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PREFACE 

Because of the availability of high-speed computers the time is fast approaching 
when the engineer will be expected to  be as conversant with/the unsteady state 
solutions to process systems as was expected for the steady state solutions in 
the past. 

In this book a combination of the principles of separation processes, process 
modeling, process control, and numerical methods is used to produce the dyna- 
mic behavior of separation processes. That is, this book "puts it all together." 
The appropriate role of each area is clearly demonstrated by the use of large 
realistic systems. 

The order of presentation of the material was selected to correspond to the 
order of the anticipated difficulty of the numerical methods. Two-point methods 
for solving coupled differential and algebraic equations are applied in Part 1 
while multipoint methods are applied in Part 2, and selected methods for solv- 
ing partial differential equations are applied in Part 3. Also, the presentation of 
the material within each section is in the order of increasing difficulty. This 
order of presentation is easily followed by the student o r  practicing engineer 
who has had either no exposure or little exposure to  the subject. 

Techniques for developing the equations for the description of the models 
are presented, and the models for each process are developed in a careful way 
that is easily followed by one who is not familiar with the given separation 
process. 

In general, the best possible models that are compatible with the data 
commonly available are presented for each of the separation processes. The 
reliability of the proposed models is demonstrated by the use of experimental 
data and field tests. For example, the dynamic behavior predicted by the model 
for the system of evaporators was compared with the observed behavior of the 
system of evaporators at  the Freeport Demonstration Unit. Experimental data 
as well as field tests on the Zollar Gas  Plant for distillation columns, absorbers, 



and batch distillation columns were used for comparison purposes. Experimen- 
tal results were used to make the comparisons for adsorption and freeze-drying. 

The development and testing of the models presented in this book required 
the combined efforts of many people to whom the authors are deeply indebted. 
In particular, the authors appreciate the support, assistance, and encouragement 
given by J. H. Galloway and M. F. Clegg of Exxon; W. E. Vaughn, J. W. Thompson, 
J. D. Dyal, and J. P. Smith of Hunt Oil Company; D. I. Dystra and Charles Grua 
of the Office of Saline Water, U.S. Department of Interior; J. P. Lennox, 
K. S. Campbell, and D. L. Williams of Stearns-Rogers Corporation. Support of 
the research, upon which this book is based, by David L. Rooke, Donald A. 
Rikard, Holmes H. McClure, and Bob A. Weaver (all of Dow Chemical 
Company), and by the National Science Foundation is appreciated. Also, for the 
support provided by the Center for Energy and Mineral Resources and the 
Texas Engineering Experiment Station, the authors are most thankful. The 
authors acknowledge with appreciation the many contributions made by former 
and present graduate students, particularly those by A. A. Bassyoni, J. W. Burdett, 
J. T. Casey, An Feng, S. E. Gallun, A. J. Gonzalez, E. A. Klavetter, Ron 
McDaniel, Gerardo Mijares, P. E. Mommessin, and N. J. Tetlow. 

The authors gratefully acknowledge the many helpful suggestions provided 
by Professors L. D. Durbin, T. W. Fogwell, and R. E. White of the Department 
of Chemical Engineering, Texas A&M University, and 0. K. Crosser, T. W. 
Johnson, and J. M. Marchello of the Department of Chemical Engineering, 
University of Missouri-Rolla. A. I. Liapis thanks especially Professor D. W. T. 
Rippin of E. T. H. Zuuch, who encouraged his investigations in the field of 
separation processes, and stimulated his interest in the application of mathematics. 
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CHAPTER 

ONE 

INTRODUCTION- 
MODELING AND NUMERICAL METHODS 

An in-depth treatment of both the modeling of dynamic separation processes 
and the numerical solution of the corresponding equations is presented in this 
book. 

After the models which describe each of the separation processes at  un- 
steady state operation have been formulated, the corresponding equations de- 
scribing each of these models are solved by a variety of numerical methods, 
such as the two-point implicit method, Michelsen's semi-implicit Runge-Kutta 
method, Gear's method, collocation methods, finite-difference methods, and the 
method of characteristics. The ability t o  solve these equations permits the en- 
gineer to  effect an integrated design of the process and of the instruments 
needed to control it. The two-point implicit method (or simply implicit method) 
is applied in Part 1 ;  Michelsen's semi-implicit Runge-Kutta method and Gear's 
method in Part 2; and the collocation method, finite-difference methods, and 
the method of characteristics are applied in Part 3. T o  demonstrate the applica- 
tion of the numerical methods used in Parts 1 and 2, the use of these methods 
is demonstrated in this chapter by the solution of some relatively simple nu- 
merical examples. The methods used in Part 3 are developed in Chap. 10 and 
their application is also demonstrated by the solution of relatively simple nu- 
merical examples. 

The techniques involved in the formulation of models of processes is best 
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demonstrated by the consideration of p articular processes. A wide variety of  
processes including evaporation, distillation, absorption, adsorption, and freeze- 
drying are considered. Both stagewise processes such as distillation columns 
equipped with plates and continuous processes such as adsorption processes are 
treated. All of these models are based on the following fundamental principles: 

1. Conservation of mass or material balances 
2. Conservation of energy or energy balances 
3. Transfer of mass 

In order to  demonstrate the techniques suggested for the formulation of the 
equations representing the mass and energy balances, several different types of 
systems at  unsteady state operation are presented in Sec. 1-1. These techniques 
are further demonstrated in subsequent 'chapters by the 'development of the 
equations for particular process models. 

In order to  solve the equations describing the model of a given process, a 
variety of numerical methods may be used. Representative of these are the 
methods listed above. An abbreviated presentation of selected methods and 
their characteristics are given in Sec. 1-2. 

1-1 FORMULATION OF THE EQUATIONS FOR 
SELECTED MATERIAL AND ENERGY-BALANCE MODELS 

no  C&.O -' * - ,  - < -  - 
Material Balances 

4 

Let the particular part of the universe under consideratiog be called the system 
and the remainder of the universe the surroundings. A paterial balance for a 
system is based on  the law of conservation of mass. For urposes of application, 
a convenient statement of this lau follows: Except for he conversion of mass to 
energy and conversely, mass can rle~rher be created nor  / destroyed. Consequently, 
for a system in which the conversion of mass to  energy and conversely is not 
involved, it follows that during the time period from t = t ,  to t = t ,  + At, 

Input of material output of material accumulation of 
to  the system from the system material within 

(duu "me 1 - $;;:II time 1 = It he system during 1 
the time period At  

The accumulation term is defined as follows: 

Accumulation of material amount of material amount of 
within the system in the system at  1 - ( material i n t h e  1 
during the time period At system at  time t, 

In the analysis of systems at  unsteady state, the statement of the material 
balance given above is more easily applied when restated in the following form: 
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The contents are oerfecrlv mixed 

(/ = moles of h o l d u ~  !24 

Figure 1-1 Sketch of a perfect mixer 

input of material output of material 
per unit time 1 - (per unit time 

amount of material amount of material 
in the system If"+Al - ( in the system 

To illustrate the formulation of material balances, consider the perfect mixer 
shown in Fig. 1-1, and let it be required to obtain the differential equation 
representing the total material balance at any time t after a n  upset in the feed 
has occurred. Suppose that the upset in the feed occurs at  time t = 0. The 
component-material balance over the time period from t ,  to  t ,  + At is given by 

l . + l f  

.C ( F X ,  - Lx , )  dr = (Ux , )  
- (Ux,) (1-2) 

I "  +  it" 
where F = feed rate. mol,/h (or mass.'h) (note that in the absence of chemical 

reactions, the number of moles is conserved) 
L = product rate, mol/h (or mass/h) 
U = holdup, moles (or mass) 
.xi = moie (or mass) fraction of component i in the mixer a t  any time t 

X, = mole (or mass) fraction of component i in the feed at  any time t 

(In the application of the two-point implicit method, Euler's method, and the 
trapezoidal rule, the numerical method may be applied directly to Eq. (1-2) as 
demonstrated in subsequent chapters.) 

The differential equation corresponding to Eq. (1-2) may be obtained by use 
of the mean-value theorems. First, apply the mean-value theorem of integral 
calculus (App. 1A) to the left-hand side of Eq. (1-2) to  obtain 

(FX, - Lx,) dt = (FX, - Lx,) [ l c n + r n A 1  A' 



4 COMPUTER METHODS FOR SOLVING DYNAMIC SEPARATION PROBLEMS 

FFX, - 1, + m A J ~ l = ~ t n + A '  (FX, - LX,) dr 

Time, r 

Figure 1-2 Geometrical interpretation of the mean-value theorem of integral calculus. 

t 
At time t ,  + f l  AI ,  the slope of the tangent line IS equal 
to that of the secant. Therefore 

Time, I 

Figure 1-3 Geometrical interpretation of the mean-value theorem of differential calculus. 
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where 0 5 u 5 1. The geometrical representation of Eq. (1-3) is that there exists 
a rectangle having the height ( F X ,  - Lxi)lln+,, ,  and the base At which has an 
area exactly equal to that under the curve of ( F X ,  - Lx,) versus t  over the time 
interval from t ,  to t ,  + At;  see Fig. 1-2. 

Application of the mean-value theorem of differential calculus to the right- 
hand side of Eq. (1-2) yields 

where 0 < 8 < 1 .  The geometrical picture of Eq. (1-4) is that there exists a 
tangent line having a slope, d(Uxi)/dt  l ,+bAl ,  which is exactly equal to that of 
the secant line connecting the points at t ,  and t ,  + At on the curve of (Ux,) 
versus t ;  see Fig. 1-3. 

After the right-hand sides of Eqs. (1-3) and (1-4) have been equated and the 
resulting expression divided by At, one obtains 

( F X ,  - Lxi)  

In the limit as At is allowed to go to zero, Eq. (1-5) reduces to 

Since t ,  was arbitrarily selected, Eq. (1-6) holds for all t ,  > 0, and thus the final 
result is 

d(Uxi) ( t  , 0 )  F X ,  - Lx,  = -- 
dl 

( 1  -7) 

Energy Balances 

Energy balances are based on the first law of thermodynamics which asserts 
that the energy of the universe is a constant. Thus, the total amount of energy 
entering minus that leaving a particular part of the universe, called the system, 
must be equal to the accumulation of energy within the system. The following 
formulation of the energy balance is easily applied to systems at unsteady state 
operation: 

input of energy to the output of energy from the 
system per unit time ) - (system per unit time 

amount of energy 

) 1 (amount of energy 
within the system within the system 

In order to account for all of the energy entering and leaving a system, the 
energy equivalents of the net heat absorbed by the system and the net work 
done by the system on the surroundings must be taken into account. Heat and 
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work represent energy in the state of transition between the system and its 
surroundings. A system that has work done on it experiences the conversion of 
mechanical energy to internal energy. In the following analysis, a basis of one 
pound-mass (one Ib,) is selected. Thus, the symbols K E ,  PE, and E denote 
kinetic, potential, and internal energies, respectively, in British thermal units per 
pound-mass of fluid. The total energy possessed by 1 lb, of fluid is denoted by 
E, ,  that is, 

E T = E + K E + P E  (1 -9) 

The enthalpy H  of 1 Ib, of fluid is defined by 

H = E + P v  

where P  = pressure Ibf/ft2, where Ib, means pounds force 
u  = specific volume, ft3/lbm 

In the interest of simplicity, the mechanical equivalent of heat (778 ft Ibf/Btu) 
has been omitted as the divisor of the Pv product in Eq. (1-10) and other 
equations which follow. For convenience, let 

HT = ET + PV (1-11) 

For a flow system at steady state operation (a process in which the variables d o  
not change with respect to time), Eq. (1-8) reduces to the well-known expression 
AH = Q, where no work is done by the system on the surroundings, and where 
the kinetic and potential energy changes are negligible. For an unsteady state 
process, however, the expression for the energy balance is not quite so simple. 
Two types of systems are considered in the following development which are 
characteristic of the systems considered in subsequellt sections. 

Fluids Flowing In Pipes 

In the development which follows, it is supposed that the pipe is flowing full 
and that perfect mixing occurs in the radial direction and that no mixing occurs 
in the axial direction z (see Fig. 1-4). Let zj, z j + l ,  t,, and t ,+,  be arbitrarily 
selected within the time and space domains of interest, that is, 

where AZ = zj+, - zj 
At =t,+,  - t ,  

The energy balance on the element of fluid contained in the volume from zj 
to zj+,  over the time period from t, to t ,+ ,  is formulated in the following 
manner. The energy in the fluid which enters the element of volume at zj per 
unit time is given by 

Input of energy per 
unit time by flow ) = 

" j ,  ' 

7 * 
Figure 1-4 Energy balance on an element of volume from z, to z j + ,  for a flow system 

at any time t (t, 5 t 5 t,,,). The work required to force one pound mass of 
fluid into the element of volume at zj at any time t (c, 5 t 5 t,, ,) is given by 

Work per 
(unit mass) = S,Yp d v l  =,,, = P ~ I ~ , , ,  

Observe that this work, Pv, may vary with time throughout the time period At. 
At any time t 

Rate at which work is done on the 
(element of volume by the entering fluid) = (WP' 1,. (1-14) 

Suppose that heat is transferred continuously from the surroundings to the 
system at each z along the boundary as shown in Fig. 1-4. Let this rate of heat 
transfer be denoted by q [Btu/(h.ft)]. Then at each z (zj 5 z <: zj+,) and any 
t > O  

Heat transferred across the boundary of 
the element of volume per unit time ) = I:'"q dz (1-15) 
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Two cases where the system does work (commonly called shaft work) on the 
surroundings are considered. In the first case, the work is done by the system 
(energy leaves the system) on the surroundings at a point z lying between zj and 
zj+, as shown in Fig. 1-4, and the rate at which work is done is denoted by W 
(ft Ibf/unit time). In the second case, work is done by the system in a continuous 
manner at each point z along the boundary, and the rate at which work is done 
at each point is denoted by -/lr [ft Ibf/(ft unit time)]. In this case, 

Shaft work done by the element of volume) = I:'+' W dz (1-16) 
on the surroundings per unit time 

The integral-difference equation is formulated for the first case, and the final 
result for the second case is readily obtained therefrom. The input terms of Eq. 
(1-8) are as follows: 

Input of energy to 
the element of volume 
over the time period At )= r1  WE^).^, ( M ~ P V ) ~ ~ , ,  + c l q  dz] dt (1-171 

The output terms are 

Output of energy from 
the element of volume 1- lr1 [(wET)l + (wf'v)I + W] dt (1-18) 
over the time period At z j + I , l  ~ , + l .  I 

The accumulation of energy within the element of volume over the time period 
At is given by 

Accumulation of energy within the element 
of volume over the time period Ar 

where p is the mass density (Ib Jft3) of the fluid and S is the cross-sectional area 
of the element of volume as shown in Fig. 1-4. The cross-sectional area S is 
generally independent of z, and it will be considered constant throughout the 
remainder of this development. Since p = l/v, Eq. (1-1 1) may be used to give 

and this expression may be used to restate Eq. (1-19) in the following form: 

Accumulation of energy 

during the time period At 

INTRODUCTION-MODELING AND NUMERICAL METHODS 9 

Through the use of Eq. (1-11) to state the inputs and outputs in terms of H , ,  
the final expression for the energy balance may be restated in the form 

Examination of the second integral on the right-hand side of Eq. (1-22) shows 
that it has the physical significance of being the difference between the amount 
of work required to sweep out the element of volume at times t,+ , and t,. In 
most processes this is negligible relative to the enthalpy differences appearing on 
the right-hand side. 

If the element of volume does shaft work continuously on the surroundings 
at each point z along the boundary, then W in Eq. (1-22) is replaced by the 
expression given by Eq. (1-16). 

Development of the Partial Differential Equation 
Corresponding to the Energy Balance 

Beginning with the following form of the energy balance for the flow of a fluid 
through a pipe 

the corresponding partial differential equation may be obtained by the proper 
application of the mean-value theorems (App. lA, Theorems IA-1 and 1A-2) 
followed by the limiting process wherein Az and At are allowed to go to zero. 
However, in order to apply the mean-value theorem of iiltegral calculus to the 
left-hand side of Eq. (1-23), the integrand must be continuous throughout the 
interval zj < z < zj+,  . If the point at which the system does work W on the 
surroundings is z,, then the integrand has a point of discontinuity at z,, since 
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Thus, if the mean-value theorem is to be applied in any subsequent operation, it 
is necessary to pick the interval (zj < z < zjtl) such that it does not contain z,, 
that is, the interval (zj < z < zj+l) may be either to the left or right of z,. (Note 
that if Z, = zj, the differential equation will fail to exist in the limit as Az goes 
to zero.) Consequently, the equation to be considered is of the same form as Eq. 
(1-23) except that it does not contain W, and it is to be applied over the time 
period from t, to t, + , and over the distance zj- < z < zj- < zk or Z, < zj < 
z < Z j + ] .  

Consider first the left-hand side of Eq. (1-23) (with the point z, excluded) 
and let it be denoted by "L.H.S." Application of the mean-value theorem of 
differential calculus (Theorem LA-1) to the first two terms and the mean-value 
theorem of integral calculus (Theorem 1A-2) to the third term yields 

where 

Since all terms appearing under the integral sign depend upon time alone, the 
mean-value theorem of integral calculus may be applied to Eq. (1-25) to give 

a(wH ) 
L.H.S. = Az At [y + 4 

where (iJ = zj + a,(t,) . Az, t, 

Consider next the right-hand side of Eq. (1-23) and let it be denoted by 
"R.H.S." Application of the mean-value theorem of differential calculus to the 
integrand followed by the application of the mean-value theorem of integral 
calculus to the integral yields 

R.H.S. = Az At --- 
a(p:: s)l@ 

where @ = t,, + P(z,) . At, z, 
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Thus 

In the limit as Az and At are allowed to go to zero in any manner whatsoever, 
Eq. (1-28) reduces to 

where it is understood that zj and t, were arbitrarily selected with the point Z, 

excluded. Since Eq. (1-23) applies over any interval 0 < zj < zj+, < zT which 
may contain z,, it is evident that the set of partial differential equations is a 
subset of the set of integral-difference equations. 

If p and S are independent of time and w is independent of z, Eq. (1-29) 
reduces to 

Since 

it follows that if pressure-volume (Pv) effects as well as potential and kinetic 
energy effects are negligible, then Eq. (1-30) reduces to 

a T  a T 
wc, 7 + q = SC, - 

oz at 
where 

Liquid Flowing Through a Perfect Mixer With An Open Boundary 

For the perfect mixer shown in Fig. 1-5, the energy balance on the fluid con- 
tained in the mixer over the time period from t, to t ,  + At is given by 

(1-34) 
where the subscripts i and o denote the inlet and outlet values of the variables, 
respectively, and M denotes the mass contained in the system at any time t 
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Figure 1-5 Sketch of a variable-mass, variable-energy system with an open boundary. 

( t ,  < t < Note that the rate at which the expanding boundary does work 
on the surroundings is equal to (wi - w,)P, v,. Since 

and H,, = ET,  + P, us, it is possible to restate Eq. (1-34) in the following equiv- 
alent form: 

Use of the mean-value theorems followed by the limiting process whereby At is 
allowed to go to zero yields the following differential equation: 

d ( M H  d(P, 0,) 
w ~ H , ~ - w , H , , + Q -  W = A -  dt dt (1-38) 

In most processes, the second term on the right-hand side of Eq. (1-38) is 
negligible relative to the first term on the right-hand side. 

1-2 SELECTED NUMERICAL METHODS- 
THEIR APPLICATION AND CHARACTERISTICS 

Euler's method, the trapezoidal rule, the two-point implicit method, the fourth- 
order Runge-Kutta method, the semi-implicit Runge-Kutta method, and Gear's 

1 
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method are used to solve a single differential equation. To explain the behavior 
of these methods, a stability analysis is presented. Developments of the Runge- 
Kutta and Gear's methods are presented in Chap. 9. 

Euler's Method 

Consider the differential equation 

for which a solution (a set of sensed pairs ( t ,  y) which satisfy both the initial 
conditions y = yo when t = to  and the differential equation) is sought. The 
initial value of the first derivative is found by substituting to  and yo in the 
differential equation to give 

yb =f ( to ,  Y O )  (1  -40) 

Let the independent variable to be changed be an incremental amount, denoted 
by h(h = At). The step size h may be either preselected or changed during the 
course of the calculation. On the basis of this set of values t o ,  y o ,  and yb,  it is 
desired to predict the value of y at time t ,  ( t ,  = to + h). This value of y is 
denoted by y,. One of the simplest methods for doing this is Euler's method 
which may be thought of as consisting of the first two terms of a Taylor series 
expansion of y, namely, 

This process is continued by substitution of (t , ,  y,)  in the differential equation 
to obtain y;. Then y2 is found by use of Euler's predictor 

Continuation of this process yields the numerical solution in terms of the sensed 
pairs ( t ,  y). Euler's method may be represented as follows: 

Predictor 

Dtfferential equation: 

Y: = f (t,, Y,) (1-42) 

The symbol T,,, denotes the truncation error in the formula for the predictor. 
The truncation error is defined by 

where fit,+ l )  is the correct value of y at time t , , ,  , and y,+, is the predicted 
value of y at time t,, ,. If the predicted value of y at time t , ,  is computed by 

I 
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use of the correct value of y at time t , ,  then the value of T,,,, obtained by use 
of Eq. (1-43) is commonly referred to as the local truncation error. 

Euler's method is classified as a predictor because the value of y, at t,  may 
be used to predict the value of y,+,, the value of y at time t , , , ;  that is, a 
predictor is an explicit expression in y. Euler's method is demonstrated by use 
of the following example: 

Example 1-1 For the perfect mixer shown in Fig. 1-5, obtain a numerical 
solution corresponding to the following conditions. At t = 0, X = 0.9, 
x  = 0.1, U = 50 moles, and for all t ,  F = L = 100 mol/h. For X = 0.9 for all 
t 2 0, find the solution by use of Euler's method at values of h = 0.2, 0.4, 
0.5, and 0.6. 

SOLUTION Since it is given that the holdup U remains constant, Eq. (1-7) 
reduces to 

where the subscript i has been dropped in the interest of simplicity. After 
the numerical values of F, L, X, and U given in the statement of the 
problem have been substituted into Eq. (A), the following result is obtained 

x' = 1.8 - 2x ('3) 

where x' = dxldt. In the notation for the mixer, Euler's predictor becomes 

For h = 0.2 h and x, = 0.1, the differential equation gives 

Then by use of the predictor 
x, = 0.1 + (0.2H1.6) = 0.42 

To compute x,, the process is repeated. First 

X ;  = 1.8 - 2(0.42) = 0.96 

Then 

x, = 0.42 + (0.2)(0.96) = 0.612 

Continuation of this process gives the points displayed in Fig. 1-6 for 
h = 0.2 h. The points shown for other values of h were obtained in the same 
manner as that demonstrated for h = 0.2 h. The numerical solutions are 
shown as broken lines and the analytical solution is represented by the 
smooth curve. The analytical solution is obtained by integration of Eq. (A) 
at constant U ,  F, L, and X to give 

X = X - ( X  - x  0 )  e-Lrl" (Dl 
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0 - A  
0 0.2 0.4 0.6 0.8 1.0  1.2 1.4 1.6 

Time, t, h 

Figure 1-6 Solution of Example 1-1 by use of Euler's method. 

or 

x  = 0.9 - 0.8e-" 

and at t = 0.2 h, x = 0.363 74. 

Another predictor similar to Euler's but more accurate is called the point- 
slope predictor. 

Predictor : 
h3 

Y . + I = Y ~ - I + ~ ~ Y :  ~ + I = ~ Y ! , ~ ' ( C )  - I +  (1-44) 

Since only one point, yn- ,, and the slope, y;, are required to predict y,+ ,, this 
method is sometimes referred to as the point-slope predictor (Ref. 12). 

While this method is more accurate than Euler's for any one time step, it 
has the disadvantage that some scheme is required to initiate the process. Al- 
though the starting yo is known, the value y;, needed in the point-slope predic- 
tor to compute y,, is generally unknown. Since y', may be computed from the 
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differential equation, a starting method reduces to a scheme for finding y,. Two 
methods commonly used to find y ,  are ( 1 )  Euler's method (the first two terms of 
a Taylor's series) and ( 2 )  the first three terms of a Taylor's series. The starting 
procedures are demonstrated by use of Example 1-1 for the case where h = 
0.2 h. When Euler's method is used, the value 

is obtained as shown in the solution of Example 1-1. Next, x2  may be computed 
by the point-slope predictor as follows: 

After the solution procedure has been initiated, the remainder of the calcula- 
tional procedure is analogous to that demonstrated for Euler's method. 

When the first three terms of a Taylor series are used to initiate the process, a 
formula for x('), the second derivative (d2x /d t2 )  is needed. This formula is ob- 
tained from the differential equation. Differentiation of Eq. (B) of Example 1-1 
gives 

x'2' = - 2x' 

Then 

Next the differential equation is used to obtain x; as follows: 

X ;  = 1.8 - 2(0.356) = 1.088 

Application of the point-slope predictor yields 

x ,  = 0.1 + (2)(0.2)(1.088) = 0.5352 

Fourth-order Runge-Kutta Method 

This method, named for its principal authors, Runge and Kutta, was one of the 
earliest methods developed. It is classified as a predictor type because it makes 
use of the value of y, at t ,  to predict y , , ,  at t , , ,  by means of Taylor's series 
expansion of y about t , .  The evaluation of higher-order derivatives is, however, 
not required by the final formulas. Instead, one substitution in the differential 
equation is required for each of the derivatives in the original expansion. For 
expansions of order greater than four, the number of substitutions exceeds the 
order. The fourth-order Runge-Kutta method is developed in a manner anal- 
ogous to that shown in Chap. 9 for the second-order Runge-Kutta method. The 
formula for the fourth-order predictor follows: 

predictor: 
k 1  + 2k, + 2k, + k4 

Y"+l =Y"  + 6 T,+, = O(hS)  

where k ,  = hf ( t , ,  y,) 

This method is sometimes given a separate classification because it differs 
from a conventional predictor in that it contains values of the function at 
intermediate times and positions, say t ,  + h/2, y, + k1 /2 .  The truncation error of 
the fourth-order predictor is of order h5, denoted by O(h5). The following modi- 
fied form of the fourth-order Runge-Kutta method which reduces the storage 
requirement over that required by Eq. (1-45) was proposed by Gill(l0). This 
predictor, called the Runge-Kutta-Gill method follows: 

Predictor: 

where k ,  = hf ( t ,  , y,,) 

The fourth-order Runge-Kutta method (Eq. (1-45)) is applied in essentially 
the same way as that shown for Euler's method. To illustrate, the calculations 
for the first increment for h = 0.2 h for Example 1-1 follow: 



Thus 

x, = 0.1 + CO.32 + (2x0.256) + (2x0.2688) + 0.2125]/6 

Although this value of x, is more accurate than that given by Euler's 
method for h = 0.2 h, the number of computational steps is seen to be equal to 
four times the number required by Euler's method. However, the Runge-Kutta 
method is the more accurate of the two since the truncation of Euler's method 
is proportional to h2 and that of the Runge-Kutta is proportional to hS. 

Semi-Implicit Runge-Kutta Methods 

Although the predictor methods are easily applied, they become unstable for 
large values of h as discussed in a subsequent section. Implicit methods, such as 
the trapezoidal rule discussed below, are more difficult to apply but they tend 
to remain stable at large values of h. However, before considering these implicit 
methods, it is appropriate to present a recent extension of the Runge-Kutta 
methods, called the semi-implicit Runge-Kutta methods. The initial developers 
of the semi-implicit Runge-Kutta methods were Rosenbrock(l3), Calahan(3), 
Allen(l), and Butcher(2). A review of a number of other methods which have 
been proposed has been presented by Seinfeld et a1.(14). The third-order method 
was originally proposed by Caillaud and Padmanabhan(4) and subsequently 
modified by Michelsen(l1). The formula for Michelsen's formulation of this 
method for a system of differential equations follows: 

Y n +  1 = Yn + '1'1 + R2k2 + '3'3 (1-47) 

where k, = h[I - haJ(y,)] - 'f(y,) 

k, = h[I - haJ(y,)]-'f(y, + b2 k,) 

k3 = CI - h a J ( ~ , ) l - ' C b ~ ~ k ~  + b 3 2  k,l 

In the above expressions, J(y,) denotes the jacobian matrix of the functional 
part of each differential equation of the form 

For a single differential equation 

A development of the semi-implicit Runge-Kutta method is given in Chap. 9, 
and by use of the formulas given there the constants were evaluated to four 
significant figures to give 

a = 0.4358 b, = 314 b,, = -0.6302 b,, = -0.2423 
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To demonstrate the application of this method, x ,  is computed for Example 
1-1 for h = 0.2 h. 

= -0,1881 

Thus 

X, = 0.1 + (1.038)(0.2725) + (0.8349)(0.2029) + (-0.1881) = 0.3642 

The parameters listed above were selected such that the method is A stable as 
discussed in Chap. 9. The application of the semi-implicit Runge-Kutta method 
to systems of differential and algebraic equations and the selection of a step size 
in agreement with a specified accuracy are presented in Chap. 6. 

The Trapezoidal Corrector 

The "pure" implicit method commonly known as the trapezoidal rule is con- 
sidered next. The trapezoidal rule is commonly referred to as a corrector. With 
each corrector, a predictor is usually employed and the method is referred to as 
a predictor-corrector method. The predictor is used to obtain the first approxi- 
mation of y when t = t , .  This value of y, denoted by y,, is then used to initiate 
the iterative process between the corrector and the differential equation. Gener- 
ally, predictor-corrector pairs are picked that have truncation errors of approxi- 
mately the same degree in h but with a difference in sign. One of the simplest 
pairs consists of the point-slope predictor and the trapezoidal corrector which 
follows: 

Predictor 

Corrector: 

The first step of the calculational procedure is the use of the predictor to 
compute y2 on the basis of the known value of yo. The value of y;, needed in 
the predictor formula, is found by one of the starting procedures previously 
described for the point-slope predictor. After the procedure has been initiated, 
previously computed values of y,-, and yb are used in the predictor to predict 
y,, ,, and this value of y,,, is then used in the differential equation to compute 
yb+,. This value yb,, is used in the corrector to compute y,,,, which may be 
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further improved by iteration between the corrector and the differential equa- 
tion. For example, suppose it is required to compute x for Example 1-1 by use 
of the above predictor-corrector method. Again as in Example 1-1, x, = 0.1 and 
xb = 1.6. Take x ,  to be equal to 0.356, the value found by use of the first three 
terms of Taylor's series expansion as shown below Eq. (1-44). Then as shown 
there, the differential equation gives 

and the trapezoidal corrector gives 

Substitution of this value of x ,  into the differential equation yields x', = 1.062 
and the next value for x ,  is 

Repeated iteration gives the correct value x ,  = 0.3667. 

- 

- 

- 

- 

(Within the accuracy of the graph, the lines for - 
1, = 0.2 h coincide with the analytic;il solution) 

0 I I I I 1 I I I 

0 0.2 0.4 0.6 0.8 1 . 0  1 . 2  1.4 1.6 
Time. r ,  h 

Figure 1-7 Solution of Example 1-1 by use of the trapezoidal rule. 
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Calculations for the next time step are carried out in the following manner. 
The number x ,  = 0.3667 is used to compute x', by use of the differential equa- 
tion 

The predicted value of x,  for the next time step is found by use of the predictor 

and the corresponding value of x i  is found as follows: 

On the basis of these values, the corrector is used to compute the first trial 
value of x , ,  namely, 

Continued iteration on the corrector gives x, = 0.5445. (In this case, it is pos- 
sible to solve the corrector explicitly for x n + ,  since the differential equation 
X: + , = f (t, + ,, X ,  + ,) is linear in x, + ,.) The behavior of this method for Example 
1-1 is shown in Fig. 1-7. 

Two-Point Implicit Method 

The two-point implicit method (or simply the implicit method) contains an 
adjustable parameter which may be selected such that the method reduces 
either to the Euler predictor or to a corrector. The method may be applied to 
either an integral-difference equation such as Eq. (1-2) or to a differential equa- 
tion. Consider 

f ( L  Y) dt = Yn+l  - Y, (1-52) 

which may be reduced to the differential equation 

When applied to Eq. (1-52), the implicit method consists of approximating the 
integral by use of a weighted value of the integrand based on its values at t , , ,  
and t ,  as follows: 

[ 4 f ( t , + , >  Y . + I )  + (1 - 4 ) f ( t , ,  Y , ) I ~  = Yn.1 - Y, (1-53) 

where 0 5 4 2 1, and the truncation error is given by 
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This formula may be developed as described in Prob. 1-2. Observe that when 
4 = 0 ,  Eq. (1-53) reduces to Euler's predictor and when 4 = $, Eq. (1-53) re- 
duces to the trapezoidal corrector. 

For 4 = 0.6 and h  = 0.2 h, application of the implicit method to Eq. (1-2), 
the integral-difference form of Eq. (A)  of Example 1-1 yields 

For x, ,  , = x ,  and x, = x,, this equation may be solved for x ,  at x ,  = 0.1 and 
h  = 0.2 to give 

x ,  = 0.3581 

Gear's Predictor-Corrector Methods (Refs. 8, 9) 

Gear's predictor-corrector methods consist of multipoint methods which are 
developed in Chap. 9. The corrector is implicit in that it contains the derivative 
of the variable to be evaluated at the end of the time step under consideration. 
However, instead of carrying the customary variables 

for a kth-order Gear method, the corresponding terms of the Taylor series are 
carried in a vector called the Nordsieck vector, Z,, where 

The predicted values of the variables are carried in the vector, z,, where 

The algorithm is applied as follows: 

Step I On the basis of the most recent set of values of the variables for the 
last time step, Z , - , ,  the predicted values for the next time step are found as 
follows: 

z,, = D Z ,  - (1-58) 

where D  is the Pascal triangle matrix, and for a third-order Gear method 
(k = 3) 

The nonzero element d i + , ,  j + ,  in the (j + 1)st column and (i + 1)st row of the 
pascal triangle matrix is given by 

j !  
di+ 1. j +  1 = --- 

(j - i ) !  i !  

Step 2 Use the first two elements of Z, to determine the b  that makes 

G(Y,,  Y : , ,  t,) = 0 

where 

G(Y,,  Y : ,  t,) = hf (j,, + B -  I b, t,) - (hi:  + 6 )  

Y . = F , + B - l b  

hy: = h x  + b 

Step 3 Compute the value of Z, at time t ,  as follows: 

Z, = Z, + bL 

and return to step 1 .  

The values of /L ,, for algorithms of order k = 1 ,  2, 3, . . . , 6 ,  are 1 ,  213, 6/11, 
12/25, 601137, and 601147. The values of the elements of L for algorithms of 
order k = 1 ,  2, . . . , 6 are presented in Table 9-3 of Chapter 9 .  

Example 1-2 To illustrate the application of Gear's method, let it be re- 
quired to find x ,  at t ,  = 0.2 h (or h = 0.2) and x, = 0.1 for Example 1-1 by 
use of Gear's second-order method. 

SOLUTION 

X ;  = 1.8 - 2x0 = 1.8 - 2(0.1) = 1.6 

= d(1.8 - 2x) dx  
- = - 2x' 

dx dt 

x(2) 0 = ( -211.6)  = -3.2 

For Gear's second-order method, / I - ,  = 213 and L = 1213, 313, 1/3IT; see 
Tables 9-1 and 9-3. The elements of Z, are x, = 0.1 and 
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Step 1 

Step 2 

G(x, ,  x',, t , )  = (0.2) 1.8 - 2 0.356 + - - (0.192 + b) [ ( 31 
The b that makes G = 0 is 

b = 0.0202 

Step 3 

- 0.064 -0.0573 

Thus, 

x ,  = 0.369 

The simultaneous change of the order and step size is described in Chap. 6. 
Also presented is the application of Gear's method to the solution of systems 
composed of both differential and algebraic equations. 

1-3 STABILITY OF NUMERICAL METHODS 

Even when the truncation and roundoff errors are negligible, numerical methods 
are subject to instabilities which cause the error [y(tn+,) - y,+,] to become 
unbounded as the number of time steps is increased without bound. Symbols 
y,, , and y(tn+ ,) are used to denote the calculated and the exact values of the 
variables at time t,, , , respectively. 

These instabilities arise because the solutions of equations for the numerical 
methods differ from those of the differential equations which they are used to 
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approximate. Numerical methods are difference equations which have solutions 
of the form Cpn, where C is an arbitrary constant, n the number of time steps, 
and p is a root of the reduced equation. Numerical methods are used to ap- 
proximate the solution of differential equations which generally have solutions 
of the form Cepr. 

Instabilities of numerical methods arise from two causes: (1) the difference 
in forms of the solutions of the numerical method and the differential equation, 
and (2) the use of numerical methods characterized by second- and higher- 
difference equations to represent the solution of a first-order differential equa- 
tion. 

Stability of Numerical Methods 
Characterized by First-Order Difference Equations 

In this case a first-order numerical method is used to represent a first-order 
differential equation. Consider first the use of Euler's method 

for the integration of the linear differential equation with the constant coef- 
ficient 2. 

Instead of considering specific differential equations such as the one for Exam- 
ple 1-1, it has become customary to investigate the behavior of various integra- 
tion techniques through the use of Eq. (1-60) whose solution is given by 

For y(0) finite and 2. < 0, it is evident that 

lim y(t) = 0 
1-;O 

When Euler's method is used to integrate Eq. (1-60), one obtains the follow- 
ing difference equation 

Assume a trial solution of the form yn = Cpn. Substitution of the trial solution 
into Eq. (1-63) yields 

Thus, p = 1 + Ah, and the solution is of the form 
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In order for the numerical method to remain stable as n increases without 
bound 

lim yn = 0 (1-66) 
n- m 

it is necessary that I 1 + Ah) < 1. Thus it is necessary that 

where h is of course greater than zero. 
Any method which has a finite general stability boundary is said to be 

conditionally stable. Thus, Euler's method is conditionally stable, that is, 

( p(hR) 1 I 1 for 1 h?, 1 < 2 (1-68) 

In general, explicit methods are conditionally stable. Although such methods are 
very easy to use, they may become uneconomical because of the necessity to use 
small step sizes in order to maintain stability. 

The Trapezoidal Rule 

When Eq. (1-60) is integrated by use of the trapezoidal rule 

one obtains the following difference equation for any one time step: 

Substitution of the trial solution, y, = Cp", into Eq. (1-70) yields the following 
result upon solving for p: 

Thus, the solution is 

In order for the trapezoidal rule to remain stable as the number of time steps is 
increased indefinitely (Eq. (1-66)), it is necessary that 

1' < 0 

A numerical method is called absolutely stable or A stable if 

Ip(hd)l < 1 -a2 <A <O (1-73) 
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A method is said to be strongly A stable if 

lim I p(hl) I = 0 
h l - m  

Thus, the trapezoidal rule is A stable but not strongly A stable. 
Relatively few methods can be classified as A stable. Dahlquist(6,7) has 

proved two important theorems pertaining to A stability. First, he showed that 
an explicit k step method cannot be A stable. Secondly, he showed that the 
order of an A stable linear method cannot exceed 2, and that the trapezoidal 
rule has the smallest truncation error of these second-order methods. 

Stability of Multistep Methods 

Multistep methods are characterized by second-, third-, and higher-order differ- 
ence equations which give rise to multiple roots while the reduced equation of 
the corresponding differential equation has only one root. Since one root of the 
difference equation can be generally identified as representing the differential 
equation, the remaining extraneous roots may lead to instabilities. 

To illustrate the occurrence of an extraneous root, suppose that the simple 
point-slope predictor 

Yn+l  = Y,-1 + 2hyb (1-75) 

is used to integrate Eq. (1-60). The corresponding difference equation is 

Yn+1 - ~ ~ ) - Y , - Y " - I  = O  (1-76) 

which is readily solved by assuming a solution of the form y, = Cp" to give 

1 - 2hj-p" - pn-1 = 0 (1-77) 

Thus, the solution of Eq. (1-76) is 

Y" = Cl  P; + C ,  P; 

where 

p, = hi. + Jm 
p2 = h). - Jm 

The solution of the difference equation is now compared with the exact solution 
of the differential equation. Recall that for 1 < 0 and y(0) finite, the exact 
solution to the differentia1 equation has the property that fit) approaches zero 
as t approaches infinity; see Eqs. (1-61) and (1-62). For 1 < 0, 0 < p,  < 1, and 
I p2 1 > 1 for all h > 0. Thus, the second root p, leads to instability and y,  is 
unbounded for all h > 0 as n approaches infinity. The first root, p , ,  called the 
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principal root, is the root which makes it possible to represent the solution of 
the differential equation by the solution of the difference equation. Although C ,  
may be set equal to zero to eliminate the effect of the extraneous root p, on the 
analytical solution of the difference equation, the behavior of the numerical 
method in the integration of the differential equation is determined by both the 
principal root and the extraneous root. As a consequence of the extraneous 
root, the method will eventually fail regardless of how small h (h > 0) is made 
because in the limit as the number of time steps n is increased indefinitely, y, 
becomes unbounded. This result is obtained by taking the limit of Eq. (1-78) as 
n approaches infinity. 

Instead of only one extraneous root, multistep methods are characterized by 
numerous extraneous roots. The general expression for any linear multistep 
method is 

where (a,) and (Pi) are constants for any given numerical method, and all of 
the points are, of course, equidistant, t ,  = to  + nh. 

When the numerical integration of Eq. (1-60), with the initial condition 
y(0) = 1, is effected with Eq. (I-79), one obtains 

After a solution of the form y, = Cpn has been assumed, Eq. (1-80) is readily 
reduced to 

which is seen to be a polynomial of degree k in p. The solution of this difference 
equation is given by 

y, = C,p; + C,p; + . . .  + C k p n  (1-82) 

Thus, the difference equation has one principal root which corresponds to the 
solution of the differential equation (Eq. (1-60)) and k - 1 extraneous roots. If 
(piI  < 1 for each of the k roots of Eq. (1-81), it is evident that 

lim y, = lim (Clp; + C,p; + ...  + Ckp:) = 0 (1-83) 
n - ; a  n-m 

A multistep method is called A stable if 

and relatively stable if 
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The terms absolutely stable and A stable are used interchangeably. If the second 
condition is satisfied, then any errors introduced into the computations will 
decay as n increases; whereas, if any of the extraneous roots pi are greater than 
unity in magnitude, the errors will grow as n increases. Methods which satisfy 
the condition given by Eq. (1-85) are also called strongly stable, and a method 
whose stability depends upon the sign of 1 is sometimes called weakly unstable. 
Note, the definitions given by Eqs. (1-84) and (1-85) are frequently stated to 
include lpil = 1, in which case the zero on the right-hand side of Eq. (1-83) is 
replaced by a finite constant. 

Any method which has an infinite general stability boundary is said to be 
unconditionally stable, or A stable. Thus, in a multistep method represented by 
Eq. (1-82), y, tends to zero as n approaches infinity where h > 0 and 111 < 0 or 
I Re (1) I < 0. 

Seinfeld et a1.(14) have shown that in the case of systems of coupled linear 
differential equations it is sufficient, in the examination of a multistep numer- 
ical method, to consider the method as applied to the single scalar equation 
JJ' = ,ti y, where iLi takes on the values of the eigenvalues of each of the dif- 
ferential equations. 

However, at this time no general theory of the stability of linear multistep 
methods applied to nonlinear differential equations exists. 

Stability of Numerical Methods 
in the Integration of Stiff Differential Equations 
Quite often systems are encountered with widely different time constants, which 
give rise to both long-term and short-term effects. The corresponding ordinary 
differential equations have widely different eigenvalues. Differential equations 
of this type have come to be called stlff systems. Use of the explicit Runge- 
Kutta methods or other explicit methods in the numerical integration of these 
equations results in instability and excessive computation time. For example, 
suppose the eigenvalues are i., and i,,, where i., < iL2 < 0. The most rapidly 
decaying component, or the stiff component, corresponds to the larger eigen- 
value in absolute value i., , and this eigenvalue determines the step size to be 
used in the integration. That is, in order to ensure numerical stability, the stiff 
component requires the use of small step sizes. Since one is usually interested in 
the nonstiff component of the solution, the use of very small step sizes consumes 
too much computer time to be of any practical value. 

In general, most all of the explicit methods are neither A stable nor strongly 
A stable. Consequently, they are completely unsuitable for solving systems of 
stiff differential equations. The implicit and semi-implicit methods are suitable 
for solving systems of stiff differential equations. 

Of the large number of semi-implicit methods reported in the literature 
(Refs. 1, 2, 12, 13), the three most widely used are the semi-implicit Runge- 
Kutta methods proposed by Rosenbrock(l3), Caillaud and Padmanabhan(4) 
and Michelsen(l1). One of the principal competitors of the semi-implicit Runge- 
Kutta methods is Gear's method (Ref. 8). 



An alternate to requiring A stability was proposed by Gear(8). It was sug- 
gested that stability was not necessary for values of h l  close to the imaginary 
axis but not close to the origin. These correspond to oscillating components 
that will continue to be excited in nonlinear problems. Methods that were 
stable for all values h l  to the left of Re (hl) = - D, where D was some positive 
constant and accurate close to the origin, were said to be st$Jy stable (Ref. 9). 
The multistep methods of Gear were shown to be stiffly stable for orders k 1 6  
(Ref. 9). 

NOTATION 

D = Pascal triangle matrix; see Eq. (1-58) 
E  = internal energy per unit mass (or per mole) of material 
ET = total energy per unit mass (or per mole) of material; 

E T = E + K E + P E  
E,, = total energy per unit mass (or per mole) of material in 

the system at any given time 
F = flow rate of the feed in pounds-mass per hour (Ib Jh) 

(or moles per hour) 
h = incremental change of the independent variable t, 

h = t,, , - t ,  = At ;  herein h is taken to be positive 
H  = enthalpy per unit mass (or per mole) of material; H = E  + Pv 
H ,  = total enthalpy per unit mass (or per mole) of material; 

H T  = E ,  + Pv 
I = identity matrix 
J = jacobian matrix; see Eq. (1-49) for the applications 

of this chapter 
K E  = kinetic energy per unit mass (or per mole) of material 
lb, = pound-force 
lb, = pound-mass 
L = flow rate, Ib Jh (or mol/h) 
L = column vector appearing in Gear's method 
M = total mass of system at any time t 
P = pressure, lb, (pounds-force) per unit area 
P E  = potential energy per unit mass (or per mole) of material 

q = rate of heat transfer (energy per unit time per unit length) 

Q = rate of heat transfer from the surroundings to the system 
(energy per unit time) 

S = cross-sectional area 
t = independent variable; t, = a particular value of t ,  the 

value of t at the end of the nth time increment 
At = incremental change of the independent variable; also denoted 

by h;  t , , ,  = t ,  + At = t,, + h 
T,, , = truncation error in the value of y , ,  , 
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U = holdup, Ib, (pound-mass) or moles 
v = volume per unit mass (or per mole) of material 
w = mass flow rate 
W = shaft work done by the system on the surroundings per 

unit time 
%f = shaft work done by the system on the surroundings per 

unit time per unit length of boundary 
= the dependent variable in the description of the methods 

of numerical analysis 
y(n)(t) = d"y/dtn 
yl(t) =dy/dt 
y, = calculated value of the variable y at time t ,  
y(t,) = correct value of the variable y at time t ,  
Xi = mole fraction of component i in the feed 
Y = a vector defined by Eq. (1-55) 
Z = a vector defined by Eq. (1-56) 

= a vector defined by Eq. (1-57) 

Subscripts 

i = component number; also inlet value of the variable 
o = outlet value of the variable 

Greek letters 

a = constant 
f i  = constant 
p = mass density, mass per unit volume 
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PROBLEMS 

1-1 Develop the formula for the point-slope predictor. It may be assumed that f i t )  is continuous 
and has continuous first, second, and third derivatives. 

Hint:  Begin by expanding f i t )  in a Taylor series expansion over the interval from t ,  to r ,  + h. 

h2 h3 
~ ( t ,  + h) = fit.) + hy'(t.) + - y"'(t.) + 5 ~ ' ~ ' ( 5 )  (t,, < < t m +  1) 

2 ! 

Next expand f i t )  by a Taylor series over the interval from t ,  to t ,  - h. 

1-2 Obtain the expression given in Eq. (1-54) for the truncation error A t n + , )  - y n + ,  for the two- 
point implicit method. 

Hint:  Expand f i t , , , )  and y ; , ,  in a Taylor series. Also note that the implicit method may be 
stated in the form 

Y.+1 = y , + h l y ,  +&Y:,. ,  - y , ) l  

and that the truncation error [ f i r o + , )  - y,,, , ]  is computed with respect to a correct point [ f i t , ) ,  t,] 
on the correct curve, that is, 

Y. = At,) ,  y:, = y'(t,), . . ., yi3' = ~ ' ~ ' ( t , )  

1-3 ( a )  Repeat Example 1-1 with h = 2. 
(b) Show that the unstable behavior obtained should be expected 
Hint: see Eq. (1-67). 

APPENDIX 1A-1 THEOREMS 

DEFINITION 1A-1 

Continuity of f ( x )  at x ,  The function f ( x )  is said to  be continuous at  the point 
x if, for every positive number E,  there exists a 6, depending upon E such that 
for all x of the domain for which 

then 

DEFINITION 1A-2 

Continuity of f ( x )  in an interval A function which is continuous a t  each point in 
a n  interval is said to  be continuous in the interval. 
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THEOREM 1A-1 

Mean-value theorem of differential calculus If the function f ( x )  is continuous in 
the interval a I x I: b and differentiable at  every point in the interval a < x < b, 
then there exists a t  least one value of such that 

where 0 < 5 < 1 .  

THEOREM 1A-2 

Mean-value theorem of integral calculus If the function f  ( x )  is continuous in the 
interval a < x I b, then 

l*f (4 dx = f (5Xb - a )  

where a I: 5 5 b. 

THEOREM 1A-3 

Generalized theorem of integral calculus If f ( x )  and p(x) are continuous func- 
tions in the interval a I x I b, and p(x) 2 0, then 

where a j < j b. 

THEOREM 1A-4 

If the function f ( x )  is continuous in the interval a I x 5 b and f ( z )  5 k 5 f (b ) ,  
then there exists a number c in the interval a < c < h such that 

f (4 = k 

THEOREM 1A-5 

Taylor's theorem If the functions f  (x) ,  f  '(x),  . . . , f (")(x)  are continuous for each x 
in the interval a I x I b, and f'"+"(x) exists for each x in the interval 
a < x < b, then there exists a 5 in the interval a < x < b such that 

hZ h3 h" f ( a  + h) = f  (a )  + hf '(a) + - f  "'(a) + - f  (3'(a) + . . . + - f ("'(a) + R, 
2! 3! n! 
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where h = b - a, and the remainder R, is given by the formula 

DEFINITION 1A-3 

A function f ( x , ,  x , ,  .. . , x,) of n variables x l  , x , ,  . . ., x ,  is said to be homoge- 
neous of degree m if the function is multiplied by ?." when the arguments x , ,  
x , ,  .. ., x,  are replaced by Ax, ,  Ax,, . . ., Ax,, respectively. That is, if f ( x l ,  x , ,  
. . . , x,) is homogeneous of degree m, then 

f  (?.xl ,  ?'x,, . . . , AX") = Amf ( x l  , X2,  . . . , x,) 

THEOREM 1A-6 

Euler's theorem If the function f  ( x ,  , x , ,  . . . , x,) is homogeneous of degree m 
and has continuous first partial derivatives, then 

af af af x ,  -+ x , - + . . .  + x , - = m f ( x , ,  x , ,  ..., x,) a x ,  ax ,  ax ,  
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CHAPTER 

TWO 

INTRODUCTION TO THE 
DYNAMIC BEHAVIOR OF 

EVAPORATOR SYSTEMS 

Evaporation, one of the oldest of the unit operation processes, is commonly used to 
separate a nonvolatile solute from a volatile solvent. Since energy is transferred 
in an evaporator from a condensing vapor to a boiling liquid, evaporation may 
be regarded as a special case of the unit operation called heat transfer. On the 
other hand, evaporation may be regarded as a special case of the unit operation 
called distillation because a solvent is separated from a solute by virtue of the 
differences in their vapor pressures. 

First the fundamental principles of evaporation are reviewed in Sec. 2-1. 
Then the equations required to describe an evaporator system at unsteady state 
operation are developed in Sec. 2-2. In Sec. 2-3, the two-point form of the 
implicit method is used to solve a numerical problem involving a single-effect 
evaporator. Numerical techniques such as Broyden's method and scaling pro- 
cedures are also presented in Sec. 2-3. 

2-1 FUNDAMENTAL PRINCIPLES OF EVAPORATION 

Evaporators are commonly used for the special separation process wherein a 
volatile solvent is separated from a nonvolatile solute. Evaporators are com- 
monly found in the inorganic, organic, paper, and sugar industries. Typical 
applications include the concentration of sodium hydroxide, brine, organic col- 
loids, and fruit juices. Generally, the solvent is water. 



Mode of Operation and Definitions 

Three commercially available evaporators shown in Figs. 2-1, 2-2, and 2-3 are 
described briefly. 

In the Swenson single-effect, long-tube vertical (LTV) rising-film evaporator 
shown in Fig. 2-1, evaporation occurs primarily inside the tubes, so it is used 
primarily to concentrate nonsalting liquors. As shown, the liquor is introduced 
at the bottom of the liquor chamber, is heated and partially vaporized as it 
climbs up through the tubes, and attains its maximum velocity at the tube exit. 
The outlet mixture impinges upon a deflector where gross, initial separation of 
the liquor and vapor occurs. Additional vapor is separated from the liquid by 
gravity as the vapor rises through the vapor body. 

Centrifugal-type 
entrainment separator 

Noncondensable g a s a  

... - , , Drains water hox 

Vertlcal heat - 
exchanger 

llquor outlet 

liauor chamber I m e  

Figure 2-1 Swenson LTV rising-film evaporator with vertical-tube surface condenser. (Courtesy 
Swenson Division, Whiting Corporation.) 

Top liquor - 
chamber 

Steam inlet - 

Condensate - 
outlet 

Bottom l~quor 
chamber 
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Feed inlet 

.1 
m- Dtstrihution 

device 

I Tubes 

Swenson 
- Vertical direct-contact 

heat exchanger cnn,~,,n~or 

Noncondensahlc 
gases 

entrainment 

I 

Noncondenuhlc gaser 
to vacuum equipment 

Water lrilet 

L -- - - Concentrated l~quor out 

Figure 2-2 Swenson LTV fall~ng-film evaporator (Courtesy Swenson Dlvlsron, Whrtrng Corporatron ) 

The Swenson single-effect, LTV falling-film evaporator shown in Fig. 2-2 
has a separate vaporizer and heat exchanger. Liquor is fed into the top liquor 
chamber of the heat exchanger where it is distributed to each tube. The liquor 
accelerates in velocity as it descends inside the tubes. Liquid is separated from 
the vapor in the bottom liquor chamber and with a skirt-type bame in the 
vapor body. 

In the forced-circulation evaporator shown in Fig. 2-3, liquor is pumped 
through the tubes to minimize tube scaling or salting when precipitates are 
formed during evaporation. The Swenson forced-circulation evaporator shown 
in Fig. 2-3 has a submerged feed inlet, a single-pass vertical heat exchanger, an 
elutriating leg, a cyclone, and a barometric condenser. 
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Swenson top mounted 
d~rcct-contdct -- NonconJen\dh\c 

- - Noncondensahle g,l\es 
from hedt cxchdnger 

- - Vdpor body 

------- -_ -_ _ Feed l~quor 

, Support hrdcket 

Swenaon patented - 
rlurry Inlet deblce 

Flutrl,~tlng leg-- Nonconden\nhlc 

Condcn\,itc <)ut l~t  

Ax~al fluu 
~lrculdtlng pump 

Figure 2-3 Swenson forced-circulation, submerged-inlet, vertical-tube evaporator. (Courtesy Swenson 
Division, Whiting Corporation.) 

In single-eflect operation, as the name implies, only one evaporator is em- 
ployed. The feed upon entering this effect must be heated to the boiling point 
temperature of the effect at the operating pressure. Then the solvent, generally 
water, is evaporated and removed as a vapor. (Since water is the most common 
solvent, it is for definiteness regarded as the solvent in the development of the 

' 
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equations. The final equations apply, however, for any solvent.) To evaporate 
one pound of water from, say, a sodium hydroxide solution, about 1200 Btu are 
needed, and this requires more than one pound of steam. The concentrated 
solution withdrawn from the evaporator is known as the thick liquor or process 
liquid. 

In multiple-efect operation, several evaporators are connected in series. The 
vapor or steam produced in the first effect is introduced to the steam chest of 
the second effect and thus becomes the heating medium for the second effect. 
Similarly, the vapor from the second effect becomes the steam for the third 
effect. In the case of series operation with forward feed, depicted in Fig. 2-4, the 
thick liquor leaving the first effect becomes the feed for the second effect. For 
each effect added to the system, approximately one additional pound of solvent 
is evaporated per pound of steam fed to the first effect. This increase in the 
pounds of solvent evaporated per pound of steam fed is achieved at the expense 
of the additional capital outlay required for the additional effects. 

To provide the temperature potential required for heat transfer to occur in 
each effect, it is necessary that each effect be operated at a successively lower 
pressure. The operating pressure of the last effect is determined by the con- 
densing capacity of the condenser following this effect. The pressure distribution 
throughout the remainder of the system is determined by the design specifi- 
cations for the system. The term evaporator system is used to mean either one 
evaporator or any number of evaporators that are connected in some prescribed 
manner. Unless otherwise noted, it will be supposed that the evaporators are 
connected in series with forward feed. 

Figure 2-4 A triple-effect evaporator system with forward feed. The temperature distribution shown 
is for a system with negligible boiling point elevations. 



To describe evaporator operation the three terms, capacity, economy, and 
steam consumption are commonly employed. By capacity of the evaporator 
system is meant the number of pounds of solvent evaporated per hour. The 
economy of an evaporator system is the total number of pounds of solvent 
vaporized per pound of steam fed to the system per hour. Note that the econ- 
omy is the ratio of capacity to steam consumption. 

If a true state of equilibrium existed between the vapor and the liquid 
phases in an evaporator, then the temperature and pressure in each phase 
would be equal and the temperature would be called the boiling point tem- 
perature of the evaporator. However, in an actual evaporator, the temperature 
of the vapor and liquid streams leaving an evaporator may be measurably 
different from each other and from other temperatures measured within the 
evaporator. Thus, the boiling point of an evaporator is commonly taken to be 
the boiling point temperature of the thick liquor (leaving the evaporator) at the 
pressure in the vapor space within the evaporator. Because of the effect of 
hydrostatic head, the pressure-and consequently the corresponding boiling 
point of the liquid at the bottom of the liquid holdup within an evaporator-is 
greater than it is at the surface of the liquid. However, because of the turbulent 
motion of the liquid within an evaporator, there exists no precise quantitative 
method in the analysis of evaporator operation for taking into account the 
effect of hydrostatic head. 

Generally, the pure vapor above a solution is superheated because at a 
given pressure it condenses at a temperature below the boiling point tem- 
perature of the solution. The difference between the boiling point temperature of 
the solution and the condensation temperature of the vapor at the pressure of 
the vapor space is called the boiling point elevation of the effect. That an ele- 
vation of boiling point should be expected follows immediately by consideration 
of the equilibrium relationship between the two phases. 

Equilibrium Relationships 
As enumerated by Denbigh(6) the necessary conditions for a state of equilibrium 
to exist between a vapor and liquid phase of a multicomponent mixture are as 
follows: 

p v  = pL 

where the superscripts V and L refer to the vapor and liquid phases, respec- 
tively, and where 

f r  = f r(P, T, {y,}), the fugacity of component i in the vapor phase of a 
mixture at the temperature T and pressure P of the mixture 

f; =fL(p, T, {xi}), the fugacity of component i in the liquid phase at the 
temperature T and pressure P of the mixture 

T", TL = temperature of the vapor and liquid phases, respectively 
P", pL  = pressure of the vapor and liquid phases, respectively 
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The fugacity of any component i in a vapor mixture may be expressed in terms 
of the fugacity of the pure component at the same temperature T and total 
pressure P of the mixture as follows: 

where f = fugacity of pure component i at the total pressure P and tem- 
perature T of the mixture 

yi = mole fraction of component i in the vapor phase 
= yr(P, T, {y,)), the activity coefficient of component i in the vapor 

phase 
Similarly, for the fugacity f ,L of component i in the liquid phase, 

f̂ ; = Y;f ,LXi (2-3) 
where f "f ;(P, T) 

Y" Y,L(P, T ,  {xi)) 

and xi is the mole fraction of component i in the liquid phase. Use of Eqs. (2-2) 
and (2-3) permit Eq. (2-1) to be restated in the following form: 

Next consider the distribution of the solvent such as water between the 
vapor phase and a liquid phase such as a sodium hydroxide solution at reason- 
ably low temperatures and pressures. Since the sodium hydroxide is nonvolatile, 
the mole fraction of water vapor in the vapor phase is equal to unity (yso,, = l), 
and since the vapor phase consists of a pure component, water vapor, yL,, = 1. 
At reasonably low pressures, the volumetric behavior of the vapor approaches 
that of a perfect gas and its fugacity is equal to the pressure (f:,, = P). The 
fugacity of the solvent in the liquid phase at the pressure P and temperature T 
may be expressed in terms of its value at its vapor pressure P,,,, at the tem- 
perature T as follows: 

The final approximation is based on the assumption that the water vapor 
behaves as a perfect gas at the temperature T. Thus, Eq. (2-4) reduces to 

A treatment of the thermodynamics of multicomponent mixtures is presented in 
Ref. 11. 

The expressions for the Diihring lines are determined experimentally. Their 
existence may be deduced as follows. For any given pressure P, there is a 
temperature T such that the vapor pressure of the pure solvent is equal to the 
total pressure P, that is, there exists a T such that for solvent, 

For a liquid mixture having a solvent mole fraction x,,,,, there exists a temper- 
ature Y such that the mixture will exert a pressure P equal to the vapor 
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pressure P,,,, of the pure solvent at the temperature T, that is, 

p = YklV(P, 9 ,  xsolv) . PS,I,(~) . Xsol, (2-8) 

Thus, it is seen that for every P and xsOl,, there exists corresponding values of T 
and Y which satisfy the above expressions. 

Boiling temperature of water. "F 

Figure 2-5 Diihring lines for solutions of sodium hydroxide in water. (W. L. McCabe, "The 
Enthalpy Concentration Chart-A Useful Device for Chemical Engineering Calculations," Trans. Am. 
Inst. Chem. Engrs., uol. 31, p. 129 (1935), Courtesy American Institute of Chemical Engineers.) 
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In view of the fact that the mole fraction of the solvent in the solution 
decreases as the mole fraction of the solute is increased 

it follows that at a given pressure P, the vapor pressure PsoIv (or more precisely 
the product y~,vP,o,,) is generally an increasing function of temperature, the 
total pressure P may be maintained constant as the concentration of the solute 
is increased by increasing the temperature F of the solution. This property of 
solutions containing dissolved nonvolatile solutes gives rise to the term boiling 
point elevation. The boiling point temperatures of many aqueous solutions con- 
taining dissolved solids follow the Diihring rule in that the boiling point tem- 
perature 9 of the solution is a linear function of the boiling point temperature 
T of pure water, that is, 

It is customary to express x in Eq. (2-10) in terms of the mass fraction of the 
solute. When the straight-line relationship given by Eq. (2-10) is followed, the 
solution is said to obey the Diihring rule. 

A typical Diihring plot for sodium hydroxide is shown in Fig. 2-5. The data 
were taken from the work of Gerlack(8). Observe that each concentration of 
dissolved solute yields a separate Diihring curve which is approximated with 
good accuracy by the straight line given by Eq. (2-10). 

Reduction of the Rate of Heat Transfer by Boiling Point Elevation 

As discussed above, the presence of the solute gives rise to an elevation in the 
boiling point by ( 9  - T).  The effect of boiling-point elevation on the rate of 
heat transfer is demonstrated as follows. If there were no boiling point eleva- 
tion, then the rate of heat transfer Q (Btu/h) in a single-effect evaporator oper- 
ating at the total pressure P would be given by 

With boiling point elevation. the rate of heat transfer becomes 

Since 6 > T, the rate of heat transfer is decreased by a decrease in the temper- 
ature potential for heat transfer of an amount equal to the boiling point elev- 
ation, namely, 

In multiple-effect evaporator systems in which the evaporators are connected in 
series, the boiling point elevations of the individual effects are cumulative. This 
characteristic is a significant factor in the determination of the optimum number 
of effects for a given system. 



2-2 DYNAMIC BEHAVIOR OF 
A SINGLE-EFFECT EVAPORATOR 

The treatment of a system of evaporators at unsteady state operation is ini- 
tiated by the formulation of the dynamic model for a single-effect evaporator 
for which the boiling point elevation is not negligible. By use of this evaporator 
example and a system of such evaporators, the role of inherited error in the 
solution of unsteady state problems of this type is demonstrated. 

The mixture to be separated consists of a liquid mixture of a volatile 
solvent and a nonvolatile solute. The system of equations that describe a system 
of evaporators at unsteady state operation contains several integral-difference 
equations which are formulated below. 

Formulation of the Equations of the Dynamic Model 
for a Single-Effect Evaporator 

The equations describing the dynamic model of a single-effect evaporator are 
formulated on the basis of the following suppositions: 

1. The process liquid in the holdup of the evaporator is perfectly mixed. 
2. The mass of solvent in the vapor space is negligible relative to the mass of 

holdup of thick liquor in the evaporator. 
3. The mass of steam in the steam chest is negligible relative to the other terms 

that appear in the energy balance for this portion of the system. 
4. The holdup of energy by the walls of the metal tubes is negligible. 
5. Heat losses to the surroundings are negligible. 

For definiteness, suppose that at time t = 0, the evaporator is at steady state 
operation, and that at time t = 0 + ,  an upset in some operating variable, say 
the composition X of the feed, occurs. The material and energy balances as well 
as the rate expressions follow. A total material balance on the thick liquor has 
the following form: 

(F - V, - Ll)  dt = A, - A1 (2- 14) 

where all symbols are defined in the Notation. From this integral-difference 
equation as well as those which follow, the corresponding differential equations 
are obtained through the use of the mean-value theorems of differential and 
integral calculus followed by appropriate limiting processes. The left-hand side 
of Eq. (2-14) may be restated in the following form through the use of the 
Mean-Value Theorem of Integral Calculus (see Theorem 1A-2, App. 1A). 

(F  - Vl - L,) dt = (F  - Vl - Ll) (2- 15) I t " + =  A: At 
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where 0 5 u I 1. The Mean-Value Theorem of Dlferential Calculus (see Theo- 
rem 1A-1, App. 1A) may be used to restate the right-hand side of Eq. (2-14) in 
the form : 

where 0 < a < 1. After these results have been substituted into Eq. (2-14) and 
the expression so obtained has been divided by At, one obtains 

In the limit as At approaches zero, Eq. (2-17) reduces to 

d A  
(F -V, -L , )  =A I dt I," 

Since t, was selected arbitrarily in the time domain t ,  > 0, Eq. (2-18) holds for 
all t > 0, and thus Eq. (2-18) becomes 

The integral-difference equation representing a component-material balance 
on the solute over the time period from t ,  to t,+ , is given by 

( F X - L , x , ) d t = A l X 1 I  - A , X , ~  (2-20) 
f n  + 1 r, 

The corresponding differential equation (obtained as shown above Eq. (2-19)) is 

The integral-difference equation representing an energy balance on the thick 
liquor is given by 

and the corresponding differential equation is 
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Since the holdup of steam in the steam chest is negligible relative to the other 
holdups of the system, the enthalpy balance on the steam is given by 

( V  H - V h - Q,) dt = 0 (2-24) 

Since this integral is equal to zero for any choice of the upper and lower limits, 
it follows that the integrand is identically equal to zero for all t in the time 
domain of interest, that is, 

V,(H, - ho) - Ql = O  (t > 0 )  (2-25) 

Also, since the holdup of energy by the metal through which the energy is 
transferred is regarded as negligible, it follows that the expression 

is applicable for each t in the time interval (t, _< t 5 t,+l) under consideration. 
Equation (2-26) may be used to eliminate Q, wherever it appears in the above 
expressions. 

In summary, the complete set of equations required to describe the un- 
steady state operation of a single-effect evaporator follows: 

Enrhalpy balance 

Heclt transfer rote: 

U , A l ( T o -  T I ) -  V,i .o=O 

Mass equilibriun~ : 

n7(u1)TI + b(ul) - = 0 

Coinponent-mass balance: 

Total-mass balance: 

The variable Q, was eliminated wherever it appeared in the above equations 
through the use of Eq. (2-26). 
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Solution of a Steady State Evaporator Problem 

Since the initial condition of the unsteady state evaporator problem considered 
in a subsequent section is the steady state solution, it is informative to examine 
the steady state equations which are obtained by setting the time derivatives in 
Eq. (2-28) equal to zero. The following example illustrates the use of the steady 
state equations. 

Example 2-1 A single-effect evaporator is to be designed to concentrate a 
20 percent (by weight) solution of sodium hydroxide to a 50 percent solu- 
tion (see Fig. 2-6). The dilute solution (the feed) at 200°F is to be fed to the 
evaporator at the rate of 50000 lb/h. For heating purposes, saturated steam 
at 350°F is used. Sufficient condenser area is available to maintain a pres- 
sure of 0.9492 Ib/in2 (absolute) in the vapor space of the evaporator. On the 
basis of an overall heat transfer coefficient of 300 Btu/(h .f t2.  OF), compute 
(a) the heating area required, and (b) the steam consumption and the steam 
economy. 

Vapor rate L',(lbih) 

(to condenser) 0 
F =50OOU (Ibih) 
T,r = 200°F Vapor space 

Liquid state at 170°F 
(0.9492 lblin' abs) 

20% NaOH -4 

"Drips": Vo (Iblh) at 350°F 

Steam: V,, (Ibih) 

Saturated steam 
at 350°F - 

Figure 2-6 Design specifications for Example 2-1 

Steam chest 
T = 350°F 

u = 300(*) 

Thick liquor L,  (lblh) - 
50% NaOH 
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SOLUTION The rate L ,  at which the thick liquor leaves the evaporator is 
computed by use of the component-material balance on the solute NaOH 

The vapor rate V, follows by use of the total-material balance 

V, = F - L ,  = 50000 - 20000 = 30000 Ib/h 

The boiling point of water at 0.9492 Ib/in2 (abs) is 100°F; see, for example, 
Keenan and Keyes(l2). Use of this temperature and Fig. 2-5 gives a boiling 
point temperature of 170°F for a 50 percent NaOH solution. 

The following enthalpies were taken from Fig. 2-7. 

h, (at 200°F and 20% NaOH) = 145 Btu/lb 

h (at 170°F and 50% NaOH) = 200 Btu/lb 

From Keenan and Keyes(l2) 

H (at 170°F and 0.9492 Ib/in2 (abs)) = 1136.94 Btu/lb 

A,  (saturated at 134.63 Ib/in2 (abs)) = 870.7 Btu/lb at To = 350°F 

(a) Calculation of the heat transfer area A  required The rate of heat transfer 
Q ,  is computed by Eq. (2-23). Solution of the steady state version of Eq. 
(2-23) for Q ,  gives 

Q , =  - F h , +  V , H + L , h  

Elimination of the liquid rate L ,  by use of the material balance L ,  = 

F - V, gives the following result upon rearrangment 

Q ,  = V,(H - h)  - F(l1, - h )  
Thus 

Q l  = (30000)(1136.94 - 200) - 50 000(145 - 200) 

= 30.858 x 106 Btu/h 

Then by use of Eq. (2-27), the area A ,  is computed as follows: 

(b)  Calculation of the steam economy Since Q ,  = V o i o ,  the steam con- 
sumption is given by 

Then 
V, 30000 

Steam economy = - = - = 0.847 
Vo 35440 
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We~ght  fraction. NaOH 

Figure 2-7 Enthalpy concentration chart for solutions of sodium hydroxide in water. (W. L. 
McCabe, "The Enthalpy Concentration Chart-A Useful Device for Chemical Engineering Cal- 
culations," Trans. Am. Inst. Chem. Engrs., uol. 31, p. 129 (1935), Courtesy American Institute of 
Chemical Engineers.) 



2-3 SOLUTION OF TRANSIENT EVAPORATOR PROBLEMS 
BY USE OF THE TWO-POINT IMPLICIT METHOD 

This method is applied to each of the integral-difference equations in a manner 
analogous to that demonstrated for the total material balance, Eq. (2-14). By 
approximation of the integral of Eq. (2-14) through the use of the two-point 
implicit method (see Chap. l ) ,  the following result is obtained: 

where a = (1 - 4)/4 and [ I 0  means that all variables contained within the 
brackets are to be evaluated at the beginning of the time step under consider- 
ation. Equation (2-29) is readily rearranged and restated in functional form to 
give the function f, of Eq. (2-30). Functions f ,  and f4 of Eq. (2-30) were obtained 
in the same manner as described for the function f,. The variable Q, was 
eliminated from the functions f l  and f2 through the use of the equality, 
Q , = Vo i., (Eq. (2-26)). Thus 

Enthalpy balance: 

Heat transfer rate: 

,fi = U ,  Al(To - T I )  - Voi.o 

Mass equilibriunl 

Conlponent-mass balance: 

Total-mass balance: 

Since the system is described by five independent equations, all of the 
variables at t,, , must be fixed except for five. It is, of course, supposed that the 
values of all variables are known at the beginning of the time period under 
consideration. A problem may be formulated in terms of the values of the 
variables which are fixed and those which are to be found at time t,, , in the 
following manner. 
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Specifications : 

F ,  X ,  T,, To ,  PI (or TI) ,  and A, at time t,,, 

ToJind: 

V , ,  Vo,  x , ,  L , ,  and f l  at time t,,, 

This set of specifications corresponds to the case where the variables F, X, 
T,, T o ,  P I ,  and .dll are either controlled or fixed at some prescribed value at 
time t,,, . These specified values may differ from those at time t,. In this 
analysis, it is also supposed that the overall heat transfer coefficient is a known 
constant. 

The functional expressions (see Eq. (2-30)) may be solved by the Newton- 
Raphson method for the values of the variables at the end of the time period 
under consideration. The Newton-Raphson method is represented by 

J,  AX,  = - f ,  (2-31) 

The elements of the column vectors x,  and f, are for convenience displayed in 
terms of their respective transposes 

Ax, = CAvi Avo A T ,  Ax1 ALtIT f ,  = C f i  f 2  53 f4 f 5 I T  (2-32) 

and the jacobian matrix J ,  consists of five rows 

[zhif,izv,, af,/av0, . . . , ; 3 f ; / o ? ~ ~ ,  ~i = I ,  2, . . . , 31  
of functional derivatives 

-H(Y-,) . b,,  b 1 4  ~ ~ ( ~ 1  > X I )  

O -io - U I A l  0 

b34 (2-33) 
0 0 0 - L I P ,  

- 1 0 0 0 - 1 

where 

JllIL, 
p 1  = 1 + s , / 4  5 ,  = -- 

At 

f3H(,TI)  dh(Y-,, x , )  
b I 3  = -vl -- a ~ ,  L1 8 9 ,  

Application of the Newton-Raphson Method 

For each time period under consideration (say from t ,  to t,,,), the Newton- 
Raphson procedure consists of the repeated application of the above equations 
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until the solution set x , , ,  at  time t , ,  , has been found. The solution set x , , ,  at 
t , ,  , becomes the initial set for the next time period ( t , ,  , to t , , , ) ,  and the 
Newton-Raphson procedure is applied successively to determine the solution 
set x , , ,  at time t , , , .  

However, before solving a numerical problem involving a single-effect evapor- 
ator at unsteady state operation, a simple numerical example is presented in 
order to demonstrate the application of the Newton-Raphson method (Refs. 
5 , l l ) .  

Example 2-2 Make one trial by the Newton-Raphson method for the set of 
positive roots which make f , (x ,  y )  = f2(x ,  y)  = 0. 

f , (x ,  y)  = x2  - y2 + 1 

For the first set of assumed values of the variables, take x ,  = 1 ,  y ,  = 1 .  

Then at x ,  = 1 ,  y ,  = 1 ,  the Newton-Raphson equations, J,  A x ,  = -f, 

afl 3Y-1 
- A x 1  + - A y ,  = - f ,  
a x  ay  

reduce to 

2Ax1  - 2Ayl  = - 1 

 AX, + 2Ay1 = 3 

Solution of these equations for A x ,  and A y ,  gives 

A x ,  = 112 A y ,  = 1 

Thus, the values of x  and y  to be used for the next trial are as follows: 

y 2 = y 1 + A y , = 1 + 1 = 2  

On the basis of the assumed values x2  = 312 and y ,  = 2,  the process is 
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repeated to determine x ,  and y , .  Repeated application of this process gives 
(to within the desired degree of accuracy) 

x = &  y = J j  

Next, an unsteady state evaporator problem is solved by use of the two- 
point implicit method. The specifications are taken to be the set stated 
above. 

Example 2-3 Initially (at time t = O), the evaporator described in Example 
2-1 is at steady state operation at the conditions stated for this example. At 
time t  = O+ an upset in the mass fraction in the feed occurs. The upset 
consists of a step change in the feed concentration from X = 0.2 to 
X = 0.24.  It is desired to find the transient values of the variables provided 
that the steam temperature To is maintained at 350°F and the condenser 
temperature T, is maintained at 100°F. The holdup A, is held fixed at 
5000 pounds throughout the course of the upset. The heat transfer area A 
of the evaporator is 475.15 ft2. 

SOLUTION The functional expressions identified as Eq. (2-30) were solved 
simultaneously for each time period. A value of At = 0.001 h was used for 
the first 10 time periods. At the end of each set of 10 periods, the value of 
At was doubled. A value of C$ = 0.6 was employed. The flow rates were 
stated relative to the feed rate and the temperature relative to the steam 
temperature. 

Selected transient values of the variables are shown in Table 2-1. The 

Table 2-1 Solution of Example 2-3 
Values of scaled variables ( N o t e :  F = 50000 Ib/h, To = 350°F) 

Cumulative 
time (h) I;, F Vo/F .7,/To ,Y I LII'F 

0.0 0.599 999 0.708 216 0.486 200 0.499 999 0.400000 
0.001 0.576 702 0.708 068 0.486 307 0.499 925 0.423 298 
0.002 0.575 045 0.707 826 0.486 483 0.400 147 0.424955 
0.003 0.575 174 0.707 587 0.486 656 0.500 367 0.424 826 
0.010 0.573 934 0.705 956 0.487840 0.501 863 0.426066 

0.020 0.572 451 0.703 743 0.489446 0.503 887 0.427 549 
0.030 0.570984 0.701 660 0.490957 0.505 785 0.429016 
0.050 0.568 349 0.697 864 0.493 710 0.509 224 0.431 651 
0.070 0.566017 0.694513 0.496 141 0.512241 0.433983 
0.090 0.564010 0.691 565 0.498 280 0.514 882 0.435 990 

0.180 0.557 534 0.682 150 0.505 11 1 0.523 227 0.442466 
0.36 0.552 054 0.674 163 0.510905 0.530 205 0.447 946 
0.73 0.549 967 0.671 117 0.513 116 0.532 843 0.450087 
1.68 0.549 782 0.670 849 0.5 13 309 0.533 074 0.450 218 
Final 

Steady 
State 0.549 782 0.670 848 0.513 310 0.533 075 0.450 218 



values of some of the variables shown at time t = 0 differed slightly from 
those for Example 2-1 because the solution set in this table was obtained by 
use of curve fits of the data, and seven digits were carried throughout the 
course of the calculations. 

The reciprocal of the T represents the number of times the holdup A, 
could be swept out at the liquid rate L,  during a given time period At. At 
the conditions at the end of the first time period 

During the last sequence of time steps which contained t = 1.68 h (see 
Table 2-I), a At = 0.1 h was used for which 

In the solution of Example 2-3, the Diihring lines shown in Fig. 2-5 
were represented by Eq. (2-10) by taking 

Stability Characteristics of the 
Two-Point Implicit Method for Evaporator Problems 

From the stability analysis of systems of linear differential equations, the two- 
point implicit method is shown to be A stable in Chap. 1, provided that a value 
of 6 lying between 112 and 1 is used. Also, for 4 > 112, the two-point implicit 
method converged for the system of nonlinear differential and algebraic equa- 
tions required to describe a single-effect evaporator. 

If the values of the dependent variables are bounded as the number of time 
steps is increased indefinitely, the inherited error is also bounded. The inherited 
error is defined as the correct value of the dependent variable minus the calcu- 
lated value of the variable at the end of the time period under consideration. 

In order to investigate the general case where all of the equations and 
variables are taken into account, a wide variety of examples were solved for 
several different types of upsets such as step changes in the feed composition, 
feed rate, steam temperature, and different combinations of 4 and At. Typical of 
the results obtained for various types of upsets in the operating conditions were 
those obtained when Example 2-3 was solved for a variety of combinations of 4 
and At. 

In the problems in which the inherited error was unbounded, it was charac- 
teristic for the liquid rate to commence to oscillate first. For 4 < 112, all vari- 
ables were highly unstable as shown by the lower graph in Fig. 2-8. (In these 
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A 
0.70 - o - mass fraction x 

0.65 - 4 = 0.45 
- liquid rate L, 
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Figure 2-8 Variation of the inherited error for d, < 1/2 for Example 2-3 

graphs the value of s was computed on the basis of the steady state value of 
L ,  .) However, for this condition (6 < 112) the composition x had generally 
converged to its steady state value before the inherited error in L ,  became 
unbounded as demonstrated in Figs. 2-8 and 2-9. 

The upper graph in Fig. 2-9 is typical of the stability of all variables for all 
examples for which 1/2 < q5 < 1. 

Scaling Procedures 

Two types of scaling are presented below: ( 1 )  variable scaling and row scaling 
and (2) column scaling and row scaling. The first of these two procedures was 
used by Burdett(3,4) in the solution of a 17-effect evaporator system described 
in Chap. 3. The purpose of scaling is to reduce the elements of the jacobian 
matrix to the same order of magnitude. Also, it is desirable that the functions 
be of the same order of magnitude in order that the euclidean norm of the 
functions will represent a measure of how well all functions have been satisfied 
by the set of assumed values of the variables. For example, consider the equa- 
tion 



o - mass fraction, x 
- liquid rate LI A 

- 0.51 

Number of time steps 

Figure 2-9 Variation of the inherited error for 4 < 112 for Example 2-3. 

and let f l ( x )  denote the function 

f,(.x) = x - 1 

For x = 1.1 

f l ( l . l )  = 1.1 - 1 = 0.1 

Now consider the function 

o = p - 1  

After each side of this equation has been multiplied by l o6 ,  let F(y)  denote the 
function 

F(y )  = 106y - l o6  

For y = 1.1 

F ( l . l )  = 106(1.1) - l o 6  = 0.1 x l o6  

In order to obtain a meaningful comparison of the functional values, it is 
evident that they should both be normalized, which may be effected in the 
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above case by division of F(y)  by 10' followed by the definition of the new 
function 

This procedure amounts to row scaling as described in a subsequent section. 
In order to reduce the size of the elements of the jacobian matrix relative to 

one another, row scaling must be combined with variable scaling. To illustrate 
variable scaling, reconsider Example 2-3, and let the new scaled variables be 
defined 

such that they lie approximately in the range 0 to 1. Next, make this change of 
variables in the functions f , ,  f , ,  . . . , f , ,  and then divide f ,  by FA,, f, by 
Fi.,, f3  by To, f ,  by F ,  and f s  by F. Then let 

- J ~ I  h ( F 1 ,  - ~ 1 )  + + vo - ----- V I H ( ~ )  - 1 1  N F l ,  x1)]O 
Fi., 4 At 10 2.0 

Note that several of the above functions could have been reduced to the precise 
form of f ( x )  and g(y). For example, g ,  could have been divided by the variable 
co and g3 by the variable u , .  However, the resulting functions become unde- 
fined when the assumed values for v0 and v ,  are taken equal to zero, and 
generally functions possessing such characteristics are to be avoided. 

When the functions are given by Eq. (2-35)  and the new variables are taken 
to be 



the jacobian matrix becomes 

where 

a h ( r , ,  x , )  a s ,  
b , ,  = - 

" P '  8 5 '  ] 
a s ,  
- = To 
a, 1 

T o  demonstrate the effect of variable scaling followed by row scaling on the 
relative size of the elements of J, the following elements are evaluated at the 
solution values of the variables 

Unscaled Variable and row scaling 

The above procedure may be generalized and stated in matrix notation as  
shown below. 

Variable Scaling and Row Scaling 

Consider the general case in which n independent functions f l  , fi , . . . , fn in n 
independent variables x, , x, , . . . , x ,  are to  be solved by the Newton-Raphson 
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method. Let the Newton-Raphson equations for the kth trial be represented by 

Jk AX,  = -fk (2-37) 

where 

Z f I  . - 
dx ,  

2f" . - 
8 ~ "  

A x k = [ A x 1  Ax ,  . . -  AxkIT A x k = x k + ,  - x k  

fk = C f i k  f 2 k  . . . f"klT 

Although the subscript k is not shown on  the elements in J,, these elements as 
well as the functions f, are to be evaluated at  x  = x , .  

Let R ,  denote the square n x n diagonal matrix whose diagonal elements rii 
are equal to  o r  just greater than the absolute value of the corresponding row 
elements of x , ,  that is, 

' 1 1  2 IxlkI r22 2 Ix2kIr . . . i  1"" 2 IxnkI (2-38) 

(Except for the restriction that r,, must never be set equal t o  zero, the inequality 
given by Eq. (2-38) need not be applied precisely in practice; that is, the riis 
need to be only approximately equal to the corresponding xik's.) The row oper- 
ations required to scale Ax,  may be represented by the matrix multiplication 
R;' Ax , .  Thus, Eq. (2-37) may be restated in the following equivalent form: 

D, AY,  = -fk 

where 

Observe that J , R k  corresponds to the set of column operations in which 
column 1 is multiplied by r , ,  , column 2 by r , ,  , . . ., and column n by r , , .  After 
these column operations have been performed, form the diagonal matrix M, 
whose elements rn,, are selected such that for each row 

mii = maximum I d i j  I over all elements of row i 

Premultiplication of each side of Eq. (2-40) by M; ' yields 



where 

Observe that the matrix multiplication M;'D, corresponds to  the set of row 
operations in which row 1 is divided by m i l ,  row 2 is divded by m2, , . . . , and 
row n is divided by m,,. Likewise, M i 1 f k  represents a set of row operations 
in which the first element is divided by ml l  , . . . , and the nth element is divided 
by m,, . 

Although the development of the above scaling procedure was presented in 
terms of matrix multiplications, one always obtains the final results in practice 
by carrying out the appropriate row o r  column operations rather' than the 
matrix multiplications. 

Column Scaling and Row Scaling 

In this scaling procedure, the first step consists of the column scaling of the 
jacobian matrix in which the elements of each column are divided by the 
element of the respective column which is greatest in absolute value. Let D, 
denote the diagonal matrix which contains the reciprocals of the elements of the 
respective columns which are largest in absolute value, and let {aij) denote the 
elements of J , .  The elements (d,,} of D, are as follows: 

d l ,  = l/[maximum I a,, I of column 1 of J,] 

d,, = l/[maximum la,, 1 of column 2 of J,] 

d,, = l/[maximum la,, I of column n of J,] 

Thus 

(Jk Dk)(DL AX,) = - fk (2-43) 

Next row scaling is performed on  the matrix J k D k .  Let E, denote the 
diagonal matrix which contains the reciprocals of the elements of the respective 
rows which are largest in absolute value, and let bij denote the elements of 
J, D, . The elements {e,,} of E, are as  follows: 

e l ,  = l/(maximum b l j  of row 1 of J, D,) 

e,, = l/(maximum bZj of row 2 of J, D,) 

e,, = l/(maximum bnj of row n of J,D,) 
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Thus, the row scaling of J, D, is represented by 

(E, J, D,)(D; ' Ax,) = - E, f, 

and 

Ax, = - D,(E, J, D , )  'E, f, 

In a problem solved by Mommessin(lS), variable scaling followed by row 
scaling was unsatisfactory, and it was necessary to  use column scaling followed 
by row scaling. 

Application of Broyden's Method 

In many applications, the programming of the analytical expressions for the 
partial derivatives appearing in the jacobian matrix of the Newton-Raphson 
method becomes a cumbersome task, and the numerical evaluation of these 
derivatives for each trial becomes too time-consuming. In order to  reduce the 
time requirement Broyden's method (Refs. 2, 1 I), which seldom requires more 
than one numerical evaluation of the partial derivatives, may be used. The 
development of this method is presented in Ref. 11, and the steps to  be followed 
in the application of the method are enumerated below. 

For  the general case of n independent equations in n unknowns, the 
Newton-Raphson method is represented by Eq. (2-31) where 

x , = [ x l  X2  . . .  x, lT 

f k  = Cfl f i  . . . f n l T  
The steps of the algorithm are as  follows: 

Step I Assume an initial set of values of the variables x,, and compute 
fo(x0). 

Step 2 Approximate the elements of H, where Ho is defined as  follows: 

Broyden obtained a first approximation of the elements of J, by use of the 
formula 
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where h, was taken to be equal to 0 . 0 0 1 ~ ~  

Step 3 On the basis of the most recent values of H and f, say H, and f,, 
compute 

Step 4 Find the s, such that the euclidean norm of f (x ,  + s, Ax,) is less 
than that of f(x,). First try s,, , = 1 and if the following inequality is satisfied 

proceed to step 5. Otherwise, compute s,,, by use of the following formula 
which was developed by Broyden: 

where 

If the norm is not reduced by use of s,, , after a specified number of trials 
through the complete procedure, return to step 2 and reevaluate the partial 
derivatives of J, on the basis of x,. As pointed out by Broyden, other methods 
for picking s, may be used. For example, s, may be picked such that the 
euclidean norm is minimized. 

Step 5 In the course of making the calculations in step 4, the following 
vectors will have been evaluated: 

X k  + 1 = X k  + Sk Axk 

f k +  1 = f ( ~ k +  1) 

Test f,, , for convergence. If convergence has not been achieved, compute 

Step 6 Compute 

(H, Y ,  + s, Ax,) AX: Hk 
Hk+1 = Hk - AX: Hk Y k  

and return to step 3. 
Example 2-4 consists of a simple algebraic example which illustrates the 

application of this method. 
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Example 2-4 (Hess et a1.(9), by courtesy Hydrocarbon Processing). It is 
desired to find the pair of positive roots that make f,(x, y) = 0 and 
J2(x, y) = 0, simultaneously 

Jl(x, y) = x2 - xy2 - 2 

f*(x, y) = 2x2 - 3xy2 + 3 

Take xo = 1 and yo = 1, and make one complete trial calculation as pre- 
scribed by steps 1 through 6. 

Step I Since xo = 1 ,  yo = 1 

X o  = [ I ,  l IT  

and 

J ~ . o = J l ( ~ o ) = J l ( l ,  I ) =  1 - 1 - 2 =  -2 

J2, o =J2(xo) = J2(1, 1 )  = 2 - 3 + 3 = 2 

Step 2 Take the increment h for computing the derivatives with respect 
to x to be 

h = ( 0 . 0 0 1 ) ~ ~  = 0.001 

Then 

For computing the derivatives with respect to y, take 

k = ( 0 . 0 0 1 ) ~ ~  = 0.001 

Then 

and 

Then 



The inverse of Jo  is found by gaussian elimination as  follows. Begin with 

[l.OOl -2.001]1[:, ;] 
1.002 -6.003 

and carry out the necessary row operations to  obtain 

1: ~111 1.499 2 - 0.499 75 
0.250 23 - 0.250 00 

Then 

I 
J,' = 

1.499 2 - 0.499 75 
0.250 23 - 0.250 00 1 

and 
Ho = J o  = [- 1.499 2 0.499 751 

-0.250 23 0.250 00 

Step 3 O n  the basis of the most recent values H and f, the correction 
Ax is computed as follows: 

- 1.499 2 0.499 751 [ - :] L3.99791 
Ax, = H, f, = [ - - 

- 0.250 23 0.250 00 1.0005 

Step 4 Take so, ,  = 1. Then 

and 

fl(xo + Axo) = f1(4.9979, 2.0005) = 2.9774 

f2(x0 + Axo) =f2(4.9979, 2.0005) = - 7.0468 

Since 

(2.9774)2 + (- 7.0468)2 > ( - 2)' + (2)2 

compute 

f :(x, + Ax,) + f :(xo + Ax,) - - (2.9774)2 + (-7.0468)2 
v =  = 7.31529 

f :(xo) + f :(xo) (-2)2 + (2)2 

and 
(1 + 6q)'I2 - 1 

So. 2 = = 0.259 74 
3v 

Then 

[:] + [1.038 39 ] = [2.038 39 ] 
x, + 0.259 74 Ax, = 

0.259 865 1.259 865 

and 

fl(x0 + so, AX,) = f1(2.038 39, 1.259 865) = - 1.080 40 

f2(x0 + so, Ax,) = fJ2.038 39, 1.259 865) = 1.603 72 

Thus, the criterion on f,, namely, 

( -  1.080 4012 + (1.6037)2 < (- 2)' + (2)2 

has been satisfied. 

Step 5 If the convergence criterion is taken to be that the sum of the 
squares of fl and f ,  is to  be reduced to some small preassigned number E, 

say E = l o L 0 ,  then this criterion has not been satisfied by x = 2.0384 and 
y = 1.259 86. Then compute 

Step 6 Compute the following products which are  needed to find H l  

Since 

(H, Yo + so Ax,) Ax: Ho 
H,  = H , -  

AX; H, Yo 

it follows that 

- 1.499 2 0.499 75 I-[ -0.506 74 0.18245 
HI  =[ -0.250 23 0.25000 - 0.065 25 0.023 49 1 

- 0.992 46 0.3 17 30 

I 
= [ -0.184 98 0.226 5 1 1 

and the next trial is commenced by returning to step 3 with H I .  

A modest improvement of Broyden's method may be achieved by combin- 
ing it with Bennett's method (Ref. 1) as described by Holland(l1). 
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2-4 EQUATIONS FOR A 
TRIPLE-EFFECT EVAPORATOR SYSTEM 

A typical triple-effect evaporator system with forward feed is shown in Fig. 2-10. 
Multiple-effect evaporator systems are attractive because in an idealized system 
of N evaporators in which all of the latent heats are equal and boiling point 
elevations and sensible heat differences are negligible, N pounds of water may 
be evaporated per pound of steam fed to the system. 

The equations describing the triple-effect system shown in Fig. 2-10 are 
formulated in a manner analogous t o  those shown for the single-effect system. 

1st effect: 
(see the five equations given by Eq. (2-28)) 

2nd effect. 

The dynamic equations for a multiple-effect evaporator system may be solved 
by a variety of methods such as the two-point implicit method, Michelsen's 
semi-implicit Runge-Kutta method (Ref. 14), and Gear's method (Ref. 7). The 
two-point implicit method is demonstrated for a 17-effect system in the next 

Figure 2-10 A triple-effect evaporator with forward feed. The temperature distribution is shown for 
a system with boiling point elevations. 

chapter. The application of Michelsen's method and Gear's methods to  distil- 
lation problems are presented in Chaps. 6, 7, and 8. 

In summary, the integral difference equations for evaporators may be solved 
by use of the two-point implicit method. T o  solve the system of equations for 
this process, either the Newton-Raphson method or the Broyden modification 
of it may be used. Scaling of these equations will generally be necessary and 
two scaling procedures have been presented for this purpose. As demonstrated 
by a simple example, the implicit method is stable provided that the weight 
factor 4 2 112. 

NOTATION 

b(.uj) = intercept of that Diihring line having as its 
concentration parameter the variable x j  

fk = column vector of the N functions f , ,  f2, ..., f, 
F = feed rate to the evaporator system, Ib/h 
h(T,),  h(Sj )  = enthalpy of the pure solvent in the liquid state a t  the 

temperatures T j  and F j ,  respectively, and pressure P j ,  
Btu/lb (where boiling point elevations are negligible, 
the notation hj, which is equal to  h(?), is used) 

H(T,), H ( F j )  = same as above except the capital H denotes the vapor 
state 



= enthalpy of the thick liquid at temperature Y, ,  
composition xj  and pressure Pj, Btu/lb 

= enthalpy of the feed at its entering temperature, 
pressure, and composition, Btu/lb (where boiling point 
elevations are negligible, the enthalpy of the feed is 
denoted by h,) 

- - - J - 1  

= jacobian matrix; defined beneath Eq. (2-37). 
= Lj/F 
= slope of that Diihring line having as its concentration 

parameter the variable xj  
= mass holdup of liquid in evaporator effect j, Ib 
= total pressure in evaporator j 
= rate of heat transfer for evaporator effect j, Btu/h 
= time at the end of the nth time period; At = t , ,  , - tn  
= temperature of the feed and steam, respectively, to an 

evaporator 
= saturation temperature at the pressure P, of the vapor 

leaving the jth effect of a multiple-effect evaporator 
system 

= temperature of the thick liquor leaving the jth effect 
= FITo 
= TITo 
= 1/,/F 
= mass flow rate of the vapor from the jth effect of a 

multiple-effect evaporator system 
= mass fraction of the solute in the thick liquor 

leaving effect j 
= column vector of the values of the variables used to 

make kth trial 
= column vector; Ax, = x,, , - xk 
= transpose of the column matrix x 

Subscripts 
j = evaporator effect j 
k, n = counting integers 

Greek letters 
'r' = thermodynamic activity coefficient 
P j  = 1 + ~ ~ / 4  
0 = (1 - 4114 
I. , = Hi - hi, latent heat of vaporization of the pure solvent 

at its saturation temperature T j  and pressure P j  

9 = weight factor of the two-point implicit method 

- 
A . / L .  

r -JI 
At 
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PROBLEMS 

2-1 Consider the triple-effect evaporator system shown in Fig. 2-4 in which the boiling point 
elevations are negligible. The system is at steady state operation. 

( a )  If the sensible heat effects are negligible, ho = h, = h2 = h, and H ,  = H ,  = Hz = H , ,  show 
that 

( b )  If in addition to part (a), A ,  = A,  = A,  and U ,  = U ,  = U , ,  show that the steam economy 
is equal to 3. 

2-2 Verify the expressions given for the elements appearing in the jacobian matrix given by Eq. 
(2-33). 
2-3 Repeat Prob. 2-2 for the jacobian matrix given by Eq. (2-36). 

2-4 If in the procedure called variable scaling and row scaling the elements of diagonal matrix R are 
taken to be r , ,  = F, r, ,  = F, r, ,  = To,  r,, = 1, r , ,  = F, and if instead of using the elements of D 
which are largest in absolute value the following elements are used in the diagonal matrix M, 
m,,  = FA,, m,, = Fi.,, m,,  = To, m,, = F,  m,,  = F, show that if one carries out the matrix 
operations on Eq. (2-31) one obtains the results given by Eqs. (2-34) through (2-36). 



CHAPTER 

THREE 
DYNAMICS OF A 
MULTIPLE-EFFECT EVAPORATOR SYSTEM 

The formulation and testing of a model for a relatively large process, a 17-effect 
evaporator system, is given in this chapter. The model proposed for each part of 
this system is presented and the corresponding equations are developed. Mod- 
eling techniques utilized in the modeling of a large process are developed and 
examined. For example, the proposed model for certain heat transfer processes 
makes it possible to replace the partial differential equations describing these 
processes by ordinary differential equations. 

Although the equations for the model are solved by use of the two-point 
implicit method, it should be noted that other methods such as the semi-implicit 
Runge-Kutta method and Gear's method could be used as shown in Sec. 3-2. A 
comparison of the dynamic behavior predicted by the model with that observed 
in the field tests run on the system of evaporators is effected by solving the 
equations describing the model. An objective of this investigation was to de- 
velop a suitable model of the process on the basis of the fundamentals of heat 
transfer, mass transfer, fluid flow, and the information commonly available from 
the design prints. The model predicts not only the dynamic behavior of the 
system to an upset in any of the operating variables but also the new steady 
state solution. 

The field tests were made on the Freeport Demonstration Unit, located at 
Freeport, Texas. This plant was constructed under the direction of the Office of 
Saline Water, U.S. Department of the Interior. The details of the construction, 
operation, and successes achieved by this plant are well documented (Refs. 9, 11, 
13, 25). 

One of the methods for producing fresh water from seawater or brackish 
water is evaporation (Refs. 8, 9, 14, 23, 24, 25). Of the technical effort expended 
on evaporation, most of it has been devoted to reducing the cost of construc- 
tion (Refs. 9, 11, 13); some of it has been spent on the optimization of the 
process variables as required to minimize all cost factors (Refs. 8, 18, 19). 
Although numerous investigations on the dynamics of heat transfer and distil- 
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lation processes have been reported (Refs. 6, 12, 21, 22), Burdett (3) appears to 
have been the first to study the dynamics of a multiple-effect evaporator pro- 
cess. 

In 1945 Bonilla(1) presented a calculational procedure for minimizing the 
area required to achieve a specified separation. Highly approximate assump- 
tions were necessary, however, in order to keep the iterative procedure manage- 
able for thc hand-calculation requirement of that day. Haung et al.(l7) 
developed a procedure for optimizing plants equipped with LTV falling-film 
evaporators at steady state operation. Itahara and Stiel(l8) applied dynamic 
programming to establish optimal design procedures for systems of multiple- 
effect evaporators. Their model allowed for the preheat of the feed through heat 
exchange with the condensate and vapor bleeds, and it was applicable to the 
design of evaporator systems at steady state operation. Recently, accurate ther- 
modynamic and heat transfer data have become available (Refs. 2, 10, 23). 

Description of the Desalination Plant 

A photograph of the plant is shown in Fig. 3-1, a sketch of a typical evaporator 
in Fig. 3-2, and a simplified flow diagram of the process in Fig. 3-3. The design 
capacity of the plant was one million gallons per day, with a steam consump- 

Figure 3-1 Freeport demonstration plant: niultiple-emect LTV evaporator. (Courtesy of the U.S. 
Department of  f i~rerior.)  
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Figure 3-2 Flow diagram of a long-tube vertical evaporator and auxiliary equipment. (J. W. Burd- 
ett and C .  D. Holland: "Dynamics of a Multiple-Effect Euaporator System," AIChE J . ,  vol. 17, p. 
1080 (1971).  Courtesj  of the America11 Institute of Chemical Engineers.) 

Condensate ) 

tion of less than 0.08 pounds of supply steam per pound of gross product (Ref. 
25). The plant consisted of 17 effects of the long-tube vertical (LTV) type of 
evaporator. The falling-film version of the LTV evaporator was used. As shown 
in Figs. 3-2, 3-3, and 3-4, a portion of the energy possessed by the condensate 
leaving each effect was recovered by allowing the condensate to flash in each of 
the condensate flash-tanks. 

The first twelve effects of the plant were built as separate units, and each 
effect was sized according to its particular requirements. The last five effects 
were constructed in a single module. The feed preheater and condensate flash- 
tank were located within the "shell" of the effect with which they were associ- 
ated. 

Each evaporator consisted of a vertical shell-and-tube heat exchanger, 
which was mounted over a vapor-liquid separator. Noncondensables were re- 
moved continuously from each effect through the use of vapor bleeds which 
were vented to the atmosphere, to the vapor space of the next effect, to the feed 

t Condensate 
t 

( DYNAMICS OF A MULTIPLE-EFFECT EVAPORATOR SYSTEM 75 

c,. I CI 

treater, or to the vacuum system. Most of the evaporators were equipped with 
2-inch by 22-feet, 16-gauge tubes. The total areas for heat transfer varied from 
3000 to 4000 square feet per effect. As shown in Fig. 3-2, demister mats were 
used to prevent the entrainment of process liquid in the vapor leaving the sump 
of each evaporator. The process liquid entered the evaporator tubes through a 
~uitably designed distributor at the top of each evaporator. 

The feed (seawater) was heated slightly before it entered the acid treater (see 
Fig. 3-3). Carbon dioxide and dissolved air were removed from the feed in the 
acid treater by first acidifying, followed by steam stripping, and then neutraliz- 
ing with caustic. The feed was then preheated in a series of heat exchangers 
before it was introduced to the first effect (see Figs. 3-2 and 3-3). 

In forward-feed operation, the pretreated, preheated feed and steam from 
the supply line were charged to the first effect. Slightly concentrated process 
liquid was withdrawn from the sump of the first effect and charged as feed to 

Process liquid. L 
Condensate, C 

........... 
Vapor (steam). V 

Effect I Effects 2 through 12 
Vapor hleed 

...................... ............................ *---. 
C 

................ 

Product water 

Effect 17 Effects 13 through 16 

Figure 3-3 Simplified flow diagram of the evaporator system. (J. W. Burdert and C .  D.  Holland: 
"Dynamics of a Multiple-Effect Evaporator System," AIChE J. ,  vol. 17, p. 1080 (1971). Courtesy of 
the American Institute of Chemical Engineers.) 



Figure 3-4 Composite model for evaporator effect j and its associated auxiliary equipment. ( J .  W. 
Burdett and C .  D.  Holland: "Dynamics of Multiple-Effect Evaporator System," AiChE J. ,  vol. 17, p. 
I080 (1971). Courtesy of the American institute of Chemical Engineers.) 

the second effect. The condensate leaving each effect was, of course, the desired 
product; however, it contained sensible heat which was recovered in part by use 
of a heat exchanger at the first effect and by flashing in the condensate flash- 
tank at the subsequent effects. 

As the brine process liquid passed through the system, it became more 
concentrated, and its flow rate diminished. Effects 10 through 17 had provisions 
for recycling liquid from the sumps of these effects to increase the liquid loading 
on the walls of the tubes. Effects 11 through 14 had alternate feed inlets which 
permitted sump-to-sump flow. Both of these options are shown in Figs. 3-3 and 
3-4 for effects 2 through 17, since these options were included in the mathemat- 
ical model for all effects except the first. 

Feed preheaters 1 through 12 were of the shell-and-tube type of heat ex- 
changers. These preheaters were mounted vertically and adjacent to the evapor- 
ators (see Figs. 3-2 and 3-4). Since the flow of steam to each preheater was 
unrestricted, the steam chest of each evaporator and the shell of its associated 
preheater were at the same pressure. Due to the piping configuration, con- 
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!"ensate removal was self-regulating. Venting of noncondensables was set by 
hand valves in the vent line provided for each effect. Effects 2, 3, and 6 each had 
two preheaters with parallel steam flow and serial feed flow. In the model, each 
pair was treated as a single preheater. The feed preheaters for effects 13 through 
17 were located within the steam chests of the respective effects, together with 
the evaporator tubes as indicated in Figs. 3-3 and 3-4. 

The condensate flash-tanks for effects 2 through 12 were located adjacent to 
the respective evaporator sumps at an elevation low enough to permit complete 
drainage of the condensate from the steam chest. Piping between the flash-tanks 
was located below the bottom level of the tanks in order to provide a water seal 
for the self-regulation of the condensate flow rates. The condensate flash-tanks 
for effects 13 through 17 were built into the wall of the module on the side of - 
the respective sumps as indicated in Fig. 3-3. 

The acid treater (see Fig. 3-3) consisted of a tower which was six feet in 
diameter and 43 feet high. The tower was packed with 16 feet of 3-inch by 
3-inch stoneware Raschig rings. Seawater feed, acidified with sulfuric acid, en- 
tered the top of the tower through a full-cone spray nozzle. Steam from the 
steam bleed of effect 16 was introduced below the packing at a fixed flow rate. 
The vapor flow rate from the tower was controlled manually at a flow rate that 
was greater than the inlet vapor flow rate by an amount which would cause a 
temperature drop in the flashing feed of about 1°F. 

A detailed description of this plant, its equipment, and its operations (prior 
to the addition of the 5-effect module) was given by Dykstra(9) in 1965. Addi- 
tional details pertaining to both the 12-effect and the 17-effect operations of the 
plant are available from the annual reports by the operating company, Stearns- 
Roger Corporation, to the Office of Saline Water, U.S. Department of the 
Interior (Ref. 13). 

Section 3-1 is devoted to the formulation and analysis of the heat transfer 
models. In Sec. 3-2 the assumptions for the process model are first stated and 
then the equations required to describe the proposed process model are enumer- 
ated. The analysis of the results of the field tests and a comparison of the 
experimental results with those calculated by use of the model of the plant are 
presented in Sec. 3-3. 

3-1 DEVELOPMENT AND ANALYSIS OF 
THE HEAT TRANSFER MODELS 

The relatively large mass of metal contained in the evaporators represented an 
appreciable capacity for the storage of energy. This capacitance cannot be ne- 
glected in any realistic analysis of the dynamics of the process. However, the use 
of the classical equation for conduction (see Eq. (3-11)) in the analysis would 
result in a tremendous task. To reduce the amount of effort required in the 
analysis, an approximation called the "heat transfer model for large cylindrical 
walls " was employed. 



Formulation of the Heat Transfer Model for Large Cylindrical Walls 

The proposed model not only transforms a partial differential equation into an 
ordinary differential equation but it also gives the correct rate of heat transfer 
at steady state as well as the correct heat content of the metal walls. The model 
makes use of the fact that at steady state, the mean temperature T, at which the 
heat content of a large cylindrical wall should be evaluated is approximately 
equal to T,,, the arithmetic average of the internal and external wall tem- 
peratures. Large cylindrical walls such as those of the evaporator shells have an 
appreciable thickness, although the ratio of the external and internal radii is 
approximately equal to unity. Such walls are further characterized by the fact 
that the length L along the cylindrical axis is large enough so that heat transfer 
by conduction along the cylindrical axis may be neglected. 

First, it is shown that the variation of the temperature with the radius of a 
large cylindrical wall is linear. The rate of heat transfer Q (Btu/h) by conduction 
through a large cylindrical wall of length L and radii r, and r, is given by 

where a temperature gradient exists only in the direction r. Integration of Eq. 
(3-1) for the case where r, may be taken approximately equal to r, in the 
calculation of the surface area 2nr1 L (or 2nr, L) yields 

where the thermal conductivity k (Btu/(h. ft . O F ) )  is taken to be independent of 
temperature. Elimination of k2nrl L/Q by use of the boundary condition that at 
r = r,, T = T,, gives 

This expression shows that at r = r,,, T = T,,, that is, at 

It will now be shown that the mean temperature Tm for computing the heat 
content of the metal wall of an evaporator or  the heat content of the metal wall 
of the flash-tank is approximately equal to the corresponding arithmetic average 
temperature T,,. The total heat content of a cylindrical wall having a tem- 
perature gradient in the radial direction alone is given by 

Heat content = EpL(2nr dr) I:' 
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where E is the internal energy (Btullb) and p is the density (Ib/ft3) of the metal. 
Then by use of the generalized theorem of integral calculus (App. 1A) the right- 
hand side of Eq. (3-4) may be restated in the following form 

~ ~ E f ' ~ 2 ~ r  dr) = Em p2nL r dr I:' 
where the change in density with temperature is taken to be negligible. Since r, 
may be taken approximately equal to r, in the calculation of the surface area of 
large cylindrical walls, Eq. (3-5) reduces to 

E dr = Em dr I:' I:' 
The internal energy above any arbitrary datum temperature, say TI,  is given by 
E = C,(T - TI )  and the mean value of E by Em = C,(T, - T,),  where the varia- 
tion of C, with temperature over the range from TI to T, can be neglected. On 
the basis of these suppositions, Eq. (3-6) may be reduced to 

After the integrand ( T  - TI) has been replaced by its equivalent as given by Eq. 
(3-3) and the indicated integration has been carried out, the following result is 
obtained : 

The proposed model was formulated such that the condition given by Eq. 
(3-7) is satisfied at steady state operation. In particular, let one half of the 
thermal resistance of the metal wall be concentrated at r = r ,  and the other half 
at r = r,. These thermal resistances are called "effective thermal conductivity 
films," and they are assigned zero masses. Then the thermal resistance per film 
is given by 

Resistance per effective 
thermal conductivity film (3-8) 

Thus, the corresponding equivalent film coefficient is given by 

All of the mass of the actual wall is taken to be at the mean temperature 
Tm = T,,. The heat transfer model and its corresponding temperature profile at 
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Figure 3-5 Temperature profile predicted for 
largecylindrical walls(r,/r, - 1 and the length 
along the cylindrical axis is large) at steady 
state. ( J .  W. Burdett and C .  D. Holland: 
"Dyna~ilics of a Multiple-Effect Evaporator 
System," AIChE J., vol. 17, p. 1080 (1971). 
Courtesy of the Anlerican Institlite of Chemical 
Engineers.) 

steady state are shown in Fig. 3-5. Examination of this model shows that at 
steady state, it provides the correct wall temperatures TI and T2 needed in the 
formulation of the rates of heat transfer to and from the wall as well as the 
correct heat content of the metal wall. 

For the case where no approximation is made with respect to the relative 
sizes of r ,  and r , ,  appropriate expressions for T, and the effective thermal 
conductivity films are developed as outlined in Prob. 3-2. 

There follows an analysis in which a comparison is made between the 
temperatures predicted by the proposed heat transfer model and those obtained 
by solving the corresponding boundary-value problems. The results of this anal- 
ysis support the use of the proposed heat transfer model in the modeling of the 
heat transfer through large cylindrical walls. The relationships developed in this 
analysis are also used in the justification of the use of a heat transfer model for 
thin metal walls under the heat transfer conditions such as those of the steam- 
heated heat exchangers of the evaporator system. 

Analysis of the Heat Transfer Model for Large Cylindrical Walls 

The primary purpose of the analysis that follows is to obtain an approximation 
of the errors in the temperatures predicted by use of the heat transfer model. 
Formulas for predicting these errors are obtained by solving the boundary- 
value problems corresponding to two different sets of boundary conditions. 

Consider first the boundary-value problem having the boundary conditions 
depicted in Fig. 3-6. This problem corresponds to the case of a metal wall in 
contact with steam at x = 1 and the surroundings at x = 0. At x = I ,  the steam 
film coefficient is denoted by h,  and the steam temperature by T,. At x = 0, an 
effective film resistance is used to represent the combined resistance offered by 

I the insulation and the air film to heat transfer. The effective film resistance is 
denoted by l /h l  and defined by 

where A is the internal surface of the cylindrical section of the metal wall. The 
subscript "ins" refers to the insulation, the subscript "air" refers to the air film, 
and l in ,  denotes the thickness of the insulation. 

At time t = 0, the metal wall is at the uniform temperature TA of the 
surroundings, and at time t  = 0 + ,  the steam (with the saturation temperature 
T,) is turned on. The corresponding partial differential equation is given by 

where 

The boundary conditions are as follows 

Insulation 
Air film - 7 

7 I 

a T 
k - + h2(T - T,) = O  (x = I, t > 0) 

ax 

T = TA ( t  = 0, for all X) 

Insulation, Effective thermal 
f i l m  1 ' ; r u n d u c t i i i t Y  filmr 

Semi-infinite slab -----/ Heat transfer model of 1 
the semi-infinite slab 

Figure 36 Heat transfer model of a semi-infinite slab in contact with air on the insulated side and 
steam on the other side. (J. W. Burdett and C .  D.  Holland: "Dynamics o f a  Multiple-Eflect Eoapor- 
ator System," AIChE J. ,  001. 17, p. 1080 (1971). Courtesy of the American Institute of Chemical 
Engineers.) 



Equations (3-1 1 )  and (3-12) may be developed by following the outline given in 
Prob. 3-3. The following solution to this problem may be deduced from the 
result given by Carslaw and Jaeger(5) in case IV on page 126. 

where 

Y,(x)  = B, C,(B, cos B, x + HI sin B, x )  

D l .  f i z ,  ..., Bn = first n positive roots of 

( P 2  - HI H Z )  sin Dl - B(H,  + H z )  cos pl = 0 

An outline of the method of solution is given in Probs. 3-4 and 3-5.  The result 
given by Eq. (3 -13)  may be used to determine the mean temperature which is 
required to give the correct heat content of a finite section of the slab at any 
time t > 0. The following expression for the determination of this mean tem- 
perature Tm(t) is formulated in a manner similar to that shown for Eq. ( 3 - 5 ) :  

When the integrand [ T ( x ,  t )  - T,] is replaced by its equivalent as given by Eq. 
(3 -13)  and the indicated integration is carried out, the result so obtained may be 
rearranged to give 

For the boundary-value problem under consideration, the corresponding 
heat transfer model is also shown in Fig. 3-6.  The differential equation for the 
heat transfer model is given by 
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Dimensions: Btu, h,  ft, O F ,  Ib 

0.0 0.001 0.002 0.003 0.004 0.005 0.006 

Figure 3-7 Comparison of the results given by the heat transfer model with those given by the 
solution of the corresponding boundary-value problem (see Fig. 3-6). (J. W. Burdett and C .  D. 
Holland- "Djnatnics of a Multiple-Evaporator System," AIChE J. ,  vol. 17, p .  1080 (1971). Courtesy 
of the Americari Insrir~rte of Chewlical Engineers.) 

where 

Separation of the variables in Eq. (3-16) followed by integration and rearrange- 
ment yields 

A comparison of the values of T ( t )  predicted by the heat transfer model as 
given by Eq. (3 -17)  with the theoretical values given by Eq. (3 -15)  is presented 
in Fig. 3-7.  The heat transfer coefficients and other parameters used to compute 
the results shown in this figure were of the same order of magnitude as those 
for the system of evaporators under consideration. 

A limiting case for the heat transfer model The boundary-value problem corre- 
sponding to an evaporator shell with a perfect insulator on one side and steam 
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with an infinite film coefficient on the other side is depicted in Fig. 3-8. The 
postulate of an infinite value of the steam film coefficient amounts to taking the 
surface temperature of the wall on the steam side equal to the saturation tem- 
perature Ts of the steam. The partial differential equation is again given by Eq. 
(3-1 1) and the boundary conditions are as follows: 

The solution satisfying both the partial differential equation and the boundary 
conditions may be stated in terms of either a Fourier series of cosines or a 
series of complementary error functions (Refs. 5, 7). Of these two forms of the 
solution, only the latter is given because it is said to converge (Ref. 5) more 
rapidly for small values cct/12 

m 

Ts - ( )  = 1 - ( 1 ) "  erfc (2n + 1)l - x (2n + 1)l + x [ 2(at)lI2 
+ erfc 

Ts - TA n =.O 2 ( ~ t ) " ~  
] (3-19) 

where 

erfc z = -- e-"2 d l  ;-n Im 
the complementary error function. 

The result given by Eq. (3-19) may be used to determine that mean tem- 
perature which is required to give the correct heat content of a finite section of 

Perfectly 

Effective thermal 
K d u c t i v i t y  films 

insulated 

x = o  x = 0 s = 1 

Semi-infinite slab Heat transfer model of 
the semi-infinite slab 

Figure 3-8 Heat transfer model of a semi-infinite slab which is perfectly insulated at one end and 
the temperature is constant at the other. (J .  W. Burdetr and C .  D. Holland: "Dynamics of a 
Multiple-Effect Evaporator System," AIChE J., 001. 17, p. 1080 (1971). Courtesy of the American 
Institute of Chemical Engineers.) 

the slab in a manner analogous to that demonstrated for Eq. (3-15). The corre- 
sponding result is given by 

03 

+ 2 I(-1)" ierfc - 
n =  1 

n1 ] (3-20) 

where 
m - 2 2  

ierfc z = [ erfc c d c  = 7 - i erfc z 

Values of ierfc z have been tabulated by Carslaw and Jaeger(5). 
For the boundary-value problem under consideration, the corresponding 

heat transfer model is also shown in Fig. 3-8. The differential equation for the 
heat transfer model is given by 

Separation of the variables followed by integration and rearrangement yields 

A comparison of the predicted values of the temperature ratio given by Eq. 
(3-22) with the theoretical values found by use of Eq. (3-20) appears in Fig. 3-9. 

Errors in the mean temperatures predicted by the heat transfer model for large 
cylindrical walls The solutions given by Eqs. (3-15) and (3-17) correspond to a 
situation in which conditions are far more severe than any which ever existed 
during the test runs. The boundary conditions (see Eq. (3-12)) suppose that the 
initial temperature of the metal at the time of the upset is equal to the tem- 
perature TA of the surroundings. To obtain some idea of the difference in the 
mean temperatures of the wall given by the solution of the boundary-value 
problem (see Eq. (3-15)) and the heat transfer model (Eq. (3-17)), consider the 
case where TA = 80°F and T, = 250°F. That is, the initial temperature of the 
metal and the surroundings is 80°F at time t = 0, one side of the metal wall is 
suddenly exposed to saturated steam at 250°F. The initial time step used in the 
program for the system was 0.5 min. Then for t = 11120 h, the following results 
are obtained from Fig. 3-9, that is, the solution of the boundary-value problem 
gives 

and the solution of the heat transfer model gives 

Although the boundary conditions given by Eq. (3-18) are closer to those 
which occurred during the test runs than the conditions given by Eq. (3-12), 
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Figure 3-9 Comparison of the results given by the heat transfer model with those given by the 
solution of the corresponding boundary-value problem (see Fig. 3-8). ( J .  W. Burdett and C .  D. 
Holland: "Dynamics of a Multiple-Effect Evaporator System," AIChE J. ,  001. 17, p .  1080 (1971). 
Courtesy of the American Institute of Chemical Engineers.) 

they are also more severe than those which existed during the test run. For 
purposes of illustration, consider the case where the initial temperature T, of 
the metal is 240°F and the temperature T, of the steam in contact with one side 
of the wall is suddenly changed to 270°F. At the end of 1/120 h, the mean 
temperature given by the solution of the boundary value problem is 

and by the solution of the heat transfer model is 

These results may be obtained by use of Eqs. (3-20) and (3-22). 

Heat Transfer Model for the Tubing of the 
Steam-Heated Heat Exchangers 

The model proposed for these thin metal walls consists of a further simplifica- 
tion of the model proposed for the representation of the heat transfer through 
large cylindrical walls. The proposed mode for these thin metal walls consists 
simply of taking the mean temperature of the walls equal to the steam tem- 
perature. In the case of thin metal walls such as those found in the steam- 

heated heat exchangers, the mean temperature found by solving the 
boundary-value problem is almost exactly equal to the wall temperature predic- 
ted by use of the heat transfer model. In other words, the heat transfer model 
proposed in the previous section approaches an exact representation of the thin 
metal walls. Thus, for a heat transfer situation represented by Eq. (3-16), it is 
evident that the temperature of the wall is approximately equal to the steam 
temperature at the end of the first time step provided both of the following 
conditions are satisfied simultaneously: 

u2 

( U ,  + U , ) I  

and 

where U 2  contains the steam film coefficient. In a typical steam-heated heat 
exchanger, U 2 / ( U l  + U , )  z 0.825, and (lpC,)/(U, + U , )  was equal to 0.000 157 
while At was equal to 0.008 33 h. 

Thus, in summary, the proposed heat transfer model is seen to apply pro- 
vided ( 1 )  the "time constant" lpC,/(U, + U , )  is much less than the time step At 
used in the numerical solution of the evaporator problem (that is, the time 
constants for other units of the system are large relative to the one for the thin 
walls of the exchanger) and (2) the heat transfer coefficient for the steam side is 
much greater than the heat transfer coefficient for the other side. The use of the 
proposed model is further strengthened by the fact that energy balances involve 
differences in heat content of the walls at the beginning and end of each time 
period, and these differences are generally more accurate than the predicted wall 
temperatures. 

The heat transfer model used for the metal walls of the tubes of the liquid- 
liquid feed-preheater associated with the first evaporator effect was essentially 
the same as the one described above except that the mass of the tubes was 
prorated to be at the temperatures assigned to the mass of each liquid accord- 
ing to the coefficient of heat transfer of each liquid. Similarly, well-insulated 
process piping was taken to be at the temperature of the process fluid adjacent 
to it. 

Heat Transfer Model for the Liquid in the Feed Preheaters 

The proposed model for the liquid in the feed preheaters consists of the use of 
the steady state relationships to describe the rate of heat transfer occurring at 
the beginning and at the end of any time period during the transient analysis of 
the process model. Support for this model is the fact that the process fluid 
undergoes plug flow through the tubes with little axial mixing and the fact that 
the residence time of the fluid in the exchanger was short compared with the 
time intervals used in the numerical solution for the system of evaporators. 
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All process liquid flowing through the tubes was taken to be concentrated 
in a perfect mixer following each exchanger. The heat content of the metal 
piping associated with each exchanger was taken to be at the temperature of the 
process liquid in the perfect mixer. The assumptions for the feed-preheaters and 
the liquid-liquid feed-preheaters are listed below. 

3-2 FORMULATION OF THE MODEL FOR 
THE SYSTEM OF EVAPORATORS AT 
THE FREEPORT DEMONSTRATION UNIT 

The proposed process model for the system of evaporators is obtained by 
dividing the plant into components which are describable by the fundamental 
relationships common to chemical engineering. First the assumptions upon 
which the model is based are presented, and then the equations required to 
describe the model are presented. 

Assumptions Made in Modeling the System of Evaporators 

There follows a statement of the assumptions upon which the mathematical 
model for the system of evaporators is based. 

1. The masses of metal in evaporator tubes and in the feed preheaters are 
denoted by M,,, and M,,,, respectively. These masses of metal are taken 
to be at the temperature Tcj of the condensing steam in effect j. This 
approximation is based on the fact that the steam film coefficient was 
relatively large compared with the liquid film coefficient, and the fact that 
the tube walls were relatively thin. The tubes and the heat transfer model 
are displayed in Figs. 3-2, 3-4, and 3-10. 

2. The mass of metal M,,, of each evaporator effect j which is exposed to 
condensing steam or condensate on one side and the surroundings on the 
other is assigned the temperature TWsj .  The rates of heat transfer to and 

Tube wall 

r Liquid film 

Figure 3-10 Heat transfer model for the 
metal tubes in contact with steam and 
thick liquor. 
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Insulation -, -Effective thermal conductivity films 

Air film -, \ 

Evaporator wall 

Figure 3-11 Heat transfer model for the evaporator wall in contact with steam and the 
surroundings. 

from this mass of metal are given by the expressions shown in Fig. 3-1 1. 
One-half of the thermal resistance of the metal wall is assigned to an 
equivalent film on each side of the wall. 

3. The holdup of energy by the insulation is taken to be negligible relative to 
the feed, process liquid, condensate, and metal in the evaporator system. 
This approximation rests primarily on the fact that the actual mass of the 
insulation was relatively small. 

4. The mass of metal M w L j  of each effect j which is in contact with the process 
liquid on one side and the surroundings on the other is taken to be at the 
temperature TwlL,. The heat transfer model is displayed in Fig. 3-12. 

Insulation <f:ctive thermal conducttvity films 

i Evaporator wall 

Figure 3-12 Heat transfer model for the evaporator wall in contact with process liquid and 
the surroundings. 
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a,- IL,-  I 

Process liquid 
from effect j - 1 

Recycle 

c1, 
Condensate 
leakage 

Figure 3-13 Model for the tubes of 
evaporator effect j. 

5. The discharge temperature TEj of the process liquid from the tubes is com- 
puted by use of Diihring lines based on the condensate temperature of the 
next effect and the mass fraction XEj of salt in the liquid discharged from 
the tubes of evaporator effect j (see Fig. 3-13). 

6. The pressure drop between the sump of one effect and the steam chest of 
the next effect is taken to be negligible. 

7. In the rate expression for the transfer of heat from the condensing steam at 
temperature Tcj to the process liquid flowing down through each evapor- 
ator tube, the discharge temperature TEj of the process liquid is used in the 
potential term (Tcj - TEj) for heat transfer. This approximation is consistent 
with the fact that the heat transfer coefficient UEj employed was calculated 
at steady state operation on the basis of the discharge temperature. 

Feed holdup and preheater '(I 

/ / / / / / / / / / / A  
F Feed 

Tp1 / / / / / / / / N / / / / / / / / / A  T~~~ I 

XF + I 
XI , - I  '- TC,  

I 
Model for the tubes of the seawater preheatcr- 

Figure 3-14 Models for the seawater preheater and holdup of the feed associated with an 
evaporator. 
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' QFI 

Condensate from effect 1 Tcrl 

$jT/ mixed 

Figure 3-15 Models for the condensate holdup and feed preheater for the first effect. (J. W. 
Burdett and C .  D. Holland: "Dynamics of a Multiple-Effect Evaporator System," AIChE J. ,  vol. 
17, p. 1080 (1971). Courtesy ofthe American Institute of Chemical Engineers.) 

8. The accumulations of mass and energy of process liquid in the evaporator 
tubes are taken to be negligible relative to the accumulation of mass and 
energy of process liquid in the sump of effect j. 

9. The total amount of steam condensate associated with each effect is denoted 
by dlcj (see Figs. 3-4 and 3-15). Except for the first effect the mass of 
condensate is taken to be at the saturation temperature of steam Tcj, 
at the pressure in the steam chest. For the first effect, the mass of con- 
densate &;*,, in the preheater and in the line between the steam chest of the 
first effect and the condensate flash-tank of the second effect is taken to be 
concentrated in a perfect mixer following the preheater, as shown in Fig. 
3-15. In all rate-of-heat-transfer calculations, the steam in the first effect is 
taken to be at the temperature Tcj except for the first effect where it is taken 
to be at the saturation temperature Tc, of the supply steam. However, any 
superheat present in the steam entering the steam chest of a given effect, is 
taken into account in the energy balances. 

10. The effect of noncondensables on the operation of the system of evaporators 
is taken to be insignificant because of the venting of the steam chest of each 
effect. 

11. The mass of vapor (steam) in the steam chest in the evaporator and in the 
feed preheater as well as the vapor in the condensate flash-tank is taken to 
be negligible relative to the mass of condensate associated with each effect. 

12. The mass of seawater feed in the preheater and preheater feedlines between 
effects j and j - 1 is taken to be concentrated as the mass AFj of a perfect 
mixer as shown in Figs. 3-4, 3-14, 3-15, and 3-16. For all effects except the 
last one, wherein the holdup is associated with the acid treater, the masses 
of the holdups are taken to be independent of time. This assumption is 
based on the fact that the feedlines between effects were full at all times. 
The masses of metal in the feedlines associated with effect j are taken to be 
concentrated in the mass MFj at the temperature TFj of the perfect mixer. In 
the first effect, mass M,, includes part of the mass of metal of the preheater. 
For the last effect, mass M,,, includes part of the mass of metal of the acid 
treater. This assumption is based on the fact that a change in temperature 
at a given point in the piping has a magnitude and a time response similar 
to that predicted by the temperature TFj. 



Preheater 17 

/ 1 ) in effect 17 

Inlet-feed 
preheater 18 

C19 - 
Product water 

Too.  ha0 

Final condenser 

d 
To preheater 16 

Figure 316 Composite model of peripheral equipment of the evaporator system. (J. W. Burd- 
ett and C. D. Holland: "Dynamics of a Multiple-Effect Evaporator System," AIChE J . ,  vol. 17, 
p. 1080 (1971).  Courtesy o f t h e  American Instittrte of Chemical Engineers.) 

13. The dynamic behavior of the feed preheaters may be represented at any 
instant by the equations describing the steady state behavior of heat ex- 
changers. 

14. The mass of process liquid in the sump and in the lines associated with 
effect j is taken to be concentrated in the sump with a mass denoted by 
,KLj .  This mass of liquid is taken to be perfectly mixed at the temperature 
TLj  but not necessarily in thermal equilibrium with the vapor stream VEj .  

15. For sump-to-sump flow, the process liquid stream (1 - c c j _  , ) L j - ,  is as- 
sumed to flash adiabatically at the pressure in the sump of effect j: as 
displayed in Fig. 3-4. The liquid LFj  formed by the flash is assumed to mix 
perfectly with the liquid in the sump. The vapor VFj formed by the flash is 
assumed to flow directly to the exit vapor line from effect j without loss or 
gain of energy. 

16. The flow rate C j  of condensate from the flash-tank of effect j to the flash- 
tank of effect j + 1 is taken to be regulated by a proportional controller 
that regulates the mass holdup of condensate ACj in the flash-tank. Al- 
though most of the flash-tanks did not actually have controllers, the 
assumption is justified on the basis that the response behavior for self- 
regulating systems of this type can be approximated by asuming that pro- 
portional controllers do exist. The gains of the assumed controllers are set 
to match the responses calculated with the model to the responses derived 
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from theory or measured experimentally. Response ranges of the assumed 
controllers are limited to the cylindrical section above the cone in the 
flash-tanks of effects 2 to 12 and to the rectangular section in the flash- 
tanks of effects 13 to 17 in the module. In these regions changes in con- 
densate holdup Acj are linear with changes in level. The mass of 
condensate associated with the first effect A,-, is taken to be constant due 
to the absence of a flash-tank for the first effect. Thus, the flow rate C ,  of 
the condensate may be determined by the material balance and energy 
balance equations for the steam chest of the first effect. 

17. The masses of the metal components associated with the preheater of the 
first effect are taken to be concentrated in mass M , ,  at temperature T,. and 
in mass M F l  at T,, . Mass M C l  includes the condensate piping from the 
steam chest of the first effect to the flash-tank of effect 2 and a portion of 
the preheater shell-and-tube mass. Mass M F l  includes the seawater feed 
piping from the preheater to the inlet for the first evaporator and a portion 
of the preheater shell-and-tube mass. The concentrated masses are taken to 
be located in the perfect mixers of the model for the preheater as shown in 
Fig. 3-15. 

18. The dynamic values of the variables for the final condenser and feed pre- 
heater 18 (seawater feed to product-water heat exchanger) are assumed to 
be related by the conventional steady state equations as discussed for the 
heat exchanger model. The model for the final condenser is shown in 
Fig. 3-16. 

19. The holdup of energy in the metal masses associated with the final con- 
denser and feed preheater 18 is assumed to be constant. This assumption is 
based on the fact that large upsets in the major process variables produced 
only small changes in the temperatures in the final condenser and in pre- 
heater 18. 

20. The acid treater is represented in the process model as an adiabatic flash 
process wherein the amount of seawater flashed is determined by the differ- 
ence in flow rates of the stripping steam entering and leaving the tower. For 
the evaluation of steady state conditions, the amount of seawater flashed is 
regulated to achieve a preassigned drop in temperature of the vapor leaving 
relative to the feed entering the flash process. For the evaluation of the 
transient behavior following an upset, the amount of seawater flashed is 
assumed to be constant at the value established during the steady state 
period preceding the upset. The holdup of liquid in the acid treater is taken 
to be concentrated in a perfect mixei in the sump of the tower. The amount 
of this holdup ,h iF, ,  is taken to be regulated by a proportional controller. 
A sketch of the model of the acid treater is shown in Fig. 3-16. 

21. Flow rates of process liquid between evaporators are taken to be regulated 
by proportional controllers that detect changes in the mass holdup A L j .  
Due to the noncylindrical shapes of the sumps, the mass ALj is not linear 
with the level measurement. Therefore, the proportionality factor of each 
controller is made a function of ALj in the numerical solution in order to 
correct for this nonlinearity. 
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22. To allow for the holdup of the feed in the piping between the feed pump 
(where the upsets in the feed composition occurred) and the evaporator 
module, a plug-flow section with holdup AF,, is assumed to exist as in- 
dicated in Fig. 3-16. This holdup is positioned before the preheater since 
most of the estimated holdup actually occurs there. 

23. If any holes develop in the evaporator tubes of an effect, leakage of con- 
densate and vapor occurs from the steam chest into the evaporator tubes. 
Provision for setting condensate leakage rate CLj is provided in the model 
as shown in Figs. 3-4 and 3-13. Allowance for vapor leakage is made by 
adding any estimated leakage to the estimate for vapor bleed VBj.  Both of 
these leakage parameters were estimated from an analysis of steady state 
data. 

Statement of the Equations Required 
to Describe the Model for the Evaporator System 

Based on the assumptions stated, the equations required to describe each part 
of the evaporator system are presented in Table 3-1. The superscript zero is 
used to denote the values of the variables at the beginning of the time period 
under consideration, and the absence of a superscript is used to denote the 
values of the variables at the end of the time period under consideration. When 
the holdup of mass or energy of a particular part of the system cannot be 
neglected, the corresponding integral-difference equation is reduced to algebraic 
form by use of the implicit method. When the holdup of mass or energy of a 
given part of the system is negligible, the instantaneous form of the correspond- 
ing steady state equations evaluated at the end of the time period under con- 
sideration are given. 

In the development that follows, the independent equations are assigned 
equation numbers. The subscript j is used to denote the number of the evapor- 
ator effect = 1, 2, 3, ..., 17). Streams as well as the properties of streams 
treated by peripheral equipment carry identifying subscripts j = 18, 19, and 20. 
Also, in the development that follows, the assumptions stated in the previous 
section are referred to by number. 

In order to demonstrate the formulation of the equations shown in Table 
3-1, the equations are formulated below for each of five different types of 
models which are used in the description of each evaporator; namely, (1) the 
heat transfer model, (2) processes which have negligible mass holdup, (3) pro- 
cesses which have negligible energy holdup, (4) equilibrium relationships, and (5) 
process controllers. 

Energy balance on the walls of the evaporator The energy balances on the metal 
walls of the evaporators which are in contact with steam on one side and the 
surroundings on the other side are based on assumptions 2 and 3 and on the 
models displayed in Figs. 3-4 and 3-11. In particular, the resistance l/(UA),sj 
and l/(UA),,, to heat transfer are represented graphically in Fig. 3-11 and 
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Table 3-1 Equations required to describe the evaporator system 

1. Energy balances on the walls of the evaporators 

where 

where 

2. Material and energy balances on the contents in the evaporator tubes 

FXFl - LEI X,,  = 0 (3)  
' ) - I  L ,  I X L ,  , - I  + L,jXLJ - L E j x E J  = 0 (2  1 j I 17) (4) 

F - LEI - V,, + C L l  = 0 ( 5 )  

H here 

Q E ~  = (UAJLI(TCO - TEI) 

Qt, = (UA),,(Tr, - T,,) (2 1 j I 17) 

mT,, ,+ , + b - T,, = 0 (1 1 j 1 17) (9) 
where 

3. Adiabatic flash of the process liquid leaving effect j - 1 and entering effect j 

(Continued over) 



Table 3-1 Equations required to describe the evaporator system-Continued 

where 
m = m(XAFj ,  Tc. j+l)  

b = W A F J )  

4. Material and energy balances on the contents of the steam chest of the first effect and the mass 
of metal in the evaporator tubes 

Vo - C ,  - VBl - V,,, - CLl  = 0 (14) 

VoHo - (Co + C,,)hco - (VBj + %Al)Hco - Q E I  - Q W S I  

+ dVOH0 - (Co + CLJhco - (VBl + VBAl)Hco - Q E ,  - QWs1l0 

- MTEl C p ~ ~ l ( T c o  - T:o) = 0 (15) 
6 At 

where 

- 

5. Energy balances and rate equations for the preheater and condensate holdup associated with 
the first effect 

6. Energy balances and rate expressions for the feed preheaters for evaporator effects 2 2 j I 17 

7. Material and energy balances on the contents of the steam chests and flash-tanks, and on the 
mass of metal in the evaporator and preheater tubes for evaporator effects 2 5 1  I 17 
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Table 3-1 Equations required to describe the evaporator system-Continued 

8. Combination of the vapor streams leaving each evaporator 

9. Material and energy balances on the process liquid associated with the sump of each evaporator 
-- - 

L,, - L,  + 0 [ L E ,  - L1l0 - (ALL - & ; I )  = 

6 At 
(28) 

LEj + LA,, - LJ - LRj + OILEJ + LAFJ - Lj  - LRJI0 - (A~' - 4J) 
6 At 

= O  ( 2 1 j 1 1 7 )  (29) 

LE,  X E 1  - L ,  X L ,  + 4 L E l  X,, - L ,  X L 1 l 0  - 
("+@L, X L ,  - 4 1  X;l) = 

6 At 
(30) 

LEIXE, + L A F ~ X A F ~  - (LJ + LRJ)XLJ + n [ L E J X E J  + L A F j X A F J  - (LJ + 

- ("+@LjXLJ - x:J) = ( 2  < < (3  
6 At 

LEI  hEl - Ll  hf.l - Q H L l  + u [ L E I  hEl - Ll hL1lo - hL1  - "+@;I h t t )  = 0 
(32) 

6 At 

L t j h ~ j  + L A F ~ ~ ~ F ~  - (LJ + LRJ)hLJ - Qwl~J  

+ uILE,hEJ + LAFjhAFJ - (LJ  + LRJ)hLJ - Q W L J I 0  

- hLJ - YKtJ h e )  = 

6 At 
(2 1 j i 17) (33) 

L - L J ,  - , - L J  = 0 ( 1  I j  i 17) (34) 

where 

QwL, = (UA)WLI(TL~ - TwLJ) (1 i j I 17) 

10. Material and energy holdups on the feed preheaters 

(Continued over) 
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Table 3-1 Equations required to describe the evaporator system-Continued 

11. Modeling of the acid treater 

SF - VAF - F + o[SF - VAF - F J O  - (Y/CI~17 - Y/CI:17) = 0 (37) 
dJ At 

where the enthalpy hAF of the flashed liquid is computed on the basis of the composition X A F ,  namely, 

As indicated in assumption 20, VAF was taken to be fixed at the value it had prior to the upset. 
VAF was determined at the steady state flow rate SF by fixing the temperature TAF such that the 
difference (T, , ,  - TAP) was equal to 1°F. Then the above equations were solved for V,,, LA, ,  
and X, , .  

12. Material and energy balances for the f i ~ a l  condenser 

13. Material and energy balances on the ~nlet-feed preheater 

C17hCll + C , S ~ C , S  - C19hC19 = 0 (45) 
where 

14. Plug flow section preceding the inlet-feed preheater 

The mathematical model for the plug flow section assumed for the process model in assumption 22, 
and shown in Fig. 3-16, is a linear model. Inlet values of the physical properties were stored for the 
end conditions of each time interval. Exit values of the properties were determined by a linear 
interpolation between the sample values whose times bracketed the run time t ,  minus the holdup 
time. 
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Table 3-1 Equations required to describe the evaporator system-Continued 

The equations used to determ~ne the temperature T p l ,  and the feed composltlon X, , ,  at trme 
t ,  are glven by 

where 

where k is selected such that 

These equations, which are of course independent of the remaining equations for the model, were 
solved once each time step. 

discussed in Sec. 3-1. For any evaporator effect j (1 < j _< 17) over the time 
period from t ,  to  t, + At, the energy balance for the portion of the wall under 
consideration is given by 

Use of the implicit method to approximate the integral on the left-hand side of 
this equation yields the following result upon rearrangement: 

(3-23) 
where 

0 = ( I  - $114 
Qwsl = (UA)wsl(Tco - Tws,) 

Qwsj = (UA)ws,{Tcj - T k j )  (2 2 j 5 17) 

QAsj = ( u A ) A S A T ~ ~ j  - T ~ )  j 5 17) 

When the metal walls of a n  evaporator are exposed to process liquid on  
one side and the surroundings o n  the other side, the energy balances are based 
on assumptions 3 and 4 and the models shown in Figs. 3-4 and 3-12. In this 
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case, the following result is obtained upon reduction of the integral-difference 
equation to algebraic form: 

where 

Material and energy balances on the contents in the evaporator tubes The bal- 
ances are based on assumptions l ,  5, 6 ,  7 ,  8, and 23. Models for this portion of 
the system are presented in Figs. 3-4, 3-10, and 3-13. The holdup of mass and 
energy in the evaporator tubes is negligible relative to that in the sumps and is 
disregarded in the following balances. The component-material balances over 
the time period from t ,  to t ,  + At are given by 

Since the integrals given by these equations are equal to zero for all choices of 
t ,  and t ,  + At in the time domain of interest, it follows that the respective 
integrands are identically equal to zero for all t lying between t ,  and t ,  + At. 
For such cases, the given balance (material or energy) is stated in its instanta- 
neous form corresponding to the end of the time period under consideration as 
follows : 

F X F l  - LEI  X E 1  = 0 (3-25) 

a ,  L ,  X L ,  , , + LRj  X L j  - LEj X E j  = 0 (2  < j  < 17) (3-26) 

F - L E I  - VE1 + C L 1  = 0 (3-27) 

L j -  + LRj - LEj - VEj + CL, = 0 (2  I j 5 17) (3-28) 

FhFl + QE1 - LEI hEl - VEI H E I  + C L I  ~ C L I  = 0 (3-29) 

a j -  I L j -  h,, j -  + L R j  hLj + Q E j  - LEI hEj  - VEj HEj + CLjhCLj = 0 

(2 < j < 17) (3-30) 

where 
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The temperature TE, of the liquid in the evaporator tubes is computed by using 
Diihring lines, which may be represented as follows: 

mTcSj+ ,  + b -  T E j = O  (1 I j s  17) (3-3 1 )  

where the slope m depends upon both X E j  and Tc. j + ,  , and b depends upon X E j  
alone, that is, m = m ( X E j ,  Tc. j +  and b = b(X,,). 

Energy and rate equations for the feed preheaters for evaporator effects 
2 < j < 17 Models of the seawater preheaters are shown in Figs. 3-4, 3-14, and 
3-16. When the mass and energy holdups of a given part of the system are 
negligible relative to any other part, the integral-difference equations reduce 
simply to the dynamic form of the algebraic equations required to describe the 
corresponding steady state process. Thus, on the basis of assumption 13, it 
follows that the instantaneous rate of heat transfer in the seawater preheaters is 
given by 

On the basis of assumptions 12 and 13, the following expressions are obtained 
for the energy balances on the seawater preheaters: 

Q F j  = FCppj(T~j - TF, / +  1 )  (2  I j  I 161, (3-33) 

Q ~ 1 7  = S ~ C p ~ 1 7 ( T ~ 1 7  - T ~ 1 8 )  (3-34) 

where Q F I 7  is the rate of heat transfer in the inlet-feed preheater (shown in Fig. 
3-16). 

Elimination of QFj (2  I j I 16) from the first two expressions yields 

Similarly, the elimination of Q F 1 ,  from the first and third expressions gives 

Control of mass holdup in the evaporators The holdups were controlled by 
either proportional controllers or self-regulated by gravity flow from sump to 
sump. In either case the following expression was used to relate the holdups and 
flow rates: 

K L j [ A L j  - (ALj),] - [(L, - (L,),] = 0 ( 1  I j  I 17) (3-37) 

where the proportionality constant K L j  depends upon the proportional band 
width or gain of the controller, the type of control valve, and the geometry of 
the sump. The subscript r denotes the value of the variable when the controlled 
variable is at its reference point. 
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The equations for the remaining parts of the system are developed in a 

manner analogous to that shown above. 

Summary of the Mathematical Model 

The mathematical model consists of the complete set of 380 independent equa- 
tions (see Eqs. (1) through (47) of Table 3-1) in 380 unknowns plus the plug flow 
relationships given by Eqs. (48) and (49) of Table 3-1. The first effect is 
described by 19 independent equations, one of which is given by each of the 
following equations numbers: (I), (2), (3), (5), (7), (9), (14) through (18), (22), (24), 
(27), (30), (32), (34), (35), and (36). Of the variables appearing in these equations, 
19 of them are for the first effect. They are as follows: T,,, T,,, Tc l ,  T,, , TFl ,  
T E ~ ,  T L ~ ,  Tws l ,  T w L ~ ,  T i 1 ,  VEl, V1,  Cl , LEI, L 1 ,  XF1, XE1, X L 1 ,  and A,, . If 
the steam temperature Tco is fixed (that is, the steam supply is on pressure 
control), the supply steam flow rate Vo becomes the independent variable. 

Effects 2 through 17 plus the peripheral equipment are seen to be described 
above by 361 independent equations. (The independent equations are assigned 
equation numbers.) In addition to one or more of the variables enumerated for 
the first effect, these 361 equations contain 361 additional independent variables, 
which are as follows: T,,, T,,, T,,, TEj,  T,,, Twsj, TwLj,  Tvj ,  TAFj,  VEj, 5 ,  VAFj, 
C j ,  L,, L j ,  LAFj ,  X F j ,  X E j ,  X,,, X A F j ,  A,,, and ALj (where 2 5 j I 17 for a 
total of 22 x 16 = 352 variables), plus the following nine variables: T,,,,  T,,, 
Tc18, qut, Tc19, Tcm, Ci8, F ,  and A ~ 1 9 .  

The liquid holdups, such as dl,, and A,, were fixed by the physical 
specifications of the equipment. The temperature T,,, and the brine con- 
centration X,,, were computed once each time step by use of the explicit 
relationships given by Eqs. (48) and (49). These values were used throughout the 
course of the solution of the 380 equations for the 380 unknowns. 

3-3 ANALYSIS OF THE RESULTS OF FIELD TESTS 

To evaluate the ability of the proposed model to predict the dynamic behavior 
of the desalination plant, several field tests were run on this plant. The pre- 
dicted behavior of the plant by the model was obtained by solving the equa- 
tions for the model at the end of each time step and on the basis of a given set 
of operating conditions and physical parameters for the plant. There follows a 
brief discussion of the procedures utilized in the testing of the model through 
the use of field tests. 

Calculational Procedures 

The 380 equations (Eqs. (7) through (47)) describing the model of the plant were 
solved simultaneously for the variables at the end of each time step by use of 
the Newton-Raphson method as demonstrated in Chap. 2. The first step in this 
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F application of the Newton-Raphson method consisted of replacing the zero on 
1 the right-hand side of each of the 380 equations by the functional notation f, 1 (1 I k I 380). In order that any At > 0 might be used at any point in the 
I 

sequence of calculations without having the inherited error become unbounded, 
a 4 = 0.6 was employed. Also, the generalized scaling procedure (variable scal- 
ing and row scaling) described in Chap. 2 was employed. A solution set of 
variables at the end of the time step under consideration was said to have been 
obtained when each element of AY was equal to or less than 0.00005 and each 
element of F was equal to or less than 0.00001 (see Eqs. (2-37) through (2-42)). 

The program for the unsteady state model could be used to obtain the 
steady state solution for the given set of operating conditions by setting 4 = 1 
and by setting At = lo3' hours. This choice of values for 4 and At had the 
effect of the elimination of the input and output terms at the beginning, of the 
time step as well as the elimination of the accumulation terms, and thereby gave 
the steady state equations corresponding to the final steady state. 

In the application of the Newton-Raphson method, approximations were 
used for certain of the partial derivatives. In particular, the partial derivatives of 
the liquid enthalpies with respect to salt content were taken to be equal to zero. 

On the average, about four iterations of the Newton-Raphson method were 
required per time step (Ref. 3). About 15 iterations were required to solve the 
initial steady state problems. More trials were required for the steady state 
problem than were required for each time step of the unsteady state problem 
because the initial guesses for the steady state problem were poorer than those 
for the unsteady state problem. The initial guesses for the steady state problem 
were deduced by use of a relatively simple scheme which was similar to those 
commonly used; see, for example, Perry(20). 

The initial guesses for the values of the variables at the end of each time 
step consisted of taking them equal to the values of these variables which were 
found at the end of the previous time step. An IBM 360 model 65 computer 
was used to solve the equations for the model. Approximately one minute was 
required to obtain a steady state solution, and approximately 20 seconds were 
required to obtain a solution for each time step of the unsteady state problem. 

Determination of Equipment Parameters 

Physical dimensions of the holdup volumes, the surface areas, the masses of 
metal, and the types of materials of the heat sinks were obtained from the 
construction blueprints of the plant. Since "effective values" were needed in the 
model, some personal judgment was used in assigning part or all of a mass (or 
volume) to its counterpart in the process model. 

Heat transfer areas for the tubes of the preheaters and evaporators were 
obtained from the status records of the plant equipment (Ref. 4). Coefficients of 
heat transfer for the feed preheaters and the evaporators were determined from 
the results of recent steady state test runs performed and reported by plant 
personnel (Ref. 4). The coefficients so obtained as well as the heat transfer areas 
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and masses of metal are presented in Tables 3-2 and 3-3. Although values for 
the heat transfer coefficients for the evaporators could have been calculated by 
use of procedures proposed by Huang et a1.(17), the experimental values from 
the steady state tests were used because it was felt that they most closely 
approximated the values that existed at the time the unsteady state tests were 
made. Since the coefficients of heat transfer for LTV evaporators vary with 
operating temperature (Refs. 23, 24), the values used during the numerical evalu- 
ation of the mathematical model were adjusted for the effect of temperature 
(when it differed from those at which the coefficients were evaluated) by use of 
the relationship reported by Standiford(24). In particular, the derivative of the 
heat transfer coefficient hEj with respect to TEj was taken to be equal to the 
slope of the line shown in Fig. 3-17. 

Otber film coefficients employed were computed by use of relationships 
given by Perry(20) (see Table 3A-1 of App. 3A). Physical properties of the metal 
walls, tubing, piping, and the insulation were taken from Perry(20) as well as 
the thermodynamic and physical properties of steam and water (see Table 
3A-1). 

Enthalpies, specific heats, and boiling point elevations of the brine process 
liquid were taken from Refs. 2 and 10 (see Table 3A-1). 

Table 3-2 Specifications for the evaporators (Ref. 4) 

Heat transfer tubes 

Heat transfer Reference 
Area, coefficient, temperature, Mass, 

Etrect it2 Btu/(h.'F.ft2) 'F Ib 

1 3810 720 266 11 429 

2 3420 723 258 10 264 
3 3700 561 250 11 110 
4 3690 795 242 11 110 
5 3700 563 232 11 110 
6 3710 702 223 11 146 

7 3420 670 214 11 182 

8 3420 666 205 10264 
9 3600 412 194 10900 

10 3700 396 185 11 110 

11 3710 411 176 11 146 

12 4290 259 160 12 864 

13 3940 432 148 9 259 

14 4000 320 134 6 340 

15 3940 345 119 11 828 

16 3490 358 104 8 202 

17 3730 220 87 8 766 
1 s t  4000 188 80 11970 
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Table 3-2-Continued 

Effective values for the metal walls 

Exposed to process liquid Exposed to steam or condensate 

Area, it2 Area, it2 

Mass Mass, 
in 1000's in 1000's 

Effect Inside Outside of Ib Inside Outside of Ib 

1 692 657 23.0 308 293 6.56 
2 692 657 20.6 774 735 13.3 
3 692 657 20.6 782 743 13.4 
4 692 657 20.6 628 597 11.4 
5 692 657 20.6 657 64 1 12.0 
6 692 657 20.6 796 756 13.0 

7 692 657 20.6 627 596 10.9 
8 777 738 18.6 737 700 11.3 
9 777 738 18.6 700 665 11.7 

10 882 838 22.4 734 697 12.2 
11 1055 1002 27.4 790 750 13.0 
12 1438 1366 34.3 1 I24 1068 22.4 

13 322 205 5.89 929 447 20.9 
14 315 121 5.08 1125 43 1 20.9 
15 315 I21 5.08 1125 43 1 20.4 
16 315 121 5.08 1125 43 1 20.4 
17 327 137 5.60 1622 963 31.7 

t Final condenser. 

Test Run 1 

During test runs, the plant was operated by the usual plant personnel. Samples 
from the process lines and data from nonrecording instruments were collected 
during the test by technical personnel of the plant and by several graduate 
students from the Department of Chemical Engineering of Texas A&M Uni- 
versity. 

Test run 1 (assigned the number 8-17-llA by Burdett(3)) consisted of a 
sequence of upsets in the salt concentration of the seawater feed, see Table 3-4. 
These upsets were achieved by diluting the incoming seawater with product 
water from the plant. At the desired time for the initial upset, a valve was 
partially opened which permitted product water to enter the suction side of the 
seawater feed pump. The amount of dilution was determined by the change in 
the refractive index of a sample taken from the discharge side of the pump. 

Samples of the process liquid were taken at the outlets of the feed pump, 
the acid treater, and the evaporator sumps. The sampling was carried out 
according to a preselected time schedule for each sample point. Flow rates, 



Table 3-3 Specifications for the feed preheaters (Ref. 4) 

Heat transfer tubes Holdup 

Heat transfer Mass, Ib 
Area coefficient, Mass, 

Effect ft2 Btu/(h. "F .f t2) Ib Metal Liquid 

1 520 220 1080 1460 1264 

2 3360 348 4000 2949 4935 

3 2820 643 5870 2748 4224 

4 2290 225 4760 1575 3168 

5 3010 250 6270 1374 3 747 

6 3490 476 7270 2748 5084 

7 1790 390 3730 1603 2805 

8 1790 400 3730 1775 2224 

9 1800 350 3750 1632 2221 

10 1770 315 3690 1660 2113 

11 1740 310 3620 1660 2083 

12 1980 430 4120 2060 2636 

13 1460 625 3040 3020 2 767 
14 1460 400 3040 751 1 560 
15 1770 405 3690 751 1875 
16 2420 345 5050 751 2545 
17 2420 435 5050 269507 11 1007 
18 155 8310 24 800 

t Includes volume or mass equivalent for acid treater components. 

. . 

Boiling temperature, "F 

Figure 3-17 Actual coefficients for LTV seawater evaporators of the falling film type. ( F .  C. Standi- 
ford, "Evaporation," Chem. Eng. vol. 70, p. 157 (1963).) 

Table 3-4 Operating conditions of the evaporator system for 
test run 1 (Ref. 3) 

parameter In~tial value 

Seawater feed rate, thousand pounds per hour 
Concentration of brine in feed, X,, 
Temperature of feed, "F 
Temperature of steam to effect 1, "F 
Dewpoint in first steam chest, "F 
Steam rate to first steam chest, thousand pounds per hour 
Cooling water supply rate, thousand pounds per hour 
Temperature of cooling water, "F 
Temperature of atmospheric air, "F 
Control method for steam (=pressure) 

Upset schedule 

TY ~e Time Step 
Time, Upset New of constant, size, 
min variable value change min min 

0 XSF 0.692 Linear 1 .O 0.5 
7 XSF 0.632 Linear 0.5 0.5 

10 XSF 0.560 Linear 0.5 0.5 
25 XSF 0.576 Linear 0.0 1 .O 

30 None 2.0 
50 None 5.0 
80 None 10.0 

temperatures, and sump levels were monitored and recorded by the instruments 
in the control room. 

Salt content of each sample was determined by measuring its refractive 
index. The refractive index was calibrated against the salt content as determined 
by titration of the calibration samples with silver nitrate. The salt content of the 
samples was expressed in terms of the concentration factor (C.F.) which rep- 
resented the ratio of the chlorinity of the sample to the chlorinity of normal 
seawater (Ref. 9). Chlorinity is the total amount of chlorine (grams) contained in 
one kilogram of seawater in which all of the bromine and iodine have been 
replaced by chlorine. 

Two sets of variables were used for the comparison of the experimental and 
calculated results of this test run, namely, the vapor temperatures and the salt 
concentrations of the brine process liquid. The temperatures of the vapors leav- 
ing effects 1 through 12 were monitored during the transient operation by 
means of thermocouples located in the vapor lines leaving each effect. Salt 
concentrations were determined for samples which were withdrawn from the 
discharge side of pumps used to transfer (or recycle) the brine process liquid. 

Prior to making run 1, the plant was brought to a steady state with the 
process variables at typical operating levels, and then the salt concentration of 
the feed was upset as shown in Table 3-4. Operating specifications for the 
system of evaporators for run 1 are shown in Table 3-5. Temperatures of the 
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Table 3-5 Operating specifications within the evaporator system for test run 1 
(Ref. 3) 

Vent rates, Level in sump, 

Ib/h Recycle Feed % of rangel Condensate 
rates, brine . leakage 

ERect Cascade External 1OOO Ib/h inlet7 Measured Used 1OOO Ib/h 

1 63 0 0 
2 376 0 0 
3 138 0 0 
4 0 360 0 
5 177 0 0 
6 146 0 0 

7 120 0 0 
8 202 0 0 
9 148 0 0 

10 256 0 0 
11 210 0 130 
12 0 300 63 

13 200 0 131 
14 200 0 131 
15 200 0 131 
16 200 830 131 
17 200 0 131 
Final 0 50 
condensate 

Temperature drop of feed through acid treater, 1°F 

Top 
Top 
Top 
Top 
Sump 
Sump 

Sump 
Sump 
Top 
Top 
TOP 

t Top of evaporator tubes. 
$ Level controller ranges: 200 inches for Effects 1 through 12, 50 inches for Effects 13 through 

17. 

exit vapors and the concentrations of the brine process liquid leaving the sumps 
at the initial steady state are presented in Table 3-6. The average deviation 
between the measured and the calculated temperatures for the first twelve effects 
was 1.9"F. If the temperatures indicated by the thermocouples were dewpoint 
temperatures rather than the actual temperatures of the superheated vapors, 
then the measured temperatures should be compared to the condensate tem- 
peratures of the steam chests of the next effect. When such a comparison was 
made, an average deviation of 0.9"F was obtained for the first 11 effects, and a 
deviation of 4.4"F was obtained for the 12th effect. The higher deviation for the 
12th effect was attributed to the low value of the heat transfer coefficient used 
in the calculation (see Table 3-2). Since the agreement between the measured 
and calculated temperatures was relatively good, no adjustments were made of 
the heat transfer coefficients or vent rates. 

  he experimentally determined salt concentrations of the brine process 
liquid which flowed from the sumps of the evaporators were in good agreement 
with the values calculated by use of the model (see Table 3-6). At steady state 

operation, the good agreement between the calculated and observed salt con- 
centration~ implies that the agreement between the actual and the calculated 
flow rates of the brine process liquid was also good. 

Throughout the sequence of upsets in the salt concentrations of the feed, 
the temperatures and flow rates of the process streams remained relatively 
constant. The concentration of salt in each of the process liquid streams leaving 
each of the sumps varied with time as predicted by the model (see Fig. 3-18). 
Samples of the various process liquid streams were taken at times at which it 
had been anticipated that the breakpoints of the time-concentration curves 
would be included. Levels of process liquid in the sumps were measured with 
differential-pressure transmitters, which were read by use of the display meters 
located in the control room. The flow of purge water through the pressure taps 
into the sumps caused significant errors in the determination of some of the 
liquid levels. Because of this difficulty, estimates of the actual levels were made 
by use of the breakpoints in the time-concentration curves. These estimated 
levels were utilized in the calculational procedure. In Table 3-5, both the mea- 
sured levels recorded during the test and the estimated levels are listed. 

The good agreement between the calculated and measured slopes of the 
time-concentration curves following the breakpoints (see Fig. 3-18) demonstrates 
that the holdup of the process liquid is adequately described by the use of 

Table 3-6 Steady state vapor temperatures and brine 
concentrations for test run 1 (Ref. 3) 

Temperature of Concentration of brine 
exit vapors, "F from sump, C.F. 

Measured Calculated Plant Calculated 
Effect at plant from model sample from model 

I 263 262.8 0.97 0.98 
2 252 255.3 1.02 1.03 
3 246 246.9 1.08 1.08 
4 239 240.1 1.13 1.13 
5 23 1 231.6 1.18 1.18 
6 223 224.5 1.24 1.25 

7 214 216.7 1.30 1.32 
8 206 209.1 1.38 1.39 
9 197 199.1 1.46 1.47 

10 186 188.9 . . . 1.56 
I I 176 178.3 1.66 1.67 
12 167 165.2 1.78 1.78 

13 ... 155.5 1.89 1.90 
14 ... 144.1 2.05 2.05 
15 . . . 133.0 2.22 2.21 
16 . . . 122.0 2.39 2.39 
17 . . . 1 10.4 2.58 2.54 
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Effect 2'6t I7 O T 0  

k 
J 

0 0 Experimental 

- Calculated 

Time since initial upset, (min) 

Figure 3-18 Concentrations of brines leaving evaporators sampled during test run 1.  (J. W. Burdett 
and C .  D .  Holland: "Dynamics of a Multiple-Effect Evaporator System," AIChE J., 001. 17, p .  1080 
(1971). Courtesy of the American Institute of Chemical Engineers.) 

perfect mixers in the process model. Also, it should be pointed out that no 
corrections or adjustments were made on the experimental results presented 
herein and elsewhere (Ref. 3). 

In a second sequence of upsets of the feed rate (assigned to the number 
8-24-1 1A by Burdett(3)), good agreement between the observed and predicted 
behavior of the system of evaporators was obtained by Burdett(3). 

Actually, some of the observed values of the variables would have had to 
have been adjusted in order to have placed them in energy and material bal- 
ance. On the other hand, the model required that the system be in energy-and- 
material balance at all times. Therefore, no amount of searching for other 
values of the parameters would have placed the measured and calculated values 
of the variables in exact agreement. 

No  attempt was made to use the results of the test runs to obtain values of 
the parameters except as was stated for the level controllers on the evaporator 
sumps. Also, an estimate of the condensate leakage was made for run 1 in order 
to account for inconsistencies in the brine concentrations which were observed 
at the initial steady state prior to the upset. 

Thus, the initial steady state values and the unsteady state values of the 
variables which were calculated by use of the model represent a fair evaluation 
of how well the steady state and dynamic response of a system of evaporators 
could be predicted by use of the proposed model. 

It has been demonstrated that a large system may be modeled by modeling 
each component of the system. For certain systems, the partial differential equa- 
tions describing the heat transfer may be replaced with good accuracy by a 
corresponding set of ordinary differential equations through the use of the heat 
transfer model proposed in Sec. 3-1. Also, it has been demonstrated that certain 
process equipment in which the holdups are negligible relative to the other 
parts of the system may be represented by the dynamic form of the steady state 
equations. 

NOTATION 

a = constant defined below Eq. (3-1 3) 
A = area perpendicular to the direction of heat transfer, ft2 

C j  = flow rate at which condensate leaves evaporator effect j, Ib/h 
C, = constant defined below Eq. (3-13) 
C,, C, = heat capacities at constant volume and constant pressure, 

respectively, BtuNlb OF) 
D i = internal diameter, ft 
Dn = constant defined below Eq. (3-13) 
E = internal energy above any arbitrary datum, Btu/lb 
h = enthalpy of a liquid phase Btu/lb (also, the coefficient of 

heat transfer is denoted by this symbol and has the units of 
Btu/(h. ft2. OF)) 
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he = film coefficient corresponding to an equivalent thermal resistance 
C.F. = chlorinity of sample divided by the chlorinity of normal seawater. 

The chlorinity of seawater is equal to the number of 
grams of chlorine contained in one kilogram of seawater after 
all of the bromide and iodide have been replaced by chloride 

H = enthalpy of the vapor phase, Btu/lb 

H I ,  H ,  = constants defined below Eq. (3-13) 
k = thermal conductivity, (Btu/h. ft . OF) 
Kc , ,  K, ,  = proportionality factors used in the linearized relationships 

for the flow rates 
1 = thickness of metal wall, ft 
L = flow rate of process liquid, lb/h (also used to denote the 

length in feet along the axis of a cylinder) 
m = slope of Diihring line (see Eq. (3-9)) (also used to denote 

the mean value of a variable) 
A = mass of liquid holdup, lb 
M = mass of metal holdup, Ib 

f' j 
= pressure in the vapor space of evaporator effect j, lb/ft2 

Q = rate of heat transfer, Btu/h 

Tco = temperature of steam to the first effect 

Subscripts 

av 
A 
AF 
AF, 
B A 
C 
E 

L 
m 
out 
P 

= arithmetic average 
= surroundings or ambient conditions 
= adiabatic flash of the seawater feed 
= adiabatic flash of the process liquid (2 < j 2 17) 
= bleed to the surroundings 
= condensate 
= evaporate (also refers to the conditions in the tubes of an 

evaporator) 
= feed 
= inlet conditions of the cooling water to the final condenser 
= intermediate condition of the condensate leaving the first 

effect (see Fig. 3-15) 
= effect number (j = 1, 2, 3, ..., 17), and subscripts j = 18, 19, 

and 20 refer to streams treated by peripheral equipment 
= process liquid at the conditions in the sump 
= mean value 
= temperature of water leaving the final condenser 
= condition of the feed leaving a feed preheater (see Figs. 3-14 

through 3-16) 
= steam 
= vapor 
= variables associated with the transfer of heat from process 

liquid to a metal wall (also used to denote the mean 

temperature of the wall (see Fig. 3-12)) (the symbol "AL" refers 
to the transfer of heat from this wall to the surroundings) 

= variables associated with the transfer of heat from steam to a 
metal wall (also used to denote the mean temperature of the 
wall shown in Fig. 3-1 1) (the symbol "AS " refers to the 
transfer of heat from this wall to the surroundings) 

r = radius of cylindrical shell (also used to denote the 
reference point or control point of a controller) 

SF = seawater feed 
T = temperature, OF 
U = overall coefficient of heat transfer, Btu/(h. f t2.  OF) 
V = flow rate of vapor, Ib/h 
w = flow rate of coolant to the final condenser, Ib/h 
x = mass fraction of the solute (also used to denote distance in 

the boundary problems) 
yn = a function defined below Eq. (3-13) 

Greek letters 

= fraction of the liquid Lj entering the tubes of evaporator 
effect j (see Fig. 3-4) (also used to represent the ratio 
(k/pC,) in Eq. (3-1 1)) 

fl. = the nth positive root of the equation presented below 
Eq. (3-13) 

P = density, Ib/ft3 
n = 3.1416 radians 
CT = 4/(1 - 4) 
dJ = weighting factor for the implicit method 

Mathematical symbols 

[ f (t)I0 = the value of the function f (t) at the beginning of the time 
period under consideration 
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PROBLEMS 

3-1 ( a )  Show that Eq. (3-8) may be stated as follows: 

Resistance per effective 

thermal conductivity film 

( b )  O n  the basis of these thermal resistances and the fact that a t  steady state Q = Q I,, = Q I,, , 
show that 

Ti - T2 
= ( r ,  - r , ) /k2nr l  L 
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3-2 When no approximat~on 1s made w ~ t h  respect to the relatlve sues of r ,  and r,, one obtalns the 
1 follow~ng expression Instead of Eq (3-3) 

( a )  When this relationship is used to evaluate the integral on the left-hand side of Eq. (3-5) on 
the basis of all the assumptions stated previously except those pertaining to r ,  and r,, show that 
the following result is obtained: 

(b) Let r ,  denote the value of r at which T takes on the value T, given by Eq. (B). Show that 
r,  is given by the following formula: 

( c )  Show that if the equivalent resistances are defined as follows, the model predicts the 
correct rate of heat transfer as well as the correct heat content. 

Equivalent thermal r2 - r i  -- 
resistance at r = r , )  - k2n(rh), , 

where 

((1) Show that the formulas for the film coeficients corresponding to the equivalent resistances 
at r ,  and r2 as given by Eqs. (D) and (E) are as follows: 

where In r j r ,  is computed by use of Eq. (C) .  

3-3 ( a )  Make an energy balance on an element of volume from x ,  to x ,  + A.Y of Fig. 3-6, over the time 
period from t ,  to t ,  + At. Then by use of the mean value theorems followed by a limiting process 
wherein Ax and At are allowed to go to zero, show that Eq. (3-1 1) follows. 

Ilint: Begin with 

where Q<, = -kA d T / a x  = rate of heat transfer (Btu/h) in the positive direction of x (this is Fou- 
rier's first law) 

A = heat transfer area perpendicular to the direction of heat transfer 
S = cross-sectional area of element of volume (note, in this case A = S) 
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(b) Show that the boundary conditions given by Eq. (3-12) follow from the energy balances on 
the films at x = 0 and at x = I, and as a consequence of the fact that the films do  not possess 
holdup. 

3-4 To find the solution that satisfies Eq. (3-1 1) and the set of boundary conditions given by Eq. 
(3-12). the following procedure may be employed. The outline of this procedure follows closely the 
suggestions of Carslaw and Jaeger(5). In this approach one first finds a solution which satisfies Eq. 
(3-1 1) and the following set of boundary conditions and initial conditions: 

T = f (x) ( r = O , O s x s l )  ( c )  

(a) Show that a solution of the form 

satisfies Eqs. (3-1 I), (A), and (B) simultaneously, where P is any one of the positive roots of 

(P2 - I f  H 2 )  sin PI - P(H, + H,) cos 81 = 0 

(b)  Show that if m and n  are any two positive and unequal integers 

I., x,, du = 0 (m + n) 

where 

H 
X, = cos [j. x + sin /I, x 

P. 
I i i n r :  The following steps are suggested: 

1. From the definition of X , ,  show that 

2. Next, show that 

Integrate the right-hand side of this expression one time by parts to obtain 

Use the conditions given by Eqs. (A) and (B) to show that the right-hand side of the above 
expression is equal to zero 

(c) Evaluate 

Hinr: The following steps are suggested: 

1. From the definition of X,, show that 

Integrate the right-hand side of this expression one time by parts to obtain 

2. From this definition of X,, show that for all x (0 s x I) 

Integrate this result to obtain 

3. Show that Eqs. (D) and (F) may be combined to give 

4. Evaluate the last term of Eq. (G) by showing that when ( d X , / d ~ ) ~  in Eq. (E) is replaced by its 
equivalent at x = 0 (gii'en by definition of X,) one obtains 

Similarly, by use of Eqs. (B) and (E), show that 

Use these results and Eq. (B) to show that 

(d) Suppose f ( r )  may be represented by the infinite series 

Use results obtained above to show that 

where the denominator on the right-hand side has the value obtained in part (c). 
(e)  Use the foregoing results to show that 

x 

T(r, t )  = Z Y,(x)e- '8:' 
n = 1  

where X(x) has the definition given below Eq. (3-13). 

3-5 T o  obtain the solution satisfying Eq. (3-11) and the boundary conditions following it, the 
following procedure has been suggested by Carslaw and Jaeger(5). Let 



where w is a function of x and t ,  and u is a function of x alone. More precisely, let u be defined by 

d2u 
-- - 0  ( o t x < o  
d x  

and w by 

w = T A - u  ( t = O , O S x S [ )  

( a )  Show that Eq. (3-11) and the boundary conditions following it are satisfied by the sum of 
the two new functions u and w. 

( b )  From the definition of u, show that 

u = b x + c  

where 

(c )  From the definitions of u, w, and the result given in part (e) of Prob. 3-4, obtain the 
solution given by Eq. (3-13). 
3-6 Verify the result given by Eq. (3-15). 

3-7 Formulate the boundary conditions given by Eq. (3-18).  

3-8 (a )  If the change of variable 

U ( x ,  t )  = T - TA 

is made, show that Eq. (3-11) and the boundary conditions given by Eq. (3-18) become 

au a2u 
z = a s  

(b) The partial differential equation and the above boundary conditions may be solved by use 
of Laplace transforms. Given the following Laplace transforms 

show that the partial differential equation reduces to the ordinary differential equation 

whose solution which satisfies the initial condition and the boundary conditions is 

T - T cash (&)x 
u(x, s )  = (y) cosh (&)l 

(c) If the following inverse Laplace transforms are given 

+ erfc 

show that the result given by Eq. (3-9)  is obtained. 

3-9 Use the result given by Eq. (3-19) in the verification of the expression given by Eq. (3-20). 

APPENDIX 3A-1 

Table 3A-1 Heat transfer coefficients and physical properties used in Chap. 3 

1. Heat capacity of brine solution (Ref. 2 ) t  

C, = Al(S)  - A2(S)T + A,(s)T" 
and 

where S = (3.4483)(C.F.), percent salinity 
C ,  = heat capacity in cal/(gm. " C )  
T = temperature in "C 

C.F. = concentration factor 

t These references are listed at the end of this table. 
(Continued over) 
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Table 3A-1 Heat transfer coefficients and physical properties-Continued 

2. En tha l~v  of a brine solution at 60°C relative to water a t  32°F (Ref. 3, curve OSW 12.20) 

This equation was obtained by curve-fitting the enthalpy data given in Ref. 3. 

3. Enthalpy of a brine solution at temperature T and salinity S 

where TR = 60°C; A,(S), A,(S), A3(S) are given under section 1 above, and h(T,, S) is given in 
section 2 above. 

4. Enthalpy of saturated steam (Ref. 2) 

(T3 - 100') x 
H = 0.439(T - 100) + 0.5(T2 - 10O2) x - 2 + 1105.2 

3 

where H is in British thermal units per pound and T is in "F. This equation was obtained by 
curve fitting the data given in the steam tables of Ref. 2. From this formula, the change in 
enthalpy of saturated steam with temperature is given by 

5. Diihring lines for brine solutions (Ref. 3, curve OSW 11.51) 

The data in Ref. 3 were used to curve-fit m and b In the Diihring lines 

to give 

m = m(C.F., T,, , , , )  = 1.0 + (0.001 23 + 7.2 x ~ o - ~ T c . , + I )  C.F.' l 3  

where T, and T,,,,, are in degrees Fahrenheit 

6. Coefficients of heat transfer Uws (for the transfer of heat from steam to the metal wall) 

This coefficient was computed as follows: 

1 1  1 
-=-  +- 
uws h/S hews 

where hews is the effective thermal conductivity film coefficient for the metal wall 

hews = 2kM Aws PMIMWS 
k, = thermal conductivity for steel, k, = 26 BtuMlb ft "F) 
p, = density of steel wall, p, = 490 Ib/ft3 
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Table 3A-1 Heat transfer coefficients and physical properties-Continued 

The heat transfer coefficient for condens~ng steam h,, was computed as  proposed In Perry(2), 
namely, 

where I A T I = I T w s - T , I , " F  
TI = CTws + T,1/2, " F  
T,  = condensation temperature, " F  

From a curve fit of the data given in the steam tables by Perry(2), the following equation was 
obtained for the latent heat of vaporization of water: 

1 ,,,,, (T) = 1037.2 - 0.593(T - 100) 

where I,,,,, has the units of British thermal units per pound and T is in degrees Fahrenheit. 
The viscosity p of water was computed by use of the following equation from Perry(2): 

where T is in degrees Celsius and p is in centipoise. 

7. Coefficients of heat transfer UwL (for the transfer of heat from the brine process liquid to 
the metal wall) 

The coefficient was computed as follows: 

where h,,, is the effect~ve (thermal conductivity) film coefficient for the metal wall 

Values of k, and p, are given in section 6 above. The following relationship (Ref. 2) was used 
to compute hfL 

where h,, is in Btu/(h - F .  it2) and T, is the temperature of the brine process liquid in degrees 
Fahrenheit. 

8. Coefficients of heat transfer from the metal walls to the surroundines 

These coefficients VAL and U,, in Btu/(h.ft2."F) were computed by use of the following 
equation given by Perry(2). 

U, = 0.27(AT,)0-25 

where AT, = ITA-  T,[,OF 
T,  = surface temperature of the insulation, "F 

The surface temperature T,  of the insulation was taken to be that T. which satisfied the 
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Table 3A-1 Heat transfer coefficients and physical properties-Continued 
- 

9. Density of brine solutions (Ref. 3, curve OSW 11.60) 

The density p in pounds per cubic foot was computed by use of the following curve-fit of the 
data given in Ref. 3: 

p = D , + D , T + D , T 2  

where T is in degress Fahrenheit 

Do = 62.56 + 1.79278 C.F. + 5.253612 x 10-".F.2 

Dl = 1.658722 x - 3.259245 x C.F. + 2.04645 x C.F.' 

D2 = -5.823615 x lo- '  + 7.656795 x C.F. - 4.449848 x LO-' C.F.' 

1. L. A. Bromley, V. A. Desaussure, J. C. Chipp, and J. W. Wright: "Heat Capacities of Sea Water 
Solutions at Salinities of 1 to 12% and Temperatures of 2 to 8O0C," J. Chem. Eng. Data, 12 

CHAPTER 

FOUR 
SOLUTION OF PROBLEMS INVOLVING 

CONTINUOUS-DISTILLATION COLUMNS 
BY USE OF 

THE TWO-POINT IMPLICIT METHOD 

(1967), 203 
2 R H Perry, C H Chilton, and S D Kirkpatrick, (eds ) Chemlcal Engineers Handbook, 4th ed , 

McGraw-Hill Book Company, New York, 1963 
3 Saline Water Conversion Engrneering Data Book, Supt of Documents, U S  Government Pr~nting 

Office, Washington, D C , 1965 

Continuous columns are those columns in which the feed (or feeds) enter the 
column continuously and products are withdrawn continuously. Batch distil- 
lation columns, which do not fall into this class, are treated in Chap. 5. 

In Sec. 4-1, the equations used to describe conventional distillation columns 
at unsteady state are developed. The equations so obtained consist of the 
component-material balances, the equilibrium relationships, and the energy 
balances. These equations may be solved by any one of several numerical 
methods. In this chapter the two-point implicit method is used while the 
semi-implicit Runge-Kutta method and Gear's method are used in Chaps. 6, 
7, and 8. 

After the integral difference equations (or the corresponding differential 
equations) have been reduced to algebraic form by use of the implicit method, 
the resulting set of implicit equations are solved by use of either one of two 
procedures, the 0 method or the 2N Newton-Raphson method. 

The 2N Newton-Raphson method is applied in a manner analogous to that 
demonstrated in Chaps. 2 and 3 for systems of evaporators. Application of the 0 
method is demonstrated in Sec. 4-2 and the 2N Newton-Raphson method in 
Sec. 4-3. 



4-1 APPLICATION OF THE IMPLICIT METHOD 
AND THE THETA METHOD 

A conventional distillation column is defined as one that has one feed and two 
product streams, the distillate and bottoms. Any column that differs from a 
conventional distillation column by having either more than one feed and/or 
one or more streams withdrawn in addition to the distillate and bottoms is 
called a complex column. A sketch of a conventional column is shown in 
Fig. 4-1. 

1 = J -  1 

FX. 

I bi + 
B 

Figure 4-1 Sketch of a conventional distillation column. 
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Model 1. Assumed in the McCabc-Thiele method 

Model 2. Behavior assumed on thc feed plate 

Figure 4.2 Models for the behavior of the feed plate 

The basic model for the behavior of the gas and liquid phases on the plate 
of a distillation column that is used in this and the next chapter makes use of 
the concept of an ideal stage. Although considerable work has been done on 
liquid mixing, this model does not attempt to include this effect. The liquid 
holdup is assumed to be perfectly mixed, and the vapor holdup is assumed to 
be perfectly mixed. 

Either one of two models may be used to describe the behavior of the feed 
plate (see models 1 and 2 in Fig. 4-2). In model 1, it is assumed that the feed is 
introduced in the liquid on the feed plate and that all of the vapor and all of 
the liquid leaving the feed plate are in equilibrium. In model 2, it is supposed 
that the feed flashes upon entering the column and that the liquid formed from 
the flash mixes perfectly with the liquid on the feed plate and comes to equilib- 
rium with the vapor { v f i }  leaving the feed plate. The vapor { v F i )  formed by the 
flash is assumed to pass to the plate above without the occurrence of any mass 
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transfer between this vapor and the liquid on the feed plate. For dewpoint 
vapor and superheated feeds, vFi = FX, and IFi = 0, VF = F, and L, = 0. For 
bubble-point liquid and subcooled feeds, lFi = FXi and vFi = 0, L, = F, and 
VF = 0. Calculational procedures for making flash calculations are described by 
Holland(6) (see also Prob. 4-9). 

When a feed is introduced above the level of the liquid on the feed plate, 
model 1 appears to be the best representation of the behavior of the feed plate. 
When the feed is introduced below the level of liquid on the feed plate, model 2 
appears to be the best representation of the feed plate behavior. In the interest 
of simplicity, the unsteady state equations are developed for only one model in 
this chapter, model 1. 

Certain operating variables, such as the distillate rate D and the holdups, 
may be regarded as speciJied values. By a specified value is meant that at the 
beginning of a time increment (time t,), the value of, say, D is known at times t ,  
and t ,  + At. This implies that at time t , ,  the specified values must either be 
known at time t ,  + At or be calculable from previous sets of transient con- 
ditions. In this chapter, it is supposed that at time t , ,  the specified values are 
known at time t ,  + At. In a subsequent chapter, however, fluid dynamic re- 
lationships are used to compute the holdups at the end of the time period under 
consideration. 

Any interior stage exclusive of the overhead condenser, the feed plate, and 
the reboiler (j # 1, f, N) is described by the equations presented below. (The 
minor variations for stages j = 1, f, N are presented in subsequent sections in 
which the numerical methods are applied.) In the development of these equa- 
tions, it is assumed that the vapor and liquid phases are each perfectly mixed. 
The material and energy balances are made on the contents contained in the 
space between successive plates over the time period from time t ,  to t ,  + At. 
The component-material balance enclosing stage j is as follows for each compo- 
nent i: 

where vji is the molar flow rate at which component i leaves stage j in the vapor 
phase and Iji is the molar flow rate at which component i leaves stage j in the 
liquid phase. The molar holdups of component i in the vapor and liquid phases 
on stage j are denoted by u; and u i ,  respectively. 

The total-material balance for any stage j (j # l,f, N) is given by 

Capital letters are used to distinguish the total flow rates and holdups from the 
corresponding component flow rates and holdups. 
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The enthalpy balance for any stage j except j = l , f ,  N is given by 

where Aji and h;., are the virtual values of the partial molar enthalpies which 
are defined by 

Aji = HjOi + +R,Y(P, T, (yji)) 

4, = H; + R;(P, T ,  {xji)) 

H: = enthalpy of one mole of a perfect gas, evaluated at the 
temperature of the mixture 

Or, 0; = departure functions for the vapor and liquid, respectively 

Formulas for evaluating the departure functions for various equations of state 
are given in Ref. 6. As shown in App. 4A-2, the virtual values of the partial 
molar enthalpies have the property of giving precisely the same enthalpy of a 
mixture as the partial molar enthalpies, while being significantly less difficult to 
evaluate. 

The component flow rates are related to the total flow rates as follows: 

Similarly, the component and total holdups of the vapor and liquid are related 
in the following manner: 

The equilibrium relationship for each component i on plate j may be ex- 
pressed as follows: 



where the activity coefficients y; and y:, for each component in the vapor and 
liquid phases, respectively, are defined in Chap. 2. 

The fundamental relationships given by Eqs. (4-1) through (4-8) may be 
solved by a number of numerical methods, several of which are presented in this 
book. In Sec. 4-2, a combination of the two-point implicit method and the 9 
method is demonstrated, and in Sec. 4-3, a combination of the two-point im- 
plicit method and the 2N Newton-Raphson is presented. In Chaps. 6 and 8,  the 
equations are solved by use of the semi-implicit Runge-Kutta method and 
Gear's method. The latter two methods make use of the material- and energy- 
balance equations in the form of differential equations rather than integral- 
difference equations. The differential equations are readily obtained from the 
integral-difference equations by use of the mean value theorems followed by the 
limiting process wherein At is allowed to go to zero as demonstrated in Chaps. 
2 and 3. The resulting differential equations are analogous in form to that 
which follows for Eq. (4-1):  

Other Forms of the Equilibrium Relationship 

1n the present development, it is convenient to make use of the mole fractions 
defined by 

and consequently 

When the equilibrium relationship given by Eq. (4-8) is stated in terms of mole 
fractions, one obtains 

When the vapor phase forms an ideal solution, y; = 1 for all i, and when the 
liquid phase forms an ideal solution, yi = 1 for all i. Thus, when both phases 
form ideal solutions, Eq. (4-12) reduces to 

In the subsequent developments in this chapter, this form of the equilibrium 

( 
SOLLJTION OF PROBLEMS INVOLVING CONTINUOUS-DISTILLATION COLUMNS 129 

. relationship is used with the understanding that for the case of nonideal solu- 

% tions, K,, is to be multiplied by y;/y;. 

t Summation of each side of Eq. (4-13) over all components followed by the 
E restatement of the result so obtained in functional form yields 
c 

C 

f ( T )  = C Kjixji  - 1 
i =  1 

For a specified value of the pressure P and a liquid mixture having the mole 
fractions { x j i } ,  the temperature T required to make f ( T )  = 0 is called the 
bubble-point temperature of the mixture. 

When the pressure P and vapor composition are given, the dewpoint tem- 
perature is that temperature T which makes F ( T )  = 0, where 

Equation (4-15) is obtained by first restating Eq. (4-13) in the form x,, = ylJK,,  
summing over all components, and then restating the result so obtained in 
functional form. 

In developments which follow, the vapor holdups (u;} are neglected be- 
cause they are small relative to the liquid holdups. The vapor holdups may be 
~ncluded, however, as shown in subsequent chapters. 

4-2 SOLUTION OF PROBLEMS INVOLVING 
CONVENTIONAL DISTILLATION COLUMNS 
BY USE OF THE IMPLICIT METHOD 
AND THE THETA METHOD 

The calculational procedure based on a combination of the implicit method and 
the B method is initiated by consideration of the problem in which the total 
flow rates remain fixed with respect to time at a set of specified values. In a 
subsequent section, the enthalpy balances are included in order to account for 
the variation of the total flow rates. 

Application of the Implicit Method to a Combination of the 
Component-Material Balances and the Equilibrium Relationships 

For any stage j (j # 1 , J ;  N ) ,  the integral appearing in Eq. (4-1) may be approxi- 
mated by use of the two-point implicit method (which was introduced in Chap. 
1 )  as follows: 

u . .  u?. 
Uj+l,i+lj-1.i-Uji-lji+a(vj0+l,i+lj0_l,i-v0.-1~.)=--11----LL 

" " 4 At 4 At (4- 16) 

where 0 I 4 < 1 and a = (1 - 4)/4. 
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Observe that the vapor holdup ux has been neglected and u: has been 
denoted by uji. Also the values of the variables at the beginning of the time step 
are identified by a superscript zero, and those at the end of the time period 
under consideration are identified by the absence of a superscript. The equilib- 
rium relationship given by Eq. (4-13) may be used to eliminate one of the 
component flow rates by first restating this relationship in terms of the compo- 
nent flow rates as follows. Since yji = v j i / 5  and xji = lji/Lj, it follows that Eq. 
(4-13) may be restated in the form: 

where Aji = L,/Kji V j .  
Since the liquid phase is assumed to be perfectly mixed on each stage, the 

liquid holdups may be stated in terms of the vapor flow rates through the use 
of Eq. (4-17) in the following manner: 

Use of this relationship followed by rearrangement permits Eq. (4-16) to be 
restated in the following form: 

where 

For any interior stage (j # 1, S, N) and sets of assumed values for L,/Vj's, Uj's, 
and T s ,  Eq. (4-19) is seen to contain three unknown flow rates: u ~ - ~ , ~ ,  uji, 
L1j+l,i. 

In a manner similar to that shown for Eq. (4-19), the equations for stages 
j = l , f ,  and N are developed. The resulting set of equations follows. 

where 

A.. I' = Lj/Kji Vj (2 2 j 5 N - 1) 

Ali = Ll/Kli D for a partial condenser 

Ali = LI/D for a total condenser 

ANi = B/K,i VN 

zfi = FXi for all other j and i, zji = 0 

vli  = di (This symbolism is used in the interest of symmetry, 

that is, v l i  is used to denote di regardless of the state 
in which D is withdrawn, vapor or liquid.) 

Equation (4-20) may be restated in matrix form as follows: 

where 

For any given set of values for the temperatures, and L/V's, the equations 
represented by Eq. (4-21) constitute a linear system of equations in the l;,i's. For 
equations such as these, which are seen to be of tridiagonal form, the unknown 
vapor rates may be found by use of the following recurrence formulas, some- 
times called the Thomas algorithm (Refs. 5, 9). Consider the system of linear 
equations in the unknown v;s (j = 1, 2, . . . , N). 
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where the a's, b's, and c's are the coefficients of the 0;s which appear in Eq. ~pecifications: the distillate rate (molesltime) and liquid holdups (moles) 

(4-22). These equations may be solved by use of the following well-known 
recurrence formulas (Refs. 5, 6, 9) which are applied in the order stated With the exception of U,, each of the specifications 

f i  = cllbi g~ = dilbi 
D, U l ,  u2, U,, ..., u ,-I ,  U, 

gives rise to a 0 multiplier. Other specifications are, of course, made on the 
Ck (k = 2, 3, ..., N - 1) (4-23) column. These specifications consist of the number of plates above and below 

fk = bk - a, f k - l  the feed plate, the complete definition of the feed stream for ail t, the column 

dk - akgk-i pressure, the type of condenser (total or partial), and the total vapor rate V2 (or 
Sk = (k = 2, 3, . . . , N) the reflux rate L,). 

bk - akfk-1 A subsequent section presents a development leading to the following con- 

After the f's and g's have been computed, the values of v,, v,_, , . . . , v 2 ,  v , ,  are 
sistent set of multipliers: 

computed as follows: " (lo(?) 
di ca 

ON = g, 

(4-24) U'. = @,(2) vk=gk- fkvkT1  ( k = N - 1 ,  N - 2  ,..., 2, 1) (j = 1, 2, ..., N - 1) 
di ca 

The use of this procedure is demonstrated below in Example 4-1. Knowledge of the holdup UN of the reboiler does not give rise to a correspond- 

Instead of evaluating theh's and g,'s by use of Eq. (4-23), a modified form ing 0 because uNi/di may be expressed in terms of bi/di as follows: 

of an algorithm originally proposed by Boston and Sullivan(3) for steady 
state problems may be used. The modified algorithm is shown in Prob. 4-12. (7) = (%)($) = o0 (%)(!?) (4-26) 

di ca 

The set of 0;s given by Eq. (4-25) is consistent with the following formula for 
the caIculation of the corrected compositions. The expression for computing the 

The Theta Method of Convergence liquid mole fractions follows immediately from the definition of a mole fraction 
For each time period, successive approximations of the temperatures at the end and Eq. (4-25), namely, 
of the time period are made until a temperature profile is found such that the 
component-rnaterial balances and the enthalpy balances are satisfied as well as 

u - -  ~ ~ ( 2 ) ~ ~  di (2) d, 
the specifications for the column. 

y . .  =--'-- 
' I t  C 

- - - 

The 8 method of convergence is an indirect method for choosing a new set z u j i  0 ,  d di 
of temperatures on the basis of calculated results obtained for the last assumed i =  i i = l  d i , ,  i = l  ( $ 
set of temperatures. This method alters or corrects the mole fractions. On the As shown in Probs. 4-4 and 4-5, a consistent set of mole fractions {y,,} for the 
basis of these mole fractions which reflect the certainties that each component vapor are given by 
must be in overall material balance and in agreement with specified values for 
the total distillate rate and the total holdups (the conditions of constraint), a (9) di new set of temperatures is found. The 0 method of convergence is related in y . .  = ca (4-28) 
spirit to the concept of the lagrangian multipliers (Ref. 15) in that for each 
condition of constraint or specification made on the system there exists a multi- 

I' t (2) di 
i =  1 ca 

plier. The 0 method of convergence for columns at unsteady state operation is The formula for di is based on the requirement that each component be in 
analogous to the 8 method for a complex column at steady state operation ( ~ e f .  overall material balance, that is, 
6). For a complex column at steady state operation, each sidestream withdrawn 
leads to an additional specification which gives rise to an additional 0 multi- t. + AI 

plier. Similarly, for a column at unsteady state operation, each holdup specified (FXi - bi - di) dt = Z uji 

gives rise to an additional 0 multiplier: 
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After the integral in this expression has been approximated by use of the im- 
plicit method, the following formula for di is obtained upon replacing the cor- 
rected ratios by their equivalents as given by Eq. (4-25): 

1 
FX, + a[FXi - di - biI0 + - 1 uyi 4 At j=l (4-30) 

Except for the B's, the values of all other quantities appearing in Eq. (4-30) are 
either known or readily determined after the component-material balances have 
been solved for the vj;s. By use of Eqs. (4-25) and (4-30), the uj;s may be stated 
in terms of the unknown 8;s. The desired set of 8;s is that set of positive 
numbers that makes go = g, = g, . . . = gN-, = 0, simultaneously, where 

C 

go(Oo, 8 , ,  02 ,  . . . , ON- 1) = C d, - D 
i = l  (4-3 1) 

This set of g functions is applicable to a column with a partial condenser (the 
distillate is removed as a vapor, v l i  = di (vapor)). When a total condenser is 
employed, g, and 8, are excluded from the foregoing set, and u,,ldi is replaced 
wherever it appears by its equivalent U,/D. 

The desired set of 0;s is found by use of the Newton-Raphson method 
(Refs. 6, 9) in the same manner as that described for complex columns at steady 
state operation (Ref. 6). The Newton-Raphson method consists of the repeated 
solution of the linearized Taylor series expansions of the functions go,  g, , . . . , 
g , ,  . These equations have the following matrix representation: 

where 

J" = 

A@, = e,, + , - ejn 
g, = Cgog, . . .  9N-,IT 

After a given trial calculation through the column has been made (the 
component-material balances have been solved for the vj;s), the desired set of 
8;s that makes go = g, = g, = . . . = g N  = 0, simultaneously, is found. The 
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desired set of 8,'s is that set of 8,'s (Bj > 0) that satisfy the Newton-Raphson 
equations which are represented by Eq. (4-32). On the basis of an assumed set 
of 0,'s, identified by the subscript n, the g functions and their derivatives that 
appear in Eq. (4-32) are evaluated. Then the system of equations represented by 
Eq. (4-32) is solved for the A8,'s. The 8,'s to be assumed for the next trial 
solution of Eq. (4-32) are readily computed (el, ,,+, = Bj*. + Aej). This process is 
repeated until a set of 0;s within the desired degree of accuracy has been found. 
For the first trial 8, is taken equal to 1.0 for all j.  In the event that one or more 
of the 0,- .+,'s is negative, all of the corrections A8, are reduced successively by 
factors of 1/2 until the Qj,,+,'s are all positive. The values of the derivatives 
may be evaluated by use of the analytical expressions (see Prob. 4-3) or by use 
of the numerical approximation of the derivative. 

Specijications: the molar distillate rate and the liquid holdups in mass or uolu- 
metric units 

If, instead of molar holdups, the total liquid holdups are specified in mass 
(or volumetric units), the specified values to be satisfied at time t, + At are as 
follows: 

In this case the specification A', leads to an independent 8 namely, Q,,,. For, 
when the &j's are specified, the term UN/B of Eq. (4-26) depends upon the 8;s. 
Thus, the expression enclosed by parentheses in Eq. (4-25) should be modified 
to read (j = 1, 2, . . . , N). 

Let the corrected mass (or volumetric) holdup of component i on plate j be 
denoted by mji. Then 

where Mi is the molecular weight (or molar volume) of component i. The 
formula for mji in terms of Oj  is readily obtained by replacing uji by its equiva- 
lent as given by Eq. (4-25) 

In a manner analogous to that shown for the development of Eq. (4-30) it is 
readily shown that 
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For the case where the mass (or volumetric) holdups are specified, the g func- 
tions to be satisfied are as follows: 

where again the desired set of 9;s is that set of positive numbers that makes 
go = g ,  = . . . = g, = 0, simultaneously. This set of 0;s may be found by use of 
the Newton-Raphson method. 

When the A / s  are specified, the corresponding Uis at time t ,  + At are not 
known until convergence has been obtained for the given time period under 
consideration. The Uj's at t ,  and at t ,  + At are needed in the component- 
material balances. The value of Uj at time t ,  is, of course, equal to the value 
obtained at the end of the calculational procedure for the previous time in- 
crement. At the end of the first and all subsequent trials for any given time 
increment, the value of Uj to be used for the next trial may be computed (after 
the 0;s have been found) as follows: 

Determination of Temperatures 

After the 0;s have been determined, the corresponding values of the corrected 
mole fractions may be computed by use of Eqs. (4-27) and (4-28). These mole 
fractions for each plate are used to compute a new set of temperatures. The new 
set of temperatures is determined by use of the K, method which eliminates the 
trial-and-error involved in the use of the conventional bubble-point and dew- 
point expressions given by Eqs. (4-14) and (4-15). The K value for the base 
component may be computed by use of either one or two equivalent ex- 
pressions, Eqs. (4-39) and (4-40). These expressions are developed as follows: 
Equation (4-13) may be restated in the form 

where zji = Kji/Kjb; the subscript b refers to the base component. When each 
side of Eq. (4-38) is summed over all components, and the result so obtained 
solved for Kjb, the following formula for calculating Kjb at T,,,,, (the new 
temperature) is obtained: 
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If Eq. (4-38) is rearranged to 

and then summed, an expression different from Eq. (4-39) but equivalent (see 
Prob. 4-5) is obtained 

The xj:s and yj:s that appear in Eqs. (4-39) and (4-40) are computed by use of 
Eqs. (4-27) and (4-28), respectively. 

The desired temperature, T j ,  ,+ may be computed directly by use of a 
hypothetical base component that has a K value given by 

As proposed in Holland(6), the values of a and b are computed on the basis of 
the upper and lower curve-fit limits of the K for the midboiling or the compo- 
nent just lighter than the midboiling component (a component having K values 
about midway between those for the lightest and heaviest components of the 
mixture). 

For wide boiling mixtures, the temperatures determined by the bubble-point 
function (Eq. (4-14)) tended to be alternately too high and too low while the 
temperatures determined by use of the dewpoint function (Eq. (4-15)) were 
almost invariant for wide boiling mixtures such as those encountered in 
absorbers in the natural gas industry. 

Reformulation of the Equations of the Theta Method 
To Avoid Numerical Difficulties 

in order to avoid numerical problems arising from the existence of very small to 
zero values of one or the other of the product rates, Eqs. (4-25), (4-27) through 
(4-30) may be restated in terms of a new variable pi which is finite for all values 
of (bi),, and (d,) , ,  including zero. The definition of pi is obtained by finding a 
common denominator followed by rearrangement of the expression given by 
Eq. (4-35) for di .  The resulting equations so obtained are 

uji = ~i(uji)ca Q j  
and 
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Expressions for the mole fractions given by Eqs. (4-27) and (4-28) are restated in 
the following form: 

y . .  = (VjiIca Pi 
11 C 

C (~ji)ca Pi 

Also, di and uji in the g functions (Eq. (4-36)) are replaced by their equivalents 
as given by Eq. (4-42). 

Before presenting the development of the enthalpy balance equations for the 
calculation of the total flow rates, the fundamental concepts involved in the 
procedures presented thus far are illustrated by use of a simple problem for 
which the aj,'s, LlVs, and Uis are taken to be fixed for all t at the values 
shown in Table 4-1. A sketch of this unit is shown in Fig. 4-3. In this problem, 
it is supposed that initially (time t = 0) the column is at steady state operation, 
and at time t = 0 + ,  an upset (a step change) in the composition of the feed 
shown in Table 4-1 occurs. The steady state solution at the initial conditions is 
presented in item I of Table 4-1, and the steady state solution at the conditions 
of the upset is given in item 111. 

Overhead vapor b5 = l(X1 

L ,  = -50 \ u, = 50 j D = 50 
* 

F = l (N /, * 
vi = ~cn + 

Li = 150 

= Reboiler 

1 Bottoms - 
B = 50 

Figure 4-3 Sketch of the column, total flow rates, and holdups specified for Example 4-1. 
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Table 4-1 Statement and Mution of Example 4-1 

Statement Initially (t = O), the column is operating at the steady state con- 
ditions that follow in item I.  At time t = 0 + ,  the upset given in item I1 
occurs. On the basis of 4 = 0.6 and At = 0.1 min, find the transient values 
of the variables at the end of the first time period. 

Part A. Initial operating conditions at time t = 0 

Fox:, 
Component Ib.mol/min a ,  Otherconditions 

1 33.3 1 The column has 3 plates plus a reboiler and a total 
2 33.3 2 condenser. The feed enters as a liquid at its bubble- 
3 33.4 3 point at the column pressure. The column operates 

at the following flow rates: 
D = B = 50 Ib . mol/min, L, = L, = 50 Ib . molfmin, 
L, = L4 = 150 Ib . mol/min, and 
V, = V, = V, = V, = 100 1b. mol/min. 

Initial conditions (at t = 0); steady state operation. 

I Steady state solution at the initial conditions 

Component dp = cy,  o:, c!; "!, "2i 

1 5.5354 11.0708 17.3787 23.1947 35.0356 
2 18.0757 36.1514 37.4125 39.6279 38.4225 
3 26.3888 52.7777 45.2088 37.1773 26.5417 

Component uy, 4, 4, 4 4i 
1 5.5354 11.8432 16.9864 20.9334 27.7645 
2 18.0757 19.3368 18.2840 17.8822 15.2242 
3 26.3888 18.8199 14.7294 11.1842 7.011 1 

Kyb = 0.413 724, K: ,  = 0.467 391, K:, = 0.51 1 542, K:, = 0.55401 1 ,  
K;, = 0.630942. 

I1 Upset in the feed composition at time t = 0 +  

Component FX, Other conditions 

1 1667 
2 41.67 All other conditions are the same as those given 
3 41.66 in item I 

I11 Steady state solution at the conditions of the upset 

Component d, = L , ,  u,, "3,  "4, " 5 ,  

1 2 1082 4.2164 7.0931 9.2029 14.91 18 
2 18.4457 36.8914 40.2528 44.2071 47.5652 
3 294460 58.8920 52.6540 46.5899 37.5228 

(Continued over) 
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Table 4-1 Statement and Solution of Example 4-1-Continued 

Component u t i  Uzi U 3 i  U 4 i  Usi 

1 2.18082 4.9848 7.9215 9.8245 14.5617 
2 18.4457 21.8071 22.4771 23.5965 23.2242 
3 29.4460 23.2080 19.6013 16.5789 12.2139 

-- 
K , ,  = 0.512 021. 
(Note, the corresponding values of K j i  follow from the definition of a,; namely K j i  = a, K j b . )  

SOLUTION The component-material balances for any component i for this 
example may be stated in the form of Eq. (4-22) as follows: 

b ,  v ,  + c ,  v2  = d l  

a ,  v ,  + b2 v2 + c2 v3 = d2 

a ,  v ,  + b3 v3 + c3 0 ,  = d3 

a 4 v 3  + b4v4  + c ,v ,  = d ,  

a ,  v ,  + b ,  v ,  = d ,  

where 

b2 = -- [ 1 + A,, ( 1 + - ::;)I 

Table 4-1 Statement and Solution of Example 41-Continued 

Note: The values of the variables a t  the beginning of the first time step may 
be evaluated at the values at time t = 0 or time t = O + .  For  all variables except 
F X ,  in the expression for d , ,  the values at  t = 0 are equal to those at  time 
t = O +  ; that is, one may use either of the expressions given above for evalu- 
ating d ,  or  

where F X ,  = F X ;  + 

I Evaluation of the constants a j ,  b j ,  c j ,  and d j  

To initiate the first trial for the first At, assume that the temperatures at 
the end of the first time step are the same as those at  the beginning of the 
time period. 

- 

Compo- C, = C* = C 3  

nent b ,  = c4 = c5 d ,  0 2  b2 

1 - 18.6666 1.0 - 92.2570 1.0 - 19.8992 
2 - 18.6666 1.0 -301.2619 1.0 - 10.4496 
3 - 18.6666 1.0 -439.8143 1.0 - 7.2997 

Compo- 
nent d* 0 3  b3 d3 a4 

1 - 197.3871 1.0697 - 20.2228 - 299.7771 2.9322 
2 - 322.2801 0.5348 - 10.61 14 - 346.4046 1.4661 
3 - 31 3.6659 0.3565 -7.4076 -287.1515 0.9774 

Compo- 
nent b4 d4 as b5 * 5  

I - 18.7493 - 348.8903 2.7075 - 15.0002 -462.7429 
2 - 9.8746 - 298.0380 1.3537 - 8.0001 - 253.7380 
3 - 6.9164 - 186.4048 0.9025 - 5.6667 - 116.8523 

(Continued over) 
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Table 4-1 Statement and Solution of Example 4-1-Continued 

11 Calculation of the vj;s 

Compo- 6 -5 

C0mp0- C 3  d 3  - 92 C4 d4 - a,  93 
f3 = ------ 93 =- f4 = ------ 94 = - 

nent b3 - f 2  b3 - f2 b3 - a4f3  b4 - a4f4  

I - 0.049 58 15.4040 -0.053 75 21.1815 

2 - 0.094 69 34.4524 -0.1027 35.8007 

3 -0.1358 41.2789 -0.1474 33.4264 

compo- d5 - as 9, f4 U S ,  v,, = g, - f 4 v 5 ,  f 3  u4, 
g5 = - 

nent b5 - as f4 
95 = 05, 

1 35.0119 - 1.8819 23.0634 - 1.1435 

2 38.443 1 - 3.9486 39.7494 - 3.7641 

3 26.568 1 -3.9165 37.3429 - 5.0748 

C0mp0- u3; = g3 - f3 04, f2  0 3 ,  0 2 ;  = 92 - f2  0 3 ,  

nent 

1 16.5476 -0.8338 1 1.0289 
2 38.2166 - 3.6760 36.2287 
3 46.3538 - 6.3970 52.9357 

Compo- 
nent f t  cz4 P,, = (d,),, = g, -f, a2, (b;),. = A s ,  us, (bz/d,)ca 

1 -0.5908 5.5331 27.7458 5.0144 . - 

2 - 1.9408 18.0798 15.2324 0.8425 

3 - 2.8358 26.3973 7.0181 0.2659 

Compo- (:) = ( u 2 / L 2 ) A 2 , ~ 2 t  (U3/L3)A3,~3,  

nent ca d, ( )  d, 

1 2.1323 2.9231 3.7618 

2 1.0718 1.0330 0.9921 

3 0.7151 0.5721 0.4255 

111 Calculation of 8;s 

The g  functions are as follows: 

Table 4-1 Statement and Solution of Example 4-1-Continued 

The 0,'s (found by the Newton-Raphson method) that make go = g,  = g3 = g, = 0. 
simultaneously, are as follows: 

and 
5 

FX,  + U(FOXY - dp - 6;) + (114 At) 1 ug 

IV Calculation of the corrected temperature profile (or Kj,'s) 

Compo- 
nent d, X D ,  a i x ~ i  u2i x2i 

1 5.531 1 0.1 106 0.1106 11.7843 0.2357 
2 18.0754 0.3615 0.7230 19.3576 0.3871 
3 26.3935 0.5279 1.5836 18.8582 0.3772 

2.4172 

Compo- 
nent z,X2, u3,  X 3 ,  

' 1  '38 U4 i  

I 0.2357 16.1870 0.3237 0.3237 20.8185 
2 0.7743 18.6946 0.3738 0.7478 17.9426 
3 1.1315 15.1183 0.3323 0.9071 11.2387 - 

2.1415 1.9786 

1 1 
K,, = - - - 0.4670 K3,  = - - - 0.5054 

C ~ ' ~ 2 ,  
,=, C a, x3i 

, = I  

Component x,, ~ , x 3 <  bi = Oo(bJd,),,(di) x,, = x5, mixsi 

1 0.4164 0.4164 27.7457 0.5549 0.5549 
2 0.3588 0.7177 15.2345 0.3047 0.6094 
3 0.2247 0.6743 7.0197 0.1404 0.4212 

1.8084 1.5855 

These Kj,'s become the assumed values for the next trial for the first At, and the 
assumed value for the Kj;s are given by Kji  = uiKj , .  



With the total flow rates held fixed, the repeated application of the 
procedure described above gave the transient values of the variables shown 
in Figs. 4-4 and 4-5. The effect of the length of the time step on the 
transient values of b , / d ,  is shown in Table 4-2. It is to be observed that as 
the size of the time step becomes very large, say 101°, the steady state 
solution at the conditions of the upset is obtained at the end of the first 
time step (see Prob. 4-14). 

I I 1 A J A ,. A L, - 
50 -- Component 3 - 

0 1 I 1 1 I I I I I 
0 2 4 6 8 10 12 14 16 

Time since the upset, min 

Figure 4-4 Transient values of the component vapor rates for stages 2 and 3, Example 4-1. 
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Figure 4-5 Transient values of the component vapor rates for stages 4 and 5, Example 4-1. 
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Table 4-2 Solution of Example 4-1 bv the implicit method 

4.0 

6 = 0 6 and tlme per~ods range from 1 to 10'' mln 

bld for component 1 

T ~ m e  At = 1 At = 6 At = 10 At = 20 At = 30 At = 40 At = 10" 
per~od min m ~ n  m ~ n  mln m ~ n  mln mln 

- Diverged 4 
3.0 1 1 1 ' 1 1 ' 1 1  I l l -  

0 8 16 24 32 '60 68 76 
Time since the upset, min 

Figure 4-6 Failure of the implicit method for Example 4-1 at 6 = 0.4 and At = 2.0. 



Constant-Composition Formulation of the Enthalpy Balances 

The elimination of one of the total flow rates from each enthalpy balance by 
use of the corresponding component-material balance yields an expression for 
computing the total flow rates which was found to be very stable for both 
steady state and unsteady state problems. This form of the enthalpy balances is 
called the constant-composition method. There follows an outline of the devel- 
opment of these expressions which are presented in Table 4-3. 

On the basis of the corrected xj,'s and the corresponding temperatures 
found by the K ,  method, a new set of total flow rates is found by use of 
enthalpy and total-material balances. Again, as in the calculation of the temper- 
atures, the most recently calculated values of the variables are used in subse- 
quent equations. 

Table 4-3 Constant-composition form of the enthalpy balances 

; - x - V;  (Ali - A:i\v;, + DO (A2, - AI;)x:, - Q:] 
i =  1 i =  1 , = I  

U C  u: + , - 1 , ~ 1 ,  - - [I (A,, - $.).x:~] 
4 At i = 1  4 At , = I  

- ^ h ~ l . , ) x ~ I . ,  - Vg C ( H ~ + ~ , ,  - 
i =  1 i =  I + 

*I 

- U, 1 (QJ+ - Kjl).~j, u: (H,+ i - h?,).~:; ,fl 
i =  1 x + i = l  +A (j = 2, 3, ..., N - 1) 

4 At *, 4 At *J *J 

where 

x I - F ~ ( ~ , + ~ , ~ - ~ ~ ) X ~ + ~ F ~ ~ ( ~ , + ~ , ~ - ~ ~ ) X ~  - 
i =  1 i = 1  

Ai = virtual value of the enthalpy of component i in the feed, regardless of state 

Each enthalpy balance may enclose either only one plate or the top (or 
bottom) and all plates between the top (or bottom) and each plate j.  Each of 
these methods was investigated and found to be equally reliable. 

To illustrate the development of the energy balance equations, the ex- 
pression for any stage j (2 < j < N - 1, j # f - 1, f )  is developed by first apply- 
ing the implicit method to Eq. (4-3) (with the vapor holdups neglected) to give 

In the constant-composition method, a component flow rate, say o j+l , i ,  is 
eliminated from Eq. (4-46) through the use of the component-material balance 
for stage j (see Eq. (4-16)). The result so obtained may be rearranged to give the 
formula presented in Table 4-3. For stages j = 1, f, and N, the expressions are 
developed in a similar manner. The first step in the calculational procedure 
consists of the calculation of the condenser duty Qc by use of the first ex- 
pression given in Table 4-3. Next L, is computed. After each Lj has been 
computed by use of an energy balance, the corresponding y + ,  may be found 
by use of the total-material balances. When the total molar holdups are taken 
to be fixed, then the unsteady state total-material balances reduce to the steady 
state form namely, 

Choice of Phi and Step Size 

Since the two-point implicit method reduces to the trapezoidal rule which is A 
stable then, if the equations were linear, one would expect the implicit method 
to be stable for values of 4 2 112 and to diverge for certain choices of At at 
4 < 112. Although the equations were nonlinear, their numerical behavior fol- 
lowed closely that predicted for systems of linear equations. The failure of the 
implicit method to converge for relatively large At's (larger than At = 1) and at 
values of 4 < 112 is illustrated in Fig. 4-6. In some examples, oscillations were 
obtained for 4 = 112, but not for 4 > 112 (say 4 = 0.6) regardless of the choice 
of At (see Table 4-2). 



When relatively small At's are used, the truncation error is relatively smaller 
and more accurate transient solutions are obtained than when relatively large 
At's are employed. It was found that the At selected should be larger than 
(for the system of units used in the examples) in order to prevent the holdup 
terms from taking undue dominance in the calculations. As steady state is 
approached, larger At's may be used without loss of accuracy in the transient 
solutions. The scheme developed and used by Waggoner(l6) to solve a wide 
variety of examples appears to give reliable results. After each upset, the follow- 
ing procedure was used in the selection of the step sizes. The initial At was 
taken to be equal to 115 of the holdup time (UJ/L1), that is, 

At the end of every 10 time steps, the value of At was doubled. 

Calculational Procedure 

In proceeding from one time increment to the next, the point-slope predictor 
was used to predict the values of T j  and C; at  the end of the next time period 
(t" + At) 

The derivatives of T, and I/;. that appear in Eq. (4-48) were evaluated numeri- 
cally. After each I/;. had been predicted by use of Eq. (4-48), the corresponding 
value of L, was computed by use of Eq. (4-47). 

In the following discussion, it is supposed that initially the column is at 
steady state and that at time t = O +  a change in the composition of the feed 
occurs (note that other initial conditions and upsets may be selected). The 
calculational procedure for the case where the molar holdups are specified 
follows: 

Step I Take 4 = 0.6 and choose the first At as described in the previous 
section. 

Step 2 Assume values for the temperatures and L/Vs at t, + At. For the 
first two trials, the values at time t, are satisfactory. For the second and all 
subsequent time increments, the values for T j  and I.;. are predicted by use of the 
point-slope predictor (see Eq. (4-48)). 

Step 3 Compute di, b,, uji, and lji at the end of each increment of time by 
use of the component-material balances. 

Step 4 Find the 8's such that go = g, = g, = . . . = g, -,  = 0 by use of the 
Newton-Raphson method (see Eq. (4-32)). 

( 
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Step 5 Compute the temperatures by use of the K ,  method (see Eqs. (4-39) 
and (4-40)). Note that after the corrected uiis have been found in step 5, the 
corrected liquid mole fractions may be computed directly from these. Also, the 
K b  obtained by use of Eq. (4-39) may be used to compute the yj,'s 

Yj i  = K j b I  ,I Xji 
Tj. n +  I T j n  

Step 6 Compute the L/Vs for the next trial by use of enthalpy balances. 
Step 7 Repeat steps 2 to 6 until I Bj  - I I is equal to or less than a pre- 

selected number of the order of or lo-'. Then proceed to the next incre- 
ment of time by returning to step 1. 

For the case where the mass (or volumetric) holdups are specified, the following 
procedure is employed. 

Specification of the Holdups in Mass or Volumetric Units 

For the first trial for the first increment of time (where the initial condition is 
steady state), the variation of the molar holdup is neglected. At the end of the 
first and all subsequent trials, the molar holdups at time t, + At are computed 
by use of Eqs. (4-33) and (4-34). Also, the y functions given by Eq. (4-36) are 
employed in the calculational procedure described above. 

Examples 

A wide variety of problems was solved in the course of the investigation of the 
properties of the proposed calculational procedure by Waggoner(l6). The deter- 
mination of the 0;s at the end of each calculation through the column consti- 
tutes the only trial-and-error involved in the proposed method. Some of the 
properties of the % method are demonstrated by use of Example 4-2 (see Table 
4-4). The upset (a change in the feed composition) for this example is about the 
maximum permitted by the curve-fits. The @j's obtained for the first 10 trials of 
the first time period are shown in Table 4-5. Although the 8's shown in Table 
4-5 are to within + of unity, this should not be taken to mean that the 
corresponding T s ,  vj:s, and y s  possess the same absolute accuracy because the 
values of these variables possess truncation errors that resulted from the 
approximation of the integrals by the implicit method. The fact that each 8 is 
approximately equal to unity does, however, imply that convergence for the first 
time period has been obtained, that is, a set of the independent variables, the 
temperatures, has been found that satisfies the component-material balances 
(Eq. (4-21)), equilibrium relationships (Eq. (4-39)), and the enthalpy and total- 
material balances (Table 4-3 and Eqs. (4-46) and (4-47)) to within the accuracy 
of the computer. Transient values of selected variables of Example 4-2 are 
presented in Table 4-6. In this example and others that follow, a 4 = 0.6 was 
used unless otherwise noted. 
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Upset for Example 4-2 

I I 

Table 4-4 Statement of Example 4-2 
Initial conditions:steady state operation 

Specifications 

Compo- 
nent no. 

Steady state solution 

I 
2 
3 

In order to minimize the computing time required to solve a given problem, 
the number of trials for each time period was limited. As shown in Table 4-5, 
good accuracy is obtained after the first few trials for a given At. Also, it is seen 
that for any one At, convergence to the desired accuracy may not be obtained if 
too few trials are employed. The inaccuracies that result from performing too 
few trials are carried over to the next time period, and it may become imposs- 
ible to obtain convergence for the next time period regardless of the number of 
trials performed. These inaccuracies eventually disappear with successive time 
. ._: _ J- -- I ---.--.- +Cn+Prl h,, WQnnnnPr(l&) 

Compo- 
nent no. 

1 
2 
3 

Component 

Table 4-5 Convergence of the thetas for Example 4-2 
Iterative values of variables for the first time period (At = 0.1 min) 

Vapor rate, 
mol/min 

50.00 
150.00 
146.32 
141.10 
130.98 
123.73 
109.10 

b I 

11.6289 
18.3715 
19.9996 

Plate 
-- 

1 (condenser) 
2 
3 
4 
5 (feed) 
6 
7 (reboiler) 

Component 

'GHt? 
n-C4Hlo 
n-C6H14 

FOX0, 
mol/min 

60 
20 
20 

Compo- 
nent 

C3Hn 

n-C,H,, 
n-C,Hl, 

G H 8  

n-C,H,, 
n-C6Hl, 

Table 4-6 Transient conditions for Example 4-2 

Temp., "F 

137.98 
142.00 
148.43 
158.49 
179.33 
199.78 
248.58 

d ,  

48.371 1 
16.2849 x lo-' 
43.6069 x 

Other conditions -- 
D = 50, V2 = 150, boiling 
point liquid feed, total 
condenser, column press. 
= 300 Ib/in2 abs. 4 

rectifying stages, 3 
stripping stages, including 
the reboiler. The K data 
and enthalpy data are 
given by Holland(6) and 
reproduced in Tables 
4A-1, 4A-2. 

FX, 
mol/min 

d l  

48.36897 
48.371 41 
48.370 85 
48.371 04 
48.37099 

48.371 00 
48.37100 
48.371 00 
48.37100 
48.371 00 

On the basis of the results obtained by solving a variety of examples, the 
following scheme was devised. For each time period, a maximum of 10 trials 
through the column are made. If before the tenth trial I O j  - 1 I I for all j, 
the calculations for the next time period are begun. 

Example 4-3, stated in Table 4-7, illustrates this procedure. An upset in the 
composition of the feed, which included the introduction of a new component 
into the column, occurred at time t = 0 +. At the end of 4 + min a second upset 
occurred, and at the end of 19+ min a third upset occurred such that the final 
feed did not contain one of the original components. After each upset, the 
procedure for selecting the size of the time period was reinitiated. The transient 
solutions of Example 4-3 are illustrated in Figs. 4-7 and 4-8. The average 
computer time required per time period was 0.19 min (IBM 709). 

Other conditions 
Final* steady state 

10 
40 
50 

06 

0.997 288 6 
1.0003803 
0.999 736 7 
1.0000600 
0.9999795 

1.000005 3 
0.9999989 
0.999 999 9 
1.0000001 
0.999999 9 

Table 4-7 Statement of Example 4-3 
Initial steady state conditions and solution are the same as Example 4-2, Table 4-4 

Upsets for Example 4-3 

Events 

Same as those stated for the initial steady state 
solution. In addition, the holdup on each plate, 
the condenser, and the reboiler is 50 moles. 

85 

0.9943160 
1.0006397 
0.999 272 8 
1.0002134 
0.9999096 

1.000033 4 
0.9999874 
I.000ME17 
0.9999983 
1.0000007 

Upset 1 Upset 2 Upset 3 

9.8522 36.4856 3.6622 220.58 345.98 413.80 
71 I ::: / 70.4 1 9.8521 1 36.4840 1 3.6639 1 220.19 1 345.99 413.81 

Time 
period 

1 
2 
3 
5 

10 
20 
30 
40 

50 
60 
70 

Transient values of selected variables 

* Found by use of a steady state calculational procedure. 

9.8520 

04 

1.005401 3 
0.999 187 1 
1.000 5402 
1.999841 0 
1.0000582 

0.999 979 7 
1.0000072 
0.999 997 4 
1.0000009 
0.999 999 7 

03 

1.0009094 
0.9999199 
1.000075 8 
0.9999836 
1.0000067 

0.999997 8 
1.0000007 
0.999 999 7 
1.0000001 
0.9999999 

Length 
of 
time 
period 

0.1 
0.1 
0.1 
0.1 

0.1 
0.1 
0.2 
0.4 

0.8 
1.6 

Component-distillate rates, 
mol/min 

36.4829 

8 2  

1.000081 1 
0.999999 8 
1.000006 8 
0.9999986 
1.0000007 

0.999 999 8 
1.0000001 
1.000000 0 
1,0000000 
1.000 0000 

Trial 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

Compo- 
nent 

Cumu- 
lative 
time, 
min 

0.1 
0.2 
0.3 
0.5 

1.0 
2.0 
4.0 
8.0 

16.0 
32.0 
64.0 

d ,  

48.3710 
48.3705 
48.3685 
48.3543 

48.1750 
46.7040 
35.9441 
13.8426 

9.9895 
9.8698 

Temperature, "F 

0, 

0.9979708 
1.0008209 
1.000025 3 
0.9999844 
1.000001 6 

0.999993 2 
1.0000029 
0.999 999 3 
1.0000006 
1.0000002 

no. 

1 
2 
3 
4 
-~ 

TI 

137.98 
137.98 
137.99 
138.01 

138.27 
140.48 
148.12 
205.06 

217.19 
220.09 

3.6651 

Compo- 

d ,  

1.6286 
1.6291 
1.6310 
1.6453 

1.8246 
3.2955 

14.0093 
35.6452 

38.1016 
36.7197 

TI TN 

187.37 247.86 
199.01 246.67 
207.86 248.97 
220.35 255.53 

239.22 283.01 
264.94 330.21 
294.39 369.38 
317.72 393.50 

335.72 407.41 
344.82 413.13 

a t t = O +  a t t = 4 + m i n  a t r = 1 9 + r n i n  

nen t 

C3Hn 

n-C4Hl, 
i-C4Hlo 
n-C,Hl, 

4 
0.0004 
0.0004 
0.0004 
0.0004 

0.0006 
0.0026 
0.0466 
0.5226 

1.9100 
3.4106 

220.59 346.00 413.81 

FX FX FX 

50 30 10 
10 5 0 
10 20 40 
30 45 50 

Other conditions 

A11 specifications 
and the molar holdups 
are the same as those 
stated in Tahle 4-4 



Time elapsed after upset 1,  rnin 

Figure 4-7 Transient values of the mole fractions on plates 2 and 4 after upsets 1, 2, and 3 of 
Example 4-3. (R. C .  Waggoner and C .  D. Holland, "Solution of Problems lnvolving Conventional 
and Complex Columns at Unsteady State Operation," AIChE J . ,  vol. 11, p. 112 (196% Courtesy 
of the American Institute of Chemical Engineers.) 

I 2 stage 5 - ,  21 I d  - -  ++- [--- -; 
3 1 ""l\$F I ,I 

Time elapsed after upset 1, rnin 

Figure 4-8 Transient values of the mole fractions on plates 4 and 5 after upsets 1, 2, and 3 01 
Example 4-3. (R. C .  Waggoner and C .  D. Holland, "Solution of Problems Inuoloing Conventional 
and Complex Columns at Unsteady State Operation," AIChE J. ,  vol. 11, p. 112 (1965). Courtesy 
n f  tho Amprirnn Institutp n f  Chpmical Enoineers.) 

Example 4-4, stated in Table 4-8, demonstrates the behavior of the pro- 
posed calculational procedure for feeds with wide boiling ranges. Its transient 
solutions are shown in Table 4-9. 

Table 4-8 Statement of Example 4-4 

Initial conditions: steady state operation. Upset at time t = O f :  a change in feed composition 

Specifications 

Compo- 
nent Compo- Upset 
no. nent FOX0 FX Other conditions 

I CH4 6.40 2.0 D = 3 1.6, V, = 94.8, boiling point liquid 
2 C 2 H 6  8.00 10.0 feed, partial condenser, column pressure = 

3 C,H, 4.80 6.0 300 Ib/in2 abs, 4 rectifying stages, 9 strip- 
4 C,H, 10.00 12.5 ping stages including the reboiler. The K data 

5 
and enthalpy data are given by Holland(6) 

6 
n-C4H10 12'00 15'0 and by Tables 4A-1 and 4A-2. The conditions 
i-C4H10 2.80 

7 
3'5 stated apply for both the initial steady 

8 
n-C5H12 l2.l6 

state solution and the upset at time t = O + .  
"-C6H14 9'04 Take the holdups to be fixed at 

9 C H 6  7.20 9.0 50 moles per stage (j = 1, 2, . . . , 13). 

10 n-C,Hl, 6.80 8.5 
I I Heavy 20.80 7.0 

fraction? 

Initial stead) state solution 

Vapor 
Temp., rates. Compo- 

Stage F mol mln nent 

1 104.89 31.60 1 6.4000 
2 147.29 94.80 2 8.0000 
3 166.95 96.79 3 4.7951 
4 181.53 95.45 4 9.9727 

5 210.17 88.68 5 1.0383 
6 237.51 195.88 6 1.3920 
7 249.87 229.99 7 I.ar>b x 10-I 
8 257.64 244.07 8 9.1141 x lo-' 

9 264.47 249.99 9 6.7911 x 
10 273.49 249.90 10 5.2789 x 10-lo 
11 289.78 242.29 11 2.4488 x 10-l2 
12 326.16 219.73 
13 429.36 161.64 

t This comoonent is a 400°F normal hnilino frprtinn 
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Table 4-9 Transient Conditions for Example 4-4 

Events Transient values of variables 

Length Cumu- Distillate rates, mol/min 
of lative 

Time time time 
period period min d1 4 d3 d4 4 d6 

1 0.1 0.1 6.2477 8.0369 4.8255 10.0366 1.0477 1.4037 

2 0.1 0.2 5.5975 8.1930 4.9548 10.3088 1.0884 1.4539 

3 0.1 0.3 4.4396 8.4677 5.1853 10.7967 1.1630 1.5454 

5 0.1 0.5 2.5707 8.8850 5.5546 11.5910 1.2937 1.7027 

10 0.1 1.0 2.0040 9.0033 5.6340 11.8076 1.3676 1.7809 

20 0.1 2.0 2.0003 9.4717 5.4798 11.4870 1.3859 1.7723 

30 0.2 4.0 1.9995 9.8946 5.4456 11.2244 1.3539 1.6784 

40 0.4 8.0 1.9993 9.9386 5.6022 11.3567 1.2212 1.4777 

50 0.8 16.0 1.9996 9.9571 5.7493 11.6732 0.9968 1.2202 

60 1.6 32.0 1.9998 9.9790 5.8593 11.9944 0.7736 0.9909 

70 3.2 64.0 1.9999 9.9930 5.9328 12.2219 0.6184 0.8316 

80 6.4 128.0 2.0000 9.9989 5.9658 12.3255 0.5506 0.7572 

90 12.8 256.0 2.0000 9.9998 5.9720 12.3453 0.5381 0.7427 

94 25.6 358.4 2.0000 9.9999 5.9722 12.3458 0.5378 0.7423 

Events Transient values of variables 

Length Cumu- Distillate rates, mol/min 
of lative 

Time time time 
period period min d, dm d9 d10 

I 0.1 0.1 0.00191 9.2474 x 6.9126 x LO-@ 5.3908 x 10-lo 

2 0.1 0.2 0.00202 9.8315 x lo-' 7.4493 x lo-' 5.8884 x 10-lo 

3 0.1 0.3 0.002 20 0.00001 l 8.4879 x lo-' 6.8647 x lo-'' 

5 0.1 0.5 0.00254 0.000013 1.0522 x lo-' 8.8382 x lo-'' 

10 0.1 1.0 0.00280 0.000015 1.2289 x 1.0599 x 

20 0.1 2.0 0.003 14 0.000018 1.5077 x 1.3324 x 

30 0.2 4.0 0.003 94 0.000024 2.1082 x 1.8854 x 

40 0.4 8.0 0.004 50 0.000026 2.1948 x lo-' 1.8906 x 

50 0.8 16.0 0.003 0.000020 1.6021 x 1.3011 x 

60 1.6 32.0 0.00295 0.000015 1.0838 x 8.2627 x 10-lo 

70 3.2 64.0 0.00233 0.000011 7.7910 x l o -@ 5.6329 x 

80 6.4 128.0 0.00207 9.7050 x 6.5855 x lo-@ 4.6352 x 10-lo 

90 12.8 256.0 0.00202 9.438 1 x 6.3702 x lo-@ 4.4599 x lo-'' 

94 25.6 358.4 0.00202 9.431 5 x 6.3469X10-8 4.4556 x lo-'' 
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Table 4-9 Transient Conditions for Example &&-Continued 

Events Transient values of variables 

Temp., "F Vapor rates, mol/min 

Time Con- Plate 5, Plate 13, Plate 5, Plate 13, 
period denser feed reboiler feed Plate 6 reboiler 

1 105.48 214.49 426.92 101.48 158.61 128.63 
2 108.00 217.74 422.31 104.59 144.52 116.09 
3 112.40 218.11 417.06 93.03 131.40 106.95 
5 119.42 218.21 406.82 84.58 122.12 104.12 

10 121.89 218.31 388.93 83.42 120.39 110.99 

20 120.95 217.88 368.45 83.82 119.95 120.00 
30 119.32 216.93 358.82 83.97 119.38 126.58 
40 117.25 215.55 363.73 83.44 118.07 126.44 
50 114.15 213.64 366.45 82.46 116.06 125.68 
60 111.05 211.11 366.80 81.38 113.75 124.71 

70 108.81 208.96 366.68 80.56 111.83 123.85 
80 107.73 207.73 366.59 80.19 110.86 123.41 
90 107.58 207.48 366.58 80.11 110.67 123.33 
94 107.58 207.48 366.57 80.1 1 110.66 123.33 

Comparison of Calculated and Experimental Results 

Waggoner(l6) used experimental results obtained by Huckaba et a1.(7,8) and by 
Armstrong and Wilkinson(1) for some relatively simple systems at unsteady 
state operation for comparison with the results obtained by the proposed calcu- 
lational procedure. Although the systems for which experimental data existed 
had binary feed mixtures, Waggoner did not take advantage of the mathemat- 
ical property (x, = 1 - x,) of such systems but treated them in the same 
manner required for multicomponent systems. For all examples considered, the 
agreement between the calculated and experimental results was good. Of the 
comparisons made by Waggoner(l6), the results are presented for only one 
experiment, run 1 of Huckaba(7). A description of the experimental conditions 
employed by Huckaba and the basis of comparison of the calculated and ex- 
verimental results follows. 

Huckaba's work was based on the separation of a binary mixture of metha- 
nol and tertiary butanol. These alcohols were chosen because, although their 
molecular weights are very different, their densities were nearly identical to each 
other. Constant mass holdup was descriptive of this operation. The equipment 
used by Huckaba et al.(7,8) consisted of a column with 12 bubble-cap plates. A 
total condenser and a reboiler were used, and the column was vented to the 
atmosphere. 

A plot of composition versus time was presented for selected trays and for 
several runs (Refs. 7 and 8). In addition, the feed description and the reflux ratio 
were given for all runs. Vaporization efficiences were calculated from specified 
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modified Murphree efficiencies. The numerical values of efficiencies used by 
Huckaba for the pure components were taken as the modified Murphree ef- 
ficiencies. These efficiencies led to steady state solutions which were consistent 
with those presented graphically (Refs. 7 and 8). 

Run 1 by Huckaba et a1.(7) is simulated by Example 4-5, Table 4-10. A 

Table 4-10 Statement of Example 4 5  (Ref. 7 )  

Initial conditions: steady state operation 

Specifications Steady state solution 

Vapor 
Temp., Aow, 

Feed Other conditions Plate "F mol/min 

Methanol concentration D = 23.91 mollmin, L ,  = 56.602 1 151.19 23.91 
mol/min, F = 29.778 mol/min.t 2 155.53 80.51 

Weight Mole Liquid feed below its bubble- 3 157.14 79.95 
fraction fraction point, total condenser, atmo- 4 158.95 79.17 

spheric column pressure, 7 5 160.58 78.42 

0.571 0.7548 rectifying stages (including 6 161.97 77.74 

the condenser), 7 stripping 7 164.88 77.15 
Temperature = 82.0°F stages (including reboiler). 8 167.62 80.20 

Modified Murphree efficien- 9 170.17 79.21 
cies : 10 172.40 78.28 

Methanol t-butanol 11 174.29 77.46 

0.389 0.845 12 175.84 76.76 
2 < j < 1 3  13 177.08 76.18 

1.0 1.0 14 176.73 75.71 
j =  l , j =  14 

K data and enthalpy data are 
given in Table 4A-3 

First upset for Example 4-5 at t = O f  

Methanol 

Feed Other conditions concentration 

Methanol concentration D = 23.91 mols/min, L ,  = 56.602 Weight Mole 

mol/min, F = 27.988 mol/min frac- frac- 
Plate tion tion 

Weight Mole Holdup: 
fraction fraction Condenser = 32400 Ib 

Reboiler = 56400 Ib 1 0.821 0.914 
0.49 1 0.6906 Each plate = 1200 Ib 5 0.462 0.665 

All other conditions are 9 0.248 0.433 
Temperature = 82.0°F the same as those specified 13 0.088 0.182 

for the initial steady state 14 0.049 0.106 
solution 

t Note, all rates and holdups are, of course, relative to the feed rate stated. 
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Table 4-10 Statement of Example 4-5 (Ref. 7FContinued 

Second upset for Example 4-5 

Feed Other conditions 

Methanol concentration D = 23.027rnol/min, L, = 54.512 moljmin, 
F = 27.988 mol/min 

Weight Mole Holdup: 
fraction fraction Condenser = 32 400 1b 

Reboiler = 56 4001b 
0.49 1 0.6906 Each plate = 1 200 1b 

All other conditions are the same as those spec- 
Temperature = 82'F ified for the initial steady state solution. 

Time of upset 2 

After Time after first 
39th At  upset = 38min 

comparison of the calculated results for this example with the calculated results 
of Huckaba et a1.(7) is presented graphically in Fig. 4-9. 

In order to utilize the modified Murphree efficiencies given by Huckaba, a 
new efficiency, called the vaporization efficiency, Eji, is defined which makes it 
possible to apply all of the equations for perfect plates by replacing Kj i  
wherever it appears by Eji K j i .  The modified Murphree efficiency is defined by 

Time elapsed since upset in feed composition, min 

Figure 4-9 Calculated and experimental results for Example 4-5. 
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where the sum of the Kjixj, 's is not\necessarily equal to unity. The vaporization 
efficiency is defined by 

y . .  = E . . K . . x . .  
~1 J L  J L  11 (4-50) 

If values of E: are known as in the case of Example 4-5, the corresponding 
values of Eji at the end of any trial are found by use of the following formula 
which is readily obtained by eliminating K j i x j i  from Eqs. (4-49) and (4-50) and 
rearranging to give 

Modified Theta Method of Convergence 

In the interest of increasing the speed of performing the calculations for each 
time period, a method of convergence involving only two 9's for the case of a 
conventional column was investigated and found to give satisfactory results for 
all problems considered. In this method, O j  is set equal to 8 ,  for all j 2 2. Thus, 
for the case where the molar holdups and the rates D and L,  are specified for a 
conventional column with a partial condenser, Eq. (4-25) becomes 

For a column having a total condenser, 8 ,  no longer exists and it is replaced in 
Eq. (4-52) by some other 8 ,  say 8 ,  = O j  (j = 2, 3, .. ., N - 1). The set of 9's 
greater than zero that satisfies the specifications 

simultaneously is the set that makes go = g = 0, where 

(Note that the function g is merely the sum of the g ls  for the holdups given by 
Eq. (4-31); that is, g = xy:,' g,.) The formula for di  as given by Eq. (4-30) 
reduces to 

F X ,  + s [ F X i  - di  - bi10 + (2) uYi 4 At j = l  (4-54) 

ca 
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F The modified 8  method is seen to apply the same correction for each plate. For 

i any one At, the number of trials required to obtain convergence by use of the 
modified 8 method was about the same as that required when all of the B's were 
employed. The modified 8 method was tested with several examples in which 
very large upsets were involved. The solutions obtained by use of the modified 9 
method agreed closely with those found by use of the 8  method (Refs. 16, 17). 

From the solution of problems involving complex columns, it is known that 
many of these problems will not converge at steady state unless the 9 associated 
with each sidestream is used in the convergence method (Ref. 6). Also, any 
scheme used to improve the speed of the unsteady state method must reduce to 
the 8  method for steady state operation as the steady state solution is ap- 
proached. Thus, the following set of 9's should be determined in the modified 8  
method for complex columns: 8 , ,  one 8  corresponding to each sidestream 
(vapor or liquid), and one 0  corresponding to the sum of the holdups for all 
those plates without liquid withdrawals. The modified 0 method for complex 
columns at unsteady state operation also gave satisfactory results for all prob- 
lems considered. 

An Exact Solution Given by the Theta Method 

Consider a distillation column at unsteady state operation. Suppose that each 
U j  as well as D and B are fixed at finite and positive values. A total-material 
balance enclosing the top of the column and any stage j (j < f )  over the time 
period from t ,  to t ,  + At is given by 

Application of the mean-value theorems followed by the limiting process where- 
in At is allowed to go to zero yields the following differential equation upon 
division of each member by q + ,  : 

Now suppose that the column is operated in such a manner that dU,/dt is finite 
for all j and t .  Thus, after the limit of each term of Eq. (4-56), has been taken as 
4 + ,  approaches infinity, one obtains 

Since the limit of F / ? + ,  as q+ ,  approaches infinity is equal to zero, the 
restriction that j c f may be removed, and thus Eq. (4-57) holds for all stages, 
that is, 



Next consider the component-material balance for any stage j (j < f) 

Application of the mean-value theorems followed by the limiting process where- 
in At is allowed to go to zero yields the following differential equation upon 
division of each member by <+ , : 

Now suppose that the column is operated in a manner such that duji/dt is finite 
for all j and t .  Thus, after the limit of each side of Eq. (4-60) has been taken as 
< + ,  approaches infinity, one obtains the result 

since D and each U j  are finite as well as xji  and X D i .  Also, the limit of L j / % + ,  
as approaches infinity is equal to unity (Eq. (4-57)). Equation (4-61) also 
holds for all stages j 2 f since the limit of F X J Y + ,  as l / j + ,  approaches infinity 
is equal to zero. 

A column having the operating conditions characterized by Eqs. (4-57) and 
(4-61) is said to be at total reflux because it is described by the same set of 
equations as an actual column in operation at total reflux with F = D = B = 0. 

The following set of equations is obtained by commencing at the top of the 
column and solving simultaneously the equilibrium relationships yji  = K j i  xji  
and the component material balances Y , , , , ~  = x j i  For a column having a 
partial condenser, y I i  = X D i ,  one obtains 

When each member of Eq. (4-62) is divided by the corresponding member of the 
equation for the base component b and the resulting equation for each stage j is 

! -uTIoN OF PROBLEMS INVOLVING coNTINuous-DIsTILLATioN COLUMNS 161 

multiplied by U,/D,  one obtains 

where cci = K j i / K j b  for all i and j. 

Since x , ~  = x,,, the last expression of Eq. (4-63) may be restated in the follow- 
ing equivalent form: 

For any two different choices of (ujb/db), the expression for stage j of Eq. 
(4-63) can be stated in the form 

Since the ratio for the base component b which is enclosed by brackets depends 
upon stage j alone, it follows that 

For the Nth stage, a similar analysis of Eq. (4-64) yields 

Thus, the 0 multipliers defined by Eq. (4-25) are seen to be exact relationships 
for a column at total reflux. 



4-3 APPLICATION OF THE COMBINATION OF 
THE TWO-POINT IMPLICIT METHOD AND 
THE 2N NEWTON-RAPHSON METHOD 

The solution of the equations for any one time step are carried out in a manner 
analogous to that demonstrated by Holland(6) for steady state problems. The 
independent variables are taken to be the N stage temperature { T i }  and the N 
flow ratios {Lj/l/j). Corresponding to these 2N independent variables, N equilib- 
rium functions and N energy balance functions are formulated. 

The N equilibrium functions are formulated by first restating Eqs. (4-4) and 
(4-5) in the following form: c C 

CIji Coj i  
0 - i = 1  - i = 1  (4-69) 

Lj I.;. 

Elimination of the lj,'s by use of Eq. (4-17) and restatement of the result so 
obtained in functional form yields the dewpoint form of the function 

For the case where a total condenser is used, the bubble-point form of the 
function is used, namely, 

The enthalpy balance functions (for stages j = 2, 3, .. ., f - 1, f + 1, . . ., N - 1) 3 
are obtained by a rearrangement of Eq. (4-46) followed by restatement in func- 1 
tional form, namely, 

The G functions for stages j = l,f, and N are developed in a manner analogous 
to that demonstrated above. 

The functions Fj and Gj contain the dependent variables {vji), {Iji}, and 
{I.;.). For any choice of values of the independent variables {T,)  and {Lj/I.;.), 
expressions are needed for computing the values of the dependent variables. The 
{oji) are found by use of Eq. (4-21) and the corresponding lj,'s are computed by 
use of the equilibrium relationship, lji = Aji vji. 

Next an equation for computing the {l/j} for any set of assumed L j / y s  is 
developed. When the Uj's are assumed to remain constant, the total-material 
balances are of the following form when only one stage is enclosed by each 

balance. For any stage j (2 5 j < N - 1, j #f, N), the total-material balance is 
given by 

I.;.,, + Lj-, - I.;.- L j = o  (4-73) 

For any given set of Lj/Ys it is desired to solve the total-material balances for 
the corresponding set of vapor rates {I.;.). In the restatement of the total- 
material balances, it is convenient to define the new variable Oj as follows: 

0 )  ( j = I , 2  ,..., N) 
I.;. 

where (L,/I.;.), is any arbitrary value of Lj /y .  Taking this assumed ratio equal 
to the most recently assumed value of Lj/I.;. serves to normalize the 0;s so that 
at convergence 8, approaches unity for all j. Let Eq. (4-74) be restated as 
follows: 

L .  = r .  V. 
I J J  

where 

Equation (4-75) may be used to restate the total-material balances in terms of 
either the vapor or liquid rates. When the balances are restated in terms of 
vapor rates, Eq. (4-73) becomes 

The complete set of total-material balances may be represented by the matrix 
equation 

When the (0,) and {T,)  are taken to be the independent variables rather than 
the {Lj/I.;.} and {q}, the Aj,'s which appear in the component-material balances 
become 

For a conventional distillation column, the following sets of specifications are 



commonly made. When Q, and Q, are specified, the independent variables are 
given by 

x = [ 8 1  0 ,  ... 8, T, T, . . .  T,]~ (4-79) 

If the reflux ratio Ll/D and the boilup ratio V,/B are specified, then the inde- 
pendent variables are given by 

x = [Qc 0 ,  O3 . . .  QR TI T2 . . .  TNIT (4-80) 

Also, one may specify L1/D and Q, or Qc and V,/B instead of Ll/D and VN/B. 
The solution value x may be found by use of the Newton-Raphson method 

where the jacobian matrix J has the following representation (where x is given 
by Eq. (4-79)): 

f = [ F ,  F, . . .  F N  GI G2 . . .  G,17 

The 2N Newton-Raphson equations may be solved by use of any one of 
the three procedures recently described by Holland(6) for distillation columns at 
steady state operation. Of the following three procedures only Broyden's 
method is described briefly. 

Procedure I Use of analytical expressions for evaluating the partial deriva- 
tives of the Fj's and Gj's. 

Procedure 2 Broyden's method(4). 
Procedure 3 Broyden-Bennett algorithm (Refs. 2, 4). 

Broyden's method is applied as outlined in the six steps below Eq. (2-48), 
except for the fact that for a change in any one of the independent 0;s the two 
sets of constraining equations (the component-material balances, Eq. (4-21) and 
the total-material balances, Eq. (4-73)) must be solved. However, for a change in 
any of the c s  it is necessary to solve only the component-material balances 
because the total-material balances are independent of the temperatures {Ti). 
Also each trial is initiated by taking the assumed values {(Lj/r/;-1,) and {Ti) 
equal to the most recently calculated sets of values for these variables, and the 
assumed 8;s are taken to be 8, = 8, = . . .  = 8,  = 1. These choices for the 
(Lj/r/;-),'s and the B's have the effect of normalizing the 8;s. 

In summary, the equations for the model of a continuous distillation 
- - I  ..-, ,* ..,,+,,A,, ' . totp p,,nQidP,.Pd in  +hiQ rhsn+er mnsists of the comDonent- 
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material balances, total-material balances, energy balance and equilibrium re- 
lationships. After the integral-difference equations have been reduced to alge- 
braic form by use of the two-point implicit method, they must be solved for the 
values of the variables at  the end of the time step. Two of the possible methods 
for solving these equations are the 8 method and the 2N Newton-Raphson 
method. When the holdups are allowed to vary, as in Chap. 8, the 8 method is 
no longer recommended. Instead, other methods such as Gear's and the semi- 
implicit Runge-Kutta methods are recommended. These methods are demon- 
strated in subsequent chapters. Also, a combination of the two-point implicit 
method and the Newton-Raphson method could be used. It is, however, gener- 
ally slower than the more powerful multipoint methods mentioned above. 

In order to compare the 8 method, the modified 0 method, and the 2N 
Newton-Raphson method, Examples 4-2 and 4-4 were solved by each of these 
methods. The results so obtained are presented in Table 4-11. Broyden's method 
was used in the 8 method in the solution of the g functions for the B's and in 
the 2N Newton-Raphson method. Two procedures were used. In the first 

Table 4-11 Comparison of the theta method, the modified theta method, and the 
2N Newton-Raphson method for Examples 4-2 and 4-4 (Ref. 10) 

Computer 
time 

No. of (AMDAHL 
time 470/V6 

Example Method steps computer) Convergence criteria Compiler 

4-2 Omethod 94 (1) 4.98f Ceaseif1 1 - Q,I 5 FORTRAN H 
(2) 3.507 or 1 AT, /IT, 10- EXTENDED 

after the 10th trial ofa 
time step 

4- 2 Modified 94 (1) 3.47 Sameas above FORTRAN H 
Omethod (2) 3.04 EXTENDED 

4-2 2N Newton- 94 (1) 13.03 4 < where FORTRAN H 
Raphson (2) 3.83 EXTENDED 
method 

4-4 Bmethod 94 (1) 47.79 Sameas Qmethod for FORTRAN H 
(2) 16.09 Example 4-2 EXTENDED 

4-4 Modified 94 (1) 19.91 Same as modified 0 FORTRAN H 
Qmethod (2) 19.12 method for Example4-2 EXTENDED 

4-4 2N Newton- 94 (1) 107.32 Same as 2N Newton- FORTRAN H 
Raphson (2) 18.28 Raphson method for EXTENDED 
method Example 4-2 

t In order to apply the 2N Newton-Raphson method as formulated in the text, use the values 
of Q, and Q,, or L , / D  and Q, found by use of the Q method. 

$ The entry given by (1) represents the time required when the jacobian evaluated once each 
time step, and the entry given by (2) represents the time required when the jacobian is evaluated 
only once for each problem vrovided that Brovden's ineaualitv criterion is satisfied 



(denoted by (1) in Table 4-11), the jacobians were evaluated once per time step; 
whereas, in the second procedure (denoted by (2) in Table 4-11), the jacobian 
was evaluated only once per problem provided that the inequality criterion of 
Broyden's method was satisfied. The values of the elements of the jacobian at 
the beginning of a given time step were taken to be the values which they had 
at the end of the previous time step as proposed by Mijares(l0). 

NOTATION 

= absorption factor for component i and plate j 
= flow rate of component i in the bottoms, mol/time 
= total flow rate of the bottoms, mol/time 
= total number of components 
= flow rate of component i in the distillate, mol/time 
= total flow rate of the distillate, mol/time 
= bubble-point function for plate j (Ti  is equal to the 

bubble-point temperature of the liquid leaving plate 
j, f (?;.) = 0) 

= a column vector of functions 
= a quantity that appears in the recursion formulas used 

to solve the component-material balances 
= total flow rate of the feed 
= dewpoint function for plate j (when T, is equal to 

the dewpoint temperature of the vapor leaving plate j, 
F(T,) = 0) 

, 8,- ,) = the jth function of O o ,  O , ,  . . ., O N -  , 
= a quantity that appears in the recursion formulas used 

to solve the component-material balances 
= enthalpies (Btu/mol) of component i in the liquid 

and vapor states, respectively, at the temperature of 
plate j-in the examples solved, ideal solution values 
were used, that is, hji = hji, Hji = Hji 

= jacobian matrix 
= total enthalpy of the feed, regardless of state 
= total enthalpy of the distillate, regardless of state 
= virtual value of the partial molar enthalpy of 

component i in the distillate (for a partial 
condenser HDi = H l i  and for a total condenser HDi = hli) 

= equilibrium constant for component i at the temperature 
and pressure of the liquid leaving plate j (these 
functions are expressed as polynomials in temperature) 

Yji 

Greek letters 

aji 

= equilibrium constant for the base component evaluated 
at the temperature of the liquid leaving plate j (in 
the K, method a hypothetical component with a K value 
given by Eq. (4-41) is selected as the base 
component) 

= flow rate at which component i in the liquid phase 
leaves plate j, moIes per unit time 

= total flow rate at which liquid leaves plate j, 
moles per unit time 

= liquid holdup (mass or volume) of component i on plate j. 
= molecular weight of component i (also used to denote 

the volume per mole for component i in the liquid phase 
on each plate) 

= total liquid holdup on plate j in mass or volumetric 
units 

= total number of stages including the condenser- 
accumulator section and the reboiler 

= net energy removed by the condenser per unit time 
= net energy transferred to the system by the reboiler 

per unit time 
= time in consistent units ( t ,  is used to denote the 

time at which the time increment n + 1 begins, and 
t ,  + At the time at which time increment n + 1 ends) 

= vapor and liquid holdups in moles of component i on 
plate j, respectively 

= total holdups of vapor and liquid, respectively, on 
plate j, moles 

= flow rate at which component i in the vapor phase 
leaves plate j, moles/time 

= total flow rate at which vapor leaves plate j, 
moles/time 

= mole fraction of component i in the liquid leaving 
plate j 

= a column vector of variables 
= total mole fraction of component i in the feed 

(regardless of state) 
= total mole fraction of component i in the distillate 

(regardless of state) 
= mole fraction of component i in the vapor phase 

leaving plate j 

= relative volatility of component i at the temperature 
of plate j (aji = Kji/Kjb) 
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7; = activity coefficients for component i in the liquid 
and vapor phases on plate j 

= a multiplier associated with the distillate and bottoms 
= a multiplier associated with stage j 
= a weight factor used in that evaluation of an integral 

in terms of the values of a function at times t ,  
and t ,  + At 

= a constant appearing in the component-material balances 
and in the enthalpy balances (o = (1 - 4)/4) 

= dimensionless time factor for plate j 
bj = (Uj1Lj)/(4 At)) 

= enthalpy departure function (defined below Eq. (4-3); 
see also App. 4A-2) 

Subscripts 

= calculated value 
= component number (i = 1 through i = c) 
= plate number; for condenser-accumulator section j = 1, 

for the top plate j = 2, for the feed plate j =f, for 
the bottom plate j = N - 1, and for the reboiler j = N 

= an integer used for counting 
= trial number 

Superscripts 

0 = value of a variable at the beginning of the time 
increment under consideration (the absence of a 
superscript, say vji ,  means either the instantaneous 
value of the variable or the value of the variable at 
the end of the time period under consideration 
(time t ,  + At)--see context) 

L = the liquid phase 
V = the vapor phase 

Mathematical symbols 

{xi) = set of all values of the variables under consideration 
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PROBLEMS 

4-1 Beginning with the component-material balances in the integral-difference form, show that the 
corresponding equations obtained by use of the implicit method are those given by Eq. (4-20). 

4-2 By use of the implicit method and the relationships given by Eq. (4-25), show that the formula 
for the corrected distillate rate for any component i is given by Eq. (4-30). 

4 3  Find the analytical expressions for the partial derivatives of the function go given by Eq. (4-31) 
with respect to 0,. 0 , .  ..., O N _ ,  . 

4-4 Show that Eqs. (4-39) and (4-40) give the same value for K j b .  That is, given the expressions for 
xji  and yji (Eqs. (4-27) and (4-28)), the relationship lji = A j i v j i ,  and the expression for K j b  (Eq. 
(4-39)), show that the expression for K,, as given by Eq. (4-40) follows. 



4-5 (a) Beginning with the following definition of the corrected value of o j i .  

show that the expression given by Eq. (4-28) for the corrected value of yji follows as a consequence. 
(b)  For the case where vapor holdups are specified for a column having a partial condenser, 

obtain a relationship between the aj's and BjY's, where 

4-6 Develop the enthalpy balance expressions given in Table 4-2. 

4-7 Show that the recursion formulas presented in the text for solving simultaneous equations that 
are tridiagonal in form may be obtained by use of gaussian elimination. 

Hint: Consider first a particular case, say Example 4-1. The component-material balances 
given in Example 4-1 have the following matrix representation: 

0 0 a ,  
O O O a ,  

By use of the definitions o f f , ,  g, ,  f,, g,, show that after the row operations corresponding to 
gaussian elimination have been performed, the following result is obtained: 

Commencing with the last row (row 5), apply the multiplication rule. 

4-8 Begin with the definition of xi, given by Eq. (4-27) and the definition of a mole fraction 
r,, = u,,/U, and show that it is possible to obtain the defining equations for { B j } ,  namely, Eqs. 
(4-25) and (4-31). 

4-9 Beginning with the component-material and total-material balances 

F X ,  = oFi + I , ,  

F = V, + LF 

and the dewpoint expression 

( a )  show that the dewpoint expression can be restated in the form 

and in the functional form 

where 

( h )  In an isothermal flash calculation F, ( X , } ,  P, and TF are specified and it is required to find 
0, VF,  {v, ,} ,  and {IFi}. Show how the above equations may be solved by use of Newton's method. 

4-10 For the case where model 2 is used for the feed plate (instead of model I), show how 
component-material balances, total-material balances, and enthalpy balances presented for model 1 
must be modified in order to represent model 2. 
4-11 (a) Initially a distillation column is at steady state operation at total reflux. From the infor- 
mation given below compute: 

Gioen: 

- 

Compo- 
nent X ,  st; Other specifications 

1 113 1 F = 100, N = 3, partial condenser, U , / B  = 2, u,,/d, = 1 ,  uZb/db = 1 ,  
2 113 2 bb/db = 1 .  Note that for a column at steady state operation at total 
3 113 3 reflux, u,Jd, = (ujb/db)/al and b,/d,  = ( b , / d , ) ~ ; ~ .  

Also d ,  = FX,/(I + bdd,). 

( b )  At time t = 0 + ,  the feed composition is changed to X ,  = 112, X 2  = 113, and X ,  = 116. If 
the column remains at total reflux, and if at the end of the first time step (At = 0.4), u lb /d ,  = 
u,,,'db = 2, bbld, = 4, and U , / B  = 2. compute {u, , /d,) ,  {b, /d,} ,  {u j i } .  { d i } ,  { h i ) ,  and { U , )  at the end of 
the first time step. Take 4 = 0.6. 

(c) Repeat part (b)  for the case where (u, , ld,)  = (u,,/d,) = 4, bb/db = 8, and U , / B  = 2 at the 
end of the first time step. 

( d )  Beginning with the values of the {uj , /d , } ,  { b , / d , )  found at the end of the first time step in 
part (b),  the initial conditions of part (a),  the values of U , ,  U , ,  and D found in part (c), compute 
the values ( V , ,  0 ,  , 0,)  necessary to make go = g ,  = g, = 0 simultaneously, where 

4-12 For the special case of a conventional distillation column at steady state operation, Boston 
and Sullivan(3) developed an algorithm for computing the f ;s and g,'s at unsteady state operation, 
the algorithm is given by 



hi 
B l  =-  

"'I 

mk-1 
g k  =(A, + Ak-l , igk-l . i ) -  ( k =  2,3, ..., N )  

"'k 

For the special case where b, = -(I + A,,), c, = 1, aj = A , _ , , , ,  d ,  = -4,. show that when these 
quantities are substituted successively into the formulas given by Eq. (4-23) for the jl's and g,'s, the 
above expressions are obtained. 

4-13 Use the recurrence formulas to obtain the component flow rates of Example 4-1. 

4-14 If, prior to an upset, a column is at steady state operation, show that the unsteady state 
equations for the first time step reduce to the steady state equations at the conditions of the upset 
when At is allowed to increase without bound. 

APPENDIX 4A-1 EQUILIBRIUM AND ENTHALPY DATA 

Table 4A-1 Equilibrium datat 
P = 300 Ib/in2 abs, (K, /T)'  = a , ;  + a,, T + a,,  T' + a4, T , ,  ( T  in OR). 

Component a ,  x lo2 a ,  x 10' a ,  x 10' a, x 1012 

CH4 32.718 139 -9.695 1405 6.922 933 4 -47.361 298 

C2H, -5.177995 62.124 576 - 37.562 082 8.014 550 1 

C2H6 -9.840021 0 67.545 943 -37.459 290 -9.073 245 0 

C , H 6  - 25.098 770 102.392 87 -75.221 710 153.84709 

C , H ,  - 14.512474 53.638 924 -5,305 1604 - 173.583 29 

i-C4H, - 10.104481 21.400418 38.564 266 - 353.654 19 
i-C, - 18.967 651 61.239667 -17.891649 -90.855 512 
n-C, - 14.181 715 36.866 353 16.521 412 -248.23843 
i-C, - 7.548 840 0 3.262 363 1 58.507 340 -414.923 23 
n-C, - 7.543 539 0 2.058 423 1 59.138 344 -413.12409 

n-C, 1.150691 9 -33.885839 97.795 401 - 542.359 41 
n-C, 5.569 275 8 - 50.705 967 112.17338 - 574.893 50 
n-C, 7.1714400 -52.608530 103.720 34 -496.465 51 
400 2.527 8960 - 17.311 330 33.502 879 - 126.250 39 
500 3.312 329 1 - 16.652384 24.310911 -64.148 982 

t S. T. Hadden: "Vapor-Liquid Equilibria in Hydrocarbon Systems," Chem. Eng. 
Prog., 44: 37 (1948). 

d w - o r -  m m ~ r - w  m m m  m  
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Table 4A-3 Equilibrium data? and enthalpy data1 

(hi)Il2 = C l i  + C l i  T + C3i  T 2  
(Hi)'/' = e l i  

( K i / T ) l l )  = a l i  + a l i  T + a,i T2 + aqi T 3  (T  in "R) 

Pressure 
Component Ib/in2 abs a ,  x loz a ,  x lo4 a ,  x lo6 a ,  x 10" 

Benzene 14.7 - 14.822 221 2.736 3709 0.190 786 94 0.525 114 54 
t-butanol 14.7 66.229 585 - 34.357 736 5.474 829 0 - 22.533 968 
Carbontetrachloride 14.7 6.326 1142 -6.778488 1 1.628 1568 -6.6366262 
Methanol 14.7 34.514954 -20.165 650 3.483 886 7 12.893 764 

-- 

Pressure 
Component Ib/inz abs C ,  C 2  x 10 C ,  x lo5 e l  

t-Butanol 14.7 -236.641 81 6.429 8840 -20.758 627 161.021 69 
Methanol 14.7 -99.777 949 3.128 5170 - 10.098 542 134.435 70 

t T. E. Jordan: Vapor Pressure of Organic Compounds, Interscience Publishers, Inc., New York 
(1954). 

1 C. E. Huckaba, F. R. Franke, and F. P. May: Presented at the 55th Annual Meeting of the 
American Institute of Chemical Engineers, Chicago, Ill., Dec. 2-6, 1962. 

APPENDIX 4A-2 THE VIRTUAL VALUES OF THE PARTIAL 
MOLAR ENTHALPIES (Refs. 1, 2) 

The virtual values of the partial molar enthalpies are defined as follows: 

where = Qi(p, T, {nil) = virtual value of the partial molar enthalpy of com- 
ponent i in a mixture at temperature T and pressure P 

Hp = enthalpy of one mole of component i in the perfect gas state at the 
temperature T and the pressure P = 1 atmosphere 

R = H(P, T, {n,)) - HO(l, T, {n,}), the enthalpy of one mole of mixture 
at the temperature T and pressure P minus the enthalpy of one 
mole of the same mixture in the perfect gas state at  T and at P = 1 
atmosphere ( 0  is called the enthalpy departure function) 

C 

H0 = (ni/n)Hp 
i =  1 

ni = moles of component i (n = total number of moles) 

Although the virtual values of the partial molar enthalpies are generally 
unequal to the partial molar enthalpies, they may be used to compute the 
correct enthalpy of the mixture, that is, 
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Much less computational elfort is required to compute the enthalpy of a mix- 
ture when the virtual values of the partial molar enthalpies are used than is 
required when the partial molar enthalpies are used. 

The equality given by Eq. (2) is readily established by beginning with the 
fact that the enthalpy of one mole of any mixture may be expressed in terms of 
H0 and the departure function R as follows 

Then the enthalpy of n moies (n, + n, + . . . + nc = n) of a mixture is given by 

Termwise differentiation of Eq. (4) with n, at  constant pressure and temperature, 
and with all of the n,'s held fixed except for n,, yields 

which reduces to 

Let the subscript k in the above equation be replaced by the subscript i. Multi- 
plication of the resulting expression by ni followed by the summation over all 
components yields 

Since R is a homogeneous function of degree zero in the n,'s, it follows from 
Euler's theorem (App. 1A) that 

Thus, Eq. (7) reduces to 

Multiplication of each term of Eq. (1) by ni and summation of the resulting 
expression over all components yields 

Comparison of Eqs. (9) and (10) establishes the validity of Eq. (2). 
The departure function R may be evaluated by use of the formulas given in 

Ref. 3 below for a number of equations of state. 



176 STAGED SEPARATION PROBLEMS-TWO-POINT IMPLICIT METHOL, 

REFERENCES 

1. C. D. Holland, and P. T. Eubank: "Solve More Distillation Problems: Part 2-Partial Molar 
Enthalpies Calculated: Hydrocarbon Process, 531 1): 176 (1974). 

2. C. D. Holland: "Energy Balances for Systems Involving Nonideal Solutions," Ind. Eng. Chem. 
Fundam., 16(1): 143 (1977). 

3. C. D. Holland: Fundamentals of Multicomponent Distillation, McGraw-Hill Book Company, New 
York, 1981. 

CHAPTER 

FIVE 

SOLUTION OF 
BATCH-DISTILLATION PROBLEMS 

Although batch distillation is one of the oldest of the separation processes, it is 
still used in a number of industries because it is more economical than the 
continuous-distillation process. The sketch of a typical batch-distillation column 
is shown in Fig. 5-1. 

The development of calculational procedures for batch distillation, an in- 
herently unsteady state process, has followed a somewhat different path from 
that of continuous distillation. The calculational procedures proposed in the 
literature for solving batch-distillation problems follow closely the development 
of high-speed computing capability. The early efforts are marked by approxi- 
mate and graphical procedures. With the advent of high-speed computers have 
come more exact models of the process and the application of numerical meth- 
ods for solving problems of this type. Beginning with Rayleigh(23), numerous 
calculational procedures for solving batch-distillation problems have been pro- 
posed (Refs. 1, 2, 3, 7, 8, 17, 18, 20, 25, 26, 27). 

The description of a typical batch-distillation column is conveniently di- 
vided into two parts: (1) the start-up period and (2) the product period. The 
product period is that part of the distillation process during which a product is 
withdrawn from the column. The adjustment period that precedes the product 
period is called the start-up period. Adjustments necessary to bring the column 
to an operational condition such that a distillate of the desired purity may be 
withdrawn are made during the start-up period. In order to describe the prod- 
uct period, the operating conditions for the column at  the initiation of this 
period must be known. 

Solution of the equations by use of the two-point implicit method and the 8 
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Figure 5-1 Sketch of a batch-distillation column 

method of convergence is presented in Sec. 5-1 for the start-up period. In Sec. 
5-2, the use of these same procedures (the two-point implicit method and the 0 
method of convergence) to solve the equations for the product period is pre- 
sented, as well as a combination of the two-point implicit method and the 2N 
Newton-Raphson method. Cyclic operation and optimization procedures are 
treated in Secs. 5-4 and 5-5, respectively. 

5-1 THE START-UP PERIOD (D = 0, B = 0, F = 0) 

The complete set of specifications for a batch-distillation column for the 
start-up period are as follows: the number of stages, the reboiler duty, the 
column pressure, the composition and thermal condition of the feed charge, the 
holdup on each stage of the column, and the operating condition of total reflux 
D = 0, B = 0, and F = 0. At this type of operation, a total condenser and a 
reboiler (total) are, of course, used. 

A batch-distillation process may be started up in a variety of ways. The 
equations, calculational procedure, and convergence method for one such pro- 
cedure follow. Suppose that at the onset, the plates are filled with the liquid to 
be distilled. Further, suppose that this liquid is at its bubble-point temperature 
at the operating pressure. Next suppose that the column is operated at  total 
reflux (D = 0, B = 0, F = 0). The column may be operated at these conditions 
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p until steady state is attained or for any specified amount of time. Then the - - 
product period is commenced. Actually, if the product period is to be com- 
menced once the column has attained steady state operating conditions, it is not 
necessary to follow the process throughout the transient-start-up period. In- 
stead, the desired steady state solution at total reflux (D = 0, B = 0, F = 0) may 
be found as described recently by Holland(l4). 

The equations for the start-up period consist of the component-material 
balances, total-material balances, energy balances, and the equilibrium relation- 
ships. The basic equations are of the same general form as the corresponding 
equations of Chap. 4 with allowances being made for the fact that for the 
start-up period, D = 0, B = 0, and F = 0. 

Solution of the Equations for the Start-Up Period by Use of 
a Combination of the Two-Point Implicit Method and the Theta Method 

In the following development, the holdup in the vapor phase is neglected (ul  = 
0 and U r  = 0). This assumption is a realistic one because the molar vapor 
holdup is generally small relative to the liquid holdup. 

When the integral-difference equations are converted to a set of algebraic 
equations by use of the two-point implicit method the component-material 
balances may be stated in the following matrix form: 

A . v . =  -A ( i = l , 2  ,..., c)  
1 1  

where 



The Theta Method of Convergence for the Start-Up Period 

The formulas for the convergence method may be developed by use of the 
procedures shown in Chap. 4. In order to increase the speed of the calculational 
procedure the modified 0 method may be used in lieu of the 8 method. The 
formulas are presented first for the 8 method and then for the modified 0 
method of convergence. 

Since bi = d ,  = 0, it is necessary to define the 0;s with respect to some 
quantity other than di or b , ,  say u l i .  Suppose that in addition to the reboiler 
duty, the composition and boiling point temperature of the initial feed charge, 
the total holdups U l  , U 2 ,  . . . , U N  are specified, which in turn fixes U,. Let the 
N - 1 independent Oj's be defined as follows: 

The Oj's are to be determined such that the corrected ujts are in overall 
component-material balance and in agreement with the specified values of the 
Uj's. The formula for uli is developed as follows. Since the corrected ujis are in 
overall component-material balance, it follows that 

because there are no input or output streams during any time period At of the 
start-up period. Thus, the total moles (or mass) of each component within the 
column remain fixed throughout the start-up period. To emphasize this, let 
UFXi denote the total moles of component i in the column at time t = 0, the 
beginning of the start-up period. Then Eq. (5-3) may be restated as follows: 

By use of the relationships given by Eq. (5-2), the following result is readily 
obtained from Eq. (5-4) 

The desired set of @j's is that set of positive numbers that makes gl = g2 = . . . = 

g N - I  = 0, simultaneously, where 

(Instead of the set of functions g, (j = 1 ,  2, . . . , N - I), the set of functions g j  
(j = 2, 3, . .., N) could have been selected to find the 0;s (j = 2, 3, ..., N).] After 
the Bj's have been found by use of the Newton-Raphson method, the corrected 
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ul:s are found by using Eq. (5-5). Then the mole fractions are readily computed 
as follows: 

After the xjis have been determined, the temperatures are found in the usual 
way by the K ,  method. These temperatures and compositions are used in the 
enthalpy balances to determine the flow rates for the next trial for the given 
time period under consideration. 

In the problem solved it was supposed that at time t = 0 the feed had 
already been charged to the column, and at time t = 0+ the reboiler duty was 
changed from zero to some value. The condenser duty Q, at time t ,  + At is 
found by use of an enthalpy balance enclosing the entire column. Then the 
reflux rate L1 at the end of the time period is found by use of an enthalpy 
balance enclosing the condenser and the accumulator. Note that at the be- 
ginning of the first time period (t = 0), Ly = V? = Q: = Qi = 0. 

The total flow rates at the end of each time period are found by use of the 
enthalpy balances which are presented in Table 5-1. This calculational pro- 
cedure is repeated for each time period until the assumed and calculated tem- 
peratures do not change from trial to trial. Then the procedure is repeated for 
the next time period. 

In order to avoid numerical difficulties in the application of the 0 method, a 
new variable p, should be introduced as demonstrated for columns at steady 
state operation. For the start-up period the definition of pi and the correspond- 
ing working equations are as follows: 

Instead of specifying the holdups in molar units, mass or volumetric units 
may be employed in a manner analogous to that described in Chap. 4. After 
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Table 5-1 Enthalpy and total material balances expressions for batch distillation 
columnst 
1. Enthalpy and total material balances for the start-up period 

I 
Qc = QR + u(Q> QQ9 - - C C ( u ,  h,, - u; h:) 4 At , = I  , = 1  

2. Enthalpy and total material balances for the product period 

u; = 
u  V9 (Hjq - hji)yi", + L," 1 (h; - hji)x;i - - C (h; - hji)~; 

i =  1 4 At i = 1  + i = l  

( SOLUTION OF BATcH-DIsTILLATIoN PROBLEMS 183 

Table 5-1 Enthalpy and total material balances expressions for batch distillation 
columnst-Continued 

L j = + l - - L j  0 ' = 2 , 3 ,  ..., N - 1 )  

U, = U: - D At, where D is fixed 

*HD, = hIi for a total condenser; HDi = H l i  for a partial condenser 

3. Enthalpy Balance Functions for the 2 N  Newton-Raphson Method for the Product Point 

u:~ h:i f. (lN-1..hN-..i + u [ ~ - l , i h : - l , i l  +- 
4 At 

} + QR + 
G, = ' = I  - 1 i [v,, HNi + uuEi H:, + 

, = 1  

t For nonideal solutions, replace h,, and Hi, by 6,; and tlji. 

calculations have been carried out for a large number of time periods, the 
steady state solution at total reflux (D = 0, B = 0, F = 0) was approached for all 
problems considered by Barb(1). The steady state solution may be obtained 
directly by use of one of the procedures recently described by Holland(l4). 

Modified Theta Method of Convergence for the Start-Up Period 

In order to reduce the time required to apply the 0 method to the start-up 
period, the number of 6's and g functions may be reduced in the following 
manner. Let the B's corresponding to the holdups be set equal to each other, 
namely, 

e = ej O'= 2, 3, ..., N) (5-9) 
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The g function is taken to be the sum of the g functions corresponding to the 
holdups Uj (j = 1, 2, . . ., N - 1). Then, in view of Eq. (5-6), 

where 

and the mole fractions are given by Eq. (5-8). 

Energy Balances 

Let the start-up period be commenced at time t = 0, or to = 0. At time t = 0 + ,  
suppose the reboiler duty is changed from zero to some value and that it is 
either held at this value or varied in some prescribed manner for all t for the 
remainder of the start-up period. 

The condenser duty Q, at time t ,  + At is found by use of an enthalpy 
balance enclosing the entire column. Then the reflux rate L ,  at the end of the 
time period is found by use of an enthalpy balance enclosing the condenser and 
the accumulator. Note that at the beginning of the first time period ( to  = O), 
~9 = V? = Qg = Q: = 0. 

After the liquid rates at the end of the time period have been found by use 
of the enthalpy balances, the corresponding vapor rates 1/;. (2 2 j < N) are found 
by the total-material balance expressions. 

The constant-composition form of the enthalpy balances are formulated in 
a manner analogous to that described in Chap. 4. The resulting expressions are 
presented in Table 5-1. 

After the vapor rates V;- have been found by use of the enthalpy balances of 
Table 5-1, the corresponding set of liquid rates {Lj) may be found by use of the 
total-material balances as shown in Table 5-1. 

In order to determine accurate values of the transient values of the vari- 
ables, small values of At are needed for the first few time periods following an 
upset. The following scheme which is based on the one proposed by 
Waggoner(28,29) for continuous columns is recommended. The initial At is 
computed such that za, = 514, where 

and (Uj/Lj),, is the arithmetic average of this ratio over all stages. At the end of 
every 10 time periods, the value of za, is reduced by one-half or At is doubled. 

Calculational Procedures 

In the following discussion, it is supposed that at t = 0, each plate contains the 
liquid feed a t  its boiling point at the column pressure. At time t = 0 + ,  the 
heating medium to the reboiler is turned on which results in a reboiler duty Q,. 
For the time period from t ,  to t ,  + At, the steps of the calculational procedure 
are as follows. 

Step 1 Take 4 = 0.6 and choose At as described above. 
Step 2 Assume values for the temperatures (Tj} and {LJV;.} at time t ,  + At, 

the end of the time period under consideration. As a first approximation for the 
first two time steps, the values at time t ,  + At may be taken equal to those at 
time t , .  A better approximation for the first trial of each time increment is 
found by use of the point-slope predictor: 

The derivatives may be evaluated numerically. 
Step 3 Compute {aji}, {Iji}, {uji} by use of the component-material balances 

and equilibrium relationships. 
Step 4 Find the B's such that g ,  = . . .  = g,v_,  = 0 by use of the Newton- 

Raphson method. 
Step 5 Compute a new set of temperatures by use of the K ,  method (see 

Chap. 4) on the basis of the corrected mole fractions. 
Step 6 Compute the (6) and {Lj} by use of the energy balances and the 

total-material balances. 
Step 7 Repeat steps 2 through 6 until 11 - 0,l is equal to or less than 

some small preassigned number of the order of or lo-'. (The solution set 
of the variables at time t ,  + At become the initial set of values of the variables 
for the next time period.) Proceed to the next increment of time period by 
returning to step 1. 

5-2 THE PRODUCT PERIOD (B = 0, D > 0) 

During this part of the process, distillate is removed from the column (D > O), 
and the bottoms rate B = 0. In general, a column may be operated in many 
ways during this part of the process. Consider first the case where two specifi- 
cations, such as L, (or V2) and D, are made for each time t throughout the 
product period. These two specifications are used to determine the condenser 

and reboiler duties. In addition suppose that the liquid holdups Uj 
(1 I j I N - 1) are specified. In this mode of operation, the holdup UN of the 
reboiler (or still) decreases as the product period progresses. It is, of course, 
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understood that the usual specifications of column pressure, the number of 
stages, type of condenser (total or partial), and the conditions existing through- 
out the column at the initiation of the product period have been made. 

When the component-material balances are written around each plate and 
the resulting integral-difference equations converted to algebraic form by use of 
the implicit method, the system of equations obtained may be represented by 
matrix Eq. (5-1) by replacing lli by oli where v l i  = di (liquid or vapor) and 
where lji and hi have the following meanings: 

For any set of preselected values for 4 and At, together with assumed L/V and 
temperature profiles, this set of simultaneous equations is readily solved for the 
oils (1 < j 5 N) .  

The Theta Method of Convergence for the Product Period 

For the case where, in addition to V2 (or L,) and D, the molar holdups U,,  U,, 
. . . , UN-, are specified and the column is to be equipped with a partial 
condenser, the formulas for the 0 method of convergence follow. The B's are 
defined by 

The g functions are given by 

Again, the desired set of 0;s is that set of positive numbers that make go = 

g1 = g2 = ' ' ' = gN- = 0 simultaneously. These 6;s may be found by use of the 
Newton-Raphson method. 

The formula for the corrected value of di is obtained by using an overall 
component-material balance. 

By use of the implicit method, it is readily shown that this expression reduces to 

Also, it is readily shown that compositions consistent with the corrected ujls are 
given by 

On the basis of the xji's obtained by use of Eq. (5-17), the temperatures for the 
next trial are found by use of the K ,  method. Also, in this application of the 
implicit method, 4 was taken equal to 0.6, which gave results free of oscil- 
lations. For the case where the column has a total condenser rather than a 
partial condenser, the multiplier 8, is seen to be equal to unity, since uli/di = 
Ul/D. Thus, for a column having a total condenser, the multiplier 0, and 
function y, are omitted from the set of 0,'s and gj's listed above. 

Modified Theta Method of Convergence for the Product Period 

For the case of a conventional column (with FX, = 0) for which L, , D, and the 
Uj's are specified, the multipliers for the modified 8 method are obtained by 
setting Oj = 8, (j = 1, 2, . . . , N - 1). The g function go is given by the first 
expression of Eq. (5-15) and 

N - l  c N -  1 

S I ( ~ O > ~ I ) =  1 C u j i -  C uj 
j = 1  i = ,  j= 1 

The formula for di is obtained from Eq. (5-16) by setting Oj = 8, (j = 1, 2, . . . , 
N - 1). 

Since the specifications are commonly made on the overhead product, the 
enthalpy balances should be initiated at the top of the column. When the flow 
rates V2 (or L,) and D are specified, the enthalpy balance enclosing the con- 



denser and the accumulator is used to determine the condenser duty. The 
development of these equations is similar to that demonstrated in Chap. 4, and 
the final expressions are shown in Table 5-1. 

After the vapor rates, the v s ,  have been computed by use of enthalpy 
balances, the corresponding Lls  are found by use of total-material balances as 
indicated in Table 5-1. 

The calculational procedure and convergence method for the case where the 
holdups are specified in mass (or volumetric) units are readily developed in the 
same manner shown in Chap. 4. Furthermore, instead of specifying the distillate 
rate, other specifications, such as the temperatures of discrete fractions of the 
distillate, may be made. 

Examples 

To demonstrate the transient behavior of a column throughout the start-up 
period, the unsteady state solutions of Examples 5-1 and 5-2 (Tables 5-2 and 
5-3) were obtained under the following conditions. Initially, it was supposed 
that the plates were filled with the liquid to be distilled. The liquid was assumed 
to be at its bubble-point temperature at  the column pressure. The steady state 
solution was approached to within six significant digits after 4.8 h of column 

Table 5-2 Statement of Example 5-1 
(D = 0, B = 0, F = 0) 

Example 5-1 

Holdups, 
Component U ,  X, Stage mol 

C,H, 2.5 
i-C4Hlo 7.5 
n-C,Hlo 12.5 
i-CSH12 10.0 
n-C,H,, 17.5 

50.0 
Other conditions 
Q, = 350000 Btu/h; 
column pressure = 300 Ib/in2 
The column has a 
partial condenser, 12 plates, 
and a reboiler. The K 
data and enthalpy data 
are given in Table 5A-I 

1 (condenser) 
2 
3 
4 
5 
6 
7 
8 

abs. 9 
10 
11 
12 
13 
14 (reboiler) 

Initially, all stages are filled with liquid feed at its boiling point at 
the column pressure 
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Table 5-3 Statement and Solution of Example 5-2 (Ref. 21) 
1. Statement of Example 5-2 

(a) All initial conditions are the same as those for Example 5-1. The product period is to 
be initiated at the end of 2 h of start-up operation as specified in Example 5-1. The product 
period is to consist of the time required to collect a total of 20 moles of product. The overhead 
vapor rate for the product period is to be fixed at the value which it had attained at the end of 
the start-up period. The distillate rate is to he fixed at 0.2 of the value of the overhead vapor 
rate. A partial condenser is to be used. Find the composition of the total product collected at 
any time during the product period by use of the 0 method, and the modified 0 method. 

(b) Repeat part (a) by use of the 2N Newton-Raphson method. Use the values of the 
condenser and reboiler duties, Q,, Q , ,  found in part (a) at the end of each time step as the 
specified values for the 2N Newton-Raphson method. Compare the execution times required 
by each method. 

2. Solution of Example 
(a) The results are displayed in Fig. 5-3. 
(b) A comparison of the execution times made by Mijares(21) follows. 

Comparison of execution times 

Computer 
(AMDAHL 470/V6 
Time, s, required Convergence 

Method for 18 time steps criteria Compiler 

O method 3.27 Cease if I 1 - O j l  I FORTRAN H 
or 1A7;I/T, s or EXTENDED 
after the 10th trial 
for a time step 

Modified 2.56 FORTRAN H 
O method Same as 0 method EXTENDED 
2N Newton-Raphson 3.14 0 I where FORTRAN H 

EXTENDED 

= % ' [  I;= =,(F: + ~ f )  I"' 
operating time (Refs. 1, 2). A graph of the transient values of the mole fractions 
for Example 5-1 is presented in Fig. 5-2. 

The equations and convergence method for the product period were tested 
by solving a wide variety of examples. Satisfactory results were obtained for all 
examples considered. Example 5-2, stated in Table 5-3, was selected for our- 
poses of illustration. The transient compositions of the distillate are displayed in -. - - 

When the product stream D is collected in a single container, the average 
mole fraction of each component within the container varies with time as 
shown in Fig. 5-4. Each curve in Fig. 5-4 is readily obtained from the corre- 
sponding curve in Fig. 5-3. Since D is held fixed throughout the product period, 
the point at time t on a curve in Fig. 5-4 is equal to the integral of the 
corresponding curve in Fig. 5-3 over the time interval 0 to t divided by the 
length of the time interval. 



0 I Time. h 

Figure 5-2 Transient compositions for the start-up period, Example 5-1 

Time elapsed from the beginning of product period, h 

Figure 5-3 Distillate compositions obtained for the product period, Example 5-2. 

Time elapsed from the beginning of product period, h 

Figure 5-4 Composition of the total product collected at any time during the product 
period, Example 5-2. 

5-3 SOLUTION OF BATCH DISTILLATION PROBLEMS 
BY USE OF A COMBINATION OF THE 
TWO-POINT IMPLICIT METHOD AND 
THE 2N NEWTON-RAPHSON METHOD 

For mixtures which form ideal solutions (Ki = Ki(P, T) and yY = y f  = 1 for all 
i), the application of the Newton-Raphson method is exact and convergence 
can be assured provided that the initial estimates are in the region of conver- 
gence (Ref. 14). 

In order to demonstrate the use of the 2N Newton-Raphson method in 
conjunction with the two-point implicit method, the equations for use with this 
combination are formulated for the product period. The equations for other 
modes of operation are formulated in a similar manner. 

Product Period 

Again it is supposed that the holdups {uji} throughout the column are known 
at the initiation of the product period. Also, it is supposed that the liquid 
holdups Uj (1 < j < N - 1) are specified as well as the usual specifications of 
column pressure, the number of stages, type of condenser (total or partial), and 
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C 

the conditions existing throughout the column at the initiation of the product 
period. The two remaining specifications may be taken to be the reflux ratio 
L , / D  and the ratio of reboiler holdup-to-vapor rate, UN/VN throughout the 
product period, or one could specify the condenser duty Qc and the reboiler 
duty QR throughout the product period in lieu of L , / D  and U N / V N .  Thus, for 
the case where the condenser duty Q, and the reboiler duty QR are specified, 
the independent variables are taken to be: 

The corresponding functions of the 2N Newton-Raphson method are the N 
dewpoint functions and the N enthalpy balance functions 

f = [ F ,  F2 . . .  F ,  G ,  G 2  ... GNIT (5- 19) 

Instead of using the L/V ratios, a new set of independent variables may be 
defined in a manner similar to that shown in Chap. 4,  namely, let 

where At is a constant, the vaIue of the time period under consideration. By 
inclusion of At in the last expression, it becomes dimensionless. Again, the 
subscript a denotes that the ratio may be regarded as an arbitrary constant. By 
selecting the arbitrary constant to be the most recent value of the ratio in the 
trial-and-error procedure for the given time step under consideration, the vari- 
able Qi is normalized. Equation (5-18) may be restated in the following form: 

When a partial condenser is employed, the complete set of N dewpoint 
functions have the following form: 

where it is of course understood that D is denoted by V l .  When a total con- 
denser is employed, the bubble-point form of the function is used instead of the 
dewpoint form for the first stage. The bubble-point form of the function is 
given by 

The enthalpy balance functions are formulated by use of the equations 
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obtained from the integral-difference equations after the two-point implicit 
method has been applied. They are presented in Table 5-1. 

For any choice of the independent variables at  the end of the time step 
under consideration, the values of the dependent variables are found by solving 
the constraining equations, which consist of the component-material balances 
and the total-material balances. 

The component-material balances are again given by Eq. (5-1) as modified 
by Eq. (5-13). The total-material balances are developed in the following 
manner. 

Since all of the holdups U j  (j = 1 ,  2, . . ., N - 1 )  are regarded as fixed while 
U ,  is allowed to vary, the equations for the first N - 1 stages (j = 1 ,  2, ..., 
N - 1 )  are the same as those for a column at  steady state operation. The 
equations are formulated in a manner analogous to that shown below for stage 
j, namely, 

" ; - i + L j - l - V , - L j = O  ( j = 2 , 3 ,  ..., N - 1 )  (5 - 24) 

Then 

By making use of Eq. (5-20), it is possible to restate Eq. (5-25) as follows: 

r , I / i - I  - ( l  + r j ) I / i +  + + 1 = 0  ( j = 2 , 3  , . . . ,  N - 1 )  (5-26) 

where 

\ ' j / a  

For stage I, the corresponding total-material balance is given by 

where D has been represented for the convenience of symmetry by V, and 
r ,  = Ol(Ll /V l ) , .  Since the holdup U ,  varies with time, the balance enclosing the 
reboiler is given by 

rn + A t  1" ( L N - I  - VN)dt  = U N  (5-28) 

Application of the two-point implicit method followed by rearrangement yields 

r N - ,  V N - I  - ( 1  + r N ) V N =  - - (L$- ,  - ~ i - l ) - - ~ ' ~ i  (5-29) 
where 

ug/ve where the At which appears in rN and rg has the same r i  = - 
4 At value, the value at the time period under consideration 
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Equations (5-26), (5-27), and (5-29) may be stated in the following matrix form. 

R V =  -F (5-30) 

V = [ D  V, V, . . .  V vNIT 
F = [ O  ... 0 FNIT 

PN = O ( L ~ - ~  - V i )  + r g V i  

The 2N Newton-Raphson equations which are solved successively for each 
time period until the convergence criterion, the quantity 

($5 ,= 1 (Ff + G;,]1'2 

is less than some small preassigned positive number, say or The 2N 

Newton-Raphson equations are given by 

where 

d F ,  a F ,  a F 1  a F ,  a F ,  - - . . .  - - - ... - 
ae ,  ae ,  ae, aT,  a ~ ,  

dGN aGN aGN aGN aGN - - . . . __ - - . . . - 
ae, a @ ,  ae, a ~ ,  a ~ ,  aGN a TN I 

AX = [AB, AB, . . .  A$,  AT, AT, . . .  ATNIT 

f =  [ F ,  F ,  . . .  F ,  G I  G 2  ... G N I T  

The Newton-Raphson equations may be solved in a number of ways: (1) The 
use of analytical derivatives and the calculus of matrices, (2) The use of Broy- 
den's method (demonstrated in Chap. 2), and (3) The use of the Broyden- 
Bennett algorithm. All of these methods are demonstrated by Holland in Ref. 14 
for conventional distillation columns at steady state operation. 

The basic calculational procedure follows. 

Calculational Procedure 

1. Assume 8, = 1 for all j. Take the set {(Lj/c)d equal to the set of values most 
recentlv calculated for L;lK at the end of the tlme stetx For the first trial of any 
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time step, the values of LJY at the end of the time step may be estimated by 
use of the two-point predictor (presented at the end of Sec. 5-1). 

For any trial of a given time step other than the first one, take the (5) 
at the end of the time step to be equal to the most recent set of calculated 
values. For the first trial of a time step, estimate the {T,) at  the end of the 
time step by use of the two-point predictor (presented at the end of Sec. 5-1). 

2. Evaluate the elements of f and J by use of any one of the three methods 
listed above. 

3. Solve J Ax = - f  for Ax, and adjust the corrections until the values of the 
variables at the end of the time step are within the range of curve-fits and 
limits by adjusting the parameter jl 

X k + l  = X t  + P Axt 

When Broyden's method and the Broyden-Bennett algorithms are employed, 
an additional parameter s, which represents an approximate optimum of the 
step size, is computed as described in Chap. 2 to give 

xk + , = xk + SP Axr 

4. Test for convergence, and if the criterion for convergence is not within the 
prescribed limits, update the inverse of the jacobian matrix (Broyden's 
method) or the LU factorization of the jacobian matrix (Broyden-Bennett 
algorithm) or return to step 2 and reevaluate the elements of the jacobian 
matrix. 

In order to obtain a comparison of the execution times required by the 0 
method, the modified 6 method, and the 2N Newton-Raphson method, Exam- 
ple 5-2 (Table 5-3) was solved by each of the methods. Broyden's method was 
used in the solution of the g functions in the 6 methods and in the solution of 
the jacobian in the 2N Newton-Raphson method. In order to achieve maxi- 
mum speed, the jacobian was evaluated only one time per problem provided 
that the inequality criterion of Broyden's method was satisfied. When the Broy- 
den method is applied in this manner, the execution times for all three methods 
are approximately the same. 

5-4 CYCLIC OPERATION 

Cyclic operation is characterized by two modes of operation, called "transient 
total reflux" and "stripping." During the total reflux portion of the cycle, liquid 
reflux is returned to the column, but no product is withdrawn (L, # 0, D = 0, 
B = 0, F = 0);  and during the stripping portion of the cycle, the product is 
withdrawn, but no reflux is returned to the column (D # 0, L ,  = 0, F = 0, 
B = 0). The models and calculational procedures proposed by Barb and 
Holland(l,2) are presented below. 

The extreme difficulty of accurate measurement of small flow rates in lab- 
oratory columns strongly favors cyclic operation. This type of operation is 
commonly achieved through the use of a timer which divides a given total time 



period into periods of transient total reflux, 4R, and stripping, &.  The reflux 
ratio for this type of operation is taken to be the ratio of 4, to &.  

Transient Total Reflux Operation (L, + 0, D = 0, B = 0, F = 0) 

The component-material balances for any component i are formulated in a 
manner analogous to that demonstrated in Sec. 5-1. After the component flow 
rates at the end of the time period have been computed, the values so obtained 
may be used to compute new sets of compositions from which a new temper- 
ature profile may be calculated. 

Two convergence methods are presented, the 0 method and the modified 0 
method. The equations are formulated first for the 0 method and then for the 
modified 0 method. 

Suppose that in addition to the reboiler duty Q R ,  the total molar holdups 

are specified. These N holdups give rise to N - 1 independent B's, defined as 
follows : 

The 9;s are to be determined such that the corrected uj,'s are in overall 
component-material balance and in agreement with the specified values of the 
Uis. The formula for u L i  is developed in the following manner. Since the cor- 
rected uj,'sare in overall component-material balance, it follows that 

because there are no input or output streams during any time period At of the 
total reflux portion of a given cycle. Thus, the total moles (or mass) of each 
component within the column remains fixed throughout the total reflux oper- 
ation portion of a given cycle. To emphasize this, let U,X, denote the total 
moles of component i in the column at time t = 0, the beginning of the given 
batch distillation, and let UpXpi denote the moles of component i that have 
been withdrawn from the column at the beginning of the total reflux portion of 
the cycle under consideration. Then Eq. (5-33) may be restated as follows: 

The following result is readily obtained by use of Eqs. (5-32) and (5-34): 
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Thus, the desired set of 0;s is that set of positive numbers that makes g, = 
gz = . . . = gN- = 0, simultaneously, where 

Instead of the set gj  0' = 1, 2, . . ., N - I), the set gj  6 = 2, 3, . . . , N) may be 
used to find the 9;s 0' = 2, 3, . . ., N). After the 0;s have been found by use of 
the Newton-Raphson method, the corrected ulls  are found by use of Eq. (5-35). 
Then the mole fractions are readily computed by use of Eq. (5-7). After the xj;s 
have been determined, the temperatures are found in the usual way by use of 
the K ,  method. The temperatures and compositions so obtained are used in the 
enthalpy balances described in a subsequent section. 

Since the calculation of N - 1 roots (0 values) is a time-consuming task, the 
"modified 8 method" of convergence is recommended for solving batch distil- 
lation problems in the interest of conserving computer time. In the modified 8 
method, the 9's corresponding to the holdups are set equal to each other, 
namely 

The g function is taken to be equal to the sum of the g functions corresponding 
to the holdups Uj (j = 1, 2, . . . , N - 1). Then from Eq. (5-36), it follows that 

Note that for any one trial by the modified 0 method, the individual Uj's may 
not be satisfied by the respective sums of the component holdups for each plate; 
however, when a 8 is found that makes g(0) = 0, the component holdups are in 
agreement with the sum of the Uis over the entire column. 

In the total reflux portion of a given cycle, the reboiler duty is commonly 
fixed. In theory, the enthalpy balances may be written around each plate or 
about either end of the column and each plate in the column. In practice, best 
results were achieved for this type of operation by first determining the con- 
denser duty, Qc, by use of an enthalpy balance enclosing the entire column. The 
expression so obtained was reduced to algebraic form by use of the implicit 
method. The liquid rates Lj were determined by use of enthalpy balances en- 
closing each plate. These integral-difference equations were reduced to algebraic 
form by use of the implicit method and solved for the Lj's by use of the 
constant-composition method. The vapor rates were found by use of total- 
material balances enclosing each plate. These equations were likewise converted 
to algebraic form by use of the implicit method. 

For the special case where no product has been withdrawn (Up = O), the 
equations for transient total reflux operation reduce to those presented for the 
start-up period of a batch distillation column. 



The Stripping Operation 

This portion of the cyclic operation is initiated by switching from total reflux 
(L, = finite number, D = 0) to total take-off or stripping ( L ,  = 0, D = finite 
number, and Q, = 0). The reboiler duty QR is either held fixed or its variation 
throughout the stripping portion of the cycle is specified. In the stripping oper- 
ation, the U/s are no longer regarded as fixed, and the liquid rates at the end of 
each time period are taken equal to zero. That the stripping operation is best 
represented in this way is evident from the following reasoning. The hottest 
stream and the one containing the largest fraction of heavy components is the 
stream VN leaving the reboiler and entering plate N - 1. Since the holdup UN-, 
contains a smaller fraction of heavies than U,, the vapor VN-I in equilibrium 
with UN-, will contain a smaller fraction of heavies than V,. Since the enthalpy 
per mole of a component generally increases with molecular weight, VN-, is 
generally greater than V,. Thus, the holdup UN-, can be expected to decrease 
throughout the course of the stripping operation. By use of similar reasoning, 
the results obtained for j = N - 1 are also shown to follow for all j < N - 1. 

The component-material balances for the stripping portion of any given 
cycle are developed in a manner analogous to that shown for the total reflux 
portion of the cycle. 

In the stripping operation, the distillate rate D is specified. Thus there exists 
one 0, which may be defined as follows: 

The 0 that places each component in overall material balance and in agreement 
with the specification D is that 0 > 0 that makes go($) = 0, where 

The following formula for d ,  is found in a manner analogous to that demon- 
strated for uI i  

. N 

After the ( d , )  has been determined, the corrected compositions and tem- 
peratures are found by use of Eq. (5-8) and the K ,  method (see Chap. 4). These 
new sets of compositions and temperatures are used in the enthalpy balances. 

The expressions for the enthalpy and total-material balances are developed 
in a manner analogous to that described for total reflux except that the en- 
thalpy balances are solved for the Uls rather than the Ts .  

\ 
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Development of Models and Comparison with Experimental Results 

The possible combinations of the modes of operation and types of specifications 
are many. Models for continuous product removal with constant volume, 
molar, or  mass holdups are available (Refs. 25, 26). Further details pertaining to 
the model for cyclic operation follow. 

The model of cyclic operation employed can be described best by use of 
Fig. 5-5. Point A represents the beginning of one complete cycle. At this point, 
it is desired to have the reflux rate go to zero and distillate rate go to the 
specified amount. However, the implicit method weights the final and initial 
values to give the transition period AB. By making the increment AB more than 
three orders of magnitude smaller than BC, the overall effect of this transition 
period on the results obtained for any cycle was very slight. During the time 
period BC, the stripping operation partially depletes the holdups on the plates 
of the column. 

The transition period C D  from stripping to total reflux operation consists of 
the most physically complex portion of cyclic operation. During period CD, the 
plates of an actual column are filled sequentially from the top to the bottom 
resulting in a series of discontinuous operations throughout the column. Since 
the detailed representation of this action is highly impractical, a simple approx- 
imation was made. The time period CD was adjusted so that all of the plates 
within the column could be filled and reasonable liquid flow rates established. 
Since period CD represents appreciable real time relative to BC, the weight 
factor was set to strongly favor the final conditions (4 > 112). This scheme gave 

A A A A 

Transient &tal reflux 
A 

/ d" v 
.Weighted / 

/ level 
X 

C 
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I I C I Ir I A A 
A 
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B 'J C v D V .J 

A 
Time 

Figure 5-5 Schematic of reflux and distillate flows in cyclic operation. 
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a good approximation of the step change and tended to minimize the effect of 
product takeoff during this period. 

During the time period DA, the column was operating at transient total 
reflux. In this cyclic operation, the term "reflux ratio" is taken to mean the 
ratio of CA to AC. 

Comparison o f  the Models with Experimental Results 

The final justification of any model rests on its ability to describe (within the 
prescribed accuracy) a given physical phenomena. In the following examples, the 
results of three models are compared with the experimental results and with 
each other. 

The statement of Example 5-3 is given in Table 5-4 and the experimental 
and calculated results are presented in Fig. 5-6 for Model C. In the area of 
greatest discrepancy between the calculated and experimental results, it should 
be noted that the experimental results did not satisfy a total-material balance. 

Example 5-4 was selected for the purpose of showing that in the limit, as 
the total cycle time t,,,,, of model C approaches zero, the results obtained from 
model C approach those given by model B. The statement of this example is 
given in Table 5-4, and some typical results are tabulated in Table 5-5. 

Table 5-4 Statement of conditions for Examples 5-3, 5-4, and 5-5 
Charge composition 

Mole Run Examples Example 
Compound fraction information 5-3 and 5-4 5-5 

n-Heptane 0.070 Run no. in 
Methyl cyclohexane 0.217 Ref. 25 T-10 T-5 and T-13 

Toluene 0.713 Reflux ratio 7.511 1511 and 7.511 
. .~~ ...- 

Percent holdup 
in column and 
accumulator 9 9 and 18 

Properties Ref. Holdup distribution in column and accumulator: 
uniform or perfectly mixed 

n-Heptane Starting condition: steady state 
K data 4 total reflux 
Enthalpy and 10 

density data Total number of stages: N = 80 

Methyl cyclohexane Pressure: atmospheric 
K data Condenser: partial (vapor distillate) 
Enthalpy and 9 

density data Model A :  Constant molar holdups, continuous operation 

Toluene Model B :  Constant volume holdups, continuous operation 

K data 4 Model C: Constant volume holdups, cyclic operation 
Enthalpy and 9 

density data 

Mole percent of ~nitial charge collected as overhead product 

Figure 5-6 Experimental data and results for model C for Example 5-3. 

( 
SOLUTION OF BATCH-DISTILLATION PROBLEMS 201 

Table 5-5 Comparison of model B and model C with different total cycle 
times, Example 5 4  

Mole percent Distillate mole fraction, 
of the 

model C initial charge - 
collected as 

lcycle  ~ c y s l c  b y c l e  overhead product Component Model B = 112 min = 1 min = 2 min 

1.60 n-Heptane 0.943 0.943 
4.76 0.940 0.935 

n-Heptane 0.493 0.49 1 
4.76 0.497 0.494 

Methyl 0.507 0.509 0.503 0.506 
-.. 

cyclohexane 
9.03 n-Heptane 0.141 0.133 0.128 0.219 
9.03 Methyl 0.859 0.867 0.872 0.871 

cyclohexane 

22.5 n-Heptane 0.080 0.074 0.069 0.065 
22.5 Methyl 0.920 0.925 0.929 0.932 

cyclohexane 
26.1 n-Heptane 0.051 0.043 0.038 0.046 
26.1 Methyl 0.515 0.520 0.508 0.542 

cyclohexane 
26.1 Toluene 0.434 0.437 0.454 0.4 12 

Example 5-5 was included to demonstrate the validity of the models over a 
broad range of experimental conditions. A statement of the example appears in 
Table 5-4 and the results are shown in Fig. 5-7. Although only the results of 
model B are shown, similar agreement with the experimental results was ob- 
tained by use of model C. 
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Figure 5-7 Comparison of model B and experimental results obtained at a high reflux ratio, 
Example 5-5. 

5-5 OPTIMlZATION OF THE BATCH-DISTILLATION PROCESS 

Within the framework of any specific problem under consideration, all of the 
information needed for " optimization" by various criteria may be generated by 
obtaining the appropriate transient solutions. The criteria must be determined 
prior to the solution of the problem so that the necessary information may be 
noted and preserved. One potentially serious drawback of this approach could 
be the amount of information which must be stored. 

Optimization studies of binary systems with simplifying approximations 
have been considered previously (Refs. 7, 20). General conclusions reached from 
these and other studies (Ref. 8) indicate that the distillate policy has a debatable 
effect on the "yield" (the amount of product of a specified purity). 

As an example of the use of the transient solutions in optimization studies, 
consider the problem of maximizing the "yield." This problem, which represents 
one of the more realistic sets of possible criteria, may be stated formally as 
follows: 

Maximize: 

Subject to: 

MOCS i 1 - moles i 1 
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where D = specified distillate rate 
moles i = moles of component i that have been removed from the column at 

any time t 
to,, = time at which the cut is terminated 
ton = time at which the cut is initiated 
xSi = specified purity of component i in the cut under consideration. 

A restatement of the objective function in terms of the constraints as sug- 
gested by Carroll(3) and further developed by Fiacco and McCormick(l2,13) is 
possible. In particular, since the maximum of the objective function (to,, - tonfD 
occurs when the constraint is a pure equality constraint, that is, 

it is possible to restate the constrained optimization problem as an uncon- 
strained optimization problem as follows: 

Minimize: 

-(torr - ton)D + R moles i - moles i - x , A ~ ~ ~ ~  - ton)D] (5-43) [ I lr.. 

where R is a multiplier which is several orders of magnitude greater than the 
product (to,, - t,,,)D but not so great that the product (to,, - to,)D is insignifi- 
cant in the number system in use. This problem may be resolved by application 
of well-known search techniques. 

Optimization problems involving the lightest and heaviest components of a 
mixture constitute special cases in that either the beginning or the termination 
of the cut is physically fixed. Such problems may be handled as deterministic 
problems. This fact leads to the observation that if the initial (or final) cut point 
of any cut is fixed and the purity constraint satisfied as an equality, then the 
final (or initial) cut point of the cut is fixed. It is shown below that the maxi- 
mum amount of product of the specified purity will be obtained when the initial 
and final cut points have the same concentration of the specified component. 
An alternate procedure for solving the original maximization problem is then a 
single variable search on the initial point with the final point becoming depen- 
dent, that is, 

tolf = f(ton) SO that XDi (5-44) 

with the purity constraint minimized 

Minimize: 

Moles i - moles i - xsi(tof, - ton)D I I I_ 



Optimization by use of the functions given by either Eq. (5-43) or (5-44) has 
proved to be satisfactory and, of course, the two equations give identical results. 
About the same effort was required to optimize a problem by use of each of 
these functions. 

Proof that XDi (at to,,) = XDi (at ton) for Maximum Recovery at 
a Specified Purity of the Lightest Component of a Mixture 

When the purity specification of the cut collected over the time period from ton 
to to,, is taken to be xs i ,  where i is the lightest component of the mixture, then 
the purity specification may be represented as follows: 

where the distillate rate D is to be held fixed, or 

(j:: X D i  dt - Sip. X D i  dt - X D i  d t )  
- XSi  I 0 (5-47) 

  to^ - ton) 

where t i  and t f  denote the initial and final times for a given distillation. The 
maximum amount of distillate will be collected in a given cut when (to,, - ton) is 
maximized. The values of X D i  at which to begin and end the cut, respectively, in 
order to maximize the amount of distillate collected at the specified purity are 
found as follows. First the problem is reformulated in the more convenient 
notation as indicated in Fig. 5-8 

& f ( x )  dx  - S",(x) dx  - 5; f ( x )  dx  = xsi 
( b  - a )  

where the cut is initiated at time a and terminated at time b, and x,, is again the 
specified purity of the lightest component. 

It is desired to maximize ( b  - a)  subject to the condition that the purity 
specification be satisfied. Then 

After a has been selected as the independent variable and Leibnitz' rule has z& $ 1  
been applied for differentiation under the integral sign, one obtains 

d(b - a )  1 --- db 
- [ o - f ( a ) + f ( b ) z + ~ ]  (5-50) da X s t  

The maximum (or minimum) of ( b  - a )  is found by setting d(b - a)/da = 0 .  
Under this condition, Eq. (5-50) reduces to 

f ( a )  db 
f (b )  - da 

(5-51) 
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Figure 5-8 Representation of a distillation 

But 

Therefore. 

Thus, in order to maximize the amount of distillate which can be collected at  a 
specified purity x,,, the cut should be initiated and terminated at  the same mole 
fraction ( X D i . o n  = XDi, , t r ) .  The above development was originally given by 
Barb(1). 

A statement of Example 5-6 appears in Table 5-6, and the results are 
displayed in Fig. 5-9. The value of the mole fraction of i-C,H,, at the initiation 
and termination points is 0.452 16. The initial and final points for the cut are 
shown as functions of dimensionless time; however, sufficient information is 
generated within the solution of the model to permit the selection to be made 
on other bases such as overhead temperature. 



Table 5-6 Statement of conditions for Example 5-6 

Charge composition 

Component Mole fraction Constant molar holdup model 

C,H, 0.05 Reflux ratio: 7.511 
i-C,Hlo 0.15 Holdup distribution in moles: 

n-C,Hlo 0.25 U, =4,  U j =  1 ( 2 < j <  13), 

i-C,H,, 0.20 and U,, = 34 

n-C,H,, 0.35 Total number of stages: N = 14 
Pressure: 300 Ib/in2 

Properties Condenser: total (liquid distillate) 
For the "i-C,H,, cut," 

The K data and enthalpy data are given in Table 5A-1 x, (for I-C,H,,) = 0.47 

The use of the exact model proposed has been found to be advantageous in 
optimization studies. In general, the additional complexity of the model allows 
simpler, more direct application of optimizing techniques due to the amount of 
information generated by the more exact models. 

As has been demonstrated, the same fundamental relationships used to 
describe continuous-distillation columns are applicable for describing batch- 
distillation columns. Although only the 6' method and the 2N Newton-Raphson 
method in conjunction with the two-point implicit method have been demon- 
strated, other methods such as the semi-implicit Runge-Kutta and Gear's 

I 
h Start cut 
I 

I 

End cut A 
I 

Mole percent of  the initial charge collected as overhead product 

o:-..,A r o D,..I+, rnv ~ ~ ~ r n n l p  5-6. nntimi~ntinn of the vield of i-C.H., at x.; = 0.47. 
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method may be employed. For columns in the process of separating highly 
nonideal solutions, the latter methods which are presented in Chaps. 6, 7, 8, and 
9 are recommended. Alternately, if the two-point implicit method is used, the 
number of independent variables should be increased to a set comparable with 
those used in Chaps. 6 through 8. Also, more exact models may be employed 
wherein hydraulic effects as well as the control system are included in the model 
as demonstrated in Chap. 8. 

NOTATION 

(See also Chap. 4.) 

hi = an element of the vector f'of Eq. (5-1) 
f' = a vector appearing in Eq. (5-1) 
pi = a quantity introduced for the purpose of avoiding division by 

zero (defined for a particular application below Eq. (5-8)) 
uji = molar holdup of component i in the liquid state on plate j 
Uj = total molar holdup of the liquid on stage j 
U, = total moles of feed introduced to a batch distillation column 

Greek letters 

pji = a constant appearing on the central diagonal of the jth row of 
the coefficient matrix of the component-material balances (see, 
for example, Eq. (5-1)) 

0 = ( 1  - 4114 
~ a v  = (Uj/Lj)ayM4 At) 
~j = (uj/Lj)/(4 At) 
4 = weight factor used in the implicit method (see Eq. (5-10)) 
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PROBLEMS I 
5-1 (a) For a batch-d~st~llat~on column operating In the product penod (D > 0) and for whlch all of 
the holdups are negl~gble except for the stlll pot, show that the component-matenal balances and 
the total-material balances over the tlme penod from t. to t, + At y~eld the followlng d~fferential a 

,P 
equatlons 

H ~ n t  Use the mean value theorems and the approprtate llmltlng process to reduce the 
' 

~ntegral-d~fference equattons to the followlng d~fferent~al equatlons 

d(U, x,,) 
-DXD, = - 

dt 

dUN - D  = - 
nt 

(b) From the results given in part (a), obtain the following equation of Smoker and Rose(27). 

where the superscript zero denotes the values of the variables at time t = 0. Smoker and Rose(27) 
proposed that the integral appearing on the right-hand side of the above equation be evaluated by 
use of the graphical method of McCabe and Thiele(l9). 

5-2 A batch distillation with a single plate, the reboiler, is carried out at constant temperature and 
pressure by increasing the rate of flow of steam to the column to compensate for the decrease in the 
concentration of the lower boiling components over the course of the distillation. Also, the unit is 
to be operated such that the partial pressure of steam in the vapor product is less than the 
saturation pressure of steam at the temperature of the reboiler. (This problem is based on the 
development given by Holland and Welch(l6)). 

(a) Beginning with the overall material balance on component i in a batch-distillation column 
with a single stage and a withdrawal rate D, show that 

where the plate subscript which would normally be carried by u, has been dropped, and where 

D = D" + D, 
D, = the molar flow rate of two-phase (or volatile) components in the distillate 
D, = molar flow rate of steam in the distillate at any time t 

(b)  Show 

(c) By use of the results obtained in part (a), show that 

and that 

for all components ( i  = 1 through i = c) except steam (i # s). The superscript zero refers to the 
values of the variables at t = 0. Also in the development of this expression, equilibrium between the 
vapor (X,,) leaving the column and the liquid (x,) in the reboiler is assumed, that is, 

X,, = K , x ,  = K i f l t  
u 

(d) Show that 

and that the steam requirement 9, is given by 
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where 

5-3 (a) If the model for the vaporization efficiency (defined by yji = Ej,Kjixji) is taken to be 

as originally suggested by Professor W. H. McAdams (according to Perry(22)). show that ai in the 
final result of Prob. 5-2 should be replaced by 

Ei ai - 
E b  

54 (a) For the case of a batch-distillation column at steady state at total reflux, show that the 
component-material balances and equilibrium relationships may be restated as follows where aji = 
a, for all j: 

(b) Suppose that a column is operating at a set of holdups denoted by (U ,),, (U,), , . . . , 
(U,), , and by some scheme, these holdups are changed to the new set denoted by the subscripts 
(U,),, (U,),, ..., (U,),. Show that the uJ,lul,'s for the two sets of operations are related by the 
same multiplier for all components; that is, show that 

where 

5-5 (a) Show that for a batch-distillation column for which N = 3, the overall material balance for 
the start-up period is given by 

U l i  = 
UF xi - - UF xi 

" ~ i  "li 

(b) Use Eq. (C) and the results of part (a) to determine the holdups U, ,  U,, and U3 for the 
two sets of specifications given: 

Com~onent a; X; Other specifications 

SOLUTION OF BATCH-DISTILLATION PROBLEMS 21 1 

5-6 Suppose that the column described in part (a) of Prob. 5-4 is initially operating at the holdups 
given for set 1. At this set of holdups, the corresponding values of ujJu,, are as follows: 

On the basis of these results, use the 0 method of convergence to determine the uji/ul,'s at the 
second set of holdups U, = 21.5488, U, = 41.75084, U, = 36.7009. That is, find 6, and 0, that 
make g, = g, = 0 simultaneously 

Ans.: 0, = 2, 0, = 2. 
5-7 Begin with the integral-difference equations for the energy balance, the component-material 
balances, and the total-material balances, and obtain the expressions given in item 1 of Table 5-1 
for computing the total flow rates { y }  and {L,} at the time period under consideration for the 
start-up period. 

5-8 Develop the expressions given in item 2 of Table 5-1. 

5-9 Restate the lormulation of the Q method for the product period (Eqs. (5-14), (5-IS), (5-16), and 
(5-17)) in terms of an appropriately defined p i .  

APPENDIX 5A-1 

Table 5A-1 K values and enthalpies for Examples 5-1, 5-2, and 5-6 

1. K Values (I) at P = 300 Ib/in2 abs 
(K,lT)1'3 = a,, + a2,T + a,,T2 + a4,T3, (T in "R) 

Component a ,  x lo2 a, x 10' a, x 10s a, x 

C3H8 - 14.512474 53.638 924 - 5.305 1604 - 173.583 29 
i-C4Hlo - 18.967651 61.239667 - 17.891 649 -90.855512 

n-C,H~o -14.181715 36.866353 16.521 412 -248.23843 
i-C5H12 - 7.548 840 3.262 363 1 58.507 340 -414.923 23 

"-CsH 1 2  -7.543 539 2.058423 1 59.138 344 -413.12409 

2. Enthalpy data (Ref. 2) at P = 300 Ib/in2 abs 
(h,)li2 = e l f  + c2,T + e3,T2, ( H i ) l i 2  = eli  + e,,T + e3,T2, (T in O R )  

Component e, c ,  x 10 c, loS 

C3Hs - 14.500060 1.980 222 3 -2.904883 7 
i-C4Hlo 
16.553 405 2.161 8650 -3.1476209 

10 - 20.298 1 10 2.300 574 3 - 3.866 341 7 
i-C5H12 -23.356460 2.501 745 3 -4.391 789 7 

n‘C,H~2 - 24.371 540 2.563 6200 - 4 M Q Q A Q A  
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Table 5A-1-Continued 

Comoonent e, e, x lo4 e, x lo6 

C3Hs 81.795910 389.819 19 36.470 900 
i-C4H 147.654 14 - 1185.294 2 152.877 78 
"-C4H 10 152.667 98 - 11 53.484 2 146.641 25 
I-C,H,, 130.966 79 - 197.98604 82.549 947 

n-CsH12 128.901 52 - 2.050 960 3 64.501 496 

1. S. T. Hadden: "Vapor-Liquid Equilibria in Hydrocarbon Systems," Chem. Eng. 
Prog. 44: 37 (1948). 
2. J. B. Maxwell: Data Book on Hydrocarbons, D. Van Nostrand Company, Inc., 
New York (1956). 

APPENDIX 5A-2 

Table 5A-2 Data used for Examples 5-3, 5-4, and 5-5 

1. K values (Ref. 1) 

Compcnent CI  c2 c3 

n-heptane 0.94 0.0735 371.0 
Methyl cyclohexane 0.85 0.0820 371.0 
Toluene 0.60 0.0330 371.0 

2. Liquid enthalpies (Refs. 2, 3) 

- 

1 
Component C 1 cz c3 
n-heptane 60.12 0.0 0.0 
Methyl cyclohexane 58.91 0.0 0.0 
Toluene 40.54 0.0 0.0 

3. Vapor Enthalpies (Refs. 2, 3) 

Component c 1 c2 c3 
n-heptane 60.12 16 580.2 29.921 1 
Methyl cyclohexane 58.91 15 882.5 22.1793 
Toluene 40.54 16912.5 22.7534 
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4. Liquid density (Refs. 2, 3) 

where p,  = density, g/cm3 
P = pressure, 1 atm 
T = temperature, "R 

Component Cl c3 c3 

n-heptane 100.198 0.70075 -0.840 x 
Methyl cyclohexane 98.182 0.786 70 -0.856 x lo-)  
Toluene 92.134 0.88547 -0.924 x 

1. J. C. Chu: Distillation Equilibrium Data, Reinhold Publishing 
Corp., New York (1950). 
2. R. R. Dreisback: Physical Properties of Chemical Compounds, 
American Chemical Society, Washington, D.C. (1955). 
3. R. R. Dreisback: Physical Properties of Chemical Compounds- 
11, American Chemical Society, Washington, D.C. (1959). 
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CHAPTER 

SIX 

SOLUTION OF 
UNSTEADY STATE ABSORBER PROBLEMS 

BY USE OF A 
SEMI-IMPLICIT RUNGE-KUTTA METHOD 

A N D  GEAR'S METHOD 

Application of Michelsen's modification (Refs. 8, 9) of the semi-implicit Runge- 
Kutta method proposed by Caillaud and Padmanabhan(1) as well as Gear's 
algorithm (Refs. 3, 4) to the equations for an absorber are demonstrated in this 
chapter. The equations describing the dynamic behavior of an absorber consist 
of a large set of coupled differential and algebraic equations. 

The semi-implicit Runge-Kutta integration formula which was presented 
and applied in Chap. 1 is modified in Sec. 6-1 such that it may be used to solve 
a system of coupled differential and algebraic equations. Also, a procedure for 
changing the step size in a manner which increases the accuracy and efficiency 
of the semi-implicit Runge-Kutta is presented. 

In Sec. 6-2, the application of Gear's method to the solution of simulta- 
neous differential and algebraic equations is demonstrated. The procedure for 
making a simultaneous change in the order of the method and in the length of 
the step size is also presented. 

In Sec. 6-3, the equations used by McDaniel(l0,ll) in the modeling of 
an absorber are formulated and solved by both the Runge-Kutta and Gear 
methods. 
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6-1 APPLICATION OF THE SEMI-IMPLICIT 
RUNGE-KUTTA METHOD TO SYSTEMS OF 
COUPLED DIFFERENTIAL AND ALGEBRAIC EQUATIONS 

Michelsen's modified form of the semi-implicit Runge-Kutta method proposed 
by Caillaud and Padmanabhan for solving systems of differential equations 

is modified as shown below such that it can be used to solve coupled differential 
and algebraic equations. The semi-implicit Runge-Kutta method proposed by 
Michelsen(8) is given by 

k, = h[I - haJ,]-'f(y,) 

k2 = h[I - haJ,]-'f(y, + b, k,) 
(6-2) 

k, = [I - haJ,]-'[b,, k, + b,, k,] 

where h = time step 1 
I = identity matrix 

J. = jacobian matrix which contains the partial derivatives of f with re- 
% I 

spect to the variables y; evaluated at y, f 
The constants or parameters in Eq. (6-2) have the following values: ' I  

Michelsen's Algorithm of the Semi-Implicit Runge-Kutta Method 
for Coupled Differential and Algebraic Equations 

Coupled differential and algebraic equations of the form I 

are encountered in the modeling of separation processes. If the algebraic equa- 
' 

tions are linear in the z's, then they are easily handled. The z's may be regarded 
as dependent variables, and for any choice of the y's, the corresponding set of 
z's is readily obtained by solving the algebraic equations which are of the form 
of Eq. (6-5). In the interest of simplicity, only one differential equation and one 
algebraic equation are considered in the following development. The final result 
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may be generalized for the case of any number of equations as implied by Eqs. 
(6-4) and (6-5). In the calculation of dfldy, the chain rule may be applied as 
follows: 

The linear equation in z, g(y, z) = 0, may be used to compute the partial 
derivative azlav. 

If the equation ~ ( y .  z) is nonlinear in z, either one of two procedures may be 
used, Michelsen's method (Ref. 8) or the generalized algorithm for systems of 
differential and algebraic equations. The development of Michelsen's method is 
given below and the generalized algorithm is presented in a subsequent section. 

The first step in the development of Michelsen's algorithm is the transfor- 
mation of the algebraic equations into a set of stiff differential equations as 
follows: 

where c is taken to bc exceedingly small. The jacobian J of this set of equations 
is given by 

where the symbols appearing in J have the usual meanings, namely, 

Integration of Eqs. (6-4) and (6-5) by use of Michelsen's semi-implicit Runge- 
Kutta method yields the following vector for k, . 

( ' -ha ! )  (-haf,) k , ,  f (Y" > z,) 

[i-thagy) ( l - ~ ) ] [ k l , ] = h [ t ~ y ~ , z n ) ~  '^ll' 
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After row 2 of Eq. (6-11) has been multiplied by E and the limit has been taken 
as E approaches zero, one obtains the following result upon rearrangement: 

where 
1 F =f -- 

ha 

This formula is easily implemented because of the similarity of the coefficient 
matrix of Eq. (6-12) and the jacobian matrix. 

By following the same procedure shown above for k , ,  the following formu- 
las are obtained for k, and k , :  

and 

where 

cc = b31 k l y  + b32  k 2 y  

The use of the semi-implicit Runge-Kutta method for solving coupled differen- 
tial and algebraic equations is demonstrated through the use of the following 
numerical example. 

Example 6-1 For the following set of equations 

dy 
- = z - y  
dt 

find the values of y and z at the end of the first time step by use of the 
Michelsen's version of the semi-implicit Runge-Kutta method for h = 1/20 
and for the following set of initial conditions: 

y(0) = 112 z(0) = 9/4 y'(0) = 714 ~ ' ( 0 )  = 718 

SOLUTION 
Let 

f(y, z)= z -  Y 

Then 
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9 1 7  
f(yo,  z,) = - - - = -  

4 2 4  

and 

Since u = 0.4359 and h = 0.05 

and Eq. (6-12) becomes 

which is readily solvcd to give 

Then 

Next k, ,  and k Z z  are computed by use of the following form of Eq. (6-13): 

which leads to 
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Then 

a = b, ,  k , ,  + bl l  k2, = (-0.630 172)(0.08656) + (-0.2435)(0.08494) 

= -0.075 235 

Next, k,, and k,, are computed by use of Eq. (6-14), 

which lead to 

k , ,  = -0.074 412 

Thus, by use of the last expression of Eq. (6-2), one obtains 

The behavior of this method for different zhoices of h as well as the Cail- 
laud and Padmanabhan version of the semi-implicit Runge-Kutta method and 
Gear's method is presented in Table 6-1. 

A Generalized Semi-Implicit Runge-Kutta Algorithm 
for Systems of Coupled Differential and Algebraic Equations 

For many systems of equations, Michelsen's method presented above becomes 
too time-consuming because of the relatively large number of independent vari- 
ables and equations. The number of variables normally required in the formu- 
lation may be reduced through the use of the generalized semi-implicit Runge- 
Kutta method for systems. First, this method is developed for a system of 
differential equations and then it is developed for a system of coupled differen- 
tial and algebraic equations. 

Systems of differential equations Consider the general case where the differential 
equations are of the form 

where the dimension of each matrix is carried as a subscript in Eq. (6-15). The 
subscript n is used hereafter in the semi-implicit Runge-Kutta formulas to 
denote the number of rows or columns in a matrix, and the number of the time 
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Table 6-1 Summary of results obtained by different numerical methods for 
Example 6-1 for step sizes 

1. Results obtained at end of one time step 

Gear's Cailland 
Step size method and Exact 
h (2d order) Padmanabhan Michelsen solutionf 

0.5 y, = 1.281 250 1.274438 1.274434 1.274 20 
z, = 2.640625 2.637 218 2.637099 2.637 10 

0.05 y, = 0.586 424 0.586415 2 0.586415 1 0.586416 
z, = 2.293212 2.293 208 2.293 209 2.293 208 

0.005 y, = 0.508 739 0.508 739 0.508 738 9 0.508 739 5 
z ,  = 2.25437 2.254 369 2.254 370 2.254 370 

0.000 5 y, = 0.500 874 9 0.500 874 8 0.500 874 8 0.500 875 5 
z, = 2.250438 2.250 438 2.250 435 2.250 438 

0.000 05 y, = 0.500087 5 0.5000874 0.500087 4 0.050008 77 
z, = 2.250044 2.250 044 2.250 045 2.250 044 

2. Results obtained at the end of several time steps 

Step size 
h and Gear's Caillaud 
number Method and Exact 
of steps (2d order) Padmanabhan Michelsen solutiont 

h = 0.5 y,, = 3.729600 3.712 950 3.712949 3.712702 
10 steps z,, = 3.864 799 3.856 476 3.856 474 3.856 351 
h = 0.05 y,, = 2.346 949 2.346 693 2.346 689 2.346 710 
30 steps z,, = 3.173464 3.173 345 3.173344 3.173 355 

h = 0.005 y,, = 0.752 895 0.752 895 2 0.752 8948 0.752 898 2 
30 steps z,, = 2.376448 2.376 449 2.376 447 2.376 450 
h = 0.0005 y,, = 0.526 150 7 0.526 149 5 0.526 149 3 0.526 152 6 
30 steps z,, = 2.263 076 2.263 075 2.263 075 2.263 077 

t y(r)  = 4 - (4 - y(O))e-'I2 
z(t) = 4 - (4 - z(0))e-'" 

step is denoted by k. The matrix A in Eq. (6-15) is independent of y and has the 
inverse A - ' .  Since A is assumed to have an inverse, it may be solved for dyldt 
to give 

where the right-hand side has been denoted by f(y) to give an equation of the 
same form as Eq. (6-1). Thus, for the system under consideration, the first 
expression of Eq. (6-2) may be stated in the form 
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where 

Premultiplication of each member of Eq. (6-16) by A gives the following ex- 
pression for computing k, : 

[A - haJkICkil = hF(~k) (6- 17) 

Similarly, the expression for k2 becomes 

[A - haJklCkz1 = hF(Yn + bz k1) (6- 18) 

The expression for computing k3 is obtained by beginning with the third ex- 
pression of Eq. (6-2) and carrying out the same set of operations outlined for k, 
to obtain 

LA - haJkl[k,l  = A C b 3 ~  k~ + b 3 z k z l  (6- 19) 

Systems of differential and algebraic equations Consider the general system of 
equations 

where 0 is the null vector. The rank of the constant matrix B is m. Next let the 
square matrix A(,.,,, be defined by the following partitioned matrix: 

where 

All  = A(,.,, A12 = A[mx("-m)l 

021 = O f ( n - m ) x m l  A22 = - m) x ( n  - m ) ~  m < n also [A, ,  A,,] = B 

Let the elements of A,, be picked such that A,,,, has the inverse A,:,,. 
Also, let E > 0 be picked with the understanding that eventually it will be 
allowed to go to zero. Thus Eqs. (6-20) and (6-21) may be restated in the 
following form: - -  - 

where 

Then 

Let the jacobian J in Eq. (6-2) be denoted by 3, 

J l l  J l 2  

J=[. +] 
where 

J 1 1  = J ( m x m )  5 1 2  = J [ m x ( n - m ) l  

J21 = J [ ( n - m ) ~ m ]  J22  = J[ (n-m)x(n-m)]  

Thus, the first expression of Eq. (6-2) for k, becomes 

Premultiplication by A gives 

CA - haJ(~k)l[kll = h9(~k) 

The partitioned form of Eq. (6-26) is 

and thus 

Multiply those rows containing 1 / ~  by E (as in gaussian elimination) and then 
set E = 0.  The resulting partitioned matrix for computing k,  is given by 

Beginning with the second expression of Eq. (6-2) and performing the same 
set of operations described above for the first expression of Eq. (6-2) gives the 
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following partitioned matrix for computing k ,  

The formula for calculating k ,  is developed by commencing with the third 
expression of Eq. (6-2) and performing the same set of operations described for 
the first expression of Eq. (6-2). The following result is obtained 

CA - haJ(y,)ICk,I = ACb31 k1 + b, ,  k,I (6-3 1 )  

Again, as before 

CA11-h~J111 CAI,-haJ121 [ [+ J 2 1 ]  - J 2 2 1 ] ~ k 3  = + b;zkzl  (6-32) 

Multiply each row containing I / &  by E and then set E = 0 to obtain the parti- 
tioned matrix formula for k , .  

where 

The nonzero elements ( a , ,  a,, . . . , a,) are computed as follows: 

Note, A(, , , ,  is actually equal to the matrix B(,,,,, from the original set of 
equations, Eq. (6-20). 

Selection of Step Size 

The step size is to be selected such that the truncation error is maintained 
within some prescribed upper bound. Unfortunately no simple expressions are 
known for the precise truncation error in the Runge-Kutta methods (Ref. 6). 
The local truncation for an mth-order Runge-Kutta method can be approx- 
imated by 

E = c h m + l  (6-35) 

where C depends upon the higher-order partial derivatives. In order to approxi- 
mate the truncation error, the following procedure which is based on the 
so-called Richardson extrapolation technique has been recommended by 
Michelsen(8). 

Suppose that C in Eq. (6-35) remains constant. Then if an algorithm is 
applied k times in an integration in which the intervals of integration are 
equally spaced, the total truncation error resulting from the repeated applica- 
tion of the algorithm from x = a to x = b is given by 

E ,  = kChm+' 

Since h = (b - a)/k or k = (b - a)/h, Eq. (6-36) becomes 

(h - a) Ch" + I E ,  = - 
h 

Next, suppose that y k + ,  is computed on the basis of two subintervals of sizes h, 
and h, ,  where h, = h,/2 over the interval from x = a to x = b. Then the correct 
value of y k + ,  , denoted by y:, ,, is related to the values yk+ , ,  , and yk+ , ,  , as 
follows: 

( b  - a) Ch:+l 
Y : + I  =yk+1,1  + --- (6-38) 

hl 

where y,+,, , is computed on the basis of one time increment of size h, and 
yk + I ,  , is computed on the basis of two time increments of size h, . Elimination 
of (h - a)C from these two equations yields the following result upon rearrange- 
ment : 

Since 12, = h,/2,  it follows that 

For a third-order Runge-Kutta method, Eq. (6-41) reduces to 

The expression for the local truncation error for a single step is obtained by 
first setting h - a = h,  in Eq. (6-38) to obtain 

E = C h ~ + l = y : + I - y k + l , ,  

Elimination of y:+, from Eqs. (6-41) and (6-43) yields 
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which gives 

for a third-order Runge-Kutta. After E has been computed by use of Eq. (6-45), 
y:+ ,  may be computed by use of the following expression which is readily 
obtained from Eq:. (6-43) and (6-45). 

or Eq. (6-43) may be solved directly for y:, ,. The value y:+ ,  is a better value of 
y k + ,  than either Y , + , .  or y , + , , , .  

Michelsen(8) proposed the following procedure for changing step size. Let E 

be a prescribed vector of tolerances and let 

If g < 1, the integrated result is accepted and the solution value y: , ,  is found 
for each member i by use of Eq. (6-46). I f  g > I the result is not accepted, and 
the integration from t ,  is repeated with h ,  = h 1 / 4 .  Then E and y: , ,  are com- 
puted by use of Eqs. (6-45) and (6-46) on the basis of y n +  , and y,+ ,, 2 ,  the 
values corresponding to /I ,  = h , / 2  and /I, = h,/4, namely, 

Once a step has been accepted, the proposed step length for the new step size 
h,, , is selected as follows: 

h k + ,  = hk . min [(4g) 0.2" 331 (6-49) 

Thus, for q i 0.25, Eq. (6-49) gives an increase in h , ,  , and for g 2 3-4/4, a 
maximum increase in step size by a factor of 3 is obtained. The factor of 4 in 
Eq. (6-49) and the empirical restriction on the maximum increase by a factor of 
3 were recommended by Michelsen(8) as safety margins to avoid the selection of 
step sizes which are too large and which would lead to subsequent rejection 
(would yield values of y > I). 

The linear combination of two approximate solutions given by Eq. (6-46) 
yields a more accurate value of y k + ,  than either of the two values, y k + , ,  , and 
y k + l ,  2 ,  because the dominant error term O(h4) tends to cancel when the two 
solutions are combined, and the method in effect becomes fourth order. How- 
ever, the higher order is achieved at considerable computational expense, the 

two extra steps with h2 = h l / 2 .  Nevertheless, this one-step-two-step approach 
retains the stability properties of the algorithm, increases its accuracy by one 
order, and provides a simple means of adjusting the step size (Ref. 8). 

6-2 APPLICATION OF GEAR'S METHOD 
TO SYSTEMS OF COUPLED DIFFERENTIAL AND 
ALGEBRAIC EQUATIONS 

Solution of Differential and Algebraic Equations (Refs. 3, 4, 5) 

Examination of the integration formulas (presented below) for Gear's method 
for systems of algebraic and differential equations such as 

shows that the integration formulas for algebraic equations are precisely the 
same as those for differential equations. The fact that one method works for 
both algebraic and differential equations makes it possible to apply Gear's 
method to systems of equations in which y' occurs implicitly of the form 

F(Y, Y', z, z', t )  = 0 (6-5 1 )  

It is not necessary to solve F for y' explicitly or to determine which are differen- 
tial equations. These characteristics of Gear's method permit the formulation of 
an absorber problem in terms of a smaller set of equations and variables than is 
required in the formulation by use of the semi-implicit Runge-Kutta method. 
Equations of the general form 

0 = f(y, 2, y', 2') 

0 = P(Y> 2) 

are characteristic of those used to describe the dynamic behavior of absorbers. 
For convenience, the equations of Gear's kth-order algorithm for one differ 

ential and one algebraic equation are presented. 
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where D is the Pascal triangle matrix (see Chap. 1). The Newton-Raphson 
method is used to find the pair of values bl  and b ,  which make Fl(b , ,  b2) and 
F2(bl ,  b,) equal to zero. 

Fi(b1, b2) = FIG, + P - l b , ,  hj', + b1,  2, + B- lb2 ,  hZA + b2) (6-54) 
F,(bl, b 2 ) = F 2 ( j , + P - l b l , h x + b 1 , Z , + B - 1 b 2 , h Z : , + b 2 )  

After the solution set { b , ,  b2}  has been found, the values of Y ,  and Z ,  are 
computed as follows: 

Y , = V , + ~ , L  
(6-55) 

z , = Z , +  b 2 L  

To illustrate the application of Gear's method to equations of the type of 
Eq. (6-52), Example 6-2 is presented. 

Example 6-2 Use Gear's second-order method to compute y and z at the 
end of the first time step for the following set of equations: 

y','(O) = 0.1 ~ ' ~ ' ( 0 )  = -0.4 

For Gear's second-order method: /L1 = 213, L = 1213, 313, 1/31', and take 
h = 0.5. 

SOLUTION Let the vectors Y and Z be defined as follows: 

Z = [ z ,  hz', - E]' z',' 

Then 

yo = 0.5 hyb = (0.5M-0.1) = -0.05 

and 

Then 

and 

Next find b ,  and b2 such that F,(b, ,  b,) = F2(b1 ,  b,) = 0,  where 

1 1 F 1 ( h  , b2) = (5, + a- b2) - (j., + b '  , b l )  + i; (hi', + b2)  - i; (hYl + b, )  

F,(bl> b2) = (51 + a - 1  62) + q j 1  + p - ,  b , )  - 2 

The desired values of bl and b,  are 

Thus 

0.4625 0.459 375 
Y 1 = V l  + b , L =  

and 

Change of Step Size 

When the past values of y, (namely, y , ,  , y ,-,, . . ., y,_,) are carried in terms 
of the Nordsieck vector (see Chap. 9), a change in step size is easily effected. Let 
the Nordsieck vector for Gear's integration formula of order k at time t ,  and 
step size h be denoted by 



For step size h = ah, the corresponding Nordsieck vector at  time t, is de- 
fined by 

..... 

Since y,, j,, and all derivatives of y, and 9, are evaluated at the same time 
t = t,, it follows that 

-(2) = ( 2 )  $(k) = (k) 9. = Y " >  Yb = yh, yn Y, , ..., n ~n (6-58) 

Since ĥ = ah, it follows that the elements of the vectors Z, and Z, are related as 
follows: 

719" = ahyk 

Thus, the two Nordsieck vectors are related by the diagonal matrix A(a) as 
follows: z,, = A(u)z, (6-60) 

Simultaneous Change of Step Size and Order 

In the development of the formulas for effecting these changes, let it be sup- 
posed that a kth-order Gear formula has been used for the last (k + I )  time 
steps. The formulas for effecting changes in step size and order are based on the 
estimation of the truncation errors for a kth-order, a (k - 1)-order, and a 
(k + 1)-order Gear integration formula. Gear used the following formulas. 

, , k + l Y j l k + 1 )  

E =  (order k) 
k + l  1 

(order k - 1) i 
hk+2~jlk+2) E =  

1 7 1 3  
(order k + 1) I 

where the contributions of the higher-order terms have been neglected in the 
above statements of the truncation errors. 

Let the maximum possible value of E be set equal to ~y,,, where y,,, is the 
largest value which the dependent variable has taken on and E is a parameter 
specified for the problem. Let the new step size ĥ be denoted by ĥ = ah. Let h 
be replaced by 71 and E by ~y,,,. When the expressions so obtained are solved 
for a with weights being imposed to maximize the computational efficiency as 
proposed by Gear, one obtains 

1 (k + l)ey,,, ' l ( k + l )  .=-( 1.2 hk+lyjlk+l) ) (order k) I 
(order k - 1) (6-62) 

1 (k + 2)&ymax 1!(k+2) .=-( 1.4 hk+1yLk+2) ) (order k + 1) I 
The desired value of a is the maximum value computed by use of Eq. (6-62). 
The factors 111.2, 111.3, 111.4 were introduced by Gear to provide a bias toward 
picking a smaller order. Since the change from a lower to a higher order 
requires more computational effort than does the change from a higher to a 
lower order, the order should not be increased unless a significant improvement 
can be achieved by changing order. 

In order to evaluate the a's given by Eq. (6-62), procedures are needed for 
computing the derivatives appearing in these expressions. For the kth-order 
algorithm, the derivative y!,k+l' may be approximated by use of the (k + 1)st 
elements of Z, and Z, - ,  as follows: 

Then, for order k, the expression 

may be used to compute h k + l y f + ' ) .  Instead of using the above expression for 
computing the (k + 1)st derivative, Eq. (6-64) may be used. This expression is 
developed in the following manner. Let the elements of Z, be denoted by z,. , , 
i,, .... z,, k +  Then Eq. (6-63) may be stated in the form 

hktlyjli+l) = k ! ( ~ , , ~ + !  - z , ~ . ~ + ~ )  (6-64) 

Since Z, = Z, + b, L (Eq. (1-59)), it follows that the (k + I)st elements of Z,, 
Z,, and L are related in the following way: 

Z n , k + l  -?n,k+l = b n l k + l  (6-65) 

where I,+ , is the (k  + 1)st element of L. Since each element on the principal 
d~agonal of the Pascal triangle matrix is eaual to unitv and since ?. = n7. . 
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(Eq. (1-58)), it follows that the (k + 1)st element of Z, is equal to the (k + 1)st 
~ A 

element of Z,-, , that is, - - 
Z",k+l - Z n - 1 .  k + l  

Use of Eq. (6-66) to eliminate 5,- ,+, from Eq. (6-65) followed by the substitu- 
tion of the result so obtained into Eq. (6-64) yields 

hk+ ly l+ l )  = k! /, n [ k + ~  (6-67) 

For order k - 1, hkya) is observed to be the last element of Z,. 
For a (k + 1)st-order Gear integration formula, both the (k + 1)st and 

(k + 2)nd derivatives are needed. First the (k + 1)st derivatives at t, and t , - ,  are 
computed by use of Eq. (6-63). Then 

= k!lk+l(bm - bn-,) (6-68) " 

Thus, the expressions given by Eq. (6-62) may be stated in the following 
alternate but perhaps more convenient computational form: 

1 ( k  + l)cym,, l / ( k +  1) 

.=-( 1.2 k ! lk+ lbn  ) (order k) I 
(order k - 1) (6-69) 

L / ( k + 2 )  

(order k + 1) I 
At the end of each trial 11, the truncation error c, is computed by use of the 

This expression follows'immediately from (6-61) and (6-67) after E in the first 
expression of Eq. (6-61) has been replaced by ~,y,,,. If this criteria is not 
satisfied, the step size is reduced until it is. 

The procedures for control of step size and order provide a method for 
starting the solution procedure. In the solution of initial value problems, all that 
is required are the values of the dependent variables at the beginning of the 
integration interval. The order of the method is set to one and the second 
components of Z, are set equal to zero. The second component of the Z, 
vectors are set to zero because for an arbitrary set of differential and algebraic 
equations, it is not always possible to obtain values for all of the required 
derivatives. This in no manner affects the accuracy of the solution, as an exam- 
ination of the method reveals. The only thing affected is the error control 

i SOLUTION OF UNSTEADY STATE ABSORBER PROBLEMS 235 

procedure, which must be suspended until the second step. Thus, the initial 
value of h chosen should be small, but it will be increased later by the integra- 
tion routine. Similar considerations also require that tests to increase the order 
of the method be suspended until the third time step has been completed. Also, 
Gear and others found that increasing the step size before (k + 1) steps had 
been completed since the last change could result in large accumulated errors, 
thereby requiring a subsequent reduction of the step size. 

Other strategies for change of step size and order can be devised such as 
using a subset of variables for which initial derivatives are available. To date 
computational experience indicates that it is best to base truncation error and 
step size control on the subset of variables that have a derivative in at least one 
equation of the differential-algebraic system being integrated. 

6-3 SOLUTION OF ABSORBER PROBLEMS BY USE OF 
THE SEMI-IMPLICIT RUNGE-KUTTA METHOD 
AND GEAR'S METHOD 

In this section, the equations for an absorber at unsteady state operation with 
fixed holdups are formulated first by the semi-implicit Runge-Kutta method 
and then by Gear's method. A flow diagram for a typical absorber is shown in 
Fig. 6-1. 

Figure 6-1 Absorber and identifying symbols. 



Formulation of the Absorber Equations by the 
Semi-Implicit Runge-Kutta Method as Proposed by Michelsen 

To facilitate the solution of Eqs. (6-71) through (6-77) by use of the semi- 
implicit Runge-Kutta method, new holdup variables are defined and the com- 
ponent flow rates (vji) and {Iji} are restated in terms of the holdups. The new 
holdup variables are defined because the Runge-Kutta method is applicable for 
the case where the differential equation contains only one derivative. After these 
new variables have been defined and the component flow rates have been elim- 
inated, the following expressions are obtained for the component-material bal- 
ances, the equilibrium relationships, and the energy balances. 

The equations needed to describe absorbers at unsteady state operation are 
a subset of those presented in Chap. 4 for distillation columns except for an 
additional term in the energy balance corresponding to the heat content of the 
metal. Except for this one modification, the equations for absorbers are the 
same as those for any interior plate j (j f 1, f, N - 1 )  of a conventional distil- 
lation column. For convenience, a summary of these equations follows: 

du" du4 (j = 1, 2, ..., N )  
v j + ~ , i  + [ j - l , i - v . . - l . . = - I I + - L I  11 1 1  dt  dt ( i  = I, 2, ..., C) (6-71) 

dhs 
- - + A  (J = 1 ,  2, .. , N )  (6-77) 

d t  d t  

where AJ = mass of metal associated with stage j 

dhS 
C; = heat capacity of the metal = 2. Note 

d  T, 
dhS d h S d T  d  T 1 = 1 1 = c s 1 .  
d t  d T .  d t  " d t  
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In order to solve these equations by the semi-implicit Runge-Kutta method, 
it is necessary to restate the component-material balances and energy balances 
in the form of y' = f ( y )  by introducing the new variables (u j i ) ,  E r ,  E:, and E j .  
The resulting set of equations to be solved are then given by 

0 = .&, hjs - E? (j = 1, 2, . . . , N )  (6-86) 

0 = Es + E r  + E," - Ej (j = 1 ,  2, . . . , N )  (6-87) 

Equations (6-78) through (6-87) constitute the complete set of N(3c + 7 )  inde- 
pcndcnt equations. These N(3c + 7) independent equations contain the follow- 
ing N(3c + 7 )  independent variables x, namely, 

where the notation "( )j=l, ,"  means that the elements displayed are to be 
repeated for j = 1, 2, 3, . . ., N - I ,  N .  In the evaluation of thermodynamic 
functions, the mole fractions should be replaced, wherever they appear, by the 
following expressions: 
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In order to demonstrate the characteristics of the semi-implicit Runge- 
Kutta method, the following example was solved. This example is based on a 
series of field tests which were made by McDaniel(lO,ll,l2). These tests are 
described in greater detail in Chap. 7. 

The equations and variables of the semi-implicit Runge-Kutta method were 
ordered in the same manner as described below for Gear's method. Likewise the 
modified jacobian matrix was solved by use of the same sparse matrix tech- 
niques described below for Gear's method. 

Example 6-3 A complete statement of this example is presented in Table 
6-2. Initially, at time t = 0, the absorber is at steady state operation. The 
steady state solution at the initial conditions is shown in Table 6-3 and at 
the conditions of the upset in Table 6-4. At time t = 0+,  a step change in 
the flow rate of the lean oil is made (see Table 6-2). The semi-implicit 
Runge-Kutta method was used to obtain the transient solution shown in 
Table 6-5. 

The solutions shown in this chapter were obtained by use of the K data - -  

presented in Table 6A-1 and the corrected enthalpies {(hi),,, (Hi),) which 
were determined from a series of steady state field tests (Refs. 10, ll), 

(hi),, = hi + PCf(T - TD) 

(H,),, = H, + pc;(T - 7'') 

Table 6-2 Statement of Example 6-3 
Flow rate, Ib . mol/h 

Component 

C02 
N2 
CH4 
C2H6 
C3H8 

i-C4Hl 

n-C4H10 
i-C5HI2 

n-C5H 12 

C6H*4 

C,H,, 
C8H18 

C9H20 
ClOH22 

Lean oil, 

Lo 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.087 32 
0.11779 
1.234 24 

17.853 07 
62.569 89 

49.946 69 
24.846 36 

156.655 36 

Rich Gas, 
VN+ 1 

14.656 3 1 
4.61 7 37 

2233.060 
158.7503 
66.127 59 

15.829 34 
10.206 40 
2.299 97 
1.41099 
0.867 19 

0.266 89 
0.024 86 

0.000 23 
0.00003 

2508.11747 

Other specifications 

Initial conditions: t = 0, Steady State 
The column has 8 stages and operates at a 
pressure of 722 lb/in2 abs. With each stage, 
there is 612.5 Ib of metal having a heat 
capacity of 0.12 Btu/(lb)("R). The rich gas 
VN+, enters at a temperature TN+, = 2.O"F 
and the lean oil enters as a liquid at a 
temperature To = - I.O"F. The total holdups 
in the liquid and vapor phases are as fol- 
lows: U ; =  2.50lb .molu= 1.2, ..., 8). 
and U'; = 0.085 656, Ur = 0.038 926 lb .mol 
u = 2 , 3  ,..., N). 

Upset at time t = 0 +  
Lo = 194.713 72 Ib . mol/h. The composition of 
Lo remains the same. The temperature of the 
lean oil is changed to To = 2.5"F. 

Table 6-3 Steady state solution of Exam- 
ple 6-3 at the initial set of operating con- 
ditions 

T ,  5 ,  L j ,  
Plate "R Ib . mol/h Ib . mol/h 

"1;. lNi, 
Component Ib. mol/h Ib . mol/h 

where ,b' = 0.2561 
T = temperature, "R 

T, = OOR, the datum temperature 

Curve-fits of the liquid and vapor enthalpies {hi} and {Hi} are presented in 
Table 6A-2, and the liquid and vapor correction factors {C" and {Cr} are 
presented in Table 6A-3. 

Formulation of an Absorber by Use of 
the Generalized Algorithm for the Semi-Implicit Runge-Kutta Method 

The system of equations used to describe an absorber are of the form given by 
Eqs. (6-20) and (6-21). The absorber equations (Eqs. (6-71) through (6-77)) may 
be solved by use of the generalized Runge-Kutta algorithm for systems of 
coupled differential and algebraic equations (Eqs. (6-29), (6-30), (6-33), and 
(6-34)). When the generalized algorithm is used, it is not necessary to define the 



Table 6-4 Steady state solution of Exam- 
ple 6-3 at the conditions of the upset 

T,. v,, L, ,  
Plate "R Ib . moljh Ib . mol/h 

1 485.22 2251.98 287.65 
2 491.35 2344.93 305.73 
3 492.90 2363.01 31 1.67 
4 492.70 2368.95 317.72 

5 491.46 2375.00 325.39 
6 489.31 2382.67 336.65 
7 485.96 2393.93 356.40 
8 480.32 2413.69 450.86 

" l i .  IN,, 

Component Ib . mol/h Ib . mol/h 

co 2 
12.805 1.851 

N2 3.622 0.996 

CH4 21 17.130 115.947 

C*H6 107.088 5 1.663 

C,H, 9.709 56.419 

i-C4H 0.142 15.688 
it-C4H ,, 0.012 10.194 
i-C5H 0.029 2.380 

n-C5H 1 2  0.028 1.530 

CeH14 0.074 2.328 

C,H16 0.356 22.101 

C,HI, 0.706 77.090 

C,H,,, 0.243 61.838 

Cl,,H22 0.049 30.833 

Table 6-5 Transient solutions of Example 6-3 by use of the 
generalized semi-implicit Runge-Kutta method 

Temperature ( R) at Vapor rates, Ib - moljh 
trial no. indicatedt at trial no. indicated: 

Plate 1 10 36 1 10 36 

1 484.66 484.48 485.15 2258.54 2253.24 2252.01 

2 489.98 489.95 491.24 2352.82 2347.95 2345.00 

3 490.56 490.71 492.78 2371.71 2367.76 2363.13 

4 489.64 490.03 492.57 2378.28 2374.76 2369.09 

488.59 492.35 2384.73 2381.29 2375.15 

486.60 489.22 2392.38 2388.77 2382.80 

483.79 485.90 2402.90 2398.98 2394.04 

479.89 480.29 2420.13 2416.53 2413.74 

t A lower bound of 0.1 min for the time step was used. 
An upper bound of 5.0 min for the time step was used. 

f The times corresponding to the trial numbers are as follows: 

Trial 1 : 0.10 min Trial 10: 1.46 min Trial 36: 15.00 min 

The tolerance vector was chosen as one-thousandth of the values at the 
end of each second half-step. 

new variables {u,,}, E;, and E, used in the formulation by Michelsen's algo- 
rithm. The absorber example may be formulated by use of the generalized 
Runge-Kutta algorithm in terms of N(2c + 5) equations and N(2c + 5) vari- 
ables, when the total holdups { U j }  and the liquid holdups {U; )  are known. The 
N(2c + 5) variables are: 

x = [(uTl .. - u: U> . . .  ujC I/;. L, T j  ET E/4),=,,,,JT (6-89) 

and the N(2c + 5) equations follow: 

Again, the mole fractions appearing in the thermodynamic functions are re- 
placed by their equivalents as shown below Eq. (6-88). 

When Example 6-3 was solved by use of the same constraints on the step 
size for the generalized semi-implicit Runge-Kutta method as was used for 
Michelsen's method, 83.9 seconds of computer time were required for 15 min- 
utes of process time (see Table 6-6). Thus, for this example, the generalized 
algorithm for the semi-implicit Runge-Kutta method is approximately twice as 
fast as Michelsen's method. 

Formulation o f  the Absorber Example by U s e  of Gear's Method 

Since Gear's method may be applied to systems of nonlinear differential equa- 
tions with variable coefficients, it may be applied to the system of equations 
consisting of Eq. (6-20) (a system of linear differential equations with constant 
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Table 6-6 Comparison of the semi-implicit 
Runge-Kutta methods for Example 6-3 

1. Integration parameters for the semi-implicit 
Runge-Kutta methods 

Tolerance vector = (0.001)~: 
M ~ n ~ m u m  permrtted step srze = 0 1 mln 
Maximum permitted step size = 5.0 min 

Initial step size = 0.1 min 

2. Performance of Michelsen's algorithm 
(Eqs. (6- 12). (6-1 3), and (6-14))t 

Cumulativef Cumulative 
Process funct~onal jacoblan 

Step Time, min evaluations evaluations 

46 11 252 220 88 
47 13 126 225 90 
48 15000 230 92 .#,s 

3 Performance of the generalrred Runge-Kutta 'a 
algor~thm for systems of d~fferentlal and 

$&- 
8." 

algebrarc equatronq (Eqs (6-29), (6-30), , r' 
t', 

(6-31), and (6-32)M * , 
Cumulative Cumulative 

Process functional jacobian 
Step time, min evaluations evaluations 

0 0.000 0 0 
1 0.100 5 2 
2 0.200 10 4 

10 1.447 50 20 

I I 1.657 5 5 22 
33 11.185 170 68 
34 12.997 175 70 
35 15.000 180 72 

t Computer time for AMDAHL 470, 
FORTRAN H Extended Compiler was 139.12 s. 

f (b , ,  k, + b,, k,) was not counted as functional 
evaluation. 

Computer time for AMDAHL 470/V8 with 
FORTRAN H Extended Compiler was 86.35 s. 

/V8 with 

coefficients) and Eq. (6-21) (a system of algebraic equations) without any modifi- 
cation of the algorithm given by Eqs. (6-53) through (6-55)). 

The equations for an absorber may be formulated in terms of precisely the 
same N(2c + 5) independent variables shown above for the generalized algo- 

rithm of the semi-implicit Runge-Kutta method (see Eq. (6-89)). Likewise the 
N(2c + 5) equations to be solved are the same as those shown above for the 
generalized Runge-Kutta algorithm (see Eqs. (6-90) through (6-96)). 

Solution of the Newton-Raphson Equations in Gear's Method 

Corresponding to each element of x, there is a set of variables b which may be 
represented as follows: 

b = C ( h j , l  hj.2 - "  h j , c + l  . . . bj.2c+5)j=l.NlT (6-97) 

Similarly, let the functions for any stage j be ordered in the same manner as 
shown by Eqs. (6-90) through (6-96) and identified by the following notation 

f = [ ( h . l  L.2 " '  f j . c  f j . c + 1  . . . f j .  2c+5)j=1.~1T (6-98) 

The unknown b's at the end of a given time step may be found by use of the 
Newton-Raphson method which consists of the repeated solution of 

J Ab= -f 

where 

Ab = b,, , - b,, where I is the trial number. 

In order to obtain a jacobian matrix with the sparsity of the one shown in 
Fig. 6-2, the variables must be appropriately ordered as implied above. By the 
ordering of the functions is meant the order in which the Newton-Raphson 
equations are listed. I n  the proposed ordering, all of the Newton-Raphson 
equations for the first stage are listed, then those for the second stage, and this 
process is continued until all of the Newton-Raphson equations for stage N 
have been listed. 

By ordering of the variables is meant the order in which each function is to 
be differentiated with respect to the variables. In order to achieve the sparsity 
shown in Fig. 6-2, each function is differentiated first with respect to the vari- 
ables for the first stage, then those for the second stage, and this process is 
continued until each function has been differentiated with respect to all of the 
variables for the Nth stage. 

In order to compute the Ab's, the matrix equation may be solved by the 
well-known method of gaussian elimination. Observe first that arithmetic is to 
be performed only on the elements in the shaded area. Since the elements 
outside the shaded area will always be equal to zero, computer time is saved by 
not performing any arithmetic on these zero elements. By applying gaussian 
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Note 
1. All elements outside of the 

shaded area are zero 

2. Each of the shaded squares 
contains one or more nonzero 
elements 

Figure 6-2 Jacobian matrix for Gear's formulation of an absorber. 

elimination in a stepwise fashion, it is possible to transform the matrix shown in 
Fig. 6-2 into the one shown in Fig. 6-3. At any time, only six of the (2c + 5) 
square submatrices along the diagonal and the corresponding elements of f need 
to be considered instead of the complete N(2c + 5 )  matrix. In particular, the 
first step in the transformation of the jacobian matrix of Fig. 6-2 into the upper 
triangular matrix shown in Fig. 6-3 is to consider the submatrices 1, 2, 3, 4, 6, 
and 7 of Fig. 6-2. Next, the largest element in column 1 of submatrices I and 2 
is selected as the pivot element. If the pivot element lies in submatrix 2, then 
submatrix 6 may be filled in the process of eliminating all elements above the 
pivot element. After the entire process has been applied to the last column of 
submatrix 2, the entire process is repeated for the next set of six submatrices, 
namely, submatrices 4, 5, 7, 8, 10, and 11. If one or more of the pivot elements 
lie in submatrix 5, then submatrix 10 may be filled or partially filled by the 
elimination process. 

Refinements of the gaussian elimination process which have been described * - - - - -. . - - - 
by others (Ref. 13) were employed. For example, the Newton-Raphson equa- 
tions were scaled as recommended by Tewarson(l3) before the gaussian elimin- 
ation process was initiated. Also the large, sparse jacobian matrix was stored 
through the use of linked lists. This procedure is described and illustrated in 
Chap. 15 of Ref. 7. 

Figure 6-3 Jacobian matrix of Fig. 6-2 after triangularization 

Since all of the variables x remain positive and bounded throughout the 
transient operation, the values of Ah were limited accordingly. For example, 
suppose that the value of Ah,,, ,+, for the ( I  + 1)st trial gives a negative value of 
the corresponding variable u;, that is, 

O >  u : = i i : + p - l ( b j i , , + A h j i , , + l )  (6- 100) 

then each Ah is multiplied successively by factors of 112 until u: > 0. 
Speed is achieved in  Gear's method by using the same jacobian for several 

time steps as indicated in Table 6-7. 

Comparison of the Semi-Implicit Runge-Kutta Methods 
and Gear's Method 

For systems of coupled differential and algebraic equations in which the deriva- 
tives are linear with constant coeflicients, the generalized semi-implicit Runge- 
Kutta method may be applied directly. The generalized algorithm eliminates the 
necessity for defining new variables as required to state the differential equa- 
tions in state-variable form [y' = f(y)] in order to apply Michelsen's semi- 
implicit method. Thus, in the formulation of the absorber example, N(3c + 7) 



Table 6-7 Solution of Example 6-3 by use of Gear's 
Method 

1. Gear's method integration parameters 

Error control parameter, E = 0.001 
Minimum permitted step size = 0.0099999 min 
Maximum permitted step size = 5.0 min 

Initial step size = 0.01 min 
1 " 

Convergence criterion: - 1 f 5 9. where n is the total number " i = ,  

of functions f, . 

2. Performance of Gear's method7 

Cumulative Cumulative 
Process Integration functional jacobian 

Step time, min order evaluations evaluations 

0 0.000 1 0 0 
1 0.01 1 3 1 
6 0.080 I 22 3 

7 0.098 2 24 3 
24 1.434 2 77 9 
25 1.580 3 79 9 

52 11.815 3 165 19 
53 11.923 2 167 19 
60 16.285 2 187 22 

t Computer time for AMDAHL 470/V8 with FORTRAN H 
Extended Compiler was 28.92 s. 

variables were required by Michelsen's method while only N(2c + 5) were re- 
quired by the semi-implicit Runge-Kutta method and Gear's method. 

In order to solve systems of differential equations with variable coefftcients 
and one or more derivatives of nonlinear form by use of the generalized semi- 
implicit Runge-Kutta method, it is necessary to define an appropriate set of 
new variables which produces a new set of equations in which all derivatives 
appear in linear form with constant coefficients. T o  solve the same problem by 
use of Michelsen's method would require the definition of an appropriate set of 
new variables which would reduce the original set of equations to state-variable 
form. O n  the other hand, Gear's method may be applied directly to systems of 
nonlinear differential equations with variable coefficients. New variables may be 
introduced, of course, as desired to simplify the computations. 

A significant advantage of Gear's method over the semi-implicit Runge- 
Kutta methods is the fact that the derivatives may be approximated in the 
Newton-Raphson determination of the set of { b j )  of Gear's method which are 
required to satisfy all of the equations. Approximation of the derivatives 
appearing in the Newton-Raphson method does not reduce the order of Gear's 
method because it is independent of the method used to find the {b]) .  However, 
in the case of the Runge-Kutta methods, the derivatives appear in the algo- 
rithm itself and the approximation of these derivatives reduces the order of the 

algorithm to the order of the approximation. Because of the complex thermo- 
dynamic functions which are used in the description of nonideal mixtures, the 
development of the analytical expressions for the derivatives required by the 
semi-implicit Runge-Kutta methods can become an enormous task. 

To compare the performance of the three formulations described above, 
Example 6-3 was solved by each method. The performance of Michelsen's 
method is given in item 2 of Table 6-6. As shown there 139.12 seconds of 
computer time was required to follow the process for the first 15 minutes 
following the upset while the generalized semi-implicit Runge-Kutta method 
required 86.35 seconds for the first 15 minutes of process time as shown in item 
3 of Table 6-6. Thus, the generalized semi-implicit Runge-Kutta method is seen 
to be 1.61 times faster than Michelsen's method for the absorber example. 

The performance of Gear's method in the solution of Example 6-3 is pre- 
sented in Table 6-7. Since it required 28.92 seconds of computer time for the 
first 15 minutes of process time, Gear's method is seen to be 2.98 times faster 
than the generalized Runge-Kutta method and 4.81 times faster than Michel- 
sen's semi-implicit Runge-Kutta method. Although the comparison of the two 
Runge-Kutta methods is exact, the comparisons of the Runge-Kutta methods 
with Gear's method is not exact because the procedures used to change the size 
of the time steps differed. 

NOTATION 

(See also Chaps. 4 and 5.) 

E; = energy holdup in the liquid phase on stage j 
E r  = energy holdup in the vapor phase on stage j 
Ef = energy holdup in the metal associated with stage j 
E j  = total energy holdup in the liquid and vapor phases and metal 

associated with stage j 
hji  = virtual value of the partial molar enthalpy of component i in 

liquid (see App. 4A-2) 
H j i  = virtual value of the partial molar enthalpy of component i in 

the vapor (see App. 4A-2) 
h; = enthalpy of the metal at the temperature of stage j 
u; = molar holdup of component i in the liquid on plate j 
u: = molar holdup of component i in the vapor on plate j 
uji  = total molar holdup of component i on plate j 
U; = total molar holdup of liquid on plate j 
U r  = total molar holdup of vapor on plate j 

Greek letters 

yk = activity coefficient of component i in the liquid phase on 
stage j C Y ~  = Y ; ~ P ,  T ,  { x j i ) ) I  

7; = activity coefficient of component i in the vapor phase of 
stage j CY; = y;(P7 T ,  { ~ j i } ) I  
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PROBLEM 

6-1 Formulate the equations required to solve the model given in Sec. 2-4 for a triple-effecl 
evaporator with boiling point elevation by use of each of the following algorithms: 

( a )  Michelsen's version of the semi-implicit Runge-Kutta method. 
( h )  The generalized semi-implicit Runge-Kutta method. 
(c) Gear's method. 
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Table 6A-3 Enthalpy correction 
factors? 

1. Mean heat capacities (Btupb. mol) 

Component C Y C: 

Carbon dioxide 8.461 19.219 
Nitrogen 6.836 10.611 
Methane 8.272 16.019 
Ethane 11.698 18.601 
Propane 16.133 26.041 

i-Butane 21.106 31.605 
n-Butane 21.511 31.813 
i-Pentane 25.451 38.321 
n-Pentane 26.044 38.589 
Hexane 31.074 46.835 

Heptane 36.287 51.030 
Octane 41.326 56.341 
Nonane 47.374 62.409 
Decane 52.643 68.895 

t Calculated using the same enthalpy 
data as used in Table 6A-2 on a basis of 
T,, = O R .  

CHAPTER 

SEVEN 
MODELING OF PACKED ABSORBERS 

AT UNSTEADY OPERATION 

The use of field tests in the modeling of a packed absorber at unsteady state 
operation is demonstrated in this chapter. Both steady state and unsteady state 
field tests were used in the formulation of the unsteady state model for the 
absorber at the Zoller Gas Plant (see Figs. 7-1 and 7-2). 

After the fundamental relationships and the proposed model for the packed 
absorber have been presented in Sec. 7-1, they are utilized in Sec. 7-2 in con- 
junction with the results of the field tests to determine the parameters of the 
model. 

7-1 FUNDAMENTAL RELATIONSHIPS 

The concepts of mass and heat transfer sections make it possible to represent a 
continuous mass transfer process by an equivalent stepwise process, that is, by 
an equivalent column with plates. In the proposed model, the column is divided 
into elements of height Az,, as shown in Fig. 7-3, and the mass and heat 
transfer that occurs within each element is described by the mass and heat 
transfer relationships. 

Definitions of the Mass and Heat Transfer Sections 

The mass and heat transfer sections for unsteady state operation are defined 
such that each element of packing Az, of the packed column becomes a per- 
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Figure 7-1 The Zoller Gas  Plant. (R.  McDaniel, A. A. Bassyoni, and C. D. Holland, "Use of the 
Results of Field Tests in the Modeling of Packed Distillation Columns and Packed Absorbers-111," 
Chem. Eng. Sci., vol. 25, p. 634 (1970). Courtesy Chemical Engineering Science.) 

1 -  Lean gas 

r-=l 

Mist eliminator 

Packing 
holdup g r a t i n g 7  [/ c-e Lean Oi l  

Vapor chinincys 

Liquid 
distribution tray 

Packing 
holdup graling 

Liquid drawoff tray 

2----b Rich o i l  
Rich gas ----+ 

Condensate ---b 
and ethylene glycol 

3---+ Condensate 

indicates location 
t o f  thermowells 

Figure 7-2 The absorber of the Zoller Gas  Plant. (R.  McDaniel, A. A. Bassyoni, and C.  D. Holland, 
"Use of the Results of Field Tests in the Modeling of Packed Distillation Columns and Packed 
Absorbers-Ill," Chem. Eng. Sci., 001.25, p. 636 (1970). Courtesy Chemical Engineering Science.) 



Figure 7-3 Sketch of a typical packed absorber. ( R  E. Rubac. R McDaniel, and C .  D Holland. 
"Packed Distillation Columns and Absorbers at Steady State Operation," AIChE J. ,  001. 11, p. 569 
(1969). Courtesy American Institute of Chen~lcal Engineers.) 
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fectly mixed section, that is, 

y . .  = E . . K . . x . .  
J l  J l  1: 11 

where xji and yji are the mole fractions of component i in the vapor and liquid 
streams leaving the jth element of packing. For the case where the liquid phase 
forms a nonideal solution, the quantity Kj i  is preceded by the ratio of activity 
coefficients, y;/y; .  

The heat transfer section having an efficiency e, is defined by 

T r  = e j  TjL T C  = T S  
1 1  

TV = T r  (2, < z < z , , , )  

T L  = T: ( z ,  < z I 

This definition supposes that the temperatures of the vapor and liquid phase are 
uniform but different over each element of packing. Also, the temperature of the 
packing is taken to be equal to that of the liquid in each element. Throughout 
the remainder of the development, perfect heat transfer sections (el = 1)  are 
assumed, that is, 

As a consequence of the definitions of the heat and mass transfer sections 
and the assumption of perfect heat transfer sections, the equations required to 
describe the model are the same as those introduced in Chap. 6. The expression 
for the heat content of the packing is developed as follows: 

Let the total mass of packing contained in the element Az, be denoted by 
. / H j .  Since the bulk density of the packing is constant, it follows that 

where p, = mass of packing per unit volume of bed 
S = internal cross-sectional area of the column 

Since the temperature of the packing is taken to be constant and equal to Ti 
over element Az,, it follows that the heat content of the packing contained in 
the jth element at any time t is given by 

where h; is the heat content of the packing in British thermal units per unit 
mass of packing. Although more general models which take into account 
mixing effects (Ref. 6) may be proposed, the relatively simple model described 
above gave an adequate representation of the experimental results. 
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Thus the differential equation representing the energy balance is given by 

- 
d ( i =  i 1 ug A ji) + d 

h i )  d T, - + A, CS, - (7-5) 
d t  d t  d t  

where 

7-2 ANALYSIS OF THE RESULTS OF THE FIELD TESTS 

The field tests consisted of two tests made at steady state operation and one at 
unsteady state operation of the packed absorber at the Zoller Gas Plant. The 
results of these tests were used in the development of a model for the unsteady 
state operation of this absorber as described in a subsequent section. There 
follows an abbreviated description of the experimental procedures used and the 
results obtained by McDaniel(4). 

Description of the Field Tests 

Initially, at  time t = 0, the absorber was at steady state operation, and at time 
t  = 0 + ,  the lean oil rate was changed abruptly from its initial steady state value 
of 156.655 Ib . mol/h to 194.7 14 Ib - mol/h. The temperatures recorded are given 
in Table 7-1. The times given in this table are only approximate because it took 
about two minutes to record all of the temperatures. The times do correspond, 
however, to the precise times at which the temperatures of the lean oil, lean gas, 
rich oil, and rich gas were observed. At the instant of the upset, the temperature 
of the lean oil increased immediately from - 1.0 to + 2.5"F. 

Several samples of the inlet gas were taken before and after the field tests. 
Since the upset had no effect on the composition of this stream, the analyses 
were averaged to obtain the results given in Table 7-2. The flow rate and 
compositions of the rich gas were determined by making a simple flash calcula- 
tion on the inlet gas at the temperature in the space below the rich oil drawoff tray 
and at the column pressure. Several samples of the lean oil were also taken during 
the upset. No significant differences in the compositions could be detected, 
hence, the analyses were averaged to obtain the results given in Table 7-2. 

Two samples were taken from both the lean gas and rich oil streams prior 
to the upset. Two more samples were taken from these streams two hours after 
the upset. For the first 30 minutes after the upset, samples were taken every five 
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Table 7-1 Observed temperatures for the unsteady state field test 
(Refs. 3, 4) 

Temperatures ( O F )  at the cumulative time (min) indicated 

0 
Depth of  (initial steady 5 10 20 30 120 
packing, it state) 

0 (lean oil) - 1.0 2.5 2.5 2.5 2.5 2.5 
0 (lean gas) 26.0 26.0 27.0 27.0 27.0 27.0 
2 22.0 24.0 25.0 25.0 25.0 25.0 
6 31.5 33.0 34.0 34.0 34.0 34.0 

21.57 13.0 13.0 14.0 14.0 14.0 14.0 
23 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 
23 (rich oil) 20.0 20.0 21.0 21.0 21.0 21.0 
23 (rich gas): 2.0 2.0 2.0 2.0 2.0 2.0 

t This thermowell was contained in a V-shaped trough. 
f This thermowell was located in the vapor space below the liquid drawoff 

tray. 

Table 7-2 Feed analyses for the 
unsteady state field test (Refs. 
3, 4) 

Lean oil Rich gas 
Co~nponenl (mol "A,) (mol 'K,) 

Co 2 0.0 0.606 
N2 0.0 0.176 
CH, 0.0 86.407 
C2Hh 0.0 6 643 
C3H8 0.0 3.329 

i-c4Hl0 0.0 1.027 
n-C,H,, 0.0 0.788 
1-CSH 12  0.056 0.271 
n -C ,H~ ,  0.075 0.213 
C 6 H ~ 4  0.0788 0.289 

C7H1, 11.396 0.208 
C,H18 39.941 0.043 
C9H20 31.883 0.001 
CIOH22 15.861 0.0002 
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Table 7-3 Lean gas analyses (in mol %) for the unsteady state field 
test (Refs. 3, 4) 

Cumulative time, min 

Component 

co2 

N2 
CH, 
C2H6 
C,H, 

minutes from the two streams. For the next hour, samples were taken every 10 
minutes. A five-minute interval was about the shortest time in which samples 
could be taken manually. The analyses of the lean gas are presented in Table 
7-3. The complete sets of flow rates and product distributions at the initial and 
final steady states were obtained by material balance. In the analysis of the field 
test at unsteady state operation which follows, the transient values of the com- 
ponent flow rates (or compositions) of only one stream were needed. The com- 
positions of the lean gas were used in the modeling of the absorber. 

Use  of the Results of Field Tests in 
the Modeling of  the Packed Absorber at Unsteady State Operation 

Although only two steady state field tests (see Tables 7-4 and 7-5) and one 
unsteady state field test are presented herein, the results of a series of steady 
state field tests on this same absorber were used to determine the number of 
mass transfer sections (Refs. 2, 3) by the following procedure. 

The first step in the proposed modeling procedure for packed absorbers 
consists of a logical extension of the concept of the "height equivalent to a 
theoretical plate" (called HETP) proposed by Peters(S), to columns in the pro- 
cess of separating multicomponent mixtures. For such a column, a number N of 
perfect transfer sections does not necessarily exist such that all calculated and 
observed product distributions may be placed in a one-to-one correspondence. 

For any given N, the objective function 0, was used for any one run and 
the objective function 0, was used over all runs R to give a measure of the 

Table 7-4 Initial steady state of the unsteady state field test (Refs. 3, 4) 

Flow rates, Ib . mol/h 

Product 
Lean oil, Rich gas, Lean gas, Rich oil, distribution, 

Component Lo VN+ I Vl LN [NJoli 

Co2  0.0 14.656 3 1 13.036 1.620 0.1243 
N 2  0.0 4.61737 3.755 0.863 0.229 8 
CH4 0.0 2233.060 2133.470 99.624 0.046 69 
C2H6 0.0 158.750 3 1 1  2.445 46.307 0.41 1 8 
C 3 H ~  0.0 66.127 59 13.560 52.568 3.877 

CC4Hlo 0.0 15.829 34 0.347 15.483 0.4468 x lo2 
"-LH I 0  0.0 10.206 40 0.035 10.172 0.29 1 8 x lo3 
i-C5H12 0.087 32 2.299 97 0.027 2.360 0.863 3 x lo2 
n - C 5 H ~ ,  0.11779 1.41099 0.027 1.502 0.5539 x 102 
C & ~ 4  1.23424 0.867 19 0.071 2.031 0.2876 x lo2 
C,t'16 17.868 07 0.266 89 0.342 17.777 0.5185 x 102 
C&I, 62.569 89 0.024 86 0.682 61.913 0.9O77x1O2 
C9H2, 49.946 69 0.000 23 0.235 49.712 0.21 1 5 x lo3 
C10H22 24.846 36 0.00003 0.047 24.799 0.5234 x lo3 

Total 156.655 3 2508.1 13 2278.059 386.709 

To = - I.O0F, T,+ , = Z.O"F, and column pressure = 722 Ib/in2 abs; A ,,,,, = 4900 Ib, 
and .I, = 612.5 Ib. 

Table 7-5 Final steady state of the unsteady state field test (Refs. 3,4) 

Flow rates, Ib . mol/h 

Product 
Lean oil, Rich gas, Lean gas, Rich oil, distribution, 

Component L,, ",+I 
"1 L N ' ~ i l ~ ~ ,  

co 1 0.0 14.65643 12.810 1.846 0.144 1 

N 2  0.0 4.61741 3.630 0.987 0.271 9 
CH, 0.0 2233.079 21 18.147 114.948 0.05427 
C2Hb 0.0 158.751 6 106.372 52.231 0.4924 
'3"H 0.0 66.128 17 56.721 6.029 

i-C4H ,, 0.0 15.829 48 0.146 15.684 0.107 5 x lo3 
"-C4H 10  0.0 10.206 49 0.012 10.194 0.823 1 x lo3 
I-C,HI2 0.108 53 2.299 99 0.027 2.381 0.8667 x lo2 
n-C5H1 2 0.14641 1.41 1 00 0.027 1.531 0.571 2 x lo2 
C,H~, 1.53409 0.070 2.332 0.335 1 x lo2 0.867 19 

ClH16 22.19035 0.266 89 0.337 22.120 0.655 7 x lo2 
C 8 H l X  77.77081 0.024 86 0.671 77.124 0.1149 x lo3 
C9Hzo 62.080 90 0.000 23 0.231 61.850 0.2674 x lo3 
ClOH22 30.882 63 0.000 03 50.836 0.661 5 x lo3 

Total 194.713 70 2508.135 2251.919 450.929 

T o  = 2.5"F, T,, , = 2.O"F, column pressure = 722 Ib/in2 abs, and the specific heat of the 
packing was taken to be 0.12 Btu/lb or for all T. 



deviations of the calculated values from the experimental product distributions 
for all components: 

where Oi = (b,ldi),,,/(b,ldi),,, and 0 ,  is the value of 0, for run number r. 

Although 0, is a function of not only the number of mass transfer sections 
N but also of the sets of vaporization efficiencies E,, over all stages j, compo- 
nents i, and runs R, the number of variables over which 0, was to be searched 
was reduced by taking N to be equal to the number of perfect mass transfer 
sections required to minimize 0 , .  By perfect mass transfer sections is meant 
that 

~ . . = 1  J L  f o r a l l j a n d i  (7-8) 

and over all runs R. Thus, the calculated values of bidi used in Eq. (7-6) were 
obtained by use of the customary equations for perfect plates. From the plot of 
0, in Fig. 7-4, for the steady state runs of McDaniel et al.0) it is seen that 0, 

Number of mass transfer sections, N 

Figure 7.4 Variation of the functions 0, and 0, with the number of perfect mass transfer sections 
in the absorber. (R. McDaniel, A. A. Bassyoni, and C .  D. Holland, "Use  of the Results of Field Tests 
in the Modeling of Packed Distillation Columns and Packed Absorbers-Ill," Chem. Eng. Sci., vol. 25, 
p. 636 (1970). Courtesy Chemical Engineering Science.) 

Table 7-6 Vaporization efficiencies for the initial and final 
steady states of the unsteady state field test (Refs. 3, 4) 

Ei, initial Ei, final steady 
Component steady state state Eim ;,, geometric mean 

Co2 2.1945 2.2998 2.2465 
N2 0.049 1 0.0501 0.0496 
' 3 4  1.3768 1.4032 1.3899 
C2H4 0.9093 0.9823 0.9451 
C3H8 0.7842 0.8293 0.8064 

i-C4Hlo 0.9 128 0.9263 0.9196 
"-C,HIO 0.95 1 1 0.9665 0.9588 
i-C5H12 0.93 15 0.9734 0.9522 
n-CsH,2 0.9375 0.9504 0.9439 

0.5988 0.63 10 0.6147 

0.4984 0.5244 0.5112 
C 8 H ~ 8  0.6479 0.6753 0.6615 
CgH,o 0.5985 0.6228 0.6105 
C10H22 0.4984 0.5257 0.5119 

PI  1.0791 1.0948 1.0869 
P N  0.0267 0.91 34 0.9200 

passes through a minimum at or near the integral value 

This value, N = 8, was used in the modeling of the unsteady state data. To 
further reduce the objective function O, ,  a set of vaporization efficiencies were 
determined by use of the simple product model 

E l i  = p1 Ei 
- 

E, ,=E,  0 ' = 2 , 3 ,  ..., N - 1 )  (7-10) 

ENi = p, E, 
In this model, a complete set of Ei's (i = 1, 2, . . ., c)  and two ps, 8, and pN,  
were found. The set of component efficiencies $ was determined such that the 
values of lNi/v,, computed by use of the model were in agreement with the 
experimental values. The two values of /Ij (Dl and p,) were selected such that 
the two terminal temperatures TI and T, computed by use of the model were 
equal to the experimentally observed temperatures. The temperatures measured 
within the packing were not very reliable and they are generally unavailable 
and were consequently not used in the modeling of the column. 

A stepwise procedure for determining the component efficiency Ei for each 
component i and plate factors {b, ,  8,) for any steady state run (or for any time 
step of an unsteady state run) is described elsewhere (see for example Refs. 2 
and 4). This procedure was used to determine the two sets of &'s and the two 
sets of 0,'s and P,'s (see Table 7-6) for the two steady state field tests shown in 
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the lower bound of the time step (see Eq. (6-49)). The K data presented in Table 
6.4-1 with vaporization efficiencies given in Table 7-6 and the enthalpies pre- 
sented in Table 6A-2 with the corrections given in Table 6.4-3 were used. 

From the transient solution so obtained, the fractional response of propane 
versus t / U L  (shown in Fig. 7-5) was obtained. From the experimental results 
presented in Tables 7-3, 7-4, and 7-5, the experimental value of the fractional 
response at t = 5 min is seen to  be equal to 0.9209. From Fig. 7-5, the value of 
t / U L  corresponding to a fractional response of 0.9209 is 0.1958. Thus, the next 
predicted value of U L  is given by 

5.0 U L = - -  - 25.536 Ib . mol 
0.1958 

The corresponding value of UF as given by Eq. (7-12) is 0.283 58 Ib.mo1. O n  
the basis of these values of the holdups U L  and U L ,  the following distribution 
of holdups is obtained: 

By use of these holdups, the unsteady state problem was again solved. At 
the end of t = 5 min, a fractional response of 0.9147 was obtained for propane. 
This value was considered to be close enough to the observed value. The results 
of this transient solution for propane are presented in Fig. 7-6. An examination 
of this figure shows good agreement between the predicted and the observed 

p;"""7qr 
0.8 = 5 minutes p-~ 

Figure 7-5 Fractional response of the mole fraction of propane in the lean gas; predicted on the 
basis of UL = 20 Ib . mol 

Figure 7-6 Transient values of the mole fraction of propane in the lean gas, 
of U L  = 25.536 Ih . mol 

predicted on the basis 

mole fractions for propane. Transient values of the temperatures and lean gas 
rates are shown in Table 7-7. These results were obtained by Feng(1). 

Again it has been demonstrated that the models based primarily on infor- 
mation available to the design engineer may be used to predict the dynamic 

Table 7-7 Selected transient values of the variables (Ref. 1) 

Temperature ( R )  at Vapor rate V,  (lb . mol/h) at 
end of time step indicatedt end of time step indicatedt 

Plate 1 20 60 1 20 60 

1 484.66 484.47 485.15 2259.00 2253.18 2252.01 
2 489.99 489.86 491.23 2353.04 2347.88 2345.01 
3 490.56 490.75 492.77 2371.82 2367.66 2363.16 
4 489.64 490.10 492.56 2378.41 2374.64 2369.11 

5 488.01 488.70 491.33 2384.85 2381.16 2375.17 
6 485.83 486.72 489.21 2392.54 2388.64 2382.83 
7 482.81 483.89 485.89 2403.10 2398.84 2394.06 
8 478.1 1 479.18 480.29 2420.39 2416.41 2413.75 

t A lower bound of 0.1 min on the size of the time step was used. The 
cumulative process time corresponding to the time steps listed follows: 

Time step Time 
1 0.10 min 

20 2.01 min 
60 17.97 min 

Also the tolerance vector was chosen as one-thousandth of the initial 
steady state values. 



behavior of a process. Except for the liquid holdup, the values of all other 
parameters appearing in the model were estimated from design information and 
steady state field tests. In order to make the model independent of the field tests 
at unsteady state, a reliable method for the prediction of the liquid holdup in a 
packed column is obviously needed. 

NOTATION 

(See also Chaps. 1-5.) 

H j i ,  hji = enthalpy of component i in the vapor and liquid phases, 
respectively, in the element of packing Azj, Btu/lb. mol 

h f = enthalpy of the packing, Btu/unit mass 
t = time in consistent units (t, denotes the beginning and t , ,  , the 

end of any given time period under consideration; At = t,, , - t , ,  
u ; ,  u; = holdup of component i in the jth element of packing in the liquid 

and vapor phases, respectively, mol 

uji = u; + u;, total molar holdup of component i in the jth element 
of packing 

u:, U r  = total holdup of liquid and vapor, respectively, in the jth element 
of packing, mol 

U ,  = total holdup of component i in element j 
4 ,  = total mass of packing contained in the jth element of packing 

Subscripts 

L = liquid 
V = vapor 
S = packing 
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I CHAPTER 

EIGHT 
MODELING OF A DISTILLATION COLUMN 

AND ITS CONTROL SYSTEM 

Application of Gear's method and the semi-implicit Runge-Kutta method to 
the equations for the equilibrium relationships, component-material balances, 
and energy balances of a distillation column is carried out in the same manner 
as shown in Chap. 6 for absorbers. In this chapter a more exact model for the 
column is used which includes the prediction of the liquid holdup on each plate. 
Thus, in Sec. 8-1 (the formulation of the model for the distillation column) 
major consideration is given to the development of the equations for the dy- 
nainic behavior of the liquid holdup on each plate, and to the development of 
the equations for the control system. 

The equations developed in Sec. 8-1 are solved for a distillation column to 
determine its transient behavior for a specified upset. These results are presented 
in Sec. 8-2. 

8-1 FORMULATION OF THE MODEL FOR A 
DISTILLATION COLUMN BY USE OF GEAR'S METHOD 

A fluid dynamic analysis of the liquid and vapor on each plate is used to 
develop expressions for the holdup of liquid on each plate and in the down- 
comer. Then the equations for the column are formulated by use of Gear's 
algorithm. 
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Dynamic Analysis of a Sieve Tray 

In the analysis of a sieve tray, the change of the holdup with time on both the 
tray and in the downcomer is taken to be negligible over any discrete increment 
of time. Thus, the steady state equations may be regarded as dynamic relation- 
ships which represent the behavior of the column at  any instant. 

In the application of Bernouli's theorem to the liquid as it flows from point 
(1) of plate j to point (2) of plate j + 1 (we Fig. 8-I), let the datum for measur- 
ing all heads be taken as point (2). Then 

where X i  Fi = frictional losses 
g = acceleration of gravity 

y, = Newton's law conversion factor 
P = pressure 
S = tray spacing 

Z L  = distance shown in Fig. 8-1, in inches of vapor-free liquid 
Z ,  = h,  + how, in inches of vapor-free liquid 
nL = mass density of the vapor-free liquid 
pV = mass density of the vapor 

Figure 8-1 Modeling of a distillation column and its control system 
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F In the formulation of Eq. (8-I), the change (Z,,,, - Z,) in the height of liquid 
on stages j and j + 1 was neglected. Also, the kinetic energy effects were taken 
to be negligible. The frictional losses, C, F,, consist of the head lost by the liquid 
in flowing down the downcomer (which is taken to be negligible), the head lost 
by flowing under the downcomer weir, and the head lost in flowing across the 
plate. Thus, 

where h,, = head loss by the liquid in flowing under the downcomer in inches 
of vapor-free liquid 

h, = hydraulic gradient, the head loss by the liquid in flowing across the 
plate in inches of vapor-free liquid 

Equation (8-1) may be solved for Z,, j + ,  to give 

The height of liquid Z j + ,  in the downcomer is found by adding Z,, j + l  to both 
sides of Eq. (8-3) and rearranging to obtain 

Since p:+ is generally negligible, Eq. (8-4) reduces to 

Application of Bernouli's theorem to the vapor as it goes from point (2) to 
point (1) gives 

where the pressure drop across stage j is equal to the dry hole pressure drop, 
h,, j ,  plus the pressure drop of the liquid h,, as it passes up through the liquid 
on stage j. (Both of these head losses are in inches of vapor-free liquid.) If it is 
assumed that p; = p;, and p? = pjL+ for stages j and j + 1, then Eq. (8-6) may 
be restated in the form 



When pr/pF is regarded as negligible, Eq. (8-7) reduces to 

The following formulas may be used for the calculation of the head losses 
h,,, h , ,  h,,,  h,-, and h , .  The head loss h,, ,  corresponding to the pressure drop 
resulting from the flow of liquid under the downcomer, may be calculated by 
use of the conventional formula for submerged weirs 

where h,, = head loss in inches of vapor-free liquid 
Q = flow rate of the liquid under the downcomer weir in gallons per 

minute 
A,, = clearance area between the downcomer and the floor of the tray in 

square inches 

If the tray is equipped with an inlet weir, Leibson et a1.(12) recommend that Eq. 
(8-9) be modified as follows: 

The head equivalent to the dry hole pressure drop, h , ,  may be calculated 
by use of the following equation for thick plate orifices 

where h ,  = dry hole pressure drop of vapor across the perforations in inches of 
vapor-free liquid 

u, = linear velocity of the vapor through the perforatidn in feet per 
second 

Values of the discharge coefficient C, are given by the chart presented in 
Fig. 8-2 which was prepared by Leibson et a1.(12). The linear velocity of the 
vapor through the orifice on plate j may be computed by use of the fol!owing 
formula: 

where A ,  = total area of holes (or perforations) 
= molar density of the liquid 

v j +  = molar flow rate of component i in the vapor entering stage j from 
the stage below, j + 1 

The equivalent height of vapor-free liquid over the weir may be calculated 
*'c- J ,C +LO Eronric weir formula 

( 
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Hole area 
Actfive area = Ah'A" 

Figure 8-2 Discharge coefficients for the flow of vapor through sieve trays. ( I .  Leibson, 
R. W .  Kelly. and L. A .  Bullington, Pet. Refiner, vol. 36(2), p. 127 (1957). by courtesy Hydrocarbon 
Processing.) 

which was proposed by Bolles(1). For a straight segmental weir 

where F, = weir constriction correction factor (see Fig. 8-3) 
h , ,  = equivalent height of vapor-free liquid, in 

I , .  = length of weir, in 
Q = liquid flow rate, gallons per minute 

The pressure drop through the aerated liquid h ,  has been correlated as a 
function of ( h ,  + h,,) and ( h ,  + h,, + th , ) .  Fair (2 )  proposes the following cor- 
relation 

hL = B(h, + h,, + 9,) (8- 14) 
where h, = head loss in inches of vapor-free liquid 

P = aeration factor, dimensionless 

A graph for estimating 6 is given in Fig. 8-4. Also given in Fig. 8-4 is a curve 
for estimating the relative froth density 4 which is defined as follows: 

where h ,  = actual height of the froth, in inches. 
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(;)? 5 - Ilqutd load, gallm~n 
(war  length. ft)" 

Figure 8-3 The correction factor for effective weir length. (W. L. Bolles, Pet. Refiner, vol. 25, p. 613 
(1946), by  courtesy IIydrogen Processing.) 

The following theoretical relationship between 4 and f i  was developed by 
Hutchinson et a1.(10): 

Van Winkle(l6) gives the following formula for computing h,: 

h~ = F A  + how) (8- 17) 

The foam factor F, is computed by use of the following formula: 

F ,  = 1.0 - 0.372 1 9 ~ ~ ( p ~ ) " ~  (8- 18) 

Figure 8-4 Aeration factor and froth density for bubble-cap, sieve, and valve plates, u, = linear 
vapor velocity through the active area, ft/s; p, = vapor density, Ib/ft3. (B.  D. Smith, Design of 
Equilibrium Stage Processes, McGraw-Rill Book Company, New York, 1963, by courtesy McGraw- 
Hill Book Company.) 
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and the linear velocity uj is computed by use of 

where A, = active area of a sieve tray (area between the outlet weir and the 
downcomer, in square feet). 

Hugmark and O'Connell(9) presented the following correlation for calcu- 
lation of the hydraulic gradient for a sieve plate 

where h, = hydraulic gradient in inches of vapor-free liquid 
f =  friction factor (see Fig. 8-5) 

g ,  = Newton's law conversion factor, 32.17 
If = length of flow path across plate, ft 
r ,  = hydraulic radius of the aerated mass, ft (defined below) 

tdf = velocity of the aerated mass in feet per second 

A graph of the friction factor f  as a function of Reynolds number is shown in 
Fig. 8-5.  The Reynolds number used in this correlation is defined as follows: 

r h  ", pL N,, =- 
L'L 

where pL = mass density of the vapor-free liquid, Ib/ft3 
p, = viscosity of the vapor-free liquid, Ib/(ft. s) 

0.5 

0.2 

> 
; 0.1 
2 
6 . - ; 0.05 .- 

L 

0.02 

0.01 
10' 10" 10' 

rhufp~ Reynolds number = - 
11 1. 

Figure 8-5 Friction factor used in the calculation of the hydraulic gradient, h,, for sieve trays with 
crossflow. (B.  D. Smith, Design oJ Equilibrium Stage Processes, McGraw-Hill Book Company, New 
York, 1963, by courtesy McGraw-Hill Book Company.) 
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The hydraulic r, of the aerated mass is defined as follows: 

cross section - 
rh = - h, Df  

wetted perimeter 2h, + 120 ,  

where D, = arithmetic average of the tower diameter and the weir length, ft 
h, = froth height in inches (estimated by the use of Eq. (8-15) and 

Fig. 8-4) 

The velocity ,I, of the aerated mass in feet per second is taken to be the same 
as that of the vapor-free liquid, and it is calculated as follows: 

where q is the liquid flow rate in cubic feet per minute. 

Formulation of the Model for the 
Distillation Column by Use of Gear's Algorithm 

For a distillation column with a total condenser, the model for the column 
exclusive of the controllers is formulated as shown below. The equations consist 
of the component-material balances, the energy balances, the equilibrium re- 
lationships, the pressure drop relationships, and the heights of liquid in the 
downcomers. They are stated for each stage j (j = 1 ,  2. ..., N) in the order 
enumerated. Following a statement of the equations is a discussion of those 
equations introduced for the first time. 

(Note Fixji = 0 for all j except j =f, the feed plate.) 
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i Note: p,,  = Yli 1 yli) 
/ ; = I  
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Equations (8-24) through (8-37) consist of CN(2c + 5) - 11 independent equa- 
tions in CN(2c + 5) + 41 independent variables, namely, 

x = CQc D Li  E1 P i  Ti Z1 Y1.i . .. Y1.,  ~ 1 . 1  ... u i . ,  

( L j  E j  P j  7 j  Z j  uj,  1 ... u j , =  vj. 1 .,. v j . , ) j = 2 . ~  QR Z N +  I]* (8-38) 

where ( ) j = , ,  , means that the arguments are to be repeated for j = 2, 3, . . . N. 
The variables Z ,  and Z , ,  , are the heights of vapor-free liquid in the accumula- 
tor and the base of the column. These variables appear in the expressions (given 
below) for the holdups of the accumulator ol, and the base of the column U , .  
Thus, in order to solve the above equations, five variables must be fixed. 

Equation (8-27) expresses the constraint that the sum of the molar holdups 
{ t i j i )  on each stage must be equal to the total molar holdup. For stage 1, the 
volumetric holdup consists of the liquid in the reflux accumulator and is com- 
puted by use of the formula 

, = lR { [  + i n  

where D, = diameter of the accumulator, ft 
1, = length of the accumulator, ft 

d l  = volumetric holdup in the reflux accumulator, ft3 
Z ,  = height of vapor-free liquid in the accumulator, ft 

For stages j = 2, 3, . . . , N - 1, the volumetric holdup Z ,  is computed by use 2F+v 
of Y : 1 

The holdup of liquid in the bottom of the tower, in the reboiler and In the 
associated lines was approximated as follows: 

where the volume of the reboiler and associated lines is taken to be equal to 
100 cubic feet and where 

Z , ,  , = height of liquid in the bottom of the column, ft (see Fig. 8-6) 
D, = inside diameter of the column, ft 

Also, note that in Eq. (8-32), the mole fraction y l i  has been replaced by its 
equivalent 

y l i /  i =  1 yli 

I I Holdup . . I 

Figure 8-6 Seal pan and bottom of the column 

and furthermore this replacement should be made wherever y l i  appears im- 
plicitly in any equation. 

Equation (8-35) relates the pressure P I  in the reflux accumulator to the 
pressure P ,  on the top plate, and thereby accounts for the pressure drop of the 
vapor in flowing from the top plate through the condenser tubes. This equation 
is a modification of the expression given by Lord et a1.(13) for the pressure drop 
of the condensing vapors on the tube side of a shell and tube exchanger. In the 
use of this equation, it was assumed that for deviations from a reference state, 
the pressure drop varied directly with the vapor density and the square of the 
vapor flow rate. The hydraulic gradient (see Eq. (8-5)) is usually small and was 
neglected in Eq. (8-37) in the modeling of the column. 

Modeling of Controllers and Control Valves 

A typical control system for a distillation column is shown in Fig. 8-7 in which 
the variables to be controlled are P , ,  Z , ,  L , ,  T,, and Z , + ,  where T, is the 
temperature of a preselected plate k which is to be used to regulate the steam 
rate to the reboiler. 

First the fundamental equations for typical controllers and control valves 
are presented and then these are used to model the controllers and control 
valves used for the column shown in Fig. 8-7. 



1 - - - - - - - - - - - - - --I 
Figure 8-7 Control system used in modeling the distillation column 

Equations for Controllers 

A proportional controller is defined as one in which the difference between the 
output and the input of the controller is proportional to the deviation of the 
control variable from the control point, namely, 

where c = input value of the control variable 
e = r - c  

K c  = proportional gain constant 
p = output of the controller 

po = reference output of the controller 
r = reference value of variable, the set point 
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Observe that if at a given set of operating conditions, the system is at steady 
state at the control point c = r, then p = p,. Now if, say, a step change in the 
load occurs, the control variable c will depart from the control point r, giving 
rise to an output p which is unequal to po.  Then at the new steady state r # c 
and P # P O .  

When integral or reset action is added to the controller, the controller has 
the capacity to reset the reference output as required to eventually bring the 
control variable back to the control point. Such a controller is called a 
proportional-integral controller, and its action is described by 

p = K ,  e + -  e d t  + p o  ( fd+ 1 
where T, = integral time constant. 

A third mode of control produces a controller output proportional to the 
rate of change of the measured variable. When this mode of control is com- 
bined with a proportional-integral controller, the combination is called a 
proportional-integral-rate controller which is described by 

where 7, = time constant for the rate mode. This rate mode of control is 
sometimes called derivative action. 

Gallun(3) used proportional-integral controllers in the simulation of a distil- 
lation column. In the formulation of the controllers by Gear's method the 
following equations were used. Let the function I be defined as follows: 

Then 

and 

For each controller, a pair of equations of the form of Eqs. (8-46) and (8-47) are 
used in Gear's algorithm. 

Equations (8-46) and (8-47) constitute two additional equations in three 
variables c, p, and I ,  which are to be solved for each proportional-integral 
controller added to the system. 



Equations for Control Valves 

The output of a controller may be used as the input to another controller or to 
operate a control valve. If the signal is used to drive an  air-operated control 
valve there will be dynamics associated with the response of the valve to 
changes in the controller output. Suppose that the valve position responds to a 
controller output in a first-order manner as follows: 

d6 
7" - + 6 = 0.0625~ - 0.25 (8-48) 

d t 

where p is in milliamperes, t is in seconds, and 6 is the valve position which 
ranges from 6 = 0 to 6 = 1. At steady state 

Thus, for an input p of 4 mA, at steady state 

6 = 0  

and for an input of 20 mA (the maximum output of the controller), 

6 = 1  

Thus, as the input p ranges from 4 to 20 mA, the control valve goes through its 
complete range from 0 to 1. 

Modeling of the Controllers and Control Valves for a Distillation Column 

The control system shown in Fig. 8-7 has as its objective the control of the five 
variables (P,, Z,, L,, T,, and Z , , , )  enumerated previously. Each controller is 
described by two equations of the form of Eqs  (8-46) and (8-47) and each 
control valve is described by an equation of the form of Eq. (8-48). In addition 
to these three equations, an additional relationship is needed for the device used 
to measure the variable to be controlled. 

Consider first the modeling of the control system used to control the pres- 
sure PI. The four new equations associated with the controller of the pressure 
P,  are as follows. For control system 1: 

0 = c, + 12.0 - 0.032P1 

Equation (8-50) describes the sensing device of the accumulator pressure P, 
which produces an output signal of 4 to 20 mA as the pressure P ,  varies from 
500 to 1000 mm of mercury absolute. Equations (8-51) and (8-52) are a re- 
statement of Eqs. (8-46) and (8-47) for the pressure controller. The definition of 
the error used in these equations has been changed, however, to reflect the fact 
that the control valve for the cooling water should open when the column 
pressure exceeds the set point. Equation (8-53) is a restatement of the valve 
position equation (Eq. (8-48)). 

For control of the reflux rate L,  (or the corresponding volumetric rate q,), 
the equations are analogous in form for control system 2 as those shown for the 
pressure controller, namely, 

where 9, is equal to the volumetric flow rate in gallons per minute. Equation 
(8-54) describes the behavior of the primary measuring element and it produces 
an output signal r ,  ranging from 4 to 20 mA as the flow rate of the reflux 
varies from 0 to 800 gal/min. Equations (8-55) and (8-56) describe the controller 
action and Eq. (8-57) describes the control valve behavior. 

Similarly, the equations for the liquid level control system for the accumula- 
tor (control system 3) are as follows: 

Equation (8-58) represents the behavior of the sensing device which gives an 
output signal of 4 to 20 mA as the accumulator level varies from 0 to 10 ft. 
Equations (8-59) and (8-60) describe a proportional-integral controller which 
causes the product (distillate) valve to open as the accumulator level rises above 
the set point. Equation (8-61) relates the overhead product-valve position to the 
controller output. 
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The liquid-level control system for the base of the column (control system 5) 
is described by the following set of equations: 

0 = C, - 20 - 4ZN+1 (8-62) 

Equation (8-62) describes the sensing element which produces an output signal 
of 4 to 20 mA as the liquid level Z,, in the base of the tower is varied from 6 
to 10 ft. Equations (8-63) and (8-54) describe the controller and Eq. (8-65) de- 
scribes the behavior of the control valve. 

The steam flow rate to the reboiler is regulated by a cascade control system 
as indicated in Fig. 8-7. The set point of the steam-flow control system (control 
system 4) is provided by the temperature-control system (control system 6). The 
complete set of equations for the steam-flow control system and the tem- 
perature control system follow: 

dl, 
dt  

Equations (8-66) through (8-69) describe the steam-flow control system. Equa- 
tion (8-66) represents the measuring device for the steam-low rate and it p m  
duces a signal c4 of 4 to 20 mA as the steam-flow rate varies from 0 to 3Mk) 

2- - F  F,auatiOnS (8-67) and (8-68) describe the pro- 
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portional controller which controls the steam rate. Note that the set point p, of 
the proportional controller is an output of the proportional-temperature con- 
troller (Eqs. (8-72) and (8-73)). Equation (8-69) relates the stem position of the 
steam-flow control valve to the output of the steam-flow controller. Equations 
(8-70) and (8-71) describe a temperature measuring device with first-order dyna- 
mics and a transducer which produces an output signal of 4 to 20 mA as the 
measured temperature TM varies from 600 to 640°R. Equations (8-72) and (8-73) 
describe an ideal proportional-integral controller operating on the measured 
temperature TM of plate k. The temperature T, is the actual temperature 7;. for 
the particular plate j = k. The output p6 is fed back to the steam-flow controller 
as its set point. 

Equations (8-50) through (8-73) consist of 24 independent equations in 24 
additional independent variables, namely, 

which now gives a total of CN(2c + 5) + 231 independent equations and 
CN(2c + 5) + 281 independent variables. 

Equations for the description of the heat transfer and fluid flow for the 
condenser, accumulator, the base of the tower, and the reboiler are formulated 
in a manner similar to that shown for evaporators. Gallun(3) used an additional 
21 independent equations and 21 ipdependent variables to describe the heat 
transfer and fluid flow for the condenser-accumulator and the reboiler which 
resulted in a total of CN(2c + 5) + 443 independent variables, a listing of which 
follows: 

The q w ,  Two> Tmc, q l ?  q2, Pdl, q N N 1 ,  , w s ,  E s 3  Tmr, p s ,  P S I >  Pd2 

are associated with the heat transfer and fluid flow of the condenser, accumula- 
tor, the base of the column, and the reboiler. These symbols are defined in the 
Notation, and the corresponding independent equations involving these vari- 
ables are given by Gallun(3). 

When the equations and variables are ordered in this fashion, they give rise 
to a jacobian matrix which has the characteristic of being almost band. 

8-2 SOLUTION OF EXAMPLE 8-1 
BY USE OF GEAR'S METHOD 

This example is one of those used by Gallun(3) to demonstrate the formulation 
of the equations for a distillation column by use of Gear's method(4,5,6). This 
example consists of an extractive distillation of acetone from methanol and ethanol 
with water as the extractive agent. The response of the closed-loov control svstem 
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to a change in the set point temperature on stage 35 from T,, , ,  = 626.2261°R 
at the initial steady state (time t = 0) to T,,., = 631.226'R at time t = 0 + . 

The column contained 48 plates plus a reboiler plus a total condenser for a 
total of 50 stages. A statement of the compositions of the feeds appears in Table 
8-1. The enthalpy of the liquid phase was approximated by use of the assump- 
tion of ideal solution behavior. Virtual values of the partial molar enthalpies 
(see App. 4A-2) were used for the vapor phase. The departure function R for the 
vapor phase was evaluated by use of the first two terms of the virial equation of 
state. The second virial coefficient was approximated as described by Prausnitz 
et a1.(14). The parameters needed in the above calculations were taken from 
page 213 of Ref. (14). The resulting equations are presented by Gallun(3). The 
activity coefficients were calculated by use of the Wilson equation using the 
constants given in Table 8A-1. The fugacity coefficients for the vapor phase 
were computed by use of Eqs. (3-10) through (3-12) of Chap. 3 and pages 143 to 
144 of App. A of Prausnitz et a1.(14). The results are given in Table 8A-1. 

The five variables fixed are the pressure P,, the liquid level in the accumu- 
lator Z,, the flow rate of the reflux L, (or q,),  and the temperature T,, of stage 
35. These values are listed in Table 8-2. 

A listing of the hydraulic parameters and certain initial values are given in 
Table 8-3, and the time constants in Table 8-4. Values of selected variables at 
the initial steady state are shown in Tables 8-5 and 8-6. The response as 
reflected by selected variables is shown in Table 8-7, and a comparison of the 
initial and final temperature profiles appears in Table 8-8. The initial and final 
flow rates of each component in the distillate and bottom products are shown 
in Table 8-9. 

Table 8-1 Compositions and enthalpies of the feeds at the in- 
itial steady state (Ref. 3) 

Component flow rates of feed, Ib - moljmin 

Feed Enthalpy 
stage Methanol Acetone Ethanol Water BtuJmin 

3 0.0 0.0 0.0 5.0 6 118.898 

5 25.0 0.5 5.0 197.5 513 543.30 

2 1 65.0 25.0 5.0 5.0 146 509.60 

Table 8-2 Controller set points at the initial steady 
state (Ref. 3) 

Controller Set point in physical units Set point r , ,  mA 

1 760 mmHg abs 12.32 
2 490.1 35 gal/min 10.005 8 
3 3 R 8.8 
5 8 ft 12.0 
6 626.226I0R 14.490 44 
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Table 8-3 Hydraulic parameters and initial steady state values 
of selected variables (Ref. 3) 

1. Hydraulic parameters 

Variable Value 

A,i 0' = 2, 3, . . . , 49) 141.372 ftz 
A, = 2, 3, . . . , 49) 17.6715 ft2 
Aoj (j = 2, 3) 18 ft2 

0' = 4, 5, . . . ,49) 13 ftZ 
ATj 176.714 ft2 
Ad, 0' = 2, 3, . . . , 49) 0.908 375 ft2 
co j (j = 2, 3) 0.75 ft/s 

0' = 4, 5, . . . , 49) 0.72 ft/s 
Do 0.1875 in 
DR 10 ft 
DT 15 ft 
h w 0' = 2, 3, ..., 49) 1.0 in 
h,, 50 1.25 in 
[Wl 0' = 2, 3, . . . , 49) 130.806 in 
1,. 5 0  149.0 in 
[ R  16.0 ft 
m, 0.093 75 in 

2. Initial steady state values of selected variables 

Variable Value Variable Value 

D 23.248q5, 923.47 

Es 10433.20 T, 626.22 
pd I 135.33 T, 726.17 
' d 2  132.31 T,, 579.44 
ps I 44.89 Two 570.22 
Psz 71.21 w, 1349.84 
Qr 1122967 ( ~ ! ) ~ ~ f  0.002 549 852 
QR 1 360 293 
41 490.14 
Y z  196.01 

Table 8-4 Time constants (Ref. 3) 

Controller Controller Value time 
number, gain, Controller, constant, 
k Kc k T,, , min T,, , min 

1 1.50 3.00 0.15 
2 0.25 0.10 0.15 
3 1.10 0.75 0.15 
4 0.15 0.25 0.20 
5 0.50 1.00 0.15 
6 0.50 0.60 

T, = 0.20 min 



288 STAGED SEPARATION PROBLEMS-SEMI-IMPLICIT RUNGE-KUnA A.r l )  GEAR'S METHODS ' MODELING OF A DISTILLATON COLUMN AND ITS I X)NTROL SYSTEM 289 

Table 8-5 Values of selected variables at the initial steady state (Ref. 3 )  Table 8-7 Transient response of selected variables of 
f, Example 1 (Ref. 3)-Continued 

?.. - 
~, P~ , L~ Z=IU,,. z=l~Jr ,  Z , ,  E J ,  

Stage "R mmHg abs Ib.mol/min Ib .mol /m~n Ib.mol ft Btu x 1, 3 P35, L50 ws , 
Step min "R mmHg Ib . mol/min Ib/min 

Table 8-6 Initial values of the control system variables (Ref. 3 )  
Controller variables 

Controller Controller c,, mA 

1 Accumulator pressure 12.320 
2 Reflux flow rate 10.006 
3 Liquid level in accumulator 8.800 
4 Steam flow rate 7.239 
5 I.iauid level in base of column 12.000 

I , ,  mA 

23.179 
5.534 
6.948 

25.127 
18.857 

- ~ 

6 Temperature, T,,,  , 14.491 7.239 8.687 

Table 8-7 Transient response of selected variables of 
Example 1 (Ref. 3) 

f, T 3 S ?  P 3 5 ,  L50, kls , 
Step min " R mmHg Ib mol/min Ib/min 

0 -  626.23 946.16 285.00 1349.84 

0 0' 626.23 946.16 285.00 1349.84 

9 1.0292 626.88 958.00 285.72 1621.64 

14 2.4230 628.81 993.46 281.91 1905.14 

17 3.7269 630.55 1026.37 264.39 2035.32 

20 5.0307 631.47 1045.26 236.69 2054.8 1 

23 6.3346 631.52 1049.32 21 1.24 2037.56 

26 7.6384 631.03 1044.91 197.89 203 1.34 

29 8.9423 630.48 1039.79 200.75 2056.92 

31 10.0130 630.25 1037.77 210.84 2097.40 

33 11.1695 630.32 1039.75 223.33 2146.41 

35 12.4116 630.70 1044.59 233.24 2188.09 
37 13.6538 631.15 1049.00 236.67 2206.60 
39 14.8960 631.52 1050.57 234.89 2202.03 
41 16.1382 631.76 1048.60 231.23 2180.47 

271.93 1697.85 
27 1.62 1697.41 
271.56 1696.00 
271.75 1694.33 
272.08 1692.57 

(Continued over) 



Table 8-7 Transient response of selected, variables of 
Example 1 (Ref. 3)-Continued 

~- 

1, T35 . P35 ,  LO, nrS . 
Step min "R mmHg Ib . mol/min Ib/min 

108 82.1901 631.23 977.74 272.39 1691.14 

112 83.5321 631.23 977.66 272.50 1690.59 

114 85.0297 631.23 977.62 272.54 1690.23 

116 88.2703 631.22 977.64 272.49 1690.50 

117 90.8869 631.22 977.78 272.40 1691.09 

118 93.5034 631.22 977.88 272.32 1691.66 

119 97.7311 631.22 977.97 272.22 1692.15 

120 101.9587 631.23 977.99 272.18 1692.30 

121 106.9586 631.23 977.99 272.17 1692.26 

122 111.9586 631.23 977.97 272.18 1692.17 

123 116.9586 631.23 977.96 272.18 1692.1 1 

124 121.9586 631.23 977.96 272.18 1692.10 

Table 8-8 Selected values of the 
initial and final 
profiles (Ref. 3) 

Initial temp., 
Stage "R 

1 594.37 
2 598.32 
5 626.84 

10 633.06 

temperature 

Final temp., 
" R 

Table 8-9 Component flow rates in the distillate and bottoms 
for Example 8-1 (Ref. 3) 

- 

Initial Final value, Initial Final value, 
-~ ~ 

component value t = 121.96 min value t = 121.96 min 

Methanol 0.0728 1.1319 65.1772 64.1118 

Acetone 19.1484 25.4802 6.3518 0.0181 

Ethanol 1.6953 5.0002 8.3047 4.9906 
Water 2.3287 4.4632 205.1712 203.0592 
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Figure 8-8 Response of bottom and distillate total flow rates. q,, = flow rate of bottoms and 
q,  = flow rate of distillate in gallons per minute 

The response of the total flow rates of the distillate and bottoms is dis- 
played in Fig. 8-8. The pressure responses in the accumulator and the base of 
the column are given in Fig. 8-9. 

The integration parameters employed in the application of Gear's method 
are listed in Table 8-10. To obtain the transient response over a period of about 
two hours, the execution time required to integrate the 693 equations was about 
170 seconds of execution time. Solutions were obtained on the AMDAHL 470 
V/6 computer using extended FORTRAN H. The performance of the stet, size 
and order control procedure during the solution of Example 8-1 is shown in 
Table 8-1 1. 

Calculational Procedure Used in the Solution of Example 8-1 

When the equations and variables are ordered as shown by Eqs. (8-73) and 
(8-74), a jacobian matrix similar to the one shown in Fig. 6-2 is obtained which 
has the characteristic of being almost band. Because of this structure of the 
jacobian matrix, the Newton-Raphson formulation of the steady state equations 
for a distillation column were referred to by Holland(7) as the Almost Band 
Algorithm. In the case of the dynamic model presented above, the temperature 
controller leads to off-diagonal elements (elements which lie outside of the 
shaded area shown in Fig. 6-2) in the jacobian because = T, = T,, appears in 
the equations for stages j = k, k - 1, k + 1 (Eqs. (8-9), (8-36), (8-37), and the 
cascade controllers of the temperature and the steam rate, see Eqs. (8-66) 
through (8-73)). Such off-diagonal elements may be efficiently handled by use of 
the KubiEek algorithm which is described below. 



Time, min 

Figure 8-9 Responses of the receiver pressure ( P , )  and the base pressure ( P s o )  

Table 8-10 Integration parameters 
for Gear's method for Example 8-1 
(Ref. 3) 

Parameter Value 

Error control parameter 0.0 1 

Minimum permitted step size 0.005 min 

Maximum permitted step size 5 . 0  min 

Initial step size 0.03 min 

Table 8-11 Performance of Gear's algorithm for 
Example 8-1 (Ref. 3) 

Order of Cumulative Cumulative 
Time, Gear's function jacobian 

Step min method evaluations evaluations 

MODELING OF A DISTILLATION COLUMN AND ITS CONTROL SYSTEM 293 

KubiEek Algorithm 

KubiEek(l1) proposed an efficient algorithm for solving matrices which contain 
a relatively small number of elements lying outside the banded region, such as 
the derivatives with respect to the temperature T,, (the controlled temperature) 
of Example 8-1. The submatrices clustered along the principal diagonal are 
treated by gaussian elimination while the nonzero elements lying above and 
below the submatrices are treated by the Kubitkk algorithm. Since the nonzero 
elements lying above the submatrices in the upper triangular portion of the 
matrix offer no difficulty, their treatment by the Kubihk algorithm is optional. 

KubiEek's algorithm is based on Householder's identity (Ref. 8) 

(A + w c z T ) - I  = A - I  - A - ~ w ( c - ~  + z T ~ - l w ) - l z T ~ - l  (8-75) 

where A is an n-by-n matrix, W and Z are n-by-m matrices, and c is an m-by-m 
matrix. Suppose that a solution to the set of equations 

is desired where B is an n-by-n matrix and x and b are conformable column 
vectors. Then let 

B = A  + R = A  +R,I,R; (8-77) 

where R l  and R, are of order n x m and I, is an  identity matrix of order 
m x m. Thus 

(A + R,I,RT)x = b 

Then 

x = [A + RII,Rl]-'b (8-79) 

Application of Householder's identity (Eq. (8-79)) gives 

x = [ A '  - A - ~ R , ( I ; ~  + R ; A - ~ R , ) - ~ R ; A - ~ I ~  

= A-'b - A-'R,(I,' + RTAIRl ) - 'R :  + A 1 b  (8-80) 
Let the vector y and the matrix V be defined as follows: 

Ay = b 

AV = R, 

Then Eq. (8-80) becomes 

x = Y - VCI;~  + ~ ~ v 1 - l ~ ; ~  
Let 

z =(I, + R;V)-'R:~ (8-84) 

Since I;' = I,, it is evident that Eq. (8-83) may be written as follows: 
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The order of calculations is as follows where it is supposed that the LU 
factorization of the matrix A has been obtained, and it is desired to solve the 
matrix equation Bx = b. 

Step 1 Find R by use of the defining equation R = B - A. Form the matrix 
R ,  from the columns of R containing nonzero elements and choose R ,  such 
that R = R , I , R l .  (Alternatively, form the matrix R,  from the rows of R con- 
taining nonzero elements and choose R ,  such that R = RIIm R l  .) 

Step 2 Solve Eq. (8-81) for y. 
Step 3 Solve Eq. (8-82) for V. 
Step 4 Compute RTV and Rz y. 
Step 5 Solve Eq. (8-84) for z. 
Step 6 Solve Eq. (8-85) for x. 

NOTATION 

= active area of a sieve-tray area between the outlet weir and 
the downcomer, ft2 

= cross-sectional area of the downcomer, ft2 
= total area of holes, ft2 
= total cross-sectional area of the column, ft2 
= clearance area between the downcomer and the floor of the 

tray, in2 
= set point of controller k in milliamps 
= total distillate rate, Ib . mol/min 
= diameter of holes, in 
= diameter of reflux accumulator, ft 
= diameter of column, ft 
= control error, departure of the control variable c from its 

reference value r, e = r - c 
= energy of the liquid holdup of stage j, Btu 
= holdup of energy in the steam chest of reboiler 
= dry hole pressure drop, inches of vapor-free liquid 
= pressure drop of the vapor as it passes through the liquid on 

plate j, inches of vapor-free liquid 
= pressure drop experienced by the liquid in flowing down the 

downcomer, inches of vapor-free liquid 
= height of weir, in 
= height of liquid over the weir, inches of vapor-free liquid 
= virtual value of the partial molar enthalpy of component i in the 

liquid on plate j, Btu/lb. mol 

= virtual value of the partial molar enthalpy of component i in the 
vapor on plate j, Btu/lb. mol 

Ik = function used in the description of proportional-integral 
controller 

K j i  = ideal solution K value for component i on plate j 
Kck = proportional gain constant for controller k 
1, = length of the reflux accumulator, ft 
1," = length of weir, in 

L j = total molar flow rate of the liquid leaving stage j, Ib .mol/h 
"4 = thickness of metal of sieve tray, in 
P k  = output of the kth controller, mA 

P j = pressure on stage j, Ib/ft2 abs 
P d , ,  Pd2 = discharge pressure of pumps 1 and 2, respectively 
P,,, Ps2 = suction pressure of pumps 1 and 2, respectively 
41 = volumetric flow rate of reflux, ft3/min 
q2 = volumetric flow rate of the distillate, ft3/min 
q~  = volumetric flow rate of the bottoms, ft3/min 
4 w  = volumetric flow rate of the cooling water, ft3/min 
Qc = condenser duty, Btu/min 
Q R  = reboiler duty, Btu/min 

r, = temperature of stage j, O R  

Tk = temperature of the particular stage j = k in "R 
Tmc = temperature of condenser tubes 
T m ,  = temperature of reboiler tubes 
TM = measured value of the specified temperature 
T, = temperature of saturated steam in the reboiler 
r,, = temperature of saturated steam to the reboiler 
Two = outlet temperature of the cooling water from the condenser 
U j i  = molar holdup of component i on stage j 

uf = linear velocity 

uj = total molar holdup on stage j 
r j"i = activity coefficient for component i and stage j, y; = yj"i 

( P j ,  T, { x j i } )  
7; = activity coefficient for component i and stage j, y; = y; 

( P j ,  ?, { ~ j i } ) .  

uj = total volumetric holdup of stage j 
uji = molar flow rate of component i leaving stage j 
w c = mass flow rate of the condensate leaving the reboiler 
w s = mass flow rate of steam to the reboiler 

Z j = height of liquid in downcomer, inches vapor-free liquid 
Zl = height of liquid in the accumulator, ft 
Z,,  , = height of liquid in the base of column, ft 
Y ,  = mole fraction variable for component i in the vapor above the 

liquid in the accumulator 



Greek letters 

6, = valve position of control valve for the kth controller 

pV, pL = mass density of the vapor and the vapor-free liquid, respectively 

I", I L  = molar density of the vapor and the vapor-free liquid, respectively 

PS = mass density of the saturated steam in the reboiler 

71,  k = time constant for the kth proportional-integral controller 

7,- = time constant for the kth control valve 
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PROBLEMS 

8-1 Use the KubiEek algorithm to solve the equation Bx = b, where 

and the LU factorization of the matrix A is known 

APPENDIX 8A 

Table 8A-1 Equilibrium and enthalpy data, and relationships used in the solution 
of Example 8-1 

1. Liquid enthalpiest 

h, = a,h, T + c, T2 ( T  in '.R), Btu/lb mol 

Component 0, 4 c, 

Methanol -0.3119436 x lo4 -0.4145198 x 10 0.213 1106 x 1 0 '  
Acetone -0.115334 x 10' 0.1770348 x 10' 0.1166435 x 1 0 '  
Ethanol 0.4046348 x 10' -0.241 028 6 x 10' 0.472823 0 x 10-' 
Water -0.878 380 59 x lo4 0.1758450 x 10' 0.365 1369 x 

2. Ideal gas and pure component vapor enthalpies: 

H ,  = u, + h, T + c, T" d, T' + e, T4(T in "R), Btu/lb mol 

Component a, h, c, 

Methanol 0.1 1741 19 x 10' 0.712 1495 x 10 0.5579442 x 
Acetone 0.867332 x 10' 0.473 579 9 x 10 0.145 2860 x 10- ' 
Ethanol 0.106486 x 10' 0.751 599 7 x 10 0.115 1360 x 10- ' 
Water 0.154 587 1 x 10' 0.802 252 6 x 10 -0.474 5722 x lo-'  

dl e, 

Methanol -0.4506170 x lo-" -0.209 1904 x 10-lo 
Acetone -0.1121397 x -0.201 8173 x lo-' 
Ethanol -0.1682096 x 10- ' 0.903 633 3 x 10- '' 
Water 0.6878047 x -0.1439752 x I W 9  

3. Antome constants6 

(P, In mmHg, T In "C) 

Component A, B, x 10-3 
C, x 

Methanol 7.878 63 1.473 11 2.30000 
Acetone 7.024 47 1.16000 

2.240 00 
Ethanol 8.044 94 1.554 30 
Water 

2.226 50 
7.966 8 1 1.668 2 1 2.28000 

(Continued over) 



Table 8A-1 Equilibrium and enthalpy data, and relationships used in the solution 
of Example 8-1-Continued 

4. Molar volume constants$ 

a, = a, + b, T + ci T2 (a, in cm3/g. mol, T in"R) 

Component a, b, C, 

Methyl alcohol 0.645 1094 x 102 -0.109 535 9 0.1195526 x 

Acetone 0.5686523 x 10' 0.468039 x 
0.5094978 x 

Ethanol 0.5370027 x 102 -0.1728176 x 10-I 
0.493 8200 x 

Water 0.228 867 6 x 102 -0.2023121 x 10-I 
0.211 5899 x 

5. Wilson parameters5 

- I<,, , cal/g mol 

1 2 3 4 

Component (methanol) (acetone) (ethanol) 
(water) 

1 
(methanol) 0.0 0.66408 x lo3 0.59844 x 103 0.20530 x 10' 
2 
(acetone) -0.21495 x 103 0.0 0.381 70 x 102 0.43964 x 103 

3 
(ethanol) 0.51 1 39 10' 0.41896 lo3 0.0 0.382 30 x lo3 
4 
(water) 0.482 16 x 103 0.140 549 x 103 0.955 49 x lo3 0.0 

6. Physical constants? 

PC 0, 3 I' 
Component T, K atm cm3/g-mol o W H  Debye q 

Methanol 513.2 78.5 118.0 0.557 0.105 1.66 1.21 

Acetone 508.7 46.6 213.5 0.309 0.187 2.88 
0.00 

Ethanol 516.0 63.0 161.3 0.637 0.152 1.69 
1.10 

Water 647.4 218.3 55.2 0.344 0.010 1.83 
0.00 

T, = critical temperature w, = accentric factor of the homograph of the component 

P, = critical pressure p = dipole moment 

v, = critical volume q = self-interaction parameter 

o = acentric factor 

7. Equilibrium and enthalpy relationships used in the solution of Example 8-17? 

1. Equilibrium relationship 

The form of the equilibrium relationship used herein 

may be restated in the form of Eq. (4) on p. 5 of Prausnitz, et a1.f 

q5; y; P = y; x; JpL  
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Table 8A-1 Equilibrium and enthalpy data, and relationships used in the solution 
of Example 8-I-Continued 

which may be restated in the following form for plate j 

y..q..p.=,!..p~.(p'?L Jl J t  J J z  Je  Jt (3) 
where q5F = f 

P;, = saturation pressure of component i at the temperature of the mixture 
xji = lJ'/XL I 1,; 

Y,, = ",/C:= I uj ,  

When these definitions are substituted into Prausnitz' equation of Chap. 4, Eq. (4) is 
obtained for the calculation of Y , ~ ,  namely, 

where 

The Antoine equation is used to calculate Pfr, and b;L was computed by use of the equations 
given below which were taken from RSTATE of Prausnitz, et al. Although 4p should be 
differentiated with respect to temperature in the Newton-Raphson procedure, it was found that 
this step could be eliminated with the saving of considerable computational effort. 

The following equations were used to compute bp 

4:t = exp If, + w,f*I 
f ,  = -3.502 1358 + T(5.608 5595 + T[-3.076574 + T(0.573 350 15)]} 
fi = -3.769041 8 + T(4.3538729 + T(0.3166137 + T(0.12666184 + T,(-1.1662283 

+ T ( 0 . 1 0 6  657 30 + T(0.121474 36 + T(0.189 27037 + T(0.149 36906 + T(0.024 3648 16 
+ T,( - 0.068 603 5 16 + T,( -0.0 15 172 164 + T(0.0 I2 089 1 14)))))))))))) 

T = TIT,, (6) 
o, = acentric factor; see item 6 above 

q5zL = 4% exp [-a:; P~,/(RT,)] 

where R = 1.987 cal/gm . mol . K. 

The vapor phase fugacity coefTicient q5J, was calculated exactly as described in Chap. 3, in 
Prausnitz et al., and Eqs. (10) through (23) were used directly. 

2. Enthalpy deliations 

The enthalpy H, of pure component i is related to its fugacity f ,  by the well-known thermo- 
dynamic relationship given in Eq. (7). The fugacity can be related to an equation of state 
through Eq. (8). The equation of state used in the Prausnitz monograph is given by Eq. (9) 
where Z has the usual meaning as defined by Eq. (10). 

(Continued over) 
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Table 8A-1 Equilibrium and enthalpy data, and relationships used in the solution 
of Example $1-Continued 

Z = 1 + B/v (9) 

Equations (9) and (10) can be used to integrate Eq. (8) and the result substituted into Eq. (7) 
gives Eq. (1 1). Equation (12) is the result of eliminating v between Eqs. (9) and (10). 

In the calculation of b;,  a mixture virial B is calculated using mixing rules described in 
Chap. 3 of the monograph. If B is substituted into Eqs. (1 1) and (12), the result is the virtual 
value of the partial molar enthalpy, Q. Rigorous application of the Almost Band Algorithm 
requlres that the derivative of Q be calculated with respect to temperature for use in the 
convergence procedure. This was not done in the solution of Example 8-1. 

t Taken from an M.S. thesis by S. E. Gallun, Texas A&M University, 1975. 
f Based on the correlation of Rihani and Doraiswany on pp. 182 through 186 of The 

Proverties o f  Gases and Liquids, by R. C.  Reid and T. K. Sherwood, 2d ed., McGraw-Hill 
Company, New York, 1966. 

S; Taken from M. J. Holmes and J. Van Winkle, "Predictions of Ternary Vapor-Liquid 
Equilibria in Miscible Systems from Binary Data," Ind. Eng. Chem., 62(1):21 (1970). 

7 Taken from J. M. Prausnitz, C. A. Eckert, R. V. Orye, and J. P. O'Connell, Compuler 
Calculations for Multicomponent Vapor-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, N.J. 
(1967). 

tt J. M. Prausnitz, C. A. Eckert, R. V. Orye, and J. P. O'Connell, Computer Calculations for 
Multicomponent Vapor-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, N.J. (1967). 

CHAPTER 

NINE 
DEVELOPMENT OF RUNGE-KUTTA METHODS 

AND MULTISTEP INTEGRATION ALGORITHMS 

Selected integration algorithms introduced throughout this book are developed 
from first principles in this chapter. In Sec. 9-1, the techniques used to develop 
the well-known fourth-order Runge-Kutta algorithms are demonstrated by the 
development of the second-order Runge-Kutta method. A detailed development 
of the semi-implicit Runge-Kutta method is also presented. In Sec. 9-2, a gener- 
al development of the multistep integration formulas is presented. Emphasis is 
placed on the development of Gear's algorithms for differential and algebraic 
equations. 

9-1 RUNGE-KUTTA METHODS 

Although algorithms may be developed directly by use of the Taylor series 
expansion of a function, such algorithms are unacceptable from a practical 
point of view because of the difficulty of computing the partial derivatives. 
Methods giving accuracies equivalent to the Taylor expansions wherein the last 
term retained is the term in h2,  h3, and h4 are known as the Runge-Kutta 
methods. Fortunately, these methods require only the evaluation of the function 
at two, three, or four values of the variable in each interval xn < x 5 x,, , . 

The explicit Runge-Kutta methods are algorithms of the form 

Y n + ,  =yn + d(xn, yn, h) (9-1) 
where 4 has been termed the increment function by Henrici(8). 
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The Explicit Runge-Kutta Method of Order 2 

In the second-order algorithm, the increment function is 

4 = ak,  + bk2 

and a formula is to be found for 

Y"+l = Y" + ak1 + bk2 

where 

and a, b, a, p, are constants to be determined so that Eq. (9-2) will agree with 
the Taylor series expansion of the same order. 

Expansion of y(,(x,+ ,) in a Taylor series through terms of order h3 gives 

h2 h3 ;@ 
Y(x"+ 1 )  = Y(x.) + h Y 7 ~ " )  + Y(~ ' ( x " )  + )? Y"'(x) + O(h4) (9-4) 47 ?& 

For the general case of a differentla1 equation of the form y' = f ( x ,  y), it follows 81 
that *q 

d2y cl f(x ,y)  a f d x  a f d y  
y(2'(x) = = - - - - - + - - = f x + f y f  

dx ax  dx ay dx 
(9-5) 

dx  

and 

Therefore 

h2 
yix, + 1 )  = y(x3 + hf (x., Y") + ( f x  + fY f )" 

h3 
+ , (Ixx + 2 f iY  + f y y  f 2  + I x  f y  + f t  f )" + O(h4) (9-7) 

where the subscript n denotes that all the functions and their derivatives are to 
be evaluated at (x,, y,). 
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The Taylor series expansion? of the multivariable function k2  about ( x n ,  y,) 
gives 

Substitution of this expression into Eq. (9-3) and replacement of k ,  by its defini- 
tion, followed by rearrangement in powers of h gives 

where all derivatives are to be evaluated at  (x,, y,,). Upon comparison of 
Eqs. (9-7) and (9-9), it is seen that in order for the corresponding powers of h 
and h2 to agree it is necessary that 

a + b = l  

1 
bcc = bB = - 

2 

There are many solutions to Eq. (9-lo), one of the simplest being 

1 
a = b = -  a = P = l  

2 

which gives the formula 

where 

t The first few terms of the two variable Taylor series are: 

r2 
f(x + r, Y + s) = f  (x, Y) + rfx(x, Y) + sf(x, y) + - f,,(x, y) 

2 

s2 
+ rsfXy(x, Y) + 7 hy(x. Y )  + OC( I r I + I s l j3I 



The formula for the truncation error of Eq. (9-12) is found by use of 
Eqs. (9-7), (9-9), and (9- 1 1). 

The complexity of the coefficient in this error term is characteristic of all 
Runge-Kutta methods, and this is one of the least desirable features of the 
Runge-Kutta methods. Equation (9-13) does show, however, that the truncation 
error for the second-order Runge-Kutta method is proportional to h3. 

The development of the higher-order Runge-Kutta methods is carried out 
in a manner analogous to that demonstrated for the second-order method. Two 
of the most popular forms are the fourth-order methods. The fourth-order 
method attributed to Runge is given by Eq. (1-45). One of the most widely used 
fourth-order Runge-Kutta methods is the one attributed to Gill(7) which is 
given by Eq. (1-46). 

Unfortunately the explicit Runge-Kutta methods are unstable for systems 
of stiff differential equations, systems having widely different time constants. 

The Semi-Implicit Runge-Kutta Methods 

Systems of linear, ordinary differential equations having widely different time 
constants are characterized by widely different eigenvalues which lead to prob- 
lems of both stability and accuracy as discussed in the section on Stability of 
Numerical Methods in Chap. 1. 

A number of modifications of the Runge-Kutta method and other methods 
have been proposed for the solution of stiff systems. There follows a devel- 
opment of a third-order semi-implicit Runge-Kutta method as originally pro- 
posed by Caillaud and Padmanabhan(2). The formula for this method is as 
follows: 

Y , , + I  = yn + R1 kl + R2k2 + R3k3 (9- 14) 

The formulas for k,  , k,, and k, are. 

kl = - ha1 J(y,)llf(y,) (9- 15) 

k2 = hlI - ha, J(y,)I-'f(y, + b, k,) (9-1 6) 

k, = hCI - ha, J (Y,) ] 'CJ(Y,)~(~,~  kl + b 3 2 k 2 )  
(9-17) 

In the analysis which follows, a single differential equation is to be integrated, 
namely, 

dy dt = f ( ~ )  (9- 18) 

and 

J(y,) = jacobian, which contains the partial derivatives of the 
functions f with respect to each of the variables y. 

DEVELOP 4 OF RUNGE-KUTTA METHODS AND MULTISTEP INTECRAnON METHODS 305 i 
For a single differential equation, the matrices in Eqs. (9-14) through (9-17) 
reduce to scalars, which is implied in the following development by the omis- 
sion of boldface type. The coefficients a , ,  b,, b,, , b,,, R , ,  R , ,  and R, are 
determined by matching Eq. (9-14) with the Taylor series expansion of fix,+,) 
and by the suitable selection of parameters to give a root to the difference 
equation which has the desired characteristics. In the determination of the 
values of the arbitrary constants, the scalar form of Eqs. (9-14) through (9-17) is 
used. 

The first step in the development is the expansion of [l - a ,  hA]-' in a 
power series, where A denotes the single term [A =fy(y,,)] contained by the 
jacobian matrix. 

and 1 a ,  h A I < 1. The expression for k, becomes 

k, = hf + a ,  h2Af + a: h 3 ~ 2 f +  a: h4A3f+ . . .  (9-20) 

The Taylor series expansion off (y, + b, k,) is given by 

For convenience, let the second and third partial derivatives off (y) with respect 
to y and evaluated at y, be denoted by B and C, respectively. Then Eq. (9-21) 
becomes 

Use of Eqs. (9-19), (9-20), and (9-22) permits Eq. (9-16) to be restated in the 
following form : 

b: 3 k, = I f +  (u ,  + b 2 ) h 2 ~ f +  (a: + 2a, b2 )h3~2f .+  - h ~f + . . . (9-23) 
2 

Similarly, use of Eqs. (9-19), (9-20), and (9-23) to reduce the expression given by 
Eq. (9-17) for k ,  yields 

k, = b3 h2Af + h3A2f(2al b, + b, b,,) + . . . (9-24) 
where 

b3 = b3l + b32 

Substitution of the expressions for k,, k,, and k, into Eq. (9-14) yields the 
following expression upon rearrangement: 

Y n +  1 = Y n  + (R1 + Rz)(hf) + CR1 a1 + R2(a1 + b2) + R3 b,I(h2Af) 

+ [R, a: + R2(a: + 2a1 b,) + R3(2al b, + b2 b,,)] 
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The Taylor series expansion of y(t, + h) is given by 
"I 

Since dvldt = f ,  it follows that 

and 

Thus, 

Comparison of the coefficients of (h f ) ,  (h2Af) ,  (h3A2f) ,  and (h3Bf 2 ,  of Eqs  (9-25) 
and (9-27) gives the following equations: 

R ,  + R 2  = 1 (9-28) 

R ,  a ,  + R2(al + 6,) + R ,  b ,  = 4 (9-29) 

R ,  a: + R2(a: + 2al b,) + R,(2al b,  + b2 b3,) = (9-30) 

1~ b2 -' - 
2 2 2 - 6  

To study the characteristic root of Eq. (9-14), the expressions for k , ,  k,, 
and k ,  are evaluated for the linear equation y' = 1.y or f (y,) = Ay,. Observe that 
after f has been replaced by i y ,  and A by R, the definition of k ,  (Eq. (9-15)) 
reduces to 

hRy, 
k ,  = (9-32) 

1 - a ,h / l  

For f(y,) = l,y,, the funct~on f ( y ,  + b2 k , )  in Eq. (9-16) becomes 

f (i.y, + Ab2 k l )  = Lyn + 1b2 k ,  

Thus, the definition of k2 (Eq. (9-16)) reduces to 

~ L Y "  + 

k - 
b 2 ( h 4 2 ~ ,  

- 1 - a ,  hi. ( 1  - a ,  hL)' 

Similarly 

After these expressions have been substituted in Eq. (9-14), the result 
tained may be rearranged to the following form: 

Y" + 1 = P(~A)Y ,  

(9-33) 

(9-34) 

so ob- 

(9-35) 
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where 

Z3 = -a: + a? - a1(R2 b2 + R,  6,) + R ,  b,  b,, 
Let 

X =  R2b2  + R 3 b ,  

Y = R ,  b2 b,2 

Then Eqs. (9-32), (9-24), and (9-23) may be used to obtain 

and thus 

Upon setting 

R b 3 - 1  
2 2 - 4  R 3 = 1  

the following solution is obtained 

a ,  = 0.435 866 6 

(Note, it can be shown that the values of k , ,  k,,  and k,  are independent of the 
choice of R ,  .) 
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In order to make the method A-stable, the constant a ,  was picked such that 
Z 3  = 0. Thus, the numerator of p(hl) becomes of order 2 while the denominator 
is of order 3 in hl. Thus, the procedure becomes strongly A-stable, and it 
requires one jacobian evaluation and two functional evaluations per step. This 
version of the semi-implicit Runge-Kutta method represents a significant im- 
provement over the original version proposed by Rosenbrock(l1). 

Michelsen's Method 

Michelsen(9,lO) proposed a slightly different version of the Caillaud- 
Padmanabhan algorithm in which the following expression was used for k,: 

k3 = [I - ha, J(~,)l-'[b,, k, + b32k2l 

By following the same procedure used by Cailland and Padmanabhan(2), 
Michelsen obtained the following set of parameters when the expression given 
by Eq. (9-43) is used instead of Eq. (9-17) for k,. 

Michelsen's method has been found to be one of the most efticient methods for 
small, medium, and even large dimensional systems of ordinary differential 
equations. It is more efficient than both Rosenbrock's and Caillaud and Padma- 
nabhan's methods. 

9-2 MULTISTEP NUMERICAL-INTEGRATION ALGORITHMS 

A general procedure is presented for the development of the multistep algo- 
rithms such as the Adams-Bashford, Adams-Moulton, and Gear algorithms for 
solving systems of stiff differential and algebraic equations. This development is 

' 
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based on several sources (Refs. 3, 4, 5, 6). Because of the length of the devel- 
opment, one should not conclude that the final result is difficult to apply. Quite 
the contrary. Use of the Nordsieck vector simplifies the method and reduces the 
effort required to make simultaneous changes in step size and order. 

Consider the ordinary differential equation 

The value of the variable x computed by use of the algorithm at time t ,  is 
denoted by x,, and the exact value of x at time t ,  is denoted by x(t,). 

In general any algorithm which gives the exact value of x for an initial- 
value problem having an exact solution given by a kth-degree polynomial is 
called a numerical integration formula of order k. The term "order" as used 
here is not to be confused with the order of the Taylor or Runge-Kutta algo- 
rithms. 

The multistep numerical-integration algorithms may be stated in the follow- 
ing general form: 

or, more compactly, 

Observe that Eq. (9-47) contains 2 p  + 3 parameters, namely, cx,, a , ,  ..., a,, 

p - ,  , Po, /I1, ..., P,. These 2 p  + 3 parameters are to be selected such that if the 
solution x(t) of an initial-value problem is given by a polynomial of degree k ,  
then Eq. (9-47) gives the exact solution 

From the theory of equations, one recalls that the number of parameters re- 
quired to uniquely determine a kth-degree polynomial is equal to k + 1. For 
example, a straight line (a polynomial of degree 1) is determined by two par- 
ameters, and a parabola (a polynomial of degree 2) is determined by three 
parameters. Thus, the number of parameters 2p + 3 must be equal to or greater 
than k + 1. 

The 2p + 3 parameters are picked such that the corrector is exact for all 
polynomial solutions which are equal to or less than degree k in the following 
manner. 

Constraints for the Corrector Parameters 

Let the polynomial solution of the initial-value problem be denoted by 
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The expression for the constraints are found by beginning with a polynomial 
solution of degree zero. 

Case I k = 0 x(t) = a, xl(t) = 0 

Thus 

X.+1 = a0 

and since xl(t) = 0 

f(x.-i,  tn-i) = 0 

Also since x(t) = a,, it follows that 

x , - ~  = a,, 

Substitution of these values in Eq. (9-47) gives 

which reduces to 

Case2 k =  1 x ( t ) = a o + a l t  x 1 ( t ) = a 1  

Let t ,  = 0,  t,,, = h, t,- = -h, t , _ ,  = -2h, t,-i = -ih. 

Then 

~ , + ~ = a ~ + a , h  x ,=ao  ~ , - ~ = a ~ - a ~ h  

~ , - ~ = a , - a , ( i h )  f ( ~ , - ~ , t , - i ) = a ,  

Substitution of these results into Eq. (9-47) gives 

and 

Comparison of the coefficients of a, and a ,  h yields the relationship giving 
Eq. (9-49) and 

Substitution of these results into Eq. (9-47) yields 

Comparison of the coefficients of a,, a,h, and a2h2 yields the relationships 
given by Eqs. (9-49), (9-50), and 

P P x (-i)'a, + 2 1 (-i)Pi = 1 
i =  - 1 

(9-5 1 )  
i= 1 

For k = 3, the relationships given by Eqs. (9-49), (9-50), (9-51), and 

are obtained. Continuation of this process shows that the constraints on the 
parameters which are necessary for the corrector (Eq. (9-47)) to give the exact 
value of x when the solution to the initial-value problem is given by a poly- 
nomial of degree k are as follows: 

A number of multistep algorithms may be obtained by making suitable 
choices of the parameters {ai} and {Bi) .  For example, the kth-order Adams- 
Bashforth algorithm is an explicit multistep algorithm obtained by setting 



in Eq. (9-47). Similarly, the kth-order Adams-Moulton algorithm is an implicit 
algorithm obtained by setting 

The remaining parameters are then determined by use of Eq. (9-53) in the same 
manner as demonstrated below for Gear's third-order algorithm. 

Gear's Corrector Algorithm (Refs. 5, 6) 

Gear's kth-order corrector algorithm is an implicit algorithm which is obtained 
by setting 

,=/(-I p - P  - f l  -.... 0 -  1 -  2 -  P k - l = O  

Thus, Gear's corrector is given by 

where the notation r,(k) and 0- ,(k) is used to emphasize the fact that the values 
of the a,'s and p - ,  depend upon the order k of the method. The k + 1 par- 

.... ameters a,, r,, a2, a ,,, h - ,  are to be determined such that Eq. (9-52) gives 

an exact solution for all initial-value problems which have exact solutions given 
by polynomials of degree k. 

For the case of Gear's kth-order algorithm, Eq. (9-53) consists of k + 1 ...... 

independent equations which may be represented as follows: 

Thus, for 
. . .  

j = O :  a,+r, + + 
@-k- 1 =I 

. . .  j = 1: -a, - 2a2 - 3a3 + + [ -(k - l)]ak-, + p-l = 1 

j = 2: a, + 4crz + 9a3 + .. .  + [-(k - 1) ]2~k -1  + 2p-, = t 

j = 3: -a, - 812,- 2 7 a 3 + . . . + [ - ( k - 1 ) ] 3 a k - 1 + 3 p - 1 = t  
. . .  . . .  . . .  

j = k :  (-l)'n, + (-2lka, +(-3)ka,+...+ [ - (k-  t)Ikak-I +kP-,  = 1 
(9-56) 

In matrix notation, these equations have the following representation: 

. . .  

. . .  
1 1  1 1 
0 - 1  -2  -3 [-(k - 1)] 1 

(9-57) ... . . 

Gear's Third-Order Corrector Algorithm, k = 3 

In this case Eq. (9-57) becomes 

The solution is 

Thus, the Gear third-order implicit corrector is given by 

The parameters for the Gear correctors for orders k = 1 through k = 6 are 
given in Table 9-1. 

Table 9-1 Parameters for Gear's Corrector 

Order (k) a, a ,  
2 2  m3 34 3 5  

. . . . . . . .  . . . . . . . .  
b-1 

1 1 . - - . .  
1 



Gear's Predictors 

Gear's kth-order predictor is an explicit algorithm which is obtained by setting 

p = k - 1  p-  I -  - P  1 -  - p  2 -  - . . . = b k - l = O  (9-59) 

Thus 

x,+ 1 = B0(k)x, + B1(k)x,- + B2(k)x,_ 
+ . - ' 

+ Bk - l (k)x,  - k +  + hbo(k) f (x., t,) (9-60) 

In this case the constraints are given by 
k - 1  

C c r i = = l  
i = O  

k - 1  

1 (- i)Bi + Po = 1 0' = 2, 3, . . . , k - 1 )  (9-61) 
i =  1 

k - 1  

C ( - i)jiii = 1 
i = l  

where the overbars on the parameters are used to distinguish them from those 
of Gear's kth-order corrector. Thus, for 

- ...  + 
j = O :  c C o + B l +  U k -  1 = 1 

j =  1 :  - E l  - 2 - 3&, + - + [-(k- I ) ]  B k l  +bo= 1 

and restatement of these equations in matrix notation gives 

1 1 1 . . .  1 

0 - 1  -2  -3 . . .  

0 1 4 
0 - 1  -8  -27 . . .  

0 ( - 1  ( - 2  

Gear's Third-Order Predictor 

For this case, Eq. (9-63) reduces to 
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The solution is found to be 

and thus Gear's 3rd-order explicit predictor is 

3 1 
X n + l  = - - X ,  2 +3x,-1 - j ~ " - ~  + 3hf(x,,  t,) (9-66) 

The parameters for the Gear predictors for orders k = 1 through k = 6 are 
given in Table 9-2. 

Gear's Method 

Gear has proposed that the predictors and correctors be combined as demon- 
strated below. The symbol %,+, is used to distinguish the values of x computed 
at time t,+ , by the predictor from those computed by the corrector, that is, 

= crox, + a i , ~ , ,  + ...  + a k _ l ~ , - k + l  + h&x: (9-68) 
When the second expression is subtracted from the first, the result so obtained 
may be rearranged to the form 

X ~ + ~ = - ~ ~ + I + P - I C ~ ~ ~ + ~ - ( Y O ~ ~ + . - . + Y ~ - I ~ ~ - ~ + I + ~ O ~ ~ : ) I  (9-69) 

Y i = ( i i  - EJID - 1 (9-70) 

do = liolP- 1 (9-7 1 )  
Let the quantity 2:. be defined as follows: 

Table 9-2 Parameters for Gear's Predictor 

Order ( k )  6 ,  a2 
1 3  a4 6 A 

1 1 . . .  . . . . . . . . . . . . . . . 1 
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Then Eq. (9-69) may be rewritten in the form 

x n + l  = %.+I + B-l(hxb+,  -h%b+l )  

Let the quantity b  be defined such that 

X " + 1  = k + l  + B-lh  

hxb+, = hRh+, + b  

That is, the quantity b  is to be determined such that G(b) = 0, where 

G ( b ) = h f ( % , + ,  + B - l b ,  t , + , ) - ( h % b + ,  + b )  

Statement of the Corrector and Predictor in Matrix Form 

In the control of step size and order of the predictor-corrector pair, it is con- 
venient to state the corrector and predictor in matrix form. T o  do this, let the 
following vectors and matrices be defined. 

. . .  X,-k]T X n + , = C ~ , + l  hxb+1 X" X . - 1  

On the basis of the above definitions of the predictor x,,+ ,, the corrector Xn+ ,, 
the matrix B and vector C, it is easily verified as shown below that the predic- 
tor and the corrector may be stated as follows: 

That the predictor and corrector may be recovered by carrying out the matrix 
operations implied by Eqs. (9-81) and (9-82) is demonstrated for the special case 
of the third-order equations: 

Po 5 ,  ( ~ o x n + ~ o h ~ ~ + ~ l ~ , - l  + 5 2 ~ , - 2 )  
o x .  + bohx:, + Y l X n - 1  + ~ Z x " - 2 )  

BX, = X" 
xn- 1 
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From Eqs. (9-68) and (9-72), the first two elements are seen to be %,+, and 
hR: + ,. Thus 

BX, ,= l : , ,+ l  h l : + l  x ,  X , - , ] ~ = R , , + ~  

Then 

Thus, it follows from Eqs. (9-74) and (9-75) that 

The Nordsieck Vector 

The simultaneous change of the size of the time step and the order is easily 
effected through the usc of the Nordsieck vector Z. For an algorithm of order k 

The matrix 'I' required to transform X,, into Z,, 

is found as demonstrated below for the case where k = 3. For the third-order 
algorithm, the two vectors are 

For a differential equation whose solution is a third-order polynomial, the 
following set of equations apply: 
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Also 

Thus 

For t ,  = 0, t , _ ,  = -h, f n - 2  = -2h 

X, = a ,  

x; = a ,  

xi2) = 2a 2 

xi3) = 6a,  

Similarly 

Thus 

Since x, and hxk appear in both vectors X, and Z , ,  the following two ad- 
ditional equations are needed, namely, 

X, = X ,  (9-87) 

hxk = hxk (9-88) 

When Eqs. (9-85) through (9-88) are stated in matrix form, one obtains 

which is recognized as T ' Z ,  = X, for k = 3. Since T X ,  = Z , ,  the matrix T  is 
found by obtaining the inverse of the coefficient matrix of Eq. (9-89). The result, 
T X ,  = Z , ,  is 
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Thus, the predicted value 2, of Z ,  is related to the predicted value of 2, of X, 

5 as follows: 

Thus 

= D Z , - ~  
where 

D  = TBT-'  
Since 

z, = T X ,  = TCX, + b c ]  
it follows that 

Z ,  = Z, + bL 
where 

The matrix D is the Pascal triangle, that is, for k = 3 

The nonzero element d,,,, j + ,  in the j + 1st column and the i + 1st row of the 
Pascal triangle matrix is given by 

j! 
-- di+ I ,  j +  1 - ( k +  l ) > j > i > O  
(j - i ) !  i !  

Also, for k = 3, 

The vector L for k = 1 through k = 6  is presented in Table 9-3. 

Calculational Procedure for a Fixed Step Size and Order 

1. Use the original differential equation 

x' = f ( x ,  t )  

and the initial conditions to estimate the elements of Z ,  for order k and step 
size h  

2. Use the Pascal triangle matrix D  and Z, to compute Z ,  as follows: 
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Table 9-3 Elements of the vector L and values of 
p _ ,  for Gear's algorithm of order k t  

Elements Order: k =  1.2, ..., 6 

of L 1 2 3 4 5  6 

2 6 24 120 720 
1 - - - - -  

10 3 11 50 274 1764 

t Note, B _ ,  corresponds to I, : I  
For the nth time step the relationship is 

Z,, = DZ, _, 
3. Use those elements of Z,, which arc needed In the determination of the b that 

makes G(x,, t,) = 0,  where 

G(?, + b ,h, t,) = h f ( i ,  + /L,b, t") - h(2; + h) 

where 

x ,  = i,, + b- ,b  

hx; = hi:  + h  

4. Compute the value of Z, at time t ,  as follows: .- 

where the vector L for order k = 1 through k  = 6 IS given in Table 9-3, and 
return to step 2. 

A considerable saving In computational effort on large problems may be 
achieved by carrying out the matrix multiplication implied in step 2 by suc- 
cessive additions as suggested by Gear(6). 

Simultaneous Differential and Algebraic Equations 

Consider the case where a set of algebraic equations are to be solved simul- 
taneously with a set of differential equations. The corrector 

X m + ,  = uoxn + Ulxn-I + ... + N k X n - k  

+ ~ k + l x " - o + l ,  + hP-, f(x ,+, ,  um.1, t".,) (9-98) 

may be used to solve the algebraic equation 

0 = g ( x n + ~ ,  U n + l ,  tn+l) (9-99) 

First the constraints which the parameters of the algorithm must satisfy 
when the exact solution to Eq. (9-99) is a polynomial of the kth degree, say, 

u(t) = a. + a,t + a ,  t2 + . . . + a ,  tk (9-100) 

are determined. 
Let the approximation of u(t) obtained by passing a curve through a 

number of points of previous time steps be denoted by u,+, = u(t,+,). Then 

The constraints on the parameters ( 1 1 ~ )  are found in the same manner shown for 
Gear's correctors and predictors. 

Case1 k = O  u ( t ) = a ,  u , + , = a ,  u ,_ ,=a ,  

Substitution in Eq. (9-101) gives 

and thus 

Case2 k =  1 u( t )=a,+a, t  

Let 



Thus, Eq. (9-101) becomes 

Comparison of the coefficients a, and a , h  yields the relationship given by Eq. 
(9-103) and 

For k = 2, one obtains the relationships given by Eqs. (9-103), (9-104), and 

The power to which (-i) is raised in the last expression of each set is seen to be 
equal to the degree of the polynomial. Then for a kth-degree polynomial, the 
last expression of the set is given by 

P 

1 qi(- ilk = 1 
i = l  

In order for Eq. (9-102) to be exact when the solution to g(x,+,, u , + ~ ,  
t ,+ ,) = 0 is given by a kth-degree polynomial, it is necessary that 

p 2 k  (9- 106) 

in Eq. (9-102). For p  = k  there are k + 1 parameters ('lo, qI,  q 2 ,  . . . , qk), and the 
above analysis gives k + 1 equations of constraint which the parameters must 
satisfy, namely, 

k 

c ~ i = '  
i = O  

( j= 1 , 2 , 3  , . . . ,  k) (9-107) 
k 

1 (-i)jVi = I ,  
i =  1 

and the elements of the matrix for determining the qik) are shown in the matrix 
equation below : 

1 1  1 1 . . .  

4 

For the case where k = 3, the following results are obtained by solving Eq. 
(9-108) for k = 3 

q o = 4  q 1 = - 6  q 2 = 4  q 3 = - 1  (9- 109) 

Let the vectors w,+ , and W,+, be defined as follows: 

W n + l  = [U,+I, Un, Un-l, -.., u m - k + l l T  (9-1 10) - 
W n + l  = LCn+(, un, u.-1, ..., u.-k+1IT (9-1 11) 

Then wn+,  and W, are related by the following transformation: 

w,,+~ = EW, (9- 1 12) 

where 

E = I 
' lo 'l1 ' l2  " '  ' l k - 1  'lk 
1 0 0 ... 0 0 
0 1 0 . . .  0 0 

............................... 
0 0 0 ... 1 0  

That Eq. (9-112) is correct is readily demonstrated by carrying out the matrix 
multiplication for k  = 3 

[ T  
:][ 1- [('lo:; + . . '  + v 3 u n - 3 ]  

EW, = - 
0 0 u"-2 U n - 1  

0 0 1 0 U" - 2 

- - IGn+l, ~ n ,  u"-1, ~ ( " - 2 1 ~  = 

Lct d be selected such that 

U, = iin +Bid 
Next observe that 

w , = W , + d ~  

where 

Verification of Eq. (9-1 17) follows: 
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Statement of the Vector W, in Terms of the Nordsieck Vector Yn 

For the case where k = 3, the transformation Q required to transform W, into 

Y" 
Y" = QW, 

is found as follows. Let 

u(t) = a ,  + a ,  t + a ,  t 2  + a3 t3  

Then 

ul(t) = a ,  + 2a2 t + 3a3 t2  

u")(t) = 2a, + 6a3 t 

d 3 ) ( t )  = 6a ,  

~t t = t,, = 0, 1"-  = - h, t n - 2  = - 2h, t n - 3  = - 3h, the following results are 
obtained in the same manner as demonstrated previously 

U ,  = a ,  

uk = a ,  

u',Z' = 2a, 

U P )  = 6a3 

u n - ,  = a( -h)  = u,, - (hu;) + 

and 

Thus, the matrix equation Q-'Y, = Wn has the following representatlon: 

(9-121) 
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where the matrix Q required to transform W, into Y, is the inverse of the 
matrix appearing in Eq. (9-121), that is, 

Also, 

v, = QW, = QEW,-, = QEQ-'Y,-,  

and thus 
- 
Y, = DY,-, 

where D is the Pascal triangle 

and 

In order to reduce the number of matrices to be stored, advantage may be 
taken of the fact that 

Q F  = TC (9- 126) 

For example for the third-order Gear method 8-, = 611 1 and 

Also, 

The relationships given by Eqs. (9-126) through (9-128) permit Y, to be stated 
in terms of Y , ,  L, and the scalar d. For 
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The order in which the equations are applied is as follows: 

P. = DY,- 

Y, = 8, + d L  

where d  is selected such that 

dfi. + dP1, t.) = 0 

Thus, the algorithms for algebraic equations are seen to be of the 
those for differential equations. 

Calculational Procedure for the Simultaneous Solution of 
a Differential and an Algebraic Equation 
for a Fixed Step Size and Order 

1. Use the original differential equation 

x' = f ( x ,  x', u, u', t )  

and the algebraic equation 

'S METHODS 

(9-1 

(9- 1 

same forn 

g(x, u, t )  = 0 

and the initial conditions to estimate the elements of Z, and Y, for order k 
and step size h 

h2 
Z, = x, ,  hxb, - xb2', .. . , [ 2! 

p* 
s", ,, k !  , 

2. Use the Pascal triangle matrix D, Z,, and Yo to compute ZI  and PI . For 
the nth trial 

Z l  = DZ, 

%', = DY, 

3. Use those elements of Z, and 8, which are needed in the determination of b 
and d  which satisfies the following functions simultaneously: 

G ( P , , x : , , ~ , , t , ) = h f ( i , + ~ - ~ b , h x ~ + b , f i , + ~ - ~ d , t , ) - ( h ~ : , + b )  

9(?", U"l t ,)  = g(% + P I h ,  fin + P I d ,  t") 

4. After the set (b, d)  has been found that makes G = g = 0, compute Z, and Y. 
at time t ,  as follows: 

Z, = Z, + b L  

and 

Y, = P, + d L  
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PROBLEMS 

9-1 Develop the formulas given by Eq. (9-61) for the constraints on the {a,} and {PC} .  
9-2 If T-'  is given by the coeficient matrix of Eq. (9-89), show that T is given by the coefficient 
matrix of Eq. (9-90). 

9-3 Obtain the numerical values of the elements of B for a third-order Gear method; see the 
expression for B which is given below Eq. (9-82). 

9-4 Use the numerical values of the elements of T, T-', and B from Probs. 9-2 and 9-3 to show 
that 

9-5 Obtain the values given for q,, q, , 7,. and 7, by Eq. (9-109) 

9-6 Use the values of q's found in Prob. 9-5 and the values of Q, Q-' ,  and E given by Eqs. (9-122) 
through (9-125) to show that 
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CHAPTER 

TEN 

DEVELOPMENT OF NUMERICAL METHODS 
APPLICABLE TO DIFFERENTIAL AND 
PARTIAL DIFFERENTIAL EQUATIONS 

In this chapter abbreviated developments are presented for some of the numeri- 
cal techniques used to solve differential and partial differential equations en- 
countered in Chaps. 11,  12, and 13. The method of orthogonal collocation is 
developed in Sec. 10-1, finite difference methods in Sec. 10-2, and the method of 
characteristics in Sec. 10.3. 

1 10-1 THE ORTHOGONAL COLLOCATION METHOD 

The application of the method of orthogonal collocation to the solution of 
differential equations involves the use of the following concepts: (1) orthogonal 
polynomials, (2) evaluation of definite integrals by use of gaussian quadratures, 
and (3) the Method of Weighted Residuals and Orthogonal Collocation. The 
use of orthogonal collocation in the solution of partial differential equations is 
demonstrated in Chap. 12. 

Since each of these three concepts is involved in the orthogonal collocation 
method for the solution of differential equations, a brief treatment of each of 
these topics is given before attempting to show how the combination of these 
concepts is used to solve differential equations. 

--. 
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Orthogonal Polynomials 

Two functions g,(x) and g,,,(x) selected from a family of functions {gk(x)) are 
said to be orthogonal with respect to a positive weighting function W(x)  over 
the closed interval [a, b] if 

j: ~(x)g.(x)g",(x) dx = 0 (n Z m) 

and 

1'w(x)cg.(x)l' dx > 0 (n = m) 

If the above relationships hold for all n, then the functions {gk(x)) constitute 
a set of orthogonal functions. 

Examples of sets of orthogonal polynomials are the Legendre, Laguerre, 
Chebyshev, and Hermite polynomials. 

Legendre Polynomials .. 1 
The Legendre polynomials Lk(x) are orthogonal on the closed interval [ I ,  I ]  s: 

with respect to the weighting functlon W ( x )  = 1, that is, 

The first three polynomials are 

and the general recursion relation is I 

Laguerre Polynomials 

The Laguerre polynomials Y k ( x )  are orthogonal on the closed interval [0, m ]  
with respect to the weighting function W ( x )  = e-", that is, 

c e - x Y n ( x ) Y m ( x )  dx = 0 (n # m) 

(10-5) 

~ o m e - x [ ~ , , ( x ) ~ 2  dx > 0 (n  = rn) 
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The first three Laguerre polynomials are as follows: 

and the general recursion formula is given by 

Chebyshev Polynomials 

The Chebyshev polynomials T,(x) are orthogonal on the closed interval [- 1, 11 
with respect to the weighting function 

that is 

The first three polynomials are 

To(x) = 1 

T1(x) = x (10-9) 

T2(x) = 2x2 - 1 
and 

T , ( x ) = 2 ~ T , - ~ ( x ) - T , - ~ ( x )  ( n 2 2 )  (10-10) 

Herrnite Polynomials 

The Hermite polynomials are orthogonal on the closed interval [- co, co] with 
respect to the weighting function W ( x )  = e-"', that is, 

J>-xzH,,(x)Hm(x) dx = o (n # m) 

(10-1 1 )  

J:m 

e-"'[H,(x)12 dx > 0 (n = m) 

The first three functions are 
Ho(x) = 1 

H,(x) = 2x 

H2(x) = 4x2 - 2 



and the general recursion formula is 

H,(x) = 2xH,- ,(x) - 2(n - l )H,,(x) (n >_ 2) (10-12) 

Jacobi Polynomials 

The Jacobi orthogonal polynomials PIP @)(x) employed herein are defined on the 
closed interval [O, 11 with respect to the weighting function VJ(x) = xa(l - x)" 
where a > - 1 and f l  > - 1, that is, 

[ ( I -  xpx~Py~)~x)P:,p)(x) dx = 0 (n + rn) 
and (10-13) 

[ ( I -  . x ~ x ~ [ ~ ~ ~ p ) ( . x ) ~ ~  dx > 0 (n = rn) 

For each choice of the pair of parameters (a, p) of the weighting function, a 
corresponding set of orthogonal polynomials denoted by P',".B'(x) is obtained. 
Expressions for the polynomials are readily obtained by use of Rodriques' for- 
mula (Ref. 8) 

where T(n) is the gamma function and for integers T(n + 1) = n r(n) = n! For 
example, the first four polyno~nials corresponding to a = f l  = 0 (the weighting 
function W(x) = (1 - x)OxO = I )  are found by use of Eq. (10-14) as follows: 

and 

The set of polynomials defined by Eq. (10-13) are commonly referred to in 
the literature as "shifted" Jacobi polynomials and the polynomials defined with 
respect to the weighting function (1 - x)"x@ on the closed interval [- 1, 11 are 
called the Jacobi polynomials. In this treatment, the "shifted" Jacobi poly- 
nomials are referred to herein as simply Jacobi polynomials. 
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As pointed out by Stroud and Secrest(l6), the sequence of polynomials 
(L,(x)), {2,(x)), {T,(x)), {P,,(x)} which satisfy the respective orthogonal relation- 
ships given by Eqs. (10-2), (10-5), (10-8), (10-ll), and (10-13) are unique. Each 
nth-degree polynomial has real coefficients and n distinct real roots interior to 
the respective interval of integration (Ref. 16). These and other properties as 
well as the zeros of these polynomials are given by Stroud and Secrest(l6). 

One of the most important characteristics of orthogonal polynomials is the 
fact that any arbitrary nth-degree polynomial with real coefficients 

may be represented by a linear combination of any one of the above families of 
orthogonal polynomials as follows: 

where Fi(x) is the ith-degree polynomials of any one of the above families. 

Example 10-1 Expand the polynomial 

in terms of the Jacobi polynomials PbO. ''(x), Pi0. "(x), P',O. O)(x), PY. Ofx). 

SOI.UTION The first three Jacobi functions are listed below Eq. (10-14). Sub- 
stitution of the Jacobi polynomials into Eq. (10-16) gives 

Comparison of coefficients of these two polynomials gives: 

Coefficients of x3 : 

- 20b3 = 20 b, = - 1 

Coefficients of x2: 

Coefficients of x: 

261 - 66, - 12b3 = - 18 b, = 16 
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and 

23 
bo - b, + b, + b, = 1 bo = - 3 

Thus the series expansion in terms of the Jacobi polynomials is 

23 3 1 
h ( x )  = 7 PbO, "(x) + l6pi0* O)(x) + - 3 P\O. "(x) - Pio. "(x) 

Gaussian Quadrature 

The numerical approximation of a definite integral may be represented by the 
following expression which is commonly known as a quadrature 

where the w;s are the n + 1 positive weights given to the n + 1 functional 
values f(xi). If xi and wi are not fixed, it follows that there are 2n + 2 par- 
ameters which could be used to define a polynomial of degree 2n + 1. (Note: 
the number of parameters required to define a polynomial is equal to one plus 
the degree of the polynomial, for example, f(x) = mx + h is of degree one and is 
defined by fixing rn and b.) It is shown below that if f(x) is a polynomial of 
degree 2n + 1, then the relation given by Eq. (10-17) becomes exact when the 
n + 1 points {xi} at which the function f(x) and the weights are to be evaluated 
(hereafter called the collocation points) are taken to be the roots of an associ- 
ated orthogonal polynomial of degree n + 1. It should also be noted that all the 
roots of any polynomial of a set of orthogonal polynomials are single and real. 

A more general form of Eq. (10-17) includes the weighting function W(x)  

For each choice of the weighting function W(x), a different set of weights {wi) 
in the quadrature is obtained. When the weighting function W(x) takes on the 
values appearing in the above defining equations, the corresponding expressions 
obtained for computing the weights (w,} of the quadrature are called the 
Gauss-Legendre, Gauss-Laguerre, Gauss-Chebyshev, Gauss-Hermite, and 
Gauss-Jacobi quadratures. 

Since all of these quadratures may be developed in the same general 
manner, only the development for the Gauss-Jacobi quadrature is given. The 
development presented follows closely the one presented by Carnahan et a1.(2) 
for the Gauss-Legendre quadrature. 

In the development of this procedure, one may begin with the lagrangian 
form of the interpolating polynomial for the function f (x), namely, 

f (x) = 4 " ( ~ )  + 9.w (10-19) 

F where B,,(x) is an interpolating polynomial of degree n and L,,(x) is the remain- 
! der. These functions are defined as follows: 

j t i  

where (xi) (or (xi)) is an arbitrarily selected set of base points, which are also 
sometimes called nodes. For convenience, let 

and 

f '" + "(8 
q,(x) = --- 

(n + I)! 
Then the remainder may be restated as follows: 

Developments of the lagrangian polynomials p,+ ,(x) are given in standard texts 
on numerical methods. (See, for example, Refs. 2, 4, 10.) 

Gauss-Jacobi Quadrature 

The development of the Gauss-Jacobi quadrature is initiated by multiplying 
each member of Eq. (10-19) by the weighting function W(x) and integrating over 
the closed interval [a, b] to give 

[w(x)/(*) d* = [W(X)B.(X) dx + [w(x)B.(~) dx (10-26) 

The objective of the following development is to find the formula for wi and the 
set of {xi} which gives the following equality: 

[w(X)f(X) dx = wi /(xi) (10-27) 
i = O  

when f (x) is a polynomial of degree 2n + 1 and 

W(x) = ( 1  -x)"xS (a > -1, 6 > -1) (10-28) 

In the following development, the values of a and b are taken to be a = 0, 
and b = 1. Then after having observed that the xi's, and therefore the f(xi)'s, are 
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fixed values, Eq. (10-26) may be restated as follows: 

(10-29) 
Thus 

where wi is defined by 

w = W(x) l i (x )  d x  

The object of the following development is to show that if f ( x )  is a poly- 
nomial of degree 2n + 1 ,  then the remainder term 

(10-32) 

when the set of n + 1 base points, the { x i ) ,  are the roots of the Jacobi poly- 
nomial of degree n + 1 .  

Since f ( x )  has been assumed to be a polynomial of degree 2n + 1 ,  it follows 
that q,(x) must be a polynomial of degree n, since p,+ , (x)  is of degree n + 1 (see 
Eq. (10-23)) and l i(x) is of degree n (see Eq. (10-21)). Expansion of the poly- 
nomial q,(x) in terms of a set of Jacobi polynomials (see Eq. (10-16) and Exam- 
ple 10-1) yields 

where the superscripts (cc ,  p)  have been omitted in the interest of simplicity. 
Then the remainder term becomes 

Examination of Eq. (10-34) shows that if p ,+ , (x )  is equal to a constant times 
P , + , ( x )  (the Jacobi polynomial of degree n + I ) ,  then the right-hand side of 
Eq. (10-34) is identically equal to zero by the orthogonality property. Now it 
will be shown that p ,+ , (x )  can be made equal to a constant times the jacobian 
polynomial P,+ , (x ) .  Let the Jacobi polynomial P,+ , (x )  be stated in the product 
form : 

where a,+ , is the coefficient of xn+' and the { x i }  are the roots of P,+ ,(x). 
i 

Comparison of Eqs. (10-23) and (10-35) shows that if the base points appearing 
in the expression for p,+ ,(x) are taken to be the roots of the Jacobi polynomial 
P,+ ,(x),  then 

and consequently when p,+, (x)  is replaced in Eq. (10-34) by its equivalent as 
given by Eq. (10-36), the remainder will be equal to zero. 

Thus, when the { x i )  are the roots of P, ,  , (x )  and f ( x )  is of degree 2n + 1 or 
less, then Eq. (10-30) reduces to exact relationship 

where the IV:S are computed by use of Eq. (10-31). It should be noted that the 
converse of this statement is also true, that is, if Eq. (10-37) holds for all poly- 
nomials f ( x )  of degree 2n + 1 ,  then the set { x i }  of n + 1 collocation points are 
the zeros of the orthogonal polynomial P , + ,  . Furthermore, the weights are all 
positive. 

If the degree of f ( x )  is greater than 2n + 1 ,  and only n + 1 collocation 
points are used, then the Gauss-Jacobi quadrature given by Eq. (10-37) is no 
longer exact. However, the quadrature becomes exact for all continuous func- 
tions in the closed interval 10, 11 as the number of collocation points is in- 
creased indefinitely, that is, 

Example 10-2 Evaluate the following function by use of a two-point 
Gauss--Jacobi quadrature: 

SOLUTION Let f ( x )  = x 3 .  Since W ( x )  = ( 1  - x)"xS, take a = 1, = 0 to give 
W ( x )  = 1 - x .  Thus, W ( x )  f ( x )  = ( 1  - x)x3.  The Rodriques' formula 
(Eq. (10-14)) for cc = 1, p = 0 ,  and n = 2 gives 

which yields the result 
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and the roots are 

To  compute the weights, use is made of Eq. (10-31) 

l-1 I-1 (1 - v u v -  Y \ 1 / I  x.\ 

Then 

This two-point Gauss-Jacobi quadrature is exact because f(.x) is a poly- 
nomial of 211 + 1 = 3 and n + 1 = 2 points are used in the quadrature. Note 
that 

Instead of finding the roots of the polynomials and the values of the 
weights {w,} as shown in this example, the values may be taken directly from 
tables (Ref. 11). 

Method of Weighted Residuals and Orthogonal Collocation I 
There follows first a qualitative presentation of the general concepts of the 
Method of Weighted Residuals and Orthogonal Collocation. These concepts are 
then quantified by a more precise treatment. 

In the Method of Weighted Residuals, the function f(x) in Eq. (10-37), 
becomes the residual R(a, x). The residual is that which remains after an as- 
sumed trial solution has been substituted into the differential equation. The 
parameters a appear in the trial solution. An exact solution would require that 
the parameters or coefficients a be picked such that the remainder is zero at 

every x over the interval of integration and such that the boundary conditions 
are satisfied. In an effort either to satisfy these conditions or to come as close as 
possible to satisfying them, the following approach is taken. First, the trial 
solution is selected at the outset such that it satisfies the boundary conditions. 
Secondly the parameters a are picked such that the integral of the weighted 
residual over the interval of integration is equal to zero, that is, 

and this condition is satisfied by picking the parameters a such that each 
R(a, xi) = 0, that is, 

R(a, x,)  = 0 
. . . . (10-39) 
. . 

R(a, x,) = 0 

Thus, by choosing the n + 1 parameters a such that both Eqs. (10-38) and 
(10-39) are satisfied, one achieves the following results: (I) the residual is equal 
to zero at least n + 1 times in the interval of integration along the x axis, and 
(2) the integral of the weighted residuals W(x)R(a, x) is approximately equal to 
zero over the interval of integration. Although both of these conditions taken 
together do not necessarily achieve the condition of the exact solution (that the 
residual is zero at each x over the interval of integration), they do "come close" 
to doing so. The purpose of the weight function W(x) is to suppress the values 
taken on by the absolute value of the function R(a, x) for values of .x between 
its zeros. Finlayson(6) states that the weighting function W(x) = 1 - x gives 
faster convergence for lower-order approximations (smaller values of n) and 
W(x) = I gives faster convergence for many chemical engineering problems. 

Use of the collocation points as the roots of orthogonal polynomials was 
first advanced by Lanczos(l2) and was developed further by Clenshaw and 
Norton(3), Norton(l3), and Wright(21) for the solution of ordinary differential 
equations. In these applications, which consisted primarily of initial-value prob- 
lems, Chebyshev polynomials were employed. Horvay and Spiess(9) used poly- 
nomials which were orthogonal on the boundary. Villadsen and Stewart(l8) 
developed an orthogonal collocation method for boundary-value problems. 

Application of the Method of Orthogonal Collocation 
to Linear Differential Equations 

The procedure represented by Eq. (10-39) is called optimal collocation by Villad- 
sen and Michelsen(l9) and orthogonal collocation by Finlayson(6). When the 
relationship given by Eq. (10-38) is exact and the {a,} are selected by Eq. 
(10-39), it follows that the integral of Eq. (10-38) is identically eaual to zero. or 
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the fa,) is picked such that the residual is orthogonal to the weighting 
function-thus the name "orthogonal collocation." 

To  illustrate the application of orthogonal collocation, consider the follow- 
ing linear differential equation with variable coefficients: 

with the boundary conditions that y = 1 at u = 1 and all derivatives are finite 
and p is constant. This example, which was used by Villadsen and 
Michelsen(l9), represents a model for diffusion accompanied by a first-order 
irreversible, isothermal reaction in the radial direction of a cylindrical catalyst 
pellet. The above equation is obtained from the following equation 

d2y 1 dy 
- + - - - 4 p y = O  (10-41) 
dx2 x dx 

with the boundary conditions: y = 1 at x = 1, dyldx = 0 at x = 0 by making 
the change of variable u = x2. 

The first step in the solution of this equation is to select a power series 
which satisfies the boundary condition. The following nth-degree polynomial is 
seen to satisfy the boundary condition 

The rest of the procedure is best illustrated by use of the following example. 

Example 10-3 Find the solution of Eq. (10-40) by use of two collocation 
points for the case where p = 9 /4  Take the trial solution to be the ex- 
pression given by Eq. (10-42) for n = 2, namely, 

y(u) = 1 + (1 - u)(a, + a, u) (10-43) 

SOLUTION The expression for the residual is found by first differentiating 
y(u) with respect to u 

9 = - a l  + a2(1 - 2 ~ )  
du 

and thus 

-- dlY - -20, 
du2 

Substitution of these expressions into Eq. (10-40) followed by the collection 
of terms yields 

R(a, u) = $[a,(9u - 13) + a2(9u2 - 25u + 4) - 91 

Thus, for the weight function W(u) = 1 - u (note: or = 1, f l  = 0 in Eq. 
(10-13)), orie obtains 

where u, (i = 0, 1) are the roots of the Jacobi orthogonal polynomial 
Pi1. ''(u), the polynomial produced in Example 10-2. Also observe that the 
integral in this case is exactly equal to the sum from i = 0 to i = 1 of 
wiR(a, u,). Now let the {u,} be selected such that R(a, u) is orthogonal to 
(1 - u) or such that each R(a,u,) is equal to zero. Since u, = 0.64494897 
and u, = 0.155051 03, the values a , ,  and a, are to be found such that 

R(a, uo) = 0 = (- 7.195 46)a1 + (-8.380092)a2 - 9 

R(a, u,) = O  =(-11.604541)a, +(0.3400916)a2 - 9  

Solution of these simultaneous equations for a ,  and a, yields 

a, = -0.398 034 34 

Thus 

The exact solution of Example 10-3 as given by Villadsen and 
Michelsen(l9) is 

(modified Bessel function of order zero) 

To make one comparison of the results given by the approximate solution 
for y(u) found in Example 10-3 with the exact solution given by Eq. (10-44), let 
p = 914 = 2.25 and u = 0.4. The solution found in Example 10-3 by use of a 
two-point orthogonal collocation gives 

and Eq. (10-44) gives 



344 SOLUTION OF PROBLEMS INVOLVING CONTINUOUS-SEPARATION PnOCESSES 

Application of the Method of Orthogonal Collocation 
to Nonlinear Differential Equations 

First the method of orthogonal collocation will be applied to a nonlinear differ- 
entiation equation by use of the same procedure demonstrated above for linear 
differential equations. Then in order to avoid the difficulties encountered, a 
procedure attributed by Finlayson(6) to Vichnevetsky(l7) is used. 

For the case of a nonlinear differential equation, difficulties may be en- 
countered in picking an appropriate set {a,) which satisfy Eq. (10-40) and which 
give realistic values for y over the interval [O, 11. For example, consider the case 
where y in the last term of Eq. (10-41) is replaced by y2 to give 

where y 2 0 for all u. Furthermore, suppose that it is desired to approximate 
the solution of Eq. (10-45) by use of one quadrature point and that for a trial 
function the linear function given by setting n = 1 in Eq. (10-42) is to be used, 
namely, 

y(u)= 1 + (1  -u)a, (10-46) 

with the weighting function W(u) = 1 - u (where a = 1, = 0). The correspond- 

ing Jacobi polynomial is P\',~'(U) = 3u - 1. The root of P\'.O'(u) is u, = 113. 
Thus, a ,  is to be selected such that 

I' ( I  - 11)R,(a,, u) du = w, R,(a,, u,) = 0 (10-47) 

or such that R,(a,, u,) = 0, that is, 

For the constant p = 914, the two values of a ,  which satisfy this equation are 

Since y(u) 2 0 for all u, the root (-3.32) must be discarded since it gives 
negative values of y over a portion of the interval. 

Obviously, as the order of the trial solution is increased, it becomes more 
difficult to pick a suitable set of a,'s which give realistic values for y(u) through- 
out the interval of integration. 

If it is known that over the interval [0, 11 of interest for the independent 
variable u, the dependent variable y is always positive, then it becomes advanta- 
geous to restate the residual in terms of the (y(u,)) where the (u,) are the roots 
of the corresponding Jacobi polynomial. The following procedure has been 
recommended by Finlayson(6) and by Villadsen and Michelsen(l9). 

Suppose that the trial solution of Eq. (10-45) is assumed to be the nth- 
degree polynomial given by Eq. (10-42). Let 
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F Then for each root ui (i = 1, 2, .. ., n) of the associated Jacobi polynomial, the 
corresponding value of Y(u,) is given by 

and then 

and 

0' = I, 2, . . . , n) (10-52) 
The set of equations represented by Eq. (10-50) may be stated in matrix form 

Y = Qa (10-53) 
where 

[ Q l  "2 . . . ""1 
Q =  : Q. -u{ 

Q n l  Qn2 . . . Qnn 

Similarly, for the sets of equations given by Eqs. (10-51) and (10-52) 

where C and D have the same general form shown for Q, and 

After Eq. (10-53) has been solved for a, 

this result may be used to eliminate a from Eqs. (10-54) and (10-55) 



and 

where the elements of A and B are numbered in the same manner shown for Q. 
In order to evaluate the residual at each root u i ,  expressions are needed for 

and yl 
U i  

These expressions may be obtained by application of the multiplication rule to 
row i of Eqs. (10-58) and (10-59) to obtain 

n 

= 1 Aji  Y (u j )  
j =  1 

Similarly 

Substitution of these expressions into Eq. (10-45) yields the following expression 
for the residual 

which is readily rearranged to give 

The sets of constants { A i j )  and {B,,) may be calculated by use of the definitions 
given by Eqs. (10-58) and (10-59), respectively. The unknowns in Eq. (10-63) are: 
( u )  u )  . . . , y(u,,). The desired set of y's is that set of positive numbers which 
makes 

Rl(U1, Y )  = 0 

. . . . 

R,(u, > Y )  = 0 

where 

y = Cy(u,)y(u,) . . . Au,)lT 

The desired set y may be found by use of the Newton-Raphson method. 
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To demonstrate the application of the procedure described above, it is used 
to solve a linear differential equation instead of a nonlinear equation. A linear 
differential equation is used in order to reduce the effort required to solve the 
set of equations represented by Eq. (10-63). For example, if the procedure is 
used to solve Eq. (10-40), the final result is given by Eq. (10-63) with y2(ui) 
replaced by AM,). 

Example 10-4 Use the above procedure to solve the linear differential equa- 
tion given by Eq. (10-40). Take n = 2 and p = 914. 

(a) Find y(ul) and AM,). 
(h)  Use the values of y(u,) and y(u2) found in ( a )  to compute a ,  and a,. 

SOLUTION (a)  From the definition of Q (see Eq. (10-50)), it follows that 

Since u ,  = 0.644 948 97 and u, = 0.155 051 03 (see Example 10-2), it follows 
that 

Q = [  
0.355 051 1 0.228 989 8 
0.8449490 0.131 0102 I 

and its inverse is readily found to be 

Q-' = 
-0.891 41 1 5 1.558078 31  [ 5.7491497 -2.4158169 

Since 

Then 

A = CQ-' = 
-0.775 254 9 -0.857 738 1 

4.857 738 3 - 3.224 745 ] = [::: :::I 
and 

For n = 2, Eq.  (10-63) becomes 

Rl(U1, Y )  = (u1 Bll + A11)Aul) + (u ,  BIZ + A,,)y(u,) 

- C(u1 B l l  + A l l )  + ( u ,  B l ,  + A12)l - %u,) = 0 

R2(u2, Y )  = (u2 B21 + A,,)Au,) + (u2 B22 + A22)y(u2) 
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After the values given above for the A's, B's, and u's have been substituted 
into the expressions for R,(u, , y) and R,(u,, y), these linear equations may 
be solved for Au,) and y(u,) to give 

Thus, in summary when the differential equations are nonlinear, the set of 
positive y's which make the R's equal to zero may be found by use of the 
Newton-Raphson method. The usefulness of this formulation obviously de- 
pends upon one's knowing in advance from physical considerations that the 
y's are positive throughout the interval of integration. 

(b) The coefficients a ,  and a, may be found by use of the above results 
and Eq. (10-57) as follows: 

-0.891 411 5 
a = A - ' Y  = 

1.558 078 3][-0,370650 5 

5.749 1497 -2.4158169 -0.7173105 1 
where Y(u,) = y(u,) - 1 and Y(u,) = du,) - 1. After the implied matrix 
multiplication has been performed one obtains 

As should be expected, these values of a ,  and a ,  are in agreement with those 
found in Example 10-3. 

Other Applications of Orthogonal Collocation 

The application of the method of orthogonal collocation to other types of 
problems is discussed in Chap. 12 as it is applied to some specific problems. 

Some areas of interest and possible development which do not appear to 
have been discussed to any appreciable extent by proponents of the method are 
the choice of weighting functions and the choice of orthogonal polynomials 
whose roots are used as the collocation points. Jacobi polynomials appear to 
have been used almost exclusively. 

10-2 SOLUTION OF PARTIAL DIFFERENTIAL 
EQUATIONS BY FINITE DIFFERENCE METHODS 

The application of the methods of finite differences is initiated from first prin- 
ciples by the solution of a simple parabolic differential equation by use of an 
explicit method. Next implicit methods are introduced with particular emphasis 
being given to the implicit method of Crank-Nicolson(5). The Crank-Nicolson 

P method is not only more accurate than the explicit methods, but is stable for all 
ratios of At/Ax2, whereas At/Ax2 must be less than the upper bound deduced 
below for the explicit method to be stable. 

Finite Difference Approximations of Partial Derivatives 

Let U(X, t )  be a continuous function of time and distance with continuous par- 
tial derivatives over time and distance. The x-t space is divided into equally 
spaced grid points as shown in Fig. 10-1. The quantities Ax and At are defined 
such that they are always positive, that is, 

Ax = x i + ,  - x i > ( )  

and 

The grid notation (j, n) represents the point (xi, t,), and at this point the 
value of the function u(x, t )  is denoted by u(j Ax, n At). The value of u at the 
grid point (j Ax, n At) is denoted by uj, " .  

The first few terms of a Taylor series expansion of the function u(x, t) about 
the point (x,. tn) and is the forward direction to the point (x,, , , r.) is given by 

where the derivatives 

are to be evaluated at the point ( x j ,  t,). Similarly, the first five terms of the 
Taylor series expansion of the function u(x, t) about the point (r,,  t,,) to the 

Figure 10-1 Notation used to identify grid points 



point ( x i ,  t ,  + ,) is given by 

(At)' (At)3 (At)4 
uj, ,,+ z uj,. + Atul + - 4, +F U I I I  + U ~ I U  (10-66) 

2! 

where 
au aZu a4u 

U ,  , U f l  , . . . ' Ull l l  = - - 
- at at'' '" ' at" 

When u(x, t) is expanded in the backward direction with respect to x from 
( x i ,  t,) to ( x i - ,  , t,) one obtains 

where 
Ax = x .  - x .  

J 1 - 1  

The forward difference formula with respect to x at a fixed t is obtained by 
solving Eq. (10-65) for u, and rearranging to obtain 

@( = ' j + l . n  - U j . n  + o ( A ~ )  (10-68) 
ax X J ,  1" 

Ax 

The backward difference formula with respect to x at a fixed t is obtained by 
solving Eq. (10-67) for u, and rearranging to obtain 

- ' j -  1 .  n + O(Ax) (10-69) 
Ax 

In the definition of the differences, the point of reference is taken to be the point 
(x, ,  t,) in Fig. 10-1. 

A formula for the expression of u, in terms of the central difference is 
obtained by subtracting each member of Eq. (10-67) from the correspond~ng 
members of Eq. (10-65) to give 

An expression for uxx may be obtained by addition of the corresponding 
members of Eqs. (10-65) and (10-67) followed by rearrangement to obtain 

Equation (10-71) is classified as a second central diference formula because the 
points of evaluation with respect to x are symmetrically located about the point 
(j, n), and it is commonly denoted by 6'uj,., that is, 
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i The jirst central drfference Su,,. corresponds to the first partial derivative of u 
with respect to x and it is defined by 

Explicit Finite Difference Methods 

The explicit method is applied to the simple parabolic differential equation 

When the left-hand side of this equation is approximated by use of Eq. (10-66) 
and the right-hand side by Eq. (10-71), one obtains 

with a truncation error of order O[At +(Ax)'] .  Equation (10-75) may be re- 
arranged to the form 

- 
' J , ~ + I  - " j 1 , n  + ( 1  - 2l.)uj," + , L U ~ + ~ , .  ( 1  0-76) 

where 

The application of the explicit finite-difference method is illustrated by use of 
the following numerical example. 

Example 10-5 Solve the parabolic differential equation given by Eq. (10-74) 
subject to the initial condition 

and the boundary conditions 

u(0, t )  = 300 

u(1, t )  = 300 

Take a = 1, At = 0.01, Ax = (0.1) &, and use five time steps and five space 
steps. 
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For 1, = 113, Eq. (10-76) becomes 

As shown in the table below, u,,, = 300, u , . ,  = 0, u 2 , ,  = 0, u3 , ,  = 0, 
u4,, = 0, and u, , ,  = 300. The values of u at the end of the first time step 
are computed as follows: 

For the second time step 

u,, , + u, ,  , + u2,  , - 300 + 100 + 0 
u1.2 = 

- = 133.33 
3 3 

Continuation of this calculational procedure gives the results shown in the 
table below. 

Time Value of variable u,,. 
subscript 

Although the explicit method is seen to be easy to apply, it becomes un- 
stable unless the values of At and Ax are selected such that 0 < 1 < 112. TO 
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t, demonstrate instability of the method for values of 1 > 1/2, Example 10-6 is 
presented. 

Example 10-6 This example is the same as Example 10-5 except At and Ax 
are selected such that I = 1. 

SOLUTION For 1 = 1, Eq. (10-16) becomes 

When the calculations are carried out in the same manner demonstrated for 
Example 10-5, the results shown in the following table are obtained. 

Time Value of variable u,, 
subscript 
n " 0 . -  ' 1 . "  U Z . "  3 ,  U 4 . "  U5 .  n 

0 300 0 0 0 0 300 
1 300 300 0 0 300 300 
2 300 0 300 300 0 300 
3 300 600 0 0 600 300 
4 300 -300 600 600 -300 300 
5 300 1200 -300 -300 1200 300 

An examination of these results shows that each variable uj, .  oscillates 
with an amplitude that increases with time, which is characteristic of un- 
stable behavior. 

Stability 

There follows an analysis which predicts the unstable behavior exhibited by 
Example 10-6. This analysis makes use of the amplitude factor of the Fourier 
series solution of the difference equation. This approach is attributed by 
Richtmyer(l4) to J. von Neumann. In this method one assumes a trial solution 
to the difference equation of the form 

where i = 0, and A, a, rn are constants with rn being an integer. Substitu- 
tion of the trial solution into the difference equation (Eq. (10-75)) gives the 
following expression upon rearrangement: 

p - 1 = (-21x1 - cos m Ax) 
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Thus, the trial solution satisfies Eq. (10-75), provided that 

f l  = p(m) = 1 - 241 - cos m Ax) (10-78) 

Since the sum of any number of solutions is also a solution, the general solution 
is the sum of all possible solutions 

over all values of m. The constants A, are selected such that the boundary and 
initial conditions are satisfied. The development of the formula for the calcula- 
tion of the coefficients A, is omitted, however, because the formula is not 
needed in the stability analysis. The stability analysis makes use of only the 
expression for the amplitude factor P(m). 

In order to achieve stability, it is evident from Eqs. (10-78) and (10-79) that 
the stability condition is 

I P(m) 1 I 1 (10-80) 

or the most negative value of b(m) must not be less than - 1. Thus 

p(m) = 1 - 2?,(1 - cos m Ax) 2 - 1 

The most negative value of p(m) is seen to occur at cos rn Ax = - 1. Then 

1 - 4 ? , > - 1  or - 4 L - 2  

and 

21, I 1 

2a At < 
(Ax)' - 

Thus, in order for the explicit method to remain stable, it is necessary that 
At/(Ax)' be selected such that 

Implicit Methods 

The stability condition given by Eq. (10-81) has the unfortunate consequence 
that if a relatively small Ax is chosen in the interest of accuracy, the allowed At 
may be so small that the computer time required becomes unacceptable. 
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This difficulty is not encountered when implicit methods are used. If the 
right-hand side of Eq. (10-74) is approximated at  the time t,+, , instead of t,, 
then the following implicit form is obtained instead of Eq. (10-75): 

As will be shown, Eq. (10-82) is stable under all conditions. This equation is a 
special case of the general class of implicit methods which is obtained by using 
for the right-hand side of the difference equation a weighted average of the 
right-hand members of Eqs. (10-75) and (10-82) to give 

where the operator 6' is defined by Eq. (10-72), and 0 is a real constant, gener- 
ally thought of as lying in the interval 0 I 0 I 1. When 0 = 0, as in the preced- 
ing section, the system is called explicit. If O f 0,  the system is called implicit. 
The method is called implicit because u j , , + ,  appears on both sides of the 
equation and one must solve the complete set of simultaneous linear difference 
equations for the system in order to obtain the set of {uj ,}  for each time step. 

To illustrate, suppose that O = I .  Then Eq. (10-83) reduces to 

The values of the variables at the end of the first time step (when five in- 
crements are used as in Example 10-5) are found by solving the following set of 
equations simultaneously. 

These equations are represented by tridiagonal matrices. The solutions may be 
found by use of recurrence formulas presented in Part 1. The results found for 
the first time step are used in the equations for the second time step. The 
equations for the second time step are obtained by increasing by one the second 
subscript in Eq. (10-85). 

Stability of the Implicit Methods 

This analysis is analogous to that shown for the explicit equations. A trial 
solution of the form of Eq. (10-77) is again assumed and substituted into 
Eq. (10-83). The trial solution satisfies Eq. (10-83) provided that the growth 
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y = 2 i ( l  - cos m Ax) 

Figure 10-2 Variation of the growth factor S(m) with y.  ( R .  D. Richtmyer: Difference Methods for 
Initinl-Value Problems, Interscience Publishers, Inc., New York  (1962),  Courtesy Interscience Pub- 
lishers.) 

factor p is given by 

1 - 2(1 - 8)A(l - cos rn Ax) 
P = P(m) = 1 + 2041 - cos m Ax) 

A graph of D(m) versus y = 2i4l - cos rn Ax) which was taken from 
Richtmyer(l4) is shown in Fig. 10-2. The growth factor p(m) is real for all real 
rn, and never exceeds + I .  As y increases through positive values, the value of 
p(m) decreases monotonically from 1 to -(1 - 8)/U. If 112 5 0 5 1, the asymp- 
tote is not less than - 1 ;  hence, the difference equations are always stable. If on 
the other hand 0 2 8 < 112, y must be restricted, for stability, by the value at 
which the curve intersects the line P(m) = - 1. Thus, the stability condition is 

No restriction if 112 5 6  < 1 

The most common choices of 0 are 0, 112, 1. The first (0 = 0) gives the explicit 
method, Eq. (10-75), and the second (8 = 112) corresponds to the well-known 
Crank-Nicholson (Ref. 5) method. The third (8 = I) gives the implicit method, 
Eq. (10-82). 

10-3 THE METHOD OF CHARACTERISTICS 

The method of characteristics was first brought to the attention of chemical 
engineers by Acrivos(1) after it had already been used successfully in the field of 
compressible flow (Ref. 15) and heat and mass transfer problems (Ref. 7). The 
method is applied herein to systems of hyperbolic partial differential equations. 
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Development of the Method 

This method makes it possible to replace a hyperbolic partial differential equa- 
tion by an equivalent ordinary differential equalion which is to be integrated 
along a specified curve. To illustrate the application as well as the development 
of the method, relatively simple examples are used. First suppose it is desired to 
find a numerical solution to the following set of partial differential equations 
subject to the initial conditions and boundary conditions enumerated below: 

4 = do at z = 0 for all t > 0 (10-90) 

In order to transform Eq. (10-88) into an equivalent ordinary differential 
equation, first observe that @(t, z) may be expanded by the chain rule as fol- 
lows: 

which gives d4ldz for all possible sets {z, t). However, observe that if one sets 
dtldz = 1, then Eq. (10-92) reduces to 

which is seen to be identically equal to the left-hand side of Eq. (10-88). Thus, 
Eq. (10-88) may be reduced to the ordinary differential equation, namely, 

dt 
( - - b y )  (at h = l )  

The subscript I denotes the fact that d4ldz is to be evaluated along any straight 
line having slope dtldz = 1. In this method, the requirement that dtldz = 1 for 
Eq. (10-93) is called characteristic I. 

Upon expansion of Y by the chain rule, one obtains 

If dY/dt is evaluated along the line z = constant (characteristic 11), then Eq. 
(10-95) reduces to 

= E (at z = const) 



and Eq. (10-89) has been reduced to the ordinary differential equation 

( )  = ( 4  - b y )  (at i = const) 

The space of interest, the z-t space, is shown in Fig. 10-3. Thus, the 
original set of two partial differential equations has been reduced to two ordi- 
nary differential equations which are to be integrated along their respective 
characteristic lines. These two ordinary differential equations may be solved by 
any of the numerical methods used to integrate ordinary differential equations 
provided that the equations are integrated along their respective characteristics. 
For convenience, equal increments of Az = 1 and At = 1 are used in the con- 
struction of the graph in Fig. 10-3. The 45" lines represent characteristic I, 
dzldt = 1, and the vertical lines represent characteristic 11, z = const. Note, the 
points z = 0, z = 1,  z = 2,. . . along the z axis are located by 

z = m A x  (10-98) 

where m is some positive integer. Similarly, the points t = 0, 1, 2, . . . along the t 
axis are given by 

t = n A t  (10-99) 

Figure 10-3 Sketch of the z-t place. (Note for Example 10-5, 6, = &0, 0) = b(1, 0) = . . . = 4(n, 0) 
along the t axis. Along the z axis, Y(0. 0) = Y(O, 1) = . . . = Y(0, m) = 0.) 
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where n is some positive integer. Thus, any point (z, t )  may be represented by 

(z, t )  = (m Az, n At) = (m, n) (10-100) 

The direction of integration for 4 is along the line dtldz = 1, and for Y the 
direction of integration is along the line z = const as shown by the arrows in 
Fig. 10-3. Thus, in order to perform these integrations numerically, values of 4 
and Y along both axes, t = 0 and z = 0, are needed. The initial condition gives 
directly 

4(0, 0)  = 4(0, 1 )  = 4(0, 2) = . . . = 4(O, n) = 4 ,  (10-101) 

and the boundary condition gives directly 

To obtain values for 4(m, 0)  and Y(0,  n), it is necessary to impose the initial 
condition and the boundary condition on Eqs. (10-94) and (10-97), respectively. 

At the initial condition Y = 0 at t = 0, for all z, Eq. (10-94) reduces to 

/ which is readily integrated to give 

When the boundary condition 4 = 4, at z = 0 for all t > 0 is imposed on 
1 
I 

Eq. (10-97), one obtains 

I Integration with respect to t yields 

To illustrate the solution of Eqs. (10-88) and (10-89) by the method of 
characteristics, one complete set of calculations for the first increment in time 
and space is carried out in the following example. 

Example 10-7 For the partial differential equations and initial and bound- 
ary conditions given by Eqs. (10-88) through (10-91), find the values of 4 
and Y at the end of the first increment in time and space. Take At = I, 
Az = 1, k ,  = 0.09, k ,  = 0.1, b = 2, and 4, = 2. In this example use the 
integral form of the trapezoidal rule, namely, 



SOLUTION Integration of Eq. (10-94) from (0, 0) to (1, 1) (see Fig. 10-3) along 
dt ldz = 1 gives 

After the integral on the right-hand side of Eq. (1) has been approximated 
by use of the trapezoidal rule, the resulting expression obtained after inte- 
gration is readily rearranged to give 

I 

Since b(0, 0) = 4, = 2 and Y(0, 0) = 0 I 

Integration of Eq. (10-95) from point (1, 0) to (1, 1) along the path 
z = const yields I 
In a manner analogous to that described for the integration of Eq. (I), the 
following result is obtained for Eq. (3): 

Since Y(l, 0) = 0 and since d(1, 0) is given by Eq. (10-104) 

@(I, 0) = d o  e - k '  = 2e-(0.09)(1) = 1.827 862 

The above expression involving Y(1, 1) and 4(1, I) reduces to 

Since Eqs. (2) and (4) are linear in 4(l, 1) and Y(1, I), they may be solved 
simultaneously to give 

4(1, 1) = 1.842118 

Y(1, 1) = 0.1668173 i 

(In the event that the equations corresponding to Eqs. (2) and (4) are 
nonlinear in 4(1, 1) and Y(1, 1) they may be solved by use of the Newton- 
Raphson method.) Values of 4 and Y at other points on the grid are found in a 
manner analogous to that demonstrated for the point (1, 1). 

.,.a 
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CHAPTER 

ELEVEN 
FUNDAMENTALS OF 
ADSORPTION PROCESSES 

The adsorption process belongs to a more general class of unit operation which 
is sometimes called percolation. A percolation process is defined as any process 
in which a fluid is passed through a bed of material which has the capacity to 
alter the concentration of the fluid. This definition includes some classic unit 
operations such as ion exchange, adsorption, chromotography, drying, and 
washing. These operations are performed in order to obtain (a )  purification of 
the diluents, (b) separation of products, and (c) recovery of solutes. 

Most of the percolation processes are similar to adsorption which is the 
only percolation process considered in detail in this chapter. Most adsorbents 
are very porous and most of their surface area is in the interior of the adsor- 
bent. Thus, the adsorption process consists of the sequence of mass transfer 
operations whereby the solute is transported into the interior of the adsorbent 
where it is adsorbed. 

When a fluid containing solute components which are candidates for ad- 
sorption is passed through a bed, the mass transfer steps may be categorized as 
follows. 

1. Within the flowing fluid stream, the solute is transported by diffusion in both 
the axial direction (the direction of bulk flow) and the radial direction (the 
direction perpendicular to the direction of bulk flow.) 

2. The solute is transferred from the bulk conditions of the fluid phase to film 
on the surface of the adsorbent. (The two-film theory for mass transfer is 
assumed.) 

The solute is transferred from the film to the fluid phase in a pore of an 
adsorbent. 
The solute is transported through the pore by diffusion. 
At any point along the pore, the solute is subject to adsorption on the 

tp 1 surface. 
6. After adsorption the solute may be transported along the surface or  through 

the solid phase by diffusion. 

Models which have been proposed for the description of the adsorption 
process generally make use of one or more of the above steps of the mass 
transfer mechanism. The remaining omitted steps of the mechanism are assumed 
to be either very "fast" if in series or very "slow" if in parallel. The terms 
"fast" and "slow" are used to mean that the rate constants for these steps are 
very large or very small, respectively, relative to those for the other steps. 

In this chapter, the subject of adsorption is introduced by consideration of 
the adsorption step and the two mass transport processes, convective mass 
transfer and diffusion. The adsorption of both pure solutes and mixtures is 
considered in Sec. 11-1, and the adsorption of a single solute is considered in 
Secs. 11-2 and 11-3. Section 11-2 is devoted to convective mass transfer, the 
mass transfer process which is analogous to the convective heat transfer process. 
To demonstrate the behavior of convective mass transfer processes, an analyti- 
cal solution is presented for a relatively simple problem. In Sec. 11-3, the roles 
of pore and surface diffusion in the adsorption process are illustrated by the use 
of the analytical solutions for some relatively simple problems. 

11-1 PHYSlCAL ADSORPTION OF PURE GASES 
AND MIXTURES BY SOLlD ADSORBENTS 

The fact that many gases exist in an adsorbed state on adsorbents such as 
charcoal at temperatures far above their criticals suggests the use of adsorbents 
in separation processes. Models for the adsorption of both pure components 
and mixtures are developed in this chapter. 

When a gas is brought into contact with an evacuated solid (such as 
charcoal) and part of it is taken up by the solid, any one of several processes 
may have occurred. When the gas molecules are either attached to the surface 
or occupy the void spaces within the solid (such as pores, cracks, or capillaries), 
the process is known as adsorption. If the interactions between the gas and the 
solid are weak, similar to those involved in condensation, the process is called 
physical adsorption, and if the interaction between the adsorbed molecules and 
the surface is strong, similar to chemical bonding, the process is called chemical 
adsorption. Physical adsorption is also called van der Waals  adsorption, which 
implies that van der Waals forces are also involved in physical adsorption. 
Adsorption processes are exothermic, a result which has been verified experi- 
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mentally, time and again. The heats of adsorption are of the same order of 
magnitude as the heats of vaporization. 

The amount of a gas absorbed by physical adsorption at  a given pressure 
i ' 

increases as the saturation temperature is approached. At a glven temperature 
and pressure, the amount of a gas adsorbed increases with the normal boiling 
point of the gas or with the critical temperature, and the amount adsorbed 
normally decreases as the temperature is increased. Chemical adsorption, on the 
other hand, does not generally occur at relatively low temperatures. Also, the 
initial amounts adsorbed increase as the temperature is increased. The rate of 
chemical adsorption is relatively fast at first and then very slow. On the other 
hand, physical adsorption occurs almost instantaneously. The lag in the ad- 
sorption process was first attributed to the diffusion of gas molecules into the 
~nterior of the adsorbent by McBain(25). Physical adsorption is readily rever- 
sible with respect to temperature and pressure, whereas chemically adsorbed 
gases are difficult to remove even by evacuation and heating. i 
Types of Physical Adsorption 1 
The behavior of adsorbents, exhibited by their equilibrium adsorptions of a 
variety of gases, has led to a classification of the types of physical adsorptions. 

i 
Since the initial observations of C. K. Scheele in 1773 of the adsorption of gases 
by solids, a wide variety of both adsorbents and adsorbates have been investi- 
gated. Among the practical adsorbents are the silica gels, activated aluminas, ! 

! 
silica aluminas, molecular sieves, and activated charcoals. The results of adsorp- I 

tion experiments are most commonly presented in the form of adsorption iso- 
therms, volume-adsorbed as a function of pressure at constant temperature. A 
variety of shapes of curves have been observed by the various investigators who 

i I 

have studied the adsorption of many different gases by many different types of 
adsorbents. Brunauer et a1.(3) suggested the classification of these results accord- 
ing to the five types of isotherms shown in Fig. 11-1. Adsorption isotherms of 
type I are generally attributed to unimolecular adsorption. These curves are 
also referred to as Langmuir isotherms because they are described by the model 1 
proposed by Langmuir(l7,18,19). The S-shaped or sigmoid isotherms, type 11, 
are generally regarded as being descriptive of multimolecular adsorption. 
Brunauer(4) suggested that type 111 isotherms represent the formation of multi- 1 

i 
molecular layers before a unimolecular layer has been adsorbed, and that types 
IV  and V reflect the occurrence of capillary condensation. i 

Models for the Physical Adsorption of Pure Components 

In an attempt to explain the wide variety of experimental results characterized 
by Fig. 11-1, many theories and models have been proposed. One of the best 
known of these is Henry's law which may be used to describe many adsorptions 
at relatively low pressures. 

I Type lV  I 

V = volume of gas 
adsorbed 

P = pressure 

P"= saturation pressure 
of gas at the 
temperature of 
adsorption 

Figure 11-1 Thr five types of  physlial adsorption. (S. Brunuuer. L S Deming, W E Deming a d  E. 
T e L r ,  ' O n  a Theory of Van der Wdab  Adsorption of Gases." J A m  Chem S o c  vol 62, p. 1723 
(1940). ('ourfesy A~nericun Chemical Society.) 

Henry's law This law may be stated in the form 

where k ,  is the Henry law constant, P is the adsorption equilibrium pressure, 
and u is the volume adsorbed (at "C and 1 atm) per unit mass of adsorbent. 

For intermediate pressures. the Freundlich equation is commonly used. 

Freundlich equation This empirical equation is of the form 

u = k ,  P'lN (1 1-2) 
where k ,  is a constant depending on the gas and the adsorbent and N > 1. 
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Langmuir equation The Langmuir equation is regarded by many as perhaps the 
single most important equation in the field of adsorption (Ref. 4). Three deri- 
vations of this equation have been presented; the original kinetic derivation of 
Langmuir(l7,18,19), the thermodynamic derivation of Volmer(27), and statistical 
derivations by Fowler@) and others. Of these, only the kinetic derivation is 
presented. 

When a molecule strikes the surface of an adsorbent, it may be either 
elastically reflected from the surface without any energy exchange taking place 
or it may be inelastically adsorbed with the release of energy. Lang- 
muir(17,18,19) attributed the phenomenon of adsorption to the average time 
that a molecule resides on the surface of an adsorbent. In summary, the postu- 
lates of Langmuir are as follows: 

1. Of the molecules striking the surface, only those that strike the bare surface 
are candidates for adsorption. That is, molecules that strike an adsorbed 
molecule are elastically reflected. 

2. The probability of evaporation of a molecule from the surface is the same 
whether or not the neighboring positions on the surface are empty or filled 
by other molecules. This amounts to assuming that the interaction between 
adsorbed molecules is negligible. 

Let p be equal to the number of molecules striking a unit of surface area 
per unit time. Let 0 be equal to the fraction of the surface covered by adsorbed 
molecules. Then, the candidates for adsorption by postulate 1 are given by 
(1 - 0)p. If the condensation coefficient on the bare surface is a, then the rate of 
adsorption is equal to a(l - 0)p. Let v denote the rate of evaporation from a 
completely covered surface. Then by postulate 2, the rate of desorption is equal 
to v0. Then at equilibrium 

The following expression for p (the number of molecules striking one square 
centimeter of surface per second) is given by the kinetic theory of gases (Ref. 21) 

where m is the mass of the molecule, k is the Boltzmann constant, and T is the 
temperature of the gas in degrees Kelvin. An expression for v may be deduced 
from the concepts of the kinetic theory. Let q denote the heat given off when a 
molecule is adsorbed. Then to be desorbed, a molecule must possess an energy 
equal to or greater than q. If it is supposed that the adsorbed molecu1es possess 
a maxwellian energy distribution in two degrees of freedom, then it can be 
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shown that the fraction of molecules having an energy equal to or greater than 
q is given by e-qikT. Thus, Eq. (1 1-4) may be restated as follows: 

bP 
@=- (1 1-6) 

1 + bP 

where the dependence of b upon temperature is given by 

ae4/kT 

b = ( 2 n m k ~ ) ' ~ ~  

Equation (I 1-6) is commonly stated in the following alternate but equivalent 
form 

where v, is equal to the volume of gas adsorbed at (0°C and 1 atm) per unit 
mass of adsorbent when the adsorbent is covered with a complete unimolecular 
layer. It is generally possible to obtain a satisfactory fit with Eq. (11-8), the 
Langmuir equation. 

The BET equation The multimolecular adsorption theory proposed by Braun- 
auer, Emmett, and Teller(5) was the first attempt to present a unified theory of 
physical adsorption of pure gases. The equations resulting from this theory may 
be used to correlate the five types of adsorption shown in Fig. 11-1. The 
multimolecular theory of adsorption constitutes a generalization of Langmuir's 

I Fluid phase Solid phase 

Fluid stream t- Interface 

Figure 11-2 Concentration profile for mass transfer from the fluid stream to the adsorbed phase. 



theory in that the restriction of unimolecular adsorption is removed. In addition 
the following postulates are made: 

1. Let s o ,  s , ,  s 2 ,  ..., s,, represent the surface area covered by 0, 1, 2, ..., n 
layers of adsorbed molecules. Postulate that the rate of condensation on s j  is 
equal to the rate of evaporation from surface sj + , (j = 0, 1, 2, . . . , n). 

2. Postulate that the evaporation-condensation properties of the molecules in 
the second and higher adsorbed layers are the same as those of the lower 
layers. 

By postulate 1, the rate of adsorption on the bare surface is equal to the rate of 
evaporation from the first layer 

u ,  Ps, = b ,  s ,  e -" l lRT (1 1-9) 

where El is the heat of adsorption for the first layer, and a ,  and b ,  are 
constants. Since 

Rate of adsorption on bare surface = a ,  Ps, or cc(1 - H)p 

Rate of desorption from surface covered by one layer = b ,  s ,  e-E1'RT K OV 

Equation (11-9) consists of an alternate statement of Langmuir's equation for 
unimolecular adsorption and involves the assumption that a , ,  b , ,  and E,  are 
independent of adsorbed molecules already present in the first layer. Similarly, 
the rate of condensation on the first layer is equal to the rate of evaporation 
from the second layer. Then, in general, the rate of condensation of the jth layer 
is equal to the rate of evaporation from the 0' + 1)st layer 

, - E,IRT 
~ j + l P s j = h j + l s j + l  ( j = O , 1 , 2  ,..., n) (1 1-10) 

It is of interest to note that in spite of the fact that Langmuir's name is 
commonly associated with unimolecular adsorption, he also formulated a set of 
equations in 1918 (see Ref. 19) for the case where the adsorption spaces may 
hold more than one adsorbed molecule. These equations were of the same form 
as those given by Eq. (1 1-10), but their summation was handled in a different 
manner than that proposed by Brunauer, Emmett, and Teller(5). 

To effect the summation of the expressions given by Eq. (1 1-10), Brunauer, 
Emmett, and Teller assumed that all adsorbed layers after the first one could be 
characterized in the same way by requiring that 

where E L  is the heat of liquefaction. The result so obtained is given by 
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where o is equal to the total volume of gas adsorbed and u, is equal to the 
volume of gas required to cover the surface of the adsorbent with a unimolecu- 
lar layer. The total pressure of the adsorption is denoted by P and the vapor 
pressure (or saturation pressure) of the gas at  the temperature of the adsorption 
experiment is denoted by Po. The constant c is given by 

Equation (1 1 - 12) is commonly referred to as the BET equation (after Brunauer- 
Emmet t-Teller(5)). 

Development of a Kinetic Model for 
the Adsorption of Mixtures of Gases in Multimolecular Layers 

The development of the model for the adsorption of a mixture of gases is a 
rather obvious extension of Langmuir's model for the adsorption of pure com- 
ponents. The model for the adsorption of mixtures in unimolecular layers was 
first proposed by Markham and Benton(22). The model for unimolecular ad- 
sorption is obtained as a special case of the more general model for adsorption 
in multimolecular layers. 

HiIl(13) proposed an extension of the BET equations for the adsorption of 
multicomponent mixtures of gases in infinitely many adsorbed layers. Arnold(1) 
presented a variation of Hill's extension of the BET equations. Hill's equations 
were applied by Mason and Cooke(24), who found that their experimental 
results could be represented on the basis of two or three adsorbed layers. 

The postulates upon which the models for adsorption of multicomponent 
mixtures as proposed by Gonzalez and Holland(1 l,l2) follow. 

1. Molecules striking either the bare surface or the covered surface are candi- 
dates for adsorption. 

2. The probability of the evaporation of a molecule from an adsorbed layer is 
independent of whether or not the neighboring positions in a given layer are 
empty or filled. (This assumption could be highly inaccurate for the adsorp- 
tion of highly polar compounds). 

3. The total number of sites available for adsorption is independent of pressure 
but dependent upon temperature. 

4. The total number of sites available for adsorption is the same for ail compo- 
nents. (This assumption has the same weakness as the second postulate). 

5. The adsorption of a given molecule in a given layer is independent of the 
identity of the molecule adsorbed beneath it in the previous layer. 

6. The ratios of adsorption equilibrium constants for the (j + 1)st and the jth 
layers are equal to the same constants for all components. 

7. The adsorption process is assumed to be at  equilibrium. 
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These assumptions follow closely those originally proposed by Lang- 
muir(17,18,19). 

Let S ,  denote the moles of vacant adsorption sites on the bare surface, and " 

let S ,  denote the moles of sites on the surface So which are covered by an 
adsorbed molecule. Let S ,  denote the moles of sites which contain two layers of 
adsorbed molecules. Let A , ,  A ,  ..., A, denote the molecules involved in the 
adsorption process. The number of sites covered by any type of molecule is 
assumed to be a function only of its equilibrium constant. The mechanism 
consists of the following system of reactions at a state of dynamic equilibrium: 

Consider first the adsorption on the bare surface. Since each reaction is as- 
sumed to be in equilibrium, the expression for this equilibrium is given by 

and thus 

Cli = K1ipiCs.0 
i 

Let C T  denote the total number of moles of adsorption sites on the bare 
surface. Then 

C C 

Cs, 0 = C T -  C C 1 i = C r - C s , O  C K I ~ P ,  
i =  1 i =  1 

which is readily solved for C,, , to give 

After this expression for C,, , has been substituted into Eq. (1 1-16), one obtains 

For the case of the adsorption of a pure component, Eq. (11-18) reduces to , 

Langmuir's isotherm, Eq. (1 1-8). An expression for the adsorption of mixtures 

which was of the same general form as Eq. (1 1-18) was proposed by Markham 
and Benton(22). Actually the model proposed by Markham and Benton was 
more general than the one given by Eq. (1 1-18) in that the total number of sites 
available for adsorption was assumed to depend upon the identity of each 
component, that is, the model of Markham and Benton is given by replacing C, 
in Eq. (1  1-18) by C T i .  

The model for multilayer adsorption is developed in the following manner. 
Since the reaction representing adsorption on the jth adsorbed layer is assumed 
to be at equilibrium, one obtains 

and 

Let 

Elimination of C j i  and C j +  ,, , from Eq. ( 1  1-20) through the use of Eqs. (1 1-19) 
and ( I  1-21) yields 

C s j = C s , r  1 4 j - C s . j ' $ j + i  (1 1-22) 

Thus 

The expression for C,, is obtained by the substitutional process whereby one 
begins with the expression for C,. , (Eq. (1 1-1 7)) and substitutes it into the 
expression for C,, (Eq. (1  1-23) with j = 1). Continuation of this process whereby 
the expression for C,, , . , is substituted into the one for C,. , yields 

When this result is substituted into Eq. (1 1-23), one obtains the expression for 
the concentration of component i in the nth adsorbed layer, namely, 

The total concentration of component i in all adsorbed layers is given by 



Since this expression for C i  contains a large number of parameters, C,, 
{ K j i ) ,  { 4 ] ) ,  Gonzalez and Holland(1 l,l2) proposed the following postulate for 
the purpose of reducing the number of parameters to be determined experimen- 
tally, namely, 

where v is the same constant for all i. On the basis of this postulate it can be 
shown that Eq. (1 1-26) reduces to 

Gonzalez and Holland(ll,l2) showed that the adsorptions of many systems 
could be adequately described by two-layer adsorption (j = 2). 

The Fritz-Schluender isotherm In order to obtain a satisfactory fit of the ad- 
sorption data for organic liquids in aqueous mixtures, Fritz and Schluender(l0) 
used the following relationship 

where C P i  is the concentration of component i in the fluid phase in the pore, 
and C i  is the concentration of i in the adsorbed phase. Parameters to be 
determined by use of experimental data are c i ,  ui, j, and bi, ,. 

11-2 MASS TRANSFER BY THE 
CONVECTIVE TRANSPORT MECHANISM 

The name "convective transport mechanism" is given herein to mass transfer 
processes in which the rate of mass transfer can be expressed as a linear func- 
tion of a fugacity difference, a partial pressure difference, or a concentration 
difference. This name is used because this mass transfer process is analogous to 
the convective heat transfer process in which the rate of heat transfer is a linear 
function of the temperature difference, and because of the need to distinguish 
between the transfer of mass by this process and the transfer of mass by 
diffusion. 

There follows first a development of the rate expressions for the convective 
mass transport mechanism, and then the model for a fixed-bed adsorption 
column in which the rate controlling step for mass transfer is the convective 

A 4 --,.hq,,;cm 
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The Convective Mass Transport Mechanism 

The convective mass transport mechanism is based on the two-film theory of 
mass transfer. The rate expressions based on this theory may be formulated by 
consideration of the case where a fluid phase is passed through a fixed adsor- 
bent bed. Suppose that the concentration is constant in the radial direction (the 
direction perpendicular to the direction of flow). 

A sketch of the concentration profile is shown in Fig. 11-2. The rate of mass 
transfer of component i from the bulk conditions of the fluid phase to the 
interface is given by 

rdi = kdi a,,(Cdi - Cl i )  (1 1-30) 

where rdi = moles transferred per unit time per unit volume of empty bed 
a, = interfacial area between the fluid phase and the solid phase per unit 

volume of empty column 
Cdi = concentration of component i at  the bulk conditions of the fluid 

stream, moles per unit of void volume (the free volume between the 
pellets), C:i is the concentration on the fluid side of the interface 

kdi = mass transfer coefficient (volume of empty column per unit of time 
per unit of interfacial area) 

The rate of transfer across the interface is assumed to be very fast relative to the 
other steps, which amounts to the assumption that a dynamic equilibrium exists 
at the interface, that is, 

Cli = mi CLi + bi (1 1-31) 

The rate of transfer from the interface to the adsorbed phase is given by 

where rSi = moles transferred per unit time per unit volume of pellet 
a, = interfacial area between the fluid phase and the solid phase per unit 

volume of pellet 
CSi = moles of component i in the adsorbed phase per unit volume of 

pellet 
kSi = mass transfer coefficient (pellet volume per unit of time per unit of 

interfacial area) 

Two expressions may be obtained for the overall mass transfer coefficient, 
one to be used with the solid phase concentrations and the other to be used 
with the fluid phase concentrations. First the expression for the rate of mass 
transfer in terms of the solid phase compositions is developed. Observe that 

where E = (volume of voids between the pellets)/(volume of bed) 
1 - E = (volume of pellets)/(volume of bed) 
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Thus, 

r . =  st - & )  kdi aACdi - C:i) = S as(C:i - Csi) (1 1-35) 

Linear equilibrium relationships between the fluid phase and the adsorbed 
phase are assumed, namely, Eq. ( 1  1-31) and 

where mi and bi depend on each component i but are independent of compo- 
sition and where C: is the concentration which the adsorbed phase would have 
if it were in equilibrium with a fluid phase having the concentration C d i .  The 
above relationships may be used to restate the rate of mass transfer in terms of 
the concentration difference (C; - C,,) and the corresponding overall mass 
transfer coefficient 

rsi = Ksi as(C: - CSi) ( 1  1-37) 

where 

In a similar manner, the following rate expression in terms of the concentration 
difference (Cdi  - CZi) and the overall mass transfer coefficient Kdi  is obtained: 

rdi = K d i  ad(Cdi - CZi) ( 1  1-38) 

where i 

and 

where C,*, is the concentration which the fluid phase would have if it were in 
equilibrium with an adsorbed phase having a concentration C S i .  

1 

Component-Material Balance on Component i in the Solid Phase 
over the Time Period from t ,  to t ,  + At 

First observe that r,,(l - E )  denotes the moles of component i transferred from 
the fluid phase to the solid phase per unit time per unit volume of empty 
column. 

The material balance is made on a fixed-bed adsorption column of cross- 
sectional area S through which a fluid phase is flowing. Assume that the con- 
centration is constant in the radial direction (the direction perpendicular to fluid *$ 

flow). The balance on component i in the adsorbed (or solid) phase contained in 
" 
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*I \ I I \\ ,i u, Effluent 

Figure 11-3 Sketch of a fixed-bed adsorber. 

the element of volume S Az (see Fig. 11-3) over the time period from time t ,  to 
t ,  + At is given by 

= [ ( I  - ~ ) s c ~ I  - (1 - & ) S C s i l r n , ]  dz ( 1  1-41) 
l n  + At. z 

Application of the mean value theorems followed by the limiting process 
whereby Az and At are allowed to go to zero yields 

where a,. is the total length of the adsorbent bed and the expression for rSi is 
given by Eq. (1 1-37). 

Mass Balance on Component i in the Fluid Phase 
over the Time Period At in a Fixed-Bed Adsorption Column 

In this model, which is sometimes referred to as the Glueckauf model, it is 
assumed that the fluid phase is perfectly mixed in the radial direction (the 
direction perpendicular to the direction of flow) and that the rate of mass 
transfer by diffusion in the fluid phase is negligible in all directions. Also, it is 
supposed that uf, the linear velocity of the fluid phase, is independent of time 
and position. The material balance on component i is made on the volume 
ESAZ over the time period from t ,  to t ,  + At 



Application of the mean value theorems followed by the limiting process 
wherein Az and At are allowed to go to zero yields the following result: 

- (xu, ~Scdi )  a(~SCdi) - r,X1 - E)S = --- (0 < z < z,) (1 1-44) az at 

Since u,, E, and S are assumed to be independent of time and position 

(0 < z < z,) 
" at 

Use of Eqs. (11-33) and (11-38) permits the above equation to be restated in the 
following form, which is used in subsequent developments: 

Similarly, Eq. (11-42) may be stated in the following forms by use of Eqs. 
( 1  1-33), ( 1  1-37), and (1 1-38): 

a',, 
-- = K,, a,(C,*i - 

iit 

Solution of the Glueckauf Model for the Special Case of 
the Adsorption of a Single Solute Component in a Fixed-Bed Adsorber 

Although analytical solutions have been obtained for Eqs. (11-46) and (11-47) 
for a number of different sets of boundary and initial conditions, the analytical 
solution for only one set of conditions is presented. In particular consider the 
fixed-bed adsorber shown in Fig. 11-3. It is desired to find the outlet con- 
centration CAz,, t) at any time t  after the initiation of the adsorption process at 
time t = 0. Initially, at t = 0, the amount of solute on the adsorbent is uniform 
for all z and its concentration is denoted by C,(z, 0). For all t  > 0, the adsorbent 
is contacted with a gas which has a solute concentration C j  at z = 0. More 
precisely 

at t = 0, C,(z, 0) = C: for all z (1 1-48) 

at z = 0, CAO, t )  = C: for all t (1 1-49) 

In the development which follows, it is supposed that the carrier fluid is 
dilute in the solute (the component which is to be adsorbed). Consequently, it 
can be assumed with good accuracy that the molar density is independent of 

FUNDAMENTALS OF ADSORPTION PROCESSES 377 

time and position. Thus 

C d = ~ , ~  C t = ~ d w  (1 1-50) 

where y is the mole fraction of the solute in the fluid phase and w is the mole 
fraction which the solute would have if it were in equilibrium with the adsorbed 
(or solid) phase. Thus, Eq. (1 1-46) may be restated in the following form: 

Use of Eq. (11-40) and the above definitions of the mole fractions permits Eq. 
( 1  1-47) to be restated in the form 

As demonstrated by others (Refs. 23, 26), the partial differential equations given 
by Eqs. (11-51) and (11-52) may be reduced to simpler form by making the 
following changes of variables. Let 

The partial derivatives appearing in Eqs. ( 1  1-51) and ( 1  1-52) are computed in 
terms of the new variables by use of the chain rule as follows: 

a y  a~ c 7 ~  a y  aq ay irr ---- - +- -= - -=  - - 
i i t  a ~ ~ t  n q a t  a ~ a t  m ( l - ~ )  K d a d  I iiy at 

Substitution of the results given by Eq. ( 1  1-54) into Eqs. (1 1-51) and ( 1  1-52) 
yields 

The initial condition and boundary condition corresponding to Eqs. (1 1-48) and 
( 1  1-49) are 

w(q, 0) = w0 at 7 = 0 for all q 

~ ( 0 ,  T) = yo at = 0 for all 7 



FUNDAMENTALS OF ADSORPTION PROCESSES 379 

Equations (1 1-55) through (1 1-58) were first solved by Anzelius(2) for an ana- 
logous problem in heat transfer. Furnas(9) extended the work of Anzelius and 
presented solutions in the form of charts. Hougen and Marshall(l4) formulated 
and solved the adsorption problem stated. The problem may be solved by use 
of Laplace transforms in a manner analogous to that demonstrated by Mickley 
et a1.(26); see Prob. 11-7. The results are as follows: 

and 

A graph of the behavior predicted by Eq. (11-60) is presented in Fig. 11-4 
for an adsorber of length z ,  = 50 cm. Other parameters for the adsorber are 
Kdad = 0.10 s- ' ,  uf = 0.14 cm/s, m = 1.1, and E = 0.50. For this set of par- 
ameters, the corresponding value of q = 71.43. Observe that there is no appreci- 
able amount of solute in the effluent from T = 0 up to r equal to approximately 
25. For T > 25, the breakthrough of the solute occurs. At T r 110, the adsorbent 
is saturated with the solute and z(q, T) yo. 

Leland and Holmes(20) pointed out that the designer wishes to know not 
the instantaneous concentrations of the gas leaving the bed at any time but, 
rather. the cumulative fraction recovered out of the total quantity of a given 

Figure 11-4 Breakthrough curve predicted by Eq. (11-60). (z, = 50 cm, K,a, = 0.1 s- ' ,  u, = 

cm/s, c = 0.50, m = 1.1, rj = 71.43.) 

component entering the bed during the adsorption cycle. The cumulative frac- 
tion recovered is defined by 

Equation (1 1-60) may be used to reduce Eq. (1 1-61) to 

For the case where wo = 0 and the holdup in the vapor phase is negligible 
(T = [Kdad/m(l - &)It), Leland and Holmes(20) present a graph of 4(t). 

11-3 THE ROLE OF PORE AND SURFACE DIFFUSION 
IN THE ADSORPTION PROCESS 

As outlined at the outset, transport by diffusion may occur in the fluid stream 
exterior to the adsorbent as well as within the pore and on the surface of the 
adsorbent. In the following development, two special cases are considered. In 
the first of these, pore diffusion is assumed to be the rate-controlling step and in 
the second special case, pore diffusion plus surface diffusion are assumed to be 
the rate-controlling steps. All other steps in series with these are assumed to be 
"fast" (they have very large rate constants relative to the two diffusion steps 
under consideration). The adsorption step is also assumed to be fast. 

Pore Diffusion 

In 1909, McBain(25) initiated the study of adsorption rate processes. Any lag in 
the adsorption process was attributed by McBain to the inaccessibility of the 
adsorbent surface to the molecules being adsorbed. McBain assumed that the 
measurable process could be attributed to the transport of the adsorbed mol- 
ecules through the solid solution on the surface. However since the transport 
along the surface was assumed to proceed by Fick's law, the general form of the 
solution is the same as for diffusion through the pore. 

In the present treatment, the adsorbent is assumed to be cylindrical and the 
pores are taken to be in the direction of the principal axis as shown in Fig. 
11-3. Let S denote the cross-sectional area of the pellet and E, the fraction of 
voids (volume of pores/volume of the pellet). Suppose that initially each pore is 
filled with an inert gas. At time t 2 0, the pure solute is introduced at each end 
of the pore at z = 0 and z = L. The transport of the solute to the interior of the 
pellet and the inert gas to the exterior is assumed to occur by Fick's law 



where Jpi = moles of solute i diffusing into the pore in the positive direction of 
z per unit time per unit of pore area perpendicular to the direction z 

Cpi = concentration of solute i, moles per unit of pore volume 
DPi = diffusion coefficient for component i in the pore 

In the following material balance on the solute component, the subscript i is 
dropped as a matter of convenience. The material balance on the solute in the 
element of pore volume from zj to zj + Az and over the time period from t ,  to 
t, + At is given by 

Application of the mean-value theorems followed by the limiting process 
wherein Az and At are allowed to go to zero yields 

If E ~ ,  Dp, and S are taken to be independent of time and position, then Eq. 
(1 1-65) reduces to 

The initial and boundary conditions stated above many be quantified as 
follows: 

Cp(O, t )  = c; (z = 0, t  > 0) 

C,(L, t) = C i  ( z  = L, t > 0) (1 1-67) 

The solution which satisfies the partial differential equation, the initial con- 
dition, and the boundary conditions is 

where 6 = D,Tc*/L~. This solution may be obtained by the product method as 
outlined in Prob. 11-9. The behavior predicted by Eq. (11-68) is shown in Fig. 
11-5 for a system described by the following parameters: C; = 0.001 gn/cm3, 
L = 0.1 cm, and D, = 8.0 x cm2/s. For each of several times, the con- 
centration profile of the solute as a function of pore length is shown. Since the 

(I 
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Fract~on ol pore Icngth, zll. 

Figure 11-5 Concentration profiles in the pores as predicted by Eq. ( 1  1-68). (C: = 0.001 gm/cm3, 
L = 0.1 cm, and D, = 8.0 x 10-' cm2/s.) 

pore was assumed to be open at both ends (see Eq. (11-67)), the minimum of 
each profile occurs at zIL = 0.5. Initially, when little of the solute has been 
adsorbed, the profiles are seen to be relatively steep. As the amount of solute 
adsorbed increases (with time), the profiles become flatter. 

Now let the accumulation of solute within the pore over the time period 
from t = 0 to any time t be denoted by Q. Since J ,  is the rate of diffusion of the 
solute in the positive direction of z, it follows by the law of conservation of 
mass that the material balance for the solute over the time period from t = 0 to 
any time t is given by 

accumulation of solute 
from t = 0 to anv t ) (1 I-69) 

-- ---- -- v~- ' / 

lnput of solule output  of solute 
a t z = O  a t z = L  

Use of Eqs. (1 1-63) and (1 1-68) yields the following result upon carrying out the 
integration indicated by Eq. (1 1-69): 

TCZ m e - ( 2 m - l ) 2 S r  
Q = L c O  -- 

"nsL [ 8 2, (2m - I)' 1 



Simultaneous Pore Diffusion and Surface Diffusion 

The model in which the slowest step is the simultaneous diffusion through the 
pores and the solid appears to have been proposed first by Damkohler(7). The 
further assumption that a state of equilibrium exists between the gas phase and 
the adsorbed phase at each z  throughout each pore is made, that is, 

C, = mCp + b (1 1-71) 

where the subscript i has been dropped because only one component, the solute, 
is assumed to be a candidate for adsorption. Initially the pore is filled with an 
inert component which is not adsorbed. At time t 2 0, pure solute is available 
at the entrance (z = 0) to the pore, and the pore is assumed to be closed at the 
other end (z = L). 

Let the rate of diffusion of the solute i along the surface of the pore be 
denoted by 

where J S i  = moles of solute i diffusing in the positive direction of z per unit time 
per unit of pellet surface perpendicular to z  

CSi = moles of solute adsorbed per unit volume of pellet 

A material balance on the solute over the time period from t ,  to t ,  + At 
and the element of volume of a pellet from z j  to z j  + Az is given by 

Application of the mean-value theorems followed by the limiting process 
wherein Az and At are allowed to go to zero yields 

where E, = volume of pores per unit volume of pellet 
S = cross-sectional area of the cylindrical pellet 

If it is now assumed that E,,, S, Dp ,  and D, are independent of time and 
position, Eqs. (1 1-63) and (1 1-72) may be used to eliminate J ,  and J ,  from Eq. 
(1 1-74) to give 

Use of Eq. (1 1-71) to express C, in terms of Cp yields 

where 

The following initial conditions and boundary conditions were used by Dam- 
kohler: 

The solution which satisfies the partial differential equation (Eq. (1 1-76)) and the 
conditions given by Eq. (1 1-77) is 

2 n + l  I 1 {exp [- (%I2 n2 Dt]}[sin (--)nZ] 

C C,(z, t) = c; ' 1 - - 
7-c " = o  (2n + 1) I 

Profiles of the solute concentration in the pores at different times as pre- 
dicted by Eq. (1 1-78) are shown in Fig. 11-6. The values of the parameters used 

Fraction of pore length, zlL 

Figure 11-6 Concentration profiles in the pores as predicted by Eq. (11-78). (C: = 0.001 gm/cm', 
L = 0.1 cm, D, = 8.0 x cm2/s.) 
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to obtain these profiles are as follows: CE = 0.001 g/cm3, L = 0.1 cm, D, = 
8.0 x cm2/s, D, = 1.5 x lo-' cm2/s, E, = 0.7, m = 1.1, and D = 2.745 
x cm2/s. Again, it is to be observed that at low adsorptions or small 
times, the concentration profiles are steep and become flatter as the amount 
adsorbed increases. Also, observe that the concentration gradient is zero at  
z/L = 1.0 as required by the second condition of Eq. (1 1-77). 

Damkholer obtained the following expression for the fractional approach to 
equilibrium 

where 

In addition to the solutions of McBain and Damkohler, other authors have 
obtained solutions to the partial differential for other sets of initial and bound- 
ary conditions. (See, for example, Wicke(28).) 

NOTATION 

u, = interfacial area between the fluid phase and the solid phase 
per unit volume of empty column 

a, = parameter appearing in the development of the BET equation 
a, = interfacial area between the fluid phase and the solid phase 

per unit volume of pellet 
h = a constant in Langmuir's isotherm, defined by Eqs. ( 1  1-6) and 

(1 1-7) 

b, = intercept in the linear equilibrium relationship (see Eqs. (1 1-31), 
(1 1-35), (1 1-36), and (1 1-40)) 

b, = parameter appearing in the development of the BET equation 
c = number of components in the mixture 
C d i  = concentration of component i at the bulk conditions of the 

fluid stream, moles per unit of void volume, the free volume 
between the pellets (C;,  is the concentration of component i at  
the fluid-solid interface; C: is the concentration which 
component i would have in the fluid phase if it were in 
equilibrium with component i in the solid phase with the 
concentration C,,) 

C j i  = concentration of adsorbed component i in the jth layer, moles 
per uni! mass of adsorbent 

C i  = total concentration of adsorbed component i, moles per unit 
mass of adsorbent 
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C p i  = concentration of component i in the pore of an adsorbent, 
moles of component i per unit pore volume 

Csj  = concentration of vacant sites in the jth layer, moles per unit 
mass of adsorbent 

C,, = concentration of component i in the adsorbed phase, moles per 
unit volume of pellet 

Dpi = diffusion coefficient for the diffusion of component i in the 
pore of an adsorbent, dimensions of (length)2 per unit time 

DSi = diffusion coeficient for the diffusion of component i through the 
solid phase of an adsorbent, dimensions of (length)' per unit time 

D = diffusion coefficient defined beneath Eq. (1 1-76) 
E = fractional approach to equilibrium (defined beneath Eq. (1 1-80)) 
EL = heat of liquefaction 
Ej = heat of adsorption of the jth layer 
J,, = moles of component i diffusing into a pore in the positive 

direction of z per unit time per unit of void area 
perpendicular to z (see Eq. (1 1-63)) 

JSi = moles of component i diffusing in the positive direction z 
per unit time per unit of pellet surface perpendicular to z 

k,, = rate constant for the adsorption of component i in layer j 
k;, = rate constant for the desorption of component i from layer j 
K j i  = adsorption equilibrium constant for component i adsorbed in 

layer j ( K j ,  = k, , /k; , )  
k,, = mass transfer coefficient for component i (volume of empty 

column per unit time per unit of interfacial area (see 
Eq. (1 1-30))) 

k,, = mass transfer coefficient for component i (pellet volume per 
unit time per unit of interfacial area (see Eq. (1 1-32)) 

K,,  = overall mass transfer coefficient, same units as k,, (defined 
by Eq. (1 1-39)) 

K,,  = overall mass transfer coefficient, same units as k,, (defined 
below Eq. (1 1-37)) 

L = length of pore 
mi = slope of equilibrium relationship (see, for example, Eq. (1 1-31) 

and (1 1-36)) 
P = total pressure 
pi = partial pressure of component i 
q = energy per molecule (see Eq. (11-7)) 
Q = accumulation of adsorbed solute (defined by Eq. (11-69)) 
r,, = moles of component i transferred per unit time per unit volume 

of empty bed 
r,, = moles of component i transferred per unit time per unit volume 

of pellet 

s, = surface area covered by j layers (appears in the development of 
the BET equation) 



386 SOLUTION OF PROBLEMS INVOLVING CONTINUOUFSEPARA110N PROCESSE( 

S = cross-sectional area 
Sj = moles of sites on surface Sj-,  which are covered by adsorbed 

molecules 
t = time 
T = temperature 
u, = linear velocity 
v = volume of gas adsorbed (at 0°C and 1 atm) per unit mass of 

adsorbent 
v, = volume of gas adsorbed (at 0°C and 1 atm) per unit mass of 

adsorbent when the adsorbent is covered with a complete 
unimolecular layer 

w = mole fraction which the solute would have in the fluid phase 
if it were in equilibrium with the adsorbed phase 

y = mole fraction of solute in the fluid phase 
z = positive direction for mass transfer 

Greek Letters 

cc = fraction of the molecules striking the surface which stick 
6 = constant appearing in Eq. (11-68) 
E = volume of voids between the pellets per unit volume of bed 
c p  = volume of pores per unit volume of pellet 
v = rate of evaporation from a completely covered surface (also 

used to denote the ratio defined by Eq. (11-28)) 

p = number of molecules striking a unit surface per unit time 
4, = a parameter defined by Eq. (11-21) 
< = dummy variable of integration 
0 = fraction of the adsorption surface covered by a unimolecular 

layer of adsorbed molecules 
p ,  = density of the fluid phase 
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PROBLEMS 
I 

11-1 O n  the basis of the postulate given by Eq. (1 1-27), show that 
( a )  K , ,  = v K , , ;  K , ,  = v Z K z i ;  ...; K, ,  = v n - ' K , ,  
(h )  bZ = 4 ,  = v 2 b 1 ;  ...; 4" = v n - l b l  

11-2 O n  the basis of the relationship given by Eqs. (1 1-19) and (11-27), show that the ratio of the 
concentration of component i to that of any arbitrary component k in the jth layer is equal to this 
same ratio in the j + 1st layer, that is, show that 



11-3 O n  the basis of the relationship given by Eq. (11-27), show that the relationship given by Eq. 
( 1  1-28) follows a s  a consequence from Eq. (1  1-26). 

11-4 ( a )  When the rate expressions for the transfer of mass to and from the interface of the 
adsorbent are given by Eq. (11-35) and the relationship between concentrations in the adsorbed 
phase and the fluid phase are given by Eq. (1 1-36), obtain the expression given by Eq. (11-37) for rSi 

and the formula given below it for the overall mass transfer coeficient K , i .  
(h) Obtain the expression given by Eq. (11-38) for r,, and Eq. ( 1  1-39) for K d i .  

11-5 Use the mean-value theorems and the appropriate limiting process needed to obtain Eq. 
(11-42) from Eq. (1 1-41). 

11-6 In the same manner as described in Prob. 11-5, obtain Eq. (1  1-44) from Eq. (1  1-43). 

11-7 Use Laplace transforms to solve Eqs. (11-55) and (1 1-56) subject to the initial condition and 
boundary condition given by Eqs. ( 1  1-57) and (1  1-58). 

11-8 Apply the mean-value theorems and the limiting process required to reduce Eq. (11-64) to Eq. 
(I 1-65). 

11-9 ( a )  Obtain the solution which satisfies the partial differential equation given by Eq. (11-66) 
and the conditions given by Eq. (11-67). T o  solve by the product method for the separation of 
variables, the following suggestion is made for obtaining the solution given by Eq. (11-68). 

Hint:  Define a new function V ( z ,  t )  and b ( z )  as  follows: 

C,(z, t )  = V ( z ,  t )  + &z) 

where @(z) is further defined by 

b ( 0 )  = c; ( 1  > 0 )  

& ( L )  = c; ( I  > 0 )  

(h) Obtain the expression given by Eq. ( 1  1-69) for the accumulation Q. 

11-10 ( a )  Obtain the solution given by Eq. (11.78) which satisfies the partial ditferential equation 
(Eq. (11-76)) and the conditions given by Eq. (11-77). 

Hint: Define the new functions V ( z ,  t )  and b ( z )  as  follows: 

C,(z.  1 )  = V ( z ,  I )  + b ( z )  

(b) Obtain the result given by Eq. (11-79). 

11-11 Show that Eqs. ( 1  1-46) and (11-47) may be a 

172 

: restated in the forms given by Eqs. (11-51) and 

(1 1-52), respect~vely 

11-12 Use the change In vdrldbles glven by Eq (11-53) to transform Eqs (11-51) and (11-52) to the 
form glven by Eqs (1 1-55) and (1 1-56) 

CHAPTER 

TWELVE 

SEPARATION OF 
MULTICOMPONENT MIXTURES 

BY USE OF ADSORPTION COLUMNS 

In Sec. 12-1 the Glueckauf model which was developed in Chap. 11 is used to 
model the separation of a multicomponent mixture in a fixed-bed adsorption 
column. The equations are solved by use of a combination of the method of 
characteristics and the trapezoidal rule. The results predicted by the model for a 
typical column are compared with the observed experimental results (see Exam- 
ple 12-1). 

In Sec. 12-2 a model based on pore and axial diffusion is developed. The 
method of solution consists of a combination of orthogonal collocation and the 
semi-implicit Runge-Kutta method. In Example 12-2, the results predicted by 
the model are compared with those observed experimentally. 

In Sec. 12-3 a model for an adiabatically operated fixed-bed adsorption 
column is developed. The equations describing the model are solved by use of a 
combination of the method of characteristics, the trapezoidal rule, and the 
Newton-Raphson method. 

In Sec. 12-4, a brief description of the periodic operation of a commercial 
adsorption column is presented. 

12-1 THE GLUECKAUF MODEL 

The equations for this model were developed in Chap. 11. Isothermal operation 
and perfect mixing in the radial direction of the column were assumed as well 
as a negligible change in the flow rate of the gas stream through the bed. The 
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rate of mass transfer is given by 

ac . 
r .  =L= K st . a J C .  - Csi) (12-1) 

at 

A mass balance on any component i is given by 

The initial conditions and the boundary conditions are as follows: 

C,,(z, 0 )  = C,Oi (0 5 z 5 z,, t 1 0 )  (12-3) 

Cdi(z,O)=O ( O < Z I Z ~ , ~ S ~ )  (12-4) 

Cdi(O, t )  = C:i (z = 0,  t > 0 )  ( 1  2-5) 

Elimination of the time derivative of Csi from Eq. (12-2) by use of Eq. (12-1) 
gives 

Let the following dimensionless variables be defined 

u t  , = L z = 5 Csi = c,,/c,:." 
z T Z T  

C,*i = c,*,/C,*,O C,*,O = C,*,(Cji) = gi(C:i) ( 1  2-7) 

Cdi = cdi/c:i 
where the gis are the functional forms of the equilibrium relationships which 
are shown below. After the change in variables has been made, Eq. (12-6) 

i 
reduces to 

f 
t 

---- + ---- = - aCdi 

(u:~: ) (E  1 I )  K , ~  as c,*,o(c,*, - c,~) 
(12-8) 

8Z dr 

Similarly, with the change in variables given by Eq. (12-7), Eq. (12-1) becomes 

"si  - 

("s;;zT) 
-- (C: - Csi) ( 1  2-9) a7 

and the initial and boundary conditions in terms of the new variables are 

CSi(Z, 0)  = C,O,IC:O (0 5 z I 1 ,  7 < 0)  (12-10) 

Cdi(Z, 0)  = 0 ( O I Z I  1 , 7 5 0 )  (12-11) 

Cd,(0, 7 )  = 1 ( Z  = 0, 7 > 0) (12-12) 

Equations (12-8) and (12-9) may be solved by the Method of Characteristics 
as described in Chap. 10. The choice of the characteristics is made as outlined 
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below. Expansion of Cdi by the chain rule gives 

Let dr/dZ = 1 for characteristic I .  Thus, Eq. (12-13) becomes 

xdi acdi 
- + - (along dz/dZ = 1 )  az a7 

and Eq. (12-8) is reduced from a partial to an ordinary differentia! equation, 
namely, 

) = ( K i a  C O (  - Csi) (along dr/dZ = 1 )  (12-15) 
uf C:i 

Consider now the reduction of Eq. (12-9) from a partial to an ordinary 
differential equation by the Method of Characteristics. Expansion of csi by the 
chain rule gives 

Let dZ/dt = 0, or Z =constant for characteristic 11. Thus, Eq. (12-16) 
reduces to 

(2) - " s i  (along Z = const) 
I ,  ar 

and consequently Eq. (12-9) becomes 

( )  = ( ( c  - ) (along z = const) ( 1  2- 18) 

Next, for convenience, let the quantities 1 and 0 be defined as follows: 

Then the two ordinary differential equations which are to be solved simul- 
taneously are 

= Z(C; - cSi) (along dr/dZ = 1 )  

r )  = - C.) (along Z = const) 
II 
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Values of the mass transfer coefficient K,,a,  for each component were esti- 
mated separately by Balzi et al.(l) by matching the model predictions to the 
single-component breakthrough curves from a column 41 cm long. 

Example 12-1 A liquid mixture of butanol-2, t-amylalcohol, and phenol is 
passed over a fixed-bed adsorption column which contains activated carbon 
as the adsorbent. On the basis of the Glueckauf model developed above, 
determine the concentration profiles for Cd,(z, t), Cd2(z, t) and Cd3(z, t) for 
columns having lengths z, = 0.41 m, and z, = 0.82 m. Butanol-2 1s denoted 
as component 1, t-amylalcohol as component 2, and phenol as component 3. 

The equilibrium relationships for this ternary system are given by 

The values of the system parameters are: u, = 0.002 72 m/s, E = 0.5, K,,  
a, = 6912 s-' ,  KS2as = 6336 s-' ,  KS3a, = 4248 s ' ,  C> = C$ = CL = 0, 
c:, = 0.915 kg/m3, C:, = 0.912 kg/m3, and C:, = 0.997 kg/m3. The adsor- 
bent material was Filtrasorb 400, and the above values were taken from 
Ref. 1 .  

-G\ueckauf model 
experimental data (column length = 41 cm) 

0 5 o experimental data (column length = 82 cm) 

Figure 12-1 Breakthrough curve of butanol-2 in simultaneous three-component adsorption 
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1.5 - - 

- -~ - -- - - -- - -- - 

-Glueckaul model 
0 experimental data (column length = 41 cm) 
0 experimental data (column length = 82 cm) 

Ib I; 20 22 

Figure 12-2 Breakthrough curve of t-amylalcohol in simultaneous three-component adsorption 

Equations (12-21) and (12-22) were solved simultaneously for this 
system through the use of the trapezoidal rule in a manner similar to that 
described for Example 12-3 except for the fact that the semi-implicit Runge- 
Kutta method was used in Example 12-3 in lieu of the trapezoidal rule. The 
results obtained by the solution of the Glueckauf model for this example 
are presented in Figs. 12-1 through 12-3. 

Although the Glueckauf model predicts the appropriate trends, it does not fit 
the experimental data very well. In the case of phenol, the breakthrough times 
predicted are much later than those observed experimentally. This discrepancy 
between theory and experiment is attributed primarily to the fact that in the 
Glueckauf model, the resistance to intraparticle diffusion was neglected. Also 
axial diffusion of mass in the flowing stream was neglected in this model. In the 
next section a more comprehensive mass diffusional model is presented. 

- Glueckauf niodel 
O experimental data (column length = 41 cm) 
o experimental data (column length = X2 cm) 1 

Figure 12-3 Breakthrough curve of phenol in simultaneous three-component adsorption 
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12-2 THE FILM RESISTANCE AND DIFFUSION MODEL 

The adsorption of solute components from a fluid stream as it passes through a 
fixed-bed adsorption column may be represented by a model which is based on 
three transport mechanisms. These mechanisms are as follows: (1) axial diffusion 
in the direction of flow of the fluid, (2) transfer of the solute from the bulk 

r l* 

conditions of the fluid stream to the opening of the pore, and (3) transport of 
the solute through the pore by diffusion. The development of the equations 
required to describe this model follow. 

Material Balance on Component i in the Fluid Stream 1 
Consider a cyclindrical adsorption column which is filled with cyclindrical pel- 
lets through which the fluid stream containing the solutes is flowing. Let the 
cross-sectional area of the column be denoted by S and the linear velocity of 
the stream by u, . 

In the development of the first equation given below it is supposed that the 
adsorbent pellets are cyclindrical. Mass transfer from the fluid stream to the 
ends of the pellets is taken to be negligible in order to avoid the difficulty of 
treating two-dimensional diffusion within the pellets. Pore diffusion is assumed 
to occur in the radial direction in the pellets and from the exterior of the pellet 
at r = r, to the principal axis of the pellet at r = 0. 

The rate of mass transfer of a solute in the axial direction (the direction of 
flow of the fluid stream) by diffusion is denoted by JLi (moles of solute i 
diffusing in the positive direction of z per unit time per unit of void area 
perpendicular to the direction z) and 

a c d ,  
J1,; = - DLi -- (12-26) 

az 
The rate of mass transfer from the bulk conditions of the fluid stream to the 

external pellet surface (the opening of the pores) is given by 
I 

rlai = KLi 4Cdi  - Cpi) (1 2-27) 

where rLi = moles of solute i transferred per unit time per unit of pellet volume 
a = surface area of the cyclindrical pellet per unit of volume of the 

pellet = (2nr0 L)/(nr; L) = 2/r0 

The material balance on solute r over the time period from t ,  to t ,  + At over 
the element of volume of the adsorption bed from z to z + Az is given by 
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Application of the mean-value theorems followed by the limiting process 
wherein Az and At are allowed to go to zero gives the following result upon 
observing that z, and t ,  were arbitrarily selected 

Substitution of the expressions for JLi and rLi into Eq. (12-29) yields 

For the case where the column is filled with spherical pellets, the material 
balance corresponding to Eq. (12-30) is obtained by replacing 2/r0 in Eq. (12-30) 
by 31~0. 

Pore Diffusion 

After the solute molecules have been transported from the bulk conditions of 
the fluid phase to the exterior of the pellets, they are transported to the interior 
of the pellets by the mechanism of pore diffusion. For diffusion in the positive 
direction of r instead of z, the variable z is replaced by the variable r in Eq. 
(12-26) to obtain the following defining equations for the pore and solid phase 
diffusion rates Jpi and J,, , respectively: 

Again, as in the case of cylindrical pellets, mass transfer through the ends of the 
pellet is neglected in order to avoid the necessity for treating two-dimensional 
diffusion within the pellet. 

Material balance A material balance on solute i in the element of volume from 
zj to zj + Az (the direction of fluid flow of the fluid stream) and r, to r, + Ar 
over the time period from t ,  to t ,  + At is given by 

rn + A ,  z J + A z  

I 

= in 6, 2nr[(Ep c P ,  + cSd 1 - (rP Cpt + c.)/ ] dz  dr (12-33) 1 t n + A ~ . z . r  In. I, r 

, where ep = volume of pores in the pellet per unit of volume of pellet 
I 

Application of the mean-value theorems to Eq. (12-33) followed by the limiting 
process wherein Az. Ar, and At are allowed to go to zero, and observing that z,, 
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r,, and t, were all arb~trarily selected yietds 

ac ac ac,, 
Ld[r(~pDp,--$+Du- r ar "st)] ar = &  >+- at at (12-34) 

For the case where the column is filled with spherical pellets and r denotes .. - ~ 

the radius of the sphere, Eq. (12-33) becomes 

f"" [4nr2(&, J, + JA - 4nr2(cp~pi + .lSi) I,, +... J d t  

= 1:' +An47tr2 [(Ep cPi + cSi) I 
r" + A t ,  r 

and the corresponding partial differential equation is given by 

The cross-diffusion coefficients Dpij for components i and j were taken equal to 
zero for i # j (DPij = 0, i # j) in this development. Liapis and Litchfield(2) 
showed that the cross coefficients are one or two orders of magnitude smaller 
than the Dpi,'s and may be neglected with good accuracy. 

It has been the practice in the application of the film resistance and diffu- 
sion model to consider the pore diffusion to be fast relative to the parallel 
mechanism of solid diffusion, that is Jpi % JSi .  Also, since, physical adsorption is 
assumed to be exceedingly fast, a state of equilibrium between the pore phase 
concentration C,, and the adsorbed phase concentration Csi is assumed, that is, 
the following form of the chain rule may be used to evaluate dC,,/iit: E 

In view of the assumption that Jpi % Jsi and Eq. (12-37), the material balances 
given by Eqs. (12-34) and (12-36) reduce to 

1 ac ac; ac,, - = &  -+ C - (12-38) 
r3 ar dt j = l  acpj at 

where a = 1 for cylindrical pellets, and a = 2 for spherical pellets. 

Initial and boundary conditions for the film resistance and diffusion model In- 
itially it is supposed that the concentrations of the solutes are equal to zero 
throughout the adsorption bed, that is, 

The boundary condition at the inlet z = 0 of the adsorption bed is given by 
making a material balance at z = 0 

At the outlet of the adsorber (z = z,), mass transfer by diffusion ceases or 
JLi = 0, and thus 

(This boundary condition is analogous to the one in heat transfer in which the 
end of a bar is perfectly insulated.) 

The rate of convective mass transport rLi from the fluid phase to the surface 
(r = r,) of a cyclindrical pellet plus the rates of pore and solid diffusion in the 
positive direction of r at r, must be equal to zero since there can be no 
accumulation at the surface r = r,. Thus, at any time t 

where it is supposed that the pellets are placed end to end in the direction z. 
Since the above holds for all z (0 < z < z,), it follows that 

For a spherical pellet, the material balance corresponding to Eq. (12-43) at any 
t > 0 is given by 

which is seen to reduce to Eq. (12-43). Since the assumption has been made that 
pore diffusion is fast relative to solid diffusion (JSi < J,,), the above equations 
may be simplified by setting Jsi = 0 to give, for either a cyclindrical or a 
spherical pellet, 

' p ~ p i ~ l  dr ro - K ~ I c d i  - Cpi) = O  (0 a z r z,, t > 0) (12-4s) 
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Along the axis (r = 0) of each cyclindrical pellet, symmetry requires 

aCsi % -- = O  ( O < z < z , , t > O )  (1 2-46) 
ar l r = o  - ar I,=, 

Similarly, at  the center of each spherical pellet, symmetry requires the condition 
given by Eq. (12-46). 

It is supposed that initially a state of equilibrium exists between each com- 
ponent in the fluid phase within the pore and the adsorbed solute on the 
surface. The distribution of component concentrations at t I 0  is assumed to be 
independent of z. Thus 

The values Cz.(r) may be computed by use of the appropriate isotherm and the 
specified values of C:i(r). 

Example 12-2 A mixture of butanol-2 and t-amylalcohol is passed through 
a fixed-bed adsorption column. On the basis of the mass transfer model de- 
veloped above and the assumption that solid diffusion makes an insignifi- 
cant contribution to the transport of mass, the values of Cd,(t, z) are to be 
predicted at z = z,. Butanol-2 is taken as component 1 and t-amylalcohol 
as component 2. The equilibrium isotherms for the binary system over the 
adsorbent Filtrasorb 400 are 

Perform the calculations for two different column lengths, z, = 0.41 m and 
z, = 0.82 m. The values of the parameters of the system are shown in Table ! 

12-1. The values of these parameters were taken from Ref. 3. 
Solve the example by use of a combination of the method of orthogonal 

collocation and the third-order semi-implicit Runge-Kutta method of 
Michelsen (see Chaps. 1, 9, and 10). i 
SOLUTION The method of orthogonal collocation is applied by first 
choosing a new set of variables which have values lying between 0 and 1. 
Consider first Eq. (12-30) as modified for a spherical pellet and let 
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Table 12-1 Values of the par- 
ameters for Example 12-2, the ad- 
sorption of the binary mixture of 
butanol-2 and t-amylalcohol on 
Filtrasorb 400 adsorbent (Ref. 3) 

Parameter Units Numerical value 

C01 g/cm3 0.001 
Co 2 g/cm3 0.001 
C O  z )  g/cm3 0.0 
Cd2(0, Z) g/cm3 0.0 

C P  r g/cm3 0.0 
C P  r g/cm3 0.0 

D L  1 cm2/s 0.04 
DL, cm2/s 0.04 

DPl cm2/s 7.40 x 

D,2 cm2/s 13.03 x 

K L ,  cm/s 2.12 x 

K L ~  cm/s 1.68x10-' 

r 0 cm 0.05 
U~ cm/s 0.28 
E . . . . .  0.5 

. . . - .  0.94 

Also C&, is used to denote the concentration of adsorbed solute i at equi- 
librium when the fluid phase concentration is C,, at z < 0. When the 
change in variables listed by Eq. (1) is made, Eq. (12-30) for spherical pellets 
reduces to 

where 
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For spherical pellets, Eq. (12-38) for pore diffusion reduces to the fol- 
lowing expressions for components 1 and 2: 

ac ac E A ( a;2 >) 
$ 1 - - $ + $ 2 ~ = ~  dr '-0 4 p 2 + b a c  a P (4) 

a c  A_- 4 p > + 6 %  a2c 
$ 3  + + *4 - st2 ( a p 2  a P I (5) 

where 

C&I a e l  
$I="++--  $ 

-- - 

COI ac,1 - C01 dCp2 

" ' (AoShl c, KL2 Co2 

Restatement of the initial and boundary conditions (Eqs. (12-39) 
through (12-41). (12-45), (12-46), and (12-47)) in terms of the new variables 
yields 

Cdi = O (0 2 5 I 1, T 2 0 )  (6) 

1 dCdi 
.dilO> '1 = + (%)I (5 > O) (7) 

; = o  

( 0 1 5 2 1 , ~ > 0 )  (11) 

When the method of orthogonal collocation is applied to the space vari- 
ables 5 and p ,  Eqs. (2) through (5) and (6) through (1 I) become 

SEPAR( JN OF MULTICOMPONENT MIXTURES BY USE OF ADSORPTION COLUMNS 401 

where a , ,  a, ,  ..., a, are defined beneath Eq. (3) and N is equal to the 
number of interior collocation points. Equations (4) and (5) become 

The initial and boundary conditions given by Eqs. (6) through (I I) become 

It should be noted that the boundary points 5 = 0 and 5 = 1 are taken 
as external collocation points in Eqs. (2) and (3), whereas only the boundary 
point p = 1 was taken as an external collocation point. 

Equations (17) through (20) may be used to reduce the number of terms 
in the summations in Eqs. (12) and (13) to 1 = 2 to 1 = N + 1 by use of the 
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following procedure. First, Eqs. (17) through (20) are solved for C d , . ,  , 
c d 2 ,  c d l , N + 2 ,  and c d 2 , N + Z  to  give the following expressions: 

Pei A l , l  A ~ + 2 . 1  

A 1 , ~ + l  l = 2  A 1 , N + l  A ~ + 2 , N + 2  
C d i .  1  = (i = 1 ,  2) (24) 

pei 1 . 1  A N + , ,  1  

Pe, N +  I  

+ C c d i .  1  
- A , , ,  - Pei I = ,  - Pei A N + , , ,  

C d i .  N + 2  = (i = 1 ,  2) (25) 
A ~ + 2 . ~ + 2  - A I . N + 2  

Use of the four expressions (Eqs. (24) and (25) with i = 1, 2) to  eliminate the 
concentrations at  5 = 0 and 5 = 1 ( c , , ,  , , Cd2. ,, C d l , N + 2 ,  c d 2 , N + 2 )  from 
Eqs. (12) and (13) results in a reduction of the number of terms in the 
summations. After the above substitutions have been made, the summations 
in Eqs. (12) and (13) run from 1 = 2 to 1 = N + 1. For convenience, let these 
resulting forms of Eqs. (12) and (13) be denoted by Eqs. (12') and (13'). 
Although Eqs. (12') and (13') are readily obtained by direct substitution, 
they are not presented because of their complexity. The { A j , [ )  and { B j , l )  

were evaluated on the basis of power series in the concentrations as out- 
lined in Probs. 12-1 through 12-3. The orthogonal polynomials were taken 
to be the Jacobi polynomials P'$."(<) of order N = 8. The roots of these 
polynomials were taken as the interior collocation points. Liapis and 
Rippin(3) showed that the results obtained with N = 8 differed from those 
for N > 8 in the fourth digit, thereby justifying the use of only 8 collocation 
points. 

Equations (22) and (23) may be used to reduce the sums in Eqs. (14) 
and (15) such that they are taken from I = 1 to 1 = N as shown below. 
Solution of Eq. (22) for C,, ,  ,,, + , yields 

4 
e d l , j  -- C A N + 1 . I C p l , l  

Shl , = I  
C p l ,  N +  1  = 4 

(26) 

1 + - A N + I . N + I  
Sh 1 

and Eq. (23) yields 
4 

' d 2 ,  j  -- ~ A N + l , I C p 2 , 1  
- Sh2 I = ,  

C p 2 . ~ + l  4 (17) 
1 + - A N + I . N + I  

Sh2 

Use of these expressions to eliminate c p l ,  , + ,  and C , , , , +  , from Eqs. (14) 
and (15), respectively, yields two expressions having summations ranging 
from 1 = 1 to 1 = N ,  and these are denoted for convenience by Eqs. (14') 

r 
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and (15'). In these equations, the concentrations corresponding to p = 1 
have been eliminated. The collocation was performed by use of the roots of 
the orthogonal polynomials P$'.O)(p) of order N = 8, and the number of the 
interior points of the collocation process was taken to be 8. It should be 
noted that the polynomials for C,, and cp2 were constructed such that the 
boundary conditions at p = 0 were satisfied (see Eq. (11) and Prob. 12-2). 

Thus, the problem has now been reduced to solving simultaneously the 
equations denoted by Eqs. ( I T ) ,  (13'), (14'), (15') and the initial conditions 
given by Eqs. (6)  and (9). Equations (12') through (15') constitute 4N equa- 
tions; in 4N unknown concentrations (exclusive of the initial concentrations 
which are given by Eqs. (6)  and (9)). This set of equations was solved by the 
semi-implicit Runge-Kutta method as modifed by Michelsen. This method 
is applied to the above set of differential equations in the same manner 
demonstrated in Chaps. 1, 6 ,  and 9. The time step A t  which corresponds to 
h in the semi-implicit Runge-Kutta algorithm was varied between 0.001 at 
the beginning of the simulation when the equations were very stiff to  0.1 as 
the stiffness of the ordinary differential equations became less pronounced. 

The results of the simulation are shown in Figs. 12-4 and 12-5. It is 
seen that good agreement between the predicted results and the experimen- 
tal results is obtained. An interesting phenomenon to be observed is the fact 

Figure 12-4 Outlet concentrations (( = 1) predicted by the film resistance and diffusion model, 
Example 12-2. ( 0 :  experimental data, ----: predicted results, z, = 0.41 m.) ( A .  I. Liapis and 
D.  W .  T .  Rippin: " T h e  Simulation of Binary Adsorption in Activated Carbon Columns Using 
Estimates of Diffusional Resistance within the Carbon Particles Derived from Batch Experi- 
ments," Chem. Eny. Sci., uol. 33, p. 593 (1978), Courtesy Pergamon Press.) 



Figure 12-5 Outlet concentrations ( 5  = I )  predicted by use of the film resistance and diffusion 
model, Example 12-2. ( 0 :  experimental data, - - :  predicted results, z, = 0.82 m.) ( A .  1. Liapis 
and D. W .  T .  Rippin: "The  Simulation of Binary Adsorption in Activated Carbon Columns 
Using Estimates (f Dlffu~irs~onal Resistance within the Carbon Particles Derived from Batch 
Experiments," Chetn. Eng. Sci., t.01. 33, p. 593 (IY78), Cotrrtesy oJPergamon Press.) 

that the outlet concentration of the less preferentially adsorbed component, 
butanol-2, exceeds its inlet concentration to the adsorption column for a 
certain period of time, which is indicative of the behavior of competitive 
multicomponent adsorption. 

I 
12-3 ADIABATIC OPERATION OF A FIXED-BED 
ADSORPTION COLUMN 

In the following model for a fixed-bed adsorption column, the operation is 
adiabatic in the sense that the column is perfectly insulated (no heat losses). The 
mass transfer model is analogous to the one described in Sec. 11-1 in that the 
rate-controlling step is the transfer of mass from the bulk conditions of the fluid 
phase to the adsorbent surface. 

Component-Material Balances 

The component-material balances for component i in the fluid and solid phases 
are given by Eqs. (1 1-45) and (1 1-42), respectively. For convenience of use in the 
following developments, these equations are repeated and renumbered as fol- 
lows: 
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and 

Energy Balance on the Fluid Phase 

Two independent energy balances exist, one for each phase. In the following 
development, the enthalpies of the pure components in the fluid phase (denoted 
by Hi) and in the solid phase (denoted by hi) are assumed to be functions of 
temperature alone. Again uf, c, and S are assumed to be independent of z and t .  
Thus, an energy balance on the fluid phase contained in the element of volume 
from z j  to z j  + Az over the time period from t ,  to t ,  + At is given by 

+ - m(1- $ , r s i ~ , )  d z j  dt 

Application of the mean-value theorems followed by the limiting process 
wherein Az and At are allowed to go to zero with the observation that z ,  and t ,  
were arbitrarily selected yields the following result: 

where q = hsa,(T, - T,) = rate of heat transfer from the solid phase to the fluid 
phase, energy per unit time per unit volume of pellet 

a, = interfacial area for heat transfer, interfacial area per unit volume of 
pellet 

In order to reduce Eq. (12-51) to a more convenient form, the following symbols 
are introduced 
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where yi is the mole fraction of component i in the fluid phase and xi is the 
mole fraction of component i in the solid phase. Since 

and 

it is evident that Eq. (12-51) may be restated in the following form: 

Further simplification is possible by use of the following expression which may 
be obtained by first multiplying Eq. (12-48) by H i  and then summing over all 
components i to  obtain 

Subtraction of Eq. (12-56) from Eq. (12-55) yields 

Energy Balance on the Solid Phase 

The energy balance enclosing the solid phase over the time period from t. to 
t ,  + At and the volume of bed from z, to z j  + Az is given by 
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Application of the mean-value theorems to Eq. (12-59) followed by the limiting 
process whereby At and Az are allowed to go to zero, and with the understand- 
ing that At and Az were arbitrarily selected, yields the following result: 

From Eq. (12-60) subtract the expression obtained by first multiplying each 
member of Eq. (12-49) by hi and then summing over all components to obtain 
the following result upon replacing q by its definition given below Eq. (12-51): 

where 

AHi = hi - Hi 

For convenience, the expression given by Eq. (12-49) for the rate of mass 
transfer is combined with Eq. (12-1) and restated for convenience as follows: 

Use of Eq. (12-62) permits Eqs. (12-48) and (12-61) to be restated in the 
following form: 

Equations (12-58) and (12-62) through (12-64) constitute 2c + 2 equations which 
are to be solved subject to the following initial conditions 

C,,(z, 0 )  = C%z) (0  < z < z,, t 1 0 )  

Cdi(Z, 0 )  = C:,(z) (0  < z < Z T  , t 1 0 )  

T,(z, 0 )  = T;(Z)  (0  < z < z,, t 1 0 )  

TAz, 0 )  = T:(z) (0  < z < z,, t < 0 )  

and boundary conditions 

Harwell et a1.(4) used the following form of the Markham and Benton 
equilibrium relationship: 
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where CTi is constant for each component i. O n  the basis of the expression 
given by Eq. (12-67), the following expression was developed by Harwell et a1.(4) 
for expressing the dependency of K i  on temperature and pressure, namely, 

where K O ,  is a constant for each component i. 1 :  

Equations (12-58), (12-62), (12-63), and (12-64) may be stated in the follow- 
* 

ing dimensionless form: 

3% a% - - 
- + - = O(T, - T,) aT az 

The dimensionless independent and dependent variables are defined as  follows: 

T = U j  t/z, z = Z/Z, C; = C;/C,*,, in(0) 

c d i  CdiICdi, in(()) T = KIT,, in(0) (12-73) 

Td = 'GI%, in(()) csi = CsiIc;, in(0) 

The dimensionless parameters appearing in Eqs. (12-69) through (12-72) have 
the following definitions: 

This model for the adiabatic adsorption of multicomponent mixtures has 
been used by Liapis and Crosser(5) to  simulate the adsorption of ethane-carbon 
dioxide mixtures by beds of 5 A  molecular sieves. The model predictions agree 
fairly well with the experimental data, and one may use this model to design, 
with good accuracy, fixed adsorption beds which are adiabatically operated. 

Solution of Eqs. (12-69) through (12-72) by 
the Method of Characteristics 

The solution of Eqs. (12-69) through (12-72) may be effected by the Method of ; 
Characteristics as described in Chap. 10. The choice of the characteristics is 
made as  outlined below. Consider first Eq. (12-69). Expansion of c d ,  by the 
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chain rule gives 

Let dr/dZ = 1. Then along characteristic I, Eq. (12-75) becomes 

(3 - ~ ' ~ d i  8Cdi + - (along dz/dZ = 1) 
1 d Z  dr 

Thus, Eq. (12-69) reduces to 

Similarly, characteristic I reduces Eq. (12-70) to 

) = - i,) (along di/dZ = 1) 

Next consider Eq. (12-71). Expansion of ci by the chain rule gives 

Take dZ/dr = 0, or Z = const as characteristic 11. Then Eq. (12-79) reduces to 

("!),, = 2 (along Z = const) 

Thus, along characteristic 11, Eqs. (12-71) and (12-72) reduce to 

(i = I, 2, ..., c) 
(along Z = const) ( 1  2-8 1) 

( = / j  - ii) - j CSi 6 = 1 3 2, > 

i =  I (along Z = const) (1 2-82) 

The application of these equations is demonstrated by use of the following 
numerical example. 

Example 12-3 A mixture of benzene and cyclohexane is passed through a 
fixed-bed adsorption column which is assumed to be perfectly insulated. On 
the basis of the simultaneous mass and heat transfer model developed 
above, the values of Gi(Z, 7). CJZ, r), U Z ,  T), and Q Z ,  r) are to be pre- 
dicted at  each of the mesh points (i, j) shown in Fig. 12-6. The data to be 
used for this example are presented in Table 12-2. 

The example is to be solved by use of a combination of the Method of 
Characteristics, the trapezoidal rule, and the Newton-Raphson method. 
(a) Formulate the equations required to determine the values of csi(O, 7) 
and E(0, 7). (b) Formulate the equations needed to find the values of all 
variables at the point (1, 1). 
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Cdn(0.~) '4 

c~ , (o ,  0 )  c ~ ( I ,  0 )  ( '%(2,  0 )  . . c-ii(Z, 0) 
C:;,(O, 0 )  Cl\,(l. 0) Ci),(2, 0 )  . CC,(Z, 0 )  
T,"(o, 1 1 )  T ,"(I ,  o )  1,"(2. 0) . T,"(z, 0 )  
c l ( O ,  0)  7;:(1. 0 )  T,?(z. 0 )  . T i l ( Z ,  0 )  

Figure 12-6 Sketch of the charaaerlstics with initial values and boundary values of the vari. 
ables for Example 12-3. 

SOLUTION In Fig. 12-6, a plot of characteristics I and I1 is shown. Also, 
along each axis, the known values of the variables at (0, T) and (Z, 0 )  are 
listed. Since the values of C,,(O, T), c , ( O ,  T), and T,(O, r )  are unknown, their 
values must be determined before the values of the variables at the points 
(1, 2), ( I ,  3), . . . can be determined. 

First the equations needed to compute C,,(O, 1) and T(0, 1) are formu- 
lated. Application of the trapezoidal rule gives 

- 

When the derivatives appearing in Eqs. (1) and (2) are evaluated by use of 
Eqs. (12-80) and (12-82) and the resulting expressions restated in functional 
notation, one obtains 

f, = - CJO, 1 ) + C,,(O, 0 )  

2 

f l [ ~ ~ 0 ,  0 )  - z(0, O)] - 1 Si[C:(O, 0 )  - CsXO, 0)] 
i =  1 

Table 12-2 Values of the parameters for Example 12-3, the ad- 
sorption of the binary mixture of benzene and cyclohexane (Ref. 4) 

Parameter Units 
. Numerical value 

21 m 0.5 
"1 m/s 0.0015 

mol benzene 
Cd2, ,, mol gas 0.030, t > 0 

mol cyclohexane 
Cdl, ," 

mol gas 0.020, t > 0 

K T 2  g,'(m2s) 
AH, Jimol 
AH2 J 'mol 

Td In K 

T:(:) = T:(z) K 

mol I 
CP,(z) = C:2(z) -- 

g rol~d 1 x 1 0 ~ ' ~ , 0 ~ ~ ~ : , , t ~ 0  

mol I 
C,O, A4 = Cj, A21 1 x I O - ' ~ , O < Z I ~ ~ , ~ < O  

P atm 34 

mol of sites, component 1 
C I ,  I 

g sol~d 2.90 I O - ~  

mol or sites, component 2 
C J .  2 

g solid 3.67 10-3 

(K)Il2 - 
atm 

(K)'I2 
KO. 2 

- 
atm 4.37 x 
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The quantities C$(O, 0) and C$(O, 1) are given by the equilibrium relation- 
ship, namely, 

c ~ i  KiCT,(O, o)lcddo, 0) 
C$(0, 0) = 2 (i = 1, 2) 

1 + C KiCT,(O, 0)1Cdd0> 0) 
i =  1 

Examination of the above equations shows that the functions f,, f , ,  and f, 
contain three unknowns cs,(O, I), G2(O, I), and T(0, I). The values of these 
three variables, which are required to  make f, = f, = f, = 0, may be found 
by use of the Newton-Raphson method. The values so obtained are used to 
compute the next set of values Cs,(O, 2), cs2(0, 2), and 7;(0, 2). This stepwise 
process is repeated until all of the desired values of the variables along the t 
gxis (at t = 0) have been determined. 

(b) The values of the variables at  the point (I, 1) of Fig. 12-6 are evalu- 
ated by integration of Eqs. (12-77) and (12-78) from (0, 0) to  (0, 1) along the 
line defined by characteristic I, dt/dZ = 1 and by integration of Eqs. (12-81) 
and (12-82) from (0, 1) to (I, 1) along the line defined by characteristic 11, 
Z = const. In particular 

The derivatives appearing in Eqs. (7) through (10) are given by Eqs. (12-77), 
(12-78), (12-81), and (12-82). For example, 

where C:(I, 1) is given in terms of E(1, 1) and C,Al, 1) by Eq. (12-67). 
After the derivatives appearing in Eqs. (7) through (10) have been re- 1 

placed by their equivalents as given by Eqs. (12-77), (12-78), (12-81), and 
(12-82) and the resulting expressions are stated in functional notation, the 
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Newton-Raphson method may be applied successively to determine the 
values of the variables, cdi(l ,  l), G 2 ( I ,  I), cs,(l, I), cs2(1, I), TAl, l), and 
%(I> 1). 

Interpretation of the Numerical Results for Example 12-3 

Selected values of the variables obtained over the time period t = 140 by use of 
the numerical methods described above are presented in Fig. 12-7. Profiles of 
the variables at T = 10 over the total length of the bed are shown in Fig. 12-8. 
A computation time of 20 minutes was typical for the AMDAHL 470V/6 com- 
puter for time and space steps ranging from 0.01 to 0.03. 

First, observe in Fig. 12-7 that component 1 (cyclohexane) which is not as 
strongly adsorbed as component 2 (benzene) exhibits a breakthrough 35 dimen- 
sionless time units before component 2. Because of this significant difference in 
breakthrough times, it is evident that the performance of a binary adsorption 
column cannot be approximated by a single pseudocomponent. 

For the equilibrium isotherm employed (Eq. (12-67)), there exists an inver- 
sion of the relative adsorptivity for the benzene-cyclohexane system. The fol- 
lowing expression for the relative adsorptivity y is obtained by use of Eqs. 
(12-67) and (12-68): 

Dimensionless time, r 

Figure 12-7 Outlet concentrations and temperatures predicted by the adiabatic model For a fixed- 
bed adsorption column, Example 12-3. ( J .  H. Harwell, A. I .  Liapis, R.  J .  Litchqield and D. T .  
Hanson: "A Non-Equilibrium Model for Fixed-Bed Multicomponent Adiabatic Adsorption," Chem. 
Eng. Sci., vol. 35, p. 2287 (1980), Courtesy Pergamon Press.) 



.- 
Q Dimensionless column position, z 

Figure 12-8 Concentrationsand temperatures profiles predicted by the adiabatic model for a fixed- 
bed adsorption column, Example 12-3. ( J .  H.' Harwell, A. I .  Liapis, R. J .  Litchfield, and D.  T .  
Hanson: "A Nan-Equilibrium Model for Fired-Bed Multicomponent Adiabatic Adsorption,'' Chem. 
Enq. Sci., uol. 35, p. 2287 (1980), Courtesy Pergamon Press.) 

The inversion in adsorptivity occurs at  y = 1. The T, required to make y = 1 is 
denoted by T,, For the benzene-cyclohexane system, T,, = 449.9 K. 

A comment regarding the relative magnitudes of cs,,, cSs2, c:l, and c$2 1 

is in order. When the solid temperature T, is less than the inversion tem- i 
perature, the value of CS,, is larger than that of C,,, even though there is 

1 
3 

actually more of component 2 adsorbed than component 1. The relative mag- 
nitudes of C,,, and C5,2 result from the difference in the normalizing factors 
C:, and C:,. 

The two fluid-phase mass waves in Fig. 12-7 have distinctively different 
shapes and different velocities. The mass wave of the more strongly adsorbed 3 

component, C d , 2 ,  is concave away from the origin and moves at  a slower 
velocity than does the mass wave for component I. 

The thermal waves or temperature profiles (both in the fluid phase and , 

in the solid phase z) move at a greater velocity than d o  the mass waves. 
Further interpretations have been presented by Harwell et a1.(4). 

12-4 PERIODIC OPERATION 

In order to  utilize adsorption columns in cont~nuous processes, it is necessary to 
devise a process whereby one adsorption bed is cleaned wh~le another one is 
being used. For example, suppose that a set of three columns 1s available. At 
any one time, two columns connected in series may be operated in the adsorp- 
tion cycle while the third column is placed in the cleaning cycle. After the first 
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column has become loaded with one or more of the components to be separ- 
ated, it is removed from the system and placed in the cleaning cycle. The clean 
column is then placed after and in series with the second column. The second 
column then becomes the next column to be removed from the adsorption cycle 
and placed in the cleaning cycle. Obviously, a large number of columns could 
be used in the process whereby one (or more) columns is always in the cleaning 
process. In the limit as the number of columns and the frequency of changing 
cycles for one of the columns is increased indefinitely, the condition of steady- 
state countercurrent operation is reached. The same limit is obtained if the 
analysis is made in terms of pulsed columns (Ref. 6). 

The mathematical model that describes periodic operation is the same as 
that for a fixed bed. The solution procedure for a single column is easily 
adopted to a multicolumn system. After a column switch, the initial conditions 
must be adjusted for the start of the new adsorption cycle. That part of the 
profile is deleted which corresponds to the saturated column that has been 
removed. The profile of the remaining column is shifted toward the feed inlet 
and the profile for the newly regenerated column is added at  the outlet end of 
the series of columns. 

The criterion for the removal of a loaded column at  the inlet end of the 
system and the introduction of a regenerated column at  the outlet end of the 
system of columns is selected in a manner which tends to maximize the use of 
the adsorbent. 

Comparison of Fixed-Bed Operation and Periodic Operation 

The adsorption model developed in Sec. 12-2 (based on film resistance and 
diffusion) was used to compare fixed-bed operation with periodic operation. The 
adsorption system used was the same as  the one used for fixed-bed operation, 
2-butanol and t-amylalcohol. Six different column lengths of 30, 41, 82, 123, 
150, and 200 cm were used and the system parameters used in the film resist- 
ance and diffusion model of Sec. 12-2. 

The criterion used for column switching was arbitrarily taken to be that 
time at which the concentration of either component in the effluent reached 1 
percent of its value in the feed. Figure 12-9 shows the relationship between 
carbon utilization and column length for different numbers of subdivisions for a 
given total length. The different numbers of subdivisions correspond to the 
numbers of columns in a given adsorption system composed of multiple col- 
umns. A carbon utilization of 100 percent corresponds to the case where the 
amount of solute adsorbed is equal to that predicted by the equilibrium iso- 
therm. As the number of columns is allowed to increase without bound 
( N +  a), countercurrent operation at  steady state is approached (Ref. 7). It is 
seen in Fig. 12-9 that the greatest improvement in carbon utilization occurs 
when the single column is divided into two columns, while for more sub- 
divisions the corresponding improvement is smaller. For  small columns even a 
small number of subdivisions gives almost the same efficiency as the 



Figure 12-9 Percentage of carbon utilization versus column length with number of columns as a 
parameter (NP)  for the butanol-2 and t-amylalcohol system. ( A .  I. Liapis and D. W .  T .  Rippin: 
" T h e  Simulation of Binary Adsorption in Continuous Countercurrent Operation and a Comparison 
with Other Operating Modes. AIChE J. ,  vol. 25, no. 3, p. 455 (1979). Courtesy American Institute of 
Chemical Engineers.) 

continuous-countercurrent operation. For large columns many more sub- 
divisions would be required. 

The results shown lead to the conclusion that subdividing a column into 
two or more columns and operating them periodically in a countercurrent mode 
gives an increase in the utilization of the adsorbent which is proportional to the 
number of columns employed. 

NOTATION 

a = interfacial area for mass transfer from the fluid i 
phase to the pore openings, interfacial area per unit 

i 

volume of pellet 

ah = interfacial area for heat transfer, interfacial area 
per unit volume of pellet 

(4 = interfacial area for mass transfer from the fluid to 
the solid phase, Interfacial area per unit volume of pellet 

*,I = constants generated in the orthogonal collocation 
method (see Example 12-2) 

= constants generated in the orthogonal collocation B,l 
method (see Example 12-2 and Chap. 10) 

Cpdr 
= heat capacity for component i in the fluid phase, 

energy per unit mass (or mole) per degree temperature 

'psi 

C ~ s  
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= heat capacity for a unit mass (or mole) of the fluid 

phase, energy per unit mass (or mole) per 
degree temperature 

= heat capacity for component i in the solid phase, 
energy per unit mass (or mole) per degree temperature 

= heat capacity for a unit mass (or mole) of the solid 
phase, energy per unit mass (or mole) per 
degree temperature 

= concentration of component i a t  the bulk conditions of 
the fluid phase (moles of component i per unit of void 
volume (the free volume between the pellets)) 

= a normalized value of Cdi (dimensionless) 
= concentration of component i in the solid (or adsorbed) 

phase (moles per unit volume of pellet) 
= a normalized value of Csi (dimensionless) 
= diffusivity for component i in the fluid phase 

(dimensions of (length)2/time) 
= difTusivity for component i in the fluid phase within 

the pore of an absorbent (dimensions of (length)2/time) 
= diffusivity for component i in the solid (or adsorbed) 

phase (dimensions of (length)2/time) 
= enthalpy of component i in the solid phase, energy 

per mole (or per unit mass) of component i 
= heat transfer coefficient, energy per unit time per unit 

of interfacial area per degree ("C, OF, K, OR) 
= enthalpy of component i in the fluid phase, energy 

per mole (or per unit mass) 
= moles of component i diffusing in the positive 

direction of z (or r )  in the fluid phase per unit of 
void area perpendicular to the direction z 

= moles of component i diffusing in the positive 
direction of z (or r) in the fluid phase per unit time 
per unit of void area perpendicular to z 

= moles of component i diffusing in the positive 
direction of z (or r) in the solid phase per unit 
time per unit of pellet surface perpendicular to z 

= a constant depending on component i which appears an 
expression for an equilibrium adsorption isotherm 
(see Eqs. (12-67) and (12-68)) 

= a constant appearing in Eq. (12-68) 
= overall mass transfer coefficient (dimensions of pellet 

volume per unit time per unit of interfacial area) 
= length of a pore 
= Peclet number (used and defined in Example 12-2) 
= radius of the adsorbent pellet as measured from center of 

pellet 



10 = external radius of the adsorbent 

r ~ i  = moles of solute i transferred per unit time per unit 
of pellet volume (see Eq. (12-27)) 

Sh = Sherwood number (used and defined in Example 12-2) 
t = time 

= linear velocity in the positive direction of z 
z = distance 
Z T = total length of the adsorption bed 
Z = normalized distance (Z = 212,) 

Greek letters 

a = 0, 1, 2 for a slab, cylinder, or sphere 
a , ,  a,, . . . , a, = parameters appearing in Eqs. (2) and (3) of Example 12-2 
b = parameter defined by Eq. (12-74) 

6i = parameter defined by Eq. (12-74) 
E = volume of voids per unit volume of bed 

E B  = volume of pores per unit volume of pellet 
' l i  = parameter defined by Eq. (12-74) 
0 = parameter defined by Eq. (12-74) 
2 = parameter defined by Eq. (12-74) 

ti = parameter defined by Eq. (12-74) 
5 = parameter defined by Eq. (I) of Example 12-2 

P = parameter defined by Eq. (1) of Example 12-2 
t = parameter defined by Eq. (1) of Example 12-2 
, . . . , $ = parameters defined beneath Eqs. (4) and (5) of Example 12-2 
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PROBLEMS 

12-1 Develop the expressions for the approximate solutions for C,, and C,, of Example 12-2, when 

the Jacobi polynomials P',o."(t) of order N = 8 are used. Include the points t = 0 and = 1 as  
external collocation points and show that these expressions satisfy Eq. (8) of Example 12-2. 
12-2 Develop the expressions for the approximate solutions for C,, and C,, of Example 12-2, when 
the Jacohi polynomials P,$'.O'(p) of order N = 8 are used. Include the point p = 1 as an external 
collocation point and show that these expressions satisfy Eq. (1 1) of Example 12-2. 

12-3 Using the procedure outlined in Chap. 10 for the orthogonal collocation method, evaluate the 
discretization matrices {A, ,  ,} and {B,, ,} ,  and the locations of the internal collocation points for the 
approximate solutions developed in Probs. 12-1 and 12-2. 

12-4 Show that when the changes of variables listed in Eq. (1) of Example 12-2 in the text are 
made, Eq. (12-30) for binary adsorption on spherical pellets reduces to the expressions given by 
Eqs. (2) and (3) of Example 12-2 in the text. 
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CHAPTER 

THIRTEEN 

MODELING AND SOLUTION OF THE 
EQUATIONS FOR THE 
FREEZE-DRYING PROCESS 

The process called freeze-drying is an example of a separation process in which 
water is removed from a material by sublimation. Water is removed directly as 
a vapor from the frozen substance (the ice phase) without its ever having passed 
through the liquid phase. Consequently, it is necessary that the temperature of 
the sublimation zone of a material being freeze-dried be held below the triple- 
point temperature of the water or the aqueous solution in the material being 
dried (Ref. 8). 

Freeze-drying plays an important role in the manufacture of many sub- 
stances which would otherwise suffer bacterial degradation in the presence of a 
small amount of moisture. Some common applications of the freeze-drying pro- 
cess are the manufacture of blood plasma, vaccines, antibiotics, hormones, alka- 
loids, vegetables, coffee, soup, and milk. 

The freeze-drying process usually operates at  low temperatures and pres- 
sures, and the principal advantage lies in the high quality of the product. The 
freeze-drying process is, however, slow and energy-intensive, and the product, 
although of high quality, is generally expensive. 

Section 13-1 is devoted to the formulation of the model of the freeze-drying 
process, and Sec. 13-2 to the solution of the corresponding equations describing 
the model. 
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13-1 MODELING OF THE FREEZE-DRYING PROCESS 

Although only one model is considered, the one proposed by Litchfield and 
Liapis(ll,l2), several others have been published with the earliest being due to 
King(8). King postulated the uniform retreating ice front (URIF) model.  his 
model has considerable appeal because of its simplicity. It attempts to  account 
for the removal of the first 75 to 90 percent of the moisture. The remaining 
moisture is present in the form of physically o r  chemically adsorbed water or 
water of crystallization. In addition, some moisture may be physically trapped 
within pockets in the material, from which it can leave only through small 
channels which offer a high resistance to mass transfer. Although the "bound" 
water constitutes a small proportion of the total, its effect is significant as it 
frequently takes as long to remove it as it does the free water. 

However, the URIF model has been shown by Sheng and Peck(l9) to be 
quite inaccurate for predicting drying times even for the removal of free water. 
Sheng and Peck(l9) proposed a model which takes bound water into account 
and which gives good agreement over the entire drying period. This model is 
limited, however, by the assumptions of (1) constant surface and interface tem- 
peratures, (2) a heat transfer controlled process, and (3) that bound water leaves 
only after all of the ice has sublimated. 

The model of Litchfield and Liapis(l2), which is presented herein, does not 
suffer from the above restrictions. Sublimation and desorption of water are 
allowed to take place simultaneously. This is in agreement with experimental 
results of Moffert(lS), who determined the moisture content in layers of suede 
3.6 cm thick while it was undergoing the freeze-drying process. Concentrations 
varied from 3 g water per 100 g solids at  the dried surface to  about 33 g water 
per lOOg solids near the interface. Moffert's results agree with those of Gentzler 
and Schmidt(4) who postulated an empirical relationship for moisture content in 
terms of the temperature difference between a given place in the dried layer and 
the ice interface. 

In the freeze-drying process, the frozen material is placed in the drying 
chamber, which is then evacuated. A heat source radiates energy to the surface 
of the substance, where it is transferred through the dried layer to the frozen 
interface by conduction. As sublimation proceeds, the frozen interface recedes. 
Water vapor travels in a counter direction to that of the heat flow, since it is 
formed at  the interface and collected as ice on the condenser surface at the top 
of the vacuum chamber. 

The one-dimensional system shown in Fig. 13-1 consists of a heat source 
which is positioned above a slab of material of thickness z ,  which is to be 
dried. At any time during the drying process, the slab is considered as two 
parts, the dried layer and the undried or frozen layer. The two layers are 
separated by an interface. In particular, the model is based 
assumptions : 

1. Only one-dimensional heat and mass flows, normal to  t 
surface, are considered. 
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Condenser calk 

Dry~ng  chamber 

Feeze-dr~cd layer, 

Frozen mater~al,  

/ 
Insulation ' 

Figure 13-1 Sketch of the freeze-drying process 

2. Sublimation occurs at  the interface a t  a distance Z from the surface of the 
sample. 

3. The thickness of the interface is taken to be infinitesimal. This assumption 
has been validated for most applications by Harper(7). 

4. A binary mixture of water vapor and inert gas flows through the dried layer. 
5. At the ice interface, the concentration of water vapor is in equilibrium with 

the ice. 
6. As the interface recedes, it leaves behind a partially dried layer which con- 

sists of the material to be dried and adsorbed water (the solid phase). The 
vapor phase consists of water vapor and an inert gas which are assumed to - - 
be in thermal equilibrium with the solid phase. 

7. The frozen region is considered to be homogeneous, of uniform thermal 
conductivity, density, and specific heat, and to contain an insignificant pro- 
portion of dissolved gases. 

8. The sides and bottom of the slab are assumed to be perfectly insulated 
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Heat Transfer by Conduction through the Frozen Phase 
(Region TI) (Z < z < z,) 

The interface between the dried phase and the frozen phase represents a moving 
boundary whose position is denoted by Z(t) or  simply Z. Let q, denote the rate 

I of heat transfer per unit area by conduction in the positive direction of z (see 
Fig. 13-1). This rate of heat transfer as given by Fourier's first law in the frozen 

1 

1 phase (region 11) is 
1 

where k,, is the thermal conductivity of region I1 and T,,(z, t) is the temperature 
at  any z and t .  An energy balance on the element of volume from z, to z, + AZ 
over the time period from t ,  to  t, + At is given by 

= 1;'"' [(h,, pll S) I t .+ht.  r - h l l  P 1 tn. = ] h ( I  3-21 

against the transfer of mass and heat. 
9. The total pressure P of the drying chamber is maintained by the control of 

the amounts of inerts (noncondensable gases) in the vapor phase through the 
use of an appropriately sized condenser and vacuum pump and the necessary 
controls. (Most of the inert gases in the system are assumed to enter through 
leaks.) 

Application of the mean-values theorems followed by the limiting process 
wherein Az and At are allowed to go to zero and with the recognition that zj, 
Az, t,, and At were arbitrarily selected within the space and time domains of 
interest yields 

where the interface between regions I and I1 is located at  z = 2. Thus, if k,, and 
p,, are independent of temperature, and h,, is a function of the temperature 7;, 
alone, then Eq. (13-3) becomes 

d 2 T ,  ah,, a7;, k,, ---- = a TI 
,,2 

Pi1 - - = PI, cpll - 
a?;, at at 

3- a27;, 
dt - a11 - az2 (2 < z < z,, t >0)  

where 



Component Material Balances for Region I (0 < z < Z )  

The gas o r  vapor phase consists of water vapor and inert gases, and the solid 
phase consists of the dried material with physically adsorbed water. The equa- 
tions are formulated for the general case of any number of components in the 
vapor and solid phases. 

Let Ni denote the total molar flow rate of component i in the positive 
direction of z per unit time per unit of cross-sectional area. Then the 
component-material balance for any component i in the element of volume from 
z j  to z j  + Az of region I over the time period from t ,  to t ,  + At is given by 

- (EC,, S + C,, S) d z  (13-5) 
. .+Al.  Z I.". 1 

where S is the cross-sectional area of the slab (perpendicular to  the direction z). 
In the same manner as described beneath Eq. (13-2), the above equation is 
readily reduced to the following differential equation: 

For the inert gas component (i = in), CSi = 0, and Eq. (13-6) reduces to 

At low pressures, the concentrations of water vapor and the inert gas are given 
by the perfect gas law 

pi = C,; R T (1 3-8) 

Thus, for water (i = w) and the inert (i = in), Eq. (13-6) and (13-7) become 

and 

where the derivatives involving the temperatures have been omitted because 
Gunn(2) showed that they were negligible. 

Energy Balance on Region I, the Dried Layer (0 c z c 2) 

For convenience and generalization, each phase is assumed to consist of a 
multicomponent mixture. All components in both phases are assumed to be in 

thermal equilibrium at  the temperature Tdz, t ) .  Let the enthalpy of a compo- 
nent in the vapor phase be denoted by H i  and in the solid phase by hi. Then 
the energy balance over the element of volume from z j  to z j  + Az over the time 
period from t ,  to t ,  + At is given by 

= / z J + A z  [(c~~c, ,H,  + xi csihi) / - (xi EC,, H~ + xi cSi hi) 
z J  1. + Al.  I 

In the same manner as described beneath Eq. (13-2), the above equation is 
readily reduced to 

where Ci denotes the sum over all components i present. 
Equation (13-12) may be restated in terms of the heat of evaporation by use 

of the following procedure. Multiply each term of Eq. (13-6) by Hi  and sum 
over all components i to obtain 

After having carried out the partial differentiation implied in Eq. (13-12), sub- 
tract Eq. (13-13) from the result so obtained to give 

Since H, and hi have been assumed to be functions of 7; alone, it follows that 

Let 
i 
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Use of the above definitions and relationships perm~ts  Eq. (13-10) to be restated 
in the following form for the case of a single adsorbed component: f 

a Z T  a 7; a 7; ac,, 
k, ,  2 - N c - = p,,cP,, at - AH,, - 

a Z 2  P g  a~ at 

where A H ,  = H ,  - h,  = heat of vaporization of absorbed water 
pie cp le  = C T q  cpq + CTs cps equivalent density and heat capacity of the com- 

bined vapor and solid phase of region I 1 
Note that either mass or molar units may be used in the above equations, since 1 
where the quantities without overbars are in molar units and those with over- 

f 
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isotherm expressions were developed. Expressions obtained for the weight frac- 
tion X: (where C : ,  = p , X : ,  where ps is the mass density) are as  follows: 

x: = 
2.32 x 10-4p:1594 exp (962.7791T) 

1 - 0.0101p~1594 exp (962.779/T) ( T  > 0°C) (13-23) 

and 

1.766 x exp (1035.786/T)p$267 
X; = 1 - 3.69 x exp (1035.786/T)p$267 ( T  < 0°C) (13-24) 

The expressions given by Eqs. (13-23) and (13-24) are seen to be based on the 
Sips type I1 adsorption isotherms. The standard deviation in the values of X :  
as reported by Litchfield and Liapis(l3) was 0.009 for Eq. (13-23) and 0.012 for 
Eq. (13-24). 

bars are in mass units. 

Mass Transport Rate Expressions for the Dried Phase (0 < z < Z )  

Material Balance on the Adsorbed Water (0 < z < Z )  

Let r, denote the rate of mass transfer of water from the bulk conditions of the 
vapor phase to the adsorbed phase in moles per unit time per unit volume of 
bed. Then a material balance on the adsorbed phase is given by 

As described previously, this expression may be reduced to the following partial 
differential equation : 

The rate of mass transfer from the vapor phase to the adsorbed phase is 
given by 

rw = K , ,  U,(C:~ - C,,) (13-21) 

where a, is the interfacial area per unit volume of dried bed, K , ,  is the overall 
mass transfer coefficient for water vapor, and C,*, is the concentration which 
water would have in the dried phase if it were in equilibrium with the vapor 
phase. Elimination of r ,  from Eqs. (13-20) and (13-21) gives i a 

A relationship for C,*, was fitted by application of a flexible pattern search to 
the data of King et a1.(9) for freeze-dried turkey. It was found impossible, 
however, to  fit an isotherm to the data both below and above O°C, and separate 

The following equations for the rate of transport of the binary mixture through 
the dried region are based on the diffusion equations of Evans et al.(l) and the 
D'Arcy equation for viscous flow: 

4 Pi. E) az 

where P = p,. + pi, = the total pressure 

These equations are based on the supposition that the water vapor can escape 
through the dried layer by bulk molecular diffusion, and through the inert gas 
by Knudsen diffusion and by viscous flow in response to a gradient in total 
pressure. Surface and thermal modes of diffusion were not considered because 
they have been found to be unimportant contributors (Ref. 2). Gunn and 
King(3) have shown that the contribution of viscous flow to N, and N,, is 
small. At low chamber pressures or in the absence of an inert gas, the Knudsen 
diffusion term is the most significant term, and at  higher pressures when an 
inert gas is present, the bulk diffusion term becomes rate-controlling. Thus, Eqs. 
(1 3-25) and (1 3-26) may be reduced to 

A further simplification is possible. Since Gunn(2) has shown that the partial 
pressure of the inert gas varies by only a small fraction, the variation of  the 



partial pressure of the inert gas may be neglected in the evaluation of k , .  Thus, 
Eq. (13-27) can be solved without recourse to Eq. (13-28) which becomes re- 
dundant. The condition at  the interface (z = 0 )  follows Fourier's law; that is, 
41 = - kl, (aTJaz) I, = o .  

Conditions a t  the interface (z = Z )  The boundary condition for the moving 
interface Z between the dried layer (region I) and frozen layer (region 11) is 
effected by use of material and energy balances as follows. Let u denote the 
velocity at  which the interface moves in the positive direction of z. Then over 
the time period from t ,  to t ,  + At, the interface moves a distance u At. Thus, the 
energy in the element of volume Su At at  time t ,  is US At CiC,,,hlIi and the 
energy in the element of volume Su At at  time t ,  + At is US At (C,eC,,H, + XiCSihi). 
The net rate of transfer of energy from the boundary Z in the positive direction 
of z over the time period from t ,  to t ,  + At is S At C,N, H i .  The net rate of 
heat transfer to and away from the boundary Z during the time period At is 
S - q,,). 

Thus 

q, - q,, + C, N, Hi  = uC,EC,, Hi  + uC, C,, hi - uC, C,,, h,,, (13-29) 

The corresponding component-material balance is given by 

N, = euCgi + uC,, - uClli (1 3-30) 

Multiplication of each member of Eq. (13-30) by hIli and summing over all 
components i gives 

Ci N i  h,,, = uCi eCgi hlli + uCi C,, hIli - uCi C,,, h,,, (13-31) 

Subtraction of Eq. (1 3-31) from (13-29) followed by rearrangement yields 

Thus 

87; d7;, 
-k,, - + k,, - + (N ,  - EUC,~) AH, = uCTs(cps 7; - cPll TI) (Z = Z ,  t > 0) 

az 22 

where the datum temperature for the enthalpies is taken to be absolute zero 
and 

AH, = Ci y,(H, - h,,,) y,(H, - h,,, ,) = heat of sublimation of water 

The total-material balance at the interface is obtained by summing each 
member of Eq. (13-30) over all components i to give the following result upon 
solving for u, the rate of advance of the interface, dZ/d t ,  that is, 
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At the interface at  z = Z ,  the partial pressure of water in equilibrium with 
the frozen solid is given by the thermodynamic equilibrium relationship 

I p,  = 133.32 exp C(23.9936 - 2.19 AH,)/T] at z = Z (13-35) 
Also since most of the inert gas present enters through leaks in the chamber 
and not from the ice phase, the partial pressure gradient of the inert must be 
equal to zero at  the interface, that is, 

Also, it is assumed that thermal equilibrium exists a t  the interface Z, which is 
expressed by 

Conditions at the boundary z = z, Since the bottom as well as the sides are 
assumed to be perfectly insulated, it follows that q,, = 0 at  z = z,, o r  

Initial conditions Initially when the slab is placed in the drying chamber, the 
temperature of the slab is at most a function of z, that is, 

If, initially, the interface Z is not a t  the surface (z = 0), then the concentration 
of adsorbed water is uniform throughout the dried layer, that is, 

C,,  = c,q, (0 < 2 < Z, t 2 0 )  (13-41) 
Other initial conditions are as follows: 

P,,, = P:. (0 < z I Z ,  t j 0) (1 3-43) 

pin = P: (0 < z I Z ,  t  j 0) (1 3-44) 

I 
t 13-2 SOLUTION OF THE MOVING-BOUNDARY PROBLEM 

The moving boundary of the system was transformed into a fixed-boundary 
problem by use of the method proposed by Liapis and Litchfield(l2) which 
involves the introduction of two dimensionless variables. First, however, an 
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additional simplificat~on wh~ch  involves Eq. (13-4) is possible. The time constant +% 
associated with this equation has been estimated from the experimental data of 
Meo(l4), Gunn(2), and Sandall et a1.(18) and found to be a n  order of magnitude 
smaller than for Eq. (13-17). Thus, the time derivative of Eq. (13-4) may be set 
eoual to  zero which aives a 

The solution which satisfies these conditions and the condition dTl/dz= 0 at 
z7 IS 

7;, = const = T, (Z I z < z,) (1 3-48) 

Thus 

In order to immobilize the boundary at  z = Z, Litchfield and Liapis(l3) 
suggest making the following changes in variables. Let 

Thus 
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The above transformations and relationships may be used to reduce Eqs. (13-17) 
and (13-22) to 

The above relationships and Eq. (13-49) may be used to reduce Eq. (13-33) to 

-he d T  - -  z (ai). + (NT - c ~ C T ~ )  AH, = ~CTAC, T - cp,1 TI) (t = 1 , 0  < t < t z = z T )  

(1 3-60) 

Equations (13-9) and (13-10) become 

Equation (13-27) becomes 

and the corresponding expression for N,, is not restated since it is redundant as 
discussed above. Use of Eq. (13-63) permits the elimination of (dN,/d<), from 
Eq. (13-61) to give 

Method of solution Equations (13-58), (13-59), and (13-64) together with the set 
of boundary and initial conditions (Eqs. (13-34), (13-35), and (13-40) through 
(13-45) and (13-60)) comprise a set of nonlinear partial differential equations 
which must be solved numerically. Greenfield(6) determined the characteristics 
of several finite difference techniques on problems of this type and found that 
the method of Crank-Nicholson was superior from standpoint of stability and 
execution time. This procedure was used by Litchfield and Liapis(l3) in the 
solution of problems described below. Execution times were of the order of 2 to 
5 h on a DEC PDP11. The authors state, however, that the time could have 
been further reduced by streamlining the program. 
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The onlv numerical oroblem encountered was the stabll~ty of the method 
for small values of Z, which occurred at  the beginning of a run. For instance, 1 
the initial step size was constrained by the stability of the response to  about 
1/20 sec. As Z increased, step sizes of several seconds were possible. The accu- 
racy of the method was investigated with 4, 6, and 8 space points, and 6 space 
points were found to be satisfactory. 

In order to  demonstrate the method of solution, the Crank-Nicholson i 

method is applied to the principal working equations. First of all, the total 
derivative dZ/dt was replaced wherever it appeared by the finite difference ap- j 
proximation, namely, 

dZ _ Z " + l  - Z ,  - - (13-65) 
dl - At 

Application of the Crank-Nicholson method to (1 3-58) gives 

T j , n + l  - '~."=-(-6 a!, I 2 &.+, +927;,,m)- N " , '  . c,, 
At Zi 

($67;;. n + i + $6?;j, rt)  

Zn P I ~  Cple 

Equation (1 3-59) becomes 

and Eq. (1 3-6 1) becomes 

where the second central difference is defined by Eq. (10-72), and the first 
central difference of an arbitrary variable u with respect to  5 is defined by 
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and 

Equation (13-63) becomes 

Since Eq. (13-34) applies at the interface, it is to be applied once each time step 
while the above equations are applied six times for each time step. Thus, 
Eq. (13-34) becomes 

For any one time step (say from t ,  to r,+ ,), Eqs. (13-66), (13-67), (13-68), 
(13-70), and (13-71) consist of 25 equations in 25 unknown values at  the end of 
the time step, namely the values of x at t ,+, , where 

This general approach was used by Litchfield and Liapis(l3) to obtain the 
results presented herein. 

The model was used to simulate the freeze-drying of turkey meat at the 
experimental conditions used by Sandall(l7), and the results of two experiments 
are presented below. The physical data needed for the model was either avail- 
able in Ref. 17 or could be calculated. The overall mass transfer coeficient 
K,, ,a,  was estimated by use of a method proposed by Lam(10). In particular, an 
analytical series solution was obtained to a simplified diffusion problem in 
which the accumulation was neglected, and linearized water vapor pressure, 
temperature, and concentration profiles were used for the adsorption regime. 
The mass transfer coeficient was then characterized in terms of known system 
parameters and an experimentally determined half-life measurement for adsorpt- 
ion. Although an independent measurement was not available, the half-life 
could be estimated from the desorption-only part of the experimental drying 
curves. By use of this method, K,,a, was estimated to be 13.5 x s - '  for 
Sandall's run 23 and 7.8 x s - '  for run 38. 

The estimation of C k  presented a more dificult problem, since Ck is a 
characteristic property of a material, and experimental measurements of the 
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quantity were not available. However, Sandall's(l7) experimental results indicate 
that for run 23, sublimation terminates (or a t  least, the ice front has dis- 
appeared) when about 15 percent of the initial water remains. Unfortunately, ':y 1 
the adsorbed moisture profile in the dried layer at  this time depends upon the 

+ 

drying history of sublimation, and also when desorption is assumed. This gives 
a value of CL immediately adjacent to the sublimation interface corresponding 
to about 31 percent of moisture by weight. The corresponding value of CR = 

0.103 g/cm3 was used in the computer simulations. Clearly, it would be desir- 
able to  determine the value of Ck experimentally. 

Table 13-1 gives the values of the parameters used in the determination of 
the curves shown in F~gs.  13-2 and 13-3. In order to achieve the relatively good 
agreement shown, minor adjustments in the values of K,,a,  were made. 

i 
An obvious deficiency in the model is the use of a linear equation for mass 1 

transfer, characterized by the one parameter K,,a,  which lumps together sever- I 
t 

al mechan~sms of desorption and diffusion. In spite of this limitation, its effect 
on the simulation results does not appear to  be too significant. 
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I \n,t h 
A comprehensive adsorption-sublimation model for free-drying has been 

presented. This model permits sorption and sublimation to take place simul- Figure 13-2 Freeze-dry~ng of turkey meat (Surface temperature T, = 30°C, pressure = 266.4 ~ 1 ~ ~ .  

taneously, and predicts the concentration of adsorbed water as a function of 
time and position throughout the dried region. The model may also be used to 
predict the overall drying time with good accuracy. 

, , 
no inerts. Sandall's experimental results (17), run on 23, on absolute moisture basis. 0: adsorption- 
sublimation model.) (R .  J. Litchfield and A. I .  Liapis: "An Adsorption-Sublimation Model.for Frreze- 
Drying," uol. 34 (no. 9) ,  p. 1085 (1979). Courtes~l Chemical Engineering Science.) 

Table 13-1 Values used for the parameters in the sol- 
ution of the problems shown in Figs. 13-2 and 13-3 

Value used Value used 
Parameter in Fig. 13-2 in Fig. 13-3 

Figure 13-3 Freezedrying of turkey meat (Surface temperature T, = 60°C. pressure = 119.9 N/m2, 
no inerts. Sandall's experimental results (17). run no. 38, on absolute moisture basis. 0: Adsorption- 
Sublimation model.) (A. I. Liapis "An Adsorption-Sublimation Model for Freeze-Drying." 001. 34 
(no. 9) .  p. 1085 (1979). Courtesy Chemical Engineering Science.) 
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NOTATION 

A H ,  = H ,  - 
A H ,  = H ,  - 

Kin 

= interfacial area between the gas and the adsorbed 
phases, area per unit of bulk volume of the dried layer 

= heat capacity of component i, energy per unit mass 
per K (or energy per mole per K) 

= constant which depends only upon the structure of 
the porous medium and gives the relative Knudsen 
flow permeability 

= constant which depends only upon the structure of 
the porous medium and is the ratio of the bulk 
diffusivity within the porous medium to the free 
gas bulk diffusivity, dimensionless 

= constant which depends only upon the structure of 
the porous medium and gives the relative D'Arcy 
flow permeability 

= concentration of component i in the gas phase, 
moles (or mass) per unit of void volume of the 
dried phase 

= concentration of water in the adsorbed (or solid 
phase), moles (or mass) per unit of bulk volume of 
the dried phase 

= initial concentration of bound water 
= free gas mutual diffusivity in a binary mixture of 

water vapor and inert gas 
= enthalpy of component i in the solid phase, energy 

per mole (or per unit mass) 
= enthalpy of component i in the vapor phase, energy 

per mole (or per unit mass) 
- h, = heat of vaporization of adsorbed water 
h,,, , = heat of sublimation of water from the ice phase to 

the vapor phase 
= thermal conductivity, energy per K per unit of length 
= bulk diffusivity constant = (C, D, K,)/(C, D, + K,,) 
= self-diffusivity constant = k, kin (C, D, P + K, ,  P )  

+ COJP~X 
= bulk diffusivity constant = C, D, Ki J(C, D, + K,,) 
= overall mass transfer coefficient for desorption, 

lengthlunit time 
= Knudsen diffusivity, K, = C, where M, is 

the molecular weight of water 
= Knudsen diffusivity, Kin = C1 where Mi, is 

the molecular weight of the inerts 
= mean Knudsen diffusivity for the binary gas mixture, 

Kmx = yw Kin +  in Kw 
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= flux for component i, moles (or mass) of component 

transferred per unit time per unit area 

Greek Letters 

a 
E 

11 

i 

P 
xi 
4 

Subscripts 

i 
in 
Ie  
I 
I1 
mx 
S 

W 

z 

= flux for the inert gas 
= flux for water vapor 
= total flux, N ,  = N , ,  + N ,  
= partial pressure of the inert gas 
= partial pressure of the water vapor 
= total pressure 
= rate of heat by conduction, energy per 

unit time per unit area 
= rate of adsorption of water vapor, moles (or mass) 

transferred per unit time per unit of bulk volume 
of the dried region 

= time 
= temperature 
= velocity at which the ice interface advances 
= gas constant 
= cross-sectional area 
= mole fraction of species i in the solid phase 
= mass fraction of water vapor in the adsorbed phase 
= mole fraction of species i in the vapor phase 
= distance 
= gas-ice interface location 
= total thickness of the slab (see Fig. 13-1) 

= thermal diffusivity 
= volume of voids per unit volume of material 
= viscosity 
= dimensionless variable (defined by Eq. (13-50)) 
= density 
= sum over all components i present 
= dimensionless variable, defined by Eq. (13-51) 

= component 
= inert gas 
= equivalent for region I 
= region I 
= region I1 
= mixture of water vapor and inerts 
= surface 
= water 
= interface 
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PROBLEMS 

13-1 For the change in variables given by Eqs. (13-50) and (13-51), produce the relationships given 
by Eqs. (13-52) through (13-56). 

13-2 Use the relationships developed in Prob. 13-1 to show that Eqs. (13-17) and (13-22) may be 
restated in the form given by Eqs. (13-58) and (13-59). 

13-3 Use the relationship developed in Prob. 13-1 and Eq. (13-49) to show that Eq. (13-33) may be 
reduced to the form given by Eq. (13-60). 

13-4 Show that by use of the relationships developed in Prob. 13-1 the expressions given by Eqs. 
(13-9). (13-lo), and (13-27) may he reduced to those given by Eqs. (13-61) through (13-63), respec- 
t~vely. 

13-5 Use Eq. (13-27) to show that Eq. (13-64) may be obtained from Eq. (13-61). 

CHAPTER 

FOURTEEN 
THERMODYNAMICS OF THE 

PHYSICAL ADSORPTION OF PURE GASES 
AND MULTICOMPONENT GAS MIXTURES 

BY SOLID ADSORBENTS 

In 1878, Gibbs developed adsorption equations on the basis of purely thermo- 
dynamic considerations. Later Volmer(l5) applied Gibbs' equation and an equa- 
tion of state for the adsorbed layer to derive Langmuir's adsorption isotherm 
for unimolecular adsorption. 

Adsorption processes may be regarded as consisting of three phases: the gas 
phase, the adsorbed phase, and the adsorbent phase (Refs. 7, 8, 9, 13). T h ~ s  
approach to the analysis of adsorption systems is preferred over the alternate 
approach of G ~ b b s ,  who regarded the system as being composed of two phases 
separated by an interface surface which possessed no volume (Ref. I). 

The forces involved in adsorption are the surface forces, a measure of which 
is given by the surface tension exhibited by a substance. The molecules in the 
surface of a solid or liquid phase are attracted to  the center of the solid or 
liquid phase by the interior molecules of this phase. To  achieve a balance of 
forces, the surface molecules tend to attract foreign molecules of, say, a gas 
phase to the surface of the solid o r  liquid phase. These surface forces are also 
responsible for the lateral migration of surface molecules. This phenomenon is 
readily observed by performing numerous simple experiments. The well-known 
phenomena of "spreading" and "wetting" are caused by the surface forces. For 

i example when a drop of oil is placed on the surface of a second liquid with 
which it is immiscible, say water, the oil quickly spreads over the water. This 
spreading is caused by the movement of water molecules along the interface in 



an effort to  adjust to the unbalance in forces caused by the presence of the oil 
molecules. The spreading of a liquid over a solid surface is known as the 
"wetting" of the solid by the liquid. 

The tendency of, say, an oil drop to spread on a water surface and to 
exhibit two-dimensional behavior analogous to the three-dimensional behavior 
of a gas was a n  early observation. By placing a strip of wood on the surface of 
water in a rectangular container, de Boer(1) states that Miss Packels demonstra- 
ted in 1890 that the film of a second liquid, say oil, could be compressed by 
doing work on  the strip of wood. Because of this behavior, surface films are 
commonly referred to as two-dimensional gases. Langmuir(l2) followed by 
others developed balances which could be used to measure directly the spread- 
ing pressure exerted by films on liquid surfaces. 

The spreading pressure of a film may be determined indirectly through the 
measurement of the surface tension of the surface of a pure liquid both before 
and after contamination with a second immiscible liquid (Ref. 1). Consider, for 
example, the case of a water surface separated into two parts by a barrier of 
length 1 centimeters (see Fig. 14-1). On one side of the barrier, the liquid (say 
water) surface is contaminated by a two-dimensional gas which exerts a pres- 
sure of n (dyn/cm), and on the other side of the barrier, a pure water surface 
exists. Furthermore, the spreading pressure is supposedly balanced by applying 
an external force (equal in magnitude to  n) to the barrier as indicated in 
Fig. 14-1. 

Initial conditions 

Final conditions 

L - 
Figure 14-1 Initial and final conditions of a liquid surface 
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I Now suppose the barrier is allowed to move against an external force in a 
continuous manner to the position z, + Az (see Fig. 14-1). The relationship 
between the spreading pressure n, the surface tension of the pure water surface 
yo, and the surface tension y of the contaminated surface is obtained by making 
an energy balance. Let the total surface in Fig. 14-1 from z = 0 to z = z, be 
regarded as the system and everything else within the universe as the sur- 
roundings. Then, the energy of the system initially, Us,,, , , is given by 

energy of the energy of the 
contaminated pure water 

surface surface 

Let the initial energy of the surroundings be denoted by Us,,,, , , and the energy 
of the universe by %. Then at the initial conditions 

At the final conditions, the energy of the system is given by 

In going from the initial to the final conditions, the work that is done by the 
system on the surroundings is equal to the integral of nl over the distance from 
z, + Az to z,. Thus, the energy of the surroundings at the final conditions, 
u,,,,, 2 ,  is given by 

U s u r r .  2 = I f ( 1 4-4) 

Since, by the first law of thermodynamics, the energy of the universe is constant, 
it follows that at the final conditions 

Elimination of "k from Eqs. (14-2) and (14-5) followed by the consolidation of 
the integrals yields 

(yo - ; - n)1 dz = 0 (14-6) 

Observe that Eq. (14-6) holds for each choice of z, and Az which satisfies both 

i 
of the inequalities: 0 < z, < z, and 0 < z, + Az < z,. Since the integral is zero 
for each set (z,, Az) so selected, it follows that the integrand is zero for all z in 
the open interval (0 < z < z,), and thus the spreading pressure is related to the 
surface tensions of the pure and contaminated liquid surfaces as follows: 
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14-1 THERMODYNAMIC FUNCTIONS REQUIRED 
TO DESCRIBE THE PHYSICAL ADSORPTION 
OF A MULTICOMPONENT MIXTURE 

The treatment that follows is restricted to the case of the interaction of a gas 
phase composed of a multicomponent mixture, an adsorbed phase, and a solid 
adsorbent. Following Guggenheim(7,8), Hi11(9), and more recently Myers and 
Prausnitz(l3), it is assumed that the adsorbent is inert, that is, all of its thermo- 
dynamic properties are the same in the presence as in the absence of the 
adsorbate molecules. As pointed out by Hi11(9), this approximation may well be 
inaccurate for the chemisorption of gases by solids. Secondly, it is assumed that 
the surface area associated with each adsorption site is independent of temper- 
ature and pressure. As discussed in a subsequent section, this assumption differs 
slightly from the classical assumption regarding the surface area and the 
number of adsorption sites. 

The thermodynamic functions for the gas phase are precisely those available 
from classical thermodynamics; see, for example, Refs. 2, 7, 8. These equations 
are stated without proof: 

where A" = Hemholtz free energy function for the vapor phase 
GV = Gibbs free energy function of the vapor phase 
C y  = the partial molar free energy for component i in the vapor phase 

(the symbol called the Gibbs cllemical potential, is also used to 
denote this quantity) 

H V  = enthalpy of the vapor phase 
SV = entropy of the vapor phase 
UV = internal energy of the vapor phase 
vV = volume of the vapor phase 

nr = moles of component i in the gas phase; n L ,  as a subscript means 
all of the nr's are held fixed except the particular nr with which the 
partial derivative is taken 
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Equation (14-8) represents the first and second laws of thermodvnamics for the 
variation of the internal energy of a multicomponent mixture as a function of 
the independent variables SV, Vv, n);, n i ,  ..., np. Equations (14-9) through 
(14-11) follow from Eq. (14-8) as consequences of the definitions of Hv,  A", 
and GV. 

The internal energy U" of the adsorbed phase is a function not only of So, 
V", n:, n;, . . . , n:, but also of the additional variable a', the surface area 

) 

covered by adsorbed gases. (Note that in Fig. 14-1, an element of contaminated I 
area is given by 1 dz = d d . )  The spreading pressure a and the surface area d 
play analogous but more significant roles than P and V" in surface phenome- 
non. In addition to the PV-work term P dV", there is a surface work term 
n d.d.  Then for the adsorbed phase, the first and second laws of thermo- 
dynamics are represented as follows: 

= avo d U U = T d S " - P d V u - n d d +  1 (=) dnl (14-12) 
I =  1 S", V", cr'. n,", 

which implies that the independent variables have been selected as indicated by 
the functional notation 

U" = U"(SU, V", .d, n;, n;, . . . , n:). 

Then, the total differential of U" is given by 

where the subscript n: on a partial derivative means that all of the nf's are to be 
held fixed in taking the partial derivative. Comparison of Eqs. (14-12) and 
(14-13) shows that 

The state functions (or extensive properties) U", Ha, A", So, V", and cc9 are 
all homogeneous functions of degree one (see App. 1A). Such functions have the 
property that the internal energy, for example, of two pound moles of adsorbed 
material is twice that of one pound mole of adsorbed material of the same 
composition at the same temperature T, pressure P, and spreading pressure n. 
Furthermore, the intensive properties or functions T, P,  and n are known from 
experiment to be independent of the total amount of material in the system. 
More precisely, at a given set of values for T, P, and n, it follows from the 
definition of a homogeneous function of degree one that 

i Uu(RS", AV", A d ,  An;, An; , . . . , An:) = IUu(S", V", d, n: , n; , . . . , n:) (14-15) 

f 
where 1, is any positive number. 



444 SOLUTION OF PROBLEMS INVOLVING CONTINUOUS-SFPARATION PROCESSES 

S~nce  U" IS homogeneous of degree one, it follows from Euler's theorem 
(App 1A) that for a glven set of values for T, P, and n 

aua ! 
u s )  Vn, 4, ng +V"("") a v "  ,, ., 

( 1  4- 16) I 
S", V", n: I =  1 So, V c ,  d, n;, , 

! 

When the partial derivatives appearing in the first three terms on  the right-hand 
side of Eq. (14-16) are replaced by their equivalents as given by Eq. (14-14), the 
following result is obtained: 

Except for the enthalpy function, which includes the a d  product as well as 
the PV" product, the remaining thermodynamic functions are defined in the 
usual way, that is, 

H" = U" + PV" + a d  (14-18) 

A" = uU - TS" (14-19) 

GO = H" - TS" (14-20) 

From these definitions, it follows immediately that 

Go = U" + PVa + n d  - TS" 

Then, 

dGa = d U a  + P dV" + V" dP + a d , d  + .d d n  - T dS" - S" d T  (14-22) 

Elimination of dU" from Eqs. (14-12) and (14-22) yields 

The independent variables in this expression are seen to be T, P,  n, and n; , n", 
. . ., n:. Thus, the total differential of G" may be stated as follows: 

1 
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Comparison of Eqs. (14-23) and (14-24) shows that 

(for i =  1 ,  2, ..., c )  (14-25) 

The partial derivatives of G" with respect to  each n; with P, n, T, and the 
remaining np's being held fixed were given the name of chemical potentials by 
Gibbs and denoted by the symbol pp. This same derivative is also called the 
partial molar value of Go and denoted by the symbol e, that is, 

In the remaining developments, Gy is used instead of p; because it provides a 
distinction between the partial molar value of Go and the free energy per mole 
of pure component i, denoted by G;. Such a distinction is not always obvious 
when the single symbol p: is employed. 

By use of the last equality of Eq. (14-25), the expressions given by Eqs. 
(14-12) and (14-23) may be restated in terms of the C p  as follows: 

In an analogous manner, it is readily shown that 

Furthermore, Eq. (14-1 7 )  becomes 

U" = TS" - PV" - a d  + + @np 
i =  I 
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When the expression given by Eq. (14-31) is used to eliminate U" from Eqs. 
(14-18), (14-19), and (14-21), the following relationships are obtained: 

H" = TS" + z e n :  
i =  1 

The expression corresponding to the Gibbs-Duhem equation for a conven- 
tional vapor or liquid phase is obtained by first taking the total differential of 
Eq. (14-32) to obtain 

Elimination of dG" from Eqs. (14-28) and (14-35) gives 

At constant temperature, this expression reduces to the well-known formula 
which is commonly called Gihhs' udsorption formula 

0 = -I /"  d p  - Ld d~ + 1 n: d q  (at constant T) (14-37) 
, = I  

The Phase Rule for the Adsorption of a Gas Mixture by an Inert Solid 

Consider the particular system consisting of a gas phase and an adsorbed phase. 
The composition of each phase is fixed by specifying c - 1 mole fractions for 
each phase, where c is equal to the total number of components. (Note: the 
adsorbent is not counted because it is regarded as an inert.) Thus, there are 
2(c - 1) independent composition variables, where it is understood, of course, 
that the definition of the mole fraction is to be used to compute the cth mole 
fraction in each phase. Additional variables are the temperatures TV and T" of 
the respective phases, the pressure P, and the spreading pressure R. The total 
number of variables is then given by 

Number of variables = 2(c - 1) + 4 = 2(c + 1 )  

At equilibrium, the variables are related by the following (c + 1) equations: 

The number of degrees of freedom or  variance V" is equal to  the number of 
variables which must be fixed in order to obtain an equality between the 
number of unspecified variables and the number of equations. Then 

Note that for a state of equilibrium to exist between an ordinary vapor and 
liquid phase, the Gibbs' phase rule (Ref. 6) (9' + V" = c + 2, where 9 is the 
number of phases) gives 

Then relative to the conventional vapor-liquid equilibria, one additional degree 
of freedom exists in the adsorption process. For example, for a pure component 
in equilibrium with its vapor and liquid phases, c = 1 in Eq. (14-40). Thus if one 
specifies the temperature T of the system, the pressure is uniquely determined 
and is equal to the vapor pressure of the pure component i at  the temperature 
T.  O n  the other hand, consider the adsorption of component i on a unit mass 
of adsorbent at the temperature T. In this case c + 1 in Eq. (14-39) is equal to 
2. If the temperature T is regarded as fixed for such a system, then infinitely 
many equilibrium adsorption pressures may be specified. Thus there exists in- 
finitely many equilibrium states for the adsorption of a pure component on a 
given amount of adsorbent a t  a specified temperature. These states are com- 
monly represented in the form of adsorption isotherms. 

Simplified Formula 

As described at the beginning of this chapter, the thermodynamic model em- 
ployed by Gibbs for the adsorption process regarded the adsorbed phase as a 
surface with, of course, no volume. Consequently, his final thermodynamic func- 
tions were simpler than those stated above because they contained neither the 
PV" product nor its derivatives. 

However, in the thermodynamic expressions obtained for the adsorbed 
phase, the PV" product and its differentials are negligible until infinitely many 
adsorbed layers have appeared on the solid surface and the adsorbed phase 
becomes a conventional liquid phase. Then except in the limit as thc adsorption 
system approaches a conventional vapor-liquid equilibrium system, the PV" 
product and its differentials may be neglected in the final results, Eqs. (14-27) 
through (14-31), (14-34), and (14-37), to give the same set of thermodynamic 
expressions obtained by Gibbs. The best-known of these is the reduced form of 
Eq. (14-37), namely, 

C 

d d n  = 1 n: d q  (at constant T)  (14-41) 
i =  1 

or in terms of the kinetic model for adsorption 

C 

d ddrr = Ci d@ (at constant 7') (14-42) 
i =  1 
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where C,  = concentration of component i in the adsorbed phase, moles of com- adsorbed phase approaches that of a perfect two-dimensional gas (discussed in a 
ponent i adsorbed per unit mass of adsorbent. This relationship (Eq. (14-41) o r  subsequent section) in the limit as the spreading pressure goes to  zero. 
(14-42)) is perhaps best known as Glbbs' adsorption formula, but it is also called The fugacity of component i in an adsorbed phase composed of a multi- 
Gibbs' adsorption equation, Gibbs' equation, and Gibbs' adsorption isotherm. component mixture is defined by 

I 
! dG(n,  T, x,, x,, .. ., x,) = R T  d ln f g  (at constant T)  (14-46) 

The Fugacity 

In the analysis of thermodynamic systems, it has been found that a new variable 
called fugacity is more convenient to use than is free energy. The fugacity of 
pure component i at the temperature T and pressure P in a vapor phase 
composed of pure component i is defined by 

dGr(P, T) = RT d In 1,; (at constant T) 

and 

fY lim - = 1 
P - 0  P 

(Note that in the remainder of this development, the symbols Gi and Gi are 
used to denote the free energy per mole of pure component i and the partial 
molar free energy of component i, respectively, rather than pi.) The second 
condition of Eq. (14-43) is equivalent to the statement of the experimental fact 
that an actual gas approaches a perfect gas in the limit as the pressure goes to 
zero (see Ref. 10). 

The fugacity of component i in a vapor phase of a multicomponent mixture 
is defined by 

dGY(p, T, y , ,  y,, ..., y,) = R T  d lnf: (at constant T) 

and 

f' 
lim = 1 (1 4-44) 
P-o Pi 

where p, is the partial pressure of component i. 
The fugacity of pure component i a t  the temperature T and at the spread- 

ing pressure n in an adsorbed phase composed of pure component i is 
defined by 

dGp(n, T)  = RT d In f 4 (at constant T) 

and 

f4 lim - = 1 
"-0 n 

The second condition is equivalent to  the statement that the behavior of the 

If the standard state of component i in the vapor phase is taken to be the 
pure component at the pressure P and at  the temperature T of the mixture, 
then Eq. (14-44) may be integrated at  constant temperature to  give 

/ Y  G:(p, T ,  y , ,  y,, . . ., y,) = Gr(P, T) + R T  In - (1 4-47) 
fY 

where G[(P, T) = free energy of one mole of a vapor phase composed of pure 
component i a t  the pressure P and at the temperature T. For the general case 
of an actual three-dimensional gas, it can be shown (Ref. 10) that 

f r  = r Y f Y y i  (1 4-48) 

where f; = fugacity of pure component i evaluated at the temperature T and 
total pressure P of the mixture 

yY = the thermodynamic activity coefficient for component i in the vapor 
phase, YY = YV(P, T, y, , Y,, . . ., y,) 

Many mixtures of three-dimensional gases can be adequately described by 
taking y r  equal to unity. Such a gas is said to  form an ideal solution. 

Perfect Three-Dimensional Gases 

A perfect gas is one that obeys the pe$ect gas law 

where V" is the volume of n; moles, T is the absolute temperature, P is the 
absolute pressure, and R is the gas constant in appropriate units. The partial 
pressure pi of component i in any gaseous mixture is defined by 

A perfect gas mixture is one in which each member of the mixture behaves 
as a perfect gas, that is, multiplication of both sides of Eq. (14-49) by yi gives 
the following relationship which holds for each component i of the mixture: 

where v ,  = VVy,, the partial volume of component i. 
The thermodynamic relationships for a pure component in a closed system 

? are obtained by omitting the summation terms in Eqs. (14-8) through (14-11). 

E 
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Also, for a pure component, it is to be observed that Gr becomes equal to Gr.t 
At constant temperature, Eq. (14-1 1) reduces to 

dGV = Vv dP (at constant T) (14-52) 

For one mole of a perfect gas, this expression becomes 

R T  
dGv = - dP = R T  d In P (at constant T) 

P 

Comparison of this expression with Eq. (14-43) shows that for a perfect gas, the 
fugacity is equal to the pressure, that is, 1: = P. For the case of a gaseous 
mixture, an analogous relationship exists (Ref. lo), which is stated here without 
proof. That is, the fugacity of component i in a perfect gas mixture is equal to 
its partial pressure, 

1" = p. 
I 1  

(14-54) 

Interpretation of the Area Term .d in the Thermodynamic Functions 
and in the Equation of State for a Perfect Two-Dimensional Gas 

An adsorbed phase composed of a continuous film is said to be a perfect 
two-dimensional gas if it obeys the trzjo-dimensionul perlect gas law 

where d is the surface area covered by n",oles, T is the absolute temperature, 
and R is the same constant that appears in the perfect gas law for three- 
dimensional gases. 

The area term which appears in the above equation as well as the thermo- 
dynamic relationships is seen to have a very definite meaning for an adsorbed 
film on the surface of a liquid as demonstrated in Fig. 14-1. However, as observed 
by Hi11(9), a unique definition of d does not necessarily exist for a porous 
adsorbent. In the thermodynamic analysis of the kinetic models presented in 
Chap. 11 for multicomponent adsorption, let st' be defined as the area covered 
when each adsorption site of the set C ,  available at a given temperature and 
pressure is filled. By this definition, d becomes the same function of tem- 
perature and pressure as C, . Thus, this interpretation of d and C, gives the 
following relationship: 

d - - - const (for all T and P) (14-56) 
CT 

t Since Gv denotes the free energy for the system under consideration (Gv = n:Gy), it follows 
that 

In the correlation of some experimental results it was found by Gonzales 
and Holland(3,4,5) that the total number of sites C ,  available for adsorption 
decreased with increasing temperatures. With the above definition for sf, how- 
ever, the ratio d / C ,  remains constant for all T and P. O n  the basis of this 
interpretation of d and C, for the kinetic model, the analysis of a perfect gas 
in the adsorbed state is continued. 

In a manner analogous to that employed in the definition of a perfect gas 
mixture (three-dimensional), a two-dimensional perfect gas mixture is one which 
obeys the relationships 

Pi .d = n:RT or nui = nPRT (14-57) 

The quantities .Yi and a i  are defined by 

Fugacities Relationships for Two-Dimensional Gases 

For the case of a pure component in a closed system at  the constant tem- 
perature T, Eq. (14-28) reduces to 

dG" = dn (at constant T) (14-59) 

In keeping with the concept of a film as discussed in the development of 
Eq. (14-41), the term V" d P  has been neglected. For one mole of a perfect 
two-dimensional gas (Eq. (14-57)), Eq. (14-59) reduces to 

Comparison of the first expression of Eq. (14-45) and Eq. (14-60) shows that for 
the case of a pure component which is a perfect two-dimensional gas 

The standard state of component i in an adsorbed phase is taken to be an 
adsorbed phase composed of one mole of pure component i a t  the spreading 
pressure n and at the temperature T of the adsorbed mixture. On this basis, 
Eq. (14-46) may be integrated to give 

/P G(n, T, x ,  , x,, .. . , x,) = Gy(n, T)  + R T  In 

where G:(n, T) = the free energy of pure component i in a n  adsorbed phase 
composed of component i alone and at the spreading pressure n and temper- 
ature T of the mixture. 

In the development that follows, the hypothetical state of an adsorbed 
phase at zero pressure is encountered. Although hypothetical states are perfectly 
permissible for state functions, it is necessary to  define the properties of the 

i 
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mixture in this state because they cannot be determined experimentally. Al- 
though the definition of a hypothetical state is arbitrary, once selected, it must 
be retained for all subsequent developments. Then by definition, the properties 
of an adsorbed phase at zero pressure are taken to be the same as those of a 
perfect two-dimensional gas. 

T o  show that the fugacity f ^ ~  for component i in any adsorbed phase ap- 
proaches the partial spreading pressure Pi in the limit as n goes to zero, one 
may begin by making use of the fact that the cross-partials of Eq. (14-28) are 
equal, that is, 

For a perfect two-dimensional gas mixture 

Then at constant temperature, Eq. (14-63) becomes 

which holds for each component i in a perfect two-dimensional gas mixture. 
Integration of Eq. (14-65) at  constant temperature from the standard state of 
pure component i at the temperature T  to the final state of component i in a 
mixture at the two-dimensional partial pressure 9, and spreading pressure n 
gives 

T ,  x l  , x 2 ,  . . . , 'c)]pcr{ect gas mixture,  2-dimensional 

P i  

= IG:(n, T)lperfect yac,2-dimensional + RT In - n (14-66) 

Since two-dimensional gases approach perfect two-dimensional gases in the 
limit as the spreading pressure n goes to zero, it follows that upon subtracting 
Eq. (14-62) from (14-66) and taking the limit as n goes to zero, one obtains the 
result 

upon making use of the second expression given by Eq. (14-45). 
For the case of vapor-liquid equilibria, only one equilibrium state exists for 

a pure component at a given temperature T. However, as shown previously by 
the phase rule for the heterogeneous adsorption of a pure component i, infi- 
nitely many equilibrium states exist a t  a given temperature. That is, for a given 
temperature T ,  there exist infinitely many equilibrum pairs ni and Pi for pure 
component i. Let the set of all equilibrium states x i  and Pi at  a given tem- 
perature T for pure component i be denoted by (xi, Pi}. 
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Figure 14-2 Path used to g o  from the standard state of a pure component in the vapor phase to 
the standard state of the same component in the adsorbed phase. 

State: vapor 
at (P ,  T )  
one mole of 
pure component 
1 with fugacity = 
f: 

The free energies at the standard states for the vapor and the adsorbed 
phases may be related by use of the path shown in Fig. 14-2. In the following 
development, Pi and n, denote a particular set of equilibrium pressures for 
component i at the temperature T.  The change in free energy in going from 
state @) to state @ in Fig. 14-2 is given by the integration of the first 
expression of Eq. (14-43), that is, 

Since the change in free energy in going from state @ to state @ is zero (see 
Eq. (4-38)), it follows that 

f r )  

The change in free energy in going from state @ to  state @ is found by 
integration of the first expression of Eq. (14-45), namely, 

- 
State: vapor 
at ( p , ,  T )  
fugaci t~  = fry (T)(P,) 

- 

State: adsorbed 
at (n,, T )  
fugacity = f:,n, 



Addition of the corresponding members of Eqs. (14-68), (14-69), and (14-70) 
yields the desired relationship 

Since the particular equilibrium pair ni and Pi a t  the given T was arbitrarily 
selected, Eq. (14-72) holds for all equilibrium states ( a , ,  P i }  for component i at  
temperature T. Thus, the ratio f [ p , / f ? , i  must be equal t o  a constant for all 
choices of equilibrium states { n i ,  P i }  at  the temperature T. As shown below, 
this ratio of fugacities can be evaluated at the limiting condition of Pi = 0 and 
ni = 0. For convenience, let 

f f , =  lim = @AT) 
P f - 0  f :  P ,  

Since the ratio f & l f [ p r  is constant at a given T, it follows that for any given 
equilibrium state ni and Pi of the set { n , ,  P i } ,  the corresponding fugacities are 
related as follows: 

f P. ., = @i(T)f [ P ,  
(14-73) 

The fugacities of component i in the presence of other components in the 
vapor and adsorbed phases at  the equilibrium state T, P,  and n  are related in 
the following manner. Since at equilibrium, Gr = @, it follows that upon sub- 
tracting Eq. (14-62) from (14-47) one obtains 

When Eqs. (14-71), (14-73), and (14-74) are combined, the following result is 
obtained: 

f~ = @ , ( ~ ) f y  (14-75) 

Comparison of Eqs. (14-73) and (14-75) shows that the same function which 
relates the fugacities f  f and f  r of the pure component also relates the fugacities 
f f and fr of component i in a mixture. 

Evaluation of Qi(T) for the Kinetic Adsorption Models 

Since @ i T )  is the same function for a pure component as for a mixture, it will 
be evaluated for the kinetic model for a pure component. For  a pure compo- 
nent, Eq. (11-18) (the model for one-layer adsorption of multicomponent 
mixtures) reduces to the Langmuir isotherm 

The final expression obtained for @i(T) (Eq. (14-81)) holds for the general ki- 
netic models for multilayer adsorption of multicomponent mixtures developed 
in Chap. 11; see Probs. 14-7 and 14-8. 

T o  evaluate the limit of the ratio f l n i / f C P i  (where ni and Pi constitute 
equilibrium sets of pressures at  the temperature T) as  Pi approaches zero, use is 
made of the supposition that the adsorbed phase approaches a perfect two- 
dimensional gas as Pi approaches zero. Thus, it follows that for small values of 
P i ,  the adsorbed phase may be represented approximately by the perfect two- 
dimensional gas law 

where C i  is the moles of component i adsorbed per unit mass of adsorbent, and 
d is the area covered when all of the adsorption sites C ,  are filled. (It should 
be observed that the symbols Ci and n: have precisely the same meaning.) Now, 
consider the equilibrium set ni and Pi at  a given T and note that 

Use of the perfect two-dimensional gas law to eliminate C J P ,  from Eq. (14-77) 
yields 

Since the right-hand side of Equation (14-78) is finite, it is evident that in the 
limit as P,  approaches zero, ni also approaches zero. 

It remains to  be shown that @AT) is equal to the right-hand side of 
Eq. (14-78). First, observe that since ni approaches zero as Pi approaches zero, 
it follows from the second expression of Eq. (14-45) that 

f P . ,  lim = 1 (14-79) 
P , + O  Ei 

From the second expression of Eq. (14-43), it is evident that 

Then from Eqs. (14-78) through (14-80), it follows that 

n .  K l i C T R T  f  r 
( f  L . / n i ) ( 2 )  = lim = (Di(T) = lirn = lim - 

p , + o f f l p ,  pi+o f [ p , / p i  Pi P , - O P i  d 
(1 4-8 1) 

Definition of an Ideal Adsorbed Solution 

An ideal solution of a three-dimensional gas mixture may be defined simply as 
one which obeys Amagat's law of additive volumes. That is, the volume of an 
ideal solution at  a given temperature and pressure is equal to  the sum of the 
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volumes of its pure constituents at the same temperature and pressure. 

where vi = volume of one mole of component i a t  the temperature T and pres- 
sure P. 

Among other characteristics (Refs. 2, 7, 8, lo), a n  ideal solution of a three- 
dimensional gas mixture has the property that y r  = 1 (see Eq. (14-48)) for each 
component i of the mixture. 

Let an ideal solution of an adsorbed phase be defined in a manner analo- 
gous to that given by Eq. (14-82) for a three-dimensional gas, that is, the total 
surface covered at  a given spreading pressure and temperature is equal to the 
sum of the areas covered by the individual components at  the same spreading 
pressure and temperature. More specifically 

where ai = surface area covered by one mole of component i at the spreading 
pressure K and temperature T. 

When Eq. (14-83) is differentiated with respect to  a particular n: with the 
remaining np's held fixed, the result so obtained may be combined with Eq. 
(14-63) to give the following relationship for a n  ideal adsorbed solution: 

The left-hand side of this expression may be evaluated by first taking the partial 
derivative of Eq. (14-62) with respect to n, that is, 

For one mole of a pure component, the third equality of Eq. (14-25) reduces to 

When Eqs. (14-84), (14-85), and (14-86) are combined, the following result is 
obtained: 

This expression shows that when the temperature and composition are held 
fixed, the ratio flifl for an ideal solution is independent of the spreading 
pressure. At any given temperature, the general solution of Eq. (14-87) is 
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By use of Eqs. (14-45), (14-57) and the definition of Pi given by Eq. (14-58), it 
follows that 

Since Oi is independent of TC, it follows upon comparison of Eqs. (14-88) and 
(14-89) that for all n, xi = Q i .  Therefore at  any n, Eq. (14-88) reduces to the final 
expression for an ideal adsorbed solution 

For a nonideal solution, the right-hand side of Eq. (14-84) is no longer 
equal to a;. In a manner analogous to that demonstrated in Ref. 10 it can be 
shown the fugacity f; for component i in a nonideal solution of the adsorbed 
phase is related to  f :xi as follows: 

where 

Y: = Y:(Z, T ,  X I ,  x2, . . . , x,). 

since? ; = @,(TI f at equilibrium, it follows from Eqs. (14-46) and (14-91) that 

When adsorbed phase forms an ideal solution and the vapor phase forms a 
perfect gas mixture, then Eq. (14-92) may be further reduced as follows: 

Pi. n Xi = - x. 
P I  

where P,, . is equal to that pressure which must be applied to a vapor phase 
composed of pure component i (at the temperature T of the mixture under 
consideration) in order for the equilibrium adsorbed phase (composed of pure 
component i )  to take on a spreading pressure n equal to that of the mixture 
under consideration. The symbol f denotes the fugacity of pure component 
i evaluated at the pressure Pi, .  and at  the temperature T of the mixture under 
consideration. 

14-2 CHARACTERISTICS OF THE EQUATION OF STATE 
FOR KINETIC ADSORPTION MODELS 

Equations of state corresponding to the kinetic adsorption models are devel- 
oped below. These equations of state are then shown to be consistent with 
Gibbs' formula. 
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Thermodynamic Consistency of Adsorption Models 

An expression for the adsorption of either a pure component o r  a multicompo- 
nent mixture by an adsorbent is said to  be thermodynamically consistent if it 
satisfies Gibbs' formula, Eq. (14-42). The use of Gibbs' formula for checking the 
consistency of adsorption models is analogous to the use of the Gibbs-Duhem 
equation for checking the consistency of models for the description of vapor- 
liquid equilibria. 

In the following analysis, it is supposed that a state of equilibrium exists 
between the vapor and the adsorbed phases. Thus GY = q, and furthermore for 
all changes in the independent variables which represent a transition from one 
equilibrium state to another, it follows that deY = d q .  Thus, Eqs. (14-42) and 
(14-44) may be combined to give 

If the gas phase is a perfect gas mixture, then 

d dn 
-- d ~ i  

- Ci d In pi = 1 Ci - (at constant T) (14-95) 
RT i = l  i = ~  Pi 

For a pure component, this expression reduces to 

.d dn dP 
-- - C - (at constant T )  

RT P  

The Langmuir Isotherm 

First it will be shown that the following proposed equation of state 

(where h is a function of temperature alone) and Langmuir's adsorption iso- 
therm 

satisfy the Gibb's formula for a pure component (Eq. (14-96)). If it is supposed 
that at constant temperature, the ratio d / C ,  is independent of pressure, then 
the change in n with respect to  P given by the proposed equation of state is 

Elimination of b/(l + hP) from Eq. (14-99) by use of Eq. (14-98) gives 

which is recognized as Gibbs' formula for a pure component. 
It should be mentioned that de Boer(1) states that in 1908, von Szyszo- 

kowski found that the spreading pressure for the adsorption of gases on the 
surfaces of many liquids could be represented over a wide range of con- 
centrations by use of the form given by Eq. (14-97). Also, it should be pointed 
out that Volmer(l5) obtained the Langmuir isotherm by commencing with 
Gibbs' formula and a two-dimensional equation of state. 

Adsorption of Multicomponent Mixture in a Unimolecular Layer 

The development of the thermodynamic relationships for an adsorbed phase did 
not involve any consideration of the mechanism by which the adsorption pro- 
cess takes place. However, the kinetic development of Eq. (11-18) was based on 
a postulated mechanism. Thus, if it can be shown that an equation of state for 
which concentrations are given by Eq. (1 1-18) satisfy the Gibbs' formula, the 
proposed mechanism will not have been verified, but the thermodynamic con- 
sistency of the equation of state and the adsorption expression (Eq. (1 1-18)) will 
have been verified. That is, the thermodynamics is not concerned with the 
model proposed to develop an adsorption expression, but it is concerned only 
with thc final expressions obtained for the adsorption process. 

It will now be shown that the combination of the following model for the 
spreading pressure 

C,. RT 
n  = (T) ln (1  + j l ~ i p i )  

and the expression for the surface concentration given by Eq. (1 1-18) satisfy the 
Gibbs' formula. Again it is supposed that C, /d  is independent of both tem- 
perature and pressure, although both C ,  and .r9 depend on temperature as 
discussed previously. Then at constant temperature, the total differential of Eq. 
(14-101) is given by 



When the first factor of each term of Eq. (14-102) is replaced by its equivalent 
as given by Eq. (1 1-18), the following result is obtained 

which is recognized as Gibbs' formula. 

Equations of State for Adsorption Models I and I1 
for Adsorption in any Number of Layers n 

Gonzales(3,4,5) found that many adsorption isotherms could be represented 
with good accuracy by taking (1 + ~ 4 ~ )  2: 1 which corresponds to the case 
where the adsorption is relatively small. For this case, Eq. (11-28) reduces to 

ci - ,,j(j-I)/2 j 1 
-- 41- (14-103) 
K l i ~ i C ~  j = l  + 41 

which is called Adsorption Model I while the exact relationship given by 
Eq. (1 1-28) is called Adsorption Model 11. 

For  model I as well as model 11, it is evident that the ratio C J(Klipi CT) is 
the same for all i since it is a function of 4, alone. Also, from the definition of 
4, given by Eq. (1 1-21), it is evident that a4,/dpi = K,, ,  a function of i alone. 
The equations of state based on model I o r  I1 which satisfy Gibbs' formula are 
readily obtained by use of the following integral equation: 

For adsorption in one layer by model I, Eq. (14-104) is readily shown to reduce 
to Eq. (14-101). Substitution of the expression for CJ(KIipiCT) as given by 
Eq. (14-103) followed by integration yields 

which is seen to be an equivalent form of Eq. (14-101). By carrying out the 
integrations for j = 2, 3, ..., n for model I, the results so obtained may be 
represented by the following recurrence formula which is the equation of state 
for model I. 

-01, " 
-- 

- E X ~  (14-106) CTRT j = l  

where 
x I  = In (1 + 4,) 
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For model I1 (Eq. (11-28)), the integrated form of the equation of state 
is obtained by substituting the expression given by Eq. (11-28) for Ci into Eq. 
(14-104) and integrating for j = 1, 2, . . . , n adsorbed layers. 

The fact that the equations of state given by Eq. (14-104) for models I and 
I1 for the general case of n layers satisfies Gibbs' formula is readily demonstra- 
ted in the following manner. Since the integral on the right-hand side of 
Eq. (14-104) is a function of 4, alone, let it be denoted by F(4,). Then for the 
case where ,d/C, is regarded as a constant, the total differential of a as given 
by Eq. (14-104) may be stated as follows: 

Since 

i t  follows that Eq. (14-107) reduces to Gibbs' formula, Eq. (14-95). 

Proof that the Equations of State for Models I and I1 
Form Ideal Solutions 

By comparison of Eqs. (14-90) and (14-91) it is evident that if it can be shown 
that for each component i, yp = 1 for a given adsorption model, then it will 
have been shown that the given adsorption model is an ideal solution. The 
formulation of the proof that the equation of state for the two-layer version of 
rnodel I satisfies the condition that yy = 1 for all i follows. The proofs for the 
general case of n adsorbed layers for models I and I1 are carried out in the 
same manner as demonstrated below for the special case, n = 2 for model I. 

The mole fraction xi of component i (in the adsorbed phase), which appears 
in Eq. (14-91) may be stated in terms of the expression for Ci as given by the 
two-layer version of model I (Eq. (1 1-27)) as follows: 

~ i n c e f l  = O i ( ~ ) f ;  at equilibrium, it follows from Eqs. (14-91) and (14-109) that 

Also, when a n  equilibrium state exists between a pure component in an 
adsorbed phase (composed of that component alone) at  the spreading pressure 
of the mixture a and a vapor phase composed of pure component i a t  the 
corresponding equilibrium pressure Pi, , ,  the corresponding fugacities are 
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related by Eq. (14-73), namely, 

f P  = @ X T ) f : P , ,  

Thus, Eq. (14-1 10) reduces to 

The first step in the evaluation of f : p , , r  at  any given temperature is the 
determination of the spreading pressure n for the given adsorbed mixture. For 
any such mixture, every term on the right-hand side of the equation of state for 
the mixture (Eq. (14-106)) may be evaluated. Thus, a number value for the 
spreading pressure may be computed in this way and represented as follows: 

The next step is to find that adsorption pressure Pi, ,  which must be placed 
on pure component i in the gas phase in order for its adsorbed phase to take 
on a spreading pressure equal to N , .  Thus, the desired value of Pi.. is the one 
which satisfies the following equation: 

Since N ,  is of the same form as the first term of Eq. (14-113) it is possible to 
rearrange this equation to the following form. 

where 4, for the 
determination of 
ated in order to  
equality: 

mixture, C,, K, , ,  and v are all regarded as fixed for any given 
Pi, ,  . Obviously, the pressure Pi , ,  a t  which fY must be evalu- 
satisfy Eq. (14-114) is the one which produces the following 

Use of this result in Eq. (14-1 11) leads to the result 

y: = 1 

for all components i. This result may be generalized for the case of any number 
of adsorbed layers n for both models I and 11. 

Enthalpy of a pure component in the adsorbed phase The fact that the adsorbed 
phase forms a n  ideal solution when described by the equation of state for the 
kinetic model leads to  the further simplification that the partial molar enthalpy 
Hp is equal to  the enthalpy HP of one mole of pure component i in a n  adsorbed 
phase composed of component i alone. An outline of the proof of the equality 

= HP follows. 1 1 
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As in the classical thermodynamics of vapors and liquids (Refs. 2,7,8,10) the 
partial molar enthalpy H: of component i in the adsorbed phase is defined by 

At any n and T, the function H" like U" (see Eq. (14-15)) is homogeneous of 
degree one. Thus, it follows from Euler's theorem (App. 1A) that 

In a manner analogous to  that commonly presented in treatments of the 
classical thermodynamics of vapor and liquid mixtures (Refs. 2, 7, 8), the partial 
molar enthalpy H: is related to the activity coefficient y; of component i in the 
adsorbed phase as follows: 

The development of the relationship given by Eq. (14-1 19) is outlined in Probs. 
(14-4) and (14-5). 

Since y; = 1 (see Eq. (14-116)) for the kinetic model for adsorption, it fol- 
lows from Eq. (14-1 19) that 

and Eq. (14-1 18) reduces to the usual form for ideal solutions. 

NOTATION 

(see also Chap. I I )  

a, = area covered per mole of component i at the spreading 
pressure n and temperature T 

.d = total area covered by the molecules in an adsorbed film 
(on, say, the surface of a liquid); total surface area 
of an adsorbent per unit mass (Langmuir-type models), 
and the surface area covered per unit mass of adsorbent 
when all of the available adsorption sites C, are filled 
at a given temperature (kinetic model for adsorption) 

.gi = partial molar value of the area .d (defined by Eq. (B) of 
Prob. 14-3) 

A", A" = Helmholtz free energy functions for the vapor and 
adsorbed phases, respectively 

f  lV , f r  = fugacity of pure component i in the vapor state and the 
fugacity of component i in a mixture of vapors, 
respectively, pressure units 



P i .  n 

= fugacity of pure component i in the adsorbed phase and 
the fugacity of pure component i in a n  adsorbed phase 
consisting of a mixture of adsorbed components, 
respectively, pressure per unit length 

= total free energy of the vapor and adsorbed phases, 
respectively 

= free of pure component i in an adsorbed phase 
consisting of pure component i at n and T and the 
partial molar free energy of component i a t  n and T, 
respectively 

= enthalpy of the vapor and adsorbed phases, respectively 
= enthalpy of one mole of pure component i and the 

partial molar enthalpy of component i a t  a given n and 
T, respectively 

= width of surface (see Fig. 14-1) 
= moles of component i in the gas phase 
= moles of component i in the adsorbed phase, moles 

adsorbed per unit mass of adsorbent 
= partial pressure of component i in the adsorbed phase 

(defined by Eq. (14-58)) 
= number of phases 
= total pressure 
= vapor pressure (vapor-liquid equilibria) of pure 

component i at the temperature T 
= gas phase pressure at which component i has an 

equilibrium spreading pressure ni in the adsorbed phase 
at the temperature T 

= that pressure which must be applied on  a vapor phase 
(at the temperature T of the mixture) composed of pure 
component i in order for the adsorbed phase (composed 
of pure component i) to take on equilibrium spreading 
pressure n equal to that of the given mixture under 
consideration 

= conventional gas constant (for a perfect three- 
dimensional gas, R = PVV/T) 

= entropy of the vapor and adsorbed phases, respectively 
= entropy per mole of pure component i and the partial 

molar entropy of component i in an adsorbed mixture, 
respectively 

= temperature of the vapor and adsorbed phases, 
respectively 

= energy of the universe 
rr = total energy of the system and the surroundings, 

respectively 
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I Uv, Ub = internal energy of the vapor and adsorbed phases, 
respectively 

Y = degrees of freedom 

Vv, V" = volumes of the vapor and adsorbed phases, respectively 
Xi = total mole fraction of component i in the adsorbed phase 
Yi = mole fraction of component i in the vapor phase 
Ti = compressibility factor for component i 
z = length; z, = total length 

Greek letters 

Y O ?  Y = surface tension of a pure liquid surface and of a 
contaminated liquid surface, force per unit length 

Y V >  YP = activity coefficients for component i in a nonideal 
mixture in the vapor phase and in the adsorbed phase, 
respectively 

v = parameter in the kinetic model for multilayer adsorption 
n = spreading pressure for the adsorbed phase, force per 

unit length 

XJ = functions (1 5 j 5 n)  in the generalized equation of 
state for the adsorption of multicomponent mixtures in 
n layers 

Qi(T) = function defined by Eq. (14-72) 
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Hint: Make use of Eq. (14-28). 
(b) By use of the results given by Eqs. (A) and (B), show that 
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14-5 Show that for the general case of a nonideal adsorbed solution, 

14-6 For one mole of a pure component in a closed system at constant temperature, Eq. (14-11) 
reduces to PROBLEMS 

dGy = v: d P  

The volume per mole of an actual gas is given by 
14-1 Verify the results given by Eqs. (14-29) and (14-30). 

14-2 Show that the equation of state obtained by substituting the expression for Ci for model I1 
(Eq. (11-28)) into Eq. (14-104) is consistent with Gibbs' formula. 

14-3 Analogous to the expression for the volume of a liquid that forms a nonideal solution (Refs. 7, 
8, 10). the surface covered by a nonideal adsorbed solution may be expressed in terms of the partial 
molar areas as follows: where the compressibil~ty factor Z has the property 

where the 2,'s are the partial molar areas, which are defined by Equations (A) and (8)  may be combined to give 

dGy = Z, RTd In P (at constant T) 

By use of Eqs. (C), (D), (14-43), show that 

(a) By use of Eqs. (B), (14-62), (14-63), and (14-86), show that af Ilm 2 = I (at constant T) 
P - 0  

14-7 Show that the result given by Eq. (14-78) is also obtained for the general case of n adsorbed 
layers for both models I and [I. 

14-8 Show that the expression given for OXT) by Eq. (14-81) is also obtained for the general case of 
n layers for both models I and 11. 

(b) Use Eq. (C) to verify the result given by Eq. (14-91). 
(c) Show that when the temperature T and all of the nTs are held fixed, Eq. (C) may be 

integrated to give 

I 
In = , - a,) dn 

14-4 Partial differentiation of both sides of Eq (14-20) with respect to n: at constant n and T gives 

where 

(a) Show that 



INDEX 

Absorbers, 217, 235-247, 253-268 
field tests, 258-260 
fractional response, 265 
packed absorbers, 253-258 

Acrivos, A., 356 
Activity coefficients, 43, 128, 129 
Adiabatic adsorbers, 404-414 
Adsorbers: 

breakthrough curves, 378, 392, 393 
countercurrent operation, 415, 416 
fixed-beds, 374-384, 389-414 

periodic operation, 414-416 
Adsorption: 

chemical adsorption, 363, 364 
physical adsorption, 363-372 
thermodynamics of physical adsorption, 

439-463 
Adsorption isotherms: 

of mixtures, 369-372, 398 
of pure components, 364-369, 427 

Allen, R. H., 19 
Anzelius, A., 378 
Arnold, J. R., 369 

Balzli, M. W., 392 
Barb, D. K., 183, 207 
Bassyoni, A. A., 254-255, 262, 264 
Batch-distillation, 177-207 

comparison of model predictions with 
experimental results, 199-202 

cyclic operation, 195-197 
optimization of, 202-207 

Bennett, J. M., 67, 167 
Benton, A,, 369, 371 
Bernouli's theorem, 270, 271 
BET isotherm, 367-369 
Bolles, W. L., 273, 274 
Bonilla, C. F., 73 
Breakthrough curves (see Adsorbers) 
Broyden, C. G., 71, 167 
Broyden-Bennett algorithm, 162 
Broyden's method, 63-67, 162 
Brunauer, S., 364, 366, 369 
Bullington, L. A,. 272 
Burdett, J. W., 71, 73, 81, 86, 92 
Buron, A. G., 274 
Butcher, J. C., 19 

Caillaud, J. B., 19, 217, 218, 304 
Calahan, D. A., 19 
Carnahan, B., 336 
Carslaw, H. S., 82 
Characteristics (see Method of characteristics) 
Chemical potential, 442, 445 
Chilton, C. H., 103 
Chua, L. O., 309 
Churchill, R. V., 84, 114 
Clenshaw, C. W., 341 
Conte, S. D., 31, 337 
Control valves, 279, 282-285 
Controllers : 

for distillation columns, 279-281, 282-285 
proportional-integral controller, 281 
proportional-integral-rate controller, 281 



Convective mass transport, 372-373 
Cooke, C. E., Jr., 369 
Crank, J., 348 
Crank--Nicolson method, 348, 356, 432, 433 
Crosser, 0. K., 408 
Countercurrent operation (see Adsorbers) 
Coupled differential and algebraic equations, 

218-235,321-326 
Gear's kth-order algorithms, 222-229 
Michelsen's algorithms, 218-222 
semi-implicit Runge-Kutta algorithms, 

222-229 

Dahlquist. G., 31 
Damkohler, G., 382, 384 
D'Arcy equation, 427 
de Boer, J. H., 439, 440 
dc Boor, C., 31, 337 
Deming, L. S., 364 
Deming, W. E., 364 
Denbigh, K., 42, 442, 456 
Departure functions, 127 
Desalination plant, 73-77, 88-1 11 

comparisons of model predictions with 
experimental data, 109, 110 

equipment parameters, 103-105 
of Freeport, 73, 8 8  11 I 

Diffusion: 
axial diffusion, 394 
coefficients, 380, 382 
Knudsen diffusion, 427 
in pores, 379-384, 395, 427 
solid diffusion, 395 
surface ditTusion. 382 

Distillation: 
batch distillation (see Batch distillation) 
continuous distillation, 123-164, 269-285 
examples, 138 - 143, 1 4 7  153, 285-292 
control of distillation columns, 279-281, 

282-285 
equilibrium relationships, 128, 129 

Duhring lines, 43 
Dukler, A. E., 73 
Dusty-gas model, 427 
Dykstra, D. I., 77 
Dynamics of sieve trays, 270-276 

Eckert, C. A,, 286 
Emmett, P. H., 367, 369 
Energy balances, 5-12 
Enthalpy, 6 
Evans, R. B., 427 
Evaporation, 37-45 

Evaporators: 
boiling point elevation, 42, 45 
of multiple-effect, 41, 68, 69, 72 
of single-effect, 40, 41, 46-57 

control of mass holdup, 101, 102 
steam consumption, 42 
Swenson type, 38-40 

Euler's method, 13, 14 
Euler's theorem, 34, 444 

Feng, An, 248, 268 
Fick's law, 379 
Film resistance and diffusion modcl, 394404 
Finite-difference methods, 348- 356 

explicit methods, 351-354 
implicit methods, 354-356 

Finlayson, B. A,, 341, 344 
Fluid flow in pipes, 6-12 
Foam factor, 274 
Fowler, R. H., 366 
Franke, F. R., 153 
Freeze-drying, 420-435 

adsorbed water, 426,427 
models, 421-429 
model solutions, 429-435 

Freundlich isotherm, 365 
Friction factor, 275 
Friedly, J., 356 
Fritz, W., 372 
Fritz-Schluender isotherm, 372 
Fugacity, 42, 43, 448, 451- 454 
Furnas, C. C., 378 

Gallun, S. E., 248, 281, 285 
Gear, C. W., 30, 248, 285, 309 
Gear's integration algorithm, 276 279 
Gear's method of integration, 22-24, 269, 285, 

315-326 
Generalized theorem of integral calculus, 33, 79 
Gentzler, G. L., 421 
Gerlack, A., 45 
Gibb's adsorption formula, 447, 448 
Gill, S., 17, 304 
Glueckauf, E., 375, 376, 387 
Glueckauf model, 375-379, 389-393 
Gonzalez, A. J., 369, 372, 451, 460 
Greenfield, P. G., 431 
Groves, D. M., 268 
Guggenheim, E. A,, 439, 442, 456 
Gunn, R. D., 427,430 

Hamming R. W., 337 
Hanson, D. T., 407, 408,413,414 
Harper, J. C., 422 

INDEX 473 

Harwell, J .  H., 407, 408, 413, 414 
Heat, 5 
Heat transfer models, 77-88 

errors in the predictions, 85, 86 
Henrici, P., 30 1 
Henry's law, 365 
Hildeband, F. B., 334 
Hill, T. L., 369, 439, 450 
Hlavatek, V., 293 
Holland, C. D., 67, 71, 76, 81, 84, 86, 91, 92, 126, 

167, 208,248, 264,291, 369,448, 456, 463 
Holmes, M. J., 300 
Holmes, R. E., 378, 379 
Horvay, G., 341 
Hougen, 0. A., 378 
Householder, A. S.,  293 
Ifuang C. J., 73 
Huckaba, C. E., 153, 208 
Hugmark, G.  A,, 275 
Hutchinson, M. H., 274 
Hwang, M., 32 
Hydraulic gradient, 271, 275 
Hydraulic radius, 275, 276 

Ideal adsorbed solution, 455-457 
Integration of differential equations (rve 

Numerical methods of ~ntegration) 
Interface (see Phase interface) 
Interfacial area, 373, 426 
Internal energy, 6 
Isothernis for adsorption. 364-372, 398. 427, 

439 ~463  
Itahara. S.. 73 

Jacobian matrix, 19, 53. 54 
Jaeger. J. C., 82 

K ,  method, 136 
Kelley, R. E., 272 
Kinetic energy, 6 
King, C. J., 42 1, 426, 430 
Kirkpatr~ck, S. D., 103 
Krylov, V. I., 361 
Kubitek, M., 293 
KubiEek's algorithm for matrices, 291, 293, 294 

Lam, W. K., 426, 433 
Lanczos, C., 341 
Langmulr, I., 364, 366, 440, 458 
Langmuir isotherm, 365 
Lapidus, L., 32, 167 
Lee, H. M., 73 
Leibson, I., 272 
Leland, T. W., Jr., 378, 379 

Liapis, A. I., 392, 396, 402, 404, 408, 414, 421, 
427,431, 435 

Lin, Pen-Min, 309 
Liquid surface, 440 
Litchfeld, R. J., 396, 407, 414, 421, 430 
Lord, R. C., 279 
Lugin, V. V., 361 
Luther, tl. A,, 327, 336 

McBain, J. W., 364 
McCabe, W. L., 44 
McDanicl, R., 248, 258, 262, 264 
Markham, E. C.. 369, 371 
Markham-Benton isothcrms, 369. 371 
Marshall, W. R., 167, 377, 378 
Mason, E. A., 427 
Mason, J., 369 
Mass transfer coelticicnth, 373, 374, 426 
Material balances, 2-5 
May, R. B., 153 
Mean-valuc theorem of diffcrential calculus, 4, 5, 

33 
Meo, 11.. 430 
Mcthod ofcharacteristics. 356 360, 390, 408 
Method of weighted residuals, 340, 341 
Michelsen, M L., 19, 218, 248, 308, 341, 342, 344 
Michelscn's method of integration, 18, 308, 398, 

403 
Mickley, H. W., 377 
Mijarcc, G., 164 
Miller, B. P.. 274 
Milne, W. E., 32 
M~nton,  P. E., 279 
Modeling: 

fundanientals of. 1 12 
cncrgy balances. 5 I2 
material balance\, 2 5 
rate expressions, 7. 8. 373. 374, 379, 382, 

394,405 407, 427 
MoRcrt, H. T., 42 1 
Moving-boundary problem, 429 

solution of, 430, 431 
Mult~co~nponent adsorhcrs, 389-416 
Multistep intcgrat~on methods, 308 326  

of Adams Bashforth, 31 1, 312 
of Adams Moulton, 3 12 
Gear's, 312 326 

Myers, A. L., 439, 442 

Newton -Raphson method, 53-55, 102, 134, 346, 
348, 409,412 

the 2N, 160-164, 192195 
Nicolson, P., 348 



474 INDEX INDEX 475 

Nonlinear algebraic equations: 
solution of (see Newton-Raphson method) 

Nordsieck vector, 22, 317-319 
Norton, H. T., 341 
Numerical methods of integration: 

of ordinary differential equations, 13-24, 
308 -326 

Euler's method, 13 
Gear's methods, 22-24, 269, 276-279, 285, 

315-326 
Michelsen's method, 18, 308, 398, 403 
multistep methods, 308, 398, 403 
point-slope predictor, 15, 16 
Runge-Kutta methods (see Runge-Kutta 

methods) 
trapezoidal corrector, 19 
two-point implicit method, 21, 52, 94, 129, 

160, 179 
of partial differential equations, 348 360, 

390-393,400-404,408-413,431-433 
finite-d~tTerencc methods (see 

Finite-difference methods) 
method of characteristics (see Method of 

characteristics) 
orthogonal collocation method (see 

Orthogonal collocation) 

O'Connell, H. E., 275 
O'Connell, J. P., 286 
Open-boundary system, 11, 12 
Orthogonal collocation: 

method of, 331-348, 398, 400-403 
applications, 341 348, 400-403 

Orthogonal polynomials, 332 336, 402, 403 
Chebyshev, 333 
Hermite, 333, 334 
Jacobi, 334-336 
Laguerre, 332, 333 
Legendre, 332 

Orye, R. V., 286 

Padmanabhan, L., 19, 217, 304 
Partial molar enthalpies, 127 
Peck, R. E., 421 
Percolation processes, 362 
Perfect gases, 449-451 

three-dimensional gases, 449, 450 
two-dimensional gases, 450, 451 

Perfect mixer, 3-5, 11, 12 
Periodic operation (see Adsorbcrs) 
Perry, R. H., 103 
Peters, W. A., Jr., 260 
Phase interface, 373 
Phase rule, 446, 447 

Pigford, R. L., 167, 377 
Point-slope predictor, 15, 16 
Pore diffusion (see Diffusion) 
Potential energy, 6 
Prausnitz, J. M., 286, 439, 442 
Prochaska, F., 293 

Quadratures, 336-340 
gaussian quadrature, 336, 337 
Gauss-Jacobi quadrature, 337-340 

Rayleigh, Lord, 208 
Reed, C. E., 377 
Reid, R. C., 300 
Residuals (see Method of weighted residuals) 
Reynolds number, 275 
Richtmyer, R. D., 353, 356 
Rippin, D. W. T., 392, 402, 403, 404, 415, 416 
Rosenhrock, H. H., 19, 308 
Rungc-Kutta methods, 17 -19, 301-308 

explicit, 17, 302-304 
of fourth-order, 17 
Michelsen's, 18 
of Runge-Kutta-Gill, 17 
semi-implicit, 18, 19, 218-229, 265, 304 -308, 

393 

Sandall, 0 .  C., 426, 430, 433 
Scaling procedures, 57-63 

column scaling, 62, 63 
row scaling, 60 63 
variable scaling, 60-62 

Schlucnder, E. U., 372 
Schmidt, I.'. W., 421 
Secrest, D., 335 
Seinfeld, J. H., 32 
Semi-implicit Runge-Kutta methods, 18, 19, 

218-229, 265, 304-308, 393 
generalized algorithm, 222 229 

Separation by sublimation (see Frcczc-drying) 
Shapiro, A. H., 356 
Sheng, T. R., 421 
Sherwood, T. K., 300, 377 
Sieve trays (see Dynamics of sieve trays) 
Simultaneous differential and algebraic 

equations (see Coupled differential and 
algebraic equations) 

Single-component adsorbers, 374, 384 
Sips I1 isotherm, 427 
Slusser, R. P., 279 
Smith, B. D., 274, 275 
Solid diffusion (see Diffusion) 
Spiess, F. N., 341 
Spreading, 439 

Spreading pressure, 441 
Stability of numerical integration methods: 

for ordinary differential equations, 25-30 
for partial differential equations, 353-356 

explicit methods, 353, 354 
implicit methods, 355, 356 

for stiff differential equations, 29, 30 
Stewart, W. E., 341 
Stiel, L. I., 73 
Stiff ordinary differential equations, 29, 30 
Stroud. A. H., 335 
Sublimation interface, 422, 428, 429 
Surface dilfusion (see Diffusion) 
Surtace tension, 441 
System with open boundary, 11, 12 

Taylor's theorem, 33 
Teller. E., 364, 369 
Temperature: 

bubble-point, 129 
dewpoint, 129 

Tetlow, N. J., 268 
Tewarson, R. P., 248 

Theta method, 124, 132, 137, 156-159, 183-188 
exact solution, 157-159 
modified, 156, 157 

Thomas algorithm, 131, 132 
Trapezoidal corrector, 20 
Trapezoidal rule, 359, 360, 409, 410 

Van Winkle, J., 300 
Van Winkle, M., 274 
Vichnevetsky, R., 344 
Villadsen, J., 341, 342, 344 
Viscous flow, 427 
Volmer, M., 366, 439, 459 

Waggoner, R. C., 153, 208 
Watson, G. M., 427 
Wetting, 439, 440 
Wicke, E., 384 
Wilke, C. R., 430 
Wilkes, J. O., 327, 336 
Wr~ght, K., 341 

Yanovich, L. A., 361 

Zoller gas plant, 254, 255, 258 


	fm.pdf
	Portada

	part_1.pdf
	Part_1
	Chapter_1
	Chapter_2
	Chapter_3
	Chapter_4
	Chapter_5


	part_2.pdf
	Part_2
	Chapter_6
	Chapter_7
	Chapter_8
	Chapter_9


	part_3.pdf
	Part_3
	Chapter_10
	Chapter_11
	Chapter_12
	Chapter_13
	Chapter_14


	Index.pdf
	Index


