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Because of the availability of high-speed computers the time is fast approaching
when the engineer will be expected to be as conversant with/the unsteady state
solutions to process systems as was expected for the steady state solutions in
the past.

In this book a combination of the principles of separation processes, process
modeling, process control, and numerical methods is used to produce the dyna-
mic behavior of separation processes. That is, this book “puts it all together.”
The appropriate role of each area is clearly demonstrated by the use of large
realistic systems.

The order of presentation of the material was selected to correspond to the
order of the anticipated difficulty of the numerical methods. Two-point methods
for solving coupled differential and algebraic equations are applied in Part 1
while multipoint methods are applied in Part 2, and selected methods for solv-
ing partial differential equations are applied in Part 3. Also, the presentation of
the material within each section is in the order of increasing difficulty. This
order of presentation is easily followed by the student or practicing engineer
who has had either no exposure or little exposure to the subject.

Techniques for developing the equations for the description of the models
are presented, and the models for each process are developed in a careful way
that is easily followed by one who is not familiar with the given separation
process.

In general, the best possible models that are compatible with the data
commonly available are presented for each of the separation processes. The
reliability of the proposed models is demonstrated by the use of experimental
data and field tests. For example, the dynamic behavior predicted by the model
for the system of evaporators was compared with the observed behavior of the
system of evaporators at the Freeport Demonstration Unit. Experimental data
as well as field tests on the Zollar Gas Plant for distillation columns, absorbers,
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and batch distillation columns were used for comparison purposes. Experimen-
tal results were used to make the comparisons for adsorption and freeze-drying.

The development and testing of the models presented in this book required
the combined efforts of many people to whom the authors are deeply indebted.
In particular, the authors appreciate the support, assistance, and encouragement
given by J. H. Galloway and M. F. Clegg of Exxon; W. E. Vaughn, J. W. Thompson,
J.D. Dyal, and J. P. Smith of Hunt Qil Company; D. I. Dystra and Charles Grua
of the Office of Saline Water, U.S. Department of Interior; J. P. Lennox,
K. S. Campbell, and D. L. Williams of Stearns-Rogers Corporation. Support of
the research, upon which this book is based, by David L. Rooke, Donald A.
Rikard, Holmes H. McClure, and Bob A. Weaver (all of Dow Chemical
Company), and by the National Science Foundation is appreciated. Also, for the
support provided by the Center for Energy and Mineral Resources and the
Texas Engineering Experiment Station, the authors are most thankful. The
authors acknowledge with appreciation the many contributions made by former
and present graduate students, particularly those by A. A. Bassyoni, J. W. Burdett,
J. T. Casey, An Feng, S. E. Gallun, A. J. Gonzalez, E. A. Klavetter, Ron
McDaniel, Gerardo Mijares, P. E. Mommessin, and N. J. Tetlow.

The authors gratefully acknowledge the many helpful suggestions provided
by Professors L. D. Durbin, T. W. Fogwell, and R. E. White of the Department
of Chemical Engineering, Texas A&M University, and O. K. Crosser, T. W.
Johnson, and J. M. Marchello of the Department of Chemical Engineering,
University of Missouri-Rolla. A. I. Liapis thanks especially Professor D. W. T.
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CHAPTER

ONE

INTRODUCTION—
MODELING AND NUMERICAL METHODS

An in-depth treatment of both the modeling of dynamic separation processes
and the numerical solution of the corresponding equations is presented in this
book.

After the models which describe each of the separation processes at un-
steady state operation have been formulated, the corresponding equations de-
scribing each of these models are solved by a variety of numerical methods,
such as the two-point implicit method, Michelsen’s semi-implicit Runge-Kutta
method, Gear’s method, collocation methods, finite-difference methods, and the
method of characteristics. The ability to solve these equations permits the en-
gineer to effect an integrated design of the process and of the instruments
needed to control it. The two-point implicit method (or simply implicit method)
is applied in Part 1; Michelsen’s semi-implicit Runge-Kutta method and Gear’s
method in Part 2; and the collocation method, finite-difference methods, and
the method of characteristics are applied in Part 3. To demonstrate the applica-
tion of the numerical methods used in Parts 1 and 2, the use of these methods
is demonstrated in this chapter by the solution of some relatively simple nu-
merical examples. The methods used in Part 3 are developed in Chap. 10 and
their application is also demonstrated by the solution of relatively simple nu-
merical examples.

The techniques involved in the formulation of models of processes is best
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2 COMPUTER METHODS FOR SOLVING DYNAMIC SEPARATION PROBLEMS )

demonstrated by the consideration of particular processes. A wide variety of
processes including evaporation, distillation, absorption, adsorption, and freeze-
drying are considered. Both stagewise processes such as distillation columns
equipped with plates and continuous processes such as adsorption processes are
treated. All of these models are based on the following fundamental principles:

1. Conservation of mass or material balances
2. Conservation of energy or energy balances
3. Transfer of mass

In order to demonstrate the techniques suggested for the formulation of the
equations representing the mass and energy balances, several different types of
systems at unsteady state operation are presented in Sec. 1-1. These techniques
are further demonstrated in subsequent ‘chapters by the ‘development of the
equations for particular process models.

In order to solve the equations describing the model of a given process, a
variety of numerical methods may be used. Representative of these are the
methods listed above. An abbreviated presentation of selected methods and
their characteristics are given in Sec. 1-2.

1-1 FORMULATION OF THE EQUATIONS FOR
SELECTED MATERIAL AND ENERGY-BALANCE MODELS

no v\;oo\o S A o RSP

4
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Let the particular part of the universe under considerationj’l be called the system
and the remainder of the universe the surroundings. A ynaterial balance for a
system is based on the law of conservation of mass. For purposes of application,
a convenient statement of this law follows: Except for fhe conversion of mass to
energy and conversely, mass can neither be created nor destroyed. Consequently,
for a system in which the conversion of mass to energy and conversely is not
involved, it follows that during the time period from t=1,tot=1¢,+ At,

Material Balances

Input of material' output of material accumulation of
to the system from the system _ | material within
during the time | | during the time the system during
period At period At the time period At
The accumulation term is defined as follows:
Accumulation of material amount of material amount of
within the system = | in the system at — | material in the
during the time period At time ¢, + At system at time ¢,

In the analysis of systems at unsteady state, the statement of the material
balance given above is more easily applied when restated in the following form:
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The contents are perfectly mixed %

— /

%

%

U = moles of holdup
F = feed rate x = mole fraction at -
moles/time ¥4 any time ¢ L = withdrawal rate,

moles/time

x = mole fraction at
any time ¢

—>

X = mole fraction [/]

N

Figure 1-1 Sketch of a perfect mixer.

f tnt Al [(input of material output of material
- per unit time per unit time a
amount of material
in the system

(1-1)

__ (amount of material
1+ At in the system

In
To .illustrate the formulation of material balances, consider the perfect mixer
shown in Fig. 1-1, and let it be required to obtain the differential equation
representing the total material balance at any time ¢ after an upset in the feed
has occurred. Suppose that the upset in the feed occurs at time t = 0 The
component-material balance over the time period from t, to t, + At is give.n by
ty + At
I (FX; — Lx;) dt = (Ux,) —(Uxy)

tht+ At

(1-2)

where F = feed rate, mol/h (or mass/h) (note that in the absence of chemical
reactions, the number of moles is conserved)
L = product rate, mol/h (or mass/h)
U = holdup, moles (or mass)
X; = mole (or mass) fraction of component i in the mixer at any time t
X; = mole (or mass) fraction of component i in the feed at any time ¢

(In the_application of the two-point implicit method, Euler’s method, and the
trapezoidal rule, the numerical method may be applied directly to Eci (1-2) as
demonstrated in subsequent chapters.) ‘

The differential equation corresponding to Eq. (1-2) may be obtained by use

of the mean-value theorems. First, a
. , apply the mean-value theorem i
calculus (App. 1A) to the left-hand side of Eq. (1-2) to obtain of neeqrat

tn+ At
I (FX,— Lx) dt = [(FX,. — Lx,) ] At (1-3)
n thta At
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Figure 1-2 Geometrical interpretation of the mean-value theorem of integral calculus.

At time 1, + B At, the slope of the tangent line is equal
to that of the secant. Therefore

. - Usx;
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Figure 1-3 Geometrical interpretation of the mean-value theorem of differential calculus.
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where 0 < « < 1. The geometrical representation of Eq. (1-3) is that there exists
a rectangle having the height (FX; — Lx;)|, +,a and the base At which has an
area exactly equal to that under the curve of (FX; — Lx;) versus ¢ over the time
interval from ¢, to t, + At; see Fig. 1-2. .

Application of the mean-value theorem of differential calculus to the right-
hand side of Eq. (1-2) yields

d(Ux,)
th+ At B (UXE) dt

where 0 < f# < 1. The geometrical picture of Eq. (1-4) is that there exists a
tangent line having a slope, d(Ux;)/dt|, ., Which is exactly equal to that of
the secant line connecting the points at ¢, and ¢, + At on the curve of (Ux,)
versus t; see Fig. 1-3.

After the right-hand sides of Egs. (1-3) and (1-4) have been equated and the
resulting expression divided by At, one obtains

(Ux) (1-4)

= At
tn

thtp At

d(Ux;
(FX, — Lx) _ dUx) (1-5)
th+a At dt tht B At
In the limit as At is allowed to go to zero, Eq. (1-5) reduces to
d(Ux;
(FX, — Lx| =4U%) (1-6)
tn dt In

Since t, was arbitrarily selected, Eq. (1-6) holds for all ¢, > 0, and thus the final
result is

d(Ux)

FX;, - Lx; =
i Xl dt

(t>0) (1-7)

Energy Balances

Energy balances are based on the first law of thermodynamics which asserts
that the energy of the universe is a constant. Thus, the total amount of energy
entering minus that leaving a particular part of the universe, called the system,
must be equal to the accumulation of energy within the system. The following

formulation of the energy balance is easily applied to systems at unsteady state
operation:

m*a [ finput of energy to the output of energy from the dt
L system per unit time system per unit time

B (amount of energy) (1-8)

within the system

amount of energy
o+ At within the system

th
In order to account for all of the energy entering and leaving a system, the

energy equivalents of the net heat absorbed by the system and the net work
done by the system on the surroundings must be taken into account. Heat and
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work represent energy in the state of transition between the system and its
surroundings. A system that has work done on it experiences the conversion of
mechanical energy to internal energy. In the following analysis, a basis of one
pound-mass (one Ib,) is selected. Thus, the symbols KE, PE, and E denote
kinetic, potential, and internal energies, respectively, in British thermal units per
pound-mass of fluid. The total energy possessed by 1 b, of fluid is denoted by
Ey, that is,

Er=E+KE + PE . (1-9)
The enthalpy H of 1 1b,, of fluid is defined by
H=E+ Pv (1-10)

where P = pressure Ib/ft2, where 1b; means pounds force
v = specific volume, ft3/1b,,

In the interest of simplicity, the mechanical equivalent of heat (778 ft lb,/Btu)
has been omitted as the divisor of the Pv product in Eq. (1-10) and other
equations which follow. For convenience, let

Hy=E;+Pv (1-11)

For a flow system at steady state operation (a process in which the variables do
not change with respect to time), Eq. (1-8) reduces to the well-known expression
AH = Q, where no work is done by the system on the surroundings, and where
the kinetic and potential energy changes are negligible. For an unsteady state
process, however, the expression for the energy balance is not quite so simple.
Two types of systems are considered in the following development which are
characteristic of the systems considered in subsequent sections.

Fluids Flowing In Pipes

In the development which follows, it is supposed that the pipe is flowing full
and that perfect mixing occurs in the radial direction and that no mixing occurs
in the axial direction z (see Fig. 1-4). Let z;, z;,;, t,, and t,, be arbitrarily
selected within the time and space domains of interest, that is,

0<z;<z;41 <27 t>0
where Az =z;,; — z;
At = iy — L,

The energy balance on the element of fluid contained in the volume from z;
to z;,, over the time period from ¢, to t,., is formulated in the following
manner. The energy in the fluid which enters the element of volume at z; per
unit time is given by

(Input of energy per) — WE, (1-12)

unit time by flow

zj, t
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Perfectly mixed in the radial direction,
but no horizontal mixing

Figure 1-4 Energy balance on an element of volume from z; to z;,, for a flow system.

at any time ¢ (t, <t <t,,,;). The work required to force one pound mass of
fluid into the element of volume at z; at any time ¢ (t, <t < t,, ) is given by

Work per v
. =| Pdv
unit mass o

Observe that this work, Pv, may vary with time throughout the time period At.
At any time ¢

= Pv

Zj, t

(1-13)

zj, t

Rate at which work is done on the
(1-14)

element of volume by the entering fluid

) = (wPv)

zj, t

Suppose that heat is transferred continuously from the surroundings to the
system at each z along the boundary as shown in Fig. 1-4. Let this rate of heat
tran(s)fer be denoted by g [Btu/(h-ft)]. Then at each z (z; <z < Zj+1) and any
t>

(Heat transferred across the boundary of
the element of volume per unit time

= J q dz (1-15)

i
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Two cases where the system does work (commonly called shaft work) on the
surroundings are considered. In the first case, the work is done by the system
(energy leaves the system) on the surroundings at a point z lying between z; and
zj4, as shown in Fig. 1-4, and the rate at which work is done is denoted by W
(ft 1bg/unit time). In the second case, work is done by the system in a continuous
manner at each point z along the boundary, and the rate at which work is done
at each point is denoted by #~ [ft 1by/(ft unit time)]. In this case,

l Zj+l
Shaft work done' by the Clel?le[}t of volume _ W dz (1-16)
on the surroundings per unit time i
The integral-difference equation is formulated for the first case, and the final
result for the second case is readily obtained therefrom. The input terms of Eq.

(1-8) are as follows:

+ (wPv)

zj, t

the element of volume
over the time period At

th+1 l:(WET)

+ j‘ ' q dz] dt (1-17)
zj, t zj

Input of energy to \’ J~
1

The output terms are

the element of volume |= + (wPv)

over the time period At

Output of energy from tnet
f [(WET)
1,

n

+ w] dt (1-18)

Zj+1,t Zj+1,1

The accumulation of energy within the element of volume over the time period
At is given by '

Accumulation of energy within the element
of volume over the time period At

dz (1-19)

th, 2

= j (pSEq) dz — J (pSEv)

i th+1,2

where p is the mass density (Ib,/ft3) of the fluid and S is the cross-sectional area
of the element of volume as shown in Fig. 1-4. The cross-sectional area S is
generally independent of z, and it will be considered constant throughout the
remainder of this development. Since p = 1/v, Eq. (1-11) may be used to give

pEr = pHy — p(Pv) = pHy — P (1-20)
and this expression may be used to restate Eq. (1-19) in the following form:

Accumulation of energy
during the time period At

Zj+1
[
Zj

—pHr

th+1, 2

- P‘ )s dz (1-21)

tn, Z

Zj+1
)S dz — j (P
tn, Z. zj

th+1, 2
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Through the use of Eq. (1-11) to state the inputs and outputs in terms of H
the final expression for the energy balance may be restated in the form "

tn+1 2je1
f [(wHT) N f gdz— w] d
tn Zj+ 1,1 2j

=f [(pHT) ]s dz—r“ (p

Exan?ination of the.secor'ld integral on the right-hand side of Eq. (1-22) shows
that it has th§ physical significance of being the difference between the amount
of work required to sweep out the element of volume at times ¢ +rand ¢,. In
most processes this is negligible relative to the enth i s ing
e rioht hand side enthalpy differences appearing on
t If ltlhe e'lementlof volume does shaft work continuously on the surroundings
at each point z along the boundary, then W in Eq. (1-22) i
expression given by Eq. (1-16). % (1-22) s replaced by the

— (wHyp)

zj, t

— (pHy)

th+1,2

—Pl )s dz (1-22)
In+1,2 1y, 2.

Developmel'lt of the Partial Differential Equation
Corresponding to the Energy Balance

Beginning with the following form of the energy balance for the flow of a fluid

through a pipe
Zj-1
+ f qdz — W:I dt
i+t zj

J‘t.n 1 l:(WH T)
[

the gorrfasponding partial differential equation may be obtained by the pro

application of the mean-value theorems (App. 1A, Theorems [A-1 andplA‘?‘;r
f;{)llowed by the limiting process wherein Az and At are allowed to go to zero)
| fO:J;IIew:r, in order to apply the ‘mean-value theorem of integral calculus to the.
left and side of Eq. (1-23), the integrand must be continuous throughout the
interval 2;<z<zj,,. If the point at which the system does work W on the
surroundings is z,, then the integrand has a point of discontinuity at z, , since

—(wHy)

“J.t

—(PErS)

In+1,2

] dz (1-23)

W=0 O<z<z,1>0)
W=Ww (Z:zk’t>0) (1-24)

W =0 (zy<z<zp,t>0)
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Thus, if the mean-value theorem is to be applied in any subsequent operation, it
is necessary to pick the interval (z; < z < z;4,) such that it does not contain z;,
that is, the interval (z; < z < z;,,) may be either to the left or right of z,. (Note
that if z, = z;, the differential equation will fail to exist in the limit as Az goes
to zero.) Consequently, the equation to be considered is of the same form as Eq.
(1-23) except that it does not contain W, and it is to be applied over the time
period from ¢, to t,,, and over the distance z;_, <z <z; ; <2z OF z, < Z; <
2<2Zj4q-

Consider first the left-hand side of Eq. (1-23) (with the point z, excluded)
and let it be denoted by “L.H.S.” Application of the mean-value theorem of
differential calculus (Theorem 1A-1) to the first two terms and the mean-value
theorem of integral calculus (Theorem 1A-2) to the third term yields

1 I d(wH
LHS. = Az j [-(W—T) ] de - (1-25)
i zjtaz(t) - Az, t

0z +d

zj+ay(t) - Az, t

where
O<a()<l O0<ay) <1

Since all terms appearing under the integral sign depend upon time alone, the
mean-value theorem of integral calculus may be applied to Eq. (1-25) to give

a(WHT) q‘ ] (1-26)
@

0z

LHS. =Az At[

where ® =2z;+ 0‘1(tp) - Az, tp

@ =z; + ay(t,) - Az, t,
t,=1t,+7y At 0<y; <1
Consider next the right-hand side of Eq. (1-23) and let it be denoted by
“R.H.S.” Application of the mean-value theorem of differential calculus to the

integrand followed by the application of the mean-value theorem of integral
calculus to the integral yields

ApErS) (1-27)

R.H.S. = Az At
ot 16)

where @ = t, + B(z,) - At, z,,
z, = Z; + ¥, Az
0 < fz,) <1
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Thus

AwH )
0z

ql _ 9pELS)
® lo & o
In the limit as Az and At are allowed to go to zero in any manner whatsoever
Eq. (1-28) reduces to ’

owHy) _ ApErS)

72 +4q ot O<z<z,zy<z<zp,t>0) (1-29)

(1-28)

where it is ynderstood that z; and t, were arbitrarily selected with the point z
excluded. Slnce Eq. (1-23) applies over any interval 0 < z;<zjy <z whicI,;
may contain z,, it is evident that the set of partial dil’ferentiallequatigns is a
subset of the set of integral-difference equations.

If p and S are independent of time and w is ind
reduces to ndependent of z, Eq. (1-29)

oH
w—#-{-q:pSaaLtT (1-30)
Since
0H; 8H{dP 0H;dT
oz oP oz T aT oz (1-31)
OE; OEgdv  OE; T
% o aT ot (1-32)

it follows that if pressure-volume (Pv) effects as well as potential and kinetic
energy effects are negligible, then Eq. (1-30) reduces to

oT oT
WC, 5+ =5C, 5 (1-33)

oH OE
C, === =(=
(), (),

Liquid Flowing Through a Perfect Mixer With An Open Boundary

where

qu th{: perfect. mixer shown in Fig. 1-5, the energy balance on the fluid con-
tained in the mixer over the time period from t, to t, + At is given by

th+1
J; [WiHTi—"waHTa_(Wi_wo)Psvs+Q_W] dt:METs _METs

n+1

(1-34)

where Fhe subscripts i and o denote the inlet and outlet values of the variables
respectively, and M denotes the mass contained in the system at any time t
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Open boundary
at time 1, + At

Open boundary
at time 1,
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2 fn

Input by flow P; 2 | at time P, output by flow
. 5 1, + At o
W o
! { E
7777 7 s LA
Q ‘ w

Figure 1-5 Sketch of a variable-mass, variable-energy system with an open boundary.

{t, <t <t,,). Note that the rate at which the expanding boundary does work
on the surroundings is equal to (w; — w,)P,v,. Since

wi—w, =2 (1-35)
' dMEq)
ME;| — MEq ' =£ TT—dt (1-36)
th+1 n n

and Hy, = Er + Pu,, it is possible to restate Eq. (1-34) in the following equiv-
alent form:

R (AN
dt

(1-37)

— MH

th+1
J (w;Hp — w,Hypy + Q — W) dt = MHy,
tn

th+t tn tn

Use of the mean-value theorems followed by the limiting process whereby At is

allowed to go to zero yields the following differential equation:

dMHy) , dP;v)
dt dt

wHpy—w,Hp,+Q—W= (1-38)

In most processes, the second term on the right-hand side of Eq. (1-38) is
negligible relative to the first term on the right-hand side.

1-2 SELECTED NUMERICAL METHODS—
THEIR APPLICATION AND CHARACTERISTICS

Euler’s method, the trapezoidal rule, the two-point implicit method, the fourtt}-
order Runge-Kutta method, the semi-implicit Runge-Kutta method, and Gear’s
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method are used to solve a single differential equation. To explain the behavior
of these methods, a stability analysis is presented. Developments of the Runge—
Kutta and Gear’s methods are presented in Chap. 9.

Euler’s Method

Consider the differential equation

dy
I =f( ) (1-39)

for which a solution (a set of sensed pairs (¢, y) which satisfy both the initial
conditions y =y, when t=1¢, and the differential equation) is sought. The
initial value of the first derivative is found by substituting ¢, and y, in the
differential equation to give

Yo =f(to, ¥o) (1-40)

Let the independent variable to be changed be an incremental amount, denoted
by h(h = At). The step size h may be either preselected or changed during the
course of the calculation. On the basis of this set of values t,, Yo, and yg, it is
desired to predict the value of y at time ¢, (t; =t, + h). This value of y is
denoted by y,. One of the simplest methods for doing this is Euler’s method

which may be thought of as consisting of the first two terms of a Taylor series
expansion of y, namely,

Y1 =Yo + hyg

This process is continued by substitution of (t,, y,) in the differential equation
to obtain yj. Then y, is found by use of Euler’s predictor

Y2 =y + hy}

Continuation of this process yields the numerical solution in terms of the sensed
pairs (¢, y). Euler’s method may be represented as follows:

Predictor:
h2
Vn+1 =Y, + hy, T4 =?Yf.2)(f) ta<&<t,y) (1-41)
Differential equation:
Yo =f(ta, ¥) (1-42)

The symbol T,,, denotes the truncation error in the formula for the predictor.
The truncation error is defined by

Too1 =Ytas1) = Ynes (1-43)

where y(t,. ) is the correct value of y at time ¢,,,, and Ya+1 is the predicted
value of y at time ¢, ,. If the predicted value of y at time t,,, is computed by
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use of the correct value of y at time t,, then the value of T, obtained by use
of Eq. (1-43) is commonly referred to as the local truncation error.

Euler’s method is classified as a predictor because the value of y, at ¢, may
be used to predict the value of y,.,, the value of y at time t,.,; that is, a
predictor is an explicit expression in y. Euler’s method is demonstrated by use

of the following example:

Example 1-1 For the perfect mixer shown in Fig. 1-5, obtain a numerical
solution corresponding to the following conditions. At t=0, X =09,
x = 0.1, U = 50 moles, and for all t, F = L = 100 mol/h. For X = 0.9 for all
t >0, find the solution by use of Euler’s method at values of h = 0.2, 0.4,
0.5, and 0.6.

SoLUTION Since it is given that the holdup U remains constant, Eq. (1-7)

reduces to
dx

FX —Lx=U= (A)

where the subscript i has been dropped in the interest of simplicity. After
the numerical values of F, L, X, and U given in the statement of the
problem have been substituted into Eq. (A), the following result is obtained

x'=18 —2x (B)
where x' = dx/dt. In the notation for the mixer, Euler’s predictor becomes
Xpi1 =X, + hx, ©
For h = 0.2 h and x, = 0.1, the differential equation gives
xp=18—-201) =16
Then by use of the predictor
x; = 0.1 + (0.2)(1.6) = 0.42
To compute x,, the process is repeated. First
x; = 1.8 —2(0.42) = 0.96
Then
x, = 0.42 + (0.2)(0.96) = 0.612

Continuation of this process gives the points displayed in Fig. 1-6 for
h = 0.2 h. The points shown for other values of h were obtained in the same
manner as that demonstrated for h =02 h. The numerical solutions are
shown as broken lines and the analytical solution is represented by the
smooth curve. The analytical solution is obtained by integration of Eq. (A)
at constant U, F, L, and X to give

x=X—(X —xp)e MY D)
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x, mole fraction
I e
n o

N
~

0.3

0.2

0.1

0 { 1 1 ! 1 L 1 1

0 02 04 06 08 10 12 14 1.6
Time, ¢, h

Figure 1-6 Solution of Example 1-1 by use of Euler’s method.

or
x=09 — 08¢~ 2
and at t = 0.2 h, x = 0.363 74.

Another predictor similar to Euler’ i
er’s but more accurate is called th int-
slope predictor. e point

Predictor :
3

— 4 h
yn+1‘yn—1 +2hyn T"l+l =?y:|3,(é) (tn—l <é<tn+l) (1'44)

Since on}y one point, y,_,, and the slope, y,, are required to predict y, this
method.ns sometimes referred to as the point-slope predictor (Ref. 12). "
Whlle. this method is more accurate than Euler’s for any one time step, it
has the disadvantage that some scheme is required to initiate the process P;“_
though the starting y, is known, the value 1, needed in the point-slope prédic-
tor to compute y,, is generally unknown. Since Y: may be computed from the
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differential equation, a starting method reduces to a scheme for finding y,. Two
methods commonly used to find y, are (1) Euler’s method (the first two terms of
a Taylor’s series) and (2) the first three terms of a Taylor’s series. The starting
procedures are demonstrated by use of Example 1-1 for the case where h =
0.2 h. When Euler’s method is used, the value

x; =096

is obtained as shown in the solution of Example 1-1. Next, x, may be computed
by the point-slope predictor as follows:

X, = Xo + 2hx; = 0.1 + (2)(0.2)(0.96) = 0.484

After the solution procedure has been initiated, the remainder of the calcula-
tional procedure is analogous to that demonstrated for Euler’s method.

When the first three terms of a Taylor series are used to initiate the process, a
formula for x®, the second derivative (d?x/dt?) is needed. This formula is ob-
tained from the differential equation. Differentiation of Eq. (B) of Example 1-1
gives

x? = —2x'
Then
R 0.2)2
X; = Xo + hxy + ) x = (0.1) + (0.2)(1.6) + — (—=2)(1.6)
= 0.356

Next the differential equation is used to obtain x; as follows:
x| = 1.8 — 2(0.356) = 1.088
Application of the point-slope predictor yields
x, = 0.1 + (2)(0.2)(1.088) = 0.5352

Fourth-order Runge—Kutta Method

This method, named for its principal authors, Runge and Kutta, was one of the
earliest methods developed. It is classified as a predictor type because it makes
use of the value of y, at ¢, to predict y,,, at t,,, by means of Taylor’s series
expansion of y about t,. The evaluation of higher-order derivatives is, however,
not required by the final formulas. Instead, one substitution in the differential
equation is required for each of the derivatives in the original expansion. For
expansions of order greater than four, the number of substitutions exceeds the
order. The fourth-order Runge-Kutta method is developed in a manner anal-
ogous to that shown in Chap. 9 for the second-order Runge-Kutta method. The
formula for the fourth-order predictor follows:
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Predictor:

ky + 2k, + 2ky + k
Yuir = Yo+ — e T = 0) (1-45)

where k; = hf(t,, y,)

h k
k2=hf(l"+—,y,,+_l>

2 2
h k
ky=hf{t, += =2
3 f<n+2’yn+2)

k4 =hf(tn+h’ yn+k3)

This method is sometimes given a separate classification because it differs
from a conventional predictor in that it contains values of the function at
intermediate times and positions, say ¢, + h/2, y, + k,/2. The truncation error of
the fourth-order predictor is of order h°, denoted by O(h%). The following modi-
fied form of the fourth-order Runge-Kutta method which reduces the storage
requirement over that required by Eq. (1-45) was proposed by Gill(10). This
predictor, called the Runge—Kutta—Gill method follows:

Predictor :

1 1 1
yn+1=yn+g[k1+2<1—ﬁ>k2+2(1+ﬁ)k3+k4] (1-46)

where k; = hf (¢, y,)

h 1
ky = h 2 -
2 f<tn+2’yn+2kl>

h 1 1 1
k3=hf[t,,+§,y,,+<—5+—ﬁ)kl +<1 —75)/(2]
1

1
k4=hfl:t,,+h,y,,— k2+<1+—>k3
V2 V2

The fourth-order Runge-Kutta method (Eq. (1-45)) is applied in essentially
the same way as that shown for Euler’s method. To illustrate, the calculations
for the first increment for h = 0.2 h for Example 1-1 follow:

ky = 02[1.8 — (2)(0.1)] = 0.32

ky = 0‘2[1.8 - (0.1 + 0—233)] =0.256
0.256
ky = 0.2[1.8 o) (0.1 + —2—>] = 0.2688

ks =02[1.8 — (2Y0.1 + 0.2688)] = 0.2125



18 COMPUTER METHODS FOR SOLVING DYNAMIC SEPARATION PROBLEMS ( '

Thus
x; = 0.1 + [0.32 + (2)(0.256) + (2)(0.2688) + 0.2125]/6
= 0.3637

Although this value of x, is more accurate than that given by Euler’s
method for h = 0.2 h, the number of computational steps is seen to be equal to
four times the number required by Euler’s method. However, the Runge-Kutta
method is the more accurate of the two since the truncation of Euler’s method
is proportional to h? and that of the Runge-Kutta is proportional to h°.

Semi-Implicit Runge—Kutta Methods

Although the predictor methods are easily applied, they become unstable for
large values of h as discussed in a subsequent section. Implicit methods, such as
the trapezoidal rule discussed below, are more difficult to apply but they tend
to remain stable at large values of h. However, before considering these implicit
methods, it is appropriate to present a recent extension of the Runge-Kutta
methods, called the semi-implicit Runge—Kutta methods. The initial developers
of the semi-implicit Runge-Kutta methods were Rosenbrock(13), Calahan(3),
Allen(1), and Butcher(2). A review of a number of other methods which have
been proposed has been presented by Seinfeld et al.(14). The third-order method
was originally proposed by Caillaud and Padmanabhan(4) and subsequently
modified by Michelsen(11). The formula for Michelsen’s formulation of this
method for a system of differential equations follows:

Yos1 =Y.+ Rik; + Ryk;y + Ryky (1-47)
where k; = h[I — had(y,)] ™ 'f(y,)
k, = h{1 — had(y,)]™ "f(y, + by ky)
k; = [I — had(y,)] '[bs k, + b3, k;]

In the above expressions, J(y,) denotes the jacobian matrix of the functional
part of each differential equation of the form

dy
— = 1-48
=10 (1-48)
For a single differential equation
)
sy =20 (149)
Y lyn

A development of the semi-implicit Runge-Kutta method is given in Chap. 9,
and by use of the formulas given there the constants were evaluated to four
significant figures to give

a=04358 b,=3/4 by =—06302 by, = —02423
R,=1038 R,=08349 R,=1
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To demonstrate the application of this method, x, is computed for Example
1-1 for h =02 h.

k; = 0.2[1 — (0.2(0.4358)(—2)]~ }(1.6) = 0.2725
ky = 02[1 — (0.2)(0.4358)(—2)] ~*{1.8 — 2[0.1 + (0.75)(0.2725)]}
=0.2029

ks = [1 —(0.2)(0.4358)(—2)] ~ ' [(—0.6302)(0.2725) + (—0.2423)0.2029)]
= —0.1881
Thus

x; = 0.1 + (1.038)(0.2725) + (0.8349)(0.2029) + (—0.1881) = 0.3642

The parameters listed above were selected such that the method is A stable as
discussed in Chap. 9. The application of the semi-implicit Runge-Kutta method
to systems of differential and algebraic equations and the selection of a step size
in agreement with a specified accuracy are presented in Chap. 6.

The Trapezoidal Corrector

The “pure” implicit method commonly known as the trapezoidal rule is con-
sidered next. The trapezoidal rule is commonly referred to as a corrector. With
each corrector, a predictor is usually employed and the method is referred to as
a predictor-corrector method. The predictor is used to obtain the first approxi-
mation of y when t = ¢,. This value of y, denoted by y,, is then used to initiate
the iterative process between the corrector and the differential equation. Gener-
ally, predictor-corrector pairs are picked that have truncation errors of approxi-
mately the same degree in h but with a difference in sign. One of the simplest

pairs consists of the point-slope predictor and the trapezoidal corrector which
follows:

Predictor:
h3
Vn+1 =Yooy + 2hy, Tovy =?Y£.3)(fl) (tn-y <& <tyyr) (1-50)

Corrector:
3

12

h
Yasr =Vut S Werty0) Ty = YAE) (<& <ty (1-51)

The first step of the calculational procedure is the use of the predictor to
compute y, on the basis of the known value of y,. The value of y}, needed in
the predictor formula, is found by one of the starting procedures previously
described for the point-slope predictor. After the procedure has been initiated,
previously computed values of y,_, and y, are used in the predictor to predict
Vu+1, and this value of y, ., is then used in the differential equation to compute
Va+1- This value y, ., is used in the corrector to compute y,,,, which may be
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further improved by iteration between the corrector and the differential equa-
tion. For example, suppose it is required to compute x for Example 1-1 by use
of the above predictor-corrector method. Again as in Example 1-1, x, = 0.1 and
xy = 1.6. Take x, to be equal to 0.356, the value found by use of the first three
terms of Taylor’s series expansion as shown below Eq. (1-44). Then as shown
there, the differential equation gives

X, = 1.088

and the trapezoidal corrector gives
0.2
x; =0.1 + > (1.088 + 1.6) = 0.3688

Substitution of this value of x, into the differential equation yields x| = 1.062
and the next value for x, is

0.2
x; =01+ 5 (1.062 + 1.6) = 0.3662

Repeated iteration gives the correct value x, = 0.3667.

1.0+ .

0.9F i

0.8+

x=09-08¢"
Z 0Tk |
EoefF .
=
g h=08h
BN = —
h=0.6h
0.4k h=04h N

(Within the accuracy of the graph, the lines for 4
h = 0.2 h coincide with the analytical solution)

0 1 1 ! | 1 1 1 1
0 0.2 04 06 0.8 1.0 1.2 1.4 1.6
Time, t, h

Figure 1-7 Solution of Example 1-1 by use of the trapezoidal rule.
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Calculations for the next time step are carried out in the following manner.
The number x, = 0.3667 is used to compute x| by use of the differential equa-
tion

x; = 1.8 — (2)(0.3667) = 1.067
The predicted value of x, for the next time step is found by use of the predictor
x, = 0.1 + (2)(0.2)(1.067) = 0.5268
and the corresponding value of x’, is found as follows:
x5 = 1.8 — (2)0.5268) = 0.7464

On the basis of these values, the corrector is used to compute the first trial
value of x,, namely,

0.2
x, = 0.3667 + - (0.7464 + 1.067)

x, = 0.548

Continued iteration on the corrector gives x, = 0.5445. (In this case, it is pos-
sible to solve the corrector explicitly for x,,, since the differential equation
Xp+1 =f(tp+ 1, Xn44) 18 linear in x,, ,.) The behavior of this method for Example
1-1 is shown in Fig. 1-7.

Two-Point Implicit Method

The two-point implicit method (or simply the implicit method) contains an
adjustable parameter which may be selected such that the method reduces
either to the Euler predictor or to a corrector. The method may be applied to
either an integral-difference equation such as Eq. (1-2) or to a differential equa-
tion. Consider

In+1

f(t’ y) dt:yn+l —Vn (1'52)

tn

which may be reduced to the differential equation

dy

—_ = t,

=S
When applied to Eq. (1-52), the implicit method consists of approximating the
integral by use of a weighted value of the integrand based on its values at ¢
and ¢, as follows:

n+1

[¢f(tn+l’ yn+1) + (1 - ¢)f(tna .V,.)]h = VYn+1 — Vn (1'53)

where 0 < ¢ < 1, and the truncation error is given by
hz h3 o i Lo
T = 5 (1 = 2¢)y?e,) + ri 3¢)yAt,) + O(h*) . (1-59)

ﬁ\x;

~




22 COMPUTER METHODS FOR SOLVING DYNAMIC SEPARATION PROBLEMS (

This formula may be developed as described in Prob. 1-2. Observe that when
¢ =0, Eq. (1-53) reduces to Euler’s predictor and when ¢ =%, Eq. (1-53) re-
duces to the trapezoidal corrector.

For ¢ = 0.6 and h = 0.2 h, application of the implicit method to Eq. (1-2),
the integral-difference form of Eq. (A) of Example 1-1 yields

[0.6(1.8 — 2x,,,) + (1 — 0.6(1.8 — 2x,)1(0.2) = X, 41 — X,

For x,., = x; and x, = x,, this equation may be solved for x; at xo, = 0.1 and
h =0.2 to give

x, = 03581

Gear’s Predictor-Corrector Methods (Refs. 8, 9)

Gear’s predictor-corrector methods consist of multipoint methods which are
developed in Chap. 9. The corrector is implicit in that it contains the derivative
of the variable to be evaluated at the end of the time step under consideration.
However, instead of carrying the customary variables

Yn=[yn’ hy:n Yn—1s Yn=25--1» yn—k]T (1'55)

for a kth-order Gear method, the corresponding terms of the Taylor series are
carried in a vector called the Nordsieck vector, Z,, where

, h2 h3 hk T
z,= [yn’ hym 5? yLZ)’ ; y£l3)’ EEEE) 'I; yka)] (1'56)

The predicted values of the variables are carried in the vector, Z,, where

hZ:ﬁZ) h35)23) hkj/:,k) T
207 31 7 k!]

z,- [y hy,, (1-57)

The algorithm is applied as follows:

Step 1 On the basis of the most recent set of values of the variables for the
last time step, Z,_,, the predicted values for the next time step are found as
follows:

Z,=DZ,_, (1-58)

where D is the Pascal triangle matrix, and for a third-order Gear method
(k=3)

SO O~
(=
(= S
—_ 0 W) =
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The nonzero element d;,, ;. in the (j + 1)st column and (i + 1)st row of the
Pascal triangle matrix is given by

d J!
i+1,j+1 _m

Step 2 Use the first two elements of Z,, to determine the b that makes

G(,Vn’ y;., tn) =0
where
GCWn> Yn> t) =W (Gu + B_1 b, t,) — (hY, + b)
Yn = j’)n + B—lb
hy,=hy, + b

Step 3 Compute the value of Z, at time ¢, as follows:

Z,=7Z,+bL (1-59)

and return to step 1.

The values of f_,, for algorithms of order k = 1, 2, 3, ..., 6, are 1, 2/3, 6/11,
12/25, 60/137, and 60/147. The values of the elements of L for algorithms of
order k =1, 2, ..., 6 are presented in Table 9-3 of Chapter 9.

Example 1-2 To illustrate the application of Gear’s method, let it be re-

quired to find x; at ¢, =0.2 h (or h =0.2) and x, = 0.1 for Example 1-1 by
use of Gear’s second-order method.

SOLUTION

Xp =18 — 2x, = 1.8 — 2(0.1) = 1.6

L@ d(1.8 — 2x) dx _
dx dt

xP = (—2(1.6) = —3.2

For Gear’s second-order method, f_, = 2/3 and L = [2/3, 3/3, 1/317; see
Tables 9-1 and 9-3. The elements of Z, are x, = 0.1 and

—2x'

hx, = (0.2)1.6) = 0.32

oo 09232

2 ! 0 2 - 0.064
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Step 1
11 1] [x
~ 01 2 hx;
Z,=DZ,= °
hz (2)
LO 0 1_ _E!'X()
1 1 1][ o1 0.356
=10 1 2 032 | = 0.192
[0 0 1] [ —0064 —0.064
Step 2

2b
X, =X, +B_1b=0.356+?
hx|, = hx, + b=10.192 +b
2b
G(x,, x}, t;)=(0.2)| 1.8 — 21 0.356 + i (0.192 + b)

The b that makes G =0 is

b = 0.0202
Step 3
0.356 2/3 0.369
Z,=Z,+bL= 0.192| +(0.0202) | 3/3]| = 0.212
—0.064 1/3 —0.0573
Thus,
x; = 0.369

The simultaneous change of the order and step size is describgd in Chap. 6.
Also presented is the application of Gear’s method to the solution of systems
composed of both differential and algebraic equations.

1-3 STABILITY OF NUMERICAL METHODS

Even when the truncation and roundoff errors are negligible, numerical methods
are subject to instabilities which cause the error [(t,+1) — ya+1] to become
unbounded as the number of time steps is increased without bound. Symbols
yu+1 and y(t,+,) are used to denote the calculated and the exact values of the
variables at time ¢, , respectively. . .
These instabilities arise because the solutions of equations for the numerical
methods differ from those of the differential equations which they are used to
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approximate. Numerical methods are difference equations which have solutions
of the form Cu", where C is an arbitrary constant, n the number of time steps,
and g is a root of the reduced equation. Numerical methods are used to ap-
proximate the solution of differential equations which generally have solutions
of the form Ce*.

Instabilities of numerical methods arise from two causes: (1) the difference
in forms of the solutions of the numerical method and the differential equation,
and (2) the use of numerical methods characterized by second- and higher-
difference equations to represent the solution of a first-order differential equa-
tion.

Stability of Numerical Methods
Characterized by First-Order Difference Equations

In this case a first-order numerical method is used to represent a first-order
differential equation. Consider first the use of Euler’s method

Va1 =VYa + hy,

for the integration of the linear differential equation with the constant coef-
ficient 4

==y (1-60)

Instead of considering specific differential equations such as the one for Exam-
ple 1-1, it has become customary to investigate the behavior of various integra-
tion techniques through the use of Eq. (1-60) whose solution is given by

(1) = W0)e* (1-61)

For y(0) finite and 4 < 0, it is evident that

lim y() =0 (1-62)

t— ¢

When Euler’s method is used to integrate Eq. (1-60), one obtains the follow-
ing difference equation

Ya+1 — (1 + Ah)y, =0 (1-63)

Assume a trial solution of the form y, = Cu". Substitution of the trial solution
into Eq. (1-63) yields

Cu*' — (1 4 A)Cu" = 0 (1-64)

Thus, u = 1 4 1h, and the solution is of the form

Vo =C(1 + 2h)" (1-65)
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In order for the numerical method to remain stable as n increases without
bound

lim y,=0 (1-66)

it is necessary that |1 + Ah| < 1. Thus it is necessary that
A<0
|hi] <2 (1-67)

where h is of course greater than zero. . '
Any method which has a finite general stability boundary is said to be
conditionally stable. Thus, Euler’s method is conditionally stable, that is,

luhd)| <1 for  |hA] <2 (1-68)

In general, explicit methods are conditionally stable. Although such me?hods are
very easy to use, they may become uneconomical because of the necessity to use
small step sizes in order to maintain stability.

The Trapezoidal Rule
When Eq. (1-60) is integrated by use of the trapezoidal rule

h ,
.Vn+l=yn+5(y;|+l+yn) (1'69)

one obtains the following difference equation for any one time step:

hi hA

Substitution of the trial solution, y, = Cpu", into Eq. (1-70) yields the following
result upon solving for u:

hA ha
y=,u(h,1)=<l +7>/<1 —7) (1-71)

1 + hi/2\" )
Yo = C(TT)/z) (1-72)

In order for the trapezoidal rule to remain stable as the number of time steps is
increased indefinitely (Eq. (1-66)), it is necessary that

A<0

Thus, the solution is

A numerical method is called absolutely stable or A stable if

luhl)| <1 —o0<A<O (1-73)
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A method is said to be strongly A stable if »
lim |u(hd)] =0 (1-74)

hi— o
Thus, the trapezoidal rule is A stable but not strongly A stable.

Relatively few methods can be classified as A stable. Dahlquist(6,7) has
proved two important theorems pertaining to A stability. First, he showed that
an explicit k step method cannot be A stable. Secondly, he showed that the
order of an A stable linear method cannot exceed 2, and that the trapezoidal
rule has the smallest truncation error of these second-order methods.

Stability of Multistep Methods

Multistep methods are characterized by second-, third-, and higher-order differ-
ence equations which give rise to multiple roots while the reduced equation of
the corresponding differential equation has only one root. Since one root of the
difference equation can be generally identified as representing the differential
equation, the remaining extraneous roots may lead to instabilities.

To illustrate the occurrence of an extraneous root, suppose that the simple
point-slope predictor

Yn+1 = Va1 + 2hy, (1-75)
is used to integrate Eq. (1-60). The corresponding difference equation is
Ya+1 — 2hly, —y,.1 =0 (1-76)
which is readily solved by assuming a solution of the form y, = Cu" to give
Wt =2k -yt =0 (1-77)

or
w—=2hip—1=0
Thus, the solution of Eq. (1-76) is
Ya=Copt + Coul (1-78)

where

wy = hi+ S + 1
= hi— S + 1

The solution of the difference equation is now compared with the exact solution
of the differential equation. Recall that for A <0 and y(0) finite, the exact
solution to the differential equation has the property that y(t) approaches zero
as t approaches infinity; see Egs. (1-61) and (1-62). For 1 <0, 0 < g, < 1, and
luy1> 1 for all h> 0. Thus, the second root u, leads to instability and y, is
unbounded for all h > 0 as n approaches infinity. The first root, g, , called the
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principal root, is the root which makes it possible to represent the solution of
the differential equation by the solution of the difference equation. Although C,
may be set equal to zero to eliminate the effect of the extra.neous root y, on .thc
analytical solution of the difference equation, the bfehav1or qf the numerical
method in the integration of the differential equation is determined by both the
principal root and the extraneous root. As a consequence of the ext.raneous
root, the method will eventually fail regardless of how small h (h > 0) is made
because in the limit as the number of time steps n is increased indefinitely, y,
becomes unbounded. This result is obtained by taking the limit of Eq. (1-78) as

n approaches infinity. ‘ .
Instead of only one extraneous root, multistep methods are characterized by

numerous extraneous roots. The general expression for any linear multistep
method is
Va1 =0 Y+ 0 Vat T F 0 Yur1 -k
+ hB_y Yosr + BoVu+ + Bt Yar1-4) (1-79)

where {«;} and {B;} are constants for any given numerical method, and all of

the points are, of course, equidistant, ¢, =ty + nh. . o N
When the numerical integration of Eq. (1-60), with the initial condition

3(0) = 1, is effected with Eq. (1-79), one obtains
Vet — % Vn— 02 Vo1 — T~ U Vas 1k
BBy AYuer + BoAVa+ -+ B 1 AVar1-) =0 (1-80)
After a solution of the form y, = Cy" has been assumed, Eq. (1-80) is readily

reduced to
2

.uk_o‘lllk_l —ap Ty
— h(B_ A+ B AT A A B A = 0 (1-81)
which is seen to be a polynomial of degree k in y. The solution of this difference
equation is given by
Va=Copi + Copy + - + Gyt (1-82)
Thus, the difference equation has one principal root which corresponds to the

solution of the differential equation (Eq. (1-60)? anq k — 1 extraneous roots. If
| ;] < 1 for each of the k roots of Eq. (1-81), it is evident that

lim y, = lim (C it +Copts +--+Cp) =0 (1-83)

n— n— o0

A multistep method is called 4 stable if
TMES! i=12...,k) (1-84)
and relatively stable if

lwl<lpl  (G=23,....k (1-85)
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The terms absolutely stable and A stable are used interchangeably. If the second
condition is satisfied, then any errors introduced into the computations will
decay as n increases; whereas, if any of the extraneous roots y; are greater than
unity in magnitude, the errors will grow as n increases. Methods which satisfy
the condition given by Eq. (1-85) are also called strongly stable, and a method
whose stability depends upon the sign of 1 is sometimes called weakly unstable.
Note, the definitions given by Eqs. (1-84) and (1-85) are frequently stated to
include |p;| =1, in which case the zero on the right-hand side of Eq. (1-83) is
replaced by a finite constant.

Any method which has an infinite general stability boundary is said to be
unconditionally stable, or A stable. Thus, in a multistep method represented by
Eq. (1-82), y, tends to zero as n approaches infinity where h > 0 and |A| < 0 or
|Re (4)| <O.

Seinfeld et al.(14) have shown that in the case of systems of coupled linear
differential equations it is sufficient, in the examination of a multistep numer-
ical method, to consider the method as applied to the single scalar equation
y' = /A;y, where A; takes on the values of the eigenvalues of each of the dif-
ferential equations.

However, at this time no general theory of the stability of linear multistep
methods applied to nonlinear differential equations exists.

Stability of Numerical Methods

in the Integration of Stiff Differential Equations

Quite often systems are encountered with widely different time constants, which
give rise to both long-term and short-term effects. The corresponding ordinary
differential equations have widely different eigenvalues. Differential equations
of this type have come to be called stiff systems. Use of the explicit Runge—
Kutta methods or other explicit methods in the numerical integration of these
equations results in instability and excessive computation time. For example,
suppose the eigenvalues are 4, and 1,, where A, < 4, < 0. The most rapidly
decaying component, or the stiff component, corresponds to the larger eigen-
value in absolute value /,, and this eigenvalue determines the step size to be
used in the integration. That is, in order to ensure numerical stability, the stiff
component requires the use of small step sizes. Since one is usually interested in
the nonstiff component of the solution, the use of very small step sizes consumes
too much computer time to be of any practical value.

In general, most all of the explicit methods are neither A stable nor strongly
A stable. Consequently, they are completely unsuitable for solving systems of
stiff differential equations. The implicit and semi-implicit methods are suitable
for solving systems of stiff differential equations.

Of the large number of semi-implicit methods reported in the literature
(Refs. 1, 2, 12, 13), the three most widely used are the semi-implicit Runge—
Kutta methods proposed by Rosenbrock(13), Caillaud and Padmanabhan(4)
and Michelsen(11). One of the principal competitors of the semi-implicit Runge-
Kutta methods is Gear’s method (Ref. 8).
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An alternate to requiring A stability was proposed by Gear(8). It was sug-
gested that stability was not necessary for values of hi close to the imaginary
axis but not close to the origin. These correspond to oscillating components
that will continue to be excited in nonlinear problems. Methods that were
stable for all values hi to the left of Re (hd) = — D, where D was some positive
constant and accurate close to the origin, were said to be stiffly stable (Ref. 9).
The multistep methods of Gear were shown to be stiffly stable for orders k < 6
(Ref. 9).

NOTATION

=)
Il

Pascal triangle matrix; see Eq. (1-58)

internal energy per unit mass (or per mole) of material

E; = total energy per unit mass (or per mole) of material;
E;=E+ KE + PE

E;, = total energy per unit mass (or per mole) of material in

the system at any given time

m
Il

F = flow rate of the feed in pounds-mass per hour (Ib,/h)
(or moles per hour)
h — incremental change of the independent variable ¢,
h=t,,, —t,=At; herein h is taken to be positive
H = enthalpy per unit mass (or per mole) of material; H = E + Pv
H,; = total enthalpy per unit mass (or per mole) of material;
Hy=E;+ Pv
I = identity matrix
J = jacobian matrix; see Eq. (1-49) for the applications

of this chapter .
KE = kinetic energy per unit mass (or per mole) of material

Ib; = pound-force

lb, = pound-mass

L = flow rate, Ib_/h (or mol/h)

L = column vector appearing in Gear’s method

M = total mass of system at any time ¢

P = pressure, Ib; (pounds-force) per unit area

PE = potential energy per unit mass (or per mole) of material

q = rate of heat transfer (energy per unit time per unit length)

0 = rate of heat transfer from the surroundings to the system
(energy per unit time)

S = cross-sectional area

t = independent variable; ¢, = a particular value of ¢, the

value of ¢ at the end of the nth time increment
At = incremental change of the independent variable; also denoted
by h; tyy, =t, +At=1t,+h

T,., = truncation error in the value of y, 4+

n

10.

11.

“N
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= holdup, Ib,, (pound-mass) or moles

volume per unit mass (or per mole) of material

mass flow rate

= shaft work done by the system on the surroundings per

unit time

= shaft work done by the system on the surroundings per

unit time per unit length of boundary

the dependent variable in the description of the methods
of numerical analysis

Y1) = dy/de"

i

Y F=2°¢c
|

<
Il

y(©) = dy/dt

y. = calculated value of the variable y at time ¢,
Wt,) = correct value of the variable y at time ¢,
X; = mole fraction of component i in the feed

= a vector defined by Eq. (1-55)

Y
Z = a vector defined by Eq. (1-56)
z

= a vector defined by Eq. (1-57)

Subscripts
i = component number; also inlet value of the variable
0 = outlet value of the variable

Greek letters

a = constant
B = constant
p = mass density, mass per unit volume
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PROBLEMS

1-1 Develop the formula for the point-slope predictor. It may be assumed that M¢) is continuous

and has continuous first, second, and third derivatives.
Hint: Begin by expanding y(t) in a Taylor series expansion over the interval from t, to t, + h.

2 3
wt, + B) = M) + hy(t,) + % y2e,) + % YO (L, <E<tys)

Next expand j{t) by a Taylor series over the interval from ¢,to t, — h.
1-2 Obtain the expression given in Eq. (1-54) for the truncation error y(t,.y) — Va+1 for the two-

point implicit method.
Hint: Expand y(t,,,) and y,,, in a Taylor series. Also note that the implicit method may be

stated in the form
Yar1 =VYn+ B0y + &yt — ¥l

and that the truncation error [¥(t,. ;) — Y.+ .] is computed with respect to a correct point [y{t,), t,]
on the correct curve, that is,

Vo= Wt Yo = Yt 0 3 = y2,)

1-3 (a) Repeat Example 1-1 with h = 2.
(b) Show that the unstable behavior obtained should be expected.
Hint: see Eq. (1-67).

APPENDIX 1A-1 THEOREMS

DEFINITION 1A-1

Continuity of f(x) at x, The function f(x) is said to be continuous at the point
x if, for every positive number ¢, there exists a 8, depending upon ¢ such that
for all x of the domain for which

|x—x0| <5e
then
[f(x) = fxo)| <&

DEFINITION 1A-2

Continuity of f(x) in an interval A function which is continuous at each point in
an interval is said to be continuous in the interval.

R
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THEOREM 1A-1

Megn-value theorem of differential calculus If the function f(x) is continuous in
the interval a < x < b and differentiable at every point in the interval a < x < b
then there exists at least one value of ¢ such that ’

fb)—f@ _df(x)

(b - a) dx x=a+&b-a)

where 0 < £ < 1.

THEOREM 1A-2

Mean-value theorem of integral calculus If the function f(x) is continuous in the
interval a < x < b, then

b
f J(x) dx = f(¢)b — a)

where a < ¢ < b.

THEOREM 1A-3

(‘}ener‘alized .theorem of integral calculus If f(x) and p(x) are continuous func-
tions in the interval a < x < b, and p(x) > 0, then

b b
f J(X¥)p(x) dx = (&) J p(x) dx

where a < & < b.

THEOREM 1A-4

If the functiqn J(x) is continuous in the interval a < x < b and f(2) Sk sf(b),
then there exists a number c in the interval a < ¢ < b such that

fle)=k

THEOREM 1A-5
Taylor’s theorem If the functions f(x), f'(x), ..., S™(x) are continuous for each x

in the interval a < x < b, and f®*Y(x) exists for each x in the interval
a < x < b, then there exists a ¢ in the interval a < x < b such that

, h2 h3 n
S+ 1) =@+ 1@ + 5 /@) + 537 [P+ o+ o 1 g,
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where h = b — a, and the remainder R, is given by the formula

PART

hn-(-l
R = (n+1)
n (n+l)!f &) (a<i<b) D NE
DEFINITION 1A-3
A function f(xy, X5, ..., x,) of n variables x,, x,, ..., x, is said to be homoge-
neous of degree m if the function is multiplied by A™ when the arguments x,,
X, ..., X, are replaced by Ax;, Ax,, ..., Ax,, respectively. That is, if f(x,, x,, SOLUTION OF STAGED

SEPARATION PROBLEMS

BY USE OF THE
TWO-POINT IMPLICIT METHOD

..., x,) is homogeneous of degree m, then

S(Axy, Axy, ooy Ax) = ATf(xy, X3, .0\ X,)

THEOREM 1A-6

Euler’s theorem If the function f(x,, X,, ..., X,) is homogeneous of degree m
and has continuous first partial derivatives, then
of of of

—+ngc—+~~-+x =mf (X, X3, ees Xp)
2

" 0x,
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CHAPTER

TWO

INTRODUCTION TO THE
DYNAMIC BEHAVIOR OF
EVAPORATOR SYSTEMS

Evaporation, one of the oldest of the unit operation processes, is commonly used to
separate a nonvolatile solute from a volatile solvent. Since energy is transferred
in an evaporator from a condensing vapor to a boiling liquid, evaporation may
be regarded as a special case of the unit operation called heat transfer. On the
other hand, evaporation may be regarded as a special case of the unit operation
called distillation because a solvent is separated from a solute by virtue of the
differences in their vapor pressures.

First the fundamental principles of evaporation are reviewed in Sec. 2-1.
Then the equations required to describe an evaporator system at unsteady state
operation are developed in Sec. 2-2. In Sec. 2-3, the two-point form of the
implicit method is used to solve a numerical problem involving a single-effect
evaporator. Numerical techniques such as Broyden’s method and scaling pro-
cedures are also presented in Sec. 2-3.

2-1 FUNDAMENTAL PRINCIPLES OF EVAPORATION

Evaporators are commonly used for the special separation process wherein a
volatile solvent is separated from a nonvolatile solute. Evaporators are com-
monly found in the inorganic, organic, paper, and sugar industries. Typical
applications include the concentration of sodium hydroxide, brine, organic col-
loids, and fruit juices. Generally, the solvent is water.
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Mode of Operation and Definitions

Three commercially available evaporators shown in Figs. 2-1, 2-2, and 2-3 are
described briefly.

In the Swenson single-effect, long-tube vertical (LTV) rising-film evaporator
shown in Fig. 2-1, evaporation occurs primarily inside the tubes, so it is used
primarily to concentrate nonsalting liquors. As shown, the liquor is introduced
at the bottom of the liquor chamber, is heated and partially vaporized as it
climbs up through the tubes, and attains its maximum velocity at the tube exit.
The outlet mixture impinges upon a deflector where gross, initial separation of
the liquor and vapor occurs. Additional vapor is separated from the liquid by
gravity as the vapor rises through the vapor body.

Top water box

Centrifugal-type
entrainment separator

Expanded vapor-
inlet section
Tubes 4]
Vapor body
Noncondensable gases K
Expanded steam H— to vacuum equipment 3
\ i3
inlet section ' ) = Condensate outlet
j : Water _y, Lo ’
3 1 — Water inlet
5 outlet ¢ i
Steam . S RSt ST ]
inlet ' { ! ) ] Bottom .
: i Drains water box i
Vertical heat —— H |‘
exchanger 3 Concentrated §
: liquor outlet i
S
Tubes , ; Noncondensable
i gases
¥4 —— Condensate
Feed > outlet

inlet

Bottom Recirculation
] line

liquor chamber

Drain

Figure 2-1 Swenson LTV rising-film evaporator with vertical-tube surface condenser. (Courtesy
Swenson Division, Whiting Corporation.)
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Feed inlet

Top liquor

‘ A3y — Distribution
chamber ‘

emdnn . device

Steam inlet

Swenson
direct-contact
condenser

, —— Vertical
heat exchanger

— Noncondensable gases
to vacuum equipment

Noncondensable

gases Water inlet

Vapor body

Condensate | ;
outlet : = : \ £ .\J o

Water outlet
Bottom liquor to hotwell

chamber Mesh-type

entrainment
separator
Vapor-liquid

Swirl breaker separator

Concentrated liquor out

Figure 2-2 Swenson LTV falling-film evaporator. (Courtesy Swenson Division, W hiting Corporation.)

The Swenson single-effect, LTV falling-film evaporator shown in Fig. 2-2
has a separate vaporizer and heat exchanger. Liquor is fed into the top liquor
chamber of the heat exchanger where it is distributed to each tube. The liquor
accelerates in velocity as it descends inside the tubes. Liquid is separated from
the vapor in the bottom liquor chamber and with a skirt-type baffle in the
vapor body.

In the forced-circulation evaporator shown in Fig. 2-3, liquor is pumped
through the tubes to minimize tube scaling or salting when precipitates are
formed during evaporation. The Swenson forced-circulation evaporator shown
in Fig. 2-3 has a submerged feed inlet, a single-pass vertical heat exchanger, an
elutriating leg, a cyclone, and a barometric condenser.
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Swenson top-mounted
direct-contact
condenser

Noncondensable
gases to vacuum
equipment

Water inlet

Noncondensable gases
from heat exchanger

Water outlet
to hotwell

Mesh-type
entrainment separator

3 Vapor body
Circulating piping

—— T . Feed liquor
T inlet Top liquor
* chamber

Clarified liquor -

- Support bracket
< outlet

Vertical

Q\ heat exchanger
chnsqn palcn!ed - i e Tubes
slurry-inlet device w0 % 1.

/ L5~ Steam inlet

Swenson

Flutriing lee evclone Noncondensable
: vent to condenser
—_—. i:ﬂg )| ——— Condensate outlet
i I
Feedliquor Circulating /
inlets : piping
l Bottom liquor
chamber
Drain S
Axial-flow

circulating pump

Figure 2-3 Swenson forced-circulation, submerged-inlet, vertical-tube evaporator. (Courtesy Swenson
Division, W hiting Corporation.)

In single-effect operation, as the name implies, only one evaporator is em-
ployed. The feed upon entering this effect must be heated to the boiling point
temperature of the effect at the operating pressure. Then the solvent, generally
water, is evaporated and removed as a vapor. (Since water is the most common
solvent, it is for definiteness regarded as the solvent in the development of the

o el T SR e SRR
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equations. The final equations apply, however, for any solvent) To evaporate
one pound of water from, say, a sodium hydroxide solution, about 1200 Btu are
needed, and this requires more than one pound of steam. The concentrated
solution withdrawn from the evaporator is known as the thick liquor or process
liquid. .

In multiple-effect operation, several evaporators are connected in series. The
vapor or steam produced in the first effect is introduced to the steam chest of
the second effect and thus becomes the heating medium for the second effect.
Similarly, the vapor from the second effect becomes the steam for the third
effect. In the case of series operation with forward feed, depicted in Fig. 2-4, the
thick liquor leaving the first effect becomes the feed for the second effect. For
each effect added to the system, approximately one additional pound of solvent
is evaporated per pound of steam fed to the first effect. This increase in the
pounds of solvent evaporated per pound of steam fed is achieved at the expense
of the additional capital outlay required for the additional effects.

To provide the temperature potential required for heat transfer to occur in
each effect, it is necessary that each effect be operated at a successively lower
pressure. The operating pressure of the last effect is determined by the con-
densing capacity of the condenser following this effect. The pressure distribution
throughout the remainder of the system is determined by the design specifi-
cations for the system. The term evaporator system is used to mean either one
evaporator or any number of evaporators that are connected in some prescribed
manner. Unless otherwise noted, it will be supposed that the evaporators are
connected in series with forward feed.

vy Vs Vi
H(T)) H(T,) H(Ty)
Effect 1 Effect 2 Effect 3
F n
T _X_» Vapor 7 Vapor r Vapor
£ space space space
P, T, P, T, Py, Ty
o, T,
at Py, Iy Steam Steam Steam
H, chest > chest chest
Py, Ty _ | P T, — 1 P T
Vo, ho L, Vi, by L, Vi by L,
h(Ty, x;) h (T, x2) h(Ts, x3)

Figure 2-4 A triple-effect evaporator system with forward feed. The temperature distribution shown
1s for a system with negligible boiling point elevations.
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To describe evaporator operation the three terms, capacity, economy, and
steam consumption are commonly employed. By capacity of the evaporator
system is meant the number of pounds of solvent evaporated per hour. The
economy of an evaporator system is the total number of pounds of solvent
vaporized per pound of steam fed to the system per hour. Note that the econ-
omy is the ratio of capacity to steam consumption.

If a true state of equilibrium existed between the vapor and the liquid
phases in an evaporator, then the temperature and pressure in each phase
would be equal and the temperature would be called the boiling point tem-
perature of the evaporator. However, in an actual evaporator, the temperature
of the vapor and liquid streams leaving an evaporator may be measurably
different from each other and from other temperatures measured within the
evaporator. Thus, the boiling point of an evaporator is commonly taken to be
the boiling point temperature of the thick liquor (leaving the evaporator) at the
pressure in the vapor space within the evaporator. Because of the effect of
hydrostatic head, the pressure—and consequently the corresponding boiling
point of the liquid at the bottom of the liquid holdup within an evaporator—is
greater than it is at the surface of the liquid. However, because of the turbulent
motion of the liquid within an evaporator, there exists no precise quantitative
method in the analysis of evaporator operation for taking into account the
effect of hydrostatic head.

Generally, the pure vapor above a solution is superheated because at a
given pressure it condenses at a temperature below the boiling point tem-
perature of the solution. The difference between the boiling point temperature of
the solution and the condensation temperature of the vapor at the pressure of
the vapor space is called the boiling point elevation of the effect. That an ele-
vation of boiling point should be expected follows immediately by consideration
of the equilibrium relationship between the two phases.

Equilibrium Relationships

As enumerated by Denbigh(6) the necessary conditions for a state of equilibrium
to exist between a vapor and liquid phase of a multicomponent mixture are as

follows:
V=7t
TV — TL (2-1)
PY =Pt

where the superscripts ¥ and L refer to the vapor and liquid phases, respec-
tively, and where

fY =fY(P, T, {y:}), the fugacity of component i in the vapor phase of a
mixture at the temperature T and pressure P of the mixture
fL = fKP, T, {x;}), the fugacity of component i in the liquid phase at the
temperature T and pressure P of the mixture
TV, T* = temperature of the vapor and liquid phases, respectively

PY, P- = pressure of the vapor and liquid phases, respectively
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The fugacity of any component i in a vapor mixture may be expressed in terms

of the fugacity of the pure component at the same temperature T and total
pressure P of the mixture as follows:

Y=t (2-2)
where f¥ = fugacity of pure component i at the total pressure P and tem-
perature T of the mixture
):/, = mole fraction of component i in the vapor phase
v =7y/(P, T, {y}), the activity coefficient of component i in the vapor
phase
Similarly, for the fugacity f¥ of component i in the liquid phase,

fE=9HEx, (2-3)
where fF = fXP, T)
ytL = ytL(Ps T9 {xi})

and x; is the mole fraction of component i in the liquid phase. Use of Egs. (2-2)
and (2-3) permit Eq. (2-1) to be restated in the following form:

Dy =viftx; (29
Next consider the distribution of the solvent such as water between the
vapor phase and a liquid phase such as a sodium hydroxide solution at reason-
ably low temperatures and pressures. Since the sodium hydroxide is nonvolatile
the mole fraction of water vapor in the vapor phase is equal to unity (y,,,, = 1)’
and since the vapor phase consists of a pure component, water vapor, ;’)': = 1.’
At reasonably low pressures, the volumetric behavior of the vapor app:":);ches
that of a perfect gas and its fugacity is equal to the pressure (fY,, = P). The

fugacity of the solvent in the liquid phase at the pressure P and ten‘:peraturc T

may be expressed in terms of its value at its vapor pressure P, at the tem-
perature T as follows:

L

4
solv

— J solv
Psory, T

= Psolv (2'5)

Psowv, T

;/;IV
T

P,
The final approximation is based on the assumption that the water vapor
behaves as a perfect gas at the temperature T. Thus, Eq. (2-4) reduces to

P = yg;)lv Psolv Xsolv (2-6)

‘; tfreatment of the thermodynamics of multicomponent mixtures is presented in
ef. 11.

. The expressions for the Diihring lines are determined experimentally. Their
existence may be deduced as follows. For any given pressure P, there is a
temperature T such that the vapor pressure of the pure solvent is equal to the
total pressure P, that is, there exists a T such that for solvent,

P = Psolv(T) (2'7)

For a liquid mixture having a solvent mole fraction Xso1v» there exists a temper-
ature J such that the mixture will exert a pressure P equal to the vapor
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pressure P_,, of the pure solvent at the temperature T, that is,
P = yfolv(P’ ‘0/~’ xsolv) : Psolv(g-) * Xsolv (2'8)

Thus, it is seen that for every P and x,,, , there exists corresponding values of T
and J which satisfy the above expressions.
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Figure 2-5 Diihring lines for solutions of sodium hydroxide in water. (W. L. McCabe, " The
Enthalpy Concentration Chart—A Useful Device for Chemical Engineering Calculations,” Trans. Am.
Inst. Chem. Engrs., vol. 31, p. 129 (1935), Courtesy American Institute of Chemical Engineers.)
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In view of the fact that the mole fraction of the solvent in the solution
decreases as the mole fraction of the solute is increased

Xsolv = 1 - Xsolute (2'9)

it follows that at a given pressure P, the vapor pressure P,,, (or more precisely
the product y%, P.,,) is generally an increasing function of temperature, the
total pressure P may be maintained constant as the concentration of the solute
is increased by increasing the temperature J of the solution. This property of
solutions containing dissolved nonvolatile solutes gives rise to the term boiling
point elevation. The boiling point temperatures of many aqueous solutions con-
taining dissolved solids follow the Diihring rule in that the boiling point tem-

perature J of the solution is a linear function of the boiling point temperature
T of pure water, that is,

T =m(x)T + b(x) (2-10)

It is customary to express x in Eq. (2-10) in terms of the mass fraction of the
solute. When the straight-line relationship given by Eq. (2-10) is followed, the
solution is said to obey the Diihring rule.

A typical Diihring plot for sodium hydroxide is shown in Fig. 2-5. The data
were taken from the work of Gerlack(8). Observe that each concentration of
dissolved solute yields a separate Diihring curve which is approximated with
good accuracy by the straight line given by Eq. (2-10).

Reduction of the Rate of Heat Transfer by Boiling Point Elevation

As discussed above, the presence of the solute gives rise to an elevation in the
boiling point by (4 — T). The effect of boiling-point elevation on the rate of
heat transfer is demonstrated as follows. If there were no boiling point eleva-
tion, then the rate of heat transfer Q (Btu/h) in a single-effect evaporator oper-
ating at the total pressure P would be given by

Q=UAT, - T) 2-11)

With boiling point elevation, the rate of heat transfer becomes

0=UA(T, — 9) (2-12)

Since 7~ > T, the rate of heat transfer is decreased by a decrease in the temper-

ature potential for heat transfer of an amount equal to the boiling point elev-
ation, namely,

(L-T—(Th,—-9)=9 - T (2-13)

In multiple-effect evaporator systems in which the evaporators are connected in
series, the boiling point elevations of the individual effects are cumulative. This

characteristic is a significant factor in the determination of the optimum number
of effects for a given system.
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2-2 DYNAMIC BEHAVIOR OF
A SINGLE-EFFECT EVAPORATOR

The treatment of a system of evaporators at unsteady state operation is ini-
tiated by the formulation of the dynamic model for a single-effect evaporator
for which the boiling point elevation is not negligible. By use of this evaporator
example and a system of such evaporators, the role of inherited error in the
solution of unsteady state problems of this type is demonstrated.

The mixture to be separated consists of a liquid mixture of a volatile
solvent and a nonvolatile solute. The system of equations that describe a system
of evaporators at unsteady state operation contains several integral-difference
equations which are formulated below.

Formulation of the Equations of the Dynamic Model
for a Single-Effect Evaporator

The equations describing the dynamic model of a single-effect evaporator are
formulated on the basis of the following suppositions:

1. The process liquid in the holdup of the evaporator is perfectly mixed.

2. The mass of solvent in the vapor space is negligible relative to the mass of
holdup of thick liquor in the evaporator.

3. The mass of steam in the steam chest is negligible relative to the other terms
that appear in the energy balance for this portion of the system.

4. The holdup of energy by the walls of the metal tubes is negligible.

5. Heat losses to the surroundings are negligible.

For definiteness, suppose that at time ¢ = 0, the evaporator is at steady state
operation, and that at time ¢ = 0+, an upset in some operating variable, say
the composition X of the feed, occurs. The material and energy balances as well
as the rate expressions follow. A total material balance on the thick liquor has
the following form:

j" (F—V,—L)di=M,| —., (2-14)
t

n

th+1 in

where all symbols are defined in the Notation. From this integral-difference
equation as well as those which follow, the corresponding differential equations
are obtained through the use of the mean-value theorems of differential and
integral calculus followed by appropriate limiting processes. The left-hand side
of Eq. (2-14) may be restated in the following form through the use of the
Mean-Value Theorem of Integral Calculus (see Theorem 1A-2, App. 1A).

th+1
J (F=V,—L)dt=(F—V,—Ly) At (2-15)
t

n th+a At
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where 0 < a < 1. The Mean-Value Theorem of Differential Calculus (see Theo-
rem 1A-1, App. 1A) may be used to restate the right-hand side of Eq. (2-14) in
the form:

M

- Jl,l _ ac
" dt

(2-16)

n+1

tn+ B At

where 0 < ﬂ < L. After these results have been substituted into Eq. (2-14) and
the expression so obtained has been divided by At, one obtains

d.#a
(F-v,—Ly == (2-17)
nta At dt th+ B At
In the limit as At approaches zero, Eq. (2-17) reduces to
da
(F-Vi—Ly| = d ! (2-18)
tn t tn

Since ¢, was selected arbitrarily in the time domain ¢, > 0, Eq. (2-18) holds for
all t > 0, and thus Eq. (2-18) becomes

du
F~V,—L,=—d—t—‘ (t>0) (2-19)

The integral-difference equation representing a component-material balance
on the solute over the time period from ¢, to ¢, , is given by

tn+1
f (FX —Lyx,)dt = #,x, — M X, (2-20)
t,

th+1 tn

The corresponding differential equation (obtained as shown above Eq. (2-19)) is

FX — L,x, =% @-21)

' The integral-difference equation representing an energy balance on the thick
liquor is given by

J‘ [FWTe, X)+Q, — W, H7 ) - LT, x,)] dt

=MNT L x)| - M T )| (2-22)

th+1 n

and the corresponding differential equation is

d["l{l W, x)]

Fh(ThX)"'Qt—VlH(*/rl)“Llh(g_n Xy) = dt

(t > 0) (2-23)
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Since the holdup of steam in the steam chest is negligible relative to the other
holdups of the system, the enthalpy balance on the steam is given by

JW(VOHO— Vohy — 0,) dt =0 (2-24)
t

n

Since this integral is equal to zero for any choice of the upper and lower limits,
it follows that the integrand is identically equal to zero for all ¢ in the time
domain of interest, that is,

VolHo —ho) =@, =0 (¢>0) (2-25)
or
Voo = Q4 (2-26)

Also, since the holdup of energy by the metal through which the energy is
transferred is regarded as negligible, it follows that the expression

Q,= U1A1(To_9~1) (2-27)

is applicable for each t in the time interval (¢, <t < t,4,) under consideration.
Equation (2-26) may be used to eliminate Q, wherever it appears in the above
expressions.

In summary, the complete set of equations required to describe the un-
steady state operation of a single-effect evaporator follows:

Enthalpy balance :

A P {4 WT |, x,]
FhTe, X) + Volo — ViH(T ) — LT, x)=—"—F""—

dt
Heat transfer rate:
U, ATy — T = Voo =0
Mass equilibrium:
m(x )T, + b(x,)) — 7 =0 (2-28)
Component-mass balance:
d(AM | x,)
FX — L x, = d: L
Total-mass balance :
dA |
F-V,—L,= 7

The variable Q, was eliminated wherever it appeared in the above equations
through the use of Eq. (2-26).

i e
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Solution of a Steady State Evaporator Problem

Since the initial condition of the unsteady state evaporator problem considered
in a subsequent section is the steady state solution, it is informative to examine
the steady state equations which are obtained by setting the time derivatives in

Eq. (2-28) equal to zero. The following example illustrates the use of the steady
state equations.

Example 2-1 A single-effect evaporator is to be designed to concentrate a
20 percent (by weight) solution of sodium hydroxide to a 50 percent solu-
tion (see Fig. 2-6). The dilute solution (the feed) at 200°F is to be fed to the
evaporator at the rate of 50000 lb/h. For heating purposes, saturated steam
at 350°F is used. Sufficient condenser area is available to maintain a pres-
sure of 0.9492 1b/in? (absolute) in the vapor space of the evaporator. On the
basis of an overall heat transfer coefficient of 300 Btu/(h - ft2- °F), compute
(a) the heating area required, and (b) the steam consumption and the steam

economy.
Vapor rate V| (Ib/h)
(to condenser)
£ =_50009 (1b/h) Vapor space
Tr = 200°F at 170°F
Liquid state o] (0.9492 1b/in? abs)
20% NaOH
Steam:V,, (Ib/h) Steam chest

e

T = 350°F
Saturated steam 350

at 350°F

U = 300(+ =)

Thick liquor L, (Ib/h)
50% NaOH o

“Drips”:V, (Ib/h) at 350°F

Figure 2-6 Design specifications for Example 2-1.
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SoLutioN The rate L, at which the thick liquor leaves the evaporator is
computed by use of the component-material balance on the solute NaOH

The vapor rate V; follows by use of the total-material balance
V, =F — L, = 50000 — 20000 = 30000 Ib/h

The boiling point of water at 0.9492 Ib/in? (abs) is 100°F; see, for example,
Keenan and Keyes(12). Use of this temperature and Fig. 2-5 gives a boiling
point temperature of 170°F for a 50 percent NaOH solution.

The following enthalpies were taken from Fig. 2-7.

hg (at 200°F and 20% NaOH) = 145 Btu/lb
h (at 170°F and 50% NaOH) = 200 Btu/lb
From Keenan and Keyes(12)
H (at 170°F and 0.9492 1b/in? (abs)) = 1136.94 Btu/lb
Ao (saturated at 134.63 Ib/in? (abs)) = 870.7 Btu/lb at T, = 350°F

(a) Calculation of the heat transfer area 4 required The rate of heat transfer
Q, is computed by Eq. (2-23). Solution of the steady state version of Eq.
(2-23) for Q, gives

Qy=—Fhy+ViH+ L h
Elimination of the liquid rate L, by use of the material balance L, =
F — V; gives the following result upon rearrangment

0, =Vi(H — h) — F(hy — h)
Thus

Q, =(30000)(1136.94 — 200) — 50000(145 — 200)
= 30.858 x 10° Btu/h

Then by use of Eq. (2-27), the area A, is computed as follows:

B 0, 30.858 x 10°
TU(T,— T, (300(350 — 170)

A4, = 571.45 ft2

(b) Calculation of the steam economy Since Q, = V,4,, the steam con-
sumption is given by

6
v =2 3088 X 10T 550 1bym
2o (870.7)
Then
vV, 30000
Steam economy = — = ——— = 0.847
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Figure 2-7 Enthalpy concentration chart for solutions of sodium hydroxide in water. (W. L.
McCabe, “ The Enthalpy Concentration Chart—A Useful Device for Chemical Engineering Cal-
culations,” Trans. Am. Inst. Chem. Engrs., vol. 31, p. 129 (1935), Courtesy American Institute of
Chemical Engineers.)
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2-3 SOLUTION OF TRANSIENT EVAPORATOR PROBLEMS
BY USE OF THE TWO-POINT IMPLICIT METHOD

This method is applied to each of the integral-difference equations in a manner
analogous to that demonstrated for the total material balance, Eq. (2-14). By
approximation of the integral of Eq. (2-14) through the use of the two-point
implicit method (see Chap. 1), the following result is obtained:
M M0
F—V,—L, +o[F - V,-LJO:H-H
where ¢ = (1 — ¢)/¢ and [ ]° means that all variables contained within the
brackets are to be evaluated at the beginning of the time step under consider-
ation. Equation (2-29) is readily rearranged and restated in functional form to
give the function f of Eq. (2-30). Functions f; and f, of Eq. (2-30) were obtained
in the same manner as described for the function f5. The variable Q, was
eliminated from the functions f; and f, through the use of the equality,
Q. = Vo 4o (Eq. (2-26)). Thus

Enthalpy balance:

(2-29)

M WT , xy)

fi = FTg, X)+ Vodo — VIH(T ) — L WT 1, x1) — b At

MONT O, X0
+ o[FI(Tp, X) + Voig — Vi H(T ) — Ly (T, x,)]° + = (79, x%)

¢ At
Heat transfer rate:
fr=U ATy — T ) — Voo
Mass equilibrium:
fy=m(x )Ty + b(x,) — T, (2-30)
Component-mass balance:
fo=FX - L,x, —-%-{-O’[FX —L,x,1° +%

Total-mass balance:

0

M M
f5=F—Vl—L1—¢A‘r+a[F—VL—L1]°+¢A1I

Since the system is described by five independent equations, all of the
variables at t,,, must be fixed except for five. It is, of course, supposed that the
values of all variables are known at the beginning of the time period under
consideration. A problem may be formulated in terms of the values of the
variables which are fixed and those which are to be found at time ¢,,, in the
following manner.
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Specifications:
F, X, Tz, Ty, P, (or T}), and .#, at time ¢, ,

To find:
Vi, Vo, x;, Ly,and 7| attime ¢,

This set of specifications corresponds to the case where the variables F, X,
Ty, Ty, Py, and ./ are either controlled or fixed at some prescribed value at
time t,,,. These specified values may differ from those at time t,. In this
analysis, it is also supposed that the overall heat transfer coefficient is a known
constant.

The functional expressions (see Eq. (2-30)) may be solved by the Newton—
Raphson method for the values of the variables at the end of the time period
under consideration. The Newton-Raphson method is represented by

Jo Ax, = —f, (2-31)

The elements of the column vectors x, and f, are for convenience displayed in
terms of their respective transposes

Ax, = [AV, AV, AT | Ax; AL,]" fo=0fi f2 f3 fu fs1T (2-32)
and the jacobian matrix J, consists of five rows
[ofi/evy, afifovy, ..., afi/oL, =1, 2,..., 5)]

of functional derivatives

—H(7T ) o bys bia =Wy, xy)
0 —/lo —U A, 0 0
= 0 0 -1 bs4 0 (2-33)
0 0 0 —L,p, —X,
—1 0 0 0 —1
where
ML
pr=1+1/¢ "-'1='_;‘/;_1
P 0H(T ) T |, x,)
13= — "y o7, - 1017‘
T |, x,)
bia=—L,p, Tll_
Xy
am(x,) | ob(x,)
byy=T ——+ —
3 'oax, * 0x,

Application of the Newton—Raphson Method

For each time period under consideration (say from ¢, to t,,,), the Newton—
Raphson procedure consists of the repeated application of the above equations
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until the solution set x,,; at time ¢, , has been found. The solution set X, ,; at
t,+, becomes the initial set for the next time period (t,.; to t,.,), and the
Newton—Raphson procedure is applied successively to determine the solution

set X, 4, at time ¢, ,.
However, before solving a numerical problem involving a single-effect evapor-

ator at unsteady state operation, a simple numerical example is presented in
order to demonstrate the application of the Newton-Raphson method (Refs.

5,11).
Example 2-2 Make one trial by the Newton-Raphson method for the set of
positive roots which make f;(x, y) = f2(x, y) =0

Sk, y)=x2 =y +1
filx, y=x*+y* =5
For the first set of assumed values of the variables, take x; = 1, y; = 1.
SOLUTION
i, hy=1-1+1=1
fHL)=1+1-5=-3

%=2x %z -2
Ox dy

P} [P
—==2 == =2
0x X ay y

Then at x, = 1, y,; = 1, the Newton—-Raphson equations, J; Ax, = —f;
Wi+ Ligy

ox oy A=~
9 fz
Ax = —
0x 1+ %y By 12
reduce to
2Ax, — 2Ay; = —1
2Ax, +2Ay, =3

Solution of these equations for Ax; and Ay, gives
Ax, =1/2 Ay, =1
Thus, the values of x and y to be used for the next trial are as follows:
X,=%x; +Ax; =1+1/2=3/2
y=y+Ay,=1+1=2

On the basis of the assumed values x, = 3/2 and y, = 2, the process is
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repeated to determine x; and y,. Repeated application of this process gives
(to within the desired degree of accuracy)

x=\2 y=.3

Next, an unsteady state evaporator problem is solved by use of the two-
point implicit method. The specifications are taken to be the set stated
above.

Example 2-3 Initially (at time ¢ = 0), the evaporator described in Example
2-1 is at steady state operation at the conditions stated for this example. At
time t = 0+ an upset in the mass fraction in the feed occurs. The upset
consists of a step change in the feed concentration from X =02 to
X =0.24. It is desired to find the transient values of the variables provided
that the steam temperature T, is maintained at 350°F and the condenser
temperature T; is maintained at 100°F. The holdup .#, is held fixed at
5000 pounds throughout the course of the upset. The heat transfer area A
of the evaporator is 475.15 ft2.

SorutioN The functional expressions identified as Eq. (2-30) were solved
simultaneously for each time period. A value of At = 0.001 h was used for
the first 10 time periods. At the end of each set of 10 periods, the value of
At was doubled. A value of ¢ = 0.6 was employed. The flow rates were
stated relative to the feed rate and the temperature relative to the steam
temperature.

Selected transient values of the variables are shown in Table 2-1. The

Table 2-1 Solution of Example 2-3
Values of scaled variables (Note: F = 50000 Ib/h, T, = 350°F)

Cumulative
time (h) V,'F V,/F 7T, x; L,JF
0.0 0.599 999 0.708 216 0.486 200 0.499 999 0.400 000
0.001 0.576 702 0.708 068 0.486 307 0.499925 0.423298
0.002 0.575045 0.707 826 0.486 483 0.400 147 0.424 955
0.003 0.575174 0.707 587 0.486 656 0.500 367 0.424 826
0.010 0.573934 0.705956 0.487 840 0.501 863 0.426 066
0.020 0.572451 0.703 743 0.489 446 0.503 887 0.427 549
0.030 0.570984 0.701 660 0.490957 0.505 785 0.429016
0.050 0.568 349 0.697 864 0.493710 0.509 224 0.431 651
0.070 0.566017 0.694 513 0.496 141 0.512241 0.433983
0.090 0.564010 0.691 565 0.498 280 0.514 882 0.435990
0.180 0.557534 0.682 150 0.505111 0.523227 0.442 466
0.36 0.552054 0.674 163 0.510905 0.530 205 0.447 946
0.73 0.549 967 0.671117 0513116 0.532843 0.450087
1.68 0.549 782 0.670 849 0.513309 0.533074 0.450218
Final

Steady

State 0.549 782 0.670 848 0.513310 0.533075 0.450218
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values of some of the variables shown at time ¢ = 0 differed slightly from
those for Example 2-1 because the solution set in this table was obtained by
use of curve fits of the data, and seven digits were carried throughout the
course of the calculations.

The reciprocal of the t represents the number of times the holdup .4,
could be swept out at the liquid rate L, during a given time period At. At
the conditions at the end of the first time period

At (0.001}0.423 x 50000) 1
ML, 5000 T 236

During the last sequence of time steps which contained t = 1.68 h (see
Table 2-1), a At = 0.1 h was used for which

1/t =

IR

1
22
In the solution of Example 2-3, the Diihring lines shown in Fig. 2-5
were represented by Eq. (2-10) by taking
m(x) = 1.0 + 0.141952 6x
b(x) = 271.3627x* — 9.419 608x

Q| -

Stability Characteristics of the
Two-Point Implicit Method for Evaporator Problems

From the stability analysis of systems of linear differential equations, the two-
point implicit method is shown to be A stable in Chap. 1, provided that a value
of ¢ lying between 1/2 and 1 is used. Also, for ¢ > 1/2, the two-point implicit
method converged for the system of nonlinear differential and algebraic equa-
tions required to describe a single-effect evaporator.

If the values of the dependent variables are bounded as the number of time
steps is increased indefinitely, the inherited error is also bounded. The inherited
error is defined as the correct value of the dependent variable minus the calcu-
lated value of the variable at the end of the time period under consideration.

In order to investigate the general case where all of the equations and
variables are taken into account, a wide variety of examples were solved for
several different types of upsets such as step changes in the feed composition,
feed rate, steam temperature, and different combinations of ¢ and At. Typical of
the results obtained for various types of upsets in the operating conditions were
those obtained when Example 2-3 was solved for a variety of combinations of ¢
and At.

In the problems in which the inherited error was unbounded, it was charac-
teristic for the liquid rate to commence to oscillate first. For ¢ < 1/2, all vari-
ables were highly unstable as shown by the lower graph in Fig. 2-8. (In these
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0.70f o - mass fraction x
Lan 11.0
# =045 ¢ - liquid rate L,

Mass fraction, x

Normalized liquid rate, L,/F
=)
(9%
=)

1 1
2 4 6 8 10 12 14 16 18 20 22
Number of time steps

Figure 2-8 Variation of the inherited error for ¢ < 12 for Example 2-3.

graphs the value of © was computed on the basis of the steady state value of
L,.) However, for this condition (¢ < 1/2) the composition x had generally
converged to its steady state value before the inherited error in L, became
unbounded as demonstrated in Figs. 2-8 and 2-9.

The upper graph in Fig. 2-9 is typical of the stability of all variables for all
examples for which 1/2 < ¢ < 1.

Scaling Procedures

Two types of scaling are presented below: (1) variable scaling and row scaling
and (2) column scaling and row scaling. The first of these two procedures was
}lsed by Burdett(3,4) in the solution of a 17-effect evaporator system described
in Chap. 3. The purpose of scaling is to reduce the elements of the jacobian
matrix to the same order of magnitude. Also, it is desirable that the functions
be of the same order of magnitude in order that the euclidean norm of the
functions will represent a measure of how well all functions have been satisfied

by the set of assumed values of the variables. For example, consider the equa-
tion

0=x-1
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$=05 o - mass fraction, x
At=0.02h e - liquid rate L,
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Figure 2-9 Variation of the inherited error for ¢ < 1/2 for Example 2-3.

and let f;(x) denote the function

filx)=x—1
For x = 1.1

fi(l.)=1.1-1=0.1
Now consider the function
O0=y—1

After each side of this equation has been multiplied by 108, let F(y) denote the
function

F(y) = 10°y — 10°
Fory=1.1
F(1.1) = 105(1.1) — 10° = 0.1 x 10°

In order to obtain a meaningful comparison of the functional values, it is
evident that they should both be normalized, which may be effected in the

.
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above case by division of F(y) by 10° followed by the definition of the new
function

g9(y) = F(y)/10°

This procedure amounts to row scaling as described in a subsequent section.
In order to reduce the size of the elements of the jacobian matrix relative to
one another, row scaling must be combined with variable scaling. To illustrate

variable scaling, reconsider Example 2-3, and let the new scaled variables be
defined

vo = Vo/F vy = WV/F ly =L,/F

(2-34)
u = T/T, wy =TTy

such that they lie approximately in the range 0 to 1. Next, make this change of

variables in the functions f,, f,, ..., fs, and then divide f; by Fi,, f, by
Fiy, f3by Ty, fy by F, and f5 by F. Then let

h(Te, X) + v, H(T ) . LT, x)

91=""7 Yo Ao Ao
M NI, xy) (T, X) 4 v HI) LT, x)]°
_ P — _
Fig ¢ At 2o ° 2o P
MIRT Y, X9)
Flod At
Ui A\ Tq
g, = 7 (1 — «,) — v (2-35)
b(:
gy = m(xJu, + (_;01) —
| x MY XS
ga=X —1,x, —F¢1Ai+o[X—11xl]°+F¢lA;
M MO
=1-v, -1, — = l—o, —1,1° + —
9gs Uy 1 F¢At+a[ Uy 1] +F¢At

Note that several of the above functions could have been reduced to the precise
form of f(x) and ¢(y). For example, g, could have been divided by the variable
Uy and g; by the variable u, . However, the resulting functions become unde-
fined when the assumed values for v, and v, are taken equal to zero, and
generally functions possessing such characteristics are to be avoided.

When the functions are given by Eq. (2-35) and the new variables are taken
to be

x=[v, vy &y X, Il]T
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the jacobian matrix becomes

T _H(T —WT (s %))
———; Do by, b
_Ul Al TO
-1 —Ae 9 0
J= 0 ! Fi, (2-36)

0 0 —~1 baa 0
0 0 0 —1,p, —x,

| 1 0 0 0 -1

where
MLy

pr=1+1/¢ T, = At

1 0H(7 ) ! OhT |, xy) | 0T,
b13=l—0 U 0T, — P 0T, e
0T,
“r_T
Oy 0
- —lipy MT y, xy)
T4 0x,
p o, mtx) L o)
3 =M 0x, T, 0x,

To demonstrate the effect of variable scaling followed by row scaling on the
relative size of the elements of J, the following elements are evaluated at the
solution values of the variables

Unscaled Variable and row scaling
U A, T, (300)(457.15)350)
Uy A, = (300)457.15) Fie _ (50000)870.7)
= 137145 = 1.102
H, 1140
= =——=1.309
H( ;)= 1140 P 8707

The above procedure may be generalized and stated in matrix notation as
shown below.

Variable Scaling and Row Scaling

Consider the general case in which n independent functions fi, f2, ..., f, inn
independent variables x,, x,, ..., X, are to be solved by the Newton—-Raphson

5 o 7S e
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method. Let the Newton—Raphson equations for the kth trial be represented by

J Ax, = —f, (2-37)
where
I U
0x, ox,
Ji= : :
axl 8X"

Ax, =[Ax, Ax, -+ Ax,]"
fi =[S Ja o fnk]T

Although the subscript k is not shown on the elements in J,, these elements as
well as the functions f, are to be evaluated at x = x,.

Let R, denote the square n x n diagonal matrix whose diagonal elements r;;
are equal to or just greater than the absolute value of the corresponding row
elements of x,, that is,

AX, = Xp41 — X

Fip 2 Xl Fa2 2 [ Xouls ooy Fn 2 | X | (2-38)

(Except for the restriction that r; must never be set equal to zero, the inequality
given by Eq. (2-38) need not be applied precisely in practice; that is, the r;’s
need to be only approximately equal to the corresponding x;’s.) The row oper-
ations required to scale Ax, may be represented by the matrix multiplication
R ! Ax,. Thus, Eq. (2-37) may be restated in the following equivalent form:

J R R Ax, = —f, (2-39)
or
D, AY, = —f, (2-40)
where
AY, = R ' Ax,
D, = J,R,

Observe that J, R, corresponds to the set of column operations in which
column 1 is multiplied by r,,, column 2 by r,,, ..., and column n by r,,. After
these column operations have been performed, form the diagonal matrix M,
whose elements m;; are selected such that for each row

m;; = maximum |d;;| over all elements of row i
Premultiplication of each side of Eq. (2-40) by M, ! yields
M/ 'D, AY, = —(M; 'f) (2-41)
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or

E, AY, = —F, (2-42)
where

E, =M, le

F, = M, 'f,
Observe that the matrix multiplication M, 'D, corresponds to the set of row
operations in which row 1 is divided by m,,, row 2 is divded by m,,, ..., and
row n is divided by m,,. Likewise, M, 'f, represents a set of row_operations
in which the first element is divided by m,,, ..., and the nth element is divided
by m,,.

Although the development of the above scaling procedure was presented in
terms of matrix multiplications, one always obtains the final results in practice
by carrying out the appropriate row or column operations rather than the
matrix multiplications.

Column Scaling and Row Scaling

In this scaling procedure, the first step consists of the column scaling of the
jacobian matrix in which the elements of each column are divided by the
element of the respective column which is greatest in absolute value. Let D,
denote the diagonal matrix which contains the reciprocals of the elements of the
respective columns which are largest in absolute value, and let {a;;} denote the
elements of J,. The elements {d;} of D, are as follows:

d,, = 1/[maximum |g;, | of column 1 of J,]

dZZ

I/[maximum |a;,]| of column 2 of J,]

a
|

. = 1/[maximum |a;,| of column n of J,]
Thus
(JDYD ' Axy) = — 1, (2-43)

Next row scaling is performed on the matrix J,D,. Let E, denote the
diagonal matrix which contains the reciprocals of the elements of the respective
rows which are largest in absolute value, and let b;; denote the elements of
JiD,. The elements {e;} of E, are as follows:

ey, = l/(maximum b, ; of row 1 of J, D})

e,, = 1/(maximum b,; of row 2 of J, D))

e,, = 1/(maximum b,; of row n of J, D))
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Thus, the row scaling of J, D, is represented by

(E. 3, DYD; ! Ax,) = —Ef; (2-44)
and

Ax, = —D(E,J,D,) " 'E,f, (2-45)

In a problem solved by Mommessin(15), variable scaling followed by row
scaling was unsatisfactory, and it was necessary to use column scaling followed
by row scaling.

Application of Broyden’s Method

In many applications, the programming of the analytical expressions for the
partial derivatives appearing in the jacobian matrix of the Newton-Raphson
method becomes a cumbersome task, and the numerical evaluation of these
derivatives for each trial becomes too time-consuming. In order to reduce the
time requirement Broyden’s method (Refs. 2, 11), which seldom requires more
than one numerical evaluation of the partial derivatives, may be used. The
development of this method is presented in Ref. 11, and the steps to be followed
in the application of the method are enumerated below.

For the general case of n independent equations in n unknowns, the
Newton—-Raphson method is represented by Eq. (2-31) where

g o U
0x, 0x, ox,
y=|: : (2-46)
Yu Yo Y
0x, 0x, ox,
xe=lx x o ox] (2-47)
=0 f» - [ (2-48)

The steps of the algorithm are as follows:

Step I Assume an initial set of values of the variables x,, and compute
fo(xo)-

Step 2 Approximate the elements of H, where H, is defined as follows:
Hy, = -Jg !

Broyden obtained a first approximation of the elements of J, by use of the
formula

% ~ SAx; + hy) — fix)
0x; = h;
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where h; was taken to be equal to 0.001x;.
Step 3 On the basis of the most recent values of H and f, say H, and f,,
compute
Ax, = H,f,

Step 4 Find the s, such that the euclidean norm of f(x, + s, Ax,) is less
than that of f(x,). First try s, ; = 1 and if the following inequality is satisfied

n 1/2 n
| Srtoesan |7 <[ £ s

1/2

proceed to step 5. Otherwise, compute s, , by use of the following formula
which was developed by Broyden:

(L6 —1

Sk, 2 I

where

™M=

FHx + s, Axy)
i=1

i fix)

’7:

If the norm is not reduced by use of s, , after a specified number of trials
through the complete procedure, return to step 2 and reevaluate the partial
derivatives of J, on the basis of x,. As pointed out by Broyden, other methods
for picking s, may be used. For example, s, may be picked such that the
euclidean norm is minimized.

Step 5 In the course of making the calculations in step 4, the following
vectors will have been evaluated:
Xp+1 = X + S Ax,
i1 =1(Xe1y)
Test f,,, for convergence. If convergence has not been achieved, compute

Y, =fk+1 —f,

Step 6 Compute

H, Y, + s, Ax,) AxTH,

H .y =H, — Ax[HkY,‘

and return to step 3.
Example 2-4 consists of a simple algebraic example which illustrates the
application of this method.

(

Example 2-4 (Hess et al.(9), by courtesy Hydrocarbon Processing). It is
desired to find the pair of positive roots that make f,(x, y)=0 and
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S2(x, y) = 0, simultaneously

filx, y) = x* — xy? =2
Sfo(x, y) =2x% — 3xy® + 3

Take xo =1 and y, = 1, and make one complete trial calculation as pre-

scribed by steps 1 through 6.

SoLUTION

Step 1 Since xo =1, y, =1

and

Step 2 Take the increment h for computing the derivatives with respect

to x to be

Then

9fy _ 11001, 1) — fi(1, 1)

0x

Xo = [1’ l]r

Sio=filxe)=fil, ) =1—-1-2= -2
Soo=falxe) =1, ) =2 -3 +3=2

h = (0.001)x, = 0.001

0.001 = 1.001

For computing the derivatives with respect to y, take

Then

and

Then

I _
ay

o _
Ox
of _
dy

h = (0.001)y, = 0.001

fi(1, 1.001) — fi(1, 1)

0.001 = —2001
£(1.00L, 1) — f5(1, 1)

0001 = 1.002
fZ(la 1001) __fl(l» 1)_

5001 = —6.003

. 1.001 —2.001
711002 —6.003
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The inverse of J, is found by gaussian elimination as follows. Begin with
1.001 —2.001 1 0
1.002 —-6.003]||0 1

and carry out the necessary row operations to obtain

1 0}]|[ 14992 —0.499 75]
0 1

0.25023 —0.25000
g [1.4992 —0.499 75]
ol =

Then

0.25023 —0.25000

and
Heo 3ot — 14992  0.49975
07 Y0 T 025023 0.25000

Step 3 On the basis of the most recent values H and f, the correction
Ax is computed as follows:

c —1.4992 049975 —2] [3.9979
Axo =Hofo = ~0.25023 0.25000 2| | 1.0005
Step 4 Take sq ; = 1. Then

e 17, 39979 _ [49970
Xo + &% =1 1 1+ 10005 | ~ | 2.0005

and
f1(xo + Ax) = £1(4.9979, 2.0005) = 2.9774
fr(Xo + Axg) = f(4.9979, 2.0005) = —7.0468
Since
(2.9774)2 + (—7.0468)% > (—2)> + (2)°
compute
_ FHxo + Axo) + [3(xo + AX) _ (2.9774)% + (—7.0468)* 731529
[1(xg) + £ 3(xo) (=27 + @7
and
So.2 = (1—+—6%”2———1 = 0.25974
Then

e ax = | 1], [103830 7 _[203839
Xo + 025974 Axo = | | 0.259865 | | 1.259 865
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and

fixo + 50,2 AX) = £1(2.038 39, 1.259865) = —1.08040

Sfao(Xo + 50,2 AXo) = f,(2.038 39, 1.259 865) = 1.603 72
Thus, the criterion on f,, namely,

(—1.08040)* + (1.6037)* < (—2)* + (2)*
has been satisfied.
Step 5 If the convergence criterion is taken to be that the sum of the

squares of f; and f, is to be reduced to some small preassigned number e,

say ¢ = 10719, then this criterion has not been satisfied by x = 2.0384 and
y = 1.259 86. Then compute

—1.08040 -2 0.91960
Yo=1, —f, = — =
1.603 72 | 2 —0.39628
Step 6 Compute the following products which are needed to find H, :
—1.4992 0499 75“[ 0.91960] _ [—1.5765 ]

H,Y, =
°e [—0.25023 0.25000 || —0.39628 —0.32918

—1.4992 049975
—025023 0.25000

HoY. 45 o Ax | 15767 ] [1.03839 7 —0.53831
ofoT 0.2 B =1 032918 || 0259865 | T | —0.06931
0.919 60
—0.396 28

AxIH, = [3.9979, 1.0005][ ] = [ —6.2440, 2.2481]

AXTH, Y, = [ —6.2440, 2.2481][ ] = —66328

Since

(Ho Yo + 5o Axg) AxJ H,
AxIH, Y,

it follows that

H - —1.4992  0.49975 —0.506 74 0.18245
' —0.25023 0.25000 —0.06525 0.023491

_[—0.99246 031730
] —0.18498 0.22651

and the next trial is commenced by returning to step 3 with H, .

A modest improvement of Broyden’s method may be achieved by combin-

ing it with Bennett’s method (Ref. 1) as described by Holland(11).
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2-4 EQUATIONS FOR A
TRIPLE-EFFECT EVAPORATOR SYSTEM

A typical triple-effect evaporator system with forward feed is shown in Fig. 2-10.
Multiple-effect evaporator systems are attractive because in an idealized system
of N evaporators in which all of the latent heats are equal and boiling point
elevations and sensible heat differences are negligible, N pounds of water may
be evaporated per pound of steam fed to the system.

The equations describing the triple-effect system shown in Fig. 2-10 are
formulated in a manner analogous to those shown for the single-effect system.

Ist effect:
(see the five equations given by Eq. (2-28))
2nd effect:
L WT y, x,\) + VWH(T ) = W(T)] = V, H(T 3) — Ly WT 2, x3)
A, T 5, X5)]

dt
U, AT, — 7 ) — VilH(T ) — WT})] =0
m(x)Ty + b(x;) — T, =0
Lix,—Lyx, = ———d(“if; xa)
L,—V,—L _ 4
1 2 2 d[

3rd effect:
L,hT,, X,) + V,[H(T ;) — hTy)] — V3 H(7 ) — L, W75, x3)

dt
Us ATy — T 3) — VIH(T y) — h(T ;)] =0
mixy)Ty + b(x3) — T3 =0
Lyxy — Lyxy = d——(jf; x3)
L,—V,—Ly= dot s
2T

The dynamic equations for a multiple-effect evaporator system may l?e solve’d
by a variety of methods such as the two-point implicit method, Michelsen’s
semi-implicit Runge-Kutta method (Ref. 14), and Gear’s method (Ref. 7). The
two-point implicit method is demonstrated for a 17-effect system in the next
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Vv, V, vV,
H (7)) H () H (73)
Effect 1 Effect 2 Effect 3
F Vapor Vapor Vapor
T X > space > space > space
b Py, 4, Py, 7, Py, 4,
Yo
at Py, Ty Steam Steam Steam
Ho > chest 1 chest 1 chest
Py, Ty | P, Ty | P, T
Vo, ho L Vi, by L, Va, hy L,
h (A, x1) h (73, x3) h (13, x3)

Figure 2-10 A triple-effect evaporator with forward feed. The temperature distribution is shown for
a system with boiling point elevations.

chapter. The application of Michelsen’s method and Gear’s methods to distil-
lation problems are presented in Chaps. 6, 7, and 8.

In summary, the integral difference equations for evaporators may be solved
by use of the two-point implicit method. To solve the system of equations for
this process, either the Newton-Raphson method or the Broyden modification
of it may be used. Scaling of these equations will generally be necessary and
two scaling procedures have been presented for this purpose. As demonstrated
by a simple example, the implicit method is stable provided that the weight
factor ¢ > 1/2.

NOTATION

b(x;) = intercept of that Diihring line having as its
concentration parameter the variable x;

f, = column vector of the N functions f|, f,, ..., fy

F = feed rate to the evaporator system, Ib/h

WT), (7 ;) = enthalpy of the pure solvent in the liquid state at the
temperatures T; and J ;, respectively, and pressure P;,
Btu/lb (where boiling point elevations are negligible,
the notation h;, which is equal to h(T}), is used)

H(T), H(J )) = same as above except the capital H denotes the vapor
state
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W7 ;, x)) = enthalpy of the thick liquid at temperature J ;,
composition x; and pressure P;, Btu/lb

hTe, X) = enthalpy of the feed at its entering temperature,

pressure, and composition, Btu/lb (where boiling point
elevations are negligible, the enthalpy of the feed is
denoted by hy)

H =-J!

J = jacobian matrix; defined beneath Eq. (2-37).

l" = LJ/F . . .
m(x;) = slope of that Diihring line having as its concentration

parameter the variable x;

M = mass holdup of liquid in evaporator effect j, b

P; = total pressure in evaporator j .

Q; = rate of heat transfer for evaporator effect j, Btu/h

t = time at the end of the nth time period; At =1t,,; — t,

’;F, Ty = temperature of the feed and steam, respectively, to an
evaporator

T; " = saturation temperature at the pressure P; of the vapor
leaving the jth effect of a multiple-effect evaporator
system . .

T ; = temperature of the thick liquor leaving the jth effect

“ =J|Ty

u =T/Tq

Uj = Vj/F )

vV — mass flow rate of the vapor from the jth effect of a
multiple-effect evaporator system 4

X; = mass fraction of the solute in the thick liquor
leaving effect j _

X = column vector of the values of the variables used to
make kth trial

Ax, = column vector; Ax, = X; 4+; — X,

x7 = transpose of the column matrix x

Subscripts

j = evaporator effect j

k, n = counting integers

Greek letters

Y = thermodynamic activity coefficient

Pj =1+71/¢

=(1- ¢V o

4 = H; — h;, latent heat of vaporization of the pure solvent
at its saturation temperature T; and pressure P;

) = weight factor of the two-point implicit method

, AL
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PROBLEMS

2-1 Consider the triple-effect evaporator system shown in Fig. 2-4 in which the boiling point
elevations are negligible. The system is at steady state operation.

(a) 1If the sensible heat effects are negligible, hy = h, =h, = hy and Hy=H, = H, = Hy, show
that
Vo=Vi=V,=1V,
0,=0,=0;

(b) If in addition to part (a), 4, = A, = Ay and U, = U, = U;, show that the steam economy
is equal to 3.

2-2 Verify the expressions given for the elements appearing in the jacobian matrix given by Eq.
(2-33).

2-3 Repeat Prob. 2-2 for the jacobian matrix given by Eq. (2-36).

24 If in the procedure called variable scaling and row scaling the elements of diagonal matrix R are
taken to be ryy = F, ry; =F, ry3=T,, ry, =1, rss = F, and if instead of using the elements of D
which are largest in absolute value the following elements are used in the diagonal matrix M,

myy =Fly, my, = Fly, my; =T,, my =F, mgs=F, show that if one carries out the matrix
operations on Eq. (2-31) one obtains the results given by Egs. (2-34) through (2-36).



CHAPTER

THREE

DYNAMICS OF A
MULTIPLE-EFFECT EVAPORATOR SYSTEM

The formulation and testing of a model for a relatively large process, a 17-effect
evaporator system, is given in this chapter. The model proposed for each part of
this system is presented and the corresponding equations are developed. Mod-
eling techniques utilized in the modeling of a large process are developed and
examined. For example, the proposed model for certain heat transfer processes
makes it possible to replace the partial differential equations describing these
processes by ordinary differential equations.

Although the equations for the model are solved by use of the two-point
implicit method, it should be noted that other methods such as the semi-implicit
Runge-Kutta method and Gear’s method could be used as shown in Sec. 3-2. A
comparison of the dynamic behavior predicted by the model with that observed
in the field tests run on the system of evaporators is effected by solving the
equations describing the model. An objective of this investigation was to de-
velop a suitable model of the process on the basis of the fundamentals of heat
transfer, mass transfer, fluid flow, and the information commonly available from
the design prints. The model predicts not only the dynamic behavior of the
system to an upset in any of the operating variables but also the new steady
state solution.

The field tests were made on the Freeport Demonstration Unit, located at
Freeport, Texas. This plant was constructed under the direction of the Office of
Saline Water, U.S. Department of the Interior. The details of the construction,
operation, and successes achieved by this plant are well documented (Refs. 9, 11,
13, 25).

One of the methods for producing fresh water from seawater or brackish
water is evaporation (Refs. 8, 9, 14, 23, 24, 25). Of the technical effort expended
on evaporation, most of it has been devoted to reducing the cost of construc-
tion (Refs. 9, 11, 13); some of it has been spent on the optimization of the
process variables as required to minimize all cost factors (Refs. 8, 18, 19).
Although numerous investigations on the dynamics of heat transfer and distil-
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lation processes have been reported (Refs. 6, 12, 21, 22), Burdett (3) appears to
have been the first to study the dynamics of a multiple-effect evaporator pro-
cess.

In 1945 Bonilla(l) presented a calculational procedure for minimizing the
area required to achieve a specified separation. Highly approximate assump-
tions were necessary, however, in order to keep the iterative procedure manage-
able for the hand-calculation requirement of that day. Haung et al(17)
developed a procedure for optimizing plants equipped with LTV falling-film
evaporators at steady state operation. Itahara and Stiel(18) applied dynamic
programming to establish optimal design procedures for systems of multiple-
effect evaporators. Their model allowed for the preheat of the feed through heat
exchange with the condensate and vapor bleeds, and it was applicable to the
design of evaporator systems at steady state operation. Recently, accurate ther-
modynamic and heat transfer data have become available (Refs. 2, 10, 23).

Description of the Desalination Plant

{x pl?otograph of the plant is shown in Fig. 3-1, a sketch of a typical evaporator
in Flg. 3-2, and a simplified flow diagram of the process in Fig. 3-3. The design
capacity of the plant was one million gallons per day, with a steam consump-

Figure 3-1 Freeport demonstration plant: multiple-effect LTV evaporator. (Courtesy of the U.S.
Department of Interior.) .
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Figure 3-2 Flow diagram of a long-tube vertical evaporator and auxiliary equipment. (J. W. Burd-
ett and C. D. Holland: * Dynamics of a Multiple-Effect Evaporator System,” AIChE J., vol. 17, p.
1080 (1971). Courtesy of the American Institute of Chemical Engineers.)

tion of less than 0.08 pounds of supply steam per pound of gross product (Ref.
25). The plant consisted of 17 effects of the long-tube vertical (LTV) type of
evaporator. The falling-film version of the LTV evaporator was used. As shown
in Figs. 3-2, 3-3, and 3-4, a portion of the energy possessed by the condensate
leaving each effect was recovered by allowing the condensate to flash in each of
the condensate flash-tanks.

The first twelve effects of the plant were built as separate units, and each
effect was sized according to its particular requirements. The last five effects
were constructed in a single module. The feed preheater and condensate flash-
tank were located within the “shell” of the effect with which they were associ-
ated.

Each evaporator consisted of a vertical shell-and-tube heat exchanger,
which was mounted over a vapor-liquid separator. Noncondensables were re-
moved continuously from each effect through the use of vapor bleeds which
were vented to the atmosphere, to the vapor space of the next effect, to the feed
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treater, or to the vacuum system. Most of the evaporators were equipped with
2-inch by 22-feet, 16-gauge tubes. The total areas for heat transfer varied from
3000 to 4000 square feet per effect. As shown in Fig. 3-2, demister mats were
used to prevent the entrainment of process liquid in the vapor leaving the sump
of each evaporator. The process liquid entered the evaporator tubes through a
suitably designed distributor at the top of each evaporator.

The feed (seawater) was heated slightly before it entered the acid treater (see
Fig. 3-3). Carbon dioxide and dissolved air were removed from the feed in the
acid treater by first acidifying, followed by steam stripping, and then neutraliz-
ing with caustic. The feed was then preheated in a series of heat exchangers
before it was introduced to the first effect (see Figs. 3-2 and 3-3).

In forward-feed operation, the pretreated, preheated feed and steam from
the supply line were charged to the first effect. Slightly concentrated process
liquid was withdrawn from the sump of the first effect and charged as feed to
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f‘igure 3.-3 Simplified flow diagram of the evaporator system. (J. W. Burdett and C. D. Holland:
Dynamics of a Multiple-Effect Evaporator System,” AIChE J., vol. 17, p- 1080 (1971). Courtesy of
the American Institute of Chemical Engineers.)
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Figure 3-4 Composite model for evaporator effect j and its associated auxiliary equipment. (J. W.
Burdett and C. D. Holland: “*Dynamics of Multiple-Effect Evaporator System,” AIChE J., vol. 17, p.
1080 (1971). Courtesy of the American Institute of Chemical Engineers.)

the second effect. The condensate leaving each effect was, of course, the desired
product; however, it contained sensible heat which was recovered in part by use
of a heat exchanger at the first effect and by flashing in the condensate flash-
tank at the subsequent effects.

As the brine process liquid passed through the system, it became nmore
concentrated, and its flow rate diminished. Effects 10 through 17 had provisions
for recycling liquid from the sumps of these effects to increase the liquid loadi.ng
on the walls of the tubes. Effects 11 through 14 had alternate feed inlets which
permitted sump-to-sump flow. Both of these options are shown in Figs. 3-3 and
3-4 for effects 2 through 17, since these options were included in the mathemat-
ical model for all effects except the first.

Feed preheaters 1 through 12 were of the shell-and-tube type of heat ex-
changers. These preheaters were mounted vertically and adjacent to the evapor-
ators (see Figs. 3-2 and 3-4). Since the flow of steam to each p.reheater'was
unrestricted, the steam chest of each evaporator and the shell of its associated
preheater were at the same pressure. Due to the piping configuration, con-

( DYNAMICS OF A MULTIPLE-EFFECT EVAPORATOR SYSTEM 77

densate removal was self-regulating. Venting of noncondensables was set by
hand valves in the vent line provided for each effect. Effects 2, 3, and 6 each had
two preheaters with parallel steam flow and serial feed flow. In the model, each
pair was treated as a single preheater. The feed preheaters for effects 13 through
17 were located within the steam chests of the respective effects, together with
the evaporator tubes as indicated in Figs. 3-3 and 3-4.

The condensate flash-tanks for effects 2 through 12 were located adjacent to
the respective evaporator sumps at an elevation low enough to permit complete
drainage of the condensate from the steam chest. Piping between the flash-tanks
was located below the bottom level of the tanks in order to provide a water seal
for the self-regulation of the condensate flow rates. The condensate flash-tanks
for effects 13 through 17 were built into the wall of the module on the side of
the respective sumps as indicated in Fig. 3-3.

The acid treater (see Fig. 3-3) consisted of a tower which was six feet in
diameter and 43 feet high. The tower was packed with 16 feet of 3-inch by
3-inch stoneware Raschig rings. Seawater feed, acidified with sulfuric acid, en-
tered the top of the tower through a full-cone spray nozzle. Steam from the
steam bleed of effect 16 was introduced below the packing at a fixed flow rate.
The vapor flow rate from the tower was controlled manually at a flow rate that
was greater than the inlet vapor flow rate by an amount which would cause a
temperature drop in the flashing feed of about 1°F.

A detailed description of this plant, its equipment, and its operations (prior
to the addition of the 5-effect module) was given by Dykstra(9) in 1965. Addi-
tional details pertaining to both the 12-effect and the 17-effect operations of the
plant are available from the annual reports by the operating company, Stearns—
Roger Corporation, to the Office of Saline Water, U.S. Department of the
Interior (Ref. 13).

Section 3-1 is devoted to the formulation and analysis of the heat transfer
models. In Sec. 3-2 the assumptions for the process model are first stated and
then the equations required to describe the proposed process model are enumer-
ated. The analysis of the results of the field tests and a comparison of the
experimental results with those calculated by use of the model of the plant are
presented in Sec. 3-3.

3-1 DEVELOPMENT AND ANALYSIS OF
THE HEAT TRANSFER MODELS

The relatively large mass of metal contained in the evaporators represented an
appreciable capacity for the storage of energy. This capacitance cannot be ne-
glected in any realistic analysis of the dynamics of the process. However, the use
of the classical equation for conduction (see Eq. (3-11)) in the analysis would
result in a tremendous task. To reduce the amount of effort required in the
analysis, an approximation called the “heat transfer model for large cylindrical
walls” was employed.
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Formulation of the Heat Transfer Model for Large Cylindrical Walls

The proposed model not only transforms a partial differential equation into an
ordinary differential equation but it also gives the correct rate of heat transfer
at steady state as well as the correct heat content of the metal walls. The model
makes use of the fact that at steady state, the mean temperature 7,, at which the
heat content of a large cylindrical wall should be evaluated is approximately
equal to T,,, the arithmetic average of the internal and external wall tem-
peratures. Large cylindrical walls such as those of the evaporator shells have an
appreciable thickness, although the ratio of the external and internal radii is
approximately equal to unity. Such walls are further characterized by the fact
that the length L along the cylindrical axis is large enough so that heat transfer
by conduction along the cylindrical axis may be neglected.

First, it is shown that the variation of the temperature with the radius of a
large cylindrical wall is linear. The rate of heat transfer Q (Btu/h) by conduction
through a large cylindrical wall of length L and radii r, and r, is given by

T
Q = —k2nrL ‘ii—r ro<r<ry) 3-1)

where a temperature gradient exists only in the direction r. Integration of Eq.
(3-1) for the case where r; may be taken approximately equal to r, in the
calculation of the surface area 2rr, L (or 2zr, L) yields

k2nr L (T, — T) (3-2)

r—ry=

where the thermal conductivity k (Btu/(h-ft- °F)) is taken to be independent of
temperature. Elimination of k27r, L/Q by use of the boundary condition that at

r=r,, T =T,, gives
T, — T,
T-T, _( : 2>(r— ") (3-3)

r,—r

This expression shows that at r = r,,, T = T,,, that is, at

ry+r, L+T
() (L) g
r Fav ( 2 > ( 2 > av

It will now be shown that the mean temperature T,, for computing the heat
content of the metal wall of an evaporator or the heat content of the metal wall
of the flash-tank is approximately equal to the corresponding arithmetic average
temperature T,,. The total heat content of a cylindrical wall having a tem-
perature gradient in the radial direction alone is given by

rz2

Heat content = j EpLQ2nr dr) (3-4)

1
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where E is the internal energy (Btu/lb) and p is the density (Ib/ft3) of the metal.
Then by use of the generalized theorem of integral calculus (App. 1A) the right-
hand side of Eq. (3-4) may be restated in the following form

r2 r2
J EpLQ2nr dr) = E,, p2nL f rdr (3-5)

1 ry

where the change in c}ensity with temperature is taken to be negligible. Since r,
may be taken approximately equal to r, in the calculation of the surface area of
large cylindrical walls, Eq. (3-5) reduces to

r2 r2
J Edr=E, j dr (3-6)
ry ry

The internal energy above any arbitrary datum temperature, say T, is given by
E = C/(T — T)) and the mean value of E by E,, = C(T,, — T), where the varia-
tion of C, with temperature over the range from T, to T, can be neglected. On
the basis of these suppositions, Eq. (3-6) may be reduced to

J‘ (T—T)dr=(T,, — Ty)r, — ry)

After the integ'ran‘d (T — T,) has been replaced by its equivalent as given by Eq.
(3-3) and the indicated integration has been carried out, the following result is
obtained:

T.=T, (3-7)

The proposed model was formulated such that the condition given by Eq.
(3-7) is satisfied at steady state operation. In particular, let one half of the
thermal resistance of the metal wall be concentrated at r = r, and the other half
at r =r,. These thermal resistances are called “effective thermal conductivity
films,” and they are assigned zero masses. Then the thermal resistance per film

is given by
(Resistance per effective 1 1/r,—r,
thermal conductivity film) ~ h, 4 2 k2mr, L> 3-8
Thus, the corresponding equivalent film coefficient is given by
2k
h =
© r,—r, (3-9)

All of the mass of the actual wall is taken to be at the mean temperature
T, = T,,. The heat transfer model and its corresponding temperature profile at
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“Dynamics of a Multiple-Effect Evaporator

steady state are shown in Fig. 3-5. Examination of this model shows that at
steady state, it provides the correct wall temperatures T; and T, needed in the
formulation of the rates of heat transfer to and from the wall as well as the
correct heat content of the metal wall.

For the case where no approximation is made with respect to the relative
sizes of r, and r,, appropriate expressions for T, and the effective thermal
conductivity films are developed as outlined in Prob. 3-2.

There follows an analysis in which a comparison is made between the
temperatures predicted by the proposed heat transfer model and those obtained
by solving the corresponding boundary-value problems. The results of this anal-
ysis support the use of the proposed heat transfer model in the modeling of the
heat transfer through large cylindrical walls. The relationships developed in this
analysis are also used in the justification of the use of a heat transfer model for
thin metal walls under the heat transfer conditions such as those of the steam-
heated heat exchangers of the evaporator system.

Analysis of the Heat Transfer Model for Large Cylindrical Walls

The primary purpose of the analysis that follows is to obtain an approximation
of the errors in the temperatures predicted by use of the heat transfer model.
Formulas for predicting these errors are obtained by solving the boundary-
value problems corresponding to two different sets of boundary conditions.
Consider first the boundary-value problem having the boundary conditions
depicted in Fig. 3-6. This problem corresponds to the case of a metal wall in
contact with steam at x = | and the surroundings at x = 0. At x = I, the steam
film coefficient is denoted by h, and the steam temperature by Ts. At x =0, an
effective film resistance is used to represent the combined resistance offered by
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the insulation and the air film to heat transfer. The effective film resistance is
denoted by 1/h, and defined by

1 A . A
hy kA (hA)y

where 'A is the internal surface of the cylindrical section of the metal wall. The
subscript “ins” refers to the insulation, the subscript “air” refers to the air film
and [, denotes the thickness of the insulation. ,

At time t =0, the metal wall is at the uniform temperature T, of the
surr.oundmgs, and at time ¢ = 0+, the steam (with the saturation temperature
Ty) is turned on. The corresponding partial differential equation is given by

(3-10)

oT °T
E=aw O<x<lt>0) 3-11)
where
k
o =
pC,

The boundary conditions are as follows:

oT
ko= h(T = T)=0 (x=0,t>0)

T
ka_x+hz(T—Ts)=0 (x=14t>0) (3-12)

T=T, (t =0, for all x)

Insulation

Air film —7

Insulation Effective thermal

Air film /7 ; conductivity films

Semi-infinite slab

Heat transfer model of

the semi-infinite slab

Figure 3-6 Heat lran.sfer model of a semi-infinite slab in contact with air on the insulated side and
steam on the other side. (J. W. Burdett and C. D. Holland: “Dynamics of a Multiple-Effect Evapor-

atorA System,” AIChE J., vol. 17, p. 1080 (1971). Courtesy of the American Institute of Chemical
Engineers.)
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Equations (3-11) and (3-12) may be developed by following the outline given in
Prob. 3-3. The following solution to this problem may be deduced from the
result given by Carslaw and Jaeger(5) in case IV on page 126.

T(x,t)— T, ( 1 ) i it
— =2 —alx+—)— Y C,D,Y,(x)e %" (3-13)
I — T, H, ..;
where
1
a (H, = hl/k, H, = hz/k)

T YH, + 1/H, +1
[2(82 + HDY'?

C =
" B{(BE + HYUBZ + HY) + H)) + H, (B + H3)}'?
_ pe + Hi
D, = H,(cos B,1) 2 _H,H,
),n(x) = ﬁn Cn(ﬁn cos ﬁnx + Hl Sin Bn X)
Bis Bas ..., B, = first n positive roots of

(B* — H, H,) sin pl — B(H, + H,) cos fl = 0

An outline of the method of solution is given in Probs. 3-4 and 3-5. The result
given by Eq. (3-13) may be used to determine the mean temperature which is
required to give the correct heat content of a finite section of the slab at any
time ¢t > 0. The following expression for the determination of this mean tem-
perature T,(t) is formulated in a manner similar to that shown for Eq. (3-5):

L) - T, = % JI[T(x, 1) — T,] dx (3-14)
0

When the integrand [T(x, t) — T,] is replaced by its equivalent as given by Eq.
(3-13) and the indicated integration is carried out, the result so obtained may be
rearranged to give '

T,(t) — T, R AN - )
L =qaql—+=|—= ) C;D,D,+ Hy) exp (—afi;t 3-15
Ts‘_TA a(H1+2 I,.Z:l n n(n l) p( ﬁ ) ( )

For the boundary-value problem under consideration, the corresponding
heat transfer model is also shown in Fig. 3-6. The differential equation for the

heat transfer model is given by
dT

UTs = T) = UT = T) = IpC, - (3-16)
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Figure 3-7 Comparison of the results given by the heat transfer model with those given by the
solution of the corresponding boundary-value problem (see Fig. 3-6). (J. W. Burdett and C. D.
Holland: * Dynamics of a Multiple-Evaporator System,” AIChE J., vol. 17, p. 1080 (1971). Courtesy
of the American Institute of Chemical Engineers.)

where

|~
-~
N
n

e 4
Ul (kA)ins (hA)air Zk
1 1 )

U, h +§Z

Separation of the variables in Eq. (3-16) followed by integration and rearrange-

ment yields
Tw-T1, [ U, U, + U,
e 1 —_ -_ -
T T, (Ul T iwe, ) 3-17)

A comparison of the values of T(f) predicted by the heat transfer model as
given by Eq. (3-17) with the theoretical values given by Eq. (3-15) is presented
in Fig. 3-7. The heat transfer coefficients and other parameters used to compute
the results shown in this figure were of the same order of magnitude as those
for the system of evaporators under consideration.

steam

A limiting case for the heat transfer model The boundary-value problem corre-
sponding to an evaporator shell with a perfect insulator on one side and steam
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with an infinite film coefficient on the other side is depicted in Fig. 3-8. The
postulate of an infinite value of the steam film coefficient amounts to taking the
surface temperature of the wall on the steam side equal to the saturation tem-
perature Ty of the steam. The partial differential equation is again given by Eq.
(3-11) and the boundary conditions are as follows:

T(x,0) =T, O<x<]

M:O (>0 (3-18)
0x

TA,t)= Ty (t>0)

The solution satisfying both the partial differential equation and the boundary
conditions may be stated in terms of either a Fourier series of cosines or a
series of complementary error functions (Refs. 5, 7). Of these two forms of the
solution, only the latter is given because it is said to converge (Ref. S) more
rapidly for small values at/I*

Ts — T(x, t) i QQn+ )l —x @n+ DI+ x
s TV —1" i 3-19
T 1 ”;0( 1) [erfc ) + erfc 20 (3-19)

where

2 © )
erfcz=—f e *dl
N

the complementary error function.
The result given by Eq. (3-19) may be used to determine that mean tem-
perature which is required to give the correct heat content of a finite section of

Effective thermal
conductivity films

Perfectly Perfectly
insulated insulated

T

x=1
Heat transfer model of
the semi-infinite slab

x =1
Semi-infinite slab

Figure 3-8 Heat transfer model of a semi-infinite slab which is perfectly insulated at one end and
the temperature is constant at the other. (J. W. Burdett and C. D. Holland: *Dynamics of a
Multiple-Effect Evaporator System,” AIChE J., vol. 17, p. 1080 (1971). Courtesy of the American
Institute of Chemical Engineers.)
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the slab in a manner analogous to that demonstrated for Eq. (3-15). The corre-
sponding result is given by

Tm(t) - TA _ EE 1z -1/2 ad n - nl
—Ts T, = 2<12) 7 + 2";(— 1)" ierfc e (3-20)

where

—z2

e

NG

Values of ierfc z have been tabulated by Carslaw and Jaeger(5).

For the boundary-value problem under consideration, the corresponding
heat transfer model is also shown in Fig. 3-8. The differential equation for the
heat transfer model is given by

—zerfc z

ierfc z = J erfc £ dE =

2k dT
= (Ty—T) = IpC, — .
] (Ts — T) = IpC, a (3-21)
Separation of the variables followed by integration and rearrangement yields
T@W - T, -
=1 2a1/12 _
T.-T, e (3-22)

A comparison of the predicted values of the temperature ratio given by Eq.
(3-22) with the theoretical values found by use of Eq. (3-20) appears in Fig. 3-9.

Errors in the mean temperatures predicted by the heat transfer model for large
cylindrical walls The solutions given by Eqs. (3-15) and (3-17) correspond to a
situation in which conditions are far more severe than any which ever existed
during the test runs. The boundary conditions (see Eq. (3-12)) suppose that the
initial temperature of the metal at the time of the upset is equal to the tem-
perature T, of the surroundings. To obtain some idea of the difference in the
mean temperatures of the wall given by the solution of the boundary-value
problem (see Eq. (3-15)) and the heat transfer model (Eq. (3-17)), consider the
case where T, = 80°F and Tg = 250°F. That is, the initial temperature of the
metal and the surroundings is 80°F at time t = 0, one side of the metal wall is
suddenly exposed to saturated steam at 250°F. The initial time step used in the
program for the system was 0.5 min. Then for t = 1/120 h, the following results
are obtained from Fig. 3-9, that is, the solution of the boundary-value problem
gives

T, = 248°F
and the solution of the heat transfer model gives
T = 243°F

Although the boundary conditions given by Eq. (3-18) are closer to those
which occurred during the test runs than the conditions given by Eq. (3-12),
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Figure 3-9 Comparison of the results given by the heat transf.er model with those given by the
solution of the corresponding boundary-value problem (see Fig. 3-8). (J. W. Burdett and C. D.
Holland: “*Dynamics of a Multiple-Effect Evaporator System,” AIChE J., vol. 17, p. 1080 (1971).
Courtesy of the American Institute of Chemical Engineers.)

they are also more severe than those which existed fiu.rﬁng the test run. For
purposes of illustration, consider the case where the lqltlal temperfiture TA.of
the metal is 240°F and the temperature Ty of the steam in contact with one side
of the wall is suddenly changed to 270°F. At the end of 1/{20 h, the mean
temperature given by the solution of the boundary value problem is

| = 269.90°F

and by the solution of the heat transfer model is
T = 269.72°F
These results may be obtained by use of Egs. (3-20) and (3-22).

Heat Transfer Model for the Tubing of the
Steam-Heated Heat Exchangers

The model proposed for these thin metal walls consists of a further simplifica-
tion of the model proposed for the representation of thq heat transfer throqgh
large cylindrical walls. The proposed mode for these thin metal walls consists
simply of taking the mean temperature of the walls equal to th‘e steam tem-
perature. In the case of thin metal walls such as those found in the steam-
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heated heat exchangers, the mean temperature found by solving the
boundary-value problem is almost exactly equal to the wall temperature predic-
ted by use of the heat transfer model. In other words, the heat transfer model
proposed in the previous section approaches an exact representation of the thin
metal walls. Thus, for a heat transfer situation represented by Eq. (3-16), it is
evident that the temperature of the wall is approximately equal to the steam
temperature at the end of the first time step provided both of the following
conditions are satisfied simultaneously:

_ U
U, + Uy

=1

and
IpC, <
U, +U,

where U, contains the steam film coefficient. In a typical steam-heated heat
exchanger, U,/(U, 4+ U,) = 0.825, and (IpC,)/(U, + U,) was equal to 0.000 157
while At was equal to 0.008 33 h.

Thus, in summary, the proposed heat transfer model is seen to apply pro-
vided (1) the “time constant” IpC,/(U, + U,) is much less than the time step At
used in the numerical solution of the evaporator problem (that is, the time
constants for other units of the system are large relative to the one for the thin
walls of the exchanger) and (2) the heat transfer coefficient for the steam side is
much greater than the heat transfer coefficient for the other side. The use of the
proposed model is further strengthened by the fact that energy balances involve
differences in heat content of the walls at the beginning and end of each time
period, and these differences are generally more accurate than the predicted wall
temperatures.

The heat transfer model used for the metal walls of the tubes of the liquid—
liquid feed-preheater associated with the first evaporator effect was essentially
the same as the one described above except that the mass of the tubes was
prorated to be at the temperatures assigned to the mass of each liquid accord-
ing to the coefficient of heat transfer of each liquid. Similarly, well-insulated
process piping was taken to be at the temperature of the process fluid adjacent
to i1t.

At

Heat Transfer Model for the Liquid in the Feed Preheaters

The proposed model for the liquid in the feed preheaters consists of the use of
the steady state relationships to describe the rate of heat transfer occurring at
the beginning and at the end of any time period during the transient analysis of
the process model. Support for this model is the fact that the process fluid
undergoes plug flow through the tubes with little axial mixing and the fact that
the residence time of the fluid in the exchanger was short compared with the
time intervals used in the numerical solution for the system of evaporators.
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All process liquid flowing through the tubes was taken to be concentrated
in a perfect mixer following each exchanger. The heat content of the metal
piping associated with each exchanger was taken to be at the temperature of the
process liquid in the perfect mixer. The assumptions for the feed-preheaters and
the liquid-liquid feed-preheaters are listed below.

3-2 FORMULATION OF THE MODEL FOR
THE SYSTEM OF EVAPORATORS AT
THE FREEPORT DEMONSTRATION UNIT

The proposed process model for the system of evaporators is obtained by
dividing the plant into components which are describable by the fundamental
relationships common to chemical engineering. First the assumptions upon
which the model is based are presented, and then the equations required to
describe the model are presented.

Assumptions Made in Modeling the System of Evaporators

There follows a statement of the assumptions upon which the mathematical
model for the system of evaporators is based.

1. The masses of metal in evaporator tubes and in the feed preheaters are
denoted by My and My;, respectively. These masses of metal are taken
to be at the temperature T; of the condensing steam in effect j. This
approximation is based on the fact that the steam film coefficient was
relatively large compared with the liquid film coefficient, and the fact that
the tube walls were relatively thin. The tubes and the heat transfer model
are displayed in Figs. 3-2, 3-4, and 3-10.

2. The mass of metal Myg; of each evaporator effect j which is exposed to
condensing steam or condensate on one side and the surroundings on the
other is assigned the temperature Tyg;. The rates of heat transfer to and

Tube wall
/ / Liquid film
Steam Thick liquor

T,
TQ 9 TE/

7

My;

Figure 3-10 Heat transfer model for the
metal tubes in contact with steam and
thick liquor.

Qp = (hA)g (T — Tg)

v b e s .
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Figure 3-11 Heat transfer model for the evaporator wall in contact with steam and the
surroundings.

Qusi = (UA) as; (Tws; — T,x) k=3 ‘I]l

=

Qwsi = (UA)ws; (Tg; — Tws))

from this mass of metal are given by the expressions shown in Fig. 3-11.
One-half of the thermal resistance of the metal wall is assigned to an
equivalent film on each side of the wall.

. The holdup of energy by the insulation is taken to be negligible relative to

the feed, process liquid, condensate, and metal in the evaporator system.
This approximation rests primarily on the fact that the actual mass of the
insulation was relatively small.

. The mass of metal My, ; of each effect j which is in contact with the process

liquid on one side and the surroundings on the other is taken to be at the
temperature Ty, ;. The heat transfer model is displayed in Fig. 3-12.

Insulation —\ Whermal conductivity films
I

Air film !I : Liquid film
1

Surroundings

I Process liquid
T !

T,

o Qarj = (UA) 4 (Twe — Ta)

i|;l Qwi;j = (UA)wj (T —Tuy))

Evaporator wall

Figure 3-12 Heat transfer model for the evaporator wall in contact with process liquid and
the surroundings.
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%L, ) Lg;
Process liquid l l Recycle
fectj — 1
from effect j 7} ] .
Condensate
QE/. leakage
Steam Ty Steam
at Tg; at T,
Qg
Vi Lg Figure 3-13 Model for the tubes of
Ty Xgj evaporator effect j.

5. The discharge temperature Ty; of the process liquid from the tubes is com-
puted by use of Diihring lines based on the condensate .tcmperature of the
next effect and the mass fraction X; of salt in the liquid discharged from
the tubes of evaporator effect j (see Fig. 3-13).

. The pressure drop between the sump of one effect and the steam chest of
the next effect is taken to be negligible. .

. In the rate expression for the transfer of heat from the condensing steam at
temperature Tg; to the process liquid flowing down thr.ough Aeach evapor-
ator tube, the discharge temperature Ty; of the process lqu{d is used in the
potential term (Tg;; — Tg;) for heat transfer. This approximation is consistent
with the fact that the heat transfer coefficient Ug; employed was calculated
at steady state operation on the basis of the discharge temperature.

Steam

Holdup Ve MF, at TF, T(‘,
F M,
Tf T Ty Ty ll
o all I Xe- Condensate '
Feed holdup and preheater J T
MppatTg
Liquid film
+ R 4 F Feed
F T
F.)+

TP/ {7 (v ) XF‘/’ | |l

Xrj+
Fy+t T, [}
Model for the tubes of the seawater preheater

Figure 3-14 Models for the seawater preheater and holdup of the feed associated with an

evaporator.

10.
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F| Tp
F, Xr ‘\:/(FI F, Xp
Th by ell Tpi | hp AMey C
mixed ;) '
Mgy at Ty —* c ‘rrYiexltled Tq
1
Condensate from effect | T, £ Mcy at Te,

Figure 3-15 Models for the condensate holdup and feed preheater for the first effect. . w.
Burdett and C. D. Holland: *“ Dynamics of a Multiple-Effect Evaporator System,” AIChE J., vol.
17, p. 1080 (1971). Courtesy of the American Institute of Chemical Engineers.)

. The accumulations of mass and energy of process liquid in the evaporator

tubes are taken to be negligible relative to the accumulation of mass and
energy of process liquid in the sump of effect j.

. The total amount of steam condensate associated with each effect is denoted

by ; (see Figs. 3-4 and 3-15). Except for the first effect the mass of
condensate ./, is taken to be at the saturation temperature of steam T,
at the pressure in the steam chest. For the first effect, the mass of con-
densate .#, in the preheater and in the line between the steam chest of the
first effect and the condensate flash-tank of the second effect is taken to be
concentrated in a perfect mixer following the preheater, as shown in Fig.
3-15. In all rate-of-heat-transfer calculations, the steam in the first effect is
taken to be at the temperature T¢; except for the first effect where it is taken
to be at the saturation temperature T, of the supply steam. However, any
superheat present in the steam entering the steam chest of a given effect, is
taken into account in the energy balances.

The effect of noncondensables on the operation of the system of evaporators
is taken to be insignificant because of the venting of the steam chest of each
effect.

. The mass of vapor (steam) in the steam chest in the evaporator and in the

feed preheater as well as the vapor in the condensate flash-tank is taken to
be negligible relative to the mass of condensate associated with each effect.

. The mass of seawater feed in the preheater and preheater feedlines between

effects j and j — 1 is taken to be concentrated as the mass .# rj of a perfect
mixer as shown in Figs. 3-4, 3-14, 3-15, and 3-16. For all effects except the
last one, wherein the holdup is associated with the acid treater, the masses
of the holdups are taken to be independent of time. This assumption is
based on the fact that the feedlines between effects were full at all times.
The masses of metal in the feedlines associated with effect j are taken to be
concentrated in the mass M; at the temperature Tg; of the perfect mixer. In
the first effect, mass M, includes part of the mass of metal of the preheater.
For the last effect, mass M, includes part of the mass of metal of the acid
treater. This assumption is based on the fact that a change in temperature
at a given point in the piping has a magnitude and a time response similar
to that predicted by the temperature Tg; -
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13.

14.
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16.
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Ci, Tews hen Cig, Targ, hers

Figure 3-16 Composite model of peripheral equipment of the evaporator s,jfstem. (J. W. Burd-
ett and C. D. Holland: * Dynamics of a Multiple-Effect Evaporator System, AIChE J., vol. 17,
p. 1080 (1971). Courtesy of the American Institute of Chemical Engineers.)

The dynamic behavior of the feed preheaters may be repr.csented at any
instant by the equations describing the steady state behavior of heat ex-
changers. . . ‘ .
The mass of process liquid in the sump and in thF lines associated with
effect j is taken to be concentrated in the sump W‘Ith a mass denoted by
M ;. This mass of liquid is taken to be. perfegtly mixed at the temperature
T, ; but not necessarily in thermal equilibr%um. with the vapor stream Vg; .

For sump-to-sump flow, the process liquid stream (1 —a;_)L; 4 is as-
sumed to flash adiabatically at the pressure in the sump of effect j, as
displayed in Fig. 3-4. The liquid Lp; formed by the flash is assumed to mix
perfectly with the liquid in the sump. The vapor V; formefi by the flash is
assumed to flow directly to the exit vapor line from effect j without loss or

in of energy.

”gﬁ)l: flow ra%g C; of condensate from the flash-tank of eﬂ"ec? j to the flash-
tank of effect j + 1 is taken to be regulated by a pfoportlonal controller
that regulates the mass holdup of condensate .#c; in the flash-tank. Al-
though most of the flash-tanks did not actually have conFrollcrs, the
assumption is justified on the basis that the. response behaylor for self-
regulating systems of this type can be approximated by asuming that pro-
portional controllers do exist. The gains of the assumed controllers are set
to match the responses calculated with the model to the responses derived

18.

19.

20.

21.
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from theory or measured experimentally. Response ranges of the assumed
controllers are limited to the cylindrical section above the cone in the
flash-tanks of effects 2 to 12 and to the rectangular section in the flash-
tanks of effects 13 to 17 in the module. In these regions changes in con-
densate holdup .#.; are linear with changes in level. The mass of
condensate associated with the first effect .#, is taken to be constant due
to the absence of a flash-tank for the first effect. Thus, the flow rate C, of
the condensate may be determined by the material balance and energy
balance equations for the steam chest of the first effect.

. The masses of the metal components associated with the preheater of the

first effect are taken to be concentrated in mass M, at temperature T, and
in mass Mg, at Tp,. Mass M, includes the condensate piping from the
steam chest of the first effect to the flash-tank of effect 2 and a portion of
the preheater shell-and-tube mass. Mass M, includes the seawater feed
piping from the preheater to the inlet for the first evaporator and a portion
of the preheater shell-and-tube mass. The concentrated masses are taken to
be located in the perfect mixers of the model for the preheater as shown in
Fig. 3-15.

The dynamic values of the variables for the final condenser and feed pre-
heater 18 (seawater feed to product-water heat exchanger) are assumed to
be related by the conventional steady state equations as discussed for the
heat exchanger model. The model for the final condenser is shown in
Fig. 3-16.

The holdup of energy in the metal masses associated with the final con-
denser and feed preheater 18 is assumed to be constant. This assumption is
based on the fact that large upsets in the major process variables produced
only small changes in the temperatures in the final condenser and in pre-
heater 18.

The acid treater is represented in the process model as an adiabatic flash
process wherein the amount of seawater flashed is determined by the differ-
ence in flow rates of the stripping steam entering and leaving the tower. For
the evaluation of steady state conditions, the amount of seawater flashed is
regulated to achieve a preassigned drop in temperature of the vapor leaving
relative to the feed entering the flash process. For the evaluation of the
transient behavior following an upset, the amount of seawater flashed is
assumed to be constant at the value established during the steady state
period preceding the upset. The holdup of liquid in the acid treater is taken
to be concentrated in a perfect mixer in the sump of the tower. The amount
of this holdup .#, is taken to be regulated by a proportional controller.
A sketch of the model of the acid treater is shown in Fig,. 3-16.

Flow rates of process liquid between evaporators are taken to be regulated
by proportional controllers that detect changes in the mass holdup .4, ;.
Due to the noncylindrical shapes of the sumps, the mass .#,; is not linear
with the level measurement. Therefore, the proportionality factor of each
controller is made a function of .#,; in the numerical solution in order to
correct for this nonlinearity.
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22. To allow for the holdup of the feed in the piping between the feed pump
(where the upsets in the feed composition occurred) and the evaporator
module, a plug-flow section with holdup .#,s is assumed to exist as in-
dicated in Fig. 3-16. This holdup is positioned before the preheater since
most of the estimated holdup actually occurs there.

Table 3-1 Equations required to describe the evaporator system

1. Energy balances on the walls of the evaporators

MWSijWS}(TWSj _ T(v)vs;) -0 (l <j < 17) (1)

Ows; — Qusj + [ Qws; — Qus1° —

¢ At

23. If any holes develop in the evaporator tubes of an effect, leakage of con- where

densate and vapor occurs from the steam chest into the evaporator tubes.

Provision for setting condensate leakage rate C,; is provided in the model a=(1-¢)¢

as s.hown in F‘igs. 3-4 and 3-13. Allowa.nce for vapor leakage is made by Qwsi = (UAd)ysi(Teo — Tys1)

adding any estimated leakage to the estimate for vapor bleed Vp;. Both of Ove = (Ul Tor — T, st

these leakage parameters were estimated from an analysis of steady state Wi wolle; = Tws) 2 <j<17)

data. Qusj = (UA)s{Tys; — T,) 1<j<17)

My, CowiATwr; — TS
QWLj - Q,u_,- + U[QWL,‘ - Q,(Lj]o - L pw':;( A‘:LJ TWL]) =0 1<j<17) ?)
Statement of the Equations Required .
where

to Describe the Model for the Evaporator System
Owij = UA)y fT,; — TwL) (I<j<17)
Qurj = (UA) ( fTyr; — T (1<j<17)

Based on the assumptions stated, the equations required to describe each part
of the evaporator system are presented in Table 3-1. The superscript zero is
used to denote the values of the variables at the beginning of the time period
under consideration, and the absence of a superscript is used to denote the
values of the variables at the end of the time period under consideration. When
the holdup of mass or energy of a particular part of the system cannot be
neglected, the corresponding integral-difference equation is reduced to algebraic
form by use of the implicit method. When the holdup of mass or energy of a
given part of the system is negligible, the instantaneous form of the correspond-
ing steady state equations evaluated at the end of the time period under con-

2. Material and energy balances on the contents in the evaporator tubes

FXFI_LEIXEI=0 3)
1,._,L,-_,X,_.j_,+LR,.XLj—LEjXEj=0 2<j<1)) 4)

F—Lg = Vg +C, =0 (5)
2 L, +LRj_LEj_VEj+CLj=0 2<j<1)) 6)

sideration are given. Fhey + Qgy — Lg gy — Vg Hgy + Cpihe =0 0]
In the development that follows, the independent equations are assigned %o Lyoyhy oy 4 Laghyy+ Qpy = Leshe, — Vighy, + Cuihe, =0 2<j<17) ®)

equation numbers. The subscript j is used to denote the number of the evapor- where

ator effect (j=1, 2, 3,..., 17). Streams as well as the properties of streams

O = (UA)gy(Teo — Tpy)
QE].=(UA)E](TC]— Te) 2<j<17)
mTg joy+b—Tg=0 (I<j<17) (]

treated by peripheral equipment carry identifying subscripts j = 18, 19, and 20.
Also, in the development that follows, the assumptions stated in the previous
section are referred to by number.

In order to demonstrate the formulation of the equations shown in Table
3-1, the equations are formulated below for each of five different types of ;
models which are used in the description of each evaporator; namely, (1) the ] m=mTe ;.\, Xg), b=bXg)
heat transfer model, (2) processes which have negligible mass holdup, (3) pro-
cesses which have negligible energy holdup, (4) equilibrium relationships, and (5)
process controllers.

b
¥

where

3. Adiabatic flash of the process liquid leaving effect j — 1 and entering effect j

k (U—oj )L | = Lypj— Vap; =0 2<j<1) (10)
Energy balance on the walls of the evaporator The energy balances on the metal { (=2 )L Xy o =L X ;=0  Q2<j<17) (1)
walls of the evaporators which are in contact with steam on one side and the ' (1-a
: i ‘ ; — )Ly yhy oy = Lygihag; — Vi Hap; =0 (2<j
surroundings on the other side are based on assumptions 2 and 3 and on the ST T ARITAR AR TR @<j=17 12
models displayed in Figs. 3-4 and 3-11. In particular, the resistance 1/(UA)ys; , Mmlejer+b=T;=0  2<j<17) (13)

and 1/(UA),s; to heat transfer are represented graphically in Fig. 3-11 and (Continued over)
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Table 3-1 Equations required to describe the evaporator system—Continued

where
m = m(X 4¢;, TC‘j+l)

b= b(XAFj)

4. Material and energy balances on the contents of the steam chest of the first effect and the mass
of metal in the evaporator tubes

Vo— ¢, - Vy — Vear — C,,=0 (14)
VoHo — (Co + Crihco — (Vpy + Vau)Hco — Qer — Qws:
4+ 0[VoHo — (Co + Cridhco — (Vpr + Vaa)Heo — Qo1 — Qws:1°
M1£1 CpTEl(TCO - T?:o)

- vy =0 (19

where
Qg1 = (UA)gy(Teo — Tey)
Ows1 = (UA)wsi(Teo — Twsy)

5. Energy balances and rate equations for the preheater and condensate holdup associated with
the first effect

Melhey — ) + McrComerXTey — T2
Cy(hye = hey) + o[Cilhyc — he)1° _l: el = p) CAlt pMELR T =0 (16)

Cl CpCl(TCD - T:c) - FcpPl(TPl - Trz) =0 (17)

1 1
(Teo — Tpy) exp [(UA)H(FC o - c,.C Cl):l ~(Tic = Tp)) =0 (18)
P P!

6. Energy balances and rate expressions for the feed preheaters for evaporator effects 2 > j < 17

UA)g;
(Te; — ij)[exp ((_)FJ>] —(Tg; = Tp ;o) =0 2<j<16) (19)
FCp;
UA)
(Ter; = Ty ﬂl:exp <(_""m)] —(Tey7 — Tre) =0 (20)
SeCppin

7. Material and energy balances on the contents of the steam chests and flash-tanks, and on the
mass of metal in the evaporator and preheater tubes for evaporator effects 2 <j < 17

Vit +Coy = C = Cpy— Vg = Vpay+ 0V + €y = €= Cyj = Vg, = Vail®

_(V”Cj_"/{gj)_ .
A =0 (Q<j<17) @)

VioyHy oo+ Cioyhe joy = Qg = Qe = (€5 F Cuhe; = Qus; — Vg + Vel
+ oV, Hy -y + Cjyhe oy — Qe — Qr; = Qws; — (Cj + Crhc; — (Vg + Vau)He, 1

_ (ﬂc;th - Jlgjh‘c’,-) _ (MTEj CpTEj + MTFj CpTFjXTCi — Tg,')
¢ At ¢ At
Kej{ Moy —(Ac)]—[C;—(C1=0 2<j<17) (23)

=0 2<j<17) (22)

T T
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Table 3-1 Equations required to describe the evaporator system—Continued

8. Combination of the vapor streams leaving each evaporator

Ver + Vg — V=0 (24)

Ve + Varj + Vo= V=0 2<j<17) @)

VerHey + Vg Hg, — ViH,, =0 (26)
VeiHej+ Vi Hapj + Vo Hg; + ViHy ;=0 2<j<17) @7

9. Material and energy balances on the process liquid associated with the sump of each evaporator

(an
Lgy — Ly +alLg, “Ll]o—_ L_—:ﬁ At L= (28)

My — MO
sz+Lm*LJ—LR,-+0[LE,~+L",-~L,—LR,~]°—(—L;5—AI—“)=0 2<j<17) (29

(‘/”Ll XLl _ "”gl Xgl) _

Lpy Xgy — Ly Xy +0[Lg Xgy — Ly X (10—
¢ At

0 (30)

Lpj Xgj+ Lapj X apj — (Lyj+ Lp)Xp;+ 0[Lg; X g+ Ly X 455 — (L + L)X [1°

("”LJXLj'_"”gjxgj) .
Yy =0 (@<j<17) (1

Mph — -’”21 hiy) _

Lgyhgy — Lihyy — Qupy + ol Lgy hgy — Lyhy,1° —( & At 0 (32)

Lijhe; + Lapihar; — (L + Lejhy; — Quy;
+ 0{Leshe; + Lapjhar; = (L + Lghhy; — Qui 1°

(Myjhy, — HEHE) .
& At =0 2<j<17) (33)

Ky(Hy;— ()]~ L, —(L)]=0 1<j<17) (34)

where

QWL] = (UA)WL,(TU - Tij) (1<j<17)

10. Material and energy holdups on the feed preheaters

-//(F;(XF;' - ng) _
@ At

FXpjor = FXp+ 0[FXp joy = FXg]° -
Fhp; = he) + o[ F(hp; — he)1°
[ Aefhe; = BR) — My Conar(Te; — T2 _ 0
¢ At N

(1<j<16) (35)

(1<j<16) (36)

(Continued over)




98 STAGED SEPARATION PROBLEMS—TWO-POINT IMPLICIT METHOD (

Table 3-1 Equations required to describe the evaporator system—Continued

11. Modeling of the acid treater

My, — M)
SF—VAF—F+a[SF—VAF—F]°—(——“—7¢—Zt——5‘—7~=O 37
(J(r17XF17‘J{g17Xg17)=

¢ At

SeXpig— FXpyy + 0[SeXpyg — FXpy11° — 0 (39)
SFhPl" - VAFHAF - FhFl'I + O—[SFhPl7 - VAFHAF - FhFl7]o

_|:MFl7cpMF17(TFl7 = TRo) + (M hpys — v/{gnh;n)] -0

39
oY (39)

KFH[-’”FH—(-/{FH)J—(F—Fr)=0 (40)
SF(th - hAF) - VA(HAF - h,ur) =0 (41)
where the enthalpy h . of the flashed liquid is computed on the basis of the composition X ,¢, namely,

=SFX18 SFxlB

X
“ Lur Se—Var

As indicated in assumption 20, V,r was taken to be fixed at the value it had prior to the upset.
V,.r was determined at the steady state flow rate Sp by fixing the temperature T,r such that the
difference (T,,; — T,;) was equal to 1°F. Then the above equations were solved for Ve, Lf,
and X ,¢.

12. Material and energy balances for the firal condenser

UA
s = T exp (222) | = (s = 7 =0 @)
P

VizHy17 = Vaars Hers — Crghers — wC (T — T) = 0 (43)
Vis—Cis = Veus =0 (44)

13. Material and energy balances on the inlet-feed preheater
Cirheis + Crghers — Crohcio =0 (45)

where
Cio=Cig+Cyy

Cis CpCl‘)(TClg = Tezo) — sFCpFlS(TFIS — Tp1s) =0 (46)

1 1
- UA)pyg| ——— — —(Teyo — Tr1g) =0 (7

(Tezo Tms){exP [( )“s(Cprcw s, C,,F“;):I} c1o F18

14. Plug flow section preceding the inlet-feed preheater

The mathematical model for the plug flow section assumed for the process model in assumption 22,
and shown in Fig. 3-16, is a linear model. Inlet values of the physical properties were stored for the
end conditions of each time interval. Exit values of the properties were determined by a linear
interpolation between the sample values whose times bracketed the run time t, minus the holdup
time.
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Table 3-1 Equations required to describe the evaporator system—Continued

The equations used to determine the temperature Tpg and the feed composition X4 at time
t, are given by

Tps| =(1 =0Ty + 0Tse (48)
tn -k -k 1
Xrs| =1 —0)Xsp +0Xsp (49)
tn -k n—k+ 1
where
L, -(J(rls/sr) —la-k
6= n
(Camrr — tai)
where k is selected such that
Lok Sty — (Mpys/SE)| < tyiir

These equations, which are of course independent of the remaining equations for the model, were
solved once each time step.

discussed in Sec. 3-1. For any evaporator effect j (1 <j < 17) over the time

period from ¢, to t, + At, the energy balance for the portion of the wall under
consideration is given by

th+ At
J Qws; — Qus)) dt = Mys;hws; — Mys;hws;
tn tn+ At th

Use of the implicit method to approximate the integral on the left-hand side of
this equation yields the following result upon rearrangement:

Mys; CowsTws; — T(v)vs,') -0 (<)<
¢ At

Qws — QASj + a[QWSj - QASj]o -

where
o=(1-4¢)¢
OQws1 = (UA)wsi(Teo — Twsy)
OQwsj = UA)ws{Te; — Tws)) (2<j<17)
Qusj = (UA) ys{Tws; — Ty) 1<j<17)

When the metal walls of an evaporator are exposed to process liquid on
one side and the surroundings on the other side, the energy balances are based
on assumptions 3 and 4 and the models shown in Figs. 3-4 and 3-12. In this
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case, the following result is obtained upon reduction of the integral-difference
equation to algebraic form:

My CowifTwr; — Tiwr) _ i<
QWLj—QALj+0[QWLj_QALj]O— = 6 At =0 (<j<s1)

(3-24)

where

OQwij = UAw T — Twi) 1<j<17)
Qurj=UA)  (Twr; — T,) 1<j<17)

Material and energy balances on the contents in the evaporator tubes The bal-
ances are based on assumptions 1, 5, 6, 7, 8, and 23. Models for this portion of
the system are presented in Figs. 3-4, 3-10, and 3-13. The holdup of mass an}i
energy in the evaporator tubes is negligible relative to that in .the sumps and is
disregarded in the following balances. The component-material balances over
the time period from ¢, to t, + At are given by

th+ AL
J (FXpy — Lpy Xgy) dt =0
tn

tn+ At
J (oj-y Lj-y Xy joy + LgjXpj— Lg; Xg)dt =0
th :

Since the integrals given by these equations are equal to zero for all choices.of
t, and t, + At in the time domain of interest, it .follows that the respective
integrands are identically equal to zero for all ¢ lying between Ly :.md‘ t, + At
For such cases, the given balance (material or energy) is stated in |.ts instanta-
neous form corresponding to the end of the time period under consideration as

follows:
FXpy — Lpy Xy =0 (3-25)
o Ly Xy o1+ L Xy, — L X, =0 @<j<17) (3:26)
F—Lg — Vg +Cpy =0 (3-27)
o Ly + Ley— Lg; — Ve + C; =0 2<j<17) (3-28)
Fhey + Qg — Ly hgy — Vet Hey + Criheny =0 (3-29)
oy Lj_yhy j-y + Lgjhy; + Qe; — Lejhg — Ve He; + Crihcj=0
2<j<17) (3-30)
where
Qp1 = (UA)g(Teo — Tey)
Qpi = (UA){T¢; — Te)) 2<j<17)
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The temperature Tg; of the liquid in the evaporator tubes is computed by using
Diihring lines, which may be represented as follows:

mT o1 +b—Ty=0 (1<j<17) (3-31)

where the slope m depends upon both X; and T ;. ,, and b depends upon Xg;
alone, that is, m = m(Xy;, T¢ ;+,) and b = b(X ).

Energy and rate equations for the feed preheaters for evaporator effects
2 <j <17 Models of the seawater preheaters are shown in Figs. 3-4, 3-14, and
3-16. When the mass and energy holdups of a given part of the system are
negligible relative to any other part, the integral-difference equations reduce
simply to the dynamic form of the algebraic equations required to describe the
corresponding steady state process. Thus, on the basis of assumption 13, it
follows that the instantaneous rate of heat transfer in the seawater preheaters is
given by

Tpj — Tr j+1
In [(TCj - TF,j+l)/(TCj - ij):]

On the basis of assumptions 12 and 13, the following expressions are obtained
for the energy balances on the seawater preheaters:

er = FCpP](TPj - TF.j+1) (2<j<16), (3-33)
QF17 = Sr CpP17(TPl7 - Tns) (3-34)

where Qp,, is the rate of heat transfer in the inlet-feed preheater (shown in Fig.
3-16).
Elimination of Q; (2 <j < 16) from the first two expressions yields

QF,~=(UA)F,~{ } R<j<17) (332

UA)g; .
(T~ Topjexp | DA 1 =0 @<izie (39)
Similarly, the elimination of Qy,, from the first and third expressions gives
w4
(Ters — Tprn)Sexp | ot b — (Teys — Tryg) = 0 (3-36)
SF CpPl7

Control of mass holdup in the evaporators The holdups were controlled by
either proportional controllers or self-regulated by gravity flow from sump to
sump. In either case the following expression was used to relate the holdups and
flow rates:

Ky —(#)]—[(L;—(L)]1=0 1<j<1)) (3-37)

where the proportionality constant K, ; depends upon the proportional band
width or gain of the controller, the type of control valve, and the geometry of
the sump. The subscript r denotes the value of the variable when the controlled
variable is at its reference point.
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The equations for the remaining parts of the system are developed in a
manner analogous to that shown above.

Summary of the Mathematical Model

The mathematical model consists of the complete set of 380 independent equa-
tions (see Egs. (1) through (47) of Table 3-1) in 380 unknowns plus the plug ﬂoyv
relationships given by Eqgs. (48) and (49) of Table 3-1. The first effect is
described by 19 independent equations, one of which is given by each of the
following equations numbers: (1), (2), (3), (5), (7), 9), (14) thrqugh (18), (22), .(24),
(27), (30), (32), (34), (35), and (36). Of the variables appearing in these equations,
19 of them are for the first effect. They are as follows: Tyo, Trcs Ters> Tpis> Trrs
Ters Tors Twsis Twers Tves Vers Vi, Cos Lpys, Lys Xeys Xgrs XLI" and M, . If
the steam temperature Tg, is fixed (that is, the steam supply is on pressure
control), the supply steam flow rate V¥, becomes the independent variable. .
Effects 2 through 17 plus the peripheral equipment are seen to be desc.rlbed
above by 361 independent equations. (The independent equations are assigned
equation numbers.) In addition to one or more of the variables enumeratfad for
the first effect, these 361 equations contain 361 additional independent variables,
which are as follows: Tg;, Tp;, Tejs Tgj» Toj> Twsj> Twej> Tvjs Tarjs V,;,-, Vi, Varj>
C;, Lgj, Lj, Lagjs Xpj» Xgj> Xijs Xarjs Hcjs anc.i JlLi (wher§ 2<j<l17fora
total of 22 x 16 = 352 variables), plus the following nine variables: Tgy5, Tyr,
Terss Tows Teros Tezor Crg» Fyand Mpys. ’
CwThc lliqu.filcl9 hoclzdoups, such as 4y, and #., were fixed by the‘physmal
specifications of the equipment. The temperature Tpyq and the brine con-
centration Xjy,;s were computed once each time step by use of the explicit
relationships given by Egs. (48) and (49). These values were used throughout the
course of the solution of the 380 equations for the 380 unknowns.

3-3 ANALYSIS OF THE RESULTS OF FIELD TESTS

To evaluate the ability of the proposed model to predict the dynamic behavior
of the desalination plant, several field tests were run on this plant. The pre-
dicted behavior of the plant by the model was obtained by solving thfe equa-
tions for the model at the end of each time step and on the basis of a given set
of operating conditions and physical parameters for the plant. There follows a
brief discussion of the procedures utilized in the testing of the model through

the use of field tests.

Calculational Procedures

The 380 equations (Egs. (7) through (47)) describing the model of the plant were
solved simultaneously for the variables at the end of each time step by use Qf
the Newton—Raphson method as demonstrated in Chap. 2. The first step in this
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application of the Newton-Raphson method consisted of replacing the zero on
the right-hand side of each of the 380 equations by the functional notation fe
(1 <k <380). In order that any Ar >0 might be used at any point in the
sequence of calculations without having the inherited error become unbounded,
a ¢ = 0.6 was employed. Also, the generalized scaling procedure (variable scal-
ing and row scaling) described in Chap. 2 was employed. A solution set of
variables at the end of the time step under consideration was said to have been
obtained when each element of AY was equal to or less than 0.00005 and each
element of F was equal to or less than 0.00001 (see Egs. (2-37) through (2-42)).

The program for the unsteady state model could be used to obtain the
steady state solution for the given set of operating conditions by setting ¢ = 1
and by setting At = 10°° hours. This choice of values for ¢ and At had the
effect of the elimination of the input and output terms at the beginning, of the
time step as well as the elimination of the accumulation terms, and thereby gave
the steady state equations corresponding to the final steady state.

In the application of the Newton-Raphson method, approximations were
used for certain of the partial derivatives. In particular, the partial derivatives of
the liquid enthalpies with respect to salt content were taken to be equal to zero.

On the average, about four iterations of the Newton—-Raphson method were
required per time step (Ref. 3). About 15 iterations were required to solve the
initial steady state problems. More trials were required for the steady state
problem than were required for each time step of the unsteady state problem
because the initial guesses for the steady state problem were poorer than those
for the unsteady state problem. The initial guesses for the steady state problem
were deduced by use of a relatively simple scheme which was similar to those
commonly used; see, for example, Perry(20).

The initial guesses for the values of the variables at the end of each time
step consisted of taking them equal to the values of these variables which were
found at the end of the previous time step. An IBM 360 model 65 computer
was used to solve the equations for the model. Approximately one minute was
required to obtain a steady state solution, and approximately 20 seconds were
required to obtain a solution for each time step of the unsteady state problem.

Determination of Equipment Parameters

Physical dimensions of the holdup volumes, the surface areas, the masses of
metal, and the types of materials of the heat sinks were obtained from the
construction blueprints of the plant. Since “effective values” were needed in the
model, some personal judgment was used in assigning part or all of a mass (or
volume) to its counterpart in the process model.

Heat transfer areas for the tubes of the preheaters and evaporators were
obtained from the status records of the plant equipment (Ref. 4). Coefficients of
heat transfer for the feed preheaters and the evaporators were determined from
the results of recent steady state test runs performed and reported by plant
personnel (Ref. 4). The coefficients so obtained as well as the heat transfer areas
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and masses of metal are presented in Tables 3-2 and 3-3. Although values for
the heat transfer coefficients for the evaporators could have been calculated by
use of procedures proposed by Huang et al.(17), the experimental values from
the steady state tests were used because it was felt that they most closely
approximated the values that existed at the time the unsteady state tests were
made. Since the coefficients of heat transfer for LTV evaporators vary with
operating temperature (Refs. 23, 24), the values used during the numerical evalu-
ation of the mathematical model were adjusted for the effect of temperature
(when it differed from those at which the coefficients were evaluated) by use of
the relationship reported by Standiford(24). In particular, the derivative of the
heat transfer coefficient hg; with respect to Tg; was taken to be equal to the
slope of the line shown in Fig. 3-17.

Other film coefficients employed were computed by use of relationships
given by Perry(20) (see Table 3A-1 of App. 3A). Physical properties of the metal
walls, tubing, piping, and the insulation were taken from Perry(20) as well as
the thermodynamic and physical properties of steam and water (see Table
3A-1).

Enthalpies, specific heats, and boiling point elevations of the brine process
liquid were taken from Refs. 2 and 10 (see Table 3A-1).

Table 3-2 Specifications for the evaporators (Ref. 4)

Heat transfer tubes

Heat transfer Reference
Area, coefficient, temperature, Mass,

Effect ft? Btu/(h - °F - ft?) °F b

1 3810 720 266 11429
2 3420 723 258 10264
3 3700 561 250 11110
4 3690 795 242 11110

5 3700 563 232 11110
6 3710 702 223 11146

7 3420 670 214 11182

8 3420 666 205 10264
9 3600 412 194 10900
10 3700 396 185 11110
11 3710 411 176 11146
12 4290 259 160 12864
13 3940 432 148 9259
14 4000 320 134 6340
15 3940 345 119 11828
16 3490 358 104 8202
17 3730 220 87 8766
18+ 4000 188 80 11970
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Table 3-2—Continued

Effective values for the metal walls

Exposed to process liquid Exposed to steam or condensate
Area, ft? Area, ft?
Mass Mass,
in 1000's in 1000’s

Effect Inside Outside of Ib Inside Outside of Ib

1 692 657 230 308 293 6.56

2 692 657 20.6 774 735 133

3 692 657 20.6 782 743 134

4 692 657 20.6 628 597 114

5 692 657 20.6 657 641 12.0

6 692 657 20.6 796 756 13.0

7 692 657 20.6 627 596 109

8 777 738 18.6 737 700 113

9 777 738 18.6 700 665 11.7
10 882 838 224 734 697 12.2
11 1055 1002 274 790 750 13.0
12 1438 1366 343 1124 1068 224
13 322 205 5.89 929 447 209
14 315 121 5.08 1125 431 209
15 315 121 5.08 1125 431 204
16 315 121 5.08 1125 431 204
17 327 137 5.60 1622 963 31.7

+ Final condenser.

Test Run 1

During test runs, the plant was operated by the usual plant personnel. Samples
frorp the process lines and data from nonrecording instruments were collected
during the test by technical personnel of the plant and by several graduate
studf:nts from the Department of Chemical Engineering of Texas A&M Uni-
versity.

Test run 1 (assigned the number 8-17-11A by Burdett(3)) consisted of a
sequence of upsets in the salt concentration of the scawater feed, see Table 3-4
These upsets were achieved by diluting the incoming seawater with produc£
watgr from the plant. At the desired time for the initial upset, a valve was
partially opened which permitted product water to enter the suction side of the
seawater feed pump. The amount of dilution was determined by the change in
the refractive index of a sample taken from the discharge side of the pump.

Sal'nples of the process liquid were taken at the outlets of the feed pump
the ac!d treater, and the evaporator sumps. The sampling was carried out,
according to a preselected time schedule for each sample point. Flow rates,
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Table 3-3 Specifications for the feed preheaters (Ref. 4)

Heat transfer tubes Holdup
Heat transfer Mass, Ib
Area coefficient, Mass,

Effect  ft? Btu/th-°F-ft?) b Metal Liquid
1 520 220 1080 1460 1264
2 3360 348 4000 2949 4935
3 2820 643 5870 2748 4224
4 2290 225 4760 1575 3168
5 3010 250 6270 1374 3747
6 3490 476 7270 2748 5084
7 1790 390 3730 1603 2805
8 1790 400 3730 1775 2224
9 1800 350 3750 1632 2221

10 1770 315 3690 1660 2113

11 1740 310 3620 1660 2083

12 1980 430 4120 2060 2636

13 1460 625 3040 3020 2767

14 1460 400 3040 751 1560

15 1770 405 3690 751 1875

16 2420 345 5050 751 2545

17 2420 435 5050 269501 111001

18 155 8310 24800

+ Includes volume or mass equivalent for acid treater components.
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Figure 3-17 Actual coefficients for LTV seawater evaporators of the falling film type. (F. C. Standi-
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Table 3-4 Operating conditions of the evaporator system for
test run 1 (Ref. 3)

Parameter Initial value
Seawater feed rate, thousand pounds per hour 480
Concentration of brine in feed, X 5 0.935
Temperature of feed, °F 82
Temperature of steam to effect 1, °F 300
Dewpoint in first steam chest, °F 270

Steam rate to first steam chest, thousand pounds per hour 26
Cooling water supply rate, thousand pounds per hour 986
Temperature of cooling water, °F 82
Temperature of atmospheric air, °F 80

Control method for steam (= pressure)

Upset schedule

- Type Time Step
Time, Upset New of constant, size,
min variable value change min min

0 Xsr 0.692 Linear 1.0 0.5

7 Xsr 0.632 Linear 0.5 0.5
10 Xsr 0.560 Linear 0.5 0.5
25 Xsr 0.576 Linear 0.0 1.0
30 None 2.0
50 None 5.0
80 None 10.0

temperatures, and sump levels were monitored and recorded by the instruments
in the control room.

Salt content of each sample was determined by measuring its refractive
index. The refractive index was calibrated against the salt content as determined
by titration of the calibration samples with silver nitrate. The salt content of the
samples was expressed in terms of the concentration factor (C.F.) which rep-
resented the ratio of the chlorinity of the sample to the chlorinity of normal
seawater (Ref. 9). Chlorinity is the total amount of chlorine (grams) contained in
one kilogram of seawater in which all of the bromine and iodine have been
replaced by chlorine.

Two sets of variables were used for the comparison of the experimental and
calculated results of this test run, namely, the vapor temperatures and the salt
concentrations of the brine process liquid. The temperatures of the vapors leav-
ing effects 1 through 12 were monitored during the transient operation by
means of thermocouples located in the vapor lines leaving each effect. Salt
concentrations were determined for samples which were withdrawn from the
discharge side of pumps used to transfer (or recycle) the brine process liquid.

Prior to making run 1, the plant was brought to a steady state with the
process variables at typical operating levels, and then the salt concentration of
the feed was upset as shown in Table 3-4. Operating specifications for the
system of evaporators for run 1 are shown in Table 3-5. Temperatures of the
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Table 3-5 Operating specifications within the evaporator system for test run 1
(Ref. 3)

Vent rates, Level in sump,
Ib/h Recycle Feed % of range} Condensate
- rates, brine - . leakage
Effect Cascade  External 1000 Ib/h inlett Measured Used 1000 1b/h
1 63 0 0 Top 19.5 25 0
2 376 0 0 Top 21.5 11 0
3 138 0 0 Top 19.0 18 0
4 0 360 0 Top 19.5 30 0
5 177 0 0 Top 19.5 24 3
6 146 0 0 Top 19.0 23 0
7 120 0 0 Top 19.5 26 0
8 202 0 0 Top 18.5 18 0
9 148 0 0 Top 19.0 29 0
10 256 0 0 Top 26.0 26 0
11 210 0 130 Sump 275 24 0
12 0 300 63 Sump 57 37 0
13 200 0 131 Sump 43 29 2
14 200 0 131 Sump 48 34 0
15 200 0 131 Top 52 27 1
16 200 830 131 Top 64 49 1
17 200 0 131 Top 48 53 3
Final 0 50
condensate

Temperature drop of feed through acid treater, 1°F

t Top of evaporator tubes.
1 Level controller ranges: 200 inches for Effects 1 through 12, 50 inches for Effects 13 through

17.

exit vapors and the concentrations of the brine process liquid leaving the sumps
at the initial steady state are presented in Table 3-6. The average deviation
between the measured and the calculated temperatures for the first twelve effects
was 1.9°F. If the temperatures indicated by the thermocouples were dewpoint
temperatures rather than the actual temperatures of the superheated vapors,
then the measured temperatures should be compared to the condensate tem-
peratures of the steam chests of the next effect. When such a comparison was
made, an average deviation of 0.9°F was obtained for the first 11 effects, and a
deviation of 4.4°F was obtained for the 12th effect. The higher deviation for the
12th effect was attributed to the low value of the heat transfer coefficient used
in the calculation (see Table 3-2). Since the agreement between the measured
and calculated temperatures was relatively good, no adjustments were made of
the heat transfer coefficients or vent rates.

The experimentally determined salt concentrations of the brine process
liquid which flowed from the sumps of the evaporators were in good agreement
with the values calculated by use of the model (see Table 3-6). At steady state
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operation, the good agreement between the calculated and observed salt con-
centrations implies that the agreement between the actual and the calculated
flow rates of the brine process liquid was also good.

Throughout the sequence of upsets in the salt concentrations of the feed,
the temperatures and flow rates of the process streams remained relatively
constant. The concentration of salt in each of the process liquid streams leaving
each of the sumps varied with time as predicted by the model (see Fig. 3-18).
Samples of the various process liquid streams were taken at times at which it
had been anticipated that the breakpoints of the time-concentration curves
would be included. Levels of process liquid in the sumps were measured with
differential-pressure transmitters, which were read by use of the display meters
located in the control room. The flow of purge water through the pressure taps
into the sumps caused significant errors in the determination of some of the
liquid levels. Because of this difficulty, estimates of the actual levels were made
by use of the breakpoints in the time-concentration curves. These estimated
levels were utilized in the calculational procedure. In Table 3-5, both the mea-
sured levels recorded during the test and the estimated levels are listed.

The good agreement between the calculated and measured slopes of the
time-concentration curves following the breakpoints (see Fig. 3-18) demonstrates
that the holdup of the process liquid is adequately described by the use of

Table 3-6 Steady state vapor temperatures and brine
concentrations for test run 1 (Ref. 3)

Temperature of Concentration of brine
exit vapors, °F from sump, C.F.
Measured Calculated Plant Calculated

Effect at plant from model sample from model
1 263 262.8 0.97 0.98

2 252 2553 1.02 1.03

3 246 2469 1.08 1.08

4 239 240.1 1.13 1.13

5 231 231.6 1.18 1.18

6 223 2245 1.24 1.25

7 214 216.7 1.30 1.32

8 206 209.1 1.38 1.39

9 197 199.1 1.46 147
10 186 1889 1.56
11 176 178.3 1.66 1.67
12 167 165.2 1.78 1.78
13 155.5 1.89 1.90
14 ... 144.1 2.05 2.05
15 e 133.0 222 221
16 .. 1220 239 2.39
17 ... 1104 2.58 2.54
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Figure 3-18 Concentrations of brines leaving evaporators sampled durin’g test run 1. (J. W. Burdeté
and C. D. Holland: “Dynamics of a Multiple-Effect Evaporator System,” AIChE J., vol. 17, p. 108
(1971). Courtesy of the American Institute of Chemical Engineers.)
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perfect mixers in the process model. Also, it should be pointed out that no
corrections or adjustments were made on the experimental results presented
herein and elsewhere (Ref. 3).

In a second sequence of upsets of the feed rate (assigned to the number
8-24-11A by Burdett(3)), good agreement between the observed and predicted
behavior of the system of evaporators was obtained by Burdett(3).

Actually, some of the observed values of the variables would have had to
have been adjusted in order to have placed them in energy and material bal-
ance. On the other hand, the model required that the system be in energy-and-
material balance at all times. Therefore, no amount of searching for other
values of the parameters would have placed the measured and calculated values
of the variables in exact agreement.

No attempt was made to use the results of the test runs to obtain values of
the parameters except as was stated for the level controllers on the evaporator
sumps. Also, an estimate of the condensate leakage was made for run 1 in order
to account for inconsistencies in the brine concentrations which were observed
at the initial steady state prior to the upset.

Thus, the initial steady state values and the unsteady state values of the
variables which were calculated by use of the model represent a fair evaluation
of how well the steady state and dynamic response of a system of evaporators
could be predicted by use of the proposed model.

It has been demonstrated that a large system may be modeled by modeling
each component of the system. For certain systems, the partial differential equa-
tions describing the heat transfer may be replaced with good accuracy by a
corresponding set of ordinary differential equations through the use of the heat
transfer model proposed in Sec. 3-1. Also, it has been demonstrated that certain
process equipment in which the holdups are negligible relative to the other

parts of the system may be represented by the dynamic form of the steady state
equations.

NOTATION

= constant defined below Eq. (3-13)

= area perpendicular to the direction of heat transfer, ft2

= flow rate at which condensate leaves evaporator effect j, Ib/h

= constant defined below Eq. (3-13)

»» C, = heat capacities at constant volume and constant pressure,
respectively, Btu/(lb °F)

= internal diameter, ft

= constant defined below Eq. (3-13)

= internal energy above any arbitrary datum, Btu/lb

= enthalpy of a liquid phase Btu/lb (also, the coefficient of
heat transfer is denoted by this symbol and has the units of
Btu/(h - ft2 - °F))

~ OEG&O l 8

E

=moo
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h, = film coefficient corresponding to an equivalent thermal resistance
C.F. = chlorinity of sample divided by the chlorinity of normal seawater.
The chlorinity of seawater is equal to the number of
grams of chlorine contained in one kilogram of seawater after
all of the bromide and iodide have been replaced by chloride

H = enthalpy of the vapor phase, Btu/lb
H,, H, = constants defined below Eq. (3-13)
k = thermal conductivity, (Btu/h - ft - °F)

K¢;, K. = proportionality factors used in the linearized relationships
for the flow rates

) = thickness of metal wall, ft

L = flow rate of process liquid, 1b/h (also used to denote the
length in feet along the axis of a cylinder)
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temperature of the wall (see Fig. 3-12)) (the symbol “ AL” refers
to the transfer of heat from this wall to the surroundings)
wSs = variables associated with the transfer of heat from steam to a
metal wall (also used to denote the mean temperature of the
wall shown in Fig. 3-11) (the symbol “AS” refers to the
transfer of heat from this wall to the surroundings)
= radius of cylindrical shell (also used to denote the
reference point or control point of a controller)
Sr = seawater feed
T = temperature, °F
U = overall coefficient of heat transfer, Btu/(h - ft? - °F)
vV
w
x

~

= flow rate of vapor, 1b/h
= flow rate of coolant to the final condenser, 1b/h
= mass fraction of the solute (also used to denote distance in

m = slope of Diihring line (see Eq. (3-9)) (also used to denote
the mean value of a variable) the boundary problems)
M = mass of liquid holdup, Ib Y, = a function defined below Eq. (3-13)
M = mass of metal holdup, Ib . , Greek letters
P = pressure in the vapor spac}:le of evaporator effect j, Ib/ft o; = fraction of the liquid L; entering the tubes of evaporator
g Z :::: (:;;(:ﬁi t:fn;fizrx’nBtt)u/the first effect effect j (see Fig. 3-4) (also used to represent the ratio
co P (k/pC,) in Eq. (3-11))
Subscripts B = the nth positive root of the equation presented below
av = arithmetic average . p _ 521]5(13( yl-’; z)/ft3
A = surroundings or ambient conditions . 34416 ’r adians
AF = adiabatic flash of the seawater feed " ; (];/(1 ~ )
gii B :?;::igcd?:sst r(;i)tll:led?nrg: ess liquid 2 <j < 17) ¢ = weighting factor for the implicit method
c = condensate Mathematical symbols
E = evaporate (also refers to the conditions in the tubes of an [/()]° = the value of the function f (1) at the beginning of the time
evaporator) period under consideration
F = feed
in = inlet conditions of the cooling water to the final condenser
IC = intermediate condition of the condensate leaving the first
effect (see Fig. 3-15) REFERENCES
j = effect number (j = 1, 2, 3, ..., 17), and subscripts j = 18, 19,
and 20 refer to streams treated by peripheral equipment 1. C. F. Bonilla: “Design of Multiple-Effect Evaporators for Minimum Area or Minimum Cost,”
L = process liquid at the conditions in the sump Trans. AIChE, 41:529 (1945). .
m = mean value 2. L. A..Bromley, V A Desaussure, J. C. Clipp, and J. S. Wright: “Heat C{apacities of Sea Water
out = temperature of water leaving the final condenser f;!;ggr;igzg)Salmmes of 1 to 12% and Temperatures of 2 to 80°C.” J. Chem. Eng. Data,
P = condition of the feed leaving a feed preheater (see Figs. 3-14 3. J. W. Burdett: “Prediction of the Steady State and Unsteady State Response Behavior of a
through 3-16) Multiple-Effect Evaporator System,” Ph.D. dissertation, Texas A&M University, College Sta-
S = steam tion, Texas, 1970. See also J. W. Burdett and C. D. Holland, “ Dynamics of a Multiple Effect
vV = vapor Evaporator System,” AIChE J. 17:1080 (1971). o
WL — variables associated with the transfer of heat from process 4. K. S. Campbell: Stearns-Roger Corporation, Personal Communication, 1968.

5. H. S. Carslaw and J. C. Jaeger: Conduction of Heat in Solids, 2d ed., Oxford University Press,

liquid to a metal wall (also used to denote the mean New York, 1959,
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PROBLEMS

3-1 (a) Show that Eq. (3-8) may be stated as follows:

<Resistance per effective ) Foe—TF1 T2 —Ta

thermal conductivity film - k2nr, L - k2nr, L

(b) On the basis of these thermal resistances and the fact that at steady state Q = Q|, = Q|,,,
show that

L-T

2= (ry — ry)/k2mr, L
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3-2 When no approximation is made with respect to the relative sizes of r, and r,, one obtains the
following expression instead of Eq. (3-3):

r_(Inryr _
T

(a) When this relationship is used to evaluate the integral on the left-hand side of Eq. (3-5) on
the basis of all the assumptions stated previously except those pertaining to r; and r,, show that
the following result is obtained:

_T _ ,-T, 2Ar,y/ry)? 1
Tn=T ( 2 )[(rz/r,)z —1 In rz/r,] ®

(b) Let r,, denote the value of r at which T takes on the value T, given by Eq. (B). Show that
r,, is given by the following formula:

'm _ In ry/r, 2ry/ry)? 1
I '( 2 )[(r,/r,)2 "1 rz/r,:l ©

(c) Show that if the equivalent resistances are defined as follows, the model predicts the
correct rate of heat transfer as well as the correct heat content.

(Equivalem thermal\  r,—r, D
resistance at r =r, k2n(r,,), L )
(Equivalem thermal) r,—r, E
resistance at r =r, k2n(r,,.), L 4
where

Im N

(rim)y = InrJr,

T,

("im)2 Inryr,

(d) Show that the formulas for the film coefficients corresponding to the equivalent resistances
at r, and r, as given by Eqgs. (D) and (E) are as follows:

Ky
Tlnorr,
kfr,

Inry/ry —Inr,/r,

h

e, 1

e, 2

where In r,/r, is computed by use of Eq. (C).

3-3 (a) Make an energy balance on an element of volume from x; to x; + Ax of Fig. 3-6, over the time
period from ¢, to t, + At. Then by use of the mean value theorems followed by a limiting process
wherein Ax and At are allowed to go to zero, show that Eq. (3-11) follows.
) dx
Luy X,

Hint: Begin with
xj+Ax
>d, - j (Eps
xj+Ax, 1 x;

J " (Qm

where Q, = —kA 0T/0x = rate of heat transfer (Btu/h) in the positive direction of x (this is Fou-
rier’s first law)
A = heat transfer area perpendicular to the direction of heat transfer
S = cross-sectional area of element of volume (note, in this case A = §)

= Qu

xjot

— EpS

1+ AL, x
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(b) Show that the boundary conditions given by Eq. (3-12) follow from the energy balances on
the films at x =0 and at x =/, and as a consequence of the fact that the films do not possess
holdup.

3-4 To find the solution that satisfies Eq. (3-11) and the set of boundary conditions given by Eq.
(3-12), the following procedure may be employed. The outline of this procedure follows closely the
suggestions of Carslaw and Jaeger(5). In this approach one first finds a solution which satisfies Eq.
(3-11) and the following set of boundary conditions and initial conditions:

al—H,Tzo (x=0,t>0) (A)
0x
a—T+H2T=0 (x=11>0) (B)
0x
T =f(x) (t=0,0<x<]) ©

(a) Show that a solution of the form
Hl . —af2
T=4A4 cosﬂx+751nﬂx e~

satisfies Egs. (3-11), (A), and (B) simultaneously, where f is any one of the positive roots of
(B* — H, H,) sin fl — B(H, + H,) cos Bl =0
(b) Show that if m and n are any two positive and unequal integers
'
jX,,,X,,dx:O (m#n)
o
where
H
X, =cos f,x +B—l sin f§,x

Hint: The following steps are suggested:
1. From the definition of X, show that

d*X
—Sr i B2X, =0
I B X,
d’X
=+ B2X,,=0
dx*

2. Next, show that

, 2 ! d ! X, X, d
X X dx = Y —Zn_x x
(ﬂm ﬂn) A mX, dX 5 m dXz n dxz

Integrate the right-hand side of this expression one time by parts to obtain

2 2 ’X X. dx={ X d__xl_x éﬁ’!
(ﬁm_ﬁn)J mXa d4X = m dx n dx

1

0 o

Use the conditions given by Egs. (A) and (B) to show that the right-hand side of the above
expression is equal to zero.
1
IX: dx
0

(¢) Evaluate
Hint: The following steps are suggested:
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1. From the definition of X, , show that
1 t dZX
ijx,f dx = —-J.X,,—z"dx
o o dx

Integrate the right-hand side of this expression one time by parts to obtain

[ ax \ ! L rax \?
2 2. dan n
B LX,, dx = (X,, dx) . +J; (dx) dx (D)

2. From this definition of X, show that for all x (0 < x <)

2
ﬂ3X3+(%) = B2 + H} (E)

Integrate this result to obtain

1 1] 2
ﬂfjxf de= (B2 + Hf)l—J ("dx) dx F)
o o X

3. Show that Egs. (D) and (F) may be combined to give

1

1
282 J X2 dx = (B2 + HI)I — (X" dx") ©)

A dx

V]
4. Evaluate the last term of Eq. (G) by showing that when (dX,/dx)? in Eq. (E) is replaced by its
equivalent at x = 0 (given by definition of X,) one obtains

X2=1 (x=0)

n

Similarly, by use of Egs. (B) and (E), show that

B2+ H?
Xf=ﬁz+H§ =10
Use these results and Eq. (B) to show that
'XZ dx = Bz + HiXB7 + H3) + Hy(B7 + HY) + H (B + H3)
o 2BXB; + H3)

(d) Suppose f(x) may be represented by the infinite series
f)=A, X, + A, X, + A3 X3+
Use results obtained above to show that

_Jo X, f(x) dx

A =
T fo X7 dx

where the denominator on the right-hand side has the value obtained in part (c).
(e) Use the foregoing results to show that

ES (]
T(x, t) = Y Y(x)e™ ! J- Y(x)f(x) dx'

n=1 0

where Y,(x) has the definition given below Eg. (3-13).

3-5 To obtain the solution satisfying Eq. (3-11) and the boundary conditions following it, the
following procedure has been suggested by Carslaw and Jaeger(5). Let

T=u+w
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where w is a function of x and ¢, and u is a function of x alone. More precisely, let u be defined by

d?u
— =0 0<x<
e ( 0
d
Z_Hu-T)=0 (=0
dx
E'i+Hz(u—Ts)=0 (x=1
dx
and w by
ow *w
— =g — 0<x<lt>0
o e 0= )
@_le_o (x=0,t>0)
ox
ow
__+sz=0 (x=1t>0)
dx

w=T,—u t=00<x<]))

(a) Show that Eq. (3-11) and the boundary conditions following it are satisfied by the sum of
the two new functions u and w.
(b) From the definition of u, show that

u=bx+c
where
b L-T,
T YH, + 1/H, +1
b
=—+T,
c H, %

(c) From the definitions of u, w, and the result given in part (e) of Prob. 3-4, obtain the
solution given by Eq. (3-13).
3-6 Verify the result given by Eq. (3-15).

3-7 Formulate the boundary conditions given by Eq. (3-18).
3-8 (a) If the change of variable

Ux,t)=T-T,

is made, show that Eq. (3-11) and the boundary conditions given by Eq. (3-18) become

w_, o

—a—t——a ox?
U(x, 0) =0 O<x<)
M:O (t>0)

0x

UuLy=T—-T, (>0

I
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(b) The partial differential equation and the above boundary conditions may be solved by use
of Laplace transforms. Given the following Laplace transforms

L{Z—[:} = su(x, s) — U(x, 0) = su(x, s)
U  d*u
L{r} =i
au(0, 1) _ ﬂf _
L{T} =% ©,5)=0

L{U(, 0} = u(l, 5)
I-T,

N

L{’I:S - TA} =

show that the partial differential equation reduces to the ordinary differential equation

whose solution which satisfies the initial condition and the boundary conditions is

u(x, 5) =(Ts - TA) cosh (\/s/—ax
’ s cosh (\/s/_a)l

(c) If the following inverse Laplace transforms are given

L™ {u(x, s)} = U(x, t)

L"{l C-—————-OSh (\/571 x} = i (=" {erfc [(Zn + Ui - x] + erfc [(Zn + O+ x]}
[

s cosh (\/s/a)l S a= 2/t 2/t

show that the result given by Eq. (3-9) is obtained.
3-9 Use the result given by Eq. (3-19) in the verification of the expression given by Eq. (3-20).

APPENDIX 3A-1

Table 3A-1 Heat transfer coefficients and physical properties used in Chap. 3

1. Heat capacity of brine solution (Ref. 2)t

C,=A\S) — ANS)T + A4(S)T?
and
A(S) = 1.0049 — 0.01621S + (3.5261 x 10~ %)S§?
A,(S) = (3.2506 — 1.4795S + 0.077655%) x 10—+

A,(S) = (3.8013 — 1.2084S + 0.061 215210~

where S = (3.4483)C.F.), percent salinity
C, = heat capacity in cal/(gm - °C)
T = temperature in °C
C.F. = concentration factor

Thy i i .
t These references are listed at the end of this table. (Continue d over)
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Table 3A-1 Heat transfer coefficients and physical properties—Continued

2. Enthalpy of a brine solution at 60°C relative to water at 32°F (Ref. 3, curve OSW 12.20)

59.938 — 0.408 335

K(S) cal/g

w0 18

This equation was obtained by curve-fitting the enthalpy data given in Ref. 3.

3. Enthalpy of a brine solution at temperature T and salinity S

ASXT? — T2) . A(SXT? — T3)
2 3

(S, T) = A(SXT — Tg) — + h(Ty, S) cal/g

where Ty = 60°C; A,(S), A5(S), A5(S) are given under section 1 above, and h(Tg, S) is given in
section 2 above.

4. Enthalpy of saturated steam (Ref. 2)

(T3 - 100% x 107°

+ 1105.2
3

H = 0439(T — 100) + 0.5(T2 — 100%) x 107* -2
where H is in British thermal units per pound and T is in °F. This equation was obtained l?y
curve fitting the data given in the steam tables of Ref. 2. From this formula, the change in
enthalpy of saturated steam with temperature is given by
oH

— =0439+ T x 107*-2T? x 107¢
T
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Table 3A-1 Heat transfer coefficients and physical properties—Continued

The heat transfer coefficient for condensing steam h s was computed as proposed in Perry(2),
namely,

Auaied Ty) °-23
hyoT,, |AT|) = 255.1
242 ue TN + |AT)

where |AT|=|Tys— T.|, °F
Tf =[Tys + V2 °F
T, = condensation temperature, °F

From a curve fit of the data given in the steam tables by Perry(2), the following equation was
obtained for the latent heat of vaporization of water:

Aater(T) = 1037.2 — 0.593(T — 100)

where A, has the units of British thermal units per pound and T is in degrees Fahrenheit.
The viscosity u of water was computed by use of the following equation from Perry(2):

100

= 2.148[(T — 8.435) + ./8078.4 + (T — 8.435)2] — 120
u

where T is in degrees Celsius and y is in centipoise.

7. Coefficients of heat transfer Uy, (for the transfer of heat from the brine process liquid to
the metal wall)

5. Diihring lines for brine solutions (Ref. 3, curve OSW 11.51)

The data in Ref. 3 were used to curve-fit m and b in the Diihring lines
Ty =mTe ;. +b
to give
m=mCF., T, .,) =10 + (000123 + 7.2 x 107°T ;,,) CF.'"*3
b= bCF.)=048 CF.''3

where T; and T ;,, are in degrees Fahrenheit.

The coefficient was computed as follows:

1 1 . 1
Up, h/l. howy

where h,y, is the effective (thermal conductivity) film coefficient for the metal wall

howy = 2ky Awr P/ My,

Values of ky, and p,, are given in section 6 above. The following relationship (Ref. 2) was used
to compute h;

ks = SO(1 + 0.012T,)

where h;, is in Btu/(h-°F -ft?) and T, is the temperature of the brine process liquid in degrees
Fahrenheit.

8. Coeflicients of heat transfer from the metal walls to the surroundings

6. Coefficients of heat transfer U, (for the transfer of heat from steam to the metal wall)

This coefficient was computed as follows:

1 + 1
UWS hfS heWS
where h,, is the effective thermal conductivity film coefficient for the metal wall.
hows = 2ky Aws Pu/Mws .
ky, = thermal conductivity for steel, ky = 26 Btu/(Ib ft °F)
Py = density of steel wall, p,, = 490 Ib/ft®

These coefficients U,, and U, in Btu/(h-ft*-°F) were computed by use of the following
equation given by Perry(2),

U, = 027(AT,)°?5

where AT, =|T, - T,|, °F
T, = surface temperature of the insulation, °F

The surface temperature T, of the insulation was taken to be that T, which satisfied the
relationship

(T, — T)UA =(T - Tk,

ins

The coeflicient of heat transfer across the insulation, h;, was taken to be

equal to \/m{ty L
- S —
(Continued i)

[
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Table 3A-1 Heat transfer coefficients and physical properties—Continued

9. Density of brine solutions (Ref. 3, curve OSW 11.60)

The density p in pounds per cubic foot was computed by use of the following curve-fit of the

data given in Ref. 3:
p=Dy+D,T+D,T?
where T is in degress Fahrenheit
Dy = 62.56 + 1.79278 C.F. + 5.253612 x 1073 CF2
D, = 1658722 x 107* — 3.259 245 x 1073 C.F. + 204645 x 10™* C.F.?
D, = —5.823615 x 107> + 7.656795 x 1076 C.F. — 4449848 x 1077 CF.?

1. L. A. Bromley, V. A. Desaussure, J. C. Chipp, and J. W. Wright: “Heat Capacities of Sea Watg
’ S;)lu;ions at Salinities of 1 to 12% and Temperatures of 2 to 80°C,” J. Chem. Eng. Data,

67), 203. . 4 ’
2 (ligH) Perry, C. H. Chilton, and S. D. Kirkpatrick, (eds.): Chemical Engineers Handbook, 4th ed.,

McGraw-Hill Book Company, New York, 1963. o
3. Saline Water Conversion Engineering Data Book, Supt. of Documents, U.S. Government Printing

Office, Washington, D.C., 1965.

CHAPTER

FOUR

SOLUTION OF PROBLEMS INVOLVING
CONTINUOUS-DISTILLATION COLUMNS
BY USE OF

THE TWO-POINT IMPLICIT METHOD

Continuous columns are those columns in which the feed (or feeds) enter the
column continuously and products are withdrawn continuously. Batch distil-
lation columns, which do not fall into this class, are treated in Chap. 5.

In Sec. 4-1, the equations used to describe conventional distillation columns
at unsteady state are developed. The equations so obtained consist of the
component-material balances, the equilibrium relationships, and the energy
balances. These equations may be solved by any one of several numerical
methods. In this chapter the two-point implicit method is used while the
semi-implicit Runge-Kutta method and Gear’s method are used in Chaps. 6,
7, and 8.

After the integral difference equations (or the corresponding differential
equations) have been reduced to algebraic form by use of the implicit method,
the resulting set of implicit equations are solved by use of either one of two
procedures, the § method or the 2N Newton-Raphson method.

The 2N Newton-Raphson method is applied in a manner analogous to that
demonstrated in Chaps. 2 and 3 for systems of evaporators. Application of the 6
method is demonstrated in Sec. 4-2 and the 2N Newton-Raphson method in
Sec. 4-3.

123
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4-1 APPLICATION OF THE IMPLICIT METHOD
AND THE THETA METHOD

A conventional distillation column is defined as one that has one feed and two
product streams, the distillate and bottoms. Any column that differs from a
conventional distillation column by having either more than one feed and/or
one or more streams withdrawn in addition to the distillate and bottoms is
called a complex column. A sketch of a conventional column is shown in
Fig. 4-1.

Vay

Accumulator d,
j=1 D
j=2
T",’i I/—l,i
y i
1"/“.. Iﬁ
j+1
— ; j=f-1
FX, Fi | - L
.._l_:—___—-—-v- Fi
v
£ i=f

l/—l.l

IV’+I.: I;:
jt+1

j=N-1

bi
B

Figure 4-1 Sketch of a conventional distillation column.

Y

(

SOLUTION OF PROBLEMS INVOLVING CONTINUOUS-DISTILLATION COLUMNS 125

Vyi I[—I,:

FX;

f
tv,H‘, ll,,

Model 1. Assumed in the McCabe-Thiele method

f-1
Vri Vi t vy [/
C
— iy e 1.
f

Model 2. Behavior assumed on the feed plate

Figure 4.2 Models for the behavior of the feed plate.

The basic model for the behavior of the gas and liquid phases on the plate
of a distillation column that is used in this and the next chapter makes use of
the concept of an ideal stage. Although considerable work has been done on
liquid mixing, this model does not attempt to include this effect. The liquid
holdup is assumed to be perfectly mixed, and the vapor holdup is assumed to
be perfectly mixed.

Either one of two models may be used to describe the behavior of the feed
plate (see models 1 and 2 in Fig. 4-2). In model 1, it is assumed that the feed is
introduced in the liquid on the feed plate and that all of the vapor and all of
the liquid leaving the feed plate are in equilibrium. In model 2, it is supposed
that the feed flashes upon entering the column and that the liquid formed from
the flash mixes perfectly with the liquid on the feed plate and comes to equilib-
rium with the vapor {v;} leaving the feed plate. The vapor {vg;} formed by the
flash is assumed to pass to the plate above without the occurrence of any mass
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transfer between this vapor and the liquid on the feed plate. For dewpoint
vapor and superheated feeds, vy; = FX; and I; =0, V= F, and Ly =0. For
bubble-point liquid and subcooled feeds, I;; = FX; and vg; =0, Ly = F, and
Ve = 0. Calculational procedures for making flash calculations are described by
Holland(6) (see also Prob. 4-9).

When a feed is introduced above the level of the liquid on the feed plate,
model 1 appears to be the best representation of the behavior of the feed plate.
When the feed is introduced below the level of liquid on the feed plate, model 2
appears to be the best representation of the feed plate behavior. In the interest
of simplicity, the unsteady state equations are developed for only one model in
this chapter, model 1.

Certain operating variables, such as the distillate rate D and the holdups,
may be regarded as specified values. By a specified value is meant that at the
beginning of a time increment (time ¢,), the value of, say, D is known at times ¢,
and t, + At. This implies that at time ¢,, the specified values must either be
known at time t, + At or be calculable from previous sets of transient con-
ditions. In this chapter, it is supposed that at time ¢z,, the specified values are
known at time t, + At. In a subsequent chapter, however, fluid dynamic re-
lationships are used to compute the holdups at the end of the time period under
consideration.

Any interior stage exclusive of the overhead condenser, the feed plate, and
the reboiler (j # 1, f, N) is described by the equations presented below. (The
minor variations for stages j = 1, f, N are presented in subsequent sections in
which the numerical methods are applied.) In the development of these equa-
tions, it is assumed that the vapor and liquid phases are each perfectly mixed.
The material and energy balances are made on the contents contained in the
space between successive plates over the time period from time ¢, to t, + At.
The component-material balance enclosing stage j is as follows for each compo-
nent i:

(4-1)

— (ul + uk)
tht At

th + A1
J e i+l i— v — 1) dr = (uj; + “fi)
tn

In

where vj; is the molar flow rate at which component i leaves stage j in the vapor
phase and I;; is the molar flow rate at which component i leaves stage j in the
liquid phase. The molar holdups of component i in the vapor and liquid phases
on stage j are denoted by u); and uj;, respectively.

The total-material balance for any stage j (j # 1, f, N) is given by

tah + At
j (Vier + Lo, —V;—L)dt= Uy + Uj) - Uy +UhH 4-2)
it

" th+ At t

Capital letters are used to distinguish the total flow rates and holdups from the
corresponding component flow rates and holdups.

S IR e R

s
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The enthalpy balance for any stage j except j = 1, f, N is given by

tht At ¢ N R N R
f Z(vj+l,l'Hj+l.i + Ij—l,ihj—l,i _vjiHji_ Ijihji) dt
t i=1

n

- Z (“,V; ﬁji + “5‘:‘ ';ji) 4-3)
i=1 tn

where A ;i and ifji are the virtual values of the partial molar enthalpies which
are defined by

ﬁji = H?i + Q,"/(P» T, {Yﬁ})
ji = Hji + Q5(P, T, {x;,})
HY = enthalpy of one mole of a perfect gas, evaluated at the
temperature of the mixture

Qf, Q = departure functions for the vapor and liquid, respectively

Formulas for evaluating the departure functions for various equations of state
are given in Ref. 6. As shown in App. 4A-2, the virtual values of the partial
molar enthalpies have the property of giving precisely the same enthalpy of a
mixture as the partial molar enthalpies, while being significantly less difficult to
evaluate.

The component flow rates are related to the total flow rates as follows:

0= 1li—L; G=12...,N) (4-4)
i=1
0=2eu;i=V (=L2..,N) 4-5)

Similarly, the component and total holdups of the vapor and liquid are related
in the following manner:

0=Yui-Uf (=12..,N) (4-6)

0=.;u}’,~—U,'-’ G=12...,N) 4-7)
The equilibrium relationship for each component i on plate j may be ex-

pressed as follows:
0=’/5’i jilji_ Y;,ivji G

[ <

I
s
2

(4-8)

1=

—
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where the activity coefficients y}; and y};, for each component in the vapor and
liquid phases, respectively, are defined in Chap. 2.

The fundamental relationships given by Egs. (4-1) through (4-8) may be
solved by a number of numerical methods, several of which are presented in this
book. In Sec. 4-2, a combination of the two-point implicit method and the 6
method is demonstrated, and in Sec. 4-3, a combination of the two-point im-
plicit method and the 2N Newton-Raphson is presented. In Chaps. 6 and 8, the
equations are solved by use of the semi-implicit Runge-Kutta method and

relationship is used with the understanding that for the case of nonideal solu-
tions, K ; is to be multiplied by yk/y%.

Summation of each side of Eq. (4-13) over all components followed by the
restatement of the result so obtained in functional form yields

f(1)= Z Kjixj—1 4-14)

For a specified value of the pressure P and a liquid mixture having the mole

Gear’s method. The latter two methods make use of the material- and energy- ' fractions {x;}, the temperature T required to make f(T)=0 is called the
balance equations in the form of differential equations rather than integral- k. bubble-pointjtemperature of the mixture.

difference equations. The differential equations are readily obtained from the ‘SE. When the pressure P and vapor composition are given, the dewpoint tem-
1pt§gral-dlﬂerenw equa.mons .by use of the mean value theorems follow'ed by the : perature is that temperature T which makes F(T) = 0, where

limiting process wherein At is allowed to go to zero as demonstrated in Chaps. 7

2 and 3. The resulting differential equations are analogous in form to that F(T) = i it —1 (4-15)

which follows for Eq. (4-1): . =1 Kj;

d(w’; + u) . Equation (4-15) is obtained by first restating Eq. (4-13) in the form xj; = y;;/K;;,
T P == 4-9) - summing over all components, and then restating the result so obtained in
b functional form.
; In developments whic?'h follow, t.'he.vapor holdups {u}} are neglected be-
Other Forms of the Equilibrium Relationship cause they are small relative to the liquid holdups. The vapor holdups may be
. included, however, as shown in subsequent chapters.
In the present development, it is convenient to make use of the mole fractions

defined by
4-2 SOLUTION OF PROBLEMS INVOLVING

I'i Vj;
X =2 yi=—2 (4-10) CONVENTIONAL DISTILLATION COLUMNS
S, Y v, BY USE OF THE IMPLICIT METHOD
=1 i=1 AND THE THETA METHOD
and consequentl :
q y The calculational procedure based on a combination of the implicit method and
:V_‘x . i . @11) the 6 method is initiated by consideration of the problem in which the total
L= izlyﬂ flow rates remain fixed with respect to time at a set of specified values. In a

. ‘ subsequent section, the enthalpy balances are included in order to account for
When the equilibrium relationship given by Eq. (4-8) is stated in terms of mole the variation of the total flow rates.

fractions, one obtains

nr 3 Application of the Implicit Method to a Combination of the
vii = v KjiXji (4-12) L Component-Material Balances and the Equilibrium Relationships

s

For any stage j (j # 1, £, N), the integral appearing in Eq. (4-1) may be approxi-
mated by use of the two-point implicit method (which was introduced in Chap.
1) as follows:

When the vapor phase forms an ideal solution, 5 =1 for all i, and when the
liquid phase forms an ideal solution, yk =1 for all i. Thus, when both phases
form ideal solutions, Eq. (4-12) reduces to

M Ui
¢ At ¢ At )

yi = Kjix 4-13) | vj+1,i+lj—1,i“”ji—Iji"'a(v})ﬂ,i"‘I?—L.'—U}).'—l?.‘)=

Jji

In the subsequent developments in this chapter, this form of the equilibrium ; » where 0 < ¢ < 1 and 0 = (1 — ¢)/.
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Observe that the vapor holdup u% has been neglected and u}; has been
denoted by uj;. Also the values of the variables at the beginning of the time step
are identified by a superscript zero, and those at the end of the time period
under consideration are identified by the absence of a superscript. The equilib-
rium relationship given by Eq. (4-13) may be used to eliminate one of the
component flow rates by first restating this relationship in terms of the compo-
nent flow rates as follows. Since y; = v;/V; and x; = I;/L;, it follows that Eq.
(4-13) may be restated in the form:

where

Ai=LJ/K;V; (2<j<N-1)

A =L/Ky;D for a partial condenser
A, =Ly/D for a total condenser
Ayi = B/Ky; Vy

fi=zit o+ i+ 10— —19) +—ti
U _ g b ¢ Al
V; YL 2, = FX; for all other jand i, z; = 0
or v =4d; (This symbolism is used in the interest of symmetry,
li= Ay (4-17) that is, v, is used to denote d; regardless of the state

in whi . L
where A, = LK, V. in which D is withdrawn, vapor or liquid.)

Since the liquid phase is assumed to be perfectly mixed on each stage, the
liquid holdups may be stated in terms of the vapor flow rates through the use

Equation (4-20) may be restated in matrix form as follows:

of Eq. (4-17) in the following manner: Aivi = —/; (4-21)
where
Li U;
uj‘ZUj<E>=fAjivji (4-18) -0y 1 0 0 0 0
j j Ay — P 1 0 0 0
. . . . _|0 Ay; P3i 1 0 0
Use of this re[a[lonshlp followed by rearrangement permits Eq (4-16) to be Ai T e
restated in the following form: 0 Ay si —Pns 1
0 st -1,i
Aj 1 V-1 — Pjlji ¥ Vjey i = _0'(1?—1,."‘0?1_1?.""U?H.i)"(ﬁugt 0 0 An-ts Pni
Uy UN:’]T

G#L AN (419
where
pi=1+ Al +1)
1; =(U;/L)/¢ At

For any interior stage (j # 1, f; N) and sets of assumed values for L;/V}’s, Ujs,

and Tjs, Eq. (4-19) is seen to contain three unknown flow rates: v;_, ;, vj;,
Ujta,i-
In a manner similar to that shown for Eq. (4-19), the equations for stages

j=1,f,and N are developed. The resulting set of equations follows.

=Py + V2 = —Fu
Ajoy -1, — Pl Vi = /i (G=23,..N-1 (4-20)

AN_1,iON-1,i — PNiUNi = —/Ni

/iz[}/li fi /m]T

For any given set of values for the temperatures, and L/V’s, the equations

biv, +cv,=4d,
avy, +b,v, +c,03=d,

ayv; + byvy + cav, =ds

an- 1N+ by_yon- g Hey oy =dy_,

ayvy_y + byvy =dy

represented by Eq. (4-21) constitute a linear system of equations in the v;’s. For
equations such as these, which are seen to be of tridiagonal form, the unknown
vapor rates may be found by use of the following recurrence formulas, some-
times called the Thomas algorithm (Refs. 5, 9). Consider the system of linear
equations in the unknown vis(j=1,2,..., N).

4-22)
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where the a’s, b’s, and ¢’s are the coefficients of the v;s which appear in Eq.
(4-22). These equations may be solved by use of the following well-known
recurrence formulas (Refs. 5, 6, 9) which are applied in the order stated

f1 =¢,/b, gy = di/b,
fim 2t (k=2,3,..,N-1) @29
“Tby—ay fios : B

h= @b g3 N)

g =
. by — ay fi-s

After the fs and g’s have been computed, the values of vy, vy, ..., 03, Uy, are
computed as follows:

UN = gn

=g —fitirn (k=N-1LN-2..21) (4-24)
The use of this procedure is demonstrated below in Example 4-1.

Instead of evaluating the f’s and g,’s by use of Eq. (4-23), a modified form
of an algorithm originally proposed by Boston and Sullivan(3) for steady
state problems may be used. The modified algorithm is shown in Prob. 4-12.

The Theta Method of Convergence

For each time period, successive approximations of the temperatures at the end
of the time period are made until a temperature profile is found such that the
component-material balances and the enthalpy balances are satisfied as well as
the specifications for the column.

The 6 method of convergence is an indirect method for choosing a new set
of temperatures on the basis of calculated results obtained for the last assumed
set of temperatures. This method alters or corrects the mole fractions. On the
basis of these mole fractions which reflect the certainties that each component
must be in overall material balance and in agreement with specified values for
the total distillate rate and the total holdups (the conditions of constraint), a
new set of temperatures is found. The 6 method of convergence is related in
spirit to the concept of the lagrangian multipliers (Ref. 15) in that for each
condition of constraint or specification made on the system there exists a multi-
plier. The § method of convergence for columns at unsteady state operation is
analogous to the 6 method for a complex column at steady state operation (Ref.
6). For a complex column at steady state operation, each sidestream withdrawn
leads to an additional specification which gives rise to an additional 6 multi-
plier. Similarly, for a column at unsteady state operation, each holdup specified
gives rise to an additional § multiplier:

Ak

.
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Specifications: the distillate rate (moles/time) and liquid holdups (moles)

With the exception of Uy, each of the specifications
D, Ul’ U2a U3’ AR UN—I, UN

gives rise to a 6 multiplier. Other specifications are, of course, made on the
column. These specifications consist of the number of plates above and below
the feed plate, the complete definition of the feed stream for all ¢, the column

pressure, the type of condenser (total or partial), and the total vapor rate V, (or
the reflux rate L,).

A subsequent section presents a development leading to the following con-
sistent set of multipliers:

b; b;
4= %lg (4-25)

Uji Uji .
j=0j<7j> =L2...,N=-1

i

Knowledgc of the holdup Uy of the reboiler does not give rise to a correspond-
ing 6 because uy;/d; may be expressed in terms of b,/d; as follows:

Q-G e

The set of 6;’s given by Eq. (4-25) is consistent with the following formula for
the 9alculation of the corrected compositions. The expression for computing the
liquid mole fractions follows immediately from the definition of a mole fraction
and Eq. (4-25), namely,

u; L,
o (%) 4 Li
oy (d)d (d)d

Xji=—7"—=7 = (4-27)
. u; < l..
P Z@(j) d Y <£> d;
i=1 ca i di ca

i i=1

As shown in Probs. 4-4 and 4-5, a consistent set of mole fractions {y;;} for the
vapor are given by :
v;;
iy g4
<di >ca )

Yi= (4-28)
5 ().

i=1 i

The formula for d; is based on the requirement that each component be in
overall material balance, that is,

N

- Z“ﬁ

ta+ At ji=1

th+ At N
f (FX;—b,—d)dt = Y u
tn . j=1

(4-29)

tn




134 STAGED SEPARATION PROBLEMS—TWO-POINT IMPLICIT METHOD (

After the integral in this expression has been approximated by use of the im-
plicit method, the following formula for d; is obtained upon replacing the cor-
rected ratios by their equivalents as given by Eq. (4-25):

1 N
FX;+ o[FX;—d; — b]° + —— ¥ uj:
¢ At /=
(4-30)

b, Uy/B 1 Ao u;
t+6o (E>[' * <¢NAt>] * (¢_A_r) Lo (Tf>

Except for the @’s, the values of all other quantities appearing in Eq. (4-30) are
either known or readily determined after the component-material balances have
been solved for the vj’s. By use of Egs. (4-25) and (4-30), the u;’s may be stated
in terms of the unknown 6;s. The desired set of 6;'s is that set of positive
numbers that makes go = g, = g, - - = gy = O, simultaneously, where

di=

gO(GOs 919 929 ) ON—I) = Z: dl_D
=t @-31)

gj(eo,el,ez,-..,ob]_l)=Zuji'_Uj (1 SjSN'—l)
i=1

This set of g functions is applicable to a column with a partial condenser (the
distillate is removed as a vapor, v,; = d; (vapor). When a total condenser is
employed, g, and 6, are excluded from the foregoing set, and u,;/d; is replaced
wherever it appears by its equivalent U,/D.

The desired set of 6;s is found by use of the Newton-Raphson method
(Refs. 6, 9) in the same manner as that described for complex columns at steady
state operation (Ref. 6). The Newton-Raphson method consists of the repeated

solution of the linearized Taylor series expansions of the functions go, gy, ---»
gn-1. These equations have the following matrix representation:
J, A0, = —g, (4-32)
where
90 .. _%o
00, 00y 4
3= | :
gn-1 0gn -1
20, 00y
AD, = [Af, AD, AOy_ 7
AO;=0; .1 — 0
g.=[900: ~ gn-11"

After a given trial calculation through the column has been made (the
component-material balances have been solved for the v;/s), the desired set of
6s that makes go=¢; =92 ="""=9gn-1 = 0, simultaneously, is found. The
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desire.d set of 0s is that set of 6;s (6, > 0) that satisfy the Newton-Raphson
equatlogs which are represented by Eq. (4-32). On the basis of an assumed set
of 6;’s, }dentiﬁcd by the subscript n, the g functions and their derivatives that
appear in Eq. (4-32) are evaluated. Then the system of equations represented by
Eq. (4-32) is solved for the Af;s. The 6;s to be assumed for the next trial
solution of Eq. (4-32) are readily computed 6,,+1 =0; , + AB). This process is
repeated until a set of 6’s within the desired degree of éccurac;' has been found
For the first trial §; is taken equal to 1.0 for all j. In the event that one or more:
of the 0; ,,’s is negative, all of the corrections AB; are reduced successively by
factors of 1/2 until the 6; ,.,’s are all positive. The values of the derivatives
may be evaluated by use of the analytical expressions (see Prob. 4-3) or by use
of the numerical approximation of the derivative.

Specifications: the molar distillate rate and the liquid holdups in mass or volu-
metric units

If, instead of molar holdups, the total liquid holdups are specified in mass

golr] volumetric units), the specified values to be satisfied at time t, + At are as
ollows:

D, M, My, ..., My

In this case the specification .#y leads to an independent 6 namely, 6,. For,
when the .4 s are specified, the term U,/B of Eq. (4-26) depends upon fhe 67s.
Thus, the expression enclosed by parentheses in Eq. (4-25) should be modiﬁjed
toread j=1,2,..., N).

Let the corrected mass (or volumetric) holdup of component i j
t
denoted by mj;;. Then P ponent on plate J be

my; = u; M, (4-33)

where M; is th.e molecular weight (or molar volume) of component i. The
formula for mj; in terms of 6, is readily obtained by replacing u; by its equiva-
lent as given by Eq. (4-25) ’

uj;

my; = 6 (7> d; M, (4-34)

i

In a manner analogous to that shown for the developm o
. t . (4-
readily shown that pment of Eq. (4-30) it is

FX; + o(F°X? — d? — b°) 4 (—) i 0

i=1
b, 1 N " (4-35)
140, — (Y
° (dl'>ca * (¢ At) jglel (di>ca

diz
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For the case where the mass (or volumetric) holdups are specified, the g func-
tions to be satisfied are as follows:

9600, 0y, ..., 00 = Y. d;—D

i=1

) (4-36)
/00, 01,..., 00 = Ymu—M; (=12...N)

i=1

where again the desired set of 6)’s is that set of positive numbers that makes
go =g, = - = gy = 0, simultaneously. This set of 6;'s may be found by use of
the Newton—-Raphson method.

When the #;’s are specified, the corresponding U;’s at time ¢, + At are not
known until convergence has been obtained for the given time period under
consideration. The U’s at t, and at t, + At are needed in the component-
material balances. The value of U; at time ¢, is, of course, equal to the value
obtained at the end of the calculational procedure for the previous time in-
crement. At the end of the first and all subsequent trials for any given time
increment, the value of U; to be used for the next trial may be computed (after
the 6;'s have been found) as follows:

U= Yu, (@37

Determination of Temperatures

After the 6;s have been determined, the corresponding values of the corrected
mole fractions may be computed by use of Egs. (4-27) and (4-28). These mole
fractions for each plate are used to compute a new set of temperatures. The new
set of temperatures is determined by use of the K, method which eliminates the
trial-and-error involved in the use of the conventional bubble-point and dew-
point expressions given by Egs. (4-14) and (4-15). The K value for the base
component may be computed by use of either one or two equivalent ex-
pressions, Egs. (4-39) and (4-40). These expressions are developed as follows:
Equation (4-13) may be restated in the form

Vi = o Kjp x; (4-38)

where a;; = K;;/Kj; the subscript b refers to the base component. When each
side of Eq. (4-38) is summed over all components, and the result so obtained
solved for Kj,, the following formula for calculating K at T, .4, (the new
temperature) is obtained:

1

K, (4-39)

pY

= <
Tjn+1
> %
i=1 Tj.n

Jji
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If Eq. (4-38) is rearranged to
Kjpyxj = Yit
ji
and then summed, an expression different from Eq. (4-39) but equivalent (see
Prob. 4-5) is obtained

= ¥ - (4-40)

Tjn+1 i=1

K,

Tj.n
The x;’s and y;’s that appear in Eqs. (4-39) and (4-40) are computed by use of
Eqgs. (4-27) and (4-28), respectively.

The .de51red temperature, T ,,,, may be computed directly by use of a
hypothetical base component that has a K value given by

b
In Kjb=};+a (4-41)
As proposed in Holland(6), the values of a and b are computed on the basis of
the upper and lower curve-fit limits of the K for the midboiling or the compo-
nent just lighter than the midboiling component (a component having K values
abput midway between those for the lightest and heaviest components of the
mixture).

For wide boiling mixtures, the temperatures determined by the bubble-point
function (Eq. (4-14)) tended to be alternately too high and too low while the
temperatures determined by use of the dewpoint function (Eq. (4-15)) were
almost invariant for wide boiling mixtures such as those encountered in
absorbers in the natural gas industry.

Reformulation of the Equations of the Theta Method
To Avoid Numerical Difficulties

In order to avoid numerical problems arising from the existence of very small to
zero values of one or the other of the product rates, Egs. (4-25), (4-27) through
(4-30) may be restated in terms of a new variable p, which is finite for all values
of (b)), and (d)),, including zero. The definition of p, is obtained by finding a
common denominator followed by rearrangement of the expression given by
Eq. (4-35) for d;. The resulting equations so obtained are

dl' =D i(di)ca
U = P‘(“ﬁ)ca Bj (4-42)

and

1 N
FX.+o[FX ;—d ;—b ]°+ — o
[ l] + ¢At .Zuﬂ

j=1

pi= (4-43)

Uy/B 1 R
(di)ca + GO(bi)ca(l + i_) + m j;l OJ(“ii)ca

¢ At
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Expressions for the mole fractions given by Eqgs. (4-27) and (4-28) are restated in
the following form:

xy = —ides Pi (4-44)
z ¢ ji)ca Di
i=1

Vi = C(vji)ca Di (4-45)
Z (v ji)ca Di

i=1
Also, d; and uj; in the g functions (Eq. (4-36)) are replaced by their equivalents
as given by Eq. (4-42).

Before presenting the development of the enthalpy balance equations for the
calculation of the total flow rates, the fundamental concepts involved in the
procedures presented thus far are illustrated by use of a simple problem for
which the aj’s, L/V’s, and Ujs are taken to be fixed for all ¢ at the values
shown in Table 4-1. A sketch of this unit is shown in Fig. 4-3. In this problem,
it is supposed that initially (time ¢ = 0) the column is at steady state operation,
and at time t = 0+, an upset (a step change) in the composition of the feed
shown in Table 4-1 occurs. The steady state solution at the initial conditions is
presented in item I of Table 4-1, and the steady state solution at the conditions
of the upset is given in item IIL

Overhead vapor V5 = 100

Condenser

Accumulator) Distillate
L|=50 U1=50 D =50

Reboiler

Bottoms
B=50

Figure 4-3 Sketch of the column, total flow rates, and holdups specified for Example 4-1.
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Table 4-1 Statement and Solution of Example 4-1

Statement Initially (t = 0), the column is operating at the steady state con-
ditions that follow in item I. At time t = 0+, the upset given in item II
occurs. On the basis of ¢ = 0.6 and At = 0.1 min, find the transient values
of the variables at the end of the first time period.

Part A. Initial operating conditions at time ¢ = 0

F°Xx?
Component 1b - mol/min a, Other conditions
1 333 1 The column has 3 plates plus a reboiler and a total
2 333 2 condenser. The feed enters as a liquid at its bubble-
3 334 3 point at the column pressure. The column operates

at the following flow rates:

D = B = 50 Ib-mol/min, L, = L, = 50 1b- mol/min,
Ly =L, = 150 Ib- mol/min, and

V,=V; =V, =V; =100 Ib- mol/min.

Initial conditions (at ¢ = 0); steady state operation.

I Steady state solution at the initial conditions

Component  df =19, 3, o3 s, 0%,

1 5.5354 11.0708 17.3787 23.1947 35.0356
2 18.0757 36.1514 374125 39.6279 38.4225
3 26.3888 52.7777 45.2088 37.1773 26.5417
Component  u, us; ud; ug; ul,;

1 5.5354 11.8432 16.9864 20.9334 27.7645
2 18.0757 19.3368 18.2840 17.8822 15.2242
3 26.3888 18.8199 14.7294 11.1842 7.0111

K9, = 0413724, K9, = 0467391, K9, = 0.511 542, K2, = 0.554011,
K2, = 0.630942.

Il Upset in the feed composition at time t = 0+

Component FX; Other conditions

1 16.67

2 41.67 All other conditions are the same as those given
3 41.66 in item I

IIT Steady state solution at the conditions of the upset

Component d;=vy; y; y; Vg; Us;

1 2.1082 4.2164 7.0931 9.2029 149118
2 18.4457 36.8914  40.2528 44.2071 47.5652
3 29.4460 58.8920 52.6540 46.5899 37.5228

(Continued over)
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Table 4-1 Statement and Solution of Example 4-1—Continued

Component Uy, Uy; Usy; Uy Us;

1 2.18082 4.9848 7.9215 9.8245 14.5617
2 18.4457 21.8071 224771 23.5965 23.2242
3 29.4460 23.2080 19.6013 16.5789 12.2139

K, = 0392656, K,, = 0422928, K, = 0.447 708, K, = 0468364,
K, = 0.512 021

(Note, the corresponding values of K ; follow from the definition of a;; namely K; = o;K;,.)

SoruTioN The component-material balances for any component i for this
example may be stated in the form of Eq. (4-22) as follows:

where

byv, +¢;v;, =d,
a,v; + byv, +c,03=4d,
ayv, + byvy + c3v, =dj
A 03 + byvg + Cavs =dy

asvy + bsvs =ds

L U,/D

d

D ¢ At

0
Ui

0 0 oy 1t
—olvy; — 11.‘ - Un) b At

U,/L
b, = ‘[1 + AZi(l +_¢£/_A_t£>]

d;

0
Uzi

¢ At

—o(v; + 19— % — 13) —

Us/Ls
by = —[1 +A3i(1 vy >]

dy = —FX; — o(FOX? + 03 + 13, — 03 — 13) —

Ua/Lsy
by = —[1 + A4i(l * oA

0
Usi

o At

¢y =1

L,
az':Au:_D—
¢, =1
ay = Ay;
C3=1
a4=A31
=1
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Table 4-1 Statement and Solution of Example 4-1—Continued

0
Usi
dy = _U(vgi'*'lgi“vgi—lgi)_ﬁ as = Ay
Us/Ls
=—|14+A5(1 +——
bs [ + 5,( + b Al
o
Us;
ds = —ollf — o8 — bY) - =

Note: The values of the variables at the beginning of the first time step may
be evaluated at the values at time ¢t = 0 or time t = 0+. For all variables except
FX; in the expression for d,, the values at ¢t = 0 are equal to those at time

t = 0+ that is, one may use either of the expressions given above for evalu-
ating d; or

0
us;
- lgi] — =

dy= —FX,—0—[FX; +vQ, + 15, — 0% b At

where FX;

I Evaluation of the constants a;, b;, c;, and d;

=FX?*.

To initiate the first trial for the first At, assume that the temperatures at

the end of the first time step are the same as those at the beginning of the
time period.

Compo- Cp=cy =04

nent b, =4 =Cg d, a, b,

1 — 18.6666 1.0 —92.2570 1.0 —19.8992
2 —18.6666 1.0 —301.2619 1.0 —10.4496
3 —18.6666 10 —439.8143 1.0 —17.2997
Compo-

nent d, a, by d, a,

1 —197.3871 1.0697 —20.2228 —299.7771 29322

2 —322.2801 0.5348 —10.6114 —346.4046 1.4661

3 —313.6659 0.3565 —17.4076 —287.1515 09774
Compo-

nent b, d, as by dg

1 —18.7493 —348.8903 2.7075 —15.0002 —462.7429
2 —9.8746 —298.0380 1.3537 —8.0001 —253.7380
3 —69164 —186.4048 0.9025 —5.6667 —116.8523

(Continued over)
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Table 4-1 Statement and Solution of Example 4-1—Continued

Il Calculation of the v;/s

Compo- [N d, _ c, _dy—ayg,
= -— = — BN e— g = ——
nent fi=3, I =%, = Ta s T h—af
1 —0.05357 49423 —0.5038 10.1951
2 —0.05357 16.1390 —0.096 19 32.5527
3 —0.05357 23.5614 —0.1380 46.5387
Compo- C3 dy — a39, fo= Cq o= dy —a,9,
= = PR S— FEpea———
nent fs by —as [, 9 by —a; f; by —aufs by —a,f,
1 —0.049 58 15.4040 —0.05375 21.1815
2 —0.094 69 34.4524 —-0.1027 35.8007
3 —0.1358 41.2789 —0.1474 33.4264
Compo- _ds—asg. Javsi Vi =ga—favsi  Sabai
nent g bs—as f,
gs = Usi
1 35.0119 —1.8819 23.0634 —1.1435
2 38.4431 —3.9486 39.7494 —3.7641
3 26.5681 —39165 37.3429 —5.0748
Compo- vy = g3 —f3vai Savs Uy =92 —f2vx
nent
1 16.5476 —0.8338 11.0289
2 38.2166 —3.6760 36.2287
3 46.3538 —6.3970 529357
Compo-
nent Siva vy = (d)ea = 91 — J1 02 (b)ea = Asivsi (b/d).,
1 —0.5908 5.5331 27.7458 5.0144
2 —1.9408 18.0798 15.2324 0.8425
3 —2.8358 26.3973 7.0181 0.2659
Compo- U\ (U,/Ly) 4505 Uzi) (Us/L3)A503 (‘25) _ (Us/Li)AsiVai
nent d ) d; di)ea d; di)e d;
1 2.1323 29231 3.7618
2 1.0718 1.0330 0.9921
3 0.7151 0.5721 0.4255

I Calculation of ;s

The g functions are as follows:

go = Zd;—~50
i=1

g2 = Z“Zi—
i=1

3
g3= Yuy—
i=1
3
9a = Z“u_
i=1
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Table 4-1 Statement and Solution of Example 4-1—Continued

The ;s (found by the Newton-Raphson method) that make go = g, = g; = g, = 0,

simultaneously, are as follows:

6, = 1.000382
0, =0.999 183
and

d =

0, = 1.001 186
0, = 1.000557
S
FX, + o(FOX? — d° — b%) + (1/¢ At) Z u$

‘ b, UyB] UJD
1+ Oo(d.)"[l + b At] + — @ At

IV Calculation of the corrected temperature profile (or K ,’s)

1 4
YA

u Uji
di ca

Compo-
nent d; Xpi % X pi Uzi X2i
1 5.5311 0.1106 0.1106 11.7843 0.2357
2 18.0754 0.3615 0.7230 19.3576 0.3871
3 26.3935 0.5279 1.5836 18.8582 0.3772
24172
Kip=— = 04137
Z % X p;
i=1
Compo-
nent % Xy Us; X3 % X3 Usi
1 0.2357 16.1870 0.3237 0.3237 20.8185
2 0.7743 18.6946 0.3738 0.7478 17.9426
3 1.1315 15.1183 0.3323 0.9071 11.2387
2.1415 1.9786
1 1
Kjp=———=046710 K, = ——— = 0.5054
IS %Xy
i=1 i=1
Component X4 %; X3; b; = 04(b;/d)..(d) Xpi = Xs; % Xsi
1 0.4164 0.4164 27.7457 0.5549 0.5549
2 0.3588 0.7177 15.2345 0.3047 0.6094
3 0.2247 0.6743 7.0197 0.1404 04212
1.8084 1.5855
1
Kep=— =05530 Ky =— = 06307
2 %Xy P
i=1 i=1

These K ,’s become the assumed values for the next trial for the first At, and the
assumed value for the K/’s are given by K;; = 0, K ;,.
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With the total flow rates held fixed, the repeated application of the
procedure described above gave the transient values of the variables shown
in Figs. 4-4 and 4-5. The effect of the length of the time step on the
transient values of b,/d, is shown in Table 4-2. It is to be observed that as
the size of the time step becomes very large, say 10'°, the steady state
solution at the conditions of the upset is obtained at the end of the first
time step (see Prob. 4-14).
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Figure 4-4 Transient values of the component vapor rates for stages 2 and 3, Example 4-1.
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Figure 4-5 Transient values of the component vapor rates for stages 4 and 5, Example 4-1.
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Figure 4-6 Failure of the implicit method for Example 4-1 at ¢ = 0.4 and At = 2.0.

Table 4-2 Solution of Example 4-1 by the implicit method
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¢ = 0.6 and time periods range from 1 to 10'° min

b/d for component 1

Time At =1 At=6 At=10 Ar=20 At=30 At=40 At = 10'°
period min min min min min min min
1 5.0938 5.7455 6.0143 6.3420 6.4912 6.5079 6.9070
2 5.3493 6.9731 7.2158 7.2242 7.1621 7.1154
3 5.7572 6.9191 6.8356 6.7840 6.7906 6.8034
4 6.1413 6.8959 6.9236 6.9632 6.9689 6.9660
5 6.4126 69129 6.9044 6.8830 6.8764 6.8757
6 6.5952 6.9044 6.9066 6.9175 6.9227 6.9242
7 6.7133 6.9080 6.9078 6.9025 6.8991 6.8977
8 6.7870 6.9067 6.9064 6.9089 69110 6.9121
9 6.8329 6.9070 6.9074 6.9063 6.9050 6.9043
10 6.8613 6.9070 6.9068 6.9073 6.9080 6.9085
11 6.8787 6.9069 6.9071 6.9069 6.9073 6.9062
12 6.8895 6.9070 6.9074
13 6.8961 6.9068
14 6.9002
15 6.9028
20 6.9066
21 6.9068
22 6.9068
23 6.9069
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Constant-Composition Formulation of the Enthalpy Balances

The elimination of one of the total flow rates from each enthalpy balance by
use of the corresponding component-material balance yields an expression for
computing the total flow rates which was found to be very stable for bot'h
steady state and unsteady state problems. This form of the enthalpy balances is
called the constant-composition method. There follows an outline of the devel-
opment of these expressions which are presented in Table 4-3.

On the basis of the corrected x;’s and the corresponding temperatures
found by the K, method, a new set of total flow rates is found by use of
enthalpy and total-material balances. Again, as in the calculation of the temper-
atures, the most recently calculated values of the variables are used in subse-
quent equations.

Table 4-3 Constant-composition form of the enthalpy balances

Qc=1L, Z(Hz. _hu)xn + DZ(Hz. '—HDx)XDI

i=1 i=1

L? Z(ﬁzi - ’;(l)i)x?i - Vg Z(ﬁzi - ﬁ(z)f)y(z).‘ +D° z (ﬁzi - ﬁoDi)XODi - Qg]

i=1 i=1 i=1

_UA_ i ’;1.')"1.'_ [Z(Hz. uxn:l

3 ¢
L; Z(ﬁjﬂ‘i_ };j—l,i)xj—l.i - V; Z(Hj+1,i— Hji)yji +0|: Z jrLi T ,+1 J,V,n .]
i=1 i=1

L;= |/,j
[ Z(H]+1 ._ 1 1, -) Xj-1.i 7 Vo Z(Hj+l i ﬁ?-’))n LO Z(HJH i ﬁ?')x?']
+

,

-U; Z(ﬁji»l,i-ﬁji)xji U? Z(ﬁj+l‘i‘h2)x% .
i=1 + i=1 4= G=23...,N=1)
¢ ALY, ¢ Ay, ¥
where

v = Z(ﬁjn,i - ﬁji)xji
i=1
H;=0 G+
H, = F\Z(ﬁ,ﬂ,,. — )X, +aF° Y (H, ., — A)X?
i=1 i=1

H, = virtual value of the enthalpy of component i in the feed, regardless of state
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Each enthalpy balance may enclose either only one plate or the top (or
bottom) and all plates between the top (or bottom) and each plate j. Each of
these methods was investigated and found to be equally reliable.

To illustrate the development of the energy balance equations, the ex-
pression for any stage j 2 <j< N —1,j#f— 1, f) is developed by first apply-
ing the implicit method to Eq. (4-3) (with the vapor holdups neglected) to give

Z(vjﬁ»l‘iﬁj-%l.i + lj—l.ihj—l,i - Ujiﬁji - lji’;ji)

i=1

+6(Z(v_(j)+l.iH?+1,i+l?—1,ih?—l.i_v%ﬁo l°.h§’.)>
i=1
Z“ﬂ ji Z“ﬁhﬁ

= Mt —"=¢At G#1,f,N) (4-46)

In the constant-composition method, a component flow rate, say v;,, ;, is
eliminated from Eq. (4-46) through the use of the component-material balance
for stage j (see Eq. (4-16)). The result so obtained may be rearranged to give the
formula presented in Table 4-3. For stages j = 1, f, and N, the expressions are
developed in a similar manner. The first step in the calculational procedure
consists of the calculation of the condenser duty Q. by use of the first ex-
pression given in Table 4-3. Next L, is computed. After each L; has been
computed by use of an energy balance, the corresponding V;,, may be found
by use of the total-material balances. When the total molar holdups are taken
to be fixed, then the unsteady state total-material balances reduce to the steady
state form namely,

U 2,...,f—1
Viey=L;— B G=ff+1,...,N—=1) (4-47)

Choice of Phi and Step Size

Since the two-point implicit method reduces to the trapezoidal rule which is A
stable then, if the equations were linear, one would expect the implicit method
to be stable for values of ¢ > 1/2 and to diverge for certain choices of At at
¢ < 1/2. Although the equations were nonlinear, their numerical behavior fol-
lowed closely that predicted for systems of linear equations. The failure of the
implicit method to converge for relatively large At’s (larger than At = 1) and at
values of ¢ < 1/2 is illustrated in Fig. 4-6. In some examples, oscillations were
obtained for ¢ = 1/2, but not for ¢ > 1/2 (say ¢ = 0.6) regardless of the choice
of At (see Table 4-2).
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When relatively small At’s are used, the truncation error is relatively smaller
and more accurate transient solutions are obtained than when relatively large
At’s are employed. It was found that the Ar selected should be larger than 1076
(for the system of units used in the examples) in order to prevent the holdup
terms from taking undue dominance in the calculations. As steady state is
approached, larger At’s may be used without loss of accuracy in the transient
solutions. The scheme developed and used by Waggoner(16) to solve a wide
variety of examples appears to give reliable results. After each upset, the follow-
ing procedure was used in the selection of the step sizes. The initial At was
taken to be equal to 1/5 of the holdup time (U ,/L,), that is,

U/

At
5

At the end of every 10 time steps, the value of At was doubled.

Calculational Procedure

In proceeding from one time increment to the next, the point-slope predictor
was used to predict the values of T; and V; at the end of the next time period
(t, + A1)

dT;
T =T +2A—
th + At th— At dt tn (4—48)
dv;
tn+ At th— At dt tn

The derivatives of T; and V; that appear in Eq. (4-48) were evaluated numeri-
cally. After each V; had been predicted by use of Eq. (4-48), the corresponding
value of L; was computed by use of Eq. (4-47).

In the following discussion, it is supposed that initially the column is at
steady state and that at time t = 0+ a change in the composition of the feed
occurs (note that other initial conditions and upsets may be selected). The
calculational procedure for the case where the molar holdups are specified
follows:

Step 1 Take ¢ = 0.6 and choose the first Ar as described in the previous
section.

Step 2 Assume values for the temperatures and L/V’s at ¢, + At. For the
first two trials, the values at time t, are satisfactory. For the second and all
subsequent time increments, the values for T; and V; are predicted by use of the
point-slope predictor (see Eq. (4-48)).

Step 3 Compute d;, b;, uj;, and I;; at the end of each increment of time by
use of the component-material balances.

Step 4 Find the @’s such that g, =g, =g, ="' =¢gny—1 =0 by use of the
Newton—-Raphson method (see Eq. (4-32)).

e

(
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Step 5 Compute the temperatures by use of the K, method (see Eqgs. (4-39)
and (4-40)). Note that after the corrected u;’s have been found in step 5, the
corrected liquid mole fractions may be computed directly from these. Also, the
K, obtained by use of Eq. (4-39) may be used to compute the y;’s

inszb

Tjn+1

Step 6 Compute the L/V’s for the next trial by use of enthalpy balances.

Step 7 Repeat steps 2 to 6 until |6; — 1] is equal to or less than a pre-
selected number of the order of 10™* or 1075, Then proceed to the next incre-
ment of time by returning to step 1.

Tjn

For the case where the mass (or volumetric) holdups are specified, the following
procedure is employed.

Specification of the Holdups in Mass or Volumetric Units

For the first trial for the first increment of time (where the initial condition is
steady state), the variation of the molar holdup is neglected. At the end of the
first and all subsequent trials, the molar holdups at time ¢, + At are computed
by use of Eqgs. (4-33) and (4-34). Also, the g functions given by Eq. (4-36) are
employed in the calculational procedure described above.

Examples

A wide variety of problems was solved in the course of the investigation of the
properties of the proposed calculational procedure by Waggoner(16). The deter-
mination of the 6;'s at the end of each calculation through the column consti-
tutes the only trial-and-error involved in the proposed method. Some of the
properties of the § method are demonstrated by use of Example 4-2 (see Table
4-4). The upset (a change in the feed composition) for this example is about the
maximum permitted by the curve-fits. The 6;’s obtained for the first 10 trials of
the first time period are shown in Table 4-5. Although the s shown in Table
4-5 are to within +107° of unity, this should not be taken to mean that the
corresponding T}’s, v;’s, and V}'s possess the same absolute accuracy because the
values of these variables possess truncation errors that resulted from the
approximation of the integrals by the implicit method. The fact that each 0 is
approximately equal to unity does, however, imply that convergence for the first
time period has been obtained, that is, a set of the independent variables, the
temperatures, has been found that satisfies the component-material balances
(Eq. (4-21)), equilibrium relationships (Eq. (4-39)), and the enthalpy and total-
material balances (Table 4-3 and Egs. (4-46) and (4-47)) to within the accuracy
of the computer. Transient values of selected variables of Example 4-2 are
presented in Table 4-6. In this example and others that follow, a ¢ = 0.6 was
used unless otherwise noted.
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Table 4-4 Statement of Example 4-2

Initial conditions:steady state operation

Specifications Steady state solution
Vapor rate,
Compo- | Compo- | FOX°, . |
nent ‘::). nent mol/min | Other conditions Plate Temp., °F mol/min
= ili 137.98 50.00
1 C,H 60 D = 50, V, = 150, boiling | 1 (condenser)
2 n-JC‘t};-llo 20 point liquid feed, total 2 142.00 150.00
3 n-C¢H,, | 20 condenser, column press. | 3 148.43 146.32
= 300 lb/in? abs. 4 4 158.49 141.10
rectifying stages, 3 5 (feed) 179.33 130.98
stripping stages, including | 6 199.78 123.73
the reboiler. The K data 7 (reboiler) 248.58 109.10
and enthalpy data are
given by Holland(6) and Component | d, b,
reproduced in Tables
4A-1, 4A-2. C,Hq 483711 11.6289
n-C,H,, 16.2849 x 107! | 183715
n-CeH,, 43.6069 x 107% | 19.9996
Upset for Example 4-2
Compo- FX, B
nent zo. Component mol/min Other conditions
1 C,H 10 Same as those stated for the initial steady state
2 n-S(Z,;{,O 40 solution. In addition, the holdup on each plate,
3 n-CeH, 50 the condenser, and the reboiler is 50 moles.

Table 4-5 Convergence of the thetas for Example 4-2

Iterative values of variables for the first time period (At = 0.1 min)

d
Trial | 6, 0, 0, 6, 0, 66 .

09979708 | 1.0000811 | 1.0009094 | 1.0054013 | 09943160 | 0.9972886 | 48.36897
10008209 | 09999998 | 09999199 | 09991871 | 1.0006397 | 1.0003803 | 48.37141
10000253 | 1.0000068 | 1.0000758 | 1.0005402 | 0.9992728 | 09997367 | 48.37085
09999844 | 09999986 | 09999836 | 1.9998410 | 1.0002134 | 1.0000600 | 48.37104
10000016 | 1.0000007 | 1.0000067 | 1.0000582 | 0.9999096 | 0.9999795 48.37099

09999932 | 09999998 | 0.9999978 | 0.9999797 | 1.0000334 | 1.0000053 | 48.37100
10000029 | 1.0000001 | 1.0000007 | 1.0000072 | 0.9999874 | 0.9999989 | 48.37100
09999993 | 1.0000000 | 09999997 | 09999974 | 1.0000047 | 0.9999999 | 48.37100
1.0000006 | 1.0000000 | 1.0000001 | 1.0000009 | 0.9999983 | 1.0000001 | 48.37100
1.0000002 | 1.0000000 | 0.9999999 | 09999997 | 1.0000007 | 0.9999999 | 48.37100

O V0N AW -

—_

In order to minimize the computing time required to solve a giyen problem,
the number of trials for each time period was limited. A§ shown in Tgb'le 4-5,
good accuracy is obtained after the first few trials for a given At. Also, it is seen
that for any one At, convergence to the desired accuracy may not be obt:':uned if
too few trials are employed. The inaccuracies that resu!t from perform}ng too
few trials are carried over to the next time period, and it may become imposs-
ible to obtain convergence for the next time period regardles's of the m.%mbe'r of
trials performed. These inaccuracies eventually disappear with successive time
iAo ac demanctrated hy Waeoooner(16)
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Table 4-6 Transient conditions for Example 4-2

Events Transient values of selected variables
Length | Cumu- Component-distillate rates,
of lative mol/min Temperature, °F
Time time time,
period | period | min d, d, d, T, T, Ty
1 0.1 0.1 48.3710 1.6286 | 0.0004 13798 | 187.37 24786
2 0.1 0.2 48.3705 1.6291 | 0.0004 13798 | 199.01 246.67
3 0.1 0.3 48.3685 1.6310 | 0.0004 13799 | 207.86 24897
5 0.1 0.5 48.3543 1.6453 | 0.0004 13801 | 22035  255.53
10 O.] 10 48.1750 1.8246 | 0.0006 138.27 | 239.22 28301
20 0.1 2.0 46.7040 3.2955 | 0.0026 14048 | 26494  330.21
30 0.2 4.0 35.9441 14.0093 | 0.0466 148.12 | 29439  369.38
40 04 8.0 13.8426 | 35.6452 | 0.5226 20506 | 317.72  393.50
50 0.8 16.0 9.9895 | 38.1016 1.9100 217.19 | 33572 40741
60 1.6 320 9.8698 | 36.7197 | 3.4106 220.09 | 34482 413.13
70 32 64.0 9.8522 | 36.4856 | 3.6622 220.58 | 34598  413.80
71 6.4 70.4 9.8521 | 36.4840 | 3.6639 220.59 | 34599 41381
Final* steady state 9.8520 | 36.4829 | 3.6651 220.59 | 346.00 41381

* Found by use of a steady state calculational procedure.

On the basis of the results obtained by solving a variety of examples, the
following scheme was devised. For each time period, a maximum of 10 trials
through the column are made. If before the tenth trial 16, — 1/ < 10™* for all j,
the calculations for the next time period are begun.

Example 4-3, stated in Table 4-7, illustrates this procedure. An upset in the
composition of the feed, which included the introduction of a new component
into the column, occurred at time ¢t = 0+. At the end of 4 + min a second upset
occurred, and at the end of 19+ min a third upset occurred such that the final
feed did not contain one of the original components. After each upset, the
procedure for selecting the size of the time period was reinitiated. The transient
solutions of Example 4-3 are illustrated in Figs. 4-7 and 4-8. The average
computer time required per time period was 0.19 min (IBM 709).

Table 4-7 Statement of Example 4-3

Initial steady state conditions and solution are the same as Example 4-2, Table 4-4

Upsets for Example 4-3

Upset 1 Upset 2 Upset 3
Compo- att =0+ att=4+ min att= 19+ min
nent Compo-
no. nent FX FX Fx Other conditions
1 C,H, 50 30 10 All specifications
2 n-C,H,, 10 5 0 and the molar holdups
3 i-C,H,, 10 20 40 are the same as those
4 n-CeH, 30 45 50 stated in Table 4-4
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Example 4-4, stated in Table 4-8, demonstrates the behavior of the pro-

posed calculational procedure for feeds with wide boiling ranges. Its transient
solutions are shown in Table 4-9.

Table 4-8 Statement of Example 4-4

Initial conditions: steady state operation. Upset at time t = 0+: a change in feed composition

Specifications

Compo-
nent Compo- Upset
no. nent F°x° FX Other conditions
1 CH, 6.40 2.0 D = 31.6, V, = 94.8, boiling point liquid
2 C,H, 8.00 10.0 feed, partial condenser, column pressure =
3 C,H, 4.80 6.0 300 Ib/in* abs, 4 rectifying stages, 9 strip-
4 C,;Hg 10.00 12.5 ping stages including the reboiler. The K data
and enthalpy data are given by Holland(6)
2 n-CyHyo 12.28 1§~° and by Tables 4A-1 and 4A-2. The conditions
-CiH,, 2 6 S stated apply for both the initial steady
7 n-CH,, lé'l 15'§ state solution and the upset at time t = 0+.
8 nCeHy4 04 1L Take the holdups to be fixed at
9 n-C.H, 7.20 9.0 50 moles per stage (j =1, 2, ..., 13).
10 n-CgH 4 6.80 8.5
11 Heavy 20.80 7.0
fractiont
Initial steady state solution
Vapor
Temp., rates, Compo-
Stage F mol min  nent d?
1 104.89 31.60 1 6.4000
2 147.29 94.80 2 8.0000
3 166.95 96.79 3 4.7951
4 181.53 95.45 4 9.9727
S 210.17 88.68 S 1.0383
6 237.51 195.88 6 1.3920
7 249.87 229.99 7 Lavyds x 107!
8 257.64 244.07 8 9.1141 x 10~°
9 264.47 249.99 9 6.7911 x 1078
10 273.49 249.90 10 5.2789 x 1071
11 289.78 242.29 11 24488 x 10712
12 326.16 219.73
13 429.36 161.64

T This component is a 400°F normal boiling fraction.
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Table 4-9 Transient Conditions for Example 4-4

Events Transient values of variables
Length Cumu- Distillate rates, mol/min
of lative
Time time time
d
period period min d, d, d, d, ds 6
1 0.1 0.1 6.24717 8.0369 4.8255 10.0366 1.0477 1.4037
2 0.1 0.2 5.5975 8.1930  4.9548 10.3088 1.0884 1.4539
3 0.1 0.3 4.4396 8.4677 5.1853 10.7967 1.1630 1.5454
S 0'1 0.5 2.5707 8.8850 5.5546 11.5910 1.2937 1.7027
10 0:1 1.0 2.0040 9.0033 5.6340 11.8076 1.3676 1.7809
4870 1.3859 1.7723
0.1 20 2.0003 9.4717 5.4798 11.
§8 0.2 4.0 1.9995 9.8946 5.4456 11.2244 1.3539 1.6784
40 0.4 8.0 1.9993 9.9386 5.6022 11.3567 1.2212 1.4777
50 6.8 16.0 1.9996 9.9571 5.7493 11.6732  0.9968 1.2202
60 1.6 320 1.9998 9.9790 5.8593 119944 07736  0.9909
70 32 64.0 1.9999 9.9930 5.9328 122219 0.6184  0.8316
80 6‘4 128.0 2.0000 9.9989 5.9658 12.3255 0.5506 0.7572
90 12'8 256.0 2.0000 9.9998 5.9720 12.3453 0.5381 0.7427
94 25‘6 3584 2.0000 9.9999 59722 12.3458 0.5378 0.7423
Events Transient values of variables
Length  Cumu- Distillate rates, mol/min
of lative
Time time time ,
period  period  min d, dg dy 10
1 0.1 0.1 000191 92474 x 1075 69126 x 107®  5.3908 x 10:12
2 0‘1 0.2 000202 98315 x 10”% 7.4493 x 107® 58884 x 10_10
3 0.1 0.3 0.00220 0.000011 84879 x 1078  6.8647 x 10_‘0
5 0.1 0.5 0.00254 0.000013 1.0522 x 1077 8.8382 x 10_9
10 0:1 1.0 0.00280 0.000015 1.2289 x 1077 1.0599 x 10
20 0.1 2.0 0.00314  0.000018 1.5077 x 1077 1.3324 x 10::
30 0.2 4.0 000394  0.000024 2.1082 x 1077 1.8854 x 10_9
40 0.4 8.0 0.00450 0.000026 2.1948 x 1077 1.8906 x 10_9
50 0.8 16.0 0.003 0.000020 1.6021 x 1077 1.3011 x 10_10
60 1.6 320 0.00295 0.000015 1.0838 x 1077 8.2627 x 10
70 32 64.0 000233 0.000011 7.7910 x 1078 5.6329 x 10:12
80 6.4 128.0 000207 9.7050 x 107  6.5855 x 107®  4.6352 x 10_10
90 12:8 256.0 000202 94381 x 107%  6.3702 x 1078 4.4599 x 10—10
94 25.6 358.4 000202 9.4315x 107  6.3469X107® 4.4556 x 10
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Table 4-9 Transient Conditions for Example 4-4—Continued

Events Transient values of variables
Temp., °F Vapor rates, mol/min

Time Con- Plate 5, Plate 13, Plate 5, Plate 13,
period denser feed reboiler feed Plate 6 reboiler

1 105.48 214.49 426.92 101.48 158.61 128.63

2 108.00 217.74 422.31 104.59 144.52 116.09

3 112.40 218.11 417.06 93.03 131.40 106.95

S 119.42 218.21 406.82 84.58 122.12 104.12

10 121.89 218.31 388.93 83.42 120.39 110.99
20 120.95 217.88 368.45 83.82 119.95 120.00
30 119.32 216.93 358.82 83.97 119.38 126.58
40 117.25 215.55 363.73 83.44 118.07 126.44
50 114.15 213.64 366.45 82.46 116.06 125.68
60 111.05 211.11 366.80 81.38 113.75 124.71
70 108.81 208.96 366.68 80.56 111.83 123.85
80 107.73 207.73 366.59 80.19 110.86 123.41
90 107.58 207.48 366.58 80.11 110.67 123.33
94 107.58 207.48 366.57 80.11 110.66 123.33

Comparison of Calculated and Experimental Results

Waggoner(16) used experimental results obtained by Huckaba et al.(7,8) and by
Armstrong and Wilkinson(1) for some relatively simple systems at unsteady
state operation for comparison with the results obtained by the proposed calcu-
lational procedure. Although the systems for which experimental data existed
had binary feed mixtures, Waggoner did not take advantage of the mathemat-
ical property (x, =1 —x,) of such systems but treated them in the same
manner required for multicomponent systems. For all examples considered, the
agreement between the calculated and experimental results was good. Of the
comparisons made by Waggoner(16), the results are presented for only one
experiment, run 1 of Huckaba(7). A description of the experimental conditions
employed by Huckaba and the basis of comparison of the calculated and ex-
perimental results follows.

Huckaba’s work was based on the separation of a binary mixture of metha-
nol and tertiary butanol. These alcohols were chosen because, although their
molecular weights are very different, their densities were nearly identical to each
other. Constant mass holdup was descriptive of this operation. The equipment
used by Huckaba et al.(7,8) consisted of a column with 12 bubble-cap plates. A
total condenser and a reboiler were used, and the column was vented to the
atmosphere.

A plot of composition versus time was presented for selected trays and for
several runs (Refs. 7 and 8). In addition, the feed description and the reflux ratio
were given for all runs. Vaporization efficiences were calculated from specified




(

156 STAGED SEPARATION PROBLEMS—TWO-POINT IMPLICIT METHOD

with those presented graphically (Refs. 7 and 8).

Table 4-10 Statement of Example 4-5 (Ref. 7)

modified Murphree efficiencies. The numerical values of efficiencies used by
Huckaba for the pure components were taken as the modified Murphree ef-
ficiencies. These efficiencies led to steady state solutions which were consistent

Run 1 by Huckaba et al(7) is simulated by Example 4-5, Table 4-10. A

Initial conditions: steady state operation

Steady state solution

K data and enthalpy data are
given in Table 4A-3

Specifications
Vapor
Temp., flow,
Feed Other conditions Plate °F mol/min
Methanol concentration D = 2391 mol/min, L, = 56.602 1 151.19 2391
mol/min, F = 29.778 mol/min.{ 2 155.53 80.51
Weight Mole Liquid feed below its bubble- 3 157.14 79.95
fraction fraction point, total condenser, atmo- 4 158.95 79.17
spheric column pressure, 7 S 160.58 78.42
0.571 0.7548 rectifying stages (including 6 161.97 71.74
the condenser), 7 stripping 7 164.88 77.15
Temperature = 82.0°F stages (including reboiler). 8 167.62 80.20
Modified Murphree efficien- 9 170.17 79.21
cies: 10 172.40 78.28
Methanol t-butanol 11 174.29 77.46
0.389 0.845 12 175.84 76.76
2<j<13 13 177.08 76.18
1.0 1.0 14 176.73 75.71
j=1j=14

First upset for Example 4-5 at ¢t =0+

Methanol

Feed Other conditions concentration
Methanol concentration D = 2391 mols/min, L, = 56.602 Weight Mole

mol/min, F = 27.988 mol/min frac- frac-
Weight Mole Holdup: Plate tion tion
fraction fraction Condenser = 32400 Ib

Reboiler = 56400 Ib 1 0.821 0914

0.491 0.6906 Each plate = 1200 Ib N 0.462 0.665

All other conditions are 9 0.248 0.433
Temperature = 82.0°F the same as those specified 13 0.088 0.182

for the initial steady state 14 0.049 0.106

solution

+ Note, all rates and holdups are, of course, relative to the feed rate stated.

(
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Table 4-10 Statement of Example 4-5 (Ref. 7)—Continued

Second upset for Example 4-5

Feed Other conditions
Methanol concentration D = 23.027 mol/min, L, = 54.512 mol/min
F = 27.988 mol/min ,
Weight Mole Holdup:
fraction fraction Condenser = 324001b
Reboiler = 564001b
0.491 0.6906 Eachplate = 12001b

All other conditions are the same a
o ! s those spec-
Temperature = 82°F ified for the initial steady state solution.

Time of upset 2

After Time after first
39th At upset = 38 min

comparison of the calculated results f i i
of Huckaba et al(7) is presented grapl?irc;ll;;s iix;?;‘.)f-: Hh the caleulated results
In or.der to utilize the modified Murphree efficiencies given by Huckaba
new .eﬁimency, called the vaporization efficiency, E;;, is defined which mak i
possible to apply all of the equations for perfelét plates by replacing e;(lf
Ji

wherever it appears by E;; K ji- The modified Murphree efficiency is defined by

EM = Yit1.i = Vji

B Kji Xji — Vji (4-49)

0.9 . . : ;
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Figure 49 Calculated and experimental results for Example 4-5.
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where the sum of the K ;; x;’s is not.necessarily equal to unity. The vaporization

efficiency is defined by
’ vi= E;Kjixji (4-50)
If values of E} are known as in the case of Example 4-5, the corresponding
values of Ej; at the end of any trial are found by use of the following formula
which is readily obtained by eliminating K ;; x;; from Egs. (4-49) and (4-50) and

rearranging to give ,

M) Zit1.i 4-51
Eji=E_?il+(l_Ejin (4-51)

Jihji

Modified Theta Method of Convergence

In the interest of increasing the speed of performing the ca’lculatlons for each
time period, a method of convergence involving only .two 9.s for the case of a
conventional column was investigated and found to give satlsfactor)i results for
all problems considered. In this method, 6; is set equal to 6, for all j z 2. Thus,
for the case where the molar holdups and the rates D and L, are specified for a
conventional column with a partial condenser, Eq. (4-25) becomes

b, b,
a, =% (z)
ujiz(,l(ﬁ) G=L2....N—1 (4-52)

For a column having a total condenser, 6, no longer exists and it is replaced i,n
Eq. (4-52) by some other 6, say 0, = 0; Q’: 2,3, ..., N—1). The set of @’s
greater than zero that satisfies the specifications

N-1

D,y U

j=1

simultaneously is the set that makes g, = g = 0, where

golbo, 01) = .Z‘ldi -D

N—-1 ¢ N-1
g(0p,0) =Y Yui— 2L U; (4-53)

j=1 i=1 j=1
(Note that the function g is merely the sum of the g;’s for thc.’. holdups given by
Eq. (4-31); that is, g = = g;) The formula for d; as given by Eq. (4-30)
reduces to

=0

1 N
FX,+o[FX;,—d;—b]° + (M) ,Z: ud,

1
d, = N-1
' b UwB\ 01 (“_1)
b+ 00 (E)ca(l * d) At) * ¢ At .igl di ca

(4-54)
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The modified § method is seen to apply the same correction for each plate. For
any one At, the number of trials required to obtain convergence by use of the
modified § method was about the same as that required when all of the 8’s were
employed. The modified § method was tested with several examples in which
very large upsets were involved. The solutions obtained by use of the modified @
method agreed closely with those found by use of the § method (Refs. 16, 17).
From the solution of problems involving complex columns, it is known that
many of these problems will not converge at steady state unless the § associated
with each sidestream is used in the convergence method (Ref. 6). Also, any
scheme used to improve the speed of the unsteady state method must reduce to
the 6 method for steady state operation as the steady state solution is ap-
proached. Thus, the following set of @s should be determined in the modified 0
method for complex columns: 6,, one 6 corresponding to each sidestream
(vapor or liquid), and one 6 corresponding to the sum of the holdups for all
those plates without liquid withdrawals. The modified § method for complex

columns at unsteady state operation also gave satisfactory results for all prob-
lems considered.

An Exact Solution Given by the Theta Method

Consider a distillation column at unsteady state operation. Suppose that each
U; as well as D and B are fixed at finite and positive values. A total-material
balance enclosing the top of the column and any stage Jj ( <f) over the time
period from ¢, to t, + At is given by

th+ AL j
f (Visr = Lj—D)dt= } U, (4-55)
th k=1

J
— z U,
k=1 tn

Application of the mean-value theorems followed by the limiting process where-
in At is allowed to go to zero yields the following differential equation upon
division of each member by V}, ;:

1 — L — b = 1 i @_"
Vj+1 Viet Vier =y dt
Now suppose that the column is operated in such a manner that dU ;/dt is finite
for all j and ¢. Thus, after the limit of each term of Eq. (4-56), has been taken as
V;+, approaches infinity, one obtains

lim ( L’)—l 4-57)
Vj...l-»oo Vj+1
Since the limit of F/V,,, as Vi+1 approaches infinity is equal to zero, the

restriction that j < f may be removed, and thus Eq. (4-57) holds for all stages,
that is,

t, + At

(4-56)

[ %)
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Next consider the component-material balance for any stage j (j < f)

i
- Y Ux| (4-59)
k=1

tn + At J
f (Vie1Yj+1,i — Lijxj— DXp) dt = Zkaki
t k=

1 th + AL tn

n

Application of the mean-value theorems followed by the limiting process where-
in At is allowed to go to zero yields the following differential equation upon
division of each member by V;, ,:

L. D 1 4 du,
==L )X - Xpi = & 4-60
Yiet. (Vj+1> ! (Vj+l> ° Vier W= dt ( )

Now suppose that the column is operated in a manner such that du;/dt is finite
for all j and t. Thus, after the limit of each side of Eq. (4-60) has been taken as
V., approaches infinity, one obtains the result

J
Yi+1,i = Xji (4-61)

since D and each U; are finite as well as x;; and Xp;. Also, the limit of L;/V;,,
as V;,, approaches infinity is equal to unity (Eq. (4-57)). Equation (4-61) also
holds for all stages j > f since the limit of FX/V,,, as V;., approaches infinity
is equal to zero.

A column having the operating conditions characterized by Egs. (4-57) and
(4-61) is said to be at total reflux because it is described by the same set of
equations as an actual column in operation at total reflux with F =D = B = 0.

The following set of equations is obtained by commencing at the top of the
column and solving simultaneously the equilibrium relationships y; = Kj; x;
and the component material balances y;., ;= x;. For a column having a

partial condenser, y,; = X p;, one obtains

X, = yli ::h
o K, Ky
. - X
o K, K,
(4-62)
Xpi
XN — . =
N KKy KN—l,i
XD:

XNi = Xpgi =
KKy KN—l.iKNi
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multiplied by U;/D, one obtains

<

i o Lfu,
d; o \ d,

(4-63)

Uni _ 1 fum
d; oM \ d,
where o; = K;;/Kj;, for all i and j.

Since xy; = xp;, the last expression of Eq. (4-63) may be restated in the follow-

ing equivalent form:
b_ 1 (b
d; o \d, (4-64)

For any two different choices of (uj/d,), the expression for stage j of Eq.
(4-63) can be stated in the form

(), -l e) :
d;/, (ujb/db)l d; /, (4-63)

Since the ratio for the base component b which is enclosed by brackets depends
upon stage j alone, it follows that

i) _ g (% .
<di>2—0j<‘;i>1 U=L2..N-1 (4-66)
For the Nth stage, a similar analysis of Eq. (4-64) yields
(91) _ (by/dy) (g) .
d), (by/dy), \d;/, (4-67)

or

b, b,
(&), (3), s

Thus, the 6 multipliers defined by Eq. (4-25) are seen to be exact relationships
for a column at total reflux.

When each member of Eq. (4-62) is divided by the corresponding member of the
equation for the base component b and the resulting equation for each stage j is
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4-3 APPLICATION OF THE COMBINATION OF
THE TWO-POINT IMPLICIT METHOD AND
THE 2N NEWTON-RAPHSON METHOD

The solution of the equations for any one time step are carried out in a manner
analogous to that demonstrated by Holland(6) for steady state problems. The
independent variables are taken to be the N stage temperature {T;} and the N
flow ratios {L,/V;}. Corresponding to these 2N independent variables, N equilib-
rium functions and N energy balance functions are formulated.

The N equilibrium functions are formulated by first restating Eqs. (4-4) and
(4-5) in the following form: .

; L 2 Yji

0=izi_ _ iz (4-69)
L; Vi

]

c

Elimination of the I;’s by use of Eq. (4-17) and restatement of the result so
obtained in functional form yields the dewpoint form of the function
c 1 .
F;= Zl <f(—j—1>vﬁ G=1,2,...,N) (4-70)

Jt

1
Vi
For the case where a total condenser is used, the bubble-point form of the
function is used, namely,

F, = (Ky; — ) (4-71)

ol -
Mn

i=1
The enthalpy balance functions (for stages j=2,3, ..., f— 1, f+1,..., N—1)

are obtained by a rearrangement of Eq. (4-46) followed by restatement in func-
tional form, namely,

b A

c . R o ~0 N 20 uo,i1°,
Y l:vj+1.iHj+l.i+lj—l,ihj—l.i+a(vj+l,iHj+1.i+lj“l»l'hj—1-i)+ . j}
G =i=,l

j ~
A ) . 3 ke
{vii Hj + lihj + o[vf, HY: + I h3] + 7 ﬂ}

-

b At
G=23.... -1, f+1,...,N=1) (472

The G functions for stages j = 1, f, and N are developed in a manner analogous
to that demonstrated above.

The functions F; and G; contain the dependent variables {v;}, {l;;}, and
{V;}. For any choice of values of the independent variables {T;} and {L;V}},
expressions are needed for computing the values of the dependent variables. The
{v;;} are found by use of Eq. (4-21) and the corresponding I;’s are computed by
use of the equilibrium relationship, I; = A;v;;.

Next an equation for computing the {V;} for any set of assumed L;/V;’s is
developed. When the Uj’s are assumed to remain constant, the total-material
balances are of the following form when only one stage is enclosed by each

i=1
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balance. For any stage j 2 <j <N — 1, j#f, N), the total-material balance is
given by

Vier +Lj-y =V, = L;=0 4-73)

For any given set of L;/V}’s it is desired to solve the total-material balances for
the cqrrespondmg. set of vapor rates {V;}. In the restatement of the total-
material balances, it is convenient to define the new variable 0; as follows:

L; L; .
b ej(7j>a (=12, N) (+-74)
where (L;/V)), is any arbitrary value of L,;/V;. Taking this assumed ratio equal
to the most recently assumed value of L;/V; serves to normalize the 0’s so that

at convergence ¢; approaches unity for all j. Let Eq. (4-74) be restated as
follows:

L=rV, (4-79)

-4(3)

Equation (4-75) may be used to restate the total-material balances in terms of

either the vapor or liquid rates. When the balances are restated in terms of
vapor rates, Eq. (4-73) becomes

where

=

"j—an—l“(l"'rj)Vj‘*' Vier =0 (4-76)

The complete set of total-material balances may be represented by the matrix
equation

RV=-% (4-77)
—(1+ry) 1 0 0 0
ry —(I+r) 1 0 0
Ro= |
0 0 rv—y —(L4+ry_y) 1
0 0 0 rn_1y —(L+ry)
V=[D Vv, ¥ - VN]T
F=[0 - 0 F 0 - O]T

When the {6;} and {T}} are taken to be the independent variables rather than

Lhe {L;/V;} and {T}}, the A,’s which appear in the component-material balances
ecome

0, (L;
A=t (—;) (4-78)

Jt J

For a conventional distillation column, the following sets of specifications are



164 STAGED SEPARATION PROBLEMS—TWO-POINT IMPLICIT METHOD

commonly made. When Q¢ and Qp are specified, the independent variables are
given by
x=[0, 6, -~ 0y T, T, - T]" (4-79)
If the reflux ratio L,/D and the boilup ratio Vy/B are specified, then the inde-
pendent variables are given by
x=[Qc 0, 05 -+ Oy_1 O nrn Ty" (4-80)
Also, one may specify L,/D and Qg or Q¢ and V,/B instead of L,/D and Vy/B.
The solution value x may be found by use of the Newton-Raphson method
JAx = —f (4-81)
where the jacobian matrix J has the following representation (where X is given
by Eq. (4-79)):

06, oTy
3= :
0, Ty
Ax =[A0, A6, --- A8y AT, AT, --- AT "
f=[F, F, -+ Fy G, G, - GN]T

The 2N Newton-Raphson equations may be solved b‘y .use.of any one of
the three procedures recently described by Holland(6) for distillation columns e}t
steady state operation. Of the following three procedures only Broyden’s

method is described briefly.

Procedure 1 Use of analytical expressions for evaluating the partial deriva-
tives of the F}’s and Gs.

Procedure 2 Broyden’s method(4). '

Procedure 3 Broyden—Bennett algorithm (Refs. 2, 4).

Broyden’s method is applied as outlined in the six. steps below l?q. (2-48),
except for the fact that for a change in any one of tbe independent 8;s the two
sets of constraining equations (the component-material balances, Eq. (4-21) aqd
the total-material balances, Eq. (4-73)) must be solved. However, for a change in
any of the Tjs it is necessary to solve only the component-material balances
because the total-material balances are independent of the temperatures {Tj}.
Also each trial is initiated by taking the assumed values {(Lj/’Vj)a} and {T;}
equal to the most recently calculated sets of values for these vanab}es, and the
assumed 6;s are taken to be 6, =60, = = Oy = l.’These choices for the
(L;/V).s and the 6’s have the effect of normalizing the Qj s o

In summary, the equations for the model of a continuous distillation
e at nncteady state considered in this chapter consists of the component-
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material balances, total-material balances, energy balance and equilibrium re-
lationships. After the integral-difference equations have been reduced to alge-
braic form by use of the two-point implicit method, they must be solved for the
values of the variables at the end of the time step. Two of the possible methods
for solving these equations are the 6 method and the 2N Newton-Raphson
method. When the holdups are allowed to vary, as in Chap. 8, the 6 method is
no longer recommended. Instead, other methods such as Gear’s and the semi-
implicit Runge-Kutta methods are recommended. These methods are demon-
strated in subsequent chapters. Also, a combination of the two-point implicit
method and the Newton-Raphson method could be used. It is, however, gener-
ally slower than the more powerful multipoint methods mentioned above.

In order to compare the 6 method, the modified # method, and the 2N
Newton—Raphson method, Examples 4-2 and 4-4 were solved by each of these
methods. The results so obtained are presented in Table 4-11. Broyden’s method
was used in the § method in the solution of the g functions for the &’s and in
the 2N Newton-Raphson method. Two procedures were used. In the first

Table 4-11 Comparison of the theta method, the modified theta method, and the
2N Newton-Raphson method for Examples 4-2 and 4-4 (Ref. 10)

Computer
time
No.of (AMDAHL
time 470/Vé6
Example Method steps computer) Convergence criteria Compiler
4-2 0 method 94 (1) 498f  Ceaseif|l —6;{ <107 FORTRAN H
(2) 350t  or|AT;|/T;< 1073 EXTENDED
after the 10th trial of a
time step
4-2 Modified 94 (1) 347 Same as above FORTRANH
0 method 2) 304 EXTENDED
4-2 2N Newton- 94 (1) 13.03 ¢ < 10~ * where FORTRANH
Raphson (2) 383 EXTENDED
method 1 12
o= 5(Z + o)
4-4 6 method 94 (1) 47.79 Same as 6 method for FORTRAN H
(2) 16.09 Example 4-2 EXTENDED
4-4 Modified 94 (1) 1991 Same as modified FORTRAN H
f method (2) 19.12 method for Example 4-2 EXTENDED
4-4 2N Newton— 94 (1) 107.32 Same as 2N Newton— FORTRAN H
Raphson (2) 18.28 Raphson method for EXTENDED
method Example 4-2

t In order to apply the 2N Newton-Raphson method as formulated in the text, use the values
of Qc and Q, or L,/D and Q, found by use of the 6 method.

1 The entry given by (1) represents the time required when the jacobian evaluated once each
time step, and the entry given by (2) represents the time required when the jacobian is evaluated
only once for each problem provided that Broyden’s inequality criterion is satisfied.
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(denoted by (1) in Table 4-11), the jacobians were evaluated once per time step;
whereas, in the second procedure (denoted by (2) in Table 4-11), the jacobian
was evaluated only once per problem provided that the inequality criterion of
Broyden’s method was satisfied. The values of the elements of the jacobian at
the beginning of a given time step were taken to be the values which they had
at the end of the previous time step as proposed by Mijares(10).

NOTATION

Aj; = absorption factor for component i and plate j

b; = flow rate of component i in the bottoms, mol/time

B = total flow rate of the bottoms, mol/time

c = total number of components

d; = flow rate of component i in the distillate, mol/time

D = total flow rate of the distillate, mol/time

AT) = bubble-point function for plate j (T; is equal to the
bubble-point temperature of the liquid leaving plate
J [(T) =0)

f = a column vector of functions

Jx = a quantity that appears in the recursion formulas used
to solve the component-material balances

F = total flow rate of the feed

F(T) = dewpoint function for plate j (when T; is equal to
the dewpoint temperature of the vapor leaving plate j,
F(T) = 0)

gfb, ..., Oy_,) = the jth function of 8, 6, ..., Oy_;

g = a quantity that appears in the recursion formulas used
to solve the component-material balances

ﬁji, H ji = enthalpies (Btu/mol) of component i in the liquid
and vapor states, respectively, at the temperature of
plate j—in the examples solved, ideal solution values
were used, that is, h; = hj, H i=Hj

J = jacobian matrix

H = total enthalpy of the feed, regardless of state

H, = total enthalpy of the distillate, regardless of state

Hp; = virtual value of the partial molar enthalpy of
component i in the distillate (for a partial A
condenser Hp; = H,; and for a total condenser Hp; = hy)

K = equilibrium constant for component i at the temperature

and pressure of the liquid leaving plate j (these
functions are expressed as polynomials in temperature)
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K = equilibrium constant for the base component evaluated
at the temperature of the liquid leaving plate j (in
the K, method a hypothetical component with a K value
given by Eq. (4-41) is selected as the base

component)

I = flow rate at which component i in the liquid phase
leaves plate j, moles per unit time

L; = total flow rate at which liquid leaves plate j,
moles per unit time

m; = liquid holdup (mass or volume) of component i on plate j.

M; = molecular weight of component i (also used to denote
the volume per mole for component i in the liquid phase
on each plate)

M ; = to(al liquid holdup on plate j in mass or volumetric
units

N = total number of stages including the condenser-
accumulator section and the reboiler

Qc = net energy removed by the condenser per unit time

Oxr = net energy transferred to the system by the reboiler
per unit time

t = time in consistent units (¢, is used to denote the
time at which the time increment n + 1 begins, and

. t, + At the Fim; at which time increment n + 1 ends)

Ui, uj; = vapor and liquid holdups in moles of component i on
plate j, respectively

Uy, Ut = total holdups of vapor and liquid, respectively, on
plate j, moles

v;; = flow rate at which component i in the vapor phase
leaves plate j, moles/time

V; = total flow rate at which vapor leaves plate j,
moles/time

Xj; = mole fraction of component i in the liquid leaving
plate j

X = a column vector of variables

X; = total mole fraction of component i in the feed
(regardless of state)

Xp: = total mole fraction of component i in the distillate
(regardless of state)

Vii = mole fraction of component i in the vapor phase

leaving plate j

Greek letters

o = relative volatility of component i at the temperature

of plate j (a;; = K;i/K )
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L .V
Yiis Vji

0o
0,

J

¢

Subscripts

ca

Superscripts

0

Mathematical symbols

{x:}

Il

activity coefficients for component i in the liquid

and vapor phases on plate j

a multiplier associated with the distillate and bottoms

a multiplier associated with stage j

a weight factor used in that evaluation of an integral

in terms of the values of a function at times ¢,

and ¢, + At

a constant appearing in the component-material balances
and in the enthalpy balances (¢ = (1 — ¢)/¢)
dimensionless time factor for plate j

(t; = (U;/L)/(¢ A1)

= enthalpy departure function (defined below Eq. (4-3);

see also App. 4A-2)

= calculated value
= component number (i = 1 through i = ¢)
= plate number; for condenser-accumulator section j = 1,

for the top plate j = 2, for the feed plate j = f, for
the bottom plate j = N — 1, and for the reboiler j = N

= an integer used for counting

trial number

= value of a variable at the beginning of the time

increment under consideration (the absence of a
superscript, say v;;, means either the instantancous
value of the variable or the value of the variable at
the end of the time period under consideration
(time t, + At)—see context)

the liquid phase

the vapor phase

= set of all values of the variables under consideration

(
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PROBLEMS

4-1 Beginning with the component-material balances in the integral-difference form, show that the
corresponding equations obtained by use of the implicit method are those given by Eq. (4-20).

4-2 By use of the implicit method and the relationships given by Eq. (4-25), show that the formula
for the corrected distillate rate for any component i is given by Eq. (4-30).

4-3 Find the analytical expressions for the partial derivatives of the function go given by Eq. (4-31)
with respect to 8, 0,, ..., 05 _,.

4-4 Show that Egs. (4-39) and (4-40) give the same value for K ;. That is, given the expressions for
x; and y; (Egs. (4-27) and (4-28)), the relationship [, = Ajv;, and the expression for K, (Eq.
(4-39)), show that the expression for K j» as given by Eq. (4-40) follows.
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45 (a) Beginning with the following definition of the corrected value of vj;.

Vj;
v = a,-(i) d,

show that the expression given by Eq. (4-28) for the corrected value of yj; fol}ows as a consequence.
(b) For the case where vapor holdups are specified for a column having a partial condenser,
obtain a relationship between the ¢;’s and 6)’s, where

Wi gy (%
d; ‘Ndi/ea

4-6 Develop the enthalpy balance expressions given in Table 4-2. ‘
4-7 Show that the recursion formulas presented in the text for solving simultaneous equations that

idi i i ian elimination.
are tridiagonal in form may be obtained by use of gaussian .
Hint: Consider first a particular case, say Example 4-1. The component-material balances

given in Example 4-1 have the following matrix representation:

by ¢, 0 0 O1fv d,
a, b, ¢; 0 0{lov, d,
0 a; by ¢35 Ofjvs]=]4ds
0 0 a, by, ci|fva d,

0 0 0 as bs]lvs ds

By use of the definitions of f;, g1, fi» gi» show that after the row operations corresponding to
gaussian elimination have been performed, the following result is obtained:

1 f; 0 0 0}fu g,
01 f, 0 O0}o, g,
0 0 1 f3 Ofjos]=]4s
00 0 1 filjvs 9a
0 0 0 O 1]Lvs gs

Commencing with the last row (row 5), apply the multiplication rule. N ’
4-8 Begin with the definition of x; given by Eq. (4-27) anfi the deﬁnltlon of a mole frac!tslon
x, =u,/U, and show that it is possible to obtain the defining equations for {6}, namely, Eqs.
Xji = Wil

(4-25) and (4-31). ’

4-9 Beginning with the component-material and total-material balances

FX;=vg + g
F=Vg+ Lg
and the dewpoint expression
< Yri
0= — -1
l'g’l KFI'

(a) show that the dewpoint expression can be restated in the form

and in the functional form
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where
F FX.
Ve = Upi = -
1+0 1+ 60/Kg;
0=t
VF

(b) In an isothermal flash calculation F, {X,}, P, and T are specified and it is required to find
0, Ve, {vr:}, and {I;;}. Show how the above equations may be solved by use of Newton’s method.
410 For the case where model 2 is used for the feed plate (instead of model 1), show how
component-material balances, total-material balances, and enthalpy balances presented for model 1
must be modified in order to represent model 2.

4-11 (a) Initially a distillation column is at steady state operation at total reflux. From the infor-
mation given below compute:

{“ji/di}v {bi/di}v {“j,‘}, {d.‘}, {bi}> and {Uj}.

Given:
Compo-
nent X; o; Other specifications
1 1/3 1 F =100, N = 3, partial condenser, U;/B = 2, u,,/d, = 1, u,,/d, = 1,
2 1/3 2 by/d, = 1. Note that for a column at steady state operation at total
3 /73 3 reflux, u;;/d; = (u;/dy)/of and b/d; = (by/d)a;N.

Also d; = FX /A1 + bj/d)).

(b) At time t = 0+, the feed composition is changed to X, =1/2, X,=1/3, and X, = 1/6. If
the column remains at total reflux, and if at the end of the first time step (At =0.4), u,,/d, =
Uzp/dy = 2, by/d, = 4, and U,/B = 2, compute {u,/d;}, {b;/d;}, {us}, {d:}, {b}, and {U} at the end of
the first time step. Take ¢ = 0.6.

(¢) Repeat part (b) for the case where (u,,/d,) = (u,/d,) = 4, b,/d, = 8, and U,/B =2 at the
end of the first time step.

(d) Beginning with the values of the {u;/d;}, {b,/d;} found at the end of the first time step in
part (b), the initial conditions of part (a), the values of U, U,, and D found in part (c), compute
the values (0, 0,, 6,) necessary to make g, = g, = g, = 0 simultaneously, where

go= Y d;—D

i=1

91 = Z“n“Ul
i=1

<
9= Yuy—U,
i=1

i=

4-12 For the special case of a conventional distillation column at steady state operation, Boston

and Sullivan(3) developed an algorithm for computing the f,’s and g,’s at unsteady state operation,
the algorithm is given by
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-1

fi=— m=1+A4,{1+1)
m,
—m
fi= : my =5, + Ay {1 + 1)m,
m,
s, =1+ A1,
—m,
fi= mk ! My =S+ Ay, {1+ 1 Omy
K
U,/L;
=Sy + A item, ‘tj=ﬁ k=23..,N=1)
91 =é
m;

= (i + Ayrgy)
92 2i 1i91 m,

m;, _
gk=(/ﬁi+Ak—l..‘gk—1,i) I:l ! (k=2,3,....,N)
k

For the special case where b, = —(1 + A;), ¢; =1, a;= A4, ;, dj= —f;, show that when these
quantities are substituted successively into the formulas given by Eq. (4-23) for the f’s and g,’s, the

above expressions are obtained.
4-13 Use the recurrence formulas to obtain the component flow rates of Example 4-1.

4-14 If, prior to an upset, a column is at steady state operation, show that the unsteady state
equations for the first time step reduce to the steady state equations at the conditions of the upset

when At is allowed to increase without bound.

APPENDIX 4A-1 EQUILIBRIUM AND ENTHALPY DATA

Table 4A-1 Equilibrium datat
P = 300 Ib/in? abs, (K/T)"® = ay; + a;, T + a3, T? + a5, T> (T in °R).

Component  a, x 102 a, x 10° a, x 10® a, x 10'2
CH, 32.718 139 —9.6951405 6.9229334 —47.361298
C,H, —5.177995 62.124 576 —37.562082 80145501
C,H¢ —9.8400210 67.545943 —37.459290 —9.0732450
C;Hq —25.098770 102.39287 —75.221710 153.84709
C;Hg —14.512474 53.638924 —5.3051604 —173.58329
i-C,Hg —10.104481 21.400418 38.564 266 —353.65419
i-C, —18.967651 61.239667 —17.891 649 —90.855512
n-C, —14.181715 36.866 353 16.521 412 —248.23843
i-Cg —7.548 8400 3.262363 1 58.507 340 —414.92323
n-Cg —7.5435390 20584231 59.138 344 —413.12409
n-Cg 1.1506919 —33.885839 97.795401 —542.35941
n-C, 5.5692758 —50.705967 112.17338 —574.893 50
n-Cg 7.171 4400 —52.608 530 103.720 34 —496.465 51
400 2.5278960 —17.311330 33.502879 —126.25039
500 33123291 —16.652384 24310911 —64.148 982

+S. T. Hadden: “Vapor-Liquid Equilibria in Hydrocarbon Systems,” Chem. Eng.
Prog., 44:37 (1948).

Table 4A-2 Enthalpy datat

300 Ib/in? abs; (h)'? = ¢;; + ¢ T + ¢5, T* (T in °R); (H)'? =e,;+ e, T + ey, T*(T in °R)

pP=

ey x 10°

e, x 10*

¢y x 10°

¢y x 10

€y

Component

2.408 8730
11.948 654
11.299 585
36.470900

120.39298
152.87778

7.3207219
146.641 25

501.045 59
615.931 54
588.754 30
658.551 30
389.81919
—822.394 88
—1185.2942
—1153.4842

56.796 38
61.334520
71.828480
81.795910
139.174.44
147.654 14
152.66798
130.966 79
128.901 52

44.445874

—3.7596114
—1.608 8376
—1.949 860 1
—2.4839140
—2904 8837

1.739570 63
1.541 1962
1.628 663 6
1.8834652
1.9802223
2.161865
2.161865

—17.899210
—7.291 500
—8.485 700

—12.427900

—14.500 060

—16.553450

—16.553405

—20.298 110

—23.356 460

—24.371 540

—23.870410

—25.314530

+ & ¢ ®

—3.1476209
—3.1476209
—3.8663417
~4.3917897
—4.649969 4
—4.4197793
—4.5418718
—3.8850819
—21.611909

i-C,H,

i-

4

2.300574 3

n-C,
i-Cyg
n-Cg
n-Cg
n-C,
n-Cg
400
500

82.549947
64.501 496
—34.018 595
—19.105299

—197.986 04

2.5017453
2.5636200
26768089
2.8246389

2.0509603
1522.3917
1479.5387
1328.3949
1893.3822
1497.817 1

85.834950
94.682 620
106.328 06

1.6230737

—59.003 304

2.8478429
6.3932857

—22.235050
—203.32192

72.328 160
138.496 58

18.641 269

—2.2183809

3.0179232

1.920 530

t J. B. Maxwell: Data Book on Hydrocarbons, D. Van Nostrand. Company, Inc., New York (1955).
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Table 4A-3 Equilibrium datat and enthalpy dataf

(h)'*=Cy;+ C;; T+ Cy T?
(Hi)llz =ey

(KJT)'P =ay;+ ay T + a3, T* + a,, T* (T in °R)

Pressure
Component Ib/in? abs a, x 10% a, x 10* a; x 10° a, x 10'°
Benzene 14.7 —14.822221 2.7363709 0.190 786 94 0.525114 54
t-butanol 14.7 66.229 585 —34.357736 54748290 —22.533968
Carbontetrachloride 14.7 63261142 —6.7784881 1.628 1568 —6.6366262
Methanol 14.7 34.514954 —20.165650 3.4838867 12.893 764
Pressure
Component Ib/in? abs C, C, x 10 C, x 10° e,
t-Butanol 14.7 —236.641 81 6.429 8840 —20.758627 161.02169
Methanol 14.7 —99.777949  3.1285170 —10.098542 134.43570

+ T. E. Jordan: Vapor Pressure of Organic Compounds, Interscience Publishers, Inc., New York
(1954).

1 C. E. Huckaba, F. R. Franke, and F. P. May: Presented at the 55th Annual Meeting of the
American Institute of Chemical Engineers, Chicago, Ill., Dec. 2-6, 1962.

APPENDIX 4A-2 THE VIRTUAL VALUES OF THE PARTIAL
MOLAR ENTHALPIES (Refs. 1, 2)

The virtual values of the partial molar enthalpies are defined as follows:
H=H+Q (1)
where H, = H{P, T, {n;}) = virtual value of the partial molar enthalpy of com-
ponent i in a mixture at temperature T and pressure P
H? = enthalpy of one mole of component i in the perfect gas state at the
temperature T and the pressure P = 1 atmosphere
Q= H(P, T, {n}) — H(1, T, {n;}), the enthalpy of one mole of mixture
at the temperature T and pressure P minus the enthalpy of one
mole of the same mixture in the perfect gas state at T and at P = 1
atmosphere (Q is called the enthalpy departure function)

= Y (n/m)H?
i=1
n; = moles of component i (n = total number of moles)

Although the virtual values of the partial molar enthalpies are generally
unequal to the partial molar enthalpies, they may be used to compute the
correct enthalpy of the mixture, that is,

nH(P, T, {n;}) = iniﬁi = iniﬁi @
i=1 i1
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Much less computational effort is required to compute the enthalpy of a mix-
ture when the virtual values of the partial molar enthalpies are used than is
required when the partial molar enthalpies are used.

The equality given by Eq. (2) is readily established by beginning with the
fact that the enthalpy of one mole of any mixture may be expressed in terms of
HP® and the departure function Q as follows

H=H°+Q 3)
Then the enthalpy of n moles (n, + n, + - -+ + n, = n) of a mixture is given by
nH = nH® + nQ “

Termwise differentiation of Eq. (4) with n, at constant pressure and temperature,
and with all of the n;’s held fixed except for n,, yields

_ 6(nH)) 0 ( on oQ
H, = H? — -—
. ( on, Jp, 1, nj#k a"k Z & ) (5nk>Q * n(ank)r. T, njsx ©

which reduces to

_ Q
H, = +Q+n<a ) (6)
a P, T,njzx

ny

Lt?t t}}e subscript k in the above equation be replaced by the subscript i. Multi-
plication of the resulting expression by n; followed by the summation over all
components yields

i=1 i=1 i=1

nH = an_ZnH°+nQ+nz (‘;2) N
i/P, T,njzi

Since Q is a homogeneous function of degree zero in the ns, it follows from
Euler’s theorem (App. 1A) that

=Z (anl>P Tn¢l=0 (8)

Thus, Eq. (7) reduces to

(4

‘; H, = Y n,H + nQ )

i=1

Multiplication of each term of Eq. (1) by n; and summation of the resulting
expression over all components yields

M o
=

= ‘;n,‘ H? + nQ (10)

i=1

Comparison of Egs. (9) and (10) establishes the validity of Eq. (2).
The departure function Q may be evaluated by use of the formulas given in
Ref. 3 below for a number of equations of state.
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CHAPTER

FIVE

SOLUTION OF
BATCH-DISTILLATION PROBLEMS

Although batch distillation is one of the oldest of the separation processes, it is
still used in a number of industries because it is more economical than the
continuous-distillation process. The sketch of a typical batch-distillation column
is shown in Fig. 5-1.

The development of calculational procedures for batch distillation, an in-
herently unsteady state process, has followed a somewhat different path from
that of continuous distillation. The calculational procedures proposed in the
literature for solving batch-distillation problems follow closely the development
of high-speed computing capability. The early efforts are marked by approxi-
mate and graphical procedures. With the advent of high-speed computers have
come more exact models of the process and the application of numerical meth-
ods for solving problems of this type. Beginning with Rayleigh(23), numerous
calculational procedures for solving batch-distillation problems have been pro-
posed (Refs. 1, 2, 3, 7, 8, 17, 18, 20, 25, 26, 27).

The description of a typical batch-distillation column is conveniently di-
vided into two parts: (1) the start-up period and (2) the product period. The
product period is that part of the distillation process during which a product is
withdrawn from the column. The adjustment period that precedes the product
period is called the start-up period. Adjustments necessary to bring the column
to an operational condition such that a distillate of the desired purity may be
withdrawn are made during the start-up period. In order to describe the prod-
uct period, the operating conditions for the column at the initiation of this
period must be known.

Solution of the equations by use of the two-point implicit method and the
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2 Accumulator

3L

‘ N
Reboiler or still

Figure 5-1 Sketch of a batch-distillation column.

method of convergence is presented in Sec. 5-1 for the start-up period. In Sec.
5-2, the use of these same procedures (the two-point implicit method and the 6
method of convergence) to solve the equations for the product period is pre-
sented, as well as a combination of the two-point implicit method and the 2N
Newton-Raphson method. Cyclic operation and optimization procedures are
treated in Secs. 5-4 and 5-5, respectively.

5-1 THE START-UP PERIOD (D =0,B=0, F =0)

The complete set of specifications for a batch-distillation column for the
start-up period are as follows: the number of stages, the reboiler duty, the
column pressure, the composition and thermal condition of the feed charge, the
holdup on each stage of the column, and the operating condition of total reflux
D=0, B=0, and F = 0. At this type of operation, a total condenser and a
reboiler (total) are, of course, used.

A batch-distillation process may be started up in a variety of ways. The
equations, calculational procedure, and convergence method for one such pro-
cedure follow. Suppose that at the onset, the plates are filled with the liquid to
be distilled. Further, suppose that this liquid is at its bubble-point temperature
at the operating pressure. Next suppose that the column is operated at total
reflux (D =0, B =0, F =0). The column may be operated at these conditions
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until steady state is attained or for any specified amount of time. Then the
product period is commenced. Actually, if the product period is to be com-
menced once the column has attained steady state operating conditions, it is not
necessary to follow the process throughout the transient start-up period. In-
stead, the desired steady state solution at total reflux (D = 0, B =0, F = 0) may
be found as described recently by Holland(14).

The equations for the start-up period consist of the component-material
balances, total-material balances, energy balances, and the equilibrium relation-
ships. The basic equations are of the same general form as the corresponding
equations of Chap. 4 with allowances being made for the fact that for the
start-up period, D =0, B=0, and F = 0.

Solution of the Equations for the Start-Up Period by Use of
a Combination of the Two-Point Implicit Method and the Theta Method

In the following development, the holdup in the vapor phase is neglected (u}; =
0 and UY = 0). This assumption is a realistic one because the molar vapor
holdup is generally small relative to the liquid holdup.

When the integral-difference equations are converted to a set of algebraic
equations by use of the two-point implicit method the component-material
balances may be stated in the following matrix form:

Avi= —f i=12..,0 (5-1)
where
pll 1 O O 0 0
1 —py 1 0 0 0
A= 0 Ay; —P3i 1 0 0
0 0 Ay, PN-1,i 1
0 0 0 An-y1,i —Pni
vi=[li vy vy o ond”

/1=Vu /2.‘ /Ni]T

Uy/Va
pi=14+ A1 +1) p~.~=1+¢[§£m
U.,/L; .
pu=1+1 Tj:qSJAt U=1,27""N—1)

fi= ol i+ 0oy — 0% — 19] + ul/$ At =23 ..,N=-1

0
Uii
S = 0[0(2).' - l(l)i] + é Z&t
0
UnNi
M=ol i — o] + —¢ 2[
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The Theta Method of Convergence for the Start-Up Period

The formulas for the convergence method may be developed by use of the
procedures shown in Chap. 4. In order to increase the speed of the calculational
procedure the modified 6 method may be used in lieu of the 6 method. The
formulas are presented first for the 6 method and then for the modified 6
method of convergence.

Since b; =d; =0, it is necessary to define the 0;s with respect to some
quantity other than d; or b;, say uy;. Suppose that in addition to the reboiler
duty, the composition and boiling point temperature of the initial feed charge,
the total holdups U, , U,, ..., Uy are specified, which in turn fixes Ur. Let the
N — 1 independent 6;’s be defined as follows:

ﬁ:e,.(-"’l) (G=23..,N) (5-2)
Uy Ui/ ca

The 6)s are to be determined such that the corrected u;’s are in overall
componcnt -material balance and in agreement with the specified values of the
U;'s. The formula for u,; is developed as follows. Since the corrected u;’s are in
overall component-material balance, it follows that

N N
=Y up— Y i (5-3)
j=1 j=i

because there are no input or output streams during any time period At of the
start-up period. Thus, the total moles (or mass) of each component within the
column remain fixed throughout the start-up period. To emphasize this, let
Uy X, denote the total moles of component i in the column at time t = 0, the
beginning of the start-up period. Then Eq. (5-3) may be restated as follows:

N N
Sup= Y ul=UgX; (5-4)
j=1 j=1

By use of the relationships given by Eq. (5-2), the following result is readily
obtained from Eq. (5-4).

Ur X,

gy = (5-5)
l+ Z % (ull)ca
The desired set of 6)s is that set of positive numbers that makes g, =g, ="~ =
gy -1 = 0, simultaneously, where
40 0s. s 00 = =V, (1<jSN -1 (5-6)

(Instead of the set of functions g; (j =1, 2, ..., N — 1), the set of functions g;
(j=2,3,..., N) could have been selected to find the 6;’s (G=273,..., N)] After
the 6;’s have been found by use of the Newton-Raphson method, the corrected

SOLUTION OF BATCH-DISTILLATION PROBLEMS 181

uy;’s are found by using Eq. (5-5). Then the mole fractions are readily computed

as follows:
[T
Jit
uli ca

Xi= T o~ (5-7)
Z (EE') Uyi

i=1 \U1i

After the x;’s have been determined, the temperatures are found in the usual
way by the K, method. These temperatures and compositions are used in the
enthalpy balances to determine the flow rates for the next trial for the given
time period under consideration.

In the problem solved it was supposed that at time t =0 the feed had
already been charged to the column, and at time t = 0+ the reboiler duty was
changed from zero to some value. The condenser duty Q. at time t, + At is
found by use of an enthalpy balance enclosing the entire column. Then the
reflux rate L, at the end of the time period is found by use of an enthalpy
balance enclosing the condenser and the accumulator. Note that at the be-
ginning of the first time period (t = 0), L) = V9 = Q2 = 0% = 0.

The total flow rates at the end of each time period are found by use of the
enthalpy balances which are presented in Table 5-1. This calculational pro-
cedure is repeated for each time period until the assumed and calculated tem-
peratures do not change from trial to trial. Then the procedure is repeated for
the next time period.

In order to avoid numerical difficulties in the application of the § method, a
new variable p; should be introduced as demonstrated for columns at steady
state operation. For the start-up perlod the definition of p; and the correspond-
ing working equations are as follows:

Up X

N
(uli)ca + Z 0} uji)ca

j=2

Uy = pi(uli)ca

Di =

91(02, 039 ees = U_ Z pl(ull ca (5'8)
1i=1
g40,,0;,...,6 20 piui)ea — 1 (G=2,3...,N—-1)
= (“ji)capi
Ji 4
Z(uji)capi
i=1

Instead of specifying the holdups in molar units, mass or volumetric units
may be employed in a manner analogous to that described in Chap. 4. After
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Table 5-1 Enthélpy and total material balances expressions for batch distillation
columnst

1. Enthalpy and total material balances for the start-up period

Qc= Qg +0(Qf — Q) — m le lzl(“,. i “ﬁ hY)
< l 3
QC - 0{ Z [Ug;(Hgn - hl.') - l?.(h?, - hli)] - QC} - -¢_A lull - ll)
V2 - i=1 i=

Z(HZE —h )y

i=1

L=V, +o(V3—L)

ij(Hji—hji)yji_Lj—l z(hj—l.i_ ,;)x; 1-’”2[”,+1.(H,+|x"hji)+ ,(h, 1 hﬁ)]
i=1 i=1

Z(H,'+ i hji)yh 1,
i=1

s O(HS — hy) + I3RS, — k)] — —— Y ujdh§ — hy)
+“,§1[v’( # ) = G=23..N-1

<
Z(Hjn,i - hji)yj+l,i
i=1

L=V, +L,~V, (=23..,N-1

J
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Table S5-1 Enthalpy and total material balances expressions for batch distillation
columnst—Continued

L=V, —V,—=L,  (=23..,N-1)

J

Or =Wy Z(Hm - hN—l,i).VNi
i=1

"[LN 1 Z(hN i o Xy — VR Z(Hm_hlv li)yN|+QR]

i=1 i=

UO c
¢ At Z(hm kg - 1 XN — ¢_Xt z(h)?li - hN—l.i)ng‘
i= i=1

Uy = U — D At, where D is fixed

*H,, = h,, for a total condenser; H,, = H ; for a partial condenser

3. Enthalpy Balance Functions for the 2N Newton-Raphson Method for the Product Point

2. Enthalpy and total material balances for the product period

Q=" Z(Hz. = hy)yu — DZ(HB, — h)Xp;

i= i=1

+ ”[Vg Y (HS — k% — LS Y (1 = h)x - D° Y (HY — h)Xp; — Qg]
i=1

i=1 i=1

— hy)x%;

V=L, +D

—Lj—lz(hj—ll h,.)x,1-+VZ(H1x_ )Jl
i=1

Vj+l =
Z(Hj+l,i_hji)yj+l,i
i=1
l: j+1 Z(H;H. hi) + LY, Z(h?—l.i_hjl)x?—lil
i=1 |

Z(Hj+l,i - hﬁ))’j+ 1,i

i=1

a[v;’ §(H — byl + L Z(h% ]
i=1

E(Hj+l.i - hji)y]+l.i
i=1

= hy)xj;

|=l

+

(Gi=23..,N=-1

< 0 0 u?ih?i
g vy Hy + ov3 Hy + W

G, =—= = -1
< h
S | tiihye + d;Hp + o1 hS; + d2 HY) + (’;'A“}+Qc+aQ2
i=1 L
c OhO
z Visr i Hjoy ot Gy by o4 000, i HYwy o+ 092, ihO_, )+ JA’;]
G ==t -1
d u;h;
| viHy + Ly + o3 HS + 1G09) + 22 i
i=1 ¢ At
< up; hy:
Z{N1nhN1-+U[1N—l.hg1;]+$At}+QR+¢7Q?z
Gy =2 -1
< uy hy;
.'§1 [UN-'HN.“*‘U”?J.'H%-"*‘#]

1 For nonideal solutions, replace h;; and H; by h; and H,;.

calculations have been carried out for a large number of time periods, the
steady state solution at total reflux (D = 0, B = 0, F = 0) was approached for all
problems considered by Barb(l). The steady state solution may be obtained
directly by use of one of the procedures recently described by Holland(14).

Modified Theta Method of Convergence for the Start-Up Period

In order to reduce the time required to apply the 6 method to the start-up
period, the number of s and g functions may be reduced in the following
manner. Let the §’s corresponding to the holdups be set equal to each other,
namely,

=0, (i=23..,N) (5-9)
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The g function is taken to be the sum of the g functions corresponding to the
holdups U; (j =1, 2, ..., N — 1). Then, in view of Eq. (5-6),

N-1 ¢ N-1
g(0) = Z Z u; — Z U; (5-10)
j=1i=1 j=1
where
Uy = (“1i)caPi
Cuj = 0(uj)e, pi G=23..,N-1
pi = Ur X, (5-11)

N
(Uy)ea + 0 Z (uji)ca
j=2

and the mole fractions are given by Eq. (5-8).

Energy Balances

Let the start-up period be commenced at time ¢ =0, or t, = 0. At time t = 0+,
suppose the reboiler duty is changed from zero to some value and that it is
either held at this value or varied in some prescribed manner for all ¢ for the
remainder of the start-up period.

The condenser duty Q. at time t, + At is found by use of an enthalpy
balance enclosing the entire column. Then the reflux rate L, at the end of the
time period is found by use of an enthalpy balance enclosing the condenser and
the accumulator. Note that at the beginning of the first time period (f, = 0),
Lo =V =02=0}=0. .

After the liquid rates at the end of the time periad have been found by use
of the enthalpy balances, the corresponding vapor rates V; (2 < j < N) are found
by the total-material balance expressions. .

The constant-composition form of the enthalpy balances are formulated in
a manner analogous to that described in Chap. 4. The resulting expressions are
presented in Table 5-1.

After the vapor rates V; have been found by use of the enthalpy balances of
Table 5-1, the corresponding set of liquid rates {L;} may be found by use of the
total-material balances as shown in Table 5-1. .

In order to determine accurate values of the transient values of the vari-
ables, small values of At are needed for the first few time periods following an
upset. The following scheme which is based on the one p.ro.p'osed by
Waggoner(28,29) for continuous columns is recommended. The initial Ar is
computed such that t,, = 5/¢, where

— (Uj/Lj)av

Toy At (5-12)

and (U,/L)),, is the arithmetic average of this ratio over all stages. At the end of
every 10 time periods, the value of 7,, is reduced by one-half or At is doubled.
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Calculational Procedures

In the following discussion, it is supposed that at t = 0, each plate contains the
liquid feed -at its boiling point at the column pressure. At time ¢ = 0+, the
heating medium to the reboiler is turned on which results in a reboiler duty Og.

For the time period from ¢, to t, + At, the steps of the calculational procedure
are as follows.

Step I Take ¢ = 0.6 and choose At as described above.

Step 2 Assume values for the temperatures {T;} and {L;/V;} at time ¢, + At,
the end of the time period under consideration. As a first approximation for the
first two time steps, the values at time ¢, + At may be taken equal to those at
time ¢,. A better approximation for the first trial of each time increment is
found by use of the point-slope predictor:

dT;

T =T, +2 At —
! th + At ! th— At dt tn

dv;

V, =V +2 At —4
th+ At th— At dt tn

The derivatives may be evaluated numerically.

Step 3 Compute {v;;}, {l;;}, {u;;} by use of the component-material balances
and equilibrium relationships.

Step 4 Find the 6’s such that g, =--- = gy_, =0 by use of the Newton—
Raphson method.

Step 5 Compute a new set of temperatures by use of the K, method (see
Chap. 4) on the basis of the corrected mole fractions.

Step 6 Compute the {V;} and {L;} by use of the energy balances and the
total-material balances.

Step 7 Repeat steps 2 through 6 until |1 —6;| is equal to or less than
some small preassigned number of the order of 10™* or 1073, (The solution set
of the variables at time ¢, + At become the initial set of values of the variables
for the next time period.) Proceed to the next increment of time period by
returning to step 1.

5-2 THE PRODUCT PERIOD (B =0, D > 0)

During this part of the process, distillate is removed from the column (D >0),
and the bottoms rate B = 0. In general, a column may be operated in many
ways during this part of the process. Consider first the case where two specifi-
cations, such as L, (or V;) and D, are made for each time ¢ throughout the
product period. These two specifications are used to determine the condenser
and reboiler duties. In addition suppose that the liquid holdups U;
(I <j <N —1) are specified. In this mode of operation, the holdup Uy of the
reboiler (or still) decreases as the product period progresses. It is, of course,
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understood that the usual specifications of column pressure, t’hc. number of
stages, type of condenser (total or partial), and the? conditions existing through-
out the column at the initiation of the product perlqd have been made. .

When the component-material balances are written arounf:l each plate anf
the resulting integral-difference equations .converted' to algebraic form by tu(sie t())
the implicit method, the system of equations obtained may t.>e represente ang
matrix Eq. (5-1) by replacing [;; by Ui where v,; = d; (liquid or vapor)
where [;; and #; have the following meanings:

Uy/V;
pi=1+A;(1+71) o= 14—
s ! J ¢ At Ky;
T At
0
i =23, N—1) (513
/ji=a(v?+l,i+l?—l,i_u,(y?i_l%)+¢At (=273 )
0
Uii
fui=olg — 18— a1 + M
0
Uni
Ai=oly_1i— vN) + H

For any set of preselected values for ¢ and At, tog(.ether.with gssumed L/v al;ld
temperature profiles, this set of simultaneous equations 1s readily solved for the

vis (1 <j<N).

The Theta Method of Convergence for the Product Period

For the case where, in addition to ¥, (or L,) and D, the mplar hold.ups U,, U_z’
., Uy_, are specified and the column is to be equipped with a Rartlal
co;ldenser, the formulas for the 6 method of convergence follow. The §’s are

defined by
i i/ca (5_14)
ﬁ — ﬁ = 1, 2, .3 N — 1)
d,' B oj(dl')ca (j

The g functions are given by

0,,0,,0 ,...,0N_1)=.Zd,-—D
golWo, V1, V2 & 519

9400, 0,0, ...,0n-1) = 421“;7— U =L2...N-1
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Again, the desired set of 67s is that set of positive numbers that make go =

g1 =92 =" =gy, = 0 simultaneously. These 6;’s may be found by use of the
Newton-Raphson method.

The formula for the corrected value of d; is obtained by using an overall
component-material balance.

th+ At N
f (—d) dt = Z (uj; — “?i)
th ji=1
By use of the implicit method, it is readily shown that this expression reduces to
0 1 B V]
—ad" _ 0
ad; + <¢ At) j;lul,
di=— PN o (5-16)
I +—— |6, = AL
* d) At [ O(di )ca * jglej(di>ca]

Also, it is readily shown that compositions consistent with the corrected u;’s are
given by

Xjj = (5-17)
uj,-
2 (7) 4

On the basis of the x;’s obtained by use of Eq. (5-17), the temperatures for the
next trial are found by use of the K, method. Also, in this application of the
implicit method, ¢ was taken equal to 0.6, which gave results free of oscil-
lations. For the case where the column has a total condenser rather than a
partial condenser, the multiplier 6, is seen to be equal to unity, since u,,/d; =
U,/D. Thus, for a column having a total condenser, the multiplier 6, and
function g, are omitted from the set of 6/s and g;’s listed above.

Modified Theta Method of Convergence for the Product Period

For the case of a conventional column (with FX,; = 0) for which L,, D, and the
Uj's are specified, the multipliers for the modified & method are obtained by
setting 6, =6, (j=1, 2, ..., N —1). The g function go is given by the first
expression of Eq. (5-15) and

N-1 ¢ N-1
9160, 0)= ¥ Yu;— ¥ U,
j=1 i=1 j=1
The formula for d; is obtained from Eq. (5-16) by setting 6;,=0, (j=1, 2, ...,
N —1).
Since the specifications are commonly made on the overhead product, the
enthalpy balances should be initiated at the top of the column. When the flow
rates ¥, (or L,) and D are specified, the enthalpy balance enclosing the con-




(

188 STAGED SEPARATION PROBLEMS—TWO-POINT IMPLICIT METHOD

denser and the accumulator is used to determine the condepser duty. Ths

development of these equations is similar to that demonstrated in Chap. 4, an
i i -1.

the final expressions are shown in Table 5

After the vapor rates, the V/s, have been computed by use of enthalpy
balances, the corresponding L;’s are found by use of total-material balances as
indicated in Table 5-1.

The calculational procedure and convergence method for the case whefe tEe
holdups are specified in mass (or volumetric) units are readnl)_' c!eveloped. in the
same manner shown in Chap. 4. Furthermore, instead of §pec1fymg tbe distillate
rate, other specifications, such as the temperatures of discrete fractions of the
distillate, may be made.

Examples

To demonstrate the transient behavior of a column throughout the start-us
period, the unsteady state solutions of Examg@s 5-1 apfi 5-2 .(Tables 5-2 and
5-3) were obtained under the following condm.orfs. Imtlally‘, it was supposed
that the plates were filled with the liquid to be distilled. The liquid was z:jssux:xet
to be at its bubble-point temperature at the. column. pressure. The Ste? y ls ate
solution was approached to within six significant digits after 4.8 h of column

Table 5-2 Statement of Example 5-1
(D=0,B=0,F=0)

Example 5-1
Holdups,
Component U X; Stage mol
C,Hg 2.5 1 (condenser) 4
i-C4H,, 15 2 1
n-C,H,, 12.5 3 1
i-CsHy, 10.0 4 1
n-CsH,, 175 5 1
50.0 6 1
Other conditions 7 1
Qr = 350000 Btu/h; 8 1
column pressure = 300 Ib/in® abs. 9 1
The column has a 10 1
partial condenser, 12 plates, 11 1
and a reboiler. The K 12 1
data and enthalpy data 13 1

14 (reboiler) 34
S0

are given in Table 5A-1

Initially, all stages are filled with liquid feed at its boiling point at
the column pressure.

S b AR
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Table 5-3 Statement and Solution of Example 5-2 (Ref. 21)
1. Statement of Example 5-2

(@) All initial conditions are the same as those for Example 5-1. The product period is to
be initiated at the end of 2 h of start-up operation as specified in Example 5-1. The product
period is to consist of the time required to collect a total of 20 moles of product. The overhead
vapor rate for the product period is to be fixed at the value which it had attained at the end of
the start-up period. The distillate rate is to be fixed at 0.2 of the value of the overhead vapor
rate. A partial condenser is to be used. Find the composition of the total product collected at
any time during the product period by use of the 8 method, and the modified § method.

(b) Repeat part (a) by use of the 2N Newton-Raphson method. Use the values of the
condenser and reboiler duties, Qc, Qg, found in part (a) at the end of each time step as the
specified values for the 2N Newton-Raphson method. Compare the execution times required
by each method.

2. Solution of Example.
(a) The results are displayed in Fig. 5-3.
(b) A comparison of the execution times made by Mijares(21) follows.

Comparison of execution times

Computer
(AMDAHL 470/V6
Time, s, required Convergence
Method for 18 time steps criteria Compiler
0 method 3.27 Cease if |1 - 6,] <107 FORTRAN H
or |AT;|/T; < 1075 or EXTENDED
after the 10th trial
for a time step
Modified 2.56 FORTRAN H
6 method Same as 6 method EXTENDED
2N Newton-Raphson  3.14 ® < 10~ * where FORTRAN H
EXTENDED

1 N 172
® 35| e+ 6

operating time (Refs. 1, 2). A graph of the transient values of the mole fractions
for Example 5-1 is presented in Fig. 5-2.

The equations and convergence method for the product period were tested
by solving a wide variety of examples. Satisfactory results were obtained for all
examples considered. Example 5-2, stated in Table 5-3, was selected for pur-
poses of illustration. The transient compositions of the distillate are displayed in
Fig. 5-3.

When the product stream D is collected in a single container, the average
mole fraction of each component within the container varies with time as
shown in Fig. 5-4. Each curve in Fig. 5-4 is readily obtained from the corre-
sponding curve in Fig. 5-3. Since D is held fixed throughout the product period,
the point at time ¢ on a curve in Fig. 5-4 is equal to the integral of the

corresponding curve in Fig. 5-3 over the time interval O to t divided by the
length of the time interval.
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Figure 5-2 Transient compositions for the start-up period, Example 5-1.
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Figure 5-4 Composition of the total product collected at any time during the product
period, Example 5-2.

5-3 SOLUTION OF BATCH DISTILLATION PROBLEMS
BY USE OF A COMBINATION OF THE

TWO-POINT IMPLICIT METHOD AND

THE 2N NEWTON-RAPHSON METHOD

For mixtures which form ideal solutions (K; = K{P, T) and y! = y* = 1 for all
i), the application of the Newton-Raphson method is exact and convergence
can be assured provided that the initial estimates are in the region of conver-
gence (Ref. 14).

In order to demonstrate the use of the 2N Newton-Raphson method in
conjunction with the two-point implicit method, the equations for use with this
combination are formulated for the product period. The equations for other
modes of operation are formulated in a similar manner.

Product Period

Again it is supposed that the holdups {u;} throughout the column are known
at the initiation of the product period. Also, it is supposed that the liquid
holdups U; (1 <j < N — 1) are specified as well as the usual specifications of
column pressure, the number of stages, type of condenser (total or partial), and
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the conditions existing throughout the column at the initiation of the product
period. The two remaining specifications may be taken to be the reflux ratio
L,/D and the ratio of reboiler holdup-to-vapor rate, Uy/Vy throughout the
product period, or one could specify the condenser duty Q. and the reboiler
duty Qg throughout the product period in lieu of L,/D and Uy/Vy. Thus, for
the case where the condenser duty Q. and the reboiler duty Qg are specified,
the independent variables are taken to be:

x =[L,/D, Ly/Vs, ... Ly _1/Va=1>» Un/Vas Tis Tos oo Ty-1s Ty]" (5-18)

The corresponding functions of the 2N Newton-Raphson method are the N
dewpoint functions and the N enthalpy balance functions

f=[F, F, - Fy G, Gy - GN]T (5-19)

Instead of using the L/V ratios, a new set of independent variables may be
defined in a manner similar to that shown in Chap. 4, namely, let

L, , (L

5-0(3).

%=9j<%) (=23..,N=1) (5-20)
j j/a

Uy Uy (1
Vy At Vv /o \At

where At is a constant, the value of the time period under consideration. By
inclusion of At in the last expression, it becomes dimensionless. Again, the
subscript a denotes that the ratio may be regarded as an arbitrary constant. By
selecting the arbitrary constant to be the most recent value of the ratio in the
trial-and-error procedure for the given time step under consideration, the vari-
able 0, is normalized. Equation (5-18) may be restated in the following form:

X =[0;, 05, 0x, Ty Toy oo Tid" (5-21)

When a partial condenser is employed, the complete set of N dewpoint
functions have the following form:

1 ¢ 1
Ll (Lo, G=12...N 522
neg (g1 omrzem .

Ji
where it is of course understood that D is denoted by V;. When a total con-
denser is employed, the bubble-point form of the function is used instead of the
dewpoint form for the first stage. The bubble-point form of the function is

given by
1 c
Fy=7 LKy~ i, (5-23

The enthalpy balance functions are formulated by use of the equations
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obtained from the integral-difference e i int i
. quations after the two-point ici
metl’;;)d has been applied. They are presented in Table 5-1. P mpliel
or any choice of the independent variables at the i
' . end of the time st
r}:lder cotnm.dc.ratlon, the values of the dependent variables are found by 5013;2
e constraining equations, which consist of th - i
and the total-material balances. © componentmaterial balances
X Ehe ;:SOT?f;on;r}:t-material balances are again given by Eq. (5-1) as modified
y Eq. (5-13). e total- i i
b Ba otal-material balances are developed in the following
v 'Smc]e] all of the holdups U; (j = 1, 2,..., N —1) are regarded as fixed while
~ Is allowed to vary, the equations for the first N — 1 stages (j =1, 2
N — 1) are the same as those for a column at steady state operatio,n. ’Thé

Cquatlons are fOlmulath In a manner allalo ous to t t ow o
J g ha Sh n bel(’w f T Stage

V,-H+Lj_,——Vj-Lj=0 (G=23...,N=-1 (5-24)
Then
L;_, L;
il 1 7 =i
(nﬂ)’ ‘ (”*n)”*'“‘=° G-29
By making use of Eq. (5-20), it is possible to restate Eq. (5-25) as follows:
riVicip =L+ )V + Vier =0 G=23...,N=-1 (5-26)
where

L.
+=o(5)
J/ a

For stage 1, the corresponding total-material balance is given by
A +r)Vi+V,=0 (5-27)

where D has been represented for the convenience of symmetry by V, and

ry = 0,(L,/V,),. Since the holdup U i ith ti i
bl ok p Uy varies with time, the balance enclosing the

_UN

tnt At

tn + At
J; (LN~1 - VN) dt = UN (5-28)

tn

Application of the two-point implicit method followed by rearrangement yields

vy Vo — (1 = —a(L9
here No1 oy = (L + )Wy o(Ly_y —V3_) —ra vy (5-29)
sV
¢ At

UO VO . .
- q;v/A N where the At which appears in ry and r$ has the same
t value, the value at the time period under consideration
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Equations (5-26), (5-27), and (5-29) may be stated in the following matrix form.

RV = —%F (5-30)
—(1+r) 1 0 0 0
r —(1 +7ry) 1 0 0
R o oo
0 0 o2 —(l+ry-y) 1
0 0 I'n-1 —(1+ry
V=[D ¥V, V Vn-1 VN]T
F=[0 --- 0 FN]T

Fny=oLi-1 — VY +1RV

The 2N Newton-Raphson equations which are solved successively for each
time period until the convergence criterion, the quantity

1 N 5 1/2
(sl 2+ 2]

is less than some small preassigned positive number, say 10™% or 10>, The 2N
Newton—-Raphson equations are given by

JAx = —f (5-31)
where

OF, OF,  0oF, OF, oF  0F,

06, 00, 00y 0T, 0T, 0Ty
J=1 : : : : : %

a6, 00, 0y 0T, 0T, aTy
Ax =[A6;, AB, --- A6y AT, AT, --- AT ]T
f=[(F, F, -+ Fy G, G, - Gyl"

The Newton-Raphson equations may be solved in a number of ways: (1) The
use of analytical derivatives and the calculus of matrices, (2) The use of Broy-
den’s method (demonstrated in Chap. 2), and (3) The use of the Broyden—
Bennett algorithm. All of these methods are demonstrated py Holland in Ref. 14
for conventional distillation columns at steady state operation.

The basic calculational procedure follows.

Calculational Procedure

1. Assume 6; = 1 for all j. Take the set {(Lj/V))a} equal to the set of va!ues most
en alculated for L./V: at the end of the time step. For the first trial of an
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time step, the values of L;/V; at the end of the time step may be estimated by
use of the two-point predictor (presented at the end of Sec. 5-1).

For any trial of a given time step other than the first one, take the {T}}
at the end of the time step to be equal to the most recent set of calculated
values. For the first trial of a time step, estimate the {T;} at the end of the
time step by use of the two-point predictor (presented at the end of Sec. 5-1).

2. Evaluate the elements of f and J by use of any one of the three methods
listed above.

3. Solve J- Ax = —f for Ax, and adjust the corrections until the values of the
variables at the end of the time step are within the range of curve-fits and
limits by adjusting the parameter f

Xi+1 = X + B Ax,

When Broyden’s method and the Broyden—Bennett algorithms are employed,
an additional parameter s, which represents an approximate optimum of the
step size, is computed as described in Chap. 2 to give

X+ 1 =X, + B Ax,

4. Test for convergence, and if the criterion for convergence is not within the
prescribed limits, update the inverse of the jacobian matrix (Broyden’s
method) or the LU factorization of the jacobian matrix (Broyden—Bennett

algorithm) or return to step 2 and reevaluate the elements of the jacobian
matrix.

In order to obtain a comparison of the execution times required by the 6
method, the modified § method, and the 2N Newton—-Raphson method, Exam-
ple 5-2 (Table 5-3) was solved by each of the methods. Broyden’s method was
used in the solution of the g functions in the 8 methods and in the solution of
the jacobian in the 2N Newton-Raphson method. In order to achieve maxi-
mum speed, the jacobian was evaluated only one time per problem provided
that the inequality criterion of Broyden’s method was satisfied. When the Broy-
den method is applied in this manner, the execution times for all three methods
are approximately the same.

5-4 CYCLIC OPERATION

Cyclic operation is characterized by two modes of operation, called “transient
total reflux ” and “stripping.” During the total reflux portion of the cycle, liquid
reflux is returned to the column, but no product is withdrawn (L, +0, D=0,
B =0, F=0); and during the stripping portion of the cycle, the product is
withdrawn, but no reflux is returned to the column (D # O, L =0, F=0,
B =0). The models and calculational procedures proposed by Barb and
Holland(1,2) are presented below.

The extreme difficulty of accurate measurement of small flow rates in lab-
oratory columns strongly favors cyclic operation. This type of operation is
commonly achieved through the use of a timer which divides a given total time
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period into periods of transient total reflux, dr> ar!d stripping, ¢s. The reflux
ratio for this type of operation is taken to be the ratio of ¢g to os.

Transient Total Reflux Operation (L, #0,D=0,B=0, F = 0)

The component-material balances for any component i are formulated 1frll a
manner analogous to that demonstrated in Sec. 5-1. After the component .ov;
rates at the end of the time period have been f:c?mputed, the yalues so obtaine
may be used to compute new sets of compositions from which a new temper-
e may be calculated. ‘
atur"el"vl?/:)Ofcianer;ence methods are presented, the § method and the modlﬁeth
method. The equations are formulated first for the 0 method and then for the

modified 8 method.
Suppose that in addition to the reboiler duty Qx, the total molar holdups

U,,U,,Us,..., Uy

are specified. These N holdups give rise to N — 1 independent s, defined as
follows:

ﬁ:a,.(ﬁ) (j=23...N) (5-32)
uli ca

Uyj

The 6’s are to be determined such that the corrected u,:i’s are in overall
compojnent-material balance and in agreement with the specified Yalueshof the

) . . cor-
U;s. The formula for uy; is developed in the followmg mannehr. Since the co
rected uj’sare in overall component-material balance, it follows that

N

N
0= Y u;,— yul . (5-33)
=

ji=1
because there are no input or output streams during any time period At fof thﬁ
total reflux portion of a given cycle. Thus, the total moles (or massf: of eac
component within the column remains ﬁxec}l thrqughout the total re ut:( (1p(:r—1
ation portion of a given cycle. To emphgsnze this, let Ug X,- ('ienoti the o arl
moles of component i in the column at time ¢ = 0, the beginning o the glivee
batch distillation, and let U, X, denote thfa moles of component i that avf
been withdrawn from the column at the beginning of the total reflux por.tlon o
the cycle under consideration. Then Eq. (5-33) may be restated as follows:

N N

You;= Yup=UeX; = U, X (5-34)

j=1 j=1
The following result is readily obtained by use of Egs. (5-32) and (5-34):

_UeXi=UpXp (5-35)

Uy = N u;
1+ ZO,(—’—)
j=2

Uti/ca
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Thus, the desired set of 6s is that set of positive numbers that makes gy =
g2 =+ = gy_ = 0, simultaneously, where

g1(02,03,..., 0N)= Zuﬁ——Uj (j:l,z,.”’N_l) (5_36)
i=1

Instead of the set g; (j =1, 2, ..., N — 1), the set g9; (=23, ..., N) may be
used to find the 6s (j =2, 3, ..., N). After the 0;’s have been found by use of
the Newton-Raphson method, the corrected u,;’s are found by use of Eq. (5-35).
Then the mole fractions are readily computed by use of Eq. (5-7). After the x;’s
have been determined, the temperatures are found in the usual way by use of
the K, method. The temperatures and compositions so obtained are used in the
enthalpy balances described in a subsequent section.

Since the calculation of N — 1 roots (0 values) is a time-consuming task, the
“modified 8 method” of convergence is recommended for solving batch distil-
lation problems in the interest of conserving computer time. In the modified 0

method, the 6’s corresponding to the holdups are set equal to each other,
namely

6=0, (2<j<N) (5-37)

The g function is taken to be equal to the sum of the g functions corresponding
to the holdups U; (j = 1,2, ..., N — 1). Then from Eq. (5-36), it follows that

N-1 ¢

N-1
g(0) = Z Zuﬁ — Z U; (5-38)

Note that for any one trial by the modified § method, the individual U ;s may
not be satisfied by the respective sums of the component holdups for each plate;
however, when a 0 is found that makes g(6) = 0, the component holdups are in
agreement with the sum of the U;’s over the entire column.

In the total reflux portion of a given cycle, the reboiler duty is commonly
fixed. In theory, the enthalpy balances may be written around each plate or
about either end of the column and each plate in the column. In practice, best
results were achieved for this type of operation by first determining the con-
denser duty, Qc, by use of an enthalpy balance enclosing the entire column. The
expression so obtained was reduced to algebraic form by use of the implicit
method. The liquid rates L; were determined by use of enthalpy balances en-
closing each plate. These integral-difference equations were reduced to algebraic
form by use of the implicit method and solved for the L/s by use of the
constant-composition method. The vapor rates were found by use of total-
material balances enclosing each plate. These equations were likewise converted
to algebraic form by use of the implicit method.

For the special case where no product has been withdrawn (U, =0), the
equations for transient total reflux operation reduce to those presented for the
start-up period of a batch distillation column.
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The Stripping Operation

This portion of the cyclic operation is initiated by switching from total reflux
(L, = finite number, D =0) to total take-off or stripping (L, =0, D = finite
number, and Q. = 0). The reboiler duty Qg is either held fixed or its variation
throughout the stripping portion of the cycle is specified. In the stripping oper-
ation, the U;’s are no longer regarded as fixed, and the liquid rates at the end of
each time period are taken equal to zero. That the stripping operation is best
represented in this way is evident from the following reasoning. The hottest
stream and the one containing the largest fraction of heavy components is the
stream Vy leaving the reboiler and entering plate N — 1. Since the holdup Uy,
contains a smaller fraction of heavies than Uy, the vapor Vy_, in equilibrium
with Uy_, will contain a smaller fraction of heavies than Vy. Since the enthalpy
per mole of a component generally increases with molecular weight, Vy_, is
generally greater than Vy. Thus, the holdup Uy, can be expected to decrease
throughout the course of the stripping operation. By use of similar reasoning,
the results obtained for j = N — 1 are also shown to follow for all j < N — 1.

The component-material balances for the stripping portion of any given
cycle are developed in a manner analogous to that shown for the total reflux
portion of the cycle.

In the stripping operation, the distillate rate D is specified. Thus there exists
one 6, which may be defined as follows:

Yi_ gL i=1,2,...,N -
2 9((1)“ (i=12..,N) (5-39)

The 6 that places each component in overall material balance and in agreement
with the specification D is that § > 0 that makes go(6) = 0, where

go(®) = Yd,— D (5-40)
i=1

The following formula for d; is found in a manner analogous to that demon-
strated for u,;

—ad? + —qSLAZ i ul
it (5-41)

N uj
1+0 (—)
jZ;l di ca

After the {d} has been determined, the corrected compositions and tem-
peratures are found by use of Eq. (5-8) and the K, method (see Chap. 4). These
new sets of compositions and temperatures are used in the enthalpy balances.

The expressions for the enthalpy and total-material balances are developed
in a manner analogous to that described for total reflux except that the en-
thalpy balances are solved for the Ujs rather than the Vj’s.

d; =
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Development of Models and Comparison with Experimental Results

The possible combinations of the modes of operation and types of specifications
are many. Models for continuous product removal with constant volume
molar, or mass holdups are available (Refs. 25, 26). Further details pertaining t(;
the model for cyclic operation follow.

‘ The model of cyclic operation employed can be described best by use of
Flg 5-5..Point A represents the beginning of one complete cycle. At this point
it 1s.des1red to have the reflux rate go to zero and distillate rate go to the;
specified amount. However, the implicit method weights the final and initial
values to give the transition period AB. By making the increment 4B more than
thr?e orders of magnitude smaller than BC, the overall effect of this transition
perfod on the results obtained for any cycle was very slight. During the time
period BC, the stripping operation partially depletes the holdups on the plates
of the column.

The transi'tion period CD from stripping to total reflux operation consists of
the most physically complex portion of cyclic operation. During period CD, the
plates' of an actual column are filled sequentially from the top to the bot’tom
resulting in a series of discontinuous operations throughout the column. Since
.the QCtailed representation of this action is highly impractical, a simple approx-
1rx}at}on was made. The time period CD was adjusted so that all of the plates
w.lthm thc? column could be filled and reasonable liquid flow rates established
Since period CD represents appreciable real time relative to BC, the weight'
factor was set to strongly favor the final conditions (¢ > 1/2). This scheme gave

— -
Stripping ﬁ/PTremsient total reflux
Ly= L, spec. /——ﬁ/ —_—
, (D=0) Weighted =
o)
?: / level -
>
3
=
2]
24 \
Li=0f————2 e G T pp——
A
] —— ~—
fé D= D.spec - /o
Q (Ly=0) /
=
Z " Weighted
a / ™ level \j\
p=0f---—- -
A T - A S VA A

Time

Figure 5-5 Schematic of reflux and distillate flows in cyclic operation.
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a good approximation of the step change and tended to minimize the effect of
product takeoff during this period.

During the time period DA, the column was operating at transient total
reflux. In this cyclic operation, the term “reflux ratio” is taken to mean the

ratio of CA to AC.

Comparison of the Models with Experimental Results

The final justification of any model rests on its ability to describe (within the
prescribed accuracy) a given physical phenomena. In the following examples, the
results of three models are compared with the experimental results and with
each other.

The statement of Example 5-3 is given in Table 5-4 and the experimental
and calculated results are presented in Fig. 5-6 for Model C. In the area of
greatest discrepancy between the calculated and experimental results, it should
be noted that the experimental results did not satisfy a total-material balance.

Example 5-4 was selected for the purpose of showing that in the limit, as
the total cycle time t, of model C approaches zero, the results obtained from
model C approach those given by model B. The statement of this example is
given in Table 5-4, and some typical results are tabulated in Table 5-5.

Table 5-4 Statement of conditions for Examples 5-3, 5-4, and 5-5

Charge composition

Mole Run Examples Example
5-3 and 5-4 5-5

Compound fraction information
n-Heptane 0.070 Run no. in
Methyl cyclohexane 0.217 Ref. 25 T-10 T-5and T-13
Toluene 0.713 Reflux ratio 7.5/1 15/1 and 7.5/1
Percent holdup
in column and
accumulator 9 9 and 18
Properties Ref.  Holdup distribution in column and accumulator:
uniform or perfectly mixed
n-Heptane Starting condition: steady state
K data 4 total reflux
Enthalpy and 10
density data Total number of stages: N = 80
Methy! cyclohexane Pressure: atmospheric
K data 4 Condenser: partial (vapor distillate)
Enthalpy and 9 P
density data Model A: Constant molar holdups, continuous operation
Toluene Model B: Constant volume holdups, continuous operation
K data 4 Model C: Constant volume holdups, cyclic operation
Enthalpy and 9

density data
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Table 5-5 Comparison of model B i i
fimes, Exarmple o and model C with different total cycle

Mole percent isti
Mote Distillate mole fraction,
initial charge mode €
coll
e el(;w(:j as Loyele t t
erhead product Component Model B = 1/2 min iyciemin cyc2’e i
= =2 min
1.60 n-He
ptane 0.943 0.943 0.940
2;2 n-Heptane 0.493 0.491 0:497 gz;i
. Methyl 0.507 0.509 0.503 0.
. cyclohexane ’ 306
9(()):1: n-Heptane 0.141 0.133 0.128 0.219
X Methyl 0.859 0.867 0.872 0.8
cyclohexane ’ o
:2252 n-Heptane 0.080 0.074 0.069 0.065
. Methyl 0.920 0.925 0.929 04
st cyclohexane . %2
X n-Heptane 0.051 0.043
2 . . 0.038
6.1 Methyl 0.515 0.520 0.508 3.046
o cyclohexane . 4
. Toluene 0434 0.437 0.454 0412

oo I:ijample S-5 was.included to demonstrate the validity of the models over a
Taba; ;a:ge gf ;xperlmental conditions. A statement of the example appears in
€ 5-4 and the results are shown in Fi
g. 5-7. Although only th
model B are shown, similar agree t wi i etts e !
faimed by e oowm sim greement with the experimental results was ob-

oL n - heptanc
1.( Methyl cyclohexane

0.8} o °
/ Toluene
c [
g / f
L
=
i 0.6 experimental results M /
2 e—e model C {
£ \
z
3 04}
[a} \ .
)
02 Ay \
\. \
\o\._._._._ / )
0.0 l | | | . N S N\ .

0
3 6 9 12 15 18 21 24 27 3‘()
Mole percent of initial charge collected as overhead product

Figure 5-6 Experimental data and results for model C for Example 5-3
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1.0k Methyl cyclohexane
’ n - heptane <
[ L
— .’././ \ .
08} '/. \ /
c v .
2 . —— experimental results .
% \ e—e model B I
< 061
°
£
£
3
= 041 \ \
g
Toluene \
L]
02} \,
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Mole percent of initial charge collected as overhead product

Figure 5-7 Comparison of model B and experimental results obtained at a high reflux ratio,
Example 5-5.

5-5 OPTIMIZATION OF THE BATCH-DISTILLATION PROCESS

Within the framework of any specific problem under consideration, all of the
information needed for “ optimization” by various criteria may be generateq by
obtaining the appropriate transient solutions. The criteria must be ’determmed
prior to the solution of the problem so that the necessary mformatlon may be
noted and preserved. One potentially serious drawback of this approach could
be the amount of information which must be stored. S o

Optimization studies of binary systems with mmpllfymg approximations
have been considered previously (Refs. 7, 20). General conclusions reached from
these and other studies (Ref. 8) indicate that the distillate policy has a debatable
effect on the “yield ” (the amount of product of a specified puri‘ty).. ‘ .

As an example of the use of the transient solutions in optlmlz.atlon studies,
consider the problem of maximizing the “yield.” This problem, which represents
one of the more realistic sets of possible criteria, may be stated formally as
follows:

Maximize:
(toff - ton)D

Subject to:

— moles i
Loff

(tof f ton)D

Moles i

‘on_x >0

si =
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where D = specified distillate rate
moles i = moles of component i that have been removed from the column at
any time ¢
tore = time at which the cut is terminated
t,n = time at which the cut is initiated
x,; = specified purity of component i in the cut under consideration.

A restatement of the objective function in terms of the constraints as sug-
gested by Carroll(3) and further developed by Fiacco and McCormick(12,13) is
possible. In particular, since the maximum of the objective function (f, — t.)D
occurs when the constraint is a pure equality constraint, that is,

Moles i| — moles i

Loff

(toff - ton)D

it is possible to restate the constrained optimization problem as an uncon-
strained optimization problem as follows:

“— x,=0 (5-42)

Minimize:

—(togr — Lon)D + R I:moles il — moles i

- xsl'(toff - ton)D:I (5'43)

toff ton

where R is a multiplier which is several orders of magnitude greater than the
product (1, — t,,)D but not so great that the product (torr — ton)D is insignifi-
cant in the number system in use. This problem may be resolved by application
of well-known search techniques.

Optimization problems involving the lightest and heaviest components of a
mixture constitute special cases in that either the beginning or the termination
of the cut is physically fixed. Such problems may be handled as deterministic
problems. This fact leads to the observation that if the initial (or final) cut point
of any cut is fixed and the purity constraint satisfied as an equality, then the
final (or initial) cut point of the cut is fixed. It is shown below that the maxi-
mum amount of product of the specified purity will be obtained when the initial
and final cut points have the same concentration of the specified component.
An alternate procedure for solving the original maximization problem is then a
single variable search on the initial point with the final point becoming depen-
dent, that is,

Lott = [ (ton) so that Xpi ‘ =Xy ‘ (5-44)
ot on
with the purity constraint minimized
Minimize:
Moles i{ —moles i| — x(torr — Lon)D (5-45)
toff ton
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Optimization by use of the functions given by either Eq. (5-43) or (5-44) has
proved to be satisfactory and, of course, the two equations give identical resulits.
About the same effort was required to optimize a problem by use of each of

these functions.

Proof that X p,; (at t ;) = Xp; (at t,,) for Maximum Recovery at

a Specified Purity of the Lightest Component of a Mixture

When the purity specification of the cut collected over the time period from t,,
to t, is taken to be x,;, where i is the lightest component of the mixture, then
the purity specification may be represented as follows:

M —x.>0 (5-46)
(toff - ton)D T

where the distillate rate D is to be held fixed, or

Y X dt — flon Xpdt — | i
(L. XD( 5!. Di dt j‘oﬁ' XD( dt) _ xSi < 0 (5_47)
(toff - ton)

where t; and t, denote the initial and final times for a given distillation. The
maximum amount of distillate will be collected in a given cut when (t, — £,,) is
maximized. The values of Xp; at which to begin and end the cut, respectively, in
order to maximize the amount of distillate collected at the specified purity are
found as follows. First the problem is reformulated in the more convenient
notation as indicated in Fig. 5-8

Jo f09 dx = f5 S0 dx =i ) dx _ (5.48)

(b—a)

where the cut is initiated at time a and terminated at time b, and x,; is again the

specified purity of the lightest component.
It is desired to maximize (b — a) subject to the condition that the purity

specification be satisfied. Then

b—a= xi q f(x) dx — f "0 dx — J ‘ 1(x) dx) (5-49)
si 0 0 b

After a has been selected as the independent variable and Leibnitz’ rule has
been applied for differentiation under the integral sign, one obtains

db—a) 1] db
T [o f@+f(b) -+ o] (5-50)

The maximum (or minimum) of (b — a) is found by setting d(b — a)/da = 0.
Under this condition, Eq. (5-50) reduces to

fla) _db (5-51)
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Figure 5-8 Representation of a distillation.
But
d(b — a) _ db
o k=0 (5-52)
or
@
i =1 (5-53)
Therefore,
Sa _,
1) (5-54)
or
fla) = f(b) (5-55)

Thu§, in order to maximize the amount of distillate which can be collected at a
specn‘ﬁed purity x;, the cut should be initiated and terminated at the same mole
fraction (Xp; o0 = Xp; o) The above development was originally given by
Barb(1).

' A statement of Example 5-6 appears in Table 5-6, and the results are
dlsplayed‘in Fig. 5-9. The value of the mole fraction of i-C,H,, at the initiation
and termination points is 0.45216. The initial and final points for the cut are
shown as functions of dimensionless time; however, sufficient information is
generated within the solution of the model to permit the selection to be made
on other bases such as overhead temperature.
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Table 5-6 Statement of conditions for Example 5-6

Charge composition

Component Mole fraction Constant molar holdup model

C,;Hg 0.05 Reflux rat.10:.7.5/.1 . -
i-C,H,, 0.15 Holdup distribution in moles:
n-C:H,(, 0.25 U, =4U;=12<j<13),
i-C,H,, 0.20 and U, = 34
n-CsH 0.35 Total number of stages: N = 14

2 Pressure: 300 1b/in?

Properties Condenser: total (liquid distillate)

For the “i-C,H,, cut,”
The K data and enthalpy data are given in Table 5A-1 x, (for i-C4H o) = 0.47

The use of the exact model proposed has been founq to be advantageous in
optimization studies. In general, the additignal complexnty of the model allows
simpler, more direct application of optimizing techniques due to the amount of
information generated by the more exact models. ‘ ’

As has been demonstrated, the same fundamental relatlonsh.lp.s used to
describe continuous-distillation columns are applicable for describing batch-
distillation columns. Although only the 6 method and the 2N Newton-Raphson
method in conjunction with the two-point implicit method have been demor:-
strated, other methods such as the semi-implicit Runge-Kutta and Gear’s

=]
wn
|

\éi - CiHyy

0.4

n- CaHm

CiHy
0.2

Distillate mole fraction

P N e

0.1

& Start cut End cut — ':
' 1
1
1 1 1 1 1 1 1 1 1 1
00 2 4 6 8 10 12 14 16

Mole percent of the initial charge collected as overhead product

Fioure £.0 Results for Example 5-6: optimization of the yield of i-C,H,, at x; = 0.47.
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method may be employed. For columns in the process of separating highly
nonideal solutions, the latter methods which are presented in Chaps. 6, 7, 8, and
9 are recommended. Alternately, if the two-point implicit method is used, the
number of independent variables should be increased to a set comparable with
those used in Chaps. 6 through 8. Also, more exact models may be employed

wherein hydraulic effects as well as the control system are included in the model
as demonstrated in Chap. 8.

NOTATION
(See also Chap. 4.)

/i = an element of the vector / of Eq. (5-1)

Y4 a vector appearing in Eq. (5-1)

pi = a quantity introduced for the purpose of avoiding division by
zero (defined for a particular application below Eq. (5-8))

u;; = molar holdup of component i in the liquid state on plate j

U; = total molar holdup of the liquid on stage j

Uy = total moles of feed introduced to a batch distillation column

I

Il

Greek letters

pj; = a constant appearing on the central diagonal of the Jjth row of
the coefficient matrix of the component-material balances (see,
for example, Eq. (5-1))

o6 =(1-4¢)¢

Tav = (Uj/Lj)av/(¢ At)

1, = (U;/L)/(¢ At)

¢ = weight factor used in the implicit method (see Eq. (5-10))
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PROBLEMS

5-1 (a) For a batch-distillation column operating in the product period (D > 0) and for which all of
the holdups are negligible except for the still pot, show that the component-material balances and
the total-material balances over the time period from ¢, to t, + At yield the following differential
equations.

Hint: Use the mean value theorems and the appropriate limiting process to reduce the
integral-difference equations to the following differential equations:

d(Uy xy)

—DXpi =

_au,
4
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(b) From the results given in part (a), obtain the following equation of Smoker and Rose(27).

1 v Jnx"i dxy;

n—%=
Uy avo X pi = Xp;

where the superscript zero denotes the values of the variables at time t = 0. Smoker and Rose(27)
proposed that the integral appearing on the right-hand side of the above equation be evaluated b,

use of the graphical method of McCabe and Thiele( 19). e
52 A batch. dlstllla}tion with a single plate, the reboiler, is carried out at constant temperature and
pressure b)f increasing the rate of flow of steam to the column to compensate for the decrease in tlll1e
concentration of the lower boiling components over the course of the distillation Also, the unit is
to be .operated such that the partial pressure of steam in the vapor product' is le;s than th

saturation pressure of steam at the temperature of the reboiler. (This problem is based he
development given by Holland and Welch(16)). on e

(a) Beginning with the overall material b ii
alance on component i in a batch-distillati
) ' e - on
with a single stage and a withdrawal rate D, show that column

du,
-DX, =—
Di dt

where the plate subscript which would normally be carried by u; has been dropped, and where
D=D,+ D,

D, = the molar flow rate of two-phase (or volatile) components in the distillate
D, = molar flow rate of steam in the distillate at any time ¢

(b) Show

(c) By use of the results obtained in part (a), show that
(u, du,
2wl — ) =—
y du,
u, \*
u = ul( 2
(ui’)

for all componepts (i=1 through i = ¢) except steam (i # s). The superscript zero refers to the
values of the va{lables at t = 0. Also in the development of this expression, equilibrium between the
vapor (X p,;) leaving the column and the liquid (x,) in the reboiler is assumed, that is

and that

u;
X i=Kixi=K,.—'
b U

(d) Show that

du
U—t = KdU — d2,)
u,

and that the steam requirement 9, is given by
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where o
s = DS
dt

5-3 (a) If the model for the vaporization efficiency (defined by y;; = E; K;; x;) is taken to be
Eji = ﬂi E.'

as originally suggested by Professor W. H. McAdams (according to Perry(22)), show that «; in the
final result of Prob. 5-2 should be replaced by

3

=

5-4 (a) For the case of a batch-distillation column at steady state at total reflux, show that the
component-material balances and equilibrium relationships may be restated as follows where aj; =

o, for all j: )
Yai _ 2 (Y2
Uy - a; (“u)

uy_ 1 (“_3.':>
)

Uy o \Ugp
Uni _ ! (“Nb)
— = N-1

Uy o Uy

(b) Suppose that a column is operating at a set of holdups denoted by (U,),, U,),, s
(Uy),, and by some scheme, these holdups are changed to the new set der.loted by the subscripts
(U35, (Us)z, ..., (Uy),. Show that the u;/u,’s for the two sets of operations are related by the
same multiplier for all components; that is, show that

(402
Uyi/2 U1i/a
0. (42 / "_>
i Uip/ 2] \U1/1

55 (a) Show that for a batch-distillation column for which N = 3, the overall material balance for
the start-up period is given by

where

U X; UeX;

i= U, u ._= 1 /u 1 (u
1+£+_3 1+_(_Z'Z>+_Z(£)
Uy Uy a; \ Uy, i \ Uy,

(b) Use Eq. (C) and the results of part (a) to determine the holdups U, U,, and U, for the
two sets of specifications given:

©

uy

Component o X; Other specifications
1 1 1/3 N=3U;.=100
u

2 2 13 Setiis®opl_j
Uy Uy
u u

3 3 /3 Set2:-2—4,-2=6
Uyp Uip

Ans.: U, = 343434, U, = 3434343, U, =3131313.
Ans.: U, = 21.5488, U, =41.75084, U, = 36.7009.

¥
3
3
3
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5-6 Suppose that the column described in part (a) of Prob. 5-4 is initially operating at the holdups
given for set 1. At this set of holdups, the corresponding values of u;/u,; are as follows:

Component (uzi/uy), (u3/u;),

1 2.00000 3.00000
1.00000 0.75000
3 0.666 66 0.33333

On the basis of these results, use the 6 method of convergence to determine the w;;/u,’s at the
second set of holdups U, = 21.5488, U, = 41.75084, U, = 36.7009. That is, find 8, and 0, that
make g, = g, = 0 simultaneously

4,(0,, 0,) = Z“zi_ U,
i=1

g,(6,, 0;) = Z uy — U,

i=1
Ans.: 0, =2, 0, =2
5-7 Begin with the integral-difference equations for the energy balance, the component-material

balances, and the total-material balances, and obtain the expressions given in item 1 of Table 5-1

for computing the total flow rates {V;} and {L;} at the time period under consideration for the
start-up period.

5-8 Develop the expressions given in item 2 of Table 5-1.

5-9 Restate the formulation of the § method for the product period (Egs. (5-14), (5-15), (5-16), and
(5-17)) in terms of an appropriately defined p;.

APPENDIX 5A-1

Table SA-1 K values and enthalpies for Examples 5-1, 5-2, and 5-6

1. K Values (1) at P = 300 Ib/in? abs
(K/T)'"? =a,; + ap, T + a3, T? + a,, T, (T in °R)

Component  a; x 10? a, x 10° ay x 108 a, x 10'?
C;H, —14.512474 53.638924 —5.3051604 —173.58329
i-C,H,q —18967651 61239667  —17.891649 ~90.855512
n-C.H,, — 14181715  36.866353 16.521412 —248.23843
i-CsH,, —7.548 840 3.2623631 58.507 340 —41492323
n-C,H,, ~7.543539 20584231 59.138344  —413.12409

2. Enthalpy data (Ref. 2) at P = 300 Ib/in? abs
(h)'? =i+ ;T + ¢y, T2 (H)'* = ¢, + ,,T + €, T% (T in °R)

Component ¢, ¢y x 10 cy x 10°

C,H, — 14500060 19802223 ~29048837
i-C,H,,

16.553 405 2.1618650 —3.1476209

n-C,H,, —20.298 110 2.3005743 —3.8663417
i-CH,, —23.356 460 2.5017453 —4.3917897
n-C(H,, — 24371 540 25636200 _4 649060
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Table 5A-1—Continued

Component e, e, x 10* ey x 108

C;Hg 81.795910 389.81919 36.470 900
i-C4H,, 147.654 14 —1185.2942 152.87778
n-C,H,o 152.66798 —1153.4842 146.64125
i-C{H,, 130.966 79 —197.986 04 82.549 947
n-CsH,, 128.901 52 —2.0509603 64.501496

1. S. T. Hadden: “Vapor-Liquid Equilibria in Hydrocarbon Systems,” Chem. Eng.

Prog. 44: 37 (1948).

2. J. B. Maxwell: Data Book on Hydrocarbons, D. Van Nostrand Company, Inc,,

New York (1956).

APPENDIX 5A-2

Table 5A-2 Data used for Examples 5-3, 5-4, and 5-5
1. K values (Ref. 1)

T,
K;=C,+ CZi(-l-is - C3,»), (T in °R)
Compenent C, C, C,
n-heptane 0.94 0.0735 3710
Methyl cyclohexane 0.85 0.0820 371.0
Toluene 0.60 0.0330 3710

2. Liquid enthalpies (Refs. 2, 3)

hy; = C AT, — 635) + C,; — C,,[(T;/1.8) — 273]

1

Component C, C, C,
n-heptane 60.12 0.0 0.0
Methyl cyclohexane 5891 0.0 0.0
Toluene 40.54 0.0 0.0

3. Vapor Enthalpies (Refs. 2, 3)

H, = C,{T, — 635) + Cy; — C[(T;/1.8) — 2731, (T in °R)

Component C, C, C,
n-heptane 60.12 16 580.2 29.9211
Methyl cyclohexane 5891 15882.5 22.1793

Toluene 40.54 16912.5 22.7534

SOLUTION OF BATCH-DISTILLATION PROBLEMS 213

4. Liquid density (Refs. 2, 3)

C 492
pL=C + C[(T/18) — 273] — ( —— | =
L= C, + G(T/1.8) ] (22400 T (P)

where p, = density, g/cm?

P = pressure, | atm

T = temperature, °R
Component C, C, C,
n-heptane 100.198 0.70075 —0.840 x 1073
Methyl cyclohexane  98.182 0.786 70 —0.856 x 1073
Toluene 92.134 0.88547 —0924 x 1073

1. J. C. Chu: Distillation Equilibrium Data, Reinhold Publishing
Corp., New York (1950).

2. R..R. Dreisback: Physical Properties of Chemical Compounds,
American Chemical Society, Washington, D.C. (1955).

3. R. R .Dreisback: Physical Properties of Chemical Compounds—
11, American Chemical Society, Washington, D.C. (1959).
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CHAPTER

SIX

SOLUTION OF

UNSTEADY STATE ABSORBER PROBLEMS
BY USE OF A

SEMI-IMPLICIT RUNGE-KUTTA METHOD
AND GEAR’S METHOD

Application of Michelsen’s modification (Refs. 8, 9) of the semi-implicit Runge—
Kutta method proposed by Caillaud and Padmanabhan(l) as well as Gear’s
algorithm (Refs. 3, 4) to the equations for an absorber are demonstrated in this
chapter. The equations describing the dynamic behavior of an absorber consist
of a large set of coupled differential and algebraic equations.

The semi-implicit Runge-Kutta integration formula which was presented
and applied in Chap. | is modified in Sec. 6-1 such that it may be used to solve
a system of coupled differential and algebraic equations. Also, a procedure for
changing the step size in a manner which increases the accuracy and efficiency
of the semi-implicit Runge-Kutta is presented. -

In Sec. 6-2, the application of Gear’s method to the solution of simulta-
neous differential and algebraic equations is demonstrated. The procedure for
making a simultaneous change in the order of the method and in the length of
the step size is also presented.

In Sec. 6-3, the equations used by McDaniel(10,11) in the modeling of
an absorber are formulated and solved by both the Runge-Kutta and Gear
methods.

217
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6-1 APPLICATION OF THE SEMI-IMPLICIT
RUNGE-KUTTA METHOD TO SYSTEMS OF
COUPLED DIFFERENTIAL AND ALGEBRAIC EQUATIONS

Michelsen’s modified form of the semi-implicit Runge-Kutta method proposed
by Caillaud and Padmanabhan for solving systems of differential equations

Y _ ) (6-1)

is modified as shown below such that it can be used to solve coupled differential
and algebraic equations. The semi-implicit Runge-Kutta method proposed by

Michelsen(8) is given by
k, = h{I — had,]™'1(y,)
k, = h[I — had,]” 'f(y, + b, k,)
k;y = [I — haJ,] '[by, ky + b3, k;]
Vo1 =Y.+ Ri kg + Rk, + Ryk;

(6-2)

where h = time step
I = identity matrix
J, = jacobian matrix which contains the partial derivatives of f with re-
spect to the variables y; evaluated at y,

The constants or parameters in Eq. (6-2) have the following values:

a = 0.435867
b, = 3/4 by, = —0630172 by, = —0.24235 (6-3)
R, = 1.03758 R, = 0.83494 Ry=1

Michelsen’s Algorithm of the Semi-Implicit Runge—Kutta Method
for Coupled Differential and Algebraic Equations

Coupled differential and algebraic equations of the form

dy
1) (6-4)
0 =gy, 2) (6-5)

are encountered in the modeling of separation processes. If the algebraic equa-
tions are linear in the z's, then they are easily handled. The z’s may be regarded
as dependent variables, and for any choice of the y's, the corresponding set of
2's is readily obtained by solving the algebraic equations which are of the form
of Eq. (6-5). In the interest of simplicity, only one differential equation and one
algebraic equation are considered in the following development. The final result
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may be generalized for the case of any number of equations as implied by Egs

(6-4) and (6-5). In th - _
ol (6-5). In the calculation of dfjdy, the chain rule may be applied as

y_o

dy 0dy 0z dy (6-6)

The linear equation in z =
derivative 3 » 9(y, 2) =0, may be used to compute the partial
usedlf 18[16 t(:qluation g(yl,l z) is nonlinear in z, either one of two procedures may be

» Michelsen’s method (Ref. 8) or the generalized algori
differential and algebraic e i of Micndisons o o
‘ quations. The development of Michelsen’s me i
| th

glver’;- :elgw and th.e generalized algorithm is presented in a subsequent sect(i)(jinlS
¢ first step in the development of Michelsen’s algorithm is the transfo.r-

mation of the algebraic equati i . g .
follows: 8 quations into a set of stiff differential equations as

dy _

ar ~ 109 (6-7)
dz 1

a9 (6-8)

where ¢ is taken to be exceedingl : . .
is given by ingly small. The jacobian J of this set of equations

I=(1 (6-9)

where the symbols appearing in J have the usual meanings, namely

o of dg dg

Y oy f’zé gy=5 9: =7

Integration of Egs. (6-4) and (6-5) b i
“4 - y use of Michelsen’ i-i ici
Kutta method yields the following vector for k,. s semi-implicit Runge-

[kly] h (t=haf)  (=haf) 1'[ fOou, 2)
N LAY '
(~th) (2| 1| 0
or

(1—haf)  (—haf) ][k, SGas 2,)

1 ha =h
——h _ hag. 1 (6-11
( € agy) <1 £ ) k“ ; g(yn’ zn) )
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After row 2 of Eq. (6-11) has been multiplied by ¢ and the limit has been taken Then
as ¢ approaches zero, one obtains the following result upon rearrangement:
F k 1 ,
[ y fz:”: lyjl - = [f(yn Zn):l (6-12)
gy gz klz a g(yrn Zn)
where
1
F,=f ——
y=4h ha and

This formula is easily implemented because of the similarity of the coefficient

matrix of Eq. (6-12) and the jacobian matrix.
By following the same procedure shown above for k, , the following formu-

las are obtained for k, and kj:

[Fy fz][ka] - _ l [f(yn + b2 kly! Zp + bzklz):l (6-13)
gy g: k22 a g(yn + b2 kly’ Zp + bZklz)

Fy [l ksy|_ _i a )
[gy gz][k3z] " ha l:O:I (6-14)

a = by ki, + bizkyy

The use of the semi-implicit Runge-Kutta method for solving coupled differen-
tial and algebraic equations is demonstrated through the use of the following

numerical example.

and

where

Example 6-1 For the following set of equations
Then

dy
a7

1
0=—5y+z—2

find the values of y and z at the end of the first time step by use of the
Michelsen’s version of the semi-implicit Runge—Kutta method for h = 1/20
and for the following set of initial conditions:

W)y=12 =20=94 y0O) =74 Z0)=7/8

SOLUTION
Let

fph2)=z-y
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9 1 7
f(yOsZO)_4_5=Z
1N/1\ 9
»29) =\ — 3 - S T e =
9(¥o» 2o) ( 2)(2> t7-2=0
of of
f = — = —1 = - =
Y oy S 0z !
_0g 1 dg
g"_ﬁy——2 gz=£=1
Since a = 0.4359 and h = 0.05
1 1
ha ~ (0.05)0.4359) ~ 489

and Eq. (6-12) becomes

[‘4589 IJ[ku]_ 1 [175
=05 Uflk.] 0.4359[0]

which is readily solved to give

ky, = 0.086 56
ky, = 0.04328

Yo + by ki, = 0.5 + (0.75)(0.086 56) = 0.564 92
2o + by ky, = 2.25 + (0.75)(0.043 28) = 2.282 46
f(0.56492, 2.28246) = 2.28246 — 0.56492 = 1.717 54

1
9(0.56492, 2.282 46) = < ~ 5) (0.56492) + 228246 — 2 = 0

Next k,, and k,, are computed by use of the following form of Eq. (6-13):

[—4639 1][’%}:_ 1 [171754
=05 1]] ky, 04359 o

ky, = 0.08494
ky, = 004247

which leads to
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Then
a=by kyy,+ by kyy = (—0.630 172)(0.086 56) + (—0.2435)(0.084 94)

= —0.075235
Next, k3, and kj, are computed by use of Eq. (6-14),

—4689 1][ks, -1 [—0.075 235]
[ -05 1][k,, "~ (0.05)(0.4359) 0
which lead to
ki, = —0.074 412

ks, = —0.037205

Thus, by use of the last expression of Eq. (6-2), one obtains
0.086 56 0.08494
nl_92 +0.834 94[
[zi] N [2.25] + 103758 [0.043 28] 0.04247
—0074412 | _ [0.5863]
b \: —0.037205 2.2932
The behavior of this method for different choices of h as well as the Cail-

laud and Padmanabhan version of the semi-implicit Runge-Kutta method and
Gear’s method is presented in Table 6-1.

. . - ithm
A Generalized Semi-Implicit Runge-Kutta Algor}t .
for Systems of Coupled Differential and Algebraic Equations

For many systems of equations, Michelsen’s method presenteq abovedbecomres
too time-consuming because of the relatively large number of'mde.pen enft va

ables and equations. The number of variables normal.ly requlr.e'd m.the Rormu:
lation may be reduced through the use of the geperahzed semi-implicit ungef
Kutta method for systems. First, this method is developed for a sijg.m o-
differential equations and then it is developed for a system of coupled differen

tial and algebraic equations.

Systems of differential equations Consider the general case where the differential
equations are of the form

! nx (
(n % n) t 1) (y)( 1)

where the dimension of each matrix is carried as a subscript in Eq. (6-15). The
subscript n is used hereafter in the semi-implicit Runge-Kutta formulas. to
denote the number of rows or columns in a matrix, and the number of the time
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Table 6-1 Summary of results obtained by different numerical methods for
Example 6-1 for step sizes

1. Results obtained at end of one time step

Gear’s Cailland

Step size method and Exact

h (2d order) Padmanabhan Michelsen solutiont

0.5 y, = 1281250 1.274438 1.274434 1.27420
z, = 2.640625 2.637218 2.637099 2.63710

0.05 vy, = 0.586424 0.5864152 0.5864151 0.586416
z, =2.293212 2293208 2.293209 2.293208

0.005 y; = 0.508 739 0.508 739 0.508 7389 0.508 739 5
z, =2.25437 2.254369 2.254370 2.254370

0.0005 vy, =0.5008749 0.500874 8 0.500874 8 0.5008755
z, = 2250438 2.250438 2.250435 2.250438

0.00005 y, = 0.500087 5 0.500087 4 0.5000874 0.050008 77
z, = 2250044 2.250044 2.250045 2.250044

2. Results obtained at the end of several time steps

Step size

h and Gear's Caillaud

number Method and Exact

of steps (2d order) Padmanabhan Michelsen solutiont

h=0.5 Y10 = 3.729 600 3.712950 3.712949 3.712702

10 steps z,0 = 3.864 799 3.856476 3.856474 3.856 351

h =0.05 Y30 = 2.346 949 2.346 693 2.346 689 2.346710

30 steps 230 = 3.173464 3.173 345 3.173344 3.173355

h = 0.005 Y30 = 0.752895 0.752 8952 0.752894 8 0.7528982

30 steps 230 = 2.376 448 2.376 449 2.376 447 2.376 450

h = 0.0005 Y30 = 0.5261507 0.526 149 5 0.526 1493 0.526 1526

30 steps 230 = 2263076 2263075 2.263075 2.263077

T Aty =4~ (4 — p0)e >
2(t) =4 — (4 — z(0)e~?

step is denoted by k. The matrix A in Eq. (6-15) is independent of y and has the

inverse A™'. Since A is assumed to have an inverse, it may be solved for dy/dt
to give

dy

—=A"'Fy)=f

. ) = f(y)

where the right-hand side has been denoted by f(y) to give an equation of the

same form as Eq. (6-1). Thus, for the system under consideration, the first
expression of Eq. (6-2) may be stated in the form

{1 — haA~'J,][k,] = hA~'F(y,) (6-16)
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where
oF(y)
oy,

Premultiplication of each member of Eq. (6-16) by A gives the following ex-
pression for computing k, :

J = jacobian of[ i=12..., n)]

[A — haJ J(k,] = hF(y,) (6-17)
Similarly, the expression for k, becomes
[A — haJ ][k,] = hF(y, + b, k) (6-18)

The expression for computing k; is obtained by beginning with the third ex-
pression of Eq. (6-2) and carrying out the same set of operations outlined for k,

to obtain
[A — haJ,](k;] = A[bs, k; + b3, k] (6-19)

Systems of differential and algebraic equations Consider the general system of
equations

d
Boun| S|  =F®mxy (m<n) (6-20)
dt {x1)
Opn—myx 13 = G(Y)tn—myx 1] (6-21)

where 0 is the null vector. The rank of the constant matrix B is m. Next let the
square matrix A, x, be defined by the following partitioned matrix:

All Alz
Ayen = 6-22
wxm [021 Ass (¢-22)

where

Ay, =A(mxm) A, ZA[mx(n-mn

05 = Ou—myxm) Ay, = Ajp-myx(n-my) m<n also [A;; A;;]=B

Let the elements of A,, be picked such that A, has the inverse AGxn-
Also, let ¢ >0 be picked with the understanding that eventually it will be
allowed to go to zero. Thus Egs. (6-20) and (6-21) may be restated in the

following form:

d
AGxn [d_f] = ?(Y)(n x 1) (6-23)
(nx 1)
where
F(y)
FYuxn=]1
- Gl(y)
& (nx1)
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Then

dy -
7 =ATFY =1y (6-24)

Let the jacobian J in Eq. (6-2) be denoted by J,

.~ (of
=180 _ A1
{6y} A

Jll J12
T=[Ju 35
where ’ i
Ji1 = Jmxm) Ji2 = Jmxn-my
Ja = Ji-mxm J22 =J[(n—m)x(n—m)l

Thus, the first expression of Eq. (6-2) for k, becomes

[ — haA~'J(y)1Tk,] = hA "' (y,) (6-25)
Premultiplication by A gives
(A — had(y)1lk,] = hF(y,) (6-26)
The partitioned form of Eq. (6-26) is
J
A, Ay, » 1 Ji2 F(y,)
0 As] | du Jn(td=h1 (&-27)
¢ c P (Yo
and thus
(A, —hal; ] [Ay, - hal ;] F(y,)
h —
[— ?a le:l ,:Azz — IE Jzz:l Lkl =h G(y,) (6-28)
€ €

Multiply those rows contain%ng 1/e by & (as in gaussian elimination) and then
set ¢ = 0. The resulting partitioned matrix for computing k, is given by

[[A(m xm) = hadsm]  [Apnx-my — M@ x (n - m)]]:l 0] = h FYDmx 1)
[—had i —myxm] [—hadn— myx (n—my] 1 G
(6-29)

Beginning with the second expression of E i
: ' q. (6-2) and performing the same
set of operations described above for the first expression of Eq. (6-2) gives the
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following partitioned matrix for computing k:
[[A(,,, xmy = M3 mxm]  [Apnx@-my = hadmxn -m)l]] k.1
[—hadi-mxm] [—hadi—mx u-m]
_ h[ F(yx + boky)mx 1)
G(yx + b2 Ko)jn-mx 11

The formula for calculating ks is developed by commencing with the third
expression of Eq. (6-2) and performing the same set of operations described for
the first expression of Eq. (6-2). The following result is obtained

[A — had(y)1(ks] = Albs, k; + b3, ks] (6-31)

] (6-30)

Again, as before

[A,; —haly,] [A; — hal ;]
[—ha 3 ] [ ha ] [ky] = Albs, k, + b3, k] (6-32)
21

Ay — ‘; J2;

Multiply each row containing 1/¢ by & and then set & = 0 to obtain the parti-
tioned matrix formula for kj.

[[A("'X,,.) — had mxm] CAmxn-mn =~ i X("—mn]:][ka] =d,xq (6-33)

[—had - mxml [—hadi—mx @-mn]
where
a=[a; oy " Ay Xmsr 7 o, ]" Ot = Xy = 777
=a,=0
The nonzero elements (a,, oy, ..., &,) are computed as follows:
Imx 1) = Amxmlb31 Ky + b3z ks] (6-34)

Note, Apxn is actually equal to the matrix By,., from the original set of
equations, Eq. (6-20).

Selection of Step Size

The step size is to be selected such that the truncation error is maintained
within some prescribed upper bound. Unfortunately no simple expressions are
known for the precise truncation error in the Runge-Kutta methods (Ref. 6).
The local truncation for an mth-order Runge-Kutta method can be approx-

imated by Jp— 639

where C depends upon the higher-order partial derivatives. In order to approxi-
mate the truncation error, the following procedure which is based on the
so-called Richardson extrapolation technique has been recommended by
Michelsen(8).
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.Suppose. that C in Eq. (6-35) remains constant. Then if an algorithm is
applied k times in an integration in which the intervals of integration are
equally spaced, the total truncation error resulting from the repeated applica-
tion of the algorithm from x = a to x = b is given by

Er = kChm*! (6-36)
Since h = (b — a)/k or k = (b — a)/h, Eq. (6-36) becomes
_Gb-a .
E;r= P Chm*! (6-37)

Next, suppose that y,,, is computed on the basis of two subintervals of sizes h,
and h,, where h, = h,/2 over the interval from x = a to x = b. Then the correct

value of , denoted by y¥* i
palue o Y+t Y V&+1, is related to the values y,,, , and y,,, , as

b-a
hy

(b—a)
h,

VEr1 =Viwr,1 + Chp*! (6-38)

YVEe1 = Vw12 + Ch3*! (6-39)
where Yir1,1 is computed on the basis of one time increment of size h, and
Yk+1,2 1s computed on the basis of two time increments of size h, . Elimination

of (b — a)C - - !
me(nt: a)C from these two equations yields the following result upon rearrange-

Vi = Yer1,1 = Yiwq, 2(hy/hy)"
L= (hy/ho)" (6-40)

Since h, = h,/2, it follows that

m
Vid1,1 = 2"Vas1,2

* —
Yev1 = 1 —om (6-41)
For a third-order Runge-Kutta method, Eq. (6-41) reduces to
« _ 8 1
)’k+1—;}’k+1,2_?)’k+1,1 (6-42)

The expression for the local truncation error for a si i i
. . ngle step is obtained b
first setting b — a = h, in Eq. (6-38) to obtain P g

E=Ch'1"”=yt+1—yk+1,1 (6-43)
Elimination of y¥,, from Egs. (6-41) and (6-43) yields

2™y -y )
E = +1,2 k+1,1
2m _ 1 (6'44)
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which gives
8 -
E=7(Yk+1,2_yk+l‘l) (6-45)

for a third-order Runge-Kutta. After E has been compute_d. by use of lqu. (6-43),

y¥,, may be computed by use of the following expression which is readily
k+1

obtained from Eqs. (6-43) and (6-45).

E -
.V:+l:yk+l.2+§ (6-46)

or Eq. (6-43) may be solved directly for y¥, ;. The value y¥,, is a better value of
than either y, . ; O Y41, 2- . .

e 1Michelsen(i&) ;:r+oposed the following procedure for changing step size. Let €

be a prescribed vector of tolerances and let

(Mk_ﬂ_l) ’ (6-47)
& i

i i d the solution value y§¥,, is found
If g < 1, the integrated result is accepted an .
forgeach member i by use of Eq. (6-46). If g > 1 the result is not alccepted, and
the integration from ¢, is repeated with hy = h1/4..Then E and y¥,, are cotrlr;
puted by use of Egs. (6-45) and (6-46) on the basis of y, 41 3 and Y.+ 25
values corresponding to h, = h,/2 and hy = h,/4, namely,

g = max;

E==r+1.3— Vi+1,2)

| oo

(6-48)
E
Yisr =Ysrat g

Once a step has been accepted, the proposed step length for the new step size
h ., is selected as follows:

hist = hy - min [(4g) °**, 3] (6-49)

-4
< 0.25, Eq. (6-49) gives an increase‘in th,.l and for g <3 /4,.a
Ill::(jmﬁ);n gi]ncrease in qstep size by a factor of 3 is .obtam.ed‘ The }f)actorf cc):oét 1011f
Eq. (6-49) and the empirical restriction on the maximum mcre?dse \ y aleiﬁon o
3 were recommended by Michelsen(8) as safety margins to avoid the se ton of
step sizes which are too large and which would lead to subsequent rej
i fg> 1)
(wolfllf\eyllei:li:ral:;;lginition) of two approximate solutions given by Eq. (6-463
yields a more accurate value of y.., than either of the two values, y;4y,; an

Ves1.2, because the dominant error term 0(h*) tends to cancel when the two
k+1,2>

solutions are combined, and the method in effect becomes fgurth order. Ho;v-
ever, the higher order is achieved at considerable computational expense, the
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two extra steps with h, = h /2. Nevertheless, this one-step—two-step approach
retains the stability properties of the algorithm, increases its accuracy by one
order, and provides a simple means of adjusting the step size (Ref. 8).

6-2 APPLICATION OF GEAR’S METHOD

TO SYSTEMS OF COUPLED DIFFERENTIAL AND
ALGEBRAIC EQUATIONS

Solution of Differential and Algebraic Equations (Refs. 3, 4, 5)

Examination of the integration formulas (presented below) for Gear’s method
for systems of algebraic and differential equations such as

? =1y, z,1)
t (6-50)
0=gy, z1)

shows that the integration formulas for algebraic equations are precisely the
same as those for differential equations. The fact that one method works for
both algebraic and differential equations makes it possible to apply Gear’s
method to systems of equations in which y' occurs implicitly of the form

Fly,y,z2,0)=0 (6-51)

It is not necessary to solve F for y’ explicitly or to determine which are differen-
tial equations. These characteristics of Gear’s method permit the formulation of
an absorber problem in terms of a smaller set of equations and variables than is

required in the formulation by use of the semi-implicit Runge-Kutta method.
Equations of the general form

0="A(y,zy,z)

6-52)
0=g(y, z) (

are characteristic of those used to describe the dynamic behavior of absorbers.

For convenience, the equations of Gear’s kth-order algorithm for one differ-
ential and one algebraic equation are presented.

hz hk T
Y, = [y,, hy,, Tl ¥, .., o yi"’:'

2 hk T
Z, = [zn, hz,,, % 22 .., o zf,"’] (6-53)
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where D is the Pascal triangle matrix (see Chap. 1).‘ The Newton-Raphson
method is used to find the pair of values b, and b, which make F(b,, b,) and
F,(b,, b,) equal to zero.

Fl(bl’b2)=F1(5’n+B-—lblihj):t'*-bl’%n'*-ﬁ—lb29hz:|+b2)
Fl(bl3b2)=F2(j)n+B—lbl’ hi’;+b1,§n+ﬁ—1b2ah2;+b2)

After the solution set {b,, b,} has been found, the values of Y, and Z, are
computed as follows:

(6-54)

Y, =Y, +bL
Z,=Z,+b,L

To illustrate the application of Gear’s method to equations of the type of
Eq. (6-52), Example 6-2 is presented.

(6-55)

Example 6-2 Use Gear’s second-order method to corppute y and z at the
end of the first time step for the following set of equations:

O=z—-y+ dz _ dy
dt dt
O0=z+4y—2
w0) =1/2 20)=0
y(0) = —01 Z(0) = 0.4
y2)(0) = 0.1 zZ3(0) = —0.4
For Gear’s second-order method: f_; = 2/3, L = [2/3, 3/3, 1/3]7, and take

h=0.5.

SoLUTION Let the vectors Y and Z be defined as follows:

h2 5 T
Y = [y, hys 5 » ’]

"
S

Jo=05  hyp=(0.5(—0.1)= —005

h? 1\(1
= y@ =~ z)©1 =00125
ot (o

Then

and

W oo (N1 o4 = —00s
2o =0, hzy = 0.2 2170 = \g E(—')_—'
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Thus
Y, = (0.5, —0.05, 0.0125)T
Z, = (0,02, —0.05T
Then
3 [1 1 1” 0.5 ] [ 0.4625}
Y, =DY,=]0 1 2{]-005 =1 —-0.025
‘0 0 1 0.0125 0.0125
and

11 1]f o 0.15
Z,=pz,=|0 1 2| 02 |=] o010
0 0 1]{-005 —-0.05

Next find b; and b, such that F,(b,, b,) = Fyby, b,) =0, where
- . 1, 1
Fyby, b)) =G + B_1 b)) — (5, + B_iby) + h (hZ + b,) — h (hy) + by)

Falby, b)) =, + B_1b,) + 4, + B_, by) — 2
The desired values of b, and b, are

b, = —0.004 6875

b, = 001875
Thus
N 0.4625 23] [ 0459375
Y, =Y, +b,L=|-0025 [+(—00046875)|3/3|=]|-00296875
0.0125 1/3 0.010937 5
and

. 0.15 2/3 [ 0.1625
Z,=Z,+b,L=]| 010 |+ (0.01875)| 3/3 0.1188
—~0.05 1/3] | -004375

Change of Step Size

When the past values of y, (namely, Yn—15 Yn—25 --+» Yu—y) are carried in terms
of the Nordsieck vector (see Chap. 9), a change in step size is easily effected. Let

the Nordsieck vector for Gear's integration formula of order k at time ¢, and
step size h be denoted by

2 3

h h T
z,= [y.., hy., 57 90, TR o yf.*’] (6-56)
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For step size h = ah, the corresponding Nordsieck vector at time t, is de-
fined by LW, W3 - i W] 657
Zn=|:yn,hyna'2—!yn ":iyn ""a-‘ayn

Since ,, §., and all derivatives of y, and j, are evaluated at the same time

t =t,, it follows that
To= Vo Do = Vo PP = Y2, 9P =90 (6-58)
Since h = ah, it follows that the elements of the vectors Z, and Z,, are related as

follows:

hy, = ahy,
7'_2 N2 — f“z_hi (2)
TRGEETIRG
B _©h y (6-59)
TR TR
. o*h
o W= ¥
Thus. the two Nordsieck vectors are related by the diagonal matrix A(x) as
follows: 2 — AW, (660
where
1 0 0 O 0
0 « 0 O 0
A=|0 0 o> 0 0
0 0 ok

Simultaneous Change of Step Size and Order

In the development of the formulas for effecting these changes, let it be sup-
kth-order Gear formula has been used for the last (k + 1) time
p size and order are based on the
-order, and a

posed that a : :
steps. The formulas for effecting changes in ste
estimation of the truncation errors for a kth-order, a (k' — 1)
(k + 1)-order Gear integration formula. Gear used the following formulas.

hk+1 (k+1)

E-= -—ki—l— (order k)
k. (k)

E-"n K (order k — 1) (6-61)
k+2. (k+2)

E=h Vn (order k + 1)

I 49
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where the contributions of the higher-order terms have been neglected in the
above statements of the truncation errors.

Let the maximum possible value of E be set equal to ey,,,, where y_., is the
largest value which the dependent variable has taken on and ¢ is a parameter
specified for the problem. Let the new step size h be denoted by h=oah. Let h
be replaced by h and E by €Vmax- When the expressions so obtained are solved
for a with weights being imposed to maximize the computational efficiency as
proposed by Gear, one obtains

[k + Deypae) /<D
o = E (m (order k)

1 [(key,. \'*

“=13 (#) (order k — 1) > (6-62)
L ((k + 2)eYmer ) <2

“T1a (h“—‘y““T’ forder e+

The desired value of « is the maximum value computed by use of Eq. (6-62).
The factors 1/1.2, 1/1.3, 1/1.4 were introduced by Gear to provide a bias toward
picking a smaller order. Since the change from a lower to a higher order
requires more computational effort than does the change from a higher to a
lower order, the order should not be increased unless a significant improvement
can be achieved by changing order.

In order to evaluate the o’s given by Eq. (6-62), procedures are needed for
computing the derivatives appearing in these expressions. For the kth-order
algorithm, the derivative y**" may be approximated by use of the (k + 1)st
elements of Z, and Z,_, as follows:

1 (hkyilk) h"yf,“l 1> hkyilk+ 1)

h\ k! k! T k!
Then, for order k, the expression
. heytr gy
Wyt = (k!)<——,f! - ———1"! ‘> (6-63)

may be used to compute h**'y%* Y. Instead of using the above expression for
computing the (k + 1)st derivative, Eq. (6-64) may be used. This expression is
developed in the following manner. Let the elements of Z, be denoted by z
Zp 25 +--» Zy k+1- Then Eq. (6-63) may be stated in the form

hkﬂygkﬂ':k!(zn.kﬂ — Zy 1 k+1) (6-64)

Since Z, = Z, + b,L (Eq. (1-59)), it follows that the (k + 1)st elements of Z,,
Z,, and L are related in the following way:

n, 1>

Znk+1 — Znk+1 = balisy (6-65)

where I, is the (k + 1)st element of L. Since each element on the principal
diagonal of the Pascal triangle matrix is equal to unity and since 7. = D7, .
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(Eq. (1-58)), it follows that the (k + 1)st element of Z, is equal to the (k + 1)st
element of Z,_,, that is,
3 (6-66)

Zpk+1 = Zn-1,k+1

Use of Eq. (6-66) to eliminate Z, ,., from Eq. (6-65) followed by the substitu-
tion of the result so obtained into Eq. (6-64) yields

YD =kl b, by (6-67)

For order k — 1, h*y® is observed to be the last element of Z,.

For a (k + l)st-order Gear integration formula, both the (k + l)st and
(k + 2)nd derivatives are needed. First the (k + 1)st derivatives at ¢, and t,_, are
computed by use of Eq. (6-63). Then

k+1, (k+1) k+1,(k+1)
B2kt - k'(h Yn __h Yn-1 )
M !

k! ’ k!
= k! k!bnlk+l_k!bn—llk+l
o k! k!
= k! s (b, — b,-1) (6-68)

Thus, the expressions given by Eq. (6-62) may be stated in the following
alternate but perhaps more convenient computational form:

1/(k+ 1)

oo L [k DeYimax (order k)

12\ k', b,

1/k
o= 11—3 (k:,fy "93’) (order k — 1) > (6-69)
1/(k+2)

o= 1 [__Qitﬁﬂw_] (order k + 1)

1.4 | k'l yy(by — by-y)

At the end of each trial n, the truncation error & is computed by use of the

following expression:
!
er = _ﬁ"_l.“L‘_Ii_ < (6-70)
(k + I)Ymax

This expression follows' immediately from (6-61) and (6-67) after E in the first
expression of Eq. (6-61) has been replaced by &r .. If this criteria is not
satisfied, the step size is reduced until it is.

The procedures for control of step size and order provide a method for
starting the solution procedure. In the solution of initial value problems, all that
is required are the values of the dependent variables at the beginning of the
integration interval. The order of the method is set to one and the second
components of Z, are set equal to zero. The second component of the Z,
vectors are set to zero because for an arbitrary set of differential and algebraic
equations, it is not always possible to obtain values for all of the required
derivatives. This in no manner affects the accuracy of the solution, as an exam-
ination of the method reveals. The only thing affected is the error control
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procedure, which must be suspended until the second step. Thus, the initial
v.alue of h cho§en should be small, but it will be increased later by ’the integra
tion routine. Similar considerations also require that tests to increase the orgde;
of the method be suspended until the third time step has been completed. Also
Gear and others found that increasing the step size before (k + 1) ste .s had’
been completed since the last change could result in large accumulated irr
thereby requiring a subsequent reduction of the step size. o
‘ Other strategies for change of step size and order can be devised such as
using a spbset of variables for which initial derivatives are available. To dat
compgtatlonal experience indicates that it is best to base truncation ;trror ang
step size control on the subset of variables that have a derivative in at least
equation of the differential-algebraic system being integrated. o

6-3 SOLUTION OF ABSORBER PROBL

EMS BY
THE SEMI-IMPLICIT RUNGE-KUTTA METHOl;jSE oF
AND GEAR’S METHOD

:in t(:u; section, the equations for an absorber at unsteady state operation with
xed holdups are formulated first by the semi-implicit Runge-Kutta method

and then by Gear” i : .
Fig. 6-1. ’ r's method. A flow diagram for a typical absorber is shown in

Vi Ly
Vi 1y
|
=1
1% L,
Vai Ly,
j=2
Vi L
Vi 15,
j=3
j=N-1
j=N
VN*I Ly
YN 41,0 IN:

Figure 6-1 Absorber and identifying symbols.
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Formulation of the Absorber Equations by the
Semi-Implicit Runge—Kutta Method as Proposed by Michelsen

To facilitate the solution of Egs. (6-71) through (6-77) by use of the semi-
implicit Runge-Kutta method, new holdup variables are defined and the com-
ponent flow rates {v;} and {l;;} are restated in terms of the holdups. The new
holdup variables are defined because the Runge-Kutta method is applicable for
the case where the differential equation contains only one derivative. After these
new variables have been defined and the component flow rates have been elim-
inated, the following expressions are obtained for the component-material bal-
ances, the equilibrium relationships, and the energy balances.

The equations needed to describe absorbers at unsteady state operation are
a subset of those presented in Chap. 4 for distillation columns except for an
additional term in the energy balance corresponding to the heat content of the
metal. Except for this one modification, the equations for absorbers are the
same as those for any interior plate j (j # 1,, N—1) of a conventional distil-
lation column. For convenience, a summary of these equations follows:

duf,  duj; (G=12,...,N)
ey oy — =L L 6-71
venat b o = i =0, (i=1,2,...,0 -7
0=Y1li—L; (G=1,2...,N) (672
i=1
0=Yv;—V G=12..,N) (673
i=1
0=Yui—-UY Gi=1,2...,N) (674
i=1
0= u;—Uj G=1,2....,N) (675
i=1
_}]chjilji_y:E;vjl 8?11,5’ si\)]) (6-76)
2 L 2 i T
i=1 i=1
Z(Uj+l,iﬁj+1+lj—l.iﬁj‘l.i—vjiﬁji_Ijiﬁji)
i=1
dliZ(u}’,-ﬁﬁ+uf,-ﬁﬁ)] i
===t Lo, =2 i=12..N) (677
dl + J d[ (J > s ) ( )
where . ; = mass of metal associated with stage j
s

d
CS = heat capacity of the metal = T Note
i

.‘i’_‘i=@‘£}=cs gl
dt  dT. dt Y odt

1
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o In order to solve these equations by the semi-implicit Runge-Kutta method
¥t Is necessary to restate the component-material balances and energy balance;
in the form of y’ = f(y) by introducing the new variables {u;}, EY, EL, and E,
The resulting set of equations to be solved are then given by e 3

du; <L-_ ) v L v,
i (Zizt) _+(A>u_v Y (et 1) P Y (L6 E) P4
dt Uf“—l j—1,i U;/+1 j+1,i Uj‘ Uj U:/ Uji

G=1,2..,N)
(i=1,2..,0 (6-78)
0=ul;+ ul — u; G=12..N)
e (i=12...,0 ©79)
— Vv _ 1 4 .
0—i=ZIu,-.~ U; G=1,2...,N) (6-80)
_ L __yrL .
0—i=21uﬁ U; G=12..,N) (6-81)
Ozv,ﬁ-K,-L;uﬁ_yﬁqui G=12..,N)
vt Uy i=12..,¢0 %
dE, () <V- 4 7
bt EL it \pv  (Zi\pL_ [ Li) gV
t Uf-l ot UJ",+1> Ak (Uj>EJ ( ;’)EJ (6-83)
0=i=21hﬁuﬁ-5f G=1,2....,N) (6-84)
0= Hyui~Ej (=1L2..N) (689
0=,k — ES G=1,2..,N) (686)

0=E}+E/ + Ef — E; =12,...,N) (6-87)
Equations (6-78) through (6-87) constitute the complete set of N(3c + 7) inde-

pendent equations. These N(3¢ + 7) independent e i i
4 . quations contain the follow-
ing N(3c + 7) independent variables x, namely, ™

X =[u; - upe ufy o oupoufy ook Vi L; T, E; E] EF E5);_; 517 (6-88)

where the noFation “( )j=1.5" means that the elements displayed are to be
repeated for j=1, 2, 3,..., N—1, N. In the evaluation of thermodynamic

functions, the mole fractions should be r
> eplaced, whe
following expressions: P rever they appear, by the
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In order to demonstrate the characteristics of the semi-implicit Runge-
Kutta method, the following example was solved. This example is based on a
series of field tests which were made by McDaniel(10,11,12). These tests are
described in greater detail in Chap. 7.

The equations and variables of the semi-implicit Runge-Kutta method were
ordered in the same manner as described below for Gear’s method. Likewise the
modified jacobian matrix was solved by use of the same sparse matrix tech-
niques described below for Gear’s method.

Example 6-3 A complete statement of this example is presented in Table
6-2. Initially, at time ¢ = 0, the absorber is at steady state operation. The
steady state solution at the initial conditions is shown in Table 6-3 and at
the conditions of the upset in Table 6-4. At time ¢ = 0+, a step change in
the flow rate of the lean oil is made (see Table 6-2). The semi-implicit
Runge-Kutta method was used to obtain the transient solution shown in
Table 6-5.

" The solutions shown in this chapter were obtained by use of the K data
presented in Table 6A-1 and the corrected enthalpies {(h).o, (H)co} Which
were determined from a series of steady state field tests (Refs. 10, 11),
namely,

(h)eo = h; + BCHT — Tp)

(H)eo = Hi + BCI(T — Tp)

Table 6-2 Statement of Example 6-3

Flow rate, Ib-mol/h

Lean oil, Rich Gas,
Component L, Vit Other specifications
CO, 0.0 14.656 31 Initial conditions: t = 0, Steady State
N, 0.0 461737 The column has 8 stages and operates at a
CH, 0.0 2233.060 pressure of 722 Ib/in? abs. With each stage,
C,H, 0.0 158.7503 there is 612.5 1b of metal having a heat
C,H, 0.0 66.127 59 capacity of 0.12 Btu/(IbX°R). The rich gas
V, =20°
i-C,H,, 0.0 15.829 34 N +1 enters at'a temperaturej T,,{,,l 2.0°F
and the lean oil enters as a liquid at a
n-C,H,, 0.0 10.206 40 o
. temperature Ty = — 1.0°F. The total holdups
i-CsH,, 0.08732 2.29997 . L
in the liquid and vapor phases are as fol-
n-CsH,, 0.11779 1.41099 L .
C.H 123424 086719 lows.U,-—2.501b-mol(j=l,2,...,8),
67Tt : ) and U} = 0.085656, U} = 0.038926 1b- mol
C,H,¢ 17.85307 0.266 89 (G=23,...,N).
CgH s 62.569 89 0.02486 Upset at time t =0+
CoH,, 49.946 69 0.00023 L, = 194.713 72 1b - mol/h. The composition of
C,oH;, 24.846 36 0.00003 L, remains the same. The temperature of the

156.65536  2508.11747  lean oil is changed to T, = 2.5°F.
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Table 6-3 Steady state solution of Exam-
ple 6-3 at the initial set of operating con-

ditions
T, Y, L,
Plate °R 1b - mol/h ib - mol/h
1 484.72 2277.82 236.34
2 490.08 2357.51 253.18
3 490.58 237435 259.65
4 489.62 2380.83 266.08
S 487.98 2387.26 273.76
6 485.79 239493 284.39
7 482.75 2405.57 302.08
8 477.99 2423.25 386.94
vli’ IN."

Component Ib - mol/h Ib - mol/h
CO, 13.030 1.627
N, 3.746 0.871
CH, 2132.466 100.591
C,H¢ 113.020 45.731
C,H, 13.749 52378
i-C,H,, 0.323 15.506
n-CyH, 0.032 10.174
i-C,H,, 0.028 2.360
n-CH,, 0.027 1.502
C,H,, 0.072 2.029
C,H,, 0.350 17.770
CgH 5 0.694 61.901
CyoH,, 0.239 49.708
C,H;, 0.049 24.798

where f = 0.2561
T = temperature, °R
Ty = 0°R, the datum temperature

Curve-fits of the liquid and vapor enthalpies {h;} and {H;} are presented in
Table 6A-2, and the liquid and vapor correction factors {CL} and {C!} are
presented in Table 6A-3. '

Formulation of an Absorber by Use of
the Generalized Algorithm for the Semi-Implicit Runge—Kutta Method

The system of equations used to describe an absorber are of th i

Egs. (6-20) and (6-21). The absorber equations (Egs. (6-71) throigfﬁrzg-’%}/‘)/;;:z
be solved 'by use of the generalized Runge-Kutta algorithm for systems of
coupled differential and algebraic equations (Egs. (6-29), (6-30), (6-33), and
(6-34)). When the generalized algorithm is used, it is not necessary ,to deﬁr;e the




Table 6-4 Steady state solution of Exam-

ple 6-3 at the conditions of the upset

T Vi, L;,

Plate °R 1b-mol/h 1b - mol/h
1 485.22 2251.98 287.65

2 491.35 234493 305.73

3 492.90 2363.01 311.67

4 492.70 2368.95 317.72
S 491.46 2375.00 325.39
6 489.31 2382.67 336.65
7 485.96 2393.93 356.40
8 480.32 2413.69 450.86

Dyis Inis

Component Ib- mol/h 1b - mol/h
Co, 12.805 1.851
N, 3.622 0.996
CH, 2117.130 115.947
C,H, 107.088 51.663
C,;Hg 9.709 56.419
i-C4,H 0.142 15.688
n-C,H,, 0.012 10.194
i-CsH,, 0.029 2.380
n-CsH,, 0.028 1.530
CeH,, 0.074 2.328
C,H¢ 0.356 22.101
CgH g 0.706 77.090
C4H,0 0.243 61.838
C,oH,, 0.049 30.833

Table 6-5 Transient solutions of Example 6-3 by use of the

generalized semi-implicit Runge-Kutta method

Temperature (°R) at
trial no. indicatedt

Vapor rates, 1b-mol/h
at trial no. indicated}

Plate 1 10 36 1 10 36

1 484.66 484.48 485.15 2258.54 225324 225201
2 489.98 489.95 491.24 2352.82 234795 234500
3 490.56 490.71 492.78 237171 236776  2363.13
4 489.64 490.03 492.57 237828 237476  2369.09
5 488.02 488.59 49235 238473 238129  2375.15
6 485.83 486.60 489.22 239238  2388.77  2382.80
7 482.82 483.79 485.90 240290 239898  2394.04
8 478.13 479.89 480.29 2420.13 241653 241374

t A lower bound of 0.1 min for the time step was used.
An upper bound of 5.0 min for the time step was used.

1 The times corresponding to the trial numbers are as follows:

Trial 1:  0.10 min Trial 10: 1.46 min

The tolerance vector was chosen as one-thousandth of the values at the

end of each second half-step.

Trial 36: 15.00 min
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new variables {u;}, E, and E; used in the formulation by Michelsen’s algo-
rithm. The absorbgr example may be formulated by use of the generalized
Runge-Kutta algorithm in terms of N(2c + 5) equations and NQ2c + 5) vari-

ables, when the total holdups {U,} and the liquid holdups {U*
N(2c¢ + 5) variables are: ’ ! ps U5} are known. The

x=[@) o owlowh o uwh VLT OB BT (689)
and the N(2c + 5) equations follow:

L. V. v
0=( j ‘)u{ i+( ’“)u‘-’ (LY . (Vi) dup duj;
op) e o) o) o) T

G=1.,2..,N)
) (i=12..,0 (6-90)
0=Yuj—U" .
LU (G=1,2...,N) (6:91)
0= Y uk — Ut .
,-:21“" Ui (G=12..,N) (692
LI G=12..,N)
V o
Ui Ui (i=1,2..¢ (6-93)

L._ V. L
0=|—=4L)|EL jt1 v i
<U>E * (Uf; )E - (ﬁ)”

J

AV s dT dE; dEY
(ij>E,-—ﬂ,-Cygt———j——j (=12..N) (694

0= Y h.ut — EL i
i; i — Ej UG=12,...,N) (6-95)
°=i:ZlHﬁuZ-—Ef G=1,2,....,N) (6-96)

Again, the mple fr.actions appearing in the thermodynamic functions are re-
placed by their equivalents as shown below Eq. (6-88).

E When Example §-3 was solved by use of the same constraints on the step
size for Il,‘lC generalized semi-implicit Runge-Kutta method as was used for
Michelsen’s mcth(.>d, 83.9 seconds of computer time were required for 15 min-
utes of process time (see Table 6-6). Thus, for this example, the generalized

algorithm for the semi-implicit Run i i
ge-Kutta method is a i
fast as Michelsen’s method. pproximately twice as

Formulation of the Absorber Example by Use of Gear’s Method

Smce G@r’s n'.ncthod may .be applied to systems of nonlinear differential equa-
thl’lS. V?’lth variable coefficients, it may be applied to the system of equations
consisting of Eq. (6-20) (a system of linear differential equations with constant
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Table 6-6 Comparison of the semi-implicit
Runge—Kutta methods for Example 6-3

1. Integration parameters for the semi-implicit
Runge-Kutta methods

Tolerance vector = (0.001)y¥
Minimum permitted step size = 0.1 min
Maximum permitted step size = 5.0 min
Initial step size = 0.1 min

2. Performance of Michelsen’s algorithm
(Egs. (6-12), (6-13), and (6-14))t

Cumulative} Cumulative

Process functional jacobian
Step Time, min evaluations evaluations
0 0.000 0 0
1 0.100 5 2
2 0.200 10 4
14 1419 70 28
15 1.519 75 30
46 11.252 220 88
47 13.126 225 90
48 15.000 230 92

3. Performance of the generalized Runge-Kutta
algorithm for systems of differential and
algebraic equations (Egs. (6-29), (6-30),
(6-31), and (6-32))§

Cumulative Cumulative
Process functional jacobian

Step time, min evaluations evaluations
(] 0.000 0 0
1 0.100 5 2
2 0.200 10 4
10 1.447 50 20
11 1.657 55 22
33 11.185 170 68
34 12.997 175 70
35 15.000 180 72

+ Computer time for AMDAHL 470/V8 with
FORTRAN H Extended Compiler was 139.12 s
1 (b, ky + by, k;) was not counted as functional

evaluation. ‘
§ Computer time for AMDAHL 470/V8 with

FORTRAN H Extended Compiler was 86.35 s.

coefficients) and Eq. (6-21) (a system of algebraic equations) without any modifi-
cation of the algorithm given by Egs. (6-53) through (6-55)). ‘

The equations for an absorber may be formulated in terms of prc?cxsely the
same N(2c + 5) independent variables shown above for the generalized algo-
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rithm of the semi-implicit Runge-Kutta method (see Eq. (6-89)). Likewise the
N(2c + 5) equations to be solved are the same as those shown above for the
generalized Runge-Kutta algorithm (see Egs. (6-90) through (6-96)).

Solution of the Newton—Raphson Equations in Gear’s Method

Corresponding to each element of x, there is a set of variables b which may be
represented as follows:

b=[(bj‘1 b, - bicer bj.2c+5)j=1‘N]T (6-97)

Similarly, let the functions for any stage j be ordered in the same manner as
shown by Egs. (6-90) through (6-96) and identified by the following notation

f=[(fj,1 fj.z fj,c fj.c+1 fj,2c+5)j=l.N]T (6-98)

The unknown b’s at the end of a given time step may be found by use of the
Newton-Raphson method which consists of the repeated solution of

JAb = —f (6-99)
where

Ab =b,,, — b,, where [ is the trial number.

Y
0by 4 Oby, 2c+s
I :
Un.aexs  Wwzcss
abLl abN. 2c+5

In order to obtain a jacobian matrix with the sparsity of the one shown in
Fig. 6-2, the variables must be appropriately ordered as implied above. By the
ordering of the functions is meant the order in which the Newton-Raphson
equations are listed. In the proposed ordering, all of the Newton-Raphson
equations for the first stage are listed, then those for the second stage, and this
process is continued until all of the Newton-Raphson equations for stage N
have been listed.

By ordering of the variables is meant the order in which each function is to
be differentiated with respect to the variables. In order to achieve the sparsity
shown in Fig. 6-2, each function is differentiated first with respect to the vari-
ables for the first stage, then those for the second stage, and this process is
continued until each function has been differentiated with respect to all of the
variables for the Nth stage.

In order to compute the Ab’s, the matrix equation may be solved by the
well-known method of gaussian elimination. Observe first that arithmetic is to
be performed only on the elements in the shaded area. Since the elements
outside the shaded area will always be equal to zero, computer time is saved by
not performing any arithmetic on these zero elements. By applying gaussian
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Plate 1 2 3 N-1N
T T T T T T T T T T T T
11010 |©
- Note
2 @ ® @ ® 1. All elements outside of the
shaded area are zero
31 |O1O|O
r 2. Each of the shaded squares
O] @ contains one Or more nonzero
i clements
| (2¢ + 5) elements
B (2¢ + S) elements
N-1
N

Figure 6-2 Jacobian matrix for Gear’s formulation of an absorber.

elimination in a stepwise fashion, it is possible to transform the matrix shown in
Fig. 6-2 into the one shown in Fig. 6-3. At any time, only six of the (2¢ + 5)
square submatrices along the diagonal and the corresponding elements of f need
to be considered instead of the complete N(2c + 5) matrix. In particular, the
first step in the transformation of the jacobian matrix of Fig. 6-2 into the upper
triangular matrix shown in Fig. 6-3 is to consider the submatrices 1, 2, 3, 4, 6,
and 7 of Fig. 6-2. Next, the largest element in column 1 of submatrices 1 and 2
is selected as the pivot element. If the pivot element lies in submatrix 2, then
submatrix 6 may be filled in the process of eliminating all elements above the
pivot element. After the entire process has been applied to the last column of
submatrix 2, the entire process is repeated for the next set of six submatrices,
namely, submatrices 4, 5, 7, 8, 10, and 11. If one or more of the pivot elements
lie in submatrix 5, then submatrix 10 may be filled or partially filled by the
elimination process.

Refinements of the gaussian elimination process which have been described
by others (Ref. 13) were employed. For example, the Newton—Raphson equa-
tions were scaled as recommended by Tewarson(13) before the gaussian elimin-
ation process was initiated. Also the large, sparse jacobian matrix was stored
through the use of linked lists. This procedure is described and illustrated in

Chap. 15 of Ref. 7.
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N

1
T

1 @ @ @ T T T T T T T T {V ~
Note

1. All elements outside of the

| shaded area are zero

| - 2. Each of the shaded squares
. and triangles may contain one
or more nonzero elements

\ (2¢ + 5) elements
L1
| (2c + 5) elements

- L

Figure 6-3 Jacobian matrix of Fig. 6-2 after triangularization.

Since all of the variables x remai iti
4 A n positive and bounded throughout the
transient operation, the values of Ab were limited accordingly. Forgexample

suppose that the value of Ab;; ,,, for th ial gi i
. 141 e (I + 1)st trial
the corresponding variable uLI that is, ) gives & negative value of

Jis
0>“:‘7‘:'}fi+ﬁ—1(bji.1+Abji.1+1) (6-100)
then each Ab is multiplied successively by factors of 1/2 until u% >0
Ji .

Speed is achieved in Gear’s method b i j
. using th i
time steps as indicated in Table 6-7. ’ ® fhe same Jacobian for severa

Comparison of the Semi-Implicit R
and Gear’s Method plicit Runge-Kutta Methods

ES;SSZ:ZCES of copgled differential and algebraic equations in which the deriva
ear with constant coefficients, the generalized i-implici -
Kutta method may b ot : , generalized semi-implicit Runge-
pplied directly. The generalized algorith imi
necessity for defining new variables as requi S e iftrontial o
. ‘ : equired to state the diffe i
it ! ’ : erential equa-
m;lslc:tn Stil[t]e (\i'anable form [y =f(»)] in order to apply Michelsen’s s(elmi-
method. Thus, in the formulation of the absorber example, N(3¢c + 7)

1
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Table 6-7 Solution of Example 6-3 by use of Gear’s
Method

1. Gear’s method integration parameters

Error control parameter, ¢ = 0.001 )
Minimum permitted step size = 0.009 ?999 min
Maximum permitted step size = 5.0 min

Initial step size = 0.01 min

12 .
Convergence criterion: = Y, f? <9, where n is the total number
ni=

of functions f;-

2. Performance of Gear’s method?

Cumulative Cumulative

Process Integration functional jacobiap
Step time, min order evaluations evaluations
0 0.000 1 0 0
1 0.01 1 3 1
6 0.080 1 22 3
7 0.098 2 24 3
24 1.434 2 77 9
25 1.580 3 79 9
52 11.815 3 165 19
53 11.923 2 167 19
60 16.285 2 187 22

+ Computer time for AMDAHL 470/Vv8 with FORTRAN H
Extended Compiler was 28.92 s.

variables were required by Michelsen’s method while or}ly N(Q2c + 5) were re-
quired by the semi-implicit Runge-Kutta method aqd Gear. s metbod. I
In order to solve systems of differential equations with variable coefficients
and one or more derivatives of nonlinear form by use of the general.lzed setmcl)-f
implicit Runge-Kutta method, it is necessary to fleﬁm? an gppro;l)r:iatg set. o
new variables which produces a new set c?f equations in which al erglva 1vb
appear in linear form with constant coefficients. Tg.solve the same pro emt o);
use of Michelsen’s method would require the definition of an appropriate se o
new variables which would reduce the original set of eguatlgns to state-varia ef
form. On the other hand, Gear’s method may be applled directly to systems tc))
nonlinear differential equations with var:afblehcoeﬂ'laentts.t.N;sw variables may be
i rse, as desired to simplify the computations. N
mtr(Xjus(i:Z?l’iI;)cfaic:ua?\’/antage of Gear’s method over the semi-imphcnt R.ungz—
Kutta methods is the fact that the derivatives may be 8’.pprox1mated in the
Newton—Raphson determination of the set of {b;} qf Gf.:ars method wh.1ch are
required to satisfy all of the equations. Approximation of the derflvétlv?s
appearing in the Newton-Raphson method does not reduce the order of Gear’s
method because it is independent of the method usgd to find the {bj'}. However,
in the case of the Runge-Kutta methods, the.der.lvatlves appear in the algo-
rithm itself and the approximation of these derivatives reduces the order of the
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algorithm to the order of the approximation. Because of the complex thermo-
dynamic functions which are used in the description of nonideal mixtures, the
development of the analytical expressions for the derivatives required by the
semi-implicit Runge-Kutta methods can become an enormous task.

To compare the performance of the three formulations described above,
Example 6-3 was solved by each method. The performance of Michelsen’s
method is given in item 2 of Table 6-6. As shown there 139.12 seconds of
computer time was required to follow the process for the first 15 minutes
following the upset while the generalized semi-implicit Runge-Kutta method
required 86.35 seconds for the first 15 minutes of process time as shown in item
3 of Table 6-6. Thus, the generalized semi-implicit Runge-Kutta method is seen
to be 1.61 times faster than Michelsen’s method for the absorber example.

The performance of Gear’s method in the solution of Example 6-3 is pre-
sented in Table 6-7. Since it required 28.92 seconds of computer time for the
first 15 minutes of process time, Gear’s method is seen to be 2.98 times faster
than the generalized Runge-Kutta method and 4.81 times faster than Michel-
sen’s semi-implicit Runge-Kutta method. Although the comparison of the two
Runge-Kutta methods is exact, the comparisons of the Runge-Kutta methods

with Gear’s method is not exact because the procedures used to change the size
of the time steps differed.

NOTATION
(See also Chaps. 4 and 5.)

2]

{L/ = energy holdup ?n the liquid phase on stage j

j = energy holdup in the vapor phase on stage j

E] = energy holdup in the metal associated with stage j

E; = total energy holdup in the liquid and vapor phases and metal

A associated with stage j

hj; = virtual value of the partial molar enthalpy of component i in

liquid (see App. 4A-2)

H j; = virtual value of the partial molar enthalpy of component i in
the vapor (see App. 4A-2)

h} = enthalpy of the metal at the temperature of stage j

i = molar holdup of component i in the liquid on plate j

i = molar holdup of component i in the vapor on plate j

ji = total molar holdup of component i on plate j

U; = total molar holdup of liquid on plate j

UY = total molar holdup of vapor on plate j

t

& &=
[/

Greek letters

Y5 = activity coefficient of component i in the liquid phase on
stage j [v; = yi(P, T, {x; 1]

Vji = activity coefficient of component i in the vapor phase of
Stagej [)’; = Yij(P’ T’ {yp})]
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Table 6A-3 Enthalpy correction
factorst

CHAPTER

SEVEN

1. Mean heat capacities (Btu/lb- mol)

Component cY Ct ODELING OF PACKED ABSORBERS
Carbon dioxide 2;2; 1(9)23 AT UNSTEADY OPERATION
Nitrogen . .

Methane 8.272 16.019

Ethane 11.698 18.601

Propane 16.133  26.041

i-Butane 21.106 31.605

n-Butane 21.511 31.813

i-Pentane 25.451 38.321

n-Pentane 26.044 38.589

Hexane 31.074  46.835

Heptane 36.287 51.030

Octane 41.326 56.341

Nonane 47374  62.409

Decane 52.643  68.895

+ Calculated using the same cmh.alpy
data as used in Table 6A-2 on a basis of
T, = O°R.

The use of field tests in the modeling of a packed absorber at unsteady state
operation is demonstrated in this chapter. Both steady state and unsteady state
field tests were used in the formulation of the unsteady state model for the
absorber at the Zoller Gas Plant (see Figs. 7-1 and 7-2).

After the fundamental relationships and the proposed model for the packed
absorber have been presented in Sec. 7-1, they are utilized in Sec. 7-2 in con-

junction with the results of the field tests to determine the parameters of the
model.

7-1 FUNDAMENTAL RELATIONSHIPS

The concepts of mass and heat transfer sections make it possible to represent a
continuous mass transfer process by an equivalent stepwise process, that is, by
an equivalent column with plates. In the proposed model, the column is divided
into elements of height Az;, as shown in Fig. 7-3, and the mass and heat

transfer that occurs within each element is described by the mass and heat
transfer relationships.

Definitions of the Mass and Heat Transfer Sections

The mass and heat transfer sections for unsteady state operation are defined
such that each element of packing Az; of the packed column becomes a per-
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2t ; Liquid
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=

Figure 7-2 The absorber of the Zoller Gas Plant. (R. McDaniel, A. A. Bassyoni, and C. D. Holland,
“Use of the Results of Field Tests in the Modeling of Packed Distillation Columns and Packed

1 The Zoller Gas Plant. (R. McDaniel, A. A. Bassyoni, and C. D. Holland, “Use of the
Absorbers—III,” Chem. Eng. Sci., vol. 25, p. 636 (1970). Courtesy Chemical Engineering Science.)

Figure 7- e
Regsults of Field Tests in the Modeling of Packed Distillation Columns and Packed Absorbers—III,

Chem. Eng. Sci., vol. 25, p. 634 (1970). Courtesy Chemical Engineering Science.)
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Vi Ly 4
& T N
™ (lean gas) (lean oil)

Element 1 /] Az,
XL

v, Ly,

Zi 1Y

(rich gas) (rich oil)

i lland,
_3 Sketch of a typical packed absorber. (R. E. Rubac, R. McDaniel, and C. D. Hollan

Figure 7 ers at Steady State Operation,” AICHE J., vol. 11, p. 569

“Packed Distillation Columns and Absorb . .
(1969). Courtesy American Institute of Chemical Engineers.)
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fectly mixed section, that is,

Vi = EjiK i Xj

Jivji
X; =X} (z;<z< Zjry) (7-1)
Yi=DYji (zj<z<zj4y)

where x;; and y;; are the mole fractions of component i in the vapor and liquid
streams leaving the jth element of packing. For the case where the liquid phase
forms a nonideal solution, the quantity K ;i 1s preceded by the ratio of activity
coefficients, yk/y;.

The heat transfer section having an efficiency e; is defined by

T =¢;TY  T:=TS
TV=T] (z<z<z,) (7-2)
T' =T} (5;<z<z;,,)

This definition supposes that the temperatures of the vapor and liquid phase are
uniform but different over each element of packing. Also, the temperature of the
packing is taken to be equal to that of the liquid in each element. Throughout
the remainder of the development, perfect heat transfer sections (e;=1) are
assumed, that is,

T; =T;=T; =T, (7-3)

As a consequence of the definitions of the heat and mass transfer sections
and the assumption of perfect heat transfer sections, the equations required to
describe the model are the same as those introduced in Chap. 6. The expression
for the heat content of the packing is developed as follows:

Let the total mass of packing contained in the element Az; be denoted by
;. Since the bulk density of the packing is constant, it follows that

= J pbS dz = p, S Az, (7-4)

where p, = mass of packing per unit volume of bed
S = internal cross-sectional area of the column

Since the temperature of the packing is taken to be constant and equal to T;
over element Az;, it follows that the heat content of the packing contained in
the jth element at any time ¢ is given by

M

where hj is the heat content of the packing in British thermal units per unit
mass of packing. Although more general models which take into account
mixing effects (Ref. 6) may be proposed, the relatively simple model described
above gave an adequate representation of the experimental results.
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Table 7-1 Observed temperatures for the unsteady state field test

Thus the differential equation representing the energy balance is given by
(Refs. 3, 4)

[4
Z(vj+1.iHj+l,i + Ij—l.ihj—l,i - vjiHji - Iji’;ji)

i=1

Temperatures (°F) at the cumulative time (min) indicated

¢ c
V1 Ly o
d(izfluﬁ Hﬁ) d(izluui hﬁ) L dT, Depth of (initial steady S 10 20 30 120
_ = + = + . M,CS (7. packing, ft staty
de de IV de (-3 : B
0(lean oil) —1.0 25 25 2.5 2.5 2.5
where 0 (lean gas) 260 26.0 270 27.0 27.0 2.7.0
s 2 220 240 250 25.0 250 25.0
Cf/ _ dK 6 315 33.0 340 340 340 340
de 10 28.0 320 320 33.0 334 34.0
14 235 254 27.2 284 29.0 29.4
18 194 20.0 21.0 220 220 225
215 13.0 130 13.5 135 140 140
21.5% 13.0
7-2 ANALYSIS OF THE RESULTS OF THE FIELD TESTS 23 -25 13;)5 142() 5 145)5 14;) vy
‘ _ . -2 -2 -2 —-25 —-25
. . 23 (r¥ch oil) 20.0 20.0 21.0 21.0 21.0 210
The field tests consisted of two tests made at steady state operation and one at : 23 (rich gas)} 2.0 20 20 20 20 20
unsteady state operation of the packed absorber at the Zoller Gas Plant. The t This thermowell was contained in a V-shaped trough
results of these tests were used in the development of a model for the unsteady S 1 This thermowell was located in the vapor Spacegbélow the liquid drawoff
tray.

state operation of this absorber as described in a subsequent section. There
follows an abbreviated description of the experimental procedures used and the

results obtained by McDaniel(4).

Description of the Field Tests

Initially, at time t = 0, the absorber was at steady state operation, and at time

t = 0+, the lean oil rate was changed abruptly from its initial steady state value Table 7-2 Feed analyses for the

unsteady state field test (Refs.

of 156.655 1b-mol/h to 194.714 Ib- mol/h. The temperatures recorded are given
in Table 7-1. The times given in this table are only approximate because it took 34
about two minutes to record all of the temperatures. The times do correspond, Leanoil  Rich gas
however, to the precise times at which the temperatures of the lean oil, lean gas, Component  (mol %)  (mol %)
rich oil, and rich gas were observed. At the instant of the upset, the temperature co, 00 0,606
of the lean oil increased immediately from —1.0 to +2.5°F. N, 0.0 0.176
Several samples of the inlet gas were taken before and after the field tests. CH, 0.0 86.407
Since the upset had no effect on the composition of this stream, the analyses gzge 0.0 6.643
were averaged to obtain the results given in Table 7-2. The flow rate and e 00 3329
compositions of the rich gas were determined by making a simple flash calcula- :%P:{m 0.0 1.027
tion on the inlet gas at the temperature in the space below the rich oil drawofT tray O 8-856 8;5?
and at the column pressure. Several samples of the lean oil were also taken during n-C5Hl,22 0,075 0213
the upset. No significant differences in the compositions could be detected, CeH,, 0.0788 0.289
hence, the analyses were averaged to obtain the results given in Table 7-2. C.H,, 11396 0208
Two samples were taken from both the lean gas and rich oil streams prior CgH 39.941 0.043
to the upset. Two more samples were taken from these streams two hours after CoH,o 31.883 0.001
CioH,, 15.861 0.0002

the upset. For the first 30 minutes after the upset, samples were taken every five
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Table 7-3 Lean gas analyses (in mol %) for the unsteady state field
test (Refs. 3, 4)

Cumulative time, min

Component 0 5 10 15 20 25 30 120
co, 0572 0569 0569 0569 0.569 0569 0569 0569
N, 0.165 0.6 0161 0161 0161 0161 0.161 0.161
CH, 03652 94044 94063 94059 94056 94.059 94057 94.059
C,H, 4936 4723 4719 4723 4727 4723 4725 4724
C,H, 0595 0432 0419 0419 0418 0419 0417 0418
i-C.H o 0015 0008 0006 0006 0006 0006 0006 0.006
n-CH o 0002 0001 0001 0001 0001 0001 0001 0001
i-CsH,, 0001 0001 0001 0001 0001 0001 0001 0001
n-CsH,, 0001 0001 0001 0001 0001 0001 0000 0001
CH,, 0003 0003 0003 0003 0003 0003 0003 0003
C,H,, 0015 0015 0015 0015 0015 0015 0015 0015
CgH g 0030 0030 0030 0030 0030 0030 0031 0030
CoH,, 0010 0010 0010 0010 0010 0010 0011 0010
C,oH,, 0002 0002 0002 0002 0002 0002 0002 0002

minutes from the two streams. For the next hour, samples were taken every 10
minutes. A five-minute interval was about the shortest time in which samples
could be taken manually. The analyses of the lean gas are presented in Table
7-3. The complete sets of flow rates and product distributions at the initial and
final steady states were obtained by material balance. In the analysis of the field
test at unsteady state operation which follows, the transient values of the com-
ponent flow rates (or compositions) of only one stream were needed. The com-
positions of the lean gas were used in the modeling of the absorber.

Use of the Results of Field Tests in
the Modeling of the Packed Absorber at Unsteady State Operation

Although only two steady state field tests (see Tables 7-4 and 7-5) and one
unsteady state field test are presented herein, the results of a series of steady
state field tests on this same absorber were used to determine the number of
mass transfer sections (Refs. 2, 3) by the following procedure.

The first step in the proposed modeling procedure for packed absorbers

consists of a logical extension of the concept of the “height equivalent to a

theoretical plate” (called HETP) proposed by Peters(5), to columns in the pro-
cess of separating multicomponent mixtures. For such a column, a number N of
perfect transfer sections does not necessarily exist such that all calculated and
observed product distributions may be placed in a one-to-one correspondence.
For any given N, the objective function 0, was used for any one run and
the objective function 0, was used over all runs R to give a measure of the
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Table 7-4 Initial steady state of the unsteady state field test (Refs. 3, 4)

Flow rates, 1b- mol/h

. . Product
Component Lean oil, Rich gas, Lean gas, Rich oil, distribution
ponen Lo Vit Vi Ly Iyi/v ,
Ni/V1i
CO
N 2 0.0 14.656 31 13.036 1.620 0.1243
C;{ 80 461737 3.755 0.863 0.2298
< [; 0‘0 2233.060 2133.470 99.624 0.046 69
C2H6 .0 158.7503 112.445 46.307 04118
sHg 0.0 66.127 59 13.560 52.568 3.877
i-C,H ‘
,,_CA H,o gg 15.829 34 0.347 15.483 0.4468 x 102
s 4H 0 X 10.206 40 0.035 10.172 0.2918 x 103
,,_CS H, 2 0.087 32 2.29997 0.027 2.360 0.8633 x 10?2
" [; 12 0.11779 1.41099 0.027 1.502 0:5539 x 102
sH . 1.234 24 0.86719 0.071 2.031 0.2876 x 10?
57: 16 17.868 07 0.266 89 0.342 17.777 0.5185 x 10?
CSH 18 g;;iz 23 0.024 86 0.682 61913 0.9077 x 102
oH o . 0.00023 0.235 49.712 .
. . 0.211 3
C,oH,, 24.846 36 0.00003 0.047 24.799 0.5232 : :g3
Total 156.6553 2508.113 2278.059 386.709

To= —10°F, Ty,, = 2.0°F -
and 4, = 612.5 b, » and column pressure = 722 Ib/in’ abs; /. = 4900 Ib,

Table 7-5 Final steady state of the unsteady state field test (Refs. 3,4)

Flow rates, 1b - mol/h

Lean oil, Rich gas, Lean gas Rich oil p'md‘um'
Component L, Vit V ' L,:,c o ?ls/t:lbu"on,
Ni/“1i
C
NO2 0.0 14.656 43 12.810 1.846 0.1441
C;{ 0.0 461741 3.630 0.987 0.2719
s ;; 0.0 2233.079 2118.147 114.948 0.05427
CZH6 0.0 158.7516 106.372 52.231 0.4924
sHg 0.0 66.128 17 56.721 6.029
i-C,H ‘
:,_6 H,O gg 15.82948 0.146 15.684 0.1075 x 10°
,'_C:H 10 0'103 “ 1(2)3(9)2;3 0.012 10.194 0.8231 x 103
12 . X 0.027 2.381 :
n-CiH,, 0.146 41 141100 . 0sTa ks
. . 0.027 1.531 0.5712 2
CeH,, 1.53409 0.867 19 0.070 2.332 0.3351 : :82
C,H,, 22.19035 0.266 89 .
. . 0.337 22.120 0.6557 2
gsll:l{,s 77.77081 0.024 86 0.671 77.124 0.1149 : :33
Cg };0 62.08090 0.00023 0.231 61.850 0.2674 x 103
10H2, 30.88263 0.00003 50.836 0.6615 x 103
Total 194.71370 2508.135 2251919 450.929

Ty =25°F, Ty, = 2.0°F, column i pecifi
. s 0°F, pressure = 722 Ib/in? ab: i
packing was taken to be 0.12 Btu/lb or for all T. fin? abs. and the s © heat of the
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deviations of the calculated values from the experimental product distributions
for all components:

0, =l Z |1n 6;] (7-6)
Ci=1
l <
), = — In 6, (7-7)
O Re rgl i=1| l

where 0; = (b;/d))eyp/(bi/d)ca> and 0, is the value of 0; for run number r.

Although O, is a function of not only the number of mass transfe'r sections
N but also of the sets of vaporization efficiencies E;; over all stages j, compo-
nents i, and runs R, the number of variables over which O, was to be searched
was reduced by taking N to be equal to the number of perfect ‘mass transfer
sections required to minimize O,. By perfect mass transfer sections is meant

that
E;=1 for all j and i (7-8)

Jji

and over all runs R. Thus, the calculated values of b;/d; used in Eq. (7-6) were
obtained by use of the customary equations for perfect plates. .Fr.om the plot 9f
0, in Fig. 7-4, for the steady state runs of McDaniel et al.(3) it is seen that O,

—
w

J/u

—

]
oG
- R

z \ \\

Pd
IS \ \

9 0.9 N X /—0, S
-

= P —

! AN

Q0.7 e

= \ —— —

‘21 0, for run 303

° L

03 2 4 6 8 10 12

Number of mass transfer sections, N

Figure 7.4 Variation of the functions O, and O, with the number of perfect mass transfel: sections
in the absorber. (R. McDaniel, A. A. Bassyoni, and C. D. Holland, “Use of the Results of thld Test<s
in the Modeling of Packed Distillation Columns and Packed Absorbers—IIl,” Chem. Eng. Sci., vol. 25,

p. 636 (1970). Courtesy Chemical Engineering Science.)
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Table 7-6 Vaporization efficiencies for the initial and final
steady states of the unsteady state field test (Refs. 3, 4)

E,, initial E,, final steady
Component steady state state

E,,, geometric mean

co, 2.1945 2.2998 22465
N, 0.0491 0.0501 0.0496
CH, 1.3768 1.4032 1.3899
C,H, 0.9093 09823 0.9451
C,H, 0.7842 0.8293 0.8064
i-C.H,, 09128 09263 09196
n-C,H,o 09511 0.9665 0.9588
i-C,H,, 09315 09734 0.9522
n-C,H,, 09375 0.9504 0.9439
CeH,, 0.5988 0.6310 0.6147
C,H,, 0.4984 0.5244 0.5112
CeH 4 0.6479 06753 0.6615
CH,, 0.5985 0.6228 0.6105
C,oH,, 0.4984 0.5257 0.5119
B, 1.0791 1.0948 1.0869
By 0.0267 09134 0.9200

passes through a minimum at or near the integral value
N=38 (7-9)

This value, N = 8, was used in the modeling of the unsteady state data. To
further reduce the objective function O,, a set of vaporization efficiencies were
determined by use of the simple product model

E= ﬁl Ei
Ei=E  (j=23,..,N-1 (7-10)
Ey = ﬂNE_i

In this model, a complete set of E’s (i=1, 2, ..., ¢) and two p’s, B, and By,
were found. The set of component efficiencies E; was determined such that the
values of ly,/vy; computed by use of the model were in agreement with the
experimental values. The two values of §; (8, and fy) were selected such that
the two terminal temperatures T, and T, computed by use of the model were
equal to the experimentally observed temperatures. The temperatures measured
within the packing were not very reliable and they are generally unavailable
and were consequently not used in the modeling of the column.

A stepwise procedure for determining the component efficiency E; for each
component i and plate factors {8, , By} for any steady state run (or for any time
step of an unsteady state run) is described elsewhere (see for example Refs. 2
and 4). This procedure was used to determine the two sets of Es and the two
sets of B,’s and By’s (see Table 7-6) for the two steady state field tests shown in
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Tables 7-4 and 7-5. These two field tests represent the initial and final steady
states of the unsteady state field test. Also the K data of Table 6A-1 were used.
The enthalpies employed consisted of those given in Table 6A-2 and corrected
by use of the correction factors given in Table 6A-3. These correction factors for
the enthalpies were determined as described previously (Refs. 2, 3) such that all
of the steady state absorber runs were placed in the best possible balance.

To average the component efficiencies for a given component i over a series
of runs, the geometric mean suggested previously was employed, namely,

E_i,m: [Ei,x'Ei,z Ei,R]I/R (7-11)
Likewise, the average values of §, and By over all runs were taken equal to
their corresponding geometric mean values {f, ., By, »}- These geometric mean
values {E; ..} and {By . Bx.m} are presented in Table 7-6 for the two field tests
shown in this table. These efficiencies are in good agreement with those ob-
tained for a series of steady state tests which were made by McDaniel et al.(3,4)
about one year earlier.

The mean values of the efficiencies presented in Table 7-6 were used in the
model for the unsteady state operation of the column. The liquid and vapor
holdups in the column were estimated by using a free space of 156 cubic feet.
(This space was 98 percent of the total volume occupied by the packing) The
molar volume of the liquid was taken to be 1.9035 ft3/Ib-mol, and the molar
volume of the vapor was taken to be 378.7 ft*/lb-mol. These molar volumes
were computed on the basis of the lean gas and the rich oil streams at the
conditions at which they left the absorber. Since the total volume of the vapor
and liquid must be equal to the total free space, it follows that the total molar
holdups U} and U* must satisfy the following relationship

378.7 UY + 1.9035 U = 156 (7-12)

where UY is the molar holdup of the vapor within the void space of the
packing.

In addition to the free space in the packing there was approximately 17.7
cubic feet of space above the packing. Since this space contained only vapor, it
follows that the total molar holdup U" of the vapor is given by

UY = U} + 17.7/378.7 (7-13)

Equation (7-12) would permit a maximum liquid holdup of 81.95 Ib-mol, and
Egs. (7-12) and (7-13) permit a maximum vapor holdup UY of 0.459 Ib-mol.
The parameter UL was determined from the results of the unsteady state run by
use of a procedure based upon the following considerations.

If the initial steady state, the conditions of the upset, and the holdups are
specified for an existing column, then the transient values of the variables may
be calculated. For the case where the vapor holdup and the change in the heat
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content of the packing in each section are negligible, then Eq. (6-71) of Chap. 6
and Eq. (7-5) may be reduced to the following differential equations:

dut
vj+1',~+lj_,,i—vj,‘—lj,-=—(-1-t’—’ (7-14)
d(ULR.
Vj,,lHjﬂ+Lj~1hj~1—VjHj—Ljhj=% (7-15)
respectively. If Uf is constant, and if
U} = UYN (7-16)
then
duﬁ_i’“m_ 1 dx;
dt ~ N dt N (/Ub (717

and since U" is equal to the sum of the U¥’s which is independent of time, it
follows that ,

d(U%h)) _ ZL dh; 1 dh;

d N dt  Ndyub (7-18)
These equations imply that if the transient value of any variable were plotted
versus t/U", then the resulting plot would constitute a generalized relationship
which would hold for every choice of UL (For the absorber used in the field
tests, the plot would constitute an approximation because the vapor holdups
and the change in the heat content of the packing were not negligible.) Thus
the fractional response of any component may be regarded as a function ot’"

t/U". In particular, let the fractional response of the mole fraction of propane in
the lean gas be defined by

Y1 =i
yi—¥
where y{ is the initial value of the mole fraction, y¥ is the final mole fraction
and Y1 is the mole fraction of propane in the lean gas at any time ¢. The molé
fraction .of propane was selected for consideration because it exhibited a signifi-
cant variation with respect to time as shown in Table 7-3.

To obtain a set of values for the fractional response versus t/U%, a liquid
holdup U =201b-mol was arbitrarily selected. The corresponding vapor

holdup U} was 0.311 Ib-mol. The corresponding holdups for each of the mass
transfer sections follows:

Fractional response =

(7-19)

Ui =25; (1<j<3¥)
UY=0085% U'=00389 (2<j<8)

In t-hg so.lu.tion of the corresponding unsteady state problems by use of the
semi-implicit Runge-Kutta method, a At = 0.1 min was used in the routine as
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the lower bound of the time step (see Eq. (6-49)). The K data presented in Table
6A-1 with vaporization efficiencies given in Table 7-6 and the enthalpies pre-
sented in Table 6A-2 with the corrections given in Table 6A-3 were used.

From the transient solution so obtained, the fractional response of propane
versus t/U" (shown in Fig. 7-5) was obtained. From the experimental results
presented in Tables 7-3, 7-4, and 7-5, the experimental value of the fractional
response at ¢ = 5 min is seen to be equal to 0.9209. From Fig. 7-5, the value of
t/U" corresponding to a fractional response of 0.9209 is 0.1958. Thus, the next
predicted value of U" is given by
5.0

~0.1958
The corresponding value of UY as given by Eq. (7-12) is 0.28358 Ib-mol. On
the basis of these values of the holdups U" and Uy, the following distribution
of holdups is obtained:

Ut =3.192
UY =0.082186

By use of these holdups, the unsteady state problem was again solved. At
the end of ¢ = 5 min, a fractional response of 0.9147 was obtained for propane.
This value was considered to be close enough to the observed value. The results
of this transient solution for propane are presented in Fig. 7-6. An examination
of this figure shows good agreement between the predicted and the observed

L

= 25.536 1b-mol

(1<j<¥

UY =0035447 (2<j<8¥)

1.0

Exge—r_iae—n tal response
=0.9209 at ¢

0.8F= 5 minutes

o
=

<
>

Fractional response

0.2

JU" = 0.1958

|
|
|
|
- _‘,_ - e e e e e e e e e )
|
|
|
|
|
|
|
|
|

0 L 0.1 0.2 0.3 0.4
¢/U", min/lb-mol

Figure 7-5 Fractional response of the mole fraction of propane in the lean gas; predicted on the
basis of UL = 20 1b- mol
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o experimental values
= calculated values
§ 0.0055
®
S A N I
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Figure 7-6 Transient values of th i i i
o Transient of the mole fraction of propane in the lean gas, predicted on the basis

mole fractions for propane. Transient value:
) . s of the temperatures and lean gas
rates are sl}own in Table 7-7. These results were obtained by Feng(1). ¢
‘Agam IF has been demonstrated that the models based primarily on infor-
mation available to the design engineer may be used to predict the dynamic

Table 7-7 Selected transient values of the variables (Ref. 1)

Temperature (°R) at
end of time step indicatedt

Vapor rate V, (Ib-mol/h) at
end of time step indicatedt

Plate 1 20 60 1 20 60
1 484.66 48447 48515  2259.00 22
X . . 53.18 2252.01
2 489.99  489.86  491.23  2353.04 2347.88 2345.01
3 490.56 49075 49277  2371.82 2367.66 2363.16
4 489.64  490.10 49256  2378.41 2374.64 2369.11
2 48801  488.70  491.33  2384.85 2381.16 2375.17
: 48583  486.72  489.21  2392.54 2388.64 2382.83
. 482.81 48389 48589  2403.10 2398.84 2394.06
478.11 479.18 48029  2420.39 2416.41 2413.75

tA !ower bound of 0.1 min on the size of the time step was used. The
cumulative process time corresponding to the time steps listed follows:
Time step Time

1 0.10 min
20 2.01 min
60 17.97 min

Also the tolerance vector was chosen as one-thousandth of the initial
steady state values.
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behavior of a process. Except for the liquid holdup, the values of all other
parameters appearing in the model were estimated from design information and
steady state field tests. In order to make the model independent of the field tests
at unsteady state, a reliable method for the prediction of the liquid holdup in a
packed column is obviously needed.

NOTATION
(See also Chaps. 1-5.)

Hj;, hj; = enthalpy of component i in the vapor and liquid phases,
respectively, in the element of packing Az;, Btu/lb- mol

h; = enthalpy of the packing, Btu/unit mass

t = time in consistent units (¢, denotes the beginning and ¢, , the

end of any given time period under consideration; At = t,+; — L,,
ut, u¥, = holdup of component i in the jth element of packing in the liquid
and vapor phases, respectively, mol
uj; =ul; + u};, total molar holdup of component i in the jth element
of packing
Uk, UY = total holdup of liquid and vapor, respectively, in the jth element
of packing, mol

U; = total holdup of component i in element j

M — total mass of packing contained in the jth element of packing
Subscripts

L = liquid

vV = vapor

S = packing
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CHAPTER

EIGHT

MODELING OF A DISTILLATION COLUMN
AND ITS CONTROL SYSTEM

Apphcatiqn of Gear’s method and the semi-implicit Runge-Kutta method to
the equations for the equilibrium relationships, component-material balances
and energy balances of a distillation column is carried out in the same manner’
as showp in Chap. 6 for absorbers. In this chapter a more exact model for the
column_ is used which includes the prediction of the liquid holdup on each plate
Thgs, in S‘.:c. 8-1 (the formulation of the model for the distillation colrl)lmnj
major cons@eration is given to the development of the equations for the dy-
namic behawor of the liquid holdup on each plate, and to the development yf
the equations for the control system. ’ pment

The equations developed in Sec. 8-1 are solved for a distillation column to

determlne its translent beha 1 p .
r r ﬁ S€ re lt are pre ellted
V10 i() a SpeCl ed upset Ihe Sults p St

8-1 FORMULATION OF THE MODEL F
OR A
DISTILLATION COLUMN BY USE OF GEAR’S METHOD

A fluid dynamic analysis of the liqui
' quid and vapor on each plate is used to
develop expressions for the holdup of liquid on each plate and in the down-

comer. Then the equations for the col
. umn are form >
algorithm. rmulated by use of Gear’s
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Dynamic Analysis of a Sieve Tray

In the analysis of a sieve tray, the change of t.hej holdup with tjmc on both thi
tray and in the downcomer is taken to be negligible over any dlscrete. mcrlextr}en
of time. Thus, the steady state equations may be regarded as dynamic relation-

i i ior of the column at any instant.
ships which represent the behavior o any : '
pIn the application of Bernouli’s theorem to the liquid as it flows from point

(1) of plate j to point (2) of plate j + 1 (see Fig. 8-1), let the datum for measur-
ing all heads be taken as point (2). Then

v P.
P, g I Y /12 WL L2 W o o} (8-1)
;t+g£~ZL.j+1+;(Sj+l ZL"“)pj-“H pfﬂ ;

i c ¢

where I, F; = frictional losses '
g = acceleration of gravity
g. = Newton’s law conversion factor
P = pressure
S = tray spacing . o
Z, = disfance shown in Fig. 8-1, in inches of vapor-free liquid
ZL = h,, + h,,,, in inches of vapor-fref: liguld
p’f = mass density of the vapor-free liquid
p¥ = mass density of the vapor

— — '
- N
/’_‘ ., Z—‘I
—— A
e Y |
(S, ¥ |_ZL., + l) -x*
-~ — I S/+l
:\"’: ZL./+]
P,‘+| ’_:::;:
M:": Zixn
A - ]
Ry, —_
/ S Froth — —1Z.i
Platej +1 hw_,‘+ 1 ] +
x* = Zs‘,'+l’_Z:./

Figure 8-1 Modeling of a distillation column and its control system
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In the formulation of Eq. (8-1), the change (Z, j+1 — Zsj) in the height of liquid
on stages j and j + 1 was neglected. Also, the kinetic energy effects were taken
to be negligible. The frictional losses, Z; F;, consist of the head lost by the liquid
in flowing down the downcomer (which is taken to be negligible), the head lost

by flowing under the downcomer weir, and the head lost in flowing across the
plate. Thus,

Y Fi= gi he + 2 h, (8-2)

c gC

where h,. = head loss by the liquid in flowing under the downcomer in inches
of vapor-free liquid

h, = hydraulic gradient, the head loss by the liquid in flowing across the
plate in inches of vapor-free liquid

Equation (8-1) may be solved for Z, j+1 to give
P. P. v
j+1 i\ 9 Pj+1
—1)=+he jii+h -8, L
<pf+1 pf) g et T et L
1- pj",+1/P§“+ 1)

The height of liquid Z;, , in the downcomer is found by adding Z; ;,, to both
sides of Eq. (8-3) and rearranging to obtain

ZL,j+1

(8-3)

L L L
Pi+1 P jt1

P; P;\ g. Py
<ﬁ——i>_+hdc,j+1+hg,j+1+Zs.j+1"(Sj+1+Zs.j+1) P
7 _ g
j+1

(1- p;‘,+ 1/P§'+ 1)

(8-4)
Since p}, ,/pk, , is generally negligible, Eq. (8-4) reduces to
P; 1 P; 9.
Zj+1 =(—pf‘:l _p—é>g+hdc'j+l +hg.j+1+Zs.j+l (8'5)

Application of Bernouli’s theorem to the vapor as it goes from point (2) to
point (1) gives

Pivi  P\ge_pf
< V+1__é>_=_1;7(ho.j+hL,j)+(Sj+1_Zs,j+1) (8-6)
Pi+1  Pj/ 9  Pj

where the pressure drop across stage j is equal to the dry hole pressure drop,
ho, ;, plus the pressure drop of the liquid hy ; as it passes up through the liquid
on stage j. (Both of these head losses are in inches of vapor-free liquid.) If it is

assumed that p}’ = pY,, and p¥ = p%, | for stages j and j + 1, then Eq. (8-6) may
be restated in the form

(—;sz ) & oty + 801 =20 2 ®-7)
J j
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When p¥/pk is regarded as negligible, Eq. (8-7) reduces to

P'+l - P 9.
(—J—pf_—i) i ho,j + he.; (8-8)

The following formulas may be used for the calculation of the head losses
hye, hos hyy, by, and hy. The head loss hy, corresponding to the pressure drop
resulting from the flow of liquid under the downcomer, may be calculated by

use of the conventional formula for submerged weirs

- Q)
h,, = 0.057 ( Adc\) (8-9)

where h,;, = head loss in inches of vapor-free liquid
Q = flow rate of the liquid under the downcomer weir in gallons per

minute
A, = clearance area between the downcomer and the floor of the tray in

square inches
If the tray is equipped with an inlet weir, Leibson et al(12) recommend that Eq.
(8-9) be modified as follows:
2
hy. = 0.068 (g> (8-10)
Adc
The head equivalent to the dry hole pressure drop, hy, may be calculated
by use of the following equation for thick plate orifices
2 .V
U \" P
hy, =0.186{ —} — 8-11
° (Co> p* ( )
where hy = dry hole pressure drop of vapor across the perforations in inches of

vapor-free liquid
uy = linear velocity of the vapor through the perforation in feet per

second

Values of the discharge coefficient C, are given by the chart presented in
Fig. 8-2 which was prepared by Leibson et al(12). The linear velocity of the
vapor through the orifice on plate j may be computed by use of the following

formula:

<
Z Vjs1,i

i=1
=— 8-12
oy = o (8-12)

where A, = total area of holes (or perforations)
pY+y = molar density of the liquid
= molar flow rate of component i in the vapor entering stage j from

Uj+1,i
the stage below, j + 1

The equivalent height of vapor-free liquid over the weir may be calculated
" ocic weir formula
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Figure 8-2 Discharge coefficients for the flow of vapor through sieve trays. (I. Leibson

R. W. Kelly, and L. A. Bullington, Pet. Refiner, vol. 36(2
Provesney efiner, vol. 36(2), p. 127 (1957), by courtesy Hydrocarbon

which was proposed by Bolles(1). For a straight segmental weir

h Q 2/3
ow = 0.48F [E] (8-13)
where F,, = weir constriction correction factor (see Fig. 8-3)
h,,, = equivalent height of vapor-free liquid, in
I,, = length of weir, in
Q = liquid flow rate, gallons per minute

The pressure drop through the aerated liquid h, has been correlated as a
funct’lon of (h, + h,,) and (h, + h,,, + 3h,). Fair (2) proposes the following cor-
relation

hy = B(h,, + h,,, + 3hy) (8-14)
where h;, = head loss in inches of vapor-free liquid
B = aeration factor, dimensionless

A gra;?h fqr estimating B is given in Fig. 8-4. Also given in Fig. 8-4 is a curve
for estimating the relative froth density ¢ which is defined as follows:

= (8-15)




274 STAGED SEPARATION PROBLEMS—SEMI-IMPLICIT RUNGE-KUTTA AND GEA!( ETHODS

1.25 L
Kr'?eo |
g _1.20 ,o%)
g5 2,
o5 Y,
£ & 1.15 Yo,
2 c \\,’7?
S .e Q/ N
251,10
co
E P .
o >,

:81.05 s LS
w _/g_-ﬁ: |

l'0(()).2 0.5 5 10 20 500100 200

1 2
L,\2s _ liquid load, gal/min
Q<1—2> " (weir length, ft)>*

Figure 8-3 The correction factor for effective weir length. (W. L. Bolles, Pet. Refiner, vol. 25, p. 613
(1946), by courtesy Hydrogen Processing.)

The following theoretical relationship between ¢ and B was developed by
Hutchinson et al.(10):

g1 (8-16)
2
Van Winkle(16) gives the following formula for computing h;:
hy = F,(h, + h,.) (8-17)
The foam factor F is computed by use of the following formula:
F;=10-0372 194,(p})""? (8-18)
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and the linear velocity «; is computed by use of

2 Ui

i=1

; T — -1
“= oA (8-19)

where A, = active area of a sieve tray (area between the outlet weir and the
downcomer, in square feet).

Hugmark and O’Connell(9) presented the following correlation for calcu-
lation of the hydraulic gradient for a sieve plate

_ f“}lf
N 12g.r,

h

. (8-20)
where h, = hydraulic gradient in inches of vapor-free liquid
f = friction factor (see Fig. 8-5)
g. = Newton’s law conversion factor, 32.17
I, = length of flow path across plate, ft
r, = hydraulic radius of the aerated mass, ft (defined below)
«, = velocity of the aerated mass in feet per second

A graph of the friction factor f as a function of Reynolds number is shown in
Fig. 8-5. The Reynolds number used in this correlation is defined as follows:
L
N, = Thees P (8-21)
193
where p’ = mass density of the vapor-free liquid, 1b/ft3
uy = viscosity of the vapor-free liquid, 1b/(ft - s)

Froth density or aeration factor

\
04} -
0.2 .
Relative froth density ¢
0 1 1 1 1
0 0.5 1.0 1.5 2.0 2.5

Uga PVI ﬂ
Figure 8-4 Aeration factor and froth density for bubble-cap, sieve, and valve plates, u, = !inear
vapor velocity through the active area, ft/s; p, = vapor density, 1b/ft>. (B. D. Smith, Design of
Equilibrium Stage Processes, McGraw-Hill Book Company, New York, 1963, by courtesy McGraw-
Hill Book Company.)
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Figure 8-5 Friction factor used in the calculation of the hydraulic gradient, h,, for sieve trays with
crossflow. (B. D. Smith, Design of Equilibrium Stage Processes, McGraw-Hill Book Company, New
York, 1963, by courtesy McGraw-Hill Book Company.)
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The hydraulic r, of the aerated mass is defined as follows:

__cross section _ h,D,
"~ wetted perimeter  2h .+ 12D,

(8-22)

Tn

where D, = arithmetic average of the tower diameter and the weir length, ft
h, = froth height in inches (estimated by the use of Eq. (8-15) and
Fig. 8-4)

The velocity «, of the aerated mass in feet per second is taken to be the same
as that of the vapor-free liquid, and it is calculated as follows:

1/ q

where q is the liquid flow rate in cubic feet per minute.

Formulation of the Model for the
Distillation Column by Use of Gear’s Algorithm

For a distillation column with a total condenser, the model for the column
exclusive of the controllers is formulated as shown below. The equations consist
of the component-material balances, the energy balances, the equilibrium re-
lationships, the pressure drop relationships, and the heights of liquid in the
downcomers. They are stated for each stage j (=1, 2, ..., N) in the order
enumerated. Following a statement of the equations is a discussion of those
equations introduced for the first time.

L . )
0= __( 1C+D)u1.+vzi_d;lu (i=1,2..,0 (8-24)
t
Z“u
i=1
L._u,_,; L;u; du
0=Fiji+_J__ﬁJ__l‘_‘__c_LuL_vji+vj+l‘i_ uji
dt
Zuj—l.i Z Uj;
i=1 i=1
i=12 ...
i=12..0 (825

(G=23..,N=1)

0= Ly_qun—1,i Ly uni duy, i=12,. (8-26)

=— - — - .., 0
ZuN—-l,i ZuNi
i=1 i=1

G=1,2..,N) (82

P,y —P;
0=27,,, —(2ix1 = %)Y
j+1 ( p}“ J);_hdajﬂ‘hw_jﬂ—h

MODELING OF A DISTILLATION COLUMN AND ITS CONTROL SYSTEM 277

._(Ll + D)E, dE,
< —X¥c T T
—“Z . 1 (8-28)
i=1
+ Z [vj+1,iﬁj+l,i U/«ﬁsz - 4E,
i=1 dt

(G=23..,N—1) (829

N 5 dE
c - Z v iH i + _ N
Z Un; =t et O dt (8-30)
(G=12..N) (8-31)
Uyi (
¢ i:l,z,.,,,c) (8_32
Z Uy )
i=1
(8-33)
(Note Y= y“/z Y“>
i=1
0= v | Y L Uji P —
Jif ¢ —/jin,' - (1—1,2,...,(‘)
2 v Y G=23..~n &34
i=1 i=1
c 2 p
°=6—4%—<Z%)5”__L:EL_
i=1 < 2—;/ (8_35)
Z Ui ) p3
i=1 ref
0 <Pj+l RQ 9, 0,
I o L UG=23..,N~-1) (8-36)

ow, j+1

G=12..,N-1) (8-37)
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Equations (8-24) through (8-37) consist of [N(2c + 5) — 1] independent equa-
tions in [N(2c + 5) + 4] independent variables, namely,

x=[QCD Ll El Pl T‘l Zl Yl,l e Yl.c “1.1 “en ul,c
T
(L; Ej Py Ty Zyuy oo Wy 0y Vgedi=2,n R Zyi]" (8-38)

where ( );-,, y means that the arguments are to be repca.ted. fo.r j ;1—- 2,3, ... lN
The variables Z , and Zy,, are the heights of vapor-free‘ liquid in t e accumula-
tor and the base of the column. These variat_;_les appear in the express?ns (gl(;en
below) for the holdups of the accumulator U,, and .the base of the co :mn N-
Thus, in order to solve the above equations, five variables must be fixe .h u

Equation (8-27) expresses the constraint that the sum of the molar o1 ugs
{u;} on each stage must be equal to the total molar holdup. For stage 1, the
voJl'umetric holdup consists of the liquid in the reflux accumulator and is com-
puted by use of the formula

2z, Dg)’ Dy _onosl (g
Ulzln{[’g-i-Sin_l(E— )](7) +<Zl— 2>(ZIDR z3)° } (8-39)

where Dy = diameter of the accumulator, ft
Ix = length of the accumulator, ft ,
U, = volumetric holdup in the reflux accumulator, ft
Z, = height of vapor-free liquid in the accumulator, ft

For stages j = 2, 3, ..., N — 1, the volumetric holdup Z; is computed by use

R Z.
ooer@] v

The holdup of liquid in the bottom of the tower, in the reboiler and in the
associated lines was approximated as follows:

of

- nZy+1 D} 8-41
Uy =100 + —4 (8-41)

where the volume of the reboiler and associated lines is taken to be equal to
100 cubic feet and where

Zy .+, = height of liquid in the bottom of the column, ft (see Fig. 8-6)
D, = inside diameter of the column, ft

Also. note that in Eq. (8-32), the mole fraction y,; has been replaced by its
equivalent

Y, / S ¥,
i=1
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Holdup

T

Zn

Figure 8-6 Seal pan and bottom of the column

and furthermore this replacement should be madé wherever Y1 appears im-
plicitly in any equation.

Equation (8-35) relates the pressure P, in the reflux accumulator to the
pressure P, on the top plate, and thereby accounts for the pressure drop of the
vapor in flowing from the top plate through the condenser tubes. This equation
is a modification of the expression given by Lord et al.(13) for the pressure drop
of the condensing vapors on the tube side of a shell and tube exchanger. In the
use of this equation, it was assumed that for deviations from a reference state,
the pressure drop varied directly with the vapor density and the square of the
vapor flow rate. The hydraulic gradient (see Eq. (8-5)) is usually small and was
neglected in Eq. (8-37) in the modeling of the column.

Modeling of Controllers and Control Valves

A typical control system for a distillation column is shown in F ig. 8-7 in which
the variables to be controlled are Py, Z,, L, T,, and Z,,, where T, is the
temperature of a preselected plate k which is to be used to regulate the steam
rate to the reboiler.

First the fundamental equations for typical controllers and control valves
are presented and then these are used to model the controllers and control
valves used for the column shown in Fig. 8-7.




’ HODS
280 STAGED SEPARATION PROBLEMS—SEMI-IMPLICIT RUNGE-KUTTA AND GEAR’S MET

A

=~ —frrraarrnd é@_———:_—
|
I
1
|
!
1
'
'
:
i e
'
:
©L
1
' i
T _1

Figure 8-7 Control system used in modeling the distillation column

Equations for Controllers |
A proportional controller is defined as one in whic.:h tl;e dlﬂsrezzsi:tei?trleeol} tlﬁz
output and the input of the contro.ller is proportional to the

control variable from the control point, namely,

p=K.e+po (8-42)

where ¢ = input value of the control variable
=r—c
K, = proportional gain constant
p = output of the controller
po = reference output of thf’. controller '
r = reference value of variable, the set point
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Observe that if at a given set of operating conditions, the system is at steady
state at the control point ¢ = r, then p = p,. Now if, say, a step change in the
load occurs, the control variable ¢ will depart from the control point r, giving
rise to an output p which is unequal to p,. Then at the new steady state r # ¢
and p # p,.

When integral or reset action is added to the controller, the controller has
the capacity to reset the reference output as required to eventually bring the
control variable back to the control point. Such a controller is called a
proportional-integral controller, and its action is described by

t
p=K, (e + i J e dt) + Do (8-43)

Tr Jo+

where 7, = integral time constant.

A third mode of control produces a controller output proportional to the
rate of change of the measured variable. When this mode of control is com-
bined with a proportional-integral controller, the combination is called a
proportional-integral-rate controller which is described by

t
p=Kc(e+if edt+rog>+po (8-44)
Tr Jo+ dt

where 1, = time constant for the rate mode. This rate mode of control is
sometimes called derivative action.

Gallun(3) used proportional-integral controllers in the simulation of a distil-
lation column. In the formulation of the controllers by Gear’s method the
following equations were used. Let the function I be defined as follows:

t rI
I= edt + — (8-45)
L+ K. Do
Then
1
0 =K, (e + —) —p (8-46)
T
and
dI
O=e—— .
e @ (8-47)

For each controller, a pair of equations of the form of Egs. (8-46) and (8-47) are
used in Gear’s algorithm.
Equations (8-46) and (8-47) constitute two additional equations in three

variables ¢, p, and I, which are to be solved for each proportional-integral
controller added to the system.
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Equations for Control Valves
The output of a controller may be used as the input to anotber cont:;‘)(lilecrocl)lrtrtoo1
. . . opera
f the signal is used to drive an air-oper
operate a control valve. I . ] perated contro!
i i ted with the response o
valve there will be dynamics associa e
changes in the controller output. Suppose that the valve position responds to a
controller output in a first-order manner as follows:

T 62—6 + 6 =0.0625p — 0.25 (8-48)
" dt
where p is in milliamperes, t is in seconds, and & is the valve position which
ranges from § = 0 to o = 1. At steady state
do =0 _ (8-49)
dt
Thus, for an input p of 4 mA, at steady state
=0
and for an input of 20 mA (the maximum output of the controller),
=1

Thus, as the input p ranges from 4 to 20 mA, the control valve goes through its
complete range from O to 1.

Modeling of the Controllers and Control Valves for a Distillation Column

hown in Fig. 8-7 has as its objecti've the control of the ﬁ\{e
’\l::reiacl;::str?}l’ls,ysztim le, T,, and ZgNH) enumerated prev1ously.dEa§h4 ;;)t;t;gll:;cls
described by two equations of the fgrm of Eqgs. (8-46) Eam 8(4—8 T dtion
control valve is described by an equation qf the 'fOI.‘m of 3 f( - thé fn additor
to these three equations, an additionﬁl ;elatlonshlp is needed for

1 ntrolled.

N m(elacl)snuszfietrl‘l eﬁ;irlt%:l;tgdle)lei:go of the control system used to control the pres‘;
The four new equations associated with the controller of the pressur

sure P,. :
P, are as follows. For control system 1:
0=c, +12.0—0.032P, (8-50)
I 8-51)
0=P1"‘Kc1[(cl—r1)+;::‘ (
dI (8-52)
O=c, —r — _d_tl
dé
0= —0.25+ 0.0625p; — ; — 7,4 EL (8-53)
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Equation (8-50) describes the sensing device of the accumulator pressure P,
which produces an output signal of 4 to 20 mA as the pressure P, varies from
500 to 1000 mm of mercury absolute. Equations (8-51) and (8-52) are a re-
statement of Eqs. (8-46) and (8-47) for the pressure controller. The definition of
the error used in these equations has been changed, however, to reflect the fact
that the control valve for the cooling water should open when the column
pressure exceeds the set point. Equation (8-53) is a restatement of the valve
position equation (Eq. (8-48)).

For control of the reflux rate L, (or the corresponding volumetric rate q,),

the equations are analogous in form for control system 2 as those shown for the
pressure controller, namely,

91 ?

=c,—40 - | =— -54
0=c, 0 (20()) (8-54)

1,
0=p, =K, |(r; —c)) + — (8-55)

11,2

dl,

O=ry—c, — 7 (8-56)
0= —-0.25+ 0.0625p, — 6, — Ty 2 i (8-57)

where g, is equal to the volumetric flow rate in gallons per minute. Equation
(8-54) describes the behavior of the primary measuring element and it produces
an output signal r, ranging from 4 to 20 mA as the flow rate of the reflux
varies from O to 800 gal/min. Equations (8-55) and (8-56) describe the controller
action and Eq. (8-57) describes the control valve behavior.

Similarly, the equations for the liquid level control system for the accumula-
tor (control system 3) are as follows:

0=cy;—40— 1.6Z, (8-58)
1

0=p;-K, l:(ca —r3)+ “ijl (8-59)
T3

dl,
O=cy—ry— " (8-60)
dé
0= —025+0.0625p; — 6, — 1 2

— 8-61
v, 3 dt ( )
Equation (8-58) represents the behavior of the sensing device which gives an
output signal of 4 to 20 mA as the accumulator level varies from 0 to 10 ft.
Equations (8-59) and (8-60) describe a proportional-integral controller which
causes the product (distillate) valve to open as the accumulator level rises above

the set point. Equation (8-61) relates the overhead product-valve position to the
controller output.
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The liquid-level control system for the base of the column (control system 5)
is described by the following set of equations:

0=cs—20—4Zy,,y (8-62)
0=ps — K [(c5 —rs) + ;fis-] (8-63)
O0=cs—1s— d_dlt_s (8-64)

= —0.25 + 0.0625p5 — 05 — Ty, s % (8-65)

Equation (8-62) describes the sensing element which produces an out.p:jltf51gna6l
of 4 to 20 mA as the liquid level Zy,, in tbe base of the tower 1s var1e8 6rson;
to 10 ft. Equations (8-63) and (8-54)1descr1be the controller and Eq. (8-65) de-
i ior of the control valve.

Scnb’;;:lze::?cﬁv rate to the reboiler is regulated by a cascade control systen'i
as indicated in Fig. 8-7. The set point of the steam-flow control system (%on%cl)
system 4) is provided by the temperature-control system (control sys(tjentlhe). tcmc-
complete set of equations for the steam-flow control system an

perature control system follow:

2
L (8-66)
0=c,—4— 16(3000)

Ls 8-67
0=P4—KC4[(P6_C4)+T‘;I ( )

dl 8-68
0=peg—Cs— 73‘ ( )

dé
= —0.25+ 0.0625p, — 84 — Ty, 4 d—: (8-69)
dT, )

0=7}—TM—1M—dTM (8-70)
0 =ce + 236 — 04T (8-71)
s 8-72
0=p6—'Kc6\:(r6_CG)+r_I:] ( )
4l 8-73
0=re—Ce— _dT ( )

Equations (8-66) through (8-69) dcscribe. the steam-flow control systerg. 'tqurlz:
tion (8-66) represents the measuring device for the steam-ﬁo.w r;ltc ax(; t; 3;,)000
duces a signal ¢, of 4 to 20 mA as the steam-flow rate varies from )
nnnnn o f tan et minute Equations (8-67) and (8-68) describe the pro
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portional controller which controls the steam rate. Note that the set point pe of
the proportional controller is an output of the proportional-temperature con-
troller (Egs. (8-72) and (8-73)). Equation (8-69) relates the stem position of the
steam-flow control valve to the output of the steam-flow controller. Equations
(8-70) and (8-71) describe a temperature measuring device with first-order dyna-
mics and a transducer which produces an output signal of 4 to 20 mA as the
measured temperature Ty, varies from 600 to 640°R. Equations (8-72) and (8-73)
describe an ideal proportional-integral controller operating on the measured
temperature T, of plate k. The temperature T, is the actual temperature T; for
the particular plate j = k. The output p, is fed back to the steam-flow controller
as its set point.

Equations (8-50) through (8-73) consist of 24 independent equations in 24
additional independent variables, namely,

I, Iy, I, Pis Pas iy Pes €1Cay oy Cgy Tag, 845 055 ..., Os

which now gives a total of [N(2c + 5)+ 23] independent equations and
[N(2c + 5) + 28] independent variables.

Equations for the description of the heat transfer and fluid flow for the
condenser, accumulator, the base of the tower, and the reboiler are formulated
in a manner similar to that shown for evaporators. Gallun(3) used an additional
21 independent equations and 21 independent variables to describe the heat
transfer and fluid flow for the condenser-accumulator and the reboiler which

resulted in a total of [N(2c + 5) + 44] independent variables, a listing of which
follows:

x=[c;piIyc;pa1¢5p3150,6,654, Ty The a4y 42 P4y Pgy

QcDYy Y, Ty Pyuy, u, L E Z,

Wj v vy u Uy TP LiE;Z))j-5 n Or qn

wWe Wy T Eg T,,, ps Psy Pyy 04 05 Tyg €4 Pa L4 €5 ps Is ¢ p 1617 (8-74)
The variables q,,, T,,, T,., 4,, 45> Pa1> Ps1, quw., w,, T, E,, T,,, ps, Ps,, Pyy
are associated with the heat transfer and fluid flow of the condenser, accumula-

tor, the base of the column, and the reboiler. These symbols are defined in the
Notation, and the corresponding independent equations involving these vari-
ables are given by Gallun(3).

When the equations and variables are ordered in this fashion, they give rise
to a jacobian matrix which has the characteristic of being almost band.

8-2 SOLUTION OF EXAMPLE 8-1
BY USE OF GEAR’S METHOD

This example is one of those used by Gallun(3) to demonstrate the formulation
of the equations for a distillation column by use of Gear’s method(4,5,6). This
example consists of anextractive distillation of acetone from methanol and ethanol
with water as the extractive agent. The response of the closed-loop control system
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to a change in the set point temperature on stage 35 from Tys . = 626.2261°R
at the initial steady state (time t = 0) to Tys . = 631.226°R at time t =0 + .

The column contained 48 plates plus a reboiler plus a total condenser for a
total of 50 stages. A statement of the compositions of the feeds appears in Table

Table 8-3 Hydraulic parameters and initial steady state values
of selected variables (Ref. 3)

1. Hydraulic parameters

8-1. The enthalpy of the liquid phase was approximated by use of the assump- Variable Value
tion of ideal solution behavior. Virtual values of the partial molar enthalpies A, (=23,..,49) 141.372 ft2
(see App. 4A-2) were used for the vapor phase. The departure function Q for the 4 (=23,..,49 176715 fe?
vapor phase was evaluated by use of the first two terms of the virial equation of 0j (G=23) 18 ft?
state. The second virial coefficient was approximated as described by Prausnitz 4 (=45...49 13 fi2
et al(14). The parameters needed in the above calculations were taken from A.:T,l (=23 ....49) (1)7966;14 f‘ZZ
page 213 of Ref. (14). The resulting equations are presented by Gallun(3). The Co; Gi=23 075 rS/ZS ft
activity coefficients were calculated by use of the Wilson equation using the (=4,5,..., 49 072 fit/s
constants given in Table 8A-1. The fugacity coefficients for the vapor phase D, 0.1875 in
were computed by use of Egs. (3-10) through (3-12) of Chap. 3 and pages 143 to g“ 10 ft
144 of App. A of Prausnitz et al(14). The results are given in Table 8A-1. hf G=213 ) 15 ft
The five variables fixed are the pressure P, the liquid level in the accumu- he s T :'gs'?n
lator Z,, the flow rate of the reflux L, (or ¢,), and the temperature T;s of stage L (=23,...,49 130.806 in
35. These values are listed in Table 8-2. L. so 149.0 in
A listing of the hydraulic parameters and certain initial values are given in L‘: 16.0 ft
Table 8-3, and the time constants in Table 8-4. Values of selected variables at ' 0.09375 in
the initial steady state are shown in Tables 8-5 and 8-6. The response as 2. Initial steady state values of selected variables
reflected by selected variables is shown in Table 8-7, and a comparison of the Variable  Value ;
initial and final temperature profiles appears in Table 8-8. The initial and final Variable Value
flow rates of each component in the distillate and bottom products are shown g 23.248¢,, 923.47
in Table 8-9 # PS 10433.20 TM 626.22
: d1 13533 T, 726.17
Pa 13231 T, 579.44
Table 8-1 Compositions and enthalpies of the feeds at the in- ﬁ st ;;ig? T,o 570.22
itial steady state (Ref. 3) : sz . 20w, 1349.84
Component flow rates of feed, 1b - mol/min O 1 ;é(z)gg; P2 0002349852
Feed Enthal'py g: ‘:g(ﬁ)é‘:
stage Methanol Acetone Ethanol Water Btu/min
3 0.0 0.0 0.0 50 6118.898
S 25.0 0.5 50 197.5 513543.30
21 650 250 30 30 146 509.60 ; Table 8-4 Time constants (Ref. 3)
‘ Controller Controller Value time
Table 8-2 Controller set points at the initial steady S :umber’ gain, Controller,  constant,
state (Ref. 3) Ke 77, min 7,., min
Controller Set point in physical units Set point r,, mA ; (1)2(5) (3)(1)8 g:;
1 760 mmHg abs 12.32 3 1.10 0.7 0.15
2 490.135 gal/min 10.0058 4 0.15 0.25 0.20
B 5 .
6 626.2261°R 14.490 44 ¥ ) 0
b | 75 = 0.20 min
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Table 8-5 Values of selected variables at the initial steady state (Ref. 3) Table 8-7 Transient response of selected variables of

. 2 E. Example 1 (Ref. 3)—Continued
T, P;, L;, Yicwwi, - Lleiths .  Btux 1073 T,
Stage °R mmHg abs  Ib-mol/min  1b-mol/min  Ib-mol t L 3s, Pss, Ls,, Wy,
= 58.12 28129 300 831.28 Step min ‘R mmHg  1b- mol/min  Ib/min
0.0 a2 - :
: iggg; 327 09 56.09 81.37 1971 033 58.54 43 173803 63192 104363  229.02 2147.94
: 62684  797.50 257.50 7291 7139 052 186.83 45 18.6225 63208 103659  230.23 2106.67
: 63306 82052 258.01 7291 7227 052 196.78 47 198646 63229 102808  235.09 2054.49
10 Y ) ) 7329 7277 051 200.32 49 216967 63265  1012.66  246.80 1951.39
- s 22?3? 523'30 74.18 7380  0.58 198.39 50 229076 63275  1000.17  255.86 1869.52
20 63323 X : -
8437 108 222.18
25 623.00 g? zl; ;; ;2;5 2;2; 8448 108 22542 51 241186 63263 98555  264.88 1783.38
24.63 : : :
. o mds  mm sso 108 2858 S e e sk s L
" 22%(2) ggg;s 369.08 83.96 8469  1.09 231.67 62 279617 63123 94856  287.67 1616.08
40 . - : ) 07 234.90 : ’ ’ ’ ’
38 84.41 8477 1. 65 29.6570  631.02 95038  293.84 1620.04
N G lmss s 82.18 349491 800 1023691
50 : - 67 310803 63112 95650  295.83 1632.08
69 325037 63129  962.60 29424 1636.12
Table 8-6 Initial values of the control system variables (Ref. 3) 71 339270 63135  966.37  289.48 1630.42
Controllor variablcs 73 355265  631.22 96790  282.55 1623.94
o 75 373024 63096 968.98  276.67 1633.68
A J,, mA
Controller Controller ¢, MA P,, mA I, m k 77 39.0782 630.80 972.09 274.62 1665.03
lator pressure 12320 11.589 23179 047433 79 408541 63085 97743 274.64 1704.44
! Accumlaa N ‘ie 10006  13.834 5534 061463 81 426299 63106 98287  273.76 1733.51
2 Rf’“"ﬁ lowl n accumulator 8800  10.191 6948  0.38692 83 444058 63128 986.00  271.02 1742.73
: é:qm ﬂi‘: rlante 7239 15076 25127 069228 85 465336 63140 98564 26739 1732.71
4 eam :
5 Liquid level in base of column 12.000 9.428 18.857 0.33928
wure. T 14.491 7.239 8.687 ; 86 477734 63140 98397  266.34 1722.39
6 Temperature, Ty 87 49.0133  631.37 981.90  266.45 1712.15
88 504353 631.32 979.67  267.86 1702.51
. elected variables of 89 S1.8573  631.29 977.94  270.08 1695.45
Table 8-7 TranS;e)"‘ response of s 92 529238 631.28 97705 27202 1691.71
Example 1 (Ref.
. - P, Lo, W 93 541901 63127 97639  273.89 1687.90
st min °R mmHg  Ib-mol/min  1b/min 94 554564  631.28 97599  275.08 1684.30
P 28500 1349.84 95 567227 63127 97572 275.57 1680.92
0" 62623 946.16 0 124984 96 584598 63125 97547  275.40 1677.66
0 0+ 626.23 Z‘;g(l)g ;35-72 16164 , 97 60.1969 63121 97545  274.74 1677.02
9 10202 626.88 . : .
14 24230 62881 99346 28191 1905.14 ; 98 619340  631.18 97577 274.03 1679.40
17 37269 63055 102637 26439 2035.32 99 636711 63116 97642 27347 1684.02
2 50307 63147 104526  236.69 2054.81 100 654083  631.17 97723 27305 1689.37
O s lom:2 21124 2037.56 101 67.1454  631.19 978.08  272.67 1693.92
ﬁﬁ, 76384 63103 104491  197.89 2031.34 ‘ 102 68.8825 63121 978.68 27229 1696.79
29 89423 63048 103979  200.75 2056.92
100130 63025 103777 21084 2097.40 S 103 706195 631.23 97897  271.93 1697.85
31 X : : : E
Y towas  mm 514641 4 104 728104 63124 97895  271.62 1697.41
33 11.1695 6303 - ) 2188.09 L 105 750012 63124 97867  271.56 1696.00
35 124116 63070  1044.59  233.24 P : 106 771919 63124 97832 27175 1694.33
37 13.6538 63115 18:3-2(7) gig; 720203 f 107 79.6910  631.24 97798 27208 1692.57
39 148960  631.52 . : : AN -
41 16.1382  631.76 104860  231.23 2180.47 (Continued over)
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Table 8-7 Transient response of selected, variables of
Example 1 (Ref. 3)—Continued

A Tss, Pss, Lso, ) Weo
Step min °R mmHg  1b-mol/min  lb/min
108 82.1901 631.23 9717.74 272.39 1691.14
112 83.5321 631.23 977.66 272.50 1690.59
114 85.0297 631.23 977.62 272.54 1690.23
116 88.2703 631.22 977.64 272.49 1690.50
117 90.8869 631.22 971.78 272.40 1691.09
118 93.5034 631.22 977.88 272.32 1691.66
119 97.7311 631.22 977.97 272.22 1692.15
120 101.9587 631.23 977.99 272.18 1692.30
121 106.9586 631.23 977.99 272.17 1692.26
122 111.9586 631.23 97797 272.18 1692.17
123 116.9586 631.23 977.96 272.18 1692.11
124 121.9586 631.23 977.96 272.18 1692.10

Table 8-8 Selected values of the
initial and final temperature
profiles (Ref. 3)

Initial temp., Final temp.,

Stage °R °R

1 594.37 596.20

2 598.32 603.64

5 626.84 635.87
10 633.06 638.28
15 635.60 640.38
20 633.23 634.07
25 623.00 624.30
30 624.63 626.49
35 626.22 631.23
40 627.80 641.28
45 629.90 645.98
50 645.24 653.45

Table 8-9 Component flow rates in the distillate and bottoms
for Example 8-1 (Ref. 3)

Du,; b = Lsouso.i
di=2§=|u1,i ' Z§=1 Uso, i
Initial Final value, Initial Final value, .

Component value t=12196 min  value t = 121.96 min
Methanol 0.0728 1.1319 65.1772 64.1118
Acetone 19.1484 25.4802 6.3518 2.0181
Ethanol 1.6953 5.0002 8.3047 9906
Water 2.3287 4.4632 205.1712 203.0592
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Figure 8-8 Response of bottom and distillate total flow rates. qso = flow rate of bottoms and
q, = flow rate of distillate in gallons per minute

The response of the total flow rates of the distillate and bottoms is dis-
played in Fig. 8-8. The pressure responses in the accumulator and the base of
the column are given in Fig. 8-9.

The integration parameters employed in the application of Gear’s method
are listed in Table 8-10. To obtain the transient response over a period of about
two hours, the execution time required to integrate the 693 equations was about
170 seconds of execution time. Solutions were obtained on the AMDAHL 470
V/6 computer using extended FORTRAN H. The performance of the step size

and order control procedure during the solution of Example 8-1 is shown in
Table 8-11.

Calculational Procedure Used in the Solution of Example 8-1

When the equations and variables are ordered as shown by Egs. (8-73) and
(8-74), a jacobian matrix similar to the one shown in Fig. 6-2 is obtained which
has the characteristic of being almost band. Because of this structure of the
jacobian matrix, the Newton-Raphson formulation of the steady state equations
for a distillation column were referred to by Holland(7) as the Almost Band
Algorithm. In the case of the dynamic model presented above, the temperature
controller leads to off-diagonal elements (elements which lie outside of the
shaded area shown in Fig. 6-2) in the jacobian because T; = T, = T, appears in
the equations for stages j=k, k — 1, k + 1 (Egs. (8-9), (8-36), (8-37), and the
cascade controllers of the temperature and the steam rate, see Eqgs. (8-66)

through (8-73)). Such off-diagonal elements may be efficiently handled by use of
the Kubicek algorithm which is described below.
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Figure 8-9 Responses of the receiver pressure (P,) and the base pressure (Pso)

Table 8-10 Integration parameters
for Gear’s method for Example 8-1

(Ref. 3)
Parameter Value
Error control parameter 0.01

Minimum permitted step size 0.005 n.1in
Maximum permitted step size 5.00 min
Initial step size 0.03 min

Table 8-11 Performance of Gear’s algorithm for
Example 8-1 (Ref. 3)

Order of Cumulative Cumulative
Time, Gear’s function jacobiafl

Step min method evaluations evaluations
0 0.000 1 0 0
9 1.024 1 33 5
10 1.242 2 36 5
31 10.013 2 121 16
32 10.548 3 124 16
60 27.292 3 232 30
61 27.962 2 234 30
110 82.502 2 438 57
111 82.659 1 440 57
124 121959 1 487 63

(

Kubic¢ek Algorithm
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Kubigek(11) proposed an efficient algorithm for solving matrices which contain
a relatively small number of elements lying outside the banded region, such as
the derivatives with respect to the temperature Ty (the controlled temperature)
of Example 8-1. The submatrices clustered along the principal diagonal are
treated by gaussian elimination while the nonzero elements lying above and
below the submatrices are treated by the Kubigek algorithm. Since the nonzero
elements lying above the submatrices in the upper triangular portion of the
matrix offer no difficulty, their treatment by the Kubi&k algorithm is optional.
Kubigek’s algorithm is based on Householder’s identity (Ref. 8)

(A+WCZ) ' =A™  —A”IW(C™! + ZTA™IW)1ZTA™!  (8-75)

where A is an n-by-n matrix, W and Z are n-by-m matrices, and c¢ is an m-by-m
matrix. Suppose that a solution to the set of equations

Bx=b (8-76)

is desired where B is an n-by-n matrix and x and b are conformable column
vectors. Then let

B=A+R=A+R,I,R! (8-77)

where R; and R, are of order n x m and I,, is an identity matrix of order
m x m. Thus

(A+RI,RDx=b (8-78)
Then
x=[A+R,L,RI]"'b (8-79)
Application of Householder’s identity (Eq. (8-79)) gives
x=[AT'—AT'R,@I;! + RTAT'R)"'RTA 1]
=A"'b - ATR,(I! +RIAT'R)'RT+A (8-80)

Let the vector y and the matrix V be defined as follows:

Ay=b (8-81)
AV =R, (8-82)
Then Eq. (8-80) becomes
x=y—- V[, '+R,V] 'Rly (8-83)
Let
z=(I,+RIV)"'R]y (8-84)

Since I;! =1, it is evident that Eq. (8-83) may be written as follows:

x=y-—Vz (8-85)
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The order of calculations is as follows where it is suppo§cd that the LU
factorization of the matrix A has been obtained, and it is desired to solve the

matrix equation Bx = b.

Step 1 Find R by use of the defining equation R = B — A. Form the matrix
R, from the columns of R containing nonzero elements and choose R, such
that R = R,I R, (Alternatively, form the matrix R, from th:. rows of R con-
taining nonzero elements and choose R, such that R = R,I,R3 )

Step 2 Solve Eq. (8-81) for y.

Step 3 Solve Eq. (8-82) for V.

Step 4 Compute RTV and R]y.

Step 5 Solve Eq. (8-84) for z.

Step 6 Solve Eq. (8-85) for x.

NOTATION

A, = active area of a sieve-tray area between the outlet weir and
the downcomer, ft?

Ay = cross-sectional area of the downcomer, ft?

A, = total area of holes, ft? ,

Ar = total cross-sectional area of the column, ft

Ay = clearance area between the downcomer and the floor of the
tray, in? .

Ci = set point of controller k in milliamps

D = total distillate rate, Ib- mol/min

D, = diameter of holes, in

Dg = diameter of reflux accumulator, ft

Dy = diameter of column, ft . .

e = control error, departure of the control variable ¢ from its

reference value r,e =r — ¢

E; = energy of the liquid holdup of stage j, Btu .

E, = holdup of energy in the steam chest of reb01l§r .

ho, ; = dry hole pressure drop, inches.of vapor-free liquid o

hy, = pressure drop of the vapor as 1t.passes through the liquid on
plate j, inches of vapor-free liquid o '

hye = pressure drop experienced by the 1.1qu.1d in flowing down the
downcomer, inches of vapor-free liquid

h,. ; = height of weir, in o o

h,, ; = height of liquid over the weir, inches of vapor-free liquid

= virtual value of the partial molar enthalpy of component i in the
liquid on plate j, Btu/lb - mol

Pdli Pd2
Pgy, Ps,
q
q2
qn
9w
Oc

~2
=,

=<

~2

= S
.

K

N NN
Z = S~
+

i
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= virtual value of the partial molar enthalpy of component i in the
vapor on plate j, Btu/lb - mol

= function used in the description of proportional-integral
controller

= ideal solution K value for component i on plate j

= proportional gain constant for controller k

= length of the reflux accumulator, ft

= length of weir, in

= total molar flow rate of the liquid leaving stage j, Ib-mol/h

= thickness of metal of sieve tray, in

= output of the kth controller, mA

= pressure on stage j, Ib/ft?> abs

= discharge pressure of pumps 1 and 2, respectively

= suction pressure of pumps 1 and 2, respectively

= volumetric flow rate of reflux, ft*/min

= volumetric flow rate of the distillate, ft*/min

= volumetric flow rate of the bottoms, ft*/min

= volumetric flow rate of the cooling water, ft*/min

= condenser duty, Btu/min

reboiler duty, Btu/min

= temperature of stage j, °R

= temperature of the particular stage j = k in °R

= temperature of condenser tubes

= temperature of reboiler tubes

= measured value of the specified temperature

= temperature of saturated steam in the reboiler

= temperature of saturated steam to the reboiler

outlet temperature of the cooling water from the condenser

molar holdup of component i on stage j

linear velocity

= total molar holdup on stage j

= activity coefficient for component i and stage j, Vi =7k
(Pja T}" {xji})

= activity coefficient for component i and stage j, y¥, = i
(P;, T, {)G'i})-

= total volumetric holdup of stage j

= molar flow rate of component i leaving stage j

= mass flow rate of the condensate leaving the reboiler

mass flow rate of steam to the reboiler

height of liquid in downcomer, inches vapor-free liquid

= height of liquid in the accumulator, ft

= height of liquid in the base of column, ft

= mole fraction variable for component i in the vapor above the
liquid in the accumulator

I

I

I
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Greek letters and the LU factorization of the matrix A is known

O = valve position of control valve for the kth controller
p¥, p© = mass density of the vapor and the vapor-free liquid, respectively é 0 0 o 1 0 0 o0t o o o
5", P~ = molar density of the vapor and the vapor-free liquid, respectively A=, (2) (3) g |0 1 0o offo 2 o o
Ps = mass density of the saturated steam in the reboiler o 0 o a4 g (()) 1 offo o 3 o
Trk — time constant for the kth proportional-integral controller 0 110 0 o0 4
To k = time constant for the kth control valve
APPENDIX 8A
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Table 8A-1 Equilibri o )
of Example 8-‘: librium and enthalpy data, and relationships used in the solution

1. Liquid enthalpiest
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hi=apb, T + ¢;T* (T in °R), Btu/lb mol

4. C. W. Gear: “The Automatic Integration of Ordinary Differential Equations,” Commun. ACM, Component a
14(3):176 (1971). i b; I3
5. C. W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Methanol —0.3119436 x 10* —0.4145198 x 10 0 -1
Inc., Englewood Cliffs, N.J. (1971). Acetone —0.115334 x 10° 01770348 x 102 Qa6 <107,
6. C. W. Gear: “Simultaneous Solution of Differential-Algebraic Equations,” IEEE Trans. Circuit Ethanol 04046348 x 103 —0.2410286 x 102 pipestd 10—1
Theory, 18(1):89 (1971). . Water —0.878 38059 x 10* 0.1758450 x 10? 8.‘;;?8230 . 10‘3
7. C. D. Holland: Fundamentals of Multicomponent Distillation, McGraw-Hill Book Company, 3651369 x 10
New York, 1981. & > laea
8. A. S. Householder: Principles of Numerical Analysis, McGraw-Hill Book Company, New York, . - Ideal gas and pure component vapor enthalpies
1953. 2 | Hi=a+bT T2 T3 4o
9. G. A. Hughmark and H. E. O’Connell: “Design of Perforated Plate Fractionating Towers,” { (T +aT” +d,T° + e, TT in °R), Btu/lb mol
Chem. Eng. Prog. 53:127 (1957). . 3; Component a; b, N
10. M. H. Hutchinson, A. G. Buron, and B. P. Miller: “Aerated Flow Principles Applied to Sieve ¥ Methanol 0.1174119 x 10° ‘
Plates,” Paper presented at Los Angeles AIChE Meeting, May 1949. i Acetone 0867332 x 10* 0.7121495 x 10 0.5579442 x 10~2
11. M. Kubigek, V. Hlavacek, and F. Prochaska: “ Global Modular Newton-Raphson Technique Ethanol 0‘106486 x 109 04735799 x 10 0.1452860 x 10!
for Simulation of an Interconnected Plant Applied to Complex Rectifying Columns,” Chem. ; Water 0A154 5871 x 10° 0.7515997 x 10 0.1151360 x 107!
Eng. Sci., 31:277 (1976). ¢ . x 10 0.8022526 x 10 —04745722 x 1073
12. 1. Leibson, R. E. Kelley, L. A. Bullington: “How to Design Perforated Trays,” Pet. Refiner, ? d; e,
36(2): 127 (1957). & -
13. R. C. Lord, P. E. Minton, and R. P. Slusser: “Design of Heat Exchangers,” Chem. Eng., % X;iizd :gﬁg?;gg x 107‘: —0.2091904 x 10~'°
62(2): 96 (1970). Ethanol ——OA1682096 x lovs —0.2018173 x 10~°
14. J. M. Prausnitz, C. A. Eckert, R. V. Orye, and J. P. O’Connell: Computer Calculations for Water 0' x 1076 0.9036333 x 1071
Multicomponent Vapor-Liquid Equilibria, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1967). : 6878047 x 10 —0.1439752 x 10~°
15. B. D. Smith: Design of Equilibrium Stage Processes, McGraw-Hill Book Company, New York,
1963. 3. Antoine constants§
16. Mathew, Van Winkle: Distillation, McGraw-Hill Book Company, New York, 1973.
B.
log Pi:Ai_(C,»-{-‘T) (P; in mmHg, T in oC)
PROBLEMS COmponcnt A'. B,- x 1073 C.‘ x 102
81U . . . Methanol 7.878 63
se the Kubigek algorithm to solve the equation Bx = b, where Acetone 702447 147311 2.30000
Ethanol 8.04494 :';gggg Tt
Water 7.96681 166821 220658
: 2.28000

Xy 1
X, 4
=1s

4

0
2
0
0 .
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R d enthalpy data, and relationships used in the solution Table 8A-1 Equlllbrlurp and enthalpy data, and relationships used in the solution
Table 8A-1 eqllllb"l"f1 al:l enthalpy ’ of Example 8-1—Continued
mple 8-1—Continue
of Examp which may be restated in the following form for plate j
4. Molar volume constants§ oL
i b Py =7, P50 3
a.=a<+b~T+CiTz (aiincm3/g~mol,Tin°R) y;r¢/x j Vi £ Ji ()
i i i - where ¢ﬁL =sz/PlS. .
Component a; b - P3; = saturation pressure of component i at the temperature of the mixture
0.1195526 x 1073 xp=Le/35 L
1 0.6451094 x 10* —0.109 5359 _ i =i 't_l i
Z";‘f},’n’f‘mh" 0.5686523 x 102 0.468039 x 10”2 05‘;‘; Z%g % :g-: Vi = Ol Yin1 v
. -1 0.4 x
Ethanol 0.5370027 x 10: _0;;1)52;:;? : ig“‘ 02115899 x 1074 When these definitions are substituted into Prausnitz’ equation of Chap. 4, Eq. (4) is
Water 0.2288676 x 10 —0. obtained for the calculation of y;;, namely,
Iim
- < < ljk Ay \' mz=:l !
5. Wilson parameters§ vi=<expll— Y - I @
Ay = i cal/g mol R ‘ 2 bimAim
l 2 3 4 m=1 m=1
Component (methanol) (acetone) (ethanol) (water) where
) A = E,’l exp [ (Ai = A&k]
3 ki = -~ T T
(methanol) 0.0 0.66408 x 103 0.59844 x 10° 0.20530 x 10 vh RT,
2 s 038170 x 10° 0.43964 x 10° The Antoine cquation is used to calculate P}, and ¢9* was computed by use of the equations
(acetone) —0.21495 x 10 0.0 . ; given below which were taken from RSTATE of Prausnitz, et al. Although ¢2" should be
3 s 0 0.0 0.38230 x 103 5 differentiated with respect to temperature in the Newton-Raphson procedure, it was found that
(ethanol) 0.51139 x 10 041896 x 1 ’ i this step could be eliminated with the saving of considerable computational effort.
4 48216 x 10° 0.140'549 x 10° 095549 x 10 00 . The following equations were used to compute $9*
(water) 0. X : - !
fi =exp [f; + 0,f,]
Si=—35021358 + T,{5.608 5595 + T.[ —3.076 574 + T(0.573 350 15)]}
6. Physical constants€ f2=—3.7690418 + T,(4.3538729 + T,(0.3166137 + T,(0.126 661 84 + T(—1.1662283
p v u + T,(—0.106 657 30 + T,(0.12147436 + T,(0.18927037 + T(0.149 36906 + T,(0.024 3648 16
Component T K atm cm?/g-mol w Wy Debye n - ;/77;(—04068 603516 + T,(—0.015172164 + T,(0.012089 114)))))) 6)
0.557 0.105 1.66 121 rT o
Metmanol 30T e s o o 2 000 o, = st fcor e e 6 aove
Acetone ' 630 1613 0637 0152 169 1.10 =0 i Pi/(RT,
Ethanol 21.6]'2 2183 552 0.344 0.010 1.83 0.00 where R = 1.987 cal/gm - mol - K.
Water E . ‘
. The vapor phase fugacity coefficient ¢;; was calculated exactly as described in Chap. 3. in
" = f the homograph of the component por p! gacity i y p. 3,
T, = critical temperature @y = :'cczlil;r::(f:l:;g: ° & : Prausnitz et al, and Eqs. (10) through (23) were used directly.
P, = critical pressure p=dip '
v. = critical volume n = self-interaction parameter 2. Enthalpy deviations
@ = acentric factor The enthalpy H,; of pure component i is related to its fugacity f; by the well-known thermo-
- dynamic relationship given in Eq. (7). The fugacity can be related to an equation of state
7. Equilibrium and enthalpy relationships used in the solution of Example 8-11t through Eq. (8). The equation of state used in the Prausnitz monograph is given by Eq. (9)
| where Z has the usual meaning as defined by Eq. (10).
1. Equilibrium relationship
Oln f;
. . : 0 _ 2 i
The form of the equilibrium relationship used herein g H;— H} = —RT <—6T )P 0]
1
WSy =7 S W i N (f/z-1
A In ; = '-—P— dpP 8)
may be restated in the form of Eq. (4) on p. 5 of Prausnitz, et al.f A o
¢ P =yix; [ @

(Continued over)
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Table 8A-1 Equilibrium and enthalpy data, and relationships used in the solution

of Example 8-1—Continued

Z=1+Bp )
Z = Py/RT (10)

Equations (9) and (10) can be used to integrate Eq. (8) and the result substituted into Eq. (7)
gives Eq. (11). Equation (12) is the result of eliminating v between Egs. (9) and (10).

- _rrr(2-L\(%2
H,—H} = RT(Z Z\ar), (11

1+ /1 +4BP/RT
Z=_————-—/— (12)

2

In the calculation of @Y%, a mixture virial B is calculated using mixing rules described in
Chap. 3 of the monograph. If B is substituted into Egs. (11) and (12), the result is the virtual
value of the partial molar enthalpy, Q. Rigorous application of the Almost Band Algorithm
requires that the derivative of Q be calculated with respect to temperature for use in the
convergence procedure. This was not done in the solution of Example 8-1.

+ Taken from an M.S. thesis by S. E. Gallun, Texas A&M University, 1975.

1 Based on the correlation of Rihani and Doraiswany on pp. 182 through 186 of The
Properties of Gases and Liquids, by R. C. Reid and T. K. Sherwood, 2d ed., McGraw-Hill
Company, New York, 1966.

§ Taken from M. J. Holmes and J. Van Winkle, “Predictions of Ternary Vapor-Liquid
Equilibria in Miscible Systems from Binary Data,” Ind. Eng. Chem., 62(1):21 (1970).

€ Taken from J. M. Prausnitz, C. A. Eckert, R. V. Orye, and J. P. O’Connell, Computer
Calculations for Multicomponent Vapor-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, N.J.
(1967).

1 J. M. Prausnitz, C. A. Eckert, R. V. Orye, and J. P. O’Connell, Computer Calculations for
Multicomponent Vapor-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, N.J. (1967).

CHAPTER

NINE

DEVELOPMENT OF RUNGE-KUTTA ME
THODS
AND MULTISTEP INTEGRATION ALGORITHMS

tielectzd tintevgra.tii)n algorithms introduced throughout this book are developed
om first principles in this chapter. In Sec. 9-1, the techni
. . 9-1, niques used to develo
;};e vlvell-known fourth-order Runge-Kutta algorithms are demonstrated by thg
f‘:}:, opment of fh.e second-order Runge-Kutta method. A detailed development
ol d € semi-implicit Runge—Kutta method is also presented. In Sec. 9-2, a gener-
al development of the multistep integration formulas is presented. Emphasis is

placed on the develo J : . .
equations. pment of Gear’s algorithms for differential and algebraic

9-1 RUNGE-KUTTA METHODS

Although algorithms may be developed directly by use of the Taylor seri
expansion .of a function, such algorithms are unacceptable from :3 practicl::
K/cl):tlltlogf view because ’of the.diﬁ'lculty of computing the partial derivatives.
e retsaigriz(ljniafﬁzrz:g: i?lu;l\;alinat to (tjhc;l ;Faylor expansions wherein the last
, h°, an are known —
methods. Fortunately, these methods require only the evaluzstict)geo:{ tl:::g?u K:I‘tta
at two, three,. gr four values of the variable in each interval x < x<x e
The explicit Runge-Kutta methods are algorithms of the "fo—rm S

Yn+1 =yn+¢(xna Yns h) (9"1)
where ¢ has been termed the increment function by Henrici(8).
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The Explicit Runge-Kutta Method of Order 2

In the second-order algorithm, the increment function is

. The Taylor series expansiont of the multivariable function k, about (x,, y,)
gives v

B k
¢ = ak, + bk, ©-2) & =10 + ah, y, + Bly)

and a formula is to be found for

a2h2 252
=f(xn’ y'n) + ahfx + ﬂkl fy+ T fxx + ahﬁkl fxy + ﬁ2 !

Vo+1 = Vu + aky + bk, 9-3) Sy 40 (9-8)

where Substitution of this expression into Eq. (9-3) and replacement of k, by its defini-
ky = hf(x,, y,) tion, followed by rearrangement in powers of h gives

ky = hf(x, + ah, y, + Bky) Yn+1= Yo+ (a+ b)hf + bh¥(af, + BIY,)

and a, b, @, B, are constants to be determined so that Eq. (9-2) will agree with + b gi 2 )
the Taylor series expansion of the same order. 2 Jux + aBffy + 2 Sy )+ 9-9)
Expansion of y(x, ) in a Taylor series through terms of order h? gives L
p YXns1) y vaherf(:9 z;l)l d((:irlvatnve§ are to be evaluated at (x,, y,). Upon comparison of
h? h? gs. (9-7) and (9-9), it is seen that in order for the correspondi
Y(Xpe1) = W(X,) + hy'(x,) + o y3(x,) + 1l y3(x) + O(h%) (9-4) and h? to agree it is necessary that ponding powers of k
. . . a+b=1
For the general case of a differential equation of the form y' = f(x, y), it follows
that bo = bp =% 9-10)
A2y df(x,y) o dx of dy 491 The - : .
oy oY _ G o 2Lt 9.5 re are many solutions to Eq. (9-10), one of the lest b
Y =73 I o ax T oy dx Lot f (9-5) 1) simplest being
and a=b='2‘ a:ﬂ:l (9_11)
B x) = & (x ) = d(fs +1,1) , which gives the formula
y dx? dx ; |
_0(fx+}}f)d_>_€+0(fx +f,f) dy Yrr = Yot 3 (ki + ko) 9-12)
= y :
Ox dx dy x where
=fxx+fyfx +fxyf+fxyf+fyfyf+fyyff (9-6)
kl = hf(x,,, yn)
Therefore

k2 = hf(xn + h’ Yn + kl)
hZ
y(xn+ 1) = y(xn) + hf(xna yn) + —2_ (fx +.fyf)n

T The first few terms of the two variable Taylor series are:

h3
+ o (fae + 2y + 5y [+ S Sy 175 )+ OG- O-1)
31 y yy y y f(x+”y'*'S)=f(x*)’)+’fx(xa)’)+§f,(X,y)+£2if“(x,y)

where the subscript n denotes that all the functions and their derivatives are t0 g 2
be evaluated at (x,, y,)- 5 +15,(x, y) + 3 Jox ¥) + OUr| + [s1)]
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The formula for the truncation error of Eq.(9-12) is found by use of
Egs. (9-7), (9-9), and (9-11).

h3
.V(xn+1) —VYn+1 = E (_fxx - 2ffxy —./:vyfz + 2fxfy + 2f§f) + O(h4) (9']3)

The complexity of the coefficient in this error term is characteristic of all
Runge-Kutta methods, and this is one of the least desirable features of the
Runge-Kutta methods. Equation (9-13) does show, however, that the truncation
error for the second-order Runge-Kutta method is proportional to h3.

The development of the higher-order Runge-Kutta methods is carried out
in a manner analogous to that demonstrated for the second-order method. Two
of the most popular forms are the fourth-order methods. The fourth-order
method attributed to Runge is given by Eq. (1-45). One of the most widely used
fourth-order Runge-Kutta methods is the one attributed to Gill(7) which is
given by Eq. (1-46).

Unfortunately the explicit Runge-Kutta methods are unstable for systems
of stiff differential equations, systems having widely different time constants.

The Semi-Implicit Runge—Kutta Methods

Systems of linear, ordinary differential equations having widely different time
constants are characterized by widely different eigenvalues which lead to prob-
lems of both stability and accuracy as discussed in the section on Stability of
Numerical Methods in Chap. 1.

A number of modifications of the Runge-Kutta method and other methods
have been proposed for the solution of stiff systems. There follows a devel-
opment of a third-order semi-implicit Runge-Kutta method as originally pro-
posed by Caillaud and Padmanabhan(2). The formula for this method is as
follows:

Yos1 =Y.+ R ky + Rok; + R3ky (9-14)
The formulas for k,, k,, and k; are:
k, = h[I — ha, IJ(y,)] ™ 1(y,) (9-15)
k, = h[I — ha, J(y,)]™ (v, + b2 ky) (9-16)
ky = h[I — hay J(y,)] ™ '[I(n)1(bs1 Ky + b32 ko) (9-17)

In the analysis which follows, a single differential equation is to be integrated,

namely, i
y
put A 9-18
I 1) (9-18)

and

J(y,) = jacobian, which contains the partial derivatives of the
functions f with respect to each of the variables y.
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For a single differential equation, the matrices in Egs. (9-14) through (9-17)
rfeduce to scalars, which is implied in the following development by the omis-
sion of. boldface type. The coefficients a,, b,, by, bs,, R,, R,, and R; are
determined by matching Eq. (9-14) with the Taylor series expansion of y(; )
and l?y the suitable selection of parameters to give a root to the differg;cle
equation which has the desired characteristics. In the determination of the
vall(;es of the arbitrary constants, the scalar form of Egs. (9-14) through (9-17) is
used.

The first step in the development is the expansion of [1 — a,hA]1 ! in a

power series, where A4 denotes the single term [A4 = f(y,)] contained by the
jacobian matrix. ’

(1—a,hd) =1+ ¥ (a, hA) (9-19)

i=1

and |a, h4| < 1. The expression for k; becomes

ky=hf +a B*Af + al hPA* + @} h*A3f + - - (9-20)
The Taylor series expansion of f(y, + b, k,) is given by
(by ky)?

f(yn + b2kl) =f(yn) + blkl j:v(yn) +

For convenience, let the second and third partial derivatives of f (y) with respect
to y and evaluated at y, be denoted by B and C, respectively. Then Eq. (9-21)
becomes
212 353
S0+ bk =+ byk, 4 4 2L BRKC

Use of Egs. (9-19), (9-20), and (9-22) permits Eq. (9-16) to be restated in the
following form:

(9-22)

2
ky = hf + (ay + b)h* Af + (a? + 2a, by)> A% + % WBf? + -+ (9-23)
Similarly, use of Egs. (9-19), (9-20), and (9-23) to reduce the expressi i
Eq. (9-17) for k4 yields pression given by

where ky=byh*Af + h3A*f(2a, by + by by,) + - (9-24)

bs = bax + b32

Substi.tution of the expressions for k,, k,, and k, into Eq. (9-14) yields the
following expression upon rearrangement:

Yn+1=Yn+ Ry + R)H) + [Rya;, + Ry(a; + b,) + R, bs](thf)
+[R,a? + R,(a? + 2a,b;) + Ry(2a, b; + b, b3,)]

R, b3

x (h*A%f) + S (PBf?) (9-25)




306 STAGED SEPARATION PROBLEMS—SEMI-IMPLICIT RUNGE-KUTTA AND (( 'S METHODS

The Taylor series expansion of y(t, + h) is given by

dy hdy B
y(t,,+h)=y(t,,)+hd—):+—2—!--£i—)+§d—t§-+0(h4) (9-26)

Since dy/dt = f, it follows that

@=a(fyf)d—y=fwf2+f§f=3f2+A2f

Thus,
h? K3 h3
Wt, +h) =y, + hf + 5 Af + 3 A% + 3 Bf? + O(h%) 9-27)

Comparison of the coefficients of (hf), (h*Af), (®*A*f), and (h*Bf?) of Egs. (9-25)
and (9-27) gives the following equations:

R, +R,=1 (9-28)

R,a, + Ry(a, + b)) + Ryby =3 (9-29)

R, a? + R,(a? + 2a, by) + Ry(2a, by + by b3y) = i (9-30)
3R b3 =% 9-31)

To study the characteristic root of Eq. (9-14), the expressions for k,, k,,
and k, are evaluated for the linear equation )’ = dy or f(y,) = Ay,. Observe that
after f has been replaced by 2y, and A by 4, the definition of k, (Eq. (9-15))

reduces to

hiy
= 9-32
ki 1 —a, hi ©-32

For f(y,) = Ay, the function f(y, + b, k) in Eq. (9-16) becomes
SRy, + Abyky) = Ay, + Aby k.
Thus, the definition of k, (Eq. (9-16)) reduces to

hiy by(hA)* Y,
= n 9-33
l—alh)~+(l—a1hl)2 ©-33)

ks

Similarly
bsy(hA)?y, by by(hA)*y, (9-34)

ky =

T (1 —a kA (1 —a hi)P?

After these expressions have been substituted in Eq. (9-14), the result so ob-
tained may be rearranged to the following form:

Yass = uh)y, ©-3) |
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where
w1+ Z hd+Z,h%A% + Z, k333
wu(h2) = : 2 2
(1 —a, hA) (5-36)
Zl = 1 - 3(11
ZZ = 3(1% — 201 + R2b2 + R3b3
Zy= —a} +a} — a,;(R, b, + Ryby) + R, b, b3,
Let
x=Ryb, + Ryb, (9-37)
y = R3 b2 b32 (9‘38)
Then Eqgs. (9-32), (9-24), and (9-23) may be used to obtain
x=%—-a (9-39)
y=%t—-a,+a -
and thus ’ l l o4
Zl = 1 - 3(11
Z,=3a} —3a, +1 9-41)
3a 1
Zy= —af+3af—71+—6-
Upon setting
Rb3=%1 R,=1 (9-42)

the following solution is obtained

a; = 04358666

3
b2=Z
b 41 ,
32=3| g~ @ +ai )= 0105627
1
by, = Tg ~ 91 —bs = —0274684
_u
Y
_l6
2727
Ry =1

(Note, it can be shown that the values of k,. k dk i
chotes of 1) 1> k2, and k; are independent of the




(
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In order to make the method A-stable, the constant a, was picked suc!l that
Z, = 0. Thus, the numerator of u(hl) becomes of order 2 while the denominator
is of order 3 in hl Thus, the procedure becomes strongly A-stable, and it
requires one jacobian evaluation and two functional evaluations ;')er.step. 'I:his
version of the semi-implicit Runge-Kutta method represents a significant im-
provement over the original version proposed by Rosenbrock(1 1).

Michelsen’s Method
Michelsen(9,10) proposed a slightly different version of the Caillaud-
Padmanabhan algorithm in which the following expression was used for kiy:

ky = [I — ha, J(y,)] " '[bs; ky + b3z k;] (9-43)

By following the same procedure used by Cailland and Padman.abhap(2),
Michelsen obtained the following set of parameters when the expression given
by Eq. (9-43) is used instead of Eq. (9-17) for k;.

3a 1
3_7,2422_Z_0
a 3a® + > 7%
a, = 0435867
11
R1=—7—b31=1.03758

2

1_3 — by, = 083494

R2:2

(9-44) ;

R,=1
p 3
274

by, = —— (6a2 — 6a, + 1) = —0.24235
9a,

by, = — —— (8a? — 2a, + 1) = —0630172
6a,

Michelsen’s method has been found to be one of the most efﬁcjient me‘thods f.or
small, medium, and even large dimensional systems of orfimary differential
equations. It is more efficient than both Rosenbrock’s and Caillaud and Padma-

nabhan’s methods.

9.2 MULTISTEP NUMERICAL-INTEGRATION ALGORITHMS

A general procedure is presented for the development of the multist.ep algo-
rithms such as the Adams-Bashford, Adams—Moulton,. and anr algorithms fqr
solving systems of stiff differential and algebraic equations. This development is

(
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based on several sources (Refs. 3, 4, 5, 6). Because of the length of the devel-
opment, one should not conclude that the final result is difficult to apply. Quite
the contrary. Use of the Nordsieck vector simplifies the method and reduces the
effort required to make simultaneous changes in step size and order.

Consider the ordinary differential equation

dx
T = f(x, t) (9-45)

The value of the variable x computed by use of the algorithm at time ¢, is
denoted by x,, and the exact value of x at time ¢, is denoted by x(t,).

In general any algorithm which gives the exact value of x for an initial-
value problem having an exact solution given by a kth-degree polynomial is
called a numerical integration formula of order k. The term “order” as used
here is not to be confused with the order of the Taylor or Runge-Kutta algo-
rithms.

The multistep numerical-integration algorithms may be stated in the follow-
ing general form:

Xp+1 = Ao Xy +!Z1 Xn—1 +- 4 apxn—p + h[ﬂ*l f(xn+l’ tn+1)
+ ﬁof(xn’ tn) + ﬁl f(xn—l’ tn*l) + -+ ﬁpf(xn—p7 tn*p)] (9'46)

or, more compactly,

p p
xn+1 = Zaixn—i+h Z ﬁl‘f(xn—i’tnfi) (9'47)
i=0 i=—-1
Observe that Eq. (9-47) contains 2p + 3 parameters, namely, «,, a,, ..., a,,
B-1>Bo> By, ..., B,. These 2p + 3 parameters are to be selected such that if the

solution x(¢) of an initial-value problem is given by a polynomial of degree k,
then Eq. (9-47) gives the exact solution

Xpi1 = X(tysy)

From the theory of equations, one recalls that the number of parameters re-
quired to uniquely determine a kth-degree polynomial is equal to k + 1. For
example, a straight line (a polynomial of degree 1) is determined by two par-
ameters, and a parabola (a polynomial of degree 2) is determined by three
parameters. Thus, the number of parameters 2p + 3 must be equal to or greater
than k + 1.

The 2p + 3 parameters are picked such that the corrector is exact for all
polynomial solutions which are equal to or less than degree k in the following
manner.

Constraints for the Corrector Parameters

Let the polynomial solution of the initial-value problem be denoted by

x()=ag+at+ayt?+---+a.t
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The expression for the constraints are found by beginning with a polynomial
solution of degree zero.
Case ] k=0 x(t)y=a, x'()=0
Thus
Xp+1 = Qo
and since x'(t) =0
SXpois ta-d) =0
Also since x(t) = a,, it follows that
X

=aO’

Substitution of these values in Eq. (9-47) gives
p p
ag =y %a9+h Y., (B)O)
i=0 i=-1

which reduces to

1= Y (9-49)

e

0

13

Case2 k=1 x(t)=ao+a;t xX(t)=a,

Let t"=0, t"+1=h’ tn—1= —h, tn_2= —2h, tn—i’—_ —lh.
Then
X,41=0ao+ah X, = Qo Xq_1 =do = arh
X,_; = ao — a,(ih) f(Xpis ta-i) = a1

Substitution of these results into Eq. (9-47) gives

P p
a,+ah= Zaf(ao — ay(ih) + h Z Bia,

i=0 i=-1
and

a0+a1h=aoiai+a1h[ia,(—i)+ Y ﬁi]

i=0 i=0 i==1

Comparison of the coefficients of ao and a, h yields the relationship giving
Eq. (9-49) and

Sa(—+ 3 Bi=1 (-50

i=1 i=-1
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Case 3 k=2 x(t)=aq+ a;t+ a,t?
xX'(t) =f(x, ©) = a; + 2a,t
Xp+1 = do + ajh + a, h?
X,—; = ag + ay(—ih) + ay(—ih)?
S nois ty—i) = ay + 2a,(—ih)
Substitution of these results into Eq. (9-47) yields

14
ap+ath+a,h* =y ofay + a,(—ih) + ay(—ih)?]
i=o

+ h. i Bila, + 2a,(—ih)]

i=-1

=ao[§oa‘]+alh[i al—i) + i ﬁ,-:l

i=0 i=-1

+a, hz[ i af—i)? + zi (—i)[f,]
i=1

i=—-1

Comparison of the coefficients of a,, a,h, and a,h? yields the relationships
given by Egs. (9-49), (9-50), and

(_i)zai +2 i (=)B; =1 (9-51)

i=-1

For k = 3, the relationships given by Egs. (9-49), (9-50), (9-51), and

i

i

p p
Y (= +3 Y (=i)?p=1 (9-52)
i=1 i=-1

are obtained. Continuation of this process shows that the constraints on the
parameters which are necessary for the corrector (Eq. (9-47)) to give the exact

value of x when the solution to the initial-value problem is given by a poly-
nomial of degree k are as follows:

o =1

i

, , ' (9-53)
Yo(—iYo, +j Y (=Y 1gi=1 G=12,...,k
i=1 i=-1
A number of multistep algorithms may be obtained by making suitable
choices of the parameters {e;} and {B;}. For example, the kth-order Adams—
Bashforth algorithm is an explicit multistep algorithm obtained by setting

p=k-—1 o =ay=""=0,_,;, =0 1 =0
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in Eq. (9-47). Similarly, the kth-order Adams-Moulton algorithm is an implicit
algorithm obtained by setting
p=k—2 Ay =0y =03 ="""=0_,=0

The remaining parameters are then determined by use of Eq. (9-53) in the same
manner as demonstrated below for Gear’s third-order algorithm.

Gear’s Corrector Algorithm (Refs. S, 6)
Gear’s kth-order corrector algorithm is an implicit algorithm which is obtained
by setting

p=k—1 ﬁo=ﬁ1=ﬁz="'=ﬁk—1=0

Thus, Gear’s corrector is given by

xn+1 = aO(k)xn + al(k)xn—l + aZ(k)xn—Z +
+ o (K)Xp—k1 + h{B- (k) f(xp+ 15 th+1)] (9-54)

where the notation «(k) and §_ (k) is used to emphasize the fact that the values
of the «’s and f_, depend upon the order k of the method. The k + 1 par-
ameters o, Gy, %a, ---5 k- 1> By ATC 1O be determined such that Eq. (9-52) gives
an exact solution for all initial-value problems which have exact solutions given
by polynomials of degree k.

For the case of Gear’s kth-order algorithm, Eq. (9-53) consists of k+1
independent equations which may be represented as follows:

k-1
Y o =1
i=0

- (9-55)
i;(—i)fai+jﬁ_l=l G=12,...,K
Thus, for
j=0: oyt + R -1 =1
j=1: —ay, — 200, — 3ot3+'~~+[—(k—l)]oc,(_l—k,Bhl =1
=2 ot bt 9ay ot [~k DPwo g + 26, =1
j=3: —ay — 8o, — 270‘3+"'+[_(k—l)]sak—1+3ﬂ—1=1

j=ki (=D + (= 2y + (=3ay + -+ [—(k = Doy + kB =1
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In . . .
matrix notation, these equations have the following representation

111 1 1 ol «
~ (k)
8 : =2 =3 - [—k—=1] 1 0:(k)
o ! 4 9 o [=tk—11% 2 || ayk)
0 —1 =8 =27 - [—(— 1] 3 || ayh)

(9-57)

S et

0 (—1F (=2 (=3F - k=1 & [p | |
Gear’s Third-Order Corrector Algorithm, k = 3

In this case Eq. (9-57) becomes

1 1 1 0 a
0 1
0 -1 =2 1 o | |1
0 1 4 2/ | |1
0 -1 -8 3118, 1
The solution is
18 -9
aO = ﬁ 11 = e—— 9‘2 = i _ = i
11 11 YT
Thus, the Gear third-order implicit corrector is given by

18 9 2
Xn+1 =77 X — 77 X, 11 £
11 11 n—1 + 11 Xn-2 + h[ll f(xn+l» tn+l)] (9'58)

The parameters for the Ge
a
given in Table 9.1 r correctors for orders k = 1 through k = 6 are

Table 9-1 Parameters for Gear’s Corrector
Order (k) o, o, %,

oy x a

l l ..... e e - - ﬁ—l
..... l

5 4 1 2
y : DU e :

3 B 2 6
1 11 u 1

4 8 36 16 3 12
25 25 25 T2 T 25

5 300 300 200 B2 60
137 27 137 1317 13m0 137

6 360 450 a0 25 7 10 60
147 147 147 147 147 T 141 147
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Gear’s Predictors . .
Gear's kth-order predictor is an explicit algorithm which is obtained by setting

p=k—-1 ﬂ—1=ﬁ1=52=”'=ﬂk—1=0 (9-59)

Thus
xn+l = &O(k)xn + &l(k)xn-l + &Z(k)xn—Z + )
+ & (k)X k+1 F hBo(k) f(x,, ta) (9-60)

In this case the constraints are given by

k—1
> &
i=0

il

i

kil(—i)&,-‘*'go 1 (=23....k-1) (9-61)
i=1

kil iy, =1
i=1

where the overbars on the parameters are used to distinguish them from those
of Gear’s kth-order corrector. Thus, for

. 5 =1
_]=0 &0+&1+ 4 Ay -1 i
j=1: —d, — 20, — 3, + -+ [—k=1D)]%_ +Bo=1
: _ N »
j=2: & + 4, + 98, + -+ [k — )] %, 9-62)
ji=3: —a; — 86, — 27ay 4+ [—(k— 1)]%_, =1
j;ki (=D&, + (= D4, + (= Ve + -+ [k = 1] =1
and restatement of these equations in matrix notation gives
0 [ (k) 1
1 1 1 1 2
(1) 1 =2 =3 o [=Gk=1] 1|[ak 1
0 1 4 9 o [—(k—-1F 0||m®| o |1] 963
0 -1 -8 =271 - [—G=DP 0]lak 1
0 (—1F (—2¢ (=3} - [=G—D1 0][F 1
Gear’s Third-Order Predictor
For this case, Eq. (9-63) reduces to
1 1 1 o0]fa 1
0 —1 =2 t{la]=]! (9-64)
0o 1t 4 0l]la 1
0o -1 -8 0][A 1
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The solution is found to be

_ 3 _ _ 1 _
0=—§ (11=3 a2=_§ ﬁ0=3 (9-65)
and thus Gear’s 3rd-order explicit predictor is
3 1
Xpt1 = __2—xn+3xn—1—Exn—2+3hf(xn9tn) (9'66)

The parameters for the Gear predictors for orders k — 1 through k =6 are
given in Table 9-2.

Gear’s Method

Gear has proposed that the predictors and correctors be combined as demon-
strated below. The symbol X, , is used to distinguish the values of x computed
at time ¢, ,by the predictor from those computed by the corrector, that is,

Xnt1 = %o Xy + 0 Xy + 0+ 0 X, yyy + BB X, (9-67)

Xnt1 = GoXy + X,y + -0 + O 1 X sy + hﬁ_ox;. (9-68)

When the second expression is subtracted from the first, the result so obtained
may be rearranged to the form

Xnt1 = Xppy + By [hxpyy — (ox, + - + Yi-1Xn-k+1 + o hx,)]  (9-69)
vi = (@ — a)/B_, 9-70)
50 = Eo/ﬁ—1 (9'71)

Let the quantity %, ., be defined as follows:

hX, iy = Yo Xn+ yyX,_y + - + Vi—1Xn—k+1 + 0 hx,, (9-72)

Table 9-2 Parameters for Gear’s Predictor

Order (k) &, &, a, d by as B,
1 1 cee e 1
2 0 | R 2
g :
4 | 12

3 3 3 3 3
s .8 ™ e 2 3 ©
12 12 12 12 12 12
6 I 10 10 s 15 2w
10 10 10 10 10 10 10
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Then Eq. (9-69) may be rewritten in the form

Xpi1 = Xpay + Bo1(hxys g — hXpiy) (9-73)
Let the quantity b be defined such that
Xps1 = Xn+1 +B-1b (9-74)
hx,,, =hx,,  +b (9-75)
That is, the quantity b is to be determined such that G(b) = 0, where
G(b) = hf (Xps 1 + B-1b, tas1) — (hXpsy + D) (9-76)

Statement of the Corrector and Predictor in Matrix Form

In the control of step size and order of the predictor-corrector pair, it is con-
venient to state the corrector and predictor in matrix form. To do this, let the
following vectors and matrices be defined.

X, 41 =[Xn+1 hxpey Xp Xp-1 7 xn—k]T 9-77)
Xn+l =[in+l hi;ﬁ—l Xp Xp—1 77 xn-k]T (9'78)
do Bo @ 8y G-z -1
Yo 0o Y1 Y2 7 Yk-2 Vk-1
g_|1 0o 0 0 - 0 0 ©-79)
0 0 1 o - 0 0
0 i e 0 1 0
cC=[., 1 0 - 017 (9-80)

On the basis of the above definitions of the predictor X, .., the corrector X, .y,
the matrix B and vector C, it is easily verified as shown below that the predic-
tor and the corrector may be stated as follows:

.., = BX, (9-81)
Xn+l = Xn+l + bC (9'82)

That the predictor and corrector may be recovered by carrying out the matrix
operations implied by Egs. (9-81) and (9-82) is demonstrated for the special case
of the third-order equations:

& Bo & % Xn (@ Xp + Bohxy, + & X,y + &y Xp-2)
BX =| 70 S0 71 72 || mxn || GoXa+ dohxn + V1Xa-1 + 72 Xp-2)
" l 0 0 0 Xp—1 x"
0 0 1 0||lxnes Xyt
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From Egs. (9-68 R -
W T(lllus( ) and (9-72), the first two elements are seen to be X,,, and

BX, = [%,4, hi,.; x, x,_,17=X,,,

Then
;i","'l ﬁ—lb i,.+1 +B_1b
Xn-f-l'*‘bC: hx"+l + b — hi;l+l+b
xn 0 xn
xn—l 0 X

n—1

Thus, it follows from Egs. (9-74) and (9-75) that

Xn+1

X,e1 +bC = hxpiy | =X,y

The Nordsieck Vector

The simultaneous change of the size of the ti
time step and the order is easil
effected through the use of the Nordsieck vector Z. For an algorithm of order Iz

h? h3 ¥ T
Z,= [xn, hx, — x(2 Z_ 3 h_ x(k):l

TR TR TR (0-83)
The matrix T required to transform X, into Z,,
Z,=TX, or X,=T"1'2Z, (9-84)

is found as demonstrated below for th
. e case where k = 3. For th ird-
algorithm, the two vectors are © third-order

Xo = [xn, hx), x4, x,_,17

L T
7z = (2 2 (3)
n l:xna hx",2! Xn ,3!x" ]

For a differential equation whose solution i i
' tion 1s a third-order i
following set of equations apply: polynomial, the

x(t) =ao + a;t + ayt* + a3
X(t) = a, + 2a,t + 3ay 1
xt) = 2a, + 6ayt

xOXt) = 6a,




318 STAGED SEPARATION PROBLEMS—SEMI-IMPLICIT RUNGE-KUTTA AND GJ METHODS

For t, =0, t,_1 = —h, t,_, = —2h

X, = Qg
Xp=a,
x? = 2a,
xf) = 6a,
Also o, = x(—h) = ag — ha, +azh2_a3h3
Thus h2 K3
o= () + (7 x?’) _ (E x}?’) (9-85)
Similarly oy = x(—2h) = ay — 2a,h + 4a, h* — 8a, h3
Thus h? h3
Xy = Xy — 2hx) + 4(7 xf)) -8 (z xﬁ,3)> (9-86)

Since x, and hx, appear in both vectors X, and Z,, the following two ad-
ditional equations are needed, namely,

X, = X, (9-87)
hx!, = hx, (9-88)
When Egs. (9-85) through (9-88) are stated in matrix form, one obtains
1 o0 o ol x ][ =]
0 1 0 0 hx;, hx,
1 -1 1 -1 ~h2—2x<f’ =| X0y (9-89)
’ 3
tl -2 4 —S_L—G-xf,‘— an_z_

which is recognized as T~ 'Z, = X, for k = 3. Since TX,, = Z,, the matrix T is
found by obtaining the inverse of the coefficient matrix of Eq. (9-89). The result,
TX, =12, is

_ ar T i ]
1 0 0 0 X, X,
0 1 0 0 hx;, hx,
76 8 1§ = # @ (9-90)
—_ Z Z 4 4 n—1 2 n
3 2 4 1 h 3)
O - — x§
T4 4 4 4 Lx" 2] L6 ]
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Thus, the predicted value Z, of Z, is related to the predicted value of X, of X,
as follows:

Z,=TX,=TBX,_, =TBT 'Z,_, (9-91)
Thus
7,-pz,_, (9-92)
where
D =TBT ! (9-93)
Since
Z,=TX, =T[X, + bC] (9-94)
it follows that
Z,=Z7Z,+bL (9-95)
where
L=TC

The matrix D is the Pascal triangle, that is, for k = 3

D=TBT '= (9-96)

(= e
SO = =
S =N =
—_) W

The nonzero element d;,, ;,, in the j + Ist column and the i + Ist row of the
Pascal triangle matrix is given by

‘! . .
di+1,j+1=m k+1)>j=>i>0
Also, for k = 3,
16 11 6 1777
=TT 97
[11’11’11’11} (9-97)

The vector L for k = 1 through k = 6 is presented in Table 9-3.

Calculational Procedure for a Fixed Step Size and Order

1. Use the original differential equation
X' =f(x1)
and the initial conditions to estimate the elements of Z, for order k and step
size h
h? K

T
— A — k)
Zo—[xo,hxo, 7 xé,...,k! xg]

2. Use the Pascal triangle matrix D and Z, to compute Z, as follows:
Zl = DZO
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Table 9-3 Elements of the vector L and values of

Simultaneous Differential and Algebraic Equations
B_, for Gear’s algorithm of order kt

Consider the case where a set of algebraic equations are to be solved simul-

Elements Order:k=1,2,...,6 taneously with a set of differential equations. The corrector
of L 1 2 3 4 5 6
Xn+y = 0o Xy + 04X,y + 700 + 00 X,

i ) 2 6 24 120 720
o 3 11 50 274 1764 F U 1 Xy T B [t gy Ups 15 tyiy) (9-98)
1 | 3 150 274 1764 may be used to solve the algebraic equation
! 3 11 50 274 1764

{6 35 25 1624 0 =g(xn+ 1> Un+ 1, Lus 1) (9-99)
L 3 11 50 274 1764

First the constraints which the parameters of the algorithm must satisfy

10 s DS when the exact solution to Eq. (9-99) is a polynomial of the kth degree, say,
s 1 50 274 1764

115 175 ult) =ao +at +a,t? + - +a,t* (9-100)
L % i Ta are determined.

1 . Let the gpproximation of u(t) obtained by passing a curve through a

I 7 T number of points of previous time steps be denoted by U,y = u(t,,,). Then

1 =
16 17_64 un+l ’70un+"lun—l +"2un—2+”.+’7pun*p (9'101)
or
+ Note, f_, corresponds to [;.
p

Upyy = 4_Zof1.~un_,~ (9-102)

For the nth time step the relationship is .
_ The constraints on the parameters {,} are found in the same manner shown for
Z,=DZ,_, Gear’s correctors and predictors.

3. Use those elements of Z, which are needed in the determination of the b that

Casel k=0 u@t)=
makes G(x,, t,) = 0, where u(t) = a,

Uy =0y U, ; = g
Substitution in Eq. (9-101) gives
G(%y + B-1b, t,) = hf (X, + B-1b, 1) — h(X, + D)

: p
where ay =Y na,
i=0

Xy =%, + B-1b and thus
hx, = hx, + b

s
=
I
-

I
(=]

4. Compute the value of Z, at time ¢, as follows: (9-103)

Z,=12,+bL

Case2 k=1 u(t)=a0+alt
where the vector L for order k = 1 through k = 6 is given in Table 9-3, and

Let
return to step 2.
L . tp=0, tyoy=h t,_y=—h t,_,=—2h t,_,=—ih

A considerable saving in computational effort on large problems may be Then

achieved by carrying out the matrix multiplication implied in step 2 by suc- f

cessive additions as suggested by Gear(6). u, = aq Upsy = ao + ash 4y = aq — iash S
o
R
2z
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Thus, Eq. (9-101) becomes

14 14
ag+ah=Y agn; + Y, n{—iah
i=0 i=0

=a0( ﬂi>+a1h[i(_i)ﬂi:|
i=0 i=1

Comparison of the coefficients a, and a;h yields the relationship given by Eq.
(9-103) and

M~

14
Y (=i =1 (9-104)
i=1
For k = 2, one obtains the relationships given by Eqgs. (9-103), (9-104), and
14
Y ond{—i =1 (9-105)
i=1

The power to which (—i) is raised in the last expression of each set is seen to be
equal to the degree of the polynomial. Then for a kth-degree polynomial, the
last expression of the set is given by

S n(—if =1
i=1

In order for Eq. (9-102) to be exact when the solution to g(X,+1> Un+1s
t,+,) = 0 is given by a kth-degree polynomial, it is necessary that

p>k (9-106)

in Eq. (9-102). For p = k there are k + 1 parameters (Ho» M1» M2» -+-» M) and the
above analysis gives k + 1 equations of constraint which the parameters must

satisfy, namely,

k
Z'lizl

e (G=1,23,....,k (9-107)

and the elements of the matrix for determining the nyk) are shown in the matrix
equation below:

S e (LA b
0 -1 -2 =3 e =k (gl

o 1 4 9 o (=RIm | |1 ]
0 -1 -8 -—27 - (—kp? ”;(k) 1 (9-108)
0 (=1 (—2F (=3 - Rl ] 1
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For the case where k = 3, the following results are obtained b lvi
(9-108) for k = 3 ’ l Y solvine o

Mo=4 n=-6 nm=4 n3=-1 (9-109)
Let the vectors W, ., and W, , , be defined as follows:
wn+l :[u"+l, unaun»h“"un—ki'l]’r (9-110)
Woir = [ty gy thyy Uy gy ooy Upgi 117 (9-111)
Then W, and W, are related by the following transformation:
W,.., =EW, (9-112)
where
Mo M N2 M1 Mk
1 0 0 0 0
E=l0 1 0 0 0 (9-113)
0 0 O 1 0

That‘ Eq (9-112) is correct is readily demonstrated by carrying out the matrix
multiplication for k = 3

Mo My M2 M3 u,

EW, — 1 0 0 O U,_, u,
0 1 0 O Uy, U,
0O 0 1 o0 U,_ 5 U,_,
:[arﬁ-l’un’un-lﬁlln~2]T=Wn+l (9_114)
Let d be selected such that
glu,, t,) =0 (9-115)
U, =1, + f_,d (9-116)
Next observe that
W, =W, + dF (9-117)
where
F=[f_., 0 0 --- 01T (9-118)
Verification of Eq. (9-117) follows:
i, B4 u, +p_,d u,
~ Un-1 Uy—y Up-1
W, + bF = U2 +d] 0 |=|u,_, =lu,_, |=W
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Statement of the Vector W, in Terms of the Nordsieck Vector Y,

For the case where k = 3, the transformation Q required to transform W, into

Y

" Y, =QW, 9-119)
is found as follows. Let
ut) = ag + a, t +a, t* +ast> 9-120)
Then
u(t) = a, + 2a,t + 3ayt?
u'2(t) = 2a, + 6ast
u®(t) = 6a,
A t =0, t._, = —h, t,_y=—2h, t,_3= —3h, the following results are
tt:n_—_’n—l——’ n— s bn—

obtained in the same manner as demonstrated previously

u, = aq
u,=a,
ul? = 2a,
u® = 6a,

h? h? *
un*l;-u(—h):un—(hu:l)"‘—(z u£|2)>—<3! Uy
h? h? 3
u,_, = u, — 2(huy) + 4<——2 uf,”) - 8(—3! ul;

, = u(—3h) = ao — 3a, h + 9a, h* — 27a; b’

h2 h3 3
=u, — 3(hu,) + 9(7 u(,,2’> - 27 (; uf,

W, has the following representation:

and

U, -

Thus, the matrix equation Q 'Y, =

(1 0 o0 w | [% ]

Up—1

o

1 —1 1 =1 hu

Eu(z) = un-2
(V) 4 -8 5 Un

h? u

— 43 n—3
1 -3 9 =27 3!un L

(9-121)
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where the matrix Q required to transform W, into Y, is the inverse of the
matrix appearing in Eq. (9-121), that is,

[ 1 0 0 0
11 3 1
s 7 273
Q= . ——; X _% (9-122)
r_r v 1
| 6 2 2 6 |
Also,
¥.=QW, = QEW, , =QEQ"'Y,_, (9-123)
and thus
Y, =Dy,_, (9-129)
where D is the Pascal triangle
D =QEQ! (9-125)
and
1 00 0
=R
1 -3 9 -27

In order to reduce the number of matrices to be stored, advantage may be
taken of the fact that

QF =TC (9-126)

For example for the third-order Gear method p_,=6/11 and

6 6 1]
F =] — 1 —_—— -
Q [“, ,”,“] (9-127)
Also,
6 6 1]

L_TC_[H’ l’ﬁ’ﬁ] (9-128)

The relationships given by Egs. (9-126) through (9-128) permit Y, to be stated
in terms of Y,,, L, and the scalar d. For

Y, = QW, = Q[W, + dF] = QW, + dQF

or

Y, = Y,, +dL (9_129)
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The order in which the equations are applied is as follows:
DY, (9-130)
¥, +dL ©-131) '3

R

g, -

Y, =

where d is selected such that \3

g(it, + dp,, t) =0 :

Thus, the algorithms for algebraic equations are seen to be of the same form as
those for differential equations.

Calculational Procedure for the Simul.taneous Solution of
a Differential and an Algebraic Equation
for a Fixed Step Size and Order

1. Use the original differential equation
x =f(x, x', u, u', t)
and the algebraic equation
glx, u, t) =0
and the initial conditions to estimate the elements of Z, and Y, for order k
and step size h.

h? How|
(2) —_
Z0=[x0,hx:),'2—!‘x0 [IEREE k! X0
k T
h? h
2) — 4"
Y0=[u0,hu/0?5"'u§) [ k!uo

2. Use the Pascal triangle matrix D, Z,, and Y, to compute Z, and Y, . For

the nth trial
¢ 7, = DZ,

Y, = DY,
3. Use those elements of Z, and ¥, which are nfaeded in the determination of b
and d which satisfies the following functions simultaneously:
G(%y, Xiy, Uns L) = hf (%o + B_1 b, hx; + b, U, + B_.d, t,)— (hx, + b)
9ons s t) = gy + By b, Uy + By d, 1)
4. After the set (b, d) has been found that makes G = g = 0, compute Z, and Y,

at time ¢, as follows:
Z,=Z,+bL

and
Y, =Y, +dL

1}
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PROBLEMS

9-1 Develop the formulas given by Eq. (9-61) for the constraints on the {a;} and {B.}.

9-2 If T™' is given by the coefficient matrix of Eq. (9-89), show that T is given by the coefficient
matrix of Eq. (9-90).

9-3 Obtain the numerical values of the elements of B for a third-order Gear method; see the
expression for B which is given below Eq. (9-82).

9-4 Use the numerical values of the elements of T, T™!, and B from Probs. 9-2 and 9-3 to show
that

TBT '=D

9-5 Obtain the values given for 7, 1y, M,,and n; by Eq. (9-109).

9-6 Use the values of n’s found in Prob. 9-5 and the values of Q. Q7', and E given by Egs. (9-122)
through (9-125) to show that

QEQ™' =D
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CHAPTER

TEN

DEVELOPMENT OF NUMERICAL METHODS
APPLICABLE TO DIFFERENTIAL AND
PARTIAL DIFFERENTIAL EQUATIONS

In this chapter abbreviated developments are presented for some of the numeri-
cal techniques used to solve differential and partial differential equations en-
countered in Chaps. 11, 12, and 13. The method of orthogonal collocation is
developed in Sec. 10-1, finite difference methods in Sec. 10-2, and the method of
characteristics in Sec. 10.3.

10-1 THE ORTHOGONAL COLLOCATION METHOD

The application of the method of orthogonal collocation to the solution of
differential equations involves the use of the following concepts: (1) orthogonal
polynomials, (2) evaluation of definite integrals by use of gaussian quadratures,
and (3) the Method of Weighted Residuals and Orthogonal Collocation. The
use of orthogonal collocation in the solution of partial differential equations is
demonstrated in Chap. 12.

Since each of these three concepts is involved in the orthogonal collocation
method for the solution of differential equations, a brief treatment of each of
these topics is given before attempting to show how the combination of these
concepts is used to solve differential equations.
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Orthogonal Polynomials

Two functions g,(x) and g,(x) selected from a family of functions {g(x)} are
said to be orthogonal with respect to a positive weighting function W(x) over
the closed interval [a, b] if

b
j W(x)g(X)gm(x) dx =0 (n #m)
and (10-1)
b
j W(x)[g.(x)]* dx >0 (n=m)
If the above relationships hold for all n, then the functions {gu(x)} constitute
a set of orthogonal functions.

Examples of sets of orthogonal polynomials are the Legendre, Laguerre,
Chebyshev, and Hermite polynomials.

Legendre Polynomials

The Legendre polynomials L,(x) are orthogonal on the closed interval [—1, 1]
with respect to the weighting function W(x) = 1, that is,

J l L(X)L,(x)dx=0  (n#m)

-1

1 (10-2)
J [L(x)]?dx>0 (n=m)
-1
The first three polynomials are
Lo(x) =1
L(x)=x (10-3)

Ly(x) = 53x* = 1)

and the general recursion relation is

L) = (2"; 1>an_1(x> - (%) L) (=2 (10

Laguerre Polynomials

The Laguerre polynomials £ (x) are orthogonal on the closed interval [0, ]
with respect to the weighting function W(x) = e™*, that is,

J e P ()L () dx =0 (n#m)
° (10-5)
J e [ ()] dx>0 (n=m)

0
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The first three Laguerre polynomials are as follows:
Lolx) =1
Lix)=—-x+1 (10-6)
ZLy(x)=x*—4x +2

and the general recursion formula is given by

L= =x =L, )~ (1= 1%, ) (122 (10-)

Chebyshev Polynomials

The Chebyshev polynomials T;(x) are orthogonal on the closed interval [—1,1]
with respect to the weighting function ,

W(x) =
1 — x2
that is x

1
1
f\/? TOT () dx =0 (n+ m)

1 1 (10-8)
J—lﬁ [T()]*dx>0 (n=m)
The first three polynomials are
To(x) =1
Ty(x) = x (10-9)
. Ty(x) = 2x% — 1
L) =2xT,_\(x) = T, 5(x) (n>2) (10-10)

Hermite Polynomials

The Hermite polynomials are ortho i
) gonal on the closed interval [ — oo i
respect to the weighting function W(x) = e, that is : el i

J e “H()H,(x)dx =0  (n+m)

—

- (10-11)
e H(x)]*dx>0 (n=m)
The first three functions are
Ho(x) = 1
H,(x) = 2x

Hy(x)=4x* -2
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and the general recursion formula is

H,(x)=2xH,_,(x) = 2(n — DH,_,(x) (n=2) (10-12)

Jacobi Polynomials

The Jacobi orthogonal polynomials P{ #(x) employed herein are defined on the
closed interval [0, 1] with respect to the- weighting function W(x) = xP(1 — x)*
where « > —1 and f > —1, that is,

Jl(l — xPxP P& P(x)P& P(x) dx = 0 (n+m)

o

and | (10-13)
J‘l(l — x)*xP[P*(x)]? dx > 0 (n=m)
o

For each choice of the pair of parameters (a, f) of the weighting function, a
corresponding set of orthogonal polynomials denoted by P*#X(x) is obtained.
Expressions for the polynomials are readily obtained by use of Rodriques’ for-
mula (Ref. 8)

(= 1'T(B + 1) d"[(1 — )" *x"* ]
n+p+1) dx"
where I'(n) is the gamma function and for integers I'(n + 1) = n I'(n) = n! For

example, the first four polynomials corresponding to a = f = 0 (the weighting
function W(x) = (1 — x)°x° = 1) are found by use of Eq. (10-14) as follows:

(1 _ x)axﬂPLa.ﬂi(x) — (10-14)

PO-Ox) = (___1r_)(31§_(1_) ~1
ppogg - SOOI,
and
PO-O)x) = (:‘r_);_“_) ;;25 [(1 — x)*x*] = 1 — 6x + 6x
PO-Ox) = (—lr)(:?l) (1 d—x;‘)a"ﬂ — 1 — 12x + 30x% — 203

The set of polynomials defined by Eq. (10-13) are commonly referred to in
the literature as “shifted ” Jacobi polynomials and the polynomials defined with
respect to the weighting function (1 — x)*x? on the closed interval [—1, 1] are
called the Jacobi polynomials. In this treatment, the “shifted” Jacobi poly-
nomials are referred to herein as simply Jacobi polynomials.
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As pointed out by Stroud and Secrest(16), the sequence of polynomials
{L.,,(x)},-{..‘,f,,(x)}, {T.(x)}, {P.(x)} which satisfy the respective orthogonal relation-
ships given by Egs. (10-2), (10-5), (10-8), (10-11), and (10-13) are unique. Each
nth-degree Polynomial has real coefficients and n distinct real roots inte;'ior to
the respective interval of integration (Ref. 16). These and other properties as
well as the zeros of these polynomials are given by Stroud and Secrest(16).

One of the most important characteristics of orthogonal polynomials is the
fact that any arbitrary nth-degree polynomial with real coefficients

Jix) = _=Zoa,- x! (10-15)

may be represented by a linear combination of an o
) y one of the above f:
orthogonal polynomials as follows: ve families of

Sx) = ._Zob.- F{x) (10-16)
where F{(x) is the ith-degree polynomials of any one of the above families.

Example 10-1 Expand the polynomial
S3(x) = 20x3 + 32x2 — 18x + 1

in terms of the Jacobi polynomials PY 9(x), P 9(x), PL: 9(x), PO x),

S(?LUTION The first three Jacobi functions are listed below Eq. (10-14). Sub-
stitution of the Jacobi polynomials into Eq. (10-16) gives

S3(x) = bo(1) + by(2x — 1) + b,y(1 — 6x + 6x2?)
+ bi(1 — 12x + 30x2 — 20x3)
=(bo — by + by + b3) + x(2b; — 6b, — 12bs)
+ x%(6b, + 30b,) + x3(—20b,)
Comparison of coefficients of these two polynomials gives:
Coefficients of x3:

—20b; =20 by=—1
Coefficients of x2:

6b, +30b, =32 b, =%

Coefficients of x:

2by —6b, — 12b, = —18 b, = 16
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and
bo—b, +b,+b3=1 by =—
Thus the series expansion in terms of the Jacobi polynomials is

2 31
f4(x) = ?3 PP 9(x) + 16PL O(x) + 3 P§-9(x) — P§%Ax)

Gaussian Quadrature

The numerical approximation of a definite integral may be represented by the
following expression which is commonly known as a quadrature

n

b
j Sf(x) dx = Z w; f(x) (10-17)
a i=0
where the w;s are the n + 1 positive weights given to the n + 1 functional
values f(x;). If x; and w; are not fixed, it follows that there are 2n + 2 par-
ameters which could be used to define a polynomial of degree 2n + 1. (Note:
the number of parameters required to define a polynomial is equal to one plus
the degree of the polynomial, for example, f(x) = mx + b is of degree one and is
defined by fixing m and b.) It is shown below that if f(x) is a polynomial of
degree 2n + 1, then the relation given by Eq. (10-17) becomes exact when the
n + 1 points {x;} at which the function f(x) and the weights are to be evaluated
(hereafter called the collocation points) are taken to be the roots of an associ-
ated orthogonal polynomial of degree n + 1. It should also be noted that all the
roots of any polynomial of a set of orthogonal polynomials are single and real.
A more general form of Eq. (10-17) includes the weighting function W(x)

b n
J W(x)f(x) dx = 3, wi f(x) (10-18)
a i=0

For each choice of the weighting function W(x), a different set of weights {w}
in the quadrature is obtained. When the weighting function W(x) takes on the
values appearing in the above defining equations, the corresponding expressions
obtained for computing the weights {w;} of the quadrature are called the
Gauss-Legendre, Gauss-Laguerre, Gauss—Chebyshev, Gauss-Hermite, and
Gauss-Jacobi quadratures.

Since all of these quadratures may be developed in the same general
manner, only the development for the Gauss-Jacobi quadrature is given. The
development presented follows closely the one presented by Carnahan et al(2)
for the Gauss-Legendre quadrature.

In the development of this procedure, one may begin with the lagrangian
form of the interpolating polynomial for the function f(x), namely,

f(x) = ¢u(x) + R(x) (10-19) |
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where ¢,(x) is an interpolating pol i i
n ! ynomial of degree n and # in-
der. These functions are defined as follows: ¢ A(x) s the remain

(9= Y LS (x,
®.(x) ‘_=Zo {x)f(x;) (10-20)

n

li{x) = n (x = xj)

e (10-21)
_ n f(n+ 1)(5
R(x) = [Do(x - x,.)] (n_+T') (a<&<b) (10-22)

WheIC {x} (Ol {x}) 1S an ar l)"]allly sele ted set 0‘ p N
j i l C baSC olnts Whlch are alSO

Pa+1(x) = _Ijo(x - X)) (10-23)
and
A3
qu(x) = i (10-24)

Then the remainder may be restated as follows:

Ro(X) = P+ 1(X)q,(x) (10-25)

Developments of the lagrangi i i i
! gian polynomials p,, ,(x) are given i
on numerical methods. (See, for example, Refs. 2t l4 )10.) y " standard texts

Gauss—-Jacobi Quadrature

The development of the Gauss—Jacobi quadrature is initiated by multiplying

eaCll "le"lbel O‘ q 10- 9 by th wel htln fUIlCtl()Il [i X alld inte rati ove
g g ( ) g ng r

b b b
£ W(x)f(x) dx =J W(x)$,(x) dx + f W(x)R,(x) dx (10-26)

The objective of the followin i
' g development is to find the formula f ;
set of {x;} which gives the following equality: mota for i and the

b n
J W) f(x)dx =} w; f(x) (10-27)
a i=0
when f(x) is a polynomial of degree 2n + 1 and
W(x) = (1 — x)*x? (x> —-1,8> —1) (10-28)
In the following development, the values of a and b are taken to be a=0

)

and b = 1. Then after having observed that the x;’s, and therefore the f(x,)’s, are
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fixed values, Eq. (10-26) may be restated as follows:
n 1
JIW(X)f (x)dx = ), [f (x3) JIW(x)ls(X) dXJ + f W(x)Pp+ 1(x)qa(x) dx
0 i=0 0 0

(10-29)
Thus

n 1
JIW(X)f () dx = 3 w; f(x;) + J W(x)Pn+1(X)q,(x) dx (10-30)
0 i=0 0
where w; is defined by
w; = Jl W(x)l(x) dx (10-31)
0

The object of the following development is to show that if f(x) is a poly-
nomial of degree 2n + 1, then the remainder term

jl W(X)p, + 1(x)g,(x) dx =0 (10-32)
0

when the set of n + 1 base points, the {x;}, are the roots of the Jacobi poly-
nomial of degree n + 1. .

Since f(x) has been assumed to be a polynomial of degree 2n + 1, it follows
that g,(x) must be a polynomial of degree n, since p,,(x) is of Fiegree n+ 1 (see
Eq. (10-23)) and I(x) is of degree n (see Eq.(10-21). Expansion of the poly-
nomial g,(x) in terms of a set of Jacobi polynomials (see Eq. (10-16) and Exam-
ple 10-1) yields

u(x) = bo Po(x) + by Py(x) + -+ + by Py(x) (10-33)

where the superscripts (2, ) have been omitted in the interest of simplicity.
Then the remainder term becomes

1
j W(xX)p, + 1(x)q,(x) dx
o

= Jl(l — X)*XP[bo Pus 1(X)Po(X) + by Pys 1(X)P1(x) + =+ + by Pps s (X)P(x)] dx
¢ (10-34)

Examination of Eq. (10-34) shows that if p,. (x) is equal to‘a constant.tlmes
P, . .(x) (the Jacobi polynomial of degree n + 1), then thg right-hand side (?f
Eq. (10-34) is identically equal to zero by the orthogonality .prOperty.'Non it
will be shown that p,, ,(x) can be made equal to a constant t1me§ the jacobian
polynomial P, ,(x). Let the Jacobi polynomial P, ,(x) be stated in the product
form:

P,ii(x)=a,4, l:[ (x —x) (10-35)
i=0
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where a,,, is the coefficient of x"*! and the {x;} are the roots of P, (x).
Comparison of Egs. (10-23) and (10-35) shows that if the base points appearing

in the expression for p, ., (x) are taken to be the roots of the Jacobi polynomial
P, 1(x), then

1
Pas1(x) = e

n+1

P, (x) (10-36)

and consequently when p, . (x) is replaced in Eq. (10-34) by its equivalent as
given by Eq. (10-36), the remainder will be equal to zero.

Thus, when the {x;} are the roots of P,, ,(x) and f(x) is of degree 2n + 1 or
less, then Eq. (10-30) reduces to exact relationship

1 n
J W) f(x) dx = 3 w; f(x;) (10-37)
0 i=0

where the w/s are computed by use of Eq. (10-31). It should be noted that the
converse of this statement is also true, that is, if Eq. (10-37) holds for all poly-
nomials f(x) of degree 2n + 1, then the set {x;} of n + 1 collocation points are
the zeros of the orthogonal polynomial P,, . Furthermore, the weights are all
positive. '

If the degree of f(x) is greater than 2n+ 1, and only n + 1 collocation
points are used, then the Gauss—Jacobi quadrature given by Eq. (10-37) is no
longer exact. However, the quadrature becomes exact for all continuous func-

tions in the closed interval [0, 1] as the number of collocation points is in-
creased indefinitely, that is,

lim 3w, f(x) = f WS d
0

n—ox i=1

Example 10-2 Evaluate the following function by use of a two-point
Gauss—Jacobi quadrature:

1
f (1 — x)x? dx
0

SoLutioN Let f(x) = x>. Since W(x) = (1 — x)*x*, take a = 1, f = 0 to give
W(x)=1—x. Thus, W(x)f(x)=(1 —x)x3. The Rodriques’ formula
(Eq. (10-14)) for o = 1, = 0, and n = 2 gives

(=1°T() &*[(1 — x)*x*]

— (1, 0) =
(1 =x)PE o) = o g

which yields the result

P3Ox) =1 — 8x + 10x2
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and the roots are

To compute the weights, use is made of Eq. (10-31)

L1 - - x, 1 1 x,
Wo = JIW(X)lo(X) dx = j ( X)(x X ) dx = (g - 7)
0

0 (xo — x1) (xo — X1)

wo = 0.181958 61

! P (1 = x)(x — Xo)
w, = L W(x)l(x) dx =L W dx

w, = 0.31804122
f(xo) = x5 = 0.2682707
f(x,) = x3 =0.00372755

Then

Jl(l — x)xd dx = )ij w, f(x;) = (0.181958 6)0.268 270 7)
X )

i=0

+ (0.318 041 22)(0.003 727 55) = 0.05

This two-point Gauss-Jacobi quadrature is exact because f(x) is a poly-
nomial of 2n + 1 = 3 and n + 1 = 2 points are used in the quadrature. Note

that
1 x4 x5
L(l - x)x3 dx = <Z - ?>

Instead of finding the roots of the polynomials and the va!ues of the
weights {w;} as shown in this example, the values may be taken directly from
tables (Ref. 11).

1

= 0.05

1
o 20

Method of Weighted Residuals and Orthogonal Collocation

There follows first a qualitative presentation of the general concepts of the
Method of Weighted Residuals and Orthogonal Collocation. These concepts are
then quantified by a more precise treatment. . .

I?l the Method of Weighted Residuals, the function f(x). in Eq. (10-37),
becomes the residual R(a, x). The residual is that which retr'xams afte.r an as-
sumed trial solution has been substituted into the differential equation. The

the parameters or coefficients a be picked such that the remainder is zero at

parameters a appear in the trial solution. An exact solution would require that
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every x over the interval of integration and such that the boundary conditions
are satisfied. In an effort either to satisfy these conditions or to come as close as
possible to satisfying them, the following approach is taken. First, the trial
solution is selected at the outset such that it satisfies the boundary conditions.
Secondly the parameters a are picked such that the integral of the weighted
residual over the interval of integration is equal to zero, that is,

Jl W(x)R(a, x) dx = Z w;R(a, x;) =0 (10-38)
0 i=0

and this condition is satisfied by picking the parameters a such that each
R(a, x;) = 0, that is,

R(a, xq) =0
R(a, =0
‘(3 ) .. (10-39)
R(a, x,) =0

Thus, by choosing the n + 1 parameters a such that both Eqgs. (10-38) and
(10-39) are satisfied, one achieves the following results: (1) the residual is equal
to zero at least n + 1 times in the interval of integration along the x axis, and
(2) the integral of the weighted residuals W(x)R(a, x) is approximately equal to
zero over the interval of integration. Although both of these conditions taken
together do not necessarily achieve the condition of the exact solution (that the
residual is zero at each x over the interval of integration), they do “come close ”
to doing so. The purpose of the weight function W(x) is to suppress the values
taken on by the absolute value of the function R(a, x) for values of x between
its zeros. Finlayson(6) states that the weighting function W(x) =1 — x gives
faster convergence for lower-order approximations (smaller values of n) and
W(x) = 1 gives faster convergence for many chemical engineering problems.

Use of the collocation points as the roots of orthogonal polynomials was
first advanced by Lanczos(12) and was developed further by Clenshaw and
Norton(3), Norton(13), and Wright(21) for the solution of ordinary differential
equations. In these applications, which consisted primarily of initial-value prob-
lems, Chebyshev polynomials were employed. Horvay and Spiess(9) used poly-
nomials which were orthogonal on the boundary. Villadsen and Stewart(18)
developed an orthogonal collocation method for boundary-value problems.

Application of the Method of Orthogonal Collocation
to Linear Differential Equations

The procedure represented by Eq. (10-39) is called optimal collocation by Villad-
sen and Michelsen(19) and orthogonal collocation by Finlayson(6). When the
relationship given by Eq.(10-38) is exact and the {a;} are selected by Eq.
(10-39), it follows that the integral of Eq. (10-38) is identicall ] 7€[0. Q
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the {a;} is picked such that the residual is orthogonal to the weighting
function—thus the name “orthogonal collocation.”

To illustrate the application of orthogonal collocation, consider the follow-
ing linear differential equation with variable coefficients:

d’y  dy
Yl + du

—py=0 (10-40)

with the boundary conditions that y =1 at u =1 and all derivatives are finite
and p is constant. This example, which was used by Villadsen and
Michelsen(19), represents a model for diffusion accompanied by a first-order
irreversible, isothermal reaction in the radial direction of a cylindrical catalyst
pellet. The above equation is obtained from the following equation

2y 1dy

-dx—2 x dx 4py =0 (1041

with the boundary conditions: y =1 at x = 1, dy/dx = 0 at x =0 by making
the change of variable u = x. '

The first step in the solution of this equation is to select a power serics
which satisfies the boundary condition. The following nth-degree polynomial is
seen to satisfy the boundary condition

yw)=1+1—-u Y ajut (10-42)
j=1
The rest of the procedure is best illustrated by use of the following example.

Example 10-3 Find the solution of Eq. (10-40) by use of two collocation
points for the case where p = 9/4. Take the trial solution to be the ex-

pression given by Eq. (10-42) for n = 2, namely,
yu) =1+ (1 —u)(a, + a, u) (10-43)

SoLuTioN The expression for the residual is found by first differentiating
y(u) with respect to u

d
d_i = —a; + ay(1 — 2u)
and thus
dz
e

Substitution of these expressions into Eq. (10-40) followed by the collection
of terms yields

R(a, u) = 4[a,(u — 13) + a,(9u* — 25u + 4) — 9]
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Thus, for the weight function W(u)=1—u
=1- te: a = = :
(10-13)), one obtains (note: «=1, f=0 in Eq.

J; (1 —uwR(a, u) du = iwi R(a, u,)
i=0

w(l:egf ¥; (=0, 1) are the roots of the Jacobi orthogonal polynomial
,PZ' (u), .the polynomial produced in Example 10-2. Also observe that the
integral in this case is exactly equal to the sum from i =0 to i=1 of
w;R(a, u;). Now let the {u;} be selected such that R(a, u) is orthogonal to
(I —u) or such that each R(a,u;) is equal to zero. Since uy, = 0.64494897
and u, = 0.155051 03, the values a,, and a, are to be found such that

R(@, ug) = 0 = (—7.19546)a, + (—8.380092)a, — 9
R(@, u;) = 0 = (—11.604 541)a, + (0.340091 6)a, — 9

Solution of these simultaneous equations for a; and a, yields

a; = —0.787223 56

a, = —0.398034 34
Thus

yu) =1+ (1 — u)(—0.787223 56 — 0.398 034 34u)

The exact solution of Example 10-3 i i
Micheleenio) i p as given by Villadsen and

1 1
S 1 it 2, 4 1
10(2 pu)_ +pu+4(17u) +36(pu)3+%(pu)4+

I2p)

E: (1 2>i
© (77
[O(Z)=

& e (modified Bessel function of order zero)

Wu) =

11 1 (10-44)
L+p+op?+—pd+—p* 4.
aP T3l tse Y

To make one comparison of the results gi
. ts given by the approximate soluti
for y(u) found in Example 10-3 with the exact solution given by Eq. (10-44) l:)erz

p=9/4 =225 and u = 0.4. The solution f i m
. -3 ound in E -
two-point orthogonal collocation gives xample 10-3 by use of a

»04) = 0.432
and Eq. (10-44) gives

$0.4) = 0.433
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Application of the Method of Orthogonal Collocation
to Nonlinear Differential Equations

First the method of orthogonal collocation will be applied to a nonlinear differ-
entiation equation by use of the same procedure demonstrated above for linear
differential equations. Then in order to avoid the difficulties encountered, a
procedure attributed by Finlayson(6) to Vichnevetsky(17) is used.

For the case of a nonlinear differential equation, difficulties may be en-
countered in picking an appropriate set {a;} which satisfy Eq. (10-40) and which
give realistic values for y over the interval [0, 1]. For example, consider the case
where y in the last term of Eq. (10-41) is replaced by y? to give

d
Uu—>+-—=—py*=0 (10-45)
u u

where y > 0 for all u. Furthermore, suppose that it is desired to approximate
the solution of Eq. (10-45) by use of one quadrature point and that for a trial
function the linear function given by setting n =1 in Eq. (10-42) is to be used,
namely,

yw) =1+ (1 —ua, (10-46)

with the weighting function W(u) = 1 — u (where « = 1, § = 0). The correspond-
ing Jacobi polynomial is P{!-%(u) = 3u — 1. The root of P{"(u) is uo = 1/3.
Thus, a, is to be selected such that

1
J (1 — wRy(ay, u) du = wo Rola,, ug) =0 (10-47)
0

or such that Ry(a,, uo) = 0, that is,
Rolay, ug) = —a, —p[1 + (1 — “o)ax]z =0

For the constant p = 9/4, the two values of a, which satisfy this equation are

al{_g:ggn} (10-48)
Since y(u) >0 for all u, the root (—3.32) must be discarded since it gives
negative values of y over a portion of the interval.

Obviously, as the order of the trial solution is increased, it becomes more
difficult to pick a suitable set of a;’s which give realistic values for y(u) through-
out the interval of integration.

If it is known that over the interval [0, 1] of interest for the independent
variable u, the dependent variable y is always positive, then it becomes advanta-
geous to restate the residual in terms of the {y(u,)} where the {u} are the roots
of the corresponding Jacobi polynomial. The following procedure has been
recommended by Finlayson(6) and by Villadsen and Michelsen(19).

Suppose that the trial solution of Eq.(10-45) is assumed to be the nth-
degree polynomial given by Eq. (10-42). Let

Y (u) = y(u) — 1

(1049
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Then for each root u; (i=1,2, ..., n) of the associated Jaco

. bi i
corresponding value of Y(u,) is given by i polynomial, the

V)= Yo —u) (=120 (10-50)
and then
| _dY@| & .
du |, du |, T Z AU~ Dt =g G=1,2..,n (10-51)
and
yw)|  d*Y() n
Ta |, T d |, T A0 0= 2 = G = )

G=12...,n (10-52)
The set of equations represented by Eq. (10-50) may be stated in matrix form

Y=Qa (10-53)
where
Y=[Yu) Yu) - Yu)"
a=[a, a, -+ q,]"
{Qu Q2 - Qin
=1: Qi'=“{—l‘”{
in QnZ e an ’
Similarly, for the sets of equations given by Egs. (10-51) and (10-52)
dy
= Ca (10-54)
d%y
du? s Da (10-55)

where C and D have the same general form shown for Q, and

Cij=0~ Ol —jul~!

D=0 — 10— 2ul™—jij — lui2 (10-56)
After Eq. (10-53) has been solved for a,
a=Qy (10-57)

this result may be used to eliminate a from Egs. (10-54) and (10-55)

dy _ CQ 'Y = AY
du = (10-58)
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and
dy -1 10-59
— =DQ"'Y =BY ( )
du?
where the elements of A and B are numbered in the same manner shown for Q.
In order to evaluate the residual at each root u;, expressions are needed for

dz
dy(u) and y(zu)
du du

These expressions may be obtained by application of the multiplication rule to
row i of Egs. (10-58) and (10-59) to obtain

dﬁ(") = Ay Y(u) + A Y(ug) + - + Ay, Y(u)
u |y
YA, ) (10-60)
j=1
Similarly
2 n
A _ S B vy (10-61)
du ui  j=1

Substitution of these expressions into Eq. (10-45) yields the following expression
for the residual

Ryu;, Y) =y .ilBij Y(u) + ,é"lAij Y(u;) — py*(u) (i=12..,n (10-62)

which is readily rearranged to give

R{u;, y) = .gl(“iBu‘ + Ay — > (i By + Ay) — py*(u)

i=1

(i=12..,n (10-63)

The sets of constants {4,;} and {B;;} may be calculated by use of the deﬁnition§
given by Egs. (10-58) and (10-59), respectively. The unknown.s.m Eq. (10-63) are:
Wuy), yuy), ..., Y(u,). The desired set of y’s is that set of positive numbers which
makes

Ry(u,,y)=0
Ry(u;,y) =0 (10-64)
Rn(urn Y) = 0

where
y = Dylu)yug) - yu)]"
The desired set y may be found by use of the Newton—Raphson method.
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To demonstrate the application of the procedure described above, it is used
to solve a linear differential equation instead of a nonlinear equation. A linear
differential equation is used in order to reduce the effort required to solve the
set of equations represented by Eq.(10-63). For example, if the procedure is

used to solve Eq.(10-40), the final result is given by Eq.(10-63) with yAuy)
replaced by y(u,).

Example 10-4 Use the above procedure to solve the linear differential equa-
tion given by Eq. (10-40). Take n = 2 and p = 9/4.

(a) Find y(u,) and y(u,).

(b) Use the values of y(u,) and y(u,) found in (@) to compute a, and a,.

SoLuTiON (a) From the definition of Q (see Eq. (10-50)), it follows that
Q- l:(l —uy) (uy — “f)]
(1 —uy) (uy —uj)

Since u; = 0.64494897 and u, = 0.155051 03 (see Example 10-2), it follows
that

Q- 0.3550511 0.2289898
~10.8449490 0.1310102

and its inverse is readily found to be

Q- —0.8914115 1.558078 3
| 57491497 —2.4158169

Since
- (0= 2uy) o -2
C‘[—l (1—2uz)] D_[o —2]

A=CQ-i_| 07752549 —08577381] _[Ay Ay,
48577383 —3224745 Ay Ay,

Then

and

B_pQ-1 | 11498298 483163387 _[B,, B,
~11.498298 438316338 | | B,, B,,

For n = 2, Eq. (10-63) becomes
Ry(uy, y)=(u; By, + Ay )Nuy) +_ (uy Byy + A1 )0(u,)

~[(u; By + Ayy) + (uy By, + Ap,)] — %)’(“1) =0
Ry(uy, y) = (uy Byy + Ay )Muy) + (uy By, + A,)0(uy)

— [y Byy + Apy) + (U2 Byy + A35)] — $9(uy) =0
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After the values given above for the A’s, B’s, and u’s have been substituted
into the expressions for R,(u,, y) and R,(u,,y), these linear equations may
be solved for y(u;) and y(u,) to give

yu,) = 0.629 3495
Wu,) = 0.282 689 5

Thus, in summary when the differential equations are nonlinear, the set of
positive y’s which make the R’s equal to zero may be found by use of the
Newton-Raphson method. The usefulness of this formulation obviously de-
pends upon one’s knowing in advance from physical considerations that the
y’s are positive throughout the interval of integration.

(b) The coefficients a, and a, may be found by use of the above results
and Eq. (10-57) as follows:
—0.8914115 1.558078 3 || —0.370650 5
57491497 —2.4158169 || —0.7173105

where Y(u;) = y(u;) — 1 and Y(up) = ylup) — 1. After the implied matrix
multiplication has been performed one obtains

a, | _[—0.7872238

a,| | —0.3980344
As should be expected, these values of a, and a, are in agreement with those
found in Example 10-3.

a=A"Y=[

Other Applications of Orthogonal Collocation

The application of the method of orthogonal collocation to other types of
problems is discussed in Chap. 12 as it is applied to some specific problems.

Some areas of interest and possible development which do not appear to
have been discussed to any appreciable extent by proponents of the method are
the choice of weighting functions and the choice of orthogonal polynomials
whose roots are used as the collocation points. Jacobi polynomials appear to
have been used almost exclusively.

10-2 SOLUTION OF PARTIAL DIFFERENTIAL
EQUATIONS BY FINITE DIFFERENCE METHODS

The application of the methods of finite differences is initiated from first prin-
ciples by the solution of a simple parabolic differential equation by use of an
explicit method. Next implicit methods are introduced with particular emphasis
being given to the implicit method of Crank-Nicolson(5). The Crank-Nicolson

(
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method is not only more accurate than the explicit methods, but is stable for all

ratios of At/Ax?, whereas At/Ax? must be less
’ than the u
below for the explicit method to be stable. pper bound deduced

Finite Difference Approximations of Partial Derivatives

tIi,elt :;(x: t) be a contiquous function of time and distance with continuous par-
al derivatives over time and distance. The x-t space is divided into equally

spaced grid points as shown in Fi iti
g. 10-1. The quantitie
such that they are always positive, that is, ! 10 v and At are defined

Ax =xj —x;>0
and

At=t,,y~1,>0

The grid notation (j, n) re i
. , presents the point (x;, t,), and at this point th
va.lue of thg function u(x, 1) is denoted by u(j Ax, nj At). The value ofpu at the
grid point (j Ax, n At) is denoted by u; ,. )

The first few terms of a Taylor seri i
S .
the point (x, ylor series expansion of the function u(x, t) about

j» t,) and in the forward direction to the point (x;,,, t,) is given by

: ~ (Ax)z (Ax)3 Ax)*
Ujrtn = Uj p + Axu, + 31 Y T3y e + f%') Upenw  (10-65)

where the derivatives

ou 02u 6414

u u = —
xx 2ty Mxxxx T s ooy T
Ox’ 0x*” 77 ox4

u

X

are to \% 1 imi Vi () €

l[ be .C aluated .at the pomt (Xj, t"). Slmllarly, the ﬁrSt fi € terms f th

Iay or series €xpansion of the function u(x, t) about [he point (X~ 1 ) to the
Jj2> 'n

Ut+Ln-1) [(i+1n) G+1n+1)

(j. n) Gon+1)

(on—1)

—— Ax —»

(-Ln-1 (—-1,n) (G-Ln+1)

Figure 10-1 Notation used to identify grid points
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point (x;, t,. ) is given by
(an? Ay’ (At

uj.n+1§uj.n+Atu:+ 2| uu+ 3' um 4' unn (10'66)
where
ou 0%u 0*u
u,,u",...,u",,=‘a—t,¥,...,az

When u(x, t) is expanded in the backward direction with respect to x from
(x;j, t,) to (x;_y, t,) one obtains

@ax? (A% (S

2 Uxx 31 Usxx 4! £33 (10'67)

= u;

Jn

— Axu, +

j—1,n

where
Ax = x; — xj_,

The forward difference formula with respect to x at a fixed ¢ is obtained by
solving Eq. (10-65) for u, and rearranging to obtain

ou

0x
The backward difference formula with respect to x at a fixed ¢ is obtained by
solving Eq. (10-67) for u, and rearranging to obtain

Ou
ox
In the definition of the differences, the point of reference is taken to be the point
(x;j, t,) in Fig. 10-1. . '
A formula for the expression of u, in terms of the central difference is
obtained by subtracting each member of Eq.(10-67) from the corresponding
members of Eq. (10-65) to give

= et Dhe i 4 O(AX) (10-68)
X

Xj, tn

= ZinZHizln 4 O(Ax) (10-69)
Ax

Xji tn

ou Uiv1,n —Ui—1,n 2
= —dtts  TitLin o Of(A 10-70)
= s Uiokn . O[(AY)] (

An expression for u,, may be obtained by addition of the corresponding
members of Egs. (10-65) and (10-67) followed by rearrangement to obtain

f}jg _uf+1v"_2u.i.n+u.i*l,n
ox? (Ax)?
Equation (10-71) is classified as a second central difference formula because the

points of evaluation with respect to x are symmetrically located about the point
(j, n), and it is commonly denoted by 8%u;, ,, that is,

+ 0[(ax?)] (10-71)

;. tn

52y, o i = 2t Yo
Uj n (Ax)Z

+ 0[(A%)*] (10-72)
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T!le first central difference éu; , corresponds to the first partial derivative of u
with respect to x and it is defined by

ou; , = Uitasz)n = Uj-(172).n

Ax + O[(Ax)*] (10-73)

Explicit Finite Difference Methods

The explicit method is applied to the simple parabolic differential equation

Ou %u
%%z O<x<l >0 (10-74)

When thg left-hand side of this equation is approximated by use of Eq. (10-66)
and the right-hand side by Eq. (10-71), one obtains

Uint1s “Ujn Uj—tm = 2Uj + Uiy,

At =7 (Ax)? (10-75)

with a truncation error of order O[At + (Ax)*]. Equation (10-75) may be re-
arranged to the form

Ujper=AlUj_y ,+ (1 —2/1)14j',,+/1uj+1‘,l (10-76)
where

gt

~(Aaxp
The application of the explicit finite-difference method is illustrated by use of
the following numerical example.

Exa.mple 10-5 Solve the parabolic differential equation given by Eq. (10-74)
subject to the initial condition
u(x,0 =0 O<x<1)
and the boundary conditions
u(0, t) = 300
u(1, t) = 300

Take o = 1, At =001, Ax = (0.1)\/3, and use five time steps and five space
steps.

SOLUTION

___ 101
[(0.1),/3]?

1
3
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For A = 1/3, Eq. (10-76) becomes

_uj._l‘"+ uj_u+ uj+l,n
Ujn+1 = 3

As shown in the table below, ug o =300, u; =0, u, =0, U3, o0 =0,
ug o =0, and us o = 300. The values of u at the end of the first time step
are computed as follows:

u0_0+u1,0+u2,0_300+0+0

Uy, = 3 = 100
u1’0+u2‘0+u3,0_0+0+0=0
H2.1= 3 -3
u2'0+u3'0+u4'0_0+0+0_0
Uy | = 3 = 3 =
u3,0+u4’0+u5,0_0+0+300_100
Ug, 1 = 3 = 3 =
For the second time step
uo,,+ul,1+u2,l_300+100+0=133‘33
.2 = 3 - 3
ul'1+uz'1+u3_l_100+0+0=333
Uy o= 3 = 3 .
uz'l+u3,l+u4,1_0+0+100___333
Uy , = 3 = 3 .
u3'1+u4,1+u5,1_0+100+300=133.33
u4,2= 3 - 3

Continuation of this calculational procedure gives the results shown in the
table below.

Time Value of variable u; ,

subscript

n Uo,n Ui, n Uz,n Us.n Usa,n Us,n
0 300 0 0 0 0 300
1 300 100 0 0 100 300
2 300 133.33 3333 3333 133.33 300
3 300 155.55 66.66 66.66  155.55 300
4 300 174.07 96.29 9629  174.07 300
5 300 190.12 12222 12222 190.12 300

Although the explicit method is seen to be easy to apply, it becomes un-
stable unless the values of At and Ax are selected such that 0 <1 < 1/2. To
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demonstrate instability of the method for values of 4> 1/2, Example 10-6 is
presented.

Example 10-6 This example is the same as Example 10-5 except At and Ax
are selected such that 1 = 1.

SorutioN For 1 = 1, Eq. (10-16) becomes
Ujntt =Uj_y n—Ujn+ Ujsq .,

When the calculations are carried out in the same manner demonstrated for
Example 10-5, the results shown in the following table are obtained.

Time Value of variable u; ,

subscript

n Uo, n Uy n Uz n Uz, n Us n Us,
0 300 0 0 0 0 300
1 300 300 0 0 300 300
2 300 0 300 300 0 300
3 300 600 0 0 600 300
4 300 —300 600 600 —300 300
S 300 1200 —300 —300 1200 300

An examination of these results shows that each variable u; , oscillates
with an amplitude that increases with time, which is characteristic of un-
stable behavior.

Stability

There follows an analysis which predicts the unstable behavior exhibited by
Example 10-6. This analysis makes use of the amplitude factor of the Fourier
series solution of the difference equation. This approach is attributed by
Richtmyer(14) to J. von Neumann. In this method one assumes a trial solution
to the difference equation of the form

Uj = Apremio (10-77)

where i =/ —1, and A4, B, m are constants with m being an integer. Substitu-
tion of the trial solution into the difference equation (Eq. (10-75)) gives the
following expression upon rearrangement:

- —20 At - (emAax 4 g imAx
nimj Ax(n — n imj Ax _
APreimisx(g — 1) [ & ]Aﬂ e [1 > ]

or

B—1=(=22(1 - cos m Ax)
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Thus, the trial solution satisfies Eq. (10-75), provided that
B = B(m)=1—2M1 — cos m Ax) (10-78)

Since the sum of any number of solutions is also a solution, the general solution
is the sum of all possible solutions

U= 3 Ay e SR (10-79)

over all values of m. The constants A,, are selected such that the boundary and
initial conditions are satisfied. The development of the formula for the cglcula—
tion of the coefficients A4, is omitted, however, bec;ause the formula is not
needed in the stability analysis. The stability analysis makes use of only the
expression for the amplitude factor f(m).

In order to achieve stability, it is evident from Egs. (10-78) and (10-79) that
the stability condition is

|Bm)| <1 (10-80)

or the most negative value of f(m) must not be less than —1. Thus

B(m) =1 — 2A(1 —cos m Ax) > —1

The most negative value of f(m) is seen to occur at cos m Ax = —1. Then
1-41> -1 or —41> =2
and
2i<1

or

20 At

— <

(Ax)?

Thus, in order for the explicit method to remain stable, it is necessary that
At/(Ax)? be selected such that

ar 1 (10-81)

or

Implicit Methods

The stability condition given by Eq. (10-81) has the unfortunate consequence
that if a relatively small Ax is chosen in the interest of accuracy, the allowed At
may be so small that the computer time required becomes unacceptable.
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This difficulty is not encountered when implicit methods are used. If the
right-hand side of Eq. (10-74) is approximated at the time ¢,,,, instead of t,,
then the following implicit form is obtained instead of Eq. (10-75):

Ujnv1 — Ujp uj—l,n+1_2uj.n+l+uj+1,n+l

A ¢ (Ax)?

(10-82)

As will be shown, Eq. (10-82) is stable under all conditions. This equation is a
special case of the general class of implicit methods which is obtained by using
for the right-hand side of the difference equation a weighted average of the
right-hand members of Egs. (10-75) and (10-82) to give

uj,n+l —Uu

o L2 = 6{06%u; 4y + (1 — 0)6%u;,] (10-83)

where the operator 62 is defined by Eq. (10-72), and 6 is a real constant, gener-

ally thought of as lying in the interval 0 < 8 < 1. When 6 = 0, as in the preced-

ing section, the system is called explicit. If  # 0, the system is called implicit.

The method is called implicit because u; ,., appears on both sides of the

equation and one must solve the complete set of simultaneous linear difference

equations for the system in order to obtain the set of {u;,} for each time step.
To illustrate, suppose that § = 1. Then Eq. (10-83) reduces to

Ay ey = (U200 ey + Ay ey = —uj, (10-84)

The values of the variables at the end of the first time step (when five in-

crements are used as in Example 10-5) are found by solving the following set of
equations simultaneously.

=0+ 20uy 4 Auy = —uy o — Aug,

Ay = (L4 20uz, g+ Aus = —u (10-85)
Aty = (1 20051+ Ty = —us g
Aty = (14 2us 1= —ug 0 — Aus,

These equations are represented by tridiagonal matrices. The solutions may be
found by use of recurrence formulas presented in Part 1. The results found for
the first time step are used in the equations for the second time step. The

equations for the second time step are obtained by increasing by one the second
subscript in Eq. (10-85).

Stability of the Implicit Methods

This analysis is analogous to that shown for the explicit equations. A trial
solution of the form of Eq.(10-77) is again assumed and substituted into
Eq. (10-83). The trial solution satisfies Eq. (10-83) provided that the growth
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# (m), growth factor
S
»
=
-

y=2i(1 —cosm Ax)

Figure 10-2 Variation of the growth factor f(m) with y. (R. D. Richtmyer: Difference Method; f(l):
Initial-Value Problems, Interscience Publishers, Inc., New York (1962), Courtesy Interscience Pu
lishers.)

factor B is given by
1 —2(1 — A1 — cos m Ax)
1 + 26A(1 — cos m Ax)

h of p(m) versus y =241 —cosmAx) which was taken from
Il:ichgtrriser(M) isB(shZ)wn in Fig. 10-2. The growth facto.r .B(m) is real for all real
m. and never exceeds + 1. As y increases through positive values, the value of
ﬁ(m) decreases monotonically from 1 to —(1 — 0)/0.. If 1/2 < 6 < 1, the asymp-
tote is not less than — 1; hence, the difference equations are .always stable. If on
the other hand 0 < 6 < 1/2, y must be restricted, for stability, by the value at

B = Bim) = (10-86)

which the curve intersects the line f(m) = — 1. Thus, the stability condition is
20 At 1 .
— < ifo0<0<1/2
BAx)? =126 (10-87)

No restriction if12<0<1

The most common choices of @ are 0, 1/2, 1. The first (§ = 0) gives the explicit
method, Eq. (10-75), and the second 6 =1/2) corresponds to.the ‘w'ell-known
Crank-Nicholson (Ref. 5) method. The third (0 = 1) gives the implicit method,
Eq. (10-82).

10-3 THE METHOD OF CHARACTERISTICS

The method of characteristics was first brought to the attcntioq of chemlcalf
engineers by Acrivos(1) after it had already been used successfully in the ﬁelc}r [?
compressible flow (Ref. 15) and heat and mass tral?sfer.proble.ms (Ref.. 7). The
method is applied herein to systems of hyperbolic partial differential equations.
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Development of the Method

This method makes it possible to replace a hyperbolic partial differential equa-
tion by an equivalent ordinary differential equation which is to be integrated
along a specified curve. To illustrate the application as well as the development
of the method, relatively simple examples are used. First suppose it is desired to
find a numerical solution to the following set of partial differential equations
subject to the initial conditions and boundary conditions enumerated below:

op ¢
5 T3, = “hlé—bY) (10-88)

v
— = k(¢ — bY) (10-89)

ot
d=¢, at z=0 forall t >0 (10-90)
Y=0 at t=0 forallz >0 (10-91)

In order to transform Eq. (10-88) into an equivalent ordinary differential
equation, first observe that ¢(z, z) may be expanded by the chain rule as fol-

lows:
i _ad: a6
dz "oz dz ot dz (10-92)

which gives d¢/dz for all possible sets {z, t}. However, observe that if one sets
dt/dz = 1, then Eq. (10-92) reduces to

d¢\ _9¢ ¢ dt _
<dz>, =5t <at = 1) (10-93)

which is seen to be identically equal to the left-hand side of Eq. (10-88). Thus,
Eq. (10-88) may be reduced to the ordinary differential equation, namely,

a0\ _ s dr _
( dz),_ k(¢ — b¥) <at dz—l) (10-94)

The subscript I denotes the fact that d¢/dz is to be evaluated along any straight
line having slope dt/dz = 1. In this method, the requirement that dt/dz = 1 for
Eq. (10-93) is called characteristic I.

Upon expansion of ¥ by the chain rule, one obtains

d¥ oY dt oY dz

dt o dt oz dt (10-95)

If d¥/dt is evaluated along the line z = constant (characteristic II), then Eq.
(10-95) reduces to

a¥y ¥
(E),. =% (at z = const) (10-96)
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and Eq. (10-89) has been reduced to the ordinary differential equation

(ﬂ) =ky(¢ —b¥) (at z=const) (10-97)
dt Jy

The space of interest, the z-t space, .is shown in Fig. 10-3. Thus, th.c
original set of two partial differential equatloqs has been reduced Fo two or.dl-
nary differential equations which are to be m'tegrated ‘along their respective
characteristic lines. These two ordinary differential eguatlon§ may pe solveq by
any of the numerical methods used to integrate ord}nary dltferentlal equgthns
provided that the equations are integrated along their respective chgracterlstlcs.
For convenience, equal increments of Az =1 and At =1 are used in th.e con-
struction of the graph in Fig. 10-3. The 45° line_s Fepresent characteristic I,
dz/dt = 1, and the vertical lines represent characteristic II, z = const. Note, the
pointsz =0,z =1,z = 2,...along the z axis are located by

z=mAx (10-98)

where m is some positive integer. Similarly, the points t =0, 1, 2, ... along the ¢
axis are given by

t=nAt (10-99)
4 /
/ / // //
/ / Y y
(G “a @ (%)
3F 0,3) (1,3) , 1A G
Vol A A
// // //
/ i e e
/ Y e Y
¥ 1 ( 3.2
2 1,2 2,2) ,
cfey A0 e A
7 // // .
4 ; , /
/ /7
7 s // ’
/ Va . //
iFon  gan gy o
7/ Y s
v / yd
e // Y -
s s/ Y
/ / / Y
/0,0 (1,0 /(2,0 /(3,0
09 1 2 3
V4
Figure 10-3 Sketch of the z-t place. (Note for Example 10-5, ¢y = 0, 0) = ¢(1, 0) = - = ¢(n, 0)
along the ¢ axis. Along the z axis, ‘¥(0. 0) = ¥(0, )= =¥0,m=0)
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where n is some positive integer. Thus, any point (z, t) may be represented by
(z, 1) = (m Az, n At) = (m, n) (10-100)

The direction of integration for ¢ is along the line dt/dz = 1, and for ¥ the
direction of integration is along the line z = const as shown by the arrows in
Fig. 10-3. Thus, in order to perform these integrations numerically, values of ¢

and ¥ along both axes, t = 0 and z = 0, are needed. The initial condition gives
directly

¢(0,0) = $(0, 1) = $(0,2) = - - = ¢(0, n) = ¢, (10-101)

and the boundary condition gives directly

¥(0, 0) = ¥(1,0) = ¥(2,0) = --- = ¥(m, 0) = 0 (10-102)

To obtain values for ¢(m, 0) and W(0, n), it is necessary to impose the initial
condition and the boundary condition on Egs. (10-94) and (10-97), respectively.
At the initial condition ¥ =0 at t = 0, for all z, Eq. (10-94) reduces to

d
(d—f>l =—k, ¢ t=0,z>0) (10-103)

which is readily integrated to give
#(z, 0) = poe " (10-104)

When the boundary condition ¢ = ¢, at z=0 for all t >0 is imposed on
Eq. (10-97), one obtains

<(il—‘f) = ky(¢o — bY) (z=0,t>0) (10-105)
1

Integration with respect to ¢ yields

% (1 — ekt (10-106)

Y(O, 1) =

To illustrate the solution of Egs. (10-88) and (10-89) by the method of

characteristics, one complete set of calculations for the first increment in time
and space is carried out in the following example.

Example 10-7 For the partial differential equations and initial and bound-
ary conditions given by Eqs. (10-88) through (10-91), find the values of ¢
and ¥ at the end of the first increment in time and space. Take At = 1,
Az =1, k; =009, k; =0.1, b=2, and ¢, = 2. In this example use the
integral form of the trapezoidal rule, namely,

J ) dx = [M](b —a)
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SoLuTioN Integration of Eq. (10-94) from (0, 0) to (1, 1) (see Fig. 10-3) along

dt/dz = 1 gives
(1, 1) 1,1)
J (@> dz = —k, j (¢ — bW¥) dz (1)
(0, 0) dz /, (0, 0)

After the integral on the right-hand side of Eq. (1) has been. approximgted
by use of the trapezoidal rule, the resulting expression obtained after inte-

gration is readily rearranged to give
#(1, 1) = ¢(0, 0) —% {[g(1, 1) — b¥(1, 1)] + [$(0, 0) — b¥(0, 0]}

Since $(0, 0) = ¢ = 2 and ¥(0, 0) =0

(1, 1)=2~— 9;)—9 t¢(1, 1) —2¥(1, 1) + 2] )

Integration of Eq. (10-95) from point (1, 0) to (1, 1) along the path

z = const yields

an L

j (‘il£> dt =k, J (¢ — bP) dt (3)
oy \dt /y (1, 0)

In a manner analogous to that described for the integration of Eq. (1), the
following result is obtained for Eq. (3):

(1, 1) =¥(1,0) +k—2Z {[e(1, 1) — b¥(1, D] + [$(1, 0) — b¥(1, 0)]}
Since ¥(1, 0) = 0 and since ¢(1, 0) is given by Eq. (10-104)
B(1, 0) = poe 187 = 2e7 @09 = 1827862

The above expression involving ‘¥(1, 1) and ¢(1, 1) reduces to
¥(1,1) =00+ 0—21 [o(1, 1) — 2¥(1, 1) + 1.827862] 4)

Since Egs. (2) and (4) are linear in ¢(1, 1) and (1, 1), they may be solved
simultaneously to give
¢o(1, 1) = 1.842118

¥(1, 1) = 0.1668173

(In the event that the equations corresponding to Egs. (2) and (4) are
nonlinear in ¢(1, 1) and ¥(1, 1) they may be solved by use _of the Newt'on—
Raphson method.) Values of ¢ and ¥ at other points on the grid are found in 2
manner analogous to that demonstrated for the point (1, 1).
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CHAPTER

ELEVEN

FUNDAMENTALS OF
ADSORPTION PROCESSES

The adsorption process belongs to a more general class' of unit operation which
is sometimes called percolation. A percolation process is 'dcﬁned as any process
in which a fluid is passed through a bed of material -whlch has the capalety tf’
alter the concentration of the fluid. This definition includes some Cla.SSlC unit
operations such as ion exchange, adsorption, chromotography, d.rymg', anc}
washing. These operations are performed in order to obtain (a) purification o
the diluents, (b) separation of products, and (c) recovery of solu.tes. o

Most of the percolation processes are similar .to adsorption which is the
only percolation process considered in detail in 'tth chap'ter. Most adsorbents
are very porous and most of their surface area is in the interior of the adsor-
bent. Thus, the adsorption process consists of the sequence of mass transfer
operations whereby the solute is transported into the interior of the adsorbent
where it is adsorbed. .

When a fluid containing solute components which are candidates ttor ad-
sorption is passed through a bed, the mass transfer steps may be categorized as

follows.

1. Within the flowing fluid stream, the solute is transported by Fiiffgsion .in bo;h
the axial direction (the direction of bulk flow) and the radial direction (the

irecti i irecti f bulk flow.)
direction perpendicular to the direction o k .
2. The solute is transferred from the bulk conditions of the fluid phase to ﬁlrp
on the surface of the adsorbent. (The two-film theory for mass transfer is

assumed.)

162
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3. The solute is transferred from the film to the fluid phase in a pore of an
adsorbent.

4. The solute is transported through the pore by diffusion.

5. At any point along the pore, the solute is subject to adsorption on the
surface.

6. After adsorption the solute may be transported along the surface or through
the solid phase by diffusion.

Models which have been proposed for the description of the adsorption
process generally make use of one or more of the above steps of the mass
transfer mechanism. The remaining omitted steps of the mechanism are assumed
to be either very “fast” if in series or very “slow” if in parallel. The terms
“fast” and “slow” are used to mean that the rate constants for these steps are
very large or very small, respectively, relative to those for the other steps.

In this chapter, the subject of adsorption is introduced by consideration of
the adsorption step and the two mass transport processes, convective mass
transfer and diffusion. The adsorption of both pure solutes and mixtures is
considered in Sec. 11-1, and the adsorption of a single solute is considered in
Secs. 11-2 and 11-3. Section 11-2 is devoted to convective mass transfer, the
mass transfer process which is analogous to the convective heat transfer process.
To demonstrate the behavior of convective mass transfer processes, an analyti-
cal solution is presented for a relatively simple problem. In Sec. 11-3, the roles
of pore and surface diffusion in the adsorption process are illustrated by the use
of the analytical solutions for some relatively simple problems.

11-1 PHYSICAL ADSORPTION OF PURE GASES
AND MIXTURES BY SOLID ADSORBENTS

The fact that many gases exist in an adsorbed state on adsorbents such as
charcoal at temperatures far above their criticals suggests the use of adsorbents
in separation processes. Models for the adsorption of both pure components
and mixtures are developed in this chapter.

When a gas is brought into contact with an evacuated solid (such as
charcoal) and part of it is taken up by the solid, any one of several processes
may have occurred. When the gas molecules are either attached to the surface
or occupy the void spaces within the solid (such as pores, cracks, or capillaries),
the process is known as adsorption. If the interactions between the gas and the
solid are weak, similar to those involved in condensation, the process is called
physical adsorption, and if the interaction between the adsorbed molecules and
the surface is strong, similar to chemical bonding, the process is called chemical
adsorption. Physical adsorption is also called van der Waals adsorption, which
implies that van der Waals forces are also involved in physical adsorption.
Adsorption processes are exothermic, a result which has been verified experi-
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mentally, time and again. The heats of adsorption are of the same order of
magnitude as the heats of vaporization.

The amount of a gas absorbed by physical adsorption at a given pressure
increases as the saturation temperature is approached. At a given temperature
and pressure, the amount of a gas adsorbed increases with the normal boiling
point of the gas or with the critical temperature, and the amount adsorbed
normally decreases as the temperature is increased. Chemical adsorption, on the
other hand, does not generally occur at relatively low temperatures. Also, the
initial amounts adsorbed increase as the temperature is increased. The rate of
chemical adsorption is relatively fast at first and then very slow. On the other
hand, physical adsorption occurs almost instantaneously. The lag in the ad-
sorption process was first attributed to the diffusion of gas molecules into the
interior of the adsorbent by McBain(25). Physical adsorption is readily rever-
sible with respect to temperature and pressure, whereas chemically adsorbed
gases are difficult to remove even by evacuation and heating.

Types of Physical Adsorption

The behavior of adsorbents, exhibited by their equilibrium adsorptions of a
variety of gases, has led to a classification of the types of physical adsorptions.
Since the initial observations of C. K. Scheele in 1773 of the adsorption of gases
by solids, a wide variety of both adsorbents and adsorbates have been investi-
gated. Among the practical adsorbents are the silica gels, activated aluminas,
silica aluminas, molecular sieves, and activated charcoals. The results of adsorp-
tion experiments are most commonly presented in the form of adsorption iso-
therms, volume-adsorbed as a function of pressure at constant temperature. A
variety of shapes of curves have been observed by the various investigators who
have studied the adsorption of many different gases by many different types of
adsorbents. Brunauer et al.(3) suggested the classification of these results accord-
ing to the five types of isotherms shown in Fig. 11-1. Adsorption isotherms of
type I are generally attributed to unimolecular adsorption. These curves are
also referred to as Langmuir isotherms because they are described by the model
proposed by Langmuir(17,18,19). The S-shaped or sigmoid isotherms, type I1,
are generally regarded as being descriptive of multimolecular adsorption.
Brunauer(4) suggested that type III isotherms represent the formation of multi
molecular layers before a unimolecular layer has been adsorbed, and that types
IV and V reflect the occurrence of capillary condensation.

Models for the Physical Adsorption of Pure Components

In an attempt to explain the wide variety of experimental results characterized
by Fig. 11-1, many theories and models have been proposed. One of the best
known of these is Henry’s law which may be used to describe many adsorptions
at relatively low pressures.
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Henry’s law This law may be stated in the form

where.k0 is the Henry law constant, P is t
and v is the volume adsorbed (at
For intermediate pressures, t

v=kyP (11-1)

z he adsorption equilibrium pressure,
Cand 1 gtm) per unit mass of adsorbent.
he Freundlich equation is commonly used.

Freundlich equation This empirical equation is of the form

where k

v =k, PUN (11-2)

1 is a constant depending on the gas and the adsorbent and N>1
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Langmuir equation The Langmuir equation is regarded by many as perhaps the
single most important equation in the field of adsorption (Ref. 4). Three deri-
vations of this equation have been presented; the original kinetic derivation of
Langmuir(17,18,19), the thermodynamic derivation of Volmer(27), and statistical
derivations by Fowler(8) and others. Of these, only the kinetic derivation is
presented.

When a molecule strikes the surface of an adsorbent, it may be either
elastically reflected from the surface without any energy exchange taking place
or it may be inelastically adsorbed with the release of energy. Lang-
muir(17,18,19) attributed the phenomenon of adsorption to the average time
that a molecule resides on the surface of an adsorbent. In summary, the postu-
lates of Langmuir are as follows:

1. Of the molecules striking the surface, only those that strike the bare surface
are candidates for adsorption. That is, molecules that strike an adsorbed
molecule are elastically reflected.

2. The probability of evaporation of a molecule from the surface is the same
whether or not the neighboring positions on the surface are empty or filled
by other molecules. This amounts to assuming that the interaction between
adsorbed molecules is negligible.

Let u be equal to the number of molecules striking a unit of surface area
per unit time. Let 6 be equal to the fraction of the surface covered by adsorbed
molecules. Then, the candidates for adsorption by postulate 1 are given by
(1 — @)u. If the condensation coefficient on the bare surface is a, then the rate of
adsorption is equal to (1 — O)u. Let v denote the rate of evaporation from a
completely covered surface. Then by postulate 2, the rate of desorption is equal
to vf. Then at equilibrium

ol — O =0 (11-3)
or
N CTL) (11-4)
1+ (/v)u

The following expression for u (the number of molecules striking one square
centimeter of surface per second) is given by the kinetic theory of gases (Ref. 21)
P

k= 2amkT) (-9

where m is the mass of the molecule, k is the Boltzmann constant, and T is the
temperature of the gas in degrees Kelvin. An expression for v may be deduced
from the concepts of the kinetic theory. Let q denote the heat given off when a
molecule is adsorbed. Then to be desorbed, a molecule must possess an energy
equal to or greater than g. If it is supposed that the adsorbed molecules possess
a maxwellian energy distribution in two degrees of freedom, then it can be

/
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shpwp that the_ frkaction of molecules having an energy equal to or greater than
q is given by e~ %*T. Thus, Eq. (11-4) may be restated as follows:

__bP
T1+0bP (11-6)

where the dependence of b upon temperature is given by
« eq/kT

=W (11-7)

;Equation (11-6) is commonly stated in the following alternate but equivalent
orm

v bpP
Um, 1+bP (11-8)

where v,, is equal to the volume of gas adsorbed at (0°C and 1 atm) per unit
mass of adsorbent when the adsorbent is covered with a complete unimolecular

layer. It is generally possible to obtain a satisfactory fit with Eq. (11-8), the
Langmuir equation.

The BET equation The multimolecular adsorption theory proposed by Braun-
auer, Emmett, and Teller(S) was the first attempt to present a unified theory of
physical adsorption of pure gases. The equations resulting from this theory may
be used to correlate the five types of adsorption shown in Fig. 11-1. The
multimolecular theory of adsorption constitutes a generalization of Langmuir’s

Fluid phase Solid phase
Cdl
Ci' = mC4l + b,
(o
Cs
Fluid stream \./ Interface

Figure 11-2 Concentration profile for mass transfer from the fluid stream to the adsorbed phase.
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theory in that the restriction of unimolecular adsorption is removed. In addition
the following postulates are made:

1. Let So, Sy, Sz» ---» S, represent the surface area covered by O, .1, 2, ..., n
layers of adsorbed molecules. Postulate that the ratF: of condensation on s; is
equal to the rate of evaporation from surfa'ce Sis1 U = 01,2,..., n)i e

2. Postulate that the evaporation-condensation properties of the molecules in
the second and higher adsorbed layers are the same as those of the lower

layers.

By postulate 1, the rate of adsorption on the bare surface is equal to the rate of
evaporation from the first layer

a, Psy = by s, e BVRT (11-9)

where E, is the heat of adsorption for the first layer, and a, and b, are
constants. Since
Rate of adsorption on bare surface = a; Pso oc «(1 — Ou

—E1/RT
Rate of desorption from surface covered by one layer = by sy e~ B/ oc By

Equation (11-9) consists of an alternate statement.of Langmuir’s equaclltlgn for

unimolecular adsorption and involves the assumption that a,, by, an . i alre

independent of adsorbed molecules already present in th}f first la;;er. Slmrlaz:;());;
i layer is equal to the rate of evapo

the rate of condensation on the first : :

from the second layer. Then, in general, the rate of condensation of the jth layer

is equal to the rate of evaporation from the (j + 1)st layer

i j = 11-10
aj41 Ps;=bji18;+1€ E/RT  (j=0,1,2,...,n) ( )

It is of interest to note that in spite of the .fact that Langmlilr sdnar;‘;et :)sf
commonly associated with unimolecular adsorption, he also forrpu ate ;;S ! ¢
equations in 1918 (see Ref. 19) for the case where Fhe adsorpt;or;] space m n{
hold more than one adsorbed molecule. These equatlons were o t.e sar:ﬂerem
as those given by Eq. (11-10), but their summation was handled in a di
manner than that proposed by Brunauer, Emmett,. and Teller(5). r

To effect the summation of the expressions given by Eq. (11-10), Bruniiui é
Emmett, and Teller assumed that all adsorbed layers after the first one cou
characterized in the same way by requiring that

4 _%_ ... _%W_ ¢
b, b, b, b (11-11)
E2=E3="’=En=EL

where E, is the heat of liquefaction. The result so obtained is given by

cP (11-12)
(P°— P)[L + (c — DP/P°]

v
Um
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where v is equal to the total volume of gas adsorbed and v, is equal to the
volume of gas required to cover the surface of the adsorbent with a unimolecu-
lar layer. The total pressure of the adsorption is denoted by P and the vapor
pressure (or saturation pressure) of the gas at the temperature of the adsorption
experiment is denoted by P°. The constant ¢ is given by

_ (@/by E, —E
¢ ’( a/b )e"p[ RT ] (11-13)

Equation (11-12) is commonly referred to as the BET equation (after Brunauer—
Emmett-Teller(5)).

Development of a Kinetic Model for
the Adsorption of Mixtures of Gases in Multimolecular Layers

The development of the model for the adsorption of a mixture of gases is a
rather obvious extension of Langmuir’s model for the adsorption of pure com-
ponents. The model for the adsorption of mixtures in unimolecular layers was
first proposed by Markham and Benton(22). The model for unimolecular ad-
sorption is obtained as a special case of the more general model for adsorption
in multimolecular layers.

Hill(13) proposed an extension of the BET equations for the adsorption of
multicomponent mixtures of gases in infinitely many adsorbed layers. Arnold(1)
presented a variation of Hill’s extension of the BET equations. Hill’s equations
were applied by Mason and Cooke(24), who found that their experimental
results could be represented on the basis of two or three adsorbed layers.

The postulates upon which the models for adsorption of multicomponent
mixtures as proposed by Gonzalez and Holland(1 1,12) follow.

1. Molecules striking either the bare surface or the covered surface are candi-
dates for adsorption.

2. The probability of the evaporation of a molecule from an adsorbed layer is
independent of whether or not the neighboring positions in a given layer are
empty or filled. (This assumption could be highly inaccurate for the adsorp-
tion of highly polar compounds).

3. The total number of sites available for adsorption is independent of pressure
but dependent upon temperature.

4. The total number of sites available for adsorption is the same for all compo-
nents. (This assumption has the same weakness as the second postulate).

5. The adsorption of a given molecule in a given layer is independent of the
identity of the molecule adsorbed beneath it in the previous layer.

6. The ratios of adsorption equilibrium constants for the (j + Dst and the jth
layers are equal to the same constants for all components.

7. The adsorption process is assumed to be at equilibrium.
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These assumptions follow closely those originally proposed by Lang-
muir(17,18,19). .

Let S, denote the moles of vacant adsorption sites on the bare surface, and
let S, denote the moles of sites on the surface S, w}nch are‘covered by an
adsorbed molecule. Let S, denote the moles of sites which contain two la){ers of
adsorbed molecules. Let A,, A, ..., A, denote the molecules involved in the

adsorption process. The number of sites covered by any type of moleculg is
assumed to be a function only of its equilibrium constant. The rp'ech'amsm
consists of the following system of reactions at a state of dynamic equilibrium:
ki
Afg)+So — A4S
ky

k2
Afg) +S, =—= A5, (11-14)
k2
kj
Afg) + Sj-1 = AiSj
ki
Consider first the adsorption on the bare surface. Since'eacl‘l rgaction is as-
sumed to be in equilibrium, the expression for this equilibrium is given by
kyi Cii

=K, =

i=12,...,0) (11-15)
ki p:Cs. 0

and thus
C.i=KipiCso (11-16)

Let C; denote the total number of moles of adsorption sites on the bare
surface. Then

c

Coo=Cr-— Zcu =Cr—Co ‘;Kupf

i=1
which is readily solved for C , to give

Coom—ST (11-17)

1+ ZKupi

i=1
After this expression for C, , has been substituted into Eq. (11-16), one obtains

cl,.=_c—ffﬁ?‘— (11-18)
1+ Y Kyp;
i=1

For the case of the adsorption of a pure component, Eq. (11j18) redu.ces to
Langmuir’s isotherm, Eq. (11-8). An expression for the adsorption of mixtures

LN
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which was of the same general form as Eq. (11-18) was proposed by Markham
and Benton(22). Actually the model proposed by Markham and Benton was
more general than the one given by Eq. (11-18) in that the total number of sites
available for adsorption was assumed to depend upon the identity of each
component, that is, the model of Markham and Benton is given by replacing C
in Eq. (11-18) by Cy;.

The model for multilayer adsorption is developed in the following manner.
Since the reaction representing adsorption on the jth adsorbed layer is assumed
to be at equilibrium, one obtains

Ci=K;pCs =12...,n) (11-19)

and
C,;= ‘;Cﬁ—‘;CHL,— (11-20)

Let
¢; = .-;Kﬁpi (11-21)

Elimination of C; and C;,, ; from Eq. (11-20) through the use of Egs. (11-19)
and (11-21) yields

Coj=Cojm10;— C ;1 (11-22)
Thus
¢C i—1 .
CS<=__J s, J Gg=1,2...,n 11-23
T, O ) (11-23)

The expression for C,, is obtained by the substitutional process whereby one
begins with the expression for C.0 (Eq. (11-17)) and substitutes it into the
expression for C,; (Eq. (11-23) with j = 1). Continuation of this process whereby
the expression for C, ;_, is substituted into the one for C,.; yields

C — CT¢1¢2'”¢,,_1
s,n—1 (1+¢1)(1+¢2)(1+¢")

When this result is substituted into Eq. (11-23), one obtains the expression for
the concentration of component i in the nth adsorbed layer, namely,

Crdid, - ¢,
C.=K p. TY1%2 n—1 A
" "'”‘[(1+¢1>(1+¢2>---<}+¢n)] (1129

The total concentration of component i in all adsorbed layers is given by

(11-24)

_ “ Kji¢1¢2 ¢j—1
1c,<.-—p.~CTj§1 TroNl+90 - (179) (11-26)

™M=

Ci=

i

[
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Since this expression for C; contains a large number of parameters, Cr,
{K;:}, {¢;}, Gonzalez and Holland(11,12) proposed the follown}g postula?e for
theJ purpose of reducing the number of parameters to be determined experimen-
tally, namely,

Ky Ksi_ _ Bavni_ (11-27)

where v is the same constant for all i. On the basis of this postulate it can be
shown that Eq. (11-26) reduces to

n K“vj(j_l)“d){_l

Ci=pCr ,.;, (1 + X1+ vy )1+ V) (L + V1))

(11-28)

Gonzalez and Holland(11,12) showed that the adsorptions of many systems
could be adequately described by two-layer adsorption (j = 2).

The Fritz—Schluender isotherm In order to obtain a sati§factory fit of the ad-
sorption data for organic liquids in aqueous mixtures, Fritz and Schluender(10)
used the following relationship

bio
a;0 Cpi

n

bii

¢+ Z aij Cp'f
Jj=1

C.— (11-29)

where C,; is the concentration of component i in the fluid phase in the pore,
and C, is the concentration of i in the adsorbed phase. Parameters to be
determined by use of experimental data are ¢;, a; j, and b; ;.

11-2 MASS TRANSFER BY THE
CONVECTIVE TRANSPORT MECHANISM

The name “convective transport mechanism” is given herein to mass transfer
processes in which the rate of mass transfer can b; expressed as a linear fupc-
tion of a fugacity difference, a partial pressure difference, or g concentration
difference. This name is used because this mass transfer process is ana'logo%ls to
the convective heat transfer process in which the rate of heat transfer is a lmt?ar
function of the temperature difference, and because of the need to distinguish
between the transfer of mass by this process and the transfer of mass by
diffusion. . .
There follows first a development of the rate expressions for the COl‘lVCCt.lVC
mass transport mechanism, and then the model for a ﬁxeq-bed adsorptlpn
column in which the rate controlling step for mass transfer is the convective

m
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The Convective Mass Transport Mechanism

The convective mass transport mechanism is based on the two-film theory of
mass transfer. The rate expressions based on this theory may be formulated by
consideration of the case where a fluid phase is passed through a fixed adsor-
bent bed. Suppose that the concentration is constant in the radial direction (the
direction perpendicular to the direction of flow).

A sketch of the concentration profile is shown in Fig. 11-2. The rate of mass

transfer of component i from the bulk conditions of the fluid phase to the
interface is given by

rai = kg afCyi — C) (11-30)

where r,; = moles transferred per unit time per unit volume of empty bed

a, = interfacial area between the fluid phase and the solid phase per unit
volume of empty column

C,; = concentration of component i at the bulk conditions of the fluid
stream, moles per unit of void volume (the free volume between the
pellets), Cj; is the concentration on the fluid side of the interface

k,; = mass transfer coefficient (volume of empty column per unit of time
per unit of interfacial area)

The rate of transfer across the interface is assumed to be very fast relative to the

other steps, which amounts to the assumption that a dynamic equilibrium exists
at the interface, that is,

Ci=mCy + b, (11-31)
The rate of transfer from the interface to the adsorbed phase is given by

ry = kg a(Cy — Cy) (11-32)
where r; = moles transferred per unit time per unit volume of pellet

a, = interfacial area between the fluid phase and the solid phase per unit
volume of pellet

C, = moles of component i in the adsorbed phase per unit volume of
pellet

ki = mass transfer coefficient (pellet volume per unit of time per unit of
interfacial area)

Two expressions may be obtained for the overall mass transfer coefficient,
one to be used with the solid phase concentrations and the other to be used
with the fluid phase concentrations. First the expression for the rate of mass
transfer in terms of the solid phase compositions is developed. Observe that

1
rd,.(l ~ e) =ry (11-33)

=a, (11-34)

where ¢ = (volume of voids between the pellets)/(volume of bed)
1 — ¢ = (volume of pellets)/(volume of bed)
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Thus,
1
T = (1___5) kyiadCai — Ci) = k; a(Cy — Cy) (11-35)

Linear equilibrium relationships between the fluid phase and the adsorbed
phase are assumed, namely, Eq. (11-31) and

C:: = m,- Cdi + bl' (11'36)

where m; and b; depend on each component i but are independent of compo-
sition and where C¥ is the concentration which the adsorbed phase would have
if it were in equilibrium with a fluid phase having the concentration C,. The
above relationships may be used to restate the rate of mass transfer in terms of
the concentration difference (C¥ — C,;) and the corresponding overall mass
transfer coefficient

g = Ksi as(C;‘ - Csi) (11'37)
where
r_m 1
Ksi B kdi ksi

In a similar manner, the following rate expression in terms of the concentration
difference (C,; — C*) and the overall mass transfer coefficient K; is obtained:

ra = Ky adCyi — CF) (11-38)
where
1 1 1
—_— 11-39
Ky ka * m; kg ( )
and
Ci=mCh+b (11-40)

where C% is the concentration which the fluid phase would have if it were in
equilibrium with an adsorbed phase having a concentration Cg;.

Component-Material Balance on Component i in the Solid Phase
over the Time Period from ¢, to ¢, + At

First observe that r(1 — &) denotes the moles of component i transferred from
the fluid phase to the solid phase per unit time per unit volume of empty
column.

The material balance is made on a fixed-bed adsorption column of cross-
sectional area S through which a fluid phase is flowing. Assume that the con-
centration is constant in the radial direction (the direction perpendicular to fluid
flow). The balance on component i in the adsorbed (or solid) phase contained in
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Figure 11-3 Sketch of a fixed-bed adsorber.

the elen}enP of volume S Az (see Fig. 11-3) over the time period from time ¢, to
t, + Atis given by "

tht+ At zj+Az
J l: f rdl —e)S dz] dt
th zj

zj+Az
= f [(1 —SCy ] dz  (11-41)
! th,

Application of the mean value theorems followed by the limiting process
whereby Az and At are allowed to go to zero yields

_0Cy;
= O<z<zy (11-42)

—(1—g)sC,

thtAt, z

where z; is the total length of the adsorbent bed and th i i
iven by By, (LT n e expression for r; is

Mass Bala.nce on Component i in the Fluid Phase
over the Time Period A¢ in a Fixed-Bed Adsorption Column

In this model, which is sometimes referred to as the Glueckauf model, it is
a§sumed that the fluid phase is perfectly mixed in the radial directi0;1 (the
direction perpendicular to the direction of flow) and that the rate of mass
transfer by diffusion in the fluid phase is negligible in all directions. Also, it is
suppose§ .that uy, the linear velocity of the fluid phase, is independent of, time
and position. The material balance on component i is made on the volume
€SAz over the time period from ¢, to ¢, + At

tn+At zj+Az
f l:“f eSCy —~ f rdl — &) dz] dt
n zjt+Az, ¢t zj

zj+Az
= f l:sSCd,-

- uf SSCdl'

zj, t

—eSCy

tatAt, z

J dz (11-43)

th,z
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Application of the mean value theorems followed by the limiting process
wherein Az and At are allowed to go to zero yields the following result:

_ d(uyeSCa)

{1 - oS =

a(%tcd,.) 0<z<zy) (11-44)

Since u,, ¢ and S are assumed to be independent of time and position

“r 5, e )% ot

Use of Egs. (11-33) and (11-38) permits the above equation to be restated in the
following form, which is used in subsequent developments:

0<z<zyp) (11-45)

dCy;  Kya 0Cy
—up - = (Ca = O = 0 (10-46)
Similarly, Eq. (11-42) may be stated in the following forms by use of Egs.
(11-33), (11-37), and (11-38):

0Csi _ (Kauiaa *
5 = (1 = 8)(Cas - C¥
o (11-47)
aCy
%si _ K oa(Cx—C..
at st as( st Sl)

Solution of the Glueckauf Model for the Special Case of
the Adsorption of a Single Solute Component in a Fixed-Bed Adsorber

Although analytical solutions have been obtained for Egs. (11-46) and (11-47)
for a number of different sets of boundary and initial conditions, the analytical
solution for only one set of conditions is presented. In particular consider the
fixed-bed adsorber shown in Fig. 11-3. It is desired to find the outlet con-
centration C,(zr, t) at any time ¢ after the initiation of the adsorption process at
time ¢t = 0. Initially, at t = 0, the amount of solute on the adsorbent is uniform
for all z and its concentration is denoted by C(z, 0). For all ¢ > 0, the adsorbent
is contacted with a gas which has a solute concentration CY9 at z =0. More
precisely

att=0, C4z,0)=C? for all z (11-48)

atz =0, CA0,t)=C? forallt (11-49)
In the development which follows, it is supposed that the carrier fluid is
dilute in the solute (the component which is to be adsorbed). Consequently, it

can be assumed with good accuracy that the molar density is independent of
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time and position. Thus

Ca=pay Ci=paw (11-50)

wher.e yis Fhe mole fraction of the solute in the fluid phase and w is the mole
fractlop which the solute would have if it were in equilibrium with the adsorbed
(or solid) phase. Thus, Eq. (11-46) may be restated in the following form:

_ < use >@ (=N _
| K,a,) 0z Kja,) ot yow (11-51)
Use of Eq. (11-40) and the above definitions of the mole fractions permits Eq.
(11-47) to be restated in the form

m(l —¢) | ow
“*Kdad PPl (11-52)

As demonstrated by others (Refs. 23, 26), the partial differential equations given

by Eqs. (11-51) and (11-52) may be reduced to simpler form by making the
following changes of variables. Let

K,a, K;a, z
}7 =2 = —_—— -
use T ml— 9 (t uf) (11-53)

The partial derivatives appearing in Egs. (11-51) and (11-52) are computed in
terms of the new variables by use of the chain rule as follows:

dy 0dydt  dyon li—KdadJQ (K,,ad>6y

= + = —=
0z 010z 0n oz m(l — eJu, | ot uge ) on
dy dydt dydn dyor Kya; |0y
= 4 ——=—— — = —
ot 0t ot onot Ot ot m(l —¢) | ot

ow dw 0t ow dn  dw Ot [Kdad:lf)w

(11-54)

_— = + — — -
ot dtdt on ot It ot m(l —¢)| ot

Substitution of the results given by Eq. (11-54) into E R
yields q. (11-54) into Egs. (11-51) and (11-52)

9 _

—an—y—w (11-55)
ow
Pl A (11-56)

The initial condition and boundary condition corresponding to Eqs. (11-48) and
(11-49) are

w(n, 0) = w°
¥0, 1) = y°

at =0 for all (11-57)
aty =0for all 7 (11-58)
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Equations (11-55) through (11-58) were first solved by Anzelius(2) for le}n ana(;
logous problem in heat transfer. Furnas(9) extended the work of Anze 1usl and
presented solutions in the form of charts. Hougen and Marshall(14) formulate
and solved the adsorption problem stated. The problem may be solved l{y use
of Laplace transforms in a manner analogous to that demonstrated by Mickley
et al.(26); see Prob. 11-7. The results are as follows:

wip, 1) = w° _ e " jte“JO(Zi. /ni) da (11-59)
¥ — WO b

d Y=y _ - re-qo(zi. [28) dé (11-60)
an yo _ WO o

A graph of the behavior predicted by Eq. (11-60) is presented in an. 11-4
for an adsorber of length z; = 50 cm. Other parameters for the. adsor cfer are
Kya,=0.10 s™', u; =014 cm/s, m = 1.1, and ¢ = 0.50. For thl.S set of par-
ameters, the corresponding value of # = 71.43. Observe that there is no gpprecln-
able amount of solute in the effluent from 1 =0 up to t equal to approxnmage y
25. For t > 25, the breakthrough of the so(}ute occurs. At T = 110, the adsorbent
i ith the solute and z(n, 1) = y -

° Sa;;rlgr: z:\:ll(t:lhlflolmes(ZO) poin(t’;d out that the.designer wishes to kpow not
the instantaneous concentrations of the gas leaving the bed at any time put,
rather, the cumulative fraction recovered out of the total quantity of a given

Y =y(n, 1)
y“—w"

0.4

0.2

0

Figure 11-4 Breakthrough curve predicted by Eq. (11-60). (z¢

1

0

10

20

30

40

cm/s, ¢ = 0.50, m = 1.1, n = 7143)

50

60

T

70

80

90

=50 cm, Kya, =01 s, u, =014

100

110

120

130

FUNDAMENTALS OF ADSORPTION PROCESSES 379

component entering the bed during the adsorption cycle. The cumulative frac-
tion recovered is defined by

_ Jo usSp[y° — yn, ] dt ]
() = Tou, Spi® di (11-61)

Equation (11-60) may be used to reduce Eq. (11-61) to

yO _ WO t n
(1) = f e f e~ %Jo(2i /1) dé di (11-62)
0 0

ty°

For the case where w® =0 and the holdup in the vapor phase is negligible
(t = [Kyas/m(1 — ¢)]t), Leland and Holmes(20) present a graph of ¢(r).

11-3 THE ROLE OF PORE AND SURFACE DIFFUSION
IN THE ADSORPTION PROCESS

As outlined at the outset, transport by diffusion may occur in the fluid stream
exterior to the adsorbent as well as within the pore and on the surface of the
adsorbent. In the following development, two special cases are considered. In
the first of these, pore diffusion is assumed to be the rate-controlling step and in
the second special case, pore diffusion plus surface diffusion are assumed to be
the rate-controlling steps. All other steps in series with these are assumed to be
“fast” (they have very large rate constants relative to the two diffusion steps
under consideration). The adsorption step is also assumed to be fast.

Pore Diffusion

In 1909, McBain(25) initiated the study of adsorption rate processes. Any lag in
the adsorption process was attributed by McBain to the inaccessibility of the
adsorbent surface to the molecules being adsorbed. McBain assumed that the
measurable process could be attributed to the transport of the adsorbed mol-
ecules through the solid solution on the surface. However since the transport
along the surface was assumed to proceed by Fick’s law, the general form of the
solution is the same as for diffusion through the pore.

In the present treatment, the adsorbent is assumed to be cylindrical and the
pores are taken to be in the direction of the principal axis as shown in Fig.
11-3. Let S denote the cross-sectional area of the pellet and ¢, the fraction of
voids (volume of pores/volume of the pellet). Suppose that initially each pore is
filled with an inert gas. At time ¢ > 0, the pure solute is introduced at each end
of the pore at z =0 and z = L. The transport of the solute to the interior of the
pellet and the inert gas to the exterior is assumed to occur by Fick’s law

Jy= -0, % (11-63)

p Poz
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where J,; = moles of solute i diffusing into the pore in the positive direction of
z per unit time per unit of pore area perpendicular to the direction z
C,: = concentration of solute i, moles per unit of pore volume
D,; = diffusion coefficient for component i in the pore

In the following material balance on the solute component, the subscript i is
dropped as a matter of convenience. The material balance on the solute in the
element of pore volume from z; to z; + Az and over the time period from ¢, to

t, + At is given by
) dt
zj+Az,t

th+ At
j (apSJp
zj+Az
= ‘[ C,e,S dz

—&,8J,

zj, t

(11-64)

zj+Az
- C,e,S dz
th + AL zj

th
Application of the mean-value theorems followed by the limiting process
wherein Az and At are allowed to go to zero yields
— 0, 8J,) e, SCp)
0z I

If ¢,, D,, and § are taken to be independent of time and position, then Eq.
(11-65) reduces to

O<z<L,t>0) (11-65)

62
D-—ge:ége O<z<L,t>0) (11-66)
P 9z? ot

The initial and boundary conditions stated above many be quantified as
follows:
C,0,1)=C? (z=0,t>0)
C,L,1)=C} (z=L,t>0) (11-67)
Cyuz,00=0 O0O<z<L,t<0)

The solution which satisfies the partial differential equation, the initial con-
dition, and the boundary conditions is

1, 4 [sin(2m—1)nf]e-<zm-ua.{

Chlz,)=Cy | —= 3 ° T &

Tom=1
where § = D, n*/IZ. This solution may be obtained by the product method as
outlined in Prob. 11-9. The behavior predicted by Eq. (11-68) is shown in Fig.
11-5 for a system described by the following parameters: Cg = 0.001 gm/cm3,
L=0.1 cm, and D, =8.0 x 1076 cm?/s. For each of several times, the con-
centration profile of the solute as a function of pore length is shown. Since the

(11-68)
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C, X 10° (g/em?)

| 1 | [
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of pore length, z/L

Figure 11-5 Concentration profiles in the i
pores as predicted by Eq. (11-68). (C° = 3
L=0.1cm,and D, = 8.0 x 107 cm?¥/s.) YR - (€= 0001 gmiem?

pore was assumed to be open at both ends (see Eq. (11-67)), the minimum of
each profile occurs at z/L = 0.5. Initially, when little of the solute has been
adsorbed, the profiles are seen to be relatively steep. As the amount of solute
adsorbed increases (with time), the profiles become flatter.

Now let the accumulation of solute within the pore over the time period
from ¢ = 0 to any time ¢ be denoted by Q. Since J, is the rate of diffusion of the
solute in the positive direction of z, it follows by the law of conservation of
mass.that t‘he material balance for the solute over the time period from t = 0 to
any time ¢ is given by

LspSJ,, Y dt—.Lgszp

input of solute output of solute
atz=0 atz=1L

dt = Q accumulation of solute
L from ¢t = 0 to any ¢ (11-69)

PJse of l.Eqs.‘(ll-63) and (11-68) yields the following result upon carrying out the
integration indicated by Eq. (11-69):

8¢, SL 71:2 X e~ (2m-1)24
Q=-"5- cg[ }

5.1 om0 (11-70)
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Simultaneous Pore Diffusion and Surface Diffusion

The model in which the slowest step is the simultaneous diffusion through the
pores and the solid appears to have been proposed first by Damkéhler(7). The
further assumption that a state of equilibrium exists between the gas phase and
the adsorbed phase at each z throughout each pore is made, that is,

C,=mC,+b (11-71)

where the subscript i has been dropped because only one component, the solute,
is assumed to be a candidate for adsorption. Initially the pore is filled with an
inert component which is not adsorbed. At time ¢ > 0, pure solute is available
at the entrance (z = 0) to the pore, and the pore is assumed to be closed at the
other end (z = L).

Let the rate of diffusion of the solute i along the surface of the pore be
denoted by

Jsi = _Dsi acﬁi (1 1-72)
0z

where J,; = moles of solute i diffusing in the positive direction of z per unit time
per unit of pellet surface perpendicular to z
C,; = moles of solute adsorbed per unit volume of pellet

A material balance on the solute over the time period from t, to t, + At
and the element of volume of a pellet from z; to z; + Az is given by
—(,8J, + 8Jy)

ta + At
J [(g,, SJ, +SJ) ] dt
- Zju zj+Az, ¢t

zj+Az
= J [(g,sc,, +5C) —(¢,SC, + SC))

tht AL,z
Application of the mean-value theorems followed by the limiting process
wherein Az and At are allowed to go to zero yields

] dz (11-73)

thy, Z

Ae,SJ, + SJ) e,SC, + SC)

0<z<L,t>0 11-74)
z ry ( z ) (

where ¢, = volume of pores per unit volume of pellet
S = cross-sectional area of the cylindrical pellet

If it is now assumed that ¢,, S, D, and D, are independent of time and
position, Egs. (11-63) and (11-72) may be used to eliminate J, and J; from Eq.
(11-74) to give
a*C 2*C oc, 0dC
bl J S _p P 278
9Dy tD G = H T g

(11-75)
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Use of Eq. (11-71) to express C, in terms of C, yields

*’C, aC
D-a—zf:-a‘f O<z<L,t>0) (11-76)
where
D— &, D, + mD,
14+m

IPEI following initial conditions and boundary conditions were used by Dam-
Ohler:

C,0,0)=Cp (z=0,t>0)

aC (L, 1)
4 —
—£== =0 (z=L,t>0) (11-77)

Cyz,0)=0 O<z<L,t=0)

The solution which satisfies the partial differential equati
50 on (Eq. (11-76
conditions given by Eq. (11-77) is ¢ (Fa{ ) and the

2
- {exp [— <2n2;‘1 ) n? Dt]}[sin (2’1211 >nz] {
z 2t D) - ‘ (11-78)

. Profiles of the solute concentration in the pores at different times as pre-
dicted by Eq. (11-78) are shown in Fig. 11-6. The values of the parameters used

<
Cyz, )=CO|1 —

IR

T I 1 I 1 I 1
10 -
0 t = 3600 s |
8 —
—~ 7 t=1200s
5
= 6
T st
X 4
QU
§) 3k
2 -
1 }—
0 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of pore length, z/L

Figure 11-6 Concentration profiles in the pores as i
predicted by Eq. (11-78). (C° = 0. 3
L=0.1cm, D,=80 x 107® cm?/s) ¢ -G 01 gmfem’
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to obtain these profiles are as follows: C‘,’, = 0001 g/cm3, L=0.1 cm, D,=
80 x 107% cm?/s, D,=15x 1077 cm?/s, ¢,=0.7, m=11, and D = 2.745
x 10~ ¢ cm?/s. Again, it is to be observed that at low adsorptions or small
times, the concentration profiles are steep and become flatter as thft amount
adsorbed increases. Also, observe that the concentration gradient is zero at
z/L = 1.0 as required by the second condition of Eq. (11-77). .

Damkholer obtained the following expression for the fractional approach to
equilibrium
e~ (2n+1/2L02,2 1y

8 a0
—-1_= (11-79)
E=1-23 ";, (2n + 1)
where
_[§Cyz, 1) dz
- LCY

In addition to the solutions of McBain and Damkéhler, o.tl?e-r authors have
obtained solutions to the partial differential for other sets of initial and bound-
ary conditions. (See, for example, Wicke(28).)

NOTATION

a, = interfacial area between the fluid phase and the solid phase
per unit volume of empty column .
a; = parameter appearing in the development of the BET equation
a. = interfacial area between the fluid phase and the solid phase
) per unit volume of pellet

b = a constant in Langmuir’s isotherm, defined by Egs. (11-6) and
(11-7) ' .
b, = intercept in the linear equilibrium relationship (see Egs. (11-31),

(11-35), (11-36), and (11-40)) '

b; = parameter appearing in the development of the BET equation

¢ = number of components in the mixture -

C, = concentration of component i at the bulk conditions of the
fluid stream, moles per unit of void volume, the free volumc.:
between the pellets (C}; is the concentration of component iat
the fluid-solid interface; CJ; is the concentrz}ti.on whlgh
component i would have in the fluid ph'flse if it were in
equilibrium with component i in the solid phase with the
concentration Cy) - .

Cj; = concentration of adsorbed component i in the jth layer, moles
per unit mass of adsorbent . '

C; = total concentration of adsorbed component i, moles per unit
mass of adsorbent
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C,: = concentration of component i in the pore of an adsorbent,
moles of component i per unit pore volume
Cs;j = concentration of vacant sites in the jth layer, moles per unit
mass of adsorbent
C,i = concentration of component i in the adsorbed phase, moles per
unit volume of pellet
D,; = diffusion coefficient for the diffusion of component i in the
pore of an adsorbent, dimensions of (length)® per unit time
D; = diffusion coefficient for the diffusion of component i through the
solid phase of an adsorbent, dimensions of (length)? per unit time
D = diffusion coefficient defined beneath Eq. (11-76)
E = fractional approach to equilibrium (defined beneath Eq. (11-80))
E; = heat of liquefaction
E; = heat of adsorption of the jth layer
Jpi = moles of component i diffusing into a pore in the positive
direction of z per unit time per unit of void area
perpendicular to z (see Eq. (11-63))
si = moles of component i diffusing in the positive direction z
per unit time per unit of pellet surface perpendicular to z
k;; = rate constant for the adsorption of component i in layer j
kj; = rate constant for the desorption of component i from layer j
K = adsorption equilibrium constant for component i adsorbed in
layer j (K = k;i/Kj;)
kq; = mass transfer coefficient for component i (volume of empty
column per unit time per unit of interfacial area (see
Eq. (11-30)))
ky = mass transfer coefficient for component i (pellet volume per
unit time per unit of interfacial area (see Eq. (11-32))
K, = overall mass transfer coefficient, same units as ky; (defined
by Eq. (11-39))
K; = overall mass transfer coefficient, same units as k,; (defined
below Eq. (11-37))
L = length of pore
m; = slope of equilibrium relationship (see, for example, Eq. (11-31)
and (11-36))
P = total pressure
p: = partial pressure of component i
q = energy per molecule (see Eq. (11-7))
Q = accumulation of adsorbed solute (defined by Eq. (11-69))
rs; = moles of component i transferred per unit time per unit volume
of empty bed
si = moles of component i transferred per unit time per unit volume
of pellet

s; = surface area covered by j layers (appears in the development of
the BET equation)

J
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S = cross-sectional area tcorbed

S; = moles of sites on surface S;_, which are covered by adsorbe
molecules

t =time

T = temperature

u; = linear velocity .

v = volume of gas adsorbed (at 0°C and 1 atm) per unit mass of
adsorbent .

v,, = volume of gas adsorbed (at 0°C and 1 atm) per unit mass of
adsorbent when the adsorbent is covered with a complete
unimolecular layer . '

w = mole fraction which the solute would have in the fluid phase
if it were in equilibrium with the adsorbed phase ‘

y = mole fraction of solute in the fluid phase

z = positive direction for mass transfer

Greek Letters . '

« = fraction of the molecules striking the surface which stick

§ = constant appearing in Eq. (11-68) .

¢ = volume of voids between the pellets per unit volume of bed

¢. = volume of pores per unit volume of pellet

vp — rate of evaporation from a completely covered surface (also
used to denote the ratio defined by Eq. (11-28)) o

p = number of molecules striking a unit surface per unit time

¢; = a parameter defined by Eq. .(11-21)

& = dummy variable of integration .

@ = fraction of the adsorption surface covered by a unimolecular

layer of adsorbed molecules
ps = density of the fluid phase
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PROBLEMS

11-1 On the basis of the postulate given by Eq. (11-27), show that
(@ Ky=vK; Ky=vKy;...; K,=v"'K,;
b)) ¢, =vo,; ¢y = V2¢1§ vy G, = V"—l¢1
11-2 On the basis of the relationship given by Egs. (11-19) and (11-27), show that the ratio of the

concentration of component i to that of any arbitrary component k in the Jjth layer is equal to this
same ratio in the j + st layer, that is, show that

VA N o ST WL EY W S
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11-3 On the basis of the relationship given by Eq. (11-27), show that the relationship given by Eq.
(11-28) follows as a consequence from Eq. (11-26).
11-4 (a) When the rate expressions for the transfer of mass to and from the interface of the
adsorbent are given by Eq. (11-35) and the relationship between concentrations in the adsorbed
phase and the fluid phase are given by Eq. (11-36), obtain the expression given by Eq. (11-37) for r;
and the formula given below it for the overall mass transfer coefficient Kg;.

(b) Obtain the expression given by Eq. (11-38) for ry; and Eq. (11-39) for K.
11-5 Use the mean-value theorems and the appropriate limiting process needed to obtain Eq.
(11-42) from Eq. (11-41).
11-6 In the same manner as described in Prob. 11-5, obtain Eq. (11-44) from Eq. (11-43).
11-7 Use Laplace transforms to solve Egs. (11-55) and (11-56) subject to the initial condition and
boundary condition given by Egs. (11-57) and (11-58).
11-8 Apply the mean-value theorems and the limiting process required to reduce Eq. (11-64) to Eq.
(11-65).
119 (a) Obtain the solution which satisfies the partial differential equation given by Eq. (11-66)
and the conditions given by Eq. (11-67). To solve by the product method for the separation of
variables, the following suggestion is made for obtaining the solution given by Eq. (1 1-68).

Hint: Define a new function V(z, t) and ¢(2) as follows:

Clzt)=V(n+ 2)

where ¢(z) is further defined by
$O)=C, (>0
HL)=C% (>0

2
e-é=0 O0O<z<L,t>0)
oz2

(b) Obtain the expression given by Eq. (11-69) for the accumulation Q.
11-10 (a) Obtain the solution given by Eq. (11-78) which satisfies the partial differential equation
(Eq. (11-76)) and the conditions given by Eq. (11-77).

Hint: Define the new functions V(z, t) and ¢(z) as follows:

Clz,0) = V(z, 1) + ¢(2)

$(0) = Cy
30
0zt 0
L _
0z

(b) Obtain the result given by Eq. (11-79).
11-11 Show that Egs. (11-46) and (11-47) may be restated in the forms given by Egs. (11-51) and
(11-52), respectively.
11-12 Use the change in variables given by
form given by Egs. (11-55) and (11-56).

Eq. (11-53) to transform Egs. (11-51) and (11-52) to the

CHAPTER

TWELVE

SEPARATION OF
MULTICOMPONENT MIXTURES
BY USE OF ADSORPTION COLUMNS

::o(sizf‘ttlé-ls the ?lueck?uf model which was developed in Chap. 11 is used to
€paration of a multicomponent mixture in a fixed . i
column. The equations are solved b ination e abiior
Th y use of a combination of th
characteristics and the tra i i el for a
‘ pezoidal rule. The results predicted by th
typical column are co i mental results (oo Exam
Mot mpared with the observed experimental results (see Exam-
I :
methzdsci;:.séfuﬁoz:l modgltbas:d on [l))ore and axial diffusion is developed. The
hod of consists of a combination of orthogonal coll i .
semi-implicit Runge-Kutta method. In Ex ¢ ol predivted 1o
. . ample 12-2, the result i
the rlnodsel arezcompared with those observed experimentally ¢ predicted by
n Sec. 12-3 a model for an adiabaticall ‘
. : y operated fixed-bed ad i
;:(())lmugzg 15 develfop;d. The equations describing the model are solved by Suosrepgz) 2
ation of the method of characteristi i
Newton Raption ey cteristics, the trapezoidal rule, and the

In Sec. 12-4, a brief descripti iodi
Sec. . iption of the period i i
adsorption column is presented. P 1 operation of & commercial

12-1 THE GLUECKAUF MODEL

:‘:g ;Zil‘?titons‘ er this model were developed in Chap. 11. Isothermal operation
ect mixing in the radial direction of the column
ct : were assumed

as a negligible change in the flow rate of the gas stream through the beils ¥lellel
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rate of mass transfer is given by
oC

ra == =Kaa(C = C) (12-1)
A mass balance on any component i is given by
0Cy 1—¢\0C; 0Cyu

_uf_az__( - )—a—t—=—aT (12-2)

The initial conditions and the boundary conditions are as follows:
C.{z, 0) = C 0<z<z2.,t<0) (12-3)
Cyz,0)=0 0O<z<zp,t<0) (12-4)
C.(0, 1) = C% (z=0,t>0) (12-5)

Elimination of the time derivative of C; from Eq. (12-2) by use of Eq. (12-1)
gives

“rYoz T o

Let the following dimensionless variables be defined

%u , %o () Kuacz € (1249

oMt oz ¢ =cycy
zT St S St

Zr
Ct=CHCY  Cx0=CNC)= 9{Ca: (12-7)
C_di = Cdi/ C.(i)i

where the g;'s are the functional forms of the equilibrium relationships which
are shown below. After the change in variables has been made, Eq. (12-6)

reduces to
oCy; 9Cy zr \(e—1 o0 _
Odi  Zdi (T K.a.C*(C* - C 12-8
aZ + at (uf C‘(‘)i & St as st ( St Sl) ( )
Similarly, with the change in variables given by Eq. (12-7), Eq. (12-1) becomes
% (K—“—z—> (€-C (129)
at uy
and the initial and boundary conditions in terms of the new variables are
CiZ,0) = Cco/cxe 0<Z<11<0 (12-10)
CiZ,00=0 0<Z<1,1<0) (12-11)
C,i0,7)=1 (Z=0,7>0) (12-12)

Equations (12-8) and (12-9) may be solved by the Method of Characteristics
as described in Chap. 10. The choice of the characteristics is made as outlined
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below. Expansion of C,; by the chain rule gives

d—c—ﬂ = ai-'“ az aca.' dt

dZ ~ 0z 4z~ &t dz (12-13)
Let dt/dZ = 1 for characteristic I. Thus, Eq. (12-13) becomes
() %, 2
iz )~ oz + . (along dt/dZ = 1) (12-19)

and Eq. (12-8) is red ; . .
namely, (12-8) is reduced from a partial to an ordinary differential equation,

<fi_c_i) _(_2r (&1 “or = _
iz )~ \e s\ K;a,C¥C% - C,) (along dt/dZ = 1) (12-15)

Consider now the reduction of Eq. (12-9) from a partial to an ordinary

differential equation by the Method of isti
h N —
chain rule gives of Characteristics. Expansion of C;; by the

dCy _0Cudr  0C,dZ
& o &0z de (12-16)

Let dZ/dT = O, or Z = const ..
reduces to ant for characteristic II. Thus, Eq. (12-16)

dCy) _ Cy
&)= e (along Z = const) (12-17)
and consequently Eq. (12-9) becomes
d_C_s_i _(Kibgzr\ ~,
&)= “ (CE — Cy) (along Z = const) (12-18)

Next, for convenience, let the quantities y and 6 be defined as follows:

X = s e~ 1 *0
uf C‘(’)‘ € (Ksi as Csi (12-19)
0 = Ksias 4
u, (12-20)

Then the two ordinary differential equations which are to be solved simul-

taneously are
ac,
az J,

dc_si = —~
(7)" = 9(C§l. - Cy) (along Z = const) (12-22)

AuCs—Cy)  (along di/dZ = 1) (12-21)
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Values of the mass transfer coefficient K;a, for each compoqen} were esti-
mated separately by Balzi et al.(1) by matching the model predictions to the
single-component breakthrough curves from a column 41 cm long.

Example 12-1 A liquid mixture of butanol-2, _t-amylalcphol, e}nd [()lhenolioxs

passed over a fixed-bed adsorption column which contains activate cal; n

as the adsorbent. On the basis of the Glueckauf model developed a oi\"e,

determine the concentration profiles for Cyy(z, t), Cy42(2, t) and C.“(z, t) o(;

columns having lengths z; = 0.41 m, and z; = 0.82 m. Butanol-2 is deno;e

as component 1, t-amylalcohol as compopent 2,and phenol as cqmpc;)nent .
The equilibrium relationships for this ternary system are given by

1.05C};134 12-23)
= =9,(Ca) (
C:l = Cgivs + 1.44(:22.793 + 0.53C;)5467 1
1.09C};!82 224
= = g,(Ca) (12-24)
€ = CoPT + 0520585 + 030037 92
0.224
cx 079Cas —giCa)  (12:29)
s3

T C900% + 1.07C9%%¢ + 0.79CS;2**

The values of the system parameters are: u, = 0.‘0?2 720 m/s, Oe = 0.2, Kz)l
a.=6912s" ', K,a,=6336s"", K,;a,=4248s"", C;, = sz = Cs3d= ,
Cj?l = 0.915 kg/m3, C, = 0912 kg/m>, and C3; = 0.997 kg/m"°. The afsor-
bent material was Filtrasorb 400, and the above values were taken from

Ref. 1.
2.5 T T T T T T T T T T
WhH——————— = T T
1.5}
o Ca
Cé T - B
1.0——
— Glueckauf model
o experimental data (column length = 41 cm) |
0.5F o experimental data (column length = 82 cm)
1 1 1 1 A 1
O0 10 12 14 16 18 20 22

Figure 12-1 Breakthrough curve of butanol-2 in simultaneous three-component adsorption
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20’ T T T 1 T T 1 1 1 T
1.5+ .
[s] o a
o ° a \\q\
Y A Yo N S
CdZ
Ch o — Glueckauf model
© experimental data (column length = 41 cm)
0.5 o experimental data (column length = 82 cm)
a
0 1 1 i 1 1 | 1 1 A 1
0 2 4 6 8 10 12 14 16 18 20 22

t,h

Figure 12-2 Breakthrough curve of t-amylalcohol in simultaneous three-component adsorption

Equations (12-21) and (12-22) were solved simultaneously for this
system through the use of the trapezoidal rule in a manner similar to that
described for Example 12-3 except for the fact that the semi-implicit Runge—
Kutta method was used in Example 12-3 in lieu of the trapezoidal rule. The
results obtained by the solution of the Glueckauf model for this example
are presented in Figs. 12-1 through 12-3.

Although the Glueckauf model predicts the appropriate trends, it does not fit
the experimental data very well. In the case of phenol, the breakthrough times
predicted are much later than those observed experimentally. This discrepancy
between theory and experiment is attributed primarily to the fact that in the
Glueckauf model, the resistance to ihtraparticle diffusion was neglected. Also
axial diffusion of mass in the flowing stream was neglected in this model. In the
next section a more comprehensive mass diffusional model is presented.

20 T T T T T T T T T T
B ~ " Glueckauf model .
- © experimental data (column length = 41 cm)
o experimental data (column length = 82 cm)
B B
LFF—————————-——-v———— |
Cus E
Cas
i 7]
i o
0 | 1 1 1
0 2 4 18 20 22

Figure 12-3 Breakthrough curve of phenol in simultaneous three-component adsorption
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12-2 THE FILM RESISTANCE AND DIFFUSION MODEL

The adsorption of solute components from a fluid stream as it passes through a
fixed-bed adsorption column may be represented by a model which is based on
three transport mechanisms. These mechanisms are as follows: (1) axial diffusion
in the direction of flow of the fluid, (2) transfer of the solute from the bulk
conditions of the fluid stream to the opening of the pore, and (3) transport of
the solute through the pore by diffusion. The development of the equations
required to describe this model follow.

Material Balance on Component i in the Fluid Stream

Consider a cyclindrical adsorption column which is filled with cyclindrical pel-
lets through which the fluid stream containing the solutes is flowing. Let the
cross-sectional area of the column be denoted by S and the linear velocity of
the stream by u;. .

In the development of the first equation given below it is supposed that the
adsorbent pellets are cyclindrical. Mass transfer from the fluid stream to the
ends of the pellets is taken to be negligible in order to avoid the d}ﬂ“lCUlty of
treating two-dimensional diffusion within the pellets. Pore diﬂ"us.wn is assumed
to occur in the radial direction in the pellets and from the exterior of the pellet
at r = r, to the principal axis of the pellet at r = 0. _ o

The rate of mass transfer of a solute in the axial direction (the direction of
flow of the fluid stream) by diffusion is denoted by J;; (moles of splute i
diffusing in the positive direction of z per unit time per unit of void area
perpendicular to the direction z) and

0Cy;

Jui= —Duy -6—2_ (12-26)

The rate of mass transfer from the bulk conditions of the fluid stream to the
external pellet surface (the opening of the pores) is given by

ri=Kpa(Cyi — Cp) (12-27)
ro
where r,; = moles of solute i transferred per unit time per unit of pellet volume
a = surface area of the cyclindrical pellet per unit of volume of the
pellet = (2nry L)/(nrd L) = 2/rg

The material balance on solute i over the time period from ¢, to t, + At over
the element of volume of the adsorption bed from z to z + Az is given by

th+ At
J [uf SeCy;
th

— Uy Sﬁcdi + £SJLI'

zj.t zj+Az,t zje

zj+Az
- j ru(l — ¢S dz:| dt
zj+Az,t Zj

zj+Az
= J‘ <SSC4,'

—eSJy;

—&eSCy;

> dz (12-28)

tht+ AL, 2z th, Z
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Applic.:ation of the mean-value theorems followed by the limiting process
wherelp Az and At are allowed to go to zero gives the following result upon
observing that z; and t, were arbitrarily selected

a3y, (1—s> _Cy

" e e ) (2
Substitution of the expressions for Jii and ry; into Eq. (12-29) yields
aCy; 92C,; 1 —¢\/2 aC,;
TU Tt Dy 02 (_s ‘)(;;) K{Cosi — Cp) . = 7" (12-30)

For the case where the column is filled with spherical pellets, the material
balance corresponding to Eq. (12-30) is obtained by replacing 2/r, in Eq. (12-30)
by 3/r,.

Pore Diffusion

After the solute molecules have been transported from the bulk conditions of
the fluid phase to the exterior of the pellets, they are transported to the interior
of the pellets by the mechanism of pore diffusion. For diffusion in the positive
direction of r instead of z, the variable z is replaced by the variable r in Eq.

(1‘2-26) to obtain the following defining equations for the pore and solid phase
diffusion rates J,; and J;, respectively:

BCE,-

in= —Dpi ar (12'31)
0Cy;

Ji=—Dg E» (12-32)

Again, as in the case of cylindrical pellets, mass transfer through the ends of the

p.ellet‘is neglected in order to avoid the necessity for treating two-dimensional
diffusion within the pellet.

Material balance A material balance on solute i in the element of volume from
z; to z; +'Az (the direction of fluid flow of the fluid stream) and r; to r; + Ar
over the time period from ¢, to t, + At is given by ’

tn+ AL zj+Az
f j [an(sp Jpi+ Js,-)l = 2nr(e, J i + Jg)
tn Zj

rj,t, z

rmtAr (zj+Az
= j f 2nr l:(sp C,+Cy

where ¢, = volume of pores in the pellet per unit of volume of pellet

]dz dt
ritAr,t, z

- (ep Cpl' + Csi)

] dzdr (12-33)
th, 2,1

thtAt z,r

Application of the mean-value theorems to Eq. (12-33) followed by the limiting
process wherein Az, Ar, and At are allowed to £0 to zero, and observing that z;,
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r;, and t, were all arbitrarily selected yields

1 6 ac; acsi _ Qgﬂ Q_Cg 12_34
7277['<£"Dﬂ77'rz+0“ o )|T% 0 Yo (12-34)

For the case where the column is filled with spherical pellets and r denotes
the radius of the sphere, Eq. (12-33) becomes
] dt
rjtAr,t

— (e, Cpi + c,,.)‘ ]dr (12-35)

tn t+ At 2
J [4nr2(ep i+ J)|  —dnrie, i+ Jg)
tn rj.t

tht At r

rjtAn
= J‘ 47"'2 [(8‘7 C‘n‘ + Csi)

and the corresponding partial differential equation is given by

ac i acsi
I3} 7'2<£ D i — + Dsi )] .
! [ P o or )4 _, % % (12-36)

=) or POt ot

The cross-diffusion coefficients D,;; for components i anq j were takep cqua;:i to
zero for i#j (D,;=0, i#j) in this development. Liapis and. Litchfie 152)
showed that the cross coefficients are one ordtwo orders of magnitude smaller
’s and may be neglected with good accuracy. .
thanltthl?asD‘i;lci: the pr);lctice 1gn the application of the film re.sistance and diffu-
sion model to consider the pore diffusion to be fa:st relatw; to the pqrall‘?l
mechanism of solid diffusion, that is J,; > J;. Also, since, physical adsorption is
assumed to be exceedingly fast, a state of equilibriurp betwepn the pore pha.se
concentration C,; and the adsorbed phase concentration Cy; is assumed, that is,
the following form of the chain rule may be used to evaluate 0C;/0t:

aCy _ < (6C§> 9Cy; (12-37)
ot =1 \0C,; ot

In view of the assumption that J,; > J; and Eq. (12-37), the material balances
given by Egs. (12-34) and (12-36) reduce to

aC;
a e -3
{ 8<r e, D, Br)

_, 9§ 0Ca Gy (12-38)
- o » o T & 0C,, ot

where o = 1 for cylindrical pellets, and o = 2 for spherical pellets.

Initial and boundary conditions for the film resistance and diffusion model In-
itially it is supposed that the concentrations of the solutes are equal to zero
throughout the adsorption bed, that is,

Ci=0 (0<z<z;,t<0) (12-39)
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The boundary condition at the inlet z = 0 of the adsorption bed is given by
making a material balance at z = 0

upColt) —usCyil  —Jy| =0 (z=0,t>0)
z=0 z=
or 0
0Cy;
up Coft) — u, Cy + Dy, di =0 (12-40)
z=0 0z |,-0

At the outlet of the adsorber (z = z;), mass transfer by diffusion ceases or
J.i =0, and thus

0z

=0 (=27, t>0) (12-41)

zZ=zIT
(This boundary condition is analogous to the one in heat transfer in which the
end of a bar is perfectly insulated.)

The rate of convective mass transport r,, from the fluid phase to the surface
{r =ro) of a cyclindrical pellet plus the rates of pore and solid diffusion in the

positive direction of r at r, must be equal to zero since there can be no
accumulation at the surface r = r,. Thus, at any time ¢

zjt+Az
f [(ep 2nro Jpi + 21ro J )

where it is supposed that the pellets are placed end to end in the direction .
Since the above holds for all z (0 < z < z4), it follows that

+ nrd rL,-:I dz=0 (12-42)

ro

2
e,2nrgJ |+ 2nrgJg| + (nré)[KL,- (r_> (Cyi — Cp,»):l =0
ro ro 0 ro
or
aC,; aC;
&, Dpi _arL . + D ar |, =K {Cyi — Cp) . =0 (12-43)

For a spherical pellet, the material balance corresponding to Eq. (12-43) at any
t > 0 is given by

4 3
e dnrgJ, + dnrg J; + 3 nry KLi()T)(Cdi -C,)
)

=0 O<z<zp,t>0)
ro
(12-44)
which is seen to reduce to Eq. (12-43). Since the assumption has been made that
pore diffusion is fast relative to solid diffusion (J; < Jp), the above equations

may be simplified by setting J; =0 to give, for either a cyclindrical or a
spherical pellet,

ac,,;
WP

= KilCai — Cp)

ro

=0 0<z<z;,t>0) (12-45)

ro
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Along the axis (r = 0) of each cyclindrical pellet, symmetry requires

_ %
r=0— ar

0Cy

> =0 0<z<zp,t>0) (12-46)

r=0

Similarly, at the center of each spherical pellet, symmetry requires the condition
given by Eq. (12-46).

It is supposed that initially a state of equilibrium exists between each com-
ponent in the fluid phase within the pore and the adsorbed solute on the
surface. The distribution of component concentrations at t < 0 is assumed to be

independent of z. Thus
C,{0,r=Cpr) (0<z<z,t<0)
C.{0, r) = C%r) O<z<zp,t<0)

The values C%r) may be computed by use of the appropriate isotherm and the
specified values of Co(r).

(12-47)

Example 12-2 A mixture of butanol-2 and ¢-amylalcohol is passed through
a fixed-bed adsorption column. On the basis of the mass transfer model de-
veloped above and the assumption that solid diffusion makes an insignifi-
cant contribution to the transport of mass, the values of C,{t, z) are to be
predicted at z = z;. Butanol-2 is taken as component 1 and t-amylalcohol
as component 2. The cguilibrium isotherms for the binary system over the
adsorbent Filtrasorb 400 are

ot — 1.06C;;%"”
SO 4+ 0.626C,,
- 1.07C;3%
52

T CI% +0.045Co°>*

Perform the calculations for two different column lengths, z; = 0.41 m and
zr = 0.82 m. The values of the parameters of the system are shown in Table
12-1. The values of these parameters were taken from Ref. 3.

Solve the example by use of a combination of the method of orthogonal
collocation and the third-order semi-implicit Runge-Kutta method of

Michelsen (see Chaps. 1, 9, and 10).

SoLutioN The method of orthogonal collocation is applied by first
choosing a new set of variables which have values lying between 0 and 1.
Consider first Eq. (12-30) as modified for a spherical pellet and let

E=z/zr t=1iDy/Ay p=13r}  Ag=mr}

_ _ N 1
Cyu= C.ﬁ/Cox Cpi = Cpi/COI' Cs*i = C:i/C:*Oi

Pe; = zpu,/Dy; = Peclet number ~ Sh; = 2ro K1/, D, = Sherwood number
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Table 12-1 Values of the par-
ameters for Example 12-2, the ad-
sorption of the binary mixture of
butanol-2 and t-amylalcohol on
Filtrasorb 400 adsorbent (Ref. 3)

Parameter Units Numerical value
Co, g/cm®  0.001
Co g/em®  0.001

C44(0, 2) g/cm? 0.0
C4(0, 2) g/cm® 00

C,,(0, 1) g/cm® 00

C,200, 1) g/em® 00

D, cm?/s 0.04

Dy, cm?/s 0.04

D, cm?/s 7.40 x 1076
D,, cm?/s  13.03 x [0™¢
Ky, cm/s 212 x 1073
Ky, cm/s 1.68 x 103
To cm 0.05

up cm/s 0.28
L 0.5

o .. 0.94

Alsg C%: is used to denote the concentration of adsorbed solute i at equi-
librium when the fluid phase concentration is Coi at z<0. When the

change in variables listed by Eq. (1) is made, E - i
change in q. (1) e, Eq. (12-30) for spherical pellets

0Cyy -y 0Cy, N 0*Cy, _ B
ot boae a2 FYZI 23(Cyy — Cpy) - 2
aC—dZ = —q ac_dz + 52642 = ~
ar *Toe T am Ml CaCal| 3)
where
o =, = ur Ao o — U4
zr Dy, zr Pe, D,
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For spherical pellets, Eq. (12-38) for pore diffusion reduces to the fol-
lowing expressions for components 1 and 2:

~ ~ 2c oC
9Cp Cpz _&pdo (4,0 C ¢ —Ll) @
l//l 3: + ‘!/2 ar - r%) 4p apz ap
~ ol 2C aoC
aC,, Cp_ 2 (, PCp ¢ g2> )
Vs ot + VY, n Sh, 4p ap2 ap
where
Cl: 0CYH _ Gl 0G5

bhimn e VT o
2C%, r2K,, > oC%
Vs = Aye,Sh; Cor Ky2/) 9C,
2 ac*
Ve = 2rs Ky ><8PC02 + C%, (‘jCTZ>
N Ay Sh, &p K, Co p2

Restatement of the initial and boundary conditions (Egs. (1.2-39)
through (12-41), (12-45), (12-46), and (12-47)) in terms of the new variables

yields
C,i=0 0<é<1,t<0) (6)
1 [0Cy
Ci0, 1) =1+ Pe, (a—g) . (t>0) ™
<§§ﬂ> -0 (E=11t>0 (3)
3¢ Jleos
C,i=0 0<p<1,1<0) (€)
o (52, e OsEsLe=0 (0
Shi (7p p=1 p=1
(ﬁ@) ~0 O<i<lz>0 (1)
ap p=0

When the method of orthogonal collocation is applied to the space vari-
ables ¢ and p, Egs. (2) through (5) and (6) through (11) become

~ N+2 N+2 _ _ _
d(iidl'l =—a, 3, A Cat o‘2,21 B 1 Cay.i = a3(Car s = Cprnsn)
T 1=1 =

(Gi=23...N+1) (12
= N+2 N+2 _ _ _
d_C_&iz —-a4< Z A; 1Caz ,) + as( z ijlcd2.1> — a6(Caz,j — Cpa.n+1)
dt =1 ' =1
(i=23...N+1) (13
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where «;, a,, ..., as are defined beneath Eq. (3) and N is equal to the
number of interior collocation points. Equations (4) and (5) become

ac,, . aC,, . ¢, A et oo N+1 -
v, dgl.;_*_wz d22.1=_22_°. (4pjzBj',Cpl‘,+6ZA,_,C‘,1_,
T T ro =1 =1
G=1,2...,N) (14
dc_plj dC;z ; 2 N+1 _ N+1 _ )
. d == (4p. Y B, ,C,, +6Y A4,,C
% dt + '1/4 dt Shz pllgl Jj, 1 ~p2,1 lgl Bt~ p2,1

G=1,2..,N) (15

The initial and boundary conditions given by Egs. (6) through (11) become

Cdl.j=c_d2,j=0 (=12 ..,N+2,1<0) (16)
B N+2 ~
Cd1‘1=1+g ZAl.lCdl.l 17
1 1=1
(E=0,7>0)
~ 1 N2 _
Caz.1=1+f,‘e— Y A.Cus (18)
2 1=1
(&=0,7>0)

N+2

Z AN+2,1C—41,1 =0

=1

E=Lz>0 (19

N+2

Z AN+2,1@42.1=0
=1

1=

E=1Lt>0 (20

Cp1,j=Cp2j=0 G=L2..,N+1L1t<0) (21)
4 N+1 _ _ _
gh_<ZAN+1.lcyl,l>=Cd1,j—cyl.N+l 22)
1 \i=1
(=23 ..,N+1
4 N+1 _ _ _
'S‘h—< Z AN+1,1Cp2,1> =Ca,j— Cpa.n+1 (23)
2 \1=1

(G=23,..,N+1)

It should be noted that the boundary points £ =0 and ¢ = 1 are taken
as external collocation points in Eqs. (2) and (3), whereas only the boundary
point p = 1 was taken as an external collocation point.

Equations (17) through (20) may be used to reduce the number of terms
in the summations in Eqs. (12) and (13)tol=2to =N + 1 by use of the
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following procedure. First, Eqs. (17) through (20) are solved for Cu 1>
Ciz. 15 Car n+2, and Cyy y4 to give the following expressions:

. N+1 A _
Pe; + ( A " N+2,1 )Cdi,l
c Ay Ny =2 Ay ne1 An+a n+2

“l Pe; Ay Ansan
Ay ne2 Ain+z2 Anszne2
Pe; & ( A AN+2.1>C— )
Al,l—Pei+ =2 \ A1 —Pei Ania ot
Anranes  _Ainss
Ani2,1 Ay, — Pe

(i=1,2 (24

(i=12) (25

Cdi.N+2 =

Use of the four expressions (Egs. (24) and (25) with i= 1, 2) to_eliminate the
concentrations at ¢ =0 and & =1 (Cyy, 1> Caz, 1> Car,n+2> Caz n+2) from
Egs. (12) and (13) results in a reduction of the number of terms m'the
summations. After the above substitutions have been made, the summations
in Eqgs. (12) and (13) run from [ =2 to =N + 1. For convenience, let these
resulting forms of Eqgs. (12) and (13) be denoted by Eq§. (129 anq (1‘3’).
Although Egs. (12') and (13) are readily obtained by direct substitution,
they are not presented because of their complexity. The {AJ-‘,} and {B; }
were evaluated on the basis of power series in the concentrations as out-
lined in Probs. 12-1 through 12-3. The orthogonal polynomials were taken
to be the Jacobi polynomials P§" 9(&) of order N = 8. Tl}e roots of these
polynomials were taken as the interior collocation points. Liapis and
Rippin(3) showed that the results obtained with N =8 differed from thgse
for N > 8 in the fourth digit, thereby justifying the use of only 8 collocation
points. .

Equations (22) and (23) may be used to reduce the sums in Eqgs. (14)
and (15) such that they are taken from [ =1 to I =N as shown below.
Solution of Eq. (22) for C,, y., yields

_ 4 X _
Cdl‘j T ZAN+1.le1.l

_ Sh, S
Coiner = — (26)
1 +_S_f:ANH'N+1
and Eq. (23) yields
_ 4 X =~
Cdz.j—gi‘ ZAN+1.le2,l
~ 21=1
C = (27)
p2,N+1 4
1+ S_hz An+i,N+1

‘Use of these expressions to eliminate C,, y+, and Coa N+t frgm Eqgs. (}4)
and (15), respectively, yields two expressions having summations rangmlg
from =1 to | = N, and these are denoted for convenience by Egs. (14
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and (15). In these equations, the concentrations corresponding to p = 1
have been eliminated. The collocation was performed by use of the roots of
the orthogonal polynomials P (p) of order N = 8, and the number of the
interior points of the collocation process was taken to be 8. It should be
noted that the polynomials for C,, and C,, were constructed such that the
boundary conditions at p = 0 were satisfied (see Eq. (11) and Prob. 12-2).
Thus, the problem has now been reduced to solving simultaneously the
equations denoted by Egs. (12'), (13'), (14), (15') and the initial conditions
given by Egs. (6) and (9). Equations (12') through (15') constitute 4N equa-
tions; in 4N unknown concentrations {exclusive of the initial concentrations
which are given by Eqgs. (6) and (9)). This set of equations was solved by the
semi-implicit Runge-Kutta method as modifed by Michelsen. This method
is applied to the above set of differential equations in the same manner
demonstrated in Chaps. 1, 6, and 9. The time step At which corresponds to
h in the semi-implicit Runge-Kutta algorithm was varied between 0.001 at
the beginning of the simulation when the equations were very stiff to 0.1 as
the stiffness of the ordinary differential equations became less pronounced.
The results of the simulation are shown in Figs. 12-4 and 12-5. It is
seen that good agreement between the predicted results and the experimen-
tal results is obtained. An interesting phenomenon to be observed is the fact

/o———\\\Cﬂ
s ~<
/ o ———0-o0——o _
—0-—0———
Il 9 _——0

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Figure 12-4 Outlet concentrations (¢ = 1) predicted by the film resistance and diffusion model,
Example 12-2. (O: experimental data, ——-: predicted results, z; = 0.41 m.) (4. I. Liapis and
D. W. T. Rippin: “The Simulation of Binary Adsorption in Activated Carbon Columns Using
Estimates of Diffusional Resistance within the Carbon Particles Derived from Batch Experi-
ments,” Chem. Eng. Sci., vol. 33, p. 593 (1978), Courtesy Pergamon Press.)
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Figure 12-5 Outlet concentrations (¢ = 1) predicted by use of the film resistance and diffusion
model, Example 12-2. (O: experimental data, ——-: predicted results, z; = 0.82 m.) (4. I. Liapis
and D. W. T. Rippin: “The Simulation of Binary Adsorption in Activated Carbon Columns

Using Estimates of Diffusional Resistance within the Carbon Particles Derived from Batch
Experiments,” Chem. Eng. Sci., vol. 33, p. 593 (1978), Courtesy of Pergamon Press.)

that the outlet concentration of the less preferentially adsorbed component,
butanol-2, exceeds its inlet concentration to the adsorption column for a
certain period of time, which is indicative of the behavior of competitive

multicomponent adsorption.

12-3 ADIABATIC OPERATION OF A FIXED-BED
ADSORPTION COLUMN

In the following model for a fixed-bed adsorption column, the operation is
adiabatic in the sense that the column is perfectly insulated (no heat losses). The

mass transfer model is analogous to the one described in Sec. 11-1 in that the
rate-controlling step is the transfer of mass from the bulk conditions of the fluid

phase to the adsorbent surface.

Component-Material Balances

The component-material balances for component i in the fluid and solid phases
are given by Egs. (11-45) and (11-42), respectively. For convenience of use in the
following developments, these equations are repeated and renumbered as fol-

lows:
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B 0Cy; 1—¢ oC,;
uf—az — T rsi=7 (0<Z<ZT,t>0) (12-48)
and
acsl'
ra=—%  (0<z<z;,t>0) (12-49)

Energy Balance on the Fluid Phase

Two independent energy balances exist, one for each phase. In the following
development', the enthalpies of the pure components in the fluid phase (denoted
by H) and in the solid phase (denoted by h) are assumed to be functions of
temperature alone. Again u,, ¢, and S are assumed to be independent of z and ¢
Thus, an energy balance on the fluid phase contained in the element of volumé
from z; to z; + Az over the time period from t, to t, + At is given by

o+ At ¢ .
J‘ [(“f £Si§lcdiHi) T (ufsS Y. Ca Hi)

" i=1
zj+Az c
+ j (1— £)S<q - Zrﬂ-Hl) dz] dt

) i=1

zjt+Az c
= j [(sS Y Cu H,)
z i=1

Applic?ation of the mean-value theorems followed by the limiting process
wherein Az apd At are allowed to go to zero with the observation that z. and ¢
were arbitrarily selected yields the following result: ’ '

0) C, H,;
—u, igl 4 '_<1—8> irH+<l_£> Rl
sifli B q= o

0z

zjtAz, ¢t

] dz (12-50)

tn, z

- (sS Y. Ca H,-)
thtAt, z

i=1

O<z<zp,t>0) (12-51)

where g = h,a,(T, — T;) = rate of heat transfer from the solid phase to the fluid

phase, energy per unit time per unit volume of pellet
a, = interfacial area for heat transfer, interfacial area per unit volume of

pellet
In order to reduce Eq. (12-51) to a more convenient form, the following symbols

are introduced
cpdi = aHJ(??:, Cpsi = ahl/a’rs
Cpa = i Cpdi s — i i
n= LVl ¢ '_=le‘ Cpsi (12-52)

Cai = Pay Cy = psx;
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where y; is the mole fraction of component i in the fluid phase and x; is the
mole fraction of component i in the solid phase. Since

<

aY C,H; .
L AT e GH, AT, aCy
=1 Lt c + Hi i1
0z EIC"' T, 0z ,.; oz
T, & ., 0Cy
= PaCpa _a?d + i;H,- = (12-53)
and
2y CyuH, 5 .
i T; 0Cy;
i=1 = -4 4 12-54
o Py + Z‘IH' at ( )

it is evident that Eq. (12-51) may be restated in the following form:

o, &, 3k (1-e\& . (L=
_ufpdcpd—é_z__uf_zlei‘Ez__— e i§‘r51H1+ ¢ q

0Ty | <&y 9Ca
= — H,—= (12-55
= pacu g, + LHTE (1259
Further simplification is possible by use of the following expression.which may
be obtained by first multiplying Eq. (12-48) by H; and then summing over all

components i to obtain

< 0Cy; 1—¢e\ & < 0Cy; )
_ 0Cu (178 H, = Y H, =% (12-56)
“r ,.;IH' 0z ( € > ,.;r" 2‘1 at
Subtraction of Eq. (12-56) from Eq. (12-55) yields
oT, (1—c¢ T, )
—wpwﬂgf+( £>q=pr5? (12-57)
or

oT, T, (l—c¢ i 12.58
UpPyCpa "aj + PaCpa i ( p hya (T, — T)) ( )

Energy Balance on the Solid Phase

The energy balance enclosing the solid phase over Fhe time period from ¢, to
t, + At and the volume of bed from z; to z; + Az is given by

th+ At zj+A4z c
j‘ (J. (eriH,-——q>(1—s)S dz dt
tn z i=1

zj+Az <
= J (chihi
zj i=1

c

- 2 Csihi

tyt+AL 2 i=1

)(1 —§Sdz (12-59)

tn, Z.
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Application of the mean-value theorems to Eq. (12-59) followed by the limiting
process whereby At and Az are allowed to go to zero, and with the understand-
ing that At and Az were arbitrarily selected, yields the following result:
< < Oh, 0T, & 0C,
H—qg=YC,— == h, —=
iglrs' i q i=zl si 67; a[ + '_gl i at
From Eq. (12-60) subtract the expression obtained by first multiplying each
member of Eq. (12-49) by k; and then summing over all components to obtain
the following result upon replacing q by its definition given below Eq. (12-51):

(12-60)

< aC oT,
- Y AH, a;’ + ha (T, — T)) = pyc,, ‘BTS O<z<zy,t>0) (12-61)
i=1
where
AH, = h, — H,

For convenience, the expression given by Eq. (12-49) for the rate of mass
transfer is combined with Eq. (12-1) and restated for convenience as follows:

o,

S =KaaCh—C)  (=1,2..,9 (12-62)

Use of Eq. (12-62) permits Eqs. (12-48) and (12-61) to be restated in the
following form:

acdl' acdl' _ 1-— € « 3
uf az 6t = - ( e )Ksias(csi - C“’) (l = 1, 2, ceey C) (12'63)

(4

oT,
PsCps ‘a—: =ha(Ty—T) — Z AH K ;a(C% — C,) (12-64)

i=1

Equations (12-58) and (12-62) through (12-64) constitute 2c + 2 equations which
are to be solved subject to the following initial conditions

Cz, 0) = C¥2)
Calz, 0) = C3(2)

O<z<zp,t<0)

O<z<zy,t<0)

(12-65)
Tz, 0) = TY(2) O<z<zy,t<0)
Tfz, 0) = TY(2) O<z<zp,t<0)
and boundary conditions
Cd(o, t) = Cdi, in (Z = Os t> 0)
(12-66)
T, 0 =Ty (2=0,1>0)

Harwell et al(4) used the following form of the Markham and Benton
equilibrium relationship:
CrnK,Cy
Cy=—T—-""— (12-67)
1+ Y K, Cy

i=1
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where C.. is constant for each component i. On the basis of the expression
given by Tlliq. (12-67), the following expression was developed by Harwell et al.(4)
for expressing the dependency of K; on temperature and pressure, namely,

K, = Kq; T, 112 Pe ™ AHiRTs i=12..,0 (12-68)

Ky, is a constant for each component i. ' _
Wher]gqugtions (12-58), (12-62), (12-63), and (12-64) may be stated in the follow

ing dimensionless form:

Cu | Cai_ et C (i=1,2....0 (12:69)
61; 62 i si
Ty Ty _ ym 7 (12-70)
ot + 0z ( ¢
Coi _ gicx—C.) (i=1,2...,0 (1271
61’ i si St
O T, T)-236C5—C (=120 (127)
0t i=1

The dimensionless independent and dependent variables are defined as follows:
Z=z/zr C=CHC5l0)

T, = T/ T,..0) (12-73)
C,i = Ca/CE,il0)

T=Uy [/ZT
C_d,‘ = Cdi/Cdl'. in(o)
T, = TJ/T;.:(0)

The dimensionless parameters appearing in Egs. (12-69) through (12-72) have

the following definitions:

1 — £\ K27 C 0 0=<1 —e)hs_ah@
= ( € uy Cyi,in(0) &/ UsrPaCpa :

(12-74)

e e

zZ
zr Kga, _zZzrhaw
= Us ﬁ Up PsCps Up PsCps Tdv i“(o)
8, = AH,K;a,C¥% ..(0)

This model for the adiabatic adsorption of multicompone?t tll?ix?_f:réljz
iapi imulate the adsorption of ethan
been used by Liapis and Crosser(5) to simu . O e e
ioxi i lecular sieves. The model predic :
dioxide mixtures by beds of 54 mo o e e,
i 11 with the experimental data, and one may U i
g:trilyg‘;gd accuracy, fixed adsorption beds which are adiabatically operated.

&

Solution of Egs. (12-69) thr?ugh (12-72) by
the Method of Characteristics »
d by the Method o
i f Egs. (12-69) through (12-72) may bc? effecte thod o
zllllfiri(z:l;trlics)gcg aliqdegcribed in Chap. 10. The choice of thg characéerlsglcst hl:
made as outlined below. Consider first Eq. (12-69). Expansion of C4 by
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chain rule gives
dC, oC,dz oC, dr
— =y A 12-7
dz 0Z dZ ot dzZ (12-75)
Let dt/dZ = 1. Then along characteristic I, Eq. (12-75) becomes
4C\ _Ca oG
dZ ), 0z ' ot
Thus, Eq. (12-69) reduces to
dacC, _ _
) _p(C*— . i =
(dZ ): ndCs WS (=120

Similarly, characteristic I reduces Eq. (12-70) to

aT
(E)—@(TS—E)

Next consider Eq. (12-71). Expansion of C,; by the chain rule gives
4C; _C,dr C,dz

(along dt/dZ = 1) (12-76)
(along dt/dZ = 1) (12-77)

(along dt/dZ = 1) (12-78)

si

dt 0t dt 0Z drt (12-79)
Take dZ/dt = 0, or Z = const as characteristic II. Then Eq. (12-79) reduces to

4 i,
dt ), = ot

Thus, along characteristic II, Egs. (12-71) and (12-72) reduce to

(along Z = const) (12-80)

dc_s,- ~. =~ i=12,... ¢)
A = G C* - C i s £y ’
( dt )u (0 si) (along Z = const)  (12-81)
(ﬂ) AT -T)— 1Y e(Ch—cC,) (=1L2..0,
dt /, Z

(along Z = const) (12-82)

The application of these equations is demonstrated by use of the following
numerical example.

Example 12-3 A mixture of benzene and cyclohexane is passed through a
fixed-bed adsorption column which is assumed to be perfectly insulated. On
the basis of the simultaneous mass and heat transfer model developed
above, the values of C,(Z, 1), C,(Z, 1), T{Z, 1), and T(Z, 1) are to be pre-
dicted at each of the mesh points (i, j) shown in Fig. 12-6. The data to be
used for this example are presented in Table 12-2.

The example is to be solved by use of a combination of the Method of
Characteristics, the trapezoidal rule, and the Newton-Raphson method.
(a) Formulate the equations required to determine the values of C,.{0, 1)

and T(0, 7). (b) Formulate the equations needed to find the values of all
variables at the point (1, 1)
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Figure 12-6 Sketch of the characteristics with initial values and boundary values of the vari-
ables for Example 12-3.

SoruTioN In Fig. 12-6, a plot of characteristics I and II is shown. Also,
along each axis, the known values of the variables at (0, t) and (Z, 0) are
listed. Since the values of C,,(0, 1), Cy;(0, 1), and T5(0, 1) are unknown, their
values must be determined before the values of the variables at the points

(1, 2), (1, 3), ... can be determined.
First the equations needed to compute C.(0, 1) and T(0, 1) are formu-

lated. Application of the trapezoidal rule gives
_ - h[dC.0,0) dCy 0,1
€0 1) = 0,0 + L[ 4G40 0 LEO D) yg
2 dt dt

h dT(0,0) dT(0, 1)
2[ dt + dt } @

When the derivatives appearing in Egs. (1) and (2) are evaluated by use of
Egs. (12-80) and (12-82) and the resulting expressions restated in functional

notation, one obtains
f;' = - —si(O’ 1) + C_si(o’ 0)

+ g (£LC%0, 0) — C0. 0] + &ICHO, = C0. D} (=1, 2 O

7,0, 1) = T(0, 0) +

sePARATIA MULTICOMPONENT MIXTURES BY USE OF ADSORPTION coLumns 411
f3= =T, 1) + T(0, 0)

h _ _ 2
+3 {ﬂ[ 140, 0) — 740, 0)] - 2;15,.[6;;(0, 0) — C,(0, 0)]

_ _ 2
+BLTAO, 1) = T,0, ] = 2 3 8,{CXO, 1) — C40, 1)]} @

Tablcf 12-2 Valtfes of the parameters for Example 12-3, the ad-
sorption of the binary mixture of benzene and cyclohexane (Ref. 4)

Parameter Units Numerical value
2 m 0.5
us m/s 0.0015
Cor. mol benzene
Lin mol gas 0.030, ¢ >0
C, mol cyclohexane
in mol gas 0.020,¢t >0
a, = a, m?/m? 6000
E 0.360
Pd.m mol/m3 1.41 x 103
Cp J/(mol K) 377
C, J/(g K) 1.05
Py g/m? 1.3 x 108
h J/(mZs) 419
Ky g/(m’s) 1.0
K,, g/(m?2s) 0.80
AH, J/mol —3.27 x 10*
AH, J/mol —4.35 x 10*
T, . K 293,t>0
Tiz) = T(z) K 293,0<z<z2;,0>0
VS Zs2Zr,
mol i

C°(z) = C° -

2(2) = C%(2) 2 solid 1x107'%,0<z<z2,,t<0

mol i

c° - 0 -

21(2) = C? 5(2) mol gas 1x107%,0<z<z2,,t<0
P atm 34
c mol of sites, component |

T 2 solid 290 x 1073
c mol of sites, component 2

T2 2 solid 3.67 x 1073

)
Kooy P 126 x 1072
(K)uz

Ko, atm 437 x 1074




412 SOLUTION OF PROBLEMS INVOLVING CONTINUOUS-SEPARATION PROCESSES

The quantities C¥(0, 0) and C¥(0, 1) are given by the equilibrium relation-
ship, namely,

L+ ¥ K{LT0, 01C.{0, 0)
30, 1) = —CrKLTODICO. Dy ) ©

1+ 3 K[T(0, DIC.0, 1)

Examination of the above equations shows that the functions f}, f,, and f;
contain three unknowns C,,(0, 1), C,,(0, 1), and T,(0, 1). The values of these
three variables, which are required to make f; =f, =f; = Q, may be found
by use of the Newton-Raphson method. The values so Pbtalned are used ‘to
compute the next set of values C(0, 2), C,,(0, 2), and ’I;(O,. 2). This stepwise
process is repeated until all of the desired values of the variables along the t
axis (at T = 0) have been determined. .

(b) The values of the variables at the point (1, 1) of Fig. 12-6 are evalu-
ated by integration of Egs. (12-77) and (12-78) from (0, 0) .to (0, 1) along the
line defined by characteristic I, dt/dZ = 1 and by integration of Egs. .(1?-81)
and (12-82) from (0, 1) to (1, 1) along the line defined by characteristic II,
Z = const. In particular

50,00 dC.(1, 1 4
C1=00,0 + 5[ 1C00 LG |ona o

dt dt
_ _ h[dT(0,0) dT(1, 1)] 9
(1, 1) =T0,0) +3 [ Tt (
dC,(1,0) dC,(1, 1 _
Ca(l, 1) =C,(1,0) + %[ ‘;(Z ) + ‘Zi(z )] i=1,2 9
_ _ AZ [dT(1,0) dTA1, 1)] "
T(1, 1) = T(1, 0) +—2—[ otz (10)

The derivatives appearing in Egs. (7) through (10) are given by Egs. (12-77),
(12-78), (12-81), and (12-82). For example,

dCu(1, 1) TC* —C.(1.1 i=1,2 1
dZ - rll[Csl(l’ 1) :n( s )] (l )
d_ld arT — T(1.1 (12)
Z= O[T(1, 1) A1, 1)]

where C¥(1, 1) is given in terms of T(1, 1) and Ci(1, 1) by Eq. (12-67).

After the derivatives appearing in Egs. (7) through (10) have been re-
placed by their equivalents as given by Egs. (12-77), (1.2-78), (12-§1), and
(12-82) and the resulting expressions are stated in functional notation, the
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Newton-Raphson method may be applied successively to determine the
values of the variables, Cy(1, 1), C,y(1, 1), Ci(1, 1), C,(1, 1), T(1, 1), and
(1, 1).

Interpretation of the Numerical Results for Example 12-3

Selected values of the variables obtained over the time period t = 140 by use of
the numerical methods described above are presented in Fig. 12-7. Profiles of
the variables at © = 10 over the total length of the bed are shown in Fig. 12-8.
A computation time of 20 minutes was typical for the AMDAHL 470V/6 com-
puter for time and space steps ranging from 0.01 to 0.03.

First, observe in Fig. 12-7 that component 1 (cyclohexane) which is not as
strongly adsorbed as component 2 (benzene) exhibits a breakthrough 35 dimen-
sionless time units before component 2. Because of this significant difference in
breakthrough times, it is evident that the performance of a binary adsorption
column cannot be approximated by a single pseudocomponent.

For the equilibrium isotherm employed (Eq. (12-67)), there exists an inver-
sion of the relative adsorptivity for the benzene—cyclohexane system. The fol-
lowing expression for the relative adsorptivity y is obtained by use of Egs.
(12-67) and (12-68):

C:I/Cdl CTIKOl
== — = ex —(AH, — AH RT; 12-83
C2:/Cay ~ Cps Ko, &P [7(AH: — AH/RT] (12-83)
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Figure 12-7 Outlet concentrations and temperatures predicted by the adiabatic model for a fixed-
bed adsorption column, Example 12-3. (J. H. Harwell, A. 1. Liapis, R.J. Litchfield and D. T.
Hanson: “A Non-Equilibrium Model for Fixed-Bed Multicomponent Adiabatic Adsorption,” Chem.
Eng. Sci., vol. 35, p. 2287 (1980), Courtesy Pergamon Press.)
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Figure 12-8 Concentrations and temperatures pfoﬁles predicted by the adiabati(j' model for a fixed-
bed adsorption column, Example 12-3. (J. H. Harwell, A.I. Liapis, R.J. ) thchﬁeld,. an‘z'i D.T.
Hanson: “A Non-Equilibrium Model for Fixed-Bed Multicomponent Adiabatic Adsorption,” Chem.
Eng. Sci., vol. 35, p. 2287 (1980), Courtesy Pergamon Press.)

The inversion in adsorptivity occurs at y = 1. The T, required to make y=11is
denoted by T, ;.. For the benzene—cyclohexane system, T ine = 442.9 K. .
A comment regarding the relative magnitudes of C,, Cs 2, 'C:jl , .and C¥,
is in order. When the solid temperature T; is less_than the inversion tem-
perature, the value of C,, is larger than that of C,, even though.there is
actually more of component 2 adsorbed than compqnent 1. The r'elfmve mag-
nitudes of C,, and C,, result from the difference in the normalizing factors
* *
CSVI'I?;:: th:é fluid-phase mass waves in Fig. 12-7 have distinctively different
shapes and different velocities. The mass wave of- t.he more strongly adsorbed
component, C,,, is concave away from the o;lgm and moves at a slower
ity than does the mass wave for component 1. ~
Velo?ﬁe tth::ermal waves or temperature profiles (both in the fluid phase T, and
in the solid phase T,) move at a greater velocity than do the mass waves.
Further interpretations have been presented by Harwell et al.(4).

12-4 PERIODIC OPERATION

In order to utilize adsorption columns in continuous processes, it is necessary tp
devise a process whereby one adsorption bed is cleaned while 'anothgr one 1s
being used. For example, suppose that a se.t of three columns is available. At
any one time, two columns connected in series may be f)perated in the adsorp-
tion cycle while the third column is placed in the cleaning cycle. After the first
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column has become loaded with one or more of the components to be separ-
ated, it is removed from the system and placed in the cleaning cycle. The clean
column is then placed after and in series with the second column. The second
column then becomes the next column to be removed from the adsorption cycle -
and placed in the cleaning cycle. Obviously, a large number of columns could
be used in the process whereby one (or more) columns is always in the cleaning
process. In the limit as the number of columns and the frequency of changing
cycles for one of the columns is increased indefinitely, the condition of steady-
state countercurrent operation is reached. The same limit is obtained if the
analysis is made in terms of pulsed columns (Ref. 6).

The mathematical model that describes periodic operation is the same as
that for a fixed bed. The solution procedure for a single column is easily
adopted to a multicolumn system. After a column switch, the initial conditions
must be adjusted for the start of the new adsorption cycle. That part of the
profile is deleted which corresponds to the saturated column that has been
removed. The profile of the remaining column is shifted toward the feed inlet
and the profile for the newly regenerated column is added at the outlet end of
the series of columns.

The criterion for the removal of a loaded column at the inlet end of the
system and the introduction of a regenerated column at the outlet end of the

system of columns is selected in a manner which tends to maximize the use of
the adsorbent.

Comparison of Fixed-Bed Operation and Periodic Operation

The adsorption model developed in Sec. 12-2 (based on film resistance and
diffusion) was used to compare fixed-bed operation with periodic operation. The
adsorption system used was the same as the one used for fixed-bed operation,
2-butanol and t-amylalcohol. Six different column lengths of 30, 41, 82, 123,
150, and 200 cm were used and the system parameters used in the film resist-
ance and diffusion model of Sec. 12-2.

The criterion used for column switching was arbitrarily taken to be that
time at which the concentration of either component in the effluent reached 1
percent of its value in the feed. Figure 12-9 shows the relationship between
carbon utilization and column length for different numbers of subdivisions for a
given total length. The different numbers of subdivisions correspond to the
numbers of columns in a given adsorption system composed of multiple col-
umns. A carbon utilization of 100 percent corresponds to the case where the
amount of solute adsorbed is equal to that predicted by the equilibrium iso-
therm. As the number of columns is allowed to increase without bound
(N — o), countercurrent operation at steady state is approached (Ref. 7). It is
seen in Fig. 12-9 that the greatest improvement in carbon utilization occurs
when the single column is divided into two columns, while for more sub-
divisions the corresponding improvement is smaller. For small columns even a
small number of subdivisions gives almost the same efficiency as the
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Figure 12-9 Percentage of carbon utilization versus column length with r}umber of columnsA as é
parameter (NP) for the butanol-2 and t-amylalcohol system. (A. I. Liapis fznd D.W.T. Rlp[:')m.
“The Simulation of Binary Adsorption in Continuous Countercurrent Operation am{ a Companson
with Other Operating Modes. AIChE J., vol. 25, no. 3, p. 455 (1979). Courtesy American Institute of
Chemical Engineers.)

continuous-countercurrent operation. For large columns many more sub-
divisions would be required. . o ‘
The results shown lead to the conclusion that subdividing a column into
two or more columns and operating them periodically in a countercurrent mode
gives an increase in the utilization of the adsorbent which is proportional to the

number of columns employed.

NOTATION

a = interfacial area for mass transfer from the fluid .
phase to the pore openings, interfacial area per unit
volume of pellet .

a, = interfacial area for heat transfer, interfacial area
per unit volume of pellet

a = interfacial area for mass transfer from the fluid to

) the solid phase, interfacial area per unit volume of pellet

Aj = constants generated in the orthogonal collocation
method (see Example 12-2) .

B, = constants generated in the orthogonal collocation
method (see Example 12-2 and Chap. 10)

Cpai = heat capacity for component i in the fluid phase,

energy per unit mass (or mole) per degree temperature
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= heat capacity for a unit mass (or mole) of the fluid
phase, energy per unit mass (or mole) per
degree temperature
= heat capacity for component i in the solid phase,
energy per unit mass (or mole) per degree temperature
= heat capacity for a unit mass (or mole) of the solid
phase, energy per unit mass (or mole) per
degree temperature
= concentration of component i at the bulk conditions of
the fluid phase (moles of component i per unit of void
volume (the free volume between the pellets))
= a normalized value of C,; (dimensionless)
= concentration of component i in the solid (or adsorbed)
phase (moles per unit volume of pellet)
= a normalized value of C; (dimensionless)
= diffusivity for component i in the fluid phase
(dimensions of (length)?/time)
= diffusivity for component i in the fluid phase within
the pore of an absorbent (dimensions of (length)?/time)
= diffusivity for component i in the solid (or adsorbed)
phase (dimensions of (length)?/time)
= enthalpy of component i in the solid phase, energy
per mole (or per unit mass) of component i
= heat transfer coefficient, energy per unit time per unit
of interfacial area per degree (°C, °F, K, °R)
= enthalpy of component i in the fluid phase, energy
per mole (or per unit mass)
= moles of component i diffusing in the positive
direction of z (or r) in the fluid phase per unit of
void area perpendicular to the direction z
= moles of component i diffusing in the positive
direction of z (or r) in the fluid phase per unit time
per unit of void area perpendicular to z
= moles of component i diffusing in the positive
direction of z (or r) in the solid phase per unit
time per unit of pellet surface perpendicular to z
= a constant depending on component i which appears an
expression for an equilibrium adsorption isotherm
(see Egs. (12-67) and (12-68))
= a constant appearing in Eq. (12-68)
= overall mass transfer coefficient (dimensions of pellet
volume per unit time per unit of interfacial area)
length of a pore
Peclet number (used and defined in Example 12-2)
radius of the adsorbent pellet as measured from center of
pellet

1

I
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ro = external radius of the adsorbent
ru = moles of solute i transferred per unit time per unit
of pellet volume (see Eq. (12-27))
Sh = Sherwood number (used and defined in Example 12-2)
t = time
u = linear velocity in the positive direction of z
z = distance
Zr = total length of the adsorption bed
Z = normalized distance (Z = z/zp)
Greek letters
o =0, 1, 2 for a slab, cylinder, or sphere
oy, d,, ..., 4g = parameters appearing in Eqs. (2) and (3) of Example 12-2
B = parameter defined by Eq. (12-74)
d; = parameter defined by Eq. (12-74)
€ = volume of voids per unit volume of bed
&, = volume of pores per unit volume of pellet
n; = parameter defined by Eq. (12-74)
0 = parameter defined by Eq. (12-74)
A = parameter defined by Eq. (12-74)
¢ = parameter defined by Eq. (12-74)
14 = parameter defined by Eq. (1) of Example 12-2
p = parameter defined by Eq. (1) of Example 12-2
T = parameter defined by Eq. (1) of Example 12-2
V,,..., s = parameters defined beneath Egs. (4) and (5) of Example 12-2
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