boil-

ing point of water) 373.15 100.00
Equilibrium between the solid and liquid phases of zinc (freezing

point of zinc) 692.73 419.58
Equilibrium between the solid and liquid phases of silver (freez-

ing point of silver) 1,235.08 961.93
Equilibrium between the solid and liquid phases of gold (freezing

point of gotd) 1,337.58 1,064.43

% Except for the triple points and one equilibrium point (17.042 K), temperatures are for equi-
librium states at 1{atm).

The standard instrument used from —259.34 to 630.74°C is the platinum-
resistance thermometer, and from 630.74 to 1064.43°C the platinum-10 percent
rhodium/platinum thermocouple is used. Above 1064.43°C the temperature is
defined by Planck’s radiation law.

In addition to the Kelvin and Celsius scales two others are in use by
engineers in the United States: the Rankine scale and the Fahrenheit scale. The
Rankine scale is directly related to the Kelvin scale by

T(R) = 1.8TK

and is an absolute scale.
The Fahrenheit scale is related to the Rankine scale by an equation analogous
to the relation between the Celsius and Kelvin scales.

1(°F) = T(R) — 459.67

Thus the lower limit of temperature on the Fahrenheit scale is —459.67(°F). The
relation between the Fahrenheit and Celsius scales is given by

t(°F) = 1.8+°C + 32
This gives the ice point as 32(°F) and the normal boiling point of water as 212(°F).

INTRODUCTION /

Celsius Kelvin Fahrenheit Rankine
M ay () M)
—100°C 37315 K — | 212(°F) —671.67{R) Steam point
4 0°C ————H273.15 K ——H32(°F) 491.67(R) Iee point
4 —-273.15°C —HO0K H—-459.67(°F) O(R) Absolute zero

Figure 1.1 Relations among temperature scales,

The Celsius degree and the kelvin represent the same temperature interval,
as do the Fahrenheit degree and the rankine. However, 1°C (or 1 K) is equivalent
to 1.8(°F) [or 1.8(R)]. The relationships among the four temperature scales are
shown in Fig. 1.1. In thermodynamics, when temperature is referred to without
qualification, absolute temperature is implied.

Example 1.2 Table 1.3 lists the specific volumes of water, mercury, hydrogen at 1(atm),
and hydrogen at 100(atm) for a number of temperatures on the International Practical
Temperature Scale. Assume that each substance is the fluid in a thermometer, cali-
brated at the ice and steam points as suggested at the beginning of this section. To
determine how good these thermometers are, calculate what each reads at the true
temperatures for which data are given.

SOLUTION In calibrating a thermometer as specified, one assumes that each degree
is represented by a fixed scale length. This is equivalent to the assumption that each
degree of temperature change is accompanied by a fixed change in volume or specific

Table 1.3 Specific volumes in cm® g™

i/°C Water Mercury H, 1(atm) H, 100(atm)
~100 ~ 7,053 76.03
0 1.00013 0.073554 11,125 118.36
50 1.01207 0.074223 13,161 139.18
100 1.04343 0.074894 15,197 159.71
200 1.1590 0.076250 . 19,266 200.72
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Table 1.4 Temperature readings for thermometers

t/°C Water Mercury H, 1(atm) H, 100(atm)
—-100 -100.0 -102.3
0 0 0 ¢ 0
50 276 499 50.0 50.4
100 100 100 100 100
200 367 201.2 199.9 199.2

volume of the thermometric fluid used. For water, the change in specific volume when
t increases from 0 to 100°C is

1.04343 — 1,00013 = 0.0433 cm®

If it is assumed that this volume change divides equally among the 100°C, then the
volume change per degree is 0.000433 cm?® °C™'. When this assumption is not valid,
the thermometer gives readings in disagreement with the International Practical

Temperature Scale.
The change in specific volume of water between 0 and 50°C is

1.01207 — 1.00013 = 0.01194 cm’

If each degree on the water thermometer represents 0.000433 cm®, the number of
these degrees represented by a volume change of 0.01194 cm® is 0.01194/0.000433,
or 27.6(degrees). Thus the water thermometer reads 27.6(degrees) when the actual
temperature is 50°C.

At 200°C, the specific volume of water is 1.1590 cm®, and the change between 0
and 200°Cis 1.1590 —1.00013 = 0.1589 cm>. Thus the water thermometer reads
0.1589/0.000433, or 367(degrees), when the true temperature is 200°C. Table 1.4 gives
all the results obtained by similar calculations.

Each thermometer reads the true Celsius temperature at 0 and 100 because each
was calibrated at these points. At other points, however, the readings may differ from
the true values of the temperature. Water is seen to be a singularly poor thermometric
fluid. Mercury, on the other hand, is good, which accounts for its widespread use
in thermometers. Hydrogen at 1(atm) makes a very good thermometric fluid, but is
not practical for general use. Hydrogen at 100{atm) is no more practical and is less
satisfactory.

1.5 DEFINED QUANTITIES; VOLUME

We have seen that in the international system of units force is defined through
Newton’s law. Convenience dictates the introduction of a number of other defined
quantities. Some, like volume, are so common as to require almost no discussion.
Others, requiring detailed explanation, are treated in the following sections.
Volume V is a quantity representing the product of three lengths. The volume
of a substance, like its mass, depends on the amount of material considered.
Specific or molar volume, on the other hand, is defined as volume per unit mass
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or per mole, and is therefore independent of the total amount of material
considered. Density, p is the reciprocal of specific or molar volume.

1.6 PRESSURE

The pressure P of a fluid on a surface is defined as the normal force exerted by
the fluid per unit area of the surface. If force is measured in N and area in m?,
the unit is the newton per square meter or N m™2, called the pascal, symbol Pa,
the basic SI unit of pressure. In the English engineering system the most common
unit is the pound force per square inch (psi). '

The primary standard for the measurement of pressure derives from its
definition. A known force is balanced by a fluid pressure acting on a known area:
whence P = £/A. The apparatus providing this direct pressure measurement is
the dead-weight gauge. A simple design is shown in Fig. 1.2. The piston is carefully
fitted to the cylinder so that the clearance is small. Weights are placed on the
pan until the pressure of the oil, which tends to make the piston rise, is just
balanced by the force of gravity on the piston and all that it supports. With the
force of gravity given by Newton’s law, the pressure of the oil is

F mg

A A

Weight

Pan

Piston

Cylinder

- m
/: I

To pressure
source

Figure 1.2 Dead-weight gauge.
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where m is the mass of the piston, pan, and weights, g is the local acceleration
of gravity, and A is the cross-sectional area of the piston. Gauges in common
vse, such as Bourdon gauges, are calibrated by comparison with dead-weight
gauges.

Since a vertical column of a given fluid under the influence of gravity exerts
a pressure at its base in direct proportion to its height, pressure is also expressed
as the equivalent height of a fluid column. This is the basis for the use of
manometers for pressure measurement. Conversion of height to force per unit
area follows from Newton’s law applied to the force of gravity acting on the
mass of fluid in the column. The mass m is given by

m = Ahp

where A is the cross-sectional area of the column, h is its height, and p is the
fluid density. Therefore

The pressure to which a fluid height corresponds depends on the density of the
fluid, which depends on its identity and temperature, and on the local acceleration
of gravity. Thus the torr is the pressure equivalent of 1 millimeter ‘S mercury at
0°C in a standard gravitational field and is equal to 133.322 Pa.

Another unit of pressure is the standard atmosphere (atm), the approximate
average pressure exerted by the earth’s atmosphere at sea level, defined as
101,325 Pa, 101.325 kPa, or 0.101325 MPa. The bar, an SI unit equal to 10° Pa,
is roughly the size of the atmosphere.

Most pressure gauges give readings which are the difference between the
pressure of interest and the pressure of the surrounding atmosphere. These
readings are known as gauge pressures, and can be converted to absolute pressures
by addition of the barometric pressure. Absolute pressures must be used in
thermodynamic calculations.

Example 1.3 A dead-weight gauge with a l-cm-diameter piston is used to measure
pressures very accurately. In a particular instance a mass of 6.14 kg (including piston
and pan) brings it into balance. If the local acceleration of gravity is 9.82 ms >, what
is the gauge pressure being measured? If the barometric pressure is 748(torr), what
is the absolute pressure?

SOLUTION The force exerted by gravity on the piston, pan, and weights is

F = mg = (6.14)(9.82) = 60.295 N

60.295
Gauge pressure = —

F -2
y = (1/4)(17)(1)2 =76.77T N cm

The absolute pressure is therefore

P =76.77 + (748)(0.013332) = 86.74 Ncm
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or
P = 867.4kPa
Example 1.4 At 27°C a manometer filled with mercury reads 60.5 cm. The local
acceleration of gravity is 9.784 m s™%. To what pressure does this height of mercury
correspond?
SoLUTION From the equation in the preceding text,
P = hpg

At 27°C the density of mercury is 13.53 g cm™. Then

P=60.5cm x 13.53 gem™ X 9.784 m s™2

=8,009gms > cm™>

or

P=38009kgms?cm 2 =8.009 Nem ?
or

P = 80.09 kPa = 0.8009 bar

1.7 WORK

Work W is done whenever a force acts through a distance. The quantity of work
done is defined by the equation

dW = Fdl | (1.1)

where F is the component of the force acting in the direction of the displacement
dl. This equation must be integrated if the work for a finite process is required.

In engineering thermodynamics an important type of work is that which
accompanies a change in volume of a fluid. Consider the compression or
expansion of a fluid in a cylinder caused by the movement of a piston. The force
exerted by the piston on the fluid is equal to the product of the piston area and
the pressure of the fluid. The displacement of the piston is equal to the volume
change of the fluid divided by the area of the piston. Equation (1.1) therefore
becomes

\ 4
dW = PAd—
A
or, since A is constant,
)
dW = Pdv (1.2)
Integrating,
VZ
W= J Pav (1.3)
. v,
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Pz-—1

. V2270002

Figure 1.3 PV diagram.

Equation (1.3) is an expression for the work done as a result of a finite
compression or expinsion process.t This kind of work can be represented as an
area on a pressure-vs.-volume ( PV) diagram, such as is shown in Fig. 1.3. In this
case a gas having an initial volume V, at pressure P, is compressed to volume
V, at pressure P, along the path shown from 1 to 2. This path relates the pressure
at any point during the process to the volume. The work required for the process
is given by Eq. (1.3) and is represented on Fig. 1.3 by the area under the curve,
The SI unit of work is the newton-meter or joule, symbol J. In the English
engineering system the unit often used is the foot-pound force (ft lbg).

1.8 ENERGY

The general principle of conservation of energy was established about 1850. The
germ of this principle as it applies to mechanics was implicit in the work of
Galileo (1564-1642) and Isaac Newton (1642-1726). Indeed, it follows almost
automatically from Newton’s second law of motion once work is defined as the
product of force and displacement. No such concept existed until 1826, when it
was introduced by the French mathematician J. V. Poncelet at the suggestion of
G. G. Coriolis, a French engineer. The word force (or the Latin vis) was used
not only in the sense described by Newton in his laws of motion, but also was
applied to the quantities we now define as werk and potential and kinetic energy.
This ambiguity precluded for some time the development of any geéneral principle
of mechanics beyond Newton’s laws of motion.

Several useful relationships follow from the definition of work as a quantita-
tive and unambiguous physical entity, If a body of mass m is acted upon by the
force F during a differential interval of time dt, the displacement of the body
is dL The work done by the force F is given by Eq. (1.1), which when combined

+ However, see Sec. 2.9 for limitations on its application.
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with Newton’s second law becomes
B dW = madl

By definition the acceleration is @ = du/dt, where u is the velocity of the body.
Thus

du
dw = m-&}— dl

which may be written
dl
dW =m—d
m- du

Since the definition of velocity is u = dI/ dt, the expression for work becomes

dW = mu du

This equation may now be integrated for a finite change in velocity from u, to u,:

u, 2 2
W= m-[ wdu = m(ﬁ—ﬁ)

. 2 2
or
2 2 2
mu; mu; mu
W_—'_‘—-—:A — .
2 2 ( 2 ) (L4

Each of the quantities 1mu? in Eq. (1.4) is a kinetic energy, a term introduced
by Lord Kelvint in 1856. Thus, by definition,

Ex = imu? (1.5)

Equation (1.4) shows that the work done on a body in accelerating it from an
initial velocity u; to a final velocity u, is equal to the change in Kkinetic energy
of the body. Conversely, if a moving body is decelerated by the action of a
resisting force, the work done by the body is equal to its change in kinetic energy.
In the SI system of units with mass in kg and velocity in ms™', kinetic energy
Ex has the units of kgm®s 2. Since the newton is the composite unit kg ms 2,
Ey is measured in newton-meters or joules. In accord with Eq. (1.4), this is the
unit of work.

In the English engineering system, kinetic energy is expressed as 1mu?/g.,,
where g, has the value 32.1740 and the units (1b,)(ft)(Ib,)~'(s) 2. Thus the unit
of kinetic energy in this system is

mu’ (b, X ft)’(s) 2

bk = g = Mooty (e~ (100

. . e S N - -
Dimensional consistency here requires the inclusion of g..

1 Lord Kelvin, or William Thomson (1824-1907), was an English physicist who, along with the
German physicist Rudolf Clausius (1822-1888), laid the foundations for the modern science of
thermodynamics.
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If a body of mass m is raised from an initial elevation z, to a final elevation
z,, an upward force at least equal to the weight of the body must be exerted on
it, and this force must move through the distance z, — z,. Since the weight of the
body is the force of gravity on it, the minimum force required is given by Newton’s
law as

F=ma=mg

where g is the local acceleration of gravity. The minimum work required to raise
the body is the product of this force and the change in elevation:

W = F(z, - z,) = mg(z; -~ z,)
or

W = mz,g — mz,g = A(mzg) (1.6)

We see from Eq. (1.6) that the work done on the body in raising it is equal to
the change in the quantity mzg. Conversely, if the body is lowered against a
resisting force equal to its weight, the work done by the body is equal to the
change in the quantity mzg. Equation (1.6) is similar in form to Eq. (1.4), and
both show that the work done is equal to the change in a quantity which describes
the condition of the body in relation to its surroundings. In each case the work
performed can be recovered by carrying out the reverse process and returning
the body to its initial condition. This observation leads naturally to the thought
that, if the work done on a body in accelerating it or in elevating it can be
subsequently recovered, then the body by virtue of its velocity or elevation must
contain the ability or capacity to do this work. This concept proved so useful in
rigid-body mechanics that the capacity of a body for doing work was given the
name energy, a word derived from the Greek and meaning *in work.” Hence the
work of accelerating a body is said to produce a change in its kinetic energy, or

2
W = AEyx = A(Ey—)
2
and the work done on a body in elevating it is said to produce a change in its
potential energy, ot

W = AEp = A(mzg)
| Thus potential energy is defined as
Ep = mzg (1.7)

This term was first proposed in 1853 by the Scottish engineer William Rankine
(1820-1872). In the SI system of units with mass in kg, elevation in m, and the
acceleration of gravity in m s, potential energy has the units of kg m*s™>. This
is the newton-meter or joule, the unit of work, in agreement with Eq. (1.6).
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In the English engineering system, potential energy is expressed as mzg/g..
Thus the unit of potential energy in this system is
-2
g, =m0 )@@
g (Iby){ft)(Ibg)~'(s)
Again, g. must be included for dimensional consistency.

In any examination of physical processes, an attempt is made to find or to
define quantities which remain constant regardless of the changes which occur.
One such guantity, early recognized in the development of mechanics, is mass.
The great utility of the law of conservation of mass as a general principle in
science suggests that further principles of conservation should be of comparable
value. Thus the development of the concept of energy logically led to the principle
of its conservation in mechanical processes. If a body is given energy when it is
elevated, then the body should conserve or retain this energy until it performs
the work of which it is capable. An elevated body, allowed to fall freely, should
gain in kinetic energy what it loses in potential energy so that its capacity for
doing work remains unchanged. For a freely falling body, we should be able to
write:

AEx +AE, =0
or
mu;  muj
Tz——2-1-+ mz,g —mz,g =0

The validity of this equation has been confirmed by countless experiments. Success
in application to freely falling bodies led to the generalization of the principle
of energy conservation to apply to all purely mechanical processes, Ample experi-
mental evidence to justify this generalization was readily obtained.

Other forms of mechanical energy besides kinetic and gravitational potential
energy are possible, The most abvious is potential energy of configuration. When
a spring is compressed, work is done by an external force. Since the spring can
later perform this work against a resisting force, the spring possesses capacity
for doing work. This is potential energy of configuration. Energy of the same
form exists in a stretched rubber band or in a bar of metal deformed in the elastic
region,

To increase the generality of the principle of conservation of energy in
mechanics, we look upon work itself as a form of energy. This is clearly permis-
sible, because both kinetic- and potential-energy changes are equal to the work
done in producing them [Eqgs. {1.4) and (1.6)]. However, work is energy in transit
and is never regarded as residing in a body. When work is done and does not
appear simultaneously as work elsewhere, it is converted into another form of
energy.

The body or assemblage on which attention is focused is called the system.
All else is called the surroundings. When work is done, it is done by the surround-
ings on the system, or vice versa, and energy is transferred from the surroundings
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to the system, or the reverse. It is only during this transfer that the form of energy
known as work exists. In contrast, kinetic and potential energy reside with the
system. Their values, however, are measured with reference to the surroundings,
i.e., kinetic energy depends on velocity with respect to the surroundings, and
potential energy depends on elevation with respect to a datum level. Changes in
kinetic and potential energy do not depend on these reference conditions, pro-
vided they are fixed.

Example 1.5 An elevator with a mass of 2,500 kg rests at a level of 10 m above the
base of an elevator shaft. It is raised to 100 m above the base of the shaft, where the
cable holding it breaks. The elevator falls freely to the base of the shaft and strikes

a strong spring. The spring is designed to bring the elevator to rest and, by means of -

a catch arrangement, to hold the elevator at the position of maximum spring com-
pression. Assuming the entire process 0 be frictionless, and taking g = 9.8 ms™
calculate:

(a) The potential energy of the elevator in its initial position relative to the base
of the shaft.

{b) The work done in raising the elevator.

{¢) The potential energy of the elevator in its highest position relative to the
base of the shaft.

(d) The velocity and kinetic energy of the elevator just before it strikes the spring.

(e) The potential energy of the compressed spring.

(f} The energy of the system consisting of the elevator and spring (1) at the
start of the process, (2) when the elevator reaches its maximum height, (3) just before
the elevator strikes the spring, and (4) after the elevator has come to rest.

2

SOLUTION Let subscript | designate the initial conditions; subscript 2, conditions
when the elevator is at its highest position; and subscript 3, conditions just before
the elevator strikes the spring.

(a) By Eq. (1.7},
Ep, = mz,g = (2,500)(10}(9.8) = 245,000 J

“(b) W=J FdI=J mgdl = mg(z, — z;)

) Zy

whence
W = (2,500)(9.8)(100 — 10} = 2,205,000 J
(c} Ep, = mz,g = (2,500)(100){9.8) = 2,450,000 )

Note that W = Ep — E,,.

(d) From the principle of conservation of mechanical energy, one may write
that the sum of the kinetic- and potential-energy changes during the process from
conditions 2 to 3 is zero; that is,

AEg, +AFE; =0
or

Ex, = Ex,+ Ep,— Ep, =0
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However, Ex, and Ep, are zero. Therefore
' Ey, = Ep, = 2,450,000)

Since Eg, = imuj,

L2 2B, _ (2)(2,450,000)

3=

m 2,500
whence
Uy =442T7ms™"
(e) AEP:prinl + AEKelevmr =0

Sincé the initial potential energy of the spring and the final kinetic energy of the
elevator are zero, the final potential energy of the spring must equal the kinetic energy
of the elevator just before it strikes the spring. Thus the final potential energy of the
spring is 2,450,000 J.

(f) If the elevator and the spring together are taken as the system, the initial
energy of the system is the potential energy of the elevator, or 245,000 J. The total
energy of the system can change only if work is transferred between it and the
surroundings. As the elevator is raised, work is done on the system by the sirroundings
in the amount of 2,205,000 J. Thus the energy of the system when the elevator reaches
its maximum height is 245,000 + 2,205,000 = 2,450,000 J. Subsequent changes occur
entirely within the system, with no work transfer between the system and surroundings.
Hence the total energy of the system remains constant at 2,450,000 J. It merely changes
from potential energy of position (elevation) of the elevator to kinetic energy of the
elevator to potential energy of configuration of the spring,

This example serves to illustrate the application of the law of conservation of
mechanical energy. However, the entire process is assumed to occur without friction;
the resuits obtained are exact only for such an idealized process.

During the period of development of the law of conservation of mechanical
energy, heat was not generally recognized as a form of energy, but wds considered
an indestructible fluid called ealoric. This concept was so firmly entrenched that
no connection was made between heat resulting from friction and the established
forms of energy, and the law of conservation of energy was limited in application
to frictionless mechanical processes. Such a limitation is no longer appropriate;
the concept that heat like work is energy in transit gained acceptance during the
years following 1850, largely on account of the classic experiments of J. P. Joule
(1818-1889), a brewer of Manchester, England. These experiments are considered
in detail in Chap. 2, but first we examine some of the characteristics of heat.

1.9 HEAT =~

We know from experience that a hot object brought in contact with a cold object
becomes cooler, whereas the cold object becomes warmer. A reasonable view is
that something is transferred from the hot object to the cold one, and we call
that something heat Q. Two theories of heat developed by the Greek philosaphers
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have been in contention until modern times. The one most generally accepted
unti! the middle of the nineteenth century was that heat is a weightless and
indestructible substance called caloric. The other represented heat as connected
in some way with motion, either of the ultimate particles of a body er of some
medium permeating all matter. This latter view was held by Francis Bacon,
Newton, Robert Boyle, and others during the seventeenth century. Without the
concept of energy this view could not be exploited, and by the middle of the
eighteenth century the caloric theory of heat gained ascendancy. However, a few
men of science did retain the other view, notably Benjamin Thompsont (1753-
1814) and Sir Humphrey Davy (1778-1829). Both submitted experimental
evidence contrary to the caloric theory of heat, but their work went unheeded.
Moreover, the steam engine, a working example of the conversion of heat into
work, had been perfected by James Watt (1736-1819) and was in common use
at the time.

One notable advance in the theory of heat was made by Joseph Black
(1728-1799), a Scottish chemist and a collaborator of James Watt. Prior to Black’s
time no distinction was made between heat and temperature, just as no distinction
was made between force and work. Temperature was regarded as the measure
of the guantity of heat or caloric in a body, and a thermometer reading was
referred to as a “number of degrees of heat.” In fact, the word temperature still
had its archaic meaning of mixture or blend. Thus a given temperature indicated
a given mixture or blend of caloric with matter. Black correctly recognized
temperature as a property which must be carefully distinguished from quantity
of heat. In addition, he showed experimentally that different substances of the
same mass vary in their capacity to absorb heat when they are warmed through
the same temperature range. Moreover, he was the discoverer of latens heat. In
spite of the difficulty of explaining these phenomena by the caloric theory, Black
supported this theory throughout his life. Here the matter rested until near the
middle of the nineteenth century.

Among the early champions of the energy concept of heat were Mohr, Mayer,
and Helmholtz in Germany; Colding, a Dane; and especially James P. Joule in
England. Joule presented the experimental evidence which conclusively demon-
strated the energy theory, and thus made possible the generalization of the law
of conservation of energy to include heat. The concept of heat as a form of energy
is now universally accepted and is implicit in the modern science of thermody-
namics. )

One of the most important observations about heat is that it always flows
from a higher temperature to a lower one. This leads to the concept of temperature
as the driving fotce for the transfer of energy as heat. More precisely, the rate
of heat transfer from one body to another is proportional to the temperature
difference between the two bodies; when there is no temperature difference, there
is no net transfer of heat. In the thermodynamic sense, heat is never regarded

T Better known as Count Rumford. Born in Woburn, Mass., unsympathetic to the American cause
during the Revolution, he spent most of his extraordinary life in Europe.
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as being stored within a body. Like work, it exists only as energy in transit from
one body to another, or between a system and its surroundings. When energy in
the form of heat is added to a body, it is stored not as heat but as kinetic and
potential energy of the atoms and molecules making up the body. Not surprisingly,
the energy theory of heat did not prevail until the atomic theory of matter was
well established.

In spite of the transient nature of heat, it is often thought of in terms of its
effects on the body from which or to which it is transferred. As a matter of fact
until about 1930 definitions of the quantitative units of heat were based on th;
temperature changes of a unit mass of water. Thus the calorie was long defined
as that quantity of heat which must be transferred to one gram of water to raise
its temperature one degree Celsius. Likewise, the British thermal unit, or (Btu),
was defined as that quantity of heat which must be transferred to one pound
mass of water to raise its temperature one degree Fahrenheit. Although these
definitions provide a “feel” for the size of heat units, they depend on the accuracy
of experiments made with water and are thus subject to change with each
increasingly accurate measurement. The calorie and (Btu) are now recognized
as units of energy, and are defined in relation to the joule, the only SI unit of
energy. It is defined as | Nm, and is therefore equal to the mechanical work
done when a force of one newton acts through a distance of one meter. All other
energy units are defined as muitiples of the joule. The foot-pound force, for
example, is equivalent to 1.3558179 J, and the calorie to 4.1840 J. The SI unit of
power is the watt, symbol W, defined as an energy rate of one joule per second.

Appendix A gives an extensive table of conversion factors for energy as well
as for other units. '

PROBLEMS

:: Using data given in Table 1.3, confirm one of the results given in the last three columns of Table

1.2 PrFssures up to 3,000 bar are measured with a dead-weight gauge. The piston diameter is 0.35 cm.

What is the approximate mass in kg of the weights required?

13 l’:ressures up to 3,000(atm) are measured with a dead-weight gauge. The piston diameter is

0.14(in). What is the approximate mass in (Ib,,) of the weights required?

14 A me:rcury manometer at 20°C and open at one end to the atmosphere reads 38.72 cm. The local

?Mleratmn of gravity is 9.790 m s~2. Atmospheric pressure is 99.24 kPa, What is the absolute pressure

1n kPa being measured?

l15 A mercury manometer at 75(°F) and open at one end to the atmosphere reads 16.81(in). The

ocal acceleration of gravity is 32.143(ft)(s)2. Atmospheric pressure is 29.48(in Hg). What is the

absolute pressure in (psig) being measured?

lﬁ_ﬁm. instrument to measure the acceleration of gravity on Mars is constructed of a spring from

;Vs:]ch ls_ :uspendeq a mass of 0.24 kg, At a place on earth where the local acceleration of gravity is

ﬂ; ms, tl:ae spring extends 0.61 cm. When the instrument package is landed on Mars, it radios
e information that the spring is extended 0.20 cm. What is the Martian acceleration of gravity?

:": A group of engineers has landed on the moon, and would like to determine the mass of several
usual rocks. They have a spring scale calibrated to read pounds mass at a location where the
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agceleration of gravity is 32.20(ft)(s) 2. One of the moon rocks gives a reading of 25 on the scale.
What is its mass? What is its weight on the moon? Take gmoon = 54T(f)(s)~2

18 A gas is confiried by a piston, 5(in} in diameter, on which rests a weight. The mass of the piston
and weight together is 60(lb,). The local acceleration of gravity is 32.13(ft)(s) "2, and atmospheric
pressure is 30.16(in Hg).

{a) What is the force in (Ib,) exerted on the gas by the atmosphere, the piston, and the weight,
assuming no friction between the piston and cylinder?

{b) What is the pressure of the gas in (psia)?

{c} If the gas in the cylinder is heated, it expands, pushing the piston and weight upward. If
the piston and weight are raised 15(in), what is the work done by the gas in (ft1b)? What is the
change in potential energy of the piston and weight?

19 A gas is confined by a piston, 10 cm in diameter, on which rests a weight. The mass of the piston
and weight together is 30 kg. The local acceleration of gravity is 9.805 m s>, and atriiospheric pressure
is 101.22 kPa.

{a) What is the force in newtons exerted on the gas by the atmosphere, the piston, and the
weight, assuming no friction between the piston and cylinder?

(b) What is the pressure of the gas in kPa?

(¢} If the gas in the cylinder is heated, it expands, pushing the piston and weight upward. 1f
the piston and weight are raised 40 cm, what is the work done by the gas in kJ? What is the change
in potential energy of the piston and weight?

1.10 Verify that the SI unit of kinetic and potential energy is the joule.

1.11 An automobile having a mass of 1,500 kg is traveling at 25 ms™', What is its kinetic energy in
kJ? How much work must be done to bring it to a stop?

1.12 Liquid water at 0°C and atmospheric pressure has a density of 1.000gcm™. At the same
conditions, ice has a density of 0.917 g cm™>. How much work is done at these conditions by 1kg of
ice as it melts to liquid water?

-3

CHAPTER

TWO

THE FIRST LAW AND
OTHER BASIC CONCEPTS

2.1 JOULE’S EXPERIMENTS

During the years 1840-1878, J. P. Joulet carried out careful experiments on
the nature of heat and work. These experiments are fundamental to an under-
standing of the first law of thermodynamics and of the underlying concept of
energy.

In their essential elements Joule’s experiments were simple enough, but he
took elaborate precautions to ensure accuracy. In his most famous series of
cxperiments, he placed measured amounts of water in an insulated container and
agitated the water with a rotating stirrer. The amounts of work done on the water
by the stirrer were accurately measured, and the temperature changes of the water
were carefully noted. He found that a fixed amount of work was required per
unit mass of water for every degree of temperature rise caused by the stirring,
The original temperature of the water could then be restored by the transfer of
heat through simple contact with a cooler object. Thus Joule was able to show
conclusively that a quantitative relationship exists between work and heat and,
therefore, that heat is a form of energy.

+For a fascinating account of Joule’s éelebrated experiments, see T. W. Chalmers, Historic
Researches, chap. II, Scribner, New York, 1952.

21
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2.2 INTERNAL ENERGY )

In experiments such as those conducted by Joule, encrgy is added to the water
as work, but is extracted from the water as heat. The question arises as to what
happens to this energy between the time it is added to the water as work and the
time it is extracted as heat. Logic suggests that this energy is contained in the
water in another form, a form which we define as internal energy U.

The internal energy of a substance does not include any energy that it may
possess as a result of its macroscopic position or movement. Rather it refers to
the energy of the molecules making up the substance, which are in ceaseless
motion and possess kinetic energy of translation; except for menatomic molecules,
they also possess kinetic energy of rotation and of internal vibration. The addition
of heat to a substance increases this molecular activity, and thus causes an increase
in its internal energy. Work done on the substance can have the same effect, as
was shown by Joule.

In addition to kinetic energy, the molecules of any substance possess potential
energy because of interactions among their force fields. On a submolecular scale
there is energy associated with the electrons and nuclei of atoms, and bond energy
resulting from the forces holding atoms together as molecules. Although absolute
values of internal energy are unknown, this is not a disadvantage in thermody-
namic analysis, because only changes in internal energy are required.

The designation of this form of energy as internal distinguishes it from kinetic
and potential energy which the substance may possess as a result of its macroscopic
position or motion, and which can be thought of as external forms of energy.

2.3 FORMULATION OF THE
FIRST LAW OF THERMODYNAMICS

The recognition of heat and internal energy as forms of energy suggests a
generalization of the law of conservation of mechanical energy (Sec. 1.8) to apply
to heat and internal energy as well as to work and external potential and kinetic
energy. Indeed, the generalization can be extended to still other forms, such as
surface energy, electrical energy, and magnetic energy. This generalization was
at first no more than a postulate, but without exception all observations of ordinary
processes support it.T Hence it has achieved the stature of a law of nature, and
is known as the first law of thermodynamics. One formal statement is as follows:
Although energy assumes many forms, the total quantity of energy is constant, and
when energy disappears in one form it appears simultaneously in other forms.

In application of the first law to a given process, the sphere of influence of
the process is divided into two parts, the system and its surroundings. The part

T For nuclear-reaction processes, the Einstein equation applies, E = me?, where ¢ is the velocity
of light. Here, mass is transformed into energy, and the laws of conservation of mass and energy
combine to state that mass and energy together are conserved.
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jn which the process occurs is taken as the system. Everything not included in
the system constitutes the surroundings. The system may be of any size depending
on the particular conditions, and its boundaries may be real or imaginary, rigid
or flexible. Frequently a system is made up of a single substance; in other cases
it may be very complicated. In any event, the equations of thermodynamics are
written with reference to some well-defined system. This allows one to focus
attention on the particular process of interest and on the equipment and material
directly involved in the process.

However, the first law applies to the system and surroundings, and not to
the system alene. In its most basic form, the first law may be written:

A(energy of the system) + A(energy of surroundings) = 0 (2.1

Changes may occur in internal energy of the system, in potential and kinetic
energy of the system as a whole, or in potential and kinetic energy of finite parts
of the system. Likewise, the energy change of the surroundings may consist of
increases or decreases in energy of various forms.

In the thermodynamic sense, heat and work refer to energy in transit across
the boundary between the system and its surroundings. These forms of energy
can never be stored. To speak of heat or work as being contained in a body or
system is wrong; energy is stored in its potential, kinetic, and internal forms.
These forms reside with material objects and exist because of the position,
configuration, and motion of matter. The transformations of energy from one
form to another and the transfer of energy from place to place often occur through
the mechanisms of heat and work.

If the boundary of a system does not permit the transfer of mass between
the system and its surroundings, the system is said to be closed, and its mass is
necessarily constant. For such systems all energy passing across the boundary
between system and surroundings is transferred as heat and work. Thus the total
energy change of the surroundings equals the net energy transferred to or from
it as heat and work, and the second term of Eq. (2.1) may be replaced by

A{energy of surroundings) = +Q + W

:l"he choice of signs used with Q and W depends on which direction of transfer
1s regarded as positive.

.The first term of Eq. (2.1) may be expanded to show. energy changes in
various forms. If the mass of the system is constant and if only internal-, kinetic-,
and potential-energy changes are involved,

Aienergy of the system) = AU + AEx + AEp
With these substitutions, Eq. (2.1) becomes
AUFAE +AE, =+Q+ W {2.2)

The trfiditional choice of signs on the right-hand side of Eq. (2.2) makes the
numerical value of heat positive when it is transferred to the system from the
surroundings, and the numerical value of work positive for the opposite direction
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of transfer. With this understanding, Eq. (2.2) becomes¥
AU+ AE; +AE=Q—- W (2.3)

In words, Eq. (2.3) states that the total energy change of the system is equal to
the heat added to the system minus the work done by the system. This equation
applies to the changes which occur in a constant-mass system overa period of time.

Closed systems often undergo processes that cause no changes in external
potential or kinetic energy, but only changes in internal energy. For such processes,
Eq. (2.3) reduces to

AU=Q-W (2.4)

Equation (2.4) applies to processes involving finite changes in the system.
For differential changes this equation is written:

dU = dQ — dW (2.5)

Equation (2.5) is useful when U, Q, and W are expressed as functions of process
variables, and like Eq. (2.4) applies to closed systems which undergo changes in
internal energy only. The system must of course be clearly defined, as illustrated
in the examples of this and later chapters.

The units used in Eqs. (2.3} through (2.5) must be the same for all terms. In
the SI system the energy unit is the joule. Other energy units still in use are the
calorie, the foot-pound force, and the (Btu).

2.4 THE THERMODYNAMIC STATE
AND STATE FUNCTIONS

In thermodynamics we distinguish between two types of quantities: those which
depend on path and those which do not. Actually, both types are in everyday
use. Consider for example an automobile trip from New York to San Francisco.
The straight-line distance between these two cities is fixed: it does not depend
on the path or route taken to get from one to the other. On the other hand, such
measurements as miles traveled and fuel consumed definitely depend on the path.
So it is in thermodynamics; both types of quantities are used.

There are many examples of quantities which do not depend on path; among
them are temperature, pressure, and specific volume. We know from experience
that fixing two of these quantities automatically fixes all other such properties
of a homogeneous pure substance and, therefore, determines the condition or

+ Those who prefer consistency over tradition make both heat and work positive for transfer to
the system from the surroundings. Eq. (2.2), then becomes

AU+AE, +AE, = Q+ W
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state of the substance. For example, nitrogen gas at a temperature of 300 K and
a pressure of 10° kP2 (1 bar) has a definite specific volume or density, a definite
viscosity, a definite thermal conductivity; in short it has a definite set of properties.
If this gas is heated or cooled, compressed or expanded, and then returned to
its initial conditions, it is found to have exactly the same set of properties as
before. These properties do not depend on the past history of the substance nor
on the path it followed in reaching a given state. They depend only on present
conditions, however reached. Such quantities are known as state functions. When
two of them are fixed or held at definite values for a homogeneous pure substance,
the thermodynamic state of the substance is fixed.

For systems more complicated than a simple homogeneous pure substance,
the number of properties or state functions that must be arbitrarily specified in
order to define the state of the systern may be different from two. The methed
of determining this number is the subject of Sec. 2.8.

Internal energy and a number of other thermodynamic variables (defined
later) are state functions and are, therefore, properties of the system. Since state
functions can be expressed mathematically as functions of thermodynamic co-
ordinates such as temperature and pressure, their values can always be identified
with points on a graph. The differential of a state function is spoken of as an
infinitesimal change in the property. The integration of such a differential results
in a finite difference between two values of the property. For example,

P, U,
L dP =P,~-P,=AP and J dU=U,- U, =AU
1 v

Work and heat, on the other hand, are not state functions. Since they depend
on path, they cannot be identified with*points on a graph, but rather are repre-
sented by areas, as shown in Fig. 1.3. The differentials of heat and work are not
referred to as changes, but are regarded as infinitesimal quantities of heat and

work. When integrated, these differentials give not a finite change but a finite
quantity, Thus

_[dQ=Q and JdW=W

]?‘.xperiment shows that processes which accomplish the same change in state
by different paths in a closed system require, in general, different amounts of
he&}t a:'1d work, but that the difference Q — W is the same for all such processes.
This gives experimental justification to the statement that internal energy is a
State function. Equation (2.4) yields the same value of AU regardless of the path
fO_ll_owed, provided only that thesthange in the system is always from the same
Intial to the same final state.

Another difference between state functions and heat or work is that a state

rfunction represents a property of a system and always has a value. Work and

?eat_app(?ar only when changes are caused in a system by a process, which
€quires time. Although the time required for a process cannot be predicted by
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thermodynamics alone, nevertheless the passage of time is inevitable whenever
heat is transferred or work is accomplished.

The internal energy of a system, like its volume, depends on the quantity of
material involved; such properties are said to be extensive. In contrast, temperature
and pressure, the principal thermodynamic coordinates for homogeneous fluids,
are independent of the quantity of material making up the system, and are known
as intensive properties.

The first-law equations may be written for systems containing any quantity
of material; the values of Q, W, and the energy terms then refer to the entire
system. More often, however, we write the equations of thermodynamics for a
representative unit amount of material, either a unit mass or a mole. We can then
deal with properties such as volume and internal energy on a unit basis, in which
case they become intensive properties, independent of the quantity of material
actually present. Thus, although the total volume and total internal energy of an
arbitrary quantity of material are extensive properties, specific and molar volume
(or density) and specific and molar internal energy are intensive. Writing Egs.
(2.4) and (2.5) for a representative unit amount of the system puts all of the
terms on a unit basis, but this does not make Q¢ and W into thermodynamic
properties or state functions. Multiplication of a quantity on a unit basis by the
total mass (or total moles) of the system gives the total quantity.

Internal energy (through the enthalpy, defined in Sec. 2.5) is useful for the
calculation of heat and work quantities for such equipment as heat exchangers,
evaporators, distillation columns, pumps, compressors, turbines, engines, etc.,
because it is a state function. The tabulation of all possible Q’s and W’s for all
possible processes is impossible. But the intensive state functions, such as specific
volume and specific internal energy, are properties of matter, and they can be
measured and their values tabulated as functions of temperature and pressure

for a particular substance for future use in the calculation of Q or W for any
process involving that substance. The measurement, correlation, and use of these
state functions is treated in detail in later chapters.

Exnmi)le 2.1 Water flows over a waterfall 100 m in height. Consider 1 kg of the water,
and assume that no energy is exchanged between the 1 kg and its surroundings.

(a) What is the potential energy of the water at the top of the falls with respect
to the base of the falls?

{b) What is the kinetic energy of the water just before it strikes bottom?

{€) After the | kg of water enters the river below the falls, what change has
occurred in its state?

SOLUTION Taking the 1kg of water as the system, and noting that it exchanges
no energy with its surroundings, we may set Q and W equal to zero and write
Eq. (2.3) as .
AU+ AE, +AE, =0

This equation applies to each part of the process.
(a) From Eq. (1.7),

Ep = mzg = 1 kg X 100 m x 9.8066 m s>
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where g has been taken as the standard value. This gives
Ep =980.66 Nm or 980.66J

(b_) Duripg t_he free fall of the water no mechanism exists for the conversion of
potential or kinetic energy into internal energy. Thus AU must be zero, and

AEK + AEP = EK: - EK] + EP: - EPI =0
For practical purposes we may take Ey = Ep, = 0. Then
Ex,= Ep =980.66J

{c) As the 1kg of water strikes bottom and mixes with other falling water to
form a river, there is much turbulence, which has the effect of converting kinetic
energy into internal energy. During this process, AE, is essentially zero, and Eq. (2.3}
becomes

AU+ AE, =0 or AU=EK2—~EK3
However, the river velocity is assumed small, and therefore Ey, is negligible. Thus
AU = Ex, = 980.66]

The gvcrall result of the process is the conversion of potential energy of the water
into internal energy of the water. This change in internal energy is manifested by a
temperature rise of the water. Since energy in the amount of 4,184 kg™' is required
for a temperature rise of 1°C in water, the temperature increase is 980.66/4,184 =
0.234°C, if there is no heat transfer with the surroundings. |

Exa!nple 2.2 A gas is confined in a cylinder by a piston. The initial pressure of the
8as is 7 bar, and the voleme is 0.10 m®, The piston is held in place by latches in the
¢ylinder wall. The whole apparatus is placed in asotal vacuum. What is the energy
change of the apparatus if the retaining latches are removed so that the gas suddenly
expands to double its initial volume? The piston is again held by latches at the end
of the process.

SOLUTION Since the question concerns the entire apparatus, the system is taken as
the gas, piston, and cylinder. No work is done during the process, because no force
faxternal to the system moves, and no heat is transferred through the vacuum surround-
ing tl‘le apparatus. Hence Q and W are zero, and the total energy of the system
remains _unchanged. Without further information we can say nothing about the
distribution of energy among the parts of the system. This may well be different than
the initial distribution.

Exal.nple 2.3 If the process described in Example 2.2 is repeated, not in a vacuum
but in air at standard atmospheric pressure of 101.3 kPa, what is the energy change
of the apparatus? Assume the rate of heat exchange between the apparatus and the
surrounding air slow compared with the rate at which the process occurs,

SOLUTION The system is chosen exactly as before, but in this case work is done by
the ;ystcm in pushing back the atmosphere. This work is given by the product of the
fc‘nrce exerted by the atmospheric pressure on the piston and the displacement of the
piston. If the area of the piston is A, the force is F = P, . A. The displacement of
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the piston is equal to the volume change of the gas divided by the area of the piston,
or Al = AV/A. The work done by the system on the surroundings, according to

Eq. (1.1}, is then
W=FAl=P,,AV
W = (101.3)(0.2 - 0.1) = 10.13 kPam®

or
W=1013kNm=10.13kJ

Heat transfer between the system and surroundings is also possible in this case, but
the problem is worked for the instant after the process has occurred and before
appreciable heat transfer has had time to take place. Thus Q is assumed to be zero

in Eq. (2.3), giving

A(energy of the system) = Q — W =0-10.13 = -10.13kJ
The total energy of the system has decreased by an amount equal to the work done
on the surroundings.

Example 2.4 When a system is taken from state a to state b in Fig. 2.1 along path
ach, 100 J of heat flows into the system and the system does 40J of work. How much
heat flows into the system along path aeb if the work done by the system is 20 J ? The
system returns from b to a along the path bda. If the work done on the system is

30 J, does the system absorb or liberate heat? How much?

SOLUTION We presume that the system changes only in its internal energy and that
Eq. (2.4) is applicable. For path ach,

AUab = Qacb - Wacb =100—-40=601J

v Figure 2.1 Diagram for Example 2.4.
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This is the internal energy change for the state change from a to b by any path. Thus
for path aeb,

AUab =60= Qneb - Waeb = Qaeb -20
whence
Qazb =80J
For path bda,
AL’ba =-4 Uab =-60= dea - Wbda = dea - (—30)
thus
Qg = =60 —30=-50]

Heat is therefore liberated from the system.

2.5 ENTHALPY

'Iu addition to internal energy a number of other thermodynamic functions are
in common use l?ecause of their practical importance. Enthaipy (en-thal-py) is
introduced in this section, and others are treated later. Enthalpy is explicitly

~ defined for any system by the mathematical expression

H=U+PV (2.6)

where U = internal energy
P = absolute pressure
V = volume

The ui:lits of all terms of this equation must be the same. The product PV has
the units of energy, as does U ; therefore H also has units of energy. In the SI
system the basic unit of pressure is the pascal or N m™2 and, for volume, the m®
Thus the PV product has the unit N m or joule. In the English engineerin,g systen‘;

~ @ common unit for the PV product is the (ft Ib,), which arises when pressure is

i;;‘gilb'r)(ftg ‘27\;1Ei;th volume in (ft)*. This result is usually converted to {Btu) through
ision by .16 for use in Eq. (2.6), because the common English i ing’
unit for U and H is the (Btu). BT engineering

a Since U, P, and V are all state functions, H as defined by Eq. (2.6) must
$0 be a state function. In differential form Eq. (2.6) may be written

dH = dU + d(PV) @7

This equation appli . )
. pplies whenever a differential change occurs in th
Integration of Eq. (2.7) gives g e system.

AH = AU + A(PV) (2.8)

-?;:)Chijation applicable whenever a finite change occurs in the system, Equations
| -0) through (2.8} may be written for any amount of material, though they are
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often applied to a unit mass or to a mole. Like volume and internal energy,
enthalpy is an extensive property; specific or molar enthalpy is of course intensive.

Enthalpy is useful as a thermodynamic property because the U + PV group
appears frequently, particularly in problems involving flow processes, as illus-
trated in Sec. 2.6. The calculation of a numerical value for AH is carried out in
the following example.

Example 2.5 Calculate AU and AH for 1 kg of water when it is vaporized at the
constant temperature of 100°C and the constant pressure of 101.33 kPa. The specific
volumes of liquid and vapor water at these conditions are 0.00104 and 1.673 m’ kgl
For this change, heat in the amount of 2,256.9 kJ is added to the water.

SOLUTION The kilogram of water is taken as the system, because it alone is of
interest. We imagine the fluid contained in a cylinder by a frictionless piston which
exerts a constant pressure of 101,33 kPa. As heat is added, the water expands from
its initial to its final volume, doing work on the piston. By Eq. (1.3),

W = P AV = 10133 kPa x (1.673 — 0.001) m*
whence )
W =169.4kPam’ = 169.4kNm *m® = 169.4kJ

Since @ = 2,256.9kJ, Eq. (2.4) gives
AU=Q— W =22569-1694=2,0875k]
With P constant, Eq. (2.8) becomes
AH =AU+ PAV
But P AV = W. Therefore
AH =AU+ W=Q=22569k]

2.6 THE STEADY-STATE FLOW PROCESS

The application of Egs. (2.4) and (2.5) is restricted to nonflow (constant mass)
processes in which only internal-energy changes occur. Far more important
industrially are processes which involve the steady-state flow of a fluid through
equipment. For such processes the more general first-law expression [Eq. (2.3)]
must be used. However, it may be put in more convenient form. The term steady
state implies that conditions at all points in the apparatus are constant with time.
For this to be the case, all rates must be constant, and there must be no
accumulation of material or energy within the apparatus over the period of time
considered. Moreover, the total mass flow rate must be the same at all points
along the path of flow of the fluid.

Consider the general case of a steady-state-flow process as represented in
Fig. 2.2. A fluid, either liquid or gas, flows through the apparatus from section
1 to section 2. At section 1, the entrance to the apparatus, conditions in the fluid
are denoted by subscript 1. At this point the fluid has an elevation above an
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Figure 2.2 Steady-state flow process.

arbitrary datum level of z,, an average velocity u,, a specifiic volume V,, a pressure
Py, an internal energy U, etc. Similarly, the conditions in the fluid at section 2
the exit of the apparatus, are denoted by subscript 2. ,
The system is taken as a unit mass of the fluid, and we consider the overall
changes which occur in this unit mass of fluid as it flows through the apparatus
from section 1 to section 2. The energy of the unit mass may change in all three
Pf the forms taken into account by Eq. (2.3), that is, potential, kinetic, and
internal. The kinetic-energy change of a unit mass of fluid between sections 1
and 2 follows from Eq. (1.5):

2 _
1=

Au?

Wl

1,2
AEK =5u2—§u

In this equatior{ u represents the average velocity of the flowing fiuid, defined
as the volumetric flow rate divided by the cross-sectional area.f As a result of

Eq. .(1.7) we have for the potential-energy change of a unit mass of fluid between
sections 1 and 2 -

AEp =z,9— 219 =g Az

Equation (2.3) now becomes
2

A
AU+Tu+gAz=Q—W (2.9)

i« T Tl.le deve'lopment of the expression 31 for kinetic energy in terms of the average fluid velocity
considered in detail in Chap. 7.
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where Q and W represent all the heat added and work extracted per unit mass
of fluid flowing through the apparatus.

It might appear that W is just the shaft work W, indicated in Fig. 2.2, but
this is not the case. The term shaft work means work done by or on the fluid
flowing through a piece of equipment and transmitted by a shaft which protrudes
from the equipment and which rotates or reciprocates. Therefore, the term
represents the work which is interchanged between the system and its surroundings
through this shaft. In addition to W, there is work exchanged between the unit
mass of fluid taken as the system and the fluid on either side of it. The element
of fluid regarded as the system may be imagined as enclosed by flexible diaphragms
and to flow through the apparatus as a fluid cylinder whose dimensions respond
to changes in cross-sectional area, temperature, and pressure. As illustrated in
Fig. 2.2, a free-body drawing of this cylinder at any point along its path shows
pressure forces at its ends exerted by the adjacent fluid. These forces move with
the system and do work, The force on the upstream side of the cylinder does
work on the system. The force on the downstream side is in the opposite direction
and results in work done by the system. From section 1 to section 2 these two
pressure forces follow exactly the same path and vary in exactly the same manner.
Hence, the net work which they produce between these two sections is zero.
However, the terms representing work done by these pressure forces as the fluid
enters and leaves the apparatus do not, in general, cancel. In Fig. 2.2 the unit
mass of fluid is shown just before it enters the apparatus. This cylinder of fluid
has a volume V; equal to its specific volume at the conditions existing at section
1. If its cross-sectiional area is A,, its length is V,/A,. The force exerted on its
upstream face is P,A,, and the work done by this force in pushing the cylinder
into the apparatus is

Vi

W1=P[A1XI‘=P!V‘

This represents work done on the system by the surroundings. At section 2 work
is done by the system on the surroundings as the fluid cylinder emerges from the
apparatus. This work is given by

\£

W2=P2A2_

=DBYV,
A, 2 V2

Since W in Eq. (2.9) represents all the work done by the unit mass of fluid, it
is equal to the algebraic sum of the shaft work and the entrance and exit work
quantities; that is,

W= WS+P2V2—P1V1
In combination with this result, Eq. (2.9) becomes

Av?
AU+_2"+QAZ=Q_“/:_P2V2+P|V1
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or
2

AU+A(PV)+ATu+gAz=Q— w,
But by Eq. (2.8),
AU +A(PV) = AH

Therefore,

2

Au
AH+T+gAz=Q-W, (2.10a)

This equation is the mathematical expression of the first law for a steady-state-flow
process. All the terms are expressions for energy per unit mass of fluid; in the
SI system of units, energy is expressed in joules or in some multiple of the joule.
For the English engineering system of units, this equation must be reexpressed
to include the dimensional constant g, in the kinetic- and potential-energy terms:

Au?

+Zpz=0-w, (2.10b)

AH +
2g, g

Here, the usual unit for AH and Q is the (Btu), whereas kinetic energy, potential
energy, and work are usually expressed as (ftlb;). Therefore the factor
778.16(ft Ib;}(Btu) ' must be used with the appropriate terms to put them all in
consistent units of either {ft 1b;) or (Btu).

For many of the applications considered in thermodynamics, the kinetic- and
potential-energy terms are very small compared with the others and may be
neglected. In such a case Eq. (2.10) reduces to

AH=Q- W, (2.11)

This expression of the first law for a steady-flow process is analogous to Eq. (2.4)
for a nonflow process. Here, however, the enthalpy rather than the internal energy
1s the thermodynamic property of importance.

_ Equations (2.10) and (2.11) are universally used for the solution of problems
mvo%ving the steady-state flow of fluids through equipment. For most such
applications values of the enthalpy must be available. Since H is a state function
and a property of matter, its values depend only on point conditions; once
determined, they may be tabulated for subsequent use whenever the same sets
of conditions are encountered again. Thus Eq. (2.10) may be applied to laboratory
Processes designed specifically for the determination of enthalpy data.

- One such process employs a flow calorimeter. A simple example of this device
15 illustrated schematically in Fig. 2.3. Its essential feature is an electric heater
tmmersed in a flowing fluid. The apparatus is designed so that the kinetic- and
Potential-energy changes of the fluid from section 1 to section 2 (Fig. 2.3} are
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Figure 2.3 Flow calorimeter.

negligible. This requires merely that the two sections be at the same elevation
and that the velocities be small. Furthermore, no shaft work is accomplished
between sections 1 and 2. Hence Eq. (2.10) reduces to

AH=H,-H,=Q

Heat is added to the fluid from the electric resistance heater; the rate of energy
input is determined from the resistance of the heater and the current passing
through it. The entire apparatus is well insulated. In practice there are a number
of details which need attention, but in principle the operation of the fiow
calorimeter is simple. Measurements of the rate of heat input and the rate of
flow of the fluid allow calculation of values of AH between sections 1 and 2.

As an example, consider the measurement of enthalpies of H,0O, both as
liquid and as vapor. Liquid water is supplied to the apparatus by the pump. The
constant-temperature bath might be filled with a mixture of crushed ice and water
to maintain a temperature of 0°C. The coil which carries the test fluid, in this
case, water, through the constant-temperature bath is made long enough so that
the fluid emerges essentially at the bath temperature of 0°C. Thus the fluid at
section 1 is always tiquid water at 0°C. The temperature and pressure at section
2 are measured by suitable instruments. Values of the enthalpy of H,O for various
conditions at section 2 may be calculated by the equation

H2=H|+Q

where Q is the heat added by the resistance heater per unit mass of water flowing.
Clearly, H, depends not only on Q but also on H,. The conditions at section |
are always the same, i.e., liguid water at 0°C, except that the pressure varies from
run to run. However, pressure has a negligible effect on the properties of liquids
unless very high pressures are reached, and for practical purposes H, may be
considered a constant. Absolute values of enthalpy, like absolute values of internal
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energy, are unknown. An arbitrary value may therefore be assigned to H, as the
basis for all other enthalpy values. If we set H, = 0 for liquid water at 0°C, then
the values of H, are given by

These results may be tabulated along with the corresponding conditions of T
and P existing at section 2 for a large number of runs. In addition, specific-volume
measurements may be made for these same conditions, and these may be tabu.
lated. Corresponding values of the internal energy of water may be calculated
by Eq. (2.6), U = H — PV, and these numbers too may be tabulated. In this way
tables of thermodynamic properties may be compiled over the entire useful range
of conditions. The most widely used such tabulation is for H,O and is known as
the steam tables.}

The enthalpy may be taken as zero for some other state than liquid at 0°C.
The choice is arbitrary. The equations of thermodynamics, such as Eq. (2.10),
apply to changes of state, for which the enthalpy differences are independent of
where the origin of values is placed. However, once an arbitrary zero point is
selected for the enthalpy, an arbitrary choice cannot be made for the internal
energy, for values of internal energy are then calculable from the enthalpy by
Eq. (2.6). r

Example 2.6 For the flow calorimeter just discussed, the following data are taken
with water as the test fluid:
Flow rate = 4.15g s~
t, =0°C t, = 300°C P, =3bar
Rate of heat addition from resistance heater = 12,740 W

It is observed that the water is completely vaporized in the process. Calculate the
enthalpy of steam at 300°C and 3 bar based on H = ¢ for liquid water at 0°C.
SOLUTION If Az and Au® are negligible and if W, and H, are zero, then H, = @, and

12,740 577 -

27 a15gs VB

Example 2.7 Air at 1 bar and 25°C enters a compressor at low velocity, discharges at
3 bar, and enters a nozzle in which it expands to a final velocity of 600 ms ™' at the
initial conditions of pressure and temperature. If the work of compression is 240 kJ
per kilogram of air, how much heat must be removed during compression?

SOLUTION Since the air returns to its initial conditions of T and P, the overall
Process produces no change in enthalpy of the air. Moreover, the potential-energy
change of the air is presumed negligible. Neglecting also the initial kinetic energy of

¥ Stcat.n tables are given in App. C. Tables for varjpus other substances are found in the literature.
A discussion of compilations of thermodynamic properties appears in Chap. 6.



36 INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS

the air, we write Eq. (2.10a) as
2

Uz
Q 2

The kinetic-energy term is evaluated as follows:

ju3 = §(600)* = 180,000 m s~
or

1u = 180,000 Nmkg™' = 180 kJ kg™

Then

Q=180-240 = —60 kJ kg™’
Thus, heat must be removed in the amount of 60 kJ for each kilogram of air compressed.
Example 2.8 Water at 200(°F) is pumped from a storage tank at the rate of
50(gal)(min)~'. The motor for the pump supplies work at the rate of 2(hp). The
water passes through a heat exchanger, where it gives up heat at the rate of
40,000(Btu)(min)", and is delivered to a second storage tank at an elevation

50(ft) above the first tank. What is the temperature of the water delivered to the
second tank?

SOLUTION This is a steady-flow process for which Eq. (2.10b) applies. The initial
and final velocities of water in the storage tanks are negligible, and the term Au/2g.
may be omitted. The remaining terms are expressed in units of (Btu)(Ib,) "~ through
use of appropriate conversion factors. At 200(°F) the density of water is 60.1 (lb,)(ft) 3,
and 1({ft)’ is equivalent to 7.48(gal); thus the mass flow rate is

(50)(60.1/7.48) = 402(Ib,,)(min) ™"
from which we obtain
Q = —40,000/402 = —99.50(Btu)(1b,,) "
Since 1(hp) is equivalent to 42.41(Btu)(min)~", the shaft work is
W, = —(2)(42.41)/(402) = —0.21(Btu)(Ib,,) "

If the local acceleration of gravity is taken as the standard value of 32.174(ft)(s) %,
the potential-energy term becomes

g 32.174) (50) 3
LN it = 0.06(Btu)(Ib,,
P (32.174 (178.16) (Bw)(1b,,)

Equation (2.10b) now yields AH:

AH=Q-W,-Z Az = 9950 (-021)— 0.06

o

AH = -99.35(Btu)(lb,) "

The enthalpy of water at 200(°F) is given in the steam tables as 168.09(Btu)(1b,,,) .

Thus
AH =H,— H, = H, — 168.09 = -99.35
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and
H, = 168.09 — 99.35 = 68.74(Btu)(lb,,) !

The temperature of water having this enthalpy is found from the steam tables to be
t, = 100.74(°F)

In this example W, and (g/g.) Az are small compared with @, and for practical
purposes they could be neglected.

2.7 EQUILIBRIUM

Equilibrium is a word denoting a static condition, the absence of change. In
thermodynamics it is taken to mean not only the absence of change but the
absence of any tendency toward change on a macroscopic scale. Thus a system
at equilibrium is one which exists under such conditions that there is no tendency
for a change in state to occur. Since any tendency toward change is caused by
a driving force of one kind or another, the absence of such a tendency indicates
also the absence of any driving force. Hence a system at equilibrium may be
described as one in which all forces are in exact balance. Whether a change
actually occurs in a system not at equilibrium depends on resistance as well as
on driving force. Many systems undergo no measurable change even under the
influence of large driving forces, because the resistance is very large.

Different kinds of driving forces tend to bring about difierent kinds of change.
Mechanical forces such as pressure on a piston tend to cause energy transfer as
work; temperature differences tend to cause the flow of heat; chemical potentials
tend to cause substances to react chemically or to be transferred from one phase
to another. At equilibrium all such forces are in balance. Often we are content
to deal with systems at partial equilibrium. In many applications of thermody-
namics, chemical reactions are of no concern. For example, a mixture of hydrogen
and oxygen at ordinary conditions is not in chemical equilibrium, because of the
large driving force for the formation of water. In the absence of chemical reaction,
this system may well be in thermal and mechanical equilibrium, and purely
physical processes may be analyzed without regard to the possible chemical
reaction.

28 THE PHASE RULE

As mentioned earlier, the state of a pure homogeneous fluid is fixed whenever
two intensive thermodynamic properties are set at definite values. However, for
more complex systems this number is not necessarily two. For example, a mixture
of steam and liquid water in equilibrium at 101.33 kPa can exist only at 100°C.
It is impossible to change the temperature without also changing the pressure if
vapor and liquid are to continue to exist in equilibrium; one cannot exercise
independent control over these two variables for this system. The number of
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independent variables that must be arbitrarily fixed to establish the intensive state
of a system, i.e., the degrees of freedom F of the system, is given by the celebrated
phase rule of J. Willard Gibbs,+ who deduced it by theoretical reasoning in 1875.
It is presented here without proof in the form applicable to nonreacting systems:%

F=2-w+N (2.12)

where 1 = number of phases, and N = number of chemical species.

The intensive state of a system at equilibrium is established when its tem-
perature, pressure, and the compositions of all phases are fixed. These are
therefore phase-rule variables, but they are not all independent. The phase rule
gives the number of variables from this set which must be arbitrarily specified
to fix all remaining phase-rule variables.

A phase is a homogeneous region of matter. A gas or a mixture of gases, a
liquid or a liquid solution, and a solid crystal are examples of phases. A phase
need not be continuous; examples of discontinuous phases are a gas dispersed
as bubbles in a liquid, a liquid dispersed as droplets in another liquid with which
it is immiscible, and a crystalline solid dispersed in either a gas or liquid. In each
case a dispersed phase is distributed throughout a continuous phase. An abrupt
change in properties always occurs at the boundary between phases. Various
phases can coexist, but they must be in equilibrium for the phase rule to apply.
An example of a system at equilibrium which is made up of three phases is a
boiling saturated solution of a salt in water with excess salt crystals present. The
three phases are crystalline salt, the saturated aqueous solution, and the vapor
generated by boiling.

The phase-rule variables are intensive properties, which are independent of
the extent of the system and of the individual phases. Thus the phase rule gives
the same information for a large system as for a small one and for different
relative amounts of the phases present. Moreover, the only compositions that are
phase-rule variables are those of the individual phases. Overall or total composi-
tions are not phase-rule variables when more than one phase is present.

The minimum number of degrees of freedom for any system is zero. When
F =0, the system is invariant, and Eq. {(2.12) becomes # = 2 + N. This value of
« is the maximum number of phases which can coexist at equilibrium for a
system containing N chemical species. When N = 1, this number is 3, and we
have a triple point. For example, the triple point of water, where liquid, vapor,
and the common form of ice exist together in equilibrium, occurs at 0.01°C and
0.00610 bar. Any change from these conditions causes at least one phase to
disappear.

1 Josiah Willard Gibbs (1839-1903), American mathematical physicist.
1 The justification of the phase rule for nonreacting systems is given in Sec. 12.2, and the phase
rule for reacting systems is considered in Sec. 15.8,
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Example 2.9 How many degrees of freedom has each of the following systems?
(@) Liquid water in equilibrium with its vapor.
(b} Liquid water in equilibrium with a mixture of water vapor and nitrogen.
(¢) A liquid solution of alcohol in water in equilibrium with its vapor.

SOLUTION
(a) The system contains a single chemical species. There are two phases (one
liquid and one vapor). Thus

F=2-a+N=2-2+1=1

This result is in agreement with the well-known fact that at a given pressure water
has but one boiling point. Temperature or pressure, but not both, may be specified
for a system consisting of water in equilibrium with its vapor.

(b} Inthiscasetwo chemical species are present. Again there are two phases. Thus

F=2-2+N=2-2+2=2

We see from this example that the addition of an inert gas to a system of water in
equilibrium with its vapor changes the characteristics of the system. Now temperature
and pressure may be independently varied, but once they are fixed the system described
can exist in equilibrium only at a particular composition of the vapor phase. (If
nitrogen is taken to be negligibly soluble in water, we need not consider the composi-
tion of the liquid phase.) }

{c¢) Here N =2, and 7 = 2. Thus

F=2-w#+N=2-2+4+2=2

The phase-rule variables are temperature, pressure, and the phase compositions. The
composition variables are cither the weight or mole fractions of the species in a phase,
and they must sum to unity for each phase. Thus fixing the mole fraction of the water
in the liquid phase automatically fixes the mole fraction of the alcohol. These two
compositions cannot both be arbitrarily specified.

29 THE REVERSIBLE PROCESS

The development of thermodynamics is facilitated by the introduction of a special
kind of nonflow process characterized as reversible. A process is reversible when
its direction can be reversed at any point by an infinitesimal change in external
conditions.

To indicate the nature of reversible processes, we examine the simple
expansion of a gas in a piston/cylinder arrangement. The apparatus is shown in
Fig. 2.4, and is imagined to exist in an evacuated space. The gas trapped inside
the cylinder is chosen as the system; all else is the surroundings. Expansion
processes result when mass is removed from the piston. To make the process as
Slfnple as possible, we assume that the piston slides within the cylinder without
friction and that the piston and cylinder neither absorb nor transmit heat.
Moreover, because the density of the gas in the cylinder is low and because the
mass of gas is small, we ignore the effects of gravity on the contents of the
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Figure 2.4 Expansion of a gas.

cylinder. This means that gravity-induced pressure gradients in the gas are con-
sidered very small relative to its pressure and that changes in potential energy of
the gas are taken as negligible in comparison with the potential-energy changes
of the piston assembly.

The piston in Fig. 2.4 confines the gas at a pressure just sufficient to balance
the weight of the piston and all that it supports. This is a condition of equilibrium,
for the system has no tendency to change. Mass must be removed from the piston
if it is to rise. We imagine first that a mass m is suddenly slid from the piston to
a shelf (at the same level). The piston assembly accelerates upward, reaching its
maximum velocity at the point where the upward force on the piston just balances
its weight. Its momentum then carries it to a higher level, where it reverses
direction. If the piston were held in this position of maximum elevation, its
potential-energy increase would very nearly equal the work done by the gas
during the initial stroke. However, when unconstrained, the piston assembly
oscillates, with decreasing amplitude, ultimately coming to rest at a new equilib-
rium position at a level Al above its initial position.

The oscillations of the piston assembly are damped out because the viscous
nature of the gas gradually converts gross directed motion of the molecules into
chaotic molecular motion. This dissipative process transforms some of the work
initially done by the gas in accelerating the piston back into internal energy of
the gas. Once the process is initiated, no infinitesimal change in external condltlons
can reverse its direction; the process is irreversible.

All processes carried out in finite time with real substances are accompanied
in some degree by dissipative effects of one kind or another, and all are therefore
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irreversible. However, we can imagine processes that are free of dissipative effects.
For the expansion process of Fig. 2.4, they have their origin in the sudden removal
of a finite mass from the piston. The resulting imbalance of forces acting on the
piston causes its acceleration, and leads to its subsequent oscillation. The sudden
removal of smaller mass increments reduces but does not eliminate this dissipative
effect. Even the removal of an infinitesimal mass leads to piston oscillations of
infinitesimal amplitude and a consequent dissipative effect. However, one may
imagine a process wherein small mass increments are removed one after another
at a rate such that the piston’s rise is continuous, with oscillation only at the end
of the process.

The limiting case of removal of a succession of infinitesimal masses from the
piston is approximated when the mass m in Fig. 2.4 is replaced by a pile of
powder, blown in a very fine stream from the piston. During this process, the
piston rises at a uniform but very slow rate, and the powder collects in storage
at ever higher levels. The system is never more than differentially displaced either
from internal equilibrium or from equilibrium with its surroundings. If the removal
of powder from the piston is stopped and the direction of transfer of powder is
reversed, the process reverses direction and proceeds backward along its original
path. Both the system and its surroundings are ultin}ately restored to their initial
conditions. The original process is reversible.

Without the assumption of a frictionless piston, we cannot imagine a reversible
process. If the piston sticks because of friction, a finite mass must be removed
before the piston breaks free. Thus the equilibrium condition necessary to reversi-
bility is not maintained. Moreover, friction between two sliding parts is a mecha-
nism for the dissipation of mechanical energy into internal energy.

Our discussion has centered on a single nonflow process, the expansion of
a gas in a cylinder. The opposite process, compression of a gas in a cylinder, is
described in exactly the same way. There are, however, many processes which
are driven by other-than-mechanical forces. For example, heat flow occurs when
a temperature difference exists, electricity flows under the influence of an elec-
tromotive force, and chemical reactions occur because a chemical potential exists.
In general, a process is reversible when the net force driving it is only differential
in size. Thus heat is transferred reversibly when it flows from a finite object at
temperature T to another such object at temperature 7 — dT.

The concept of a reversible chemical reaction may be illustrated by the
decomposition of calcium carbonate, which when heated forms calcium oxide
and carbon dioxide gas. At equilibrium, this system exerts a definite decomposi-
tion pressure of CO, for a given temperature. When the pressure falls below this
value, CaCO, decomposes. Assume now that a cylinder is fitted with a frictionless
piston and contains CaCO,, Ca0Q, and CO, in equilibrium. It is immersed in a
constant-temperature bath, as shown in Fig. 2.5, with the temperature adjusted
to a value such that the decomposition pressure is just sufficient to balance the
weight on the piston. The system is in mechanical equilibrium, the temperature
of the system is equal to that of the bath, and the chemical reaction is held in
balance by the pressure of the CO,. Any change of conditions, however slight,
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upsets the equilibrium and causes the reacton to proceed in one direction or the
other. If the weight is differentially increased, the CO, pressure rises differentially,
and CO, combines with CaO to form CaCQO;, allowing the weight to fall slowly.
The heat given off by this reaction raises the temperature in the cylinder, and
heat flows to the bath. Decreasing the weight differentially sets off the opposite
chain of events. The same results are obtained if the temperature of the bath is
raised or lowered. If the temperature of the bath is raised differentially, heat
flows into the cylinder and calcium carbonate decomposes. The CO; generated
causes the pressure to rise differentially, which in turn raises the piston and
weight. This continues until the CaCQ, is completely decomposed. The process
is reversible, for the system is never more than differentially displaced from
equilibrium, and only a differential lowering of the temperature of the bath causes
the system to return to its initial state.

Chemical reactions can sometimes be carried out in an electrolytic cell, and
in this case they can be held in balance by an applied potential difference. If
such a cell consists of two electrodes, one of zinc and the other of platinum,
immersed in an aqueous solution of hydrochloric acid, the reaction that occurs is

Zn+ 2HCl = H, + ZnCl,

The cell is held under fixed conditions of temperature and pressure, and the
electrodes are connected externally to a potentiometer. If the electromotive force
produced by the cell is exactly balanced by the potential difference of the
potentiometer, the reaction is held in equilibrium. The reaction may be made to
proceed in the forward direction by a slight decrease in the opposing potential
difference, and it may be reversed by a corresponding increase in the potential
difference above the emf of the cell.

In summary, a reversible process is frictionless; it is never more than-differen-
tially removed from equilibrium, and therefore traverses a succession of equili-
brium states; the driving forces are differential in magnitude; its direction can
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be reversed at any point by a differential change in external conditions, causing
the process to retrace its path, leading to restoration of the initial state of the
system and its surroundings.

In Sec. 1.6 we derived an equation for the work of compression or expansion
of a gas caused by the differential displacement of a piston in a cylinder:

dW = PdV (1.2)

The work appearing in the surroundings is given by this equation only when
certain characteristics of the reversible process are realized. The first requirement
is that thé §§stem be no more than infinitesimally displaced from a state of internal
equilibrium characterized by uniformity of temperature and pressure. The system
then always has an identifiable set of properties, including pressure P. The second
requirement is that the system be no more than infinitesimally displaced from
mechanical equilibrium with its surroundings. In this event, the internal pressure
P is never more than minutely out of balance with the external force, and we
may make the substitution F = PA that transforms Eq. (1.1) into Eq. (1.2).
Processes for which these requirements are met are said to be mechanically
reversible, For such processes, Eq. (1.3) correctly yields the work appearing in
the surroundings: '

v,
W= J- Pdv (1.3)
Vl

The reversible process is ideal in that it can never be fully realized; it represents
a limit to the performance of actual processes. In thermodynamics, the calculation
of work is usually made for reversible processes, because of their tractability to
mathematical analysis. The choice is between these calculations and no caicula-
tions at all. Results for reversible processes in combination with appropriate
efficiencies yield reasonable approximations of the work for actual processes.

Example 2.10 A horizontal piston-and-cylinder arrangement is placed in a constant-
temperature bath. The piston slides in the cylinder with negligible friction, and an
external force holds it in place against an initial gas pressure of 14 bar. The initial
gas volume is .03 m’. The external force on the piston is reduced gradually, allowing
the gas to expand until its volume doubles. Experiment shows that under these
conditions the volume of the gas is related to its pressure in such a way that the
product PV is constant. Calculate the work done in moving the external force.

How much work would be done if the external force were suddenly reduced to
haif its initial value instead of being gradually reduced?

SoLUTION The process, carried out as first described, is mechanically reversible,
and Eq. (1.3} is applicable. If PV = k, then P = k/V, and

V2 dv v,
W=k I —=kin=
v, V v,
But
vV, =003m’ V, = 0.06 m*
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and
k= PV =PV, =(14 x 10°)(0.03) = 42,000]
Therefore
W=420001In2=29112]
The final pressure is
k _ 4200

=— = 7 bar
vV, 006

P, = 700,000 Pa or

In the second case, after half the initial force has been removed, the gas under-
goes a sudden expansion against a constant force equivalent to a pressure of 7 bar,
Eventually the system returns to an equilibrium condition identical with the final
state attained in the reversible process. Thus AV is the same as before, and the net
work accomplished equals the equivalent external pressure times the volume
change, or

W = (7 x 10°}(0.06 — 0.03) = 21,000 ]
This process is clearly irreversible, and compared with the reversible process is said
to have an efficiency of
21,000
29,112

0.721 or 72.1%

Example 2.11 The piston-and-cylinder arrangement shown in Fig. 2.6 contains
nitrogen gas trapped below the piston at a pressure of 7 bar. The piston is held in

Evacuated
space

Cylinder

Piston

Latch

Gas under
pressure

Figure 2.6 Diagram for Exampie 2.11.
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place by latches. The space behind the piston is evacuated. A pan is attached to the
piston rod and a mass m of 45 kg is fastened to the pan. The piston, piston rod, and
pan together have a mass of 23 kg. The latches holding the piston are released, allowing
the piston to rise rapidly until it strikes the top of the cylinder. The distance moved
by the piston is 0.5 m. The local acceleration of gravity is 9.8 m 8~2 Discuss the energy
changes that occur because of this process.

SoLUTION This example serves to illustrate some of the difficulties encountered
when irreversible nonflow processes are analyzed. We take the gas alone as the system.
According to the basic definition, the work done by the gas on the surroundings is
equal to [ P’ dV, where P’ is the pressure exerted on the face of the piston by the
gas. Because the expansion is very rapid, pressure gradients exist in the gas, and
neither P’ nor the integral can be evaluated. However, we can avoid the calculation
of W by returning to Eq. (2.1). The total energy change of the system (the gas) is its
internal-energy change. For Q =0, the energy changes of the surroundings consist
of potential-energy changes of the piston, rod, pan, and mass m and of internal-energy
changes of the piston, rod, and cylinder. Therefore, Eq. (2.1) may be written

AU+ (AU, + AEp ) =0
The potential-energy term is
AEp, = (45+123)(9.8)(0.5) #333.2Nm
Therefore
AU+ AUg,, = —333.2Nm = —333.2)

and one cannot determine the individual internal-energy changes which occur in the
piston-and-cylinder assembly.

2,10 NOTATION; CONSTANT-VOLUME
AND CONSTANT-PRESSURE PROCESSES

To this point, extensive properties have been represented by plain uppercase
letters, such as U and V, without specification of the amount of material to which
they apply. Henceforth we denote by these symbols only specific or molar proper-
ties. For a system of mass m or of n moles, we write mU or nU, mV or nV, etc.,
indicating explicitly the amount of material in the system. Thus, for a closed
system of n moles, Eq. (2.5) is replaced by

d(nU) = dQ — dW (2.13)

where Q and W always represent fotal heat and work, whatever the value of n.

The work of a mechanically reversible, nonflow process is given by
dW = Pd(nV) (2.14)

whence Eq. (2.13) becomes

d(nU)=dQ — Pd(nV) (2.15)

This is the general first-law equation for a mechanically reversible, nonflow
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process. If in addition the process occurs at constant volume, then
dQ =d(nl) (const V) (2.16)

Integration yields
Q=nAU (const V) (2.17)

Thus for a mechanically reversible, constant-volume, nonflow process, the heat
transferred is equal to the internal-energy change of the system.
Equation (2.6), which defines the enthalpy, may be written

nH = nlU + P(nV)
For an infinitesimal, constant-pressure change of state,
d(nH) =d(nU)+ Pd(nV)
Combining this with Eq. (2.15) gives
dQ = d(nH) {const P) (2.18)

Integration yields
Q=nAH (const P) (2.19)

Thus for a mechanically reversible, constant-pressure, nonflow process, the heat
transferred equals the enthalpy change of the system. Comparison of the last two
equations with Eqs. (2.16) and (2.17) shows that the enthalpy plays a role in
constant-pressure processes analogous to the internal energy in constant-volume
processes.

2.11 HEAT CAPACITY

We remarked earlier that heat is often thought of in relation to its effect on the
object to which or from which it is transferred. This is the origin of the idea that
a body has a capacity for heat. The smaller the temperature change in a body
caused by the transfer of a given quantity of heat, the greater its capacity. Indeed,
a heat capacity might be defined as
dQ
C=ar
The difficulty with this is that it makes C, like Q, a path-dependent quantity
rather than a state function. However, it does suggest the possibility that more
than one heat capacity might be usefully defined. .
There are in fact two heat capacities in common use for homogeneous fluids;
although their names belie the fact, both are state functions, defined unam-
biguously in relation to other state functions:
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Heat capacity at constant volume

ol
Cy=1— .
v ( 3T ) y (2.20)
Heat capacity at constant pressure
aH
Cp=|— )
P ( 3T ) , (2.21)

These definitions accommodate both molar heat capacities and specific heat
capacities (usually called specific heats), depending on whether U and H are
molar or specific properties.

Although the definitions of Cy and Cp make no reference to any process,
each allows an especially simple description of a particular process. Thus, if we
have a constant-volume process, Eq. (2.20) may be written

dU = CydT  (const V) (2.22)
Integration yields
TZ
AU = J C,dT {const V\) (2.23)
U

For a mechanically reversible, constant-volume process, this result may be com-
bined with Eq. (2.17) to give
T,

Q=nAU-=n j ’ CyvdT  (const V) (2.24)

L

Consider now the case in which the volume varies during the process, but
is the same at the end as at the beginning. Such a process cannot rightly be called
one of constant volume, even though V, = V, and AV = 0. However, changes in
state functions or properties are independent of path and are, therefore, the same
for all processes which lead from the same initial to the same final conditions.
Hence, property changes for this case may be calculated from the equations for
a truly constant-volume process leading from the same initial to the same final
conditions. For such processes Eq. (2.23) gives AU = | Cy dT, because U, Cy,
and T are all state functions or properties. On the other hand, Q does depend
on path, and Eq. (2.24) is a valid expression for Q only for a constant-volume
process. For the same reason, W is in general zero only for a constant-volume
process. This discussion illusirates the reason for the careful distinction made
between state functions and heat and work. The principle that state functions
are independent of path is an important and useful concept. Thus for the
calculation of property changes an actual process may be replaced by any other
Process which accomplishes the same change in state. Such an alternative process
may be selected, for example, because of its simplicity.

For a constant-pressure process, Eq. (2.21) may be written

dH = CpdT {(const P) (2.25)
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whence

process

TZ
AH = J. CpdT {const P) (2.26)
T
Combination with Eq. (2.19) for a mechanically reversible, constant-pressure
gives
TZ
Q=nAH=n j CpdT  (const P) (2.27)
T

Since H, Cp, and T are all state functions, Eq. (2.26) appties to any process for
which P, = P, whether or not it is actually carried out at constant pressure.
However, it is only for the mechanically reversible, constant-pressure path that
heat and work can be calculated by the equations Q = n AH, Q = n | CpdT, and
W="PnAV.

Example 2.12 An ideal gas is one for which PV/T is a constant regardless of the
changes it undergoes. Such a gas has a volume of 0.02271 m* mol ' at 0°C and | bar.
In the following problem, air may be considered an ideal gas with the constant heat
capacities

Cy =(5/2)R and Cp=(7/2)R

where R = 8.314 I mol™ K™'. Thus

Cy=20785 and  Cp=129.099Tmol™' K™’

The initial conditions of the air are | bar and 25°C. It is compressed to 5 bar and

25°C by two different mechanically reversible processes. Calculate the heat and work
requirements and AU and AH of the air for each path:

(a} Cooling at constant pressure followed by heating at constant volume.
(b) Heating at constant volume followed by cooling at constant pressure.

SOLUTION In each case we take the system as 1 mol of air contained in an imaginary
piston-and-cylinder arrangement. Since the processes considered are mechanically
reversible, the piston is imagined to move in the cylinder without friction. The initial
volume of air is

The

298.15
V, = (002271} =——| = 0.02479 m*
= )(273'15) 0.02479 m

final volume is

P, 1 s
V=V, = (0.02479) < | = 0.004958 m
P, 5

(a) In this case during the first step the air is cooled at the constant pressure of

I bar until the final volume of 0.004958 m’ is reached. During the second step the
volume is held constant at this value while the air is heated to its final state. The
temperature of the air at the end of the cooling step s

0.004958

T= (298.15)(
0.02479

) =35963K
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For this step the pressure is constant. By Eq. (2.27),

Q=4&H = Cp AT = (29.099)(59.63 — 298.15) = —6,941 J
Since AUV = AH — A(PV) = AH — P AV, then

AU = —6,941 — (1 x 10°)(0.004958 — 0.02479) = -4,958 ]
In the second step the air is heated at constant volume. By Eq. (2.24),

AU =Q = Cy AT = (20.785)(298.15 — 59.63) = 4,958 ]
The complete process represents the sum of its steps. Hence

Q=-6941+4958 = 1,983 ]
and
AU =-4958+4958=0
Since the first law applies to the entire process, AU = @ — W, and therefore
0=-1983-W
Whence
W=-1983J

. !
Equation (2.8}, AH = AU + A(PV), also applies to the entire process, But T, = T,
and therefore P, V, = P,V,. Hence A(PV) =0, and

AH =AU =0

(b) Two different steps are used in this case to reach the same final state of the
air. In the first step the air is heated at a constant volume equal to its initial value
until the final pressure of 5 bar is reached. During the second step the air is cooled
at the constant pressure of 5 bar to its final state. The air temperature at the end of
the first step is

T = (298.15)}(5/1) = 1,490.75 K
For this step the volume is constant, and
Q =AU = C, AT = (20.785)(1,490.75 — 298.15) = 24,788 J
For the second step pressure is constant, and
Q=AH = Cp AT =.(29.099)(298.15 - 1,490.75) = —34,703 J
Also
AU = AH — A(PV) = AH - PAV
AU = =34,703 — (5 x 10°)(0.004958 — 0.02479) = —24,788 ]
For the two steps combined,
Q =24788 — 34703 = —9915)
AU = 24,788 — 24,788 =0
W=Q-AU=-9915-0= —9,9[53
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and as before
AH=AU=0

The property changes AU and AH calculated for the given change in state are
the same for both paths. On the other hand the answers to parts (a) and (b) show
that Q and W depend on the path.

Example 2.13 Calculate the internal-energy and enthalpy changes that occur when
air is changed from an initial state of 40(°F) and 10{atm), where its molar volume is
36.49(ft)°(Ib mol)~' to a final state of 140(°F) and 1{atm). Assume for air that PV/T
is constant and that Cy = 5 and Cp = 7(Btu)(Ib mol)'(°F)™".

SOLUTION Since property changes are independent of the process that brings them
about, we can base calculations on a simple two-step, mechanically reversible process
in which 1(1b mol) of air is

(a) cooled at constant volume to the final pressure, and

(b) heated at constant pressure to the final temperature.

The absolute temperatures here are on the Rankine scale:
T, = 40 + 459.67 = 499.67(R)
T, = 140 + 459.67 = 599.67(R)

Since PV = kT, the ratio T/ P is constant for step (a). The intermediate temperature
between the two steps is therefore

T = (499.67)(1/10) = 49.97(R)
and the temperature changes for the two steps are

AT, = 4997 — 499.67 = —449.7(R)
and
AT, = 599.67 — 49.97 = 549.70(R)

For step (a), Eq. (2.23) becomes

AU, = C, AT,
whence

AU, = (5)(—449.70) = —2,248.5(Btu){Ib mol)~
For step (b), Eq. (2.26) becomes
' AH, = Cp AT,
whence
AH, = (7)(549.70) = 3,847.9(Btu)(lb mol) ™'
For step (a), Eq. (2.8) becomes

AH, =AU, + VAP,
Whence

AH, = —2,248.5 + 36.49(1 — 10)(2.7195) = —3,141.6(Btu)
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The factor 2.7195 converts the PV product from (atm)(ft)’, which is an energy unit,
into (Btu). For step. (b}, Eq. (2.8) becomes
AU, =AH, - PAV,
The final voluine of the air is given by
w:mgg
from which we find that V, = 437.93(ft)>. Therefore
AU, =3,847.9 — (1)(437.93 — 36.49)(2.7195) = 2,756.2( Btu}
For the two steps together,

AU = ~2,248.5 + 2,756.2 = 507.7(Btu)

and
AH = -3,141.6 + 3,847.9 = 706.3(Btu)

PROBLEMS

2.1 An insulated and nonconducting container filled with 10 kg of wager at 20°C is fitted with a stirrer.

The stirrer is made to turn by gravity acting on a weight of mass 25 kg.q'he weight falls slowly through

a distance of 10 m in driving the stirrer. Assuming that all work dane on the weight is transferred to

the water and that the local acceleration of gravity is 9.8 m s~2, determine:

(a} The amount of work done on the water.

(b) The internal-energy change of the water,

(¢) The final temperature of the water.

(d) The amount of heat that must be removed from the water to return it to its initial temperature.

(e} The total energy change of the universe because of (1} the process of lowering the weight,
(2) the process of cooling the water back to its initial temperature, and {3) both processes
together.

2.2 Rework Prob. 2.1 taking into account that the container changes in temperature along with the
water and has a heat capacity equivalent to 3 kg of water. Work the problem in two ways: (a) taking
the water and container as the system, and (b) taking the water alone as the system.

23 Comment on the feasibility of cooling your kitchen in the summer by opening the door to the
electrically powered refrigerator.

2.4 Liquid water at 100°C and 1 bar has an internal energy (on an arbitrary scale} of 419.0kJ kgt
and a specific volume of 1.044cm®g~".

(@) What is its enthalpy?

(b} The water is brought to the vapor state at 200°C and 800 kPa, where its enthalpy is
2,838.6 k) kg™' and its specific volume is 260.79 cm’ g~', Calculate AU and AH for the process.
1.5 With respect to 1kg of a substance,

(a) How much change in elevation must it undergo to change its potential energy by 1 kJ?

{b) Starting from rest, to what velocity must it accelerate so that its kinetic energy is 1 kJ?

{¢) What conclusions are indicated by these results?

2.6 Heat in the amount of 5kJ is added to a system while its internal energy decreases by 10kJ.
How much energy is transferred as work? For a process causing the same change of state but for
which the work is zero, how much heat is transferred?

2.7 A block of copper weighing 0.2 kg has an initial temperature of 400 K; 4 kg of water initially at
300 K is contained in a perfectly insulated tank, also made of copper and weighing 0.5 kg. The copper
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block is immersed in the water and allowed to come to equilibrium. What is the change in internal
eriergy of the copper block and of the waier? What is the change in energy of the entire system,
including the tank? Ignore effects of expansion and contraction, and assume that the specific heats
are constant at 4.184 J g~' K! for water and 0,380 Fg~' K™' for copper.

2.8 In the preceding problem, suppose that the copper block is dropped into the water from a height
of 50 m. Assuming no loss of watet from the tank, what is the change in internal energy of the water?
2.9 Nitrogen flows at steady state through 2 horizontal, insulated pipe with inside diameter of 2{in}
[5.08 cm]. A pressure drop results from flow through a partially opened valve. Just upstream from
the valve the pressure is 80(psia) [551.6 kPa], the temperature is 100(°F) [37.8°C], and the average
velocity is 15(ft}(s)™' [4.57ms ']. If the pressure just downstream from the valve is 20(psia)
[137.9 kPa], what is the temperature? Assume for nitrogen that PV/T = const, Cy = (5/2)R, and
Cp = (7/2)R. (Find R values in App. A.)

2.10 Liquid water at 70(°F) [294.26 K] flows in a straight horizontal pipe in which there is no exchange
of either heat or work with the surroundings. Its velocity is 30{ft)(s) ™' [9.144ms™'] in a pipe with
an internal diameter of 1(in} [2.54 cra] until it flows into a section where the pipe diameter abruptly
increases. What is the enthalpy change of the water if the downstream diameter is 1.5(in) [3.81 cm]?
If it is 3(in) [7.62 cm]? What is the maximum change in enthalpy for an enlargement in the pipe?
2.11 Water flows through a horizontal coil heated from the outside by high-temperature flue gases.
As it passes through the coil the water changes state from 2(atm} [202.66 kPa] and 180(°F) [82.2°C]
to I{atm) [101.33 kPa] and 250(°F) {121.1°C]. Its entering velocity is 10({ft}(s} ' [3.05m s '] and its
exit velocity is 600(ft}(s)™’ [182.9 ms™']. Determine the heat transferred through the coil per unit
mass of water. Enthalpies of the inlet and outlet water streams are:

Inlet: 148.0(Btu)(lb_) "' [344.2 kI kg™']

Qutlet: 1,168.8(Btu)(Ib,) " [2,718.5 kI kg™']

2.12 Steam flows at steady state through a converging, insulated nozzle, 10{in) [25.4 cm] long and
- with an inlet diameter of 2(in) [5.08 cm]. At the nozzle entrance (state 1), the temperature and pres-

sure are 600(°F) [312.56°C] and 100(psia) [689.5 kPa] and the velocity is 100(ft)(s) ™' [30.5ms™']. At

the nozzle exit (state 2), the steam temperature and pressure are 450(°F) [232.22°C] and 50(psia}

[344.75 kPa]. The enthalpy values are:

H, = 1,329.6(Btu)(Ib,} ' [3,092.5kT kg™']
H, = 1,259.6(Btu)(1b,,) "' [2,929.7 kT kg ']

What is the velocity of the steam at the nozzle exit, and what is the exit diameter?

2.13 A system consisting of n-butane and propane exists as two phases in vapor/liquid equilibrium
at 10 bar and 323 K. The mole fraction of propane is about 0.67 in the vapor phase and about 0.40
in the liquid phase. Additional pute propane is added to the system, which is brought again to
equilibrium at the same temperature and pressure, with both liquid and vapor phases still present.
What is the effect of the addition of propane on the mole fractions of propane in the vapor and
liquid phases?

2.14 In a natural gasoline fractionation system there are usually six chemical species present in
appreciable quantities: methane, ethane, propane, isobutane, n-butane, and n-pentane. A mixture
of these species is placed in a closed vessel from which all air has been removed. If the temperature
and pressure are fixed so that both liquid and vapor phases exist at equilibrium, how many additional
phase-rule variables must be chosen to fix the compositions of both phases?

If the temperature and pressure are to remain the same, is there any way that the composition
of the total contents of the vessel can be changed (by adding or removing material) without affecting
the compositions of the liquid and vapor phases?

2.15 1In the following take Cy = 20.8 and Cp = 29.1 Jmoli™' °C™" for nitrogen gas:

(a} Five moles of nitrogen at 80°C is contained in a rigid vessel. How much heat must be added to
the system to raise its temperature to 300°C if the vessel has a negligible heat capacity? If the
mass of the vessel is 100 kg and if its heat capacity is 0.5J g~' °C ™', how much heat is required?
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(b) Three moles of nitrogen at 230°C is contained in a piston/cylinder arrangement. How much heat
must be extracted from this system, which is kept at constant pressure, to cool it to 80°C if the
heat capacity of the piston and cylinder is negiected?

2.16 In the following take Cy = 5 and Cp = 7(Btu}(Ib mol)~'(°F)~"! for nitrogen gas:

(a) Five pound moles of nitrogen at 100(°F) is contained in a rigid vessel. How much heat must be
added to the system to raise its temperature to 400(°F) if the vessel has a negligible heat capacity?
If the vessel weighs 250(Ib,,} and has a heat capacity of 0.12(Btu){(Ib_)~'(°F)*, how much heat
is required?

(b) Three pound moles of nitrogen at 450(°F) is contained in a piston/cylinder arrangement. How
much heat must be extracted from this system, which is kept at constant pressure, to cool it to
100(°F) if the heat capacity of the piston and cylinder is neglected?

2.17 The internal energy U of an amount of gas is given by the equation,
Ur=1,5pPVv*

where P is in (psia) and V' is in (ft)*. The gas undergoes a mechanically reversible process from an
initial state at 1,500(psta) and 500(R). During the process V' is constant and equal to 10(ft)* and P
increases by 50 percent. Determine values for Q and AH' in (Btu) for the process.

2.18 The internal energy U of an amount of gas is given by the equation,
U =001 PV*

where P is in kPa, V' is in m*. The gas undergoes a mechanically reversible process from an initial
state at 10,000 kPa and 280 K. During the process V' is constant and equal to 0.3 m? and P increases
by 50 percent. Determine values for Q and AH' in kJ for the procesy

2.19 The path followed by a gas during a particular mechanically reversible process is described by
the equation

P+aVi=¢

where a and ¢ are constants. In the initial state, P, = 60 bar and V} = 0.002 m?; in the final state,
P, = 20bar and Vi = 0.004 m®. During the process, heat in the amount of 5000 J is transferred to
the gas. Determine W and AU’ for the process. Suppose the gas followed a different path connecting
the same initial and final states. Which of the quantities @, W, and AU’ must be unchanged? Why?

2.20 A particular substance undergoes a mechanically reversible process, expanding from an initial
state of 20 bar to a final state of 8 bar. The path for the process is described by the equation

0.036
P= T -4
where P is in bar and V* is in m®. If AU for the change of state is —1,400 J, determine W, @, and
AH"
2.21 One kilogram of air is heated reversibly at constant pressure from an initial state of 300 K and

I'bar until its volume triples. Calculate W, Q, AU, and AH for the process. Assume that air obeys
the relation PV/T = 83.14 bar cm® mol™' K™ and that Cp = 29 Jmol ™' K"
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THREE
VOLUMETRIC PROPERTIES OF PURE FLUIDS

3.1 THE PVT BEHAVIOR OF PURE SUBSTANCES

Thermodynamic properties, such as internal energy and enthalpy, from which
one calculates the heat and work requirements of industrial processes, are not
directly measurable. They can, however, be calculated from volumetric data. To
provide part of the background for such calculations, we describe in this chapter
the pressure-volume-temperature ( PVT ) behavior of pure fluids. Moreover, these
PVT relations are important in themselves for such purposes as the metering of
fluids and the sizing of vessels and pipelines.

Homogeneous fluids are normally divided into two classes, liquids and gases.
However, the distinction cannot always be sharply drawn, because the two phases
become indistinguishable at what is called the critical point. Measurements of the
vapor pressure of a pure solid at temperatures up to its triple point and measure-
ments of the vapor pressure of the pure liquid at temperatures above the triple
point lead to a pressure-vs.-temperature curve such as the one made up of lines
1-2 and 2-C in Fig. 3.1. The third line (2-3) shown on this graph gives the
solid/liquid equilibrium relationship. These three curves represent the conditions
of P and T required for the coexistence of two phases and thus are boundaries
for the single-phase regions. Line 1-2, the sublimation curve, separates the solid
and gas regions; line 2-3, the fusion curve, separates the solid and liquid regions;
line 2-C, the vaporization curve, separates the liquid and gas regions. The three
curves meet at the triple point, where all three phases coexist in equilibrium.
According to the phase rule [Eq. (2.12)], the triple point is invariant. If the system
exists along any of the two-phase lines of Fig. 3.1, it is univariant, whereas in
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Figure 3.1 PT diagram for a pure substance.

the single-phase regions it is divariant. Although the fusion curve 2-3 continues
upward indefinitely, the vaporization curve 2-C terminates at point C, the critical
point. The coordinates of this point are the critical pressure P. and the critical
temperature T,, the highest temperature and pressure at which a pure material
can exist in vapor/liquid equilibrium. The fluid region, existing at higher tem-
peratures and pressures, is marked off by dashed lines, which do not represent
phase transitions, but rather are limits fixed by the meanings accorded the words
liquid and gas. A phase is generally considered a liquid if it can be vaporized
by reduction in pressure at constant temperature. A phase is considered a gas if
it can be condensed by reduction of temperature at constant pressure. Since the
fluid region fits neither of these definitions, it is neither a gas nor a liquid. The
gas region is sometimes divided into two parts, as shown by the dotted line of
Fig. 3.1. A gas to the left of this line, which can be condensed either by compression
at constant temperature or by cooling at constant pressure, is called a vapor.
Because of the existence of the critical point, a path can be drawn from the
liquid region to the gas region that does not cross a phase boundary; e.g., the
path from A to B in Fig. 3.1. This path represents a gradual transition from the
liquid to the gas region. On the other hand, a path crossing phase boundary 2-C
includes a vaporization step, where an abrupt change of properties occurs.
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Figure 3.1 does not provide any information about volume; it merely displays
the phase boundaries on a PT diagram. Consider now a series of isotherms,
vertical lines on Fig. 3.1 lying to the right of the solid region, and a plot of
pressure vs. molar or specific volume for each isotherm. The PV diagram which
results is sketched in Fig. 3.2. The lines labeled T, and T, are isotherms at
temperatures greater than the critical. As seen from Fig. 3.1, such isotherms do
not cross a phase boundary and are therefore smooth. The lines labeled T; and
T, are for lower temperatures and consist of three distinct sections. The horizontal
sections represent the phase change between vapor and liquid. The constant
pressure at which this occurs for a given temperature is the vapor pressure, and
is given by the point on Fig. 3.1 where the isotherm crosses the vaporization
curve. Points along the horizontal lines of Fig. 3.2 represent all possible mixtures
of vapor and liquid in equilibrium, ranging from 100 percent liquid at the left
end to 100 percent vapor at the right end. The locus of these end points is the

' dome-shaped curve labeled ACB, the left half of which (from A to C) represents

' saturated liquid, and the right half (from C to B) saturated vapor. The area under
the dome ACB is the two-phase region, while the areas to the left and right are
the liquid and gas regions. The isotherms in the liquid region are very steep,
because liquid volumes change little with large changes in pressure.

The horizontal segments of the isotherms in the two-phase region become
progressively shorter at higher temperatures, being ultimately reduced to a point
at C. Thus, the critical isotherm, labeled T, exhibits a horizontal inflection at
the critical point C at the top of the dome. Here the liquid and vapor phases
cannot be distinguished from one another, because their properties are the same.

Figure 3.2 PV diagram for a pure fluid.
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The physical significance of the critical point becomes evident from the
changes that occur when a pure substance is heated in a sealed upright tube of
constant. volume. Such changes follow vertical lines in Fig. 3.2. They are also
shown on the PT diagram of Fig. 3.3, where the vaporiZation curve of Fig. 3.1
appears as a solid line. The dashed lines are constant-volume paths in the
single-phase regions only. If the tube is filled with either liquid or gas, the heating
process produces changes described by these lines, for example by the change
from D to E (liquid region) and by the change from F to G (vapor region}. The
corresponding vertical lines on Fig. 3.2 lie to the left and to the right of ACB.

If the tube is only partially filled with liquid (the remainder being vapor in
equilibrium with the liquid), heating at first causes changes described by the
vapor-pressure curve (solid line) of Fig. 3.3. If the meniscus separating the two
phases is initially near the bottom of the tube, liquid vaporizes, and the meniscus
recedes to the bottom of the tube and disappears as the last drop of liquid
vaporizes. For example in Fig. 3.3, one such path is from (J, K) to N; it then
follows the line of constant molar volume V, upon further heating. If the meniscus

_is originally near the top of the tube, the liquid expands upon heating until it

completely fills the tube. One such process is represented by the path from (J, K)
to P; it then follows the line of constant molar volume V] with continued heating.
The two paths are also shown by the dashed lines of Fig. 3.2, the first passing
through points K and N, and the second through J and P.

A unique filling of the tube, with a particular intermediate meniscus level,
causes the path of the heating process to coincide with the vapor-pressure curve
of Fig. 3.3 all the way to its end at the critical point C. On Fig. 3.2 the path is a
vertical line passing through the critical point. Physically, heating does not
produce much change in the level of the meniscus. As the critical point is
approached, the meniscus becomes indistinct, then hazy, and finally disappears
as the system changes from two phases (as represented by the vapor-pressure
curve) to a single phase (as represented by the region above C). Further heating
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produces changes represented in Fig. 3.3 by a path along V., the line of constant
molar volume corresponding to the critical volume of the fluid.

For the regions of the diagram where a single phase exists, Fig. 3.2 implies
a relation connecting P, V, and T which may be expressed by the functional

equation:
f(RV,T)=0

This means that an equation of state exists relating pressure, molar or specific
volume, and temperature for any pure homogeneous fluid in equilibrium states.
The simplest equation of state is for an ideal gas, PV = RT, a relation which has
approximate validity for the low-pressure gas region of Fig. 3.2 and which is
discussed in detail in Sec. 3.3.

An equation of state may be solved for any one of the three quantities P, V,
or T as a function of the other two. For example if V is considered a function
of T and P, then V = V(T, P), and

av av
=§— + *
dv (aT)pdT (aP) dP (3.1)

The partial derivatives in this equation have definite physical meanings and are
measurable quantities. For liquids they are related to two commonly tabulated
properties:

1. The volume expansivity

1{aV
=—[ZL 2
s=4(3F). (2)
2. The isothermal compressibility
_1fav
- V(aP )T (3:3)
Combination of Eqgs. (3.1) through (3.3) provides the general equation
| av_ -
7=ﬁdT—de 3.4

The isotherms for the liquid phase on the left side of Fig. 3.2 are very steep
and closely spaced. Thus both (3V/aP)r and (0V/aT)p, and hence both 8 and
«, are small. This characteristic behavior of liquids (outside the region of the
critical point) suggests an idealization, commonly employed in fluid mechanics
and known as the incompressible fluid, for which 8 and « are both zero. No real
fluid is in fact incompressible, but the idealization is nevertheless useful, because
it often provides a sufficiently realistic model of liquid behavior for practical
purposes. The incompressible fluid cannot be described by an equation of state
relating V to T and P, because V is constant.
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For real liquids 8 apd « are weak functions of temperature and pressure.
Thus for small changes in T and P little error is introduced if we regard them
as constant. Then Eq. (3.4) may be integrated to give

n—=,B(T2 T)) — x(P,— P;) (3.5)

This is a different order of approximation than the assumption of an incompress-
ible fluid.

Example 3.1 For acetone at 20°C and | bar,

B = 1.487 x 1073°C!

x =62 x 10 °bar™!
and

V=1287Tcm’g™!
Find:

(a) The value of (3P/aT)y.

(b) The pressure generated when acetone is heated at constant volume from
20°C and 1 bar to 30°C.

{¢) The volume change when acetone is changed fer 20°C and 1 bar to 0°C
and 10 bar.

SoLuTIiON

(a) The derivative (3P/3T)y is determined by application of Eq. (3.4) to the
case for which V = const and dV = (:

BdT —xdP =10 {const V)

or

(g) _B_LasTxio®
aT/)y "k e2xips ~24bar’C

(f:) If B and « are assumed constant in the 10°C temperature interval, then the
equation derived in {a) may be written (V¥ = const):

AP = ;ﬁAT = (24)(10) = 240 bar

and
P, =P+ AP =1+ 240 = 241 bar

(c) Direct substitution into Eq. {3.5) gives
v, _3
lnv = (1.487 x 1077)(—20) — (62 x 107%){9) = —0.0303
1
Whence

— =0.9702
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and
= (0.9702)(1.287) = 1.249 cm’ g™'

which gives
AV =V,—V, =1249 - 1287 = —0.038cm’ g’

3.2 THE VIRIAL EQUATION

Figure 3.2 indicates the complexity of the PVT behavior of a pure substance and
suggests the difficulty of its description by an equation. However, for the gas
region alone relatively simple equations often suffice. For an isotherm such as
T, we note from Fig. 3.2 that as P increases V decreases. Thus the PV product
for a gas or vapor should be much more nearly constant than either of its members.
This suggests the representation of PV along an isotherm by a power series
expansion in P:

PV=a+bP+cP+
If we let b = al', ¢ = a(’, etc., this equation becomes
PV=a(l+BP+CP+::) 3.6)

where a, B', C', etc., are constants for a given temperature and a given chemical
species.

In principle, the right-hand side of Eq. (3.6) is an infinite series. However,
in practice a finite number of terms is used. In fact, PVT data show that at low
pressures truncation after two terms provides satisfactory results. In general, the
greater the pressure range, the larger the number of terms required.

Parameters B’, C’, etc., are functions of temperature and the identity of the
chemical species; parameter a, however, is the same function of temperature for

all species. Data taken for various gases at a specific constant temperature (fixed ;

by use of a reproducible state such as the triple point of water or the normal

boiling point of water) show that plots of PV vs. P have the same limiting value

of PV as P - 0 for all gases. For P > 0, Eq. (3.6) becomes
. - *_
},1_12 (PV)=(PV)*=a
Thus, a is the same for all gases and depends on temperature only. Whence
(PV)*=a=f(T)

It is this remarkable property of gases that makes them valuable in ther-

mometry, for the limiting values of (PV)* are used to establish a temperature

scale which is independent of the identity of the gas used as thermometric fluid.
One need only fix the form of the functional relationship to T and define a
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quantitative scale; both steps are completely arbitrary. The s1mplest procedure,
and the one adopted internationally, is:

1. Fix the functional relationship so that (PV )* is directly proportional to T
(PV)*=a=RT (3.7)

where R is the proportionality constant.
2. Assign a value of 273.16 K to the temperature of the triple point of water

(PV)* = R x273.16 K (3.8)
where the subscript ¢ denotes the value at the triple point of water.

Division of Eq. (3.7) by Eq. (3.8) gives

(PV}* __TK
(PV)} 273.16K

or

(PV)*

TK=273.16
(PV)¥

} (3.9)

Equation (3.9) establishes the Kelvin temperature scale throughout the tem-
perature range for which limiting values of PV as P - 0 [values of (PV)*] are
experimentally accessible.

The state of a gas at the limiting condition where P > 0 deserves some
discussion. As the pressure on a gas is decreased, the individual molecules become
more and more widely separated. The volume of the molecules themselves
becomes a smaller and smaller fraction of the total volume occupied by the gas.
Furthermore, the forces of attraction between molecules become ever smaller
because of the increasing distances between them. In the limit, as the pressure
approaches zero, the molecules are separated by infinite distances. Their volumes
become negligible compared with the total volume of the gas, and the inter-
molecular forces approach zero. A gas which meets these conditions is said to
Pe ideal, and the temperature scale established by Eq. (3.9) is known as the
ideal-gas temperature scale.

The proportionality constant R in Eq. (3.7) is called the universal gas constant.
Its numerical value is determined by means of Eq. (3.8) from experimental PVT

data for gases:
_PF
273.16 K
Since PVT data cannot in fact be taken at a pressure approaching zero, data

taken at finite pressures are extrapolated to the zero-pressure state. The currently
accepted value of (PV)F is 22,711.6 cm® bar mol™'. Figure 3.4 shows how this
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T =273.16 K = triple point of water
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2 Air
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A,
lim( PV}, = (PV)¥= 22,711 cm’ bar mol ™'
P—=0
0

P

Figure 3.4 The limit of PV as P+ 0 is independent of the gas.

determination is made. Its leads to the following value of R:

_ 22,7116 cm’ bar mol !

= 83.144 cm® bar mol ' K™!
273.16 K

Through the use of conversion factors, R may be expressed in various units.

Commonly used values are given in App. A. .
With the establishment of the ideal-gas temperature scale, the constant & 1n

Eq. (3.6) may be replaced by RT, in accord with Eq. (3.7). Thus Eq. (3.6) becomes

PV _ 1+ BP+C'P+DP+--- (3.10)

V4
T

where the ratio PV/RT is called the compressibility factor and is giw.:n the sym-
bol Z An alternative and equivalent expression for Z, which is also in common
use, is

B C D
Z=]+—‘;+-F2'+?§+"‘ (3.11)

Both of these equations are known as virial expansions, and the parameters B’,
C’, D', etc., and B, C, D, etc., are called virial coefficients. Parameters B’ and B
are second virial coefficients; C’ and C are third virial coefficients; etc. For a
given gas the virial coefficients are functions of temperature only. N
Many other equations of state have been proposed for gases, but the virial
equations are the only ones having a firm basis in theory. The methods of statistical
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mechanics allow derivation of the virial equations and provide physical sig-
nificance to the virial coefficients. Thus, for the expansion in 1/V, the term B/ V
arises on account of interactions between pairs of molecules; the C/V? term,
on account of three-body interactions; etc. Since two-body interactions are many
times more common than three-body interactions, and three-body interactions
are many times more numerous than four-body interactions, eic., the contribu-
tions to Z of the successively higher-ordered terms fall off rapidiy.

The two sets of coefficients in Eqgs. (3.10) and (3.11) are related as follows:

B
B =—
RT
o C- B
~ (RT)?
. D-3BC+2B°
D=
(RT)
etc.

The first step in the derivation of these relations is elimination of P on the
right-hand side of Eq. (3.10} through use of Eq. (3.13). The resulting equation
is a power series in 1/V which is compared term by term with Eq. (3.11). This
comparison provides the equations relating the two sets of virial coefficients.
They hold exactly only for the two virial expansions as infinite series. For the
truncated forms of the virial equations treated in Sec. 3.4, these relations are only
approximate. '

3.3 THE IDEAL GAS

Since the terms B/ V, C/V?, etc., of the virial expansion [Eq. (3.11)] arise on
account of molecular interactions, the virial coefficients B, C, etc., would be zero
if no such interactions existed. The virial expansion would then reduce to

Z=1 or PV = RT

For a real gas, molecular interactions do exist, and exert an influence on the
observed behavior of the gas. As the pressure of a real gas is reduced at constant
temperature, V increases and the contributions of the terms B/ V, C/V?, etc.,
decrease. For a pressure approaching zero, Z approaches unity, not because of
any change in the virial coefficients, but because V becomes infinite. Thus in the
limit as the pressure approaches zero, the equation of state assumes the same
simple form as for the hypothetical case of B= C = -+ =0; that is

Z=1 or PV =RT

We know from the phase rule that the internal energy of a real gas is a
function of pressure as well as of temperature. This pressure dependency arises
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as a result of forces between the molecules. If such forces did not exist, no energy
would be required to alter the average intermolecular distance, and therefore no
energy would be required to bring about volume and pressure changes in a gas
at constant temperature. We conclude that, in the absence of molecular interac-
tions, the internal energy of a gas depends on temperature only. These consider-
ations of the behavior of a hypothetical gas in which no molecular forces exist
and of a real gas in the limit as pressure approaches zero lead to the definition
of an ideal gas as one whose macroscopic behavior is characterized by:

1. The equation of state

PV = RT (3.12)

2. An internal energy that is a function of temperature only, and as a result of
Eq. (2.20) a heat capacity C, which is also a function of temperature only.

The ideal gas is a model fluid that is useful because it is described by simple
equations frequently applicable as good approximations for actual gases. In
engineering calculations, gases at pressures up to a few bars may often be
considered ideal. The remainder of this section is therefore devoted to the
development of thermodynamic relationships for ideal gases.

The Constant-Volume Process

The equations which apply to a mechanically reversible constant-volume process
were developed in Sec. 2.10. No simplification results for an ideal gas. Thus for
one mole:

dU =d@ = C,dT (3.13)

For a finite change,

AU=Q=J. CydT (3.14)

Since both the internal energy and C, of an ideal gas are functions of temperature
only, AU for an ideal gas may always be calculated by | Cy dT, regardless of the
kind of process causing the change. This is demonstrated in Fig. 3.5, which shows
a graph of internal energy as a function of molar volume with temperature as a
parameter. Since U is independent of V at constant temperature, a plot of U vs.
V at constant temperature is a horizontal line. For different temperatures, U has
different values, and there is a separate line for each temperature. Two such lines
are shown in Fig. 3.5, one for temperature T, and one for temperature 7. The
dashed line connecting points a and b represents a constant-volume process for
which the temperature increases from T, to T, and the internal energy changes
by AU = U, — U,. This change in internal energy is given by Eq. (3.14) as
AU = f CvdT. The dashed lines connecting points a and ¢ and points a and 4
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Figure 3.5 Internal energy changes for an
v ideal gas.

represent other processes not occurring at constant volume but which also lead
from an initial temperature T to a final temperature T,. The graph clearly shows
that the change in U for these processes is the same as for the constant-volume
process, and it is therefore given by the same equation, namely, AU = [ C, dT.
However, AU is not equal to Q for these processes, because Q depends not only
on T, and T, but also on the path followed. \ '

The Constant-Pressure (Isobaric) Process

The equations which apply to a mechanically reversible, constant-pressure non-
flow process were developed in Sec. 2.10. For one mole,

dH = dQ = CpdT (3.15)
and

AH=Q= J CpdT (3.16)

Because the internal energy of an ideal gas is a function of temperature only,
both enthalpy and Cp also depend on temperature alone. This is evident from
the definition H = U + PV, or H = U + RT for an ideal gas, and from Eq. (2.21).
Therefore, just as AU = [ Cy,dT for any process involving an ideal gas, so
AH = I Cp dT not only for constant-pressure processes but for all finite processes.

These expressions for AU and AH and the definition of enthalpy imply a
simple relationship between Cp and Cy for an ideal gas; since

dH =dU+ RdT
then from Eqgs. (3.13) and (3.15)

deT = CvdT+ RdT
and

Cp=Cyv+R (3.17)
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This equation does not imply that C» and Cy are themselves constant for an
ideal gas, but only that they vary with temperature in such a way that their
difference is equal to the constant R

The Constant-Temperature (Isothermal) Process

The internal energy of an ideal gas cannot change in an isothermal process. Thus
for one mele of an ideal gas in any nonflow process,

dU=dQ—-dwW=0
and
Q=W
For a mechanically reversible nonflow process and with P = RT/ V, we have
immediately that
av
Q= W=JPdV=JRT7

Integration at constant temperature from the initial volume V; to the final volume
V, gives

V.
Q=W=RThh (3.18)
1

Since P,/ P, = V,/ V, for the isothermal process, Eq. (3.18) may also be written:

P
Q=W=RTIn= (3.19)
P,

The Adiabatic Process

An adiabatic process is one for which there is no heat transfer between the system
and its surroundings; that is, dQ = 0. Therefore, application of the first law to
one mole of an ideal gas in mechanically reversible nonflow processes gives

dU = —dW = —PdV

Since the change in internal energy for any process involving an ideal gas is given
by Eq. (3.13), this becomes

CydT = —-PdVv
Substituting RT/V for P and rearranging, we get

— = 20
T Cy V (320)
If the ratio of heat capacities Cp/ Cy is designated by 7, then in view of }'_f,q. 3amn,
Cv+R R
= =1+—
"o Cy
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or
R
——=y—-1 (3.21)
Substitution in Eq. (3.20) gives
dT

dv
7= -5

If v is constant,t integration yields

T, V;
In==2=—(vy— =2
nT] (vy—1n v,

or

T, {V\\7
T.-\v, (3.22)

This eguation relates temperature and volume for a mechanically reversible
adiabatic process involving an ideal gas with constant heat capacities. The
analogous relationships between temperature and pressure and between pressure
and volume can be obtained from Eq. (3.22) and the ideal-gas equation. Since
P,V,/T, = P,V,/ T,, we may eliminate V,/V, from Eq. (3.22), obtaining:

T. P {y—1)y
FT = (Ff) (3.23)

A comparison of Egs. (3.22) and (3.23) shows that
Vl r—1 PZ {y—1)/¥
AR

P,V = P,VI = PV” = const (3.24)

or

The work of an adiabatic process may be obtained from the relation
—dW =dU = CydT (3.25)
If Cy is constant, integration gives

W=-AU=-Cy AT (3.26)

T The assumption that ¥ is constant for an ideal gas is equivalent to the assumption that the heat
capacities themselves are constant. This is the only way that the ratio Cp/Cy, = ¥ and the difference
Cp - Cy = R can both be constant. However, since both Cp and Cy, increase with temperature, their
Tatio v is less sensitive to temperature than the heat capacities themselves.
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Alternative forms of Eq. (3.26) are obtained if Cy is eliminated by Eq. (3.21):

—~RAT _RT,-RT,

W=_‘CvAT=
y—1 y—1

Since RT, = P,V, and RT, = P,V,, this expression may also be written

PV, - PV,
y-1

W= (3.27)

If V, is not known, as is usually the case, it can be eliminated from Eq. (3.27)
by Eq. (3.24). This leads to the expression

~ PV, _(&)(‘y—l)/v] 3 RT, [ _(-&)(1’—1)/7]
W——-———y_l[l b -1 \5 (3.28)

The same result is obtained when the relation between P and V given by Eq.
(3.24) is used for integration of the expression W = | PdV.

Equations (3.22) through (3.28) are for ideal gases with constant heat
capacities. They also require the process to be mechanically reversible as well as
adiabatic. Processes which are adiabatic but not mechanically reversible are not
described by these equations.

As applied to real gases, Egs. (3.22) through (3.28) often yield satisfactory
. approximations, provided the deviations from ideality are not too great. For
monatomic gases, ¥ = 1.67; approximate values of y are 1.4 for diatomic gases
and 1.3 for simple polyatomic gases such as CO,, SO,, NH;, and CH,.

The Polytropic Process

This is the general case for which no specific conditions other than mechanical
reversibility are imposed. Thus only the general equations applying to an ideal
gas in a nonflow process apply. For one mole, these are:

dU=dQ—-dW AU=Q-W (firstlaw)
dW = PdVv W= " PdVv

dU = C,dT AU = [ CydT

dH = CpdT AH = . CpdT

Values for Q cannot be determined directly, but must be obtained through
the first law. Substitution for dUU and dW gives ’

dQ = CydT + PdV (3.29)

T
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and
Q= J' CydT + J Pdv (3.30)

Since the first law has been used for the calculation of @, the work must be
calculated directly from the integral [ PdV.

The equations developed in this section have been derived for mechanically
reversible nonftow processes involving ideal gases. However, those equations
which relate state functions only are valid for ideal gases regardless of the process
and apply equally to reversible and irreversible flow and nonflow processes,
because changes in state functions depend only on the initial and final states of
the system. On the other hand, an equation for Q or W is specific to the case
considered in its derivation.

The work of an irreversible process is calculated by a two-step procedure.
First, W is determined for a mechanically reversible process that accomplishes
the same change of state. Second, this result is multiplied or divided by an
efficiency to give the actual work. If the process produces work, the reversible
value is too large and must be multiplied by an efficiency,If the process requires
work, the reversible value is too small and must be divided by an efficiency.

Applications of the concepts and equations developed in this section are
illustrated in the examples that follow. In particular, the work of irreversible
processes is treated in Example 3.3.

Example 3.2 Air is compressed from an initial condition of 1 bar and 25°C to a final
state of 5 bar and 25°C by three different mechanically reversible processes:

(a) Heating at constant volume followed by cooling at constant pressure.

(b) Isothermal compression.

(c¢) Adiabatic compression followed by cooling at constant volume.

At these conditions, air may be considered an ideal gas with the constant heat
capacities, Cy = (5/2)R and Cp = (7/2)R.

Calculate the work required, heat transferred, and the changes in internal energy
and enthalpy of the air for each process.

SOLUTION In each case the system is taken as 1 mol of air, contained in an imaginary
frictionless piston-and-cylinder arrangement. For R = 8.314 Jmol ' K™’

Cy =20785  and Cp =29.099 Fmol ' K™!

The initial and final conditions of the air are identical with those of Example 2.12.
It was shown there that

V,=0.02479 and V. =10.004958 m’

(a) This part of the problem is identical with part (b} of Example 2.12. However,
it may now be solved in a simpler manner. The temperature at the end of the
constant-volume heating step was calculated in Example 2.12 as 1,490.75 K. Also for
this step W = 0 and therefore

Q=AU=C, AT =24,788]
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Moreover,
AH = Cp AT = (29.099}(1,490.75 — 298.15) = 34,703 J
For the second step at constant pressure, Eq. (3.16) yields
Q=AH = Cp AT = (29.099)(298.15 - 1,490.75) = 34,703 J
AU = Cy AT = (20.785)(298.15 — 1,490.75) = —24,788 J
and
W=0Q—-AU = -34703 — (—24,788) = —9,915)
For the entire process,
AU =24,788 — 24,788 =0
AH =34703 - 34,703 =0
Q =24788 — 34,703 = —9,915)
and
W=-99]5-0=-9915]
(b) For the isothermal compression of an ideal gas,
AU=AH =0
Equation (3.19) gives

P 1
Q=W-=RT lnFI-= (8.314)(298.15) lng =-3,9901]
2

(¢) The initial adiabatic compression of the air takes it to its final volume of
0.004958 m®. The temperature and pressure at this point are given by Egs. (3.22) and
(3.24):

IA%at 0.02479 \*
=T =(298.15 ————] =56757TK
v, 0.004958

and

AN 0.02479 \'*
P=pPt=2) =(1}|——= =9.52b
2 '(Vz) ( )(0.004958) 952 bar
For this step Q = 0. Hence

AU =—-W=Cy, AT = (20.785)(567.57 — 298.15) = 5,600]
and

AH = Cp AT = (29.099}(567.57 — 298.15) = 7,840

For the second step AV = 0 and W = 0; therefore
Q=AU =Cy AT = (20.785)(298.15 — 567.57) = 5,600

and
AH = Cp AT = (29.099)(298.15 — 567.57) = —7,840]

P/bar

— i
o —e
B ]
- (2) - - -
a
. N
i |
L
B (1)
i 1 1 i L
5 10 15 20 25
Vx10°/m? Figure 3.6 Diagram for Example 3.2.
For the entire process, t
AU = 5,600 - 5,600 =0
AH =17.840—7840 =0
Q=0-5,600=-5600]
and

W=~5600+0=—5600J

Figure 3.6 shows these processes sketched on a PV diagram.

A comparison of the answers to the three parts of this problem shows that the
property changes AU and AH are the same regardless of the path for which they are
calculated. On the other hand, Q and W depend on path.

The work for each of these mechanically reversible processes can alse be calcu-
lated by W = | PdV. The value of this integral is proportional to the area below the
curve on the PV diagram representing the path of the process. The relative sizes of
these areas correspond to the numerical values of W.

Example 3.3 Anideal gas undergoes the following sequence of mechanically reversible
processes:

(a) From an initial state of 70°C and 1 bar, it is compressed adiabatically to 150°C.

(b) It is then cooled from 150 to 70°C at constant pressure.

(c) Finally, it is expanded isothermally to its original state.

Calculate W, Q, AU, and AH for each of the three processes and for the entire
cycle. Take Cy = (3/2)R and Cp = (5/2)R.

If these processes are carried out irreversibly but so as to accomplish exactly the
same changes of state (i.e., the same changes in P, T, U, and H), then the values of
Q and W are different. Calculate values of ) and W for an efficiency of 80 percent
for each step.
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SoLUTION From the given information, we have

Cy = (3/2)(8.314) = 12.471 Tmol ' K™
and

Cp = (5/2)(8.314) = 20785 J mol ' K™*

The cycle is represented on a PV diagram in Fig. 3.7. Consider first the mechanically
reversible operation of the cycle, and take as a basis 1 mol of gas.
(a) For an ideal gas undergoing adiabatic compression,

AU =-W=C, AT = (12.471)(150 — 70) = 998 J
AH = Cp AT =(20.785)(150 — 70) = 1,663 ]
and
Q=0
Pressure P, can be found from Eq. (3.23)

AR (150+273..15)2’5
=p(2 = (| =—===) =16890b
& P‘(T.) M Zox77315 o

(b) Equation (3.16) is applicable to the constant-pressure process:
AH = Q= Cp AT =(20.785)(70 — 150) = ~1,663 J
Also
AU = Cy AT = (12471)(7¢ - 150) = —998 ]
By the first law,
W=Q-AU=-1,663-(~-998) = —6651]

(¢) Forideal gases AL/ and AH are zero for an isothermal process. Since Py = P,
Eq. (3.19) gives

1.689
1

P
@=W=RT ln},2 = (8.314)(343.15) In =1,495]
1

L3 b 2
0°C 150°C

70°
h C

v Figure 3.7 Diagram for Example 3.3.
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For the entire process,
Q=0-1,663+1,495=-168J
W= —998 — 665+ 1,495 =—168]J
AU =998 -9984+0=10
and
AH=1,663—-1,663+0=10
The property changes AU and AH both are zero for the entire cycle, because the
initial and final states are identical. Note also that @ = W for the cycle. This follows
from the first law with AU = 0.

If the same changes of state are carried out by irreversible processes, the property
changes for the steps are identical with those already calculated. However, the values
of Q and W are different.

(a) This step can no longer be adiabatic. For mechanically reversible, adiabatic

compression, W was —998 J. If the process is 80 percent efficient compared with this,
then

Since AU is still 998 J, by the first law,
Q=AU+ W =998 — 1,248 = —250]

(b} The work for the mechanically reversible cooling process was —665 J. Fot
the irreversible process,

~665
W=—"=-831J
0.80

and
Q=AU+ W=-998 —831 = —-1,829]

(¢) As work is done by the system in this step, the irreversible work is less than
the reversible work:

W = (0.80)(1,495) = 1,196]
and
Q=AU+W=0+1,196=1,1961]

For the entire cycle, AU and AH are again zero, but

Q=-250-1,829+1,196=—883J
and
W=-1,248 — 831 + 1,196 = —883 ]

A summary of these results is given in the following table. All values are in joules.
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Mechanically reversible Irreversible
AU AH Q w AU AH Q W
Step a 998 1,663 0 —998 998 1,663 —250 —1,248
Step b -998 -1,663 —1,663  —665 -998 1663 —1,829 -831 3
Step ¢ 0 0 1,495 1,495 1] 0 1,196 1,196 3
Cycle 0 0 -168 168 0 0 —883 —883

The cycle is one which requires work and produces an equal amount of heat.
The striking feature of the comparison shown in the table is that the total work
required when the cycle consists of three irreversible steps is more than five times
the total work required when the steps are mechanically reversibie, even though each
irreversible step is 80 percent efficient.

Example 3.4 A 0.4-kg mass of nitrogen at 27°C is held in a vertical cyclinder by a
frictionless piston. The weight of the piston makes the pressure of the nitrogen 0.35
bar higher than that of the surrounding atmosphere, which is at 1 bar and 27°C. Thus
the nitrogen is initially at a pressure of 1.35 bar, and is in mechanical and thermat
equilibrium with its surroundings. Consider the following sequence of processes:

(a) The apparatus is immersed in an ice/water bath and is allowed to come to
equilibrium.

(b) A variable force is slowly applied to the piston so that the nitrogen is
compressed reversibly at the constant temperature of 0°C until the gas volume reaches
one-half that at the end of step a. At this point the piston is held in place by latches.

{c) The apparatus is removed from the ice/water bath and comes to thermal
equilibrium in the surrounding atmosphere at 27°C.

(d) The latches are removed, and the apparatus is allowed to return to complete
equilibrium with its surroundings. ’

Sketch the entire cycle on a PV diagram, and calculate Q, W, AU, and AH for
the nitrogen for each step of the cycle. Nitrogen may be considered an ideal gas for
whlch Cv (5/2)R and Cp = (7/2]R s

SOLUTION At the end of the cycle the nitrogen returns to its initial conditions of
27°C and 1.35 bar. The steps making up the cycle are

(a) 27°C, 1.35 bar ———— (°C, 1.35 bar
(b 0°C, V;—— " s 0°C, V, =4V,
(e) 0°C, Vo — Y L 27°C, V= V,
(d) 27°C, Vi—11 1+ 27°C, 1.35 bar

(a) In this step, represented by the horizontal line marked a in Fig. 3.8, the
nitrogen is cooled at constant pressure. The process is mechanically reversible, even
though the heat transfer occurs irreversibly as the result of a finite temperature
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Figure 3.8 Diagram for Example 3.4.

difference. Thus for the mass m of nitrogen
mRAT

Wd=mIPdemPAV=

With R =8.314Jmel ' K™', m =400g, and the molar mass (molecular weight)

M= 28, we have
400)(8.314H0 — 27
w yn ( )(8 328 )( )

—3,207]
and
Q. =mAH, = mCp AT = (400){7/2)(8.314/28)(0 — 27) = —11,224]
From the first law,
mAU, = Q, - W, = —11,224 — (-3,207) = -8,017J
The internal-energy change may also be evaluated from Eq. (3.14):
mAU, = mCy AT = (400)(5/2)(8.314/28)(0 - 27) = —8,017 §

(b) The process carried out here is an isothermal compression shown by curve

b in Fig. 3.8. Since the internal energy cannot change at constant temperature,
AU, =AH, =0
and under conditions of mechanical reversibility,

mRTl V _ (400)(8314)273.15)
MV, 28

—22,487)

Qb_wb_
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(¢) For this constant-volume process, W, = 0 and, according to Eq. (3.14),
Q. =mAU, = mCy AT = (400)(5/2)(8.314/28)(27 — 0) = 8,017 ]
In addition,
mAH, = mCp AT = (400)(7/2)(8.314/28)(27 - 0) = 11,224 ]

(d) The first three steps of the cycle can be sketched on a PV diagram without
difficulty, because their paths are known. For the final step this is not possible, because
the process is irreversible. When the latches holding the frictionless piston are removed,
the piston moves rapidly upward and, owing to its inertia, goes beyond its equilibrium
position. This initial expansion is nearly equivalent to a reversible, adiabatic process,
because little turbulence results from a single stroke of the piston and because heat
transfer is slow. The subsequent oscillations of the piston as it gradually reaches its
final equilibrium position are the primary source of the irreversibility. This process
goes on for a considerable time during which heat transfer occurs in an amount suffi-
cient to return the nitrogen to its initial temperature of 27°C at a pressure of 1.35 bar.
It is not possible to specify the exact path of an irreversible process. However, the
dashed lines in Fig. 3.8 indicate roughly the form it takes.

Since the process is irreversible, the work done cannot be obtained from the
integral [ PdV. Indeed, it is not possible to calculate W from the given information.
During the initial expansion of the gas, the work is approximately that of a mechani-
cally reversible adiabatic expansion. This work transfers energy from the gas to the
surroundings, where it pushes back the atmosphere and increases the potential energy
of the piston. If the piston were held at its position of maximum travel, the major
part of the itreversibility would be avoided, and the work could be calculated to a
good approximation by the equations for a reversible adiabatic éxpansion. However,
as the process actually occurs, the oscillating piston causes turbulence or stirring in
both the gas and the atmosphere, and there is no way to know the extent of eithér.
This makes impossible the calculation of either @ or W,

Unlike work and heat, the property changes of the system for step d can be
computed, since they depend solely on the initial and final states, and these are
known. The internal energy and enthalpy of an ideal gas are functions of temperature
only. Therefore, AU; and AH, are zero, because the initial and final temperatures
are both 27°C. The first law applies to irreversible as well as to reversible processes,
and for step d it becomes

AU;=Q; - W; =0
or
Q=W

Although neither Q, nor W; can be calculated, they clearly are equal. Step d results
in net energy changes consisting of elevation of the piston and atmosphere and a
compensating decrease in the internal energy of the surrounding atmosphere.

Example 3.5 Air is flowing at a steady rate through a horizontal insulated pipe which
contains a partly closed valve. The conditions of the air upstream from the valve are
20°C and 6 bar, and the downstream pressure is 3 bar. The line leaving the valve is
enough larger than the entrance line that the kinetic-energy change of the air in
Howing through the valve is negligible. If air is regarded as an ideal gas, what is the
temperature of the air some distance downstream from the valve?
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SoLuTiON Flow through a partly closed valve is known as a throttling process. Since
flow is at a steady rate, Eq. (2.10) applies. The line is insulated, making @ small;
moreover, the potential-energy and kinetic-energy changes are negligible. Since no
shaft work is accomplished, W, = 0, Hence, Eq. (2.10) reduces to

AH =0

Thus, for an ideal gas,

TZ
AH=I CpdT =90

T
and
Tz = T]

The result that AH = 0 is general for a throttling process, because the assumptions
of negligible heat transfer and potential- and kinetic-energy changes are usually valid.
If the fluid is an ideal gas, no temperature change occurs. The throttling process is
inherently irreversible, but this is immaterial to the calculation of AH = ]' CpdT,
which is a property relation of general validity for an ideal gas.

L
3.4 APPLICATION OF THE VIRIAL EQUATION

The two forms of the virial expansion given by Eqs. (3.10) and (3.11) are infinite
series. For engineering purposes their use is practical only where convergence is
very rapid, that is, where no more than two or three terms are required to yield
reasonably close approximations to the values of the series. This is realized for
gases and vapors at low to moderate pressures.

Figure 3.9 shows a compressibility-factor graph for methane. Values of the
compressibility factor Z (as calculated from PVT data for methane by the defining
equation Z = PV/RT) are plotted against pressure for various constant tem-
peratures. The resulting isotherms show graphically what the virial expansion in
P is intended to represent analytically. All isotherms originate at the value Z = |
for P = 0. In addition the isotherms are nearly straight lines at low pressures.
Thus the tangent to an isotherm at P = Q is a good approximation of the isotherm
for a finite pressure range. Differentiation of Eq. (3.10} for a given temperature
gives

dZ
—=RB'+2C'P+3D'P’+---

dpP
dz
- - B
(&)...

Thus the equation of the tangent line is

from which

Z=1+B'P
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Figure 3.9 Compressibility-graph factor for methane.

a result also given by truncation of Eq. (3.10)} to two terms. In addition we may
use the approximate relation B’ = B/ RT to express the equation for Z in terms
of the coefficient B:

Z=r =t — (331)

Since Eq. (3.11} may also be truncated to two terms for application at low
pressures,

Z=tr=14% (3.32)

a question arises as to which equation provides the better representation of
low-pressure PVT data. Experience shows that Eq. (3.31) is at least as accurate
as Eq. (3.32). Moreover, it is much more convenient for use in most applications,
because it may be solved explicitly for either pressure or volume, Thus when the
virial equation is truncated to two terms, Eq. (3.31) is preferred. This equation
satisfactorily represents the PVT behavior of most vapors at subcritical tem-
peratures up to a pressure of about 15 bar. At higher temperatures it is appropriate
for gases over an increasing pressure range as the temperature increases. Values
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of B, the second virial coefficient, depend on the nature of the gas and on
temperature. Experimental values are available for a number of gases. Moreover,
estimation of second virial coeflicients is possible where no data are available,
as discussed in Sec. 3.6.

For pressures above the range of applicability of Eq. (3.31) but below about
50 bar, the virial equation truncated to three terms usually provides excelient
results. In this case Eq. (3.11), the expansion in 1/ V, is far superior to Eq. (3.10).
Thus when the virial equation is truncated to three terms, the appropriate form is

PV B C
Z=rm= T4 (3.33)

This equation is explicit in pressure, but cubic in volume. Solution for V is
usually done by an iterative scheme with a calculator.

Values of C, like those of B, depend on the identity of the gas and on the
temperature. However, much less is known about third virial coefficients than
about second virial coefficients, though data for g number of gases can be found
in the literature. Since virial coefficients beyond the third are rarely known and
since the virial expansion with more than three terms becomes unwieldy, virial
equations of more than three terms are rarely used. Alternative equations are
described in Secs. 3.5 and 3.6, which follow.

Example 3.6 Reported values for the virial coefficients of isopropanol vapor at 200°C
are:
B = -388 cm® mol™

C = —26,000 cm® mol ?

Calculate V and Z for isopropanol vapor at 200°C and 10 bar by:
(a) The ideal-gas equation.
(b) Equation (3.31).
(¢) Equation (3.33).

SOLUTION The absolute temperature is T = 473.15 K, and the appropriate value of
the gas constant is R = 83.14 cm® bar mol™' K™\,
{a} By the ideal-gas equation,
RT (83.14)(473.15
V=—= (B3.14)(473.15) 3,934 cm® mol !

and of course Z = 1,
(b} Solving Eq. (3.31) for V, we find

RT
V=—5+ B = 3,934 - 388 = 3,546 cm’ mol

Whence
PY V3546

= === = (.9014
RT RT/P 3,934 ?
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{¢) To facilitate iteration, we write Eq. (3.33) as

v =F(14 2, )
i+ = P V. V?

where subscript { denotes the iteration number. For the first iteration, i = 0, and

where V¥, is an initial estimate of the molar volume. For this we use the ideal-gas

value, which gives
388 26,000
V,=3934{1 - ———-———) =13539
1= 393 ( 3,934 (3,934)2)

The second iteration depends on this result:

P vV, Vi
whence
388 26,000
V=393 1-——-— = 3,495
? 3’93( 3,539 (3,539)2) 3

Iteration continues until the difference V,,, — V, is insignificant, and leads after five
iterations to the final value,

V = 3,488 cm® mol ™!

from which Z = 0.8866. In comparison with this result, the ideal-gas value is 13
percent too high and Eq. (3.31) gives a value 1.7 percent too high.

3.5 CUBIC EQUATIONS OF STATE

For an accurate description of the PVT behavior of fluids over wide ranges of
temperature and pressure, an equation of state more comprehensive than the
virial equation is required. Such an equation must be sufficiently general to apply
to liquids as well as to gases and vapors. Yet it must not be so complex as to
present excessive numerical or analytical difficulties in application.

Polynomial equations that are cubic in molar volume offer a compromise
between generality and simplicity that is suitable to many purposes. Cubic
equations are in fact the simplest equations capable of representing both liquid
and vapor behavior. The first general cubic equation of state was proposed by
J. D. van der Waalst in 1873:

p-T 4 (3.34)

t Johannes Diderik van der Waals (1837-1923}, Duich physicist who won the 1910 Nobel Prize
for physics.

YULUNMEBIRIL RUFBERILIES UF FUNRDE FLULLD 01

Here, a and b are positive constants; when they are zero, the ideal-gas equation
is recovered.

Given values of a and b for a particular fluid, one can calculate Pias a
function of V for various values of T. Figure 3.10 is a schematic PV diagram.
showing three such isotherms. Superimposed is the curve representing states of
saturated liquid and saturated vapor. For the isotherm T, > T, pressure is a
monotonically decreasing function with increasing molar volume. The critical
isotherm (labeled T,) contains the horizontal inflection at C characteristic of the
critical point. For the isotherm T, < T,, the pressure decreases rapidly in the
liquid region with increasing V; after crossing the saturated-liquid line, it goes
through a minimum, rises to a maximum, and then decreases, crossing the
saturated-vapor line and continuing into the vapor region. Experimental isotherms
do not exhibit this smooth transition from the liquid to the vapor region: rather,
they contain a horizontal segment within the two-phase region where saturated
liquid and saturated vapor coexist in varying proportions at the saturation or

b

V*(liq) V=i(vap)
v

Figure 3.10 Isotherms as given by a cubic equation of state.
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vapor pressure. This behavior, shown by the dashed line of Fig. 3.10, cannot be
represented analytically, and we accept as inevitable the unrealistic behavior of
equations of state in the two-phase region.

Actually, the PV behavior predicted in this region by proper cubic equations
of state is not wholly fictitious. When the pressure is decreased on saturated
liguid devoid of vapor-nucleation sites in a carefully controlled experiment,
vaporization does not occur, and the liquid phase persists alone to pressures well
below its vapor pressure. Similarly, raising the pressure on a saturated vapor in
a suitable experiment does not cause condensation, and the vapor persists alone
to pressures well above the vapor pressure. These nonequilibrium or metastable
states of superheated liquid and subcooled vapor are approximated by those
portions of the PV isotherm which lie in the two-phase region adjacent to the
saturated-liquid and saturated-vapor states.

The modern development of cubic equations of state started in 1949 with
publication of the Redlich/ Kwong equation:?

_ RT a
T V-b TV(V+b)

P (3.35)

This equation, like other cubic equations of state, has three volume roots, of
which two may be complex. Physically meaningful values of V are always real,
positive, and greater than the constant b. With reference to Fig. 3.10, we see that
when T > T, solution for V at any positive value of P yields only one real
positive root. When T = T, this is also true, except at the critical pressure, where
there are three roots, all equal to V,. For T < T, there is but one real positive
root at high pressures, but for a range of lower pressures three real positive roots
exist. Here, the middle root is of ne significance; the smallest root is a liquid or
liquidlike volume, and the largest root is a vapor or vaporlike volume. The
volumes of saturated liquid and saturated vapor are given by the smallest and
largest roots when P is the saturation or vapor pressure.

‘Although one may solve explicitly for the roots of a cubic equation of state,
in practice iterative procedures are more often used. These are practical only
when they converge on the desired root. Complete assurance in this regard cannot
be given, but the following schemes are usually effective for the Redlich/ Kwong
equation.

Vapor Volumes
Equation (3.35) is multiplied through by (V — b)/ P to give

_RT__a(v—b)
V-b=7% TY2PV(V + b) (3.36)

+ Otto Redlich and J. N. S. Kwong, Chem. Rev., 44: 233, 1949,
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For iteration, we write

. RT a(V;—b)
Vim=—+b~ g ———
+1 P Tl/zp.vl(‘/l +b) (3.37)
The ideal-gas equation provides a suitable initial value, V, = RT/P.
Liquid Volumes
Equation (3.35) is put into standard polynomial form:
RT bRT a ab
3
Ve V- (b2+ P PT'”) Voprm=0
An iteration scheme results when this is written
1 RT ab
Vi = 'C'(V:3 ‘?V:?-'PW) (3.38)
where
bRT a
C=b2+T—PT—”2- (3.39)

For an initial value, take V, = b,

The constants in an equation of state may of course be evaluated by a fit to
available PVT data. For simple cubic equations of state, however, suitable
estimates come from the critical constants T, and P.. Since the critical isotherm
exhibits a horizontal inflection at the critical point, we may impose the mathemati-

Cal COI'Id.lthIlS‘.
( ‘ ) T:cr (a i ) T;er
a c H

where the subscript cr indicates application at the critical point. Differentiation
of Eq. (3.34) or Eq. (3.35) yields expressions for both derivatives, which may be
equated to zero for P = P,, T = T, and V = V,. The equation of state may itself
be written for the critical conditions, providing three equations in the five constants
F., V., T., a, and b. Of the several ways to treat these equations, experience
shows the most suitable to be elimination of V, to yield expressions relating a
and b to P, and T.:

The van der Waals equation

_2IR’T? RT.
64P, 8P,

a

The Redlich/ Kwong equation

a= 0.42748R?T2°

P, (3.40)
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_ 0.08664RT,

P, (3.41)

Although these equations may not yieid the best possible values, they give values
that are reasonable and which can almost always be determined, because critical
temperatures and pressures (in contrast to extensive PVT data) are usually known.
A list of values of T, and P. is provided in App. B.

The inherent limitations of cubic equations of state are discussed by Abbott.t
Equations of greater overall accuracy are necessarily more complex, as is iltus-
trated by the Benedict/ Webb/Rubin equation:

_RT BoRT- Ao Co/ T? LPRT-a

V \'& y?
ao c ¥ ~y

+ =+ +=5 42
V6 VSTZ(] V ) exp V2 (3 )

where Aq, By, Co, a, b, ¢, @, and y are all constants for a given fluid. This equation
and its modifications, despite their complexity, are widely used in the petroleum
and natural-gas industries for light hydrocarbons and a few other commonly
encountered gases.

Example 3.7 Given that the vapor pressure of methyl chloride at 60°C is 13.76 bar,
use the Redlich/ Kwong equation to calculate the molar volumes of saturated vapor
and saturated liquid at these conditions.

SOLUTION We evaluate the constants @ and b by Eqgs. (3.40) and (3.41) with values

of T. and P, taken from App. B:

_ (0.42748)(83.14)°(416.3)*°
B 66.8

= 1.56414 x 10® em® bar mol 2 K2

and
(0.08664)(83.14){416.3)

66.8

b= = 44.891 cm* mol™

For evaluation of the molar volume of saturated vapor, we substitute known

values into Eq. (3.37); this gives

622,784 ( Vi— 4-4.891)
V; V; +44.891]

Tteration starts with V, = V, = RT/P = 2,012.94 cm® mol ™', and continues to conver-
gence on the value

Ve = 2,057.83 -

V =1,712 cm® moi™

The experimental result is 1,635.6 cm® mol ™.

T M. M. Abbott, AICRE I, 19: 596, 1973; Adv. in Chem. Series 183, pp. 47-70, Am. Chem. Soc.,
Washington, D.C., 1979.
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For evaluation of the molar volume of saturated liquid, we substitute known
values into Eqs. {3.38) and (3.39); the resulting equation is
Vi —2,01294V3 —2.79573 x 107

V;. =
H —530,405

Iteration starts with V; = V, = b = 44.891 cm’ mol™, and continues to convergence
on the value

V =71.34 cm® mol™!

The experimental result is 60.37 cm® mol ™",

3.6 GENERALIZED CORRELATIONS FOR GASES

An alternative form of the Redlich/ Kwong equation is obtained by multiplication
of Eq. (3.35) by V/RT:

¥
1 a h
Z= -
1-h bRT”(l + h)
where
b b bP

b m— 2
V ZRT/P 2ZRT

- Elimination of a and b in these equations by Egs. (3.40) and (3.41) gives

L1 _4930( h
=K T \T+h (3.43a)
, _ 0.08664P,
= T (3.43b)

where T,=T/T, and P.= P/P, are called reduced temperature and reduced
pressure,

This pair of equations is arranged for convenient iterative solution for the
compressibility factor Z for any gas at any conditions 7, and P,. For an initial
value of Z = 1, h is calculated by Eq. (3.43b). With this value of h, Eq. (3.43a)
yields a new value of Z for substitution into Eq. (3.43b). This procedure is
continued until a new iteration produces a change in Z iess than some small
preset tolerance. The process does not converge for liquids.

Equations of state which express Z as a function of T, and P, are said to
be generalized, because of their general applicability to all gases. An alternative
to the use of an equation is a graph of Z vs. P. which shows isotherms for various
values of T,. Such a generalized chart can be prepared from a gencrahzed equation;
alternatively, the isotherms may be drawn to provide the best fit of experimental
PVT data for various gases. The advantage of a generalized correlation is that
it allows the prediction of property values for gases from very limited information.
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For use of the generalized Redlich/ Kwong equation one needs only the critical
temperature and critical pressure of the gas. This is the basis for the two-parameter
theorem of corresponding states: All gases, when compared at the same reduced
temperature and reduced pressure, have approximately the same compressibility
factor, and all deviate from ideal-gas behavior to about the same degree.

Although use of an equation based on the two-parameter theorem of corre-
sponding states provides far better results in general than the ideal-gas equation,
significant deviations from experiment still exist for all but the simple fluids argon,
krypton, and xenon. Appreciable improvement results from the introduction of
a third corresponding-states parameter, characteristic of molecular structure; the
most popular such parameter is the acentric factor w, introduced by K. S. Pitzer
and coworkers.t

The acentric factor for a pure chemical species is defined with reference to
its vapor pressure. Since the logarithm of the vapor pressure of a pure fluid is
approximately linear in the reciprocal of absolute temperature, we may write

dlog P _
d(1/T,)

where P is the reduced vapor pressure, T, is the reduced temperature, and a
is the slope of a plot of log P* vs. 1/T,. If the two-parameter theorem of
corresponding states were generally valid, the slope @ would be the same for all
pure fluids. This is observed not to be true; each fluid has its own characteristic
value of a, which could in principle serve as a third corresponding-states pa-
rameter. However, Pitzer noted that all vapor-pressure data for the simple fluids
(Ar, Kr, Xe) lie on the same line when plotted as log P s, 1/ T, and that the
line passes through log P = —1.0 at T, = 0.7. This is illustrated in Fig. 3.11.
Data for other fluids define other lines whose locations can be fixed in relation
to the line for the simple fluids (SF) by the difference:

log P*(SF) — log P}
The acentric factor is defined as this difference evaluated at T, = 0.7:
w=-10-log (Pial)r,:o.T (3.44)

Therefore w can be determined for any fluid from T, P, and a single vapor-
pressure measurement made at T, = 0.7. Values of @ and the critical constants
T., P,, and V, for a number of fluids are listed in App. B.

The definition of @ makes its value zero for argon, krypton, and xenon, and
experimental data yield compressibility factors for all three fluids that are corre-
lated by the same curves when Z is represented as a function of T, and P.. Thus
the basic premise of the three-parameter theorem of corresponding states is that
all fluids having the same value of @ have the same value of Z when compared
at the same T, and P..

+ The work of Pitzer et al. is fully described in G. N. Lewis and M. Randall, Thermodynamics,
2d ed., revised by K. S. Pitzer and L. Brewer, App. 1, McGraw-Hill, New York, 1961.
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Figure 3,11 Approximate temperature dependence of reduced vapor pressure.

The correlation for Z developed by Pitzer and coworkers takes the form
Z=2"+wZ' (3.45)

where Z° and Z' are compiex functions of both T, and P.. When o = 0, as is
the case for the simple fluids, the second term disappears, and Z° becomes
identical with Z, Thus a generalized correlation for Z as a function of T, and P,
based on data for just argon, krypton, and xenon provides the relationship
Z° = F%T,, P,). This function is plotted in Figs. 3.12 and 3.13.

Equation (3.45) is a simple linear relation between Z and o for given values
of T, and P,. Experimental data for Z for the nonsimple fluids plotted vs. w at
constant T, and P, do indeed yield straight lines, and their siopes provide values
for Z' from which the generalized function Z' = f(T,, P,) can be constructed.
The result is provided by Figs. 3.14 and 3.15.

Figures 3.12 and 3.13 for Z° based on data for the simple fluids, provide a
complete fwo-parameter corresponding-states correlation for Z. Since the second
Ferm of Eq. (3.45) is a relatively small correction to this two-parameter correlation,
1ts omission does not introduce large errors. Thus Figs. 3.12 and 3.13 may be
used alone for quick but less precise estimates of Z than are obtained from the
complete three-parameter correlation.

The Pitzer correlation provides reliable resulis for gases which are nonpolar
or only slightly polar; for these, errors of no more than 2 or 3 percent are indicated.
When applied to highly polar gases or to gases that associate, larger errors can
be expected.

A disadvantage of the generalized compressibility-factor correlation is its
graphical nature, but the complexity of the functions Z° and Z' precludes their
general representation by simple equations. However, we can give approximate
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Figure 3,13 Generalized correlation for Z° P, > 1.0. (Based on data of B. I. Lee and M. G. Kesler, ibid.)

analytical expression to these functions for a limited range of pressures. The

basis for this is Eq. (3.31), the simplest form of the virial equation, which may
be written

(3.46)

z=1+——-=1+(m)‘)ﬁ

RT.] T,

Thus, Pitzer and coworkers proposed a second correlation, which expresses the
Quantity BP./RT, as

BP,
RT,

= B+ wB! (3.47)
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Combination of Eqs. (3.46) and (3.47) gives

P P,
=1+B°~+wB'=
Z=1+8 T ® T,
Comparison of this equation with Eq. (3.45) provides the following identifications:
P,
°=1+B°=*
Z T,
and
P
Z'=B'—
T

Second virial coefficients are functions of temperature only, and similarly B® and
B! are functions of reduced temperature only. They are well represented by the §
following simple equations:t 1

0.422 i

B°=0.083 — = (3.48) §
T, 3

0.17

B'=0.139 - —14-22 (3.49)

The simplest form of the virial equation has validity only at low to moderate
pressures where Z is linear in pressure. Thus as shown by the preceding equations, §
the generalized virial-coefficient correlation is appropriate only at low to moderate §
reduced pressures where Z° and Z' are at least approximately linear functions §
of reduced pressure. Examination of Figs. 3.12 through 3.15 suggests where this ]
is true, but we also provide in Fig. 3.16 a graph showing lines of constant percent ]
deviation between Z° as given by the virial-coefficient correlation and Z° as §
given by the compressibility-factor correlation. The minor contributions of devi-
ations in Z' are here neglected. In view of the uncertainty associated with any §
generalized correlation, a deviation of 1 or 2 percent in Z° is not significant.

The relative simplicity of the generalized virial-coefficient correlation does |
much to recommend it. Moreover, the temperatures and pressures of most
chemical-processing operations lie within the region where it does not deviate 3
by a significant amount from the compressibility-factor correlation. Like the 3
parent correlation, it is mest accurate for nonpolar species and least accurate for §
highly polar and associating molecules.

Example 3.8 Determine the molar volume of n-butane at 510 K and 25 bar by each
of the following: L
(a) The ideal-gas equation.
(b) The generalized compressibility-factor correlation.
(¢) The generalized virial-coefficient correlation.

+ M. M. Abbott, personal communication.
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Figure 3.16 Plot of. T, vs. P, showing lines of constant percent deviation between values of Z° as
calculated by the virial-coefficient correlation and by the compressibility-factor correlation.

SOLUTION
(a) By the ideal-gas equation,

_ RT_ (83.14)(510)

14 = > mol™
P 55 1,696.1 cm® mol ™!
(b) Taking values of T, and P, from App. B, we find:
510 25
y=—=1, = — =
1253 198 b, 30 0.658
Figures 3.12 and 3.14 then provide:
Z° = 0.865 Z'=0.038

Thus, by Eq. (3.45) with @ = 0.193,

Z=Z"+ Z' = 0.865 + (0.193)(0.038) = 0.872
and

_ ZRT___ {0.872)(83.14)(510)
P 25

|4

= 1,479.0 cm® mol ™"

If we ta:ke Z = Z° = 0.865, in accord with the two-parameter corresponding states
correlat'lon, then V = 1,467.1 cm® mol ™, which is less than 1 percent lower than the
value given by the three-parameter correlation.

(c} Values of B® and B' are given by Egs. (3.48) and (3.49):
B°=-0233 B'=10.059
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By Eq. {3.47)
% = B + wB! = —0.233 + (0.193}(0.059) = —0.222

Then by Eq. (3.46),

0.658
= —0. ——=1{0.3878
Z =1+(-0.222) 1198

from which we find V = 1,489.1 em® mol™", a value less than 1 percent higher than §

that given by the compressibility-factor correlation. For comparison, the experimental 3
value is 1,480.7.

Example 3.9 What pressure is generated when 1(Ib mol)} of methane is stored in a
volume of 2(ft)* at 122(°F)? Base calculations on each of the following:
{a) The ideal-gas equation.
(b) The Redlich/ Kwong equation.
(¢} A generalized correlation.

SOLUTION )
(a} By the ideal-gas equation,
RT (0.7302)(122 + 459.67)
P=v- 2
(b) For the Redlich/Kwong equation, we calculate values of a and b by Egs.
(3.40) and (3.41):
(0.42748)(0.7302)%(343.1)**
a= 454

= 212.4(atm)

= 10,945 4(atm)(f)°(R)'/?

and

b= {0.08664)(0.7302)(343.1)

= 0.4781(ft)’
45.4

where values of T, and P, from App. B have been converted to (R) and (atm).

Substitution of known values into Eq. (3.35) now gives:

_ (0.7302)(581.67) 10,945.4

- = = 187.5(atm)
2 — 0.4781 (581.67)"3(2)(2 + 0.4781)

(¢) Since the pressure here is high, the generalized compressibility-factor correla-
tion is the proper choice. In the absence of a known value for P,, an iterative procedure §

is based on the following equation:
_ZRT  Z(0.7302)(581.67}

=2124Z
P \'s 2

Since P = P.P. = 45.4P,, this equation becomes

5P,
= 45.5 =0.2138P,
4
or

poZ_
T 02138
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One now assumes a starting value for Z, say Z = 1. This gives P, = 4.68, and
allows a new value of Z to be calculated by Eq. (3.45) from values read from Figs.
3.13 and 3.15 at the reduced temperature of T, = 581.67/343.1 = 1.695. With this new
value of Z, a new value of P, is calculated, and the procedure continues until no
significant change occurs from one step to the next. The final value of Z so found is
0.885 at P, = 4.14. This may be confirmed by substitution of values for Z° and Z*
from Figs. 3.13 and 3.15 read at P, =4.14 and T, = 1.695 into Eq. {3.45). Since
w = 0.007, we have

Z =2+ wZ" = 0.884 + (0.007)(0.25) = 0.885
and

=ZRT {0.885)(0.7302)(581.67)

P
v i 5

= 188.9(atm)

Since the acentric factor is here so small, the two- and three-parameter compressi-
bility-factor correlations are little different. Both the Redlich/Kwong equation and
the generalized compressibility-factor correlation give answers very close to the
experimental value of 185(atm). The ideal-gas equation yields a result that is high by
14.6 percent,

Example 3.10 A mass of 500 g of gaseous ammonia is contained in a 30,000-cm?
vessel immersed in a constant-temperature bath at 65°C. Calculate the pressure of
the gas by each of the following:

{a} The ideal-gas equation.

(b) The Redlich/Kwong equation.

(c) A generalized correlation.

SOLUTION The molar volume of ammonia in the vessel is given by
| v’

n _m/M

where n is the total number of moles and m is the mass of ammonia in the vessel of
total volume V' and M is the molar mass of ammonia. Thus

30,000
" 500/17.02

(a) By the ideal-gas equation,
RT (83.14)}(65 + 273.15)

P=— =27.53 bar
1 1,021.2

(b) For application of the Redlich/ Kwong equation, we first evaluate a and b
by Eqgs. (3.40) and (3.41):

o = (0:42748)(83.14)°(405.6)*
1128

= 1,021.2 cm® mol ™!

= 8.679 % 10’ bar cm® K'/2

and

_ {0.08664)(83.14)(405.6)
B 112.8

b

= 25.90 cm’
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where values of T. and P, are from App. B. Substitution of known values into Eq.
(3.35) now gives:

_ (83.14)(338.15) 8.679 x 10°
T 1,0212-259  (338.15)2(1,021.2)(1,021.2 + 25.9)
= 23.83 bar

{¢) Since the reduced pressure here is low (=0.2), we use the generalized
virial-coefficient correlation. For a reduced temperature of T, = 338.15/405.6 = 0.834,
values of B® and B' as given by Eqgs. (3.48) and (3.49} are

B® = —0.482 B' = -0.232

Substitution into Eq. (3.47) with @ = 0.250 yields

BP,
If = —0.482 + (0.250)(—0.232) = —0.540

i

and

_ =0540RT. _ —(0.540)(83.14)(405.6)

= —161.4 cm® mol ™!
P, 112.8

Solving Eg. (3.31) for P, we obtain

RT _ (83.14)(338.15)
7
P= B Toaia+ie1a 2T bar

An iterative solution here is not necessary, because B is independent of P.

We can use this result to check our initial assumption as to the adequacy of the
generalized virial-coeficient correlation. At the calculated reduced pressure of P, =
23.77/112.8 = 0.211, values for Z° and Z' from Figs. 3.12 and 3.14 arc

Z%=0.867 Z'=—0.092
Whence
Z = 0.867 — (0.250)(0.092) = 0.844

from which we find P =23.24bar. An additional iteration produces no further
refinement of this result, which is just over 2 percent lower than the value calculated
by the virial-coeflicient correlation.

Experimental data indicate that the pressure is 23.82 bar at the given conditions.
Thus the ideal-gas equation yields an answer that is high by about 15 percent, whereas
the other two methods give answers in substantial agreement with experiment, even
though ammonia is a polar molecule.

3.7 GENERALIZED CORRELATIONS FOR LIQUIDS

Although the molar volumes of liquids can be calculated by means of generalized
cubic equations of state, the results are not of high accuracy. However, generalized
equations are available for the calculation of molar velumes of saturated liquids.

NLUIVELD I RS PRV RIS VT FURL LUl o &7

The following equation, proposed by Rackett,T is an example:
V“‘ = ch(c]_Tr)OAZHST (3 .50)

The only data required are the critical constants, given in App. B. Results are
usually accurate to 1 or 2 percent.

Y ydersen, Greenkorn, and Hougeni developed a general method for estima-
tion of liquid volumes, based on the principle of corresponding states. It applies
to liquids just as the two-parameter compressibility-factor correlation applies to
gases, but is based on a correlation of reduced density as a function of reduced
temperature and pressure. Reduced density is defined as

p_V.

eE -

" e v

where p. is the density at the critical point. The generalized correlation is shown

in Fig. 3.17. This figure may be used directly with Eq. (3.51) for determination

of liquid volumes if the value of the critical volume is known. A better procedure

is to make use of a single known liquid volume (state 1) by the identity,
Vz = Vt &

Pr,

(3.51)

(3.52)

where V, = required volume
V|, = known volume
P+ Pr, = reduced densities read from Fig. 3.17

This method gives good results and requires only experimental data that are
usually available. Figure 3.17 makes clear the increasing effects of both tem-
perature and pressure on liquid density as the critical point is approached.

Example 3.11 (a) Estimate the density of saturated liquid ammonia at 310 K.
(b) Estimate the density of liquid ammonia at 310 K and 100 bar.

SoLuTION
(a) We apply the Rackett equation at the reduced temperature,
310
T, = = 0.7643
"7 4056

With V, = 72.5 and Z, = 0.242 (from App. B), we get
| P chg--rr)u.zuv - (72.5)(0.242)(0_2357)&2551
V=t = 28.35 cm® mol ™!

This compares with the experimental value of 29.14 cm® mol™', and is in error by
2.7 percent.

t H. G. Rackett, J. Chem. Eng. Data, 15: 514, 1970; see also C. F. Spencer and $. B. Adler, ibid.,
23: 82, 1978 for a review of available equations.

¥ A L. Lydersen, R. A. Greenkorn, and O. A. Hougen, * Generahzed Thermodynamic Properties
of Pure Fluids,” Univ, Wisconsin, Eng. Expt. Sta. Rept. 4, 1955,
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Figure 3.17 Generalized density correlation for liquids. (Based on A. L. Lydersen, R A. Greenkorn,
and O. A. Hougen, Generalized Thermodynamic Properties of Pure Fluids, Univ. Wisconsin, Eng. Expt,
Sta. Rept. 4, 1955.)

() The reduced conditions are
- 100
T 1128

From Fig. 3.17, we have p, = 2.38. Substituting this value along with V, into Eq.
(3.51) gives

T, = 0.764 P, = 0.887

v, 725
V= ; = m = 30,5 Cm3 1110]_1

In comparison with the experimental value of 28.6 cm® mol ™!, this result is in error
by 6.6 percent.

If we start with the experimental value of 29.14 cm® mol™" for saturated liquid
at 310 K, Eq. (3.52) may be used. For the saturated liquid at T, = 0.764, we find from
Fig. 3.17 that p, = 2.34. Substitution of known values into Eq. (3.52) gives

234

Pr .
V,= V,— = (29.14)] == = 28.65 cm® mol™’
2 f o ( )(2.38) cm’® mo

This result is in essential agreement with the experimental value.

PROBLEMS

3.1 An incompressible fluid is contained in an insulated cylinder fitted with a frictionless piston. Can
energy as work be transferred to the fluid? What is the change in internal energy of the fluid when
the pressure is increased from P, to P,?

3
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3,2 Express the velume expansivity and the isothermal compressibility as functions of density p and
jts partial derivatives. For water at 50°C and | bar, « = 44.18 x 10~%bar™". To what pressure must
water be compressed at 50°C to change its density by 1 percent? Assume that « is independent of P,
3.3 Five kilograms of liquid carbon tetrachloride undergo a mechanically reversible, isobaric change
of state at 1 bar during which the temperature changes from 0 to 20°C. Determine AV', W, Q, AH',
and AL The following properties for liquid carbon tetrachloride at 1 bar and 0°C may be assumed
independent of temperature: 8 = 1.2 X 107> K%, Cp = 0.84 kI kg~! K™'. The density at 0°C and 1 bar
is 1,590 kg m™.

34 One mole of an ideal gas, Cp =(7/2}R and Cy = (5/2)R, expands from P, = 1¢ bar and
V, = 0.005 m® to P, = | bar by each of the following paths:

{a) Constant volume.

(&) Constant temperature.

(c) Adiabatically.

Assuming mechanical reversibilit!(, calculate W, Q, AU, and AH for each process. Sketch each path
on a single PV diagram.

3.5 An ideal gas, C» =(5/2)R and C, = (3/2)R, is changed from P, =1bar and ¥{=10m® to
P, = l0bar and Vi = 1 m? by the following mechanically reversible processes:

(a) Isothermal compression.

{b) Adiabatic compression followed by cooling at constant pressure,

(¢} Adiabatic compression followed by cooling at constant volume.

(d) Heating at constant volume followed by cooling at constant pressure.

{e) Cooling at constant pressure followed by heating at constant volume.

Calculate Q, W, AU", and AH" for each of these processes, and sketch the paths of all processes on
a single PV diagram.

3.6 A rigid, nonconducting tank with a volume of 4 m* is divided into two equal parts by a thin
membrane. On one side of the membrane the tank contains nitrogen gas at § bar and 80°C, and the
other side is a perfect vacunm. The membrane ruptures and the gas fills the tank. What is the final
temperature of the gas? How much work is done? Is the process reversible? Describe a reversible
process by which the gas can be returned to its initial state. How much work is done? Assume nitrogen
an ideal gas for which Cp = (7/2}R and C, = (5/2)R.

3.7 An ideal gas, Cp = (7/2)R and C, = (5/2) R, undergoes the following mechanically reversible
changes in a series of nonflow processes:
(a) From an initial state of 104{°F) [40°C] and 21.75(psia) [150 kPal], it is compressed adiabatically
to 37(psia) [600 kPa]. '
(b) 1t is then cooled to 104(°F) [40°C] at a constant pressure of 87(psia) [600 kPa].
(¢) Finally, the gas is expanded isothermally 10 its original state.
Calculate @, W, AU, and AH for each of the three processes and for the cycle.
Repeat these calculations for exactly the same changes of state accomplished irreversibly with
an efficiency for each process of 80 percent compared with the corresponding mechanically reversible
process,

3.8 One cubic meter of an ideal gag at 500 K and 2,000 kPa expands to ten times its initial volume

as follows:

{a) By a mechanically reversible, isothermal process.

{b) By a mechanically reversible, adiabatic process.

(¢} By an adiabatic, irreversible process in which expansion is against a restraining pressure of
100 kPa.

For each case calculate the final temperature, pressure, and the work done by the gas. C, =

21 Jmol ' K™,

3.9 A perfectly insulated, rigid cylinder of 0.5-m* volume is divided in half by a weightless, frictionless

piston of high thermal conductivity that is initially held in place by latches. An ideal gas at 100 kPa

and 300 K is on one side of the piston and the same ideal gas at 900 kPa and 300 K is on the other.
(@) What are the final equilibrium temperature and pressure after release of the piston?
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(b) Suppose a rod attached to the piston extends through an end of the cylinder and acts against ;
a constant resisting force equivalent to 100 kPa. What are the final equilibrium T and P upon releage

of the piston if Cy = (5/2)R?

3.10 One pound mole of air, initially at 248(°F) [ 120°C] and 8(atm) [8.11 bar], undergoes the following -
mechanically reversible changes. It expands isothermally to a pressure such that when it is cooled

at constant volume to 68(°F) [20°C] its final pressure is 3(atm) [3.04 bar]. If air is assumed an ideal
gas far which Cp = (7/2)R and Cy = (5/2)R, calculate W, Q, AU, and AH.

3.11 An ideal gas is flowing in steady state through a horizontal tube. No heat is added and no shaft
work is done. The cross-sectional area of the tube changes with length, and this causes the velocity

to change. Derive an equation relating the temperature to the velocity of the gas, If nitrogen at 140°C

flows past one section of the tube at a velocity of 2 ms™', what is its temperature at another sectio

where its velocity is 40ms™'? Cp = (7/2)R.

3.12 One mole of an ideal gas, initially at 40°C and 1 bar, is changed to 120°C and 15 bar by three

different mechanically reversible processes:
{a) The gas is first heated at constant volume until its temperature is $20°C; then- it is compressed
isothermally until its pressure is 15 bar.

(b} The gas is first heated at constant pressure until its temperature is 120°C; then it is compressed

isothermally to 15 bar.

(¢} The gas is first compressed isothermally to 15 bar; then it is heated at constant pressure to 120°C.
Calculate @, W, AU, and AH in each case. Take Cp = (7/2)R and Cy =(5/2)R. Repeat, with

Cr = (5/2)R and Cy = (3/2)R.

3.13 One mole of an ideal gas, initially at 20°C and 1bar, undergoes the following mechanically

reversible changes. It is compressed isothermally to a point such that when it is heated at constant
volume to 100°C its final pressure is 10 bar. Calculate Q, W, AU, and AH for the process. Take
Cp = (7/2)R and C, = (5/2)R.

3.14 Figure P3.14 depicts two mechanically reversible processes undergone by 1 mol of an ideal gas. J
Curves T, and T,, are isotherms, paths 2-3 and 5-6 are isobars, and paths 3-1 and 6-4 are at constant 1

volume. Show that W and @ are the same for processes 1-2-3-1 and 4-5-6-4.

Figure P3.14
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3.15 A particular quantity of an ideal gas [Cy, = (5/2)R] undergoes the following mechanically
reversible steps that together form a cycle. The gas, initially at 1bar and 300K, is compressed
jsothermaily to 3 bar. It is then heated at constant P to a temperature of 900 K. Finally, it is cooled
at constant volume to its initial state with the extraction of 1,300 J as heat. Determine Q and W for
each step of the cycle and for the complete cycle.

3.16 An existing process consists of two steps:

{a) One mole of air at T, =900 K and P, =3 bar is cooled at constant volume to T, = 300 K.

(b} The air is then heated at constant pressure until its temperature reaches 900 K.

It is proposed to replace this two-step process by a single isothermal expansion of the air from 900 K
and 3 bar to some final pressure P. What is the value of P that makes the work of the proposed
process equal to that of the existing process? Assume mechanical reversibility and treat air as an
jdeal gas with Cp = {7/2)R and fv = (5/2)R.

3.17 Derive an equation for the work of mechanically reversible, isothermal compression of 1 mol
of a gas from an initial volume V, to a final volume V, when the equation of state is

P(V—b)=RT

where b is a positive constant,

Derive an equation for the work of mechanically reversible, isothermal compression of 1 mol
of a gas from an initial pressure P, to a final pressure P, when the equation of state is the virial
expansion [Eq. (3.10)] truncated to

Z=1+BP

How do these two results compare with the corresponding equations for an ideal gas?
3.18 A substance for which « is a constant undergoes an isothermal, mechanically reversible process
from initial state (P,, V,) to final state (P, V,), where V is molar volume.
(a) Starting with the definition of x, show that the path of the process is described by
V=Aexp{(-«xP)

where A depends on T only.
(b) Determine an exact expression which gives the isothermal work done on 1 mol of this
constant-« substance when x and the initial and final pressures and molar volumes are known.

3.19 An empirical equation, PV* = const, where 8 is a constant, is sometimes used to relate P and
V for any mechanically reversible process. Assuming the validity of this equation for an ideal gas,

show that
W _ AT, [1 . (g)(“w
51 P,

If the process is isothermal, § = 1. Show that this equation reduces in this case to the isothermal-work
equation,

W =RT ln%

3.20 For methyl chloride at 125°C the virial coefficients are
B = —207.5 cm® mol™’
C = 18,200 cm® mol 2

Calcylate the work of mechanically reversible, isothermal compression of 1 mol of methyl chloride
from 1 bar to 60 bar at 125°C. Base calculations on the following forms of the virial equation:
B C
(ﬂ) Z=14+—+ oy
Vv Vv

(&) Z=1+BP+CP
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where

B
B =— and C’
RT
Why don’t both equations give exactly the same result?
321 Calculate Z and V for methanol vaper at 200°C and 10 bar by the following equations:
{a) The truncated virial equation {3.33} with the following experimental values of virial coefficients:

_¢c-g
" (RTP

B = ~-219 ¢cm® mol™' € = —17,300 cm® mol 2

(b) The truncated virial equation (3.31), with a value of B from the generalized Pitzer correlation.
(¢} The Redlich/ Kwong equation, with estimates of @ and b from Egs. (3.40) and (3.41).
3.22 Calculate Z and V for ethane at 50°C and 12 bar by the following equations:

(a) The truncated virial equation (3.33) with the following experimental values of virial coefficients:

= —156.7 cm® mol ™! C = 9,650 cm® mol ™2

{(b) The truncated virial equation (3.31), with a value of B from the generalized Pitzer correlation.

{¢) The Redlich/Kwong equation, with estimates of a and b from Egs. (3.40) and (3.41).
3.23 Calculate Z and V for sulfur hexafluoride at 100°C and 15 bar by the following equations:
{a} The truncated virial equation {3.33) with the following experimental values of virial coefficients:

B = —163.4 cm® mol™' C = 12,120 cm® mol ™2

(®) The truncated virial equation {3.31}, with a value of B from the generalized Pitzer correlation.

(¢) The Redlich/ Kwong equation, with estimates of a and b from Eqgs. (3.40) and (3.41).

For sulfur hexafluoride, T, = 318K, P, = 37.6bar, V. = 198 cm® mol ™', and o = 0.286.

3.24 Determine Z and V for steam at 250°C and 2,000 kPa by the following:

{(a) The truncated virial equation (3.33) with the following experimental values of virial coefficients:

B = —152.5cm® mot™! C = —5,800 cm® mol 2

{b) The truncated virial equation {3.31), with a value of B from the generalized Pitzer correlation.
{c) The steam tables.

3.25 Calculate the molar volume of saturated liquid and the molar volume of saturated vapor by the
Redlich/ Kwong equation for one of the following and compare results with values found by suitable
generalized correlations.

{(a) Propane at 40°C where P** = 13.71 bar.

{b) Propane at 50°C where P** = 17,16 bar.

{(¢) Propane at 60°C where P** = 2]1.22 bar.

(d) Propane at 70°C where P*' = 25.94 bar.

{e) n-Butane at 100°C where P** = 15.41 bar.

{f) n-Butane at 110°C where P** = 18.66 bar.

(g) n-Butane at 120°C where P** = 22,38 bar.

(h) n-Butane at 130°C where P**' = 26.59 bar.

(i) Isobutane at 90°C where P**' = 16.54 bar.

(/) Isobutane at 100°C where P** = 20.03 bar.

(k) Isobutane at 110°C where P*** = 24.01 bar.

(1) Isobutane at 120°C where P = 28.53 bar.

(m) Chlorine at 60°C where P* = 18.21 bar.

{n) Chlorine at 70°C where P**' = 22.49 bar.

(o) Chlorine at 30°C where P*** = 27.43 bar.

(p) Chlorine at 90°C where P*' = 33.08 bar.

(g) Sulfur dioxide at 80°C where P*' = 18.66 bar.

{r) Sulfur dioxide at 90°C where P** = 23.31 bar.

{s) Sulfur dioxide at 100°C where P**' = 28.74 bar.

(#) Sulfur dioxide at 110°C where P* = 35.01 bar.
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3.26 Calculate the following:
(a) The volume occupied by 20 kg of ethane at 50°C and 30 bar.
{b) The mass of ethane contained in a 0.3-m’ cylinder at 60°C and 130 bar.
1,27 To a good approximation, what is the molar volume of ethanol vapor at 900(°F) [482.22°C] and
900(psia) [6,206 kPa]? How does this result compare with the ideal-gas vatue?
328 A 0.4-m° vessel is used to store liquid propane at its vapor pressure. Safety considerations dictate
that at a temperature of 320 K the liquid must occupy no more than 75 percent of the total volume
of the vessel. For these conditions, determine the mass of vapor and the mass of liquid in the vessel.
At 320 K the vapor pressure of propane is 16.0 bar.
3.29 A 1,000-(ft)* [28.32-m?] tank contains 500(ft)* [14.16 m?] of liquid n-butane in equilibrium with
its vapor at 77(°F} [25°C]. Determine a good estimate of the mass of n-butane vapor in the tank.
The vapor pressure of n-butane a\the given temperature is 2.40(atm} [2.43 bar].
3.30 Calculate the mass of ethane contained in a 0.5-(ft)* [0.0142-m’] vessel at 140(°F) [60°C] and
2,000(psia) [13,790 kPa]. '

If 10{Ib,,) [4.54 kg] of ethane is contained in a 0.5-(ft)* [0.0142-m>] vessel, at what temperature
does it exert a pressure of 3,000(psia) [20,480 kPa]?
3.31 To what pressure does one fill a 0.1-m® vessel at 25°C in order to store 25 kg of ethylene in it?
3.32 If 1 kg of water in a 0.03-m> container is heated to 450°C what pressure is developed?
3.33 A 0.3-m? vessel holds ethane vapor at 18°C and 2,500 kPa. If it is heated to 200°C, what pressure
is developed?
3.34 What is the pressure in a 0.45-m’ vessel when it is charged with 8 kg of carbon dioxide at 40°C?

3.35 A rigid vessel, filled to one-half its volume with liquid nitrogen at its normal boiling point
(—195.8°C}, is allowed to warm to 25°C. What pressure is developed? The molar volume of liquid
nitrogen at its normal boiling point is 34.7 cm® mol ™",

3.36 The specific volume of isobutane liquid at 300 K and 4 bar is 1.824 cm® g~', Estimate the specific
volume at 460 K and 60 bar.

3.37 The density of liquid n-pentane is 0.630 g cm™> at 18°C and | bar. Estimate its density at 150°C
and 100 bar.

3.38 Estimate the density of liquid ethanol at 190°C and 190 bar.

3.39 Estimate the volume change of vaporization for ammonia at 20°C. At this temperature the vapor
pressure of ammonia is 857 kPa.

340 PVT data may be taken by the following procedure. A mass m of a substance of molar mass
M is introduced into a thermostated vessel of known total volume V*. The system is allowed to
equilibrate, and the temperature T and pressure P are measured.
(a) Approximately what percentage errors are allowable in the measured variables (m, M, V', T,
and P) if the maximum allowable error in the calculated compressibility factor Z is +1 percent?
(b) Approximately what percentage errors are allowable in the measured variables if the
maximum allowable error in calculated values of the second virial coefficient B is 1 percent? Assume
that Z = 0.9 and that values of B are calculated by Eq. (3.32).
3.41 For a gas described by the Redlich/ Kwong equation [Eqg. (3.35)] and for a temperature greater
than T, develop expressions for the two limiting slopes, '

lim | — lim { —
Fso\agP [+ Pao\aP /¢

The expressions should contain the temperature T and the Redlich/ Kwong parameters a and/or b.
Note that in the limit as P - (, V = o, and that in the limit as P » o0, V=5,

3.42 One mole of an ideal gas with constant heat capacities undergoes an arbitrary mechanically
reversible process. Show that

1
AU =——A(PY)
y—1
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3,43 The PVT behavior of & certain gas is described by the cquation of state
P(V-b)=RT

where b is a constant. If in addition Cy is constant, show that

{a) U is a function of T only.

(b) y = const.

{¢) For a mechanically reversible adiabatic process, P(V — b)” = const.

3.44 A certain gas is described by the equation of state

()

PV =RT+ RT

Here, b is a constant and @ is a function of T only. For this gas, determine expressions for the

isothermal compressibility x and the thermal pressure coefficient (3P/3T ). These expressions should

contain only T, P, 6, d8/dT, and constants.

3.45 Methane gas is stored in a 0.1-m? tank at 1,500 kPa and 25°C. Gas is allowed to flow from the

tank through a partially opened valve into a gas holder where the pressure is constant at 115 kPa.

When the pressure in the tank has dropped to 750 kPa, calculate:

(a) The mass of methane in the gas holder if the process takes place slowly enough that the temperature
is constant.

{b) The mass of methane in the gas holder and its temperature if the process occurs so rapidly that
heat transfer is negligible, i.e., there is no heat transfer either between parts of the system or

between the system and the surroundings.
{¢) Would the answers to part (b) be different if the pressure in the gas holder were 300 kPa?

Assume that methane is an ideal gas for which v = 1.31.

CHAPTER

FOUR
HEAT EFFECTS

Heat transfer is one of the fundamental operations of the chemical industry.
Consider, for example, the manufacture of ethylene glycol (an antifreeze agent)
by the oxidation of ethylene to ethylene oxide and its subsequent hydration to
glycol. The catalytic oxidation process is most effective when carried out at
temperatures in the neighborhood of 250°C. Therefore the reactants, ethylene
and air, are heated to this temperature before they enter the reactor, and design
of the preheater requires calculation of the heat required. The reactions of ethylene
with oxygen in the catalyst bed are combustion processes that tend to raise the
temperature. However, heat is removed from the reactor, and the temperature
does not rise much above 250°C. Higher temperatures promote the production
of CO,, an undesired product. Design of the reactor requires knowledge of the
amount of heat that must be transferred, and this is determined by the heat effects
associated with the chemical reactions. The ethylene oxide formed is hydrated
to glycol by absorption in water. This is accompanied by evolution of heat as a
result of the phase change, the formation of a solution, and the hydration reaction
between the dissolved ethylene oxide and water. Finally, thg glycol is recovered
from the water by distillation, a pracess requiring vaporization of a liquid and
resulting in the separation of a solution into its components.

All of the important heat effects are illustrated by this refatively simple
chemical manufacturing process, In contrast to sensible heat effects, which are
characterized by temperature changes, the heat effects of chemical reaction, phase
transition, and the formation and separation of solutions are determined from
€xperimental measurements made at constant temperature. In this chapter we
apply thermodynamics to the evaluation of most of the heat effects that accompany
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physical and chemical operations. However, the heat effects of mixing processes,
which depend on the thermodynamic properties of mixtures, are treated in-
Chap. 13.

whence

ol al
du=|—) dT+|—
(aT)v (3V)rdv

- As a result of Eq. (2.20) this becomes
4,1 SENSIBLE HEAT EFFECTS ' oU
: dU=CvdT+(—) dav
Heat transfer to a system in which there are no phase transitions, no chemical oV/r
reactions, and no changes in composition causes the temperature of the system §
to change. Our object here is to develop relations between the quantity of heat
transferred and the resulting temperature change. :
When the system is a homogeneous substance of constant composition, the
phase rule indicates that fixing the values of two intensive properties establishes 3
its state. The molar or specific enthalpy of a substance may therefore be expressed 3
as a function of two other state variables. Arbitrarily selecting these as'temperature 3

Again, there are two instances for which the final term may be set equal to zero:

\

1. For any constant-volume process, regardless of substance.
2. Whenever the internal energy is independent of volume, regardless of the
process. This is exactly true for ideal gases and incompressible fluids.

" In either case,

and pressure, we write dU = C,dT
H = H(T, P) and
hence : T,
when oH H AU = J CydT (4.2)
dH = (-5—1:) dT+(a—P) dP T
F T The integrals of Egs. (4.1) and (4.2), particularly the former, must frequently
As a result of Eq. (2.21) this becomes be evaluated. The most common direct engineering application is to steady-flow
oH heat transfer where the equation ‘
dH = cpdT+(——) ap T2
aP /¢ Q=AH= CpdT (4.3)
T

The final term may be set equal to zero in two circumstances: ' . . L ‘ _
often applies. In general, integration requires knowledge of the temperature

dependence of the heat capacity.

As shown in Chap. 6, ideal-gas heat capacities, rather than the actual heat
capacities of gases, are used in the evaluation of thermodynamic properties such
as internal energy and enthalpy. The reason is that thermodynamic-property
evaluation is conveniently accomplished in two steps: first, calculation of ideal-gas
values from ideal-gas heat capacities; second, calculation from PVT data of the
differences between real-gas and ideal-gas values. A real gas becomes ideal in

1. For any constant-pressure process, regardless of the substance. :
2. Whenever the enthalpy of the substance is independent of pressure, regardiess 3
of the process. This is exactly true for ideal gases and approximately true for
low-pressure gases, for solids, and for liquids outside the critical region. :

In either case,

dH = CpdT the limit as P - 0; if it were to remain ideal when compressed to a finite pressure,

and r o its state would remain that of an ideal-gas. Gases in these hypothetical ideal-gas
AH = J' z CpdT (4.1) States have properties that reflect their indiyiduality just as do real gases. Ideal-gas

T, 3 heat capacities (designated by C¥ and C¥) are therefore different for different

gases; although functions of temperature, they are independent of pressure.
The temperature dependence may be shown graphically, as illustrated in Fig.
4.1, where C#/R is plotted vs. temperature for argon, nitrogen, water, and carbon
dioxide. More commonly, however, temperature dependence is given by an
empirical equation; the two simplest expressions of practical value are

Moreover, Q = AH both for mechanically reversible, constant-pressure, nonflow - §
processes [Eq. (2.19)] and for the transfer of heat in steady-flow exchangers
where AE, and AEy are negligible and W, = 0.

Similarly, we may express the molar or specific internal energy as a function
of temperature and molar or specific volume: ’ 3

U=U(TYV)

ci :
?=a+ﬁT+‘yT




108 INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS Fable 4.1 Heat capacities of gases in the ideal-gas state?

onstants for the equation C¥/R = A+ BT+ CT*+ DT™? T (kelvins)} from 298 K to T,,,,,

’ Chemical species Trnan A 10°B 10°C 107D
Paraffins:
Methane CH, 1,500 1.702 9.081 —2.164
Ethane C,H, 1,500 1.131 19.225 —5.561
Propane C3H; 1,500 1.213 28.785 —8.824
n-Butane CH,, 1,500 1935 36.915 —11.402
iso-Butane C.H,, 1,500 1.677 37.853 —11.945
n-Pentane CsH,; 1,500 2464 45.351 -14.111
n-Hexane CsH 4 1,500 3.025 53.722 —16.791
n-Heptane C.H 4 1,500 3.570 62.127 —19.486
n-Octane CgH 1,500 g.163 70.567 -22.208
1-Alkenes:
Ethylene C,H, 1,500 1.424 14.394 —4.392
Propylene CyHg 1,500 1.637 22.706 ~6.915
1-Butene C,H, 1,500 1.967 31630 -9.873
1-Pentene CsH,, 1,500 2.691 39.753 —12.447
1-Hexene CH,, 1,500 1220 48.189 —15.157
1-Heptene C;H,, 1,500 3.768 56.588 —17.847
1-Octene CgHy6 1,500 4324 64,960 —20.521
Miscellaneous organics:
Acetaldehyde CHO 1,000 1.693 17.978 ~6.158
3 Acetylene C,;H, 1,500 6.132 1952  .nens —1.299
Benzene CeHg 1,500 —0.206 39.064 —-13.301
AT 1,3-Butadiene C.H, 1,500 2,734 26.786 —8.882
Cyclohexane CeH,; 1,500 —3.876 63.249 —20.928
. Ethanol C,H,0 1,500 3.518 20.001 —6.002
P | | 1 | Ethylbenzene CyH,y 1,500 1.124 55.380 —18.476
500 1000 1500 2000 Ethylene oxide C,H,0 1,000 —0.385 23.463 —-9.296
T/K Formaldehyde CH,0 1,500 2.264 7.022 —1.877
. L ) : Methanol CH,O 1,500 2211 12.216 —3.450
Figure 4.1 Ideal-gas heat capacities of argon, nitrogen, water, and carbon dioxide as functions of 4 Toluene C,H, 1,500 0.290 47.052 ~15716
temperature. Styrene CeHyg 1,500 2.050 50.192 —16.662
Miscellaneous inorganics
Air 2,000 3.355 0575 e —0.016
and w Ammonia NH, 1,800 3.578 3020 --e- ~0.186
Ce_ . bT + ¢T~2 Bromine Br, 3,000 4.493 0.056  ceeee- -0.154
R ¢ ¢ Carbon monoxide CO 2,500 3376 0557 .- -0.031
] : Carbon dioxide CO, 2,000 5457 1.o4s e —1.157
where a, B8, and v and a, b, and ¢ are constants characteristic of the particular 3§ gﬁfbo.n disulfide glsg ;g% g-ﬁ; 0-305 ------ —g-gg
gas. With the exception of the last t._enn, tl}ese equatioqs are of the same form. | Hy(;_:::n H: 3,000 3.249 3:423 ______ 0.083
We therefore combine them to provide a single expression: Hydrogen sulfide  H,S 2,300 3.931 1490 ------ -0.232
c ig : l;ygrogen chloride HCI 2,000 3.156 0623 - 0.151
P _ 2 -2 ydrogen cyanide HCN 2,500 4.736 1359 - —0.725
R -ATBT+CT+DT (4.4) Nitrogen N, 2,000 3.280 0.593  e--e- 0.040
Dinitrogen oxide N,O 2,000 5328 1.214  -eee —0.928
where either C or D is zero, depending on the gas considered. Since the ratio j :}:"C tmg? . Eg i,% 3.387 (1111532 ''''' g-g;;
C¥/R is dimensionless, the units of C¥ are governed by the choice of R. Yalues Dil]gt’f::en';’:;oii de NG, 2000 11:223 y257 i iyt
of the constants are given in Table 4.1 for a number of common organic and Oxygen X 2,000 3.639 0.506  -e--- -0.227
inorganic gases. More accurate but more complex equations are found in the Sulfur dioxide 50, 2,000 5.699 0301 e —L015
literat h Sulfur trioxide S0, 2,000 8.060 1.056 .- —2.028
lterature. Water H,0 2,000 3.470 1450 --..-- 0.121
t See C. A. Passut and R. P. Danner, Ind. Eng. Chem. Proc. Des. Dev,, 11: 543, 1972; P. K. Huang E t Selected from H. M. Spencer, Ind. Eng. Chem., 40: 2152, 1948; K. K. Kelley, U.S. Bur. Mines

and T. E. Daubert, Ibid., 13: 193, 1974. . Bull,, 584, 1960; L. B. Pankratz, U.S. Bur. Mines Bull, 672, 1982,
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As a result of Eq. (3.17), the two ideal-gas heat capacities are related:
R R
Thus the temperature dependence of C%¥/R is readily found from the equation
for CE/R. _ _
The effects of temperature on C¥¢ or C¥ are determined by experiment, most
often from spectroscopic data and knowledge of molecular structure by the

methods of statistical mechanics. Where experimental data are not available,
methods of estimation are employed, as described by Reid, Prausnitz, and

Sherwood.t ldeal-gas heat capacities increase smoothly with increasing tem- :§
perature toward an upper limit, which is reached when all translational, rota- .

tional, and vibrational modes of molecular motion are fully excited.

Although ideal-gas heat capacities are exactly correct for real gases only at #
zero pressure, real gases rarely depart significantly from ideality up to several 1
bars, and therefore C¥ and C¥ are usually good approximations for the heat 3

capacities of real gases at low pressures.

Example 4.1 The constants in Table 4.1 require use of Kelvin temperatures in Eq.
(4.4). Equations of the same form may also be developed for use with temperatures 3
in °C, (R), and (°F), but the constants are different. The molar heat capacity of 3

methane in the ideal-gas state is given in Table 4.1 as

ig

% = 1,702 + 9.081 x 107T — 2.164 x 107° T2
where T is in kelvins. Develop an equation for C%/R for temperatures in °C.

SoLUTION The relation between the two temperature scales is
TK=1¢C+273.15
Therefore
C¥ s » >
= 1.702 + 9.081 x 10 *(¢ + 273.15) — 2.164 X 107°(t + 273.15)
or

ig
% = 4,021 +7.899 x 10731 — 2.164 x 1075¢2

Example 4.2 Calculate the heat required to raisc the temperature of 1 mol of methane 4

from 260 to 600°C in a flow process at a pressure of approximately 1 bar.

SoLUTION For the application of Eq. (4.3) when the expression for C¥%/R is from

Table 4.1, we need temperatures in kelvins:

T, =3533.15K T,=873.15K

TR. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3d ed.,
chap. 7, McGraw-Hill, New York, 1977.

ALY EI'rEUIas 1531
Then

873.15
Q=R j (1702 +9.081 < 107°T - 2.164 x 107°7T2) dT

533.15
Integration gives .

Q=23788R =(2,378.8}(8.314) = 19,780 ]
The same result is obyained when Eq. (4.3) is applied with the equation developed
in Example 4.1 for C#/R with temperatures in °C.

)
As a matter of convenience, we define a mean heat capacity:

Tl
JT CpdT
Cp, = T, __Tl (4.6)

The subscript “mh” denotes a mean value specific to enthalpy calculations, and
distinguishes this mean heat capacity from a similar quantity introduced in the
next chapter.

When Eq. (4.4), written not just for an ideal gas but in general, is substituted
for Cp in Eq. (4.6), integration gives:

Cp /R=A+ BT, +£(4T§m -NT)+ D (4.7)
™ 3 T,

where T,, = (T, + T,)/2 is the arithmetic-mean temperature. Thus the integration
required for evaluation of enthalpy changes has been accomplished, and AH is
given by

AH = Cth( Tz - Tl) (4.8)
a result that follows from Eqs. (4.1) and (4.6).

Example 4.3 Rework Example 4.2, applying Eq. (4.7).

SoLuTION With values of the constants taken from Table 4.1 and with
Tom = (533.15+ 873.15)/2 = 703.15K
Eq. (4.7) becomes
C¥, -3
= - 1.702 + (9.081 x 107°)(703.15)

-6
IS4 X107 ) 203,15 - (873.05)(533.05))

= 6.997
By Egs. (4.3) and (4.8)
Q =AH = (6.997){(8.314)(873.15 — 533.15) = 19,780 J
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Given T, and T, the calculation of Q or AH is straightforward. Less direct §
is the calculation of T, given T, and Q or AH. Here, an iteration scheme is :

useful. Solving Eq. (4.8) for T, gives
AH

T, = o + T (4.9) 3

‘th

One assumes an initial value of T, for purposes of calculating Cp, by Eq. (4.7).
Substitution of the resulting value into Eq. (4.9) provides a new value of T, from

which to reevaluate Cp . Iteration continues in like fashion to convergence on §

a final value of T5.

Example 4.4 What is the final temperature when 0.4 x 10°(Btu) are added to 25(Ib mol) §

of ammonia initially at 500(°F) in a steady-flow process at approximately 1{atm)?

SoLUTION If AH is the enthalpy chénge for 1{lb mol), Q =n AH, and

4 % 10°
Ay = Q_0ex10

= 16,000{Btu)(1b mol)™!
n 25

In Eq. (4.9), if AH is in (Btu){Ib mol) " and Cp__ is in (Btu)(Ib mol) (R}, the first }

term on the right has units of (R). On the other hand, T, and T, are most conveniently
expressed in kelvins. We therefore write Eq. (4.9} as
AH
—+ T,
1.8C¢

T, =

where the divisor 1.8 changes the units of the term to kelvins.
Substituting the constants for ammonia from Table 4.1 into Eq. (4.7), we get

0.186 x 10°
C% =R (3.578 +3.020x 10737, - —) (B
mh Tl T2
With
R = 1.986(Btu)(Ib mol)"}(R) ™!
+ 459.67
T, = 0+ AT s33.15K
1.8
and

A5+ T
Tm=(—533 ; 2) K

we may calculate C f,?m for any value of T,. Iteration between Eqs. (A) and (B) starts

with a value T, = T, and converges on the final value,

T, = 1,250.10K or 1,790.51(°F)

Gas mixtures of constant composition may be treated in exactly the same
way as pure gases. An ideal gas, by definition, is a gas whose molecuies have no -

influence on one another. This means that each gas exists in a mixture mdependent E

of the others, and that its properties are unaffected by the presence of differen

(A) ';,
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Table 4.2 Heat capacities of solids?

Constants for the equation Cp/R = A+ BT + DT?
T (kelvins) from 298 K to T,,,

Chemical species  Tax A 10°B 107°D
Ca0 2,000 6.104 0.443 —1.047
CaCO, 1,200 12,572 2637 -3.120
Ca{OH); 700 9.597 5435

CaC, 720 8.254 1.429 -1.042
CaCl, 1,065 8.646 1.530 —0.302
C (graphite) 2,000 1.771 0.771 -0.867
Cu 1,357. 2,677 0.815 0.035
Cu0 1,400 5.780 0.973 —0.874
Fe(a) 1.043 -0.111 6.111 1.150
Fe,0, 960 11812 9.697 -1.976
Fe;04 850 9.594 27112 0.409
FeS 411 : 2612 13.286 -

I, 386.8 6.481 1.502

NH.CI 458 5.939 16.105

Na m 1.988 4.688

NaCl 1,073 5.526 1.963

NaOH 566 0.121 16316 1,948
NaHCO, 400 5.028 18.148

§ (rhombic) 368.3 4114 -1.728 —0.783
§i0, (quartz) 847 4871 5.365 ~1.001

% Selected from K. K. Kelley, U.S. Bur. Mines Bull. 584, 1960; L. B. Pankratz, U.S. Bur.
Mines Bull 672, 1982,

molecules. Thus one calculates the ideal-gas heat capacity of a gas mixture by
taking the molar average of the heat capacities of the individual species. Consider
1 mol of gas miixture consisting of species A, B, and C, and let y,, ys, and y.
represent the mole fractions of these species. The molar heat capacity of the
mixture in the ideal-gas state is given by

C¥ e =VaCE + ysCE + ycC¥. (4.10)

Pryintuce

where C¥,, C¥,, and C¥_ are the molar heat capacities of pure A, B, and C in
the ideal-gas state.

As with gases, data for the heat capacities of solids and liquids come from
experiment. The temperature dependence of Cp for solids and liquids can also
be expressed by equations of the form of Eq. (4.4). Data for a few solids are
given in Table 4.2, and for a few liquids, in Table 4.3. Data for specific heats
(Cp on a unit-mass basis) of many solids and liquids are given by Perry and
Green.t

T R. H. Perry and D. Green, Perry’s Chemical Engineers’ Handbook, 6th ed., sec. 3, McGraw-Hill,
New York, 1984.
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Table 4.3 Heat capacities of liquidst

Constants for the equation Cp/ R = A+ BT + CT?
T from 273.1510373.15 K

Chemical species A 10°B L°C
Ammonia 22.626 —100.75 192.71 °
Aniline 15.819 29.03 —15.80
Benzene ~0.747 67.96 —-37.78
1,3-Butadiene 22711 —87.96 205.79
Carbon tetrachloride 21.155 —48.28 101.14
Chlorobenzens 11.278 32.86 —31.90
Chloroform 19.215 —42.89 83.01
Cyclohexane —9.048 141.38 —161.62
Ethanol 33.866 ~172.60 34917
Ethylene oxide 21,039 —86.41 172.28
Methanol 13.431 —-51.28 131.13
n-Propanol 41.653 -210.32 427.20
Sulfur trioxide —-2.930 137.08 —84.73
Toluene 15.133 6.79 16.35
Water 8.712 1.25 -0.18

1 Based on correlations presented by J. W. Miller, Jr., G. R. Schorr, and
C. L. Yaws, Chem. Eng., 83(23): 129, 1976.

4.2 HEAT EFFECTS ACCOMPANYING PHASE CHANGES
OF PURE SUBSTANCES

When a pure substance is liquefied from the solid state or vaporized from the
liquid at constant pressure, there is no change in temperature but there is a
definite transfer of heat from the surroundings to the substance. These heat effects
are commonly called the latent heat of fusion and the latent heat of vaporization. ]
Similarly, there are heats of transition accompanying the change of a substance
from one solid state to another; for example, the heat absorbed when rhombi
crystalline sulfur changes to the monoclinic structure at 95°C and 1 bar is 360
for each gram-atom.

The characteristic feature of all these processes is the coexistence of two
phases. According to the phase rule, a two-phase system consisting of a single ]
species is univariant, and its intensive state is determined by the specification o
just one intensive property. Thus the latent heat accompanying a phase change
is a function of temperature only, and is related to other system properties by
an exact thermodynamic equation:

d sat
aTr

AH =TAV
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where, for a pure species at temperature T,
AH = latent heat-
AV = volume change accompanying the phase change
P = vapor pressure

" The derivation of this equation, known as the Clapeyron equation, is given in

Chap. 6.

When Eq. (4.11) is applied to the vaporization of a pure liquid, dP**'/dT is
the slope of the vapor pressure-vs.-temperature curve at the temperature of
interest, AV is the différence between molar volumes of saturated vapor and
saturated liquid, and AH is the latent heat of vaporization. Thus values of AH
may be calculated from vapor-pressure and volumetric data.

Latent heats may also be measured calorimetrically. Experimental values are
available at selected temperatures for many substances. For example, extensive
lists are given by Perry and Green.T However, such data are frequently unavailable
at the temperature of interest, and in many cases the data necessary for application
of Eq. (4.11) are also not known. In this event approximate methods are used
for estimates of the heat effect accompanying a phase change. Since heats of
vaporization are by far the most important from a practical point of view, they
have received most attention. The methods developed are for two purposes:

1. Prediction of the heat of vaporization at the normal boiling point.t
2. Estimation of the heat of vaporization at any temperature from the known
value at a single temperature.

A useful method for prediction of the heat of vaporiz.ation at the normal
boiling point is the equation proposed by Riedel:§
AH,/T, 1.092(In P, - 1.013)

R 0930-T, “12)

where T,, = normal boiling point
AH, = molar latent heat of vaporization at T,
P, = critical pressure, bar
T, = reduced temperature at T,

Since AH,/ T, has the dimensions of the gas constant R, the units of this ratio
are governed by the choice of units for R.

Eq. {(4.12) is surprisingly accurate for an empirical expression; errors rarely
exceed 5 percent. Applied to water it gives

1.092(In 220.5 — 1.013)
0.930 — 0.577

AH,/T, = R[ ] = 13.52R

tR. H. Perry and D. Green, op. cit., sec. 3.
% The convention with respect to the normal boiling point is that it refers to 1 standard atmosphere,
defined as 101,325 Pa.

§ L. Riedel, Chem. Ing. Tech., 26: 679, 1954.
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pergy on account of their structure than do the products, and this energy must
& either be transferred fo the surroundings as heat or result in products at an
elevated temperature.

There are many different ways to carry out each of the vast number of possible
chemical reactions, and each reaction carried out in a particular way is accom-
panied by a particular heat effect. Tabulation of all possible heat effects for all
possible reactions is quite impossible, We therefore calculate the heat effects for
.-~ other reactions from data for a particular kind of reaction carried out in a standard
way. This reduces the required data to a minimum.

The amount of heat required for a specific chemical reaction depends on the
temperatures of both the reactants and products. A consistent basis for treatment
of reaction heat effects results when the heat of reaction is defined as the heat
" effect that results when all products and reactants are at the same temperature.
Consider the flow-calorimeter method for measurement of heats of combus-
- tion of fuel gases. The fuel is mixed with air at room temperature and ignited.
- Combustion takes place in a chamber surrounded by a cooling jacket through
: which water flows. In addition there is a long water-jacketed section in which
. the products of combustion are cooled to the temperature of the reactants.
Whatever the details of this steady-flow process, the overall energy balance
: [Eq. (2.10)] reduces to

Taking R = 8.314 Jmol™’ K™' and the normal boiling point of water as 100°C
373.15 K, we get

AH, = (13.52)(8.314)(373.15) = 41,940 Jmol '

£l

This corresponds to 2,328 Jg~', whereas the experimental value is 2,257 J g~
the error is 3.2 percent.

Estimates of the latent heat of vaporization of a pure liquid at any temperatu
from the known value at a single temperature may be based on a known expe
mental value or on a value estimated by Eq. (4.12). The method proposed
Watsont has found wide acceptance:

AHZ 3 (1 - TFZ)O.SS (4 l
AH, \1-T, o

This equation is both simple and reliable; its use is illustrated in the followin
example. ;

Example 4.5 Given that the latent heat of vaporization of water at 100°C s 2,257 J g
estimate the latent heat at 300°C.

SOLUTION Let
AH, = latent heat at 100°C = 2,257 Jg~' Q=AH
AH, = latent heat at 300°C
T, = 373.15/647.1 = 0.577

T, = 573.15/647.1 = 0.886

- -No shaft work is produced by the process, and the calorimeter is built so that
- changes in potential and kinetic energy are negligible, Thus the heat Q absorbed
- by the water is identical with the enthalpy change caused by the combustion
- reaction, and universal practice is to designate the enthalpy change of reaction
. AH as the heat of reaction.

For purposes of data tabulation, we define the standard heat of the reaction,

Then by Eq. (4.13),

_ 0.38
%2%2—) = (2,257)(0.270)°3#

=1,3711g™"

AH, = (2,257)(
aA+ bB > IL+ mM

- as the enthalpy change when a moles of A and b moles of B in their standard
States at temperature T react to form [ moles of L and m moles of M in their
- standard states also at temperature T. A standard state is the particular state of
- A species at temperature T defined by generally accepted reference conditions of
. Pressure, composition, and physical state.

. With respect to composition, the standard states used in this chapter are
3 States of the pure species. For gases, the physical state is the ideal-gas state and
- for liquids and solids, the real state at the reference pressure and system
. temperature.

: Historically, the reference pressure for the standard state, i.e., the standard-
. State pressure, has been | standard atmosphere (101,325 Pa), and most data
- tabulations are for this pressure. A change in the standard to I bar (10° Pa) is in
Progress, but for the purposes of this chapter, the change is of negligible

The value given in the steam tables is 1,406 Jg™'.

4.3 THE STANDARD HEAT OF REACTION

The heat effects so far discussed have Been for physical processes. Chemi
reactions also are accompanied by the transfer of heat, by temperature chs

during the course of reaction, or by both. These effects are manifestations of il
differences in molecular structure, and therefore in energy, of the products @
reactants. For example, the reactants in a combustion reaction possess grea

T K. M. Watson, Ind. Eng. Chem., 35: 398, 1943.
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In summary, the standard states used in this chapter are:

1. Gases. The pure substance in the ideal-gas state at 1 bar or {(atm).
2. Liguids and solids. The actual pure liquid or solid at 1 bar or 1{atm).

Property values in the standard state are denoted by the degree symbol {°). For
example, C% is the standard-state heat capacity. Since the standard state for
gases is the ideal-gas state, C% for gases is identical with C¥%, and the data of
Table 4.1 apply to the standard state for gases. All conditions for a standard state
are fixed except temperature, which is always the temperature of the system.
Standard-state properties are therefore functions of temperature only.

The standard state chosen for gases is a hypothetical one, for at 1 bar or
1{atm) actual gases are not ideal. However, they seldom deviate much from
ideality, and in most instances the ideal-gas state at 1bar or l(atm) may be
regarded for practical purposes as the actual state of the gas at atmospheric
pressure.

When a heat of reaction is given for a particular reaction, it applies for the
stoichiometric coefficients as written. If each stoichiometric coefficient is doubled,
the heat of reaction is doubled. For example, the ammonia-synthesis reaction
may be written

IN,+3H, > NH, AHS5; = —46,110]
or
N, +3H,» 2NH, AH% = —92,220]

The symbol AHS indicates that the heat of reaction is the standard value for
a temperature of 298.15 K (25°C).

4.4 THE STANDARD HEAT OF FORMATION

The tabulation of data for just the standard heats of reaction for all of the vast

number of possible reactions is impractical. Fortunately, the standard heat of 3

any reaction can be calculated if the standard heats of formation of the compounds
taking part in the reaction are known. A formation reaction is defined as a reaction
which forms a single compound from its constituent elements. For example, the
reaction C + 10, + 2H, - CH,OH is the formation reaction for methanol. The

reaction H,O + SO, + H,80, is not a formation reaction, because it forms sulfuric

acid not from the elements but from other compounds. Formation reactions are
always understood to result in the formation of 1 mol of the compound, and the
heat of formation is therefore based on 1 mol of the compound formed.

Since heats of reaction at any temperature can be calculated from heat-
capacity data if the value for one temperature is known, the tabulation of data
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can be reduced to the compilation of standard heats of formation at a single
temperature. The usual choice for this temperature is 298.15K or 25°C. The
standard heat of formation of a compound at this temperature is represented by
the symbol AH7, . The superscript ° indicates that it is the standard value, the
subscript f shows that it is a heat of formation, and the 298 is the approximate
absolute temperature in kelvins. Tables of these values for common substances
may be found in standard handbooks, but the most extensive compilations
available are in specialized reference works.t An abridged list of values is given
in Table 4.4. -

When chemical equations are combined by additien, the standard heats of
reaction may also be added to give the standard heat of the resulting reaction.
This is possible because enthalpy is a property, and changes in it are independent
of path. In particular, formation equations and standard heats of formation may
always be combined to produce any desired equation (not itself a formation
equation) and its accompanying standard heat of reaction. Equations written for
this purpose often include an indication of the physical state of each reactant
and product, i.e., the letter g, [, or s is placed in parentheses after the chemical
formula to show whether it is a gas, a liquid, or a solid. This might seem
unnecessary since a pure chemical species at a particular temperature and 1 bar
or 1(atm) can usually exist only in one physical state. However, fictitious states
are often assumed as a matter of convenience.

Consider the reaction CO,(g) + H,(g) » CO(g) + H,O(g) at 25°C. This is a
reaction commonly encountered in the chemical industry (the water-gas-shift
reaction}, though it takes place only at temperatures well above 25°C. However,
the data used are for 25°C, and the initial step in any calculation of thermal
effects concerned with this reaction is to evaluate the standard heat of reaction
at 25°C. Since the reaction is actvally carried out entirely in the gas phase at high
temperature, convenience dictates that the standard states of all products and
reactants at 25°C be taken as the ideal-gas state at 1 bar or 1(atm), even though
water cannot actually exist as a gas at these conditions. The pertinent formation
reactions are

COy(g): C(s)+0,(g) - COg) AHy = —393,509]
H,(g): Since hydrogen is an element AH; =0
CO(g): C(s) +10,(g) - CO(g) AHZ = —-110,525]

H,0(g): Hi(g) +304(g) » H,0(g) AHS = —241,818]

¥ For example, see “TRC Thermodynamic Tables—Hydrocarbons” and “TRC Thermodynamic
Tables—Non-hydrocarbons,” serial publications of the Thermodynamics Rescarch Center, Texas
A & M Univ. System, College Station, Texas; “The NBS Tables of Chemical Thermodynamic
Pl"i’Pel'lies," J. Physical and Chemical Reference Data, vol. 11, supp. 2, 1982.
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Table 4.4 Standard heats of formation at 25°C7

Joules per mole of the substance formed

Chemical species State  AH3
Paraffins:
Methane CH, g —74,520
Ethane C,H, g 83,820
Propane C3Hg g —104,680
n-Butane CyHyp g —125,790
n-Pentane C.H,, g —146,760
n-Hexane CgHy s g —166,920
n-Heptane C;H g —187,780
n-Octane CgH g g -208,750
1-Alkenes:
Ethylene C.H, g 52,510
Propylene C3H, g 19,710
{-Butene C,H, g —540
1-Pentene C;s;H,q g -21,280
1-Hexene CeHys g —41,950
1-Heptene C,H,, g —62,760
Miscellaneous organics:
Acetaldehyde C,H,0 g —166,190
Acetic acid C,H,0, ! —434,500
Acetylene C;H; g 227,480
Benzene CgHg g 82,930
Benzene CsHg i 49,080
1,3-Butadiene C,H, g 109,240
Cyclohexane CegHy» g —123,140
Cyclohexane CeH,» l —156,230
1,2-Ethanediol C,H 0, ! ~454,800
Ethanol C,H,O g —235,100
Ethanol C,H,O ! —277,690
Ethylbenzens CgHp g 26,920
Ethylene oxide C,H, O g —52,630
Formaldehyde CH,O g —108,570
Methanol CH,O g —200,660
Methanol CH,0 i 238,660
Methylcyclohexane C,H,, g —154,770
Methyleyclohexane C,H,, i -190,160
- Styrene CyHg g 147,360
Toluene C,Hyg g 50,170
Toluene C Hy ) 12,180
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Table 4.4 Standard heats of formation
at 25° C {continued)

Chemical species State AH3,,

Miscellaneous inorganics;

Ammonia NH, g -46,110
Calcium carbide CaC, ] —59,800
Calcium carbonate CaCoO, 5 -1,206,920
Calcium chloride CaCly- 5 —795,800
Calcium chloride CaCl, 6H,0 s —2,607,900
Calcium hydroxide Ca(OH), 5 -986,000
Calcium oxide Ca0 s —635,090
Carbon dioxide CO, g —393,509
Carbon monoxide CO g —-110,525
Hydrochloric acid HC1 g —92,307
Hydrogen cyanide HCN g 135,100
Hydrogen sulfide H,S g —20,630
Iron oxide FeO 5 —272,000
Iron oxide (hematite)  Fe,0, H —824,200
Iron oxide (magnetite) Fe,0, 5 ~1,118,400
Iron sulfide (pyrite) FeS, 5 ~178,200
Lithium chloride LiCl $ —408,610
Lithivm chloride LiCI‘H,0 s —712,580
Lithiuvm chloride LiCl-2H,0 & —1,012,650
Lithium chloride LiCl-3H,0 5 -1,311,300
Nitric acid HNO, i —174,100
Nitrogen oxides NO g 90,250
NO, g 33,180
N,O g 82,050
N,O, g 9,160
Sodium carbonate Na,CO,; s -1,130,680
Sodium carbonate Na,CO;-10H,0 s -4,081,320
Sodium chloride NaCl s -411,153
Sodium hydroxide NaOH 5 —425,609
Sulfur dioxide 50, g —296,830
Sulfur trioxide SO, g —395,720
Sulfur trioxide S0, ! —441,040
Sulfuric acid H,80, ! —813,989
Water H,O g —241,818
Water H,O i —285,830

t Taken from “TRC Thermodynamiic Tables—Hydrocarbons,”
Thermodynamics Research Center, Texas A & M Univ. System,
College Station, Texas; “The NBS Tables of Chemical Thermody-
namic Properties,” J. Physical and Chemical Reference Data, vol.
11, supp. 2, 1982.
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These equations can be written so that their sum gives the desired reaction:
CO,(g) > C(s) + Oxg) AHjG,, = 393,509 J%
C(s) +30:(g) > C5(g) AH3, = —110,5251
Hj(g) +302(g) > H,0(g) AHS = —241,818)
CO,(g) + Ha(g)} » CO(g} + H,O(g)  AH3%s = 41,166

The meaning of this result is that the enthalpy of 1 mol of CO plus 1 mol of H;0 §
is greater than the enthalpy of 1 mol of CO, plus 1 mol of H, by 41,166 J when |
each product and reactant is taken as the pure gas at 25°C in the ideal-gas state §

at 1 bar or 1(atm).
In this example the standard heat of formation of H,O is available for its

hypothetical standard state as a gas at 25°C. One might expect the value of the 3
heat of formation of water to be listed for its actual state as a liquid at 1 bar or
1(atm) and 25°C. As a matter of fact, values for both states are given because §
they are both frequently used. This is true for many compounds that normally
exist as liquids at 25°C and the standard-state pressure. Cases do arise, however, §
in which a value is given only for the standard state as a liquid or as an ideal §
gas when what is needed is the other value. Suppose that this were the case for 3
the preceding example and that only the standard heat of formation of liquid }
H,0 is known. We must now include an equation for the physical change that ;
transforms water from its standard state as a liquid into its standard state as a §
gas. The enthalpy change for this physical process is the difference between the §

heats of formation of water in its two standard states:

—241,818 — (—285,830) = 44,012]

This is approximately the latent heat of vaporization of water at 25°C. The

sequence of steps is now:
COs(g) » C(s) + Ox(g)
C(s) +104(g) » CO(g)
H,(g) +30,(g) » H,0() AH;,, = -285,830]
H,0(!) » H,0(g) AHS, = 44,0123
COy(g) + Hy(g) » CO(g) + H,O{g) AHS, =41,166]

AHS, = 393,509 )
AHS, =—110,525)

This result is of course in agreement with the original answer.

Example 4.6 Calculate the standard heat at 25°C for the following reaction:
4HCIl(g) + Ox(g} - 2H;0(g) + 2Cl,(g)

f The reaction as written is the reverse of the formation reaction of carbon dioxide; the sign is
therefore opposite that given in Table 4.4 for its standard heat of formation.

RARA AL, Rl R Eahe D R

SoLUTION Standard heats of formation from Table 4.4 are
HCl: -92307)
H,O: -241818)
The following combinaticon gives the desired result:
4HCI(g) » 2Ha(g) + 2CL(g) AH3,, = (4)(92,307)
2Ha(g) + Ox(g) > 2H,0(g) AH3g = (2)(~~241,818)
4HCl(g) + O;(g) > 2H,0(g) + 2Cl,(g)  AH5e = —114,408 )

4.5 THE STANDARD HEAT OF COMBUSTION

Only a few formation reactions can actually be carried out, and therefore data
for these reactions must usually be determined indirectly. One kind of reaction
that readily lends itself to experiment is the combustion reaction, and many
standard heats of formation come from standard heats of combustion, measured
calorimetrically. A combustion reaction is defined as a reaction between an
elemept or compound and oxygen to form specified combustion products. For
organic compounds made up of carbon, hydrogen, and oxygen only, the products
are carbon dioxide and water, but the state of the water may be either vapor or
liquid. Data are always based on 1 mol of the substance burned.
A reaction such as the formation of n-butane:

4C(s) + 5SHy(g) - C.H,o(g)

cannot be carried out in practice. However, this equation results from combination
of the following combustion reactions:

4C(s) + 40,(g) » 4CO,(g) AHS, = (4)(—393,509)
5H,(g) + 2;0,(g) - 5H,0(D) AH 3%, = (5)(—285,830)
4CO,(g) + SH,O(I) » C,Hyolg) + 630,(g)  AHZs = 2,877,396
4C(s) + SHa(g) - C,H,0(g) AHSe = —1257901

This is the value of the standard heat of formation of n-butane listed in Table 4.4.

4.6 EFFECT OF TEMPERATURE ON
THE STANDARD HEAT OF REACTION

In the foregoing sections, standard heats of reaction are discussed for the base

temperature of 298.15 K only. In this section we treat the calculation of standard

heats of reaction at other temperatures from knowledge of the value at 298.15 K.
The general chemical reaction may be written as

Iyl*Al + IV2|A2+ e > |V3‘A3+ IU4|A4+ I
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where the || are stoichiometric coefficients and the A; stand for chemical 4
formulas. The species on the left are reactants; those on the right, products. We :4

adopt a sign convention for ¥ that makes it
positive (+) for products

negative (=) for reactants

The »; with their accompanying signs are called stoichiometric numbers. For

example, when the ammonia-synthesis reaction is written
Nz + 3H2 —> 2NH3
then

N, = -1 DHZ ==3 PNH, = 2

This sign convention allows the definition of a standard heat of reaction to

be expressed mathematically by the equation:

AH° =Y wH? , (4.14)

where H? is the enthalpy of species i in its standard state and the summation is
over all products and reactants. The standard-state enthalpy of a chemical 3
compound is equal to its heat of formation plus the standard-state enthalpies of 3
its constituent elements. If we arbitrarily set the standard-state enthalpies of all §
elements equal to zero as the basis of calculation, then the standard-state enthalpy
of each compound is its heat of formation. In this event, H; = AH} and Eq. (4.14) §

becomes

AH°=7Y », AH; (4.15) §

where the summation is over all products and reactants. This formalizes the §
procedure described in the preceding section for calculation of standard heats 1

of other reactions from standard heats of formation. Applied to the reaction,
4HCl{(g) + O:(g) > 2H,0(g) + 2Cl:(g)
Eq. (4.15) is written:
AH®=2AHj3  —4AHG,,
With data from Table 4.4 for 298.15 X, this becomes
AH%g = (2)(—241,818) — (4)(—92,307) = —114,408 ]

in agreement with the result of Example 4.6.

For a standard reaction, products and reactants are always at the same
standard-state pressure of 1 bar or 1(atm), Standard-state enthalpies are therefore 3§
functions of temperature only, and their change with T is given by Eq. (2.25), 3

dH: = F dT

where subscript i identifies a particular product or reactant. Multiplying by #,

LAl RUTrEL 19 18D

and summing over all products and reactants gives
Y vdH; =§ »C3 dT
Since v; is a constant,
Yd(yH})=d Y vH; =3 vC% dT

The term }, »;H7 is the standard heat of reaction, defined by Eq. (4.14). Similarly,
we define the standard heat-capacity change of reaction as

~  ACH=Y »C5 (4.16)

As a result of these definitions, the preceding equation becomes

dAH® = ACS dT (4.17)

This is the fundamental equation relating heats of reaction to temperature,
It may be integrated between the limits of 298.15 K and temperature T:

AHZ T
J dAH°=J AC%dT
2

AHisy 98.15
or

AHS = AH3es + ACH, (T - 298.15) (4.18)

If the temperature dependence of the heat capacity of each product and reactant
is given by Eq. (4.4), then AC5_, is given by the analog of Eq. (4.7):

AC3 AC
BChn _pA+(AB) T+ AC (472, - Ty + A2

R (4.19)

where
AA =Y A

with analogous definitions for AB, AC, and AD. For use with Eq. (4.18), we set
T, = 298.15.
Example 4.7 Calculate the standard heat of the methanol-synthesis reaction at 800°C:
COlg) + 2H,(g) » CH,0H(g)

SOLUTION Application of Eq. (4.15) to this reaction at 25°C with heat-of-formation
data from Table 4.4 gives

AH35 = —200,660 ~ (~110,525) = —90,135J

The value of AC$_, required for application of Eq. {4.18) is found from Eq.
(4.19). The following constants are taken from Table 4.1:

i v, A B x 10 C x10° D %1073
CH,O0H 1 2211 12.216 ~3.450 0.000
co -1 3.376 0.557 0.000 —-0.031
H, -2 3.249 0.422 0.000 0.083
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By definition,
2AR= )21 4 (~1)(3.376) + (H-249) = 77.683
Similarly,
.
AB = 10.815 x |0
y
AC = -3.450 x |0

AD = -0,135 x {0’

§ along with T, = 293'15
4.19) gives

Substitution of th&e oy K, T2 = LO73.15K, ang

8314 Jmol 7 K Mo gg

A
1 AC3 = ~17330JF
Whence by Eq. (4" 8)

pH‘l’u-,-_,’ = ~90,135 — (17.330)(1’01}15 — 298.15)

= —103,566 ]
Integration of E4 (4-17) bet

the calculation of AP™ Whep o

. . wants a singie va
integration to give gle v

AH?=J+J’AC;dT

s t
where J is the const?” of integrati )
gration.
expression for the t D Evaluation
into Eq. (4.16) leads™

)Cs,
/\-‘H
Vsaa+@amrraortt

f the final term .requ_i

o e
tituti
“ture dependence of ACY Substitution of Eq.

AD
72’

Eliminating AC? frot'y. (4.20) ang integrating, w v Bt

a2)
T

uﬁ! 3
AHy +R[(AA)T+-42£T2+ééT -
3

Equation (4.22) pf‘f,“.des a general calcu lation of the stan
heat of a particular re™ method for the

"33 a Function e The integration cons
of
J s evaluated by apP™ 0 of g eCIuatiotnel:tp s ﬁﬁf erat®ire, usually 298.1

where AH% is knowt

L
Example 4.8 Deve! "Wation giv:
the mcthanol-synth”"'icﬁ()n:  giving the ternperau/
C
©(9) +2Hy(g) » cH,0u( <

SOLUTION The w’¢ 44, latez>d in Example 4.7
. AR /U
substituted into Es'Vto give: AC and AD cal .

re de j:)endence of the hexg

0.135 x 10°
s = .T‘ 6]3 ——
AHg =J+83Br 5408 x 107372 _ 150'”(10 i

L3 Ll B AN 10 ANT

Also in Example 4.7 we found that AH%,; = —90,135 J. Substituting this value and
T = 298.15 K into the preceding equation, we solve for J, finding

J=-75259]
The general equation for AH% for the methanol-synthesis reaction is therefore:
AHS = —75,259 — 63.710T + 44.962 x 107>T% - 9.561 x 107°T*

1.122 % 10°
+..___
T

For T = 1,073.15 K, this €qjuation gives A Hy;; = —103,566 J, the same result obtained
in Example 4.7.

4.7 HEAT EFFECTS OF INDUSTRIAL REACTIONS

The preceding sections have dealt with the standard heat of reaction. Industrial
reactions are rarely carried out under standard-state conditions. Furthermore, in
actual reactions the reactants may not be present in stoichiometric proportions,
the reaction may not go to completion, and the final temperature may differ from
the initial temperature. Moreover, inert species may be present, and several
reactions may occur simultaneously. Nevertheless, calculations of the heat effects
of actual reactions are based on the principles already considered and are best
illustrated by example.

Example 4.9 What is the maximum temperature that can be reached by the combustion
of methane with 20 percent excess air? Both the methane and the air enter the burner
at 25°C.

SoLuTIiON The reaction is

CH, + 20, = C0O, + 2H,0(g)
for which

AH3%g5 = —393,509 + (2)(—241,818) — (~74,520) = —802,625]

Since the maximum attainable temperature is sought, we assume complete adiabatic
(Q = 0) combustion, With the additional assumptions that the kinetic- and potential-
energy changes are negligible and that there is no shaft work, the overall energy
balance for the process reduces to AH = 0. For purposes of calculation of the final
temperature,t any convenient path between the initial and final states may be used.
The path chosen is indicated in the diagram. With one mole of methane burned as
the basis for all calculations,

Moles O, required = 2.0
Moles excess O, = (0.2(2.0) = 0.4
Moles N, entering = (2.4)(79/21) = 9.03

T This temperature is often called the theoretical flame temperature, because it is the maximum
temperature attainable in the flame produced when the gas burns with the stated amount of air.
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By definition,
AA = (1}(2.211) + (—1)(3.376) + (—2)(3.249) = ~7.663

Similarly,
AB =10815x107?

AC = —3.450 x 107°
AD = —0.135 x10°

Substitution of these values along with T, =298.15K, T, = 1,073.15K, and R
8314 Jmol™' K ! into Eqg. (4.19) gives

AC%, =—173301K™
Whence by Eq. (4.18)
AH%4, = —90,135 — (17.330)(1,073.15 — 298.15)
= —103,566J
Integration of Eq. (4.17) between limits produces an equation suitable for \

the calculation of AH% when one wants a single value. The alternative is general -§
integration to give 4

AHS =T+ j ACS dT (4.20) "
where J is the constant of integration. Evaluation of the final term requires an

expression for the temperature dependence of AC%. Substitution of Eq. (4.4)
into Eq. (4.16) leads to: 3

ACH

AD
=AA+ (AB)T + (AC)T2+-'F
Eliminating AC3 from Eq. (4.20) and integrating, we get
AB_, AC_, _A_I_)]

AH?]-=]+R|:(AA)T+—2—T2+—T3

(4.22) *
3 T

Equation (4.22) provides a general method for the calculation of the standar.
heat of a particular reaction as a function of temperature. The integration constant |
J is evaluated by application of the equation at a temperature, usually 298.15 K,
where AH% is known.

Example 4.8 Develop an equation giving the temperature dependence of the heat of E
the methanol-synthesis reaction:

CO(g} + 2H,(g) - CH,0H(g)

SOLUTION The values of AA, AB, AC, and AD calculated in Example 4.7 a:e:
substituted into Eq. (4.22) to give:

0.135 x 105)

AHS =T+ 8.314(—7.663T+ 5408 x 107372 — 1150 x 10772 + T

L8580 LA 1 LA AV

Also in Example 4.7 we found that AHS,; = —90,135 J. Substituting this value and
T = 298.15 K into the preceding equation, we solve for J, finding

J=-752591]
The general equation for AH% for the methanol-synthesis reaction is therefore:
AHS = —75259 — 63.710T + 44.962 x 1072 T? —9.561 x 107¢T?

1.122 x 10°
+—__.
T

For T = 1,073.15 K, this équation gives AHYy;; = —103,566 J, the same result obtained
in Example 4.7.

4.7 HEAT EFFECTS OF INDUSTRIAL REACTIONS

The preceding sections have dealt with the standard heat of reaction. Industrial
reactions are rarely carried out under standard-state conditions. Furthermore, in
actual reactions the reactants may not be present in stoichiometric proportions,
the reaction may not go to completion, and the final temperature may differ from
the initial temperature. Moreover, inert species may be present, and several
reactions may occur simultaneously. Nevertheless, calculations of the heat effects
of actual reactions are based on the principles already considered and are best
iltustrated by example.

Example 4.9 What is the maximum temperature that can be reached by the combustion
of methane with 20 percent excess air? Both the methane and the air enter the burner
at 25°C.

SoLUTION The reaction is

CH, + 20, » CO, + 2H,0(g)
for which

AHSgs = —393,509 + (2)(—241,818) — (-74,520) = —802,625]

Since the maximum attainable temperature is sought, we assume complete adiabatic
(Q = 0) combustion. With the additional assumptions that the kinetic- and potential-
energy changes are negligible and that there is no shaft work, the overall energy
balance for the process reduces to AH = 0. For purposes of calculation of the final
temperature,t any convenient path between the initial and final states may be used.
The path chosen is indicated in the diagram. With one mole of methane burned as
the basis for all calculations,

Moles O, required = 2.0
Moles excess O, = (0.2)(2.0) = 0.4
Moles N, entering = (2.4)(79/21) = 9.03

t This temperature is often called the theoretical flame temperature, because it is the maximum
temperature attainable in the flame produced when the gas burns with the stated amount of air.
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The gases leaving the burner contain 1 mol CO,, 2mol H;0{g), 0.4mo! O,, and .

9.03 mol N,.
Products at 1 bar
—- and T, K
/A 1 mol CO,
/ 2 mol H,O
Ve 0.4 mol O,
v 9.03 mol N,
AH=0  /
/ AH
/
/
Reactants at 1 bar //
and 25°C - -
1 mol CH, 8H %
2.4 mol O,
9.03 mol N,

Since the enthalpy change must be the same regardless of path,
AHSs+ AH, =AH =0
The two terms on the left are
AHSs = —802,625]
and
AH% = (L nCh,, )T, —298.15)

where the summation runs over all product gases. Because the mean heat capacities
depend on the final temperature, we set up an iteration scheme to solve for To.
Combining the last three equations and solving for T, gives

802,625

T, =———"" +298.15 (A) 3

Z n; C'ﬂpmb.i

Since C = 0 in each heat-capacity equation for the product gases (Table 4.1}, Eq
(4.7) yields

Iy, = R(Z mA,+ & BT, +;%_%)
With data from Table 4.1, we find:
Y mA; = (1)(5.457} + (2)(3.470) + (0.4)(3.639) -+ (9.03)(3.280)
= 43.489
Similarly,
¥ nB, = 9.502 %107
YD, = —0.645 < 10°
whence

—0.645 X 105)

Y nCh = 8.314(43.489 +9.502 x 107 T, +
- T,

S ww-mw

with T; = 298.15 K. An initial value of T, = 298.15 K substituted into Eq. (B) yields
a value for ¥ n,C5_ it which when substituted in Eq. (A) yields a new value for T,.
Continued iteration between Eqgs. (A) and (B) yields a final value of

T,=2066K or 1,793°C
Example 4.10 One method for the manufacture of “synthesis gas™ (primarily a mixture

of CO and H,) is the catalytic reforming of CH, with steam at high temperature and
atmospheric pressure:

C_}L(y) + H,0(g) » CO(g) + 3H:(g)

The only other reaction which accurs to an appreciable extent is the water-gas-shift
reaction:

CO(g) + H;0(g) - CO,(g) + Hy(g)

If the reactants are supplied in the ratio, 2 mol steam to 1 mol CH,, and if heat is
supplicd to the reactor so that the products reach a temperature of 1,300 K, the CH,
is completely converted and the product stream contains 17.4 mole percent CO.
Assuming the reactants to be preheated to 600 K, calculate the heat requirement for
the reactor.

SOLUTION The standard heats of reaction at 25°C for the two reactions are calculated
from the data of Table 4.4:

CHi(g) + H;0(g) » CO(g) + 3H;(g)  AH3e =205813J
CO(g) + H,0(g) » COy(g) + Hy(g)  AH30 = —41,166]

These two reactions may be added to give a third reaction:
CH,(g) + 2H,0(g) -» CO,(g) + 4H(g) AHSZs = 164,647]

Any pair of these three reactions constitutes an independent set. The odd reaction is
not independent, since it is obtained by combination of the other two. The reactions
most convenient to work with here are:

CH,(g) + Hzo(g) > CO(g) + 3H:(g) AHS5 = 205,813 (A)
CH,(g) + 2H,0(g) » CO,(g) + 4H,(g) AH3gs = 164,6471] (B)

‘We first determine the fraction of CH, converted by each of these reactions. As
a basis for calculations, let 1 mol CH, and 2 mol steam be fed to the reactor. If
x mol CH, reacts by Eq. (A), then 1 — x mol reacts by Eq. (B). On this basis the
products of the reaction are:

CO: x
H;: Ix+4l—x)=4-x
CO;: I—-x

H,0: 2—-x-2(1-x)=x

Total: 5 mol products

The mole fraction of CO in the product stream is x/5 = 0.174; whence x = 0.870.
Thus, on the basis chosen, 0.870 mol CH,, reacts by Eq. (A) and 0.130 mol reacts by
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Eq. (B). Furthermore, the amount of each species in the product stream is:
Moles CO = x = 0.87
Moles H, = 4 — x = 3.13
Moles CO, =1-x =0.13
Moles H,O = x = 0.87

We now devise a path, for purposes of calculation, to proceed from reactants at
600 K to products at 1,300 K. Since data are available for the standard heats of
reaction at 25°C, the most convenient path is the one which includes the reactions at §
25°C (298.15 K). This is shown schematically in the accompanying diagram.

Products at 1 bar
- and 1,300 K

/1\ 0.87 mol CO
V4 3.13 mol H,
/ 0.13 mol CO,
/7 0.87 mol H,O
AH//
//
/ AH,
Reactants at 1 bar /
and 600 K —w 7
1 mol CH,
2 mol H,O AHY
AHZ%

The dashed line represents the actual path for which the enthalpy change is AH.
Since this enthalpy change is independent of path,

AH = AHS + AHe + AHS

For the calculation of A H3, reactions (A} and { B) must both be taken into account. 3
Since 0.87 mol CH, reacts by {A) and 0.13 mol reacts by (B),

AH3g; = (0.87)(205,813) + (0.13)(164,647) = 200,461 ]

The enthalpy change of the reactants as they are cooled from 600 to 298.15K is
given by:
AH% ={(Z n,Ch

rh,i

)(298.15 — 600)
where the mean heat capacities are calculated by Eq. (4.7):

(1)(44.026) + (2)(34.826)

—301.85) = -34,314]
CH, H,0 ]( )

.

The enthalpy change of the products as they are heated from 298.15 to 1,300K is
calculated similarly:
AH% = (¥ n,C%,, }(1,300 - 298.15)
[(0.87)(31.702) + (3.13)(29.994) + (0.13)(49.830) + (0.87)(38.,742)]
AHS =
Cco H, Co, H,0

% (1,001.85) = 161,944 J

S 8 e SN SeFa

Therefore,
AH = —34,314 + 200,461 + 161,944 = 328,091 J

The process is one of steady flow for which W,, Az, and Au?/2 are presumed
negligible. Thus

Q=AH =328,091])

This result is on the basis of 1 mol CH, fed to the reactor. The factor for converting
from Jmol™ to (Btu){(lb mol)™' is very nearly 0.43 (more exactly it is 0.429929).
Therefore on the basis of 1{Ib mol) CH, fed to the reactor, we have '

2 = AH = (328,091)(0.43) = 141,079(Btu)

Example 4.11 A boiler is fired with a high-grade fuel oil (consisting only of hydrocar-
bons} having a standard heat of combustion of —43,515Jg™" at 25°C with CO,(g)
and H,O(!) as products. The temperature of the fuel and air entering the combustion
chamber is 25°C. The air is assumed dry. The flue gases leave at 300°C, and their
average analysis (on a dry basis) is 11.2 percent CO,, 0.4 percent CO, 6.2 percent
0;, and 82.2 percent N,. Calculate the fraction of the heating value of the oil that is
transferred as heat to the boiler,

SOLUTION Take as a basis 100 mol dry ﬂue'gases, consisting of

CO, 11.2 mol
CO 0.4 mol
0, 6.2 mol
N, 82.2 mol
Total 100.0 mot

This analysis, on a dry basis, does not take into account the H,O vapor present in
the flue gases. The amount of H,0 formed by the combustion reaction is found from
an oxygen balance. The O, supplied in the air represents 21 mol percent of the air
stream. The remaining 79 percent is N,, which goes through the combustion process
unchanged. Thus the 82.2 mol N, appearing in 100 mol dry flue gases is supplied with
the air, and the O, accompanying this N, is:

Moles O, entering in air = (82.2}(21/79) = 21.85
However,
Moles O, accounted for in the dry flue gases
=11.2+04/2+6.2=17.60

The difference between these figures is the moles of O, that react to form H,0.
Therefore on the basis of 100 mol dry flue gases,

Moles H,O formed = (21.85 — 17.60}{2) = 8.50
Moles H, in the fuel = moles of water formed = 8.50
The amount of C in the fuel is given by a carbon balance:
Moles C in flue gases = moles C in fuel

=11.2+0.4=11.60
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These amounts of C and H; together give:
Mass of fuel burned = (8.501(2) + (11.6){12) = 156.2 g

If this amount of fuel is burned completely to CO,(g) and H,0O(1) at 25°C, the heat’
of combustion is

AH%s = (—43,515)(156.2) = —6,797,040 J

However, the reaction actually occurring does not represent complete combustion_,
and the H,O is formed as vapor rather than as liquid. The 156.2 g of fuel is representec
by the empirical formula Cy; ¢H,;, and the reaction is written:

C,1.6H17(5) + 21.850,(g) + 82.2N,(g) »
11.2C0,(g) + 0.4CO(g) + 8.5H,0(g) + 6.20(g) + 82.2Ny(g j

This equation is obtained by addition of the following reactions, for each of which;)
the standard heat of reaction at 25°C is known:

CiisH7(D) + 15.850,(g) > 11.6CO,(g) + 8.5H,0()
AHSe = 6,797,040 J
8.5H,0([) - 8.5H,0(g) AHSg = (44,012)(8.5) = 374,102) ;
0.4CO,(g) + 0.4CO(g) + 0.20,(g) ‘
AH35, = (282,984)(0.4) = 113,194 %
6.20,(g) + 82.2N,(g) > 6.20,(g) + 82.2Ny(g)
AH%y =0
The sum of these reactions yields the actual reaction, and the sum of the AH%5, values
gives the standard heat of the reaction occurring at 25°C:

AH3s = —6,309,744]

This value is used as indicated in the accompanying diagram for calculation of th
heat effect of the process considered.

Products at 1 bar

——=  and 300°C
/4 11.2 mol CO,
// 0.4 mol CO
s 8.5 mol H,O
6.2 mol O,
AH 82.2 mol N;
Ve AH%
/
/
7/
Reactants at 1 bar //
and 25°C — - = -
156.2 g fuel AH3
21.85 mol O,
82.2 mol N,

The actual process leading from reactants at 25°C to products at 300°C i
represented by the dashed line in the diagram. For purposes of calculating AH for

AR R BT

this process, we may use any convenient path. The one drawn with solid lines is a
logical one, because the enthalpy changes for these steps are easily calculated, and
A H3gg has already been evaluated. The enthalpy change caused by heating the products
of reaction from 25 to 300°C is calculated with mean heat capacities by Eq, (4.7):

AHY = (Z n,C% , W573.15 — 298.15)
AHS = [(11.2)(43.675) + (0.4)(29.935) + (8.5)(34.690)
+ (6.2)(30.983) + (82.2)(29.612)](573.15 — 298.15)
AHp =941,1057
Whence
AH = AH3: + AH} = —6,309,744 + 941,105 = 5,368,640 ]

Since the process is one of steady flow for which the shaft work and kinetic- and
potential-energy terms in the energy balance [Eq. (2.10)] are zero or negligible,
AH = Q. Thus, Q = —5,368.64 k], and this amount of heat is transferred to the boiler
for every 100 mol dry flue gases formed. This represents

5,368,640

6.797.040 (100) = 79.0 percent

of the higher heating value of the fuel.

In the foregoing examples of reactions that occur at approximately 1 bar, the
reactants and products are for practical purposes in their standard states. For
reactions at elevated pressures, this is not the case, and additional calculations
are required to take into account the effect of pressure on the heat effects of
reaction. The method of doing this is considered in Chap. 6. Suffice it to say at
this point that the effect of pressure on the heat of reaction is usually small
compared with the effect of temperature.

PROBLEMS

4.1 What is the heat required when 10 mol of ethylene is heated from 200 to 1,100°C at approximately
atmospheric pressure in a steady-flow heat exchanger?

4.2 What is the heat required when 12 mol of 1-butene is heated from 250 to 1,200°C at approximately
atmospheric pressure in a steady-flow heat exchanger?

4.3 What is the final temperature when heat in the amount of 1,J00kJ is added to 30 mol of SO,
injtially at 300°C in a steady-flow heat exchanger at approximately atmospheric pressure?

4.4 What is the final temperature when heat in the amount of 880 kJ is added to 25 mol of ammonia
vapor initially at 260°C in a steady-flow heat exchanger at approximately atmospheric pressure?
4.5 What is the final temperature when heat in the amount of 10°(Btu) [1.055 x 10°kJ] is added to
50(Ib mol) {22.68 kg mol] of methane initially at 500(°F) {260°C] in a steady-flow heat exchanger at
approximately atmospheric pressure?

4.6 If 350(ft)*(s)~' [9.91 m* 57'] of air at 77(°F) [25°C] and atmospheric pressure is preheated for a
combustion process to 815(°F) [435°C], what rate of heat transfer is required?

4.7 How much heat is required when 10{tons} [9,070 kg] of CaCO, (calcite) is heated at atmospheric
Pressure from 95(°F) {35°C] to 1,580(°F) [860°C]?
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4.8 If the heat capacity of a substance is correctly represented by an equation of the form gas during compression is given by

Cp=A+ BT+ CT? PV'* = const

show that the error resulting when Cp_, is assumed equal to Cp evaluated at the arithmetic mean and the molar heat capacity of the gas is given by
the initial 2nd final temperatures is C(T, — T;*/12.

4.9 If the heat capacity of a substance is correctly represented by an equation of the form

Cp=A+ BT+ DT

Cp/R=330+063 x10°T [T =K]

Determine the heat transferred during the process and the final pressure.

4.19 1f the heat of combustion of urea, (NH,),CO(s), at 25°C is 631,660 J mol™! when the products
are CO,{(g), H,O(!}, and N,(g), what is the standard heat of formation of urea at 25°C?

4.20 Determine thestandard heat of each of the following reactions at 25°C:
(a) Na{g} + 3Hy{(g} » 2NH,(g)

(b) 4NH;{g) + 50,(g} > 4NO(g) + 6H,0(g)

{¢) 3NO,(g)+ H,O(l} » ZHNO, () + NO(g)
(d) CaCs(s) + H,0(l) - C,H,(g) + CaO(s}

{e) 2Na(s) + 2H,0(g) - 2NaOH({s) + H;(g)
n C3Hg(g) » C;H.{g) + CH,(g)

(@ C,H,{(g) + %Oz(g) - {(CH,;)0(g)

(h) CyHx{g)+ H,0(g} = ({CH,),)0{g)

(i) CH.(g) + 2H,0(g) - CO,(g) + 4H,(g)

(/) CO.(g) + 3H;(g} » CH,0H(g} + H,0{g)
(k) CH;0H{(g) +30,(g) » HCHO(g) + H;0{(g)
() 2H,8(g) + 30,(g) » 2H,0(g) + 280,(g)}
(m) H;8{(g)+2H,0(g) - 3H,(g) + 50,(g)

(n) Na(g) + O.(g) » 2NO(g)

(0) CaCO,(5) > CaO(s)+ CO,(g)

show that the error resulting when Cp , is assumed equal to Cp evaluated at the arithmetic mean
the initia} and final temperatures is D(T, ~ T))%/4T, Ty Top,.

4.10 A handbook value for the latent heat of vaporization of n-hexane at 25°C is 366.1 Jg'. Wh
approximately is the value at 150°C?

4.11 A handbock value for the latent heat of vaporization of benzene at 25°C is 433.3Jg™". Wh
approximately is the value at 200°C?

4.12 A handbook value for the latent heat of vaporization of cyclohexane at 25°C is 392.5J g~'. Wh
approximately is the value at 190°C?

4.13 A handbook value for the latent heat of vaporization of methyl ethyl ketone at 78.2°C
443.2 1 g~'. What approximately is the value at 185°C?

4.14 A handbook value for the latent heat of vaporization of methanol at 64.7°C is 1,099.5] g“ 1
What approximately is the value at 175°C? :
4.15 Calculate the latent heat of vaporization of ammonia at 320K
(a) By Eqgs. (4.12) and (4.13). T, = 239.TK.

(b) From the following handbook data for saturated ammonia:

T/K P/bar vifm kg™ V' /mikg™! (p} 8504(g) + H,O(]) » H,80,{1}
(g} C;H,(g) + H,0(1) » C;H,OH(})
300 10.61 1.666 x 1072 0.121 (r} CH;CHO(g) + H;(g) - C;H;0H(g)
310 14.24 1.710 x 1073 0.091 (s) C,H;OH(N +0,(g) » CH;COOH({} + H,0())
320 18.72 1.760 x 1072 0.069 (t) C,H;CH:CH,(g) » CH,:CHCH:CH,{g) + H:(g)
330 24.20 1.815 x 1072 0.053 {u) C,H,4(g) > CH;;:CHCH:CH,{g) + 2H,{(g)
340 30.79 1.878 x 1072 0.041 (v) C,H;CH:CH,(g) + 0,(9) » CH;:CHCH:CH,{g) + H,O{g)

(w) 2NH,(g) + 3NO(g) - 3H,0(g) + IN,(g)

(x) N,(g)+C;H,(g)~> 2ZHCN{g)

(y) C4H;.C H;(g) » CsHsCH:CH,(g) + H,{g)

(z) C(s)+ H0(l) » Hy(g) + CO(g)

4.21 What is the standard heat for the reaction of Prob. 4.20(a} at 550°C?

4.22 What is the standard heat for the reaction of Prob. 4.20(b) at 450°C?

4.23 What is the standard heat for the reaction of Prob. 4.20(7) at S00(°F) [260°C]?

The reported value is 1,065.7 kI kg .

4.16 Calculate the latent heat of vapoﬁzation of methanol at 300 K
(a) By Eqgs. (4.12) and (4.13). T,, = 3378 K.

(b) From the following handbook data for saturated methanol:

T/K P/bar Viim’ kg™ Ve/m’ kg™! .

/ / /m" ke /m"kg 4.24 What is the standard heat for the reaction of Prob. 4.20(1) at $00(°F) [426.7°C]
280 0.0621 1.244 x 1072 11.62 4.25 What is the standard heat for the reaction of Prob. 4.20(m) at 900 K?

290 0.1094 1.259 x 1973 6.778 426 What is the standard heat for the reaction of Prob. 4.20(n) at 1,500 K?

300 0.1860 1.274 x l():3 4.095 4.27 What is the standard heat for the reaction of Prob. 4.20{¢) at 880°C?

310 0.3043 1290 x 107 2.566 4.28 What is the standard heat for the reaction of Prob. 4.20(r) at 400°C?

320 0.4817 1.306 x 107° 1.661 o

4.29 What is the standard heat for the reaction of Prob. 4.20(¢) at 770(°F) [410°C]
4.30 What is the standard heat for the reaction of Prob. 4.20(u} at 700 K?

431 What is the standard heat for the reaction of Prob. 4.20(v) at 800 K?

4.32 What is the standard heat for the reaction of Prob. 4.20(w) at 400°C?

4.33 What is the standard heat for the reaction of Prob. 4.20(x) at 300°C?

4.34 What is the standard heat for the reaction of Prob. 4.20(y) at 1,535(°F) [835°C]?

‘The reported value is 1,167.3kJ kg .
4.17 Estimate the standard heat of formation of liquid ethyl benzene at 25°C. For ethyl benzene,
T,=4093K, T, = 617.1 K, and P, = 36.1 bar. ’ '

4.18 A reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in a pressure
increase from 1 bar to P, and a temperature increase from 500 to 1,000 K. The path followed by the



AadiF AANW I ANATFLSLU/ W £ AR LA AR A dTRES R AR Al TAF AL N AR AR A TS 4 R AR EAATE AT AT & A ES RATE BT

4.35 Develop a general equation for the standard heat of reaction as a function of temperature fi
one of the reactions given in parts (a), (b), (e}, (), (g), (h), (j), (K), (1}, (m)}, (n), (0), (), (1)}
(u), (v), {w), (x), (»), and (z} of Prob. 4.20.

4.36 Hydrocarbon fuels can be produced from methanol by reactions such as the following, whi
yields 1-hexene:

6CH,0H(g) - C¢H (g} + 6H,0(g)

Compare the standard heat of combustion at 25°C of 6CH,OH(g) with the standard heat of combustio:
at 25°C of C¢H,,(g), reaction products in both cases being CO,(g) and H,0(g).

4.37 Calculate the theoretical flame temperature when methane at 25°C is burned with

(a} The stoichiometric amount of air at 25°C,

(b) 25 percent excess air at 25°C,

(c) 50 percent excess air at 25°C.

(d) 100 percent excess air at 25°C.

(e) 50 percent excess air preheated to 500°C,
438 What is the standard heat of combustion of hexane gas at 25°C if the combustion products are 2
H,0() and CO,(g)? 3
43% A light fuel oil with an average chemical composition of CyH,; is burried with oxygen in a3
bomb calorimeter. The heat evolved is measured as 47,730 J g~* for the reaction at 25°C. Calculate §
the standard heat of combustion of the fuel oil at 25°C with H,0(g} and CO,(g) as products. Note
that the reaction in the bomb occurs at constant volume, produces liquid water as a product, and
goes to completion. :
4.40 Methane gas is burned completely with 20 percent excess air at approximately atmospheric
pressure. Both the methane and the air enter the furnace at 25°C saturated with water vapor, and
the flue gases leave the furnace at 1,600°C. The flue gases then pass through a heat exchanger from
which they emerge at 40°C, On the basis of 1 mol of methane, how much heat is lost from the furnace,
and how much heat is transferred in the heat exchanger? 3
4.41 Ammonia gas enters the reactor of 2 nitric acid plant mixed with 25 percent more dry air than
is required for the complete conversion of the ammonia to nitric oxide and water vapor. If the gases
enter the reactor at 185(°F) [85°C], if conversion is 85 percent, if no side reactions occur, and if the
reactor operates adiabatically, what is the temperature of the gases leaving the reactor? Assume ideal
gases,
4.42 Sulfur dioxide gas is oxidized in 100 percent excess air with 80 percent conversion to sulfur
trioxide. The gases enter the reactor at 770(°F) [410°C] and leave at 860(°F) [460°C]. How much
heat must be transferred from the reactor on the basis of ! (Ib mol) [1 mol] of entering gas?
4.43 A fuel consisting of 75 mol percent ¢thane and 25 mol percent methane enters a furnace with
100 percent excess air at 25°C. If 10°kJ per kg mole of fuel is transferred as heat to boiler tubes, at
what temperature do the flue gases leave the furnace? Assume complete combustion of the fuel. :

4.44 The gas stream from a sulfur burner consists of 15 mole percent SO,, 20 mote percent 0,, and §
65 mole percent N,. The gas stream at atmospheric pressure and 480°C enters a catalytic converter
where 90 percent of the SO, is further oxidized to $O,. On the basis of 1 mol of gas entering, how
much heat must be removed from the converter so that the product gases leave at 430°C? :
4.45 The gas-stream feed for the oxidation of ethylene to ethylene oxide is composed of 8 mole 3
percent C,H,, 19 mole percent O,, and 73 mote percent N,. The feed stream at atmospheric pressure
and 200°C enters a catalytic converier where 60 percent of the ethylene is converted to ethylene oxide
and 30 percent is burned to carbon dioxide and water. On the basis of 1 mol of gas entering, how
much heat must be removed from the converter so that the product gases leave at 260°C?

4.46 Hydrogen is produced by the reaction

CO(g) + H,0(g) » CO,(g} + Hy(g)

The feed stream to the reactor is composed of 40 mole percent CO and 60 mole percent steam, and
it enters the reactor at 150°C and atmospheric pressure. If 60 percent of the H,0 is converted to H,

and if the product stream leaves the reactor at 450°C, how much heat must be transferred from the
reactor?

447 A direct-fired drier buras a fuel oil with a net heating value of 19,000(Btu){1b.,)~". (The net
heating value is obtained when the products of combustion are CO, (g) and H0(g).) The composition
of the oil is 85 percent carbon, 12 percent hydrogen, 2 percent nitrogen, and 1 percent water by
weight. The flue gases leave the drier at 400(°F), and a partial analysis shows that they contain 3
mole percent CO;, and 11.8 mole percent CO on a dry basis. The fuel, air, and material being dried
enter the drier at 77(°F). If the entering air is saturated with water and if 30 percent of the net heating
value of the oil is allowed for heat losses (including the sensible heat carried out with the dried
product), how much water is evaporated in the drier per (Ib,,) of oil burned?

4.48 Propane is conPerted to ethylene and methane in a thermal cracking operation by the reaction
C3Hy(g) = C;H,{g) + CH,(g)

Propane enters the cracker at 200°C at a rate of 1.25 kg s™', and heat transfer to the reactor is at the
rate of 3,200kJs~'. For 60 percent conversion of the propane, what is the temperature of the gas
mixture leaving the cracker?

4.49 Chlorine is produced by the reaction
4HCl(g) + O,(g) - ZH,0{(g) + 2Cl,(g)

The feed stream to the reactor consists of 67 mole percent HC, 30 mole percent O,, and 3 mole
percent N,, and it enters the reactor at 500°C. If the conversion of HCI is 75 percent and if the
process is isothermal, how much heat must be transferred from the reactor per mole of the entering
gas mixture?

4.50 A gas consisting of CO and N, is made by passing a mixture of flue gas and air through a bed
of incandescent coke (assume pure carbon). The two reactions that occur both go to completion:

€0,+C->2C0
2C+0, > 2C0

In a particular instance the flue gas that is mixed with air contains 13.7 mole percent CO,, 3.4 mole
percent CO, 5.1 mole percent O3, and 77.8 mole percent N,. The flue gas/air mixture is s0 proportioned
that the heats of the two reactions cancel, and the temperature of the coke bed is therefore constant.
If this temperature is 900°C, if the feed stream is preheated to 900°C, and if the process is adiabatic,
what ratio of moles of flue gas to moles of air is required, and what is the composition of the gas
produced?

4.51 A fuel gas consisting of 93 mole percent methane and 7 mole percent nitrogen is burned with
30 percent excess air in a continuous water heater. Both fuel gas and air enter dry at 25°C and
atmospheric pressure. Water is heated at 2 rate of 75(Ib,)(s} ! [34.0kgs '] from 59(°F) [15°C] to
185(°F) [85°C]. The flue gases leave the heater at 392(°F) [200°C]. Of the entering methane, two-thirds
burns to carbon dioxide and one-third burns to carbon monoxide. What volumetric flow rate of fuel
gas is required if there are no heat losses to the surroundings?

4.52 A process for the production of 1,3-butadiene results from the catalytic dehydrogenation of
I-butene according to the reaction

CHglg) > C4Hg(g) + Hy(g)

In order to suppress side reactions, the 1-butene feed stream is diluted with steam in the ratio of 12
moles of steam per mole of 1-butene. The reaction is carried out isothermally at 500°C, and at this
temperature 30 percent of the 1-butene is converted to 1,3-butadienc. How much heat is transferred
to the reactor per mole of entering 1-butene? Since the reaction is carried out at atmospheric pressure,
the gases may be assumed ideal.
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Drawing further on our experience, we know that the flow of heat between
two bodies always takes place from the hotter to the cooler body, and never in
the reverse direction. This fact is of such significance that its restatement serves
as an acceptable expression of the second law.

CHAPTER

FIVE
THE SECOND LAW OF THERMODYNAMICS

5.1 STATEMENTS OF THE SECOND LAW

The observations jlust described are results of the restriction imposed by the
second law on the directions of actual processes. Many general statements may
be made which describe this restriction and, hence, serve as statements of the
second law. Two of the most common are:

1. No apparatus can operate in such a way that its only effect (in system and
surroundings) is to convert heat absorbed by a system completely into work.

2. No process is possible which consists solely in the transfer of heat from one
temperature level to a higher one.

Statement | does not imply that heat cannot be converted into work but that
the process cannot leave both the system and its surroundings unchanged. Con-
sider a system consisting of an ideal gas in a piston-and-cylinder assembly
expanding reversibly at constant temperature. Work is produced equal to [ PaV,
and for an ideal gas AU = 0. Thus, according to the first law, the heat absorbed
by the gas from the surrotindings is equal te the work produced by the reversible
expansion of the gas. At first this might seem a contradiction of statement I,
since in the surroundings the only result has been the complete conversion of
heat into work. However, the second-law statement requires that there also be
no change in the system, a requirement which has not been met.

This process is limited in another way, because the pressure of the gas soon
reaches that of the surroundings, and expansion ceases. Therefore, the continuous
production of work from heat by this method is impossible. If the original state
of the system is restored in order to comply with the requirements of statement
1, energy from the surroundings in the form of work is needed to compress the
gas back to its original pressure. At the same time energy as heat is transferred
to the surroundings to maintain constant temperature. This reverse process
requires at least the amount of work gained from the expansion; hence no net
work is produced. Evidently, statement 1 may be expressed in an alternative way,
VI1Z.©

Thermodynamics is concerned with transformations of energy, and the laws of 3
thermodynamics describe the bounds within which these transformations are j
observed to occur. The first law, stating that energy is conserved in any ordinary
process, imposes no restriction on the process direction. Yet, all experience }
indicates the existence of a restriction. Its formulation completes the foundation
for the science of thermodynamics and its concise statement constitutes the
second law.

The differences between the two forms of energy, heat and work, provide §
some insight into the second law. In an energy balance, both work and heat are
included as simple additive terms, implying that one unit of heat, a joule, is i
equivalent to the same unit of work. Although this is true with respect to an
energy balance, experience teaches that there is a difference in quality between §
heat and work. This experience is summarized by the following facts.

Work is readily transformed into other forms of energy: for example, into
potential energy by elevation of a weight, into kinetic energy by acceleration of
a mass, into electrical energy by operation of a generator. These processes can
be made to approach a conversion efficiency of 100 percent by elimination of
friction, a dissipative process that transforms work into heat. Indeed, work is
readily transformed completely into heat, as demonstrated by Joule’s experiments.

On the other hand, all efforts to devise a process for the continuous conversion |
of heat completely into work or into mechanical or electrical energy have failed.
Repardiess of improvements to the devices employed, conversion efficiencies do
not exceed about 40 percent. These low values lead to the conclusion that heat
is a form of energy intrinsically less useful and hence less valuable than an equal
quantity of work or mechanical or electrical energy.

la. It is impossible by a cyclic process to convert the heat absorbed by a system
completely into work.

The word cyclic requires that the system be restored periodically to its original
state. In the case of a gas in a piston-and-cylinder assembly the expansion and

compression back to the original state constitute a complete cycle. If the process
138
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is repeated, it becomes a cyclic process. The restriction to a cyclic process
statement 1a amounts to the same limitation as that introduced by the wor
only effect in statément 1.

The second law does not prohibit the production of work from heat, but
does place a limit on the fraction of the heat that may be converted to work in
any cyclic process. The partial conversion of heat into work is the basis for nearl
all commercial production of power (water power is an exception). The develops
ment of a quantitative expression for the efficiency of this conversion is the next
step in the treatment of the second law.

5.2 THE HEAT ENGINE

The classical approach to the second law is based on a macroscopic viewpoint '
of properties independent of any knowledge of the structure of matter or behavior}
of molecules. It arose from study of the heat engine, a device or machine that 4
produces work from heat in a cyclic process. An example is a steam power plant
in which the working fluid (steam) periodically returns to its original state. In 3
such a power plant the cycle (in simple form) consists of the following steps: -

1. Liquid water at approximately ambient temperature is pumped into a boiler. §
2. Heat from a fuel (heat of combustion of a fossil fuel or heat from a nuclear §
reaction} is transferred in the boiler to the water, converting it to steam at

high temperature and pressure,
3. Energy is transferred as shaft work from the steam to the surroundings by a ;

device such as a turbine.
4. Exhaust steam from the turbine is condensed by the transfer of heat to cooling

water, thus completing the cycle. :

Essential to all heat-engine cycles are the absorption of heat at a high §
temperature, the rejection of heat at a lower temperature, and the production of ;
work. In the theoretical treatment of heat engines, the two temperature levels
which characterize their operation are maintained by heat reservoirs, bodies
imagined capable of absorbing or rejecting an infinite quantity of heat without
temperature change. In operation, the working fluid of a heat engine absorbs
heat | Q| from a hot reservoir, produces a net amount of work W, discards heat :
|Q¢| to a cold reservoir, and returns to its initial state. The first law therefore
reduces to

=1Qul - 1Qc| (5.1)

Defining the thermal efficiency of the engine as

net work output
heat input

n
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W _ Qul = 1Qc|
Qul 1Qxl

n=

or

101

n=1-
| Qs

(5.2)
‘

Absolute-value signs are used with the heat quantities to make the equations
independent of the sign convention for Q. We note that for n to be unity (100
percent thermal efficiency) |Qc| must be zero. No engine has ever been built for
which this is true; some heat is always rejected to the cold reservoir. This result
of engineering experience is the basis for statements 1 and 1a of the second law.

If a thermal efficiency of 100 percent is not possible for heat engines, what
then determines the upper limit? One would certainly expect the thermal efficiency
of a heat engine to depend on the degree of reversibility of its operation. Indeed,
a heat engine operating in a completely reversible manner is very special, and is
called a Carnot engine. The characteristics of such an ideal engine were first
described by N. L. S. Carnott in 1824. The four steps that make up a Carnot
cycle are performed in the following order:

1. A system initially in thermal equilibrium with a cold reservoir at temperature
T undergoes a reversible adiabatic process that causes its temperature to rise
to that of a hot reservoir at T,

2. The system maintains contact with the hot reservoir at Ty, and undergoes a
reversible isothermal process during which heat | Q]| is absorbed from the hot
TeServoir.

3. The system undergoes a reversible adiabatic process in the opposite direction
of step 1 that brings its temperature back to that of the cold reservoir at T.

4. The system maintains contact with the reservoir at T, and undergoes a revers-
ible isothermal process in the opposite direction of step 2 that returns it to its
initial state with rejection of heat |Q.| to the cold reservoir.

A Carnot engine operates between two heat reservoirs in such a way that all
heat absorbed is absorbed at the constant temperature of the hot reservoir and
all heat rejected is rejected at the constant temperature of the cold reservoir. Any
reversible engine operating between two heat reservoirs is a Carnot engine; an
engine operating on a different cycle must necessarily transfer heat across finite
temperature differences and therefore cannot be reversible.

Since a Carnot engine is reversible, it may be operated in reverse; the Carnot
cycle is then traversed in the opposite direction, and it becomes a reversible

T Nicolas Léonard Sadi Carnot (1796-1832), a French engincer.
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refrigeration cycle for which the quantities |Qg], |Qc|, and | W] are the same
for the engine cycle but are reversed in direction.

Carnot’s theorem states that for two given heat reservoirs no engine can ha
a higher thermal efficiency than a Carnot engine. Consider a Carnot engine th
absorbs heat [Qy| from a hot reservoir, produces work |W|, and discards he
|Qx| — | W] to a cold reservoir. Assume a second engine E with a greater the
efficiency operating between the same heat reservoirs, absorbing heat |Q%|, pr
ducing the same work |W|, and discarding heat |Q)y| — | W|. Then

Wi _ |w|
!
Q%I 1Qu]

whence

|Qut > | Qkl

Let engine E drive the Carnot engine backward as a Carnot refrigerator, as shown
schematically in Fig. 5.1. For the engine/refrigerator combination, the net heat §

extracted from the cold reservoir is

|Qn| = 1W] = (1Qkl = IWD = |Qu| — | Q%l

The net heat delivered to the hot reservoir is also |Qy| — |Q%l. Thus, the sole
result of the engine/refrigerator combination is the transfer of heat from tem-

Hot reservoirat T,

1Qul 1Qu!
Now
(O—2—()
{Qu|—|WI 1Qx| —| W]

Cold ir at T,
ol reservoirat fe Figure 5.1 Engine E operating a

Carnot refrigerator C.
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. erature T to the higher temperature Tj,. Since this is in violation of statement

£ 5 of the second law, the original premise that engine E has a greater thermal

efficiency than the Carnot engine is false, and Carnot’s theorem is proved. In

- similar fashion, one can prove a corollary to Carnot’s theorem: All Carnot engines
* operating between heat reservoirs at the same two temperatures have the same

thermal efficiency. These results show that the thermal efficiency of a Carnot

" engine depends only on the temperature levels T;; and T and not upon the

working substance of the engine.
{

5.3 THERMODYNAMIC TEMPERATURE SCALES

In the preceding discussion we identified temperature levels by the Kelvin scale,
established with ideal-gas thermometry. This does not preclude our taking advan-
tage of the opportunity provided by the Carnot engine to establish a thermody-
namic temperature scale that is truly independent of any material properties. Let
# represent temperature on some empirical scale that unequivocally identifies
temperature levels. Consider now two Carnot engines, one operating between a
hot reservoir at 8y and a cold reservoir at temperature 8., and a second operating
between the reservoir at 8. and a still colder reservoir at @5, as shown in Fig.
5.2. The heat rejected by the first engine | Q| is absorbed by the second; therefore
the two engines working together constitute a third Carnot engine absorbing heat
|Qx| from the reservoir at 6, and rejecting heat |Q| to the reservoir at 8.
According to Cartnot’s theorem, the thermal efficiency of the first engine is a

By
|Qul
<]
Qe
i
O - W
|Qc|
2:
[ Q| Figure 5.2 Carnot engines 1 and 2
together constitute a third Camot
8c engine.
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function of 8y and 0.:

_1Qcl

n=1

Rearrangement gives

Qul 1
|Qc| 11— ¢(8y, 8c)

where f is an unknown function.

apply:
|Qcl
= (B, 8F)
]QF| f( C» UF
and
|Qal
T = f(0n, 0F)
|Qxl i
Division of the second of these equations by the first gives
|QHl m_f(BH, 6r)

|Qc| ~ f(8c, 6F)
Equation (5.3) also gives |Qx|/|Qc

; setting the two expressions equal yields

f(u, 6F)

S84, fc) = f(ec, 6,)

Since the arbitrary temperature 8- does not appear on the left in this equation,

it must cancel from the ratio on the right, leaving
¢(0u)
¢(8c)
where  is another unknown function. Equation (5.3) now becomes

1Qul| _ w(6u)
|Qc|  #(8c)

S0y, 8c) =

We may define the right side of Eq. (5.4) as the ratio of two thermodynamic

temperatures ; they are to each other as the absolute values of the heats absorbed

and rejected by Carnot engines operating between reservoirs at these temperatures,

quite independent of the properties of any substance. However, Eq. (5.4) still
leaves us arbitrary choice of the empirical temperature represented by #; once
this choice is made, we must determine the function . If @ is chosen as the
Kelvin temperature 7, then Eq. (5.4) becomes

[Qul _ #(Tu)

10c] ~ ¥(T2) (5:3)

= f(By, 0c) (53]

For the second and third engines, equations of the same functional form |

(5.4) §

1Qc|
1 4

Figure 5.3 PV diagram showing Carnot cycle for an ideal gas.

5.4 CARNOT CYCLE FOR AN IDEAL GAS; THE KELVIN
SCALE AS A THERMODYNAMIC TEMPERATURE SCALE

The cycle traversed by an ideal gas serving as the working fluid in a Carnot
engine is shown by a PV diagram in Fig. 5.3. It consists of four reversible steps:

d > b Adiabatic compression until the temperature rises from T to Ty

b > ¢ Isothermal expansion to arbitrary point ¢ with absorption of heat | Qg/.
¢ -+ d Adiabatic expansion until the temperature decreases to Te.

d » a Isothermal compression to the initial state with rejection of heat | Q|

Lol ol

For any reversible process with an ideal gas as the system, the first law is given
by Eq. (3.29):

dQ = CydT + PdV (3.29)
For the isothermal step b -» ¢ with P = RTy/ V, Eq. (3.29) may be integrated to

0y DERLAAINLS LAY U INLERIVIV/LY T INAIN OGS 28
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give:
v, v
A Ve
Similarly, for the isothermal step d » a with P = RT/V,
Ya
d

V.
v |Qc| = RTc In—2

Qu = RTcIn v

Therefore

1Qul _ T In (Vi/ Vo)
[Qcl T In(Vu/V,)
For an adiabatic process Eq. (3.29} is written

—-CydT = PdV=R—VTdV

(5.6)

or
_ CydT_av
RT V
For step a = b, integration gives:
T €, dT v,
I e
o R T Vs

Similarly, for step ¢ > d,

Since the left-hand sides of these two equations are the same,

In Ya_ In Ya
Vi V.
This may also bé written
Ve Va
In—<=ln—2
n V., In V.
Equation (5.6) now becomes
|QH| — & (5‘7)
|QC' TC

Comparison of this result with Eq. (5.5) yields the simplest possible functional
relation for i, namely, ¢(T) = T. We conclude that the Kelvin temperature scale,
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based on the properties of ideal gases, is in fact a thermodynamic scale, indepen-
dent of the characteristics of any particular substance. Substitution of Eq. (5.7)
into Eq. (5.2) gives

n=1-—= (5.8)

Equations (5.7) and (5.8) are known as Carnot’s equations. In Eq. (5.7) the
smallest possible value of |Qc| is zero; the corresponding value of T is the
absolute zero of temperature on the Kelvin scale. As mentioned in Sec. 1.4, this
occurs at —273.15°C. Equation (5.8) shows that the thermal efficiency of a Carnot
engine can approach unity only when T}, approaches infinity or T approaches
zero. On earth nature provides heat reservoirs at neither of these conditions; all
heat engines therefore operate at thermal efficiencies less than unity. The cold
reservoirs naturally available are the atmosphere, lakes and rivers, and the oceans,
for which T, =300 K. Practical hot reservoirs are objects such as furnaces
maintained at high temperature by combustion of fossil fuels and nuclear reactors
held at high temperature by fission of radicactive elements, for which Ty = 600 K.
With these values,

300
=]1-—=0,
n 3 0.5

This is a rough practical limit for the thermal efficiency of a Carnot engine; actual
heat engines are irreversible, and their thermal efficiencies rarely exceed 0.35.

Example 5.1 A central power plant, rated at 800,000 kW, generates steam at 585 K
and discards heat to a river at 295 K. If the thermal efficiency of the plant is 70 percent
of the maximum pgssible value, how much heat is discarded to the river at rated power?

SOLUTION The maximum possible thermal efficiency is given by Eq. (5.8). Taking
Ty as the steam-generation temperature and T as the river temperature, we get

~B3_ 4957
585

nmax = l
The actual thermal efficiency is then

1 = (0.7)(0.4957) = 0.3470
By definition

W
771l
Substituting for |Qy| by Eq. (5.1) gives
_ w
T wrledl
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which may be solved for |Qc|:
1-7
1Qc| = (_) w
n
Whence

1—0.347

)(800,000) = 1,505,500 kW
0.347

oct=

or
|Qcl = 1,505,500k 5"

This amount of heat would raise the temperature of a moderate-size river severa
degrees Celsius.

5.5 ENTROPY

Equation (5.7) for a Carnot engine may be written

Qul _1Qc|

Iy TIc

If the heat quantities refer to the engine (rather than to the heat reservoirs), the
numerical value of Qy is positive and that of Qc is negative. The equivalent }

equation written without absolute-value signs is therefore

Qu_—Qc
Ty Tc
or
Qu_ Qc
—+—=—=10 9) A
7. T, (59)

Thus for a complete cycle of a Carnot engine, the two quantities Q/ T associated §
with the absorption and rejection of heat by the working fluid of the engine sum §
to zero. Since the working fluid of a Camnot engine periodically réturns to its 3

initial state, such properties as temperature, pressure, and internal energy return

to their initial values even though they vary from one part of the cycle to another.

The principal characteristic of a property is that the sum of its changes is zero
for any complete cycle. Thus Eq. (5.9} suggests the existence of a property whose
changes are here given by the quantities Q/T.

Further insight may be gained by study of an arbitrary reversible cyclic
process, as represented schematically on a PV diagram in Fig. 5.4. We divide
the entite closed area by a series of reversible adiabatic curves; since such curves
cannot intersect (see Prob. 5.1), they may be drawn arbitrarily close to one
another. A few of these curves are shown on the figure as long dashed fines. We
connect adjacent adiabatic curves by two short reversible isotherms which
approximate the curve of the general cycle as closely as possible. The apprexima-
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Qc

v

Figure 5.4 Schematic representation of an arbitrary cyclic process on a PV diagram.

tion clearly improves as the adiabatic curves are more closely spaced, and by
making the separation arbitrarily small, we may approximate the original cycle
as closely as we please. Each pair of adjacent adiabatic curves and their isothermal
connecting curves represent a Carnot cycle for which Eq. (5.9) applies.

Each cycle has its own pair of isotherms T,; and T, and associated heat
quantities Qy and Q.. These are indicated on Fig. 5.4 for a representative cycle.
When the adiabatic curves are so closely spaced that the isothermal steps are
infinitesimal, the heat quantities become dQy and dQc, and Eq. (5.9) is written

dQy , dQc _

0
I Tc

In this equation Ty and T, are the absolute temperatures at which the quantities
of heat dQy and dQ. are transferred to the fluid of the cyclic process. Integration
gives the sum of all quantities dQ/ T for the entire cycle:

dQrev _
35 T =0 (5.10)
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where the circle in the integral sign signifies that integration is over a complete
cycle, and the subscript “‘rev” indicates that the equation is valid only for reversible

cycles. ) '
Thus the quantities dQ,../ T sum to zero for any series of reversible processes

that causes a system to undergo a cyclic process. We therefore infer the existence
of a property of the system whose differential changes are given by these quantities.
The property is called entropy (en'-tro-py) S, and its differential changes are

aqQ
= 5.11
ds T (5.11)

whence

where S here is the total (rather than molar) entropy of the system.

We represent by points A and B on the PV diagram of Fig. 5.5 two equilibrium .
states of a particular fluid, and consider two arbitrary reversible processes connect- 3

ing these points along paths ACB and ADB. Integration of Eq. (5.11) for each

v

Figure 5.5 Two reversible paths joining equilibrium states A and B.

dQ,.. = TdS (5.12) 1
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path gives
aQ
AS = J ey
ACB T
and
dQ
A S = J Tev
ADB T

where in view of EJq. (5.10) the property change AS = Sg — S, must be the same
for the two paths. If the fluid is changed from state A to state B by an irreversible
process, the entropy change must still be AS = S, — S5, but experiment shows
that this result is not given by | dQ/ T evaluated for the irreversible process,
because the caiculation of entropy changes by this integral must in general be
along reversible paths.

The entropy change of a heat reservoir, however, is always given by Q/T,
where Q is the quantity of heat transferred to or from the reservoir at temperature
T, whether the transfer is reversible or irreversible. The reason is that the effect
of heat transfer on a heat reservoir is the same regardless of the temperature of
the source or sink of the heat.

When a process is reversible and adiabatic, dQ.., = 0; then by Eq. (5.11),
dS = 0. Thus the entropy of a system is constant during a reversible adiabatic
process, and the process is said to be isentropic.

This discussion of entropy can be summarized as follows:

1. The change in entropy of any system undergoing a reversible process is found
by integration of Eq. (5.11}:
d ey
AS = JL (A)

T

2. When a system undergoes an irreversible process from one equilibrium state
to another, the entropy change of the system AS is still evaluated by Eq. (A).
In this case Eq. (A) is applied to an arbitrarily chosen reversible process that
accomplishes the same change of state. Integration is not carried out for the
original irreversible path. Since entropy is a state function, the entropy changes
of the irreversible and reversible processes are identical.

3. Entropy is useful precisely because it is a state function or property. It owes
its existence to the second law, from which it arises in much the same way as
internal energy does from the first law.

In the special case of a mechanically reversible process (Sec. 2.9), the entropy
change of the system is correctly evaluated from [ dQ/ T applied to the actual
process, even though the heat transfer between system and surroundings is
irreversible. The reason is that it is immaterial, as far as the system is concerned,
whether the temperature difference causing the heat transfer is differential (making
the process reversible) or finite. The entropy change of a system caused by the
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transfer of heat can always be calculated by _[ dQ@/ T, whether the heat transfer is
accomplished reversibly or irreversibly. However, when a process is irreversible
on account of finite differences in other driving forces, such as pressure, the
entropy change is not caused solely by the heat transfer, and for its calculation
one must devise a reversible means of accomplishing the same change of state,

This introduction to entropy through a consideration of heat engines is the
classical approach, closely following its actual historical development. A com- §
plementary approach, based on molecular concepts and statistical mechanics, is ]
considered briefly in Sec. 5.8. 3

5.6 ENTROPY CHANGES OF AN IDEAL GAS

By the first law written for one mole or a unit mass of fluid,
dU =dQ —dwW
For a reversible process, this becomes
dU = dQ.., — PdV
By the definition of enthalpy,
H=U+PV
whence
dH =dU + PdV+ VdP
Substitution for dUJ gives
dH = dQ,..— PdV+ PdV + VdP
or 3
Q... = dH — VdP (5.13) §
For an ideal gas, dH = C¢ dT and V = RT/P; Eq. (5.13) then becomes 1

. RT
dQ..,=C§ dT—FdP

or

dQrev _ .o dT _dP
T _CPT RP

As a result of Eq. (5.11), this may be written
dT dP

ds=CE{——-R—+ ©(5.14) 7

T P

.
Integration from an initial state at conditions T, and P, to a final state at conditions
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T, and P, gives

= L dT P
AS=| C¥¢—=-Rm>Z :
J.T1 T nPl (5.13)

- Although derived for a reversible process, this equation relates properties only,

and is independent of the process causing the change of state. It is therefore a
general equation for the calculation of entropy changes of an ideal gas.
Equation (4.4}, giving the temperature dependence of the molar heat capacity
% allows integration of the first term on the right of Eq. (5.15). For this purpose,
we define a mean heat capacity for the integral by an equation analogous to
Eq. (4.6): :
T2
IT CEdr/T
ig —<h 000
Chn In(T3/T)) (5.16)
Here, the subscript “ms” denotes a mean value specific to entropy calculations.
When Eq. (4.4) is substituted for C¥ in Eq. (5.16), integration gives

lot-
R

‘ D
=A+BT,,+ T, Tinl C+ 5.17
: : [ (T, Tz)z] (5.17)

where T, is the arithmetic-mean temperature, and Ty, is the logarithmic-mean
temperature, defined as

T = L,-T,
™ In(Ty/ T))

Solving for the integral in Eq. (5.16), we get

o dT ; T,
Cf—==C% In2
J' I R
and Eq. (5.15) becomes
- T2 Pz
AS=CE In—=-RIn= A
2 In T, In P, {5.18)

This equation for the entropy change of an ideal gas finds application in the next
chapter.

Example 5.2 For an ideal gas with constant heat capacities undergoing a reversible
adiabatic (and therefore isentropic) process, we found earlier that

T PNy
F’ = (FZ) (3.23)
1 1

Show that this same equation results from application of Eq. (5.18) with AS = 0.
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SOLUTION Since C¥ is constant, Cff = C¥, and Eq. (5.18) can be written:

whence

For an ideal gas Eq. (3.17) gives

T, R P
In-=—;In
T, C¥¢ P
5_(5)““‘"
T, \P
CEf=C¥¢+R

Upon division by C¥ this becomes

CE, R _1 R

CE Cf vy CF

where 4 = C/C¥. Solving for R/ C¥, we get

This transforms Eq. (A) into Eq. (3.23), as required.

Example 5.3 Methane gas at 550K and 5bar undergoes a reversible adiabati
expansion to | bar. Assuming methane an ideal gas at these conditions, what is it

final temnperature?

SOLUTTOMN For this process AS = 0, and Eq. {(5.18) becomes

Since Ci¢__

whence

Here, C¥__

where

and

T P
Cru L_ By,

! 16094
R T, P 5

depends on T;, we rearrange this equation for iterative solution:

o o _ 16094
T,” CE/R

—1.6094
T,=T exp Cig,,,,/R
/R is given by Eq. (5.17) with constants from Table 4.1:
ig

=Pes _ 1,702+ 9.081 X 107 Ty, — 2.164 X 10Ty iy

550+ T,
am 2

_ 530-T,
= 1n (550/ T3)

(AY
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With an initial value of T, < 550, we find a value of C}fm /R from Eq. (B) for
substitution into Eq, (A). This yields a new value of T, for Eq. (B), and the process
continues to convergence on a final vaiue of T, = 411.34 K,

5.7 PRINCIPLE OF THE INCREASE OF ENTROPY;
MATHEMATICAL STATEMENT OF THE SECOND LAW

Consider two heat reservoirs, one at temperature T, and a second at the lower
temperature Tg. Leta quantity of heat |Q| be transferred from the hotter to the
cooler reservoir. The entropy decrease of the reservoir at Ty, is

_-lel
ASy = T.
and the entropy increase of the reservoir at T is
1@l
AS: =
C TC
These two entropy changes are added to give
ASmml = ASH + ASC = :lgl + I—‘Ql
H TC
or
—Tc
ASiora
w10 (25)

Since Ty > T, the total entropy change as a result of this irreversible process
is positive. We note also that AS,,,, becomes smaller as the difference Ty ~ Tc
gets smaller. When Ty is only infinitesimally higher than T, the heat transfer
is reversible, and AS,,. approaches zero. Thus for the process of irreversible
heat transfer, AS,,.,; is always positive, approaching zero as the process becomes
reversible,

Consider now adiabatic processes wherein no heat transfer occurs. We
represent on the PV diagram of Fig. 5.6 an irreversible, adiabatic expansion of
a fluid from an initial equilibrium state at point A to a final equilibrium state at
point B. Now suppose the fluid is restored to its initial state by a reversible
brocess. If the initial process results in an entropy change of the fluid, then there
must be heat transfer during the reversible restoration process such that

A
d
ASESA—SB=I 4Qrev
s T

The original irreversible process together with the reversible restoration process
Constitute a cycle for which AU = 0 and for which the work is therefore

W = W +‘V1'ev—om=Jdan
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SOLUTION Since C is constant, C{_ = C¥, and Eq. (5.18) can be written:

WD_ R, P
n—= - -
n C¢ A

whence _ :
Lo(%) o (4)
L \p

For an ideal gas Eq. (3.17) gives
Cif=C¢+R

Upon division by C¥ this becomes
CE R 1
S Cg CE vy CE
where y = C¥#/C. Solving for R/ C, we get
R _»-1
Cg v
This transforms Eq. (A) into Eq. (3.23), as required.

Example 5.3 Methane gas at 550K and 5bar undergoes a reversible adiabatic

expansion to 1 bar. Assuming methane an ideal gas at these conditions, what is its - :

final temperature?

SoLuTioN For this process AS = 0, and Eq. (5.18) becomes
ig 1
Crumi By P fn = 16094
R T P, 5

Since Ci‘{m depends on 7T,, we rearrange this equation for iterative solution:

T, —1.6094
In—*=—
T, C3 /R
whence
-1.6094
T, =T, exp (C_:;‘,":/E) (A)
Here, C¥ /R is given by Eq. (5.17) with constants from Table 4.1:
ig
%: 1.702 + 9.081 x 1073 T, — 2.164 X 107°T,, Ty (B)
where
550+ T,
=T
and
550 — T,
1‘1“’1 =

In (550/ T}
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With an initial value of T, < 550, we find a value of C¥ /R from Eq. (B) for
substitution into Eq. (A). This yields a new value of T; for Eq. (B), and the process
continues to convergence on a final value of T, = 411.34 K,

5.7 PRINCIPLE OF THE INCREASE OF ENTROPY;
MATHEMATICAL STATEMENT OF THE SECOND LAW

Consider two heat reservoirs, one at temperature Ty and a second at the lower
temperature T, Leta quantity of heat |Q| be transferred from the hotter to the
cooler reservoir. The entropy decrease of the reservoir at Ty, is

—lQl
ASy =——
H Te
and the entropy increase of the reservoir at Te is
s =12
C

These two entropy changes are added to give

ASom = ASy + AS- = g + @

u Ic

- T
Astotal |Q‘ ( THTC C)

Since Ty > T, the total entropy change as a result of this irreversible process
is positive. We note also that AS,,,, becomes smaller as the difference Ty — T¢
gets smaller. When Ty is only infinitesimally higher than T, the heat transfer
is reversible, and AS,,, approaches zero. Thus for the process of irreversible
heat transfer, AS,, is always positive, approaching zero as the process becomes
reversible.

Consider now adiabatic processes wherein no heat transfer occurs. We

or

- represent on the PV diagram of Fig. 5.6 an irreversible, adiabatic expansion of

a fluid from an initial equilibrium state at point A to a final equilibrium state at
point B. Now suppose the fluid is restored to its initial state by a reversible
process. If the initial process results in an entropy change of the fluid, then there
must be heat transfer during the reversible restoration process such that

A
ASESA—SB=J ‘—i%—
B

The original irreversible process together with the reversible restoration process
constitute a cycle for which AU = 0 and for which the work is therefore

W=Ww_.+ Wrev Qv = J. de
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Figure 5.6 Cycle containing an irreversible adiabatic process Ato B

However, according to statement 1a of the second law, Q. cannot be direc-ted
into the system, for the cycle would then be a process for the complete conversion
of heat into work. Thus, | dQ,., is negative, and it follows that S, — Sp iF also
negative; whence Sg > S,. Since the original irreversible process is adiabatic, the. 3
total entropy change as a result of this process is ASiga = Sa — Sa > 0. '
In arriving at this result, our presumption was that the original irreve.rs.lblc
process results in an entropy change of the fluid. If we assume that the original 4
process produces no entropy change of the fluid, then we can restore t!_le system
to its initial state by a simple reversible adiabatic process. This cycle is accom-
plished with no heat transfer and therefore with no net work. Thus the system
is restored without leaving any change elsewhere, and this implies that the original
process is reversible rather than irreversible. :
We therefore have the same result for adiabatic processes that we found for
heat transfer: AS,. is always positive, approaching zero as a limit when the
process becomes reversible. This same conclusion can be demonstrated for any
process whatever, and we therefore have the general equation:

AStotal = 0 (5'19)

This is the mathematical statement of the second law. It affirms that every process
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proceeds in such a direction that the fotal entropy change associated with it is
positive, the limiting value of zero being reached only by a reversible process.
No process is possible for which the total entropy decreases.

Example 5.4 A steel casting [Cp = 0.5kJ kg™ K™'] weighing 40kg and at a tem-
perature of 450°C is quenched in 150 kg of oil [Cr =2.5kIkg™' K™'] at 25°C. If
there are no heat losses, what is the change in entropy of (a) the casting, (b) the oil,
and (c) both considered together?

SOLUTION The final temperature ¢ of the oil and the steel casting is found by an
energy balance. Since the change in energy of the oil and steel together must be zero,

(40)(0.5)(t — 450) + (150}(2.5)(t — 25) =

Solution yields r = 46.52°C.
(a) Change in entropy of the casting:

[ [Car_. T
AS—JT-J ——=Cpln

T,
273.15 4+ 46. 52
= (40){0.5) In————m = -1 -t
(40)(0.5) 273.15 + 450 633kIK
(b) Change in entropy of the oil:
27315+ 46.52
AS = (150)(2.5) In———————— =26.13kJK™!

27315+ 25
{c) Total entropy change:

ASIDHI[ =-1633+26.13 =9.80kJ K_!

We note that although the total entropy change is positive, the entropy of the casting
has decreased.

Example 5.5 An inventor claims to have devised a process which takes in only
saturated steam at 100°C and which by a complicated series of steps makes heat
continuously available at a temperature level of 200°C. He claims further that, for
every kilogram of steam taken into the process, 2,000 kJ of energy as heat is liberated
at the higher temperature level of 200°C. Show whether or not this process is possible.
In order to give the inventor the benefit of any doubt, assume cooling water available
in unlimited quantity at a temperature of 0°C.

SoLUTION For any process to be theoretically possible, it must meet the requirements
of the first and second laws of thermodynamics. The detailed mechanism need not
be known in order to determine whether this is the case; only the overall result is
required. If the results of the process satisfy the laws of thermodynamics, means for
realizing them are theoretically possible. The determination of a mechanism is then
a matter of ingenuity. Otherwise, the process is impossible, and no mechanism for
carrying it out can be devised.

In the present instance, a continuous process takes saturated steam into some
sort of apparatus, and heat is made continuously available at a temperature level of
200°C. Since cooling water is available at 0°C, maximum use can be made of the
steam by cooling it to this temperature. We therefore assume that the steam is
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condensed and cooled to 0°C and is discharged from the process at this temperature
and at atmospheric pressure. All the heat liberated in this operation cannot be made
available at a temperature level of 200°C, because this would violate statement 2 of -
the second law. We must suppose that heat is also transferred to the cooling wate
at 0°C. Moreover, the process must satisfy the first law; thus by Eq. (2.11):

AH=Q-W,

where AH is the enthalpy change of the steam as it flows through the apparatus and
Q is the total heat transfer between the apparatus and its surroundings. Since no !
shaft work is accomplished by the process, W, = 0. The surroundings consist of the .
cooling water, which acts as a heat reservoir at the constant temperature of 0°C, and
a heat reservoir at 200°C to which 2,000 kJ is transferred for each kilogram of steam
entering the apparatus. The diagram of Fig. 5.7 pictures the overall results of the

process. o 1
The values of H and § for saturated steam at 100°C and for liquid water at 0°C 3

are taken from the steam tables. The total heat transfer is
Q@ =-2,000+Q,
Thus on the basis of 1 kg of entering steam, the first law becomes
O =-2,000+ Q,=AH =0.0—2,676.0 = -2,676.0k}
whence
Q= —676.0kJ

Heat reservoir

200°C
2,000k
Saturated steam at 100°C Liquid water at 0°C
Apparatus
H,=26760kl kg™ H,=00
5,=73554klkg 'K S, =0.0000
o)

Heat reservoir

0°C
(cooling water)

Figure 5.7 Process described in Example 5.5.
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We now examine this result in the light of the second law to determine whether AS, ..,
is greater than or less than zero for the process.
For 1 kg of steam,

AS = 0.0000 — 7.3554 = —7.3554 kKJ K™!
For the heat reservoir at 200°C,

2,000

AS = —
200 +273.15

=4.2270kJ K™’

For the heat reservoir provided by the cooling water at 0°C,

676.0

AS =207
0+273.15

=24748KIK™

Thus
AS, 1 = —7.3554 4+ 4.2270 + 2.4748 = —-0.6536 kKI K ™!

Since this result is negative, we conclude that the process as described is impossible;
Eq. {5.19) requires that AS,,,; = 0.

This does ot mean that all processes of this general nature are impossible, but
only that the inventor has claimed too much. Indeed, one can easily calculate the
maximum amount of heat which can be transferred to the heat reservoir at 200°C,
other conditions remaining the same. This calculation is left as an exercise.

58 ENTROPY FROM THE MICROSCOPIC VIEWPOINT
(STATISTICAL THERMODYNAMICS)

Classical thermodynamics is based on a description of matter through such
macroscopic properties as temperature and pressure. However, these properties
are manifestations of the behavior of the countless microscopic particles, such as
molecules, that make up a finite system. Evidently, one must seek an understanding
of the fundamental nature of entropy in a microscopic description of matter.
Because of the enormous number of particles contained in any system of interest,
such a description must necessarily be statistical in nature. We present here a
very brief indication of the statistical interpretation of entropy.t

Suppose an insulated container, partitioned into two equal volumes, contains
Avogadro’s number N; of molecules of an ideal gas in one section and no
molecules in the other. When the partition is withdrawn, the molecules quickly
distribute themselves uniformly throughout the total volume. The process is an
adiabatic expansion that accomplishes no work. Therefore

AU=CyAT =0

and the temperature does not change, However, the pressure of the gas decreases

T An elementary account of statistical thermodynamics is given in H. C. Van Ness, Understanding
Thermodynamics, chap. 7, Dover, New York, 1983.
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by half, and the entropy change as given by Eq. (5.18}) is

AS = —Rln§= Rln2
P,

Since this is the total entropy change, the process is clearly irreversible.

Considering what happens at the molecular level, we note first that the process
does not start until the partition is actually removed, and at that instant the
molecules occupy only half the space available to them. In this momentary, initial
state the molecules are not randomly distributed over the total volume to which
they have access, but are crowded into just half the total volume. In this sense '
they are more ordered than they are in the final state of uniform distribution §
throughout the entire volume. Thus, the final state can be regarded as a more
random, or less ordered, state than the initial state. From a microscopic point of §
view we therefore associate an entropy increase with an increase in randomness 1
or a decrease in order at the molecular level.

These ideas were expressed mathematically by L. Boltzmann and J. W. Gibbs
in terms of a quantity £, called the thermodynamic probability and defined as 3
the number of ways that microscopic particles can be distributed among the
“states” accessible to them. It is given by the general formula

n! 3
a (n (N (n31) - - - (5:20) 3
where n is the total number of particles, and n,, n,, n;, etc., represent the numbers 3
of particles in “states” 1, 2, 3, etc. The term “state” denotes the condition of the :
microscopic particles, and we use quotation marks to distinguish this idea of
state from the usual thermodynamic meaning as applied to a macroscopic system. -
The thermodynamic probability is an extensive quantity, not to be identified with
the mathematical probability, which is limited to values between 0 and 1. The
mathematical probability is equal to @ divided by the sum of all possible values .
of Q.
With respect to our example there are but two “states,” representing location A
in one half or the other of the container. The total number of particles is Ny 3
molecules, and initially they are all in a single “state.” Thus '

N
AT

“This result confirms that initially there is just one way that the molecules can be §
distributed between the two accessible “states.” They are all in a given “state,” ‘
all in just one half of the container. For an assumed final condition of uniform
distribution of the molecules between the two halves of the container, n, = n, =
Ny/2, and ’

Q,

Ny!
[(No/2')

This expression gives a very large number for (),, indicating that there are many

02=
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- ways for the molecules to be distributed equally between the two “states.” Many

other values <?f Qz arg possible, each one of which is associated with a particular
nonuniform distribution of the molecules between the two halves of the container.
The ratio of a particular £, to the sum of all possible values corresponds to the
mathematical probability of that particular distribution.
The connection postulated by Boltzmann between entropy S and the ther-
modynamic probability {1 is given by the equation
- S -8 =kln— (5.21)
where k is Boltzmann’s constant, equal to R/ N,. Substitution of our values for
), and £}, into this expression gives
S, -5 =.kln¢ = k[ln Np! — 2 1n (Ny/2)1]
[(No/2)!T? ° o
Since N, is very large, we take advantage of Stirling’s formula for the logarithms
of factorials of largs numbers:

InXt=XInX-X
and as a result,

S, - S, =k[N01n ND—No-z(%]n%]L’_%)]

Ny
= kN,ln—
oM N2

=kNpoln2=RIn2

This is the same value for the entropy change obtained earlier from the classical
thermodynamic formula for ideal gases.

In Eq. (5.21} S is the statistical average of values for many microscopic
“states.” If we were concerned with but a few particles distributed over a few
“states,” the statistical average would not be needed, because we could specify
the possible distributions of the particles over the “states.” However, for large
collections of molecules and their many possible quantum states, the statistical
approach is mandatory. Indeed, the concept we have used is not appropriate
unless large numbers are involved. For example, if but two molecules (instead
of N,) were distributed between the sections, we could not assume with any
confidence an equal number of molecules in each section. For a significant fraction
of the time there would be two molecules in one section and none in the other.

Equation (5.20) is the basis for calculation of absolute entropies. In the case
of an ideal gas, for example, it gives the probability 1 for the equilibrium
distribution of molecules among the various quantum states determined by the
translational, rotational, and vibrational energy levels of the molecules. When
energy levels are assigned in accord with quantum mechanics, this procedure
leads to a value for the energy as well as for the entropy. From these two guantities
all other thermodynamic properties can be evaluated from definitions (of H, G,
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etc.). The data required are the bond distances and bond angles in the molecules,]
and the vibration frequencies associated with the various bonds. Th‘e procedl.!m
has been very successful in the evaluation of ideal-gas thermodynamic properties 3
for molecules whose atomic structures are known. For nonideal gases and for
liquids the molecules do not behave as independent particies, and f.zccou.nt mu
be taken of the interactions between motecules. The difficulty lies in identificatio
of the “states,” particularly for liquids, and as a result the usefulness of th
method is limited. .
Equations {5.11) and (5.21) give changes in entropy; yet Fhe previous para.
graph discusses calculation of absolute entropies. These e_qua_mons can be pus o
an absolute basis by application of the third law, discussed in the following section,

5.9 THE THIRD LAW OF THERMODYNAMICS

Measurements of heat capacities at very low temperatures provide data for the
calculation from Eg. (5.11) of entropy changes down to 0 K. When these calcula-
tions are made for different crystalline forms of the same chemica} species, the
entropy at 0 K appears to be the same for all forms. When the form is noncrystal-
line, e.g., amorphous or glassy, calculations show that the entropy of the more
random form is greater than that of the crystalline form. Such calculations, which
are summarized elsewhere,t lead to the postulate that the absolute entropy is zero
for all perfect crystalline substances at absolute zero temperature. While the esser&tnal
ideas were advanced by Nernst and Planck at the beginning of the twentieth
century, more recent studies at very low temperatures have increased our
confidence in this postulate, which is now accepted as the third law. -

If the éntmpy is zero at T = 0 K, then Eq. (5.11) lends itself to the calculation
of absolute entropies. With T = 0 as the lower limit of integration, the absolute
entropy of a gas at temperature T based on calorimetric data follows from Eq.

(5.11) integrated to give:

’ T}(CP) AH)" JT" (CP)i AH, IT(CP)a
=| === 4 dT+—2+ dT
S L T a1 + T T T T, v, T

(5.22)

With respect to this equation,§ we have supposed that there is no solid-state -
transition and thus no heat of transition. The only constant-temperature heat
effects are those of fusion at T; and vaporization at 7,. When a solid-phase
transition occurs, a term AH,/ T, is added. -

If a substance is a perfect crystal at absolute zero temperature, each par.tlcle
of the crystal is in its lowest quantum state, and there is but one way the particles
can be arranged; the thermodynamic probability €} is unity. If state 1 is chosen

1 G. N. Lewis and M. Randall, Thermodynamics, 2d ed., chap. 12, McGraw-Hill, New York, 1961.
$ Evaluation of the first term on the right is not a problem for crystalline substances because
Cp/T remains finite as T > 0.
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to be absolute zero, Eq. (5.21) then becomes

S=kinQ (5.23)

where S and () represent values at any finite temperature.

Both the classical and statistical equations [Eqgs. (5.22) and (5.23)] yield
absolute values of entropy. Equation (5.23) is known as the Boltzmann equation
and, with Eq. (5.20) and quantum statistics, has been used for calculation of
entropies in the ideal-gas state for many chemical species. Good agreement
between these calculations and those based on calorimetric data provides some.
of the most impressive evidence for the validity of statistical mechanics and
quantum theory. In some instances results based on Eq. (5.23) are considered
more reliable because of uncertainties in heat-capacity data or about the crystal-
linity of the substance near absolute zero. Absolute entropies provide much of
the data base for calculation of the equilibrium conversions of chemical reactions,
as discussed in Chap. 15.

PROBLEMS

5.1 Prove that it is impossible for two lines representing reversible, adiabatic processes to intersect.

{ Hini: Assume that they do intersect, and complete the cycle with a line representing a reversible,
isothermal process. Show that peformance of this cycle violates the second law.)
5.2 A Camot engine receives 150kJs™" of heat from a heat-source reservoir at 425°C and rejects
heat to a heat-sink reservoir at 30°C. What are the power developed and the heat rejected?
5.3 The following heat engines produce power of 80,000 kW, Determine in each case the rates at
which heat is absorbed from the hot reservoir and discarded to the cold reservoir.

(a) A Carnot engine operates between heat reservoirs at 600 and 300 K.

(b} A practical engine operates between the same heat reservoirs but with a thermal efficiency
n =03 R
5.4 A particular power plant operates with a heat-source reservoir at 300°C and a heat-sink reservoir
at 25°C. It has a thermal efficiency equal to 60 percent of the Carnot-engine thermal efficiency for
the same temperatures.

(a) What is the thermal efficiency of the plant? .

(b) To what temperature must the heat-source reservoir be raised to increase the thermal
efficiency of the plant to 40 percent? Again % is 60 percent of the Camot-engine value.

5.5 Large quantities of liquefied natural gas (LNG) are shipped by ocean tanker. At the unloading
port provision is made for vaporization of the LNG so that it may be delivered to pipelines as gas.
The LNG arrives in the tanker at atmospheric pressure and 113.7 K, and represents a possible heat
sink for use as the cold reservoir of a heat engine. Assuming unloading of LNG as a vapor at the
rate of 8,000 m* 5™, as measured at 25°C and 1.0133 bar, and assuming the availability of an adequate
heat source at 35°C, what is the maximum possible power obtainable and what is the rate of heat
transfer fram the heat source?

Assume that LNG at 25°C and 1.0133 bar is an ideal gas with a motar mass of 17. Also assume
that the LNG vaporizes only, absorbing its latent heat of S$12kJ kg™ ! at 113.7K.
5.6 A quantity of an ideal gas, Cp = (7/2)R, at 20°C and | bar and having a volume of 70 m’, is
heated at constant pressure to 25°C by the transfer of heat from a heat reservoir at 40°C. Calculate
the heat transfer to the gas, the entropy change of the heat reservoir, the entropy change of the gas,
and AS,..,. What is the irreversible feature of the process?
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£ A rigid vessel of 0.05 m* volume contains an ideal gas, Cy = (5/2)R, at 500K and 1 bar.
(a) If heat in the amount of 12,000 ) is transferred to the gas, determine its entropy change,
{b) If the vessel is fitted with a stirrer that is rotated by a shaft so that work in the amount of
12,000 ] is done on the gas, what is the entropy change of the gas if the process is adiabatic? Wha
i8 A8, ? What is the irreversible feature of the process? ;
58 An ideal gas, Cp = (7/2)R, is heated in a steady-flow heat exchanger from 68(°F) [20°C] to
212(°F) [106°C] by another stream of the same ideal gas which enters at 356(°F) [180°C]. The flow
rates of the two streams are the same, and heat losses from the exchanger are negligible.
{a) Calculate the molar entropy changes of the two gas streams for both parallel and counter.
current flow in the exchanger.
(b) What is AS,,,, in each case? ]
(¢} Repeat parts {a) and (b) for countercurrent fiow if the stream that is cooled enters ag
infinite heat exchanger at 212(°F) [100°C]. :
%9 For an ideal gas with constant heat capacities, show that
(a) For a temperature increase from T, to T, AS of the gas is greater when the change occurs
at constant pressure than when it occurs at constant volume.
(b) For a pressure change from P, to P,, the sign of AS for an isothermal change is opposite
that for a constant-volume change.
£.10 Imagine that a stream of fluid in steady-state flow serves as a heat source for an infinite set o
Carnot engines, each of which absorbs a differential amount of heat from the fluid, causing its
temperature to decrease by a differential amount, and each of which rejects a differential amount of 3
heat to a heat reservoir at temperature T,. As a result of the operation of the Carnot engines, the
temperature T of the fluid decreases from T, to T,. Equation (5.8) applies here in differential form,
wherein 7 is defined as

n=-dW/dQ

The minus sign is included because Q is heat transfer with respect to the flowing fiuid. Show that '
the total work of the Carnot engines is given by

W=T45-Q

where AS and Q both refer to the fluid. ‘
In a particular instance the fluid is an ideal gas, Cp = (7/2)R, for which T, =500K and

T, = 350 K. If T, = 300 K, what is the value of W in J mol™'? How much heat is discarded to the

heat reservoir at T,? What is the entropy change of the heat reservoir? What is AS,,.,?

5.11 A piston/cylinder device contains 5 mol of an ideal gas, Cp = (5/2)R and Cy, = (3/2)R, at 20°C

and 1 bar. The gas is compressed reversibly and adiabatically to 10 bar, where the piston is locked

in position. The cylinder is then brought into thermal contact with a heat reservoir at 20°C, and heat

transfer continues until the gas also reaches this temperature. Determine the entropy changes of the

gas, the reservoir, and AS,..

812 An ideal gas, Cp = (7/2)R and Cy = (5/2)R, undergoes a cycle consisting of the following

mechanically reversible steps:

(@) An adiabatic compression from P,, ¥,, T, to P, V,, Ts.

{b} An isobaric expansion from P,, V,, T, to P,=P,, V5, T;.

(¢) An adiabatic expansion from P;, V3, T5t0 P, V,, T,

(d) A constant-volume process from P,, V,, Tyto P, Vi =V, T,

Sketch this cycle on a PV diagram and determine its thermal efficiency if T, = 500K, T, = 800K,

T, =2,000K, and T, = 1,000 K.

5.13 A reversible cycle executed by 1 mol of an ideal gas for which Cp = (5/2)R and Cy = (3/2}R

consists of the following steps:

(a) Starting at 600 K and 2 bar, the gas is cooled at constant pressure to 300 K.

(b} From 300 K and 2 bar, the gas is compressed isothermally to 4 bar.

{c) The gas returns to its initial state along a path for which the product PT is constant.

What is the thermal efficiency of the cycle?
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5,14 One mole of an ideal gas, Cp = (7/2)R and Cy = (5/2)R, is compressed adiabatically in a
piston/cylindcr device from 1bar and 40°C to 4bar. The process is irreversible and requires 30
percent more work than a reversible, adiabatic compression from the same initial state to the same
final pressure. What is the entropy change of the gas?

£.15 Onc mole of an ideal gas is compressed isothermally but irreversibly at 400 K from 3 bar to
7 bar in a piston/cylinder device. The work required is 35 percent greater than the work of reversible,
isothermal compression. The heat transferred from the gas during compression flows to a heat reservoir
at 300 K. Calculate the entropy changes of the gas, the heat reservoir, and AS, ;.

5,16 If 10 mol of ethylene is heated from 200 to 1,000°C in a steady-flow process at approximately
atmospheric pressure, what is its entropy change?

5,17 If 12 mol of 1-butene is heated from 250 to 1,200°C in a steady-flow process at approximately
atmospheric pressure, what is its entropy change?

5.18 If heat in the amount of 1,300 kJ is added to 40 mol of SO, initially at 400°C in a steady-flow
process at approximately atmospheric pressure, what is its entropy change?

5.19 If heat in the amount of 1,000 kJ is added to 30 mol of ammonia vapor initially at 250°C in a
steady-flow process at approximately atmospheric pressure, what is its entropy change?

§.20 If heat in the amount of 5 X 10°{Btu) [5.275 X 10°kJ] is added to 30(Ib mol) [13.61 kg mol] of
methane initially at 410(°F) [210°C] in a steady-flow process at approximately atmospheric pressure,
what is its entropy change?

§.21 A device with no moving parts is claimed to provide a steady stream of chilled air at —20°C
and 1 bar. The feed to the device is compressed air at 25°C and 4 bar. In addition to the stream of
chilled air, a second stream of air flows at an equal mass rate from the device at 70°C and ! bar. Are
these claims in violation of the second law? Assume that air is an ideal gas for which Cp = (7/2)R.
522 An inventor has devised a complicated nonflow process in which 1 mol of air is the working
fluid. The net effects of the process are claimed to be:

(a) A change in state of the air from 500 K and 2 bar to 350 K and 1 bar.

(b) The production of 2,000 J of work.

(¢} The transfer of an undisclosed amount of heat to a heat reservoir at 300 K.

Determine whether the claimed performance of the process is consistent with the second law. Assume
that air is an ideal gas for which Cp = (7/2)R.

§.23 Consider the heating of a house by a furnace, which serves as a heat-source reservoir at a high
temperature Tr. The house acts as a heat-sink reservoir at temperature 7, and heat [ must be added
to the house during a particular time interval to maintain this temperature. Heat |Q| can of course
be transferred directly from the furnace to the house, as is the usual practice. However, a third heat
reservoir is readily available, namely, the surroundings at temperature Ty, which can serve as another
heat source, thus reducing the amount of heat required from the furmace. Given that 7, = 810K,
T=295K, T, = 265K, and Q = 1,000 kJ, determine the minimum amount of heat | Qx| which must
be extracted from the heat-source reservoir (furnace) at Tr. No other sources of energy are available.
5.24 Consider the air conditioning of a house through use of solar energy. At a particular location
experiment has shown that solar radiation allows a large tank of water to be maintained at 205°C.
Puring a particular time interval, heat in the amount of 1,000 kJ must be extracted from the house
to maintain its temperature at 20°C when the surroundings temperature is 32°C. Treating the tank of
water, the house, and the surroundings as heat reservoirs, determine the minimum amount of heat
that must be extracted from the tank of water by any device built to accomplish the required cooling
of the house. No other sources of energy are available.



CHAPTER

SIX
THERMODYNAMIC PROPERTIES OF FLUIDS

The phase rule (Sec. 2.8) tells us that specification of a certain number of intensive E
properties of a system also establishes all other intensive properties at fixed §
values. However, the phase rule provides no information about how values for

these other properties may be calculated.

The availability of numerical values for the thermodynamic properties is

essential to the calculation of heat and work quantities for industrial processes.
For example, the work requirement for a compressor designed to operate adiabati-
cally and to raise the pressure of a gas from P, to P, is given by Eq. (2.10), which
here becomes

_wngH=H2_H1

when the small kinetic- and potential-energy changes of the gas are neglected.
Thus, the shaft work is simply AH and depends only on the initial and final
values of the enthalpy.

Our initial purpose in this chapter is to develop from the first and second
laws the fundamental property relations which underlie the mathematical struc-

ture of thermodynamics. From these, we derive equations which allow calculation 3
of enthalpy and entropy values from PVT and heat-capacity data. We then discuss E
the diagrams and tables by which both measured and calculated property values

are presented for convenient use. Finally, we develop generalized correlations
which allow estimates of property values to be made in the absence of complete
experimental information.
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6.1 RELATIONSHIPS AMONG THERMODYNAMIC
PROPERTIES FOR A HOMOGENEOUS PHASE
OF CONSTANT COMPOSITION

The first law for a closed system of n moles is given by Eq. (2.13):
d(nU)=dQ -dw (2.13)
For the special case of a reversible process,
" d(nU) = dQ,ey — dW,.,

and by Egs. (2.14) and (5.12),

dW,., = Pd(nV)
and

dQ.., = Td(nS)

These three equations combine to give
d{(nU) = Td(nS) — Pd(nV) (6.1)

where U, S, and V are molar values of the internal energy, entropy, and volume.

This equation, combining the first and second laws, is derived for the special
case of a reversible process. However, it contains only properties of the system.
Properties depend on state alone, and not on the kind of process that produces
the state. Therefore, Eq. (6.1) is not restricted in application to reversible processes.
However, the restrictions placed on the nature of the system cannot be relaxed.
Thus Eq. (6.1) applies to any process in a system of constant mass that results
in a differential change from one equilibrium state to another. The system may
consist of a single phase (a homogeneaus system), or it may be made up of
several phases (a heterogeneous system); it may be chemically inert, or it may
undergo chemical reaction. The only requirements are that the system be closed
and that the change occur between equilibrium states.

All of the primary thermodynamic properties—P, V, T, U, and S—are
included in Eq. (6.1). Additional thermodynamic properties arise only by definition
in relation to these primary properties. In Chap. 2 the enthalpy was defined as
a matter of convenience by the equation:

H=U+PV (2.6)

Two additional properties, also defined for convenience, are the Helmholtz energy,

A=sU-TS (6.2)

and the Gibbs energy,

G=H-TS (6.3)

Each of these defined properties leads directly to an equation like Eq. (6.1).
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F
M= (2-'—) and N= (QE)
éx/, ay /x

By further differentiation we obtain

(aM ) ’F (aN) 3*F
-] = and —) =
0y /x 0yodx ax/, odxay

Since the order of differentiation in mixed second derivatives is immaterial, these

equations give
oM N
( ay )x B (ax )y 6.12)

When F is a function of x and y, the right-hand side of Eq. (6.11) is an exact
differential expression; since Eq. (6.12) must then be satisfied, it serves as a
criterion of exactness.

The thermodynamic properties U, H, A, and G are known to be functions
of the variables on the right-hand sides of Egs, (6.7) through (6.10); we may
therefore write the relationship expressed by Eq. (6.12) for each of these equations:

Upon multiplication by n, Eq. (2.6) becomes
nH = nU + P(nV)

where

Differentiation gives .
d(nH)=d(nU)+ Pd(nV)+ (nV) dP
When d(nl} is replaced by Eq. (6.1), this reduces to

d(nH) = Td(nS)+ (nV) dP (6.4

Similarly, we find from Eq. (6.2} that
d{nA)=d(nU}— Td(nS) - (nS)dT
Eliminating d (nU) by Eq. (6.1), we get

d(nA) = —Pd(nV) - (nS) dT (6.5)

In analogous fashion, Eq. (6.3) together with Eq. (6.4) gives

d(nG)= (nV)dP — (nS)dT (6.6) “
(), w
Equations (6.4) through (6.6) have the same range of applicability as Eq. (6.1). v/ a8/v -
All are written for the entire mass of any closed system. : T v
Our immediate application of these equations is to one mole (or to a unit (B_P) = (_S) (6.14)
mass) of a homogeneous fluid of constant composition. For this case, they sim- § s as/p
plify &) -(&). (6.15)
dU = TdS — PdV (6.7) %
63) | (91) = —(E) (6.16)
dH = TdS + VdP (6.8) o7, o). _
dA=—-PdV—SdT (6.9)
dG = VdP — SdT (6.10) These are known as Maxwell’s equations.t

Equations (6.7) through (6.10) are the basis not only for derivation of the
Maxwell equations. but also of a large number of other equations relating ther-
modynamic properties. We develop here only a few expressions useful for evalu-
ations of thermodynamic properties from experimental data. Their derivation
requires application of Egs. (6.8) and (6.16).

The most useful property relations for the enthalpy and entropy of a
homogeneous phase result when these properties are expressed as functions of
T and P. What we need to know is how H and S vary with temperature and
pressure. This information is contained in the derivatives (3H /9T }p, (35/T)p,
(8H/aP)y, and (388/9P) .

These fundamental property relations are general equations for a homogeneous
fluid of constant composition. 1

Another set of equations follows from them by application of the criterion 7§
of exactness for a differential expression. If F = F(x, y), then the total differential

of F is defined as
F
dF = (E) dx + (a_) dy
ax/j, Y/ x

or

dF = Mdx + Ndy {6.11) § T After James Clark Maxwell (1831-1879), Scottish physicist.
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Consider first the temperature derivatives. As a result of Eq. (2.21), which;
defines the heat capacity at constant pressure, we have '

oH "
(a_T) =Cp (2.21)

Another expression for this quantity is obtained by division of Eq. (6 8) by dT
and restriction of the result to constant P:

(57), - 7(2),

Combination of this equation with Eq. (2.21) gives

aTfe T

The pressure derivative of the entropy results directly from Eq. (6.16):

Ge). =), 9

The corresponding derivative for the enthalpy is found by division of Eq. (6.8) ]

by dP and restriction to constant T:

(), 1),

As a result of Eq. (6.18) this becomes

(Z—I;)T —v- T(§¥) 6.19) §

Since the functional relations chosen here for H and § are
H = H(T, P) and S=S8(T, P)
it fo_llows that

aH aH
= +
dH (BT)pdT (aP) dar

a8 oS
dS={—) dT+|—=] dP
(57), o+ (G2,
Substituting for the partial derivatives in these two equations by Eqs (2.21) and
(6.17) through (6.19), we get

and

aT

() -< o]

dH = CpdT + [V— T(éy-) ] dpP (6.20) 3
P b
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~and

oT /%

dr (o
das = CP—-(—V) dp (6.21)

These are general equations relating the enthalpy and entropy of homogeneous
fluids of constant composition to temperature and pressure.

The coefficients of dT and dP in Eqgs. {(6.20) and (6.21) are evaluated from
heat-capacity and PVT data. As an example of the application of these equations,
we note that the PVT behavior of a fluid in the ideal-gas state is expressed by
the equations:

PV = RT

(57), -7

aT P P

where V¥ is the molar volume of an ideal gas at temperature T and pressure P.
Substituting these equations into Egs. (6.20) and (6.21) reduces them to

and

dH® = C%dT (6.22)
and
ds® = C¥4 ﬂ—ﬁ dpP ) (6.23)
T P

where the superscript ““ig” denotes an ideal-gas value. These equations merely
restate results derived for ideal gases in Chaps. 3 and 5.

Equations (6.18) and (6.19) are expressed in an alternative form by elimina-
tion of (6V/aT)p in favor of the volume expansivity B by Eq. (3.2):

aS
(ﬁ)r =—-BV (6.24)
and
aH
(G_P)r =(1-8T)V (6.25)

The pressure dependence of the internal energy is obtained by differentiation of
the equation U = H — PV:
(), - G), ~#(F), -
aP aP aP}y
Whence by Egs. (6.25) and (3.3),
oU
.2
(aP) =(kP-BT)V (6.26)
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where « is the isothermal compressibility. Equations (6.24) through (6.26), which:
requite values of 8 and «, are usually applied only to liguids.

For liquids not near the critical point, theé volume itself is small, as are both
B and x. Thus at most conditions pressure has little effect on the entropy, enthalpy,
and internal energy of liquids. For an incompressible fluid (Sec. 3.1), anidealization
useful in fluid mechanics, both 8 and « are zero. In this case both (5/3P)+ and
(dU/dP)r are zero, and the entropy and internal energy are independent of P.
However, the enthalpy of an incompressible fluid is a function of P, as is evident
from Eq. (6.25). |

When (8V/3T )p is replaced in Egs. (6.20} and (6.21) in favor of the volume
expansivity, they become

@ H, and 8, at 1 bar, 25°C
. .
J CpdT

dT
JC’T

at 1 bar

I V(1-8T)dP
‘ at 50°C
fﬁVdP

H, and S, at
) we 1,000 bar, 50°C

dH = CpdT + V(1 — BT) dP : (6.27) -zt 1 bar, 50°C

and
dT Figure 6.1

ds = CP? - BvdP (6.28)
Since B and V are weak functions of pressure for liquids, they are usually assumed and for 1 = 50°C

constant at appropriate average values for integration of the final terms of Eqgs.
(6.27) and (6.28).

18.240 + 17.535
yave = % = 17.888 cm® mol™!

- 458 + 568
Example 6.1 Determine the enthalpy and entropy changes for liquid water for a Bt = — x 1075 K™!
change of state from 1 bar and 25°C to 1,000 bar and 50°C. The following data for

water are available. Substitution of numerical values into the equation for AH gives

AH = 75.310(323.15 — 298.15)

t/°C P/bar Cp/Jmol 'K V/em® mol™! B/K™ N (17.888)[ 1 — (513 x 107°)(323.15)](1,000 — 1)
3 -1

25 1 75.305 18.075 256 % 10° 10 cm” bar J
25 1000 el 17.358 366 x 107¢ AH = 1,883 + 1,491 = 3,374 I mol !
50 1 75.314 18.240 458 x 10~° .
50 000 ... 17.535 568 x [0S Similarly for AS,

323.15 (513 x 1075)(17.888)(1,000 — 1

AS =753101n ¢ X i )

298.15 10 cm® bar ™
AS =6.06-0.92=5.14Jmol ' K™!

Thus the effect of a pressure change of almost 1,000 bar on the enthalpy and entropy
of liquid water is less than that of a temperature change of only 25°C.

SoLuTION For application to the change of state described, Eqs. {6.27) and (6.28)
require integration. Since enthalpy and entropy are state functions, the path of
integration is arbitrary; the path most suited to the given data is shown in Fig. 6.1.
Since the data indicate that Cp is a weak function of T and that both V and 8 are
weak functions of P, iritegration with arithmetic averages is satisfactory. The integrated
forms of Eqgs. (6.27) and (6.28) that result are:

8H = CF(T,~T)) = V™(1 -~ B T, P, — P,) 6.2 RESIDUAL PROPERTIES

and
The fundamental property relations for homogeneous fluids of constant composi-
tion given by Egs. (6.7) through (6.10) show that each of the thérmodynamic
properties U, H, A, and G is functionally related to a special pair of variables.
In particular, Eq. (6.10),

T
BS = CFln_2= B V"(P,~ P,)
]

where for P = | bar

75.305 + 75.314
Cye=—"— " _ 75310 T mol™' X!

2 dG = VdP -~ §dT (6.10)



174 INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS

expresses the functional relation:
G=G(RT)

Thus the special, or canonical, variables for the Gibbs energy are temperature:;

and pressure. Since these variables can be directly measured and controlled, th
Gibbs energy is a thermodynamic property of great potential utility.
An alternative form of the fundamental property relation expressed by E
(6.10) follows from the mathematical identity:
G G

1
) =—dG - - dT
d(RT) RT °C "R

Substitution for dG by Eq. (6.10) and for G by Eq. (6.3) gives, after algebraic

reduction,
d

E)
RT

-V
" RT

__H
RT?

dT

629 |

The advantage of this equation is that all terms are dimensionless; moreover, in -
contrast to Eq. (6.10), the enthalpy rather than the entropy appears on the }

right-hand side,

Equations such as Eq. (6.10) and (6.29) are too general for direct practical
application, but they are readily applied in restricted form. Thus, from Egq.
(6.29) we have immediately that:

vV [a(G/RT)]
RT | oP It
and
H _ _T[a(G/RT)]
RT T  1p

When G/RT is known as a function of T and P, V/RT and H/RT follow by }

simple differentiation. The remaining properties are given by defining equations.
In particular,

S_H_ G

R RT RT
and

U_H PV

RT RT RT

Thus, when we know how G/RT {(or G) is related to its canonical variables, T 4
and P, that is, when we are given G/RT = G(T, P), we can evaluate all other .‘
thermodynamic properties by simple mathematical operations. The Gibbs energy 3
therefore serves as a generating function for the other thermodynamic properties, 3

and implicitly represents complete property information.

(6.30) 4

(6.31)

INRNERMIUJLIYINAMIL FRUTNTENLIES U FPRAUIMS R4J

Unfortunately, we have no convenient experimental method for determining
numerical values of G. or G/ RT, and the equations which follow directly from
the Gibbs energy are of little practical use. However, the concept of the Gibbs
energy as a generating function for other thermodynamic properties carries over
to a closely related property for which numerical values are readily obtained.
Thus we define the residual Gibbs energy as

GR=G-G"* (6.32)
where G and G are the actual and the ideal-gas values of the Gibbs energy at

the same temperature and pressure. We can define other residual properties in
an analogous way. The residual volume, for example, is

VE=v-v¥ (6.33)
whence
ye-y_RT
P

Since V = ZRT/ P, the residual volume and the compressibility factor are related:
RT
VR = ?(Z -1) (6.34)

We can, in fact, write a general definition for residual properties:

MR=M-M"* (6.35)

where M is the molar value of any extensive thermodynamic property, for
example, V, U, H, S, or G.
Equation {6.29), written for the special case of an ideal gas, becomes:

Giy Vig Hig
d(RT) =rr P w7
Subtracting this equation from Eq. (6.29) gives:
G*" vE H*
d(RT) _EdP_RTz dT {6.36)

This is a fundamental property relation for residual properties applicable to
constant-composition fluids. From it we get immediately that:

vE® [a(G®/RT)

27" [—aP ]T (6.37)
and

HE _ _T[a__“(GR/RT)] (6.38)

RT oT ’
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In addition, the defining equation for the Gibbs energy, G = H — TS, written.
for the special case of an ideal gas is G = H" — TS"¥; by difference,

GR = HR _ TSR
from which we get the residual entropy:
s® HR G*
RORT RT (639)

Thus the residual Gibbs energy serves as a generating function for the other
residual properties, and here we do have a direct link with experiment. It is
provided by Eq. (6.37), written

G*\ _v*
d (E) =RT dP  {(const T)
Integration from zero pressure to arbitrary pressure P gives
GR P VR
RT - L RT dpP {const T')

where at the lower limit we have set GX/RT equal to zero on the basis that the
zero-pressure state is an ideal-gas state. In view of Eq. (6.34), this result becomes,

G* £ dP
_'j Z-D7%

RT ), (const T') (6.40)

When Eq. (6.40) is differentiated with respect to temperature in accord with Eg.

{(6.38), we get
[ ()
RT o \oT/p P

Combining Eqgs. (6.40) and (6.41) with Eq. (6.39) gives

Sk ‘“(az) ar I" dapr
R'_TL 3T/ o P ), (Z-D%

The compressibility factor is by definition Z = PV/RT; values of Z and of §
(8Z/8T)p are calculated directly from experimental PVT data, and the two
integrals in Eqgs. (6.40) through (6.42) are evaluated by numerical or graphical 3§
methods. Alternatively, the two integrals are evaluated analytically when Z is
expressed by an equation of state. Thus, given PVT data or an appropriate
equation of state, we can evaluate H® and S® and hence all other residual
properties. It is this direct connection with experiment that makes residual
properties essential to the practical application of thermodynamics.

(const T)

(const T') (6.42)
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Applied to the enthalpy and entropy, Eq. (6.35) is written:

H=H"+ H~® (6.43)

and

§=8%4 8" (6.44)

Thus, H and S are found from the corresponding ideal-gas and residual properties
by simple addition. General expressions for H* and §% are obtained by integra-
tion of Eqs. (6.22)and (6.23) from an ideal-gas state at reference conditions T,
and P, to the ideal-gas state at T and P:

T
H* = H;‘,9+J CgdT
To
and
5% = S0+ J.T Ci"g— R ln£
0 To P P,
Substitution into Eqgs. (6.43) and (6.44) gives
T
H= H(‘,"+J. C¥%dT+ H®
T
and
S= S”+JTC‘ ﬂr—R1n.£+sR
0 " Por P,
In view of Egs. (4.6) and (5.16), these are more simply expressed as
H=H¥¢+CE (T-T)+H" (6.45)
and
. . T P
S=S¢¥+C% n——RIn—+ S® (6.46)
ms TO PO

where H® and S® are given by Eqs. (6.41) and (6.42).

Since the equations of thermodynamics which derive from the first and second
laws do not permit calculation of absolute values for enthalpy and entropy, and
since all we need in practice are relative values, the reference-state conditions
T, and P, are selected for convenience, and values are assigned to H¥ and S¥
arbitrarily. The only data needed for application of Eqs. (6.45) and {6.46) are
ideal-gas heat capacities and PVT data. Once V, H, and S are known at given
conditions of T and P, the other thermodynamic properties follow from defining
equations.
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The true worth of the equations for ideal gases is now evident. Thiey 2
important because they provide a convenient base for the calculation of real-ga
properties. Although Eqs. (6.41) and (6.42) as written apply only to gases, residus
properties have validity for liquids as well. However, the advantage of Egs. (6.43
and (6.44) in application to gases is that H® and S*, the terms which contais
all the complex calculations, are residuals that generally are quite small. The
have the nature of corrections to the major terms, H" and S$%. For liquids, thi
advantage is largely lost, because H® and $* must include the large enthalp
and entropy changes of vaporization. Property changes of liquids are usuall
calculated by integrated forms of Eqs. (6.27) and (6.28), as illustrated in Ex
ample 6.1.

Example 6.2 Calculate the enthalpy and entropy of saturated isobutane vapor a
360 K from the following information:

1. The vapor pressure of isobutane at 360 K is 15.41 bar.

2. Set Hf = 18,115.0 Jmol™" and S = 295976 Imol™' K™! for the ideal-gas refe
ence state at 300 K and 1 bar.t ‘

3. The ideal-gas heat capacity of isobutane vapor in the temperature range of interest
is given by

CH¥/R =17765+33.037 x 10°T  (T/K)

4. Compressibility-factor data (values of Z) for isobutane vapor are as follows:}

P/bar 340K 350K 360K 30K 380K
0.1 0.99700 0.99719 0.99737 0.99753 0.99767
0.5 0.98745 0.98830 0.98907 0.98977 0.99040
2 0.95895 0.96206 0.95483 0.96730 0.96953
4 0.92422 0.93069 0.93635 0.94132 0.94574
6 0.83742 0.89816 0.90734 091529 0.92223
8 0.84575 0.86218 0.87586 0.88745 0.89743

190, 0.79659 0.82117 0.84077 0.85695 0.87061

2z e 0.77310 0.80103 0.82315 0.84134

14 eeeeee e 0.75506 0.78531 0.80923

1541 eeeeee e 0.71727

SOLUTION Calculaﬁon of H® and S® at 360 K and 15.41 bar by application of Egs.
(6.41) and (6.42) requires the evaluation of two integrals:

FrazZ\ dP J‘P dP
p— —_ d Z_ —_—
Io (GT p P an n( l)P

Graphical integration requires simple plots of both (8Z/aT)p/P and {(Z — 1)/ P vs.
P. Values of (Z — 1)‘/P are calculated directly from the given compressibility-factor
data at 360 K. The quantity (3Z/aT )p/ P requires evaluation of the partial derivative

¥ R. D. Goodwin and W. M. Haynes, Nat. Bur. Stand. (U.5.}, Tech. Note 1051, 1982.-
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(3Z/aT)p, given by the slope of a plot of Z vs. T at constant pressure. For this
purpose, separate plots are made of Z vs. T for each pressure at which compressibility-
factor data are given, and a slope is determined at 360 K for each curve (for example,
by construction of a tangent line at 360 K). The data for construction of the required
plots are shown in the following table (values in parentheses are by extrapolation):

P —{(Z - 1)/P % 10? (8Z/aT}p/P x 10*
bar bﬁ?'" K™ ' bar™!
0 {2.590) (1.780)
0.1 2470 1.700
0.5 2.186 1.514
2 1.759 1.293
4 1.591 1.290
6 1.544 1.395
8 1.552 1.560
10 1.592 1177
12 ) 1.658 2073
14 ‘ 1.750 2.432
15.41 (1.835) (2.720)

The values of the two integrals are found to be
P az) dp
—) —=2637x10K"!
J'o (aT p P
and

r dP
J (Z - 1) = ~0.25%

0
Thus by Eq. (6.41)

H*
—— T — —4 = —
RT (360)(26.37 x 107%) 0.9493

and by Eq. (6.42)
S.R
i —0.9493 - (-0.2596) = ~0.6897
For R =8314Jmol 'K/,
H® = (—0.9493)(8.314)(360)} = —2,841.3 I mol "’
and .
S5® = (—0.6897)(8.314) = —5.734 Jmol ' K™*
Equations (4.7) and (5.17) for the mean heat capacities here become
C# /R = A+ BT,, = 17765 + 33.037 X 0T,
and

C% /R = A+ BTy, = 1.7765 + 33.037 X 107°T,,,,
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With
T, = (300 + 360)/2 = 330K
and
360 — 300
= —=329.09K
™ 0 (360/300)
we get

cg /R=12679 and
Finally, Egs. (6.45) and (6.46) yield the required results:
H=Hf+C8 (T-T)+H?
= 18,115.0 + (12.679)(8.314)(360 — 300) — 2,841.3
=21,598.5 T mol™}

Cif. /R = 12649

and

. T P
§= s;v+c;£m1nﬁ—mn;0+s“

360
= 295.976 + (12.649}(8.314) In 300 8.3141n 1541 — 5734

= 286.676 Jmol ' K™

Although calculations have been carried out for just one state, enthalpies and§
entropies can be evaluated for any number of states, given adequate data. After havin
completed a set of calculations, one is not irrevocably committed to the particular’
values of H¥ and S¥ initially assigned. The scale of values for either the enthalpy
or the entropy can be shifted by addition of a constant to all values. In this way one
can give arbitrary values to H and § for some particular state so as to make the
scales convenient for one purpose or another. A shift of scale does not affect differences

in property values.

The accurate calculation of thermodynamic properties for construction of a
table or diagram is an exacting task, seldom required of an engineer. However,
engineers do make practical use of thermodynamic properties, and an understand-
ing of the methods used for their calculation leads to an appreciation that some
uncertainty is associated with every property value. There are two major reasons
for inaccuracy. First, the experimental data are difficult to measure and are subject
to error. Moreover, data are frequently incomplete, and are extended by interpola-
tion and extrapolation. Second, even when reliable PVT data are available, a 3§
loss of accuracy occurs in the differentiation process required in the calculation j§
of derived properties. This accounts for the fact that data of a high order of 3
accuracy are required to produce enthalpy and entropy values suitable for 3
engineering calculations.

6.3 TWO-PHASE SYSTEMS

The PT diagram of Fig. 3.1 shows curves representing phase boundaries for a
pure substance. A phase transition at constant temperature and pressure occurs
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. whenever one of these curves is crossed, and as a result the molar or specific
" yalues of the extensive thermodynamic properties change abruptly. Thus the

molar or specific volume of a saturated liquid is very different from that for
saturated vapor at the same T and P. This is true as well for internal energy,
enthalpy, and entropy. The exception is the molar or specific Gibbs energy, which
for a pure species does not change during a phase transition such as meiting,
vaporization, or sublimation. Consider a pure liquid in equilibrium with its vapor
in a piston-and-cylinder arrangement at temperature T and the corresponding
vapor pressure P*. If a differential amount of liquid is caused to evaporate at
constant temperature and pressure, Eq. (6.6) reduces to d(nG) = 0for the process.
Since the number of moles n is constant, dG = 0, and this requires the molar
(or specific) Gibbs energy of the vapor to be identical with that of the liguid.
More generally, for two phases a and B of a pure species coexisting at equilibrium,

G*=G* (6.47)

where G* and G® are the molar Gibbs energies of the individual phases.
The Clapeyron equation, first introduced in Sec. 4.3, follows from this equality.
If the temperature of a two-phase system is changed, then the pressure must also
change in accord with the relation between vapor pressure and temperature if
the two phases continue to coexist. Since Eq. (6.47) holds throughout this change,
we have
dG* = dG*
Substituting the expressions for dG* and dG* given by Eq. (6.10) yields
VedpP® — §°dT = VA dp™ — SPdT
which upon rearrangement becomes
ap=  §f -8~ AS*®
dT VP -v™ AV

The entropy change AS®* and the volume change AV®? are the changes which
occur when a unit amount of a pure chemical species is transferred from phase
@ to phase 8 at constant temperature and pressure. Integration of Eq. (6.8) for
this change yields the latent heat of phase transition:

AH®® = TAS*P
Thus, AS*® = AH*?/ T, and substitution in the preceding equation gives
dPsat 3 AHa,E 6 4
dT  TAV*® (6.48)

which is the Clapeyron equation. For the particularly important case of phase

transition from liquid ! to vapor v, it is written
dPsal AH!U
dT ~ TAV®

(6.49)
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Example 6.3 For vaporization at low pressures, one may introduce reasonable approxi
mations into Eq. (6.49) by assuming that the vapor phase is an ideal gas and that th
molar volume of the liquid is negligible compared with the molar volume of th
vapor. How do these assumptions alter the Clapeyron equation?

SOLUTION The assumptions made are expressed by

1] v RT
AV = V - 'E.:E
Equation (6.49) then becomes
dP=  AH"
dT  RTP™
or
dPsal/ Psat B AHlv
dT/T> R
or
d In P*
H*=-R———
A a1/ T)

This approximate equation, known as the Clausius/Clapeyron equation, relates the j
latent heat of vaporization directly to the vapor pressure curve. Specifically, it show:
that AH" is proportional to the slope of a plot of In P* vs. 1/ T. Experimental dat
for many substances show that such plots produce lines that are nearly straight. 3
According to the Clausius/Clapeyron equation, this implies that AH " is almost §
constant, virtually independent of T. This is not true; AH * decreases monotonically
with increasing temperature from the triple point to the critical point, where it becomes 4
zero. The assumptions on which the Clausius/Clapeyron equation are based have
approximate validity only at low pressures.

The Clapeyron equation is an exact thermodynamic relation, providing a
vital connection between the properties of different phases. When applied to the
calculation of latent heats of vaporization, its use presupposes knowledge of th
vapor pressure-vs.-temperature relation. Since thermodynamics imposes no model -
of material behavior, either in general or for particular species, such relations
are empirical. As noted in Example 6.3, a plot of In P*** vs. 1/ T generally yields
a line that is nearly straight, i.e., ;

B

InpP*=A-——

- (6.50)

where A and B are constants for a given species. This equation gives a rough |
approximation of the vapor-pressure relation for the entire temperature range:
from the triple point to the critical point. Moreaver, it is an excellent interpolation
formula between values that are reasonably spaced. '

The Antoine equation, which is more satisfactory for general use, has the form 4§

B
T+C

InP™=A- (6.51)
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A principal advantage of this equation is that values of the constants A, B, and
C are readily available for many species.t

The accurate representation of vapor-pressure data over a wide temperature
range requires an equation of greater complexity; an example is the Riedel
equation:

lnP"‘“=A—$+DlﬂT+FT6 {6.52)
where A, B, D, a';ld F are constants.

When a system consists of saturated-liquid and saturated-vapor phases
coexisting in equilibrium, the total value of any extensive property of the two-
phase system is the sum of the total properties of the phases. Written for the
volume, this relation is

nvy =n'vi+ n°v?®

where V is the system volume on a molar basis and the total number of moles
is n = n' + n® Division by n gives

V=x'V'+xV®

where x' and x” represent the fractions of the total system that are liquid and
vapor. Since x' = 1 — x°,

V=(1-x")V +x"V"®
In this equation the properties V, V', and V' may be either molar or unit-mass
values. The mass or molar fraction of the system that is vapor x* is called the

quality. Analogous equations can be written for the other extensive thermody-
namic properties. All of these relations may be summarized by the equation

M=(1-x )M+ x"M"* (6.53)
where M represents V, U, H, §, etc.

6.4 THERMODYNAMIC DIAGRAMS

A thermodynamic diagram represents the temperature, pressure, volume,
enthalpy, and entropy of a substance on a single plot. (Sometimes data for all
these variables are not included, but the term still applies.} The most common
diagrams are: temperature/entropy, pressure/enthalpy (usually In P vs. H), and
enthalpy/entropy (called a Mollier diagram). The designations refer to the vari-
ables chosen for the coordinates. Other diagrams are possible, but are seldom used.

Figures 6.2 through 6.4 show the general features of the three common
diagrams. These figures are based on data for water, but their general character

t 8. Ohe, Computer Aided Data Book of Vapor Pressure, Data Book Publishing Co., Tokyo, 1976;
T. Boublik, V. Fried, and E. Hala, The Vapor Pressures of Pure Substances, Elsevier, Amsterdam, 1934,
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Figure 6.4 Mollier diagram.

is the same for all substances. The two-phase states, which fall on liries in the
PT diagram of Fig. 3.1, lie over areas in these diagrams, and the triple point of
Fig. 3.1 becomes a line. When lines of constant quality are shown in the
liquid/vapor region, property values for two-phase mixtures are read directly
from the diagram. The critical point is identified by the letter C, and the solid
curve passing through this point represents the states of saturated liquid (to the
left of C) and of saturated vapor (to the right of C). The Mollier diagram (Fig.
6.4) does not usually include volume data. In the vapor or gas region, lines for
constant temperature and constant superheat appear. Superheat is a term used
to designate the difference between the actual temperature and the saturation
temperature at the same pressure.

Examples of specific thermodynamlc diagrams are given for methane by the
PH diagram of Fig. 6.5, for steam by the Mollier diagram on the inside of the
back cover, for Freon-12 and ammonia by the PH diagrams of Figs. 9.3 and 9.4,
and for air by the TS diagram of Fig. 9.8.

_ Paths of various processes are conveniently traced on a thermodynamic
diagram. For example, consider the operation of the boiler in a steam power
plant. The initial state is liquid water at a temperature below its boiling point;
the fina! state is steam in the superheat region. As the water goes into the boiler
and is heated, its température rises at constant pressure (line 1-2 in Figs. 6.2 and
6.3) until saturation is reached. From point 2 to point 3 the water vaporizes, the
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temperature remaining constant during the process. As more heat is added, the

(crsd) “armssang steam becomes superheated along line 3-4. On a pressure/enthalpy diagram (Fig.
BIS

2 § 2 g g 2 e o - S 6.3) the whole process is represented by a horizontal line corresponding to the
2 588 §§ $§ & & = BR2 & sm,g"},,,l,,,ﬂ,,,l,,,,“ ' boiler pressure. Since the compressibility of a liquid is small for temperatures
28182182 i3 —§—§-§—§ = g—‘.‘i—é % % 3 well below T, the properties of liquids change very slowly with pressure. Thus

e ';_c'g,, | S = ::-{r: AN N N T =00¢ 5 on a TS diagram (Fig. 6.2), the constant-pressure lines in the liquid region lie

g 1 ST 3 T NINCDND A NN °gg: g very close together, and line 1-2 nearly coincides with the saturated-liquid curve.

g A HE 3 SIS AN A EAN A ) W 44 g A reversible adiabatic process is isentropic and is therefore represented on a TS

= :,: = ] g K‘\—ﬁ_ SRS HL_ X n) fl‘ O LY diagram by a yert'(cal line. Hence the_ pa.th followed !:ny thf: fluid in reve_rs.it?le

N “F"_}T b —the=L R l\"“] TES S 00F ﬁ adiabatic turbines and compressors is simply a vertical line from the initial

T’T\ - A1 ‘éﬁ”‘r\‘f AL A -T_c‘é- _“.’ ‘N °ggg E. pressure to the final pressure. This is also true on the HS or Mollier diagram.
\ i add H i I KPP { & o :
o e AR H-gnt Ih OPE _

R IO SRR

oS _}-5\%-—-* TS '0};'_ LN\ :ggg é 6.5 TABLES OF THERMODYNAMIC PROPERTIES

I N N N 5 N W N AV A AN < SRS . . . .

S 39 BT ﬁn";; A [ VI ANIAN \ °8'z'§'a‘- -3 In many instances thermodynamic properties are reported in tables. The advan-

% ] __'F. RN e _\_r“‘-,w‘ﬁ 3 y '\\ 5 "1\'\r 002 ¢ 2 tage is that, in general, data can be presented more accurately than in diagrams,

Wl SN, =G SR e S £g¥ 2 % but the need for interpolation is introduced.

g PRTSY \"‘rk’?}?___‘? S \\ . ‘\\‘? = o1 g & The complete thermodynamic tables for saturated and superheated steam,
S N %‘”’3 “'\jl\-\-a‘\zjk““&f RN LN I :gg'lé 3 both in SI and in English units, appear in App. C. Values are given at intervals
A PR D RS ANNERANA R ‘\ ; \\"% 08 a close enough so that linear interpolation is satisfactory. The first table for each

g KR ‘;o DT o A NS BSOS a0, s system of units presents the equilibrium properties of saturated liquid and vapor
PR HE -r:fj‘ - SR IRV o S phases from the triple point to the critical point. The enthalpy and entropy are

ZE- Lot X AW \“ \ 3 :OZ— 5 . . . iqui h inl .

AR T fkbm [ e e M 2 arbitrarily ass|gnq.g1‘vhlues of zero for the satyrated liqu d state at the triple point.
RO X ot S A T 09— E The second table is for the gas region, and gives properties of superheated steam

gét\\( ﬁ; ! . >'§§.<$"- Y : S AT :831__ &, at temperatures higher than the saturation temperature for a given pressure.

- U AN a3 *":g(‘g__* \ _:;; TR S :85%: £ Volume, internal energy, enthalpy, and entropy are tabulated as functions of

UQ» _‘\\thi—::\-‘.\?‘ —" ; °3§%Z g pressure at various temperatures. The steam tables are the most thorough compila-
oS L Py m-qﬁ‘:f‘*?"’ﬁ o :8%: E 3 tion of thermodynamic properties for any single material. However, extensive
IS T il | | 105 ;)l.‘lie,l\ Flm-;mmsi ‘ 3 - 2 tables are available for certain other substances.t
A | | | I | l l I | E | | | T | | | | I | ' I | 1 | ™ I ! § Example 6.4 Superheated steam originally at P, and 7, expands through a nozzle to
i§| | |°3| | f i | | ’ [ [ | ] | | |5 | | Y an exhaust pressure P,. Assuming the process is reversible and adiabatic and that
Als 'i T | ;‘%.l [ |9J | | i ' I i | ‘ | :{c. : 5 equilibrium is attained, determine the state of the steam at the exit of the nozzle for
\\)ﬂ { K o | | I RN l AT | 2N the following conditions:
2 J"LL'!H'“H.'.H'HI@‘|.g:,ilzé" g 3

¥ =% '!1i-4|||j|i. | j'| i kR |_§g!°%. B (a) P, =1,000kPa, t, = 260°C, and P, = 200 kPa.

E = élﬂé"‘_J\Ll | i | | L | - | | i ! | ' | | | B'E| r,“| ‘i (b) P, = 150(psia), t, = 500(°F), and P, = 30(psia).

el S E NI T
S TRET NUCSIRERERE R . _—

2 E ol © 25 \@ip' \ | i | LB oL | | e + Comprehensive tables for a number of pure species, each in a separate volume, appear under
W e > E.: s a’hq,é s | i S s Do o the title International Thermodynamic Tables of the Fluid Stgte, Pergamon Press, Oxford, starting
= a a 5ok N‘\ELl J\L : [ ' § 1972, Included are tables for argon, carbon dioxide, helium, methane, nitrogen, and propylene.

| 4 §.E E; J\-LJ : E ' Extensive data for ammonia appear in J. Phys. Chem. Ref. Data, 7: 635, 1978. Compilations done

ﬁ = 3 - by the U.S. Bureau of Standards for ethane, ethylene, isobutane, n-butang, and propane are published
[ ?‘f’::. I | TR T | M TITIINE as Technical Notes 684 (1976}, 960 (1981), and 1051 (1982), and as Monographs 169 (1982), and
(=) 11 AT ab sl d s g B s =y r—y r— = 2 170 ]
g 282888 8 g Z28RERE ] R = - § (1982),
wy -1 o [ Fo ~ —
- - (e1sd) *amnssalg &
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SOLUTION Since the process is both reversible and adiabatic, the change in entroj

of the steam is zero.
{a) The initial state of the steam is as follows (data from the SI steam table

t, = 260°C
P, = 1,000 kPa
H, =2,9652kI kg™’

S, =69860kikg ' K

30(psia). Solving, we get
x¥ = 09705

On a mass basis, the mixture is 97.05 percent vapor and 2.95 percent liquid. Its
enthalpy follows from another application of Eq. (6.53):

H = (0.0295)(218.9) + (0.9705)(1,164.1) = 1,136.2(Btu)(Ib,) "’

6.6 GENERALIZED CORRELATIONS OF
THERMODYNAMIC PROPERTIES FOR GASES

For the final state,
P, =200kPa . . .
N Of the two kinds of data needed for evaluation of thermodynamic properties,
5,=6.9680kI kg™ K heat capacities and PVT data, the latter are most frequently missing. Fortunately,
the generalized methods developed in Sec. 3.6 for the compressibility factor are
also applicable to residual properties.

Equations (6.41} and (6.42) are put into generalized form by substitution of
the relationships,

Since the entropy of saturated vapor at 200 kPa is greater than S,, the final state
in the two-phase region. Equation (6.53) applied to the entropy here becomes

5=(1-x")8 +x"8"

Whence
P=PP, T=T.T,

dP =P, dP, dT = T.,dT.

6.9680 = 1.5301(1 — x°} + 7.1268x"°

where 1.5301 and 7.1268 are the entropies of saturated liquid and saturated vapor

200 kPa. Solving, we get The resulting equations are:

x¥ =10.9716
o H* , [ {8z\ dpP,
On a mass basis, the mixture is 97.16 percent vaper and 2.84 percent liquid. I‘ RT = T2 (ﬁ: _ﬁ_ (6.54)
enthalpy is obtained by further application of Eq. {6.53): ¢ 0 ./ p P,
H = (0.0284)(504.7) + (0.9716)(2,706.7) = 2.644.2 ki kg™ and
(b) The initial state of the steam is as follows (data from the steam tables S_R T J'P, ( P Z) dP,_ Ipr Z-1) d_P, 655
English units): R ), ot » P, . P )

1, = 500°F)
P, = 150(psia)
H, = 1,2743(Btu)(tb,,) '
S, = 1.6602(Btu)(Ib,,) '(R)™

The terms on the right-hand sides of these equations depend only on the
upper limit P, of the integrals and on the reduced temperature at which the
integrations are carried out. Thus, H®/RT, and §%/R may be evaluated once

and for all at any reduced temperature and pressure from generalized compressi-
bility-factor data.

The correlation for Z is based on Eq. (3.45),
Z=2Z"+oZ'

( az) (az") (az')
— = + wl —
] Tr P d Tr P, d T,- P,

Substitution for Z and (3Z/4T,}p, in Eqs. (6.54) and (6.55) gives:

H® 2 rr (az“) . . J i (az') dP,
=—i; e —wl, —_—
RT;: 0 aT‘r P, Pr 4] aTr P Pr

In the final state,
P, = 30(psia)
S, = 1.6602(Btu)(ib,. )} ""(R)™

Since the entropy of saturated vapor at 30(psia) is greater than .?2, th'e final state is3
in the two-phase region. Equation (6.53) applied to the entropy is written :

5=(1-x")8"+x"s*

Differentiation yields

Whence
1.6602 = 0.3682(1 — x*) + 1.6995x"

where 0.3682 and 1.6995 are the entropies of saturated liquid and saturated vapor




S [nCR), |5 R, 2
5. +z0-1| % T, +z' | =
R L T aT./p, P, @ 0 T, /&, P,

The first integrals on the right-hand sides of these two equations are evaluat
numerically or graphically for various values of T, and P, from the data of Fi
3.12 and 3.13, and the integrals which follow @ in each equation are simila
evaluated from the data of Figs. 3.14 and 3.15. If the first terms on the right-ha .
sides of the preceding equations are represented by (H*)°/RT, and ($%)°/#
and if the terms which follow o are represented by (H®)'/RT, and (§%)'/
then we can write

and

__I'I_R= (HR)0+w(HR)l

RT, RT, RT,
and
SR (SR)O (SR)I
e + w
R R R

Calculated values of the quantities (H?)°/RT., (H®)'/RT,, (§*)°/R, a
($®)!/ R are shown by plots of these quantities vs. P, for various values of T,
Figs. 6.6 through 6.13. These plots, together with Egs. (6.56) and (6.57), all
estimation of the residual enthalpy and entropy on the basis of the three-paramet
corresponding-states principle as developed by Pitzer (Sec. 3.6).

Figures 6.6, 6.7, 6.10, and 6.11 for (H®)°/RT. and (S%)°/R, used alo
provide two-parameter corresponding-states correlations that quickly yield coa:
estimates of the residual properties.

As with the generalized compressibility-factor correlation, the complexity o!
the functions (H®)°/RT,, (H®)'/RT., (S*)"/R, and (8%)'/R preclude theii
general representation by simple equations. However, the correlation for Z based
on generalized virial coefficients and valid at low pressures can be extended ta
the residual properties. The equation relating Z to the functions B° and B’ is
derived in Sec. 3.6 from Eqs. (3.46) and (3.47):

P, P
Z=1+B"=Z+wB' =
1 T wB T

From this we find

azZ dB°/dT, B°) (dB'/dT, B‘)
=P —-— —_——
(ar,)p, ( T 1) teP\TT T

r

Substituting these equations into Egs. (6.54) and (6.55) gives

HER Pr[(dB" B°) dB' B! ]
RT, 'L at, T, ‘”(dn T,) 4P,

Sk I "r(dB" dB‘)
R ), \ar, " “urt, dp.

and
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Figure 6.6 Generalized correlation for (H®)?/RT,, P, < 1.0. (Based on data of B. I. Lee and M. G. Kesler, AICKE J,, 2t: 510-527, 1975.)

191



A Fd L1V T ILAIN 1A A NI IVEL ARl LAANASRIN L TALANAS S AR ATl s & LR TR B re®

F,

/__—___-‘—\ -] 2
35 / el B R 100 il
' / | 105 .
( | —__“——Q 1.10 S
— '

i ///_ b 1.20 3 —:;
30| / /—_____________. ” 3 é_
T, = 1.40 %
v O
—25 ! / /Z }/_..__ 1.50—] §° ‘§
1 160 @ 5
" U// / // / ; 1.90 ¥ E
N = s
/ — 2.20 \\\ :.
/% iy ;8
] 2.80 3 ;i
o AVA?:_:: 300 5
] - s
Z e AN\ By
/ =
= —
0 ; 4 3 8 10 = 8
v
g

Figure 6.7 Generalized correlation for (H®)°/RT,, P, > 1.0. (Based on data of B. I Lee and M. G. ‘
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Since B® and B' are functions of temperature onmly, integration at constant

temperature yields

H® o ..dB° ( . dB‘)]
= — T = — —_— : A
RT. P,[B T, ar te B'-T, aT, (6.58) 4
and
s® dB®  dB'
—_— = — ——— —_ 59
R P'(dT, “’dr,) (6.59)

The dependence of B and B' on reduced temperature is provided by Egs.
(3.48) and (3.49). Differentiation of these equations gives expressions for 4B°/ dT,
and dB'/dT,. Thus the four equations required for application of Eqs. (6.58)

B° =0.083 — %3-3 (3.48)
‘;?; - OT% (6.60)

( B'=0.139 - 95_1—;’-3 (3.49)
:—f - % (6.61)

Figure 3.16, drawn specifically for the compressibility-factor correlation, is
also used as a guide to the reliability of the correlations of residual properties
based on generalized second virial coefficients. However, all residual-property
correlations are less precise than the compressibility-factor correlations on which
they are based and are, of course, least reliable for strongly polar and associating
molecules.

The generalized correlations for H® and S¥, together with ideal-gas heat
capacities, allow calculation of enthalpy and entropy values of gases at any
temperature and pressure by Egs. (6.45) and (6.46). For a change from state 1
to state 2, we write Eq. (6.45) for both states:

H,= Hf}“"‘ Cigm},(Tz“ Tn)"‘ H?
H = H(i)g"' Cigmh(rl - To)+ H?

The enthalpy change for the process, AH = H, — H,, is given by the difference
between these two equations:

AH=C¢ (T,- T\))+ Hf — H (6.62)
Similarty, by Eq. (6.46) for the entropy, we get
N » P

AS=C¥ In-2-Rin2+ 8% -sF (6.63)
=T, P,

The terms on the right-hand sides of Egs. (6.62) and (6.63) are readily
associated with steps in a caleulational path leading from an initial to a final state
of a system. Thus, in Fig. 6.14, the actual path from state 1 to state 2 (dashed
line) is replaced by a three-step calculational path. Step 1 > 1" represents a
hypothetical process that transforms a real gas into an ideal gas at T, and P,.
The enthalpy and entropy changes for this process are

Hf—-H =-H}
and

S‘ig -8 = —Sf‘



T, Py
(real)

Tl, Pl o
-
(realL/ AH

—Hf
—Sf
AHY
T, P, T,, P, Figure 6.14 Calculatlonal path for property
(ideal) (ideal)  changes AH and AS.
In step 1 - 2' changes occur in the ideal-gas state from (T,, P,) to (T3, Py).

For this process,

AH® = HY - H® = C¥ (T, - T) (6.64) 1

and

P,

ASY =S¥ - §¥=CE m-2-RIn> (6.65) 4

T] Pl

Finally, step 24 > 2 is another hypothetical process that transforms the ideal gas

back into a real gas at T, and P,. Here,
ng = Hz
and

S, — §i% = Sk

Addition of the enthalpy and entropy changes for the three steps generates Eqs
(6.62) and (6.63).

Example 6.5 Estimate V, U, H, and § for 1-butene vapor at 200°C and 70 bar if H
and § are set equal to zero for saturated liquid at 0°C. Assume that the only data 3

available are:
T, =419.6K P, = 40.2 bar w = 0.187
T,=26TK (normal boiling point) )
C¥/R = 1967 +31.630 x 107°T —9.837 x 107°T*  (T/K)

SOLUTION The volume of 1-butene vapor at 200°C and 70 bar is calculated directly
from the equation V = ZRT/P, where Z is given by Eq. (3.45) with values of Z°

e e T T e e

and Z' taken from Figs. 3.13 and 3.15. For the reduced conditions,
200+ 273.15 70
y P skl I | P=—"=174
419.6 3 40.2

we find that
Z =Z%+ wZ' = 0.476 + (0.187)(0.135) == 0.501

Whence
_ (0.501)(83.14)(473.15)
f 70

= 281.7 cm? mol ™!

For H and S, we use a calculational path like that of Fig. 6.14, leading from an initial
state of saturated liquid 1-butene at 0°C, where H and S are zero, to the final state
of interest. In this case, an initial vaporization step is required, and we have the
four-step path shown by Fig. 6.15. The steps are:

{a) Vaporization at T, and P, = P*.

(b) Transition to the ideal-gas state at (T, P,).
{c¢) Change to (T,, P;) in the ideal-gas state.

(d) Transition to the actual final state at (T, P;).

Step (a). Vaporization of saturated liquid 1-butene at 0°C. The vapor pressure must
be estimated, since it is not given. One method is based on Eq. (6.50):

B
InP*=A4-=
T
Reference state:
saturated-liquid
butene at -
273.15K, 1.273 bar \\AH
~
\\\
AH.‘U ""-..‘e‘s
{a) \\
ASE ~. Final state of
butene at
473.15 K, 70 bar
Saturated-vapor
butene at
273.15 K, 1.273 bar HE
(d}
—HE s
(b}
- sf
Butene in ideal- AH" ASW Butene in ideal-
gas state at @ - gas state at
273.15K, 1.273 bar ¢ 473.15 K, 70 bar
Figure 6.15



We know two points on the vapor-pressure curve: the normal boiling point, for whi
P = 1.0133 bar at 267 K, and the critical point, for which P** = 40.2 bar at 419.6
For these two points,

B
0133 =A—=—
In 10133 567

and

B
]n40.2—A—m

Simultaneous solution of these two equations gives
A=10134 B =2702.21

For 0°C or 273.15 K, we then find that P*' = 1.273 bar. This result is used in ste;

{b) and (c). Here, we need an estimate of the latent heat of vaporization. Equation

(4.12) provides the value at the normal boiling point, where T, = 267/419.6 = 0.636:
AHY _ 1.092(In P, —1.013)  1.092(In 40.2 — 1.013)
RT,  0930-T,  0930-0636

=9.958

and

Whence
AHY = (9.958)(8.314)(267) = 22,104 J mol ™'
Equation (4.13) now yields the latent heat at 273.15 K, where T, = 273.15/419.6 =

0.651:
AHM 1-T, 0.38
AHP (1 - Tr,)
or
AHY = (0.349/0.364)“'38(22,104) = 21,753 Jmol™’
and

AS™ = AH"/T =21,753/273.15=79.64 Jmol ' K™

Step (b). Transformation of saturated-vapor 1-butene into an ideal gas at the initial
conditions (T;, P,). The values of HY and ST are here estimated by Egs. (6.58) and
(6.59). The reduced conditions are

T, = 0651 P, =0.0317
From Eqs. (3.48), (6.60), (3.49), and (6.61), we have
B°=—-0.756
aB®
dT,
B' = -0.904

dBl—673
ar, =

and

= 2.06
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Substitution of these values into Eqgs. (6.58) and (6.59) gives

RJ{:: = 0.0317[(—0.756 — 0.651 x 2.06)
+ 0.187(—0.904 —0.651 x6.73)] = —0.0978
and
st
;. R- —0.0317[2.06 + (0.187)(6.73)] = —0.105
Whence

HE = (—0.0978)(8.314)(419.6) = —341 J mol ™’
SR = (—-0.105)(8.314) = —0.87 I mol ' K~

Step (c¢}). Changes in the ideal-gas state from (273.15K, 1.273 bar) to (473.15K,
70bar). Here, AH" and AS™ are given by Eqgs. (6.64) and (6.65), which require
values of Ci¥_ and C¥_. These are evaluated by Egs. (4.8) and (5.17), wherein
Tom = 373.15 K and Ty, = 364.04 K. Moreover, from the given equation for C¥, we
have '

A=1967 B=31630x10" C = —9.837 x10°°

Whence
C¥ /R = 12367 % /R = 12.145
Substitution of these values into Eqs. (6.64) and (6.65) gives
AHY = (12.367)(8.314)(473.15 — 273.15) = 20,564 J mol ™'

and

and .
473.15 70
w315 Sl

=22.16Jmol ' K™

AS™ = (12.145}(8.314) In

Step (d). Transformation of 1-butene from the ideai-gas state to the real-gas state at
T, and P,. The final reduced conditions are

T, = 1.13 P =174

In this instance, we estimate HY and ST by Egs. (6.56) and (6.57). Substitution of
values taken from Figs. (6.7), (6.9), (6.11), and (6.13) gives:

and

HY = —2.34 + (0.187)}(~0.62) = —2.46
RT,
and
s3
R = —1.63 4 (0.187)(~-0.56) = —1.’(3
Whence

HE = (-2.46)(8.314)(419.6) = —8,582 J mol !
S8 = (-1.73)(8.314) = —14.38 J mol ' K™!
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The sums of the enthalpy and entropy changes for the four steps give the total
changes for the process leading from the initial reference state (where H and S are’
set equal to zero) to the final state:

H = AH = 21,753 + 341 + 20,564 — 8,582 = 34,076 J mol ™
and

5§=A85=79.64+0.87+22.16 - 14.38 = 88.29Jmol ' K™’

Thie internal energy is

(70}(280.9)

= 32,110 J mol™
10 om’® bar ' mo

U=H-PV=34076—
These results are in far better agreement with experimental values than would have
been the case had we assumed 1-butene vapor an ideal gas.

PROBLEMS

6.1 Starting with Eq. (6.8), show that isobars in the vapor region of a Mollier (HS) diagram must
have positive slope and positive curvature.
6.2 Making use of the fact that Eq. {6.20) is an exact differential expression, show that

(3Cp/aP)7 = —T(F*V/3T?);

What is the result of application of this equation to an ideal gas?

6.3 A frequent assumption is that pressure has a negligible effect on liquid-phase properties, and
that the properties of a compressed liquid are essentially those of the saturated liquid at the same
temperature. Estimate the ertors when the enthalpy and entropy of liquid ammonia at 270K
and 1,500kPa are assumed equal to the entbalpy and entropy of saturated liquid ammonia at
270 K. For saturated liquid ammonia at 270K, P =381 kPa, V'=1.551 x 10> m*kg ™', and B8 =
2095 x 103 K™L
64 Liquid propane is throttled through a valve from an initial state of 40°C and 3,000 kPa to a final
pressure of 2,000 kPa. Estimate the temperature change and the entropy change of the propane. The
specific heat of liquid propane at 40°C is 2.84J g™ °C™".
6.5 Liquid water at 25°C and 1 bar fills a rigid vessel. If heat is added to the water until its temperature ;
reaches 50°C, what pressure is developed? The average value of B between 25 and 50°C is 36.2 X 3
1075 K™\, The value of « at 1 bar and 50°C is 4.42 X 107 bar™!, and may be assumed independent
of P. The specific volume of liquid water at 25°C is 1.0030 ¢m® g~". :
6.6 A good estimate of the latent heat of vaporization of 1, 3-butad1ene at 60°C is required. The vapor

pressure of 1,3-butadiene is given by the equation: :

2,142.66

In P*/kPa = B Lo
n P/ T/K - 3430

13 7578 —
From this and from an estimate of A V'™, calculate AH" by the Clapeyron equation [Eq. (6.49)1.
6.7 A thin-walled metal container, filled with saturated steam at 100°C, is tightly capped and allowed
to cool slowly. If the container can support a pressure difference of no more than 20 kPa and if the
surrounding pressure is 101.33 kPa, at what temperature does the container collapse? If steam were
an ideal gas, what would be the temperature? .
6.8 The state of I{Ib_)} of steam is changed from saturated vapor at 10(psia) to superhcated vapor

at 30(psia) and 1,200(°F). What are the enthalpy and entropy changes of the steam? What would the
enthalpy and entropy changes be il steam were an ideal gas?
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6.9 Very pure liquid water can be supercooled at atmospheric pressure to temperatures well below
0°C. Assume that 1 kg has been cooled as a liquid to —6°C. A small ice crystal (of negligible mass)
is added to “seed” the supercooled liquid. If the subsequent change occurs adiabatically at atmospheric
pressure, what fraction of the system freezes and what is the final temperature? What is AS,,,,, for
the process, and what is its irreversible feature? The latent heat of fusion of waterat 0°C = 333.4J g ',
and the specific heat of supercooled liquid water = 4.226 J g~ °C™.

6.10 A two-phase system of liquid water and water vapor in equilibrium at 12,000 kPa consists of
equal volumes of liquid and vapor. If the total volume V' = 0.1 m? what is the total enthalpy H'
and what is the total entropy 8§77

6.11 A vessel comtains 1(lb,,} of H,O existing as liquid and vapor in equilibrium at 500 {psia). If the
liquid and vapor each occupy half the volume of the vessel, determine H and S for the 1{lb_) of H,0.
6.12 A pressure vessel contains liquid water and water vapor in equilibrium at 300(°F). The total
mass of liquid and vapor is 2(1b_). If the volume of vapor is 100 times the volume of liquid, what
is the total enthalpy of the contents of the vessel?

6.13 Wet steam at 230°C has a specific volume of 25.79 cm® g™, Determine x, H, and S.

6.14 A vessel of 0.1-m® volume containing saturated-vapor steam at 110°C is cooled to 25°C. Determine
the volume and mass of lquid water in the vessel.

6.15 Wet steam at 1,800 kPa expands at constant enthalpy (as in a throttling process) to 101.33 kPa,
where its temperature is 115°C. What is the quality of the steam in its initial state?

6.16 Steam at 550 kPa and 200°C expands at constant enthaipy (as in a throttling process) 1o 200 kPa.
What is the temperature of the steam in its final state and what is its entropy change? If steam were
an ideal gas, what would be its final temperature and its entropy change?

6.17 Steam at 3,000(psia) and 1,600(°F) expands at constant enthalpy (as in a throttling process) to
2,000({psia). What is the temperature of the stcam in its final state and what is its entropy change?
If steam were an ideal gas, what would be its final temperature and its entropy change?

6.18 Saturated steam at 160{psia) expands at constant enthalpy {as in a throttling process) to 25(psia).
What is its final temperature and what is its entropy change?

6.19 A rigid vessel contains 1(lb,,} of saturated-vapor steam at 250(°F). Heat is extracted from the
vessel until the pressure reaches 15(psia). What is the entropy change of the steam?

6.20 A rigid vessel contains 0.50{ft}> of saturated-vapor steam in equilibrium with 0.75(ft)* of
saturated-liquid water at 212(°F). Heat is transferred to the vessel until one phase just disappears,
and a single phase remains. Which phase (liguid or vapor) remains, and what are its temperature
and pressure? How much heat is transferred in the process?

6.21 A vessel of 0.3-m’® capacity is filled with saturated steam at 1,700 kPa. If the vessel is cooled
until 35 percent of the steam has condensed, how much heat is transferred and what is the final
pressure?

6.22 A vessel of 3-m® capacity contains 0.03m* of liquid water and 2.97 m* of water vapor at
101.33 kPa. How much heat must be added to the contents of the vessel so that the liquid water is
just evaporated?

6.23 A rigid vessel 10(ft)* in volume contains saturated-vapor steam at 75(psia). Heat exchange with
a single external heat resetvoir at 60(°F) reduces the temperature of the contents of the vessel td
60(°F). Determine AS,,,,. What is the irreversible feature of this process?

6.24 A rigid vessel of 0.5-m* volume is filled with steam at 700 kPa and 325°C. How much heat must
be transferred from the steam to bring its temperature to 175°C.

6.25 A rigid, nonconducting vessel is divided in half by a rigid partition. Initially one side of the
vessel contains steam at 3,400 kPa and 275°C, and the other side is evacuated. The partition is removed,
and the steam expands adiabatically to fill the vessel. What are the final temperature and pressure
of the steam?
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6.26 One kilogram of steam undergoes the following changes in state. Calcutate Q and W for ¢

Process.
{a) Initialty at 350 kPa and 260°C, it is cooled at constant pressute to 150°C.

(b) Initially at 350 kPa and 260°C, it is cooled at constant volume to 130°C.

6.27 One kilogram of steam is contained in a piston/cylinder device at 700 kPa and 260°C.
{a) If it undergoes a mechanically reversible, isothermal expansion to 250 kPa, how much heg
does it absorb? ]
(b) If it undergoes a reversible, adiabatic expansion to 250 kPa, what is its final temperatu
and how much work is done?

6.28 Steam at 2,600 kPa containing 5 percent moisture is heated at constant pressure to 475°C. Ho
much heat is required per kilogram?
6.29 Steam at 2,100 kPa and with a quality of 0.85 undergoes a reversible, adiabatic expansion in
nonflow process to 350 kPa. It is then heated at constant volume until it is saturated vapor. Determiy
Q and W for the process.

6.30 Five kilograms of steam in a piston/cylinder device at 150 kPa and 150°C undergoes a mech:
cally reversible, isothermal compression to a final pressure such that the steam is just saturate
Determine Q and W for the process. .

6.31 Steam at 300(°F) and I(atm) is compressed isothermally in a mechanically reversible, nonflo
process until it reaches a final state of saturated liquid. Determine Q and W for the process.

6.32 One kilogram of water in a piston/cylinder device at 25°C and 1 bar is compressed in
mechanically reversible, isothermal process to 1,500 bar. Estimate Q, W, AU, AH, and AS g

that 8 = 250 X t0"° K™ and x = 45 x 10® bar".

6.33 A piston/cylinder device operating in a cycle with steam as the working fluid executes th

following steps:

(a) Steam at 525 kPa and 175°C is heated at constant volume to a pressure of 750 kPa.

(b) The steam then expands, reversibly and adiabatically, to the initial temperature of 175°C.

{¢) Finally, the steam is compressed in a mechanically reversible, isothermal process to the ini
presure of 525 kPa.

What is the thermal efficiency of the cycle?

6.34 A piston/cylinder device operating in a cycle with steam as the working fluid executes t
following steps:

(a) Saturated-vapor steam at 500({°F) is heated at constant pressure to 1,000(°F).
(b) The steam then expands, reversibly and adiabatically, to the initial temperature of 500(°F).
(c) Finally, the steam is compressed in a mechanically reversible, isothermal process to the initial sta
What is the thermal efficiency of the cycle?

6.35 Steam with a quality of 0.85 expands in a mechanically reversible, nonflow process at constant;
quality from 200 to 40°C. Determine Q and W.

6.36 One kilogram of saturated-liquid water at 1,250 kPa expands at constant internal energy in &
mechanically reversible, nonflow process until its tempeature falls to 90°C. What is the work?

6.37 Steam expands isentropically in a turbine, entering at 3,800 kPa and 375°C.
(a) For what discharge pressure is the exit stream a saturated vapor?
(b) For what discharge pressure is the exit stream a wet vapor with quality of 0.907

638 A steam turbine, operating isentropically, takes in superheated steam at 1,800 kPa and discharges
at 30 kPa. What is the minimum superheat required so that the exhaust contains no moisture? What

is the power output of the turbine if it operates under these conditions and the steam rate is 5kgs™

6.3% A steam turbine operates adiabatically with a steam rate of 30 kgs™'. The steam is supplied at
1,050 kPa and 375°C and discharges at 20 kPa and 75°C. Determine tthe power output of the turbi
and the efficiency of its operation in comparison with a turbine that operates isentropically from the
same initial conditions to the same final pressure.
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6.40 From steam-table data, estimate values for the residual properties VX, H®, and S® for steam
at 200°C and 1,400 kPa, and compare with values found by a suitable generalized correlation.

6.41 Estimate V®, H®, and SR for carbon dioxide at 425 K and 350 bar by appropriate generalized
correlations.

6.42 Estimate VX, H® and S® for sulfur dioxide at 500 K and 235 bar by appropriate generalized
correlations. )

6.43 From data in the steam tables, determine numerical values for the following:

{a) G’ and G® for saturated liquid and vapor at 135(psia). Should these be the same?

(by AH '/ T and AS"™ fqr saturation at 135(psia). Should these be the same?

(¢} VR, H%, and S for saturated vapor at 135(psia).

From data for P**' at 130 and 140(psia), estimate a value for dP**/dT at 135(psia) and apply the
Clapeyron equation to estimate AS™ at 135(psia). How well does this result agree with the steam-table
value? Apply appropriate generalized correlations for evaluation of V®, H%, and $® for saturated
vapor at 135(psia). How well do these results compare with the values found in (¢)?

6.44 From data in the steam tables, determine numerical values for the following:

{a) G'and G°* for saturated liquid and vapor at 900 kPa. Should these be the same?

(b} AH"/T and AS™ for sdturation at 900 kPa. Should these be the same?

(c) VR, HF, and S® for saturated vapor at 900 kPa.

From data for P* at 875 and 925 kPa, estimate a value for dP*"/dT at 900 kPa and apply the
Clapeyron equation to estimate AS™ at 900 kPa. How well does this result agree with the steam-table
value? Apply appropriate generalized correlations for evaluation of VX, H, and S® for saturated
vapor at 900 kPa. How well do these results compare with the values found in (¢)?

6.45 Steam undergoes a change from an initial state of 475°C and 3,400 kPa to a final state of 150°C
and 275 kPa. Determine AH and AS:

(a) From steam-table data.

(b} By equations for an ideal gas.

(c) By appropriate generalized correlations.

6.46 Propane gas at | bar and 50°C is compressed to a final state of 125 bar and 245°C. Estimate the
molar volume of the propane in the final state and the enthalpy and entropy changes for the process.
In its initial state, propane may be assumed an ideal gas.

6.47 Propane at 320 K and 101.33 kPa is compressed isothermally to 1,603 kPa, its vapor pressure at
320 K. Estimate AH and AS for the process by suitable generalized correlations.

6.48 Estimate the molar volume, enthalpy, and entropy for propylene as a saturated vapor and as a
saturated liquid at 55°C. The enthalpy and entropy are set equal to zero for the ideal-gas state at
101.33 kPa and 0°C. The normal boiling point of propylene is —47.7°C, and its vapor pressure at
55°C is 22.94 bar.

6.49 Estimate the molar volume, enthalpy, and entropy for n-butane as a saturated vapor and as a
saturated liquid at 370 K. The enthalpy and entropy are set equal to zero for the ideal-gas state at
101.33 kPa and 273.15 K. The normal boiling point of n-butane is 272.67 K, and its vapor pressure
at 370K is 14.35 bar.

6.50 A quantity of 5 mol calcium carbide is combined with 10 mol of liquid water in a closed, rigid,
high-pressure vessel of 750-cm’ capacity. Acetylene gas is produced by the reaction:

CaC,(s) + 2H,0() » C,H,{g} + Ca(OH),(s)

Initial conditions are 25°C and 1 bar, and the reaction goes to completion. For a final temperature
of 125°C, determine:

(a) The final pressure.

(b} The heat transferred.

At 125°C, the motar volume of Ca(OH); is 33.0 cm® mol™'. Ignore the effect of any gas present in
the tank initiakly.

6.51 Propylene gas at 134°C and 43 bar is throitled in a steady-state flow process to 1 bar, where it
may be assumed an ideal gas. Estimate the final temperature of the propylene and its entropy change.
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6.52 Propane gas at 20 bar and 400 K is throttled in a steady-state flow process to 1 bar. Estima
the entropy change of the propane caused by this process. In its final state, propane may be assume
an ideal gas.

6.53 Carbon dioxide expands at constant enthalpy (as in a throttling process) from 1,500 kPa 3
30°C to 101.33 kPa. Estimate AS for the process.

6.54 A stream of ethylene gas at 260°C and 4,100 kPa expands isentropically in a turbine to 140 kF
Determine the temperature of the expanded gas and the work produced if the properties of ethylen
are calculated by

(@) Equations for an ideal gas.

(b) Appropriate generalized correlations.
6.55 A stream of ethane gas at 200°C and 25 bar expands isentropically in a turbine to 2 bar. Determi
the temperature of the expanded gas and the work produced if the properties of ethane are calculat
by

(2) Equaticns for an ideal gas.

(b) Appropriate generalized correlations,

6.56 Estimate the fina] temperature and the work required when 1 mol of 1 3-butadiene is compress
isentropically in a steady-flow process from 1 bar and 60°C to 7 bar.

CHAPTER

| SEVEN
THERMODYNAMICS OF FLOW PROCESSES

Most equipment used in the chemical, petroleum, and related industries is
designed for the movemeént of fluids, and an understanding of fluid flow is essential
to a chemical engineer. The underlying discipline is fluid mechanics,t which is
based on the law of mass conservation, the linear momentum principle (Newton’s
second law), and the first and second laws of thermodynamics.

The application of thermodynamics to flow processes is also based on con-
servation of mass and on the first and second laws. The addition of the linear
momentum principle makes fluid mechanics a broader field of study. The usual
separation between thermodynamics problems and fluid-mechanics problems de-
pends onwhetherthis principle is required forsolution. Those problems whose solu-
tions depend only on conservation of mass and on the laws of thermodynamics
are commonly set apart from the study of fluid mechanics and are treated in
courses on thermodynamics. Fluid mechanics then deals with the broad spectrum
of problems which reguire application of the momentum principle. This division
is arbitrary, but it is traditional and convenient.

The applications of thermodynamics to flow processes usually are to finite
amounts of fluid undergoing finite changes in state. One might, for example, deal
with the flow of gas through a pipeline. If the states and thermodynamic properties
of the gas entering and leaving the pipeline are known, then application of the

% Fluid mechanics is treated as an integral part of transport processes by R. B. Bird, W. E. Stewart,
and E. N. Lightfoot in Transport Phenomena, John Wiley, New York, 1960, by C. O. Bennett and J.
E. Myers in Momentum Heat and Mass Transfer, 2d ed,, McGraw-Hill, New York, 1982, and by R,
W. Fahien in Fundamentals of Transport Phenomena, McGraw-Hill, New York, 1984,
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first law establishes the magnitude of the energy exchange with the surroundings
of the pipeline. The mechanism of the process, the details of flow, and the state 3
path actually followed by the fluid between entrance and exit are not pertinent
to this calculation.

On the other hand, if one has only incomplete knowledge of the initial or .4
final state of the gas, then more detailed information about the process is needéd
before any calculations are made. For example, the exit pressure of the gas may
not be specified. In this case, one must apply the momentum principle of fluid
mechanics, and this requires an empirical or theoretical expression for the shear
stress at the pipe wall.

The fundamental equations generally applicable to flow processes are pre-
sented in Sec. 7.1, and in later sections these equations are applied to specific
pProcesses.

7.1 FUNDAMENTAL EQUATIONS

Two idealizations are imposed from the start to facilitate the application of §
thermodynamic principles to flow processes:

1. We presume that flow is unidirectional at any cross section of a conduit where J
thermodynamic, kinetic, and dynamic properties are assigned or evaluated,
namely, at entrances to and exits from the equipment under consideration.

2. We also imagine that at such a cross section these same properties do not vary
in the direction perpendicular to the direction of flow. Thus properties such
as velocity, temperature, and density, assigned or evaluated for the cross
section, have values which are appropriate averages over the cross section.

These idealizations are pragmatic in nature, and for most practical purposes they
introduce negligible error.

Conservation of Mass

The law of conservation of mass for fluids in flow processes is most conveniently
written so as to apply to a control volume, which is equivalent to a thermodynamic
system as defined in Sec. 2.3. A control volume is an arbitrary volume enclosed
by a bounding control surface, which may or may not be identified with physical
boundaries, but which in the general case is pervious to matter. The flow processes: 3
of interest to chemical engineers usually permit identification of almost the en-
tire control surface with actual material surfaces. Only at specifically provided
entrances and exits is the control surface subject to arbitrary location, and here '3
it is universal practice to place the control surface perpendicular to the direction
of flow, so as to allow direct imposition of idealizations 1 and 2. An example of
a contro! volume with one entrance and one exit is shown in Fig. 7.1. The actual
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velocity
profile
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Figure 7.1 Control volume with one entrance and one exit.

velocity profile shown at the exit is equivalent to the uniform velocity profile
indicated to the right that provides the same mass flow rate (idealization 2).

The principle of conservation of mass for a flow process may be written in
words as:

Rate of accumulation mass flow mass flow
of mass withinthe } ={ rateinat } — { rate out
control volume entrances at exits

or
net mass flow
rate out by =0
flowing streams

Rate of accumulation
of mass within the } +
control volume

The first term on the left is the rate of change with time of the total mass within
the control volume, dm/ dt. The mass flow rates of streams at entrances and exits
is given by

m = mass flow rate = puA

where p is the average fluid density, u is its average velocity, and A is the
cross-sectional area of the entrance or exit duct. The mass-conservation equation
(also called the continuity equation) is therefore expressed mathematically as:

dm

dt

where the symbol A denotes the difference between exit and entrance streams
and the subscript “fs™ indicates that the term applies to all flowing streams.

+A(puA), =0 (7.1)
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The flow process characterized as steady-state is an important special
for which conditions within the control volume do not change with time. In th
case the control volume contains a constant mass of fluid, and the inflow of mas§
is exactly matched by the outflow of mass. Thus Eq. (7.1} becomes

A(puA)fs = 0 (7'

Further, if there is but a single entrance and a single exit stream, as in Fig. 7
the mass flow rate m is the same for both streams, and Eq. (7.2) becomes

P2t A — priy A =0
or
m= const = p2u2A2 = plulAl

Since specific volume is the reciprocal of density,

o=l 2202 22 (7

This form of the continuity equation finds frequent use.

Conservation of Energy

In Chap. 2 the first law of thermodynamics was applied to closed systems (nonfi
processes) and to single-stream, steady-state flow processes to provide speci
equations of energy conservation for these important applications. Our purpos
here is to present a more general equation applicable to an open system or to
control volume. -

The basic conservation requirement may be expressed in words:

Rate of accumulation rate of energy rate of energy
of energy within the } = 4 transport in at } — 4 transport out
' control volume entrances at exits
heat flow, net power, W,
+{ Q,in across the } — { out across the
control surface control surface
or
Rate of accumulation net rate of energy
of energy within the } + { transportoutby } = Q — W
control volume flowing streams

The first term on the left is the rate of change with time of the total intern:
energy within the control volume, d(mU)../dt. Associated with each flowing
stream are three forms of energy: internal, kinetic on account of its velocity
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and potential on account of its elevation z above a datum level. Thus on the
basis of a unit mass, each stream has a total energy U + ;u” + zg and transports
energy at the rate (U + 3u® + zg) m. The energy-conservation equation is therefore

d{mU)}., : .
%+ AU +3u* + zg)m] = Q ~ W (7.4)
where subscript *“cv”” denotes the control volume and g is the local acceleration

of gravity. . )

The power or work rate W consists of two parts. The first is the shaft-work
rate W, shown in Fig. 7.1. Less obvious is the work associated with moving the
flowing streams into and out of the control volume at entrances and exits. The
fluid at any entrance or exit has a set of average properties, P, V, U, H, etc. We
imagine that a unit mass of fluid with these properties exists in a conduit adjacent
to the entrance or exit, as shown in Fig. 7.1 at the entrance. This unit mass of
fluid is pushed into the control volume by additional fluid, here replaced by a
piston which exerts the constant pressure P. The work done by this piston in
pushing the unit mass into the control volume is PV, and the work rate is (PV)m.
The net work done at all entrance and exit sections is then A[{PV)m]. Thus

_ W= W, + A[(PV)ri],
Combining this with Eq. (7.4) gives

d{mU).,
dt

Since U + PV = H, this is more conveniently written:

+A[(U+ PV +32 + z2g)m] = Q = W,

d{mU},,

o +A[(H +3u+ zg)m], = Q — W, (7.5)

Although Eq. (7.5) is an energy balance of considerable generality, it has
inherent limitations. In particular, it is based on the presumption that the control
volume is a constant volume and that it is at rest. This means that kinetic- and
potential-energy changes of the fluid in the control volume can be neglected. For
virtually all applications of interest to chemical engineers, Eq. (7.5} is adequate.
Indeed, for most applications, kinetic- and potential-energy changes in the flowing
streams are also negligible, and Eq. (7.5) simplifies to

d{mU),
dr

Since m = dm/dt, Q = dQ/dt, and W, = dW,/ dt, multiplication of this equation
by dt puts it into differential form:

d(mU)., + A(Hdm),, = dQ — dW, (7.7)

+A(Hm),=Q— W, (7.6)

This equation may be applied to a variety of processes of a transient nature, as
illustrated in the following examples.



Ml o
INEERING THERMOGDYNA
N TO CHEMICAL ENG

214 INTRODUCTIO

the filling of an evacuated tank witl; elll gas fri(:ln'lt :eo:rﬁi;a:;
i i the enthalpy of the gas v
i t is the relation between @
p_ressure tl;nne'. :::l:al energy of the gas in the tank? Neglect heat tran.sfer b;:::r:c;s t
line and he l:.:mk If the gas is ideal and has constant heat f:apacu;ncs,ance o
o andtt : of th'e gas in the tank related to the temperature 1o the entr
temperatur

Example 7.1 Consider

i ing into
i trol volume, there is but one open
he tank is chosen as the con ; opening Into
e an dlfttserves as an entrance, because gas ﬂows. into thc.tank. Since there i
e ta;; a!:)rkl dW. = 0. In the absence of any specific mforma;lon, \\lr; ::su
:? s:.1i4;: avtvld p,otentsial-energy changes are negligible. By Eq. (7.7) we
netic-

d(mU)tmk - H'dm'=0

i ign is required:g
here the prime (') identifies the entrance stream anc! the mfnus ;1:5 q
:ecZ:se it is an entrance stream. Since H' is constant, integration g

AU )i = MUy —my Uy = H'm

i =m' re the precedin;
Since the mass in the tank initially is zero, m; = 0 and m, = m'. Therefo p
equation reduces to

- (4

i ult shows that in the absence of heat transfer the energy of tl;etﬁas c;zn;z::.d
Tliltllii?ihe tank at the end of the process is equal to the enthaipy of the g
w
If the gas is ideal,
H=U+PV =U+RT

and Eq. (A) becomes
Uz -U= RT'

For constant heat capacity,
Uy- U = Co(h~ T)

whence
Cy(T,-T}=RT

or
T2_Tr_£_CP_CV

T' CV CV

If Cp/Cy is set equal to v, this reduces to
T, =T
i dmitted
is independent of the amount of gas a
ich indi that the final temperature is i fthe . [ e
Wh?;lh l?:rif(at;;is result is strongly conditioned by the initial stipulation that
to the .
transfer between the gas and the tank be neglected.

i iqui i ilibrium with pure
kg of liquid water in equili
2 A 1.5-m’ tank contains 500 ure
— Z)r which fills the remainder of the tank. The temperature andfp_ogféu::l ar
T;(;fé"::d {01 33 kPa. From a water line at a constant temperature o
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constant pressure somewhat above 101.33 kPa, 750 kg is bled into the tank. If the
temperature and pressure in the tank are not to change as a result of the process,
how much energy as heat must be transferred to the tank?

SoLUTION Choose the tank as the control volume. As in Example 7.1, there is no

shaft work, and again we assume negligible kinetic- and potential-energy effects,
Equation (7.7) therefore is written

v d(mU)y — H' dm’ = dQ

where the prime denotes the state of the inlet stream. Integration of this equation
with H' constant gives

Q= A(mU)ppy — H'm
The definition of enthalpy may be applied to the entire contents of the tank to give
A(mU)umk = A(”’H)umk - A(P'"V)tank

Since the total volume mV of the tank and the pressure are constant, A(PmV),,,, = 0.
Therefore

Q=A(mH)y,, —~ H'm' = (my H, - M H ) — H'm'

where m’ is the mass added in the inlet stream, and m, and m, are the masses of
water in the tank at the beginning and end of the process. At the end of the process
the tank still contains saturated liquid and saturated vapor in equilibrium at 100°C
and 101.33 kPa. Hence m, H, and m; H, each consist of two terms, one for the liquid
phase and one for the vapor phase,

The numerical solution makes use of the following enthalpies taken from the
steam tables: '

H’=293.0kJ kg™'; saturated liquid at 70°C
Honie = 419.1 kT kg™'; saturated liquid at 100°C
H oy = 2,676.0 kJ kg™'; saturated vapor at 100°C

The volume of vapor in the tank initiafly is 1.5 m* minus the volume occupied by the
500 kg of liquid water. Thus

e 1:5 = (500)(0.001044)
' 1.673

=0.772 kg

where 0.001044 and 1.673 m® kg™' are the specific volumes of saturated liquid and
saturated vapor at 100°C from the steam tables. Then

(m H)uw = mH{ + mPHY = 500(419.1) + 0.772(2,676.0)
=211,616kJ

At the end of the process, the masses of liquid and vapor are determined by the
conservation of mass and by the fact that the tank volume is still 1.5 m®. These
constraints give the equations:

my = 500+ 0.772 + 750 = m% + m!
1.5 = 1.673m} + 0.001044 m!,
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Whence
m) = 1,250.65 kg

me = 0.116 kg
Then since H; = H{ and H} = H},
{my Ho)pane = 1,250.65(419.1) + 0.116(2,676.0) = 524,458 kJ

Finally, substituting the values for {m, H )any and (m; Hy)ank in the equation for
gives

Q = 524,458 — 211,616 — 750(293.0) = 93,092 kJ

Energy Balances for Steady-State Flow Processes

For a steady-state flow process, the total internal energy of the control volum
is constant, and d(mU)./dt is zero. Equation (7.5) therefore becomes

AL(H + 4 + zg)] = O — W, (7.8

This equation is widely used, because steady-state flow processes represent the
norm in the chemical-process industry.

A further specialization results when there is but one entrance and one e
to the control volume. In this case the mass flow rate m is the same for bo
streams, and Eq. (7.8) reduces to

A(H +iu+ zgym = Q- W, (7.
Division by m gives
5 W,
MH+ b+ =2 Yo g w,
m m

or

2

AH+%+9A2=Q—WS (1.10

which is a restatement of Eq. (2.10a). In this equation, each term is based on 3
unit mass of fluid flowing through the control volume.
The kinetic-energy terms of the various energy balances developed her
include the velocity u, which is the bulk-mean velocity as defined by the equatiot
u = m/ pA. Fluids flowing in pipes exhibit a velocity profile, as shown in Fig
7.1, which rises from zero at the wall (the no-slip condition) to a maximum
the center of the pipe. The kinetic energy of a fluid in a pipe depends on
actual velocity profile. For the case of laminar flow, the velocity profile
parabolic, and integration across the pipe shows that the kinetic-efergy tern
should properly be 4. In fully developed turbulent flow, the more common cas
in practice, the velocity across the major portion of the pipe is not far frog
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uniform, and the expression u?/2, as used in the energy equations, is more nearly
correct. -

In all of the equations written here, the energy unit is presumed to be the
joule, in accord with the SI system of units. For the English system of units, the
kinetic- and potential-energy terms, wherever they appear, require division by
the dimensional constant g. (see Secs. 1.3 and 1.8). However, in many applications,
the kinetic- and potential-energy terms are omitted, because they are negligible
compared with othé’r terms. Exceptions are applications to nozzles, metering
devices, wind tunnels, and hydroelectric power stations.

Mechanical Energy Balance; Bernoulli Equation

Equation (7.10) applies to the steady-state flow of fluid through a control volume
to which there is but one entrance and one exit. In addition, we have the
fundamental property relation of Eq. (6.8):

dH =TdS+ VdP
For a reversible change of state, TdS = 4Q. Then
dH = dQ+ vdP

Integration gives

P.

AH=Q+J. " vdp

Py
Substituting for AH in Eq. (7.10), we get
P, 2
z Au
-W, = J VdP+—+ g Az
P, 2
This equation is based on the assumption that the change of state resulting
from the process is accomplished reversibly. However, the viscous nature of real
fluids induces fluid friction that makes changes of state in flow processes inherently
irreversible because of the dissipation of mechanical energy into internal energy.

In order to correct for this, we add to the equation a friction term F. The
mechanical-energy balance is then written:

P, Au:!
-W, = VdP+T+gAz+F (7.11)

Py

The determination of numerical values for F is a problem in fluid mechanics,
For evaluation of the integral term, one must know or assume a V-vs.-P relation.
For liquids, the common assumption is that the specific volume V is constant,
independent of pressure.

Bernoulli’s famous equation, formulated over a century prior to the develop-
ment of the first law of thermodynamics, is a special case of the mechanical-energy
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balance. It applies to a nonviscous, incompressible fluid which does not excha
shaft work with the surroundings. For a nonviscous fluid, F is zero, and for a
incompressible fluid

PZ
J‘ VdP = VAP = AP
P, P
where p is fluid density. Equation (7.11) reduces to

AP Aw?

—+—+gAz=0 (7.1
P 2

which is Bernoulli’s equation. As an aiternative expression, we have

2
A(£+u—+gz)=
p 2
or
P
—+—+ gz = const
p 2

7.2 FLOW IN PIPES

The quantity of most immediate interest with respect to the steady-state flow of
fluid in a straight length of pipe is the pressure change accompanying flow. Th
appropriate equation for this calculation is Eq. (7.11), the mechanical-energy
balance. To allow for the continuous change of properties ih a flowing fluid,
write Eq. (7.11) in differential form:

VdP+udu+gdz+dF =0 (7.1

Integration over the length of the pipe requires an emipirical expression for theg
friction term dF. This is usually given by the Fanning equation:

2fu*
dF = D dL
where D = pipe diameter

L = length along the pipe

f=f(Dup/ i} = dimensionless friction factor

p = fluid density

0 = fluid viscosity

Further empirical methods are required to account for the additional friction’
effects resulting from bends, valves, changes in pipe size, etc. The detailed]
treatment of friction calculations is beyond the scope of thermodynamics.

1 For evaluation of the friction factor f and other friction effects, see W. L. McCabe, J. C. Smith,
and P. Harriott, Unit Operations of Chemical Engineering, 4th ed., chap. 5, McGraw-Hill, New York,
1985; R. H. Petry and Don Green, Perry’s Chemical Engineers’ Handbook, 6th ed., sec. 5, McGraw-Hill,
New York, 1984, |
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_A top%c vg'ithin the purview of thermodynamics is the maximum velocity
attainable in pipe flow. Consider a gas in steady-state adiabatic flow in a horizontal
pipe of constant cross-sectional area. Equation (7.10) is the applicable energy
balance, and it here becomes: '

Au?
AH+—=
5 ° 0
In differential form # is
dH = —udu (7.14)
Equation (7.3) is also applicable. Since m is constant, the differential form is
d(udA/V)=0 (7.15)
When A is constant, d(u/ V) = 0; whence
du udvV _
v v
and
du = udv
== (const A) (7.16)
Substituting this resuit into Eq. (7.14) gives
utdv
dH = — (7.17)
The fundamental property relation of Eq. (6.8) can be written
TdS =dH — vVdp
Replacing dH by Eq. (7.17), we get
u*dv
Tds = - - vap (7.18)

As gas flows along a pipe in the direction of decreasing pressure, its specific
vol}lme increases, as does its velocity in accord with Eq. (7.3). Thus in the direction
of increasing velocity, dP is negative, dV is positive, and the two terms of the
preceding equation contribute in opposite directions to the entropy change.
According to the second law, S must be positive (with a limiting value of zero)
for an adiabatic process. This condition is met so long as the final term in the
equation makes a sufficiently large positive contribution to overbalance the
negative contribution of the preceding term. However, as the pressure decreases,
the specific volume increases ever more rapidly. Thus it is possible to reach a
pressure such that the negative contribution of the first term on the right becomes
equal to the positive contribution of the second. In this case a maximum velocity
1s reached at that differential length of pipe for which dS = 0. An expression for
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.y IS Obtained if we set the right =5 ht-hand side of Eq. (7.

umax av

v ———— HliH A - V /P = ( (constS):'.

Rearrangement gives

r z aP
= y 2 2
= -vi(3),

This is identical to the equinmmmssn—————"—"w—ti0n derived in physics for the
in the fluid. Therefore, the maximmumumemnmsness ss—um fluid velocity obtainable in a pij
cross-sectional area is the spetmmsmesesmesecsssmepem———d of soynd. This does not immd
velocities are impossible; they : © are, in fact, readily obtained in
diverging nozzles (Sec. 7.3). Howrmmmremmmmrmrsmamemwwwever, the speed of sound is the m
that can be reached in a conduit t t of constant cross section, provided}
velocity is subsonic. The sonic vummmmmwmvelocny must be reached at the exit
If the pipe length is increased, tETTTTTI 7T Tk S the mass rate of flow decreases so "
velocity is still obtained at the oDwmsemenmmussssssunsecimmmemoutiet of the lengthened pipe.

7.3 EXPANSION PROCESY = SSES ' aishes. In a divers ;

i _ e velocity incres

Flow processes accompanied by g:ssssmasconmmsmconmons cmemee sharp reductions in pressure are called: Rnarized elsewhere
processes. They include flow thrimssesssnemsssssssu’: s—hrough nozzles, through turbines or ¢ B of the equations tol
and through throttling devices e T s such as orifices and valves, The speed of sound)
velocity at the th#

Nozzles rging nozzle (Fig.
ows from the fact thy

A nozzle is a device that causerETe—pee———s the interchange of interna] and kineti : §

of a fluid as a result of a charmrrrr YT TIe--———-mnging cross-sectional area available fo
common example is the coOnVe prmmm———T ey £ing nozzle designed to produce a high
stream. However, converging Wmand diverging sections are used, sepa

combined, for many purposes i3: smsme——— ——; +:::121:::45 11 turbines, jet engines, ejectors and ¢
The relationship between nozzle: s = length and cross-sectional area is not susci v
to thermodynamic analysis, but t t is a problem in Auid mechanics. Largel
basis of experience, nozzles caim ' ..n.msmuen be tapered to achieve near-isentropic flo
Since W, = 0 and heat transl'.. cxl - ... sfert and potential-energy changes are neg
the energy equation as given byr ) Ty v Eq. (7.14) applies: Itis also true that in)
dH = —udu ‘the maximum cbtainab
: throat. This is because
ical- : . (7.13)] takes the T .
The mechanical-energy balance : e [Eq. (7.13)] es the form | cross-sectional rea, i.c.,
R PR - VdP = udu + dF At the relatively high pré
t Flow in nozzles is nearly adiabati=-::=:=:: i, ic, because the velocity is high (short residence time of M. M. Abbottsnd H. C.
and the area for heat transfer is small. o o - Series, pp. 221-224, McGraw-]
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e, is obtained if we set the right-hand side of Eq. (7.18) equal to zero;

u . dV

-+ VdP=0 (const §)

Rearrangement gives

arP
2 - 21 77 7
Umax \4 (aV)s ( .

This is identical to the equation derived in physics for the speed of so
in the fiuid. Therefore, the maximum fluid velocity obtainable in a pipe of cons
cross-sectional area is the speed of sound. This does not imply that high
velocities are impossible; they are, in fact, readily obtained in convergi
diverging nozzles (Sec. 7.3). However, the speed of sound is the maximum val
that can be reached in a conduit of constant cross section, provided the entran;
velocity is subsonic. The sonic velocity must be reached at the exit of the pip
If the pipe length is increased, the mass rate of flow decreases so that the son
velocity is still obtained at the outlet of the lengthened pipe.

7.3 EXPANSION PROCESSES

Flow processes accompanied by sharp reductions in pressure are called expansi
processes. They include flow through nozzles, through turbines or expande
and through throttling devices such as orifices and valves.

Nozzles

A nozzle is a device that causes the interchange of internal and kinetic ene
of a fluid as a result of a changing cross-sectional area available for flow.
common example is the converging nozzle designed to produce a high-veloct
stream. However, converging and diverging sections are used, separately
combined, for many purposes as in turbines, jet engines, ejectors, and diffuse
The relationship between nozzle length and cross-sectional area is not suscepti
to thermodynamic analysis, but is a problem in fluid mechanics. Largely on
basis of experience, nozzles can be tapered to achieve near-isentropic flow. |
Since W, = 0 and heat transfer} and potential-energy changes are negligiblé
the energy equation as given by Eq. (7.14) applies:

dH = —udu
The mechanical-energy balance [Eq. (7.13}] takes the form
-VdP = udu + dF

+ Flow in nozzles is nearly adiabatic, because the velocity is high (short residence time of fluié
and the area for heat transfer is small. .
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Figure 7.2 Converging/diverging
nozzle.

and if the flow is isentropic, this further reduces to
—VdP = udu (const §) (7.20)

The other relation available for steady flow (constant 1) is Eq. (7.15),
d(uA/V})=0.

Equations (7.14), (7.15), and {7.20), combined with the relations between
the thermodynamic properties at constant entropy, determine how the velocity
varies with cross-sectional area of the nozzle. The variety of results for compress-
ible fluids (e.g., gases), depends in part on whether the velocity is below or
above the speed of sound in the fluid. For subsonic flow in a converging nozzle,
the velocity increases and pressure decreases as the cross-sectional area
diminishes. In a diverging nozzle with supersonic flow, the area increases, but
still the velocity increases and the pressure decreases. The various cases are
summarized elsewhere.t We limit the rest of this treatment of nozzles to applica-
tion of the equations to a few specific cases.

The speed of sound is significant in the treatment of nozzles, because this is
the velocity at the throat (minimum cross-sectional area) of a converging/
diverging nozzle (Fig. 7.2) in which the exit velocity is supersonic. This result
follows from the fact that at the throat A is constant, and Eq. (7.16) applies:

av

du=u=
uuv

Substituting this expression into Eq. (7.20) for isentropic flow gives the throat

velocity as
aP
utzhroal =- Vz (_")
s

v (7.21)

Comparison with Eq. (7.19) shows that u,,,, is equal to the speed of sound.
It is also true that in the converging section of a converging/diverging nozzle
the maximum obtainable fluid velocity is the speed of sound, reached at the
throat. This is because a further decrease in pressure requires an increase in
cross-sectional area, i.e., a diverging section. The explanation for this is as follows.
At the relatively high pressures in the converging section, a given pressure drop

T M. M. Abbott and H. C. Van Ness, Theory and Problems of Thermodynamics, Schaum’s Outline
Series, pp. 221-224, McGraw-Hill, New York, 1972,
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causes a small increase in specific volume. However, at low pressures the incre
in V is large. Thus we see by Eq. (7.15) that at high pressures the small cha
in V does not have much effect, and A decreases to offset the increase in velocity
However, at low pressures, the large increase in V cannot be balanced by t}
increase in velocity, and A must also increase. This situation is illustrat
numerically in Example 7.3. '
Since the maximum fluid velocity obtainable in a converging nozzle is thy
speed of sound, a nozzle of this kind can deliver a constant flow rate into a regic
of variable pressure. Suppose a compressible fluid enters a converging nozzle
pressure P, and discharges from the nozzle into a chamber of variable press
P,. If this discharge pressure is P;, the flow is zero. As P, decreases below
the flow rate and velocity increase. Ultimately, the pressure ratio P,/ P, reache
a critical value at which the velocity in the throat is sonic. Further reduction
P, has no effect on the conditions in the nozzle. The flow remains constant, an
the velocity in the throat is that given by Eq. (7.21), regardless of the value
P,/ P,, provided it is always less than the critical value. For steam, the criti
value of this ratio is about 0.55 at moderate temperatures and pressures.
The relation of velocity to pressure in a nozzle can be given analytically
the fluid behaves as an ideal gas. When an ideal gas with constant heat capaci
undergoes isentropic expansion, Eq. (3.24} provides a relation between P a
V, that is, PV” = const. Integration of Eq. (7.20) then gives

P, 2 P V. P (y—1)/r
u%—u?=-2j Va'P=Ll—1[l—(—2) ] (.
P y—1 Py

where conditions at the nozzle entrance are denoted by subscript 1. Equatic
(7.22) together with Eq. (7.21) gives the value of the pressure ratio P/ P, (fi
u, = 0) such that the speed of sound is obtained in the throat of a conver
nozzle. Evaluation of the derivative (3P/aV)s for the isentropic expansion o
ideal gas with constant heat capacities from Eq. (3.24), PV” = const, reduces
(7.21) to

":that = yP,V,

Substituting this value of the throat velocity for u, in Eq. (7.22) and solving fi
the pressure ratio with u, = 0 gives :

P, 2 ¥/ (r=1)

P (7 + 1)
A general relationship between velocity and cross-sectional area, expre:
not in terms of the properties (P, T, V, H) of the fluid but in terms of the sp

of sound, results from Egs. (7.15), (7.19), and (7.20). We start with Eq. (7.15
but express the derivative as

(1.2

1 dv
-‘—’_(udA+Adu)—uA-i;=0

ANECRNILAAT INANMIILS U FLUY FRULCESSED LLD

or

udA+Adu Vav
AV
Then replacing V in the numerator on the right-hand side by its value from Eq.
(7.20), we have for an isentropic process:
Ud
dA  du
A u

_ udu
—VXaP/aV),

By Eq. (7.19) the denominator of the right-hand side is the square of the speed
of sound. Hence
udu du u’ ! du
A ufonic u ugonic - :

The ratio of the actual velocity to the speed of sound is called the Mach number
M. H_ence this equation expresses a relation between the cross-sectional area,
velocity, and the local Mach number at any axial position in the nozzle, i.e.,

dA du
i (M?~1) ” (7.24)
Depending on whether M is greater than unity (supersonic) or less than unity
(subsonic), the cross-sectional area increases or decreases with velocity increase.
Equation (7.24) is applicable to any type of nozzle, as long as the flow is isentropic.

The speed of sound is attained at the throat of a converging/ diverging nozzle
.only when the pressure at the throat is low enough that the critical value of P,/ P,
is reached. If insufficient pressure drop is available in the nozzle for the velocity
to become sonic, the diverging section of the nozzle acts as a diffuser. That is,
after the throat is reached the pressure rises and the velocity decreases; this is
thta conventional behavior for subsonic flow in diverging sections. The relation-
.ShlpS between velocity, area, and pressure in a nozzle are illustrated numerically
in Example 7.3.

Example 7.3 A high-velocity nozzle is designed to operate with steam at 700 kPa and
300°C. At the nozzle inlet the velocity is 30 ms™', Calculate values of the ratio A/ A,
{where A, is the cross-sectional area of the nozzle inlet) for the sections where the
pr;elssure is 600, 500, 400, 300, and 200 kPa. Assume that the nozzle operates isentropi-
cally.

SoLuUTION The required area ratios are given by Eq. (7.3):
A wV

A Viu
The velocity u is found from the integrated form of Eq. (7.14)
w=ul—2H-H,)
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the dimensional constant g, = 32.174(lb,__) (ft}{1b;) (s) 2.

With units for velocity of ms™', u” has the umts of m? 572, Units of J kzg"zfor H are
—1 -] :

consistent with these, because 1J =1kgm®s~?, whence 1 Jkg ' = 1m*s™.% |
From the steam tables, we have initial values for entropy, enthalpy, and specifi¢

volume:
8§, =172997kl kg"' K™

H, =3,059.8 x10*Tkg™
vV, =371.39cm’ g

A_( 30 )y
A, \37139/ u

u? =900 — 2(H - 3,059.8 x 10%)

Thus,

—_—

and
(B
Since the expansion process is isentropic, at 600 kPa,
§= 7.2997 kI kg ' K™!
H =13,0204 <10 Jkg™'

V=41825cm’ g™’
From Eq. (B)
u=2823ms™"'

i=( 30 )(418.25) —0.120
A 37139/ \ 2823
Area ratios for other pressures are evaluated the same way, and the results 2

summarized in the following table. The pressure at the throat of the nozzle is abou
380 kPa. At lower pressures, the nozzle clearly diverges.

and by Eq. (A4),

P/kPa Viem® g™ ufms™! AfA
700 371.39 30 1.0

600 418.25 282.3 0.120
500 481.26 411.2 0.095
400 571.23 523.0 0.088
300 711.93 633.0 0.091
200 970.04 1522 0.104

Example 7.4 Consider again the nozzle of Example 7.3, assuming now that stea
behaves as an ideal gas. Calculate: -

{a) The critical pressure ratio and the velocity at the throat.
(b) The discharge pressure if a Mach number of 2.0 is required at the nozzle exha

 When u is in (f)(s)"", H in {Btu)(Ib)™* must be multiplied by 778.16(ft Ib,){Btu) ™' and b

LI EIVIVIRILS 2 INAVIILD U FLUY FRUCLEOSHSED b

SOLUTION (a) The ratio of specific heats for steam is about 1.3. Substituting in Eq.

(1.23),
PZ 2 1.3/(1.3-1)
E-(1.3+1) =035

The velocity at the throat, which is equal to the speed of sound, can be found from

Eq. (7.22). When, P, is in Pa (1 Pa= 1 kgm™'s™) and V, is in m® kg~', the product

P,V, is in m*s™% the units of velocity squared. Thus

(2)(1.3)(700,000)(0.37139)
1.3-1

= 900 + 290,354 = 291,254

(30)2

uthroat

[l - (0'55)(1.3—1)/1.3]

Ugrroar = 539.7ms™!
These results compare favorably with values obtained in Example 7.3, because steam
at these conditions closely approximates an ideal gas.

{b) For a Mach number of 2,0 (based on conditions at the nozzle throat) the
discharge velocity is 1,079.4ms™". Substitution of this value in Eq. (7.22) allows
calculation of the pressure ratio:

(1,079.4)* = (30)? + (1.3}(700,000}(0.37139) [l _ (&)“-3‘”"-3]
13-1 P,
or
p\3-nn3
(E) = (.483
Whence

P, = (0.0427)(700) = 29.9 kPa

Turbines or Expanders

The expansion of a gas in a nozzle to produce a high-velocity stream is a process
that converts internal energy into kinetic energy. This kinetic energy can in turn
be converted into shaft work when the stream impinges on blades attached to a
rotating shaft. Thus a turbine (or expander) consists of alternate sets of nozzles
and rotating blades through which gas flows in a steady-state expansion process
whose overall effect is the efficient conversion of the internal energy of a high-
pressure stream into shaft work. When steam provides the motive force as in a
power plant, the device is called a turbine; when a high-pressure gas, such as
ammonia or ethylene in a chemical or petrochemical plant, is the working fluid,
the device is often called an expander. In either case, the process is represented
in Fig. 7.3.

Equations (7.9) and (7.10) are appropriate energy relations. However, the
potential-energy term can be omitted, because there is littie change in elevation.
Moreover, in any properly designed turbine, heat transfer is negligible and the
inlet and exit pipes are sized to make fluid velocities relatively low. Equations
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Turbine W,

—_——

Figure 7.3 Steady-state flow through a turbine or expander.

(7.9) and (7.10) therefore reduce to
W, =-mAH
and
W, = -AH

Normally, we know the inlet conditions T, and P, and the discharge pressu
P,. Thus in Eq. (7.26) we know only H, and are left with both H, and W, 2
unknowns. The energy equation alone does not allow any calculations to bej
made. However, if the fluid in the turbine undergoes an expansion process tha_t_
is reversible as well as adiabatic, then the process is isentropic, and S, = §,. This
second equation allows us to determine the final state of the fluid and hence H.
For this spectal case, we can evaluate W, by Eq. (7.26), written as

W, (isentropic) = —(AH}s

The shaft work given by Eq. (7.27) is the maximum that can be obtained
from an adiabatic turbine with given inlet conditions and given discharge pressure.
Actual turbines produce less work, because the actual expansion process is:
irreversible. We therefore define a turbine efficiency as '

W
W, (isentropic)
where W, is the actual shaft work. By Eqgs. (7.26} and (7.27)

__AH
 (AH)s

Values of # for properly designed turbines or expanders are usually in the range
of 70 to 80 percent.

Figure 7.4 shows an HS diagram on which are compared an actual expansion 3§
process in a turbine and the reversible process for the same intake conditions
and the same discharge pressure. The reversible path is a vertical line of constant

n

] (7.28)

s

Figure 7.4 Adiabatic expansion process in a turbine or expander.

entropy from point | at the intake pressure P, to point 2’ at the discharge pressure
P,. The line representing the actual irreversible process starts also from point 1,
but is directed downward and to the right, in the direction of increasing entropy.
Since the process is adiabatic, irreversibilities cause an increase in entropy of the
fluid. The process terminates at point 2 on the isobar for P,. The more irreversible
the process, the further this point lies to the right on the P, isobar, and the lower
the efficiency n of the process.

Example 7.5 A steam turbine with rated capacity of 56,400 kW operates with steam
at inlet conditions of 8,600 kPa and 500°C, and discharges into a condenser at a
pressure of 10 kPa. Assuming a turbine efficiency of 75 percent, determine the state
of the steam at discharge and the mass rate of flow of the steam.

SOLUTION At the inlet conditions of 8,600 kPa and 500°C, the following values are
given in the steam tables:
N H =3391.6kikg™"
5, = 66858 kI kg ' K™
If the expansion to 10 kPa is isentropic, then
§; = 8§, = 6.6858
Steam with this e'ntropy at 10 kPa is wet, and we apply Eq. (6.53), with M = S:
S=(1-x")8"+x"8" = 8"+ x"(§" - S
Whence
6.6858 = 0.6493 + x4(8.1511 — 0.6493)
and

xh = 0.80467
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This is the quality {fraction vapor) of the discharge stream at point 2. The enthalp
H} is also given by Eq. (6.53), written

H=H'+x"(H°-HY
Thus
H: = 191.8 + 0.80467(2,584.8 — 191.8)
=2,1174kl kg™
and
(AH)g= Hy— H; =2,117.4 -3,391.6 = —1,274.2kJ kg™’
By Eq. (7.28) we then have
AH = n{AH)g = (0.75}(—1,274.2) = —955.6 kT kg™’
Whence
H,=H, +AH =3391.6 9556 = 24360k kg™’
Thus the steam in its actual final state is also wet, and its quality is found from th
equation:
2,436.0 = 191.8 + x,(2,584.8 — 191.8)
Solution gives
x; = 093782
Finally, :
S, = 0.6493 + (0.93782)(8.1511 — 0.6493)
=7.6864kJ kg~ K™

This value may be compared with the initial value of 5, = 6.6853.
The steam rate is found from Eq. (7.25). With W = 56 400 kW or 56,400kJ s~
we have

56,400 = ~m(2,436.0 — 3,391.6)
and
m=759.02kgs™"

Example 7.5 was worked with the aid of the steam tables. When a comparabl
set of tables is not available for the motive fluid, the generalized correlations @
Sec. 6.6 may be used in conjunction with Eqs. (6.62) and (6.63), as illustrated i
the following example.

Example 7.6 A stream of ethylene gas at 300°C and 45 bar is expanded adiabatical
in a turbine to 2 bar. Calculate the isentropic work produced. Determine the properti
of ethylene by {a} equations for an ideal gas, and (b) appropriate generali
correlations.

SOLUTION The enthalpy and entropy changes for this process are given by Eqy

(6.62} and (6.63):
AH=C¥ (T,- T\))+ Hf — HY (6.62)

= R EfeEatTa e e & 8 T8 RETRE T RS R & AR TY R EARAS T RAAF s

and

T P,
AS=C¥ In-?—RIn-2+ SR _gR (6.63)
mE T] Pl

As given values, we have P, =45bar, P, =2bar, and T, = 300+ 273.15 = 573.15 K.
(a) If ethylene is assumed an ideal gas, then all residual propertics are zero,
and the preceding equations reduce to:

I
AH = C;gmh(Tz - T])

and
. T P,
AS=C¥ In-*-RIn-:
For an isentropic process, AS$ = 0, and the last equation becomes:
ig
Cp T.

P 2
In=2=ln=Z=In—=-3.1135
R 'T, P "

or
-3.1135
InT,= Ei?:ﬁ + In 573.15
Whence
=3.1135
T, = exp (Ci"’m,fR + 6.3511) (A)

Equation {5.17) with D = 0 (in accord with the heat-capacity data for ethylene
given in Table 4.1) is

CF.,
T=A+BT1,,,+ CT,.T. . (B)
where A=1424

B =14394 x107%
C =-4392 x107°

T+ T

Tam
2

and

T-T,
T = 072
n (T/T;)

In these equations T, is the only unknown. It is conveniently found by iteration
between Egs. (B) and (A). We assume a value of T, calculate C¥_/R by Eq. (B),
calculate T, by Eq. {A), return to Eq. { B), and repeat to convergence. The result is:

T, =370.79K
Then
W, (isentropic) = —(AH)s = —CE (T, — T)s
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By Eq. (4.7),
ig C
Cru = A+ BT,m+§(4T§m -NT)
With
A5+ .
T = 573.15 + 370.79 —47197K
P
this gives
ig
S
R
Whence

W, (isentropic) = —(7.224)(8.314)(370.79 — 573.15)
= 12,154 Jmol™*
{b) For ethylene,
T,=2824K P, =504bar @ =0.085
At the initial state,

573.15 43
=—=2 ” == 0
WS ma 202 B=g5g 893

According to Fig. 3.16, the generalized correlations based on second virial coefficien
should be satisfactory. Application of Eqgs. (3.48), (6.60), (3.49), and (6.61) for th
initial state yields:

0

dT,
1

dT,

B = -0.053

= 0.107

B'=0.130 = 0.018

Equations (6.58) and (6.59) then give

HE st
=-0234 L =-0097
RT R

c

Whence
HE = (~0.234)(8.314)(282.4)
= ~550 Jmol "
and

ST = (—0.097)(8.314) = —0.806 J mol ' K™

For the purpose of getting an initial estimate of 5%, we assume that T, = 370.79 K,

the value determined in part (a). Then

and by Egs. (6.60) and (6.61),

Equation (6.59) then gives
8% =—-0.115)mol' K™}
If the exparfsion process is isentropic, Eq. (6.63) gives

0=C¥ In 57;215 - 8.3141n% —0.115 + 0.306
from which
T _ 26571
573.15 C¥_
or
T, = exp(_?:w + 6.3511)

An iteration process exactly like that of part (a) yields the result,
T,=365.79K
For the recomputation of 55, we now find
T,=1.295 P, =0.040
dB° aB'

= 0.34
T =0 o

=0.188

and
S ==0.120Tmol' K™’

This result is so little changed from the initial value that another recalculation of T,
is unnecessary. We therefore evaluate HE at the reduced conditions already estab-
lished,

B®=-0.196  B' =008l

and by Eq. (6.58)
HE® = —62 I mol™
Equation (6.62) now gives
(AH)g = C?mh(365.79 — 573.15) — 62 + 550

Evaluation of C¥_ as in part (a) with T, = 469.47K gives

C¥ =59.843 Jmol ' K
Whence

{AH)s = —11,920 I mol ™’
and

W, (isentropic) = —(AH)g = 11,920 J mol™!
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Throttling Processes

When a finid flows through a restriction, such as an orifice, a partly closed vaive
or a porous plug, without any appreciable change in kinetic energy, the primary
result of the process is a pressure drop in the fluid. Such a throttling proces
produces no shaft work and results in negligible change in elevation. In the
absence of heat transfer, Eq. (7.10} reduces to

AH=0

or
H2=H1

and the process occurs at constant enthalpy.

Since the enthalpy of an ideal gas depends on temperature only, a throttli
process does not change the temperature of an ideal gas. For most real gases a
moderate conditions of temperature and pressure, a reduction in pressure
constant enthalpy results in a decrease in temperature. For example, if stean
at 1,000 kPa and 300°C is throttled to 101.325 kPa (atmospheric pressure),

H,= H, =3,0521kJ kg™

Interpolation in the steam tables at 101.325 kPa shows that steam has this enthalp
at a temperature of 288.8°C. The temperature has decreased, but the effect i
small. The following example illustrates the use of generalized correlations i
calculations for a throttling process.

Example 7.7 Propane gas at 20 bar and 400 K is throttled in a steady-state flow pro
to 1bar. Estimate the final temperature of the propane and its entropy chang
Properties of propane can be found from suitable generalized correlations.

SOLUTION Applying Eq. (6.62) to this constant-enthalpy process gives:
AH=C% (T,-T)+H{ -H} =0

If propane in its final state at 1 bar is assumed an ideal gas, then HE =0, and th
preceding equation gives

HY
T, = C—sgm: + T (A

For propane,

T, =3698K P, = 42 5bar w = 0.152

and for the initial state

400 2
T, = —— = 10817 P, =——=04706
' 369.8 1oas

At these conditions the generalized correlation based on second virial coefficients
satisfactory (see Fig. 3.16), and Eqs. (3.48), (6.60), (3.49), and (6.61) yield:

L = (.550
T - -

r

B® = —0.289

B' =0.015

Whence by Eq. (6.58),

HY

RT.

= —0.452

and

Y HE = (8.314)(369.8)(—0.452) = —1,390 J mol™"

The only remaining quantity in Eq. (A) to be evaluated is CZ_. Taking data for
propane from Table 4.1, we have

ig

C
-EP- =1.213+28.785 x 10T — 8.824 x 107° T2

For an initial calculation, we assume that C¥_ is approximately the value of C¢ at
the initial temperature of 400 K. This provides the value
Clf =94.074 ) mol ' K
!Equation (A) now gives
-1,390
= oag7q T 400 = 3852K

Clearly, the temperature change is small, and we can reevaluate Cigmh to an excellent
approximation by calculating C# at the arithmetic mean temperature,

400 + 385.
T, = 385.2

=3926K
This gives

Ci¢ =92734Jmol ' K™
and recalculation of T, by Eq. (A) yields the final value:

T, =3850K
The entropy change of the propane is given by Eq. (6.63), whick here becomes
; T, Py
AS=C¥ m—=—RIn—-5S}
e R

Since the temperature change is so small, we can take
' | Ci = CY¥, =92734 ) mol" K™
Calculation of ST by Eg. (6.59) gives
Sf=-2437Jmol ' K!
Then

AS =927341n 3850
400

i
—83141n—+ 2437
a5t

=23.80Jmol" K™’

The positive value reflects the irreversibility of throttling processes.



When a wet vapor is throttled to a sufficiently low pressure, the liqu
evaporates and the vapor becomes superheated. Thus if wet steam at 1,000k
(*™ = 179.88°C) with a quality of 0.96 is throttied to 101.325 kPa,

H, = H, = (0.04)(762.6) + (0.96)(2,776.2)
=2,6957kJ kg™'

Steam with this enthalpy at 101.325 kPa has a temperature of 109.8°C, and
superheated. (At this pressure, r** = 100°C.) The considerable temperature dr
here results from evaporation of liquid.

If a saturated liquid is throttled to a lower pressure, some of the liquid
vaporizes or flashes, producing a mixture of saturated liquid and saturated vapof
at the lower pressure. Thus if saturated liquid water at 1,000 kPa {1 = 179.88°
is flashed to 101.325 kPa (+** = 100°C),

H,= H, = 762.605kJ kg™
At 101.325 kPa the quality of the resulting stream is found from:
762.605 = (1 — x)(419.064) + x(2,676.0)

= 419.064 + x(2,676.0 — 419.1)
Whence
x = 0.1522

Thus 15.22 percent of the original liquid vaporized in the process. Again, the]
large temperature drop results from evaporation of liquid. 4

Throttling processes find frequent application in refrigeration syste
(Chap. 9).

7.4 COMPRESSION PROCESSES

Just as expansion processes result in pressure reductions in a flowing fluid, so
compression processes bring about pressure increases. Compressors, pumps, fans
blowers, and vacuum pumps are all devices designed for this purpose. They are
vital for the transport of fluids, for fluidization of particulate solids, for bringing
fluids to the proper pressure for reaction or processing, etc. We are here concerned
not with the design of such devices, but with specification of energy requirements:
for the steady-state compression of fluids from one pressure to a higher one. 3

Compressors

The compression of gases may be accomplished in equipment with rotating blades
(like a turbine operating in reverse) or in cylinders with reciprocating pisto
Rotary equipment is used for high-volume flow where the discharge pressure is
not too high. For high pressures, reciprocating compressors are required.

The energy equations are independent of the type of equipment; indeed, they §
are the same as for turbines or expanders, because here too potential- and
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Figure 7.5 Steady-state compres-
sion process.

- ——— e e

kinetic-energy changes are presumed negligible. Thus Egs. (7.25) through (7.27)
apply to adiabatic compression, a process represented by Fig. 7.5.

In a compression process, the isentropic work, as given by Eq. (7.27), is the
minimum shaft work required for compression of a gas from a given initial state
to a given discharge pressure. Thus we define a compressor efficiency as

_ W,(isentropic)
- W,
In view of Eqgs. (7.26) and (7.27), this is also given by

_ (aH)s

LT (7.29)

Compressor efficiencies are usually in the range of 70 to 80 percent. The compres-
sion process is shown on dn HS diagram in Fig. 7.6. The vertical path rising from

Figure 7.6 Adiabatic compres-
b sion process.
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where for simplicity of notation the superscript “ig” has been omitted from the
mean heat capacity. If the compression is isentropic, AS = 0, and this equation
becomes

point | to point 2' represents the isentropic compression process from P, to }
The actual compression process follows a path from point 1 upward and to
right in the direction of increasing entropy, terminating at point 2 on the isob
for P,.

P\ R/ s,
Té=n(f) (7.30)
Example 7.8 Saturated-vapor steam at 100 kPa {#** = 99.63°C) is compressed adia !

cally to 300 kPa. If the compressor efficiency is 75 percent, what is the work requ

. ‘ .
and what are the properties of the discharge strean? where T is the temperature that results when compression from T, and P, to

P, is isentropic and where C}__ is the mean heat-capacity for the temperature
range from T, to T5.

The enthalpy change for isentropic compression is given by Eq. (4.8), writ-
ten as

SOLUTION For saturated steam at 100 kPa,
8, =73598 kI kg~ K™
H, =26754k)kg™!
(AH)s = Cp (T3 - T)
For isentropic compression to 300 kPa, " !

S,=8,=73598Kk kg K™ In accord with Eq. (7.27), we then have

By interpolation in the tables for superheated steam at 300 kPa, we find that ste: . s N -
with this entropy has an enthalpy of W, (isentropic) = —Cp_(T; - T) (7.31)
H,=28888 kI kg™' This result may be combined with the compressor efficiency to give
Thus
_ _ - - W, (isentropic)

(AH)s = 2,888.8 —2,6754 =2134kl kg W=—" {(7.32)

By Eq. (7.29), !
AH = (AH)s 2134 2845k kg The actual discharge temperature T, resulting from compression is also found
n 0.75 from Eq. (4.8), now written

Whence
H,=H,+AH =2,675.4 + 284.5 = 29599 kJ kg™’ AH =G (- T)

Again by interpolation, we find that superheated steam with this enthalpy has Whence

additional properties: AH

T,=T,+
2 1 Cpmh

T, = 246.1°C (7.33)

S, =17.5019kJ kg ' K"
where by Eq. (7.26) AH = —W,. Here Cp_, is the mean heat-capacity for the
temperature range from T, to T,.

For the special case of an ideal gas with constant heat capacities,

Moreover, by Eq. (7.26), the work required is ‘
—-W,=AH =2845k) kg™'

The direct application of Egs. (7.25) through (7.27) presumes the availability
of tables of data or an equivalent thermodynamic diagram for the fluid beinj
compressed. Where such information is not available, the generalized correlation
of Sec. 6.6 may be used in conjunction with Egs. (6.62) and (6.63), exactly
illustrated in Example 7.6 for an expansion process.

The assumption of ideal gases leads to equations of relative simplicity. B
Eq. (5.18) for an ideal gas .

I — — ] —_
Pon = Cpy = Chp,, = Cp

Equations (7.30) and (7.31) therefore become

P2 R/CP
Ty =T\
2 ‘(Pl)

T P and
AS=Cp In-2—RIn2

.18
T, P, (5.18)

W, (isentropic) = ~Cp(T; - T)
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Combining these equations gives

P,

R/Cp
W, (isentropic) = ~CpT, [(-—) - 1]

P (7.34)

For monatomic gases, such as argon and helium, R/Cp = 2/5 = 0.4. Fo
diatomic gases, such as oxygen, nitrogen, and air at moderate temperatures, a;
approximate value is R/ Cp = 2/7 = 0.2857. For gases of greater molecular comy:
plexity the ideal-gas heat capacity depends more strongly on temperature, and;
Eq. (7.34) is less likely to be suitable. One can easily show that the assumptio
of constant heat capacities also leads to the result:

Ty - T,
T,=T,+——

Example 7.9 If methane (assumed to be an ideal gas) is compressed adiabaticalt
from 20°C and 140 kPa to 560 kPa, estimate the work requirement and the discharg
temperature of the methane. The compressor efficiency is 75 percent.

SOLUTION Application of Eq. (7.30) requires evaluation of the exponent R/C
By Eq. {5.17) with D = 0 (in accord with the heat-capacity data for ethylene giv
in Table 4.1),

% = A+ BT, +CT, T..

where A=1.702
B =9.081 x107?
C=-2164 x107°
T,+T;
Ton=—"TTT-t
am 2
and
Tim = M
In(T,/T)

We choose a value for T, somewhat higher than the initial temperature T, = 293.15
Evaluation of C,_/R then provides a value for the exponent in Eq. (7.30). Wi

+ Since R = Cp ~ €y, for an ideal gas, we can write

i_CP—CVA CPICV—i_"y—l
Ce Cr Cp/Cy Y

An alternative form of Eq. (7.34) is therefore
RT, PN\ (r—ty
W, (isentropic) = — o [(_2) _
y—1L\P

Although this form is the one most commonly encountered, Eq. (7.34) is simpler and more easil
applied. '

ATREANAS LTAINANILO U PLUYW FRULLESSES L7

P,/ P =560/140 = 4.0 and T, = 293.15 K, we then calculate T}. The procedure is
repeated until no further significant change occurs in the value of T}. This process
results in the values:

Cro 4557
R .
For the same T, and T3, we evaluate C;_ /R by Eq. (4.7):
Ch

C
—Rﬂ =A+ BT,m+5(4T§m ~-T\T»)

T5=139737K and

This gives

CI
—;mh =45774 and  C},, =38.056Jmol™' K™

Then by Eq. (7.31),
W.(isentropic) = —(38.056)(397.37 — 293.15) = —3,966.2 J mol ™!
The actual work is found from Eq. (7.32) as

 =3,966.2

= = — —1
; 075 5,288.3 I mol
Application of Eq. (7.33) for the calculation of T, gives

35,2883

Peah

T, =293.15 +

Since Cp , depends on T,, we again iterate. With T} as a starting value, this leads
to the results:

T,=42865K or t; = 155.5°C

and

Cp,, =39.027 Jmol K~!

Pumps

Liquids are usually moved by pumps, generally rotating equipment. The same
equations apply to adiabatic pumps as to adiabatic compressors. Thus, Egs. (7.25)
through (7.27) and (7.29) are valid. However, application of Eq. (7.26) for the
calculation of W, = —AH requires values of the enthalpy of compressed liquids,
and these are seldom available. The fundamental property relation, Eq. (6.8),
provides an alternative. For an isentropic process,

dH = VdP  (const §)
Combining this with Eq. (7.27) gives
PZ
W.(isentropic) = —(AH);s = —J‘ VdP
P
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The usual assumption for liquids (at conditions well removed from the criti i
point) is that V is independent of P. Integration then gives :
W,(isentropic) = —(AH)}g = —V(P, — P))

Also useful are the following equations from Chap. 6:
dH = CpdT + V(1 - BT) dP (6.27)

and

aT

ds = Cp?“' pvdpP (6.28)

where the volume expansivity 8 is defined by Eq. (3.2). Since temperature chan

in the pumped fluid are very small and since the properties of liquids are insensiti
to pressure (again at conditions not close to the critical point), these equation
are usually integrated on the assumption that Cp, V, and B8 are constant, usuall

at initial values. Thus, to a good approximation:
AH = Cp AT+ V(1 - BT} AP (7.37

and

T.
AS=Cpln?2—BVAP (7.38)4

1

Example 7.10 Water at 45°C and 10 kPa enters an adiabatic pump and is discharg
at a pressure of 8,600 kPa. Assume the pump efficiency to be 75 percent. Calcula
the work of the pump, the temperature change of the water, and the entropy cha
of the water.

SoLuTION The following properties are available for saturated liquid water at 45°
(318.15K):
V =1,010cm’ kg™’

B=425x10°K™!
Cp=4.178kI kg ' K™!
By Eq. (7.36),
W,(isentropic) = —(AH)s = —(1,010)(8,600 — 10)
= —8.676 X 10° kPa cm’ kg ™'
Since 1 kJ = 10° kPa cm?,
W. (isentropic) = —(AH)g = —8.676 kI kg™
By Eq. (7.29),

_(BH)s 8676 |\

AH n 075

Since W, = —AH,
W, = -11.57kT kg™’

AL LAMNMWLAIIRANILILYS UL LAY SNV DOO0D vl

The temperature change of the water during pumping is found from Eq. (7.37):

11.57 = 4.178 AT + 1,010[1 - (425 x 107%)(318.15)] —-—8’1120

Solution for AT gives

AT=097TK or 097°C

The entropy cha'i"lge of the water is given by Eq. (7.38):

319.12

AS =4.178 In =—— — (425 x 107%)(1,010) =

10°

= 0.0090 kI kg ' K™

Ejectors

Ejectors remove gases or vapors from an evacuated space and compress them
for discharge at a higher pressure. Where the mixing of the gases or vapors with
the driving fluid is allowable, ejectors are usually lower in first cost and mainte-
nance costs than other types of vacuum pumps. As illustrated in Fig. 7.7 an ejector
consists of an inner converging-diverging nozzle through which the driving fluid
{commonly steam) is fed, and an outer, larger nozzle through which both the
extracted gases or vapors and the driving fluid pass. The momentum of the
high-speed fluid leaving the driving nozzle is partly transferred to the extracted
gases or vapors, and the mixture velocity is therefore less than that of the driving
fluid leaving the smaller nozzle. It is nevertheless higher than the speed of sound,
and the larger nozzle therefore acts as a converging-diverging diffuser in which
the pressure rises and the velocity decreases, passing through the speed of sound
at the throat. Although the usual energy equations for nozzles apply, the mixing
process is complex, and as a result gjector design is empirical.

Figure 7.7 Single-stage ejector.
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PROBLEMS

7.1 Two boilers discharge equal amounts of steam into the same steam main. The steam from ong

is at 1,400 kPa and 225°C; from the other, at 1,400 kPa with a guality of 0.94, Determine AS,,,,
the process. What is the irreversible feature of the process?
7.2 Two nonconducting tanks of negligible heat capacity and of equal volume initially contain eg;
quantities of the same ideal gas at the same T and P. Tank A discharges to the atmosphere throu
a small turbine in which the gas expands isentropically. tank B discharges to the atmosphere thro
a porous plug. Both devices operate until discharge ceases.

{a) When discharge ceases is the temperature in tank A less than, equal to, or greater than
temperature in tank B?

(b) When the pressures in both tanks have fallen to half the initial pressure, is the temperat
of the gas discharging from the turbine less than, equal to, or greater than the temperature of
gas discharging from the porous plug?

(¢} During the discharge process, is the temperature of the gas leaving the turbine less th
equal to, or greater than the temperature of the gas leaving tank A at the same instant?

(d} During the discharge process, is the temperature of the gas leaving the porous plug k
than, equal to, or greater than the temperature of the gas leaving tank B at the same instant?.

(e) When discharge ceases, is the mass of gas remaining in tank A less than, equal to, or greaty

than the mass of gas remaining in tank B?

7.3 A rigid tank of 100(ft)* capacity contains 5,100(Ib.,) of saturated liquid water at 460(°F).
amount of liquid almost completely fills the tank, the small remaining volume being occupied b
saturated-vapor steam. Since a bit more vapor space in the tank is wanted, a valve at the top of th
tank is opened, and saturated-vapor steam is vented to the atmosphere until the temperature in

tank falls to 450(°F). Assuming no heat transfer to the contents of the tank, determine the mass of

steam vented.
7.4 Liquid nitrogen is stored in (.5-m> metal tanks that are thoroughly insulated. Consider the proc
of filling an evacuated tank, initially at 295 K. It is attached to a line containing liquid nitrogen
its normal boiling point of 77.35 K and at a pressure of several bars. At this condition, its enthal,
is —120.8kJ kg™'. When a valve in the line is opened, the nitrogen Howing into the tank at fi

evaporates in the process of cooling the tank. If the tank has a mass of 3¢ kg and the metal has
specific heat of 0.43Jg™' K™', what mass of nitrogen must flow into the tank just to cool it to g

temperature such that liguid nitrogen begins to accumulate in the tank? Assume that the nitrog
and the tank are always at the same temperature,
The properties of saturated nitrogen vapor at several temperatures are given as follows:

T/K P/bar V'/m® kg! H°/kIkg!
30 1.396 0.1640 78.9

85 2.287 0.1017 82.3

90 3.600 0.06628 85.0

95 5.398 0.04487 86.3
100 7775 0.03126 8.7
105 1083 0.02223 87.4
110 14.67 0.01598 85.6

75 A tank of 60-m® capacity contains steam at 5,000kPa and 400°C. Steam is vented from ¢ 4

tank through a relief valve to the atmosphere until the pressure in the tank falls to 4,000 kPa. If
venting process is adiabatic, estimate the final temperature of the steam in the tank and the mass o
steam vented. '

THERMODYNAMICS OF FLOW PROCESSES 243

7.6 A tank of 3(ft)* [0.085-m®] volume contains air at 70(°F) [21°C} and 14.7(psia) [101.33 kPal.
The tank is connected to a compressed-air line which supplies air at the constant coaditions of 100(°F)
{38°C] and 200(psia) [1,380 kPa]. A valve in the line is cracked so that air lows slowly into the tank
until the pressure equals the line pressure. If the process occurs slowly enough that the temperature
in the tank remains at 70(°F) [21°C], how much heat is lost from the tank? Assume dir an ideal gas
for which Cp = (7/2)R and C, = (5/2)R.

7.7 A small adiabatic air compressor is used to pump air into a 700(ft)* [19.8-m*} insulated tank.
The tank initially contairt§ air at 80(°F) {26.7°C] and 1(atm) [101.33 kPa], exactly the conditions at
which air enters the compressor. The pumping process continues until the pressure in the tank reaches
8(atm) [810 kPa]. If the process is adiabatic and if compression is isentropic, what is the shaft work
of the compressor? Assume air an ideal gas for which Cp = (7/2)R and Cy = (5/2)R

7.8 A tank of 3-m> capacity contains [,200 kg of liquid water at 200°C in equilibrium with its vapor,
which fills the rest of the tank. A quantity of 800 kg of water at 60°C is pumped into the tank. How
much heat must be added during this process if the temperature in the ank is not to change?
7.9 Gas at constant T and P is contained in a supply line connected through a valve to a closed
tank containing the same gas at a lower pressure. The valve is opened to allow flow of gas into the
tank, and then is shut again. .

{a) Develop a genrral equation relating n, and n,, the moles (or mass) of gas in the tank at
the beginning and end of the process, to the properties U, and U,, the internal energy of the gas in

" the tank at the beginning and end of the process, and H’, the enthalpy of the gas in the supply line,

and to @, the heat transferred to the material in the tank during the process.

(b} Reduce the general equation to its simplest form for the special case of an ideal gas with
constant heat capacities.

{c} Further reduce the equation of (b) for the case of n, = 0.

(d) Further reduce the equation of (c) for the case in which, in addition, Q = 0.

(e) Apply the appropriate equation to the case in which a steady supply of nitrogen at 25°C
and 3 bar flows into an evacuated tank of 4-m® volume, and calculate the number of moles of nitrogen
that low into the tank to equalize the pressures if:

L. It is assumed that no heat flows from the gas to the tank or through the tank walis.

2. The tank weighs 400 kg, is perfectly insulated, has a specific heat of 0.46 J g~' K™', has an initial
temperature of 25°C, and is heated by the gas so as always to be at the temperature of the gas in
the tank.

Assume nitrogen an ideal gas for which Cp = (7/2)R.

7.10 Develop equations which may be solved to give the final temperature of the gas remaining in

a tank after the tank has been bled from an initial pressure P, to a final pressure P,. Known quantities

are the initial temperature, the tank volume, the heat capacity of the gas, the total heat capacity of

the containing tank, P, and P,. Assume the tank to be always at the temperature of the gas remaining
in the tank, and the tank to be perfectly insulated.

7.11 A well-insulated tank of 70-m* volume initially contains 23,000 kg of water distributed between

liguid and vapor phases at 25°C. Saturated steam at 1,100 kPa is admitted to the tank until the pressure

reaches 700 kPa. What mass of steam is added?

7.12 An insulated evacuated tank of §.5-m” volume is attached 1o a line containing steam at 350 kPa
and 200°C. Steam flows into the tank until the pressure in the tank reaches 350 kPa. Assuming no
heat flow from the steam to the tank, prepare graphs showing the mass of steam in the tank and its
temperature as functions of pressure in the tank.

7.13 A 3-m* tank initially contains a mixture of saturated-vapor steam and saturated liquid water at
3,400 kPa, Of the total mass, 15 percent is vapor. Saturated-liquid water is bled from the tank through
a vaive until the total mass in the tank is 40 percent of the initial total mass. If during the process
the temperature of the contents of the tank is kept constant, how much heat is transferred?

7.14 A stream of water at 65°C, flowing at the rate of 3kgs™!, is formed by mixing water at 20°C
with saturated steam at 140°C. Assuming adiabatic operation, at what rates are the steam and water
fed to the mixer?
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7.15 In a desuperheater, water at 2,900 kPa and 40°C is sprayed into a stream of superheated s
at 2,800 kPa and 325°C in an amount such that a single stream of saturated-vapor steam at 2,700 k
flows from the desuperheater at the rate of 10 kg s™'. Assuming adiabatic operation, what is the n
flow rate of the water? What is AS,_,, for the process? What is the irreversible feature of the proc

7.16 Superheated steam at 100(psia) and 500(°F) flowing at the rate of 100{1b,,)(s)"' is mixed wi
liquid water at 100{°F) to produce steam at 100(psia) and 380(°F). Assuming adiabatic operation,
what rate is water supplied to the mixer? What is AS,,, for the process? What is the irrevers
feature of the process?
7.17 A stream of air at 10 bar and 800 K is mixed with another stream of air at 1 bar and 300 K
three times the mass flow rate. If this process is accomplished reversibly and adiabatically, what
the temperature and pressure of the resulting air stream? Assume air an ideal gas for whig
Cp = (T/)R
7.18 A stream of hot nitrogen gas at 700(°F) and atmospheric pressure, flows into a waste-heat bor
at the rate of 30(1b,,) (s) !, and transfers heat to water boiling at 1{atm). The water feed to the bo
is saturated liquid at 1(atm), and it leaves the boiler as superheated steam at 1{atm} and 350{°F)
the nitrogen is cooled to 250(°F) and if heat is lost to the surroundings at a rate of 50(Btu) for eag
(Ib,,) of steam generated, what is the steam-generation rate? If the surroundings are at 70(°F), w
is A8, for the process? Assume nitrogen an ideal gas for which Cp = (7/2)R.
7.19 A stream of hot nitrogen gas at 370°C and atmospheric pressure, flows into a waste-heat bo;
at the rate of 1 kgs™, and transfers heat to water boiling at 101.33 kPa. The water feed to the boik
is saturated liquid at 101.33 kPa, and it leaves the boiler as superheated steam at 101.33 kPa
175°C. 1f the nitrogen is cooled to 120°C and if heat is lost to the surroundings at a rate of 100k
for each kilogram of steam generated, what is the steam-generation rate? If the surroundings are ¥
20°C, what is AS,,,, for the process? Assume nitrogen an ideal gas for which Cp = (7/2)R.
7.20 Air expands through a nozzle from a negligible initial velocity to a final velocity of 350 m s
What is the temperature drop of the air, if air is assumed an ideal gas for which Cp = (7/2)R7

7.21 Steam enters a nozzle at 700 kPa and 280°C at negligible velocity and discharges at a presst
of 475 kPa. Assuiming isentropic expansion of the steam in the nozzle, what is the exit velocity
what is the cross-sectional area at the nozzle exit for a flow rate of 0.5kgs™"?
7.22 Steam enters a converging nozzle at 700 kPa and 260°C with negligible velocity. If expansig
is isentropic, what is the minimum pressure that can be reached in such a pozzle and what is
cross-sectional area at the nozzle throat at this pressure for 2 flow rate of 0.5kgs™'?

7.23 A gas enters a converging nozzle at pressure P, with negligible velocity, expands isentropical
in the nozzle, and discharges into a chamber at pressure P,. Sketch graphs showing the velocity 3
the throat and the mass flow rate as functions of the pressure ratio P,/ P,.

7.24 For a converging/diverging nozzle with negligible entrance velocity in which expansio
isentropic, sketch graphs of mass flow rate m, velocity w, and area ratio A/ A, vs. the pressure
P/ P,. Here, A is the cross-sectiorial area of the nozzle at the point in the nozzle where the press
is P, and subscript 1 denotes the nozzle entrance.

7.25 An ideal gas with constant heat capacities enters a converging/ diverging nozzle with negligi
velocity. If it expands isentropically within the nozzle, show that the throat velocity is given by

: _YRL( 2
Uthroat = M ‘y+l

where T, is the temperature of the gas entering the nozzle and R is the gas constant in units 4
J(kgmol)' K™\,
7.26 Steam expands isentropically in 2 converging/diverging nozzle from inlet conditions of 200(p
600(°F), and negligible velocity to a discharge pressure of 50(psia). At the throat, the cross-secti
area is 1{in). Determine the mass fiow rate of the steam and the state of the steam at the exit of &
nozzle. :
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7.27 ?team expands adiabatically in a nozzle from inlet conditions of 100{psia), 400(°F), and a
velocity of 200(ft)(s) ' to a discharge pressure of 20(psia) where its velocity is 2,000(&)(s)"". What
is the state of the steam at the nozzle exit, and what is AS, o for the process.

7.28 Ajr_ 1disc:harges from an adiabatic nozzle at 40(°F) [4.4°C] with a velocity of 1 800(ft)(s) !
[550ms .]. What is the temperature at the entrance of the nozzle if the entrance velocity i; negligible?
Assume air an ideal gas for which Cp = (7/2)R. '
7.29 A steam turbime operates adiabatically at a power level of 3,000 kW. Steam enters the turbine
at 2,100 kPa and 475°C and exhausts from the turbine as saturated vapor at 30 kPa. What is the steam
rate through the turbine, and what is the turbine efficiency ?

7.30 A portable power-supply system consists of a 30-liter bottle of compressed nitrogen, connected
to a small adiabatic turbine. The bottle is initially charged to 13,800 kPa at 27°C and i;: operation
drives the turbine continuously until the pressure drops to 700 kPa. The turbine exhausts at 101.33 kPa
Neglecting all heat transfer to the gas, calculate the maximum possible work that can be o'l)taine(i
during the process. Assume nitrogen an ideal gas for which C, = (7/2)R.

7.31 A turbine operates adiabatically with superheated steam entering at T, and P, with a mass flow
rate . The exhaust pressure is P, and the turbine efficiency is #. For one of the following sets of

operating conditions, determine the power output of the turbine and the enthalpy and entropy of
the exhaust steam.

(a) Ty =450°C, P, = 8,000 kPa, 1 = 80kgs~', P, = 30kPa, = 0.80,
(#) T, =550°C, P, =9,000kPa, rit = 90 kgs™", P, = 20kPa, n = 0.77,
(¢) T, =600°C, P, =8,600kPa, rh = 70kgs™", P, = 10kPa, 7 = 0.82.
(d) T\ =400°C, P, = 7,000kPa, m = 65kgs~', P, = S0kPa, 5 = 0.75.
(¢) T, =200°C, P, = 400 kPa, m = Skgs™', P, = 200 kPa, = 0.75,
() T, = 900(°F), P, = 1,200(psia), it = 150(lb,,}(s)~!, P, = 2(psia), 7 = 0.80.
{g) T, = BOO(°F), P, = 1,000(psia), rit = 100(1b,)(s)~", P, = 4(psia), 7 =0.75.

7.32 T'I-1e steam rate te a turbine for variable output is controlled by a throttle valve in the iniet line.
Steam is supptlied to the throttle valve at 240(psia} and 440(°F). During a test run, the pressure at
the turbine inlet is 160(psia), the exhaust steam at 1{psia) has a quality of 0.95, the steam flow rate
is 1(1b,,)(s}™", and the power output of the turbine is 240(hp). ’

{a) What are the heat losses from the turbine?

_ (b). What would be the power output if the steam supplied to the throtile valve were expanded
isentropically to the final pressure?

733 lsqbutane expands adiabatically in a turbine from 700(psia) [4,826 kPa] and 500(°F) [260°C)
to 70(.p51a) {483 kPa] at the rate of {.5(Ib mol)(s)™" [0.68 kg mol s ]. If the turbine efficiency is 0.80,
what is the power output of the turbine and what is the temperature of the isobutane leaving the turbine?

7.34 Combustion products from a burner enter a gas turbine at 7.5 bar and 900°C and discharge at
1.2 bar. The turbine operates adiabatically with an efficiency of 80 percent. Assuming the combustion
products to be an ideal-gas mixture with a heat capacity of 30 J mol™’ °C~', what is the work output
of the turbine per mole of gas, and what is the temperature of the gases dischatging from the turbine?

7_.35 An expander operates adiabatically with nitrogen entering at T, and P, with a molar flow rate
hi. The exhaust pressure is P,, and the expander efficiency is 4. Estimate the power output of the
expander and the temperature of the exhaust stream for one of the following sets of operating
conditions.

(@) T, =480°C, P, = 6 bar, s = 200 mol s, P, = 1 bar, n = 0.80.

(6) T, =400°C, P, = Sbar, ri = 150 mols™", P, = | bar, n =0.75.

(¢} T,=500°C, P, = 7bar, #i = 175 mol s, P, = 1bar, 5 =0.78.

(d) T, =450°C, P, = 8 bar, s = 100 mols’, P, = 2 bar, n = 0.85.

(e} T, =900(°F), P, = 95(psia), 7 = 0.5(Ib mol)(s)"", P, = 15(psia), n = 0.80.

7.36 Saturated steam at 175 kPa is compressed adiabatically in a centrifugal compressor to 650 kPa

at the rate of 1.5kgs™', The compressor efficiency is 75 percent. What is the power requirement of
the compressor and what are the enthalpy and entropy of the steam in its final state?
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7.37 A compressot operates adiabatically with air entering at T, and P, with a molar flow rate
The discharge pressure is P, and the compressor efficiency is #. Estimate the power requiremen
the compressor and the temperature of the discharge stream for one of the following sets of operati
conditions.

{a) T, =25°C, P, = 101.33 kPa, #i = 100 mol s7!, P,=375kPa, n = 0.75.

(b} T, =80°C, P, =375kPa, i = 100mols ', P, = 1,000kPa, 5 = ¢.70.

(e} T, =30°C, P, = 100kPa, ri = 150 mols™', P, = 500kPa, n = 0.5¢.

(d) T, = 100°C, P, = 500kPa, # = 50mols™", P, = 1,300kPa, n = 0.75.

(e} T,=80(°F), P, = 14.7(psia), n = 0.5(!b mol){s)~', P, = 55(psia}, 7 = 0.75.

(f) T, = 150(°F), P, = 55(psia}, A = 0.5(Ib mol)}(s)~!, P, = 135(psia), 5 = 0.70.

7.38 Ammonia gas is compressed from 21°C and 200 %Pa to 1,000 kPa in an adiabatic compres
with an efficiency of 0.82. Estimate the work required per mol of ammonia and the enthalpy
entropy changes of the ammonia. (
7.39 Propylene is compressed adiabatically from 11.5 bar and 30°C to 18 bar at the rate of 1 kg mol s
If the compressor efficiency is 0.8, what is the power requirement of the compressor and what is
discharge temperature of the propylene?

7.40 Methane is compressed adiabatically in a pipeline pumping station from S00(psia) [3,450 kP;
and 77(°F) [25°C] 1o 725(psia) [5,000 kPa] at the rate of 2.5(1b mol)(s)~" [1.134 kg mols']. If
compressor efficiency is 0.75, what is the power requirement of the compressor and what is th
discharge temperature of the methane?
7.41 A pump operates adiabatically with liquid water entering at T, and P, with a mass flow ra
. The discharge pressure is Py, and the pump efficiency is ». For one of the following sets o8
operating conditions, determine the power requirement of the pump and the temperature of the wal
stream discharged from the pump.

(a) T, =25°C, P, = 1 bar, h = 20kgs™", P, = 20bar, 7 = 0.75, B = 257.2 % 106K

{(b) T, =90°C, P, =2bar, it =30kgs™', P, = 50bar, n = 0.70, § = 696.2 X 107K,

(c) T, =60°C, P, =20kPa, m = 15kgs ', P, = 5,000kPa, =075, § = 523.1 x 107°K™"
{(d) T, =T70(°F), P, = 1(atm), m = 50(lb )5}, P, = 2Matm), » = 0.70, B = 217.3 X 107°K™, 3
(e} T, = 200(°F), P, = 15{psia)}, it = 80{lb, }(s)~*, P; = 1,500(psia), = 0.75, B = 714.3 X 107K~

CHAPTER

EIGHT

CONVERSION OF HEAT INTO WORK
BY POWER CYCLES

Prior to the development of nuclear power, all significant contributions to the
mechanical energy used by humankind had the sun as their source. However,
economical methods have not been developed as yet for directly converting solar
radiation into work on a large scale. The total rate at which energy reaches the
earth from the sun is staggering, but the rate at which it falls on a square meter
of surface is small. The difficulty is therefore to concentrate the heat gathered
over a large surface so that it is a practical energy source for the production of
work. Research in this area continues, and progress has been made on the direct
use of solar energy for heat. For example, solar radiation is used to heat homes,
to produce high temperatures for metallurgical operations (solar furnaces), and
to concentrate aqueous solutions by evaporation.

The kinetic energy associated with mass movement of air has been used to
some extent for the production of work (windmills), especially in rural areas.
Variations and uncertainties in wind speed, and the need for large-size equipment
to produce significant quantities of work, are problems in this field.

Conceivably, the potential energy of tides could be exploited. Attempts in
this direction on a large scale have been made in parts of the world where tides
are particularly high. However, total power production from this source is unlikely
to be significant in comparison with world demands for energy.

By far the most important sources of power are the chemical (molecular)
energy of fuels, nuclear energy, and the potential energy of water. The use of
water power involves the conversion of mechanical energy from one form to
another, and an efficiency of 100 percent is theoretically possible. On the other
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hand, all present-day methods for the large-scale use of molecular or nuc by the flui
Y the fluid. The work Produced is W — 1Qul
] ~

energy are based on the evolution of heat and subsequent conversion of part of the C ‘
the heat into useful work. Accordingly, the efficiency of all such processes arnot engine [Eq. (5.8)] is ,QcL and the thermaj efficienc
destined to be low {values greater than 35 percent are uncommon), des Y
improvements in the design of equipment. This is, of course, a direct consequen 7 = w T,

Qul ™" 1,

of the second law. When it is possible to convert the energy in fuels into wo:
without the intermediate generation of heat, conversion efficiency is considerah
improved. The usual device for the direct conversion of chemical energy in
electrical energy is the electrolytic cell. Progress has been made in developi
cells which operate on hydrogen and on carbonaceous fuels such as natural
or coal. Such fuel cells are already in use to supply modest power requireme:
for special purposes. The efficiency of these cells ranges from 65 to 80 perce
about twice the value obtained by the conventional process of first convertis
the chemical energy into heat.

In a conventional power plant the molecular energy of fuel is released b,
combustion process. The function of the work-producing device is to conve
part of the heat of combustion into mechanical energy. In a nuclear power pl
the fission or fusion process releases the energy of the nucleus of the atom
heat, and then this heat is partially converted into work. Thus, the thermodynam
analysis of heat engines, as presented in this chapter, applies equally well
conventional (fossil-fuel) and nuclear power plants.

In one form of heat engine, the steam power plant, the working fluid (steam
is completely enclosed and goes through a cyclic process, accomplished b
vaporization and condensation. Heat is transferred to the fluid from another
of the plant across a physical boundary. In a coai-fired plant the combustio
gases are separated from the steam by boiler-tube walls. The internal-combust
engine is another form of heat engine, wherein high temperatures are attai
by conversion of the chemical energy of a fuel directly into internal energy withig
the work-producing device. Examples of this type are the Otto engine and

gas turbine.¥
To illustrate the calculation of thermal efficiencies, we analyze in this chapt

several common heat-engine cycles.

* § H

f:ﬂi.cwnmes are increased when the
Is mcreased and when the av,
decreased, .

Figure 8.1 shows 3 g
. e o, S a simple stead ]
in a boiler js ex iad ady-state flow proces i i
stream from the ]t)::bdiz: N an adiabatic turbine to pro dl::":l;gfrlkﬂ?[ham (gienerated
Passes to a cond - Lhe discharpe
to the boiler. The enser from which jt is um abar
lt)lmt required by the pump :1;); :1:5 mctluced by the turbine is £uchpgeg::::ra :)}:l "
etween the rate of heat in. net power outpuyt an
‘ eat input ; . . 15 equal to i
the condenger Ov. put in the boijler Qx and the rati of he;i‘ie?;fte.renf:e
101t 1n

re gh the efficiencie.
L) - - . s
A sibilities, it is still true that their
e vers B¢ temperature at which heat is absorbed

Mmperature at which heat is rejecteqd is

Oy

W, (turbine)

8.1 THE STEAM POWER PLANT

The Carnot-engine cycle, described in Chap. 5, operates reversibly and consis
of two isothermal steps connected by two adiabatic steps. In the isothermal ste;
at higher temperature Ty, heat |Qy| is absorbed by the working fluid of th
engine, and in the isothermal step at lower temperature T, heat | Q.| is discarde

T Details of steam power plants and internal-combustion engines can be found in E. B. Woodruft;;
H. B. Lammers, and T. 5. Lammers, Steam Plant Operation, 5th ed., McGraw-Hill, New York, 198
and C. F, Taylor and E. S. Taylor, The Internal Combustion Engire, International Textbook, Scrantom,

Pa., 1962.

| Qc
Figure 8.1 Simple Steam power plant,
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Figure 8.2 Carnot cycle on a TS diagram. '

The property changes of the fluid as it flows through the individual piecey
of equipment may be shown as paths on a TS diagram, as illustrated in Fig. 8.8
The sequence of paths represents a cycle. Indeed, the particular cycle shown if
a Carnot cycle. In this idealization, step 1 > 2 is the isothermal absorption of
heat at T, and is represented by a horizontal line on the 7S diagram. hif
vapotization process occurs also at constant pressure and produces saturatedy
vapor steam from saturated-liquid water. Step 2 3 is a reversible, adiaba
expansion of saturated vapor to a pressure at which T * = T¢. This isentropi§
expansion process is represented by a vertical line on the TS diagram and producey
a wet vapor. Step 3 - 4 is the isothermal rejection of heat at temperature
and is represented by a horizontal line on the TS diagram. It is a condensatiof
process, but is incomplete. Step 4 - 1 takes the cycle back to its origin, producing
saturated-liquid water at point 1. It is an isentropic compression process
which the path is a vertical line on the TS diagram.

The thermal efficiency of this cycle is that of a Carnot engine, given by
(5.8). As a reversible cycle, it could serve as a standard of comparison for act
steam power plants. However, severe practical difficulties attend the operati
of equipment intended to carry out steps 2> 3 and 4 - 1. Turbines that take i
saturated steam produce an exhaust with high liquid content, which causes seve ‘
erosion problems.t Even more difficult is the design of a pump that takes in
mixture of liquid and vapor (point 4) and discharges a saturated liquid {po
1). For these reasons, an alternative model cycle is taken as the standard, at lez
for fossil-fuel-burning power plants. It is called the Rankine cycle, and diffe
from the cycle of Fig. 8.2 in two major respects. First, the heating step 1 > 2i

f Nevertheless, present-day nuctear power plants generate saturated steam and operate wi
turbines designed to eject liquid at various stages of expansion.

Figure 8.3 The Rankine cycle.

- carried well beyond vaporization, so as to produce a superheated vapor, and

second, th_e c.ooling step 3 + 4 brings about complete condensation, yielding
saturated liquid to be pumped to the boiler. The Rankine cycle therefore consists
of the four steps shown by Fig. 8.3, and described as follows:

1 >2 A constant-pressure heating process in a boiler. The path lies along an
isobar (the pressure of the boiler), and consists of three sections: heating
of liquid water to its saturation temperature, vaporization at constant
temperature and pressure, and superheating of the vapor to a temperature
well above its saturation temperature.

Reversible, adiabatic (isentropic} expansion of vapor in a turbine to the
pressure of the condenser. The path normally crosses the saturation curve,
producing a wet exhaust. However, the superheating accomplished in step
1 » 2 shifts the path far enough to the right on Fig. 8.3 that the moisture
content is not too large. '

A constant-pressure, constant-temperature process in a condenser to pro-
duce saturated liquid at point 4.

Reversible, adiabatic (isentropic) pumping of the condensed liquid to the
pressure of the boiler. The vertical path (whose length is exaggerated in
Fig. 8.3) is very short, because the temperature rise associated with com-
pression of a liquid is small.

3->4

4->1

~ Power plants can be built to operate on a cycle that departs from the Rankine
f:ycle only to the extent that the work-producing and work-requiring steps are
irreversible. We show in Fig. 8.4 the effects of these irreversibilities on steps 2 » 3
and 4 - |. The paths are no longer vertical, but tend in the direction of increasing
entropy. The turbine exhaust is normally still wet, but as long as the moisture
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Figure 8.4 Simple practical power cycle.

content is less than about 10 percent, erosion problems are not serious. Sli
subcooling of the condensate in the condenser may occur, but the effect §
inconseguential, .
The boiler serves to transfer heat from a burning fuel to the cycle, and thy
condenser transfers heat from the cycle to the surroundings. Neglecting kinetig]
and potential-energy changes reduces the energy relations, Egs. (7.9) and (7.10
in either case to
Q=mAH
and
Q=AH (8.

Turbine and pump calculations are treated in detail in Chap. 7.

Example 8.1 Steam generated in a power plant at a pressure of 8,600 kPa and
temperature of 500°C is fed to a turbine. Exhaust from the turbine enters a condens
at 10 kPa, where it is condensed to saturated liquid, which is then pumped to the boi

{a) Determine the thermal efficiency of a Rankine cycle operating at the!
conditions.

(b) Determine the thermal efficiency of a practical cycle operating at the:
conditions if the turbine efficiency and pump efficiency are both 75 percent.

(¢} If the rating of the power cycle of part (b} is 80,000 kW, what is the stea
rate and what are the heat-transfer rates in the boiler and condenser?

SoLUTION (a) The turbine operates under the same conditions as the turbine
Example 7.5, where we found
(AH)g = —1,2742 kI kg™'
Thus,
W, (isentropic) = —(AH)s = 1,274.2 kI kg™’

SR T T A AR AR SRR HINIAS WAILLD D1 TUYWELR LU

Moreover, we found the enthalpy at the end of isentropic expansion (H’ in Example
7.5) to be

Hi=2,1174k kg™
The enthalpy of saturated liquid at 10 kPa (and " = 45.83°C) is
H,=1918kJkg™'
Thus b; Eq. (8.2) applied to the condenser,
Q(condenser) = H,— Hy;=191.8-2,117.4
=-1,9256 1 kg™'

where the minus sign signifies that the heat flows out of the system.
The pump operates under essentially the same conditions as the pump of Example
7.10, where we found

W, {isentropic) = —~(AH)s = —8.7kJ kg™'
Thus,
H = H,+ (AH)g = 191.8+ 8.7 =200.5kJ kg_l

The enthalpy of superheated steam at §,600 kPa and 500°C is
H,=33916kI kg™

By Eq. (8.2) applied to the boiler,

Q(boiler) = H, — H, = 3,391.6 - 200.5

=3,191.1 kJ kg™
The net work of the Rankine cycle is the sum of the turbine work and the pump work:
W, (Rankine) = 1,274.2 — 8.7
=1,2655kI kg™’
This result is of course also given by
W.{Rankine) = Q(boiler} + Q(condenser)
=3,191.1 - 1,925.6 = 1,265.5 k] kg ™'

The thermatl efficiency of the cycle is

_ W,(Ranking) 1,265.5
Q(boiler) ~ 3,191.1

(b) If the turbine efficiency is 0.75, then we also have from Example 7.5 that
W_{turbine) = —AH = 995.6 kJ kg™

= 0.3966

and
H,=H,+AH =3391.6 —955.6
=2436.0klkg™!
For the condenser,
Q{condenser) = H, — H, = 191.8 — 2,436.0
=22442kI kg™’
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By Example 7.10 for the pump,
W,(pump) = —AH = —11.6 kI kg™’

Whence
H, =H,+AH =191.8+ 116
=203.4kI kg
Then
Q{boiler) = H, — H, = 3,391.6 — 2034
=3,188.2kl kg’

The thermal efficiency of the cycle is therefore

W.(net) 9556 — 116
= = = 0.2961
M= Qboilery  3,188.2

which may be compared with the result of part (a).
(¢) For a power rating of W,(net} = 80,000kW, we have -

W.(net) = mW,(net)
or

. -1
. W,(net) _ 80,000k —8475kgs™
W, (net) 944.0kJkg

Whence by Eq. (8.1),
O(boiler) = (84.75)(3,188.2) = 270.2 X 10° kI s~

and
O(condenser) = (84.75)(2,244.2) = 1902 X 10° kJ s~

Note that
O(boiler) — Q(condenser) = W, (net)

The thermal efficiency of a steam power cycle is increased when the press
and hence the vaporization temperature in the boiler is raised. It is also increas
by increased superheating in the boiler. Thus, high boiler pressures and t
peratures favor high efficiencies. However, these same conditions increase
capital investment in the plant, because they require heavier construction af

more rapidly as more severe conditions are imposed. Thus, in practice po
plants seldom operate at pressures much above 10,000 kPa and temperatu
much above 600°C. The thermal efficiency of a power plant increases as
pressure and hence the temperature in the condenser is reduced. However,
condensation temperature must be higher than the temperature of the coo
medium, usually water, and this is controlled by local conditions of ¢limate
geography. Power plants universally operate with the condenser pressure as l

as practicable.

more expensive materials of construction. Moreover, these costs increase eve
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P=8,600kPa ¢=3500°C

r'- Boiler

~ — W,

P =2900kPa

P =1,150kPa
P=375%kPa
226°C P =87.69kPa P=10kPa
4
N, e 181°C i 136°C 1 i b
LA AN A, A A A 91°C Cond
23016 97 W W 46°C enser

(5__;3‘_

Feedwater heaters

Pump

Figure 8.5 Steam power plant with feedwater heating,

Most modern
power plants operate ificati
that inco on a modification of the Rankij
rporates feedwater heaters. Water from the condenser, rather tll('nTl: ':Y_Cle
> eing

The sa i
300.06°C. a;u;:g:::e:mperature of r?team at the boiler pressure of 8,600 kPa is
is cortainty o T {)erature to w_hich the. feedwater can be raised in the heaters
by soenaiy co.nSid e{nperature 1s a design variable, which is ultimately fixed
v ca]cu]at:::tiltslons. {)—Iowever, a value must be chosen before any ther-
temperatire of ot ¢an be made. We have therefore arbitrarily specified
for the feedwater stream entering the boiler. We ll>1ave :ls:
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specified that each of the four feedwater heaters accomplishes the same te
perature rise. Thus, the total temperature rise of 226 — 46 = 180°C is divided in
four 45°C increments. This establishes all intermediate feedwater temperatur.
at the values shown on Fig. 8.5.

The steam supplied to a given feedwater heater must be at a pressure h
enough that its saturation temperature is higher than the temperature of ¢
feedwater stream leaving the heater. We have here presumed a minimum ten
perature difference for heat transfer of no less than 5°C, and have chos
extraction steam pressures such that the #** values shown in each feedwat
heater are at least 5°C greater than the exit temperature of the feedwater strea
The condensate from each feedwater heater is flashed through a throttle valvd
to the heater at the next lower pressure, and the collected condensate in the fin
heater of the series is flashed into the condenser. Thus, all condensate retu
from the condenser to the boiler by way of the feedwater heaters.

The purpose of heating the feedwater in this manner is to raise the avera;
temperature at which heat is added in the boiler. This raises the thermal efficien
of the plant, which is said to operate on a regenerative cycle. '

Example 8.2 Determine the thermal efficiency of the power plant shown in Fig. 8
assuming turbine and pump efficiencies of 0.75. If its power rating is 80,000 kW what
is the steam rate from the boiler and the heat-transfer rates in the boiler and condenser?

SOLUTION Initial calculations are made on the basis of | kg of steam entering the
turbine from the boiler. The turbine is in effect divided into five sections, as indicated
in Fig. 8.5. Because steam is extracted at the end of each section, the flow rate in the
turbine decreases from one section to the next. The amounts of steam extracted from
the first four sections are determined by energy balances.

For this, we need enthalpies of the compressed feedwater streams. The effect
pressure at constant temperature on a liquid is given by Eq. (7.37) written as

AH=V(l-BT)AP (constT)
For saturated liquid water at 226°C (499.15 K), we find from the steam tables:
‘ P =2,598.2 kPa
H=9715kIkg™"
V=120t cm*kg"

In addition, at this temperature

B=1582x10*K"
Thus, for a pressure change from the saturation pressure to 8,600 kPa,

8,600 — 2,598.
AH = 1,201[1 - (1.528 x 10-3)(499.15)]£’T26’5982)
= 1.5kl kg
and

H = H(satliQ) + AH =971.5+ 1.5 =973.0kJ kg

Similar calculations yield the enthalpies of the feedwater at other temperatures. All
pertinent values are given as follows:

t/°C 226 181 136 1 46

H/kJkg"' Fer water

at t and P = 8,600 kPa 973.0 771.3 5774 387.5 200.0

Consider the first section of the turbine and the first feedwater heater, as shown
by Fig. 8.6. The enthalpy and entropy of the steam entering the turbine are found
from the tables for superheated steam. The assumption of isentropic expansion of
steam in section I of the turbine to 2,900 kPa leads to the result:

(AH)}s = —3205kIkg™"

If we assume that the turbine efficiency is independent of the pressure to which the
steam expands, then Eq. (7.28) gives:

AH = n(AH)s = (0.75)(—320.5) = —240.4 kI kg™'
By Eq. {7.26),
W,(I) = —AH =240.4kJ

1 kg superheated

steam
from boiler
P = 8,600 kPa
t=500°C 1 w,(D)
H=33916
5=6.6858
(1-m) ke o Steam feed to
section 11
"""‘S P =2,900 kPa
H=3,151.2
t=1363.65°C
1 kg liguid st AN [l 5=6.8150
water kg ‘L'g':rd
P =8,600 :
L oekpa P=8600kPa
H=973.0 = 181°C
: H=17713

= m kg condensate
Saturated liquid at
2,900 kPa
r*=231.97°C
H=999.5

Figure 8.6 Section I of turbine and first feedwater heater. Enthalpies in kIkg™!; entropies in
kg 'K



In addition, the enthalpy of the steam discharged from this section of the turbine
H =3,391.6—2404 =3,151.2kI kg'

An energy balance on the feedwater heater requires application of Eq. (7,
Neglecting kinetic- and potential-energy changes and noting that Q@ = W, = 0, we

A{mH), =0
This equation expresses mathematically the requirement that the total enthalpy. cha
for the process be zero. Thus on the basis of 1 kg of steam entering the turbine
Fig. 8.6),

m{999.5 — 3,151.2) + (1)(973.0 ~ 771.3) = 0

Whence

m = 0.09374 kg and I —m=0.90626 kg

On the basis of 1 kg of steam entering the turbine, 1 — m is the mass of steam flowi

into section II of the turbine. o
Section II of the turbine and the second feedwater heater are shown in Fig. 83

In doing the same calculations as for section I, we assume that each kilogram ¢
steam leaving section I1 expands from its state at the turbine entrance to the exit ¢

0.90626 kg steam
from section [
H=3,1512

11 W, (11}

(0.'90626 m) kg # Steam feed to
mkg section 111
| P=1,150kPa
H=29878

1 kg water e AN gt 1 kg water
H=771.3 H=5774

]
!
]
'
]

- (0.09374+m) kg
condensate
Saturated liquid at
1,150 kPa
1 =186.05°C
H=7899

0.09374 kg
condensate
H=9995

Figure B.7 Section II of turbine and second feedwater heater. Enthalpies in kI kg™'; entropies
kg K7,
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section II with an efficiency of 75 percent compared with isentropic expansion. The
enthalpy of the steam leaving section 11 found in this way is

H=29%78kIkg™!
Then on the basis of 1 kg of steam entering the turbine,
o W(II) = —(2,987.8 — 3,151.2)(0.90626)
= 148.08 kJ
An energy balance on the feedwater heater (see Fig. 8.7) gives:
(0.09374 + m)(789.9) - (0.09374)(999.5) — m(2,987.8) + (1}(771.3 - 577.4) = 0
Whence |
m =0.07971 kg

Note that throttling the condensate stream does not change its enthalpy.
These results and those of similar calculations for the remaining sections of the
turbine are listed in the following table:

HikJkg™ 1/°C at m/kg of
at section W./k) section steam
exit for section exit State extracted
Sec. I 3,151.2 240.40 363.65 Superheated 0.09374
vapor
Sec. II 2,987.8 148.08 272.48 Superheated 0.07928
vapor
Sec. 1 2,8274 132.65 183.84 Superheated 0.06993
vapor
Sec. IV 2,651.3 133.32 96.00 Wet vapor 0.06257
x =0.9919
Sec. V 24359 149.59 45.83 Wet vapor
x =09378
T W, =3040KkJ ¥ m = 03055

Thus for every kilogram of steam entering the turbine, the work produced is
804.0 kJ and 0.3055 kg of steam is extracted from the turbine for the feedwater heaters.
The work required by the pump is exactly the work calculated for the pump in
Example 7.10, that is, 11.6 kJ. The net work of the cycle is therefore

W,(net) = 804.0 — 11.6 = 792.4kJ

on the basis of | kg of steam generated in the boiler. On the same basis, the heat
added in the boiler is

Q(boiler) = AH = 3,391.6 —973.0 = 2,418.6 kJ
The thermal efficiency of the cycle is therefore

 W(net) 7924
7= Qlboiler) 24186

= (.3276



This is a significant improvement over the value of 0.2961 found in Example 8.1,
Since W,(net) = 80,000kJ s,

W.(net) 80,000 »

This is the steam rate to the turbine, and with it we can calculate the heat-transfi
rate in the boiler:

Q(boiler) = mAH = (100.96)(2,418.6)
=2442 x 10°k) 57"
The heat-transfer rate to the cooling water in the condenser is
Q(condenser) = Q(boiler) - W,(net)
=244.2 x 10° — 80.0 x 10
=164.2 X 10°k) 5!

Although the steam generation rate is higher than was found in Example 8.1, the
heat-transfer rates in the boiler and condenser are appreciably less, because their 4
functions are partly taken over by the feedwater heaters. ]

8.2 INTERNAL-COMBUSTION ENGINES

In a steam power plant, the steam is an inert medium to which heat is transferred
from a burning fuel or from a nuclear reactor. It is therefore characterized by
large heat-transfer surfaces: (1) for the absorption of heat by the steam at a high }
temperature in the boiler, and (2) for the rejection of heat from the steam at a
relatively low temperature in the condenser. The disadvantage is that when heat 3
must be transferred through walls (as through the metal walls of boiler tubes) §
the ability of the walls to withstand high temperatures and pressures imposes a
limit on the temperature of heat absorption. In an internal-combustion engine,
on the other hand, a fuel is burned within the engine itself, and the combustion 1
products serve as the working-medium, acting for example on a piston in a
cylinder. High temperatures are internal, and do not involve heat-transfer surfaces. 1

The burning of fuel within the internal-combustion engine does complicate
thermodynamic analysis. Moreover, fuel and air flow steadily into an internal- {
combustion engine and combustion products flow steadily out of it; there is no
working medium that undergoes a cyclic process, as does the steam in a steam §
power plant. However, for making simple analyses, one imagines cyclic engines 3
with air as the working fluid that are equivalent in performance to actual internal-
combustion engines. In addition, the combustion step is replaced by the addition
to the air of an equivalent amount of heat. In each of the following sections, we .
first present a qualitative description of an internal-combustion engine. Quantita-
tive analysis is then made of an ideal cycle in which air, treated as an ideal gas
with constant heat capacities, is the working medium.
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Figure 8.8 Otto tnternal-combustion-engine
cycle.

Volume

8.3 THE OTTO ENGINE

The most common internal-combustion engine, because of its use in antomobiles,
is the Otto engine. Its cycle consists of four strokes, and starts with an intake
stroke at essentially constant pressure, during which a piston moving outward
draws a fuel/air mixture into a cylinder. This is represented by line 0 > 1 in Fig.
8.8. During the second stroke (line 1 > 3}, all valves are closed, and the fuel/air
mixture is compressed, approximately adiabatically, along line 1 - 2. The mixture
is then ignited, and combustion occurs so rapidly that the volume remains nearly
constant while the pressure rises along line 2 » 3. It is during the third stroke
(line 3 » 1) that work is produced. The high-temperature, high-pressure products
of combustion expand, approximately adiabatically, along line 3 -» 4. Then the
exhaust valve opens and the pressure falls rapidly at nearly constant volume
along line 4 » 1. During the fourth or exhaust stroke (line 1 » 0), the piston
pushes the remaining combustion gases (except for the contents of the clearance
volume)} from the cylinder. The volume plotted in Fig. 8.8 is the total volume of
gas contained in the engine between the piston and the cylinder head.

The effect of increasing the compression ratio, defined as the ratio of the
volumes at the beginning and end of the compression stroke, is to increase the
efficiency of the engine, i.e., to increase the work produced per unit quantity of
fuel. We demonstrate this for an idealized cycle, called the air-standard cycle,
shown in Fig. 8.9. It consists of two adiabatic and two constant-volume steps,
which comprise a heat-engine cycle for which air is the working fluid. In step
DA, sufficient heat is absorbed by the air at constant volume to raise its tem-
perature and pressure to the values resulting from combustion in an actual Otto
engine. Then the air is expanded adiabatically and reversibly (step AB), cooled
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A

Pressure

Volume Figure 8.9 Air-standard Otto cycle.

at constant volume (step BC), and finally compressed adiabatically and reversibl

to the initial state at .
The thermal efficiency # of the air-standard cycle shown in Fig. 8 9 is simply

_ W,(net) _ Qpat Qac (8
QDA QDA

For 1 mol of air with constant heat capacities,
Qpa = Cv(Ts — Tp)
Qpc = Cv(Tc — Tg)
Substituiing these expressions in Eq. (8.3) gives
_CW(Ta = Tp) = C(Ts — Tc)

= Cy(Ta— Tp)
or
T — Tc
=1- 8
K Ta—Tp (

The thermal efficiency is also related in a simple way to the compressn
ratio r = V/ Vp. We replace each temperature in Eq. (8.4) by an appropri
group PV/R, in accord with the ideal-gas equation. Thus

PgVp  PyVc
T = T = R

- /0 0 s e emERaE SR B ORE T AR S & S Baleead

PV,
. _Pava_PaVp
A= =
R R
. PpV,
TD=_};2_D

Substituting into Eq. (8.4) leads to

. Ve P, Py, — P,
=1- 29 NS R o B =)
" wim )1 {m—%) (85)

For the two adiabatic, reversible steps, we have PV?* = const; whence
PAVF) = PBVE (Since VD = VA and VC = VB)
These expressions are combined to eliminate the volumes:

PB P,

Pc P

r) -0
PD VC - r

These equations transform Eq. (8.5) as follows:

Also

,I:l_,w 1 —»r Pc
(PA/PD-I)PD Py

n=l—r(%)7 =|—(%)7I (8.6)

This fequatiqn shows that the thermal efficiency increases rapidly with the com-
pression ratlo_r at low vaiues of r, but more slowly at high compression ratios.
This agrees with the results of actual tests on Otto engines.

or

8.4 THE DIESEL ENGINE

The Diesel engine differs from the Otto engine primarily in that the temperature
at the end of compression is sufficiently high that combustion is initiated spon-
taneously. This higher temperature results because of a higher compression ratio
that carries the compression step to a higher pressure. The fuel is not injected
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until the end of the compression step, and then is added slowly enough that th
combustion process occurs at approximately constant pressure.

For the same compression ratio, the Otto engine has a higher efficiency tha
the Diesel engine. However, preignition limits the compression ratio attainab}
in the Otto engine. The Diesel engine therefore operates at higher compressio
ratios, and consequently at higher efficiencies.

Example 8.3 Sketch the air-standard Diesel cycle on a PV diagram, and derive
equation giving the thermal efficiency of this cycle in relation to the compressio
ratio r (ratio of volumes at the beginning and end of the compression step) and th
expansion ratio r, (ratio of volumes at the end and beginning of the expansion step

SOLUTION The air-standard Diesel cycle is the same as the air-standard Otto cycl
except that the heat-absorption step {corresponding to the combustion process in th
actual engine) is at constant pressure, as indicated by line DA in Fig. 8.10.

On the basis of one mol of air, considered to be an ideal gas with constant he
capacities, the heat absorbed in the cycle is

Qps = Cp(Ta — Tp)
The heat rejected in step BC is

Qpc = Cyv(Te — Ty)
By an energy balance, W, = Qps + Qgc, and the thermal efficiency is given by
n=1*&(§:ﬁ)=l_l(ﬁ) (A}
T.—Tn Y\Ta-Tp E

For reversible, adiabatic expansion (step AB) and reversible, adiabatic compres
(step CD), Eq. (3.22) applies:

Ta( VA)?_I = Tp( VB)?_I
and
To(Vp)' ™' = Te(Ve) !

By definition, the compression ratic is r = V/ Vp; in addition the expansion ra

Volume Figure 8.10 Air-standard Diesel cycle.

e e i ke e

is defined as r, = V/V,. Thus

1\
T=Ta (*) (B)

Te

and

Y 1 =1
I = TD(;) (C)

Substituting Egs. (B) and (C) into Eq. (A) gives

T (/e ) = Tll/ )t
ﬂ=1__[ all/1e) oll/r) ] (D)
¥ T,~Tp
Also, P, = Pp, and from the ideal-gas equation,
P,V =RT;  and P,V, = RT,
Hence
I _Yo_VYo/Vc_r
T, V, V,/Vg r
This relation combines with Eq. (D} to give:
_ _l[ulr,)"' - (r,/r)(l/r)*"]
¥ t—r/r
or
_ L/ r) =(1/r)”
=l -—|— (8.7)
¥ 1r.—1/r

8.5 THE GAS-TURBINE POWER PLANT

Consideration of the Otto and Diesel engines has shown that direct use of the
energy of high-temperature and high-pressure gases, without transfer of external
heat, possesses some advantages in power production. On the other hand, the
turbine is more efficient than the reciprocating engine, primarily because of
friction between the reciprocating piston and cylinder and because of fluid friction
generated by action of the valves. The gas turbine combines in one unit the
advantages of internal combustion with the advantages of the turbine.
The gas turbine is driven by high-temperature gases from a combustion space,
as indicated in Fig. 8.11. The entering air is compressed (supercharged) to a
pressure of several bars before combustion. The centrifugal compressor operates
on the same shaft as the turbine, and part of the work of the turbine serves to
drive the compressor. The unit shown in Fig. 8.11 is a complete power plant, as
are Otto and Diesel engines. The gas turbine is just one part of the assembly and
performs the same function as the steam turbine in a steam power plant (Fig. 8.1).
. The higher the temperature of the combustion gases entering the turbine, the
higher the efficiency of the unit, i.e., the greater the work produced per unit of
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Compressor

' Pp. Since the hot gases frdm the turbine are exhausted to the atmosphere,
i Pp = Pa. The thermal efficiency of the cycle is given by

Combustion

gases h" Turbine

N
/

D= v - : :
: : n= W, (net) - Wep + Wy (8.8)
: 1: ; - Qsc Qsc
' 1 ’
r -t -- 9 where each energy quantity is based on 1 mol of air.
—= - I The work done as the air passes through the compressor is given by Eq. (7.26):

—Wep= Hp — Hy

N o am ——

For air as an ideal gas with constant heat cai)acities,
~Wap = Hy — Hy = Cp(T3 — T)
Similarly, for the combustion and turbine processes,
Qsc = Cp(Tc — Ta)
~Wep = Ce(Tp — Tc)
Substituting these equations into Eq. (8.8) and simplifying leads to:

Tp - T,
‘n=l—ﬁ (8.9)

-
N 1 S

(__.——__-L o e —

S
C
B
Combustion ]
chamber

...7_ -+— Fuel

Figure 8.11 Gas-turbine power plant.

fuel burned. The limiting temperature is determined by the strength of the me
turbine blades, and is much lower than the thecretical flame temperature (
4.7) of the fuel. Sufficient excess air must be supplied to keep the combusti
temperature at a safe level. '

Since processes AB and CD are isentropic, the temperatures and pressures are
related as follows [Eq. (3.23)]:

. ) . T, P, {y—0)/r
The idealization of the gas-turbine cycle (based on air, and called the Brayto§ FB = (—1;'3) (8.10)
cycle) is shown on a PV diagram in Fig. 8.12. The compression step AB } A A
represented by an adiabatic, reversible (isentropic) path in which the press and 1 (vl
increases from P, (atmospheric pressure) to Pz. The combustion process _TE:Q _ ( &) _ ( &) 8.11)
replaced by the constant-pressure addition of an amount of heat Qgc. Work Te P Py
produced in the turbine as the result of isentropic expansion of the air to press With these equations, T, and T, may be eliminated to give:
PA) (y—1)/r
=1-{= 8.12
i ( P, (8.12)
B C
Example 84 A gas-turbine power plant operates with a pressure ratio Pz/ P, of 6.
The temperature of the air entering the compressor is 25°C, and the maximum
permissible temperature in the turbine is 760°C.
. (a) What is the efficiency of the reversible ideal-gas cycle for these conditions
P it y = 1.4?
(b} If the compressor and turbine operate adiabatically but irreversibly with
A D efficiencies 5, = 0.83 and 5, = 0.86, what is the thermal efficiency of the power plant
for the given conditions?
Fi 8.12 Ideal cycle f 't rbine pow SoLuTioN
igure 8. eal cycle for gas-tul . e . . : X
V, specific volume : plant, (a) Direct substitution in Eq. (8.12) gives the ideal-cycle efficiency:

7 =1-(1/6)"4"D14=1-060=040
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(b) Trreversibilities in the compressor and turbine greatly reduce the thermat
efficiency of the power plant, because the net work is the difference between the work;
required by the compressor and the work produced by the turbine. The temperature
of the air entering the compressor T, and the temperature of the air entering the
turbine, the specified maximum for T, are the same as for the ideal cycle. However, 3
the temperature after irreversible compression in the compressor Ty is higher than
the temperature after isenfropic compression T, and the temperature after irreve,
ible expansion in the turbine Tj, is higher than the temperature after isentropic expai-
sion Th.

The work required by the compressor is

—W(comp) = Cpo(Ty — T,)
Alternatively, this may be found from the isentropic work:
Co(Tp—T,)

(3

(A}

— W(comp) = (B)

Similarly, the work produced by the turbine is

W(turb) = —Cp(Tp — T¢) = —Cpn(Th — Tc)

and the heat absorbed in place of combustion is
Q=Cp(To - Tp) (D)
These equations are combined to give the thermal efficiency of the power plant:

_ Wicomp) + W(turb) _ —[(T5 = Tu)/n.] + n(Tc — Th)
Q Tc-Tp

Combining Egs. (A) and (B) and using the result to eliminate Ty from t
equation gives after simplification:
_ T8/ Ta~ 1)+ 90T/ Ta = Th/ Ty) ()
T T/ Ta= ) —(Th/Ta= 1)

The temperature ratio T/ T, is related to the pressure ratio by Eq. (8.10). The rati :
T/ T, depends on given conditions. In view of Eq. (8.11), the ratio Th/ Té can bi
written:

(©)

TJD— TCTb_Ig(PA)(?*l)H

To Talc Ta\Pa

Substituting these expressions in Eq. (E) gives

T/ T — a) = (a = 1)
T T/ Ta-D—(a-1)

(PB)(v—l)f'r
a= P,

It can be shown from Eq. (8.13) that the thermal efficiency of the gas-turbi
power plant increases as the temperature of the air entering the turbine ( T:) increas
and also as the compressor and turbine efficiencies #, and 7, increase, :

(8.13)

where
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The given efficiency values are here

7 =08 and 4 =033

Other given data provide:

Tc 760+273.15

=34
T, 2s+2m1s Y

and
a = (6)"*" V14 = 1 67
Substituting these quantities in Eq. (8.13) gives
_ {0.86)(0.83)(3.47H1 — 1/1.67) — (1.67 - 1)
(0.83)(347-1)-(1.67-1)

This analysis shows that, even with a compressor and turbine of rather high efficiencies,
the thermal efficiency (23.5 percent) is considerably reduced from the ideal-cycle
value of 40 percent.

=(.235

8.6 JET ENGINES; ROCKET ENGINES

In the power cycles considered up to this point the high-temperature, high-
pressure gas has been expanded in a turbine (steam power plant, gas turbine)
or in the cylinder of a reciprocating Otto or Diesel engine. In either case, the
power becomes available through a rotating shaft. Another device for expanding
the hot gases is a nozzle. Here the power is available as kinetic energy in the jet
of exhaust gases leaving the nozzle. The entire power plant, consisting of a
compression device and a combustion chamber, as well as a nozzle, is known as
a jet engine. Since the kinetic energy of the exhaust gases is directly available
for propelling the engine and its attachments, jet engines are most commonly
used to power aircraft. There are several types of jet-propulsion engines based
on different ways of accomplishing the compression and expansion processes.
Since the air striking the engine has kinetic energy (with respect to the engine),
its pressure may be increased in a diffuser.

The turbojet engine illustrated in Fig. 8.13 takes advantage of a diffuser to
reduce the work of compression. The axial-flow compressor completes the job
of compression, and then the fuel is injected and burned in the combustior
chamber. The hot combustion-product gases first pass through a turbine where
the expansion provides just enough power to drive the compressor. The remainder
of the expansion to the exhaust pressure is accomplished in the nozzle. Here,
the velocity of the gases with respect to the engine is increased to a level above
that of the entering air. This increase in velocity provides a thrust (force) on the
engine in the forward direction. If the compression and expansion processes are
adiabatic and reversible, the turbojet-engine cycle is identical to the ideal gas-
turbine-power-plant cycle shown in Fig. 8.11. The only differences are that,
Physically, the compression and expansion steps are carried out in devices of
different types.
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Combustion chamber

Compressor Turbine

Exhaust

Entering
i gases

ar

Nozzle

Diffuser Fuel

Figure 8.13 The turbojet power plant.

A rocket engine differs from a jet engine in that the oxidizing agent is carried
with the engine. Instead of depending on the surrounding air for burning the
fuel, the rocket is self-contained. This means that the rocket operates in vacuum
such as in space. In fact, the performance is better in a vacuum, because nong
of the thrust is required to overcome friction forces. :

In rockets burning liquid fuels the oxidizing agent (e.g., liquid oxygen) is
pumped from tanks into the combustion chamber. Simultaneously, fuel (e.g., §
kerosene) is pumped into the chamber and burned. The combustion takes place
at a constant high pressure and produces high-temperature product gases that
are expanded in a nozzle, as indicated in Fig. 8.14. -

In rockets burning solid fuels the fuel (organic polymers) and oxidizer (¢.8;
ammonium perchlorate) are contained together in a solid matrix and stored a
the forward end of the combustion chamber.

In an ideal rocket, the combustion and expansion steps are the same as those:§
for an ideal jet engine (Fig. 8.12). A solid-fuel rocket requires no compression,

Combustion chamber
1

l Nozzle

Fuel

Exhaust
gases

[

o
—H

’

Oxidizer

e

Figure 8,14 Liquid-fuel rocket engine.
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work, and in a liquid-fuel rocket the compression energy is small, since the fuel
and oxidizer are pumped as liquids.

PROBLEMS

-~

8.1 The basic cycle for a steam power plant is shown by Fig. 8.1. Suppose that the turbine operates
adiabatically with inlet steam at 6,500 kPa and 525°C and that the exhaust steam enters the condenser
at 100°C with a quality of 0.98. Saturated liquid water leaves the condenser, and is pumped to the
boiler. Neglecting pump work and kinetic- and potential-cnergy changes, determine the thermal
efficiency of the cycle and the turbine efficiency.

8.2 A steam power plant operates on the cycle of Fig. 8.4. For one of the following sets of operating

conditions, determine the steam rate, the heat-transfer rates in the boiler and condenser, and the

thermal efficiency of the plant.

{a) P, = P,=10,000kPa; T, = 600°C; P, = P, = 10kPa; n(turbine) = 0.80; n{pump) = 0.75; power
rating = 80,000 kW.

(b) P, = P, =T7,000kPa; T, = 550°C; P, = P, = 20 kPa; n(turbine) = 0.75; n{(pump) = 0.75; power
rating = 100,000 kW.

{c) P,=P,=8,500kPa; T, = 600°C; P; = P, = 10kPa; n{turbine) = 0.80; n(pump) = 0.80; power
rating = 70,000 kW.

{(d) P,=P,=6,500kPa; T,=525°C; Py = P,= 10133 kPa; n(turbine} = 0.78; n{pump) = 0.75;
power rating = 50,000 kW.

(e} P, = P, =9550{psia); T, = 1,000(°F); P, = P, = 14.7(psia); n(turbine) = 0.78; n(pump) = 0.75;
power rating ~ 50,000 kW,

(f) P, =P, =1,450(psia}; T, = 1,100(°F); P, = P, = I{psia); n(turbine) = 0.80; n(pump) = 0.75;
power rating = 80,000 kW.

8.3 Steam enters the turbine of a power plant operating on the Rankine cycle (Fig. 8.3) at 3,500 kPa

and exhausts at 20 kPa. To show the effect of superheating on the performance of the cycle, calculate

the thermal efficiency of the cycle and the quality of the exhaust steam from the turbine for turbine-inlet

steam temperatures of 400, 500, and 600°C.

8.4 Steam enters the turbine of a power plant operating on the Rankine cycle (Fig. 8.3) at 450°C and
exhausts at 20 kPa. To show the effect of boiler pressure on the petformance of the cycle, calculate
the thermal efficiency of the cycle and the quality of the exhaust steam from the turbine for boiler
pressures of 4,000, 6,000, 8,000 and 10,000 kPa.

8.5 A steam power plant employs two adiabatic turbines in series, Steam enters the first turbine at
600°C and 6,500 kPa and discharges from the second turbine at 10 kPa. The system is designed for
equa! power outputs from the two turbines, based on a turbine efficiency of 76 percent for each
turbine, Determine the temperature and pressure of the steam in its intermediate state between the
two turbines. What is the overall efficiency of the two turbines together with respect to isentropic
expansion of the steam from the initial to the final state?

8.6 A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes just
one feedwater heater. Steam enters the turbine at 4,000 kPa and 450°C and exhausts at 20 kPa. Steam
for the feedwater heater is extracted from the turbine at 300kPa, and in condensing raises the
temperature of the feedwater to within 6°C of its condensation temperature at 300 kPa. If the turbine
and pump efficiencies are both 78 percent, what is the thermal efficiency of the cycle and what fraction
of the steam entering the turbine is extracted for the feedwater heater?

8.7 A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes just
one feedwater heater. Steam enters the turbine at 600(psia} and 850(°F) and exhausts at 1{psia).
Steam for the feedwater heater is extracted from the turbine at 45(psia), and in condensing raises
the temperature of the feedwater to within 11{°F) of its condensation temperature at 45(psia). If the
turbine and pump efficiencies are both 78 percent, what is the thermal efficiency of the cycle and
what fraction of the steam entering the turbine is extracted for the feedwater heater?
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8.8 A steam power plant operating on a regenerative cycle, as illustrated in Fig. 8.5, includes
feedwater heaters. Steam enters the turbine at 6,000 kPa and 500°C and exhausts at 10kPa. §
for the feedwater heaters is extracted from the turbine at pressures such that the feedwater is he
to 180°C in two equal increments of temperature rise, with 5-°C approaches to the steam-condensar
temperature in each feedwater heater. If the turbine and pump efficiencies are both 80 percent,
is the thermal efficiency of the cycle and what fraction of the steam entering the turbine is extract
for each feedwater heater?

8.9 A power plant operating on heat recovered from the exhaust gases of internal-combustion eng
uses {sobutane as the working medium in a modified Rankine cycle in which the upper pressure |
is above the critical pressure of isobutane, Thus the isobutane does not undergo a change of pha
as it absorbs heat prior to its entry into the turbine. Isobutane vapor is heated at 4,800 kPa to 260%
and enters the turbine as a supercritical fluid at these conditions. Isentropic expansion in the turbjg
produces superheated vapor at 450 kPa, which is cooled and condensed at constant pressure,
resulting saturated liquid enters the pump for return to the heater. If the power output of the modi
Rankine cycle is 1,000 kW, what is the isobutane flow rate, the heat-transfer rates in the heater
condenser, and the thermal efficiency of the cycle?
The vapor pressure of isobutane is given by:

2,606.775

In P/kPa = 14.57100 - ———"——
£/°C + 274,068

8.10 A power plant operating on heat from a geothermal source uses isobutane as the worl
medium in a Rankine cycle. Isobutane is heated at 3,400 kPa (a pressure just a little below its cri
pressure) to a temperature of 140°C, at which conditions it enters the turbine, Isentropic expan
in the tutbine produces superheated vapor at 450 kPa, which is cooled and condensed at cons
pressure. The resulting saturated liquid enters the pump for return to the heater/boiler. If the
rate of isobutane is 75kgs™', what is the power output of the Rankine cycle and what are
heat-transfer rates in the heater/boiler and condenser? What is the thermal efficiency of the cy

The vapor pressure of isobutane is given in the preceding problem.

8.11 Show that the therma) efficiency of the air-standard Diesel cycle can be expressed as

. (1)"'1 rr—1

TN -

where r is the compression ratio and r_ is the cutoff ratio, defined as r. = V,/ V. (See Fig. 8.10.
Show that for the same compression ratio the thermal efficiency of the air-standard Otto en

is greater than the thermal efficiency of the air-standard Diesel cycle.
Hint: Show that the fraction which multiplies (1/r)”"" in the above equation for 7 is great

than unity by expanding r! in a Taylor’s series with remainder taken to the first derivative.
If v = 1.4, how does the thermal efficiency of an air-standard Otto cycle with a compressig
ratio of 8 compare with the thermal efficiency of an air-standard Diesel cycle with the same compres
ratio and a cutoff ratio of 2?7 How is the comparison changed if the cutoff ratio is 3?

8.12 An air-standard Diesel cycle absorbs 1,500 J mol ™' of heat (step DA of Fig. 8.10, which simulal :'
combustion). The pressure and temperature at the beginning of the compression step are 1 bar aml
20°C, and the pressure at the end of the compression step is 4 bar. Assuming air to be an ideal
for which Cp = (7/2)R and Cy = (5/2)R, what are the compression ratio and the expansion 78
of the cycle? :
8.13 Calculate the efficiency for an air-standard gas-turbine cycle (the Brayton cycle) operating v

a pressure ratio of 3. Repeat for pressure ratios of 5, 7, and 9. Take y = 1.35.
8.14 An air-standard gas-turbine cycle is modified by installation of a regenerative hgat excha
to transfer energy from the air leaving the turbine to the air leaving the compressor. In an optim
countercurrent exchanger, the temperature of the air leaving the compressor is raised to that of poil
D in Fig. 8.12, and the temperature of the gas leaving the turbine is cooled to that of point B in Fi
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8.12. Show that the thermal efficiency of this cycle is given by

n=1 _L‘.(&)(T_’)/?
Tc\Py

8.15 Consider an air-standard cycle for representing the turbojet power plant shown in Fig. 8,13
The temperature and puessure of the air entering the compressor are 1bar and 30°C. The press'ure‘
ratio in‘ tl.lc compressor is 6.5, and the temperature at the turbine inlet is 1,100°C. If expansion in the
nozzle is isentropic and if the nozzle exhausts at 1 bar, what is the pressure at the nozzle inlet (turbine
exhaust) and what is the velocity of the air leaving the nozzle?
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REFRIGERATION AND LIQUEFACTIO

Refrigeration is best known for its use in the air conditioning of buildings and
in the treatment, transportation, and preservation of foods and beverages. It also:
finds large-scale industrial use, for example, in the manufacture of ice and the
dehydration of gases. Applications in the petroleum industry include lubricating-
oil purification, low-temperature reactions, and separation of volatile hydro-
carbons. A closely related process is gas liguefaction, which has important
commercial applications.

The purpose of this chapter is to present a thermodynamic analysis of
refrigeration and liquefaction processes. However, the details of equipment design
are left to specialized books.t

The word refrigeration implies the maintenance of a temperature below that
of the surroundings. This requires continuous absorption of heat at a low tem-
perature level, usually accomplished by evaporation of a liquid in a steady-state
flow process. The vapor formed may be returned to its original liquid state for 3
reevaporation in either of two ways. Most commonly, it is simply compressed 3
and then condensed. Alternatively, it may be absorbed by a liquid of low volatility,
from which it is subsequently evaporated at higher pressure. Before treating these
practical refrigeration cycles, we consider the Carnot refrigerator, which provides
a standard of comparison.

t ASHRAE Handbook and Product Directory: Equipment, 1983; Fundamentals, 1981; Systems,
1980, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Brown and Briley,
Atlanta.
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9.1 THE CARNOT REFRIGERATOR

In a continuous refrigeration process, the heat absorbed at a low temperature
must be continuously rejected to the surroundings at a higher temperature.
Basically, a refrigeration cycle is a reversed heat-engine cycle. Heat is transferred
from a low temperdture level to a higher one; according to the second law, this
cannot be accomplished without the use of external energy. The ideal refrigerator,
like the ideal heat engine (Sec. 5.2), operates on a Camnot cycle, consisting in
this case of two isothermal steps in which heat |Qc| is absorbed at the lower
temperature Tc and heat | Qy/ is rejected at the higher temperature Ty and two
adiabatic steps. The cycle requires the addition of net work |W| to the system.
Since AU of the working fluid is zero for the cycle, the first law gives

|Wl=1Qul - Qcl (0.n

The usual measure of performance of a refrigerator is called the coefficient
of performance w, defined as

o= heat absorbed at the lower temperature

net work
Thus
lQc|
0 = ——— 9.2
Iz -
Division of Eq. (9.1) by |Qc| gives
Wl _1Qal _,
1Qcl  1Qc|
But according to Eq. (5.7),
Qul _ Ta
Q] Te
whence
WM _Ty | _Tu-Tc
[Qc|l Tc Te
and Eq. (9.2) becomes
__Tc
@ = To - To (9.3)

This equation applies only to a refrigerator operating on a Carnot cycle, and it
gives the maximum possible value of w for any refrigerator operating between
given values of T, and T¢. It shows clearly that the refrigeration effect per unit
of _work decreases as the temperature of the refrigerator T decreases and as the
temperature of heat rejection Ty increases. For refrigeration at a temperature
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level of 5°C and a surroundings temperature of 30°C, the value of w for a Carn
refrigerator is
5+273.15

= = 11.13
(30 + 273.15) — (5 + 273.15)

w

9.2 THE VAPOR-COMPRESSION CYCLE

A liquid evaporating at constant pressure provides a means for heat absorp
at constant temperature. Likewise, condensation of the vapor, after compressi
to a higher pressure, provides for the rejection of heat at constant temperatu
The liquid from the condenser is returned to its criginal state by an expansi
process. This can be carried out in a turbine from which work is obtained. Wh
compression and expansion are isentropic, this sequence of processes constitut
the cycle of Fig. 9.1a. It is equivalent to the Carnot cycle, except that superheat;
vapor from the compressor (point 3 in Fig. 9.1a) must be cooled to its saturati
temperature before condensation begins.

3 4 | Condenser 3
4
T Expander Compressor
- 2
: \
] Evaporator 2
S
{a)
2 Condenser 3
T 'Throltle
Compressor
valve
! - Evaporator 2

(b)

Figure 9.1 Vapor-compression refrigeration cycles.
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On the basis of a unit mass of fluid, the heat absorbed in the evaporator is
1Qc|=AH = H, - H,

This equation follows from Eq. (7.10) when the small changes in potential and
kinetic energy are neglected. Likewise, the heat rejected in the condenser is

|QH| =H,—-H,
By Eq. (9.1},
|W| =(H; - H,) - (H,— H\}
and by Eq. (9.2), the coefficient of performance is

w= 2~ H, (9.4)
(Hs_H4)'_(H2_H|) '

The process requires a turbine or expander that operates on a two-phase
liquid/vapor mixture. Such a machine is impractical for small units. Therefore,
the cycle of Fig. 9.1a is used only for large installations. More commonly,
expansion is accomplished by throttling the liquid from the condenser through
a partly opened valve. The pressure drop in this irreversible process results from
fluid friction in the valve. In small units, such as household refrigerators and air
conditioners, the simplicity and lower cost of the throttle valve outweigh the
energy savings possible with a turbine. As shown in Sec. 7.3, the throttling process
occurs at constant enthalpy.

The vapor-compression cycle incorporating an expansion valve is shown in
Fig. 9.1, where line 4 -+ 1 represents the constant-enthalpy throttling process.
Line 2 - 3, representing an actual compression process, slopes in the direction
of increasing entropy, reflecting the irreversibility inherent in the process. The
dashed line 2 » 3' is the path of isentropic compression (see Fig. 7.6). For this
cycle, the coefficient of performance is simply

H2_Hl
H; - H,

w = (9.5)

Design of the evaporator, compressor, condenser, and auxiliary equipment
requires knowledge of the rate of circulation of refrigerant m. This is determined
from the heat absorbed in the evaporatort by the equation:

1Qcl

i (9.6)

m:

The vapor-compression cycle of Fig. 9.15 is shown on a PH diagram in Fig.
9.2. Such diagrams are more commonly used in refrigeraiion work than TS

 In the United States refrigeration equipment is commonly rated in tons of refrigeration; a ton
of refrigeration s defined as heat absorption at the rate of 12,000(Btu} or 12,660 kJ per hour. This
cotresponds approximately to the rate of heat removal required to freeze 1(ton) of water, initially at
32(°F), per day.
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Figure 9.2 Vapor-compression refrigeration cycle on a PH diagram.

diagrams, because they show directly the required enthalpies. Although the _‘_‘
evaporation and condensation processes are represented by constant-pressure }

paths, small pressure drops do occur because of fluid friction.

9.3 COMPARISON OF REFRIGERATION CYCLES

The effectiveness of a refrigeration cycle is measured by its coefficient of perfor- §
mance. For given values of T and Ty, the highest possible value is attained by
the Carnot refrigerator. The vapor-compression cycle with reversible compression 3
and expansion approaches this upper limit. A vapor-compression cycle with

expansion in a throttle valve has a somewhat lower value, and this is reduced
further when compression is not isentropic. The following example provides an
indication of the magnitudes of coefficients of performance.

Example 9.1 A refrigerated space is maintained at 10(°F), and cooling water is
available at 70(°F). The evaporator and condenser are of sufficient size that a 10(°F) 3
minimum-temperature difference for heat transfer can be realized in each. The refriger- . §

ation capacity is 120,000(Btu){(hr)~’, and the refrigerant is Freon-12.
{a) What is the value of @ for a Carnot refrigerator?
(b) Calculate w and m for the vapor-compression cycle of Fig. 91a

{c) Calculate @ and m for the vapor-compression cycle of Fig. 9.1b if the

compressor efficiency is 80 percent.
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SoLUTION (a) For a Carnot refrigerator, Eq. (9.3) gives

e 0+ 459.67
(80 + 459.67) — (0 + 459.67)

=575

(b) Since Freon-12 is the refrigerant, the enthalpies for states 1, 2, 3, and 4 of
Fig. 9.1a are read“from Table 9.1 and Fig. 9.3. From the entry at 10 — 10 = 0(°F) in
Table 9.1, we see that Freon-12 vaporizes in the evaporator at a pressure of 23.85( psia).
Its properties as a saturated vapor at these conditions are;

H, = 77.21Btu)(lb,) !
8, = 0.1689( Btu){1b,,) "'(R) !

From the entry at 70 + 10 = 80(°F) in Table 9.1, we find that Freon-12 condenses at
98.87(psia); its properties as a saturated liquid at these conditions are:

H, = 26.37(Btu)(lb, )}
S, = 0.0548(Btu)(Ib,,) " (R)™!

Since §; = §, = 0.1689, the enthalpy from Fig. 9.3 at this entropy and at a pressure
of 98.87(psia) is

H, = 88.3(Btu)(lb,)™!

State 1 is a two-phase mixture to which Eq. (6.53) applies. Written for the entropy,
it is
S =(1-x)8"+x8°

where x is the quality (mass fraction of the mixture that is vapor). Since §, = §, =
0.0548, this becomes

0.0548 = (1 — x)(0.0193) + x(0.1689)
Solution for x gives
x=02373
Similarly,
H,=(1 - x)H"+ xH"
= (0.7627)(8.52} + (0.2373)(77.27) = 24.83(Btu)(Ib,, )™
Evaluation of the coefficient of performance by Eq. (9.4) gives

o= 77.27 — 24.83
(88.3 — 26.37) — (77.27 - 24.83)

=553

By Eq. (9.6), the Freon-12 circulation rate is

120,000

= —_— = -1
T2 - 2ags . 228806 ()

(¢} For the expansion step of the cycle shown in Fig. 9.1, H, = H, =
26.37(Btu)(ib,,)"". For the compression step,

(AH)g = (H;— Hy)g = 88.3— 7727 = 11.03



Table 9.1 Thermodynamic properties of saturated Freon-12}

Table 9.1 (Continued)

Volume Enthalpy Entropy
(T’ (Ib,) ™ (Btu)(Ib,) ™' (Bru)(Ib,) " '(R)™
1 P
(°F) (psia) v v H' H* s! b
—40 9.31 0.01056 3.875 0.00 7291 0.0000 0.1737
-38 9.80 0.01059 3.692 0.42 73.13 0.0010 0.1734
-36 10.32 0.01067 3.520 0.84 7335 0.0020 0.1731
-34 10.86 0.01063 3.357 1.27 73.58 0.0030 0.1729
-32 11.42 0.01065 3.204 1.69 73.80 0.0040 0.1726
-30 12.00 0.01067 3.059 21 74.02 0.0050 0.1723
-28 12.60 0.01070 2,921 2.54 74.23 0.0059 0.1720
-26 13.23 0.01072 2.792 2.96 74.45 0.0069 0.1718
-24 13.89 0.01074 2.669 338 74.67 0.0079 0.1715
=22 14.56 0.01076 2.553 3.81 74.89 0.0089 0.1713
-20 15.27 0.01079 , 2443 4.24 75.11 0.0098 01710
—-18 16.00 0.01081 2.339 4.66 75.33 0.0108 0.1708
-16 16.75 0.01083 2.240 5.09 75.55 0.0118 0.1706
-14 17.54 0.01086 2.146 5.52 75.76 0.0127 0.1703
-12 18.35 0.01088 2.057 5.94 7598 0.0137 0.17¢1
-10 19.19 0.01091 1973 6.37 76.20 0.0146 0.1699
-8 20.06 0.01093 1.892 6.80 76.41 0.0156 0.1697
-6 20.96 0.01096 1.816 7.23 76.63 0.0165 0.1695
—4 21.89 0.01098 1.744 71.66 76.84 0.0174 0.1693
-2 22.85 0.01101 1.675 8.09 77.06 0.0184 0.1691
0 23.85 0.01103 1.609 8.52 71.27 00193 0.1689
2 24.88 0.01106 1.546 895 7749 (.0203 0.1687
4 2594 0.01108 1.487 9.38 77.70 0.0212 0.1685
6 27.04 0.01111 1.430 9.82 77.91 0.0221 0.1683
8 28.17 0.01113 1.376 10.25 78.12 0.0230 0.1682
10 29.34 0.01116 1.324 10.68 78.34 0.0240 0.1680
12 3054 0.01119 1.275 11.12 78.55 0.0249 0.1678
14 31.78 0.01121 1.228 11.55 78.76 0.0258 0.1677
16 33.06 0.01124 1.183 11.99 78.97 0.0267 0.1675
18 34.38 0.01127 1.140 1243 79.18 0.0276 0.1673
20 35.74 0.01130 1.099 12.86 79.39 0.0285 0.1672
22 37.14 0.01132 1.060 13.30 79.59 0.0294 0.1670
24 38.57 0.01135 1.022 13.74 ?.80 0.0303 0.1669
26 40.06 0.01138 0.986 14.18 0.01 0.0312 0.1668
28 41.58 0.01141 0.952 14.62 80.21 (.0321 0.1666 -
30 4315 0.01144 0.919 15.06 80.42 0.0330 0.1665
32 44.76 0.01147 0.887 15.50 80.62 0.0339 0.1664
4 4642 0.01150 0.857 15.94 80.83 0.0348 0.1662
36 4812 0.01153 0.828 16.38 8103 0.0357 0.1661
33 49.87 0.01156 0.800 16.83 81.23 0.0366 0.1660
40 51.67 0.01159 0.774 1727 8144 0.0375 0.1659
42 53.51 0.01162 0.748 17.72 81.64 (.0383 0.1657
4 55.41 0.01165 0.723 18.16 81.84 0.0392 0.1656
46 57.35 001168 0.700 18.61 82.04 0.0401 0.1655
48 59.35 0.01171 0.677 19.06 82.24 0.0410 0.1654
50 6139 001175  0.655 19.51 82.44 0.0418 0.1653
52 63.49 0.01178 0.634 19.96 82.63 0.0427 0.1652
54 65.65 0.01181 0614 20.41 82.83 0.0436 0.1651
56 67.85 0.01185 0.595 20.86 83.02 0.0444 0.1650
58 70.12 0.01188 0.576 2131 §3.22 0.0453 0.1649

t Reprinted by permission. Courtesy of E. I. du Pont de Nemours and Co., copyright 1967.

_ Volume Enthalpy Entro
o, () (1b,) " (Bu)(iby,) ™ (Btu){lb,) " (R)""
CF}  (psia) v ve H' HY s’ s°
60 T2.75 0.01191 0.5584 21.77 B83.41 0.0462 0.1648
62 74.31 0.01195 0.5411 22,22 83.60 0.0470 0.1647
64 77.24 0.01198 0.5245 22.68 83.79 3.0479 0.1646
66 79.73 0.01202 0.5085 23.13 83.98 0.0488 0.1645
68 82.28 0.01205 0.4931 23.59 84.17 0.0496 0.1644
70 84.89 0.01209 0.4782 24.05 84.36 0.0505 0.1643
k) 87.56 0.01213 0.4638 24,51 84.55 0.0513 0.1643
74 %0.29 0.01216 0.4500 2497 84.73 0.0522 0.1642
76 93.09 0.01220 0.4367 25.44 84.92 0.0530 0.1641
78 95,95 0.01224 0.4238 25.90 85.10 0.0539 0.1640
80 98.87 0.01228 04114 26.37 85.28 0.0548 0.1639
82 101.86 0.01232 0.3994 26.83 B5.46 0.0556 0.1638
B4 104,92 0.01236 0.3878 27.30 85.64 0.0565 0.1638
86 108.04 0.01240 0.3766 27.77 85.82 0.0573 0.1637
88 111.23 0.01244 0.3658 28.24 86.00 0.0581 0.1636
%0 114.49 0.01248 0.3553 2871 86.17 0.0590 0.1
92 117.82 0.01252 0.3452 29.19 B86.35 0.0598 0.12§§
94 121.22 0.01256 0.3354 29.66 86.52 0.0607 0.1634
96 124.70 0.01261 0.3259 30.14 86.69 0.0615 0.1633
98 128.24 0.01265 0.3168 30.62 B86.86 0.0624 0.1632
100 131.86 0.01269 0.3079 31.10 87.03 0.0632 0.1631
102 135.56 0.01274 0.2994 31.58 £7.20 0.0640 0.1631
104 139.33 0.01278 0.2911 12407 87.36 0.0649 0.1630
106 143,18 0.01283 0.2830 32,55 87.52 0.0658 0.1629
108 147.11 0.01288 0.2752 33.04 87.68 0.0666 0.1629
110 151.11 0.01292 0.2677 33.53 R7.84 0.0675 0.1628
112 155.19 0.01297 0.2604 34.02 £8.00 0.0683 0.1627
114 159.36 0.01302 0.2533 34.52 88.16 0.0691 0.1626
116 163.61 0.01307 0.2464 35.01 88.31 0.0700 0.1626
118 167.94 0.01312 0.2397 35.51 88.46 0.0708 0.1625
120 172.35 0.01317 0.2333 36.01 88.61 0.0717 0.1624
122 176.85 0.01323 0.2270 36.52 88.76 0.0725 0.1623
124 181.43 0.01328 0.2209 37.02 88.90 0.0734 0.1623
126 186.10 0.01334 0.2150 37.53 89.04 0.0742 0.1622
128 190.86 0.01339 0.2092 38.04 89.18 0.0751 0.1621
130 195.71 0.01345 0.2036 38.55 89.32 0.0759 0.1620
132 200.64 0.01350 0.1982 39.07 B89.46 0.0768 0.1619
134 205.67 0.01356 0.1929 39.59 89.59 0.0776 0.1619
136 210.79 0.01362 0.1378 40.11 89.72 0.0785 0.1618
138 216.01 0.01368 0.1828 40.63 89.84 0.0793 0.1617
140 221.32 0.01375 0.1780 41.16 89,97 0.0802 0.1616
142 226.72 0.01381 0.1733 41.69 90.09 0.0311 0.1615
144 232.22 0.01387 0.1687 4223 90.20 0.0819 0.1614
146 237.82 0.01394 0.1642 42,717 90.32 0.0828 0.1613
148 243.51 0.01401 0.1599 43.31 90.43 0.0837 0.1612
150 249.31 0.01408 0.1556 43 .85 90.53 0.0845 0.1611
152 255.20 0.01415 0.1515 44.40 %0.64 0.0854 0.1610
154 261.20 0.01422 0.1475 44,95 90.74 0.0863 0.1609
156 267.30 0.01430 0.1436 45,51 90.83 0.0872 0.1608
158 273.51 0.01437 0.1398 46,07 90.92 0.0880 0.1607

281



282 INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS

105
75. 80 83 o 90 9‘5 . 1?31 oy 180
180 T AR S
HE | 11 1S Al A AA 4 2
\ ' J I
160 LA OEA AT LT 0
TR
. . !’ ! i
140 F#-ﬁ o \, SR 140
00 3 FAAN X ; \
B = 178 ¥
120 Pt ER ks A 120
LN i = Hj
gy ¥ i
franegantians enrisanee: i
100 B0 % Pt Sy 100
= 1 LRI e L AT
90H Tt A A r
1 70 Leo i i
80 o, T I o u 4 " %80
HE 1.‘{‘ Nist = ‘EE 1 Y
. 5;90 \;-' 1 i 1|J||ﬂ'il - M[_,‘I I 70
— 70 g T UAT N} r § ‘#V
At a i a L ﬂ‘. t A l A 71
K4 - »
2 60 £ sodfh n %Z'&'f =i T H } 60
o E- i1 Py 2 & ! A H
z ST A li i 1“ T T l 1 I i
] 5] HEATH Iy { i A
£ 50 s A eitd ¥ 50
» & 3H HH = ~ iy
45 [ =R A Yo 45
I'_é-"’.:;()’ iy I ATV LA _Q;_] §
ey 1] g [ =] Ay
o i i A 40
40 ‘?. T AT Fifl I ‘\C’b » §~sj t
£ 1 =3 1 [Pl y"';IE f
=120 Al e ) i i 1IN N il ¥ 35
35 TN L = al'ml s 2 ¥
& 1T : H SEE T T W
5‘_____;_ ! | L ; o & liL _ﬁ
T (T T i I / S 30
30_‘—_’_0’ 4 4 (=a} I 1 N e A 1 [l 1]
L10 7 S : & A rn
IR AMDAR TM’ X LY &y HRANF A0 22
Mk HHE # ALE 7@?]” iH ]
FL
T | ¥ (T {ALT] ZD;; H el
25. [ L ), % I mJ H& 1 ¥ ] I";}\ g"(\)'r 3225
- .
(=] i i {) >
H ] 11 : #ﬁ ) :“.G;IKF B i Y PR
t =341 ]
s 1‘0 [ ; | y )‘ m I SZ i, P;ﬂ: ; ; 20
18H~ BA AiftAh ani FMATA AT A 18
75 80 85 90 95 100 105

Enthalpy (Btu/1b,, above saturated liquid at —40 °F)

Figure 9.3 Pressure/enthalpy diagram for Freon-12. (Reprinted by permission. Courtesy of E. 1. 4
Pont de Nemours and Co., Copyright 1967.)

By Eg. (7.29) for a compressor efficiency of 0.80,
(AH)s 11.03

=H.—H, = =—— = 13.8(Btu}(lb,) "
AH=H,—- H, . 080 (Btu}(lb.,)

The cocflicient of performance is now found from Eq. {9.5): .

H,- H, 71.27-2637
H,-H, 13.8

= 3.69

w =
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The Freon-12 circulation rate is

s 120,000
T 7727 -2637

Results are summarized as follows:
-

= 2,358(lb,,)(hr)~!

Cycle ® i (Ib_)(hr)™*
{a) Camot 5.75

{(b) Fig.9.la 5.53 2,288

(¢) Fig.9.1b 3.69 2,358

9.4 THE CHOICE OF REFRIGERANT

As shown in Sec. 5.2, the efficiency of a Carnot heat engine is independent of

+ . the working medium of the engine. Similarly, the coefficient of performance of

a Carnot refrigerator is independent of the refrigerant. However, the irrever-
sibilities inherent in the vapor-compression cycle cause the coefficient of perfor-
mance of practical refrigerators to depend to some extent on the refrigerant.
Nevertheless, such characteristics as its toxicity, flammability, cost, corrosion
properties, and vapor pressure in relation to temperature are of greater importance
in the choice of refrigerant. So that air cannot leak into the refrigeration system,
the vapor pressure of the refrigerant at the evaporator temperature should be
greater than atmospheric pressure. On the other hand, the vapor pressure at the
condenser temperature should not be unduly high, because of the high initial
cost and operating expense of high-pressure equipment. These two requirements
limit the choice of refrigerant to relatively few fluids.t The final selection then
depends on the other characteristics mentioned.

Ammonia(R-717),# methyl chloride(R-40), carbon dioxide(R-744), pro-
pane(R-290) and other hydrocarbons, and various halogenated hydrocarbons are
used as refrigerants. Of the last, Freon-12 (dichloredifluoromethane, also desig-
nated R-12), is widely employed in small units. Pressure/enthalpy diagrams for
Freon-12 and ammonia are shown in Figs. 9.3 and 9.4, and Tables 9.1 and 9.2
provide saturation data for Freon-12 and ammonia.§ Tables and diagrams for a
variety of refrigerants are given by Perry and Green.y

1 R. H. Perry and D). Green, Perry’s Chemical Engineers’ Handbook, 6th ed., table 12-6, p. 12-25,
McGraw-Hill, New York, 1984.

+ The R-designation for refrigerants is standard nomenclature of the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers.

§ The data for ammonia in Table 9.2 and Fig. 9.5, from NBS Circular 142, 1923, and adequate
for instructional purposes, have been superseded by the very extensive tables of L. Haar and J. $.
Gallagher, J. Phys. Chem. Ref. Data, 7: 635, 1978.

TR H. Perry and D. Green, op. cit., sec. 3.



660 680 700

640

620

Enthalpy, Btu/1b,,

80 120 160

40

=20 0

Table 9.2 Thermodynamic properties of saturated ammonia+

llazg o 2 3‘ 3 3 3 = Z 8 = ¥R Volaumc . Enthalpy . Entropy -
2T —-_ I - AN , {f)*(tb,,)" (Btu)(lb,,) (Btu)(1b,,) ' (R}
Seemi® L e l f 00 1
R T L T N™ (B (psia) V! v H' H s' 5
a‘_;( iy | 1 c 1 4 o —— i 1 08T
SRR IR 1N i | —-40 1041 * 002322 2436 0.0 597.6 0.0000 1.4242
= = ¥ N o 092 -38 1104 002327 2353 2.1 598.3 0.0051 1.4193
1 =R N - G == bz -3 1171 0.02331 2227 43 599.1 0.0101 14144
it T T % L AT ° -34 1241 0.02336  21.10 6.4 5999 0.0151 1.4096
é" TR asa TR 1\\1 : ‘;\\ — 07T -32 1314 0.02340  20.00 8.5 600.6 0.0201 1.4048
AT T TN e HER ' f AN . _
i ’f i i b ) e = = =002 -30 1390 0.02345 1897 10.7 601.4 00250  1.4001
VAT AT N ‘k\ -28 1471 002349  18.00 12.8 602.1 0.0300 1.3955
S N T B -26 1555 0.02354  17.09 14,9 602.8 0.0350 13909
N R 0 v W WA O W AN I 0 I R 091 -4 1642 002359  16.24 17.1 603.6 00399 13863
AT 1 -‘l\* _1_.——-!\—-**:' AN “ ‘.\ HEIHRE -22 1734 0.02364 15.43 19.2 604.3 0.044% 1.3818
[l M L Y NAimAim i
AT VST : Ny -20  18.30 0.02369 14.68 214 605.0 0.0497 13774
u L '\;’l\_\ RV - e 0T -138 1930 002373 1397 235 605.7 0.0545 1.3729
DEIE P LT PN AN . -16 2034 002378 1329 25.6 606.4 0.0594 1.3686
s e e Py =y I A -14 2143 002383  12.66 27.8 607.1 0.0642 1.3643
WA T T [ LN EITAN WY -12 2256 0.02388 1206 30.0 607.8 0.0690 1.3600
1P 1R VU aPT A i 1— ™ ' :
AWLHREDENE SiymaiER, \ NH.09 -10 2374 002393 1150 321 608.5 00738 13558
AN RIP> AA raniliRR R -8 2497 0.02398 1097 343 6092 00786 13516
S o = LU VRV N <07 -6 2626 002403 10.47 36.4 609.8 0.0833 13474
[Ln._f\cf\_ v U Y AP Y T [N oz -4 2759 002408 9991 386 610.5 0.0880  1.3433
o @ > T -2 2898 0.02413 9.541 407 611.1 0.0928 13393
iy s e a1 =y Y LAt NER
I} IERE ! 1 ,.____.L_\ 4__+’-r' \\ [N 1 o
LA n S i e L NI 0 3042 002419 9116 429 6118 00975 13352
RN R A 0T 2 3192 0.02424 8714 45] 612.4 0.1022 13312
1 1 UL . . . . % . .
INIRE IR LT N0 T S 4 3347 0.02430 8333 472 6130 01069 13273
A g e R T o0F = 6 3509 002435 7971 49.4 6136 01115 1.3234
NI AN ERTIEE AN - ‘ 8 3677 0.02441 7629 516 6143 0.1162 1.3195
IEIEER.NBIRERIR! HERSHBE
H‘:#JI“'P' U AN e y N i 10 3851 0.02446 7.304 53.8 614.9 0.1208 1.3157
IS HINERN IR h 12 4031 002452 699 560 615.5 0.1254 13118
HAHAN RN TR 14 4218 0.02457 6703 582 616.1 0.1300 1.3081
IRIHHRN RNV i o 16 44.12 002463 6425 603 616.6 0.1346 1.3043
N hS AN R 18 4613 002468 6161 625 617.2 0.1392 1.3006
1] 1 Yl Nt 4 1 [] N +
Il d 1 14 | o L
"-‘:ol : U u - 20 48.21 0.02474 5910 64.7 617.8 0.1437 1.2969
-2 N e 2 5036 0.02479 5671 669 618.3 0.1483 1.2933
Pated S M4 5259 0.02485 5443 691 618.9 0.1528 1.2897
I M S 2% 5490 0.02491 5227 13 619.4 0.1573 2861
S, SNy L 28 57.28 0.02497 5021 735 619.9 0.1618 1.2825
c ~ N .
- & 'S H T 30 5974 0.02503 4825 757 620.5 0.1663 1.2790
s SR 175 Fn e 32 6229 0.02509 4637 719 621.0 0.1708 1.2755
"3 z NI TR 34 6491 0.02515 4450 801 6215 01753 12721
|3 = . | & N 6 67.63 0.02521 4289 823 622.0 0.1797 1.2686
3 sdef o & ~{ 38 7043 0.02527 4126 846 622.5 0.1841 1.2652
= u__:‘e o = ] Fo — i
4o’ TaEes ¥ O S T 0 7332 002533 3971 868 6230 01885 12618
LN ‘eg gl . 42 7631 002539 3.823 9.0 6234 0.1930 1.2585
L E SRR %8nES S -8 4 7938 0.02545 3682 912 6219 0.1974 1.2552
E53gaEET 53 N LR e 46 8255 0.02551 3547 935 624.4 0.2018 1.2519
- a = © .= . . 3 . . . -
g3 §§ £2 ‘;q =g k M 48 8582 0.02557 3418 95.7 624.83 0.2062 1.2486
e ETT‘“{”;“ L1 [ ] L L1 L 50 89.19 0.02564  3.294 197.9 gggg’ g.g:gg {%:;?
vi [==] o v A . b
gZ grRradg® 8 ¥ R & %R 5 ggﬁgg 009577 3063 1024 626.1 02192 12389
eisd ‘amssaig 56 9991 0.02584 2,954 104.7 626.5 0.2236 1.2357
58 1037 0.02590  2.851 106.9 6269 02279 1.2325
T From U.S. Natl Bur. Stand. Circ. 142 (1923). (Continued)
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Table 9.2 (Continued)

Volume Enthalpy Entropy
(ftP(by,) ! (Btu)(Ib,) ' (Btu)(lb,,)""(R)™
t P
(°F)  (psia) v v H' H* s s°
60 107.6 0.02597 2.751 109.2 627.3 0.2322 1.2294
62 1116 0.02604 2.656 1115 627.7 0.2365 1.2262
64 115.7 0.02611 2.565 113.7 628.0 0.2408 1.2231
66 120.0 0.02618 2477 116.0 628.4 0.2451 1.2201
68 124.3 0.02625 2.393 118.3 628.8 0.2494 1.2170
70 1288 0.02632 2312 120.5 629.1 0.2537 1.2140
72 133.4 0.02639 2235 122.8 629.4 0.2579 12110
74 133.1 0.02646 2.161 125.1 629.3 0.2622 1.2080
76 143.0 0.02653 2.089 127.4 630.1 0.2664 1.2050
78 147.9 0.02660 2.021 129.7 630.4 0.2706 1.2020
80 153.0 0.02668 1.955 132.0 630.7 0.2749 1.1991
82 158.3 0,02675 1.892 134.3 631.0 0.2791 1.1962
84 163.7 0.02683 1.831 136.6 631.3 0.2833 1.1933
86 169.2 002691 1.772 138.9 631.5 0.2875 1.1904
88 174.8 0.02699 1.716 141.2 631.8 0.2917 1.1875
90 180.6 0.02707 1.661 143.5 632.0 0.2958 1.1846
92 186.6 0.02715 1.609 145.8 6322 0.3000 1.1818
94 192.7 002723 1.559 148.2 632.5 0.3041 1.1789
9% 198.9 0.02731 1.510 150.5 632.7 0.3083 1.1761
98 205.3 0.02739 1.464 152.9 632.9 0.3125 11733
100 211.9 0.02747 1419 155.2 633.0 0.3166 1.1705
102 218.6 0.02755 1.375 157.6 633.2 0.3207 1.1677
104 2254 0.02763 1.334 159.9 633.4 0.3248 1.1649
106 2325 0.02772 1.293 162.3 633.5 0.3289 1.1621
108 239.7 0.02781 1.254 164.6 633.6 0.3330 1.1593
110 247.0 0.02790 1217 167.0 6337 0.3372 1.1566
112 254.5 0.02799 1.180 169.4 633.8 0.3413 11538
114 262.2 0.02808 1.145 171.8 633.9 0.3453 1.1510
116 270.1 0.02817 1.112 174.2 634.0 0.3495 1.1483
118 278.2 0.02826 1.079 176.6 634.0 0.3535 1.1455
120 286.4 0.02836 1.047 179.0 634.0 0.3576 1.1427
122 294.8 0.02845 1017 181.4 634.0 0.3618 1.1400 .
124 303.4 0.02855 0987 183.9 634.0 0.3659 1.1372

Limits placed on the operating pressures of the evaporator and condens
of a refrigeration system also limit the temperature difference Ty — Tc over whic
a simple vapor-compression cycle can operate. With Ty, fixed by the temperatu
of the surroundings, a lower limit is placed on the temperature level of refrige:
tion. This can be overcome by the operation of two or more refrigeration cych
employing different refrigerants in a cascade. A two-stage cascade is shown i
Fig. 9.5. Here, the two cycles operate so that the heat absorbed in the interchang
by the refrigerant of the higher-temperature cycle (cycle 2} serves to conde
the refrigerant in the lower-temperature cycle (cycle 1). The two refrigerants a
so chosen that at the required temperature levels each cycle operates at reasonable
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Figure 9.5 A two-stage cascade refrigeration system.

pressures. For example, let us assume the following operating temperatures

Ty = 86(°F)
¢ = 0(°F)

T = 10°F)

T = =50(°F)

If Freon-12 is the refrigerant in cycle 1, then the intake and discharge pressures
for the compressor are about 24(psia) and 108(psia), and the pressure ratio is
about 4.5. H propylene is the refrigerant in cycle 2, these pressures are about 16
and 58(psia), and the pressure ratio is about 3.6. All of these are reasonable
values. On the other hand, for a single cycle operating between —50 and 86(°F)
with Freon-12 as refrigerant, the intake pressure to the condenser is about 7(psia),
well below atmospheric pressure. Moreover, for a discharge pressure of about

108(psia) the pressure ratio is about 15.4, too high a value for a single-stage
COmpressor.
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9.5 ABSORPTION REFRIGERATION

In vapor-compression refrigeration the work of compression is usuall_y suppl
by an electric motor. But the source of the electric energy for the motor is proba !
a heat engine (central power plant) used to derive a generator. Thus the wo
for refrigeration comes ultimately from heat at a high te'mperz.a.ture level.
suggests the direct use of heat as the energy source for refrigeration. The abso
tion-refrigeration machine is based on this idea.

The work required by a Carnot refrigerator absorbing heat at temp.erat
T and rejecting heat at the temperature of the surroundings, here designa
Ts, follows from Egs. (9.2) and (9.3):

TS_TC
W)= =<1l

where | Q| is the heat absorbed. If a source of heat is available at a temperatu
above that of the surroundings, say at Ty, then work can be obtained from
Carnot engine operating between this temperature and the surroundir.lgs te
perature Ts. The heat required |Qy| for the production of work |W| is foun
from Eq. (5.8):

L
whence
[l = | Wl
Substitution for |W]| gives
Tu s —T¢

= )
1Qul = 1Qcl 72 = o
The value of |Qg|/|Qc| given by this equation is of course a minimum, becaus
Carnot cycles cannot be achieved in practice. o

A schematic diagram for a typical absorption refrigerator is shown in »17'1
9.6. The essential difference between a vapor-compression and an abso%'ptlo
refrigerator is in the different means employed for compressifm. The SCCthl:l 0
the absorption unit to the right of the dashed line in Fig. 9.6 is th_e same as in
vapor-compression refrigerator, but the section to the left accomplishes compres
sion by what amounts to a heat engine. Refrigerant as vapor from the evaporatd
is absorbed in a relatively nonvolatile liquid solvent at the pressure of ;
evaporator and at relatively low temperature. The heat given off in the proc -
is discarded to the surroundings at Tg. This is the lower temperature level o.f thi
heat engine. The liquid solution from the absorber, which c?ntains a relativel :
high concentration of refrigerant, passes to a pump, which raises the pressure d
the liquid to that of the condenser. Heat from the higher temperature source 8
Ty is transferred to the compressed liquid solution, raising its temperature an
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Figore 9.6 Schematic diagram of an absorption-refrigeration unit.

evaporating the refrigerant from the solvent. Vapor passes from the regenerator
to the condenser, and solvent (which now contains a relatively low concentration
of refrigerant) returns to the absorber. The heat exchanger conserves energy and
aiso adjusts stream temperatures toward proper values. Low-pressure steam is
the usual source of heat for the regenerator.

The most commonly used absorption-refrigeration system operates with water
as the refrigerant and a lithium bromide solution as the absorbent. This system
is obviously limited to refrigeration temperatures above the freezing point of
water. It is treated in detail by Perry and Green.t For lower temperatures the
usual system operates with ammonia as refrigerant and water as the solvent.

As an example, one might have refrigeration at a temperature level of ~10°C
(Tc = 263.15 K) and a heat source of condensing steam at atmospheric pressure
(Ty = 373.15K). For a surroundings temperature of 30°C (7T = 303.15 K), the
minimum possible value of |Qy|/|Qc| is found from Eq. (9.7):

IQHI“( 373.15 )(303.15—263.15) — 081
|Qc] \373.15—303.15 263.15 )

For an actual absorption refrigerator, the value would be on the order of three
times this result.

TR. H. Perry and D. Green, op. cit., pp. 12-39-12-41.
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9.6 THE HEAT PUMP

The heat pump, a reversed heat engine, is a device for heating houses
commercial buildings during the winter and cocling them during the sumn
In the winter it operates so as to absorb heat from the surroundings and re
heat into the building. Refrigerant is evaporated in coils placed undergroun
in the outside air, and the vapor is compressed for condensation by air or
used to heat the building, at temperatures above the required heating level.
operating cost of the installation is the cost of electric power to run the compres:
If the unit has a coefficient of performance, |Q-|/| W] = 4, the heat availabl
heat the house [Qg| is equal to five times the energy input to the compres
Any economic advantage of the heat pump as a heating device depends on
cost of electricity in comparison with the cost of fuels such as cil and natural

The heat pump also serves for air conditioning during the summer. The fi
of refrigerant is simply reversed, and heat is absorbed from the building
rejected through underground coils or to the outside air.

Example 9.2 A house has a winter heating requirement of 30kJs™' and a summg
cooling requirement of 60 kJs™'. Consider a heat-pump installation to maintain thy
house temperature at 20°C in winter and 25°C in summer. This requires circulal
of the refrigerant through interior exchanger coils at 30°C in winter and 5°C in summ
Underground coils provide the heat source in winter and the heat sink in summe
For a year-round ground temperature of 15°C, the heat-transfer characteristics of |
coils necessitate refrigerant temperatures of 10°C in winter and 25°C in summer.
are the minimum power requirements for winter heating and summer cooling?

SoLuTION The minimum power requirements are provided by a Carnot heat pum
For winter heating, the house coils are at the higher-temperature level T, and ¥
know that |Qy| = 30 kJs~'. Application of Eq. (5.7) gives

T. . (10+273.15 By
= — = ————— | = 28,
|Qcl =1Qul 77 30(30 + 273.15) 02Kt

This is the heat absorbed in the ground coils. By Eq. (9.1) we now have
iW] =|Qx] - |Qc| =30—28.02=1.98kJs™!
Thus the power requirement is 1.98 kW.

For summer cooling, |Qc| = 60kJ s, and the house coils are at the low
temperature level T.. Combining Eqs. (9.2) and (9.3) and solving for W, we get

Ty - T,
W1 = 1Qc| =
C

Whence
25-5

BT Y431k
5+ 273.15) ks

|W]| =5o(

The power requirement here is therefore 4.31 kW.
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9.7 LIQUEFACTION PROCESSES

Liquefied gases are common for a variety of purposes. For example, liquid
propane in cylinders is used as a domestic fuel, liquid oxygen is carried in rockets
natural gas is liquefied for ocean transport, and liquid nitrogen is used fo;
low-tempel:ature refrigeration. In addition, gas mixtures (e.g., air) are liquefied
for separatlon into their component species by fractionation.

.quuefaction results when a gas is cooled to a temperature in the two-phase
region. This may be accomplished in several ways:

1. By heat exchange at constant pressure.
2. By expansion in a turbine from which work is obtained.
3. By a throttling process.

.The first method requires a heat sink at a temperature lower than that to
.Wthh the gas is cooled, and is most commonly used to precool a gas prior to
its liquefaction by the other two methods. An external refrigerator is required
for a gas temperature below that of the surroundings.

The three methods are illustrated in Fig. 9.7. The constant-pressure bath (1)
_approaches the two-phase region (and liquefaction) most closely for a given drop
in tt-:u.l;?erature. The throttling process (3) does not result in liquefaction unless
the initial state is at a high enough pressure and low enough temperature for the
constant-enthalpy path to cut into the two-phase region. This does not occur
yvhen the initial state is at A. If the initial state is at A', where the temperature
is the same but the pressure is higher than at A, then isenthalpic expansion by
patp (3") does result in the formation of liquid. The change of state from A to
A’ is most easily accomplished by compression of the gas to the final pressure
at B, followed by constant-pressure cooling to A’. Liquefaction by isentropic
expansion along path (2) may be accomplished from lower pressures (for given

Figure 9.7 Cooling processes on a
hY temperature/entropy diagram.
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temperature) than by throttling. For example, continuation of process (2) fron
initial state A ultimately results in liquefaction.

The throttling process (3) is the one commonly employed in small-scs
commercial liquefaction plants. The temperature of the gas must of co
decrease during expansion. This is indeed what happens with most gases at usug
conditions of temperature and pressure. The exceptions are hydrogen and helium
which increase in temperature upon throttling unless the initial temperature
below about 100 K for hydrogen and 20 K for helium. Liquefaction of these gas
by throttling requires initial reduction of the temperature to lower values
method 1 or 2.

As already mentioned, the temperature must be low enough and the pressury
high enough prior to throttling that the constant-enthalpy path cuts into th
two-phase region. For example, reference to the TS diagram for air of Fig. 94
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Figure 9.8 Temperature/entropy diagram for air. (Reproduced by permission from E. M. Landshaun
W. S. Dodds, W. F. Stevens, B. I Sollami, and L. F. Stutzman, AIChE J., 1: 392, 1955.)
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shows that at a pressure of 100(atm} the temperature must be less than 305(R)
for any liquefaction to occur along a path of constant enthalpy. In other words,
if air is compressed to 100(atm) and cooled to below 305(R), it can be partly
liquefied by throttling. The most economical way to cool the air is by countercur-
rent heat exchange with the unliquefied portion of the air from the expansion
process.

This simplest kind of liquefaction system, known as the Linde process, is
shown in Fig. 9.9. After compression, the gas is precooled to ambient temperature.
It may even be further cooled by refrigeration. The lower the temperature of the
gas entering the throttle valve, the greater the fraction of gas that is liquefied.
For example, evaporating a refrigerant in the precooler at —40(°F) gives a lower
temperature into the valve than if water at 70(°F) is the cooling medium.

Under steady-state conditions, an energy balance [Eq. (7.8)] around the
separator, valve, and cooler gives A(mH),, =0, or

Hgz + Hy(1 — z) = H, 9.8)

~ where the enthalpies are for a unit mass of fluid at the positions indicated in Fig.

9.9. Knowledge of the enthalpies allows solution of Eq. (9.8) for z, the fraction
of the gas that is liquefied.

. The flow diagram for the Claude process, shown by Fig. 9.10, is the same as
for the Linde process, except that an expansion engine or turbine replaces the

Compressor 2 Precooler
3
Gas —p i
intake 1 8
Cooler
4
7 Throttle
valve
5
Separator

Figure 9.9 Linde liquefaction process.
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Figure 9.10 Claude liquefaction process.

throttle valve. The energy balance here becomes
Hez+ Hg(1—z)+ W, = H, {9.

where W, is the work of the expansion engine on the basis of a unit mass
fluid entering the cooler at point 3. If the engine operates adiabatically, the wo
is given by Eq. (7.26), which here becomes

W, =—(H; - H,) (9.1

Equations (9.8) through (9.10) suppose that no heat leaks into the appara
from the surroundings. This can never be exactly true, and heat leakage may
significant when temperatures are very low, even with well-insulafed equipme

Example 9.3 Natural gas, assumed here to be pure methane, is liquefied in a sim
Linde process (Fig. 9.9). Compression is to 60 bar and precooling is to 300 K.
separator is maintained at a pressure of 1 bar, and unliquefied gas at this press
leaves the cooler at 295 K. What fraction of the gas is liquefied in the process,
what is the temperature of the high-pressure gas entering the throttle valve?

SOLUTION Data for methane are given in Perry’s Chemical Engineers’ Handboo
From the table of properties for superheated methane,
H,=1,140.0kJ kg™ {at 300 K and 60 bar)

Hy=1,1889kJ kg’ (at 295 K and 1 bar) .

t R. H. Perry and D. Green, op. cit., pp. 3-203.
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By interpolation in the table of properties for saturated liquid and vapor, we find for
a pressure of 1 bar that

T = 11145K
. Hg=2854klkg™"  (saturated liquid)
H,=799klkg™" (saturated vapor)

Solution of Eq. (9.8) for z gives
Hy- H; 11,1889 -1,140.0
Hy— H;, 1,188.9 — 2854

Thus 5.41 percent of the gas entering the throttle valve emerges as liquid.
The temperature of the gas at point 4 is found from its enthalpy, which is
calculated by an energy balance around the cooler:

()(Hy— H;)+ (1 - 2)(Hy ~ H;} = 0
Solution for H, and substitution of known values yields
H, = 1,140.0 — (0.9459)(1,188.9 — 796.9) = 769.2 kJ kg™"

Interpolation in the tables for superheated methane at 60 bar gives the temperature
of the gas entering the throttle valve as 206.5 K.

z= = (0.0541

PROBLEMS

9.1 A Carnot engine is coupled to a Carnot refrigeratot so that all of the work produced by the
engine is used by the refrigerator in extraction of heat from a heat reservoir at 270 X at the rate of
4kJs™'. The source of energy for the Carnot engine is a heat reservoir at 500 K. If both devices
discard heat to the surroundings at 300 K, how much heat does the engine absorb from the 500-K
reservoir?

If the actual coefficient of performance of the refrigerator is w = w0/ 1.5 and if the thermal
efficiency of the engine is 4 = %carner/ 1.5, how much heat does the engine absorb from the 500-K
reservoir?

9.2 A refrigeration system requires 1 kW of power for a refrigeration rate of 3 kJs™',
(a) What is the coefficient of performance? :
{b) How much heat is rejected from the system?
(c) If heat rejection is at 35°C, what is the lowest temperature the system can possibly maintain?

9.3 A conventional vapor-compression refrigeration system operates on the cycle of Fig. 9.1h. For
one of the following sets of operating conditions, determine the circulation rate of the refrigerant,
the heat-transfer rate in the condenser, the power requirement, the coefficient of performance of the
cycle, and the coefficient of performance of a Carnot refrigeration cycle operating between the same
temperature levels.
(a) Refrigerant is ammonia; evaporation t = 30{°F);

condensation ¢ = 90(°F); n(compressor) = 0.80;

refrigeration rate = 3,000(Btu){s)™".
(b) Refrigerant is ammonia; evaporation t = 0(°F);

condensation ¢ = 90(°F); n(compressor) = 0.75;

refrigeration rate = 1,500(Btu)(s) .
(¢} Refrigerant is Freon-12; evaporation ¢ = 10(°F);

condensation ¢ = 80(°F); n(compressor) = 0.77;

refrigeration rate = 400(Btu)(s) .



(d) Refrigerant is Freon-12; evaporation t = 20(°F);
condensation ¢t = 85(°F); n{compressor} = 0.80;
tefrigeration rate = 100(Btu)(s)™".

{e) Refrigerant is Freon-12; evaporation ¢ = —20(°F};
condensation ¢ = 85(°F); n{compressor} = 0.80;
refrigeration rate = 200{Btu)(s) ™"

{f) Refrigerant is water; evaporation t = 4°C;
condensation f = 30°C; n(compressor) = 0.76;
refrigeration rate = 1,000 kJs™".

9.4 A refrigerator with Freon-12 as refrigerant operates with an evaporation temperature of —14{

and a condensation temperature of 76(°F). The saturated liquid Freon-12 from the condenser fiay

through an ¢xpansion valve into the evaporator, from which it emerges as saturated vapor. :
{a) What is the circulation rate of the Freon-12 for refrigeration at the rate of 5(Btu)(s)™!
(b) By how much would the circulation rate be reduced if the throttle vaive were replaced
a turbine in which the Freon-12 expands isentropically?
(c) Suppose the cycle of (a) is modified by the inclusion of a countercurrent heat excha

between the condenser and the throttie valve in which heat is transferred to vapor returning f;

the evaporator. If liquid from the condenser enters the exchanger at 76(°F) and if vapor from ti§

evaporator enters the exchanger at —14(°F) and leaves at 65(°F), what is the circulation rate of i

Freon-12?

(d) For each of {(a), (b}, and (c), determine the coefficient of performance for isentro
compression of the vapor.

9.5 A vapor-compression refrigeration system is conventional except that a countercurrent

exchanger is installed to subcool the liquid from the condenser by heat exchange with the

stream from the evaporator. The minimum temperature difference for heat transfer is 10{°F). Ammg
is the refrigerant, evaporating at 22(°F) and condensing at 80(°F). The heat load on the evapo
is 2,000{Btu)(s)"'. If the compressor efficiency is 75 percent, what is the power requirement?

How does this result compare with the power required by the compressor if the system ope:

without the heat exchanger? How do the ammonia circulation rates compare for the two cases?
9.6 Consider the vapor-compression refrigeration cycle of Fig. 9.1b with Freon-12 as refrigeran
the evaporation temperature is 10(°F), show the effect of condensation temperature on the coeffic
of performance by making calculations for condensation temperatures of 60, 80, and 100{°F).
(a) Assume isentropic compression of the vapor.
(h) Assume a compressor efficiency of 75 percent.
9.7 A heat pump is used to heat a house in the winter and to cool it in the summer. During
winter, the outside air serves as a low-temperature heat source; during the summer, it acts
high-temperature heat sink. The heat-transfer rate through the walls and roof of the house is 0.75 kJ
for each °C of temperature difference between the inside and outside of the house, summer
winter. The heat-pump motor is rated at 1.5 kW. Determine the minimum outside temperature §
which the house can be maintained at 20°C during the winter and the maximum outside tempe
for which the house can be maintained at 20°C during the summer.

9.8 Dry air is supplied by a compressor and precooling system to the cooler of a Linde liquid

system (Fig. 9.9) at 180(atm) and 80(°F). The low-pressure air leaves the cooler at a tempe

10(°F) lower than the temperature of the incoming high-pressure air. The separator operates at 1(

and the product is saturated liquid at this pressure. What is the maximum fraction of the air ente:

the cooler that can be liquefied.

9.9 Rework the preceding problem for air entering at 200(atm), and precooled to —40(°F) by exte:
refrigeration.

CHAPTER

TEN

SYSTEMS OF VARIABLE COMPOSITION.
IDEAL BEHAVIOR

InlChap. 6 we treated the thermodynamic properties of constant-composition
fluids. However, many applications of chemical-engineering thermodynamics are
t-o systems wherein multicomponent mixtures of gases or liquids undergo composi-
tion changes as the result of mixing or separation processes, the transfer of species
from one phase to another, or chemical reaction. The properties of such systems
de:pend on composition as well as on temperature and pi‘essure; Qur first task in
this chapter is therefore to develop a fundamental property relation for
homf)geneous fluid mixtures of variable composition. We then derive equations
applicable to mixtures of ideal gases and ideal solutions. Finally, we treat in

detail a particularly simple descripti i A .
. _ ! Iption of multicomponent vapor/liquid equj-
librium known as Raoult’s law. por/liq qui

10.1 FUNDAMENTAL PROPERTY RELATION

Equation (6.6) expresses the basic relation connecting the Gibbs energy to the
temperature and pressure in any closed system:

d(nG) = (nV) dP — (nS) dT (6.6)

We a?ply this .equation to the case of a single-phase fluid that does not undergo
chemical reaction. The system is then of constant composition, and we can write

immediately that
a(nG) [a(nG)]
—— d —_— = -
[ and oT e, nS

3P ]T:“ = n¥
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where the subscript n indicates that the numbers of moles of aill chemical speci
are held constant.

We are now prepared to treat the more gencral case of a single-phase, op
system that can interchange matter with its surroundings. The total Gibbs energ
nG is still a function of T and P; since material may be taken from or add
to the system, nG is now also a function of the number of moles of each chemicy
species present. Thus

nG=g(P.T,n,n,... n...)
where the n, are mole numbers of the species. The total differential of G is

G G a(nG)
d(nG) = ["(Q'p >] P+ [a(:T >] aT+3 [ ol ] dn,

where the summation is over all species present, and subscript n; indicates
all mole numbers except the ith are held constant. Replacing the first two pa
derivatives by (nV) and —(nS), we have

d(nG) = (nV') dP — (nS) dT +3 [a(a"f)]” dn,

The derivative of nG with respect to the number of moles of species i has
special significance, and is given its own symbol and name. Thus, we define
chemical potential of species i in the mixture as

G ;
= [a_(af;';—)]PTnj (10

Expressed in terms of x,, the general equation for d(nG} is

Equation (10.2) is the fundamental property relation for single-phase fluid syste:
of constant or variable mass and constant or variable composition. It is

foundation equation upon which the structure of solution thermodynamics
built. It is applied initially in the following section, and will appear again i
subsequent chapters.

10.2 THE CHEMICAL POTENTIAL AS
A CRITERION OF PHASE EQUILIBRIUM

Consider a closed system consisting of two phases in equilibrium. Within
closed system, each of the individual phases is an open system, free to transf
mass to the other. Equation (10.2) may therefore be written for each phase:

d(nG)* = (nV)*dP — (nS)* dT + ¥ i dn®
d(nG)P = (nV)? dP — (nS)P dT + ¥ u? dn?

d(nG) = (nV) dP — (nS) dT + ¥, p, dn, (10.38
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where superscripts « and 8 identify the phases. In writing these expressions, we
have supposed that at equilibrivm T and P are uniform throughout the entire
system. The fotal change in the Gibbs energy of the system is the sum of these
equations. When“each total-system property is expressed by an equation of the
form

nM = (nM)" + (nM)"®

this sum is given by
d(nG) = (nV)dP — (nS)dT + 3 pu2 dnf + Y u? dn®

Since the two-phase system is closed, Eq. (6.6) must also be valid. Comparison
of the two eguations shows that at equilibrium
Luifdni+3pldnf =0
However, the changes dn{ and dn? result from mass transfer between the phases,
and mass conservation requires that
dn? = —dn?
Therefore

pf—pul)dni =0

Since the dn; are independent and arbitrary, the left-hand side of this equation
can be zero in general only if each term in parentheses is separately zero. Hence

pr=upf  (i=1,2,3,...,N)

where N is the number of species present in the system. Although not given here,
a similar but more comprehensive derivation shows (as we have supposed) that
T and P must also be the same in the two phases at equilibrium.

By successively considering pairs of phases, we may readily generalize to
more than two phases the equality of chemical potentials; the result for =
phases is

f=uf=--. =ui (i=1,2,...,N) (10.3)

Thus multiple phases at the same T and P are in equilibrium when the chemical
potential of each species is the same in all phases.

The application of Eq. (10.3) to specific phase-equilibrium problems requires
use of models of solution behavior, which provide expressions for G or for the
#; as functions of temperature, pressure, and composition. The simplest of such
expressions are for mixtures of ideal gases and for mixtures that form ideal
solutions. These expressions, developed in this chapter, lead directly to Raoult’s
law, the simplest realistic relation between the compositions of phases coexisting
in vapor/liquid equilibrium. Models of more general validity are treated in Chaps.
11 and 12.
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10.3 THE IDEAL-GAS MIXTURE

If #n moles of an ideal-gas mixture occupy a total volume V' at temperature
the pressure is
nRT
1 v
If the n, moles of species k in this mixture occupy the same total volume alon,
at the same temperature, the pressure is

Pe _ M
P .n Y&
or
Pk=}’kP (k=1=29"',N) (10.4

where y, is the mole fraction of species k in the gas mixture, and p, is know
as the partial pressure of species k. The sum of the partial pressures as given b
Eq. (10.4) equals the total pressure.

An ideal gas is a model gas comprised of imaginary molecules of zero volum
that do not interact. Each chemical species in an ideal-gas mixture therefore
its own private properties, uninfluenced by the presence of other species. This
the basis of Gibbs’s theorem:

A total thermodynamic property (nlU, nH, nCp, nS, nA, or nG) of an ideal-ga
mixture is the sum of the total properties of the individual species, eac!
evaluated at the mixture temperature but at its own partial pressure.
This is expressed mathematically for general property M by the equation
nM*(T, P) = L mM¥(T, p,)
where the superscript ig denotes an ideal-gas property. Division by n gives
M*(T, P) = % nM¥(T, ps) (105
Since the enthalpy of an ideal gas is independent of pressure,
HY¥(T, p) = HE(T, P)
Therefore, Eq. (19.5) becomes

H® =% yHY © (106

where H® and H'? are understood to be values at the mixture T and P. Analogous:
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equations apply for U ' and other properties that are independent of pressure.
[See Eq. (4.10) for C£.)

When Eq. (10.6) is written

e H - Z Y kH ;cg =0

the difference on the left is the enthalpy change associated with a process in
which appropriate amounts of the pure species at T and P are mixed to form
one mole of mixture at the same T and P. For ideal gases, this enthalpy change
of mixing is zero.

The entropy of an ideal gas does depend on pressure, and by Eq. (6.23),

dS¢=—-RdInP  (const T)
Integration from p, to P gives

] ) P P
ST, P)-S¢(Tp)=—-RIn—=—-RIn—=Riny,
Pr »P

whence
SE(T, p) = SHT,P) - Rlny,
Substituting this result into Eq. (10.5) written for the entropy gives
ST, P) =L »SET, P)~ RE yiIny,

or more simply

S =Y nSE-RInny, (10.7)

where S and the S¥ are values at the mixture T and P.
When this equation is rearranged as

. 1
S§% -TnSe=RIyIn—
Vi

we have on the left the entropy change of mixing for ideal gases. Since 1/y, > 1,
this quantity is always positive, in agreement with the second law. The mixing
process is inherently irreversible, and for ideal gases mixing at constant 7" and
P is not accompanied by heat transfer [Eq. (10.6)].

For the Gibbs energy of an ideal-gas mixture, G = H' — TS", Substitution
for H and §% by Eqs. (10.6) and (10.7) gives

G =Y yHf-TLnSE+RTY y.Iny,

or

GY =Y 3 GE+ RTY y Iny, (10.8)

where G and the G¥ are values at the mixture T and P,
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The chemical potential of species i in an ideal-gas mixture is found

application of Eq. (10.1):
; 6(nGi“')]
a [ on; lpzm,

Multiplication of Eq. (10.8) by n gives
= E nstf + RTZ . In Y
Since y. = m/n, where n =} ny, this becomes

nG? =Y nG¥+RTYL mlnn,

—RTninn
Separating particular species i from the set {k} of all species, we are left witl
set {j} of all species except i Then

nG” = nG¥+¥ nG¥+ RTn;lnm;+ RTZ nyInn,— RTnlnn

Since differentiation according to Eq. (A) is at constant T and P, G¥ and
G¥ are constant; moreover, all n; are constant. Differentiation therefore give

i 1 an ;
wo=G¥+ RT[n, (arl;:!n,) +In ni] - RT[n(aa[r: ") +(In ")(BI) ] :
i ny i ny i/ ny

Since n = n, + ¥ n;, we also have (9n/9n;),, = 1. The preceding equation therefo
reduces to

p =GP +RTIn~

or

= G¥+ RTIn y, (]0.

This equation is applied in the development of Raoult’s law in Sec. 10.5.

10.4 THE IDEAL SOLUTION

The equations just derived show that for ideal gases a mixture property depend
only on the properties of the pure ideal gases which comprise the mixture. N
information about the mixture other than its composition is required.
circumstance is not limited to ideal gases, but extends more generally to am;
solution wherein all molecules are of the same size and all forces betw
molecules (like and unlike) are equal. Equations based on these characteristic
provide a model of behavior known as the ideal solution.

The ideal gas, consisting of molecules with zero volume that do not mtera
fulfills the conditions of solution ideality as a special case. When ideal gases
mixed, there is no volume change of mixing, because the molar volume of th
mixture V' and the molar volumes of the pure species V¥ are all equal to RT/
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Thus for ideal gases, the equation
Ve = x yfVE"

is a simple identity. However, an analogous equation written for the ideal-solution
model provides an essential relation:

Ve =¥ xV, (10.10)

where V* is the molar volume of the ideal solution formed from pure species
with actual molar volumes V; at the temperature and pressure of the mixture.
Thus the volume change of mixing is zero for ideal solutions as well as for ideal
gases. In Eq. (10.10), x; is used for mole fraction, because our immediate
application of the ideal-solution model is to liquids. Since the formation of an
ideal solution results in no change in molecular energies or volumes, we can
write an equation for the enthalpy of an ideal solution analogous to Eq. (10.6):

=Y x;H; (10.11)

where H; is the enthalpy of pure species i at the mixture T and P.

For solutions comprised of species of equal molecular volume in which all
molecular interactions are the same, one can show by the methods of statistical
thermodynamics that the lowest possible value of the entropy is given by an
equation analogous to Eq. (10.7). Thus we complete the definition of an ideal
solution by specifying that its entropy be given by the equation:

Sid=le‘S,’_sz;lnxi

(10.12)

The Gibbs energy of an ideal solution then follows from its defining equation,
Gid — Hl'd' - ]-Sid':

=Y xG,+ RTY x,In x, (10.13)

Finally, the chemical potential of species 7 in an ideal solution follows from Eq.
(10.13) by a derivation completely analogous to the derivation of Eq. (10.9):

#9=G,+RTInx (10.14)

In the preceding equations, the quantities S; and G; are the properties of pure
species i at the mixture T and P.

Ideal-solution behavior is often approximated by solutions comprised of
molecules not too different in size and of the same chemical nature. Thus, a
mixture of isomers, such as ortho-, meta-, and para-xylene, conforms very closely
to ideal-solution behavior. So do mixtures of adjacent members of a homol-
ogous series, as for example, n-hexane/n-heptane, ethanol/propanol, and
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benzene/toluene. Other examples are acetone/acetonitrile and acetonitri
nitromethane.

10.5 RAOULT’S LAW

When combined with the ideal-gas and ideal-solution models of phase behavi
the criterion of vapor/liquid equilibrium produces a simple and useful equati
known as Raoult’s law. Consider a liquid phase and a vapor phase, both compris
of N chemical species, coexisting in equilibrium at temperature T and press
P, a condition of vapor/liquid equilibrium for which Eq. (10.3) becomes

pi=u;  (i=1,2...,N) (10,
If the vapor phase is an ideal gas and the liquid phase is an ideal soluti
we may replace the chemical potentials in this equality by Eqgs. (10.9) and (10.1
G?+ RTIny, = G|+ RTInx,
Rearrangement gives

ernf= GYT, P) — G¥(T, P)

where we indicate explicitly that the pure-species properties are evaluated at
equilibrium T and P. Assuming a negligible effect of pressure on G!, we w

GU(T, P) = G\(T, P}™)

where P5* is the saturation or vapor pressure of pure species i at temperat
T. For pure i as an ideal gas, we have from Eq. (6.10) that
dG? = V¥# dp (const T)

Integration at temperature T from P to P yields

.P?" sal.
GU(T, P¥™) - G¥T,P) = j — dP RTIn P
P
Combining Egs. (A), (B}, and (C) gives
sat
RT ]niﬁ = GUT, P) - G¥(T, P¥) + RTIn—

But the first two terms on the right are the Gibbs energies of pure liquid i
pure vapor i at the pure-species equilibrium conditions T and P accordi
to Eq. (6.47), they are equal. The preceding equation therefore reduces to

,N) (10.16

y,-P=xiP§m (i=1,2,...

This equation expresses Raoult’st law. According to Eq. (10.4), the’ left-han

t Francois Marie Raoult (1830-1901), French chemist.
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side is the partial pressure of species i in the vapor phase, equal here to the
product of the liquid-phase mole fraction of species i and its vapor pressure at
temperature T.

Since Pi™ is a function of temperature only;, Raoult’s law is a set of N
equations_in the variables T, P, {y,}, and {x;}. There are, in fact, N — 1 independent
vapor-phase mole fractions (the y,’s), N —1 independent liquid-phase mole
fractions (the x;’s), and T and P. This makes a total of 2N independent variables
related by N equations. The specification of N of these variables in the formula-
tion of a vapor/liquid equilibrium problem altows the remaining N variables to
be determined by the simultaneous solution of the N equilibrium relations given
here by Raoult’s law, In practice, one usually specifies either T or P and either

tllgei liquid-phase or the vapor-phase composition, fixing | + (N — 1) = N vari-
ables.

Example 10.1 The binary system acetonitrile(1)/nitromethane(2) conforms closely to
Raoult’s law. Vapor pressures for the pure species are given by the following Antoine

equations:
2,945.47
In P{"/kPa = 142724 — —2
i £/°C + 224.00
2,972.64
In P3"/kPa = 14.2043 - —————
=/ t/°C + 209.00

(a) Prepare a graph showing P vs. x, and P vs. y, for a temperature of 75°C.
(b) Prepare a graph showing ¢ vs. x, and ¢ vs. y, for a pressure of 70 kPa.
SOLUTION (a) At 75°C, vapor pressures calculated from the given equations are
P =83.21 and 3 =41.98 kPa
We write Eq. (10.16) for each of the two species:

»P=xpP (4)
y,P = x,P3" (B)
Since y, + y, = 1, addition gives
P = x, P + x, P ()
When 1 — x; is substituted for x,, this becomes
P = P3 + (PP - P")x, (D}

Thus a plot of P vs. x, is a straight line connecting P5* at x, = 0 with P at x, = 1.
We can, of course, calculate P for a single value of x, . For example, when x, = 0.6,

P = 4198+ (83.21 — 41.98)(0.6) = 66.72 kPa
The corresponding value of y, is then found from Eq. (A):

y _x P (0.6)(83.21)
'Y p 66.72

These results mean that at 75°C a liquid mixture of 60 mole percent acetonitrile and

= (.7483
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40 mole percent nitromethane is in equilibrium with a vapor containing 74.83 mote
pércent acetonitrile at a pressure of 66.72 kPa. The results of this and similar calcula
tions for 75°C are tabulated as foilows:

x " P/kPa
0.0 0.0 41.98
0.2 0.3313 50.23
0.4 0.5692 5847
0.6 0.7483 66.72
0.3 0.8880 74.96
1.0 1.0 83.21

These same results are shown by the Pxy diagram of Fig. 10.1.

This figure is an example of a phase diagram, because the lines represent phase
boundaries. Thus the line labeled P — x, represents states of saturated liquid; the 4
subcooled-liquid region lies above this line. The curve labeled P — y, represents states 3

of saturated vapor; the superheated-vapor region lies below the P — y, curve. Points

lying between the saturated-liquid and saturated-vapor lines are in the two-phase 3

100, _75c 7

P =8321

80—
Subcooled
liguid

P =4198 —
40~ Pi}"!

I
I
I
!
Superheated |
vapor [

I

]

20 1 I
0 0.2 0.4 0.6 0.8 1.0

X1 Vi

Figure 10.1 Pxy diagram for acetonitrile(1)/ nitromethane(2} at 75°C as given by Raoult’s law.
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region, where saturated liquid and saturated vapor coexist in equilibrium. The P — x
and P — y, lines meét.at the edges of the diagram, where saturated liquid and saturated
vapor of the pure species coexist at the vapor pressures PP and P, ‘

We can illustrate the nature of phase behavior in this binary (two-component)
system by following the course of a constant-temperature process on the Pxy diagram.
Imagine a subcooled liquid mixture of 60 mole percent acetonitrile and 40 mole
percent nitromethane existing in a piston/cylinder arrangement at 75°C. Its state is
represented by point a in Fig. 10.1. The pressure is reduced slowly enough so that
the system is always in equilibrium at 75°C. Since the system is closed, the overall
composition remains constant during the process, and the states of the system as a
whole fall on the vertical line descending from point a. When the pressure decreases
to the state represented by point b, the system is saturated liquid on the verge of
vaporizing. A minute further decrease in pressure is accompanied by the appearance
of a bubble of vapor, represented by point b'. The two points b and b’ together
represent the equilibrium state at x, = 0.6, P = 66.72 kPa, and y; = 0.7483 for which
calculations were illustrated. This is known as a BUBL P calculation, because the
bubble {vapor) composition y, and the pressure are calcutated from given values of
x, and ¢ Point b is called a bubble point, and the P — x, lirie is the locus of bubble
points.

As the pressure is further reduced, the amount of vapor increases and the amount
of liquid decreases, with the states of the two phases following paths b'c and bc',

‘respectively. The dotted line from b to ¢ represents the overall states of the two-phase

system. Finally, as point ¢ is approached, the liquid phase, represented by point ¢,
has almost disappeared, with only minute drops (dew) remaining. Point ¢ is therefore
called a dew point, and the P — y, line is the locus of dew points. Once the dew has
evaporated, only saturated vapor at point ¢ remains, and further pressure reduction
leads to superheated vapor at point 4.

The composition of the vapor at point ¢ is y, = 0.6, but the composition of the
liquid at point ¢’ and the pressure must either be read from the graph or calculated.
This is a DEW P caleulation, because the dew (liquid) composition x, and the pressure
are calculated for given values of y, and t. We writc Eqs. (A) and (B) as

nP
= P (E)
yo P
X = F (F)
Since x, + x, = 1, addition gives
J’lP ».P ( N )
+Z =p +
VA R e
whence
1
P=———— (G)

nl P+ v,/ PP
For y, = 0.6 and t = 75°C,

1
T 0.6/83.21 + 0.4/41.98

= 59.74kPa
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By Eq. (E),
_ (0.6)(59.74)
=Tt

This is the liquid-phase composition at point ¢". N
(b) When pressure P is fixed, the temperature varies along with x, and y,. Sin

temperature enters calculations based on Raoult’s law only indirectly fh{ou‘gh

vapor pressures, we cannot solve explicitly for t, and an iterative procet_dure is indicat
For a given pressure, the temperature range is bounded by the saturation temperatu
£ and 5, the temperatures at which the pure species exert vapor pressures eq
to P. For the present system, these temperatures are calculated from the Antoi
equations with P{* = P = 70 kPa:

15 = 69.84 and 15" = 89.58°C
When x, is known along with P, Eq. (C) is the basis of solutien for

= 0.4308

P
P=xPP+x, PP = P;“(x, F"{_' + xz)
or
P
Psll -=—_ (
z X 0o + X,

where a,; = P/ P$". Although P5* and P3* both increase rapidly with increas
temperature, a,, is a weak function of & Values of a,; are readily calculated fr
the Antoine equations. Subtracting In P¥* from In P", we get

294547 + 2,972.64

; .
£+ 22400 t+209.00 (

ln a,; = 0.0681 —
The iteration procedure is as follows:

1. Choosing a value of a,; calculated at some intermediate temperature, calcula ‘
P$* by Eq. (H).
2. Calculate 1 from the Antoine equation for species 2:
' 297264
" 142043 —In PY

3. Determine a new value of a,, by Eq. (I) and a new value of P3" by Eq. (H).
4, Return to step 2, and iterate to convergence.

=~ 209.00

When y, is known along with P, Eq. ((G) is the basis of solution:
1 P

P= =
WP /P ot nan
or
PP = Py, + yay2)
The iteration procedure is the same as before, except that .

2,945.47

=———— — 224.00
! 14.2724 — In P
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For the purpose of preparing a txy diagram, the simplest procedure is to select
values of ¢ between ("' and £3*, calculate P and P$" for these temperatutes, and
evaluate x, by Eq. (D):

pP-pp
“ X1 = ot
Py — Py
For example, at 78°C,
™ -9176 and PP =46.84kPa
whence
70 — 46.84
=——= (05156
¥ 7 91,76 - 46.84 5
By Eq. (A),

_x PR (0.5156)(91.76)
NE"Tp 70

The results of this and similar calculations for P = 70 kPa are given in the following
table:

= 0.6759

x) » t/°C

0.0 0.0 89.58 (1)
0.1424 0.2401 86

0.3184 0.4742 82

0.5156 0.6759 78

0.7378 0.8484 74

1.0 1.0 69.84 (£5)

Figure 10.2 is the #xy diagram showing these results.

This figure is another example of a phase diagram, drawn here for a constant
pressure of 70 kPa. The ¢ — y, curve represents states of saturated vapor, with states
of superheated vapor lying above it. The t — x, curve represents states of saturated
liquid, with states of subcooled liquid lying below it. The two-phase region lies
between these curves.

With reference to the fxy diagram, we describe the course of a constant-pressure
heating process leading from a state of subcooled liquid at point a to a state of
superheated vapor at point d. The path shown on the figure is for a constant
compaosition of 60 mole percent acetonitrile. The temperature of the liquid increases
as the result of heating from point a to point b, where the first bubble of vapor
appears. Thus point b is a bubble point, and the ¢ — x; curve is the locus of bubble
points.

We here know x, = 0.6 and P = 70 kPa; ¢ is therefore determined by the iteration
scheme described in connection with Eq. (H). The result in this case is ¢ = 76.42°C,
the temperature of points b and b’. At this temperature, P$" = 87.17 kPa, and by Eq.
(A) we find the composition of point b":

X PF (0.6)(87.17)
NETE T T w0

=0.7472
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P=T0kPa

£ = 89.58 0L

Superheated
vapor

83

80

1/°C

75

Subcooled
70 liquid 17 =69.84

65 | § |
0 0.2 0.4 0.6 0.8 1.0

X

Figure 10.2 Diagram showing ¢ vs. ¥, and £ vs. x; for acetonitrile{1)/nitromethane(2) at 70 kPa
given by Raoult’s law.

This is a BUBL T calculation, because the bubble composition y; and the temperatu
are calculated from given values of x, and P.

Vaporization of a mixture at constant pressure, unlike vaporization of a p
species, does not in general occur at constant temperature. As the heating process
continues beyond point b, the temperature rises, the amount of vapor increases, and
the amount of liquid decreases. During this process, the vapor- and liquid-phase
compositions change as indicated by paths b'c and bc’, until the dew point is reach
at point ¢, where the last droplets of liquid disappear. The ¢t — y, curve is the lo
of dew points.

The vapor composition at point ¢ is y; = 0.6; since the pressure is also known
(P = 70 kPa), we may carry out a DEW T calculation according to the iteration scheme:
associated with Eq. (J). The result here is ¢ = 79.58°C, the temperature of points
and ¢'. With P5* = 96.53 kPa, we find by Eq. (E) that the composition at point ¢’ is

e »P _(0.6)(70)
P 96.53

Thus the temperature rises from 76.42 to 79.58°C during the vaporization step from 8
point b to point ¢. Continued heating simply superheats the vapor to point d.

= 0.4351
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$traightforward generalizations of the procedures for binary systems allow
a_pphcanon of Raoult’s law to multicomponent systems. For a BUBL P calculation
given {x.} and ¢, we calculate {y,} and P. Since Raoult’s law gives ’

d ykP_—'kaim (k=1923°'°,N)
then

P= E’, x Pyt (10.17)

Once P is calculated by Eq. (10.17), each y, is found from Raocult’s law.
For a DEW P calculation, we know {y,} and ¢, and calculate {x,} and P. Since

_ ¥l
%=pwm (k=12...,N) (10.18)
then
Vi
1=PY —
L
and
p 1
(10.19)

B X O/ PEY)

Once P is calculated by Eq. (10.19), each x; is given by Eq. (10.18).
_ A BUBL T calculation of {y:} and 1, given {x,} and P, is based on Eq. (10.17),
written
Pzﬂl
Pgat

P=P™Yx
k

where i is an arbitrarily selected member of set {k}. Solution for P:* gives
P

P = %xkaki (10.20)
where
o = PR/ P
When the vapor pressures are given by Antoine equations,
lnaki=Ak—Ai—'f2k+£ia (10.21)

An iterative procedure starts with solution of Eq. (10.21) with an initial value of
t provided by the equation

ty = § Xty (10.22)



312 INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS SYSTEMS OF VARIABLE COMPOSITION. IDEAL BEHAVIOR 313

Equation (10.20) then yields P and we get an improved value of ¢ from
Antoine equation:

Then by Eq. (10.17) with the given values of x,,
P ='(0.25)(195.75) + (0.35)(97.84) + (0.40)(50.32)
= 103.31kPa
From Eq. (IO.IGY written as y; = x, PP/ P, we get
y=04737  y3,=03315 p,=0.1948

The sum of these mole fractions equals unity, as it shouid.
(b) A DEW P calculation. For ¢ = 70°C,

P = 144,77 st = 70,37 P = 4380 kPa
Then by Eq. (10.19) with the given values of y,
P=7427kPa

B,
: G (10.

= A —mpe O

This calculational sequence is repeated until there is no significant change

from one iteration to the next. Final values of P} are found from the Anto

equations, and final y, values come from Raoult’s law.

The DEW T calculation is similar. Since we know {y.} and P and seek {
and i, we write Eq. (10.19) as

sat

P = —P'Ts?

T (P Py )

k and by Eq. (10.18),

or
x; = 0.2565 x; = 03166 x; = (.4269

P*=P % (¥e/ @) (10.24 Again, the mole fractions sum to unity.
(¢} A BUBL T calculation. For a ternary system with i = 3, Eq. (10.20) becomes
P
X3+ Xa00ay + Xyorsg
_ 80
0.30a,; + 0.45a,; + 0.25
Setting each P" in the Antoine equations equal to 80 kPa, we find:
£ =5207 M=7381  £%=9364°C
Equation (10.22) then gives

Again an iterative process starts with Eq. (10.21), now with an initial value

to= § Wil (10

Py =

Equation (10.24) then yields P}, and Eq. (10.23), an improved value of ¢ wi
sat

which to repeat the calculations. After convergence, we evaluate the Pi", an§
calculate the final x; by Eq. (10.18).

Example 10.2 For the acetone(l)/acetonitrile(2)/nitromethane(3) system, we ha!
the following Antoine equations:

L Psat =14 2,940-46 L ro = 12.25 C
n Py = 14.5463 - !+ 237.22 For this initial temperature, we find from Eq. (10.21) that
[n P = 14.2724 — 2,945.47 o3 = 4.0951 and = 2.0037
T £ +224.00 whence
P =133,
1 P = 142043 - 257264 $ = 33,61 kPa
nre s £ +209.00 Then by Eq. (10.23),
2,972.64

T 142003 —In3361  20000=69.09°C

This new value of ¢ allows the calculations to be repeated. Further iteration leads to
a final value of

where ¢ is in °C and the vapor pressures are in kPa. Assuming that Raoult’s law
appropriate to this system, calculate:

(a) P and {y.}, given that ¢ = 80°C, x, = 0.25, x, = 0.35, and x; = 0.40.
(b) P and {x;}, given that ¢ = 70°C, y, = 0.50, y, = 0.30, and y; = 0.20.
{c) t and {y:}, given that P = 80 kPa, x, = 0.30, x, = 0.43, and x; = 0.25.
(d) t and {x;}, given that P = 90 kPa, y, = 0.60, y, = 0.20, and y; = 0.20.

t = 68.60°C
At this temperature,
P = 138.56 P3 =67.08 P$* = 3298 kPa
and by Eq. (10.16),
»=05196  y,=03773 ¥y = 0.1031

SOLUTION (a) A BUBL P calculation, For t = 80°C, we calculate the followi
yapor pressures:

P =19575  P3=9784  P$=50.32kPa
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(d) A DEW T calculation. We again take i = 3, and Eq. (10.24) becomes

P;m=P(L+_)_’=_+£)
3 O3 Qag

= 9O(E+-0—32*+ 0.2)

a)y  dy
At P = 90 kPa, the saturation temperatures are
" = 5547 5" =T77.40
and by Eq. (10.25),

£ = 97.32°C

t, = 68.23°C
At this temperature we find from Eq. (10.21) that
a); = 42123 ay; = 2.0370

whence
P =39.66kPa

By Eq. (10.23),
t = 73.46°C

This new estimate of ¢ allows the calculations to be repeated; continued iterati
leads to a final value of

t=7395C
At this temperature,
PP =163.47 P = 80.37 P =40.39kPa
Equation (10.18) then yields
x, = 0.3303 x; = 0.2240 x; = 0.4457

One further vapor/liquid equilibrium problem is the flash calculation. The
origin of the name is in the change that occurs when 2 liquid under pressur¢
passes through a valve to a pressure low enough that some of the liquid vaporizes
or “flashes,” producing a two-phase stream of vapor and liquid in equilibriunt;
We consider here only the P,¥-flash, which refers to any calculation of
quantities and compositions of the vapor and liquid phases making up a two-pha
system in equilibrium at known P, 7, and overall composition.

Consider such a system containing a total of one mole of chemical speci
and having an overall composition represented by the set of mole fractions {zi4:
Let L be the moles of liquid, with mole fractions {x;}, and let V be the moles
vapor, with mole fractions {y;}. The material-balance equations are

L+V=1
z=xL+yV (i=1,2,...,N)
Choosing to eliminate L from these equations, we get

z=x(1-V)+y»V (i=12,...,N) (10.26

=oa i EAE AT TARADRLLE LVMPUSLLIIVUN. 1AL BEHAVIOR 31D

As a matter of convenience, we write Raoult’s law as

¥ = Kx; (10.27)
where K, is known as a “K-value,” given here by
" K, =P/ P (10.28)

Since Pi* is a function of T only, K, is a function of T and P. Substituting
x; = ¥/ K; in Eq. (10.26) and solving for y; gives

= __Z‘K'_.__ i=1.2 N
Y ]+V(K;—1) (1— gy ey ) (]0'29)
Since ¥, y; = 1, the sum of Eqs. (10.29) gives
z,K; _
ETvik ! (10.30)

In a flash calculation, T, P, and {z} are known; the only unknown in Eq. (10.30)
is therefore V. Solution is by trial. (Note that there is always a trivial solution at
V = 1.} The y, are then found from Eq. (10.29), and the x; from Eq. (10.27).

Example 10.3 The system acetone(1)/acetonitrile(2)/nitromethane(3) at 80°C and
110kPa has the overall composition, z, = 0.45, z, = 0.35, z; = 0.20. Determine LV,
{xi}! aﬂd {)’i}-

SOLUTION There is no assurance at the outset that at the stated conditions the system
is actually in the two-phase region. This should be determined before a flash calculation
is attempted. A two-phase system at a given temperature and with given overall
composition ¢an exist over a range of pressures from the bubble point at P,, where
V =0 and {z} = {x}, to the dew point at P,, where V =1 and {z;} = {3,}. If the
given pressure lies between P, and P, then the system is indeed made up of two
phases at the stated conditions, -

The vapor pressures of the pure species at 80°C are given in Example 10.2(a):
Pt = 195.75 = 9784 P =5032kPa '
First, we do a BUBL P calculation with {z,} = {x,} to determine P,. By Eq. (10.17),
By = x, PY" + x, P5" + x, PP
Numerically,
P, = (0.45)(195.75) + {0.35)(97.34) + (0.20)(50.32)
= 132.40kPa
Second, we do a DEW P calculation with {z,} = {3;} to determine P,. By Eq. (10.19),
1 1
Ty PPy PRy, PR 0.45/195.75 + 0.35/97.84 + 0.20/50.32
= 101.52kPa

Py

Since the given pressure lies between P, and P,, we proceed to the flash calculation,
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By Eq. (10.28),

19575 1.7795
110

Similarly,

K, = 0.8895

K, =0.4575
Substitution of known values into Eq. (10.30) gives

(0.45)(1.7795) . (0.35)(0.8895) (0.20)(0.4575) _
14+0.7795V 1-0.1105V 1-0.5425V

Solution for V by trial yields
V = 0.7364 mol

whence
L=1-V=02636mol

By Eq. (10.29),
(0.45)(1.7795)

¥ = = (.5087
1+ (0.7795)(0.7364)

Similarly,

y; = 0.3389

ys = 0.1524
By Eq. (10.27),

v =2 =007 2859
K, 17795

Similarly,

x, = 0.3810

x; = 0.3331

Obvidusly, wemust have Y ;=% x, = 1.

PROBLEMS

10.1 What is the change in eniropy when 0.8 m’ of nitrogen and 0..2.mz of oxygen,.each at 1 bar
25°C blend to form a homogeneous gas mixture at the same conditions? Assume ideal gases.
10.2 A vessel is divided into two parts by a partition, and contains 2 mol of nitrogen gas a.t 80°C
40 bar on one side and 3 mol of argon gas at 150°C and 15 bar on the (.)ther. If the partition 1s remo
and the gases mix adiabatically and completely, what ?s the change in entropy? Assume nitrogen
ideal gas with Cy, = (5/2)R and argon an ideal gas with Cy = (3/2)R.

103 A stream of nitrogen flowing at the rate of 14,000(1b,}(hr)~" and a stream of hydl"ogep eﬂ:] v
at the rate of 3,024(lb)(hr)~" mix adiabatically in a steady-flow process. If the _g:nses:re ideal &
if both are at the same T and P, what is the rate of entropy increase [(Btu)(hr) '(R) '] as a res
of the process?
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10.4 A design for purifying helium consists of an adiabatic process that splits 2 heliom stream
containing 30-mole-percent methane into two product streams, one containing 97-mole-percent helium
and the other 90-mole-percent methane. The feed enters at 10 bar and 1 17°C; the methane-rich product
leaves at 1bar and 27°C; the helium-rich product leaves at 50°C and 15 bar. Moreover, work is
produced by the process. Assuming helium an ideal gas with Cp = (5/2)R and methane an ideal gas
with Cp = (9/2)R, ealculate the total entropy change of the process on the basis of 1 mol of feed to
confirm that the process does not violate the second law.

10.5 A liquid mixture containing 40 mole percent benzene and 60 mole percent toluene is fed to a
distiliation column. The overhead product is nearly pure benzene and the bottoms product, pure
toluene. The reboiler is heated by steam condensing at 140°C at the rate of 80 kg for each kilogram
mole of feed. The overhead condenser is cooled by water at the essentially constant temperature of
20°C. Neglecting heat losses and sensible heat effects and assuming that the feed mixture is an ideal
solution, calculate the total change in entropy resulting from the separation of 1 kg mol of feed.

10.6 Assuming Raouit’s law to be valid for the system acetonitrile(1)/nitromethane(2),

{a) Prepare a Pxy diagram for a temperature of 100°C.

(b) Prepare a txy diagram for a pressure of 101.33 kPa.

Vapor pressures of the pure species are given by the foliowing Antoine equations (P in kPa and
tin °C):

2,94547
In P = 142724 - ——————
t +224.00
2,972.64
In P$ = 14.2043 — —92-——
t+ 209.00

16.7 Assuming Raoult’s law to be valid for the system benzene(1)/ethylbenzene(2),

(a) Prepare a Pxy diagram for a temperature of 100°C.

(b} Prepare a txy diagram for a pressure of 101.33 kPa.

Vapor pressures of the pure species are given by the following Antoine equations (P®™ in kPa and
tin °C):

2,788.51
In P = 13,8858 - ————
il B 00
3,279.47
In P3™ = 14.0045 — —— "
£+213.20

10.8 Assuming Raoult’s law to be valid for the system t-chlorobutane(1)/chlorobenzene(2),
{a) Prepare a Pxy diagram for a temperature of 100°C.
(b) Prepare a txy diagram for a pressure of 101.33 kPa.
Vapor pressures of the pure species are given by the following Antoine equations {P3™ in kPa and
tin °C):
2,826.26
i+ 224,10

3,205,12
1+ 21755

In P = 13.9600 —

In P = 13.9926 —

109 For the system acetone( 1)/acetonitrile(2), the vapor pressures of the pure species are given by

2,940.46
In P5 = 14,5463 — —2——_
o = 146 -
2,945.47
In PP = 14,2724 - =220
t+224.00

Where ¢ is in °C and the vapor pressures are in kPa. Assuming Raoult’s law to describe the vapor/liquid
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equilibrium states of this system, determine:

{a) x, and y, for the equilibrium phases at 54°C and 65 kPa.

(6) tand y, for P=065kPa and x, = 0.4.

{¢) Pand y, for 1 =54°C and x, = 04.

{(d) t and x, for P =65kPa and y, = 04.

(e) P and x, for r =54°C and y, = G4 .

(f) The fraction of the system that is liquid, x,, and y, at 54°C and 65 kPa, when the ove
composition of the system is 70 mole percent acctone. :

(g) The fraction of the system that is liquid, x,, and y, at 54°C and 65kPa, when the ow
composition of the system is 60 mole percent acetone.

10.10 For the system n-pentane(1)/n-heptane(2), the vapor pressures of the pure species are given .

nE =0 {+23321
n Pt = 12,8587 - 2oAL32
nFe =1 t +216.64

where ¢ is in °C and the vapor pressures are in kPa. Assuming Racult’s law to describe the vapor/lig

equilibrium states of this system, determine:

(a) x, and y, for the equilibrium phases at 63°C and 95 kPa.

(b) t and y, for P =95kPa and x, = 0.34.

{¢) P and y, for t = 60°C and x, = 0.44.

(d) t and x, for P = 85kPa and y, = 0.86.

{e) P and x, for t = 70°C and y, = 0.08.

(F) The fraction of the system that is liquid, x,, and y, at 60°C and 115 kPa, when the ov
composition of the system is equimolar. ,

(g) The fraction of the system that is liquid, x,, and y, at 60°C and 115 kPa, when the ove
composition of the system is 60 mole percent n-pentane.

10.11 For the system benzene(1)/toluene(2) /ethylbenzene(3), the vapor pressures of the pure spe
are given by

l Put —_ 13 8858 _M
nE = £+220.79
nfa = 1+ 219.48
In P = 14.0045 -~
nf = £+ 213.20

where ¢t is in °C and the vapor pressures are in kPa. Assuming Raoult’s law to describe the vapor/liq
equilibrium states of this system, determine:

(a) P and {y.}, given that £ = 110°C, x, = 0.22, x, =037, x; = 0.41.

{b) P and {x,}, given that ¢ = 105°C, y, = 045, y, = 0.32, y; = 0.23.

(e) t and {y.}, given that P = 90kPa, x, = 047, x; = 0.18,.x; = 0.35.
(d) t and {x.}, given that P =95kPa, y, = 0.52, y, = 0.28, y, = 0.20.

10.12 For the system of the preceding problem at a temperature of 100°C and an overall compositi
z; = 041, z, = 0.34, and z; = 0.25, determine:

(a) The bubble-point pressure P, and the bubble composition.
(b) The dew-point pressure P, and the dew composition.

(¢) L, ¥, {x}, and {y,} for a pressure equal to 3(P, + Py).

10.13 The system 1-chlorobutane( 1)/benzene(2)/chlorobenzene(3) conforms close!y to Raoult’s law
The vapor pressures of the pure species are given by the following Antoine equations!
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In P2 = 13,9600 - —220-26_
t+224.10

2,788.
In P = 13,8858 — —2 0oL
t +220.79
In P§™ = 13,9926 — 3.295.12
t+217.55

where ¢ is in °C and the vapor pressures are in kPa, Determine:

(a) P and {y,}, given that 1 = 90°C, x, = 0.16, x; = 0.22, x; = 0.62.

(b) P and {x,}, given that t = 95°C, y, = 0.39, y, = 0.27, y; =034,

(¢} t and {y.}, given that P = 101,33 kPa, x, = 0.24, x, = 0.52, x, = 0.24,

(d} tand {x.}, given that P = 101.33kPa, y, = 0.68, y, = 0.12, y, = 0.20.

18.14 For the system of the preceding problem at a temperature of 125°C and an overall composition
zy = 020, z, = 0.30, and z, = 0.50, determine:

{(a) The bubble-point pressure P, and the bubble composition.

(&) The dew-point pressure P, and the dew composition.

(e) L, V, {x;}, and {y;} for a pressure of 175 kPa.

10.15 The system a-pentane(1)/n-hexane(2)/n-heptane(3) conforms closely to Raoult’s law. The
vapor pressures of the pure species are given by the following Antoine equations:

2,477,
In P = 13.8183 - 247707
t+23321
2,697.55
In P = 13.8216 - ————
t+22437
2,911.32
In PP = 13,8587 — a2
1+216.64

where ¢ is in “C and the vapor pressures are in kPa. Determine:

(a) P and {y,}, given that t = 70°C, x, = 0.09, x, = 0.57, x, = (.34,

(b) P and {x}, given that ¢ = 80°C, y, = 043, y, = 0.36, y, = 0.21.

{c} 1 and {y,}, given that P = 250kPa, x, = 0.48, x, = 0.28, x; = 0.24.

(d) t and {x;}, given that P = 300kPa, y, = 0.4, y, = 0.47, y, = 0.09.

10.16 For the system of the preceding problem at a temperature of 105°C and an overall composition
z; = 0.25, z, = 0.45, and z; = 0.30, determine:

(a} The bubble-point pressure P, and the bubble composition.

(b) The dew-point pressure P, and the dew composition.

(c) L, V, {x}, and {3} for a pressure equal to }(P, + P,).



SYSTEMS OF VARIABLE COMPOSITION
NONIDEAL BEHAVIOR

The properties of mixtures of ideal gases and of ideal solutions depend solel
on the properties of the pure constituent species, and are calculated from the
by simple equations, as illustrated in Chap. 10. Although these models approxi
mate the behavior of certain fluid mixtures, they do not adequately represent th
behavior of most solutions of interest to chemical engineers, and Raoult’s law i
not in general a realistic relation for vapor/liquid equilibrium. However, thess
models of ideal behavior—the ideal gas, the ideal solution, and Raoult’s law—=
provide convenient references to which the behavior of nonideal solutions may_’
be compared. ;

In this chapter we lay the foundation for a general treatment of vapor/liquid:
equilibrium (Chap. 12) through introduction of two auxiliary thermodynamic
properties related to the Gibbs energy, namely, the fugacity coefficient and the .
activity coefficient. These properties, relating directly to deviations from ideal
behavior, will serve in Chap. 12 as correction factors that transform Raoult’s law
inte a valid general expression for vapor/liquid equilibrium. Their definitions .
depend on development of the concept of fugacity, which provides an alternative
to the chemical potential as a criterion for phase equilibrium. This treatment first
requires the introduction of a new class of thermodynamic properties known as
partial properties. The mathematical definition of these quantities endows them
with all the characteristics of properties of the individual species as they exist m
solution.
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11.1 PARTIAL PROPERTIES

The definition of the chemical potential by Eq. (10.1) as the. mole-number
derivative of nG suggests that such derivatives may be of particular use in solution
thermodynamics.*We can, for example, write

V= [a(nV)]
8".- P.T,m;

This equation defines the partial molar volume V; of species i in solution. It is
simply the volumetric response of the system to the addition at constant T and
P of a differential amount of species i. A partial molar property may be defined
in like fashion for each extensive thermodynamic property. Letting M represent
the molar value of such a property, we write the general defining equaticn for a

partial molar property as
M, = [a(nM )]
&n, PT, y

Here, M, may represent the partial molar internal energy U, the partial molar
enthalpy H;, the partial molar entropy $;, the partial molar Gibbs energy G,, etc.
Comparison of Eq. (10.1) with Eq. (11.2) written for the Gibbs energy shows
that the chemical potential and the partial molar Gibbs energy are identical, that
iS, W= G,'.

(1L.1)

(11.2)

Example 11.1 What physical interpretation can be given to the defining expression
{Eq. {11.1)] for the partial molar volume?

SOLUTION Consider an open beaker containing an equimolar mixture of alcohol
and water. The mixture occupies a total volume #V ai room temperature T and
atmospheric pressure P. Now add to this solution a small drop of pure water, also
at T and P, containing An, moles, and mix it thoroughly into the solution, allowing
sufficient time for heat exchange so that the contents of the beaker return to the initial
temperature. What is the volume change of the solution in the beaker? One might
suppose that the volume increases by an amount equal to the volume of the water
added, i.e,, by V,, An,, where V,, is the molar volume of pure water at T and P. If
this were true, we would have

A(rV) =V, An,

However, we find by experiment that the actual value of A(nV) is somewhat less
than that given by this equation. Evidently, the effective molar volume of the added
water in solution is less than the molar volume of pure water at the same T and P.
Designating the effective molar volume in solution by V,,, we can write

A(nV) =V, An,, (A)
or
An,,
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If this effective molar volume is to represent the property of species i in ¢
original equimolar solution, it must be based on data fora solution of this compositig
However, in the process described a finite drop of water is added to the equimg]
solution, causing a small but finite change in composition. We may, however, cons;
the limiting case for which An,, > 0. Then Eq. (B) becomes ’

AnV) d(nV)
" dn,

Vo=V = Alnl:'—loo An,,

Since T, F, and n, (the number of moles of alcohol) are constant, this cquatio:i
more appropriately written: ' ;
- 3nv '
Vw = [ﬂ_)] (

anw PT.n,

which is a particular case of Eq. (11.1}. Thus the partial molar volume of the wa
in solution is the rate of change of the total solution volume with n,, at constant

P, and n,.
If we write Eq. (A) for the addition of dn, moles of water to the solution

becomes
d(nv)=V,dn, (

When V, is considered the effective molar property of water as it exists in soluti
the total volume change d{nV) is merely this molar property multiplied by the num
of moles of water added. '
If dn, moles of water is added to a volume of pure water, then we have ev
reason to expect the volume change of the system to be given by

d(nV)=V,dn, (

where V, is the molar volume of pure water at T and P. Comparison of Egs.
and (F) indicates that V, = V,, when the “solution” is taken as pure water.

The definition of a partial molar property, Eq. (11.2), provides the mes
for calculation of partial properties from solution-property data. Implicit in
definition is a second, equally important, equation that allows the calculation
solution properties from knowledge of the partial properties. The derivation
this second equation starts with the observation that the thermodynamic properti
of a homogeneous phase are functions of temperature, pressure, and the numb
of moles of the individual species which comprise the phase. For thermodyna
property M we may therefore write

mM:M(‘TsR"laHZ:"Zh"')

The total differential of nM is then
a(nM)] [a(nM)] [a(nM)]
d(nM) =|—— aP+ | —— dT+3¥ | — dn,
(" ) [ ar T.n aT Pn Z. an; IP.T,n; n

where subscript n indicates that all mole numbers are held constant, and subs
n; that all mole numbers except n; are held constant. Because the first two pa
derivatives on the right are evaluated at constant » and in view of Eq. (11
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this equation may be written more simply as

S (M oM ;
d(nM)wn(ap)mdP+n(a—f)ﬂxdT+ZMdn,- (11.3)

where subscript % denotes differentiation at constant composftion.
Since n; = xn,
dni = x,dn+ ndx,'
Replacing dn; by this expression and replacing d(nM) by the identity
d(nM)=ndM + M dn
we write Eq. (11.3) as
aM oM
ndM+ Mdn=n|— — v
n (aP )T-x dP + n(aT)P_x dT+ Z M;(x,' d" + ﬂdxi)

When_the tenps containing n are collected and separated from those containing
dn, this equation becomes

oM aM _
| [dM - (EF)T.I dP — (E:)P’x dTr -% M,-dx,»] nt[M —Ex,-AZ] dn=20
In application, one is free to choose a system of any size, as represented by n,
?nd to choose any variation in its size, as represented by dn. Thus, n and dn are
independent and arbitrary. The only way that the left-hand side of this equation
can then, in general, be zero is for both quantities enclosed by brackets to be
zero. We therefore have: '

M aM
dM = | — dP + | — . dx;
() ar(2) arezmas mo
and
M =Y xM, (11.5)
Maultiplication of Eq. (11.5) by n yields the alternative expression
nM = Z "iMi (1]‘6)

Equation (11.4) is in fact just a special case of Eq. (11.3), obtained by setting

n = 1, which also makes n; = x;. Equations (11.5) and (11.6) on the other hand

are new and vital. They allow the calculation of mixture properties from partial

properties, playing a role opposite to that of Eq. (11.2), which provides for the
calculation of partial properties from mixture properties.

_ One further important equation follows directly from Egs. (11.4) and (11.5).

Since Eq. (11.5) is a general expression for M, differentiation yields a general
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expression for dM:
dM =¥ x,dM, + ¥ M, dx,

Comparison of this equation with Eq. (11.4), another general equation for d
yields the Gibbs/ Duhemt equation: :

aM oM -
—_ T — dM; =
(aP)T‘ dP"l‘(aT)P’Id Exg i 0

(I

This equation must be satisfied for all changes in P, T, and the M; caused b
changes of state in a homogeneous phase. For the important special case
changes at constant T and P, it simplifies to:

Y xdM; =0 (const T, P) (11,

Equation (11.5) implies that a molar solution property is given as a sum
its parts and that M; is the molar property of species i as it exists in solutio
This is a proper interpretation provided one understands that the defining equatio
for M,, Eq. (11.2), is an apportioning formula which arbitrarily assigns to ea
species i a share of the mixture property, subject to the constraint of Eq. (11.5)

The constituents of a solution are in fact intimately intermixed, and owin
to molecular interactions cannot have private properties of their own. Neverthele
they can have assigned property values, and partial molar properties, as define
by Eq. (11.2), have all the characteristics of properties of the individual speci
as they exist in solution.

The properties of solutions as represented by the symbol M may be on
unit-mass basis as well as on a mole basis. The equations relating solutior
properties are unchanged in form; one merely replaces the various n’s, represen
ing moles, by m’s, representing mass, and speaks of partial specific properti
rather than of partial molar properties. In order to accommodate either, w
generally speak simply of partial properties.

Since we are concerned here primarily with the properties of solutions,
represent molar (or unit-mass) properties of the solution by the plain symbol
Partial properties are denoted by an overbar, and a subscript identifies the specie
giving the symbol M. In addition, we need a symbol for the properties of th
individual species as they exist in the pure state at the T and P of the solution.
These molar (or unit-mass) properties are identified by only a subscript, and the
symbol is M;. In summary, three kinds of properties used in solution thermody:
namics are distinguished by the following symbolism:

t Pierre-Maurice-Marie Duhem (1861-1916), French physicist.
 Other apportioning equations, which make different allocations of the mixture property,
possible and are equally valid.
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Solution properties M,
Partial properties M;,
Pure-species properties M,,

forexample, U H, S, G
for example, U,, H,, 8., G
for example, U;, H;, §;, G,

Example 11.2 The need arises in a laboratory for 2,000 cm® of an antifreeze solution
consisting of a 30 mole percent solution of methanol in water, What volumes of pure
methanol and of pure water at 25°C must be mixed to form the 2,000 ecm® of antifreeze,
also at 25°C? Partial molar volumes for methanol and water in a 30 mole percent
methanol solution at 25°C are:

Methanol({1):
Water(2):

V, = 38.632 cm’ mol ™'
V, = 17.765 cm® mol ™!
For the pure species at 25°C:

Methanol(1):
Water(2):

Vv, = 40.727 ¢m® mol ™’

V, = 18.068 cm® mol™!

SoLuTIiON Equation {11.5) written for the volume of a binary solution is
v=xV,+xV,

All quantities on the right are known, and we calculate the molar volume of the
antifreeze solution:

V = (0.3)(38.632) + (0.7)(17.765) =
The required total volume of solution is
V! = nV = 2,000 cm’

24.025 ¢cm® mol ™!

Thus the total number of moles required is

Of this, 30 percent is methanol, and 70 percent is water:
n, = (0.3)(83.246) = 24.974 mol
n, = (0.7)(83.246) = 58.272 mol
The volume of each pure species is V| = n;V;; thus
Vi = (24.974)(40.727) = 1,017 cm®
= (58.272)(18.068) = 1,053 cm®

Note that the simple sum of the initial volumes gives a total of 2,070 cm?, a volume
more than 3 percent larger than that of the sclution formed.

b 11.2 FUGACITY AND FUGACITY COEFFICIENT

For a constant-composition fluid at constant temperature, Eq. (6.10) becomes
dG = VdP (11.9)

An inherent problem with use of the Gibbs energy has its origin with this equation.

(const T')
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Integration at constant temperature from the state of a gas at a low pressure P
to the state at higher pressure P gives

P
G*=G- I vdp
P‘
In the limit as P* approaches zero, V becomes infinite, making the integrall
infinite as well. Thus
Hm G*= G -
P*20
If we are to have finite values of G at positive pressures, then the Gibbs ene
must approach the awkward limit of —co as P* approaches zero.
We can, however, define an auxiliary property that is mathematically bett
behaved. A clue to the nature of such a property is found in Eq. (11.9) writte
for an ideal gas:

RT

dG"® = V94P = 7 dP  (const T)

or

dG” = RTdInP  (const T) (11.10)

Although correct only for an ideal gas, the simplicity of this equation sugges f:;
writing another equation of exactly the same form for a real fluid that defines f
new property f that also has dimensions of pressure: 4

dG=RTdInf| (constT) (11113

Equation {11.11) serves as a partial definition of f, which is called fugacity.t
Subtraction of Eq. (11.10) from Eq. (11.11) gives

dG—-dG"Y=RTdInf— RTdInP
or
£
P
According to the definition of Eq. (6.32), G — G" is the residual Gibbs ener

G*; the dimensionless ratio f/ P is a mixture property called the fugacity coefficier
and given the symbol ¢. Thus,

dG® = RTdIn ¢

d(G—-—G")Y=RTd (const T')

{const T) (11.12

1 Introduced by Gilbert Newton Lewis (1875-1946), American physical chemist, who als
developed the concepts of the partial property and the ideal solution. ’

where
=L
¢= P (11.13)
v
Integration of Eq. (11.12) yields the general relation,
GR=RTIn¢ + C(T) (11.14)

where the integration constant is a function of temperature only. We now complete
the definition of fugacity by setting the fugacity of an ideal gas equal to its pressure:

fo=p (11.15)

Thus for the special case of an ideal gas, G® =0, ¢ = 1, and the integration
constant in Eq. (11.14) must vanish. Therefore C(T} =0, and Eq. (11.14) may
be written

GR
RT_]n¢ (11.16)
This general equation applies to a mixture.
For the special case of pure species i, Eq. (11.11) is written
dG,= RTd Inf (const T') (1117
Equation {(11.16) here becomes
Gt '
—+ = i 11.1
=T = 0 & (11.18)
where
Sf;
== 11.
& P (11.19)

The identification of In ¢ with G®/RT allows Eq. (6.40) to be rewritten as

ln¢=J (Z—l)dFP (11.20)

o

(const T, x)

Fugacity coefficients (and therefore fugacities) are evaluated by this equation
from PVT data or from an equation of state. For example, when the compressibil-
ity factor is given by Eq. (3.31), we have

Z-1=%r

where the second virial coefficient B is a function of temperature only for a
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constant-composition gas. Substitution into Eq. (11.20) gives

B P
In¢g = RT L dP (const T, x)

whence
BP

Ing =—

o (11.28

Equation (11.17), which defines the fugacity of pure species i, may
integrated for the change of state from saturated liquid to saturated vapor, bog!
at temperature T and at the vapor pressure Pi™:

fi
- G!=RThh=
fi

G! = 0; therefore ,

fi=fi=r" (11.23
where f;* indicates the value for either saturated liquid or saturated vapor.
corresponding fugacity coefficient is

sat _ E
L pat

According to Eq. (6.47), G/ —

(11.23

whence
= ¢ = i (11.24

Since coexisting phases of saturated liquid and saturated vapor are in equ:
librium, the equality of fugacities as expressed by Eqs. (11.22) and (11.24)
criterion of vapor/liquid equilibrium for pure species.

Because of the equality of fugacities of saturated liquid and vapor,
calculation of fugacity for species i as a compressed liquid is done in two step
First, one calculates the fugacity coefficient of saturated vapor ¢; = ¢3* by 2
integrated form of Eq. (11.20), evaluated for P = P;*. Then by Eqs (11.
and (11.23),

f_l' - §at - ¢satPsat
The second step is the evaluation of the change in fugacity of the liquid with

increase in pressure above P}*. The required equation follows directly fro
Eq. (11.17),

dG, = RTdInf; (const T')
together with Eq. (11.9) written for pure species i
4G, =V.dP  (constT)
Whence
dlnf—idP ( t T) (11.2
= RT cons .
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Integration from the state of saturated liquid to that of compressed liquid gives

fi _ 1 [°

V.
= RT ) Ve

Since V,, the liqﬁid-phase molar volume, is a very weak function of P at
temperatures well below T, an excellent approximation is often obtained when
evaluation of the integral is based on the assumption that V; is constant at the
value for saturated liquid, V/:

f; l( P- Psal)
fsal RT
Substituting f1* = ¢;* P* and solving for f; gives

Vi(P - P™)
PTRT

The exponential is known as the Poynting?t factor.

In

fi=oMP™ex (11.26)

Example 11.3 For H,O at a temperature of 300°C and for pressures up to 10,000 kPa
(100 bar) plot values of f; and ¢, calculated from data in the steam tables vs. P,
SoLuTiON Egquation (11.17) may be written:
1
d =—
In f; RT dG,

Integration from a low-pressure reference state {designated by *) to a state at pressure
P, both at the same temperature T, gives

e

in ;= 27(Gi- GP)
By the definition of the Gibbs energy,
G, =H, - TS,
and
G¥ = H¥ - Ts¥
Whence
lnf%= % -H‘_TH?— (S — S’f)-

If the reference-state pressure P* is low enough that the fluid closely approximates
an ideal gas, then f¥ = P* and

mdo - LB (5 st (4)

P* R T

tJohn Henry Poynting (1852-1914), British physicist.
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The lowest pressure for which data at 300°C are given in the steam tables:
1 kPa, and we assume that steam at these conditions is for practical purposes an idey
gas. Data for this state provide the following reference values:

=1kPa
=30768Tg"
§F=1034505g7 ' K™

Equation (A) may now be applied to states of superheated steam at 300°C for vari
values of P from 1kPa to the saturation pressure of 8,592.7 kPa. For example
P = 4 000 kPa and 300°C,

H, =29620J)g"

S, =6.36427 g7 K™
These values must be multiplied by the molar mass of water (18.016) to put them ¢
a molar basis for substitution into Eq. (A):
1 Ji _ 18:016 [2,962.0 -3,076.8
P* 8314 573.15
= 8.1922

and f/P* = 3,612.5. Since P* = 1kPa, f; = 3,612.5kPa. The fugacity cocfficient il
given by

- (6.3642 — 10.3450)]

4,000

Similar calculations at other pressures lead to the values plotted in Fig. 1L.1
pressures up to the saturation pressure of 8,592.7 kPa, where [ =6,742.2kPa a
&% = .7846. According to Egs. (11.22) and (11.24), the saturation values

unchanged by condensation.
Values of f; and ¢; for liquid water at hlgher pressures are found by applicatios
of Eq. (11.26). Taking V, equal to the molar volume of saturated liquid water

300°C, we have,

V, = (1.404)(18.016) = 25.29 cm® mol ™’

Fot a pressure of 10,000 kPa, Eq. (11.26} then gives

25.29(10,000 — 8,592.7)
(8,314)(573.15)

J, =6,742.2 exp =6,792.7kPa

The fugacity coefficient for liquid water at these conditions is then
& = £,/ P = 6,792.7/10,000 = 0.6793

Such calculations allow completion of Fig. 11.1, where the solid lines show how
and ¢, vary with pressure.

The curve for f; deviates increasingly with increasing pressure from ideal
behavior, which is shown by the dashed line, f; = P. At P{" there is a sharp bre
and the curve then rises very slowly with increasing pressure. Thus the fugacity o
llquld water at 300°C is a weak function of pressure. This behavior is characteristi¢
of liquids at temperatures well below the critical temperature. The fugacity coefficient
&, decreases steadily from its zero-pressure value of unity as the pressure rises. I
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Figure 11.1 Fugacity and fugacity coefficients of pure species i as functions of pressure at constant
temperature.

rapid decrease in the liquid region is a consequence of the near constancy of the
fugacity itself.

11.3 FUGACITY AND FUGACITY COEFFICIENT
FOR SPECIES i IN SOLUTION

F9r a species in solution, we recall that the chemical potential u; is identical
with the partial molar Gibbs energy. Therefore, we write Eq. (10.9) for an idéal
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gas as
Gf=G¥+RThny,

Differentiation at constant temperature gives

dGY = dG¥ + RTdIny, (const T)
In combination with Eq. (11.10) this becomes _
dG¥=RTdInyP (constT) (11

For spécies i in a real solution, we proceed by analogy with Eq. (11.11) and v
the defining equation:

dG,= RTd n f, (const T) (11

where f’. is the fugacity of species i in solution. However, it is not a pa
property, and we therefore identify it by a circumflex rather than an overbar. §

An immediate application of this definition shows its potential utility.
Sec. 10.2 we found that the chemical potential provides a criterion for phag
equilibrium according to the equation

pi=pb=-=pl  (=12...,N) (103

An alternative and equally general criterion follows from Eq. (11.28); si
s = G, this equation may be written

du,=RTdInf;
Integration at constant temperature gives

p = RTIn f, + 0.(T)

(const T}

where the integration constant depends on temperature only. Since all phase
equilibrium are at the same temperature, substitution for the u’s in Eq. (1
leads to

A

fe=fe=---=fr (i=1,2,...

Thus multiple phases at the same T and P are in equilibrium when the fuga
of each species is uniform throughout the system. This criterion of equilibri
is the one usually applied by chemical engineers in the solution of phasé
equilibrium problems.

For the specific case of multicomponent vapor/liquid equilibrium, Eq. (11.
becomes

fe=f1 (i=1,2,...,N) <11

Equation (11.22) results as a special case when this relation is applied to th
vapor/liquid equilibrium of pure species i.
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The definition of the residual Gibbs energy as given by Eq. (6.32) is readily
combined with Eq. (11:2), the definition of a partial property, to provide a defining
equation for the partial residual Gibbs energy. Thus, upon multiplication by n,
Eg. (6.32) becomes

nG® = nG ~ nG*

This equation applies to n moles of mixture. Differentiation with respect to n,
at constant T, P, and the n; gives:

[6(nGR)] B [a(nG)] _ [a(nGi")]
an; PTm - an,‘ P Tn; . aﬂi PTw

Reference to Eq. (11.2) shows that each term has the form of a partial molar
property. Thus,

G'=G, -G

(11.31)

an equation which defines the parrial residual Gibbs energy, GFR.
Subtracting Eq. (11.27) from Eq. {11.28) gives

d(G,— G¥) = RTd ln—‘fi—-
Y

By Eq. (1 1;31), G, — G¥ is the partial residual Gibbs energy G ; the dimension-
less ratio f;/y.P is called the fugacity coefficient of species i in solution, and is
given the symbol ¢,. Then

(const T')

dGR=RTdIn¢;, (const T) (11.32)

where

-

~

b = (11.33)

yP

Integration of Eq. (11.32) at constant temperature yields the general eguation
GR = RTIn ¢; + B(T)

where the integration constant is a function of 7. However, if this equation is
applied to a pure species, it must reduce to Eq. (11.18). Thus 8(T) = 0, and we
have

GF -
—=1In &;

RT (11.34)

This general result is the analog of Eqs. (11.16) and (11.18), which relate ¢ to
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R and ¢, to G}'. For an ideal gas, GR is necessarily zero; therefore d;," =1,

fie = yP : (11.38

Thus the fugacity of a species in an ideal-gas mixture is equal to the pa
pressure of the species.

Since GX/RT is a partla] property with respect to G*/RT, Egs. (11.34) a
(11.16) show that In qb, is a partial property with respect to in ¢. As a resy
of Eqs. (11.2) and (11.5) we therefore have the following important relatlons“

and
lnqb=£xilnd;,- (1

In addition, the Gibbs/ Duhem equation as given by Eq. (11.8) becomes

Yxding =0 (const T, P) (1

Example 11.4 Develop a general equation for calculation of In &; values from cog
pressibility-factor data.

SoLuTION For n moles of a constant-composition mixture, Eq. (11.20) becom
r dP
ning = (nZ — n)—
ﬂ P
Direct application of Eq. (11.36) to this expression gives

nd J‘P [a(nZ—n)] dpP
n ¢, = _— —
Tl an, rtm P

Since a(nZ)/an, = Z, and an/an; = 1, this becomes
P
=1 (Z-1)— 1L
]n ¢i Io ( i )P (

where integration is at constant temperature and composition. This general equa
is the partial-property analog of Eq. (11.20). It allows the calculation of ¢, v
from PVT data.

11.4 GENERALIZED CORRELATIONS FOR
THE FUGACITY COEFFICIENT

The generalized methods developed in Sec. 3.6 for the compressibility factor-

and in Sec. 6.6 for the residual enthalpy and entropy of pure gases are app
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here to the fugacity coefficient. Equation (11.20) is put into generalized form by
substitution of the relationships

P=PP dP = P_dP,
Whence

. P,
ln¢=J. (Z——])%P’ (11.40)
¢ r

where integration is at constant T,. Substitution for Z by Eq. (3.45) yields

P, 5 dP
+ z'—
@ J'O Pr

P’
In¢ =j (Z°
0

Alternatively, we may write

In¢ =In¢°+ wlIn ¢' (11.41)
}‘where
F,P’
Ing’=| (2°-1)
o’
and
(P dP
ng'=| Zz'—
n¢ J0 Pr

Calculated values of In ¢° and In ¢ result from evaluation of the integrals
for various T, and P, from the compressibility-factor data of Figs. 3.12 through
3.15, and we may plot these quantities vs. P, for selected values of T,. We also
have the option of plotting ¢° and ¢' rather than their logarithms. Equation
(11.41) is then written

¢ = (")) (11.42)

This is the choice made here, and Figs. 11.2 through 11.5 provide a three-parameter
generalized correlation for the fugacity coefficient. Figures 11.2 and 11.4 for ¢°
can be used alone as a two-parameter correlation which does not incorporate
the refinement introduced by the acentric factor.

Example 11.5 Estimate from Eq. (11.42) a value for the fugacity of 1-butene vapor
at 200°C and 70 bar.

SoLUTION These are the same conditions given in Example 6.5, where we found
T, =113 P =174 w = 0.187
From Figs. 11.3 and 11.5 at these conditions,

$° =0.620 and ¢' = 1.095
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Figure 11.2 Generalized correlation for ¢°, P, < 1.0. (Based on data of B. I. Lee and M. G. Ki —— '
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Equation (11.42) then gives:
& = (0.620)(1.095)*'% = 0.631 :' \-_______—-- L0
and * 0.2
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f = ¢P =(0.631)(70) = 44.17 bar P
A particularly simple generalized correlation for In ¢ results when Figure 11.3 Generalized correlation for °, P, > 1.0. (Based on data of B. I. Lee and M. G. Kesler,

simplest form of the virial equation is valid. Equations (3.46) and (3.47) combind p . ibid.)
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Substitution in Eq. (11.40) and integration yield Figure 11.5 Generalized correlation for.¢', P, > 1.0. (Based on data of B. I. Lee and M. G. Kesler, ibid.)

In ¢ = 2£(B°+ wB') (11.43 : o - . :
T, : Although we have omitted an identifying subscript in the preceding equations,

their application so far has been to the development of generalized correlations
for pure gases only. In the remainder of this section we show how the virial
equation may be generalized to allow calculation of fugacity coefficients ¢; of
species in gas mixtures.

This equation, used in conjunction with Egs. (3.48) and (3.49), provides relial
values of ¢ for any nonpolar or slightly polar gas when applied at ¢onditioB
where Z is linear in pressure. Figure 3.16 again serves as a guide to the valid
of this criterion.
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The virial equation is written for a gas mixture exactly as it is for a p
species. Thus Eq. (3.31),

BP
Z—l+ﬁ;

expresses the compressibility factor, and Eg. (11.21),

In b = 25
¢=R®T

the fugacity coefficient of a constant-composition gas mixture. Here, the secory
virial coefficient B is a function of composition, a dependence that arises beca
of the differences between force fields of unlike molecules. Its exact compositi
dependence is given by statistical mechanics, and this makes the virial equati
preeminent among equations of state where it is applicable, i.e., to gases at |
to moderate pressures. The equation giving this composition dependence is

B =1Y yyBy (1.
i}

where y represents mole fractions in a gas mixture. The indices i and j iden
species, and both run over all species present in the mixture. The virial coeffici
By characterizes a bimolecular interaction between molecule i and molecul
and therefore B, = B;. The summations account for all possible bimole
interactions.

For a binary mixture { = 1,2 and j = 1, 2, and expansion of Eq. (11.44) giv§

B = y,y,By; + »17:B12 + y2y1Bay + y292 By

or
B =ny1. +2}’1y2B12+J’§B22 (i1

Two types of virial coefficients have appeared: B, and By, for which
successive subscripts are the same, and B;,, for which the two subscripts
different. The first type represents the virial coefficient of a pure species;
second is a mixture property, known as a cross coefficient. Both are function:
temperature only. R
Equation (11.45) allows us to find expressions for In $1 and In ¢, for a bin
gas mixture that obeys Eq. (3.31), the simplest form of the virial equati
Equation (11.21) for the mixture may be multiplied by n:
(nB)P

miné = Rr

Differentiation with respect to n, gives

[a(n In qb)] _ _ﬂ[a(uB)]
on PTn, B RT anl T.ny
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In view of Eq. (11.36) this may be written
. RT an, T,n,

All that remains is evaluation of the derivative.
The second virial coefficient as given by Eq. (11.45) may be written:

B = y,(1 = y,)By, + 233,815+ yo(1 — ,) By,

=yiBu — yy:B, + 2y1y:B, + 2By — Y1y2B5
or

B = y1Bi1 + y2By + yi 2612
where

6,=2B,,- B, - B,
Since y, = n;/n,

nB = n,B“ + nan + _’_ll_n28|2
n

Difterentiation gives

a(nB)] ! m
[—_am - =B+ (; - ;‘2‘) 13812

= By, + (1 = y1)y:6,; = By, + y36,2
Therefore

A P
In ¢, ='ﬁ(311+yg5z2) (11.46)

and similarly,

. P
In ¢, = = (Bn+ ¥1812) (11.47)

Equations (11.46) and (11.47) are readil icati i
S . y extended for application to mult -
ponent mixtures; the general equation is: i e

- P 1
In ¢ = R—T[Bkk + EZE:;}’M(M& - 31!)] (11.48)

where the dummy indices i and ! run over all species, and
65 =28, — B, — By
8;=2B; - B; - By

with §; = 0, 8§, =0, etc., and 8 = 8y, etc.

4 1;'H. C Van Ness and M M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With
pptications to Phase Equilibria, pp. 135-140, McGraw-Hill, New York, 1982.
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Values of the pure-species virial coefficients By, By, etc., can be determine
from the generalized correlation represented by Egs. (3.47) through (3.49).
cross coefficients B, By, etc., are found from an extension of the same correlatio
For this purpose, Prausnitzt has rewritten Eq. (3 .47) in the more general forn

Exampie 11.6 Esumate ¢, and ¢2 by Eqgs. (11.46) and (11.47) for an equimolar
mixture of methyl ethyl ketone(1)/toluene(2) at 50°C and 25 kPa. Set all k;=0.

SOLUTION The'required data are as follows:

RT..
B, = (B’ + w;B") (11.4 :
<if i Ty/K P,;/bar V,;;/em® mol ™! Z, wy
where B® and B! are the same functions of T, as given by Eqs. (3.48) and (3.49} , saos s
The combining rules proposed by Prausnitz for calculation of w;;, Ty, and Py a 2 W17 - 4Ll gf;' 8.;23 3.329
' : : . 257
12 563.0 41.3 291
w; T @ . 0.256 0.293

where values in the last row have been calculated by Eqgs. (11.50) through (11.54).
The values of T, together with B°, B', and By; calculated for each ij pair by Egs.
(3.48), (3.49), and (11.49), are as follows:

Tcl}' = (Tcich)Uz(l - ky)

and
p ZyRT,
cij Vcij ij Ty B° B Bu/cm3 mol™!
where 11 0.603 ~0.865 —-1.300 —1,387
Z 42z 22 0.546 —1.028 ~2.045 —1,860
z, =2 : 12 0.574 —0.943 -1.632 ~1,611
and Calculating §,, according to its definition, we get

812 = 2By, — By — By, = (2)(—1,611) + 1,387 + 1,860
=25 cm® mol™!
Equations (11.46) and (11.47) then yield:

VY34 v
Vcij = (_.._2._‘.'_)
In Eq. (11.51), k; is an empirical interaction parameter specific to an i

molecular pair. When i = j or when the species are chemically similar, ky =
Otherwise, it is a small positive number evaluated from minimal PVT data or 1

the absence of data set equal to zero.

25

- P
1= jr Bt = e aman

[-1,387 + (0.5)%(25)]

When i = j, all equations reduce to the appropriate values for a pure species = —0.0128
When i # j, these equations define a set of interaction parameters having n . P 25
physical significance. Reduced temperature is given for each ij pair by T Ing, = “ﬁ.(ﬂzz"'ﬁﬁu) ‘—'m[*lﬁﬁo-l' (0.5)%(25)]
T/ T, i ’
/ Toy. = —0.0172

For a mixture, values of By from Eq. (11.49) substituted into Eq. (11.44
yield the mixture second virial coefficient B, and substituted mto Eq. (11.48
[Egs. (11.46) and (11.47) for a binary] they yield values of In q’>,

The primary virtue of the generalized correlation for second virial coefficient:
presented here is simplicity ; more accurate, but more complex, correlations appe
in the literature.}

Whence
$,=0987 and  &,=0983

'[_‘hese results are representative of values obtained for vapor phases at typical condi-
tions of low-pressure vapor/liquid equilibrium.

+J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria, chap. 5, ?rentice—l-lali, : 11.5 THE EXCESS GIBBS ENERGY

Englewood Cliffs, N.J., 1969.
1 See, for example: J G. Hayden and J. P. O'Connell, Ind. Eng. Chem. Proc. Des. Deu,, 14: 209,

The residual Gibbs i i i
1975; D. W. McCann and R. P. Danner, Ind. Eng. Chem. Proc. Des. Dev., 23: 529, 1984. encrgy and the fugacity coefficient are directly related to

experimental PVT data by Egs. (6.40) and (11.20). Where such data can be
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adequately correlated by equations of state, thermodynamic-property informatig
is advantageously provided by these and other residual properties. Indeed
convenient treatment of all fluids by means of equations of state were possi
the thermodynamic-property relations already presented would suffice. Howeve
liquid solutions are often more easily dealt with through properties that measu
their deviations, not from ideal-gas behaviar, but from ideal-sclution behavie
Thus the mathematical formalism of excess properties is analogous to that of th
residual properties. o -
If M represents the molar value of an extensive thermodynamic prope
(for example, V, U, H, S, G, etc.), then an excess property M £ is defined as th
difference between the actual property value of a solution and the value it wou
have as an ideal solution (Sec. 10.4) at the same temperature, pressure, an
composition. Thus,

ME= M- M4 {11.55

where the superscript id denotes an ideal-solution value. This definition
analogous to the definition of a residual property as given by Eq. (6.35). Howe
excess properties have no meaning for pure species, whereas residual prope
exist for pure species as well as for mixtures,

The only excess property of immediate interest is the excess Gibbs ene

GE=G-G" (11.

Multiplication of this equation by n and differentiation with respect to n,
constant T, P, and n; leads to the analog of Eq. {11.31), which was derived
exactly the same way:

GE=G -G (11.57

Equation (11.57) defines the partial excess Gibbs energy.

Equation (11.28) may be integrated at constant T and P for the change
species i from a state of pure i, where G, = G, and f, = £, to a state in soluti \
at arbitrary mole fraction x;: '

Gj - G,' = RTln%

Since the chemical potential u; and the partial molar Gibbs energy are identi
Eq. (10.14) gives the partial molar Gibbs energy for species i in an ideal soluti

5@ -~ G, = RT Inx,
The difference between this expression and Eq. (11.58) is

(1.

G -Gi = RTln—-J:’—
xlfi

SYSTEMS OF VARIABLE COMPOSITION. NUMIDEAL BEHAVIOUR I8

According to Eq. (11.57), G; ~ Gi* is the partial excess Gibbs energy GF;
the dimensionless ratio. f;/ x.f; is called the activity coefficient of species i in solution,
and is given the Symbol v;. Thus, by definition,

?,. = x% (11.59)
and
GE=RThnvy,
or
E
1_2_';_' =1nvy; (11.60)

Comparison with Eq. (11.34) shows that Eq. (11.60) relates y; to G exactly
as Eq. (11.34) relates ¢; to GF.

For an ideal solution, GE = 0, and therefore y; = 1. For this case, Eq. (11.59)
becomes

Jit = xf,

This expression is known as the Lewis/ Randall rule.

Since GE/RT is a partial property with respect to G*/RT, it follows from
Eq. (11.60) that In ¥, is also a partial property with respect to G¥/RT. As a result
of Egs. (11.2), (11.5), and (11.8) we therefore have the following important
relations:

(11.61)

a(nGE/RT)]
= 11.62
to 7 [ an; P Tm, ( )
GE
— = ; ; 11.63
r=Ixlny, (11.63)
and
Yxdiny,=0 {const T, P) (11.64)

The usefulness of these equations derives from the fact that v, values are experi-
mentally accessible through vapor/liquid equilibrium (VLE) data, as explained
in the follovn}ing section. Once established, values of the activity coefficients are
used in the calculation of phase compositions for systems in vapor/liquid equi-
librium, as discussed in Chap. 12.
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adequately correlated by equations of state, thermodynamic-property inform
is advantageously provided by these and other residual properties. Indeed; %}
convenient treatment of all fluids by means of equations of state were possibh
the thermodynamic-property relations already presented would suffice. Howe
liquid solutions are often more easily dealt with through properties that meas
their deviations, not from ideal-gas behavior, but from ideal-solution beha
Thus the mathematical formalism of excess properties is analogous to that of
residual properties.
If M represents the molar value of an extensive thermodynamic prop
(for example, V, U, H, S, G, etc.), then an excess property ME is defined as
difference between the actual property value of a solution and the value it wo
have as an ideal solution (Sec. 10.4) at the same temperature, pressure,
composition. Thus,

ME= M- MY (11.

where the superscript id denotes an ideal-solution value. This definition '
analogous to the definition of a residual property as given by Eq. {6.35). Howe
excess properties have no meaning for pure species, whereas residual prope
exist for pure species as well as for mixtures.

The only excess property of immediate interest is the excess Gibbs ene

GE=G-Gg“

Multiplication of this equation by » and differentiation with respect to n,
constant T, P, and n; leads to the analog of Eq. (11.31), which was derive
exactly the same way:

G - (11

GF = G,- Gt

Equation (11.57) defines the partial excess Gibbs energy.

Equation (11.28) may be integrated at constant T and P for the chang
species i from a state of pure i, where G, = G; and f, = f,, to a state in solul
at arbitrary mole fraction x;:

£

f;

Since the chemical potential u; and the partial molar Gibbs energy are identicy
Eq. (10.14) gives the partial molar Gibbs energy for species 7 in an ideal solutiol

G- G,=RTInx;

G, -G, =RTIn (1t

The difference between this expression and Eq. (11.58) is

A

J;

G, -G¥=RThnh
x. f;
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4ccorc!ing to Eq: (11.57), G, — G¥ is the partial excess Gibbs energy GF.
the d'lme‘nsxonless ratio ﬁ /x.f, is called the activity coefficient of species i in solution:
and is given the symbol y,. Thus, by definition,

Ll (11.59)
and
Gi=RThny,
or
~E
Eif= Iny, (11.60)

Comparison with Eq. (11.34) shows that E c
p t) q. {11.60) relates v, to GF ot
as Eq. (11.34) relates ¢, to GF. ! i exactly

For an ideal solution, G = 0, and therefore v, = 1. F. \ ,
becomes 7: = L. For this case, Eq. (11.59)

Fit=xf,
This f:xpresg;i_on is known as the Lewis/ Randall rule.
Since Gi/RT isa partial property with respect to G®/RT, it follows from
Eq. (11.60) that In v, is also a partial property with respect to G5/ RT. As a result

of Bgs. (11.2), (11.5), and (11.8) we therefore h e L
relations: ) efore have the following important

(11.61)

a(nGE/RT)]
on, pin (11.62)
E
E=inln ¥ {11.63)
and
Yxdlny,=0 {const T, P) (11.64)

The usefulness t_)f these equations derives from the fact that v; values are experi-
mentally accc;s_mble t‘hrough vapor/liquid equilibrium (VLE) data, as explained
In the following section. Once established, values of the activity coefficients are

used in the calculation of phase compositi i iqui i
" . positions for systems in vapor/liquid equi-
librium, as discussed in Chap. 12, porfla !
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Figure 11.6 A state of vapor/liquid
equilibrium represented schem
cally.

11.6 ACTIVITY COEFFICIENTS FROM VLE DATA

Figure 11.6 shows a vessel in which a vapor mixture and a lfquid solution coexist
in equilibrium. The temperature T and pressure P are uniform ;hroughout th
vessel, and can be measured with appropriate instruments. San}ples of thf: vapot
and liquid phases may be withdrawn for analysis, and this prov1fles experimenta
values for the mole fractions in the vapor {y;} and the mole fractions in the liqu

{x:}. For species i in the vapor mixtures, Eq. (11.33) is written: '

f P = yi$iP
and for s'-pecies i in the liquid solution, Eq. (11.59) becomes
f i = xvf;

According to Eq. (11.30) these two expressions must be equal; whence

ybP=xyfi| (i=12..,N) (11.65

Superscripts ¢ and ! are omitted here with the understandi_ng that c;b_,- re‘fcrs t
the vapor phase and that y; and f; are liquid-phase properties. Substituting fo,
fi by Eq. (11.26) and solving for v, gives :

_ »®P

Yi_xinim (i=l,2,...,N)

(]1.66_
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Table 11.1 VLE Data for methyl ethyl ketone(1)/toluene(2) at 50°C

P/kPa 0 " Iny, In vy, GE/RT G5/ x, 2%, RT
12.30% 0.0000 00000 ..., 0.000 0.000
15.51 0.0895 0.2716 0.266 0.009 0.032 0.389
18.61 0.1981 0.4565 0.172 0.025 0.054 0.342
21.63 0.3193 0.5934 0.108 0.049 0.068 0.312
24.01 0.4232 0.6815 0.069 0.075 0.072 0.297
25.92 0.5119 0.7440 0.043 0.100 0.071 0.283
29.96 0.6096 0.8050 0.023 0,127 0.063 0.267
30.12 0.7135 0.8639 0.010 0.151 0.051 0.248
31.75 0.7934 0.9048 0.003 0.173 0.038 0.234
34.15 0.9102 0.9590 -0.003 0.237 0.019 0.227
36.09% 1.0000 1.0000 0000 ..., 0.000

t P

i P
where

_ & VAP — P
b T (11.67)

We could of course calculate ®; values by Eq. (11.67) for conditions of
low-pressure VLE and combine them with experimental values of P, T, x;, and
¥; for the evaluation of activity coefficients by Eq. (11.66). However, at.low
pressures (Pp to at least 1 bar), vapor phases usually approximate ideal gases,
for which ¢; = ¢3* = 1, and the Poynting factor (represented by the exponential}
differs from unity by only a few parts per thousand. Moreover, values of ¢, and
@™ differ significantly less from each other than from unity, and their influence
in Eq. (11.67) tends to cancel. Thus the assumption that ®; = 1 introduces little
error for low-pressure VLE, and it reduces Eq. (11.66) to

_ yP
Yi P

--» N) (11.68)

This simple equation is adequate to our present purpose, allowing easy calculation
of activity coefficients from experimental low-pressure VLE data. For comparison,
when a system obeys Raoult’s law, y,P = x,P%, and v, = I.

The first three columns of Table 11.1 contain experimental P-x-y; data for
the methyl ethyl ketone(1)/toluene(2) system at 50°C.¥ These data points are
also shown as circles on Fig. 11.7. Values of In v, and In ¥, calculated for each
data point by Eq. (11.68) are listed in columns 4 and 5 of Table 11.1, and are
shown by the open squares and triangles in Fig. 11.8. These are combined

T M. Diaz Peiia, A. Crespo Colin, and A. Compostizo, J. Chem. Thermodyn., 10: 337, 1978.
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P/kPa
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X1y ¥

Figure 11.7 Pxy data at 50°C for methyl ethyl ketone(1)/toluene(2).

according to Eq. (11.63) written for a binary system:

E

—=xIny, +x;1n v
RT Iy, 2

(11,

The values of GZ/RT so calculated are divided by x,x; t.o provide in additi :
values of GE/x,x,RT; the two sets of numbers are listed in columns 6 and 74

Table 11.1 and appear as solid circles on Fig. 11.8. _
The four thermodynamic functions for which we have experimental value

In ¥, 1n y., G®/RT, and G*%/x,x,RT, are properties of the liquid phase. Figu

11.8 shows how each varies with composition. This figure is characteristic (

systems for which
vw=1 and Iny=0 (i=1,2)

Such systems are said to show positive deviations from Raoult’s law. This is se¢
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0.3 \.\GE/x,xZRT
o\.
\.
~e. 4
]

0.2 In ¥, I s

=]

In v,
o1l o
. — -
o o G/RT
~ ~e
\
| | 1
0 0.2 0.4 06 0.8 1.0
X)

Figure 118 Liquid-phase properties from VLE data for methyl ethyl ketone(1)/toluene(2) at 50°C,

also in Fig. 11.7, where the P-x, data points all lie above the dashed line
representing the linear relation of Raoult’s law,

The points on Fig. 11.8 representing In y; (i = 1, 2) are seen to tend toward
zeroas x; - 1. This is in accord both with Eq. (11.59) and Eq. (11.68); by the latter,

fim v = Jim 25 - P
= T PR T (P

Thus the activity coefficient of a species in solution becomes unity as the species
becomes pure. At the other limit, where x, > 0 and species 7 becomes infinitely
dilute, In ¥; is seen to approach some finite limit, which we represent by In ;.

In the limit as x, - 0, the dimensionless excess Gibbs energy G%/RT as
given by Eq. (11.69) becomes

1

GE

J[:g},ﬁ ={0)Iny?+{1)(0)=0
The same result is obtained for x, - 0 (x, - 1). Thus the value of GZ /RT goes

to zero at both x;, =0 and x, = 1.
The quantity G¥/x,x,RT becomes indeterminate both at x;=0and x, =1,
because GF is zero in both limits, as is the product x,x,. Thus for x, - 0, we have
G* G®/RT . d(GE/RT)
=Ihm -——

1 = lim I
x>0 xleRT x-=0 X, pro dxl

(A)
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The derivative of the final member is found by differentiation of Eq. (11.69) wi
respect to x;:

dln
dxl dxl 1
The minus sign preceding the last term comes from dx,/dx, = —1, a consequen

of the equation x, + x; = 1. Equation {11.64), the Gibl:fs/ Duhem equation, ma
be written for a binary system and divided by dx, to give:

dln71+x

dIn Y2
X1 dxl =

2dx|

i T, the pressure varies, and
Although the data set treated here is at constaqt. N : ies,
(ll.TO)gstrictly does not apply. However, the activity coef!ic_lents for 1.1q.u1d phag
at low pressure are very nearly independent of P,and negl.lglble error is mtr?du _
through application of Eq. (11.70). We therefore combine Eq. (11.70) with E

(B) to get

0 (const T, P) (1.7

M=ln:’.’_‘ (11.7 '
dx, Y2

In the limit as x, » 0 (x; = 1), this becomes

E
md_(G_/.Bﬂ_._- limln-h=ln‘y‘}°
x+0 1 x+0 Y2

and by Eq. (A),
E

i =1n Y
l]l‘g}) xlngT N
Similarly, as x, - 1 {x, = 0),
E

i =In y3
}:E,n[ xlszT Y2

Thus the limiting values of GE/x,x,RT are equal to the infinite-dilution lim
of In y, and In y,. _ .
Ezluation (1 12.70), the Gibbs/Duhem equation, has further influence on

nature of Fig. 11.8. Rewritten as

dlny,__icgdlnyz
dx] Xy dx1

it shows the direct relation required between tht.: slopes of curves drawn thro
the data points for Iny, and In y,. Qualitatively, we _observe thz;t at e;r
composition the slope of the In y, curve is of opposite sign to the s l(:ope o
In y, curve. Furthermore, when x; > 0 {and x, > 1), the slopt? of the In vy,
is zero. Similarly, when x, - 0, the slope of the In y, curve is zero. Thus,
In ¥ (i = 1, 2) curve becomes horizontal at x; = 1.
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Of the sets of points shown in Fig. 11.8, those for GE /x,%:RT most ciosel
conform to a simple mathematical relation. Thus we draw a straight line as .
reasonable approximation to this set of points, and we give mathematica
expression to this assumed linear relation by an equation of the form

GE
xoRT = Aynx, + Anx, (11.72a
where A,, and A,, are constants in any particular application. Alternatively,
GE
RT - (Azx) + Apxy) X x, (11.72b

Application of Eq. (11.62) to this expression leads to equations for In v, and In v,

In yi = x3[Ai2 + 2(Ax — Ap)x1] (11.73a
and

In y, = x{[ Ay + 2(A;; — Ay)x,) (11.73b!

These are the Margulest equations, and they represent a commonly used empirica
model of solution behavior. For the limiting conditions of infinite dilution, the;
'show that when x, = 0,1n ¥{° = A,,, and when x, = 0,In y3° = A,,. For the methyi
ethyl ketone/toluene system considered here, the curves of Fig. 11.8 for GE/RT
In 7y;, and In vy, represent Egs. (11.72b), (11.73a), and (11.73b) with A =037
and A,, = 0.198, the intercepts at x, = 0 and x, = 1 of the straight line drawn fc
represent the G¥/x,x,RT data points.

What we have accomplished is the reduction of a set of VLE data to a simple
mathematical equation for the dimensionless excess Gibbs energy,

GE

RT - (0.198x, + 0.372x,)x,x,
which concisely stores the information of the data set. Indeed, with the Margules
equations for In y, and In y,, we can easily construct a correlation of the original
P-x,-y, data.

Rearrangement of Eq. (11.68) provides a modified Raoult’s law:

yl'P = x.-‘YiP?l (l = 1: 29 £ N) (1174)
For species 1 and 2 of a binary system,
nP=xy P

and

2P = x,7,P3"

T Max Margules (1856-1920), Austrian meteorologist and physicist.
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Table 11.2 VLE Data for chioroform(1)/1,4-dioxane(2) at 50°C

P/kPa x Y Iny, In vy, ., G®/RT G*/xx;,RY
—tip
15.79% 0.0000 00000 ... {.000 0.000
17.51 0.0932 0.1794 -0.722 0.004 —0.064 —0.758
18.15 0.1248 0.2383 —0.694 —0.000 —0.086 —0.790
19.30 0.1757 0.3302 —0.648 —0.007 -0.120 -0.825
19.89 0.2000 0.3691 ~0.636 —-0.007 +0.133 -0.828
21.37 0.2626 0.4628 -0.611 -0.014 -0.171 -{.882
24.95 0.3615 0.6184 —-0.486 —-0.057 -0.212 -0919
29.82 0.4750 0.7552 —0.380 -0.127 -(.248 —-0.992
34.30 {.5555 0.8378 -0.279 -0.218 —-0.252 -1.019
42,10 0.6718 09137 —0.192 —0.355 —0.245 -1.113
60.38 0.8780 0.9860 ={},023 -0.824 =0.120 —1.124
65.39 0.9398 0.9945 —-0.002 —0.972 -0.061 -1.674
69.361 1.0000 1.0000 0000  ....... 0.000
t Pl;l
t P!Ill
Addition gives:
P = xl'ylpiat"'xzyngat (]1.7 ¥
whence
X7, P ?“ :
yl = sat sat (1 1.16
X P+ x2v. P35

Finding values of v, and y, from Egs. (11.73) with A, and A;, as determined
for the methyl ethyl ketone(1)/toluene(2) system and taking P;™ and P3" as t
experimental values, we calculate P and y, by Eqs. (11.75) and (11.76) at vario
values of x,. The results are shown by the P-x, and P-y, curves of Fig. 11
which provide an adequate correlation of the experimental data points.

A second set of P-x;-y, data, for chloroform(1)/1,4-dioxane(2) at 50°C,t
given in Table 11.2, along with values of pertinent thermodynamic functio
Figures 11.9 and 11.10 display as points all of the experimentally determined
values. This system shows negative deviations from Raoult’s law; since v, and
are less than unity, values of In y, In v, GF®/RT, and GE/x,x,RT are negative;
Moreover, the P-x, data points in Fig. 11.9 all lie below the dashed line represe '
ing the Raoult’s-law relation. Again the data points for GE/x,x,RT are reasonabl
well correlated by Eq. (11.72a), and the Margules equations [Eqgs. (11.73)] aga
apply, here with A,, = —0.72 and A,; = —1.27. Values of GE/RT,In y,;1n v,,

1 M. L. McGlashan and R. P. Rastogi, Trans. Faraday Soc., 54: 496, 1958.
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Figure 119 Pxy data at 50°C for chloroform(1)/1,4-dioxane(2).

and y, calculated by Eqs. (11.72b), (11.73), (11.75), and (11.76) provide the
curves shown for these quantities in Figs. 11.9 and 11.10. Again, the experimental
Pxy data are adequately correlated.

Although the correlations provided by the Margules equations for the two
sets pf VLE data presented here are satisfactory, t_hey are not perfect. The two
possible reasons are, first, that the Margules equations are not precisely suited
to the data set; second, that the data themselves are systematically in error such
that they do not conform to the requirements of the Gibbs/Duhem equation.

We have‘ presumed in applying the Margules equations that the deviations
of the experimemtal points for G5/x,x,RT from the straight lines drawn to
represex}t them result from random error in the data. Indeed, the straight lines
do pro_v1de excellent correlations of all but a few data points. Only toward edges
of a diagram are there significant deviations, and these have been discounted
because the error bounds widen rapidly as the edges of a diagram are approachedj
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-1.2-

In y%

Figure 11,10 Liquid-phase properties from VLE data for chloroform(1)/1,4-dioxane at 50°C.

In the limits as x, » 0 and x, > 1, G®/x,x,RT becomes indeterminate; expe
mentally this means that the values are subject to unlimited error and are .
measurable. However, we cannot rule out the possibility that the con'elat}
would be improved were the G®/x,x,RT points representet.i by an appropria
curve. Finding the correlation that best represents the data is a _tr}al procec}
The Gibbs/Duhem equation imposes a constraint on tl_le activity c_oefﬁclen
that may not be satisfied by experimental values that contain systematic efror.
this is the case, the experimental values of In ¥, and In ¥, used for c_alcula.
of GE/RT by Eq. (11.69), which does not depend on the Gibbs/ Duhe'm equatia
will not agree with values of In y, and In v, later calculated by equatlons_ deri
from Eq. (11.62), which do implicitly contain the Gil?bs/ Duhem equatlon: I.t_
then impossible to find a correlating equation that precisely represents the origin
data. The following example provides an illustration.

Example 11.7 Reduce the VLE data set for diethyl ketone(1)/n-hexane(2) at 65
given by Maripuri and Ratcliff.}

T V. C, Maripuri and G. A. Raicliff, £ Appl Chem. Biotechnol.,, 22: 899, 1972
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Table 11.3 VLE Data for diethyl ketone(1)/ n-hexane(2) at 65°C

P/kPa x" » In vy, Iny, G%/x,x,RT
90.15% 0.000 0000 ..., 0.000
91.78 0.063 0.049 0.901 0.033 1.481
83.01 0.248 0.131 0.472 0.121 1.114
81.67 0.372 0.182 0321 0.166 0.955
78.89 0.443 0.215 0.278 0.210 0972
76.82 0.508 0.248 0.257 0.264 1.043
73.39 0.561 0.268 0.190 0.306 0.977
66.45 0.640 0316 0.123 0.337 0.869
62.95 0.702 0.368 0.129 0.393 0.993
57.70 0.763 0.412 0.072 0.462 0.909
50.16 0834 0.490 0.016 0.536 0.740
45,70 0.874 0.570 0.027 0.548 0.844
29.00% 1.000 1.000 0.000

t pst

L

SOLUTION The expetimental P-x,-y, values for this systemn are reproduced in the
first three columns of Table 11.3. The remaining columns present values of In Y1,
Iny;, and G®/x,%,RT calculated from the data by Eqgs. (11.68) and (11.69). All
values are shown as points on Figs. 11.11 and 11.12. The object of data reduction is
to arrive at an equation for G¥ / RT which provides a suitable correlation of the data.

The data points of Fig. 11.12 for GZ/x,x,RT show scatter, but are adequate to
define 2 straight line, drawn here by eye and represented by the equation:

E

~xRT = 0.70x, + 1.35x,
This is Eq. (11.72a} with A,, = 0.70 and Az = 1.35. Equations (11.73) allow calcula-
tion of values for In ¥, and In y, at various values of x;, and Eqs. (11.75) and (11.76)
provide for the calculation of P and y, at the same values of x;. Results of such
calculations are plotted as the solid lines of Figs. 11.11 and 11.12. They clearly do
not represent a good correfation of the data.

The problem is that the data are not consistent with the Gibbs/Duhem equation.
That is, the experimental values of In y, and In v; do not conform to Eq. (11.70).
However, the values of In vy, and In ¥, found from the correlation necessarily obey
this equation; the two sets of values therefore cannot possibly agree, and the resulting
correlation cannot provide a precise representation of the complete set of P-x,-y,
data. Aithough this is true regardless of the means of data reduction, the method just
described produces a correlation that is unnecessarily divergent from the experimental
values.

An alternative is to process just the P-x, data; this is possible because the P-x,-y,
data set includes more information than necessary. The procedure requires a computer,
but in principle is simple encugh. Assuming that the Margules equation is appropriate
to the data, one merely searches for values of the parameters A, and A,; that yield
pressures by Eq. (11.75) that are as close as possible to the measured values. The
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Figure 11.11 Pxy data at 65°C for diethyl ketone(1)/ n-hexane(2).

method is applicable regardless of the correlating equation assumed, and is kno
as Barker’s method.t Applied to the present data set, it yields the parameters

Ap = 1.153

Use of these parameters in Eqgs. (11.72a), (11.73), (11.75), and (11.76) produces
tesults described by the dashed lines of Figs. 11.11 and 11.12. The correlation 1
be precise, but it clearly provides a better overall representation of the experimen

Pxy data.

PROBLEMS

11.1 Prove that the “partial molar mass” of a species in solution is equal to its molar mass (mole:

weight).

tJ. A. Barker, Austral J. Chem., 6: 207, 1953.

and

Ay = 0.596
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11.2 From the foliowing compressibility data for hydrogen at 0°C determine the fugacity of hydrogen
at 1,000{atm).

P(atm} zZ P(atm) zZ

100 1.069 600 1.431
200 1.138 700 1.504
300 1.209 800 L.577
400 1.283 900 1.649
500 1.356 1,000 1.720

11.3 For ammonia at 6§00 K and 300 bar, determine good estimates of the fugacity and of G®/RT.

11.4 Estimate the fugacity of n-pentane as a gas
(a) At 280°C and 100 bar.
{b) At 280°C and 20 bar.
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11.5 Estimate the fugacity of liquid acetone at 110°C and 275 bar. At 110°C the vapor pressure
acetone is 4.360 bar and the molar volume of saturated-liquid acetone is 73 cm? mol ™.
11.6 Estimate the fugacity of liquid n-butane at 12¢°C and 34 bar. At 120°C the vapor pressure
n-butane is 22.38 bar and the molar volume of saturated liquid is 137 cm® mol™'. \
11.7 From data in the steam tables, determine a good estimate for f/f™" for liquid water at 100
and 100 bar, where f** is the fugacity of saturated liquid at 106°C.
11.8 Steam at 13,000 kPa and 380°C undergoes an isothermal change of state 1o a pressure of 275 kP
Determine the ratio of the fugacity in the final state to that in the initial state.
11.9 Steam at 1,850(psia) and 700(°F) undergoes an isothermal change of state to a pressure
40(psia). Determine the ratio of the fugacity in the final state to that in the initial state.
11.10 The normal boiling point of n-butane is 0.5°C. Estimate the fugacity of liquid n-butane at th
temperature and 200 bar.
11.11 The normal boiling point of 1-pentene is 30.0°C. Estimate the fugacity of liquid 1-pentene:
this temperature and 350 bar.
11,12 The normal boiling point of isobutane is —11.3°C. Estimate the fugacity of liquid isobutane
this temperature and 150 bar.
11.13 Prepare plots of f vs. P and of ¢ vs. P for isopropanol at 200°C for the pressure range fro
0 to 50 bar. For the vapor phase, values of Z are given by
Z=1-986x10"P—1141 x107° P?
where P is in bars. The vapor pressure of isoproparol at 200°C is 31.92 bar, and the liquid-phas
isothermal compressibility « at 200°C is 0.3 X 1072 bar™!, independent of P.
1114 Prepare plots of f vs. P and of ¢ vs. P for 1,3-butadiene at 40°C for the pressure range
0 to 10 bar. At 40°C the vapor pressure of 1,3-butadiene is 4.287 bar. Assume that Eq. (11.43) is va
for the vapor phase. The molar volume of saturated liquid 1,3-butadiene at 40°C is 90.45 cm® mol
11.15 The saturation humidity formula gives the mole fraction of water vapor in air that is sat
with water vapor:
Yu,0 = Pi I:;O/ p
where P is the ambient pressure and Pjisg is the vapor pressure of water at the ambient temperal
Derive this formula, starting with the phase-equilibrium criterion
.f ll-lm = f 1‘-’120
State and justify any assumptions.
11.16 The fugacity coefficient of a binary mixture of gases at 200°C and 50 bar is given by the equat
Iné=(l+yIny
where y, and y, are the mole fractions of species | and 2. Multiply this equation through by
eliminate all remaining mole fractions in favor of mole numbers, and apply Eq. (11.36) to
expressions for f, and f,. Then determine values of the fugacities for the species in an equimo
mixture at the given conditions. :
11.17 Equation (11.30) is a fundamental criterion of vapor/liquid equilibrium. The question |
arisen as to whether at equilibrium it is also true that
fl — fo
In, words, is it true that the fugacity of a liquid mixture is equal to the fugacity of the vapor mixy
with which it is in equilibrium?
11.18 For the system ethylene(l)/propylene(2) as a gas, estimate fl, fz, 1;51, and qﬁz at ¢ = 200
P = 20 bar, and y, = 0.25:
(a) Through application of Egs. (11.46) and (11.47).
{b) Assuming that the mixture is an ideal solution.
Apply Eq. (11.37) to the results of parts {a) and (b) and determine values of ¢ and f for the mi

11,19 For the system methane(1)/ethane(2)/propane(3) as a gas, estimate fi. fz, Fra b1, $2, and.
at t = 40°C, P = 20bar, y, = 0.17, and y, = 0.35:

S T EE e R TR e e aTa AR R AT e ATWANERAA LAY A eA RlA Y EVFIN JAF

{a) Through application of Eq. (11.48),
(b) Assuming that the mixture is an ideal solution.
Apply Eq. (11.37) to l‘;he results of parts (a) and (b) and determine values of ¢ and f for the mixture.
11.10_ Prove that .Eqs. (11.73) do indeed follow from Eq. (11.725) by application of Eq. (11.62). To
do th‘ls, l‘irst multiply Eq. (11.72b) through by n; then eliminate ail remaining mole fractions by the
substitution, x; = n,/a. Finally, apply Eq. (11.62), noting that # cannot be treated as a constant.
11.21 A special case of Eq. (11.72b) results when A,; = A,, = A:

G®/RT = Anx,x,
This is. the simplest realistic expression for the excess Gibbs energy, and applies to binary systems
comprised of species that are chemically similar.

(a}) What are tl.'ne expressions for In vy, and In y, that result from this expression?

) (b) For a particular binary system to which these equations are known to apply, data are
available for a single data point:
t=45C P=37kPa  x,=0398 y, =0428
In addition,'P‘}" = 2778 kPa and P$" = 29.82 kPa. From these data, determine the value of A.

{¢) Using the value of A determined in {b) and for ¢ = 45°C, calculate P and y, for x, = 0.500.
11.22 Given in. what follows are values of infinite-dilution activity coefficients and pure-species vapor
pressures for binary systems at specified temperatures. For one of the systems, determine the Margules
parameters, am.i then apply the Margules equation to a sufficient number of VLE calculations to
allow construction of a Pxy diagram for the given temperature. Base your calculations on the modified
Raoult's-law expression, i.e., Eq. {11.74).

{a) For diethyl ethet{1)/chloroform(2} at 30°C,
¥ =071; ¥ = 0.57; P = 33,73 kPa; P = 86.59 kPa
(b} For acetone(l)/benzene(2) at 45°C,
¥y = 1.60; v = 1.47; P = 68.36 kPa; P = 29.82kPa
(¢} For 2-butanone(1)/toluene(2) at 50°C,
¥P = 1.47; ¥F = 1.30; P = 36.09 kPa; P = 12.30 kPa
{d) For benzene(1)/acetonitrile(2) at 45°C,
¥P=274; yF = 3.01; P% = 29.31 kPa; P5™ = 28.12kPa
(e} For diethyl ether(1)/acetone(2) at 30°C,
YT = 1.78; 9° = 2.18; P = §5.93 kPa; P{™ = 38.01 kPa
11.23 Th.c f‘ollnwing is a set of VLE data for the system carbon disulfide(1)/chloroferm(2) at 25°C
[N. D. Litvinov, Zh. Fiz. Khim., 26: 1144, 1952]. Assuming the validity of Eq. (11.74), find parameter

vz.alues for the Margules cquation that provide a suitable correlation of these data, and prepare a Pxy
diagram that compares the experimental points with curves determined from the correlation.

P/kPa X »n

2730 0.000 0.000
31.61 0.100 0.219
3498 0.200 0.363
37.74 0.300 0.468
39.84 0.400 0.555
41.64 0.500 0.630
43.16 0.600 0.699
44.46 0.700 0.768
45.49 0.800 0.838
46.30 0.900 0914
46.85 1.000 1.000
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11.24 The following is & set of VLE data for the system acetone(1)/ c!ﬂorofonn(.Z)‘ at 50°C [H. R
and W. Schroder, Z. Phys. Chem. (Frankfurt), 11: 41, 1957.]' Assun'ung the val:dl.ty of Eq. (11.7,
find parameter values for the Margules equation thfat prov1dc.a sult.abl.e correlation 9f these

and prepare a Pxy diagram that compares the experimental points with curves determined from Iy

correlation.

CHAPTER

| TWELVE
PHASE EQUILIBRIA

P/kpa Xy »
000 0.000 AT LOW TO MODERATE PRESSURES

6938 0. : “
66.11 0.104 0.066

63.07 0.198 0.153

61.25 0.298 0.269

60.60 0.401 0.414

62.01 0.502 0.562

64.53 0.591 0.676

68.29 0.695 0.793

7275 0.797 0.879

77.13 0.895 0.946

81.75 1.000 1.000

A number of industrially important processes, such as distillation, absorption,
and extraction, bring two phases into contact. When the phases are not in
equilibrium, mass transfer occurs between the phases. The rate of transfer of
each species depends on the departure of the system from equilibrium. Quantita-
tive treatment of mass-transfer rates requires knowledge of the equilibrium states
(T, P, and compositions) of the system.

In most industrial processes coexisting phases are vapor and liquid, although
liquid/liquid, vapor/solid, and liquid/solid systems are also encountered. In this
chapter we present a general qualitative discussion of vapor/liquid phase behavior
(Sec. 12.3) and describe the calculation of temperatures, pressures, and phase
compositions for systems in vapor/liquid equilibrium (VLE) at low to moder-
ate pressures (Sec. 12.4).f Comprehensive expositions are given of dew-point,
bubble-point, and P, T-flash calculations.

12.1 THE NATURE OF EQUILIBRIUM

Equilibrium is a static condition in which no changes occur in the macroscopic
properties of a system with time. This implies a balance of all potentials that
may cause change. In engineering practice, the assumption of equilibrium is
justified when it leads to results of satisfactory accuracy. For example, in the

t For VLE at high pressures, sce chap. 14.

361
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This reduces to Eq. (2.12);

LN

reboiler for a distillation column, equilibrium between vapor and liquid phas
is commonly assumed. For finite vaporization rates this is an approximation, b
it does not introduce significant error into engineering calculations.

If a system containing fixed amounts of chemical species and consisting o
liquid and vapor phases in intimate contact is completely isolated, then in tim
there is no further tendency for any change to occur within the system. Th
temperature, pressure, and phase compositions reach final values which there
remain fixed. The system is in equilibrium. Nevertheless, at the microscopic leve
conditions are not static. The molecules comprising one phase at a given insta
are not the same molecules as those in that phase at a later time, Molecules wi
sufficiently high velocities that are near the interphase boundary overcome surfa
forces and pass into the other phase. However, the average rate of passage
molecules is the same in both directions, and there is no net transfer of materi

between the phases.

F=2-gz+N (2.12)

Applications of the phase rule were discussed in Sec. 2.8,

thhem’s theorem is another rule, similar to the phase rule, but less celebratec
It applies to closed systems for which the extensive state as \:vell as the intensiv
state of the system is fixed. The state of such a system is said to be complerel
determnged, and is characterized not only by the 2 + (N — 1) 7 intensive phae'
rule variables but also by the 7 extensive variables represented by the r]rjlasse-
(or mole numbers) of the phases. Thus the total number of variables is ”

2+ (N-1)wr+7=2+ Nn

If the system is closed a_nd formed from specified atounts of the chemical specie:
pres?nt, f{l;:m wg can V:'I:lte a material-balance equation for each of the N chemical
species. These in a.ddltlon to the (w — 1) N phase-equilibrium equations provide
a total number of independent equations equal to

(m—1)N+N=xzN

The difference between the num i i
s il ber of variables and the number of equations is

12.2 THE PHASE RULE. DUHEM’S THEOREM

The phase rule for nonreacting systems, presented without proof in Sec. 2.
results from application of a rule of algebra. The number of phase-rule variables)
which must be arbitrarily specified in order to fix the intensive state of a systen
at equilibrium, called the degrees of freedom F, is the difference between the
total number of phase-rule variables and the number of independent equations
that can be written connecting these variables.

The intensive state of a PVT system containing N chemical species and
phases in equilibrium is characterized by the temperature T, the pressure P, an
N —1 mole fractions for each phase. These are the phase-rule variables, andj
their number is 2+ (N — 1){#). The masses of the phases are not phase-ruiej
variables, because they have no influence on the intensive state of the system.

The phase-equilibrium equations that may be written connecting the phase-1
rule variables are given by Eqgs. (10.3) or Egs. (11.29):

pi=pf=-o=p’  (i=1,2...,N) (103) §

2+ Nr—aN =2

On the basis of this result, Duhem’s theorem is stated as follows:

For any close_d system formed initially from given masses of prescribed
chen_nca] species, the equilibrium state is completely determined when an
two independent variables are fixed. ’

r['he two independe:nt variables subject to specification may in general be either
Fnte.nswe or extensive. However, the number of independent intensive variables
1s given by the phase rule. Thus when F = 1, at least one of the two variabl

must be extensive, and when F = 0, both must be extensive. ”

fe=fBoii=fr (i=1,2,...,N) (11.29) §

Either set contains {7 — 1){ N) independent phase-equilibrium equations. They 12.3 PHASE BEHAVIOR FOR VAP OR/LIQUID SYSTEMS

are equations connecting the phase-rule variables, because the chemical potentialsj
and fugacities are functions of temperature, pressure, and composition. The
difference between the numbeér of phase-rule variables and the number of;
equations connecting them is the degrees of freedom:

F=2+(N-1)(m)— (7~ 1)(N)

ZE;II),O;/ llc:l:d equlhibn}lm (VLE) refen_"s to systems in which a single liquid phase

o quilibrium with 1t.s vapor, Iq this qualitative discussion, we limit consider-
on to §ystems comprised of two chemical species, because systems of greater

Complexity cannot be adequately represented graphically. ¢

one “:lh::n N =_ 2, the phasc'rule becomes F = 4 — 77, Since there must be at least

. Phase (r=1), _the maximum number of phase-rule variables which must be

pecified to fix the intensive state of the system is three: namely, P, T, and one

 Only N — 1 mole fractions are required, because T x, = 1. Mole (or mass) fraction. All equilibrium states of the system can therefore b
e be
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various mixtures of 1 and 2 lie along a line on the rounded edge of the surface
petween C, and . This critical locus is defined by the points at which vapor
and liquid phases. in equilibrium become identical. Further discussion of the
critical region is given later.

The region lying above the upper surface of Fig, 12.1 is the subcooled-liquid
region; that below the under surface is the superheated-vapor region. The interior
space between the two surfaces is the region of coexistence of both liquid and
vapor phases. If one starts with a liquid at F and reduces the pressure at constant
temperature and composition along vertical line FG, the first bubble of vapor
appears at point L, which lies on the upper surface. Thus, L is a bubble point,
and the upper surface is the bubble-point surface. The state of the vapor bubble
in equilibrium with the liquid at L must be represented by a point on the under
surface at the temperature and pressure of L. This point is indicated by the letter
V. Line VL is an example of a tie line, which connects points representing phases
in equilibrium. :

As the pressure is further reduced along line FG, more and more liquid
vaporizes until at W the process is complete. Thus W lies on the under surface
and represents a state of saturated vapor having the mixture composition. Since
W is the point at which the last drops of liquid (dew) disappear, it is a dew point,
and the lower surface is the dew-point surface. Continued reduction of pressure
merely leads into the superheated vapor region.

Because of the complexity of Fig. 12.1, the detailed characteristics of binary
VLE are usually depicted by two-dimensional graphs that display what is seen
on various planes that cut the three-dimensional diagram. The three principal
planes, each perpendicular to one of the coordinate axes, are illustrated in Fig.
12.1. Thus a vertical plane perpendicular to the temperature axis is outlined as
ALBDEA. The lines on this plane represent a Pxy phase diagram at constant 7,
of which we have already seen examples in Figs. 10.1, 11.7, 11.9, and 11.11. If
the lines from several such planes are projected on a single parallel plane, a
diagram like Fig. 12.2 is obtained. It shows Pxy plots for three different tem-
peratures. The one for T, represents the section of Fig. 12.1 indicated by ALBDEA.
The horizontal lines are tie lines connecting the compositions of phases in
equilibrium. The temperature T, lies between the two pure-species critical tem-
peratures identified by C; and C; in Fig. 12.1, and temperature T, is above both
critical temperatures. The curves for these two temperatures therefore do not
extend all the way across the diagram. However, the first passes through one
mixture critical point, and the second through two such points. All three of these
critical points are denoted by the letter C. Each is a tangent point at which a
horizontal line touches the curve. This is so because all tie lines connecting phases
in equilibrium are horizontal, and the tie line connecting identical phases (the
definition of a critical point) must therefore be the last such line to cut the diagram.

A horizontal plane passed through Fig. 12.1 perpendicular to the P axis is
identified by HIJKLH. Viewed from the top, the lines on this plane represent a
Txy diagram similar to that of Fig. 10.2. When lines for several pressures are
Projected on a parallel plane, the resulting diagram appears as in Fig. 12.3. This

represented in three-dimensional P-T-composition space. Within this space,
states of pairs of phases coexisting at equilibrium (F = 4 — 2 = 2) define surfa
A schematic three-dimensional diagram illustrating these surfaces for VL
shown in Fig. 12.1.

This figure shows schematically the P-T-composition surfaces which repre:
equilibrium states of saturated vapor and saturated liquid for a binary sys
The under surface represents saturated-vapor states; it is the PTy surface.
upper surface represents saturated-liquid states; it is the PTx surface.
surfaces intersect along the lines UBHC, and KAC,, which represent the
pressure-vs.-T curves for pure species 1 and 2. Moreover, the under and upj
surfaces form a continuous rounded surface across the top of the diagram betweoll
C, and C,, the critical points of pure species 1 and 2; the critical points of

NV NN

AY

A

5NN

A\

Figure 12.1 PTxy diagram for vapor/liquid equilibrium.
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Saturated liquid (bubble line}
==——Saturated vapor (dew line)

XM

figure is analogous to Fig. 12.2, except that it represents values for three cons

pressures, P,, P, and P,

It is also possible to plot the vapor mole fraction y, vs. the liquid m
fraction x, for either the constant-temperature conditions of Fig. 12.2 or
constant-pressure conditions of Fig. 12.3. Examples of such xy diagrams 4

shown later.

e Saturated liquid (bubble line)

""" Saturated vapor (dew line)
0 1
X, ¥

Figure 12.2 Pxy diagram for three cons
temperatures.

Figure 12.3 Txy diagram for three cons!
pressures.
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The third plane identified in Fig. 12.1 is the vertical one perpendicular to
the composition axis aad indicated by MNQRSLM. When projected on a parallel
plane, the lines from several such planes present a diagram such as that shown
by Fig. 12.4. This is the PT diagram; lines UC, and KC, are vapor-pressure
curves for the pure species, identified by the same letters as in Fig. 12.1. Each
interior loop represents the PT behavior of saturated liquid and of saturated
vapor for a mixture of fixed composition; the different loops are for different
compositions. Clearly, the PT relation for saturated liquid is different from that
for saturated vapor of the same composition. This is in contrast with the behavior
of a pure species, for which the bubble line and the dew line coincide. At points
A and B in Fig. 12.4 saturated-liquid and saturated-vapor lines intersect. At such
points a saturated liquid of one composition and a saturated vapor of another
composition have the same T and P, and the two phases are therefore in
equilibrium. The tie lines connecting the coinciding points at A and at B are
perpendicular to the PT plane, as illustrated by the tie line VL in Fig. 12.1.

The critical point of a binary mixture occurs where the nose of a loop in Fig.
12.4 is tangent to the envelope curve. Put another way, the envelope curve is the

Saturated liquid (bubble line)

— — —— Saturated vapor (dew line)

T

Figure 12.4 PT diagram for several compositions.
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tritical locus. One can verify this by considering two closely adjace_nt loops and
Noting what happens to the point of intersection as their se.pe.aratlon_ becomes
infinitesimal. Figure 12.4 illustrates that the location of the critical point on the
tose of the loop varies from one composition to another. For a pure species the
ctitical point is the highest temperature and highest pressure at vs'rhlch vapor and
liguid phases can coexist, but for a mixture it is, in general, neither. Theref(?re
under certain conditions a condensation process occurs as the result of a reduction
in pressure. . )
Consider the enlarged nose section of a single PT loop shown in F:g.' 12.5.
The critical point is at C. The points of maximum pressure and maximum

temperature are identified as My and Mr. The dashed curves of Fig. 12.5 indicate

the fraction of the overall system that is liquid in a two-phase mixture of liq1:lid
and vapor. To the left of the critical point C a reduction in pressure along a line
Such as BD is accompanied by vaporization from the bubb.l-e point to the dew
Point, as would be expected. However, if the original condition correlsponds to
Doint F, a state of saturated vapor, liquefaction occurs upon reduction of the
Pressure and reaches a maximum at G, after which vaporization takes place
until the dew point is reached at H. This phenomenon is called ret_rograde
tondensation, 1t is of considerable importance in the operation of certain deep
hatural-gas wells where the pressure and temperature in the underground forma-

1
Critical locus !
|
|

T

Figure 12.5 Portion of a PT diagram showing phase behavior in the critical region.

Pressure (psia)
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tion are approximately the conditions represented by point F. If one then main-
tains the pressure at the\wellhead at a value near that of point G, considerable
liquefaction of the product stream is accomplished along with partial separation
of the heavier species of the mixture. Within the underground formation itself,
the pressure tends to drop as the gas supply is depleted. If not prevented, this
leads to the formation of a liquid phase and a consequent reduction in the
production of the well. Repressuring is therefore a common practice; i.e., lean
gas (gas from which the heavier species have been removed) is returned to the
underground reservoir to maintain an elevated pressure.

A PT diagram for the ethane/heptane system is shown in Fig. 12.6, and a
yx diagram for several pressures for the same system appears in Fig. 12.7.
According to convention, one plots as y and x the mole fractions of the more
volatile species in the mixture. The maximum and minimum concentrations of
the more volatile species obtainable by distillation at a given pressure afe indicated
by the points of intersection of the appropriate yx curve with the diagonal, for
at these points the vapor and liquid have the same composition. They are in fact

_mixture critical points, unless y =x=10 or y=x = 1. Point A in Fig. 12.7

T T T T
"’1'\‘4" 88.7 mole % ethane

-
1200 /'-( > —+—+—
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’ ]
/ / V Critical locus
1000 A ‘( l58 7 ! 1 j’/ b
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// vd

7 / g
800 /// / y
/i \
- CC’"‘] / / J/ /'\\\
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AN AT ALY

/ i // /

200 // / // / /////

'-..:\‘
N

y, / /// [
0 100 200 300 400 500 600 700

Temperature (°F)

Figore 12.6 Pressure/temperature diagram for the ethane/heptane system. (Reproduced by permission
from F. H. Barr-David, AICRE 1, 2: 426, 1956.)
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Figure 12.7 yx diagram for the ethane/heptane system. (Reproduced by permission from F. H. Barr-
David, AIChE 1., 2: 426, 1956.)

represents the composition of the vapor and liquid phases at the maximum g
pressure at which the phases can coexist in the ethane/heptane system. The com
position is about 77 mole percent ethane and the pressure is about 1,263({psia)
The corresponding point on Fig. 12.6 is labeled M. Barr-Davidf has prepared 2
complete set of consistent phase diagrams for this system. .

The PT diagram of Fig. 12.6 is typical for mixtures of nonpolar substatices
such as hydrocarbons. An example of a diagram for a highly nonideal system
methanol/benzene, is shown in Fig. 12.8. The nature of the curves in this figure
suggests how difficult it can be to predict phase behavior, particularly for specied
so dissimilar as methanol and benzene.

Although VLE in the critical region is of considerable importance in
petroleum and natural-gas industries, most chemical processing is accomplish
at much lower pressures. As indicated in Chap. 11, the primary reason fi
departures from Raoult’s law for systems at pressures well below the criti
pressure is that liquid solutions rarely conform to ideal-solution behavior. Th
phase behavior at low to moderate pressures is conveniently classified accordi

t F. H. Barr-David, AFChE J., 2: 426, 1956.
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Figufe 12.8 Pressure/temperature diagram for the methanol/benzene system. {Reproduced by per-
mission from P. G. McCracken and J. M. Smith, AIChE 1,2 498, 1956.)
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Figure 12.9 Pxy diagrams at constant temperature. {a) Tetrahydrofuran{1)/carbon tct?lcl::g:l( .
at 30°C; (b) chloroform(1)/tetrahydrofuran(2) at 30°C; (c) f}lran(l)/ carbol'l ltet.rac: 0 E
30°C; (d) ethanol{1)/toluene(2) at 65°C. Dashed lines: Px relation for Raocult's law.
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Px relation of Raoult’s law, and the system therefore exhibits negative deviations.
When the deviations begome sufficiently large relative to the difference between
the two pure-species vapor pressures, the Px curve exhibits a minimum, as
illustrated in Fig. 12.9b for the chloroform/tetrahydrofuran system at 30°C. This
figure shows that the Py curve also has a minimum at the same point. Thus at
this point where x = y the dew-point and bubble-point curves are tangent to the
same horizontal line. A boiling liquid of this composition produces a vapor of
exactly the same composition, and the liquid therefore does not change in
composition as it evaporates. No separation of such a constant-boiling solution
is possible by distillation. The term azeotrope is used to describe this state.

The data for furan/carbon tetrachloride at 30°C shown by Fig. 12.9¢ provide
an example of a system that exhibits small positive deviations from Raoult’s law.
Ethanol/toluene is a system for which the positive deviations are sufficiently
large to lead to a maximum in the Px curve, as shown for 65°C by Fig. 12.94.
Just as a mimimum on the Px curve represents an azeotrope, so does a maximum,
Thus there are minimum-pressure and maximum-pressure azeotropes. In either
case the vapor and liquid phases at the azeotropic state are of identical compo-
sition.

At the molecular level, appreciable negative deviations from Raoult’s law
reflect stronger forces of intermolecular attraction in the liquid phase between
unlike than between like pairs of molecules. Conversely, appreciable positive
deviations result for solutions in which intermolecular forces between like
molecules are stronger than between unlike. In this latter case the forces between
like molecules may be so strong as to prevent complete miscibility, and the system
then forms two separate liquid phases over a range of compositions. Systems of
limited miscibility are treated in Sec. 13.9.

Since distillation processes are carried out more nearly at constant pressure
than at constant temperature, #xy diagrams of data at constant P are in common
use. The four such diagrams corresponding to those of Fig. 12.9 are shown for
atmospheric pressure in Fig. 12.10. Note that the dew-point (zy)} curves lie above
the bubble-point (x) curves. Moreover, the minimum-pressure azeotrope of Fig.
12.9b corresponds to the maximum-temperature (or maximum-boiling) azeotrope
of Fig. 12.10b. There is an analogous correspondence between Figs. 12.9d and
12.10d. The yx diagrams at constant P for the same four systems are shown in
Fig. 12.11. The point at which a curve crosses the diagonal line of the diagram
represents an azeotrope,.for at such a point y, = x,,

124 LOW-PRESSURE VLE FROM
CORRELATIONS OF DATA

In Sec. 10.5 we treated dew- and bubble-point calculations for multicomponent
systems that obey Raoult’s law [Eq. (10.16)], an equation valid for low-pressure
VLE when an ideal-liquid solution is in equilibrium with an ideal gas. Calculations
for the general case are carried out in exactly the same way as for Raoult’s law,
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Figare 12.11 Equilibrium yx diagrams at 2 constant pressure of 1(atm}. {q) Tetrahydrofuran(1)/car-
bon tetrachloride(2); (b) chloroform(1)/tetrahydrofuran(?); {¢) furan{1)/carbon tetrachloride(2):
{d) ethanol(1)/toluene(2).

but with equations of greater complexity. The equilibrium relation provided by
Eq. (11.66) may be written

nP P = x 9, PP (k=1,2,... , N) (12.1)

where @, is defined by Eq. (11.67). At low to moderate pressures, the Poynting
factor is very nearly unity, and Eq. (11.67) simplifies to
@, =2 (12.2)

k

Systematic application of Egs. (12.1) and (12.2) depends on the availability of
correlations of data from which values may be obtained for P}, ®,, and ¥y,. We
consider each of these in turn.

The vapor pressures of the pure species are usually calculated from equations
that give P as a function of temperature. Most commonly used is the Antoine
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equation, Eq. (6.51), which we rewrite for species k as

B,
T+ C,

(

18
In ia =Ak-

Restriction to relatively low pressures allows calculation of the fuga
coefficients in Eq. {12.2) from the simplest form of the virial equation ofas
the two-term expansion in P [Eq. {3.31)]. In this case the expression for ¢,
fugacity coefficient for species k in solution, follows from Eq. (11.48):

‘f"k = epr—I; [Bkk + %zﬁ:%y;}’l(zaik - Bil):| ¢!

where .
8y = 8 = 2By — By — B

and
8y=08;,=2B;— B, — By

Values of the virial coefficients come from a generalized correlation, such as
one represented by Egs. (11.49) through (11.54).

The fugacity coefficient for pure k as a saturated vapor ¢}
Eq. (12.4) with all &, and §; set equal to zero:

B, Py
RT

is obtained fj

sat __

' = exp (12.5

This result also follows from Eq. (11.21).
Combination of Egs. (12.2), (12.4), and (12.5) gives:

By (P — PEY 4+ 1% Tiy(28y — 8a)
P RT

$, =ex

For a binén'y system comprised of species | and 2, this becomes:

B,(P - P{") + Py38
@, = exp 1 I;j-)' Pyy8,, (12

and
Bzz(P - P;a‘) + PJ’%‘SI:
P RT

Activity coefficients ¥, have traditionally been calculated from correla
equations for GE/RT by application of Eq. (11.62). The excess Gibbs energy:
a function of T, P, and composition, but for liquids at low to moderate press
it is a very weak function of P. Under these conditions, its pressure depende
and therefore the pressure dependence of the activity coefficients are usual
neglected. This is consistent with our earlier omission of the Paynting factor frof

(12.4

@D, = ex
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the evaluation of @®,. Thus we have for data ar constant T:

GEs

RT = glxy, X5, 000y X)) (const T)

The Margules equations [Eq. (11.72)] provide an example of this functionality.
Other equations are also in common use for the correlation of activity

coefficients. For binary systems the function often most corniveniently represented

by an equation is G®/x,x,RT, and one procedure is to express this function as

a power series in x;:

E

X%, RT

=a+bx;+exi+--- (const T)

Since x, = 1 — x, for a binary system of species 1 and 2, x, can be taken as the
single independent variable. An equivalent power series with certain advantages
is known as the Redlich/Kister expansion:t

E

x,x;RT

=B+ C(x,—x)+ D(x, = x,)° + - - -

In application, different fruncations of this series are appropriate. For each
particular expression representing G®/x,x, RT, specific expressions for In y, and
In y, result from application of Eq. (11.62), Thus, when B=C =D="+-.= 0,
G®/RT =0,1n y, =0, and In v, = 0. In this event 7, = y, = 1, and the solution
is ideal.

If C=D=-..-=0, then

GE
=B
x;ngT

where B is a constant for a given temperature. The corresponding equations for

In %, and In vy, are
In y, = Bx? (12.9)

and

In y, = Bx? (12.10)

The symmetrical nature of these relations is evident. The infinite-dilution values
of the activity coefficients are given by In ¥ = In ¥ = B.
If D=-..=0, then

E

X, %, RT

=B+ C(x;— x;)
and in this case G"/x,x,RT is linear in x,. Multiplication of Bby x, + x, (= 1)

1 O. Redlich, A. T. Kister, and C. E. Turnquist, Chem. Eng. Progr. Symp. Ser., 48(2): 49, 1952.
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gives
E
_G =B(x;+x)+C(x,—x)=(B+C)x; +(B— C)x,
x.szT
Letting B+ C = A;, and B— C = A, we have
Gt ;
—— = AuX + Apzx; (12-11
X1 %X, RT

The corresponding equations for the activity coefficients are

Iny, = x} A+ 2(A; — Ap)x,] (12.1% )

Iny,= xf[AZI +2(A; - Ay)x;] (121

These are the Margules equations, written earlier as Eqs. (11.73). Note that whe
x, =0, Iny7 = A;; when x;, = 0, In 75’ = A,,. . . :

Another well-known equation is obtained when we write the reciproc
expression x,x, RT/G* as a linear function of x,:

X1 %
GE/RT
This may also be written:

=B+ C'(x; — x3)

X1 X ' 3 t _ = r ¥ r_ '
—(-}-E—l/ﬁ-l:=B(xl+x2)+C(x, x2) = (B'+ Cx,+ (B — C)x,
We now let B'+ C'=1/A5, and B'— C'=1/A};. Then

XX X x;  AbLx + ALX,
G®/RT A} A} A Ay
or

G* _ 12A21 (12.14
x, % RT Aile‘*‘_Aélxz

The activity coefficients implied by this equation are given by

Aile)z
= Al +— (12.
In vy, Alz(l Al %
ALx,\ 72
In y,=A;,(1+#) : (12.
12Xy

These are known as the van Laarf equations. When x, =0; In 97" = A},; W
x; =0, In y3’ = A},

The Redlich/Kister expansion, the Margules equations, and the van
equations are all special cases of a very general treatment base_zd on ratio
functions, i.e., on equations for G® given by ratios of polynomials. These

1 Johannes Jacobus van Laar (1860-1938), Dutch physical chemist.
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presented in detail by Van Ness and Abbott.} They provide great flexibility in
the fitting of VLE data for binary systems. However, they have scant theoretical
foundation, and as a result there is no rational basis for their extension to
multicomponent systems. Moreover, they do not incorporate an explicit tem-
perature dependence for the parameters, though this can be supplied on an ad
hoc basis.

Modern theoretical developments in the molecular thermodynamics of liquid-
solution behavior are based on the concept of local composition. Within a liquid
solution, local compositions, different from the overall mixture composition, are
presumed to account for the short-range order and nonrandom molecular orienta-
tions that result from differences in molecular size and intermolecular forces.
The concept was introduced by G. M. Wilson in 1964 with the publication of a
model of solution behavior since known as the Wilson equation.t The success
of this equation in the correlation of VLE data prompted the development of
alternative local-composition models, most notably the NRTL (Non-Random-
Two'Liquid) equation of Renon and Prausnitz§ and the UNIQUAC (UNlversal
QUAsi-Chemical) equation of Abrams and Prausnitz.Y A further significant
development, based on the UNIQUAC equation, is the UNIFAC method,tt in
which activity coefficients are calculated from contributions of the various groups
making up the molecuies of a solution.

The Wilson equation, like the Margules and van Laar equations, contains
just two parametets for a binary system (A2 and A,)), and is written:

E
RT - "X In(x + XA 15) — X2 In (x, + x,A5,) (12.17)
A12 A2| )
_ + + - 12.1
In ¥y, In (x, XA2) + x, (xl +xA1 x4+ x Ay ( Y
A A )
_ 4 B _ 12.19
In ¥y, In (x, x1A51) X (xl +x3A2 X+ XA, ¢ )

For infinite dilution, these equations become

Iny¥=—-InA,+ 1= A,
and
InyY=-InA, +1-A,,

We note that A, and A,, must always be positive numbers.

t H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With
Applications to Phase Equilibria, sec. 5-7, McGraw-Hill, New York, 1982,

1 G. M. Wilson, J. Am. Chem. Soc., 86: 127, 1964,

§ H. Renon and J. M. Prausnitz, AIChE J, 14: 135, 1968.

7D. S. Abrams and J. M. Prausnitz, AIChE L, 21: 116, 1975,

T UNIQUAC F unctional-group Activity Coefficients; proposed by Aa. Fredenslund, R. L. Jones,
and J. M. Prausnitz, AICRE J, 21: 1086, 1975; given detailed treatment in the monograph: Aa.
Fredenslund, J. Gmehling, and P. Rasmussen, Vapor-Liquid Equilibrium using UNIFAC, Elsevier,
Amsterdam, 1977.
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The NRTL equation contains three parameters for a binary system and is
written:

G* . _ G + GiaTi2 (12.20)
x;x;RT B x+ %Gy X+t xGp
2 Gy 2 + GizTiz 2] (12.21)
Iy = | Xy + %0 (x, + x;Gy2)
2 G, 2 + Gy 72 2] (12‘22)
In 2 = x| mu X+ x,Gp2 (%) + x,G21)
Here '
Gy, = exp (—ar) Gy, = exp (—ary)
and
biz b
™=RT TMTRT

where a, by, and by, parameters specific to a particular pair of s;;::g;e:} :,;:
independent of composition and temperature. The infinite-dilution va

activity coefficients are given by the equations:
In ¥ = 75 + T2 €xp (—@T1z)

Iny3 = 712+ Ta exp (—arz)

The UNIQUAC equation and the UNIFAC method are models of greater 3

complexity and are treated in App. D. e .
'I;he lgcal-composition models have limited flexibility in the fitting of data,

but they are adequate for most engineering purposes. Moreo.ver, t(tile():rt ialor:l: T;p;i::y
itly generalizable to multicomponent systems without th_e mtrobil:l ction of any
parameters beyond those required to descrnbe the constituent bin l:{te I)I(
For example, the Wilson equation for multicomponent systems 1s written:
E B
S s xinYxA, (12.23)
RT i i )

and

el (12.24)
. = — X: A'-. -_— .
lny, =1 lnzj: A~ LS AL
where Ay = 1 for i = j, etc. All indices in these equations refer to the same spe(t:;i:,
and all summations are over all species. For each ij pair there are t\_;vo pfa.ran_le are,
because A; # A, For example, in a ternary system the three possible ij pairs
associated with the parameters Az, Azi: Aus Asid ar'ld {\23, 1};2:
The temperature dependence of the parameters 1s given by:

vV, -—a; ... (12.25)
=l exp—d i#j)
Ay Viexp RT (i#j
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where V; and V, are the molar volumes at temperature T of pure liquids j and
i, and a; is a constant independent of composition and temperature. Thus the
Wilson equation, like all other local-composition models, has built into it an
approximate temperature dependence for the parameters. Moreover, all
parameters are found from data for binary (in contrast to multicomponent)

systems. This makes parameter determination for the local-composition models
a task of manageable proportions.

12.5 DEW-POINT AND BUBBLE-POINT CALCULATIONS

Although VLE problems with other combinations of variables are possible, those

of engineering interest are usually dew-point or bubble-point calculations: there
are four classes:

BUBL P: Calculate {y,} and P, given {x,} and T
DEWP: Calculate {x,}and P, given {y,} and T
BUBLT: Calculate {y,} and T, given {x,} and P
DEWT: Calculate {x,} and T, given {y;} and P

Thus, one specifies either T or P and either the liquid-phase or the vapor-phase
composition, fixing 1+ (N — 1) or N phase-rule variables, exactly the number
required by the phase rule for vapor/liquid equilibrium. All of these calculations
require iterative schemes because of the complex functionality implicit in Egs.
(12.1) and (12.2). In particular, we have the following functional relationships
for low-pressure VLE:

P, = (D(]:P:ylsyh---,yN—l)
Y = YT, %1, %, . ... » Xno1)
Py =f(T)

For example, when solving for {y.} and P, we do not have values necessary for
calculation of the &,, and when solving for {x.} and T, we can evaluate neither
the Py nor the 7, Simple iterative procedures, described in the following
paragraphs, allow efficient solution of each of the four types of problem.

In all cases Eq. (12.1} provides the basis of calculation. This equation, valid
for each species k in a multicomponent system, may be written either as

Xy PRt
=— 12.26
o.P ( )
or as
Yi PP
X =—— (12.27)
* Y P
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Since ¥ yx = 1 and T x; = 1, we also have
x, P!-l(
1=% kYt k
k q’kP

or

P (12.28)

and

or

P (12.29)

" B P
When 7, = ®; = 1, Egs. (12.28) and (12.29) reduce to the Raoult’s-law expres-
i Egs. (10.17) and (10.19}. ‘ . )
SIOMBU;L I(’ The iteration scheme for this simple and direct bubble-point calf:u
lation is shown in Fig. 12.12. With reference to a computer program for can;ymtg
it out. one reads and stores the given values of T and {x:}, :.along W}th all cons anﬁt
requi’red in evaluation of the P, 7x, and @,. Since {y.} is not given, we cann

BUBL P

Read T, {x,}, constants.
Set all ¢, =1.0.
Evaluate { P2}, {7}
Cale. P by Eq. (12.28).

]

Cale. {1} by Eq. (12.26).
Evaluate {®.}.

5

r Calc. P by Eq. (12.28). :l

Figure 12.12 Block diagram for the calculation
Print P, {y:}. BUBL P,
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yet determine values for the ®,, and each is set equal to unity. Values for { P}
are found from the Antoine equation [Eq. (12.3)] and values of {7} come from
an activity-coefficient correlation. Equations (12.28) and (12.26) are now solved
for P and {y;}. Values of &, from Eq. (12.6) allow recalculation of P by Eq.
(12.28). Iteration leads to final values for P and {nl}.

DEW P. The calculational scheme here is shown in Fig. 12.13. We read and
store T and {y,}, along with appropriate constants. Since we can calculate neither
the @, nor the v, all values of each are set equal to unity, Values of {P}"} are
found from the Antoine equation, and Egs. (12.29) and (12.27) are then solved
for P and {x.}. Evaluation of {y,} now allows recalculation of P by Eq. (12.29).
With this rather good estimate of P, we evaluate {®;} and enter an inner iteration
loop that converges on values for {x,} and {v;}. Subsequent recalculation of P
by Eq. (12.29) leads to the outer iteration loop that establishes the final value of
P. Since the x, calculated within the inner loop are not constrained to sum to

DEW P

Read T, {y.], constants.
Set alt @, = 1.0, all y, =1.0.
Evalvate {P}"}.

Calc. P by Eq. (12.29).
Calc. {x,} by Eq. (12.27).
Evatuate {y,}.

Calc. P by Eq. (12.29).

L

Evaluate {$,}, |-

!

Calc. {x.} by Eq. {12.27).
Normalize the x, values.
Evaluate {y,}.

]
N
Is each &y, < f?, 0,

"Yes
Calc. P by Eq. {12.29).

‘ No
| Is 8P <¢? ]L -

1 Yes

. Figure 12.13 Block diagram for the calcula-

I_ Print P, {x.). ] tion DEW P,
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unity, each value is divided by 2 x;:

Xk
X, = —

Y X

This yields a set of normalized x, values, which do sum to unity. Actually, the

inner loop can be omitted; it is included simply to make the calculational |

procedure more efficient.

In the BUBL P and DEW P calculations, the temperature is known initially,
and this allows immediate calculation of the key quantities P3". This is not the
case for the two remaining procedures, BUBL T and DEW T, where the tem-

perature is to be found. Here, as with the analogous Raoult’s law calculations, §

we deal with vapor-pressure ratios, because they are weak functions of tem-

perature. To introduce these ratios on the right-hand sides of Egs. (12.28) and -
(12.29), we multiply by P}* (outside the summation) and divide by P{* (inside

the summation). Solution for the P outside the summation then gives:

P
P = — 12.30)
T Gyl @) (PR P (12:30)
and
sar .
P = P);_‘y"—fﬁ(i—;,;) (1231)
k

In these equations the summations are over all species including i, which is an
arbitrarily selected species of the set {k}. When v, = ®, =1, Egs. (12.30) and
(12.31) reduce to Egs. (10.20) and (10.24) used in the analogous calculations for

Raoult’s law. The temperature corresponding to the vapor pressure P is found

from an appropriate equation giving vapor pressure as a function of T, here the
Antoine equation:

B,

— -G 12.32
A, —In P < (12.32)

T =
where A, B, and C; are the Antoine constants for species L
For purposes of finding an initial temperature to start an iteration procedure,
we need values of the saturation temperatures of the pure species T3 at pressure
P. These are also given by the Antoine equation, written as:

By
— -
A.—lnp "

BUBL T. Figure 12.14 shows the iterative scheme for this bubble-point
calculation. The given values of P and {x,} along with appropriate constants are

read and stored. In the absence of T and the y, values, all @, are set equal to
unity. Iteration is controlled by T, and for an initial estimate we set

T=YxT (12.34)
k

" = (12.33)
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BUBL T
L

Read P, {x,}, constants.
Setall ¢, =1.0.
Cale. {T:"} by Eq. {(12.33).
Cale. T=Y% x, T3

k

Evaluate { P}, {7}
Identify species i.
Calc. Pi* by Eq. (12.30}.
Calc. T by Eq. (12.32).

]

Evaluate { P},
Calc. {y,} by Eq. (12.26).
Evaluate {®,}, {v.}.
Calc. P by Eq. (12.30).

Y
| Calc. T by Eq. (1232). |

¥ N
[ 1ssT<e? ]—‘-’.
"ch

[ Print T, {n}. ] Figure 12.14 Block diagram for the calculation
BUBLT.

where the T3 are found from Eq. (12.33). With this initial value of T, we find
values for { P{*'} from the Antoine equations and values of {y,} from the activity-
coefficient correlation. Species i is identified, P{* is calculated by Eq. (12.30),
and a new value of T is found from Eq. (12.32). The P} are immediately
reevaluated, and the y; are calculated by Eq. (12.26). Values can now be found
for both {®,} and {y,}, allowing a revised value of P:™ to be calculated by Eq.
(12.30) and a better estimate of T to be found from Eq. (12.32). Iteration then
leads to final values of T and {y.}.

DEW T. The scheme for this dew-point calculation is shown in Fig. 12.15.
Since we know neither the x; values nor the temperature, all values of both @,
and 7, are set equal to unity. Iteration is again controlled by 7, and here we find
an initial value by

T= )5 y T3 (12.35)
With this value of T, we determine { P{*'} from the Antoine equations. All quantities

on the right-hand side of Eq. (12.31) are now fixed; we identify species i and
solve for P}, from which we get a new value for T by Eq. (12.32). We immediately
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DEWT

Read P, {y,}, constants, Set all ®, =1.0, all ¥, = 1.0.
Calc. {T}""} by Eq. (12.33). Calc. T=);_‘ykTi".

Evaluate {P}"}. 1dentify species 1.
Calc. P™ by Eq., (12.31). Cale. T by Eq. (12.32).
Evaluate { P31}, {&,}. Calc. {x,} by Eq. (12.27).
Evaluate {y,}. Calc. P; by Eq. (12.31), T by Eq. (12.32).

f
Evaluate {P3}, {®, ). N

\

Calc. {x,.} by Eq. (12.27).
Normalize the x, values.
Evaluate {¥.}).

L

No
Is each 8y, < 5?4}‘——

Yes

]

Cale. P* by Eq. (12.31).
Calc. T by Eg. (12.32).

Y

No
Is 8T <¢? -
}-Yes )
. Figure 12.15 Block diagram fo
Print T, {xl- the calculation DEW T.

reevaluate {P3*} which, together with {®,}, permits calculation of the x; by
(12.27). This allows recalculation of P{* by Eq. (12.31) a?a(ti of T by Eq. (12.3 \.
With this rather good estimate of T, we again evaluate { P} and {®,}, and en
an inner iteration loop that converges on values of {x;} and {y.}. Subsequén
recalculation of P5 and T then leads to the outer iteration loop that produ

loop are not constrained to sum to unity, and each value is divided by Zxk:

Xk

=>:xk

Xi

included simply to make the calculational procedure more efficient.
Table 12.1 shows the results of a BUBL T calculation for the system

hexane(1)/ethanol(2)/methylcyclopentane(3)/benzene(4). The given pressure -

a final value of T. As in the DEW P procedure, the x, calculated within the inn .:.

This set of normalized x, values does sum to unity. Again, the inner loop l.
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Table 12.1 Resulis of BUBL T éalcnlations for the system, n-hexane/ethanol/
methylcyclopentane(MCPY/benzene at 1(atm)

Species i Yx Iy

k X {calc) (exp) {atm} D, Y
n-Hexane(1) 0.162 0.139 0.140 0.797 0.993 1.073
Ethanol(2) 0.068 0.279 0.274 0.498 0.999 8.241
MCP(3) 0.656 0.500 0.503 0.725 0.990 1.042
Benzene(4) 0.114 0.082 0.083 0.547 0.983 1.289

T(cale) =334.82K  T(exp) = 33485K Iterations = 4

is 1(atm), and the given liquid-phase mole fractions X, are listed in the second
column of Table 12.1. Parameters for the Antoine equationst [ T in kelvins, P in
{atm}], supplied as input data, are:

A, =9.2033 B, = 2,697.55 C,=—48.78
A, =12.2786 B, = 3,803.98 C, = —-41.68
A; =9.1690 B, =2,731.00 Cy=—47.11
Ay =9.2675 B, =12,788.51 C,=—-5236

As additional input information, we supply the following virial coefficients} (in
cm’® mol™!);

B, =-1360.1  B,=-657.0  B,;=-12742 B, =-12188
By=-1,1747  By;=-6218 B, = —589.7

By;=—-1,191.9 B, =—1,1379

B, = —1,086.9

Finally, the input information includes parameters for the UNIFAC method
(App. D). The calculated values of T and the vapor-phase mole fractions y,
compare favorably with experimental values.§ Also listed in Table 12.1 are final
computed values of P, &, and ¥,.

The BUBL T calculation for which results are given in Table 12.1 is for a
pressure of 1{atm), a pressure for which vapor phases are often assumed to be
ideal gases. With this assumption, @, is unity for each species. In fact, these
values lie between 0.98 and 1.00. Thus in this example, and usually at pressures
of 1{atm} and less, the assumption of ideal gases introduces little error. When

T R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3d ed.,
app. A, McGraw-Hill, New York, 1977.

% From the correlation of J. G. Hayden and 1. P, O°Connell, Ind. Eng. Chem, Proc. Des. Dev., 14:
209, 1975. :

§J. E. Sinor and J. H. Weber, J. Chem. Eng. Data, 4: 243, 1960.
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this assumption is made, Eq. (12.1) reduces to Eq. {11.74):
P = x PY (k=12,...,N) (11.74)

This modified Raoult’s law was used for data reduction in Sec. 11.6. Bubble- and
dew-point calculations made with Eq. (11.74) are, of course, somewhat simpler
than those shown by Figs. 12.12 through 12.15. Indeed, the BUBL P calculation
yields final results in a single step, without iteration. The additional assumption
of liquid-phase ideality (. = 1), on the other hand, is justified only infrequently.
We note that y, for ethanol in Table 12.1 is greater than 8.

Values of parameters for the Margules, van Laar, Wilson, NRTL, and
UNIQUAC equations are given for many binary pairs by Gmehling et al.% in a
summary collection of the world’s published VLE data for low to moderate’
pressures. These values are based on reduction of data through application of'
Eq. (11.74). On the other hand, data reduction for determination of parameters
in the UNIFAC method (App. D) is carried out with Eq. (12.1).

Example 12.1 For the system 2-propanol(1)/water{2), the following parameter values
are recommended for the Wilson equation:

a;; = 437.98 @y, = 1,238.00 cal mol ™!
V, = 76.92 v, = 18.07 em® mol ™

In addition, we have the following Antoine equations:

3,640.20
In P = 16.6780 — i
n 6780 ~ T 354
3,816.44
I Psnt s
n 16.2887 -~

where T is in kelvins and the vapor pressures are in kPa. Assuming the validity of |
Eq. (11.74), calculate:

(a) P and {y.}, for T = 353.15 K (80°C) and x, = 0.25.

(b) P and {x}, for T =353.15 K (80°C) and y, = 0.60.

(¢) T and {3}, for P = 101,33 kPa [1(atm)] and x, = 0.85.

(d) T and {x,}, for P = 101.33 kPa {1{atm)] and y, = 0.40.

(e) P*, the azeotropic pressure, and x{* = y{*, the azeotropic composition, for }
T = 353.15 K (80°C).

SOLUTION Since we have assumed the validity of Eq. (11.74), &, = 1.0 throughou
this problem. This, together with the fact that we are considering a binary system,
makes the solution simple enough that the steps can be explained as though carned
out by hand calculations.

(@) A BUBL P calculation. For T = 353.15 K, the Antoine equations yield th
following vapor pressures:

P =9259 P3* = 47.38kPa

tJ. Gmehling, U. Onken, and W. Arlt, **Vapor-Liquid Equilibrium Data Collection,™ Chemlstl'y
Data Series, vol. 1, Parts 1-8, DECHEMA, Frankfurt/Main, 1977-1984.
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The activity coel’ﬁcnents‘ as given by the Wilson equation are calculated by Eqs. (12.18)
and (12.19). First, however, we must find the values of A;; and A,, by Eq. (12.25). Thus

A= v, a1z _ 18. 07 —-437.98
12 = 3, €Xp
vV, RT 76. 92 (1.987)(353.15)
={,1258
and
A = v, ~4 _ 76. 92 —1,238.00
n =3, €Xp
V, RT 18. 07 (1.987)(353.15)
=(.7292

Substituting known values into Eqs. (12.18) and (12.19) gives:
Iny, = -In{(0.25 + 0.75 x 0.1258)

+075 ( 0.1258 _ 0.7292 )
0.25 4+ 0.75 x 0.1258  0.75 +0.25 x 0.7292

or

In ¥, = 1.0661 + 0.75(—0.4168) = 0.7535
and

In v, = —In (0.75 + 0.25 x 0.7292) — 0.25(—0.4168)

= 0.0701 + 0.1042 = 0.1743

whence

7 =2.1244 v = 1.1904
By Eq. (12.28) with ¢ = 1.0,
= (0.25)(2.1244)(92.59) + (0.75}(1.1904)(47.38)
=91.48kPa
From Eq. (11.74), written as y, = x, % P%/ P, we get
¥, = 0.538 ¥z = 0.462

(b) A DEW P calculation. With T unchanged from part (a), the values of P,
P$, Ay;, and A, are the same as already calculated. However, here the liquid-phase
composition is unknown. We therefore set ¥, = 1.0, and Eq. (12.29) reduces to its
Raoult’s law counterpart:

1

W/ PR+ o/ PR
From this we find P = 67.01 kPa. Equation (12.27), written x, = y; P/ P now gives:

_(06)(67.01)
N=TTgsg 0434

Whence x; = | — x; = 0.566. The resulting values of y, and +y,, calculated by Eqgs.
{12.18) and (12.19) are:

v = 14277 v, = 1.4558
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We recompute P by Eq. (12.29), now written
1
- WP+ v/ v P
This gives P =96.73kPa. Recalculation of x; by Eq. (12.27) gives

_ P (0.60)(96.73)
T P T (1.4277)(92.59)

= 0.439

Similarly, x, = 0.561. Equations (12.18) and (12.19) now yield new values of

activity coefficients:
v = 1.4167 ¥, = 1.4646

Iteration within the inner loop of Fig. (12.13) leads to the values:
x; =0.449 v, = 1.3957 vy, = 1.4821

Equation (12.29) now gives P = 96.72 kPa. Since the ®, are fixed at unity, no furth

iteration is required, and we have for final values:

P =96.72kPa x, = 0.449 x; = 0.551

(¢) A BUBL T calculation. Application of Eq. (12.33) with the given Antoizy

constants and P = 101.33 kPa leads to the values:
T = 355.39 T =373.15K
An initial value for T is then given by Eq. (12.34}:
= (0.85)(355.39) + (0.15)(373.15) = 358.05 K
Evaluation of the P5* values at this temperature by the given Antoine equations g
P =112.60 3 = 57.60 kPa

The activity coefficients at this temperature are calculated by the Wilson equ
after evaluation of A,; and Ay, by Eq. (12.25):

Ap=01269  A; =07471
Then by Eqgs. (12.18) and {12.19),
v, = 1.0i97 ¥, = 2.5265
Substitution of values into Eq. (12.30), with i = 1 and each @, = 1 gives:

101.33
(0.85)(1.0197) + (0.15)(2.5263)(57.60/112.60)

= 95.54 kPa

Psﬂl

Equation (12.32) written for species | then gives a new value for th‘e tempe
T = 353.924 K. The sequence of calculations is now repeated for this tempe
yielding:
P =48 83 kPa Az = 0.1260 Ay = 0.7320
v, = 1.0197 vs = 2.5287

P =95.52kPa T=1353920K
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The change in T is negligible, and additional iteration leads to no slgmﬁcant further
change in values. We therefore calculate y, by Eq. (12.26):

_ (085)(1.0197)(95.52) _
ST haotsn - 087

Thus for final results we have:
T =35392K n=10817 y2 =0.183

(d) A DEW T calculation. Since P = 101.33 kPa, the satyration temperatures
are the same as those of part (¢), but the initial T is given by Eq. (12.35):

= (0.40)(355.39) + (0.60}(373.15) = 366.05 K,
The P} values at this temperature found from the Antoine equations are:
P = 15289 P = :18.19 kPa
For i = 1 and ¥y, = ¢ = 1.0, we evaluate P by Eq. (12.31):

152.89
78.19

Writing Eq. (12.32) for species 1 gives the new estimate, T = 367.17 K. At this
temperature, P3" = 81.54 kPa, and A,; and A, by Eq. (12.25) are:

A];_ = (.1289 Az; = (.7801

Application of the Wilson equation for evaluation of activity coefficients requires
knowledge of the liquid-phase composition. We therefore calculate x, by Eq. (12.27):

_ (0.40)(1)(101.33) _
SR TIV P TIE

Whence x; = 1 — x; = 0.746. Equations (12.18) and (12.19) then give:
v =20276 v, =1.1902
We now recalculate P{* by Eq. (12.31):

040  0.60 [159.41
P = 101.33 + =119
! [2.0276 1.1902 ( 81.54)] 11986 kPa

Reevaluation of T by Eq. (12.32) gives T = 359.65 K. At this temperature,
P =6131kPa A, =01273 A, = 07529

These values remain fixed while the iterations of the inner loop of Fig. 12.15 are
carried out. Calculation of x, by Eq. (12.27) gives

o= NP _ (0.40)(101.33) — 0167
Ty P (2.0276)(119.86)

Similarly, x, = 0.833. By Eqs. (12.18) and (12.19),
v, = 2.8103 v, = 1.0999

P =101.33 [040+060( )] = 159.41 kPa

Equation (12.27) yields new values of x, and x,, which are then normalized, and ¥,
and v, are again calculated by Egs. (12.18) and (12.19). The process is repeated until
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the v,y and ¥, values do not change appreciably in successive iterations. The resuits
of this procedure are:

x; = 0.0658 ¥ = 5.1369 Y2 = 1.0203
Leaving the inner loop, we calculate P by Eq. (12.31):
0.40 0.60 f119.86
sat o . = 124.384 kPa
P =101.33 [5.1369 1.0203(61.31)] 24.38

By Eq. (12.32), written for species 1, we find T = 360.61 K. At this temperature:
Py =63.62kPa  A;=0.1275 Az = 0.7563

We now return to the inner loop, and iteration for x,, ¥,, and y; leads to the valu

X = 0.0639 ?l = 5.0999 Y2 = 1.0205
A return to the outer loop produces no significant change in these results. Thus we find:
T=36061K x,=0063% x,=09361

(e) First we determine whether or not an azeotrope exists at the given te
perature. This calculation is facilitated by the definition of a quantity called the relati
volatility a,,:

- 2/% (12.

237
Yol %2

This quantity becomes unity at an azeotrope. By Eq. (11.74),

P _ P
Xk P
Therefore
Psal
ap = -::‘T;t (12
L2

At the limits x, = 0 and x, = ], this quantity is given by:

¥y P
P

(“12)x1=0 =

and
P
(@12) =1 = e

These values are readily calculated from the given information. If one of them i
than 1 and the other is greater than 1, then an azeotrope exists, because oz
continuous function of x, and must then pass through the value of 1.0 at s@
intermediate composition.

Values of P2 and P5* and values of A,; and A, for the Wilson equation
given in part (a) for the temperature of interest here. Expressions for the infir
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dilution activity c9eﬂic.i_ents appear following Eqs. {12.18) and (12.19). Thus
InyF=~InA,+1-A; =-In0.1258 + 1 — 0.7292

= 23439
and
InyT =-InAy +1~-A;; = -In0.7292 + | — 0.1258
= 1.1900
Whence
¥Ye = 10422 ¥y = 1.287
(10.422)(92.59)
(@y)y mp = ——— 2
12) 5,0 .38 2037
and
92.59)
(C! -] = -—(_"— =
12)5,-1 G28T)a7138) 0.595

From these results, we conclude that an azeotrope does indeed exist.
For &y, = 1, Eq. (12.37) becomes
NPT 41

Y e

The difference between Eqgs. (12.19) and (12.18), the Wilson e i
_ (12, .18), ations f
gives the general expression: quations for ve snd o,

rn_ In X+ x Ay + A Az

In -
Yz Xt oAy 3+ xA5 x+xA,,

Thus _the azeotropic composition is the value of x, (with x; = 1 — x,) for which this
equation is satisfied when

In 2 = 1n0.5117 = —0.6700
Y2
and
Ap=01258 A, =07292

Solution by trial for x, gives x3° = 0.7173. For this valu
i X . I e of x;, we find from Eq.
(12.18) that %= = 1.0787. With x7* = y*, Eq. (11.74) becomes 1 s

P = 4P = (1.0787)(92.59)
Thus

P2=9983kPa  xi*=y¥=07173
12.6 FLASH CALCULATIONS

;l"he P, T-flash calc'ulation was discussed in Sec. 10.5 in connection with Raoult’s
aw. The problem is to calculate for a system of known overall composition {z;}
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at given T and P the fraction of the system that is vapor V and the composition
of both the vapor phase {y;} and the liquid phase {x,}. This problem is know
to be determinate on the basis of Duhem’s theorem, because two md'e_penden
variables (T and P) are specified for a system made up of fixed quantities of
constituent species. ‘
The flash calculation illustrated by Example 10.3 for a system obeying Raoult’
law was solved by a very simple trial procedure. This was possible becaus
K-values (K; = y;/x;) could be calculated from knowledge of T and P alon?
When the K-values depend not only on T and P but also on the phase compos
tions, their calculation is inherently more difficult. Moreover, since the phas
compositions are not initially known, they are most conveniently found by
iterative computation scheme. '
On the basis of material balances and the definition of a K-value, we derive

in Sec. 10.5 the equation,
zK;

y=———"—— (i=12,...,N)}

(10.29)
1+ V(K - 1)

Since x; = y;/ K;, an alternative equation is

Z

l_"i:V_(m (i=1,2,..

., N) (12.

X =

Since both sets of mole fractions must sum to unity, Y, x; =.>: yi=1L Th}ls, if e
sum Eq. (10.29) over all species and subtract unity from this sum, the differe

F, must be zero; that is,
z,K;
1+ V(K;—1)

Similar treatment of Eq. (12.38) yields the difference F, which must also be zer

F, = Z —-1=0 (12.

z.

=y ——F——-1=0 (12

F ?varn

Solution to a P, T-flash problem is accomplished when a value of V is fo
that makes either the function F, or F, equal to zero. However, a more conven
function for use in a general solution proceduret is the difference F, — F,. =

z(Ki— 1)

S St L (12
1+ V(K. — 1)

F= E

The advantage of this function is apparent from its derivative:

dF 7(K; ~ 1)

EF—Z

12
T [1+ V(K - DF (,

t H. H. Rachford, Jr., and J. D. Rice, J. Petrol Technol, 4(10): sec. 1, p. 19 and sec. 2,
October, 1952.
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Since dF/dV is alwgys negative, the F vs. V relation is monotonic, and this
makes Newton’s method {(App. E), a rapidly converging iteration procedure, well
suited to solution for V. Newton's method here gives

F
V..=V ———~¢L .

where j is the iteration index, and F; and (dF/dV), are found by Egs. (12. 41)
and (12.42). In these equations the K-values come from Eq. (11.66) written

yi_ P i

K =
"“x, ®P

(i=1,2,...,N) (12.44)

where Eq. (11.67) without the Poynting factor gives
L

sat
i

q),'=

The K-values contain all of the thermodynamic information, and are related in
a complex way to T, P, {y;}, and {x;}. Since we are solving for {y;} and {x;}, the
P, T-flash calculation inevitably requires iteration.

A general solution scheme is shown by the block diagram of Fig. 12.16. The
given information is read and stored. Since we do not know in advance whether
the system of stated composition at the stated T and P is in fact a mixture of
saturated liquid and saturated vapor and not entirely liquid or entirely vapor,
we do preliminary calculations to establish the nature of the system. At the given
T and overall composition, the system exists as a superheated vapor if its pressure
is less than the dew-point pressure P,,,,. On the other hand, it exists as a subcooled
liquid if its pressure is greater than the bubble-point pressure P, . Only for
pressures between P, and P, is the gystem an equilibrium mixture of vapor
and liquid. We therefore determine P,.,, by a DEW P calculation (see Fig. 12.13)
at the given T and for {y;} = {z;} and P, by a BUBL P calculation (see Fig.
12.12) at the given T and for {x,} = {z;}. The P, T-flash calculation is performed
only if the given pressure P lies between Py, and P,,. If this is the case, then
we make use of the results of the preliminary DEW P and BUBL P calculations
to provide initial estimates of {-y,} {¢,} and V. For the dew point, we have
calculated values of Py, ¥ dew, q&,_dew, and Vaew = 1; for the bubble point, we
have calculated values of Poupi, ¥:puel, qb, bubi, and Vbub. = 0. The simplest pro-
cedure is to interpolate between dew- and bubble-point values in relation to the
location of P between Py, and P,

Yi — Yidew _ ¢a qgi,dew - P- Pdew
Yibubl — Yidew t;b., pubt = Pidew  Poubl — Pacw
and
V-1 P_Pdew Pbubl_P
= or V=—r—""—
0-1 Pbub]— Pdew Pbubl— Pdew
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Read T, P, {z;}, constants. J

L

Y

(+——-- DEW P calkulation with {r=1{z}

|

| ]

| e —— BUBL P calculation with {x}={z).

L

[ o

I 18 Pon < P < Pra? > Stop
I

: | Yes

ty__ ——=!  Estimate {x}, {3,), V.

\

Evaluate {K;} by Eq. (12.44}. -
Evaluate F and dF/dV by Egs. {12.41) and (12.42).

1

Find V by Newton’s methad.
Evaluate {x,} by Eq. (12.38).
Evaluate {y;} by v.= Kx,.
Evatuate {v,}, {®,}.

1
No
Are 8V, each 8x;, and each 8y, <e? -

¥ Yes
Print V, {x}, {»:}.

Figuré 12.16 Block diagram for a F, T-flash calculation.

With these initial values of the y; and cﬁ,-, initial values of the K; can be.cal_cu.,_
by Eq. (12.44). The P{* and ¢ values are already available from the prelim:

DEW P and BUBL P calculations. Equations (12.41) ar}d_ (12.42) now p
initial values of F = F, and dF/dV = (dF/dV),. The 'mmal _value of V
comes from the preceding step. These values are subst.ltut-ed into ]:?.q. (1
which represents Newton’s méthod, and repeated application of this equ
teads to the value of V for which Eq. (12.41) is satisfied for the present estir
of the K, The remaining calculations serve to provide new estimates of

and ®; from which to reevaluate the K;. The sequence of steps is repeatpd .

there is no significant change in results from one iteratioy to the next. .Aft
first application of Newton’s method, the starting value V;in subseqpent ite ]
is simply the most recently calculated value. Once the value of V is establi

PHASE EQUILIBRIA AT LOW TO MODERATE PRESSURES 397

Table 12.2 Results of a P, T-flash calculation for the system,
n-hexane/ethanol/methylcyclopentane(MCP)/ benzene

Species(i) 7 x; ¥ - K

n-Hexane(1) 0.250 0.160 0.270 1.694
Ethanol(2) 0.400 0.569 0.362 0.636
MCP(3) 0.200 0.129 0.216 1.668
Benzene(4) 0.150 0.142 0.152 1.070

P = 1(atm) T=33.15K V = 0.8166

the x; values are calculated by Eq. (12.38) and the y; values by the equation
= Kx,

Table 12.2 shows the results of a P, T-flash calculation for the system n-
hexane(1)/ethanol(2)/ methylcyclopentane(3)/benzene(4). This is the same Sys-
tem for which the results of a BUBL T calculation were presented in Table 12.1,
and the same correlations and parameter values have been used here. The given
P and T are 1(atm) and 334.15 K. The given overall mole fractions for the system
{z;} are listed in the table along with the calculated values of the liquid-phase
and vapor-phaseé mole fractions and the K-values. The molar fraction of the
system that is vapor is here found to be V = 0.8166.

12.7 COMPOSITION DEPENDENCE OF f}

Numerical values for the fugacities of species in liquid mixtures are readily
calculated from experimental VLE data. According to Eq. (11.30),

fi=f
for each species. If we assume the equilibrium vapor phase to be an ideal gas,
then f7 = y,P, the partial pressure of species i in the vapor, and

fA:=yiP

In the limit of pure species i, where x; = y; = |, this becomes f i=f1=P™
Thus, for example, we can calculate the fugacities of species | and 2 in the liquid
mixture methyl ethyl ketone(1)/toluene(2) at 50°C to a good approximation from
the y, ~ P data listed in Table 11.1. Specifically, when P = 2592 kPa, y, = 0.744
and y, = | — y, = 0.256, then

Fi = (0.744)(25.92) = 19.28 kPa

>

and
fo = (0.256)(25.92) = 6.64 kPa

Where superscript ! has for simplicity been dropped. The values of fl and fz s0
Calculated from the data of Table 11.1 are plotted in Fig. 12.17 as the solid lines.
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Figure 12.17 Fugacities #, and £, for the system methyl ethyl ketone(1)/toluene(2) at 50°C
dashed lines represent the Lewis/Randall rule.

The straight dashed lines represent Eq. (11.61), the Lewis/Randall rule, whi
expresses the composition dependence of the component fugacities in an i
solution:

74 = xf, (1161}

Figure 12.17, derived from a specific set of data, illustrates the ge
characteristics of the f, and f, vs. x, relationships for a binary liquid soluti
constant 7. Although P varies, its influence on the f; is very small, and a
at constant T and P would look the same. Thus in Fig. 12.18 we show a schem®
diagram of the f-vs.-x; relation for species i (i = 1,2) in a binary solution
constant T and P.

The straight dashed line in Fig. 12.18 that represents the Lewis/Randall
is the only model of ideal-solution behavior so far considered. Alternative ma
also express the direct proportionality between f; and x; represented by
(11.61), but with different proportionality constants. We may express this d
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Figure 12.18 Composition dependence of j‘:, showing relation to Henry's law and the Lewis/Randatl
rule.

proportionality quite generally by writing:
\ -
fid=xf; (12.45)

When x; =1, f i# is equal to the fugacity of pure species i in some state at the
mixture T and P. Such states are called standard states, and they may be either
real or imaginary. When f; = f, Egs. (11.61) and (12.45) are identical; thus the
standard state associated with the Lewis/Randall rule is the real state of species
i at the T and P of the mixture.

The nature of imaginary {or ficticious or hypothetical) standard states is most
easily explained by reference to Fig. 12.18. The two dashed lines shown both
conform to ideal-solution behavior as prescribed by Eq. (12.45). The points
labeled f?(LR) and f3(HL) are both fugacities of pure i, but only f7(LR) is the
fugacity of pure i as it actually exists at the given T and P, The other point
J7(HL) represents an imaginary state of pure i in which its imaginary properties
are fixed at values other than those of the real fluid. Either choice of value for
7 fixes the entire line which represents f = x,f?.
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The ideal solution is introduced to pravide a model of solution behavig
which we may compare actual solution behavior. Such a model is arbitrary,
as an idealization it should be simple, and at the same time it should confa
to actual solution behavior over some limited range of conditions. The definit
of Eq. (12.45) ensures that the ideal solution exhibits simple behavior. Moreoy
the two standard-state fugacities chosen, f3(LR) and f;(HL), ensure that
models represent real-solution behavior at a limiting condition.

The line terminating at f7(LR) in Fig. 12.18 is tangent to the solid curv
x; = 1 {as explained later, this is a consequence of the Gibbs/Duhem equa
and therefore represents real-solution behavior in the limit as x; - 1. The mat
matical expression of this requirement is given by

(). umd-r

= fH(LR)
or, since f7(LR) represents the fugacity f; of pure i as it actually exists, by :

(@), s

= lim
X1 X,

(124

dx,' xi~+1 X

This equation is the exact expression of the Lewis/Randall rule as it applief
real solutions. It shows that Eq. (11.61) is valid in the limit as x; > 1 and ¢
this equation is approximately correct for values of x; near unity. 5

The line terminating at f3(HL) is drawn tangent to the solid curve at x,
and therefore represents real-solution behavior in the limit as x; = 0. The ma
matical expression of the tangent condition is

i {df
lim Ji_ (—f) = fi(HL}
x=0 X; dxi x=0
or more commonly
tim %2 = g, (1%
x»0 X

Equation (12.47) is a statement of Henry’s law (HL) as it applies to real solu
It shows that the equation f; = x;k; applies in the limit as x; - 0, and tha
relation is of approximate validity for small values of x;. The proportio
factor k; is called Henry’s constant.

Equations (12.46) and (12.47) imply two models of solution ideality
first is based on the Lewis/Randall rule, for which the standard-state fugas

Fi(LR) = f;
and the other is based on Henry’s law, for which the standard-state fuga
Si(HL) = K
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Thus in practice t.lhg direct proportionality of Eq. (12.45) takes two forms:

FHLR) = x,f, (12.48)
and :

F(HL) = xk, (12.49)

Both‘models of ideality are shown in Fig. 12.18 in relation to the curve
representl_ng the actual f-vs.-x, behayior. These equations have two uses. First
they provide approximate values for f, when applied to appropriate compo’sitiori
ranges. Second, they provide reference values to which actual values of ﬁ may

be compared. This use is formalized through the activi : Ji ma
cti Tiil
defined by & activity coefficient, which is

Y = (1250)

BB

Fc.'.tr ideality in the sense of the Lewis/Randall rule, this equation is identical
with Eq. (11.59). For ideality in the sense of Henry’s law, it becomes

fi
vi(HL) ok |
Use of actiyity coefficients based on Henry’s law is treated in the following section.
The Gibbs/Duhem equation provides a relation between the Lewis/Randail

n_lle and Hen_ry’s law. Substituting dG, from Eq. (11.28) for dM, in Eq. (11.8)
gives, for a binary solution at constant T and P,

xdinfi+x,dlnf,=0

In the regi.on wt_lere Henry’s law is valid for component 1, Eq. (12.47) is written
1 = X1k}, in which case the foregoing equation becomes

xldln(x1k1)+x2dlnf2=0

(12.51)

or LS
Py xl
dInf2= ———dln(klxl)=—-——"“—="‘—
X2 X2

Since dx, + dx, = 0 for composition changes in a binary system

4 dx
dlnf2=;—2=dlnx2
2

Integration from x, = 1, where J2 = fo, to arbitrary mole fraction x, gives

A

S X
In==[n—=
F 1
or
f—-z = Lix;
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This is the Lewis/Randall rule for species 2, and the derivation shows th
holds whenever Henry's law is valid for species 1. Similarly, f1 Jix, when
f = kyX,. )
Figure 12.18 is drawn for a species that shows positive deviations from ide
in the sense of the Lewis/Randall rule. Negative deviations from ideality are

common, and in this case the _ﬂ vs.-x; curve lies below the Lewis/Randall | 3

In Fig. 12.19 we show the composition dependence of the fugacity of aceton:
two different binary solutions at 50°C. When the second component is metha

acetone shows positive deviations from ideality. On the other hand, when 4
second component is chloroform, acetone shows negative deviations from 1deg j

The fugacity of pure acetone foceione is of course the same regardless of the sé
component. However, Henry's constants, represented by the slopes of the
dotted lines, are very different for the two cases.

081 fucemn:

In methanol

Sucorone/ T

Xucerone

Figure 12.19 Composition dependence of the fugacity of acetone in two binary liquid solutions at
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12.8 HENRY’S LAW AS A MODEL FOR
IDEAL BEHAVIOGR OF A SOLUTE

Application of the Lewis/Randall rule, Eq. (11.61),
J :d =xf;

to species i in a liquid solution requires knowledge of f, the fugacity of pure
liquid i at the mixture T and P. We have presumed in the preceding discussion
that the liquid phase being considered is stable throughout the entire composition
range at the given T and P. Where this is true, as for mixtures of subcooled
liquids, the ideal-solution model based on the Lewis/Randall rule provides the
most convenient values of f for reference purposes. However, there is always
a range of conditions of T and P for which the full curve of Fig. 12.18 for a
given liquid phase cannot be determined, because the phase becomes unstable
in some composition range. This is most obvious when gases or solids of limited
solubility dissolve in liquids. What, then, is done when pure species i does not
exist as a liquid at the mixture T and P?

Consider a binary liquid solution of species 1 and 2, wherein species 1
dissolves up to some solubility limit at a specified T and P. Data for the solution
can therefore exist only up to this limit, and a plot like Fig. 12.18 is necessarily
truncated, as indicated by Fig. 12.20. Clearly, the Lewis/Randall line for species
2, representing the relation

12 =xf

is readily constructed. However, f; does not appear on the figure, and the
corresponding Lewis/Randall line for species 1 cannot be drawn. We can,
however, construct an alternative line for species 1, representing the alternative
model of ideal behavior provided by Henry’s law, as shown in Fig. 12.20. Henry's
constant, the standard-state fugacity, is the fugacity that pure species 1 would
have if species 1 obeyed Henry's law over the full range of mole fractions from

=0tox;=1.

We write Eq. (11.28) for species ! in solution:

dG, = RTd In f, (const T)

Integration of this equation at constant 7, P, and x, for a change from the state
of spec1es 1 in an ideal solution in the sense of Henry’s law, where G, = G¥(HL)
and f, = x,k;, to its actual state in solution gives

e

X1K)

G, — G¥(HL)=RTIn

The difference on the left is just an alternative partial excess Gibbs energy,
Gf (HL), and the argument of the logarithm by Eq. (12.51) is:
i

x,k,

v(HL) = (12.52)
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This is the Lewis/Randall rule for species 2, and the derivation shows that it
holds whenever Henry’s law is valid for species 1. Similarly, fl fix, whenever -
f kyx;. o

Figure 12.18 is drawn for a species that shows positive deviations from ideality -
in the sense of the Lewis/Randall rule. Negative deviations from ideality are also .
common, and in this case the f vs.-x; curve lies below the Lewis/Randall line
In Fig. 12.19 we show the composition dependence of the fugacity of acetone in
two different binary solutions at 50°C. When the second component is methanol,
acetone shows positive deviations from ideality. On the other hand, when the .
second component is chloroform, acetone shows negative deviations from ideality.
The fugacity of pure acetone fceione is of course the same regardless of the secon
component. However, Henry’s constants, represented by the slopes of the two
dotted lines, are very different for the two cases.

0.6 Srceome

In methanol

fimnn:/bar

X,

acctone

Figure 12.19 Composition dependence of the fugacity of acetone in two binary liquid solutions at 50°C
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12.8 HENRY’S LAW AS A MODEL FOR
IDEAL BEHAVIOR OF A SOLUTE

Application of the Lewis/Randall rule, Eq. (11.61),
= x;f;

to species i in a liquid solution requires knowledge of f, the fugacity of pure
liquid § at the mixture T and P. We have presumed in the preceding discussion
that the liquid phase being considered is stable throughout the entire composition
range at the given T and P. Where this is true, as for mixtures of subcooled
liquids, the ideal-solution model based on the Lewis/Randall rule provides the
most convenient values of f for reference purposes. However, there is always
a range of conditions of T and P for which the full curve of Fig. 12.18 for a
given liquid phase cannot be determined, because the phase becomes unstable
in some composition range. This is most obvious when gases or solids of limited
solubility dissolve in liquids. What, then, is done when pure species i does not
exist as a liquid at the mixture T and P?

Consider a binary liquid solution of species | and 2, wherein species 1
dissolves up to some solubility limit at a specified T and P. Data for the solution
can therefore exist only up to this limit, and a plot like Fig. 12.18 is necessarily
truncated, as indicated by Fig. 12.20. Clearly, the Lewis/Randall line for species
2, representing the relation

4= x,f,

is readily constructed. However, f; does not appear on the figure, and the
corresponding Lewis/Randall line for species 1 cannot be drawn. We can,
however, construct an alternative line for species 1, representing the alternative
model of ideal behavior provided by Henry’s law, as shown in Fig. 12.20. Henry’s
constant, the standard-state fugacity, is the fugacity that pure species 1 would
have if species 1 obeyed Henry's law over the full fange of mole fractions from
x=0tox =1. -
We write Eq. (11.28) for species 1 in solution:

dG,= RTd In f, (const T)

Integration of this equation at constant T, P, and x, for a change from the state
of specxes 1 in an ideal solution in the sense of Henry's law, where G, = Gi*(HL)
and fl = x,k,, to its actual state in solution gives

-~

RTlnL
x

171

G, - GY(HL) =

The difference on the left is just an alternative partial excess Gibbs energy,
G7(HL), and the argument of the logarithm by Eq. (12.51) is:

(12.52)
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Const T and P

f"ld(HL) =k

£
f A
£
fA;d =x.f2
0 1
X,

Figure 12.20 Plots of fl and fz vs. x; for a binary liquid system wherein species 1 is of limi
solubility in species 2.

Therefore
GE(HL) = RT In v,(HL) (12.5

Analytical representation of the excess Gibbs energy of a system impli
knowledge of the standard-state fugacities f7 and of the f-vs.-x, relationship
Since an equation expressing fiasa function of x; cannot recognize a solubili
limit, it implies an extrapolation of the fi-vs.-x; curve from the solubility lim
to x, = 1, at which point f; = f;. This provides a fictitious or hypothetical v
for the fugacity of pure species | that serves to establish a Lewis/ Randall lif
for this species, as shown by Fig. 12.21. It is also the basis for calculation of t
activity coefficient of species 1: :

y =L (12.
xh
This equation may be written
f—l =nh

X1
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Const T and P

Figure 12.21 Plot of f, vs. x, show-
ing extrapolation to x, = 1. The

) s}raight lines represent ideal-solu-
i i tion models based on Henry's law
. and the Lewis/Randall rule.
whence

A

tim 2t = lim (y.15) = 45,

x+0 X§  x»0

In view of Eq. (12.47), this becomes
.

k= 7H (12.55)
a direct relation between k, and f,,
pure species 1.

Solving Egs. (12.52) and (12.54) for §. w ' f, whi
2y be squates to s ) 11, we get two expressions for fi which

the two fictitious standard-state fugacities of

x kyy(HL) = xuhin
or

y(HL) = k—’}f-

In view of Eq. (12.55) this becomes

y(HL) = L,L (12.56)
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or
Iny,(HL)y=Iny, —Inyy (12.57)

.. . s law
These equations altow calculation of activity coefficients baseﬁ oln Ijltensr{c s-) ;
from activity coefficients based on the Lewis/Randall rule. In the limit as x, - 0,

Eq. (12.56) yields:

je o]

- = fim y = 2L
lim y,(HL) =— b4 ¥e

x;-+0 1 x=0

or

lim p,(HL) = 1 (12.58)

x,»0

In the limit as x; > 1

|
lim y,( HL) = — lim ¥,

x>l Yi x>t
or

1 2.
lim n(HL) =~z (12.59)

x=+1 1
i ideality for the solute (species
H *s law is taken as the model of i . _

1) al‘xlh:t[lle Ifet:{s/ Randall rule provides the model of ideality for the solvent
. _ E . .

(species 2), Eq. (11.5) written for M = G*/RT is ]
G"\* GE(HL) Gy
—— Ll { D e—— + Xy T
(RT) RT RT
i d on this asymmetric treatment of.
he asterisk (*) denotes a value base . - of
::)k;fll:o:l ;de:lity. As a result of Egs. (11.60) and (12.53), the preceding equation

becomes

GE\*
. (ﬁ) =X In ‘Y](HL) + X2 In Y2

(12.60%

Substitution for In y,(HL) by Eq. (12.57) gives

GE\* o
(—T) =xlny —xInyy +x:lny;
R

In view of Eq. (11.63) this can be written

E\ % E
(9‘_) _S (12.61F

RT RT

i i mend
This equation relates the excess Gibbs energy based on the aﬁymmetnf htr(‘:ia-‘te
of solution ideality to the excess Gibbs energy based entirely on the

Randall rule.
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Example 122 Given a binary solution for which the composition dependence at
constant T and P of the excess Gibbs energy is expressed by

GE

H = Bx, Xz
find the corresponding equations for In i(HL) and (G®/RT)*,
SOLUTION Equations (12.9

) and (12.10} for In % and In vy, are associated with the
given equation for G5/ RT:

Iny, = Bx} (A)
and
Iny, = Bx? (B)
When x, =0, x; = 1, and Eq. (A) becomes
lny¥=8B
Equation (12.57) then yields
In v,(HL) = Bx; ~ B = B(x3 - 1) = B[(1 - x)? ~1]

or

In y,(HL) = - Bx,(2 — x,) ()
By Eq. (12.61)

GE\*
(E) = Bx;X; — x;B = Bx;(x, - 1)

or

EY %
(RiT) = —Bx] (D)

We should be able to regencrate Egs. (B) and (C) by application of Eq. (11.62).
Multiplyi‘r}g Eq. (D) by # and substituting x, = n,/n gives

( nGEV* _ —Bn?
RT]  n
With the understanding that T and P are held constant, differentiation with respect
to #, at constant n, gives:

In y,(HL) = B [2'—1—"—%(%) ]

n n’ any

Since (3n/an,) = 1, this becomes
In y,(HL) = -B(2x, — x3) = ~Bx(2 — x,}

in agreement with Eq.(C). Similarly, differentiation with respect to n, at const n, gives

-1 an
In *ﬁ‘”"f(?) (a—,,;),,
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Figure 12.22 Plots showing the excess Gibbs energy and activity coefficients based on the asym ‘

treatment of solution ideality.

or
Iny,=—Bxt

in agreement with Eq. (B). Figure 12.22 shows plots of In v,{(HL), In y,,

(G®/RT)* for B = 1.36.

PROBLEMS

han
12.1 To a very good approximation, the excess Gibbs energy for the system acetone(l)/metha
is given by
GE/RT = Bxx,
The vapor pressures of acetone and methanol are given by Antoine equations:
2,795.817
In P{*/kPa = 14.39155 — 1/°C + 230.002

3,644.297 .
In P3/kPa = 16.59381 - =

(a) If B = 0.64, independent of T and P, and if the vapor phase is :;sumed an ideal
prepare a Pxy diagram for this system at 50°C and a txy diagram at P = 75 kPa.
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(b) If B=0.64 at 50°C, if dB/dT = —0.014, and if the vapor phase is assumed an jdeal gas
prepare a txy dia_gram for this system at P = 75 kPa.

() If B=064 at 50°C and if the virial coefficients are By =-1425 B,, = —1,200, and
By, = —1,030 cm® mol™", prepare a Pxy diagram at 50°C.

12.2 The following table gives a set of VLE data for the benzene(1)/ acetonitrile(2) system at 45°C:

P/kPa X b5

27.78 0.000 0.000
30.04 0.043 0.108
3233 0.103 0.213
34.37 0.186 0.309
579 0.279 0.384
36.78 0.405 0.463
36.98 0.454 0.490
37.07 0.494 0.512
31.00 0.602 0,573
36.46 0.709 0.639
3529 0.817 0.722
33.55 0.906 0.818
31.96 0.954 0.894
29.82 L0000 1.000

These data can be reasonably well correlated by an equation of the form G /RT = Bx,x,. Making
the usual assumptions for low-pressure VLE, determine a suitable value for B and calculate values
of the deviations 8p, and 5P between values calculated from the correlation and experimental values,
basing the correlation on;

{a) Both the P-x, and the ¥,-%, data,

(b} Just the P-x, data.

(¢) Just the y,-x, data.

What values are predicted by each correlation for xi* and P**?

123 A liquid mixture of cyclohexanone(1)/phenol(2) for which x; =0.6 is in equilibrium with its
vapor at 144°C. Determine the equitibrium pressure P and vapor composition y; from the following
information:

(a) Because of the nature of the System, we assume that the composition dependence of GF is
given by an equation of the form G /RT = Bx,x,, where B is a function of temperature only.

(b) At 1443€C, P = 7520 and P3* = 31,66 kPa.

(c) The system fortns an azeotrope at 144°C for which x* = y* = 0,294,

124 Only the three data points given below are available for a particular binary system of interest
at temperature T. Determine whether these data are better represented by the Margules or van Laar
equation at temperature 7, where P™ = 21(psia) anid P$" = 47(psia).

P(psia) X N

43.77 0.25 0.188
40.14 0.50 0.378
36.07 0.75 0.545

12.8 The excess Gibbs energy for the system chloroform(1)/ethanol(2) at 55°C is well represented by
the Margules equation, written:

G®/RT = (1.42x, + 0.59x,)x, x,
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The vapor pressures of the pure species are given by:
s .

The vapor pressures of chloroform and ¢thanol at 55°C are

it __ sat __
P™=8237 and Py =3731kPa | In P /kPa = 1626205 199887
(a) Prepare a Pxy diagram for this system at 55°C, assuming the vapaor an ideal gas. What t/°C + 226,346
the pressure and composition of the azeotrope? What are Henry's constants for each species? O . 2.966.88
what composition range can Henry’s law be used to calculate fugacity values for ethanol if In P$"/kPa = 14.1177 - m

are to be no more than § percent?

(b) Repeat part (a) given the virial coefficients: By, = —963, By = —1,523, and 8,

52 cm® mol ™.

12.6 For the system acetone(1)/water(2), the following are recommended values for the

parameters:
@2 =292.66  ay = 1,445.26 cal mot™’

V, = 74.05 V, = 18.07 cm® mol ™'

The vapor pressutes of the pure species are given by:

2,795.817

In P/kPa = 1439155 — ———
n Pr/k £/°C + 230.002
In P2/kPa = 16.26205 - 199881
2 ) 1/°C + 226.346

Assuming the validity of Eq. (11.74), make the following calculations:
(@) BUBL P, given x, = 0.43 and 1 = 76°C.

(k) DEW P, given y, = 0.43 and t = 76°C.

(¢) BUBL T, given x, = 0.32 and P = 101.33 kPa.

(d) DEW T, given ¥, = 0.57 and P = 101.33 kPa.

{e) A P, T-flash for z, = 0.43, t = 76°C, and P = }(P, + P;), where P, and P, are the bubbles

dew-point pressures determined in (a} and (b).

12.7 For the system 1-propanol(l}/water(2), the following are recommended values for the

parameters:
a,=77548 @ = 1,351.90 cal mol™
V, =75.14 ¥, = 18.07 cm® mol ™!

The vapor pressures of the pure species are given by:

in P /kPa = 16.06923 - —2 060 _
nErkEa =10 1/°C + 204.094
In P/kPa = 16.26205 — ——2 008 _

2 e 1/°C + 226.346

Assuming the validity of Eq. (11.74), make the following calculations:
(a) BUBL P, given x, = 0.62 and 1 = 93°C.

(b) DEW P, given y, = 0.62 and ¢ = 93°C.

(c) BUBL T, given x, = 0.73 and P = 101.33 kPa.

(d) DEW T, given y, = 0.38 and P = 101.33kPa.

(e) A P, T-flash for z; = 0.62, t =93°C, and P =3(P, + P,), where P, and P, are the bubblé

dew-point pressures determined in {a) and (b).

12.8 For the system water(1)/1,4-dioxane(2), the following are recommended values for the ¥

parameters:
@ =1,69698  a = —219.39 calmol ™’

V, = 18.07 V, = 85.71 cm® mol ™"

Assuming the validity of Eq. {(11.74), mak i ions:

o BUBL b, sivea 2 (523 (and ‘}= el g. the following calculations:

(b) DEW P, given y, = 0.43 and ¢ = 85°C.

(c) BUBL T, given x; =0.17 and P = 101.33 kPa.

(d) DEW T, given y, = 0.82 and P = 101.33 kPa.

(e) AP, T-ll‘.lash for z; = 0.43, 1 = 85°C, and P = §(P, + P,), where P, and P, are the bubble- and
dew-point pressures determined in (@) and (b).

12.% For the systern methanol(1)/acetonitrile(2), the followi
Wilson et , ng are recommended values for the

i

a;; = 50431  a, = 196.75 cal mol~!
V, =40.73 V, = 66,30 cm® mol !

The vapor pressures of the pure species are given by:

3,644,297
1/°C + 239.765

3,271.241
£/°C + 241.852

Assuming the validity of Eq. (11.74), make the following calculations:

(a) BUBL P, given x, = 0.73 and ¢ = 70°C.

(b) DEW P, given y, = 0.73 and t = 70°C.

{¢) BUBL T, given x, = 0.79 and P = 101.33 kPa.

(d) DEW T, given y, = 0.63 and P = 101,33 kPa.

(e) AP T—!lash for 2, =0.73, t = 70°C, and P = }( P, + P,), where P, and P; are the bubble- and
dew-point pressures determined in (a) and ().

In P{*/kPa = 16.59381 —

In P¥/kPa = 14.72577 -

12.10 For the system acetone(1)/ methanol(2), the following are recommended values for the Wilson
parameters: .

a;; =~170.18 ay, = 594.18 cal mol™!
V, = 74.05 V, = 40.73 cm® mol !
The vapor pressures of the pure species are given by:

2,795.817
t/°C + 230.002

3,644,297
1/°C + 239.765

In P{/kPa = 14.39155 —

In P$*/kPa = 16,59381 —

Assuming the validity of Eq. (11.74), make the following calculations:

(a) BUBL P, given x, = 0.31 and = 60°C.

(8) DEW P, given y, = 0.31 and ¢ = 60°C.

(c) BUBL T, given x; = 0.72 and P = 101.33 kPa.

(d) DEW T, given y, = 0.43 and P = 101.33 kPa.

(e) A P, T—?ash for z, = 0.31, t = 60°C, and P = (P, + P,), where P, and P, are the bubble- and
dew-point pressures determined in (a) and {b}. “ ‘ .
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12.11 For the system methyl acetate(1)/methanol(2), the following are recommended values for

Wilson parameters: B
a,; = —31.19 a,; = 813.18 cal mol

Vv, =79.84 V, = 40.73 em’® mol ™
The vapor pressures of the pure species are given by:
\ 2,739.174
In P§*/kPa = 14.40150 — /°C+ 223115
. 3,644.297
In P5*/kPa = 16.59381 — 1/°C + 239,765

Assuming the validity of Eq. (11.74), make the following calculations:
{a) BUBL P, given x, = 0.31 and ¢ = 55°C,
(b) DEW P, given y, = 0.31 and ¢ = 55°C,
(¢) BUBL T, given x; = 0.86 and P = 101.33 kPa.

d) DEW T, given y, = 0.17 and P = 101.33 kPa. ]
Ee)) A P, T-flash for ;1 =0.31, t = 55°C, and P = (P, + P,), where P, and P, are the bubble

dew-point pressures determined in (a) and (b). w
12.12 For the syster methanol(1)/benzene(2), the following are recommended values for the Wi
parameters: .
a;; =1,713.20 az; = 187.13 cal mol

V, = 40.73 V, = 89.41 cm® mol™!
The vapor pressures of the pure species are given by:
. 3,644.297
In P$/kPa = 16.59381 — 17°C + 239.765
. . 2,773.779
In P{/kPa = 13.85937 — 17°C + 220,069

Assuming the validity of Eq. (11.74), make the following calculations:
(@) BUBL P, given x, = 0.82 and ¢ = 68°C.
(b) DEW P, given y, = 0.82 and 1 = 68°C.
(¢) BUBL T, given x; = 0.21 and P =]1:ll.3333 l:;::.
i = {38 and P = 101. .
E‘:)) AD li’?,T.-rﬁagsl;ef{:J: Ll -——0(;’;2, t = 68°C, and P = (P, + P,), where P, and P, are the bubble-
dew-point pressures determined in {a) and (b).

12.13 For the system ethanol{1)/toluene(2), the following are recommended values for the Wil

parameters: 1
a;, = 1,55645  a, = 210.52 cal mol™
V, = 58.68 V, = 106.85 cm® mol ™!
The vapor pressures of the pure species are given by:
3,674.491
3 = -_—— e
In P{*/kPa = 16.67583 +/°C + 226448
6 3,103.010
In P2/ kPa = 14.00976 ~ o 9.787

Assuming the validity of Eq. (11,74), make the following calculations:
(a) BUBL P, given x, = 0.31 and t = 105°C.
(b) DEW P, given y, = 0.31 and ¢ = 105°C.
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{(¢) BUBL T, given x, = 0.68 and P = 101.33 kPa,

(d) DEW T, given y; =0.79 and P = 101.33 kPa.

(e) A P, Tflash for z;, = 0.31, t = 105°C, and P = {(P, + P,), where Py and P, are the bubble- and
dew-point pressures determined in (a) and (b).

12.14 Determine the azeotropic pressure and compaosition for one of the following:

(a) The system of Prob. 12.7 at a temperature of 93°C,

(b) The system of Prob. 12.8 at a temperature of 85°C.

(¢) The system of Prob. 129 at a temperature of 70°C.

(d) The system of Prob. 12.10 at a temperature of 60°C.

() The system of Prob. 12.11 at a temperature of 55°C.

(f) The system of Prob. 12.12 at a temperature of 68°C.

(g) The system of Prob. 12.13 at a temperature of 105°C.

12.15 For the system ethanol(1)/toluene(2), the following are recommended values for the NRTL
parameters:

by, =713.57 by, = 1,147.86 cal mol™! a =0.529
V;, = 58.68 V, = 106.85 cm® mol™!
The vapor pressures of the pure species are given by:
3,674.491
1/°C + 226.448

3,103.010
¢/°C +219.787

In P{*/kPa = 16.67583 —

In P¥/kPa = 14,00976 ~

Assuming the validity of Eq. (11.74), make the following calculations:

(a) BUBL P, given x, = 0.3] and ¢ = 105°C.

(b} DEW P, given y, = 0.31 and ¢ = 105°C.

(¢) BUBL T, given x, = 0.68 and P = 101.33 kPa.

{d) DEW T, given y, = 0.79 and P = 101,33 kPa.

(e} A P, T-flash for 2, =031, t = 105°C, and P = XP, + P,), where P, and P, are the bubble- and
dew-point pressures determined in (a) and ().

12.16 For a binary system the excess Gibbs energy of the liquid phase is given by an equation of
the form GE/RT = Bx\x,, where B is a function of temperature only. Making the usual assumptions
for low-pressure VLE, show that
{a) The relative volatility of species 1 to species 2 at infinite dilution of species 1 is given by
o P

t
ap(x; =0)= }ﬁ (exp B)
z

(b) Henry's constant for species 1 is given by
k; = P{*(exp B)
12.17 The table of Prob. 11.24 provides Pxy data for VLE in the system acetone(1)/ chioroform(2)
at 50°C,

{2} Assuming the vapor phase an ideal gas, calculate f, and /s for each data point, and plot
the results vs. x,. Show also by dotted lines the relations given by the Lewis/Randall rule.

-

(B) Plot f,/x, and 2/ x; vs. x. What are the values of Henty’s constants k, and k, indicated
by this plot? What are the values of Yy and {7

Repeat (a) and (b) given the virial coefficients:
B, =-1425 B,=-1030 B, =—785 cin®mol™!

12-_18 The gas phase in a corked bottle of champagne is largely CO, in equilibrium with the liquid
of interest, Measurements (perhaps of the elevations attained by popping corks) indicate that at the
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serving temperature of 5°C the pressure in the unopened bottle is about 5 bar. If Henry's cons
at this temperature is 1,000 bar, estimate the mole fraction of CO, in the champagne.
12.19 The excess Gibbs energy for binary systems consisting of liguids not too dissimilar in chem
nature is represented to a reasonable approximation by the equation

G®/RT = Bx;x,

where B is a function of temperature only, For such systems, it is often observed that the rati
the vapor pressures of the pure species is nearly constant over a considerable temperature range.
this ratio be r, and determine the range of values of B, expressed as a function of r, for which
azeotrope can exist. Assume the vapor phase an ideal gas.

12.20 The excess Gibbs energy for a particular system is represented by
GE/RT = Bx;x,
where B is a function of temperature only. Assuming the validity of Eq. (11.74), show that, at e
temperature for which an azeotrope exists, the azeotropic composition x** and azeotropic p:
P** are related by
L. [ln (P"/P‘{")] 12
In ( P**/ P$)

x7*
12.21 A concentrated binary liquid solution containing mostly species 2 (but x, # 1) is in equilib;
with a vapor phase containing both species 1 and 2. The pressure of this two-phase system is 1
the temperature is 25°C. Starting with Eq. (11.30), determine from the following data good esti
of x, and y,.

k, =200bar P =0.10bar

State and justify all assumptions.

12.22 A vapor stream for which 2z, = 0.75 and z, = 0.25 is cooled to temperature T in the two
region and flows into a separation chamber at a pressure of 1 bar. If the composition of the
product is to be x, = 0.50, what is the required value of T, and what is the value of y,? For
mixtures of species 1 and 2

GE/RT = 1.2x,x;

The vapor pressures of the pure species are given by

In P=/bar = 10.00 - —2220_..

! T T/K - 360
3,840

In P2 /bar = 1170 — ———

n P3"/bar T/K — 448

12.23 A stream of isopropanol(1)/water(2) is flashed into a separation chamber at the com
t = 80°C and P = 91.2 kPa. A particular analysis of the liquid product shows an isopropanol co
of 4.7 mole percent, a value which deviates from the norm. The question arises as to whether &
leak into the separator could be the cause. Is this possible? The following laboratory data
liquid phase at 30°C are available:

P =91.11kPa P =4736kPa
G®/RT is give by the van Laar equation with A}, = 2.470 and A3, = 1.094.

12.24 Vapor/liquid equilibrium data for the system 1,2-dichloromethane(1)/ methanol(2) at 50
as follows:
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P/kPa . Xy Wi

5555 0.000 0.000
58.79 0.042 0.093
61.76 0.097 0.174
64.59 0.189 0.265
65.66 0292 0.324
65.76 (azeotrope) 0.349 0.349
65.59 0.415 0.367
65.15 0.493 0.386
63.86 0.632 0.418
62.36 0.720 0.438
59.03 0.835 0.484
54.92 0.893 0.537
48.41 0.945 0.620
3110 1.000 1.000

For these data, assume the vapor phase an ideal gas and plot P vs. x,, P vs. YunPvs x,and 3, P

vs. X, Determine Henry's constant for each species from the partial-pressure curves. For each species,

ovlcr w:at composition range does Henry's law predict partial pressures within 5 percent of the true

values

12.25 From the data of the preceding problem, calculate values of In y,, In ¥,, and G® /%%, RT,

and plot these values vs. x,. '

(@) Determine from the plot values of In ¥ and In ¥5, and use them to find values of A, and A,
in the. Margules equation. Draw in the line for G5/x,x, RT vs. x, that represents the Margules
equation with these parameters. Determine the values of A,; and A,, for the Margules equation
from just the azeotrope data, and draw in the line for this pair of constants.

(b) Use the values of ¥* and y3® in Eq. (12.55) to determine values for Henry’s constants. How do
these results compare with the values found in Prob. 12.247

12,26 Rework part (a) of the preceding problem for

{a) The van Laar equation, determining the corresponding values of Af, and A},

(b} The Wilson equation, determining the corresponding values of A,, and Aaye



CHAPTER

THIRTEEN
SOLUTION THERMODYNAMICS

We turn in this chapter to a detailed study of the properties of solutions. All the
fundamental equations and necessary definitions have been given in precedi
chapters. However, the development there is concentrated on the Gibbs ener,
and related properties, with the specific goal of application to vapor/liqu
equilibrium. Here we present general treatments of partial properties, id
solutions, residual properties, and excess properties. Closely related to ex
properties are property changes of mixing, treated in Sec. 13.6. In particular,
enthalpy change of mixing, called the heat of mixing, is applied to practt
problems in Sec. 13.7. In Sec. 13.8 we give a general exposition of thermodynai
equilibrium and an elementary discussion of phase stability. This leads finally
an introductory description of binary systems comprised of liquids that are 1
completely miscible with one another.

13.1 RELATIONS AMONG PARTIAL PROPERTIES
FOR CONSTANT-COMPOSITION SOLUTIONS

Partial molar properties were defined and discussed briefly in Sec. 11.1. Here
show how they are related to one another. Recalling that u, = G;, we may
Eq. (10.2) as

d(nG) = (nV) dP — (nS) dT + ¥, G, dn, (10.2]
Application of the criterion of exactness, Eq. (6.12), to this equation yields "

416
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(7)..-- ().,

plus the two additional equations:

(7).~ 5]

P/ om lpm

wthere subscript n indicates constancy of all n; and therefore of composition. In
view of Eq. (11.2), these last two equations are most simply written as:

(1), --s
3T/ ox

(), -
aP)r. !
These equations allow calculation of the effect of temperature and pressure on

the partial Gibbs energy (or chemical potential). They are the partial-property
analogs of two equations that follow by inspection from Eq. (10.2):

a(nG)] _ G
[ oT P =-ns or (a—T).P,x B _S

5] ()

o
Indeed, for every equation providing a linear relation among the thermodynamic
properti.es of a constant-composition solution there exists a corresponding equation
connecting the corresponding partial properties of each species in the solution.
We demonstrate this by example.
Consider the equation that defines the enthalpy

H=U+PV

Maxwell relation,
1 3

(6.16)

and

(13.1}

and

(13.2)

and

(2:6)

For n moles,
nH = nU + P(nV)

Differentiation with respect to »; at constant T, P, and n; yields

8(nH)] _ [a(nU)] a(nV)
[ an; p.r,n,_ an p,'r,nj,+P[ an ]P,r,n,
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By Eq. (11.2) this becomes
H =0+ PV,

which is the partial-property analog of Eq. (2.6).
In a constant-composition solution, G; is a function of P and T. We

therefore write
- (3G, Fle
= — dP+|— dT
dG‘ (aP)T,x (BT)P,J(

As a result of Eqgs. (13.1) and (13.2) this becomes
dG, = V,dP - §,dT

which may be compared with Eq. (6.10}.

These examples are sufficient illustration of the parallelism that exists be
equations for a constant-composition solution and the corresponding equati
for the partial properties of the species in solution. We can therefore write sin
by analogy many equations that relate partial properties.

13.2 THE IDEAL SOLUTION

In Sec. 10.4 we wrote down equations for an ideal solution by analogy to
for an ideal gas. We wish here to formalize development of the equations fou
ideal solution. We define an ideal solution as a fluid which obeys Eq. (1
the Lewis/Randall rule, '

where f; is a function of T and P. Thus, an ideal solution (in the sense
Lewis/Randall rule) is a model fluid for which the fugacity of each consti
species is given by Eq. (11.61) at all conditions of temperature, pressure
composition. Combination of Eq. (11.58) with the Lewis/Randall rule giv

G =G, + RTnx,

Since uj = G, this equation is identical with Eq. (10.14). When Eq. (13
differentiated with respect to temperature at constant pressure and compo:
and then combined with Eq. (13.1) written for an ideal solution, we get

. aG# aG;
o), (), e
aT Jp. \aT/, 0%

Since (8G;/aT)p is simply —S;, this becomes y

g::d:S,'—Rlnx,- (

fiid=xif; (ll- E
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Similarly, as a resuit of Eq. (13.2),

e = id
(), (22
' 8P /. \oP/:

Vii=v, (13.5)

or

Since H = G + T84,
H? =G +RTInx;+ TS,— RTIn x,

or

ﬁ::d = H; (13.6)

As a special case of Eq. (11.5), we write;
MY =Y xMH?
Application of this relation to Eqs. (13.3) through (13.6) yields:

G =Y xGi+ RTY x,In x, (13.7)
$¥=YxS8-RY x,Inx, (13.8)
Vi =% x, V, (13.9)
H =Y xH, (13.10)

A mixture of ideal gases is a special case of an ideal solution for which the
Lewis/Randall rule [Eq. (11.61)] simplifies to f/ = y,P. Equation (11.58) then
reduces to

o

Gf=G¥+RThy,

which is the particular form of Eq. (13.3) valid for species i in a mixture of ideal
gases. In this case Eq. (13.7) becomes

G¥ = ) in::g +RT Y y:Iny,

liaimilarly, Egs. (13.4) through (13.6) and (13.8) through (13.10) for ideal gases
become:

SP=SP-RIny, and S“=YyS%_-RY¥ylay
Ve =vyie and V¥=YyVve
HY=H# and HY=YyH?*

These equations give the base values from which residual properties are measured.
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13.3 THE FUNDAMENTAL
RESIDUAL-PROPERTY RELATION

The definition of a residual property is given by Eq. (6.35),
Mf=M - M*

where M is the molar (or unit-mass) value of a thermodynamic property ¢
fluid and M is the value that the property would have if the fluid were an ig

gas of the same composition at the same T and P. From this we have immediate§
[see the development of Eq. (11.31)):

M =M, - MY (13.

These equations are the basis for extension of the fundamental property relati
given by Eq. (10.2), to residual properties.
We first develop an alternative form of Eq. (10.2), just as was done in
6.2, where the fundamental property relation was restricted to phases of co:
composition. We make use of the same mathematical identity:

nG i nG
) = - d
d(RT) r7 0G) — gz dT

Substitution for d(nG) by Eq. (10.2) and for G by Eq. (6.3) gives, after algeb
reduction,

IH vy S, @

=—dpr-
RT? i RT

" RT

We note with respect to this equation that all terms have the units of mo
moreover, in contrast to Eq. (10.2}, the enthalpy rather than the entropy ap
on the right-hand side. Equation (13.12) is a general relation expressing G
as a function of all of its canonical variables, T, P, and the mole numb
reduces to Eq. (6.29) for the special case of 1 mole of a constant-composit
phase. Equations (6.30) and (6.31) follow from either equation, and equati
for the other thermodynamic properties then come from appropriate de
equations. Knowledge of G/RT as a function of its canonical variables
evaluation of all other thermodynamic properties, and therefore implicitly
tains complete property information. However, we cannot directly exploit ;
characteristic, and in practice we deal with related properties, the residual
excess Gibbs energies. '

Since Eq. (13.12} is general, it may be written for the special case of an

d(nG' _nV¥® _ nH'*
RT] RT RT?
In view of Egs. (6.35) and (13.11), the difference between this equation and?

gas:

dpP

G¥
dT+EEd"i
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(13.12) is

[
RT
This equation is the fundamental residual-property relation. Its derivation from
Eq. (10.2) parallels the derivation in Chap. 6 that led from Eq. (6.10) to Eq.
(6.36). Indeed Egs. (6.10) and (6.36) are special cases of Egs. (10.2) and (13.13)
valid for one mole of a constant-composition fluid. An alternative form of Eq.

(13.13) follows by introduction of the fugacity coefficients as given by Eqs. (11.16)
and (11.34):

_nvV®
RT

nH® GR
- dT+Y — dn,
RT? LRr ™

dpP

(13.13)

nVR® nH*® -
d(nln¢)=—ﬁdp—“ﬁ:5dT+Zln¢,-dm (13.14)

Equations so general as Egs. (13.13) and (13.14) are useful for practical
application only in their restricted forms. Division of Egs. (13.13) and (13.14)
by dP and restriction to constant T and composition leads to:

VR Ta(G®/RT)] dln
Yo _ - ( "’) (13.15)
RT L aP JT,x aP T.x
Similarly, division by dT and restriction to constant P and composition gives:
HR [(G®/RT) dln ¢
—m =T = —
RT T o T( T )Rx (13.16)

These equations are restatements of Egs. (6.37) and (6.38) wherein the restriction
of the derivatives to constant composition is shown explicitly. They lead to Egs.
(6.40), (6.41), (6.42), and (11.20), which allow calculation of residual properties
and fugacity coefficients from PVT data and equations of state. It is through the
residual properties that this kind of experimental information enters into the
practical application of thermodynamics.

In addition, from Egs. (13.13} and (13.14) we have

n & = [M] _ [a(nGR/RT)]

o P (13.17)

The first equality is Eq. (11.36), which demonstrates that In qg,- is a partial property
with respect to In ¢. It is also a partial property with respect to G®/RT. The
partial-property analogs of Eqs. (13.15) and (13.16) are therefore:

dln d‘;,- vE
(—aP ) . = RT (13.18)
and ’
3ln &, aE
T R =T RT? (13.19)

Equation (11.39) follows directly from Eq. (13.18).
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13.4 THE FUNDAMENTAL EXCESS-PROPERTY RELATION

The definition of an excess property is given by Eq. (11.55):

ME=M-M" (11.55)

where M is the molar (or unit-mass) value of a solution ;_)roperty al..‘ld M
the property value the solution would have if it were‘ fin tfieal solution of
same composition at the same T and P. This definition is analogous to
definition of a residual property; in addition, we have analogous to Eq. (13.1
the partial-property relation
M?F=M,-M} (13.2¢
where M¥ is a partial excess property. ' o
The fundamental excess-property relation is derived in exactly the same
as the fundamental residual-property relation and leads to a.nalogous res
Equation (13.12), written for the special case of an ideal solution, is subtra
from Eq. (13.12) itself, yielding:
E VE
d nG _n P
RT RT

This is the fundamental excess-property relation. As a result of Eq. (11.60), it
be written in the alternative form:

GF
dT + Y —=dn; (13
R

nHE
RT?

nG nVE nHE .
= dP - dT+YIn Yi dn; (
d( RTE) RT RT? L

Again, the generality of these equations precludes tht?it' direct prac
application. Rather, we make use of restricted forms, which are writter

inspection:

vE_ [a(GE/RT)] s
RT aP Tx -
H_E____TI:B(GE/RT):I (13
RT oT Px

and
N [a(nGE/RT)]
ny; = an, _—

The last relation is Eq. (11.62), which demonstrates the partial property rel
ship that In v, bears to G®/RT. These equations are analogous t? Egs. (
through (13.17). Whereas the fundamental residual-property relatlonlder_l
usefulness from its direct relation to experimental PVT d%ta agd equati
state, the excess-property formulation is useful because V=, H", and 'yd
experimentally accessible. Activity coefficients are found from VLE
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discussed earlier, and V* and H® values come from mixing experiments as
described in Sec. 13.6.

Equations (13.23) and (13.24) allow direct calculation of the effects of pressure
and temperature on the excess Gibbs energy. For example, an equimolar mixture
of benzene and cyclohexane at 25°C and 1 bar has an excess volume of about
0.65 cm’ mol ' and an excess enthalpy of about 800 J moi-". Thus at these condi-

tions,
a(GE/RT)] _ 0.65 i L
[ op T.x_(83.14)(298.15)‘2.62x10 bar
and
&(GE/RT)] ~ —800 ) L
[ 3T lp. (B318)(208.15)7 = 108X 107K

The most striking observation about these results is that it takes a pressure change
of more than 40 bar to have an effect on the excess Gibbs energy equivalent to
that of a temperature change of 1 K. This is the reason that for liquids at low
pressures the effect of pressure on the excess Gibbs energy (and therefore on the
activity coefficients) is usually neglected.

The partial-property analogs of Egs. (13.23) and (13.24) are:

ol VE
(‘—;;%) = T (13.25)
and
dln y; Hf

Just as the fundamental property relation of Eq. (13.12) provides complete
property information from a canonical equation of state expressing G/RT as a
function of T, P, and composition, so the fundamental residual-property relation,
Eq. (13.13) or (13.14), provides complete residual-property information from a
PVT equation of state, from PVT data, or from generalized PVT correlations.
However, for complete property information, one needs in addition to PVT data
the ideal-gas-state-heat capacities of the species that comprise the system.

Given an equation for G¥/RT as a function of T, P, and composition, the
fundamental excess-property relation, Eq. (13.21) or (13.22), provides complete
excess-property information. However, this formulation represents less-complete
property information than does the residual-property formulation, because it tells
us nothing about the properties of the pure constituent chemical species.

13.5 EVALUATION OF PARTIAL PROPERTIES
The definition of a partial property,

M, = [——B(HM)] (11.2)
M dpra
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also applies to residual and to excess properties:

MR = [Ml] (]3_2
' an; P. T
and
ME= [Mi).] (13_2.
i an; P Ton ;

Equations for partial properties can always be derived from_ an .equation for
solution property as a function of composition by direct apphc_anon of Eq. (11.2
(13.27), or (13.28). For binary systems, however, an alternative procedure m

be more convenient.
Written for a binary solution Eq. (11.5) becomes

M= xll\], + le\jfz
whence _ _ _ _
dM=x1 dM1+M1 dx|+x2dM2+M2dx2
However, when M is given as a function of composition at constant P an
the Gibbs/Duhem equation, Eq. (11.8}, is

Xy d]\;fl+x2d1\7f2=0

Since x; + x, = 1, we also have dx, = —dx,. Combining Egs. (B) and (C)
eliminating dx, gives _ )
dM = Ml dxl b Mz dx]
or .
o= MM

1

Eliminating M, from Egs. (A) and (D), and solving for M,, we get 7

. dM 3
—M+x,—— (13.

Similarly, elimination of M, and solution for M, gives

dM
M2=M"'xl__ ' (13

For residual and excess properties, these are written:

_ dM*® 3.
ME=M%+x, i, (_,
- dM*® 0
ME=MR-x i, { :
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Constant T, P
‘

I, =
0 Xy 1 Figure 13.1
and
E
MIE=ME+x2 aM (1333)
1
E
ME=m" - x, Y (13.34)
1

Thus for binary systems, the partial properties are readily calculated directly
from an expression for the solution property as a function of composition at
constant T and P. The corresponding equations for multicomponent systems are
much more complex, and are given in detail by Van Ness and Abbott,t

Example 13.1 Describe a graphical interpretation of Egs. (13.29) and (13.30).

SOLUTION Figure 13.1 shows a representative plot of M vs. x, for a binary system.
Valuef of the derivative dM /dx, are given by the slopes of lines drawn tangent to
the curve of M vs. x,. One such line drawn tangent at a particular value of x, is
shown in Fig. 13.1. Its intercepts with the boundaries of the figureat x, = land x, = 0

are labeled I, and I,. As is evident from the figure, two equivalent expressions can
be written for the slope of this line:

dM M - Iz dM Il - Iz
—= d —= =I-1
dx, x M @ T e bk
Solving the first equation for I, and the second for I, (with elimination of I,) gives
dM dM
Iz—M"xIE a.nd II=M+(1—x|)E

T H. C. Van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With

Applications to Phase Equilibria, pp. 46-54, McGraw-Hill, New York, 1982.
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Constant T, P Substitution for H and dH/dx, gives

M3 N H} = 600 — 180x, — 20x3 — 180x, — 60x3x,

Replacing x, by 1 — x; and simplifying, we get

H, = 420 - 60x7 + 40x3 (B)
g ‘
0 Similarly, by Eq. (13.30)

dH
Hz—H x,dx
1

M3 whence
ﬁz = 600 — 180x, — 20x; + 180x, + 60x}

[
M, or

H, = 600 + 40x? (C)

We could equally well have started with the given equation for H. Since dH / dx,
is a total derivative, x, cannot be treated as a constant, In fact, x; = | — x,, and
dx,/ dx, = —1. Differentiation of the given equation for H therefore gives:

:x—H = 400 — 600 + x,x,(40 — 20) + (40x, + 20x,)(—x, + x5)
1
When x;, is replaced by 1 — x,, this reduces to the expression previously obtained.

A numerical value for H, results when we substitute x, = 1 in either Eq. (A) or
(B). Both equations yield H, = 400 J mol™’. Similarly H, is found from either Eq.
{A) or {(C) when x; = 0. The result is H, = 600 J mol~". The infinite-dilution values
HY and HY are found from Egs. (B) and {(C) when x, = 0 in Eq. (B) and x, = | in
Eq. (C). The results are:

A?=420 and  HY =640 mol™’

X, Figure 13.2

Comparison of these expressions with Eqgs. {13.29) and (13.30) shows that
Il = Ml and I2 = Mz

Thus the tangent intercepts give directly the values of the two partial properties.
intercepts of course shift as the point of tangency moves along the curve, and
limiting values are indicated by the constructions shown in Fig. 13.2. The te
drawn at x, = 0 (pure species 2) gives M, = M,, consistent with the concl
reached in Example 11.1 regarding the partial property of a pure species, The opp
intercept gives M, = MY, the partial property of species | when it is present at inf
dilution (x, = 0). Similar comments apply to the tangent drawn at x, = | (pure s '
1). In this case M; = M, and M, = M7, since it is species 2 that is present at i
dilution (x, = 1, x, = 0).

The actual molar volumes of the binary solution methanoi(1)/water(2) at
25°C and | bar are shown in Fig. 13.3. In addition the values of V, and V, are
plotted as functions of x,. The line drawn tangent to the V-vs.-x, curve at x; = 0.3
illustrates the procedure by which values of V, and V, are obtained. The particular

~ numerical V}lues shown on the graph are those given with Example 11.2.

We note that the curve for V, becomes horizontal (dV,/dx, = 0) at x, = !
and the curve for V, becomes horizontal at x, = 0 or x, = 1. This is a requirement
of Eq. (11.8), the Gibbs/Duhem equation, which here becomes

X d‘?; +x2d‘72=0

Example 13.2 The enthalpy of a binary liquid system of species 1 and 2 at fix
and P is represented by the equation

H = 400x, + 600x, + x,x,(40x; + 20x,}
where H is in Jmol™'. Determine expressions for H, and H, as functions of &
numerical values for the pure-species enthalpies H, and H;, and numerical
for the partial enthalpies at infinite dilution HY and HY.

SoLUTION Elimination of x, in the given equation for H in favor of x, yields Division of this equation by dx, and rearrangement gives:

H = 600 — 180x, — 20x} v,  x,dv,
whence En = - x_1 E
ﬁ = ~180 — 60x?
dx, ' This result shows that the slopes dV,/dx, and dV,/dx, must be of opposite sign.
By Eq. (13.29), When x;=1, x,=0 and dV,/dx, =0, provided dav,/ dx; remains finite. When
A =H+x,2 aH =0, x, = | and dV,/dx, = 0. The curves for V, and V, in Fig. 13.3 appear to
dx be horizontal at both ends; this is a peculiarity of the system considered.



428 INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS SOLUTION THERMODYNAMICS 429

property, Eq. (11.55), to yield:

v,
40_
7o - GE =G - Z x.'G,' - RTZ X; In X (13.35)
25l Line describing $F=8—-(L xS —RY xInx,) (13.36)
ideal-solution behavi:),r/" E_y_ ¥ xV, (13.37)
Hf = H-Y xH, (13.38)

In each of these equations there appears to the right of the equals sign a difference
that is expressed in general as M — Y, x,M;. We call this quantity a property change
of mixing and give it the symbol AM. Thus by definition,

V/em® mol™!

AM =M -¥ xM, (13.39)

V, = 18.068
17.765

where M is a molar (or unit-mass) property of a salution and the M, are molar
(or unit-mass) properties of the pure species, all at the same T and P. Equations
(13.35) through (13.38) are now rewritten

0.4 0.5 0.6 0.7 0.8 0.9 1.

*

E=AG-RTYxInx (13.40)
13.3 Mol 1 fi ethanol(1)/water(2) at 25°C and 1(atm).
Figure olar volumes for mi S5 = AS+RY xInx (1341)
VE=AvV (13.42)
If the methanol/water system is assumed an ideal solution, its vol E_
given by Eq. (13.9), written here as: H” =AH (13.43)

Ve =x, Vi +x,V, where AG, AS, AV, and AH are the Gibbs energy change of mixing, the entropy
change of mixing, the volume change of mixing, and the enthalpy change of
mixing. For an ideal solution, each excess property is zero, and for this special

case Egs. (13.40) through (13.43) become

This implies a linear relation between V* and x,:
Ve = (Vi— Va)x, + V,

Thus, for the methanol/water sirstem the straight dashed line shown in Fig AG™ = RT Y x;In x, (13.44)

connecting the pure-species volumes (V; at x, = 1 and V, at x, = 0) repr# d

the V-vs.-x, relation that would result if this system formed an ideal soluti . ‘ ASY =-RIxInx (13.45)
If in solvihg Example 11.2 we assume that the solution is ideal, we thy AV¥ =0 {13.46)

values for V¥, and V, in place of the values for V, and V,. Otherwise the prc AH™ =0 (13.47)

is worked in exactly the same way, and the results are
V! =983 Vi=1,017 cm® These equations are just restatements of Egs. (13.7) through (13.10), and apply
to mixtures of ideal gases as a special case.

Equations (13.40) through (13.43) show that excess properties and property
changes of mixing are readily calculated one from the other. Although historically
the property changes of mixing were introduced first, because of their direct
relation to experiment, it is the excess properties that more readily fit into the
theoretical framework of solution thermodynamics. The property changes of
mixing of major interest, because of their direct measurability, are AV and AH,
and these two properties are identical to the corresponding excess properties.

Both values are about 3.4 percent low.

13.6 PROPERTY CHANGES OF MIXING

Equations (13.7) through (13.10) are expressions for the properties o
solutions. Each may be combined with the defining equation for an &
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Partition
™ ", E =
TP T.P £ P
d
m+n E
0l =—— NS = P

= Figure 13.4 Schematic diz
= of experimental mixing pra

An experimental mixing process for a binary system is represented schema
cally in Fig. 13.4. The two pure species, both at T and P, are initially sepa
by a partition, withdrawal of which allows mixing. As mixing occurs, expans
or contraction of the system is accompanied by movement of the piston so
the pressure is constant. In addition, heat is added or extracted to maint
constant temperature, When mixing is complete, the total volume change of ti
system (as indicated by piston displacement d) is '

AV‘ = (nl + "2)V -m V] - n2V2

Since the process occurs at constant pressure, the total heat transfer @ is eq
to the total enthalpy change of the system:

Q = AH! = (nl + ﬂz)H - anl - nsz

Division of these equations by n, + n, gives

AV=V-x,Vi—x,V,= Av!
- 1 oy
and
- g =2
AH = H"'lel x2H2 =
n1+ﬂ2

Thus the volume change of mixing AV and the enthalpy change of mixing AH
found from the measured quantities AV* and Q. Because of its association
Q, AH is usually called the heat of mixing.

Figure 13.5 shows experimental heats of mixing AH (or excess enthal
HE) for the ethanol/water system as a function of composition for seve
temperatures between 30 and 110°C. This figure illustrates much of the vati
of behavior found for HX = AH and V® = AV data for binary liquid system$
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Figure 13.5 Excess enthalpies for ethanol/water.

Such fiata are also often represented by equations similar to those used for G°
data, in particular by the Redlich/Kister expansion (Sec, 12.4).

Example 13.3 The excess enthalpy (heat of mixing) for a liquid mixture of species 1
and 2 at fixed T and P is represented by the equation:
HE = x,x,(40x, + 20x,)

E - = - - . T o
where H® is in Jmol™'. Determine expressions for HF and HY as functions of x,.
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SoLUTION The partial properties are found by application of Eqs. (13.33) and (13.
with M & = HE Thus,

_ dH*®
HE=H®+(1-x) i,
and
- dHE
Hf=HE—xl dx]

Elimination of x, in favor of x, in the given equation for HF yields
HE =20x, — 20x3

whence
dH
o= 2- 60x2

1
Substitution of Egs. (C) and (D) into Eq. (A) leads to
HE =20 - 60x? + 40x]
Similarly, by Egs. (B), (C), and (D),
H7 =40x}

These equations contain much the same information as the equations of Exa
13.2. Thus H of Example 13.2 is related to HF by the equation,

H = 400x, + 600x, + HE

and the partial properties of Example 13.2 are related to A E and A by the equaticl

H=HF+H =HE+400
and
H,=HFf+H,= Af +600
These two equations follow from combination of Eq. (13.6) with Eq. (13.20).

We can calculate excess volumes (volume changes of mixing) for

methanol(1)/water(2) system at 25°C from the volumetric data of Fig. 1

Equation (13.20) specializes to
Vi=V, - V!
According to Eq. (13.5), V¢ = V,. Therefore
Vi=V,-V, and VF=V,-V,
Equation (11.5) written for the excess volume of a binary system becqmes 8
VE=x,VE+x,VE |

The results are shown in Fig. 13.6. The values on the figure for x, = 0.3 ¢
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-35+-

(Vr)°=-3.335 (VE)° = -3333
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Figure 13.6 Excess volumes for methanol{1)/water{2) at 25°C.

from Example 11.2. Thus

4 .
Vi =38.632 — 40.727 = —2.095 cm® mol ™’

VE =17.765 — 18.068 = —0.303 cm® mol™!
and
VE = (0.3)(—2.095) + (0.7)(—0.303) = —0.841 cm® mol ™’

The tangent line drawn at x;, = 0.3 illustrates the determination of partial excess
volumes by the method of tangent intercepts. Whereas the values of V in Fig.
13.3 range from 18.068 to 40.727 cm® mol ', the values of V5 = AV go from zero
at x, = 0 and at x, = 1 to a value of about —1 cm®mol™" at a mole fraction of
about 0.5. The curves showing V and V7 are nearly symmetrical for the
methanol/water system, but this is by no means so for all systems.
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13.7 HEAT EFFECTS OF MIXING PROCESSES

The heat of mixing, defined in accord with Eq. (13.39), is
AH = H - L xH, (13.4

It gives the enthalpy change when pure species are mixed at constant T and
to form one mole (or a unit mass) of solution. Data are most commonly availab
for binary systems, for which Eq. (13.48) solved for H becomes: :

H=xH +xH,+AH (13.4

This equation provides for the calculation of the enthalpies of binary mixt
from enthalpy data for pure species 1 and 2 and from the heats %f mixin
Treatment is here restricted to binary systems.

Data for heats of mixing are usually available for a very limited number
temperatures. If the heat capacities of, the pure species and of the mixture
known, heats of mixing are calculated for other temperatures by a methg
analogous to the calculation of standard heats of reaction at elevated temperatun
from the value at 25°C.

Heats of mixing are similar in many respects to heats of reaction. When
chemical reaction occurs, the energy of the products is different from the en
of the reactants at the same T and P because of the chemical rearrangement §
the constituent atoms. When a mixture is formed, a similar energy change occu
because interactions between the force fields of like and unlike molecules
different. These energy changes are generally much smaller than those associ
with chemical bonds; thus heats of mixing are generally much smaller than h
of reaction.

When solids or gases are dissolved in liquids, the heat effect is called a
of solution, and is based on the dissolution of I mole of solute. If we take spe
1 as the solute, then x, is the moles of solute per mole of solution. Since A
the heat effect per mole of solution, AH/x, is the heat effect per mole of so}
Thus :

where AH is the heat of solution on the basis of 2 mole of solute.

Solution processes are conveniently represented by physical-change equati
analogous to chemical-reaction equations. Thus if 1 mole of LiCl is dissolved:
12 moles of H,0, the process is represented as ;

LiCl{s) + 12H,0(!) » LiCI(12H,0)

The designation LiCI(12H,0} means that the product is a solution of 1 mole$
LiCl in 12 moles of H,O. The enthalpy change accompanying this proce
25°C and 1 baris AH = ~33,614 J. That is, a solution of | mole of LiCl in 12 m 01
of H,O has an enthalpy 33,614 J less than that of 1 mole of pure LiCl(s} a4
12 moles of pure H,O([). Equations for physical changes such as this are res
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combined with equations for chemical reactions. This is illustrated in the following
example.

Example 13.4 Calculate the heat of formation of LiCl in 12 moles of H,O at 25°C.

SoLp:rION Tl_1e process implied by the problem statement results in the formation
from _lts constituent elements of 1 mole of LiCl in selution in 12 moles of H,;0. The
equation representing this process is obtained as follows:

Li + iCl, » LiCl(s) AH3ge = —408,610]
LiCI(s) + 12H,0()) » LiCI(12H,0)  AHyes = —33,614J
Li+4Cl, + 12H;0(/) » LICI(12H,0)  AHj, = —442,224]

The first reaction describes a chemical change resulting in the formation of
LiCl(s} from its elements, and the enthalpy change accompanying this reaction is the
standard heat of formation of LiCI(s) at 25°C. The second reaction represents the
physical change resulting in the solution of 1 mole of LiCl{s) in 12 moles of H,O(1).
The enthalpy change accompanying this reaction is a heat of solution. The enthalpy
change of —442,224J for the overall process is known as the heat of formation of
LiCl in 12 moles of H,O. This figure does not include the heat of formation of the H,0.

Often heats of solution are not reported directly and must be calculated from
heats of formation by the reverse of the calculation just illustrated. The data

given by the Bureau of Standardst for the heats of formation of i mole of LiCl
are:

LiCl(s) —408,610]
LiCl-H,O(s) -712,5807-
LiCl-2H,0(s) . —1,012,650J
LiCl-3H,O(s) . —1311,300]
LiCl in 3 moles H,O —429.366 J
LiClin 5 moles H,O —436,805]
LiCl in 8 moles H,O —440,529 1
LiClin 10 moles H,0O —441,579)
LiCl in 12 moles H,O —442,224 §
LiClin 15 moles H,0 —-442.835]

From these_data heats of solution are readily calculated. Take the case of
the solution of 1 mole of LiCl in 5 moles of H,O. The reaction representing this
process is obtained as follows:

Li +1Cl, + SH,O() > LiCI(5H,0)
LiCl(s) » Li+iCl,
LiCl(s) + 5H,0(]) » LiCl(5H,0)

AHS, = —436,805 ]
AHSs = 408,610
AH,p = ~28,194)

t*The NBS Tables of Chemical Thermodynamic Properties,” J. Phys. Chem. Ref. Data, vol. 11,
Suppl. 2, 1982,
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This calculation can be carried out for each quantity of H,O for which data
are given. The results are then conveniently represented graphically by a plot of
AH, the heat of solution per mole of solute, vs. 7, the moles of solvent per mole
of solute. The composition variable, i = n,/n,, is related to Xy

~ X 1- X
n=—=
X Xy
whence
1
X = P
1+A

We therefore have the following relations between A H, the heat of mixing based
on 1 mole of solution, and AH, the heat of solution based on 1 mole of solute:

ET-I=‘§—H=AH(l+ﬁ)

1

or

——

AH
1+ 4

Figure 13.7 shows plots of AH vs. # for LiCl(s) and HCl(g) dissolved in water
at 25°C. Data in this form are readily applied to the solution of practical problems.

AH =

Example 13.5 A single-effect evaporator operating at atmospheric pressure concen-
trates a 15% (by weight) LiCl solution to 40%. The feed enters the evaporator at the
rate of 2kgs™' at 25°C. The normal boiling point of a 40% LiCl solution is about
132°C, and its specific heat is estimated as 2.72 k) kg~ °C™'. What is the heat-transfer
rate in the evaporator?

SOLUTION The 2kg of 15% LiCl solution entering the evaporator each second
consists of 0.30 kg LiCl and 1.70 kg H,O. A material balance shows that 1.25 kg of
H.C is evaporated and that 0.75 kg of 40% LiCl solution is produced. The process
is indicated schematically in Fig. 13.8.

1.25 kg superheated
= steam at 132°C and

Feed at 25°C 1 atm
2 kg 15% LiCi

0.75 kg 40% LiC]
at 132°C

Figure 13.8
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The enetgy balance for this flow process gives AH' = Q, where AH" is the
enthalpy of the product streams minus the total enthalpy of the feed stream.
the problem reduces to finding AH ' from the available data. Since enthalpy is a s
function, the path used for the calculation of AH " is immaterial and may be selec
as convenience dictates and without reference to the actual path followed in
evaporator. The data available are heats of solution of LiCl in H,O at 25°C (see
13.7), and the calculational path, shown in Fig. 13.9, allows their direct use.

The enthalpy changes for the individual steps shown in this figure must add
to the total enthalpy change:

AH'=AH!+AH. +AH!+AH)

The individual enthalpy changes are determined as follows. ¢

2 kg feed at 25°C
containing 0.30 kg
LiCl and 1.7¢ kg H,O

Separation of feed
into pure species AH
at 25°C l

1.70 kg H,0 at 25°C

0.30 kg LiCl 1.25 kg H,0 at 25°C
at 25°C

0.45 kg H,O at 25°C

N TTTTTTRY T A

Mixing of 0.45kg of
water with 0.30 kg of
LiCl to form a 40%
solution at 25°C

R { f
Heating 0.75 kg of Heating 1.25 kg of
LiCl solution from AH. water from 25 to AHY,
25 to 132°C 132°C at t atm l

P N, r ] y
0.75 kg of 40% LiCl 1.25 kg of superheated
solution at 132°C steam at 132°C and 1 atm

Figure 13.9
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AH_: This step involves the separation of 2kg of a 15% LiCl solution into its
pure constituents at 25°C. This is an “unmixing™ process, and the heat effect is the
same as for the corresponding mixing process, but is of opposite sign. For 2kg of
15% LiCl solution, the moles of material entering are

(0.30)(1,000) ]
43,39 = 7.077 mol LiC}
and
1.70)1
(—-M = 94.361 mol H,O

18.016

Thus the solution contains 13.33 moles of H,O per mole of LiCl. From Fig. 13.7 the
heat of solution per mole of LiCl for /i = 13.33 is —33,800 J. For the “unmixing” of
2 kg of solution,

AH = (+33,800)(7.077) = 239,250 )
AH;: This step results in the mixing of 0.45 kg of water with 0.30 kg of LiCl to
form a 40% solution at 25°C. This solution is made up of
030kg or 7.077 mol LiCl
and
045kg or 24978 mol H,O

Thus the final solution contains 3.53 moles of H,O per mole of LiCl. From Fig. 13.7
the heat of solution per mole of LiCl at this value of /i is —23,260 ). Therefore

AH} = (—23,260)(7.077) = — 164,630 ]
AH: For this step 0.75 kg of 40% LiCl solution is heated from 25 to 132°C.
Since AHI = mC, AT,
AH! = (0.75)(2.72)(132 — 25) = 218.28 kJ
or
AH;=218,280]
AH}: In this step liquid water is vaporized and heated to 132°C. The enthalpy
change is obtained from the steam tables:
AHG = (1.25)(2,740.3 — 104.8) = 3,294.4 kJ
or
AHj; =13,2944001]
Adding the individual enthalpy changes gives:
AH'=AH;+AH;+AH!+AH}
= 239,250 — 164,630 + 218,280 + 3,294,400
= 3,587,3007

The required heat-transfer rate is therefore 3,587.3kJs .
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H,S0,/H,0 system. \
The enthalpy values are based on a mole or a unit mass of solution, and Eq, \ \ \
(13.49) is directly applicable. Values of H for the solution depend not only o \ \ \
the heats of mixing, but also on the enthalpies H, and H, of the pure species B0 \ \ \
Once H, and H, are known for a given T and P, H is fixed for all solutions a
the same T and P, because AH has a unique and measurable value at each 60 \ \ \
composition. Since absolute enthalpies are unknown, arbitrary zero points are. \ \ \
chosen for the enthalpies of the pure species. Thus, the basis of an enthalpy/ con-. 40 \ \ \
centration diagram is H; =0 for some specified state of species 1 and H; =0 for - \ \ \
some specified state of species 2. The same temperature need not be selected for g \ \\ \
these states for both species. In the case of the H,S0.,/H,0 diagram shown in —; 20 \ \ q / /
Fig. 13.10, Huo =90 for pure liquid H,O at the triple point [=32(°F)], and - \
Hy,s0,= 0 for pure liquid H,50,at 25°C[77 (°F)]. In this case the 32(°F) isotherm 2 9 \ \ \ /
terminates at H = 0 at the end of the diagram representing pure liquid H,0, and :_;“ \ \ h \ \ \ N\
the 77(°F) isotherm terminates at H = 0 at the other end of the diagram represent- 3 2 5 \ \ \ \ \ \ N \ / /
ing pure liquid Hz80s. ] T NER RSN i
The advantage of taking H =0 for pure liquid water at its triple point is that § _ ‘\ \ \\ A // r/
this is the base of the steam tables. Enthalpy values from the steam tables can g 40 \\ \\ N \\\ / /
then be used in conjunction with values taken from the enthalpy/ concentration 3 \\ \3 N \\\\\\\\\ /l / /] / )
diagram. Were some other base used for the diagram, one would have to apply 4 —60 AN W W W W W W W X N2pe, // /
a correction to the steam-table values to put them on the same basis as the dia- 3 F—— %A&A%% NN Is _/:L/ / 4
gram. ;,‘ NN N -
For an ideal solution, isotherms on an enthalpy/ concentration diagram are § \\\ \\\ ‘\ ,qo\.___ _/f// / //
straight lines connecting the enthalpy of pure species 2atx; =0 with the enthalpy —100 ANV N %’E —— LA /
of pure species 1 at x; = 1. This follows immediately from Eq. (13.10), f _ E \\ ‘\ <oy~ yavs { ) o
s
Hid = lel + (1 - xl)H2 = x,(Hl - Hz) + Hz . -120 \\\ );Pa . l,’f
and is illustrated for a single isotherm in Fig. 13.11 by the dashed line. The solid ‘5 \\ o P J,/Q‘?
curve shows how the isotherm might appear for a real solution. Also shown is a -140 3}\40\ “"/’ /
ned. Comparison of ' ~I—1T

0 10 20 30 40 50 60 T0 80 90 100

tangent line from which partial enthalpies may be determi
Wt % H,SO,

Eq. (13.10) with Eq. (13.49) shows that AH=H-H i . that is, AH is the vertical §
distance between the curve and the dashed line of Fig. 13.11. The actual isotherm
is displaced vertically from the ideal-solution isotherm at a given composition }
by the value of AH at that composition. In the case illustrated A H is everywhere 1
negative. This means that heat is evolved whenever the pure species at the given
temperature are mixed to form a solution at the same temperature. Such a system
is said to be exothermic. The H,80,/H,;0 system is an example. An endothermic

system is one for which the heafs of solution are positive; in this case heat is §

absorbed to keep the temperature constant. An example is the methanol/benzene 4

system.

Figure 13.10 Enthal i
A py/concentration diagram for H,50,
Ross, Chem. Eng. Prog., 48: 314, 1952, By permissionj W/ 1:0. (Redran Jrom the dasa of W. D

useﬁ?;;: i‘;:lzt:;: :‘f:v a:lh entlilvalpy/ concent‘ration diagram which makes it particularly
This reste e ]; fw ich prol:?lems. mvc_)lving adiabatic mixing may be solved
line ou i o § e fact that _adlabat_ic mixing may be represented by a straight'
reprosent. 1 hiagram. More pr.ec:lsely, the point on an Hx diagram which

a solution formed by adiabatic mixing of two other solutions must lie
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Figure 13.11 Basic relations on an enthalpy/concentration diagram.

on the straight line connecting the points representing the two initial solution

This is shown as follows.
Let the superscripts a and b denote two initial binary solutions, consistin

of n® and n® moles respectively. Let superscript ¢ denote the final solutio
obtained by simple mixing of solutions a and b in an adiabatic process. Th
process may be batch mixing at constant pressure or a steady-flow pro
involving no shaft work or change in potential or kinetic energy. In either ¢

AH'=Q=0
‘We may therefore write for the overall change in state:
(n®+n")H® = n"H® + n°H"
In addition, a material balance for species 1 gives
(n® + n®)x§ = n°%{ + n®x?
These two equations may be written”
n(H® — H%) = —n®(H° - H")
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and

L (- x?) = (xS — x)

Division of the first equation by the second gives

HC_HII_HC_Hb
X xi (4)

w - (4 €
e now show that the three points ¢, a, and b represented by (H®, x{), (H* x¥),

b by 12 - .
and (H ,.xl) 1}e along a straight line on an Hx diagram. The general equation
for a straight line in these coordinates is

Assuming that this line passes through points a and b, we can write:
H"=mx{+k (C)
and
H=mx}+k (D)

Subtraction of ﬁr§t Eq. (C) and then Eq. (D) from Eq. (B) gives
H - H=m(x, - x{)
and
H— H® = m(x, - x")
Dividing the first of these by the second, we obtain
H-H® x -xj
H-H* x; —xb

or

H-H" H-H'
N —x7 x, —xf

Any pOiI:H’. with the f:oordi_nates (H, x,) which satisfies this equation lies on the
stra_clghct lme_connectlng points a and b. Equation (A) clearly shaws that the point
(H°, x{) satisfies this requirement. ,

The use of enthalpy/concentration diagrams is illustrated in the following

galnzlples for the NaOH/H,0 system, for which an Hx diagram is shown in Fig.

Emple 13.6 A single-effect evaporator concentrates 10,000(1b,.)(hr)~"' of a 10% (by
weight) aqueous solution of NaOH to 50%. The feed enters at 70(°F). The evaporator
operates at an absolute pressure of 3(inHg), and under these conditions the boiling

point of a 50% solution of NaOH is 190(°F). What is the heat-transfer rate in the
evaporator?
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8000{tb,,) of superheated
Feed at 70(°F) - steam at 3(inHg) and 190(°F)
10,000(1b,,) Of =]
10% NaOH o 2000(lb,,) of 50% NaOH

at 190(°F)
N
\\\\N :
Q
\\ &\\\\‘\\\\\ Figure 13.13

BN\

0.6

SOLUTION On the basis of 10,000(lb,) of 10% NaOH fed to the evaporator, a
material balance shows that the product stream consists of 8,000(Ib,,) of superheated
steam at 3(inHg} and 190(°F), and 2,000(1b_) of 50% NaOH at 190(°F). The process
is indicated schematically in Fig. 13.13. The energy balance for this flow process is

AH'= Q

In this case AH" is easily determined from enthalpy values taken from the Hx diagram
of Fig. 13.12 and from the steam tables:

Z

//

-
_

y Saturated solution

0.5

Z4
1 ?{m ed solution
R [~
,__.-"":—7

0.3 0.4

x, mass fraction NaOH

Enthalpy of superheated steam at 3(inHg) and 190(°F) = 1,146(Btu)(Ib_)~!
Enthalpy of 10% NaOH solution at 70(°F) = 34(Btu)(Ib,,) !

L
—‘/
—
—l‘/
—_
/_.—'
//
//
-
-//
”—
-
[~ -
//
-
L ;
L=
-
-

Enthalpy of 50% NaOH solution at 190(°F) = 215(Btu)(lb,,) ™!
Thus

il

Q = AH'" = (8,000)(1,146) + (2,000)(215) - (10,000)(34)
= 9,260,000(Btu)(hr) "

i1
!
- H | HH A comparison of this example with Example 13.5 shows the simplification
L T . >emp
i | | | | | i i i I introduced by use of an enthalpy/concentration diagram.
L o+ 2
=110 !‘ i I I c| ! Example 13.7 A 10% aqueous NaOH solution at 70{°F) is mixed with a 70% aqueous
RN EIE S NaOH solution at 200(°F) to form a solution containing 40% NaOH.
‘*” T. il H H ,'I ’ ,; ; ' ! (a) If the mixing is done adiabatically, what is the final temperature of the
I Iy / } solution?
/ Il I , ] | f s (b) Ifthe final temperature is brought to 70(°F), how much heat must be removed
i o n ° during th 9
”/// THIAN uring the process?
TN
1/ fpif, y / +H I ’, { SOLUTION (a) A straight line drawn on Fig. 13.12 connecting the points represent-
I/ ! / ing the two initial solutions must contain the poimt representing the final solution
RS TR Ry !
nTIE; / /s f / IR - obtained by adiabatic mixing. The particular solution represented by a point on this
s ® & @ 8 ¢ & 8 8 %
w - Al il

line at a concentration of 40% NaOH has an enthalpy of 192(Btu)(Ib,,)~'. Moreover,
the isotherm for 220(°F) passes through this point. Thus the final temperature, obtained
graphically, is 220(°F).

(b) The overall process cannot be represented by a single straight line on Fig.
13.12. However, we may select any convenient path for calculating A H of the process
and hence Q, since the energy balance gives Q = AH. Thus the process may be

uonnjos (*q1)/(md) ‘Adieyua ‘H
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New York, 1984.

considered as occurring in two steps: adiabatic mixing, followed by simple cooling:
of the resulting solution to the final temperature. The first step is considered

part (a@). It results in a solution at 220(°F) with an enthalpy of 192(Btu)lby)~
When this solution is cooled to 70(°F), the resulting enthalpy from Fig. 13.12

70(Btu)(lb,,) "', Therefore
Q=AH=T0-192= —122(3(.!.])(“),,[,)_1

Thus 122(Btu) is evolved for each pound mass of solution formed.

Example 13.8 Determine the enthalpy of solid NaOH at 68(°F) on the basis used fi
the NaOH/H,O enthalpy/concentration diagram of Fig. 13.12.

SOLUTION The isotherms on an Hx diagram for a system such as NaOH/H,
terminate at points where the limit of solubility of the solid in water is reached. Thuj
the isotherms in Fig. 13.12 do not extend to a mass fraction representing pure NaQ
How, then, is the basis of the diagram with respect to NaOH sélected? In the
of the water the basis is Hy,o = 0 for liquid water at 32(°F), consistent with the b
of the steam tables. For NaOH the basis is Hy,ou = 0 for NaOH in an infini
dilute solution at 68(°F).

This means that the partial specific enthalpy of NaOH at infinite dilution (i
at Xpaou = 0) is arbirarily set equal to zero at 63(°F). The graphical interpretation:§
that the diagram is constructed in such a way that a tangent drawn to the 68
isotherm at Xnaon = 0 intersects the Xy.op = | ordinate (not shown) at an enthal
of zero. The selection of HZ, o as zero at 68(°F) automatically fixes the values
the enthalpy of NaOH in all other states.

In particular, the enthalpy of solid NaOH at 63(°F) can be calculated for
basis selected. If 1(Ib,) of solid NaOH at 68(°F) is dissolved in an infinite amoy
of water at 68(°F), and if the temperature is held constant by extraction of the
of solution, the result is an infinitely dilute solution at 68(°F). Since the water is
in both the initial and final states, its enthalpy does not change. The heat of soluti
is therefore

AH NaoH = H Neon ~ Haon [68(°F)]
Since’
Afuon =0 [68CF)]
AH¥.0n=—Hnaon  [68(°F)]

The enthalpy of solid NaOH at 68{°F}, Haon, is therefore equal to the ne;
of the heat of solution of NaQH in an infinite amount of water at 68(°F). A lite:
valuet of the heat evolved when 1 mole of NaOH is dissolved in water to form:

infinitely dilute solution at 18°Cis 10,1 80(cal). Since heat evolved is defined as negs
AHS on = —10,180(cal}  [18°C]

If the difference in temperature between 18°C [64(°F)] and 68(°F} is neglected,’

1 R. H. Perry and D. Green, Perry’s Ch'e_mical Engineers® Handbook, 6th ed., p. 3-159, McGraw-|
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enthalpy of solid NaOH at 68(°F) is

Hyoon = =AHZuon = ng,olw

= 458(Btu)(Ib,,) "

This figure represents the enthalpy of solid NaOH at 68(°F) on the same basis as was
selected for the NaOH/H,O enthalpy/concentration diagram of Fig. 13.12.

Example 13.9 Solid NaOH at 70(°F) is mixed with H,0 “ i
pl ;0 at 70(°F) to produce a solution
containing 45% NaOH at 70(°F). How much heat must be t fi

mass of solution formed? rensferted per pound

SOLUTION On the basis of 1(lb,,) of 45% NaQH solution, 0.45(lb,) of solid NaOH
must be dissolved in 0.55(1b,,) of H,0. The energy balance is AHm= Q.

The enthalpy of H,0 at 70(°F) may be taken from the steam tables, or it may
be read from Fig. 13.12 at x = 0. In cither case, Hy;,o = 38(Btu)(ib,,) . Th,e enthalpy
of 45% NaOH at 70(°F) is read from Fig. 13.12 as H = 93(Btu)(Ib,,)~'. We assume
Fhat the enthalpy of solid NaOH at 70(°F) is essentially the same as the value calculated
in the preceding example for 68(°F): Hy,oxn = 458(Btu)(lb,.)~'. Therefore

Q = AH = (1)(93) - (0.55)(38) — (0.45)(458) = —134(Btu)

Thus, 134(Btu) is evolved for each pound mass of solution formed.

13.8 EQUILIBRIUM AND STABILITY

Consider a closed system containing an arbitrary number of species and comprised
of an arbitrary number of phases in which the temperature and pressure are
}mlform (though not necessarily constant). The system is assumed to be initially
in a _nonequilibrium state with respect to mass transfer between phases and
f:hemncal reaction. Any changes which occur in the system are necessarily irrevers-
ible, and they take the system ever closer to an equilibrium state. We may imagine
that the system is placed in surroundings such that the system and surroundings
are always in thermal and mechanical equilibrium. Heat exchange and expansion
work are then accomplished reversibly. Under these circumstances the entropy
change of the surroundings is given by

_ 4Qu _ —dQ

dSsurr -
Tsurr T

Here the heat transfer dQ with respect to the system has a sign opposite that of
dQ,,., and the temperature of the system T replaces T, because both must
have the same value for reversible heat transfer. The second law requires that

ds'+ds,..=0

‘s
\\there §® is the total entropy of the system. Combination of these expressions
yields, upon rearrangement:

dQ = TdS' (13.50)
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Application of the first law provides
dU' = dQ — dW = dQ — PdV'

or
dQ = dU' + PdV'
Combining this equation with Eq. (13.50) gives
dU'+ PdV' = TdS'

or

dU'+ PdV' - TdS' =0

Since this relation involves properties only, it must be satisfied for chas

in state of any closed system of uniform T and P, without restriction

conditions of mechanical and thermal reversibility assumed in its derivation:

inequality applies to every incremental change of the system betwee
equilibrium states, and it dictates the direction of change that leads

equilibrium. The equality holds for changes between equilibrium states (reve

processes). Thus Eq. (6.1) is just a special case of Eq. (13.51).

Equation (13.51) is so general that application to practical pr.oblc'
difficult; restricted versions are much more useful. For example, by inspect

we see that
(dU‘)s‘. v=0

where the subscripts specify properties held constant. Similarly, for proce

that occur at constant IJ* and V°,
(ds')U‘, vi= 0

An isolated system is necessarily constrained to constant internal energy
volume, and for such a system it follows directly from the second law tha

latter equation is valid.

If a process is restricted to occur at constant T and P, then Eq. (13.51)x

be written:
AUt p+ d(PV')rp—d(TS)rp=<0
or
d(U'+PV' —TS")£p=0
From the definition of the Gibbs energy [Eq. (6.3)],
G'=H'-TS'=U+PV'-TS'

Therefore

'{th)T,PEO

(13,

11
tov

{1
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Of the possible specializations of Eq. (13.51), this is the most useful, because T
and P are more conveniently treated as constants than are other pairs of variables,
such as U’ and V"

Equation (13.52) indicates that all irreversible processes occurring at constant
T and P proceed in such a direction as to cause a decrease in the Gibbs energy
of the system. Therefore:

The equilibrium state of a closed system is that state for which the total
Gibbs energy is a minimum with respect to all possible changes at the given
Tand P.

This criterion of equilibrium provides a general method for determination of
equilibrium states. One writes an expression for G' as a function of the numbers
of moles (mole numbers) of the species in the several phases, and then finds the
set of values for the mole numbers that minimizes G', subject to the constraints
of mass conservation. This procedure can be applied to problems of phase,
chemical-reaction, or combined phase and chemical-reaction equilibrium; it is
most useful for complex equilibrium problems, and is illustrated for chemical-
reaction equilibrium in Sec. 15.9.

At the equilibrium state differential variations can occur in the system at
constant T and P without producing any change in G'. This is the meaning of
the equality in Eq. (13.52). Thus another general criterion of equilibrium is

(dG‘)r’p =) (13.53)

To apply this criterion, one develops an expression for dG* as a function of the
mole numbers of the species in the various phases, and sets it equal to zero. The
resulting equation along with those representing the conservation of mass provide
working equations for the solution of equilibrium problems. Equation (13.53)
leads directly to Eq. (10.3) for phase equilibrium and it is applied to chemical-
reaction equilibrium in Chap. 15.

Equation (13.52) provides a criterion that must be satisfied by any liquid
phase that is stable with respect to the alternative that it spiit into two liquid
phases. It requires that the Gibbs energy of an equilibrium state be the minimum
value with respect to all possible changes at the given T and P. Thus when mixing
of two liquids occurs at constant T and P, the total Gibbs energy must decrease,
because the mixed state must be the one of lower Gibbs energy with respect to
the unmixed state. We can write:

G'=nG <Y nG;
from which
G < ¥ xG;
or

G-YxG. <0 {const T and P)
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According to the definition of Eq. (13.39), the quantity on the left is the an
energy change of mixing. Therefore

AG <0

Thus the Gibbs energy change of mixing must always be negative, and a plot g
AG vs. x, for a binary system must appear as shown by one of the curves of Fi‘
13.14. With respect to curve 11, however, there is a further consideration. If, wh
mixing occurs, a system can achieve a lower value of the Gibbs energy by formi
two phases than by forming a single phase, then the system splits into two phas
This is in fact the situation represented between points @ and b on curve Il
Fig. 13.14, because the straight dashed line connecting points a and b represe
the AG that would obtain for the range of states consisting of two phases of
compositions x{ and x} in various proportions. Thus the solid curve sho
between points a and b cannot represent a stable phase with respect to ph
splitting. The equilibrium states between a and b consist of two phases.

X,

Figure 13.14 Gibbs energy change of mixing. Curve I, complete miscibility; curve II, two
exist between A and B.
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These considerations lead to the following criterion of stability for a single-
phase binary system. At constant temperature and pressure, AG and its first and
second derivatives must be continuous fugyctions of x,, and the second derivative
must everywhere satisfy the inequality

d*AG
dx?

>0 (const T, P)

Since T is constant, this may equally well be expressed by
d*(AG/RT)
dxi

This requirement has a number of consequences. Equation (13.40), rearranged
and written for a binary system, becomes

>0 {const T, P) (13.54)

e-(—}—x Inx, + x;1n x +—G—“3
RT — 1 2 2 RT
Substituting for the last term on the right by Eq. (11.69) gives
AG
sz’ Inx+xInx;+xlny,+xIny,

Differentiation yields

d(AG/RT)_x dlnx'+lnx tx dlnxz_lnx
dxl — 4 dx. 1 2 dxl 2
dl
+x1—-—~—n71+ln'yl+x2dln72—ln'yz

dx; dx,

where we have made use of the fact that dx,/dx, = —1. Simpliﬁcation is effected
as follows. First, we have the mathematical identity:

dlnx dlnx
Xy dxll+x2.dx'2=0
and second, Eq. (11.70), the Gibbs/Duhem equation, provides the relation:
dln vy, dinvy,
-+ =
N e O
Therefore
d(AG/RT)

dx, =lnx~Inx;+Ilny, —Iny,

=Inx;y, — In X7
which, by Eq. (11.59), becomes

dAG/RT) | S\ Fs

& i h
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Since f; and f; are constant at constant T and P, a second differentiati
now yields
d*(AG/RT) dInj, dmf,
dx? dx,  dx

(13

Another form of the Gibbs/ Duhem equation follows from Eq. (11.8) with M,
when we substitute for dG; by Eq. (11.28). For a binary solution the result is

xldlnf|+x2dlnf2=0 (13
Division by dx, yields:

dlIn fl d lnfz
+
Xy ax, x> dx,

=0
This equation may be combined with Eq. (13.55) to eliminate either d In ,f,/ ]
ordln fz/ dx,. The two equations that result are :

d*(AG/RT) -1dnj,
dx? T ox dx,

dlnfz
dx,

L
X

and

d*(AG/RT) _ 1dnf,
dxz X2 dx,

These equations, in conjunction with the criterion of Eq. (13.54), show that §
a stable phase the fugacity of each species in a binary solution always incre
as its mole fraction increases at constant T and P.

When the preceding equations are applied to a liquid phase in equilib
with its vapor at constant temperature and sufficiently low pressure, we
assume the vapor to be an ideal gas and replace f1 and f, by partial press
f y:P. Moreover, the constraint to constant pressure can be disrega
because under these conditions the effect of P on liquid-phase properti :
negligible. Thus Eq. (13.55) becomes ‘

d*(AG/RT) _dlny,P diny,P
dx? T dx dx,
dlny, dlny2 1 dy, 1 dy,

or since y, +y, =1,

e v (138
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In view of Eq. (13.54), we may write the inequality
' L dy
- - = > 0
»yz dx,

from which it is evident that dy,/dx, > 0.
Making the same substitutions in Eq. (13.56), we obtain

xydlny,+x;dlnP+x,dlny, +x,din P =0

This reduces to
(%) dInP+2dy,+32dy, =0
Wi Y2
or
X X2 Xy Xz
dinP=——dy, ——dy,=——dy,+—=d
N & Ya 72 b4 e Y2 4

or
%3: (53 _ﬂ) dy, = TN ED
Y2 N Y1)z
_ (1 —x)y — x (1 = y1)
Yiya2
Finally, division by dx,, further reduction, and rearrangement give

1 dP 1 dy,

P(y, — x;) dx, - »y: dx
In combination with Eqgs. (13.57) and (13.54), this result shows that
1 drP
PO — %) dx, 0

from which we conclude that dP/ dx, and (y; — x,) must have the same sign. Since

dP _ dP/dx,

d}’I d}’l/ dx,
it follows that dP/dy, and dP/dx, also have the same sign.

In summary, the stability requirement implies the following for VLE in binary
systems at constant temperature:

dy,

dy, dpP dp .
—_ > __
1 i d , and (y; — x;) have the same sign

At an azeotrope,
dp_dp_
dxl"dyl_ § g 1) =
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Although derived for conditions of low pressure, these results are of gen
validity, as illustrated by the VLE data shown in Fig. 12.9.

13.9 SYSTEMS OF LIMITED
LIQUID-PHASE MISCIBILITY

There are many pairs of chemical species which, if they mixed to form a sin,
liquid phase, would not satisfy the stability criterion of Eq. (13.54). Such sys
therefore split into two liquid phases, and are important industrially in opera
such as solvent extraction.

For a binary system consisting of two liquid phases and one vapor phase
equilibrium, there is {(according to the phase rule) but one degree of freedo
For a given pressure, the temperature and the compositions of all three ph
are therefore fixed. On a temperature-composition diagram the points represents
the states of the three phases in equilibrium fall on a horizontal line at T*.
Fig. 13.15, points C and D represent the two liquid phases, and point E represe
the vapor phase. If more of either species is added to a system whose ove
composition lies between points C and D, and if the three-phase equilibri
pressure is maintained, the temperature and the compositions of the phases 2
unchanged. However, the relative amounts of the phases adjust themselves
reflect the change in overall composition of the system.

At temperatures above T* in Fig. 13.15, the system may be a single lig
phase, two phases (liquid and vapor), or a single vapor phase, depending on t
overall composition. In region a the system is a single liquid rich in speci
in region B it is again a single liquid, but rich in species 1. In region a-V, lig
and vapor are in equilibrium. The states of the individual phases fall on lig
AC and AE. In region 8-V, liquid and vapor phases, described by lines BD &
BE, also exist at equilibrium. Finally, in the region designated V, the system
a single vapor phase. Below the three-phase temperature T *, the system is en
liquid. Single liquid phases exist to the left of line CG and to the right of |
DH. Mixtures having overall compositions within region a-8 consist of two li
phases of compositions given by the intersections of horizontal tie lines
lines CG and DH. As indicated in each section of the diagram, horizontal ;
lines connect the compositions of phases in equilibrium.

When a vapor is cooled at constant pressure, it follows a path represe
on Fig. 13.15 by a vertical line. Several such lines are shown. If one starts
point k, the vapor first reaches its dew point at line BE and then its bubble p
at line BD, where condensation into single liquid phase 8 is complete. Thi$
the same process that takes place when the species are completely miscible.
one starts at point n, no condensation of the vapor occurs until temperature 1
is reached. Then condensation occurs entirely at this temperature, producing 4
two liquid phases represented by points C and D. If one starts at an intermedil
point m, the process is a combination of the two just described. After the ¢
point is reached the vapor, tracing a path along line BE, is in equilibrium with
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Figure 13.15 Temperature/ composition diagram for a binary system of partially miscible liquids at
constant pressure.

!iquid tracing a path along line BD. However, at temperature T* the vapor phase
is at point E. All remaining condensation therefore occurs at this temperature,
producing the two liquids of points C and D.

Figure 13.15 is drawn for a single constant pressure; equilibrium phase
compositions, and hence the locations of the lines, change with pressure, but
the general nature of the diagram is the same over a range of pressures. For the
majority of systems the species become more soluble in one another as the
temperature increases, as indicated by lines CG and DH of Fig. 13.15. If this
diagram is drawn for successively higher pressures, the corresponding three-phase
equilibrium temperatures increase, and lines CG and DH extend further and
further until they meet at the liquid/liquid critical point M, as shown by Fig.
13.16. The temperature at which this occurs is known as the upper critical sclution
temperature, and at this temperature the two liquid phases become identical and
merge into a single phase.

] As the pressure increases, line CD becomes shorter and shorter (as indicated
in Fig. 13.16 by lines C'D’' and C"D”), until at point M it diminishes to a
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Locus of azeotropes

X1 Vi

Figure 13.16 Temperature/composition diagram for several pressures.

differential length. For still higher pressures (P,) the temperature is abov
critical solution temperature, and there is but a single liquid phase. The dia;
then represents two-phase VLE, and it has the form of Fig. 12.10d, exhibiti
minimum-boiling azeotrope.
There is an intermediate range of pressures for which the vapor pha
equilibrium with the two liquid phases has a composition that does not lie be
the compositions of the two liquids. This is illustrated in Fig. 13.16 by the
for P, which terminate at A" and B". The vapor in equilibrium with the
liquids at C” and D" is at point F. In addition the system exhibits an azeo
as indicated at point J. '
Not all systems behave as described in the preceding paragraphs. Som
the upper critical solution temperature is never attained, because a vapor/}
critical temperature is reached first. In other cases the liquid solubilities inci
with a decrease in temperature. In this event a lower critical solution tempe
exists, unless solid phases appear first. There are also systems which exhibit
upper and lower critical solution temperatures.
Figure 13.17 is the phase diagram drawn at constant T that correspont
the constant- P diagram of Fig. 13.15. On it we identify the three-phase equilib:
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Const T
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Figure 13.17 Pxy diagram for a system of partiaily miscible liquids at constant T.

pressure as P¥, the three-phase equilibrium vapor composition as y¥, and the
compositions of the two liquid phases that contribute to the vapor/liquid/liquid
equilibrium state as x7 and xf. The phase boundaries separating the three.
liquid-phase regions are nearly vertical, because pressure has only a weak
influence on liquid solubilities. '

The compositions of the vapor and liquid phases in equilibrium for partially
miscible systems are caiculated in the same way as for miscible systems. In the
regions where a single liquid is in equilibrium with its vapor, the general nature
of Fig. 13.17 is not different in any essential way from that of Fig. 12.9d. Since
limited miscibility implies highly nonideal behavior, any general assumption of
liquid-phase ideality is exciuded. Even a combination of Henry's law, valid for
a slzfecies at infinite dilution, and Raoult’s law, valid for a species as it approaches
purity, is not very useful, because each approximates real behavior only for a
very small composition range. Thus G* is large, and its composition dependence
15 often not adequately represented by simple equations. However, the UNIFAC
method (App. D) is suitable for estimation of activity coefficients.
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. . Figure 13.19 Pxy diagram for diethyl ether(1)/water(2) for the ether-rich region.
Figure 13.18 Pxy diagram for diethyl ether(1)/water(2) at 35°C.

equations [see Eqs. (12.11) through (12.13)]:

GE

As an example we consider the diethyl ether(1)/water(2} system at 35°C
RT

which careful measurements have been made.t The Pxy behavior of this s
is shown by Fig. 13.18, where the very rapid rise in pressure with incre
liquid-phase ether concentration in the dilute-ether region is apparent.
three-phase pressure of P* = 104.6 kPa is reached at an ether mole fractiom
only 0.0117. Here, y, also increases very rapidly to its three-phase val
y¥ = 0.946. In the dilute-water region, on the other hand, rates of change
quite small, as shown to an expanded scale in Fig. 13.19. !

The curves in Figs. 13.18 and 13.19 provide an excellent correlation of 1
VLE data. They result from BUBL P calculations carried out as indicated in}
12.12. The excess Gibbs energy and activity coefficients are here express
functions of liquid-phase composition by the 4-parameter modified M3

=Apx, + Ayx, — Q

d
Iny, = x%[Alz“' 2An— AR —-Q—x df]
1

d
Iny, = xf [AZI +2(A— An)xa— Q+ szQ]
1

where
G X, 0 X

X, t+ @3 X;

E_Q — @30 (@ X3 — @y,x7)
dx, (x5 + “21-’52)2

LY
+ M. A. Villamaiién, A. J. Allawi, and H. C. Van Ness, J. Chem. Eng. Data, 29: 431, 1984
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and
AZI = 3.35629

a2 = 3.78608

A12 = 4.62424
ay = 1.81775

The BUBL P calculations also require values of @, and ®,, which come fr
Eqs. (12.7) and (12.8) with virial coefficients:

B, =-99 B, =-1245  B;;=—567 cm’mol™’

In addition, the vapor pressures of the pure species at 35°C are
P =103.264 P =5633kPa

The high degree of nonideality of the liquid phase is indicated by the val
of the activity coefficients of the dilute species, which range for diethyl
from y, = 81.8 at x7 =0.0117 to ¥ = 101.9 at x, = 0 and for water from .
19.8 at x¥ = 0.9500 to y3 = 28.7 at x, = 1.

For temperature T and the three-phase equilibrium pressure P*, Eq. (11
for low-pressure VLE has a double application:

| xPyT P = yrP*
and
xfyP PP = ytp*
Thus for a binary system we have four equations:
x{yi Pi =yt P*
Py PP = ytpP*
x5 ¥3 P} = y1P*

x§¥EPY* = yp*

All of these equatiofis are correct, but two of them are preferred over the oth
Consider the expressions for y¥P*:
| xiyr P = x{yP PP = yEP*
| For the case of two species that approach complete immiscibility,

_ xp=0 =) xfs1 Ao
Thus

(O)(y7)"PI™ = P = ytP*

This equation implies that (y])™ - 0; a similar derivation shows that (y5)” »
Thus Eqs. (B) and (C), which include neither of these quantities, are chose
the more useful expressions. They may be added to give the three-phase pre

P*= ﬁ‘ ﬁPm o o ppsat (13
xivi Pi" + x3 v, P}
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In addition, the three-phase vapor composition is

. xﬂ BPsat
yi==""0 ’;* : (13.59)
Thus in the case of the diethyl ether(1)/water(2) system,
¥y =10095 and & =1.0013

These values are in marked contrast to those cited earlier for the dilute species.
They allow calculation of P* and yf by Eqs. (13.58) and (13.59):

P* = (0.9500)(1.0095)(103.264) + (0.9883)(1.0013)(5.633)

= 104.6 kPa
and
(0.9500)(1.0095)(103.264)
104.6

Although no two liquids are totally immiscible, this condition is so closely
approached in some instances that the assumption of complete immiscibility does
not lead to appreciable error. The phase characteristics of an immiscible system
are illustrated by the temperature/composition diagram of Fig. 13.20. This

yi= = 0.946

Const P

Xia M

Figure 13.20 Temperature/composition diagram for a binary system of immiscible liquids,
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diagram is a special case of Fig. 13.15 wherein phase « is pure species 2 an¥
phase B is pure species 1. Thus lines ACG and BDH of Fig. 13.15 have in Fig,
13.20 become vertical lines at x, = 0 and x, = 1.

In region I, vapor phases with compositions represented by line BE are
equilibrium with pure liquid 1. Similarly, in region II, vapor phases whose comf
positions lie along line AE are in equilibrium with pure liquid 2. Liquid/liqu
equilibrium exists in region III, where the two phases are pure liquid 1 and p
liquid 2. If one cools a vapor mixture starting at point m, the constant-compositios
path is represented by the vertical line shown in the figure. At the dew point
where this line crosses line BE, pure liquid 1 begins to condense. Further reduction
in temperature toward T* causes continued condensation of pure liquid 1; t
vapor-phase composition progresses along line BE until it reaches point E. Here,
the remaining vapor condenses at temperature T*, producing two liquid phases;
one of pure species 1 and the other of pure species 2. A similar process, carried
out to the left of point E, is the same, except that pure liquid 2 condenses initially,
The constant-temperature phase diagram for an immiscible system is represented
by Fig. 13.21. ‘

Numerical calculations for immiscible systems are particularly simple
because of the following equalities: '

and

The three-phase equilibrium pressure P* as given by Eq. (13.58) is therefore:
P* = P4 Py '

from which, by Eq. (13.59),

pi

—— B
P:ﬂ‘_’_ P;al ( -)

yt=

For region 1 where vapor is in equilibrium with pure liquid 1, Eq. (11.74) becomes
»(DP =P

or

»n(D) = P_;“_‘
Similarly, for region 1I where vapor is in equilibrium with pure liquid 2,
y(IDP = [1 - y,(I}P = P |
or
o
P

\
w(Il}=1-
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X 0
Figure 13.21 Pxy diagram for a binary system of immiscible liquids.
Example 13.10 Prepare a table of temperature/composition data for the ben-

zene(l)/water(2) system at a pressure of 101.33kPa (1 atm) from the following
vapor-pressure data:

t/°C P5/kPa P$/kPa PP+ P3/kPa
60 5222 19.92 72.14

70 73.47 31.16 104.63

75 86.40

80 101.05 47.36

90 136.14 70.11
100 180.04 10133

SOLUTION The three-phase equilibrium temperature ¢* is determined from Eq. ( A),
here written as:

P =P+ P =10133kPa

The last column of the preceding table shows that t* lies between 60 and 70°C. By
interpolation, we find that 1* = 69.0°C, and at this temperature we find, again by
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interpolation, that P (#*) = 71.31 kPa. Thus by Eq. (B),

71.31
* =
YT = 10133
For the two regions of vapor/liquid equilibrium, Eqgs. {C) and (D) become
o
=" = 10133
and
;at P;at

n=1-—7-=T-75733

Application of these equations at each of several temperatures gives the results:d

summarized in the table that follows.

1/°C yi(ID) t/°C »n
100 0.000 80.1 1.000
90 0.308 80 0.997
80 0.533 75 0.853
69 0.704 69 0.704
PROBLEMS

13.1 With reference to Example 13.2, \ ) and (C)

i B) an .
(a) Apply Eq. (11.2) to Eq. (A) to verify Eags. ( )
(b) Slfopw that Eqs. (B) and (C), when combined in accord with Eq. (11.5),.rcgcneratc Eq. (A).
(¢) Show that Eqgs. (B) and (C) satisfy Eq. (11.8), the Gibbs/Duhem equation.
(d) Show that at constant T and P

(dH’I/dxl)x1=1 = (dﬁ;jdxl)xlio =0
(e) Plot valu.es of H, H,, and H,, calculated by Eqs. (A), (B), and (C)}, vs. x,. Label points H,
H,, A%, and HY, and show their values.

13.2 The molar volume (cm® mol™"} of a binary liquid mixture at T and P is given by

V = 90x, + 50x; + (6x, + 9x) %%,

For the given T and P, B
(a) Find expressions for the partial molar volumes of species 1 ar}d 2. ' .
{b) Show that when these expressions are combined in accord with Eq. (11.5) the given equatio

for V is recovered. . )
(c) Show that these expressions satisfy Eq. (11.8), the Gibbs/Duhem equation.

(d) Show that (dV,/dx;),,.; = (@V2/dX\)x,0 =0 ) ) .
{e) Plot values of V, ¥V, ,l and V, calculated by the given equation for V a;nd by the equatio
developed in {a) vs. x,. Label points V,, Vs, Ve, and ¥7, and show their values.

13.3 Given that
ME = x,x,(Ag + Az + Ay7%)

. . . . s
whete z = x, — x,, derive expressions for klf and M£. Combine the resulting expressions to sho’
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that the given equation is recovered. What are the limiting values of MF, MF, and M%/x,x, as
x, =+ 0 and as x; = 1?

13.4 The excess (fibbs energy of a binary liquid mixture at T and P is given by

GE/RT = (—1.2x, — 1.5%)%:%;

For the given T and P,

(a) Find expressions for In ¥, and ln ¥,.

(b) Show that when these expressions are combined in accord with Eq. (11.69) the given equation
for GE/RT is recovered.

(c) Show that these expressions satisfy Eq. {11.70), the Gibbs/Duhem equation.

(d) Show that (d In )/ dx,}, ., = (d In ¥,/ dx;) . -9 = 0.

(e) Plot values of G%/RT, In y,, and In ¥, calculated by the given equation for GZ/RT and by the
equations developed in (a) vs. x,. Label points In y7, and In ¥%, and show their values.

13.5 With reference to Example 13.3,

(a} Apply Eq. (11.2) [with M = H® and M, = HF] to Eq. (C) to verify the expressions for Hf
and HE,

(5) Show that these expressions, when combined in accord with Eq. (11.5), regenerate Eq. (C).

(c} Show that these expressions satisfy Eqg. (11.8), the Gibbs/Duhem equation,

(d) Show that at constant T and P (dHT/dx,), ., = (dHf/d%))y =0 = 0.

(e) Plot values of H% HF, and HE, calculated by the given equation for H ¥ and by the equations
developed in {(a) vs. x;. Label points (FE)™, and (HE)=, and show their values,

13.6 If the partial volume of species | in a binary solution at constant T and P is given by

V=V, +ax

find the corresponding equation for ¥,. What equation for V is consistent with these equations for
the partial volumes? What are the corresponding equations for V£ VF, and V7?7

13.7 The following equations have been proposed to represent activity-coefficient data for a system
at fixed T and P:

In y; = x3(0.5 +2x,)
In y; = x{(L.5 — 2x,)

Do these equations satisfy the Gibbs/Duhem equation? Determine an expression for G¥/RT for
the system.

138 The following equations have been proposed to represent activity-coefficient data for a system
at fixed T and P:

In vy, = Ax2+ Bx¥{3x, - x3)
ln y; = Ax? + Bx¥{x, — 3x;)

Do these equations satisfy the Gibbs/Duhem equation? Determine an expression for G/ RT for
the system.

13.9 The following equations have been proposed to represent activity-coefficient data for a system
at fixed T and P:

In ¥, = x,(a + bx;)
Iny, = x,(a+ bx;) .

(a) Combine these equations in accord with Eq. (11.63) to determine an expression for GZ/RT.

{b) Apply Eq. (11.62) to the equation of part (a) to develop equations for In y, and In y,. Are
the given equations for these quantities regenerated?

{c) Do the given equations satisfy the Gibbs/Duhem équation?

{d) How are the results of parts (b) and (¢} connected?
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13.10 For a ternary solution at constant T and P, the composition dependence of molar prop

ety . 13.20 If a liquid solution of HCI in water, containing 1 mol of HC! and 10 mol of H.0, absorbs an
is given by

additional 1 mol of HCI(#) at the constant temperature of 25°C, what is the heat effect?

13'21. A liguid solytion of LiCl in water at 25°C contains | mol of LiCl and 12 mol of water, If an
additional 1 mol of LiCl{s) is dissolved isothermally in this solution, what is the heat effect?

13,._2.2 It. is required to pﬂ_)duce an aqueous LiCl solution by mixing LiCl-2H,0(s) with water. The
mixing is to occur both adiabatically and without change in temperature at 25°C. Determine the mole
fraction of LiCl in the final solution.

13.23 Dat:} from the Bureau of Standards {J. Phys. Chem. Ref. Data, Vol. 11, suppl. 2, 1982) include
the following heats of formation for 1 mol of CaCl, in water at 25°C:

M = x M, + x,M; + . My + x2,x,C

where M, M, and M; are the values of M for pure species |, 2, and 3, and C is a ps
independent of composition. Determine an expression for M, by application of Eq. (11.2).

13.11 For a particular binary system at constant T and P,
Hf =%xA(1-x) (i=12)

Derive expressions for HT and HE. Combine these two equations to show that the original

is recovered. [ Note: HE cannot be found “by inspection:” it is not equal to A,(1 - x,).] CaCl, in 10 mol H0 -7 % 79N |
13.12 For a particular binary system at constant T and P, the molar enthalpies of mixts CaClyin15SmolH;0 . . . . _ . . | -g67.85K
represented by the equation gag:z in 20 mol H;0 e e e e e —BT0.06KkT
H = e by o+ o) Cclinsomato | L L 1 mow

where the @, and b, are constants. Determine an expression for H,. CaClin 100mel LLO . . . . . . | | | 871382k
{Note: H, cannot be found “by inspection™; it is not equal to a, + b;x,.) CaClin300molH0 . . . . . . . . . . —g7479kJ
13.13 At 25°C and atmospheric pressure the excess volumes of binary liquid mixtures of sp CaChin500molH,0 . . . . . | | | | | _g7513K
and 2 are given by the equation ; CaCl,in1L000Omol H,O ~ . . . . . . | | -g75.54k)

- —
VE = x,x,(30x, + 50x,) From these data prepare a plot of AH, the heat of solution at 25°C of CaCl, in water, vs. A, the mole

where ¥% is in cm® mol!. At the same conditions, V, = 120 cm® mol™' and V, = 150 ¢ ratio of water to CaCl,.
Determine the partial molar volumes ¥, and V, for an equimolar mixture of species | and
given conditions.

13.14 Excess volumes (cm® mol™!) for the system ethanol(1)/ methyl butyl ether(2) at 25°C
by the equation

13.24 Solid CaCl,-6H,0 is mixed with water in a continuous process to form a solution coniaining
20-wt-% CaCl,. What is the heat effect per kilogram of solution formed if the temperature is const